
M A N N I N G

John Carnell

www.allitebooks.com

http://www.allitebooks.org

Spring Microservices in Action
Licensed to <null>www.allitebooks.com

http://www.allitebooks.org

Licensed to <null>www.allitebooks.com

http://www.allitebooks.org

Spring Microservices
in Action

JOHN CARNELL

M A N N I N G
SHELTER ISLAND
Licensed to <null>www.allitebooks.com

http://www.allitebooks.org

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2017 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Acquisition editor: Greg Wild
20 Baldwin Road Development editor: Marina Michaels
PO Box 761 Technical development editor: Raphael Villela
Shelter Island, NY 11964 Copyeditor: Katie Petito

Proofreader: Melody Dolab
Technical proofreader: Joshua White

Review editor: Aleksandar Dragosavljevic
Typesetter: Marija Tudor

Cover designer: Marija Tudor

ISBN 9781617293986
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – EBM – 22 21 20 19 18 17
Licensed to <null>www.allitebooks.com

http://www.manning.com
http://www.manning.com
http://www.allitebooks.org

To my brother Jason, who even in his darkest moments
showed me the true meaning of strength and dignity.

You are a role model as a brother, husband, and father.
Licensed to <null>

vi

Licensed to <null>

brief contents
1 ■ Welcome to the cloud, Spring 1
2 ■ Building microservices with Spring Boot 35
3 ■ Controlling your configuration with Spring Cloud

configuration server 64
4 ■ On service discovery 96
5 ■ When bad things happen: client resiliency patterns with

Spring Cloud and Netflix Hystrix 119
6 ■ Service routing with Spring Cloud and Zuul 153
7 ■ Securing your microservices 192
8 ■ Event-driven architecture with Spring Cloud Stream 228
9 ■ Distributed tracing with Spring Cloud Sleuth and Zipkin 259

10 ■ Deploying your microservices 288

vii

Licensed to <null>

BRIEF CONTENTSviii

Licensed to <null>

contents
preface xv
acknowledgments xvii
about this book xix
about the author xxii
about the cover illustration xxiii

1 Welcome to the cloud, Spring 1
1.1 What’s a microservice? 2
1.2 What is Spring and why is it relevant to microservices? 5
1.3 What you’ll learn in this book 6
1.4 Why is this book relevant to you? 7
1.5 Building a microservice with Spring Boot 8
1.6 Why change the way we build applications? 12
1.7 What exactly is the cloud? 13
1.8 Why the cloud and microservices? 15
1.9 Microservices are more than writing the code 17

Core microservice development pattern 19 ■ Microservice routing
patterns 20 ■ Microservice client resiliency patterns 21
Microservice security patterns 23 ■ Microservice logging and
tracing patterns 24 ■ Microservice build/deployment patterns 25

1.10 Using Spring Cloud in building your microservices 26
Spring Boot 28 ■ Spring Cloud Config 28 ■ Spring Cloud
service discovery 28 ■ Spring Cloud/Netflix Hystrix and
ix

Licensed to <null>

CONTENTSx
Ribbon 29 ■ Spring Cloud/Netflix Zuul 29 ■ Spring Cloud
Stream 29 ■ Spring Cloud Sleuth 29 ■ Spring Cloud
Security 30 ■ What about provisioning? 30

1.11 Spring Cloud by example 30
1.12 Making sure our examples are relevant 33
1.13 Summary 33

2 Building microservices with Spring Boot 35
2.1 The architect’s story: designing the microservice

architecture 38
Decomposing the business problem 38 ■ Establishing service
granularity 41 ■ Talking to one another: service interfaces 43

2.2 When not to use microservices 44
Complexity of building distributed systems 44 ■ Server
sprawl 44 ■ Type of application 44 ■ Data transformations
and consistency 45

2.3 The developer’s tale: building a microservice with Spring
Boot and Java 45
Getting started with the skeleton project 46 ■ Booting your Spring
Boot application: writing the Bootstrap class 47 ■ Building the
doorway into the microservice: the Spring Boot controller 48

2.4 The DevOps story: building for the rigors of runtime 53
Service assembly: packaging and deploying your microservices 56
 Service bootstrapping: managing configuration of your
microservices 58 ■ Service registration and discovery: how clients
communicate with your microservices 59 ■ Communicating a
microservice’s health 60

2.5 Pulling the perspectives together 62
2.6 Summary 63

3 Controlling your configuration with Spring Cloud
configuration server 64
3.1 On managing configuration (and complexity) 65

Your configuration management
architecture 67 ■ Implementation choices 69

3.2 Building our Spring Cloud configuration server 70
Setting up the Spring Cloud Config Bootstrap class 74
Using Spring Cloud configuration server with the filesystem 75
Licensed to <null>

CONTENTS xi
3.3 Integrating Spring Cloud Config with a Spring Boot client 77
Setting up the licensing service Spring Cloud Config server
dependencies 79 ■ Configuring the licensing service to use Spring
Cloud Config 79 ■ Wiring in a data source using Spring Cloud
configuration server 83 ■ Directly Reading Properties using the
@Value Annotation 86 ■ Using Spring Cloud configuration
server with Git 87 ■ Refreshing your properties using Spring Cloud
configuration server 88

3.4 Protecting sensitive configuration information 89
Download and install Oracle JCE jars needed for encryption 90
Setting up an encryption key 91 ■ Encrypting and decrypting a
property 91 ■ Configure microservices to use encryption on the
client side 93

3.5 Closing thoughts 95
3.6 Summary 95

4 On service discovery 96
4.1 Where’s my service? 97
4.2 On service discovery in the cloud 100

The architecture of service discovery 100 ■ Service discovery in
action using Spring and Netflix Eureka 103

4.3 Building your Spring Eureka Service 105
4.4 Registering services with Spring Eureka 107
4.5 Using service discovery to look up a service 111

Looking up service instances with Spring DiscoveryClient 112
Invoking services with Ribbon-aware Spring RestTemplate 114
Invoking services with Netflix Feign client 116

4.6 Summary 118

5 When bad things happen: client resiliency patterns with
Spring Cloud and Netflix Hystrix 119
5.1 What are client-side resiliency patterns? 120

Client-side load balancing 121 ■ Circuit breaker 122
Fallback processing 122 ■ Bulkheads 122

5.2 Why client resiliency matters 123
5.3 Enter Hystrix 126
5.4 Setting up the licensing server to use Spring Cloud and

Hystrix 127
Licensed to <null>

CONTENTSxii
5.5 Implementing a circuit breaker using Hystrix 128
Timing out a call to the organization microservice 131
Customizing the timeout on a circuit breaker 132

5.6 Fallback processing 133
5.7 Implementing the bulkhead pattern 136
5.8 Getting beyond the basics; fine-tuning Hystrix 138

Hystrix configuration revisited 142

5.9 Thread context and Hystrix 144
ThreadLocal and Hystrix 144 ■ The HystrixConcurrencyStrategy
in action 147

5.10 Summary 151

6 Service routing with Spring Cloud and Zuul 153
6.1 What is a services gateway? 154
6.2 Introducing Spring Cloud and Netflix Zuul 157

Setting up the Zuul Spring Boot project 157 ■ Using Spring
Cloud annotation for the Zuul service 157 ■ Configuring Zuul
to communicate with Eureka 158

6.3 Configuring routes in Zuul 159
Automated mapping routes via service discovery 159
Mapping routes manually using service discovery 161
Manual mapping of routes using static URLs 165
Dynamically reload route configuration 168 ■ Zuul and
service timeouts 169

6.4 The real power of Zuul: filters 169
6.5 Building your first Zuul pre-filter generating correlation

IDs 173
Using the correlation ID in your service calls 176

6.6 Building a post filter receiving correlation IDs 182
6.7 Building a dynamic route filter 184

Building the skeleton of the routing filter 186 ■ Implementing the
run() method 187 ■ Forwarding the route 188 ■ Pulling it all
together 190

6.8 Summary 191

7 Securing your microservices 192
7.1 Introduction to OAuth2 193
Licensed to <null>

CONTENTS xiii
7.2 Starting small: using Spring and OAuth2 to protect a
single endpoint 195
Setting up the EagleEye OAuth2 authentication service 196
Registering client applications with the OAuth2 service 197
Configuring EagleEye users 200 ■ Authenticating the user 202

7.3 Protecting the organization service using OAuth2 205
Adding the Spring Security and OAuth2 jars to the individual
services 205 ■ Configuring the service to point to your OAuth2
authentication service 206 ■ Defining who and what can access
the service 207 ■ Propagating the OAuth2 access token 210

7.4 JavaScript Web Tokens and OAuth2 213
Modifying the authentication service to issue JavaScript Web
Tokens 214 ■ Consuming JavaScript Web Tokens in your
microservices 218 ■ Extending the JWT Token 220
Parsing a custom field out of a JavaScript token 222

7.5 Some closing thoughts on microservice security 224
7.6 Summary 227

8 Event-driven architecture with Spring Cloud Stream 228
8.1 The case for messaging, EDA, and microservices 229

Using synchronous request-response approach to communicate state
change 230 ■ Using messaging to communicate state changes between
services 233 ■ Downsides of a messaging architecture 235

8.2 Introducing Spring Cloud Stream 236
The Spring Cloud Stream architecture 237

8.3 Writing a simple message producer and consumer 238
Writing the message producer in the organization service 239
Writing the message consumer in the licensing service 244
Seeing the message service in action 247

8.4 A Spring Cloud Stream use case: distributed caching 249
Using Redis to cache lookups 250 ■ Defining custom channels 256
Bringing it all together: clearing the cache when a message is received 257

8.5 Summary 258

9 Distributed tracing with Spring Cloud Sleuth and Zipkin 259
9.1 Spring Cloud Sleuth and the correlation ID 260

Adding Spring Cloud sleuth to licensing and organization 261
Anatomy of a Spring Cloud Sleuth trace 262
Licensed to <null>

CONTENTSxiv
9.2 Log aggregation and Spring Cloud Sleuth 263
A Spring Cloud Sleuth/Papertrail implementation in action 265
Create a Papertrail account and configure a syslog connector 267
Redirecting Docker output to Papertrail 268 ■ Searching for
Spring Cloud Sleuth trace IDs in Papertrail 270 ■ Adding the
correlation ID to the HTTP response with Zuul 272

9.3 Distributed tracing with Open Zipkin 274
Setting up the Spring Cloud Sleuth and Zipkin dependencies 275
Configuring the services to point to Zipkin 275 ■ Installing and
configuring a Zipkin server 276 ■ Setting tracing levels 278
Using Zipkin to trace transactions 278 ■ Visualizing a more
complex transaction 281 ■ Capturing messaging traces 282
Adding custom spans 284

9.4 Summary 287

10 Deploying your microservices 288
10.1 EagleEye: setting up your core infrastructure in the cloud 290

Creating the PostgreSQL database using Amazon RDS 293
Creating the Redis cluster in Amazon 296 ■ Creating an ECS
cluster 298

10.2 Beyond the infrastructure: deploying EagleEye 302
Deploying the EagleEye services to ECS manually 303

10.3 The architecture of a build/deployment pipeline 305
10.4 Your build and deployment pipeline in action 309
10.5 Beginning your build deploy/pipeline: GitHub and Travis

CI 311
10.6 Enabling your service to build in Travis CI 312

Core build run-time configuration 315 ■ Pre-build tool
installations 318 ■ Executing the build 320 ■ Tagging the
source control code 320 ■ Building the microservices and creating
the Docker images 321 ■ Pushing the images to Docker Hub 322
Starting the services in Amazon ECS 323 ■ Kicking off the
platform tests 323

10.7 Closing thoughts on the build/deployment pipeline 325
10.8 Summary 325

appendix A Running a cloud on your desktop 327
appendix B OAuth2 grant types 336

index 345
Licensed to <null>

preface
It’s ironic that in writing a book, the last part of the book you write is often the begin-
ning of the book. It’s also often the most difficult part to put down on paper. Why?
Because you have to explain to everyone why you’re so passionate about a subject that
you spent the last one and a half years of your life writing a book about it. It’s hard to
articulate why anyone would spend such a large amount of time on a technical book.
One rarely writes software books for the money or the fame.

 Here’s the reason why I wrote this book: I love writing code. It’s a calling for me
and it’s also a creative activity—akin to drawing, painting, or playing an instrument.
Those outside the field of software development have a hard time understanding this.
I especially like building distributed applications. For me, it’s an amazing thing to see
an application work across dozens (even hundreds) of servers. It’s like watching an
orchestra playing a piece of music. While the final product of an orchestra is beauti-
ful, the making of it is often a lot of hard work and requires a significant amount of
practice. The same goes for writing a massively distributed application.

 Since I entered the software development field 25 years ago, I’ve watched the
industry struggle with the “right” way to build distributed applications. I’ve seen dis-
tributed service standards such as CORBA rise and fall. Monstrously big companies
have tried to push big and, often, proprietary protocols. Anyone remember Micro-
soft’s Distributed Component Object Model (DCOM) or Oracle’s J2EE’s Enterprise
Java Beans 2 (EJB)? I watched as technology companies and their followers rushed to
build service-oriented architectures (SOA) using heavy XML-based schemas.

 In each case, these approaches for building distributed systems often collapsed
under their own weight. I’m not saying that these technologies weren’t used to build
some very powerful applications. The reality is that they couldn’t keep up with the
xv

Licensed to <null>

PREFACExvi
demand of the users. Ten years ago, smartphones were just being introduced to the
market and cloud computing was in the earliest stage of infancy. Also, the standards
and technology for distributed application development were too complicated for the
average developer to understand and easily use in practice. Nothing speaks truth in
the software development industry like written code. When the standards get in the
way of this, the standards quickly get discarded.

 When I first heard of the microservices approach to building applications I was
more than a little skeptical. “Great, another silver-bullet approach to building distrib-
uted applications,” I thought. However, as I started diving into the concepts, I realized
the simplicity of microservices could be a game changer. A microservice architecture
focuses on building small services that use simple protocols (HTTP and JSON) to com-
municate. That’s it. You can write a microservice with nearly any programming lan-
guage. There’s beauty in this simplicity.

 However, while building an individual microservice is easy, operationalizing and
scaling it is difficult. Getting hundreds of small distributed components to work
together and then building a resilient application from them can be incredibly diffi-
cult to do. In distributed computing, failure is a fact of life and how your application
deals with it is incredibly difficult to get right. To paraphrase my colleagues Chris
Miller and Shawn Hagwood: “If it’s not breaking once in a while, you’re not building.”

 It’s these failures that inspired me to write this book. I hate to build things from
scratch when I don’t have to. The reality is that Java is the lingua franca for most appli-
cation development efforts, especially in the enterprise. The Spring framework has for
many organizations become the de facto framework for most application develop-
ment. I’d already been doing application development in Java for almost 20 years (I
remember the Dancing Duke applet) and Spring for almost 10 years. As I began my
microservices journey, I was delighted and excited to watch the emergence of Spring
Cloud.

 The Spring Cloud framework provides out-of-the-box solutions for many of the
common development and operational problems you’ll run into as a microservice
developer. Spring Cloud lets you use only the pieces you need and minimizes the
amount of work you need to do to build and deploy production-ready Java micro-
services. It does this by using other battle-hardened technologies from companies and
groups such as Netflix, HashiCorp, and the Apache foundation.

 I’ve always considered myself an average developer who, at the end of the day, has
deadlines to meet. That’s why I undertook the project of writing this book. I wanted a
book that I could use in my day-to-day work. I wanted something with direct (and
hopefully) straightforward code examples. I always want to make sure that the mate-
rial in this book can be consumed as individual chapters or in its entirety. I hope you
find this book useful and I hope you enjoy reading it as much as I enjoyed writing it.
Licensed to <null>

acknowledgments
As I sit down to write these acknowledgments, I can’t help but think back to 2014
when I ran my first marathon. Writing a book is a lot like running a marathon. Writing
the proposal and the outline for the book is much like the training process. It gets
your thoughts in shape, it focuses you for what’s ahead and, yes, near the end of the
process, it can be more than a little tedious and brutal.

 When you start writing the book, it’s a lot like race day. You start the marathon
excited and full of energy. You know you’re trying to do something bigger than any-
thing you might have done before and it’s both exciting and nerve-wracking. This is
what you’ve trained for, but at the same time, there’s always that small voice of doubt
in the back of your mind that says you won’t finish what you started.

 What I’ve learned from running is that races aren’t completed one mile at a time.
Instead, they’re run one foot in front of the other. The miles run are the sum of the
individual footsteps. When my children are struggling with something, I laugh and ask
them, “How do you write a book? One word, one single step at a time.” They usually
roll their eyes, but in the end there’s no other way around this indisputable and iron-
clad law.

 However, when you run a marathon, you might be the one running the race, but
you’re never running it alone. There’s a whole team of people there to give you sup-
port, time, and advice along the way. It has been the same experience writing this
book.

 I’d like to start by thanking Manning for the support they gave me in writing this
book. It started with Greg Wild, my acquisitions editor, who patiently worked with me
as I refined the core concepts in this book and guided me through the proposal pro-
cess. Along the way, Marina Michaels, my development editor, kept me honest and
xvii

Licensed to <null>

ACKNOWLEDGMENTSxviii
challenged me to become a better author. I’d also like to thank Raphael Villela and
Joshua White, my technical editors, who constantly checked my work and ensured the
overall quality of the examples and the code I produced. I’m extremely grateful for
the time, talent, and commitment each of these individuals put into into the overall
project. I’d also like to thank the reviewers who provided feedback on the manuscript
throughout the writing and development process: Aditya Kumar, Adrian M. Rossi,
Ashwin Raj, Christian Bach, Edgar Knapp, Jared Duncan, Jiri Pik, John Guthrie, Mirko
Bernardoni, Paul Balogh, Pierluigi Riti, Raju Myadam, Rambabu Posa, Sergey Evsikov,
and Vipul Gupta.

 I want to close these acknowledgments with a deep sense of thanks for the love and
time my family has given me in working on this project. To my wife Janet, you have
been my best friend and the love of my life. When I’m tired and want to give up, I only
have to listen for the sound of your footsteps next to me to know that you’re always
running beside me, never telling me no, and always pushing me forward.

 To my son Christopher, you’re growing up to be an incredible young man. I can-
not wait for the day when you truly discover your passion, because there will be noth-
ing in this world that can stop you from reaching your goals.

 To my daughter Agatha, I’d give all the money I have to see the world through
your eyes for just 10 minutes. The experience would make me a better author and
more importantly a better person. Your intellect, your power of observation, and cre-
ativity humble me.

 To my four-year-old son, Jack: Buddy, thank you being patient with me whenever I
said, “I can’t play right now because Daddy has to work on the book.” You always make
me laugh and you make this whole family complete. Nothing makes me happier than
when I see you being the jokester and playing with everyone in the family.

 My race with this book is done. Like my marathon, I’ve left nothing on the table in
writing this book. I have nothing but gratitude for the Manning team and the MEAP
readers who bought this book early and gave me so much valuable feedback. I hope in
the end that you enjoy this book as much as I enjoyed writing it. Thank you.
Licensed to <null>

about this book
Spring Microservices in Action was written for the practicing Java/Spring developer who
needs hands-on advice and examples of how to build and operationalize microservice-
based applications. When I wrote this book, I wanted it to be based around core
microservice patterns that aligned with Spring Boot and Spring Cloud examples that
demonstrated the patterns in action. As such, you’ll find specific microservice design
patterns discussed in almost every chapter, along with examples of the patterns imple-
mented using Spring Boot and Spring Cloud.

You should read this book if

 You’re a Java developer who has experience building distributed applications
(1-3 years).

 You have a background in Spring (1+ years).
 You’re interested in learning how to build microservice-based applications.
 You’re interested in how you can use microservices for building cloud-based

applications.
 You want to know if Java and Spring are relevant technologies for building

microservice-based applications.
 You’re interested in seeing what goes into deploying a microservice-based appli-

cation to the cloud.

How this book is organized

Spring Microservices in Action consists of 10 chapters and two appendixes:

 Chapter 1 introduces you to why the microservices architecture is an important
and relevant approach to building applications, especially cloud-based
applications.
xix

Licensed to <null>

ABOUT THIS BOOKxx
 Chapter 2 walks you through how to build your first REST-based microservice
using Spring Boot. This chapter will guide you in how to look at your microser-
vices through the eyes of an architect, an application engineer, and a DevOps
engineer.

 Chapter 3 introduces you to how to manage the configuration of your microser-
vices using Spring Cloud Config. Spring Cloud Config helps you guarantee that
your service’s configuration information is centralized in a single repository,
versioned and repeatable across all instances of your services.

 Chapter 4 introduces you to one of the first microservice routing patterns: ser-
vice discovery. In this chapter, you’ll learn how to use Spring Cloud and Net-
flix’s Eureka service to abstract away the location of your services from the
clients consuming them.

 Chapter 5 is all about protecting the consumers of your microservices when one
or more microservice instances is down or in a degraded state. This chapter will
demonstrate how to use Spring Cloud and Netflix Hystrix (and Netflix Ribbon)
to implement client-side load balancing of calls, the circuit breaker pattern, the
fallback pattern, and the bulkhead pattern.

 Chapter 6 covers the microservice routing pattern: the service gateway. Using
Spring Cloud with Netflix’s Zuul server, you’ll build a single entry point for all
microservices to be called through. We’ll discuss how to use Zuul’s filter API to
build policies that can be enforced against all services flowing through the ser-
vice gateway.

 Chapter 7 covers how to implement service authentication and authorization
using Spring Cloud security and OAuth2. We’ll cover the basics of setting up an
OAuth2 service to protect your services and also how to use JavaScript Web
Tokens (JWT) in your OAuth2 implementation.

 Chapter 8 looks at how you can introduce asynchronous messaging into your
microservices using Spring Cloud Stream and Apache Kafka.

 Chapter 9 shows how to implement common logging patterns such as log corre-
lation, log aggregation, and tracing using Spring Cloud Sleuth and Open Zipkin.

 Chapter 10 is the cornerstone project for the book. You’ll take the services
you’ve built in the book and deploy them to Amazon Elastic Container Service
(ECS). We’ll also discuss how to automate the build and deployment of your
microservices using tools such as Travis CI.

 Appendix A covers how to set up your desktop development environment so
that you can run all the code examples in this book. This appendix covers how
the local build process works and also how to start up Docker locally if you want
to run the code examples locally.

 Appendix B is supplemental material on OAuth2. OAuth2 is an extremely flexi-
ble authentication model, and this chapter provides a brief overview of the dif-
ferent manners in which OAuth2 can be used to protect an application and its
corresponding microservices.
Licensed to <null>

ABOUT THIS BOOK xxi
About the code

Spring Microservices in Action includes code in every chapter. All code examples are avail-
able in my GitHub repository, and each chapter has its own repository. You can find an
overview page with links to each chapter’s code repository at https://github.com/
carnellj/spmia_overview. A zip containing all source code is also available from the
publisher’s website at www.manning.com/books/spring-microservices-in-action.

 All code in this book is built to run on Java 8 using Maven as the main build tool.
Please refer to appendix A of this book for full details on the software tools you’ll
need to compile and run the code examples.

 One of the core concepts I followed as I wrote this book was that the code exam-
ples in each chapter should run independently of those in the other chapters. As
such, every service we create for a chapter builds to a corresponding Docker image.
When code from previous chapters is used, it’s included as both source and a built
Docker image. We use Docker compose and the built Docker images to guarantee
that you have a reproducible run-time environment for every chapter.

 This book contains many examples of source code both in numbered listings and
in line with normal text. In both cases, source code is formatted in a fixed-width
font like this to separate it from ordinary text. Sometimes code is also in bold to
highlight code that has changed from previous steps in the chapter, such as when a
new feature adds to an existing line of code.

 In many cases, the original source code has been reformatted; we’ve added line
breaks and reworked indentation to accommodate the available page space in the
book. In rare cases, even this wasn’t enough, and listings include line-continuation
markers (➥). Additionally, comments in the source code have often been removed
from the listings when the code is described in the text. Code annotations accompany
many of the listings, highlighting important concepts.

Author Online

Purchase of Spring Microservices in Action includes free access to a private web forum
run by Manning Publications where you can make comments about the book, ask
technical questions, and receive help from the author and from other users. To access
the forum and subscribe to it, point your web browser to www.manning.com/books
/spring-microservices-in-action. This page provides information on how to get on the
forum once you’re registered, what kind of help is available, and the rules of conduct
on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialog between individual readers and between readers and the author can take place.
It is not a commitment to any specific amount of participation on the part of the
author, whose contributions to the AO remain voluntary (and unpaid). We suggest
you ask the author challenging questions, lest his interest stray!
Licensed to <null>

www.manning.com/books/spring-microservices-in-action
www.manning.com/books/spring-microservices-in-action
https://github.com/carnellj/spmia_overview
https://github.com/carnellj/spmia_overview
www.manning.com/books/spring-microservices-in-action

about the author
JOHN CARNELL is a senior cloud engineer at Genesys, where he
works in Genesys’s PureCloud division. John spends the major-
ity of his day hands-on building telephony-based microservices
using the AWS platform. His day-to-day job centers on designing
and building microservices across a number of technology plat-
forms including Java, Clojure, and Go.
 John is a prolific speaker and writer. He regularly speaks at
local user groups and has been a regular speaker on “The No

Fluff Just Stuff Software Symposium.” Over the last 20 years, John has authored, co-
authored, and been a technical reviewer for a number of Java-based technology books
and industry publications.

 John holds a Bachelor of the Arts (BA) from Marquette University and a Masters of
Business Administration (MBA) from the University of Wisconsin Oshkosh.

 John is a passionate technologist and is constantly exploring new technologies and
programming languages. When John isn’t speaking, writing, or coding, he lives with
his wife Janet, his three children, Christopher, Agatha, and Jack, and yes, his dog
Vader, in Cary, North Carolina.

 During his free time (which there’s very little of) John runs, chases after his chil-
dren, and studies Filipino martial arts.

 John can be reached at john_carnell@yahoo.com.

xxii

Licensed to <null>

about the cover illustration
The figure on the cover of Spring Microservices in Action is captioned a “A Man from
Croatia.” This illustration is taken from a recent reprint of Balthasar Hacquet’s Images
and Descriptions of Southwestern and Eastern Wenda, Illyrians, and Slavs, published by the
Ethnographic Museum in Split, Croatia, in 2008. Hacquet (1739–1815) was an Aus-
trian physician and scientist who spent many years studying the botany, geology, and
ethnography of many parts of the Austrian Empire, as well as the Veneto, the Julian
Alps, and the western Balkans, inhabited in the past by peoples of the Illyrian tribes.
Hand drawn illustrations accompany the many scientific papers and books that Hac-
quet published.

 The rich diversity of the drawings in Hacquet's publications speaks vividly of the
uniqueness and individuality of the eastern Alpine and northwestern Balkan regions
just 200 years ago. This was a time when the dress codes of two villages separated by a
few miles identified people uniquely as belonging to one or the other, and when
members of a social class or trade could be easily distinguished by what they were
wearing. Dress codes have changed since then and the diversity by region, so rich at
the time, has faded away. It is now often hard to tell the inhabitant of one continent
from another, and today the inhabitants of the picturesque towns and villages in the
Slovenian Alps or Balkan coastal towns are not readily distinguishable from the resi-
dents of other parts of Europe.

 We at Manning celebrate the inventiveness, the initiative, and the fun of the com-
puter business with book covers based on costumes from two centuries ago, brought
back to life by illustrations such as this one.
xxiii

Licensed to <null>

ABOUT THE COVER ILLUSTRATIONxxiv
Licensed to <null>

Welcome to the cloud,
Spring
The one constant in the field of software development is that we as software devel-
opers sit in the middle of a sea of chaos and change. We all feel the churn as new
technologies and approaches appear suddenly on the scene, causing us to reevalu-
ate how we build and deliver solutions for our customers. One example of this
churn is the rapid adoption by many organizations of building applications using

This chapter covers
 Understanding microservices and why companies

use them

 Using Spring, Spring Boot, and Spring Cloud for
building microservices

 Learning why the cloud and microservices are relevant
to microservice-based applications

 Building microservices involves more than building
service code

 Understanding the parts of cloud-based development

 Using Spring Boot and Spring Cloud in microservice
development
1

Licensed to <null>

https://github.com/Netflix/Hystrix)
https://github.com/Netflix/Hystrix)
https://github.com/Netflix/Ribbon)

2 CHAPTER 1 Welcome to the cloud, Spring
microservices. Microservices are distributed, loosely coupled software services that
carry out a small number of well-defined tasks.

 This book introduces you to the microservice architecture and why you should
consider building your applications with them. We’re going to look at how to build
microservices using Java and two Spring framework projects: Spring Boot and Spring
Cloud. If you’re a Java developer, Spring Boot and Spring Cloud will provide an easy
migration path from building traditional, monolithic Spring applications to microser-
vice applications that can be deployed to the cloud.

1.1 What’s a microservice?
Before the concept of microservices evolved, most web-based applications were built
using a monolithic architectural style. In a monolithic architecture, an application is
delivered as a single deployable software artifact. All the UI (user interface), business,
and database access logic are packaged together into a single application artifact and
deployed to an application server.

 While an application might be a deployed as a single unit of work, most of the time
there will be multiple development teams working on the application. Each develop-
ment team will have their own discrete pieces of the application they’re responsible
for and oftentimes specific customers they’re serving with their functional piece. For
example, when I worked at a large financial services company, we had an in-house,
custom-built customer relations management (CRM) application that involved the
coordination of multiple teams including the UI, the customer master, the data ware-
house, and the mutual funds team. Figure 1.1 illustrates the basic architecture of this
application.

 The problem here is that as the size and complexity of the monolithic CRM appli-
cation grew, the communication and coordination costs of the individual teams work-
ing on the application didn’t scale. Every time an individual team needed to make a
change, the entire application had to be rebuilt, retested and redeployed.

 The concept of a microservice originally crept into the software development com-
munity’s consciousness around 2014 and was a direct response to many of the chal-
lenges of trying to scale both technically and organizationally large, monolithic
applications. Remember, a microservice is a small, loosely coupled, distributed service.
Microservices allow you to take a large application and decompose it into easy-to-
manage components with narrowly defined responsibilities. Microservices help combat
the traditional problems of complexity in a large code base by decomposing the large
code base down into small, well-defined pieces. The key concept you need to embrace
as you think about microservices is decomposing and unbundling the functionality of

Licensed to <null>

https://www.rabbitmq.com/)
https://www.rabbitmq.com/)

3What’s a microservice?

Each team has their own areas
of responsibity with their own

requirements and delivery demands.
All their work is synchronized

into a single code base.

The entire application also has knowledge of
and access to all of the data sources used

within the application.

Mutual funds
database

Single source code
repository

Mutual funds team

Customer master
team

Data warehousing
team

UI team

Java application server
(JBoss, Websphere, WebLogic, Tomcat)

Typical
Spring-based

web applications

Customer master
database

Data
warehouse

MVC

WAR

Spring
services

Spring data

Continuous
integration

pipeline

Figure 1.1 Monolithic applications force multiple development teams to artificially synchronize their delivery
because their code needs to be built, tested, and deployed as an entire unit.
Licensed to <null>

4 CHAPTER 1 Welcome to the cloud, Spring
your applications so they’re completely independent of one another. If we take the
CRM application we saw in figure 1.1 and decompose it into microservices, it might
look like what’s shown in figure 1.2.

 Looking at figure 1.2, you can see that each functional team completely owns their
service code and service infrastructure. They can build, deploy, and test indepen-
dently of each other because their code, source control repository, and the infrastruc-
ture (app server and database) are now completely independent of the other parts of
the application.

Invokes all business
logic as REST-based

service calls

Mutual funds
source code repositoryMutual funds team

Customer master
team

Data warehousing
team

UI team

Mutual funds
database

Mutual funds
microservice

Continuous
integration

pipeline

Customer master
source code repository

Customer
master

database

Customer
master

microservice

Continuous
integration

pipeline

Data warehouse
source code repository

Data
warehouse

Data
warehouse

microservice

Continuous
integration

pipeline

UI source code
repository

UI web
application

Continuous
integration

pipeline

Figure 1.2 Using a microservice architecture our CRM application would be decomposed into a set
of microservices completely independent of each other, allowing each development team to move at
their own pace.
Licensed to <null>

5What is Spring and why is it relevant to microservices?
 A microservice architecture has the following characteristics:

 Application logic is broken down into small-grained components with well-
defined boundaries of responsibility that coordinate to deliver a solution.

 Each component has a small domain of responsibility and is deployed com-
pletely independently of one another. Microservices should have responsibility
for a single part of a business domain. Also, a microservice should be reusable
across multiple applications.

 Microservices communicate based on a few basic principles (notice I said prin-
ciples, not standards) and employ lightweight communication protocols such as
HTTP and JSON (JavaScript Object Notation) for exchanging data between the
service consumer and service provider.

 The underlying technical implementation of the service is irrelevant because
the applications always communicate with a technology-neutral protocol (JSON
is the most common). This means an application built using a microservice
application could be built with multiple languages and technologies.

 Microservices—by their small, independent, and distributed nature—allow
organizations to have small development teams with well-defined areas of
responsibility. These teams might work toward a single goal such as delivering
an application, but each team is responsible only for the services on which
they’re working.

I often joke with my colleagues that microservices are the gateway drug for building
cloud applications. You start building microservices because they give you a high
degree of flexibility and autonomy with your development teams, but you and your
team quickly find that the small, independent nature of microservices makes them
easily deployable to the cloud. Once the services are in the cloud, their small size
makes it easy to start up large numbers of instances of the same service, and suddenly
your applications become more scalable and, with forethought, more resilient.

1.2 What is Spring and why is it relevant to microservices?
Spring has become the de facto development framework for building Java-based appli-
cations. At its core, Spring is based on the concept of dependency injection. In a nor-
mal Java application, the application is decomposed into classes where each class
often has explicit linkages to other classes in the application. The linkages are the
invocation of a class constructor directly in the code. Once the code is compiled,
these linkage points can’t be changed.

 This is problematic in a large project because these external linkages are brittle and
making a change can result in multiple downstream impacts to other code. A depen-
dency injection framework, such as Spring, allows you to more easily manage large Java
projects by externalizing the relationship between objects within your application
through convention (and annotations) rather than those objects having hard-coded
knowledge about each other. Spring sits as an intermediary between the different Java
Licensed to <null>

6 CHAPTER 1 Welcome to the cloud, Spring
classes of your application and manages their dependencies. Spring essentially lets you
assemble your code together like a set of Lego bricks that snap together.

 Spring’s rapid inclusion of features drove its utility, and the framework quickly
became a lighter weight alternative for enterprise application Java developers looking
for a way to building applications using the J2EE stack. The J2EE stack, while powerful,
was considered by many to be bloatware, with many features that were never used by
application development teams. Further, a J2EE application forced you to use a full-
blown (and heavy) Java application server to deploy your applications.

 What’s amazing about the Spring framework and a testament to its development
community is its ability to stay relevant and reinvent itself. The Spring development
team quickly saw that many development teams were moving away from monolithic
applications where the application’s presentation, business, and data access logic were
packaged together and deployed as a single artifact. Instead, teams were moving to
highly distributed models where services were being built as small, distributed services
that could be easily deployed to the cloud. In response to this shift, the Spring devel-
opment team launched two projects: Spring Boot and Spring Cloud.

 Spring Boot is a re-envisioning of the Spring framework. While it embraces core
features of Spring, Spring Boot strips away many of the “enterprise” features found in
Spring and instead delivers a framework geared toward Java-based, REST-oriented
(Representational State Transfer)1 microservices. With a few simple annotations, a
Java developer can quickly build a REST microservice that can be packaged and
deployed without the need for an external application container.

NOTE While we cover REST in more detail in chapter 2, the core concept
behind REST is that your services should embrace the use of the HTTP verbs
(GET, POST, PUT, and DELETE) to represent the core actions of the service
and use a lightweight web-oriented data serialization protocol, such as JSON,
for requesting and receiving data from the service.

Because microservices have become one of the more common architectural patterns
for building cloud-based applications, the Spring development community has given
us Spring Cloud. The Spring Cloud framework makes it simple to operationalize and
deploy microservices to a private or public cloud. Spring Cloud wraps several popular
cloud-management microservice frameworks under a common framework and makes
the use and deployment of these technologies as easy to use as annotating your code. I
cover the different components within Spring Cloud later in this chapter.

1.3 What you’ll learn in this book
This book is about building microservice-based applications using Spring Boot and
Spring Cloud that can be deployed to a private cloud run by your company or a public

1 While we cover REST later in chapter 2, it’s worthwhile to read Roy Fielding’s PHD dissertation on building
REST-based applications (http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm). It’s still one of the
best explanations of REST available.
Licensed to <null>

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

7Why is this book relevant to you?
cloud such as Amazon, Google, or Pivotal. With this book, we cover with hands-on
examples

 What a microservice is and the design considerations that go into building a
microservice-based application

 When you shouldn’t build a microservice-based application
 How to build microservices using the Spring Boot framework
 The core operational patterns that need to be in place to support microservice

applications, particularly a cloud-based application
 How you can use Spring Cloud to implement these operational patterns
 How to take what you’ve learned and build a deployment pipeline that can be

used to deploy your services to a private, internally managed cloud or a public
cloud provider

By the time you’re done reading this book, you should have the knowledge needed to
build and deploy a Spring Boot-based microservice. You’ll also understand the key
design decisions need to operationalize your microservices. You’ll understand how
service configuration management, service discovery, messaging, logging and tracing,
and security all fit together to deliver a robust microservices environment. Finally,
you’ll see how your microservices can be deployed within a private or public cloud.

1.4 Why is this book relevant to you?
If you’ve gotten this far into reading chapter 1, I suspect that

 You’re a Java developer.
 You have a background in Spring.
 You’re interested in learning how to build microservice-based applications.
 You’re interested in how to use microservices to build cloud-based applications.
 You want to know if Java and Spring are relevant technologies for building

microservice-based applications.
 You’re interested in seeing what goes into deploying a microservice-based appli-

cation to the cloud.

I chose to write this book for two reasons. First, while I’ve seen many good books on the
conceptual aspects of microservices, I couldn’t a find a good Java-based book on imple-
menting microservices. While I’ve always considered myself a programming language
polyglot (someone who knows and speaks several languages), Java is my core develop-
ment language and Spring has been the development framework I “reach” for when-
ever I build a new application. When I first came across Spring Boot and Spring Cloud,
I was blown away. Spring Boot and Spring Cloud greatly simplified my development life
when it came to building microservice-based applications running in the cloud.

 Second, as I’ve worked throughout my career as both an architect and engineer,
I’ve found that many times the technology books that I purchase have tended to go to
one of two extremes. They are either conceptual without concrete code examples, or
Licensed to <null>

8 CHAPTER 1 Welcome to the cloud, Spring
are mechanical overviews of a particular framework or programming language. I
wanted a book that would be a good bridge and middle ground between the architec-
ture and engineering disciplines. As you read this book, I want to give you a solid
introduction to the microservice patterns development and how they’re used in real-
world application development, and then back these patterns up with practical and
easy-to-understand code examples using Spring Boot and Spring Cloud.

 Let’s shift gears for a moment and walk through building a simple microservice
using Spring Boot.

1.5 Building a microservice with Spring Boot
I’ve always had the opinion that a software development framework is well thought
out and easy to use if it passes what I affectionately call the “Carnell Monkey Test.” If a
monkey like me (the author) can figure out a framework in 10 minutes or less, it has
promise. That’s how I felt the first time I wrote a sample Spring Boot service. I want
you to have to the same experience and joy, so let’s take a minute to see how to write a
simple “Hello World” REST-service using Spring Boot.

 In this section, we’re not going to do a detailed walkthrough of much of the code
presented. Our goal is to give you a taste of writing a Spring Boot service. We’ll go into
much more detail in chapter 2.

 Figure 1.3 shows what your service is going to do and the general flow of how
Spring Boot microservice will process a user’s request.

 This example is by no means exhaustive or even illustrative of how you should
build a production-level microservice, but it should cause you to take a pause because
of how little code it took to write it. We’re not going to go through how to set up the
project build files or the details of the code until chapter 2. If you’d like to see the
Maven pom.xml file and the actual code, you can find it in the chapter 1 section of the
downloadable code. All the source code for chapter 1 can be retrieved from the
GitHub repository for the book at https://github.com/carnellj/spmia-chapter1.

NOTE Please make sure you read appendix A before you try to run the code
examples for the chapters in this book. Appendix A covers the general pro-
ject layout of all the projects in the book, how to run the build scripts, and
how to fire up the Docker environment. The code examples in this chapter
are simple and designed to be run natively right from your desktop without
the information in additional chapters. However, in later chapters you’ll
quickly begin using Docker to run all the services and infrastructure used in
this book. Don’t go too far into the book without reading appendix A on set-
ting up your desktop environment.
Licensed to <null>

https://github.com/carnellj/spmia-chapter1

9Building a microservice with Spring Boot

For this example, you’re going to have a single Java class called simpleservice/
src/com/thoughtmechanix/application/simpleservice/Application.java

that will be used to expose a REST endpoint called /hello.
 The following listing shows the code for Application.java.

package com.thoughtmechanix.simpleservice;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestMethod;
import org.springframework.web.bind.annotation.RestController;
import org.springframework.web.bind.annotation.PathVariable;

Listing 1.1 Hello World with Spring Boot: a simple Spring microservice

A client makes an
HTTP GET request to
your Hello microservice.

The client receives the response from your
service as JSON. The success or failure of
the call is returned as an HTTP status code.

Once Spring Boot has identified the route
it will map any parameters defined inside
the route to a Java method that will carry
out the work.

Once all of the data has been mapped,
Spring Boot will execute the business logic.

Spring Boot will parse
the HTTP request and map
the route based on the HTTP
Verb, the URL, and potential
parameters defined for the
URL. A route maps to a
method in a Spring
RestController class.

For an HTTP PUT or Post,
a JSON passed in the HTTP
body is mapped to a
Java class.

Once the business logic
is executed, Spring Boot
will convert a Java object
to JSON.

GET http://localhost:8080/hello/john/carnell

HTTP STATUS:200
{"message": "Hello john carnell"}

Route mapping

Flow of Spring
Boot microservice

Parameter
destructuring

JSON->Java
object mapping

Business logic
execution

Java->JSON
object mapping

Figure 1.3 Spring Boot abstracts away the common REST microservice task (routing to business logic, parsing
HTTP parameters from the URL, mapping JSON to/from Java Objects), and lets the developer focus on the business
logic for the service.
Licensed to <null>

10 CHAPTER 1 Welcome to the cloud, Spring

a
o
.

@SpringBootApplication
@RestController
@RequestMapping(value="hello")
public class Application {

 public static void main(String[] args) {
 SpringApplication.run(Application.class, args);
 }

 @RequestMapping(value="/{firstName}/{lastName}",
 method = RequestMethod.GET)

 public String hello(@PathVariable("firstName") String firstName,
 @PathVariable("lastName") String lastName) {
 return String.format("{\"message\":\"Hello %s %s\"}",
 firstName, lastName);
 }
}

In listing 1.1 you’re basically exposing a single GET HTTP endpoint that will take two
parameters (firstName and lastName) on the URL and then return a simple JSON
string that has a payload containing the message “Hello firstName lastName”. If you
were to call the endpoint /hello/john/carnell on your service (which I’ll show
shortly) the return of the call would be

{"message":"Hello john carnell"}

Let’s fire up your service. To do this, go to the command prompt and issue the follow-
ing command:

mvn spring-boot:run

This command, mvn, will use a Spring Boot plug-in to start the application using an
embedded Tomcat server.

Java vs. Groovy and Maven vs. Gradle
The Spring Boot framework has strong support for both Java and the Groovy program-
ming languages. You can build microservices with Groovy and no project setup.
Spring Boot also supports both Maven and the Gradle build tools. I’ve limited the
examples in this book to Java and Maven. As a long-time Groovy and Gradle aficio-
nado, I have a healthy respect for the language and the build tool, but to keep the
book manageable and the material focused, I’ve chosen to go with Java and Maven
to reach the largest audience possible.

Tells the Spring Boot framework that this class
is the entry point for the Spring Boot service Tells Spring Boot you’re going

to expose the code in this class
as a Spring RestController class

All URLs exposed in this application
will be prefaced with /hello prefix.

Spring Boot will expose an endpoint as
GET-based REST endpoint that will take tw

parameters: firstName and lastName

Maps the firstName and lastName
parameters passed in on the URL to two
variables passed into the hello functionReturns a simple JSON string that you manually

build. In chapter 2 you won’t create any JSON.
Licensed to <null>

11Building a microservice with Spring Boot
Figure 1.4 Your Spring Boot service will communicate the endpoints exposed and the port of the service
via the console.

If everything starts correctly, you should see what’s shown in figure 1.4 from your
command-line window.

 If you examine the screen in figure 1.4, you’ll notice two things. First, a Tomcat
server was started on port 8080. Second, a GET endpoint of /hello/{firstName}/
{lastName} is exposed on the server.

The service will listen to port 8080 for incoming HTTP requests.

Our /hello endpoint is mapped with two variables: firstName and lastName.

HTTP GET for the /hello/john/carnell endpoint

JSON payload returned back from the service

Figure 1.5 The response from the /hello endpoint shows the data you’ve requested represented as
a JSON payload.
Licensed to <null>

12 CHAPTER 1 Welcome to the cloud, Spring
You’re going to call your service using a browser-based REST tool called POSTMAN
(https://www.getpostman.com/). Many tools, both graphical and command line, are
available for invoking a REST-based service, but I’ll use POSTMAN for all my examples
in this book. Figure 1.5 shows the POSTMAN call to the http://localhost:8080/
hello/john/carnell endpoint and the results returned from the service.

 Obviously, this simple example doesn’t demonstrate the full power of Spring Boot.
But what it should show is that you can write a full HTTP JSON REST-based service with
route-mapping of URL and parameters in Java with as few as 25 lines of code. As any
experienced Java developer will tell you, writing anything meaningful in 25 lines of
code in Java is extremely difficult. Java, while being a powerful language, has acquired
a reputation of being wordy compared to other languages.

 We’re done with our brief tour of Spring Boot. We now have to ask this question:
because we can write our applications using a microservice approach, does this mean
we should? In the next section, we’ll walk through why and when a microservice
approach is justified for building your applications.

1.6 Why change the way we build applications?
We’re at an inflection point in history. Almost all aspects of modern society are now
wired together via the internet. Companies that used to serve local markets are sud-
denly finding that they can reach out to a global customer base. However, with a
larger global customer base also comes global competition. These competitive pres-
sures mean the following forces are impacting the way developers have to think about
building applications:

 Complexity has gone way up—Customers expect that all parts of an organization
know who they are. “Siloed” applications that talk to a single database and don’t
integrate with other applications are no longer the norm. Today’s applications
need to talk to multiple services and databases residing not only inside a com-
pany’s data center, but also to external service providers over the internet.

 Customers want faster delivery—Customers no longer want to wait for the next
annual release or version of a software package. Instead, they expect the features
in a software product to be unbundled so that new functionality can be released
quickly in weeks (even days) without having to wait for an entire product release.

 Performance and scalability—Global applications make it extremely difficult to
predict how much transaction volume is going to be handled by an application
and when that transaction volume is going to hit. Applications need to scale up
across multiple servers quickly and then scale back down when the volume
needs have passed.

 Customers expect their applications to be available—Because customers are one click
away from a competitor, a company’s applications must be highly resilient. Fail-
ures or problems in one part of the application shouldn’t bring down the entire
application.
Licensed to <null>

https://www.getpostman.com/

13What exactly is the cloud?
To meet these expectations, we, as application developers, have to embrace the para-
dox that to build high-scalable and highly redundant applications we need to break
our applications into small services that can be built and deployed independently of
one another. If we “unbundle” our applications into small services and move them
away from a single monolithic artifact, we can build systems that are

 Flexible—Decoupled services can be composed and rearranged to quickly
deliver new functionality. The smaller the unit of code that one is working with,
the less complicated it is to change the code and the less time it takes to test
deploy the code.

 Resilient—Decoupled services mean an application is no longer a single “ball of
mud” where a degradation in one part of the application causes the whole appli-
cation to fail. Failures can be localized to a small part of the application and con-
tained before the entire application experiences an outage. This also enables the
applications to degrade gracefully in case of an unrecoverable error.

 Scalable—Decoupled services can easily be distributed horizontally across multi-
ple servers, making it possible to scale the features/services appropriately. With
a monolithic application where all the logic for the application is intertwined,
the entire application needs to scale even if only a small part of the application
is the bottleneck. Scaling on small services is localized and much more cost-
effective.

To this end, as we begin our discussion of microservices keep the following in mind:

Small, Simple, and Decoupled Services = Scalable, Resilient, and Flexible Applications

1.7 What exactly is the cloud?
The term “cloud” has become overused. Every software vendor has a cloud and every-
one’s platform is cloud-enabled, but if you cut through the hype, three basic models
exist in cloud-based computing. These are

 Infrastructure as a Service (IaaS)
 Platform as a Service (PaaS)
 Software as a Service (SaaS)

To better understand these concepts, let’s map the everyday task of making a meal to
the different models of cloud computing. When you want to eat a meal, you have four
choices:

1 You can make the meal at home.
2 You can go to the grocery store and buy a meal pre-made that you heat up and

serve.
3 You can get a meal delivered to your house.
4 You can get in the car and eat at restaurant.
Licensed to <null>

14 CHAPTER 1 Welcome to the cloud, Spring
Figure 1.6 The different cloud computing models come down to who’s
responsible for what: the cloud vendor or you.

Figure 1.6 shows each model.
 The difference between these options is about who’s responsible for cooking these

meals and where the meal is going to be cooked. In the on-premise model, eating a
meal at home requires you to do all the work, using your own oven and ingredients
already in the home. A store-bought meal is like using the Infrastructure as a Service
(IaaS) model of computing. You’re using the store’s chef and oven to pre-bake the
meal, but you’re still responsible for heating the meal and eating it at the house (and
cleaning up the dishes afterward).

 In a Platform as a Service (PaaS) model you still have responsibility for the meal,
but you further rely on a vendor to take care of the core tasks associated with making
a meal. For example, in a PaaS model, you supply the plates and furniture, but the res-
taurant owner provides the oven, ingredients, and the chef to cook them. In the Soft-
ware as a Service (SaaS) model, you go to a restaurant where all the food is prepared
for you. You eat at the restaurant and then you pay for the meal when you’re done.
you also have no dishes to prepare or wash.

 The key items at play in each of these models are ones of control: who’s responsi-
ble for maintaining the infrastructure and what are the technology choices available
for building the application? In a IaaS model, the cloud vendor provides the basic
infrastructure, but you’re accountable for selecting the technology and building the
final solution. On the other end of the spectrum, with a SaaS model, you’re a passive
consumer of the service provided by the vendor and have no input on the technology
selection or any accountability to maintain the infrastructure for the application.

Furniture

Plates

Oven

Ingredients

Chef

Homemade

On premise

Furniture

Plates

Oven

Ingredients

You manage Provider manages

Chef

Store bought

IaaS

Furniture

Plates

Oven

Ingredients

Chef

Delivered

PaaS

Furniture

Plates

Oven

Ingredients

Chef

Restaurant

SaaS
Licensed to <null>

15Why the cloud and microservices?
1.8 Why the cloud and microservices?
One of the core concepts of a microservice-based architecture is that each service is
packaged and deployed as its own discrete and independent artifact. Service instances
should be brought up quickly and each instance of the service should be indistin-
guishable from another.

 As a developer writing a microservice, sooner or later you’re going to have to
decide whether your service is going to be deployed to one of the following:

 Physical server—While you can build and deploy your microservices to a physi-
cal machine(s), few organizations do this because physical servers are con-
strained. You can’t quickly ramp up the capacity of a physical server and it can
become extremely costly to scale your microservice horizontally across multiple
physical servers.

 Virtual machine images—One of the key benefits of microservices is their ability
to quickly start up and shut down microservice instances in response to scalabil-
ity and service failure events. Virtual machines are the heart and soul of the

Emerging cloud platforms
I’ve documented the three core cloud platform types (IaaS, PaaS, SaaS) that are in
use today. However, new cloud platform types are emerging. These new platforms
include Functions as a Service (FaaS) and Container as a Service (CaaS). FaaS-based
(https://en.wikipedia.org/wiki/Function_as_a_Service) applications use technolo-
gies like Amazon’s Lambda technologies and Google Cloud functions to build appli-
cations deployed as “serverless” chunks of code that run completely on the cloud
provider’s platform computing infrastructure. With a FaaS platform, you don’t have to
manage any server infrastructure and only pay for the computing cycles required to
execute the function.

With the Container as a Service (CaaS) model, developers build and deploy their
microservices as portable virtual containers (such as Docker) to a cloud provider.
Unlike an IaaS model, where you the developer have to manage the virtual machine
the service is deployed to, with CaaS you’re deploying your services in a lightweight
virtual container. The cloud provider runs the virtual server the container is running
on as well as the provider’s comprehensive tools for building, deploying, monitoring,
and scaling containers. Amazon’s Elastic Container Service (ECS) is an example of a
CaaS-based platform. In chapter 10 of this book, we’ll see how to deploy the
microservices you’ve built to Amazon ECS.

It’s important to note that with both the FaaS and CaaS models of cloud computing,
you can still build a microservice-based architecture. Remember, the concept of
microservices revolves around building small services, with limited responsibility,
using an HTTP-based interface to communicate. The emerging cloud computing plat-
forms, such as FaaS and CaaS, are really about alternative infrastructure mecha-
nisms for deploying microservices.
Licensed to <null>

https://en.wikipedia.org/wiki/Function_as_a_Service

16 CHAPTER 1 Welcome to the cloud, Spring
major cloud providers. A microservice can be packaged up in a virtual machine
image and multiple instances of the service can then be quickly deployed and
started in either a IaaS private or public cloud.

 Virtual container—Virtual containers are a natural extension of deploying your
microservices on a virtual machine image. Rather than deploying a service to a
full virtual machine, many developers deploy their services as Docker contain-
ers (or equivalent container technology) to the cloud. Virtual containers run
inside a virtual machine; using a virtual container, you can segregate a single vir-
tual machine into a series of self-contained processes that share the same virtual
machine image.

The advantage of cloud-based microservices centers around the concept of elasticity.
Cloud service providers allow you to quickly spin up new virtual machines and contain-
ers in a matter of minutes. If your capacity needs for your services drop, you can spin
down virtual servers without incurring any additional costs. Using a cloud provider to
deploy your microservices gives you significantly more horizontal scalability (adding
more servers and service instances) for your applications. Server elasticity also means
that your applications can be more resilient. If one of your microservices is having prob-
lems and is falling over, spinning up new service instances can you keep your applica-
tion alive long enough for your development team to gracefully resolve the issue.

 For this book, all the microservices and corresponding service infrastructure will
be deployed to an IaaS-based cloud provider using Docker containers. This is a com-
mon deployment topology used for microservices:

 Simplified infrastructure management—IaaS cloud providers give you the ability to
have the most control over your services. New services can be started and
stopped with simple API calls. With an IaaS cloud solution, you only pay for the
infrastructure that you use.

 Massive horizontal scalability—IaaS cloud providers allow you to quickly and suc-
cinctly start one or more instances of a service. This capability means you can
quickly scale services and route around misbehaving or failing servers.

 High redundancy through geographic distribution—By necessity, IaaS providers have
multiple data centers. By deploying your microservices using an IaaS cloud
provider, you can gain a higher level of redundancy beyond using clusters in a
data center.

Licensed to <null>

17Microservices are more than writing the code
The services built in this book are packaged as Docker containers. One of the reasons
why I chose Docker is that as a container technology, Docker is deployable to all the
major cloud providers. Later in chapter 10, I demonstrate how to package microser-
vices using Docker and then deploy these containers to Amazon’s cloud platform.

1.9 Microservices are more than writing the code
While the concepts around building individual microservices are easy to understand,
running and supporting a robust microservice application (especially when running

Why not PaaS-based microservices?
Earlier in the chapter we discussed three types of cloud platforms (Infrastructure as
a Service, Platform as a Service, and Software as a Services). For this book, I’ve cho-
sen to focus specifically on building microservices using an IaaS-based approach.
While certain cloud providers will let you abstract away the deployment infrastructure
for your microservice, I’ve chosen to remain vendor-independent and deploy all parts
of my application (including the servers).

For instance, Amazon, Cloud Foundry, and Heroku give you the ability to deploy your
services without having to know about the underlying application container. They pro-
vide a web interface and APIs to allow you to deploy your application as a WAR or JAR
file. Setting up and tuning the application server and the corresponding Java con-
tainer are abstracted away from you. While this is convenient, each cloud provider’s
platform has different idiosyncrasies related to its individual PaaS solution.

An IaaS approach, while more work, is portable across multiple cloud providers and
allows us to reach a wider audience with our material. Personally, I’ve found that
PaaS-based cloud solutions can allow you to quickly jump start your development
effort, but once your application reaches enough microservices, you start to need the
flexibility the IaaS style of cloud development provides.

Earlier in the chapter, I mentioned new cloud computing platforms such as Function
as a Service (FaaS) and Container as a Service (CaaS). If you’re not careful, FaaS-
based platforms can lock your code into a cloud vendor platform because your code
is deployed to a vendor-specific runtime engine. With a FaaS-based model, you might
be writing your service using a general programming language (Java, Python, JavaS-
cript, and so on), but you’re still tying yourself heavily to the underlying vendor APIs
and runtime engine that your function will be deployed to.
Licensed to <null>

18 CHAPTER 1 Welcome to the cloud, Spring
in the cloud) involves more than writing the code for the service. Writing a robust ser-
vice includes considering several topics. Figure 1.7 highlights these topics.

 Let’s walk through the items in figure 1.7 in more detail:

 Right-sized—How do you ensure that your microservices are properly sized so
that you don’t have a microservice take on too much responsibility? Remember,
properly sized, a service allows you to quickly make changes to an application
and reduces the overall risk of an outage to the entire application.

 Location transparent—How you we manage the physical details of service invoca-
tion when in a microservice application, multiple service instances can quickly
start and shut down?

 Resilient—How do you protect your microservice consumers and the overall
integrity of your application by routing around failing services and ensuring
that you take a “fail-fast” approach?

 Repeatable—How do you ensure that every new instance of your service brought
up is guaranteed to have the same configuration and code base as all the other
service instances in production?

 Scalable—How do you use asynchronous processing and events to minimize the
direct dependencies between your services and ensure that you can gracefully
scale your microservices?

This book takes a patterns-based approach as we answer these questions. With a pat-
terns-based approach, we lay out common designs that can be used across different

How do you manage the physical location
so services instances can be added and
removed without impacting service clients?

How do you make sure
the service is focused
on one area of
responsibility?

How do you make sure
when there is a problem
with a service, service
clients “fail fast”?

How do you ensure
that your applications
can scale quickly with
minimal dependencies
between services?

How do you ensure that every
time a new service instance is
started it always has the same
code and configuration as
existing instance(s)?

Right-sized

Location
transparent

Your microservice Resilient

Scalable Repeatable

Figure 1.7 Microservices are more than the business logic. You need to think about the environment
where the services are going to run and how the services will scale and be resilient.
Licensed to <null>

19Microservices are more than writing the code
technology implementations. While we’ve chosen to use Spring Boot and Spring
Cloud to implement the patterns we’re going to use in this book, nothing will keep
you from taking the concepts presented here and using them with other technology
platforms. Specifically, we cover the following six categories of microservice patterns:

 Core development patterns
 Routing patterns
 Client resiliency patterns
 Security patterns
 Logging and tracing patterns
 Build and deployment patterns

Let’s walk through these patterns in more detail.

1.9.1 Core microservice development pattern

The core development microservice development pattern addresses the basics of
building a microservice. Figure 1.8 highlights the topics we’ll cover around basic ser-
vice design.

Figure 1.8 When designing your microservice, you have to think about how the service will be consumed
and communicated with.

Communication protocols:
How your client and service
communicate data back
and forth

Configuration management:
How your services manage
their application-specific
configuration so that the
code and configuration
are independent entities

Service granularity: What is the
right level of responsibility the
service should have?

Interface design: How you are
going to expose your service
endpoints to clients

Event processing: How you can
use events to communicate
state and data changes
between services

Web client Microservice

Microservice

Communication
protocols

Service
granularity

Interface
design

Configuration
management

Event
processing
Licensed to <null>

20 CHAPTER 1 Welcome to the cloud, Spring
 Service granularity—How do you approach decomposing a business domain
down into microservices so that each microservice has the right level of respon-
sibility? Making a service too coarse-grained with responsibilities that overlap
into different business problems domains makes the service difficult to main-
tain and change over time. Making the service too fine-grained increases the
overall complexity of the application and turns the service into a “dumb” data
abstraction layer with no logic except for that needed to access the data store. I
cover service granularity in chapter 2.

 Communication protocols—How will developers communicate with your service?
Do you use XML (Extensible Markup Language), JSON (JavaScript Object Nota-
tion), or a binary protocol such as Thrift to send data back and forth your
microservices? We’ll go into why JSON is the ideal choice for microservices and
has become the most common choice for sending and receiving data to
microservices. I cover communication protocols in chapter 2.

 Interface design—What’s the best way to design the actual service interfaces that
developers are going to use to call your service? How do you structure your ser-
vice URLs to communicate service intent? What about versioning your services?
A well-design microservice interface makes using your service intuitive. I cover
interface design in chapter 2.

 Configuration management of service—How do you manage the configuration of
your microservice so that as it moves between different environments in the
cloud you never have to change the core application code or configuration? I
cover managing service configuration in chapter 3.

 Event processing between services—How do you decouple your microservice using
events so that you minimize hardcoded dependencies between your services
and increase the resiliency of your application? I cover event processing
between services in chapter 8.

1.9.2 Microservice routing patterns

The microservice routing patterns deal with how a client application that wants to
consume a microservice discovers the location of the service and is routed over to it.
In a cloud-based application, you might have hundreds of microservice instances run-
ning. You’ll need to abstract away the physical IP address of these services and have a
single point of entry for service calls so that you can consistently enforce security and
content policies for all service calls.

 Service discovery and routing answer the question, “How do I get my client’s
request for a service to a specific instance of a service?”

 Service discovery—How do you make your microservice discoverable so client
applications can find them without having the location of the service hard-
coded into the application? How do you ensure that misbehaving microservice
instances are removed from the pool of available service instances? I cover ser-
vice discovery in chapter 4.
Licensed to <null>

21Microservices are more than writing the code
 Service routing—How do you provide a single entry point for all of your services so
that security policies and routing rules are applied uniformly to multiple services
and service instances in your microservice applications? How do you ensure that
each developer in your team doesn’t have to come up with their own solutions for
providing routing to their services? I cover service routing in chapter 6.

In figure 1.9, service discovery and service routing appear to have a hard-coded
sequence of events between them (first comes service routing and the service discov-
ery). However, the two patterns aren’t dependent on one another. For instance, we
can implement service discovery without service routing. You can implement service
routing without service discovery (even though its implementation is more difficult).

1.9.3 Microservice client resiliency patterns

Because microservice architectures are highly distributed, you have to be extremely
sensitive in how you prevent a problem in a single service (or service instance) from

Service routing gives the
microservice client a single
logical URL to talk to and acts
as a policy enforcement point
for things like authorization,
authentication, and
content checking.

Service discovery abstracts
away the physical location
of the service from the client.
New microservice instances
can be added to scale up, and
unhealthy service instances
can be transparently removed
from the service.

172.18.32.100 172.18.32.101

Microservice A (two instances)

172.18.38.96 172.18.38.97

Microservice B (two instances)

Web client

http://myapp.api/servicea http://myapp.api/serviceb

Microservice

Figure 1.9 Service discovery and routing are key parts of any large-scale microservice
application.
Licensed to <null>

22 CHAPTER 1 Welcome to the cloud, Spring
cascading up and out to the consumers of the service. To this end, we’ll cover four cli-
ent resiliency patterns:

 Client-side load balancing—How do you cache the location of your service
instances on the service client so that calls to multiple instances of a microser-
vice are load balanced to all the health instances of that microservice?

 Circuit breakers pattern—How do you prevent a client from continuing to call a
service that’s failing or suffering performance problems? When a service is run-
ning slowly, it consumes resources on the client calling it. You want failing
microservice calls to fail fast so that the calling client can quickly respond and
take an appropriate action.

 Fallback pattern—When a service call fails, how do you provide a “plug-in” mech-
anism that will allow the service client to try to carry out its work through alter-
native means other than the microservice being called?

 Bulkhead pattern—Microservice applications use multiple distributed resources
to carry out their work. How do you compartmentalize these calls so that the mis-
behavior of one service call doesn’t negatively impact the rest of the application?

Figure 1.10 With microservices, you must protect the service caller from a poorly behaving service.
Remember, a slow or down service can cause disruptions beyond the immediate service.

The circuit breaker pattern
ensures that a service client
does not repeatedly call a failing
service. Instead, a circuit breaker
"fails fast" to protect the client.

How do you segregate different
service calls on a client to make
sure one misbehaving service
does not take up all the resources
on the client?

When a client does fail, is there
an alternative path the client can
take to retrieve data from or take
action with?

172.18.32.100

The service client caches
microservice endpoints retrieved
from the service discovery and
ensures that the service calls are
load balanced between instances.

172.18.32.101

Microservice A (two instances)

172.18.38.96 172.18.38.97

Microservice B (two instances)

Web client

http://myapp.api/servicea http://myapp.api/serviceb

Microservice

Client-side load
balancing

Circuit
breaker

Fallback

Bulkhead
Licensed to <null>

23Microservices are more than writing the code
Figure 1.10 shows how these patterns protect the consumer of service from being
impacted when a service is misbehaving. I cover these four topics in chapter 5.

1.9.4 Microservice security patterns

I can’t write a book on microservices without talking about microservice security. In
chapter 7 we’ll cover three basic security patterns. These patterns are

 Authentication—How do you determine the service client calling the service is
who they say they are?

 Authorization—How do you determine whether the service client calling a
microservice is allowed to undertake the action they’re trying to undertake?

 Credential management and propagation—How do you prevent a service client from
constantly having to present their credentials for service calls involved in a trans-
action? Specifically, we’ll look at how token-based security standards such as
OAuth2 and JavaScript Web Tokens (JWT) can be used to obtain a token that can
be passed from service call to service call to authenticate and authorize the user.

Figure 1.11 shows how you can implement the three patterns described previously to
build an authentication service that can protect your microservices.

 At this point I’m not going to go too deeply into the details of figure 1.10. There’s
a reason why security requires a whole chapter. (It could honestly be a book in itself.)

Figure 1.11 Using a token-based security scheme, you can implement service authentication and
authorization without passing around client credentials.

2. The resource owner grants which
 applications/users can access the
 resource via the authentication service

3. When the user tries to access
 a protected service, they must
 authenticate and obtain a token
 from the authentication service.

4. The token server authenticates
 the user and validates tokens
 presented to it

1. The service you
 want to protect

Application trying to
access a protected

resource

Token
authentication

server

Protected
resource

The user

Resource owner
Licensed to <null>

24 CHAPTER 1 Welcome to the cloud, Spring
1.9.5 Microservice logging and tracing patterns

The beauty of the microservice architecture is that a monolithic application is broken
down into small pieces of functionality that can be deployed independently of one
another. The downside of a microservice architecture is that it’s much more difficult
to debug and trace what the heck is going on within your application and services.

 For this reason, we’ll look at three core logging and tracing patterns:

 Log correlation—How do you tie together all the logs produced between services
for a single user transaction? With this pattern, we’ll look at how to implement a
correlation ID, which is a unique identifier that will be carried across all service
calls in a transaction and can be used to tie together log entries produced from
each service.

 Log aggregation—With this pattern we’ll look at how to pull together all of the
logs produced by your microservices (and their individual instances) into a sin-
gle queryable database. We’ll also look at how to use correlation IDs to assist in
searching your aggregated logs.

 Microservice tracing—Finally, we’ll explore how to visualize the flow of a client
transaction across all the services involved and understand the performance
characteristics of services involved in the transaction.

Figure 1.12 shows how these patterns fit together. We’ll cover the logging and tracing
patterns in greater detail in chapter 9.

Figure 1.12 A well-thought-out logging and tracing strategy makes debugging transactions across
multiple services manageable.

Log correlation: All service log
entries have a correlation ID that
ties the log entry to a single transaction.

Log aggegration: An aggregation
mechanism collects all of the logs
from all the services instances.

As data comes into a central
data store, it is indexed and
stored in a searchable format.

Microservice transaction tracing: The development and operations teams
can query the log data to find individual transactions. They should also be
able to visualize the flow of all the services involved in a transaction.

Service instance A Service instance A Service instance B Service instance B Service instance C
Licensed to <null>

25Microservices are more than writing the code
1.9.6 Microservice build/deployment patterns

One of the core parts of a microservice architecture is that each instance of a
microservice should be identical to all its other instances. You can’t allow “configura-
tion drift” (something changes on a server after it’s been deployed) to occur, because
this can introduce instability in your applications.

To this end, our goal is to integrate the configuration of your infrastructure right into
your build-deployment process so that you no longer deploy software artifacts such as
a Java WAR or EAR to an already-running piece of infrastructure. Instead, you want to
build and compile your microservice and the virtual server image it’s running on as
part of the build process. Then, when your microservice gets deployed, the entire
machine image with the server running on it gets deployed.

 Figure 1.13 illustrates this process. At the end of the book we’ll look at how to
change your build and deployment pipeline so that your microservices and the servers
they run on are deployed as a single unit of work. In chapter 10 we cover the following
patterns and topics:

 Build and deployment pipeline—How do you create a repeatable build and deploy-
ment process that emphasizes one-button builds and deployment to any envi-
ronment in your organization?

 Infrastructure as code—How do you treat the provisioning of your services as code
that can be executed and managed under source control?

 Immutable servers—Once a microservice image is created, how do you ensure
that it’s never changed after it has been deployed?

 Phoenix servers—The longer a server is running, the more opportunity for con-
figuration drift. How do you ensure that servers that run microservices get torn
down on a regular basis and recreated off an immutable image?

A phrase too often said
“I made only one small change on the stage server, but I forgot to make the change
in production.” The resolution of many down systems when I’ve worked on critical sit-
uations teams over the years has often started with those words from a developer or
system administrator. Engineers (and most people in general) operate with good
intentions. They don’t go to work to make mistakes or bring down systems. Instead
they’re doing the best they can, but they get busy or distracted. They tweak some-
thing on a server, fully intending to go back and do it in all the environments.

At a later point, an outage occurs and everyone is left scratching their heads wondering
what’s different between the lower environments in production. I’ve found that the
small size and limited scope of a microservice makes it the perfect opportunity to intro-
duce the concept of “immutable infrastructure” into an organization: once a service
is deployed, the infrastructure it’s running on is never touched again by human hands.

An immutable infrastructure is a critical piece of successfully using a microservice
architecture, because you have to guarantee in production that every microservice
instance you start for a particular microservice is identical to its brethren.
Licensed to <null>

26 CHAPTER 1 Welcome to the cloud, Spring
Figure 1.13 You want the deployment of the microservice and the server it’s running on to be one atomic artifact
that’s deployed as a whole between environments.

Our goal with these patterns and topics is to ruthlessly expose and stamp out configu-
ration drift as quickly as possible before it can hit your upper environments, such as
stage or production.

NOTE For the code examples in this book (except chapter 10), everything
will run locally on your desktop machine. The first two chapters can be run
natively directly from the command line. Starting in chapter 3, all the code
will be compiled and run as Docker containers.

1.10 Using Spring Cloud in building your microservices
In this section, I briefly introduce the Spring Cloud technologies that you’ll use as you
build out your microservices. This is a high-level overview; when you use each technol-
ogy in this book, I’ll teach you the details on each as needed.

Everything starts with a developer checking in their code to a source control
repository. This is the trigger to begin the build/deployment process.

Infrastructure as code: We build our code
and run our tests for our microservices.
However, we also treat our infrastructure as
code. When the microservice is compiled and
packaged, we immediately bake and provision
a virtual server or container image with the
microservice installed on it.

Immutable servers: The moment an image is
baked and deployed, no developer or system
administrator is allowed to make modifications
to the servers. When promoting between
environments, the entire container or image
is started with environment-specific variables
that are passed to the server when the server
is first started.

Phoenix servers: Because the actual servers
are constantly being torn down as part of
the continous integration process, new servers
are being started and torn down. This greatly
decreases the change of configuration drift
between environments.

Code
compiled

Unit and
integration
tests run

Continuous integration/continuous delivery pipeline

Source repositoryDeveloper
Build deploy

engine

Run-time
artifacts
created

Platform test run

Image deploy/new server deployed

Platform test run

Image deploy/new server deployed

Platform test run

Dev

Test

Prod

Image deploy/new server deployed

Machine
image
baked

Image
committed

to repo
Licensed to <null>

27Using Spring Cloud in building your microservices
 Implementing all these patterns from scratch would be a tremendous amount of
work. Fortunately for us, the Spring team has integrated a wide number of battle-
tested open source projects into a Spring subproject collectively known as Spring
Cloud. (http://projects.spring.io/spring-cloud/).

 Spring Cloud wraps the work of open source companies such as Pivotal,
HashiCorp, and Netflix in delivering patterns. Spring Cloud simplifies setting up and
configuring of these projects into your Spring application so that you can focus on
writing code, not getting buried in the details of configuring all the infrastructure that
can go with building and deploying a microservice application.

 Figure 1.14 maps the patterns listed in the previous section to the Spring Cloud
projects that implement them.

 Let’s walk through these technologies in greater detail.

Figure 1.14 You can map the technologies you’re going to use directly to the microservice patterns we’ve
explored so far in this chapter.

Core microservice
patterns

Spring Boot

Configuration
management

Spring Cloud Config

Asynchronous
messaging

Spring Cloud Stream

Service discovery
patterns

Spring Cloud/
Netflix Eureka

Service routing
patterns

Spring Cloud/
Netflix Zuul

Continuous
integration

Travis CI

Infrastructure
as code

Docker

Immutable
servers

Docker

Phoenix servers

Travis CI/Docker

Client-side load balancing

Spring Cloud/
Netflix Ribbon

Microservice tracing

Spring Cloud
Sleuth/Zipkin

Log aggregation

Spring Cloud Sleuth
(with Papertrail)

Log correlation

Spring Cloud Sleuth

Development patterns

Logging patterns

Credential management
and propagation

Spring Cloud
Security/OAuth2/JWT

Authentication

Spring Cloud
Security/OAuth2

Authorization

Spring Cloud
Security/OAuth2

Security patterns

Routing patterns Build deployment patternsClient resiliency patterns

Circuit breaker pattern

Spring Cloud/
Netflix Hystrix

Fallback pattern

Spring Cloud/
Netflix Hystrix

Bulkhead pattern

Spring Cloud/
Netflix Hystrix
Licensed to <null>

http://projects.spring.io/spring-cloud/

28 CHAPTER 1 Welcome to the cloud, Spring
1.10.1 Spring Boot

Spring Boot is the core technology used in our microservice implementation. Spring
Boot greatly simplifies microservice development by simplifying the core tasks of
building REST-based microservices. Spring Boot also greatly simplifies mapping HTTP-
style verbs (GET, PUT, POST, and DELETE) to URLs and the serialization of the JSON

protocol to and from Java objects, as well as the mapping of Java exceptions back to
standard HTTP error codes.

1.10.2 Spring Cloud Config

Spring Cloud Config handles the management of application configuration data
through a centralized service so your application configuration data (particularly
your environment specific configuration data) is cleanly separated from your
deployed microservice. This ensures that no matter how many microservice instances
you bring up, they’ll always have the same configuration. Spring Cloud Config has its
own property management repository, but also integrates with open source projects
such as the following:

 Git—Git (https://git-scm.com/) is an open source version control system that
allows you to manage and track changes to any type of text file. Spring Cloud
Config can integrate with a Git-backed repository and read the application’s
configuration data out of the repository.

 Consul—Consul (https://www.consul.io/) is an open source service discovery
tool that allows service instances to register themselves with the service. Service
clients can then ask Consul where the service instances are located. Consul also
includes key-value store based database that can be used by Spring Cloud Con-
fig to store application configuration data.

 Eureka—Eureka (https://github.com/Netflix/eureka) is an open source Net-
flix project that, like Consul, offers similar service discovery capabilities. Eureka
also has a key-value database that can be used with Spring Cloud Config.

1.10.3 Spring Cloud service discovery

With Spring Cloud service discovery, you can abstract away the physical location (IP

and/or server name) of where your servers are deployed from the clients consuming
the service. Service consumers invoke business logic for the servers through a logical
name rather than a physical location. Spring Cloud service discovery also handles the
registration and deregistration of services instances as they’re started up and shut
down. Spring Cloud service discovery can be implemented using Consul (https://
www.consul.io/) and Eureka (https://github.com/Netflix/eureka) as its service dis-
covery engine.
Licensed to <null>

https://git-scm.com/
https://www.consul.io/
https://github.com/Netflix/eureka
https://www.consul.io/
https://www.consul.io/
https://github.com/Netflix/eureka

29Using Spring Cloud in building your microservices
1.10.4 Spring Cloud/Netflix Hystrix and Ribbon

Spring Cloud heavily integrates with Netflix open source projects. For microservice cli-
ent resiliency patterns, Spring Cloud wraps the Netflix Hystrix libraries (https://github
.com/Netflix/Hystrix) and Ribbon project (https://github.com/Netflix/Ribbon) and
makes using them from within your own microservices trivial to implement.

 Using the Netflix Hystrix libraries, you can quickly implement service client resil-
iency patterns such as the circuit breaker and bulkhead patterns.

 While the Netflix Ribbon project simplifies integrating with service discovery
agents such as Eureka, it also provides client-side load-balancing of service calls from a
service consumer. This makes it possible for a client to continue making service calls
even if the service discovery agent is temporarily unavailable.

1.10.5 Spring Cloud/Netflix Zuul

Spring Cloud uses the Netflix Zuul project (https://github.com/Netflix/zuul) to pro-
vide service routing capabilities for your microservice application. Zuul is a service
gateway that proxies service requests and makes sure that all calls to your microser-
vices go through a single “front door” before the targeted service is invoked. With this
centralization of service calls, you can enforce standard service policies such as a secu-
rity authorization authentication, content filtering, and routing rules.

1.10.6 Spring Cloud Stream

Spring Cloud Stream (https://cloud.spring.io/spring-cloud-stream/) is an enabling
technology that allows you to easily integrate lightweight message processing into your
microservice. Using Spring Cloud Stream, you can build intelligent microservices that
can use asynchronous events as they occur in your application. With Spring Cloud
Stream, you can quickly integrate your microservices with message brokers such as
RabbitMQ (https://www.rabbitmq.com/) and Kafka (http://kafka.apache.org/).

1.10.7 Spring Cloud Sleuth

Spring Cloud Sleuth (https://cloud.spring.io/spring-cloud-sleuth/) allows you to
integrate unique tracking identifiers into the HTTP calls and message channels (Rab-
bitMQ, Apache Kafka) being used within your application. These tracking numbers,
sometimes referred to as correlation or trace ids, allow you to track a transaction as it
flows across the different services in your application. With Spring Cloud Sleuth, these
trace IDs are automatically added to any logging statements you make in your
microservice.

 The real beauty of Spring Cloud Sleuth is seen when it’s combined with logging
aggregation technology tools such as Papertrail (http://papertrailapp.com) and trac-
ing tools such as Zipkin (http://zipkin.io). Papertail is a cloud-based logging platform
used to aggregate logs in real time from different microservices into one queryable
Licensed to <null>

https://github.com/Netflix/Hystrix
https://github.com/Netflix/Hystrix
https://github.com/Netflix/Ribbon
https://github.com/Netflix/zuul
https://cloud.spring.io/spring-cloud-stream/
https://www.rabbitmq.com/
http://kafka.apache.org/
https://cloud.spring.io/spring-cloud-sleuth/
http://papertrailapp.com
http://zipkin.io

30 CHAPTER 1 Welcome to the cloud, Spring
database. Open Zipkin takes data produced by Spring Cloud Sleuth and allows you to
visualize the flow of your service calls involved for a single transaction.

1.10.8 Spring Cloud Security

Spring Cloud Security (https://cloud.spring.io/spring-cloud-security/) is an authenti-
cation and authorization framework that can control who can access your services and
what they can do with your services. Spring Cloud Security is token-based and allows
services to communicate with one another through a token issued by an authentica-
tion server. Each service receiving a call can check the provided token in the HTTP
call to validate the user’s identity and their access rights with the service.

 In addition, Spring Cloud Security supports the JavaScript Web Token (https://
jwt.io). The JavaScript Web Token (JWT) framework standardizes the format of how a
OAuth2 token is created and provides standards for digitally signing a created token.

1.10.9 What about provisioning?

For the provisioning implementations, we’re going to make a technology shift. The
Spring framework(s) are geared toward application development. The Spring frame-
works (including Spring Cloud) don’t have tools for creating a “build and deployment”
pipeline. To implement a “build and deployment” pipeline you’re going to use the fol-
lowing tools: Travis CI (https://travis-ci.org) for your build tool and Docker (https://
www.docker.com/) to build the final server image containing your microservice.

 To deploy your built Docker containers, we end the book with an example of how
to deploy the entire application stack built throughout this book to Amazon’s cloud.

1.11 Spring Cloud by example
In the last section, we walked through all the different Spring Cloud technologies that
you’re going to use as you build out your microservices. Because each of these tech-
nologies are independent services, it’s obviously going to take more than one chapter
to explain all of them in detail. However, as I wrap up this chapter, I want to leave you
with a small code example that again demonstrates how easy it is to integrate these
technologies into your own microservice development effort.

 Unlike the first code example in listing 1.1, you can’t run this code example
because a number of supporting services need to be set up and configured to be used.
Don’t worry, though; the setup costs for these Spring Cloud services (configuration
service, service discovery) are a one-time cost in terms of setting up the service. Once
they’re set up, your individual microservices can use these capabilities over and over
again. We couldn’t fit all that goodness into a single code example at the beginning of
the book.

 The code shown in the following listing quickly demonstrates how the service dis-
covery, circuit breaker, bulkhead, and client-side load balancing of remote services
were integrated into our “Hello World” example.
Licensed to <null>

https://cloud.spring.io/spring-cloud-security/
https://jwt.io
https://jwt.io
https://travis-ci.org
https://www.docker.com/
https://www.docker.com/

31Spring Cloud by example

d

hat
e

package com.thoughtmechanix.simpleservice;

//Removed other imports for conciseness
import com.netflix.hystrix.contrib.javanica.annotation.HystrixCommand;
import com.netflix.hystrix.contrib.javanica.annotation.HystrixProperty;
import org.springframework.cloud.netflix.eureka.EnableEurekaClient;
import org.springframework.cloud.client.circuitbreaker.EnableCircuitBreaker;

@SpringBootApplication
@RestController
@RequestMapping(value="hello")
@EnableCircuitBreaker
@EnableEurekaClient
public class Application {

 public static void main(String[] args) {
 SpringApplication.run(Application.class, args);
 }

 @HystrixCommand(threadPoolKey = "helloThreadPool")
public String helloRemoteServiceCall(String firstName,

 String lastName){
 ResponseEntity<String> restExchange =
 restTemplate.exchange(
 "http://logical-service-id/name/
 [ca]{firstName}/{lastName}",
 HttpMethod.GET,
 null, String.class, firstName, lastName);

 return restExchange.getBody();

 }

@RequestMapping(value="/{firstName}/{lastName}",
method = RequestMethod.GET)

 public String hello(@PathVariable("firstName") String firstName,
 @PathVariable("lastName") String lastName) {
 return helloRemoteServiceCall(firstName, lastName)
}
}

This code has a lot packed into it, so let’s walk through it. Keep in mind that this list-
ing is only an example and isn’t found in the chapter 1 GitHub repository source
code. I’ve included it here to give you a taste of what’s to come later in the book.

 The first thing you should notice is the @EnableCircuitBreaker and
@EnableEurekaClient annotations. The @EnableCircuitBreaker annotation
tells your Spring microservice that you’re going to use the Netflix Hystrix libraries in
your application. The @EnableEurekaClient annotation tells your microservice to

Listing 1.2 Hello World Service using Spring Cloud

Enables the service to use the
Hystrix and Ribbon libraries

Tells the service that it shoul
register itself with a Eureka
service discovery agent and t
service calls are to use servic
discovery to “lookup” the
location of remote services

Wrappers calls to the
helloRemoteServiceCall
method with a Hystrix

circuit breaker

Uses a decorated RestTemplate
class to take a “logical” service
ID and Eureka under the covers
to look up the physical location
of the service
Licensed to <null>

32 CHAPTER 1 Welcome to the cloud, Spring
register itself with a Eureka Service Discovery agent and that you’re going to use
service discovery to look up remote REST services endpoints in your code. Note that
configuration is happening in a property file that will tell the simple service the loca-
tion and port number of a Eureka server to contact. You first see Hystrix being used
when you declare your hello method:

@HystrixCommand(threadPoolKey = "helloThreadPool")
public String helloRemoteServiceCall(String firstName, String lastName)

The @HystrixCommand annotation is doing two things. First, any time the helloRe-
moteServiceCall method is called, it won’t be directly invoked. Instead, the
method will be delegated to a thread pool managed by Hystrix. If the call takes too
long (default is one second), Hystrix steps in and interrupts the call. This is the imple-
mentation of the circuit breaker pattern. The second thing this annotation does is cre-
ate a thread pool called helloThreadPool that’s managed by Hystrix. All calls to
helloRemoteServiceCall method will only occur on this thread pool and will be
isolated from any other remote service calls being made.

 The last thing to note is what’s occurring inside the helloRemoteServiceCall
method. The presence of the @EnableEurekaClient has told Spring Boot that
you’re going to use a modified RestTemplate class (this isn’t how the Standard
Spring RestTemplate would work out of the box) whenever you make a REST service
call. This RestTemplate class will allow you to pass in a logical service ID for the ser-
vice you’re trying to invoke:

ResponseEntity<String> restExchange = restTemplate.exchange
(http://logical-service-id/name/{firstName}/{lastName}

Under the covers, the RestTemplate class will contact the Eureka service and look
up the physical location of one or more of the “name” service instances. As a con-
sumer of the service, your code never has to know where that service is located.

 Also, the RestTemplate class is using Netflix’s Ribbon library. Ribbon will retrieve
a list of all the physical endpoints associated with a service. Every time the service is
called by the client, it “round-robins” the call to the different service instances on the
client without having to go through a centralized load balancer. By eliminating a cen-
tralized load balancer and moving it to the client, you eliminate another failure point
(load balancer going down) in your application infrastructure.

 I hope that at this point you’re impressed, because you’ve added a significant num-
ber of capabilities to your microservice with only a few annotations. That’s the real
beauty behind Spring Cloud. You as a developer get to take advantage of battle-hard-
ened microservice capabilities from premier cloud companies like Netflix and Con-
sul. These capabilities, if used outside of Spring Cloud, can be complex and obtuse to
set up. Spring Cloud simplifies their use to literally nothing more than a few simple
Spring Cloud annotations and configuration entries.
Licensed to <null>

33Summary
1.12 Making sure our examples are relevant
I want to make sure this book provides examples that you can relate to as you go about
your day-to-day job. To this end, I’ve structured the chapters in this book and the cor-
responding code examples around the adventures (misadventures) of a fictitious com-
pany called ThoughtMechanix.

 ThoughtMechanix is a software development company whose core product, Eagle-
Eye, provides an enterprise-grade software asset management application. It provides
coverage for all the critical elements: inventory, software delivery, license manage-
ment, compliance, cost, and resource management. Its primary goal is to enable orga-
nizations to gain an accurate point-in-time picture of its software assets.

 The company is approximately 10 years old. While they’ve experienced solid reve-
nue growth, internally they’re debating whether they should be re-platforming their
core product from a monolithic on-premise-based application or move their applica-
tion to the cloud. The re-platforming involved with EagleEye can be a “make or
break” moment for a company.

 The company is looking at rebuilding their core product EagleEye on a new archi-
tecture. While much of the business logic for the application will remain in place, the
application itself will be broken down from a monolithic design to a much smaller
microservice design whose pieces can be deployed independently to the cloud. The
examples in this book won’t build the entire ThoughtMechanix application. Instead
you’ll build specific microservices from the problem domain at hand and then build
the infrastructure that will support these services using various Spring Cloud (and
some non-Spring-Cloud) technologies.

 The ability to successfully adopt cloud-based, microservice architecture will impact
all parts of a technical organization. This includes the architecture, engineering, test-
ing, and operations teams. Input will be needed from each group and, in the end,
they’re probably going to need reorganization as the team reevaluates their responsi-
bilities in this new environment. Let’s start our journey with ThoughtMechanix as you
begin the fundamental work of identifying and building out several of the microser-
vices used in EagleEye and then building these services using Spring Boot.

1.13 Summary
 Microservices are extremely small pieces of functionality that are responsible

for one specific area of scope.
 No industry standards exist for microservices. Unlike other early web service

protocols, microservices take a principle-based approach and align with the
concepts of REST and JSON.

 Writing microservices is easy, but fully operationalizing them for production
requires additional forethought. We introduced several categories of microser-
vice development patterns, including core development, routing patterns, cli-
ent resiliency, security, logging, and build/deployment patterns.
Licensed to <null>

34 CHAPTER 1 Welcome to the cloud, Spring
 While microservices are language-agnostic, we introduced two Spring frame-
works that significantly help in building microservices: Spring Boot and Spring
Cloud.

 Spring Boot is used to simplify the building of REST-based/JSON microservices.
Its goal is to make it possible for you to build microservices quickly with nothing
more than a few annotations.

 Spring Cloud is a collection of open source technologies from companies such
as Netflix and HashiCorp that have been “wrapped” with Spring annotations to
significantly simplify the setup and configuration of these services.
Licensed to <null>

Building microservices
with Spring Boot
The history of software development is littered with the tales of large development
projects that after an investment of millions of dollars and hundreds of thousands
of software developer hours, and with many of the best and brightest minds in the
industry working on them, somehow never managed to deliver anything of value to
their customers and literally collapsed under their own complexity and weight.

 These mammoth projects tended to follow large, traditional waterfall develop-
ment methodologies that insisted that all the application’s requirements and
design be defined at the beginning of the project. So much emphasis was placed on

This chapter covers
 Learning the key characteristics of a microservice

 Understanding how microservices fit into a cloud
architecture

 Decomposing a business domain into a set of
microservices

 Implementing a simple microservice using Spring Boot

 Understanding the perspectives for building
microservice-based applications

 Learning when not to use microservices
35

Licensed to <null>

36 CHAPTER 2 Building microservices with Spring Boot
getting all the specifications for the software “correct” that there was little leeway to
meet new business requirements, or refactor and learn from mistakes made in the
early stages of development.

 The reality, though, is that software development isn’t a linear process of definition
and execution, but rather an evolutionary one where it takes several iterations of com-
municating with, learning from, and delivering to the customer before the development
team truly understands the problem at hand.

 Compounding the challenges of using traditional waterfall methodologies is that
many times the granularity of the software artifacts being delivered in these projects are

 Tightly coupled—The invocation of business logic happens at the programming-
language level instead of through implementation-neutral protocols such as
SOAP and REST. This greatly increases the chance that even a small change to
an application component can break other pieces of the application and intro-
duce new bugs.

 Leaky—Most large software applications manage different types of data. For
instance, a customer relationship management (CRM) application might man-
age customer, sales, and product information. In a traditional model, this data
is kept in the same data model and within the same data store. Even though
there are obvious boundaries between the data, too often it’s tempting for a
team from one domain to directly access the data that belongs to another team.

This easy access to data creates hidden dependencies and allows implemen-
tation details of one component’s internal data structures to leak through the
entire application. Even small changes to a single database table can require a
significant number of code changes and regression-testing throughout the
entire application.

 Monolithic—Because most of the application components for a traditional appli-
cation reside in a single code base that’s shared across multiple teams, any time
a change to the code is made, the entire application has to be recompiled,
rerun through an entire testing cycle, and redeployed. Even small changes to
the application’s code base, whether they’re new customer requirements or bug
fixes, become expensive and time-consuming, and large changes become
nearly impossible to do in a timely fashion.

A microservice-based architecture takes a different approach to delivering functional-
ity. Specifically, microservice-based architectures have these characteristics:

 Constrained—Microservices have a single set of responsibilities and are narrow
in scope. Microservices embrace the UNIX philosophy that an application is
nothing more than a collection of services where each service does one thing
and does that one thing really well.

 Loosely coupled—A microservice-based application is a collection of small ser-
vices that only interact with one another through a non–implementation spe-
cific interface using a non-proprietary invocation protocol (for example, HTTP
Licensed to <null>

37
and REST). As long as the interface for the service doesn’t change, the owners
of the microservice have more freedom to make modifications to the service
than in a traditional application architecture.

 Abstracted—Microservices completely own their data structures and data
sources. Data owned by a microservice can only be modified by that service.
Access control to the database holding the microservice’s data can be locked
down to only allow the service access to it.

 Independent—Each microservice in a microservice application can be compiled
and deployed independently of the other services used in the application. This
means changes can be isolated and tested much more easily than with a more
heavily interdependent, monolithic application.

Why are these microservice architecture attributes important to cloud-based develop-
ment? Cloud-based applications in general have the following:

 A large and diverse user base—Different customers want different features, and
they don’t want to have to wait for a long application release cycle before they
can start using these features. Microservices allow features to be delivered
quickly, because each service is small in scope and accessed through a well-
defined interface.

 Extremely high uptime requirements—Because of the decentralized nature of
microservices, microservice-based applications can more easily isolate faults and
problems to specific parts of an application without taking down the entire
application. This reduces overall downtime for applications and makes them
more resistent to problems.

 Uneven volume requirements—Traditional applications deployed within the four
walls of a corporate data center usually have consistent usage patterns that
emerge over time. This makes capacity planning for these types of applications
simple. But in a cloud-based application, a simple tweet on Twitter or a post on
Slashdot can drive demand for a cloud-based application through the roof.

Because microservice applications are broken down into small components
that can be deployed independently of one another, it’s much easier to focus on
the components that are under load and scale those components horizontally
across multiple servers in a cloud.

This chapter provides you with the foundation you need to target and identify
microservices in your business problem, build the skeleton of a microservice, and
then understand the operational attributes that need to be in place for a microservice
to be deployed and managed successfully in production.

 To successfully design and build microservices, you need to approach microser-
vices as if you’re a police detective interviewing witnesses to a crime. Even though
every witness saw the same events take place, their interpretation of the crime is
shaped by their background, what was important to them (for example, what moti-
vates them), and what environmental pressures were brought to bear at that moment
Licensed to <null>

38 CHAPTER 2 Building microservices with Spring Boot
they witnessed the event. Participants each have their own perspectives (and biases) of
what they consider important.

 Like a successful police detective trying to get to the truth, the journey to build a suc-
cessful microservice architecture involves incorporating the perspectives of multiple
individuals within your software development organization. Although it takes more
than technical people to deliver an entire application, I believe that the foundation for
successful microservice development starts with the perspectives of three critical roles:

 The architect—The architect’s job is to see the big picture and understand how
an application can be decomposed into individual microservices and how the
microservices will interact to deliver a solution.

 The software developer—The software developer writes the code and understands
in detail how the language and development frameworks for the language will
be used to deliver a microservice.

 The DevOps engineer—The DevOps engineer brings intelligence to how the ser-
vices are deployed and managed throughout not only production, but also all
the nonproduction environments. The watchwords for the DevOps engineer
are consistency and repeatability in every environment.

In this chapter, I’ll demonstrate how to design and build a set of microservices from the
perspective of each of these roles using Spring Boot and Java. By the time the chapter
concludes, you’ll have a service that can be packaged and deployed to the cloud.

2.1 The architect’s story: designing the microservice architecture
An architect’s role on a software project is to provide a working model of the problem
that needs to be solved. The job of the architect is to provide the scaffolding against
which developers will build their code so that all the pieces of the application fit
together.

 When building a microservices architecture, a project’s architect focuses on three
key tasks:

1 Decomposing the business problem
2 Establishing service granularity
3 Defining the service interfaces

2.1.1 Decomposing the business problem

In the face of complexity, most people try to break the problem on which they’re
working into manageable chunks. They do this so they don’t have to try to fit all the
details of the problem in their heads. Instead, they break the problem down abstractly
into a few key parts and then look for the relationships that exist between these parts.

 In a microservices architecture, the architect breaks the business problem into
chunks that represent discrete domains of activity. These chunks encapsulate the busi-
ness rules and the data logic associated with a particular part of the business domain.
Licensed to <null>

http://localhost:8080/health
http://localhost:8080/health
http://localhost:8080/health

39The architect’s story: designing the microservice architecture
 Although you want microservices to encapsulate all the business rules for carrying
out a single transaction, this isn’t always feasible. You’ll often have situations where
you need to have groups of microservices working across different parts of the busi-
ness domain to complete an entire transaction. An architect teases apart the service
boundaries of a set of microservices by looking at where the data domain doesn’t
seem to fit together.

 For example, an architect might look at a business flow that’s to be carried out by
code and realize that they need both customer and product information. The pres-
ence of two discrete data domains is a good indication that multiple microservices are
at play. How the two different parts of the business transaction interact usually
becomes the service interface for the microservices.

 Breaking apart a business domain is an art form rather than a black-and-white sci-
ence. Use the following guidelines for identifying and decomposing a business prob-
lem into microservice candidates:

1 Describe the business problem, and listen to the nouns you’re using to describe the problem.
Using the same nouns over and over in describing the problem is usually an
indication of a core business domain and an opportunity for a microservice.
Examples of target nouns for the EagleEye domain from chapter 1 might look
something like contracts, licenses, and assets.

2 Pay attention to the verbs. Verbs highlight actions and often represent the natural
contours of a problem domain. If you find yourself saying “transaction X needs
to get data from thing A and thing B,” that usually indicates that multiple ser-
vices are at play. If you apply to EagleEye the approach of watching for verbs,
you might look for statements such as, “When Mike from desktop services is
setting up a new PC, he looks up the number of licenses available for software X
and, if licenses are available, installs the software. He then updates the number
of licenses used in his tracking spreadsheet.” The key verbs here are looks and
updates.

3 Look for data cohesion. As you break apart your business problem into discrete
pieces, look for pieces of data that are highly related to one another. If sud-
denly, during the course of your conversation, you’re reading or updating data
that’s radically different from what you’ve been discussing so far, you potentially
have another service candidate. Microservices should completely own their data.

Let’s take these guidelines and apply them to a real-world problem. Chapter 1 intro-
duced an existing software product called EagleEye that’s used for managing software
assets such as software licenses and secure socket layer (SSL) certificates. These items
are deployed to various servers throughout an organization.

 EagleEye is a traditional monolithic web application that’s deployed to a J2EE
application server residing within a customer’s data center. Your goal is to tease apart
the existing monolithic application into a set of services.

Licensed to <null>

40 CHAPTER 2 Building microservices with Spring Boot
Figure 2.1 Interview the EagleEye users, and understand how they do their day-to-day work.

You’re going to start by interviewing all the users of the EagleEye application and dis-
cussing with them how they interact and use EagleEye. Figure 2.1 captures a summary
of the conversations you might have with the different business customers. By looking
at how the users of EagleEye interact with the application and how the data model for
the application is broken out, you can decompose the EagleEye problem domain into
the following microservice candidates.

 In the figure, I’ve highlighted a number of nouns and verbs that have come up
during conversations with the business users. Because this is an existing application,
you can look at the application and map the major nouns back to tables in the physi-
cal data model. An existing application may have hundreds of tables, but each table
will usually map back to a single set of
logical entities.

 Figure 2.2 shows a simplified data
model based on conversations with
EagleEye customers. Based on the
business interviews and the data
model, the microservice candidates
are organization, license, contract,
and assets services.

• Sets up PCs
• Determines if software license for
 PC is available
• Updates EagleEye with which
 user has what software

• Runs monthly cost reports
• Analyzes cost of licenses per
 the contract
• Determines if licenses are over-
 or under-utilized
• Cancels unused software
 licenses

• Enters contract info into EagleEye
• Defines types of software licenses
• Enters how many licenses are
 acquired with purchase

Rick
(Procurement)

Ruth
(Finance)

Mike
(Desktop Services)

Assets
table

Contracts
table

EagleEye
application

License
table

EagleEye database:
data model is shared and
highly integrated.

Organization License

Assets

Contract

Figure 2.2 A simplified EagleEye data model
Licensed to <null>

41The architect’s story: designing the microservice architecture
2.1.2 Establishing service granularity

Once you have a simplified data model, you can begin the process of defining what
microservices you’re going to need in the application. Based on the data model in figure
2.2, you can see the potential for four microservices based on the following elements:

 Assets
 License
 Contract
 Organization

The goal is to take these major pieces of functionality and extract them into com-
pletely self-contained units that can be built and deployed independently of each
other. But extracting services from the data model involves more than repackaging
code into separate projects. It’s also about teasing out the actual database tables the
services are accessing and only allowing each individual service to access the tables in
its specific domain. Figure 2.3 shows how the application code and the data model
become “chunked” into individual pieces.

Figure 2.3 You use the data model as the basis for decomposing a monolithic application into
microservices.

Assets
tables

Each service owns all the data
within their domain. This does
not mean that each service has
their own database. It just means
that only services that own
that domain can access the
database tables within it.

The EagleEye application is
broken down from a monolithic
application into smaller individual
services that are deployed
independently of one another.

License
tables

Contract
tables

Organization
tables

Assets
tables

License
tables

Contract
tables

Organization
tables

Single EagleEye database

Monolithic EagleEye
application

Assets
service

License
service

Contract
service

Organization
service
Licensed to <null>

42 CHAPTER 2 Building microservices with Spring Boot
After you’ve broken a problem domain down into discrete pieces, you’ll often find
yourself struggling to determine whether you’ve achieved the right level of granularity
for your services. A microservice that’s too coarse- or fine-grained will have a number
of telltale attributes that we’ll discuss shortly.

 When you’re building a microservice architecture, the question of granularity is
important, but you can use the following concepts to determine the correct solution:

1 It’s better to start broad with your microservice and refactor to smaller services—It’s easy
to go overboard when you begin your microservice journey and make every-
thing a microservice. But decomposing the problem domain into small services
often leads to premature complexity because microservices devolve into noth-
ing more than fine-grained data services.

2 Focus first on how your services will interact with one another—This will help establish
the coarse-grained interfaces of your problem domain. It’s easier to refactor
from being too coarse-grained to being too fine-grained.

3 Service responsibilities will change over time as your understanding of the problem
domain grows—Often, a microservice gains responsibilities as new application
functionality is requested. What starts as a single microservice might grow into
multiple services, with the original microservice acting as an orchestration
layer for these new services and encapsulating their functionality from other
parts of the application.

The smells of a bad microservice
How do you know whether your microservices are the right size? If a microservice is
too coarse-grained, you’ll likely see the following:

A service with too many responsibilities—The general flow of the business logic in the
service is complicated and seems to be enforcing an overly diverse array of business
rules.

The service is managing data across a large number of tables—A microservice is the
system of record for the data it manages. If you find yourself persisting data to mul-
tiple tables or reaching out to tables outside of the immediate database, this is a
clue the service is too big. I like to use the guideline that a microservice should own
no more than three to five tables. Any more, and your service is likely to have too
much responsibility.

Too many test cases—Services can grow in size and responsibility over time. If you
have a service that started with a small number of test cases and ends up with hun-
dreds of unit and integration test cases, you might need to refactor.

What about a microservice that’s too fine-grained?

The microservices in one part of the problem domain breed like rabbits—If everything
becomes a microservice, composing business logic out of the services becomes
complex and difficult because the number of services needed to get a piece of work
done grows tremendously. A common smell is when you have dozens of microser-
vices in an application and each service interacts with only a single database table.
Licensed to <null>

43The architect’s story: designing the microservice architecture
A microservices architecture should be developed with an evolutionary thought pro-
cess where you know that you aren’t going to get the design right the first time. That’s
why it’s better to start with your first set of services being more coarse-grained than
fine-grained. It’s also important not to be dogmatic with your design. You may run
into physical constraints on your services where you’ll need to make an aggregation
service that joins data together because two separate services will be too chatty, or
where no clear boundaries exist between the domain lines of a service.

 In the end, take a pragmatic approach and deliver, rather than waste time trying to
get the design perfect and then have nothing to show for your effort.

2.1.3 Talking to one another: service interfaces

The last part of the of the architect’s input is about defining how the microservices in
your application are going to talk with one another. When building business logic with
microservices, the interfaces for the services should be intuitive and developers
should get a rhythm of how all the services work in the application by learning one or
two of the services in the application.

 In general, the following guidelines can be used for thinking about service inter-
face design:

1 Embrace the REST philosophy—The REST approach to services is at heart the
embracing of HTTP as the invocation protocol for the services and the use of
standard HTTP verbs (GET, PUT, POST, and DELETE). Model your basic behav-
iors around these HTTP verbs.

2 Use URI’s to communicate intent—The URI you use as endpoints for the service
should describe the different resources in your problem domain and provide a
basic mechanism for relationships of resources within your problem domain.

3 Use JSON for your requests and responses—JavaScript Object Notation (in other
words, JSON) is an extremely lightweight data-serialization protocol and is
much easier to consume then XML.

4 Use HTTP status codes to communicate results—The HTTP protocol has a rich body
of standard response codes to indicate the success or failure of a service. Learn
these status codes and most importantly use them consistently across all your
services.

Your microservices are heavily interdependent on one another—You find that the
microservices in one part of the problem domain keep calling back and forth between
each other to complete a single user request.

Your microservices become a collection of simple CRUD (Create, Replace, Update,
Delete) services—Microservices are an expression of business logic and not an
abstraction layer over your data sources. If your microservices do nothing but CRUD-
related logic, they’re probably too fine-grained.
Licensed to <null>

44 CHAPTER 2 Building microservices with Spring Boot
All the basic guidelines drive to one thing, making your service interfaces easy to
understand and consumable. You want a developer to sit down and look at the service
interfaces and start using them. If a microservice isn’t easy to consume, developers will
go out of their way to work around and subvert the intention of the architecture.

2.2 When not to use microservices
We’ve spent this chapter talking about why microservices are a powerful architectural
pattern for building applications. But I haven’t touched on when you shouldn’t use
microservices to build your applications. Let’s walk through them:

1 Complexity building distributed systems
2 Virtual server/container sprawl
3 Application type
4 Data transactions and consistency

2.2.1 Complexity of building distributed systems

Because microservices are distributed and fine-grained (small), they introduce a level
of complexity into your application that wouldn’t be there in more monolithic appli-
cations. Microservice architectures require a high degree of operational maturity.
Don’t consider using microservices unless your organization is willing to invest in the
automation and operational work (monitoring, scaling) that a highly distributed
application needs to be successful.

2.2.2 Server sprawl

One of the most common deployment models for microservices is to have one
microservice instance deployed on one server. In a large microservices-based applica-
tion, you might end up with 50 to 100 servers or containers (usually virtual) that have
to be built and maintained in production alone. Even with the lower cost of running
these services in the cloud, the operational complexity of having to manage and mon-
itor these servers can be tremendous.

NOTE The flexibility of microservices has to be weighed against the cost of
running all of these servers.

2.2.3 Type of application

Microservices are geared toward reusability and are extremely useful for building
large applications that need to be highly resilient and scalable. This is one of the rea-
sons why so many cloud-based companies have adopted microservices. If you’re build-
ing small, departmental-level applications or applications with a small user base, the
complexity associated with building on a distributed model such as microservices
might be more expense then it’s worth.
Licensed to <null>

45The developer’s tale: building a microservice with Spring Boot and Java
2.2.4 Data transformations and consistency

As you begin looking at microservices, you need to think through the data usage pat-
terns of your services and how service consumers are going to use them. A microser-
vice wraps around and abstracts away a small number of tables and works well as a
mechanism for performing “operational” tasks such as creating, adding, and perform-
ing simple (non-complex) queries against a store.

 If your applications need to do complex data aggregation or transformation across
multiple sources of data, the distributed nature of microservices will make this work
difficult. Your microservices will invariably take on too much responsibility and can
also become vulnerable to performance problems.

 Also keep in mind that no standard exists for performing transactions across
microservices. If you need transaction management, you will need to build that logic
yourself. In addition, as you’ll see in chapter 7, microservices can communicate
amongst themselves by using messages. Messaging introduces latency in data updates.
Your applications need to handle eventual consistency where updates that are applied
to your data might not immediately appear.

2.3 The developer’s tale: building a microservice with
Spring Boot and Java
When building a microservice, moving from the conceptual space to the implementa-
tion space requires a shift in perspective. Specifically, as a developer, you need to
establish a basic pattern of how each of the microservices in your application is going
to be implemented. While each service is going to be unique, you want to make sure
that you’re using a framework that removes boilerplate code and that each piece of
your microservice is laid out in the same consistent fashion.

 In this section, we’ll explore the developer’s priorities in building the licensing
microservice from your EagleEye domain model. Your licensing service is going to be
written using Spring Boot. Spring Boot is an abstraction layer over the standard
Spring libraries that allows developers to quickly build Groovy- and Java-based web
applications and microservices with significantly less ceremony and configuration
than a full-blown Spring application.

 For your licensing service example, you’ll use Java as your core programming lan-
guage and Apache Maven as your build tool.

 Over the next several sections you’re going to

1 Build the basic skeleton of the microservice and a Maven script to build the
application

2 Implement a Spring bootstrap class that will start the Spring container for the
microservice and initiate the kick-off of any initialization work for the class

3 Implement a Spring Boot controller class for mapping an endpoint to expose
the endpoints of the service
Licensed to <null>

46 CHAPTER 2 Building microservices with Spring Boot

Te

Spr
d

2.3.1 Getting started with the skeleton project

To begin, you’ll create a skeleton project for the licensing. You can either pull down
the source code down from GitHub (https://github.com/carnellj/spmia-chapter2) or
create a licensing-service project directory with the following directory structure:

 licensing-service
 src/main/java/com/thoughtmechanix/licenses
 controllers
 model
 services
 resources

Once you’ve pulled down or created this directory structure, begin by writing your
Maven script for the project. This will be the pom.xml file located at the root of the
project directory. The following listing shows the Maven POM file for your licensing
service.

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>com.thoughtmechanix</groupId>
 <artifactId>licensing-service</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 <packaging>jar</packaging>

 <name>EagleEye Licensing Service</name>
 <description>Licensing Service</description>

 <parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>1.4.4.RELEASE</version>
 <relativePath/>
 </parent>
 <dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-actuator</artifactId>
 </dependency>
 </dependencies>

Listing 2.1 Maven pom file for the licensing service

Tells Maven to include
the Spring Boot Starter

Kit dependencies

Tells Maven to include
the Spring Boot

web dependencies

lls Maven to
include the

ing Actuator
ependencies
Licensed to <null>

https://github.com/carnellj/spmia-chapter2

47The developer’s tale: building a microservice with Spring Boot and Java
<!—-Note: Some the build properties and Docker build plugins have been
excluded from the pom.xml in this pom (not in the source code in the
github repository) because they are not relevant to our discussion here.
-->

<build>
 <plugins>

 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 </plugin>
 </plugins>
 </build>
</project>

We won’t go through the entire script in detail, but note a few key areas as we begin.
Spring Boot is broken into many individual projects. The philosophy is that you
shouldn’t have to “pull down the world” if you aren’t going to use different pieces of
Spring Boot in your application. This also allows the various Spring Boot projects to
release new versions of code independently of one another. To help simplify the life of
the developers, the Spring Boot team has gathered related dependent projects into
various “starter” kits. In part 1 of the Maven POM you tell Maven that you need to pull
down version 1.4.4 of the Spring Boot framework

 In parts 2 and 3 of the Maven file, you identify that you’re pulling down the Spring
Web and Spring Actuator starter kits. These two projects are at the heart of almost any
Spring Boot REST-based service. You’ll find that as you build more functionality into
your services, the list of these dependent projects becomes longer.

 Also, Spring Source has provided Maven plugins that simplify the build and deploy-
ment of the Spring Boot applications. Step 4 tells your Maven build script to install the
latest Spring Boot Maven plugin. This plugin contains a number of add-on tasks (such
as spring-boot:run) that simplify your interaction between Maven and Spring Boot.

 Finally, you’ll see a comment that sections of the Maven file have been removed.
For the sake of the trees, I didn’t include the Spotify Docker plugins in listing 2.1.

NOTE Every chapter in this book includes Docker files for building and
deploying the application as Docker containers. You can find details of how
to build these Docker images in the README.md file in the code sections of
each chapter.

2.3.2 Booting your Spring Boot application: writing the Bootstrap class

Your goal is to get a simple microservice up and running in Spring Boot and then iter-
ate on it to deliver functionality. To this end, you need to create two classes in your
licensing service microservice:

 A Spring Bootstrap class that will be used by Spring Boot to start up and initial-
ize the application

 A Spring Controller class that will expose the HTTP endpoints that can be
invoked on the microservice

Tells Maven to include Spring specific
maven plugins for building and deploying

Spring Boot applications
Licensed to <null>

48 CHAPTER 2 Building microservices with Spring Boot

As you’ll see shortly, Spring Boot uses annotations to simplify setting up and configur-
ing the service. This becomes evident as you look at the bootstrap class in the follow-
ing listing. This bootstrap class is in the src/main/java/com/thoughtmechanix/
licenses/Application.java file.

package com.thoughtmechanix.licenses;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class Application {
 public static void main(String[] args) {
SpringApplication.run(Application.class, args);
 }
}

The first thing to note in this code is the use of the @SpringBootApplication
annotation. Spring Boot uses this annotation to tell the Spring container that this
class is the source of bean definitions for use in Spring. In a Spring Boot application,
you can define Spring Beans by

1 Annotating a Java class with a @Component, @Service or @Repository anno-
tation tag

2 Annotating a class with a @Configuration tag and then defining a constructor
method for each Spring Bean you want to build with a @Bean tag.

Under the covers, the @SpringBootApplication annotation marks the Application
class in listing 2.2 as a configuration class, then begins auto-scanning all the classes on
the Java class path for other Spring Beans.

 The second thing to note is the Application class’s main() method. In the
main() method, the SpringApplication.run(Application.class, args), the
call starts the Spring container and returns a Spring ApplicationContext object.
(You aren’t doing anything with the ApplicationContext, so it isn’t shown in the
code.)

 The easiest thing to remember about the @SpringBootApplication annotation
and the corresponding Application class is that it’s the bootstrap class for the entire
microservice. Core initialization logic for the service should be placed in this class.

2.3.3 Building the doorway into the microservice:
the Spring Boot controller

Now that you’ve gotten the build script out of the way and implemented a simple
Spring Boot Bootstrap class, you can begin writing your first code that will do some-
thing. This code will be your Controller class. In a Spring boot application, a

Listing 2.2 Introducing the @SpringBootApplication annotation

@SpringBootApplication tells
the Spring Boot framework
that this is the bootstrap
class for the project

Call to start the entire
Spring Boot service
Licensed to <null>

49The developer’s tale: building a microservice with Spring Boot and Java
Controller class exposes the services endpoints and maps the data from an incom-
ing HTTP request to a Java method that will process the request.

Your first controller class is located in src/main/java/com/thoughtmechanix/
licenses/controllers/LicenseServiceController.java. This class will
expose four HTTP endpoints that will map to the POST, GET, PUT, and DELETE verbs.

 Let’s walk through the controller class and look at how Spring Boot provides a set
of annotations that keeps the effort needed to expose your service endpoints to a min-
imum and allows you to focus on building the business logic for the service. We’ll start
by looking at the basic controller class definition without any class methods in it yet.
The following listing shows the controller class that you built for your licensing service.

package com.thoughtmechanix.licenses.controllers;

import … // Removed for conciseness

Give it a REST
All the microservices in this book follow the REST approach to building your services.
An in-depth discussion of REST is outside of the scope this book,a but for your pur-
poses, all the services you build will have the following characteristics:

Use HTTP as the invocation protocol for the service—The service will be exposed via
HTTP endpoint and will use the HTTP protocol to carry data to and from the services.

Map the behavior of the service to standard HTTP verbs—REST emphasizes having
services map their behavior to the HTTP verbs of POST, GET, PUT, and DELETE verbs.
These verbs map to the CRUD functions found in most services.

Use JSON as the serialization format for all data going to and from the service—This
isn’t a hard-and-fast principle for REST-based microservices, but JSON has become
lingua franca for serializing data that’s going to be submitted and returned by a
microservice. XML can be used, but many REST-based applications make heavy use
of JavaScript and JSON (JavaScript Object Notation). JSON is the native format for
serializing and deserializing data being consumed by JavaScript-based web front-ends
and services.

Use HTTP status codes to communicate the status of a service call—The HTTP protocol
has developed a rich set of status codes to indicate the success or failure of a ser-
vice. REST-based services take advantage of these HTTP status codes and other web-
based infrastructure, such as reverse proxies and caches, which can be integrated
with your microservices with relative ease.

HTTP is the language of the web and using HTTP as the philosophical framework for
building your service is a key to building services in the cloud.

a Probably the most comprehensive coverage of the design of REST services is the book REST in Practice
by Ian Robinson, et al (O’Reilly, 2010).

Listing 2.3 Marking the LicenseServiceController as a Spring RestController
Licensed to <null>

50 CHAPTER 2 Building microservices with Spring Boot
@RestController
@RequestMapping(value="/v1/organizations/{organizationId}/licenses")
public class LicenseServiceController {
 //Body of the class removed for conciseness
}

We’ll begin our exploration by looking at the @RestController annotation. The
@RestController is a class-level Java annotation and tells the Spring Container that
this Java class is going to be used for a REST-based service. This annotation automati-
cally handles the serialization of data passed into the services as JSON or XML (by
default the @RestController class will serialize returned data into JSON). Unlike
the traditional Spring @Controller annotation, the @RestController annotation
doesn’t require you as the developer to return a ResponseBody class from your con-
troller class. This is all handled by the presence of the @RestController annotation,
which includes the @ResponseBody annotation.

Why JSON for microservices?
Multiple protocols can be used to send data back and forth between HTTP-based
microservices. JSON has emerged as the de facto standard for several reasons.

First, compared to other protocols such as the XML-based SOAP (Simple Object
Access Protocol), it’s extremely lightweight in that you can express your data without
having much textual overhead.

Second, it’s easily read and consumed by a human being. This is an underrated qual-
ity for choosing a serialization protocol. When a problem arises, it’s critical for devel-
opers to look at a chunk of JSON and quickly, visually process what’s in it. The
simplicity of the protocol makes this incredibly easy to do.

Third, JSON is the default serialization protocol used in JavaScript. Since the dra-
matic rise of JavaScript as a programming language and the equally dramatic rise of
Single Page Internet Applications (SPIA) that rely heavily on JavaScript, JSON has
become a natural fit for building REST-based applications because it’s what the front-
end web clients use to call services.

Other mechanisms and protocols are more efficient than JSON for communicating
between services. The Apache Thrift (http://thrift.apache.org) framework allows you
to build multi-language services that can communicate with one another using a
binary protocol. The Apache Avro protocol (http://avro.apache.org) is a data serializa-
tion protocol that converts data back and forth to a binary format between client and
server calls.

If you need to minimize the size of the data you’re sending across the wire, I recom-
mend you look at these protocols. But it has been my experience that using straight-
up JSON in your microservices works effectively and doesn’t interpose another layer
of communication to debug between your service consumers and service clients.

@RestController tells Spring Boot this is a REST-based
services and will automatically serialize/deserialize
service request/response to JSON.

Exposes all the HTTP endpoints in this class with a
prefix of /v1/organizations/(organizationId}/licenses
Licensed to <null>

http://thrift.apache.org
http://avro.apache.org

51The developer’s tale: building a microservice with Spring Boot and Java
The second annotation shown in listing 2.3 is the @RequestMapping annotation. You
can use the @RequestMapping annotation as a class-level and method-level annota-
tion. The @RequestMapping annotation is used to tell the Spring container the
HTTP endpoint that the service is going to expose to the world. When you use the
class-level @RequestMapping annotation, you’re establishing the root of the URL for
all the other endpoints exposed by the controller.

 In listing 2.3, the @RequestMapping(value="/v1/organizations/{organi-
zationId}/licenses") uses the value attribute to establish the root of the URL
for all endpoints exposed in the controller class. All service endpoints exposed in this
controller will start with /v1/organizations/{organizationId}/licenses as
the root of their endpoint. The {organizationId} is a placeholder that indicates
how you expect the URL to be parameterized with an organizationId passed in
every call. The use of organizationId in the URL allows you to differentiate
between the different customers who might use your service.

 Now you’ll add the first method to your controller. This method will implement
the GET verb used in a REST call and return a single License class instance, as shown
in the following listing. (For purposes of this discussion you’ll instantiate a Java class
called License.)

@RequestMapping(value="/{licenseId}",method = RequestMethod.GET)
public License getLicenses(

@PathVariable("organizationId") String organizationId,
@PathVariable("licenseId") String licenseId) {
 return new License()
 .withId(licenseId)
 .withProductName("Teleco")
 .withLicenseType("Seat")
 .withOrganizationId("TestOrg");
 }

The first thing you’ve done in this listing is annotate the getLicenses() method
with a method level @RequestMapping annotation, passing in two parameters to the
annotation: value and method. With a method-level @RequestMapping annotation,
you’re building on the root-level annotation specified at the top of the class to match
all HTTP requests coming to the controller with the endpoint /v1/organizations/
{organizationId}/licences/{licensedId}. The second parameter of the
annotation, method, specifies the HTTP verb that the method will be matched on. In
the previous example, you’re matching on the GET method as represented by the
RequestMethod.GET enumeration.

 The second thing to note about listing 2.4 is that you use the @PathVariable anno-
tation in the parameter body of the getLicenses() method. (2) The @Path-
Variable annotation is used to map the parameter values passed in the incoming URL

Listing 2.4 Exposing an individual GET HTTP endpoint

Creates a GET endpoint with the value
v1/organizations/{organizationId}/licenses{licenseId}

Maps two parameters from the
URL (organizationId and licenseId)

to method parameters
Licensed to <null>

52 CHAPTER 2 Building microservices with Spring Boot
(as denoted by the {parameterName} syntax) to the parameters of your method. In
your code example from listing 2.4, you’re mapping two parameters from the URL,
organizationId and licenseId, to two parameter-level variables in the method:

@PathVariable("organizationId") String organizationId,
@PathVariable("licenseId") String licenseId)

At this point you have something you can call as a service. From a command line win-
dow, go to your project directory where you’ve downloaded the sample code and exe-
cute the following Maven command:

mvn spring-boot:run

As soon as you hit the Return key, you should see Spring Boot launch an embedded
Tomcat server and start listening on port 8080.

Figure 2.4 The licensing service starting successfully

Endpoint names matter
Before you get too far down the path of writing microservices, make sure that you
(and potentially other teams in your organization) establish standards for the end-
points that will be exposed via your services. The URLs (Uniform Resource Locator)
for the microservice should be used to clearly communicate the intent of the service,
the resources the service manages, and the relationships that exist between the
resources managed within the service. I’ve found the following guidelines useful for
naming service endpoints:

1 Use clear URL names that establish what resource the service represents—
Having a canonical format for defining URLs will help your API feel more intui-
tive and easier to use. Be consistent in your naming conventions.

2 Use the URL to establish relationships between resources—Oftentimes you’ll
have a parent-child relationship between resources within your microservices
where the child doesn’t exist outside the context of the parent (hence you
might not have a separate microservice for the child). Use the URLs to
express these relationships. But if you find that your URLs tend to be exces-
sively long and nested, your microservice may be trying to do too much.

3 Establish a versioning scheme for URLS early—The URL and its corresponding
endpoints represent a contract between the service owner and consumer of
the service. One common pattern is to prepend all endpoints with a version
number. Establish your versioning scheme early and stick to it. It’s extremely
difficult to retrofit versioning to URLS after you already have several consum-
ers using them.

The license
server starting
on port 8080
Licensed to <null>

53The DevOps story: building for the rigors of runtime
Once the service is started, you can directly hit the exposed endpoint. Because your
first method exposed is a GET call, you can use a number of methods for invoking the
service. My preferred method is to use a chrome-based tool like POSTMAN or CURL
for calling the service. Figure 2.5 shows a GET performed on the http://local-
host:8080/v1/organizations/e254f8c-c442-4ebe-a82a-e2fc1d1ff78a/

licenses/f3831f8c-c338-4ebe-a82a-e2fc1d1ff78a endpoint.

Figure 2.5 Your licensing service being called with POSTMAN

At this point you have a running skeleton of a service. But from a development per-
spective, this service isn’t complete. A good microservice design doesn’t eschew segre-
gating the service into well-defined business logic and data access layers. As you
progress in later chapters, you’ll continue to iterate on this service and delve further
into how to structure it.

 Let’s switch to the final perspective: exploring how a DevOps engineer would oper-
ationalize the service and package it for deployment to the cloud.

2.4 The DevOps story: building for the rigors of runtime
For the DevOps engineer, the design of the microservice is all about managing the ser-
vice after it goes into production. Writing the code is often the easy part. Keeping it
running is the hard part.

 While DevOps is a rich and emerging IT field, you’ll start your microservice devel-
opment effort with four principles and build on these principles later in the book.
These principles are

1 A microservice should be self-contained and independently deployable with multiple
instances of the service being started up and torn down with a single software
artifact.

2 A microservice should be configurable. When a service instance starts up, it
should read the data it needs to configure itself from a central location or have

When the GET endpoint is called, a JSON
payload containing licensing data is returned.
Licensed to <null>

54 CHAPTER 2 Building microservices with Spring Boot
its configuration information passed on as environment variables. No human
intervention should be required to configure the service.

3 A microservice instance needs to be transparent to the client. The client should
never know the exact location of a service. Instead, a microservice client should
talk to a service discovery agent that will allow the application to locate an
instance of a microservice without having to know its physical location.

4 A microservice should communicate its health. This is a critical part of your cloud
architecture. Microservice instances will fail and clients need to route around
bad service instances.

These four principles expose the paradox that can exist with microservice develop-
ment. Microservices are smaller in size and scope, but their use introduces more mov-
ing parts in an application, especially because microservices are distributed and
running independently of each other in their own distributed containers. This intro-
duces a high degree of coordination and more opportunities for failure points in the
application.

 From a DevOps perspective, you must address the operational needs of a microser-
vice up front and translate these four principles into a standard set of lifecycle events
that occur every time a microservice is built and deployed to an environment. The
four principles can be mapped to the following operational lifecycle steps:

 Service assembly—How do you package and deploy your service to guarantee
repeatability and consistency so that the same service code and runtime is
deployed exactly the same way?

 Service bootstrapping—How do you separate your application and environment-
specific configuration code from the runtime code so you can start and deploy
a microservice instance quickly in any environment without human interven-
tion to configure the microservice?

 Service registration/discovery—When a new microservice instance is deployed,
how do you make the new service instance discoverable by other application
clients?

 Service monitoring—In a microservices environment it’s extremely common for
multiple instances of the same service to be running due to high availability
needs. From a DevOps perspective, you need to monitor microservice instances
and ensure that any faults in your microservice are routed around and that ail-
ing service instances are taken down.

Figure 2.6 shows how these four steps fit together.
Licensed to <null>

55The DevOps story: building for the rigors of runtime

Building the Twelve-Factor microservice service application
One of my biggest hopes with this book is that you realize that a successful microser-
vice architecture requires strong application development and DevOps practices. One
of the most succinct summaries of these practices can be found in Heroku’s Twelve-
Factor Application manifesto (https://12factor.net/). This document provides 12 best
practices you should always keep in the back of your mind when building microser-
vices. As you read this book, you’ll see these practices intertwined into the examples.
I’ve summarized them as follows:

Codebase—All application code and server provisioning information should be in ver-
sion control. Each microservice should have its own independent code repository
within the source control systems.

Dependencies—Explicitly declare the dependencies your application uses through
build tools such as Maven (Java). Third-party JAR dependence should be declared
using their specific version numbers. This allows your microservice to always be built
using the same version of libraries.

Config—Store your application configuration (especially your environment-specific
configuration) independently from your code. Your application configuration should
never be in the same repository as your source code.

Backing services—Your microservice will often communicate over a network to a data-
base or messaging system. When it does, you should ensure that at any time, you
can swap out your implementation of the database from an in-house managed service
to a third-party service. In chapter 10, we demonstrate this when you move your ser-
vices away from a locally managed Postgres database to one managed by Amazon.

Build/deploy
engine

Executable
JAR

1. Assembly

Source code
repository

Service instance startup

2. Bootstrapping

Configuration
repository

Service discovery
agent

3. Discovery 4. Monitoring

Multiple service
instances

Service client

Service discovery
agent

Failing

Multiple service
instances

Figure 2.6 When a microservice starts up, it goes through multiple steps in its lifecycle.
Licensed to <null>

https://12factor.net/

56 CHAPTER 2 Building microservices with Spring Boot
2.4.1 Service assembly: packaging and deploying your microservices

From a DevOps perspective, one of the key concepts behind a microservice architec-
ture is that multiple instances of a microservice can be deployed quickly in response
to a change application environment (for example, a sudden influx of user requests,
problems within the infrastructure, and so on).

(continued)

Build, release, run—Keep your build, release, and run pieces of deploying your appli-
cation completely separate. Once code is built, the developer should never make
changes to the code at runtime. Any changes need to go back to the build process
and be redeployed. A built service is immutable and cannot be changed.

Processes—Your microservices should always be stateless. They can be killed and
replaced at any timeout without the fear that a loss-of-a-service instance will result in
data loss.

Port binding—A microservice is completely self-contained with the runtime engine for
the service packaged in the service executable. You should run the service without
the need for a separated web or application server. The service should start by itself
on the command line and be accessed immediately through an exposed HTTP port.

Concurrency—When you need to scale, don’t rely on a threading model within a single
service. Instead, launch more microservice instances and scale out horizontally. This
doesn’t preclude using threading within your microservice, but don’t rely on it as your
sole mechanism for scaling. Scale out, not up.

Disposability—Microservices are disposable and can be started and stopped on
demand. Startup time should be minimized and processes should shut down grace-
fully when they receive a kill signal from the operating system.

Dev/prod parity—Minimize the gaps that exist between all of the environments in
which the service runs (including the developer’s desktop). A developer should use
the same infrastructure locally for the service development in which the actual ser-
vice will run. It also means that the amount of time that a service is deployed between
environments should be hours, not weeks. As soon as code is committed, it should
be tested and then promoted as quickly as possible from Dev all the way to Prod.

Logs—Logs are a stream of events. As logs are written out, they should be stream-
able to tools, such as Splunk (http://splunk.com) or Fluentd (http://fluentd.org), that
will collate the logs and write them to a central location. The microservice should
never be concerned about the mechanics of how this happens and the developer
should visually look at the logs via STDOUT as they’re being written out.

Admin processes—Developers will often have to do administrative tasks against their
services (data migration or conversion). These tasks should never be ad hoc and
instead should be done via scripts that are managed and maintained through the
source code repository. These scripts should be repeatable and non-changing (the
script code isn’t modified for each environment) across each environment they’re run
against.
Licensed to <null>

http://splunk.com
http://fluentd.org

57The DevOps story: building for the rigors of runtime
 To accomplish this, a microservice needs to be packaged and installable as a single
artifact with all of its dependencies defined within it. This artifact can then be
deployed to any server with a Java JDK installed on it. These dependencies will also
include the runtime engine (for example, an HTTP server or application container)
that will host the microservice.

 This process of consistently building, packaging, and deploying is the service
assembly (step 1 in figure 2.6). Figure 2.7 shows additional details about the service
assembly step.

Figure 2.7 In the Service Assembly step, source code is compiled and packaged with its runtime engine.

Fortunately, almost all Java microservice frameworks will include a runtime engine
that can be packaged and deployed with the code. For instance, in the Spring Boot
example in figure 2.7, you can use Maven and Spring Boot to build an executable Java
jar file that has an embedded Tomcat engine built right into the JAR. In the following
command-line example, you’re building the licensing service as an executable JAR
and then starting the JAR file from the command-line:

mvn clean package && java –jar target/licensing-service-0.0.1-SNAPSHOT.jar

For certain operation teams, the concept of embedding a runtime environment right
in the JAR file is a major shift in the way they think about deploying applications. In a
traditional J2EE enterprise organization, an application is deployed to an application
server. This model implies that the application server is an entity in and of itself and
would often be managed by a team of system administrators who managed the config-
uration of the servers independently of the applications being deployed to them.

 This separation of the application server configuration from the application intro-
duces failure points in the deployment process, because in many organizations the

Build/deploy
engine

Executable
JAR

1. Assembly

Source code
repository

The output of the build
is a single executable JAR
with both the application
and run-time container
embedded in it.

The build/deploy
engine will use
the Spring Boot's
Maven scripts to
launch the build.

When a developer
checks in their code,
the build/deploy
engine builds and
packages the code.
Licensed to <null>

58 CHAPTER 2 Building microservices with Spring Boot
configuration of the application servers isn’t kept under source control and is man-
aged through a combination of the user interface and home-grown management
scripts. It’s too easy for configuration drift to creep into the application server envi-
ronment and suddenly cause what, on the surface, appear to be random outages.

 The use of a single deployable artifact with the runtime engine embedded in the
artifact eliminates many of these opportunities for configuration drift. It also allows
you to put the whole artifact under source control and allows the application team to
be able to better reason through how their application is built and deployed.

2.4.2 Service bootstrapping: managing configuration of your
microservices

Service bootstrapping (step 2 in figure 2.6) occurs when the microservice is first start-
ing up and needs to load its application configuration information. Figure 2.8 pro-
vides more context for the bootstrapping processing.

 As any application developer knows, there will be times when you need to make
the runtime behavior of the application configurable. Usually this involves reading
your application configuration data from a property file deployed with the application
or reading the data out of a data store such as a relational database.

 Microservices often run into the same type of configuration requirements. The dif-
ference is that in microservice application running in the cloud, you might have

Ideally, the configuration store should be able to version
all configuration changes and provide an audit trail of
who last changed the configuration data.

When a microservice starts, any environment-specific
information or application configuration information
data should be
• Passed into the starting service
 as environment variables
• Read from a centralized
 configuration management repository

If the configuration of a service changes, services
running the old configuration should be torn down
or notified to re-read their configuration information.

Service instance startup

2. Bootstrapping

Configuration
repository

Figure 2.8 As a service starts (boot straps), its reads its configuration from a central repository.
Licensed to <null>

59The DevOps story: building for the rigors of runtime
hundreds or even thousands of microservice instances running. Further complicating
this is that the services might be spread across the globe. With a high number of geo-
graphically dispersed services, it becomes unfeasible to redeploy your services to pick
up new configuration data.

 Storing the data in a data store external to the service solves this problem, but
microservices in the cloud offer a set of unique challenges:

1 Configuration data tends to be simple in structure and is usually read fre-
quently and written infrequently. Relational databases are overkill in this situa-
tion because they’re designed to manage much more complicated data models
then a simple set of key-value pairs.

2 Because the data is accessed on a regular basis but changes infrequently, the
data must be readable with a low level of latency.

3 The data store has to be highly available and close to the services reading the
data. A configuration data store can’t go down completely, because it would
become a single-point of failure for your application.

In chapter 3, I show how to manage your microservice application configuration data
using things like a simple key-value data store.

2.4.3 Service registration and discovery: how clients communicate
with your microservices

From a microservice consumer perspective, a microservice should be location-trans-
parent, because in a cloud-based environment, servers are ephemeral. Ephemeral
means the servers that a service is hosted on usually have shorter lives then a service
running in a corporate data center. Cloud-based services can be started and torn
down quickly with an entirely new IP address assigned to the server on which the ser-
vices are running.

 By insisting that services are treated as short-lived disposable objects, microservice
architectures can achieve a high-degree of scalability and availability by having multi-
ple instances of a service running. Service demand and resiliency can be managed as
quickly as the situation warrants. Each service has a unique and non-permanent IP
address assigned to it. The downside to ephemeral services is that with services con-
stantly coming up and down, managing a large pool of ephemeral services manually
or by hand is an invitation to an outage.

 A microservice instance needs to register itself with the third-party agent. This reg-
istration process is called service discovery (see step 3, service discovery, in figure 2.6;
see figure 2.9 for details on this process). When a microservice instance registers with
a service discovery agent, it will tell the discovery agent two things: the physical IP
address or domain address of the service instance, and a logical name that an applica-
tion can use to look up in a service. Certain service discovery agents will also require a
Licensed to <null>

60 CHAPTER 2 Building microservices with Spring Boot
URL back to the registering service that can be used by the service discovery agent to
perform health checks.

 The service client then communicates with the discovery agent to look up the ser-
vice’s location.

2.4.4 Communicating a microservice’s health

A service discovery agent doesn’t act only as a traffic cop that guides the client to the
location of the service. In a cloud-based microservice application, you’ll often have
multiple instances of a service running. Sooner or later, one of those service instances
will fail. The service discovery agent monitors the health of each service instance regis-
tered with it and removes any service instances from its routing tables to ensure that
clients aren’t sent a service instance that has failed.

Service instance startup

Service discovery
agent

Service
client

3. Discovery

Multiple service
instances

When a service instance
starts up it will register itself
with a service discovery agent.

A service client never knows the physical location
of where a service instance is located. Instead,
it asks the service discovery agent for the location
of a healthy service instance.

Figure 2.9 A service discovery agent abstracts away the physical location of a service.
Licensed to <null>

61The DevOps story: building for the rigors of runtime
After a microservice has come up, the service discovery agent will continue to monitor
and ping the health check interface to ensure that that service is available. This is step
4 in figure 2.6. Figure 2.10 provides context for this step.

 By building a consistent health check interface, you can use cloud-based monitor-
ing tools to detect problems and respond to them appropriately.

 If the service discovery agent discovers a problem with a service instance, it can
take corrective action such as shutting down the ailing instance or bringing additional
service instances up.

 In a microservices environment that uses REST, the simplest way to build a health
check interface is to expose an HTTP end-point that can return a JSON payload and
HTTP status code. In a non-Spring-Boot-based microservice, it’s often the developer’s
responsibility to write an endpoint that will return the health of the service.

 In Spring Boot, exposing an endpoint is trivial and involves nothing more than
modifying your Maven build file to include the Spring Actuator module. Spring Actu-
ator provides out-of-the-box operational endpoints that will help you understand and
manage the health of your service. To use Spring Actuator, you need to make sure you
include the following dependencies in your Maven build file:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-actuator</artifactId>
</dependency>

4. Monitoring

Service discovery
agent

Multiple service
instances

Most service instances will expose a health
check URL that will be called by the service
discovery agent. If the call returns an HTTP
error or does not respond in a timely manner,
the service discovery agent can shut down
the instance or just not route traffic to it.

The service discovery
agent monitors the
health of a service
instance. If the instance
fails, the health check
removes it from the pool
of available instances.

Figure 2.10 The service discovery agent uses the exposes health URL to check microservice health.
Licensed to <null>

62 CHAPTER 2 Building microservices with Spring Boot
If you hit the http://localhost:8080/health endpoint on the licensing service,
you should see health data returned. Figure 2.11 provides an example of the data
returned.

 As you can see in figure 2.11, the health check can be more than an indicator of
what’s up and down. It also can give information about the state of the server on
which the microservice instance is running. This allows for a much richer monitoring
experience.1

2.5 Pulling the perspectives together
Microservices in the cloud seem deceptively simple. But to be successful with them,
you need to have an integrated view that pulls the perspective of the architect, the
developer, and DevOps engineer together into a cohesive vision. The key takeaways
for each of these perspectives are

1 Architect—Focus on the natural contours of your business problem. Describe
your business problem domain and listen to the story you’re telling. Target

1 Spring Boot offers a significant number of options for customizing your health check. For more details on
this, please check out the excellent book Spring Boot in Action (Manning Publications, 2015). Author Craig
Walls gives an exhaustive overview of all the different mechanisms for configuring Spring Boot Actuators.

The "out of the box" Spring Boot health check will return whether the service is
up and some basic information like how much disk space is left on the server.

Figure 2.11 A health check on each service instance allows monitoring tools to determine if the
service instance is running.
Licensed to <null>

63Summary
microservice candidates will emerge. Remember, too, that it’s better to start
with a “coarse-grained” microservice and refactor back to smaller services than
to start with a large group of small services. Microservice architectures, like
most good architectures, are emergent and not preplanned to-the-minute.

2 Software engineer—The fact that the service is small doesn’t mean good design
principles get thrown out the window. Focus on building a layered service
where each layer in the service has discrete responsibilities. Avoid the tempta-
tion to build frameworks in your code and try to make each microservice com-
pletely independent. Premature framework design and adoption can have
massive maintenance costs later in the lifecycle of the application.

3 DevOps engineer—Services don’t exist in a vacuum. Establish the lifecycle of your
services early. The DevOps perspective needs to focus not only on how to auto-
mate the building and deployment of a service, but also on how to monitor the
health of the service and react when something goes wrong. Operationalizing a
service often takes more work and forethought than writing business logic.

2.6 Summary
 To be successful with microservices, you need to integrate in the architect’s,

software developer’s, and DevOps’ perspectives.
 Microservices, while a powerful architectural paradigm, have their benefits and

tradeoffs. Not all applications should be microservice applications.
 From an architect’s perspective, microservices are small, self-contained, and dis-

tributed. Microservices should have narrow boundaries and manage a small set
of data.

 From a developer’s perspective, microservices are typically built using a REST-
style of design, with JSON as the payload for sending and receiving data from
the service.

 Spring Boot is the ideal framework for building microservices because it lets
you build a REST-based JSON service with a few simple annotations.

 From a DevOp’s perspective, how a microservice is packaged, deployed, and
monitored are of critical importance.

 Out of the box, Spring Boot allows you to deliver a service as a single executable
JAR file. An embedded Tomcat server in the producer JAR file hosts the service.

 Spring Actuator, which is included with the Spring Boot framework, exposes
information about the operational health of the service along with information
about the services runtime.
Licensed to <null>

Controlling your
configuration with Spring

Cloud configuration server
At one point or another, a developer will be forced to separate configuration infor-
mation from their code. After all, it has been drilled into their heads since school
that they shouldn’t hard-code values into the application code. Many developers
will use a constants class file in their application to help centralize all their configu-
ration in one place. Application configuration data written directly into the code is
often problematic because every time a change to the configuration has to be made
the application has to be recompiled and/or redeployed. To avoid this, developers
will separate the configuration information from the application code completely.
This makes it easy to make changes to configuration without going through a
recompile process, but also introduces complexity because you now have another
artifact that needs to be managed and deployed with the application.

This chapter covers
 Separating service configuration from service

code

 Configuring a Spring Cloud configuration server

 Integrating a Spring Boot microservice

 Encrypting sensitive properties
64

Licensed to <null>

65On managing configuration (and complexity)
 Many developers will turn to the lowly property file (or YAML, JSON, or XML) to
store their configuration information. This property file will sit out on a server often
containing database and middleware connection information and metadata about the
application that will drive the application’s behavior. Segregating your application
into a property file is easy and most developers never do any more operationalization
of their application configuration then placing their configuration file under source
control (if that) and deploying it as part of their application.

 This approach might work with a small number of applications, but it quickly falls
apart when dealing with cloud-based applications that may contain hundreds of
microservices, where each microservice in turn might have multiple service instances
running.

 Suddenly configuration management becomes a big deal as application and opera-
tions team in a cloud-based environment have to wrestle with a rat’s nest of which con-
figuration files go where. Cloud-based microservices development emphasizes

1 Completely separating the configuration of an application from the actual code
being deployed

2 Building the server and the application and an immutable image that never
changes as it’s promoted through your environments

3 Injecting any application configuration information at startup time of the
server through either environment variables or through a centralized reposi-
tory the application’s microservices read on startup

This chapter will introduce you to the core principles and patterns needed to manage
application configuration data in a cloud-based microservice application.

3.1 On managing configuration (and complexity)
Managing application configuration is critical for microservices running in the cloud
because microservice instances need to be launched quickly with minimal human
intervention. Every time a human being needs to manually configure or touch a ser-
vice to get it deployed is an opportunity for configuration drift, an unexpected outage
and a lag-time in responding to scalability challenges with the application.

 Let’s begin our discussion about application configuration management by estab-
lishing four principles we want to follow:

1 Segregate—We want to completely separate the services configuration informa-
tion from the actual physical deployment of a service. Application configura-
tion shouldn’t be deployed with the service instance. Instead, configuration
information should either be passed to the starting service as environment vari-
ables or read from a centralized repository when the service starts.

2 Abstract—Abstract the access of the configuration data behind a service inter-
face. Rather than writing code that directly accesses the service repository (that
Licensed to <null>

66 CHAPTER 3 Controlling your configuration with Spring Cloud configuration server
is, read the data out of a file or a database using JDBC), have the application use
a REST-based JSON service to retrieve the configuration data.

3 Centralize—Because a cloud-based application might literally have hundreds of
services, it’s critical to minimize the number of different repositories used to
hold configuration information. Centralize your application configuration into
as few repositories as possible.

4 Harden—Because your application configuration information is going to be
completely segregated from your deployed service and centralized, it’s critical
that whatever solution you utilize can be implemented to be highly available
and redundant.

One of the key things to remember is that when you separate your configuration
information outside of your actual code, you’re creating an external dependency that
will need to be managed and version controlled. I can’t emphasize enough that the
application configuration data needs to be tracked and version-controlled because
mismanaged application configuration is a fertile breeding ground for difficult-to-
detect bugs and unplanned outages.

On accidental complexity
I’ve experienced firsthand the dangers of not having a strategy for managing your
application configuration data. While working at a Fortune 500 financial services com-
pany, I was asked to help bring a large WebSphere upgrade project back on track.
The company in question had more than 120 applications on WebSphere and needed
to upgrade their infrastructure from WebSphere 6 to WebSphere 7 before the entire
application environment went end-of-life in terms of maintenance by the vendor.

The project had already been going on for a year and had only one out of 120 appli-
cations deployed. The project had cost a million dollars of effort in people and hard-
ware costs, and with its current trajectory was on track to take another two years to
finish the upgrade.

When I started working with the application team, one (and just one) of the major
problems I uncovered was that the application team managed all their configuration
for their databases and the endpoints for their services inside of property files. These
property files were managed by hand and weren’t under source control. With 120
applications spread across four environments and multiple WebSphere nodes for
each application, this rat’s nest of configuration files led to the team trying to migrate
12,000 configuration files that were spread across hundreds of servers and applica-
tions running on the server. (You’re reading that number right: 12,000.) These files
were only for application configuration, not even application server configuration.

I convinced the project sponsor to take two months to consolidate all the application
information down to a centralized, version-controlled configuration repository with 20
configuration files. When I asked the framework team how things got to the point
Licensed to <null>

67On managing configuration (and complexity)
3.1.1 Your configuration management architecture

As you’ll remember from chapter 2, the loading of configuration management for a
microservice occurs during the bootstrapping phase of the microservice. As a
reminder, figure 3.1 shows the microservice lifecycle.

Figure 3.1 The application configuration data is read during the service bootstrapping phase.

Let’s take the four principles we laid out earlier in section 3.1 (segregate, abstract,
centralize, and harden) and see how these four principles apply when the service is
bootstrapping. Figure 3.2 explores the bootstrapping process in more detail and
shows how a configuration service plays a critical role in this step.

where they had 12,000 configuration files, the lead engineer on the team said that
originally they designed their configuration strategy around a small group of applica-
tions. However, the number of web applications built and deployed exploded over five
years, and even though they begged for money and time to rework their configuration
management approach, their business partners and IT leaders never considered it a
priority.

Not spending the time up front to figure out how you’re going to do configuration man-
agement can have real (and costly) downstream impacts.

Build/deploy
engine

Executable
JAR

1. Assembly

Source code
repository

Service instance startup

2. Bootstrapping

Configuration
repository

Service discovery
agent

3. Discovery 4. Monitoring

Multiple service
instances

Service client

Service discovery
agent

Failing

Multiple service
instances
Licensed to <null>

68 CHAPTER 3 Controlling your configuration with Spring Cloud configuration server
 In figure 3.2, you see several activities taking place:

1 When a microservice instance comes up, it’s going to call a service endpoint to
read its configuration information that’s specific to the environment it’s operat-
ing in. The connection information for the configuration management (con-
nection credentials, service endpoint, and so on) will be passed into the
microservice when it starts up.

2 The actual configuration will reside in a repository. Based on the implementation
of your configuration repository, you can choose to use different implementa-
tions to hold your configuration data. The implementation choices can include
files under source control, a relational database, or a key-value data store.

3 The actual management of the application configuration data occurs indepen-
dently of how the application is deployed. Changes to configuration manage-
ment are typically handled through the build and deployment pipeline where
changes of the configuration can be tagged with version information and
deployed through the different environments.

4 When a configuration management change is made, the services that use that
application configuration data must be notified of the change and refresh their
copy of the application data.

At this point we’ve worked through the conceptual architecture that illustrates the dif-
ferent pieces of a configuration management pattern and how these pieces fit

Build deployment pipeline

Configuration service repository

Configuration
management

service

2. Actual configuration
 resides in a repository

1. Microservice instance
starts up and obtains
configuration information. 3. Changes from developers are

 pushed through the build and
 deployment pipeline to the
 configuration repository.

4. Applications with a
 configuration change
 are notified to
 refresh themselves.

Developers

Figure 3.2 Configuration management conceptual architecture
Licensed to <null>

69On managing configuration (and complexity)
together. We’re now going to move on to look at the different solutions for the pat-
tern and then see a concrete implementation.

3.1.2 Implementation choices

Fortunately, you can choose among a large number of battle-tested open source proj-
ects to implement a configuration management solution. Let’s look at several of the
different choices available and compare them. Table 3.1 lays out these choices.

All the solutions in table 3.1 can easily be used to build a configuration management
solution. For the examples in this chapter and throughout the rest of the book, you’ll
use Spring Cloud configuration server. I chose this solution for several reasons,
including the following:

1 Spring Cloud configuration server is easy to set up and use.
2 Spring Cloud configuration integrates tightly with Spring Boot. You can liter-

ally read all your application’s configuration data with a few simple-to-use
annotations.

Table 3.1 Open source projects for implementing a configuration management system

Project Name Description Characteristics

Etcd Open source project written in Go. Used
for service discovery and key-value
management. Uses the raft (https://
raft.github.io/) protocol for its distributed
computing model.

Very fast and scalable
Distributable
Command-line driven
Easy to use and setup

Eureka Written by Netflix. Extremely battle-tested.
Used for both service discovery and key-
value management.

Distribute key-value store.
Flexible; takes effort to set up
Offers dynamic client refresh out of the box

Consul Written by Hashicorp. Similar to Etcd and
Eureka in features, but uses a different
algorithm for its distributed computing
model (SWIM protocol; https://
www.cs.cornell.edu/~asdas/research/
dsn02-swim.pdf).

Fast
Offers native service discovery with the
option to integrate directly with DNS
Doesn’t offer client dynamic refresh right
out of the box

ZooKeeper An Apache project that offers distributed
locking capabilities. Often used as a con-
figuration management solution for
accessing key-value data.

Oldest, most battle-tested of the solutions
The most complex to use
Can be used for configuration manage-
ment, but should be considered only if
you’re already using ZooKeeper in other
pieces of your architecture

Spring Cloud
configuration
server

An open source project that offers a
general configuration management
solution with different back ends. It can
integrate with Git, Eureka, and Consul
as a back end.

Non-distributed key/value store
Offers tight integration for Spring and
non-Spring services
Can use multiple back ends for storying
configuration data including a shared
filesystem, Eureka, Consul, and Git
Licensed to <null>

https://raft.github.io/
https://raft.github.io/
https://www.cs.cornell.edu/~asdas/research/dsn02-swim.pdf
https://www.cs.cornell.edu/~asdas/research/dsn02-swim.pdf
https://www.cs.cornell.edu/~asdas/research/dsn02-swim.pdf

70 CHAPTER 3 Controlling your configuration with Spring Cloud configuration server
3 Spring Cloud configuration server offers multiple back ends for storing config-
uration data. If you’re already using tools such as Eureka and Consul, you can
plug them right into Spring Cloud configuration server.

4 Of all the solutions in table 3.1, Spring Cloud configuration server can inte-
grate directly with the Git source control platform. Spring Cloud configura-
tion’s integration with Git eliminates an extra dependency in your solutions
and makes versioning your application configuration data a snap.

The other tools (Etcd, Consul, Eureka) don’t offer any kind of native ver-
sioning, and if you wanted that, you’d have to build it yourself. If your shop uses
Git, the use of Spring Cloud configuration server is an attractive option.

For the rest of this chapter, you’re going to

1 Set up a Spring Cloud configuration server and demonstrate two different
mechanisms for serving application configuration data—one using the filesys-
tem and another using a Git repository

2 Continue to build out the licensing service to retrieve data from a database
3 Hook the Spring Cloud configuration service into your licensing service to

serve up application configuration data

3.2 Building our Spring Cloud configuration server
The Spring Cloud configuration server is a REST-based application that’s built on top
of Spring Boot. It doesn’t come as a standalone server. Instead, you can choose to
either embed it in an existing Spring Boot application or start a new Spring Boot proj-
ect with the server embedded it.

 The first thing you need to do is set up a new project directory called confsvr.
Inside the consvr directory you’ll create a new Maven file that will be used to pull
down the JARs necessary to start up on your Spring Cloud configuration server. Rather
than walk through the entire Maven file, I’ll list the key parts in the following listing.

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://

www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://

maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>

<groupId>com.thoughtmechanix</groupId>
<artifactId>configurationserver</artifactId>
<version>0.0.1-SNAPSHOT</version>
<packaging>jar</packaging>

<name>Config Server</name>
<description>Config Server demo project</description>

Listing 3.1 Setting up the pom.xml for the Spring Cloud configuration server
Licensed to <null>

http://localhost:8080/env

71Building our Spring Cloud configuration server
<parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>1.4.4.RELEASE</version>
 </parent>
 <dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-dependencies</artifactId>
 <version>Camden.SR5</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
 </dependencyManagement>

 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
 <start-class>com.thoughtmechanix.confsvr.
 ➥ConfigServerApplication </start-class>
 <java.version>1.8</java.version>
 <docker.image.name>johncarnell/tmx-confsvr</docker.image.name>
 <docker.image.tag>chapter3</docker.image.tag>
 </properties>

 <dependencies>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-config</artifactId>
 </dependency>

 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-config-server</artifactId>
 </dependency>
 </dependencies>

<!--Docker build Config Not Displayed -->
</project>

In the Maven file in this previous listing, you start out by declaring the version of
Spring Boot you’re going to use for your microservice (version 1.4.4). The next
important part of the Maven definition is the Spring Cloud Configuration parent
BOM (Bill of Materials) that you’re going to use. Spring Cloud is a massive collection
of independent projects all moving with their own releases. This parent BOM contains
all the third-party libraries and dependencies that are used in the cloud project and
the version numbers of the individual projects that make up that version. In this
example, you’re using version Camden.SR5 of Spring Cloud. By using the BOM defini-
tion, you can guarantee that you’re using compatible versions of the subprojects in
Spring Cloud. It also means that you don’t have to declare version numbers for your

The Spring Boot
version you’ll use

The Spring Cloud version
that’s going to be used

The bootstrap class
that will be used for

the configuration server

The Spring Cloud
projects you’re
going to use in
this specific service
Licensed to <null>

file:///C:\Users\johncarnell1\book\native_cloud_apps\ch4-config-managment\confsvr\src\main\resources\config\licensingservice

72 CHAPTER 3 Controlling your configuration with Spring Cloud configuration server
sub-dependencies. The rest of the example in listing 3.1 deals with declaring the spe-
cific Spring Cloud dependencies that you’ll use in the service. The first dependency is
the spring-cloud-starter-config dependency that’s used by all Spring Cloud
projects. The second dependency is the spring-cloud-config-server starter
project. This contains the core libraries for the spring-cloud-config-server.

You still need to set up one more file to get the core configuration server up and run-
ning. This file is your application.yml file and is in the confsvr/src/main/resources
directory. The application.yml file will tell your Spring Cloud configuration service
what port to listen to and where to locate the back end that will serve up the configu-
ration data.

 You’re almost ready to bring up your Spring Cloud configuration service. You need
to point the server to a back-end repository that will hold your configuration data. For
this chapter, you’ll use the licensing service that you began to build in chapter 2 as an
example of how to use Spring Cloud Config. To keep things simple, you’ll set up
application configuration data for three environments: a default environment for
when you run the service locally, a dev environment, and a production environment.

 In Spring Cloud configuration, everything works off a hierarchy. Your application
configuration is represented by the name of the application and then a property file
for each environment you want to have configuration information for. In each of
these environments, you’ll set up two configuration properties:

 An example property that will be used directly by your licensing service
 The database configuration for the Postgres database you’ll use to store licens-

ing service data

Come on, ride the train, the release train
Spring Cloud uses a non-traditional mechanism for labeling Maven projects. Spring
Cloud is a collection of independent subprojects. The Spring Cloud team does their
releases through what they call the “release train.” All the subprojects that make up
Spring Cloud are packaged under one Maven bill of materials (BOM) and released as
a whole. The Spring Cloud team has been using the name of London subway stops
as the name of their releases, with each incrementing major release giving a London
subway stop that has the next highest letter. There have been three releases: Angel,
Brixton, and Camden. Camden is by far the newest release, but still has multiple
release candidate branches for the subprojects within it.

One thing to note is that Spring Boot is released independently of the Spring Cloud
release train. Therefore, different versions of Spring Boot are incompatible with dif-
ferent releases of Spring Cloud. You can see the version dependences between
Spring Boot and Spring Cloud, along with the different subproject versions contained
within the release train, by referring to the Spring Cloud website (http://projects
.spring.io/spring-cloud/).
Licensed to <null>

http://projects.spring.io/spring-cloud/
http://projects.spring.io/spring-cloud/

73Building our Spring Cloud configuration server
Figure 3.3 illustrates how you’ll set up and use the Spring Cloud configuration service.
One thing to note is that as you build out your config service, it will be another
microservice running in your environment. Once it’s set up, the contents of the ser-
vice can be access via a http-based REST endpoint.

 The naming convention for the application configuration files are appname-
env.yml. As you can see from the diagram in figure 3.3, the environment names trans-
late directly into the URLs that will be accessed to browse configuration information.
Later, when you start the licensing microservice example, the environment you want
to run the service against is specified by the Spring Boot profile that you pass in on the
command-line service startup. If a profile isn’t passed in on the command line, Spring
Boot will always default to the configuration data contained in the application.yml file
packaged with the application.

 Here’s an example of some of the application configuration data you’ll serve up
for the licensing service. This is the data that will be contained within the confsvr/src/
main/resources/config/licensingservice/licensingservice.yml file that was referred to
in figure 3.3. Here’s part of the contents of this file:

tracer.property: "I AM THE DEFAULT"
spring.jpa.database: "POSTGRESQL"
spring.datasource.platform: "postgres"
spring.jpa.show-sql: "true"
spring.database.driverClassName: "org.postgresql.Driver"
spring.datasource.url: "jdbc:postgresql://database:5432/eagle_eye_local"
spring.datasource.username: "postgres"

Spring Cloud
configuration server

(running and exposed
as a microservice)

licensingservice.yml

Configuration repository (filesystem or git)

licensingservice-dev.yml licensingservice-prod.yml

/licensingservice/default /licensingservice/dev /licensingservice/prod

Figure 3.3 Spring Cloud
configuration exposes
environment-specific
properties as HTTP-based
endpoints.
Licensed to <null>

74 CHAPTER 3 Controlling your configuration with Spring Cloud configuration server
spring.datasource.password: "p0stgr@s"
spring.datasource.testWhileIdle: "true"
spring.datasource.validationQuery: "SELECT 1"
spring.jpa.properties.hibernate.dialect:

"org.hibernate.dialect.PostgreSQLDialect"

3.2.1 Setting up the Spring Cloud Config Bootstrap class

Every Spring Cloud service covered in this book always needs a bootstrap class that will
be used to launch the service. This bootstrap class will contain two things: a Java
main() method that acts as the entry point for the Service to start in, and a set of
Spring Cloud annotations that tell the starting service what kind of Spring Cloud
behaviors it’s going to launch for the service.

 The following listing shows the confsvr/src/main/java/com/thought

mechanix/confsvr/Application.java class that’s used as the bootstrap class for
your configuration service.

package com.thoughtmechanix.confsvr;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.cloud.config.server.EnableConfigServer;

@SpringBootApplication
@EnableConfigServer
public class ConfigServerApplication {
 public static void main(String[] args) {
 SpringApplication.run(ConfigServerApplication.class, args);
 }
}

Think before you implement
I advise against using a filesystem-based solution for medium-to-large cloud applica-
tions. Using the filesystem approach means that you need to implement a shared file
mount point for all cloud configuration servers that want to access the application
configuration data. Setting up shared filesystem servers in the cloud is doable, but it
puts the onus of maintaining this environment on you.

I’m showing the filesystem approach as the easiest example to use when getting your
feet wet with Spring Cloud configuration server. In a later section, I’ll show how to
configure Spring Cloud configuration server to use a cloud-based Git provider like Bit-
bucket or GitHub to store your application configuration.

Listing 3.2 The bootstrap class for your Spring Cloud Config server

Your Spring Cloud Config service is a
Spring Boot Application, so you mark it

with @SpringBootApplication.

The @EnableConfigServer annotation enables
the service as a Spring Cloud Config service.The main method launches the service

and starts the Spring container.
Licensed to <null>

75Building our Spring Cloud configuration server
Next you’ll set up your Spring Cloud configuration server with our simplest example:
the filesystem.

3.2.2 Using Spring Cloud configuration server with the filesystem

The Spring Cloud configuration server uses an entry in the confsvr/src/main/
resources/application.yml file to point to the repository that will hold the application
configuration data. Setting up a filesystem-based repository is the easiest way to
accomplish this.

 To do this, add the following information to the configuration server’s applica-
tion.yml file. The following listing shows the contents of your Spring Cloud configura-
tion server’s application.yml file.

server:
 port: 8888
spring:
 profiles:
 active: native
 cloud:
 config:
 server:
 native:
 searchLocations: file:///Users/johncarnell1/book/
 native_cloud_apps/ch4-config-managment/confsvr/src/main/
 resources/config/licensingservice

In the configuration file in this listing, you started by telling the configuration server
what port number it should listen to for all requests for configuration:

server:
 port: 8888

Because you’re using the filesystem for storing application configuration information,
you need to tell Spring Cloud configuration server to run with the “native” profile:

profiles:
 active: native

The last piece in the application.yml file provides Spring Cloud configuration with the
directory where the application data resides:

server:
 native:
 searchLocations: file:///Users/johncarnell1/book/spmia_code/chapter3-

code/confsvr/src/main/resources/config

The important parameter in the configuration entry is the searchLocations
attribute. This attribute provides a comma separated list of the directories for each

Listing 3.3 Spring Cloud configuration’s application.yml file

Port the Spring Cloud configuration
server will listen on

The backend repository (filesystem) that
will be used to store the configuration

The path to where
the configuration

files are stored
Licensed to <null>

76 CHAPTER 3 Controlling your configuration with Spring Cloud configuration server
application that’s going to have properties managed by the configuration server. In
the previous example, you only have the licensing service configured.

NOTE Be aware that if you use the local filesystem version of Spring Cloud
Config, you’ll need to modify the spring.cloud.config.server
.native.searchLocations attribute to reflect your local file path when
running your code locally.

You now have enough work done to start the configuration server. Go ahead and start
the configuration server using the mvn spring-boot:run command. The server
should now come up with the Spring Boot splash screen on the command line. If you
point your browser over to http://localhost:8888/licensingservice/default, you’ll see
JSON payload being returned with all of properties contained within the licensingser-
vice.yml file. Figure 3.4 shows the results of calling this endpoint.

Figure 3.4 Retrieving default configuration information for the licensing service

If you want to see the configuration information for the dev-based licensing service
environment, hit the GET http://localhost:8888/licensingservice/dev
endpoint. Figure 3.5 shows the result of calling this endpoint.

 If you look closely, you’ll see that when you hit the dev endpoint, you’re returning
back both the default configuration properties for the licensing service and the dev
licensing service configuration. The reason why Spring Cloud configuration is return-
ing both sets of configuration information is that the Spring framework implements a
hierarchical mechanism for resolving properties. When the Spring Framework does

The source file
containing the
properties in the
config repository
Licensed to <null>

77Integrating Spring Cloud Config with a Spring Boot client
property resolution, it will always look for the property in the default properties first
and then override the default with an environment-specific value if one is present.

 In concrete terms, if you define a property in the licensingservice.yml file and
don’t define it in any of the other environment configuration files (for example, the
licensingservice-dev.yml), the Spring framework will use the default value.

NOTE This isn’t the behavior you’ll see by directly calling the Spring Cloud
configuration REST endpoint. The REST endpoint will return all configura-
tion values for both the default and environment specific value that was
called.

Let’s see how you can hook up the Spring Cloud configuration server to your licens-
ing microservice.

3.3 Integrating Spring Cloud Config with a Spring Boot client
In the previous chapter, you built a simple skeleton of your licensing service that did
nothing more than return a hardcoded Java object representing a single licensing
record from your database. In the next example, you’ll build out the licensing service
and talk to a Postgres database holding your licensing data.

 You’re going to communicate with the database using Spring Data and map your
data from the licensing table to a POJO holding the data. Your database connection

When you request an environment-specific
profile, both the requested profile and the
default profile are returned.

Figure 3.5 Retrieving configuration information for the licensing service using the dev profile
Licensed to <null>

78 CHAPTER 3 Controlling your configuration with Spring Cloud configuration server
and a simple property are going to be read out of Spring Cloud configuration server.
Figure 3.6 shows what’s going to happen between the licensing service and the Spring
Cloud configuration service.

 When the licensing service is first started, you’ll pass it via the command line two
pieces of information: the Spring profile and the endpoint the licensing service
should use to communicate with the Spring Cloud configuration service. The Spring
profile value maps to the environment of the properties being retrieved for the Spring
service. When the licensing service first boots up, it will contact the Spring Cloud Con-
fig service via an endpoint built from the Spring profile passed into it. The Spring
Cloud Config service will then use the configured back end config repository (filesys-
tem, Git, Consul, Eureka) to retrieve the configuration information specific to the
Spring profile value passed in on the URI. The appropriate property values are then
passed back to the licensing service. The Spring Boot framework will then inject these
values into the appropriate parts of the application.

licensingservice.yml

licensingservice-dev.ymlLicensing service
instance

http://localhost:8888/licensingservice/dev

Spring Cloud
config service

spring.jpa.database: "POSTGRESQL"
spring.datasource.platform: "postgres"
spring.jpa.show-sql: "true"
spring.database.driverClassName: "org.postgresql.Driver"
spring.datasource.url:
"jdbc:postgresql://database:5432/eagle_eye_local"
spring.datasource.username: "postgres"
spring.datasource.password: "p0stgr@s
spring.datasource.testWhileIdle: "true"
spring.datasource.validationQuery: "SELECT 1"
spring.jpa.properties.hibernate.dialect:
"org.hibernate.dialect.PostgreSQLDialect"

Spring profile = dev
Spring cloud config endpoint = http://localhost:888

Configuration
service repository

licensingservice-prod.yml

1. Spring profile and
 endpoint information
 passed to licensing service

2. Licensing service
 contacts Spring
 Cloud configuration
 service

3. Profile-specific
 configuration
 information retrieved
 from repository

4. Property values passed
 back to licensing service

Figure 3.6 Retrieving configuration information using the dev profile
Licensed to <null>

79Integrating Spring Cloud Config with a Spring Boot client
3.3.1 Setting up the licensing service Spring Cloud Config server
dependencies

Let's change our focus from the configuration server to the licensing service. The first
thing you need to do is add a couple of more entries to the Maven file in your licens-
ing service. The entries that need to be added are shown in the following listing.

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-jpa</artifactId>
</dependency>

<dependency>
 <groupId>postgresql</groupId>
 <artifactId>postgresql</artifactId>
 <version>9.1-901.jdbc4</version>
</dependency>

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-config-client</artifactId>
</dependency>

The first and second dependencies, spring-boot-starter-data-jpa and Post-
greSQL, import the Spring Data Java Persistence API (JPA) and the Postgres JDBC driv-
ers. The last dependency, the spring-cloud-config-client, contains all the
classes needed to interact with the Spring Cloud configuration server.

3.3.2 Configuring the licensing service to use Spring Cloud Config

After the Maven dependencies have been defined, you need to tell the licensing ser-
vice where to contact the Spring Cloud configuration server. In a Spring Boot service
that uses Spring Cloud Config, configuration information can be set in one of two
configuration files: bootstrap.yml and application.yml.

 The bootstrap.yml file reads the application properties before any other config-
uration information used. In general, the bootstrap.yml file contains the applica-
tion name for the service, the application profile, and the URI to connect to a Spring
Cloud Config server. Any other configuration information that you want to keep local
to the service (and not stored in Spring Cloud Config) can be set locally in the ser-
vices in the application.yml file. Usually, the information you store in the appli-
cation.yml file is configuration data that you might want to have available to a
service even if the Spring Cloud Config service is unavailable. Both the boot-
strap.yml and application.yml files are stored in a projects src/main/
resources directory.

Listing 3.4 Additional Maven dependencies needed by the licensing service

Tells Spring Boot you’re
going to use Java Persistence

API (JPA) in your service

Tells Spring Boot to pull down
the Postgres JDBC drivers

Tells Spring Boot that you should pull down the
dependencies need for the Spring Cloud Config client
Licensed to <null>

80 CHAPTER 3 Controlling your configuration with Spring Cloud configuration server
 To have the licensing service communicate with your Spring Cloud Config service,
you need to add a licensing-service/src/main/resources/bootstrap.yml file and set
three properties: spring.application.name, spring.profiles.active, and
spring.cloud.config.uri.

 The licensing services bootstrap.yml file is shown in the following listing.

spring:
 application:
 name: licensingservice
 profiles:
 active:
 default
 cloud:
 config:
 uri: http://localhost:8888

NOTE The Spring Boot applications support two mechanisms to define a
property: YAML (Yet another Markup Language) and a “.” separated property
name. We chose YAML (Yet Another Markup Language) as the means for
configuring our application. The hierarchical format of YAML property
values map directly to the spring.application.name, spring.profiles
.active, and spring.cloud.config.uri names.

The spring.application.name is the name of your application (for example,
licensingservice) and must map directly to the name of the directory within your
Spring Cloud configuration server. For the licensing service, you want a directory on
the Spring Cloud configuration server called licensingservice.

 The second property, the spring.profiles.active, is used to tell Spring Boot
what profile the application should run as. A profile is a mechanism to differentiate the
configuration data consumed by the Spring Boot application. For the licensing ser-
vice's profile, you’ll support the environment the service is going to map directly to in
your cloud configuration environment. For instance, by passing in dev as our profile,
the Spring Cloud config server will use the dev properties. If you set a profile, the
licensing service will use the default profile.

 The third and last property, the spring.cloud.config.uri, is the location
where the licensing service should look for the Spring Cloud configuration server
endpoint. By default, the licensing service will look for the configuration server at
http://localhost:8888. Later in the chapter you’ll see how to override the different
properties defined in the boostrap.yml and application.yml files on application
startup. This will allow you to tell the licensing microservice which environment it
should be running in.

 Now, if you bring up the Spring Cloud configuration service, with the correspond-
ing Postgres database running on your local machine, you can launch the licensing

Listing 3.5 Configuring the licensing services bootstrap.yml

Specify the name of the licensing service
so that Spring Cloud Config client knows
which service is being looked up.

Specify the default profile the service
should run. Profile maps to environment.

Specify the location of the
Spring Cloud Config server.
Licensed to <null>

81Integrating Spring Cloud Config with a Spring Boot client
service using its default profile. This is done by changing to the licensing-services
directory and issuing the following commands:

mvn spring-boot: run

By running this command without any properties set, the licensing server will auto-
matically attempt to connect to the Spring Cloud configuration server using the end-
point (http://localhost:8888) and the active profile (default) defined in the
bootstrap.yml file of the licensing service.

 If you want to override these default values and point to another environment, you
can do this by compiling the licensingservice project down to a JAR and then run
the JAR with a -D system property override. The following command line call demon-
strates how to launch the licensing service with a non-default profile:

java -Dspring.cloud.config.uri=http://localhost:8888 \
 -Dspring.profiles.active=dev \
 -jar target/licensing-service-0.0.1-SNAPSHOT.jar

With the previous command line, you’re overriding the two parameters:
spring.cloud.config.uri and spring.profiles.active. With the -Dspring
.cloud.config.uri=http://localhost:8888 system property, you’re pointing
to a configuration server running away from your local box.

NOTE If you try to run the licensing service downloaded from the GitHub
repository (https://github.com/carnellj/spmia-chapter3) from your desktop
using the previous Java command, it will fail because you don’t have a desktop
Postgres server running and the source code in the GitHub repository is using
encryption on the config server. We’ll cover using encryption later in the
chapter. The previous example demonstrates how to override Spring proper-
ties via the command line.

With the –Dspring.profiles.active=dev system property, you’re telling the
licensing service to use the dev profile (read from the configuration server) to con-
nect to a dev instance of a database.

Use environment variables to pass startup information
In the examples you’re hard-coding the values to pass in to the –D parameter values.
In the cloud, most of the application config data you need will be in your configuration
server. However, for the information you need to start your service (such as the data
for the configuration server), you’d start the VM instance or Docker container and
pass in an environment variable.

All the code examples for each chapter can be completely run from within Docker con-
tainers. With Docker, you simulate different environments through environment-spe-
cific Docker-compose files that orchestrate the startup of all of your services.
Environment-specific values needed by the containers are passed in as environment
Licensed to <null>

https://github.com/carnellj/spmia-chapter3

82 CHAPTER 3 Controlling your configuration with Spring Cloud configuration server
Because you enhance all your services with introspection capabilities via Spring Boot
Actuator, you can confirm the environment you are running against by hitting http://
localhost:8080/env. The /env endpoint will provide a complete list of the configura-
tion information about the service, including the properties and endpoints the service
has booted with, as shown in figure 3.7.

 The key thing to note from figure 3.7 is that the active profile for the licensing ser-
vice is dev. By inspecting the returned JSON, you can also see that the Postgres data-
base being returned is a development URI of jdbc:postgresql://database:5432
/eagle_eye_dev.

(continued)

variables to the container. For example, to start your licensing service in a dev envi-
ronment, the docker/dev/docker-compose.yml file contains the following entry for the
licensing-service:

licensingservice:
 image: ch3-thoughtmechanix/licensing-service
 ports:
 - "8080:8080"
 environment:
 PROFILE: "dev"
 CONFIGSERVER_URI: http://configserver:8888
 CONFIGSERVER_PORT: "8888"
 DATABASESERVER_PORT: "5432"

The environment entry in the file contains the values of two variables PROFILE, which
is the Spring Boot profile the licensing service is going to run under. The
CONFIGSERVER_URI is passed to your licensing service and defines the Spring Cloud
configuration server instance the service is going to read its configuration data from.

In your startup scripts that are run by the container, you then pass these environment
variables as –D parameters to our JVMS starting the application. In each project, you
bake a Docker container, and that Docker container uses a startup script that starts
the software in the container. For the licensing service, the startup script that gets
baked into the container can be found at licensing-service/src/main/docker/run.sh.
In the run.sh script, the following entry starts your licensing-service JVM:

echo "**"
echo "Starting License Server with Configuration Service :

$CONFIGSERVER_URI";
echo "**"
java -Dspring.cloud.config.uri=$CONFIGSERVER_URI
-Dspring.profiles.active=$PROFILE -jar /usr/local/licensingservice/

licensing-service-0.0.1-SNAPSHOT.jar

Specifies the start of the
environment variables for the
licensing-service container

The PROFILE environment variable
is passed to the Spring Boot service

command-line and tells Spring
Boot what profile should be run.

The endpoint of
the config service
Licensed to <null>

83Integrating Spring Cloud Config with a Spring Boot client

3.3.3 Wiring in a data source using Spring Cloud configuration server

At this point, you have the database configuration information being directly injected
into your microservice. With the database configuration set, configuring your licens-
ing microservice becomes an exercise in using standard Spring components to build
and retrieve the data from the Postgres database. The licensing service has been

On exposing too much information
Every organization is going to have different rules about how to implement security
around their services. Many organizations believe services shouldn’t broadcast any
information about themselves and won’t allow things like a /env endpoint to be
active on a service as they believe (rightfully so) that this will provide too much infor-
mation for a potential hacker. Spring Boot provides a wealth of capabilities on how
to configure what information is returned by the Spring Actuators endpoints that are
the outside the scope of this book. Craig Walls’ excellent book, Spring Boot in Action,
covers this subject in detail, and I highly recommend that you review your corporate
security policies and Walls’ book to provide the right level of detail you want exposed
through Spring Actuator.

Figure 3.7 The configuration the licensing service loads can be checked by calling the
/env endpoint.
Licensed to <null>

84 CHAPTER 3 Controlling your configuration with Spring Cloud configuration server
refactored into different classes with each class having separate responsibilities. These
classes are shown in table 3.2.

The License class is the model class that will hold the data retrieved from your licens-
ing database. The following listing shows the code for the License class.

package com.thoughtmechanix.licenses.model;

import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.Id;
import javax.persistence.Table;

@Entity
@Table(name = "licenses")
public class License{
 @Id
 @Column(name = "license_id", nullable = false)
 private String licenseId;

 @Column(name = "organization_id", nullable = false)
 private String organizationId;

 @Column(name = "product_name", nullable = false)
 private String productName;

 /*The rest of the code has been removed for conciseness*/

}

The class uses several Java Persistence Annotations (JPA) that help the Spring Data
framework map the data from the licenses table in the Postgres database to the Java
object. The @Entity annotation lets Spring know that this Java POJO is going to be
mapping objects that will hold data. The @Table annotation tells Spring/JPA what
database table should be mapped. The @Id annotation identifies the primary key for
the database. Finally, each one of the columns from the database that is going to be
mapped to individual properties is marked with a @Column attribute.

 The Spring Data and JPA framework provides your basic CRUD methods for access-
ing a database. If you want to build methods beyond that, you can use a Spring Data
Repository interface and basic naming conventions to build those methods. Spring

Table 3.2 Licensing Service Classes and Locations

Class Name Location

License licensing-service/src/main/java/com/thoughtmechanix/licenses/model

LicenseRepository licensing-service/src/main/java/com/thoughtmechanix/licenses/repository

LicenseService licensing-service/src/main/java/com/thoughtmechanix/licenses/services

Listing 3.6 The JPA model code for a single license record

@Entity tells Spring
that this is a JPA class.

@Table maps to
the database table.

@Id marks this field
as a primary key.

@Column maps the field
to a specific database table.
Licensed to <null>

85Integrating Spring Cloud Config with a Spring Boot client
will at startup parse the name of the methods from the Repository interface, convert
them over to a SQL statement based on the names, and then generate a dynamic
proxy class under the covers to do the work. The repository for the licensing service is
shown in the following listing.

package com.thoughtmechanix.licenses.repository;

import com.thoughtmechanix.licenses.model.License;
import org.springframework.data.repository.CrudRepository;
import org.springframework.stereotype.Repository;

import java.util.List;

@Repository
public interface LicenseRepository
 extends CrudRepository<License,String>
{
 public List<License> findByOrganizationId
 ➥(String organizationId);
 public License findByOrganizationIdAndLicenseId
 ➥(String organizationId,String licenseId);
}

The repository interface, LicenseRepository, is marked with the @Repository
annotation which tells Spring that it should treat this interface as a repository and
generate a dynamic proxy for it. Spring offers different types of repositories for data
access. You’ve chosen to use the Spring CrudRepository base class to extend your
LicenseRepository class. The CrudRepository base class contains basic CRUD
methods. In addition to the CRUD method extended from CrudRepository, you’ve
added two custom query methods for retrieving data from the licensing table. The
Spring Data framework will pull apart the name of the methods to build a query to
access the underlying data.

NOTE The Spring Data framework provides an abstraction layer over various
database platforms and isn’t limited to relational databases. NoSQL databases
such as MongoDB and Cassandra are also supported.

Unlike the previous incarnation of the licensing service in chapter 2, you’ve now sepa-
rated the business and data access logic for the licensing service out of the
LicenseController and into a standalone Service class called LicenseService.

package com.thoughtmechanix.licenses.services;

import com.thoughtmechanix.licenses.config.ServiceConfig;
import com.thoughtmechanix.licenses.model.License;
import com.thoughtmechanix.licenses.repository.LicenseRepository;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;

Listing 3.7 LicenseRepository interface defines the query methods

Listing 3.8 LicenseService class used to execute database commands

Tells Spring Boot that this
is a JPA repository class

Defines that you’re extending
the Spring CrudRepository

Individual query methods
are parsed by Spring into
a SELECT…FROM query.
Licensed to <null>

86 CHAPTER 3 Controlling your configuration with Spring Cloud configuration server
import java.util.List;
import java.util.UUID;

@Service
public class LicenseService {

 @Autowired
 private LicenseRepository licenseRepository;

 @Autowired
 ServiceConfig config;

 public License getLicense(String organizationId,String licenseId) {
 License license = licenseRepository.findByOrganizationIdAndLicenseId(
organizationId, licenseId);
 return license.withComment(config.getExampleProperty());
 }

 public List<License> getLicensesByOrg(String organizationId){
 return licenseRepository.findByOrganizationId(organizationId);
 }

 public void saveLicense(License license){
 license.withId(UUID.randomUUID().toString());
 licenseRepository.save(license);
 }
 /*Rest of the code removed for conciseness*/
}

The controller, service, and repository classes are wired together using the standard
Spring @Autowired annotation.

3.3.4 Directly Reading Properties using the @Value Annotation

In the LicenseService class in the previous section, you might have noticed that
you’re setting the license.withComment() value in the getLicense() code with a
value from the config.getExampleProperty() class. The code being referred to is
shown here:

public License getLicense(String organizationId,String licenseId) {
 License license = licenseRepository.findByOrganizationIdAndLicenseId(
organizationId, licenseId);
return license.withComment(config.getExampleProperty());
 }

If you look at the licensing-service/src/main/java/com/thoughtmechanix/
licenses/config/ServiceConfig.java class, you’ll see a property annotated with
the @Value annotation. The following listing shows the @Value annotation being used.

package com.thoughtmechanix.licenses.config;

import org.springframework.beans.factory.annotation.Value;
import org.springframework.stereotype.Component;

Listing 3.9 ServiceConfig used to centralize application properties
Licensed to <null>

87Integrating Spring Cloud Config with a Spring Boot client
@Component
public class ServiceConfig{

 @Value("${example.property}")
 private String exampleProperty;

 public String getExampleProperty(){
 return exampleProperty;
 }
}

While Spring Data “auto-magically” injects the configuration data for the database
into a database connection object, all other properties must be injected using the
@Value annotation. With the previous example, the @Value annotation pulls the
example.property from the Spring Cloud configuration server and injects it into
the example.property attribute on the ServiceConfig class.

TIP While it’s possible to directly inject configuration values into properties
in individual classes, I’ve found it useful to centralize all of the configuration
information into a single configuration class and then inject the configura-
tion class into where it’s needed.

3.3.5 Using Spring Cloud configuration server with Git

As mentioned earlier, using a filesystem as the backend repository for Spring Cloud
configuration server can be impractical for a cloud-based application because the
development team has to set up and manage a shared filesystem that’s mounted on all
instances of the Cloud configuration server.

 Spring Cloud configuration server integrates with different backend repositories
that can be used to host application configuration properties. One I’ve used success-
fully is to use Spring Cloud configuration server with a Git source control repository.

 By using Git you can get all the benefits of putting your configuration manage-
ment properties under source control and provide an easy mechanism to integrate
the deployment of your property configuration files in your build and deployment
pipeline.

 To use Git, you’d swap out the filesystem back configuration in the configuration
service’s bootstrap.yml file with the following listing’s configuration.

server:
 port: 8888
spring:
 cloud:
 config:
 server:
 git:
 uri: https://github.com/carnellj/config-repo/

Listing 3.10 Spring Cloud config bootstrap.yml

Tells Spring Cloud
Config to use Git as a
backend repository

Tells Spring Cloud
Config the URL to the

Git server and Git repo
Licensed to <null>

88 CHAPTER 3 Controlling your configuration with Spring Cloud configuration server
 searchPaths: licensingservice,organizationservice
 username: native-cloud-apps
 password: 0ffended

The three key pieces of configuration in the previous example are the spring
.cloud.config.server, spring.cloud.config.server.git.uri, and the
spring.cloud.config.server.git.searchPaths properties. The spring

.cloud.config.server property tells the Spring Cloud configuration server to use
a non-filesystem-based backend repository. In the previous example you’re going to
connect to the cloud-based Git repository, GitHub.

 The spring.cloud.config.server.git.uri properties provide the URL of
the repository you’re connecting to. Finally, the spring.cloud.config.server
.git.searchPaths property tells the Spring Cloud Config server the relative paths
on the Git repository that should be searched when the Cloud configuration server
comes up. Like the filesystem version of the configuration, the value in the
spring.cloud.config.server.git.seachPaths attribute will be a comma-
separated list for each service hosted by the configuration service.

3.3.6 Refreshing your properties using Spring Cloud configuration server

One of the first questions that comes up from development teams when they want to
use the Spring Cloud configuration server is how can they dynamically refresh their
applications when a property changes. The Spring Cloud configuration server will
always serve the latest version of a property. Changes made to a property via its under-
lying repository will be up-to-date.

 However, Spring Boot applications will only read their properties at startup time,
so property changes made in the Spring Cloud configuration server won’t be automat-
ically picked up by the Spring Boot application. Spring Boot Actuator does offer a
@RefreshScope annotation that will allow a development team to access a /refresh
endpoint that will force the Spring Boot application to reread its application configu-
ration. The following listing shows the @RefreshScope annotation in action.

package com.thoughtmechanix.licenses;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.cloud.context.config.annotation.RefreshScope;

@SpringBootApplication
@RefreshScope
public class Application {
 public static void main(String[] args) {
 SpringApplication.run(Application.class, args);
 }
}

Listing 3.11 The @RefreshScope annotation

 Tells Spring Cloud Config what the
path in Git is to look for config files
Licensed to <null>

89Protecting sensitive configuration information
Note a couple of things about the @RefreshScope annotation. First, the annotation
will only reload the custom Spring properties you have in your application configura-
tion. Items such as your database configuration that are used by Spring Data won’t be
reloaded by the @RefreshScope annotation. To perform the refresh, you can hit the
http://<yourserver>:8080/refresh endpoint.

3.4 Protecting sensitive configuration information
By default, Spring Cloud configuration server stores all properties in plain text within
the application’s configuration files. This includes sensitive information such as data-
base credentials.

 It’s an extremely poor practice to keep sensitive credentials stored as plain text in
your source code repository. Unfortunately, it happens far more often than you think.
Spring Cloud Config does give you the ability to encrypt your sensitive properties eas-
ily. Spring Cloud Config supports using both symmetric (shared secret) and asymmet-
ric encryption (public/private key).

 We’re going to see how to set up your Spring Cloud configuration server to use
encryption using with a symmetric key. To do this you’ll need to

On refreshing microservices
When using Spring Cloud configuration service with microservices, one thing you
need to consider before you dynamically change properties is that you might have
multiple instances of the same service running, and you’ll need to refresh all of those
services with their new application configurations. There are several ways you can
approach this problem:

Spring Cloud configuration service does offer a “push”-based mechanism called
Spring Cloud Bus that will allow the Spring Cloud configuration server to publish to all
the clients using the service that a change has occurred. Spring Cloud configuration
requires an extra piece of middleware running (RabbitMQ). This is an extremely useful
means of detecting changes, but not all Spring Cloud configuration backends support
the “push” mechanism (that is, the Consul server).

In the next chapter you’ll use Spring Service Discovery and Eureka to register all
instances of a service. One technique I’ve used to handle application configuration
refresh events is to refresh the application properties in Spring Cloud configuration
and then write a simple script to query the service discovery engine to find all
instances of a service and call the /refresh endpoint directly.

Finally, you can restart all the servers or containers to pick up the new property. This
is a trivial exercise, especially if you’re running your services in a container service
such as Docker. Restarting Docker containers literally takes seconds and will force a
reread of the application configuration.

Remember, cloud-based servers are ephemeral. Don’t be afraid to start new
instances of a service with their new configuration, direct traffic to the new services,
and then tear down the old ones.
Licensed to <null>

90 CHAPTER 3 Controlling your configuration with Spring Cloud configuration server
1 Download and install the Oracle JCE jars needed for encryption
2 Set up an encryption key.
3 Encrypt and decrypt a property.
4 Configure microservices to use encryption on the client side

3.4.1 Download and install Oracle JCE jars needed for encryption

To begin, you need to download and install Oracle’s Unlimited Strength Java Cryptog-
raphy Extension (JCE). This isn’t available through Maven and must be downloaded
from Oracle Corporation.1 Once you’ve downloaded the zip files containing the JCE
jars, you must do the following:

1 Locate your $JAVA_HOME/jre/lib/security directory.
2 Back up the local_policy.jar and US_export_policy.jar files in the

$JAVA_HOME/jre/lib/security directory to a different location.
3 Unzip the JCE zip file you downloaded from Oracle.
4 Copy the local_policy.jar and US_export_policy.jar to your

$JAVA_HOME/jre/lib/security directory.
5 Configure Spring Cloud Config to use encryption.

1 http://www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html. This URL might
be subject to change. A quick search on Google for Java Cryptography Extensions should always return you
the right values.

Automating the process of installing Oracle’s JCE files
I’ve walked through the manual steps you need to install JCE on your laptop. Because
we use Docker to build all our services as Docker containers, I’ve scripted the down-
load and installation of these JAR files in the Spring Cloud Config Docker container.
The following OS X shell script snippet shows how I automated this using the curl
(https://curl.haxx.se/) command-line tool:

cd /tmp/
curl –k-LO "http://download.oracle.com/otn-pub/java/jce/8/jce_policy-

8.zip"
 -H 'Cookie: oraclelicense=accept-securebackup-cookie' && unzip

jce_policy-8.zip
rm jce_policy-8.zip
yes |cp -v /tmp/UnlimitedJCEPolicyJDK8/*.jar /usr/lib/jvm/java-1.8-

openjdk/jre/lib/security/

I’m not going to walk through all of the details, but basically I use CURL to download
the JCE zip files (note the Cookie header parameter passed via the -H attribute on
the curl command) and then unzip the files and copy them to the /usr/lib/jvm/java-
1.8-openjdk/jre/lib/security directory in my Docker container.

If you look at the src/main/docker/Dockerfile file in the source code for this chapter,
you can see an example of this scripting in action.
Licensed to <null>

http://www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html
https://curl.haxx.se/

91Protecting sensitive configuration information
3.4.2 Setting up an encryption key

Once the JAR files are in place, you need to set a symmetric encryption key. The sym-
metric encryption key is nothing more than a shared secret that’s used by the encryp-
ter to encrypt a value and the decrypter to decrypt a value. With the Spring Cloud
configuration server, the symmetric encryption key is a string of characters you select
that’s passed to the service via an operating system environment variable called
ENCRYPT_KEY. For the purposes of this book you’ll always set the ENCRYPT_KEY envi-
ronment variable to be

export ENCRYPT_KEY=IMSYMMETRIC

Note two things regarding symmetric keys:

1 Your symmetric key should be 12 or more characters long and ideally be a ran-
dom set of characters.

2 Don’t lose your symmetric key. Once you’ve encrypted something with your
encrypted key, you can’t unencrypt it.

3.4.3 Encrypting and decrypting a property

You’re now ready to begin encrypting properties for use in Spring Cloud Config.
You’ll encrypt the licensing services Postgres database password you’ve been using to
access EagleEye data. This property, called spring.datasource.password, is cur-
rently set as plain text to be the value p0stgr@s.

 When you fire up your Spring Cloud Config instance, Spring Cloud Config detects
that the ENCRYPT_KEY environment variable is set and automatically adds two new
endpoints (/encrypt and /decrypt) to the Spring Cloud Config service. You’ll use
the /encrypt endpoint to encrypt the p0stgr@s value.

Managing encryption keys
For the purposes of this book, I did two things that I wouldn’t normally recommend in
a production deployment:

 I set the encryption key to be a phrase. I wanted to keep the key simple so that
I could remember it and it would fit nicely in reading the text. In a real-world
deployment, I’d use a separate encryption key for each environment I was
deploying to and I’d use random characters as my key.

 I’ve hardcoded the ENCRYPT_KEY environment variable directly in the Docker
files used within the book. I did this so that you as the reader could download
the files and start them up without having to remember to set an environment
variable. In a real runtime environment, I would reference the ENCRYPT_KEY
as an operating system environment variable inside my Dockerfile. Be aware
of this and don’t hardcode your encryption key inside your Dockerfiles. Remem-
ber, your Dockerfiles are supposed to be kept under source control.
Licensed to <null>

92 CHAPTER 3 Controlling your configuration with Spring Cloud configuration server
Figure 3.8 shows how to encrypt the p0stgr@s value using the /encrypt endpoint
and POSTMAN. Please note that whenever you call the /encrypt or /decrypt end-
points, you need to make sure you do a POST to these endpoints.

 If you wanted to decrypt the value, you’d use the /decrypt endpoint passing in
the encrypted string in the call.

 You can now add the encrypted property to your GitHub or filesystem-based con-
figuration file for the licensing service using the following syntax:

spring.datasource.password:"{cipher}
858201e10fe3c9513e1d28b33ff417a66e8c8411dcff3077c53cf53d8a1be360"

Spring Cloud configuration server requires all encrypted properties to be prepended
with a value of {cipher}. The {cipher} value tells Spring Cloud configuration server
it’s dealing with an encrypted value. Fire up your Spring Cloud configuration server and
hit the GET http://localhost:8888/licensingservice/default endpoint.

 Figure 3.9 shows the results of this call.
You’ve made the spring.datasource.password more secure by encrypting the
property, but you still have a problem. The database password is exposed as plain text
when you hit the http://localhost:8888/licensingservice/default

endpoint.

The value we
want to encypt

The encrypted result

Figure 3.8 Using the /encrypt endpoint you can encrypt values.
Licensed to <null>

93Protecting sensitive configuration information
By default, Spring Cloud Config will do all the property decryption on the server and
pass the results back to the applications consuming the properties as plain, unen-
crypted text. However, you can tell Spring Cloud Config to not decrypt on the server
and make it the responsibility of the application retrieving the configuration data to
decrypt the encrypted properties.

3.4.4 Configure microservices to use encryption on the client side

To enable client side decryption of properties, you need to do three things:

1 Configure Spring Cloud Config to not decrypt properties on the server side.
2 Set the symmetric key on the licensing server.
3 Add the spring-security-rsa JARs to the licensing services pom.xml file.

The first thing you need to do is disable the server-side decryption of properties in
Spring Cloud Config. This is done by setting the Spring Cloud Config’s src/main/
resources/application.yml file to set the property spring.cloud.config.server
.encrypt.enabled: false. That’s all you have to do on the Spring Cloud Config
server.

spring.datasource.password property
stored as an encrypted value

Figure 3.9 While the spring.datasource.password is encrypted in the property file, it’s
decrypted when the configuration for the licensing service is retrieved. This is still problematic.
Licensed to <null>

94 CHAPTER 3 Controlling your configuration with Spring Cloud configuration server
 Because the licensing service is now responsible for decrypting the encrypted
properties, you need to first set the symmetric key on the licensing service by making
sure that the ENCRYPT_KEY environment variable is set with the same symmetric key
(for example, IMSYMMETRIC) that you used with your Spring Cloud Config server.

 Next you need to include the spring-security-rsa JAR dependencies in with
licensing service:

<dependency>
 <groupId>org.springframework.security</groupId>
 <artifactId>spring-security-rsa</artifactId>
</dependency>

These JAR files contain the Spring code needed to decrypt the encrypted properties
being retrieved from Spring Cloud Config. With these changes in place, you can start
the Spring Cloud Config and licensing services. If you hit the http://local-
host:8888/licensingservice/default endpoint you’ll see the spring.data-
source.password returned in it is encrypted form. Figure 3.10 shows the output
from the call.

Figure 3.10 With client-side decryption turned on, sensitive properties will no longer be returned in
plain text from the Spring Cloud Config REST call. Instead, the property will be decrypted by the
calling service when it loads its properties from Spring Cloud Config.

The spring.datasource.password property is encrypted.
Licensed to <null>

95Summary
3.5 Closing thoughts
Application configuration management might seem like a mundane topic, but it’s of
critical importance in a cloud-based environment. As we’ll discuss in more detail in
later chapters, it’s critical that your applications and the servers they run on be immu-
table and that the entire server being promoted is never manually configured
between environments. This flies in the face of traditional deployment models where
you deploy an application artifact (for example, a JAR or WAR file) along with its prop-
erty files to a “fixed” environment.

 With a cloud-based model, the application configuration data should be segre-
gated completely from the application, with the appropriate configuration data needs
injected at runtime so that the same server/application artifact are consistently pro-
moted through all environments.

3.6 Summary
 Spring Cloud configuration server allows you to set up application properties

with environment specific values.
 Spring uses Spring profiles to launch a service to determine what environment

properties are to be retrieved from the Spring Cloud Config service.
 Spring Cloud configuration service can use a file-based or Git-based application

configuration repository to store application properties.
 Spring Cloud configuration service allows you to encrypt sensitive property files

using symmetric and asymmetric encryption.
Licensed to <null>

On service discovery
In any distributed architecture, we need to find the physical address of where a
machine is located. This concept has been around since the beginning of distrib-
uted computing and is known formally as service discovery. Service discovery can
be something as simple as maintaining a property file with the addresses of all the
remote services used by an application, or something as formalized (and compli-
cated) as a UDDI (Universal Description, Discovery, and Integration) repository.1

This chapter covers
 Explaining why service discovery is important to any cloud-

based application environment

 Understanding the pros and cons of service discovery vs.
the more traditional load-balancer approach

 Setting up a Spring Netflix Eureka server

 Registering a Spring-Boot-based microservice with Eureka

 Using Spring Cloud and Netflix’s Ribbon library to use
client-side load balancing

1 https://en.wikipedia.org/wiki/Web_Services_Discovery#Universal_Description_Discovery_and_Integration
96

Licensed to <null>

https://en.wikipedia.org/wiki/Web_Services_Discovery#Universal_Description_Discovery_and_Integration

97Where’s my service?
 Service discovery is critical to microservice, cloud-based applications for two key
reasons. First, it offers the application team the ability to quickly horizontally scale up
and down the number of service instances running in an environment. The service
consumers are abstracted away from the physical location of the service via service dis-
covery. Because the service consumers don’t know the physical location of the actual
service instances, new service instances can be added or removed from the pool of
available services.

 This ability to quickly scale services without disrupting the service consumers is an
extremely powerful concept, because it moves a development team used to building
monolithic, single-tenant (for example, one customer) applications away from think-
ing about scaling only in terms of adding bigger, better hardware (vertical scaling) to
the more powerful approach to scaling by adding more servers (horizontal scaling).

 A monolithic approach usually drives development teams down the path of over-
buying their capacity needs. Capacity increases come in clumps and spikes and are
rarely a smooth steady path. Microservices allow us to scale up/down new service
instances. Service discovery helps abstract that these deployments are occurring away
from the service consumer.

 The second benefit of service discovery is that it helps increase application resil-
iency. When a microservice instance becomes unhealthy or unavailable, most service
discovery engines will remove that instance from its internal list of available services.
The damage caused by a down service will be minimized because the service discovery
engine will route services around the unavailable service.

 We’ve gone through the benefits of service discovery, but what’s the big deal about
it? After all, can’t we use tried-and-true methods such as DNS (Domain Name Service)
or a load balancer to help facilitate service discovery? Let’s walk through why that
won’t work with a microservices-based application, particularly one that’s running in
the cloud.

4.1 Where’s my service?
Whenever you have an application calling resources spread across multiple servers, it
needs to locate the physical location of those resource. In the non-cloud world, this
service location resolution was often solved through a combination of DNS and a net-
work load balancer. Figure 4.1 illustrates this model.

 An application needs to invoke a service located in another part of the organiza-
tion. It attempts to invoke the service by using a generic DNS name along with a path
that uniquely represents the service that the application was trying to invoke. The DNS
name would resolve to a commercial load balancer, such as the popular F5 load
balancer (http://f5.com) or an open source load balancer such as HAProxy (http://
haproxy.org).
Licensed to <null>

http://f5.com
http://haproxy.org
http://haproxy.org

98 CHAPTER 4 On service discovery
Figure 4.1 A traditional service location resolution model using DNS and a load balancer

The load balancer, upon receiving the request from the service consumer, locates the
physical address entry in a routing table based on the path the user was trying to
access. This routing table entry contains a list of one or more servers hosting the ser-
vice. The load balancer then picks one of the servers in the list and forwards the
request onto that server.

 Each instance of a service is deployed to one or more application servers. The
number of these application servers was often static (for example, the number of
application servers hosting a service didn’t go up and down) and persistent (for exam-
ple, if a server running an application server crashed, it would be restored to the same
state it was at the time of the crash, and would have the same IP and configuration that
it had previously.)

 To achieve a form of high availability, a secondary load balancer is sitting idle and
pinging the primary load balancer to see if it’s alive. If it isn’t alive, the secondary load
balancer becomes active, taking over the IP address of the primary load balancer and
beginning serving requests.

 While this type of model works well with applications running inside of the four
walls of a corporate data center and with a relatively small number of services running

Applications consuming services

Services resolution layer

services.companyx.com/servicea services.companyx.com/serviceb

Ping

Secondary load balancerPrimary load balancerRouting tables

Services layer

DNS name for load balancers
(services.companyx.com)

Service A Service B

1. Application uses generic
 DNS and service-specific
 path to invoke the service

2. Load balancer locates
 physical address of servers
 hosting the service

3. Services deployed to
 application container
 running on a
 persistent server

4. Secondary load balancer
 checks on primary load
 balancer, and takes
 over if necessary
Licensed to <null>

99Where’s my service?
on a group of static servers, it doesn’t work well for cloud-based microservice applica-
tions. Reasons for this include

 Single point of failure—While the load balancer can be made highly available, it’s
a single point of failure for your entire infrastructure. If the load balancer goes
down, every application relying on it goes down too. While you can make a load
balancer highly available, load balancers tend to be centralized chokepoints
within your application infrastructure.

 Limited horizontal scalability—By centralizing your services into a single cluster of
load balancers, you have limited ability to horizontally scale your load-balancing
infrastructure across multiple servers. Many commercial load balancers are con-
strained by two things: their redundancy model and licensing costs. Most com-
mercial load balancers use a hot-swap model for redundancy so you only have a
single server to handle the load, while the secondary load balancer is there only
for fail-over in the case of an outage of the primary load balancer. You are, in
essence, constrained by your hardware. Second, commercial load balancers also
have restrictive licensing models geared toward a fixed capacity rather than a
more variable model.

 Statically managed—Most traditional load balancers aren’t designed for rapid
registration and de-registration of services. They use a centralized database to
store the routes for rules and the only way to add new routes is often through
the vendor’s proprietary API (Application Programming Interface).

 Complex—Because a load balancer acts as a proxy to the services, service con-
sumer requests have to have their requests mapped to the physical services.
This translation layer often added a layer of complexity to your service infra-
structure because the mapping rules for the service have to be defined and
deployed by hand. In a traditional load balancer scenario, this registration of
new service instances was done by hand and not at startup time of a new ser-
vice instance.

These four reasons aren’t a general indictment of load balancers. They work well in a
corporate environment where the size and scale of most applications can be handled
through a centralized network infrastructure. In addition, load balancers still have a
role to play in terms of centralizing SSL termination and managing service port secu-
rity. A load balancer can lock down inbound (ingress) and outbound (egress) port
access to all the servers sitting behind it. This concept of least network access is often a
critical component when trying to meet industry-standard certification requirements
such as PCI (Payment Card Industry) compliance.

 However, in the cloud where you have to deal with massive amounts of transac-
tions and redundancy, a centralized piece of network infrastructure doesn’t ulti-
mately work as well because it doesn’t scale effectively and isn’t cost-efficient. Let’s
now look at how you can implement a robust-service discovery mechanism for cloud-
based applications.
Licensed to <null>

100 CHAPTER 4 On service discovery
4.2 On service discovery in the cloud
The solution for a cloud-based microservice environment is to use a service-discovery
mechanism that’s

 Highly available—Service discovery needs to be able to support a “hot” cluster-
ing environment where service lookups can be shared across multiple nodes in
a service discovery cluster. If a node becomes unavailable, other nodes in the
cluster should be able to take over.

 Peer-to-peer—Each node in the service discovery cluster shares the state of a ser-
vice instance.

 Load balanced—Service discovery needs to dynamically load balance requests
across all service instances to ensure that the service invocations are spread
across all the service instances managed by it. In many ways, service discovery
replaces the more static, manually managed load balancers used in many early
web application implementations.

 Resilient—The service discovery’s client should “cache” service information
locally. Local caching allows for gradual degradation of the service discovery
feature so that if service discovery service does become unavailable, applica-
tions can still function and locate the services based on the information main-
tained in its local cache.

 Fault-tolerant—Service discovery needs to detect when a service instance isn’t
healthy and remove the instance from the list of available services that can take
client requests. It should detect these faults with services and take action with-
out human intervention.

In the following section(s) we’re going to

 Walk through the conceptual architecture of how a cloud-based service discov-
ery agent will work

 Show how client-side caching and load-balancing allows a service to continue to
function even when the service discovery agent is unavailable

 See how to implement service discovery using Spring Cloud and Netflix’s
Eureka service discovery agent

4.2.1 The architecture of service discovery

To begin our discussion around service discovery architecture, we need to understand
four concepts. These general concepts are shared across all service discovery imple-
mentations:

 Service registration—How does a service register with the service discovery agent?
 Client lookup of service address—What’s the means by which a service client looks

up service information?
 Information sharing—How is service information shared across nodes?
 Health monitoring—How do services communicate their health back to the ser-

vice discovery agent?
Licensed to <null>

101On service discovery in the cloud
Figure 4.2 As service instances are added/removed, they will update the service discovery agent and become
available to process user requests.

Figure 4.2 shows the flow of these four bullets and what typically occurs in a service
discovery pattern implementation.

 In figure 4.2, one or more service discovery nodes have been started. These service
discovery instances are usually unique and don’t have a load balancer that sits in front
of them.

 As service instances start up, they’ll register their physical location, path, and port
that they can be accessed by with one or more service discovery instances. While each
instance of a service will have a unique IP address and port, each service instance that
comes up will register under the same service ID. A service ID is nothing more than a
key that uniquely identifies a group of the same service instances.

 A service will usually only register with one service discovery service instance. Most
service discovery implementations use a peer-to-peer model of data propagation
where the data around each service instance is communicated to all the other nodes
in the cluster.

Service instances
Heartbeat

Service A

4. Services send a
 heartbeat to the
 service discovery
 agent. If a service
 dies, the service
 discovery layer
 removes the IP of
 the “dead” instance.

Service discovery layer

Service discovery
node 2

Client applications

Service discovery
node 3

Service discovery
node 1

3. Service discovery
 nodes share service
 instance health
 information among
 each other.

Client applications never have direct knowledge
of the IP address of a service. Instead they get it
from a service discovery agent.

1. A services location
 can be looked up
 by a logical name
 from the service
 discovery agent.

2. When a service
 comes online it
 registers its IP
 address with a
 service discovery
 agent.
Licensed to <null>

102 CHAPTER 4 On service discovery
 Depending on the service discovery implementation, the propagation mechanism
might use a hard-coded list of services to propagate to or use a multi-casting protocol
like the “gossip”2 or “infection-style”3 protocol to allow other nodes to “discover”
changes in the cluster.

 Finally, each service instance will push to or have pulled from its status by the ser-
vice discovery service. Any services failing to return a good health check will be
removed from the pool of available service instances.

 Once a service has registered with a service discovery service, it’s ready to be used
by an application or service that needs to use its capabilities. Different models exist for
a client to “discover” a service. A client can rely solely on the service discovery engine
to resolve service locations each time a service is called. With this approach, the ser-
vice discovery engine will be invoked every time a call to a registered microservice
instance is made. Unfortunately, this approach is brittle because the service client is
completely dependent on the service discovery engine to be running to find and
invoke a service.

 A more robust approach is to use what’s called client-side load balancing.4 Figure
4.3 illustrates this approach.

 In this model, when a consuming actor needs to invoke a service

1 It will contact the service discovery service for all the service instances a service
consumer is asking for and then cache data locally on the service consumer’s
machine.

2 Each time a client wants to call the service, the service consumer will look up
the location information for the service from the cache. Usually client-side
caching will use a simple load balancing algorithm like the “round-robin” load
balancing algorithm to ensure that service calls are spread across multiple ser-
vice instances.

3 The client will then periodically contact the service discovery service and
refresh its cache of service instances. The client cache is eventually consistent,
but there’s always a risk that between when the client contacts the service dis-
covery instance for a refresh and calls are made, calls might be directed to a ser-
vice instance that isn’t healthy.

If, during the course of calling a service, the service call fails, the local service
discovery cache is invalidated and the service discovery client will attempt to
refresh its entries from the service discovery agent.

Let’s now take the generic service discovery pattern and apply it to your EagleEye
problem domain.

2 https://en.wikipedia.org/wiki/Gossip_protocol
3 https://www.cs.cornell.edu/~asdas/research/dsn02-swim.pdf
4 https://en.wikipedia.org/wiki/Load_balancing_(computing)#Client-Side_Random_Load_Balancing
Licensed to <null>

https://en.wikipedia.org/wiki/Gossip_protocol
https://www.cs.cornell.edu/~asdas/research/dsn02-swim.pdf
https://en.wikipedia.org/wiki/Load_balancing_(computing)#Client-Side_Random_Load_Balancing

103On service discovery in the cloud
Figure 4.3 Client-side load balancing caches the location of the services so that the service client doesn’t have
to contact service discovery on every call.

4.2.2 Service discovery in action using Spring and Netflix Eureka

Now you’re going to implement service discovery by setting up a service discovery
agent and then registering two services with the agent. You’ll then have one service
call another service by using the information retrieved by service discovery. Spring
Cloud offers multiple methods for looking up information from a service discovery
agent. We’ll also walk through the strengths and weakness of each approach.

 Once again, the Spring Cloud project makes this type of setup trivial to undertake.
You’ll use Spring Cloud and Netflix’s Eureka service discovery engine to implement
your service discovery pattern. For the client-side load balancing you’ll use Spring
Cloud and Netflix’s Ribbon libraries.

Service instances
Heartbeat

Service A

Service discovery layer

Service discovery
node 2

Client applications

Service discovery
node 3

Service discovery
node 1

Client-side
cache/load balancing

Client-side
cache/load balancing

3. Periodically, the
 client-side cache will
 be refreshed with the
 service discovery layer.

1. When a service client needs to call a service it will check
 a local cache for the service instance IPs. Load balancing
 between service instances will occur on the service.

2. If the client finds a
 service IP in the
 cache, it will use it.
 Otherwise it goes to
 the service discovery.
Licensed to <null>

104 CHAPTER 4 On service discovery
Figure 4.4 By implementing client-side caching and Eureka with the licensing and organization services,
you can lessen the load on the Eureka servers and improve client stability if Eureka becomes unavailable.

In the previous two chapters, you kept your licensing service simple and included the
organization name for the licenses with the license data. In this chapter, you’ll break
the organization information into its own service.

 When the licensing service is invoked, it will call the organization service to
retrieve the organization information associated with the designated organization ID.
The actual resolution of the organization service’s location will be held in a service
discovery registry. For this example, you’ll register two instances of the organization
service with a service discovery registry and then use client-side load balancing to look
up and cache the registry in each service instance. Figure 4.4 shows this arrangement:

1 As the services are bootstrapping, the licensing and organization services will
also register themselves with the Eureka Service. This registration process will
tell Eureka the physical location and port number of each service instance
along with a service ID for the service being started.

2 When the licensing service calls to the organization service, it will use the Netflix
Ribbon library to provide client-slide load balancing. Ribbon will contact the
Eureka service to retrieve service location information and then cache it locally.

3 Periodically, the Netflix Ribbon library will ping the Eureka service and refresh
its local cache of service locations.

Any new organization services instance will now be visible to the licensing service
locally, while any non-healthy instances will be removed from the local cache.

 Next, you’ll implement this design by setting up your Spring Cloud Eureka service.

Licensing service

Service discovery

2. When the licensing service calls the organization service, it will use
 Ribbon to see if the organization service IPs are cached locally.

3. Periodically, Ribbon
will refresh its cache
of IP addresses.

1. As service instances
start, they will register
their IPs with Eureka.

Ribbon

Eureka Eureka Eureka

Organization service
Licensed to <null>

105Building your Spring Eureka Service
4.3 Building your Spring Eureka Service
In this section, you’ll set up our Eureka service using Spring Boot. Like the Spring
Cloud configuration service, setting up a Spring Cloud Eureka Service starts with
building a new Spring Boot project and applying annotations and configurations.
Let’s begin with your maven pom.xml.5 The following listing shows the Eureka service
dependencies you’ll need for the Spring Boot project you’re setting up.

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://

www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://

maven.apache.org/xsd/maven-4.0.0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <groupId>com.thoughtmechanix</groupId>
 <artifactId>eurekasvr</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 <packaging>jar</packaging>

 <name>Eureka Server</name>
 <description>Eureka Server demo project</description>

<!--Not showing the maven definitions for using Spring Cloud Parent-->
 <dependencies>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-eureka-server</artifactId>
 </dependency>
 </dependencies>

Rest of pom.xml removed for conciseness
....
</project>

You’ll then need to set up the src/main/resources/application.yml file with the con-
figuration needed to set up the Eureka service running in standalone mode (for
example, no other nodes in the cluster), as shown in the next listing.

server:
 port: 8761

eureka:
 client:
 registerWithEureka: false

5 All source code in this chapter can be downloaded from GitHub (https://github.com/carnellj/spmia-
chapter4). The Eureka service is in the chapter 4/eurekasvr example. All services in this chapter were built
using Docker and Docker Compose so they can be brought up in a single instance.

Listing 4.1 Adding dependencies to your pom.xml

Listing 4.2 Setting up your Eureka configuration in the application.yml file

Tells your maven build to
include the Eureka libraries
(which will include Ribbon)

Port Eureka Server
is going to listen on

Don’t register with
Eureka service.
Licensed to <null>

https://github.com/carnellj/spmia-chapter4
https://github.com/carnellj/spmia-chapter4

106 CHAPTER 4 On service discovery

 fetchRegistry: false
 server:
 waitTimeInMsWhenSyncEmpty: 5

The key properties being set are the server.port attribute that sets the default port
used for the Eureka service. The eureka.client.registerWithEureka attribute
tells the service not to register with a Eureka service when the Spring Boot Eureka
application starts because this is the Eureka service. The eureka.client

.fetchRegistry attribute is set to false so that when the Eureka service starts, it
doesn’t try to cache its registry information locally. When running a Eureka client,
you’ll want to change this value for the Spring Boot services that are going to register
with Eureka.

 You’ll notice that the last attribute, eureka.server.waitTimeInMsWhenSync
Empty, is commented out. When you’re testing your service locally you should uncom-
ment this line because Eureka won’t immediately advertise any services that register
with it. It will wait five minutes by default to give all of the services a chance to register
with it before advertising them. Uncommenting this line for local testing will help
speed up the amount of time it will take for the Eureka service to start and show ser-
vices registered with it.

 Individual services registering will take up to 30 seconds to show up in the Eureka
service because Eureka requires three consecutive heartbeat pings from the service
spaced 10 seconds apart before it will say the service is ready for use. Keep this in mind
as you’re deploying and testing your own services.

 The last piece of setup work you’re going to do in setting up your Eureka service is
adding an annotation to the application bootstrap class you’re using to start your
Eureka service. For the Eureka service, the application bootstrap class can be found
in the src/main/java/com/thoughtmechanix/eurekasvr/EurekaServer-

Application.java class. The following listing shows where to add your annotations.

package com.thoughtmechanix.eurekasvr;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.cloud.netflix.eureka.server.EnableEurekaServer;

@SpringBootApplication
@EnableEurekaServer
public class EurekaServerApplication {
 public static void main(String[] args) {
 SpringApplication.run(EurekaServerApplication.class, args);
 }
}

Listing 4.3 Annotating the bootstrap class to enable the Eureka server

Don’t cache registry
information locally.

Initial time to wait before
server takes requests

Enable Eureka server
in the Spring service
Licensed to <null>

107Registering services with Spring Eureka

es
You use only one new annotation to tell your service to be a Eureka service; that’s
@EnableEurekaServer. At this point you can start up the Eureka service by running
the mvn spring-boot:run or run docker-compose (see appendix A) to start the
service. Once this command is run, you should have a running Eureka service with no
services registered in it. Next you’ll build out the organization service and register it
with your Eureka service.

4.4 Registering services with Spring Eureka
At this point you have a Spring-based Eureka server up and running. In this section,
you’ll configure your organization and licensing services to register themselves with
your Eureka server. This work is done in preparation for having a service client look
up a service from your Eureka registry. By the time you’re done with this section, you
should have a firm understanding of how to register a Spring Boot microservice
with Eureka.

 Registering a Spring Boot-based microservice with Eureka is an extremely simple
exercise. For the purposes of this chapter, we’re not going to walk through all of the
Java code involved with writing the service (we purposely kept that amount of code
small), but instead focus on registering the service with the Eureka service registry you
created in the previous section.

 The first thing you need to do is add the Spring Eureka dependency to your orga-
nization service’s pom.xml file:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-eureka</artifactId>
</dependency>

The only new library that’s being used is the spring-cloud-starter-eureka
library. The spring-cloud-starter-eureka artifact holds the jar files that Spring
Cloud will use to interact with your Eureka service.

 After you’ve set up your pom.xml file, you need to tell Spring Boot to register the
organization service with Eureka. This registration is done via additional configura-
tion in the organization service’s src/main/java/resources/application.yml file, as
shown in the following listing.

spring:
 application:
 name: organizationservice
 profiles:
 active:
 default
 cloud:
 config:
 enabled: true

Listing 4.4 Modifying your organization service’s application.yml to talk to Eureka

Includes the Eureka librari
so that the service can
register with Eureka

Logical name of the service that
will be registered with Eureka
Licensed to <null>

Pull
local
the
108 CHAPTER 4 On service discovery

eureka:
 instance:
 preferIpAddress: true
 client:
 registerWithEureka: true
 fetchRegistry: true
 serviceUrl:
 defaultZone: http://localhost:8761/eureka/

Every service registered with Eureka will have two components associated with it: the
application ID and the instance ID. The application ID is used to represent a group
service instance. In a Spring-Boot-based microservice, the application ID will always be
the value set by the spring.application.name property. For your organization ser-
vice, your spring.application.name is creatively named organizationservice. The
instance ID will be a random number meant to represent a single service instance.

NOTE Remember that normally the spring.application.name property
goes in the bootstrap.yml file. I’ve included it in the application.yml for illus-
trative purposes. The code will work with the spring.application.name
but the proper place long-term for this attribute is the bootstrap.yml file.

The second part of your configuration provides how and where the service should reg-
ister with the Eureka service. The eureka.instance.preferIpAddress property
tells Eureka that you want to register the service’s IP address to Eureka rather than its
hostname.

The eureka.client.registerWithEureka attribute is the trigger to tell the orga-
nization service to register itself with Eureka. The eureka.client.fetchRegistry
attribute is used to tell the Spring Eureka Client to fetch a local copy of the registry.
Setting this attribute to true will cache the registry locally instead of calling the Eureka
service with every lookup. Every 30 seconds, the client software will re-contact the
Eureka service for any changes to the registry.

Why prefer IP address?
By default, Eureka will try to register the services that contact it by hostname. This
works well in a server-based environment where a service is assigned a DNS-backed
host name. However, in a container-based deployment (for example, Docker), con-
tainers will be started with randomly generated hostnames and no DNS entries for
the containers.

If you don’t set the eureka.instance.preferIpAddress to true, your client
applications won’t properly resolve the location of the hostnames because there will
be no DNS entry for that container. Setting the preferIpAddress attribute will
inform the Eureka service that client wants to be advertised by IP address.

Personally, we always set this attribute to true. Cloud-based microservices are sup-
posed to be ephemeral and stateless. They can be started up and shut down at will.
IP addresses are more appropriate for these types of services.

Register the IP of the service
rather than the server name.

Register the service
with Eureka.

 down a
 copy of
registry.

Location of the
Eureka Service
Licensed to <null>

109Registering services with Spring Eureka
 The last attribute, the eureka.serviceUrl.defaultZone attribute, holds a
comma-separated list of Eureka services the client will use to resolve to service loca-
tions. For our purposes, you’re only going to have one Eureka service.

At this point you’ll have a single service registered with your Eureka service.
 You can use Eureka’s REST API to see the contents of the registry. To see all the

instances of a service, hit the following GET endpoint:

http://<eureka service>:8761/eureka/apps/<APPID>

For instance, to see the organization service in the registry you can call http://
localhost:8761/eureka/apps/organizationservice.

Figure 4.5 Calling the Eureka REST API to see the organization will show the IP address of the service
instances registered in Eureka, along with the service status.

Eureka high availability
Setting up multiple URL services isn’t enough for high availability. The eureka.ser-
viceUrl.defaultZone attribute only provides a list of Eureka services for the cli-
ent to communicate with. You also need to set up the Eureka services to replicate
the contents of their registry with each other.

A group of Eureka registries communicate with each other using a peer-to-peer com-
munication model where each Eureka service has to be configured to know about the
other nodes in the cluster. Setting up a Eureka cluster is outside of the scope of this
book. If you’re interested in setting up a Eureka cluster, please visit the Spring Cloud
project’s website for further information.a

a http://projects.spring.io/spring-cloud/spring-cloud.html

Lookup key for
the service

IP address of
the organization
service instance

The service is
currently up
and functioning.
Licensed to <null>

http://projects.spring.io/spring-cloud/spring-cloud.html

110 CHAPTER 4 On service discovery
The default format returned by the Eureka service is XML. Eureka can also return the
data in figure 4.5 as a JSON payload, but you have to set the Accept HTTP header to
be application/json. An example of the JSON payload is shown in figure 4.6.

Figure 4.6 Calling the Eureka REST API with the results being JSON

On Eureka and service startups: don’t be impatient
When a service registers with Eureka, Eureka will wait for three successive health
checks over the course of 30 seconds before the service becomes available via a
Eureka. This warm-up period throws developers off because they think that Eureka
hasn’t registered their services if they try to call their service immediately after the
service has been launched. This is evident in our code examples running in the Docker
environment, because the Eureka service and the application services (licensing and
organization services) all start up at the same time. Be aware that after starting the
application, you may receive 404 errors about services not being found, even though
the service itself has started. Wait 30 seconds before trying to call your services.

In a production environment, your Eureka services will already be running and if you’re
deploying an existing service, the old services will still be in place to take requests.

The Accept HTTP
header set to
application/json
will return
the service
information in JSON.
Licensed to <null>

111Using service discovery to look up a service
4.5 Using service discovery to look up a service
You now have the organization service registered with Eureka. You can also have the
licensing service call the organization service without having direct knowledge of the
location of any of the organization services. The licensing service will look up the
physical location of the organization by using Eureka.

 For our purposes, we’re going to look at three different Spring/Netflix client
libraries in which a service consumer can interact with Ribbon. These libraries will
move from the lowest level of abstraction for interacting with Ribbon to the highest.
The libraries we’ll explore include

 Spring Discovery client
 Spring Discovery client enabled RestTemplate
 Netflix Feign client

Let’s walk through each of these clients and see their use in the context of the licens-
ing service. Before we start into the specifics of the client, I wrote a few convenience
classes and methods in the code so you can play with the different client types using
the same service endpoint.

 First, I’ve modified the src/main/java/com/thoughtmechanix/licenses/
controllers/LicenseServiceController.java to include a new route for the
license services. This new route will allow you to specify the type of client you want to
invoke the service with. This is a helper route so that as we explore each of the differ-
ent methods for invoking the organization service via Ribbon, you can try each mech-
anism through a single route. The following listing shows the code for the new route
in the LicenseServiceController class.

@RequestMapping(value="/{licenseId}/{clientType}",
method = RequestMethod.GET)

public License getLicensesWithClient(
 @PathVariable("organizationId") String organizationId,
 @PathVariable("licenseId") String licenseId,
 @PathVariable("clientType") String clientType) {

 return licenseService.getLicense(organizationId,
 licenseId, clientType);
}

In this code, the clientType parameter passed on the route will drive the type of cli-
ent we’re going to use in the code examples. The specific types you can pass in on this
route include

 Discovery—Uses the discovery client and a standard Spring RestTemplate class
to invoke the organization service

 Rest—Uses an enhanced Spring RestTemplate to invoke the Ribbon-based service
 Feign—Uses Netflix’s Feign client library to invoke a service via Ribbon

Listing 4.5 Calling the licensing service with different REST Clients

The clientType
determines the type
of Spring REST
client to use.
Licensed to <null>

112 CHAPTER 4 On service discovery
NOTE Because I’m using the same code for all three types of client, you
might see situations where you’ll see annotations for certain clients even
when they don’t seem to be needed. For example, you’ll see both the
@EnableDiscoveryClient and @EnableFeignClients annotations in
the code, even when the text is only explaining one of the client types. This is
so I can use one code base for my examples. I’ll call out these redundancies
and code whenever they are encountered.

In the src/main/java/com/thoughtmechanix/licenses/services/License
Service.java class, I’ve added a simple method called retrieveOrgInfo() that
will resolve based on the clientType passed into the route the type of client that will
be used to look up an organization service instance. The getLicense() method on
the LicenseService class will use retrieveOrgInfo() to retrieve the organization
data from the Postgres database.

public License getLicense(String organizationId, String licenseId, String
clientType) {

 License license = licenseRepository.findByOrganizationIdAndLicenseId(
 organizationId, licenseId);

 Organization org = retrieveOrgInfo(organizationId, clientType);

 return license
 .withOrganizationName(org.getName())
 .withContactName(org.getContactName())
 .withContactEmail(org.getContactEmail())
 .withContactPhone(org.getContactPhone())
 .withComment(config.getExampleProperty());
 }

You can find each of the clients we built using the Spring DiscoveryClient, the Spring
RestTemplate, or the Feign libraries in the src/main/java/com/thoughtmechanix/
licenses/clients package of the licensing-service source code.

4.5.1 Looking up service instances with
Spring DiscoveryClient

The Spring DiscoveryClient offers the lowest level of access to Ribbon and the services
registered within it. Using the DiscoveryClient, you can query for all the services regis-
tered with the ribbon client and their corresponding URLs.

 Next, you’ll build a simple example of using the DiscoveryClient to retrieve one of
the organization service URLs from Ribbon and then call the service using a standard
RestTemplate class. To begin using the DiscoveryClient, you first need to annotate the
src/main/java/com/thoughtmechanix/licenses/Application.java class
with the @EnableDiscoveryClient annotation, as shown in the next listing.

Listing 4.6 getLicense() function will use multiple methods to perform a REST call
Licensed to <null>

113Using service discovery to look up a service

e

@SpringBootApplication
@EnableDiscoveryClient
@EnableFeignClients
public class Application {
 public static void main(String[] args) {
 SpringApplication.run(Application.class, args);
 }
}

The @EnableDiscoveryClient annotation is the trigger for Spring Cloud to enable
the application to use the DiscoveryClient and Ribbon libraries. The @EnableFeign-
Clients annotation can be ignored for now as we’ll be covering it shortly.

 Now, let’s look at your implementation of the code that calls the organization service
via the Spring DiscoveryClient, as shown in the following listing. You can find this in
src/main/java/com/thoughtmechanix/licenses/OrganizationDiscovery

Client.java.

/*Packages and imports removed for conciseness*/

@Component
public class OrganizationDiscoveryClient {

 @Autowired
 private DiscoveryClient discoveryClient;

 public Organization getOrganization(String organizationId) {
 RestTemplate restTemplate = new RestTemplate();
 List<ServiceInstance> instances =

 discoveryClient.getInstances("organizationservice");

 if (instances.size()==0) return null;
 String serviceUri = String.format("%s/v1/organizations/%s",

 instances.get(0).getUri().toString(),

 organizationId);

 ResponseEntity< Organization > restExchange =
 restTemplate.exchange(
 serviceUri,
 HttpMethod.GET,
 null, Organization.class, organizationId);

 return restExchange.getBody();
 }
}

Listing 4.7 Setting up the bootstrap class to use the Eureka Discovery Client

Listing 4.8 Using the DiscoveryClient to look up information

Activates the Spring
DiscoveryClient for use

Ignore this for now as we’ll
cover this later in the chapter.

DiscoveryClient is
auto-injected into the class.

Gets a list of all
the instances of
organization services

Retrieves
the service
ndpoint we

are going
to call

Uses a standard Spring
REST Template class to
call the service
Licensed to <null>

114 CHAPTER 4 On service discovery
The first item of interest in the code is the DiscoveryClient. This is the class you’ll
use to interact with Ribbon. To retrieve all instances of the organization services regis-
tered with Eureka, you can use the getInstances() method, passing in the key of
service you’re looking for, to retrieve a list of ServiceInstance objects.

 The ServiceInstance class is used to hold information about a specific instance
of a service including its hostname, port and URI.

 In listing 4.8, you take the first ServiceInstance class in your list to build a target
URL that can then be used to call your service. Once you have a target URL, you can use
a standard Spring RestTemplate to call your organization service and retrieve data.

4.5.2 Invoking services with Ribbon-aware Spring RestTemplate

Next, we’re going to see an example of how to use a RestTemplate that’s Ribbon-
aware. This is one of the more common mechanisms for interacting with Ribbon via
Spring. To use a Ribbon-aware RestTemplate class, you need to define a Rest-
Template bean construction method with a Spring Cloud annotation called @Load-
Balanced. For the licensing service, the method that will be used to create the
RestTemplate bean can be found in src/main/java/com/thoughtmechanix/
licenses/Application.java.

The DiscoveryClient and real life
I’m walking through the DiscoveryClient to be completed in our discussion of building
service consumers with Ribbon. The reality is that you should only use the Discovery-
Client directly when your service needs to query Ribbon to understand what services
and service instances are registered with it. There are several problems with this
code including the following:

You aren’t taking advantage of Ribbon’s client side load-balancing—By calling the Dis-
coveryClient directly, you get back a list of services, but it becomes your responsibility
to choose which service instances returned you’re going to invoke.

You’re doing too much work—Right now, you have to build the URL that’s going to be
used to call your service. It’s a small thing, but every piece of code that you can avoid
writing is one less piece of code that you have to debug.

Observant Spring developers might have noticed that you’re directly instantiating the
RestTemplate class in the code. This is antithetical to normal Spring REST invoca-
tions, as normally you’d have the Spring Framework inject the RestTemplate the class
using it via the @Autowired annotation.

You instantiated the RestTemplate class in listing 4.8 because once you’ve enabled
the Spring DiscoveryClient in the application class via the @EnableDiscovery-
Client annotation, all RestTemplates managed by the Spring framework will have
a Ribbon-enabled interceptor injected into them that will change how URLs are cre-
ated with the RestTemplate class. Directly instantiating the RestTemplate class
allows you to avoid this behavior.

In summary, there are better mechanisms for calling a Ribbon-backed service.
Licensed to <null>

115Using service discovery to look up a service

t
 The following listing shows the getRestTemplate() method that will create the
Ribbon-backed Spring RestTemplate bean.

package com.thoughtmechanix.licenses;

//…Most of import statements have been removed for consiceness
import org.springframework.cloud.client.loadbalancer.LoadBalanced;
import org.springframework.context.annotation.Bean;
import org.springframework.web.client.RestTemplate;

@SpringBootApplication
@EnableDiscoveryClient
@EnableFeignClients
public class Application {

 @LoadBalanced
 @Bean
 public RestTemplate getRestTemplate(){
 return new RestTemplate();
 }

 public static void main(String[] args) {
 SpringApplication.run(Application.class, args);
 }
}

NOTE In early releases of Spring Cloud, the RestTemplate class was automat-
ically backed by Ribbon. It was the default behavior. However, since Spring
Cloud Release Angel, the RestTemplate in Spring Cloud is no longer backed
by Ribbon. If you want to use Ribbon with the RestTemplate, you must explic-
itly annotate it using the @LoadBalanced annotation.

Now that the bean definition for the Ribbon-backed RestTemplate class is defined,
any time you want to use the RestTemplate bean to call a service, you only need to
auto-wire it into the class using it.

 Using the Ribbon-backed RestTemplate class pretty much behaves like a stan-
dard Spring RestTemplate class, except for one small difference in how the URL for
target service is defined. Rather than using the physical location of the service in the
RestTemplate call, you’re going to build the target URL using the Eureka service ID
of the service you want to call.

 Let’s see this difference by looking at the following listing. The code for this listing
can be found in the src/main/java/com/thoughtmechanix/licenses/

clients/OrganizationRestTemplate.java class.

/*Package and import definitions left off for conciseness*/
@Component

Listing 4.9 Annotating and defining a RestTemplate construction method

Listing 4.10 Using a Ribbon-backed RestTemplate to call a service

Because we’re using multiple client types in the examples, I’m
including them in the code. However, the @EnableDiscoveryClien
and @EnableFeignClients application aren’t needed when using
the Ribbon backed RestTemplate and can be removed.

The @LoadBalanced annotation
tells Spring Cloud to create a
Ribbon backed RestTemplate class.
Licensed to <null>

116 CHAPTER 4 On service discovery
public class OrganizationRestTemplateClient {
 @Autowired
 RestTemplate restTemplate;

 public Organization getOrganization(String organizationId){
 ResponseEntity<Organization> restExchange =
 restTemplate.exchange(
 "http://organizationservice/v1/organizations/{organizationId}",
 HttpMethod.GET,
 null, Organization.class, organizationId);

 return restExchange.getBody();
 }
}

This code should look somewhat similar to the previous example, except for two key
differences. First, the Spring Cloud DiscoveryClient is nowhere in sight. Second,
the URL being used in the restTemplate.exchange() call should look odd to you:

restTemplate.exchange(

 "http://organizationservice/v1/organizations/{organizationId}",
 HttpMethod.GET,
 null, Organization.class, organizationId);

The server name in the URL matches the application ID of the organizationservice key
that you registered the organization service with in Eureka:

http://{applicationid}/v1/organizations/{organizationId}

The Ribbon-enabled RestTemplate will parse the URL passed into it and use what-
ever is passed in as the server name as the key to query Ribbon for an instance of a ser-
vice. The actual service location and port are completely abstracted from the
developer.

 In addition, by using the RestTemplate class, Ribbon will round-robin load bal-
ance all requests among all the service instances.

4.5.3 Invoking services with Netflix Feign client

An alternative to the Spring Ribbon-enabled RestTemplate class is Netflix’s Feign
client library. The Feign library takes a different approach to calling a REST service by
having the developer first define a Java interface and then annotating that interface
with Spring Cloud annotations to map what Eureka-based service Ribbon will invoke.
The Spring Cloud framework will dynamically generate a proxy class that will be used
to invoke the targeted REST service. There’s no code being written for calling the ser-
vice other than an interface definition.

 To enable the Feign client for use in your licensing service, you need to add a new
annotation, @EnableFeignClients, to the licensing service’s src/main/java/
com/thoughtmechanix/licenses/Application.java class. The following listing
shows this code.

When using a Ribbon-back
RestTemplate, you build the target

URL with the Eureka service ID.
Licensed to <null>

117Using service discovery to look up a service

@SpringBootApplication
@EnableDiscoveryClient
@EnableFeignClients
public class Application {
 public static void main(String[] args) {
 SpringApplication.run(Application.class, args);
 }
}

Now that you’ve enabled the Feign client for use in your licensing service, let’s look at
a Feign client interface definition that can be used to call an endpoint on the organi-
zation service. The following listing shows an example. The code in this listing can be
found in the src/main/java/com/thoughtmechanix/licenses/clients/

OrganizationFeignClient.java class.

/*Package and import left off for conciseness*/
@FeignClient("organizationservice")
public interface OrganizationFeignClient {
@RequestMapping(
 method= RequestMethod.GET,
 value="/v1/organizations/{organizationId}",
 consumes="application/json")
 Organization getOrganization(
 @PathVariable("organizationId") String organizationId);
}

You start the Feign example by using the @FeignClient annotation and passing it
the name of the application id of the service you want the interface to represent. Next
you’ll define a method, getOrganization(), in your interface that can be called by
the client to invoke the organization service.

 How you define the getOrganization() method looks exactly like how you
would expose an endpoint in a Spring Controller class. First, you’re going to define a
@RequestMapping annotation for the getOrganization() method that will
map the HTTP verb and endpoint that will be exposed on the organization service
invocation. Second, you’ll map the organization ID passed in on the URL to an
organizationId parameter on the method call, using the @PathVariable annota-
tion. The return value from the call to the organization service will be automatically
mapped to the Organization class that’s defined as the return value for the
getOrganization() method.

 To use the OrganizationFeignClient class, all you need to do is autowire and
use it. The Feign Client code will take care of all the coding work for you.

Listing 4.11 Enabling the Spring Cloud/Netflix Feign client in the licensing service

Listing 4.12 Defining a Feign interface for calling the organization service

Because we’re only using the FeignClient,
in your own code you can remove the
@EnableDiscoveryClient annotation.

The @EnableFeignClients
annotation is needed to use
the FeignClient in your code.

Identify your service to Feign using
the FeignClient Annotation.

The path and action to your
endpoint is defined using the
@RequestMapping annotation.

The parameters passed into the endpoint are
defined using the @PathVariable endpoint.
Licensed to <null>

118 CHAPTER 4 On service discovery

4.6 Summary
 The service discovery pattern is used to abstract away the physical location of

services.
 A service discovery engine such as Eureka can seamlessly add and remove ser-

vice instances from an environment without the service clients being impacted.
 Client-side load balancing can provide an extra level of performance and resil-

iency by caching the physical location of a service on the client making the ser-
vice call.

 Eureka is a Netflix project that when used with Spring Cloud, is easy to set up
and configure.

 You used three different mechanisms in Spring Cloud, Netflix Eureka, and Net-
flix Ribbon to invoke a service. These mechanisms included

– Using a Spring Cloud service DiscoveryClient
– Using Spring Cloud and Ribbon-backed RestTemplate
– Using Spring Cloud and Netflix’s Feign client

On error handling
When you use the standard Spring RestTemplate class, all service calls’ HTTP sta-
tus codes will be returned via the ResponseEntity class’s getStatusCode()
method. With the Feign Client, any HTTP 4xx – 5xx status codes returned by the ser-
vice being called will be mapped to a FeignException. The FeignException will
contain a JSON body that can be parsed for the specific error message.

Feign does provide you the ability to write an error decoder class that will map the
error back to a custom Exception class. Writing this decoder is outside the scope
of this book, but you can find examples of this in the Feign GitHub repository at
(https://github.com/Netflix/feign/wiki/Custom-error-handling).
Licensed to <null>

https://github.com/Netflix/feign/wiki/Custom-error-handling

When bad things happen: client
resiliency patterns with Spring

Cloud and Netflix Hystrix
All systems, especially distributed systems, will experience failure. How we build our
applications to respond to that failure is a critical part of every software developer’s
job. However, when it comes to building resilient systems, most software engineers
only take into account the complete failure of a piece of infrastructure or a key ser-
vice. They focus on building redundancy into each layer of their application using
techniques such as clustering key servers, load balancing between services, and seg-
regation of infrastructure into multiple locations.

This chapter covers
 Implementing circuit breakers, fallbacks, and

bulkheads

 Using the circuit breaker pattern to conserve
microservice client resources

 Using Hystrix when a remote service is failing

 Implementing Hystrix’s bulkhead pattern to
segregate remote resource calls

 Tuning Hystrix’s circuit breaker and bulkhead
implementations

 Customizing Hystrix’s concurrency strategy
119

Licensed to <null>

120 CHAPTER 5 When bad things happen: client resiliency patterns with Spring Cloud and Netflix
 While these approaches take into account the complete (and often spectacular)
loss of a system component, they address only one small part of building resilient sys-
tems. When a service crashes, it’s easy to detect that it’s no longer there, and the appli-
cation can route around it. However, when a service is running slow, detecting that
poor performance and routing around it is extremely difficult because

1 Degradation of a service can start out as intermittent and build momentum—The deg-
radation might occur only in small bursts. The first signs of failure might be a
small group of users complaining about a problem, until suddenly the applica-
tion container exhausts its thread pool and collapses completely.

2 Calls to remote services are usually synchronous and don’t cut short a long-running
call—The caller of a service has no concept of a timeout to keep the service call
from hanging out forever. The application developer calls the service to per-
form an action and waits for the service to return.

3 Applications are often designed to deal with complete failures of remote resources, not partial
degradations. Often, as long as the service has not completely failed, an application
will continue to call the service and won’t fail fast. The application will continue
to call the poorly behaving service. The calling application or service may degrade
gracefully or, more likely, crash because of resource exhaustion. Resource exhaus-
tion is when a limited resource such as a thread pool or database connection
maxes out and the calling client must wait for that resource to become available.

What’s insidious about problems caused by poorly performing remote services is that
they’re not only difficult to detect, but can trigger a cascading effect that can ripple
throughout an entire application ecosystem. Without safeguards in place, a single
poorly performing service can quickly take down multiple applications. Cloud-based,
microservice-based applications are particularly vulnerable to these types of outages
because these applications are composed of a large number of fine-grained, distrib-
uted services with different pieces of infrastructure involved in completing a user’s
transaction.

5.1 What are client-side resiliency patterns?
Client resiliency software patterns are focused on protecting a remote resource’s
(another microservice call or database lookup) client from crashing when the remote
resource is failing because that remote service is throwing errors or performing
poorly. The goal of these patterns is to allow the client to “fail fast,” not consume valu-
able resources such as database connections and thread pools, and prevent the prob-
lem of the remote service from spreading “upstream” to consumers of the client.

 There are four client resiliency patterns:

1 Client-side load balancing
2 Circuit breakers
3 Fallbacks
4 Bulkheads
Licensed to <null>

121What are client-side resiliency patterns?
Figure 5.1 The four client resiliency patterns act as a protective buffer between a service consumer and
the service.

Figure 5.1 demonstrates how these patterns sit between the microservice service con-
sumer and the microservice.

 These patterns are implemented in the client calling the remote resource. The
implementation of these patterns logically sit between the client consuming the
remote resources and the resource itself.

5.1.1 Client-side load balancing

We introduced the client-side load balancing pattern in the last chapter (chapter 4)
when talking about service discovery. Client-side load balancing involves having the
client look up all of a service’s individual instances from a service discovery agent (like
Netflix Eureka) and then caching the physical location of said service instances.

The service client caches
microservice endpoints retrieved
during service discovery.

When a call does fail, fallback
asks if there’s an alternative
that can be executed.

The bulkhead segregates
different service calls on the
service client to ensure a
poor-behaving service does
not use all the resources on
the client.

Each microservice instance runs on its own server with its own IP.

Instance 1

The circuit breaker pattern
ensures that a service client
does not repeatedly call a
failing service.

Instance 2 Instance 1 Instance 2

Microservice A Microservice B

Client-side load
balancing

Circuit
breaker

Fallback

Bulkhead

Web client Microservice
Licensed to <null>

122 CHAPTER 5 When bad things happen: client resiliency patterns with Spring Cloud and Netflix
Whenever a service consumer needs to call that service instance, the client-side load
balancer will return a location from the pool of service locations it’s maintaining.

 Because the client-side load balancer sits between the service client and the service
consumer, the load balancer can detect if a service instance is throwing errors or
behaving poorly. If the client-side load balancer detects a problem, it can remove that
service instance from the pool of available service locations and prevent any future
service calls from hitting that service instance.

 This is exactly the behavior that Netflix’s Ribbon libraries provide out of the box
with no extra configuration. Because we covered client-side load balancing with Net-
flix Ribbon in chapter 4, we won’t go into any more detail on that in this chapter.

5.1.2 Circuit breaker

The circuit breaker pattern is a client resiliency pattern that’s modeled after an elec-
trical circuit breaker. In an electrical system, a circuit breaker will detect if too much
current is flowing through the wire. If the circuit breaker detects a problem, it will
break the connection with the rest of the electrical system and keep the downstream
components from the being fried.

 With a software circuit breaker, when a remote service is called, the circuit breaker
will monitor the call. If the calls take too long, the circuit breaker will intercede and
kill the call. In addition, the circuit breaker will monitor all calls to a remote resource
and if enough calls fail, the circuit break implementation will pop, failing fast and pre-
venting future calls to the failing remote resource.

5.1.3 Fallback processing

With the fallback pattern, when a remote service call fails, rather than generating an
exception, the service consumer will execute an alternative code path and try to carry
out an action through another means. This usually involves looking for data from
another data source or queueing the user’s request for future processing. The user’s
call will not be shown an exception indicating a problem, but they may be notified
that their request will have to be fulfilled at a later date.

 For instance, suppose you have an e-commerce site that monitors your user’s
behavior and tries to give them recommendations of other items they could buy. Typi-
cally, you might call a microservice to run an analysis of the user’s past behavior and
return a list of recommendations tailored to that specific user. However, if the prefer-
ence service fails, your fallback might be to retrieve a more general list of preferences
that’s based off all user purchases and is much more generalized. This data might
come from a completely different service and data source.

5.1.4 Bulkheads

The bulkhead pattern is based on a concept from building ships. With a bulkhead
design, a ship is divided into completely segregated and watertight compartments
called bulkheads. Even if the ship’s hull is punctured, because the ship is divided into
Licensed to <null>

123Why client resiliency matters
watertight compartments (bulkheads), the bulkhead will keep the water confined to
the area of the ship where the puncture occurred and prevent the entire ship from
filling with water and sinking.

 The same concept can be applied to a service that must interact with multiple
remote resources. By using the bulkhead pattern, you can break the calls to remote
resources into their own thread pools and reduce the risk that a problem with one
slow remote resource call will take down the entire application. The thread pools act
as the bulkheads for your service. Each remote resource is segregated and assigned to
the thread pool. If one service is responding slowly, the thread pool for that one type
of service call will become saturated and stop processing requests. Service calls to
other services won’t become saturated because they’re assigned to other thread pools.

5.2 Why client resiliency matters
We’ve talked about these different patterns in the abstract; however, let’s drill down to
a more specific example of where these patterns can be applied. Let’s walk through a
common scenario I’ve run into and see why client resiliency patterns such as the cir-
cuit breaker pattern are critical for implementing a service-based architecture, partic-
ularly a microservice architecture running in the cloud.

 In figure 5.2, I show a typical scenario involving the use of remote resource like a
database and remote service.

 In the scenario in figure 5.2, three applications are communicating in one fashion
or another with three different services. Applications A and B communicate directly
with Service A. Service A retrieves data from a database and calls Service B to do work
for it. Service B retrieves data from a completely different database platform and calls
out to another service, Service C, from a third-party cloud provider whose service
relies heavily on an internal Network Area Storage (NAS) device to write data to a
shared file system. In addition, Application C directly calls Service C.

 Over the weekend, a network administrator made what they thought was a small
tweak to the configuration on the NAS, as shown in bold in figure 5.2. This change
appears to work fine, but on Monday morning, any reads to a particular disk subsys-
tem start performing extremely slowly.

 The developer who wrote Service B never anticipated slowdowns occurring with
calls to Service C. They wrote their code so that the writes to their database and the
reads from the service occur within the same transaction. When Service C starts run-
ning slowly, not only does the thread pool for requests to Service C start backing up,
the number of database connections in the service container’s connection pools
become exhausted because these connections are being held open because the calls
out to Service C never complete.

 Finally, Service A starts running out of resources because it’s calling Service B,
which is running slow because of Service C. Eventually, all three applications stop
responding because they run out of resources while waiting for requests to complete.
Licensed to <null>

124 CHAPTER 5 When bad things happen: client resiliency patterns with Spring Cloud and Netflix
Figure 5.2 An application is a graph of interconnected dependencies. If you don’t manage the remote
calls between these, one poorly behaving remote resource can bring down all the services in the graph.

This whole scenario could be avoided if a circuit-breaker pattern had been imple-
mented at each point where a distributed resource had been called (either a call to
the database or a call to the service). In figure 5.2, if the call to Service C had been
implemented with a circuit breaker, then when service C started performing poorly,
the circuit breaker for that specific call to Service C would have been tripped and
failed fast without eating up a thread. If Service B had multiple endpoints, only the
endpoints that interacted with that specific call to Service C would be impacted. The
rest of Service B’s functionality would still be intact and could fulfill user requests.

Here’s where the fun begins. A small change to the
NAS causes a performance problem in Service C.
Boom! Everything goes tumbling down.

Service CService B

Service AService A uses
Data Source A to
get some data.

Service B has multiple
instances and each instance
talks to Data Source B.

Applications A and B use
Service A to do work.

Service A calls Service B
to do some work.

Application C
uses Service C.

Service B calls Service C
to do some work.

Cloud

Application A

Data Source A

Data Source B NAS (writes to
shared filesystem)

Application B Application C
Licensed to <null>

125Why client resiliency matters
 A circuit breaker acts as a middle man between the application and the remote ser-
vice. In the previous scenario, a circuit breaker implementation could have protected
Applications A, B, and C from completely crashing.

 In figure 5.3, the Service B (the client) is never going to directly invoke Service C.
Instead, when the call is made, Service B is going to delegate the actual invocation of
the service to the circuit breaker, which will take the call and wrap it in a thread (usu-
ally managed by a thread pool) that’s independent of the originating caller. By wrap-
ping the call in a thread, the client is no longer directly waiting for the call to
complete. Instead, the circuit breaker is monitoring the thread and can kill the call if
the thread runs too long.

 Three scenarios are shown in figure 5.3. In the first scenario, the happy path, the
circuit breaker will maintain a timer and if the call to the remote service completes
before the timer runs out, everything is good and Service B can continue its work. In
the partial degradation scenario, Service B will call Service C through the circuit
breaker. This time, though, Service C is running slow and the circuit breaker will kill
the connection out to the remote service if it doesn’t complete before the timer on
the thread maintained by the circuit breaker times out.

Figure 5.3 The circuit breaker trips and allows a misbehaving service call to fail quickly and gracefully.

Application A

Happy path

Microservice C

Service B

Circuit breaker

Service C

Application B

Circuit breaker, no fallback

Microservice C

Service B

Circuit breaker

Service C

Application C

Circuit breaker with a fallback

Microservice C

Service B

Fail gracefully by
falling back to
an alternative.

Recover seamlessly. Let the
occasional request through and retry.

Fail fast.

Partial degradation. Service B
receives an error immediately.

Circuit breaker

Service C
Licensed to <null>

126 CHAPTER 5 When bad things happen: client resiliency patterns with Spring Cloud and Netflix
Service B will then get an error from making the call, but Service B won’t have
resources (that is, its own thread or connection pools) tied up waiting for Service C to
complete. If the call to Service C is timed-out by the circuit breaker, the circuit
breaker will start tracking the number of failures that have occurred.

 If enough errors on the service have occurred within a certain time period, the cir-
cuit breaker will now “trip” the circuit and all calls to Service C will fail without calling
Service C.

 This tripping of the circuit allows three things to occur:

1 Service B now immediately knows there’s a problem without having to wait for a
timeout from the circuit breaker.

2 Service B can now choose to either completely fail or take action using an alter-
native set of code (a fallback).

3 Service C will be given an opportunity to recover because Service B isn’t calling
it while the circuit breaker has been tripped. This allows Service C to have
breathing room and helps prevent the cascading death that occurs when a ser-
vice degradation occurs.

Finally, the circuit breaker will occasionally let calls through to a degraded service,
and if those calls succeed enough times in a row, the circuit breaker will reset itself.

 The key thing a circuit break patterns offers is the ability for remote calls to

1 Fail fast—When a remote service is experiencing a degradation, the application
will fail fast and prevent resource exhaustion issues that normally shut down the
entire application. In most outage situations, it’s better to be partially down
rather than completely down.

2 Fail gracefully—By timing out and failing fast, the circuit breaker pattern gives
the application developer the ability to fail gracefully or seek alternative mecha-
nisms to carry out the user’s intent. For instance, if a user is trying to retrieve
data from one data source, and that data source is experiencing a service degra-
dation, then the application developer could try to retrieve that data from
another location.

3 Recover seamlessly—With the circuit-breaker pattern acting as an intermediary,
the circuit breaker can periodically check to see if the resource being requested
is back on line and re-enable access to it without human intervention.

In a large cloud-based application with hundreds of services, this graceful recovery is
critical because it can significantly cut down on the amount of time needed to restore
service and significantly lessen the risk of a tired operator or application engineer
causing greater problems by having them intervene directly (restarting a failed ser-
vice) in the restoration of the service.

5.3 Enter Hystrix
Building implementations of the circuit breaker, fallback, and bulkhead patterns
requires intimate knowledge of threads and thread management. Let’s face it, writing
Licensed to <null>

127Setting up the licensing server to use Spring Cloud and Hystrix
robust threading code is an art (which I’ve never mastered) and doing it correctly is
difficult. To implement a high-quality set of implementations for the circuit-breaker,
fallback, and bulkhead patterns would require a tremendous amount of work. Fortu-
nately, you can use Spring Cloud and Netflix’s Hystrix library to provide you a battle-
tested library that’s used daily in Netflix’s microservice architecture.

 In the next several sections of this chapter we’re going to cover how to

 Configure the licensing service’s maven build file (pom.xml) to include the
Spring Cloud/Hystrix wrappers.

 Use the Spring Cloud/Hystrix annotations to wrapper remote calls with a cir-
cuit breaker pattern.

 Customize the individual circuit breakers on a remote resource to use custom
timeouts for each call made. I’ll also demonstrate how to configure the circuit
breakers so that you control how many failures occur before a circuit breaker
“trips.”

 Implement a fallback strategy in the event a circuit breaker has to interrupt a
call or the call fails.

 Use individual thread pools in your service to isolate service calls and build
bulkheads between different remote resources being called.

5.4 Setting up the licensing server to use
Spring Cloud and Hystrix
To begin our exploration of Hystrix, you need to set up your project pom.xml to import
the Spring Hystrix dependencies. You’ll take your licensing service that we’ve been
building and modify its pom.xml by adding the maven dependencies for Hystrix:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-hystrix</artifactId>
</dependency>
<dependency>
 <groupId>com.netflix.hystrix</groupId>
 <artifactId>hystrix-javanica</artifactId>
 <version>1.5.9</version>
</dependency>

The first <dependency> tag (spring-cloud-starter-hystrix) tells Maven to pull down
the Spring Cloud Hystrix dependencies. This second <dependency> tag (hystrix-
javanica) will pull down the core Netflix Hystrix libraries. With the Maven dependen-
cies set up, you can go ahead and begin your Hystrix implementation using the licens-
ing and organization services you built in previous chapters.

NOTE You don’t have to include the hystrix-javanica dependencies
directly in the pom.xml. By default, the spring-cloud-starter-hystrix
includes a version of the hystrix-javanica dependencies. The Camden.SR5
release of the book used hystrix-javanica-1.5.6. The version of
Licensed to <null>

128 CHAPTER 5 When bad things happen: client resiliency patterns with Spring Cloud and Netflix
hystrix-javanica had an inconsistency introduced into it that caused the
Hystrix code without a fallback to throw a java.lang.reflect.
UndeclaredThrowableException instead of a com.netflix.
hystrix.exception.HystrixRuntimeException. This was a breaking
change for many developers who used older versions of Hystrix. The hystrix-
javanica libraries fixed this in later releases, so I’ve purposely used a later ver-
sion of hystrix-javanica instead of using the default version pulled in by
Spring Cloud.

The last thing that needs to be done before you can begin using Hystrix circuit break-
ers within your application code is to annotate your service’s bootstrap class with the
@EnableCircuitBreaker annotation. For example, for the licensing service, you’d
add the @EnableCircuitBreaker annotation to the licensing-service/src/
main/java/com/thoughtmechanix/licenses/Application.java class. The
following listing shows this code.

package com.thoughtmechanix.licenses

import org.springframework.cloud.client.circuitbreaker.EnableCircuitBreaker;
//Rest of imports removed for conciseness

@SpringBootApplication
@EnableEurekaClient
@EnableCircuitBreaker
public class Application {
 @LoadBalanced
 @Bean
 public RestTemplate restTemplate() {
 return new RestTemplate();
 }

 public static void main(String[] args) {
 SpringApplication.run(Application.class, args);
 }
}

NOTE If you forget to add the @EnableCircuitBreaker annotation to your
bootstrap class, none of your Hystrix circuit breakers will be active. You won’t
get any warning or error messages when the service starts up.

5.5 Implementing a circuit breaker using Hystrix
We’re going to look at implementing Hystrix in two broad categories. In the first cate-
gory, you’re going to wrap all calls to your database in the licensing and organization
service with a Hystrix circuit breaker. You’re then going to wrap the inter-service calls
between the licensing service and the organization service using Hystrix. While these

Listing 5.1 The @EnableCircuitBreaker annotation used to activate
 Hystrix in a service

Tells Spring Cloud you’re going
to use Hystrix for your service
Licensed to <null>

129Implementing a circuit breaker using Hystrix
are two different categories calls, you’ll see that the use of Hystrix will be exactly the
same. Figure 5.4 shows what remote resources you’re going to wrap with a Hystrix cir-
cuit breaker.

 Let’s start our Hystrix discussion by showing how to wrap the retrieval of licensing
service data from the licensing database using a synchronous Hystrix circuit breaker.
With a synchronous call, the licensing service will retrieve its data but will wait for the
SQL statement to complete or for a circuit-breaker time-out before continuing
processing.

 Hystrix and Spring Cloud use the @HystrixCommand annotation to mark Java
class methods as being managed by a Hystrix circuit breaker. When the Spring frame-
work sees the @HystrixCommand, it will dynamically generate a proxy that will wrap-
per the method and manage all calls to that method through a thread pool of threads
specifically set aside to handle remote calls.

Hystrix

Hystrix

Organization service

Licensing service

Retrieves data

First category: All
calls to database
wrapped with Hystrix

Second category:
Inter-service calls
wrapped with Hystrix

Retrieves data

Application A

Licensing database

Organization database

Application B

Calls service

Figure 5.4 Hystrix sits between each remote resource call and protects the client. It doesn’t
matter if the remote resource call is a database call or a REST-based service call.
Licensed to <null>

130 CHAPTER 5 When bad things happen: client resiliency patterns with Spring Cloud and Netflix
 You’re going to wrap the getLicensesByOrg() method in your licensing-
service/src/main/java/com/thoughtmechanix/licenses/services/

LicenseService.java class, as shown in the following listing.

//Imports removed for conciseness
@HystrixCommand
public List<License> getLicensesByOrg(String organizationId){
 return licenseRepository.findByOrganizationId(organizationId);
 }

NOTE If you look at the code in listing 5.2 in the source code repository,
you’ll see several more parameters on the @HystrixCommand annotation
than what’s shown in the previous listing. We’ll get into those parameters
later in the chapter. The code in listing 5.2 is using the @HystrixCommand
annotation with all its default values.

This doesn’t look like a lot of code, and it’s not, but there is a lot of functionality
inside this one annotation. With the use of the @HystrixCommand annotation, any
time the getLicensesByOrg() method is called, the call will be wrapped with a Hys-
trix circuit breaker. The circuit breaker will interrupt any call to the getLicenses-
ByOrg() method any time the call takes longer than 1,000 milliseconds.

 This code example would be boring if the database is working properly. Let’s simu-
late the getLicensesByOrg() method running into a slow database query by having
the call take a little over a second on approximately every one in three calls. The fol-
lowing listing demonstrates this.

private void randomlyRunLong(){
 Random rand = new Random();

 int randomNum = rand.nextInt((3 - 1) + 1) + 1;

 if (randomNum==3) sleep();
 }

 private void sleep(){
 try {
 Thread.sleep(11000);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }

 @HystrixCommand

Listing 5.2 Wrappering a remote resource call with a circuit breaker

Listing 5.3 Randomly timing out a call to the licensing service database

@HystrixCommand annotation is used to
wrapper the getLicenseByOrg() method

with a Hystrix circuit breaker.

The randomlyRunLong() method
gives you a one in three chance
of a database call running long.

You sleep for 11,000 milliseconds
(11 seconds). Default Hystrix behavior
is to time a call out after 1 second.
Licensed to <null>

131Implementing a circuit breaker using Hystrix
 public List<License> getLicensesByOrg(String organizationId){
 randomlyRunLong();

 return licenseRepository.findByOrganizationId(organizationId);
 }

If you hit the http://localhost/v1/organizations/e254f8c-c442-4ebe-

a82a-e2fc1d1ff78a/licenses/ endpoint enough times, you should see a timeout
error message returned from the licensing service. Figure 5.5 shows this error.

Figure 5.5 A HystrixRuntimeException is thrown when a remote call takes too long.

Now, with @HystrixCommand annotation in place, the licensing service will inter-
rupt a call out to its database if the query takes too long. If the database calls take lon-
ger than 1,000 milliseconds to execute the Hystrix code wrapping, your service call
will throw a com.nextflix.hystrix.exception.HystrixRuntimeException

exception.

5.5.1 Timing out a call to the organization microservice

The beauty of using method-level annotations for tagging calls with circuit-breaker
behavior is that it’s the same annotation whether you’re accessing a database or call-
ing a microservice.

 For instance, in your licensing service you need to look up the name of the organi-
zation associated with the license. If you want to wrap your call to the organization
Licensed to <null>

132 CHAPTER 5 When bad things happen: client resiliency patterns with Spring Cloud and Netflix
service with a circuit breaker, it’s as simple as breaking the RestTemplate call into its
own method and annotating it with the @HystrixCommand annotation:

@HystrixCommand
private Organization getOrganization(String organizationId) {
 return organizationRestClient.getOrganization(organizationId);
}

NOTE While using the @HystrixCommand is easy to implement, you do need
to be careful about using the default @HystrixCommand annotation with no
configuration on the annotation. By default, when you specify a @Hystrix-
Command annotation without properties, the annotation will place all remote
service calls under the same thread pool. This can introduce problems in
your application. Later in the chapter when we talk about implementing the
bulkhead pattern, we’ll show you how to segregate these remote service calls
into their own thread pools and configure the behavior of the thread pools to
be independent of one another.

5.5.2 Customizing the timeout on a circuit breaker

One of the first questions I often run into when working with new developers and Hys-
trix is how they can customize the amount of time before a call is interrupted by
Hystrix. This is easily accomplished by passing additional parameters into the
@HystrixCommand annotation. The following listing demonstrates how to customize
the amount of time Hystrix waits before timing out a call.

@HystrixCommand(
 commandProperties=

{@HystrixProperty(
 name="execution.isolation.thread.timeoutInMilliseconds",
 value="12000")})
public List<License> getLicensesByOrg(String organizationId){
 randomlyRunLong();

 return licenseRepository.findByOrganizationId(organizationId);
}

Hystrix allows you to customize the behavior of the circuit breaker through the
commandProperties attribute. The commandProperties attribute accepts an array
of HystrixProperty objects that can pass in custom properties to configure the Hys-
trix circuit breaker. In listing 5.4, you use the execution.isolation.thread
.timeoutInMilliseconds property to set the maximum timeout a Hystrix call will
wait before failing to be 12 seconds.

Listing 5.4 Customizing the time out on a circuit breaker call

The commandProperties attribute lets you provide
additional properties to customize Hystrix.

The execution.isolation.thread.timeoutInMilliseconds
is used to set the length of the timeout (in

milliseconds) of the circuit breaker.
Licensed to <null>

133Fallback processing
 Now if you rebuild and rerun the code example, you’ll never get a timeout error
because your artificial timeout on the call is 11 seconds while your @HystrixCommand
annotation is now configured to only time out after 12 seconds.

5.6 Fallback processing
Part of the beauty of the circuit breaker pattern is that because a “middle man” is
between the consumer of a remote resource and the resource itself, you have an
opportunity for the developer to intercept a service failure and choose an alternative
course of action to take.

 In Hystrix, this is known as a fallback strategy and is easily implemented. Let’s see
how to build a simple fallback strategy for your licensing database that simply returns
a licensing object that says no licensing information is currently available. The follow-
ing listing demonstrates this.

@HystrixCommand(fallbackMethod = "buildFallbackLicenseList")
 public List<License> getLicensesByOrg(String organizationId){
 randomlyRunLong();

 return licenseRepository.findByOrganizationId(organizationId);
 }

private List<License> buildFallbackLicenseList(String organizationId){
 List<License> fallbackList = new ArrayList<>();
 License license = new License()
 .withId("0000000-00-00000")
 .withOrganizationId(organizationId)
 .withProductName(
 "Sorry no licensing information currently available");

On service timeouts
It should be obvious that I’m using a circuit breaker timeout of 12 seconds as a
teaching example. In a distributed environment, I often get nervous if I start hearing
comments from development teams that a 1 second timeout on remote service calls
is too low because their service X takes on average 5-6 seconds.

This usually tells me that unresolved performance problems exist with the service
being called. Avoid the temptation to increase the default timeout on Hystrix calls
unless you absolutely cannot resolve a slow running service call.

If you do have a situation where part of your service calls are going to take longer
than other service calls, definitely look at segregating these service calls into sepa-
rate thread pools.

Listing 5.5 Implementing a fallback in Hystrix

The fallbackMethod attribute defines a single function in your
class that will be called if the call from Hystrix fails.

In the fallback
method you return a

hard-coded value.
Licensed to <null>

134 CHAPTER 5 When bad things happen: client resiliency patterns with Spring Cloud and Netflix
 fallbackList.add(license);
 return fallbackList;
}

NOTE In the source code from the GitHub repository, I comment out the
fallbackMethod line so that you can see the service call randomly fail. To
see the fallback code in listing 5.5 in action you’ll need to uncomment out
the fallbackMethod attribute. Otherwise, you will never see the fallback
actually being invoked.

To implement a fallback strategy with Hystrix you have to do two things. First, you
need to add an attribute called fallbackMethod to the @HystrixCommand annota-
tion. This attribute will contain the name of a method that will be called when Hystrix
has to interrupt a call because it’s taking too long.

 The second thing you need to do is define a fallback method to be executed. This
fallback method must reside in the same class as the original method that was pro-
tected by the @HystrixCommand. The fallback method must have the exact same
method signature as the originating function as all of the parameters passed into the
original method protected by the @HystrixCommand will be passed to the fallback.

 In the example in listing 5.5, the fallback method buildFallbackLicense-
List() is simply constructing a single License object containing dummy informa-
tion. You could have your fallback method read this data from an alternative data
source, but for demonstration purposes you’re going to construct a list that would
have been returned by your original function call.

On fallbacks
The fallback strategy works extremely well in situations where your microservice is
retrieving data and the call fails. In one organization I worked at, we had customer
information stored in an operational data store (ODS) and also summarized in a data
warehouse.

Our happy path was to always retrieve the most recent data and calculate summary
information for it on the fly. However, after a particularly nasty outage where a slow
database connection took down multiple services, we decided to protect the service
call that retrieved and summarized the customer’s information with a Hystrix fallback
implementation. If the call to the ODS failed due to a performance problem or an error,
we used a fallback to retrieve the summarized data from our data warehouse tables.

Our business team decided that giving the customer’s older data was preferable to
having the customer see an error or have the entire application crash. The key when
choosing whether to use a fallback strategy is the level of tolerance your customers
have to the age of their data and how important it is to never let them see the appli-
cation having problems.

Here are a few things to keep in mind as you determine whether you want to imple-
ment a fallback strategy:

1 Fallbacks are a mechanism to provide a course of action when a resource
has timed out or failed. If you find yourself using fallbacks to catch a timeout
Licensed to <null>

135Fallback processing
Now that you have your fallback in place, go ahead and call your endpoint again. This
time when you hit it and encounter a timeout error (remember you have a one in 3
chance) you shouldn’t get an exception back from the service call, but instead have
the dummy license values returned.

Figure 5.6 Your service invocation using a Hystrix fallback

exception and then doing nothing more than logging the error, then you should
probably use a standard try.. catch block around your service invocation,
catch the HystrixRuntimeException, and put the logging logic in the
try..catch block.

2 Be aware of the actions you’re taking with your fallback functions. If you call
out to another distributed service in your fallback service you may need to
wrap the fallback with a @HystrixCommand annotation. Remember, the
same failure that you’re experiencing with your primary course of action might
also impact your secondary fallback option. Code defensively. I have been bit-
ten hard when I failed to take this into account when using fallbacks.

Results of fallback code
Licensed to <null>

136 CHAPTER 5 When bad things happen: client resiliency patterns with Spring Cloud and Netflix
5.7 Implementing the bulkhead pattern
In a microservice-based application you’ll often need to call multiple microservices to
complete a particular task. Without using a bulkhead pattern, the default behavior for
these calls is that the calls are executed using the same threads that are reserved for
handling requests for the entire Java container. In high volumes, performance prob-
lems with one service out of many can result in all of the threads for the Java container
being maxed out and waiting to process work, while new requests for work back up.
The Java container will eventually crash. The bulkhead pattern segregates remote
resource calls in their own thread pools so that a single misbehaving service can be
contained and not crash the container.

 Hystrix uses a thread pool to delegate all requests for remote services. By default,
all Hystrix commands will share the same thread pool to process requests. This thread
pool will have 10 threads in it to process remote service calls and those remote services
calls could be anything, including REST-service invocations, database calls, and so on.
Figure 5.7 illustrates this.

Figure 5.7 Default Hystrix thread pool shared across multiple resource types

This model works fine when you have a small number of remote resources being
accessed within an application and the call volumes for the individual services are rel-
atively evenly distributed. The problem is if you have services that have far higher vol-
umes or longer completion times then other services, you can end up introducing
thread exhaustion into your Hystrix thread pools because one service ends up domi-
nating all of the threads in the default thread pool.

Hystrix worker threads

All remote resource
calls are in a single
shared thread pool.

A single slow-performing
service can saturate the
Hystrix thread pool and
cause resource exhaustion
in the Java container
hosting the service.

Database BService A Service C

Hystrix-wrapped
resource call

Hystrix-wrapped
resource call

Hystrix-wrapped
resource call

Default Hystrix thread pool
Licensed to <null>

137Implementing the bulkhead pattern
Figure 5.8 Hystrix command tied to segregated thread pools

Fortunately, Hystrix provides an easy-to-use mechanism for creating bulkheads
between different remote resource calls. Figure 5.8 shows what Hystrix managed
resources look like when they’re segregated into their own “bulkheads.”

 To implement segregated thread pools, you need to use additional attributes
exposed through the @HystrixCommand annotation. Let’s look at some code that will

1 Set up a separate thread pool for the getLicensesByOrg() call
2 Set the number of threads in the thread pool
3 Set the queue size for the number of requests that can queue if the individual

threads are busy

The following listing demonstrates how to set up a bulkhead around all calls sur-
rounding the look-up of licensing data from our licensing service.

@HystrixCommand(fallbackMethod = "buildFallbackLicenseList",
 threadPoolKey = "licenseByOrgThreadPool",
 threadPoolProperties =
 {@HystrixProperty(name = "coreSize",value="30"),
 @HystrixProperty(name="maxQueueSize", value="10")}
)

public List<License> getLicensesByOrg(String organizationId){
 return licenseRepository.findByOrganizationId(organizationId);
)

Listing 5.6 Creating a bulkhead around the getLicensesByOrg() method

Each remote resource call is placed in
its own thread pool. Each thread pool
has a maximum number of threads
that can be used to process a request.

A poor-performing service will only
impact other service calls in the
same thread pool, thus limiting
the damage the call can do.

Database BService A Service C

Hystrix-wrapped
resource call

Hystrix thread group A

Hystrix-wrapped
resource call

Hystrix thread group B

Hystrix-wrapped
resource call

Hystrix thread group C

The threadPoolKey attribute defines
the unique name of thread pool.

The threadPoolProperties attribute lets you define
and customize the behavior of the threadPool.

The coreSize attribute lets you
define the maximum number of
threads in the thread pool.

 The maxQueueSize lets you define a queue
that sits in front of your thread pool and

that can queue incoming requests.
Licensed to <null>

138 CHAPTER 5 When bad things happen: client resiliency patterns with Spring Cloud and Netflix
The first thing you should notice is that we’ve introduced a new attribute, thread-
Poolkey, to your @HystrixCommand annotation. This signals to Hystrix that you
want to set up a new thread pool. If you set no further values on the thread pool,
Hystrix sets up a thread pool keyed off the name in the threadPoolKey attribute, but
will use all default values for how the thread pool is configured.

 To customize your thread pool, you use the threadPoolProperties attribute on
the @HystrixCommand. This attribute takes an array of HystrixProperty objects.
These HystrixProperty objects can be used to control the behavior of the thread
pool. You can set the size of the thread pool by using the coreSize attribute.

 You can also set up a queue in front of the thread pool that will control how many
requests will be allowed to back up when the threads in the thread pool are busy. This
queue size is set by the maxQueueSize attribute. Once the number of requests
exceeds the queue size, any additional requests to the thread pool will fail until there
is room in the queue.

 Note two things about the maxQueueSize attribute. First, if you set the value to -1,
a Java SynchronousQueue will be used to hold all incoming requests. A synchronous
queue will essentially enforce that you can never have more requests in process then
the number of threads available in the thread pool. Setting the maxQueueSize to a
value greater than one will cause Hystrix to use a Java LinkedBlockingQueue. The
use of a LinkedBlockingQueue allows the developer to queue up requests even if
all threads are busy processing requests.

 The second thing to note is that the maxQueueSize attribute can only be set when
the thread pool is first initialized (for example, at startup of the application). Hystrix
does allow you to dynamically change the size of the queue by using the queue-
SizeRejectionThreshold attribute, but this attribute can only be set when the
maxQueueSize attribute is a value greater than 0.

 What’s the proper sizing for a custom thread pool? Netflix recommends the follow-
ing formula:

(requests per second at peak when the service is healthy * 99th percentile latency in
seconds) + small amount of extra threads for overhead

You often don’t know the performance characteristics of a service until it has been
under load. A key indicator that the thread pool properties need to be adjusted is
when a service call is timing out even if the targeted remote resource is healthy.

5.8 Getting beyond the basics; fine-tuning Hystrix
At this point we’ve looked at the basic concepts of setting up a circuit breaker and
bulkhead pattern using Hystrix. We’re now going to go through and see how to really
customize the behavior of the Hystrix’s circuit breaker. Remember, Hystrix does more
than time out long-running calls. Hystrix will also monitor the number of times a call
fails and if enough calls fail, Hystrix will automatically prevent future calls from reach-
ing the service by failing the call before the requests ever hit the remote resource.
Licensed to <null>

139Getting beyond the basics; fine-tuning Hystrix
 There are two reasons for this. First, if a remote resource is having performance
problems, failing fast will prevent the calling application from having to wait for a call
to time out. This significantly reduces the risk that the calling application or service
will experience its own resource exhaustion problems and crashes. Second, failing fast
and preventing calls from service clients will help a struggling service keep up with its
load and not crash completely under the load. Failing fast gives the system experienc-
ing performance degradation time to recover.

 To understand how to configure the circuit breaker in Hystrix, you need to first
understand the flow of how Hystrix determines when to trip the circuit breaker. Fig-
ure 5.9 shows the decision process used by Hystrix when a remote resource call fails.

Whenever a Hystrix command encounters an error with a service, it will begin a 10-
second timer that will be used to examine how often the service call is failing. This 10-
second window is configurable. The first thing Hystrix does is look at the number of
calls that have happened within the 10-second window. If the number of calls is less
than a minimum number of calls that need to occur within the window, then Hystrix
will not take action even if several of the calls failed. For example, the default number
of calls that need to occur before Hystrix will even consider action within the
10-second window is 20. If 15 of those calls fail within a 10-second period, not enough

1. Has the
minimum number

of requests
failed?

2. Has the
error threshold

been
reached?

3. Is
the problem

still occuring with
the remote

service
call?

10-second window

Yes

Yes

Yes

No

No

No

No problems
encountered; call
goes to remote

resource

Issue with
remote resource
resolved; call can

go through

Problem
starts

Circuit
breaker
tripped

5-second window

Figure 5.9 Hystrix goes through a series of checks to determine whether or not to trip the circuit
breaker.
Licensed to <null>

140 CHAPTER 5 When bad things happen: client resiliency patterns with Spring Cloud and Netflix
of the calls have occurred for them to “trip” the circuit breaker even if all 15 calls
failed. Hystrix will continue letting calls go through to the remote service.

 When the minimum number of remote resource calls has occurred within the 10-
second window, Hystrix will begin looking at the percentage of overall failures that
have occurred. If the overall percentage of failures is over the threshold, Hystrix will
trigger the circuit breaker and fail almost all future calls. As we’ll discuss shortly, Hys-
trix will let part of the calls through to “test” and see if the service is backing up. The
default value for the error threshold is 50%.

 If that percentage has been exceeded, Hystrix will “trip” the circuit breaker and
prevent further calls from hitting the remote resource. If that percentage of remote
calls hasn’t been triggered and the 10-second window has been passed, Hystrix will
reset the circuit breaker statistics.

 When Hystrix has “tripped” the circuit breaker on a remote call, it will try to start a
new window of activity. Every five seconds (this value is configurable), Hystrix will let a
call through to the struggling service. If the call succeeds, Hystrix will reset the circuit
breaker and start letting calls through again. If the call fails, Hystrix will keep the cir-
cuit breaker closed and try again in another five seconds.

 Based on this, you can see that there are five attributes you can use to customize
the circuit breaker behavior. The @HystrixCommand annotation exposes these five
attributes via the commandPoolProperties attribute. While the threadPoolProp-
erties attribute allows you to set the behavior of the underlying thread pool used in
the Hystrix command, the commandPoolProperties attribute allows you to custom-
ize the behavior of the circuit breaker associated with Hystrix command. The follow-
ing listing shows the names of the attributes along with how to set values in each of
them.

@HystrixCommand(
 fallbackMethod = "buildFallbackLicenseList",
 threadPoolKey = "licenseByOrgThreadPool",
 threadPoolProperties ={

 @HystrixProperty(name = "coreSize",value="30"),
 @HystrixProperty(name="maxQueueSize"value="10"),
 },
 commandPoolProperties ={
 @HystrixProperty(
 name="circuitBreaker.requestVolumeThreshold",
 ➥ value="10"),
 ➥ @HystrixProperty(
 name="circuitBreaker.errorThresholdPercentage",
 ➥ value="75"),

 @HystrixProperty(
 name="circuitBreaker.sleepWindowInMilliseconds",
 value="7000"),
 ➥ @HystrixProperty(

Listing 5.7 Configuring the behavior of a circuit breaker
Licensed to <null>

141Getting beyond the basics; fine-tuning Hystrix
 name="metrics.rollingStats.timeInMilliseconds",
 ➥ value="15000")
 @HystrixProperty(
 name="metrics.rollingStats.numBuckets",
 ➥ value="5")}
)
 public List<License> getLicensesByOrg(String organizationId){
 ➥ logger.debug("getLicensesByOrg Correlation id: {}",
 ➥ UserContextHolder
 .getContext()
 .getCorrelationId());
 randomlyRunLong();

 return licenseRepository.findByOrganizationId(organizationId);
 }

The first property, circuitBreaker.requestVolumeTheshold, controls the
amount of consecutive calls that must occur within a 10-second window before Hystrix
will consider tripping the circuit breaker for the call. The second property, circuit-
Breaker.errorThresholdPercentage, is the percentage of calls that must fail
(due to timeouts, an exception being thrown, or a HTTP 500 being returned) after the
circuitBreaker.requestVolumeThreshold value has been passed before the cir-
cuit breaker it tripped. The last property in the previous code example, circuit-
Breaker.sleepWindowInMilliseconds, is the amount of time Hystrix will sleep
once the circuit breaker is tripped before Hystrix will allow another call through to
see if the service is healthy again.

 The last two Hystrix properties (metrics.rollingStats.timeInMillisec-
onds and metrics.rollingStats.numBuckets) are named a bit differently than
the previous properties, but they still control the behavior of the circuit breaker. The
first property, metrics.rollingStats.timeInMilliseconds, is used to control
the size of the window that will be used by Hystrix to monitor for problems with a ser-
vice call. The default value for this is 10,000 milliseconds (that is, 10 seconds).

 The second property, metrics.rollingStats.numBuckets, controls the num-
ber of times statistics are collected in the window you’ve defined. Hystrix collects met-
rics in buckets during this window and checks the stats in those buckets to determine
if the remote resource call is failing. The number of buckets defined must evenly
divide into the overall number of milliseconds set for rollingStatus.inMilli-
seconds stats. For example, in your custom settings in the previous listing, Hystrix
will use a 15-second window and collect statistics data into five buckets of three sec-
onds in length.

NOTE The smaller the statistics window you check in and the greater the
number of buckets you keep within the window will drive up CPU and mem-
ory utilization on a high-volume service. Be aware of this and fight the tempta-
tion to set the metrics collection windows and buckets to be fine-grained until
you need that level of visibility.
Licensed to <null>

142 CHAPTER 5 When bad things happen: client resiliency patterns with Spring Cloud and Netflix
5.8.1 Hystrix configuration revisited

The Hystrix library is extremely configurable and lets you tightly control the behavior
of the circuit breaker and bulkhead patterns you define with it. By modifying the con-
figuration of a Hystrix circuit breaker, you can control the amount of time Hystrix will
wait before timing out a remote call. You can also control the behavior of when a Hys-
trix circuit breaker will trip and when Hystrix tries to reset the circuit breaker.

 With Hystrix you can also fine-tune your bulkhead implementations by defining
individual thread groups for each remote service call and then configure the number
of threads associated with each thread group. This allows you to fine-tune your remote
service calls because certain calls will have higher volumes then others, while other
remote resource calls will have higher volumes.

 The key thing to remember as you look at configuring your Hystrix environment
is that you have three levels of configuration with Hystrix:

1 Default for the entire application
2 Default for the class
3 Thread-pool level defined within the class

Every Hystrix property has values set by default that will be used by every @Hystrix-
Command annotation in the application unless they’re set at the Java class level or over-
ridden for individual Hystrix thread pools within a class.

 Hystrix does let you set default parameters at the class level so that all Hystrix com-
mands within a specific class share the same configurations. The class-level properties
are set via a class-level annotation called @DefaultProperties. For example, if you
wanted all the resources within a specific class to have a timeout of 10 seconds, you
could set the @DefaultProperties in the following manner:

@DefaultProperties(
 commandProperties = {
 @HystrixProperty(
 ➥ name = "execution.isolation.thread.timeoutInMilliseconds",
 value = "10000")}
class MyService { ... }

Unless explicitly overridden at a thread-pool level, all thread pools will inherit either
the default properties at the application level or the default properties defined in the
class. The Hystrix threadPoolProperties and commandProperties are also tied
to the defined command key.

NOTE For the coding examples, I’ve hard-coded all the Hystrix values in the
application code. In a production system, the Hystrix data that’s most likely to
need to be tweaked (timeout parameters, thread pool counts) would be exter-
nalized to Spring Cloud Config. This way if you need to change the parame-
ter values, you could change the values and then restart the service instances
without having to recompile and redeploy the application.
Licensed to <null>

143Getting beyond the basics; fine-tuning Hystrix
For individual Hystrix pools, I will keep the configuration as close to the code as possi-
ble and place the thread-pool configuration right in the @HystrixCommand annota-
tion. Table 5.1 summarizes all of the configuration values used to set up and configure
our @HystrixCommand annotations.

Table 5.1 Configuration Values for @HystrixCommand Annotations

Property Name
Default
Value

Description

fallbackMethod None Identifies the method within the class that will be called if
the remote call times out. The callback method must be in
the same class as the @HystrixCommand annotation
and must have the same method signature as the calling
class. If no value, an exception will be thrown by Hystrix.

threadPoolKey None Gives the @HystrixCommand a unique name and creates
a thread pool that is independent of the default thread
pool. If no value is defined, the default Hystrix thread pool
will be used.

threadPoolProperties None Core Hystrix annotation attribute that’s used to configure
the behavior of a thread pool.

coreSize 10 Sets the size of the thread pool.

maxQueueSize -1 Maximum queue size that will set in front of the thread
pool. If set to -1, no queue is used and instead Hystrix will
block until a thread becomes available for processing.

circuitBreaker.request-
VolumeThreshold

20 Sets the minimum number of requests that must be pro-
cessed within the rolling window before Hystrix will even
begin examining whether the circuit breaker will be tripped.

Note: This value can only be set with the
commandPoolProperties attribute.

circuitBreaker.error-
ThresholdPercentage

50 The percentage of failures that must occur within the roll-
ing window before the circuit breaker is tripped.

Note: This value can only be set with the
commandPoolProperties attribute.

circuitBreaker.sleep-
WindowInMilliseconds

5,000 The number of milliseconds Hystrix will wait before trying a
service call after the circuit breaker has been tripped.
Note: This value can only be set with the
commandPoolProperties attribute.

metricsRollingStats.
timeInMilliseconds

10,000 The number of milliseconds Hystrix will collect and monitor
statistics about service calls within a window.

metricsRollingStats
.numBuckets

10 The number of metrics buckets Hystrix will maintain within
its monitoring window. The more buckets within the moni-
toring window, the lower the level of time Hystrix will moni-
tor for faults within the window.
Licensed to <null>

144 CHAPTER 5 When bad things happen: client resiliency patterns with Spring Cloud and Netflix
5.9 Thread context and Hystrix
When an @HystrixCommand is executed, it can be run with two different isolation
strategies: THREAD and SEMAPHORE. By default, Hystrix runs with a THREAD isolation.
Each Hystrix command used to protect a call runs in an isolated thread pool that
doesn’t share its context with the parent thread making the call. This means Hystrix
can interrupt the execution of a thread under its control without worrying about
interrupting any other activity associated with the parent thread doing the original
invocation.

 With SEMAPHORE-based isolation, Hystrix manages the distributed call protected
by the @HystrixCommand annotation without starting a new thread and will interrupt
the parent thread if the call times out. In a synchronous container server environment
(Tomcat), interrupting the parent thread will cause an exception to be thrown that
cannot be caught by the developer. This can lead to unexpected consequences for the
developer writing the code because they can’t catch the thrown exception or do any
resource cleanup or error handling.

 To control the isolation setting for a command pool, you can set a command-
Properties attribute on your @HystrixCommand annotation. For instance, if you
wanted to set the isolation level on a Hystrix command to use a SEMAPHORE isolation,
you’d use

@HystrixCommand(
commandProperties = {
 @HystrixProperty(

 name="execution.isolation.strategy", value="SEMAPHORE")})

NOTE By default, the Hystrix team recommends you use the default isolation
strategy of THREAD for most commands. This keeps a higher level of isolation
between you and the parent thread. THREAD isolation is heavier than using
the SEMAPHORE isolation. The SEMAPHORE isolation model is lighter-weight
and should be used when you have a high-volume on your services and are
running in an asynchronous I/O programming model (you are using an asyn-
chronous I/O container such as Netty).

5.9.1 ThreadLocal and Hystrix

Hystrix, by default, will not propagate the parent thread’s context to threads managed
by a Hystrix command. For example, any values set as ThreadLocal values in the par-
ent thread will not be available by default to a method called by the parent thread and
protected by the @HystrixCommand object. (Again, this is assuming you are using a
THREAD isolation level.)

 This can be a little obtuse, so let’s see a concrete example. Often in a REST-based
environment you are going to want to pass contextual information to a service call
that will help you operationally manage the service. For example, you might pass a
correlation ID or authentication token in the HTTP header of the REST call that can
then be propagated to any downstream service calls. The correlation ID allows you to
Licensed to <null>

145Thread context and Hystrix
have a unique identifier that can be traced across multiple service calls in a single
transaction.

 To make this value available anywhere in your service call, you might use a Spring Fil-
ter class to intercept every call into your REST service and retrieve this information from
the incoming HTTP request and store this contextual information in a custom User-
Context object. Then, anytime your code needs to access this value in your REST service
call, your code can retrieve the UserContext from the ThreadLocal storage variable
and read the value. The following listing shows an example Spring Filter that you can
use in your licensing service. You can find the code at licensingservice/src/main/
java/com/thoughtmechanix/licenses/utils/UserContextFilter.java.

package com.thoughtmechanix.licenses.utils;

//Some code removed for conciseness
@Component
public class UserContextFilter implements Filter {
 private static final
 ➥ Logger logger =
 ➥ LoggerFactory.getLogger(UserContextFilter.class);
 @Override
 public void doFilter(
ServletRequest servletRequest,

➥ ServletResponse servletResponse,
➥ FilterChain filterChain)
 throws IOException, ServletException {
 HttpServletRequest httpServletRequest =
(HttpServletRequest) servletRequest;

 UserContextHolder
 .getContext()
 .setCorrelationId(
 ➥ httpServletRequest.getHeader(UserContext.CORRELATION_ID));

UserContextHolder
 .getContext()
 .setUserId(
 httpServletRequest.getHeader(UserContext.USER_ID));
 UserContextHolder
 .getContext()
 .setAuthToken(
 httpServletRequest.getHeader(UserContext.AUTH_TOKEN));
 UserContextHolder
 .getContext()
 .setOrgId(
 httpServletRequest.getHeader(UserContext.ORG_ID));

 filterChain.doFilter(httpServletRequest, servletResponse);
 }
}

Listing 5.8 The UserContextFilter parsing the HTTP header and retrieving data

Retrieving values set in the
HTTP header of the call into a
UserContext, which is stored

in UserContextHolder
Licensed to <null>

146 CHAPTER 5 When bad things happen: client resiliency patterns with Spring Cloud and Netflix
The UserContextHolder class is used to store the UserContext in a ThreadLocal
class. Once it’s stored in the ThreadLocal storage, any code that’s executed for a
request will use the UserContext object stored in the UserContextHolder. The
UserContextHolder class is shown in the following listing. This class is found at
licensing-service/src/main/java/com/thoughtmechanix/licenses/utils

/UserContextHolder.java.

public class UserContextHolder {
 private static final ThreadLocal<UserContext> userContext
 = new ThreadLocal<UserContext>();

 public static final UserContext getContext(){
 UserContext context = userContext.get();

 if (context == null) {
 context = createEmptyContext();
 userContext.set(context);

 }
 return userContext.get();
 }

 public static final void setContext(UserContext context) {
 Assert.notNull(context,

 "Only non-null UserContext instances are permitted");
 userContext.set(context);
 }

 public static final UserContext createEmptyContext(){
 return new UserContext();
 }
}

At this point you can add a couple of log statements to your licensing service. You’ll
add logging to the following licensing service classes and methods:

 com/thoughtmechanix/licenses/utils/UserContextFilter.java

doFilter() method
 com/thoughtmechanix/licenses/controllers/LicenseService-

Controller.java getLicenses() method
 com/thoughtmechanix/licenses/services/LicenseService.java

getLicensesByOrg() method. This method is annotated with a @Hystrix-
Command.

Next you’ll call your service passing in a correlation ID using an HTTP header called
tmx-correlation-id and a value of TEST-CORRELATION-ID. Figure 5.10 shows a
HTTP GET call to http://localhost:8080/v1/organizations/e254f8c-c442-4ebe-a82a-
e2fc1d1ff78a/licenses/ in Postman.

Listing 5.9 All UserContext data is managed by UserContextHolder

 The UserContext is
stored in a static

ThreadLocal variable.

The getContext() method will
retrieve the UserContext
object for consumption.
Licensed to <null>

147Thread context and Hystrix
Figure 5.10 Adding a correlation ID to the licensing service call’s HTTP header

Once this call is submitted, you should see three log messages writing out the passed-
in correlation ID as it flows through the UserContext, LicenseServiceCon-
troller, and LicenseServer classes:

UserContext Correlation id: TEST-CORRELATION-ID
LicenseServiceController Correlation id: TEST-CORRELATION-ID
LicenseService.getLicenseByOrg Correlation:

As expected, once the call hits the Hystrix protected method on License-
Service.getLicensesByOrder(), you’ll get no value written out for the correla-
tion ID. Fortunately, Hystrix and Spring Cloud offer a mechanism to propagate the
parent thread’s context to threads managed by the Hystrix Thread pool. This mecha-
nism is called a HystrixConcurrencyStrategy.

5.9.2 The HystrixConcurrencyStrategy in action

Hystrix allows you to define a custom concurrency strategy that will wrap your Hystrix
calls and allows you to inject any additional parent thread context into the threads
managed by the Hystrix command. To implement a custom HystrixConcurrency-
Strategy you need to carry out three actions:

1 Define your custom Hystrix Concurrency Strategy class
2 Define a Java Callable class to inject the UserContext into the Hystrix

Command
3 Configure Spring Cloud to use your custom Hystrix Concurrency Strategy

All the examples for the HystrixConcurrencyStrategy can be found in the licens-
ing-service/src/main/java/com/thoughtmechanix/licenses/hystrix package.

DEFINE YOUR CUSTOM HYSTRIX CONCURRENCY STRATEGY CLASS
The first thing you need to do is define your HystrixConcurrencyStrategy. By
default, Hystrix only allows you to define one HystrixConcurrencyStrategy for
an application. Spring Cloud already defines a concurrency strategy used to handle
propagating Spring security information. Fortunately, Spring Cloud allows you to
chain together Hystrix concurrency strategies so you can define and use your own
concurrency strategy by “plugging” it into the Hystrix concurrency strategy.
Licensed to <null>

148 CHAPTER 5 When bad things happen: client resiliency patterns with Spring Cloud and Netflix
 Our implementation of a Hystrix concurrency strategy can be found in the licens-
ing services hystrix package and is called ThreadLocalAwareStrategy.java.
The following listing shows the code for this class.

package com.thoughtmechanix.licenses.hystrix;

//imports removed for conciseness
public class ThreadLocalAwareStrategy extends HystrixConcurrencyStrategy{
 private HystrixConcurrencyStrategy existingConcurrencyStrategy;

 public ThreadLocalAwareStrategy(
 HystrixConcurrencyStrategy existingConcurrencyStrategy) {

 this.existingConcurrencyStrategy = existingConcurrencyStrategy;
 }

 @Override
 public BlockingQueue<Runnable> getBlockingQueue(int maxQueueSize){
 return existingConcurrencyStrategy != null
 ? existingConcurrencyStrategy.getBlockingQueue(maxQueueSize)
 : super.getBlockingQueue(maxQueueSize);
 }

 @Override
 public <T> HystrixRequestVariable<T> getRequestVariable(
 HystrixRequestVariableLifecycle<T> rv)
 {//Code removed for conciseness }

 //Code removed for conciseness
 @Override
 public ThreadPoolExecutor getThreadPool(
 ➥ HystrixThreadPoolKey threadPoolKey,
 HystrixProperty<Integer> corePoolSize,
 HystrixProperty<Integer> maximumPoolSize,
 HystrixProperty<Integer> keepAliveTime,
 TimeUnit unit,
 BlockingQueue<Runnable> workQueue)
 {//code removed for conciness}

@Override
public <T> Callable<T> wrapCallable(Callable<T> callable) {
return existingConcurrencyStrategy != null
 ? existingConcurrencyStrategy.wrapCallable(
 ➥ new DelegatingUserContextCallable<T>(
 callable,
 ➥ UserContextHolder.getContext()))
 : super.wrapCallable(
 new DelegatingUserContextCallable<T>(
 callable,
 UserContextHolder.getContext()));
 }
}

Listing 5.10 Defining your own Hystrix concurrency strategy

Extend the base
HystrixConcurrencyStrategy class.

Spring Cloud already has a concurrency class defined.
Pass the existing concurrency strategy into the class

constructor of your HystrixConcurrencyStrategy.

Several methods need to be
overridden. Either call the

existingConcurrencyStrategy method
implementation or call the base

HystrixConcurrencyStrategy.

Inject your Callable
implementation that will
set the UserContext.
Licensed to <null>

149Thread context and Hystrix

The c
is inv
the m
prote
@Hy
anno
Note a couple of things in the class implementation in listing 5.10. First, because
Spring Cloud already defines a HystrixConcurrencyStrategy, every method that
could be overridden needs to check whether an existing concurrency strategy is pres-
ent and then either call the existing concurrency strategy’s method or the base Hys-
trix concurrency strategy method. You have to do this as a convention to ensure that
you properly invoke the already-existing Spring Cloud’s HystrixConcurrency-
Strategy that deals with security. Otherwise, you can have nasty behavior when try-
ing to use Spring security context in your Hystrix protected code.

 The second thing to note is the wrapCallable() method in listing 5.11. In this
method, you pass in Callable implementation, DelegatingUserContext-

Callable, that will be used to set the UserContext from the parent thread execut-
ing the user’s REST service call to the Hystrix command thread protecting the method
that’s doing the work within.

DEFINE A JAVA CALLABLE CLASS TO INJECT THE USERCONTEXT INTO THE HYSTRIX COMMAND

The next step in propagating the thread context of the parent thread to your Hystrix
command is to implement the Callable class that will do the propagation. For this
example, this call is in the hystrix package and is called DelegatingUser-
ContextCallable.java. The following listing shows the code from this class.

package com.thoughtmechanix.licenses.hystrix;

//import remove concisesness
public final class DelegatingUserContextCallable<V>
 implements Callable<V> {
 private final Callable<V> delegate;
 private UserContext originalUserContext;

 public DelegatingUserContextCallable(
 Callable<V> delegate,
 UserContext userContext) {
 this.delegate = delegate;
 this.originalUserContext = userContext;
 }

 public V call() throws Exception {
 UserContextHolder.setContext(originalUserContext);

 try {
 return delegate.call();
 }
 finally {
 this.originalUserContext = null;
 }
 }

 public static <V> Callable<V> create(Callable<V> delegate,
 UserContext userContext) {
 return new DelegatingUserContextCallable<V>(delegate, userContext);
 }
}

Listing 5.11 Propagating the UserContext with DelegatingUserContextCallable.java

Custom Callable class will be
passed the original Callable

class that will invoke your
Hystrix protected code and

UserContext coming in from
the parent thread

all() function
oked before
ethod
cted by the
strixCommand
tation.

The UserContext is set. The
ThreadLocal variable that stores

the UserContext is associated
with the thread running the

Hystrix protected method.

Once the UserContext is set invoke the
call() method on the Hystrix protected
method; for instance, your
LicenseServer.getLicenseByOrg() method.
Licensed to <null>

150 CHAPTER 5 When bad things happen: client resiliency patterns with Spring Cloud and Netflix
When a call is made to a Hystrix protected method, Hystrix and Spring Cloud will
instantiate an instance of the DelegatingUserContextCallable class, passing in
the Callable class that would normally be invoked by a thread managed by a Hystrix
command pool. In the previous listing, this Callable class is stored in a Java property
called delegate. Conceptually, you can think of the delegate property as being the
handle to the method protected by a @HystrixCommand annotation.

 In addition to the delegated Callable class, Spring Cloud is also passing along
the UserContext object off the parent thread that initiated the call. With these two
values set at the time the DelegatingUserContextCallable instance is created,
the real action will occur in the call() method of your class.

 The first thing to do in the call() method is set the UserContext via the User-
ContextHolder.setContext() method. Remember, the setContext() method
stores a UserContext object in a ThreadLocal variable specific to the thread being
run. Once the UserContext is set, you then invoke the call() method of the dele-
gated Callable class. This call to delegate.call() invokes the method protected
by the @HystrixCommand annotation.

 CONFIGURE SPRING CLOUD TO USE YOUR CUSTOM HYSTRIX CONCURRENCY STRATEGY

Now that you have your HystrixConcurrencyStrategy via the ThreadLocal-
AwareStrategy class and your Callable class defined via the DelegatingUser-
ContextCallable class, you need to hook them in Spring Cloud and Hystrix. To do
this, you’re going to define a new configuration class. This configuration, called
ThreadLocalConfiguration, is shown in the following listing.

package com.thoughtmechanix.licenses.hystrix;

//Imports removed for conciseness
@Configuration
public class ThreadLocalConfiguration {
 @Autowired(required = false)
 private HystrixConcurrencyStrategy existingConcurrencyStrategy;

 @PostConstruct
 public void init() {
 // Keeps references of existing Hystrix plugins.
 HystrixEventNotifier eventNotifier =
 ➥ HystrixPlugins
 .getInstance()
 .getEventNotifier();
 HystrixMetricsPublisher metricsPublisher =
 ➥ HystrixPlugins
 .getInstance()
 .getMetricsPublisher();
 HystrixPropertiesStrategy propertiesStrategy =
 ➥ HystrixPlugins
 .getInstance()
 .getPropertiesStrategy();

Listing 5.12 Hooking custom HystrixConcurrencyStrategy class into Spring Cloud

When the configuration
object is constructed it will

autowire in the existing
HystrixConcurrencyStrategy.

Because you’re registering a
new concurrency strategy,
you’re going to grab all the
other Hystrix components and
then reset the Hystrix plugin.
Licensed to <null>

151Summary
 HystrixCommandExecutionHook commandExecutionHook =
 ➥ HystrixPlugins
 .getInstance()
 .getCommandExecutionHook();
 HystrixPlugins.reset();

 HystrixPlugins.getInstance()
 .registerConcurrencyStrategy(
 new ThreadLocalAwareStrategy(existingConcurrencyStrategy));
 HystrixPlugins.getInstance()
 .registerEventNotifier(eventNotifier);
 HystrixPlugins.getInstance()
 .registerMetricsPublisher(metricsPublisher);
 HystrixPlugins.getInstance()
 .registerPropertiesStrategy(propertiesStrategy);
 HystrixPlugins.getInstance()
 .registerCommandExecutionHook(commandExecutionHook);
 }
}

This Spring configuration class basically rebuilds the Hystrix plugin that manages all
the different components running within your service. In the init() method, you’re
grabbing references to all the Hystrix components used by the plugin. You then regis-
ter your custom HystrixConcurrencyStrategy (ThreadLocalAwareStrategy).

HystrixPlugins.getInstance().registerConcurrencyStrategy(
 new ThreadLocalAwareStrategy(existingConcurrencyStrategy));

Remember, Hystrix allows only one HystrixConcurrencyStrategy. Spring will
attempt to autowire in any existing HystrixConcurrencyStrategy (if it exists).
Finally, when you’re all done, you re-register the original Hystrix components that you
grabbed at the beginning of the init() method back with the Hystrix plugin.

 With these pieces in place, you can now rebuild and restart your licensing service
and call it via the GET (http://localhost:8080/v1/organizations/e254f8c-c442-4ebe-
a82a-e2fc1d1ff78a/licenses/)shown earlier in figure 5.10. Now, when this call is com-
pleted, you should see the following output in your console window:

UserContext Correlation id: TEST-CORRELATION-ID
LicenseServiceController Correlation id: TEST-CORRELATION-ID
LicenseService.getLicenseByOrg Correlation: TEST-CORRELATION-ID

It’s a lot of work to produce one little result, but it’s unfortunately necessary when you
use Hystrix with THREAD-level isolation.

5.10 Summary
 When designing highly distributed applications such as a microservice-based

application, client resiliency must be taken into account.
 Outright failures of a service (for example, the server crashes) are easy to detect

and deal with.

You now register your
HystrixConcurrencyStrategy
(ThreadLocalAwareStrategy)

with the Hystrix plugin.

Then reregister all the
Hystrix components used
by the Hystrix plugin
Licensed to <null>

152 CHAPTER 5 When bad things happen: client resiliency patterns with Spring Cloud and Netflix
 A single poorly performing service can trigger a cascading effect of resource
exhaustion as threads in the calling client are blocked waiting for a service to
complete.

 Three core client resiliency patterns are the circuit-breaker pattern, the fallback
pattern, and the bulkhead pattern.

 The circuit breaker pattern seeks to kill slow-running and degraded system calls
so that the calls fail fast and prevent resource exhaustion.

 The fallback pattern allows you as the developer to define alternative code
paths in the event that a remote service call fails or the circuit breaker for the
call fails.

 The bulk head pattern segregates remote resource calls away from each other,
isolating calls to a remote service into their own thread pool. If one set of ser-
vice calls is failing, its failures shouldn’t be allowed to eat up all the resources in
the application container.

 Spring Cloud and the Netflix Hystrix libraries provide implementations for the
circuit breaker, fallback, and bulkhead patterns.

 The Hystrix libraries are highly configurable and can be set at global, class, and
thread pool levels.

 Hystrix supports two isolation models: THREAD and SEMAPHORE.
 Hystrix’s default isolation model, THREAD, completely isolates a Hystrix pro-

tected call, but doesn’t propagate the parent thread’s context to the Hystrix
managed thread.

 Hystrix’s other isolation model, SEMAPHORE, doesn’t use a separate thread to
make a Hystrix call. While this is more efficient, it also exposes the service to
unpredictable behavior if Hystrix interrupts the call.

 Hystrix does allow you to inject the parent thread context into a Hystrix managed
Thread through a custom HystrixConcurrencyStrategy implementation.
Licensed to <null>

Service routing with
Spring Cloud and Zuul
In a distributed architecture like a microservices one, there will come a point
where you’ll need to ensure that key behaviors such as security, logging, and track-
ing of users across multiple service calls occur. To implement this functionality,
you’ll want these attributes to be consistently enforced across all of your services
without the need for each individual development team to build their own solu-
tions. While it’s possible to use a common library or framework to assist with build-
ing these capabilities directly in an individual service, doing so has three
implications.

This chapter covers
 Using a services gateway with your

microservices

 Implementing a service gateway using Spring
Cloud and Netflix Zuul

 Mapping microservice routes in Zuul

 Building filters to use correlation ID and
tracking

 Dynamic routing with Zuul
153

Licensed to <null>

154 CHAPTER 6 Service routing with Spring Cloud and Zuul
 First, it’s difficult to consistently implement these capabilities in each service being
built. Developers are focused on delivering functionality, and in the whirlwind of day-
to-day activity they can easily forget to implement service logging or tracking. (I per-
sonally am guilty of this.) Unfortunately, for those of us working in a heavily regulated
industry, such as financial services or healthcare, showing consistent and documented
behavior in your systems is often a key requirement for complying with government
regulations.

 Second, properly implementing these capabilities is a challenge. Things like
microservice security can be a pain to set up and configure with each service being
implemented. Pushing the responsibilities to implement a cross-cutting concern like
security down to the individual development teams greatly increases the odds that
someone will not implement it properly or will forget to do it.

 Third, you’ve now created a hard dependency across all your services. The more
capabilities you build into a common framework shared across all your services, the
more difficult it is to change or add behavior in your common code without having to
recompile and redeploy all your services. This might not seem like a big deal when
you have six microservices in your application, but it’s a big deal when you have a
larger number of services, perhaps 30 or more. Suddenly an upgrade of core capabili-
ties built into a shared library becomes a months-long migration process.

 To solve this problem, you need to abstract these cross-cutting concerns into a ser-
vice that can sit independently and act as a filter and router for all the microservice
calls in your application. This cross-cutting concern is called a services gateway. Your ser-
vice clients no longer directly call a service. Instead, all calls are routed through the
service gateway, which acts as a single Policy Enforcement Point (PEP), and are then
routed to a final destination.

 In this chapter, we’re going to see how to use Spring Cloud and Netflix’s Zuul to
implement a services gateway. Zuul is Netflix’s open source services gateway imple-
mentation. Specifically, we’re going to look at how to use Spring Cloud and Zuul to

 Put all service calls behind a single URL and map those calls using service dis-
covery to their actual service instances

 Inject correlation IDs into every service call flowing through the service gateway
 Inject the correlation ID back from the HTTP response sent back from the client
 Build a dynamic routing mechanism that will route specific individual organi-

zations to a service instance endpoint that’s different than what everyone else
is using

Let’s dive into more detail on how a services gateway fits into the overall microservices
being built in this book.

6.1 What is a services gateway?
Until now, with the microservices you’ve built in earlier chapters, you’ve either
directly called the individual services through a web client or called them program-
matically via a service discovery engine such as Eureka.
Licensed to <null>

155What is a services gateway?
A service gateway acts as an intermediary between the service client and a service
being invoked. The service client talks only to a single URL managed by the service
gateway. The service gateway pulls apart the path coming in from the service client
call and determines what service the service client is trying to invoke. Figure 6.2 illus-
trates how like a “traffic” cop directing traffic, the service gateway directs the user to a
target microservice and corresponding instance. The service gateway sits as the gate-
keeper for all inbound traffic to microservice calls within your application. With a ser-
vice gateway in place, your service clients never directly call the URL of an individual
service, but instead place all calls to the service gateway.

Because a service gateway sits between all calls from the client to the individual ser-
vices, it also acts as a central Policy Enforcement Point (PEP) for service calls. The use
of a centralized PEP means that cross-cutting service concerns can be implemented in
a single place without the individual development teams having to implement these
concerns. Examples of cross-cutting concerns that can be implemented in a service
gateway include

 Static routing—A service gateway places all service calls behind a single URL and
API route. This simplifies development as developers only have to know about
one service endpoint for all of their services.

When a service client invokes a
service directly, there’s no way
you can easily implement
cross-cutting concerns such as
security or logging without
having each service implement
this logic directly in the service.

Service
client

Organization service
http://localhost:8085/v1/organizations/...

Licensing service
http://localhost:9009/v1/organizations/
{org-id}/licenses/{license-id}

Figure 6.1 Without a services gateway, the service client will call distinct endpoints for each service.

The client invokes the service by
calling the services gateway.

The services gateway pulls apart the URL being called and maps
the path to a service sitting behind the services gateway.

Service
client

Organization
service

Licensing
service

http://licensingservice:9009/v1/organizations/
{org-id}/licenses/{license-id}...

http://servicediscovery/api/
organizationservice/v1/organizations/...

http://organizationservice:8085/
v1/organizations/...

Services gateway

Figure 6.2 The service gateway sits between the service client and the corresponding service
instances. All service calls (both internal-facing and external) should flow through the service gateway.
Licensed to <null>

156 CHAPTER 6 Service routing with Spring Cloud and Zuul
 Dynamic routing—A service gateway can inspect incoming service requests and,
based on data from the incoming request, perform intelligent routing based on
who the service caller is. For instance, customers participating in a beta pro-
gram might have all calls to a service routed to a specific cluster of services that
are running a different version of code from what everyone else is using.

 Authentication and authorization—Because all service calls route through a service
gateway, the service gateway is a natural place to check whether the caller of a ser-
vice has authenticated themselves and is authorized to make the service call.

 Metric collection and logging—A service gateway can be used to collect metrics
and log information as a service call passes through the service gateway. You can
also use the service gateway to ensure that key pieces of information are in
place on the user request to ensure logging is uniform. This doesn’t mean that
shouldn’t you still collect metrics from within your individual services, but
rather a services gateway allows you to centralize collection of many of your
basic metrics, like the number of times the service is invoked and service
response time.

Let’s now look at how to implement a service gateway using Spring Cloud and Netflix
Zuul.

Wait—isn’t a service gateway a single point of failure and
potential bottleneck?
Earlier in chapter 4 when I introduced Eureka, I talked about how centralized load bal-
ancers can be single point of failure and a bottleneck for your services. A service gate-
way, if not implemented correctly, can carry the same risk. Keep the following in mind
as you build your service gateway implementation.

Load balancers are still useful when out in front of individual groups of services. In
this case, a load balancer sitting in front of multiple service gateway instances is an
appropriate design and ensures your service gateway implementation can scale. Hav-
ing a load balancer sit in front of all your service instances isn’t a good idea because
it becomes a bottleneck.

Keep any code you write for your service gateway stateless. Don’t store any informa-
tion in memory for the service gateway. If you aren’t careful, you can limit the scal-
ability of the gateway and have to ensure that the data gets replicated across all
service gateway instances.

Keep the code you write for your service gateway light. The service gateway is the
“chokepoint” for your service invocation. Complex code with multiple database calls
can be the source of difficult-to-track-down performance problems in the service
gateway.
Licensed to <null>

157Introducing Spring Cloud and Netflix Zuul
6.2 Introducing Spring Cloud and Netflix Zuul
Spring Cloud integrates with the Netflix open source project Zuul. Zuul is a services
gateway that’s extremely easy to set up and use via Spring Cloud annotations. Zuul
offers a number of capabilities, including

 Mapping the routes for all the services in your application to a single URL—Zuul isn’t
limited to a single URL. In Zuul, you can define multiple route entries, making
the route mapping extremely fine-grained (each service endpoint gets its own
route mapping). However, the first and most common use case for Zuul is to
build a single entry point through which all service client calls will flow.

 Building filters that can inspect and act on the requests coming through the gateway—
These filters allow you to inject policy enforcement points in your code and per-
form a wide number of actions on all of your service calls in a consistent fashion.

To get started with Zuul, you’re going to do three things:

1 Set up a Zuul Spring Boot project and configure the appropriate Maven depen-
dences.

2 Modify your Spring Boot project with Spring Cloud annotations to tell it that it
will be a Zuul service.

3 Configure Zuul to communicate with Eureka (optional).

6.2.1 Setting up the Zuul Spring Boot project

If you’ve been following the chapters sequentially in this book, the work you’re about
to do should be familiar. To build a Zuul server, you need to set up a new Spring Boot
service and define the corresponding Maven dependencies. You can find the project
source code for this chapter in the GitHub repository for this book (https://
github.com/carnellj/spmia-chapter6). Fortunately, little is needed to set up Zuul in
Maven. You only need to define one dependency in your zuulsvr/pom.xml file:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-zuul</artifactId>
</dependency>

This dependency tells the Spring Cloud framework that this service will be running
Zuul and initialize Zuul appropriately.

6.2.2 Using Spring Cloud annotation for the Zuul service

After you’ve defined the maven dependencies, you need to annotate the bootstrap
class for the Zuul services. The bootstrap class for the Zuul service implementation
can be found in the zuulsvr/src/main/java/com/thoughtmechanix/zuulsvr/
Application.java class.
Licensed to <null>

https://github.com/carnellj/spmia-chapter6
https://github.com/carnellj/spmia-chapter6

158 CHAPTER 6 Service routing with Spring Cloud and Zuul

package com.thoughtmechanix.zuulsvr;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.cloud.netflix.zuul.EnableZuulProxy;
import org.springframework.context.annotation.Bean;

@SpringBootApplication

➥ @EnableZuulProxy
➥ public class ZuulServerApplication {
 ➥ public static void main(String[] args) {
 ➥ SpringApplication.run(
 ZuulServerApplication.class,
 args);
 ➥ }
➥ }

That’s it. There’s only one annotation that needs to be in place: @EnableZuulProxy.

NOTE If you look through the documentation or have auto-complete turned
on, you might notice an annotation called @EnableZuulServer. Using this
annotation will create a Zuul Server that doesn’t load any of the Zuul reverse
proxy filters or use Netflix Eureka for service discovery. (We’ll get into the
topic of Zuul and Eureka integration shortly.) @EnableZuulServer is used
when you want to build your own routing service and not use any Zuul pre-
built capabilities. An example of this would be if you wanted to use Zuul to
integrate with a service discovery engine other than Eureka (for example,
Consul). We’ll only use the @EnableZuulProxy annotation in this book.

6.2.3 Configuring Zuul to communicate with Eureka

The Zuul proxy server is designed by default to work on the Spring products. As such,
Zuul will automatically use Eureka to look up services by their service IDs and then use
Netflix Ribbon to do client-side load balancing of requests from within Zuul.

NOTE I often read chapters out of order in a book, jumping to the specific
topics I’m most interested in. If you do the same and don’t know what Netflix
Eureka and Ribbon are, I suggest you read chapter 4 before proceeding
much further. Zuul uses those technologies heavily to carry out work, so
understanding the service discovery capabilities that Eureka and Ribbon
bring to the table will make understanding Zuul that much easier.

The last step in the configuration process is to modify your Zuul server’s zuulsvr/src/
main/resources/application.yml file to point to your Eureka server. The following list-
ing shows the Zuul configuration needed for Zuul to communicate with Eureka. The

Listing 6.1 Setting up the Zuul Server bootstrap class

Enables the service
to be a Zuul server
Licensed to <null>

159Configuring routes in Zuul
configuration in the listing should look familiar because it’s the same configuration
we walked through in chapter 4.

eureka:
 instance:
 preferIpAddress: true
 client:
 registerWithEureka: true
 fetchRegistry: true
 serviceUrl:
 defaultZone: http://localhost:8761/eureka/

6.3 Configuring routes in Zuul
Zuul at its heart is a reverse proxy. A reverse proxy is an intermediate server that sits
between the client trying to reach a resource and the resource itself. The client has no
idea it’s even communicating to a server other than a proxy. The reverse proxy takes
care of capturing the client’s request and then calls the remote resource on the cli-
ent’s behalf.

 In the case of a microservices architecture, Zuul (your reverse proxy) takes a
microservice call from a client and forwards it onto the downstream service. The ser-
vice client thinks it’s only communicating with Zuul. For Zuul to communicate with
the downstream clients, Zuul has to know how to map the incoming call to a down-
stream route. Zuul has several mechanisms to do this, including

 Automated mapping of routes via service discovery
 Manual mapping of routes using service discovery
 Manual mapping of routes using static URLs

6.3.1 Automated mapping routes via service discovery

All route mappings for Zuul are done by defining the routes in the zuulsvr/src/main/
resources/application.yml file. However, Zuul can automatically route requests based
on their service IDs with zero configuration. If you don’t specify any routes, Zuul will
automatically use the Eureka service ID of the service being called and map it to a
downstream service instance. For instance, if you wanted to call your organization-
service and used automated routing via Zuul, you would have your client call the
Zuul service instance, using the following URL as the endpoint:

http://localhost:5555/organizationservice/v1/organizations/e254f8c-c442-4ebe-
a82a-e2fc1d1ff78a

Your Zuul server is accessed via http://localhost:5555. The service you’re try-
ing (organizationservice) to invoke is represented by the first part of the end-
point path in the service.

Listing 6.2 Configuring the Zuul server to talk to Eureka
Licensed to <null>

160 CHAPTER 6 Service routing with Spring Cloud and Zuul
Figure 6.3 illustrates this mapping in action.
 The beauty of using Zuul with Eureka is that not only do you now have a single

endpoint that you can make calls through, but with Eureka, you can also add and
remove instances of a service without ever having to modify Zuul. For instance, you
can add a new service to Eureka, and Zuul will automatically route to it because it’s
communicating with Eureka about where the actual physical services endpoints are
located.

 If you want to see the routes being managed by the Zuul server, you can access the
routes via the /routes endpoint on the Zuul server. This will return a listing of all the
mappings on your service. Figure 6.4 shows the output from hitting http://local-
host:5555/routes.

 In figure 6.4 the mappings for the services registered with Zuul are shown on the
left-hand side of the JSON body returned from the /route calls. The actual Eureka
service IDs the routes map to are shown on the right.

The service name acts as the key for the service gateway
to lookup the physical location of the service.

The rest of the path is the actual
url endpoint that will be invoked.

Service
client

Organization service instance 3

Organization service instance 2

Organization service instance 1

Services gateway
(Zuul)

http://localhost:5555/organizationservice/v1/organizations/

Service discovery
(Eureka)

http://localhost:5555/organizationservice...

Figure 6.3 Zuul will use the organizationservice application name to map requests to
organization service instances.
Licensed to <null>

161Configuring routes in Zuul

6.3.2 Mapping routes manually using service discovery

Zuul allows you to be more fine-grained by allowing you to explicitly define route
mappings rather than relying solely on the automated routes created with the service’s
Eureka service ID. Suppose you wanted to simplify the route by shortening the organi-
zation name rather than having your organization service accessed in Zuul via the
default route of /organizationservice/v1/organizations/{organization-
id}. You can do this by manually defining the route mapping in zuulsvr/src/main/
resources/application.yml:

zuul:
 routes:
 organizationservice: /organization/**

By adding this configuration, you can now access the organization service by hitting the
/organization/v1/organizations/{organization-id} route. If you check the
Zuul server’s endpoint again, you should see the results shown in figure 6.5.

Service route in Zuul created automatically
based on Eureka service ID

Eureka service ID the
route maps to

Figure 6.4 Each service that’s mapped in Eureka will now be mapped as a Zuul route.
Licensed to <null>

162 CHAPTER 6 Service routing with Spring Cloud and Zuul
If you look carefully at figure 6.5 you’ll notice that two entries are present for the orga-
nization service. The first service entry is the mapping you defined in the applica-
tion.yml file: “organization/**”: “organizationservice”. The second service
entry is the automatic mapping created by Zuul based on the organization service’s
Eureka ID: “/organizationservice/**”: “organizationservice”.

NOTE When you use automated route mapping where Zuul exposes the ser-
vice based solely on the Eureka service ID, if no instances of the service are
running, Zuul will not expose the route for the service. However, if you man-
ually map a route to a service discovery ID and there are no instances regis-
tered with Eureka, Zuul will still show the route. If you try to call the route for
the non-existent service, Zuul will return a 500 error.

If you want to exclude the automated mapping of the Eureka service ID route and
only have available the organization service route that you’ve defined, you can add an
additional Zuul parameter to your application.yml file, called ignored-services.

Notice the custom route
for the organization service.

We still have the Eureka
service ID–based route here.

Figure 6.5 The results of the Zuul /routes call with a manual mapping of the organization service
Licensed to <null>

163Configuring routes in Zuul
The following code snippet shows how the ignored-services attribute can be used
to exclude the Eureka service ID organizationservice from the automated mappings
done by Zuul:

zuul:
 ignored-services: 'organizationservice'
 routes:
 organizationservice: /organization/**

The ignored-services attribute allows you to define a comma-separated list of
Eureka service-IDs that you want to exclude from registration. Now, when your call the
/routes endpoint on Zuul, you should only see the organization service mapping
you’ve defined. Figure 6.6 shows the outcome of this mapping.

If you want to exclude all Eureka-based routes, you can set the ignored-services
attribute to “*”.

 A common pattern with a service gateway is to differentiate API routes vs. content
routes by prefixing all your service calls with a type of label such as /api. Zuul supports

Now there’s only one
organization service entry.

Figure 6.6 Only one organization service is now defined in Zuul.
Licensed to <null>

164 CHAPTER 6 Service routing with Spring Cloud and Zuul

All d
servic
be p

wi
e
g
this by using the prefix attribute in the Zuul configuration. Figure 6.7 lays out concep-
tually what this mapping prefix will look like.

 In the following listing, we’ll see how to set up specific routes to your individual
organization and Licensing services, exclude all of the eureka-generated services, and
prefix your services with a /api prefix.

zuul:
 ignored-services: '*'
 prefix: /api
 routes:
 organizationservice: /organization/**
 licensingservice: /licensing/**

Listing 6.3 Setting up custom routes with a prefix

It’s not uncommon to have an /api route prefix
and then a simplified name to a service.

We have mapped the service
to the name “organization.”

Service
client

Organization service instance 3

Organization service instance 2

Organization service instance 1

Services gateway
(Zuul)

http://localhost:5555/api/organization/v1/organizations/

Service discovery
(Eureka)

http://localhost:5555/api/organization...

Figure 6.7 Using a prefix, Zuul will map a /api prefix to every service it manages.

The ignored-services attribute is set
to * to exclude the registration of all
eureka service ID based routes.

efined
es will
refixed
th /api.

Your organizationservice and licensingservic
are mapped to the organization and licensin
endpoints respectively.
Licensed to <null>

165Configuring routes in Zuul

rout
licensi
Figure 6.8 Your routes in Zuul now have an /api prefix.

Once this configuration is done and the Zuul service has been reloaded, you should
see the following two entries when hitting the /route endpoint: /api/organiza-
tion and /api/licensing. Figure 6.8 shows these entries.

 Let’s now look at how you can use Zuul to map to static URLs. Static URLs are URLs
that point to services that aren’t registered with a Eureka service discovery engine.

6.3.3 Manual mapping of routes using static URLs

Zuul can be used to route services that aren’t managed by Eureka. In these cases, Zuul
can be set up to directly route to a statically defined URL. For example, let’s imagine
that your license service is written in Python and you want to still proxy it through
Zuul. You’d use the Zuul configuration in the following listing to achieve this.

zuul:
 routes:
 licensestatic:
 path: /licensestatic/**
 url: http://licenseservice-static:8081

Listing 6.4 Mapping the licensing service to a static route

Keyname Zuul will use to
identify the service internally

The static
e for your
ng service

You’ve set up a static instance of your license service
that will be called directly, not through Eureka by Zuul.
Licensed to <null>

166 CHAPTER 6 Service routing with Spring Cloud and Zuul
Figure 6.9 You’ve now mapped a static route to your licensing service.

Once this configuration change has been made, you can hit the /routes endpoint
and see the static route added to Zuul. Figure 6.10 shows the results from the
/routes listing.

 At this point, the licensestatic endpoint won’t use Eureka and will instead
directly route the request to the http://licenseservice-static:8081 end-
point. The problem is that by bypassing Eureka, you only have a single route to point
requests at. Fortunately, you can manually configure Zuul to disable Ribbon integra-
tion with Eureka and then list the individual service instances that ribbon will load bal-
ance against. The following listing shows this.

zuul:
 routes:
 licensestatic:
 path: /licensestatic/**
 serviceId: licensestatic
ribbon:
 eureka:
 enabled: false
licensestatic:
 ribbon:
 listOfServers: http://licenseservice-static1:8081,

http://licenseservice-static2:8082

Listing 6.5 Mapping licensing service statically to multiple routes

Our static route entry

Defines a service ID that will be used
to look up the service in Ribbon

Disables Eureka
support in Ribbon

List of servers used to
route the request to
Licensed to <null>

167Configuring routes in Zuul
Once this configuration is in place, a call to the /routes endpoint now shows that
the /api/licensestatic route has been mapped to a service ID called licenses-
tatic. Figure 6.10 shows this.

Figure 6.10 You now see that the /api/licensestatic now maps to a service ID called
licensestatic

Dealing with non-JVM services
The problem with statically mapping routes and disabling Eureka support in Ribbon
is that you’ve disabled Ribbon support for all your services running through your Zuul
service gateway. This means that more load will be placed on your Eureka servers
because Zuul can’t use Ribbon to cache the look-up of services. Remember, Ribbon
doesn’t call Eureka every time it makes a call. Instead, it caches the location of the
service instances locally and then checks with Eureka periodically for changes. With
Ribbon out of the picture, Zuul will call Eureka every time it needs to resolve the loca-
tion of a service.

Earlier in the chapter, I talked about how you might end up with multiple service gate-
ways where different routing rules and policies would be enforced based on the type
of services being called. For non-JVM applications, you could set up a separate Zuul
server to handle these routes. However, I’ve found that with non-JVM-based lan-
guages, you’re better off setting up a Spring Cloud “Sidecar” instance. The Spring
Cloud sidecar allows you to register non-JVM services with a Eureka instance and then

Our static route entry is
now behind a service ID.
Licensed to <null>

168 CHAPTER 6 Service routing with Spring Cloud and Zuul
6.3.4 Dynamically reload route configuration

The next thing we’re going to look at in terms of configuring routes in Zuul is how to
dynamically reload routes. The ability to dynamically reload routes is useful because it
allows you to change the mapping of routes without having to recycle the Zuul
server(s). Existing routes can be modified quickly and new routes added within have to
go through the act of recycling each Zuul server in your environment. In chapter 3, we
covered how to use Spring Cloud Configuration service to externalize a microservices
configuration data. You can use Spring Cloud configuration to externalize Zuul routes.
In the EagleEye examples you can set up a new application folder in your config-
repo (http://github.com/carnellj/config-repo) called zuulservice. Like your orga-
nization and licensing services, you’ll create three files—zuulservice.yml, zuulservice-
dev.yml, and zuulservice-prod.yml—that will hold your route configuration.

 To be consistent with the examples in the chapter 3 configuration, I’ve changed
the route formats to move from a hierarchical format to the “.” format. The initial
route configuration will have a single entry in it:

zuul.prefix=/api

If you hit the /routes endpoint, you should see all your Eureka-based services cur-
rently shown in Zuul with the prefix of /api. Now, if you wanted to add new route
mappings on the fly, all you have to do is make the changes to the config file and then
commit them back to the Git repository where Spring Cloud Config is pulling its con-
figuration data from. For instance, if you wanted to disable all Eureka-based service
registration and only expose two routes (one for the organization and one for the
licensing service), you could modify the zuulservice-*.yml files to look like this:

zuul.ignored-services: '*'
zuul.prefix: /api
zuul.routes.organizationservice: /organization/**
zuul.routes.organizationservice: /licensing/**

Then you can commit the changes to GitHub. Zuul exposes a POST-based endpoint
route /refresh that will cause it to reload its route configuration. Once this
/refresh is hit, if you then hit the /routes endpoint, you’ll see that the two new
routes are exposed and all the Eureka-based routes are gone.

(continued)

proxy them through Zuul. I don’t cover Spring Sidecar in this book because you’re not
writing any non-JVM services, but it’s extremely easy to set up a sidecar instance.
Directions on how to do so can be found at the Spring Cloud website (http://
cloud.spring.io/spring-cloud-netflix/spring-cloud-netflix.html#spring-cloud-ribbon-
without-eureka).
Licensed to <null>

http://github.com/carnellj/config-repo
http://cloud.spring.io/spring-cloud-netflix/spring-cloud-netflix.html#spring-cloud-ribbon-without-eureka
http://cloud.spring.io/spring-cloud-netflix/spring-cloud-netflix.html#spring-cloud-ribbon-without-eureka
http://cloud.spring.io/spring-cloud-netflix/spring-cloud-netflix.html#spring-cloud-ribbon-without-eureka

169The real power of Zuul: filters
6.3.5 Zuul and service timeouts

Zuul uses Netflix’s Hystrix and Ribbon libraries to help prevent long-running service
calls from impacting the performance of the services gateway. By default, Zuul will ter-
minate and return an HTTP 500 error for any call that takes longer than one second to
process a request. (This is the Hystrix default.) Fortunately, you can configure this
behavior by setting the Hystrix timeout properties in your Zuul server’s configuration.

 To set the Hystrix timeout for all of the services running through Zuul, you can use
the hystrix.command.default.execution.isolation.thread.timeoutIn-

Milliseconds property. For instance, if you wanted to set the default Hystrix time
out to be 2.5 seconds, you could use the following configuration in your Zuul’s Spring
Cloud config file:

zuul.prefix: /api
zuul.routes.organizationservice: /organization/**
zuul.routes.licensingservice: /licensing/**
zuul.debug.request: true
hystrix.command.default.execution.isolation.thread.timeoutInMilliseconds: 2500

If you need to set the Hystrix timeout for specific service, you can replace the
default part of the property with the Eureka service ID name of the service whose
timeout you want to override. For instance, if you wanted to change only the licens-
ingservice’s timeout to three seconds and leave the rest of the services to use the
default Hystrix timeout, you could use something like this in your configuration:

hystrix.command.licensingservice.execution.isolation.thread.timeoutInMillisec
onds: 3000

Finally, you need to be aware of one other timeout property. While you’ve overridden
the Hystrix timeout, the Netflix Ribbon also times out any calls that take longer than
five seconds. While I highly recommend you revisit the design of any call that takes
longer than five seconds, you can override the Ribbon timeout by setting the follow-
ing property: servicename.ribbon.ReadTimeout. For example, if you wanted to
override the licensingservice to have a seven-second timeout, you’d use the fol-
lowing configuration:

hystrix.command.licensingservice.execution.

➥ isolation.thread.timeoutInMilliseconds: 7000
licensingservice.ribbon.ReadTimeout: 7000

NOTE For configurations longer than five seconds you have to set both the
Hystrix and the Ribbon timeouts.

6.4 The real power of Zuul: filters
While being able to proxy all requests through the Zuul gateway does allow you to sim-
plify your service invocations, the real power of Zuul comes into play when you want
to write custom logic that will be applied against all the service calls flowing through
Licensed to <null>

170 CHAPTER 6 Service routing with Spring Cloud and Zuul
the gateway. Most often this custom logic is used to enforce a consistent set of applica-
tion policies like security, logging, and tracking against all the services.

 These application policies are considered cross-cutting concerns because you want
them to be applied to all the services in your application without having to modify
each service to implement them. In this fashion, Zuul filters can be used in a similar
way as a J2EE servlet filter or a Spring Aspect that can intercept a wide body of behav-
iors and decorate or change the behavior of the call without the original coder being
aware of the change. While a servlet filter or Spring Aspect is localized to a specific
service, using Zuul and Zuul filters allows you implement cross-cutting concerns
across all the services being routed through Zuul.

 Zuul allows you to build custom logic using a filter within the Zuul gateway. A filter
allows you to implement a chain of business logic that each service request passes
through as it’s being implemented.

 Zuul supports three types of filters:

 Pre-filters—A pre-filter is invoked before the actual request to the target destina-
tion occurs with Zuul. A pre-filter usually carries out the task of making sure
that the service has a consistent message format (key HTTP headers are in
place, for example) or acts as a gatekeeper to ensure that the user calling the
service is authenticated (they are who they say they are) and authorized (they
can do what they’re requesting to do).

 Post filters—A post filter is invoked after the target service has been invoked and
a response is being sent back to the client. Usually a post filter will be imple-
mented to log the response back from the target service, handle errors, or audit
the response for sensitive information.

 Route filters—The route filter is used to intercept the call before the target ser-
vice is invoked. Usually a route filter is used to determine if some level of
dynamic routing needs to take place. For instance, later in the chapter you’ll
use a route-level filter that will route between two different versions of the same
service so that a small percentage of calls to a service are routed to a new ver-
sion of a service rather than the existing service. This will allow you to expose a
small number of users to new functionality without having everyone use the
new service.

Figure 6.11 shows how the pre-, post, and route filters fit together in terms of process-
ing a service client’s request.

 If you follow the flow laid out in figure 6.11, you’ll see everything start with a ser-
vice client making a call to a service exposed through the service gateway. From there
the following activities take place:

1 Any pre-filters defined in the Zuul gateway will be invoked by Zuul as a request
enters the Zuul gateway. The pre-filters can inspect and modify a HTTP request
before it gets to the actual service. A pre-filter cannot redirect the user to a dif-
ferent endpoint or service.
Licensed to <null>

171The real power of Zuul: filters
2 After the pre-filters are executed against the incoming request by Zuul, Zuul
will execute any defined route filters. Route filters can change the destination
of where the service is heading.

3 If a route filter wants to redirect the service call to a place other than where the
Zuul server is configured to send the route, it can do so. However, a Zuul route
filter doesn’t do an HTTP redirect, but will instead terminate the incoming
HTTP request and then call the route on behalf of the original caller. This

Service client calls the
service through Zuul

3. A route filter
may dynamically
route services
outside Zuul.

1. Pre-route filters
are executed as
the incoming
request comes
into Zuul.

2. Route filters allow
 you to override Zuul’s
 default routing logic
 and will route a user
 to where they need
 to go.

4. In the end, Zuul will
 determine the target
 route and send the
 request onto its
 target destination.

5. After the target service
 is invoked, the response
 back from it will flow
 back through any Zuul
 post filter.

Service
client

Pre-filter

Route filter

Target route

Target service

Post filter

Dynamic route

Zuul services gateway

Figure 6.11 The pre-, route, and post filters form a pipeline in which a client request flows through. As a request
comes into Zuul, these filters can manipulate the incoming request.
Licensed to <null>

172 CHAPTER 6 Service routing with Spring Cloud and Zuul
means the route filter has to completely own the calling of the dynamic route
and can’t do an HTTP redirect.

4 If the route filter doesn’t dynamically redirect the caller to a new route, the
Zuul server will send the route to the originally targeted service.

5 After the target service has been invoked, the Zuul Post filters will be invoked. A
post filter can inspect and modify the response back from the invoked service.

The best way to understand how to implement Zuul filters is to see them in use. To
this end, in the next several sections you’ll build a pre-, route, and post filter and then
run service client requests through them.

 Figure 6.12 shows how these filters will fit together in processing requests to your
EagleEye services.

Figure 6.12 Zuul filters provide centralized tracking of service calls, logging, and dynamic routing. Zuul
filters allows you to enforce custom rules and policies against microservice calls.

3. The ResponseFilter will make
 sure each response sent back
 from Zuul has the correlation
 ID in the HTTP header.

1. Our TrackingFilter will inspect
 each incoming request and
 create a correlation ID in the
 HTTP header if one is not present.

Service client
calls the service
through Zuul.

2. The SpecialRoutesFilter will
 determine whether or not we want
 to send a percentage of certain
 routes to a different service.

Service
client

TrackingFilter

SpecialRoutesFilter

ResponseFilter

New version of
target service

Old version of
target service

Zuul services
gateway

Pre-filters

Route filters

Post filters

Target service
Licensed to <null>

173Building your first Zuul pre-filter generating correlation IDs
Following the flow of figure 6.12, you’ll see the following filters being used:

1 TrackingFilter—The TrackingFilter will be a pre-filter that will ensure
that every request flowing from Zuul has a correlation ID associated with it. A
correlation ID is a unique ID that gets carried across all the microservices that
are executed when carrying out a customer request. A correlation ID allows you
to trace the chain of events that occur as a call goes through a series of
microservice calls.

2 SpecialRoutesFilter—The SpecialRoutesFilter is a Zuul routes filter
that will check the incoming route and determine if you want to do A/B testing
on the route. A/B testing is a technique in which a user (in this case a service) is
randomly presented with two different versions of services using the same ser-
vice. The idea behind A/B testing is that new features can be tested before
they’re rolled out to the entire user base. In our example, you’re going to have
two different versions of the same organization service. A small number of users
will be routed to the newer version of the service, while the majority of users will
be routed to the older version of the service.

3 ResponseFilter—The ResponseFilter is a post filter that will inject the
correlation ID associated with the service call into the HTTP response header
being sent back to the client. This way, the client will have access to the correla-
tion ID associated with the request they made.

6.5 Building your first Zuul pre-filter generating
correlation IDs
Building filters in Zuul is an extremely simple activity. To begin, you’ll build a Zuul
pre-filter, called the TrackingFilter, that will inspect all incoming requests to the
gateway and determine whether there’s an HTTP header called tmx-correlation-
id present in the request. The tmx-correlation-id header will contain a unique
GUID (Globally Universal Id) that can be used to track a user’s request across multiple
microservices.

NOTE We discussed the concept of a correlation ID in chapter 5. Here we’re
going to walk through in more detail how to use Zuul to generate a correla-
tion ID. If you skipped around in the book, I highly recommend you look at
chapter 5 and read the section on Hystrix and Thread context. Your imple-
mentation of correlation IDs will be implemented using ThreadLocal vari-
ables and there’s extra work to do to have ThreadLocal variables work with
Hystrix.

If the tmx-correlation-id isn’t present on the HTTP header, your Zuul Track-
ingFilter will generate and set the correlation ID. If there’s already a correlation ID
present, Zuul won’t do anything with the correlation ID. The presence of a correlation
ID means that this particular service call is part of a chain of service calls carrying out
the user’s request. In this case, your TrackingFilter class will do nothing.
Licensed to <null>

174 CHAPTER 6 Service routing with Spring Cloud and Zuul
 Let’s go ahead and look at the implementation of the TrackingFilter in the fol-
lowing listing. This code can also be found in the book samples in zuulsvr/src/
main/java/com/thoughtmechanix/zuulsvr/filters/TrackingFilter.java.

package com.thoughtmechanix.zuulsvr.filters;

import com.netflix.zuul.ZuulFilter;
import org.springframework.beans.factory.annotation.Autowired;

//Removed other imports for conciseness

@Component
public class TrackingFilter extends ZuulFilter{
 private static final int FILTER_ORDER = 1;
 private static final boolean SHOULD_FILTER=true;
 private static final Logger logger =
 ➥ LoggerFactory.getLogger(TrackingFilter.class);

 @Autowired
 FilterUtils filterUtils;

 @Override
 public String filterType() {
 return FilterUtils.PRE_FILTER_TYPE;
 }

 @Override
 public int filterOrder() {
 return FILTER_ORDER;
 }

 public boolean shouldFilter() {
 return SHOULD_FILTER;
 }

 private boolean isCorrelationIdPresent(){
 if (filterUtils.getCorrelationId() !=null){
 return true;
 }

 return false;
 }

 private String generateCorrelationId(){
 return java.util.UUID.randomUUID().toString();
 }

 public Object run() {
 if (isCorrelationIdPresent()) {
 logger.debug("tmx-correlation-id found in tracking filter: {}.

 ➥ ",

Listing 6.6 Zuul pre-filter for generating correlation IDs

All Zuul filters must extend
the ZuulFilter class and
override four methods:
filterType(), filterOrder(),
shouldFilter(), and run().

Commonly used functions that are
used across all your filters have been
encapsulated in the FilterUtils class.

The filterType() method is used
to tell Zuul whether the filter
is a pre-, route, or post filter.

The filterOrder() method returns an integer
value indicating what order Zuul should send
requests through the different filter types.

The shouldFilter() method returns
a Boolean indicating whether or
not the filter should be active.

The helper methods that actually
check if the tmx-correlation-id is
present and can also generate a

correlation ID GUIID value

The run() method is the code
that is executed every time a

service passes through the
filter. In your run() function,
you check to see if the tmx-

correlation-id is present and
if it isn’t, you generate a

correlation value and set the
tmx-correlation-id HTTP
Licensed to <null>

175Building your first Zuul pre-filter generating correlation IDs
 filterUtils.getCorrelationId());
 }
 else{
 filterUtils
 .setCorrelationId(generateCorrelationId());

 logger.debug("tmx-correlation-id generated
 ➥ in tracking filter: {}.",
 ➥ filterUtils.getCorrelationId());
}

 RequestContext ctx =
 RequestContext.getCurrentContext();
 logger.debug("Processing incoming request for {}.",

 ctx.getRequest().getRequestURI());
 return null;
}
}

To implement a filter in Zuul, you have to extend the ZuulFilter class and then
override four methods: filterType(), filterOrder(), shouldFilter(), and
run(). The first three methods in this list describe to Zuul what type of filter you’re
building, what order it should be run in compared to the other filters of its type, and
whether it should be active. The last method, run(), contains the business logic the
filter is going to implement.

 You’ve implemented a class called FilterUtils. This class is used to encapsulate
common functionality used by all your filters. The FilterUtils class is located in the
zuulsvr/src/main/java/com/thoughtmechanix/zuulsvr/FilterUtils.java.
We’re not going to walk through the entire FilterUtils class, but the key methods
we’ll discuss here are the getCorrelationId() and setCorrelationId() func-
tions. The following listing shows the code for the FilterUtils getCorrelationId()
method.

public String getCorrelationId(){
 RequestContext ctx = RequestContext.getCurrentContext();

 if (ctx.getRequest()
 .getHeader(CORRELATION_ID) !=null) {
 return ctx.getRequest()
 .getHeader(CORRELATION_ID);
 }
 else{
 return ctx.getZuulRequestHeaders()
 .get(CORRELATION_ID);
 }
}

The key thing to notice in listing 6.7 is that you first check to see if the tmx-correla-
tion-ID is already set on the HTTP Headers for the incoming request. You do this
using the ctx.getRequest().getHeader(CORRELATION_ID) call.

Listing 6.7 Retrieving the tmx-correlation-id from the HTTP headers
Licensed to <null>

176 CHAPTER 6 Service routing with Spring Cloud and Zuul
NOTE In a normal Spring MVC or Spring Boot service, the RequestContext
would be of type org.springframework.web.servletsupport.Request-
Context. However, Zuul gives a specialized RequestContext that has several
additional methods for accessing Zuul-specific values. This request context is
part of the com.netflix.zuul.context package.

If it isn’t there, you then check the ZuulRequestHeaders. Zuul doesn’t allow you to
directly add or modify the HTTP request headers on an incoming request. If we add
the tmx-correlation-id and then try to access it again later in the filter, it won’t be
available as part of the ctx.getRequestHeader() call. To work around this, you use
the FilterUtils getCorrelationId() method. You may remember that earlier
in the run() method on your TrackingFilter class, you did exactly this with the
following code snippet:

else{
 filterUtils.setCorrelationId(generateCorrelationId());
 logger.debug("tmx-correlation-id generated
 ➥ in tracking filter: {}.",
 filterUtils.getCorrelationId());
}

The setting of the tmx-correlation-id occurs with the FilterUtils set-

CorrelationId() method:

public void setCorrelationId(String correlationId){
 RequestContext ctx =
 RequestContext.getCurrentContext();
 ctx.addZuulRequestHeader(CORRELATION_ID, correlationId);
}

In the FilterUtils setCorrelationId() method, when you want to add a value to the
HTTP request headers, you use the RequestContext’s addZuulRequestHeader()
method. This method will maintain a separate map of HTTP headers that were added
while a request was flowing through the filters with your Zuul server. The data con-
tained within the ZuulRequestHeader map will be merged when the target service is
invoked by your Zuul server.

6.5.1 Using the correlation ID in your service calls

Now that you’ve guaranteed that a correlation ID has been added to every microser-
vice call flowing through Zuul, how do you ensure that

 The correlation-ID is readily accessible to the microservice that’s being invoked
 Any downstream service calls the microservice might make also propagate the

correlation-ID on to the downstream call

To implement this, you’re going to build a set of three classes into each of your
microservices. These classes will work together to read the correlation ID (along with
other information you’ll add later) off the incoming HTTP request, map it to a class
that’s easily accessible and useable by the business logic in the application, and then
ensure that the correlation ID is propagated to any downstream service calls.
Licensed to <null>

177Building your first Zuul pre-filter generating correlation IDs
Figure 6.13 demonstrates how these different pieces are going to be built out using
your licensing service.

 Let’s walk through what’s happening in figure 6.13:

1 When a call is made to the licensing service through the Zuul gateway, the
TrackingFilter will inject a correlation ID into the incoming HTTP header
for any calls coming into Zuul.

2 The UserContextFilter class is a custom HTTP ServletFilter. It maps a corre-
lation ID to the UserContext class. The UserContext class is stored values in
thread-local storage for use later in the call.

4. The UserContextInterceptor
 ensures that all outbound REST
 calls have the correlation ID
 from the UserContext in them.

2. The UserContextFilter will
 retrieve the correlation ID
 out of the HTTP header
 and store it in the
 UserContext object.

1. The licensing
 service is
 invoked via a
 route in Zuul.

3. The business logic in
 the service has access
 to any values retrieved
 in the UserContext.

Licensing
service

UserContextFilter

Licensing service
business logic

RestTemplate
UserContextInterceptor

Zuul services
gateway

Organization
service

Figure 6.13 A set of common classes
are used so that the correlation ID can be
propagated to downstream service calls.
Licensed to <null>

178 CHAPTER 6 Service routing with Spring Cloud and Zuul
3 The licensing service business logic needs to execute a call to the organization
service.

4 A RestTemplate is used to invoke the organization service. The RestTemplate
will use a custom Spring Interceptor class (UserContextInterceptor) to
inject the correlation ID into the outbound call as an HTTP header.

USERCONTEXTFILTER: INTERCEPTING THE INCOMING HTTP REQUEST
The first class you’re going to build is the UserContextFilter class. This class is an
HTTP servlet filter that will intercept all incoming HTTP requests coming into the ser-
vice and map the correlation ID (and a few other values) from the HTTP request to
the UserContext class. The following listing shows the code for the UserContext
class. The source for this class can be found in licensing-service/src/main/
java/com/thoughtmechanix/licenses/utils/UserContextFilter.java.

package com.thoughtmechanix.licenses.utils;

//Remove the imports for conciseness
@Component
public class UserContextFilter implements Filter {
 private static final Logger logger =
 LoggerFactory.getLogger(
 UserContextFilter.class);
 @Override

Repeated code vs. shared libraries
The subject of whether you should use common libraries across your microservices
is a gray area in microservice design. Microservice purists will tell you that you
shouldn’t use a custom framework across your services because it introduces artifi-
cial dependencies in your services. Changes in business logic or a bug can introduce
wide scale refactoring of all your services. On the other side, other microservice prac-
titioners will say that a purist approach is impractical because certain situations exist
(like the previous UserContextFilter example) where it makes sense to build a
common library and share it across services.

I think there’s a middle ground here. Common libraries are fine when dealing with
infrastructure-style tasks. If you start sharing business-oriented classes, you’re ask-
ing for trouble because you’re breaking down the boundaries between the services.

I seem to be breaking my own advice with the code examples in this chapter, because
if you look at all the services in the chapter, they all have their own copies of the
UserContextFilter, UserContext, and UserContextInterceptor
classes. The reason I took a share-nothing approach here is that I don’t want to com-
plicate the code examples in this book by having to create a shared library that would
have to be published to a third-party Maven repository. Hence, all the classes in the
utils package of the service are shared across all the services.

Listing 6.8 Mapping the correlation ID to the UserContext class

The filter is registered and picked
up by Spring through the use of the

Spring @Component annotation and by
implementing a javax.servler.Filter interface.
Licensed to <null>

179Building your first Zuul pre-filter generating correlation IDs
 public void doFilter(ServletRequest servletRequest,
 ServletResponse servletResponse,
 FilterChain filterChain)
 throws IOException, ServletException {
 HttpServletRequest httpServletRequest = (HttpServletRequest)

servletRequest;

 UserContextHolder
 .getContext()
 .setCorrelationId(
 ➥ httpServletRequest
 .getHeader(
 UserContext.CORRELATION_ID));
UserContextHolder.getContext().setUserId(
 httpServletRequest
 .getHeader(UserContext.USER_ID));
UserContextHolder
 .getContext()
 .setAuthToken(
 httpServletRequest
 .getHeader(UserContext.AUTH_TOKEN));
UserContextHolder
 .getContext()
 .setOrgId(
 httpServletRequest
 .getHeader(UserContext.ORG_ID));

 filterChain
 .doFilter(httpServletRequest, servletResponse);
}

 // Not showing the empty init and destroy methods}

Ultimately, the UserContextFilter is used to map the HTTP header values you’re
interested in into a Java class, UserContext.

USERCONTEXT: MAKING THE HTTP HEADERS EASILY ACCESSIBLE TO THE SERVICE

The UserContext class is used to hold the HTTP header values for an individual ser-
vice client request being processed by your microservice. It consists of a getter/setter
method that retrieves and stores values from java.lang.ThreadLocal. The follow-
ing listing shows the code from the UserContext class. The source for this class
can be found in licensing-service/src/main/java/com/thoughtmechanix/
licenses/utils/UserContext.java.

@Component
public class UserContext {
 public static final String CORRELATION_ID = "tmx-correlation-id";
 public static final String AUTH_TOKEN = "tmx-auth-token";
 public static final String USER_ID = "tmx-user-id";
 public static final String ORG_ID = "tmx-org-id";

Listing 6.9 Storing the HTTP header values inside the UserContext class

Your filter retrieves the correlation
ID from the header and sets the
value on the UserContext class.

The other values being scraped from the
HTTP Headers will come into play if you
use the authentication service example
defined in the code’s README file.
Licensed to <null>

180 CHAPTER 6 Service routing with Spring Cloud and Zuul
 private String correlationId= new String();
 private String authToken= new String();
 private String userId = new String();
 private String orgId = new String();

 public String getCorrelationId() { return correlationId;}
 public void setCorrelationId(String correlationId) {
 this.correlationId = correlationId;}

 public String getAuthToken() { return authToken;}
 public void setAuthToken(String authToken) {
 this.authToken = authToken;}

 public String getUserId() { return userId;}
 public void setUserId(String userId) { this.userId = userId;}

 public String getOrgId() { return orgId;}
 public void setOrgId(String orgId) {this.orgId = orgId;
 }
}

Now the UserContext class is nothing more than a POJO holding the values scraped
from the incoming HTTP request. You use a class called zuulsvr/src/main/java/
com/thoughtmechanix/zuulsvr/filters/UserContextHolder.java to store
the UserContext in a ThreadLocal variable that is accessible in any method being
invoked by the thread processing the user’s request. The code for UserContext-
Holder is shown in the following listing.

public class UserContextHolder {
 private static final ThreadLocal<UserContext> userContext
 = new ThreadLocal<UserContext>();

 public static final UserContext getContext(){
 UserContext context = userContext.get();

 if (context == null) {
 context = createEmptyContext();
 userContext.set(context);
 }

 return userContext.get();
 }

 public static final void setContext(UserContext context) {
 Assert.notNull(context,
 ➥ "Only non-null UserContext instances are permitted");
 userContext.set(context);
 }

 public static final UserContext createEmptyContext(){
 return new UserContext();
 }
}

Listing 6.10 The UserContextHolder stores the UserContext in a ThreadLocal
Licensed to <null>

181Building your first Zuul pre-filter generating correlation IDs
CUSTOM RESTTEMPLATE AND USERCONTEXTINTECEPTOR: ENSURING THAT
THE CORRELATION ID GETS PROPAGATED FORWARD

The last piece of code that we’re going to look at is the UserContextInterceptor
class. This class is used to inject the correlation ID into any outgoing HTTP-based ser-
vice requests being executed from a RestTemplate instance. This is done to ensure
that you can establish a linkage between service calls.

 To do this you’re going to use a Spring Interceptor that’s being injected into the
RestTemplate class. Let’s look at the UserContextInterceptor in the following
listing.

package com.thoughtmechanix.licenses.utils;

//Removed imports for conciseness
public class UserContextInterceptor
 implements ClientHttpRequestInterceptor {

 @Override
 public ClientHttpResponse intercept(
 HttpRequest request, byte[] body,
 ClientHttpRequestExecution execution)
 throws IOException {

 HttpHeaders headers = request.getHeaders();
 headers.add(
 UserContext.CORRELATION_ID,
 UserContextHolder
 .getContext()
 .getCorrelationId());
 headers.add(UserContext.AUTH_TOKEN,
 UserContextHolder
 .getContext()
 .getAuthToken());

 return execution.execute(request, body);
 }
}

To use the UserContextInterceptor you need to define a RestTemplate bean
and then add the UserContextInterceptor to it. To do this, you’re going to add
your own RestTemplate bean definition to the licensing-service/src/main/
java/com/thoughtmechanix/licenses/Application.java class. The following
listing shows the method that’s added to this class.

@LoadBalanced
@Bean
public RestTemplate getRestTemplate(){

Listing 6.11 All outgoing microservice calls have the correlation ID injected into them

Listing 6.12 Adding the UserContextInterceptor to the RestTemplate class

The UserContextIntercept implements
the Spring frameworks

ClientHttpRequestInterceptor.

The intercept() method is invoked
before the actual HTTP service call
occurs by the RestTemplate.

You take the HTTP request header
that’s being prepared for the outgoing
service call and add the correlation
ID stored in the UserContext.

The @LoadBalanced annotation
indicates that this RestTemplate
object is going to use Ribbon.
Licensed to <null>

182 CHAPTER 6 Service routing with Spring Cloud and Zuul
 RestTemplate template = new RestTemplate();
 List interceptors = template.getInterceptors();
 if (interceptors==null){
 template.setInterceptors(
 Collections.singletonList(
 new UserContextInterceptor()));
 }
 else{
 interceptors.add(new UserContextInterceptor());
 template.setInterceptors(interceptors);
 }

 return template; }

With this bean definition in place, any time you use the @Autowired annotation and
inject a RestTemplate into a class, you’ll use the RestTemplate created in listing
6.11 with the UserContextInterceptor attached to it.

6.6 Building a post filter receiving correlation IDs
Remember, Zuul executes the actual HTTP call on behalf of the service client. Zuul
has the opportunity to inspect the response back from the target service call and then
alter the response or decorate it with additional information. When coupled with cap-
turing data with the pre-filter, a Zuul post filter is an ideal location to collect metrics
and complete any logging associated with the user’s transaction. You’ll want to take
advantage of this by injecting the correlation ID that you’ve been passing around to
your microservices back to the user.

 You’re going to do this by using a Zuul post filter to inject the correlation ID back
into the HTTP response headers being passed back to the caller of the service. This
way, you can pass the correlation ID back to the caller without ever having to touch the
message body. The following listing shows the code for building a post filter. This code
can be found in zuulsvr/src/main/java/com/thoughtmechanix/zuulsvr/
filters/ResponseFilter.java.

Log aggregation and authentication and more
Now that you have correlation ID’s being passed to each service, it’s possible to
trace a transaction as it flows through all the services involved in the call. To do this
you need to ensure that each service logs to a central log aggregation point that cap-
tures log entries from all of your services into a single point. Each log entry captured
in the log aggregation service will have a correlation ID associated to each entry.
Implementing a log aggregation solution is outside the scope of this chapter, but in
chapter 9, we’ll see how to use Spring Cloud Sleuth. Spring Cloud Sleuth won’t use
the TrackingFilter that you built here, but it will use the same concepts of track-
ing the correlation ID and ensuring that it’s injected in every call.

Adding the UserContextInterceptor
to the RestTemplate instance
that has been created
Licensed to <null>

183Building a post filter receiving correlation IDs

package com.thoughtmechanix.zuulsvr.filters;

//Remove imports for conciseness

@Component
public class ResponseFilter extends ZuulFilter{
 private static final int FILTER_ORDER=1;
 private static final boolean SHOULD_FILTER=true;
 private static final Logger logger =
 ➥ LoggerFactory
 .getLogger(ResponseFilter.class);

 @Autowired
 FilterUtils filterUtils;

 @Override
 public String filterType() {
 return FilterUtils.POST_FILTER_TYPE;
 }

 @Override
 public int filterOrder() {
 return FILTER_ORDER;
 }

 @Override
 public boolean shouldFilter() {
 return SHOULD_FILTER;
 }

 @Override
 public Object run() {
 RequestContext ctx =
 RequestContext.getCurrentContext();

 logger.debug("Adding the correlation id to
 ➥ the outbound headers. {}",
 ➥ filterUtils.getCorrelationId());

 ctx.getResponse()
 .addHeader(
 FilterUtils.CORRELATION_ID,
 filterUtils.getCorrelationId());

 logger.debug("Completing outgoing request for {}.",
 ➥ ctx.getRequest().getRequestURI());

 return null;
 }
}

Listing 6.13 Injecting the correlation ID into the HTTP response

To build a post filter you need to set the
filter type to be POST_FILTER_TYPE.

Grab the correlation ID that was
passed in on the original HTTP request
and inject it into the response.

Log the outgoing request URI so that you have
“bookends” that will show the incoming and

outgoing entry of the user’s request into Zuul.
Licensed to <null>

184 CHAPTER 6 Service routing with Spring Cloud and Zuul
Figure 6.14 The tmx-correlation-id has been added to the response headers sent back to the service
client.

Once the ResponseFilter has been implemented, you can fire up your Zuul service
and call the EagleEye licensing service through it. Once the service has completed,
you’ll see a tmx-correlation-id on the HTTP response header from the call. Fig-
ure 6.14 shows the tmx-correlation-id being sent back from the call.

 Up until this point, all our filter examples have dealt with manipulating the service
client calls before and after it has been routed to its target destination. For our last fil-
ter example, let’s look at how you can dynamically change the target route you want to
send the user to.

6.7 Building a dynamic route filter
The last Zuul filter we’ll look at is the Zuul route filter. Without a custom route filter
in place, Zuul will do all its routing based on the mapping definitions you saw earlier
in the chapter. However, by building a Zuul route filter, you can add intelligence to
how a service client’s invocation will be routed.

 In this section, you’ll learn about Zuul’s route filter by building a route filter that will
allow you to do A/B testing of a new version of a service. A/B testing is where you roll
out a new feature and then have a percentage of the total user population use that fea-
ture. The rest of the user population still uses the old service. In this example, you’re
going to simulate rolling out a new version of the organization service where you want
50% of the users go to the old service and 50% of the users to go to the new service.

 To do this you’re going to build a Zuul route filter, called SpecialRoutes-
Filter, that will take the Eureka service ID of the service being called by Zuul and

The correlation ID returned in the HTTP response
Licensed to <null>

185Building a dynamic route filter
call out to another microservice called SpecialRoutes. The SpecialRoutes ser-
vice will check an internal database to see if the service name exists. If the targeted ser-
vice name exists, it will return a weight and target destination of an alternative
location for the service. The SpecialRoutesFilter will then take the weight
returned and, based on the weight, randomly generate a number that will be used to
determine whether the user’s call will be routed to the alternative organization service
or to the organization service defined in the Zuul route mappings. Figure 6.15 shows
the flow of what happens when the SpecialRoutesFilter is used.

Figure 6.15 The flow of a call to the organization service through the SpecialRoutesFilter

4. If request was routed to
 new alternate service
 endpoint, Zuul still routes
 response back through any
 pre-defined post filters.

1. SpecialRoutesFilter
 retrieves the
 service ID.

Service client calls the
service through Zuul

2. SpecialRoutes service
 checks if there’s a new
 alternate endpoint service,
 and the percentage of calls
 (weight number) to be sent
 to new versus old service

3. SpecialRoutesFilter
 generates random
 number and checks
 against weight number
 to determine routing.

Service
client

Eureka ID

ResponseFilter

Zuul services
gateway

SpecialRoutes
service

Post filters

Random number

Old version
of service

Old version
of service

SpecialRoutesFilter
Licensed to <null>

186 CHAPTER 6 Service routing with Spring Cloud and Zuul
In figure 6.15, after the service client has called a service “fronted” by Zuul, the Spe-
cialRoutesFilter takes the following actions:

1 The SpecialRoutesFilter retrieves the service ID for the service being
called.

2 The SpecialRoutesFilter calls the SpecialRoutes service. The Special
Routes service checks to see if there’s an alternative endpoint defined for the
targeted endpoint. If a record is found, it will contain a weight that will tell Zuul
the percentage of service calls that should be sent to the old service and the
new service.

3 The SpecialRoutesFilter then generates a random number and compares
that against the weight returned by the SpecialRoutes service. If the ran-
domly generated number is under the value of the alternative endpoint weight,
SpecialRoutesFilter sends the request to the new version of the service.

4 If the SpecialRoutesFilter sends the request to new version of the service,
Zuul maintains the original predefined pipelines and sends the response back
from the alternative service endpoint through any defined post filters.

6.7.1 Building the skeleton of the routing filter

We’re going to start walking through the code you used to build the Special-
RoutesFilter. Of all the filters we’ve looked at so far, implementing a Zuul route fil-
ter requires the most coding effort, because with a route filter you’re taking over a
core piece of Zuul functionality, routing, and replacing it with your own functionality.
We’re not going to go through the entire class in detail here, but rather work through
the pertinent details.

 The SpecialRoutesFilter follows the same basic pattern as the other Zuul fil-
ters. It extends the ZuulFilter class and sets the filterType() method to return
the value of “route”. I’m not going to go into any more explanation of the filter-
Order() and shouldFilter() methods as they’re no different from the previous fil-
ters discussed earlier in the chapter. The following listing shows the route filter
skeleton.

package com.thoughtmechanix.zuulsvr.filters;

@Component
public class SpecialRoutesFilter extends ZuulFilter {
 @Override
 public String filterType() {
 return filterUtils.ROUTE_FILTER_TYPE;
 }

 @Override
 public int filterOrder() {}

Listing 6.14 The skeleton of your route filter
Licensed to <null>

187Building a dynamic route filter
 @Override
 public boolean shouldFilter() {}

 @Override
 public Object run() {}
}

6.7.2 Implementing the run() method

The real work for the SpecialRoutesFilter begins in the run() method of the
code. The following listing shows the code for this method.

public Object run() {
 RequestContext ctx = RequestContext.getCurrentContext();

 AbTestingRoute abTestRoute =
 getAbRoutingInfo(filterUtils.getServiceId());

 if (abTestRoute!=null &&
 useSpecialRoute(abTestRoute)) {
 String route =
 buildRouteString(
 ctx.getRequest().getRequestURI(),
 abTestRoute.getEndpoint(),
 ctx.get("serviceId").toString());
 forwardToSpecialRoute(route);
 }

 return null;
}

The general flow of code in listing 6.15 is that when a route request hits the run()
method in the SpecialRoutesFilter, it will execute a REST call to the Special-
Routes service. This service will execute a lookup and determine if a routing record
exists for the Eureka service ID of the target service being called. The call out to
SpecialRoutes service is done in the getAbRoutingInfo() method. The get-
AbRoutingInfo() method is shown in the following listing.

private AbTestingRoute getAbRoutingInfo(String serviceName){
 ResponseEntity<AbTestingRoute> restExchange = null;
try {
 restExchange = restTemplate.exchange(
 "http://specialroutesservice/v1
 ➥ /route/abtesting/{serviceName}",
 HttpMethod.GET,null, AbTestingRoute.class, serviceName);
}

Listing 6.15 The run() method for the SpecialRoutesFilter is where the
 work begins

Listing 6.16 Invoking the SpecialRouteservice to see if a routing record exists

Executes call to
SpecialRoutes service

to determine if there is a
routing record for this org

The useSpecialRoute() method
will take the weight of the route,

generate a random number,
and determine if you’re going

to forward the request onto
the alternative service.

If there’s a routing record, build the full
URL (with path) to the service location
specified by the specialroutes service.

The forwardToSpecialRoute()
method does the work of

forwarding onto the
alternative service.

Calls the SpecialRoutesService
endpoint
Licensed to <null>

188 CHAPTER 6 Service routing with Spring Cloud and Zuul
catch(HttpClientErrorException ex){
 if (ex.getStatusCode()== HttpStatus.NOT_FOUND){
 return null;
 throw ex;
}
return restExchange.getBody();
}

Once you’ve determined that there’s a routing record present for the target service,
you need to determine whether you should route the target service request to the
alternative service location or to the default service location statically managed by the
Zuul route maps. To make this determination, you call the useSpecialRoute()
method. The following listing shows this method.

public boolean useSpecialRoute(AbTestingRoute testRoute){
 Random random = new Random();

 if (testRoute.getActive().equals("N"))
 return false;

 int value =
 random.nextInt((10 - 1) + 1) + 1;

 if (testRoute.getWeight()<value)
 return true;

 return false;
}

This method does two things. First, the method checks the active field on the
AbTestingRoute record returned from the SpecialRoutes service. If the record is
set to “N,” useSpecialRoute() method shouldn’t do anything because you don’t
want to do any routing at this moment. Second, the method generates a random num-
ber between 1 and 10. The method will then check to see if the weight of the return
route is less than the randomly generated number. If the condition is true, the use-
SpecialRoute method returns true indicating you do want to use the route.

 Once you’ve determined that you do want to route the service request coming
into the SpecialRoutesFilter, you’re going to forward the request onto the target
service.

6.7.3 Forwarding the route

The actual forwarding of the route to the downstream service is where the majority of
the work occurs in the SpecialRoutesFilter. While Zuul does provide helper func-
tions to make this task easier, the majority of the work still lies with the developer.
The forwardToSpecialRoute() method does the forwarding work for you. The
code in this method borrows heavily from the source code for the Spring Cloud

Listing 6.17 Determining whether to use the alternative service route

If the routes services doesn’t
find a record (it will return a
404 HTTP Status Code), the
method will return null.

Checks to see if the
route is even active

Determines whether you should
use the alternative service route
Licensed to <null>

189Building a dynamic route filter
SimpleHostRoutingFilter class. While we’re not going to go through all of the
helper functions called in the forwardToSpecialRoute() method, we’ll walk
through the code in this method, as shown in the following listing.

private ProxyRequestHelper helper
 = new ProxyRequestHelper ();

private void forwardToSpecialRoute(String route) {
 RequestContext context
 = RequestContext.getCurrentContext();
 HttpServletRequest request = context.getRequest();

 MultiValueMap<String, String>headers =
 ➥ helper.buildZuulRequestHeaders(request);

 MultiValueMap<String, String> params =
 ➥ helper.buildZuulRequestQueryParams(request);

 String verb = getVerb(request);
 InputStream requestEntity = getRequestBody(request);
 if (request.getContentLength() < 0)
 context.setChunkedRequestBody();

 this.helper.addIgnoredHeaders();
 CloseableHttpClient httpClient = null;
 HttpResponse response = null;

 try {
 httpClient = HttpClients.createDefault();
 response = forward(
 httpClient,
 ➥ verb,
 route,
 request,
 headers,
 params,
 requestEntity);
 setResponse(response);
 }
 catch (Exception ex) {//Removed for conciseness}

}

The key takeaway from the code in listing 6.18 is that you’re copying all of the values
from the incoming HTTP request (the header parameters, HTTP verb, and the body)
into a new request that will be invoked on the target service. The forwardToSpecial-
Route() method then takes the response back from the target service and sets it on the
HTTP request context used by Zuul. This is done via the setResponse() helper
method (not shown). Zuul uses the HTTP request context to return the response back
from the calling service client.

Listing 6.18 The forwardToSpecialRoute invokes the alternative service

The helper variable is an
instance variable of type
ProxyRequestHelper class.
This is a Spring Cloud class
with helper functions for
proxying service requests.

Creates a copy of all the HTTP request
headers that will be sent to the service

Creates copy of all the
HTTP request parameters

Makes a copy of the
HTTP Body that will be
forwarded onto the
alternative service

Invokes the alternative service
using the forward helper
method (not shown)

The result of service call is
saved back to the Zuul server
through the setResponse()
helper method.
Licensed to <null>

190 CHAPTER 6 Service routing with Spring Cloud and Zuul
6.7.4 Pulling it all together

Now that you’ve implemented the SpecialRoutesFilter you can see it an action by
calling the licensing service. As you may remember from earlier chapters, the licensing
service calls the organization service to retrieve the contact data for the organization.

 In the code example, the specialroutesservice has a database record for the
organization service that will route the requests for calls to the organization service 50%
of the time to the existing organization service (the one mapped in Zuul) and 50% of
the time to an alternative organization service. The alternative organization service
route returned from the SpecialRoutes service will be http://orgservice-new
and will not be accessible directly from Zuul. To differentiate between the two services,
I’ve modified the organization service(s) to pre-pend the text “OLD::” and “NEW::” to
contact names returned by the organization service.

 If you now hit the licensing service endpoint through Zuul

http://localhost:5555/api/licensing/v1/organizations/e254f8c-c442-4ebe-a82a-
e2fc1d1ff78a/licenses/f3831f8c-c338-4ebe-a82a-e2fc1d1ff78a

you should see the contactName returned from the licensing service call flip between
the OLD:: and NEW:: values. Figure 6.16 shows this.

 A Zuul routes filter does take more effort to implement then a pre- or post filter,
but it’s also one of the most powerful parts of Zuul because you’re able to easily add
intelligence to the way your services are routed.

Figure 6.16 When you hit the alternative organization service, you see NEW prepended to the
contactName.
Licensed to <null>

191Summary
6.8 Summary
 Spring Cloud makes it trivial to build a services gateway.
 The Zuul services gateway integrates with Netflix’s Eureka server and can auto-

matically map services registered with Eureka to a Zuul route.
 Zuul can prefix all routes being managed, so you can easily prefix your routes

with something like /api.
 Using Zuul, you can manually define route mappings. These route mappings

are manually defined in the applications configuration files.
 By using Spring Cloud Config server, you can dynamically reload the route

mappings without having to restart the Zuul server.
 You can customize Zuul’s Hystrix and Ribbon timeouts at global and individual

service levels.
 Zuul allows you to implement custom business logic through Zuul filters. Zuul

has three types of filters: pre-, post, and routing Zuul filters.
 Zuul pre-filters can be used to generate a correlation ID that can be injected

into every service flowing through Zuul.
 A Zuul post filter can inject a correlation ID into every HTTP service response

back to a service client.
 A custom Zuul route filter can perform dynamic routing based on a Eureka ser-

vice ID to do A/B testing between different versions of the same service.
Licensed to <null>

Securing your microservices
Security. The mention of the word will often cause an involuntary groan from the
developer who hears it. You’ll hear them mutter and curse under their breath, “It’s
obtuse, hard to understand, and even harder to debug.” Yet you won’t find any
developer (except maybe for inexperienced developers) say that that they don’t
worry about security.

 A secure application involves multiple layers of protection, including
 Ensuring that the proper user controls are in place so that you can validate

that a user is who they say they are and that they have permission to do what
they’re trying to do

 Keeping the infrastructure the service is running on patched and up-to-date
to minimize the risk of vulnerabilities.

This chapter covers
 Learning why security matters in a microservice environment

 Understanding the OAuth2 standard

 Setting up and configuring a Spring-based OAuth2 service

 Performing user authentication and authorization with
OAuth2

 Protecting your Spring microservice using OAuth2

 Propagating your OAuth2 access token between services
192

Licensed to <null>

193Introduction to OAuth2
 Implementing network access controls so that a service is only accessible through
well-defined ports and accessible to a small number of authorized servers

This chapter is only going to deal with the first bullet point in this list: how to authenti-
cate that the user calling your microservice is who they say they are and determine
whether they’re authorized to carry out the action they’re requesting from your
microservice. The other two topics are extremely broad security topics that are outside
the scope of this book.

 To implement authorization and authentication controls, you’re going to use
Spring Cloud security and the OAuth2 (Open Authentication) standard to secure
your Spring-based services. OAuth2 is a token-based security framework that allows a
user to authenticate themselves with a third-party authentication service. If the user
successfully authenticates, they will be presented a token that must be sent with every
request. The token can then be validated back to the authentication service. The main
goal behind OAuth2 is that when multiple services are called to fulfill a user’s request,
the user can be authenticated by each service without having to present their creden-
tials to each service processing their request. Spring Boot and Spring Cloud each pro-
vide an out-of-the-box implementation of an OAuth2 service and make it extremely
easy to integrate OAuth2 security into your service.

NOTE In this chapter, we’ll show you how to protect your microservices using
OAuth2; however, a full-blown OAuth2 implementation also requires a front-
web application to enter your user credentials. We won’t be going through
how to set up the front-end application because that’s out of scope for a book
on microservices. Instead, we’ll use a REST client, like POSTMAN, to simulate
the presentation of credentials. For a good tutorial on how to configure your
front-end application, I recommend you look at the following Spring tutorial:
https://spring.io/blog/2015/02/03/sso-with-oauth2-angular-js-and-spring-
security-part-v.

The real power behind OAuth2 is that it allows application developers to easily inte-
grate with third-party cloud providers and do user authentication and authorization
with those services without having to constantly pass the user’s credentials to the third-
party service. Cloud providers such as Facebook, GitHub, and Salesforce all support
OAuth2 as a standard.

 Before we get into the technical details of protecting our services with OAuth2, let’s
walk through the OAuth2 architecture.

7.1 Introduction to OAuth2
OAuth2 is a token-based security authentication and authorization framework that
breaks security down into four components. These four components are

1 A protected resource—This is the resource (in our case, a microservice) you want
to protect and ensure that only authenticated users who have the proper autho-
rization can access.
Licensed to <null>

https://spring.io/blog/2015/02/03/sso-with-oauth2-angular-js-and-spring-security-part-v
https://spring.io/blog/2015/02/03/sso-with-oauth2-angular-js-and-spring-security-part-v

194 CHAPTER 7 Securing your microservices
2 A resource owner—A resource owner defines what applications can call their ser-
vice, which users are allowed to access the service, and what they can do with
the service. Each application registered by the resource owner will be given an
application name that identifies the application along with an application
secret key. The combination of the application name and the secret key are part
of the credentials that are passed when authenticating an OAuth2 token.

3 An application—This is the application that’s going to call the service on a
behalf of a user. After all, users rarely invoke a service directly. Instead, they rely
on an application to do the work for them.

4 OAuth2 authentication server—The OAuth2 authentication server is the interme-
diary between the application and the services being consumed. The OAuth2
server allows the user to authenticate themselves without having to pass their
user credentials down to every service the application is going to call on behalf
of the user.

The four components interact together to authenticate the user. The user only has to
present their credentials. If they successfully authenticate, they’re issued an authenti-
cation token that can be passed from service to service. This is shown in figure 7.1.
OAuth2 is a token-based security framework. A user authenticates against the OAuth2
server by providing their credentials along with the application that they’re using to
access the resource. If the user’s credentials are valid, the OAuth2 server provides a

2. The resource owner grants which
applications/users can access the
resource via the OAuth2 service.

3. When the user tries to access
 a protected service they must
 authenticate and obtain a token
 from the OAuth2 service.

4. The OAuth2 server authenticates
 the user and validates tokens
 presented to it.

1. The service we
want to protect

Application trying to
access a protected

resource

OAuth2
authentication

server

Protected
resource

The user

Resource owner

Figure 7.1 OAuth2 allows a user to authenticate without constantly having to present credentials.
Licensed to <null>

195Starting small: using Spring and OAuth2 to protect a single endpoint
token that can be presented every time a service being used by the user’s application
tries to access a protected resource (the microservice).

 The protected resource can then contact the OAuth2 server to determine the valid-
ity of the token and retrieve what roles a user has assigned to them. Roles are used to
group related users together and to define what resources that group of users can
access. For the purposes of this chapter, you’re going to use OAuth2 and roles to
define what service endpoints and what HTTP verbs a user can call on an endpoint.

 Web service security is an extremely complicated subject. You have to understand
who’s going to call your services (internal users to your corporate network, external
users), how they’re going to call your service (internal web-based client, mobile
device, web application outside your corporate network), and what actions they’re
going to take with your code. OAuth2 allows you to protect your REST-based services
across these different scenarios through different authentication schemes called
grants. The OAuth2 specification has four types of grants:

 Password
 Client credential
 Authorization code
 Implicit

We aren’t going to walk through each of these grant types or provide code examples
for each grant type. That’s simply too much material to cover in one chapter. Instead,
I’ll do the following:

 Discuss how your microservices service can use OAuth2 through one of the sim-
pler OAuth2 grant types (the password grant type).

 Use JavaScript web tokens to provide a more robust OAuth2 solution and estab-
lish a standard for encoding information in a OAuth2 token.

 Walk through other security considerations that need to be taken into account
when building microservices.

I do provide overview material on the other OAuth2 grant types in appendix B,
“OAuth2 grant types.” If you’re interested in diving into more detail on the OAuth2
spec and how to implement all the grant types, I highly recommend Justin Richer and
Antonio Sanso’s book, OAuth2 in Action (Manning, 2017), which is a comprehensive
explanation of OAuth2.

7.2 Starting small: using Spring and OAuth2 to protect a
single endpoint
To understand how to set up the authentication and authorization pieces of OAuth2,
you’re going to implement the OAuth2 password grant type. To implement this grant,
you’ll do the following:

 Set up a Spring-Cloud-based OAuth2 authentication service.
 Register a faux EagleEye UI application as an authorized application that can

authenticate and authorize user identities with your OAuth2 service.
Licensed to <null>

196 CHAPTER 7 Securing your microservices
 Use OAuth2 password grant to protect your EagleEye services. You’re not going
to build a UI for EagleEye, so instead you’ll simulate a user logging in to use
POSTMAN to authenticate against your EagleEye OAuth2 service.

 Protect the licensing and organization service so that they can only be called by
an authenticated user.

7.2.1 Setting up the EagleEye OAuth2 authentication service

Like all the examples in this book’s chapters, your OAuth2 authentication service is
going to be another Spring Boot service. The authentication service will authenticate
the user credentials and issue a token. Every time the user tries to access a service pro-
tected by the authentication service, the authentication service will validate that the
OAuth2 token was issued by it and that it hasn’t expired. The authentication service
will be the equivalent of the authentication service in figure 7.1.

 To get started, you’re going to set up two things:

1 The appropriate Maven build dependencies needed for your bootstrap class
2 A bootstrap class that will act as an entry point to the service

You can find all code examples for the authentication service in the authentication-
service directory. To set up an OAuth2 authentication server, you need the following
Spring Cloud dependencies in the authentication-service/pom.xml file:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-security</artifactId>
</dependency>

<dependency>
 <groupId>org.springframework.security.oauth</groupId>
 <artifactId>spring-security-oauth2</artifactId>
</dependency>

The first dependency, spring-cloud-security, brings in the general Spring and
Spring Cloud security libraries. The second dependency, spring-security-
oauth2, pulls in the Spring OAuth2 libraries.

 Now that the Maven dependencies are defined, you can work on the bootstrap
class. This class can be found in the authentication-service/src/main/java/
com/thoughtmechanix/authentication/Application.java class. The follow-
ing listing shows the code for the Application.java class.

//Imports removed for conciseness

@SpringBootApplication
@RestController
@EnableResourceServer
@EnableAuthorizationServer
public class Application {

Listing 7.1 The authentication-service bootstrap class

Used to tell Spring Cloud that this service
is going to act as an OAuth2 service
Licensed to <null>

197Starting small: using Spring and OAuth2 to protect a single endpoint
 @RequestMapping(value = { "/user" }, produces = "application/json")
 public Map<String, Object> user(OAuth2Authentication user) {
 Map<String, Object> userInfo = new HashMap<>();
 userInfo.put(

 "user",
 user.getUserAuthentication()

 .getPrincipal());
 userInfo.put(
 ➥ "authorities",
 AuthorityUtils.authorityListToSet(
 user.getUserAuthentication()
 . ➥ getAuthorities()));
 return userInfo;
 }

 public static void main(String[] args) {
 SpringApplication.run(Application.class, args);
 }
}

The first thing to note in this listing is the @EnableAuthorizationServer annota-
tion. This annotation tells Spring Cloud that this service will be used as an OAuth2 ser-
vice and to add several REST-based endpoints that will be used in the OAuth2
authentication and authorization processes.

 The second thing you’ll see in listing 7.1 is the addition of an endpoint called
/user (which maps to /auth/user). You’ll use this endpoint later in the chapter
when you’re trying to access a service protected by OAuth2. This endpoint is called by
the protected service to validate the OAuth2 access token and retrieve the assigned
roles of the user accessing the protected service. I’ll discuss this endpoint in greater
detail later in the chapter.

7.2.2 Registering client applications with the OAuth2 service

At this point you have an authentication service, but haven’t defined any applications,
users, or roles within the authentication server. You can begin by registering the Eagle-
Eye application with your authentication service. To do this you’re going to set up an
additional class in your authentication service called authentication-service/
src/main/java/com/thoughtmechanix/authentication/security/OAuth2

Config.java.
 This class will define what applications are registered with your OAuth2 authentica-

tion service. It’s important to note that just because an application is registered with
your OAuth2 service, it doesn’t mean that the service will have access to any protected
resources.

On authentication vs. authorization
I’ve often found that developers “mix and match” the meaning of the terms authen-
tication and authorization. Authentication is the act of a user proving who they are by
providing credentials. Authorization determines whether a user is allowed to do what

Used later in the chapter
to retrieve information

about the user
Licensed to <null>

198 CHAPTER 7 Securing your microservices
The OAuth2Config class defines what applications and the user credentials the
OAuth2 service knows about. In the following listing you can see the
OAuth2Config.java code.

//Imports removed for conciseness
@Configuration
public class OAuth2Config extends AuthorizationServerConfigurerAdapter {

 @Autowired
 private AuthenticationManager authenticationManager;
 @Autowired
 private UserDetailsService userDetailsService;

 @Override
 public void configure(ClientDetailsServiceConfigurer clients) throws

Exception {
 clients.inMemory()
 .withClient("eagleeye")
 .secret("thisissecret")
 .authorizedGrantTypes(
 ➥ "refresh_token",
 ➥ "password",
 ➥ "client_credentials"
 .scopes("webclient","mobileclient");
 }

 @Override
 public void configure(
 ➥ AuthorizationServerEndpointsConfigurer endpoints)
 throws Exception {
 endpoints
 .authenticationManager(authenticationManager)
 .userDetailsService(userDetailsService);
 }
 }

The first thing to notice in the code is that you’re extending Spring’s
AuthenticationServerConfigurer class and then marking the class with a

(continued)

they’re trying to do. For instance, the user Jim could prove his identity by providing a
user ID and password, but he may not be authorized to look at sensitive data such
as payroll data. For the purposes of our discussion, a user must be authenticated
before authorization takes place.

Listing 7.2 OAuth2Config service defines what applications can use your service

Extends the AuthenticationServerConfigurer class and
marks the class with @Configuration annotation

Overrides the configure() method.
This defines which clients are going

to registered your service.

This method defines the
different components used
within the Authentication-

ServerConfigurer. This code
is telling Spring to use the

default authentication manager
and user details service that

comes up with Spring.
Licensed to <null>

199Starting small: using Spring and OAuth2 to protect a single endpoint
@Configuration annotation. The AuthenticationServerConfigurer class is a
core piece of Spring Security. It provides the basic mechanisms for carrying out key
authentication and authorization functions. For the OAuth2Config class you’re
going to override two methods. The first method, configure(), is used to define
what client applications are registered with your authentication service. The config-
ure() method takes a single parameter called clients of type ClientDetails-
ServiceConfigurer. Let’s start walking through the code in the configure()
method in a little more detail. The first thing you do in this method is register which
client applications are allowed to access services protected by the OAuth2 service. I’m
using “access” here in the broadest terms, because you control what the users of the
client applications can do later by checking whether the user that the service is being
invoked for is authorized to take the actions they’re trying to take:

clients.inMemory()
 .withClient("eagleeye")
 .secret("thisissecret")
 .authorizedGrantTypes("password",
 ➥ "client_credentials")
 .scopes("webclient","mobileclient");

The ClientDetailsServiceConfigurer class supports two different types of
stores for application information: an in-memory store and a JDBC store. For the pur-
poses of this example, you’re going to use the clients.inMemory() store.

 The two method calls withClient() and secret() provide the name of the
application (eagleeye) that you’re registering along with a secret (a password, thi-
sissecret) that will be presented when the EagleEye application calls your OAuth2
server to receive an OAuth2 access token.

 The next method, authorizedGrantTypes(), is passed a comma-separated list
of the authorization grant types that will be supported by your OAuth2 service. In your
service, you’ll support the password and client credential grants.

 The scopes() method is used to define the boundaries that the calling applica-
tion can operate in when they’re asking your OAuth2 server for an access token. For
instance, Thoughtmechanix might offer two different versions of the same applica-
tion, a web-based application and a mobile phone based application. Each of these
apps can use the same client name and secret key to ask for access to resources pro-
tected by the OAuth2 server. However, when the apps ask for a key, they need to define
the specific scope they are operating in. By defining the scope, you can write authori-
zation rules specific to the scope the client application is working in.

 For instance, you might have a user who can access the EagleEye application with
both the web-based client and the mobile-phone of the application. Each version of
the application does the following:

1 Offers the same functionality
2 Is a “trusted application” where ThoughtMechanix owns both the EagleEye

front-end applications and the end user services
Licensed to <null>

200 CHAPTER 7 Securing your microservices
Thus you’re going to register the EagleEye application with the same application
name and secret key, but the web application will only use the “webclient” scope while
the mobile phone version of the application will use the “mobileclient” scope. By
using scope, you can then define authorization rules in your protected services that
can limit what actions a client application can take based on the application they are
logging in with. This will be regardless of what permissions the user has. For example,
you might want to restrict what data a user can see based on whether they’re using a
browser inside the corporate network versus browsing using an application on a
mobile device. The practice of restricting data based on the access mechanism of the
data is common when dealing with sensitive customer information (such as health
records or tax information).

 At this point you’ve registered a single application, EagleEye, with your OAuth2
server. However, because you’re using a password grant, you need to set up user
accounts and passwords for those users before you start.

7.2.3 Configuring EagleEye users

You’ve defined and stored application-level key names and secrets. You’re now going
to set up individual user credentials and the roles that they belong to. User roles will
be used to define the actions a group of users can do with a service.

 Spring can store and retrieve user information (the individual user’s credentials
and the roles assigned to the user) from an in-memory data store, a JDBC-backed rela-
tional database, or an LDAP server.

NOTE I want to be careful here in terms of definition. The OAuth2 applica-
tion information for Spring can store its data in an in-memory or relational
database. The Spring user credentials and security roles can be stored in an
in-memory database, relational database, or LDAP (Active Directory) server.
To keep things simple because our primary purpose is to walk through
OAuth2, you’re going to use an in-memory data store.

For the code examples in this chapter, you’re going to define user roles using an in-
memory data store. You’re going to define two user accounts: john.carnell and
william.woodward. The john.carnell account will have the role of USER and the
william.woodward account will have the role of ADMIN.

 To configure your OAuth2 server to authenticate user IDs, you have to set up a new
class: authentication-service/src/main/com/thoughtmechanix/authenti-
cation/security/WebSecurityConfigurer.java. The following listing shows
the code for this class.

package com.thoughtmechanix.authentication.security;

//Imports removed for conciseness

@Configuration

Listing 7.3 Defining the User ID, password and roles for your application
Licensed to <null>

201Starting small: using Spring and OAuth2 to protect a single endpoint
public class WebSecurityConfigurer

➥ extends
 WebSecurityConfigurerAdapter {

 @Override
 @Bean
 public AuthenticationManager authenticationManagerBean()
 throws Exception{
 return super.authenticationManagerBean();
 }

 @Override
 @Bean
 public UserDetailsService userDetailsServiceBean() throws Exception {
 return super.userDetailsServiceBean();
 }

 @Override
 protected void configure(
 AuthenticationManagerBuilder auth)
 ➥ throws Exception {
 auth.inMemoryAuthentication()
 .withUser("john.carnell")
 ➥ .password("password1")
 ➥ .roles("USER")
 .and()
 ➥ .withUser("william.woodward")
 .password("password2")
 ➥ .roles("USER", "ADMIN");
 }
}

Like other pieces of the Spring Security framework, to set up users (and their roles),
start by extending the WebSecurityConfigurerAdapter class and mark it with the
@Configuration annotation. Spring Security is implemented in a fashion similar to
how you snap Lego blocks together to build a toy car or model. As such, you need to
provide the OAuth2 server a mechanism to authenticate users and return the user
information about the authenticating user. This is done by defining two beans in your
Spring WebSecurityConfigurerAdapter implementation: authentication-

ManagerBean() and userDetailsServiceBean(). These two beans are exposed
by using the default authentication authenticationManagerBean() and user-
DetailsServiceBean() methods from the parent WebSecurityConfigurer-
Adapter class.

 As you’ll remember from listing 7.2, these beans are injected into the configure-
(AuthorizationServerEndpointsConfigurer endpoints) method shown in
the OAuth2Config class:

public void configure(
 AuthorizationServerEndpointsConfigurer endpoints)
 ➥ throws Exception {
 endpoints

Extends the core Spring Security
WebSecurityConfigurerAdapter

The Authentication-
ManagerBean is used
by Spring Security to
handle authentication.

The UserDetailsService is used by Spring
Security to handle user information that

will be returned the Spring Security.

The configure() method is
where you’ll define users, their
passwords, and their roles.
Licensed to <null>

202 CHAPTER 7 Securing your microservices
 .authenticationManager(authenticationManager)
 .userDetailsService(userDetailsService);
}

These two beans are used to configure the /auth/oauth/token and /auth/user
endpoints that we’ll see in action shortly.

7.2.4 Authenticating the user

At this point you have enough of your base OAuth2 server functionality in place to per-
form application and user authentication for the password grant flow. Now you’ll sim-
ulate a user acquiring an OAuth2 token by using POSTMAN to POST to the http://
localhost:8901/auth/oauth/token endpoint and provide the application, secret
key, user ID, and password.

 First, you need to set up POSTMAN with the application name and secret key. You’re
going to pass these elements to your OAuth2 server endpoint using basic authentica-
tion. Figure 7.2 shows how POSTMAN is set up to execute a basic authentication call.

Figure 7.2 Setting up basic authentication using the application key and secret

However, you’re not ready to make the call to get the token yet. Once the application
name and secret key are configured, you need to pass in the following information in
the service as HTTP form parameters:

 grant_type—The OAuth2 grant type you’re executing. In this example, you’ll
use a password grant.

 Scope—The applications scope. Because you only defined two legitimate
scopes when you registered the application (webclient and mobileclient)
the value passed in must be one of these two scopes.

 Username—Name of the user logging in.
 Password—Password of the user logging in.

Application secret key

Endpoint and verb to Spring OAuth2 service

Application name
Licensed to <null>

203Starting small: using Spring and OAuth2 to protect a single endpoint
Figure 7.3 When requesting a OAuth2 token, the user’s credentials are passed in as HTTP form
Parameters to the /auth/oauth/token endpoint.

Unlike other REST calls in this book, the parameters in this list will not be passed in as
a JavaScript body. The OAuth2 standard expects all parameters passed to the token
generation endpoint to be HTTP form parameters. Figure 7.3 shows how HTTP form
parameters are configured for your OAuth2 call.

 Figure 7.4 shows the JavaScript payload that’s returned from the /auth/oauth/
token call.

 The payload returned contains five attributes:

 access_token—The OAuth2 token that will be presented with each service
call the user makes to a protected resource.

 token_type—The type of token. The OAuth2 specification allows you to
define multiple token types. The most common token type used is the bearer
token. We won’t cover any of the other token types in this chapter.

HTTP form parameters

The type of OAuth2
access token
being generated

The number of
seconds before the
access token expires

The defined scope for
which the token is valid

The token that is presented when the OAuth2
access token expires and needs to be refreshed

This is the key field.
The access_token is
the authentication
token presented
with each call.

Figure 7.4 Payload returned after a successful client credential validation
Licensed to <null>

204 CHAPTER 7 Securing your microservices
 refresh_token—Contains a token that can be presented back to the OAuth2
server to reissue a token after it has been expired.

 expires_in—This is the number of seconds before the OAuth2 access token
expires. The default value for authorization token expiration in Spring is
12 hours.

 Scope—The scope that this OAuth2 token is valid for.

Now that you have a valid OAuth2 access token, we can use the /auth/user endpoint
that you created in your authentication service to retrieve information about the user
associated with the token. Later in the chapter, any services that are going to be pro-
tected resources will call the authentication service’s /auth/user endpoint to vali-
date the token and retrieve the user information.

 Figure 7.5 shows what the results would be if you called the /auth/user endpoint.
As you look at figure 7.5, notice how the OAuth2 access token is passed in as an HTTP
header.

 In figure 7.5 you’re issuing a HTTP GET against the /auth/user endpoint. How-
ever, any time you call an OAuth2 protected endpoint (including the OAuth2 /auth/
user endpoint) you need to pass along the OAuth2 access token. To do this, always

The user information looked up
based on the OAuth2 token

/auth/user endpoint OAuth2 access token passed
as an HTTP header

Figure 7.5 Looking up user information based on the issued OAuth2 token
Licensed to <null>

205Protecting the organization service using OAuth2
create an HTTP header called Authorization and with a value of Bearer XXXXX.
In the case of your call in figure 7.5, the HTTP header will be of the value
Bearer e9decabc-165b-4677-9190-2e0bf8341e0b. The access token passed in
is the access token returned when you called the /auth/oauth/token endpoint in
figure 7.4.

 If the OAuth2 access token is valid, the /auth/user endpoint will return informa-
tion about the user, including what roles are assigned to them. For instance, from fig-
ure 7.10, you can see that the user john.carnell has the role of USER.

NOTE Spring assigns the prefix of ROLE_ to user’s roles, so ROLE_USER
means that john.carnell has the USER role.

7.3 Protecting the organization service using OAuth2
Once you’ve registered an application with your OAuth2 authentication service and
set up individual user accounts with roles, you can begin exploring how to protect a
resource using OAuth2. While the creation and management of OAuth2 access tokens
is the responsibility of the OAuth2 server, in Spring, the definition of what user roles
have permissions to do what actions occurs at the individual service level.

 To set up a protected resource, you need to take the following actions:

 Add the appropriate Spring Security and OAuth2 jars to the service you’re pro-
tecting

 Configure the service to point to your OAuth2 authentication service
 Define what and who can access the service

Let’s start with one of the simplest examples of setting up a protected resource by tak-
ing your organization service and ensuring that it can only be called by an authenti-
cated user.

7.3.1 Adding the Spring Security and OAuth2 jars to the individual services

As usual with Spring microservices, you have to add a couple of dependencies to the
organization service’s Maven organization-service/pom.xml file. Two dependencies
are being added: Spring Cloud Security and Spring Security OAuth2. The Spring
Cloud Security jars are the core security jars. They contain framework code, annota-
tion definitions, and interfaces for implementing security within Spring Cloud. The
Spring Security OAuth2 dependency contains all the classes needed to implement an
OAuth2 authentication service. The maven entries for these two dependencies are

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-security</artifactId>
</dependency>
<dependency>
 <groupId>org.springframework.security.oauth</groupId>
 <artifactId>spring-security-oauth2</artifactId>
</dependency>
Licensed to <null>

206 CHAPTER 7 Securing your microservices
7.3.2 Configuring the service to point to your OAuth2 authentication service

Remember that once you set up the organization service as a protected resource,
every time a call is made to the service, the caller has to include the Authentication
HTTP header containing an OAuth2 access token to the service. Your protected
resource then has to call back to the OAuth2 service to see if the token is valid.

 You define the callback URL in your organization service’s application.yml file as
the property security.oauth2.resource.userInfoUri. Here’s the callback con-
figuration used in the organization service’s application.yml file.

security:
 oauth2:
 resource:
 userInfoUri: http://localhost:8901/auth/user

As you can see from the security.oauth2.resource.userInfoUri property, the
callback URL is to the /auth/user endpoint. This endpoint was discussed earlier in
the chapter in section 7.2.4, “Authenticating the user.”

 Finally, you also need to tell the organization service that it’s a protected resource.
Again, you do this by adding a Spring Cloud annotation to the organization service’s
bootstrap class. The organization service’s bootstrap code is shown in the next list-
ing and can be found in the organization-service/src/main/java/com/
thoughtmechanix/organization/Application.java class.

package com.thoughtmechanix.organization;

//Most Imports removed for conciseness
import org.springframework.security.oauth2.
 ➥ config.annotation.web.configuration.EnableResourceServer;

@SpringBootApplication
@EnableEurekaClient
@EnableCircuitBreaker
@EnableResourceServer
public class Application {
 @Bean
public Filter userContextFilter() {
 UserContextFilter userContextFilter = new UserContextFilter();
 return userContextFilter;
}

public static void main(String[] args) {
 SpringApplication.run(Application.class, args);
}
}

The @EnableResourceServer annotation tells Spring Cloud and Spring Security
that the service is a protected resource. The @EnableResourceServer enforces a fil-
ter that intercepts all incoming calls to the service, checks to see if there’s an OAuth2

Listing 7.4 Configuring the bootstrap class to be a protected resource

The @EnableResourceServer annotation
is used to tell your microservice it’s a
protected resource.
Licensed to <null>

207Protecting the organization service using OAuth2
access token present in the incoming call’s HTTP header, and then calls back to the call-
back URL defined in the security.oauth2.resource.userInfoUri to see if the
token is valid. Once it knows the token is valid, the @EnableResourceServer anno-
tation also applies any access control rules over who and what can access a service.

7.3.3 Defining who and what can access the service

You’re now ready to begin defining the access control rules around the service. To
define access control rules, you need to extend a Spring ResourceServerConfig-
urerAdapter class and override the classes configure() method. In the organiza-
tion service, your ResourceServerConfiguration class is located in organization
-service/src/main/java/com/thoughtmechanix/organization/security/

ResourceServerConfiguration.java. Access rules can range from extremely
coarse-grained (any authenticated user can access the entire service) to fine-grained
(only the application with this role, accessing this URL through a DELETE is allowed).

 We discuss every permutation of Spring Security’s access control rules, but we can
look at several of the more common examples. These examples include protecting a
resource so that

 Only authenticated users can access a service URL

 Only users with a specific role can access a service URL

PROTECTING A SERVICE BY AN AUTHENTICATED USER

The first thing you’re going to do is protect the organization service so that it can only
be accessed by an authenticated user. The following listing shows how you can build
this rule into the ResourceServerConfiguration.java class.

package com.thoughtmechanix.organization.security;

 //Imports removed for conciseness
@Configuration
public class ResourceServerConfiguration extends

ResourceServerConfigurerAdapter {

 @Override
 public void configure(HttpSecurity http) throws Exception{
 http.authorizeRequests().anyRequest().authenticated();
 }
}

All access rules are going to be defined inside the configure() method. You’ll use
the HttpSecurity class passed in by Spring to define your rules. In this example,
you’re going to restrict all access to any URL in the organization service to authenti-
cated users only.

Listing 7.5 Restricting access to only authenticated users

The class must be marked with
the @Configuration annotation.

The ResourceServiceConfiguration
class needs to extend
ResourceServerConfigurerAdapter.

All the access rules are defined inside
the overridden configure() method

All access rules are configured
off the HttpSecurity object

passed into the method.
Licensed to <null>

208 CHAPTER 7 Securing your microservices
If you were to access the organization service without an OAuth2 access token present
in the HTTP header, you’d get a 401 HTTP response code along with a message indicat-
ing that a full authentication to the service is required.

 Figure 7.6 shows the output of a call to the organization service without the
OAuth2 HTTP header.

Figure 7.6 Trying to call the organization service will result in a failed call.

Next, you’ll call the organization service with an OAuth2 access token. To get an access
token, see section 7.2.4, “Authenticating the user,” on how to generate the OAuth2
token. You want to cut and paste the value of the access_token field from the
returned JavaScript call out to the /auth/oauth/token endpoint and use it in your
call to the organization service. Remember, when you call the organization service,
you need to add an HTTP header called Authorization with the value Bearer

access_token value.

Figure 7.7 Passing in the OAuth2 access token on the call to the organization service

JSON indicates the error and includes a more detailed description.
HTTP status code
401 is returned.

OAuth2 access token is
passed in the header.
Licensed to <null>

209Protecting the organization service using OAuth2
Figure 7.7 shows the callout to the organization service, but this time with an OAuth2
access token passed to it.

 This is probably one of the simplest use cases for protecting an endpoint using
OAuth2. Next, you’ll build on this and restrict access to a specific endpoint to a spe-
cific role.

PROTECTING A SERVICE VIA A SPECIFIC ROLE

In the next example, you’re going to lock down the DELETE call on your organization
service to only those users with ADMIN access. As you’ll remember from section 7.2.3,
“Configuring some EagleEye Users,” you created two user accounts that could access
EagleEye services: john.carnell and william.woodward. The john.carnell
account had the role of USER assigned to it. The william.woodward account had
the USER role and the ADMIN role.

 The following listing shows how to set up the configure() method to restrict access
to the DELETE endpoint to only those authenticated users who have the ADMIN role.

package com.thoughtmechanix.organization.security;

//Imports removed for conciseness
@Configuration
public class ResourceServerConfiguration extends

ResourceServerConfigurerAdapter {
 @Override
 public void configure(HttpSecurity http) throws Exception{
 http
 .authorizeRequests()
 .antMatchers(HttpMethod.DELETE, "/v1/organizations/**")
 .hasRole("ADMIN")
 .anyRequest()
 .authenticated();
 }
}

In listing 7.6 you’re restricting the DELETE call on any endpoint starting with
/v1/organizations in your service to the ADMIN role.:

.authorizeRequests()
 .antMatchers(HttpMethod.DELETE, "/v1/organizations/**")
 .hasRole("ADMIN")

The antMatcher() method can take a comma-separated list of endpoints. These
endpoints can use a wildcard style notation for defining the endpoints you want to
access. For instance, if you want to restrict any of the DELETE calls regardless of the
version in the URL name, you could use a * in place of the version number in your
URL definitions:

.authorizeRequests()
 .antMatchers(HttpMethod.DELETE, "/*/organizations/**")
.hasRole("ADMIN")

Listing 7.6 Restricting deletes to the ADMIN role only

The antMatchers() method
allows you to restrict the URL

and HTTP post that’s protected.

The hasRole() method is a
comma-separated list of roles
that can be accessed.
Licensed to <null>

210 CHAPTER 7 Securing your microservices
The last part of the authorization rule definition still defines that any other endpoint
in your service needs to be access by an authenticated user:

.anyRequest()

.authenticated();

Now, if you were to get an OAuth2 token for the user john.carnell (password:
password1) and try to call the DELETE endpoint for the organization service
(http://localhost:8085/v1/organizations/e254f8c-c442-4ebe-a82a-
e2fc1d1ff78a), you’d get a 401 HTTP status code on the call and an error message
indicating that the access was denied. The JavaScript text returned by your call would be

{
 "error": "access_denied",
 "error_description": "Access is denied"
}

If you tried the exact same call using the william.woodward user account (pass-
word: password2) and its OAuth2 token, you’d see a successful call would returned (a
HTTP Status Code 204 – Not Content), and that organization would be deleted by the
organization service.

 At this point we’ve looked at two simple examples of calling and protecting a single
service (the organization service) with OAuth2. However, often in a microservices
environment, you’re going to have multiple service calls used to carry out a single
transaction. In these types of situations, you need to ensure that that the OAuth2
access token is propagated from service call to service call.

7.3.4 Propagating the OAuth2 access token

To demonstrate propagating an OAuth2 token between services, we’re now going to
see how to protect your licensing service with OAuth2. Remember, the licensing ser-
vice calls the organization service to lookup information. The question becomes, how
do you propagate the OAuth2 token from one service to another?

 You’re going to set up a simple example where you’re going to have the licensing
service call the organization service. Building on the examples from chapter 6, both
services are running behind a Zuul gateway.

 Figure 7.8 shows the basic flow of how an authenticated user’s OAuth2 token is
going to flow through the Zuul gateway, to the licensing service, and then down to the
organization service.

 The following activity occurs in figure 7.8:

1 The user has already authenticated against the OAuth2 server and places a call
to the EagleEye web application. The user’s OAuth2 access token is stored in the
user’s session. The EagleEye web application needs to retrieve some licensing
data and will make a call to the licensing service REST endpoint. As part of the
call to the licensing REST endpoint, the EagleEye web application will add the
OAuth2 access token via the HTTP Header “Authorization”. The licensing ser-
vice is only accessible behind a Zuul services gateway.
Licensed to <null>

211Protecting the organization service using OAuth2
2 Zuul will look up the licensing service endpoint and then forward the call onto
one of the licensing services servers. The services gateway will need to copy the
“Authorization” HTTP header from the incoming call and ensure that the
“Authorization” HTTP header is forwarded onto the new endpoint.

3 The licensing service will receive the incoming call. Because the licensing ser-
vice is a protected resource, the licensing service will validate the token with
EagleEye’s OAuth2 service and then check the user’s roles for the appropriate
permissions.

As part of its work, the licensing service invokes the organization service. In
doing this call, the licensing service needs to propagate the user’s OAuth2
access token to the organization service.

4 When the organization service receives the call, it will again take the “Authoriza-
tion” HTTP header token and validate the token with the EagleEye OAuth2 server.

To implement these flows, you need to do two things. First, you need to modify your
Zuul services gateway to propagate the OAuth2 token to the licensing service. By
default, Zuul won’t forward sensitive HTTP headers such as Cookie, Set-Cookie,
and Authorization to downstream services. To allow Zuul to propagate the “Autho-
rization” HTTP header, you need to set the following configuration in your Zuul ser-
vices gateway’s application.yml or Spring Cloud Config data store:

zuul.sensitiveHeaders: Cookie,Set-Cookie

1. The EagleEye web app calls the
 licensing service (behind the
 Zuul gateway) and adds the
 user’s OAuth2 token to the
 HTTP header “Authorization.”

2. The Zuul gateway locates
 the licensing service and
 forwards the call with the
 “Authorization” header.

3. The licensing service validates the user’s token with the
 authentication service and also propagates the token
 to the organization service.

4. The organization service also validates the user’s token
 with the authentication service.

User has
OAuth2 token

User EagleEye
web client

EagleEye
web application

Zuul gateway

Licensing
service

Organization
service

Authentication
service

Figure 7.8 The OAuth2 token has to be carried throughout the entire call chain.
Licensed to <null>

212 CHAPTER 7 Securing your microservices
This configuration is a blacklist of the sensitive headers that Zuul will keep from being
propagated to a downstream service. The absence of the Authorization value in the
previous list means Zuul will allow it through. If you don’t set the zuul.sensitive-
Headers property at all, Zuul will automatically block all three values from being
propagated (Cookie, Set-Cookie, and Authorization).

The next thing you need to do is configure your licensing service to be an OAuth2
resource service and set up any authorization rules you want for the service. We’re
not going to discuss in detail the licensing service configuration because we already
discussed authorization rules in section 7.3.3, “Defining who and what can access the
service.”

 Finally, all you need to do is modify how the code in the licensing service calls the
organization service. You need to ensure that the “Authorization” HTTP header is
injected into the application call out to the Organization service. Without Spring Secu-
rity, you’d have to write a servlet filter to grab the HTTP header off the incoming licens-
ing service call and then manually add it to every outbound service call in the licensing
service. Spring OAuth2 provides a new Rest Template class that supports OAuth2 calls.
The class is called OAuth2RestTemplate. To use the OAuth2RestTemplate class you
first need to expose it as a bean that can be auto-wired into a service calling another
OAuth2 protected services. You do this in the licensing-service/src/main/
java/com/thoughtmechanix/licenses/Application.java class:

@Bean
 public OAuth2RestTemplate oauth2RestTemplate(
 OAuth2ClientContext oauth2ClientContext,
 OAuth2ProtectedResourceDetails details) {
 return new OAuth2RestTemplate(details, oauth2ClientContext);
 }

To see the OAuth2RestTemplate class in action you can look in the licensing-
service/src/main/java/com/thoughtmechanix/licenses/clients/

OrganizationRestTemplate.java class. The following listing shows how OAuth2
RestTemplate is auto-wired into this class.

What about Zuul’s other OAuth2 capabilities?
Zuul can automatically propagate downstream OAuth2 access tokens and authorize
incoming requests against the OAuth2 service by using the @EnableOAuth2Sso anno-
tation. I purposely haven’t used this approach because my goal in this chapter is to
show the basics of how OAuth2 works without adding another level of complexity (or
debugging). While the configuration of the Zuul service’s gateway isn’t overly compli-
cated, it would have added significantly more content to an already large chapter. If
you’re interested in having a Zuul services gateway participate in Single Sign On
(SSO), the Spring Cloud Security documentation has a short but comprehensive tuto-
rial that covers the setup of the Spring server (http://cloud.spring.io/spring-cloud-
security/spring-cloud-security.html).
Licensed to <null>

http://cloud.spring.io/spring-cloud-security/spring-cloud-security.html
http://cloud.spring.io/spring-cloud-security/spring-cloud-security.html

213JavaScript Web Tokens and OAuth2

package com.thoughtmechanix.licenses.clients;

//Removed for conciseness

@Component
public class OrganizationRestTemplateClient {
@Autowired
OAuth2RestTemplate restTemplate;

➥ private static final Logger logger =
 ➥ LoggerFactory.getLogger(
 OrganizationRestTemplateClient.class);

public Organization getOrganization(String organizationId){
 ➥ logger.debug("In Licensing Service
 ➥ .getOrganization: {}",
 ➥ UserContext.getCorrelationId());

 ResponseEntity<Organization> restExchange =
 restTemplate.exchange(

➥
"http://zuulserver:5555/api/organization
 ➥ /v1/organizations/{organizationId}",
 HttpMethod.GET,
 null, Organization.class, organizationId);

 /*Save the record from cache*/
 return restExchange.getBody();
 }
}

7.4 JavaScript Web Tokens and OAuth2
OAuth2 is a token-based authentication framework, but ironically it doesn’t provide
any standards for how the tokens in its specification are to be defined. To rectify the
lack of standards around OAuth2 tokens, a new standard is emerging called JavaScript
Web Tokens (JWT). JWT is an open standard (RFC-7519) proposed by the Internet
Engineering Task Force (IETF) that attempts to provide a standard structure for
OAuth2 tokens. JWT tokens are

 Small—JWT tokens are encoded to Base64 and can be easily passed via a URL,
HTTP header, or an HTTP POST parameter.

 Cryptographically signed—A JWT token is signed by the authenticating server that
issues it. This means you can be guaranteed that the token hasn’t been tam-
pered with.

 Self-contained—Because a JWT token is cryptographically signed, the microser-
vice receiving the service can be guaranteed that the contents of the token are
valid. There’s no need to call back to the authenticating service to validate the
contents of the token because the signature of the token can be validated and

Listing 7.7 Using the OAuth2RestTemplate to propagate the OAuth2 access token

The OAuth2RestTemplate is a
drop-in replacement for the
standard RestTemplate and

handles the propagation of the
OAuth2 access token.

The invocation of the
organization service is done
in the exact same manner as
a standard RestTemplate.
Licensed to <null>

214 CHAPTER 7 Securing your microservices
the contents (such as the expiration time of the token and the user informa-
tion) can be inspected by the receiving microservice.

 Extensible—When an authenticating service generates a token, it can place addi-
tional information in the token, before the token is sealed. A receiving service
can decrypt the token payload and retrieve that additional context out of it.

Spring Cloud Security supports JWT out of the box. However, to use and consume JWT
tokens, your OAuth2 authentication service and the services being protected by the
authentication service must be configured in a different fashion. The configuration
isn’t difficult, so let’s walk through the change.

NOTE I’ve chosen to keep the JWT configuration on a separate branch
(called JWT_Example) in the GitHub repository for this chapter (https://
github.com/carnellj/spmia-chapter7) because the standard Spring Cloud
Security OAuth2 configuration and JWT-based OAuth2 configuration require
different configuration classes.

7.4.1 Modifying the authentication service to issue JavaScript Web Tokens

For both the authentication service and the two microservices (licensing and organi-
zation service) that are going to be protected by OAuth2, you’ll need to add a new
Spring Security dependency to their Maven pom.xml files to include the JWT OAuth2
libraries. This new dependency is

<dependency>
 <groupId>org.springframework.security</groupId>
 <artifactId>spring-security-jwt</artifactId>
</dependency>

After the Maven dependency is added, you need to first tell your authentication service
how it’s going to generate and translate JWT tokens. To do this, you’re going to set up
in the authentication service a new configuration class called authentication-
service/src/java/com/thoughtmechanix/authentication/security/JWT

TokenStoreConfig.java. The following listing shows the code for the class.

@Configuration
public class JWTTokenStoreConfig {

 @Autowired
 private ServiceConfig serviceConfig;

 @Bean
 public TokenStore tokenStore() {
 return new JwtTokenStore(jwtAccessTokenConverter());
 }

 @Bean
 @Primary

Listing 7.8 Setting up the JWT token store

The @Primary annotation is used to tell
Spring that if there is more than one

bean of specific type (in this case
DefaultTokenService), use the bean type
marked as @Primary for auto-injection.
Licensed to <null>

https://github.com/carnellj/spmia-chapter7
https://github.com/carnellj/spmia-chapter7

215JavaScript Web Tokens and OAuth2
 public DefaultTokenServices tokenServices() {
 DefaultTokenServices defaultTokenServices
 = new DefaultTokenServices();
 defaultTokenServices.setTokenStore(tokenStore());
 defaultTokenServices.setSupportRefreshToken(true);
 return defaultTokenServices;
 }

 @Bean
 public JwtAccessTokenConverter jwtAccessTokenConverter() {
 JwtAccessTokenConverter converter =
 new JwtAccessTokenConverter();
 converter
 .setSigningKey(serviceConfig.getJwtSigningKey());
 return converter;
 }

 @Bean
 public TokenEnhancer jwtTokenEnhancer() {
 return new JWTTokenEnhancer();
 }
}

The JWTTokenStoreConfig class is used to define how Spring will manage the cre-
ation, signing, and translation of a JWT token. The tokenServices() method is going
to use Spring security’s default token services implementation, so the work here is rote.
The jwtAccessTokenConverter() method is the one we want to focus on. It defines
how the token is going to be translated. The most important thing to note about this
method is that you’re setting the signing key that will be used to sign your token.

 For this example, you’re going to use a symmetrical key, which means both the
authentication service and the services protected by the authentication service must
share the same key between all of the services. The key is nothing more than a ran-
dom string of values that’s store in the authentication services Spring Cloud Config
entry (https://github.com/carnellj/config-repo/blob/master/authenticationservice
/authenticationservice.yml). The actual value for the signing key is

signing.key: “345345fsdgsf5345”

NOTE Spring Cloud Security supports symmetrical key encryption and asym-
metrical encryption using public/private keys. We’re not going to walk
through setting up JWT using public/private keys. Unfortunately, little official
documentation exists on the JWT, Spring Security, and public/private keys. If
you’re interested in how to do this, I highly recommend you look at Bael-
dung.com (http://www.baeldung.com/spring-security-oauth-jwt). They do an
excellent job of explaining JWT and public/private key setup.

In the JWTTokenStoreConfig from listing 7.8, you defined how JWT tokens were
going to be signed and created. You now need to hook this into your overall OAuth2
service. In listing 7.2 you used the OAuth2Config class to define the configuration of

Used to read data
to and from a

token presented
to the service

Acts as the translator
between JWT and OAuth2 server

Defines the signing
key that will be used

to sign a token
Licensed to <null>

http://www.baeldung.com/spring-security-oauth-jwt
https://github.com/carnellj/config-repo/blob/master/authenticationservice/authenticationservice.yml
https://github.com/carnellj/config-repo/blob/master/authenticationservice/authenticationservice.yml

216 CHAPTER 7 Securing your microservices
your OAuth2 service. You set up the authentication manager that was going to be
used by your service along with the application name and secrets. You’re going to
replace the OAuth2Config class with a new class called authentication-
service/src/main/java/com/thoughtmechanix/authentication/security

/JWTOAuth2Config.java.
 The following listing shows code for the JWTOAuth2Config class.

package com.thoughtmechanix.authentication.security;

//Imports removed for conciseness
@Configuration
public class JWTOAuth2Config extends

➥ AuthorizationServerConfigurerAdapter {

 @Autowired
 private AuthenticationManager authenticationManager;

 @Autowired
 private UserDetailsService userDetailsService;

 @Autowired
 private TokenStore tokenStore;

 @Autowired
 private DefaultTokenServices tokenServices;

 @Autowired
 private JwtAccessTokenConverter jwtAccessTokenConverter;

 @Override
 public void configure(
 ➥ AuthorizationServerEndpointsConfigurer endpoints)

 ➥ throws Exception {
 TokenEnhancerChain tokenEnhancerChain =
 ➥ new TokenEnhancerChain();
 tokenEnhancerChain
 .setTokenEnhancers(
 Arrays.asList(
 jwtTokenEnhancer ,
 jwtAccessTokenConverter));

 endpoints
 .tokenStore(tokenStore)
 .accessTokenConverter(jwtAccessTokenConverter)
 .authenticationManager(authenticationManager)
 .userDetailsService(userDetailsService);
 }

//Removed the rest of the class for conciseness
}

Listing 7.9 Hooking JWT into your authentication service via the JWTOAuth2Config
 class

The token store you defined in
listing 7.8 will be injected here.

This is the hook to tell
the Spring Security
OAuth2 code to use JWT.
Licensed to <null>

217JavaScript Web Tokens and OAuth2
Figure 7.9 The access and refresh tokens from your authentication call are now JWT tokens.

Now, if you rebuild your authentication service and restart it, you should see a JWT-
based token returned. Figure 7.9 shows the results of your call to the authentication
service now that it uses JWT.

 The actual token itself isn’t directly returned as JavaScript. Instead, the JavaScript
body is encoded using a Base64 encoding. If you’re interested in seeing the contents
of a JWT token, you can use online tools to decode the token. I like to use an online
tool from a company called Stormpath. Their tool, http://jsonwebtoken.io, is an
online JWT decoder. Figure 7.10 shows the output from the decoded token.

NOTE It’s extremely important to understand that your JWT tokens are
signed, but not encrypted. Any online JWT tool can decode the JWT token
and expose its contents. I bring this up because the JWT specification does
allow you extend the token and add additional information to the token.
Don’t expose sensitive or Personally Identifiable Information (PII) in your
JWT tokens.

Notice that both the access_token and the
refresh_token are now Base64-encoded strings.
Licensed to <null>

http://jsonwebtoken.io

218 CHAPTER 7 Securing your microservices
Figure 7.10 Using http://jswebtoken.io allows you to decode the contents.

7.4.2 Consuming JavaScript Web Tokens in your microservices

You now have your OAuth2 authentication service creating JWT tokens. The next step
is to configure your licensing and organization services to use JWT. This is a trivial
exercise that requires you to do two things:

1 Add the spring-security-jwt dependency to both the licensing service and
the organization service’s pom.xml file. (See the beginning of section 7.4.1,
“Modifying the authentication service to issue JavaScript Web Tokens,” for the
exact Maven dependency that needs to be added.)

2 Set up a JWTTokenStoreConfig class in both the licensing and organization
services. This class is almost the exact same class used the authentication service
(see listing 7.8). I’m not going to go over the same material again, but you can

The signing key used
to sign the message

Your JWT
access token

The decoded
JSON body
Licensed to <null>

http://jswebtoken.io

219JavaScript Web Tokens and OAuth2
see examples of the JWTTokenStoreConfig class in both the licensing-
service/src/main/com/thoughtmechanix/licensing-service/

security/JWTTokenStoreConfig.java and organization-service/

src/main/com/thoughtmechanix/organization-service/security/

JWTTokenStoreConfig.java classes.

You need to do one final piece of work. Because the licensing service calls the organi-
zation service, you need to ensure that the OAuth2 token is propagated. This is nor-
mally done via the OAuth2RestTemplate class; however, the OAuth2RestTemplate
class doesn’t propagate JWT-based tokens. To make sure that your licensing service
does this, you need to add a custom RestTemplate bean that will perform this injec-
tion for you. This custom RestTemplate can found in the licensing-service/
src/main/java/com/thoughtmechanix/licenses/Application.java class.
The following listing shows this custom bean definition.

public class Application {
 //Code removed for conciseness
 @Primary
 @Bean
 public RestTemplate getCustomRestTemplate() {
 RestTemplate template = new RestTemplate();
 List interceptors = template.getInterceptors();
 if (interceptors == null) {
 template.setInterceptors(
 ➥ Collections.singletonList(
 new UserContextInterceptor()));
 } else {
 interceptors.add(new UserContextInterceptor());
 template.setInterceptors(interceptors);
 }

 return template;
 }
}

In the previous code you’re defining a custom RestTemplate bean that will use a
ClientHttpRequestInterceptor. Recall from chapter 6 that the ClientHttp-
RequestInterceptor is a Spring class that allows you to hook in functionality to be
executed before a REST-based call is made. This interceptor class is a variation of the
UserContextInterceptor class you defined in chapter 6. This class is in the
licensing-service/src/main/java/com/thoughtmechanix/licenses/utils

/UserContextInterceptor.java. The following listing shows this class.

public class UserContextInterceptor
 implements ClientHttpRequestInterceptor {

Listing 7.10 Creating a custom RestTemplate class to inject the JWT token

Listing 7.11 The UserContextInterceptor will inject the JWT token into your
 REST calls

The UserContextInterceptor
will inject the Authorization
header into every Rest call.
Licensed to <null>

220 CHAPTER 7 Securing your microservices
 @Override
 public ClientHttpResponse intercept(
 HttpRequest request, byte[] body,
 ➥ ClientHttpRequestExecution execution)
 throws IOException {

 headers.add(UserContext.CORRELATION_ID,
 ➥ UserContextHolder.getContext().getCorrelationId());
 headers.add(UserContext.AUTH_TOKEN,
 ➥ UserContextHolder.getContext().getAuthToken());

 return execution.execute(request, body);
 }
}

The UserContextInterceptor is using several of the utility classes from chapter 6.
Remember, every one of your service uses a custom servlet filter (called User-
ContextFilter) to parse out the authentication token and correlation ID from the
HTTP header. In listing 7.11, you’re using the UserContext.AUTH_TOKEN value
already parsed to populate the outgoing HTTP call.

 That’s it. With these pieces in place, you can now call the licensing service (or
organization service) and place the Base64-encoded JWT encoded in your HTTP
Authorization header the value Bearer <<JWT-Token>>, and your service
will properly read and validate the JWT token.

7.4.3 Extending the JWT Token

If you look closely at the JWT token in figure 7.10, you’ll notice the EagleEye organi-
zationId field. (Figure 7.11 shows a more zoomed-in shot of the JWT Token shown

Adding the authorization token
to the HTTP header

This is not a standard JWT field.

Figure 7.11 An example of extending the JWT token with a organizationId
Licensed to <null>

221JavaScript Web Tokens and OAuth2
earlier in figure 7.10.) This isn’t a standard JWT token field. It’s one I added by inject-
ing a new field into the JWT token as it was being created.

 Extending a JWT token is easily done by adding a Spring OAuth2 token enhancer
class to your authentication service. The source for this class can found in the authen-
tication-service/src/main/java/com/thoughtmechanix/authentication

/security/JWTTokenEnhancer.java class. The following listing shows this code.

package com.thoughtmechanix.authentication.security;

//Rest of imports removed for conciseness
import org.springframework.security.oauth2.provider.token.TokenEnhancer;

public class JWTTokenEnhancer implements TokenEnhancer {
 @Autowired
 private OrgUserRepository orgUserRepo;

 private String getOrgId(String userName){
 UserOrganization orgUser =
 orgUserRepo.findByUserName(userName);
 return orgUser.getOrganizationId();
 }

 @Override
 public OAuth2AccessToken enhance(
 OAuth2AccessToken accessToken,
 ➥ OAuth2Authentication authentication)
 ➥ {
 Map<String, Object> additionalInfo = new HashMap<>();
 String orgId = getOrgId(authentication.getName());

 additionalInfo.put("organizationId", orgId);

 ((DefaultOAuth2AccessToken) accessToken)
 .setAdditionalInformation(additionalInfo);
 return accessToken;
 }
}

The last thing you need to do is tell your OAuth2 service to use your JWTToken-
Enhancer class. You first need to expose a Spring bean for your JWTTokenEnhancer
class. Do this by adding a bean definition to the JWTTokenStoreConfig class that
was defined in listing 7.8:

package com.thoughtmechanix.authentication.security;

@Configuration
public class JWTTokenStoreConfig {
 //Rest of class removed for conciseness
 @Bean

Listing 7.12 Using a JWT token enhancer class to add a custom field

You need to extend the
TokenEnhancer class.

The getOrgId() method
looks up the user’s org ID
based on their user name.

To do this enhancement, you need to
add override the enhance() method

All additional attributes are placed in
a HashMap and set on the accessToken

variable passed into the method.
Licensed to <null>

222 CHAPTER 7 Securing your microservices
 public TokenEnhancer jwtTokenEnhancer() {
 return new JWTTokenEnhancer();
 }
}

Once you’ve exposed the JWTTokenEnhancer as a bean, you can hook it into the
JWTOAuth2Config class from listing 7.9. This is done in the configure() method
of the class. The following listing shows the modification to the configure()
method of the JWTOAuth2Config class.

package com.thoughtmechanix.authentication.security;
@Configuration
public class JWTOAuth2Config extends AuthorizationServerConfigurerAdapter {
 //Rest of code removed for conciseness
 @Autowired
 private TokenEnhancer jwtTokenEnhancer;

 @Override
 public void configure(
 AuthorizationServerEndpointsConfigurer endpoints)
 ➥ throws Exception {
 TokenEnhancerChain tokenEnhancerChain =
 new TokenEnhancerChain();
 tokenEnhancerChain.setTokenEnhancers(
 Arrays.asList(jwtTokenEnhancer, jwtAccessTokenConverter));

 endpoints.tokenStore(tokenStore)
 .accessTokenConverter(jwtAccessTokenConverter)
 .tokenEnhancer(tokenEnhancerChain)
 .authenticationManager(authenticationManager)
 .userDetailsService(userDetailsService);
 }
}

At this point you’ve added a custom field to your JWT token. The next question you
should have is, “How do I parse a custom field out of a JWT token?”

7.4.4 Parsing a custom field out of a JavaScript token

We’re going to turn to your Zuul gateway for an example of how to parse out a custom
field in the JWT token. Specifically, you’re going to modify the TrackingFilter class
we introduced in chapter 6 to decode the organizationId field out of the JWT
token flowing through gateway.

 To do this you’re going to pull in a JWT parser library and add to the Zuul server’s
pom.xml file. Multiple token parsers are available and I chose the JJWT library

Listing 7.13 Hooking in your TokenEnhancer

Auto-wire in the
TokenEnhancer class.

Spring OAuth allows you to
hook in multiple token
enhancers, so add your
token enhancer to a
TokenEnhancerChain class.

Hook your token enhancer chain to
the endpoints parameter passed

into the configure() call.
Licensed to <null>

223JavaScript Web Tokens and OAuth2
(https://github.com/jwtk/jjwt) to do the parsing. The Maven dependency for the
library is

<dependency>
 <groupId>io.jsonwebtoken</groupId>
 <artifactId>jjwt</artifactId>
 <version>0.7.0</version>
</dependency>

Once the JJWT library is added, you can add a new method to your zuulsvr/src/
main/java/com/thoughtmechanix/zuulsvr/filters/TrackingFilter.java

class called getOrganizationId(). The following listing shows this new method.

private String getOrganizationId(){
 String result="";
if (filterUtils.getAuthToken()!=null){
 String authToken = filterUtils
 .getAuthToken()
 .replace("Bearer ","");
 try {
 Claims claims =
 Jwts.parser()

➥ .setSigningKey(
 ➥ serviceConfig
 .getJwtSigningKey()

➥
 .getBytes("UTF-8"))
 .parseClaimsJws(authToken)
 .getBody();
 result = (String) claims.get("organizationId");
 }
 catch (Exception e){
 e.printStackTrace();
 }
}
return result;
}

Once the getOrganizationId() function is implemented, you added a System
.out.println to the run() method on the TrackingFilter to print out the orga-
nizationId parsed from your JWT token that’s flowing through the Zuul gateway, so
you call any gateway-enabled REST endpoint. I used GET http://localhost:5555/
api/licensing/v1/organizations/e254f8c-c442-4ebe-a82a-e2fc1d1ff78a

/licenses/f3831f8c-c338-4ebe-a82a-e2fc1d1ff78a. Remember, when you
make this call, you still need to set up all the HTTP form parameters and the HTTP
authorization header to include the Authorization header and the JWT token.

Listing 7.14 Parsing the organizationId out of your JWT Token

Parse out the token out of the
Authorization HTTP header.

Use JWTS class to parse out the
token, passing in the signing key
used to sign the token.

Pull the organizationId out
of the JavaScript token.
Licensed to <null>

https://github.com/jwtk/jjwt

224 CHAPTER 7 Securing your microservices
Figure 7.12 The Zuul server parses out the organization ID from the JWT token as it passes through.

Figure 7.12 shows the output to the command-line console displaying your parsed
organizationId.

7.5 Some closing thoughts on microservice security
While this chapter has introduced you to the OAuth2 specification and how you can
use Spring Cloud security to implement an OAuth2 authentication service, OAuth2 is
only one piece of the microservice security puzzle. As you build your microservices for
production use, you should be building your microservices security around the follow-
ing practices:

1 Use HTTPS/Secure Sockets Layer (SSL) for all service communication.
2 All service calls should go through an API gateway.
3 Zone your services into a public API and private API.
4 Limit the attack surface of your microservices by locking down unneeded net-

work ports.

Figure 7.13 shows how these different pieces fit together. Each of the bulleted items in
the list maps to the numbers in figure 7.13.

 Let’s examine each of the topic areas enumerated in the previous list and diagrams
in more detail.

USE HTTPS/SECURE SOCKETS LAYER (SSL) FOR ALL SERVICE COMMUNICATION
In all the code examples in this book, you’ve been using HTTP because HTTP is a sim-
ple protocol and doesn’t require setup on every service before you can start using the
service.

 In a production environment, your microservices should communicate only
through the encrypted channels provided through HTTPS and SSL. The configuration
and setup of the HTTPS can be automated through your DevOps scripts.

NOTE If your application needs to meet Payment Card Industry (PCI) compli-
ance for credit card payments, you’ll be required to implement HTTPS for all
service communication. Building all your services to use HTTPS early on is
Licensed to <null>

225Some closing thoughts on microservice security
much easier than doing a migration project after your application and
microservices are in production.

USE A SERVICES GATEWAY TO ACCESS YOUR MICROSERVICES

The individual servers, service endpoints, and ports your services are running on
should never be directly accessible to the client. Instead, use a services gateway to act
as an entry point and gatekeeper for your service calls. Configure the network layer
on the operating system or container your microservices are running in to only accept
traffic from the services gateway.

 Remember, the services gateway can act as a policy enforcement point (PEP) that
can be enforced against all services. Putting service calls through a services gateway
such as Zuul allows you to be consistent in how you’re securing and auditing your ser-
vices. A service gateway also allows you to lock down what port and endpoints you’re
going to expose to the outside world.

ZONE YOUR SERVICES INTO A PUBLIC API AND PRIVATE API
Security in general is all about building layers of accessing and enforcing the concept
of least privilege. Least privilege is the concept that a user should have the bare mini-
mum network access and privileges to do their day-to-day job. To this end, you should
implement least-privilege by separating your services into two distinct zones: public
and private.

Organization
service

Licensing
service

Application
data

Application
data

Private Zuul
gateway

Authentication
service

Public API

Public-facing
 Zuul gateway

HTTPS HTTPS HTTP(S)

Authentication
service

Public API Private API

EagleEye web
application

1. Use HTTPS/SSL for
service communications.

2. Service calls should go
through an API gateway.

3. Zone services into
 public and private APIs.

4. Lock down unnecessary ports
 to limit the attack surface
 of the microservice.

Figure 7.13 A microservice security architecture is more than implementing OAuth2.
Licensed to <null>

226 CHAPTER 7 Securing your microservices
 The public zone contains the public APIs that will be consumed by clients (Eagle-
Eye application). Public API microservices should carry out narrow tasks that are work-
flow-oriented. Public API microservices tend to be service aggregators, pulling data
and carrying out tasks across multiple services.

 Public microservices should be behind their own services gateway and have their
own authentication service for performing OAuth2 authentication. Access to public
services by client applications should go through a single route protected by the ser-
vices gateway. In addition, the public zone should have its own authentication service.

 The private zone acts as a wall to protect your core application functionality and
data. The private zone should only be accessible through a single well-known port and
should be locked down to only accept network traffic from the network subnet that the
private services are running. The private zone should have its own services gateway and
authentication service. Public API services should authenticate against the private zones
authentication service. All application data should at least be in the private zone’s net-
work subnet and only accessible by microservices residing in the private zone.

LIMIT THE ATTACK SURFACE OF YOUR MICROSERVICES BY LOCKING
DOWN UNNEEDED NETWORK PORTS

Many developers don’t take a hard look at the absolute minimum number of ports
they need to open for their services to function. Configure the operating system your
service is running on to only allow the inbound and outbound access to ports needed
by your service or a piece of infrastructure needed by your service (monitoring, log
aggregation).

 Don’t focus only on inbound access ports. Many developers forget to lock down
their outbound ports. Locking down your outbound ports can prevent data from
being leaked off your service in the event that the service itself has been compromised

How locked down should be the private API network zone be?
Many organizations take the approach that their security model should have a hard
outer center, with a softer inner surface. What this means is that once traffic is inside
the private API zone, communication between services in the private zone can be
unencrypted (no HTTPS) and not require an authentication mechanism. Most of the
time, this is done for convenience and developer velocity. The more security you have
in place, the harder it is to debug problems, increasing the overall complexity of man-
aging your application.

I tend to take a paranoid view of the world. (I worked in financial services for eight
years, so paranoia comes with the territory.) I’d rather trade off the additional com-
plexity (which can be mitigated through DevOps scripts) and enforce that all services
running in my private API zone use SSL and are authenticated against the authenti-
cation service running in the private zone. The question that you have to ask yourself
is, How willing are you to see your organization on the front page of your local news-
paper because of a network breach?
Licensed to <null>

227Summary
by an attacker. Also, make sure you look at network port access in both your public
and private API zones.

7.6 Summary
 OAuth2 is a token-based authentication framework to authenticate users.
 OAuth2 ensures that each microservice carrying out a user request doesn’t need

to be presented with user credentials with every call.
 OAuth2 offers different mechanisms for protecting web services calls. These

mechanisms are called grants.
 To use OAuth2 in Spring, you need to set up an OAuth2-based authentication

service.
 Each application that wants to call your services needs to be registered with

your OAuth2 authentication service.
 Each application will have its own application name and secret key.
 User credentials and roles are in memory or a data store and accessed via

Spring security.
 Each service must define what actions a role can take.
 Spring Cloud Security supports the JavaScript Web Token (JWT) specification.
 JWT defines a signed, JavaScript standard for generating OAuth2 tokens.
 With JWT, you can inject custom fields into the specification.
 Securing your microservices involves more than just using OAuth2. You should
 Use HTTPS to encrypt all calls between services.
 Use a services gateway to narrow the number of access points a service can be

reached through.
 Limit the attack surface for a service by limiting the number of inbound and

outbound ports on the operating system that the service is running on.
Licensed to <null>

Event-driven architecture
with Spring Cloud Stream
When was the last time you sat down with another person and had a conversation?
Think back about how you interacted with that other person. Was it a totally
focused exchange of information where you said something and then did nothing
else while you waited for the person to respond in full? Were you completely
focused on the conversation and let nothing from the outside world distract you
while you were speaking? If there were more than two people in the conversation,
did you repeat something you said perfectly over and over to each conversation
participant and wait in turn for their response? If you said yes to these questions,

This chapter covers
 Understanding event-driven architecture processing and its

relevance to microservices

 Using Spring Cloud Stream to simplify event processing in
your microservices

 Configuring Spring Cloud Stream

 Publishing messages with Spring Cloud Stream and Kafka

 Consuming messages with Spring Cloud Stream and Kafka

 Implementing distributed caching with Spring Cloud
Stream, Kafka, and Redis
228

Licensed to <null>

229The case for messaging, EDA, and microservices
you have reached enlightenment, are a better human being than me, and should stop
what you’re doing because you can now answer the age-old question, “What is the
sound of one object clapping?” Also, I suspect you don’t have children.

 The reality is that human beings are constantly in a state of motion, interacting with
their environment around them, while sending out and receiving information from
the things around them. In my house a typical conversation might be something like
this. I’m busy washing the dishes while talking to my wife. I’m telling her about my day.
She’s looking at her phone and she’s listening, processing what I’m saying, and occa-
sionally responding back. As I’m washing the dishes, I hear a commotion in the next
room. I stop what I’m doing, rush into the next room to find out what’s wrong and see
that our rather large nine-month-old puppy, Vader, has taken my three-year-old son’s
shoe, and is trotting around the living room carrying the shoe like a trophy. My three-
year-old isn’t happy about this. I run through the house, chasing the dog until I get the
shoe back. I then go back to the dishes and my conversation with my wife.

 My point in telling you this isn’t to tell you about a typical day in my life, but rather
to point out that our interaction with the world isn’t synchronous, linear, and nar-
rowly defined to a request-response model. It’s message-driven, where we’re con-
stantly sending and receiving messages. As we receive messages, we react to those
messages, while often interrupting the primary task that we’re working on.

 This chapter is about how to design and implement your Spring-based microser-
vices to communicate with other microservices using asynchronous messages. Using
asynchronous messages to communicate between applications isn’t new. What’s new is
the concept of using messages to communicate events representing changes in state.
This concept is called Event Driven Architecture (EDA). It’s also known as Message
Driven Architecture (MDA). What an EDA-based approach allows you to do is to build
highly decoupled systems that can react to changes without being tightly coupled to
specific libraries or services. When combined with microservices, EDA allows you to
quickly add new functionality into your application by merely having the service listen
to the stream of events (messages) being emitted by your application.

 The Spring Cloud project has made it trivial to build messaging-based solutions
through the Spring Cloud Stream sub-project. Spring Cloud Stream allows you to eas-
ily implement message publication and consumption, while shielding your services
from the implementation details associated with the underlying messaging platform.

8.1 The case for messaging, EDA, and microservices
Why is messaging important in building microservice-based applications? To answer
that question, let’s start with an example. We’re going to use the two services we’ve
been using throughout the book: your licensing and organization services. Let’s imag-
ine that after these services are deployed to production, you find that the licensing
service calls are taking an exceedingly long time when doing a lookup of organization
Licensed to <null>

230 CHAPTER 8 Event-driven architecture with Spring Cloud Stream
information from the organization service. When you look at the usage patterns of the
organization data, you find that the organization data rarely changes and that most of
the data reads from the organization service are done by the primary key of the orga-
nization record. If you could cache the reads for the organization data without having
to incur the cost of accessing a database, you could greatly improve the response time
of the licensing service calls.

 As you look at implementing a caching solution, you realize you have three core
requirements:

1 The cached data needs to be consistent across all instances of the licensing service—This
means that you can’t cache the data locally within the licensing service because
you want to guarantee that the same organization data is read regardless of the
service instance hitting it.

2 You cannot cache the organization data within the memory of the container hosting the
licensing service—The run-time container hosting your service is often restricted
in size and can access data using different access patterns. A local cache can
introduce complexity because you have to guarantee your local cache is synced
with all of the other services in the cluster.

3 When an organization record changes via an update or delete, you want the licensing ser-
vice to recognize that there has been a state change in the organization service—The
licensing service should then invalidate any cached data it has for that specific
organization and evict it from the cache.

Let’s look at two approaches for implementing these requirements. The first
approach will implement the above requirements using a synchronous request-
response model. When the organization state changes, the licensing and organization
services communicate back and forth via their REST endpoints. The second approach
will have the organization service emit an asynchronous event (message) that will
communicate that the organization service data has changed. With the second
approach, the organization service will publish a message to a queue that an organiza-
tion record has been updated or deleted. The licensing service will listen with the
intermediary, see that an organization event has occurred, and clear the organization
data from its cache.

8.1.1 Using synchronous request-response approach to communicate
state change

For your organization data cache, you’re going to use Redis (http://redis.io/), a dis-
tributed key-value store database. Figure 8.1 provides a high-level overview of how to
build a caching solution using a traditional synchronous, request-response program-
ming model.

 In figure 8.1, when a user calls the licensing service, the licensing service will need
to also look up organization data. The licensing service will first check to retrieve the
desired organization by its ID from the Redis cluster. If the licensing service can’t find
the organization data, it will call the organization service using a REST-based endpoint
Licensed to <null>

http://redis.io/

231The case for messaging, EDA, and microservices
and then store the data returned in Redis, before returning the organization data
back to the user. Now, if someone updates or deletes the organization record using
the organization service’s REST endpoint, the organization service will need to call an
endpoint exposed on the licensing service, telling it to invalidate the organization
data in its cache. In figure 8.1, if you look at where the organization service calls back
into the licensing service to tell it to invalidate the Redis cache, you can see at least
three problems:

1 The organization and licensing services are tightly coupled.
2 The coupling has introduced brittleness between the services. If the licensing

service endpoint for invalidating the cache changes, the organization service
has to change.

3 The approach is inflexible because you can’t add new consumers of the organi-
zation data even without modifying the code on the organization service to
know that it has called the other service to let it know about the change.

TIGHT COUPLING BETWEEN SERVICES

In figure 8.1 you can see tight coupling between the licensing and the organization ser-
vice. The licensing service always had a dependency on the organization service to
retrieve data. However, by having the organization service directly communicate back
to the licensing service whenever an organization record has been updated or deleted,
you’ve introduced coupling back from the organization service to the licensing service.

Licensing
service client

Organization
service client

Licensing
service

Redis

Organization
service

Data is read

1. A licensing service user
 makes a call to retrieve
 licensing data.

4. Organization data may
 be updated via calls to
 the organization service.

2. The licensing service first
 checks the Redis cache for
 the organization data.

3. If the organization data isn’t
 in the Redis cache, the licensing
 service calls the organization
 service to retrieve it.

5. When organization data is updated, the
 organization service either calls back into
 the licensing service endpoint and tells it
 to invalidate its cache or talks to the
 licensing service’s cache directly.

Figure 8.1 In a synchronous request-response model, tightly coupled services introduce complexity
and brittleness.
Licensed to <null>

232 CHAPTER 8 Event-driven architecture with Spring Cloud Stream
For the data in the Redis cache to be invalidated, the organization service either needs
an endpoint on the licensing service exposed that can be called to invalidate its Redis
cache, or the organization service has to talk directly to the Redis server owned by the
licensing service to clear the data in it.

 Having the organization service talk to Redis has its own problems because you’re
talking to a data store owned directly by another service. In a microservice environ-
ment, this a big no-no. While one can argue that the organization data rightly belongs
to the organization service, the licensing service is using it in a specific context and
could be potentially transforming the data or have built business rules around it. Hav-
ing the organization service talking directly to the Redis service can accidently break
rules the team owning the licensing service has implemented.

BRITTLENESS BETWEEN THE SERVICES

The tight coupling between the licensing service and the organization service has also
introduced brittleness between the two services. If the licensing service is down or run-
ning slowly, the organization service can be impacted because the organization service
is now communicating directly with the licensing service. Again, if you had the organi-
zation service talk directly to licensing service’s Redis data store, you’ve now created a
dependency between the organization service and Redis. In this scenario, any problems
with the shared Redis server now have the potential to take down both services.

INFLEXIBLE IN ADDING NEW CONSUMERS TO CHANGES IN THE ORGANIZATION SERVICE
The last problem with this architecture is that it’s inflexible. With the model in figure
8.1, if you had another service that was interested in when the organization data
changes, you’d need to add another call from the organization service to that other
service. This means a code change and redeployment of the organization service. If
you use the synchronous, request-response model for communicating state change,
you start to see almost a web-like pattern of dependency between your core services in
your application and other services. The centers of these webs become your major
points of failure within your application.

Another kind of coupling
While messaging adds a layer of indirection between your services, you can still intro-
duce tight coupling between two services using messaging. Later in the chapter
you’re going to send messages between the organization and licensing service.
These messages are going to be serialized and de-serialized to a Java object using
JSON as the transport protocol for the message. Changes to the structure of the
JSON message can cause problems when converting back and forth to Java if the two
services don’t gracefully handle different versions of the same message type. JSON
doesn’t natively support versioning. However, you can use Apache Avro (https://
avro.apache.org/) if you need versioning. Avro is a binary protocol that has versioning
built into it. Spring Cloud Stream does support Apache Avro as a messaging protocol.
However, using Avro is outside the scope of this book, but we did want to make you
aware that it does help if you truly need to worry about message versioning.
Licensed to <null>

https://avro.apache.org/
https://avro.apache.org/

233The case for messaging, EDA, and microservices
8.1.2 Using messaging to communicate state changes between
services

With a messaging approach, you’re going to inject a queue in between the licensing
and organization service. This queue won’t be used to read data from the organiza-
tion service, but will instead be used by the organization service to publish when any
state changes within the organization data managed by the organization service
occurs. Figure 8.2 demonstrates this approach.

Figure 8.2 As organization state changes, messages will be written to a message queue that sits
between the two services.

In the model in figure 8.2, every time organization data changes, the organization ser-
vice publishes a message out to a queue. The licensing service is monitoring the
queue for messages and when a message comes in, clears the appropriate organiza-
tion record out of the Redis cache. When it comes to communicating state, the mes-
sage queue acts as an intermediary between the licensing and organization service.
This approach offers four benefits:

 Loose coupling
 Durability
 Scalability
 Flexibility

LOOSE COUPLING

A microservices application can be composed of dozens of small and distributed ser-
vices that have to interact with each other and are interested in the data managed by

Licensing
service client

Message
queue Organization

service client

Licensing
service

Redis

Organization
service

1. When the organization service communicates
 state changes, it publishes a message to a queue.

2. The licensing service monitors the queue for any messages
 published by the organization service and can invalidate the
 Redis cache data as needed.
Licensed to <null>

234 CHAPTER 8 Event-driven architecture with Spring Cloud Stream
one another. As you saw with the synchronous design proposed earlier, a synchronous
HTTP response creates a hard dependency between the licensing and organization
service. We can’t eliminate these dependencies completely, but we can try to minimize
dependencies by only exposing endpoints that directly manage the data owned by the
service. A messaging approach allows you to decouple the two services because when
it comes to communicating state changes, neither service knows about each other.
When the organization service needs to publish a state change, it writes a message to a
queue. The licensing service only knows that it gets a message; it has no idea who has
published the message.

DURABILITY

The presence of the queue allows you to guarantee that a message will be delivered
even if the consumer of the service is down. The organization service can keep pub-
lishing messages even if the licensing service in unavailable. The messages will be
stored in the queue and will stay there until the licensing service is available. Con-
versely, with the combination of a cache and the queuing approach, if the organiza-
tion service is down, the licensing service can degrade gracefully because at least part
of the organization data will be in its cache. Sometimes old data is better than no data.

SCALABILITY

Since messages are stored in a queue, the sender of the message doesn’t have to wait
for a response back from the consumer of the message. They can go on their way and
continue their work. Likewise, if a consumer reading a message off the queue isn’t
processing messages fast enough, it’s a trivial task to spin up more consumers and
have them process those messages off the queue. This scalability approach fits well
within a microservices model because one of the things I’ve been emphasizing
through this book is that it should be trivial to spin up new instances of a microservice
and have that additional microservice become another service that can process work
off the message queue holding the messages. This is an example of scaling horizon-
tally. Traditional scaling mechanisms for reading messages off a queue involved
increasing the number of threads that a message consumer could process at one time.
Unfortunately, with this approach, you were ultimately limited by the number of CPUs
available to the message consumer. A microservice model doesn’t have this limitation
because you’re scaling by increasing the number of machines hosting the service con-
suming the messages.

FLEXIBILITY
The sender of a message has no idea who is going to consume it. This means you can
easily add new message consumers (and new functionality) without impacting the
original sending service. This is an extremely powerful concept because new function-
ality can be added to an application without having to touch existing services. Instead,
the new code can listen for events being published and react to them accordingly.
Licensed to <null>

235The case for messaging, EDA, and microservices
8.1.3 Downsides of a messaging architecture

Like any architectural model, a messaging-based architecture has tradeoffs. A messag-
ing-based architecture can be complex and requires the development team to pay
close attention to several key things, including

 Message handling semantics
 Message visibility
 Message choreography

MESSAGE HANDLING SEMANTICS

Using messages in a microservice-based application requires more than understand-
ing how to publish and consume messages. It requires you to understand how your
application will behave based on the order messages are consumed and what happens
if a message is processed out of order. For example, if you have strict requirements
that all orders from a single customer must be processed in the order they are
received, you’re going to have to set up and structure your message handling differ-
ently than if every message can be consumed independently of one another.

 It also means that if you’re using messaging to enforce strict state transitions of
your data, you need to think as you’re designing your application about scenarios
where a message throws an exception, or an error is processed out of order. If a mes-
sage fails, do you retry processing the error or do you let it fail? How do you handle
future messages related to that customer if one of the customer messages fails? Again,
these are all topics to think through.

MESSAGE VISIBILITY

Using messages in your microservices often means a mix of synchronous service calls
and processing in services asynchronously. The asynchronous nature of messages
means they might not be received or processed in close proximity to when the mes-
sage is published or consumed. Also, having things like a correlation ID for tracking a
user’s transactions across web service invocations and messages is critical to under-
standing and debugging what’s going on in your application. As you may remember
from chapter 6, a correlation ID is a unique number that’s generated at the start of a
user’s transaction and passed along with every service call. It should also be passed
with every message that’s published and consumed.

MESSAGE CHOREOGRAPHY

As alluded to in the section on message visibility, messaging-based applications make it
more difficult to reason through the business logic of their applications because their
code is no longer being processed in a linear fashion with a simple block request-
response model. Instead, debugging message-based applications can involve wading
through the logs of several different services where the user transactions can be exe-
cuted out of order and at different times.
Licensed to <null>

236 CHAPTER 8 Event-driven architecture with Spring Cloud Stream
8.2 Introducing Spring Cloud Stream
Spring Cloud makes it easy to integrate messaging into your Spring-based microser-
vices. It does this through the Spring Cloud Stream project (https://cloud.spring.io/
spring-cloud-stream/). The Spring Cloud Stream project is an annotation-driven
framework that allows you to easily build message publishers and consumers in your
Spring application.

 Spring Cloud Stream also allows you to abstract away the implementation details of
the messaging platform you’re using. Multiple message platforms can be used with
Spring Cloud Stream (including the Apache Kafka project and RabbitMQ) and the
implementation-specific details of the platform are kept out of the application code.
The implementation of message publication and consumption in your application is
done through platform-neutral Spring interfaces.

NOTE For this chapter, you’re going to use a lightweight message bus called
Kafka (https://kafka.apache.org/). Kafka is a lightweight, highly performant
message bus that allows you asynchronously send streams of messages from
one application to one or more other applications. Written in Java, Kafka has
become the de facto message bus for many cloud-based applications because
it’s highly reliable and scalable. Spring Cloud Stream also supports the use of
RabbitMQ as a message bus. Both Kafka and RabbitMQ are strong messaging
platforms, and I chose Kafka because that’s what I’m most familiar with.

Messaging can be complex but powerful
The previous sections weren’t meant to scare you away from using messaging in your
applications. Rather, my goal is to highlight that using messaging in your services
requires forethought. I recently completed a major project where we needed to bring
up and down a stateful set of AWS server instances for each one of our customers.
We had to integrate a combination of microservice calls and messages using both
AWS Simple Queueing Service (SQS) and Kafka. While the project was complex, I saw
first-hand the power of messaging when at the end of the project we realized that
we’d need to deal with having to make sure that we retrieved certain files off the
server before the server could be terminated. This step had to be carried out about
75% of the way through the user workflow and the overall process couldn’t continue
until the process was completed. Fortunately, we had a microservice (called our file
recovery service) that could do much of the work to check and see if the files were
off the server being decommissioned. Because the servers communicate all of their
state changes (including that they’re being decommissioned) via events, we only had
to plug the file recovery server into an event stream coming from the server being
decommissioned and have them listen for a “decommissioning” event.

If this entire process had been synchronous, adding this file-draining step would have
been extremely painful. But in the end, we needed an existing service we already had
in production to listen to events coming off an existing messaging queue and react.
The work was done in a couple of days and we never missed a beat in our project
delivery. Messages allow you to hook together services without the services being
hard-coded together in a code-based workflow.
Licensed to <null>

https://kafka.apache.org/
https://kafka.apache.org/
https://cloud.spring.io/spring-cloud-stream/
https://cloud.spring.io/spring-cloud-stream/

237Introducing Spring Cloud Stream
To understand Spring Cloud Stream, let’s begin with a discussion of the Spring Cloud
Stream architecture and familiarize ourselves with the terminology of Spring Cloud
Stream. If you’ve never worked with a messaging based platform before, the new ter-
minology involved can be somewhat overwhelming.

8.2.1 The Spring Cloud Stream architecture

Let’s begin our discussion by looking at the Spring Cloud Stream architecture
through the lens of two services communicating via messaging. One service will be the
message publisher and one service will be the message consumer. Figure 8.3 shows
how Spring Cloud Stream is used to facilitate this message passing.

Service
client

Service A

Spring Cloud Stream

Message queue

Message broker

Source

Channel

Binder

2. The source is the service’s
 Spring code that publishes
 the message.

1. The service client calls the
service, and the service
changes the state of the
data it owns. This is done
in the business logic of
the service.

5. The message broker can
be implemented using any
number of messaging
platforms, including Apache
Kafka and RabbitMQ.

6. The order of message
processing (binder, channel,
sink) changes as a service
receives a message.

3. The message is published
 to a channel.

4. A binder is the Spring Cloud
 Stream’s framework code
 that communicates to the
 specific messaging system.

Business logic

Service B

Spring Cloud Stream

Binder

Channel

Sink

Business logic

7. A sink is the service-specific
code that listens to a channel
and then processes the
incoming message. Figure 8.3 As a message is

published and consumed, it
flows through a series of Spring
Cloud Stream components that
abstract away the underlying
messaging platform.
Licensed to <null>

238 CHAPTER 8 Event-driven architecture with Spring Cloud Stream
With the publication and consumption of a message in Spring Cloud, four compo-
nents are involved in publishing and consuming the message:

 Source
 Channel
 Binder
 Sink

SOURCE

When a service gets ready to publish a message, it will publish the message using a
source. A source is a Spring annotated interface that takes a Plain Old Java Object
(POJO) that represents the message to be published. A source takes the message, seri-
alizes it (the default serialization is JSON), and publishes the message to a channel.

CHANNEL

A channel is an abstraction over the queue that’s going to hold the message after it
has been published by the message producer or consumed by a message consumer. A
channel name is always associated with a target queue name. However, that queue
name is never directly exposed to the code. Instead the channel name is used in the
code, which means that you can switch the queues the channel reads or writes from by
changing the application’s configuration, not the application’s code.

BINDER

The binder is part of the Spring Cloud Stream framework. It’s the Spring code that
talks to a specific message platform. The binder part of the Spring Cloud Stream
framework allows you to work with messages without having to be exposed to platform-
specific libraries and APIs for publishing and consuming messages.

SINK

In Spring Cloud Stream, when a service receives a message from a queue, it does it
through a sink. A sink listens to a channel for incoming messages and de-serializes the
message back into a plain old Java object. From there, the message can be processed
by the business logic of the Spring service.

8.3 Writing a simple message producer and consumer
Now that we’ve walked through the basic components in Spring Cloud Stream, let’s
look at a simple Spring Cloud Stream example. For the first example, you’re going to
pass a message from your organization service to your licensing service. The only
thing you’ll do with the message in the licensing service is to print a log message to
the console.

 In addition, because you’re only going to have one Spring Cloud Stream source
(the message producer) and sink (message consumer) in this example, you’re going
to start the example with a few simple Spring Cloud shortcuts that will make setting up
the source in the organization service and a sink in the licensing service trivial.

Licensed to <null>

239Writing a simple message producer and consumer
Figure 8.4 When organization service data changes it will publish a message to Kafka.

8.3.1 Writing the message producer in the organization service

You’re going to begin by modifying the organization service so that every time organi-
zation data is added, updated, or deleted, the organization service will publish a mes-
sage to a Kafka topic indicating that the organization change event has occurred.
Figure 8.4 highlights the message producer and build on the general Spring Cloud
Stream architecture from figure 8.3.

 The published message will include the organization ID associated with the change
event and will also include what action occurred (Add, Update or Delete).

 The first thing you need to do is set up your Maven dependencies in the organiza-
tion service’s Maven pom.xml file. The pom.xml file can be found in the organization-
service directory. In the pom.xml, you need to add two dependencies: one for the
core Spring Cloud Stream libraries and the other to include the Spring Cloud Stream
Kafka libraries:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-stream</artifactId>
 </dependency>

Organization
client

orgChangeTopic

Business logic

Organization service

Spring Cloud Stream

Kafka

Source
(SimpleSourceBean)

Channel
(output)

Binder
(Kafka)

2. Name of the bean the
 organization service will
 use internally to publish
 the message.1. Organization client calls

organization service’s REST
endpoint; data is updated. 3. Name of the Spring Cloud

 Stream channel that will map
 to the Kafka topic (which will
 be orgChangeTopic).

4. The Spring Cloud Stream
 classes and configuration that
 bind to your Kafka server.
Licensed to <null>

240 CHAPTER 8 Event-driven architecture with Spring Cloud Stream
<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-stream-kafka</artifactId>
</dependency>

Once the Maven dependencies have been defined, you need to tell your application
that it’s going to bind to a Spring Cloud Stream message broker. You do this by anno-
tating the organization service’s bootstrap class organization-service/src/
main/java/com/thoughtmechanix/organization/Application.java with an
@EnableBinding annotation. The following listing shows the organization service’s
Application.java source code.

package com.thoughtmechanix.organization;

import com.thoughtmechanix.organization.utils.UserContextFilter;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.cloud.client.circuitbreaker.EnableCircuitBreaker;
import org.springframework.cloud.netflix.eureka.EnableEurekaClient;
import org.springframework.cloud.stream.annotation.EnableBinding;
import org.springframework.cloud.stream.messaging.Source;
import org.springframework.context.annotation.Bean;
import javax.servlet.Filter;

@SpringBootApplication
@EnableEurekaClient
@EnableCircuitBreaker
@EnableBinding(Source.class)
public class Application {
 @Bean
 public Filter userContextFilter() {
 UserContextFilter userContextFilter = new UserContextFilter();
 return userContextFilter;
 }
 public static void main(String[] args) {
 SpringApplication.run(Application.class, args);
 }
}

In listing 8.1, the @EnableBinding annotation tells Spring Cloud Stream that you
want to bind the service to a message broker. The use of Source.class in the
@EnableBinding annotation tells Spring Cloud Stream that this service will commu-
nicate with the message broker via a set of channels defined on the Source class.
Remember, channels sit above a message queue. Spring Cloud Stream has a default
set of channels that can be configured to speak to a message broker.

 At this point you haven’t told Spring Cloud Stream what message broker you want
the organization service to bind to. We’ll get to that shortly. Now, you can go ahead
and implement the code that will publish a message.

Listing 8.1 The annotated Application.java class

The @EnableBinding annotation tells
Spring Cloud Stream to bind the
application to a message broker.
Licensed to <null>

241Writing a simple message producer and consumer
 The message publication code can be found in the organization-service/src/
com/thoughtmechanix/organization/events/source/SimpleSource-

Bean.java class. The following listing shows the code for this class.

package com.thoughtmechanix.organization.events.source;

//Removed imports for conciseness

@Component
public class SimpleSourceBean {
 private Source source;

 private static final Logger logger =
LoggerFactory.getLogger(SimpleSourceBean.class);

 @Autowired
 public SimpleSourceBean(Source source){
 this.source = source;
 }

 public void publishOrgChange(String action,String orgId){
 logger.debug("Sending Kafka message {}
 ➥ for Organization Id: {}",
 ➥ action, orgId);
 OrganizationChangeModel change = new OrganizationChangeModel(
 OrganizationChangeModel.class.getTypeName(),
 action,
 orgId,
 UserContext.getCorrelationId());

 source
 .output()
 .send(
 MessageBuilder
 .withPayload(change)
 .build());
 }
}

In listing 8.2 you inject the Spring Cloud Source class into your code. Remember, all
communication to a specific message topic occurs through a Spring Cloud Stream
construct called a channel. A channel is represented by a Java interface class. In this
listing you’re using the Source interface. The Source interface is a Spring Cloud
defined interface that exposes a single method called output(). The Source inter-
face is a convenient interface to use when your service only needs to publish to a sin-
gle channel. The output() method returns a class of type MessageChannel. The
MessageChannel is how you’ll send messages to the message broker. Later in this
chapter, I’ll show you how to expose multiple messaging channels using a custom
interface.

Listing 8.2 Publishing a message to the message broker

Spring Cloud Stream will inject a
Source interface implementation
for use by the service.

The message
to be published
is a Java POJO.

When you’re ready to send the
message, use the send() method from
a channel defined on the Source class.
Licensed to <null>

242 CHAPTER 8 Event-driven architecture with Spring Cloud Stream

m
top

w

 The actual publication of the message occurs in the publishOrgChange()
method. This method builds a Java POJO called OrganizationChangeModel. I’m
not going to put the code for the OrganizationChangeModel in the chapter
because this class is nothing more than a POJO around three data elements:

 Action—This is the action that triggered the event. I’ve included the action in
the message to give the message consumer more context on how it should pro-
cess an event.

 Organization ID—This is the organization ID associated with the event.
 Correlation ID—This is the correlation ID the service call that triggered the

event. You should always include a correlation ID in your events as it helps
greatly with tracking and debugging the flow of messages through your services.

When you’re ready to publish the message, use the send() method on the
MessageChannel class returned from the source.output() method.

source.output().send(MessageBuilder.withPayload(change).build());

The send() method takes a Spring Message class. You use a Spring helper class
called MessageBuilder to take the contents of the OrganizationChangeModel
class and convert it to a Spring Message class.

 This all the code you need to send a message. However, at this point, everything
should feel a little bit like magic because you haven’t seen how to bind your organiza-
tion service to a specific message queue, let alone the actual message broker. This is all
done through configuration. Listing 8.3 shows the configuration that does the map-
ping of your service’s Spring Cloud Stream Source to a Kafka message broker and a
message topic in Kafka. This configuration information can be localized in your ser-
vice’s application.yml file or inside a Spring Cloud Config entry for the service.

spring:
 application:
 name: organizationservice
 #Remove for conciseness
 stream:
 bindings:
 output:
 destination: orgChangeTopic
 content-type: application/json
 kafka:
 binder:
 zkNodes: localhost
 brokers: localhost

Listing 8.3 The Spring Cloud Stream configuration for publishing a message

stream.bindings is the start of the configuration
needed for your service to publish to a Spring
Cloud Stream message broke.

output is the name of your channel and maps to
the Source.output() channel you saw in listing 8.2.

orgChangeTopic is
the name of the

essage queue (or
ic) you’re going to
rite messages to.

The content-type gives a hint to
Spring Cloud Stream of what type

of message is going to be sent
and received (in this case JSON).

The stream.bindings.kafka property tells
Spring you’re going to use Kafka as the
message bus in the service (you could
have used RabbitMQ as an alternative).

The zknodes and brokers property tells
Spring Cloud Stream the network

location of your Kafka and ZooKeeper.
Licensed to <null>

243Writing a simple message producer and consumer
The configuration in listing 8.3 looks dense, but it’s straightforward. The configura-
tion property spring.stream.bindings.output in the listing maps the
source.output() channel in listing 8.2 to the orgChangeTopic on the message
broker you’re going to communicate with. It also tells Spring Cloud Stream that mes-
sages being sent to this topic should be serialized as JSON. Spring Cloud Stream can
serialize messages in multiple formats, including JSON, XML, and the Apache Founda-
tion’s Avro format (https://avro.apache.org/).

 The configuration property, spring.stream.bindings.kafka in listing 8.3,
also tells Spring Cloud Stream to bind the service to Kafka. The sub-properties tell
Spring Cloud Stream the network addresses of the Kafka message brokers and the
Apache ZooKeeper servers that run with Kafka.

 Now that you have the code written that will publish a message via Spring Cloud
Stream and the configuration to tell Spring Cloud Stream that it’s going to use Kafka
as a message broker, let’s look at where the publication of the message in your organi-
zation service actually occurs. This work will be done in the organization-service/
src/main/java/com/thoughtmechanix/organization/services/Organiza-

tionService.java class. The following listing shows the code for this class.

package com.thoughtmechanix.organization.services;

//Imports removed for consiceness
@Service
public class OrganizationService {
 @Autowired
 private OrganizationRepository orgRepository;

 @Autowired
 SimpleSourceBean simpleSourceBean;

 //Rest of class removed for conciseness
 public void saveOrg(Organization org){
 org.setId(UUID.randomUUID().toString());

 orgRepository.save(org);
 simpleSourceBean.publishOrgChange("SAVE", org.getId());
 }
}

Listing 8.4 Publishing a message in your organization service

What data should I put in the message?
One of the most common questions I get from teams when they’re first embarking on
their message journey is exactly how much data should go in their messages. My
answer is, it depends on your application. As you may notice, in all my examples I
only return the organization ID of the organization record that has changed. I never
put a copy of the changes to the data in the message. In my examples (and in many

Spring autowiring is used to
inject the SimpleSourceBean
into your organization service.

For each method in the
service that changes

organization data, call
simpleSourceBean.publish

OrgChange().
Licensed to <null>

https://avro.apache.org/

244 CHAPTER 8 Event-driven architecture with Spring Cloud Stream
8.3.2 Writing the message consumer in the licensing service

At this point you’ve modified the organization service to publish a message to Kafka
every time the organization service changes organization data. Anyone who’s inter-
ested can react without having to be explicitly called by the organization service. It
also means you can easily add new functionality that can react to the changes in the
organization service by having them listen to messages coming in on the message
queue. Let’s now switch directions and look at how a service can consume a message
using Spring Cloud Stream.

 For this example, you’re going to have the licensing service consume the message
published by the organization service. Figure 8.5 shows where the licensing service
will fit into the Spring Cloud architecture first shown in figure 8.3.

 To begin, you again need to add your Spring Cloud Stream dependencies to the
licensing services pom.xml file. This pom.xml file can found in licensing-service direc-
tory of the source code for the book. Similar to the organization-service pom.xml file
you saw earlier, you add the following two dependency entries:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-stream</artifactId>
 </dependency>

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-stream-kafka</artifactId>
</dependency>

(continued)

of the problems I deal with in the telephony space), the business logic being executed
is sensitive to changes in data. I used messages based on system events to tell
other services that data state has changed, but I always force the other services to
go back to the master (the service that owns the data) to retrieve a new copy of the
data. This approach is costlier in terms of execution time, but it also guarantees I
always have the latest copy of the data to work with. A chance still exists that the
data you’re working with could change right after you’ve read it from the source
system, but that’s much less likely than blindly consuming the information right off
the queue.

Think carefully about how much data you’re passing around. Sooner or later, you’ll
run into a situation where the data you passed is stale. It could be stale because a
problem caused it to sit in a message queue too long, or a previous message con-
taining data failed, and the data you’re passing in the message now represents data
that’s in an inconsistent state (because your application relied on the message’s
state rather than the actual state in the underlying data store). If you’re going to pass
state in your message, also make sure to include a date-time stamp or version num-
ber in your message so that the services consuming the data can inspect the data
being passed and ensure that it’s not older than the copy of the data they already
have. (Remember, data can be retrieved out of order.)
Licensed to <null>

245Writing a simple message producer and consumer
Then you need to tell the licensing service that it needs to use Spring Cloud Stream to
bind to a message broker. Like the organization service, we’re going to annotate the
licensing services bootstrap class (licensing-service/src/main/java/com/
thoughtmechanix/licenses/Application.java) with the @EnableBinding
annotation. The difference between the licensing service and the organization service
is the value you’re going to pass to the @EnableBinding annotation, as shown in the
following listing.

package com.thoughtmechanix.licenses;

//Imports removed for conciseness
@EnableBinding(Sink.class)
public class Application {
 //Code removed for conciseness
 @StreamListener(Sink.INPUT)
 public void loggerSink(
 OrganizationChangeModel orgChange) {

Listing 8.5 Consuming a message using Spring Cloud Stream

orgChangeTopic

Kafka

1. A change message comes into
 the Kafka orgChangeTopic.

2. Spring Cloud Stream
classes and configuration

Business logic

Licensing service

Spring Cloud Stream

Binder
(Kafka)

Channel
(inboundOrgChanges)

Sink
(OrganizationChangeHandler)

3. You’ll use both the default
input channel and a custom
channel (inboundOrgChanges)
to communicate the incoming
message.

4. The OrganizationChangeHandler
class processes each incoming
message.

Figure 8.5 When a message comes into the Kafka orgChangeTopic, the licensing
service will respond.

The @EnableBinding annotation tells the service
to the use the channels defined in the Sink
interface to listen for incoming messages.

Spring Cloud Stream will execute this
method every time a message is
received off the input channel.
Licensed to <null>

246 CHAPTER 8 Event-driven architecture with Spring Cloud Stream
 logger.debug("Received an event for
 ➥ organization id {}" ,
 ➥
orgChange.getOrganizationId());
 }

}

Because the licensing service is a consumer of a message, you’re going to pass the
@EnableBinding annotation the value Sink.class. This tells Spring Cloud Stream
to bind to a message broker using the default Spring Sink interface. Similar to the
Spring Cloud Steam Source interface described in section 8.3.1, Spring Cloud
Stream exposes a default channel on the Sink interface. The channel on the Sink
interface is called input and is used to listen for incoming messages on a channel.

 Once you’ve defined that you want to listen for messages via the @EnableBinding
annotation, you can write the code to process a message coming off the Sink input
channel. To do this, use the Spring Cloud Stream @StreamListener annotation.

 The @StreamListener annotation tells Spring Cloud Stream to execute the
loggerSink() method every time a message is received off the input channel.
Spring Cloud Stream will automatically de-serialize the message coming off the chan-
nel to a Java POJO called OrganizationChangeModel.

 Once again, the actual mapping of the message broker’s topic to the input chan-
nel is done in the licensing service’s configuration. For the licensing service, its config-
uration is shown in the following listing and can be found in the licensing service’s
licensing-service/src/main/resources/application.yml file.

spring:
 application:
 name: licensingservice
 … #Remove for consiceness
 cloud:
 stream:
 bindings:
 input:
 destination: orgChangeTopic
 content-type: application/json
 group: licensingGroup
 binder:
 zkNodes: localhost
 brokers: localhost

The configuration in this listing looks like the configuration for the organization ser-
vice. It has, however, two key differences. First, you now have a channel called input
defined under the spring.cloud.stream.bindings property. This value maps to
the Sink.INPUT channel defined in the code from listing 8.5. This property maps the
input channel to the orgChangeTopic. Second, you see the introduction of a new

Listing 8.6 Mapping the licensing service to a message topic in Kafka

The spring.cloud.stream.bindings.input
property maps the input channel to the
orgChangeTopic queue.

The group property is used
to guarantee process-once
semantics for a service.
Licensed to <null>

247Writing a simple message producer and consumer
property called spring.cloud.stream.bindings.input.group. The group

property defines the name of the consumer group that will be consuming the message.
 The concept of a consumer group is this: You might have multiple services with

each service having multiple instances listening to the same message queue. You want
each unique service to process a copy of a message, but you only want one service
instance within a group of service instances to consume and process a message. The
group property identifies the consumer group that the service belongs to. As long as
all the service instances have the same group name, Spring Cloud Stream and the
underlying message broker will guarantee that only one copy of the message will be
consumed by a service instance belonging to that group. In the case of your licensing
service, the group property value will be called licensingGroup.

 Figure 8.6 illustrates how the consumer group is used to help enforce consume-
once semantics for a message being consumed across multiple services.

Figure 8.6 The consumer group guarantees a message will only be processed once by a group of
service instances.

8.3.3 Seeing the message service in action

At this point you have the organization service publishing a message to the org-
ChangeTopic every time a record is added, updated, or deleted and the licensing
service receiving the message of the same topic. Now you’ll see this code in action by
updating an organization service record and watching the console to see the corre-
sponding log message appear from the licensing service.

orgChangeTopic

Kafka

1. A message comes into
 orgChangeTopic from the
 organization service.

2. The message is consumed by exactly
 one licensing service instance because
 they all share the same consumer
 group (licensingGroup).

3. The same message is consumed by
 a different service (Service Instance X).
 Service X has a different consumer group.

Licensing service

Licensing Service Instance A
(licensingGroup)

Licensing Service Instance B
(licensingGroup)

Licensing Service Instance C
(licensingGroup)

Service X

Service Instance X
(serviceInstanceXGroup)
Licensed to <null>

248 CHAPTER 8 Event-driven architecture with Spring Cloud Stream
 To update the organization service record, you’re going to issue a PUT on the orga-
nization service to update the organization’s contact phone number. The endpoint
you’re going to update with is http://localhost:5555/api/organization/v1/organiza-
tions/e254f8c-c442-4ebe-a82a-e2fc1d1ff78a. The body you’re going to send on the
PUT call to the endpoint is

{
 "contactEmail": "mark.balster@custcrmco.com",
 "contactName": "Mark Balster",
 "contactPhone": "823-555-2222",
 "id": "e254f8c-c442-4ebe-a82a-e2fc1d1ff78a",
 "name": "customer-crm-co"
}

Figure 8.7 shows the returned output from this PUT call.

Figure 8.7 Updating the contact phone number using the organization service

Once the organization service call has been made, you should see the following out-
put in the console window running the services. Figure 8.8 show this output.

Figure 8.8 The console shows the message from the organization service being sent and then received.

Log message from the licensing service indicating that it
received a message for an UPDATE event

Log message from the organization service
indicating it sent a Kafka message
Licensed to <null>

249A Spring Cloud Stream use case: distributed caching
Now you have two services communicating with each other using messaging. Spring
Cloud Stream is acting as the middleman for these services. From a messaging per-
spective, the services know nothing about each other. They’re using a messaging bro-
ker to communicate as an intermediary and Spring Cloud Stream as an abstraction
layer over the messaging broker.

8.4 A Spring Cloud Stream use case: distributed caching
At this point you have two services communicating with messaging, but you’re not
really doing anything with the messages. Now you’ll build the distributed caching
example we discussed earlier in the chapter. You’ll have the licensing service always
check a distributed Redis cache for the organization data associated with a particular
license. If the organization data exists in the cache, you’ll return the data from the
cache. If it doesn’t, you’ll call the organization service and cache the results of the call
in a Redis hash.

 When data is updated in the organization service, the organization service will
issue a message to Kafka. The licensing service will pick up the message and issue a
delete against Redis to clear out the cache.

Cloud caching and messaging
Using Redis as a distributed cache is very relevant to microservices development in
the cloud. With my current employer, we build our solution using Amazon’s Web Ser-
vices (AWS) and are a heavy user of Amazon’s DynamoDB. We also use Amazon’s
ElastiCache (Redis) to

 Improve performance for lookup of commonly held data—By using a cache,
we’ve significantly improved the performance of several of our key services.
All the tables in the products we sell are multi-tenant (hold multiple customer
records in a single table), which means they can be quite large. Because
caching tends to pin “heavily” used data we’ve seen significant performance
improvements by using Redis and caching to avoid the reads out to Dynamo.

 Reduce the load (and cost) on the Dynamo tables holding our data—Accessing
data in Dynamo can be a costly proposition. Every read you make is a charge-
able event. Using a Redis server is significantly cheaper for reads by a pri-
mary key then a Dynamo read.

 Increase resiliency so that our services can degrade gracefully if our primary
data store (Dynamo) is having performance problems—If AWS Dynamo is hav-
ing problems (it does occasionally happen), using a cache such as Redis can
help your service degrade gracefully. Depending on how much data you keep
in your cache, a caching solution can help reduce the number of errors you
get from hitting your data store.

Redis is far more than a caching solution, but it can fill that role if you need a distrib-
uted cache.
Licensed to <null>

250 CHAPTER 8 Event-driven architecture with Spring Cloud Stream
8.4.1 Using Redis to cache lookups

Now you’re going to begin by setting up the licensing service to use Redis. Fortu-
nately, Spring Data already makes it simple to introduce Redis into your licensing ser-
vice. To use Redis in the licensing service you need to do four things:

1 Configure the licensing service to include the Spring Data Redis dependencies
2 Construct a database connection to Redis
3 Define the Spring Data Redis Repositories that your code will use to interact

with a Redis hash
4 Use Redis and the licensing service to store and read organization data

CONFIGURE THE LICENSING SERVICE WITH SPRING DATA REDIS DEPENDENCIES

The first thing you need to do is include the spring-data-redis dependencies,
along with the jedis and common-pools2 dependencies, into the licensing service’s
pom.xml file. The dependencies to include are shown in the following listing.

<dependency>
 <groupId>org.springframework.data</groupId>
 <artifactId>spring-data-redis</artifactId>
 <version>1.7.4.RELEASE</version>
</dependency>

<dependency>
 <groupId>redis.clients</groupId>
 <artifactId>jedis</artifactId>
 <version>2.9.0</version>
</dependency>

<dependency>
 <groupId>org.apache.commons</groupId>
 <artifactId>commons-pool2</artifactId>
 <version>2.0</version>
</dependency>

CONSTRUCTING THE DATABASE CONNECTION TO A REDIS SERVER

Now that you have the dependencies in Maven, you need to establish a connection
out to your Redis server. Spring uses the open source project Jedis (https://
github.com/xetorthio/jedis) to communicate with a Redis server. To communi-
cate with a specific Redis instance, you’re going to expose a JedisConnection-
Factory in the licensing-service/src/main/java/com/thoughtmechanix/
licenses/Application.java class as a Spring Bean. Once you have a connection
out to Redis, you’re going to use that connection to create a Spring RedisTemplate
object. The RedisTemplate object will be used by the Spring Data repository classes
that you’ll implement shortly to execute the queries and saves of organization service
data to your Redis service. The following listing shows this code.

Listing 8.7 Adding the Spring Redis Dependencies
Licensed to <null>

251A Spring Cloud Stream use case: distributed caching

package com.thoughtmechanix.licenses;

//Most of th imports have been remove for conciseness
import

org.springframework.data.redis.connection.jedis.JedisConnectionFactory;
import org.springframework.data.redis.core.RedisTemplate;

@SpringBootApplication
@EnableEurekaClient
@EnableCircuitBreaker
@EnableBinding(Sink.class)
public class Application {

 @Autowired
 private ServiceConfig serviceConfig;

 //All other methods in the class have been removed for consiceness
 @Bean
 public JedisConnectionFactory jedisConnectionFactory() {
 JedisConnectionFactory jedisConnFactory = new

JedisConnectionFactory();
 jedisConnFactory.setHostName(serviceConfig.getRedisServer());
 jedisConnFactory.setPort(serviceConfig.getRedisPort());
 return jedisConnFactory;
 }

 @Bean
 public RedisTemplate<String, Object> redisTemplate() {
 RedisTemplate<String, Object> template = new RedisTemplate<String,

Object>();
 template.setConnectionFactory(jedisConnectionFactory());
 return template;
 }
}

The foundational work for setting up the licensing service to communicate with Redis
is complete. Let’s now move over to writing the logic that will get, add, update, and
delete data from Redis.

DEFINING THE SPRING DATA REDIS REPOSITORIES

Redis is a key-value store data store that acts like a big, distributed, in-memory Hash-
Map. In the simplest case, it stores data and looks up data by a key. It doesn’t have any
kind of sophisticated query language to retrieve data. Its simplicity is its strength and
one of the reasons why so many projects have adopted it for use in their projects.

 Because you’re using Spring Data to access your Redis store, you need to define a
repository class. As may you remember from early on in chapter 2, Spring Data uses
user-defined repository classes to provide a simple mechanism for a Java class to access
your Postgres database without having to write low-level SQL queries.

 For the licensing service, you’re going to define two files for your Redis repository.
The first file you’ll write will be a Java interface that’s going to be injected into any

Listing 8.8 Establishing how your licensing service will communicate with Redis

The jedisConnectionFactory()
method sets up the actual database

connection to the Redis server.

The redisTemplate() method creates a
RedisTemplate that will be used to carry
out actions against your Redis server.
Licensed to <null>

252 CHAPTER 8 Event-driven architecture with Spring Cloud Stream
of the licensing service classes that are going to need to access Redis. This inter-
face (licensing-service/src/main/java/com/thoughtmechanix/licenses/
repository/OrganizationRedisRepository.java) is shown in the following
listing.

package com.thoughtmechanix.licenses.repository;

import com.thoughtmechanix.licenses.model.Organization;

public interface OrganizationRedisRepository {
 void saveOrganization(Organization org);
 void updateOrganization(Organization org);
 void deleteOrganization(String organizationId);
 Organization findOrganization(String organizationId);
}

The second file is the implementation of the OrganizationRedisRepository
interface. The implementation of the interface, the licensing-service/src/
main/java/com/thoughtmechanix/licenses/repository/OrganizationRe-

disRepositoryImpl.java class, uses the RedisTemplate Spring bean you
declared earlier in listing 8.8 to interact with the Redis server and carry out actions
against the Redis server. The next listing shows this code in use.

package com.thoughtmechanix.licenses.repository;

//Most of the imports removed for concisenss
import org.springframework.data.redis.core.HashOperations;
import org.springframework.data.redis.core.RedisTemplate;

@Repository
public class OrganizationRedisRepositoryImpl implements

OrganizationRedisRepository {
 private static final String HASH_NAME="organization";

 private RedisTemplate<String, Organization> redisTemplate;
 private HashOperations hashOperations;

 public OrganizationRedisRepositoryImpl(){
 super();
 }

 @Autowired
 private OrganizationRedisRepositoryImpl(RedisTemplate redisTemplate) {
 this.redisTemplate = redisTemplate;
 }

 @PostConstruct
 private void init() {

Listing 8.9 OrganizationRedisRepository defines methods used to call Redis

Listing 8.10 The OrganizationRedisRepositoryImpl implementation

The @Repository
annotation tells Spring

that this class is a
Repository class used

with Spring Data.

The name of the hash
in your Redis server
where organization

data is storedThe HashOperations class is a set of
Spring helper methods for carrying out

data operations on the Redis server
Licensed to <null>

253A Spring Cloud Stream use case: distributed caching
 hashOperations = redisTemplate.opsForHash();
 }

 @Override
 public void saveOrganization(Organization org) {
 hashOperations.put(HASH_NAME, org.getId(), org);
 }

 @Override
 public void updateOrganization(Organization org) {
 hashOperations.put(HASH_NAME, org.getId(), org);
 }

 @Override
 public void deleteOrganization(String organizationId) {
 hashOperations.delete(HASH_NAME, organizationId);
 }

 @Override
 public Organization findOrganization(String organizationId) {
 return (Organization) hashOperations.get(HASH_NAME, organizationId);
 }
}

The OrganizationRedisRepositoryImpl contains all the CRUD (Create, Read,
Update, Delete) logic used for storing and retrieving data from Redis. There are two
key things to note from the code in listing 8.10:

 All data in Redis is stored and retrieved by a key. Because you’re storing data
retrieved from the organization service, organization ID is the natural choice
for the key being used to store an organization record.

 The second thing to note in is that a Redis server can contain multiple hashes
and data structures within it. In every operation against the Redis server, you
need to tell Redis the name of the data structure you’re performing the opera-
tion against. In listing 8.10, the data structure name you’re using is stored in the
HASH_NAME constant and is called “organization.”

USING REDIS AND THE LICENSING SERVICE TO STORE AND READ ORGANIZATION DATA

Now that you have the code in place to perform operations against Redis, you can
modify your licensing service so that every time the licensing service needs the organi-
zation data, it will check the Redis cache before calling out to the organization service.
The logic for checking Redis will occur in the licensing-service/src/main/
java/com/thoughtmechanix/licenses/clients/OrganizationRestTemplate

Client.java class. The code for this class is shown in the following listing.

package com.thoughtmechanix.licenses.clients;

//Imports removed for conciseness
@Component

Listing 8.11 OrganizationRestTemplateClient class will implement cache logic

All interactions with Redis will
be with a single Organization

object stored by its key.
Licensed to <null>

254 CHAPTER 8 Event-driven architecture with Spring Cloud Stream
public class OrganizationRestTemplateClient {
 @Autowired
 RestTemplate restTemplate;

 @Autowired
 OrganizationRedisRepository orgRedisRepo;

 private static final Logger logger =
LoggerFactory.getLogger(OrganizationRestTemplateClient.class);

 private Organization checkRedisCache(
 String organizationId) {
 try {
 return orgRedisRepo.findOrganization(organizationId);
 }
 catch (Exception ex){
 logger.error("Error encountered while trying to
 ➥ retrieve organization {} check Redis Cache.
 ➥ Exception {}", organizationId, ex);
 return null;
 }
}

private void cacheOrganizationObject(Organization org) {
 try {
 orgRedisRepo.saveOrganization(org);
 }catch (Exception ex){
 logger.error("Unable to cache organization {} in Redis.
 ➥ Exception {}" org.getId(), ex);
 }
}

public Organization getOrganization(String organizationId){
 logger.debug("In Licensing Service
 ➥ .getOrganization: {}",
 ➥ UserContext.getCorrelationId());

 Organization org = checkRedisCache(organizationId);

 if (org!=null){
 logger.debug("I have successfully
 ➥ retrieved an organization {}
 ➥ from the redis cache: {}", organizationId, org);
 return org;
 }

 logger.debug("Unable to locate
 ➥ organization from the
 ➥ redis cache: {}.", organizationId);

 ResponseEntity<Organization> restExchange =
 restTemplate.exchange(
 "http://zuulservice/api/organization
 ➥ /v1/organizations/{organizationId}",
 HttpMethod.GET,
 null,

The OrganizationRedisRepository
class is auto-wired in the
OrganizationRestTemplateClient.

Trying to retrieve an
Organization class with its
organization ID from Redis

If you can’t retrieve data
from Redis, you’ll call out
the organization service
to retrieve the data from
the source database.
Licensed to <null>

255A Spring Cloud Stream use case: distributed caching
 Organization.class,
 organizationId);

 /*Save the record from cache*/
 org = restExchange.getBody();

 if (org!=null) {
 cacheOrganizationObject(org);
 }

 return org;
}
}

The getOrganization() method is where the call to the organization service takes
place. Before you make the actual REST call, you attempt to retrieve the Organiza-
tion object associated with the call from Redis using the checkRedisCache()
method. If the organization object in question is not in Redis, the code will return a
null value. If a null value is returned from the checkRedisCache() method, the
code will invoke the organization service’s REST endpoint to retrieve the desired orga-
nization record. If the organization service returns an organization, the returned orga-
nization object will be cached using the cacheOrganizationObject() method.

NOTE Pay close attention to exception handling when interacting with the
cache. To increase resiliency, we never let the entire call fail if we cannot com-
municate with the Redis server. Instead, we log the exception and let the call
go out to the organization service. In this particular use case, caching is
meant to help improve performance and the absence of the caching server
shouldn’t impact the success of the call.

With the Redis caching code in place, you should hit the licensing service (yes, you
only have two services, but you have a lot of infrastructure) and see the logging mes-
sages in listing 8.10. If you were to do two back-to-back GET requests on the following
licensing service endpoint, http://localhost:5555/api/licensing/v1/orga-
nizations/e254f8c-c442-4ebe-a82a-e2fc1d1ff78a/licenses/f3831f8c-

c338-4ebe-a82a-e2fc1d1ff78a, you should see the following two output state-
ments in your logs:

licensingservice_1 | 2016-10-26 09:10:18.455 DEBUG 28 --- [nio-8080-exec-
1] c.t.l.c.OrganizationRestTemplateClient : Unable to locate
organization from the redis cache: e254f8c-c442-4ebe-a82a-e2fc1d1ff78a.

licensingservice_1 | 2016-10-26 09:10:31.602 DEBUG 28 --- [nio-8080-exec-
2] c.t.l.c.OrganizationRestTemplateClient : I have successfully
retrieved an organization e254f8c-c442-4ebe-a82a-e2fc1d1ff78a from the
redis cache: com.thoughtmechanix.licenses.model.Organization@6d20d301

The first line from the console shows the first time you tried to hit the licensing ser-
vice endpoint for organization e254f8c-c442-4ebe-a82a-e2fc1d1ff78a. The
licensing service first checked the Redis cache and couldn’t find the organization
record it was looking for. The code then calls the organization service to retrieve the

Saving the retrieved
object to the cache
Licensed to <null>

256 CHAPTER 8 Event-driven architecture with Spring Cloud Stream

.

data. The second line that was printed from the console shows that when you hit the
licensing service endpoint a second time, the organization record is now cached.

8.4.2 Defining custom channels

Previously you built your messaging integration between the licensing and organiza-
tion services to use the default output and input channels that come packaged with
the Source and Sink interfaces in the Spring Cloud Stream project. However, if you
want to define more than one channel for your application or you want to customize
the names of your channels, you can define your own interface and expose as many
input and output channels as your application needs.

 To create a custom channel, call inboundOrgChanges in the licensing service.
You can define the channel in the licensing-service/src/main/java/com/
thoughtmechanix/licenses/events/CustomChannels.java interface, as shown
in the following listing.

package com.thoughtmechanix.licenses.events;

import org.springframework.cloud.stream.annotation.Input;
import org.springframework.messaging.SubscribableChannel;

public interface CustomChannels {
 @Input("inboundOrgChanges")
 SubscribableChannel orgs();
}

The key takeaway from listing 8.12 is that for each custom input channel you want to
expose, you mark a method that returns a SubscribableChannel class with the
@Input annotation. If you want to define output channels for publishing messages,
you’d use the @OutputChannel above the method that will be called. In the case of
an output channel, the defined method will return a MessageChannel class instead
of the SubscribableChannel class used with the input channel:

@OutputChannel(“outboundOrg”)
MessageChannel outboundOrg();

Now that you have a custom input channel defined, you need to modify two more
things to use it in the licensing service. First, you need to modify the licensing service
to map your custom input channel name to your Kafka topic. The following listing
shows this.

spring:
...
 cloud:

Listing 8.12 Defining a custom input channel for the licensing service

Listing 8.13 Modifying the licensing service to use your custom input channel

The @Input annotation
is a method-level
annotation that defines
the name of the channel

Each channel exposed through the
@Input annotation must return a
SubscribableChannel class.
Licensed to <null>

257A Spring Cloud Stream use case: distributed caching
 ...
 stream:
 bindings:
 inboundOrgChanges:
 destination: orgChangeTopic
 content-type: application/json
 group: licensingGroup

To use your custom input channel, you need to inject the CustomChannels inter-
face you defined into a class that’s going to use it to process messages. For the distrib-
uted caching example, I’ve moved the code for handling an incoming message
to the following licensing-service class: licensing-service/src/main/java/
com/thoughtmechanix/licenses/events/handlers/OrganizationChange

Handler.java. The following listing shows the message handling code that you’ll
use with the inboundOrgChanges channel you defined.

@EnableBinding(CustomChannels.class)
public class OrganizationChangeHandler {

 @StreamListener("inboundOrgChanges")
 public void loggerSink(OrganizationChangeModel orgChange) {
 //We will get into the rest of the code shortly
 }
 }
}

8.4.3 Bringing it all together: clearing the cache when a message is
received

At this point you don’t need to do anything with the organization service. The service
is all set up to publish a message whenever an organization is added, updated, or
deleted. All you have to do is build out the OrganizationChangeHandler class
from listing 8.14. The following listing shows the full implementation of this class.

@EnableBinding(CustomChannels.class)
public class OrganizationChangeHandler {

 @Autowired
 private OrganizationRedisRepository
 organizationRedisRepository;

 private static final Logger logger =
 LoggerFactory.getLogger(OrganizationChangeHandler.class);

Listing 8.14 Using the new custom channel in the OrganizationChangeHandler

Listing 8.15 Processing an organization change in the licensing service

Change the name of the channel
from input to inboundOrgChanges.

Move the @EnableBindings out of the Application.java class and into
the OrganizationChangeHandler class. This time instead of using

Sink.class, use your CustomChannels class as the parameter to pass.

With the @StreamListener annotation, you passed in the name of
your channel, “inboundOrgChanges”, instead of using Sink.INPUT.

The OrganizationRedisRepository class that
you use to interact with Redis is injected

into the OrganizationChangeHandler.
Licensed to <null>

258 CHAPTER 8 Event-driven architecture with Spring Cloud Stream
 @StreamListener("inboundOrgChanges")
 public void loggerSink(OrganizationChangeModel orgChange) {
 switch(orgChange.getAction()){
 //Removed for conciseness

 case "UPDATE":
 logger.debug("Received a UPDATE event
 ➥ from the organization service for
 ➥ organization id {}",
 ➥ orgChange.getOrganizationId());
 organizationRedisRepository
 .deleteOrganization(orgChange.getOrganizationId());
 break;
 case "DELETE":
 logger.debug("Received a DELETE event
 ➥ from the organization service for organization id {}",
 ➥ orgChange.getOrganizationId());
 organizationRedisRepository
 .deleteOrganization(orgChange.getOrganizationId());
 break;
 default:
 logger.error("Received an UNKNOWN event
 ➥ from the organization service of type {}",
 ➥ orgChange.getType());
 break;

}
}

8.5 Summary
 Asynchronous communication with messaging is a critical part of microservices

architecture.
 Using messaging within your applications allows your services to scale and

become more fault tolerant.
 Spring Cloud Stream simplifies the production and consumption of messages

by using simple annotations and abstracting away platform-specific details of
the underlying message platform.

 A Spring Cloud Stream message source is an annotated Java method that’s used
to publish messages to a message broker’s queue.

 A Spring Cloud Stream message sink is an annotated Java method that receives
messages off a message broker’s queue.

 Redis is a key-value store that can be used as both a database and cache.

When you receive a
message, inspect the action

that was taken with the data
and then react accordingly.

If the organization data is updated or deleted,
evict the organization data from Redis via the

OrganizationRedisRepository class.
Licensed to <null>

Distributed tracing with
Spring Cloud Sleuth

and Zipkin
The microservices architecture is a powerful design paradigm for breaking down
complex monolithic software systems into smaller, more manageable pieces. These
manageable pieces can be built and deployed independently of each other; how-
ever, this flexibility comes at a price: complexity. Because microservices are distrib-
uted by nature, trying to debug where a problem is occurring can be maddening.
The distributed nature of the services means that you have to trace one or more
transactions across multiple services, physical machines, and different data stores,
and try to piece together what exactly is going on.

This chapter covers
 Using Spring Cloud Sleuth to inject tracing information

into service calls

 Using log aggregation to see logs for distributed
transaction

 Querying via a log aggregation tool

 Using OpenZipkin to visually understand a user’s
transaction as it flows across multiple microservice calls

 Customizing tracing information with Spring Cloud Sleuth
and Zipkin
259

Licensed to <null>

260 CHAPTER 9 Distributed tracing with Spring Cloud Sleuth and Zipkin
 This chapter lays out several techniques and technologies for making distributed
debugging possible. In this chapter, we look at the following:

 Using correlation IDs to link together transactions across multiple services
 Aggregating log data from multiple services into a single searchable source
 Visualizing the flow of a user transaction across multiple services and under-

standing the performance characteristics of each part of the transaction

To accomplish the three things you’re going to use three different technologies:

 Spring Cloud Sleuth (https://cloud.spring.io/spring-cloud-sleuth/)—Spring
Cloud Sleuth is a Spring Cloud project that instruments your HTTP calls with
correlation IDs and provides hooks that feed the trace data it’s producing into
OpenZipkin. It does this by adding the filters and interacting with other Spring
components to let the correlation IDs being generated pass through to all the
system calls.

 Papertrail (https://papertrailapp.com)—Papertrail is a cloud-based service
(freemium-based) that allows you to aggregate logging data from multiple
sources into single searchable database. You have options for log aggregation,
including on-premise, cloud-based, open source, and commercial solutions.
We’ll explore several of these alternatives later in the chapter

 Zipkin (http://zipkin.io)—Zipkin is an open source data-visualization tool that
can show the flow of a transaction across multiple services. Zipkin allows you to
break a transaction down into its component pieces and visually identify where
there might be performance hotspots.

To begin this chapter, we start with the simplest of tracing tools, the correlation ID.

NOTE Parts of this chapter rely on material covered in chapter 6 (specifically
the material on Zuul pre-, response, and post filters). If you haven’t read
chapter 6 yet, I recommend that you do so before you read this chapter.

9.1 Spring Cloud Sleuth and the correlation ID
We first introduced the concept of correlation IDs in chapter 5 and 6. A correlation ID
is a randomly generated, unique number or string that’s assigned to a transaction
when a transaction is initiated. As the transaction flows across multiple services, the
correlation ID is propagated from one service call to another. In the context of chap-
ter 6, you used a Zuul filter to inspect all incoming HTTP requests and inject a correla-
tion ID if one wasn’t present.

 Once the correlation ID was present, you used a custom Spring HTTP filter on
every one of your services to map the incoming variable to a custom UserContext
object. With the UserContext object in place, you could now manually add the cor-
relation ID to any of your log statements by making sure you appended the correlation
ID to the log statement, or, with a little work, add the correlation ID directly to
Spring’s Mapped Diagnostic Context (MDC). You also wrote a Spring Interceptor that
Licensed to <null>

https://cloud.spring.io/spring-cloud-sleuth/
https://papertrailapp.com
http://zipkin.io

261Spring Cloud Sleuth and the correlation ID
would ensure that all HTTP calls from a service would propagate the correlation ID by
adding the correlation ID to the HTTP headers on any outbound calls.

 Oh, and you had to perform Spring and Hystrix magic to make sure the thread
context of the parent thread holding the correlation ID was properly propagated to
Hystrix. Wow—in the end this was a lot of infrastructure that was put in place for
something that you hope will only be looked at when a problem occurs (using a corre-
lation ID to trace what’s going on with a transaction).

 Fortunately, Spring Cloud Sleuth manages all this code infrastructure and com-
plexity for you. By adding Spring Cloud Sleuth to your Spring Microservices, you can

 Transparently create and inject a correlation ID into your service calls if one
doesn’t exist.

 Manage the propagation of the correlation ID to outbound service calls so that
the correlation ID for a transaction is automatically added to outbound calls.

 Add the correlation information to Spring’s MDC logging so that the generated
correlation ID is automatically logged by Spring Boots default SL4J and Logback
implementation.

 Optionally, publish the tracing information in the service call to the Zipkin-
distributed tracing platform.

NOTE With Spring Cloud Sleuth if you use Spring Boot’s logging implemen-
tation, you’ll automatically get correlation IDs added to the log statements
you put in your microservices.

Let’s go ahead and add Spring Cloud Sleuth to your licensing and organization services.

9.1.1 Adding Spring Cloud sleuth to licensing and organization

To start using Spring Cloud Sleuth in your two services (licensing and organization),
you need to add a single Maven dependency to the pom.xml files in both services:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-sleuth</artifactId>
</dependency>

This dependency will pull in all the core libraries needed for Spring Cloud Sleuth.
That’s it. Once this dependency is pulled in, your service will now

1 Inspect every incoming HTTP service and determine whether or a not Spring
Cloud Sleuth tracing information exists in the incoming call. If the Spring
Cloud Sleuth tracing data does exist, the tracing information passed into your
microservice will be captured and made available to your service for logging
and processing.

2 Add Spring Cloud Sleuth tracing information to the Spring MDC so that every
log statement created by your microservice will be added to the logs.

3 Inject Spring Cloud tracing information into to every outbound HTTP call and
Spring messaging channel message your service makes.
Licensed to <null>

262 CHAPTER 9 Distributed tracing with Spring Cloud Sleuth and Zipkin
9.1.2 Anatomy of a Spring Cloud Sleuth trace

If everything is set up correctly, any log statements written within your service applica-
tion code will now include Spring Cloud Sleuth trace information. For example,
figure 9.1 shows what the service’s output would look like if you were to do an HTTP
GET http://localhost:5555/api/organization/v1/organizations/e254f8c
-c442-4ebe-a82a-e2fc1d1ff78a on the organization service.

Spring Cloud Sleuth will add four pieces of information to each log entry. These four
pieces (numbered to correspond with the numbers in figure 9.1) are

1 Application name of the service—This is going to be the name of the application
the log entry is being made in. By default, Spring Cloud Sleuth uses the name
of the application (spring.application.name) as the name that gets writ-
ten in the trace.

2 Trace ID—Trace ID is the equivalent term for correlation ID. It’s a unique num-
ber that represents an entire transaction.

3 Span ID—A span ID is a unique ID that represents part of the overall transac-
tion. Each service participating within the transaction will have its own span ID.
Span IDs are particularly relevant when you integrate with Zipkin to visualize
your transactions.

4 Whether trace data was sent to Zipkin—In high-volume services, the amount of
trace data generated can be overwhelming and not add a significant amount of
value. Spring Cloud Sleuth lets you determine when and how to send a transac-
tion to Zipkin. The true/false indicator at the end of the Spring Cloud Sleuth
tracing block tells you whether the tracing information was sent to Zipkin.

1. Application name: The name of the
service being logged.

2. Trace ID: A unique identifier for the user’s
 request that will be carried across all
 service calls in that request.

3. Span ID: A unique identifier for a single segment in the overall
 user request. For multi-service calls, there will be one span ID
 for each service call in the user transaction.

4. Send to Zipkin: Flag indicating
 whether the data will be sent
 to the Zipkin server for tracing.
 (We’ll cover this later on in
 the chapter.)

Figure 9.1 Spring Cloud Sleuth adds four pieces of tracing information to each log entry written by your service.
This data helps tie together service calls for a user’s request.
Licensed to <null>

263Log aggregation and Spring Cloud Sleuth
Up to now, we’ve only looked at the logging data produced by a single service call.
Let’s look at what happens when you make a call to the licensing service at
GET http://localhost:5555/api/licensing/v1/organizations/e254f8c-

c442-4ebe-a82a-e2fc1d1ff78a/licenses/f3831f8c-c338-4ebe-a82a-e2fc

1d1ff78a. Remember, the licensing service also has to call out to the organization
service. Figure 9.2 shows the logging output from the two service calls.

 By looking at figure 9.2, you can see that both the licensing and organization ser-
vices have the same trace ID a9e3e1786b74d302. However, the licensing service has a
span ID of a9e3e1786b74d302 (the same value as the transaction ID). The organiza-
tion service has a span ID of 3867263ed85ffbf4.

 By adding nothing more than a few POM dependencies, you’ve replaced all the
correlation ID infrastructure that you built out in chapters 5 and 6. Personally, noth-
ing makes me happier in this world then replacing complex, infrastructure-style code
with someone else’s code.

9.2 Log aggregation and Spring Cloud Sleuth
In a large-scale microservice environment (especially in the cloud), logging data is a
critical tool for debugging problems. However, because the functionality for a
microservice-based application is decomposed into small, granular services and you
can have multiple service instances for a single service type, trying to tie to log data
from multiple services to resolve a user’s problem can be extremely difficult. Develop-
ers trying to debug a problem across multiple servers often have to try the following:

 Log into multiple servers to inspect the logs present on each server. This is an
extremely laborious task, especially if the services in question have different
transaction volumes that cause logs to rollover at different rates.

 Write home-grown query scripts that will attempt to parse the logs and identify
the relevant log entries. Because every query might be different, you often end
up with a large proliferation of custom scripts for querying data from your logs.

The span IDs for the two
service calls are different.

The two calls have
the same trace ID.

Figure 9.2 With multiple services involved in a transaction, you can see that they share the same trace ID.
Licensed to <null>

264 CHAPTER 9 Distributed tracing with Spring Cloud Sleuth and Zipkin
 Prolong the recovery of a down service process because the developer needs to
back up the logs residing on a server. If a server hosting a service crashes com-
pletely, the logs are usually lost.

Each of the problems listed are real problems that I’ve run into. Debugging a prob-
lem across distributed servers is ugly work and often significantly increases the
amount of time it takes to identify and resolve an issue.

 A much better approach is to stream, real-time, all the logs from all of your service
instances to a centralized aggregation point where the log data can be indexed and
made searchable. Figure 9.3 shows at a conceptual level how this “unified” logging
architecture would work.

Figure 9.3 The combination of aggregated logs and a unique transaction ID across service log entries
makes debugging distributed transactions more manageable.

Fortunately, there are multiple open source and commercial products that can help
you implement the previously described logging architecture. Also, multiple imple-
mentation models exist that will allow you to choose between an on-premise, locally
managed solution or a cloud-based solution. Table 9.1 summarizes several of the
choices available for logging infrastructure.

An aggregation mechanism collects
all of the data and funnels it to a
common data store.

Each individual service is producing logging data.

As data comes into a central data
store, it is indexed and stored in a
searchable format.

The development and operations teams can query the log data to find
individual transactions. The trace IDs from Spring Cloud Sleuth log
entries allow us to tie log entries across services.

Service instance A Service instance A Service instance B

Microservice instances

Service instance B Service instance C
Licensed to <null>

265Log aggregation and Spring Cloud Sleuth

With all these choices, it might be difficult to choose which one is the best. Every orga-
nization is going to be different and have different needs.

 For the purposes of this chapter, we’re going to look at Papertrail as an example of
how to integrate Spring Cloud Sleuth-backed logs into a unified logging platform. I
chose Papertrail because

1 It has a freemium model that lets you sign up for a free-tiered account.
2 It’s incredibly easy to set up, especially with container runtimes like Docker.
3 It’s cloud-based. While I believe a good logging infrastructure is critical for a

microservices application, I don’t believe most organizations have the time or
technical talent to properly set up and manage a logging platform.

9.2.1 A Spring Cloud Sleuth/Papertrail implementation in action

In figure 9.3 we saw a general unified logging architecture. Let’s now see how the
same architecture can be implemented with Spring Cloud Sleuth and Papertrail.

 To set up Papertrail to work with your environment, we have to take the following
actions:

1 Create a Papertrail account and configure a Papertrail syslog connector.
2 Define a Logspout Docker container (https://github.com/gliderlabs/log-

spout) to capture standard out from all the Docker containers.

Table 9.1 Options for Log Aggregation Solutions for Use with Spring Boot

Product Name Implementation Models Notes

Elasticsearch,
Logstash,
Kibana (ELK)

Open source
Commercial
Typically implemented on premise

http://elastic.co
General purpose search engine
Can do log-aggregation through the (ELK-stack)
Requires the most hands-on support

Graylog Open source
Commercial
On-premise

http://graylog.org
Open-source platform that’s designed to be
installed on premise

Splunk Commercial only
On-premise and cloud-based

http://splunk.com
Oldest and most comprehensive of the log man-
agement and aggregation tools
Originally an on-premise solution, but have
since offered a cloud offering

Sumo Logic Freemium
Commercial
Cloud-based

http://sumologic.com
Freemium/tiered pricing model
Runs only as a cloud service
Requires a corporate work account to signup
(no Gmail or Yahoo accounts)

Papertrail Freemium
Commercial
Cloud-based

http://papertrailapp.com
Freemium/tiered pricing model
Runs only as a cloud service
Licensed to <null>

http://elastic.co
http://graylog.org
http://splunk.com
http://sumologic.com
http://papertrailapp.com
https://github.com/gliderlabs/logspout
https://github.com/gliderlabs/logspout

266 CHAPTER 9 Distributed tracing with Spring Cloud Sleuth and Zipkin
3 Test the implementation by issuing queries based on the correlation ID from
Spring Cloud Sleuth.

Figure 9.4 shows the end state for your implementation and how Spring Cloud Sleuth
and Papertrail fit together for your solution.

Figure 9.4 Using native Docker capabilities, logspot, and Papertrail allows you to quickly implement a
unified logging architecture.

5. The Papertrail web application lets the user issue queries. Here you can
 enter a Spring Cloud Sleuth trace ID and see all of the log entries from
 the different services that contain that trace ID.

4. Papertrail exposes a syslog port
 specific to the user’s application.
 It ingests incoming log data and
 indexes and stores it.

3. A Logspout Docker container
 listens to Docker.sock and
 writes whatever goes to
 standard output to a remote
 syslog location.

2. In Docker, all containers write
 their standard out to an internal
 filesystem called Docker.sock.

1. The individual containers write their logging
 data to standard out. Nothing has changed in
 terms of their configuration.

Zuul service

Docker container

Licensing service

Docker.sock

Docker container

Logspout

Docker container

Organization
service

Docker container

Postgres

Docker container

Papertrail
Licensed to <null>

267Log aggregation and Spring Cloud Sleuth
Figure 9.5 To begin, create an account on Papertrail.

9.2.2 Create a Papertrail account and configure a syslog connector

You’ll begin by setting up a Papertrail. To get started, go to https://papertrailapp.com
and click on the green “Start Logging – Free Plan” button. Figure 9.5 shows this.

 Papertrail doesn’t require a significant amount of information to get started; only
a valid email address. Once you’ve filled out the account information, you’ll be
presented with a screen to set up your first system to log data from. Figure 9.6 shows
this screen.

Figure 9.6 Next choose how you’re going to send log data to Papertrail.

Click here to set up a
logging connection.

Click here to set up a
logging connection.
Licensed to <null>

https://papertrailapp.com

268 CHAPTER 9 Distributed tracing with Spring Cloud Sleuth and Zipkin
By default, Papertrail allows you to send log data to it via a Syslog call (https://
en.wikipedia.org/wiki/Syslog). Syslog is a log messaging format that originated in
UNIX. Syslog allows for the sending of log messages over both TCP and UDP. Paper-
trail will automatically define a Syslog port that you can use to write log messages to.
For the purposes of this discussion, you’ll use this default port. Figure 9.7 shows you
the Syslog connect string that’s automatically generated when you click on the “Add
your first system” button shown in figure 9.6.

Figure 9.7 Papertrail uses Syslog as one of the mechanisms for sending data to it.

At this point you’re all set up with Papertrail. You now have to configure your Docker
environment to capture output from each of the containers running your services to
the remote syslog endpoint defined in figure 9.7.

NOTE The connection string from figure 9.7 is unique to my account. You’ll
need to make sure you use the connection string generated for you by Paper-
trail or define one via the Papertrail Settings > Log destinations menu option.

9.2.3 Redirecting Docker output to Papertrail

Normally, if you’re running each of your services in their own virtual machine, you’ll
have to configure each individual service’s logging configuration to send its logging
information to a to a remote syslog endpoint (like the one exposed through Papertrail).

 Fortunately, Docker makes it incredibly easy to capture all the output from any
Docker container running on a physical or virtual machine. The Docker daemon
communicates with all of the Docker containers it’s managing through a Unix socket
called docker.sock. Any container running on the server where Docker is running

This is the syslog connection string you’re
going to use to talk with Papertrail
Licensed to <null>

https://en.wikipedia.org/wiki/Syslog
https://en.wikipedia.org/wiki/Syslog

269Log aggregation and Spring Cloud Sleuth
can connect to the docker.sock and receive all the messages generated by all of the
other containers running on that server. In the simplest terms, docker.sock is like a
pipe that your containers can plug into and capture the overall activities going on
within the Docker runtime environment on the virtual server the Docker daemon is
running on.

 You’re going to use a “Dockerized” piece of software called Logspout (https://
github.com/gliderlabs/logspout) that will listen to the docker.sock socket and then
capture any standard out messages generated in Docker runtime and redirect the out-
put to a remote syslog (Papertrail). To set up your Logspout container, you have to
add a single entry to the docker-compose.yml file you use to fire up all of the Docker
containers used for the code examples in this chapter. The docker/common/docker-
compose.yml file you need to modify should have the following entry added to it:

logspout:
 image: gliderlabs/logspout
 command: syslog://logs5.papertrailapp.com:21218
 volumes:
 - /var/run/docker.sock:/var/run/docker.sock

NOTE In the previous code snippet, you’ll need to replace the value in the
“command” attribute with the value supplied to you from Papertrail. If you
use the previous Logspout snippet, your Logspout container will happily write
your log entries to my Papertrail account.

Now when you fire up your Docker environment in this chapter, all data sent to a con-
tainer’s standard output will be sent to Papertrail. You can see this for yourself by log-
ging into your Papertrail account after you’ve started chapter 9’s Docker examples
and clicking on the Events button in the top right part of your screen.

 Figure 9.8 shows an example of what the data sent to Papertrail looks like.

Figure 9.8 With the Logspout Docker container defined, data written to each container’s standard out
will be sent to Papertrail.

Individual service log events are written to the
container’s stdout. The stdout from the container is
captured by Logspout and then sent to Papertrail.

Click here to see the logging
events being sent to Papertrail.
Licensed to <null>

https://github.com/gliderlabs/logspout
https://github.com/gliderlabs/logspout

270 CHAPTER 9 Distributed tracing with Spring Cloud Sleuth and Zipkin

9.2.4 Searching for Spring Cloud Sleuth trace IDs in Papertrail

Now that your logs are flowing to Papertrail, you can really start appreciating
Spring Cloud Sleuth adding trace IDs to all your log entries. To query for all the log
entries related to a single transaction, all you need to do is take a trace ID and query
for it in the query box of Papertrail’s event screen. Figure 9.9 shows how to execute a
query by the Spring Cloud sleuth trace ID we used earlier in section 9.1.2:
a9e3e1786b74d302. .

Why not use the Docker logging driver?
Docker 1.6 and above do allow you to define alternative logging drivers to write the
stdout/stderr messages written from each container. One of the logging drivers is a
syslog driver that can be used to write the messages to a remote syslog listener.

Why did I choose Logspout instead of using the standard Docker log driver? The main
reason is flexibility. Logspout offers features for customizing what logging data gets
sent to your log aggregation platform. The features Logspout offers include

 The ability to send log data to multiple endpoints at once. Many companies will
want to send their log data to a log aggregation platform, and will also want
security monitoring tools that will monitor the produced logs for sensitive
data.

 A centralized location for filtering which containers are going to send their log
data. With the Docker driver, you need to manually set the log driver for each
container in your docker-compose.yml file. Logspout lets you define filters to
specific containers and even specific string patterns in a centralized configu-
ration.

 Custom HTTP routes that let applications write log information via specific HTTP
endpoints. This feature allows you to do things like write specific log mes-
sages to a specific downstream log aggregation platform. For example, you
might have general log messages from stdout/stderr go to Papertrail, where
you might want to send specific application audit information to an in-house
Elasticsearch server.

 Integration with protocols beyond syslog. Logspout allows you to send mes-
sages via UDP and TCP protocols. Logspout also has third-party modules that
can integrate the stdout/stderr from Docker into Elasticsearch.

Consolidate logging and praise for the mundane
Don’t underestimate how important it is to have a consolidated logging architecture
and a service correlation strategy thought out. It seems like a mundane task, but
while I was writing this chapter, I used log aggregation tools similar to Papertrail to
track down a race condition between three different services for a project I was work-
ing on. It turned out that the race condition has been there for over a year, but the
service with the race condition had been functioning fine until we added a bit more
load and one other actor in the mix to cause the problem.
Licensed to <null>

271Log aggregation and Spring Cloud Sleuth

Figure 9.9 The trace ID allows you to filter all log entries related to that single transaction.

We found the issue only after spending 1.5 weeks doing log queries and walking
through the trace output of dozens of unique scenarios. We wouldn’t have found the
problem without the aggregated logging platform that had been put in place. This
experience reaffirmed several things:

1 Make sure you define and implement your logging strategies early on in your ser-
vice development—Implementing logging infrastructure is tedious, sometimes
difficult, and time-consuming once a project is well underway.

2 Logging is a critical piece of microservice infrastructure—Think long and hard
before you implement your own logging solution or even try to implement an
on-premise logging solution. Cloud-based logging platforms are worth the
money that’s spent on them.

3 Learn your logging tools—Almost every logging platform will have a query lan-
guage for querying the consolidated logs. Logs are an incredible source of
information and metrics. They’re essentially another type of database, and the
time you spend learning to query will pay huge dividends.

The logs show that the licensing service
and then the organization service were
called as part of this single transaction.

Here’s the Spring Cloud Sleuth trace
ID you’re going to query for.
Licensed to <null>

272 CHAPTER 9 Distributed tracing with Spring Cloud Sleuth and Zipkin
9.2.5 Adding the correlation ID to the HTTP response with Zuul

If you inspect the HTTP response back from any service call made with Spring Cloud
Sleuth, you’ll see that the trace ID used in the call is never returned in the HTTP
response headers. If you inspect the documentation for Spring Cloud Sleuth, you’ll
see that the Spring Cloud Sleuth team believes that returning any of the tracing data
can be a potential security issue (though they don’t explicitly list their reasons why
they believe this.)

 However, I’ve found that the returning of a correlation or tracing ID in the HTTP
response is invaluable when debugging a problem. Spring Cloud Sleuth does allow
you to “decorate” the HTTP response information with its tracing and span IDs. How-
ever, the process to do this involves writing three classes and injecting two custom
Spring beans. If you’d like to take this approach, you can see it in the Spring Cloud
Sleuth documentation (http://cloud.spring.io/spring-cloud-static/spring-cloud-
sleuth/1.0.12.RELEASE/). A much simpler solution is to write a Zuul “POST” filter that
will inject the trace ID in the HTTP response.

 In chapter 6 when we introduced the Zuul API gateway, we saw how to build a Zuul
“POST” response filter to add the correlation ID you generated for use in your services
to the HTTP response returned by the caller. You’re now going to modify that filter to
add the Spring Cloud Sleuth header.

 To set up your Zuul response filter, you need to add a single JAR dependencies to
your Zuul server’s pom.xml file: spring-cloud-starter-sleuth. The spring-
cloud-starter-sleuth dependency will be used to tell Spring Cloud Sleuth that
you want Zuul to participate in a Spring Cloud trace. Later in the chapter, when we
introduce Zipkin, you’ll see that the Zuul service will be the first call in any service
invocation.

 For chapter 9, this file can be found in zuulsvr/pom.xml. The following listing
shows these dependencies.

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-sleuth</artifactId>
</dependency>

Once this new dependency is in place, the actual Zuul “post” filter is trivial to imple-
ment. The following listing shows the source code used to build the Zuul filter. The
file is located in zuulsvr/src/main/java/com/thoughtmechanix/zuulsvr/
filters/ResponseFilter.java.

Listing 9.1 Adding Spring Cloud Sleuth to Zuul

Adding spring-cloud-starter-sleuth to Zuul
will cause a trace ID to be generated for

every service being called in Zuul
Licensed to <null>

http://cloud.spring.io/spring-cloud-static/spring-cloud-sleuth/1.0.12.RELEASE/
http://cloud.spring.io/spring-cloud-static/spring-cloud-sleuth/1.0.12.RELEASE/

273Log aggregation and Spring Cloud Sleuth

package com.thoughtmechanix.zuulsvr.filters;

//Rest of annotations removed for conciseness
import org.springframework.cloud.sleuth.Tracer;

@Component
public class ResponseFilter extends ZuulFilter{
private static final int FILTER_ORDER=1;
private static final boolean SHOULD_FILTER=true;
private static final Logger logger =
 ➥ LoggerFactory.getLogger(ResponseFilter.class);

@Autowired
Tracer tracer;

@Override
public String filterType() {return "post";}

@Override
public int filterOrder() {return FILTER_ORDER;}

@Override
public boolean shouldFilter() {return SHOULD_FILTER;}

@Override
public Object run() {
 RequestContext ctx = RequestContext.getCurrentContext();
 ctx.getResponse()
 ➥ .addHeader("tmx-correlation-id",
 ➥ tracer.getCurrentSpan().traceIdString());

 return null;
}}

Because Zuul is now Spring Cloud Sleuth-enabled, you can access tracing information
from within your ResponseFilter by autowiring in the Tracer class into the
ResponseFilter. The Tracer class allows you to access information about the cur-
rent Spring Cloud Sleuth trace being executed. The tracer.getCurrentSpan()
.traceIdString() method allows you to retrieve as a String the current trace ID for
the transaction underway.

 It’s trivial to add the trace ID to the outgoing HTTP response passing back through
Zuul. This is done by calling

RequestContext ctx = RequestContext.getCurrentContext();
ctx.getResponse().addHeader("tmx-correlation-id",
 ➥ tracer.getCurrentSpan().traceIdString());

With this code now in place, if you invoke an EagleEye microservice through your
Zuul gateway, you should get a HTTP response back called tmx-correlation-id.

Listing 9.2 Adding the Spring Cloud Sleuth trace ID via a Zuul POST filter

The Tracer class is the entry
point to access trace and
span ID information.

You’re going to add a
new HTTP Response
header called tmx-

correlation-ID to hold
the Spring Cloud
Sleuth trace ID.
Licensed to <null>

274 CHAPTER 9 Distributed tracing with Spring Cloud Sleuth and Zipkin
Figure 9.10 shows the results of a call to GET http://localhost:5555/api/

licensing/v1/organizations/e254f8c-c442-4ebe-a82a-e2fc1d1ff78a/

licenses/f3831f8c-c338-4ebe-a82a-e2fc1d1ff78a.

9.3 Distributed tracing with Open Zipkin
Having a unified logging platform with correlation IDs is a powerful debugging tool.
However, for the rest of the chapter we’re going to move away from tracing log entries
and instead look at how to visualize the flow of transactions as they move across differ-
ent microservices. A clean, concise picture can be work more than a million log entries.

 Distributed tracing involves providing a visual picture of how a transaction flows
across your different microservices. Distributed tracing tools will also give a rough
approximation of individual microservice response times. However, distributed tracing
tools shouldn’t be confused with full-blown Application Performance Management
(APM) packages. These packages can provide out-of-the-box, low-level performance
data on the actual code within your service and can also provider performance data
beyond response time, such as memory, CPU utilization, and I/O utilization.

 This is where Spring Cloud Sleuth and the OpenZipkin (also referred to as Zipkin)
project shine. Zipkin (http://zipkin.io/) is a distributed tracing platform that allows
you to trace transactions across multiple service invocations. Zipkin allows you to
graphically see the amount of time a transaction takes and breaks down the time spent
in each microservice involved in the call. Zipkin is an invaluable tool for identifying
performance issues in a microservices architecture.

The Spring Cloud Sleuth trace ID. You
can now use this to query Papertrail.

Figure 9.10 With the Spring Cloud Sleuth trace ID returned, you can easily query Papertrail for the logs.
Licensed to <null>

275Distributed tracing with Open Zipkin
 Setting up Spring Cloud Sleuth and Zipkin involves four activities:

 Adding Spring Cloud Sleuth and Zipkin JAR files to the services that capture
trace data

 Configuring a Spring property in each service to point to the Zipkin server that
will collect the trace data

 Installing and configuring a Zipkin server to collect the data
 Defining the sampling strategy each client will use to send tracing information

to Zipkin

9.3.1 Setting up the Spring Cloud Sleuth and Zipkin dependencies

Up to now you’ve included two sets of Maven dependencies to your Zuul, licensing,
and organization services. These JAR files were the spring-cloud-starter-
sleuth and the spring-cloud-sleuth-core dependencies. The spring-cloud-
starter-sleuth dependencies are used to include the basic Spring Cloud Sleuth
libraries needed to enable Spring Cloud Sleuth within a service. The spring-cloud-
sleuth-core dependencies are used whenever you have to programmatically inter-
act with Spring Cloud Sleuth (which you’ll do again later in the chapter).

 To integrate with Zipkin, you need to add a second Maven dependency called
spring-cloud-sleuth-zipkin. The following listing shows the Maven entries that
should be present in the Zuul, licensing, and organization services once the spring-
cloud-sleuth-zipkin dependency is added.

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-sleuth</artifactId>
</dependency>
<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-sleuth-zipkin</artifactId>
</dependency>

9.3.2 Configuring the services to point to Zipkin

With the JAR files in place, you need to configure each service that wants to commu-
nicate with Zipkin. You do this by setting a Spring property that defines the URL used
to communicate with Zipkin. The property that needs to be set is the spring
.zipkin.baseUrl property. This property is set in each service’s application.yml
properties file.

NOTE The spring.zipkin.baseUrl can also be externalized as a property
in Spring Cloud Config.

In the application.yml file for each service, the value is set to http://local-
host:9411. However, at runtime I override this value using the ZIPKIN_URI

Listing 9.3 Client-side Spring Cloud Sleuth and Zipkin dependences
Licensed to <null>

276 CHAPTER 9 Distributed tracing with Spring Cloud Sleuth and Zipkin
(http://zipkin:9411) variable passed on each services Docker configuration
(docker/common/docker-compose.yml) file.

9.3.3 Installing and configuring a Zipkin server

To use Zipkin, you first need to set up a Spring Boot project the way you’ve done
multiple times throughout the book. (In the code for the chapter, this is call
zipkinsvr.) You then need to add two JAR dependencies to the zipkinsvr/pom.xml
file. These two jar dependences are shown in the following listing.

<dependency>
 <groupId>io.zipkin.java</groupId>
 <artifactId>zipkin-server</artifactId>
</dependency>
<dependency>
 <groupId>io.zipkin.java</groupId>
 <artifactId>zipkin-autoconfigure-ui</artifactId>
</dependency>

Zipkin, RabbitMQ, and Kafka
Zipkin does have the ability to send its tracing data to a Zipkin server via RabbitMQ
or Kafka. From a functionality perspective, there’s no difference in Zipkin behavior if
you use HTTP, RabbitMQ, or Kafka. With the HTTP tracing, Zipkin uses an asynchro-
nous thread to send performance data. The main advantage to using RabbitMQ or
Kafka to collect your tracing data is that if your Zipkin server is down, any tracing mes-
sages sent to Zipkin will be “enqueued” until Zipkin can pick up the data.

The configuration of Spring Cloud Sleuth to send data to Zipkin via RabbitMQ and
Kafka is covered in the Spring Cloud Sleuth documentation, so we won’t cover it here
in any further detail.

Listing 9.4 JAR dependencies needed for Zipkin service

@EnableZipkinServer vs. @EnableZipkinStreamServer: which annotation?
One thing to notice about the JAR dependencies above is that they’re not Spring-
Cloud-based dependencies. While Zipkin is a Spring-Boot-based project, the
@EnableZipkinServer is not a Spring Cloud annotation. It’s an annotation that’s
part of the Zipkin project. This often confuses people who are new to the Spring Cloud
Sleuth and Zipkin, because the Spring Cloud team did write the @EnableZipkin-
StreamServer annotation as part of Spring Cloud Sleuth. The @EnableZipkin-
StreamServer annotation simplifies the use of Zipkin with RabbitMQ and Kafka.

I chose to use the @EnableZipkinServer because of its simplicity in setup for
this chapter. With the @EnableZipkinStream server you need to set up and con-
figure the services being traced and the Zipkin server to publish/listen to RabbitMQ

This dependency contains the core
classes for setting up the Zipkin server.

This dependency contains the
core for classes for running the
UI part of the Zipkin server.
Licensed to <null>

277Distributed tracing with Open Zipkin
After the Jar dependencies are defined, you now need to add the @EnableZipkin
Server annotation to your Zipkin services bootstrap class. This class is located in
zipkinsvr/src/main/java/com/thoughtmechanix/zipkinsvr/ZipkinServer

Application.java. The following listing shows the code for the bootstrap class.

package com.thoughtmechanix.zipkinsvr;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import zipkin.server.EnableZipkinServer;

@SpringBootApplication
@EnableZipkinServer
public class ZipkinServerApplication {
public static void main(String[] args) {
 SpringApplication.run(ZipkinServerApplication.class, args);
 }
}

The key thing to note in this listing is the use of the @EnableZipkinServer annota-
tion. This annotation enables you to start this Spring Boot service as a Zipkin server.
At this point, you can build, compile, and start the Zipkin server as one of the Docker
containers for the chapter.

 Little configuration is needed to run a Zipkin server. One of the only things you’re
going to have to configure when you run Zipkin is the back end data store that Zipkin
will use to store the tracing data from your services. Zipkin supports four different
back end data stores. These data stores are

1 In-memory data
2 MySQL: http://mysql.com
3 Cassandra: http://cassandra.apache.org
4 Elasticsearch: http://elastic.co

By default, Zipkin uses an in-memory data store for storing tracing data. The Zipkin
team recommends against using the in-memory database in a production system. The
in-memory database can hold a limited amount of data and the data is lost when the
Zipkin server is shut down or lost.

or Kafka for tracing data. The advantage of the @EnableZipkinStreamServer
annotation is that you can continue to collect trace data even if the Zipkin server is
unavailable. This is because the trace messages will accumulate the trace data on a
message queue until the Zipkin server is available for processing the records. If you
use the @EnableZipkinServer annotation and the Zipkin server is unavailable,
the trace data that would have been sent by the service(s) to Zipkin will be lost.

Listing 9.5 Building your Zipkin servers bootstrap class

The @EnableZipkinServer allows you to
quickly start Zipkin as a Spring Boot project.
Licensed to <null>

http://mysql.com
http://cassandra.apache.org
http://elastic.co

278 CHAPTER 9 Distributed tracing with Spring Cloud Sleuth and Zipkin
NOTE For the purposes of this book, you’ll use Zipkin with an in-memory data
store. Configuring the individual data stores used in Zipkin is outside of the
scope of this book, but if you’re interested in the topic, you can find more
information at the Zipkin GitHub repository (https://github.com/openzipkin
/zipkin/tree/master/zipkin-server).

9.3.4 Setting tracing levels

At this point you have the clients configured to talk to a Zipkin server and you have the
server configured and ready to be run. You need to do one more thing before you start
using Zipkin. You need to define how often each service should write data to Zipkin.

 By default, Zipkin will only write 10% of all transactions to the Zipkin server. The
transaction sampling can be controlled by setting a Spring property on each of the
services sending data to Zipkin. This property is called spring.sleuth.sampler
.percentage. The property takes a value between 0 and 1:

 A value of 0 means Spring Cloud Sleuth won’t send Zipkin any transactions.
 A value of .5 means Spring Cloud Sleuth will send 50% of all transactions.

For our purposes, you’re going to send trace information for all services. To do this, you
can set the value of spring.sleuth.sampler.percentage or you can replace the
default Sampler class used in Spring Cloud Sleuth with the AlwaysSampler. The
AlwaysSampler can be injected as a Spring Bean into an application. For example, the
licensing service has the AlwaysSampler defined as a Spring Bean in its licensing-
service/src/main/java/com/thoughtmechanix/licenses/Application.java

class as

@Bean
public Sampler defaultSampler() { return new AlwaysSampler();}

The Zuul, licensing, and organization services all have the AlwaysSampler defined
in them so that in this chapter all transactions will be traced with Zipkin.

9.3.5 Using Zipkin to trace transactions

Let’s start this section with a scenario. Imagine you’re one of the developers on the
EagleEye application and you’re on-call this week. You get a support ticket from a cus-
tomer who’s complaining that one of the screens in the EagleEye application is run-
ning slow. You have a suspicion that the licensing service being used by the screen is
running slow. But why and where? The licensing service relies on the organization ser-
vice and both services make calls to different databases. Which service is the poor per-
former? Also, you know that these services are constantly being modified, so someone
might have added a new service call into the mix. Understanding all the services that
participate in the user’s transaction and their individual performance times is critical
to supporting a distributed architecture such as a microservice architecture.

 You’ll begin by using Zipkin to watch two transactions from your organization ser-
vice as they’re traced by the Zipkin service. The organization service is a simple service
Licensed to <null>

https://github.com/openzipkin/zipkin/tree/master/zipkin-server
https://github.com/openzipkin/zipkin/tree/master/zipkin-server

279Distributed tracing with Open Zipkin
that only makes a call to a single database. What you’re going to do is use POSTMAN to
send two calls to the organization service (GET http://localhost:5555/api/

organization/v1/organizations/e254f8c-c442-4ebe-a82a-e2fc1d1ff78a).
The organization service calls will flow through a Zuul API gateway before the calls get
directed downstream to an organization service instance.

 After you’ve made two calls to the organization service, go to http://local-
host:9411 and see what Zipkin has captured for trace results. Select the “organization
service” from the dropdown box on the far upper left of the screen and then press
the Find traces button. Figure 9.11 shows the Zipkin query screen after you’ve taken
these actions.

 Now if you look at the screenshot in figure 9.11, you’ll see that Zipkin captured two
transactions. Each of the transactions is broken down into one or more spans. In Zip-
kin, a span represents a specific service or call in which timing information is being
captured. Each of the transactions in figure 9.11 has three spans captured in it: two
spans in the Zuul gateway, and then a span for the organization service. Remember,
the Zuul gateway doesn’t blindly forward an HTTP call. It receives the incoming HTTP
call, terminates the incoming call, and then builds a new call out to the targeted ser-
vice (in this case, the organization service). This termination of the original call is how
Zuul can add pre-, response, and post filters to each call entering the gateway. It’s also
why we see two spans in the Zuul service.

Query results

Service we want
to query on

Endpoint on the service
we want to query on

Click to search Query filters

Figure 9.11 The Zipkin query screen lets you select the service you want to trace on, along with some basic
query filters.
Licensed to <null>

280 CHAPTER 9 Distributed tracing with Spring Cloud Sleuth and Zipkin
 The two calls to the organization service through Zuul took 3.204 seconds and
77.2365 milliseconds respectively. Because you queried on the organization service
calls (and not the Zuul gateway calls), you can see that the organization service took
92% and 72% of the total amount of time of the transaction time.

 Let’s dig into the details of the longest running call (3.204 seconds). You can see
more detail by clicking on the transaction and drilling into the details. Figure 9.12
shows the details after you’ve clicked to drill down into further details.

Figure 9.12 Zipkin allows you to drill down and see the amount of time each span in a transaction takes.

In figure 9.12 you can see that the entire transaction from a Zuul perspective took
approximately 3.204 seconds. However, the organization service call made by Zuul
took 2.967 seconds of the 3.204 seconds involved in the overall call. Each span pre-
sented can be drilled down into for even more detail. Click on the organization-
service span and see what additional details can be seen from the call. Figure 9.13
shows the detail of this call.

 One of the most valuable pieces of information in figure 9.13 is the breakdown of
when the client (Zuul) called the organization service, when the organization service
received the call, and when the organization service responded back. This type of tim-
ing information is invaluable in detecting and identifying network latency issues.

A transaction is broken down into individual spans.
A span represents part of the transaction being
measured. Here the total time of each span in
the transaction is displayed.

By clicking on an individual
span, you bring up additional
details on the span.

Drilling down into one of the transactions,
you see two spans: one for the time spent
in Zuul and one for the time spent in the
organization service.
Licensed to <null>

281Distributed tracing with Open Zipkin
9.3.6 Visualizing a more complex transaction

What if you want to understand exactly what service dependencies exist between ser-
vice calls? You can call the licensing service through Zuul and then query Zipkin for
licensing service traces. You can do this with a GET call to the licensing services
http://localhost:5555/api/licensing/v1/organizations/e254f8c-

c442-4ebe-a82a-e2fc1d1ff78a/licenses/f3831f8c-c338-4ebe-a82a-

e2fc1d1ff78a endpoint.
 Figure 9.14 shows the detailed trace of the call to the licensing service.

Figure 9.14 Viewing the details of a trace of how the licensing service call flows from Zuul to the
licensing service and then through to the organization service

By clicking on the details,
you can see when Zuul
called the organization
service, when the
organization service
received the request, and
when the client received
the request back.

Clicking on details will also
provide some basic details
about the HTTP call.

Figure 9.13 Clicking on an individual span gives further details on call timing and the details of the HTTP call.
Licensed to <null>

282 CHAPTER 9 Distributed tracing with Spring Cloud Sleuth and Zipkin
In figure 9.14, you can see that the call to the licensing service involves 4 discrete
HTTP calls. You see the call to the Zuul gateway and then from the Zuul gateway to the
licensing service. The licensing service then calls back through Zuul to call the organi-
zation service.

9.3.7 Capturing messaging traces

Spring Cloud Sleuth and Zipkin don’t trace HTTP calls. Spring Cloud Sleuth also
sends Zipkin trace data on any inbound or outbound message channel registered in
the service.

 Messaging can introduce its own performance and latency issues inside of an appli-
cation. A service might not be processing a message from a queue quickly enough. Or
there could be a network latency problem. I’ve encountered all these scenarios while
building microservice-based applications.

 By using Spring Cloud Sleuth and Zipkin, you can identify when a message is pub-
lished from a queue and when it’s received. You can also see what behavior takes place
when the message is received on a queue and processed.

 As you’ll remember from chapter 8, whenever an organization record is added,
updated, or deleted, a Kafka message is produced and published via Spring Cloud
Stream. The licensing service receives the message and updates a Redis key-value store
it’s using to cache data.

 Now you’ll go ahead and delete an organization record and watch the transaction
be traced by Spring Cloud Sleuth and Zipkin. You can issue a DELETE http://

localhost:5555/api/organization/v1/organizations/e254f8c-c442-

4ebe-a82a-e2fc1d1ff78a via POSTMAN to the organization service.
 Remember, earlier in the chapter we saw how to add the trace ID as an HTTP

response header. You added a new HTTP response header called tmx-correlation-
id. In my call, I had the tmx-correlation-id returned on my call with a value of
5e14cae0d90dc8d4. You can search Zipkin for this specific trace ID by entering the
trace ID returned by your call via the search box in the upper-right hand corner of the
Zipkin query screen. Figure 9.15 shows where you can enter the trace ID.

Figure 9.15 With the trace ID returned in the HTTP Response tmx-correlation-id field you can easily find
the transaction you’re looking for.

Enter the trace ID here and hit Enter. This will
bring up the specific trace you’re looking for.
Licensed to <null>

283Distributed tracing with Open Zipkin
With the trace ID in hand you can query Zipkin for the specific transaction and can
see the publication of a delete message to your output message change. This message
channel, output, is used to publish to a Kafka topic call orgChangeTopic. Figure
9.16 shows the output message channel and how it appears in the Zipkin trace.

Figure 9.16 Spring Cloud Sleuth will automatically trace the publication and receipt of messages on Spring
message channels.

You can see the licensing service receive the message by querying Zipkin and looking
for the received message. Unfortunately, Spring Cloud Sleuth doesn’t propagate the
trace ID of a published message to the consumer(s) of that message. Instead, it gener-
ates a new trace ID. However, you can query Zipkin server for any license service trans-
actions and order them by newest message. Figure 9.17 shows the results of this query.

Figure 9.17 You’re looking for the licensing service invocation where a Kafka message is received.

The time when you deleted the organization using the DELETE
call; Spring Cloud Sleuth captured the publication of the message.

This looks like a likely candidate. You looked for the newest transaction first.
Licensed to <null>

284 CHAPTER 9 Distributed tracing with Spring Cloud Sleuth and Zipkin
Figure 9.18 Using Zipkin you can see the Kafka message being published by the organization service.

Now that you’ve found your target licensing service transaction, you can drill down
into the transaction. Figure 9.18 shows the results of this drilldown.

 Until now you’ve used Zipkin to trace your HTTP and messaging calls from within
your services. However, what if you want to perform traces out to third-party services
that aren’t instrumented by Zipkin? For example, what if you want to get tracing and
timing information for a specific Redis or Postgres SQL call? Fortunately, Spring
Cloud Sleuth and Zipkin allow you to add custom spans to your transaction so that
you can trace the execution time associated with these third-party calls.

9.3.8 Adding custom spans

Adding a custom span is incredibly easy to do in Zipkin. You can start by adding a cus-
tom span to your licensing service so that you can trace how long it takes to pull data
out of Redis. Then you’re going to add a custom span to the organization service to
see how long it takes to retrieve data from your organization database.

 To add a custom span to the licensing service’s call to Redis, you’re going to
instrument the licensing-service/src/main/java/com/thoughtmechanix/
licenses/clients/OrganizationRestTemplateClient.java class. In this
class you’re going to instrument the checkRedisCache() method. The following
listing shows this code.

import org.springframework.cloud.sleuth.Tracer;

//Rest of imports removed for conciseness
@Component
public class OrganizationRestTemplateClient {
 @Autowired
 RestTemplate restTemplate;

 @Autowired
 Tracer tracer;

 @Autowired
 OrganizationRedisRepository orgRedisRepo;

Listing 9.6 Instrumenting the call to read licensing data from Redis

You can see a message received on
your inboundOrgChanges channel.

The Tracer class is used to
programmatically access the Spring
Cloud Sleuth trace information.
Licensed to <null>

285Distributed tracing with Open Zipkin

Close
o

fina
 private static final Logger logger =
 ➥ LoggerFactory
 .getLogger(OrganizationRestTemplateClient.class);

 private Organization checkRedisCache(String organizationId) {
 Span newSpan = tracer.createSpan("readLicensingDataFromRedis");
 try {
 return orgRedisRepo.findOrganization(organizationId);
 }
 catch (Exception ex){
 logger.error("Error encountered while
 ➥ trying to retrieve organization
 ➥ {} check Redis Cache. Exception {}",
 ➥ organizationId, ex);
 return null;
 }
 finally {
 newSpan.tag("peer.service", "redis");
 newSpan.logEvent(
 org.springframework.cloud.sleuth.Span.CLIENT_RECV);
 tracer.close(newSpan);
 }
 }

 //Rest of class removed for conciseness
}

The code in listing 9.6 creates a custom span called readLicensingDataFromRedis.
Now you’ll also add a custom span, called getOrgDbCall, to the organization service
to monitor how long it takes to retrieve organization data from the Postgres database.
The trace for organization service database calls can be seen in the organization-
service/src/main/java/com/thoughtmechanix/organization/services/

OrganizationService.java class. The method containing the custom trace is the
getOrg() method call.

 The following listing shows the source code from the organization service’s
getOrg() method.

package com.thoughtmechanix.organization.services;

//Removed the imports for conciseness
@Service
public class OrganizationService {
 @Autowired
 private OrganizationRepository orgRepository;

 @Autowired
 private Tracer tracer;

Listing 9.7 The instrumented getOrg() method

For your custom span,
create a new span called

“readLicensingDataFromRedis”.

the span
ut with a
lly block.

You can add tag information to the span. In
this class you provide the name of the service

that’s going to be captured by Zipkin

Log an event to tell
Spring Cloud Sleuth

that it should capture
the time when the

call is complete.
Close out the trace. If you don’t call the close()

method, you’ll get error messages in the logs
indicating that a span has been left open
Licensed to <null>

286 CHAPTER 9 Distributed tracing with Spring Cloud Sleuth and Zipkin
 @Autowired
 SimpleSourceBean simpleSourceBean;

 private static final Logger logger =
 ➥ LoggerFactory.getLogger(OrganizationService.class);

 public Organization getOrg (String organizationId) {
 Span newSpan = tracer.createSpan("getOrgDBCall");

 logger.debug("In the organizationService.getOrg() call");
 try {
 return orgRepository.findById(organizationId);
 }finally{
 newSpan.tag("peer.service", "postgres");
 newSpan
 .logEvent(
 org.springframework.cloud.sleuth.Span.CLIENT_RECV);
 tracer.close(newSpan);
 }
}

 //Removed the code for conciseness
}

With these two custom spans in place, restart the services and then hit the GET
http://localhost:5555/api/licensing/v1/organizations/e254f8c-c442

-4ebe-a82a-e2fc1d1ff78a/licenses/f3831f8c-c338-4ebe-a82a-e2fc1d1ff78a

endpoint. If we you look at the transaction in Zipkin, you should see the addition of
the two additional spans. Figure 9.19 shows the additional custom spans added when
you call the licensing service endpoint to retrieve licensing information.

Figure 9.19 With the custom spans defined, they’ll now show up in the transaction trace.

Your custom spans now show
up in the transaction trace.
Licensed to <null>

287Summary
From figure 9.19 you can now see additional tracing and timing information related
to your Redis and database lookups. You can break out that the read call to Redis took
1.099 milliseconds. Since the call didn’t find an item in the Redis cache, the SQL call
to the Postgres database took 4.784 milliseconds.

9.4 Summary
 Spring Cloud Sleuth allows you to seamlessly add tracing information (correla-

tion ID) to your microservice calls.
 Correlation IDs can be used to link log entries across multiple services. They

allow you to see the behavior of a transaction across all the services involved in a
single transaction.

 While correlation IDs are powerful, you need to partner this concept with a log
aggregation platform that will allow you to ingest logs from multiple sources
and then search and query their contents.

 While multiple on-premise log aggregation platforms exist, cloud-based services
allow you to manage your logs without having to have extensive infrastructure
in place. They also allow you to easily scale as your application logging volume
grows.

 You can integrate Docker containers with a log aggregation platform to capture
all the logging data being written to the containers stdout/stderr. In this chap-
ter, you integrated your Docker containers with Logspout and an online cloud
logging provider, Papertrail, to capture and query your logs.

 While a unified logging platform is important, the ability to visually trace a
transaction through its microservices is also a valuable tool.

 Zipkin allows you to see the dependencies that exist between services when a
call to a service is made.

 Spring Cloud Sleuth integrates with Zipkin. Zipkin allows you to graphically see
the flow of your transactions and understand the performance characteristics of
each microservice involved in a user’s transaction.

 Spring Cloud Sleuth will automatically capture trace data for an HTTP call and
inbound/outbound message channel used within a Spring Cloud Sleuth
enabled service.

 Spring Cloud Sleuth maps each of the service call to the concept of a span. Zip-
kin allows you to see the performance of a span.

 Spring Cloud Sleuth and Zipkin also allow you to define your own custom spans
so that you can understand the performance of non-Spring-based resources (a
database server such as Postgres or Redis).
Licensed to <null>

Deploying your
microservices
We’re at the end of the book, but not the end of our microservices journey. While
most of this book has focused on designing, building, and operationalizing Spring-
based microservices using the Spring Cloud technology, we haven’t yet touched on
how to build and deploy microservices. Creating a build and deployment pipeline

This chapter covers
 Understanding why the DevOps movement is

critical to microservices

 Configuring the core Amazon infrastructure used
by EagleEye services

 Manually deploying EagleEye services to Amazon

 Designing a build and deployment pipeline for
your services

 Moving from continuous integration to continuous
deployment

 Treating your infrastructure as code

 Building the immutable server

 Testing in deployment

 Deploying your application to the cloud
288

Licensed to <null>

289
might seem like a mundane task, but in reality it’s one of the most important pieces of
your microservices architecture.

 Why? Remember, one of the key advantages of a microservices architecture is that
microservices are small units of code that can be quickly built, modified, and
deployed to production independently of one another. The small size of the service
means that new features (and critical bug fixes) can be delivered with a high degree of
velocity. Velocity is the key word here because velocity implies that little to no friction
exists between making a new feature or fixing a bug and getting your service
deployed. Lead times for deployment should be minutes, not days.

 To accomplish this, the mechanism that you use to build and deploy your code
needs to be

 Automated—When you build your code, there should be no human intervention
in the build and deployment process, particularly in the lower environments.
The process of building the software, provisioning a machine image, and then
deploying the service should be automated and should be initiated by the act of
committing code to the source repository.

 Repeatable—The process you use to build and deploy your software should be
repeatable so that the same thing happens every time a build and deploy kicks
off. Variability in your process is often the source of subtle bugs that are difficult
to track down and resolve.

 Complete—The outcome of your deployed artifact should be a complete virtual
machine or container image (Docker) that contains the “complete” run-time
environment for the service. This is an important shift in the way you think
about your infrastructure. The provisioning of your machine images needs to
be completely automated via scripts and kept under source control with the ser-
vice source code.

In a microservice environment, this responsibility usually shifts from an oper-
ations team to the development team owning the service. Remember, one of
the core tenants of microservice development is pushing complete operational
responsibility for the service down to the developers.

 Immutable—Once the machine image containing your service is built, the run-
time configuration of the image should not be touched or changed after the
image has been deployed. If changes need to be made, the configuration needs
to happen in the scripts kept under source control and the service and infra-
structure need to go through the build process again.

Runtime configuration changes (garbage collection settings, Spring profile
being used) should be passed as environment variables to the image while
application configuration should be kept separate from the container (Spring
Cloud Config).
Licensed to <null>

290 CHAPTER 10 Deploying your microservices
Building a robust and generalized build deployment pipeline is a significant amount
of work and is often specifically designed toward the runtime environment your ser-
vices are going to run. It often involves a specialized team of DevOps (developer oper-
ations) engineers whose sole job is to generalize the build process so that each team
can build their microservices without having to reinvent the entire build process for
themselves. Unfortunately, Spring is a development framework and doesn’t offer a sig-
nificant amount of capabilities for implementing a build and deployment pipeline.

 For this chapter, we’re going to see how to implement a build and deployment
pipeline using a number of non-Spring tools. You’re going to take the suite of
microservices you’ve been building for this book and do the following:

1 Integrate the Maven build scripts you’ve been using into a continuous integra-
tion/deployment cloud-tool called Travis CI

2 Build immutable Docker images for each service and push those images to a
centralized repository

3 Deploy the entire suite of microservices to Amazon’s Cloud using Amazon’s EC2
Container Service (ECS)

4 Run platform tests that will test that the service is functioning properly

I want to start our discussion with the end goal in mind: a deployed set of services to
AWS Elastic Container Service (ECS). Before we get into all the details of how you’re
going to implement a build/deployment pipeline, let’s walk through how the Eagle-
Eye services are going to look running in Amazon’s cloud. Then we’ll discuss how to
manually deploy the EagleEye services to the AWS cloud. Once that’s done, we will
automate the entire process.

10.1 EagleEye: setting up your core infrastructure in the cloud
Throughout all the code examples in this book, you’ve run all of your applications
inside a single virtual machine image with each individual service running as a Docker
container. You’re going to change that now by separating your database server (Post-
greSQL) and caching server (Redis) away from Docker into Amazon’s cloud. All the
other services will remain running as Docker containers running inside a single-node
Amazon ECS cluster. Figure 10.1 shows the deployment of the EagleEye services to the
Amazon cloud.

 Let’s walk through figure 10.1 and dive into more detail:

1 All your EagleEye services (minus the database and the Redis cluster) are going
to be deployed as Docker containers running inside of a single-node ECS clus-
ter. ECS configures and sets up all the servers needed to run a Docker cluster.
ECS also can monitor the health of containers running in Docker and restart
services if the service crashes.

2 With the deployment to the Amazon cloud, you’re going to move away from
using your own PostgreSQL database and Redis server and instead use the Ama-
zon RDS and Amazon ElastiCache services. You could continue to run the
Postgres and Redis datastores in Docker, but I wanted to highlight how easy it is
Licensed to <null>

291EagleEye: setting up your core infrastructure in the cloud
to move from infrastructure that’s owned and managed by you to infrastructure
managed completely by the cloud provider (in this case, Amazon). In a real-
world deployment you’re more often than not going to deploy your database
infrastructure to virtual machines before you would Docker containers.

3 Unlike your desktop deployment, you want all traffic for the server to go through
your Zuul API gateway. You’re going to use an Amazon security group to only
allow port 5555 on the deployed ECS cluster to be accessible to the world.

2. The database and
 Redis clusters
 will be moved into
 Amazon’s services.

1. All core EagleEye
 services will run
 inside a single-node
 ECS cluster.

5. All the other services
 will only be accessible
 from inside the ECS
 container.

3. The ECS container's
 security group settings
 restrict all inbound
 port traffic so that
 only port 5555 is open
 to public traffic. This
 means that all EagleEye
 services can only be
 accessed through the
 Zuul server listening
 on port 5555. 4. The organization and licensing

 service are protected by the
 OAuth2 authentication service.

Licensing
service

Spring Cloud
config

Zuul server

Amazon ECS

Postgres
database

ElastiCache
database

Organization
service

Spring Eureka
service

Kafka
server

OAuth2
authentication

service

Port
5555

Figure 10.1 By using Docker, all your services can be deployed to a cloud provider such as
Amazon ECS.
Licensed to <null>

292 CHAPTER 10 Deploying your microservices
4 You’ll still use Spring’s OAuth2 server to protect your services. Before the orga-
nization and licensing services can be accessed, the user will need to authenti-
cate with your authentication services (see chapter 7 for details on this) and
present a valid OAuth2 token on every service call.

5 All your servers, including your Kafka server, won’t be publicly accessible to the
outside world via their exposed Docker ports.

Some prerequisites for working
To set up your Amazon infrastructure, you’re going to need the following:

1 Your own Amazon Web Services (AWS) account. You should have a basic
understanding of the AWS console and the concepts behind working in the
environment.

2 A web browser. For the manual setup, you’re going to set up everything from
the console.

3 The Amazon ECS command-line client (https://github.com/aws/amazon-ecs-
cli) to do a deployment.

If you don’t have any experience with using Amazon’s Web Services, I’d set up an
AWS account and install the tools in the list. I’d also spend time familiarizing yourself
with the platform.

If you’re completely new to AWS, I highly recommend you pick up a copy of Michael
and Andreas Wittig’s book Amazon Web Services in Action (Manning, 2015). The first
chapter of the book (https://www.manning.com/books/amazon-web-services-in-
action#downloads) is available for download and includes a well-written tutorial at the
end of the chapter on how to sign up and configure your AWS account. Amazon Web
Services in Action is a well-written and comprehensive book on AWS. Even though I’ve
been working with the AWS environment for years, I still find it a useful resource.

Finally, in this chapter I’ve tried as much as possible to use the free-tier services
offered by Amazon. The only place where I couldn’t do this is when setting up the ECS
cluster. I used a t2.large server that costs approximately .10 cents per hour to run.
Make sure that you shut down your services after you’re done if you don’t want to
incur significant costs.

NOTE: There’s no guarantee that the Amazon resources (Postgres, Redis, and ECS)
that I’m using in this chapter will be available if you want to run this code yourself. If
you’re going to run the code from this chapter, you need to set up your own GitHub
repository (for your application configuration), your own Travis CI account, Docker Hub
(for your Docker images), and Amazon account, and then modify your application con-
figuration to point to your account and credentials.
Licensed to <null>

https://github.com/aws/amazon-ecs-cli
https://github.com/aws/amazon-ecs-cli
https://www.manning.com/books/amazon-web-services-in-action#downloads
https://www.manning.com/books/amazon-web-services-in-action#downloads

293EagleEye: setting up your core infrastructure in the cloud
10.1.1 Creating the PostgreSQL database using Amazon RDS

Before we begin this section, you need to set up and configure your Amazon AWS
account. Once this is done, your first task is to create the PostgreSQL database that
you’re going to use for your EagleEye services. To do this you’re going to log in into
the Amazon AWS console (https://aws.amazon.com/console/) and do the following:

1 When you first log into the console you’ll be presented with a list of Amazon
web services. Locate the link called RDS. Click on the link and this will take you
to the RDS dashboard.

2 On the dashboard, you’ll find a big button that says “Launch a DB Instance.”
Click on it.

3 Amazon RDS supports different database engines. You should see a list of data-
bases. Select PostgreSQL and click the “Select” button. This will launch the data-
base creation wizard.

The first thing the Amazon database creation wizard will ask you is whether this is a
production database or a dev/test database. You’re going to create a dev/test database
using the free tier. Figure 10.2 shows this screen.

Figure 10.2 Selecting whether the database is going to be a production database or a test database

Select the Dev/Test option and then click Next Step.
Licensed to <null>

https://aws.amazon.com/console/

294 CHAPTER 10 Deploying your microservices
Next, you’re going to set up basic information about your PostgreSQL database and
also set the master user ID and password you’re going to use to log into the database.
Figure 10.3 shows this screen.

Figure 10.3 Setting up the basic database configuration

Make note of your password. For our examples
you’ll use the master to login into the database.
In a real system, you’d create a user account
specific to the application and never directly
use the master user ID/password for the app.

Pick a db.t2.micro. It’s the
smallest free database and
will more than meet your
needs. You won’t need a
multi-AZ deployment.
Licensed to <null>

295EagleEye: setting up your core infrastructure in the cloud
The last and final step of the wizard is to set up the database security groups, port
information, and database backup information. Figure 10.4 shows the contents of
this screen.

Figure 10.4 Setting up the security group, port, and backup options for the RDS database

For now, you’ll create a
new security group and
allow the database to
be publicly accessible.

Note the database
name and the port
number. The port
number will be used as
part of your service’s
connect string.

As this is a dev
database, you can
disable backups.
Licensed to <null>

296 CHAPTER 10 Deploying your microservices
Figure 10.5 Your created Amazon RDS/PostgreSQL database

At this point, -your database creation process will begin (it can take several minutes).
Once it’s done, you’ll need to configure the Eagle Eye services to use the database.
After the database is created (this will take several minutes), you’ll navigate back to
the RDS dashboard and see your database created. Figure 10.5 shows this screen.

 For this chapter, I created a new application profile called aws-dev for each
microservice that needs to access the Amazon-base PostgreSQL database. I added a
new Spring Cloud Config server application profile in the Spring Cloud Config
GitHub repository (https://github.com/carnellj/config-repo) containing the Ama-
zon database connection information. The property files follow the naming conven-
tion (service-name)-aws-dev.yml in each of the property files using the new
database (licensing service, organization service, and authentication service).

 At this point your database is ready to go (not bad for setting it up in approxi-
mately five clicks). Let’s move to the next piece of application infrastructure and see
how to create the Redis cluster that your EagleEye licensing service is going to use.

10.1.2 Creating the Redis cluster in Amazon

To set up the Redis cluster, you’re going to use the Amazon ElastiCache service. Ama-
zon ElastiCache allows you to build in-memory data caches using Redis or Mem-
cached (https://memcached.org/). For the EagleEye services, you’re going to move
the Redis server you were running in Docker to ElastiCache.

This is the endpoint
you’ll use to connect
to the database.
Licensed to <null>

https://github.com/carnellj/config-repo
https://memcached.org/

297EagleEye: setting up your core infrastructure in the cloud
 To begin, navigate back to the AWS Console’s main page (click the orange cube on
the upper left-hand side of the page) and click the ElastiCache link.

 From the ElastiCache console, select the Redis link (left-hand side of the screen),
and then hit the blue Create button at the top of the screen. This will bring up the
ElastiCache/Redis creation wizard.

 Figure 10.6 shows the Redis creation screen.

Figure 10.6 With a few clicks you can set up a Redis cluster whose infrastructure is managed by Amazon.

Go ahead and hit the create button once you’ve filled in all your data. Amazon will
begin the Redis cluster creation process (this will take several minutes). Amazon will
build a single-node Redis server running on the smallest Amazon server instance avail-
able. Once you hit the button you’ll see your Redis cluster being created. Once the
cluster is created, you can click on the name of the cluster and it will bring you to a

As this is a dev server, you don’t need
to create replicas of the Redis servers.

The smallest instance
type is selected here.

This is the name of your
ElastiCache server.
Licensed to <null>

298 CHAPTER 10 Deploying your microservices
detailed screen showing the endpoint used in the cluster. Figure 10.7 shows the details
of the Redis clustered after it has been created.

 The licensing service is the only one of your services to use Redis, so make sure
that if you deploy the code examples in this chapter to your own Amazon instance,
you modify the licensing service’s Spring Cloud Config files appropriately.

10.1.3 Creating an ECS cluster

The last and final step before you deploy the EagleEye services is to set up an Amazon
ECS cluster. Setting up an Amazon ECS cluster provisions the Amazon machines that
are going to host your Docker containers. To do this you’re going to again go to the
Amazon AWS console. From there you’re going to click on the Amazon EC2 Container
Service link.

 This brings you to the main EC2 Container service page, where you should see a
“Getting Started” button.

 Click on the “Start” button. This will bring you to the “Select options to Configure”
screen shown in figure 10.8.

 Uncheck the two checkboxes on the screen and click the cancel button. ECS offers
a wizard for setting up an ECS container based on a set of predefined templates.
You’re not going to use this wizard. Once you cancel out of the ECS set-up wizard, you
should see the “Clusters” tab on the ECS home page. Figure 10.9 shows this screen. Hit
the “Create Cluster” button to begin the process of creating an ECS cluster.

 Now you’ll see a screen called “Create Cluster” that has three major sections. The
first section is going to define the basic cluster information. Here you’re going to
enter the

1 Name of your ECS cluster.
2 Size of the Amazon EC2 virtual machine you’re going to run the cluster in

This is the Redis endpoint you’re
going to use in your services.

Figure 10.7 The Redis endpoint is the key piece of information your services need to connect to Redis.
Licensed to <null>

299EagleEye: setting up your core infrastructure in the cloud
3 Number of instances you’re going to run in your cluster.
4 Amount of Elastic Block Storage (EBS) disk space you’re going to allocate to

each node in the cluster

Click the Cancel button.
Uncheck these
checkboxes.

Figure 10.8 ECS offers a wizard to bootstrap a new service container. You’re not going to use it.

Click here to begin.

Figure 10.9 Starting the process of creating an ECS cluster
Licensed to <null>

300 CHAPTER 10 Deploying your microservices
Figure 10.10 In the “Create Cluster” screen size the EC2 instances used to host the Docker cluster.

Figure 10.10 shows the screen as I populated it for the test examples in this book.

NOTE One of the first tasks you do when you set up an Amazon account is
define a key pair for SSHing into any EC2 servers you start. We’re not going to
cover setting up a key pair in this chapter, but if you’ve never done this
before, I recommend you look at Amazon’s directions regarding this (http://
docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html).

Next, you’re going to set up the network configuration for the ECS cluster. Figure
10.11 shows the networking screen and the values you’re configuring.

 The first thing to note is selecting the Amazon Virtual Private Cloud (VPC) that the
ECS cluster will run. By default, the ECS set-up wizard will offer to set up a new VPC.
I’ve selected to run the ECS cluster in my default VPC. The default VPC houses the
database server and Redis cluster. In Amazon’s cloud, an Amazon-managed Redis
server can only be accessed by servers that are in the same VPC as the Redis server.

 Next, you have to select the subnets in the VPC that you want to give access to the
ECS cluster. Because each subnet corresponds to an Amazon availability zone, I usually
select all subnets in the VPC to make the cluster available.

You can choose a
t2.large server
because of its
large amount of
memory (8 GB)
and low hourly
cost (.094 cents
per hour).

As this is a dev
environment,
you’re going to
run with just a
single instance.

Make sure you
define the SSH
key pair or you
won’t be able
to SSH onto the
box to diagnose
problems.
Licensed to <null>

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html

301EagleEye: setting up your core infrastructure in the cloud
Figure 10.11 Once the servers are set up, configure the network/AWS security groups used to access them.

Finally, you have to select to create a new security group or select an existing Amazon
security group that you’ve created to apply to the new ECS cluster. Because you’re run-
ning Zuul, you want all traffic to flow through a single port, port 5555. You’re going to
configure the new security group being created by the ECS wizard to allow all in-bound
traffic from the world (0.0.0.0/0 is the network mask for the entire internet).

 The last step that has to be filled out in the form is the creation of an Amazon IAM
Role for the ECS container agent that runs on the server. The ECS agent is responsible
for communicating with Amazon about the status of the containers running on the
server. You’re going to allow the ECS wizard to create a IAM role, called ecsIn-
stanceRole, for you. Figure 10.12 shows this configuration step.

Figure 10.12 Configuring the Container IAM role

The default behavior
is to create a new
VPC. Don’t do that
for this example.
Select your default
VPC where your
database and Redis
cluster are running.

Make sure you add
all of the subnets
that are in your VPC.
Here, the VPC is
running in the
US-West-1 (California
region), so there will
only be two subnets.

You’re going to create a new security group with one inbound rule that will allow
all traffic on port 5555. All other ports on the ECS cluster will be locked down. If
you need more than one port open, create a custom security group and assign it.
Licensed to <null>

302 CHAPTER 10 Deploying your microservices
At this point you should see a screen tracking the status of the cluster creation. Once
the cluster is created, you should see a blue button on the screen called “View Clus-
ter.” Click on the “View Cluster” button. Figure 10.13 shows the screen that will appear
after the “View Cluster” button has been pressed.

Figure 10.13 The ECS cluster up and running

At this point, you have all the infrastructure you need to successfully deploy the Eagle-
Eye microservices.

10.2 Beyond the infrastructure: deploying EagleEye
At this point you have the infrastructure set up and can now move into the second half
of the chapter. In this second part, you’re going to deploy the EagleEye services to
your Amazon ECS container. You’re going to do this in two parts. The first part of your

On Infrastructure setup and automation
Right now, you’re doing everything via the Amazon AWS console. In a real environ-
ment, you’d have scripted the creation of all this infrastructure using Amazon’s Cloud-
Formation scripting DSL (domain specific language) or a cloud infrastructure scripting
tool like HashiCorp’s Terraform (https://www.terraform.io/). However, that’s an
entire topic to itself and far outside the scope of this book. If you’re using Amazon’s
cloud, you’re probably already familiar with CloudFormation. If you’re new to Ama-
zon’s cloud, I recommend you take the time to learn it before you get too far down
the road of setting up core infrastructure via the Amazon AWS Console.

Again, I want to point the reader back to Amazon Web Services in Action (Manning,
2015) by Michael and Andreas Wittig. They walk through the majority of Amazon Web
Services and demonstrate how to use CloudFormation (with examples) to automate
the creation of your infrastructure.
Licensed to <null>

https://www.terraform.io/

303Beyond the infrastructure: deploying EagleEye
work is for the terminally impatient (like me) and will show how to deploy EagleEye
manually to your Amazon instance. This will help you understand the mechanics of
deploying the service and see the deployed services running in your container. While
getting your hands dirty and manually deploying your services is fun, it isn’t sustain-
able or recommended.

 This is where the second part of this section comes into play. You’re going to auto-
mate the entire build and deployment process and take the human being out of the pic-
ture. This is your targeted end state and really caps the work you’ve been doing in the
book by demonstrating how to design, build, and deploy microservices to the cloud.

10.2.1 Deploying the EagleEye services to ECS manually

To manually deploy your EagleEye services, you’re going to switch gears and move
away from the Amazon AWS console. To deploy the EagleEye services, you’re going to
use the Amazon ECS command-line client (https://github.com/aws/amazon-ecs-cli).
After you’ve installed the ECS command-line client, you need to configure the ecs-cli
run-time environment to

1 Configure the ECS client with your Amazon credentials
2 Select the region the client is going to work in
3 Define the default ECS cluster the ECS client will be working against
4 This work is done by running the ecs-cli configure command:

ecs-cli configure --region us-west-1 \
 --access-key $AWS_ACCESS_KEY \
 --secret-key $AWS_SECRET_KEY \
 --cluster spmia-tmx-dev

The ecs-cli configure command will set the region where your cluster is located,
your Amazon access and secret key, and the name of the cluster (spmia-tmx-dev)
you’ve deployed to. If you look at the previous command, I’m using environment vari-
ables ($AWS_ACCESS_KEY and $AWS_SECRET_KEY) to hold my Amazon access and
secret key.

NOTE I selected the us-west-1 region for purely demonstrative purposes.
Depending on the country you’re located in, you might choose an Amazon
region more specific to your part of the world.

Next, let’s see how to do a build. Unlike in other chapters, you have to set the build
name because the Maven scripts in this chapter are going to be used in the build-
deploy pipeline being set up later on in the chapter. You’re going to set an environ-
ment variable called $BUILD_NAME. The $BUILD_NAME environment variable is used
to tag the Docker image that’s created by the build script. Change to the root direc-
tory of the chapter 10 code you downloaded from GitHub and issue the following two
commands:

export BUILD_NAME=TestManualBuild
mvn clean package docker:build
Licensed to <null>

https://github.com/aws/amazon-ecs-cli

304 CHAPTER 10 Deploying your microservices
This will execute a Maven build using a parent POM located at the root of the project
directory. The parent pom.xml is set up to build all the services you’ll deploy in this
chapter. Once the Maven code is done executing, you can deploy the Docker images
to the ECS instance you set up earlier in the section 10.1.3. To do the deployment,
issue the following command:

ecs-cli compose --file docker/common/docker-compose.yml up

The ECS command line client allows you to deploy containers using a Docker-compose
file. By allowing you to reuse your Docker-compose file from your desktop development
environment, Amazon has significantly simplified the deployment of your services to
Amazon ECS. After the ECS client has run, you can validate that the services are running
and discover the IP address of the servers by issuing the following command:

ecs-cli ps

Figure 10.14 shows the output from the ecs-cli ps command.

Figure 10.14 Checking the status of the deployed services

Note three things from the output in figure 10.14:

1 You can see that seven Docker containers have been deployed, with each
Docker container running one of your services.

2 You can see the IP address of the ECS cluster (54.153.122.116).
3 It looks like you have ports other than port 5555 open. That is not the case. The

port identifiers in figure 10.14 are the port mappings for the Docker container.
However, the only port that’s open to the outside world is port 5555. Remember
that when you set up your ECS cluster, the ECS set-up wizard created an Amazon
security group that only allowed traffic from port 5555.

Individual docker
services deployed.

IP addresses of the
deployed services.

These are ports that are mapped in the Docker containers.
However, only port 5555 is open to the outside world.
Licensed to <null>

305The architecture of a build/deployment pipeline
At this point you’ve successfully deployed your first set of services to an Amazon ECS
client. Now, let’s build on this by looking at how to design a build and deployment
pipeline that can automate the process of compiling, packaging, and deploying your
services to Amazon.

10.3 The architecture of a build/deployment pipeline
The goal of this chapter is to provide you with the working pieces of a build/deploy-
ment pipeline so that you can take these pieces and tailor them to your specific
environment.

 Let’s start our discussion by looking at the general architecture of your build
deployment pipeline and several of the general patterns and themes that it repre-
sents. To keep the examples flowing, I’ve done a few things that I wouldn’t normally
do in my own environment and I’ll call those pieces out accordingly.

 Our discussion on deploying microservices is going to begin with a picture you saw
way back in chapter 1. Figure 10.15 is a duplicate of the diagram we saw in chapter 1
and shows the pieces and steps involved in building a microservices build and deploy-
ment pipeline.

 Figure 10.15 should look somewhat familiar, because it’s based on the general
build-deploy pattern used for implementing Continuous Integration (CI):

1 A developer commits their code to the source code repository.
2 A build tool monitors the source control repository for changes and kicks off a

build when a change is detected.
3 During the build, the application’s unit and integration tests are run and if

everything passes, a deployable software artifact is created (a JAR, WAR, or EAR).
4 This JAR, WAR, or EAR might then be deployed to an application server running

on a server (usually a development server).

Debugging why an ECS Container doesn’t start or stay up
ECS has limited tools to debug why a container doesn’t start. If you have problems
with an ECS deployed service starting or staying up, you’ll need to SSH onto the ECS
cluster to look at the Docker logs. To do this you need to add port 22 to the security
group that the ECS cluster runs with, and then SSH onto the box using the Amazon
key pair you defined at the time the cluster was set (see figure 10.9) as the ec2-user.
Once you’re on the server, you can get a list of all the Docker containers running on
the server by running the docker ps command. Once you’ve located the container
image that you want to debug, you can run a docker logs –f <<container id>>
command to tail the logs of the targeted Docker container.

This is a primitive mechanism for debugging an application, but sometimes you only
need to log on to a server and see the actual console output to determine what’s
going on.
Licensed to <null>

306 CHAPTER 10 Deploying your microservices
With the build and deployment pipeline (shown in figure 10.15), a similar process is fol-
lowed up until the code is ready to be deployed. In the build and deployment shown in
figure 10.15, you’re going to tack Continuous Delivery (CD) onto the process:

1 A developer commits their service code to a source repository.
2 A build/deploy engine monitors the source code repository for changes. If

code is committed, the build/deploy engine will check out the code and run
the code’s build scripts.

3 The first step in the build/deploy process is to compile the code, run its unit
and integration tests, and then compile the service to an executable artifact.
Because your microservices are built using Spring Boot, your build process will
create an executable JAR file that contains both the service code and self-con-
tained Tomcat server.

1. A developer commits
 service code to a
 source repository.

2. The build/deploy engine
 checks out the code and
 runs the build scripts.

3. Engine compiles code, runs tests,
 and creates an executable artifact
 (JAR file with self-contained server).

4. A virtual machine image (container)
 is created, with the service and its
 run-time engine installed.

5. Platform tests are run against the
 machine image before it can be
 promoted to the new environment.

6. Before the machine image can be
 promoted to the next environment,
 platform tests for that environment
 must be run.

Code
compiled

Unit and
integration
tests run

Continuous integration/continuous delivery pipeline

Source repositoryDeveloper
Build deploy

engine

Run-time
artifacts
created

Platform test run

Image deploy/new server deployed

Platform test run

Image deploy/new server deployed

Platform test run

Dev

Test

Prod

Image deploy/new server deployed

Machine
image
baked

Image
committed

to repo

Figure 10.15 Each component in the build and deployment pipeline automates a task that would have been
manually done.
Licensed to <null>

307The architecture of a build/deployment pipeline
4 This is where your build/deploy pipeline begins to deviate from a traditional
Java CI build process. After your executable JAR is built you’re going to “bake” a
machine image with your microservice deployed to it. This baking process will
basically create a virtual machine image or container (Docker) and install your
service onto it. When the virtual machine image is started, your service will be
started and will be ready to begin taking requests. Unlike a traditional CI build
process where you might (and I mean might) deploy the compiled JAR or WAR
to an application server that’s independently (and often with a separate team)
managed from the application, with the CI/CD process you’re deploying the
microservice, the runtime engine for the service, and the machine image all as
one co-dependent unit that’s managed by the development team that wrote the
software.

5 Before you officially deploy to a new environment, the machine image is started
and a series of platform tests are run against the running image to determine if
everything is running correctly. If the platform tests pass, the machine image is
promoted to the new environment and made available for use.

6 Before a service is promoted to the next environment, the platform tests for the
environment must be run. The promotion of the service to the new environ-
ment involves starting up the exact machine image that was used in the lower
environment to the next environment.

This is the secret sauce of the whole process. The entire machine image is
deployed. No changes are made to any installed software (including the operat-
ing system) after the server is created. By promoting and always using the same
machine image, you guarantee the immutability of the server as it’s promoted
from one environment to the next).

Unit tests vs. integration tests vs. platform test
You’ll see from figure 10.15 that I do several types of testing (unit, integration, and
platform) during the build and deployment of a service. Three types of testing are typ-
ical in a build and deployment pipeline:

Unit tests—Unit tests are run immediately before the compiliation of the service code,
but before it’s deployed to an environment. They’re designed to run in complete iso-
lation, with each unit test being small and narrow in focus. A unit test should have
no dependencies on third-party infrastructure databases, services, and so on. Usu-
ally a unit test scope will encompass the testing of a single method or function.

Integration tests—Integration tests are run immediately after packaging the service
code. These tests are designed to test an entire workflow and stub or mock out major
services or components that would need to be called off box. During an integration
test, you might be running an in-memory database to hold data, mocking out third-
party service calls, and so on. Integration tests test an entire workflow or code path.
For integration tests, third-party dependencies are mocked or stubbed so that any
Licensed to <null>

308 CHAPTER 10 Deploying your microservices
This build/deploy process is built on four core patterns. These patterns aren’t my cre-
ation but have emerged from the collective experience of development teams build-
ing microservice and cloud-based applications. These patterns include

 Continuous Integration/Continuous Delivery (CI/CD)—With CI/CD, your applica-
tion code isn’t only being built and tested when it is committed; it’s also con-
stantly being deployed. The deployment of your code should go something like
this: if the code passes its unit, integration, and platform tests, it should be
immediately promoted to the next environment. The only stopping point in
most organizations is the push to production.

 Infrastructure as code—The final software artifact that will be pushed to develop-
ment and beyond is a machine image. The machine image and your microservice
installed on it will be provisioned time immediately after your microservice’s
source code is compiled and tested. The provisioning of the machine image
occurs through a series of scripts that are run with each build. No human hands
should ever touch the server after it’s been built. The provisioning scripts are
kept under source control and managed like any other piece of code.

 Immutable servers—Once a server image is built, the configuration of the server
and microservice is never touched after the provisioning process. This guaran-
tees that your environment won’t suffer from “configuration drift” where a
developer or system administrator made “one small change” that later caused
an outage. If a change needs to be made, the provisioning scripts that provision
the server are changed and a new build is kicked off.

(continued)

calls that would invoke a remote service are mocked or stubbed so that calls never
leave the build server.

Platform tests—Platform tests are run right before a service is deployed to an envi-
ronment. These tests typically test an entire business flow and also call all the third-
party dependencies that would normally be called in a production system. Platform
tests are running live in a particular environment and don’t involve any mocked-out
services. Platform tests are run to determine integration problems with third-party
services that would normally not be detected when a third-party service is stubbed
out during an integration test.

On immutability and the rise of the Phoenix server
With the concept of immutable servers, we should always be guaranteed that a
server’s configuration matches exactly with what the machine image for the server
says it does. A server should have the option to be killed and restarted from the
machine image without any changes in the service or microservices behavior. This
killing and resurrection of a new server was termed “Phoenix Server” by Martin Fowler
Licensed to <null>

309Your build and deployment pipeline in action
10.4 Your build and deployment pipeline in action
From the general architecture laid out in section 10.3, you can see that there are
many moving pieces behind a build/deployment pipeline. Because the purpose of
this book is to show you things “in action,” we’re going to walk through the specifics of
implementing a build/deployment pipeline for the EagleEye services. Figure 10.16
lays out the different technologies you’re going to use to implement your pipeline:

1 GitHub (http://github.com)—GitHub is our source control repository. All the
application code for this book is in GitHub. There are two reasons why GitHub
was chosen as the source control repository. First, I didn’t want to manage and
maintain my own Git source control server. Second, GitHub offers a wide vari-
ety of web-hooks and strong REST-based APIs for integrating GitHub into your
build process.

2 Travis CI (http://travis-ci.org)—Travis CI is the continuous integration engine I
used for building and deploying the EagleEye microservices and provisioning
the Docker image that will be deployed. Travis CI is a cloud-based, file-based CI
engine that’s easy to set up and has strong integration capabilities with GitHub
and Docker. While Travis CI isn’t as full-featured as a CI engine like Jenkins
(https://jenkins.io), it’s more than adequate for our uses. I describe using
GitHub and Travis CI in section 10.5 and 10.6.

(http://martinfowler.com/bliki/PhoenixServer.html) because when the old server is
killed, the new server should rise from the ashes. The Phoenix server pattern has two
key benefits.

First, it exposes and drives configuration drift out of your environment. If you’re con-
stantly tearing down and setting up new servers, you’re more likely to expose config-
uration drift early. This is a tremendous help in ensuring consistency. I’ve has spent
way too much of my time and life away from my family on “critical situation” calls
because of configuration drift.

Second, the Phoenix server pattern helps to improve resiliency by helping find situa-
tions where a server or service isn’t cleanly recoverable after it has been killed and
restarted. Remember, in a microservice architecture your services should be state-
less and the death of a server should be a minor blip. Randomly killing and restarting
servers quickly exposes situations where you have state in your services or infra-
structure. It’s better to find these situations and dependencies early in your deploy-
ment pipeline, rather than when you’re on the phone with an angry company.

The organization where I work uses Netflix’s Chaos Monkey (https://github.com/
Netflix/SimianArmy/wiki/Chaos-Monkey) to randomly select and kill servers. Chaos
Monkey is an invaluable tool for testing the immutability and recoverability of your
microservice environment. Chaos Monkey randomly selects server instances in your
environment and kills them. The idea with using Chaos Monkey is that you’re looking
for services that can’t recover from the loss of a server, and when a new server is
started, it will behave in the same fashion as the server that was killed.
Licensed to <null>

http://martinfowler.com/bliki/PhoenixServer.html
https://github.com/Netflix/SimianArmy/wiki/Chaos-Monkey
https://github.com/Netflix/SimianArmy/wiki/Chaos-Monkey
http://github.com
http://travis-ci.org
https://jenkins.io

310 CHAPTER 10 Deploying your microservices
3 Maven/Spotify Docker Plugin (https://github.com/spotify/docker-maven-plugin)
—While we use vanilla Maven to compile, test, and package Java code, a key
Maven plug-in we use is Spotify’s Docker plugin. This plugin allows us to kick off
the creation of a Docker build right from within Maven.

4 Docker (https://www.docker.com/)—I chose Docker as our container platform
for two reasons. First, Docker is portable across multiple cloud providers. I can
take the same Docker container and deploy it to AWS, Azure, or Cloud Foundry
with a minimal amount of work. Second, Docker is lightweight. By the end of
this book, you’ve built and deployed approximately 10 Docker containers
(including a database server, messaging platform, and a search engine).
Deploying the same number of virtual machines on a local desktop would be
difficult due to the sheer size and speed of each image. The setup and configu-
ration of Docker, Maven, and Spotify won’t be covered in this chapter, but is
instead covered in appendix A.

5 Docker Hub (https://hub.docker.com)—After a service has been built and a
Docker image has been created, it’s tagged with a unique identifier and pushed
to a central repository. For the Docker image repository, I chose to use Docker
hub, Docker corporation’s public image repository.

1. GitHub will be the
 source repository.

2. Travis CI will be used
 to build and deploy the
 EagleEye microservices

3. Maven with Spotify’s Docker plug-in
will compile code, run tests, and create
the executable artifact.

4. The machine image
 will be a Docker
 container.

5. The Docker container
 will be committed to
 a Docker Hub repo.

6. Python will be used to write
the platform tests.

7. The Docker image will be deployed
to an Amazon Elastic Container
Service (ECS).

Code
compiled

Unit and
integration
tests run

Continuous integration/continuous delivery pipeline

Source repositoryDeveloper
Build deploy

engine

Run-time
artifacts
created

Platform test run

Image deploy/new server deployed

Dev

Machine
image
baked

Image
committed

to repo

Figure 10.16 Technologies used in the EagleEye build
Licensed to <null>

https://github.com/spotify/docker-maven-plugin
https://www.docker.com/
https://hub.docker.com

311Beginning your build deploy/pipeline: GitHub and Travis CI
6 Python (https://python.org)—For writing the platform tests that are executed
before a Docker image is deployed, I chose Python as my tool for writing the
platform tests. I’m a firm believer in using the right tools for the job, and
frankly, I think Python is a fantastic programming language, especially for writ-
ing REST-based test cases.

7 Amazon’s EC2 Container Service (ECS)—The final destination for our microservices
will be Docker instances deployed to Amazon’s Docker platform. I chose Ama-
zon as my cloud platform because it’s by far the most mature of the cloud pro-
viders and makes it trivial to deploy Docker services.

10.5 Beginning your build deploy/pipeline: GitHub and Travis CI
Dozens of source control engines and build deploy engines (both on-premise and
cloud-based) can implement your build and deploy pipeline. For the examples in this
book, I purposely chose GitHub as the source control repository and Travis CI as the
build engine. The Git source control repository is an extremely popular repository and
GitHub is one of the largest cloud-based source control repositories available today.

 Travis CI is a build engine that integrates tightly with GitHub (it also supports Sub-
version and Mercurial). It’s extremely easy to use and is completely driven off a single
configuration file (.travis.yml) in your project’s root directory. Its simplicity and opin-
ionated nature make it easy to get a simple build pipeline off the ground

 Up to now, all of the code examples in this book could be run solely from your
desktop (with the exception of connectivity out to GitHub). For this chapter, if you

Wait….did you say Python?
You might find it a little odd that I wrote the platform tests in Python rather than Java.
I did this purposefully. Python (like Groovy) is a fantastic scripting language for writing
REST-based test cases. I believe in using the right tool for the job. One of the biggest
mind shifts I’ve seen for organizations adopting microservices is that the responsibil-
ity for picking the language should lie with the development teams. In too many orga-
nizations, I’ve seen a dogmatic embrace of standards (“our enterprise standard is
Java . . . and all code must be written in Java”). As a result, I’ve seen development
teams jump through hoops to write large amounts of Java code when a 10-line Groovy
or Python script would do the job.

The second reason I chose Python is that unlike unit and integration tests, platform
tests are truly “black box” tests where you’re acting like an actual API consumer run-
ning in a real environment. Unit tests exercise the lowest level of code and shouldn’t
have any external dependencies when they run. Integration tests come up a level and
test the API, but key external dependencies, like calls to other services, database
calls, and so on, are mocked or stubbed out. Platform tests should be truly indepen-
dent tests of the underlying infrastructure.
Licensed to <null>

https://python.org

312 CHAPTER 10 Deploying your microservices
want to completely follow the code examples, you’ll need to set up your own GitHub,
Travis CI, and Docker hub accounts. We’re not going to walk through how to set up
these accounts, but the setup of a personal Travis CI account and your GitHub account
can all be done right from the Travis CI web page (http://travis-ci.org).

10.6 Enabling your service to build in Travis CI
At the heart of every service built in this book has been a Maven pom.xml file that’s
used to build the Spring Boot service, package it into an executable JAR, and then
build a Docker image that can be used to launch the service. Up until this chapter, the
compilation and startup of the services occurred by

1 Opening a command-line window on your local machine.
2 Running the Maven script for the chapter. This builds all the services for the

chapter and then packages them into a Docker image that would be pushed to
a locally running Docker repository.

3 Launching the newly created Docker images from your local Docker repo, by
using docker-compose and docker-machine to launch all the services for the
chapter.

The question is, how do you repeat this process in Travis CI? It all begins with a single
file called .travis.yml. The .travis.yml is a YAML-based file that describes the actions you
want taken when Travis CI executes your build. This file is stored in the root directory
of your microservice’s GitHub repository. For chapter 10, this file can be found in
spmia-chapter10-code/. travis.yml.

 When a commit occurs on a GitHub repository Travis CI is monitoring, it will look
for the .travis.yml file and then initiate the build process. Figure 10.17 shows the steps
your .travis.yml file will undertake when a commit is made to the GitHub repository
used to hold the code for this chapter (https://github.com/carnellj/spmia-chapter10).

1 A developer makes a change to one of the microservices in the chapter 10
GitHub repository.

2 Travis CI is notified by GitHub that a commit has occurred. This notification
configuration occurs seamlessly when you register with Travis and provide your

A quick note before we begin
For the purposes of this book (and my sanity), I set up a separate GitHub repository
for each chapter in the book. All the source code for the chapter can be built and
deployed as a single unit. However, outside this book, I highly recommend that you
set up each microservice in your environment with its own repository with its own
independent build processes. This way each service can be deployed independently
of one another. With the build process, I’m deploying all of the services as a single
unit only because I wanted to push the entire environment to the Amazon cloud with
a single build script and not manage build scripts for each individual service.
Licensed to <null>

http://travis-ci.org
https://github.com/carnellj/spmia-chapter10

313Enabling your service to build in Travis CI
GitHub account notification. Travis CI will start a virtual machine that will be
used to execute the build. Travis CI will then check out the source code from
GitHub and then use the .travis.yml file to begin the overall build and deploy
process.

3 Travis CI sets up the basic configuration in the build and installs any dependen-
cies. The basic configuration includes what language you’re going to use in the
build (Java), whether you’re going to need Sudo to perform software installs
and access to Docker (for creating and tagging Docker containers), setting any
secure environment variables needed in the build, and defining how you
should be notified on the success or failure of the build.

4 Before the actual build is executed, Travis CI can be instructed to install any
third-party libraries or command-line tools that might be needed as part of the
build process. You use two such tools, the travis and Amazon ecs-cli (EC2
Container Service client) command-line tools.

5 For your build process, always begin by tagging the code in the source reposi-
tory so that at any point in the future you can pull out the complete version of
the source code based on the tag for the build.

6 Your build process will then execute the Maven scripts for the services. The
Maven scripts will compile your Spring microservice, run the unit and integra-
tion tests, and then build a Docker image based on the build.

7 Once the Docker image for the build is complete, the build process will push
the image to the Docker hub with the same tag name you used to tag your
source code repository.

1. Developer updates
 microservice code
 on GitHub.

2. Travis CI checks out the
 updated code and uses the
 travis.yml file to begin the
 build and deploy process.

GithubDeveloper
Travis CI

travis.yml

3. Sets up basic build configuration, including
 what languages you’re going to use in the
 build, environment variables, and so on

4. Installs any third-party libaries
 or command-line tools needed
 by the build 4.

5. Tags repo with build name

6. Travis executes Maven build
 script (code compiled and local
 Docker image created)

7. Docker images are pushed to
 Docker Hub

8. Services are pushed to
 Amazon ECS

9. Platform tests
 are triggered

Figure 10.17 The concrete steps undertaken by the .travis.yml file to build and deploy your software
Licensed to <null>

314 CHAPTER 10 Deploying your microservices

(9) T
Tra

that
the
test

build
8 Your build process then will use the project’s docker-compose file and Ama-
zon’s ecs-cli to deploy all the services you’ve built to Amazon’s Docker ser-
vice, Amazon ECS.

9 Once the deploy of the services is complete, your build process will initiate a
completely separate Travis CI project that will run the platform tests against the
development environment.

Now that we’ve walked through the general steps involved in the .travis.yml file, let’s
look at the specifics of your .travis.yml file. Listing 10.1 shows the different pieces of
the .travis.yml file.

NOTE The code annotations in listing 10.1 are lined up with the numbers in
figure 10.17.

language: java
jdk:
 - oraclejdk8
cache:
 directories:
 - "$HOME/.m2"
sudo: required
services:
 - docker
notifications:
 email:
 - youremail@gmail.com
 on_success: always
 on_failure: always
branches:
 only:
 - master
env:
 global:
 # Remove for conciseness
before_install:
 - gem install travis -v 1.8.5 --no-rdoc --no-ri
 - sudo curl -o /usr/local/bin/ecs-cli
 ➥ https://s3.amazonaws.com/amazon-ecs-cli/
 ➥ ecs-cli-linux-amd64-latest
 - sudo chmod +x /usr/local/bin/ecs-cli
 - export BUILD_NAME=chapter10-$TRAVIS_BRANCH-
 ➥ $(date -u "+%Y%m%d%H%M%S")-$TRAVIS_BUILD_NUMBER
 - export CONTAINER_IP=52.53.169.60
 - export PLATFORM_TEST_NAME="chapter10-platform-tests"
script:
 - sh travis_scripts/tag_build.sh
 - sh travis_scripts/build_services.sh
 - sh travis_scripts/deploy_to_docker_hub.sh
 - sh travis_scripts/deploy_amazon_ecs.sh
 - sh travis_scripts/trigger_platform_tests.sh

Listing 10.1 Anatomy of the .travis.yml build

(3) Sets up the core run-time
configuration for the build

(4) Executes pre-build installations
of needed command-line tools

(5) Executes a shell script
that will tag the source
code with the build name

(6) Builds the servers
and local Docker images
using Maven

(7) Pushes the
Docker images
to Docker Hub

(8) Starts the services in
an Amazon ECS container

riggers a
vis build
 execute
platform
s for the
 services
Licensed to <null>

315Enabling your service to build in Travis CI
We’re now going to walk through each of the steps involved in the build process in
more detail.

10.6.1 Core build run-time configuration

The first part of the travis.yml file deals with configuring the core runtime configura-
tion of your Travis build. Typically this section of the .travis.yml file will contain Travis-
specific functions that will do things like

1 Tell Travis what programming language you’re going to be working in
2 Define whether you need Sudo access for your build process
3 Define whether you want to use Docker in your build process
4 Declare secure environment variables you are going to use

The next listing shows this specific section of the build file.

language: java
jdk:
 - oraclejdk8
cache:
 directories:
 - "$HOME/.m2"
sudo: required
services:
 - docker
notifications:
 email:
 - youremail@gmail.com
 on_success: always
 on_failure: always
branches:
 only:
 - master
env:
 global:
 -secure: IAs5WrQIYjH0rpO6W37wbLAixjMB7kr7DBAeWhjeZFwOkUMJbfuHNC=z…
 #d Remove for conciseness

The first thing your Travis build script is doing is telling Travis what primary language
is going to be used for performing the build. By specifying the language as java and
jdk attributes as java and oraclejdk8, B Travis will ensure that the JDK is installed
and configured for your project.

 The next part of your .travis.yml file, the cache.directories attribute c, tells
Travis to cache the results of this directory when a build is executed and reuse it across
multiple builds. This is extremely useful when dealing with package managers such as
Maven, where it can take a significant amount of time to download fresh copies of jar
dependencies every time a build is kicked off. Without the cache.directories

Listing 10.2 Configuring the core run-time for your build

Tells Travis to use Java and JDK 8 for
your primary runtime environmentB

Tells Travis to cache and re-use your
Maven directory between buildsc

Allows the build to use Sudo access on
the virtual machine it’s running ond

Configures the email address used to
notify the success or failure of the builde

Indicates to Travis that it should only
build on a commit to the master branch

f

Sets up secure environment
variables to use in your scripts

g

Licensed to <null>

316 CHAPTER 10 Deploying your microservices
attribute set, the build for this chapter can take up to 10 minutes to download all of
the dependent jars.

 The next two attributes in listing 10.2 are the sudo attribute and the service
attribute. d The sudo attribute is used to tell Travis that your build process will need
to use sudo as part of the build. The UNIX sudo command is used to temporarily ele-
vate a user to root privileges. Generally, you use sudo when you need to install third-
party tools. You do exactly this later in the build when you need to install the Amazon
ECS tools.

 The services attribute is used to tell Travis whether you’re going to use certain
key services while executing your build. For instance, if your integration tests need a
local database available for them to run, Travis allows you start a MySQL or PostgreSQL
database right on your build box. In this case, you need Docker running to build your
Docker images for each of your EagleEye services and push your images to the Docker
hub. You’ve set the services attribute to start Docker when the build is kicked off.

 The next attribute, notifications e defines the communication channel to
use whenever a build succeeds or fails. Right now, you always communicate the build
results by setting the notification channel for the build to email. Travis will notify you
via email on both the success and failure of the build. Travis CI can notify via multiple
channels besides email, including Slack, IRC, HipChat, or a custom web hook.

 The branches.only f attribute tells Travis what branches Travis should build
against. For the examples in this chapter, you’re only going to perform a build off the
master branch of Git. This prevents you from kicking off a build every time you tag a
repo or commit to a branch within GitHub. This is important because GitHub does a
callback into Travis every time you tag a repo or create a release. The presence of the
branches.only attribute being set to master prevents Travis from going into an end-
less build.

 The last part of the build configuration is the setting of sensitive environment vari-
ables g. In your build process, you might communicate with third-party vendors such
as Docker, GitHub, and Amazon. Sometimes you’re communicating via their com-
mand line tools and other times you’re using the APIs. Regardless, you often have to
present sensitive credentials. Travis CI gives you the ability to add encrypted environ-
ment variables to protect these credentials.

 To add an encrypted environment variable, you must encrypt the environment
variable using the travis command line tool on your desk in the project directory
where you have your source code. To install the Travis command-line tool locally,
review the documentation for the tool at https://github.com/travis-ci/travis.rb. For
the .travis.yml used in this chapter, I created and encrypted the following environ-
ment variables:

 DOCKER_USERNAME—Docker hub user name.
 DOCKER_PASSWORD—Docker hub password.
 AWS_ACCESS_KEY—AWS access key used by the Amazon ecs-cli command

line client.
Licensed to <null>

https://github.com/travis-ci/travis.rb

317Enabling your service to build in Travis CI
 AWS_SECRET_KEY—AWS secret key used by the Amazon ecs-cli command-
line client.

 GITHUB_TOKEN—GitHub generated token that’s used to indicate the access
level the calling-in application is allowed to perform against the server. This
token has to be generated first with the GitHub application.

Once the travis tool is installed, the following command will add the encrypted envi-
ronment variable DOCKER_USERNAME to the env.global section of you .travis.yml file:

travis encrypt DOCKER_USERNAME=somerandomname --add env.global

Once this command is run, you should now see in the env.global section of your
.travis.yml file a secure attribute tag followed by a long string of text. Figure 10.18
shows what an encrypted environment variable looks like.

Figure 10.18 Encrypted Travis environment variables are placed directly in the .travis.yml file.

Unfortunately, Travis doesn’t label the names of your encrypted environment vari-
ables in your .travis.yml file.

NOTE Encrypted variables are only good for the single GitHub repository
they’re encrypted in and Travis is building against. You can’t cut and paste an
encrypted environment variable across multiple .travis.yml files. Your builds
will fail to run because the encrypted environment variables won’t decrypt
properly.

Regardless of the build tool, always encrypt your credentials
Even though all our examples use Travis CI as the build tool, all modern build engines
allow you to encrypt your credentials and tokens. Please, please, please make sure
you encrypt your credentials. Credentials embedded in a source repository are a com-
mon security vulnerability. Don’t rely on the belief that your source control repository
is secure and therefore the credentials in it are secure.

Each encrypted environment variable
will have a secure attribute tag.

The Travis encryption tools don’t put the name
of the encrypted environment variable in the file.
Licensed to <null>

318 CHAPTER 10 Deploying your microservices

Ins

E

10.6.2 Pre-build tool installations

Wow, the pre-build configuration was huge, but the next section is small. Build
engines are often a source of a significant amount of “glue code” scripting to tie
together different tools used in the build process. With your Travis script, you need to
install two command-line tools:

 Travis—This command line tool is used to interact with the Travis build. You’ll
use it later in the chapter to retrieve a GitHub token to programmatically trig-
ger another Travis build.

 ecs-cli—This is the command-line tool for interacting with the Amazon Elastic
Container service.

Each item listed in the before_install section of the .travis.yml file is a UNIX com-
mand that will be executed before the build kicks off. The following listing shows the
before_install attribute along with the commands that need to be run.

before_install:
 - gem install travis -v 1.8.5 --no-rdoc --no-ri
 - sudo curl -o /usr/local/bin/ecs-cli
 ➥ https://s3.amazonaws.com/amazon-ecs-cli/
 ➥ ecs-cli-linux-amd64-latest
 - sudo chmod +x /usr/local/bin/ecs-cli
 - export BUILD_NAME=chapter10-$TRAVIS_BRANCH-
 ➥ $(date -u "+%Y%m%d%H%M%S")-$TRAVIS_BUILD_NUMBER

 - export CONTAINER_IP=52.53.169.60
 - export PLATFORM_TEST_NAME="chapter10-platform-tests"

The first thing to do in the build process is install the travis command-line tool on
the remote build server:

gem install travis -v 1.8.5 --no-rdoc --no-ri

Later on in the build you’re going to kick off another Travis job via the Travis REST API.
You need the travis command line tool to get a token for invoking this REST call.

 After you’ve installed the travis tool, you’re going to install the Amazon ecs-cli
tool. This is a command-line tool used for deploying, starting, and stopping Docker
containers running within Amazon. You install the ecs-cli by first downloading the
binary and then changing the permission on the downloaded binary to be executable:

- sudo curl -o /usr/local/bin/ecs-cli https://s3.amazonaws.com/amazon-ecs-
cli/ecs-cli-linux-amd64-latest

- sudo chmod +x /usr/local/bin/ecs-cli

The last thing you do in the before_install section of the .travis.yml is set three
environment variables in your build. These three environment variables will help
drive the behavior of your builds. These environment variables are

Listing 10.3 Pre-build installation steps

Installs the Travis
command-line tooltalls the

Amazon
CS client

Changes the permission on the
Amazon ECS client to be executable

Sets the environment
variables used through
your process
Licensed to <null>

319Enabling your service to build in Travis CI
 BUILD_NAME

 CONTAINER_IP

 PLATFORM_TEST_NAME

The actual values set in these environment variables are

- export BUILD_NAME=chapter10-$TRAVIS_BRANCH-
 ➥ $(date -u "+%Y%m%d%H%M%S")-$TRAVIS_BUILD_NUMBER
- export CONTAINER_IP=52.53.169.60
- export PLATFORM_TEST_NAME="chapter10-platform-tests"

The first environment variable, BUILD_NAME, generates a unique build name that
contains the name of the build, followed by the date and time (down to the seconds
field) and then the build number in Travis. This BUILD_NAME will be used to tag your
source code in GitHub and your Docker image when it’s pushed to the Docker hub
repository.

 The second environment variable, CONTAINER_IP, contains the IP address of the
Amazon ECS virtual machine that your Docker containers will run on. This
CONTAINER_IP will be passed later to another Travis CI job that will execute your plat-
form tests.

NOTE I’m not assigning a static IP address to the Amazon ECS server that’s
spun. If I tear down the container completely, I’ll be given a new IP. In a real
production environment, the servers in your ECS cluster will probably have
static (non-changing) IPs assigned to them, and the cluster will have an Ama-
zon Enterprise Load Balancer (ELB) and an Amazon Route 53 DNS name so
that the actual IP address of the ECS server would be transparent to the ser-
vices. However, setting up this much infrastructure is outside the scope of the
example I’m trying to demonstrate in this chapter.

The third environment variable, PLATFORM_TEST_NAME, contains the name of the
build job being executed. We’ll explore its use later in the chapter.

On auditing and traceability
A common requirement in many financial services and healthcare companies is that
they have to prove traceability of the deployed software in production, all the way back
through all the lower environments, back to the build job that built the software, and
then back to when the code was checked into the source code repository. The immu-
table server pattern really shines in helping organizations meet this requirement. As
you saw in our build example, you tagged the source control repository and the con-
tainer image that’s going to be deployed with the same build name. That build name
is unique and tied into a Travis build number. Because you only promote the container
image through each environment and each container image is labeled with the build
name, you’ve established traceability of that container image back to the source
code associated with it. Because the containers are never changed once they’re
tagged, you have a strong audit position to show that the deployed code matches the
Licensed to <null>

320 CHAPTER 10 Deploying your microservices
10.6.3 Executing the build

At this point, all the pre-build configuration and dependency installation is complete.
To execute your build, you’re going to use the Travis script attribute. Like the
before_install attribute, the script attribute takes a list of commands that will be
executed. Because these commands are lengthy, I chose to encapsulate each major
step in the build into its own shell script and have Travis execute the shell script. The
following listing shows the major steps that are going to be undertaken in the build.

script:
 - sh travis_scripts/tag_build.sh
 - sh travis_scripts/build_services.sh
 - sh travis_scripts/deploy_to_docker_hub.sh
 - sh travis_scripts/deploy_amazon_ecs.sh
 - sh travis_scripts/trigger_platform_tests.sh

Let’s walk through each of the major steps execute in the script step.

10.6.4 Tagging the source control code

The travis_scripts/tag_build.sh script takes care of tagging code in the repository with
a build name. For the example here, I’m creating a GitHub release via the GitHub
REST API. A GitHub release will not only tag the source control repository, but will also
allow you to post things like release notes to the GitHub web page along with whether
the source code is a pre-release of the code.

 Because the GitHub release API is a REST-based call, you’ll use curl in your shell
script to do the actual invocation. The following listing shows the code from the
travis_scripts/tag_build.sh script.

echo "Tagging build with $BUILD_NAME"
export TARGET_URL="https://api.github.com/
 ➥ repos/carnellj/spmia-chapter10/
 ➥ releases?access_token=$GITHUB_TOKEN"

body="{
 \"tag_name\": \"$BUILD_NAME\",
 \"target_commitish\": \"master\",
 \"name\": \"$BUILD_NAME\",

(continued)

underlying source code repository. Now, if you wanted to play it extra safe, at the
time you labeled the project source code, you could also label the application config-
uration residing in the Spring Cloud Config repository with the same label generated
for the build.

Listing 10.4 Executing the build

Listing 10.5 Tagging the chapter 10 code repository with the GitHub release API

Target endpoint for the
 GitHub release API

Body of the
REST call
Licensed to <null>

321Enabling your service to build in Travis CI
 \"body\": \"Release of version $BUILD_NAME\",
 \"draft\": true,
 \"prerelease\": true
}"

curl –k -X POST \
 -H "Content-Type: application/json" \
 -d "$body" \
 $TARGET_URL

This script is simple. The first thing you do is build the target URL for the GitHub
release API:

export TARGET_URL="https://api.github.com/repos/
 ➥ carnellj/spmia-chapter10/
 ➥ releases?access_token=$GITHUB_TOKEN"

In the TARGET_URL you’re passing an HTTP query parameter called access_token.
This parameter contains a GitHub personal access token set up to specifically allow
your script to take action via the REST API. Your GitHub personal access token is
stored in an encrypted environment variable called GITHUB_TOKEN. To generate a
personal access token, log in to your GitHub account and navigate to https://
github.com/settings/tokens. When you generate a token, make sure you cut and
paste it right away. When you leave the GitHub screen it will be gone and you’ll need
to regenerate it.

 The second step in your script is to set up the JSON body for the REST call:

body="{
 \"tag_name\": \"$BUILD_NAME\",
 \"target_commitish\": \"master\",
 \"name\": \"$BUILD_NAME\",
 \"body\": \"Release of version $BUILD_NAME\",
 \"draft\": true,
 \"prerelease\": true
}"

In the previous code snippet you’re supplying the $BUILD_NAME for a tag_name
value and the setting basic release notes using the body field.

 Once the JSON body for the call is built, executing the call via the curl command
is trivial:

curl –k -X POST \
 -H "Content-Type: application/json" \
 -d "$body" \
 $TARGET_URL

10.6.5 Building the microservices and creating the Docker images

The next step in the Travis script attribute is to build the individual services and then
create Docker container images for each service. You do this via a small script called
travis_scripts/build_services.sh. This script will execute the following command:

mvn clean package docker:build

Uses curl to invoke the service
used to kick off a build
Licensed to <null>

https://github.com/settings/tokens
https://github.com/settings/tokens

322 CHAPTER 10 Deploying your microservices
This Maven command executes the parent Maven spmia-chapter10-code/pom.xml
file for all of the services in the chapter 10 code repository. The parent pom.xml exe-
cutes the individual Maven pom.xml for each service. Each individual service builds
the service source code, executes any unit and integration tests, and then packages
the service into an executable jar.

 The last thing that happens in the Maven build is the creation of a Docker con-
tainer image that’s pushed to the local Docker repository running on your Travis
build machine. The creation of the Docker image is carried out using the Spotify
Docker plugin (https://github.com/spotify/docker-maven-plugin). If you’re inter-
ested in how the Spotify Docker plug-in works within the build process, please refer to
appendix A, “Setting up your desktop environment”. The Maven build process and
the Docker configuration are explained there.

10.6.6 Pushing the images to Docker Hub

At this point in the build, the services have been compiled and packaged and a
Docker container image has been created on the Travis build machine. You’re now
going to push the Docker container image to a central Docker repository via your
travis_scripts/deploy_to_docker_hub.sh script. A Docker repository is like a Maven
repository for your created Docker images. Docker images can be tagged and
uploaded to it, and other projects can download and use the images.

 For this code example, you’re going to use the Docker hub (https://hub
.docker.com/). The following listing shows the commands used in the travis_scripts/
deploy_to_docker_hub.sh script.

echo "Pushing service docker images to docker hub"
docker login -u $DOCKER_USERNAME -p $DOCKER_PASSWORD
docker push johncarnell/tmx-authentication-service:$BUILD_NAME
docker push johncarnell/tmx-licensing-service:$BUILD_NAME
docker push johncarnell/tmx-organization-service:$BUILD_NAME
docker push johncarnell/tmx-confsvr:$BUILD_NAME
docker push johncarnell/tmx-eurekasvr:$BUILD_NAME
docker push johncarnell/tmx-zuulsvr:$BUILD_NAME

The flow of this shell script is straightforward. The first thing you have to do is log in
to Docker hub using the Docker command line-tools and the user credentials of the
Docker Hub account the images are going to be pushed to. Remember, your creden-
tials for Docker Hub are stored as encrypted environment variables:

docker login -u $DOCKER_USERNAME -p $DOCKER_PASSWORD

Once the script has logged in, the code will push each individual microservice’s
Docker image residing in the local Docker repository running on the Travis build
server, to the Docker Hub repository:

docker push johncarnell/tmx-confsvr:$BUILD_NAME

Listing 10.6 Pushing created Docker images to Docker Hub
Licensed to <null>

https://github.com/spotify/docker-maven-plugin
https://hub.docker.com/
https://hub.docker.com/

323Enabling your service to build in Travis CI
In the previous command you tell the Docker command line tool to push to the
Docker hub (which is the default hub that the Docker command line tools use) to the
johncarnell account. The image being pushed will be the tmx-confsvr image
with the tag name of the value from the $BUILD_NAME environment variable.

10.6.7 Starting the services in Amazon ECS

At this point, all of the code has been built and tagged and a Docker image has been cre-
ated. You’re now ready to deploy your services to the Amazon ECS container you
created back in section 10.1.3. The work to do this deployment is found in travis_scripts/
deploy_to_amazon_ecs.sh. The following listing shows the code from this script.

echo "Launching $BUILD_NAME IN AMAZON ECS"
ecs-cli configure --region us-west-1 \
 --access-key $AWS_ACCESS_KEY
 --secret-key $AWS_SECRET_KEY
 --cluster spmia-tmx-dev
ecs-cli compose --file docker/common/docker-compose.yml up
rm –rf ~/.ecs

NOTE In the Amazon console, Amazon only shows the name of the state/
city/country the region is in and not the actual region name (us-west-1, us-
east-1, and so on). For example, if you were to look in the Amazon console
and wanted to see the Northern California region, there would be no indica-
tion that the region name is us-west-1. For a list of all the Amazon regions
(and endpoints for each service), please refer to http://docs.aws.ama-
zon.com/general/latest/gr/rande.html.

Because a new build virtual machine is kicked off by Travis with every build, you need
to configure your build environment’s ecs-cli client with your AWS access and
secret key. Once that’s complete, you can then kick off a deploy to your ECS cluster
using the ecs-cli compose command and a docker-compose.yml file. Your docker-
compose.yml is parameterized to use the build name (contained in the environment
variable $BUILD_NAME).

10.6.8 Kicking off the platform tests

You have one last step to your build process: kicking off a platform test. After every
deployment to a new environment, you kick off a set of platform tests that check to
make sure all your services are functioning properly. The goal of the platform tests is
to call the microservices in the deployed build and ensure that the services are func-
tioning properly.

 I’ve separated the platform test job from the main build so that it can be invoked
independently of the main build. To do this, I use the Travis CI REST API to program-
matically invoke the platform tests. The travis_scripts/trigger_platform_tests.sh script
does this work. The following listing shows the code from this script.

Listing 10.7 Deploying Docker Images to EC2
Licensed to <null>

http://docs.aws.amazon.com/general/latest/gr/rande.html
http://docs.aws.amazon.com/general/latest/gr/rande.html

324 CHAPTER 10 Deploying your microservices

echo "Beginning platform tests for build $BUILD_NAME"
travis login --org --no-interactive \
 --github-token $GITHUB_TOKEN
export RESULTS=`travis token --org`
export TARGET_URL="https://api.travis-ci.org/repo/

carnellj%2F$PLATFORM_TEST_NAME/requests"
echo "Kicking off job using target url: $TARGET_URL"

body="{
\"request\": {
 \"message\": \"Initiating platform tests for build $BUILD_NAME\",
 \"branch\":\"master\",
 \"config\": {
 \"env\": {
 \"global\": [\"BUILD_NAME=$BUILD_NAME\",
 \"CONTAINER_IP=$CONTAINER_IP\"]
 }
 }
}}"

curl -s -X POST \
 -H "Content-Type: application/json" \
 -H "Accept: application/json" \
 -H "Travis-API-Version: 3" \
 -H "Authorization: token $RESULTS" \
 -d "$body" \
 $TARGET_URL

The first thing you do in listing 10.8 is use the Travis CI command-line tool to log in to
Travis CI and get an OAuth2 token you can use to call other Travis REST APIs. You store
this OAUTH2 token in the $RESULTS environment variable.

 Next, you build the JSON body for the REST API call. Your downstream Travis CI job
kicks off a series of Python scripts that tests your API. This downstream job expects two
environment variables to be set. In the JSON body being built in listing 10.8, you’re
passing in two environment variables, $BUILD_NAME and $CONTAINER_IP, that will be
passed to your testing job:

\"env\": {
 \"global\": [\"BUILD_NAME=$BUILD_NAME\",
 \"CONTAINER_IP=$CONTAINER_IP\"]
}

The last action in your script is to invoke the Travis CI build job that runs your plat-
form test scripts. This is done by using the curl command to call the Travis CI REST
endpoint for your test job:

 curl -s -X POST \
 -H "Content-Type: application/json" \
 -H "Accept: application/json" \
 -H "Travis-API-Version: 3" \

Listing 10.8 Kicking off the platform tests using Travis CI REST API

Log in with Travis CI using your
GitHub token. Store the returned
token in the RESULTS variable.

Build the JSON body for the
call, passing in two values
to the downstream job.

Using Curl to invoke
the Travis CI REST API
Licensed to <null>

325Summary
 -H "Authorization: token $RESULTS" \
 -d "$body" \
 $TARGET_URL

The platform test scripts are stored in a separate GitHub repository called chapter10-
platform-tests (https://github.com/carnellj/chapter10-platform-tests). This reposi-
tory has three Python scripts that test the Spring Cloud Config server, the Eureka
server, and the Zuul server. The Zuul server platform tests also test the licensing and
organization services. These tests aren’t comprehensive in the sense that they exercise
every aspect of the services, but they do exercise enough of the service to ensure
they’re functioning.

NOTE We’re not going to walk through the platform tests. The tests are
straightforward and a walk-through of the tests would not add a significant
amount of value to this chapter.

10.7 Closing thoughts on the build/deployment pipeline
As this chapter (and the book) closes out, I hope you’ve gained an appreciation for
the amount of work that goes into building a build/deployment pipeline. A well-func-
tioning build and deployment pipeline is critical to the deployment of services. The
success of your microservice architecture depends on more than just the code
involved in the service:

 Understand that the code in this build/deploy pipeline is simplified for the
purposes of this book. A good build/deployment pipeline will be much more
generalized. It will be supported by the DevOps team and broken into a series
of independent steps (compile > package > deploy > test) that the development
teams can use to “hook” their microservice build scripts into.

 The virtual machine imaging process used in this chapter is simplistic, with
each microservice being built using a Docker file to define the software that’s
going to be installed on the Docker container. Many shops will use provisioning
tools like Ansible (https://github.com/ansible/ansible), Puppet (https://
github.com/puppetlabs/puppet), or Chef (https://github.com/chef/chef) to
install and configure the operating systems onto the virtual machine or con-
tainer images being built.

 The cloud deployment topology for your application has been consolidated to a
single server. In the real build/deployment pipeline, each microservice would
have its own build scripts and would be deployed independently of each other
to a cluster ECS container.

10.8 Summary
 The build and deployment pipeline is a critical part of delivering microservices.

A well-functioning build and deployment pipeline should allow new features
and bug fixes to be deployed in minutes.
Licensed to <null>

https://github.com/carnellj/chapter10-platform-tests
https://github.com/ansible/ansible
https://github.com/puppetlabs/puppet
https://github.com/puppetlabs/puppet
https://github.com/chef/chef

326 CHAPTER 10 Deploying your microservices
 The build and deployment pipeline should be automated with no direct human
interaction to deliver a service. Any manual part of the process represents an
opportunity for variability and failure.

 The build and deployment pipeline automation does require a great deal of
scripting and configuration to get right. The amount of work needed to build it
shouldn’t be underestimated.

 The build and deployment pipeline should deliver an immutable virtual
machine or container image. Once a server image has been created, it should
never be modified.

 Environment-specific server configuration should be passed in as parameters at
the time the server is set up.
Licensed to <null>

appendix A
 Running a cloud

on your desktop

I had two goals when laying out the code examples in this book and choosing the
runtime technologies needed to deploy the code. The first goal was make sure that
the code examples were consumable and easy to set up. Remember, a microservices
application has multiple moving parts, and setting up these parts to run cleanly
with minimal effort for the reader can be difficult if there is not some forethought.

 The second goal was for each chapter to be completely standalone so that you
could pick any chapter in the book and have a complete runtime environment
available that encapsulates all the services and software needed to run the code
examples in the chapter without dependencies on other chapters.

This appendix covers
 Listing the software needed to run the code in this book

 Downloading the source code from GitHub for each
chapter

 Compiling and packaging the source code using Maven

 Building and provisioning the Docker images used in
each chapter

 Launching the Docker images compiled by the build
using Docker Compose
327

Licensed to <null>

328 APPENDIX A Running a cloud on your desktop
 To this end, you’ll see the following technology and patterns used throughout
every chapter in this book:

1 All projects use Apache Maven (http://maven.apache.org) as the build tool for
the chapters. Each service is built using a Maven project structure and each ser-
vice structure is consistently laid chapter to chapter.

2 All services developed in the chapter compile to a Docker (http://docker.io)
container image. Docker is an amazing runtime virtualization engine that runs
on Windows, OS X, and Linux. Using Docker, I can build a complete runtime
environment on the desktop that includes the application services and all
the infrastructure needed to support the services. Also, Docker, unlike more
proprietary virtualization technologies, is easily portable across multiple cloud
providers.

I’m using Spotify’s Docker Maven plugin (https://github.com/spotify/
docker-maven-plugin) to integrate the building of Docker container with the
Maven build process.

3 To start the services after they’ve compiled into Docker images, I use Docker
Compose to start the services as a group. I’ve purposely avoided more sophisti-
cated Docker orchestration tools such as Kubernetes (https://github.com/
kubernetes/kubernetes) or Mesos (http://mesos.apache.org/) to keep the
chapter examples straightforward and portable.

All provisioning of the Docker images is done with simple shell scripts.

A.1 Required software
To build the software for all chapters, you’ll need to have the following software
installed on your desktop. It’s important to note that these are the versions of software
I worked with for the book. The software may work with other versions, but this is what
I built the code with:

1 Apache Maven (http://apache.maven.org)—I used version 3.3.9 of Maven. I
chose Maven because while other build tools such as Gradle are extremely pop-
ular, Maven is still the predominant build tool in use in the Java ecosystem. All
code examples in this book were compiled with Java version 1.8.

2 Docker (http://docker.com)—I built the code examples in this book using
Docker V1.12. The code examples in this book will work with earlier versions of
Docker, but you may have to switch to the version 1 docker-compose links for-
mat if you want to use this code with earlier versions of Docker.

3 Git Client (http://git-scm.com)—All the source code for this book is stored in a
GitHub repository. For the book, I used version 2.8.4 of the Git client.

I’m not going to walk through how to install each of these components. Each of the
software packages listed in the bulleted list has simple installation instructions and
should be installable with minimal effort. Docker has a GUI client for installation.
Licensed to <null>

http://maven.apache.org
http://docker.io
https://github.com/spotify/docker-maven-plugin
https://github.com/spotify/docker-maven-plugin
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
http://mesos.apache.org/
http://apache.maven.org
http://docker.com
http://git-scm.com

329Downloading the projects from GitHub
A.2 Downloading the projects from GitHub
All the source code for the book is in my GitHub repository (http://github.com/car-
nellj). Each chapter in the book has its own source code repository. Here’s a listing of
all the GitHub repositories used in the book:

 Chapter 1 (Welcome to the cloud, Spring)—http://github.com/carnellj/
spmia-chapter1

 Chapter 2 (Introduction to microservices)—http://github.com/carnellj/spmia-
chapter2

 Chapter 3 (Spring Cloud Config)—http://github.com/carnellj/spmia-
chapter3 and http://github.com/carnellj/config-repo

 Chapter 4 (Spring Cloud/Eureka)—http://github.com/carnellj/spmia-
chapter4

 Chapter 5 (Spring Cloud/Hystrix)—http://github.com/carnellj/spmia-
chapter5

 Chapter 6 (Spring Cloud/Zuul)—http://github.com/carnellj/spmia-chapter6
 Chapter 7 (Spring Cloud/Oauth2)—http://github.com/carnellj/spmia-

chapter7
 Chapter 8 (Spring Cloud Stream)—http://github.com/carnellj/spmia-chapter8
 Chapter 9 (Spring Cloud Sleuth)—http://github.com/carnellj/spmia-chapter9
 Chapter 10 (Deployment)—http://github.com/carnellj/spmia-chapter10 and

http://github.com/carnellj/chapter-10-platform-tests

With GitHub, you can download the files as a zip file using the web UI. Every GitHub
repository will have a download button on it. Figure A.1 shows where the download
button is in the GitHub repository for chapter 1.

Figure A.1 The GitHub UI allows you to download a project as a zip file.
Licensed to <null>

http://github.com/carnellj/spmia-chapter5
http://github.com/carnellj/spmia-chapter5
http://github.com/carnellj
http://github.com/carnellj
http://github.com/carnellj/spmia-chapter1
http://github.com/carnellj/spmia-chapter1
http://github.com/carnellj/spmia-chapter2
http://github.com/carnellj/spmia-chapter2
http://github.com/carnellj/spmia-chapter3
http://github.com/carnellj/spmia-chapter3
http://github.com/carnellj/config-repo
http://github.com/carnellj/spmia-chapter4
http://github.com/carnellj/spmia-chapter4
http://github.com/carnellj/spmia-chapter6
http://github.com/carnellj/spmia-chapter7
http://github.com/carnellj/spmia-chapter7
http://github.com/carnellj/spmia-chapter8
http://github.com/carnellj/spmia-chapter9
http://github.com/carnellj/spmia-chapter10
http://github.com/carnellj/chapter-10-platform-tests

330 APPENDIX A Running a cloud on your desktop
If you’re a command-line user, you can install the git client and clone the project.
For example, if you wanted to download chapter 1 from GitHub using the git client,
you could open a command line and issue the following command:

git clone https://github.com/carnellj/spmia-chapter1.git

This will download all the chapter 1 project files into a directory called spmia-
chapter1 in the directory you ran the git command from.

A.3 Anatomy of each chapter
Every chapter in the book has one or more services associated with it. Each service in
a chapter has its own project directory. For instance, if you look at chapter 6 (http://
github.com/carnellj/spmia-chapter6), you’ll see that there are seven services in it.
These services are

1 confsvr—Spring Cloud Config server
2 eurekasvr—Spring Cloud/with Eureka
3 licensing-service—Eagle Eye Licensing service
4 organization-service—Eagle Organization service
5 orgservice-new—New test version of the EagleEye service
6 specialroutes-service—A/B routing service
7 zuulsvr—EagleEye Zuul service

Every service directory in a chapter is structured as a Maven-based build project.
Inside each project is a src/main directory with the following sub-directories:

1 java—This directory contains the Java source code used to build the service.
2 docker—This directory contains two files needed to build a Docker image for

each service. The first file will always be called Dockerfile and contains the step-
by-step instructions used by Docker to build the Docker image. The second file,
run.sh, is a custom Bash script that runs inside the Docker container. This script
ensures that the service doesn’t start until certain key dependencies (database is
up and running) become available.

3 resources—The resources directory contains all the services’ application.yml
files. While application configuration is stored in the Spring Cloud Config, all
services have configuration that’s stored locally in the application.yml. Also, the
resources directory will contain a schema.sql file containing all the SQL com-
mands used to create the tables and pre-load data for the services into the Post-
gres database.

A.4 Building and compiling the projects
Because all chapters in the book follow the same structure and use Maven as their
build tool, it becomes extremely simple to build the source code. Every chapter has at
the root of the directory a pom.xml that acts as parent pom for all the sub-chapters. If
Licensed to <null>

http://github.com/carnellj/spmia-chapter6
http://github.com/carnellj/spmia-chapter6

331Building the Docker image
you want to compile the source code and build the Docker images for all the projects
within a single chapter, you need to run the following at the root of the chapter:

mvn clean package docker:build

This will execute the Maven pom.xml file in each of the service directories. It will also
build the Docker images locally.

 If you want to build a single service within the chapter, you can change to that spe-
cific service directory and run the mvn clean package docker:build command.

A.5 Building the Docker image
During the build process, all the services in the book are packaged as Docker images.
This process is carried out by the Spotify Maven plugin. For an example of this plugin
in action, you can look at the chapter 3 licensing service’s pom.xml file (chapter3/
licensing-service). The following listing shows the XML fragment that configures this
plugin in each service’s pom.xml file.

<plugin>
 <groupId>com.spotify</groupId>
 <artifactId>docker-maven-plugin</artifactId>
 <version>0.4.10</version>
 <configuration>

 <imageName>
 ${docker.image.name}:

 [ca]${docker.image.tag}
 </imageName>
 <dockerDirectory>
 ${basedir}/target/dockerfile
 </dockerDirectory>
 <resources>
 <resource>
 <targetPath>/</targetPath>
 <directory>${project.build.directory}</directory>
 <include>${project.build.finalName}.jar</include>
 </resource>
 </resources>
 </configuration>
 </plugin>

The XML fragment does three things:

1 It copies the executable jar for the service, along with the contents of the src/
main/docker directory, to target/docker.

2 It executes the Dockerfile defined in the target/docker directory. The Docker-
file is a list of commands that are executed whenever a new Docker image for
that service is provisioned.

Listing A.1 Spotify Docker Maven plugin used to create Dockerimage

Every Docker image created will have a tag
associated with it. The Spotify plugin will
name the created image with whatever is
defined in the ${docker.image.tag} tag.

All Docker images are created in this book
using a Dockerfile. A Dockerfile is used to
give step-by-step instructions on how the
Docker image should be provisioned.

When the Spotify plugin is
executed, it will copy the service’s

executable jar to the Docker image.
Licensed to <null>

332 APPENDIX A Running a cloud on your desktop
3 It pushes the Docker image to the local Docker image repository that’s installed
when you install Docker.

The following listing shows the contents of the Dockerfile from your licensing service.

FROM openjdk:8-jdk-alpine
RUN apk update && apk upgrade && apk add netcat-openbsd
RUN mkdir -p /usr/local/licensingservice
ADD licensing-service-0.0.1-SNAPSHOT.jar /usr/local/licensingservice/
ADD run.sh run.sh
RUN chmod +x run.sh
CMD ./run.sh

In the Dockerfile from this listing you’re provisioning your instance using Alpine
Linux (https://alpinelinux.org/). Alpine Linux is a small Linux distribution that’s
often used to build Docker images. The Alpine Linux image you’re using already has
Java JDK installed on it.

 When you’re provisioning your Docker image, you’re going to install a command-
line utility called nc. The nc command is used to ping a server and see if a specific
port is online. You’re going to use it in your run.sh command script to ensure that
before you launch your service, all its dependent services (for example, the database
and the Spring Cloud Config service) have started. The nc command does this by
watching the ports the dependent services listen on. This installation of nc is done via
the RUN apk update && apk upgrade && apk add netcat-openbsd, running
the services using Docker Compose.

 Next, your Dockerfile will make a directory for the licensing service’s executable
jar file and then copy the jar file from the local file system to a directory that was cre-
ated on the Docker image. This is all done via the ADD licensing-service-

0.0.1-SNAPSHOT.jar /usr/local/licensingservice/.
 The next step in the provisioning process is to install the run.sh script via the ADD

command. The run.sh script is a custom script I wrote that launches the target ser-
vice when the Docker image is started. It uses the nc command to listen for the ports
of any key service dependencies that the licensing service needs and then blocks until
those dependencies are started.

 The following listing shows how the run.sh is used to launch the licensing service.

Listing A.2 Dockerfile prepares Docker image

This is the Linux Docker image that you’re going to
use in your Docker run-time. This installation is

optimized for Java applications.
You install nc (netcat), a utility

that you’ll use to ping dependent
services to see if they are up.

The Docker ADD command
copies the executable JAR

from the local filesystem to
the Docker image.

You add a custom BASH shell
script that will monitor for

service dependencies and then
launch the actual service.
Licensed to <null>

https://alpinelinux.org/

333Launching the services with Docker Compose

#!/bin/sh

echo "**"
echo "Waiting for the configuration server to start on port

$CONFIGSERVER_PORT"
echo "**"
while ! `nc -z configserver $CONFIGSERVER_PORT `;
 [ca]do sleep 3; done
echo ">>>>>>>>>>>> Configuration Server has started"

echo "**"
echo "Waiting for the database server to start on port $DATABASESERVER_PORT"
echo "**"
while ! `nc -z database $DATABASESERVER_PORT`; do sleep 3; done
echo ">>>>>>>>>>>> Database Server has started"

echo "**"
echo "Starting License Server with Configuration Service :

$CONFIGSERVER_URI";
echo "**"
java -Dspring.cloud.config.uri=$CONFIGSERVER_URI \
 -Dspring.profiles.active=$PROFILE \
 -jar /usr/local/licensingservice/licensing-service-0.0.1-SNAPSHOT.jar

Once the run.sh command is copied to your licensing service Docker image, the CMD
./run.sh Docker command is used to tell Docker to execute the run.sh launch
script when the actual image starts.

NOTE I’m giving you a high-level overview of how Docker provisions an
image. If you want to learn more about Docker in depth, I suggest looking at
Jeff Nickoloff’s Docker in Action (Manning, 2016) or Adrian Mouat’s Using
Docker (O’Reilly, 2016). Both books are excellent Docker resources.

A.6 Launching the services with Docker Compose
After the Maven build has been executed, you can now launch all the services for the
chapter by using Docker Compose. Docker Compose is installed as part of the Docker
installation process. It’s a service orchestration tool that allows you to define services
as a group and then launch together as a single unit. Docker Compose includes capa-
bilities for also defining environment variables with each service.

 Docker Compose uses a YAML file for defining the services that are going to be
launched. Each chapter in this book has a file called “<<chapter>>/docker/common/

Listing A.3 run.sh script used to launch the licensing service

The run.sh scripts waits for the port of the
dependent service to be open before

continuing to trying to start the service.

Launch the licensing service by using Java to call the
executable jar the Dockerfile script installed.

$<<VARIABLE_NAME>> represents an environment
variable being passed to the Docker image.
Licensed to <null>

334 APPENDIX A Running a cloud on your desktop
docker-compose.yml”. This file contains the service definitions used to launch the ser-
vices in the chapter. Let’s look at the docker-compose.yml file used in chapter 3. The
following listing shows the contents of this file.

version: '2'
services:
 configserver:
 image: johncarnell/tmx-confsvr:chapter3
 ports:
 - "8888:8888"
 environment:
 ENCRYPT_KEY: "IMSYMMETRIC"
 database:
 image: postgres
 ports:
 - "5432:5432"
 environment:
 POSTGRES_USER: "postgres"
 POSTGRES_PASSWORD: "p0stgr@s"
 POSTGRES_DB: "eagle_eye_local"
 licensingservice:
 image: johncarnell/tmx-licensing-service:chapter3
 ports:
 - "8080:8080"
 environment:
 PROFILE: "default"
 CONFIGSERVER_URI: "http://configserver:8888"
 CONFIGSERVER_PORT: "8888"
 DATABASESERVER_PORT: "5432"
 ENCRYPT_KEY: "IMSYMMETRIC"

In the docker-compose.yml from listing A.4, we see three services being defined
(configserver, database, and licensing service). Each service has a Docker image
defined with it using the image tag. As each service starts, it will expose ports through
the port tag and then pass environment variables to the starting Docker container via
the environment tag.

 Go ahead and start your Docker containers by executing the following command
from the root of chapter directory pulled down from GitHub:

docker-compose –f docker/common/docker-compose.yml up

When this command is issued, docker-compose starts all the services defined in the
docker-compose.yml file. Each service will print its standard out to the console. Fig-
ure A.2 shows the output from the docker-compose.yml file in chapter 3.

Listing A.4 The docker-compose.yml file defines the services that are to be launched

Each service being launched has a
label applied to it. This will become

the DNS entry for the Docker
instance when it’s started and is
how other services can access it.

Docker Compose will first try to find
the target image to be started in the

local Docker repository. If it can’t
find it, it will check the central

Docker hub (http://hub.docker.com).

This entry defines the port numbers
on the started Docker container that
will be exposed to the outside world.

The environment tag is used to pass
along environment variables to the
starting Docker image. In this case, the
ENCRYPT_KEY environment variable will
be set on the starting Docker image.

This is an example of how a service
defined in one part of the Docker

Compose file (configserver) is used
as the DNS name in another service.
Licensed to <null>

335Launching the services with Docker Compose
Figure A.2 All output from the started Docker containers is written to standard out.

TIP Every line written to standard out by a service started using Docker Com-
pose will have the name of the service printed to standard out. When you’re
launching a Docker Compose orchestration, finding errors being printed out
can be painful. If you want to look at the output for a Docker-based service,
start your docker-compose command in detached mode with the –d option
(docker-compose -f docker/common/docker-compose.yml up –d).
Then you can look at the specific logs for that container by issuing the
docker-compose command with the logs option (docker-compose -f
docker/common/docker-compose.yml logs -f licensingservice).

All the Docker containers used this in this book are ephemeral—they won’t retain
their state when they’re started and stopped. Keep this in mind if you start playing
with code and you see your data disappear after your restart your containers. If you
want to make your Postgres database persistent between the starting and stopping of
containers, I’d point you to the Postgres Docker notes (https://hub.docker.com/_/
postgres/).

All three services are writing
output to the console.
Licensed to <null>

https://hub.docker.com/_/postgres/
https://hub.docker.com/_/postgres/

appendix B
OAuth2 grant types

From reading chapter 7, you might be thinking that OAuth2 doesn’t look too com-
plicated. After all, you have an authentication service that checks a user’s creden-
tials and issues a token back to the user. The token can, in turn, be presented every
time the user wants to call a service protected by the OAuth2 server.

 Unfortunately, the real world is never simple. With the interconnected nature of
the web and cloud-based applications, users have come to expect that they can
securely share their data and integrate functionality between different applications
owned by different services. This presents a unique challenge from a security per-
spective because you want to integrate across different applications while not forcing
users to share their credentials with each application they want to integrate with.

This appendix covers
 OAuth2 Password grant

 OAuth2 Client credentials grant

 OAuth2 Authorization code grant

 OAuth2 Implicit credentials grant

 OAuth2 Token Refreshing
336

Licensed to <null>

337Password grants
 Fortunately, OAuth2 is a flexible authorization framework that provides multiple
mechanisms for applications to authenticate and authorize users without forcing
them to share credentials. Unfortunately, it’s also one of the reasons why OAuth2 is
considered complicated. These authentication mechanisms are called authentication
grants. OAuth2 has four forms of authentication grants that client applications can use
to authenticate users, receive an access token, and then validate that token. These
grants are

 Password
 Client credential
 Authorization code
 Implicit

In the following sections I walk through the activities that take place during the execu-
tion of each of these OAuth2 grant flows. I also talk about when to use one grant type
over another.

B.1 Password grants
An OAuth2 password grant is probably the most straightforward grant type to under-
stand. This grant type is used when both the application and the services explicitly
trust one another. For example, the EagleEye web application and the EagleEye web
services (the licensing and organization) are both owned by ThoughtMechanix, so
there’s a natural trust relationship that exists between them.

NOTE To be explicit, when I refer to a “natural trust relationship” I mean
that the application and services are completely owned by the same organiza-
tion. They’re managed under the same policies and procedures.

When a natural trust relationship exists, there’s little concern about exposing an
OAuth2 access token to the calling application. For example, the EagleEye web appli-
cation can use the OAuth2 password grant to capture the user’s credentials and
directly authenticate against the EagleEye OAuth2 service. Figure B.1 shows the pass-
word grant in action between EagleEye and the downstream services.

 In figure B.1 the following actions are taking place:

1 Before the EagleEye application can use a protected resource, it needs to be
uniquely identified within the OAuth2 service. Normally, the owner of the appli-
cation registers with the OAuth2 application service and provides a unique
name for their application. The OAuth2 service then provides a secret key back
to registering the application.

The name of the application and the secret key provided by the OAuth2
service uniquely identifies the application trying to access any protected
resources.
Licensed to <null>

338 APPENDIX B OAuth2 grant types
Figure B.1 The OAuth2 service determines if the user accessing the service is an authenticated user.

2 The user logs into EagleEye and provides their login credentials to the Eagle-
Eye application. EagleEye passes the user credentials, along with the applica-
tion name/application secret key, directly to the EagleEye OAuth2 service.

3 The EagleEye OAuth2 service authenticates the application and the user and
then provides an OAuth2 access token back to the user.

4 Every time the EagleEye application calls a service on behalf of the user, it
passes along the access token provided by the OAuth2 server.

5 When a protected service is called (in this case, the licensing and organiza-
tion service), the service calls back into the EagleEye OAuth2 service to vali-
date the token. If the token is good, the service being invoked allows the user
to proceed. If the token is invalid, the OAuth2 service returns back an HTTP
status code of 403, indicating that the token is invalid.

B.2 Client credential grants
The client credentials grant is typically used when an application needs to access an
OAuth2 protected resource, but no human being is involved in the transaction. With
the client credentials grant type, the OAuth2 server only authenticates based on appli-
cation name and the secret key provided by the owner of the resource. Again, the cli-
ent credential task is usually used when both applications are owned by the same
company. The difference between the password grant and the client credential grant
is that a client credential grant authenticates by only using the registered application
name and the secret key.

User EagleEye
application

OAuth2
service

Application
owner

1. Application owner registers
 application name with OAuth2
 service, which provides a
 secret key

2. User logs into EagleEye, which
 passes user credentials with
 application name and key to
 OAuth2 service

3. OAuth2 authenticates user
 and application and provides
 access token

4. EagleEye attaches access
token to any service calls
from user

5. Protected services
 call OAuth2 to validate
 access token

Licensing services

Organization service
Licensed to <null>

339Authorization code grants
 For example, let’s say that once an hour the EagleEye application has a data analyt-
ics job that runs. As part of its work, it makes calls out to EagleEye services. However,
the EagleEye developers still want that application to authenticate and authorize itself
before it can access the data in those services. This is where the client credential grant
can be used. Figure B.2 shows this flow.

Figure B.2 The client credential grant is for “no-user-involved” application authentication and
authorization.

1 The resource owner registers the EagleEye data analytics application with the
OAuth2 service. The resource owner will provide the application name and
receive back a secret key.

2 When the EagleEye data analytics job runs, it will present its application name
and secret key provided by the resource owner.

3 The EagleEye OAuth2 service will authenticate the application using the appli-
cation name and the secret key provided and then return back an OAuth2
access token.

4 Every time the application calls one of the EagleEye services, it will present the
OAuth2 access token it received with the service call.

B.3 Authorization code grants
The authorization code grant is by far the most complicated of the OAuth2 grants,
but it’s also the most common flow used because it allows different applications from
different vendors to share data and services without having to expose a user’s

EagleEye data
analytics application

OAuth2
service

Application
owner

1. Application owner registers
 data analytics job
 with OAuth2

3. OAuth2 authenticates
 application and provides
 access token

2. When the data analytics
 job runs, EagleEye passes
 application name and key
 to OAuth2

4. EagleEye attaches access
 token to any service calls

Licensing services

Organization service
Licensed to <null>

340 APPENDIX B OAuth2 grant types
credentials across multiple applications. It also enforces an extra layer of checking by
not letting a calling application immediately get an OAuth2 access token, but rather a
“pre-access” authorization code.

 The easy way to understand the authorization grant is through an example. Let’s
say you have an EagleEye user who also uses Salesforce.com. The EagleEye customer’s
IT department has built a Salesforce application that needs data from an EagleEye ser-
vice (the organization service). Let’s walk through figure B.3 and see how the authori-
zation code grant flow works to allow Salesforce to access data from the EagleEye
organization service, without the EagleEye customer ever having to expose their
EagleEye credentials to Salesforce.

Figure B.3 The authentication code grant allows applications to share data without exposing user credentials.

1 The EagleEye user logs in to EagleEye and generates an application name and
application secret key for their Salesforce application. As part of the registra-
tion process, they’ll also provide a callback URL back to their Salesforce-based
application. This callback URL is a Salesforce URL that will be called after the
EagleEye OAuth2 server has authenticated the user’s EagleEye credentials.

User UserSalesforce.com

EagleEye OAuth2
login screen

OAuth2
service

1. EagleEye user registers Salesforce
 application with OAuth2, obtains
 secret key and a callback URL to
 return users from EagleEye login
 to Salesforce.com.

2. User configures Salesforce app
with name, secret key, and a
URL for the EagleEye OAuth2
login page.

4. Salesforce app passes
 authorization code along
 with secret key to OAuth2
 and obtains access token.

5. Salesforce app attaches
 access token to any
 service calls.

6. Protected services
 call OAuth2 to validate
 access token.

3. Potential Salesforce app users now
 directed to EagleEye login page;
 authenticated users return to
 Salesforce.com through callback
 URL (with authorization code).

Organization service
Licensed to <null>

341Implicit grant
2 The user configures their Salesforce application with the following information:

– Their application name they created for Salesforce
– The secret key they generated for Salesforce
– A URL that points to the EagleEye OAuth2 login page
– Now when the user tries to use their Salesforce application and access their

EagleEye data via the organization service, they’ll be redirected over to the
EagleEye login page via the URL described in the previous bullet point. The
user will provide their EagleEye credentials. If they’ve provided valid EagleEye
credentials, the EagleEye OAuth2 server will generate an authorization code
and redirect the user back to SalesForce via the URL provided in number 1.
The authorization code will be sent as a query parameter on the callback URL.

3 The custom Salesforce application will persist this authorization code. Note:
this authorization code isn’t an OAuth2 access token.

4 Once the authorization code has been stored, the custom Salesforce applica-
tion can present the Salesforce application the secret key they generated during
the registration process and the authorization code back to EagleEye OAuth2
server. The EagleEye OAuth2 server will validate that the authorization code is
valid and then return back an OAuth2 token to the custom Salesforce applica-
tion. This authorization code is used every time the custom Salesforce needs to
authenticate the user and get an OAuth2 access token.

5 The Salesforce application will call the EagleEye organization service, passing
an OAuth2 token in the header.

6 The organization service will validate the OAuth2 access token passed in to the
EagleEye service call with the EagleEye OAuth2 service. If the token is valid, the
organization service will process the user’s request.

Wow! I need to come up for air. Application-to-application integration is convoluted.
The key to note from this entire process is that even though the user is logged into
Salesforce and they’re accessing EagleEye data, at no time were the user’s EagleEye
credentials directly exposed to Salesforce. After the initial authorization code was gen-
erated and provided by the EagleEye OAuth2 service, the user never had to provide
their credentials back to the EagleEye service.

B.4 Implicit grant
The authorization grant is used when you’re running a web application through a tra-
ditional server-side web programming environment like Java or .NET. What happens if
your client application is a pure JavaScript application or a mobile application that
runs completely in a web browser and doesn’t rely on server-side calls to invoke third-
party services?

 This is where the last grant type, the implicit grant, comes into play. Figure B.4
shows the general flow of what occurs in the implicit grant.
Licensed to <null>

342 APPENDIX B OAuth2 grant types
Figure B.4 The implicit grant is used in a browser-based Single-Page Application (SPA) JavaScript application.

With an implicit grant, you’re usually working with a pure JavaScript application run-
ning completely inside of the browser. In the other flows, the client is communicating
with an application server that’s carrying out the user’s requests and the application
server is interacting with any downstream services. With an implicit grant type, all the
service interaction happens directly from the user’s client (usually a web browser). In
figure B.4, the following activities are taking place:

1 The owner of the JavaScript application has registered the application with the
EagleEye OAuth2 server. They’ve provided an application name and also a call-
back URL that will be redirected with the OAuth2 access token for the user.

2 The JavaScript application will call to the OAuth2 service. The JavaScript appli-
cation must present a pre-registered application name. The OAuth2 server will
force the user to authenticate.

3 If the user successfully authenticates, the EagleEye OAuth2 service won’t return
a token, but instead redirect the user back to a page the owner of the JavaScript
application registered in step one. In the URL being redirected back to, the
OAuth2 access token will be passed as a query parameter by the OAuth2 authen-
tication service.

4 The application will take the incoming request and run a JavaScript script that
will parse the OAuth2 access token and store it (usually as a cookie).

User Javascript/mobile
application

http://javascript/app/callbackuri?token=gt325sdfs

EagleEye
OAuth2 service

Javascript
application

owner

1. JavaScript application
 owner registers
 application name
 and a callback URL.

2. Application user
forced to authenticate
by OAuth2 service.

3. OAuth2 redirects
 authenticated user
 to the callback URL
 (with access token
 as query parameter).

4. JavaScript app
 parses and stores
 the access token.

4. JavaScript app attaches access
token to any service calls.

5. Protected services call OAuth2
 to validate access token.

Licensing services

Organization service
Licensed to <null>

343How tokens are refreshed
5 Every time a protected resource is called, the OAuth2 access token is presented
to the calling service.

6 The calling service will validate the OAuth2 token and check that the user is
authorized to do the activity they’re attempting to do.

Keep several things in mind regarding the OAuth2 implicit grant:

 The implicit grant is the only grant type where the OAuth2 access token is
directly exposed to a public client (web browser). In the authorization grant,
the client application gets an authorization code returned back to the applica-
tion server hosting the application. With an authorization code grant, the user
is granted an OAuth2 access by presenting the authorization code. The
returned OAuth2 token is never directly exposed to the user’s browser.

In the client credentials grant, the grant occurs between two server-based
applications. In the password grant, both the application making the request for
a service and the services are trusted and are owned by the same organization.

 OAuth2 tokens generated by the implicit grant are more vulnerable to attack
and misuse because the tokens are made available to the browser. Any malicious
JavaScript running in the browser can get access to the OAuth2 access token
and call the services you retrieved the OAuth2 token for on your behalf and
essentially impersonate you.

 The implicit grant type OAuth2 tokens should be short-lived (1-2 hours).
Because the OAuth2 access token is stored in the browser, the OAuth2 spec (and
Spring Cloud security) doesn’t support the concept of a refresh token in which
a token can be automatically renewed.

B.5 How tokens are refreshed
When an OAuth2 access token is issued, it has a limited amount of time that it’s valid
and will eventually expire. When the token expires, the calling application (and user)
will need to re-authenticate with the OAuth2 service. However, in most of the Oauth2
grant flows, the OAuth2 server will issue both an access token and a refresh token. A
client can present the refresh token to the OAuth2 authentication service and the ser-
vice will validate the refresh token and then issue a new OAuth2 access token. Let’s
look at figure B.5 and walk through the refresh token flow:

1 The user has logged into EagleEye and is already authenticated with the Eagle-
Eye OAuth2 service. The user is happily working, but unfortunately their token
has expired.

2 The next time the user tries to call a service (say the organization service), the
EagleEye application will pass the expired token to the organization service.

3 The organization service will try to validate the token with the OAuth2 service,
which return an HTTP status code 401 (unauthorized) and a JSON payload
Licensed to <null>

344 APPENDIX B OAuth2 grant types
indicating that the token is no longer valid. The organization service will return
an HTTP 401 status code back to the calling service.

4 The EagleEye application gets the 401 HTTP status code and the JSON payload
indicating the reason the call failed back from the organization service. The
EagleEye application will then call the OAuth2 authentication service with the
refresh token. The OAuth2 authentication service will validate the refresh token
and then send back a new access token.

User EagleEye
application

OAuth2
service

1. User is already logged into
 application when their
 access token expires.

4. Application calls OAuth2
 with refresh token and
 receives new access token.

2. Application attaches expired
 token to next service call (to
 organization service).

3. Organization service calls OAuth2, gets
 response that token is no longer valid,
 passes response back to application.

Organization service

Figure B.5 The refresh token flow allows an application to get a new access token without
forcing the user to re-authenticate.
Licensed to <null>

index
A

abstract access 65
access tokens, OAuth2 210–212
access_token attribute 203, 321
accounts, creating in Papertrail 267–268
Amazon ECS (Elastic Container Service)

creating clusters 298–302
manually deploying Eagle Eye services to
303–305
starting services in 323

Amazon ElastiCache Service 296–298
Amazon RDS (Relational Database Service)

293–296
Amazon Web Services. See AWS
annotation, Spring Cloud 157–158
antMatcher() method 209
Apache Avro protocol 50
Apache Maven 45, 328, 330–333
Apache Thrift 50
APIs (application program interfaces) 225–226
Application class 48
applications 194
architecture

of build/deployment pipeline 305–308
of configuration management 67–69
of microservices 38–44
of service discovery 100–102
of Spring Cloud Stream 237–238

binder 238
channel 238
sink 238
source 238

attack surface, of microservices 226–227
auditing 319

authenticated users
overview 202–205
protecting service by 207–209

authentication service
modifying to issue JWT 214–217
setting up for EagleEye OAuth2 194–197

authenticationManagerBean() method 201
AuthenticationServerConfigurer class 198
authorization 156, 197
authorization code grants 339–341
authorizedGrantTypes() method 199
@Autowired annotation 114, 182
AWS (Amazon Web Services) 292
AWS_ACCESS_KEY variable 316
AWS_SECRET_KEY variable 317

B

@Bean tag 48
before_install attribute 318, 320
binders 238
Bitbucket 74
Bootstrap classes

setting up in Spring Cloud Config 74–75
writing 47–48

bootstrapping services, managing 58–59
branches.only attribute 316
brittleness, between services 232
$BUILD_NAME variable 303
build/deployment patterns, microservices 25–26
build/deployment pipeline

architecture of 305–308
implementing with GitHub 311–312
implementing with Travis CI 311–312
in action 309–311
345

Licensed to <null>

INDEX346
buildFallbackLicenseList() method 134
bulkhead pattern

implementing 136–138
overview 122–123

C

CaaS (Container as a Service) 15, 17
cache, clearing when message is received

257–258
cache.directories attribute 315
cacheOrganizationObject() method 255
caching lookups with Redis 250–256

configuring licensing service with Spring Data
Redis dependencies 250

constructing database connection to Redis
server 250–251

defining Spring Data Redis repositories
251–253

using Redis and licensing service to store and
read organization data 253–256

call() method 150
Callable class 149–150
capturing messaging traces 282–284
CD (Continuous Delivery) 306
channels

custom, defining 256–257
overview 238

checkRedisCache() method 255, 284
choreography, of messages 235
CI (Continuous Integration) 305
circuit breaker pattern, implementing 128–133

customizing timeout 132–133
timing out call to organization

microservices 131–132
circuitBreaker.errorThresholdPercentage

property 141, 143
circuitBreaker.requestVolumeThreshold

property 141, 143
circuitBreaker.sleepWindowInMilliseconds

property 141, 143
classes

bootstrap 74
HystrixConcurrencyStrategy, define

custom 147–149
Java callable 149–150

client applications, registering with OAuth2
service 197–200

client credential grants 338–339
client resiliency patterns

bulkhead 122–123
circuit breaker 122
client-side load balancing 121–122
fallback 122

microservices 21–23
overview 120–123
with Netflix Hystrix 119, 126–152

fallback processing 133–135
fine-tuning 138–143
implementing bulkhead pattern 136–138
implementing circuit breaker 128–133
setting up licensing servers to use 127–128
thread context and 144–152

with Spring Cloud 119–152
fallback processing 133–135
implementing bulkhead pattern 136–138
setting up licensing servers to use 127–128

client resiliency, why it matters 123–126
client-side load balancing 22, 96, 102–104,

121–122
ClientDetailsServiceConfigurer class 199
ClientHttpRequestInterceptor 219
clientType parameter 111
cloud

defined 13–14
microservices and 15–17
running on desktop 327–335

building Docker images 331–333
building projects 330–331
compiling projects 330–331
downloading projects from GitHub 329–330
launching services with Docker

Compose 333–335
required software 328

service discovery in 100–104
architecture of 100–102
using Netflix Eureka 103–104
using Spring 103–104

cloud caching 249
cloud-based applications 1–34

building 12–13
microservices 17–26

build/deployment patterns 25–26
building with Spring Boot 8–12
client resiliency patterns 21–23
core development patterns 19–20
logging and tracing patterns 24
overview 2–5
routing patterns 20–21
security patterns 23

Spring
microservices and 5–6
overview 5–6

Spring Boot, building microservices with 8–12
cloud-based microservices 15–17

Spring Cloud, building with 26–30
Netflix Hystrix libraries 29
Netflix Ribbon libraries 29
Licensed to <null>

INDEX 347
Netflix Zuul service gateway 29
provisioning implementations 30
Spring Boot 28
Spring Cloud Config 28
Spring Cloud Security 30
Spring Cloud service discovery 28
Spring Cloud Sleuth 29–30
Spring Cloud Stream 29

CloudFormation 302
clusters

in Amazon ECS 298–302
Redis 296–298

coarse-grained microservices 42
@Column attribute 84
commandPoolProperties attribute 140, 143
commandProperties attribute 132, 142, 144
commands, Netflix Hystrix 149–150
communication protocols 20
complexity, managing 65–70
configuration

building Spring Cloud configuration
servers 70–77
setting up Spring Cloud Config bootstrap

class 74–75
using Spring Cloud configuration server with

filesystem 75–77
controlling with Spring Cloud configuration

server 64–95
integrating Spring Cloud Config with Spring

Boot client 77–89
managing complexity 65–70
managing configuration 65–70

licensing services to use Spring Cloud Config 79
licensing services with Spring Data Redis 250
management

architecture 67–69
implementing 69–70

microservices 93–94
Netflix Zuul 158–159
of core run-time, in Travis CI 315–317
of microservices, managing 58–59
of Netflix Hystrix 142–143
protecting sensitive information 89–94

configuring microservices to use encryption
on client side 93–94

decrypting property 91–93
downloading Oracle JCE jars for

encryption 90
encrypting property 91–93
installing Oracle JCE jars for encryption 90
setting up encryption keys 91

routes
dynamic reloading 168
in Netflix Zuul 159–169

service to point to OAuth2 authentication
service 206–207

services, to point to Zipkin 275–276
Spring Cloud 150–152
syslog connector 267–268
Zipkin server 276–277

configuration servers
Spring Cloud

building 70–77
controlling configuration with 64–95
refreshing properties using 88
using with Git 87–88
wiring in data source using 83–86

@Configuration tag 48
configure() method 198–199, 201, 207, 209, 222
consistency 45
Consul 28, 69
Container as a Service. See CaaS
Continuous Delivery. See CD
Continuous Integration. See CI
Controller class 48
Cookie header parameter 90
core run-time configuration, in Travis CI 315–317
coreSize attribute 137–138
correlation IDs

adding to HTTP response with Netflix
Zuul 272–274

building post-filter receiving 182–184
building pre-filter generating 173–182
Spring Cloud Sleuth and 260–263
using in service calls 176–182

custom RestTemplate to ensure correlation ID
propogates forward 181–182

UserContext to make HTTP headers easily
accessible 179–180

UserContextFilter to intercept incoming
HTTP requests 178–179

UserContextInteceptor to ensure correlation
ID propogates forward 181–182

coupling
loose 233–234
tight between services 231–232

credential management 23
CRM (customer relationship management) 2, 36
cross-cutting concerns 170
CRUD (Create, Read, Update, Delete) 43, 253
CrudRepository class 85
custom fields, parsing out of JWT 222–224
custom spans, adding 284–287
customizing timeout on circuit breaker 132–133

D

D parameters 82
data source, wiring in using Spring Cloud 83–86
Licensed to <null>

INDEX348
data transformations 45
database, constructing connection to Redis

server 250–251
debugging 305
decomposing business problems 38–40
/decrypt endpoint 92
decrypting property 91–93
@DefaultProperties annotation 142
DelegatingUserContextCallable 149–150
DelegatingUserContextCallable class 150
dependencies

server, settting up 79
Spring Cloud Sleuth 275
Spring Data Redis 250

deploying
EagleEye 303–305
microservices 288

architecture of build/deployment
pipeline 305–308

build/deployment pipeline in action
309–311

enabling service to build in Travis CI 312–325
implementing build/deployment

pipeline 311–312
with EagleEye 290–305

service assembly 56–58
desktops, running cloud on 327–335

building Docker images 331–333
building projects 330–331
compiling projects 330–331
downloading projects from GitHub 329–330
launching services with Docker Compose

333–335
required software 328

development patterns, microservices 19–20
DevOps (developer operations) 290
DevOps engineer 38, 63
discovery, of services 59–60, 96–118

architecture of 100–102
automated mapping of routes using 159–160
building Spring Eureka service 105–107
in cloud 100–104
locating services 97–99
manual mapping of routes using 161–165
registering services with Spring-based Eureka

server 107–110
using Netflix Eureka 103–104
using Spring 103–104
using to look up service 111–118

DiscoveryClient, looking up service instances
with 112–114

distributed caching 249–258
clearing cache when message is received

257–258

defining custom channels 256–257
using Redis to cache lookups 250–256

configuring licensing service with Spring Data
Redis dependencies 250

constructing database connection to Redis
server 250–251

defining Spring Data Redis repositories
251–253

using Redis and licensing service to store and
read organization data 253–256

distributed systems, complexity of building 44
distributed tracing

with Spring Cloud Sleuth 259–287
correlation ID and 260–263
log aggregation and 263–274

with Zipkin 259, 274–287
adding custom spans 284–287
capturing messaging traces 282–284
configuring server 276–277
configuring services to point to 275–276
installing server 276–277
integrating Spring Cloud Sleuth

dependencies 275
setting tracing levels 278
tracing transactions 278–280
visualizing complex transactions 281–282

DNS (Domain Name Service) 97
Docker

creating images, in Travis CI 321–322
images, building 331–333
output, redirecting to Papertrail 268–269

Docker Compose, launching services with
333–335

Docker Hub, pushing images to 322–323
Docker Maven plugin 328, 331
docker ps command 305
DOCKER_PASSWORD variable 316
DOCKER_USERNAME variable 316
docker-compose command 334
docker-compose.yml 334
docker.sock 268
downloading projects from GitHub 329–330
durability 234
dynamic reloading, route configuration 168
dynamic route filters, building 184–191

forwarding route 188–189
implementing run() method 187–188
skeleton of 186

dynamic routing 156

E

EagleEye 290–302
configuring users 200–202
creating an Amazon ECS clusters 298–302
Licensed to <null>

INDEX 349
creating PostgreSQL database using Amazon
RDS 293–296

creating Redis cluster in Amazon ElastiCache
Service 296–298

deploying 302–305
setting up OAuth2 authentication service

196–197
EBS (Elastic Block Storage) 299
ECS (Elastic Container Service) 15
ecs-cli command 303, 316–317
ecs-cli configure command 303
ecs-cli ps command 304
ecsInstanceRole 301
EDA (Event Driven Architecture) 229
ELB (Enterprise Load Balancer) 319
@EnableAuthorizationServer annotation 197
@EnableBinding annotation 240, 245–246
@EnableCircuitBreaker annotation 31, 128
@EnableDiscoveryClient annotation 112–114, 117
@EnableEurekaClient annotation 31
@EnableFeignClients annotation 112, 116
@EnableResourceServer annotation 206
@EnableZipkinServer annotation 276–277
@EnableZipkinStreamServer annotation

276–277
@EnableZuulProxy annotation 158
@EnableZuulServer annotation 158
/encrypt endpoint 91
ENCRYPT_KEY environment variable 91
encrypted variables 317
encrypting

configuring microservices to use on client
side 93–94

downloading Oracle JCE jars 90
installing Oracle JCE jars 90
property 91–93
setting up keys 91

encryption keys, setting up 91
endpoints, protecting 195–205

authenticating users 202–205
configuring EagleEye users 200–202
registering client applications with OAuth2

service 197–200
setting up EagleEye OAuth2 authentication

service 196–197
@Entity annotation 84
environment tag 334
environment variables 81
Etcd 69
Eureka 28, 69
eureka.client.fetchRegistry attribute 106, 108
eureka.client.registerWithEureka attribute 106,

108
eureka.instance.preferIpAddress property 108

eureka.serviceUrl.defaultZone attribute 109
event processing 20
event-driven architecture, with Spring Cloud

Stream 228–258
architecture 237–238
distributed caching 249–258
downsides of messaging architecture 235
using messaging to communicate state changes

between services 233–234
using synchronous request-response approach

to communicate state change 230–232
writing message consumer 238–249
writing message producer 238–249

execution.isolation.thread.timeoutInMilliseconds
property 132

expires_in attribute 204
extending JWT (JavasScript Web Tokens)

220–222

F

F5 load balancer 97
FaaS (Functions as a Service) 15
fallback pattern 122
fallback strategy, processing 133–135
fallbackMethod 134, 143
@FeignClient annotation 117
fields, parsing out of JWT 222–224
filesystem, using with Spring Cloud configuration

servers 75–77
filterOrder() method 175
filters

building 157
generating correlation IDs 173–182
in Netflix Zuul 169–173
receiving correlation IDs 182–184

filterType() method 174–175, 186
FilterUtils class 174–175
fine-grained microservices 42
flexibility 234
forwardToSpecialRoute() method 187–189

G

geographic distribution 16
GET HTTP endpoint 10
getAbRoutingInfo() method 187
getCorrelationId() method 175–176
getInstances() method 114
getLicense() method 86, 112
getLicenses() method 51
getLicensesByOrg() method 130, 137, 146
getOrg() method 285
getOrganization() method 117, 255
Licensed to <null>

INDEX350
getOrganizationId() function 223
getOrgDbCall 285
Git, using with Spring Cloud configuration

servers 87–88
GitHub

downloading projects from 329–330
implementing build/deployment pipeline

with 311–312
GITHUB_TOKEN variable 317, 321
Gradle 10
grants, in OAuth2 336–344

authorization code grants 339–341
client credential grants 338–339
implicit grants 341–343
password grants 337–338

Groovy 10

H

HAProxy 97
health, of microservices 60–62
helloRemoteServiceCall method 31–32
horizontal scalability 16, 99
HTTP headers 179–180
HTTP requests 178–179
HTTP response 272–274
HTTP status codes 43
HTTPs, using for service communication 224
HttpSecurity class 207
hystrix-javanica dependencies 127
@HystrixCommand annotation 32, 129–135,

137–138, 140, 142–144, 149–150
HystrixConcurrencyStrategy 147–152

configure Spring Cloud to use 150–152
define custom classes 147–149
define Java callable classes to inject usercontext

into Hystrix commands 149–150
HystrixRuntimeException 135

I

IaaS (Infrastructure as a Service) 13–14, 17
@Id annotation 84
IETF (Internet Engineering Task Force) 213
ignored-services attribute 163–164
images

building in Docker 331–333
creating in Travis CI 321–322
pushing to Docker Hub 322–323

immutable servers 25, 308
implicit grants 341–343
inbound port access 99
inboundOrgChanges 256
individual services 205

infection-style protocol 102
infrastructure 25
init() method 151
@Input annotation 256
installing Zipkin server 276–277
integrating

Spring Cloud Config with Spring Boot
client 77–89
configuring licensing service to use Spring

Cloud Config 79–82
directly reading properties using @Value

annotation 86–87
refreshing properties using Spring Cloud

configuration server 88
setting up licensing service Spring Cloud

Config server dependencies 79
using Spring Cloud configuration server with

Git 87–88
wiring in data source using Spring Cloud

configuration server 83–86
Spring Cloud Sleuth dependencies with

Zipkin 275
integration tests 307
intercepting incoming HTTP requests 178–179
interface design 20
invoking services

with Netflix Feign client 116–118
with Ribbon-aware Spring RestTemplate

114–116

J

J2EE stack 6
Java

building microservices with 45–53
skeleton projects 46–47
Spring Boot controller 48–53
writing Bootstrap class 47–48

define callable class to inject usercontext into
Hystrix commands 149–150

java.lang.ThreadLocal 179
JCE (Java Cryptography Extension) 90
JedisConnectionFactory 250
JPA (Java Persistence Annotations) 84
JSON (JavaScript Object Notation) 5, 20
JWT (JavasScript Web Tokens)

consuming in microservices 218–220
extending 220–222
modifying authentication service to issue

214–217
OAuth2 and 213–224
parsing custom field out of 222–224

jwtAccessTokenConverter() method 215
JWTOAuth2Config class 216, 222
JWTTokenStoreConfig class 215, 218, 221
Licensed to <null>

INDEX 351
L

License class 51, 84
license.withComment() method 86
LicenseRepository class 84–85
LicenseService class 84–86
LicenseService.getLicensesByOrder()

method 147
LicenseServiceController class 111
licensestatic endpoint 166
licensing services

configuring to use Spring Cloud Config
79–82

configuring with Spring Data Redis 250
server dependencies 79
setting up to use Netflix Hystrix 127–128
setting up to use Spring Cloud 127–128
using with Redis to store and read organization

data 253–256
writing message consumer in 244–247

licensing, adding Spring Cloud Sleuth to 261–263
licensingGroup 247
LinkedBlockingQueue 138
locating services 97–99
locking unneeded network ports 226–227
log aggregation, Spring Cloud Sleuth and

263–274
adding correlation ID to HTTP response with

Netflix Zuul 272–274
configuring syslog connector 267–268
creating Papertrail account 267–268
implementing Papertrail 265–266
implementing Spring Cloud Sleuth 265–266
redirecting Docker output to Papertrail

268–269
searching for Spring Cloud Sleuth trace IDs in

Papertrail 270
log correlation 24
loggerSink() method 246
logging 156
logging and tracing patterns, microservices 24
logging driver, Docker 270
lookups, caching with Redis 250–256

configuring licensing service with Spring Data
Redis dependencies 250

constructing database connection to Redis
server 250–251

defining Spring Data Redis repositories
251–253

using Redis and licensing service to store and
read organization data 253–256

loose coupling 233–234

M

main() method 48, 74
mapping routes

automated using service discovery 159–160
manual using service discovery 161–165
manual using static URLs 165–167

Maven BOM (Bill of Materials) 71
maxQueueSize attribute 138
maxQueueSize property 138, 143
MDA (Message Driven Architecture) 229
Mercurial 311
message handling, semantics of 235
message services 247–249
MessageChannel class 241
messages

choreography of 235
clearing cache when received 257–258
visibility of 235
writing consumer 238–249

in licensing service 244–247
message services in action 247–249

writing producer 238–249
in organization service 239–243
message services in action 247–249

messaging architecture, disadvantages of 235
messaging traces, capturing 282–284
messaging, communicating state changes between

services with 233–234
durability 234
flexibility 234
loose coupling 233–234
scalability 234

metric collection 156
metrics.rollingStats.numBuckets property 141
metrics.rollingStats.timeInMilliseconds

property 141
metricsRollingStats.numBuckets property 143
metricsRollingStats.timeInMilliseconds

property 143
microservices 17–26

accessing with services gateway 225
build/deployment patterns 25–26
building in Travis CI 321–322
building with Spring Boot 8–12
client resiliency patterns 21–23
cloud and 15–17
communicating health of 60–62
configuring to use encryption on client side

93–94
consuming JWT in 218–220
core development patterns 19–20
deploying 288

architecture of build/deployment
pipeline 305–308
Licensed to <null>

INDEX352
microservices (continued)
build/deployment pipeline in action

309–311
enabling service to build in Travis CI 312–325
implementing build/deployment

pipeline 311–312
with EagleEye 290–305

Java, building with 45–53
skeleton projects 46–47
Spring Boot controller 48–53
writing Bootstrap class 47–48

limiting attack surface by locking down
unneeded network ports 226–227

logging and tracing patterns 24
managing configuration of 58–59
overview 2–5
protecting single endpoint 195–205
routing patterns 20–21
securing

JWT and OAuth2 213–224
organization service using OAuth2 205–212
with OAuth2 193–195

security patterns 23
Spring Boot, building with 35, 45–63

designing microservice architecture 38–44
for runtime 53–62
skeleton projects 46–47
Spring Boot controller 48–53
writing Bootstrap class 47–48

timing out call to 131–132
when not to use 44–45

complexity of building distributed systems 44
consistency 45
data transformations 45
server sprawl 44
types of applications 44

mvn spring-boot:run command 76

N

NAS (Network Area Storage) 123
nc command 332
Netflix Eureka

building service using Spring Boot 105–107
configuring Netflix Zuul to communicate

with 158–159
registering services with Spring-based

server 107–110
service discovery using 103–104

Netflix Feign 116–118
Netflix Hystrix

and Spring Cloud 119–152
client resiliency patterns with 126–127

fallback processing 133–135

fine-tuning 138–143
implementing bulkhead pattern 136–138
implementing circuit breaker 128–133
setting up licensing servers to use 127–128
thread context and 144–152

commands 149–150
configuration of 142–143
thread context and 144–152

HystrixConcurrencyStrategy 147–152
ThreadLocal 144–147

Netflix Ribbon 29, 114–116
Netflix Zuul

adding correlation ID to HTTP response
with 272–274

building pre-filter generating correlation
IDs 173–182

configuring routes in 159–169
automated mapping routes via service

discovery 159–160
dynamically reload route configuration 168
manual mapping of routes using static

URLs 165–167
mapping routes manually using service

discovery 161–165
service timeouts and 169

configuring to communicate with Netflix
Eureka 158–159

filters 169–173
service routing with 153–157, 159–191

building dynamic route filter 184–191
building post-filter receiving correlation

IDs 182–184
services gateways 154–156

setting up Spring Boot project 157
using Spring Cloud annotation for

services 157–158
network ports, locking to limit microservices attack

surface 226–227
notifications attribute 316

O

OAuth2
adding jars to individual services 205
grant types 336–344

authorization code 339–341
client credential 338–339
implicit 341–343
password 337–338

JWT and 213–224
consuming JWT in microservices 218–220
extending JWT 220–222
modifying authentication service to issue

JWT 214–217
Licensed to <null>

INDEX 353
parsing custom field out of JWT 222–224
propagating access tokens 210–212
protecting organization service with 205–212

adding OAuth2 jars to individual services 205
adding Spring Security to individual

services 205
configuring service to point to OAuth2

authentication service 206–207
defining what can access services 207–210
defining who can access services 207–210
propagating OAuth2 access tokens 210–212

protecting single endpoint with 195–205
authenticating users 202–205
configuring EagleEye users 200–202
registering client applications with OAuth2

service 197–200
setting up EagleEye authentication

service 196–197
refreshing tokens 343–344
registering client applications with service

197–200
securing microservices with 193–195
setting up EagleEye authentication service

196–197
OAuth2Config class 198–199, 201, 215
ODS (operational data store) 134
Oracle JCE (Java Cryptography Extension)

downloading jars for encryption 90
installing jars for encryption 90

organization data 253–256
organization ID 242
organization services

inflexible in adding new consumers to changes
in 232

protecting 205–212
writing message producer in 239–243

OrganizationChangeHandler class 257
OrganizationChangeModel class 242
organizationId parameter 117
OrganizationRedisRepository interface 252
OrganizationRedisRepositoryImpl 253
organizationservice 159–160
orgChangeTopic 245, 283
outbound port access 99
output, redirecting to Papertrail 268–269
output() method 241

P

PaaS (Platform as a Service) 13–14, 17
packaging service assembly 56–58
Papertrail 29

creating account 267–268
implementing 265–266

redirecting Docker output to 268–269
searching for Spring Cloud Sleuth trace IDs

in 270
parsing custom fields out of JWT 222–224
password grants 337–338
@PathVariable annotation 51, 117
patterns

bulkhead 122–123, 136–138
circuit breaker 122, 128, 131–133
client resiliency

bulkhead 122–123
circuit breaker 122
client-side load balancing 121–122
fallback 122
overview 120–123
with Netflix Hystrix 119, 126–152
with Spring Cloud 119, 127–128, 133–152

client-side load balancing 121–122
fallback 122

PCI (Payment Card Industry) 99, 224
peer-to-peer model 101
PEP (policy enforcement point) 154–155, 225
Phoenix servers 25, 308
physical server 15
pipelines, build/deployment

architecture of 305–308
implementing with GitHub 311–312
implementing with Travis CI 311–312
in action 309–311

Platform as a Service. See PaaS
platform tests 308, 323–325
PLATFORM_TEST_NAME variable 319
port tag 334
post-filter, building to receive correlation IDs

182–184
Postgres database 72, 77, 80, 82–84, 91
PostgreSQL database, creating with Amazon

RDS 293–296
POSTMAN 12
pre-build tools, in Travis CI 318–319
pre-filter, for generating correlation IDs 173–182
preferIpAddress attribute 108
private APIs, zoning services into 225–226
propagating OAuth2 access tokens 210–212
propagation 23
properties

decrypting 91–93
directly reading using @Value annotation

86–87
encrypting 91–93
refreshing using Spring Cloud configuration

servers 88
propogating correlation IDs

with RestTemplate 181–182
withUserContextInteceptor 181–182
Licensed to <null>

INDEX354
protected resource 193
protecting

endpoints 195–205
authenticating users 202–205
configuring EagleEye users 200–202
registering client applications with OAuth2

service 197–200
setting up EagleEye OAuth2 authentication

service 196–197
services

by authenticated users 207–209
via specific role 209–210

protecting organization service, with
OAuth2 205–212

provisioning 30
public APIs, zoning services into 225–226
publishOrgChange() method 242

Q

queueSizeRejectionThreshold attribute 138

R

RabbitMQ 89
reading properties using @Value annotation

86–87
readLicensingDataFromRedis 285
redirecting Docker output to Papertrail 268–269
Redis

constructing database connection to
server 250–251

creating clusters in Amazon ElastiCache
Service 296–298

to cache lookups 250–256
configuring licensing service with Spring Data

Redis dependencies 250
constructing database connection to Redis

server 250–251
defining Spring Data Redis repositories

251–253
using Redis and licensing service to store and

read organization data 253–256
using with licensing service to store and read

organization data 253–256
RedisTemplate 250
/refresh endpoint 89
refresh_token attribute 204, 344
refreshing

properties using Spring Cloud configuration
servers 88

tokens 343–344
@RefreshScope annotation 88–89
registering

client applications 197, 200

services, with Spring-based Eureka server
107–110

registration, of services 59–60
reloading route configuration 168
repositories, Spring Data Redis 251–253
@RequestMapping annotation 51, 117
resource owner 194
ResponseBody class 50
ResponseFilter 173
REST endpoint 77
REST philosophy 43
REST-oriented (Representational State

Transfer) 6
@RestController annotation 50
RestTemplate

Ribbon-aware 114–116
to ensure correlation ID propagates

forward 181–182
restTemplate.exchange() method 116
$RESULTS variable 324
retrieveOrgInfo() method 112
Ribbon project 29
route filters, building dynamic 184–191

forwarding route 188–189
implementing run() method 187–188
skeleton of 186

routes
configuring in Netflix Zuul 159–169

automated mapping routes via service
discovery 159–160

dynamically reload route configuration 168
manual mapping of routes using static

URLs 165–167
mapping routes manually using service

discovery 161–165
service timeouts and 169

forwarding 188–189
mapping

automated using service discovery 159–160
manual using service discovery 161–165
manual using static URLs 165–167

routing patterns, microservices 20–21
run-time configuration, CI 315–317
run() method 174–176, 187
runtime, building microservices for 53–62

communicating microservice health 60–62
service assembly 56–58
service bootstrapping 58–59
service discovery 59–60
service registration 59–60

S

SaaS (Software as a Service) 13–14
Sampler class 278
Licensed to <null>

INDEX 355
scalability 234
Scope attribute 204
scopes() method 199
searching for Spring Cloud Sleuth trace IDs 270
searchLocations attribute 75–76
secret() method 199
Secure Sockets Layer. See SSL
securing microservices 192, 224–227

accessing microservices with services
gateway 225

JWT and OAuth2 213–224
limiting attack surface of microservices 226–227
protecting organization service using

OAuth2 205–212
protecting single endpoint with OAuth2

195–205
protecting single endpoint with Spring

195–205
using HTTPs for service communication 224
using SSL for service communication 224
with OAuth2 193–195
zoning services into public API and private

API 225–226
security patterns, microservices 23
security.oauth2.resource.userInfoUri

property 206
semantics, of message handling 235
SEMAPHORE-based isolation 144
send() method 241–242
sensitive information, protecting 89–94

configuring microservices to use encryption on
client side 93–94

decrypting property 91–93
downloading Oracle JCE jars for encryption 90
encrypting property 91–93
installing Oracle JCE jars for encryption 90
setting up encryption keys 91

server
dependencies 79
Zipkin

configuring 276–277
installing 276–277

server sprawl 44
server.port attribute 106
service assembly

deploying 56–58
packaging 56–58

service bootstrapping, managing configuration of
microservices 58–59

service calls, using correlation IDs in 176–182
custom RestTemplate to ensure correlation ID

propogates forward 181–182
UserContext to make HTTP headers easily

accessible 179–180

UserContextFilter to intercept incoming HTTP
requests 178–179

UserContextInteceptor to ensure correlation ID
propogates forward 181–182

service discovery 96–118
architecture of 100–102
automated mapping of routes using 159–160
building Spring Eureka service 105–107
in cloud 100–104

architecture of 100–102
using Netflix Eureka 103–104
using Spring 103–104

locating services 97–99
manual mapping of routes using 161–165
registering services with Spring-based Eureka

server 107–110
using Netflix Eureka 103–104
using Spring 103–104
using to look up service 111–118

invoking services with Netflix Feign
client 116–118

invoking services with Ribbon-aware Spring
RestTemplate 114–116

looking up service instances with Spring
DiscoveryClient 112–114

service granularity 20, 41–43
service interfaces 43–44
service monitoring 54
service registration 59–60
service routing

with Netflix Zuul 153–157, 159–191
building dynamic route filter 184–191
building post-filter receiving correlation

IDs 182–184
building pre-filter generating correlation

IDs 173–182
configuring routes 159–169
configuring to communicate with Netflix

Eureka 158–159
filters 169–173
services gateways 154–156
setting up Spring Boot project 157
using Spring Cloud annotation for

services 157–158
with Spring Cloud 153–157, 159–191

building dynamic route filter 184–191
building post-filter receiving correlation

IDs 182–184
services gateways 154–156
using annotation for Netflix Zuul

services 157–158
service startups 110
service timeouts 133, 169
ServiceInstance class 114
Licensed to <null>

INDEX356
servicename.ribbon.ReadTimeout property 169
services

brittleness between 232
communicating state changes between with

messaging 233–234
durability 234
flexibility 234
loose coupling 233–234
scalability 234

configuring to point to Zipkin 275–276
defining what has access to

protecting service by authenticated
users 207–209

protecting service via specific role 209–210
defining who has access to 207, 210

protecting service by authenticated
users 207–209

protecting service via specific role 209–210
invoking

with Netflix Feign client 116–118
with Ribbon-aware Spring RestTemplate

114–116
launching with Docker Compose 333–335
locating 97–99
looking up using service discovery 111–118

invoking services with Netflix Feign
client 116–118

invoking services with Ribbon-aware Spring
RestTemplate 114–116

looking up service instances with Spring
DiscoveryClient 112–114

protecting
by authenticated users 207–209
via specific role 209–210

registering with Spring-based Eureka
server 107–110

starting in Amazon ECS 323
tight coupling between 231–232
zoning into public API and private API 225–226

services gateways
accessing microservices with 225
overview 154–156

setContext() method 150
setCorrelationId() method 176
shouldFilter() method 175, 186
Simple Queueing Service. See SQS
SimpleHostRoutingFilter class 189
Single Sign On. See SSO
sinks 238
skeleton projects 46–47
SOAP (Simple Object Access Protocol) 50
Software as a Service. See SaaS
software engineer 63
Source class 241

source control code, tagging in Travis CI 320–321
sources 238
span ID 262
spans, custom 284–287
SpecialRoutes 185
SpecialRoutesFilter 173, 184, 186
SPIA (Single Page Internet Applications) 50
Spring

microservices and 5–6
overview 5–6
protecting single endpoint with 195–205

authenticating users 202–205
configuring EagleEye users 200–202
registering client applications with OAuth2

service 197–200
setting up EagleEye OAuth2 authentication

service 196–197
registering services with Netflix Eureka

server 107–110
service discovery using 103–104

Spring Actuator module 61
Spring Boot

building microservices with 8–12, 35, 45–63
designing architecture 38–44
for runtime 53–62
skeleton projects 46–47
Spring Boot controller 48–53
writing Bootstrap class 47–48

building Netflix Eureka service with 105–107
client 77–89
controller 48–53
setting up Netflix Zuul project 157
when not to use microservices 44–45

complexity of building distributed systems 44
consistency 45
data transformations 45
server sprawl 44
types of applications 44

Spring Cloud
and Netflix Hystrix 119–152
building microservices with 26–30

Netflix Hystrix libraries 29
Netflix Ribbon libraries 29
Netflix Zuul service gateway 29
provisioning implementations 30
Spring Boot 28
Spring Cloud Config 28
Spring Cloud Security 30
Spring Cloud service discovery 28
Spring Cloud Sleuth 29–30
Spring Cloud Stream 29

client resiliency patterns with
fallback processing 133–135
implementing bulkhead pattern 136–138
Licensed to <null>

INDEX 357
setting up licensing servers to use 127–128
configuration servers

building 70–77
controlling configuration with 64–95
refreshing properties using 88
using with filesystem 75–77
using with Git 87–88
wiring in data source using 83–86

configuring to use custom
HystrixConcurrencyStrategy 150–152

service discovery 28
service routing with 153–157, 159–191

building dynamic route filter 184–191
building post-filter receiving correlation

IDs 182–184
services gateways 154–156

using annotation for Netflix Zuul services
157–158

Spring Cloud Config 28
configuring licensing service to use 79–82
integrating with Spring Boot client 77–89

directly reading properties using @Value
annotation 86–87

refreshing properties using Spring Cloud con-
figuration server 88

using Spring Cloud configuration server with
Git 87–88

wiring in data source using Spring Cloud con-
figuration server 83–86

setting up bootstrap classes 74–75
setting up licensing service server

dependencies 79
Spring Cloud Security 30
Spring Cloud Sleuth

adding to licensing 261–263
adding to organization 261–263
anatomy of trace 262–263
correlation ID and 260–263
dependencies 275
distributed tracing with 259–287
implementing 265–266
log aggregation and 263–274

adding correlation ID to HTTP response with
Zuul 272–274

configuring syslog connector 267–268
creating Papertrail account 267–268
implementing Papertrail 265–266
implementing Spring Cloud Sleuth 265–266
redirecting Docker output to Papertrail

268–269
trace IDs 270

Spring Cloud Stream
architecture of 237–238

binder 238

channel 238
sink 238
source 238

event-driven architecture with 228–258
distributed caching 249–258
downsides of messaging architecture 235
using messaging to communicate state

changes between services 233–234
using synchronous request-response approach

to communicate state change 230–232
writing message consumer 238–249
writing message producer 238–249

Spring Data Redis
defining repositories 251–253
dependencies 250

Spring Security, adding to individual services
205

spring-cloud-security dependency 196
spring-cloud-sleuth-zipkin dependency 275
spring-cloud-starter-eureka library 107
spring-cloud-starter-sleuth dependency 272
spring-security-jwt dependency 218
spring-security-oauth2 dependency 196
spring.application.name property 80, 108
spring.cloud.config.uri property 80
spring.cloud.stream.bindings property 246
spring.cloud.stream.bindings.input.group

property 247
spring.datasource.password 92
spring.profiles.active property 80
spring.stream.bindings.kafka property 243
spring.stream.bindings.output property 243
spring.zipkin.baseUrl property 275
@SpringBootApplication annotation 48
SQS (Simple Queueing Service) 236
SSL (Secure Sockets Layer) 39, 224
SSO (Single Sign On) 212
state changes

communicating between services with
messaging 233–234
durability 234
flexibility 234
loose coupling 233–234
scalability 234

communicating with synchronous request-
response approach 230–232
brittleness between services 232
inflexible in adding new consumers to

changes in the organization service 232
tight coupling between services 231–232

static routing 155
static URLs, manual mapping of routes using

165–167
@StreamListener annotation 246, 257
Licensed to <null>

INDEX358
SubscribableChannel class 256
Subversion 311
sudo attribute 316
synchronous request-response approach 230–232

brittleness between services 232
inflexible in adding new consumers to changes

in the organization service 232
tight coupling between services 231–232

SynchronousQueue 138
syslog, configuring connector 267–268

T

@Table annotation 84
tag_name value 321
tagging source control code 320–321
technology-neutral protocol 5
ThoughtMechanix 337
thread context, Netflix Hystrix and 144–152

HystrixConcurrencyStrategy 147–152
ThreadLocal 144–147

THREAD isolation 144
ThreadLocal, Netflix Hystrix and 144–147
ThreadLocalAwareStrategy.java 148
ThreadLocalConfiguration 150
threadPoolKey property 143
threadPoolProperties attribute 137–138, 140
Thrift 20
timeout, customizing on circuit breaker

132–133
tmx-correlation-id header 173, 282
token_type attribute 203
tokens, refreshing 343–344
tokenServices() method 215
tools, installation in Travis CI 318–319
trace ID 262
traceability 319
Tracer class 273, 284
tracing

setting levels 278
transactions with Zipkin 278–280

TrackingFilter class 173, 176, 222
transactions

complex, visualizing 281–282
tracing with Zipkin 278–280

Travis CI 30
enabling service to build in 312–325

building microservices 321–322
core build run-time configuration 315–317
creating Docker images 321–322
executing build 320
invoking platform tests 323–325
pre-build tool installations 318–319
pushing images to Docker Hub 322–323

starting services in Amazon ECS 323
tagging source control code 320–321

implementing build/deployment pipeline
with 311–312

travis.yml file 313
Twelve-Factor Application manifesto 55

U

UDDI (Universal Description, Discovery, and Inte-
gration) repository 96

unit tests 307
URLs (Uniform Resource Locator) 52
UserContext 145, 179–180
usercontext 149–150
UserContext.AUTH_TOKEN 220
UserContextFilter 178–179, 220
UserContextFilter class 178
UserContextHolder class 146
UserContextInteceptor 181–182
UserContextInterceptor class 178, 181, 219
userDetailsServiceBean() method 201
users

authenticated, protecting service by 207–209
authenticating 202–205
of EagleEye, configuring 200–202

useSpecialRoute() method 187–188
utils package 178

V

@Value annotation 86–87
versioning scheme 52
virtual containers 16
virtual machine images 15
visibility, of messages 235
visualizing complex transactions 281–282
VPC (Virtual Private Cloud) 300

W

WebSecurityConfigurerAdapter 201
WebSecurityConfigurerAdapter class 201
WebSphere 66
wiring data source 83–86
withClient() method 199
wrapCallable() method 149
writing Bootstrap classes 47–48

X

XML (Extensible Markup Language) 20
Licensed to <null>

INDEX 359
Z

Zipkin
configuring services to point to 275–276
distributed tracing with 259, 274–287

adding custom spans 284–287
capturing messaging traces 282–284
configuring server 276–277
configuring services to point to 275–276
installing server 276–277
integrating Spring Cloud Sleuth

dependencies 275

setting tracing levels 278
tracing transactions 278–280
visualizing complex transactions

281–282
server

configuring 276–277
installing 276–277

tracing transactions with 278–280
ZooKeeper 69
ZuulFilter class 174–175, 186
ZuulRequestHeaders 176
zuulservice 168
Licensed to <null>

For ordering information go to www.manning.com

Spring in Action, Fourth Edition
Covers Spring 4
by Craig Walls

ISBN: 9781617291203
624 pages, $49.99
November 2014

Spring Boot in Action
by Craig Walls

ISBN: 9781617292545
264 pages, $44.99
December 2015

Java 8 in Action
Lambdas, streams, and functional-style programming
by Raoul-Gabriel Urma, Mario Fusco,

and Alan Mycroft

ISBN: 9781617291999
424 pages, $49.99
August 2014

Reactive Design Patterns
by Roland Kuhn with Brian Hanafee

and Jamie Allen

ISBN: 9781617291807
392 pages, $49.99
February 2017

RELATED MANNING TITLES

Licensed to <null>

https://www.manning.com/books/spring-in-action-fourth-edition
https://www.manning.com/books/spring-boot-in-action
https://www.manning.com/books/java-8-in-action
https://www.manning.com/books/reactive-design-patterns
https://www.manning.com/books/spring-in-action-fourth-edition
https://www.manning.com/books/spring-boot-in-action
https://www.manning.com/books/java-8-in-action
https://www.manning.com/books/reactive-design-patterns

John Carnell

M
icroservices break up your code into small, distrib-
uted, and independent services that require careful
forethought and design. Fortunately, Spring Boot and

Spring Cloud simplify your microservice applications, just as
the Spring Framework simplifi es enterprise Java development.
Spring Boot removes the boilerplate code involved with writing
a REST-based service. Spring Cloud provides a suite of tools
for the discovery, routing, and deployment of microservices to
the enterprise and the cloud.

Spring Microservices in Action teaches you how to build
microservice-based applications using Java and the Spring
platform. You’ll learn to do microservice design as you build
and deploy your fi rst Spring Cloud application. Through-
out the book, carefully selected real-life examples expose
microservice-based patterns for confi guring, routing, scaling,
and deploying your services. You’ll see how Spring’s intuitive
tooling can help augment and refactor existing applications
with microservices.

What’s Inside
● Core microservice design principles
● Managing confi guration with Spring Cloud Confi g
● Client-side resiliency with Spring, Hystrix, and Ribbon
● Intelligent routing using Netfl ix Zuul
● Deploying Spring Cloud applications

This book is written for developers with Java and Spring
experience.

John Carnell is a senior cloud engineer with twenty years of
experience in Java.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

www.manning.com/books/spring-microservices-in-action

$49.99 / Can $65.99 [INCLUDING eBOOK]

Spring Microservices IN ACTION

JAVA

M A N N I N G

“Spring is fast becoming
the framework for

microservices—this book
 shows you why and how.”

—John Guthrie, Dell/EMC

“A complete real-world
bible for any microservices

project in Spring.”
—Mirko Bernardoni, Ixxus

“Thorough and practical ...
with all the special

capabilities of Spring
 thrown in.”—Vipul Gupta, SAP

“Learn how to tame
complex and distributed

system design.
 Highly recommended.”

—Ashwin Raj, Innocepts

SEE INSERT

	Spring Microservices in Action
	brief contents
	contents
	preface
	acknowledgments
	about this book
	You should read this book if
	How this book is organized
	About the code
	Author Online

	about the author
	about the cover illustration
	1 Welcome to the cloud, Spring
	1.1 What’s a microservice?
	1.2 What is Spring and why is it relevant to microservices?
	1.3 What you’ll learn in this book
	1.4 Why is this book relevant to you?
	1.5 Building a microservice with Spring Boot
	1.6 Why change the way we build applications?
	1.7 What exactly is the cloud?
	1.8 Why the cloud and microservices?
	1.9 Microservices are more than writing the code
	1.9.1 Core microservice development pattern
	1.9.2 Microservice routing patterns
	1.9.3 Microservice client resiliency patterns
	1.9.4 Microservice security patterns
	1.9.5 Microservice logging and tracing patterns
	1.9.6 Microservice build/deployment patterns

	1.10 Using Spring Cloud in building your microservices
	1.10.1 Spring Boot
	1.10.2 Spring Cloud Config
	1.10.3 Spring Cloud service discovery
	1.10.4 Spring Cloud/Netflix Hystrix and Ribbon
	1.10.5 Spring Cloud/Netflix Zuul
	1.10.6 Spring Cloud Stream
	1.10.7 Spring Cloud Sleuth
	1.10.8 Spring Cloud Security
	1.10.9 What about provisioning?

	1.11 Spring Cloud by example
	1.12 Making sure our examples are relevant
	1.13 Summary

	2 Building microservices with Spring Boot
	2.1 The architect’s story: designing the microservice architecture
	2.1.1 Decomposing the business problem
	2.1.2 Establishing service granularity
	2.1.3 Talking to one another: service interfaces

	2.2 When not to use microservices
	2.2.1 Complexity of building distributed systems
	2.2.2 Server sprawl
	2.2.3 Type of application
	2.2.4 Data transformations and consistency

	2.3 The developer’s tale: building a microservice with Spring Boot and Java
	2.3.1 Getting started with the skeleton project
	2.3.2 Booting your Spring Boot application: writing the Bootstrap class
	2.3.3 Building the doorway into the microservice: the Spring Boot controller

	2.4 The DevOps story: building for the rigors of runtime
	2.4.1 Service assembly: packaging and deploying your microservices
	2.4.2 Service bootstrapping: managing configuration of your microservices
	2.4.3 Service registration and discovery: how clients communicate with your microservices
	2.4.4 Communicating a microservice’s health

	2.5 Pulling the perspectives together
	2.6 Summary

	3 Controlling your configuration with Spring Cloud configuration server
	3.1 On managing configuration (and complexity)
	3.1.1 Your configuration management architecture
	3.1.2 Implementation choices

	3.2 Building our Spring Cloud configuration server
	3.2.1 Setting up the Spring Cloud Config Bootstrap class
	3.2.2 Using Spring Cloud configuration server with the filesystem

	3.3 Integrating Spring Cloud Config with a Spring Boot client
	3.3.1 Setting up the licensing service Spring Cloud Config server dependencies
	3.3.2 Configuring the licensing service to use Spring Cloud Config
	3.3.3 Wiring in a data source using Spring Cloud configuration server
	3.3.4 Directly Reading Properties using the @Value Annotation
	3.3.5 Using Spring Cloud configuration server with Git
	3.3.6 Refreshing your properties using Spring Cloud configuration server

	3.4 Protecting sensitive configuration information
	3.4.1 Download and install Oracle JCE jars needed for encryption
	3.4.2 Setting up an encryption key
	3.4.3 Encrypting and decrypting a property
	3.4.4 Configure microservices to use encryption on the client side

	3.5 Closing thoughts
	3.6 Summary

	4 On service discovery
	4.1 Where’s my service?
	4.2 On service discovery in the cloud
	4.2.1 The architecture of service discovery
	4.2.2 Service discovery in action using Spring and Netflix Eureka

	4.3 Building your Spring Eureka Service
	4.4 Registering services with Spring Eureka
	4.5 Using service discovery to look up a service
	4.5.1 Looking up service instances with Spring DiscoveryClient
	4.5.2 Invoking services with Ribbon-aware Spring RestTemplate
	4.5.3 Invoking services with Netflix Feign client

	4.6 Summary

	5 When bad things happen: client resiliency patterns with Spring Cloud and Netflix Hystrix
	5.1 What are client-side resiliency patterns?
	5.1.1 Client-side load balancing
	5.1.2 Circuit breaker
	5.1.3 Fallback processing
	5.1.4 Bulkheads

	5.2 Why client resiliency matters
	5.3 Enter Hystrix
	5.4 Setting up the licensing server to use Spring Cloud and Hystrix
	5.5 Implementing a circuit breaker using Hystrix
	5.5.1 Timing out a call to the organization microservice
	5.5.2 Customizing the timeout on a circuit breaker

	5.6 Fallback processing
	5.7 Implementing the bulkhead pattern
	5.8 Getting beyond the basics; fine-tuning Hystrix
	5.8.1 Hystrix configuration revisited

	5.9 Thread context and Hystrix
	5.9.1 ThreadLocal and Hystrix
	5.9.2 The HystrixConcurrencyStrategy in action

	5.10 Summary

	6 Service routing with Spring Cloud and Zuul
	6.1 What is a services gateway?
	6.2 Introducing Spring Cloud and Netflix Zuul
	6.2.1 Setting up the Zuul Spring Boot project
	6.2.2 Using Spring Cloud annotation for the Zuul service
	6.2.3 Configuring Zuul to communicate with Eureka

	6.3 Configuring routes in Zuul
	6.3.1 Automated mapping routes via service discovery
	6.3.2 Mapping routes manually using service discovery
	6.3.3 Manual mapping of routes using static URLs
	6.3.4 Dynamically reload route configuration
	6.3.5 Zuul and service timeouts

	6.4 The real power of Zuul: filters
	6.5 Building your first Zuul pre-filter generating correlation IDs
	6.5.1 Using the correlation ID in your service calls

	6.6 Building a post filter receiving correlation IDs
	6.7 Building a dynamic route filter
	6.7.1 Building the skeleton of the routing filter
	6.7.2 Implementing the run() method
	6.7.3 Forwarding the route
	6.7.4 Pulling it all together

	6.8 Summary

	7 Securing your microservices
	7.1 Introduction to OAuth2
	7.2 Starting small: using Spring and OAuth2 to protect a single endpoint
	7.2.1 Setting up the EagleEye OAuth2 authentication service
	7.2.2 Registering client applications with the OAuth2 service
	7.2.3 Configuring EagleEye users
	7.2.4 Authenticating the user

	7.3 Protecting the organization service using OAuth2
	7.3.1 Adding the Spring Security and OAuth2 jars to the individual services
	7.3.2 Configuring the service to point to your OAuth2 authentication service
	7.3.3 Defining who and what can access the service
	7.3.4 Propagating the OAuth2 access token

	7.4 JavaScript Web Tokens and OAuth2
	7.4.1 Modifying the authentication service to issue JavaScript Web Tokens
	7.4.2 Consuming JavaScript Web Tokens in your microservices
	7.4.3 Extending the JWT Token
	7.4.4 Parsing a custom field out of a JavaScript token

	7.5 Some closing thoughts on microservice security
	7.6 Summary

	8 Event-driven architecture with Spring Cloud Stream
	8.1 The case for messaging, EDA, and microservices
	8.1.1 Using synchronous request-response approach to communicate state change
	8.1.2 Using messaging to communicate state changes between services
	8.1.3 Downsides of a messaging architecture

	8.2 Introducing Spring Cloud Stream
	8.2.1 The Spring Cloud Stream architecture

	8.3 Writing a simple message producer and consumer
	8.3.1 Writing the message producer in the organization service
	8.3.2 Writing the message consumer in the licensing service
	8.3.3 Seeing the message service in action

	8.4 A Spring Cloud Stream use case: distributed caching
	8.4.1 Using Redis to cache lookups
	8.4.2 Defining custom channels
	8.4.3 Bringing it all together: clearing the cache when a message is received

	8.5 Summary

	9 Distributed tracing with Spring Cloud Sleuth and Zipkin
	9.1 Spring Cloud Sleuth and the correlation ID
	9.1.1 Adding Spring Cloud sleuth to licensing and organization
	9.1.2 Anatomy of a Spring Cloud Sleuth trace

	9.2 Log aggregation and Spring Cloud Sleuth
	9.2.1 A Spring Cloud Sleuth/Papertrail implementation in action
	9.2.2 Create a Papertrail account and configure a syslog connector
	9.2.3 Redirecting Docker output to Papertrail
	9.2.4 Searching for Spring Cloud Sleuth trace IDs in Papertrail
	9.2.5 Adding the correlation ID to the HTTP response with Zuul

	9.3 Distributed tracing with Open Zipkin
	9.3.1 Setting up the Spring Cloud Sleuth and Zipkin dependencies
	9.3.2 Configuring the services to point to Zipkin
	9.3.3 Installing and configuring a Zipkin server
	9.3.4 Setting tracing levels
	9.3.5 Using Zipkin to trace transactions
	9.3.6 Visualizing a more complex transaction
	9.3.7 Capturing messaging traces
	9.3.8 Adding custom spans

	9.4 Summary

	10 Deploying your microservices
	10.1 EagleEye: setting up your core infrastructure in the cloud
	10.1.1 Creating the PostgreSQL database using Amazon RDS
	10.1.2 Creating the Redis cluster in Amazon
	10.1.3 Creating an ECS cluster

	10.2 Beyond the infrastructure: deploying EagleEye
	10.2.1 Deploying the EagleEye services to ECS manually

	10.3 The architecture of a build/deployment pipeline
	10.4 Your build and deployment pipeline in action
	10.5 Beginning your build deploy/pipeline: GitHub and Travis CI
	10.6 Enabling your service to build in Travis CI
	10.6.1 Core build run-time configuration
	10.6.2 Pre-build tool installations
	10.6.3 Executing the build
	10.6.4 Tagging the source control code
	10.6.5 Building the microservices and creating the Docker images
	10.6.6 Pushing the images to Docker Hub
	10.6.7 Starting the services in Amazon ECS
	10.6.8 Kicking off the platform tests

	10.7 Closing thoughts on the build/deployment pipeline
	10.8 Summary

	appendix A Running a cloud on your desktop
	A.1 Required software
	A.2 Downloading the projects from GitHub
	A.3 Anatomy of each chapter
	A.4 Building and compiling the projects
	A.5 Building the Docker image
	A.6 Launching the services with Docker Compose

	appendix B OAuth2 grant types
	B.1 Password grants
	B.2 Client credential grants
	B.3 Authorization code grants
	B.4 Implicit grant
	B.5 How tokens are refreshed

	index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

	Spring Microservices in Action-back

