

C#	Machine	Learning	Projects

	

	

	

	

	

	

	

	

	

	

	

Nine	real-world	projects	to	build	robust	and	high-performing	machine	learning
models	with	C#

	

	

	

	

	

	

	

	

	

	

	

Yoon	Hyup	Hwang

	

	

	

	

	

	

	

	

	

	

	

BIRMINGHAM	-	MUMBAI

C#	Machine	Learning	Projects
Copyright	©	2018	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,	or	transmitted	in
any	form	or	by	any	means,	without	the	prior	written	permission	of	the	publisher,	except	in	the	case	of	brief
quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the	information
presented.	However,	the	information	contained	in	this	book	is	sold	without	warranty,	either	express	or
implied.	Neither	the	author,	nor	Packt	Publishing	or	its	dealers	and	distributors,	will	be	held	liable	for	any
damages	caused	or	alleged	to	have	been	caused	directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the	companies	and	products
mentioned	in	this	book	by	the	appropriate	use	of	capitals.	However,	Packt	Publishing	cannot	guarantee	the
accuracy	of	this	information.

Commissioning	Editor:	Pravin	Dhandre
Acquisition	Editor:	Tushar	Gupta
Content	Development	Editor:	Aaryaman	Singh
Technical	Editor:	Sayli	Nikalje
Copy	Editors:	Safis	Editing
Project	Coordinator:	Manthan	Patel
Proofreader:	Safis	Editing
Indexer:	Tejal	Daruwale	Soni
Graphics:	Tania	Dutta
Production	Coordinator:	Arvindkumar	Gupta

First	published:	June	2018

Production	reference:	1130618

Published	by	Packt	Publishing	Ltd.
Livery	Place
35	Livery	Street
Birmingham
B3	2PB,	UK.

ISBN	978-1-78899-640-2

www.packtpub.com

	

http://www.packtpub.com

mapt.io

Mapt	is	an	online	digital	library	that	gives	you	full	access	to	over	5,000	books
and	videos,	as	well	as	industry	leading	tools	to	help	you	plan	your	personal
development	and	advance	your	career.	For	more	information,	please	visit	our
website.

https://mapt.io/

Why	subscribe?
Spend	less	time	learning	and	more	time	coding	with	practical	eBooks	and
Videos	from	over	4,000	industry	professionals

Improve	your	learning	with	Skill	Plans	built	especially	for	you

Get	a	free	eBook	or	video	every	month

Mapt	is	fully	searchable

Copy	and	paste,	print,	and	bookmark	content

PacktPub.com
Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with
PDF	and	ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktP
ub.com	and	as	a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook
copy.	Get	in	touch	with	us	at	service@packtpub.com	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign
up	for	a	range	of	free	newsletters,	and	receive	exclusive	discounts	and	offers	on
Packt	books	and	eBooks.

	

http://www.PacktPub.com
http://www.packtpub.com

Contributors

About	the	author
Yoon	Hyup	Hwang	is	a	seasoned	data	scientist	with	several	years	of	experience
in	marketing	and	finance	industries	with	expertise	in	predictive	modeling,
machine	learning,	statistical	analysis,	and	data	engineering.	He	holds	M.S.E.	in
Computer	and	Information	Technology	from	the	University	of	Pennsylvania,	and
a	B.A.	in	Economics	from	the	University	of	Chicago.

In	his	free	time,	he	enjoys	training	different	martial	arts	(Krav	Maga,	BJJ,	and
Muay	Thai),	snowboarding,	and	roasting	coffee.

To	my	wife,	Sunyoung,	thank	you	for	your	endless	support	and	love.	Sacrificing	our	weekends	and	family
time,	you	played	a	critical	role	in	publishing	this	book.	To	my	family,	thank	you	for	your	consistent	support
and	trust	in	me.	To	my	publishing	team	at	Packt,	I	would	like	to	thank	everyone,	especially	Aaryaman,
Sayli,	and	Tushar.	Also,	I	would	like	to	thank	everyone	reading	this	book,	and	I	hope	you	enjoy	it.	Cheers!

	

About	the	reviewer
Dirk	Strauss	is	a	software	developer	and	Microsoft	.NET	MVP	from	South
Africa	with	over	13	years	of	programming	experience.	He	has	extensive
experience	in	SYSPRO	customization,	with	C#	and	web	development	being	his
main	focus.	He	currently	works	for	Embrace	as	a	full-stack	developer.

He	authored	C#	Programming	Cookbook	in	2016	and	C#	7	and	.NET	Core	2.0
Blueprints	in	2017	(published	by	Packt).	He	has	also	written	for	Syncfusion,
contributing	to	the	Succinctly	series	of	eBooks.	He	blogs	whenever	he	gets	a
chance.	You	can	follow	him	on	Twitter	at	@DirkStrauss.

Prakash	Tripathi,	is	a	 technical	 lead	 in	an	MNC	by	profession,	and	an	author
and	speaker	by	passion.	He	has	extensive	experience	in	the	design,	development,
maintenance,	 and	 support	 of	 enterprise	 applications,	 mainly	 using	 Microsoft
technologies	and	platforms.

Active	 in	 technical	 communities,	 he	 has	 been	 awarded	 Most	 Valuable
Professional	 (MVP)	 by	 Microsoft	 for	 2016-17	 and	 2017-18,	 and	 by	 c-
sharpcorner	 (a	 leading	 developers	 portal)	 three	 times.	 He	 holds	 a	 master's	 in
computer	applications	from	MANIT-Bhopal,	India.
I	would	like	to	thank	my	parents	for	bringing	me	into	the	world	and	teaching	me	life	skills,	and	my	wife,
Aradhana,	for	her	continuous	support	and	motivation	throughout	the	journey	of	this	book.	I	cannot	forget	to
thank	Microsoft	and	the	c-sharpcorner	technical	communities.	They've	provided	a	platform	to	demonstrate
and	excel	in	this	fast-growing	and	ever-changing	field.

	

Packt	is	searching	for	authors	like
you
If	you're	interested	in	becoming	an	author	for	Packt,	please	visit	authors.packtpub.c
om	and	apply	today.	We	have	worked	with	thousands	of	developers	and	tech
professionals,	just	like	you,	to	help	them	share	their	insight	with	the	global	tech
community.	You	can	make	a	general	application,	apply	for	a	specific	hot	topic
that	we	are	recruiting	an	author	for,	or	submit	your	own	idea.

	

http://authors.packtpub.com

Table	of	Contents

Title	Page

Copyright	and	Credits

C#	Machine	Learning	Projects

Packt	Upsell

Why	subscribe?

PacktPub.com

Contributors

About	the	author

About	the	reviewer

Packt	is	searching	for	authors	like	you

Preface

Who	this	book	is	for

What	this	book	covers

To	get	the	most	out	of	this	book

Download	the	example	code	files

Download	the	color	images

Conventions	used

Get	in	touch

Reviews

1.	 Basics	of	Machine	Learning	Modeling

Key	ML	tasks	and	applications

Steps	in	building	ML	models

Setting	up	a	C#	environment	for	ML

Setting	up	Visual	Studio	for	C#

Installing	Accord.NET

Installing	Deedle

Summary

2.	 Spam	Email	Filtering

Problem	definition	for	the	spam	email	filtering	project

Data	preparation

Email	data	analysis

Feature	engineering	for	email	data

Logistic	regression	versus	Naive	Bayes	for	email	spam	filtering

Classification	model	validations

Summary

3.	 Twitter	Sentiment	Analysis

Setting	up the	environment

Problem	definition	for	Twitter	sentiment	analysis

Data	preparation	using	Stanford	CoreNLP

Data	analysis	using	lemmas	as	tokens

Feature	engineering	using	lemmatization	and	emoticons

Naive	Bayes	versus	random	forest

Model	validations –	ROC	curve	and	AUC

Summary

4.	 Foreign	Exchange	Rate	Forecast

Problem	definition

Data	preparation

Time	series	data	analysis

Feature	engineering

Moving	average

Bollinger	Bands

Lagged	variables

Linear	regression	versus	SVM

Model	validations

Summary

5.	 Fair	Value	of	House	and	Property

Problem	definition

Categorical	versus	continuous	variables

Non-ordinal	categorical	variables

Ordinal	categorical	variable

Continuous	variable

Target	variable –	sale	price

Feature	engineering	and	encoding

Dummy	variables

Feature	encoding

Linear	regression	versus	SVM	with	kernels

Linear	regression

Linear	SVM

SVM	with	a	polynomial	kernel

SVM	with	a	Gaussian	kernel

Model	validations

Summary

6.	 Customer	Segmentation

Problem	definition

Data	analysis	for	the	online	retail	dataset

Handling	missing	values

Variable	distributions

Feature	engineering	and	data	aggregation

Unsupervised	learning –	k-means	clustering

Clustering	model	validations	using	the	Silhouette	Coefficient

Summary

7.	 Music	Genre	Recommendation

Problem	definition

Data	analysis	for	the	audio	features	dataset

Target	variable	distribution

Audio	features –	MFCC

ML	models	for	music	genre	classification

Logistic	regression

SVM	with	the	Gaussian	kernel

Naive	Bayes

Ensembling	base	learning	models

Evaluating	recommendation/rank-ordering	models

Prediction	accuracy

Confusion	matrices

Mean	Reciprocal	Rank

Summary

8.	 Handwritten	Digit	Recognition

Problem	definition

Data	analysis	for	the	image	dataset

Target	variable	distribution

Handwritten	digit	images

Image	features	-	pixels

Feature	engineering	and	dimensionality	reduction

Splitting	the	sample	set	into	train	versus	test	sets

Dimensionality	reduction	by	PCA

ML	models	for	handwritten	digit	recognition

Loading	data

Logistic	regression	classifier

Naive	Bayes	classifier

Neural	network	classifier

Evaluating	multi-class	classification	models

Confusion	matrices

Accuracy	and	precision/recall

One	versus	Rest	AUC

Summary

9.	 Cyber	Attack	Detection

Problem	definition

Data	analysis	for	internet	traffic	data

Data	clean-up

Target	variable	distribution

Categorical	variable	distribution

Continuous	variable	distribution

Feature	engineering	and	PCA

Target	and	categorical	variables	encoding

Fitting PCA

PCA	features

Principal	component	classifier	for	anomaly	detection

Preparation	for	training

Building	a	principal	component	classifier

Evaluating	anomaly	detection	models

Summary

10.	 Credit	Card	Fraud	Detection

Problem	definition

Data	analysis	for	anonymized	credit	card	data

Target	variable	distribution

Feature	distributions

Feature	engineering	and	PCA

Preparation	for	feature	engineering

Fitting	a	PCA

One-class	SVM	versus	PCC

Preparation	for	model	training

Principal	component	classifier

One-class	SVM

Evaluating	anomaly	detection	models

Principal	Component	Classifier

One-class	SVM

Summary

11.	 What's	Next?

Review

Steps	for	building	ML	models

Classification	models

Regression	models

Clustering	algorithms

Real-life	challenges

Data	issues

Infrastructure	issues

Explainability	versus	accuracy

Other	common	technologies

Other	ML	libraries

Data	visualization	libraries	and	tools

Technologies	for	data	processing

Summary

Other	Books	You	May	Enjoy

Leave	a	review	-	let	other	readers	know	what	you	think

Preface
In	the	era	of	data,	it	is	hard	to	overlook	the	importance	of	machine	learning
(ML)	and	data	science.	ML	has	been	used	and	adopted	widely	across	many
industries,	and	its	adoption	rate	is	growing	faster	than	ever.	Not	only	big
technology	companies,	such	as	Google,	Microsoft,	and	Apple,	but	also	many
non-technology	companies	such	as	Bloomberg	and	Goldman	Sachs,	invest
heavily	in	ML.	From	searching	for	what	to	eat	for	dinner	tonight	on	search
engines	to	getting	approvals	for	new	credit	cards,	the	applications	of	ML	are
everywhere	in	our	daily	lives.	As	a	fellow	data	scientist	and	ML	practitioner,	I
cannot	emphasize	enough	the	importance	of	ML	in	the	current	era	of	data,
especially	of	big	data.

If	you	are	looking	for	resources	to	learn	applied	ML,	you	have	come	to	the	right
place.	For	many	aspiring	data	scientists	and	ML	practitioners,	the	amount	of
resources	for	applied	ML	in	C#	is	lacking	in	the	ML	books	out	there.	You	can
easily	find	books	that	have	detailed	explanations	on	the	theory	behind	ML.	You
can	also	easily	find	books	that	touch	the	practical	aspects	of	ML	in	different
programming	languages,	such	as	Python.	However,	as	you	might	have	noticed,
there	are	not	many	books	that	cover	how	to	build	practical	ML	models	and
applications	using	C#.

In	this	book,	we	are	going	to	focus	on	the	practical	side	of	ML	and	dive	right
into	building	ML	models	and	applications	for	various	real-world	projects	that	are
actively	being	researched	and	built	in	many	different	industries.	By	going
through	real-life	examples	of	ML	with	real-world	datasets,	you	will	understand
how	other	data	scientists	and	ML	practitioners	actually	build	ML	models	and
applications	for	their	production	systems.	This	book	is	unique	in	the	sense	that
each	chapter	is	an	individual	ML	project	that	has	a	real-world	business	use	case.

In	this	book,	C#	is	the	choice	of	language	for	the	ML	projects	that	we	are	going
to	work	on.	You	might	ask,	Why	C#?	The	answer	is	actually	quite
straightforward.	As	you	might	know	already,	C#	is	one	of	the	most	popular	and
widely	used	languages	in	the	industry.	Especially	among	finance	companies,	C#
is	one	of	the	very	few	programming	languages	that	is	commonly	accepted	and

used	for	their	production	applications.

Personally,	I	would	have	benefited	from	books	like	this	one	when	I	was	starting
my	career	in	data	science.	At	that	time,	there	was	a	discrepancy	between	what
was	taught	in	schools	and	what	really	works	in	real	life	(and	how).	In	this	book,	I
would	like	to	share	the	knowledge	and	experience	that	I	had	to	learn	the	hard
way.	In	this	book,	we	are	going	to	discuss	things	that	are	not	frequently	talked
about,	such	as	how	ML	projects	typically	start,	how	ML	models	are	built	and
tested	in	different	industries,	how	ML	applications	are	then	deployed	on
production	systems,	and	how	those	ML	models	running	in	production	systems
are	monitored	and	evaluated.	We	are	going	to	work	together	throughout	this
book	to	help	you	get	ready	for	any	ML	projects	that	you	may	come	across	in	the
future.	By	the	end	of	this	book,	you	will	be	able	to	build	robust	and	well-
performing	ML	models	and	applications	using	C#.

Who	this	book	is	for
	

This	book	is	for	those	who	know	how	to	write	code	using	C#	and	have	a	basic
understanding	of	ML.	Even	if	you	do	not	have	in-depth	knowledge	of	the
theories	behind	ML	algorithms,	don't	worry!	It	is	okay.	This	book	will	help	you
understand	how	you	can	use	different	learning	algorithms	for	different	use	cases.
If	you	have	studied	ML,	maybe	at	school,	on	online	courses,	or	at	data	science
boot	camps,	then	this	book	will	be	great	for	you.	This	book	will	show	you	how
to	actually	apply	the	ML	theories	and	concepts	you	have	learned	by	going
through	nine	real-world	ML	projects	with	real-world	datasets.	If	you	are	already
an	ML	practitioner,	you	will	still	greatly	benefit	from	this	book!	By	going
through	various	real-world	examples	of	applied	ML,	this	book	will	help	you
expand	your	knowledge	and	experience	of	applying	ML	to	various	other
business	cases	for	many	different	industries.

This	book	is	really	for	anyone	with	a	passion	for	applied	ML.	If	you	want	to	be
able	to	build	ML	models	and	applications	that	can	be	used	in	production	systems
from	day	1,	then	this	book	is	for	you!

	

	

	

What	this	book	covers
Chapter	1,	Basics	of	Machine	Learning	Modeling,	discusses	some	of	the	real-
world	examples	of	ML	applications	that	we	can	easily	find	around	ourselves.	It
also	covers	the	essential	steps	in	building	ML	models	and	how	to	set	up	a	C#
development	environment	for	the	upcoming	real-world	ML	projects.

Chapter	2,	Spam	Email	Filtering,	covers	feature	engineering	techniques	for	text
datasets	and	how	to	build	classification	models	using	logistic	regression	and
Naive	Bayes	learning	algorithms.	This	chapter	also	discusses	some	of	the	basic
model	validation	methods	for	classification	models.

Chapter	3,	Twitter	Sentiment	Analysis,	describes	some	of	the	commonly	used
natural	language	processing	(NLP)	techniques	for	feature	engineering	and	how
to	build	multi-class	classification	models.	This	chapter	also	covers	how	to	build
Naive	Bayes	and	random	forest	classifiers	in	C#,	along	with	more	advanced
model	evaluation	metrics	for	classification	models.

Chapter	4,	Foreign	Exchange	Rate	Forecast,	dives	into	regression	problems,
where	the	target	variables	are	continuous	variables.	This	chapter	discusses	some
of	the	frequently	used	technical	indicators	in	the	foreign	exchange	market	and
how	to	use	them	as	features	for	building	foreign	exchange	rate	forecasting
models.	It	also	covers	how	to	build	linear	regression	and	Support	Vector
Machines	(SVMs)	for	foreign	exchange	rate	forecasting.

Chapter	5,	Fair	Value	of	House	and	Property,	covers	a	regression	problem	with
mixed	types	of	features	in	the	dataset.	This	chapter	discusses	using	different
kernel	methods	for	SVM	models.	It	also	describes	some	of	the	fundamental
model	evaluation	metrics	for	regression	models	and	how	to	use	them	to	compare
the	models	built.

Chapter	6,	Customer	Segmentation,	describes	an	unsupervised	learning	problem,
where	there	is	no	labeled	target	variable.	It	discusses	how	to	use	a	k-means
clustering	algorithm	to	draw	insights	into	customer	behaviors	from	an	e-
commerce	dataset.	This	chapter	also	discusses	a	metric	that	can	be	used	to
evaluate	how	well	each	cluster	or	segment	is	formed.

Chapter	7,	Music	Genre	Recommendation,	introduces	a	ranking	problem,	where
the	number	of	outputs	of	a	ML	model	is	more	than	one.	This	chapter	covers	how
to	build	ML	models	for	recommending	music	genres	and	how	to	evaluate	the
recommendation	results	from	these	models.

Chapter	8,	Handwritten	Digit	Recognition,	discusses	an	image	recognition
problem,	where	the	goal	is	to	build	ML	models	to	recognize	handwritten	digits.
It	covers	one	of	the	dimensionality	reduction	techniques	and	how	it	can	be	used
for	image	dataset.	This	chapter	introduces	neural	network	models	for	image
recognition.

Chapter	9,	Cyber	Attack	Detection,	dives	into	an	anomaly	detection	problem.	in
this	chapter	we	will	try	to	build	ML	models	to	detect	cyber	attacks.	It	covers	how
to	use	the	dimensionality	reduction	technique	called	Principal	Component
Analysis	(PCA)	to	build	an	anomaly	detection	model	that	can	identify	cyber
attacks.

Chapter	10,	Credit	Card	Fraud	Detection,	continues	with	the	anomaly	detection
problem.	This	chapter	discusses	how	to	build	ML	models	to	detect	credit	card
frauds.	It	introduces	a	new	ML	algorithm,	one-class	SVM,	for	an	anomaly
detection	model.

Chapter	11,	What's	Next?,	is	the	closing	chapter	of	this	book.	It	reviews	everything
that	was	discussed	throughout	the	book.	It	then	covers	some	of	the	frequently
appearing	challenges	in	real-life	ML	projects.	This	chapter	also	discusses	a	few
commonly	used	technologies	and	tools	for	data	science	tasks.

To	get	the	most	out	of	this	book
To	get	the	most	out	of	this	book,	I	recommend	that	you	thoroughly	follow	each
of	the	steps	laid	out	in	each	chapter.	Following	through	the	code	samples	and
running	them	on	your	own	will	help	you	understand	better	and	get	more
comfortable	with	building	ML	models	faster.	I	also	recommend	that	you	be
adventurous	and	mix	up	the	techniques	and	learning	algorithms	discussed	in
different	chapters.	When	you	are	done	with	this	book,	it	will	be	even	better	if
you	go	through	the	projects	yourself	again	from	the	beginning	and	start	building
your	own	versions	of	ML	models	for	the	individual	projects.

	

Download	the	example	code	files
You	can	download	the	example	code	files	for	this	book	from	your	account	at	www.
packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can	visit	www.packtpub.com/su
pport	and	register	to	have	the	files	emailed	directly	to	you.

You	can	download	the	code	files	by	following	these	steps:

1.	 Log	in	or	register	at	www.packtpub.com.
2.	 Select	the	SUPPORT	tab.
3.	 Click	on	Code	Downloads	&	Errata.
4.	 Enter	the	name	of	the	book	in	the	Search	box	and	follow	the	onscreen

instructions.

Once	the	file	is	downloaded,	please	make	sure	that	you	unzip	or	extract	the
folder	using	the	latest	version	of:

WinRAR/7-Zip	for	Windows
Zipeg/iZip/UnRarX	for	Mac
7-Zip/PeaZip	for	Linux

The	code	bundle	for	the	book	is	also	hosted	on	GitHub	at	https://github.com/PacktPu
blishing/CSharp-Machine-Learning-Projects.	In	case	there's	an	update	to	the	code,	it	will
be	updated	on	the	existing	GitHub	repository.

We	also	have	other	code	bundles	from	our	rich	catalog	of	books	and	videos
available	at	https://github.com/PacktPublishing/.	Check	them	out!

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/CSharp-Machine-Learning-Projects
https://github.com/PacktPublishing/

Download	the	color	images
We	also	provide	a	PDF	file	that	has	color	images	of	the	screenshots/diagrams
used	in	this	book.	You	can	download	it	here:	https://www.packtpub.com/sites/default/f
iles/downloads/CSharpMachineLearningProjects_ColorImages.pdf.

https://www.packtpub.com/sites/default/files/downloads/CSharpMachineLearningProjects_ColorImages.pdf

Conventions	used
There	are	a	number	of	text	conventions	used	throughout	this	book.

CodeInText:	Indicates	code	words	in	text,	database	table	names,	folder	names,
filenames,	file	extensions,	pathnames,	dummy	URLs,	user	input,	and	Twitter
handles.	Here	is	an	example:	"Open	your	Visual	Studio	and	create	a	new	Console
Application	under	the	Visual	C#	category.	Use	the	preceding	command	to	install
the	Deedle	library	through	NuGet	and	add	references	to	your	project."

A	block	of	code	is	set	as	follows:	var	barChart	=	DataBarBox.Show(
new	string[]	{	"Ham",	"Spam"	},
new	double[]	{
hamEmailCount,
spamEmailCount
}
);
barChart.SetTitle("Ham	vs.	Spam	in	Sample	Set");

Any	command-line	input	or	output	is	written	as	follows:	PM>	Install-Package
Deedle

Bold:	Indicates	a	new	term,	an	important	word,	or	words	that	you	see	onscreen.
For	example,	words	in	menus	or	dialog	boxes	appear	in	the	text	like	this.	Here	is
an	example:	"Open	the	package	manager	(Tools	|	NuGet	Package	Manager	|
Package	Manager	Console)	and	install	Deedle	using	the	following	command."

Warnings	or	important	notes	appear	like	this.

Tips	and	tricks	appear	like	this.

Get	in	touch
Feedback	from	our	readers	is	always	welcome.

General	feedback:	Email	feedback@packtpub.com	and	mention	the	book	title	in	the
subject	of	your	message.	If	you	have	questions	about	any	aspect	of	this	book,
please	email	us	at	questions@packtpub.com.

Errata:	Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our
content,	mistakes	do	happen.	If	you	have	found	a	mistake	in	this	book,	we	would
be	grateful	if	you	would	report	this	to	us.	Please	visit	www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering
the	details.

Piracy:	If	you	come	across	any	illegal	copies	of	our	works	in	any	form	on	the
Internet,	we	would	be	grateful	if	you	would	provide	us	with	the	location	address
or	website	name.	Please	contact	us	at	copyright@packtpub.com	with	a	link	to	the
material.

If	you	are	interested	in	becoming	an	author:	If	there	is	a	topic	that	you	have
expertise	in	and	you	are	interested	in	either	writing	or	contributing	to	a	book,
please	visit	authors.packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/

Reviews
Please	leave	a	review.	Once	you	have	read	and	used	this	book,	why	not	leave	a
review	on	the	site	that	you	purchased	it	from?	Potential	readers	can	then	see	and
use	your	unbiased	opinion	to	make	purchase	decisions,	we	at	Packt	can
understand	what	you	think	about	our	products,	and	our	authors	can	see	your
feedback	on	their	book.	Thank	you!

For	more	information	about	Packt,	please	visit	packtpub.com.

	

https://www.packtpub.com/

Basics	of	Machine	Learning	Modeling
	

It	can	be	difficult	to	see	how	machine	learning	(ML)	affects	the	daily	lives	of
ordinary	people.	In	fact,	ML	is	everywhere!	In	the	process	of	searching	for	a
restaurant	for	dinner,	you	almost	certainly	used	ML.	In	the	search	for	a	dress	to
wear	for	a	dinner	party,	you	would	have	used	ML.	On	your	way	to	your	dinner
appointment,	you	probably	used	ML	as	well	if	you	used	one	of	the	ride-sharing
apps.	ML	has	become	so	widely	used	that	it	has	become	an	essential	part	of	our
lives,	although	it	is	usually	unnoticeable.	With	ever-growing	data	and	its
accessibility,	the	applications	and	needs	for	ML	are	rapidly	rising	across	various
industries.	However,	the	pace	of	the	growth	in	trained	data	scientists	has	yet	to
meet	the	pace	of	growth	ML	needs	in	businesses,	despite	abundant	resources	and
software	libraries	that	make	building	ML	models	easier,	due	to	the	fact	that	it
takes	time	and	experience	for	a	data	scientist	and	ML	engineer	to	master	such
skill	sets.	This	book	will	prepare	such	individuals	with	real-world	projects	based
on	real-world	datasets.

In	this	chapter,	we	will	learn	about	some	of	the	real-life	examples	and
applications	of	ML,	the	essential	steps	in	building	ML	models,	and	how	to	set	up
our	C#	environment	for	ML.	After	this	brief	introductory	chapter,	we	will	dive
immediately	into	building	classification	ML	models	using	text	datasets	in	Chapter	
2,	Spam	Email	Filtering,	and	Chapter	3,	Twitter	Sentiment	Analysis.	Then,	we	will
use	financial	and	real	estate	property	data	to	build	regression	models	in	Chapter	4,
Foreign	Exchange	Rate	Forecast,	and	Chapter	5,	Fair	Value	of	House	and
Property.	In	Chapter	6,	Customer	Segmentation,	we	will	use	a	clustering	algorithm
to	gain	insight	into	customer	behavior	using	e-commerce	data.	In	Chapter	7,	Music
Genre	Recommendation,	and	Chapter	8,	Handwritten	Digit	Recognition,	we	will
build	recommendation	and	image	recognition	models	using	audio	and	image
data.	Lastly,	we	will	use	semi-supervised	learning	techniques	to	detect	anomalies
in	Chapter	9,	Cyber	Attack	Detection	and	Chapter	10,	Credit	Card	Fraud	Detection.

In	this	chapter,	we	will	cover	the	following	topics:

Key	ML	tasks	and	applications

Steps	in	building	ML	models
Setting	up	a	C#	environment	for	ML

	

	

Key	ML	tasks	and	applications
There	are	many	areas	where	ML	is	used	in	our	daily	lives	without	being	noticed.
Media	companies	use	ML	to	recommend	the	most	relevant	content,	such	as	news
articles,	movies,	or	music,	for	you	to	read,	watch,	or	listen	to.	The	e-commerce
companies	use	ML	to	suggest	the	items	that	are	of	interest	and	that	you	are	most
likely	to	purchase.	Game	companies	use	ML	to	detect	your	motion	and	joint
movements	for	their	motion	sensor	games.	Some	other	common	uses	of	ML	in
the	industry	include	face	detection	on	cameras	for	better	focusing,	automated
question	answering	where	chat	bots	or	virtual	assistants	interact	with	customers
to	answer	questions	and	requests,	and	detecting	and	preventing	fraudulent
transactions.	In	this	section,	we	will	take	a	look	at	some	of	the	applications	we
use	in	our	daily	lives	that	utilize	ML	heavily:

Google	News	feed:	Google	News	feed	uses	ML	to	generate	a	personalized
stream	of	articles	based	on	the	user's	interests	and	other	profile	data.
Collaborative	filtering	algorithms	are	frequently	used	for	such
recommendation	systems	and	are	built	from	the	view	history	data	of	their
user	base.	Media	companies	use	such	personalized	recommendation
systems	to	attract	more	traffic	to	their	websites	and	increase	the	number	of
subscribers.
Amazon	product	recommendations:	Amazon	uses	user	browse	and	order
history	data	to	train	a	ML	model	to	recommend	products	that	a	user	is	most
likely	to	purchase.	This	is	a	good	use	case	for	supervised	learning	in	the	e-
commerce	industry.	These	recommendation	algorithms	help	e-commerce
companies	maximize	their	profit	by	displaying	items	that	are	the	most
relevant	to	each	user's	interests.
Netflix	movie	recommendation:	Netflix	uses	movie	ratings,	view	history,
and	preference	profiles	to	recommend	other	movies	that	a	user	might	like.
They	train	collaborative	filtering	algorithms	with	data	to	make	personalized
recommendations.	Considering	that	More	than	80	per	cent	of	the	TV	shows
people	watch	on	Netflix	are	discovered	through	the	platform's
recommendation	system	according	to	an	article	on	Wired	(http://www.wired.co.
uk/article/how-do-netflixs-algorithms-work-machine-learning-helps-to-predict-what-vi

ewers-will-like),	this	is	a	very	useful	and	profitable	example	of	ML	at	a
media	company.

http://www.wired.co.uk/article/how-do-netflixs-algorithms-work-machine-learning-helps-to-predict-what-viewers-will-like

Face	detection	on	cameras:	Cameras	detect	faces	for	better	focusing	and
light	metering.	This	is	the	most	frequently	used	example	of	computer	vision
and	classification.	Also,	some	photo	management	software	uses	clustering
algorithms	to	group	similar	faces	in	your	images	together	so	that	you	can
search	photos	by	certain	people	in	them	later.
Alexa	–	Virtual	assistant:	Virtual	assistant	systems,	such	as	Alexa,	can
answer	questions	such	as	What's	the	weather	in	New	York?	or	complete
certain	tasks,	such	as	Turn	on	the	living	room	lights.	These	kinds	of	virtual
assistant	system	are	typically	built	using	speech	recognition,	natural
language	understanding	(NLU),	deep	learning,	and	various	other	machine
learning	technologies.
Microsoft	Xbox	Kinect:	Kinect	can	sense	how	far	each	object	is	from	the
sensor	and	detect	joint	positions.	Kinect	is	trained	with	a	randomized
decision	forest	algorithm	that	builds	lots	of	individual	decision	trees	from
depth	images.

The	following	screenshot	shows	different	examples	of	recommendation	systems
using	ML:	

Left:	Google	News	Feed,	top-right:	Amazon	product	recommendation,	bottom-right:	Netflix	movie	recommendation	The	following
screenshot	depicts	a	few	other	examples	of	ML	applications:	

Left:	Face	detection,	middle:	Amazon	Alexa,	right:	Microsoft	Xbox	Kinect

Steps	in	building	ML	models
Now	that	we	have	seen	some	examples	of	the	ML	applications	that	are	out	there,
the	question	is,	How	do	we	go	about	building	such	ML	applications	and
systems?	Books	about	ML	and	ML	courses	that	are	taught	in	universities
typically	start	by	covering	the	mathematics	and	theories	behind	ML	algorithms
and	then	apply	those	algorithms	to	a	given	dataset.	This	approach	is	great	for
people	who	are	completely	new	to	this	subject	and	are	looking	to	learn	the
foundations	of	ML.	However,	aspiring	data	scientists	with	some	prior	knowledge
and	experience	and	who	are	looking	to	apply	their	knowledge	to	real	ML
projects	often	stumble	about	where	to	start	and	how	to	approach	a	given	ML
project.	In	this	section,	we	will	discuss	a	typical	workflow	for	building	a	ML
application,	which	we	will	follow	throughout	the	book.	The	following	figure
summarizes	our	approach	to	developing	an	application	using	ML	and	we	will
discuss	this	in	more	detail	in	the	following	subsections:

Steps	in	building	ML	models

As	seen	in	the	preceding	diagram,	the	steps	that	are	to	be	followed	for	building
learning	models	are	as	follows:

Problem	definition:	The	first	step	in	starting	any	project	is	not	only
understanding	the	problem,	but	also	defining	the	problem	that	you	are
trying	to	solve	using	ML.	Poor	definition	of	a	problem	will	result	in	a
meaningless	ML	system,	since	the	models	will	have	been	trained	and
optimized	for	a	problem	that	you	are	not	actually	trying	to	solve.	This	first
step	is	unarguably	the	most	important	step	in	building	useful	ML	models
and	applications.	You	should	at	least	answer	the	following	four	questions
before	you	jump	into	building	ML	models:

What	is	the	problem?	This	is	where	you	describe	and	state	the	problem
that	you	are	trying	to	solve.	For	example,	a	problem	description	might
be	need	a	system	to	assess	a	small	business	owner's	ability	to	pay	back
a	loan	for	a	small	business	lending	project.
Why	is	it	a	problem?	It	is	important	to	define	why	such	a	problem	is
actually	a	problem	and	why	the	new	ML	model	is	going	to	be	useful.
Maybe	you	have	a	working	model	already	and	you	have	noticed	it	is
performing	worse	than	before;	you	might	have	obtained	new	data
sources	that	you	can	use	for	building	a	new	prediction	model;	or
maybe	you	want	your	existing	model	to	produce	prediction	results
more	quickly.	There	can	be	multiple	reasons	why	you	think	this	is	a
problem	and	why	you	need	a	new	model.	Defining	why	it	is	a	problem
will	help	you	stay	on	the	right	track	while	you	are	building	a	new	ML
model.
What	are	some	of	the	approaches	to	solving	this	problem?	This	is
where	you	brainstorm	your	approaches	to	solve	the	given	problem.
You	should	think	about	how	this	model	is	going	to	be	used	(do	you
need	this	to	be	a	real-time	system	or	is	this	going	to	be	run	as	a	batch
process?),	what	type	of	problem	it	is	(is	it	a	classification	problem,
regression,	clustering,	or	something	else?),	and	what	types	of	data	you
would	need	for	your	model.	This	will	provide	a	good	basis	for	future
steps	in	building	your	machine	learning	model.
What	are	the	success	criteria?	This	is	where	you	define	your
checkpoints.	You	should	think	about	what	metrics	you	will	look	at	and
what	your	target	model	performance	should	look	like.	If	you	are
building	a	model	that	is	going	to	be	used	in	a	real-time	system,	then
you	can	also	set	the	target	execution	speed	and	data	availability	at
runtime	as	part	of	your	success	criteria.	Setting	these	success	criteria
will	help	you	keep	moving	forward	without	being	stuck	at	a	certain
step.

Data	collection:	Having	data	is	the	most	essential	and	critical	part	of

building	a	ML	model,	preferably	lots	of	data.	No	data,	no	model.
Depending	on	your	project,	your	approaches	to	collecting	data	can	vary.
You	can	purchase	existing	data	sources	from	other	vendors,	you	can	scrape
websites	and	extract	data	from	there,	you	can	use	publicly	available	data,	or
you	can	also	collect	your	own	data.	There	are	multiple	ways	you	can	gather
the	data	you	need	for	your	ML	model,	but	you	need	to	keep	in	mind	these
two	elements	of	your	data	when	you	are	in	the	process	of	data	collection—
the	target	variable	and	feature	variables.	The	target	variable	is	the	answer
for	your	predictions	and	feature	variables	are	the	factors	that	your	models
will	use	to	learn	how	to	predict	the	target	variable.	Often,	target	variables
are	not	present	in	a	labeled	form.	For	example,	when	you	are	dealing	with
Twitter	data	to	predict	the	sentiment	of	each	tweet,	you	might	not	have
labeled	sentiment	data	for	each	tweet.	In	this	case,	you	will	have	to	take	an
extra	step	to	label	your	target	variables.	Once	you	have	your	data	collected,
you	can	move	on	to	the	data	preparation	step.
Data	preparation:	Once	you	have	gathered	all	of	your	input	data,	you	need
to	prepare	it	so	that	it	is	in	a	useable	format.	This	step	is	more	important
than	you	might	think.	If	you	have	messy	data	and	you	did	not	clean	it	up	for
your	learning	algorithms,	your	algorithms	will	not	learn	well	from	your
dataset	and	will	not	perform	as	expected.	Also,	even	if	you	have	high-
quality	data,	if	your	data	is	not	in	a	format	that	your	algorithms	can	be
trained	with,	then	it	is	meaningless	to	have	high-quality	data.	Bad	data,	bad
model.	You	should	at	least	handle	some	of	the	common	problems	listed	as
follows	to	have	your	data	ready	for	the	next	steps:

File	format:	If	you	are	getting	your	data	from	multiple	data	sources,
you	will	most	likely	run	into	different	formats	for	each	data	source.
Some	data	might	be	in	CSV	format,	while	other	data	is	in	JSON	or
XML	format.	Some	data	might	even	be	stored	in	a	relational	database.
In	order	to	train	your	ML	model,	you	will	need	to	first	merge	all	these
data	sources	in	different	formats	into	one	standard	format.
Data	format:	It	can	also	be	the	case	that	data	formats	vary	among
different	data	sources.	For	example,	some	data	might	have	the	address
field	broken	down	into	street	address,	city,	state,	and	ZIP,	while	some
others	might	not.	Some	data	might	have	the	date	field	in	the	American
date	format	(mm/dd/yyyy),	while	some	others	may	be	in	British	format
(dd/mm/yyyy).	These	data	format	discrepancies	among	data	sources
can	cause	issues	when	you	are	parsing	the	values.	In	order	to	train	your
ML	model,	you	will	need	to	have	a	uniform	data	format	for	each	field.
Duplicate	records:	Often	you	will	see	same	exact	records	repeating	in

your	dataset.	This	problem	can	occur	in	the	data	collection	process
where	you	recorded	a	data	point	more	than	once	or	when	you	were
merging	different	datasets	in	your	data	preparation	process.	Having
duplicate	records	can	adversely	affect	your	model	and	it	is	good	to
check	for	duplicates	in	your	dataset	before	you	move	on	to	the	next
steps.
Missing	values:	It	is	also	common	to	see	some	records	with	empty	or
missing	values	in	the	data.	This	can	also	have	an	adverse	effect	when
you	are	training	your	ML	models.	There	are	multiple	ways	to	handle
missing	values	in	your	data,	but	you	will	have	to	be	careful	and
understand	your	data	very	well,	as	this	can	change	your	model
performance	dramatically.	Some	of	the	ways	you	can	handle	the
missing	values	include	dropping	records	with	missing	values,
replacing	missing	values	with	the	mean	or	median,	replacing	missing
values	with	a	constant,	or	replacing	missing	values	with	a	dummy
variable	and	an	indicator	variable	for	missing.	It	will	be	beneficial	to
study	your	data	before	you	deal	with	the	missing	values.

Data	analysis:	Now	that	your	data	is	ready,	it	is	time	to	actually	look	at	the
data	and	see	if	you	can	recognize	any	patterns	and	draw	some	insights	from
the	data.	Summary	statistics	and	plots	are	two	of	the	best	ways	to	describe
and	understand	your	data.	For	continuous	variables,	looking	at	the
minimum,	maximum,	mean,	median,	and	quartiles	is	a	good	place	to	start.
For	categorical	variables,	you	can	look	at	the	counts	and	percentages	of
categories.	As	you	are	looking	at	these	summary	statistics,	you	can	also
start	plotting	graphs	to	visualize	the	structures	of	your	data.	The	following
figure	shows	some	commonly	used	charts	for	data	analysis.	Histograms	are
frequently	used	to	show	and	inspect	underlying	distributions	of	variables,
outliers,	and	skewness.	Box	plots	are	frequently	used	to	visualize	five-
number	summary,	outliers,	and	skewness.	Pairwise	scatter	plots	are
frequently	used	to	detect	obvious	pairwise	correlations	among	the	variables:

Data	analysis	and	visualizations.	Top-left:	histogram	of	nominal	house	sale	price,	top-right:	histogram	of	house	sale	price	using	the
logarithmic	scale,	bottom-left:	box	plots	of	distributions	of	basement,	first	floor,	and	second	floor	square	footage's,	bottom-right:

scatter	plot	between	first	and	second	floor	square	feet

Feature	engineering:	Feature	engineering	is	the	most	important	part
of	the	model	building	process	in	applied	ML.	However,	this	is	one	of
the	least	discussed	topics	in	many	textbooks	and	ML	courses.	Feature
engineering	is	the	process	of	transforming	raw	input	data	into	more
informative	data	for	your	algorithms	to	learn	from.	For	example,	for
your	Twitter	sentiment	prediction	model	that	we	will	build	in	Chapter	3,
Twitter	Sentiment	Analysis,	your	raw	input	data	may	only	contain	a	list
of	text	in	one	column	and	a	list	of	sentiment	targets	in	another	column.
Your	ML	model	will	probably	not	learn	how	to	predict	each	tweet's
sentiment	well	with	this	raw	data.	However,	if	you	transform	this	data
so	that	each	column	represents	the	number	of	occurrences	of	each
word	in	each	tweet,	then	your	learning	algorithm	can	learn	the
relationship	between	the	existence	of	certain	words	and	sentiments
more	easily.	You	can	also	group	each	word	with	its	adjacent	word
(bigram)	and	have	the	number	of	occurrences	of	each	bigram	in	each
tweet	as	another	group	of	features.	As	you	can	see	from	this	example,
feature	engineering	is	a	way	of	making	your	raw	data	more
representative	and	informative	of	the	underlying	problems.	Feature
engineering	is	not	only	a	science,	but	also	an	art.	Feature	engineering
requires	good	domain	knowledge	of	the	dataset,	the	creativity	to	build
new	features	from	raw	input	data,	and	multiple	iterations	for	better
results.	As	we	work	through	this	book,	we	will	cover	how	to	build	text
features	using	some	natural	language	processing	(NLP)	techniques,
how	to	build	time	series	features,	how	to	sub-select	features	to	avoid
overfitting	issues,	and	how	to	use	dimensionality	reduction	techniques
to	transform	high-dimensional	data	into	fewer	dimensions.

Coming	up	with	features	is	difficult,	time-consuming,	requires	expert	knowledge.	Applied	machine	learning
is	basically	feature	engineering.

-Andrew	Ng

Train/test	algorithms:	Once	you	have	created	your	features,	it	is	time	to
train	and	test	some	ML	algorithms.	Before	you	start	training	your	models,	it
is	good	to	think	about	performance	metrics.	Depending	on	the	problem	you
are	solving,	your	choice	of	performance	measure	will	differ.	For	example,	if
you	are	building	a	stock	price	forecast	model,	you	might	want	to	minimize
the	difference	between	your	prediction	and	the	actual	price	and	choose	root

mean	square	error	(RMSE)	as	your	performance	measure.	If	you	are
building	a	credit	model	to	predict	whether	a	person	can	be	approved	for	a
loan	or	not,	you	would	want	to	use	the	precision	rate	as	your	performance
measure,	since	incorrect	loan	approvals	(false	positives)	will	have	a	more
negative	impact	than	incorrect	loan	disapprovals	(false	negatives).	As	we
work	through	the	chapters,	we	will	discuss	more	specific	performance
metrics	for	each	project.

Once	you	have	specific	performance	measures	in	mind	for	your	model,
you	can	now	train	and	test	various	learning	algorithms	and	their
performance.	Depending	on	your	prediction	target,	your	choice	of
learning	algorithms	will	also	vary.	The	following	figure	shows
illustrations	of	some	of	the	common	machine	learning	problems.	If	you
were	solving	classification	problems,	you	would	want	to	train	classifiers,
such	as	the	logistic	regression	model,	the	Naive	Bayes	classifier,	or	the
random	forest	classifier.	On	the	other	hand,	if	you	had	a	continuous	target
variable,	then	you	would	want	to	train	regressors,	such	as	the	linear
regression	model,	k-nearest	neighbor,	or	Support	Vector	Machine
(SVM).	If	you	would	like	to	draw	some	insights	from	data	by	using
unsupervised	learning,	you	would	want	to	use	k-means	clustering	or
mean	shift	algorithms:

Illustrations	of	ML	problems.	Left:	classification,	middle:	regression,	right:	clustering

Lastly,	we	will	have	to	think	about	how	we	test	and	evaluate	the	performance	of
the	learning	algorithms	we	tried.	Splitting	your	dataset	into	train	and	test	sets	and
running	cross-validation	are	the	two	most	commonly	used	methods	of	testing
and	comparing	your	ML	models.	The	purpose	of	splitting	a	dataset	into	two
subsets,	one	for	training	and	another	for	testing,	is	to	train	a	model	on	the	train
set	without	exposing	it	to	the	test	set	so	that	prediction	results	on	the	test	set	are

indicative	of	the	general	model	performance	for	the	unforeseen	data.	K-fold
cross-validation	is	another	way	to	evaluate	model	performance.	It	first	splits	a
dataset	into	equally	sized	K	subsets	and	leaves	one	set	out	for	testing	and	trains
on	the	rest.	For	example,	in	3-fold	cross-validation,	a	dataset	will	first	split	into
three	equally	sized	subsets.	In	the	first	iteration,	we	will	use	folds	#1	and	#2	to
train	our	model	and	test	it	on	fold	#3.	In	the	second	iteration,	we	will	use	folds
#1	and	#3	to	train	and	test	our	model	on	fold	#2,	In	the	third	iteration,	we	will
use	folds	#2	and	#3	to	train	and	test	our	model	on	fold	#1.	Then,	we	will	average
the	performance	measures	to	estimate	the	model	performance:

Improve	results:	By	now	you	will	have	one	or	two	candidate	models	that
perform	reasonably	well,	but	there	might	be	still	some	room	to	improve.
Maybe	you	noticed	your	candidate	models	are	overfitting	to	some	extent,
maybe	they	do	not	meet	your	target	performance,	or	maybe	you	have	some
more	time	to	iterate	on	your	models—regardless	of	your	intent,	there	are
multiple	ways	that	you	can	improve	the	performance	of	your	model	and
they	are	as	follows:

Hyperparameter	tuning:	You	can	tune	the	configurations	of	your
models	to	potentially	improve	the	performance	results.	For	example,
for	random	forest	models,	you	can	tune	the	maximum	height	of	the
tree	or	number	of	trees	in	the	forest.	For	SVMs,	you	can	tune	the
kernels	or	cost	values.
Ensemble	methods:	Ensembling	is	combining	the	results	of	multiple
models	to	get	better	results.	Bagging	is	where	you	train	the	same
algorithm	on	different	subsets	of	your	dataset,	boosting	is	combining
different	models	that	are	trained	on	the	same	train	set,	and	stacking	is
where	the	output	of	models	is	used	as	the	input	to	a	meta	model	that
learns	how	to	combine	the	results	of	the	sub-models.
More	feature	engineering:	Iterating	on	feature	engineering	is	another
way	to	improve	model	performance.

Deploy:	Time	to	put	your	models	into	action!	Once	you	have	your	models
ready,	it	is	time	to	let	them	run	in	production.	Make	sure	you	test
extensively	before	your	models	take	full	charge.	It	will	also	be	beneficial	to
plan	to	develop	monitoring	tools	for	your	models,	since	model	performance
can	decrease	over	time	as	the	input	data	evolves.

Setting	up	a	C#	environment	for	ML
Now	that	we	have	discussed	the	steps	and	approaches	to	building	ML	models
that	we	will	follow	throughout	this	book,	let's	start	setting	up	our	C#
environment	for	ML.	We	will	first	install	and	set	up	Visual	Studio	and	then	two
packages	(Accord.NET	and	Deedle)	that	we	will	frequently	use	for	our	projects
in	the	following	chapters.

	

Setting	up	Visual	Studio	for	C#
Assuming	you	have	some	prior	knowledge	of	C#,	we	will	keep	this	part	brief.	In
case	you	need	to	install	Visual	Studio	for	C#,	go	to	https://www.visualstudio.com/down
loads/	and	download	one	of	the	versions	of	Visual	Studio.	In	this	book,	we	use
the	Community	Edition	of	Visual	Studio	2017.	If	it	prompts	you	to	download
.NET	Framework	before	you	install	Visual	Studio,	go	to	https://www.microsoft.com/e
n-us/download/details.aspx?id=53344	and	install	it	first.

	

https://www.visualstudio.com/downloads/
https://www.microsoft.com/en-us/download/details.aspx?id=53344

Installing	Accord.NET
Accord.NET	is	a	.NET	ML	framework.	On	top	of	ML	packages,	the
Accord.NET	framework	also	has	mathematics,	statistics,	computer	vision,
computer	audition,	and	other	scientific	computing	modules.	We	are	mainly	going
to	use	the	ML	package	of	the	Accord.NET	framework.

Once	you	have	installed	and	set	up	your	Visual	Studio,	let's	start	installing	the
ML	framework	for	C#,	Accord.NET.	It	is	easiest	to	install	it	through	NuGet.	To
install	it,	open	the	package	manager	(Tools	|	NuGet	Package	Manager	|	Package
Manager	Console)	and	install	Accord.MachineLearning	and	Accord.Controls	by	typing	in
the	following	commands:

PM>	Install-Package	Accord.MachineLearning

PM>	Install-Package	Accord.Controls

Now,	let's	build	a	sample	ML	application	using	these	Accord.NET	packages.
Open	your	Visual	Studio	and	create	a	new	Console	Application	under	the	Visual	C#
category.	Use	the	preceding	commands	to	install	those	Accord.NET	packages
through	NuGet	and	add	references	to	our	project.	You	should	see	some
Accord.NET	packages	added	to	your	references	in	your	Solutions	Explorer	and
the	result	should	look	something	like	the	following	screenshot:

The	model	we	are	going	to	build	now	is	a	very	simple	logistic	regression	model.
Given	two-dimensional	arrays	and	an	expected	output,	we	are	going	to	develop	a
program	that	trains	a	logistic	regression	classifier	and	then	plot	the	results
showing	the	expected	output	and	the	actual	predictions	by	this	model.	The	input
and	output	for	this	model	look	like	the	following:

The	code	for	this	sample	logistic	regression	classifier	is	as	follows:

using	System;

using	System.Collections.Generic;

using	System.Linq;

using	System.Text;

using	System.Threading.Tasks;

using	Accord.Controls;

using	Accord.Statistics;

using	Accord.Statistics.Models.Regression;

using	Accord.Statistics.Models.Regression.Fitting;

namespace	SampleAccordNETApp

{

				class	Program

				{

								static	void	Main(string[]	args)

								{

												double[][]	inputs	=

												{

																new	double[]	{	0,	0	},

																new	double[]	{	0.25,	0.25	},	

																new	double[]	{	0.5,	0.5	},	

																new	double[]	{	1,	1	},

												};

												int[]	outputs	=

												{	

																0,

																0,

																1,

																1,

												};

												//	Train	a	Logistic	Regression	model

												var	learner	=	new	IterativeReweightedLeastSquares<LogisticRegression>()

												{

																MaxIterations	=	100

												};

												var	logit	=	learner.Learn(inputs,	outputs);

												//	Predict	output

												bool[]	predictions	=	logit.Decide(inputs);

												//	Plot	the	results

												ScatterplotBox.Show("Expected	Results",	inputs,	outputs);

												ScatterplotBox.Show("Actual	Logistic	Regression	Output",	inputs,	

predictions.ToZeroOne());

												Console.ReadKey();

								}

				}

}

Once	you	are	done	writing	this	code,	you	can	run	it	by	hitting	F5	or	clicking	on
the	Start	button	on	top.	If	everything	runs	smoothly,	it	should	produce	the	two
plots	shown	in	the	following	figure.	If	it	fails,	check	for	references	or	typos.	You
can	always	right-click	on	the	class	name	or	the	light	bulb	icon	to	make	Visual
Studio	help	you	find	which	packages	are	missing	from	the	namespace
references:

Plots	produced	by	the	sample	program.	Left:	actual	prediction	results,	right:	expected	output

This	sample	code	can	be	found	at	the	following	link:	https://github.com/yoonhwang/c-
sharp-machine-learning/blob/master/ch.1/SampleAccordNETApp.cs.

https://github.com/yoonhwang/c-sharp-machine-learning/blob/master/ch.1/SampleAccordNETApp.cs

Installing	Deedle
Deedle	is	an	open	source	.NET	library	for	data	frame	programming.	Deedle	lets
you	do	data	manipulation	in	a	way	that	is	similar	to	R	data	frames	and	pandas
data	frames	in	Python.	We	will	be	using	this	package	to	load	and	manipulate	the
data	for	our	ML	projects	in	the	following	chapters.

Similar	to	how	we	installed	Accord.NET,	we	can	install	the	Deedle	package
from	NuGet.	Open	the	package	manager	(Tools	|	NuGet	Package	Manager	|
Package	Manager	Console)	and	install	Deedle	using	the	following	command:

PM>	Install-Package	Deedle

Let's	briefly	look	at	how	we	can	use	this	package	to	load	data	from	a	CSV	file
and	do	simple	data	manipulations.	For	more	information,	you	can	visit	http://blue
mountaincapital.github.io/Deedle/	for	API	documentation	and	sample	code.	We	are
going	to	use	daily	AAPL	stock	price	data	from	2010	to	2013	for	this	exercise.
You	can	download	this	data	from	the	following	link:	https://github.com/yoonhwang/c-
sharp-machine-learning/blob/master/ch.1/table_aapl.csv.

Open	your	Visual	Studio	and	create	a	new	Console	Application	under	the	Visual	C#
category.	Use	the	preceding	command	to	install	the	Deedle	library	through	NuGet
and	add	references	to	your	project.	You	should	see	the	Deedle	package	added	to
your	references	in	your	Solutions	Explorer.

Now,	we	are	going	to	load	the	CSV	data	into	a	Deedle	data	frame	and	then	do
some	data	manipulations.	First,	we	are	going	to	update	the	index	of	the	data
frame	with	the	Date	field.	Then,	we	are	going	to	apply	some	arithmetic	operations
on	the	Open	and	Close	columns	to	calculate	the	percentage	changes	from	open	to
close	prices.	Lastly,	we	will	calculate	daily	returns	by	taking	the	differences
between	the	close	and	the	previous	close	prices,	dividing	them	by	the	previous
close	prices,	and	then	multiplying	it	by	100.	The	code	for	this	sample	Deedle
program	is	shown	as	follows:

using	Deedle;

using	System;

using	System.Collections.Generic;

using	System.IO;

http://bluemountaincapital.github.io/Deedle/
https://github.com/yoonhwang/c-sharp-machine-learning/blob/master/ch.1/table_aapl.csv

using	System.Linq;

using	System.Text;

using	System.Threading.Tasks;

namespace	DeedleApp

{

				class	Program

				{

								static	void	Main(string[]	args)

								{

												//	Read	AAPL	stock	prices	from	a	CSV	file

												var	root	=	

Directory.GetParent(Directory.GetCurrentDirectory()).Parent.FullName;

												var	aaplData	=	Frame.ReadCsv(Path.Combine(root,	"table_aapl.csv"));

												//	Print	the	data

												Console.WriteLine("--	Raw	Data	--");

												aaplData.Print();

												//	Set	Date	field	as	index

												var	aapl	=	aaplData.IndexRows<String>("Date").SortRowsByKey();

												Console.WriteLine("--	After	Indexing	--");

												aapl.Print();

												//	Calculate	percent	change	from	open	to	close

												var	openCloseChange	=	

																((

																				aapl.GetColumn<double>("Close")	-	aapl.GetColumn<double>("Open")

)	/	aapl.GetColumn<double>("Open"))	*	100.0;

												aapl.AddColumn("openCloseChange",	openCloseChange);

												Console.WriteLine("--	Simple	Arithmetic	Operations	--");

												aapl.Print();

												//	Shift	close	prices	by	one	row	and	calculate	daily	returns

												var	dailyReturn	=	aapl.Diff(1).GetColumn<double>("Close")	/	

aapl.GetColumn<double>("Close")	*	100.0;

												aapl.AddColumn("dailyReturn",	dailyReturn);

												Console.WriteLine("--	Shift	--");

												aapl.Print();

												Console.ReadKey();

								}

				}

}

When	you	run	this	code,	you	will	see	the	following	outputs.

The	raw	dataset	looks	like	the	following:

After	indexing	this	dataset	with	the	date	field,	you	will	see	the	following:

After	applying	simple	arithmetic	operations	to	compute	the	change	rate	from
open	to	close,	you	will	see	the	following:

Finally,	after	shifting	close	prices	by	one	row	and	computing	daily	returns,	you
will	see	the	following:

As	you	can	see	from	this	sample	Deedle	project,	we	can	run	various	data
manipulation	operations	with	one	or	two	lines	of	code,	where	it	would	have
required	more	lines	of	code	to	apply	the	same	operations	using	native	C#.	We
will	use	the	Deedle	library	frequently	throughout	this	book	for	data	manipulation
and	feature	engineering.

This	sample	Deedle	code	can	be	found	at	the	following	link:	https://github.com/yoo
nhwang/c-sharp-machine-learning/blob/master/ch.1/DeedleApp.cs.

https://github.com/yoonhwang/c-sharp-machine-learning/blob/master/ch.1/DeedleApp.cs

Summary
	

In	this	chapter,	we	briefly	discussed	some	key	ML	tasks	and	real-life	examples
of	ML	applications.	We	also	learned	the	steps	for	developing	ML	models	and	the
common	challenges	and	tasks	in	each	step.	We	are	going	to	follow	these	steps	as
we	work	through	our	projects	in	the	following	chapters	and	we	will	explore
certain	steps	in	more	detail,	especially	for	feature	engineering,	model	selection,
and	model	performance	evaluations.	We	will	discuss	the	various	techniques	we
can	apply	in	each	step	depending	on	the	types	of	problems	we	are	solving.
Lastly,	in	this	chapter,	we	walked	you	through	how	to	set	up	a	C#	environment
for	our	future	ML	projects.	We	built	a	simple	logistic	regression	classifier	using
the	Accord.NET	framework	and	used	the	Deedle	library	to	load	and	manipulate
the	data.

In	the	next	chapter,	we	are	going	to	dive	straight	into	applying	the	fundamentals
of	ML,	which	we	covered	in	this	chapter,	to	build	a	ML	model	for	spam	email
filtering.	We	will	follow	the	steps	for	building	ML	models	that	we	discussed	in
this	chapter	to	transform	raw	email	data	into	a	structured	dataset,	analyze	the
email	text	data	to	draw	some	insights,	and	then	finally	build	classification
models	that	predict	whether	an	email	is	a	spam	or	not.	We	will	also	discuss	some
commonly	used	model	evaluation	metrics	for	classification	models	in	the	next
chapter.

	

	

	

Spam	Email	Filtering
	

In	this	chapter,	we	are	going	to	start	building	real-world	machine	learning
(ML)	models	in	C#	using	the	two	packages	we	installed	in	Chapter	1,	Basics	of
Machine	Learning	Modeling;	Accord.NET	for	ML	and	Deedle	for	data
manipulation.	In	this	chapter,	we	are	going	to	build	a	classification	model	for
spam	email	filtering.	We	will	be	working	with	a	raw	email	dataset	that	contains
both	spam	and	ham	(non-spam)	emails	and	use	it	to	train	our	ML	model.	We	are
going	to	start	following	the	steps	for	developing	ML	models	that	we	discussed	in
the	previous	chapter.	This	will	help	us	understand	the	workflow	and	approaches
in	ML	modeling	better	and	make	them	second	nature.	While	we	work	to	build	a
spam	email	classification	model,	we	will	also	discuss	feature	engineering
techniques	for	text	datasets	and	basic	model	validation	methods	for	classification
models,	and	compare	the	logistic	regression	classifier	and	Naive	Bayes	classifier
for	spam	email	filtering.	Familiarizing	ourselves	with	these	model-building
steps,	basic	text	feature	engineering	techniques,	and	basic	classification	model
validation	methods	will	lay	the	groundwork	for	more	advanced	feature
engineering	techniques	using	natural	language	processing	(NLP)	and	for
building	multi-class	classification	models	in	Chapter	3,	Twitter	Sentiment
Analysis.

In	this	chapter,	we	will	cover	the	following	topics:

Problem	definition	for	the	spam	email	filtering	project
Data	preparation
Email	data	analysis
Feature	engineering	for	email	data
Logistic	regression	versus	Naive	Bayes	for	spam	email	filtering
Classification	model	validations

	

	

Problem	definition	for	the	spam	email
filtering	project
	

Let's	start	by	defining	the	problem	that	we	are	going	to	solve	in	this	chapter.	You
are	probably	familiar	with	what	spam	emails	are	already;	spam	email	filtering	is
an	essential	feature	for	email	services	such	as	Gmail,	Yahoo	Mail,	and	Outlook.
Spam	emails	can	be	annoying	for	users,	but	they	bring	more	issues	and	risks
with	them.	For	example,	a	spam	email	can	be	designed	to	solicit	credit	card
numbers	or	bank	account	information,	which	can	be	used	for	credit	card	fraud	or
money	laundering.	A	spam	email	can	also	be	used	to	obtain	personal	data,	such
as	a	social	security	number	or	user	IDs	and	passwords,	which	then	can	be	used
for	identity	theft	and	various	other	crimes.	Having	spam	email	filtering
technology	in	place	is	an	essential	step	for	email	services	to	save	users	from
being	exposed	to	such	crimes.	However,	having	the	right	spam	email	filtering
solution	is	difficult.	You	want	to	filter	out	suspicious	emails,	but	at	the	same
time,	you	do	not	want	to	filter	too	much	so	that	non-spam	emails	go	into	the
spam	folder	and	never	get	looked	at	by	users.	To	solve	this	problem,	we	are
going	to	have	our	ML	models	learn	from	the	raw	email	dataset	and	classify
suspicious	emails	as	spam	using	the	subject	line.	We	are	going	to	look	at	two
performance	metrics	to	measure	our	success:	precision	and	recall.	We	will
discuss	these	metrics	in	detail	in	the	following	sections.

To	summarize	our	problem	definition:

What	is	the	problem?	We	need	a	spam	email	filtering	solution	to	prevent
our	users	from	being	victims	of	fraudulent	activities	and	to	improve	user
experience	at	the	same	time.
Why	is	it	a	problem?	Having	the	right	balance	between	filtering	suspicious
emails	and	not	filtering	too	much,	so	that	non-spam	emails	still	get	the
Inbox,	is	difficult.	We	are	going	to	rely	on	ML	models	to	learn	how	to
classify	such	suspicious	emails	statistically.
What	are	some	of	the	approaches	to	solving	this	problem?	We	will	build	a
classification	model	that	flags	potential	spam	emails	based	on	the	subject

lines	of	emails.	We	will	use	precision	and	recall	rates	as	a	way	to	balance
the	amount	of	emails	being	filtered.
What	are	the	success	criteria?	We	want	high	recall	rates	(the	percentage	of
actual	spam	emails	retrieved	over	the	total	number	of	spam	emails)	without
sacrificing	too	much	for	precision	rates	(the	percentage	of	correctly
classified	spam	emails	among	those	predicted	as	spam).

	

	

Data	preparation
Now	that	we	have	clearly	stated	and	defined	the	problem	that	we	are	going	to
solve	with	ML,	we	need	the	data.	No	data,	no	ML.	Typically,	you	need	to	take	an
extra	step	prior	to	the	data	preparation	step	to	collect	and	gather	the	data	that	you
need,	but	in	this	book	we	are	going	to	use	a	pre-compiled	and	labeled	dataset
that	is	publicly	available.	In	this	chapter,	we	are	going	to	use	the	CSDMC2010
SPAM	corpus	dataset	(http://csmining.org/index.php/spam-email-datasets-.html)	to	train
and	test	our	models.	You	can	follow	the	link	and	download	the	compressed	data
at	the	bottom	of	the	web	page.	When	you	have	downloaded	and	decompressed
the	data,	you	will	see	two	folders	named	TESTING	and	TRAINING,	and	a	text	file
named	SPAMTrain.label.	The	SPAMTrain.label	file	has	encoded	labels	for	each	email	in
the	TRAINING	folder—0	stands	for	spam	and	1	stands	for	ham	(non-spam).	We	will
use	this	text	file	with	the	email	data	in	the	TRAINING	folder	to	build	spam	email
classification	models.

Once	you	have	downloaded	the	data	and	put	it	in	a	place	where	you	can	load	it
from,	you	need	to	prepare	it	for	future	feature	engineering	and	model	building
steps.	What	we	have	now	is	a	raw	dataset	that	contains	a	number	of	EML	files
that	contain	information	about	individual	emails	and	a	text	file	that	contains
labeling	information.	To	make	this	raw	dataset	usable	for	building	spam	email
classification	models	using	the	email	subject	lines,	we	need	to	do	the	following
tasks:

1.	 Extract	subject	lines	from	EML	files:	The	first	step	to	prepare	our	data	for
future	tasks	is	to	extract	the	subject	and	body	from	individual	EML	files.
We	are	going	to	use	a	package	called	EAGetMail	to	load	and	extract
information	from	EML	files.	You	can	install	this	package	using	the	Package
Manager	in	Visual	Studio.	Take	a	look	at	lines	4	to	6	of	the	code	to	install
the	package.	Using	the	EAGetMail	package,	you	can	easily	load	and	extract	the
subject	and	body	contents	from	the	EML	files	(lines	24–30).	Once	you	have
extracted	the	subject	and	body	from	an	email,	you	need	to	append	each	line
of	data	as	a	row	to	a	Deedle	data	frame.	Take	a	look	at	the	ParseEmails
function	from	line	18	in	the	following	code	to	see	how	to	create	a	Deedle
data	frame,	where	each	row	contains	each	email's	index	number,	subject
line,	and	body	content.

http://csmining.org/index.php/spam-email-datasets-.html

2.	 Combine	the	extracted	data	with	the	labels:	After	extracting	the	subject
and	body	contents	from	individual	EML	files,	there	is	one	more	thing	we
need	to	do.	We	need	to	map	the	encoded	labels	(0	for	spam	versus	1	for
ham)	to	each	row	of	the	data	frame	that	we	created	in	the	previous	step.	If
you	open	the	SPAMTrain.label	file	with	any	text	editor,	you	can	see	that	the
encoded	label	is	in	the	first	column	and	the	corresponding	email	file	name
is	in	the	second	column,	separated	by	a	space.	Using	Deedle	frame's	ReadCsv
function,	you	can	easily	load	this	label	data	into	a	data	frame	by	specifying
a	space	as	a	separator	(see	line	50	in	the	code).	Once	you	have	loaded	this
labeled	data	into	a	data	frame,	you	can	simply	add	the	first	column	of	this
data	frame	to	the	other	data	frame	we	created	in	the	previous	step	using	the
AddColumn	function	of	Deedle's	frame.	Take	a	look	at	lines	49-52	of	the
following	code	to	see	how	we	can	combine	the	labeling	information	with
the	extracted	email	data.

3.	 Export	this	merged	data	as	a	CSV	file:	Now	that	we	have	one	data	frame
that	contains	both	email	and	labeling	data,	it	is	time	to	export	this	data
frame	into	a	CSV	file	for	future	usage.	As	shown	in	line	54	in	the	following
code,	it	takes	one	line	to	export	the	data	frame	into	a	CSV	file.	Using
Deedle	frame's	SaveCsv	function,	you	can	easily	save	the	data	frame	as	a	CSV
file.

The	code	for	this	data	preparation	step	is	as	follows:

//	Install-Package	Deedle

//	Install-Package	FSharp.Core

using	Deedle;

//	if	you	don't	have	EAGetMail	package	already,	install	it	

//	via	the	Package	Manager	Console	by	typing	in	"Install-Package	EAGetMail"

using	EAGetMail;

using	System;

using	System.Collections.Generic;

using	System.IO;

using	System.Linq;

using	System.Text;

using	System.Threading.Tasks;

namespace	EmailParser

{

				class	Program

				{

								private	static	Frame<int,	string>	ParseEmails(string[]	files)

								{

												//	we	will	parse	the	subject	and	body	from	each	email

												//	and	store	each	record	into	key-value	pairs

												var	rows	=	files.AsEnumerable().Select((x,	i)	=>

												{

																//	load	each	email	file	into	a	Mail	object

																Mail	email	=	new	Mail("TryIt");

																email.Load(x,	false);

																//	extract	the	subject	and	body

																string	emailSubject	=	email.Subject;

																string	textBody	=	email.TextBody;

																//	create	key-value	pairs	with	email	id	(emailNum),	subject,	and	body

																return	new	{	emailNum	=	i,	subject	=	emailSubject,	body	=	textBody	};

												});

												//	make	a	data	frame	from	the	rows	that	we	just	created	above

												return	Frame.FromRecords(rows);

								}

								static	void	Main(string[]	args)

								{

												//	Get	all	raw	EML-format	files

												//	TODO:	change	the	path	to	point	to	your	data	directory

												string	rawDataDirPath	=	"<path-to-data-directory>";

												string[]	emailFiles	=	Directory.GetFiles(rawDataDirPath,	"*.eml");

												//	Parse	out	the	subject	and	body	from	the	email	files

												var	emailDF	=	ParseEmails(emailFiles);

												//	Get	the	labels	(spam	vs.	ham)	for	each	email

												var	labelDF	=	Frame.ReadCsv(rawDataDirPath	+	"\\SPAMTrain.label",	

hasHeaders:	false,	separators:	"	",	schema:	"int,string");

												//	Add	these	labels	to	the	email	data	frame

												emailDF.AddColumn("is_ham",	labelDF.GetColumnAt<String>(0));

												//	Save	the	parsed	emails	and	labels	as	a	CSV	file

												emailDF.SaveCsv("transformed.csv");

												Console.WriteLine("Data	Preparation	Step	Done!");

												Console.ReadKey();

								}

				}

}

You	will	need	to	replace	<path-to-data-directory>	in	line	44	with	the	actual	path
where	you	have	your	data	stored	before	you	run	this	code.	Once	you	run	this
code,	a	file	named	transformed.csv	should	be	created	and	it	will	contain	four
columns	(emailNum,	subject,	body,	and	is_ham).	We	will	use	this	output	data	as	an
input	to	the	following	steps	for	building	ML	models	for	the	spam	email	filtering
project.	However,	feel	free	to	be	creative	and	play	around	with	the	Deedle
framework	and	EAGetMail	package	to	tweak	and	prepare	this	data	in	a	different
way.	The	code	we	presented	here	is	one	way	to	prepare	this	raw	email	data	for
future	usage	and	some	of	the	information	you	can	extract	from	the	raw	email
data.	Using	the	EAGetMail	package,	you	can	extract	other	features,	such	as	the
sender's	email	addresses	and	attachments	in	the	emails,	and	these	extra	features
can	potentially	help	improve	your	spam	email	classification	models.

The	code	for	this	data	preparation	step	can	also	be	found	in	the	following
repository:	https://github.com/yoonhwang/c-sharp-machine-learning/blob/master/ch.2/EmailP
arser.cs.

https://github.com/yoonhwang/c-sharp-machine-learning/blob/master/ch.2/EmailParser.cs

Email	data	analysis
In	the	data	preparation	step,	we	transformed	the	raw	dataset	into	a	more	readable
and	usable	dataset.	We	now	have	one	file	to	look	at	to	figure	out	which	emails
are	spam	and	which	emails	are	not.	Also,	we	can	easily	find	out	the	subject	lines
for	spam	emails	and	non-spam	emails.	With	this	transformed	data,	let's	start
looking	at	what	the	data	actually	looks	like	and	see	if	we	can	find	any	patterns	or
issues	within	the	data.

Since	we	are	dealing	with	text	data,	the	first	thing	we	want	to	look	at	is	how	the
word	distributions	differ	between	spam	and	non-spam	emails.	In	order	to	do	this,
we	need	to	transform	the	data	output	from	the	previous	step	into	a	matrix
representation	of	word	occurrences.	Let's	work	through	this	step	by	step,	taking
the	first	three	subject	lines	from	our	data	as	an	example.	The	first	three	subject
lines	we	have	are	as	follows:

If	we	transform	this	data	such	that	each	column	corresponds	to	each	word	in
each	subject	line	and	encode	the	value	of	each	cell	as	1,	if	the	given	subject	line
has	the	word,	and	0	if	not,	then	the	resulting	matrix	looks	something	like	the
following:

This	specific	way	of	encoding	is	called	one-hot	encoding,	where	we	only	care
about	whether	the	specific	word	occurred	in	the	subject	line	or	not	and	we	do	not
care	about	the	actual	number	of	occurrences	of	each	word	in	the	subject	line.	In
the	aforementioned	case,	we	also	took	out	all	the	punctuation	marks,	such	as
colons,	question	marks,	and	exclamation	points.	To	do	this	programmatically,	we
can	use	a	regex	to	split	each	subject	line	into	words	that	only	contain	alpha-
numeric	characters	and	then	build	a	data	frame	with	one-hot	encoding.	The	code
to	do	this	encoding	step	looks	like	the	following:

private	static	Frame<int,	string>	CreateWordVec(Series<int,	string>	rows)

{

				var	wordsByRows	=	rows.GetAllValues().Select((x,	i)	=>

				{

								var	sb	=	new	SeriesBuilder<string,	int>();

								ISet<string>	words	=	new	HashSet<string>(

												Regex.Matches(

																//	Alphanumeric	characters	only

																x.Value,	"\\w+('(s|d|t|ve|m))?"

).Cast<Match>().Select(

																//	Then,	convert	each	word	to	lowercase

																y	=>	y.Value.ToLower()

).ToArray()

);

								//	Encode	words	appeared	in	each	row	with	1

								foreach	(string	w	in	words)

								{

												sb.Add(w,	1);

								}

								return	KeyValue.Create(i,	sb.Series);

				});

				//	Create	a	data	frame	from	the	rows	we	just	created

				//	And	encode	missing	values	with	0

				var	wordVecDF	=	Frame.FromRows(wordsByRows).FillMissing(0);

				return	wordVecDF;

}

Having	this	one-hot	encoded	matrix	representation	of	words	makes	our	data
analysis	process	much	easier.	For	example,	if	we	want	to	take	a	look	at	the	top
ten	frequently	occurring	words	in	spam	emails,	we	can	simply	sum	the	values	in
each	column	of	the	one-hot	encoded	word	matrix	for	spam	emails	and	take	the
ten	words	with	the	highest	summed	values.	This	is	exactly	what	we	do	in	the
following	code:

var	hamTermFrequencies	=	subjectWordVecDF.Where(

				x	=>	x.Value.GetAs<int>("is_ham")	==	1

).Sum().Sort().Reversed.Where(x	=>	x.Key	!=	"is_ham");

var	spamTermFrequencies	=	subjectWordVecDF.Where(

				x	=>	x.Value.GetAs<int>("is_ham")	==	0

).Sum().Sort().Reversed;

//	Look	at	Top	10	terms	that	appear	in	Ham	vs.	Spam	emails

var	topN	=	10;

var	hamTermProportions	=	hamTermFrequencies	/	hamEmailCount;

var	topHamTerms	=	hamTermProportions.Keys.Take(topN);

var	topHamTermsProportions	=	hamTermProportions.Values.Take(topN);

System.IO.File.WriteAllLines(

				dataDirPath	+	"\\ham-frequencies.csv",

				hamTermFrequencies.Keys.Zip(

								hamTermFrequencies.Values,	(a,	b)	=>	string.Format("{0},{1}",	a,	b)

)

);

var	spamTermProportions	=	spamTermFrequencies	/	spamEmailCount;

var	topSpamTerms	=	spamTermProportions.Keys.Take(topN);

var	topSpamTermsProportions	=	spamTermProportions.Values.Take(topN);

System.IO.File.WriteAllLines(

				dataDirPath	+	"\\spam-frequencies.csv",

				spamTermFrequencies.Keys.Zip(

								spamTermFrequencies.Values,	(a,	b)	=>	string.Format("{0},{1}",	a,	b)

)

);

As	you	can	see	from	this	code,	we	use	the	Sum	method	of	Deedle's	data	frame	to
sum	the	values	in	each	column	and	sort	in	reverse	order.	We	do	this	once	for
spam	emails	and	again	for	ham	emails.	Then,	we	use	the	Take	method	to	get	the
top	ten	words	that	appear	the	most	frequently	in	spam	and	ham	emails.	When
you	run	this	code,	it	will	generate	two	CSV	files:	ham-frequencies.csv	and	spam-
frequencies.csv.	These	two	files	contain	information	about	the	number	of	word
occurrences	in	spam	and	ham	emails,	which	we	are	going	to	use	later	for	the
feature	engineering	and	model	building	steps.

Let's	now	visualize	some	of	the	data	for	further	analysis.	First,	take	a	look	at	the
following	plot	for	the	top	ten	frequently	appearing	terms	in	ham	emails	in	the
dataset:

A	bar	plot	for	the	top	ten	frequently	appearing	terms	in	ham	emails

As	you	can	see	from	this	bar	chart,	there	are	more	ham	emails	than	spam	emails
in	the	dataset,	as	in	the	real	world.	We	typically	get	more	ham	emails	than	spam
emails	in	our	inbox.	We	used	the	following	code	to	generate	this	bar	chart	to
visualize	the	distribution	of	ham	and	spam	emails	in	the	dataset:

var	barChart	=	DataBarBox.Show(

				new	string[]	{	"Ham",	"Spam"	},

				new	double[]	{

								hamEmailCount,

								spamEmailCount

				}

);

barChart.SetTitle("Ham	vs.	Spam	in	Sample	Set");

Using	the	DataBarBox	class	in	the	Accord.NET	framework,	we	can	easily	visualize
data	in	bar	charts.	Let's	now	visualize	the	top	ten	frequently	occurring	terms	in
ham	and	spam	emails.	You	can	use	the	following	code	to	generate	bar	charts	for
the	top	ten	terms	in	ham	and	spam	emails:

var	hamBarChart	=	DataBarBox.Show(

				topHamTerms.ToArray(),

				new	double[][]	{

								topHamTermsProportions.ToArray(),

								spamTermProportions.GetItems(topHamTerms).Values.ToArray()

				}

);

hamBarChart.SetTitle("Top	10	Terms	in	Ham	Emails	(blue:	HAM,	red:	SPAM)");

var	spamBarChart	=	DataBarBox.Show(

				topSpamTerms.ToArray(),

				new	double[][]	{

								hamTermProportions.GetItems(topSpamTerms).Values.ToArray(),

								topSpamTermsProportions.ToArray()

				}

);

spamBarChart.SetTitle("Top	10	Terms	in	Spam	Emails	(blue:	HAM,	red:	SPAM)");

Similarly,	we	used	DataBarBox	class	to	display	bar	charts.	When	you	run	this	code,
you	will	see	the	following	plot	for	the	top	ten	frequently	appearing	terms	in	ham
emails:

A	plot	for	the	top	ten	frequently	appearing	terms	in	ham	emails

The	bar	plot	for	the	top	ten	frequently	occurring	terms	in	spam	emails	looks	like
the	following:

A	bar	plot	for	the	top	ten	frequently	occurring	terms	in	spam	emails

As	expected,	the	word	distribution	in	spam	emails	is	quite	different	from	non-
spam	emails.	For	example,	if	you	look	at	the	chart	on	the	right,	the	words	spam
and	hibody	appear	frequently	in	spam	emails,	but	not	so	much	in	non-spam
emails.	However,	there	is	something	that	does	not	make	much	sense.	If	you	look
closely,	the	two	words	trial	and	version	appear	in	all	of	the	spam	and	ham
emails,	which	is	very	unlikely	to	be	true.	If	you	open	some	of	the	raw	EML	files
in	a	text	editor,	you	can	easily	find	out	that	not	all	of	the	emails	contain	those
two	words	in	their	subject	lines.	So,	what	is	happening?	Did	our	data	get
polluted	by	our	previous	data	preparation	or	data	analysis	steps?

Further	research	suggests	that	one	of	the	packages	that	we	used	caused	this	issue.

The	EAGetMail	package,	which	we	used	to	load	and	extract	email	contents,
automatically	appends	(Trial	Version)	to	the	end	of	the	subject	lines	when	we	use
their	trial	version.	Now	that	we	know	the	root	cause	of	this	data	issue,	we	need
to	go	back	and	fix	it.	One	solution	is	to	go	back	to	the	data	preparation	step	and
update	our	ParseEmails	function	with	the	following	code,	which	simply	drops	the
appended	(Trial	Version)	flag	from	the	subject	lines:

private	static	Frame<int,	string>	ParseEmails(string[]	files)

{

				//	we	will	parse	the	subject	and	body	from	each	email

				//	and	store	each	record	into	key-value	pairs

				var	rows	=	files.AsEnumerable().Select((x,	i)	=>

				{

								//	load	each	email	file	into	a	Mail	object

								Mail	email	=	new	Mail("TryIt");

								email.Load(x,	false);

								//	REMOVE	"(Trial	Version)"	flags

								string	EATrialVersionRemark	=	"(Trial	Version)";	//	EAGetMail	appends	subjects	

with	"(Trial	Version)"	for	trial	version

								string	emailSubject	=	email.Subject.EndsWith(EATrialVersionRemark)	?	

												email.Subject.Substring(0,	email.Subject.Length	-	

EATrialVersionRemark.Length)	:	email.Subject;

								string	textBody	=	email.TextBody;

								//	create	key-value	pairs	with	email	id	(emailNum),	subject,	and	body

								return	new	{	emailNum	=	i,	subject	=	emailSubject,	body	=	textBody	};

				});

				//	make	a	data	frame	from	the	rows	that	we	just	created	above

				return	Frame.FromRecords(rows);

}

After	updating	this	code	and	running	the	previous	data	preparation	and	analysis
code	again,	the	bar	charts	for	word	distribution	make	much	more	sense.

The	following	bar	plot	shows	the	top	ten	frequently	occurring	terms	in	ham
emails	after	fixing	and	removing	(Trial	Version)	flags:

The	following	bar	plot	shows	the	top	ten	frequently	occurring	terms	in	spam
emails	after	fixing	and	removing	(Trial	Version)	flags:

This	is	a	good	example	of	the	importance	of	a	data	analysis	step	when	building
ML	models.	Iterating	between	the	data	preparation	and	data	analysis	steps	is
very	common,	as	we	typically	find	issues	with	the	data	in	the	analysis	step	and
often	we	can	improve	the	data	quality	by	updating	some	of	the	code	used	in	the
data	preparation	step.	Now	that	we	have	clean	data	with	a	matrix	representation
of	words	used	in	subject	lines,	it	is	time	to	start	working	on	the	actual	features
that	we	will	use	for	building	ML	models.

Feature	engineering	for	email	data
We	briefly	looked	at	word	distributions	for	spam	and	ham	emails	in	the	previous
step	and	there	are	a	couple	things	that	we	noticed.	First,	a	large	number	of	the
most	frequently	occurring	words	are	commonly	used	words	with	out	much
meaning.	For	example,	words	like	to,	the,	for,	and	a	are	commonly	used	words
and	our	ML	algorithms	would	not	learn	much	from	these	words.	These	type	of
words	are	called	stop	words	and	are	often	ignored	or	dropped	from	the	feature
set.	We	will	use	NLTK's	list	of	stop	words	to	filter	out	commonly	used	words
from	our	feature	set.	You	can	download	the	NLTK	list	of	stop	words	from	here:	h
ttps://github.com/yoonhwang/c-sharp-machine-learning/blob/master/ch.2/stopwords.txt.	One
way	to	filter	out	these	stop	words	is	shown	in	the	following	code:

//	Read	in	stopwords	list

ISet<string>	stopWords	=	new	HashSet<string>(

				File.ReadLines("<path-to-your-stopwords.txt>")

);

//	Filter	out	stopwords	from	the	term	frequency	series

var	spamTermFrequenciesAfterStopWords	=	spamTermFrequencies.Where(

				x	=>	!stopWords.Contains(x.Key)

);

After	filtering	out	these	stop	words,	the	new	top	ten	frequently	occurring	terms
for	non-spam	emails	are	as	follows:

The	top	ten	frequently	occurring	terms	for	spam	emails,	after	filtering	out	stop
words,	look	as	the	following:

https://github.com/yoonhwang/c-sharp-machine-learning/blob/master/ch.2/stopwords.txt

As	you	can	see	from	these	bar	charts,	filtering	out	these	stop	words	from	the
feature	set	made	more	meaningful	words	come	to	the	top	of	the	frequently
appearing	word	lists.	However,	there	is	one	more	thing	we	can	notice	here.
Numbers	seem	to	come	up	as	some	of	the	top	frequently	occurring	words.	For
example,	the	numbers	3	and	2	made	it	to	the	top	ten	frequently	appearing	words
in	ham	emails.	Numbers	80	and	70	made	it	to	the	top	ten	frequently	appearing
words	in	spam	emails.	However,	it	is	hard	to	establish	whether	or	not	those
numbers	would	contribute	much	in	training	ML	models	to	classify	an	email	as	a
spam	or	ham.	There	are	multiple	ways	to	filter	out	these	numbers	from	the
feature	set,	but	we	will	show	you	one	way	to	do	it	here.	We	updated	the	regex	we
used	in	the	previous	step	to	match	words	that	contain	alphabetical	characters
only,	not	alphanumeric	characters.	The	following	code	shows	how	we	updated
the	CreateWordVec	function	to	filter	out	the	numbers	from	the	feature	set:

private	static	Frame<int,	string>	CreateWordVec(Series<int,	string>	rows)

{

				var	wordsByRows	=	rows.GetAllValues().Select((x,	i)	=>

				{

								var	sb	=	new	SeriesBuilder<string,	int>();

								ISet<string>	words	=	new	HashSet<string>(

												Regex.Matches(

																//	Alphabetical	characters	only

																x.Value,	"[a-zA-Z]+('(s|d|t|ve|m))?"

).Cast<Match>().Select(

																//	Then,	convert	each	word	to	lowercase

																y	=>	y.Value.ToLower()

).ToArray()

);

								//	Encode	words	appeared	in	each	row	with	1

								foreach	(string	w	in	words)

								{

												sb.Add(w,	1);

								}

								return	KeyValue.Create(i,	sb.Series);

				});

				//	Create	a	data	frame	from	the	rows	we	just	created

				//	And	encode	missing	values	with	0

				var	wordVecDF	=	Frame.FromRows(wordsByRows).FillMissing(0);

				return	wordVecDF;

}

Once	we	filter	out	those	numbers	from	the	feature	set,	the	word	distributions	for
ham	emails	looks	like	the	following:

And	the	word	distributions	for	spam	emails,	after	filtering	out	the	numbers	from
the	feature	set,	looks	like	the	following:

As	you	can	see	from	these	bar	charts,	we	have	more	meaningful	words	on	the
top	lists	and	there	seems	to	be	a	greater	distinction	between	the	word
distributions	for	spam	and	ham	emails.	Those	words	that	frequently	appear	in
spam	emails	do	not	seem	to	appear	much	in	ham	emails	and	vice	versa.

The	full	code	for	the	data	analysis	and	feature	engineering	step	can	be	found	in
the	following	repo:	https://github.com/yoonhwang/c-sharp-machine-learning/blob/master/ch
.2/DataAnalyzer.cs.	Once	you	run	this	code,	it	will	generate	bar	charts	that	show
word	distributions	in	spam	and	ham	emails	and	two	CSV	files—one	for	the	list
of	words	in	ham	emails	with	the	corresponding	counts	of	occurrences	and
another	for	the	list	of	words	in	spam	emails	with	the	corresponding	counts	of
occurrences.	We	are	going	to	use	this	term	frequency	output	for	feature	selection
processes	when	we	build	classification	models	for	spam	email	filtering	in	the
following	model	building	section.

https://github.com/yoonhwang/c-sharp-machine-learning/blob/master/ch.2/DataAnalyzer.cs

Logistic	regression	versus	Naive
Bayes	for	email	spam	filtering
We	have	come	a	long	way	to	finally	build	our	very	first	ML	models	in	C#.	In	this
section,	we	are	going	to	train	logistic	regression	and	Naive	Bayes	classifiers	to
classify	emails	into	spam	and	ham.	We	are	going	to	run	cross-validations	with
those	two	learning	algorithms	to	estimate	and	get	a	better	understanding	of	how
our	classification	models	will	perform	in	practice.	As	discussed	briefly	in	the
previous	chapter,	in	k-fold	cross-validation,	the	training	set	is	divided	into	k
equally	sized	subsets	and	one	of	those	k	subsets	is	held	out	as	a	validation	set,
and	the	rest	of	the	k-1	subsets	are	used	to	train	a	model.	It	then	repeats	this
process	k	times,	where	different	subsets	or	folds	are	used	in	each	iteration	as	a
validation	set	for	testing,	and	the	corresponding	k	validation	results	are	then
averaged	to	report	a	single	estimation.

Let's	first	look	at	how	we	can	instantiate	a	cross-validation	algorithm	with
logistic	regression	in	C#	using	the	Accord.NET	framework.	The	code	is	as
follows:

var	cvLogisticRegressionClassifier	=	CrossValidation.Create<LogisticRegression,	

IterativeReweightedLeastSquares<LogisticRegression>,	double[],	int>(

				//	number	of	folds

				k:	numFolds,

				//	Learning	Algorithm

				learner:	(p)	=>	new	IterativeReweightedLeastSquares<LogisticRegression>()

				{

								MaxIterations	=	100,

								Regularization	=	1e-6

				},

				//	Using	Zero-One	Loss	Function	as	a	Cost	Function

				loss:	(actual,	expected,	p)	=>	new	ZeroOneLoss(expected).Loss(actual),

				//	Fitting	a	classifier

				fit:	(teacher,	x,	y,	w)	=>	teacher.Learn(x,	y,	w),

				//	Input	with	Features

				x:	input,

				//	Output

				y:	output

);

//	Run	Cross-Validation

var	result	=	cvLogisticRegressionClassifier.Learn(input,	output);

Let's	take	a	deeper	look	at	this	code.	We	can	create	a	new	CrossValidation

algorithm	using	the	static	Create	function	by	supplying	the	type	of	model	to	train,
the	type	of	learning	algorithm	to	fit	the	model,	the	type	of	input	data,	and	the
type	of	output	data.	For	this	example,	we	created	a	new	CrossValidation	algorithm
with	LogisticRegression	as	the	model,	IterativeReweightedLeastSquares	as	the	learning
algorithm,	a	double	array	as	the	type	of	input,	and	an	integer	as	the	type	of
output	(each	label).	You	can	experiment	with	different	learning	algorithms	to
train	a	logistic	regression	model.	In	Accord.NET,	you	have	the	option	to	choose
the	stochastic	gradient	descent	algorithm	(LogisticGradientDescent)	as	a	learning
algorithm	to	fit	a	logistic	regression	model.

For	the	parameters,	you	can	specify	the	number	of	folds	for	the	k-fold	cross-
validation	(k),	the	learning	method	with	custom	parameters	(learner),	the	loss/cost
function	of	your	choice	(loss),	and	a	function	that	knows	how	to	fit	a	model
using	the	learning	algorithm	(fit),	the	input	(x),	and	the	output	(y).	For
illustration	purposes	in	this	section,	we	set	a	relatively	small	number,	3,	for	the	k-
fold	cross-validation.	Also,	we	chose	a	relatively	small	number,	100,	for	the	max
iterations	and	a	relatively	large	number,	1e-6	or	1/1,000,000,	for	regularization
of	the	IterativeReweightedLeastSquares	learning	algorithm.	For	the	loss	function,	we
used	a	simple	zero-one	loss	function,	where	it	assigns	0s	for	the	correct
predictions	and	1s	for	the	incorrect	predictions.	This	is	the	cost	function	that	our
learning	algorithm	tries	to	minimize.	All	of	these	parameters	can	be	tuned
differently.	You	can	choose	a	different	loss/cost	function,	the	number	of	folds	to
use	in	k-fold	cross-validation,	and	the	maximum	number	of	iterations	and	the
regularization	number	for	the	learning	algorithm.	You	can	even	use	a	different
learning	algorithm	to	fit	a	logistic	regression	model,	such	as
LogisticGradientDescent,	which	iteratively	tries	to	find	the	local	minimum	of	a	loss
function.

We	can	apply	this	same	approach	to	train	the	Naive	Bayes	classifier	with	a	k-
fold	cross-validation.	The	code	to	run	k-fold	cross-validation	with	the	Naive
Bayes	learning	algorithm	is	as	follows:

var	cvNaiveBayesClassifier	=	CrossValidation.Create<NaiveBayes<BernoulliDistribution>,	

NaiveBayesLearning<BernoulliDistribution>,	double[],	int>(

				//	number	of	folds

				k:	numFolds,

				//	Naive	Bayes	Classifier	with	Binomial	Distribution

				learner:	(p)	=>	new	NaiveBayesLearning<BernoulliDistribution>(),

				//	Using	Zero-One	Loss	Function	as	a	Cost	Function

				loss:	(actual,	expected,	p)	=>	new	ZeroOneLoss(expected).Loss(actual),

				//	Fitting	a	classifier

				fit:	(teacher,	x,	y,	w)	=>	teacher.Learn(x,	y,	w),

				//	Input	with	Features

				x:	input,

				//	Output

				y:	output

);

//	Run	Cross-Validation

var	result	=	cvNaiveBayesClassifier.Learn(input,	output);

The	only	difference	between	the	previous	code	for	the	logistic	regression	model
and	this	code	is	the	model	and	the	learning	algorithm	we	chose.	Instead	of
LogisticRegression	and	IterativeReweightedLeastSquares,	we	used	NaiveBayes	as	a	model
and	NaiveBayesLearning	as	a	learning	algorithm	to	train	our	Naive	Bayes	classifier.
Since	all	of	our	input	values	are	binary	(either	0	or	1),	we	used
BernoulliDistribution	for	our	Naive	Bayes	classifier	model.

The	full	code	to	train	and	validate	a	classification	model	with	k-fold	cross
validation	can	be	found	in	the	following	repository:	https://github.com/yoonhwang/c-s
harp-machine-learning/blob/master/ch.2/Modeling.cs.	When	you	run	this	code,	you
should	see	an	output	that	looks	like	the	following:

We	will	take	a	closer	look	at	what	these	numbers	represent	in	the	following
section	where	we	discuss	model	validation	methods.	In	order	to	try	different	ML
models,	simply	modify	lines	68–88	in	the	code.	You	can	replace	these	with	the
logistic	regression	model	code	that	we	discussed	previously	or	you	can	also	try
fitting	a	different	learning	algorithm	of	your	choice.

https://github.com/yoonhwang/c-sharp-machine-learning/blob/master/ch.2/Modeling.cs

Classification	model	validations
We	built	our	very	first	ML	models	in	C#	using	the	Accord.NET	framework	in
the	previous	section.	However,	we	are	not	quite	done	yet.	If	we	look	at	the
previous	console	output	more	closely,	there	is	one	thing	that	is	quite	concerning.
The	training	error	is	around	0.03,	but	the	validation	error	is	about	0.26.	This
means	that	our	classification	model	predicted	correctly	87	out	of	100	times	in	the
training	set,	but	the	model	predictions	in	the	validation	or	test	set	were	correct
only	74	times	out	of	100.	This	is	a	typical	example	of	overfitting,	where	the
model	fits	so	closely	to	the	train	set	that	its	predictions	for	the	unforeseen	dataset
are	unreliable	and	unpredictable.	If	we	were	to	take	this	model	and	put	it	in	the
production	spam	filtering	system,	the	model	performance	in	practice	for	filtering
spam	emails	would	be	unreliable	and	would	be	different	from	what	we	saw	in
the	training	set.

Overfitting	typically	happens	because	the	model	is	too	complex	for	the	given
dataset	or	too	many	parameters	were	used	to	fit	the	model.	The	overfitting
problem	with	the	Naive	Bayes	classifier	model	we	built	in	the	last	section	is
most	likely	due	to	the	complexity	and	the	number	of	features	we	used	to	train	the
model.	If	you	look	at	the	console	output	at	the	end	of	the	last	section	again,	you
can	see	that	the	number	of	features	used	to	train	our	Naive	Bayes	model	was
2,212.	This	is	way	too	many	features,	considering	that	we	only	have	about	4,200
email	records	in	our	sample	set	and	only	about	two	thirds	of	them	(or	about
3,000	records)	were	used	to	train	our	model	(this	is	because	we	used	3-fold
cross-validation	and	only	two	of	those	three	folds	were	used	as	a	training	set	in
each	iteration).	To	fix	this	overfitting	issue,	we	will	have	to	reduce	the	number	of
features	we	use	to	train	a	model.	In	order	to	do	this,	we	can	filter	out	those	terms
that	occur	not	so	often.	The	code	to	do	this	is	in	lines	48–53	of	the	full	code	in
the	previous	section,	which	looks	like	the	following:	//	Change	number	of
features	to	reduce	overfitting
int	minNumOccurrences	=	1;
string[]	wordFeatures	=	indexedSpamTermFrequencyDF.Where(
x	=>	x.Value.GetAs<int>("num_occurences")	>=	minNumOccurrences
).RowKeys.ToArray();
Console.WriteLine("Num	Features	Selected:	{0}",	wordFeatures.Count());

As	you	can	see	from	this	code,	the	Naive	Bayes	classifier	model	that	we	built	in
the	previous	section	used	all	the	words	that	appeared	in	the	spam	emails	at	least
once.	If	you	look	at	the	word	frequencies	in	spam	emails,	there	are	about	1,400
words	that	only	occur	once	(take	a	look	at	the	spam-frequencies.csv	file	that	was
created	in	the	data	analysis	step).	Intuitively,	those	words	with	a	low	number	of
occurrences	would	only	create	noise,	not	much	information	for	our	models	to
learn.	This	immediately	tells	us	how	much	noise	our	model	would	have	been
exposed	to	when	we	initially	built	our	classification	model	in	the	previous
section.

Now	that	we	know	the	cause	of	this	overfitting	issue,	let's	fix	it.	Let's	experiment
with	different	thresholds	for	selecting	features.	We	have	tried	5,	10,	15,	20,	and
25	for	the	minimum	number	of	occurrences	in	spam	emails	(that	is,	we	set
minNumOccurrences	to	5,	10,	15,	and	so	on)	and	trained	Naive	Bayes	classifiers	with
these	thresholds.

First,	the	Naive	Bayes	classifier	results	with	a	minimum	of	five	occurrences
looks	like	the	following:

The	Naive	Bayes	classifier	results	with	a	minimum	of	10	occurrences	looks	like
the	following:

The	Naive	Bayes	classifier	results	with	a	minimum	of	15	occurrences	looks	like
the	following:

Lastly,	the	Naive	Bayes	classifier	results	with	a	minimum	of	20	occurrences
looks	like	the	following:

As	you	can	see	from	these	experiment	results,	as	we	increase	the	minimum
number	of	word	occurrences	and	reduce	the	number	of	features	being	used	to
train	the	model	accordingly,	the	gap	between	training	error	and	validation	error
decreases	and	the	training	errors	start	to	look	more	similar	to	the	validation
errors.	As	we	resolve	the	overfitting	issues,	we	can	be	more	confident	in	how	the
model	will	behave	for	the	unforeseen	data	and	in	production	systems.	We	ran	the
same	experiment	with	the	logistic	regression	classification	model	and	the	results
are	similar	to	what	we	have	found	with	the	Naive	Bayes	classifiers.	The
experiment	results	for	the	logistic	regression	model	are	shown	in	the	following
outputs.

First,	the	logistic	regression	classifier	results	with	a	minimum	of	five
occurrences	looks	like	the	following:	

The	logistic	regression	classifier	results	with	a	minimum	of	ten	occurrences
looks	like	the	following:

The	logistic	regression	classifier	results	with	a	minimum	of	15	occurrences	looks
like	the	following:

The	logistic	regression	classifier	results	with	a	minimum	of	20	occurrences	looks
like	the	following:

Now	that	we	have	covered	how	we	can	handle	overfitting	issues,	there	are	a	few
more	model	performance	metrics	we	want	to	look	at:

Confusion	matrix:	Confusion	matrix	is	a	table	that	tells	us	the	overall
performance	of	a	prediction	model.	Each	column	represents	each	of	the
actual	classes	and	each	row	represents	each	of	the	predicted	classes.	In	the
case	of	a	binary	classification	problem,	the	confusion	matrix	will	be	a	2	x	2
matrix,	where	the	first	row	represents	negative	predictions	and	the	second
row	represents	positive	predictions.	The	first	column	represents	actual
negatives	and	the	second	column	represents	actual	positives.	The	following
table	illustrates	what	each	of	the	cells	in	the	confusion	matrix	for	a	binary
classification	problem	represents:

True	Negative	(TN)	is	when	the	model	predicted	class	0	correctly;	False
Negative	(FN)	is	when	the	model	prediction	is	0,	but	the	actual	class	is	1;
False	Positive	(FP)	is	when	the	model	prediction	is	class	1,	but	the	actual
class	is	0;	and	True	Positive	(TP)	is	when	the	model	predicted	class	1
correctly.	As	you	can	see	from	the	table,	a	confusion	matrix	describes	the
overall	model	performance.	In	our	example,	if	we	look	at	the	last	console
output	in	the	previous	screenshots	where	it	shows	the	console	output	of	our

logistic	regression	classification	model,	we	can	see	that	the	number	of	TNs
is	2847,	the	number	of	FNs	is	606,	the	number	of	FPs	is	102,	and	the	number
of	TPs	is	772.	With	this	information,	we	can	further	calculate	the	true
positive	rates	(TPR),	true	negative	rates	(TNR),	false	positive	rates
(FPR),	and	false	negative	rates	(FNR)	as	follows:

Using	the	preceding	example,	the	true	positive	rate	in	our	example	is
0.56,	the	TNR	is	0.97,	the	FPR	is	0.03,	and	the	FNR	is	0.44.

Accuracy:	Accuracy	is	the	proportion	of	correct	predictions.	Using	the
same	notations	from	the	previous	example	confusion	matrix,	the	accuracy
can	be	calculated	as	follows:

Accuracy	is	a	frequently	used	model	performance	metric,	but	sometimes
it	is	not	a	good	representation	of	the	overall	model	performance.	For
instance,	if	the	sample	set	is	largely	unbalanced,	and	if,	say,	there	are	five
spam	emails	and	95	hams	in	our	sample	set,	then	a	simple	classifier	that
classifies	every	email	as	ham	will	have	to	be	95%	accurate.	However,	it
will	never	catch	spam	emails.	This	is	the	reason	why	we	need	to	look	at
confusion	matrixes	and	other	performance	metrics,	such	as	precision	and
recall	rates:

Precision	rate:	Precision	rate	is	the	proportion	of	the	number	of	correct
positive	predictions	over	the	total	number	of	positive	predictions.	Using	the
same	notation	as	before,	we	can	calculate	the	precision	rate	as	follows:

If	you	look	at	the	last	console	output	in	the	previous	screenshots	of	our
logistic	regression	classification	model	results,	the	precision	rate	was
calculated	by	dividing	the	number	of	TPs	in	the	confusion	matrix,	772,
by	the	sum	of	TPs,	772,	and	FPs,	102,	from	the	confusion	matrix,	and	the
result	was	0.88.

Recall	rate:	Recall	rate	is	the	proportion	of	the	number	of	correct	positive
predictions	over	the	total	number	of	actual	positive	cases.	This	is	a	way	of
telling	us	how	many	of	the	actual	positive	cases	are	retrieved	by	this	model.
Using	the	same	notation	as	before,	we	can	compute	the	recall	rate	as
follows:

If	you	look	at	the	last	console	output	in	the	previous	screenshots	for	our
logistic	regression	classification	mode	results,	the	recall	rate	was
calculated	by	dividing	the	number	of	TPs	in	the	confusion	matrix,	772,
by	the	sum	of	TPs,	772,	and	FNs,	606,	from	the	confusion	matrix,	and
the	result	was	0.56.

With	these	performance	metrics,	it	is	the	data	scientist's	duty	to	choose	the
optimal	model.	There	will	always	be	a	trade-off	between	precision	and	recall
rates.	A	model	with	a	higher	precision	rate	than	others	will	have	a	lower	recall
rate.	In	the	case	of	our	spam	filtering	problem,	if	you	believe	correctly	filtering
out	spam	emails	is	more	important	and	that	you	can	sacrifice	some	of	the	spam
emails	going	through	your	users'	Inboxes,	then	you	might	want	to	optimize	for
precision.	On	the	other	hand,	if	you	believe	filtering	out	as	many	spam	emails	as
possible	is	more	important,	even	though	you	might	end	up	filtering	out	some
non-spam	emails	as	well,	then	you	might	want	to	optimize	for	recall.	Choosing
the	right	model	is	not	an	easy	decision	and	thinking	through	the	requirements
and	success	criteria	will	be	essential	in	making	the	right	choice.

In	summary,	the	following	are	the	code	we	can	use	to	compute	performance
metrics	from	the	cross-validation	result	and	confusion	matrix:

Training	versus	validation	(test)	errors:	Used	to	identify	overfitting
issues	(lines	48–52):

//	Run	Cross-Validation

var	result	=	cvNaiveBayesClassifier.Learn(input,	output);

//	Training	Error	vs.	Test	Error

double	trainingError	=	result.Training.Mean;

double	validationError	=	result.Validation.Mean;

Confusion	matrix:	True	Positives	versus	False	Positives	and	True
Negatives	versus	False	Negatives	(lines	95–108):

//	Confusion	Matrix

GeneralConfusionMatrix	gcm	=	result.ToConfusionMatrix(input,	output);

float	truePositive	=	(float)gcm.Matrix[1,	1];

float	trueNegative	=	(float)gcm.Matrix[0,	0];

float	falsePositive	=	(float)gcm.Matrix[1,	0];

float	falseNegative	=	(float)gcm.Matrix[0,	1];

Accuracy	versus	precision	versus	recall:	Used	to	measure	the	correctness
of	ML	models	(lines	122–130):

//	Accuracy	vs.	Precision	vs.	Recall

float	accuracy	=	(truePositive	+	trueNegative)	/	numberOfSamples;

float	precision	=	truePositive	/	(truePositive	+	falsePositive);

float	recall	=	truePositive	/	(truePositive	+	falseNegative);

Summary
	

In	this	chapter,	we	built	our	very	first	ML	models	in	C#	that	can	be	used	for
spam	email	filtering.	We	first	defined	and	clearly	stated	what	we	were	trying	to
solve	and	what	the	success	criteria	would	be.	Then,	we	extracted	the	relevant
information	from	the	raw	email	data	and	transformed	it	into	a	format	that	we
could	use	for	the	data	analysis,	feature	engineering,	and	ML	model	building
steps.	In	the	data	analysis	step,	we	learned	how	to	apply	one-hot	encoding	and
built	a	matrix	representation	of	words	used	in	subject	lines.	We	also	identified	a
data	issue	from	our	data	analysis	process	and	learned	how	we	often	iterate	back
and	forth	between	the	data	preparation	and	analysis	steps.	Then,	we	further
improved	our	feature	set	by	filtering	out	stop	words	and	using	a	regex	to	split	by
non-alphanumeric	or	non-alphabetical	words.	With	this	feature	set,	we	built	our
very	first	classification	models	using	the	logistic	regression	and	Naive	Bayes
classifier	algorithms,	briefly	covered	the	danger	of	overfitting,	and	learned	how
to	evaluate	and	compare	model	performance	by	looking	at	accuracy,	precision,
and	recall	rates.	Lastly,	we	also	learned	the	trade-off	between	precision	and
recall	and	how	to	choose	a	model	based	on	these	metrics	and	business
requirements.

In	the	next	chapter,	we	are	going	to	further	expand	our	knowledge	and	skills	in
building	classification	models	using	a	text	dataset.	We	will	start	looking	at	a
dataset	where	we	have	more	than	two	classes	by	using	Twitter	sentiment	data.
We	are	going	to	learn	the	difference	between	the	binary	classification	model	and
the	multi-class	classification	model.	We	will	also	discuss	some	other	NLP
techniques	for	feature	engineering	and	how	to	build	a	multi-class	classification
model	using	the	random	forest	algorithm.

	

	

	

Twitter	Sentiment	Analysis
	

In	this	chapter,	we	are	going	to	expand	our	knowledge	of	building	classification
models	in	C#.	Along	with	the	two	packages,	Accord.NET	and	Deedle,	which	we
used	in	the	previous	chapter,	we	are	going	to	start	using	the	Stanford	CoreNLP
package	to	apply	more	advanced	natural	language	processing	(NLP)
techniques,	such	as	tokenization,	part	of	speech	(POS)	tagging,	and
lemmatization.	Using	these	packages,	our	goal	for	this	chapter	is	to	build	a
multi-class	classification	model	that	predicts	the	sentiments	of	tweets.	We	will
be	working	with	a	raw	Twitter	dataset	that	contains	not	only	words,	but	also
emoticons,	and	will	use	it	to	train	a	machine	learning	(ML)	model	for
sentiment	prediction.	We	will	be	following	the	same	steps	that	we	follow	when
building	ML	models.	We	are	going	to	start	with	the	problem	definition	and	then
data	preparation	and	analysis,	feature	engineering,	and	model	development	and
validation.	During	our	feature	engineering	step,	we	will	expand	our	knowledge
of	NLP	techniques	and	explore	how	we	can	apply	tokenization,	POS	tagging,
and	lemmatization	to	build	more	advanced	text	features.	In	the	model	building
step,	we	are	going	to	explore	a	new	classification	algorithm,	a	random	forest
classifier,	and	compare	its	performance	to	the	Naive	Bayes	classifier.	Lastly,	in
our	model	validation	step,	we	are	going	to	expand	our	knowledge	of	confusion
matrixes,	precision,	and	recall,	which	we	covered	in	the	previous	chapter,	and
discuss	what	the	Receiver	Operating	Characteristic	(ROC)	curve	and	area
under	the	curve	(AUC)	are	and	how	these	concepts	can	be	used	to	evaluate	our
ML	models.

In	this	chapter,	we	will	cover	the	following:

Setting	up	the	environment	with	the	Stanford	CoreNLP	package
Problem	definition	for	the	Twitter	sentiment	analysis	project
Data	preparation	using	Stanford	CoreNLP
Data	analysis	using	lemmas	as	tokens
Feature	engineering	using	lemmatization	and	emoticons
Naive	Bayes	versus	random	forest
Model	validations	using	the	ROC	curve	and	AUC	metrics

	

	

Setting	up	the	environment
Before	we	dive	into	our	Twitter	sentiment	analysis	project,	let's	set	up	our
development	environment	with	the	Stanford	CoreNLP	package	that	we	are	going
to	use	throughout	this	chapter.	Multiple	steps	are	required	to	get	your
environment	ready	with	the	Standford	CoreNLP	package,	so	it	is	a	good	idea	to
work	through	this:

1.	 The	first	step	is	to	create	a	new	Console	App	(.NET	Framework)	project	in
Visual	Studio.	Make	sure	you	use	a	.NET	Framework	version	higher	than	or
equal	to	4.6.1.	If	you	have	an	older	version	installed,	go	to	https://docs.micros
oft.com/en-us/dotnet/framework/install/guide-for-developers	and	follow	the
installation	guide.	Following	is	a	screenshot	of	the	project	setup	page	(note
that	you	can	select	your	.NET	Framework	version	in	the	top	bar):

https://docs.microsoft.com/en-us/dotnet/framework/install/guide-for-developers

2.	 Now,	let's	install	the	Stanford	CoreNLP	package.	You	can	type	in	the
following	command	in	your	Package	Manager	Console:

Install-Package	Stanford.NLP.CoreNLP

The	version	we	are	going	to	use	in	this	chapter	is	Stanford.NLP.CoreNLP	3.9.1.	Over	time,	the
versions	might	change	and	you	might	have	to	update	your	installations.

3.	 We	just	have	to	do	one	more	thing	and	our	environment	will	be	ready	to
start	using	the	package.	We	need	to	install	the	CoreNLP	models	JAR,	which
contains	various	models	for	parsing,	POS	tagging,	Named	Entity
Recognition	(NER),	and	some	other	tools.	Follow	this	link	to	download
and	unzip	Stanford	CoreNLP:	https://stanfordnlp.github.io/CoreNLP/.	Once	you
have	downloaded	and	unzipped	it,	you	will	see	multiple	files	in	there.	The
particular	file	of	interest	is	stanford-corenlp-<version-number>-models.jar.	We
need	to	extract	the	contents	from	that	jar	file	into	a	directory	so	that	we	can
load	all	the	model	files	within	our	C#	project.	You	can	use	the	following
command	to	extract	the	contents	from	stanford-corenlp-<version-number>-
models.jar:

jar	xf	stanford-corenlp-<version-number>-models.jar	

When	you	are	done	extracting	all	the	model	files	from	the	models	jar	file,	you
are	now	ready	to	start	using	the	Stanford	CoreNLP	package	in	your	C#	project.

Now,	let's	check	whether	our	installation	was	successful.	The	following	code	is	a
slight	modification	for	this	example	(https://sergey-tihon.github.io/Stanford.NLP.NET/
StanfordCoreNLP.html)	:	using	System;
using	System.IO;
using	java.util;
using	java.io;
using	edu.stanford.nlp.pipeline;
using	Console	=	System.Console;

namespace	Tokenizer
{
class	Program
{
static	void	Main()
{

https://stanfordnlp.github.io/CoreNLP/
https://sergey-tihon.github.io/Stanford.NLP.NET/StanfordCoreNLP.html

//	Path	to	the	folder	with	models	extracted	from	Step	#3
var	jarRoot	=	@"<path-to-your-model-files-dir>";

//	Text	for	processing
var	text	=	"We're	going	to	test	our	CoreNLP	installation!!";

//	Annotation	pipeline	configuration
var	props	=	new	Properties();
props.setProperty("annotators",	"tokenize,	ssplit,	pos,	lemma");
props.setProperty("ner.useSUTime",	"0");

//	We	should	change	current	directory,	so	StanfordCoreNLP	could	find	all	the
model	files	automatically
var	curDir	=	Environment.CurrentDirectory;
Directory.SetCurrentDirectory(jarRoot);
var	pipeline	=	new	StanfordCoreNLP(props);
Directory.SetCurrentDirectory(curDir);

//	Annotation
var	annotation	=	new	Annotation(text);
pipeline.annotate(annotation);

//	Result	-	Pretty	Print
using	(var	stream	=	new	ByteArrayOutputStream())
{
pipeline.prettyPrint(annotation,	new	PrintWriter(stream));
Console.WriteLine(stream.toString());
stream.close();
}

Console.ReadKey();
}
}
}

If	your	installation	was	successful,	you	should	see	output	similar	to	the
following:	

Let's	take	a	closer	look	at	this	output.	Tokens	are	character	sequences	that	are
grouped	as	individual	semantic	units.	Often,	tokens	are	words	or	terms.	In	each
token	output,	we	can	see	the	original	text,	such	as	We,	're,	and	going.	The
PartOfSpeech	tag	refers	to	the	category	of	each	word,	such	as	noun,	verb,	and
adjective.	For	example,	the	PartOfSpeech	tag	of	the	first	token	in	our	example,	We,	is
PRP	and	it	stands	for	personal	pronoun.	The	PartOfSpeech	tag	of	the	second	token	in
our	example,	're,	is	VBP	and	it	stands	for	verb,	non-third-person	singular	present.
The	complete	list	of	POS	tags	can	be	found	here	(http://www.ling.upenn.edu/courses/
Fall_2003/ling001/penn_treebank_pos.html)	or	in	the	following	screenshot:	

http://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html

A	list	of	POS	tags	Lastly,	the	Lemma	tag	in	our	tokenization	example	refers	to	the	standard	form	of	the	given	word.	For	example,	the
lemma	of	am	and	are	is	be.	In	our	example,	the	word	going	in	our	third	token	has	go	as	its	lemma.	We	will	discuss	how	we	can	use	word

lemmatization	for	feature	engineering	in	the	following	sections.

Problem	definition	for	Twitter
sentiment	analysis
	

Let's	start	our	Twitter	sentiment	analysis	project	by	clearly	defining	what	models
we	will	be	building	and	what	they	are	going	to	predict.	You	might	have	heard	the
term	sentiment	analysis	in	the	past	already.	Sentiment	analysis	is	essentially	a
process	of	computationally	determining	whether	a	given	text	expresses	a
positive,	neutral,	or	negative	emotion.	Sentiment	analysis	for	social	media
content	can	be	used	in	various	ways.	For	example,	it	can	be	used	by	marketers	to
identify	how	effective	a	marketing	campaign	was	and	how	it	affected	consumers'
opinions	and	attitudes	towards	a	certain	product	or	company.	Sentiment	analysis
can	also	be	used	to	predict	stock	market	changes.	Positive	news	and	aggregate
positive	emotions	towards	a	certain	company	often	move	its	stock	price	in	a
positive	direction,	and	sentiment	analysis	in	the	news	and	social	media	for	a
given	company	can	be	used	to	predict	how	stock	prices	will	move	in	the	near
future.	To	experiment	with	how	we	can	build	a	sentiment	analysis	model,	we	are
going	to	use	a	precompiled	and	labeled	airline	sentiment	Twitter	dataset	that
originally	came	from	CrowdFlower's	Data	for	Everyone	library	(https://www.figure
-eight.com/data-for-everyone/).	Then,	we	are	going	to	apply	some	NLP	techniques,
especially	word	tokenization,	POS	tagging,	and	lemmatization,	to	build
meaningful	text	and	emoticon	features	from	raw	tweet	data.	Since	we	want	to
predict	three	different	emotions	(positive,	neutral,	and	negative)	for	each	tweet,
we	are	going	to	build	a	multi-class	classification	model	and	experiment	with
different	learning	algorithms—Naive	Bayes	and	random	forest.	Once	we	build
the	sentiment	analysis	models,	we	are	going	to	evaluate	the	performance	mainly
via	these	three	metrics:	precision,	recall,	and	AUC.

Let's	summarize	our	problem	definition	for	the	Twitter	sentiment	analysis
project:

What	is	the	problem?	We	need	a	Twitter	sentiment	analysis	model	to
computationally	identify	the	emotions	in	tweets.

https://www.figure-eight.com/data-for-everyone/

Why	is	it	a	problem?	Identifying	and	measuring	the	emotions	of	users	or
consumers	about	a	certain	topic,	such	as	a	product,	company,
advertisement,	and	so	forth,	are	often	an	essential	tool	to	measure	the
impact	and	success	of	certain	tasks.
What	are	some	of	the	approaches	to	solving	this	problem?	We	are	going	to
use	the	Stanford	CoreNLP	package	to	apply	various	NLP	techniques,	such
as	tokenization,	POS	tagging,	and	lemmatization,	to	build	meaningful
features	from	a	raw	Twitter	dataset.	With	these	features,	we	are	going	to
experiment	with	different	learning	algorithms	to	build	a	sentiment	analysis
model.	We	will	use	precision,	recall,	and	AUC	measures	to	evaluate	the
performance	of	the	models.
What	are	the	success	criteria?	We	want	high	precision	rates,	without
sacrificing	too	much	for	recall	rates,	as	correctly	classifying	a	tweet	into
one	of	three	emotion	buckets	(positive,	neutral,	and	negative)	is	more
important	than	a	higher	retrieval	rate.	Also,	we	want	a	high	AUC	number,
which	we	will	discuss	in	more	detail	in	later	sections	of	this	chapter.

	

	

Data	preparation	using	Stanford
CoreNLP
Now	that	we	know	what	our	goals	are	in	this	chapter,	it	is	time	to	dive	into	the
data.	Similar	to	the	last	chapter,	we	are	going	to	use	precompiled	and	pre-labeled
Twitter	sentiment	data.	We	are	going	to	use	a	dataset	from	CrowdFlower's	Data
for	Everyone	library	(https://www.figure-eight.com/data-for-everyone/)	and	you	can
download	the	data	from	this	link:	https://www.kaggle.com/crowdflower/twitter-airline-s
entiment.	The	data	we	have	here	is	about	15,000	tweets	about	US	airlines.	This
Twitter	data	was	scraped	from	February	of	2015	and	was	then	labeled	into	three
buckets—positive,	negative,	and	neutral.	The	link	provides	you	with	two	types
of	data:	a	CSV	file	and	an	SQLite	database.	We	are	going	to	work	with	the	CSV
file	for	this	project.

Once	you	have	downloaded	this	data,	we	need	to	get	it	prepared	for	our	future
analysis	and	model	building.	The	two	columns	of	interest	in	the	dataset	are
airline_sentiment	and	text.	The	airline_sentiment	column	contains	information	about
the	sentiment—whether	a	tweet	has	positive,	negative,	or	neutral	sentiments—
and	the	text	column	contains	the	raw	Twitter	text.	To	make	this	raw	data	readily
available	for	our	future	data	analysis	and	model	building	steps,	we	need	to	do	the
following	tasks:

Clean	up	unnecessary	text:	It's	hard	to	justify	some	parts	of	the	text	as
providing	many	insights	and	much	information	for	our	models	to	learn
from,	such	as	URLs,	user	IDs,	and	raw	numbers.	So,	the	first	step	to
prepare	our	raw	data	is	to	clean	up	unnecessary	text	that	does	not	contain
much	information.	In	this	example,	we	removed	the	URLs,	Twitter	user
IDs,	numbers,	and	hash	signs	in	hashtags.	We	used	Regex	to	replace	such
texts	with	empty	strings.	The	following	code	illustrates	the	Regex	expressions
we	used	to	filter	out	those	texts:

//	1.	Remove	URL's

string	urlPattern	=	@"https?:\/\/\S+\b|www\.(\w+\.)+\S*";

Regex	rgx	=	new	Regex(urlPattern);

tweet	=	rgx.Replace(tweet,	"");

//	2.	Remove	Twitter	ID's

string	userIDPattern	=	@"@\w+";

https://www.figure-eight.com/data-for-everyone/
https://www.kaggle.com/crowdflower/twitter-airline-sentiment

rgx	=	new	Regex(userIDPattern);

tweet	=	rgx.Replace(tweet,	"");

//	3.	Remove	Numbers

string	numberPattern	=	@"[-+]?[.\d]*[\d]+[:,.\d]*";

tweet	=	Regex.Replace(tweet,	numberPattern,	"");

//	4.	Replace	Hashtag

string	hashtagPattern	=	@"#";

tweet	=	Regex.Replace(tweet,	hashtagPattern,	"");

As	you	can	see	from	this	code,	there	are	two	ways	to	replace	a	string	that
matches	a	Regex	pattern.	You	can	instantiate	a	Regex	object	and	then	replace
matching	strings	with	the	other	string,	as	shown	in	the	first	two	cases.	You	can
also	directly	call	the	static	Regex.Replace	method	for	the	same	purpose,	as	shown	in
the	last	two	cases.	The	static	method	is	going	to	create	a	Regex	object	each	time
you	call	the	Regex.Replace	method,	so	if	you	are	using	the	same	pattern	in	multiple
places,	it	will	be	better	to	go	with	the	first	approach:

Group	and	encode	similar	emoticons	together:	Emoticons,	such	as
smiley	faces	and	sad	faces,	are	frequently	used	in	tweets	and	provide	useful
insights	about	the	emotion	of	each	tweet.	Intuitively,	one	user	will	use
smiley	face	emoticons	to	tweet	about	positive	events,	while	another	will	use
sad	face	emoticons	to	tweet	about	negative	events.	However,	different
smiley	faces	show	similar	positive	emotions	and	can	be	grouped	together.
For	example,	a	smiley	face	with	a	parenthesis,	:),	will	have	the	same
meaning	as	another	smiley	face	with	a	capital	letter	D,	:D.	So,	we	want	to
group	these	similar	emoticons	together	and	encode	them	as	one	group
rather	than	having	them	in	separate	groups.	We	will	use	the	R	code	that
Romain	Paulus	and	Jeffrey	Pennington	shared	(https://nlp.stanford.edu/projec
ts/glove/preprocess-twitter.rb),	translate	it	into	C#,	and	then	apply	it	to	our
raw	Twitter	dataset.	The	following	is	how	we	translated	the	emoticon	Regex
codes,	written	in	R,	into	C#,	so	that	we	can	group	and	encode	similar
emoticons	together:

//	1.	Replace	Smiley	Faces

string	smileyFacePattern	=	String.Format(@"{0}{1}[)dD]+|[)dD]+{1}{0}",	

eyesPattern,	nosePattern);

tweet	=	Regex.Replace(tweet,	smileyFacePattern,	"	emo_smiley	");

//	2.	Replace	LOL	Faces

string	lolFacePattern	=	String.Format(@"{0}{1}[pP]+",	eyesPattern,	

nosePattern);

tweet	=	Regex.Replace(tweet,	lolFacePattern,	"	emo_lol	");

//	3.	Replace	Sad	Faces

string	sadFacePattern	=	String.Format(@"{0}{1}\(+|\)+{1}{0}",	eyesPattern,	

nosePattern);

https://nlp.stanford.edu/projects/glove/preprocess-twitter.rb

tweet	=	Regex.Replace(tweet,	sadFacePattern,	"	emo_sad	");

//	4.	Replace	Neutral	Faces

string	neutralFacePattern	=	String.Format(@"{0}{1}[\/|l*]",	eyesPattern,	

nosePattern);

tweet	=	Regex.Replace(tweet,	neutralFacePattern,	"	emo_neutral	");

//	5.	Replace	Heart

string	heartPattern	=	"<3";

tweet	=	Regex.Replace(tweet,	heartPattern,	"	emo_heart	");

Group	and	encode	additional	helpful	expressions	together:	Lastly,	there
are	some	more	expressions	that	can	help	our	models	detect	the	emotions	of
tweets.	Repeated	punctuation,	such	as	!!!	and	???,	and	elongated	words,
such	as	wayyyy	and	soooo,	can	provide	some	extra	information	about	the
sentiments	of	tweets.	We	will	group	and	encode	them	separately	so	that	our
models	can	learn	from	such	expressions.	The	following	code	shows	how	we
encoded	such	expressions:

//	1.	Replace	Punctuation	Repeat

string	repeatedPunctuationPattern	=	@"([!?.]){2,}";

tweet	=	Regex.Replace(tweet,	repeatedPunctuationPattern,	"	$1_repeat	");

//	2.	Replace	Elongated	Words	(i.e.	wayyyy	->	way_emphasized)

string	elongatedWordsPattern	=	@"\b(\S*?)(.)\2{2,}\b";

tweet	=	Regex.Replace(tweet,	elongatedWordsPattern,	"	$1$2_emphasized	");

As	shown	in	the	code,	for	repeated	punctuation	we	appended	a	string	with	a
suffix,	_repeat.	For	example,	!!!	will	become	!_repeat	and	???	will	become	?_repeat.
For	elongated	words,	we	appended	a	string	with	a	suffix,	_emphasized.	For
example,	wayyyy	will	become	way_emphasized	and	soooo	will	become	so_emphasized.

The	full	code	that	takes	the	raw	dataset,	processes	individual	Twitter	text	as
discussed	previously,	and	exports	the	processed	Twitter	text	into	another	data	file
can	be	found	in	this	repository:	https://github.com/yoonhwang/c-sharp-machine-learning/b
lob/master/ch.3/DataProcessor.cs.	Let's	briefly	walk	through	the	code.	It	first	reads
the	raw	Tweets.csv	dataset	into	a	Deedle	data	frame	(lines	76–82).	Then,	it	calls	a
method	named	FormatTweets	with	a	column	series	that	contains	all	the	raw	Twitter
text.	The	FormatTweets	method	code	in	lines	56–65	looks	like	the	following:

private	static	string[]	FormatTweets(Series<int,	string>	rows)

{

				var	cleanTweets	=	rows.GetAllValues().Select((x,	i)	=>

				{

								string	tweet	=	x.Value;

								return	CleanTweet(tweet);

				});

				return	cleanTweets.ToArray();

https://github.com/yoonhwang/c-sharp-machine-learning/blob/master/ch.3/DataProcessor.cs

}

This	FormatTweets	method	iterates	through	each	element	in	the	series,	which	is	the
raw	tweets,	and	calls	the	CleanTweet	method.	Within	the	CleanTweet	method,	each
raw	tweet	is	run	against	all	the	Regex	patterns	that	we	defined	previously	and	is
then	processed	as	discussed	earlier.	The	CleanTweet	method	in	lines	11–54	looks	as
follows:

private	static	string	CleanTweet(string	rawTweet)

{

						string	eyesPattern	=	@"[8:=;]";

						string	nosePattern	=	@"['`\-]?";

						string	tweet	=	rawTweet;

						//	1.	Remove	URL's

						string	urlPattern	=	@"https?:\/\/\S+\b|www\.(\w+\.)+\S*";

						Regex	rgx	=	new	Regex(urlPattern);

						tweet	=	rgx.Replace(tweet,	"");

						//	2.	Remove	Twitter	ID's

						string	userIDPattern	=	@"@\w+";

						rgx	=	new	Regex(userIDPattern);

						tweet	=	rgx.Replace(tweet,	"");

						//	3.	Replace	Smiley	Faces

						string	smileyFacePattern	=	String.Format(@"{0}{1}[)dD]+|[)dD]+{1}{0}",	

eyesPattern,	nosePattern);

						tweet	=	Regex.Replace(tweet,	smileyFacePattern,	"	emo_smiley	");

						//	4.	Replace	LOL	Faces

						string	lolFacePattern	=	String.Format(@"{0}{1}[pP]+",	eyesPattern,	nosePattern);

						tweet	=	Regex.Replace(tweet,	lolFacePattern,	"	emo_lol	");

						//	5.	Replace	Sad	Faces

						string	sadFacePattern	=	String.Format(@"{0}{1}\(+|\)+{1}{0}",	eyesPattern,	

nosePattern);

						tweet	=	Regex.Replace(tweet,	sadFacePattern,	"	emo_sad	");

						//	6.	Replace	Neutral	Faces

						string	neutralFacePattern	=	String.Format(@"{0}{1}[\/|l*]",	eyesPattern,	

nosePattern);

						tweet	=	Regex.Replace(tweet,	neutralFacePattern,	"	emo_neutral	");

						//	7.	Replace	Heart

						string	heartPattern	=	"<3";

						tweet	=	Regex.Replace(tweet,	heartPattern,	"	emo_heart	");

						//	8.	Replace	Punctuation	Repeat

						string	repeatedPunctuationPattern	=	@"([!?.]){2,}";

						tweet	=	Regex.Replace(tweet,	repeatedPunctuationPattern,	"	$1_repeat	");

						//	9.	Replace	Elongated	Words	(i.e.	wayyyy	->	way_emphasized)

						string	elongatedWordsPattern	=	@"\b(\S*?)(.)\2{2,}\b";

						tweet	=	Regex.Replace(tweet,	elongatedWordsPattern,	"	$1$2_emphasized	");

						//	10.	Replace	Numbers

						string	numberPattern	=	@"[-+]?[.\d]*[\d]+[:,.\d]*";

						tweet	=	Regex.Replace(tweet,	numberPattern,	"");

						//	11.	Replace	Hashtag

						string	hashtagPattern	=	@"#";

						tweet	=	Regex.Replace(tweet,	hashtagPattern,	"");

						return	tweet;

}

Once	all	the	raw	Twitter	tweets	are	cleaned	and	processed,	the	result	gets	added
to	the	original	Deedle	data	frame	as	a	separate	column	with	tweet	as	its	column

name.	The	following	code	(line	89)	shows	how	you	can	add	an	array	of	strings	to
a	data	frame:

rawDF.AddColumn("tweet",	processedTweets);

Once	you	have	come	this	far,	the	only	additional	step	we	need	to	do	is	export	the
processed	data.	Using	Deedle	data	frame's	SaveCsv	method,	you	can	easily	export
a	data	frame	into	a	CSV	file.	The	following	code	shows	how	we	exported	the
processed	data	into	a	CSV	file:

rawDF.SaveCsv(Path.Combine(dataDirPath,	"processed-training.csv"));

Now	that	we	have	clean	Twitter	text,	let's	tokenize	and	create	a	matrix
representation	of	tweets.	Similar	to	what	we	did	in	Chapter	2,	Spam	Email
Filtering,	we	are	going	to	break	a	string	into	words.	However,	we	are	going	to
use	the	Stanford	CoreNLP	package	that	we	installed	in	the	previous	section	of
this	chapter	and	utilize	the	sample	code	that	we	wrote	in	the	previous	section.
The	code	to	tokenize	tweets	and	build	a	matrix	representation	of	them	is	as
follows:

private	static	Frame<int,	string>	CreateWordVec(Series<int,	string>	rows,	ISet<string>	

stopWords,	bool	useLemma=false)

								{

												//	Path	to	the	folder	with	models	extracted	from	`stanford-corenlp-

<version>-models.jar`

												var	jarRoot	=	@"<path-to-model-files-dir>";

												//	Annotation	pipeline	configuration

												var	props	=	new	Properties();

												props.setProperty("annotators",	"tokenize,	ssplit,	pos,	lemma");

												props.setProperty("ner.useSUTime",	"0");

												//	We	should	change	current	directory,	so	StanfordCoreNLP	could	find	all	

the	model	files	automatically

												var	curDir	=	Environment.CurrentDirectory;

												Directory.SetCurrentDirectory(jarRoot);

												var	pipeline	=	new	StanfordCoreNLP(props);

												Directory.SetCurrentDirectory(curDir);

												var	wordsByRows	=	rows.GetAllValues().Select((x,	i)	=>

												{

																var	sb	=	new	SeriesBuilder<string,	int>();

																//	Annotation

																var	annotation	=	new	Annotation(x.Value);

																pipeline.annotate(annotation);

																var	tokens	=	annotation.get(typeof(CoreAnnotations.TokensAnnotation));

																ISet<string>	terms	=	new	HashSet<string>();

																foreach	(CoreLabel	token	in	tokens	as	ArrayList)

																{

																				string	lemma	=	token.lemma().ToLower();

																				string	word	=	token.word().ToLower();

																				string	tag	=	token.tag();

																				//Console.WriteLine("lemma:	{0},	word:	{1},	tag:	{2}",	lemma,	word,	

tag);

																				//	Filter	out	stop	words	and	single-character	words

																				if	(!stopWords.Contains(lemma)	&&	word.Length	>	1)

																				{

																								if	(!useLemma)

																								{

																												terms.Add(word);

																								}

																								else

																								{

																												terms.Add(lemma);

																								}

																				}

																}

																foreach	(string	term	in	terms)

																{

																				sb.Add(term,	1);

																}

																return	KeyValue.Create(i,	sb.Series);

												});

												//	Create	a	data	frame	from	the	rows	we	just	created

												//	And	encode	missing	values	with	0

												var	wordVecDF	=	Frame.FromRows(wordsByRows).FillMissing(0);

												return	wordVecDF;

								}

As	you	can	see	from	the	code,	the	main	difference	between	this	code	and	the
sample	code	in	the	previous	section	is	that	this	code	iterates	over	each	tweet	and
stores	the	tokens	into	a	Deedle's	data	frame.	As	in	Chapter	2,	Spam	Email
Filtering,	we	are	using	one-hot	encoding	to	assign	each	term's	value	(0	versus	1)
within	the	matrix.	One	thing	to	note	here	is	how	we	have	an	option	to	create	the
matrix	with	lemmas	or	words.	Words	are	the	original	untouched	terms	that	are
broken	down	from	each	tweet.	For	example,	a	string,	I	am	a	data	scientist,	will	be
broken	down	into	I,	am,	a,	data,	and	scientist,	if	you	use	words	as	tokens.	Lemmas
are	standard	forms	of	words	in	each	token.	For	example,	the	same	string,	I	am	a
data	scientist,	will	be	broken	down	into	I,	be,	a,	data,	and	scientist,	if	you	use
lemmas	as	tokens.	Note	that	be	is	a	lemma	for	am.	We	will	discuss	what	lemmas
are	and	what	lemmatization	is	in	the	Feature	engineering	using	lemmatization
and	emoticons	section.

The	full	code	to	tokenize	and	create	a	matrix	representation	of	tweets	can	be
found	here:	https://github.com/yoonhwang/c-sharp-machine-learning/blob/master/ch.3/Twitt
erTokenizer.cs.	There	are	a	few	things	to	note	in	this	code.	First,	let's	look	at	how	it

https://github.com/yoonhwang/c-sharp-machine-learning/blob/master/ch.3/TwitterTokenizer.cs

counts	how	many	samples	we	have	for	each	sentiment.	The	following	code
snippet	(lines	122–127)	shows	how	we	computed	the	number	of	samples	per
sentiment:

//	Look	at	the	sentiment	distributions	in	our	sample	set

var	sampleSetDistribution	=	rawDF.GetColumn<string>(

				"airline_sentiment"

).GroupBy<string>(x	=>	x.Value).Select(x	=>	x.Value.KeyCount);

sampleSetDistribution.Print();

As	you	can	see	from	this	code,	we	first	get	the	sentiment	column,
airline_sentiment,	and	group	it	by	the	values,	where	the	values	can	be	neutral,
negative,	or	positive.	Then,	it	counts	the	number	of	occurrences	and	returns	the
count.

The	second	thing	to	note	in	the	TwitterTokenizer	code	is	how	we	encoded
sentiments	with	integer	values.	The	following	is	what	you	see	in	lines	149–154
of	the	full	code:

tweetLemmaVecDF.AddColumn(

				"tweet_polarity",	

				rawDF.GetColumn<string>("airline_sentiment").Select(

								x	=>	x.Value	==	"neutral"	?	0	:	x.Value	==	"positive"	?	1	:	2

)

);

As	you	can	see	from	this	code	snippet,	we	are	creating	and	adding	a	new
column,	tweet_polarity,	to	the	term	matrix	data	frame.	We	are	taking	the	values	of
the	airline_sentiment	column	and	encoding	0	for	neutral,	1	for	positive,	and	2	for
negative.	We	are	going	to	use	this	newly	added	column	in	our	future	model
building	steps.

Lastly,	note	how	we	are	calling	the	CreateWordVec	method	twice—once	without
lemmatization	(lines	135-144)	and	once	with	lemmatization	(lines	147-156).	If
we	create	a	term	matrix	with	one-hot	encodings	without	lemmatization,	we	are
essentially	taking	all	the	words	as	individual	tokens	in	our	term	matrix.	As	you
can	imagine,	this	will	create	a	much	larger	and	more	sparse	matrix	than	one	with
lemmatization.	We	left	both	codes	there	for	you	to	explore	both	options.	You	can
try	building	ML	models	with	a	matrix	with	words	as	columns	and	compare	them
against	those	with	lemmas	as	columns.	In	this	chapter,	we	are	going	to	use	the
matrix	with	lemmas	instead	of	words.

When	you	run	this	code,	it	will	output	a	bar	chart	that	shows	the	sentiment

distribution	in	the	sample	set.	As	you	can	see	in	the	following	chart,	we	have
about	3,000	neutral	tweets,	2,000	positive	tweets,	and	9,000	negative	tweets	in
our	sample	set.	The	chart	looks	as	follows:

Data	analysis	using	lemmas	as	tokens
It	is	now	time	to	look	at	the	actual	data	and	seek	any	patterns	or	differences	in
the	distributions	of	term	frequencies	along	with	the	different	sentiments	of
tweets.	We	are	going	to	take	the	output	from	the	previous	step	and	get	the
distributions	of	the	top	seven	most	frequently	occurring	tokens	for	each
sentiment.	In	this	example,	we	use	a	term	matrix	with	lemmas.	Feel	free	to	run
the	same	analysis	for	a	term	matrix	with	words.	The	code	to	analyze	the	top	N
most	frequently	used	tokens	in	each	sentiment	of	tweets	can	be	found	here:	https:
//github.com/yoonhwang/c-sharp-machine-learning/blob/master/ch.3/DataAnalyzer.cs.

There	is	one	thing	to	note	in	this	code.	Unlike	in	the	previous	chapter,	we	need	to
compute	term	frequencies	for	three	sentiment	classes—neutral,	negative,	and
positive.	The	following	is	the	code	snippet	from	the	full	code	(lines	54-73):

var	neutralTermFrequencies	=	ColumnWiseSum(

				tweetLemmaDF.Where(

								x	=>	x.Value.GetAs<int>("tweet_polarity")	==	0

),

				"tweet_polarity"

).Sort().Reversed;

var	positiveTermFrequencies	=	ColumnWiseSum(

				tweetLemmaDF.Where(

								x	=>	x.Value.GetAs<int>("tweet_polarity")	==	1

),

				"tweet_polarity"

).Sort().Reversed;

var	negativeTermFrequencies	=	ColumnWiseSum(

				tweetLemmaDF.Where(

								x	=>	x.Value.GetAs<int>("tweet_polarity")	==	2

),

				"tweet_polarity"

).Sort().Reversed;

As	you	can	see	from	the	code,	we	call	the	ColumnWiseSum	method	for	each	sentiment
class,	and	the	code	for	this	method	is	as	follows:

private	static	Series<string,	double>	ColumnWiseSum(Frame<int,	string>	frame,	string	

exclude)

{

				var	sb	=	new	SeriesBuilder<string,	double>();

				foreach(string	colname	in	frame.ColumnKeys)

				{

								double	frequency	=	frame[colname].Sum();

								if	(!colname.Equals(exclude))

								{

https://github.com/yoonhwang/c-sharp-machine-learning/blob/master/ch.3/DataAnalyzer.cs

												sb.Add(colname,	frequency);

								}

				}

				return	sb.ToSeries();

}

As	you	can	see	from	this	code,	it	iterates	through	each	column	or	term	and	sums
all	the	values	within	that	column.	Since	we	used	one-hot	encodings,	a	simple
column-wise	sum	will	give	us	the	number	of	occurrences	for	each	term	in	our
Twitter	dataset.	Once	we	have	computed	all	the	column-wise	summations,	we
return	them	as	a	Deedle	series	object.	With	these	results,	we	rank-order	the	terms
by	their	frequencies	and	store	this	information	into	three	separate	files,	neutral-
frequencies.csv,	negative-frequencies.csv,	and	positive-frequencies.csv.	We	are	going	to
use	the	term	frequency	output	in	later	sections	for	feature	engineering	and	model
building.

When	you	run	the	code,	it	will	generate	the	following	charts:

As	you	can	see	from	the	charts,	there	are	some	obvious	differences	in
distributions	among	different	sentiments.	Words	such	as	thanks	and	great	were
two	of	the	top	seven	frequently	occurring	terms	in	positive	tweets,	while	words
like	delay	and	cancelled	were	two	of	the	top	seven	frequently	occurring	terms	in
negative	tweets.	Intuitively,	these	make	sense.	You	typically	use	words	thanks
and	great	when	you	express	positive	feelings	towards	someone	or	something.
On	the	other	hand,	delay	and	cancelled	are	related	to	negative	events	in	the
context	of	flights	or	airlines.	Maybe	some	of	the	users'	flights	were	delayed	or
cancelled	and	they	tweeted	about	their	frustrations.	Another	interesting	thing	to
note	is	how	the	term	emo_smiley	was	ranked	seventh	of	the	most	frequently

occurring	terms	in	positive	tweets.	If	you	remember,	in	the	previous	step	we
grouped	and	encoded	all	smiley	face	emoticons	(such	as	:),	:D,	and	so	on)	as
emo_smiley.	This	tells	us	that	emoticons	may	play	an	important	role	for	our	models
to	learn	how	to	classify	the	sentiment	of	each	tweet.	Now	that	we	have	a	rough
idea	of	what	our	data	looks	like	and	what	kinds	of	terminology	appear	for	each
sentiment,	let's	talk	about	the	feature	engineering	techniques	we	will	employ	in
this	chapter.

Feature	engineering	using
lemmatization	and	emoticons
We	briefly	talked	about	lemmas	in	the	previous	section.	Let's	take	a	deeper	look
at	what	lemmas	are	and	what	lemmatization	is.	Depending	on	how	and	where	a
word	is	being	used	in	a	sentence,	the	word	is	going	to	be	in	different	forms.	For
example,	the	word	like	can	take	the	form	of	likes	or	liked	depending	on	what
came	before.	If	we	simply	tokenize	sentences	into	words,	then	our	program	is
going	to	see	the	words	like,	likes,	and	liked	as	three	different	tokens.	However,
that	might	not	be	something	we	want.	Those	three	words	share	the	same
meaning	and	when	we	are	building	models,	it	would	be	useful	to	group	those
words	as	one	token	in	our	feature	set.	This	is	what	lemmatization	does.	A	lemma
is	the	base	form	of	a	word	and	lemmatization	is	transforming	each	word	into	a
lemma	based	on	the	part	of	the	sentence	each	word	was	used	in.	In	the	preceding
example,	like	is	the	lemma	for	likes	and	liked,	and	systematically	transforming
likes	and	liked	into	like	is	a	lemmatization.

Following	is	an	example	of	a	lemmatization	using	Stanford	CoreNLP:

Here,	you	can	see	that	both	likes	and	like	were	lemmatized	into	like.	This	is
because	both	of	those	words	were	used	as	verbs	in	a	sentence	and	the	lemma	for
the	verbal	form	is	like.	Let's	look	at	another	example:

Here,	the	first	likes	and	the	second	likes	have	different	lemmas.	The	first	one	has
like	as	its	lemma,	while	the	second	one	has	likes	as	its	lemma.	This	is	because
the	first	one	is	used	as	a	verb,	while	the	second	one	as	a	noun.	As	you	can	see
from	these	examples,	depending	on	the	parts	of	the	sentence,	the	lemmas	for	the
same	words	can	be	different.	Using	lemmatization	for	your	text	dataset	can
greatly	reduce	the	sparsity	and	dimensions	of	your	feature	space	and	can	help
your	models	learn	better	without	being	exposed	to	too	much	noise.

Similar	to	lemmatization,	we	also	grouped	similar	emoticons	into	the	same
group.	This	is	based	on	the	assumption	that	similar	emoticons	have	similar
meanings.	For	example,	:)	and	:D	have	almost	the	same	meanings,	if	not	exactly
the	same.	In	another	case,	depending	on	the	users,	the	positions	of	the	colon	and
parenthesis	can	differ.	Some	users	might	type	:),	but	some	others	might	type	(:.
However,	the	only	different	between	these	two	is	the	positioning	of	the	colon
and	parenthesis	and	the	meanings	are	the	same.	In	all	of	these	cases,	we	want	our
models	to	learn	the	same	emotion	and	not	create	any	noise.	Grouping	similar
emoticons	into	the	same	group,	as	we	did	in	the	previous	step,	helps	reduce
unnecessary	noise	for	our	models	and	help	them	learn	the	most	from	these
emoticons.

Naive	Bayes	versus	random	forest
It	is	finally	time	to	train	our	ML	models	to	predict	the	sentiments	of	tweets.	In
this	section,	we	are	going	to	experiment	with	Naive	Bayes	and	random	forest
classifiers.	There	are	two	things	that	we	are	going	to	do	differently	from	the
previous	chapter.	First,	we	are	going	to	split	our	sample	set	into	a	train	set	and	a
validation	set,	instead	of	running	k-fold	cross-validation.	This	is	also	a
frequently	used	technique,	where	the	models	learn	only	from	a	subset	of	the
sample	set	and	then	they	are	tested	and	validated	with	the	rest,	which	they	did
not	observe	at	training	time.	This	way,	we	can	test	how	the	models	will	perform
in	the	unforeseen	dataset	and	simulate	how	they	are	going	to	behave	in	a	real-
world	case.	We	are	going	to	use	the	SplitSetValidation	class	in	the	Accord.NET
package	to	split	our	sample	set	into	train	and	validation	sets	with	pre-defined
proportions	for	each	set	and	fit	a	learning	algorithm	to	the	train	set.

Secondly,	our	target	variable	is	no	longer	binary	(0	or	1),	unlike	in	the	previous	C
hapter	2,	Spam	Email	Filtering.	Instead,	it	can	take	any	values	from	0,	1,	or	2,
where	0	stands	for	neutral	sentiment	tweets,	1	for	positive	sentiment	tweets,	and
2	for	negative	sentiment	tweets.	So,	we	are	now	dealing	with	a	multi-class
classification	problem,	rather	than	a	binary	classification	problem.	We	will	have
to	approach	things	differently	when	evaluating	our	models.	We	will	have	to
modify	our	accuracy,	precision,	and	recall	calculation	codes	from	the	previous
chapter	to	compute	those	numbers	for	each	of	the	three	target	sentiment	classes
in	this	project.	Also,	we	will	have	to	use	a	one-versus-rest	approach	when	we
look	at	certain	metrics,	such	as	a	ROC	curve	and	AUC,	which	we	will	be
discussing	in	the	following	section.

Let's	first	look	at	how	to	instantiate	our	learning	algorithms	with	the
SplitSetValidation	class	in	the	Accord.NET	Framework.	The	following	is	how	you
can	instantiate	a	SplitSetValidation	object	with	the	Naive	Bayes	classifier
algorithm:

var	nbSplitSet	=	new	SplitSetValidation<NaiveBayes<BernoulliDistribution>,	double[]>()

{

				Learner	=	(s)	=>	new	NaiveBayesLearning<BernoulliDistribution>(),

				Loss	=	(expected,	actual,	p)	=>	new	ZeroOneLoss(expected).Loss(actual),

				Stratify	=	false,

				TrainingSetProportion	=	0.8,

				ValidationSetProportion	=	0.2

};

var	nbResult	=	nbSplitSet.Learn(input,	output);

As	you	can	see	from	the	preceding	code	snippet,	the	major	difference	between
the	code	you	used	in	the	previous	chapter	and	the	code	shown	here	is	the	two
parameters	that	we	pass	onto	a	SplitSetValidation	object—TrainingSetProportion	and
ValidationSetProportion.	As	the	name	suggests,	you	can	define	what	percentage	of
your	sample	set	is	should	be	used	for	training	with	the	TrainingSetProportion
parameter	and	what	percentage	of	your	sample	set	to	be	used	for	validation	with
the	ValidationSetProportion	parameter.	Here	in	our	code	snippet,	we	are	telling	our
program	to	use	80%	of	our	sample	for	training	and	20%	for	validation.	In	the	last
line	of	the	code	snippet,	we	fit	a	Naive	Bayes	classification	model	to	the	train	set
that	was	split	from	the	sample	set.	Also,	note	here	that	we	used
BernoulliDistribution	for	our	Naive	Bayes	classifier,	as	we	used	one-hot	encoding
to	encode	our	features	and	all	of	our	features	have	binary	values,	similar	to	what
we	did	in	the	previous	chapter.

Similar	to	how	we	instantiated	a	SplitSetValidation	object	with	the	Naive	Bayes
classifier,	you	can	instantiate	another	one	with	the	random	forest	classifier	as	in
the	following:

var	rfSplitSet	=	new	SplitSetValidation<RandomForest,	double[]>()

{

				Learner	=	(s)	=>	new	RandomForestLearning()

				{

								NumberOfTrees	=	100,	//	Change	this	hyperparameter	for	further	tuning

								CoverageRatio	=	0.5,	//	the	proportion	of	variables	that	can	be	used	at	maximum	

by	each	tree

								SampleRatio	=	0.7	//	the	proportion	of	samples	used	to	train	each	of	the	trees

				},

				Loss	=	(expected,	actual,	p)	=>	new	ZeroOneLoss(expected).Loss(actual),

				Stratify	=	false,

				TrainingSetProportion	=	0.7,

				ValidationSetProportion	=	0.3

};

var	rfResult	=	rfSplitSet.Learn(input,	output);

We	replaced	the	previous	code	with	random	forest	as	a	model	and

RandomForestLearning	as	a	learning	algorithm.	If	you	look	closely,	there	are	some
hyperparameters	that	we	can	tune	for	RandomForestLearning.	The	first	one	is
NumberOfTrees.	This	hyperparameter	lets	you	choose	the	number	of	decision	trees
that	go	into	your	random	forest.	In	general,	having	more	trees	in	a	random	forest
results	in	better	performance,	as	you	are	essentially	building	more	decision	trees
in	the	forest.	However,	the	performance	lift	comes	at	the	cost	of	training	and
prediction	time.	It	will	take	more	time	to	train	and	make	predictions	as	you
increase	the	number	of	trees	in	your	random	forest.	The	other	two	parameters	to
note	here	are	CoverageRatio	and	SampleRatio.	CoverageRatio	sets	the	proportion	of	the
feature	set	to	be	used	in	each	tree,	while	SampleRatio	sets	the	proportion	of	the
train	set	to	be	used	in	each	tree.	Having	a	higher	CoverageRatio	and	SampleRatio
increases	the	performance	of	individual	trees	in	the	forest,	but	it	also	increases
the	correlation	among	the	trees.	Lower	correlation	among	the	trees	helps	reduce
the	generalization	error;	thus,	finding	a	good	balance	between	the	prediction
powers	of	individual	trees	and	correlation	among	the	trees	will	be	essential	in
building	a	good	random	forest	model.	Tuning	and	experimenting	with	various
combinations	of	these	hyperparameters	can	help	you	avoid	overfitting	issues,	as
well	as	improving	your	model	performance	when	training	a	random	forest
model.	We	recommend	you	build	a	number	of	random	forest	classifiers	with
various	combinations	of	those	hyperparameters	and	experiment	with	their	effects
on	your	model	performances.

The	full	code	that	we	used	to	train	Naive	Bayes	and	random	forest	classification
models	and	output	validation	results	can	be	found	here:	https://github.com/yoonhwang
/c-sharp-machine-learning/blob/master/ch.3/TwitterSentimentModeling.cs.	Let's	take	a
closer	look	at	this	code.	In	lines	36-41,	it	first	reads	in	the	token	matrix	file,
tweet-lemma.csv,	which	we	built	in	the	data	preparation	step.	Then	in	lines	43-51,
we	read	in	the	term	frequency	files,	positive-frequencies.csv	and	negative-
frequencies.csv,	which	we	built	in	the	data	analysis	step.	Similar	to	what	we	did	in
the	previous	chapter,	we	do	feature	selection	based	on	the	number	of	term
occurrences	in	line	64.	In	this	example,	we	experimented	with	5,	10,	50,	100,
and	150	as	the	thresholds	for	the	minimum	number	of	term	occurrences	in	our
sample	tweets.	From	line	65,	we	iterate	through	those	thresholds	and	start
training	and	evaluating	Naive	Bayes	and	random	forest	classifiers.	Each	time	a
model	is	trained	on	a	train	set,	it	is	then	run	against	the	validation	set	that	was
not	observed	during	the	training	time.

https://github.com/yoonhwang/c-sharp-machine-learning/blob/master/ch.3/TwitterSentimentModeling.cs

Following	is	part	of	the	full	code	(lines	113-135)	that	runs	the	trained	Naive
Bayes	model	on	the	train	and	validation	sets	to	measure	in-sample	and	out-of-
sample	performance:

//	Get	in-sample	&	out-sample	prediction	results	for	NaiveBayes	Classifier

var	nbTrainedModel	=	nbResult.Model;

int[]	nbTrainSetIDX	=	nbSplitSet.IndicesTrainingSet;

int[]	nbTestSetIDX	=	nbSplitSet.IndicesValidationSet;

Console.WriteLine("*	Train	Set	Size:	{0},	Test	Set	Size:	{1}",	nbTrainSetIDX.Length,	

nbTestSetIDX.Length);

int[]	nbTrainPreds	=	new	int[nbTrainSetIDX.Length];

int[]	nbTrainActual	=	new	int[nbTrainSetIDX.Length];

for	(int	i	=	0;	i	<	nbTrainPreds.Length;	i++)

{

			nbTrainActual[i]	=	output[nbTrainSetIDX[i]];

			nbTrainPreds[i]	=	nbTrainedModel.Decide(input[nbTrainSetIDX[i]]);

}

int[]	nbTestPreds	=	new	int[nbTestSetIDX.Length];

int[]	nbTestActual	=	new	int[nbTestSetIDX.Length];

for	(int	i	=	0;	i	<	nbTestPreds.Length;	i++)

{

			nbTestActual[i]	=	output[nbTestSetIDX[i]];

			nbTestPreds[i]	=	nbTrainedModel.Decide(input[nbTestSetIDX[i]]);

}

Following	is	the	part	of	the	full	code	(lines	167-189)	that	runs	the	trained
random	forest	model	on	the	train	and	validation	sets	to	measure	in-sample	and
out-of-sample	performance:

//	Get	in-sample	&	out-sample	prediction	results	for	RandomForest	Classifier

var	rfTrainedModel	=	rfResult.Model;

int[]	rfTrainSetIDX	=	rfSplitSet.IndicesTrainingSet;

int[]	rfTestSetIDX	=	rfSplitSet.IndicesValidationSet;

Console.WriteLine("*	Train	Set	Size:	{0},	Test	Set	Size:	{1}",	rfTrainSetIDX.Length,	

rfTestSetIDX.Length);

int[]	rfTrainPreds	=	new	int[rfTrainSetIDX.Length];

int[]	rfTrainActual	=	new	int[rfTrainSetIDX.Length];

for	(int	i	=	0;	i	<	rfTrainPreds.Length;	i++)

{

				rfTrainActual[i]	=	output[rfTrainSetIDX[i]];

				rfTrainPreds[i]	=	rfTrainedModel.Decide(input[rfTrainSetIDX[i]]);

}

int[]	rfTestPreds	=	new	int[rfTestSetIDX.Length];

int[]	rfTestActual	=	new	int[rfTestSetIDX.Length];

for	(int	i	=	0;	i	<	rfTestPreds.Length;	i++)

{

				rfTestActual[i]	=	output[rfTestSetIDX[i]];

				rfTestPreds[i]	=	rfTrainedModel.Decide(input[rfTestSetIDX[i]]);

}

Let's	take	a	closer	look	at	these.	For	brevity,	we	will	only	take	a	look	at	the
random	forest	model	case,	as	it	will	be	the	same	for	the	Naive	Bayes	classifier.
In	line	168,	we	first	get	the	trained	model	from	the	learned	results.	Then,	we	get
the	indexes	of	in-sample	(train	set)	and	out-of-sample	(test/validation	set)	sets
from	the	SplitSetValidation	object	in	lines	170-171,	so	that	we	can	iterate	through
each	row	or	record	and	make	predictions.	We	iterate	this	process	twice—once
for	the	in-sample	training	set	in	lines	175-181	and	again	for	the	out-of-sample
validation	set	in	lines	183-189.

Once	we	have	the	prediction	results	on	the	train	and	test	sets,	we	run	those
results	through	some	validation	methods	(lines	138-141	for	the	Naive	Bayes
classifier	and	lines	192-196	for	the	random	forest	classifier).	There	are	two
methods	that	we	wrote	specifically	for	the	model	validation	for	this	project
—PrintConfusionMatrix	and	DrawROCCurve.	PrintConfusionMatrix	is	an	updated	version	of
what	we	had	in	Chapter	2,	Spam	Email	Filtering,	where	it	now	prints	a	3	x	3
confusion	matrix,	instead	of	a	2	x	2	confusion	matrix.	On	the	other	hand,	the
DrawROCCurve	method	brings	in	some	new	concepts	and	new	model	validation
methods	for	this	project.	Let's	discuss	those	new	evaluation	metrics,	which	we
are	using	for	this	project,	in	greater	detail	in	the	following	section.

Model	validations	–	ROC	curve	and
AUC
As	mentioned	before,	we	are	using	different	model	validation	metrics	in	this
chapter:	the	ROC	curve	and	AUC.	The	ROC	curve	is	a	plot	of	a	true	positive
rate	against	a	false	positive	rate	at	various	thresholds.	Each	point	in	the	curve
represents	the	true	positive	and	false	positive	rate	pair	corresponding	at	a	certain
probability	threshold.	It	is	commonly	used	to	select	the	best	and	the	most
optimal	models	among	different	model	candidates.

The	area	under	the	ROC	curve	(AUC)	measures	how	well	the	model	can
distinguish	the	two	classes.	In	the	case	of	a	binary	classification,	AUC	measures
how	well	a	model	distinguishes	the	positive	outcomes	from	the	negative
outcomes.	Since	we	are	dealing	with	a	multi-class	classification	problem	in	this
project,	we	are	using	a	one-versus-rest	approach	to	build	the	ROC	curve	and
compute	the	AUC.	For	example,	one	ROC	curve	can	take	positive	tweets	as
positive	outcomes	and	neutral	and	negative	tweets	as	negative	outcomes,	while
another	ROC	curve	can	take	neutral	tweets	as	positive	outcomes	and	positive
and	negative	tweets	as	negative	outcomes.	As	shown	in	the	following	charts,	we
drew	three	ROC	charts	for	each	model	we	built—one	for	Neutral	verses	Rest
(Positive	and	Negative),	one	for	Positive	versus	Rest	(Neutral	and	Negative),
and	one	for	Negative	versus	Rest	(Neutral	and	Positive).	The	higher	the	AUC
number	is,	the	better	the	model	is	as	it	suggests	that	the	model	can	distinguish
positive	classes	from	negative	classes	with	much	better	chance.

The	following	charts	show	ROC	curves	for	Naive	Bayes	classifiers	with	the
minimum	number	of	term	occurrences	at	10:

The	following	charts	show	ROC	curves	for	Naive	Bayes	classifiers	with	the
minimum	number	of	term	occurrences	at	50:

The	following	charts	show	ROC	curves	for	Naive	Bayes	classifiers	with	the
minimum	number	of	term	occurrences	at	150:

As	you	can	see	from	the	charts,	we	can	also	detect	overfitting	issues	from	ROC
charts	by	looking	at	the	gaps	between	the	curves	from	training	and	testing
results.	The	larger	the	gap	is,	the	more	the	model	is	overfitting.	If	you	look	at	the
first	case,	where	we	only	filter	out	those	terms	that	appear	in	tweets	fewer	than
ten	times,	the	gap	between	the	two	curves	is	large.	As	we	increase	the	threshold,
we	can	see	that	the	gap	decreases.	When	we	are	choosing	the	final	model,	we
want	the	train	ROC	curve	and	the	test/validation	ROC	curve	to	be	as	small	as
possible.	As	this	resolution	comes	at	the	expense	of	the	model	performance,	we
need	to	find	the	right	cutoff	line	for	this	trade-off.

Let's	now	look	at	a	sample	of	how	one	of	our	random	forest	classifiers	did.	The
following	is	a	sample	result	from	fitting	a	random	forest	classifier:

Ensemble	methods,	such	as	random	forest,	generally	work	well	for	classification
problems	and	accuracy	can	be	improved	by	ensembling	with	more	trees.
However,	they	come	with	some	limitations,	one	of	which	is	shown	in	the
previous	sample	results	for	the	random	forest	classifier.	As	is	true	for	all	decision
tree-based	models,	the	random	forest	model	tends	to	overfit,	especially	when	it
tries	to	learn	from	many	categorical	variables.	As	you	can	see	from	the	ROC
curves	for	the	random	forest	classifier,	the	gap	between	the	train	and	test	ROC
curves	is	large,	especially	when	compared	to	those	for	the	Naive	Bayes
classifier.	The	Naive	Bayes	classifier	with	a	minimum	number	of	term
occurrences	threshold	at	150	has	almost	no	gap	between	the	train	and	test	ROC
curves,	whereas	a	random	forest	classifier	at	the	same	threshold	shows	a	large
gap	between	the	two	ROC	curves.	When	dealing	with	such	a	dataset,	where
there	are	lots	of	categorical	variables,	we	need	to	be	careful	about	which	model
to	choose	and	pay	special	attention	to	tuning	the	hyperparameters,	such	as
NumberOfTrees,	CoverageRatio,	and	SampleRatio,	for	a	random	forest	model.

Summary
	

In	this	chapter,	we	built	and	trained	more	advanced	classification	models	for
Twitter	sentiment	analysis.	We	applied	what	we	have	learned	in	the	previous
chapter	to	a	multi-class	classification	problem	with	more	complex	text	data.	We
first	started	off	by	setting	up	our	environment	with	the	Stanford	CoreNLP
package	that	we	used	for	tokenization,	POS	tagging,	and	lemmatization	in	the
data	preparation	and	analysis	steps.	Then,	we	transformed	the	raw	Twitter
dataset	into	a	one-hot	encoded	matrix	by	tokenizing	and	lemmatizing	the	tweets.
During	this	data	preparation	step,	we	also	discussed	how	we	could	use	Regex	to
group	similar	emoticons	together	and	remove	unnecessary	text,	such	as	URLs,
Twitter	IDs,	and	raw	numbers,	from	tweets.	We	further	analyzed	the	distribution
of	frequently	used	terms	and	emoticons	in	our	data	analysis	step	and	we	saw
how	lemmatization	and	grouping	similar	emoticons	together	help	in	reducing
unnecessary	noise	in	the	dataset.	With	data	and	insights	from	previous	steps,	we
experimented	with	building	multi-class	classification	models	using	Naive	Bayes
and	random	forest	classifiers.	As	we	built	these	models,	we	covered	a	frequently
used	model	validation	technique,	where	we	split	a	sample	set	into	two	subsets,
the	train	set	and	validation	set,	and	used	the	train	set	to	fit	a	model	and	the
validation	set	to	evaluate	the	model	performance.	We	also	covered	new	model
validation	metrics,	the	ROC	curve	and	AUC,	which	we	can	use	to	select	the	best
and	most	optimal	model	among	model	candidates.

In	the	next	chapter,	we	are	going	to	switch	gears	and	start	building	regression
models	where	the	target	variables	are	continuous	variables.	We	will	use	a	foreign
exchange	rate	dataset	to	build	time	series	features	and	explore	some	other	ML
models	for	regression	problems.	We	will	also	discuss	how	evaluating	the
performance	of	regression	models	is	different	from	that	of	classification	models.

	

	

	

Foreign	Exchange	Rate	Forecast
	

In	this	chapter,	we	are	going	to	start	building	regression	models	in	C#.	Up	until
now,	we	have	built	machine	learning	(ML)	models	with	the	goal	of	classifying
data	into	binary	or	multiple	buckets	using	logistic	regression,	Naive	Bayes,	and
random	forest	learning	algorithms.	However,	we	are	now	going	to	switch	gears
and	start	building	models	that	predict	continuous	outcomes.	In	this	chapter,	we
will	explore	a	financial	dataset,	more	specifically	a	Foreign	Exchange	Rate
market	dataset.	We	will	be	using	historical	data	of	daily	currency	exchange	rates
between	Euros	(EUR)	and	U.S.	Dollars	(USD)	to	build	a	regression	model	that
forecasts	future	exchange	rates.	We	are	going	to	start	with	the	problem	definition
and	then	move	on	to	data	preparation	and	data	analysis.	During	the	data
preparation	and	analysis	steps,	we	are	going	to	explore	how	we	can	manage	the
time	series	data	and	analyze	the	distributions	of	daily	returns.	Then,	we	are
going	to	start	building	features	that	can	forecast	currency	exchange	rates	in	the
feature	engineering	step.	We	are	going	to	discuss	a	few	commonly	used	technical
indicators	in	the	financial	market,	such	as	moving	averages,	Bollinger	Bands,
and	lagging	variables.	Using	those	technical	indicators,	we	will	be	building
regression	ML	models	using	linear	regression	and	Support	Vector	Machine
(SVM)	learning	algorithms.	While	building	such	models,	we	will	also	explore
some	of	the	ways	we	can	fine-tune	hyperparameters	for	the	SVM	model.	Lastly,
we	will	discuss	a	few	validation	metrics	and	methods	for	evaluating	our
regression	models.	We	will	discuss	how	we	can	use	root	mean	square	error
(RMSE),	R2,	and	an	observed	versus	fitted	values	plot	to	evaluate	the
performances	of	our	models.	By	the	end	of	this	chapter,	you	will	have	working
regression	models	for	forecasting	daily	EUR/USD	exchange	rates.

In	this	chapter,	we	will	cover	the	following	steps:

Problem	definition	for	the	Foreign	Exchange	Rate	(EUR	versus	USD)
forecast	project
Data	preparation	using	time-series	functionalities	in	the	Deedle	framework
Time	series	data	analysis

Feature	engineering	using	various	technical	indicators	in	Forex
Linear	regression	versus	SVM
Model	validations	using	RMSE,	R2,	and	the	actual	versus	predicted	plot

	

	

Problem	definition
	

Let's	start	this	chapter	by	defining	what	we	are	trying	to	solve	in	this	project.
You	might	have	heard	the	terms	Algorithmic	Trading	or	Quantitative
Finance/Trading.	This	is	one	of	the	well-known	fields	in	the	finance	industry
where	data	science	and	ML	meet	finance.	Algorithmic	Trading	or	Quantitative
Finance	refers	to	a	strategy	where	you	use	statistical	learning	models	that	were
built	from	a	large	amount	of	historical	data	to	forecast	future	financial	market
movements.	Such	strategies	and	techniques	are	used	widely	by	various	traders
and	investors	forecast	future	prices	for	various	financial	assets.	The	foreign
exchange	market	is	one	of	the	largest	and	most	liquid	financial	markets,	and	a
large	pool	of	traders	and	investors	take	part	in	it.	It	is	a	unique	market	that	is
open	24	hours	a	day	and	five	days	a	week	and	traders	from	all	over	the	world
come	in	to	buy	and	sell	certain	currency	pairs.	Due	to	this	advantage	and
uniqueness,	the	foreign	exchange	market	is	also	an	attractive	financial	market	for
algorithmic	and	quantitative	traders	to	build	ML	models	to	forecast	future
exchange	rates	and	automate	their	trades	to	take	advantage	of	the	fast	decisions
and	executions	that	computers	can	make.

To	get	a	feel	for	how	we	can	apply	our	ML	knowledge	to	financial	markets	and
regression	models,	we	are	going	to	use	historical	data	of	daily	EUR/USD	rates
from	January	1,	1999	to	December	31st,	2017.	We	are	going	to	use	a	publicly
available	dataset,	which	can	be	downloaded	from	this	link:	http://www.global-view.c
om/forex-trading-tools/forex-history/index.html.	With	this	data,	we	are	going	to	build
features	by	using	commonly	used	technical	indicators,	such	as	moving	averages,
Bollinger	Bands,	and	lagging	variables.	Then,	we	are	going	to	build	regression
models	using	linear	regression	and	SVM	learning	algorithms	that	forecast	future
daily	exchange	rates	for	EUR/USD	currency	pairs.	Once	we	have	built	these
models,	we	are	going	to	use	RMSE,	R2,	and	a	plot	of	observed	values	against
predicted	values	to	evaluate	our	models.

To	summarize	our	problem	definition	for	the	foreign	exchange	rate	forecasting
project:

http://www.global-view.com/forex-trading-tools/forex-history/index.html

What	is	the	problem?	We	need	a	regression	model	that	forecasts	future
foreign	exchange	rates	between	Euros	and	U.S.	Dollars;	more	specifically,
we	want	to	build	a	ML	model	that	forecasts	daily	changes	in	EUR/USD
exchange	rates.
Why	is	it	a	problem?	Due	to	the	fast-paced	and	volatile	environments	in	the
foreign	exchange	market,	it	is	advantageous	to	have	a	ML	model	that	can
forecast	and	make	autonomous	decisions	on	when	to	buy	and	when	to	sell
certain	currency	pairs.
What	are	some	of	the	approaches	to	solving	this	problem?	We	are	going	to
use	historical	data	of	daily	exchange	rates	between	EUR	and	USD.	With
this	dataset,	we	are	going	to	build	financial	features	using	often	used
technical	indicators,	such	as	moving	averages,	Bollinger	Bands,	and	lagging
variables.	We	will	explore	linear	regression	and	SVM	learning	algorithms
as	our	candidates	for	the	regression	model.	Then,	we	will	look	at	RMSE,
R2,	and	use	an	observed	versus	predicted	plot	to	evaluate	the	performances
of	the	models	that	we	built.
What	are	the	success	criteria?	We	want	low	RMSE,	as	we	want	our
predictions	to	be	as	close	to	the	actual	values	as	possible.	We	want	high	R2,
as	it	indicates	the	goodness	of	fit	for	our	models.	Lastly,	we	would	like	to
see	data	points	lined	up	closely	to	a	diagonal	line	in	the	observed	versus
predicted	plot.

	

	

Data	preparation
Now	that	we	know	what	kind	of	problem	we	are	trying	to	solve	in	this	chapter,
let's	start	looking	into	the	data.	Unlike	the	two	previous	chapters,	where	we
precompiled	and	prelabeled	data,	we	are	going	to	start	with	raw	EUR/USD
exchange	rate	data.	Follow	this	link:	http://www.global-view.com/forex-trading-tools/fo
rex-history/index.html	and	select	EUR/USD	Close,	EUR/USD	High,	and
EUR/USD	Low.	You	can	also	select	different	currency	pairs,	if	you'd	like	to
explore	different	datasets.	Once	you	have	selected	the	data	points	you	want,	you
can	then	select	the	start	and	end	dates	and	you	can	also	choose	whether	you	want
to	download	daily,	weekly,	or	monthly	data.	For	this	chapter,	we	choose
01/01/1999	as	the	Start	Date	and	12/31/2017	as	the	Stop	Date	and	we
download	the	daily	dataset	that	contains	close,	high,	and	low	prices	for	the
EUR/USD	currency	pair.

Once	you	have	downloaded	the	data,	there	are	a	few	tasks	we	need	to	do	to	get	it
ready	for	our	future	data	analysis,	feature	engineering,	and	ML	modeling.	First,
we	need	to	define	target	variables.	As	discussed	in	our	problem	definition	step,
our	target	variable	is	going	to	be	the	daily	change	in	EUR/USD	exchange	rates.
To	compute	daily	returns,	we	need	to	subtract	the	previous	day's	close	price	from
today's	close	price	and	then	divide	it	by	previous	day's	close	price.	The	formula
for	calculating	daily	returns	is	as	follows:

We	can	use	the	Diff	method	in	Deedle's	data	frame	to	calculate	the	difference
between	the	previous	price	and	the	current	price.	You	can	actually	use	the	Diff
method	to	calculate	the	difference	between	a	data	point	at	any	arbitrary	point	in
time	and	the	current	data	point.	For	example,	the	following	code	shows	how	you
can	calculate	the	differences	between	the	current	data	point	and	the	data	points	at
one	step	ahead,	three	steps	ahead,	and	five	steps	ahead:

rawDF["DailyReturn"].Diff(1)

rawDF["DailyReturn"].Diff(3)

rawDF["DailyReturn"].Diff(5)

The	output	of	the	preceding	code	is	as	follows:

http://www.global-view.com/forex-trading-tools/forex-history/index.html

Using	this	Diff	method,	the	following	code	is	how	we	can	calculate	the	daily
returns	of	EUR/USD	exchange	rates:

//	Compute	Daily	Returns

rawDF.AddColumn(

				"DailyReturn",	

				rawDF["Close"].Diff(1)	/	rawDF["Close"]	*	100.0

);

In	this	code,	we	are	taking	the	difference	in	close	prices	between	the	previous
day	and	the	current	day	and	then	dividing	them	by	the	previous	close	price.	By
multiplying	them	by	100,	we	can	get	the	daily	returns	in	a	percentage.	Finally,	we
add	this	daily	return	series	back	to	the	original	data	frame	with	a	column	name,
DailyReturn,	by	using	the	AddColumn	method	in	Deedle's	data	frame.

However,	we	are	not	quite	done	yet	with	building	the	target	variables.	Since	we
are	building	a	forecasting	model,	we	need	to	take	the	next	day	return	as	the
target	variable.	We	can	use	the	Shift	method	in	Deedle's	data	frame	to	associate
each	record	with	the	next	day	return.	Similar	to	the	Diff	method,	you	can	use	the
Shift	method	to	move	a	series	back	and	forth	to	any	arbitrary	point	in	time.	The
following	code	shows	how	you	can	move	the	DailyReturn	column	by	1,	3,	and	5
steps:

rawDF["DailyReturn"].Shift(1)

rawDF["DailyReturn"].Shift(3)

rawDF["DailyReturn"].Shift(5)

The	output	of	the	preceding	code	is	as	follows:

As	you	can	see	from	this	example,	the	DailyReturn	column	or	series	has	been
moved	forward	by	1,	3,	and	5	steps,	depending	on	the	parameters	you	fed	into	the
Shift	method.	Using	this	Shift	method,	we	are	going	to	move	daily	returns	back
one	step,	so	that	each	record	has	the	next	day's	return	as	a	target	variable.	The
following	code	is	how	we	created	a	target	variable	column,	Target:

//	Encode	Target	Variable	-	Predict	Next	Daily	Return

rawDF.AddColumn(

				"Target",

				rawDF["DailyReturn"].Shift(-1)

);

Now	that	we	have	encoded	target	variables,	there	is	one	more	step	we	need	to
take	to	get	our	data	prepared	for	future	tasks.	When	you	are	working	with
financial	data,	you	will	often	hear	the	terms	OHLC	chart	or	OHLC	prices.
OHLC	stands	for	Open,	High,	Low,	and	Close	and	it	is	often	used	to	show	price
movements	over	time.	If	you	look	at	the	data	that	we	downloaded,	you	will
notice	that	open	prices	are	missing	in	the	dataset.	However,	we	are	going	to	need
open	prices	for	our	future	feature	engineering	step.	We	are	going	to	assume	that
the	open	price	for	a	given	day	is	the	close	price	of	the	previous	day,	given	that
the	foreign	exchange	market	is	run	24	hours	a	day	and	is	very	liquid	with	high
trading	volume.	In	order	to	take	previous	close	prices	as	open	prices,	we	are
going	to	use	the	Shift	method.	The	following	code	shows	how	we	created	and
added	open	prices	into	our	data	frame:

//	Assume	Open	prices	are	previous	Close	prices

rawDF.AddColumn(

				"Open",

				rawDF["Close"].Shift(1)

);

The	following	code	is	the	full	code	that	we	used	for	the	data	preparation	step:

using	Deedle;

using	System;

using	System.Collections.Generic;

using	System.IO;

using	System.Linq;

using	System.Text;

using	System.Threading.Tasks;

namespace	DataPrep

{

				class	Program

				{

								static	void	Main(string[]	args)

								{

												Console.SetWindowSize(100,	50);

												//	Read	in	the	raw	dataset

												//	TODO:	change	the	path	to	point	to	your	data	directory

												string	dataDirPath	=	@"\\Mac\Home\Documents\c-sharp-machine-

learning\ch.4\input-data";

												//	Load	the	data	into	a	data	frame

												string	rawDataPath	=	Path.Combine(dataDirPath,	"eurusd-daily.csv");

												Console.WriteLine("Loading	{0}\n",	rawDataPath);

												var	rawDF	=	Frame.ReadCsv(

																rawDataPath,

																hasHeaders:	true,

																schema:	"Date,float,float,float",

																inferTypes:	false

);

												//	Rename	&	Simplify	Column	Names

												rawDF.RenameColumns(c	=>	c.Contains("EUR/USD	")	?	c.Replace("EUR/USD	",	"")	

:	c);

												//	Assume	Open	prices	are	previous	Close	prices

												rawDF.AddColumn(

																"Open",

																rawDF["Close"].Shift(1)

);

												//	Compute	Daily	Returns

												rawDF.AddColumn(

																"DailyReturn",	

																rawDF["Close"].Diff(1)	/	rawDF["Close"]	*	100.0

);

												//	Encode	Target	Variable	-	Predict	Next	Daily	Return

												rawDF.AddColumn(

																"Target",

																rawDF["DailyReturn"].Shift(-1)

);

												rawDF.Print();

												//	Save	OHLC	data

												string	ohlcDataPath	=	Path.Combine(dataDirPath,	"eurusd-daily-ohlc.csv");

												Console.WriteLine("\nSaving	OHLC	data	to	{0}\n",	rawDataPath);

												rawDF.SaveCsv(ohlcDataPath);

												Console.WriteLine("DONE!!");

												Console.ReadKey();

								}

				}

}

When	you	run	this	code,	it	is	going	to	output	the	results	into	a	file	named	eurusd-
daily-ohlc.csv,	which	contains	the	OHLC	prices,	daily	returns,	and	target
variables.	We	are	going	to	use	this	file	for	the	future	data	analysis	and	feature
engineering	steps.

This	code	can	also	be	found	in	the	following	repository:	https://github.com/yoonhwan
g/c-sharp-machine-learning/blob/master/ch.4/DataPrep.cs.

https://github.com/yoonhwang/c-sharp-machine-learning/blob/master/ch.4/DataPrep.cs

Time	series	data	analysis
Let's	start	looking	into	the	data.	We	are	going	to	take	the	output	from	the
previous	data	preparation	step	and	start	looking	at	the	distributions	of	daily
returns.	Unlike	previous	chapters,	where	we	primarily	worked	with	categorical
variables,	we	are	dealing	with	continuous	and	time	series	variables.	We	will	look
at	this	data	in	a	few	different	ways.	First,	let's	look	at	the	time	series	close	prices
chart.	The	following	code	shows	how	to	build	a	line	chart	using	the	Accord.NET
framework:

//	Time-series	line	chart	of	close	prices

DataSeriesBox.Show(

				ohlcDF.RowKeys.Select(x	=>	(double)x),

				ohlcDF.GetColumn<double>("Close").ValuesAll

);

Refer	to	the	Accord.NET	documentation	the	DataSeriesBox.Show	method	for	various
other	ways	to	display	a	line	chart.	In	this	example,	we	built	a	line	chart	with	the
integer	indexes	of	our	data	frame	as	the	x	axis	values	and	the	close	prices	as	the
y	axis	values.	The	following	is	the	time	series	line	chart	that	you	will	see	when
you	run	the	code:

This	chart	shows	us	the	overall	movements	of	EUR/USD	exchange	rates	over
time	from	1999	to	2017.	It	started	from	around	1.18	and	went	below	1.0	in	2000
and	2001.	Then,	it	went	as	high	as	1.6	in	2008	and	then	ended	2017	at	around

1.20.	Let's	now	look	at	the	historical	daily	returns.	The	following	code	shows
you	how	to	build	a	line	chart	of	historical	daily	returns:

//	Time-series	line	chart	of	daily	returns

DataSeriesBox.Show(

				ohlcDF.RowKeys.Select(x	=>	(double)x),

				ohlcDF.FillMissing(0.0)["DailyReturn"].ValuesAll

);

One	thing	to	note	here	is	the	usage	of	the	FillMissing	method.	If	you	remember
from	the	previous	data	preparation	step,	the	DailyReturn	series	was	built	by	taking
the	difference	between	the	previous	period	and	the	current	period.	As	a	result,
we	have	a	missing	value	for	the	very	first	data	point,	since	there	is	no	previous
period	data	point	for	the	first	record.	The	FillMissing	method	helps	you	encode
missing	values	with	custom	values.	Depending	on	your	dataset	and	assumptions,
you	can	encode	missing	values	with	different	values,	and	the	FillMissing	method
in	Deedle's	data	frame	will	come	in	handy.

When	you	run	the	previous	code,	it	will	display	a	chart	as	follows:

As	you	can	see	from	this	chart,	daily	returns	oscillate	around	0,	mostly	between
-2.0%	and	+2.0%.	Let's	look	at	the	distribution	of	daily	returns	more	closely.	We
are	going	to	look	at	the	minimum,	maximum,	mean,	and	standard	deviation
values.	Then,	we	are	going	to	look	at	the	quartiles	of	daily	returns,	which	we	will
discuss	in	more	detail	after	looking	at	the	code.	The	code	to	compute	those
numbers	is	as	follows:

//	Check	the	distribution	of	daily	returns

double	returnMax	=	ohlcDF["DailyReturn"].Max();

double	returnMean	=	ohlcDF["DailyReturn"].Mean();

double	returnMedian	=	ohlcDF["DailyReturn"].Median();

double	returnMin	=	ohlcDF["DailyReturn"].Min();

double	returnStdDev	=	ohlcDF["DailyReturn"].StdDev();

double[]	quantiles	=	Accord.Statistics.Measures.Quantiles(

				ohlcDF.FillMissing(0.0)["DailyReturn"].ValuesAll.ToArray(),

				new	double[]	{0.25,	0.5,	0.75}

);

Console.WriteLine("--	DailyReturn	Distribution--	");

Console.WriteLine("Mean:	\t\t\t{0:0.00}\nStdDev:	\t\t{1:0.00}\n",	returnMean,	

returnStdDev);

Console.WriteLine(

				"Min:	\t\t\t{0:0.00}\nQ1	(25%	Percentile):	\t{1:0.00}\nQ2	(Median):	

\t\t{2:0.00}\nQ3	(75%	Percentile):	\t{3:0.00}\nMax:	\t\t\t{4:0.00}",	

				returnMin,	quantiles[0],	quantiles[1],	quantiles[2],	returnMax

);

As	you	can	see	from	this	code,	the	Deedle	framework	has	numerous	built-in
methods	for	computing	basic	statistics.	As	shown	in	the	first	six	lines	of	the
code,	you	can	use	the	Max,	Mean,	Median,	Min,	and	StdDev	methods	in	the	Deedle
framework	in	order	to	get	corresponding	statistics	for	daily	returns.

In	order	to	get	quartiles,	we	need	to	use	the	Quantiles	method	in	the
Accord.Statistics.Measures	module	of	the	Accord.NET	Framework.	Quantiles	are
the	points	that	divide	an	ordered	distribution	into	equal-length	intervals.	For
example,	ten-quantiles	break	an	ordered	distribution	into	ten	subsets	of	equal
sizes,	so	that	the	first	subset	represents	the	bottom	10%	of	the	distribution	and
the	last	subset	represents	the	top	10%	of	the	distribution.	Similarly,	four-
quantiles	break	an	ordered	distribution	into	four	subsets	of	equal	sizes,	where	the
first	subset	represents	the	bottom	25%	of	the	distribution	and	the	last	subset
represents	the	top	25%	of	the	distribution.	Four-quantiles	are	often	called
quartiles,	ten-quantiles	are	called	deciles,	and	100-quantiles	are	called
percentiles.	As	you	can	deduce	from	these	definitions,	the	1st	quartile	is	the
same	as	the	0.25th	decile	and	the	25th	percentile.	Similarly,	the	2nd	and	3rd
quartiles	are	the	same	as	the	0.50th	and	0.75th	deciles	and	the	50th	and	75th
percentiles.	As	we	are	interested	in	the	quartiles,	we	used	25%,	50%,	and	75%	as
the	inputs	for	the	percentiles	parameter	in	the	Quantiles	method.	The	following
shows	the	output	when	you	run	this	code:

Similar	to	what	we	have	noticed	from	the	daily	return	time	series	line	chart,
mean,	and	median	are	about	0,	suggesting	the	daily	returns	oscillate	around	0%.
From	1999	to	2017,	the	largest	negative	daily	return	in	history	is	-2.86%	and	the
largest	positive	daily	return	is	3.61%.	The	first	quartile,	which	is	the	middle
number	between	the	minimum	and	median,	is	at	-0.36%	and	the	third	quartile,
which	is	the	middle	number	between	the	median	and	the	maximum,	is	at	0.35%.
From	these	summary	statistics,	we	can	see	that	the	daily	returns	are	spread
almost	symmetrically	from	0%.	To	show	this	more	visually,	let's	now	look	at	the
histogram	of	daily	returns.	The	code	to	plot	a	histogram	of	daily	returns	is	as
follows:

var	dailyReturnHistogram	=	HistogramBox

.Show(

				ohlcDF.FillMissing(0.0)["DailyReturn"].ValuesAll.ToArray()

)

.SetNumberOfBins(20);

We	used	HistogramBox	in	the	Accord.NET	framework	to	build	a	histogram	chart	of
daily	returns.	Here,	we	set	the	number	of	bins	as	20.	You	can	increase	or	decrease
the	number	of	bins	to	show	more	or	less	granular	buckets.	When	you	run	this
code,	the	following	chart	is	what	you	will	see:

Similar	to	what	we	have	observed	in	the	summary	statistics,	daily	returns	are
spread	almost	symmetrically	from	0%.	This	histogram	of	daily	returns	shows	a
clear	bell	curve,	which	suggests	that	daily	returns	follow	a	normal	distribution.

The	full	code	that	we	ran	for	this	data	analysis	step	can	be	found	at	this	link:	http
s://github.com/yoonhwang/c-sharp-machine-learning/blob/master/ch.4/DataAnalyzer.cs.

https://github.com/yoonhwang/c-sharp-machine-learning/blob/master/ch.4/DataAnalyzer.cs

Feature	engineering
Now	that	we	have	a	better	understanding	of	the	distribution	of	daily	returns,	let's
start	building	features	for	our	ML	modeling.	In	this	step,	we	are	going	to	discuss
a	couple	of	frequently	used	technical	indicators	that	traders	in	the	foreign
exchange	market	use	and	how	we	can	build	features	for	our	ML	models	using
those	technical	indicators.

	

Moving	average
The	first	set	of	features	we	are	going	to	build	moving	averages.	A	moving
average	is	a	rolling	average	for	a	pre-defined	number	of	periods	and	is	an	often
used	technical	indicator.	A	moving	average	helps	smooth	out	volatile	price
movements	and	shows	the	overall	trends	of	price	actions.	An	in-depth	discussion
about	how	moving	averages	are	used	in	trading	financial	assets	is	beyond	the
scope	of	this	book,	but	in	short,	looking	at	multiple	moving	averages	with
different	timeframes	helps	traders	to	identify	trends	and	support	and	resistance
levels	for	trading.	In	this	chapter,	we	are	going	to	use	four	moving	averages,
where	the	look-back	periods	are	10	days,	20	days,	50	days,	and	200	days.	The
following	code	shows	how	we	can	compute	moving	averages	using	the	Window
method:

//	1.	Moving	Averages

ohlcDF.AddColumn("10_MA",	ohlcDF.Window(10).Select(x	=>	x.Value["Close"].Mean()));

ohlcDF.AddColumn("20_MA",	ohlcDF.Window(20).Select(x	=>	x.Value["Close"].Mean()));

ohlcDF.AddColumn("50_MA",	ohlcDF.Window(50).Select(x	=>	x.Value["Close"].Mean()));

ohlcDF.AddColumn("200_MA",	ohlcDF.Window(200).Select(x	=>	x.Value["Close"].Mean()));

The	Window	method	in	the	Deedle	framework	helps	us	easily	compute	moving
averages.	The	Window	method	takes	a	data	frame	and	builds	a	series	of	data	frames
where	each	data	frame	contains	a	pre-defined	number	of	records.	For	example,	if
your	input	to	the	Window	method	is	10,	then	it	is	going	to	build	a	series	of	data
frames,	where	the	first	data	frame	contains	records	from	the	0th	index	to	the	9th
index,	the	second	data	frame	contains	records	from	the	1st	index	to	the	11th
index,	and	so	forth.	Using	this	method,	we	can	easily	compute	moving	averages
for	different	time	windows,	as	shown	in	the	code.	Now,	let's	plot	a	time	series
close	price	chart	with	these	moving	averages:

As	you	can	see	from	this	chart,	moving	averages	smooth	out	volatile	price
movements.	The	red	line	shows	moving	averages	of	10	days,	the	green	line
shows	moving	averages	of	20	days,	the	black	line	for	50	days,	and	the	pink	line
for	200	days.	As	you	can	see	from	this	chart,	the	shorter	the	time	window	the
closer	it	follows	price	actions	and	the	less	smooth	the	chart	is.	The	code	we	used
to	generate	this	chart	is	as	follows:

//	Time-series	line	chart	of	close	prices	&	moving	averages

var	maLineChart	=	DataSeriesBox.Show(

				ohlcDF.Where(x	=>	x.Key	>	4400	&&	x.Key	<	4900).RowKeys.Select(x	=>	(double)x),

				ohlcDF.Where(x	=>	x.Key	>	4400	&&	x.Key	<	4900).GetColumn<double>

("Close").ValuesAll,

				ohlcDF.Where(x	=>	x.Key	>	4400	&&	x.Key	<	4900).GetColumn<double>

("10_MA").ValuesAll,

				ohlcDF.Where(x	=>	x.Key	>	4400	&&	x.Key	<	4900).GetColumn<double>

("20_MA").ValuesAll,

				ohlcDF.Where(x	=>	x.Key	>	4400	&&	x.Key	<	4900).GetColumn<double>

("50_MA").ValuesAll,

				ohlcDF.Where(x	=>	x.Key	>	4400	&&	x.Key	<	4900).GetColumn<double>

("200_MA").ValuesAll

);

With	these	moving	averages	we	just	calculated,	the	actual	features	that	we	are
going	to	use	for	our	model	are	the	distances	between	the	close	price	and	the
moving	averages.	As	briefly	mentioned,	moving	averages	often	work	as	support
and	resistance	levels	and	by	looking	at	how	far	each	price	point	is	from	each	of
the	moving	averages,	we	can	figure	out	whether	we	are	approaching	the	support
and	resistance	lines.	The	code	to	calculate	the	distances	between	the	close	price

and	the	moving	averages	is	as	follows:

//	Distance	from	moving	averages

ohlcDF.AddColumn("Close_minus_10_MA",	ohlcDF["Close"]	-	ohlcDF["10_MA"]);

ohlcDF.AddColumn("Close_minus_20_MA",	ohlcDF["Close"]	-	ohlcDF["20_MA"]);

ohlcDF.AddColumn("Close_minus_50_MA",	ohlcDF["Close"]	-	ohlcDF["50_MA"]);

ohlcDF.AddColumn("Close_minus_200_MA",	ohlcDF["Close"]	-	ohlcDF["200_MA"]);

Bollinger	Bands
The	second	technical	indicator	that	we	are	going	to	look	at	is	Bollinger	Bands.
Bollinger	Bands	comprise	a	moving	average	and	the	moving	standard	deviation
of	the	same	time	window	as	the	moving	average	that	it	is	using.	Then,	Bollinger
Bands	are	plotted	two	standard	deviations	above	and	below	the	moving	average
on	the	price	time	series	chart.	We	will	use	a	20-day	time	window	for	computing
Bollinger	Bands.	The	code	to	compute	Bollinger	Bands	is	as	follows:	//	2.
Bollinger	Band
ohlcDF.AddColumn("20_day_std",	ohlcDF.Window(20).Select(x	=>
x.Value["Close"].StdDev()));
ohlcDF.AddColumn("BollingerUpperBound",	ohlcDF["20_MA"]	+
ohlcDF["20_day_std"]	*	2);
ohlcDF.AddColumn("BollingerLowerBound",	ohlcDF["20_MA"]	-
ohlcDF["20_day_std"]	*	2);

As	you	can	see	from	this	code,	we	are	using	the	Window	and	StdDev	methods	to
calculate	moving	standard	deviations.	Then,	we	calculate	the	upper	and	lower
boundaries	of	Bollinger	Bands	by	adding	and	subtracting	two	standard
deviations	from	20-day	moving	averages.	When	you	plot	Bollinger	Bands	with
price	series,	the	result	looks	as	follows:

The	blue	line	shows	the	price	movements,	the	green	line	shows	20-day	moving
averages,	the	red	line	shows	the	upper	boundary	of	Bollinger	Bands,	which	is
two	standard	deviations	above	the	moving	averages,	and	the	black	line	shows	the
lower	boundary	of	Bollinger	Bands,	which	is	two	standard	deviations	below	the
moving	averages.	As	you	can	see	from	this	chart,	Bollinger	Bands	form	bands
around	the	price	movements.	The	code	to	display	this	chart	is	as	follows:	//
Time-series	line	chart	of	close	prices	&	bollinger	bands
var	bbLineChart	=	DataSeriesBox.Show(
ohlcDF.Where(x	=>	x.Key	>	4400	&&	x.Key	<	4900).RowKeys.Select(x	=>
(double)x),
ohlcDF.Where(x	=>	x.Key	>	4400	&&	x.Key	<	4900).GetColumn<double>
("Close").ValuesAll,
ohlcDF.Where(x	=>	x.Key	>	4400	&&	x.Key	<	4900).GetColumn<double>
("BollingerUpperBound").ValuesAll,
ohlcDF.Where(x	=>	x.Key	>	4400	&&	x.Key	<	4900).GetColumn<double>
("20_MA").ValuesAll,
ohlcDF.Where(x	=>	x.Key	>	4400	&&	x.Key	<	4900).GetColumn<double>
("BollingerLowerBound").ValuesAll
);

Similar	to	the	previous	case	of	moving	averages,	we	are	going	to	use	the
distances	between	the	close	price	and	Bollinger	Bands.	Since	most	of	the	trades

are	made	between	the	upper	and	lower	bands,	the	distances	between	the	price
and	the	bands	can	be	features	for	our	ML	models.	The	code	to	calculate	the
distances	is	as	follows:

//	Distance	from	Bollinger	Bands

ohlcDF.AddColumn("Close_minus_BollingerUpperBound",	ohlcDF["Close"]	-	

ohlcDF["BollingerUpperBound"]);

ohlcDF.AddColumn("Close_minus_BollingerLowerBound",	ohlcDF["Close"]	-	

ohlcDF["BollingerLowerBound"]);

Lagged	variables
Finally,	the	last	set	of	features	we	are	going	to	use	is	lagged	variables.	Lagged
variables	contain	information	about	previous	periods.	For	example,	if	we	use	the
daily	return	value	of	a	previous	day	as	a	feature	for	our	model,	then	it	is	a	lagged
variable	that	lagged	one	period.	We	can	also	use	the	daily	return	of	two	days
prior	to	the	current	date	as	a	feature	for	our	model.	These	types	of	variable	are
called	lagged	variables	and	are	often	used	in	time	series	modeling.	We	are
going	to	use	daily	returns	and	previously	built	features	as	lagged	variables.	In
this	project,	we	look	back	as	far	as	five	periods,	but	you	can	experiment	with
longer	or	shorter	look-back	periods.	The	code	to	create	lagged	variables	for	daily
returns	is	as	follows:

//	3.	Lagging	Variables

ohlcDF.AddColumn("DailyReturn_T-1",	ohlcDF["DailyReturn"].Shift(1));

ohlcDF.AddColumn("DailyReturn_T-2",	ohlcDF["DailyReturn"].Shift(2));

ohlcDF.AddColumn("DailyReturn_T-3",	ohlcDF["DailyReturn"].Shift(3));

ohlcDF.AddColumn("DailyReturn_T-4",	ohlcDF["DailyReturn"].Shift(4));

ohlcDF.AddColumn("DailyReturn_T-5",	ohlcDF["DailyReturn"].Shift(5));

Similarly,	we	can	create	lagged	variables	for	the	differences	between	moving
averages	and	the	close	prices,	using	the	following	code:

ohlcDF.AddColumn("Close_minus_10_MA_T-1",	ohlcDF["Close_minus_10_MA"].Shift(1));

ohlcDF.AddColumn("Close_minus_10_MA_T-2",	ohlcDF["Close_minus_10_MA"].Shift(2));

ohlcDF.AddColumn("Close_minus_10_MA_T-3",	ohlcDF["Close_minus_10_MA"].Shift(3));

ohlcDF.AddColumn("Close_minus_10_MA_T-4",	ohlcDF["Close_minus_10_MA"].Shift(4));

ohlcDF.AddColumn("Close_minus_10_MA_T-5",	ohlcDF["Close_minus_10_MA"].Shift(5));

ohlcDF.AddColumn("Close_minus_20_MA_T-1",	ohlcDF["Close_minus_20_MA"].Shift(1));

ohlcDF.AddColumn("Close_minus_20_MA_T-2",	ohlcDF["Close_minus_20_MA"].Shift(2));

ohlcDF.AddColumn("Close_minus_20_MA_T-3",	ohlcDF["Close_minus_20_MA"].Shift(3));

ohlcDF.AddColumn("Close_minus_20_MA_T-4",	ohlcDF["Close_minus_20_MA"].Shift(4));

ohlcDF.AddColumn("Close_minus_20_MA_T-5",	ohlcDF["Close_minus_20_MA"].Shift(5));

ohlcDF.AddColumn("Close_minus_50_MA_T-1",	ohlcDF["Close_minus_50_MA"].Shift(1));

ohlcDF.AddColumn("Close_minus_50_MA_T-2",	ohlcDF["Close_minus_50_MA"].Shift(2));

ohlcDF.AddColumn("Close_minus_50_MA_T-3",	ohlcDF["Close_minus_50_MA"].Shift(3));

ohlcDF.AddColumn("Close_minus_50_MA_T-4",	ohlcDF["Close_minus_50_MA"].Shift(4));

ohlcDF.AddColumn("Close_minus_50_MA_T-5",	ohlcDF["Close_minus_50_MA"].Shift(5));

ohlcDF.AddColumn("Close_minus_200_MA_T-1",	ohlcDF["Close_minus_200_MA"].Shift(1));

ohlcDF.AddColumn("Close_minus_200_MA_T-2",	ohlcDF["Close_minus_200_MA"].Shift(2));

ohlcDF.AddColumn("Close_minus_200_MA_T-3",	ohlcDF["Close_minus_200_MA"].Shift(3));

ohlcDF.AddColumn("Close_minus_200_MA_T-4",	ohlcDF["Close_minus_200_MA"].Shift(4));

ohlcDF.AddColumn("Close_minus_200_MA_T-5",	ohlcDF["Close_minus_200_MA"].Shift(5));

Lastly,	we	can	create	lagged	variables	for	Bollinger	Band	indicators,	using	the

following	code:

ohlcDF.AddColumn("Close_minus_BollingerUpperBound_T-1",	

ohlcDF["Close_minus_BollingerUpperBound"].Shift(1));

ohlcDF.AddColumn("Close_minus_BollingerUpperBound_T-2",	

ohlcDF["Close_minus_BollingerUpperBound"].Shift(2));

ohlcDF.AddColumn("Close_minus_BollingerUpperBound_T-3",	

ohlcDF["Close_minus_BollingerUpperBound"].Shift(3));

ohlcDF.AddColumn("Close_minus_BollingerUpperBound_T-4",	

ohlcDF["Close_minus_BollingerUpperBound"].Shift(4));

ohlcDF.AddColumn("Close_minus_BollingerUpperBound_T-5",	

ohlcDF["Close_minus_BollingerUpperBound"].Shift(5));

As	you	can	see	from	these	code	snippets,	it	is	very	simple	and	straightforward	to
create	such	lagged	variables.	We	can	simply	use	the	Shift	method	in	the	Deedle
framework	and	change	the	input	to	the	method	according	to	the	look-back
period.

One	last	thing	we	are	going	to	do	in	this	section	is	drop	the	missing	values.
Because	we	were	building	many	time	series	features,	we	created	a	lot	of	missing
values.	For	example,	when	we	calculate	200-day	moving	averages,	the	first	199
records	will	have	no	moving	averages,	and	as	a	result	will	have	missing	values.
When	you	happen	to	have	missing	values	in	your	dataset,	there	are	two	ways
you	can	handle	them—you	can	either	encode	them	with	certain	values,	or	drop
the	missing	values	from	the	dataset.	Since	we	have	enough	data,	we	are	going	to
drop	all	the	records	with	missing	values.	The	code	for	dropping	missing	values
from	our	data	frame	is	as	follows:

Console.WriteLine("\n\nDF	Shape	BEFORE	Dropping	Missing	Values:	({0},	{1})",	

ohlcDF.RowCount,	ohlcDF.ColumnCount);

ohlcDF	=	ohlcDF.DropSparseRows();

Console.WriteLine("\nDF	Shape	AFTER	Dropping	Missing	Values:	({0},	{1})\n\n",	

ohlcDF.RowCount,	ohlcDF.ColumnCount);

As	you	can	see	from	this	code,	the	Deedle	framework	has	a	handy	function	that
we	can	use	to	drop	missing	values.	We	can	use	the	DropSparseRows	method	to	drop
all	the	missing	values.	When	you	run	this	code,	your	output	will	look	as	follows:

As	you	can	see	from	this	output,	it	dropped	250	records	for	having	missing
values.	The	full	code	to	run	the	data	analysis	step	from	end	to	end	can	be	found
at	this	link:	https://github.com/yoonhwang/c-sharp-machine-learning/blob/master/ch.4/Featur

https://github.com/yoonhwang/c-sharp-machine-learning/blob/master/ch.4/FeatureEngineer.cs

eEngineer.cs.

Linear	regression	versus	SVM
In	this	section,	we	are	going	to	build	models	that	are	completely	different	from
previous	chapters.	We	are	going	to	build	models	that	predict	continuous
variables	and	provide	a	daily	return	of	EUR/USD	exchange	rates,	and	we	are
going	to	use	two	new	learning	algorithms,	linear	regression	and	SVM.	Linear
regression	models	try	to	find	linear	relationships	between	the	target	variables	and
the	features,	whereas	SVM	models	try	to	build	hyperplanes	that	maximize	the
distances	between	different	classes.	For	this	foreign	exchange	rate	forecasting
project,	we	are	going	to	discuss	how	to	build	linear	regression	and	SVM	models
for	regression	problems	in	C#	using	the	Accord.NET	Framework.

Before	we	build	models,	we	will	have	to	split	our	sample	set	into	two	subsets—
one	for	training	and	another	for	testing.	In	the	previous	chapter,	we	used
SplitSetValidation	in	the	Accord.NET	Framework	to	randomly	split	a	sample	set
into	train	and	test	sets	at	a	pre-defined	proportion.	However,	we	cannot	apply	the
same	approach	in	this	chapter.	Since	we	are	dealing	with	time	series	data,	we
cannot	randomly	select	and	split	records	into	train	and	test	sets.	If	we	do
randomly	split	the	sample	set,	then	we	are	going	to	have	cases	where	we	train
our	ML	models	with	future	events	and	test	our	models	on	past	events.	So,	we
want	to	split	our	sample	set	at	a	certain	point	in	time	and	take	the	records	up	to
that	point	into	a	train	set	and	the	records	after	that	point	into	a	test	set.	The
following	code	shows	how	we	split	our	sample	set	into	train	and	test	sets:

//	Read	in	the	file	we	created	in	the	previous	step

//	TODO:	change	the	path	to	point	to	your	data	directory

string	dataDirPath	=	@"<path-to-data-dir>";

//	Load	the	data	into	a	data	frame

Console.WriteLine("Loading	data...");

var	featuresDF	=	Frame.ReadCsv(

				Path.Combine(dataDirPath,	"eurusd-features.csv"),

				hasHeaders:	true,

				inferTypes:	true

);

//	Split	the	sample	set	into	train	and	test	sets

double	trainProportion	=	0.9;

int	trainSetIndexMax	=	(int)(featuresDF.RowCount	*	trainProportion);

var	trainSet	=	featuresDF.Where(x	=>	x.Key	<	trainSetIndexMax);

var	testSet	=	featuresDF.Where(x	=>	x.Key	>=	trainSetIndexMax);

Console.WriteLine("\nTrain	Set	Shape:	({0},	{1})",	trainSet.RowCount,	

trainSet.ColumnCount);

Console.WriteLine("Test	Set	Shape:	({0},	{1})",	testSet.RowCount,	testSet.ColumnCount);

As	you	can	see	from	this	code	snippet,	we	take	the	first	90%	of	the	sample	set
for	training	and	the	remaining	10%	for	testing,	using	the	Where	method	to	filter
records	in	the	sample	set	by	index.	The	next	thing	we	need	to	do	before	training
our	ML	models	is	select	the	features	that	we	want	to	train	our	models	with.	Since
we	are	only	interested	in	using	lagged	variables	and	the	distances	between	the
prices	and	moving	averages	or	Bollinger	Bands,	we	do	not	want	to	include	raw
moving	average	or	Bollinger	Band	numbers	into	our	feature	space.	The
following	code	snippet	shows	how	we	define	the	feature	set	for	our	models:

string[]	features	=	new	string[]	{

				"DailyReturn",	

				"Close_minus_10_MA",	"Close_minus_20_MA",	"Close_minus_50_MA",

				"Close_minus_200_MA",	"20_day_std",	

				"Close_minus_BollingerUpperBound",	"Close_minus_BollingerLowerBound",

				"DailyReturn_T-1",	"DailyReturn_T-2",

				"DailyReturn_T-3",	"DailyReturn_T-4",	"DailyReturn_T-5",

				"Close_minus_10_MA_T-1",	"Close_minus_10_MA_T-2",	

				"Close_minus_10_MA_T-3",	"Close_minus_10_MA_T-4",

				"Close_minus_10_MA_T-5",	

				"Close_minus_20_MA_T-1",	"Close_minus_20_MA_T-2",

				"Close_minus_20_MA_T-3",	"Close_minus_20_MA_T-4",	"Close_minus_20_MA_T-5",

				"Close_minus_50_MA_T-1",	"Close_minus_50_MA_T-2",	"Close_minus_50_MA_T-3",

				"Close_minus_50_MA_T-4",	"Close_minus_50_MA_T-5",	

				"Close_minus_200_MA_T-1",	"Close_minus_200_MA_T-2",	

				"Close_minus_200_MA_T-3",	"Close_minus_200_MA_T-4",

				"Close_minus_200_MA_T-5",

				"Close_minus_BollingerUpperBound_T-1",

				"Close_minus_BollingerUpperBound_T-2",	"Close_minus_BollingerUpperBound_T-3",

				"Close_minus_BollingerUpperBound_T-4",	"Close_minus_BollingerUpperBound_T-5"

};

Now	we	are	ready	to	start	building	model	objects	and	training	our	ML	models.
Let's	first	look	at	how	to	instantiate	a	linear	regression	model.	The	code	we	used
to	train	a	linear	regression	model	is	as	follows:

Console.WriteLine("\n****	Linear	Regression	Model	****");

//	OLS	learning	algorithm

var	ols	=	new	OrdinaryLeastSquares()

{

				UseIntercept	=	true

};

//	Fit	a	linear	regression	model

MultipleLinearRegression	regFit	=	ols.Learn(trainX,	trainY);

//	in-sample	predictions

double[]	regInSamplePreds	=	regFit.Transform(trainX);

//	out-of-sample	predictions

double[]	regOutSamplePreds	=	regFit.Transform(testX);

As	you	can	see	from	this	code	snippet,	we	are	using	OrdinaryLeastSquares	as	a
learning	algorithm	and	MultipleLinearRegression	as	a	model.	Ordinary	Least
Squares	(OLS)	is	a	way	of	training	a	linear	regression	model	by	minimizing	and
optimizing	on	the	sum	of	squares	of	errors.	A	multiple	linear	regression	model	is
a	model	where	the	number	of	input	features	is	larger	than	1.	Lastly,	in	order	to
make	predictions	on	data,	we	are	using	the	Transform	method	of	the
MultipleLinearRegression	object.	We	will	be	making	predictions	on	both	the	train
and	test	sets	for	our	model	validations	in	the	following	section.

Let's	now	look	at	another	learning	algorithm	and	model	that	we	are	going	to	use
in	this	chapter.	The	following	code	shows	how	to	build	and	train	a	SVM	model
for	regression	problems:

Console.WriteLine("\n****	Linear	Support	Vector	Machine	****");

//	Linear	SVM	Learning	Algorithm

var	teacher	=	new	LinearRegressionNewtonMethod()

{

				Epsilon	=	2.1,

				Tolerance	=	1e-5,

				UseComplexityHeuristic	=	true

};

//	Train	SVM

var	svm	=	teacher.Learn(trainX,	trainY);

//	in-sample	predictions

double[]	linSVMInSamplePreds	=	svm.Score(trainX);

//	out-of-sample	predictions

double[]	linSVMOutSamplePreds	=	svm.Score(testX);

As	you	can	see	from	this	code,	we	are	using	LinearRegressionNewtonMethod	as	a
learning	algorithm	to	train	a	SVM	model.	LinearRegressionNewtonMethod	is	a	learning
algorithm	for	SVM	using	linear	kernel.	Simply	put,	a	kernel	is	a	way	of
projecting	data	points	onto	another	space	where	the	data	points	are	more
separable	than	in	the	original	space.	Other	kernels,	such	as	polynomial	and
Gaussian	kernels,	are	also	often	used	when	training	SVM	models.	We	will
experiment	with	and	further	discuss	these	other	kernels	in	the	next	chapter,	but
you	can	certainly	experiment	with	the	model	performances	on	other	kernels	for
this	project.	When	making	predictions	with	a	trained	SVM	model,	you	can	use
the	Score	method,	as	shown	in	the	code	snippet.

The	full	code	that	we	used	to	train	and	validate	linear	regression	and	SVM

models	can	be	found	here:	https://github.com/yoonhwang/c-sharp-machine-learning/blob/m
aster/ch.4/Modeling.cs.

https://github.com/yoonhwang/c-sharp-machine-learning/blob/master/ch.4/Modeling.cs

Model	validations
Now	that	you	have	built	and	trained	regression	models	for	this	chapter's	foreign
exchange	rate	forecast	project,	let's	start	looking	into	how	our	models	performed.
In	this	section,	we	are	going	to	discuss	two	commonly	used	basic	metrics,
RMSE,	and	R2,	and	a	diagnostic	plot,	actual	or	observed	values	versus	predicted
values.	Before	we	delve	into	those	metrics	and	a	diagnostic	plot,	let's	first	briefly
discuss	how	to	extract	coefficient	and	intercept	values	from	the	linear	regression
model.

The	following	code	snippet	shows	you	how	to	extract	coefficients	and	the
intercept	from	the	MultipleLinearRegression	object:

Console.WriteLine("\n*	Linear	Regression	Coefficients:");

for	(int	i	=	0;	i	<	features.Length;	i++)

{

				Console.WriteLine("\t{0}:	{1:0.0000}",	features[i],	regFit.Weights[i]);

}

Console.WriteLine("\tIntercept:	{0:0.0000}",	regFit.Intercept);

When	you	run	this	code,	you	will	see	an	output	like	the	following:

Looking	at	the	coefficients	and	intercept	of	the	fitted	linear	regression	model
helps	us	understand	the	model	and	gain	some	insights	into	how	each	feature
affects	the	prediction	results.	The	fact	that	we	can	understand	and	visualize
exactly	how	the	relationships	between	the	features	and	the	target	variable	are
formed	and	how	they	interact	with	each	other	makes	linear	regression	models
still	attractive,	even	though	other	black-box	models,	such	as	random	forest
models	or	support	vector	machines,	often	outperform	linear	regression	models.
As	you	can	see	from	this	output,	you	can	easily	tell	which	features	affect	daily
return	predictions	negatively	or	positively	and	the	magnitudes	of	their	impacts.

Let's	now	look	at	the	first	metrics	that	we	are	using	for	regression	model
validation	in	this	chapter.	You	might	already	be	familiar	with	RMSE,	which
measures	the	square	root	of	the	errors	between	the	predicted	values	and	the
actual	values.	The	lower	RMSE	values	are,	the	better	the	model	fit	is.	The
following	code	shows	how	you	can	compute	the	RMSE	of	the	model	fit:

//	RMSE	for	in-sample	

double	regInSampleRMSE	=	Math.Sqrt(new	SquareLoss(trainX).Loss(regInSamplePreds));

//	RMSE	for	out-sample	

double	regOutSampleRMSE	=	Math.Sqrt(new	SquareLoss(testX).Loss(regOutSamplePreds));

Console.WriteLine("RMSE:	{0:0.0000}	(Train)	vs.	{1:0.0000}	(Test)",	regInSampleRMSE,	

regOutSampleRMSE);

As	you	can	see	from	this	code,	we	are	using	the	SquareLoss	class	in	the
Accord.NET	framework,	which	computes	the	squared	values	of	the	differences
between	the	predicted	and	the	actual	values.	In	order	to	get	the	RMSE,	we	need
to	take	a	square	root	of	this	value.

The	next	metric	that	we	are	going	to	look	at	is	R2.	R2	is	frequently	used	as	an
indicator	of	the	goodness	of	fit.	The	closer	the	value	is	to	1,	the	better	the	model
fit.	The	following	code	shows	how	we	can	compute	R2	values:

//	R^2	for	in-sample	

double	regInSampleR2	=	new	RSquaredLoss(trainX[0].Length,	

trainX).Loss(regInSamplePreds);

//	R^2	for	out-sample	

double	regOutSampleR2	=	new	RSquaredLoss(testX[0].Length,	

testX).Loss(regOutSamplePreds);

Console.WriteLine("R^2:	{0:0.0000}	(Train)	vs.	{1:0.0000}	(Test)",	regInSampleR2,	

regOutSampleR2);

As	you	can	see	from	this	code,	we	are	using	the	RSquaredLoss	class	in	the
Accord.NET	framework.	We	are	computing	once	for	in-sample	predictions
(predictions	on	the	train	set)	and	once	for	out-of-sample	predictions	(predictions
on	the	test	set).	The	closer	the	two	values	are,	the	less	overfitting	the	models.

When	you	run	this	code	for	RMSE	and	R2	for	the	linear	regression	model,	the
following	is	an	output	you	will	get:

And	for	the	SVM	model,	the	output	you	will	see	is	as	follows:

From	these	outputs,	we	can	see	that	the	SVM	model	outperforms	the	linear
regression	model	by	a	large	amount.	The	SVM	model	has	a	much	lower	RMSE
compared	to	the	linear	regression	model.	Also,	the	SVM	model	has	a	much
higher	R2	value	than	the	linear	regression	model.	Note	the	R2	value	for	the	linear

regression	model.	This	happens	when	the	fit	of	the	model	is	worse	than	a	simple
horizontal	line,	and	this	suggests	that	our	linear	regression	model	fit	is	not	good.
On	the	other	hand,	the	R2	for	the	SVM	model	is	about	0.26,	which	suggests	that
26%	of	the	target	variable	variance	can	be	explained	by	this	model.

Lastly,	we	are	going	to	look	at	a	diagnostic	plot;	actual	values	versus	predicted
values.	This	diagnostic	plot	is	a	good	way	to	visually	see	the	goodness	of	the
model	fit.	Ideally,	we	would	want	all	the	points	to	be	on	a	diagonal	line.	For
example,	if	the	actual	value	is	1.0,	then	we	would	want	to	have	predicted	value
close	to	1.0.	The	closer	the	points	are	to	the	diagonal	line,	the	better	the	model	fit
is.	You	can	use	the	following	code	to	plot	actual	values	against	predicted	values:

//	Scatter	Plot	of	expected	and	actual

ScatterplotBox.Show(

				String.Format("Actual	vs.	Prediction	({0})",	modelName),	testY,	regOutSamplePreds

);

We	are	using	the	ScatterplotBox	class	in	the	Accord.NET	framework	to	build	a
scatter	plot	of	actual	values	against	predicted	values.	When	you	run	this	code	for
linear	regression	model	results,	you	will	see	the	following	diagnostic	plot:

When	you	run	the	same	code	for	the	SVM	model	results,	the	diagnostic	plot
appears	as	follows:

As	you	can	see	from	these	plots,	predictions	from	the	linear	regression	model	are
more	clogged	around	0,	while	those	from	the	SVM	model	are	more	spread	out
across	a	wider	range.	Although	both	plots	for	the	linear	regression	and	SVM
model	results	do	now	show	a	perfect	diagonal	line,	the	plot	for	the	SVM	model
shows	better	results	and	is	aligned	with	the	results	we	have	seen	from	the	RMSE
and	R2	metrics.

The	method	we	wrote	and	used	to	run	validations	for	the	models	is	as	follows:

private	static	void	ValidateModelResults(string	modelName,	double[]	regInSamplePreds,	

double[]	regOutSamplePreds,	double[][]	trainX,	double[]	trainY,	double[][]	testX,	

double[]	testY)

{

				//	RMSE	for	in-sample	

				double	regInSampleRMSE	=	Math.Sqrt(new	SquareLoss(trainX).Loss(regInSamplePreds));

				//	RMSE	for	in-sample	

				double	regOutSampleRMSE	=	Math.Sqrt(new	SquareLoss(testX).Loss(regOutSamplePreds));

				Console.WriteLine("RMSE:	{0:0.0000}	(Train)	vs.	{1:0.0000}	(Test)",	

regInSampleRMSE,	regOutSampleRMSE);

				//	R^2	for	in-sample	

				double	regInSampleR2	=	new	RSquaredLoss(trainX[0].Length,	

trainX).Loss(regInSamplePreds);

				//	R^2	for	in-sample	

				double	regOutSampleR2	=	new	RSquaredLoss(testX[0].Length,	

testX).Loss(regOutSamplePreds);

				Console.WriteLine("R^2:	{0:0.0000}	(Train)	vs.	{1:0.0000}	(Test)",	regInSampleR2,	

regOutSampleR2);

				//	Scatter	Plot	of	expected	and	actual

				ScatterplotBox.Show(

								String.Format("Actual	vs.	Prediction	({0})",	modelName),	testY,	

regOutSamplePreds

);

}

Summary
	

In	this	chapter,	we	built	and	trained	our	first	regression	models.	We	used	a	time
series	dataset	that	contains	historical	daily	exchange	rates	between	Euros	and
U.S.	Dollars	from	1999	to	2017.	We	first	discussed	how	to	create	a	target
variable	from	an	unlabeled	raw	dataset	and	how	to	apply	the	Shift	and	Diff
methods	in	the	Deedle	framework	in	order	to	compute	daily	returns	and	create
the	target	variable,	which	is	the	daily	return	for	one	period	ahead.	We	further
looked	at	the	distributions	of	daily	returns	in	a	few	different	ways,	such	as	a	time
series	line	chart,	summary	statistics	using	mean,	standard	deviation,	and
quantiles.	We	also	looked	at	the	histogram	of	daily	returns	and	saw	a	well-drawn
bell	curve	that	follows	a	normal	distribution.	Then,	we	covered	a	few	frequently
used	technical	indicators	in	the	foreign	exchange	market	and	how	to	apply	them
to	our	feature	building	processes.	Using	technical	indicators,	such	as	moving
averages,	Bollinger	Bands,	and	lagged	variables,	we	built	various	features	that
help	our	learning	algorithms	to	learn	how	to	predict	future	daily	returns.	With
these	features	that	we	built	in	the	feature	engineering	step,	we	built	linear
regression	and	SVM	models	to	forecaste	EUR/USD	rates.	We	learned	how	to
extract	coefficients	and	the	intercept	from	the	MultipleLinearRegression	object	to
gain	insights	into,	and	a	better	understanding,	of	how	each	feature	affects	the
outcome	of	predictions.	We	briefly	discussed	the	usage	of	kernels	in	building
SVM	models.	Lastly,	we	went	over	two	frequently	used	metrics	for	regression
models,	RMSE	and	R2,	and	a	diagnostic	plot	of	actual	values	versus	predicted
values.	From	this	model	validation	step,	we	observed	how	the	SVM	model
outperformed	the	linear	regression	model	by	a	large	amount.	We	also	discussed
the	comparative	benefits	of	explainability	we	can	gain	from	using	the	linear
regression	model,	compared	to	other	black-box	models	such	as	random	forest
and	SVM	models.

In	the	next	chapter,	we	are	going	to	extend	our	knowledge	and	experience	by
building	regression	models	in	C#	using	the	Accord.NET	framework.	We	will	use
a	house	price	dataset	that	contains	both	continuous	and	categorical	variables	and
learn	how	to	build	regression	models	for	such	a	complex	dataset.	We	will	also

discuss	various	other	kernels	we	can	use	for	SVMs	and	how	they	affect	the
performance	of	our	SVM	models.

	

	

	

Fair	Value	of	House	and	Property
In	this	chapter,	we	are	going	to	expand	our	knowledge	and	skills	in	building
regression	machine	learning	(ML)	models	in	C#.	In	the	last	chapter,	we	built	a
linear	regression	and	linear	support	vector	machine	model	on	a	foreign	exchange
rate	dataset,	where	all	the	features	were	continuous	variables.	However,	we	are
going	to	be	dealing	with	a	more	complex	dataset,	where	some	features	are
categorical	variables	and	some	others	are	continuous	variables.

In	this	chapter,	we	will	be	using	a	house	prices	dataset	that	contains	numerous
attributes	of	houses	with	mixed	variable	types.	Using	this	data,	we	will	start
looking	at	the	two	common	types	of	categorical	variables	(ordinal	versus	non-
ordinal)	and	the	distributions	of	some	of	the	categorical	variables	in	the	housing
dataset.	We	will	also	look	at	the	distributions	of	some	of	the	continuous	variables
in	the	dataset	and	the	benefits	of	using	log	transformations	for	variables	that
show	skewed	distributions.	Then,	we	are	going	to	learn	how	to	encode	and
engineer	such	categorical	features	so	that	we	can	fit	machine	learning	models.
Unlike	the	last	chapter,	where	we	explored	the	basics	of	Support	Vector
Machine	(SVM),	we	are	going	to	apply	different	Kernel	methods	for	our	SVM
models	and	see	how	it	affects	the	model	performances.

Similar	to	the	last	chapter,	we	will	be	using	root	mean	squared	error	(RMSE),
R2,	and	a	plot	of	actual	versus	predicted	values	to	evaluate	the	performances	of
our	ML	models.	By	the	end	of	this	chapter,	you	will	have	a	better	understanding
of	how	to	handle	categorical	variables,	how	to	encode	and	engineer	such	features
for	regression	models,	how	to	apply	various	kernel	methods	for	building	SVM
models,	and	how	to	build	models	that	predict	the	fair	values	of	houses.

In	this	chapter,	we	will	cover	the	following	topics:

Problem	definition	for	the	fair	value	of	house/property	project
Data	analysis	for	categorical	versus	continuous	variables
Feature	engineering	and	encoding
Linear	regression	versus	Support	Vector	Machine	with	kernels
Model	validations	using	RMSE,	R2,	and	actual	versus	predicted	plot

Problem	definition
	

Let's	start	this	chapter	by	understanding	exactly	what	ML	models	we	are	going
to	build.	When	you	are	looking	for	a	house	or	a	property	to	purchase,	you
consider	numerous	attributes	of	those	houses	or	properties	that	you	look	at.	You
might	be	looking	at	the	number	of	bedrooms	and	bathrooms,	how	many	cars	you
can	park	in	your	garage,	the	neighborhoods,	the	materials	or	finishes	of	the
house,	and	so	forth.	All	of	these	attributes	of	a	house	or	property	go	into	how
you	decide	the	price	you	want	to	pay	for	the	given	property	or	how	you	negotiate
the	price	with	the	seller.	However,	it	is	very	difficult	to	understand	and	estimate
what	the	fair	value	of	a	property	is.	By	having	a	model	that	predicts	the	fair
value	or	the	final	price	of	each	property,	you	can	make	better	informed	decisions
when	you	are	negotiating	with	the	seller.

In	order	to	build	such	models	for	fair	value	of	a	house	predictions,	we	are	going
to	use	a	dataset	that	contains	79	explanatory	variables	that	cover	almost	all
attributes	of	residential	homes	in	Ames,	Iowa,	U.S.A.	and	their	final	sale	prices
from	2006	to	2010.	This	dataset	was	compiled	by	Dean	De	Cock	(https://ww2.amst
at.org/publications/jse/v19n3/decock.pdf)	at	the	Truman	State	University	and	can	be
downloaded	from	this	link:	https://www.kaggle.com/c/house-prices-advanced-regression-t
echniques/data.	With	this	data,	we	are	going	to	build	features	that	contain
information	about	square	footage	or	sizes	of	different	parts	of	the	houses,	the
styles	and	materials	used	for	the	houses,	the	conditions	and	finishes	of	different
parts	of	the	houses,	and	various	other	attributes	that	further	describe	the
information	of	each	house.	Using	these	features,	we	are	going	to	explore
different	regression	machine	learning	models,	such	as	linear	regression,	Linear
Support	Vector	Machine,	and	Support	Vector	Machines	(SVMs)	with
polynomial	and	Gaussian	kernels.	Then,	we	will	evaluate	these	models	by
looking	at	RMSE,	R2,	and	a	plot	of	actual	versus	predicted	values.

To	summarize	our	problem	definition	for	the	fair	value	of	house	and	property
project:

https://ww2.amstat.org/publications/jse/v19n3/decock.pdf
https://www.kaggle.com/c/house-prices-advanced-regression-techniques/data

What	is	the	problem?	We	need	a	regression	model	that	predicts	the	fair
values	of	residential	homes	in	Ames,	Iowa,	U.S.A.,	so	that	we	can
understand	and	make	better	informed	decisions	when	purchasing	houses.
Why	is	it	a	problem?	Due	to	the	complex	nature	and	numerous	moving
parts	in	deciding	the	fair	value	of	a	house	or	a	property,	it	is	advantageous
to	have	a	machine	learning	model	that	can	predict	and	inform	home	buyers
what	the	expected	values	of	houses	that	they	are	looking	at	are.
What	are	some	of	the	approaches	to	solving	this	problem?	We	are	going	to
use	a	pre-compiled	dataset	that	contains	79	explanatory	variables	that
contain	information	of	residential	homes	in	Ames,	Iowa,	U.S.A.,	and	build
and	encode	features	of	mixed	types	(both	categorical	and	continuous).
Then,	we	will	explore	linear	regression	and	support	vector	machines	with
different	Kernels	for	making	predictions	of	fair	values	of	houses.	We	will
evaluate	the	model	candidates	by	looking	at	RMSE,	R2,	and	an	actual
versus	predicted	values	plot.
What	are	the	success	criteria?	As	we	want	our	predictions	of	house	prices	to
be	as	close	to	the	actual	house	sale	prices	as	possible,	we	want	to	gain	as
low	an	RMSE	as	possible,	without	hurting	our	goodness	of	fit	measure,	R2,
and	the	plot	of	actual	versus	predicted	values.

	

	

Categorical	versus	continuous
variables
	

Now	let's	start	looking	at	the	actual	dataset.	You	can	follow	this	link:	https://www.k
aggle.com/c/house-prices-advanced-regression-techniques/data	and	download	the	train.csv
and	data_description.txt	files.	We	are	going	to	build	models	using	the	train.csv	file,
and	the	data_description.txt	file	will	help	us	better	understand	the	structure	of	the
dataset,	especially	concerning	the	categorical	variables	we	have.

If	you	look	at	the	train	data	file	and	the	description	file,	you	can	easily	find	that
there	are	some	variables	with	certain	names	or	codes	that	represent	specific	types
of	each	house's	attributes.	For	example,	the	Foundation	variable	can	take	one	of	the
values	among	BrkTil,	CBlock,	PConc,	Slab,	Stone,	and	Wood,	where	each	of	those	values
or	codes	represents	the	type	of	foundation	that	a	house	is	built	with—Brick	and
Tile,	Cinder	Block,	Poured	Contrete,	Slab,	Stone,	and	Wood	respectively.	On	the
other	hand,	if	you	look	at	the	TotalBsmtSF	variable	in	the	data,	you	can	see	that	it
can	take	any	numerical	values	and	the	values	are	continuous.	As	mentioned
previously,	this	dataset	contains	mixed	types	of	variables	and	we	need	to
approach	carefully	when	we	are	dealing	with	a	dataset	with	both	categorical	and
continuous	variables.

	

	

	

https://www.kaggle.com/c/house-prices-advanced-regression-techniques/data

Non-ordinal	categorical	variables
Let's	first	look	at	some	categorical	variables	and	their	distributions.	The	first
house	attribute	that	we	are	going	to	look	at	is	the	building	type.	The	code	to
build	a	bar	chart	that	shows	the	distributions	of	the	building	type	is	as	follows:	//
Categorical	Variable	#1:	Building	Type
Console.WriteLine("\nCategorical	Variable	#1:	Building	Type");
var	buildingTypeDistribution	=	houseDF.GetColumn<string>(
"BldgType"
).GroupBy<string>(x	=>	x.Value).Select(x	=>
(double)x.Value.KeyCount);
buildingTypeDistribution.Print();

var	buildingTypeBarChart	=	DataBarBox.Show(
buildingTypeDistribution.Keys.ToArray(),
buildingTypeDistribution.Values.ToArray()
);
buildingTypeBarChart.SetTitle("Building	Type	Distribution	(Categorical)");

When	you	run	this	code,	it	will	display	a	bar	chart	like	the	following:

As	you	can	tell	from	this	bar	chart,	the	majority	of	the	building	types	in	our

dataset	is	1Fam,	which	represents	the	Single-family	Detached	building	type.	The
second	most	common	building	type	is	TwnhsE,	which	represents	the	Townhouse
End	Unit	building	type.

Let's	take	a	look	at	one	more	categorical	variable,	Lot	Configuration	(LotConfig
field	in	the	dataset).	The	code	to	build	a	bar	chart	for	lot	configuration
distributions	is	as	follows:

//	Categorical	Variable	#2:	Lot	Configuration

Console.WriteLine("\nCategorical	Variable	#1:	Building	Type");

var	lotConfigDistribution	=	houseDF.GetColumn<string>(

				"LotConfig"

).GroupBy<string>(x	=>	x.Value).Select(x	=>	(double)x.Value.KeyCount);

lotConfigDistribution.Print();

var	lotConfigBarChart	=	DataBarBox.Show(

				lotConfigDistribution.Keys.ToArray(),

				lotConfigDistribution.Values.ToArray()

);

lotConfigBarChart.SetTitle("Lot	Configuration	Distribution	(Categorical)");

When	you	run	this	code,	it	will	display	the	following	bar	chart:

As	you	can	see	from	this	bar	chart,	inside	lot	is	the	most	common	lot
configuration	in	our	dataset,	and	corner	lot	is	the	second	most	common	log
configuration.

Ordinal	categorical	variable
The	two	categorical	variables	that	we	just	looked	at	have	no	natural	ordering.
One	type	does	not	come	before	another	or	one	type	does	not	have	more	weight
than	another.	However,	there	are	some	categorical	variables	that	have	natural
ordering,	and	we	call	such	categorical	variables	ordinal	categorical	variables.	For
example,	when	you	rank	a	quality	of	a	material	from	1	to	10,	where	10
represents	the	best	and	1	represents	the	worst,	there	is	a	natural	ordering.	Let's
look	at	some	of	the	ordinal	categorical	variables	in	this	dataset.

The	first	ordinal	categorical	variable	that	we	are	going	to	look	at	is	the	OverallQual
attribute,	which	represents	the	overall	material	and	finish	of	the	house.	The	code
to	look	at	the	distributions	of	this	variable	is	as	follows:

//	Ordinal	Categorical	Variable	#1:	Overall	material	and	finish	of	the	house

Console.WriteLine("\nOrdinal	Categorical	#1:	Overall	material	and	finish	of	the	

house");

var	overallQualDistribution	=	houseDF.GetColumn<string>(

				"OverallQual"

).GroupBy<int>(

				x	=>	Convert.ToInt32(x.Value)

).Select(

				x	=>	(double)x.Value.KeyCount

).SortByKey().Reversed;

overallQualDistribution.Print();

var	overallQualBarChart	=	DataBarBox.Show(

				overallQualDistribution.Keys.Select(x	=>	x.ToString()),

				overallQualDistribution.Values.ToArray()

);

overallQualBarChart.SetTitle("Overall	House	Quality	Distribution	(Ordinal)");

When	you	run	this	code,	it	will	display	the	following	bar	chart	in	order	from	10
to	1:

As	expected,	there	is	a	smaller	number	of	houses	in	the	Very	Excellent,	encoded
as	10,	or	Excellent,	encoded	as	9,	categories	than	there	are	in	the	Above	Average,
encoded	as	6,	or	Average	categories,	encoded	as	5.

Another	ordinal	categorical	variable	that	we	will	be	looking	at	is	the	ExterQual
variable,	which	represents	the	exterior	quality.	The	code	to	look	at	the
distributions	of	this	variable	is	as	follows:

//	Ordinal	Categorical	Variable	#2:	Exterior	Quality

Console.WriteLine("\nOrdinal	Categorical	#2:	Exterior	Quality");

var	exteriorQualDistribution	=	houseDF.GetColumn<string>(

				"ExterQual"

).GroupBy<string>(x	=>	x.Value).Select(

				x	=>	(double)x.Value.KeyCount

)[new	string[]	{	"Ex",	"Gd",	"TA",	"Fa"	}];

exteriorQualDistribution.Print();

var	exteriorQualBarChart	=	DataBarBox.Show(

				exteriorQualDistribution.Keys.Select(x	=>	x.ToString()),

				exteriorQualDistribution.Values.ToArray()

);

exteriorQualBarChart.SetTitle("Exterior	Quality	Distribution	(Ordinal)");

When	you	run	this	code,	it	will	display	the	following	bar	chart:

Unlike	the	OverallQual	variable,	the	ExterQual	variable	does	not	have	numerical
values	for	the	ordering.	In	our	dataset,	it	has	one	of	the	following	values:	Ex,	Gd,
TA,	and	FA,	and	these	represent	excellent,	good,	average/typical,	and	fair
respectively.	Although	this	variable	does	not	have	numerical	values,	it	clearly
has	a	natural	ordering,	where	the	excellent	category	(Ex)	represents	the	best
quality	of	material	on	the	exterior	and	the	good	category	(Gd)	represents	the
second	best	quality	of	material	on	the	exterior.	In	the	feature	engineering	step,
we	will	discuss	how	we	can	encode	this	type	of	variable	for	our	future	model
building	step.

Continuous	variable
We	have	so	far	looked	at	two	types	of	categorical	variables	in	our	dataset.
However,	there	is	another	type	of	variable	in	the	dataset;	the	continuous	variable.
Unlike	categorical	variables,	continuous	variables	have	no	limited	number	of
values	they	can	take.	For	example,	square	footage	for	basement	area	of	a	house
can	be	any	positive	number.	A	house	can	have	a	0	square	foot	basement	area	(or
no	basement)	or	a	house	can	have	a	1,000	square	feet	basement	area.	The	first
continuous	variable	that	we	are	going	to	look	at	is	1stFlrSF,	which	represents	the
first	floor	square	feet.	The	following	code	shows	how	we	can	build	a	histogram
for	1stFlrSF:

//	Continuous	Variable	#1-1:	First	Floor	Square	Feet

var	firstFloorHistogram	=	HistogramBox

.Show(

				houseDF.DropSparseRows()["1stFlrSF"].ValuesAll.ToArray(),

				title:	"First	Floor	Square	Feet	(Continuous)"

)

.SetNumberOfBins(20);

When	you	run	this	code,	the	following	histogram	will	be	displayed:

One	thing	that	is	obvious	from	this	chart	is	that	it	has	a	long	tail	in	the	positive
direction,	or	in	other	words,	the	distribution	is	right	skewed.	The	skewness	in	the
data	can	adversely	affect	us	when	we	build	ML	models.	One	way	to	handle	this

skewness	in	the	dataset	is	to	apply	some	transformations.	One	frequently	used
transformation	is	the	log	transformation,	where	you	take	log	values	of	a	given
variable.	In	this	example,	the	following	code	shows	how	we	can	apply	log
transformation	to	the	1stFlrSF	variable	and	show	a	histogram	for	the	transformed
variable:

//	Continuous	Variable	#1-2:	Log	of	First	Floor	Square	Feet

var	logFirstFloorHistogram	=	HistogramBox

.Show(

				houseDF.DropSparseRows()["1stFlrSF"].Log().ValuesAll.ToArray(),

				title:	"First	Floor	Square	Feet	-	Log	Transformed	(Continuous)"

)

.SetNumberOfBins(20);

When	you	run	this	code,	you	will	see	the	following	histogram:

As	you	can	see	from	this	chart,	the	distribution	looks	more	symmetric	and	closer
to	the	bell	shape	that	we	are	familiar	with,	compared	to	the	previous	histogram
that	we	looked	at	for	the	same	variable.	Log	transformation	is	frequently	used	to
handle	skewness	in	the	dataset	and	make	the	distribution	closer	to	the	normal
distribution.	Let's	look	at	another	continuous	variable	in	our	dataset.	The
following	code	is	used	to	show	the	distribution	of	the	GarageArea	variable,	which
represents	the	size	of	the	garage	in	square	feet:

//	Continuous	Variable	#2-1:	Size	of	garage	in	square	feet

var	garageHistogram	=	HistogramBox

.Show(

				houseDF.DropSparseRows()["GarageArea"].ValuesAll.ToArray(),

				title:	"Size	of	garage	in	square	feet	(Continuous)"

)

.SetNumberOfBins(20);

When	you	run	this	code,	you	will	see	the	following	histogram:

Similar	to	the	previous	case	of	1stFlrSF,	it	is	also	right	skewed,	although	it	seems
the	degree	of	skewness	is	less	than	1stFlrSF.	We	used	the	following	code	to	apply
log	transformation	for	the	GarageArea	variable:

//	Continuous	Variable	#2-2:	Log	of	Value	of	miscellaneous	feature

var	logGarageHistogram	=	HistogramBox

.Show(

				houseDF.DropSparseRows()["GarageArea"].Log().ValuesAll.ToArray(),

				title:	"Size	of	garage	in	square	feet	-	Log	Transformed	(Continuous)"

)

.SetNumberOfBins(20);

The	following	histogram	chart	will	be	displayed	when	you	run	this	code:

As	expected,	the	distribution	looks	closer	to	the	normal	distribution	when	the	log
transformation	is	applied	to	the	variable.

Target	variable	–	sale	price
There	is	one	last	variable	we	need	to	take	a	look	at	before	we	move	onto	the
feature	engineering	step;	the	target	variable.	In	this	fair	value	of	a	house	project,
our	target	variable	for	predictions	is	SalePrice,	which	represents	the	final	sale
price	in	U.S.	dollar	amounts	for	each	residential	home	sold	in	Ames,	Iowa,
U.S.A.	from	2006	to	2010.	Since	the	sale	price	can	take	any	positive	numerical
value,	it	is	a	continuous	variable.	Let's	first	look	at	how	we	built	a	histogram	for
the	sale	price	variable:	//	Target	Variable:	Sale	Price
var	salePriceHistogram	=	HistogramBox
.Show(
houseDF.DropSparseRows()["SalePrice"].ValuesAll.ToArray(),
title:	"Sale	Price	(Continuous)"
)
.SetNumberOfBins(20);

When	you	run	this	code,	the	following	histogram	chart	will	be	shown:

Similar	to	the	previous	cases	of	continuous	variables,	the	distribution	of
SalePrice	has	a	long	right	tail	and	it's	heavily	skewed	to	the	right.	This	skewness
often	adversely	affects	the	regression	models,	as	some	of	those	models,	such	as

the	linear	regression	model,	assume	that	variables	are	normally	distributed.	As
discussed	previously,	we	can	fix	this	issue	by	applying	log	transformation.	The
following	code	shows	how	we	log	transformed	the	sale	price	variable	and	built	a
histogram	chart:	//	Target	Variable:	Sale	Price	-	Log	Transformed
var	logSalePriceHistogram	=	HistogramBox
.Show(
houseDF.DropSparseRows()["SalePrice"].Log().ValuesAll.ToArray(),
title:	"Sale	Price	-	Log	Transformed	(Continuous)"
)
.SetNumberOfBins(20);

When	you	run	this	code,	you	will	see	the	following	histogram	for	the	log-
transformed	sale	price	variable:

As	expected,	the	distribution	of	the	SalePrice	variable	looks	much	closer	to	the
normal	distribution.	We	are	going	to	use	this	log-transformed	SalePrice	variable
as	the	target	variable	for	our	future	model	building	steps.

The	full	code	for	this	data	analysis	step	can	be	found	at	this	link:	https://github.co
m/yoonhwang/c-sharp-machine-learning/blob/master/ch.5/DataAnalyzer.cs.

https://github.com/yoonhwang/c-sharp-machine-learning/blob/master/ch.5/DataAnalyzer.cs

Feature	engineering	and	encoding
Now	that	we	have	looked	at	our	dataset	and	the	distributions	of	the	categorical,
continuous,	and	target	variables,	let's	start	building	features	for	our	ML	models.
As	we	discussed	previously,	categorical	variables	in	our	dataset	have	certain
string	values	to	represent	each	type	of	variable.	However,	as	it	might	already	be
clear	to	you,	we	cannot	use	string	types	to	train	our	ML	models.	All	the	values	of
variables	need	to	be	numerical	to	be	able	to	used	for	fitting	the	models.	One	way
to	handle	categorical	variables	with	multiple	types	or	categories	is	to	create
dummy	variables.

	

Dummy	variables
A	dummy	variable	is	a	variable	that	takes	a	value	of	0	or	1	to	indicate	whether	a
given	category	or	type	exists	or	not.	For	example,	in	the	case	of	BldgType	variable,
where	it	has	the	five	different	categories	1Fam,	2FmCon,	Duplx,	TwnhsE,	and	Twnhs,	we
will	create	five	dummy	variables,	where	each	dummy	variable	represents	the
existence	or	absence	of	each	of	those	five	categories	in	a	given	record.	The
following	shows	an	example	of	how	dummy	variable	encoding	works:

As	you	can	see	from	this	example,	the	absence	and	existence	of	each	category	of
the	building	types	is	encoded	into	a	separate	dummy	variable	as	0	or	1.	For
example,	for	the	record	with	the	ID	1,	the	building	type	is	1Fam	and	this	is
encoded	with	the	value	1	for	the	new	variable,	BldgType_1Fam,	and	0	for	the	other
four	new	variables,	BldgType_2fmCon,	BldgType_Duplex,	BldgType_TwnhsE,	and
BldgType_Twnhs.	On	the	other	hand,	for	the	record	with	the	ID	10,	the	building	type
is	2fmCon	and	this	is	encoded	with	the	value	1	for	the	variable	BldgType_2fmCon	and	0
for	the	other	four	new	variables,	BldgType_1Fam,	BldgType_Duplex,	BldgType_TwnhsE,	and
BldgType_Twnhs.

For	this	chapter,	we	created	dummy	variables	for	the	following	list	of	categorical
variables:

string[]	categoricalVars	=	new	string[]

{

				"Alley",	"BldgType",	"BsmtCond",	"BsmtExposure",	"BsmtFinType1",	"BsmtFinType2",

				"BsmtQual",	"CentralAir",	"Condition1",	"Condition2",	"Electrical",	"ExterCond",

				"Exterior1st",	"Exterior2nd",	"ExterQual",	"Fence",	"FireplaceQu",	"Foundation",

				"Functional",	"GarageCond",	"GarageFinish",	"GarageQual",	"GarageType",

				"Heating",	"HeatingQC",	"HouseStyle",	"KitchenQual",	"LandContour",	"LandSlope",	

				"LotConfig",	"LotShape",	"MasVnrType",	"MiscFeature",	"MSSubClass",	"MSZoning",	

				"Neighborhood",	"PavedDrive",	"PoolQC",	"RoofMatl",	"RoofStyle",	

				"SaleCondition",	"SaleType",	"Street",	"Utilities"

};

The	following	code	shows	a	method	we	wrote	to	create	and	encode	dummy
variables:

private	static	Frame<int,	string>	CreateCategories(Series<int,	string>	

rows,	string	originalColName)

{

				var	categoriesByRows	=	rows.GetAllValues().Select((x,	i)	=>

				{

								//	Encode	the	categories	appeared	in	each	row	with	1

								var	sb	=	new	SeriesBuilder<string,	int>();

								sb.Add(String.Format("{0}_{1}",	originalColName,	x.Value),	1);

								return	KeyValue.Create(i,	sb.Series);

				});

				//	Create	a	data	frame	from	the	rows	we	just	created

				//	And	encode	missing	values	with	0

				var	categoriesDF	=	Frame.FromRows(categoriesByRows).FillMissing(0);

				return	categoriesDF;

}

As	you	can	see	from	line	8	of	this	method,	we	prefix	the	newly	created	dummy
variables	with	the	original	categorical	variable's	names	and	append	them	with
each	category.	For	example,	BldgType	variables	in	the	1Fam	category	will	be
encoded	as	BldgType_1Fam.	Then,	in	line	15	of	the	CreateCategories	method,	we	are
encoding	all	the	other	values	with	0s	to	indicate	the	absence	of	such	categories	in
the	given	categorical	variable.

Feature	encoding
Now	that	we	know	which	categorical	variables	to	encode	and	have	created	a
method	for	dummy	variable	encoding	for	those	categorical	variables,	it	is	time	to
build	a	data	frame	with	features	and	their	values.	Let's	first	take	a	look	at	how
we	went	about	creating	a	features	data	frame	in	the	following	code	snippet:	var
featuresDF	=	Frame.CreateEmpty<int,	string>();

foreach(string	col	in	houseDF.ColumnKeys)
{
if	(categoricalVars.Contains(col))
{
var	categoryDF	=	CreateCategories(houseDF.GetColumn<string>(col),
col);

foreach	(string	newCol	in	categoryDF.ColumnKeys)
{
featuresDF.AddColumn(newCol,	categoryDF.GetColumn<int>(newCol));
}
}
else	if	(col.Equals("SalePrice"))
{
featuresDF.AddColumn(col,	houseDF[col]);
featuresDF.AddColumn("Log"+col,	houseDF[col].Log());
}
else
{
featuresDF.AddColumn(col,	houseDF[col].Select((x,	i)	=>
x.Value.Equals("NA")?	0.0:	(double)	x.Value));
}
}

As	you	can	see	from	this	code	snippet,	we	are	starting	with	an	empty	Deedle
data	frame,	featuresDF	(in	line	1),	and	start	adding	in	features	one	by	one.	For
those	categorical	variables	for	which	we	are	going	to	create	dummy	variables,

we	are	calling	the	encoding	method,	CreateCategories,	that	we	wrote	previously
and	then	adding	the	newly	created	dummy	variable	columns	to	the	featuresDF	data
frame	(in	lines	5-12).	For	the	SalePrice	variable,	which	is	the	target	variable	for
this	project,	we	are	applying	log	transformation	and	adding	it	to	the	featuresDF
data	frame	(in	lines	13-17).	Lastly,	we	append	all	the	other	continuous	variables,
after	replacing	the	NA	values	with	0s,	to	the	featuresDF	data	frame	(in	lines	18-20).

Once	we	have	created	and	encoded	all	the	features	for	our	model	training,	we
then	export	this	featuresDF	data	frame	into	a	.csv	file.	The	following	code	shows
how	we	export	the	data	frame	into	a	.csv	file:	string	outputPath	=
Path.Combine(dataDirPath,	"features.csv");
Console.WriteLine("Writing	features	DF	to	{0}",	outputPath);
featuresDF.SaveCsv(outputPath);

We	now	have	all	the	necessary	features	that	we	can	use	to	start	building	machine
learning	models	to	predict	fair	values	of	houses.	The	full	code	for	feature
encoding	and	engineering	can	be	found	in	this	link:	https://github.com/yoonhwang/c-s
harp-machine-learning/blob/master/ch.5/FeatureEngineering.cs.

https://github.com/yoonhwang/c-sharp-machine-learning/blob/master/ch.5/FeatureEngineering.cs

Linear	regression	versus	SVM	with
kernels
The	first	thing	we	need	to	do	before	we	start	training	our	machine	learning
models	is	to	split	our	dataset	into	train	and	test	sets.	In	this	section,	we	will	split
the	sample	set	into	train	and	test	sets	by	randomly	sub-selecting	and	dividing	the
indexes	at	a	pre-defined	proportion.	The	code	we	used	to	split	the	dataset	into
train	and	test	sets	is	as	follows:

//	Split	the	sample	set	into	train	and	test	sets

double	trainProportion	=	0.8;

int[]	shuffledIndexes	=	featuresDF.RowKeys.ToArray();

shuffledIndexes.Shuffle();

int	trainSetIndexMax	=	(int)(featuresDF.RowCount	*	trainProportion);

int[]	trainIndexes	=	shuffledIndexes.Where(i	=>	i	<	trainSetIndexMax).ToArray();

int[]	testIndexes	=	shuffledIndexes.Where(i	=>	i	>=	trainSetIndexMax).ToArray();

var	trainSet	=	featuresDF.Where(x	=>	trainIndexes.Contains(x.Key));

var	testSet	=	featuresDF.Where(x	=>	testIndexes.Contains(x.Key));

Console.WriteLine("\nTrain	Set	Shape:	({0},	{1})",	trainSet.RowCount,	

trainSet.ColumnCount);

Console.WriteLine("Test	Set	Shape:	({0},	{1})",	testSet.RowCount,	testSet.ColumnCount);

You	can	choose	to	have	different	proportions	for	training	and	testing;	however,
in	this	example,	we	reserved	80%	of	our	dataset	to	be	used	for	training	and	the
remaining	20%	for	testing.	In	lines	4-5	of	the	code	snippet,	we	first	randomly
shuffle	the	indexes	of	our	dataset.	Then,	in	lines	7-8,	we	sub-select	indexes	for
the	train	set	and	the	test	set,	and	in	lines	10-11,	we	split	the	featuresDF	data	frame
that	we	created	in	the	previous	feature	engineering	and	encoding	step	into	train
and	test	sets.

Once	we	have	these	train	and	test	data	frames	ready,	we	need	to	filter	out
unnecessary	columns	from	the	data	frames,	since	the	train	and	test	data	frames
currently	have	values	for	columns,	such	as	SalePrice	and	Id.	Then,	we	will	have	to
cast	the	two	data	frames	into	arrays	of	double	arrays,	which	will	be	input	to	our
learning	algorithms.	The	code	to	filter	out	unwanted	columns	from	the	train	and
test	data	frames	and	to	cast	the	two	data	frames	into	arrays	of	arrays	is	as
follows:

string	targetVar	=	"LogSalePrice";

string[]	features	=	featuresDF.ColumnKeys.Where(

				x	=>	!x.Equals("Id")	&&	!x.Equals(targetVar)	&&	!x.Equals("SalePrice")

).ToArray();

double[][]	trainX	=	BuildJaggedArray(

				trainSet.Columns[features].ToArray2D<double>(),

				trainSet.RowCount,

				features.Length

);

double[][]	testX	=	BuildJaggedArray(

				testSet.Columns[features].ToArray2D<double>(),

				testSet.RowCount,

				features.Length

);

double[]	trainY	=	trainSet[targetVar].ValuesAll.ToArray();

double[]	testY	=	testSet[targetVar].ValuesAll.ToArray();

Linear	regression
	

The	first	ML	model	we	are	going	to	explore	for	this	chapter's	housing	price
prediction	project	is	the	linear	regression	model.	You	should	already	be	familiar
with	building	linear	regression	models	in	C#	using	the	Accord.NET	framework.
We	use	the	following	code	to	build	a	linear	regression	model:

Console.WriteLine("\n****	Linear	Regression	Model	****");

//	OLS	learning	algorithm

var	ols	=	new	OrdinaryLeastSquares()

{

				UseIntercept	=	true,

				IsRobust	=	true

};

//	Fit	a	linear	regression	model

MultipleLinearRegression	regFit	=	ols.Learn(

				trainX,

				trainY

);

//	in-sample	predictions

double[]	regInSamplePreds	=	regFit.Transform(trainX);

//	out-of-sample	predictions

double[]	regOutSamplePreds	=	regFit.Transform(testX);

The	only	difference	between	this	chapter's	linear	regression	model	code	and	the
previous	chapter's	code	is	the	IsRobust	parameter	to	the	OrdinaryLeastSquares
learning	algorithm.	As	the	name	suggests,	it	makes	the	learning	algorithm	fit	a
more	robust	linear	regression	model,	meaning	it	is	less	sensitive	to	outliers.
When	we	have	variables	that	are	not	normally	distributed,	as	is	the	case	for	this
project,	it	often	causes	problems	when	fitting	a	linear	regression	model	as
traditional	linear	regression	models	are	sensitive	to	outliers	from	non-normal
distributions.	Setting	this	parameter	to	true	helps	resolve	this	issue.

	

	

	

Linear	SVM
	

The	second	learning	algorithm	we	are	going	to	experiment	with	in	this	chapter	is
the	linear	SVM.	The	following	code	shows	how	we	build	a	linear	SVM	model:
Console.WriteLine("\n****	Linear	Support	Vector	Machine	****");
//	Linear	SVM	Learning	Algorithm
var	teacher	=	new	LinearRegressionNewtonMethod()
{
Epsilon	=	0.5,
Tolerance	=	1e-5,
UseComplexityHeuristic	=	true
};

//	Train	SVM
var	svm	=	teacher.Learn(trainX,	trainY);

//	in-sample	predictions
double[]	linSVMInSamplePreds	=	svm.Score(trainX);
//	out-of-sample	predictions
double[]	linSVMOutSamplePreds	=	svm.Score(testX);

As	you	might	have	noticed,	and	similar	to	the	previous	chapter,	we	used
LinearRegressionNewtonMethod	as	a	learning	algorithm	to	fit	a	linear	SVM.

	

	

	

SVM	with	a	polynomial	kernel
The	next	model	we	are	going	to	experiment	with	is	an	SVM	with	a	polynomial
kernel.	We	will	not	go	into	too	much	detail	about	the	kernel	methods,	but	simply
put,	kernels	are	functions	of	input	feature	variables	that	can	transform	and
project	the	original	variables	into	a	new	feature	space	that	is	more	linearly
separable.	The	polynomial	kernel	looks	at	the	combinations	of	input	features,	on
top	of	the	original	input	features.	These	combinations	of	input	feature	variables
are	often	called	interaction	variables	in	regression	analysis.	Using	different
kernel	methods	will	make	SVM	models	learn	and	behave	differently	with	the
same	dataset.

The	following	code	shows	how	you	can	build	a	SVM	model	with	a	polynomial
kernel:

Console.WriteLine("\n****	Support	Vector	Machine	with	a	Polynomial	Kernel	****");

//	SVM	with	Polynomial	Kernel

var	polySVMLearner	=	new	FanChenLinSupportVectorRegression<Polynomial>()

{

				Epsilon	=	0.1,

				Tolerance	=	1e-5,

				UseKernelEstimation	=	true,

				UseComplexityHeuristic	=	true,

				Kernel	=	new	Polynomial(3)

};

//	Train	SVM	with	Polynomial	Kernel

var	polySvm	=	polySVMLearner.Learn(trainX,	trainY);

//	in-sample	predictions

double[]	polySVMInSamplePreds	=	polySvm.Score(trainX);

//	out-of-sample	predictions

double[]	polySVMOutSamplePreds	=	polySvm.Score(testX);

We	are	using	the	FanChenLinSupportVectorRegression	learning	algorithm	for	a	support
vector	machine	with	a	polynomial	kernel.	In	this	example,	we	used	a	degree	3
polynomial,	but	you	can	experiment	with	different	degrees.	However,	the	higher
the	degrees	are,	the	more	likely	it	is	to	overfit	to	the	training	data.	So,	you	will
have	to	take	cautious	steps	when	you	are	using	high	degree	polynomial	kernels.

SVM	with	a	Gaussian	kernel
Another	commonly	used	kernel	method	is	the	Gaussian	kernel.	Simply	put,	the
Gaussian	kernel	looks	at	the	distance	between	the	input	feature	variables	and
results	in	higher	values	for	close	or	similar	features	and	lower	values	for	more
distanced	features.	The	Gaussian	kernel	can	help	transform	and	project	a	linearly
inseparable	dataset	into	a	more	linearly	separable	feature	space	and	can	improve
the	model	performances.

The	following	code	shows	how	you	can	build	a	SVM	model	with	a	Gaussian
kernel:

Console.WriteLine("\n****	Support	Vector	Machine	with	a	Gaussian	Kernel	****");

//	SVM	with	Gaussian	Kernel

var	gaussianSVMLearner	=	new	FanChenLinSupportVectorRegression<Gaussian>()

{

				Epsilon	=	0.1,

				Tolerance	=	1e-5,

				Complexity	=	1e-4,

				UseKernelEstimation	=	true,

				Kernel	=	new	Gaussian()

};

//	Train	SVM	with	Gaussian	Kernel

var	gaussianSvm	=	gaussianSVMLearner.Learn(trainX,	trainY);

//	in-sample	predictions

double[]	guassianSVMInSamplePreds	=	gaussianSvm.Score(trainX);

//	out-of-sample	predictions

double[]	guassianSVMOutSamplePreds	=	gaussianSvm.Score(testX);

Similar	to	the	case	of	the	polynomial	kernel,	we	used	the
FanChenLinSupportVectorRegression	learning	algorithm,	but	replaced	the	kernel	with
the	Gaussian	method.

We	have	discussed	how	we	can	use	different	kernel	methods	for	SVMs	so	far.
We	will	now	compare	the	performances	of	these	models	on	the	housing	price
dataset.	You	can	find	the	full	code	we	used	for	building	and	evaluating	models	at
this	link:	https://github.com/yoonhwang/c-sharp-machine-learning/blob/master/ch.5/Modeling
.cs.

https://github.com/yoonhwang/c-sharp-machine-learning/blob/master/ch.5/Modeling.cs

Model	validations
Before	we	start	looking	into	the	performances	of	the	linear	regression	and	SVM
models	that	we	built	in	the	previous	section,	let's	refresh	our	memory	on	the
metrics	and	the	diagnostics	plot	we	discussed	in	the	previous	chapter.	We	are
going	to	look	at	RMSE,	R2,	and	a	plot	of	actual	versus	predicted	values	to
evaluate	the	performances	of	our	models.	The	code	we	are	going	to	use
throughout	this	section	for	model	evaluation	is	as	follows:

private	static	void	ValidateModelResults(string	modelName,	double[]	regInSamplePreds,	

double[]	regOutSamplePreds,	double[][]	trainX,	double[]	trainY,	double[][]	testX,	

double[]	testY)

{

				//	RMSE	for	in-sample	

				double	regInSampleRMSE	=	Math.Sqrt(new	SquareLoss(trainX).Loss(regInSamplePreds));

				//	RMSE	for	out-sample	

				double	regOutSampleRMSE	=	Math.Sqrt(new	SquareLoss(testX).Loss(regOutSamplePreds));

				Console.WriteLine("RMSE:	{0:0.0000}	(Train)	vs.	{1:0.0000}	(Test)",	

regInSampleRMSE,	regOutSampleRMSE);

				//	R^2	for	in-sample	

				double	regInSampleR2	=	new	RSquaredLoss(trainX[0].Length,	

trainX).Loss(regInSamplePreds);

				//	R^2	for	out-sample	

				double	regOutSampleR2	=	new	RSquaredLoss(testX[0].Length,	

testX).Loss(regOutSamplePreds);

				Console.WriteLine("R^2:	{0:0.0000}	(Train)	vs.	{1:0.0000}	(Test)",	regInSampleR2,	

regOutSampleR2);

				//	Scatter	Plot	of	expected	and	actual

				var	scatterplot	=	ScatterplotBox.Show(

								String.Format("Actual	vs.	Prediction	({0})",	modelName),	testY,	

regOutSamplePreds

);

				

}

The	way	we	use	this	method	for	our	models	is	as	follows:

ValidateModelResults("Linear	Regression",	regInSamplePreds,	regOutSamplePreds,	trainX,	

trainY,	testX,	testY);

ValidateModelResults("Linear	SVM",	linSVMInSamplePreds,	linSVMOutSamplePreds,	trainX,	

trainY,	testX,	testY);

ValidateModelResults("Polynomial	SVM",	polySVMInSamplePreds,	polySVMOutSamplePreds,	

trainX,	trainY,	testX,	testY);

ValidateModelResults("Guassian	SVM",	guassianSVMInSamplePreds,	

guassianSVMOutSamplePreds,	trainX,	trainY,	testX,	testY);

As	you	can	see	from	this	code	snippet,	we	pass	the	in-sample	and	out-of-sample

predictions	by	the	models,	along	with	the	train	and	test	sets,	onto	the
ValidateModelResults	method.	When	you	run	this	code,	you	will	see	the	following
output	on	your	console:

When	looking	at	the	values	of	the	goodness	of	fit,	R2,	and	the	RMSE	values,	the
linear	SVM	model	seems	to	have	the	best	fit	to	the	dataset,	and	the	SVM	model
with	the	Gaussian	kernel	seems	to	have	the	second	best	fit	to	the	dataset.
Looking	at	this	output,	the	SVM	model	with	the	polynomial	kernel	does	not
seem	to	work	well	for	predicting	the	fair	values	of	house	prices.	Now,	let's	look
at	the	diagnostic	plots	to	evaluate	how	well	our	models	predict	the	house	prices.

The	following	plot	shows	the	diagnostic	plot	for	the	linear	regression	model:

This	diagnostic	plot	for	the	linear	regression	model	looks	good.	Most	of	the
points	seem	to	be	aligned	on	a	diagonal	line,	which	suggests	that	the	linear

regression	model's	predictions	are	well	aligned	with	the	actual	values.

The	following	plot	shows	the	diagnostic	plot	for	the	linear	SVM	model:

As	expected	from	the	previous	R2	metrics	value,	the	goodness	of	fit	for	the	linear
SVM	model	looks	good,	even	though	there	seems	to	be	one	prediction	that	is	far
off	from	the	actual	value.	Most	of	the	points	seem	to	be	aligned	on	a	diagonal
line,	which	suggests	that	the	linear	SVM	model's	predictions	are	well	aligned
with	the	actual	values.

The	following	plot	shows	the	diagnostic	plot	for	the	SVM	model	with	the
polynomial	kernel:

This	diagnostic	plot	for	the	SVM	model	with	the	polynomial	kernel	suggests	that
the	goodness	of	fit	for	this	model	is	not	so	good.	Most	of	the	predictions	lie	on	a
straight	line	at	around	12.	This	is	well	aligned	with	the	other	metrics,	where	we
have	seen	that	RMSE	and	R2	measures	were	the	worst	among	the	four	models
we	tried.

The	following	plot	shows	the	diagnostic	plot	for	the	SVM	model	with	the
Gaussian	kernel:

This	diagnostic	plot	result	for	the	SVM	model	with	the	Gaussian	kernel	is	rather
surprising.	From	the	RMSE	and	R2	measures,	we	expected	the	model	fit	using
SVM	with	Gaussian	kernel	will	be	good.	However,	most	of	the	predictions	by
this	model	are	on	a	straight	line,	without	showing	any	patterns	of	a	diagonal	line.
Looking	at	this	diagnostic	plot,	we	cannot	conclude	that	the	model	fit	for	the
SVM	model	with	the	Gaussian	kernel	is	good,	even	though	the	R2	metrics
showed	a	strong	positive	sign	of	the	goodness	of	model	fit.

By	looking	at	both	the	metrics	numbers	and	the	diagnostic	plots,	we	can
conclude	that	the	linear	regression	model	and	the	linear	SVM	model	seem	to
work	the	best	for	predicting	the	fair	values	of	house	prices.	This	project	shows
us	a	good	example	of	the	importance	of	looking	at	the	diagnostic	plots.	Looking
at	and	optimizing	for	single	metrics	might	be	tempting,	but	it	is	always	better	to
evaluate	models	with	more	than	one	validation	metric,	and	looking	at	diagnostic
plots,	such	as	the	plot	of	actual	values	against	predicted	values,	is	especially
helpful	for	regression	models.

Summary
In	this	chapter,	we	expanded	our	knowledge	and	skills	regarding	building
regression	models.	We	built	prediction	models	using	the	sale	price	data	of
residential	homes	in	Ames,	Iowa,	U.S.A.	Unlike	other	chapters,	we	had	a	more
complex	dataset,	where	the	variables	had	mixed	types,	categorical	and
continuous.	We	looked	at	the	categorical	variables,	where	there	were	no	natural
orderings	(non-ordinal)	and	where	there	were	natural	orderings	(ordinal)	in	the
categories.	We	then	looked	at	continuous	variables,	whose	distributions	had	long
right	tails.	We	also	discussed	how	we	can	use	log	transformations	on	such
variables	with	high	skewness	in	the	data	to	mediate	the	skewness	and	make
those	variables'	distributions	closer	to	normal	distributions.

We	discussed	how	to	handle	categorical	variables	in	our	dataset.	We	learned	how
to	create	and	encode	dummy	variables	for	each	type	of	categorical	variable.
Using	these	features,	we	experimented	with	four	different	machine	learning
models—linear	regression,	linear	support	vector	machine,	SVM	with	a
polynomial	kernel,	and	SVM	with	a	Gaussian	kernel.	We	briefly	discussed	the
purpose	and	usage	of	kernel	methods	and	how	they	can	be	used	for	linearly
inseparable	datasets.	Using	RMSE,	R2,	and	the	plot	of	the	actual	values	against
the	predicted	values,	we	evaluated	the	performances	of	those	four	models	we
built	for	predicting	the	fair	values	of	house	prices	in	Ames,	Iowa,	U.S.A.	During
our	model	validation	step,	we	saw	a	case	where	the	validation	metrics	results
contradict	with	the	diagnostic	plots	results	and	we	have	learned	the	importance
of	looking	at	more	than	one	metric	and	diagnostic	plots	to	be	sure	of	our	model's
performance.

In	the	next	chapter,	we	are	going	to	switch	gear	again.	So	far,	we	have	been
learning	how	to	use	and	build	supervised	learning	algorithms.	However,	in	the
next	chapter,	we	are	going	to	learn	unsupervised	learning	and	more	specifically
clustering	algorithms.	We	will	discuss	how	to	use	clustering	algorithms	to	gain
insights	on	the	customer	segments	using	an	online	retail	dataset.

Customer	Segmentation
	

In	this	chapter,	we	are	going	to	learn	about	unsupervised	learning	models	and
how	they	can	be	used	to	extract	insights	from	the	data.	Up	until	now,	we	have
been	focusing	on	supervised	learning,	where	our	machine	learning	(ML)
models	have	known	target	variables	that	they	try	to	predict.	We	have	built
classification	models	for	spam	email	filtering	and	Twitter	sentiment	analysis.	We
have	also	built	regression	models	for	foreign	exchange	rate	forecasting	and
predicting	the	fair	value	of	house	prices.	All	of	these	ML	models	that	we	have
built	so	far	are	supervised	learning	algorithms,	where	the	models	learn	to	map
the	given	input	to	expected	outcomes.	However,	there	are	cases	where	we	are
more	interested	in	finding	hidden	insights	and	drawing	inferences	from	datasets,
and	we	can	use	unsupervised	learning	algorithms	for	such	tasks.

In	this	chapter,	we	are	going	to	use	an	online	retail	dataset	that	contains
information	about	the	prices	and	quantities	of	items	that	customers	bought.	We
will	explore	the	data	by	looking	at	how	the	distributions	of	item	prices	and
quantities	for	purchase	orders	differ	from	those	of	cancel	orders.	We	will	also
look	at	how	online	store	activities	are	spread	across	different	countries.	Then,	we
are	going	to	take	this	transaction-level	data	and	transform	and	aggregate	it	into
customer-level	data.	As	we	transform	this	data	to	have	a	customer-centric	view,
we	are	going	to	discuss	ways	to	build	scale-independent	features	for
unsupervised	learning	algorithms.	With	this	feature	set,	we	are	going	to	use	a	k-
means	clustering	algorithm	to	build	customer	segments	and	extract	insights	on
the	customer	behaviors	within	each	segment.	We	will	introduce	a	new	validation
metric,	Silhouette	Coefficient,	to	evaluate	the	clustering	results.

In	this	chapter,	we	will	cover	the	following	topics:

Problem	definition	for	a	customer	segmentation	project
Data	analysis	for	an	online	retail	dataset
Feature	engineering	and	aggregation
Unsupervised	learning	using	a	k-means	clustering	algorithm
Clustering	model	validations	using	the	Silhouette	Coefficient

	

	

Problem	definition
	

Let's	discuss	in	more	detail	what	problems	we	are	going	to	solve	and	build
clustering	models	for.	Whether	you	are	trying	to	send	marketing	emails	to	your
customers	or	you	simply	want	to	better	understand	your	customers	and	their
behaviors	on	your	online	store,	you	will	want	to	analyze	and	identify	different
types	and	segments	of	your	customers.	Some	customers	might	buy	lots	of	items
at	once	(bulk	buyers),	some	might	primarily	buy	expensive	or	luxury	items
(luxury	product	buyers),	or	some	might	have	bought	one	or	two	items	and	never
come	back	(unengaged	customers).	Depending	on	these	behavioral	patterns,
your	marketing	campaigns	should	vary.	For	example,	sending	out	emails	with
promotions	on	luxury	items	is	likely	to	provoke	luxury	product	buyers	to	log	in
to	the	online	store	and	purchase	certain	items,	but	such	an	email	campaign	is	not
going	to	work	well	for	bulk	buyers.	On	the	other	hand,	sending	out	emails	with
promotions	on	items	that	are	frequently	bought	in	bulk,	such	as	pens	and
notepads	for	office	supplies,	is	likely	to	make	bulk	buyers	log	in	to	the	online
store	and	place	purchase	orders,	but	it	might	not	be	attractive	for	luxury	product
buyers.	By	identifying	customer	segments	based	on	their	behavioral	patterns	and
using	customized	marketing	campaigns,	you	can	optimize	your	marketing
channels.

In	order	to	build	models	for	customer	segmentation,	we	are	going	to	use	an
online	retail	dataset	that	contains	all	the	transactions	that	occurred	between	Jan.
12th	2010	and	Sep.	12th	2011	for	a	UK-based	online	retail	store.	This	dataset	is
available	in	the	UCI	Machine	Learning	Repository	and	can	be	downloaded	from
this	link:	http://archive.ics.uci.edu/ml/datasets/online+retail#.	With	this	data,	we	are
going	to	build	features	that	contain	information	about	the	net	revenue,	average
item	price,	and	average	purchase	quantity	per	customer.	Using	these	features,	we
are	going	to	build	a	clustering	model	using	a	k-means	clustering	algorithm	that
clusters	the	customer	base	into	different	segments.	We	will	be	using	Silhouette
Coefficient	metrics	to	evaluate	the	quality	of	the	clusters	and	deduce	the	optimal
number	of	customer	segments	to	build.

http://archive.ics.uci.edu/ml/datasets/online+retail

To	summarize	our	problem	definition	for	the	customer	segmentation	project:

What	is	the	problem?	We	need	a	clustering	model	that	segments	customers
into	different	clusters,	so	that	we	can	understand	and	draw	insights	about
the	behavioral	patterns	of	the	customers	better.
Why	is	it	a	problem?	There	is	no	one-fits-all	marketing	campaign	that
works	for	all	different	types	of	customers.	We	will	need	to	build	custom-
tailored	marketing	campaigns	for	bulk	buyers	and	luxury	product	buyers
separately.	Also,	we	will	have	to	target	unengaged	customers	differently
from	the	other	customer	types	to	have	them	re-engage	with	the	products.
The	more	customized	the	marketing	messages	are,	the	more	likely
customers	will	engage.	It	will	be	a	big	advantage	if	we	have	an	ML	model
that	clusters	our	customer	base	into	different	segments	based	on	their
behavioral	patterns	on	the	online	store.
What	are	some	of	the	approaches	to	solving	this	problem?	We	are	going	to
use	the	online	retail	dataset	that	contains	all	transactions	from	2010	to	mid-
2011	to	aggregate	the	key	features,	such	as	net	revenue,	average	unit	price,
and	average	purchase	quantity	for	each	customer.	Then,	we	will	use	a	k-
means	clustering	algorithm	to	build	a	clustering	model	and	use	the
Silhouette	Coefficient	to	evaluate	the	quality	of	clusters	and	choose	the
optimal	number	of	clusters.
What	are	the	success	criteria?	We	do	not	want	too	many	clusters,	as	this
would	make	it	more	difficult	to	explain	and	understand	different	patterns	of
customers.	We	will	use	the	Silhouette	Coefficient	score	to	tell	us	the	best
number	of	clusters	to	use	for	customer	segmentation.

	

	

Data	analysis	for	the	online	retail
dataset
It	is	now	time	to	look	into	the	dataset.	You	can	follow	this	link:	http://archive.ics.
uci.edu/ml/datasets/online+retail#,	click	on	the	Data	Folder	link	in	the	top	left	corner,
and	download	the	Online	Retail.xlsx	file.	You	can	save	the	file	as	a	CSV	format
and	load	it	into	a	Deedle	data	frame.

	

http://archive.ics.uci.edu/ml/datasets/online+retail

Handling	missing	values
Since	we	will	be	aggregating	the	transaction	data	for	each	customer,	we	need	to
check	whether	there	are	any	missing	values	in	the	CustomerID	column.	The
following	screenshot	shows	a	few	records	with	no	CustomerID:

We	are	going	to	drop	those	records	with	missing	values	from	the	CustomerID,
Description,	Quantity,	UnitPrice,	and	Country	columns.	The	following	code	snippet
shows	how	we	can	drop	records	with	missing	values	for	those	columns:

//	1.	Missing	CustomerID	Values

ecommerceDF

				.Columns[new	string[]	{	"CustomerID",	"InvoiceNo",	"StockCode",	"Quantity",	

"UnitPrice",	"Country"	}]

				.GetRowsAt(new	int[]	{	1440,	1441,	1442,	1443,	1444,	1445,	1446	})

				.Print();

Console.WriteLine("\n\n*	#	of	values	in	CustomerID	column:	{0}",	

ecommerceDF["CustomerID"].ValueCount);

//	Drop	missing	values

ecommerceDF	=	ecommerceDF

				.Columns[new	string[]	{	"CustomerID",	"Description",	"Quantity",	"UnitPrice",	

"Country"	}]

				.DropSparseRows();

//	Per-Transaction	Purchase	Amount	=	Quantity	*	UnitPrice

ecommerceDF.AddColumn("Amount",	ecommerceDF["Quantity"]	*	ecommerceDF["UnitPrice"]);

Console.WriteLine("\n\n*	Shape	(After	dropping	missing	values):	{0},	{1}\n",	

ecommerceDF.RowCount,	ecommerceDF.ColumnCount);

Console.WriteLine("*	After	dropping	missing	values	and	unnecessary	columns:");

ecommerceDF.GetRowsAt(new	int[]	{	0,	1,	2,	3,	4	}).Print();

//	Export	Data

ecommerceDF.SaveCsv(Path.Combine(dataDirPath,	"data-clean.csv"));

We	use	the	DropSparseRows	method	of	the	Deedle	data	frame	to	drop	all	the	records

with	missing	values	in	the	columns	of	our	interest.	Then,	we	append	the	data
frame	with	an	additional	column	Amount,	which	is	the	total	price	for	the	given
transaction.	We	can	calculate	this	value	by	multiplying	the	unit	price	with	the
quantity.

As	you	can	see	from	the	previous	image,	we	had	541,909	records	before	we
dropped	the	missing	values.	After	dropping	the	records	with	missing	values	from
the	columns	of	our	interest,	the	number	of	records	in	the	data	frame	ends	up
being	406,829.	Now,	we	have	a	data	frame	that	contains	the	information	about
CustomerID,	Description,	Quantity,	UnitPrice,	and	Country	for	all	the	transactions.

Variable	distributions
Let's	start	looking	at	the	distributions	in	our	dataset.	First,	we	will	take	a	look	at
the	top	five	countries	by	the	volume	of	transactions.	The	code	we	used	to
aggregate	the	records	by	the	countries	and	count	the	number	of	transactions	that
occurred	in	each	country	is	as	follows:

//	2.	Number	of	transactions	by	country

var	numTransactionsByCountry	=	ecommerceDF

				.AggregateRowsBy<string,	int>(

								new	string[]	{	"Country"	},

								new	string[]	{	"CustomerID"	},

								x	=>	x.ValueCount

).SortRows("CustomerID");

var	top5	=	numTransactionsByCountry

				.GetRowsAt(new	int[]	{

								numTransactionsByCountry.RowCount-1,	numTransactionsByCountry.RowCount-2,

								numTransactionsByCountry.RowCount-3,	numTransactionsByCountry.RowCount-4,

								numTransactionsByCountry.RowCount-5	});

top5.Print();

var	topTransactionByCountryBarChart	=	DataBarBox.Show(

				top5.GetColumn<string>("Country").Values.ToArray().Select(x	=>	x.Equals("United	

Kingdom")	?	"UK"	:	x),

				top5["CustomerID"].Values.ToArray()

);

topTransactionByCountryBarChart.SetTitle(

				"Top	5	Countries	with	the	most	number	of	transactions"

);

As	you	can	see	from	this	code	snippet,	we	are	using	the	AggregateRowsBy	method	in
the	Deedle	data	frame	to	group	the	records	by	country	and	count	the	total
number	of	transactions	for	each	country.	Then,	we	sort	the	resulting	data	frame
using	the	SortRows	method	and	take	the	top	five	countries.	When	you	run	this
code,	you	will	see	the	following	bar	chart:

The	number	of	transactions	for	each	of	the	top	five	countries	looks	as	follows:

As	expected,	the	largest	number	of	transactions	occurred	in	the	United	Kingdom.
Germany	and	France	come	in	as	the	countries	with	the	second	and	third	most
transactions.

Let's	start	looking	at	the	distributions	of	the	features	that	we	will	be	using	for	our
clustering	model—purchase	quantity,	unit	price,	and	net	amount.	We	will	be
looking	at	these	distributions	in	three	ways.	First,	we	will	get	the	overall
distribution	of	each	feature,	regardless	of	whether	the	transaction	was	for
purchase	or	cancellation.	Second,	we	will	take	a	look	at	the	purchase	orders	only,
excluding	the	cancel	orders.	Third,	we	will	look	at	the	distributions	for	cancel
orders	only.

The	code	to	get	distributions	of	transaction	quantity	is	as	follows:

//	3.	Per-Transaction	Quantity	Distributions

Console.WriteLine("\n\n--	Per-Transaction	Order	Quantity	Distribution--	");

double[]	quantiles	=	Accord.Statistics.Measures.Quantiles(

				ecommerceDF["Quantity"].ValuesAll.ToArray(),

				new	double[]	{	0,	0.25,	0.5,	0.75,	1.0	}

);

Console.WriteLine(

				"Min:	\t\t\t{0:0.00}\nQ1	(25%	Percentile):	\t{1:0.00}\nQ2	(Median):	

\t\t{2:0.00}\nQ3	(75%	Percentile):	\t{3:0.00}\nMax:	\t\t\t{4:0.00}",

				quantiles[0],	quantiles[1],	quantiles[2],	quantiles[3],	quantiles[4]

);

Console.WriteLine("\n\n--	Per-Transaction	Purchase-Order	Quantity	Distribution--	");

quantiles	=	Accord.Statistics.Measures.Quantiles(

				ecommerceDF["Quantity"].Where(x	=>	x.Value	>=	0).ValuesAll.ToArray(),

				new	double[]	{	0,	0.25,	0.5,	0.75,	1.0	}

);

Console.WriteLine(

				"Min:	\t\t\t{0:0.00}\nQ1	(25%	Percentile):	\t{1:0.00}\nQ2	(Median):	

\t\t{2:0.00}\nQ3	(75%	Percentile):	\t{3:0.00}\nMax:	\t\t\t{4:0.00}",

				quantiles[0],	quantiles[1],	quantiles[2],	quantiles[3],	quantiles[4]

);

Console.WriteLine("\n\n--	Per-Transaction	Cancel-Order	Quantity	Distribution--	");

quantiles	=	Accord.Statistics.Measures.Quantiles(

				ecommerceDF["Quantity"].Where(x	=>	x.Value	<	0).ValuesAll.ToArray(),

				new	double[]	{	0,	0.25,	0.5,	0.75,	1.0	}

);

Console.WriteLine(

				"Min:	\t\t\t{0:0.00}\nQ1	(25%	Percentile):	\t{1:0.00}\nQ2	(Median):	

\t\t{2:0.00}\nQ3	(75%	Percentile):	\t{3:0.00}\nMax:	\t\t\t{4:0.00}",

				quantiles[0],	quantiles[1],	quantiles[2],	quantiles[3],	quantiles[4]

);

As	in	the	previous	chapter,	we	are	using	the	Quantiles	method	to	compute	quartiles
—min,	25%	percentile,	median,	75%	percentile,	and	max.	Once	we	get	the
overall	distribution	of	order	quantities	per	transaction,	we	then	look	at	the
distribution	for	purchase	orders	and	cancel	orders.	In	our	dataset,	cancel	orders
are	encoded	with	negative	numbers	in	the	Quantity	column.	In	order	to	separate
cancel	orders	from	purchase	orders,	we	can	simply	filter	out	positive	and
negative	quantities	from	our	data	fame	as	in	the	following	code:

//	Filtering	out	cancel	orders	to	get	purchase	orders	only

ecommerceDF["Quantity"].Where(x	=>	x.Value	>=	0)

//	Filtering	out	purchase	orders	to	get	cancel	orders	only

ecommerceDF["Quantity"].Where(x	=>	x.Value	<	0)

In	order	to	get	the	quartiles	of	per-transaction	unit	prices,	we	use	the	following
code:

//	4.	Per-Transaction	Unit	Price	Distributions

Console.WriteLine("\n\n--	Per-Transaction	Unit	Price	Distribution--	");

quantiles	=	Accord.Statistics.Measures.Quantiles(

				ecommerceDF["UnitPrice"].ValuesAll.ToArray(),

				new	double[]	{	0,	0.25,	0.5,	0.75,	1.0	}

);

Console.WriteLine(

				"Min:	\t\t\t{0:0.00}\nQ1	(25%	Percentile):	\t{1:0.00}\nQ2	(Median):	

\t\t{2:0.00}\nQ3	(75%	Percentile):	\t{3:0.00}\nMax:	\t\t\t{4:0.00}",

				quantiles[0],	quantiles[1],	quantiles[2],	quantiles[3],	quantiles[4]

);

Similarly,	we	can	compute	the	quartiles	of	the	per-transaction	total	amount	using
the	following	code:

//	5.	Per-Transaction	Purchase	Price	Distributions

Console.WriteLine("\n\n--	Per-Transaction	Total	Amount	Distribution--	");

quantiles	=	Accord.Statistics.Measures.Quantiles(

				ecommerceDF["Amount"].ValuesAll.ToArray(),

				new	double[]	{	0,	0.25,	0.5,	0.75,	1.0	}

);

Console.WriteLine(

				"Min:	\t\t\t{0:0.00}\nQ1	(25%	Percentile):	\t{1:0.00}\nQ2	(Median):	

\t\t{2:0.00}\nQ3	(75%	Percentile):	\t{3:0.00}\nMax:	\t\t\t{4:0.00}",

				quantiles[0],	quantiles[1],	quantiles[2],	quantiles[3],	quantiles[4]

);

Console.WriteLine("\n\n--	Per-Transaction	Purchase-Order	Total	Amount	Distribution--	

");

quantiles	=	Accord.Statistics.Measures.Quantiles(

				ecommerceDF["Amount"].Where(x	=>	x.Value	>=	0).ValuesAll.ToArray(),

				new	double[]	{	0,	0.25,	0.5,	0.75,	1.0	}

);

Console.WriteLine(

				"Min:	\t\t\t{0:0.00}\nQ1	(25%	Percentile):	\t{1:0.00}\nQ2	(Median):	

\t\t{2:0.00}\nQ3	(75%	Percentile):	\t{3:0.00}\nMax:	\t\t\t{4:0.00}",

				quantiles[0],	quantiles[1],	quantiles[2],	quantiles[3],	quantiles[4]

);

Console.WriteLine("\n\n--	Per-Transaction	Cancel-Order	Total	Amount	Distribution--	");

quantiles	=	Accord.Statistics.Measures.Quantiles(

				ecommerceDF["Amount"].Where(x	=>	x.Value	<	0).ValuesAll.ToArray(),

				new	double[]	{	0,	0.25,	0.5,	0.75,	1.0	}

);

Console.WriteLine(

				"Min:	\t\t\t{0:0.00}\nQ1	(25%	Percentile):	\t{1:0.00}\nQ2	(Median):	

\t\t{2:0.00}\nQ3	(75%	Percentile):	\t{3:0.00}\nMax:	\t\t\t{4:0.00}",

				quantiles[0],	quantiles[1],	quantiles[2],	quantiles[3],	quantiles[4]

);

When	you	run	the	code,	you	will	see	the	following	output	for	the	distributions	of
per-transaction	order	quantity,	unit	price,	and	total	amount:

If	you	look	at	the	distribution	of	the	overall	order	quantities	in	this	output,	you
will	notice	that	from	the	first	quartile	(25%	percentile),	the	quantities	are
positive.	This	suggests	that	there	are	far	less	cancel	orders	than	purchase	orders,
which	is	actually	a	good	thing	for	an	online	retail	store.	Let's	look	at	how	the
purchase	orders	and	cancel	orders	are	divided	in	our	dataset.

Using	the	following	code,	you	can	draw	a	bar	chart	to	compare	the	number	of
purchase	orders	against	cancel	orders:

//	6.	#	of	Purchase	vs.	Cancelled	Transactions

var	purchaseVSCancelBarChart	=	DataBarBox.Show(

				new	string[]	{	"Purchase",	"Cancel"	},

				new	double[]	{

								ecommerceDF["Quantity"].Where(x	=>	x.Value	>=	0).ValueCount	,

								ecommerceDF["Quantity"].Where(x	=>	x.Value	<	0).ValueCount

				}

);

purchaseVSCancelBarChart.SetTitle(

				"Purchase	vs.	Cancel"

);

When	you	run	this	code,	you	will	see	the	following	bar	chart:

As	expected	and	shown	in	the	previous	distribution	output,	the	number	of	cancel
orders	is	much	less	than	the	number	of	purchase	orders.	With	these	analysis
results,	we	are	going	to	start	building	features	for	our	clustering	model	for
customer	segmentation	in	the	next	section.

The	full	code	for	this	data	analysis	step	can	be	found	by	following	this	link:	https
://github.com/yoonhwang/c-sharp-machine-learning/blob/master/ch.6/DataAnalyzer.cs.

https://github.com/yoonhwang/c-sharp-machine-learning/blob/master/ch.6/DataAnalyzer.cs

Feature	engineering	and	data
aggregation
The	records	in	the	dataset	we	have	now	represent	individual	transactions.
However,	we	want	to	build	a	clustering	model	that	clusters	customers	into
different	segments.	In	order	to	do	that,	we	need	to	transform	and	aggregate	our
data	by	customer.	In	other	words,	we	will	need	to	group	our	data	by	CustomerID
and	aggregate	all	the	transactions	that	belong	to	each	customer	by	summing,
counting,	or	taking	averages	of	the	values.	Let's	look	at	an	example	first.	The
following	code	groups	the	transaction-level	data	by	CustomerID	and	computes	the
net	revenue,	total	number	of	transactions,	total	number	of	cancel	orders,	average
unit	price,	and	average	order	quantity:

//	1.	Net	Revenue	per	Customer

var	revPerCustomerDF	=	ecommerceDF.AggregateRowsBy<double,	double>(

				new	string[]	{	"CustomerID"	},

				new	string[]	{	"Amount"	},

				x	=>	x.Sum()

);

//	2.	#	of	Total	Transactions	per	Customer

var	numTransactionsPerCustomerDF	=	ecommerceDF.AggregateRowsBy<double,	double>(

				new	string[]	{	"CustomerID"	},

				new	string[]	{	"Quantity"	},

				x	=>	x.ValueCount

);

//	3.	#	of	Cancelled	Transactions	per	Customer

var	numCancelledPerCustomerDF	=	ecommerceDF.AggregateRowsBy<double,	double>(

				new	string[]	{	"CustomerID"	},

				new	string[]	{	"Quantity"	},

				x	=>	x.Select(y	=>	y.Value	>=	0	?	0.0	:	1.0).Sum()

);

//	4.	Average	UnitPrice	per	Customer

var	avgUnitPricePerCustomerDF	=	ecommerceDF.AggregateRowsBy<double,	double>(

				new	string[]	{	"CustomerID"	},

				new	string[]	{	"UnitPrice"	},

				x	=>	x.Sum()	/	x.ValueCount

);

//	5.	Average	Quantity	per	Customer

var	avgQuantityPerCustomerDF	=	ecommerceDF.AggregateRowsBy<double,	double>(

				new	string[]	{	"CustomerID"	},

				new	string[]	{	"Quantity"	},

				x	=>	x.Sum()	/	x.ValueCount

);

As	you	may	see	from	this	code,	we	are	using	the	AggregateRowsBy	method	in	the
Deedle	data	frame	and	passing	a	custom	aggFunc	for	each	aggregation.	In	the	first
example,	where	we	compute	the	net	revenue	per	customer,	we	sum	all	the

purchase	amounts	for	each	customer.	For	the	second	feature,	we	count	the
number	of	transactions	to	compute	the	total	number	of	orders	for	each	customer.
In	order	to	compute	the	average	order	quantity	for	each	customer,	we	sum	up	all
the	order	quantities	and	divide	it	by	the	number	of	transactions.	As	you	can	see
from	this	case,	the	AggregateRowsBy	method	comes	in	handy	when	you	need	to
transform	and	aggregate	a	data	frame	with	a	custom	aggregation	function.

Once	we	have	computed	all	these	features,	we	need	to	combine	all	the	data	into
one	place.	We	created	a	new	empty	data	frame	and	added	each	of	these
aggregated	features	as	separate	columns	to	the	new	data	frame.	The	following
code	shows	how	we	created	a	features	data	frame:

//	Aggregate	all	results

var	featuresDF	=	Frame.CreateEmpty<int,	string>();

featuresDF.AddColumn("CustomerID",	revPerCustomerDF.GetColumn<double>("CustomerID"));

featuresDF.AddColumn("Description",	ecommerceDF.GetColumn<string>("Description"));

featuresDF.AddColumn("NetRevenue",	revPerCustomerDF.GetColumn<double>("Amount"));

featuresDF.AddColumn("NumTransactions",	numTransactionsPerCustomerDF.GetColumn<double>

("Quantity"));

featuresDF.AddColumn("NumCancelled",	numCancelledPerCustomerDF.GetColumn<double>

("Quantity"));

featuresDF.AddColumn("AvgUnitPrice",	avgUnitPricePerCustomerDF.GetColumn<double>

("UnitPrice"));

featuresDF.AddColumn("AvgQuantity",	avgQuantityPerCustomerDF.GetColumn<double>

("Quantity"));

featuresDF.AddColumn("PercentageCancelled",	featuresDF["NumCancelled"]	/	

featuresDF["NumTransactions"]);

Console.WriteLine("\n\n*	Feature	Set:");

featuresDF.Print();

As	you	can	see	from	this	code	snippet,	we	created	one	additional	feature,
PercentageCancelled,	while	we	were	appending	those	aggregated	features	to	the	new
data	frame.	The	PercentageCancelled	feature	simply	holds	information	about	how
many	of	the	transactions	or	orders	were	cancelled.

To	take	a	closer	look	at	the	distributions	of	these	features,	we	wrote	a	helper
function	that	computes	the	quartiles	of	a	given	feature	and	prints	out	the	results.
The	code	for	this	helper	function	is	as	follows:

private	static	void	PrintQuartiles(Frame<int,	string>	df,	string	colname)

{

				Console.WriteLine("\n\n--	{0}	Distribution--	",	colname);

				double[]	quantiles	=	Accord.Statistics.Measures.Quantiles(

								df[colname].ValuesAll.ToArray(),

								new	double[]	{	0,	0.25,	0.5,	0.75,	1.0	}

);

				Console.WriteLine(

								"Min:	\t\t\t{0:0.00}\nQ1	(25%	Percentile):	\t{1:0.00}\nQ2	(Median):	

\t\t{2:0.00}\nQ3	(75%	Percentile):	\t{3:0.00}\nMax:	\t\t\t{4:0.00}",

								quantiles[0],	quantiles[1],	quantiles[2],	quantiles[3],	quantiles[4]

);

}

Using	this	helper	function,	PrintQuartiles,	the	following	code	snippet	shows	how
we	computed	and	displayed	quartiles	for	the	features	we	just	created:

//	NetRevenue	feature	distribution

PrintQuartiles(featuresDF,	"NetRevenue");

//	NumTransactions	feature	distribution

PrintQuartiles(featuresDF,	"NumTransactions");

//	AvgUnitPrice	feature	distribution

PrintQuartiles(featuresDF,	"AvgUnitPrice");

//	AvgQuantity	feature	distribution

PrintQuartiles(featuresDF,	"AvgQuantity");

//	PercentageCancelled	feature	distribution

PrintQuartiles(featuresDF,	"PercentageCancelled");

The	output	of	this	code	looks	like	the	following:

If	you	look	closely,	there	is	one	thing	that	is	concerning.	There	is	a	small	number
of	customers	that	have	negative	net	revenue	and	negative	average	quantity.	This
suggests	some	customers	have	more	cancel	orders	than	purchase	orders.
However,	this	is	odd.	To	cancel	an	order,	there	needs	to	be	a	purchase	order	first.
This	suggests	that	our	dataset	is	not	complete	and	there	are	some	orphan	cancel
orders	that	do	not	have	matching	previous	purchase	orders.	Since	we	cannot	go

back	in	time	and	pull	out	more	data	for	those	customers	with	orphan	cancel
orders,	the	simplest	way	to	handle	this	problem	is	to	drop	those	customers	with
orphan	cancel	orders.	The	following	code	shows	some	criteria	we	can	use	to
drop	such	customers:

//	1.	Drop	Customers	with	Negative	NetRevenue

featuresDF	=	featuresDF.Rows[

				featuresDF["NetRevenue"].Where(x	=>	x.Value	>=	0.0).Keys

];

//	2.	Drop	Customers	with	Negative	AvgQuantity

featuresDF	=	featuresDF.Rows[

				featuresDF["AvgQuantity"].Where(x	=>	x.Value	>=	0.0).Keys

];

//	3.	Drop	Customers	who	have	more	cancel	orders	than	purchase	orders

featuresDF	=	featuresDF.Rows[

				featuresDF["PercentageCancelled"].Where(x	=>	x.Value	<	0.5).Keys

];

As	you	can	see	from	this	code	snippet,	we	drop	any	customer	who	has	a	negative
net	revenue,	negative	average	quantity,	and	percentage	of	cancel	orders	more
than	50%.	After	dropping	these	customers,	the	resulting	distributions	look	like
the	following:

As	you	can	see	from	these	distributions,	the	scales	for	each	feature	are	very
different.	NetRevenue	rages	from	0	to	279,489.02,	while	PercentageCancelled	ranges
from	0	to	0.45.	We	are	going	to	transform	these	features	into	percentiles,	so	that
we	can	have	all	of	our	features	on	the	same	scale	of	0	to	1.	The	following	code
shows	how	to	compute	percentiles	for	each	feature:

//	Create	Percentile	Features

featuresDF.AddColumn(

				"NetRevenuePercentile",

				featuresDF["NetRevenue"].Select(

								x	=>	StatsFunctions.PercentileRank(featuresDF["NetRevenue"].Values.ToArray(),	

x.Value)

)

);

featuresDF.AddColumn(

				"NumTransactionsPercentile",

				featuresDF["NumTransactions"].Select(

								x	=>	

StatsFunctions.PercentileRank(featuresDF["NumTransactions"].Values.ToArray(),	x.Value)

)

);

featuresDF.AddColumn(

				"AvgUnitPricePercentile",

				featuresDF["AvgUnitPrice"].Select(

								x	=>	StatsFunctions.PercentileRank(featuresDF["AvgUnitPrice"].Values.ToArray(),	

x.Value)

)

);

featuresDF.AddColumn(

				"AvgQuantityPercentile",

				featuresDF["AvgQuantity"].Select(

								x	=>	StatsFunctions.PercentileRank(featuresDF["AvgQuantity"].Values.ToArray(),	

x.Value)

)

);

featuresDF.AddColumn(

				"PercentageCancelledPercentile",

				featuresDF["PercentageCancelled"].Select(

								x	=>	

StatsFunctions.PercentileRank(featuresDF["PercentageCancelled"].Values.ToArray(),	

x.Value)

)

);

Console.WriteLine("\n\n\n*	Percentile	Features:");

featuresDF.Columns[

				new	string[]	{	"NetRevenue",	"NetRevenuePercentile",	"NumTransactions",	

"NumTransactionsPercentile"	}

].Print();

As	you	can	notice	from	this	code	snippet,	we	are	using	the
StatsFunctions.PercentileRank	method,	which	is	part	of	the	CenterSpace.NMath.Stats
package.	You	can	easily	install	this	package	using	the	following	command	in	the
Package	Manager	console:

Install-Package	CenterSpace.NMath.Stats

Using	the	StatsFunctions.PercentileRank	method,	we	can	compute	the	percentile	for
each	record.	The	following	output	shows	the	results	for	the	NetRevenue	and
NumTransactions	features:

As	you	can	see	from	this	output,	instead	of	a	wide	range,	the	values	for	both
features	now	range	between	0	and	1.	We	will	use	these	percentile	features	when
we	build	our	clustering	model	in	the	following	section.

The	full	code	for	this	feature	engineering	step	can	be	found	at	this	link:	https://gi
thub.com/yoonhwang/c-sharp-machine-learning/blob/master/ch.6/FeatureEngineering.cs.

https://github.com/yoonhwang/c-sharp-machine-learning/blob/master/ch.6/FeatureEngineering.cs

Unsupervised	learning	–	k-means
clustering
It	is	now	time	to	start	building	our	clustering	models.	In	this	project,	we	are
going	to	try	clustering	customers	into	different	segments	based	on	the	following
three	features:	NetRevenuePercentile,	AvgUnitPricePercentile,	and	AvgQuantityPercentile,
so	that	we	can	analyze	the	item	selections	based	on	the	spending	habits	of	the
customers.	Before	we	start	fitting	a	k-means	clustering	algorithm	to	our	feature
set,	there	is	an	important	step	we	need	to	take.	We	need	to	normalize	our
features,	so	that	our	clustering	model	does	not	put	more	weight	on	certain
features	over	the	others.	If	variances	of	features	are	different,	then	a	clustering
algorithm	can	put	more	weight	on	those	with	small	variances	and	can	tend	to
cluster	them	together.	The	following	code	shows	how	you	can	normalize	each
feature:

string[]	features	=	new	string[]	{	"NetRevenuePercentile",	"AvgUnitPricePercentile",	

"AvgQuantityPercentile"	};

Console.WriteLine("*	Features:	{0}\n\n",	String.Join(",	",	features));

var	normalizedDf	=	Frame.CreateEmpty<int,	string>();

var	average	=	ecommerceDF.Columns[features].Sum()	/	ecommerceDF.RowCount;

foreach(string	feature	in	features)

{

				normalizedDf.AddColumn(feature,	(ecommerceDF[feature]	-	average[feature])	/	

ecommerceDF[feature].StdDev());

}

Now	that	we	have	normalized	our	variables,	let's	start	building	clustering
models.	In	order	to	build	a	k-means	clustering	model,	we	need	to	know	the
number	of	clusters	we	want	in	advance.	Since	we	do	not	know	what	the	best
number	of	clusters	is,	we	are	going	to	try	a	few	different	numbers	of	clusters	and
rely	on	the	validation	metrics,	the	Silhouette	Score,	to	tell	us	what	the	optimal
number	of	clusters	is.	The	following	code	shows	how	to	build	clustering	models
that	use	a	k-means	clustering	algorithm:

int[]	numClusters	=	new	int[]	{	4,	5,	6,	7,	8	};

List<string>	clusterNames	=	new	List<string>();

List<double>	silhouetteScores	=	new	List<double>();

for(int	i	=	0;	i	<	numClusters.Length;	i++)

{

				KMeans	kmeans	=	new	KMeans(numClusters[i]);

				KMeansClusterCollection	clusters	=	kmeans.Learn(sampleSet);

				int[]	labels	=	clusters.Decide(sampleSet);

				string	colname	=	String.Format("Cluster-{0}",	numClusters[i]);

				clusterNames.Add(colname);

				normalizedDf.AddColumn(colname,	labels);

				ecommerceDF.AddColumn(colname,	labels);

				Console.WriteLine("\n\n\n#####################	{0}	###########################",	

colname);

				Console.WriteLine("\n\n*	Centroids	for	{0}	clusters:",	numClusters[i]);

				PrintCentroidsInfo(clusters.Centroids,	features);

				Console.WriteLine("\n");

				VisualizeClusters(normalizedDf,	colname,	"NetRevenuePercentile",	

"AvgUnitPricePercentile");

				VisualizeClusters(normalizedDf,	colname,	"AvgUnitPricePercentile",	

"AvgQuantityPercentile");

				VisualizeClusters(normalizedDf,	colname,	"NetRevenuePercentile",	

"AvgQuantityPercentile");

				for	(int	j	=	0;	j	<	numClusters[i];	j++)

				{

								GetTopNItemsPerCluster(ecommerceDF,	j,	colname);

				}

				double	silhouetteScore	=	CalculateSilhouetteScore(normalizedDf,	features,	

numClusters[i],	colname);

				Console.WriteLine("\n\n*	Silhouette	Score:	{0}",	

silhouetteScore.ToString("0.0000"));

				silhouetteScores.Add(silhouetteScore);

				

Console.WriteLine("\n\n##\n\n\n");

}

As	you	can	see	from	this	code	snippet,	we	are	going	to	try	building	clustering
models	with	4,	5,	6,	7,	and	8	clusters.	We	can	instantiate	a	k-means	clustering
algorithm	object	using	the	KMeans	class	in	the	Accord.NET	framework.	Using	the	Learn
method,	we	can	train	a	k-means	clustering	model	with	the	feature	set	we	have.
Then,	we	can	use	the	Decide	method	to	get	the	cluster	labels	for	each	record.

When	you	run	this	code,	it	will	output	the	centroids	for	each	cluster.	The
following	is	an	output	of	cluster	centroids	from	a	4-cluster	clustering	model:

As	you	can	see	from	this	output,	the	cluster	with	label	3	is	a	cluster	of	customers
who	have	high	net	revenue,	middle-high	average	unit	price,	and	middle-high

average	quantity.	So,	these	customers	are	high	value	customers	who	bring	in	the
most	revenue	and	buy	items	with	prices	above	average	in	above-average
quantities.	In	contrast,	the	cluster	labeled	as	1	is	a	cluster	of	customers	who	have
low	net	revenue,	high	average	unit	price	and	middle-low	average	quantity.	So,
these	customers	buy	expensive	items	in	average	quantities	and	do	not	bring	in
that	much	revenue	for	the	online	store.	As	you	may	notice	from	this	example,
you	can	already	see	some	patterns	among	different	clusters.	Let's	now	look	at
which	customers	in	each	segment	buy	the	most.	The	following	is	the	top	10
items	bought	for	each	segment	of	the	4-cluster	clustering	model:

This	top	10	item	list	for	each	segment	gives	you	a	rough	idea	of	what	kinds	of
items	the	customers	in	each	segment	buy	the	most.	This	is	out	of	scope	for	this
chapter,	but	you	can	take	a	step	further	and	analyze	individual	words	in	the	item
description	and	use	word	frequency	analysis,	such	as	we	did	in	Chapter	2,	Spam
Email	Filtering	and	Chapter	3,	Twitter	Sentiment	Analysis.	Another	way	to
visualize	the	clustering	results	is	to	draw	scatter	plots	for	the	segments.	The
following	chart	shows	a	scatter	plot	of	NetRevenuePercentile	versus
AvgQuantityPercentile	for	the	4-cluster	clustering	model:

The	following	chart	shows	a	scatter	plot	of	AvgUnitPricePercentile	versus
AvgQuantityPercentile	for	the	4-cluster	clustering	model:

The	following	chart	shows	a	scatter	plot	of	NetRevenuePercentile	versus
AvgUnitPricePercentile	for	the	4-cluster	clustering	model:

As	you	can	see	from	these	plots,	a	scatter	plot	is	a	good	way	to	visualize	how
each	cluster	is	formed	and	what	the	boundaries	look	like	for	each	cluster.	For
example,	if	you	look	at	the	scatter	plot	of	NetRevenuePercentile	versus
AvgUnitPricePercentile,	cluster	1	has	high	average	unit	price	and	low	net	revenue.
This	corresponds	to	the	findings	we	have	from	looking	at	the	cluster	centroids.
For	higher	dimensions	and	larger	number	of	clusters,	it	gets	more	difficult	to
visualize	using	scatter	plots.	However,	very	often,	visualizing	in	charts	helps
draw	insights	more	easily	from	these	clustering	analyses.	Let's	start	looking	at
how	we	can	evaluate	the	cluster	quality	and	choose	the	optimal	number	of
clusters	using	the	Silhouette	Coefficient.

The	full	code	that	was	used	in	this	k-means	clustering	step	can	be	found	at	this
link:	https://github.com/yoonhwang/c-sharp-machine-
learning/blob/master/ch.6/Clustering.cs.

https://github.com/yoonhwang/c-sharp-machine-learning/blob/master/ch.6/Clustering.cs

Clustering	model	validations	using
the	Silhouette	Coefficient
The	Silhouette	Coefficient	or	Silhouette	Score	provides	an	easy	way	to
evaluate	the	quality	of	clusters.	The	Silhouette	Coefficient	measures	how	closely
related	an	object	is	to	its	own	cluster	against	the	other	clusters.	The	way	to
compute	the	Silhouette	Coefficient	is	as	follows;	for	each	record,	i,	calculate	the
average	distance	between	the	record	and	all	the	other	records	in	the	same	cluster
and	call	this	number,	ai.	Then,	calculate	the	average	distances	between	the	record
and	all	the	records	in	each	other	cluster	for	all	the	other	clusters,	take	the	lowest
average	distance,	and	call	this	number,	bi.	Once	you	have	these	two	numbers,
subtract	ai	from	bi	and	divide	it	by	the	maximum	number	between	ai	and	bi.	You
iterate	this	process	for	all	the	records	in	the	dataset	and	calculate	the	average
value	to	get	the	Silhouette	Coefficient.	The	following	is	a	formula	to	calculate
the	Silhouette	Coefficient	for	a	single	data	point:

In	order	to	get	the	final	Silhouette	value,	you	will	need	to	iterate	through	the	data
points	and	take	the	average	of	Silhouette	values.	The	Silhouette	Coefficient
ranges	between	-1	and	1.	The	closer	to	1,	the	better	the	cluster	qualities	are.	The
following	code	shows	how	we	implemented	this	formula:

private	static	double	CalculateSilhouetteScore(Frame<int,	string>	df,	string[]	

features,	int	numCluster,	string	clusterColname)

{

				double[][]	data	=	BuildJaggedArray(df.Columns[features].ToArray2D<double>(),	

df.RowCount,	features.Length);

				double	total	=	0.0;

				for(int	i	=	0;	i	<	df.RowCount;	i++)

				{

								double	sameClusterAverageDistance	=	0.0;

								double	differentClusterDistance	=	1000000.0;

								double[]	point	=	df.Columns[features].GetRowAt<double>(i).Values.ToArray();

								double	cluster	=	df[clusterColname].GetAt(i);

								for(int	j	=	0;	j	<	numCluster;	j++)

								{

												double	averageDistance	=	CalculateAverageDistance(df,	features,	

clusterColname,	j,	point);

												if	(cluster	==	j)

												{

																sameClusterAverageDistance	=	averageDistance;

												}	else

												{

																differentClusterDistance	=	Math.Min(averageDistance,	

differentClusterDistance);

												}

								}

								total	+=	(differentClusterDistance	-	sameClusterAverageDistance)	/	

Math.Max(sameClusterAverageDistance,	differentClusterDistance);

				}

				return	total	/	df.RowCount;

}

A	helper	function	to	calculate	the	average	distance	between	a	data	point	and	all
the	points	in	a	cluster	is	as	follows:

private	static	double	CalculateAverageDistance(Frame<int,	string>	df,	string[]	

features,	string	clusterColname,	int	cluster,	double[]	point)

{

				var	clusterDF	=	df.Rows[

								df[clusterColname].Where(x	=>	(int)x.Value	==	cluster).Keys

];

				double[][]	clusterData	=	BuildJaggedArray(

								clusterDF.Columns[features].ToArray2D<double>(),

								clusterDF.RowCount,

								features.Length

);

				double	averageDistance	=	0.0;

				for	(int	i	=	0;	i	<	clusterData.Length;	i++)

				{

								averageDistance	+=	Math.Sqrt(

												point.Select((x,	j)	=>	Math.Pow(x	-	clusterData[i][j],	2)).Sum()

);

				}

				averageDistance	/=	(float)clusterData.Length;

				return	averageDistance;

}

As	you	can	see	from	the	code,	we	iterate	through	each	data	point	and	start
calculating	the	average	distances	between	the	given	data	point	and	all	the	other
records	in	different	clusters.	Then,	we	take	the	difference	between	the	lowest
average	distance	to	different	clusters	and	the	average	distance	within	the	same
cluster	and	divide	it	by	the	maximum	of	those	two	numbers.	Once	we	have
iterated	through	all	the	data	points,	we	take	the	average	of	this	Silhouette	value
and	return	it	as	the	Silhouette	Coefficient	for	the	clustering	model.

When	you	run	this	code	for	the	clustering	models	with	different	numbers	of
clusters,	you	will	see	an	output	similar	to	the	following:

As	you	can	see	from	this	output,	the	Silhouette	Score	increased	as	we	increased
the	number	of	clusters	to	a	certain	point	and	then	it	dropped.	In	our	case,	a	k-
means	clustering	model	with	six	clusters	performed	the	best	and	six	clusters
seem	to	be	the	best	choice	for	our	dataset.

Oftentimes,	just	looking	at	the	Silhouette	Coefficient	is	not	enough	to	make	a
decision	on	the	best	number	of	clusters.	For	example,	a	clustering	model	with	a
really	large	number	of	clusters	can	have	a	great	Silhouette	Score,	but	it	would
not	help	us	draw	any	insights	from	such	a	clustering	model.	As	clustering
analysis	is	primarily	used	for	explanatory	analysis	to	draw	insights	and	identify
hidden	patterns	from	the	data,	it	is	important	that	the	clustering	results	can	be
explained.	Pairing	the	Silhouette	Score	with	two-dimensional	or	three-
dimensional	scatter	plots	will	help	you	come	up	with	the	best	number	of	clusters
to	choose	and	decide	what	makes	the	most	sense	to	your	dataset	and	project.

Summary
In	this	chapter,	we	explored	unsupervised	learning	and	how	it	can	be	used	to
draw	insights	and	identify	hidden	patterns	in	the	data.	Unlike	other	projects	we
have	worked	on	so	far,	we	did	not	have	specific	target	variables	that	our	ML
models	can	learn	from.	We	just	had	a	raw	online	retail	dataset,	in	which	we	had
information	about	the	items,	quantities,	and	unit	prices	that	customers	bought	on
the	online	store.	With	this	given	dataset,	we	transformed	transaction-level	data
into	customer-level	data	and	created	numerous	aggregate	features.	We	learned
how	we	can	utilize	the	AggregateRowsBy	method	in	Deedle's	data	frame	to	create
aggregate	features	and	transform	the	dataset	to	have	a	customer-centric	view.	We
then	briefly	discussed	a	new	library,	CenterSpace.NMath.Stats,	which	we	can	use	for
various	statistical	computations.	More	specifically,	we	used	the
StatsFunctions.PercentileRank	method	to	compute	the	percentiles	of	each	record	for
a	given	feature.

We	covered	how	we	can	fit	a	k-means	clustering	algorithm	using	the	Accord.NET
framework.	Using	the	k-means	clustering	algorithm,	we	were	able	to	build	a	few
clustering	models	with	different	numbers	of	clusters.	We	discussed	how	we	can
draw	insights	using	the	4-cluster	clustering	model	as	an	example	and	how	we
can	cluster	customers	into	different	customer	segments,	where	one	segment's
customer	characteristics	were	high	net	revenue,	above-average	unit	price,	and
above-average	quantity,	the	other	segment's	customer	characteristics	were	low
net	revenue,	high	average	unit	price,	and	below-average	quantity,	and	so	forth.
We	then	looked	at	the	top	10	items	each	customer	segment	purchased	the	most
frequently	and	created	scatter	plots	of	different	segments	on	our	feature	space.

Lastly,	we	used	the	Silhouette	Coefficient	to	evaluate	the	cluster	qualities,	and
learned	how	we	can	use	this	as	one	of	the	criteria	for	choosing	the	optimal
number	of	clusters.

From	the	next	chapter,	we	are	going	to	start	building	models	for	audio	and	image
datasets.	In	the	next	chapter,	we	are	going	to	discuss	how	to	build	a	music	genre
recommendation	model	using	a	music	audio	dataset.	We	will	learn	how	to	build
a	ranking	system	where	the	output	is	the	ranks	of	likelihood	of	individual

categories.	We	will	also	learn	what	types	of	metrics	to	use	to	evaluate	such	a
ranking	model.

Music	Genre	Recommendation
	

In	this	chapter,	we	are	going	to	go	back	to	supervised	learning.	We	have	built
numerous	supervised	learning	algorithms	for	both	classification	and	regression
problems	using	learning	algorithms	such	as	logistic	regression,	Naive	Bayes,
random	forest,	and	Support	Vector	Machine	(SVM).	However,	the	number	of
outputs	from	these	models	we	have	built	has	always	been	one.	In	our	Twitter
sentiment	analysis	project,	the	output	could	only	be	one	of	positive,	negative,	or
neutral.	On	the	other	hand,	in	our	housing	price	prediction	project,	the	output
was	a	log	of	house	prices	predicted.	Unlike	our	previous	projects,	there	are	cases
where	we	want	our	machine	learning	(ML)	models	to	output	multiple	values.	A
recommendation	system	is	one	example	of	where	we	need	ML	models	that	can
produce	rank-ordered	predictions.

In	this	chapter,	we	are	going	to	use	a	dataset	that	contains	various	audio	features,
compiled	from	numerous	music	recordings.	With	this	data,	we	are	going	to
explore	how	the	values	of	audio	features,	such	as	kurtosis	and	skewness	of	the
sound	spectrum,	are	distributed	across	different	genres	of	songs.	Then,	we	are
going	to	start	building	multiple	ML	models	that	output	the	predicted
probabilities	of	the	given	song	belonging	to	each	music	genre,	instead	of
producing	just	one	prediction	output	of	the	most	likely	genre	for	a	given	song.
Once	we	have	these	models	built,	we	are	going	to	take	it	a	step	further	and
ensemble	the	prediction	results	of	these	base	models	to	build	a	meta	model	for
the	final	recommendations	of	song	music	genres.	We	are	going	to	use	a	different
model	validation	metric,	Mean	Reciprocal	Rank	(MRR),	to	evaluate	our
ranking	models.

In	this	chapter,	we	will	cover	the	following	topics:

Problem	definition	for	the	Music	Genre	Recommendation	project
Data	analysis	for	the	audio	features	dataset
ML	models	for	music	genre	classification
Ensembling	base	learning	models
Evaluating	recommendation/rank-ordering	models

	

	

Problem	definition
	

Let's	get	into	greater	detail	and	properly	define	what	problems	we	are	going	to
solve	and	what	machine	learning	models	we	are	going	to	build	for	this	project.
Music	streaming	services,	such	as	Pandora	and	Spotify,	require	music
recommendation	systems,	with	which	they	can	recommend	and	play	songs	that
their	listeners	might	like.	There	is	more	than	one	way	to	build	a	music
recommendation	system.	One	way	is	to	look	at	what	other	similar	users	listened
to,	and	the	way	to	define	similar	users	is	to	look	at	the	history	of	songs	that	they
listened	to.	However,	this	approach	will	not	work	well	if	the	user	is	new	to	the
platform	and/or	if	we	do	not	have	enough	of	a	history	of	songs	he	or	she	listened
to.	In	this	case,	we	cannot	rely	on	the	historical	data.	Instead,	it	will	be	better	to
use	the	attributes	of	the	songs	that	the	user	is	currently	listening	to	recommend
other	music.	One	song	attribute	that	can	play	an	important	role	in	music
recommendation	is	the	genre.	It	is	highly	likely	that	a	user	who	is	currently
listening	to	music	on	the	platform	will	like	to	continue	listening	to	the	same	or
similar	music.	Imagine	you	were	listening	to	instrumental	music	and	the	music
streaming	application	then	suddenly	played	rock	music.	It	would	not	be	a
smooth	transition	and	it	would	not	be	a	good	user	experience,	as	you	most	likely
would	have	wanted	to	continue	listening	to	instrumental	music.	By	correctly
identifying	the	genre	of	the	songs	and	recommending	the	right	song	type	to	play,
you	can	avoid	disturbing	the	user	experience	of	your	music	streaming	service.

In	order	to	build	a	music	genre	recommendation	model,	we	are	going	to	use
FMA:	A	Dataset	For	Music	Analysis,	which	contains	a	large	amount	of	data
for	over	100,000	tracks.	The	dataset	contains	information	about	the	album,	title,
audio	attributes,	and	so	forth,	and	the	full	dataset	can	be	found	and	downloaded
from	this	link:	https://github.com/mdeff/fma.	With	this	data,	we	are	going	to	sub-
select	the	features	that	are	of	interest	and	build	numerous	ML	models	that	output
the	probability	of	each	song	belonging	to	different	music	genres.	Then,	we	are
going	to	rank-order	the	genres	by	probability.	We	will	be	experimenting	with
various	learning	algorithms,	such	as	logistic	regression,	Naive	Bayes,	and	SVM.
We	are	going	to	take	it	a	step	further	by	using	the	ensembling	technique	to	take

https://github.com/mdeff/fma

the	output	of	these	models	as	an	input	to	another	ML	model	that	produces	the
final	prediction	and	recommendation	output.	We	are	going	to	use	MRR	as	the
metric	to	evaluate	our	music	genre	recommendation	models.

To	summarize	our	problem	definition	for	the	music	genre	recommendation
project:

What	is	the	problem?	We	need	a	recommendation	model	that	rank-orders
music	genres	by	how	likely	it	is	that	a	song	belongs	to	each	genre,	so	that
we	can	properly	identify	the	genre	of	a	song	and	recommend	what	song	to
play	next.
Why	is	it	a	problem?	Use	of	historical	data	for	music	recommendation	is
not	reliable	for	those	users	who	are	new	to	the	platform,	as	they	will	not
have	enough	historical	data	for	good	music	recommendations.	In	this	case,
we	will	have	to	use	audio	and	other	features	to	identify	what	music	to	play
next.	Correctly	identifying	and	recommending	the	genre	of	music	is	the	first
step	to	figuring	out	what	song	to	play	next.
What	are	some	approaches	to	solving	this	problem?	We	are	going	to	use
publicly	available	music	data,	which	not	only	contains	information	about
the	album,	title,	and	artist	of	the	song,	but	also	contains	information	about
numerous	audio	features.	Then,	we	are	going	to	build	ML	models	that
output	the	probabilities	and	use	this	probability	output	to	rank-order	genres
for	given	song.
What	are	the	success	criteria?	We	want	the	correct	music	genre	to	come	up
as	one	of	the	top	predicted	genres.	We	will	use	MRR	as	the	metric	to
evaluate	ranking	models.

	

	

Data	analysis	for	the	audio	features
dataset
Let's	start	looking	into	the	audio	features	dataset.	In	order	to	focus	on	building
recommendation	models	for	music	genres,	we	trimmed	down	the	original	dataset
from	FMA:	A	Dataset	For	Music	Analysis.	You	can	download	this	data	from
this	link:	https://github.com/yoonhwang/c-sharp-machine-learning/blob/master/ch.7/sample.c
sv.

https://github.com/yoonhwang/c-sharp-machine-learning/blob/master/ch.7/sample.csv

Target	variable	distribution
We	will	first	look	at	the	distribution	of	our	target	variable	for	this	project	and
figure	out	how	many	records	we	have	for	each	genre	in	our	sample	set.	The
following	code	snippet	shows	how	we	aggregated	our	sample	set	by	the	target
variable,	genre_top,	and	counted	the	number	of	records	for	each	genre:

var	genreCount	=	featuresDF.AggregateRowsBy<string,	int>(

				new	string[]	{	"genre_top"	},

				new	string[]	{	"track_id"	},

				x	=>	x.ValueCount

).SortRows("track_id");

genreCount.Print();

var	barChart	=	DataBarBox.Show(

				genreCount.GetColumn<string>("genre_top").Values.ToArray().Select(x	=>	

x.Substring(0,3)),

				genreCount["track_id"].Values.ToArray()

).SetTitle(

				"Genre	Count"

);

Similar	to	previous	chapters,	we	used	the	AggregateRowsBy	method	in	the	Deedle
data	frame	to	count	the	number	of	records	per	genre.	Then,	we	used	the	DataBarBox
class	to	create	a	bar	chart	that	shows	the	distribution	of	the	target	variable
visually.	As	you	can	see	from	this	code	snippet	(in	line	10),	we	are	using	the	first
three	letters	of	each	genre	as	a	label	for	each	genre	in	the	bar	chart.

When	you	run	this	code,	you	will	see	the	following	output	for	the	distribution	of
the	target	variable:

The	following	plot	shows	the	bar	chart	for	the	distribution	of	the	target	variable:

As	you	can	see	from	this	chart,	we	have	the	largest	number	for	Instrumental
(Ins)	music	in	our	sample	set	and	Electronic	(Ele)	and	Rock	(Roc)	follow	as	the
second	and	third.	Although	this	sample	set	contains	some	songs	in	certain	genres
more	so	than	others,	this	is	a	relatively	well	balanced	set,	where	one	or	two
genres	do	not	take	up	the	majority	of	the	sample	records.	Now,	let's	look	at	the
distributions	of	some	of	our	features.

Audio	features	–	MFCC
For	this	project,	we	are	going	to	focus	on	a	subset	of	features	that	the	full	dataset
has.	We	are	going	to	use	Mel	Frequency	Cepstral	Coefficients	(MFCCs)	and
their	statistical	distributions	as	the	features	to	our	ML	models.	Simply	put,
MFCC	is	a	representation	of	the	sound	spectrum	and	we	will	use	its	statistical
distributions,	kurtosis,	skewness,	min,	max,	mean,	median,	and	standard
deviation.	If	you	look	at	the	sample	set	you	have	downloaded	from	the	previous
step,	you	will	see	the	columns	are	named	according	to	the	corresponding
statistical	distribution.	We	are	going	to	first	look	at	the	distributions	of	each	of
these	features.	The	following	code	snippet	shows	how	we	computed	the	quartiles
for	each	feature:

foreach	(string	col	in	featuresDF.ColumnKeys)

{

				if	(col.StartsWith("mfcc"))

				{

								int	idx	=	int.Parse(col.Split('.')[2]);

								if(idx	<=	4)

								{

												Console.WriteLine(String.Format("\n\n--	{0}	Distribution	--	",	col));

												double[]	quantiles	=	Accord.Statistics.Measures.Quantiles(

																featuresDF[col].ValuesAll.ToArray(),

																new	double[]	{	0,	0.25,	0.5,	0.75,	1.0	}

);

												Console.WriteLine(

																"Min:	\t\t\t{0:0.00}\nQ1	(25%	Percentile):	\t{1:0.00}\nQ2	(Median):	

\t\t{2:0.00}\nQ3	(75%	Percentile):	\t{3:0.00}\nMax:	\t\t\t{4:0.00}",

																quantiles[0],	quantiles[1],	quantiles[2],	quantiles[3],	quantiles[4]

);

								}

				}

}

Similar	to	previous	chapters,	we	are	using	the	Quantiles	method	in	the
Accord.Statistics.Measures	class	to	compute	quartiles,	which	are	the	three	numbers
that	separate	the	values	into	four	subsets—the	middle	number	between	the	min
and	median	(25th	percentile),	median	(50th	percentile),	and	the	middle	number
between	the	median	and	max	(75th	percentile).	As	you	can	see	in	line	6	of	this
code	snippet,	we	are	only	showing	the	first	four	coefficients'	statistical
distributions.	For	your	further	experiments,	you	can	look	at	the	distributions	of
all	the	MFCC	features,	not	limited	to	only	these	four.	Let's	quickly	take	a	look	at
just	a	couple	of	the	distributions.

The	distribution	for	the	kurtosis	of	the	first	four	coefficients	looks	like	the
following:

As	you	can	see	from	this	output,	the	majority	of	the	kurtosis	values	fall	between
-2	and	5,	but	there	are	cases	where	the	kurtosis	can	take	large	values.	Let's	now
look	at	the	skewness	distributions	for	the	first	four	coefficients:

Skewness	varies	between	narrower	ranges.	Typically,	the	skewness	values	seem
to	fall	between	-15	and	5.	Lastly,	let's	look	at	the	distributions	of	the	mean	of	the
first	four	coefficients:

As	you	can	see	from	this	output,	the	mean	values	seem	to	vary	and	have	wide
ranges.	It	can	take	any	values	between	-1,000	and	300.

Now	that	we	have	a	rough	idea	of	how	the	audio	features'	distributions	look,	let's
see	if	we	can	find	any	discrepancies	in	the	feature	distributions	among	different
genres.	We	are	going	to	plot	a	scatter	plot	where	the	x	axis	is	the	index	of	each
feature	and	the	y	axis	is	the	values	for	the	given	feature.	Let's	look	at	these	plots
first,	as	it	will	be	easier	to	understand	with	some	visuals.

The	following	plots	show	the	distributions	of	kurtosis	for	four	different	genres:

As	briefly	mentioned	previously,	the	x	axis	refers	to	the	index	of	each	feature.
Since	we	have	20	individual	features	for	kurtosis	of	MFCCs,	the	x-values	span
from	1	to	20.	On	the	other	hand,	the	y	axis	shows	the	distributions	of	the	given
feature.	As	you	can	see	from	this	chart,	there	are	some	differences	in	the	feature
distributions	among	different	genres,	which	will	help	our	ML	models	to	learn
how	to	correctly	predict	the	genre	of	a	given	song.

The	following	plots	show	the	distributions	of	skewness	for	four	different	genres:

Lastly,	the	following	plots	show	the	mean	distributions	for	four	different	genres:

The	distributions	of	the	mean	values	for	each	feature	seem	more	similar	among
different	genres,	when	compared	to	the	kurtosis	and	skewness.

In	order	to	create	these	charts,	we	have	used	the	ScatterplotBox	class.	The
following	code	shows	how	we	created	the	previous	charts:

string[]	attributes	=	new	string[]	{	"kurtosis",	"min",	"max",	"mean",	"median",	

"skew",	"std"	};

foreach	(string	attribute	in	attributes)

{

				string[]	featureColumns	=	featuresDF.ColumnKeys.Where(x	=>	

x.Contains(attribute)).ToArray();

				foreach	(string	genre	in	genreCount.GetColumn<string>("genre_top").Values)

				{

								var	genreDF	=	featuresDF.Rows[

												featuresDF.GetColumn<string>("genre_top").Where(x	=>	x.Value	==	genre).Keys

].Columns[featureColumns];

								ScatterplotBox.Show(

												BuildXYPairs(

																genreDF.Columns[featureColumns].ToArray2D<double>(),

																genreDF.RowCount,

																genreDF.ColumnCount

)

).SetTitle(String.Format("{0}-{1}",	genre,	attribute));

				}

}

As	you	can	see	from	this	code,	we	start	iterating	through	different	statistical
distributions	(kurtosis,	min,	max,	and	so	on)	from	line	2	and,	for	each	of	those
statistical	distributions,	we	sub-select	the	columns	that	we	are	interested	in	from
featuresDF	in	line	7.	Then,	we	wrote	and	used	a	helper	function	that	builds	an
array	of	x-y	pairs	for	the	scatter	plot	and	display	it	using	the	Show	method	of	the
ScatterplotBox	class.

The	code	for	the	helper	function	that	builds	x-y	pairs	for	scatter	plots	is	as
follows:

private	static	double[][]	BuildXYPairs(double[,]	ary2D,	int	rowCount,	int	columnCount)

{

				double[][]	ary	=	new	double[rowCount*columnCount][];

				for	(int	i	=	0;	i	<	rowCount;	i++)

				{

								for	(int	j	=	0;	j	<	columnCount;	j++)

								{

												ary[i	*	columnCount	+	j]	=	new	double[2];

												ary[i	*	columnCount	+	j][0]	=	j	+	1;

												ary[i	*	columnCount	+	j][1]	=	ary2D[i,	j];

								}

				}

				return	ary;

}

As	you	can	see	from	this	code,	this	method	takes	the	index	of	the	feature	as	an	x
value	and	takes	the	value	of	the	feature	as	a	y	value.

The	full	code	for	this	data	analysis	step	can	be	found	at	this	link:	https://github.co
m/yoonhwang/c-sharp-machine-learning/blob/master/ch.7/DataAnalyzer.cs.

https://github.com/yoonhwang/c-sharp-machine-learning/blob/master/ch.7/DataAnalyzer.cs

ML	models	for	music	genre
classification
We	will	now	start	building	ML	models	for	music	genre	classification.	In	this
project,	the	output	of	our	ML	models	will	take	a	slightly	different	form.	Unlike
other	supervised	learning	models	that	we	have	built,	we	want	our	models	to
output	the	likelihoods	or	probabilities	for	each	genre	for	a	given	song.	So,
instead	of	the	model	output	being	one	value,	we	would	like	our	models	to	output
eight	values,	where	each	value	will	represent	the	probability	of	the	given	song
belonging	to	each	of	the	eight	genres—electronic,	experimental,	folk,	hip-hop,
instrumental,	international,	pop,	and	rock.	In	order	to	achieve	this,	we	will	be
using	the	Probabilities	method	from	each	of	the	model	classes,	on	top	of	the	Decide
method	that	we	have	been	using	so	far.

	

Logistic	regression
The	first	model	we	are	going	to	experiment	with	is	logistic	regression.	The
following	code	shows	how	we	built	a	logistic	regression	classifier	with	an	80/20
split	for	training	and	testing	sets:

//	1.	Train	a	LogisticRegression	Classifier

Console.WriteLine("\n----	Logistic	Regression	Classifier	----\n");

var	logitSplitSet	=	new	SplitSetValidation<MultinomialLogisticRegression,	double[]>()

{

				Learner	=	(s)	=>	new	MultinomialLogisticLearning<GradientDescent>()

				{

								MiniBatchSize	=	500

				},

				Loss	=	(expected,	actual,	p)	=>	new	ZeroOneLoss(expected).Loss(actual),

				Stratify	=	false,

				TrainingSetProportion	=	0.8,

				ValidationSetProportion	=	0.2,

};

var	logitResult	=	logitSplitSet.Learn(input,	output);

var	logitTrainedModel	=	logitResult.Model;

//	Store	train	&	test	set	indexes	to	train	other	classifiers	on	the	same	train	set

//	and	test	on	the	same	validation	set

int[]	trainSetIDX	=	logitSplitSet.IndicesTrainingSet;

int[]	testSetIDX	=	logitSplitSet.IndicesValidationSet;

As	you	should	be	familiar	with	it	already,	we	used	SplitSetValidation	to	split	our
sample	set	into	train	and	test	sets.	We	are	using	80%	of	our	sample	set	for
training	and	the	other	20%	for	testing	and	evaluating	our	models.	We	are	using
MultinomialLogisticRegression	as	our	model	for	the	multi-class	classifier	and
MultinomialLogisticLearning	with	GradientDescent	as	our	learning	algorithm.	Similar	to
the	previous	chapters,	we	are	using	ZeroOneLoss	for	our	Loss	function	for	the
classifier.

As	you	can	see	at	the	base	of	this	code,	we	are	storing	the	trained	logistic
regression	classifier	model	into	a	separate	variable,	logitTrainedModel,	and	also	the
indexes	of	the	train	and	test	sets	for	use	in	training	and	testing	other	learning
algorithms.	We	do	this	so	that	we	can	do	head-to-head	comparisons	of	model
performance	among	different	ML	models.

The	code	to	do	in-sample	and	out-of-sample	predictions	using	this	trained
logistic	regression	model	is	as	follows:

//	Get	in-sample	&	out-of-sample	predictions	and	prediction	probabilities	for	each	

class

double[][]	trainProbabilities	=	new	double[trainSetIDX.Length][];

int[]	logitTrainPreds	=	new	int[trainSetIDX.Length];

for	(int	i	=	0;	i	<	trainSetIDX.Length;	i++)

{

				logitTrainPreds[i]	=	logitTrainedModel.Decide(input[trainSetIDX[i]]);

				trainProbabilities[i]	=	logitTrainedModel.Probabilities(input[trainSetIDX[i]]);

}

double[][]	testProbabilities	=	new	double[testSetIDX.Length][];

int[]	logitTestPreds	=	new	int[testSetIDX.Length];

for	(int	i	=	0;	i	<	testSetIDX.Length;	i++)

{

				logitTestPreds[i]	=	logitTrainedModel.Decide(input[testSetIDX[i]]);

				testProbabilities[i]	=	logitTrainedModel.Probabilities(input[testSetIDX[i]]);

}

As	briefly	mentioned	before,	we	are	using	the	Probabilities	method	from	the
MultinomialLogisticRegression	model,	which	outputs	an	array	of	probabilities,	and
each	index	represents	the	probability	of	the	given	song	being	the	corresponding
music	genre.	The	following	code	shows	how	we	encoded	each	of	the	genres:

IDictionary<string,	int>	targetVarCodes	=	new	Dictionary<string,	int>

{

				{	"Electronic",	0	},

				{	"Experimental",	1	},

				{	"Folk",	2	},

				{	"Hip-Hop",	3	},

				{	"Instrumental",	4	},

				{	"International",	5	},

				{	"Pop",	6	},

				{	"Rock",	7	}

};

featuresDF.AddColumn("target",	featuresDF.GetColumn<string>("genre_top").Select(x	=>	

targetVarCodes[x.Value]));

Let's	try	training	another	ML	model	using	the	same	indexes	for	train	and	test	sets
that	we	used	for	the	logistic	regression	model.

SVM	with	the	Gaussian	kernel
Using	the	following	code,	you	can	train	a	multi-class	SVM	model:

//	2.	Train	a	Gaussian	SVM	Classifier

Console.WriteLine("\n----	Gaussian	SVM	Classifier	----\n");

var	teacher	=	new	MulticlassSupportVectorLearning<Gaussian>()

{

				Learner	=	(param)	=>	new	SequentialMinimalOptimization<Gaussian>()

				{

								Epsilon	=	2,

								Tolerance	=	1e-2,

								Complexity	=	1000,

								UseKernelEstimation	=	true

				}

};

//	Train	SVM	model	using	the	same	train	set	that	was	used	for	Logistic	Regression	

Classifier

var	svmTrainedModel	=	teacher.Learn(

				input.Where((x,i)	=>	trainSetIDX.Contains(i)).ToArray(),

				output.Where((x,	i)	=>	trainSetIDX.Contains(i)).ToArray()

);

As	you	can	see	from	this	code,	there	is	one	minor	difference	between	the	SVM
model	that	we	built	previously.	We	are	using	MulticlassSupportVectorLearning	instead
of	LinearRegressionNewtonMethod	or	FanChenLinSupportVectorRegression,	which	we	used	in	C
hapter	5,	Fair	Value	of	House	and	Property.	This	is	because	we	now	have	a	multi-
class	classification	problem	and	need	to	use	a	different	learning	algorithm	for
such	SVM	models.	As	we	discussed	in	another	chapter	previously,	the	hyper-
parameters,	such	as	Epsilon,	Tolerance,	and	Complexity,	can	be	tuned	and	you	should
experiment	with	other	values	for	better-performing	models.

One	thing	to	note	here	is	that	when	we	are	training	our	SVM	model,	we	use	the
same	train	set	that	we	used	for	building	the	logistic	regression	model.	As	you
can	see	at	the	base	of	the	code,	we	sub-select	records	with	the	same	indexes	in
the	train	set	that	we	used	previously	for	the	logistic	regression	model.	This	is	to
make	sure	that	we	can	correctly	do	a	head-to-head	comparison	of	the
performance	of	this	SVM	model	against	that	of	the	logistic	regression	model.

Similar	to	the	case	of	the	previous	logistic	regression	model,	we	are	using	the
following	code	for	in-sample	and	out-of-sample	predictions,	using	the	trained
SVM	model:

//	Get	in-sample	&	out-of-sample	predictions	and	prediction	probabilities	for	each	

class

double[][]	svmTrainProbabilities	=	new	double[trainSetIDX.Length][];

int[]	svmTrainPreds	=	new	int[trainSetIDX.Length];

for	(int	i	=	0;	i	<	trainSetIDX.Length;	i++)

{

				svmTrainPreds[i]	=	svmTrainedModel.Decide(input[trainSetIDX[i]]);

				svmTrainProbabilities[i]	=	svmTrainedModel.Probabilities(input[trainSetIDX[i]]);

}

double[][]	svmTestProbabilities	=	new	double[testSetIDX.Length][];

int[]	svmTestPreds	=	new	int[testSetIDX.Length];

for	(int	i	=	0;	i	<	testSetIDX.Length;	i++)

{

				svmTestPreds[i]	=	svmTrainedModel.Decide(input[testSetIDX[i]]);

				svmTestProbabilities[i]	=	svmTrainedModel.Probabilities(input[testSetIDX[i]]);

}

The	MulticlassSupportVectorMachine	class	also	provides	the	Probabilities	method,	with
which	we	can	get	the	likelihoods	of	a	song	belonging	to	each	of	the	eight	genres.
We	store	these	probability	outputs	into	separate	variables,	svmTrainProbabilities
and	svmTestProbabilities,	for	our	future	model	evaluation	and	for	ensembling	the
models.

Naive	Bayes
We	are	going	to	build	one	more	machine	learning	model	for	music	genre
classification.	We	are	going	to	train	a	Naive	Bayes	classifier.	The	following	code
shows	how	you	can	build	a	Naive	Bayes	classifier	for	input	with	continuous
values:

//	3.	Train	a	NaiveBayes	Classifier

Console.WriteLine("\n----	NaiveBayes	Classifier	----\n");

var	nbTeacher	=	new	NaiveBayesLearning<NormalDistribution>();

var	nbTrainedModel	=	nbTeacher.Learn(

				input.Where((x,	i)	=>	trainSetIDX.Contains(i)).ToArray(),

				output.Where((x,	i)	=>	trainSetIDX.Contains(i)).ToArray()

);

As	you	can	see	from	this	code,	we	are	using	NormalDistribution	as	a	distribution	for
NaiveBayesLearning.	Unlike	in	the	previous	chapters,	where	we	had	word	counts	as
features	of	our	Naive	Bayes	classifiers,	we	have	continuous	values	for	our	audio
features.	In	this	case,	we	need	to	build	a	Gaussian	Naive	Bayes	classifier.	Similar
to	when	we	were	building	an	SVM	model,	we	are	training	our	Naive	Bayes
classifier	with	the	same	train	set	that	we	used	for	the	logistic	regression	model.

The	following	code	shows	how	we	can	get	the	probability	output	for	in-sample
and	out-of-sample	predictions	using	the	trained	Naive	Bayes	classifier:

//	Get	in-sample	&	out-of-sample	predictions	and	prediction	probabilities	for	each	

class

double[][]	nbTrainProbabilities	=	new	double[trainSetIDX.Length][];

int[]	nbTrainPreds	=	new	int[trainSetIDX.Length];

for	(int	i	=	0;	i	<	trainSetIDX.Length;	i++)

{

				nbTrainProbabilities[i]	=	nbTrainedModel.Probabilities(input[trainSetIDX[i]]);

				nbTrainPreds[i]	=	nbTrainedModel.Decide(input[trainSetIDX[i]]);

}

double[][]	nbTestProbabilities	=	new	double[testSetIDX.Length][];

int[]	nbTestPreds	=	new	int[testSetIDX.Length];

for	(int	i	=	0;	i	<	testSetIDX.Length;	i++)

{

				nbTestProbabilities[i]	=	nbTrainedModel.Probabilities(input[testSetIDX[i]]);

				nbTestPreds[i]	=	nbTrainedModel.Decide(input[testSetIDX[i]]);

}

Similar	to	the	MulticlassSupportVectorMachine	and	MultinomialLogisticRegression	classes,
the	NaiveBayes	model	also	provides	the	Probabilities	method.	As	you	can	see	from

the	code,	we	store	the	predicted	probabilities	for	both	in-sample	and	out-of-
sample	records	into	two	separate	variables,	nbTrainProbabilities	and
nbTestProbabilities.

In	the	following	section,	we	will	take	a	look	at	how	we	can	combine	and
ensemble	these	models	we	have	built	so	far.	The	full	code	for	building	ML
models	can	be	found	at	this	link:	https://github.com/yoonhwang/c-sharp-machine-learning
/blob/master/ch.7/Modeling.cs.

https://github.com/yoonhwang/c-sharp-machine-learning/blob/master/ch.7/Modeling.cs

Ensembling	base	learning	models
Ensemble	learning	is	where	you	combine	trained	models	together	in	order	to
improve	their	predictive	power.	The	random	forest	classifier	that	we	built	in
previous	chapters	is	an	example	of	ensemble	learning.	It	builds	a	forest	of
decision	trees,	where	the	individual	trees	are	trained	with	a	portion	of	the
samples	and	features	in	the	sample	set.	This	method	of	ensemble	learning	is
called	bagging.	The	ensemble	method	that	we	are	going	to	use	in	this	chapter	is
stacking.	Stacking	is	when	you	build	a	new	ML	model	using	the	outputs	of	the
other	models,	which	are	called	base	learning	models.

In	this	project,	we	are	going	to	built	a	new	Naive	Bayes	classifier	model	on	top
of	the	predicted	probability	output	from	those	logistic	regression,	SVM,	and
Naive	Bayes	models	that	we	built	in	the	previous	section.	The	first	thing	we
need	to	do	to	build	a	new	model	with	the	probability	output	of	the	base	models	is
to	build	the	training	input.	The	following	code	shows	how	we	combined	all	the
outputs	from	the	base	models:

//	4.	Ensembling	Base	Models

Console.WriteLine("\n--	Building	Meta	Model	--");

double[][]	combinedTrainProbabilities	=	new	double[trainSetIDX.Length][];

for	(int	i	=	0;	i	<	trainSetIDX.Length;	i++)

{

				List<double>	combined	=	trainProbabilities[i]

								.Concat(svmTrainProbabilities[i])

								.Concat(nbTrainProbabilities[i])

								.ToList();

				combined.Add(logitTrainPreds[i]);

				combined.Add(svmTrainPreds[i]);

				combined.Add(nbTrainPreds[i]);

				combinedTrainProbabilities[i]	=	combined.ToArray();

}

double[][]	combinedTestProbabilities	=	new	double[testSetIDX.Length][];

for	(int	i	=	0;	i	<	testSetIDX.Length;	i++)

{

				List<double>	combined	=	testProbabilities[i]

								.Concat(svmTestProbabilities[i])

								.Concat(nbTestProbabilities[i])

								.ToList();

				combined.Add(logitTestPreds[i]);

				combined.Add(svmTestPreds[i]);

				combined.Add(nbTestPreds[i]);

				combinedTestProbabilities[i]	=	combined.ToArray();

}

Console.WriteLine("\n*	input	shape:	({0},	{1})\n",	combinedTestProbabilities.Length,	

combinedTestProbabilities[0].Length);

As	you	can	see	from	this	code,	we	are	concatenating	the	predicted	probabilities
from	all	three	models	that	we	built	so	far.	Using	this	probability	output	data	as
input,	we	are	going	to	build	a	new	meta-model,	using	the	Naive	Bayes	learning
algorithm.	The	following	code	is	how	we	trained	this	meta-model:

//	Build	meta-model	using	NaiveBayes	Learning	Algorithm

var	metaModelTeacher	=	new	NaiveBayesLearning<NormalDistribution>();

var	metamodel	=	metaModelTeacher.Learn(

				combinedTrainProbabilities,	

				output.Where((x,	i)	=>	trainSetIDX.Contains(i)).ToArray()

);

From	this	code,	you	can	see	that	we	are	still	using	NormalDistribution,	as	the	input
is	a	set	of	continuous	values.	Then,	we	train	this	new	Naive	Bayes	classifier	with
the	combined	probability	output	of	the	base	learning	models	that	we	trained
before.	Similar	to	the	previous	steps,	we	get	the	prediction	output	from	this
meta-model	by	using	the	Probabilities	method	and	store	these	results	into	separate
variables.	The	code	to	get	the	prediction	output	for	the	train	and	test	sets	using
this	new	meta-model	is	as	follows:

//	Get	in-sample	&	out-of-sample	predictions	and	prediction	probabilities	for	each	

class

double[][]	metaTrainProbabilities	=	new	double[trainSetIDX.Length][];

int[]	metamodelTrainPreds	=	new	int[trainSetIDX.Length];

for	(int	i	=	0;	i	<	trainSetIDX.Length;	i++)

{

				metaTrainProbabilities[i]	=	metamodel.Probabilities(combinedTrainProbabilities[i]);

				metamodelTrainPreds[i]	=	metamodel.Decide(combinedTrainProbabilities[i]);

}

double[][]	metaTestProbabilities	=	new	double[testSetIDX.Length][];

int[]	metamodelTestPreds	=	new	int[testSetIDX.Length];

for	(int	i	=	0;	i	<	testSetIDX.Length;	i++)

{

				metaTestProbabilities[i]	=	metamodel.Probabilities(combinedTestProbabilities[i]);

				metamodelTestPreds[i]	=	metamodel.Decide(combinedTestProbabilities[i]);

}

Now	that	we	have	all	the	models	built,	let's	start	looking	at	the	performances	of
these	models.	In	the	following	section,	we	will	evaluate	the	performance	of	base
models	as	well	as	the	meta-model	we	just	built.

Evaluating	recommendation/rank-
ordering	models
Evaluating	recommendation	models	that	rank-order	the	outcomes	is	quite
different	from	evaluating	classification	models.	Aside	from	whether	the	model
prediction	is	right	or	wrong,	we	also	care	about	in	which	rank	the	correct
outcome	comes	in	the	recommendation	models.	In	other	words,	a	model	that
predicted	the	correct	outcome	to	be	the	second	from	the	top	is	a	better	model
than	a	model	that	predicted	the	correct	outcome	to	be	fourth	or	fifth	from	the	top.
For	example,	when	you	search	for	something	on	a	search	engine,	getting	the
most	appropriate	document	on	the	top	of	the	first	page	is	great,	but	it	is	still	OK
to	have	that	document	as	the	second	or	third	link	on	the	first	page,	as	long	as	it
does	not	appear	at	the	bottom	of	the	first	page	or	the	next	page.	We	are	going	to
discuss	some	ways	to	evaluate	such	recommendation	and	ranking	models	in	the
following	sections.

	

Prediction	accuracy
The	first	and	the	simplest	metric	to	look	at	is	accuracy.	For	the	first	logistic
regression	model	we	built,	we	can	use	the	following	code	to	get	the	accuracy:

Console.WriteLine(String.Format("train	accuracy:	{0:0.0000}",	1-

logitResult.Training.Value));

Console.WriteLine(String.Format("validation	accuracy:	{0:0.0000}",	1-

logitResult.Validation.Value));

For	the	following	models,	SVM	and	Naive	Bayes	classifiers,	we	can	use	the
following	code	to	compute	the	accuracy	for	the	train	and	test	set	predictions:

Console.WriteLine(

				String.Format(

								"train	accuracy:	{0:0.0000}",

								1	-	new	ZeroOneLoss(output.Where((x,	i)	=>	

trainSetIDX.Contains(i)).ToArray()).Loss(nbTrainPreds)

)

);

Console.WriteLine(

				String.Format(

								"validation	accuracy:	{0:0.0000}",

								1	-	new	ZeroOneLoss(output.Where((x,	i)	=>	

testSetIDX.Contains(i)).ToArray()).Loss(nbTestPreds)

)

);

We	used	the	SplitSetValidation	class	for	the	first	logistic	regression	model,	so	it
computes	the	accuracy	while	the	model	is	being	fit.	However,	for	the	subsequent
models,	we	trained	SVM	and	Naive	Bayes	models	individually,	so	we	need	to
use	the	ZeroOneLoss	class	to	compute	accuracies.

When	you	run	this	code,	you	will	see	the	accuracy	output	for	the	logistic
regression	model	as	follows:

For	the	Naive	Bayes	model,	the	accuracy	results	look	as	follows:

And	for	the	SVM	model,	the	output	looks	as	follows:

Lastly,	the	accuracy	results	for	the	meta-model	look	as	follows:

From	these	results,	we	can	see	that	the	Naive	Bayes	classifier	performed	the	best
by	predicting	the	correct	genre	for	about	42%	of	the	time.	The	logistic	regression
model	comes	in	as	the	second	best	model	with	the	second	highest	accuracy	and
the	SVM	model	comes	in	as	the	worst	model	in	terms	of	prediction	accuracy.
Interestingly,	the	meta-model	that	we	built	with	the	output	from	the	other	three
models	did	not	perform	so	well.	It	did	better	than	the	SVM	model,	but	performed
worse	than	the	Naive	Bayes	and	logistic	regression	classifiers.

Confusion	matrices
The	next	thing	we	are	going	to	look	at	is	confusion	matrices.	In	the	case	of
binary	classification	in	Chapter	2,	Spam	Email	Filtering,	we	explored	a	case
where	the	confusion	matrix	was	a	2	x	2	matrix.	However,	in	this	project,	our
models	have	8	outcomes	and	the	shape	of	the	confusion	matrix	will	be	8	x	8.
Let's	first	look	at	how	we	can	build	such	a	confusion	matrix:

//	Build	confusion	matrix

string[]	confMatrix	=	BuildConfusionMatrix(

				output.Where((x,	i)	=>	testSetIDX.Contains(i)).ToArray(),	logitTestPreds,	8

);

System.IO.File.WriteAllLines(Path.Combine(dataDirPath,	"logit-conf-matrix.csv"),	

confMatrix);

The	code	for	the	helper	function,	BuildConfusionMatrix,	looks	as	follows:

private	static	string[]	BuildConfusionMatrix(int[]	actual,	int[]	preds,	int	numClass)

{

				int[][]	matrix	=	new	int[numClass][];

				for(int	i	=	0;	i	<	numClass;	i++)

				{

								matrix[i]	=	new	int[numClass];

				}

				for(int	i	=	0;	i	<	actual.Length;	i++)

				{

								matrix[actual[i]][preds[i]]	+=	1;

				}

				string[]	lines	=	new	string[numClass];

				for(int	i	=	0;	i	<	matrix.Length;	i++)

				{

								lines[i]	=	string.Join(",",	matrix[i]);

				}

				return	lines;

}

Once	you	run	this	code,	you	are	going	to	get	an	8	x	8	matrix,	where	the	rows	are
the	actual	and	observed	genres	and	the	columns	are	the	predicted	genres	from
the	models.	The	following	is	the	confusion	matrix	for	our	logistic	regression
model:

The	numbers	in	bold	represent	the	number	of	records	that	the	model	predicted
correctly.	For	example,	this	logistic	regression	model	predicted	79	songs
correctly	as	Electronic	and	33	songs	were	predicted	as	Electronic,	where	they
were	actually	Experimental.	One	thing	noticeable	here	is	that	this	logistic
regression	model	did	not	do	so	well	for	predicting	Pop	songs.	It	only	had	one
prediction	for	Pop,	but	that	prediction	was	wrong	and	the	song	was	actually	a
Hip-Hop	song.	Let's	now	look	at	the	confusion	matrix	of	the	Naive	Bayes
classifier's	predictions:

As	expected	from	the	accuracy	results,	the	confusion	matrix	looks	better	than
that	for	logistic	regression.	A	higher	proportion	of	predictions	in	each	category
were	right,	when	compared	to	the	logistic	regression	classifier.	The	Naive	Bayes
classifier	seemed	to	do	much	better	for	Pop	songs	as	well.

The	following	is	the	confusion	matrix	for	the	SVM	classifier:

As	expected,	the	prediction	results	are	not	good.	The	SVM	model	predicted
100%	of	the	records	as	Electronic.	Lastly,	let's	look	at	how	the	meta-model	did:

This	confusion	matrix	looks	slightly	better	than	that	of	the	SVM	model.
However,	the	majority	of	the	predictions	were	either	Instrumental	or
International	and	only	a	handful	of	records	were	predicted	as	other	genres.

Looking	at	the	confusion	matrix	is	a	good	way	to	check	misclassifications	by
models	and	find	out	the	weaknesses	and	strengths	of	the	models.	These	results
are	well	aligned	with	the	accuracy	results,	where	the	Naive	Bayes	classifier
outperformed	all	the	other	models	and	the	meta-model	did	not	do	so	well,
although	it	is	not	the	worst	among	the	four	models	that	we	have	built.

Mean	Reciprocal	Rank
The	next	evaluation	metric	we	are	going	to	look	at	is	MRR.	MRR	can	be	used
where	a	model	produces	a	list	of	outcomes	and	it	measures	the	overall	quality	of
the	rankings.	Let's	first	look	at	the	equation:

As	you	can	see,	it	is	an	average	of	the	sum	of	the	inverse	of	the	ranks.	Consider
the	following	example:

In	the	first	example,	the	correct	genre	was	the	second	in	rank,	so	the	reciprocal
rank	is	1/2.	The	second	example's	correct	genre	was	the	first	in	rank,	so	the
reciprocal	rank	is	1/1,	which	is	1.	Following	this	process,	we	can	get	the
reciprocal	ranks	for	all	the	records	and	the	final	MRR	value	is	simply	the
average	of	those	reciprocal	ranks.	This	tells	us	the	general	quality	of	the
rankings.	In	this	example,	the	MRR	is	0.57,	which	is	above	1/2.	So,	this	MRR
number	suggests	that,	on	average,	the	correct	genres	come	up	within	the	top	two
predicted	genres	by	the	model.

In	order	to	compute	the	MRR	for	our	models,	we	first	need	to	transform	the
probability	output	into	rankings	and	then	compute	the	MRR	from	this
transformed	model	output.	The	following	code	snippet	shows	how	we	computed
the	MRR	for	our	models:

//	Calculate	evaluation	metrics

int[][]	logitTrainPredRanks	=	GetPredictionRanks(trainProbabilities);

int[][]	logitTestPredRanks	=	GetPredictionRanks(testProbabilities);

double	logitTrainMRRScore	=	ComputeMeanReciprocalRank(

				logitTrainPredRanks,

				output.Where((x,	i)	=>	trainSetIDX.Contains(i)).ToArray()

);

double	logitTestMRRScore	=	ComputeMeanReciprocalRank(

				logitTestPredRanks,

				output.Where((x,	i)	=>	testSetIDX.Contains(i)).ToArray()

);

Console.WriteLine("\n----	Logistic	Regression	Classifier	----\n");

Console.WriteLine(String.Format("train	MRR	score:	{0:0.0000}",	logitTrainMRRScore));

Console.WriteLine(String.Format("validation	MRR	score:	{0:0.0000}",	

logitTestMRRScore));

This	code	uses	two	helper	functions,	GetPredictionRanks	and	ComputeMeanReciprocalRank.
The	GetPredictionRanks	method	transforms	the	probability	output	of	a	model	into
rankings	and	the	ComputeMeanReciprocalRank	method	calculates	the	MRR	from	the
rankings.	The	helper	function,	GetPredictionRanks,	looks	as	follows:

private	static	int[][]	GetPredictionRanks(double[][]	predProbabilities)

{

				int[][]	rankOrdered	=	new	int[predProbabilities.Length][];

				for(int	i	=	0;	i<	predProbabilities.Length;	i++)

				{

								rankOrdered[i]	=	Matrix.ArgSort<double>(predProbabilities[i]).Reversed();

				}

				return	rankOrdered;

}

We	are	using	the	Matrix.ArgSort	method	from	the	Accord.Math	package	to	rank-order
the	genres	for	each	record.	Matrix.ArgSort	returns	the	indexes	of	the	genres	after
sorting	them	by	probability	in	ascending	order.	However,	we	want	them	to	be
sorted	in	descending	order	so	that	the	most	likely	genre	comes	up	as	the	first	in
rank.	This	is	why	we	reverse	the	order	of	the	sorted	indexes	using	the	Reversed
method.

The	helper	function,	ComputeMeanReciprocalRank,	looks	as	follows:

private	static	double	ComputeMeanReciprocalRank(int[][]	rankOrderedPreds,	int[]	

actualClasses)

{

				int	num	=	rankOrderedPreds.Length;

				double	reciprocalSum	=	0.0;

				for(int	i	=	0;	i	<	num;	i++)

				{

								int	predRank	=	0;

								for(int	j	=	0;	j	<	rankOrderedPreds[i].Length;	j++)

								{

												if(rankOrderedPreds[i][j]	==	actualClasses[i])

												{

																predRank	=	j	+	1;

												}

								}

								reciprocalSum	+=	1.0	/	predRank;

				}

				return	reciprocalSum	/	num;

}

This	is	our	implementation	of	the	equation	for	the	MRR	calculation	that	we
discussed	previously.	This	method	iterates	through	each	record	and	gets	the	rank
of	the	correct	genre.	Then,	it	reciprocates	the	rank,	sums	all	of	the	reciprocals,
and	finally	divides	this	sum	by	the	number	of	records	to	get	the	MRR	number.

Let's	start	looking	at	the	MRR	scores	for	the	models	that	we	have	built	so	far.
The	following	output	shows	the	MRR	scores	for	the	Logistic	Regression	Classifier:

The	in-sample	and	out-of-sample	MRR	scores	for	the	Naive	Bayes	classifier
look	as	follows:

And	the	results	for	the	SVM	classifier	are	as	follows:

Lastly,	the	MRR	scores	for	the	meta-model	look	as	follows:

From	these	outputs,	we	can	see	that	the	Naive	Bayes	classifier	has	the	best	MRR
scores	at	around	0.61,	while	the	SVM	classifier	has	the	worst	MRR	scores	at
around	0.33.	The	meta-model	has	MRR	scores	at	around	0.4.	This	is	aligned	with
the	results	we	have	found	from	looking	at	the	prediction	accuracy	and	confusion
matrix	in	the	previous	steps.	From	these	MRR	scores,	we	can	see	that	the	correct
genres	generally	fall	within	the	top	two	ranks	for	the	Naive	Bayes	classifier.	On

the	other	hand,	the	correct	genres	typically	come	up	as	the	third	from	the	top	for
the	SVM	classifier	and	within	the	top	three	for	the	meta-model.	As	you	can	see
from	these	cases,	we	can	understand	the	overall	quality	of	the	rankings	by
looking	at	the	MRR	measures.

Summary
In	this	chapter,	we	built	our	first	recommendation	model	to	rank-order	the
likelihood	of	each	of	the	outcomes.	We	started	this	chapter	by	defining	the
problems	that	we	were	going	to	solve	and	the	modeling	and	the	evaluation
approaches	that	we	were	going	to	use.	Then,	we	looked	at	the	distributions	of	the
variables	in	our	sample	set.	First,	we	looked	at	how	well	the	target	variables
were	distributed	among	different	classes	or	genres	and	noticed	that	it	was	a	well-
balanced	sample	set	with	no	one	genre	taking	up	the	majority	of	the	samples	in
our	dataset.	Then,	we	looked	at	the	distributions	of	the	audio	features.	In	this
project,	we	focused	mainly	on	MFCCs	and	their	statistical	distributions,	such	as
kurtosis,	skewness,	min,	and	max.	By	looking	at	the	quartiles	and	the	scatter
plots	of	these	features,	we	confirmed	that	the	feature	distributions	differed
among	the	music	genres.

During	our	model-building	step,	we	experimented	with	three	learning
algorithms:	logistic	regression,	SVM,	and	Naive	Bayes.	Since	we	were	building
multi-class	classification	models,	we	had	to	use	different	learning	algorithms
from	previous	chapters.	We	learned	how	to	use	the	MultinomialLogisticRegression
and	MulticlassSupportVectorMachine	classes	in	the	Accord.NET	framework,	as	well	as
when	to	use	NormalDistribution	for	NaiveBayesLearning.	We	then	discussed	how	we
could	build	a	meta-model	that	ensembled	the	prediction	results	from	the	base
learning	models	to	improve	the	predictive	power	of	the	ML	models.	Lastly,	we
discussed	how	evaluating	ranking	models	differed	from	other	classification
models	and	looked	at	the	accuracy,	confusion	matrix,	and	MRR	metrics	to
evaluate	our	ML	models.

In	the	next	chapter,	we	are	going	to	use	a	hand-written	digit	image	dataset	to
build	a	classifier	that	classifies	each	image	into	the	corresponding	digit.	We	are
going	to	discuss	some	techniques	to	reduce	the	dimensions	of	the	feature	set	and
how	to	apply	them	to	the	image	dataset.	We	will	also	discuss	how	to	build	a
neural	network	in	C#	using	the	Accord.NET	framework,	which	is	the	backbone
of	deep	learning.

	

Handwritten	Digit	Recognition
	

We	have	looked	at	how	to	build	recommendation	models	using	multi-class
classification	models.	In	this	chapter,	we	are	going	to	expand	our	knowledge	and
experience	of	building	multi-class	classification	models	with	an	image	dataset.
Image	recognition	is	a	well-known	machine	learning	(ML)	problem	and	is	one
of	the	topics	that	are	actively	being	researched.	One	image	recognition	problem
that	has	high	applicability	to	our	lives	is	recognizing	handwritten	letters	and
digits.	A	good	example	of	the	application	of	a	handwritten	image	recognition
system	is	the	address	recognition	system	that	is	used	at	post	offices.	Using	such	a
technology,	post	offices	can	now	automatically	and	more	quickly	identify
addresses	that	are	written	by	hand,	and	expedite	and	improve	overall	mailing
services.

In	this	chapter,	we	are	going	to	build	machine	learning	models	for	handwritten
digit	recognition.	We	are	going	to	start	with	a	dataset	that	contains	grayscale
pixel-by-pixel	information	about	over	40,000	handwritten	digit	images.	We	will
look	at	the	distributions	of	the	values	in	each	pixel	and	discuss	how	sparse	this
grayscale	image	dataset	is.	Then,	we	are	going	to	discuss	when	and	how	to	apply
dimensionality	reduction	techniques,	more	specifically	Principal	Component
Analysis	(PCA),	and	how	we	can	benefit	from	this	technique	for	our	image
recognition	project.	We	will	be	exploring	different	learning	algorithms,	such	as
logistic	regression	and	Naive	Bayes,	and	will	also	cover	how	to	build	an
Artificial	Neural	Network	(ANN),	which	forms	the	backbone	of	deep	learning
technologies,	using	the	Accord.NET	framework.	Then,	we	will	compare	the
prediction	performances	of	these	ML	models	by	looking	at	various	evaluation
metrics,	and	discuss	which	model	performed	the	best	for	the	handwritten	digit
recognition	project.

In	this	chapter,	we	will	cover	the	following	topics:

Problem	definition	for	the	handwritten	digit	recognition	project
Data	analysis	for	an	image	dataset
Feature	engineering	and	dimensionality	reduction

ML	models	for	handwritten	digit	recognition
Evaluating	multi-class	classification	models

	

	

Problem	definition
	

Image	recognition	technology	can	be	applied	to,	and	can	be	found	easily	in,	our
daily	lives.	At	post	offices,	image	recognition	systems	are	used	to
programmatically	understand	addresses	that	are	written	by	hand.	Social	network
services,	such	as	Facebook,	use	image	recognition	technology	for	automatic
people	tag	suggestions,	for	instance,	when	you	want	to	tag	people	in	your
photos.	Also,	as	briefly	mentioned	in	the	very	first	chapter	of	this	book,
Microsoft's	Kinect	uses	image	recognition	technology	for	its	motion-sensing
games.	Of	these	real-life	applications,	we	are	going	to	experiment	with	building
a	handwritten	digit	recognition	system.	As	you	can	imagine,	such	digit	image
recognition	models	and	systems	can	be	used	for	automated	handwritten	address
recognition	at	post	offices.	Before	we	had	this	ability	to	teach	machines	to
identify	and	understand	handwritten	digits,	people	had	to	go	through	and	look	at
each	letter	to	find	out	the	destination	and	the	origin	of	individual	letters.
However,	now	that	we	can	train	machines	to	understand	handwritten	addresses,
mailing	processes	have	become	much	easier	and	faster.

In	order	to	build	a	handwritten	digit	recognition	model,	we	are	going	to	use	the
MNIST	dataset,	which	has	over	60,000	handwritten	digit	images.	The	MNIST
dataset	contains	28	x	28	images	that	are	in	grayscale.	You	can	find	more
information	at	this	link:	http://yann.lecun.com/exdb/mnist/.	For	this	project,	we	will
be	using	a	cleaned	and	processed	MNIST	dataset	that	can	be	found	at	this	link:	ht
tps://www.kaggle.com/c/digit-recognizer/data.	With	this	data,	we	will	first	look	at	how
the	digits	are	distributed	across	the	dataset,	and	how	sparse	the	feature	set	is.
Then,	we	are	going	to	use	PCA	for	dimensionality	reduction	and	to	visualize	the
differences	in	the	distributions	of	features	among	different	classes.	With	this
PCA-transformed	data,	we	are	going	to	train	a	few	ML	models	to	compare	their
prediction	performances.	On	top	of	logistic	regression	and	Naive	Bayes
classification	algorithms,	we	are	going	to	experiment	with	the	ANN,	as	it	is
known	to	work	well	for	image	datasets.	We	will	look	at	accuracy,	precision
versus	recall,	and	area	under	the	curve	(AUC),	to	compare	the	prediction
performances	among	different	machine	learning	models.

http://yann.lecun.com/exdb/mnist/
https://www.kaggle.com/c/digit-recognizer/data

To	summarize	our	problem	definition	for	the	handwritten	digit	recognition
project:

What	is	the	problem?	We	need	a	handwritten	digit	recognition	model	that
can	classify	each	handwritten	image	into	a	corresponding	digit	class,	so	that
it	can	be	used	for	applications	such	as	the	address	recognition	system.
Why	is	it	a	problem?	Without	such	a	model,	it	takes	an	enormous	amount	of
human	labor	to	identify	and	organize	letters	by	addresses.	If	we	have	a
technology	that	can	recognize	handwritten	digits	that	are	written	on	letters,
it	can	significantly	reduce	the	amount	of	human	labor	required	for	the	same
task.
What	are	some	of	the	approaches	to	solving	this	problem?	We	are	going	to
use	publicly	available	data	that	contains	numerous	examples	of	handwritten
digit	images.	With	this	data,	we	are	going	to	build	machine	learning	models
that	can	classify	each	image	into	one	of	10	digits.
What	are	the	success	criteria?	We	want	a	machine	learning	model	that
accurately	classifies	each	image	with	the	corresponding	digit.	Since	this
model	will	eventually	be	used	for	address	recognition,	we	want	high
precision	rates,	even	if	we	have	to	sacrifice	recall	rates.

	

	

Data	analysis	for	the	image	dataset
Let's	start	looking	into	this	image	dataset.	As	mentioned	in	the	previous	section,
we	will	be	using	the	data	from	this	link:	https://www.kaggle.com/c/digit-recognizer/dat
a.	You	can	download	the	train.csv	data	from	the	link	and	store	it	in	a	place	from
where	you	can	load	it	into	your	C#	environment.

	

https://www.kaggle.com/c/digit-recognizer/data

Target	variable	distribution
The	first	thing	we	are	going	to	look	at	is	the	distribution	of	the	target	variables.
Our	target	variable	is	encoded	in	the	label	column,	which	can	take	values
between	0	and	9,	and	represents	the	digit	that	the	image	belongs	to.	The
following	code	snippet	shows	how	we	aggregated	the	data	by	the	target	variable
and	counted	the	number	of	examples	for	each	digit:	var	digitCount	=
featuresDF.AggregateRowsBy<string,	int>(
new	string[]	{	"label"	},
new	string[]	{	"pixel0"	},
x	=>	x.ValueCount
).SortRows("pixel0");

digitCount.Print();

var	barChart	=	DataBarBox.Show(
digitCount.GetColumn<string>("label").Values.ToArray(),
digitCount["pixel0"].Values.ToArray()
).SetTitle(
"Digit	Count"
);

As	in	other	chapters,	we	used	the	AggregateRowsBy	method	in	Deedle's	data	frame	to
aggregate	data	by	the	target	variable,	label,	count	the	number	of	records	in	each
label,	and	sort	by	the	counts.	Similar	to	previous	chapters,	we	are	using	the
DataBarBox	class	to	display	a	bar	plot	of	target	variable	distributions	in	the	dataset.
The	following	is	the	bar	plot	that	you	will	see	when	you	run	this	code:	

In	the	console	output,	you	will	see	the	following:

As	you	can	see	from	the	bar	plot	and	this	console	output,	the	digit	1,	occurs	the
most	in	the	dataset,	and	the	digit	5,	occurs	the	least.	However,	there	is	no	one
class	that	takes	the	majority	of	the	examples	in	the	dataset,	and	the	target
variables	are	pretty	well	balanced	and	spread	across	different	classes.

Handwritten	digit	images
Before	we	start	looking	into	the	feature	set,	let's	first	look	at	actual	images	of
handwritten	digits.	In	each	record	of	our	dataset,	we	have	the	grayscale	values
for	784	pixels	for	each	of	the	28	x	28	images.	In	order	to	build	an	image	from
this	flattened	dataset,	we	need	to	first	convert	each	array	of	784-pixel	values	into
a	two-dimensional	array.	The	following	code	shows	the	helper	function	we	wrote
to	create	an	image	from	a	flattened	array:

private	static	void	CreateImage(int[]	rows,	string	digit)

{

				int	width	=	28;

				int	height	=	28;

				int	stride	=	width	*	4;

				int[,]	pixelData	=	new	int[width,	height];

				for	(int	i	=	0;	i	<	width;	++i)

				{

								for	(int	j	=	0;	j	<	height;	++j)

								{

												byte[]	bgra	=	new	byte[]	{	(byte)rows[28	*	i	+	j],	(byte)rows[28	*	i	+	j],	

(byte)rows[28	*	i	+	j],	255	};

												pixelData[i,	j]	=	BitConverter.ToInt32(bgra,	0);

								}

				}

				Bitmap	bitmap;

				unsafe

				{

								fixed	(int*	ptr	=	&pixelData[0,	0])

								{

												bitmap	=	new	Bitmap(width,	height,	stride,	PixelFormat.Format32bppRgb,	new	

IntPtr(ptr));

								}

				}

				bitmap.Save(

								String.Format(@"\\Mac\Home\Documents\c-sharp-machine-learning\ch.8\input-data\

{0}.jpg",	digit)

);

}

As	you	can	see	from	this	code,	it	first	initializes	a	two-dimensional	integer	array,
pixelData,	which	is	going	to	store	the	pixel	data.	Since	we	know	each	image	is	a
28	x	28	image,	we	are	going	to	take	the	first	28	pixels	in	the	flattened	data	as	the
first	row	in	the	two-dimensional	integer	array,	the	second	set	of	28	pixels	as	the
second	row,	and	so	forth.	Inside	the	for	loop,	we	are	converting	the	value	of	each
pixel	into	a	Blue-Green-Red-Alpha	(BGRA)	byte	array,	named	bgra.	As	we
know	the	images	are	in	grayscale,	we	can	use	the	same	value	for	blue,	green,	and

red	components.	Once	we	have	converted	the	flattened	pixel	data	into	a	28	x	28
two-dimensional	integer	array,	we	can	now	build	images	of	the	handwritten	digit
images.	We	are	using	the	Bitmap	class	to	reconstruct	these	handwritten	digit
images.	The	following	code	shows	how	we	used	this	helper	function	to	build
images	for	each	digit:

ISet<string>	exportedLabels	=	new	HashSet<string>();

for(int	i	=	0;	i	<	featuresDF.RowCount;	i++)

{

				exportedLabels.Add(featuresDF.Rows[i].GetAs<string>("label"));

				CreateImage(

								featuresDF.Rows[i].ValuesAll.Select(x	=>	(int)x).Where((x,	idx)	=>	idx	>	

0).ToArray(),

								featuresDF.Rows[i].GetAs<string>("label")

);

				if(exportedLabels.Count()	>=	10)

				{

								break;

				}

}

When	you	run	this	code,	you	will	see	the	following	images	being	stored	on	your
local	drive:

You	can	use	the	same	code	to	generate	more	images,	which	will	help	you	better
understand	what	raw	images	of	handwritten	digits	look	like.

Image	features	-	pixels
Let's	now	look	at	image	features.	In	our	dataset,	we	have	integer	values	for	each
pixel	in	each	image	that	represent	a	grayscale	value.	It	will	be	helpful	to
understand	the	ranges	of	values	each	pixel	can	take,	and	whether	we	can	find
any	noticeable	differences	in	the	distributions	of	that	pixel	data	among	different
handwritten	digit	classes.

We	will	first	take	a	look	at	individual	distributions	of	pixel	data.	The	following
code	snippet	shows	how	you	can	calculate	the	quartiles	for	each	pixel	in	our
dataset:

List<string>	featureCols	=	new	List<string>();

foreach	(string	col	in	featuresDF.ColumnKeys)

{

				if	(featureCols.Count	>=	20)

				{

								break;

				}

				if	(col.StartsWith("pixel"))

				{

								if	(featuresDF[col].Max()	>	0)

								{

												featureCols.Add(col);

												Console.WriteLine(String.Format("\n\n--	{0}	Distribution	--	",	col));

												double[]	quantiles	=	Accord.Statistics.Measures.Quantiles(

																featuresDF[col].ValuesAll.ToArray(),

																new	double[]	{	0,	0.25,	0.5,	0.75,	1.0	}

);

												Console.WriteLine(

																"Min:	\t\t\t{0:0.00}\nQ1	(25%	Percentile):	\t{1:0.00}\nQ2	(Median):	

\t\t{2:0.00}\nQ3	(75%	Percentile):	\t{3:0.00}\nMax:	\t\t\t{4:0.00}",

																quantiles[0],	quantiles[1],	quantiles[2],	quantiles[3],	quantiles[4]

);

								}

				}

}

Similar	to	the	case	previous	chapters,	we	used	the	Quantiles	method	in
Accord.Statistics.Measures	to	get	the	quartiles	for	each	pixel.	As	you	might	recall
from	previous	chapters,	quartiles	are	the	values	that	separate	the	data	into	four
sections.	In	other	words,	the	first	quartile	(Q1)	represents	the	25%	percentile	that
is	the	middle	point	between	the	minimum	value	and	the	median	value.	The
second	quartile	(Q2)	represents	the	median	value,	and	the	third	quartile	(Q3)

represents	the	75%	percentile	that	is	the	middle	point	between	the	median	and
the	maximum.	In	this	code	example,	we	are	only	computing	quartiles	for	the	first
20	pixels	that	have	values	other	than	0,	as	you	can	see	in	lines	4-7,	and	in	line
11.	When	you	run	this	code,	you	will	get	an	output	that	looks	like	the	following:

Here,	we	are	only	showing	the	first	five	distributions.	As	you	can	see	from	this
output,	the	majority	of	the	pixel	values	are	0.	If	you	look	at	the	images	that	we
reconstructed	in	the	previous	section,	the	majority	of	the	pixels	in	the	image	are
black	and	only	a	subset	of	the	pixels	are	used	to	show	digits.	These	pixels	in
black	are	encoded	as	0	in	our	pixel	data,	and	thus	it	is	expected	that	many	pixels
have	0	values	for	the	corresponding	image.

Let's	build	some	scatter	plots,	so	that	we	can	understand	this	data	better	visually.
The	following	code	builds	scatter	plots	of	distributions	of	the	first	20	non-zero
pixel	features	for	each	handwritten	digit:

string[]	featureColumns	=	featureCols.ToArray();

foreach	(string	label	in	digitCount.GetColumn<string>("label").Values)

{

				var	subfeaturesDF	=	featuresDF.Rows[

								featuresDF.GetColumn<string>("label").Where(x	=>	x.Value	==	label).Keys

].Columns[featureColumns];

				ScatterplotBox.Show(

								BuildXYPairs(

												subfeaturesDF.Columns[featureColumns].ToArray2D<double>(),

												subfeaturesDF.RowCount,

												subfeaturesDF.ColumnCount

)

).SetTitle(String.Format("Digit:	{0}	-	20	sample	Pixels",	label));

}

If	you	look	closely	at	this	code,	we	first	build	a	featureColumns	string	array	from
the	featureCols,	List	object.	The	List	object,	featureCols,	is	a	list	of	the	first	20
pixels	that	have	values	other	than	0,	and	this	was	built	from	the	previous	code
when	we	were	computing	quartiles.	We	are	using	the	same	helper	function,
BuildXYPairs,	that	we	used	in	the	previous	chapter	to	transform	the	data	frame	into
an	array	of	x-y	pairs,	where	the	x	values	are	the	indexes	of	each	pixel	and	the	y
values	are	the	actual	pixel	value.	Using	this	helper	function,	we	use	the
ScatterplotBox	class	to	display	a	scatter	plot	that	shows	the	pixel	distribution	for
each	of	the	20	sample	pixels.

The	following	is	a	scatter	plot	for	the	0	digit:

The	majority	of	the	first	20	pixels	have	0	values	for	all	the	images	in	the	0	digit

class.	Of	those	20	pixels	that	we	show	in	this	scatter	plot,	there	are	only	three
pixels	that	have	values	other	than	0.	Let's	look	at	the	distributions	of	these	pixels
for	a	different	digit	class.

The	following	scatter	plot	is	for	the	1	digit	class:

Similar	to	the	case	of	the	0	digit	class,	of	those	20	pixels	that	we	show	here,	the
majority	have	0	values	and	only	three	pixels	have	values	other	than	0.	Compared
to	the	previous	scatter	plot	for	of	the	0	digit	class,	the	distributions	of	the	pixel
data	are	slightly	different	for	the	1	digit	class.

The	following	is	for	the	2	digit	class:

This	scatter	plot	shows	quite	different	distributions	for	the	20	pixels	that	we
show	here.	The	majority	of	those	20	pixels	have	values	ranging	between	0	and
255,	and	only	a	few	have	0	values	for	all	the	images.	This	kind	of	difference	in
the	distributions	of	the	feature	set	will	help	our	ML	models	learn	how	to
correctly	classify	handwritten	digits.

Lastly,	we	are	going	to	look	at	one	more	scatter	plot,	where	we	will	see	how	the
target	variables	are	distributed	across	two	different	pixels.	We	used	the	following
code	to	generate	a	sample	two-dimensional	scatter	plot:

double[][]	twoPixels	=	featuresDF.Columns[

				new	string[]	{	featureColumns[15],	featureColumns[16]	}

].Rows.Select(

				x	=>	Array.ConvertAll<object,	double>(x.Value.ValuesAll.ToArray(),	o	=>	

Convert.ToDouble(o))

).ValuesAll.ToArray();

ScatterplotBox.Show(

				String.Format("{0}	vs.	{1}",	featureColumns[15],	featureColumns[16]),	

				twoPixels,

				featuresDF.GetColumn<int>("label").Values.ToArray()

);

For	illustration	purposes,	we	chose	the	fifteenth	and	sixteenth	indexed	features,
which	turn	out	to	be	pixel43	and	pixel44.	When	you	run	this	code,	you	will	see	the
following	scatter	plot:

We	can	see	some	distinctions	among	different	classes,	but	since	the	majority	of
the	pixel	values	for	both	pixel43	and	pixel44	are	0,	it	is	quite	difficult	to	draw	a
clear	distinction	among	different	target	classes	by	looking	at	this	scatter	plot.	In
the	next	section,	we	are	going	to	look	at	how	to	use	PCA	and	its	principal
components	to	create	another	version	of	this	scatter	plot	that	can	help	us	identify
a	clearer	distinction	among	different	target	classes	when	we	visualize	the	data.

The	full	code	for	this	data	analysis	step	can	be	found	at	this	link:	https://github.co
m/yoonhwang/c-sharp-machine-learning/blob/master/ch.8/DataAnalyzer.cs.

https://github.com/yoonhwang/c-sharp-machine-learning/blob/master/ch.8/DataAnalyzer.cs

Feature	engineering	and
dimensionality	reduction
So	far,	we	have	looked	at	the	distributions	of	the	target	variables	and	pixel	data.
In	this	section,	we	are	going	to	start	discussing	building	train	and	test	sets	for	our
ML	modeling	step,	and	then	how	we	can	use	PCA	for	dimensionality	reduction
and	to	visualize	data	using	the	principal	components.

	

Splitting	the	sample	set	into	train
versus	test	sets
The	first	task	we	are	going	to	do	in	this	step	is	to	randomly	split	our	dataset	into
train	and	test	sets.	Let's	first	look	at	the	code:

double	trainSetProportiona	=	0.7;

var	rnd	=	new	Random();

var	trainIdx	=	featuresDF.RowKeys.Where((x,	i)	=>	rnd.NextDouble()	<=	

trainSetProportiona);

var	testIdx	=	featuresDF.RowKeys.Where((x,	i)	=>	!trainIdx.Contains(i));

var	trainset	=	featuresDF.Rows[trainIdx];

var	testset	=	featuresDF.Rows[testIdx];

var	trainLabels	=	trainset.GetColumn<int>("label").Values.ToArray();

string[]	nonZeroPixelCols	=	trainset.ColumnKeys.Where(x	=>	trainset[x].Max()	>	0	&&	

!x.Equals("label")).ToArray();

double[][]	data	=	trainset.Columns[nonZeroPixelCols].Rows.Select(

				x	=>	Array.ConvertAll<object,	double>(x.Value.ValuesAll.ToArray(),	o	=>	

Convert.ToDouble(o))

).ValuesAll.ToArray();

As	you	can	see	from	the	preceding	code,	we	are	taking	roughly	about	70%	of	our
data	for	training,	and	the	rest	for	testing.	Here,	we	are	using	the	Random	class	to
generate	random	numbers	to	split	the	sample	set	into	train	and	test	sets	using	the
indexes	of	the	records.	Once	we	have	built	train	and	test	sets,	we	are	removing
columns	or	pixels	that	have	0	values	for	all	the	images	(line	12).	This	is	because
if	a	feature	doesn't	vary	among	different	target	classes,	it	doesn't	have	any
information	about	those	target	classes	for	ML	models	to	learn.

Now	that	we	have	train	and	test	sets,	let's	check	on	the	distributions	of	target
classes	in	both	train	and	test	sets.	The	following	code	can	be	used	for	the
aggregation:

var	digitCount	=	trainset.AggregateRowsBy<string,	int>(

				new	string[]	{	"label"	},

				new	string[]	{	"pixel0"	},

				x	=>	x.ValueCount

).SortRows("pixel0");

digitCount.Print();

var	barChart	=	DataBarBox.Show(

				digitCount.GetColumn<string>("label").Values.ToArray(),

				digitCount["pixel0"].Values.ToArray()

).SetTitle(

				"Train	Set	-	Digit	Count"

);

digitCount	=	testset.AggregateRowsBy<string,	int>(

				new	string[]	{	"label"	},

				new	string[]	{	"pixel0"	},

				x	=>	x.ValueCount

).SortRows("pixel0");

digitCount.Print();

barChart	=	DataBarBox.Show(

				digitCount.GetColumn<string>("label").Values.ToArray(),

				digitCount["pixel0"].Values.ToArray()

).SetTitle(

				"Test	Set	-	Digit	Count"

);

When	you	run	this	code,	you	will	see	the	following	plot	for	the	target	variable
distribution	in	the	train	set:

And,	the	following	is	what	we	see	for	the	test	set:

These	distributions	look	similar	to	what	we	saw	in	the	data	analysis	step,	when
we	analyzed	the	target	variable	distribution	in	the	overall	dataset.	Let's	now	start
discussing	how	we	can	apply	PCA	to	our	train	set.

Dimensionality	reduction	by	PCA
We	saw	that	many	of	our	feature	or	pixel	values	are	0,	when	we	were	analyzing
our	data.	In	such	cases,	applying	PCA	can	be	helpful	for	reducing	the
dimensions	of	the	data,	while	minimizing	the	loss	of	information	from	the
reduced	dimensions.	Simply	put,	PCA	is	used	to	explain	a	dataset	and	its
structure	through	linear	combinations	of	the	original	features.	So,	each	principal
component	is	a	linear	combination	of	the	features.	Let's	start	looking	at	how	we
can	run	PCA	in	C#,	using	the	Accord.NET	framework.

The	following	is	how	you	can	initialize	and	train	a	PCA:

var	pca	=	new	PrincipalComponentAnalysis(

				PrincipalComponentMethod.Standardize

);

pca.Learn(data);

Once	a	PrincipalComponentAnalysis	is	trained	with	the	data,	it	contains	all	the
information	about	the	linear	combinations	for	each	principal	component	and	can
be	applied	to	transform	other	data.	We	used	PrincipalComponentMethod.Standardize	to
standardize	our	data	before	applying	PCA.	This	is	because	PCA	is	sensitive	to
the	scale	of	each	feature.	So,	we	want	to	standardize	our	dataset	before	applying
PCA.

In	order	to	PCA-transform	other	data,	you	can	use	the	Transform	method,	as	shown
in	the	following	code	snippet:

double[][]	transformed	=	pca.Transform(data);

Now	that	we	have	learned	how	we	can	apply	PCA	to	our	dataset,	let's	look	at	the
first	two	principal	components	and	see	if	we	can	find	any	noticeable	patterns	in
the	target	variable	distributions.	The	following	code	shows	how	we	can	build	a
scatter	plot	of	the	first	two	components	with	target	classes	color-coded:

double[][]	first2Components	=	transformed.Select(x	=>	x.Where((y,	i)	=>	i	<	

2).ToArray()).ToArray();

ScatterplotBox.Show("Component	#1	vs.	Component	#2",	first2Components,	trainLabels);

Once	you	run	this	code,	you	will	see	the	following	scatter	plot:

When	you	compare	this	chart	with	the	one	between	pixel43	and	pixel44	that	we
looked	at	during	the	data	analysis	step,	this	looks	quite	different.	From	this
scatter	plot	of	the	first	two	principal	components,	we	can	see	that	the	target
classes	are	more	discernible.	Although	it	is	not	perfectly	separable	from	these
two	components,	we	can	see	that	if	we	combine	more	components	into	our
analysis	and	modeling,	it	will	get	easier	to	separate	one	target	class	from	another.

Another	important	aspect	of	PCA	that	we	should	look	at	is	the	amount	of
variance	explained	by	each	principal	component.	Let's	take	a	look	at	the
following	code:

DataSeriesBox.Show(

				pca.Components.Select((x,	i)	=>	(double)i),

				pca.Components.Select(x	=>	x.CumulativeProportion)

).SetTitle("Explained	Variance");

System.IO.File.WriteAllLines(

				Path.Combine(dataDirPath,	"explained-variance.csv"),

				pca.Components.Select((x,	i)	=>	String.Format("{0},{1:0.0000}",	i,	

x.CumulativeProportion))

);

We	can	retrieve	the	cumulative	proportion	of	the	variance	in	our	data	explained
by	each	PCA	component	by	using	the	CumulativeProportion	property.	In	order	to	get
the	individual	proportion	explained	by	each	PCA	component,	you	can	use	the
Proportion	property	of	each	PCA	component.	Then,	we	will	use	the	DataSeriesBox
class	to	plot	a	line	chart	to	display	the	cumulative	proportions	of	the	variance
explained	by	each	component.

When	you	run	this	code,	it	will	produce	the	following	plot:

As	you	can	see	from	this	plot,	about	90%	of	the	variance	in	the	dataset	can	be
explained	by	the	first	200	components.	With	600	components,	we	can	explain
almost	100%	of	the	variance	in	our	dataset.	Compared	to	the	total	of	784	pixels
we	had	as	our	features	in	the	raw	dataset,	this	is	a	big	reduction	in	the	dimension
of	our	data.	Depending	on	how	much	variance	you	want	to	capture	for	your	ML
models,	you	can	use	this	chart	to	decide	the	number	of	components	that	is	most
suitable	for	your	modeling	process.

Finally,	we	need	to	export	the	train	and	test	sets,	so	that	we	can	use	them	for	the
following	model	building	step.	You	can	use	the	following	code	to	export	the
PCA-transformed	train	and	test	sets:

Console.WriteLine("exporting	train	set...");

var	trainTransformed	=	pca.Transform(

				trainset.Columns[nonZeroPixelCols].Rows.Select(

								x	=>	Array.ConvertAll<object,	double>(x.Value.ValuesAll.ToArray(),	o	=>	

Convert.ToDouble(o))

).ValuesAll.ToArray()

);

System.IO.File.WriteAllLines(

				Path.Combine(dataDirPath,	"pca-train.csv"),

				trainTransformed.Select((x,	i)	=>	String.Format("{0},{1}",	String.Join(",",	x),	

trainset["label"].GetAt(i)))

);

Console.WriteLine("exporting	test	set...");

var	testTransformed	=	pca.Transform(

				testset.Columns[nonZeroPixelCols].Rows.Select(

								x	=>	Array.ConvertAll<object,	double>(x.Value.ValuesAll.ToArray(),	o	=>	

Convert.ToDouble(o))

).ValuesAll.ToArray()

);

System.IO.File.WriteAllLines(

				Path.Combine(dataDirPath,	"pca-test.csv"),

				testTransformed.Select((x,	i)	=>	String.Format("{0},{1}",	String.Join(",",	x),	

testset["label"].GetAt(i)))

);

The	full	code	for	this	feature	engineering	and	dimensionality	reduction	step	can
be	found	at	this	link:	https://github.com/yoonhwang/c-sharp-machine-learning/blob/master/
ch.8/FeatureEngineering.cs.

https://github.com/yoonhwang/c-sharp-machine-learning/blob/master/ch.8/FeatureEngineering.cs

ML	models	for	handwritten	digit
recognition
Now	that	we	have	everything	ready	for	building	ML	models,	let's	start	building
those	models.	In	this	section,	we	will	cover	how	to	sub-select	the	features	based
on	the	PCA	results	and	then	discuss	how	we	can	build	logistic	regression	and
Naive	Bayes	classifiers	for	the	handwritten	digit	recognition	model.	We	are
going	to	introduce	a	new	learning	model,	the	neural	network,	and	explain	how	to
build	one	for	this	project,	using	the	Accord.NET	framework.

	

Loading	data
The	first	step	in	building	a	ML	model	for	handwritten	digit	recognition	is	to	load
the	data	that	we	built	from	the	previous	section.	You	can	use	the	following	code
to	load	the	train	and	test	sets	that	we	created	previously:

//	Load	the	data	into	a	data	frame

string	trainDataPath	=	Path.Combine(dataDirPath,	"pca-train.csv");

Console.WriteLine("Loading	{0}\n\n",	trainDataPath);

var	trainDF	=	Frame.ReadCsv(

				trainDataPath,

				hasHeaders:	false,

				inferTypes:	true

);

string	testDataPath	=	Path.Combine(dataDirPath,	"pca-test.csv");

Console.WriteLine("Loading	{0}\n\n",	testDataPath);

var	testDF	=	Frame.ReadCsv(

				testDataPath,

				hasHeaders:	false,

				inferTypes:	true

);

string[]	colnames	=	trainDF.ColumnKeys.Select(

				(x,	i)	=>	i	<	trainDF.ColumnKeys.Count()	-	1	?	String.Format("component-{0}",	i	+	

1)	:	"label"

).ToArray();

trainDF.RenameColumns(colnames);

testDF.RenameColumns(colnames);

For	our	experimentation	with	different	models	in	this	chapter,	we	will	be	using
the	principal	components	that	cumulatively	explain	about	70%	of	the	variance	in
our	dataset.	Take	a	look	at	the	following	code	to	see	how	we	filtered	for	the
components	of	our	interest:

//	Capturing	70%	of	the	variance

string[]	featureCols	=	colnames.Where((x,	i)	=>	i	<=	90).ToArray();

double[][]	trainInput	=	BuildJaggedArray(

				trainDF.Columns[featureCols].ToArray2D<double>(),	trainDF.RowCount,	

featureCols.Length

);

int[]	trainOutput	=	trainDF.GetColumn<int>("label").ValuesAll.ToArray();

double[][]	testInput	=	BuildJaggedArray(

				testDF.Columns[featureCols].ToArray2D<double>(),	testDF.RowCount,	

featureCols.Length

);

int[]	testOutput	=	testDF.GetColumn<int>("label").ValuesAll.ToArray();

As	you	can	see	in	the	first	line	of	this	code,	we	are	taking	the	first	91
components	(up	to	the	ninetieth	index)	as	the	features	for	our	models.	If	you
recall	from	the	previous	step	or	look	at	the	plot	for	the	cumulative	variance
proportion	explained	by	the	components,	you	will	see	that	the	first	91
components	capture	about	70%	of	the	variance	in	our	dataset.	Then,	we	create	a
two-dimensional	array	of	doubles	that	we	will	use	for	training	and	testing	our
ML	models.	The	following	code	shows	the	helper	function,	BuildJaggedArray,	that
we	wrote	to	convert	a	data	frame	into	a	two-dimensional	array:

private	static	double[][]	BuildJaggedArray(double[,]	ary2d,	int	rowCount,	int	colCount)

{

				double[][]	matrix	=	new	double[rowCount][];

				for(int	i	=	0;	i	<	rowCount;	i++)

				{

								matrix[i]	=	new	double[colCount];

								for(int	j	=	0;	j	<	colCount;	j++)

								{

												matrix[i][j]	=	double.IsNaN(ary2d[i,	j])	?	0.0	:	ary2d[i,	j];

								}

				}

				return	matrix;

}

Logistic	regression	classifier
	

The	first	learning	algorithm	we	are	going	to	experiment	with	for	handwritten
digit	recognition	is	logistic	regression.	We	wrote	a	method,	named	BuildLogitModel,
which	takes	in	the	inputs	and	outputs	to	the	model,	trains	a	logistic	regression
classifier,	and	then	evaluates	the	performance.	The	following	code	shows	how
this	method	is	written:

private	static	void	BuildLogitModel(double[][]	trainInput,	int[]	trainOutput,	double[]

[]	testInput,	int[]	testOutput)

{

				var	logit	=	new	MultinomialLogisticLearning<GradientDescent>()

				{

								MiniBatchSize	=	500

				};

				var	logitModel	=	logit.Learn(trainInput,	trainOutput);

				int[]	inSamplePreds	=	logitModel.Decide(trainInput);

				int[]	outSamplePreds	=	logitModel.Decide(testInput);

				//	Accuracy

				double	inSampleAccuracy	=	1	-	new	ZeroOneLoss(trainOutput).Loss(inSamplePreds);

				double	outSampleAccuracy	=	1	-	new	ZeroOneLoss(testOutput).Loss(outSamplePreds);

				Console.WriteLine("*	In-Sample	Accuracy:	{0:0.0000}",	inSampleAccuracy);

				Console.WriteLine("*	Out-of-Sample	Accuracy:	{0:0.0000}",	outSampleAccuracy);

				//	Build	confusion	matrix

				int[][]	confMatrix	=	BuildConfusionMatrix(

								testOutput,	outSamplePreds,	10

);

				System.IO.File.WriteAllLines(

								Path.Combine(

												@"<path-to-dir>",	

												"logit-conf-matrix.csv"

),

								confMatrix.Select(x	=>	String.Join(",",	x))

);

				//	Precision	Recall

				PrintPrecisionRecall(confMatrix);

				DrawROCCurve(testOutput,	outSamplePreds,	10,	"Logit");

}

Similar	to	the	previous	chapter,	we	are	using	the	MultinomialLogisticLearning	class	to
train	a	logistic	regression	classifier.	Once	this	model	is	trained,	we	start
evaluating	by	various	evaluation	metrics,	which	we	will	discuss	in	more	detail	in
the	following	section.

	

	

	

Naive	Bayes	classifier
	

The	second	model	we	are	going	to	experiment	with	is	a	Naive	Bayes	classifier.
Similar	to	the	previous	case	involving	the	logistic	regression	classifier,	we	wrote
a	helper	function,	BuildNBModel,	that	takes	in	the	inputs	and	outputs,	trains	a	Naive
Bayes	classifier,	and	then	evaluates	the	trained	model.	The	code	looks	as
follows:

private	static	void	BuildNBModel(double[][]	trainInput,	int[]	trainOutput,	double[][]	

testInput,	int[]	testOutput)

{

				var	teacher	=	new	NaiveBayesLearning<NormalDistribution>();

				var	nbModel	=	teacher.Learn(trainInput,	trainOutput);

				int[]	inSamplePreds	=	nbModel.Decide(trainInput);

				int[]	outSamplePreds	=	nbModel.Decide(testInput);

				//	Accuracy

				double	inSampleAccuracy	=	1	-	new	ZeroOneLoss(trainOutput).Loss(inSamplePreds);

				double	outSampleAccuracy	=	1	-	new	ZeroOneLoss(testOutput).Loss(outSamplePreds);

				Console.WriteLine("*	In-Sample	Accuracy:	{0:0.0000}",	inSampleAccuracy);

				Console.WriteLine("*	Out-of-Sample	Accuracy:	{0:0.0000}",	outSampleAccuracy);

				//	Build	confusion	matrix

				int[][]	confMatrix	=	BuildConfusionMatrix(

								testOutput,	outSamplePreds,	10

);

				System.IO.File.WriteAllLines(

								Path.Combine(

												@"<path-to-dir>",

												"nb-conf-matrix.csv"

),

								confMatrix.Select(x	=>	String.Join(",",	x))

);

				//	Precision	Recall

				PrintPrecisionRecall(confMatrix);

				DrawROCCurve(testOutput,	outSamplePreds,	10,	"NB");

}

As	you	might	recall	from	the	previous	chapter,	we	are	using	the	NaiveBayesLearning
class	to	train	a	Naive	Bayes	classifier.	We	are	using	NormalDistribution,	as	all	the
features	for	our	ML	models	are	the	principal	components	from	the	previous	PCA
step,	and	the	values	of	these	components	are	continuous	values.

	

	

	

Neural	network	classifier
The	last	learning	algorithm	that	we	are	going	to	experiment	with	is	the	ANN.	As
you	might	know	already,	the	neural	network	model	is	the	backbone	of	all	of	the
deep	learning	technologies.	The	neural	network	model	is	known	to	perform	well
for	image	datasets,	so	we	will	compare	the	performance	of	this	model	against	the
other	models	to	see	how	much	performance	gain	we	get	by	using	the	neural
network	over	the	other	classification	models.	In	order	to	build	neural	network
models	in	C#	using	the	Accord.NET	framework,	you	will	need	to	install	the
Accord.Neuro	package	first.	You	can	install	the	Accord.Neuro	package	by	using	the
following	command	in	the	NuGet	Package	Manager	Console:

Install-Package	Accord.Neuro

Let's	now	take	a	look	at	how	we	can	build	a	neural	network	model	in	C#,	using
the	Accord.NET	framework.	The	code	looks	like	the	following:

private	static	void	BuildNNModel(double[][]	trainInput,	int[]	trainOutput,	double[][]	

testInput,	int[]	testOutput)

{

				double[][]	outputs	=	Accord.Math.Jagged.OneHot(trainOutput);

				var	function	=	new	BipolarSigmoidFunction(2);

				var	network	=	new	ActivationNetwork(

								new	BipolarSigmoidFunction(2),	

								91,	

								20,

								10

);

				

				var	teacher	=	new	LevenbergMarquardtLearning(network);

				Console.WriteLine("\n--	Training	Neural	Network");

				int	numEpoch	=	10;

				double	error	=	Double.PositiveInfinity;

				for	(int	i	=	0;	i	<	numEpoch;	i++)

				{

								error	=	teacher.RunEpoch(trainInput,	outputs);

								Console.WriteLine("*	Epoch	{0}	-	error:	{1:0.0000}",	i	+	1,	error);

				}

				Console.WriteLine("");

				List<int>	inSamplePredsList	=	new	List<int>();

				for	(int	i	=	0;	i	<	trainInput.Length;	i++)

				{

								double[]	output	=	network.Compute(trainInput[i]);

								int	pred	=	output.ToList().IndexOf(output.Max());

								inSamplePredsList.Add(pred);

				}

				List<int>	outSamplePredsList	=	new	List<int>();

				for	(int	i	=	0;	i	<	testInput.Length;	i++)

				{

								double[]	output	=	network.Compute(testInput[i]);

								int	pred	=	output.ToList().IndexOf(output.Max());

								outSamplePredsList.Add(pred);

				}

}

Let's	take	a	closer	look	at	this	code.	We	first	transform	the	training	labels	from	a
one-dimensional	array	into	a	two-dimensional	array,	where	the	columns	are	the
target	classes	and	the	values	are	1	if	the	given	record	belongs	to	the	given	target
class,	and	0	if	it	does	not.	We	are	using	the	Accord.Math.Jagged.OneHot	method	to
perform	one-hot	encoding	for	the	training	labels.	Then,	we	build	a	neural
network	by	using	the	ActivationNetwork	class.	The	ActivationNetwork	class	takes	three
parameters:	the	activation	function,	the	input	count,	and	the	information	about
the	layers.	For	the	activation	function,	we	are	using	a	sigmoid	function,
BipolarSigmoidFunction.	The	input	count	is	straightforward,	as	it	is	the	number	of
features	that	we	are	going	to	use	to	train	this	model,	which	is	91.	For	this	model,
we	only	used	one	hidden	layer	with	20	neurons.	For	a	deeper	neural	network,
you	can	use	more	than	one	hidden	layer	and	can	also	experiment	with	different
numbers	of	neurons	in	each	hidden	layer.	Lastly,	the	last	parameter	of	the
ActivationNetwork	constructor	represents	the	output	count.	Since	the	target	variable
is	the	digit	class,	it	can	take	values	between	0	and	9,	and	thus	the	number	of
output	neurons	we	need	is	10.	Once	this	network	is	built,	we	can	use	the
LevenbergMarquardtLearning	learning	algorithm	to	train	the	network.

Once	we	have	set	up	the	network	and	the	learning	algorithm,	we	can	actually
start	training	a	neural	network	model.	As	you	might	know	already,	a	neural
network	model	needs	to	be	run	through	the	dataset	multiple	times	(epochs)
during	its	learning	phase	for	better	predictability.	You	can	use	the	RunEpoch	method
to	train	and	update	the	neural	network	model	in	each	epoch.	To	save	some	time,
we	are	only	running	10	epochs	to	train	our	neural	network	model.	However,	we
recommend	you	try	increasing	this	value,	as	it	can	improve	the	performance	of
your	neural	network	model.	The	following	shows	how	the	error	measure
decreases	as	we	train	and	update	the	neural	network	model	in	each	epoch:

As	you	can	see	from	this	output,	the	error	measure	decreases	significantly	in
each	epoch.	One	thing	to	note	here	is	that	the	amount	of	reduction	in	the	error
measure	decreases	in	each	additional	epoch.	When	you	are	building	a	neural
network	model	with	large	numbers	of	epochs,	you	can	monitor	the	amount	of
gain	in	each	run	and	decide	to	stop	when	there	is	no	more	significant
performance	gain.

The	full	code	that	we	used	for	the	model	building	step	can	be	found	at	this	link:	h
ttps://github.com/yoonhwang/c-sharp-machine-learning/blob/master/ch.8/Modeling.cs.

https://github.com/yoonhwang/c-sharp-machine-learning/blob/master/ch.8/Modeling.cs

Evaluating	multi-class	classification
models
In	this	section,	we	are	going	to	evaluate	the	three	models	that	we	built	in	the
previous	section.	We	are	going	to	revisit	the	validation	metrics	that	we	used
previously	for	the	classification	models,	and	compare	the	performances	of	each
model	against	the	others.

Confusion	matrices
First,	let's	look	at	confusion	matrices.	The	following	code	shows	how	you	can
build	a	confusion	matrix	with	the	predicted	output	and	the	actual	output:	private
static	int[][]	BuildConfusionMatrix(int[]	actual,	int[]	preds,	int	numClass)
{
int[][]	matrix	=	new	int[numClass][];
for	(int	i	=	0;	i	<	numClass;	i++)
{
matrix[i]	=	new	int[numClass];
}

for	(int	i	=	0;	i	<	actual.Length;	i++)
{
matrix[actual[i]][preds[i]]	+=	1;
}

return	matrix;
}

This	method	is	similar	to	the	one	we	wrote	in	the	previous	chapter,	except	that	it
is	returning	a	two-dimensional	array,	instead	of	a	string	array.	We	are	going	to
use	this	two-dimensional	array	output	for	calculating	precision	and	recall	rates	in
the	next	section.

The	confusion	matrix	for	the	logistic	regression	classifier	looks	like	the
following:

For	the	Naive	Bayes	classifier,	you	will	get	a	confusion	matrix	that	looks	similar
to	the	following	table:	

Lastly,	for	the	neural	network	model,	the	confusion	matrix	looks	like	the
following:

From	these	confusion	matrices,	the	neural	network	model	outperforms	the	other
two	models,	and	the	logistic	regression	model	seems	to	come	in	second.

Accuracy	and	precision/recall
The	second	metric	that	we	are	going	to	look	at	is	the	accuracy	measure.	We	are
use	ZeroOneLoss	to	compute	the	loss,	and	then	subtract	it	from	1	to	get	the	accuracy
number.	The	code	to	compute	the	accuracy	measure	is	as	follows:

//	Accuracy

double	inSampleAccuracy	=	1	-	new	ZeroOneLoss(trainOutput).Loss(inSamplePreds);

double	outSampleAccuracy	=	1	-	new	ZeroOneLoss(testOutput).Loss(outSamplePreds);

Console.WriteLine("*	In-Sample	Accuracy:	{0:0.0000}",	inSampleAccuracy);

Console.WriteLine("*	Out-of-Sample	Accuracy:	{0:0.0000}",	outSampleAccuracy);

The	third	and	fourth	metrics	that	we	are	going	to	look	at	are	the	precision	and
recall	rates.	Unlike	before,	we	have	10	classes	for	the	target	prediction.	So,	we
are	going	to	have	to	calculate	precision	and	recall	rates	separately	for	each	of	the
target	classes.	The	code	looks	like	the	following:

private	static	void	PrintPrecisionRecall(int[][]	confMatrix)

{

				for	(int	i	=	0;	i	<	confMatrix.Length;	i++)

				{

								int	totalActual	=	confMatrix[i].Sum();

								int	correctPredCount	=	confMatrix[i][i];

								int	totalPred	=	0;

								for(int	j	=	0;	j	<	confMatrix.Length;	j++)

								{

												totalPred	+=	confMatrix[j][i];

								}

								double	precision	=	correctPredCount	/	(float)totalPred;

								double	recall	=	correctPredCount	/	(float)totalActual;

								Console.WriteLine("-	Digit	{0}:	precision	-	{1:0.0000},	recall	-	{2:0.0000}",	

i,	precision,	recall);

				}

}

As	you	can	see	from	this	code,	the	input	to	this	PrintPrecisionRecall	method	is	the
confusion	matrix	that	we	built	from	the	previous	section.	In	this	method,	it
iterates	through	each	of	the	target	classes	and	computes	the	precision	and	recall
rates.

The	following	is	the	output	that	we	get	when	we	compute	accuracy,	precision,
and	recall	for	the	logistic	regression	model:

For	the	Naive	Bayes	model,	we	get	the	following	results	for	the	metrics:

Lastly,	for	the	neural	network	model,	the	performance	results	look	as	follows:

As	you	might	notice	from	these	results,	the	neural	network	model	outperformed
the	other	two	models.	Both	the	overall	accuracy	and	the	precision/recall	rates	are
the	highest	for	the	neural	network	model,	when	compared	to	the	logistic
regression	and	Naive	Bayes	models.	The	logistic	regression	model	seems	to
come	in	as	the	second	best	model	among	the	three	that	we	built.

One	versus	Rest	AUC
The	last	evaluation	measure	that	we	are	going	to	look	at	is	the	Receiver
Operating	Characteristic	(ROC)	curve	and	the	AUC.	One	thing	we	need	to	do
differently	in	this	chapter,	when	we	are	building	a	ROC	curve	and	an	AUC,	is
that	we	need	to	build	one	for	each	of	the	target	classes.	Let's	take	a	look	at	the
code	first:

private	static	void	DrawROCCurve(int[]	actual,	int[]	preds,	int	numClass,	string	

modelName)

{

				ScatterplotView	spv	=	new	ScatterplotView();

				spv.Dock	=	DockStyle.Fill;

				spv.LinesVisible	=	true;

				Color[]	colors	=	new	Color[]	{

								Color.Blue,	Color.Red,	Color.Orange,	Color.Yellow,	Color.Green,

								Color.Gray,	Color.LightSalmon,	Color.LightSkyBlue,	Color.Black,	Color.Pink

				};

				for	(int	i	=	0;	i	<	numClass;	i++)

				{

								//	Build	ROC	for	Train	Set

								bool[]	expected	=	actual.Select(x	=>	x	==	i	?	true	:	false).ToArray();

								int[]	predicted	=	preds.Select(x	=>	x	==	i	?	1	:	0).ToArray();

								var	trainRoc	=	new	ReceiverOperatingCharacteristic(expected,	predicted);

								trainRoc.Compute(1000);

								//	Get	Train	AUC

								double	auc	=	trainRoc.Area;

								double[]	xVals	=	trainRoc.Points.Select(x	=>	1	-	x.Specificity).ToArray();

								double[]	yVals	=	trainRoc.Points.Select(x	=>	x.Sensitivity).ToArray();

								//	Draw	ROC	Curve

								spv.Graph.GraphPane.AddCurve(

												String.Format(

																"Digit:	{0}	-	AUC:	{1:0.00}",

																i,	auc

),

												xVals,	yVals,	colors[i],	SymbolType.None

);

								spv.Graph.GraphPane.AxisChange();

				}

				spv.Graph.GraphPane.Title.Text	=	String.Format(

								"{0}	ROC	-	One	vs.	Rest",

								modelName

);

				Form	f1	=	new	Form();

				f1.Width	=	700;

				f1.Height	=	500;

				f1.Controls.Add(spv);

				f1.ShowDialog();

}

As	you	can	see	from	this	DrawROCCurve	method	that	we	wrote,	we	iterate	through
each	target	class	in	a	for	loop,	and	reformat	the	predicted	and	actual	labels	by
encoding	1	if	each	label	matches	with	the	target	class,	and	0	if	it	does	not.	After
we	have	done	this	encoding,	we	can	then	use	the	ReceiverOperatingCharacteristic
class	to	compute	the	AUC	and	build	the	ROC	curve.

The	following	is	the	ROC	curve	for	the	logistic	regression	model:

For	the	Naive	Bayes	model,	the	ROC	curve	looks	as	follows:

Lastly,	the	ROC	curve	for	the	neural	network	model	looks	like	the	following:

As	expected	from	the	previous	metrics	that	we	have	looked	at,	the	results	look
the	best	for	the	neural	network	model,	and	the	logistic	regression	model	comes
in	as	second-best.	For	the	Naive	Bayes	model,	there	are	some	digits	that	it	didn't
compute	well.	For	example,	the	Naive	Bayes	model	struggles	to	classify	the
digits	6	and	7	well.	However,	the	AUC	numbers	for	all	of	the	target	classes	are
close	to	1	for	the	neural	network,	which	suggests	that	the	model	is	trained	well	to
identify	digits	for	handwritten	images.

From	looking	at	the	confusion	matrix,	the	accuracy,	precision	and	recall	rates,
and	the	ROC	curves,	we	can	conclude	that	the	neural	network	model	works	the
best	among	the	three	classifiers	that	we	trained	in	this	chapter.	This	reaffirms	the
fact	that	neural	networks	work	well	on	image	datasets	and	image	recognition
problems.

Summary
In	this	chapter,	we	built	our	first	image	recognition	model	that	can	identify
handwritten	digits	in	grayscale	images.	We	started	this	chapter	by	discussing
how	this	type	of	model	can	be	widely	used	in	real-life	applications,	and	how	we
are	planning	to	build	a	handwritten	digit	recognition	model.	Then,	we	started
looking	into	the	dataset.	We	first	looked	at	the	distributions	of	target	classes	to
see	if	the	sample	set	is	a	well-balanced	set.	When	we	were	analyzing	the	pixel
data,	we	noticed	that	the	majority	of	the	pixel	values	were	0,	and	we	could
intuitively	make	sense	of	it	by	reconstructing	the	images	from	the	pixel	data.
During	the	feature	engineering	step,	we	discussed	how	we	can	use	PCA	for
dimensionality	reduction.

With	these	PCA-transformed	features,	we	then	started	building	various	machine
learning	models.	On	top	of	the	logistic	regression	and	Naive	Bayes	models	that
we	are	already	familiar	with,	we	introduced	a	new	ML	model,	neural	network.
We	learned	how	to	initialize	the	ActivationNetwork	model	with	BipolarSigmoidFunction
as	an	activation	function.	We	then	started	training	the	neural	network	with	the
LevenbergMarquardtLearning	learning	algorithm	over	10	epochs.	We	saw	how	error
measures	decrease	in	each	additional	epoch,	and	discussed	how	the	amount	of
gain	in	the	error	rate	is	in	diminishing	returns	for	additional	epochs.	In	the	model
evaluation	step,	we	combined	multiple	validation	metrics	for	classification
models.	For	the	machine	learning	models	we	built	in	this	chapter,	we	looked	at
the	confusion	matrix,	prediction	accuracy,	precision	and	recall	rates,	and	the
ROC	curves	and	AUC.	We	noticed	how	the	neural	network	model	outperformed
the	other	two	models,	which	reaffirmed	that	neural	network	models	work	well
for	image	data.

In	the	next	chapter,	we	are	going	to	switch	gears	and	start	building	models	for
anomaly	detection.	We	are	going	to	work	on	a	cyber	attack	detection	project
using	PCA.	With	the	Network	Intrusion	dataset,	we	will	discuss	how	to	use	PCA
to	detect	cyber	attacks,	and	run	multiple	experiments	to	find	the	optimal
threshold	at	which	to	notify	us	about	potential	cyber	attacks.

Cyber	Attack	Detection
	

So	far,	we	have	been	mainly	developing	machine	learning	(ML)	models	with
well-balanced	sample	sets,	where	the	target	classes	are	distributed	equally	or
almost	equally	across	the	sample	records	in	the	dataset.	However,	there	are	cases
where	a	dataset	has	imbalanced	class	distributions.	Class	imbalance	is	especially
common	in	anomaly	and	fraud	detections.	These	kinds	of	class	imbalance
problems	causes	issues	when	training	ML	models,	as	most	ML	algorithms	work
best	when	the	target	classes	are	roughly	equally	distributed.	In	order	to	tackle
this	imbalanced	class	problem,	we	cannot	approach	it	the	same	way	we	have
been	developing	models	for	various	classification	and	regression	problems.	We
will	need	to	approach	it	differently.

In	this	chapter,	we	are	going	to	discuss	how	we	can	build	an	anomaly	detection
model.	We	will	be	using	a	network	intrusion	dataset,	KDD	Cup	1999	Data,
which	has	a	large	amount	of	network	connection	data	where	some	of	the
connections	are	normal	network	connections,	and	some	others	are	cyber	attacks.
We	will	first	look	at	the	structure	of	the	data,	types	of	cyber	attacks	present	in	the
dataset,	and	distributions	of	various	network	features.	Then,	we	will	apply	some
of	the	feature-engineering	techniques	we	have	discussed	in	previous	chapters,	as
the	feature	set	contains	both	categorical	and	continuous	variables.	We	are	also
going	to	apply	the	dimensionality	reduction	technique,	Principal	Component
Analysis	(PCA),	that	we	discussed	in	the	previous	chapter.	In	addition	to	what
we	covered	about	PCA	in	the	previous	chapter,	we	are	going	to	use	PCA	to	build
models	for	anomaly	detection.	With	the	models	built	using	PCA,	we	are	going	to
further	discuss	some	of	the	ways	to	evaluate	anomaly	detection	models,	and
what	will	work	best	for	the	cyber	attack	detection	project.

In	this	chapter,	we	will	cover	the	following	topics:

Problem	definition	for	the	cyber	attack	detection	project
Data	analysis	for	the	internet	traffic	dataset
Feature	engineering	and	PCA
Principal	component	classifier	for	anomaly	detection

Evaluating	anomaly	detection	models

	

	

Problem	definition
	

Datasets	with	imbalanced	class	distributions	cause	problems	for	most	ML
algorithms,	as	they	typically	perform	well	for	well-balanced	datasets.	There	are
various	ways	to	handle	class	imbalance	problems	in	ML.	Resampling	the	dataset
to	balance	the	target	classes	is	one	way.	You	can	upsample	the	positive	training
samples,	where	you	randomly	select	and	duplicate	the	positive	training	samples,
so	that	roughly	50%	of	the	dataset	belongs	to	a	positive	class.	You	can	also
downsample	the	negative	training	samples	so	that	the	number	of	negative
training	examples	matches	with	the	number	of	positive	training	examples.	In
cases	of	extreme	class	imbalance,	you	can	approach	it	as	an	anomaly	detection
problem,	where	the	positive	events	are	considered	anomalies	or	outliers.
Anomaly	detection	techniques	have	many	applications	in	real-world	problems.
They	are	often	used	for	network	intrusion	detection,	credit	card	fraud	detection,
or	even	medical	diagnosis.

In	this	chapter,	we	are	going	to	work	on	building	an	anomaly	detection	model	for
cyber	attacks.	In	order	to	build	a	cyber	attack	detection	model,	we	are	going	to
use	the	KDD	Cup	1999	Data,	which	has	a	large	amount	of	artificial	and	hand-
injected	cyber	attack	data,	along	with	normal	network	connection	data.	This	data
can	be	found	at	the	following	link:	http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.
html.	With	this	data,	we	are	going	to	first	look	at	the	distributions	of	the	cyber
attack	types	and	then	the	distributions	of	the	network	features.	Since	this	is	a
simulated	and	artificial	dataset,	the	majority	of	this	dataset	is	made	up	of	cyber
attacks,	which	are	abnormal	and	unrealistic	in	the	real	world.	In	order	to
simulate	real-world	examples	of	cyber	attacks	we	are	going	to	randomly	sub-
select	the	cyber	attack	events	from	the	sample	set	and	build	a	new	training	set
that	contains	more	normal	network	connections	than	malicious	connections.
With	this	sub-sampled	dataset,	we	are	going	to	build	an	anomaly	detection
model	using	PCA.	Then,	we	are	going	to	evaluate	this	model	by	looking	at	the
cyber	attack	detection	rate	at	various	target	false	alarm	rates.

To	summarize	our	problem	definition	for	the	cyber	attack	detection	project:

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

What	is	the	problem?	We	need	a	cyber	attack	detection	model	that	can
identify	potential	malicious	connections	from	large	amounts	of	network
connections	so	that	we	can	avoid	cyber	attacks.
Why	is	it	a	problem?	The	number	of	cyber	attacks	increases	every	year	and
without	being	properly	prepared	for	such	attacks,	our	systems	will	become
more	vulnerable	from	various	cyber	attacks.	With	a	cyber	attack	detection
model,	we	can	avoid	becoming	the	victims	of	cyber	attacks.
What	are	some	of	the	approaches	to	solving	this	problem?	We	are	going	to
use	publicly	available	data	that	has	a	large	amount	of	artificial	and
simulated	cyber	attack	data.	We	are	going	to	sub-sample	this	data	to
replicate	a	real-life	situation	where	there	are	more	normal	network
connections	than	abnormal	and	malicious	connections.	Then,	we	are	going
to	use	PCA	and	its	principal	components	to	detect	anomalies.
What	are	the	success	criteria?	We	want	a	high	cyber	attack	detection	rate,
even	if	we	need	to	sacrifice	it	for	higher	false	alarm	rate.	This	is	because	we
are	more	concerned	about	allowing	cyber	attacks	than	false	positive	alerts.

	

	

Data	analysis	for	internet	traffic	data
Let's	start	by	taking	a	look	into	the	internet	traffic	data.	As	mentioned	previously,
we	are	going	to	use	the	KDD	Cup	1999	Data,	which	you	can	download	from	the
following	link:	http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.	We	will	be
using	the	kddcup.data_10_percent.gz	data	for	this	cyber	attack	detection	project.

	

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

Data	clean-up
The	first	thing	we	need	to	do	is	clean	up	the	data	for	future	steps.	If	you	open	the
data	that	you	just	downloaded,	you	will	notice	that	there	is	no	header	in	the
dataset.	However,	for	future	data	analysis	and	model	building,	it	is	always
beneficial	to	have	headers	associated	with	each	column.	Based	on	the	column
description	that	can	be	found	at	http://kdd.ics.uci.edu/databases/kddcup99/kddcup.names,
we	are	going	to	attach	headers	to	the	raw	dataset.	The	code	to	attach	column
names	to	the	data	frame	looks	as	follows:

//	Read	in	the	Cyber	Attack	dataset

//	TODO:	change	the	path	to	point	to	your	data	directory

string	dataDirPath	=	@"<path-to-data-dir>";

//	Load	the	data	into	a	data	frame

string	dataPath	=	Path.Combine(dataDirPath,	"kddcup.data_10_percent");

Console.WriteLine("Loading	{0}\n\n",	dataPath);

var	featuresDF	=	Frame.ReadCsv(

				dataPath,

				hasHeaders:	false,

				inferTypes:	true

);

string[]	colnames	=

{

				"duration",	"protocol_type",	"service",	"flag",	"src_bytes",

				"dst_bytes",	"land",	"wrong_fragment",	"urgent",	"hot",

				"num_failed_logins",	"logged_in",	"num_compromised",	"root_shell",

				"su_attempted",	"num_root",	"num_file_creations",	"num_shells",

				"num_access_files",	"num_outbound_cmds",	"is_host_login",	"is_guest_login",

				"count",	"srv_count",	"serror_rate",	"srv_serror_rate",	"rerror_rate",

				"srv_rerror_rate",	"same_srv_rate",	"diff_srv_rate",	"srv_diff_host_rate",

				"dst_host_count",	"dst_host_srv_count",	"dst_host_same_srv_rate",

				"dst_host_diff_srv_rate",	"dst_host_same_src_port_rate",

				"dst_host_srv_diff_host_rate",	"dst_host_serror_rate",

				"dst_host_srv_serror_rate",	"dst_host_rerror_rate",	"dst_host_srv_rerror_rate",

				"attack_type"

};

featuresDF.RenameColumns(colnames);

As	you	can	see	from	this	code,	we	are	loading	this	raw	dataset	without	headers,
by	supplying	the	hasHeaders:	false	flag	to	the	ReadCsv	method	of	Deedle's	data
frame.	By	supplying	this	flag,	we	are	telling	Deedle	not	to	take	the	first	row	of
the	dataset	as	the	header.	Once	this	data	is	loaded	into	a	data	frame,	we	are	using
the	RenameColumns	method	to	attach	the	names	of	the	columns	to	the	data	frame.

The	next	clean-up	task	we	are	going	to	take	is	to	group	the	cyber	attack	types

http://kdd.ics.uci.edu/databases/kddcup99/kddcup.names

together	by	corresponding	categories.	You	can	find	the	mapping	between	the
attack	type	and	the	category	at	the	following	link:	http://kdd.ics.uci.edu/databases/k
ddcup99/training_attack_types.	Using	this	mapping,	we	are	going	to	create	a	new
column	in	the	data	frame	that	contains	information	about	the	attack	category.
Let's	look	at	the	code	first:

//	keeping	"normal"	for	now	for	plotting	purposes

IDictionary<string,	string>	attackCategories	=	new	Dictionary<string,	string>

{

				{"back",	"dos"},

				{"land",	"dos"},

				{"neptune",	"dos"},

				{"pod",	"dos"},

				{"smurf",	"dos"},

				{"teardrop",	"dos"},

				{"ipsweep",	"probe"},

				{"nmap",	"probe"},

				{"portsweep",	"probe"},

				{"satan",	"probe"},

				{"ftp_write",	"r2l"},

				{"guess_passwd",	"r2l"},

				{"imap",	"r2l"},

				{"multihop",	"r2l"},

				{"phf",	"r2l"},

				{"spy",	"r2l"},

				{"warezclient",	"r2l"},

				{"warezmaster",	"r2l"},

				{"buffer_overflow",	"u2r"},

				{"loadmodule",	"u2r"},

				{"perl",	"u2r"},

				{"rootkit",	"u2r"},

				{"normal",	"normal"}

};

featuresDF.AddColumn(

				"attack_category",

				featuresDF.GetColumn<string>("attack_type")

								.Select(x	=>	attackCategories[x.Value.Replace(".",	"")])

);

If	you	look	closely	at	this	code,	we	created	a	Dictionary	object	that	has	mapping
between	an	attack	type	and	its	category.	For	example,	the	attack	type,	"back",	is
one	of	the	Denial-of-Service	(DOS)	attacks	and	the	attack	type,	"rootkit",	is	one
of	the	User-to-Root	(U2R)	attacks.	Using	this	mapping,	we	created	a	new
column,	"attack_category",	and	added	it	to	the	featuresDF.	Now	that	we	have	cleaned
the	raw	dataset	with	column	names	and	attack	categories,	we	need	to	export	it
and	store	it	into	our	local	drive	for	future	use.	You	can	use	the	following	code	to
export	this	data:

featuresDF.SaveCsv(Path.Combine(dataDirPath,	"data.csv"));

http://kdd.ics.uci.edu/databases/kddcup99/training_attack_types

Target	variable	distribution
Now	that	we	have	clean	data	to	work	with,	we	will	start	digging	into	the	data.
Let's	first	look	at	the	distributions	of	cyber	attack	categories.	The	code	to	get	the
distribution	of	target	variables	looks	as	follows:

//	1.	Target	Variable	Distribution

Console.WriteLine("\n\n--	Counts	by	Attack	Category	--\n");

var	attackCount	=	featuresDF.AggregateRowsBy<string,	int>(

				new	string[]	{	"attack_category"	},

				new	string[]	{	"duration"	},

				x	=>	x.ValueCount

).SortRows("duration");

attackCount.RenameColumns(new	string[]	{	"attack_category",	"count"	});

attackCount.Print();

DataBarBox.Show(

				attackCount.GetColumn<string>("attack_category").Values.ToArray(),

				attackCount["count"].Values.ToArray()

).SetTitle(

				"Counts	by	Attack	Category"

);

Similar	to	the	previous	chapters,	we	are	using	the	AggregateRowsBy	method	in
Deedle's	data	frame	to	group	by	the	target	variable,	attack_category,	and	count	the
number	of	occurrences	per	category	in	the	dataset.	Then,	we	use	the	DataBarBox
class	to	display	a	bar	chart	of	this	distribution.	Once	you	run	this	code,	the
following	bar	chart	will	be	displayed:

And	the	output	that	shows	us	the	number	of	occurrences	of	each	cyber	attack
category	looks	as	follows:

There	is	one	thing	that	is	noticeable	here.	There	are	more	DOS	attack	samples
than	normal	samples	in	the	dataset.	As	mentioned	previously,	the	KDD	Cup
1999	dataset	that	we	are	using	for	this	project	is	artificial	and	simulated	data,	and
thus,	it	does	not	reflect	a	real-life	situation,	where	the	number	of	normal	internet
connections	will	outnumber	the	number	of	all	the	other	cyber	attacks	combined.
We	will	have	to	keep	this	in	mind	when	building	models	in	the	following
sections.

Categorical	variable	distribution
The	features	that	we	have	in	this	dataset	are	a	mixture	of	categorical	and
continuous	variables.	For	example,	the	feature	named	duration,	which	represents
the	length	of	the	connection,	is	a	continuous	variable.	However,	the	feature,
named	protocol_type,	which	represents	the	type	of	the	protocol,	such	as	tcp,	udp,
and	so	forth,	is	a	categorical	variable.	For	a	complete	set	of	feature	descriptions,
you	can	go	to	this	link:	http://kdd.ics.uci.edu/databases/kddcup99/task.html.

In	this	section,	we	are	going	to	take	a	look	at	the	distribution	differences	in	the
categorical	variables	between	the	normal	connections	and	the	malicious
connections.	The	following	code	shows	how	we	separate	the	sample	set	into	two
subgroups,	one	for	normal	connections	and	another	for	abnormal	connections:

var	attackSubset	=	featuresDF.Rows[

				featuresDF.GetColumn<string>("attack_category").Where(

								x	=>	!x.Value.Equals("normal")

).Keys

];

var	normalSubset	=	featuresDF.Rows[

				featuresDF.GetColumn<string>("attack_category").Where(

								x	=>	x.Value.Equals("normal")

).Keys

];

Now	that	we	have	these	two	subsets,	let's	start	comparing	the	distributions	of
categorical	variables	between	normal	and	malicious	connections.	Let's	first	take
a	look	at	the	code:

//	2.	Categorical	Variable	Distribution

string[]	categoricalVars	=

{

				"protocol_type",	"service",	"flag",	"land"

};

foreach	(string	variable	in	categoricalVars)

{

				Console.WriteLine("\n\n--	Counts	by	{0}	--\n",	variable);

				Console.WriteLine("*	Attack:");

				var	attackCountDF	=	attackSubset.AggregateRowsBy<string,	int>(

								new	string[]	{	variable	},

								new	string[]	{	"duration"	},

								x	=>	x.ValueCount

);

				attackCountDF.RenameColumns(new	string[]	{	variable,	"count"	});

				attackCountDF.SortRows("count").Print();

				Console.WriteLine("*	Normal:");

http://kdd.ics.uci.edu/databases/kddcup99/task.html

				var	countDF	=	normalSubset.AggregateRowsBy<string,	int>(

								new	string[]	{	variable	},

								new	string[]	{	"duration"	},

								x	=>	x.ValueCount

);

				countDF.RenameColumns(new	string[]	{	variable,	"count"	});

				countDF.SortRows("count").Print();

				DataBarBox.Show(

								countDF.GetColumn<string>(variable).Values.ToArray(),

								new	double[][]	

								{

												attackCountDF["count"].Values.ToArray(),

												countDF["count"].Values.ToArray()

								}

).SetTitle(

								String.Format("Counts	by	{0}	(0	-	Attack,	1	-	Normal)",	variable)

);

}

In	this	code,	we	are	iterating	through	an	array	of	categorical	variables:
protocol_type,	service,	flag,	and	land.	We	will	defer	the	feature	descriptions	to	the
description	page	that	can	be	found	at	the	following	link:	http://kdd.ics.uci.edu/data
bases/kddcup99/task.html.	For	each	categorical	variable,	we	used	the	AggregateRowsBy
method	to	group	by	each	type	of	the	variable	and	count	the	number	of
occurrences	for	each	type.	We	do	this	aggregation	once	for	the	normal	group	and
then	once	more	for	the	attack	group.	Then,	we	use	the	DataBarBox	class	to	display
bar	charts	to	visually	show	the	differences	in	the	distributions.	Let's	take	a	look
at	a	few	plots	and	outputs.

The	following	bar	chart	is	for	the	protocol_type	feature:

http://kdd.ics.uci.edu/databases/kddcup99/task.html

The	actual	counts	per	type	between	the	two	groups	look	as	follows:

As	you	can	see	from	these	outputs,	there	are	some	noticeable	distinctions
between	the	distributions	of	normal	and	cyber	attack	groups.	For	example,	the
majority	of	attacks	happen	on	icmp	and	tcp	protocols,	while	the	majority	of
normal	connections	are	on	tcp	and	udp.

The	following	bar	chart	is	for	the	land	feature:

The	actual	counts	for	each	type	in	this	feature	look	as	follows:

It	is	quite	hard	to	tell	if	we	can	deduce	any	meaningful	insights	from	these
outputs.	Almost	all	samples	in	the	dataset	have	a	value	of	0	for	both	the	attack
and	normal	groups.	Let's	take	a	look	at	one	more	feature.

The	following	bar	chart	shows	the	distributions	of	the	feature	flag	in	attack	and
normal	groups:

And	the	actual	counts	look	as	follows:

There	are	some	noticeable	distinctions	in	this	feature,	even	though	the	most
frequently	appearing	flag	type	for	both	attack	and	normal	groups	is	SF.	It	seems
the	flag	types	SF	and	REJ	take	up	the	majority	of	the	normal	group.	On	the	other
hand,	the	flag	types	SF,	S0,	and	REJ	take	up	the	majority	of	the	attack	group.

Continuous	variable	distribution
So	far,	we	have	looked	at	the	distributions	of	categorical	variables.	Let's	now
look	at	the	distributions	of	continuous	variables	in	our	feature	set.	Similar	to	the
previous	chapters,	we	are	going	to	look	at	the	quartiles	for	each	continuous
variable.	The	code	to	compute	quartiles	for	each	continuous	feature	looks	as
follows:

foreach	(string	variable	in	continuousVars)

{

				Console.WriteLine(String.Format("\n\n--	{0}	Distribution	(Attack)	--	",	variable));

				double[]	attachQuartiles	=	Accord.Statistics.Measures.Quantiles(

								attackSubset[variable].DropMissing().ValuesAll.ToArray(),

								new	double[]	{	0,	0.25,	0.5,	0.75,	1.0	}

);

				Console.WriteLine(

								"Min:	\t\t\t{0:0.00}\nQ1	(25%	Percentile):	\t{1:0.00}\nQ2	(Median):	

\t\t{2:0.00}\nQ3	(75%	Percentile):	\t{3:0.00}\nMax:	\t\t\t{4:0.00}",

								attachQuartiles[0],	attachQuartiles[1],	attachQuartiles[2],	attachQuartiles[3],	

attachQuartiles[4]

);

				Console.WriteLine(String.Format("\n\n--	{0}	Distribution	(Normal)	--	",	variable));

				double[]	normalQuantiles	=	Accord.Statistics.Measures.Quantiles(

								normalSubset[variable].DropMissing().ValuesAll.ToArray(),

								new	double[]	{	0,	0.25,	0.5,	0.75,	1.0	}

);

				Console.WriteLine(

								"Min:	\t\t\t{0:0.00}\nQ1	(25%	Percentile):	\t{1:0.00}\nQ2	(Median):	

\t\t{2:0.00}\nQ3	(75%	Percentile):	\t{3:0.00}\nMax:	\t\t\t{4:0.00}",

								normalQuantiles[0],	normalQuantiles[1],	normalQuantiles[2],	normalQuantiles[3],	

normalQuantiles[4]

);

}

And	the	variable,	continuousVars,	is	defined	as	the	following	array	of	strings:

//	3.	Continuous	Variable	Distribution

string[]	continuousVars	=

{

				"duration",	"src_bytes",	"dst_bytes",	"wrong_fragment",	"urgent",	"hot",

				"num_failed_logins",	"num_compromised",	"root_shell",	"su_attempted",

				"num_root",	"num_file_creations",	"num_shells",	"num_access_files",

				"num_outbound_cmds",	"count",	"srv_count",	"serror_rate",	"srv_serror_rate",

				"rerror_rate",	"srv_rerror_rate",	"same_srv_rate",	"diff_srv_rate",

				"srv_diff_host_rate",	"dst_host_count",	"dst_host_srv_count",

				"dst_host_same_srv_rate",	"dst_host_diff_srv_rate",	"dst_host_same_src_port_rate",

				"dst_host_srv_diff_host_rate",	"dst_host_serror_rate",	"dst_host_srv_serror_rate",

				"dst_host_rerror_rate",	"dst_host_srv_rerror_rate"

};

Similar	to	what	we	did	for	categorical	variable	analysis,	we	start	iterating

through	the	continuous	variables	in	the	preceding	code.	The	string	array,
continuousVars,	contains	a	list	of	all	the	continuous	features	we	have	in	our	dataset,
and	we	iterate	through	this	array	to	start	computing	the	quartiles	of	each
distribution.	As	in	the	previous	chapters,	we	are	using	the
Accord.Statistics.Measures.Quantiles	method	to	compute	quartiles,	which	are	min,
25%	percentile,	median,	75%	percentile,	and	max	numbers.	We	do	this	twice,
once	for	the	attack	group	and	another	time	for	the	normal	group,	so	that	we	can
see	if	there	are	any	noticeable	differences	in	the	distributions.	Let's	take	a	look	at
a	few	features	and	their	distributions.

First,	the	following	output	is	for	the	distribution	of	a	feature	called	duration:

From	this	output,	we	can	see	that	the	majority	of	the	values	for	this	feature	are	0
for	both	attack	and	normal	groups.	As	there	is	not	so	much	variance	in	this
variable,	our	model	might	not	learn	much	information	from	this	feature.	Let's
take	a	look	at	another	feature.

The	following	output	is	for	the	distribution	of	a	feature	called	dst_bytes,	which
represents	the	number	of	data	bytes	from	destination	to	source:

Here,	we	see	some	noticeable	distinctions	in	the	distributions	between	the	attack
and	normal	groups.	Almost	all	the	cyber	attacks	have	a	value	of	0,	while	the

values	are	distributed	across	a	wide	range	for	the	normal	network	connections.

Lastly,	the	following	output	is	for	a	feature	called	wrong_fragment:

Similar	to	the	case	of	the	duration	feature,	the	majority	of	the	values	are	0	for	both
the	attack	and	normal	group,	which	suggests	that	our	model	might	not	learn
many	insights	from	this	feature.	You	can	run	the	previous	code	to	look	at	the
distribution	differences	between	the	two	groups	for	all	the	other	features.

The	full	code	to	run	this	data	analysis	step	can	be	found	at	this	link:	https://github
.com/yoonhwang/c-sharp-machine-learning/blob/master/ch.9/DataAnalyzer.cs.

https://github.com/yoonhwang/c-sharp-machine-learning/blob/master/ch.9/DataAnalyzer.cs

Feature	engineering	and	PCA
So	far,	we	have	analyzed	the	distributions	of	the	target	variable	attack_category,	as
well	as	the	categorical	and	continuous	variables	in	the	cyber	attack	dataset.	In
this	section,	we	are	going	to	focus	on	encoding	the	target	variable	and
categorical	features,	and	creating	PCA	features	for	our	future	model-building
step.

	

Target	and	categorical	variables
encoding
First,	we	will	have	to	encode	different	classes	in	the	target	variable,
attack_category.	If	you	recall	from	the	previous	data	analysis	step,	there	are	five
different	categories:	normal,	dos,	probe,	r2l,	and	u2r.	We	are	going	to	encode	each
of	these	string	values	with	a	corresponding	integer	representation.	Then,	we	are
going	to	encode	each	of	the	categorical	variables	with	one-hot	encoding,	where
we	encode	with	1	if	the	given	value	appears	in	the	example,	and	0	if	not.	Let's
first	load	the	cleaned-up	data	that	we	created	in	the	previous	data	analysis	step,
using	the	following	code:

//	Read	in	the	Cyber	Attack	dataset

//	TODO:	change	the	path	to	point	to	your	data	directory

string	dataDirPath	=	@"<path-to-data-dir>";

//	Load	the	data	into	a	data	frame

string	dataPath	=	Path.Combine(dataDirPath,	"data.csv");

Console.WriteLine("Loading	{0}\n\n",	dataPath);

var	rawDF	=	Frame.ReadCsv(

				dataPath,

				hasHeaders:	true,

				inferTypes:	true

);

As	you	can	see	from	this	code,	we	set	hasHeaders:	true,	as	the	cleaned-up	data	now
has	correct	headers	associated	with	each	of	the	columns.	The	following	code
shows	how	we	went	about	encoding	the	target	and	categorical	variables:

//	Encode	Categorical	Variables

string[]	categoricalVars	=

{

				"protocol_type",	"service",	"flag",	"land"

};

//	Encode	Target	Variables

IDictionary<string,	int>	targetVarEncoding	=	new	Dictionary<string,	int>

{

				{"normal",	0},

				{"dos",	1},

				{"probe",	2},

				{"r2l",	3},

				{"u2r",	4}

};

var	featuresDF	=	Frame.CreateEmpty<int,	string>();

foreach	(string	col	in	rawDF.ColumnKeys)

{

				if(col.Equals("attack_type"))

				{

								continue;

				}

				else	if	(col.Equals("attack_category"))

				{

								featuresDF.AddColumn(

												col,	

												rawDF.GetColumn<string>(col).Select(x	=>	targetVarEncoding[x.Value])

);

				}

				else	if	(categoricalVars.Contains(col))

				{

								var	categoryDF	=	EncodeOneHot(rawDF.GetColumn<string>(col),	col);

								foreach	(string	newCol	in	categoryDF.ColumnKeys)

								{

												featuresDF.AddColumn(newCol,	categoryDF.GetColumn<int>(newCol));

								}

				}

				else

				{

								featuresDF.AddColumn(

												col,	

												rawDF[col].Select((x,	i)	=>	double.IsNaN(x.Value)	?	0.0	:	x.Value)

);

				}

}

Let's	take	a	deeper	look	at	this	code.	We	first	created	a	string	array	variable,
categoricalVars,	which	contains	the	column	names	of	all	the	categorical	variables,
and	a	dictionary	variable,	targetVarEncoding,	which	maps	each	target	class	to	an
integer	value.	For	example,	we	are	encoding	the	normal	class	as	0,	the	dos	attack
class	as	1,	and	so	forth.	Then,	we	iterate	through	all	the	columns	in	the	rawDF	data
frame	and	start	adding	encoded	data	to	the	new	and	empty	featuresDF.	One	thing
to	note	here	is	that	we	use	a	helper	function,	EncodeOneHot,	for	encoding	each	of	the
categorical	variables.	Let's	take	a	look	at	the	following	code:

private	static	Frame<int,	string>	EncodeOneHot(Series<int,	string>	rows,	string	

originalColName)

{

				var	categoriesByRows	=	rows.GetAllValues().Select((x,	i)	=>

				{

								//	Encode	the	categories	appeared	in	each	row	with	1

								var	sb	=	new	SeriesBuilder<string,	int>();

								sb.Add(String.Format("{0}_{1}",	originalColName,	x.Value),	1);

								return	KeyValue.Create(i,	sb.Series);

				});

				//	Create	a	data	frame	from	the	rows	we	just	created

				//	And	encode	missing	values	with	0

				var	categoriesDF	=	Frame.FromRows(categoriesByRows).FillMissing(0);

				return	categoriesDF;

}

If	you	recall	Chapter	2,	Spam	Email	Filtering	and	Chapter	3,	Twitter	Sentiment
Analysis,	this	code	should	look	familiar.	In	this	code,	we	iterate	through	each
row,	create	a	new	variable	that	is	a	combination	of	the	original	column	name	and
the	value,	and	finally	create	a	new	Deedle	data	frame,	categoriesDF.	Once	this	step
is	done,	this	data	frame	output	gets	appended	to	the	featuresDF	in	the	previous
code.

Now	that	we	are	done	with	encoding	the	target	and	categorical	variables,	we	will
need	to	export	and	store	this	new	data	frame,	featuresDF.	We	are	using	the
following	code	to	store	this	data:

Console.WriteLine("*	Exporting	feature	set...");

featuresDF.SaveCsv(Path.Combine(dataDirPath,	"features.csv"));

Fitting	PCA
With	the	encoded	data	we	just	created	in	the	previous	section,	let's	start	building
PCA	features	that	we	are	going	to	use	for	the	anomaly	detection	in	the	following
model-building	step.

The	first	thing	we	need	to	do	is	separate	our	sample	set	into	two	separate	sets—
one	with	normal	connection	data	and	another	with	malicious	connections.	While
we	create	these	subsets,	we	need	to	create	more	realistic	distributions	between
the	two	groups.	If	you	recall	from	the	previous	data	analysis	step,	we	noticed
that	there	are	more	malicious	connections	than	normal	connections,	which	is
unrealistic,	due	to	the	fact	that	the	KDD	CUP	1999	Dataset	is	an	artificial	and
hand-injected	dataset.	Aside	from	the	purpose	of	creating	a	dataset	with	a	more
realistic	number	of	normal	and	malicious	connections,	we	need	to	create	the	two
subsets	so	that	we	can	apply	PCA	to	the	normal	group	only,	and	then	apply	it	to
the	abnormal	group.

This	is	because	we	want	to	learn	and	build	principal	components	only	from	the
normal	connections	group,	and	be	able	to	flag	any	outliers	as	potential	cyber
attacks.	We	will	discuss	more	in	detail	about	how	we	are	going	to	build	an
anomaly	detection	model	using	principal	components.

Let's	take	a	look	at	the	following	code	for	splitting	our	sample	set	into	two
groups—one	for	the	normal	group	and	another	for	the	cyber	attack	group:

//	Build	PCA	with	only	normal	data

var	rnd	=	new	Random();

int[]	normalIdx	=	featuresDF["attack_category"]

				.Where(x	=>	x.Value	==	0)

				.Keys

				.OrderBy(x	=>	rnd.Next())

				.Take(90000).ToArray();

int[]	attackIdx	=	featuresDF["attack_category"]

				.Where(x	=>	x.Value	>	0)

				.Keys

				.OrderBy(x	=>	rnd.Next())

				.Take(10000).ToArray();

int[]	totalIdx	=	normalIdx.Concat(attackIdx).ToArray();

As	you	can	see	from	this	code,	we	are	building	arrays	of	indexes	for	the	normal

and	cyber	attack	groups	by	filtering	for	whether	the	attack_category	is	0	(normal)
or	greater	than	0	(cyber	attacks).	Then,	we	randomly	select	90,000	samples	from
the	normal	connections	and	10,000	samples	from	the	malicious	connections.
Now	that	we	have	the	indexes	for	the	normal	and	abnormal	groups,	we	are	going
to	use	the	following	code	to	build	the	actual	data	for	fitting	PCA:

var	normalSet	=	featuresDF.Rows[normalIdx];

string[]	nonZeroValueCols	=	normalSet.ColumnKeys.Where(

				x	=>	!x.Equals("attack_category")	&&	normalSet[x].Max()	!=	normalSet[x].Min()

).ToArray();

double[][]	normalData	=	BuildJaggedArray(

				normalSet.Columns[nonZeroValueCols].ToArray2D<double>(),	

				normalSet.RowCount,	

				nonZeroValueCols.Length

);

double[][]	wholeData	=	BuildJaggedArray(

				featuresDF.Rows[totalIdx].Columns[nonZeroValueCols].ToArray2D<double>(),

				totalIdx.Length,

				nonZeroValueCols.Length

);

int[]	labels	=	featuresDF

				.Rows[totalIdx]

				.GetColumn<int>("attack_category")

				.ValuesAll.ToArray();

As	you	can	see	from	this	code,	the	normalData	variable	contains	all	the	normal
connection	samples	and	the	wholeData	variable	contains	both	the	normal	and	cyber
attack	connection	samples.	We	will	be	using	normalData	to	fit	PCA,	and	then	apply
this	learned	PCA	to	the	wholeData,	as	you	can	see	from	the	following	code:

var	pca	=	new	PrincipalComponentAnalysis(

				PrincipalComponentMethod.Standardize

);

pca.Learn(normalData);

double[][]	transformed	=	pca.Transform(wholeData);

As	in	Chapter	8,	Handwritten	Digit	Recognition,	we	are	using	the
PrincipalComponentAnalysis	class	in	the	Accord.NET	framework	to	fit	PCA.	Once	we
have	trained	PCA	with	the	normal	connections	data,	we	apply	it	to	the	wholeData
that	contains	both	normal	and	cyber	attack	connections	by	using	the	Transform
method	of	the	pca	object.

PCA	features
We	have	now	built	principal	components	using	just	the	normal	connections
group.	Let's	briefly	inspect	how	well	our	target	classes	are	separated	on	different
combinations	of	principal	components.	Take	a	look	at	the	following	code:

double[][]	first2Components	=	transformed.Select(

				x	=>	x.Where((y,	i)	=>	i	<	2).ToArray()

).ToArray();

ScatterplotBox.Show("Component	#1	vs.	Component	#2",	first2Components,	labels);

double[][]	next2Components	=	transformed.Select(

				x	=>	x.Where((y,	i)	=>	i	<	3	&&	i	>=	1).ToArray()

).ToArray();

ScatterplotBox.Show("Component	#2	vs.	Component	#3",	next2Components,	labels);

next2Components	=	transformed.Select(

				x	=>	x.Where((y,	i)	=>	i	<	4	&&	i	>=	2).ToArray()

).ToArray();

ScatterplotBox.Show("Component	#3	vs.	Component	#4",	next2Components,	labels);

next2Components	=	transformed.Select(

				x	=>	x.Where((y,	i)	=>	i	<	5	&&	i	>=	3).ToArray()

).ToArray();

ScatterplotBox.Show("Component	#4	vs.	Component	#5",	next2Components,	labels);

next2Components	=	transformed.Select(

				x	=>	x.Where((y,	i)	=>	i	<	6	&&	i	>=	4).ToArray()

).ToArray();

ScatterplotBox.Show("Component	#5	vs.	Component	#6",	next2Components,	labels);

As	you	can	see	from	this	code,	we	are	building	scatter	plots	between	two
principal	components	at	a	time,	for	the	first	six	components.	When	you	run	this
code,	you	will	see	plots	similar	to	the	following	ones.

The	first	plot	is	between	the	first	and	second	principal	components,	and	looks	as
follows:

The	blue	dots	represent	the	normal	connections,	and	the	other	dots	with	different
colors	represent	the	cyber	attacks.	We	can	see	some	distinctions	in	the
distributions	among	different	classes,	but	the	pattern	does	not	seem	so	strong.

The	following	plot	is	between	the	second	and	third	components:

Lastly,	the	following	plot	is	between	the	third	and	fourth	components:

We	cannot	really	see	many	distinctions	among	different	classes	in	the	last	plot.
Although	the	pattern	does	not	seem	very	strong,	previous	scatter	plots	show
some	differences	in	the	distributions.	It	is	especially	more	difficult	to	visually
see	the	distinctions	on	two-dimensional	plots.	If	we	take	this	to	higher-
dimensional	space,	which	our	anomaly	detection	model	is	going	to	be	looking	at,
the	differences	in	the	patterns	will	become	more	noticeable.

Let's	now	look	at	the	amount	of	variance	explained	from	the	principal
components.	The	following	code	shows	how	we	can	get	the	cumulative
proportion	of	variances	explained,	and	display	it	in	a	line	chart:

double[]	explainedVariance	=	pca.Components

				.Select(x	=>	x.CumulativeProportion)

				.Where(x	=>	x	<	1)

				.ToArray();

DataSeriesBox.Show(

				explainedVariance.Select((x,	i)	=>	(double)i),

				explainedVariance

).SetTitle("Explained	Variance");

System.IO.File.WriteAllLines(

				Path.Combine(dataDirPath,	"explained-variance.csv"),

				explainedVariance.Select((x,	i)	=>	String.Format("{0},{1:0.0000}",	i,	x))

);

If	you	look	at	this	code	more	closely,	the	Components	property	in	the	pca	object
contains	information	about	the	proportion	of	variance	explained.	We	can	iterate
through	each	component	and	get	the	cumulative	proportion	by	using	the

CumulativeProportion	property.	Once	we	have	extracted	these	values,	we	then	use
the	DataSeriesBox	class	to	display	a	line	chart	that	shows	the	cumulative	proportion
of	variance	explained.	The	output	looks	like	the	following:

Now,	we	have	successfully	created	PCA	features	and	have	full	PCA-transformed
data.	You	can	use	the	following	code	to	export	this	data:

Console.WriteLine("*	Exporting	pca-transformed	feature	set...");

System.IO.File.WriteAllLines(

				Path.Combine(

								dataDirPath,

								"pca-transformed-features.csv"

),

				transformed.Select(x	=>	String.Join(",",	x))

);

System.IO.File.WriteAllLines(

				Path.Combine(

								dataDirPath,

								"pca-transformed-labels.csv"

),

				labels.Select(x	=>	x.ToString())

);

The	full	code	for	the	feature	engineering	step	can	be	found	at	this	link:	https://git
hub.com/yoonhwang/c-sharp-machine-learning/blob/master/ch.9/FeatureEngineering.cs.

https://github.com/yoonhwang/c-sharp-machine-learning/blob/master/ch.9/FeatureEngineering.cs

Principal	component	classifier	for
anomaly	detection
We	have	compiled	everything	and	are	now	ready	to	start	building	an	anomaly
detection	model	for	the	cyber	attack	detection	project.	As	mentioned	previously,
we	are	going	to	use	the	data	of	the	distributions	of	principal	components	from
the	normal	connections	group,	and	take	it	as	the	normal	ranges	of	principal
components.	For	any	records	that	deviate	from	these	normal	ranges	of	the
principal	component	values,	we	are	going	to	flag	them	as	abnormal	and	potential
cyber	attacks.

	

Preparation	for	training
First,	let's	load	the	features	data	that	we	created	from	the	feature	engineering
step.	You	can	use	the	following	code	to	load	the	PCA-transformed	data	and	the
labels	data:

//	Read	in	the	Cyber	Attack	dataset

//	TODO:	change	the	path	to	point	to	your	data	directory

string	dataDirPath	=	@"<path-to-dir>";

//	Load	the	data	into	a	data	frame

string	dataPath	=	Path.Combine(dataDirPath,	"pca-transformed-features.csv");

Console.WriteLine("Loading	{0}\n\n",	dataPath);

var	featuresDF	=	Frame.ReadCsv(

				dataPath,

				hasHeaders:	false,

				inferTypes:	true

);

featuresDF.RenameColumns(

				featuresDF.ColumnKeys.Select((x,	i)	=>	String.Format("component-{0}",	i	+	1))

);

int[]	labels	=	File.ReadLines(

				Path.Combine(dataDirPath,	"pca-transformed-labels.csv")

).Select(x	=>	int.Parse(x)).ToArray();

featuresDF.AddColumn("attack_category",	labels);

Let's	quickly	look	at	the	distributions	of	our	target	classes.	The	code	to	count	by
each	target	class	is	as	follows:

var	count	=	featuresDF.AggregateRowsBy<string,	int>(

				new	string[]	{	"attack_category"	},

				new	string[]	{	"component-1"	},

				x	=>	x.ValueCount

).SortRows("component-1");

count.RenameColumns(new	string[]	{	"attack_category",	"count"	});

count.Print();

Once	you	run	this	code,	you	will	see	the	following	output:

As	expected,	the	majority	of	the	samples	belong	to	the	0	class,	which	is	the
normal	group,	and	the	rest	combined	are	the	minority	(about	10%)	in	our	sample

set.	This	is	a	more	realistic	view	of	cyber	attacks.	Cyber	attacks	happen	way	less
frequently	than	normal	connections.

For	illustration	purposes,	we	are	going	to	use	the	first	27	principal	components
that	explain	about	70%	of	the	overall	variance	in	the	dataset.	You	can	experiment
with	different	numbers	of	principal	components	and	see	how	model
performances	change.	The	following	code	shows	how	we	created	a	training	set
using	the	first	27	principal	components:

//	First	13	components	explain	about	50%	of	the	variance

//	First	19	components	explain	about	60%	of	the	variance

//	First	27	components	explain	about	70%	of	the	variance

//	First	34	components	explain	about	80%	of	the	variance

int	numComponents	=	27;

string[]	cols	=	featuresDF.ColumnKeys.Where((x,	i)	=>	i	<	numComponents).ToArray();

//	First,	compute	distances	from	the	center/mean	among	normal	events

var	normalDF	=	featuresDF.Rows[

				featuresDF["attack_category"].Where(x	=>	x.Value	==	0).Keys

].Columns[cols];

double[][]	normalData	=	BuildJaggedArray(

				normalDF.ToArray2D<double>(),	normalDF.RowCount,	cols.Length

);

If	you	look	at	this	code	closely,	you	will	notice	that	we	are	creating	normalDF	and
normalData	variables	with	normal	connection	samples	only.	As	mentioned
previously,	we	want	to	learn	only	from	the	normal	data,	so	that	we	can	flag	any
outliers	and	extreme	deviations	from	the	normal	ranges	of	principal	components.
We	are	going	to	use	these	variables	to	build	a	principal	component	classifier	for
the	cyber	attack	detection	in	the	following	section.

Building	a	principal	component
classifier
In	order	to	build	a	principal	component	classifier,	which	will	flag	those	events
that	deviate	from	the	normal	connections,	we	need	to	calculate	the	distance
between	a	record	and	the	distributions	of	normal	connections.	We	are	going	to
use	a	distance	metric,	the	Mahalanobis	distance,	which	measures	the	distance
between	a	point	and	a	distribution.	For	the	standardized	principal	components,
like	those	here,	the	equation	to	compute	the	Mahalanobis	distance	is	as
follows:

Ci	in	this	equation	represents	the	value	of	each	principal	component,	and	vari
represents	the	variance	of	each	principal	component.	Let's	take	a	look	at	the
following	example:

Assume	you	have	5	principal	components	with	values	as	shown	in	this	image
and	assume	the	variance	for	each	principal	is	1	for	simplicity	and	demonstration
purposes,	then	you	can	compute	the	Mahalanobis	distance	as	the	following:

And	the	computed	Mahalanobis	distance	for	this	example	is	0.64.	For	a	more
detailed	description	of	this	distance	metric,	it	is	recommended	that	you	review
the	following	Wikipedia	page:	https://en.wikipedia.org/wiki/Mahalanobis_distance,	or
the	following	research	paper:	https://users.cs.fiu.edu/~chens/PDF/ICDM03_WS.pdf.

We	implemented	the	Mahalanobis	distance	equation	as	a	helper	function,
ComputeDistances,	and	it	looks	as	follows:

https://en.wikipedia.org/wiki/Mahalanobis_distance
https://users.cs.fiu.edu/~chens/PDF/ICDM03_WS.pdf

private	static	double[]	ComputeDistances(double[][]	data,	double[]	componentVariances)

{

				double[]	distances	=	data.Select(

								(row,	i)	=>	Math.Sqrt(

												row.Select(

																(x,	j)	=>	Math.Pow(x,	2)	/	componentVariances[j]

).Sum()

)

).ToArray();

				return	distances;

}

As	you	can	see	from	this	code	snippet,	the	ComputeDistances	method	takes	in	two
arguments—data	and	componentVariances.	The	variable	data	is	a	two-dimensional
array	that	we	want	to	compute	distances	for,	and	the	componentVariances	variable	is
the	variance	of	the	principal	components	that	are	learned	from	the	normal
network	connections	data.	In	order	to	compute	the	variances	of	the	principal
components,	we	use	the	following	helper	function:

private	static	double[]	ComputeVariances(double[][]	data)

{

				double[]	componentVariances	=	new	double[data[0].Length];

				for	(int	j	=	0;	j	<	data[0].Length;	j++)

				{

								componentVariances[j]	=	data

												.Select((x,	i)	=>	Math.Pow(data[i][j],	2))

												.Sum()	/	data.Length;

				}

				return	componentVariances;

}

As	you	can	see	from	this	code	snippet,	it	is	computing	the	variances	of
individual	columns,	where	each	column	of	this	two-dimensional	array	represents
each	principal	component.	In	order	to	compute	the	distances	of	individual
records	from	the	distribution	of	normal	network	connections	data,	we	can	simply
pass	the	two-dimensional	array	to	the	helper	function	ComputeDistances,	as	follows:

double[]	distances	=	ComputeDistances(normalData);

Now	that	we	have	computed	the	distances	of	individual	records,	let's	analyze
how	the	ranges	for	the	normal	connections	look.	We	used	the	following	code	to
calculate	the	mean	and	standard	deviation	of	the	distances,	and	a	histogram	to
visualize	the	overall	distance	distributions:

double	meanDistance	=	distances.Average();

double	stdDistance	=	Math.Sqrt(

				distances

				.Select(x	=>	Math.Pow(x	-	meanDistance,	2))

				.Sum()	/	distances.Length

);

Console.WriteLine(

				"*	Normal	-	mean:	{0:0.0000},	std:	{1:0.0000}",

				meanDistance,	stdDistance

);

HistogramBox.Show(

				distances,

				title:	"Distances"

)

.SetNumberOfBins(50);

When	you	run	this	code,	you	will	see	the	following	output	for	the	mean	and
standard	deviation	of	the	distance	metrics	for	normal	connections:

And	the	histogram	looks	as	follows:

As	you	can	see	from	these	outputs,	the	majority	of	the	distances	are	very	small,
which	suggests	that	the	non-attack	and	normal	connections	are	typically
clustered	together	closely.	With	this	information	about	the	distance	distributions
within	the	normal	connections	group,	let's	start	looking	to	see	if	we	can	build	a
detection	model	by	flagging	certain	network	connections	that	go	beyond	the
normal	range	of	distances.

The	following	code	shows	how	we	computed	the	distances	of	cyber	attack
connections	from	the	distribution	of	normal	network	connections:

//	Detection

var	attackDF	=	featuresDF.Rows[

				featuresDF["attack_category"].Where(x	=>	x.Value	>	0).Keys

].Columns[cols];

double[][]	attackData	=	BuildJaggedArray(

				attackDF.ToArray2D<double>(),	attackDF.RowCount,	cols.Length

);

double[]	attackDistances	=	ComputeDistances(attackData,	normalVariances);

As	you	can	see	from	this	code,	we	first	created	a	variable,	called	attackData,
which	contains	all	the	cyber	attack	connections	from	our	training	set.	Then,	we
used	the	ComputeDistances	method	to	calculate	the	distances	of	individual	records	in
the	cyber	attack	connections	group.

Now,	we	are	ready	to	start	flagging	suspicious	network	connections	based	on	the
distance	metrics	that	we	just	calculated.	Let's	take	a	look	at	the	following	code
first:

//	5-10%	false	alarm	rate

for	(int	i	=	4;	i	<	10;	i++)

{

				double	targetFalseAlarmRate	=	0.01	*	(i	+	1);

				double	threshold	=	Accord.Statistics.Measures.Quantile(

								distances,

								1	-	targetFalseAlarmRate

);

				int[]	detected	=	attackDistances.Select(x	=>	x	>	threshold	?	1	:	0).ToArray();

				EvaluateResults(attackLabels,	detected,	targetFalseAlarmRate);

}

As	you	can	see	from	this	code,	we	decide	the	threshold	based	on	the	distribution
of	distances	within	the	normal	connections	group.	For	example,	if	our	target	is	to
have	a	5%	false	alarm	rate,	we	flag	all	the	connections	that	have	distances	from
the	normal	range	greater	than	the	95%	percentile	of	the	distribution	of	distances
within	the	normal	connections	group.	More	specifically,	the	95%	percentile	of
the	normal	connections'	distance	distribution	in	our	case	was	5.45.	So,	in	this
case,	we	will	flag	all	the	connections	that	have	distances	from	the	normal	range
greater	than	5.45	as	cyber	attacks.	We	repeat	this	process	for	the	false	alarm	rates
from	5%	to	10%.	We	will	discuss	the	performance	of	this	anomaly	detection
model	in	more	detail	in	the	following	model-evaluation	step.

The	full	code	for	the	model-building	step	can	be	found	at	this	link:	https://github.
com/yoonhwang/c-sharp-machine-learning/blob/master/ch.9/Modeling.cs.

https://github.com/yoonhwang/c-sharp-machine-learning/blob/master/ch.9/Modeling.cs

Evaluating	anomaly	detection	models
We	built	an	anomaly	detection	model	for	cyber	attacks	in	the	previous	model-
building	step.	In	the	previous	code,	you	might	have	noticed	that	we	are	using	a
function	named	EvaluateResults.	It	is	a	helper	function	that	we	wrote	for	evaluating
model	performances.	Let's	take	a	look	at	the	following	code:

private	static	void	EvaluateResults(int[]	attackLabels,	int[]	detected,	double	

targetFalseAlarmRate)

{

				double	overallRecall	=	(double)detected.Sum()	/	attackLabels.Length;

				double[]	truePositives	=	new	double[4];

				double[]	actualClassCounts	=	new	double[4];

				for	(int	i	=	0;	i	<	attackLabels.Length;	i++)

				{

								actualClassCounts[attackLabels[i]	-	1]	+=	1.0;

								if	(detected[i]	>	0)

								{

												truePositives[attackLabels[i]	-	1]	+=	1.0;

								}

				}

				double[]	recalls	=	truePositives.Select((x,	i)	=>	x	/	

actualClassCounts[i]).ToArray();

				Console.WriteLine("\n\n----	{0:0.0}%	False	Alarm	Rate	----",	targetFalseAlarmRate	*	

100.0);

				Console.WriteLine("*	Overall	Attack	Detection:	{0:0.00}%",	overallRecall	*	100.0);

				Console.WriteLine(

								"*	Detection	by	Attack	Type:\n\t{0}",

								String.Join("\n\t",	recalls.Select(

												(x,	i)	=>	String.Format("Class	{0}:	{1:0.00}%",	(i	+	1),	x	*	100.0))

)

);

}

As	you	can	see	from	this	code,	we	are	interested	in	two	metrics:	overall	cyber
attack	detection	rate	and	per-class	detection	rate.	The	evaluation	results	look	as
follows:

The	overall	results	look	good	with	over	99%	detection	rates.	At	5%	false	alarm
rate,	about	99.1%	of	the	cyber	attacks	are	detected.	However,	if	we	look	closer	at
the	per-class	detection	rates,	we	can	see	their	weaknesses	and	strengths.	At	5%
false	alarm	rate,	our	model	does	very	well	for	detecting	classes	1	and	2,	which
are	dos	and	probe	attacks.	On	the	other	hand,	our	model	does	poorly	in	detecting
classes	3	and	4,	which	are	r2l	and	u2r	attacks.	As	you	can	see	from	this	output,	as
we	increase	the	target	false	alarm	rates,	the	overall	and	per-class	detection	rates
increase	as	well.	In	a	real-world	situation,	you	will	have	to	evaluate	the	trade-
offs	between	a	higher	detection	rate	and	a	higher	false	alarm	rate,	and	make	a
decision	on	the	target	false	alarm	rate	that	meets	your	business	requirements.

Summary
In	this	chapter,	we	built	our	very	first	anomaly	detection	model	that	can	detect
cyber	attacks.	At	the	beginning	of	this	chapter,	we	discussed	how	this	type	of
anomaly	detection	model	can	be	used	and	applied	to	real-life	situations,	and	how
developing	an	anomaly	detection	model	is	different	from	other	ML	models	that
we	have	built	so	far.	Then,	we	started	analyzing	the	distributions	of	target	classes
and	various	features	to	understand	the	dataset	better.	While	we	were	analyzing
this	dataset,	we	also	noticed	how	there	are	more	cyber	attack	samples	than
normal	connection	samples,	which	is	unrealistic	in	real	life.	In	order	to	simulate
real-life	situations,	where	abnormal	malicious	connections	occur	much	less
frequently	than	normal	connections,	we	randomly	sub-selected	the	normal	and
malicious	connection	samples	so	that	90%	of	the	training	set	were	normal
connections	and	only	10%	were	cyber	attack	examples.

With	this	sub-selected	training	set,	we	applied	PCA	to	the	normal	connections
data	to	find	out	the	normal	ranges	of	principal	components.	Using	the
Mahalanobis	distance	metric,	we	computed	the	distances	between	individual
records	from	the	distributions	of	normal	connections.	During	the	model-building
step,	we	experimented	with	different	thresholds	based	on	the	target	false	alarm
rates.	Using	5%	to	10%	false	alarm	rates,	we	built	cyber	attack	detection	models
and	evaluated	their	performance.	In	our	model-evaluation	step,	we	noticed	that
the	overall	detection	rates	were	over	99%,	while	a	closer	look	at	per-attack
detection	rates	exposed	the	weaknesses	and	strengths	of	the	models.	We	also
noticed	that	as	we	sacrifice	and	increase	the	false	alarm	rates,	the	overall	cyber
attack	detection	rates	improved.	When	applying	this	anomaly	detection
technique,	it	becomes	necessary	to	understand	this	tradeoff	between	the	false
alarm	rate	and	detection	rate,	and	make	a	decision	based	on	pertinent	business
requirements.

In	the	next	chapter,	we	are	going	to	expand	our	knowledge	and	experience	in
building	anomaly	detection	models.	We	are	going	to	work	on	a	credit	card	fraud
detection	project	with	a	credit	card	dataset.	On	top	of	the	PCA-based	anomaly
detection	model,	we	are	going	to	discuss	how	to	use	a	one-class	support	vector
machine	for	anomaly	detection.

Credit	Card	Fraud	Detection
	

In	the	previous	chapter,	we	built	our	first	anomaly	detection	model	using
Principal	Component	Analysis	(PCA)	and	saw	how	we	can	detect	cyber
attacks	using	principal	components.	Similar	to	cyber	attack	or	network	intrusion
problems,	anomaly	detection	models	are	frequently	used	for	fraud	detection.
Various	organizations	in	many	industries,	such	as	financial	services,	insurance
companies,	and	government	agencies,	often	come	across	fraudulent	cases.
Especially	in	financial	sectors,	frauds	are	directly	related	to	monetary	losses	and
these	fraudulent	cases	can	come	in	many	different	guises,	such	as	stolen	credit
cards,	accounting	forgeries,	or	fake	checks.	Because	these	events	occur	relatively
rarely,	it	is	difficult	and	tricky	to	detect	these	fraudulent	cases.

In	this	chapter,	we	are	going	to	discuss	how	we	can	build	an	anomaly	detection
model	for	credit	card	fraud	detection.	We	are	going	to	use	an	anonymized	credit
card	dataset	that	contains	a	large	portion	of	normal	credit	card	transactions	and
relatively	fewer	fraudulent	credit	card	transactions.	We	will	first	look	at	the
structure	of	the	dataset,	the	distribution	of	the	target	classes,	and	the	distributions
of	various	anonymized	features.	Then,	we	are	going	to	start	applying	PCA	and
building	standardized	principal	components	that	will	be	used	as	features	for	our
fraud	detection	model.	In	the	model	building	step,	we	are	going	to	experiment
with	two	different	approaches	to	building	fraud	detection	models—the	Principal
Component	Classifier	(PCC)	that	is	similar	to	what	we	built	in	Chapter	9,	Cyber
Attack	Detection	and	the	one-class	Support	Vector	Machine	(SVM)	that	learns
from	normal	credit	card	transactions	and	detects	any	anomalies.	With	these
models	built,	we	are	going	to	evaluate	their	anomaly	detection	rates	and	compare
their	performances	for	credit	card	fraud	detection.

In	this	chapter,	we	will	cover	the	following	topics:

Problem	definition	for	the	credit	card	fraud	detection	project
Data	analysis	for	the	anonymized	credit	card	dataset
Feature	engineering	and	PCA
The	one-class	SVM	versus	the	PCC

Evaluating	anomaly	detection	models

	

	

Problem	definition
	

Credit	card	fraud	is	relatively	common	among	other	fraudulent	events,	and	can
happen	in	our	daily	lives.	There	are	various	ways	credit	card	fraud	can	happen.
Credit	cards	can	be	lost	or	stolen	and	then	used	by	a	thief.	Another	way	credit
card	fraud	can	occur	is	that	your	identity	might	have	been	exposed	to	malicious
persons	who	then	use	your	identity	to	open	a	new	credit	card	account,	or	even
take	over	your	existing	credit	card	accounts.	Scammers	can	even	use	telephone
phishing	for	credit	card	fraud.	As	there	are	many	ways	credit	card	fraud	can
happen,	many	credit	card	holders	are	exposed	to	the	risk	of	this	type	of	fraud,
and	having	a	proper	way	to	prevent	them	from	happening	has	become	essential
in	our	daily	lives.	Many	credit	card	companies	have	employed	various	measures
to	prevent	and	detect	these	types	of	fraudulent	activities,	using	various	machine
learning	(ML)	and	anomaly-detection	technologies.

In	this	chapter,	we	are	going	to	work	on	building	a	credit	card	fraud	detection
model	by	using	and	expanding	our	knowledge	about	building	anomaly	detection
models.	We	will	be	using	an	anonymized	credit	card	dataset	that	can	be	found	at
the	following	link:	https://www.kaggle.com/mlg-ulb/creditcardfraud/data.	This	dataset
has	about	285,000	credit	card	transactions,	and	only	about	0.17%	of	those
transactions	are	fraudulent	transactions,	which	reflects	a	real-life	situation	very
well.	With	this	data,	we	are	going	to	look	at	how	the	dataset	is	structured,	and
then	start	looking	at	the	distributions	of	the	target	and	feature	variables.	Then,
we	will	be	building	features	by	using	PCA,	similar	to	what	we	did	in	Chapter	9,
Cyber	Attack	Detection.	For	building	credit	card	fraud	detection	models,	we	are
going	to	experiment	with	both	the	PCC,	similar	to	the	one	we	built	in	Chapter	9,
Cyber	Attack	Detection,	and	the	one-class	SVM,	which	learns	from	normal
credit	card	transactions	and	decides	whether	a	new	transaction	is	fraudulent	or
not.	Lastly,	we	are	going	to	look	at	false	alarm	and	fraud	detection	rates	to
evaluate	and	compare	the	performances	of	these	models.

To	summarize	our	problem	definition	for	the	credit	card	fraud	detection	project:

What	is	the	problem?	We	need	an	anomaly	detection	model	for	fraudulent

https://www.kaggle.com/mlg-ulb/creditcardfraud/data

credit	card	transactions	that	can	identify,	prevent,	and	stop	potential
fraudulent	credit	card	activities.
Why	is	it	a	problem?	Every	credit	card	holder	is	exposed	to	the	risks	of
becoming	the	victim	of	credit	card	fraud,	and	without	being	properly
prepared	for	such	malicious	attempts,	the	number	of	credit	card	fraud
victims	is	going	to	increase.	With	a	credit	card	fraud	detection	model,	we
can	prevent	and	stop	potential	fraudulent	credit	card	transactions	from
happening.
What	are	some	of	the	approaches	to	solving	this	problem?	We	are	going	to
use	anonymized	credit	card	data	that	is	publicly	available,	and	has	lots	of
normal	credit	card	transactions	and	a	small	number	of	fraudulent
transactions.	We	are	going	to	apply	PCA	to	this	data	and	experiment	with
the	PCC	and	the	one-class	SVM	models	for	fraud	detection.
What	are	the	success	criteria?	Since	any	credit	card	fraud	event	will	result
in	monetary	loss,	we	want	a	high	fraud	detection	rate.	Even	if	there	are
some	false	positives	or	false	alarms,	it	is	better	to	flag	any	suspicious	credit
card	activities	to	prevent	any	fraudulent	transactions	from	going	through.

	

	

Data	analysis	for	anonymized	credit
card	data
Let's	now	start	looking	at	the	credit	card	dataset.	As	mentioned	before,	we	are
going	to	use	the	dataset	that	is	available	at	the	following	link:	https://www.kaggle.co
m/mlg-ulb/creditcardfraud/data.	It	is	a	dataset	that	contains	about	285,000	records	of
credit	card	transactions,	where	some	of	them	are	fraudulent	transactions	and	the
majority	of	the	records	are	normal	credit	card	transactions.	Due	to	confidentiality
issues,	the	feature	names	in	the	dataset	are	anonymized.	We	will	be	using	the
creditcard.csv	file,	which	can	be	downloaded	from	the	link.

	

https://www.kaggle.com/mlg-ulb/creditcardfraud/data

Target	variable	distribution
The	first	thing	we	are	going	to	examine	is	the	distribution	of	fraudulent	and	non-
fraudulent	credit	card	transactions	in	the	dataset.	In	the	dataset,	the	column
named	Class	is	the	target	variable	that	is	encoded	with	1	for	fraudulent	credit	card
transactions	and	0	for	non-fraudulent	transactions.	You	can	use	the	following
code	to	first	load	the	data	into	a	Deedle	data	frame:

//	Read	in	the	Credit	Card	Fraud	dataset

//	TODO:	change	the	path	to	point	to	your	data	directory

string	dataDirPath	=	@"<path-to-your-dir>";

//	Load	the	data	into	a	data	frame

string	dataPath	=	Path.Combine(dataDirPath,	"creditcard.csv");

Console.WriteLine("Loading	{0}\n\n",	dataPath);

var	df	=	Frame.ReadCsv(

				dataPath,

				hasHeaders:	true,

				inferTypes:	true

);

This	dataset	has	headers	that	represent	each	of	the	features	and	the	target	class,
so	we	are	loading	this	data	with	the	hasHeaders:	true	flag.	Now	that	we	have	the
data	loaded,	you	can	use	the	following	code	to	analyze	the	distribution	of	the
target	classes:

//	Target	variable	distribution

var	targetVarCount	=	df.AggregateRowsBy<string,	int>(

				new	string[]	{	"Class"	},

				new	string[]	{	"V1"	},

				x	=>	x.ValueCount

).SortRows("V1");

targetVarCount.RenameColumns(new	string[]	{	"is_fraud",	"count"	});

targetVarCount.Print();

DataBarBox.Show(

				targetVarCount.GetColumn<string>("is_fraud").Values.ToArray(),

				targetVarCount["count"].Values.ToArray()

).SetTitle(

				"Counts	by	Target	Class"

);

As	you	might	be	familiar	with	this	function	already,	we	are	using	the
AggregateRowsBy	function	in	a	Deedle	data	frame	to	group	rows	by	the	column	Class,
and	then	count	the	number	of	records	in	each	target	class.	Since	the	column
name,	Class,	is	not	a	good	representative	of	what	our	target	class	is	and	what	it

means,	we	renamed	it	with	another	name,	is_fraud.	As	you	can	see	from	this
code,	you	can	use	the	RenameColumns	function	with	an	array	of	strings	for	new
column	names	to	rename	the	feature	names.	Lastly,	we	used	the	DataBarBox	class
in	the	Accord.NET	framework	to	display	a	bar	plot	that	visually	shows	the
distributions	of	the	target	classes.

The	following	output	shows	the	distribution	of	the	target	classes:

As	you	can	see	from	this	output,	there	is	a	large	gap	between	the	number	of
fraudulent	credit	card	transactions	and	non-fraudulent	credit	card	transactions.
We	only	have	492	records	of	frauds	and	over	284,000	records	of	non-frauds.

The	following	is	a	bar	plot	that	the	code	generates	for	visually	displaying	the
distribution	of	target	classes:

As	expected	from	the	previous	output,	there	is	a	large	gap	between	the	number
of	records	that	belong	to	the	target	class,	1,	which	represents	fraud,	and	the
number	of	records	that	belong	to	the	target	class,	0,	which	represents	non-fraud
and	normal	credit	card	transactions.	This	large	gap	is	expected	as	credit	card
frauds	happen	relatively	rarely,	compared	to	the	large	number	of	normal

everyday	credit	card	transactions.	This	large	class	imbalance	makes	it	difficult
for	most	ML	models	to	accurately	learn	how	to	identify	frauds	from	non-frauds.

Feature	distributions
The	features,	except	for	the	transactional	amounts,	we	have	in	this	data	are
anonymized	due	to	confidentiality	issues.	Because	we	do	not	know	what	each
feature	represents	and	what	each	feature	means,	it	will	be	difficult	to	deduce	any
intuitive	insights	from	the	feature	analysis.	However,	it	is	still	helpful	to
understand	how	each	of	the	features	is	distributed,	how	the	distribution	of	each
feature	differs	from	the	others,	and	whether	there	is	any	noticeable	pattern	we
can	derive	from	the	set	of	features.

Let's	first	take	a	look	at	the	code.	The	following	code	shows	how	we	can
compute	and	visualize	the	distributions	of	the	features:

//	Feature	distributions

foreach	(string	col	in	df.ColumnKeys)

{

				if	(col.Equals("Class")	||	col.Equals("Time"))

				{

								continue;

				}

				double[]	values	=	df[col].DropMissing().ValuesAll.ToArray();

				

				Console.WriteLine(String.Format("\n\n--	{0}	Distribution	--	",	col));

				double[]	quartiles	=	Accord.Statistics.Measures.Quantiles(

								values,

								new	double[]	{	0,	0.25,	0.5,	0.75,	1.0	}

);

				Console.WriteLine(

								"Min:	\t\t\t{0:0.00}\nQ1	(25%	Percentile):	\t{1:0.00}\nQ2	(Median):	

\t\t{2:0.00}\nQ3	(75%	Percentile):	\t{3:0.00}\nMax:	\t\t\t{4:0.00}",

								quartiles[0],	quartiles[1],	quartiles[2],	quartiles[3],	quartiles[4]

);

				HistogramBox.Show(

								values,

								title:	col

)

				.SetNumberOfBins(50);

}

As	you	can	see	from	this	code,	we	are	computing	the	quartiles.	As	you	might
recall,	quartiles	are	the	points	that	separate	the	data	into	four	different	sections.
The	first	quartile	is	the	middle	point	between	the	minimum	and	the	median,	the
second	quartile	is	the	median,	and	the	third	quartile	is	the	middle	point	between
the	median	and	the	maximum.	You	can	easily	compute	the	quartiles	by	using	the
Accord.Statistics.Measures.Quantiles	function.	After	we	compute	the	quartiles,	we

build	histogram	plots	for	each	feature	to	visualize	the	distributions,	using	the
HistogramBox	class	in	the	Accord.NET	framework.	Let's	take	a	look	at	some	of	the
outputs	from	this	code.

The	first	distribution	we	are	going	to	look	at	is	for	the	V1	feature,	and	the
quartiles	for	V1	look	like	the	following:

It	seems	the	distribution	of	the	V1	feature	is	skewed	towards	the	negative
direction.	Even	though	the	median	is	about	0,	the	negative	values	range	from
-56.41	to	0,	while	the	positive	values	range	only	from	0	to	2.45.	The	following	is
the	histogram	output	from	the	previous	code:

As	expected,	the	histogram	plot	shows	left	skewness	in	the	distribution	of	the
feature,	V1,	while	the	majority	of	the	values	are	around	0.

Next,	let's	look	at	the	distribution	of	the	second	feature,	V2,	where	the	output
looks	as	follows:

The	histogram	for	V2	looks	like	the	following:

It	seems	the	values	are	centered	around	0,	although	there	are	some	extreme
values	in	the	negative	direction	and	in	the	positive	direction.	The	skewness	is
less	obvious,	compared	to	the	previous	feature,	V1.

Lastly,	let's	look	at	the	distribution	of	the	amount	feature,	which	can	tell	us	the
range	of	transaction	amounts.	The	following	are	the	quartiles	for	the	amount
feature:

It	seems	any	credit	card	transaction	can	take	any	positive	number	that	ranges
between	0	and	25,691.16	as	a	transaction	amount.	The	following	is	a	histogram

for	the	amount	feature:

As	expected,	we	can	see	there	is	a	long	tail	to	the	right.	This	is	somewhat
expected,	as	the	spending	pattern	for	each	individual	differs	from	any	other.
Some	people	might	typically	buy	moderately	priced	items,	while	some	others
might	buy	very	expensive	items.

Lastly,	let's	take	a	brief	look	at	how	well	the	current	feature	set	separates
fraudulent	credit	card	transactions	from	non-fraudulent	transactions.	Let's	take	a
look	at	the	following	code	first:

//	Target	Var	Distributions	on	2-dimensional	feature	space

double[][]	data	=	BuildJaggedArray(

				df.ToArray2D<double>(),	df.RowCount,	df.ColumnCount

);

int[]	labels	=	df.GetColumn<int>("Class").ValuesAll.ToArray();

double[][]	first2Components	=	data.Select(

				x	=>	x.Where((y,	i)	=>	i	<	2

).ToArray()).ToArray();

ScatterplotBox.Show("Feature	#1	vs.	Feature	#2",	first2Components,	labels);

double[][]	next2Components	=	data.Select(

				x	=>	x.Where((y,	i)	=>	i	>=	1	&&	i	<=	2).ToArray()

).ToArray();

ScatterplotBox.Show("Feature	#2	vs.	Feature	#3",	next2Components,	labels);

next2Components	=	data.Select(

				x	=>	x.Where((y,	i)	=>	i	>=	2	&&	i	<=	3).ToArray()

).ToArray();

ScatterplotBox.Show("Feature	#3	vs.	Feature	#4",	next2Components,	labels);

As	you	can	see	from	this	code,	we	first	convert	the	Deedle	data	frame	variable,
df,	to	a	two-dimensional	array	variable,	data,	to	build	scatter	plots.	Then,	we	take
the	first	two	features	and	display	a	scatter	plot	that	shows	the	distribution	of	the
target	classes	across	these	first	two	features.	We	repeat	this	process	twice	more
for	the	second,	third,	and	fourth	features.

The	following	scatter	plot	is	the	distribution	of	target	classes	across	the	first	and
second	features	in	our	dataset:

From	this	scatter	plot,	it	is	quite	difficult,	if	not	impossible,	to	separate	the	frauds
(encoded	as	1)	from	the	non-frauds	(encoded	as	0).	Let's	look	at	the	scatter	plot
between	the	next	two	features:

Similar	to	the	case	of	the	first	two	features,	there	does	not	seem	to	be	a	clear	line
separating	frauds	from	non-frauds.	Lastly,	the	following	is	a	scatter	plot	of	the
target	classes	between	the	third	and	fourth	feature:

From	looking	at	this	scatter	plot,	it	will	be	difficult	to	draw	a	clear	line	that
separates	the	two	target	classes.	The	fraudulent	transactions	seem	to	reside	more
in	the	bottom-right	side	of	this	scatter	plot,	but	the	pattern	is	weak.	In	the
following	section,	we	will	try	to	build	features	that	better	separate	the	two	target
classes.

The	full	code	for	this	data	analysis	step	can	be	found	at	the	following	link:	https:
//github.com/yoonhwang/c-sharp-machine-learning/blob/master/ch.10/DataAnalyzer.cs.

https://github.com/yoonhwang/c-sharp-machine-learning/blob/master/ch.10/DataAnalyzer.cs

Feature	engineering	and	PCA
So	far,	we	have	analyzed	what	the	distributions	of	the	target	and	feature
variables	look	like.	In	this	chapter,	we	are	going	to	focus	on	building	features,
using	PCA.

Preparation	for	feature	engineering
In	order	to	fit	the	PCA,	we	will	have	to	prepare	our	data	first.	Let's	quickly	look
at	the	following	code	to	load	the	credit	card	fraud	data	into	Deedle's	data	frame:

//	Read	in	the	Credit	Card	Fraud	dataset

//	TODO:	change	the	path	to	point	to	your	data	directory

string	dataDirPath	=	@"<path-to-dir>";

//	Load	the	data	into	a	data	frame

string	dataPath	=	Path.Combine(dataDirPath,	"creditcard.csv");

Console.WriteLine("Loading	{0}\n\n",	dataPath);

var	df	=	Frame.ReadCsv(

				dataPath,

				hasHeaders:	true,

				inferTypes:	true

);

Console.WriteLine("*	Shape:	{0},	{1}\n\n",	df.RowCount,	df.ColumnCount);

Now	that	we	have	loaded	the	data	into	a	variable,	named	df,	we	are	going	to	have
to	split	the	data	into	two	sets,	one	for	normal	credit	card	transaction	data	and
another	for	fraudulent	transaction	data,	so	that	we	can	fit	PCA	with	the	normal
transactions	only.	Take	a	look	at	the	following	code	for	how	we	can	separate	out
the	normal	transactions	from	the	raw	dataset:

string[]	featureCols	=	df.ColumnKeys.Where(

				x	=>	!x.Equals("Time")	&&	!x.Equals("Class")

).ToArray();

var	noFraudData	=	df.Rows[

				df["Class"].Where(x	=>	x.Value	==	0.0).Keys

].Columns[featureCols];

double[][]	data	=	BuildJaggedArray(

				noFraudData.ToArray2D<double>(),	noFraudData.RowCount,	featureCols.Length

);

If	you	recall	from	the	previous	data	analysis	step,	the	target	variable,	Class,	is
encoded	as	1	for	fraudulent	transactions	and	0	for	non-fraudulent	transactions.
As	you	can	see	from	the	code,	we	created	a	data	frame,	noFraudData,	with	only
normal	credit	card	transaction	records.	Then,	we	converted	this	data	frame	into	a
two-dimensional	double	array	that	will	be	used	to	fit	the	PCA,	using	the	helper
function,	BuildJaggedArray.	The	code	for	this	helper	function	looks	like	the
following:

private	static	double[][]	BuildJaggedArray(double[,]	ary2d,	int	rowCount,	int	colCount)

{

				double[][]	matrix	=	new	double[rowCount][];

				for	(int	i	=	0;	i	<	rowCount;	i++)

				{

								matrix[i]	=	new	double[colCount];

								for	(int	j	=	0;	j	<	colCount;	j++)

								{

												matrix[i][j]	=	double.IsNaN(ary2d[i,	j])	?	0.0	:	ary2d[i,	j];

								}

				}

				return	matrix;

}

This	code	should	look	familiar,	as	we	have	used	it	in	a	number	of	previous
chapters.

The	next	thing	we	need	to	do	is	convert	the	entire	data	frame,	including	both
non-fraudulent	and	fraudulent	records,	into	a	two-dimensional	array.	Using	the
trained	PCA,	we	are	going	to	transform	this	newly	created	two-dimensional
array	that	will	later	be	used	for	building	credit	card	fraud	detection	models.	Let's
take	a	look	at	the	following	code:

double[][]	wholeData	=	BuildJaggedArray(

				df.Columns[featureCols].ToArray2D<double>(),	df.RowCount,	featureCols.Length

);

int[]	labels	=	df.GetColumn<int>("Class").ValuesAll.ToArray();

As	you	can	see	from	this	code	snippet,	we	are	simply	converting	the	entire	data
frame,	df,	into	a	two-dimensional	array,	wholeData,	by	using	the	BuildJaggedArray
function.

Fitting	a	PCA
We	are	now	ready	to	fit	a	PCA	using	the	non-fraudulent	credit	card	data.	Similar
to	what	we	did	in	Chapter	9,	Cyber	Attack	Detection,	we	are	going	to	use	the
following	code	to	fit	a	PCA:

var	pca	=	new	PrincipalComponentAnalysis(

				PrincipalComponentMethod.Standardize

);

pca.Learn(data);

As	you	can	see	from	this	code,	we	are	using	the	PrincipalComponentAnalysis	class	in
the	Accord.NET	framework	to	train	a	PCA.	One	more	thing	to	note	here	is	how
we	used	PrincipalComponentMethod.Standardize.	Since	PCA	is	sensitive	to	the	scales	of
the	features,	we	are	standardizing	the	feature	values	first	and	then	fitting	a	PCA.
Using	this	trained	PCA,	we	can	transform	the	whole	data	that	contains	both
fraudulent	and	non-fraudulent	transactions.	The	code	for	applying	PCA
transformation	to	the	dataset	looks	as	follows:

double[][]	transformed	=	pca.Transform(wholeData);

Now,	we	have	all	the	PCA	features	ready	for	the	following	model	building	step.
Before	we	move	one,	let's	see	if	we	can	find	any	noticeable	patterns	that	can
separate	target	classes	with	the	new	PCA	features.	Let's	take	a	look	at	the
following	code	first:

double[][]	first2Components	=	transformed.Select(x	=>	x.Where((y,	i)	=>	i	<	

2).ToArray()).ToArray();

ScatterplotBox.Show("Component	#1	vs.	Component	#2",	first2Components,	labels);

double[][]	next2Components	=	transformed.Select(

				x	=>	x.Where((y,	i)	=>	i	>=	1	&&	i	<=	2).ToArray()

).ToArray();

ScatterplotBox.Show("Component	#2	vs.	Component	#3",	next2Components,	labels);

next2Components	=	transformed.Select(

				x	=>	x.Where((y,	i)	=>	i	>=	2	&&	i	<=	3).ToArray()

).ToArray();

ScatterplotBox.Show("Component	#3	vs.	Component	#4",	next2Components,	labels);

next2Components	=	transformed.Select(

				x	=>	x.Where((y,	i)	=>	i	>=	3	&&	i	<=	4).ToArray()

).ToArray();

ScatterplotBox.Show("Component	#4	vs.	Component	#5",	next2Components,	labels);

Similar	to	what	we	did	in	the	data	analysis	step,	we	are	taking	two	features	and
creating	scatter	plots	of	target	classes	across	the	selected	features.	From	these
plots,	we	can	see	if	the	principal	components	in	the	PCA-transformed	data	more
effectively	separate	fraudulent	credit	card	transactions	from	non-fraudulent
transactions.

The	following	scatter	plot	applies	between	the	first	and	second	principal
components:

There	is	a	noticeable	cutoff	point	that	separates	frauds	(red	points	in	the	scatter
plot)	from	non-frauds	(blue	points	in	the	scatter	plot).	From	this	scatter	plot,	it
seems	fraudulent	samples	typically	have	Y-values	(the	second	principal
component	values)	of	less	than	-5.

The	following	is	a	scatter	plot	between	the	second	and	third	principal
components:

The	pattern	seems	to	be	weaker	in	this	plot,	compared	to	the	previous	scatter
plot,	but	there	still	seems	to	be	a	distinct	line	that	separates	many	fraud	cases
from	non-fraud	cases.

The	following	scatter	plot	is	between	the	third	and	fourth	principal	components:

And	lastly,	the	following	is	a	scatter	plot	between	the	fourth	and	fifth	principal
components:

In	the	last	two	scatter	plots,	we	cannot	find	a	noticeable	pattern	to	separate	the
two	target	classes	from	each	other.	Given	that	there	were	some	separable	lines
we	could	find	when	we	looked	at	the	first	three	principal	components	and	their
scatter	plots,	our	anomaly	detection	model	for	credit	card	fraud	detection	will	be
able	to	learn	how	to	classify	frauds,	when	it	learns	from	this	data	in	a	higher
dimension	and	multiple	principal	components.

Lastly,	let's	take	a	look	at	the	proportion	of	variance	explained	by	the	principal
components.	Take	a	look	at	the	following	code	first:

DataSeriesBox.Show(

				pca.Components.Select((x,	i)	=>	(double)i),

				pca.Components.Select(x	=>	x.CumulativeProportion)

).SetTitle("Explained	Variance");

System.IO.File.WriteAllLines(

				Path.Combine(dataDirPath,	"explained-variance.csv"),

				pca.Components.Select((x,	i)	=>	String.Format("{0},{1:0.0000}",	i	+	1,	

x.CumulativeProportion))

);

As	we	discussed	in	Chapter	9,	Cyber	Attack	Detection,	we	can	use	the	Components
property	within	a	PrincipalComponentAnalysis	object	to	extract	the	cumulative
proportion	of	variance	explained	by	each	component.	As	you	can	see	from	the
third	line	in	the	code,	we	iterate	through	the	Components	property	and	extract
CumulativeProportion	values.	Then,	we	display	a	line	chart	by	using	the	DataSeriesBox
class.	When	you	run	this	code,	you	will	see	the	following	chart	for	the
cumulative	proportion	of	variance	explained	by	the	principal	components:

As	you	can	see	from	this	chart,	by	the	twentieth	principal	component,	about	80%
of	the	variance	in	the	data,	is	explained.	We	will	use	this	chart	to	make	a
decision	on	how	many	principal	components	to	use	when	we	build	an	anomaly
detection	model	in	the	following	section.

Lastly,	we	need	to	export	this	data,	as	we	just	created	a	newly	PCA-transformed
dataset	in	this	feature	engineering	step	and	we	want	to	use	this	new	data	to	build
models.	You	can	export	this	data	by	using	the	following	code:

Console.WriteLine("exporting	train	set...");

System.IO.File.WriteAllLines(

				Path.Combine(dataDirPath,	"pca-features.csv"),

				transformed.Select((x,	i)	=>	String.Format("{0},{1}",	String.Join(",",	x),	

labels[i]))

);

As	you	can	see	from	this	code	snippet,	we	are	exporting	this	data	into	a	CSV	file
named	pca-features.csv.	We	will	use	this	data	to	build	anomaly	detection	models
for	credit	card	fraud	detection	in	the	following	step.

The	full	code	that	was	used	in	this	feature	engineering	step	can	be	found	at	the
following	link:	https://github.com/yoonhwang/c-sharp-machine-learning/blob/master/ch.10/F
eatureEngineering.cs.

https://github.com/yoonhwang/c-sharp-machine-learning/blob/master/ch.10/FeatureEngineering.cs

One-class	SVM	versus	PCC
We	are	now	ready	to	build	anomaly	detection	models	for	the	credit	card	fraud
detection	project.	In	this	step,	we	are	going	to	experiment	with	two	different
approaches.	We	are	going	to	build	a	PCC,	similarly	to	what	we	did	in	Chapter	9,
Cyber	Attack	Detection.	Also,	we	are	going	to	introduce	a	new	learning
algorithm,	the	one-class	SVM,	which	learns	from	normal	credit	card	transaction
data	and	decides	whether	a	new	data	point	is	similar	to	the	normal	data	that	it
was	trained	with.

	

Preparation	for	model	training
First,	we	need	to	load	the	data	that	we	created	in	the	previous	feature-
engineering	step.	You	can	use	the	following	code	to	load	the	data:

//	Read	in	the	Credit	Card	Fraud	dataset

//	TODO:	change	the	path	to	point	to	your	data	directory

string	dataDirPath	=	@"<path-to-dir>";

//	Load	the	data	into	a	data	frame

string	dataPath	=	Path.Combine(dataDirPath,	"pca-features.csv");

Console.WriteLine("Loading	{0}\n\n",	dataPath);

var	featuresDF	=	Frame.ReadCsv(

				dataPath,

				hasHeaders:	false,

				inferTypes:	true

);

featuresDF.RenameColumns(

				featuresDF.ColumnKeys

								.Select((x,	i)	=>	i	==	featuresDF.ColumnCount	-	1	?	"is_fraud"	:	

String.Format("component-{0}",	i	+	1))

);

If	you	recall	from	the	previous	feature-engineering	step,	we	did	not	export	the
data	with	the	column	names.	So,	we	are	loading	the	data	into	a	Deedle	data
frame,	featuresDF,	with	the	hasHeaders	flag	set	to	false.	Then,	we	give	the	proper
column	names	for	each	feature	by	using	the	RenameColumns	method.	Let's	quickly
check	the	target	class	distributions	within	this	dataset,	using	the	following	code:

Console.WriteLine("*	Shape:	({0},	{1})",	featuresDF.RowCount,	featuresDF.ColumnCount);

var	count	=	featuresDF.AggregateRowsBy<string,	int>(

				new	string[]	{	"is_fraud"	},

				new	string[]	{	"component-1"	},

				x	=>	x.ValueCount

).SortRows("component-1");

count.RenameColumns(new	string[]	{	"is_fraud",	"count"	});

count.Print();

The	output	of	this	code	looks	as	follows:

As	seen	previously,	in	the	data	analysis	step,	the	majority	of	the	samples	belong
to	non-fraudulent	transactions	and	only	a	small	portion	of	the	data	is	fraudulent

credit	card	transactions.

Principal	component	classifier
We	will	first	try	to	build	an	anomaly	detection	model	using	principal
components,	similar	to	what	we	did	in	Chapter	9,	Cyber	Attack	Detection.	For
training	and	testing	a	PCC	model,	we	wrote	a	helper	function,	named
BuildPCAClassifier.	The	detailed	code	for	this	helper	function	can	be	found	at	the
following	repo:	https://github.com/yoonhwang/c-sharp-machine-learning/blob/master/ch.10/
Modeling.cs.	Let's	take	a	look	at	this	helper	function	step	by	step.

You	will	see	the	following	lines	of	code	when	you	look	at	the	code	for	the
BuildPCAClassifier	method:

//	First	13	components	explain	about	50%	of	the	variance

int	numComponents	=	13;

string[]	cols	=	featuresDF.ColumnKeys.Where((x,	i)	=>	i	<	numComponents).ToArray();

//	First,	compute	distances	from	the	center/mean	among	normal	events

var	normalDF	=	featuresDF.Rows[

				featuresDF["is_fraud"].Where(x	=>	x.Value	==	0).Keys

].Columns[cols];

double[][]	normalData	=	BuildJaggedArray(

				normalDF.ToArray2D<double>(),	normalDF.RowCount,	cols.Length

);

First,	we	are	sub-selecting	the	first	thirteen	principal	components	that	explain
about	50%	of	the	variance.	Then,	we	create	a	non-fraudulent	credit	card
transaction	group,	normalDF	and	normalData,	so	that	we	can	use	this	subset	to	build
an	anomaly	detection	model.

The	next	thing	we	do	is	start	computing	the	Mahalanobis	distance	metric	to
measure	the	distance	between	a	data	point	and	the	distribution	of	the	non-
fraudulent	credit	card	transactions.	If	you	recall,	we	used	the	same	distance
metric	in	Chapter	9,	Cyber	Attack	Detection,	and	we	recommend	you	review	the
Model	building	section	in	Chapter	9,	Cyber	Attack	Detection,	for	a	more	detailed
explanation	about	this	distance	metric.	The	code	to	compute	the	distances	looks
like	the	following:

double[]	normalVariances	=	ComputeVariances(normalData);

double[]	rawDistances	=	ComputeDistances(normalData,	normalVariances);

double[]	distances	=	rawDistances.ToArray();

https://github.com/yoonhwang/c-sharp-machine-learning/blob/master/ch.10/Modeling.cs

double	meanDistance	=	distances.Average();

double	stdDistance	=	Math.Sqrt(

				distances

				.Select(x	=>	Math.Pow(x	-	meanDistance,	2))

				.Sum()	/	distances.Length

);

Console.WriteLine(

				"*	Normal	-	mean:	{0:0.0000},	std:	{1:0.0000}",

				meanDistance,	stdDistance

);

As	you	can	see	from	this	code	snippet,	we	are	using	two	helper	functions,
ComputeVariances	and	ComputeDistances,	to	compute	the	variances	of	feature	values
and	the	distances.	The	following	is	the	code	for	the	ComputeVariances	method:

private	static	double[]	ComputeVariances(double[][]	data)

{

				double[]	componentVariances	=	new	double[data[0].Length];

				for	(int	j	=	0;	j	<	data[0].Length;	j++)

				{

								componentVariances[j]	=	data

												.Select((x,	i)	=>	Math.Pow(data[i][j],	2))

												.Sum()	/	data.Length;

				}

				return	componentVariances;

}

This	code	should	look	familiar,	as	this	is	the	same	code	we	used	in	Chapter	9,
Cyber	Attack	Detection,	to	build	a	PCC	model	for	cyber	attack	detection.
Additionally,	the	following	is	the	code	for	the	ComputeDistances	method:

private	static	double[]	ComputeDistances(double[][]	data,	double[]	componentVariances)

{

				double[]	distances	=	data.Select(

								(row,	i)	=>	Math.Sqrt(

												row.Select(

																(x,	j)	=>	Math.Pow(x,	2)	/	componentVariances[j]

).Sum()

)

).ToArray();

				return	distances;

}

This	code	should	also	look	familiar,	as	we	used	this	same	code	in	Chapter	9,
Cyber	Attack	Detection	as	well.	Using	these	two	methods,	we	computed	the
mean	and	the	standard	deviation	of	the	distance	measures	within	the	non-
fraudulent	transaction	data.	The	output	looks	like	the	following:

With	the	distance	measures	within	the	normal	transaction	group	computed,	we
now	compute	the	distances	between	the	fraudulent	transactions	and	the
distribution	of	non-fraudulent	transactions.	The	following	is	the	part	of	the
BuildPCAClassifier	code	that	computes	the	distances	for	frauds:

//	Detection

var	fraudDF	=	featuresDF.Rows[

				featuresDF["is_fraud"].Where(x	=>	x.Value	>	0).Keys

].Columns[cols];

double[][]	fraudData	=	BuildJaggedArray(

				fraudDF.ToArray2D<double>(),	fraudDF.RowCount,	cols.Length

);

double[]	fraudDistances	=	ComputeDistances(fraudData,	normalVariances);

As	you	can	see	from	this	code	snippet,	we	first	separate	the	fraud	data	from	the
whole	dataset	and	create	a	two-dimensional	array	variable,	fraudData,	which	we
use	for	distance-measuring	calculations.	Then,	using	the	ComputeDistances	function
that	we	wrote,	we	can	compute	the	distances	between	the	fraudulent	credit	card
transactions	and	the	distribution	of	non-fraudulent	transactions.	With	these
distances	measures,	we	then	start	analyzing	the	fraud	detection	rates	for	each	of
the	target	false-alarm	rates.	Take	a	look	at	the	following	code	snippet:

//	5-10%	false	alarm	rate

for	(int	i	=	0;	i	<	4;	i++)

{

				double	targetFalseAlarmRate	=	0.05	*	(i	+	1);

				double	threshold	=	Accord.Statistics.Measures.Quantile(

								distances,

								1	-	targetFalseAlarmRate

);

				int[]	detected	=	fraudDistances.Select(x	=>	x	>	threshold	?	1	:	0).ToArray();

				Console.WriteLine("\n\n----	{0:0.0}%	False	Alarm	Rate	----",	targetFalseAlarmRate	*	

100.0);

				double	overallRecall	=	(double)detected.Sum()	/	detected.Length;

				Console.WriteLine("*	Overall	Fraud	Detection:	{0:0.00}%",	overallRecall	*	100.0);

}

This	code	snippet	should	look	familiar,	as	this	is	similar	to	what	we	did	in	Chapter
9,	Cyber	Attack	Detection.	One	thing	that	is	different	here,	however,	is	the	fact
that	we	only	have	two	target	classes	(fraud	versus	non-fraud),	whereas	we	had
five	target	classes	(normal	versus	four	different	types	of	cyber	attack)	in	Chapter
9,	Cyber	Attack	Detection.	As	you	can	see	from	this	code,	we	experiment	with
five	different	target	false	alarm	rates	from	5%	to	10%,	and	analyze	the	fraud

detection	rates	for	the	given	target	false	alarm	rate.	We	will	take	a	deeper	look	at
this	code	in	the	following	model	evaluation	step.

One-class	SVM
The	next	approach	we	are	going	to	explore	for	credit	card	fraud	detection	is
training	a	one-class	SVM.	A	one-class	SVM	is	a	special	case	of	a	SVM,	where
an	SVM	model	is	first	trained	with	a	data	and	then,	when	it	sees	a	new	data
point,	the	SVM	model	can	determine	if	the	new	data	point	is	close	enough	to	the
data	that	it	was	trained	with.	For	training	a	one-class	SVM	model,	we	wrote	a
helper	function,	BuildOneClassSVM,	and	the	full	code	for	this	function	can	be	found
at	the	following	repo:	https://github.com/yoonhwang/c-sharp-machine-learning/blob/master
/ch.10/Modeling.cs.	Let's	go	through	this	helper	function	step	by	step.

First,	let's	look	at	the	part	of	the	code	that	sub-selects	non-fraudulent	credit	card
transaction	data	that	will	be	used	to	train	the	one-class	SVM.	The	code	looks	like
the	following:

//	First	13	components	explain	about	50%	of	the	variance

int	numComponents	=	13;

string[]	cols	=	featuresDF.ColumnKeys.Where((x,	i)	=>	i	<	numComponents).ToArray();

var	rnd	=	new	Random(1);

int[]	trainIdx	=	featuresDF["is_fraud"]

				.Where(x	=>	x.Value	==	0)

				.Keys

				.OrderBy(x	=>	rnd.Next())

				.Take(15000)

				.ToArray();

var	normalDF	=	featuresDF.Rows[

				trainIdx

].Columns[cols];

double[][]	normalData	=	BuildJaggedArray(

				normalDF.ToArray2D<double>(),	normalDF.RowCount,	cols.Length

);

Similar	to	the	previous	PCC	model	that	we	built,	we	are	using	the	first	thirteen
principal	components	that	explain	about	50%	of	the	total	variance.	Next,	we	are
going	to	sub-select	records	from	the	non-fraudulent	transaction	samples	and
build	a	train	set.	As	you	can	see	from	this	code,	we	are	randomly	selecting
15,000	non-fraudulent	samples	as	a	train	set.

Now	that	we	have	a	train	set	to	train	a	one-class	SVM	model	with,	let's	take	a
look	at	the	following	code:

var	teacher	=	new	OneclassSupportVectorLearning<Gaussian>();

https://github.com/yoonhwang/c-sharp-machine-learning/blob/master/ch.10/Modeling.cs

var	model	=	teacher.Learn(normalData);

We	are	using	the	OneclassSupportVectorLearning	algorithm	in	the	Accord.NET
framework	to	train	a	one-class	SVM	model.	As	you	can	see,	we	built	an	SVM
model	with	the	Gaussian	kernel	in	this	chapter,	but	you	can	experiment	with
different	kernels.	Now,	the	only	step	left	is	to	test	this	one-class	SVM	model	that
we	just	trained.	The	following	code	shows	how	we	built	a	test	set	to	evaluate	this
model:

int[]	testIdx	=	featuresDF["is_fraud"]

				.Where(x	=>	x.Value	>	0)

				.Keys

				.Concat(

								featuresDF["is_fraud"]

								.Where(x	=>	x.Value	==	0	&&	!trainIdx.Contains(x.Key))

								.Keys

								.OrderBy(x	=>	rnd.Next())

								.Take(5000)

								.ToArray()

).ToArray();

var	fraudDF	=	featuresDF.Rows[

				testIdx

].Columns[cols];

double[][]	fraudData	=	BuildJaggedArray(

				fraudDF.ToArray2D<double>(),	fraudDF.RowCount,	cols.Length

);

int[]	fraudLabels	=	featuresDF.Rows[

				testIdx

].GetColumn<int>("is_fraud").ValuesAll.ToArray();

As	you	can	see	from	this	code,	we	are	taking	all	the	fraud	samples	and	5,000
randomly	sub-selected	non-fraud	samples	as	a	test	set.	With	this	test	set,	we	are
going	to	evaluate	how	well	this	one-class	SVM	model	performs	at	detecting
credit	card	frauds.

We	are	going	to	look	closer	into	the	evaluation	code	in	the	following	section,	but
let's	take	a	quick	look	at	how	we	can	evaluate	the	performance	of	the	one-class
SVM	model	that	we	just	trained.	The	code	looks	like	the	following:

for(int	j	=	0;	j	<=	10;	j++)

{

				model.Threshold	=	-1	+	j/10.0;	

				int[]	detected	=	new	int[fraudData.Length];

				double[]	probs	=	new	double[fraudData.Length];

				for	(int	i	=	0;	i	<	fraudData.Length;	i++)

				{

								bool	isNormal	=	model.Decide(fraudData[i]);

								detected[i]	=	isNormal	?	0	:	1;

				}

				Console.WriteLine("\n\n----	One-Class	SVM	Results	----");

				Console.WriteLine("*	Threshold:	{0:0.00000}",	model.Threshold);

				double	correctPreds	=	fraudLabels

								.Select((x,	i)	=>	detected[i]	==	1	&&	x	==	1	?	1	:	0)

								.Sum();

				double	precision	=	correctPreds	/	detected.Sum();

				double	overallRecall	=	correctPreds	/	fraudLabels.Sum();

				Console.WriteLine("*	Overall	Fraud	Detection:	{0:0.00}%",	overallRecall	*	100.0);

				Console.WriteLine("*	False	Alarm	Rate:	{0:0.00}%",	(1	-	precision)	*	100.0);

}

As	you	can	see	from	this	code,	we	iterate	through	different	values	of	thresholds,
similar	to	how	we	set	different	thresholds	for	the	previous	PCC	model.	As	in	the
third	line	of	the	code,	you	can	use	the	Threshold	property	of	the	model	to	get	or	set
the	threshold	that	determines	whether	a	record	is	normal	or	abnormal.	Similar	to
how	we	evaluate	the	PCC,	we	are	going	to	look	at	the	fraud	detection	rate	and
the	false-alarm	rate	for	model	validations.

The	full	code	we	used	in	the	model	building	step	can	be	found	at	the	following
link:	https://github.com/yoonhwang/c-sharp-machine-learning/edit/master/ch.10/Modeling.cs.

https://github.com/yoonhwang/c-sharp-machine-learning/edit/master/ch.10/Modeling.cs

Evaluating	anomaly	detection	models
We	have	trained	two	anomaly	detection	models—one	using	principal
components	and	another	using	a	one-class	SVM	algorithm.	In	this	section,	we
are	going	to	take	a	closer	look	at	the	performance	metrics	and	the	codes	used	to
evaluate	these	models.

Principal	Component	Classifier
As	briefly	mentioned	in	the	previous	section,	we	are	going	to	look	at	the	credit
card	fraud	detection	rates	for	each	of	the	target	false	alarm	rates.	The	code	for
evaluating	the	PCC	model	looks	like	the	following:

//	5-10%	false	alarm	rate

for	(int	i	=	0;	i	<	4;	i++)

{

				double	targetFalseAlarmRate	=	0.05	*	(i	+	1);

				double	threshold	=	Accord.Statistics.Measures.Quantile(

								distances,

								1	-	targetFalseAlarmRate

);

				int[]	detected	=	fraudDistances.Select(x	=>	x	>	threshold	?	1	:	0).ToArray();

				Console.WriteLine("\n\n----	{0:0.0}%	False	Alarm	Rate	----",	targetFalseAlarmRate	*	

100.0);

				double	overallRecall	=	(double)detected.Sum()	/	detected.Length;

				Console.WriteLine("*	Overall	Fraud	Detection:	{0:0.00}%",	overallRecall	*	100.0);

}

Similar	to	Chapter	9,	Cyber	Attack	Detection,	we	iterate	through	the	target	false
alarm	rates	from	5%	to	10%	and	inspect	the	detection	rates	for	the	given	false
alarm	rates.	Using	the	target	false	alarm	rate	variable,	targetFalseAlarmRate,	we
compute	the	threshold	using	the	Accord.Statistics.Measures.Quantile	method.	With
this	calculated	threshold,	we	flag	all	records	with	distances	greater	than	this
threshold	as	fraud,	and	others	as	non-fraud.	Let's	look	at	the	evaluation	results.

The	following	is	the	fraud	detection	rate	at	the	5%	false	alarm	rate:

The	following	is	the	fraud	detection	rate	at	the	10%	false	alarm	rate:

The	following	is	the	fraud	detection	rate	at	15%	false	alarm	rate:

Lastly,	the	following	is	the	fraud	detection	rate	at	20%	false	alarm	rate:

As	you	can	see	from	these	results,	as	we	relax	and	increase	the	target	false	alarm
rate,	the	fraud	detection	rate	improves.	At	the	5%	target	false	alarm	rate,	we
could	only	detect	about	59%	of	the	fraudulent	transactions.	However,	at	the	20%
target	false	alarm	rate,	we	can	detect	over	80%	of	the	fraudulent	credit	card
transactions.

One-class	SVM
Let's	now	take	a	look	at	how	the	one-class	SVM	model	performed	on	the	credit
card	fraud	dataset.	The	code	for	the	model	evaluation	looks	like	the	following:
for(int	j	=	0;	j	<=	10;	j++)
{
model.Threshold	=	-1	+	j/10.0;	

int[]	detected	=	new	int[fraudData.Length];
double[]	probs	=	new	double[fraudData.Length];
for	(int	i	=	0;	i	<	fraudData.Length;	i++)
{
bool	isNormal	=	model.Decide(fraudData[i]);
detected[i]	=	isNormal	?	0	:	1;
}

Console.WriteLine("\n\n----	One-Class	SVM	Results	----");
Console.WriteLine("*	Threshold:	{0:0.00000}",	model.Threshold);
double	correctPreds	=	fraudLabels
.Select((x,	i)	=>	detected[i]	==	1	&&	x	==	1	?	1	:	0)
.Sum();
double	precision	=	correctPreds	/	detected.Sum();
double	overallRecall	=	correctPreds	/	fraudLabels.Sum();
Console.WriteLine("*	Overall	Fraud	Detection:	{0:0.00}%",	overallRecall	*
100.0);
Console.WriteLine("*	False	Alarm	Rate:	{0:0.00}%",	(1	-	precision)	*	100.0);
}

As	you	can	see	from	this	code,	we	iterate	through	different	thresholds	from	-1.0
to	0.0,	in	increments	of	0.1.	You	can	set	the	threshold	for	the	model	by	updating
the	Threshold	property	of	the	one-class	SVM	model	object.	This	threshold	will
instruct	the	model	on	how	to	determine	which	record	is	fraudulent	and	which	is
not.	When	making	a	decision	on	the	final	model,	you	will	need	to	experiment
with	different	values	for	thresholds	to	settle	on	the	best	threshold	that	fits	your
requirements.	Let's	take	a	look	at	some	of	the	performance	results.

The	following	shows	the	performance	metrics	for	the	threshold	at	-0.4:

The	following	shows	the	performance	metrics	for	the	threshold	at	-0.3:

The	following	shows	the	performance	metrics	for	the	threshold	at	-0.2:

Lastly,	the	following	shows	the	performance	metrics	for	the	threshold	at	-0.1:	

As	you	can	see	from	these	results,	as	we	increase	the	threshold,	the	false	alarm
rate	decreases,	but	the	fraud	detection	rate	decreases	as	well.	It	is	clear	that	there
is	a	trade-off	between	higher	precision	and	a	higher	fraud	detection	rate.	At	a
threshold	of	-0.4,	the	model	was	able	to	detect	about	70%	of	the	fraudulent	credit
card	transactions	with	a	roughly	40%	false	alarm	rate.	On	the	other	hand,	at	a
threshold	of	-0.1,	the	model	could	only	detect	about	57%	of	the	fraudulent	credit
card	transactions,	but	the	false	alarm	rate	was	only	about	33%.

Summary
In	this	chapter,	we	built	another	anomaly	detection	model	for	credit	card	fraud
detection.	We	started	this	chapter	by	looking	at	the	structure	of	the	anonymized
credit	card	fraud	data,	and	then	started	analyzing	the	distributions	of	the	target
and	feature	variables.	While	we	were	analyzing	the	distribution	of	the	target
classes,	we	noticed	that	there	was	a	large	class	imbalance	between	the	fraud	and
non-fraud	classes.	This	is	normal	when	we	face	any	kind	of	anomaly	detection
project,	where	the	normal	class	outweighs	by	far	the	positive	class.	Then,	we
started	analyzing	the	distributions	of	the	anonymized	features.	Due	to	the	fact
that	the	features	were	anonymized	for	confidentiality	issues,	we	could	not	arrive
at	any	intuitions	from	the	dataset.

However,	we	were	able	to	understand	the	distributions	better	and	how	we	cannot
easily	separate	frauds	from	non-frauds	using	raw	features.	We	then	applied	PCA
and	exported	the	PCA	features	for	the	model	building	step.	We	experimented
with	two	approaches	to	building	a	credit	card	fraud	detection	model—the
Principal	Component	Classifier	and	the	one-class	SVM.	We	evaluated	the
performances	of	these	models	by	looking	at	the	fraud	detection	rates	at	various
false	alarm	rates.	It	was	clear	that	there	are	trade-offs	between	improving	the
false	alarm	rates	and	improving	the	fraud	detection	rates.

This	chapter	was	the	last	chapter	about	building	ML	models	in	C#.	In	the	next
chapter,	we	are	going	to	summarize	what	we	have	done	so	far	throughout	all	the
chapters,	and	what	additional	real-life	challenges	there	are	when	building	ML
models.	Also,	we	are	going	to	discuss	some	other	software	packages,	as	well	as
some	other	data-science	technologies	out	there,	that	can	be	used	for	your	future
ML	projects.

What's	Next?
	

We	have	come	a	long	way.	From	the	basics	and	steps	for	building	machine
learning	(ML)	models	to	actually	developing	numerous	ML	models	for	various
real-world	projects,	we	have	covered	a	lot	so	far.	After	a	brief	introductory
chapter,	where	we	learned	the	basics	of	ML	and	the	essential	steps	that	go	into
building	ML	models,	we	started	building	ML	models.	In	Chapter	2,	Spam	Email
Filtering	and	Chapter	3,	Twitter	Sentiment	Analysis,	we	discussed	building
classification	models	using	text	datasets.	In	Chapter	4,	Foreign	Exchange	Rate
Forecast	and	Chapter	5,	Fair	Value	of	House	and	Property,	we	used	financial	and
real	estate	property	data	to	build	regression	models.	Then	in	Chapter	6,	Customer
Segmentation,	we	covered	how	to	use	clustering	algorithms	to	draw	intuitive
insights	into	customer	behavior	using	the	e-commerce	dataset.	In	Chapter	7,	Music
Genre	Recommendation	and	Chapter	8,	Handwritten	Digit	Recognition,	we
expanded	our	knowledge	of	building	ML	models	to	build	music
recommendation	and	image	recognition	models	using	music	records	and
handwritten	digit	image	data.	In	Chapter	9,	Cyber	Attack	Detection	and	Chapter	10,
Credit	Card	Fraud	Detection	we	built	anomaly	detection	models	for	cyber	attack
detection	and	credit	card	fraud	detection.

In	this	chapter,	we	are	going	to	review	the	types	of	ML	model	we	have	built,	the
projects	we	have	worked	on	so	far,	and	code	snippets	for	training	various	ML
models	using	the	Accod.NET	framework.	We	will	also	discuss	some	of	the
challenges	when	using	and	applying	ML	in	real-life	projects	and	situations.
Lastly,	we	are	going	to	cover	some	of	the	other	software	packages	that	can	be
used	for	future	ML	projects,	as	well	as	other	common	technologies	that	are
frequently	used	by	data	scientists.

In	this	chapter,	we	will	cover	the	following	topics:

A	review	of	what	we	have	learned	so	far
Real-life	challenges	in	building	ML	models
Other	common	technologies	used	by	data	scientists

	

	

Review
From	the	first	chapter	onward,	we	have	discussed	and	covered	a	large	amount	of
material.	From	discussing	the	basics	of	ML	to	building	classification,	regression,
and	clustering	models,	it	is	worth	reviewing	what	we	have	done	so	far	before	we
end	this	book.	Let's	review	some	of	the	essential	concepts	and	code	that	will	be
helpful	for	your	future	C#	ML	projects.

	

Steps	for	building	ML	models
As	discussed	in	Chapter	1,	Basics	of	Machine	Learning	Modeling,	it	can	be
challenging	for	aspiring	data	scientists	and	ML	engineers	to	understand	the	flow
and	approaches	to	building	real-world	ML	models	that	will	be	used	in	production
systems.	We	have	discussed	the	steps	for	building	machine	learning	models	in
detail	in	Chapter	1,	Basics	of	Machine	Learning	Modeling,	and	we	have	followed
those	steps	in	each	of	the	projects	that	we	have	worked	on	so	far.	The	following
diagram	should	be	a	good	recap	of	the	essential	steps	in	building	real-world	ML
models:

As	you	should	already,	we	always	start	a	ML	project	with	the	problem	definition.
In	this	step,	we	define	the	problems	that	we	are	going	to	solve	with	ML	and	why
we	need	ML	models	to	solve	such	problems.	This	is	also	the	step	where	we
brainstorm	our	ideas	and	the	prerequisites,	such	as	the	types	of	data	required,	as
well	as	the	types	of	learning	algorithms	that	we	are	going	to	experiment	with.
Lastly,	this	is	where	we	need	to	clearly	define	the	success	criteria	for	the	project.
We	can	define	some	evaluation	metrics	not	only	for	the	prediction	performance
of	ML	models,	but	also	the	execution	performance	of	your	models,	especially	if
the	models	need	to	be	run	in	a	real-time	system,	and	output	the	prediction	results

within	a	given	time	window.

From	the	problem	definition	phase,	we	move	on	to	the	data	collection	step.	For
those	projects	that	we	have	worked	on	in	this	book,	we	used	publicly	available
data	that	was	already	compiled	and	labeled.	However,	in	real-world	situations,
data	might	not	be	available	to	start	with.	In	this	case,	we	will	have	to	come	up
with	approaches	to	collect	the	data.	For	example,	if	we	are	planning	to	build	ML
models	for	user	behavior	predictions	for	users	on	our	website	or	application,
then	we	can	collect	user	activities	on	the	website	or	application.	On	the	other
hand,	if	we	are	building	a	credit	model	to	score	the	credit	worthiness	of	potential
borrowers,	most	likely	we	will	not	be	able	to	collect	data	ourselves.	In	this	case,
we	will	have	to	resort	to	third-party	data	vendors	who	sell	credit-related	data.

Once	we	have	gathered	all	of	our	data,	the	next	thing	we	will	have	to	do	is
prepare	and	analyze	the	data.	During	the	data	preparation	step,	we	will	need	to
validate	the	dataset	by	looking	at	the	formats	of	the	data	fields,	the	existence	of
duplicate	records,	or	the	number	of	missing	values.	With	these	criteria	checked,
we	can	then	start	analyzing	the	data	to	see	if	there	is	any	noticeable	pattern	in	the
dataset.	If	you	recall,	we	typically	analyzed	the	target	variable	distribution	first
and	then	we	started	analyzing	the	distributions	of	the	features	for	each	of	the
target	classes	to	identify	any	noticeable	patterns	that	could	separate	the	target
classes	from	each	other.	During	the	data	analysis	step,	we	focused	on	gaining
some	insights	into	the	patterns	in	the	data,	as	well	as	the	structure	of	the	data
itself.

With	insight	and	understanding	of	the	data	from	the	data	analysis	step,	we	can
then	start	building	features	that	will	be	used	for	our	ML	models.	As	Andrew	Ng
mentioned,	applied	ML	is	basically	feature	engineering.	This	is	one	of	the	most
critical	steps	in	building	ML	models	and	in	determining	the	performance	of	our
prediction	models.	If	you	recall,	we	discussed	how	to	use	one-hot	encoding	to
transform	text	features	into	an	encoded	matrix	of	1s	and	0s	for	our	text
classification	problems.	We	also	discussed	building	time	series	features,	such	as
moving	averages	and	Bollinger	Bands	and	using	log	transformations	for	highly
skewed	features,	when	we	were	building	regression	models.	This	feature
engineering	step	is	where	we	need	to	be	creative.

Once	we	have	all	the	features	ready,	we	can	then	move	on	to	training	and	testing
various	learning	algorithms.	Depending	on	whether	the	target	variable	is

continuous	or	categorical,	we	can	decide	whether	to	build	a	classification	model
or	regression	model.	If	you	recall	from	previous	projects,	we	trained	and	tested
our	models	by	using	k-fold	cross-validation	or	by	splitting	the	dataset	into	two
subsets	and	training	with	one	group	and	testing	with	another	hold-out	group.
Until	we	find	the	model	that	we	are	satisfied	with,	we	will	have	to	repeat	the	the
previous	steps.	If	we	do	not	have	enough	data,	we	will	have	to	go	back	to	the
data	collection	phase	and	try	to	collect	more	data	for	more	accurate	models.	If
we	handled	duplicate	records	or	missing	values	poorly,	we	will	have	to	go	back
to	the	data	preparation	step	to	clean	up	the	data.	If	we	can	build	more	and	better
features,	then	repeating	the	feature	engineering	step	can	help	by	improving	the
performance	of	our	ML	models.

The	last	step	in	building	ML	models	is	to	deploy	them	to	production	systems.	All
the	models	should	have	been	fully	tested	and	validated	by	this	point.	It	will	be
beneficial	to	have	some	monitoring	tools	in	place	before	the	deployment,	so	that
the	performance	of	the	models	can	be	monitored.

We	have	followed	these	steps	quite	thoroughly	throughout	the	chapters,	so	you
will	realize	how	comfortable	and	familiar	with	these	steps	you	are	when	you
start	working	on	your	future	ML	projects.	However,	there	are	a	couple	of
essential	steps	that	we	could	not	fully	cover	in	this	book,	such	as	the	data
collection	and	model	deployment	steps,	so	you	should	always	keep	in	mind	the
importance	and	goals	of	those	steps.

Classification	models
This	first	two	ML	models	we	built	in	Chapter	2,	Spam	Email	Filtering	and	Chapter	
3,	Twitter	Sentiment	Analysis,	were	classification	models.	In	Chapter	2,	Spam
Email	Filtering,	we	built	a	classification	model	to	classify	emails	into	spam	and
ham	(non-spam	emails).	In	Chapter	3,	Twitter	Sentiment	Analysis,	we	built	a
classification	model	for	Twitter	sentiment	analysis,	where	the	model	classified
each	tweet	into	one	of	the	three	emotions—positive,	negative,	and	neutral.
Classification	problems	are	common	among	ML	projects.	Building	a	model	to
predict	whether	a	customer	will	buy	an	item	in	an	online	store	is	a	classification
problem.	Building	a	model	to	predict	whether	a	borrower	will	pay	back	his/her
loan	is	also	a	classification	problem.

If	there	are	only	two	classes	in	the	target	variable,	typically	a	positive	outcome
and	a	negative	outcome,	then	we	call	it	a	binary	classification.	A	good	example
of	a	binary	classification	problem	is	the	spam	email	filtering	project	that	we	did
in	Chapter	2,	Spam	Email	Filtering.	If	there	are	more	than	two	classes	in	the	target
variable,	then	we	call	it	a	multi-class	or	multinomial	classification.	We	had	a
case	of	having	to	classify	a	record	into	three	different	classes	in	the	Twitter
sentiment	analysis	project	in	Chapter	3,	Twitter	Sentiment	Analysis;	this	was	a
good	example	of	a	multinomial	classification	problem.	We	had	two	more
classification	projects	in	this	book.	If	you	recall,	we	had	eight	different	genres	or
classes	in	our	target	variable	for	the	Music	Genre	Recommendation	project	in	Cha
pter	7,	Music	Genre	Recommendation,	and	we	had	10	different	digits	in	our
target	variable	for	the	handwritten	digit	recognition	project	in	Chapter	8,
Handwritten	Digit	Recognition.

We	experimented	with	numerous	learning	algorithms,	such	as	logistic	regression,
Naive	Bayes,	Support	Vector	Machine	(SVM),	random	forest,	and	neural
network,	for	the	aforementioned	classification	projects.	To	remind	you	how	to
train	these	learning	algorithms	in	C#,	we	will	reiterate	how	we	initialized	some
of	those	learning	algorithms	in	C#	using	the	Accord.NET	framework.

The	following	code	snippet	shows	how	we	can	train	a	binary	logistic	regression
classifier:

var	learner	=	new	IterativeReweightedLeastSquares<LogisticRegression>()

{

				MaxIterations	=	100

};

var	model	=	learner.Learn(inputs,	outputs);

For	multinomial	classification	problems,	we	trained	a	logistic	regression
classifier	using	the	following	code:

var	learner	=	new	MultinomialLogisticLearning<GradientDescent>()

{

				MiniBatchSize	=	500

};

var	model	=	learner.Learn(inputs,	outputs);

When	building	a	Naive	Bayes	classifier,	we	used	the	following	code:

var	learner	=	new	NaiveBayesLearning<NormalDistribution>();

var	model	=	learner.Learn(inputs,	outputs);

If	you	recall,	we	used	NormalDistribution	when	the	features	had	continuous
variables,	as	in	the	case	of	the	Music	Genre	Recommendation	project,	where	all
the	features	were	audio	spectrum	features	and	had	continuous	values.	One	the
other	hand,	we	used	BernoulliDistribution,	where	the	features	can	only	take	binary
values	(0	versus	1).	In	the	case	of	the	Twitter	sentiment	analysis	project	in	Chapter
3,	Twitter	Sentiment	Analysis,	all	the	features	we	had	could	only	take	0s	or	1s.

The	following	code	shows	how	we	could	train	a	RandomForestLearning	classifier:

var	learner	=	new	RandomForestLearning()

{

				NumberOfTrees	=	100,

				CoverageRatio	=	0.5,

				SampleRatio	=	0.7

};

var	model	=	learner.Learn(inputs,	outputs);

As	you	might	already	be	known,	we	could	tune	hyperparameters,	such	as	the
number	of	trees	in	the	random	forest	(NumberOfTrees),	the	proportion	of	variables
that	can	be	used	at	maximum	by	each	tree	(CoverageRatio),	and	the	proportion	of
samples	used	to	train	each	of	the	trees	(SampleRatio),	to	find	better	performing
random	forest	models.

We	used	the	following	code	to	train	a	SVM	model:

var	learner	=	new	SequentialMinimalOptimization<Gaussian>();

var	model	=	learner.Learn(inputs,	outputs);

If	you	recall,	we	could	use	different	kernels	for	SVMs.	On	top	of	the	Gaussian
kernel,	we	could	use	Linear	and	Polynomial	kernels	as	well.	Depending	on	the	type
of	dataset	you	have,	one	kernel	works	better	than	the	others	and	various	kernels
should	be	tried	to	find	the	best	performing	SVM	model.

Lastly,	we	could	train	a	neural	network	using	the	following	code:

var	network	=	new	ActivationNetwork(

				new	BipolarSigmoidFunction(2),	

				91,	

				20,

				10

);

var	teacher	=	new	LevenbergMarquardtLearning(network);

Console.WriteLine("\n--	Training	Neural	Network");

int	numEpoch	=	10;

double	error	=	Double.PositiveInfinity;

for	(int	i	=	0;	i	<	numEpoch;	i++)

{

				error	=	teacher.RunEpoch(trainInput,	outputs);

				Console.WriteLine("*	Epoch	{0}	-	error:	{1:0.0000}",	i	+	1,	error);

}

As	you	might	recall	from	Chapter	8,	Handwritten	Digit	Recognition,	we	trained	a
neural	network	model	by	running	it	through	the	dataset	multiple	times	(epochs).
After	each	iteration	or	epoch,	we	noticed	the	error	rate	decreased,	as	the	neural
network	learned	more	and	more	from	the	dataset.	We	also	noticed	that	in	each
epoch,	the	rate	of	improvements	in	the	error	rate	was	in	diminishing	return,	so
after	enough	epochs	there	would	be	no	significant	improvement	in	the
performance	of	a	neural	network	model.

You	can	view	the	code	samples	at	the	following	link:	https://github.com/yoonhwang/c
-sharp-machine-learning/blob/master/ch.11/ClassificationModelReview.cs.

https://github.com/yoonhwang/c-sharp-machine-learning/blob/master/ch.11/ClassificationModelReview.cs

Regression	models
We	have	also	developed	multiple	regression	ML	models.	In	Chapter	4,	Foreign
Exchange	Rate	Forecast,	we	worked	on	the	Foreign	Exchange	Rate	Forecast
project,	where	we	built	models	that	could	predict	future	exchange	rates	between
Euros	and	US	dollars.	In	Chapter	5,	Fair	Value	of	House	and	Property,	we	trained
different	ML	models	that	could	predict	house	prices	for	the	Fair	Value	of	House
and	Property	project.	Regression	problems	are	also	common	in	real-world	ML
projects.	Building	a	model	that	predicts	the	lifetime	value	of	a	customer	is	a
regression	problem.	Building	a	model	that	predicts	the	maximum	amount	of
money	that	a	potential	borrower	can	borrow	without	going	bankrupt	is	another
regression	problem.

We	have	explored	numerous	machine	learning	algorithms	for	regression	projects
in	this	book.	We	have	experimented	with	linear	regression	and	linear	SVM
models	in	Chapter	4,	Foreign	Exchange	Rate	Forecast	for	the	Foreign	Exchange
Rate	Forecast	project.	We	have	also	tried	using	different	kernels,	such	as
Polynomial	and	Guassian	kernels,	for	SVM	models	in	Chapter	5,	Fair	Value	of	House
and	Property	for	the	Fair	Value	of	House	and	Property	project.	To	remind	you
how	to	train	these	regression	models	in	C#,	we	will	reiterate	how	we	could	use
C#	and	the	Accord.NET	framework	to	build	these	models.

The	following	code	snippet	shows	how	we	can	train	a	linear	regression	model:

var	learner	=	new	OrdinaryLeastSquares()

{

				UseIntercept	=	true

};

var	model	=	learner.Learn(inputs,	outputs);

When	building	a	SVM	with	the	linear	kernel,	we	used	the	following	code:

var	learner	=	new	LinearRegressionNewtonMethod()

{

				Epsilon	=	2.1,

				Tolerance	=	1e-5,

				UseComplexityHeuristic	=	true

};

var	model	=	learner.Learn(inputs,	outputs);

As	you	might	recall,	Epsilon,	Tolerance,	and	UseComplexityHeuristic	are

hyperparameters	that	can	be	tuned	further	for	better	model	performance.	When
building	a	SVM	model,	we	recommend	you	try	various	combinations	of	the
hyperparameters	to	find	the	best	performing	model	for	your	business	case.

When	we	want	to	use	a	polynomial	kernel	for	a	SVM,	we	can	use	the	following
code:

var	learner	=	new	FanChenLinSupportVectorRegression<Polynomial>()

{

				Kernel	=	new	Polynomial(3)

};

var	model	=	learner.Learn(inputs,	outputs);

For	a	Polynomial	kernel,	you	can	tune	the	degree	of	a	polynomial	function.	For
example,	for	a	second	degree	polynomial	(quadratic)	kernel,	you	can	initialize
the	kernel	with	new	Polynomial(2).	Similarly,	for	a	fourth	degree	polynomial	kernel,
you	can	initialize	the	kernel	with	new	Polynomial(4).	However,	increasing	the
complexity	of	a	kernel	can	result	in	overfitting,	so	you	will	need	to	take	care
when	using	a	high-degree	polynomial	kernel	for	a	SVM.

When	we	want	to	build	a	SVM	with	a	Gaussian	kernel,	we	can	use	the	following
code:

var	learner	=	new	FanChenLinSupportVectorRegression<Gaussian>()

{

				Kernel	=	new	Gaussian()

};

var	model	=	learner.Learn(inputs,	outputs);

You	can	find	the	code	samples	for	the	aforementioned	regression	models	at	the
following	link:	https://github.com/yoonhwang/c-sharp-machine-learning/blob/master/ch.11/R
egressionModelReview.cs.

https://github.com/yoonhwang/c-sharp-machine-learning/blob/master/ch.11/RegressionModelReview.cs

Clustering	algorithms
We	discussed	one	unsupervised	learning	algorithm,	k-means	clustering,	and	how
it	can	be	used	to	draw	insights	from	an	unlabeled	dataset.	In	Chapter	6,	Customer
Segmentation,	we	used	the	k-means	clustering	algorithm	on	an	e-commerce
dataset	and	we	learned	about	different	customer	behaviors	from	the	dataset.	We
have	covered	how	to	use	clustering	algorithms	to	build	different	customer
segments,	based	on	their	purchase	history,	but	there	are	many	other	applications
of	clustering	algorithms.	For	example,	clustering	algorithms	can	also	be	used	in
image	analysis,	for	example	in	partitioning	images	into	sub-sections,	and	in
bioinformatics,	such	as	discovering	groups	of	closely	related	genes	(gene
clustering).

We	used	the	following	code	to	build	a	k-means	clustering	algorithm	using	C#
and	the	Accord.NET	framework:

KMeans	kmeans	=	new	KMeans(numClusters);

KMeansClusterCollection	clusters	=	kmeans.Learn(sampleSet);

As	you	might	recall,	we	need	to	give	the	number	of	clusters	we	want	to	build	to
the	KMeans	class.	One	way	to	programmatically	decide	the	best	number	of	clusters
that	we	discussed	was	to	look	at	the	Silhouette	score,	which	measures	how
similar	a	data	point	is	to	its	own	cluster.	Using	this	Silhouette	score,	you	can
iterate	through	different	numbers	for	the	number	of	clusters	and	then	decide
which	one	works	the	best	for	the	given	dataset.

You	can	find	the	code	samples	for	the	k-means	clustering	algorithm	at	the
following	link:	https://github.com/yoonhwang/c-sharp-machine-learning/blob/master/ch.11/C
lusteringAlgorithmReview.cs.

https://github.com/yoonhwang/c-sharp-machine-learning/blob/master/ch.11/ClusteringAlgorithmReview.cs

Real-life	challenges
	

It	would	be	great	if	we	could	just	build	ML	models	for	all	of	our	business
problems.	However,	that	is	normally	not	the	case.	Often,	there	are	more
challenges	in	getting	to	the	model	development	phase	than	in	actually	building
working	models.	We	will	discuss	the	following	frequently	appearing	data	science
challenges	when	we	are	working	on	ML	projects:

Data	issues
Infrastructural	issues
Explainability	versus	accuracy

	

	

Data	issues
Having	the	right	data	and	enough	data	is	the	most	important	prerequisite	for
building	a	working	ML	model.	However,	often,	this	is	the	most	difficult	part	in
developing	ML	models	for	a	few	different	reasons.	We	will	discuss	a	few
common	challenges	that	many	data	scientists	face	in	terms	of	issues	related	to
data.

First,	the	data	needed	might	simply	not	exist.	For	example,	think	of	a	recently
formed	online	retail	store	wanting	to	apply	ML	to	understand	or	predict	their
customers'	spending	patterns.	Since	they	are	a	new	business	with	a	small
customer	base,	with	not	much	historical	purchase	data,	they	will	not	have
enough	data	for	data	scientists	to	work	with.	In	this	case,	all	they	can	do	is	wait
for	a	better	time	to	embark	on	ML	projects,	even	if	they	have	data	scientists	on
their	team.	Their	data	scientists	will	simply	not	be	able	to	build	anything
meaningful	with	a	limited	amount	of	data.

Second,	the	dataset	exists,	but	it	is	not	accessible.	This	kind	of	problem	happens
often	in	big	corporations.	Due	to	security	issues,	accessing	the	data	might	have
been	restricted	to	certain	subgroups	of	an	organization.	In	this	case,	data
scientists	might	have	to	go	through	multiple	levels	of	approval	from	different
departments	or	business	entities	or	they	might	have	to	build	a	separate	data
pipeline,	through	which	they	can	ingest	the	data	that	they	need.	This	kind	of
issue	typically	means	it	takes	a	long	time	before	data	scientists	can	start	working
on	the	ML	project	that	they	wanted	to	work	on.

Lastly,	the	data	is	segmented	or	too	messy.	Almost	all	of	the	time,	the	raw
datasets	that	data	scientists	get	include	messy	data	and	come	from	different	data
sources.	There	might	be	too	many	missing	values	or	too	many	duplicate	records
in	the	data	and	data	scientists	will	have	to	spend	lots	of	time	cleaning	up	the	raw
dataset.	The	data	might	be	too	unstructured.	This	typically	happens	when	you
work	with	text-heavy	datasets.	In	this	case,	you	might	have	to	apply	various	text
mining	and	natural	language	processing	(NLP)	techniques	to	clean	up	the	data
and	make	it	usable	for	building	ML	models.

Infrastructure	issues
	

Training	a	ML	model	on	a	large	dataset	requires	a	large	amount	of	memory	and
CPU	resources.	As	we	get	bigger	and	bigger	data,	it	is	inevitable	that	we	run	into
infrastructural	issues.	If	you	do	not	have	enough	memory	resources	for	training
ML	models,	you	might	end	up	getting	Out	of	Memory	exceptions	after	many
hours	or	days	of	training	models.	If	you	do	not	have	enough	processing	power,
then	training	a	complex	ML	model	can	take	weeks	and	even	months.	Getting	the
right	amount	of	computational	resources	is	a	real	challenge	in	building	ML
models.	As	the	data	that	is	being	used	for	ML	grows	faster	than	ever,	the	amount
of	computational	resources	required	also	grows	significantly	year	after	year.

With	the	emerging	popularity	of	cloud	computing	service	providers,	such	as
AWS,	Google,	and	Microsoft	Azure,	it	became	easier	to	get	the	required
computational	resources.	On	any	of	those	cloud	computing	platforms,	you	can
easily	request	and	use	the	amount	of	memory	and	CPUs	that	you	need.	However,
as	everything	comes	with	a	price,	running	ML	jobs	on	those	cloud	platforms	can
cost	lots	of	money.	Depending	on	your	budget,	such	costs	can	restrict	how	much
computational	resources	you	can	use	for	your	ML	tasks,	and	it	needs	to	be
planned	cleverly.

	

	

	

Explainability	versus	accuracy
	

The	last	common	real-life	challenge	in	ML	is	the	trade-off	between	the
explainability	and	accuracy	of	ML	models.	More	traditional	and	linear	models,
such	as	logistic	regression	and	linear	regression	models,	are	easy	to	explain	in
terms	of	the	prediction	output.	We	can	extract	the	intercept	and	the	coefficients
of	those	linear	models	and	we	can	get	the	prediction	output	using	simple
arithmetic	operations.	However,	more	complex	models,	such	as	random	forest
and	SVM,	are	more	difficult	to	use	in	terms	of	explaining	the	prediction	output.
Unlike	logistic	regression	or	linear	regression	models,	we	cannot	deduce	the
prediction	output	from	simple	arithmetic	operations.	Those	complex	models
work	more	like	a	black	box.	We	know	the	input	and	the	output,	but	what	goes	in
between	is	a	black	box	to	us.

This	kind	of	explainability	issue	among	complex	learning	algorithms	becomes	a
problem	when	users	or	auditors	request	explanations	about	the	model	behavior.
If	there	is	such	a	requirement	for	explainability,	we	will	have	to	resort	to	more
traditional	linear	models,	even	if	more	complex	models	perform	better	than	those
linear	models.

	

	

	

Other	common	technologies
As	the	field	of	ML	and	data	science	is	evolving	faster	than	ever,	the	number	of
new	technologies	being	built	is	also	growing	at	a	fast	pace.	There	are	many
resources	and	tools	that	help	in	building	ML	solutions	and	applications	more
easily	and	quickly.	We	are	going	to	discuss	a	few	technologies	and	tools	that	we
recommend	you	get	acquainted	with	for	your	future	ML	projects.

	

Other	ML	libraries
The	Accord.NET	framework	that	we	have	used	throughout	this	book	is	one	of
the	most	frequently	used	and	well	documented	frameworks	for	ML.	However,
other	libraries	that	are	built	for	ML	in	C#	are	worth	mentioning	and	taking	a	look
at	for	your	future	ML	projects.

Encog	is	a	ML	framework	that	can	be	used	in	Java	and	C#.	It	is	very	similar	to
the	Accord.NET	framework	that	we	have	been	using,	in	the	sense	that	is	has	a
wide	range	of	numerous	ML	algorithms	available	within	the	framework.	This
framework	is	well	documented	and	has	lots	of	sample	code	that	can	be
referenced	for	your	future	machine	learning	projects.	More	information	and
documentation	about	the	Encog	framework	can	be	found	at	the	following	link:	ht
tps://www.heatonresearch.com/encog/.

Weka	is	another	ML	framework,	but	it	is	different	from	the	Accord.NET
framework	in	the	sense	that	the	Weka	framework	is	specifically	engineered	for
data	mining.	It	is	broadly	used	by	many	researchers	and	has	good	documentation
and	even	a	book	that	explains	how	to	use	Weka	for	data	mining.	Weka	is	written
in	Java,	but	it	can	also	be	used	in	C#.	More	information	about	the	Weka
framework	can	be	found	at	the	following	link:	https://www.cs.waikato.ac.nz/~ml/index
.html.	Also,	information	about	how	to	use	the	Weka	framework	in	C#	can	be
found	at	the	following	link:	https://weka.wikispaces.com/Use%20WEKA%20with%20the%20Micro
soft%20.NET%20Framework.

Lastly,	you	can	always	search	in	NuGet,	the	package	manager	for	.NET,	for	any
other	machine	learning	frameworks	for	C#.	Any	library	or	package	that	is
available	on	NuGet	can	easily	be	downloaded	and	referenced	in	your
development	environment.	It	is	a	good	practice	to	search	the	following	link	for
any	packages	you	might	need	or	that	might	be	helpful	for	your	future	machine
learning	projects:	https://www.nuget.org/.

https://www.heatonresearch.com/encog/
https://www.cs.waikato.ac.nz/~ml/index.html
https://weka.wikispaces.com/Use%20WEKA%20with%20the%20Microsoft%20.NET%20Framework
https://www.nuget.org/

Data	visualization	libraries	and	tools
The	next	set	of	tools	and	packages	that	we	are	going	to	discuss	is	about	data
visualizations.	ML	and	data	visualization	are	an	inseparable	combination	for	data
science.	For	any	ML	models	that	you	build,	you	should	be	able	to	present	your
findings,	model	performance,	and	model	results	to	users	or	business	partners.
Furthermore,	for	continuous	model	performance	monitoring	purposes,	data
visualization	techniques	are	often	used	to	identify	any	issues	with	the	models	in
production	systems	or	any	potential	deterioration	in	the	model	performance.	As	a
result,	many	data	visualization	libraries	were	built	to	make	data	visualization
tasks	easier.

LiveCharts	is	a	.NET	library	for	data	visualization.	We	have	used	the
Accord.NET	framework's	charting	libraries	throughout	this	book,	but	for	more
complex	plots,	we	recommend	using	LiveCharts.	From	basic	charts,	such	as
line	and	bar	charts,	to	complex	interactive	charts,	you	can	build	various
visualizations	in	C#	relatively	easily.	The	LiveCharts	library	has	thorough
documentation	and	lots	of	examples	along	with	sample	code.	You	can	find	more
information	about	how	to	use	LiveCharts	for	data	visualizations	at	the
following	link:	https://lvcharts.net/.

Aside	from	the	C#.NET	library	for	data	visualization	tasks,	there	are	two	more
data	visualization	tools	that	are	frequently	used	in	the	data	science	community:
D3.js	and	Tableau.	D3.js	is	a	JavaScript	library	for	building	and	presenting
charts	on	web	pages.	Often,	this	JavaScript	library	is	used	to	create	a	dashboard
for	various	data	science	and	data	visualization	tasks.	Tableau	is	a	business
intelligence	tool,	with	which	you	can	drag	and	drop	to	create	various
visualizations.	This	tool	is	frequently	used	to	create	a	dashboard	not	only	by	data
scientists,	but	also	by	non-data	professionals.	For	more	information	about	the
D3.js	library,	you	can	follow	this	link:	https://d3js.org/.	For	more	information
about	Tableau,	you	can	follow	this	link:	https://www.tableau.com/.

https://lvcharts.net/
https://d3js.org/
https://www.tableau.com/

Technologies	for	data	processing
Lastly,	we	are	going	to	discuss	some	commonly	used	technologies	and	tools	for
processing	data.	Throughout	this	book,	we	have	mostly	used	CSV	files	as	input
for	our	ML	modeling	projects.	We	have	used	the	Deedle	framework	to	load,
manipulate,	and	aggregate	the	data.	However,	often,	the	type	of	input	data	for
ML	projects	varies.	For	some	projects,	the	data	might	be	stored	in	SQL
databases.	For	other	projects,	the	data	might	be	stored	across	distributed
filesystems.	Furthermore,	the	source	of	the	input	data	can	even	be	from	real-time
streaming	services.	We	will	briefly	discuss	a	few	commonly	used	technologies
for	such	cases	and	where	to	look	for	more	detailed	information	in	order	for	you
to	do	further	research.

SQL	databases,	such	as	SQL	Server	or	PostgreSQL,	are	the	most	commonly
used	technologies	for	data	storage	and	data	processing.	Using	the	SQL	language,
data	scientists	can	easily	retrieve,	manipulate,	and	aggregate	data	to	process	and
prepare	the	data	for	their	ML	projects.	As	an	aspiring	data	scientist,	it	will	be
beneficial	for	you	to	become	more	comfortable	with	using	the	SQL	language	for
processing	the	data.

Another	technology	that	is	often	used	within	the	data	science	community	is
Spark,	which	is	a	cluster-computing	framework.	With	Spark,	you	can	process	a
large	amount	of	data	at	scale.	Using	clusters	of	machines	and	distributing	heavy
computations	across	those	machines,	Spark	helps	in	building	scalable	big	data
solutions.	This	technology	is	widely	used	among	numerous	organizations	and
companies,	such	as	Netflix,	Yahoo,	and	eBay,	which	have	lots	of	data	to	process
every	day.

Lastly,	there	are	numerous	stream-processing	technologies	for	real-time	ML
applications.	One	of	the	most	popular	ones	is	Kafka.	This	technology	is	often
used	when	building	real-time	applications	or	data	pipelines	that	need	to
continuously	stream	the	data.	In	the	case	of	building	real-time	ML	applications,
using	a	stream-processing	technology,	such	as	Kafka,	will	be	essential	for	the
successful	delivery	of	a	real-time	ML	product.

Summary
	

In	this	chapter,	we	reviewed	what	we	have	discussed	so	far	in	this	book.	We
briefly	went	over	the	essential	steps	in	building	ML	models.	Then,	we
summarized	and	compiled	the	code	to	build	various	ML	models	in	C#	using	the
Accord.NET	framework	for	classification,	regression,	and	clustering	problems.
We	have	also	discussed	the	real-life	challenges	that	we	could	not	cover	in	this
book,	but	that	you	will	most	likely	face	when	you	start	working	on	your	future
ML	projects.	We	discussed	challenges	in	accessing	and	compiling	the	data	to
build	ML	models,	infrastructural	challenges	that	will	occur	for	big	data,	and	the
trade-offs	between	the	explainability	and	accuracy	of	the	ML	models.	Lastly,	we
covered	some	commonly	used	technologies	that	we	recommend	you	get
acquainted	with	for	your	future	ML	projects.	The	code	libraries	and	tools	that
were	mentioned	in	this	chapter	are	only	a	subset	of	the	tools	that	are	available,
and	the	commonly	used	tools	and	technologies	are	going	to	evolve	year	on	year.
We	recommend	you	consistently	research	upcoming	technologies	for	ML	and
data	science.

We	have	covered	various	ML	techniques,	tools,	and	concepts	throughout	this
book.	As	you	have	worked	through	this	book	from	building	basic	classification
and	regression	models	to	complex	recommendation	and	image	recognition
systems,	as	well	as	anomaly	detection	models	for	real-world	problems,	I	hope
you	have	gained	more	confidence	in	building	ML	models	for	your	future	ML
projects.	I	hope	your	journey	throughout	this	book	was	worthwhile	and
meaningful,	and	that	you	have	learned	and	gained	many	new	and	useful	skills.

	

	

	

Other	Books	You	May	Enjoy
If	you	enjoyed	this	book,	you	may	be	interested	in	these	other	books	by	Packt:

Hands-On	Machine	Learning	with	C#
Matt	R.	Cole

ISBN:	9781788994941

Learn	to	parameterize	a	probabilistic	problem
Use	Naive	Bayes	to	visually	plot	and	analyze	data
Plot	a	text-based	representation	of	a	decision	tree	using	nuML
Use	the	Accord.NET	machine	learning	framework	for	associative	rule-
based	learning
Develop	machine	learning	algorithms	utilizing	fuzzy	logic
Explore	support	vector	machines	for	image	recognition
Understand	dynamic	time	warping	for	sequence	recognition

Mastering	.NET	Machine	Learning
Jamie	Dixon

https://www.packtpub.com/big-data-and-business-intelligence/hands-machine-learning-c

ISBN:	9781785888403

Write	your	own	machine	learning	applications	and	experiments	using	the
latest	.NET	framework,	including	.NET	Core	1.0
Set	up	your	business	application	to	start	using	machine	learning.
Accurately	predict	the	future	using	regressions.
Discover	hidden	patterns	using	decision	trees.
Acquire,	prepare,	and	combine	datasets	to	drive	insights.
Optimize	business	throughput	using	Bayes	Classifier.
Discover	(more)	hidden	patterns	using	KNN	and	Naïve	Bayes.
Discover	(even	more)	hidden	patterns	using	K-Means	and	PCA.
Use	Neural	Networks	to	improve	business	decision	making	while	using	the
latest	ASP.NET	technologies.
Explore	Big	Data,	distributed	computing,	and	how	to	deploy	machine
learning	models	to	IoT	devices—making	machines	self-learning	and
adapting
Along	the	way,	learn	about	Open	Data,	Bing	maps,	and	MBrace

Leave	a	review	-	let	other	readers
know	what	you	think
Please	share	your	thoughts	on	this	book	with	others	by	leaving	a	review	on	the
site	that	you	bought	it	from.	If	you	purchased	the	book	from	Amazon,	please
leave	us	an	honest	review	on	this	book's	Amazon	page.	This	is	vital	so	that	other
potential	readers	can	see	and	use	your	unbiased	opinion	to	make	purchasing
decisions,	we	can	understand	what	our	customers	think	about	our	products,	and
our	authors	can	see	your	feedback	on	the	title	that	they	have	worked	with	Packt
to	create.	It	will	only	take	a	few	minutes	of	your	time,	but	is	valuable	to	other
potential	customers,	our	authors,	and	Packt.	Thank	you!

	

	Title Page
	Copyright and Credits
	C# Machine Learning Projects

	Packt Upsell
	Why subscribe?
	PacktPub.com

	Contributors
	About the author
	About the reviewer
	Packt is searching for authors like you

	Preface
	Who this book is for
	What this book covers
	To get the most out of this book
	Download the example code files
	Download the color images
	Conventions used

	Get in touch
	Reviews

	Basics of Machine Learning Modeling
	Key ML tasks and applications
	Steps in building ML models
	Setting up a C# environment for ML
	Setting up Visual Studio for C#
	Installing Accord.NET
	Installing Deedle

	Summary

	Spam Email Filtering
	Problem definition for the spam email filtering project
	Data preparation
	Email data analysis
	Feature engineering for email data
	Logistic regression versus Naive Bayes for email spam filtering
	Classification model validations
	Summary

	Twitter Sentiment Analysis
	Setting up the environment
	Problem definition for Twitter sentiment analysis
	Data preparation using Stanford CoreNLP
	Data analysis using lemmas as tokens
	Feature engineering using lemmatization and emoticons
	Naive Bayes versus random forest
	Model validations – ROC curve and AUC
	Summary

	Foreign Exchange Rate Forecast
	Problem definition
	Data preparation
	Time series data analysis
	Feature engineering
	Moving average
	Bollinger Bands
	Lagged variables

	Linear regression versus SVM
	Model validations
	Summary

	Fair Value of House and Property
	Problem definition
	Categorical versus continuous variables
	Non-ordinal categorical variables
	Ordinal categorical variable
	Continuous variable
	Target variable – sale price

	Feature engineering and encoding
	Dummy variables
	Feature encoding

	Linear regression versus SVM with kernels
	Linear regression
	Linear SVM
	SVM with a polynomial kernel
	SVM with a Gaussian kernel

	Model validations
	Summary

	Customer Segmentation
	Problem definition
	Data analysis for the online retail dataset
	Handling missing values
	Variable distributions

	Feature engineering and data aggregation
	Unsupervised learning – k-means clustering
	Clustering model validations using the Silhouette Coefficient
	Summary

	Music Genre Recommendation
	Problem definition
	Data analysis for the audio features dataset
	Target variable distribution
	Audio features – MFCC

	ML models for music genre classification
	Logistic regression
	SVM with the Gaussian kernel
	Naive Bayes

	Ensembling base learning models
	Evaluating recommendation/rank-ordering models
	Prediction accuracy
	Confusion matrices
	Mean Reciprocal Rank

	Summary

	Handwritten Digit Recognition
	Problem definition
	Data analysis for the image dataset
	Target variable distribution
	Handwritten digit images
	Image features - pixels

	Feature engineering and dimensionality reduction
	Splitting the sample set into train versus test sets
	Dimensionality reduction by PCA

	ML models for handwritten digit recognition
	Loading data
	Logistic regression classifier
	Naive Bayes classifier
	Neural network classifier

	Evaluating multi-class classification models
	Confusion matrices
	Accuracy and precision/recall
	One versus Rest AUC

	Summary

	Cyber Attack Detection
	Problem definition
	Data analysis for internet traffic data
	Data clean-up
	Target variable distribution
	Categorical variable distribution
	Continuous variable distribution

	Feature engineering and PCA
	Target and categorical variables encoding
	Fitting PCA
	PCA features

	Principal component classifier for anomaly detection
	Preparation for training
	Building a principal component classifier

	Evaluating anomaly detection models
	Summary

	Credit Card Fraud Detection
	Problem definition
	Data analysis for anonymized credit card data
	Target variable distribution
	Feature distributions

	Feature engineering and PCA
	Preparation for feature engineering
	Fitting a PCA

	One-class SVM versus PCC
	Preparation for model training
	Principal component classifier
	One-class SVM

	Evaluating anomaly detection models
	Principal Component Classifier
	One-class SVM

	Summary

	What's Next?
	Review
	Steps for building ML models
	Classification models
	Regression models
	Clustering algorithms

	Real-life challenges
	Data issues
	Infrastructure issues
	Explainability versus accuracy

	Other common technologies
	Other ML libraries
	Data visualization libraries and tools
	Technologies for data processing

	Summary

	Other Books You May Enjoy
	Leave a review - let other readers know what you think

