

C++17	By	Example

	

	

Practical	projects	to	get	you	up	and	running	with	C++17

	

	

	

	

	

	

	

	

	

	

Stefan	Björnander

	

	

	

	

	

	

	

	

	

	

	

	

BIRMINGHAM	-	MUMBAI

C++17	By	Example
Copyright	©	2018	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,	or	transmitted	in
any	form	or	by	any	means,	without	the	prior	written	permission	of	the	publisher,	except	in	the	case	of	brief
quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the	information
presented.	However,	the	information	contained	in	this	book	is	sold	without	warranty,	either	express	or
implied.	Neither	the	author,	nor	Packt	Publishing	or	its	dealers	and	distributors,	will	be	held	liable	for	any
damages	caused	or	alleged	to	have	been	caused	directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the	companies	and	products
mentioned	in	this	book	by	the	appropriate	use	of	capitals.	However,	Packt	Publishing	cannot	guarantee	the
accuracy	of	this	information.

Commissioning	Editor:	Merint	Mathew
Acquisition	Editor:	Chaitanya	Nair
Content	Development	Editor:	Lawrence	Veigas
Technical	Editor:	Adhithya	Haridas
Copy	Editor:	Safis	Editing
Project	Coordinator:	Prajakta	Naik
Proofreader:	Safis	Editing
Indexer:	Aishwarya	Gangawane
Graphics:	Jisha	Chirayil
Production	Coordinator:	Deepika	Naik

First	published:	February	2018

Production	reference:	1220218

Published	by	Packt	Publishing	Ltd.
Livery	Place
35	Livery	Street
Birmingham
B3	2PB,	UK.

ISBN	978-1-78839-181-8

www.packtpub.com

	

http://www.packtpub.com

I	dedicate	this	book	to	my	parents,	Ralf	and	Gunilla,	my	sister,	Catharina,	her
husband,	Magnus,	and	their	sons,	Emil	and	Rasmus.

mapt.io

Mapt	is	an	online	digital	library	that	gives	you	full	access	to	over	5,000	books
and	videos,	as	well	as	industry	leading	tools	to	help	you	plan	your	personal
development	and	advance	your	career.	For	more	information,	please	visit	our
website.

https://mapt.io/

Why	subscribe?
Spend	less	time	learning	and	more	time	coding	with	practical	eBooks	and
Videos	from	over	4,000	industry	professionals

Improve	your	learning	with	Skill	Plans	built	especially	for	you

Get	a	free	eBook	or	video	every	month

Mapt	is	fully	searchable

Copy	and	paste,	print,	and	bookmark	content

PacktPub.com
Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with
PDF	and	ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.Packt
Pub.com	and	as	a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook
copy.	Get	in	touch	with	us	at	service@packtpub.com	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign
up	for	a	range	of	free	newsletters,	and	receive	exclusive	discounts	and	offers	on
Packt	books	and	eBooks.

	

http://www.PacktPub.com
http://www.packtpub.com

Contributors

About	the	author
Stefan	Björnander	is	the	author	of	the	books	Microsoft	Windows	C++	and
C++	Windows	Programming.	He	holds	a	Master	of	Engineering	and	a	Licentiate
in	Computer	Science.	He	has	worked	as	a	software	developer	and	as	a	teacher	in
computer	science	and	mathematics	for	many	years.

About	the	reviewer
Mark	Elston	is	a	software	architect	for	an	automated	test	equipment	company
working	primarily	in	the	IC	and	mobile	device	test	world.	However,	his	30	years
of	experience	includes	developing	aircraft	and	missile	simulations	for	the	Air
Force	and	Navy,	hardware	control	systems	for	NASA,	and	tester	operating
systems	for	commercial	products.	He	has	also	developed	several	Android
applications	for	fun.	His	latest	passion	is	delving	into	the	world	of	functional
programming	and	design.

I	would	like	to	thank	my	wife	for	her	understanding	when	I	had	a	chapter	to
finish	reviewing.	I	would	also	like	to	thank	the	Pack	team	for	giving	me	the
opportunity	to	work	with	them	on	this	project.	It	has	been	enlightening	and
entertaining.	Finally,	I	would	like	to	thank	the	author	for	taking	even	my
smallest	comments	into	account.	It	is	a	pleasure	to	be	part	of	a	project	where
your	input	is	valued.

	

Packt	is	searching	for	authors	like
you
If	you're	interested	in	becoming	an	author	for	Packt,	please	visit	authors.packtpub.com
and	apply	today.	We	have	worked	with	thousands	of	developers	and	tech
professionals,	just	like	you,	to	help	them	share	their	insight	with	the	global	tech
community.	You	can	make	a	general	application,	apply	for	a	specific	hot	topic
that	we	are	recruiting	an	author	for,	or	submit	your	own	idea.

	

http://authors.packtpub.com

Table	of	Contents

Title	Page

Copyright	and	Credits

C++17	By	Example

Dedication

Packt	Upsell

Why	subscribe?

PacktPub.com

Contributors

About	the	author

About	the	reviewer

Packt	is	searching	for	authors	like	you

Preface

Who	this	book	is	for

What	this	book	covers

To	get	the	most	out	of	this	book

Download	the	example	code	files

Download	the	color	images

Conventions	used

Get	in	touch

Reviews

1.	 Getting	Started	with	C++

Rolling	the	dice

Understanding	classes –	the	Car	class

Extending	the	Car	class

A	class	hierarchy –	the	Person,	Student,	and	Employee	classes

A	simple	data	type –	the	stack

A	more	advanced	data	type –	the	queue

Summary

2.	 Data	Structures	and	Algorithms

The	List	class

The	Cell	class

The	Iterator	class

The	List	class

Adding	a	list	to	an	existing	list

Erasing	a	value	from	the	list

The	Set	class

Union,	intersection,	and	difference	operations

Basic	searching	and	sorting

The	select	sort	algorithm

The	insert	sort	algorithm

The	bubble	sort	algorithm

The	extended	List	class

The	ReverseIterator	class

The	extended	Set	class

Union,	intersection,	and	difference

Advanced	searching	and	sorting

The	merge	sort	algorithm

The	quick	sort	algorithm

Summary

3.	 Building	a	Library	Management	System

The	Book	class

Writing	the	book

Reading	the	book

Borrowing	and	reserving	the	book

Displaying	the	book

The	Customer	class

Reading	the	customer	from	a	file

Writing	the	customer	to	a	file

Borrowing	and	reserving	a	book

Displaying	the	customer

The	Library	class

Looking	up	books	and	customers

Adding	a	book

Deleting	a	book

Listing	the	books

Adding	a	customer

Deleting	a	customer

Listing	the	customers

Borrowing	a	book

Reserving	a	book

Returning	a	Book

Saving	the	library	information	to	a	file

Loading	the	library	information	from	a	file

The	main	function

Summary

4.	 Library	Management	System	with	Pointers

The	Book	class

Reading	and	writing	the	book

Borrowing	and	reserving	the	book

Displaying	the	book

The	Customer	class

Reading	and	writing	the	customer

Borrowing	and	reserving	a	book

Displaying	the	customer

The	Library	class

Looking	up	books	and	customers

Adding	a	book

Deleting	a	book

Listing	the	books

Adding	a	customer

Deleting	a	customer

Listing	the	customers

Borrowing	a	book

Reserving	a	book

Returning	a	book

Looking	up	books	and	customers

Marshmallowing

Saving	the	library	information	to	a	file

Writing	the	book	objects

Writing	the	customer	objects

Writing	the	borrower	index

Writing	the	reservation	indexes

Writing	the	loan	book	indexes

Writing	the	reservation	book	indexes

Loading	the	library	information	from	a	file

Reading	the	book	objects

Reading	the	customer	objects

Reading	the	borrower	index

Reading	the	reservation	indexes

Reading	the	loan	book	indexes

Reading	the	reservation	book	indexes

Deallocating	memory

The	main	function

Summary

5.	 Qt	Graphical	Applications

Creating	the	clock	application

Setting	up	the	environment

The	Clock	class

The	main	function

Setting	up	reusable	classes	for	windows	and	widgets

Adding	a	listener

The	base	window	class

The	base	widget	class

Building	the	drawing	program

The	Figure	base	class

The	Line	sub	class

The	Rectangle	sub	class

The	Ellipse	sub	class

Drawing	the	window

Drawing	the	widget

The	main	function

Building	an	editor

The	Caret	class

Drawing	the	editor	window

Drawing	the	editor	widget

The	main	function

Summary

6.	 Enhancing	the	Qt	Graphical	Applications

Improving	the	clock

The	Clock	class

The	main	function

Improving	the	drawing	program

The	Figure	class

The	Line	class

The	Rectangle	class

The	Ellipse class

The	DrawingWindow	class

The	DrawingWidget	class

The	main	function

Improving	the	editor

The	EditorWindow	class

The	EditorWidget	class

The	main	function

Summary

7.	 The	Games

Othello

The	game	widget

The	OthelloWindow	class

The	OthelloWidget	class

The	main	function

Noughts	and	crosses

The	NaCWindow	class

The	NaCWidget	class

The	main	function

Summary

8.	 The	Computer	Plays

Othello

The	OthelloWindow	class

The	OthelloWidget	Class

The	main	function

Noughts	and	Crosses

The	NaCWindow	class

The	NaCWidget	class

The	main	function

Summary

9.	 Domain-Specific	Language

Introducing	the	source	language	–	a	simple	example

The	grammar	of	the	source	language

The	target	language

The	colors

Error	handling

The	value

The	scanner

Building	the	parser

Parsing	the	instructions	of	the	language

Parsing	the	expressions	of	the	language

Type	checking	the	expression

Evaluating	the	values	of	the	expressions

The	viewer

The	main	function

Summary

10.	 Advanced	Domain-Specific	Language

Improving	the	source	language	–	an	example

Improving	the	grammar

The	Token	and	the	Scanner

The	parser

The	evaluator

The	main	function

Summary

Other	Books	You	May	Enjoy

Leave	a	review	-	let	other	readers	know	what	you	think

Preface

	

C++	is	a	general-purpose	programming	language	built	with	a	bias	towards
embedded	programming	and	systems	programming.	Over	the	years,	C++	has
evolved	and	is	used	to	develop	software	for	many	different	sectors.	Given	its
versatility	and	robustness,	C++	is	a	wonderful	language	to	start	your	coding
journey	with.	This	book	covers	exciting	projects	built	in	C++	that	show	how	to
implement	the	language	in	different	scenarios.	While	developing	these	projects,
you	will	not	only	learn	the	language	constructs	but	also	how	you	can	use	C++	to
meet	your	software	requirements.

In	this	book,	you	will	study	a	set	of	applications	written	in	C++,	ranging	from
abstract	datatypes	to	library	management	systems,	graphical	applications,	games,
and	a	Domain-Specific	Language	(DSL).

	

	

	

Who	this	book	is	for
This	book	is	for	developers	who	would	like	to	develop	software	in	C++.	Basic
programming	experience	would	be	an	added	advantage.

What	this	book	covers
Chapter	1,	Getting	Started	with	C++,	introduces	you	to	Object-Oriented
Programming	(OOP)	in	C++.	We	start	by	looking	into	a	simple	program	that
rolls	a	dice.	We	write	the	code,	compile,	link,	and	execute	the	program.	We	then
continue	by	constructing	a	simple	object-oriented	hierarchy,	with	pointers	and
dynamic	binding.	Finally,	we	create	two	simple	abstract	data	types:	stack	and
queue.	The	stack	is	a	set	of	values	ordered	in	a	bottom-to-top	manner,	where
only	the	top-most	value	is	accessible,	while	the	queue	is	a	traditional	queue
where	we	inspect	values	at	the	front	and	add	values	at	the	rear.

Chapter	2,	Data	Structures	and	Algorithms,	builds	on	what	was	learned	in	the
previous	chapter,	especially	the	list	and	set	abstract	datatypes.	We	also	introduce
templates	and	operator	overloading,	and	we	look	into	linear	and	binary	search
algorithms	and	the	insert,	select,	bubble,	merge,	and	quicksort	algorithms.

Chapter	3,	Building	a	Library	Management	System,	will	help	you	develop	a	real-
world	system:	a	library	management	system	that	is	made	up	of	books	and
customers.	The	books	keep	track	of	the	customers	that	have	borrowed	and
reserved	them,	and	the	customers	keep	track	of	the	books	they	have	borrowed
and	reserved.

Chapter	4,	Library	Management	System	with	Pointers,	further	develops	the	library
management	system.	In	the	previous	chapter,	each	book	and	customer	were
identified	by	integer	numbers.	In	this	chapter,	however,	we	work	with	pointers.
Each	book	holds	pointers	to	the	customers	that	have	borrowed	or	reserved	it,	and
each	customer	holds	pointers	to	the	books	they	have	borrowed	or	reserved.

Chapter	5,	Qt	Graphical	Applications,	dives	into	three	graphical	applications	that
we	develop	with	the	Qt	graphical	library:	an	analog	clock	with	hour,	minute,	and
second	hands,	a	drawing	program	that	draws	lines,	rectangles,	and	ellipses	in
different	colors,	and	an	editor	where	the	user	can	input	and	edit	text.	We	will
learn	how	to	handle	windows	and	widgets	as	well	as	menus	and	toolbars	in	the
Qt	Library.	We	will	also	learn	how	to	draw	figures	and	write	text,	and	how	to
catch	mouse	and	keyboard	input.

Chapter	6,	Enhancing	the	Qt	Graphical	Applications,	further	develops	the	three
graphical	applications:	the	analog	clock,	the	drawing	program,	and	the	editor.
We	add	digits	to	the	clock	dial,	we	add	the	possibility	to	move,	modify,	and	cut-
and-paste	figures	in	the	drawing	program,	and	we	add	the	possibility	to	change
font	and	text	alignment	in	the	editor.

Chapter	7,	The	Games,	introduces	you	to	basic	game	development.	In	this	chapter,
we	develop	the	games	Othello,	and	Noughts	and	Crosses	with	the	Qt	library.	In
Othello,	two	players	take	turn	adding	marks,	colored	black	and	white,	to	the
game	grid	in	order	to	enclose	the	opponent's	marks.	In	Noughts	and	Crosses,	two
players	take	turns	adding	noughts	and	crosses	to	a	game	grid	in	order	to	place
five	marks	in	a	row.

Chapter	8,	The	Computer	Plays,	empowers	the	computer	to	play	against	a	human
player.	In	Othello,	the	computer	tries	to	add	marks	that	enclose	as	many	as
possible	of	the	opponent’s	marks.	In	Nought	and	Crosses,	the	computer	tries	to
add	marks	to	obtain	five	marks	in	a	row,	and	to	prevent	the	opponent	to	get	five
marks	in	a	row.

Chapter	9,	Domain–Specific	Language,	teaches	you	to	develop	a	Domain-Specific
Language	(DSL),	which	is	a	language	intended	for	a	specific	domain.	More
specifically,	we	develop	a	language	for	writing	graphical	objects	in	a	Qt	widget.
We	start	by	formally	defining	our	language	with	a	grammar.	We	then	write	a
scanner	that	recognizes	meaningful	sequences	of	characters,	a	parser	that	checks
that	the	source	code	complies	with	the	grammar,	and	a	viewer	that	displays	the
graphical	objects.

Chapter	10,	Advanced	Domain–Specific	Language,	improves	on	our	Domain-
Specific	Language	in	several	ways:	we	add	selection	and	iteration	that	alter	the
flow	of	the	program,	we	add	variables	that	can	be	assigned	to	values	during	the
program	execution,	and	we	add	functions	with	parameters	and	a	return	value.

To	get	the	most	out	of	this	book
This	book	is	intended	for	every	reader,	from	the	beginner	to	the	more	proficient
C++	programmer.	However,	some	previous	experience	with	C++	is	useful.

The	examples	of	this	book	are	developed	in	Visual	Studio	and	Qt	Creator.

Download	the	example	code	files

	

You	can	download	the	example	code	files	for	this	book	from	your	account	at	ww
w.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can	visit	www.packtpub.com/
support	and	register	to	have	the	files	emailed	directly	to	you.

You	can	download	the	code	files	by	following	these	steps:

1.	 Log	in	or	register	at	www.packtpub.com.
2.	 Select	the	SUPPORT	tab.
3.	 Click	on	Code	Downloads	&	Errata.
4.	 Enter	the	name	of	the	book	in	the	Search	box	and	follow	the	onscreen

instructions.

Once	the	file	is	downloaded,	please	make	sure	that	you	unzip	or	extract	the
folder	using	the	latest	version	of:

WinRAR/7-Zip	for	Windows
Zipeg/iZip/UnRarX	for	Mac
7-Zip/PeaZip	for	Linux

The	code	bundle	for	the	book	is	also	hosted	on	GitHub	at	https://github.com/PacktPublis
hing/CPP17-By-Example.	We	also	have	other	code	bundles	from	our	rich	catalog	of
books	and	videos	available	at	https://github.com/PacktPublishing/.	Check	them	out!

	

	

	

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/CPP17-By-Example
https://github.com/PacktPublishing/

Download	the	color	images
We	also	provide	a	PDF	file	that	has	color	images	of	the	screenshots/diagrams
used	in	this	book.	You	can	download	it	here:	https://www.packtpub.com/sites/default/files/do
wnloads/CPP17ByExample_ColorImages.pdf.

https://www.packtpub.com/sites/default/files/downloads/CPP17ByExample_ColorImages.pdf

Conventions	used
There	are	a	number	of	text	conventions	used	throughout	this	book.

CodeInText:	Indicates	code	words	in	text.	For	example;	"Let's	continue	with	a	class
hierarchy,	where	Person	is	the	base	class	with	Student	and	Employee	as	its	sub
classes:"

A	block	of	code	is	set	as	follows:

class	Person	{

			public:

					Person(string	name);

					virtual	void	print();

			private:

					string	m_name;

	};

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,	the
relevant	lines	or	items	are	set	in	bold:

class	Person	{

			public:

					Person(string	name);

					virtual	void	print();

			private:

					string	m_name;

	};

Bold:	Indicates	a	new	term,	an	important	word,	or	words	that	you	see	onscreen.
For	example,	words	in	menus	or	dialog	boxes	appear	in	the	text	like	this.	Here	is
an	example:	"In	the	first	dialog	we	just	press	the	Next	button:"

Warnings	or	important	notes	appear	like	this.

Tips	and	tricks	appear	like	this.

Get	in	touch
Feedback	from	our	readers	is	always	welcome.

General	feedback:	Email	feedback@packtpub.com	and	mention	the	book	title	in	the
subject	of	your	message.	If	you	have	questions	about	any	aspect	of	this	book,
please	email	us	at	questions@packtpub.com.

Errata:	Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our
content,	mistakes	do	happen.	If	you	have	found	a	mistake	in	this	book,	we	would
be	grateful	if	you	would	report	this	to	us.	Please	visit	www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering
the	details.

Piracy:	If	you	come	across	any	illegal	copies	of	our	works	in	any	form	on	the
Internet,	we	would	be	grateful	if	you	would	provide	us	with	the	location	address
or	website	name.	Please	contact	us	at	copyright@packtpub.com	with	a	link	to	the
material.

If	you	are	interested	in	becoming	an	author:	If	there	is	a	topic	that	you	have
expertise	in	and	you	are	interested	in	either	writing	or	contributing	to	a	book,
please	visit	authors.packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/

Reviews
Please	leave	a	review.	Once	you	have	read	and	used	this	book,	why	not	leave	a
review	on	the	site	that	you	purchased	it	from?	Potential	readers	can	then	see	and
use	your	unbiased	opinion	to	make	purchase	decisions,	we	at	Packt	can
understand	what	you	think	about	our	products,	and	our	authors	can	see	your
feedback	on	their	book.	Thank	you!

For	more	information	about	Packt,	please	visit	packtpub.com.

	

https://www.packtpub.com/

Getting	Started	with	C++
This	chapter	provides	an	introduction	to	Object-Oriented	Programming
(OOP)	in	C++.	We	start	by	looking	into	a	simple	program	that	rolls	a	dice.	We
write	the	code	and	compile,	link,	and	execute	the	program.

Then	we	continue	by	constructing	a	simple	object-oriented	hierarchy,	involving
the	Person	base	class	and	its	two	subclasses,	Student	and	Employee.	We	also	look	into
pointers	and	dynamic	binding.

Finally,	we	create	two	simple	data	types—stack	and	queue.	A	stack	is
constituted	of	a	set	of	values	ordered	in	a	bottom-to-top	manner,	where	we	are
interested	in	the	top	value	only.	A	queue	is	a	traditional	queue	of	values,	where
we	add	values	at	the	rear	and	inspect	values	at	the	front.

In	this	chapter,	we	will	cover	the	following	topics:

We	start	by	implementing	a	simple	game:	rolling	the	dice.	Its	main	purpose
is	to	provide	an	introduction	to	the	environment	and	teach	you	how	to	set
up	the	project,	and	how	to	compile,	link,	and	execute	the	program.
Then	we	start	looking	at	object-oriented	programming	by	writing	a	class
hierarchy	with	Person	as	the	base	class	and	Student	and	Employee	as	subclasses.
This	provides	an	introduction	to	inheritance,	encapsulation,	and	dynamic
binding.
Finally,	we	write	classes	for	the	abstract	data	types	stack	and	queue.	A	stack
is	a	structure	where	we	both	add	and	remove	values	at	the	top,	while	a
queue	is	more	like	a	traditional	queue	where	we	add	values	at	the	rear	and
remove	them	from	the	front.

Rolling	the	dice
As	an	introduction,	we	start	by	writing	a	program	that	rolls	a	dice.	We	use	the
built-in	random	generator	to	generate	an	integer	value	between	one	and	six,
inclusive:

Main.cpp

#include	<CStdLib>

#include	<CTime>

#include	<IOStream>

using	namespace	std;

void	main()	{

		srand((int)	time(nullptr));	

		int	dice	=	(rand()	%	6)	+	1;

		cout	<<	"Dice:	"	<<	dice	<<	endl;

}

In	the	preceding	program,	the	initial	include	directives	allow	us	to	include	header
files,	which	mostly	hold	declarations	of	the	standard	library.	We	need	the	CStdLib
header	file	to	use	the	random	generator,	the	CTime	header	file	to	initiate	the
random	generator	with	the	current	time,	and	the	IOStream	header	file	to	write	the
result.

The	standard	library	is	stored	in	a	namespace	called	std.	A	namespace	can	be
considered	a	container	holding	code.	We	gain	access	to	the	standard	library	with
the	using	namespace	directive.

Every	C++	program	holds	exactly	one	main	function.	The	execution	of	the
program	always	starts	in	the	main	function.	We	use	the	srand	and	time	standard
functions	to	initialize	the	random	generator,	and	rand	to	generate	the	actual
random	value.	The	percent	(%)	is	the	modulus	operator,	which	divides	two
integers	and	gives	the	remainder	of	the	division.	In	this	way,	the	value	of	the	dice
integer	variable	is	always	at	least	one	and	at	most	six.	Finally,	we	write	the	value
of	the	dice	variable	with	cout,	which	is	an	object	used	by	the	standard	library	to
write	text	and	values.

The	programs	of	the	first	four	chapters	were	written	with	Visual	Studio,	while
the	programs	of	the	remaining	chapters	are	written	with	Qt	Creator.

The	following	are	instructions	on	how	to	create	a	project,	write	the	code,	and
execute	the	application.	When	we	have	started	Visual	Studio,	we	follow	the
following	steps	to	create	our	project:

1.	 First,	we	select	the	New	and	Project	items	in	the	File	menu,	as	shown	in	the
following	screenshot:

2.	 We	choose	the	Win32	Console	Application	type,	and	name	the	project	Dice:

3.	 In	the	first	dialog	we	just	press	the	Next	button:

4.	 In	the	second	dialog,	we	choose	the	Empty	project	checkbox	and	click	on
the	Finish	button.	In	this	way,	a	project	without	files	will	be	created:

5.	 When	we	have	created	our	project,	we	need	to	add	a	file:

6.	 We	choose	a	C++	File(.cpp)	and	name	it	Main.cpp:

7.	 Then,	we	input	the	code	in	the	Main.cpp	file:

8.	 Finally,	we	execute	the	program.	The	easiest	way	to	do	this	is	to	choose	the
Start	Debugging	or	Start	Without	Debugging	menu	option.	In	this	way,	the
program	is	compiled,	linked,	and	executed:

9.	 The	output	of	the	execution	is	displayed	in	a	command	window:

Understanding	classes	–	the	Car	class
Let's	continue	by	looking	at	a	simple	class	that	handles	a	car,	including	its	speed
and	direction.	A	class	is	a	very	central	feature	in	object-oriented	languages.	In
C++,	its	specification	is	made	up	of	two	parts—its	definition	and
implementation.	The	definition	part	is	often	placed	in	a	header	file	(with	the	.h
suffix),	while	the	implementation	part	is	placed	in	a	file	with	the	.cpp	suffix,	as	in
the	Car.h	and	Car.cpp	files.	However,	template	classes,	which	are	introduced	in	Cha
pter	3,	Building	a	Library	Management	System,	are	stored	in	one	file	only.

A	class	is	made	up	of	its	members,	where	a	member	is	a	field	or	a	method.	A
field	holds	a	value	of	a	specific	type.	A	method	is	a	mathematical	abstraction
that	may	take	input	values	and	return	a	value.	The	input	values	of	a	method	are
called	parameters.	However,	in	C++	it	is	possible	to	define	a	function	without
parameters	and	without	return	types.

An	object	is	an	instance	of	the	class;	we	can	create	many	objects	of	one	class.
The	methods	can	be	divided	into	the	following:

Constructor:	A	constructor	is	called	when	the	object	is	created
Inspector:	An	inspector	inspects	the	fields	of	the	class
Modificator:	A	modificator	modifies	the	values	of	the	fields
Destructor:	A	destructor	is	called	when	the	object	is	destroyed

Ideally,	the	methods	of	a	class	don't	give	direct	access	to	the	fields,	as	this	would
mean	that	the	method	names/types	would	have	to	change	if	the	fields	change.
Instead,	the	methods	should	give	access	to	a	class	property.	These	are	the
conceptual	elements	of	a	class	that	may	not	map	to	a	single	field.	Each	member
of	the	class	is	public,	protected,	or	private:

A	public	member	is	accessible	by	all	other	parts	of	the	program.
A	protected	member	is	accessible	only	by	its	own	members	or	members	of
its	subclasses,	which	are	introduced	in	the	next	section.
A	private	member	is	accessible	by	its	own	members	only.	However,	that	is
not	completely	true.	A	class	can	invite	other	classes	to	become	its	friends,
in	which	case	they	are	given	access	to	its	private	and	protected	members.	We

will	look	into	friends	in	the	next	chapter.

The	following	Car	class	definition	has	two	constructors	and	one	destructor.	They
always	have	the	same	name	as	the	Car	class	in	this	case.	The	destructor	is
preceded	by	a	tilde	(~).	A	constructor	without	parameters	is	called	the	default
constructor.

More	than	one	method	can	have	the	same	name,	as	long	as	they
have	different	parameter	lists,	which	is	called	overloading.	More
specifically,	it	is	called	context-free	overloading.	There	is	also
context-dependent	overloading,	in	which	case	two	methods	have
the	same	name	and	parameter	list,	but	different	return	types.
However,	context-dependent	overloading	is	not	supported	by	C++.

Consequently,	a	class	can	hold	several	constructors,	as	long	as	they	have
different	parameter	lists.	However,	the	destructor	is	not	allowed	to	have
parameters.	Therefore,	a	class	can	hold	only	one	destructor:

Car.h

class	Car	{	

							public:	

							Car();	

							Car(int	speed,	int	direction);	

							~Car();	

The	getSpeed	and	getDirection	methods	are	inspectors	returning	the	current	speed
and	direction	of	the	car.	The	return	values	hold	the	int	type,	which	is	short	for
integer.	They	are	marked	as	constant	with	the	const	keyword	since	they	do	not
change	the	fields	of	the	class.	However,	a	constructor	or	destructor	cannot	be
constant:

int	getSpeed()	const;	

				int	getDirection()	const;	

The	accelerate,	decelerate,	turnLeft,	and	turnRight	methods	are	modificators,	setting
the	current	speed	and	direction	of	the	car.	They	cannot	be	marked	as	constant
since	they	change	the	fields	of	the	class:

void	accelerate(int	speed);	

				void	decelerate(int	speed);	

				void	turnLeft(int	degrees);	

				void	turnRight(int	degrees);	

The	m_speed	and	m_direction	fields	hold	the	current	speed	and	direction	of	the	car.
The	-m	prefix	indicates	that	they	are	members	of	a	class,	as	opposed	to	fields
local	to	a	method:

private:	

						int	m_speed,	m_direction;	

				};	

In	the	implementation	file,	we	must	include	the	Car.h	header	file.	The	#include
directive	is	part	of	the	preprocessor	and	simply	causes	the	content	of	the	Car.h	file
to	be	included	in	the	file.	In	the	previous	section,	we	included	system	files	with
the	angle	bracket	characters	(<	and	>).	In	this	case,	we	include	local	files	with
quotes	(").	The	system	include	files	(with	angle	brackets)	include	system	code
that	are	part	of	the	language,	while	local	include	files	(with	quotes)	include	code
that	we	write	ourselves,	as	part	of	our	project.	Technically,	the	system	include
files	are	often	included	from	a	special	directory	in	the	file	system,	while	the	local
include	files	are	often	included	locally	in	the	filesystem:

Car.cpp

#include	"Car.h"	

The	default	constructor	initializes	both	speed	and	direction	and	set	it	to	0.	The
colon	(:)	notation	is	used	to	initialize	the	fields.	The	text	between	two	slashes
(//)	and	the	end	of	the	line	is	called	a	line	comment	and	is	ignored:

Car::Car()	

	:m_speed(0),	

		m_direction(0)	{	

		//	Empty.	

}	

The	second	constructor	initializes	both	speed	and	direction	to	the	given	parameter
values:

Car::Car(int	speed,	int	direction)	

	:m_speed(speed),	

		m_direction(direction)	{	

		//	Empty.	

}	

In	the	preceding	constructors,	it	would	be	possible	to	use	the	assignment
operator	(=)	instead	of	the	class	initialization	notation,	as	in	the	following	code.
However,	that	is	considered	to	be	inefficient	since	the	code	may	be	optimized

with	the	preceding	initialization	notation.	Note	that	we	use	one	equals	sign	(=)
for	assignments.	For	the	comparison	of	two	values,	we	use	two	equals	signs	(==),
a	method	which	is	introduced	in	Chapter	2,	Data	Structures	and	Algorithms:

Car::Car()	{	

		m_speed	=	0;	

		m_direction	=	0;	

}	

The	destructor	does	nothing	in	this	class;	it	is	included	only	for	the	sake	of
completeness:

Car::~Car()	{	

		//	Empty.	

}	

The	getSpeed	and	getDirection	methods	simply	return	the	current	speed	and
direction	of	the	car:

int	Car::getSpeed()	const	{	

		return	m_speed;	

}	

	

int	Car::getDirection()	const	{	

		return	m_direction;	

}	

A	plus	sign	directly	followed	by	an	equals	sign	is	called	compound	assignment
and	causes	the	right	value	to	be	added	to	the	left	value.	In	the	same	way,	a	minus
sign	directly	followed	by	an	equals	sign	causes	the	right	value	to	be	subtracted
from	the	left	value.

The	text	between	a	slash	(/)	directly	followed	by	an	asterisk	(*),	and	an	asterisk
directly	followed	by	a	slash,	is	called	a	block	comment	and	is	ignored:

void	Car::accelerate(int	speed)	{	

		m_speed	+=	speed;	/*	Same	effect	as:	m_speed	=	m_speed	+	speed;	*/	

}	

	

void	Car::decelerate(int	speed)	{	

		m_speed	-=	speed;	

}	

	

void	Car::turnLeft(int	degrees)	{	

		m_direction	-=	degrees;	

}	

	

void	Car::turnRight(int	degrees)	{	

		m_direction	+=	degrees;	

}	

Now	it	is	time	to	test	our	class.	To	do	so,	we	include	the	Car.h	file,	just	as	we	did
in	the	Car.cpp	file.	However,	we	also	include	the	system	IOStream	header	file.	As	in
the	previous	section,	the	system	headers	are	enclosed	in	arrow	brackets	(<	and	>).
We	also	need	to	use	the	namespace	std	to	use	its	functionality.

Main.cpp

#include	<IOStream>	

				using	namespace	std;	

				#include	"Car.h"	

In	C++,	a	function	can	be	a	part	of	a	class	or	can	be	free-standing	without	a
class.	Functions	of	a	class	are	often	called	methods.	A	function	is	a	mathematical
abstraction.	It	has	input	values,	which	are	called	parameters,	and	returns	a	value.
However,	in	C++	a	function	is	allowed	to	have	zero	parameters,	and	it	may
return	the	special	type	void,	indicating	that	it	does	not	return	a	value.

As	mentioned	in	the	previous	section,	the	execution	of	the	program	always	starts
at	the	function	named	main,	and	every	program	must	have	exactly	one	function
named	main.	Unlike	some	other	languages,	it	is	not	necessary	to	name	the	file
Main.

However,	in	this	book,	every	file	holding	the	main	function	is	named	Main.cpp	out
of	convenience.	The	void	keyword	indicates	that	main	does	not	return	a	value.
Note	that	while	constructors	and	destructors	never	return	values,	and	are	not
marked	with	void,	other	methods	and	functions	that	do	not	return	values	must	be
marked	with	void:

void	main()	{	

We	create	an	object	of	the	Car	class	that	we	call	redVolvo.	An	object	is	an	instance
of	the	class;	redVolvo	is	one	of	many	cars:

Car	redVolvo;	

When	writing	information,	we	use	the	cout	object	(short	for	console	output),
which	normally	writes	to	a	text	window.	The	operator	made	up	of	two	left	arrow
brackets	(<<)	is	called	the	output	stream	operator.	The	endl	directive	makes	the
next	output	start	at	the	beginning	of	the	next	line:

cout	<<	"Red	Volvo	Speed:	"	<<	redVolvo.getSpeed()	

							<<	"	miles/hour"	<<	",	Direction:	"	

							<<	redVolvo.getDirection()	<<	"	degrees"	<<	endl;	

	

		redVolvo.accelerate(30);	

		redVolvo.turnRight(30);	

		cout	<<	"Red	Volvo	Speed:	"	<<	redVolvo.getSpeed()	

							<<	"	miles/hour"	<<	",	Direction:	"	

							<<	redVolvo.getDirection()	<<	"	degrees"	<<	endl;	

	

		redVolvo.decelerate(10);	

		redVolvo.turnLeft(10);	

		cout	<<	"Red	Volvo	Speed:	"	<<	redVolvo.getSpeed()	

							<<	"	miles/hour"	<<	",	Direction:	"	

							<<	redVolvo.getDirection()	<<	"	degrees"	<<	endl;	

A	blueFiat	object	is	a	constant	object	of	the	Car	class.	This	means	that	it	can	only
be	initialized	by	one	of	the	constructors	and	then	inspected,	but	not	modified.
More	specifically,	only	constant	methods	can	be	called	on	a	constant	object,	and
only	methods	that	do	not	modify	the	fields	of	the	object	can	be	constant:

const	Car	blueFiat(100,	90);	

		cout	<<	"Blue	Fiat	Speed:	"	<<	blueFiat.getSpeed()	

							<<	"	miles/hour"	<<	",	Direction:	"	

							<<	blueFiat.getDirection()	<<	"	degrees"	<<	endl;	

			}	

When	we	execute	the	code,	the	output	is	displayed	in	a	command	window:

Extending	the	Car	class
In	this	section,	we	modify	the	Car	class.	In	the	earlier	version,	we	initialized	the
fields	in	the	constructors.	An	alternative	way	to	initialize	the	fields	is	to	initialize
them	directly	in	the	class	definition.	However,	this	feature	shall	be	used	with
care	since	it	may	result	in	unnecessary	initializations.	If	the	second	constructor
in	the	Car	class	is	called,	the	fields	are	initialized	twice,	which	is	ineffective.

Car.h

class	Car	{	

		public:	

				//	...	

	

		private:	

				int	m_speed	=	0,	m_direction	=	0;	

};	

While	the	Car	class	is	defined	in	the	Car.h	file,	its	methods	are	defined	in	the
Car.cpp	file.	Note	that	we	begin	by	including	the	Car.h	file,	in	order	for	the
definitions	of	the	methods	to	comply	with	their	declaration	in	Car.h:

Car.cpp

#include	"Car.h"	

	

Car::Car()	{	

		//	Empty.	

}	

	

Car::Car(int	speed,	int	direction)	

	:m_speed(speed),	

		m_direction(direction)	{	

		//	Empty.	

}	

Moreover,	the	Car	class	of	the	previous	section	has	some	limitations:

It	is	possible	to	accelerate	the	car	indefinitely,	and	it	is	possible	to
decelerate	the	car	to	a	negative	speed
It	is	possible	to	turn	the	car	so	that	the	direction	is	negative	or	more	than
360	degrees

Let's	start	by	setting	the	maximum	speed	of	the	car	to	200	miles/hour.	If	the	speed

exceeds	200	miles	per	hour	we	set	it	to	200	miles/hour.	We	use	the	if	statement,
which	takes	a	condition,	and	executes	the	following	statement	if	the	condition	is
true.	In	the	case	here,	the	statement	(m_speed	=	200;)	is	enclosed	by	brackets.	This
is	not	necessary	since	it	is	only	one	statement.	However,	it	would	be	necessary	in
the	case	of	more	than	one	statement.	In	this	book,	we	always	use	the	brackets	for
clarity,	regardless	of	the	number	of	statements.

Car.cpp

void	Car::accelerate(int	speed)	{	

		m_speed	+=	speed;	

	

		if	(m_speed	>	200)	{	

				m_speed	=	200;	

		}	

}	

If	the	speed	becomes	negative,	we	change	the	sign	of	the	speed	to	make	it
positive.	Note	that	we	cannot	write	m_speed	-=	m_speed.	That	would	set	the	speed	to
zero	since	it	would	subtract	the	speed	from	itself.

Since	the	value	is	negative,	it	becomes	positive	when	we	change	the	sign.	We
also	turn	the	car	by	180	degrees	to	change	its	direction.	Note	that	we	also,	in	this
case,	must	check	that	the	car	does	not	exceed	the	speed	limit.

Also,	note	that	we	must	check	whether	the	direction	is	less	than	180	degrees.	If	it
is,	we	add	180	degrees;	otherwise,	we	subtract	180	degrees	to	keep	the	direction	in
the	interval	0	to	360	degrees.	We	use	the	if...else	statement	to	do	that.	If	the
condition	of	the	if	statement	is	not	true,	the	statement	after	the	else	keyword	is
executed:

void	Car::decelerate(int	speed)	{	

		m_speed	-=	speed;	

	

		if	(m_speed	<	0)	{	

				m_speed	=	-m_speed;	

			

				if	(m_speed	>	200)	{	

						m_speed	=	200;	

				}	

	

				if	(m_direction	<	180)	{	

						m_direction	+=	180;	

				}	

				else	{	

						m_direction	-=	180;	

				}	

		}	

}	

When	turning	the	car,	we	use	the	modulo	(%),	operator.	When	dividing	by	360,	the
modulo	operator	gives	the	remainder	of	the	division.	For	instance,	when	370	is
divided	by	360	the	remainder	is	10:

void	Car::turnLeft(int	degrees)	{	

		m_direction	-=	degrees;	

		m_direction	%=	360;	

	

		if	(m_direction	<	0)	{	

				m_direction	+=	360;	

		}	

}	

	

void	Car::turnRight(int	degrees)	{	

		m_direction	+=	degrees;	

		m_direction	%=	360;	

}	

The	main	function	creates	one	object	of	the	Car	class—redVolvo.	We	start	by	writing
its	speed	and	direction,	then	we	accelerate	and	turn	left	and	again	write	its	speed
and	acceleration.	Finally,	we	decelerate	and	turn	right	and	write	its	speed	and
direction	one	last	time:

Main.cpp

#include	<IOStream>	

using	namespace	std;	

#include	"Car.h"	

	

void	main()	{	

		Car	redVolvo(20,	30);	

		cout	<<	"Red	Volvo	Speed:	"	<<	redVolvo.getSpeed()	

							<<	"	miles/hour"	<<	",	Direction:	"	

							<<	redVolvo.getDirection()	<<	"	degrees"	<<	endl;	

	

		redVolvo.accelerate(30);	

		redVolvo.turnLeft(60);	

		cout	<<	"Red	Volvo	Speed:	"	<<	redVolvo.getSpeed()	

							<<	"	miles/hour"	<<	",	Direction:	"	

							<<	redVolvo.getDirection()	<<	"	degrees"	<<	endl;	

	

		redVolvo.decelerate(60);	

		redVolvo.turnRight(50);	

		cout	<<	"Red	Volvo	Speed:	"	<<	redVolvo.getSpeed()	

							<<	"	miles/hour"	<<	",	Direction:	"	

							<<	redVolvo.getDirection()	<<	"	degrees"	<<	endl;	

}	

When	we	execute	the	code,	the	output	is	displayed	in	a	command	window	as
follows:

A	class	hierarchy	–	the	Person,
Student,	and	Employee	classes
Let's	continue	with	a	class	hierarchy,	where	Person	is	the	base	class	with	Student
and	Employee	as	its	subclasses:

As	a	person	has	a	name,	we	use	the	C++	standard	class	string	to	store	the	name.
The	virtual	keyword	marks	that	the	print	method	is	subject	to	dynamic	binding,
which	we	will	look	into	later	in	this	section:

Person.h

class	Person	{	

		public:	

				Person(string	name);	

				virtual	void	print();	

	

		private:	

				string	m_name;	

};	

We	include	the	String	header,	which	allows	us	to	use	the	string	class:

Person.cpp

#include	<String>	

#include	<IOStream>	

using	namespace	std;	

	

#include	"Person.h"	

	

Person::Person(string	name)	

	:m_name(name)	{	

		//	Empty.	

}	

	

void	Person::print()	{	

		cout	<<	"Person	"	<<	m_name	<<	endl;	

}	

The	Student	and	Employee	classes	are	subclasses	of	Person,	and	they	inherit	Person
publicly.	Sometimes	the	term	extension	is	used	instead	of	inheritance.	The
inheritance	can	be	public,	protected,	or	private:

With	public	inheritance,	all	members	of	the	base	class	have	the	same	access
to	the	subclass
With	protected	inheritance,	all	public	members	of	the	base	class	become
protected	in	the	subclass
With	private	inheritance,	all	public	and	protected	members	of	the	base	class
become	private	in	the	subclass

The	Student	and	Employee	classes	have	the	text	fields	m_university	and	m_company:

Student.h

class	Student	:	public	Person	{	

		public:	

				Student(string	name,	string	university);	

				void	print();	

	

		private:	

				string	m_university;	

};	

The	file	Student.cpp	defines	the	methods	of	the	Student	class:

Student.cpp

#include	<String>	

#include	<IOStream>	

using	namespace	std;	

	

#include	"Person.h"	

#include	"Student.h"	

The	subclass	can	call	a	constructor	of	the	base	class	by	stating	its	name	with	the
colon	notation	(:).	The	constructor	of	Student	calls	the	constructor	of	Person	with
the	name	as	a	parameter:

Student::Student(string	name,	string	university)	

	:Person(name),	

		m_university(university)	{	

		//	Empty.	

}	

We	must	state	that	we	call	print	in	Person	rather	than	Student	by	using	the	double
colon	notation	(::):

void	Student::print()	{	

		Person::print();	

		cout	<<	"University	"	<<	m_university	<<	endl;	

}	

The	Employee	class	is	similar	to	Student.	However,	it	holds	the	field	c_company	instead
of	m_university.

Employee.h

class	Employee	:	public	Person	{	

		public:	

				Employee(string	name,	string	company);	

				void	print();	

	

		private:	

				string	m_company;	

};	

The	file	Employee.cpp	defines	the	methods	of	the	Employee	class.

Employee.cpp

#include	<String>	

#include	<IOStream>	

using	namespace	std;	

	

#include	"Person.h"	

#include	"Employee.h"	

The	constructor	initializes	the	name	of	the	person	and	the	company	they	are
employed	by:

Employee::Employee(string	name,	string	company)

:Person(name),

m_company(company)	{

//	Empty.

}

void	Employee::print()	{

Person::print();

cout	<<	"Company	"	<<	m_company	<<	endl;

}

Finally,	the	main	function	starts	by	including	the	system	header	files	String	and
IOStream,	which	hold	declarations	about	string	handling	and	input	and	output
streams.	Since	all	standard	headers	are	included	in	the	standard	namespace,	we

gain	access	to	the	system	declaration	with	the	using	the	namespace	directive.

Main.cpp

#include	<String>	

#include	<IOStream>	

using	namespace	std;	

	

#include	"Person.h"	

#include	"Student.h"	

#include	"Employee.h"	

We	define	the	three	objects,	Monica,	Demi,	and	Charles,	and	we	call	print	on	each	of
them.	In	all	three	cases	the	print	method	of	the	class	Person,	Student,	and	Employee	is
called:

void	main()	{	

		Person	monica("Monica");	

		person.print();	

	

		Student	demi("Demi",	"MIT");	

		student.print();	

	

		Employee	charles("Charles",	"Microsoft");	

		employee.print();	

The	asterisk	(*)	marks	that	personPtr	is	a	pointer	to	an	object	of	Person,	rather	than
an	object	of	Person.	A	pointer	to	an	object	holds	the	memory	address	of	the	object,
rather	than	the	object	itself.	However,	at	the	moment	it	does	not	hold	any	address
at	all.	We	will	soon	assign	it	to	the	address	of	an	object:

Person	*personPtr;	

The	ampersand	(&)	is	an	operator	that	provides	the	address	of	an	object,	which	is
assigned	to	the	pointer	personPtr.	We	assign	personPtr	in	turn	to	the	addresses	of
the	Person,	Student,	and	Employee	objects	and	call	print	in	each	case.	As	print	is
marked	as	virtual	in	Person,	print,	in	the	class	of	the	object	the	pointer	currently
points	at,	is	called.	Since	print	is	marked	as	virtual	in	the	base	class	Person,	it	is
not	necessary	to	mark	print	as	virtual	in	the	subclasses	Student	and	Employee.	When
accessing	a	member	of	a	pointer	to	an	object,	we	use	the	arrow	(->)	operator
instead	of	the	point	operator.

When	personPtr	points	at	an	object	of	Person,	print	in	Person	is	called:

personPtr	=	&person;	

				personPtr->print();	

When	personPtr	points	at	an	object	of	Student,	print	in	Student	is	called:

personPtr	=	&student;	

				personPtr->print();	

When	personPtr	points	at	an	object	of	Employee,	print	Employee	is	called:

personPtr	=	&employee;	

				personPtr->print();	

			}	

This	process	is	called	dynamic	binding.	If	we	omit	the	virtual	marking	in	Person,
static	binding	would	occur	and	print	in	Person	would	be	called	in	all	cases.

The	concept	of	object-oriented	programming	is	built	on	the	three	cornerstones	of
encapsulation,	inheritance,	and	dynamic	binding.	A	language	that	does	not
support	any	of	these	features	cannot	be	called	object-oriented.

A	simple	data	type	–	the	stack
A	stack	is	a	simple	data	type	where	we	add	values	to	the	top,	remove	the	value
on	the	top,	and	can	only	inspect	the	top	value.	In	this	section,	we	implement	a
stack	of	integers.	In	the	next	chapter,	we	look	into	template	classes	that	can	hold
values	of	arbitrary	types.	We	use	a	linked	list,	which	is	a	construction	where	a
pointer	points	at	the	first	cell	in	the	linked	list,	and	each	cell	holds	a	pointer	to
the	next	cell	in	the	linked	list.	Naturally,	the	linked	list	must	end	eventually.	We
use	nullptr	to	mark	the	end	of	the	linked	list,	which	is	a	C++	standard	pointer	to	a
special	null	address.

To	begin	with,	we	need	a	class	to	hold	each	cell	of	the	linked	list.	The	cell	holds
an	integer	value	and	a	pointer	to	the	next	cell	in	the	list,	or	nullptr	if	it	is	the	last
cell	of	the	list.	In	the	following	section,	we	will	look	into	cell	classes	that	hold
pointers	to	both	the	previous	and	the	next	cell.

Cell.h

class	Cell	{	

		public:	

				Cell(int	value,	Cell	*next);	

It	is	possible	to	implement	methods	directly	in	the	class	definition;	they	are
called	inline	methods.	However,	it	is	usually	done	for	short	methods	only.	A	rule
of	thumb	is	that	inline	methods	shall	not	exceed	one	line:

int	value()	const	{	return	m_value;	}	

				Cell	*next()	const	{	return	m_next;	}	

Each	cell	holds	a	value	and	the	address	of	the	next	cell	in	the	linked	list:

private:	

				int	m_value;	

				Cell	*m_next;	

};	

Cell.h

#include	"Cell.h"	

A	cell	is	initialized	with	a	value	and	a	pointer	to	the	next	cell	in	the	linked	list.

Note	that	m_next	has	the	value	nullptr	if	the	cell	is	the	last	cell	in	the	linked	list:

Cell::Cell(int	value,	Cell	*next)	

	:m_value(value),	

		m_next(next)	{	

		//	Empty.	

}	

In	a	stack,	we	are	in	interested	in	its	top	value	only.	The	default	constructor
initializes	the	stack	to	be	empty.	Push	adds	a	value	at	the	top	of	the	stack,	top
returns	the	top	value,	pop	removes	the	top	value,	size	returns	the	number	of
values	in	the	stack,	and	empty	returns	true	if	the	stack	is	empty.	The	bool	type	is
a	logical	type	that	can	hold	the	values	true	or	false.

Stack.h

class	Stack	{	

		public:	

				Stack();	

				void	push(int	value);	

				int	top();	

				void	pop();	

				int	size()	const;	

				bool	empty()	const;	

The	m_firstCellPtr	field	is	a	pointer	to	the	first	cell	of	the	linked	list	holding	the
values	of	the	stack.	When	the	stack	is	empty,	m_firstCellPtr	will	hold	the	value
nullptr.	The	m_size	field	holds	the	current	size	of	the	stack:

private:	

				Cell	*m_firstCellPtr;	

				int	m_size;	

};	

The	CAssert	header	is	included	for	the	assert	macro,	which	is	used	to	test	whether
certain	conditions	are	true.	A	macro	is	part	of	the	preprocessor	that	performs
certain	text	replacements.

Stack.cpp

#include	<CAssert>	

using	namespace	std;	

	

#include	"Cell.h"	

#include	"Stack.h"	

The	default	constructor	sets	the	stack	to	empty	by	initializing	the	pointer	to	the
first	cell	to	nullptr	and	the	size	to	zero:

Stack::Stack()	

	:m_firstCellPtr(nullptr),	

		m_size(0)	{	

		//	Empty.	

}	

When	pushing	a	new	value	at	the	top	of	the	stack,	we	use	the	new	operator	to
dynamically	allocate	the	memory	needed	for	the	cell.	If	we	run	out	of	memory,
nullptr	is	returned,	which	is	tested	by	the	assert	macro.	If	m_firstCellPtr	equals
nullptr,	the	execution	is	aborted	with	an	error	message.	The	exclamation	mark	(!)
followed	by	an	equals	sign	(=)	constitutes	the	not-equal	operator.	Two	plus	signs
(++)	constitute	the	increments	operator,	which	means	that	the	value	is	increased
by	one.

The	increment	operator	actually	comes	in	two	versions—prefix	(++m_size)	and
postfix	(m_size++).	In	the	prefix	case,	the	value	is	first	increased	and	then	returned,
while	in	the	postfix	case	the	value	is	increased	but	the	original	value	is	returned.
However,	in	this	case,	it	does	not	matter	which	version	we	use	since	we	are	only
interested	in	the	result—that	the	value	of	m_size	is	increased	by	one:

void	Stack::push(int	value)	{	

		m_firstCellPtr	=	new	Cell(value,	m_firstCellPtr);	

		++m_size;	

}	

When	returning	the	top	value	of	the	stack,	we	must	first	check	that	the	stack	is
not	empty,	since	it	would	be	illogical	to	return	the	top	value	of	an	empty	stack.	If
the	stack	is	empty,	the	execution	is	aborted	with	an	error	message.	The	single
exclamation	mark	(!)	is	the	logical	not	operator.	We	return	the	top	value,	which	is
stored	in	the	first	cell	in	the	linked	list:

	

int	Stack::top()	{	

		assert(!empty());	

		return	m_firstCellPtr->getValue();	

}	

We	must	also	check	that	the	stack	is	not	empty	when	popping	the	top	value	of
the	stack.	We	set	the	pointer	to	the	first	cell	in	the	linked	list	to	point	at	the	next
cell.	However,	before	that,	we	must	store	the	first	pointer,	deleteCellPtr,	in	order
to	deallocate	the	memory	of	the	cell	it	points	at.

We	deallocate	the	memory	with	the	delete	operator:

void	Stack::pop()	{	

		assert(!empty());	

		Cell	*deleteCellPtr	=	m_firstCellPtr;	

		m_firstCellPtr	=	m_firstCellPtr->getNext();	

		delete	deleteCellPtr;	

In	the	same	way	as	the	increment	operator	above,	two	minus	signs	(--)
constitutes	the	decrement	operator,	which	decreases	the	value	by	one:

--m_size;	

}	

The	size	method	simply	returns	the	value	of	the	m_size	field:

int	Stack::size()	const	{	

		return	m_size;	

}	

A	stack	is	empty	if	the	pointer	to	the	first	cell	pointer	equals	nullptr.	Informally,
we	say	that	the	pointer	is	null	if	it	equals	nullptr:

bool	Stack::empty()	const	{	

		return	(m_firstCellPtr	==	nullptr);	

}	

We	test	the	stack	by	pushing,	topping,	and	popping	some	values.

Main.cpp

#include	<String>	

#include	<IOStream>	

using	namespace	std;	

	

#include	"Cell.h"	

#include	"Stack.h"	

	

void	main()	{	

		Stack	s;	

		s.push(1);	

		s.push(2);	

		s.push(3);	

When	printing	a	Boolean	value,	the	stream	operator	does	not	print	true	or	false,
but	rather	one	for	true	and	zero	for	false.	In	order	to	really	print	true	or	false	we
use	the	condition	operator.	It	takes	three	values,	separated	by	a	question	mark	(?)
and	a	colon	(:).	If	the	first	value	is	true	the	second	value	is	returned.	If	the	first
value	is	false	the	third	value	is	returned:

cout	<<	"top	"	<<	s.top()	<<	",	size	"	<<	s.size()	

							<<	",	empty	"	<<	(s.empty()	?	"true"	:	"false")	<<	endl;	

	

		s.pop();	

		s.pop();	

		s.push(4);	

		cout	<<	"top	"	<<	s.top()	<<	",	size	"	<<	s.size()	

							<<	",	empty	"	<<	(s.empty()	?	"true"	:	"false")	<<	endl;	

}	

A	more	advanced	data	type	–	the
queue
A	queue	is	a	model	of	a	traditional	queue;	we	enter	values	at	the	rear,	and	inspect
and	remove	values	at	the	front.	It	is	also	possible	to	decide	on	the	number	of
values	it	holds	and	whether	it	is	empty.

Similar	to	the	stack	in	the	previous	section,	we	implement	the	queue	with	a
linked	list.	We	reuse	the	Cell	class;	however,	in	the	queue	case,	we	need	to	set	the
next	link	of	a	cell.	Therefore,	we	rename	next	to	getNext	and	add	the	new	setNext
method:

Cell.h

class	Cell	{	

		public:	

				Cell(int	value,	Cell	*next);	

				int	value()	const	{return	m_value;}	

				Cell	*getNext()	const	{	return	m_next;	}	

				void	setNext(Cell*	next)	{	m_next	=	next;	}	

	

		private:	

				int	m_value;	

				Cell	*m_next;	

};	

We	implement	the	queue	with	a	linked	list	in	a	manner	similar	to	the	stack.	The
constructor	initializes	an	empty	queue,	enter	enters	a	value	at	the	rear	of	the
queue,	remove	removes	the	value	at	its	front,	size	return	the	current	size	of	the
queue,	and	empty	returns	true	if	it	is	empty:

Queue.h

class	Queue	{	

		public:	

				Queue();	

				void	enter(int	value);	

				int	first();	

				void	remove();	

				int	size()	const;	

				bool	empty()	const;	

In	the	stack	case,	we	were	only	interested	in	its	top,	which	was	stored	at	the

beginning	of	the	linked	list.	In	the	queue	case,	we	are	interested	in	both	the	front
and	rear,	which	means	that	we	need	to	access	both	the	first	and	last	cell	of	the
linked	list.	Therefore,	we	have	the	two	pointers,	m_firstCellPtr	and	m_lastCellPtr,
pointing	at	the	first	and	last	cell	in	the	linked	list:

private:	

				Cell	*m_firstCellPtr,	*m_lastCellPtr;	

				int	m_size;	

};	

Queue.cpp

#include	<CAssert>	

using	namespace	std;	

	

#include	"Cell.h"	

#include	"Queue.h"	

When	the	queue	is	created,	it	is	empty;	the	pointers	are	null	and	the	size	is	zero.
Since	there	are	no	cells	in	the	linked	list,	both	the	cell	pointers	points	at	nullptr:

Queue::Queue()	

	:m_firstCellPtr(nullptr),	

		m_lastCellPtr(nullptr),	

		m_size(0)	{	

		//	Empty.	

}	

When	entering	a	new	value	at	the	rear	of	the	queue,	we	check	if	the	queue	is
empty.	If	it	is	empty,	both	the	pointers	are	set	to	point	at	the	new	cell.	If	it	is	not
empty,	the	last	cell	next-pointer	is	set	to	point	at	the	new	cell,	and	then	the	last
cell	pointer	is	set	to	be	the	new	cell:

void	Queue::enter(int	value)	{	

		Cell	*newCellPtr	=	new	Cell(value,	nullptr);	

	

		if	(empty())	{	

				m_firstCellPtr	=	m_lastCellPtr	=	newCellPtr;	

		}	

		else	{	

				m_lastCellPtr->setNext(newCellPtr);	

				m_lastCellPtr	=	newCellPtr;	

		}	

	

		++m_size;	

}	

The	first	method	simply	returns	the	value	of	the	first	cell	in	the	linked	list:

int	Queue::first()	{	

		assert(!empty());	

		return	m_firstCellPtr->value();	

}	

The	remove	method	sets	the	first	cell	to	point	at	the	second	cell.	However,	first	we
must	store	its	address	in	order	to	deallocate	its	memory	with	the	C++	standard
delete	operator:

void	Queue::remove()	{	

		assert(!empty());	

		Cell	*deleteCellPtr	=	m_firstCellPtr;	

		m_firstCellPtr	=	m_firstCellPtr->getNext();	

		delete	deleteCellPtr;	

		--m_size;	

}	

	

int	Queue::size()	const	{	

		return	m_size;	

}	

	

bool	Queue::empty()	const	{	

		return	(m_firstCellPtr	==	nullptr);	

}	

We	test	the	queue	by	entering	and	removing	a	few	values.	We	enter	the	values
one,	two,	and	three,	which	are	placed	in	the	queue	in	that	order.	We	then	remove
the	first	two	values,	and	enter	the	value	four.	Then	the	queue	holds	the	values
three	and	four:

Main.cpp

#include	<CMath>	

#include	<String>	

#include	<IOStream>	

using	namespace	std;	

	

#include	"Cell.h"	

#include	"Queue.h"	

	

void	main()	{	

		Queue	q;	

		q.enter(1);	

		q.enter(2);	

		q.enter(3);	

		cout	<<	"first	"	<<	q.first()	<<	",	size	"	<<	q.size()	

							<<	",	empty	"	<<	(q.empty()	?	"true"	:	"false")	<<	endl;	

	

		q.remove();	

		q.remove();	

		q.enter(4);	

		cout	<<	"first	"	<<	q.first()	<<	",	size	"	<<	q.size()	

							<<	",	empty	"	<<	(q.empty()	?	"true"	:	"false")	<<	endl;	

}	

Summary
In	this	chapter,	we	have	looked	into	the	basics	of	object-oriented	programming.
We	have	started	by	creating	a	project	and	executing	a	program	for	rolling	a	dice.
We	have	also	created	a	class	hierarchy,	including	the	base	class	Person	and	its	two
subclasses	Student	and	Employee.	By	defining	pointers	to	the	objects,	we	have
performed	the	dynamic	binding.

Finally,	we	have	created	two	data	types—stack	and	queue.	A	stack	is	a	structure
where	we	are	interested	in	the	value	at	the	top	only.	We	can	add	values	at	the	top,
inspect	the	top	value,	and	remove	the	top	value.	A	queue	is	a	traditional	queue
where	we	enter	values	at	the	rear	while	we	inspect	and	remove	values	from	the
front.

In	the	next	chapter,	we	will	continue	to	create	data	types,	and	more	advanced
data	types,	such	as	lists	and	sets.	We	will	also	look	into	to	more	advanced
features	of	C++.

	

	

Data	Structures	and	Algorithms
In	the	previous	chapter,	we	created	classes	for	the	stack	and	queue	abstract
datatypes.	In	this	chapter,	we	will	continue	with	the	list	and	set	abstract
datatypes.

Similar	to	the	stack	and	queue	of	the	previous	chapter,	a	list	is	an	ordered
structure	with	a	beginning	and	an	end.	However,	it	is	possible	to	add	and	remove
values	at	any	position	in	the	list.	It	is	also	possible	to	iterate	through	the	list.

A	set,	on	the	other	hand,	is	an	unordered	structure	of	values.	The	only	thing	we
can	say	about	a	set	is	whether	a	certain	value	is	present.	We	cannot	say	that	a
value	has	any	position	in	relation	to	any	other	value.

In	this	chapter,	we	will	look	at	the	following	topics:

We	will	start	with	a	rather	simple	and	ineffective	version	of	the	list	and	set
classes.	We	will	also	look	into	basic	algorithms	for	searching	and	sorting.
Then	we	will	continue	by	creating	more	advanced	versions	of	the	list	and
set	classes,	and	look	into	more	advanced	searching	and	sorting	algorithms.
We	will	also	introduce	new	concepts	such	as	templates,	operator
overloading,	exceptions,	and	reference	overloading.

We	will	also	look	into	the	searching	algorithms	linear	search,	which	works	on
every	sequence,	ordered	and	unordered,	but	is	rather	ineffective,	and	binary
search,	which	is	more	effective	but	only	works	on	ordered	sequences.

Finally,	we	will	study	the	rather	simple	sorting	algorithms,	insert	sort,	select	sort,
and	bubble	sort,	as	well	as	the	more	advanced	and	more	effective	merge	sort	and
quick	sort	algorithms.

The	List	class
The	LinkedList	class	is	a	more	complicated	abstract	data	type	than	the	stack	and
the	queue.	It	is	possible	to	add	and	remove	values	at	any	location	in	the	list.	It	is
also	possible	to	iterate	through	the	list.

The	Cell	class

	

The	cell	of	this	section	is	an	extension	of	the	cell	of	the	stack	and	queue	sections.
Similar	to	them,	it	holds	a	value	and	a	pointer	to	the	next	cell.	However,	this
version	also	holds	a	pointer	to	the	previous	cell,	which	makes	the	list	of	this
section	a	double-linked	list.

Note	that	the	constructor	is	private,	which	means	that	the	cell	object	can	be
created	by	its	own	methods	only.	However,	there	is	a	way	to	circumvent	that
limitation.	We	can	define	a	class	or	a	function	to	be	a	friend	of	LinkedList.	In	this
way,	we	define	LinkedList	as	a	friend	of	Cell.	This	means	that	LinkedList	has	access
to	all	private	and	protected	members	of	Cell,	including	the	constructor,	and	can
thereby	create	Cell	objects.

Cell.h:

class	Cell	{	

		private:	

				Cell(double	value,	Cell	*previous,	Cell	*next);	friend	class	LinkedList;	

		public:	

				double	getValue()	const	{	return	m_value;	}	

				void	setValue(double	value)	{	m_value	=	value;	}	

	

				Cell	*getPrevious()	const	{	return	m_previous;	}	

				void	setPrevious(Cell	*previous)	{	m_previous	=	previous;	}	

	

				Cell	*getNext()	const	{	return	m_next;	}	

				void	setNext(Cell	*getNext)	{	m_next	=	getNext;	}	

	

		private:	

				double	m_value;	

				Cell	*m_previous,	*m_next;	};	

Cell.cpp:

#include	"Cell.h"	

	

Cell::Cell(double	value,	Cell	*previous,	Cell	*next)	:m_value(value),	

		m_previous(previous),	m_next(next)	{	

		//	Empty.	

}	

	

	

The	Iterator	class
When	going	through	a	list,	we	need	an	iterator,	which	is	initialized	to	the
beginning	of	the	list	and	step-wise	moves	to	its	end.	Similar	to	the	preceding
cell,	the	constructor	of	Iterator	is	private,	but	we	define	LinkedList	as	a	friend	of
Iterator	too.

Iterator.h:

class	Iterator	{	

		private:	

				Iterator(Cell	*cellPtr);	

				friend	class	LinkedList;	

	

		public:	

				Iterator();	

The	third	constructor	is	a	copy	constructor.	It	takes	another	iterator	and	then
copies	it.	We	cannot	just	accept	the	iterator	as	a	parameter.	Instead,	we	define	a
reference	parameter.	The	ampersands	(&)	states	that	the	parameter	is	a	reference
to	an	iterator	object	rather	than	an	iterator	object.	In	this	way,	the	memory
address	of	the	iterator	is	sent	as	a	parameter	instead	of	the	object	itself.	We	also
state	that	the	object	referred	to	is	constant,	so	that	it	cannot	be	altered	by	the
constructor.

In	this	case,	it	is	necessary	to	use	a	reference	parameter.	If	we	had	defined	a
simple	iterator	object	as	a	parameter	it	would	have	caused	indefinite	circular
initialization.	However,	in	other	cases,	we	use	this	technique	for	efficiency
reasons.	It	takes	less	time	and	requires	less	memory	to	pass	the	address	of	the
object	than	to	copy	the	object	itself	as	a	parameter:

Iterator(const	Iterator&	iterator);	

	

				double	getValue()	{	return	m_cellPtr->getValue();	}	

				void	setValue(double	value)	{	m_cellPtr->setValue(value);	}	

The	hasNext	methods	returns	true	if	the	iterator	has	not	yet	reached	the	end	of	the
list,	and	next	moves	the	iterator	one	step	forwards,	towards	the	end	of	the	list,	as
shown	in	the	following	example:

bool	hasNext()	const	{	return	(m_cellPtr	!=	nullptr);	}	

				void	next()	{	m_cellPtr	=	m_cellPtr->getNext();	}	

In	the	same	way,	the	hasPrevious	method	returns	true	if	the	iterator	has	not	yet
reached	the	beginning	of	the	list,	and	previous	moves	the	iterator	one	step
backward,	to	the	beginning	of	the	list:

bool	hasPrevious()	const	{	return	(m_cellPtr	!=	nullptr);	}	

				void	previous()	{	m_cellPtr	=	m_cellPtr->getPrevious();	}	

	

		private:	

				Cell	*m_cellPtr;	

};	

Iterator.cpp:

#include	"Cell.h"	

#include	"Iterator.h"	

	

Iterator::Iterator(Cell	*cellPtr)	

	:m_cellPtr(cellPtr)	{	

		//	Empty.	

}		

	

Iterator::Iterator()	

	:m_cellPtr(nullptr)	{	

		//	Empty.	

}	

	

Iterator::Iterator(const	Iterator&	iterator)	

	:m_cellPtr(iterator.m_cellPtr)	{	

		//	Empty.	

}	

The	List	class
The	LinkedList	class	holds	methods	for	finding,	adding,	inserting,	and	removing
values,	as	well	as	comparing	lists.	Moreover,	it	also	holds	methods	for	reading
and	writing	the	list,	and	iterating	through	the	list	both	forwards	and	backwards.
The	linked	list	is	in	fact	a	double-linked	list.	We	can	follow	the	links	of	the	cells
in	both	directions:	from	the	beginning	to	the	end	as	well	as	backwards	from	the
end	to	the	beginning.

LinkedList.h:

class	LinkedList	{	

		public:	

				LinkedList();	

The	copy	constructor	and	the	assign	method	both	copies	the	given	list:

LinkedList(const	LinkedList&	list);	

				void	assign(const	LinkedList&	list);	

The	destructor	deallocates	all	memory	allocated	for	the	cells	in	the	linked	list:

~LinkedList();	

	

				int	size()	const	{return	m_size;}	

				bool	empty()	const	{return	(m_size	==	0);}	

The	find	methods	search	for	the	value.	If	it	finds	the	value,	it	returns	true	and	sets
findIterator	to	the	position	of	the	value:

bool	find(double	value,	Iterator&	findIterator);	

The	equal	and	notEqual	methods	compare	this	linked	list	to	the	given	linked	list
and	return	true	if	they	are	equal	or	not	equal,	respectively,	as	shown	in	the
following	code	snippet:

bool	equal(const	LinkedList&	list)	const;	

				bool	notEqual(const	LinkedList&	list)	const;	

What	if	we	want	to	add	a	value	or	another	list	to	an	existing	list?	The	add
methods	adds	a	value	or	another	list	at	the	end	of	this	list,	and	insert	inserts	a
value	or	a	list	at	the	position	given	by	the	iterator:

void	add(double	value);	

				void	add(const	LinkedList&	list);	

	

				void	insert(const	Iterator&	insertPosition,	double	value);	

				void	insert(const	Iterator&	insertPosition,	

																const	LinkedList&	list);	

The	erase	method	erases	the	value	at	the	given	position,	and	clear	erases	every
value	in	the	list,	as	shown	in	the	following	example:

void	erase(const	Iterator&	erasePosition);	

				void	clear();	

The	remove	method	removes	the	values	from	the	first	iterator	to	the	last	iterator,
inclusive.	The	second	parameter	is	a	default	parameter.	It	means	that	the	method
can	be	called	with	one	or	two	parameters.	In	case	of	one	parameter,	the	second
parameter	is	given	the	value	in	the	declaration,	which	in	this	case	is	the
Iterator(nullptr)	that	represents	the	position	one	step	beyond	the	end	of	the	list.
This	implies	that	when	remove	is	called	with	one	iterator,	every	value	from	that
iterator,	inclusive,	to	the	end	of	the	list	are	removed.	The	nullptr	pointer	is	in	fact
a	special	pointer	that	is	converted	to	the	type	it	points	at	or	is	compared	to.	In
this	case,	a	pointer	to	Cell.	Informally,	we	can	say	that	a	point	is	null	when	it
holds	the	value	nullptr:

void	remove(const	Iterator&	firstPosition,	

																const	Iterator&	lastPosition	=	Iterator(nullptr));	

The	first	and	last	methods	return	iterators	located	at	the	first	and	last	value	of
the	list:

Iterator	first()	const	{	return	Iterator(m_firstCellPtr);	}	

				Iterator	last()	const	{	return	Iterator(m_lastCellPtr);	}	

The	read	and	write	methods	read	the	values	of	the	list	from	an	input	file	stream
and	write	its	values	to	an	output	file	stream.	A	file	stream	is	used	to
communicate	with	a	file.	Note	that	the	cin	and	cout	objects,	which	we	have	used
in	earlier	sections,	are	in	fact	input	and	output	stream	objects:

void	read(istream&	inStream);	

				void	write(ostream&	outStream);	

Similar	to	the	queue	of	the	earlier	section,	the	list	holds	pointers	to	the	first	and
last	cell	in	the	linked	list:

private:	

				int	m_size;	

				Cell	*m_firstCellPtr,	*m_lastCellPtr;	

};	

LinkedList.cpp:

#include	<IOStream>	

using	namespace	std;	

	

#include	"Cell.h"	

#include	"Iterator.h"	

#include	"List.h"	

	

LinkedList::LinkedList()	

	:m_size(0),	

		m_firstCellPtr(nullptr),	

		m_lastCellPtr(nullptr)	{	

		//	Empty.	

}	

The	copy	constructor	simply	calls	assign	to	copy	the	values	of	the	list	parameter:

LinkedList::LinkedList(const	LinkedList&	list)	{	

		assign(list);	

}	

The	assign	method	copies	the	given	list	into	its	own	linked	list:

void	LinkedList::assign(const	LinkedList&	list)	{	

		m_size	=	0;	

		m_firstCellPtr	=	nullptr;	

		m_lastCellPtr	=	nullptr;	

		Cell	*listCellPtr	=	list.m_firstCellPtr;

		add(list);

}	

The	destructor	simply	calls	clear	to	deallocate	all	the	memory	allocated	by	the
cells	of	the	linked	list:

LinkedList::~LinkedList()	{	

		clear();	

}	

The	clear	method	iterates	through	the	linked	list	and	deallocates	every	cell:

void	LinkedList::clear()	{	

		Cell	*currCellPtr	=	m_firstCellPtr;	

For	each	cell	in	the	linked	list,	we	must	first	save	its	address	in	deleteCellPtr,
move	forward	in	the	linked	list,	and	deallocate	the	cell.	If	we	would	simply	call
delete	on	currCellPtr,	the	following	call	to	getNext	would	not	work	since,	in	that
case,	we	would	call	a	method	of	a	deallocated	object:

while	(currCellPtr	!=	nullptr)	{	

				Cell	*deleteCellPtr	=	currCellPtr;	

				currCellPtr	=	currCellPtr->getNext();	

				delete	deleteCellPtr;	

		}	

When	the	list	has	become	empty,	both	cell	pointers	are	null	and	the	size	is	zero:

m_firstCellPtr	=	nullptr;	

		m_lastCellPtr	=	nullptr;	

		m_size	=	0;	

}	

The	find	method	iterates	through	the	linked	list,	sets	findIterator,	and	returns	true
when	it	has	found	the	value.	If	it	does	not	find	the	value,	false	is	returned	and
findIterator	remains	unaffected.	In	order	for	this	to	work,	findIterator	must	be	a
reference	to	an	Iterator	object	rather	than	an	Iterator	object	itself.	A	pointer	to	an
Iterator	object	would	also	work:

bool	LinkedList::find(double	value,	Iterator&	findIterator)	{	

		Iterator	iterator	=	first();	

	

		while	(iterator.hasNext())	{	

				if	(value	==	iterator.getValue())	{	

						findIterator	=	iterator;	

						return	true;	

				}	

	

				iterator.next();	

		}	

	

		return	false;	

}	

If	two	lists	have	different	sizes,	they	are	not	equal.	Likewise,	if	they	have	the
same	size,	but	not	the	same	values,	they	are	not	equal:

bool	LinkedList::equal(const	LinkedList&	list)	const	{	

		if	(m_size	!=	list.m_size)	{	

				return	false;	

		}	

	

		Iterator	thisIterator	=	first(),	listIterator	=	list.first();	

	

		while	(thisIterator.hasNext())	{	

				if	(thisIterator.getValue()	!=	listIterator.getValue())	{	

						return	false;	

				}	

	

				thisIterator.next();	

				listIterator.next();	

		}	

However,	if	the	list	holds	the	same	size	and	the	same	values,	they	are	equal:

return	true;	

}	

When	we	have	to	decide	whether	two	lists	are	not	equal,	we	simply	call	equal.
The	exclamation	mark	(!)	is	the	logical	not	operator,	as	shown	in	the	following
example:

bool	LinkedList::notEqual(const	LinkedList&	list)	const	{	

		return	!equal(list);	

}	

When	adding	a	value	to	the	list,	we	dynamically	allocate	a	cell:

void	LinkedList::add(double	value)	{	

		Cell	*newCellPtr	=	new	Cell(value,	m_lastCellPtr,	nullptr);	

If	the	first	cell	pointer	is	null,	we	set	it	to	point	at	the	new	cell	since	the	list	is
empty:

if	(m_firstCellPtr	==	nullptr)	{	

				m_firstCellPtr	=	newCellPtr;	

		}	

However,	if	the	first	cell	pointer	is	not	null,	the	list	is	not	empty,	and	we	set	the
next	pointer	of	the	last	cell	pointer	to	point	at	the	new	cell:

else	{	

				m_lastCellPtr->setNext(newCellPtr);	

		}	

Either	way,	we	set	the	last	cell	pointer	to	point	at	the	new	cell	and	increase	the
size	of	the	list:

m_lastCellPtr	=	newCellPtr;	

		++m_size;	

}	

Adding	a	list	to	an	existing	list

	

When	adding	a	whole	list	to	the	list,	we	act	the	same	way	for	each	value	in	the
list	as	when	we	added	a	single	value	in	add	previously.	We	dynamically	allocate	a
new	cell,	if	the	first	cell	pointer	is	null,	we	assign	it	to	point	at	the	new	cell.	If	it
is	not	null,	we	assign	the	last	cell	pointer's	next-pointer	to	point	at	the	new	cell.
Either	way,	we	set	the	last	cell	pointer	to	point	at	a	new	cell:	void
LinkedList::add(const	LinkedList&	list)	{

Cell	*listCellPtr	=	list.m_firstCellPtr;

The	while	statement	repeats	for	as	long	as	its	condition	is	true.	In	this	case,	for	as
long	as	we	have	not	reached	the	end	of	the	list:	while	(listCellPtr	!=	nullptr)	{

double	value	=	listCellPtr->getValue();	Cell	*newCellPtr
=	new	Cell(value,	m_lastCellPtr,	nullptr);

If	m_firstList	is	null,	our	linked	list	is	still	empty	and	newCellPtr	points	to	the	first
cell	of	a	new	linked	list.	In	that	case,	we	let	m_firstList	point	at	the	new	cell:	if
(m_firstCellPtr	==	nullptr)	{

m_firstCellPtr	=	newCellPtr;

}

If	m_firstList	is	not	null,	our	list	is	not	empty	and	m_firstList	shall	not	be	modified.
Instead,	we	set	the	next	pointer	of	m_lastCellPtr	to	point	at	the	new	cell:	else	{

m_lastCellPtr->setNext(newCellPtr);	}

Either	way,	the	last	cell	pointer	is	set	to	the	new	cell	pointer:	m_lastCellPtr	=
newCellPtr;

Finally,	the	list	cell	pointer	is	set	to	point	at	its	next	cell	pointer.	Eventually,	the
list	cell	pointer	will	be	null	and	the	while	statement	is	finished:	listCellPtr	=
listCellPtr->getNext();	}

	

m_size	+=	list.m_size;

}

When	inserting	a	value	at	the	position	given	by	the	iterator,	we	set	its	previous
pointer	to	point	at	the	cell	before	the	position	in	the	list	(which	is	null	if	the
position	is	the	first	one	in	the	list).	We	then	check	whether	the	first	cell	pointer	is
null	in	the	same	way	as	in	the	preceding	add	methods:	void
LinkedList::insert(const	Iterator&	insertPosition,	double	value)	{

Cell	*insertCellPtr	=	insertPosition.m_cellPtr;	Cell
*newCellPtr	=

new	Cell(value,	insertCellPtr->getPrevious(),
insertCellPtr);	insertCellPtr->setPrevious(newCellPtr);

if	(insertCellPtr	==	m_firstCellPtr)	{

m_firstCellPtr	=	newCellPtr;

}

else	{

newCellPtr->getPrevious()->setNext(newCellPtr);	}

	

++m_size;

}

When	inserting	a	list,	we	begin	by	checking	whether	the	position	represents	the
null	pointer.	In	that	case,	the	position	is	beyond	the	end	of	our	list,	and	we	just
call	add	instead:	void	LinkedList::insert(const	Iterator&	insertPosition,	const
LinkedList&	list)	{

Cell	*insertCellPtr	=	insertPosition.m_cellPtr;

if	(insertCellPtr	==	nullptr)	{

add(list);

}

else	{

Cell	*firstInsertCellPtr	=	nullptr,	*lastInsertCellPtr	=
nullptr,	*listCellPtr	=	list.m_firstCellPtr;

while	(listCellPtr	!=	nullptr)	{

Cell	*newCellPtr	=	new	Cell(listCellPtr->getValue(),
lastInsertCellPtr,	nullptr);

if	(firstInsertCellPtr	==	nullptr)	{

firstInsertCellPtr	=	newCellPtr;	}

else	{

lastInsertCellPtr->setNext(newCellPtr);	}

	

lastInsertCellPtr	=	newCellPtr;	listCellPtr	=	listCellPtr-
>getNext();	}

We	check	whether	the	list	to	be	inserted	is	empty	by	comparing	firstInsertCellPtr
with	nullptr.	Since	firstInsertCellPtr	points	at	the	first	value	of	the	list,	the	list	is
empty	if	it	is	null:	if	(firstInsertCellPtr	!=	nullptr)	{

if	(insertCellPtr->getPrevious()	!=	nullptr)	{

insertCellPtr->getPrevious()->setNext(firstInsertCellPtr);
firstInsertCellPtr->

setPrevious(insertCellPtr->getPrevious());	}

else	{

m_firstCellPtr	=	firstInsertCellPtr;	}

}

	

if	(lastInsertCellPtr	!=	nullptr)	{

lastInsertCellPtr->setNext(insertCellPtr);	insertCellPtr-
>setPrevious(lastInsertCellPtr);	}

	

m_size	+=	list.m_size;

}

}

	

	

Erasing	a	value	from	the	list

	

The	erase	method	simply	calls	remove	with	the	given	position	as	both	its	start	and
end	position:	void	LinkedList::erase(const	Iterator&	removePosition)	{

remove(removePosition,	removePosition);	}

When	erasing	a	value	from	the	list,	we	iterate	through	the	list	and	deallocate	the
cell	for	each	value	to	be	removed:	void	LinkedList::remove(const	Iterator&
firstPosition,	const	Iterator&	lastPosition	/*=	Iterator(nullptr)*/)	{

Cell	*firstCellPtr	=	firstPosition.m_cellPtr,	*lastCellPtr	=
lastPosition.m_cellPtr;	lastCellPtr	=	(lastCellPtr	==
nullptr)	?	m_lastCellPtr	:	lastCellPtr;

Cell	*previousCellPtr	=	firstCellPtr->getPrevious(),
*nextCellPtr	=	lastCellPtr->getNext();

Cell	*currCellPtr	=	firstCellPtr;	while	(currCellPtr	!=
nextCellPtr)	{

Cell	*deleteCellPtr	=	currCellPtr;	currCellPtr	=
currCellPtr->getNext();	delete	deleteCellPtr;

--m_size;

}

When	we	have	to	erase	the	cells,	we	have	three	cases	to	consider.	If	the	last	cell
before	the	first	removed	cell	is	not	null,	meaning	that	there	is	a	part	of	the	list
remaining	before	the	remove	position,	we	set	its	next	pointer	to	point	at	the	first
cell	after	the	removed	position.	If	the	last	cell	before	the	first	removed	cell	is
null,	we	set	the	first	cell	pointer	to	point	at	that	cell:	if	(previousCellPtr	!=
nullptr)	{

previousCellPtr->setNext(nextCellPtr);	}

else	{

m_firstCellPtr	=	nextCellPtr;	}

We	do	the	same	thing	with	the	position	of	the	list	remaining	after	the	last	cell	to
be	removed.	If	there	is	a	remaining	part	of	the	list	left,	we	set	its	first	cell's
previous	pointer	to	the	last	cell	of	the	list	remaining	before	the	removed	part:	if
(nextCellPtr	!=	nullptr)	{

nextCellPtr->setPrevious(previousCellPtr);	}

else	{

m_lastCellPtr	=	previousCellPtr;	}

}

When	reading	a	list,	we	first	read	its	size.	Then	we	read	the	values:	void
LinkedList::read(istream&	inStream)	{

int	size;

inStream	>>	size;

	

int	count	=	0;

while	(count	<	size)	{

double	value;

inStream	>>	value;	add(value);

++count;

}

}

When	writing	a	list,	we	write	the	values	separated	by	commas	and	enclosed	by
brackets	("["	and	"]"):	void	LinkedList::write(ostream&	outStream)	{

outStream	<<	"[";

bool	firstValue	=	true;

	

Iterator	iterator	=	first();	while	(iterator.hasNext())	{

outStream	<<	(firstValue	?	""	:	",")	<<	iterator.getValue();
firstValue	=	false;

iterator.next();

}

	

outStream	<<	"]";

}

We	test	the	list	by	adding	some	values	and	iterate	through	them,	forwards	and
backward.

Main.cpp:

#include	<IOStream>	using	namespace	std;	

	

#include	"Cell.h"	

#include	"Iterator.h"	

#include	"List.h"	

	

void	main()	{	

		LinkedList	list;	

		list.add(1);	

		list.add(2);	

		list.add(3);	

		list.add(4);	

		list.add(5);	

		list.write(cout);	

		cout	<<	endl;	

	

		{	Iterator	iterator	=	list.first();	while	(iterator.hasNext())	{	

						cout	<<	iterator.getValue()	<<	"	";	iterator.next();	

				}	

				cout	<<	endl;	

		}	

	

		{	Iterator	iterator	=	list.last();	while	(iterator.hasPrevious())	{	

						cout	<<	iterator.getValue()	<<	"	";	iterator.previous();	}	

				cout	<<	endl;	

		}	

}	

When	executing	the	code,	the	output	is	displayed	in	a	command	window:	

	

	

	

The	Set	class
A	set	is	an	unordered	structure	without	duplicates.	The	Set	class	is	a	subclass	of
LinkedList.	Note	that	the	inheritance	is	private,	causing	all	public	and	protected
members	of	LinkedList	to	be	private	in	Set.

Set.h:

class	Set	:	private	LinkedList	{	

		public:	

				Set();	

				Set(double	value);	

				Set(const	Set&	set);	

				void	assign(const	Set&	set);	

				~Set();	

The	equal	method	returns	true	if	the	set	has	the	values.	Note	that	we	do	not	care
about	any	order	in	the	set:

bool	equal(const	Set&	set)	const;	

				bool	notEqual(const	Set&	set)	const;	

The	exists	method	returns	true	if	the	given	value,	or	each	value	in	the	given	set,
respectively,	is	present:

bool	exists(double	value)	const;	

				bool	exists(const	Set&	set)	const;	

The	insert	method	inserts	the	given	value	or	each	value	of	the	given	set.	It	only
inserts	values	not	already	present	in	the	set,	since	a	set	holds	no	duplicates:

bool	insert(double	value);	

				bool	insert(const	Set&	set);	

The	remove	method	removes	the	given	value	or	each	value	of	the	given	set,	if
present:

bool	remove(double	value);	

				bool	remove(const	Set&	set);	

The	size,	empty,	and	first	methods	simply	call	their	counterparts	in	LinkedList.
Since	there	is	no	order	in	a	set	it	would	be	meaningless	to	also	override	end	in
LinkedList:

int	size()	const	{	return	LinkedList::size();	}	

				bool	empty()	const	{	return	LinkedList::empty();	}	

				Iterator	first()	const	{	return	LinkedList::first();	}	

The	unionSet,	intersection,	and	difference	free-standing	functions	are	friends	to	Set,
which	means	that	they	have	access	to	all	private	and	protected	members	of	Set.

We	cannot	name	the	unionSet	method	union	since	it	is	a	keyword	in
C++.

Note	that	when	a	method	in	a	class	is	marked	as	a	friend,	it	is	in	fact	not	a
method	of	that	class,	but	rather	a	function:

friend	Set	unionSet(const	Set&	leftSet,	const	Set&	rightSet);	

				friend	Set	intersection(const	Set&	leftSet,	

																												const	Set&	rightSet);	

				friend	Set	difference(const	Set&	leftSet,	

																										const	Set&	rightSet);	

The	read	and	write	methods	read	and	write	the	set	in	the	same	way	as	their
counterparts	in	LinkedList:

void	read(istream&	inStream);	

				void	write(ostream&	outStream);	

};	

The	unionSet,	intersection,	and	difference	functions	that	were	friends	of	Set	are
declared	outside	the	class	definition:

Set	unionSet(const	Set&	leftSet,	const	Set&	rightSet);

Set	intersection(const	Set&	leftSet,	const	Set&	rightSet);

Set	difference(const	Set&	leftSet,	const	Set&	rightSet);

Set.cpp:

#include	<IOStream>	

using	namespace	std;	

	

#include	"..\ListBasic\Cell.h"	

#include	"..\ListBasic\Iterator.h"	

#include	"..\ListBasic\List.h"	

#include	"Set.h"	

The	constructors	call	their	counterparts	in	LinkedList.	The	default	constructor
(without	parameters)	calls,	in	fact,	the	default	constructor	of	LinkedList	implicitly:

Set::Set()	{	

		//	Empty.	

}	

	

Set::Set(double	value)	{	

		add(value);	

}	

	

Set::Set(const	Set&	set)	

	:LinkedList(set)	{	

		//	Empty.	

}	

The	destructor	calls	implicitly	its	counterparts	in	LinkedList,	which	deallocates	the
memory	associated	with	the	values	of	the	set.	In	this	case,	we	could	have	omitted
the	destructor,	and	the	destructor	of	LinkedList	would	still	be	called	using	the
following	code:

Set::~Set()	{	

		//	Empty.	

}	

The	assign	method	simply	clears	the	set	and	adds	the	given	set:

void	Set::assign(const	Set&	set)	{	

		clear();	

		add(set);	

}	

The	sets	are	equal	if	they	have	the	same	size,	and	if	every	value	of	one	set	is
present	in	the	other	set.	In	that	case,	every	value	of	the	other	set	must	also	be
present	in	the	first	set:

bool	Set::equal(const	Set&	set)	const	{	

		if	(size()	!=	set.size())	{	

				return	false;	

		}	

	

		Iterator	iterator	=	first();	

		while	(iterator.hasNext())	{	

				if	(!set.exists(iterator.getValue()))	{	

						return	false;	

				}	

	

				iterator.next();	

		}	

			

		return	true;										

}	

	

bool	Set::notEqual(const	Set&	set)	const	{	

		return	!equal(set);	

}	

The	exists	method	uses	the	iterator	of	LinkedList	to	iterate	through	the	set.	It
returns	true	if	it	finds	the	value:

bool	Set::exists(double	value)	const	{	

		Iterator	iterator	=	first();	

	

		while	(iterator.hasNext())	{	

				if	(value	==	iterator.getValue())	{	

						return	true;	

				}	

	

				iterator.next();	

		}	

	

		return	false;	

}	

The	second	exists	method	iterates	through	the	given	set	and	returns	false	if	any	of
its	values	are	not	present	in	the	set.	It	returns	true	if	all	its	values	are	present	in
the	set:

bool	Set::exists(const	Set&	set)	const	{	

		Iterator	iterator	=	set.first();	

	

		while	(iterator.hasNext())	{	

				if	(!exists(iterator.getValue()))	{	

						return	false;	

				}	

	

				iterator.next();	

		}	

	

		return	true;	

}	

The	first	insert	method	adds	the	value	if	it	is	not	already	present	in	the	set:

bool	Set::insert(double	value)	{	

		if	(!exists(value))	{	

				add(value);	

				return	true;	

		}	

	

		return	false;	

}	

The	second	insert	method	iterates	through	the	given	set	and	inserts	every	value
by	calling	the	first	insert	method.	In	this	way,	each	value	not	already	present	in
the	set	is	inserted:

bool	Set::insert(const	Set&	set)	{	

		bool	inserted	=	false;	

		Iterator	iterator	=	set.first();	

	

		while	(iterator.hasNext())	{	

				double	value	=	iterator.getValue();	

	

				if	(insert(value))	{	

						inserted	=	true;	

				}	

	

				iterator.next();	

		}	

	

		return	inserted;	

}	

The	first	remove	method	removes	the	value	and	returns	true	if	it	is	present	in	the
set.	If	it	is	not	present,	it	returns	false:

bool	Set::remove(double	value)	{	

		Iterator	iterator;	

			

		if	(find(value,	iterator))	{	

				erase(iterator);	

				return	true;	

		}	

	

		return	false;	

}	

The	second	remove	method	iterates	through	the	given	set	and	removes	each	of	its
values.	It	returns	true	if	at	least	one	value	is	removed:

bool	Set::remove(const	Set&	set)	{	

		bool	removed	=	false;	

		Iterator	iterator	=	set.first();	

	

		while	(iterator.hasNext())	{	

				double	value	=	iterator.getValue();	

	

				if	(remove(value))	{	

						removed	=	true;	

				}	

	

				iterator.next();	

		}	

	

		return	removed;	

}	

Union,	intersection,	and	difference
operations

	

The	unionSet	function	creates	a	resulting	set	initialized	with	the	left-hand	set	and
then	adds	the	right-hand	set:	Set	unionSet(const	Set&	leftSet,	const	Set&
rightSet)	{

Set	result(leftSet);

result.insert(rightSet);	return	result;

}

The	intersection	method	is	a	little	bit	more	complicated	than	the	union	or	difference
methods.	The	intersection	of	two	sets,	A	and	B,	can	be	defined	as	the	difference
between	their	union	and	their	differences:	A∩B=(A∪B)-((A-B)-(B-A))

Set	intersection(const	Set&	leftSet,	const	Set&	rightSet)	{	

		return	difference(difference(unionSet(leftSet,	rightSet),	difference(leftSet,	

rightSet)),	difference(rightSet,	leftSet));	}	

The	difference	method	creates	a	result	set	with	the	left-hand	set	and	then	removes
the	right-hand	set:	Set	difference(const	Set&	leftSet,	const	Set&	rightSet)	{

Set	result(leftSet);

result.remove(rightSet);	return	result;

}

The	read	method	is	similar	to	its	counterpart	in	LinkedList.	However,	insert	is
called	instead	of	add.	In	this	way,	no	duplicates	are	inserted	in	the	set:	void
Set::read(istream&	inStream)	{

int	size;

inStream	>>	size;

int	count	=	0;

while	(count	<	size)	{

double	value;

inStream	>>	value;	insert(value);

++count;

}

}

The	write	method	is	also	similar	to	its	counterpart	in	LinkedList.	However,	the	set
is	enclosed	in	brackets	("{"	and	"}")	instead	of	squares	("["	and	"]"):	void
Set::write(ostream&	outStream)	{

outStream	<<	"{";	bool	firstValue	=	true;	Iterator	iterator
=	first();

while	(iterator.hasNext())	{

outStream	<<	(firstValue	?	""	:	",")	<<	iterator.getValue();
firstValue	=	false;	iterator.next();

}

	

outStream	<<	"}";	}

We	test	the	set	by	letting	the	user	input	two	sets	and	evaluate	their	union,
intersection,	and	difference.

Main.cpp:

#include	<IOStream>	using	namespace	std;	

	

#include	"..\ListBasic\Cell.h"	

#include	"..\ListBasic\Iterator.h"	

#include	"..\ListBasic\List.h"	

#include	"Set.h"	

	

void	main()	{	

		Set	s,	t;	

		s.read(cin);	

		t.read(cin);	

	

		cout	<<	endl	<<	"s	=	";	s.write(cout);	

		cout	<<	endl;	

	

		cout	<<	endl	<<	"t	=	";	t.write(cout);	

		cout	<<	endl	<<	endl;	

		cout	<<	"union:	";	unionSet(s,	t).write(cout);	cout	<<	endl;	

	

		cout	<<	"intersection:	";	unionSet(s,	t).write(cout);	cout	<<	endl;	

	

		cout	<<	"difference:	";	unionSet(s,	t).write(cout);	cout	<<	endl;	

}	

	

	

Basic	searching	and	sorting
In	this	chapter,	we	will	also	study	some	searching	and	sorting	algorithms.	When
searching	for	a	value	with	linear	search	we	simply	go	through	the	list	from	its
beginning	to	its	end.	We	return	the	zero-based	index	of	the	value,	or	minus	one	if
it	was	not	found.

Search.h:

int	linarySearch(double	value,	const	LinkedList&	list);	

Search.cpp:

#include	<IOStream>	

using	namespace	std;	

	

#include	"..\ListBasic\Cell.h"	

#include	"..\ListBasic\Iterator.h"	

#include	"..\ListBasic\List.h"	

#include	"Search.h"	

	

int	linarySearch(double	value,	const	LinkedList&	list)	{	

		int	index	=	0;	

We	use	the	first	method	of	the	list	to	obtain	the	iterator	that	we	use	to	go	through
the	list;	hasNext	returns	true	as	long	as	there	is	another	value	in	the	list	and	next
moves	the	iterator	one	step	forward	in	the	list:

Iterator	iterator	=	list.first();	

	

		while	(iterator.hasNext())	{	

				if	(iterator.getValue()	==	value)	{	

						return	index;	

				}	

	

				++index;	

				iterator.next();	

		}	

	

		return	-1;	

}	

Now	we	study	the	select	sort,	insert	sort,	and	bubble	sort	algorithms.	Note	that
they	take	a	reference	to	the	list,	not	the	list	itself,	a	parameter	in	order	for	the	list
to	become	changed.	Also	note	that	the	reference	is	not	constant	in	these	cases;	if
it	was	constant	we	would	not	be	able	to	sort	the	list.

Sort.h:

void	selectSort(LinkedList&	list);	

void	insertSort(LinkedList&	list);	

void	bubbleSort(LinkedList&	list);	

Sort.cpp:

#include	<IOStream>	

using	namespace	std;	

	

#include	"..\ListBasic\Cell.h"	

#include	"..\ListBasic\Iterator.h"	

#include	"..\ListBasic\List.h"	

#include	"Sort.h"	

	

void	insert(double	value,	LinkedList&	list);	

void	swap(Iterator	iterator1,	Iterator	iterator2);	

The	select	sort	algorithm

	

The	select	sort	algorithm	is	quite	simple,	we	iterate	through	the	list	repeatedly
until	it	becomes	empty.	For	each	iteration,	we	found	the	smallest	value,	which
we	remove	from	the	list	and	add	to	the	resulting	list.	In	this	way,	the	resulting	list
will	eventually	be	filled	with	the	same	values	as	the	list.	As	the	values	were
selected	in	order,	the	resulting	list	is	sorted.	Finally,	we	assign	the	resulting	list
to	the	original	list:	void	selectSort(LinkedList&	list)	{

LinkedList	result;

	

while	(!list.empty())	{

Iterator	minIterator	=	list.first();	double	minValue	=
minIterator.getValue();

Iterator	iterator	=	list.first();

while	(iterator.hasNext())	{

if	(iterator.getValue()	<	minValue)	{

minIterator	=	iterator;	minValue	=	iterator.getValue();	}

	

iterator.next();	}

	

list.erase(minIterator);	result.add(minValue);	}

	

list.assign(result);	}

	

	

The	insert	sort	algorithm

	

In	the	insert	sort	algorithm,	we	iterate	through	the	list,	and	for	each	value	we
insert	it	at	its	appropriate	location	in	the	resulting	list.	Then	we	assign	the
resulting	list	to	the	original	list:	void	insertSort(LinkedList&	list)	{

LinkedList	result;	Iterator	iterator	=	list.first();

while	(iterator.hasNext())	{

insert(iterator.getValue(),	result);	iterator.next();	}

	

list.assign(result);	}

The	insert	function	takes	a	list	and	a	value	and	places	the	value	at	its	correct
location	in	the	list.	It	iterates	through	the	list	and	places	the	value	before	the	first
value	that	it	is	less.	If	there	is	no	such	value	in	the	list,	the	value	is	added	at	the
end	of	the	list:	void	insert(double	value,	LinkedList&	list)	{

Iterator	iterator	=	list.first();

while	(iterator.hasNext())	{

if	(value	<	iterator.getValue())	{

list.insert(iterator,	value);	return;

}

	

iterator.next();	}

	

list.add(value);	}

	

	

The	bubble	sort	algorithm

	

The	bubble	sort	algorithm	compares	the	values	pairwise	and	lets	them	change
place	if	they	occur	in	the	wrong	order.	After	the	first	iteration,	we	know	that	the
largest	value	is	located	at	the	end	of	the	list.	Therefore,	we	do	not	need	to	iterate
through	the	whole	list	the	second	time,	we	can	omit	the	last	value.	In	this	way,
we	iterate	through	the	list	at	most	the	number	of	the	values	in	the	list	minus	one,
because	when	all	values	except	the	first	one	is	at	it's	correct	location,	the	first
one	is	also	at	its	correct	location.	However,	the	list	may	be	properly	sorted	before
that.	Therefore,	we	check	after	each	iteration	if	any	pair	of	values	has	been
swapped.	If	they	have	not,	the	list	has	been	properly	sorted	and	we	exit	the
algorithm:	void	bubbleSort(LinkedList&	list)	{

int	listSize	=	list.size();

if	(listSize	>	1)	{

int	currSize	=	listSize	-	1;	int	outerCount	=	0;

while	(outerCount	<	(listSize	-	1))	{

Iterator	currIterator	=	list.first();	Iterator	nextIterator	=
currIterator;	nextIterator.next();	bool	changed	=	false;

int	innerCount	=	0;

while	(innerCount	<	currSize)	{

if	(currIterator.getValue()	>	nextIterator.getValue())	{

swap(currIterator,	nextIterator);	changed	=	true;

}

	

++innerCount;

currIterator.next();	nextIterator.next();	}

	

if	(!changed)	{

break;

}

	

--currSize;

++outerCount;

}

}

}

The	swap	function	swaps	the	values	at	the	locations	given	by	the	iterators:	void
swap(Iterator	iterator1,	Iterator	iterator2)	{

double	tempValue	=	iterator1.getValue();
iterator1.setValue(iterator2.getValue());
iterator2.setValue(tempValue);	}

We	test	the	algorithms	by	adding	some	values	to	a	list,	and	then	sort	the	list.

Main.cpp:

#include	<IOStream>	#include	<CStdLib>	

	

using	namespace	std;	

	

#include	"..\ListBasic\Cell.h"	

#include	"..\ListBasic\Iterator.h"	

#include	"..\ListBasic\List.h"	

	

#include	"Search.h"	

#include	"Sort.h"	

	

void	main()	{	

		cout	<<	"LinkedList"	<<	endl;	

		LinkedList	list;	

		list.add(9);	

		list.add(7);	

		list.add(5);	

		list.add(3);	

		list.add(1);	

	

		list.write(cout);	

		cout	<<	endl;	

We	use	the	iterator	class	to	go	through	the	list	and	call	linarySearch	for	each	value
in	the	list:	Iterator	iterator	=	list.first();	while	(iterator.hasNext())	{

cout	<<	"<"	<<	iterator.getValue()	<<	","

<<	linarySearch(iterator.getValue(),	list)	<<	">	";
iterator.next();

}

We	also	test	the	search	algorithm	for	values	not	present	in	the	list,	their	indexes

will	be	minus	one:	cout	<<	"<0,"	<<	linarySearch(0,	list)	<<	">	";	cout	<<	"<6,"
<<	linarySearch(6,	list)	<<	">	";	cout	<<	"<10,"	<<	linarySearch(10,	list)	<<	">"

<<	endl;

We	sort	the	list	by	the	bubble	sort,	select	sort,	and	insert	sort	algorithms:	cout	<<
"Bubble	Sort	";	bubbleSort(list);

list.write(cout);

cout	<<	endl;

	

cout	<<	"Select	Sort	";	selectSort(list);

list.write(cout);

cout	<<	endl;

	

cout	<<	"Insert	Sort	";	insertSort(list);

list.write(cout);

cout	<<	endl;

}

One	way	to	classify	searching	and	sorting	algorithms	is	to	use	the	big	O
notation.	Informally	speaking,	the	notation	focuses	on	the	worst-case	scenario.
In	the	insert	sort	case,	we	iterate	through	the	list	once	for	each	value,	and	for
each	value,	we	may	have	to	iterate	through	the	whole	list	to	find	its	correct
location.	Likewise,	in	the	select	sort	case	we	iterate	through	the	list	once	for	each
value,	and	for	each	value,	we	may	need	to	iterate	through	the	whole	list.

Finally,	in	the	bubble	sort	case,	we	iterate	through	the	list	once	for	each	value
and	we	may	have	to	iterate	through	the	whole	list	for	each	value.	In	all	three
cases,	we	may	have	to	perform	n2	operations	on	a	list	of	n	values.	Therefore,	the
insert,	select,	and	bubble	sort	algorithms	have	the	big-O	n2,	or	O	(n2)	with
regards	to	their	time	efficiency.	However,	when	it	comes	to	their	space
efficiency,	bubble	sort	is	better	since	it	operates	on	the	same	list,	while	insert	and
select	sort	demand	an	extra	list	for	the	resulting	sorted	list.

	

	

	

The	extended	List	class

	

In	this	section,	we	will	revisit	the	LinkedList	class.	However,	we	will	expand	it	in
several	ways:

The	Cell	class	had	a	set	of	set	and	get	methods.	Instead,	we	will	replace	each
pair	with	a	pair	of	overloaded	reference	methods.
The	previous	list	could	only	store	values	of	the	type	double.	Now	we	will
define	the	list	to	be	template,	which	allows	it	to	store	values	of	arbitrary
types.
We	will	replace	some	of	the	methods	with	overloaded	operators.
Cell	and	Iterator	were	free-standing	classes.	Now	we	will	let	them	be	inner
classes,	defined	inside	LinkedList.

List.h:

class	OutOfMemoryException	:	public	exception	{	

		//	Empty.	

};	

In	the	classes	of	the	earlier	sections,	the	list	stored	values	of	the	type	double.
However,	in	these	classes,	instead	of	double	we	use	the	template	type	T,	which	is	a
generic	type	that	can	be	instantiated	by	any	arbitrary	type.	The	LinkedList	class	of
this	section	is	template,	with	the	generic	type	T:

template	<class	T>	

class	LinkedList	{	

		private:	

				class	Cell	{	

						private:	

								Cell(const	T&	value,	Cell*	previous,	Cell*	next);	

The	value	method	is	overloaded	in	two	versions.	The	first	version	is	constant	and
returns	a	constant	value.	The	other	version	is	not	constant	and	returns	a	reference
to	the	value.	In	this	way,	it	is	possible	to	assign	values	to	the	cell's	value,	as
shown	in	the	following	example:

public:	

								const	T	value()	const	{	return	m_value;	}	

								T&	value()	{	return	m_value;	}	

The	Cell*&	construct	means	that	the	methods	return	a	reference	to	a	pointer	to	a
Cell	object.	That	reference	can	then	be	used	to	assign	a	new	value	to	the	pointer:

const	Cell*	previous()	const	{	return	m_previous;	}	

								Cell*&	previous()	{	return	m_previous;	}	

	

								const	Cell*	next()	const	{	return	m_next;	}	

								Cell*&	next()	{	return	m_next;	}	

	

								friend	class	LinkedList;	

	

				private:	

						T	m_value;	

						Cell	*m_previous,	*m_next;	

		};	

	

		public:	

				class	Iterator	{	

						public:	

								Iterator();	

	

						private:	

								Iterator(Cell*	cellPtr);	

	

						public:	

								Iterator(const	Iterator&	iterator);	

								Iterator&	operator=(const	Iterator&	iterator);	

Instead	of	equal	and	notEqual,	we	overload	the	equal	and	not-equal	operators:

bool	operator==(const	Iterator&	iterator);	

								bool	operator!=(const	Iterator&	iterator);	

We	also	replace	the	increment	and	decrement	methods	with	the	increment	(++)
and	decrement	(--)	operators.	They	come	in	two	versions	each—prefix	and
postfix.	The	version	without	parameters	is	the	prefix	version	(++i	and	--i)	and	the
version	with	an	integer	parameter	is	the	postfix	version	(i++	and	i--).	Note	that
we	actually	do	not	pass	an	integer	parameter	to	the	operator.	The	parameter	is
included	only	to	distinguish	between	the	two	versions,	and	is	ignored	by	the
compiler:

bool	operator++();				//	prefix:	++i	

								bool	operator++(int);	//	postfix:	i++	

	

								bool	operator--();				//	prefix:	--i	

								bool	operator--(int);	//	postfix:	i--	

We	replace	the	getValue	and	setValue	methods	with	two	overloaded	dereference
operators	(*).	They	work	in	a	way	similar	to	the	value	methods	in	the	preceding
Cell	class.	The	first	version	is	constant	and	returns	a	value,	while	the	second
version	is	not	constant	and	returns	a	reference	to	the	value:

T	operator*()	const;	

								T&	operator*();	

	

								friend	class	LinkedList;	

	

						private:	

								Cell	*m_cellPtr;	

				};	

	

	

The	ReverseIterator	class

	

In	order	to	iterate	from	the	end	to	the	beginning,	as	well	as	from	the	beginning	to
the	end,	we	add	ReverseIterator.	It	is	nearly	identical	to	Iterator	used	previously;
the	only	difference	is	that	the	increment	and	decrement	operators	move	in
opposite	directions:	class	ReverseIterator	{

public:

ReverseIterator();

	

private:

ReverseIterator(Cell*	cellPtr);

public:

ReverseIterator(const	ReverseIterator&	iterator);	const
ReverseIterator&

operator=(const	ReverseIterator&	iterator);

bool	operator==(const	ReverseIterator&	iterator);	bool
operator!=(const	ReverseIterator&	iterator);

bool	operator++();	//	prefix:	++i	bool	operator++(int);	//
postfix:	i++

	

bool	operator--();

bool	operator--(int);

	

T	operator*()	const;

T&	operator*();

	

friend	class	LinkedList;

	

private:

Cell	*m_cellPtr;

};

	

public:

LinkedList();

LinkedList(const	LinkedList&	list);	LinkedList&
operator=(const	LinkedList&	list);	~LinkedList();

void	clear();

	

int	size()	const	{return	m_size;}

bool	empty()	const	{return	(m_size	==	0);}

	

bool	operator==(const	LinkedList&	list)	const;	bool
operator!=(const	LinkedList&	list)	const;

void	add(const	T&	value);

void	add(const	LinkedList&	list);

void	insert(const	Iterator&	insertPosition,	const	T&
value);	void	insert(const	Iterator&	insertPosition,	const
LinkedList&	list);

void	erase(const	Iterator&	erasePosition);	void
remove(const	Iterator&	firstPosition,	const	Iterator&
lastPosition	=	Iterator(nullptr));

In	the	earlier	section,	there	was	only	the	first	and	last	methods,	which	return	an
iterator.	In	this	section,	the	begin	and	end	methods	are	used	for	forward	iteration,
while	rbegin	and	rend	(stands	for	reverse	begin	and	reverse	end)	are	used	for
backward	iteration:	Iterator	begin()	const	{	return	Iterator(m_firstCellPtr);	}

Iterator	end()	const	{	return	Iterator(nullptr);	}

ReverseIterator	rbegin()	const

{return	ReverseIterator(m_lastCellPtr);}

ReverseIterator	rend()	const

{	return	ReverseIterator(nullptr);	}

We	replace	the	read	and	write	methods	with	overloaded	input	and	output	stream
operators.	Since	they	are	functions	rather	than	methods,	they	need	their	own
template	markings:	template	<class	U>	friend	istream&	operator>>(istream&
outStream,	LinkedList<U>&	list);

template	<class	U>

friend	ostream&	operator<<(ostream&	outStream,	const
LinkedList<U>&	list);

private:

int	m_size;

Cell	*m_firstCellPtr,	*m_lastCellPtr;	};

Note	that	when	we	implement	the	methods	of	a	template	class,	we	do	so	in	the
header	file.	Consequently,	we	do	not	need	an	implementation	file	when
implementing	a	template	class.

Similar	to	the	class	definitions,	the	method	definitions	must	be	preceded	by	the
template	keyword.	Note	that	the	class	name	LinkedList	is	followed	by	the	type
marker	<T>:	template	<class	T>	LinkedList<T>::Cell::Cell(const	T&	value,	Cell*
previous,	Cell*	next)

:m_value(value),

m_previous(previous),

m_next(next)	{

//	Empty.

}

	

template	<class	T>

LinkedList<T>::Iterator::Iterator()	:m_cellPtr(nullptr)	{

//	Empty.

}

Note	that	when	we	implement	a	method	of	an	inner	class,	we	need	to	include
both	the	names	of	the	outer	class	(LinkedList)	and	inner	class	(Cell)	in	the
implementation:	template	<class	T>	LinkedList<T>::Iterator::Iterator(Cell*
cellPtr)	:m_cellPtr(cellPtr)	{

//	Empty.

}

	

template	<class	T>

LinkedList<T>::Iterator::Iterator(const	Iterator&
position)	:m_cellPtr(position.m_cellPtr)	{

//	Empty.

}

Since	LinkedList	is	a	template	class,	it	is	not	known	to	the	compiler	that	its	inner
class	Iterator	is,	in	fact,	a	class.	As	far	as	the	compiler	knows,	the	iterator	could
be	a	type,	a	value,	or	a	class.	Therefore,	we	need	to	inform	the	compiler	by	using
the	typename	keyword:	template	<class	T>	typename	LinkedList<T>::Iterator&
LinkedList<T>::Iterator::operator=(const	Iterator&	iterator)	{

m_cellPtr	=	iterator.m_cellPtr;

return	*this;

}

The	following	operator	versions	are	implemented	in	the	same	way	as	its	method
counterparts	in	the	previous	version	of	LinkedList.	That	is,	the	equal	method	has
been	replaced	by	the	equation	operator	(operator==),	and	the	notEqual	method	has
been	replaced	by	the	not-equal	operator	(operator!=):	template	<class	T>	bool
LinkedList<T>::Iterator::operator==(const	Iterator&position){

return	(m_cellPtr	==	position.m_cellPtr);	}

	

template	<class	T>

bool	LinkedList<T>::Iterator::operator!=(const
Iterator&position){

return	!(*this	==	position);

}

The	increase	operator	has	been	replaced	with	both	the	prefix	and	postfix	version
of	operator++.	The	difference	between	them	is	that	the	prefix	version	does	not	take
any	parameters,	while	the	postfix	version	takes	a	single	integer	value	as
parameter.	Note	that	the	integer	value	is	not	used	by	the	operator.	Its	value	is
undefined	(however,	it	is	usually	set	to	zero)	and	is	always	ignored.	It	is	present
only	to	distinguish	between	the	prefix	and	postfix	cases:	template	<class	T>	bool
LinkedList<T>::Iterator::operator++()	{

if	(m_cellPtr	!=	nullptr)	{

m_cellPtr	=	m_cellPtr->next();

return	true;

}

	

return	false;

}

	

template	<class	T>

bool	LinkedList<T>::Iterator::operator++(int)	{

if	(m_cellPtr	!=	nullptr)	{

m_cellPtr	=	m_cellPtr->next();

return	true;

}

	

return	false;

}

The	decrease	operator	also	comes	in	a	prefix	and	a	postfix	version,	and	works	in	a
way	similar	to	the	increase	operator:	template	<class	T>	bool
LinkedList<T>::Iterator::operator--()	{

if	(m_cellPtr	!=	nullptr)	{

m_cellPtr	=	m_cellPtr->previous();	return	true;

}

	

return	false;

}

	

template	<class	T>

bool	LinkedList<T>::Iterator::operator--(int)	{

if	(m_cellPtr	!=	nullptr)	{

m_cellPtr	=	m_cellPtr->previous();	return	true;

}

	

return	false;

}

The	dereference	operator	also	comes	in	two	versions.	The	first	version	is
constant	and	returns	a	value.	The	second	version	is	not	constant	and	returns	a
reference	to	the	value,	instead	of	the	value	itself.	In	this	way,	the	first	version	can
be	called	on	a	constant	object,	in	which	case	we	are	not	allowed	to	change	its
value.	The	second	version	can	be	called	on	a	non-constant	object	only,	we	can
change	the	value	by	assigning	a	new	value	to	the	value	returned	by	the	method:
template	<class	T>	T	LinkedList<T>::Iterator::operator*()	const	{

return	m_cellPtr->value();

}

	

template	<class	T>

T&	LinkedList<T>::Iterator::operator*()	{

return	m_cellPtr->value();

}

There	are	three	constructors	of	the	ReverseIterator	class.	The	first	constructor	is	a
default	constructor,	the	second	constructor	is	initialized	with	a	Cell	pointer,	and
the	third	constructor	is	a	copy	constructor.	It	takes	a	reference	to	another

ReverseIterator	object,	and	initializes	the	Cell	pointer:	template	<class	T>
LinkedList<T>::ReverseIterator::ReverseIterator()	:m_cellPtr(nullptr)	{

//	Empty.

}

	

template	<class	T>

LinkedList<T>::ReverseIterator::ReverseIterator(Cell*
currCellPtr)	:m_cellPtr(currCellPtr)	{

//	Empty.

}

	

template	<class	T>

LinkedList<T>::ReverseIterator::ReverseIterator	(const
ReverseIterator&	position)	:m_cellPtr(position.m_cellPtr)
{

//	Empty.

}

The	equality	operator	initializes	the	Cell	pointer	with	the	Cell	pointer	of	the	given
ReverseIterator	object	reference:	template	<class	T>	const	typename
LinkedList<T>::ReverseIterator&	LinkedList<T>::ReverseIterator::operator=
(const	ReverseIterator&	position)	{

m_cellPtr	=	position.m_cellPtr;

return	*this;

}

Two	reverse	iterators	are	equal	if	their	cell	pointers	point	at	the	same	cell:
template	<class	T>	bool	LinkedList<T>::ReverseIterator::operator==

(const	ReverseIterator&	position)	{

return	(m_cellPtr	==	position.m_cellPtr);	}

	

template	<class	T>

bool	LinkedList<T>::ReverseIterator::operator!=

(const	ReverseIterator&	position)	{

return	!(*this	==	position);

}

The	difference	between	the	increase	and	decrease	operators	of	the	Iterator	and

ReverseIterator	classes	is	that	in	Iterator	the	increment	operators	calls	next	and	the
decrement	operators	call	previous	in	Cell.	In	ReverseIterator	it	is	the	other	way	around:
the	increment	operators	call	previous	and	the	decrement	operators	call	next.	As	the
names	implies:	Iterator	iterates	forward,	while	ReverseIterator	iterates	backwards:
template	<class	T>	bool	LinkedList<T>::ReverseIterator::operator++()	{

if	(m_cellPtr	!=	nullptr)	{

m_cellPtr	=	m_cellPtr->previous();	return	true;

}

	

return	false;

}

	

template	<class	T>

bool	LinkedList<T>::ReverseIterator::operator++(int)	{

if	(m_cellPtr	!=	nullptr)	{

m_cellPtr	=	m_cellPtr->previous();	return	true;

}

	

return	false;

}

	

template	<class	T>

bool	LinkedList<T>::ReverseIterator::operator--()	{

if	(m_cellPtr	!=	nullptr)	{

m_cellPtr	=	m_cellPtr->next();

return	true;

}

	

return	false;

}

	

template	<class	T>

bool	LinkedList<T>::ReverseIterator::operator--(int)	{

if	(m_cellPtr	!=	nullptr)	{

m_cellPtr	=	m_cellPtr->next();

return	true;

}

	

return	false;

}

	

template	<class	T>

T	LinkedList<T>::ReverseIterator::operator*()	const	{

return	m_cellPtr->value();

}

	

template	<class	T>

T&	LinkedList<T>::ReverseIterator::operator*()	{

return	m_cellPtr->value();

}

The	default	constructor	of	LinkedList	initializes	the	list	to	become	empty,	with	the
pointer	to	the	first	and	last	cell	set	to	null:	template	<class	T>
LinkedList<T>::LinkedList()

:m_size(0),

m_firstCellPtr(nullptr),

m_lastCellPtr(nullptr)	{

//	Empty.

}

	

template	<class	T>

LinkedList<T>::LinkedList(const	LinkedList<T>&	list)	{

*this	=	list;

}

The	assignment	operator	copies	the	values	of	the	given	list,	in	the	same	way	as
the	non-template	method:	template	<class	T>	LinkedList<T>&
LinkedList<T>::operator=(const	LinkedList<T>&list){

m_size	=	0;

m_firstCellPtr	=	nullptr;

m_lastCellPtr	=	nullptr;

	

if	(list.m_size	>	0)	{

for	(Cell	*listCellPtr	=	list.m_firstCellPtr,	*nextCellPtr	=
list.m_lastCellPtr->next();	listCellPtr	!=	nextCellPtr;

listCellPtr	=	listCellPtr->next())	{

Cell	*newCellPtr	=	new	Cell(listCellPtr->value(),
m_lastCellPtr,	nullptr);

if	(m_firstCellPtr	==	nullptr)	{

m_firstCellPtr	=	newCellPtr;

}

Note	that	we	use	the	reference	version	of	the	next	method,	which	allows	us	to
assign	values	to	the	method	call.	Since	next	returns	a	reference	to	the	next	pointer

of	the	cell,	we	can	assign	value	of	newCellPtr	to	that	pointer:	else	{

m_lastCellPtr->next()	=	newCellPtr;	}

	

m_lastCellPtr	=	newCellPtr;

++m_size;

}

}

	

return	*this;

}

The	destructor	simply	calls	the	clear	method,	which	goes	through	the	linked	list
and	deletes	every	cell:	template	<class	T>	LinkedList<T>::~LinkedList()	{

clear();

}

	

template	<class	T>

void	LinkedList<T>::clear()	{

Cell	*currCellPtr	=	m_firstCellPtr;

	

while	(currCellPtr	!=	nullptr)	{

Cell	*deleteCellPtr	=	currCellPtr;	currCellPtr	=
currCellPtr->next();	delete	deleteCellPtr;

}

When	the	cells	are	deleted,	the	pointer	to	the	first	and	last	cell	is	set	to	null:
m_size	=	0;

m_firstCellPtr	=	nullptr;

m_lastCellPtr	=	nullptr;

}

Two	lists	are	equal	if	they	have	the	same	size,	and	if	their	cells	hold	the	same
values:	template	<class	T>	bool	LinkedList<T>::operator==(const
LinkedList<T>&	list)	const	{

if	(m_size	!=	list.m_size)	{

return	false;

}

	

for	(Iterator	thisIterator	=	begin(),	listIterator	=
list.begin();	thisIterator	!=	end();	++thisIterator,
++listIterator)	{

if	(*thisIterator	!=	*listIterator)	{

return	false;

}

}

	

return	true;

}

	

template	<class	T>

bool	LinkedList<T>::operator!=(const	LinkedList<T>&
list)	const	{

return	!(*this	==	list);

}

The	add	method	adds	a	cell	with	a	new	value	at	the	end	of	the	list,	as	shown	in
the	following	example:	template	<class	T>	void	LinkedList<T>::add(const	T&
value)	{

Cell	*newCellPtr	=	new	Cell(value,	m_lastCellPtr,
nullptr);

if	(m_lastCellPtr	==	nullptr)	{

m_firstCellPtr	=	newCellPtr;

m_lastCellPtr	=	newCellPtr;

}

else	{

m_lastCellPtr->next()	=	newCellPtr;	m_lastCellPtr	=
newCellPtr;

}

	

++m_size;

}

The	second	version	of	add	adds	the	given	list	at	the	end	of	the	list,	as	shown	in
the	following	example:	template	<class	T>	void	LinkedList<T>::add(const
LinkedList<T>&	list)	{

for	(Cell	*listCellPtr	=	list.m_firstCellPtr;	listCellPtr	!=
nullptr;	listCellPtr	=	listCellPtr->next()){

const	T&	value	=	listCellPtr->value();	Cell	*newCellPtr
=	new	Cell(value,	m_lastCellPtr,	nullptr);

if	(m_lastCellPtr	==	nullptr)	{

m_firstCellPtr	=	newCellPtr;

}

else	{

m_lastCellPtr->next()	=	newCellPtr;	}

	

m_lastCellPtr	=	newCellPtr;

}

	

m_size	+=	list.m_size;

}

The	insert	method	adds	a	value	or	a	list	at	the	given	position:	template	<class	T>
void	LinkedList<T>::insert(const	Iterator&	insertPosition,	const	T&	value)	{

if	(insertPosition.m_cellPtr	==	nullptr)	{

add(value);

}

else	{

Cell	*insertCellPtr	=	insertPosition.m_cellPtr;	Cell
*newCellPtr	=

new	Cell(value,	insertCellPtr->previous(),	insertCellPtr);	
insertCellPtr->previous()	=	newCellPtr;

if	(insertCellPtr	==	m_firstCellPtr)	{

m_firstCellPtr	=	newCellPtr;

}

else	{

newCellPtr->previous()->next()	=	newCellPtr;	}

	

++m_size;

}

}

	

template	<class	T>

void	LinkedList<T>::insert(const	Iterator&
insertPosition,	const	LinkedList<T>&	list)	{

if	(insertPosition.m_cellPtr	==	nullptr)	{

add(list);

}

else	{

Cell	*insertCellPtr	=	insertPosition.m_cellPtr;

Cell	*firstInsertCellPtr	=	nullptr,	lastInsertCellPtr	=
nullptr;

for	(Cell	*listCellPtr	=	list.m_firstCellPtr;	listCellPtr	!=
nullptr;listCellPtr=listCellPtr->next())	{

double	value	=	listCellPtr->value();	Cell	*newCellPtr	=

new	Cell(value,	lastInsertCellPtr,	nullptr);

if	(firstInsertCellPtr	==	nullptr)	{

firstInsertCellPtr	=	newCellPtr;	}

else	{

lastInsertCellPtr->next()	=	newCellPtr;	}

	

lastInsertCellPtr	=	newCellPtr;

}

	

if	(firstInsertCellPtr	!=	nullptr)	{

if	(insertCellPtr->previous()	!=	nullptr)	{

insertCellPtr->previous()->next()	=	firstInsertCellPtr;
firstInsertCellPtr->previous()	=

insertCellPtr->previous();	}

else	{

m_firstCellPtr	=	firstInsertCellPtr;	}

}

	

if	(lastInsertCellPtr	!=	nullptr)	{

lastInsertCellPtr->next()	=	insertCellPtr;	insertCellPtr-
>previous()	=	lastInsertCellPtr;	}

	

m_size	+=	list.m_size;

}

}

The	erase	and	remove	methods	remove	a	value	of	a	sub-list	from	the	list:	template
<class	T>	void	LinkedList<T>::erase(const	Iterator&	removePosition)	{

remove(removePosition,	removePosition);	}

	

template	<class	T>

void	LinkedList<T>::remove(const	Iterator&
firstPosition,	const	Iterator&	lastPosition	/*=
Iterator(nullptr)*/)	{

Cell	*firstCellPtr	=	firstPosition.m_cellPtr,	*lastCellPtr	=
lastPosition.m_cellPtr;	lastCellPtr	=	(lastCellPtr	==
nullptr)	?	m_lastCellPtr	:	lastCellPtr;

Cell	*previousCellPtr	=	firstCellPtr->previous(),
*nextCellPtr	=	lastCellPtr->next();

Cell	*currCellPtr	=	firstCellPtr;

while	(currCellPtr	!=	nextCellPtr)	{

Cell	*deleteCellPtr	=	currCellPtr;	currCellPtr	=
currCellPtr->next();	delete	deleteCellPtr;

--m_size;

}

	

if	(previousCellPtr	!=	nullptr)	{

previousCellPtr->next()	=	nextCellPtr;	}

else	{

m_firstCellPtr	=	nextCellPtr;

}

	

if	(nextCellPtr	!=	nullptr)	{

nextCellPtr->previous()	=	previousCellPtr;	}

else	{

m_lastCellPtr	=	previousCellPtr;

}

}

The	input	stream	operator	first	reads	the	size	of	the	list,	and	then	the	values
themselves:	template	<class	T>	istream&	operator>>(istream&	inStream,
LinkedList<T>&	list)	{

int	size;

inStream	>>	size;

	

for	(int	count	=	0;	count	<	size;	++count)	{

T	value;

inStream	>>	value;

list.add(value);

}

	

return	inStream;

}

The	output	stream	operator	writes	the	list	on	the	given	stream,	surrounded	by
brackets	and	with	the	values	separated	by	commas:	template	<class	T>
ostream&	operator<<(ostream&	outStream,const	LinkedList<T>&	list){

outStream	<<	"[";

	

bool	first	=	true;

for	(const	T&	value	:	list)	{

outStream	<<	(first	?	""	:	",")	<<	value;	first	=	false;

}

	

outStream	<<	"]";

return	outStream;

}

We	test	the	LinkedList	class	by	letting	the	user	input	a	list	that	we	iterate
automatically	with	the	for	statement,	as	well	as	manually	with	forward	and
backward	iterators.

Main.cpp:

#include	<IOStream>	#include	<Exception>	

using	namespace	std;	

	

#include	"List.h"	

	

void	main()	{	

		LinkedList<double>	list;	

		cin	>>	list;	

		cout	<<	list	<&lt;	endl;	

Note	that	it	is	possible	to	use	the	for	statement	directly	on	the	list	since	the
extended	list	holds	the	begin	method,	which	returns	an	iterator	with	the	prefix
increment	(++)	and	dereference	(*)	operators:	for	(double	value	:	list)	{

cout	<<	value	<<	"	";

}

cout	<<	endl;

We	can	also	iterate	through	the	list	manually	with	the	begin	and	end	methods	of
the	Iterator	class:	for	(LinkedList<double>::Iterator	iterator	=	list.begin();
iterator	!=	list.end();	++iterator)	{

cout	<<	*iterator	<<	"	";	}

cout	<<	endl;

With	the	rbegin	and	rend	methods	and	the	ReverseIterator	class	we	iterate	from	its
end	to	its	beginning.	Note	that	we	still	use	increment	(++)	rather	than	decrement
(--),	even	though	we	iterate	through	the	list	backwards:	for
(LinkedList<double>::ReverseIterator	iterator	=

list.rbegin();	iterator	!=	list.rend();	++iterator)	{

cout	<<	*iterator	<<	"	";	}

cout	<<	endl;

}

	

	

The	extended	Set	class

	

The	Set	class	of	this	section	has	been	extended	in	three	ways	compared	to	the
version	of	the	earlier	section:

The	set	is	stored	as	an	ordered	list,	which	makes	some	of	the	methods	more
efficient
The	class	is	a	template;	it	may	store	values	of	arbitrary	types	as	long	as
those	types	support	ordering
The	class	has	operator	overloading,	which	(hopefully)	makes	it	easier	and
more	intuitive	to	use

In	C++	it	is	possible	to	define	our	own	types	with	the	typedef	keyword.	We	define
Iterator	of	Set	to	be	the	same	iterator	as	in	LinkedList.	In	the	earlier	section,	Iterator
was	a	free-standing	class	that	we	could	reuse	when	working	with	sets.	However,
in	this	section,	Iterator	is	an	inner	class.	Otherwise,	LinkedList	could	not	be
accessed	when	handling	sets	since	Set	inherits	LinkedList	privately.	Remember
that	when	we	inherit	privately,	all	methods	and	fields	of	the	base	class	become
private	in	the	subclass.

Set.h:

template	<class	T>	class	Set	:	private	LinkedList<T>	{	

		public:	

				typedef	LinkedList<T>::Iterator	Iterator;	

				Set();	

				Set(const	T&	value);	Set(const	Set&	set);	Set&	operator=(const	Set&	set);	

~Set();	

We	replace	the	equal	and	notEqual	methods	with	overloaded	operators	for
comparison.	In	this	way,	it	is	possible	to	compare	two	sets	in	the	same	way	as
when	comparing,	for	instance,	two	integers:	bool	operator==(const	Set&	set)
const;	bool	operator!=(const	Set&	set)	const;

int	size()	const	{	return	LinkedList<T>::size();	}

bool	empty()	const	{	return	LinkedList<T>::empty();	}

Iterator	begin()	const	{	return	LinkedList<T>::begin();	}

We	replace	the	unionSet,	intersection,	and	difference	methods	with	the	operators	for
addition,	multiplication,	and	subtraction:	Set	operator+(const	Set&	set)	const;
Set	operator*(const	Set&	set)	const;	Set	operator-(const	Set&	set)	const;

The	merge	function	is	called	by	the	set	methods	to	perform	efficient	merging	of
sets.	Since	it	is	a	function	rather	than	a	method,	it	must	have	its	own	template
marking:	private:	template	<class	U>	friend	Set<U>

merge(const	Set<U>&	leftSet,	const	Set<U>&	rightSet,
bool	addLeft,	bool	addEqual,	bool	addRight);

public:

Set&	operator+=(const	Set&	set);	Set&	operator*=(const
Set&	set);	Set&	operator-=(const	Set&	set);

Similar	to	the	preceding	LinkedList	class,	we	replace	the	read	and	write	methods
with	overloaded	stream	operators.	Since	they	also	are	functions	rather	than
methods,	they	also	need	their	own	template	markings:	template	<class	U>	friend
istream&	operator>>(istream&	inStream,	Set<U>&	set);

template	<class	U>	friend	ostream&
operator<<(ostream&	outStream,	const	Set<U>&	set);	};

The	constructors	look	pretty	much	the	same,	compared	to	the	non-template
versions:	template	<class	T>	Set<T>::Set()	{

//	Empty.

}

	

template	<class	T>

Set<T>::Set(const	T&	value)	{

add(value);

}

	

template	<class	T>

Set<T>::Set(const	Set&	set)	:LinkedList(set)	{

//	Empty.

}

	

template	<class	T>

Set<T>::~Set()	{

//	Empty.

}

	

template	<class	T>

Set<T>&	Set<T>::operator=(const	Set&	set)	{

clear();

add(set);

return	*this;

}

When	testing	whether	two	sets	are	equal,	we	can	just	simply	call	the	equality
operator	in	LinkedList	since	the	sets	of	this	section	are	ordered:	template	<class
T>	bool	Set<T>::operator==(const	Set&	set)	const	{

return	LinkedList::operator==(set);	}

Similar	to	the	earlier	classes,	we	test	whether	two	sets	are	not	equal	by	calling
equal.	However,	in	this	class,	we	use	the	equality	operator	explicitly	by
comparing	the	own	object	(by	using	the	this	pointer)	with	the	given	set:	template
<class	T>	bool	Set<T>::operator!=(const	Set&	set)	const	{

return	!(*this	==	set);	}

	

	

Union,	intersection,	and	difference
We	replace	the	unionSet,	intersection,	and	difference	methods	with	the	addition,
subtraction,	and	multiplication	operators.	They	all	call	merge,	with	the	sets	and
different	values	for	the	addLeft,	addEqual,	and	addRight	parameters.	In	case	of	union,
all	three	of	them	are	true,	which	means	that	values	present	in	the	left-hand	set
only,	or	in	both	sets,	or	in	the	right-hand	set	only	shall	be	included	in	the	union
set:

template	<class	T>	

Set<T>	Set<T>::operator+(const	Set&	set)	const	{	

		return	merge(*this,	set,	true,	true,	true);	

}	

In	case	of	intersection,	only	addEqual	is	true,	which	means	that	the	values	present
in	both	sets,	but	not	values	present	in	only	one	of	the	sets,	shall	be	included	in
the	intersection	set.	Take	a	look	at	the	following	example:

template	<class	T>	

Set<T>	Set<T>::operator*(const	Set&	set)	const	{	

		return	merge(*this,	set,	false,	true,	false);	

}	

In	case	of	difference,	only	addLeft	is	true,	which	means	that	only	the	values
present	in	the	left-hand	set,	but	not	in	both	the	sets	or	the	right-hand	set	only,
shall	be	included	in	the	difference	set:

template	<class	T>	

Set<T>	Set<T>::operator-(const	Set&	set)	const	{	

		return	merge(*this,	set,	true,	false,	false);	

}	

The	merge	method	takes	two	sets	and	the	three	Boolean	values	addLeft,	addEqual,
and	addRight.	If	addLeft	is	true,	values	present	in	the	left-hand	set	only	are	added	to
the	resulting	set,	if	addEqual	is	true,	values	present	in	both	sets	are	added,	and	if
rightAdd	is	true,	values	present	in	the	right-hand	set	only	are	added:

template	<class	T>	

Set<T>	merge(const	Set<T>&	leftSet,	const	Set<T>&	rightSet,	

													bool	addLeft,	bool	addEqual,	bool	addRight)	{	

		Set<T>	result;	

		Set<T>::Iterator	leftIterator	=	leftSet.begin(),	

																			rightIterator	=	rightSet.begin();	

The	while	statement	keeps	iterating	while	there	are	values	left	in	both	the	left-
hand	set	and	right-hand	set:

while	((leftIterator	!=	leftSet.end())	&&	

									(rightIterator	!=	rightSet.end()))	{	

If	the	left-hand	value	is	smaller,	it	is	added	to	the	resulting	set	if	addLeft	is	true.
Then	the	iterator	for	the	left-hand	set	is	incremented:

if	(*leftIterator	<	*rightIterator)	{	

						if	(addLeft)	{	

								result.add(*leftIterator);	

						}	

	

						++leftIterator;	

				}	

If	the	right-hand	value	is	smaller,	it	is	added	to	the	resulting	set	if	addRight	is	true.
Then	the	iterator	for	the	right-hand	set	is	incremented:

else	if	(*leftIterator	>	*rightIterator)	{	

						if	(addRight)	{	

								result.add(*rightIterator);	

						}	

	

						++rightIterator;	

				}	

Finally,	if	the	values	are	equal,	one	of	them	(but	not	both,	since	there	are	no
duplicates	in	a	set)	is	added	and	both	iterators	are	incremented:

else	{	

						if	(addEqual)	{	

								result.add(*leftIterator);	

						}	

	

						++leftIterator;	

						++rightIterator;	

				}	

		}	

If	addLeft	is	true,	all	remaining	values	of	the	left-hand	set,	if	any,	are	added	to	the
resulting	set:

if	(addLeft)	{	

				while	(leftIterator	!=	leftSet.end())	{	

						result.add(*leftIterator);	

						++leftIterator;	

				}	

		}	

If	addRight	is	true,	all	remaining	values	of	the	right-hand	set,	if	any,	are	added	to

the	resulting	set:

if	(addRight)	{	

				while	(rightIterator	!=	rightSet.end())	{	

						result.add(*rightIterator);	

						++rightIterator;	

				}	

		}	

Finally,	the	resulting	set	is	returned	using	the	following:

return	result;	

}	

When	performing	the	union	operator	to	this	set	and	another	set,	we	simply	call
the	addition	operator.	Note	that	we	return	our	own	object	by	using	the	this
pointer:

template	<class	T>	

Set<T>&	Set<T>::operator+=(const	Set&	set)	{	

	*this	=	*this	+	set;	

		return	*this;	

}	

In	the	same	way,	we	call	the	multiplication	and	subtraction	operators	when
performing	intersection	and	difference	on	this	set	and	another	set.	Look	at	the
following	example:

template	<class	T>	

Set<T>&	Set<T>::operator*=(const	Set&	set)	{	

	*this	=	*this	*	set;	

		return	*this;	

}	

	

template	<class	T>	

Set<T>&	Set<T>::operator-=(const	Set&	set)	{	

	*this	=	*this	-	set;	

		return	*this;	

}	

When	reading	a	set,	the	number	of	values	of	the	set	is	input,	and	then	the	values
themselves	are	input.	This	function	is	very	similar	to	its	counterpart	in	the
LinkedList	class.	However,	in	order	to	avoid	duplicates,	we	call	the	compound
addition	operator	(+=)	instead	of	the	add	method:

template	<class	T>	

istream&	operator>>(istream&	inStream,	Set<T>&	set)	{	

		int	size;	

		inStream	>>	size;	

	

		for	(int	count	=	0;	count	<	size;	++count)	{	

				T	value;	

				inStream	>>	value;	

				set	+=	value;	

		}	

	

		return	inStream;	

}	

When	writing	a	set	we	enclose	the	value	in	brackets	("{"	and	"}")	instead	of
squares	("["	and	"]"),	as	in	the	list	case:

template	<class	T>	

ostream&	operator<<(ostream&	outStream,	const	Set<T>&	set)	{	

		outStream	<<	"{";	

		bool	first	=	true;	

	

		for	(const	T&	value	:	set)	{	

				outStream	<<	(first	?	""	:	",")	<<	value;	

				first	=	false;	

		}	

	

		outStream	<<	"}";	

		return	outStream;	

}	

We	test	the	set	by	letting	the	user	input	two	sets,	which	we	iterate	manually	with
iterators	and	automatically	with	the	for	statement.	We	also	evaluate	the	union,
intersection,	and	difference	between	the	sets.

Main.cpp:

#include	<IOStream>	

using	namespace	std;	

	

#include	"..\ListAdvanced\List.h"	

#include	"Set.h"	

	

void	main()	{	

		Set<double>	s,	t;	

		cin	>>	s	>>	t;	

	

		cout	<<	endl	<<	"s:	"	<<	s	<<	endl;	

		cout	<<	"t:	"	<<	t	<<	endl;	

	

		cout	<<	endl	<<	"s:	";	

		for	(double	value	:	s)	{	

				cout	<<	value	<<	"	";	

		}	

	

		cout	<<	endl	<<	"t:	";	

		for	(Set<double>::Iterator	iterator	=	t.begin();	

							iterator	!=	t.end();	++iterator)	{	

				cout	<<	*iterator	<<	"	";	

		}	

	

		cout	<<	endl	<<	endl	<<	"union:	"	<<	(s	+	t)	<<	endl;	

		cout	<<	"intersection:	"	<<	(s	*t)	<<	endl;	

		cout	<<	"difference:	"	<<	(s	-	t)	<<	endl	<<	endl;	

}	

When	we	execute	the	program,	the	output	is	displayed	in	a	command	window:

Advanced	searching	and	sorting

	

We	looked	at	linear	search	in	the	earlier	section.	In	this	section,	we	will	look	at
binary	search.	The	binary	search	algorithm	looks	for	the	value	in	the	middle	of
the	list,	and	then	performs	the	search	with	half	of	the	list.	In	this	way,	it	has
O(log2n)	since	it	splits	the	list	in	half	in	each	iteration.

Search.h:

template	<class	ListType,	class	ValueType>	int	binarySearch(const	ValueType&	

value,	const	ListType&	list)	{	

		ListType::Iterator*	positionBuffer	=	

				new	ListType::Iterator[list.size()];	

		int	index	=	0;	

		for	(ListType::Iterator	position	=	list.begin();	position	!=	list.end();	

++position)	{	

				positionBuffer[index++]	=	position;	}	

	

		int	minIndex	=	0,	maxIndex	=	list.size()	-	1;	

		while	(minIndex	<=	maxIndex)	{	

				int	middleIndex	=	(maxIndex	+	minIndex)	/	2;	ListType::Iterator	iterator	=	

positionBuffer[middleIndex];	const	ValueType&	middleValue	=	*iterator;	

				if	(value	==	middleValue)	{	

						return	middleIndex;	

				}	

				else	if	(value	<	middleValue)	{	

						maxIndex	=	middleIndex	-	1;	}	

				else	{	

						minIndex	=	middleIndex	+	1;	}	

		}	

	

		return	-1;	

}	

	

	

The	merge	sort	algorithm

	

The	merge	sort	algorithm	divides	the	list	into	two	equal	sublists,	sorts	the
sublists	by	recursive	calls	(a	recursive	call	occurs	when	a	method	or	function
calls	itself),	and	then	merges	the	sorted	sublist	in	a	way	similar	to	the	merge
method	of	the	extended	version	of	the	Set	class	in	the	earlier	section.

Sort.h:

template	<class	ListType,	class	ValueType>	void	mergeSort(ListType&	list)	{	

		int	size	=	list.size();	

		if	(size	>	1)	{	

				int	middle	=	list.size()	/	2;	ListType::Iterator	iterator	=	list.begin();	

				ListType	leftList;	

				for	(int	count	=	0;	count	<	middle;	++count)	{	

						leftList.add(*iterator);	++iterator;	

				}	

	

				ListType	rightList;	

				for	(;	iterator	!=	list.end();	++iterator)	{	

						rightList.add(*iterator);	}	

	

				mergeSort<ListType,	ValueType>(leftList);	mergeSort<ListType,ValueType>

(rightList);	

				ListType	resultList;	

				merge<ListType,ValueType>(leftList,	rightList,	resultList);	list	=	

resultList;	

		}	

}	

The	merge	method	of	this	section	is	reusing	the	idea	of	merge	in	the	extended	Set
class	earlier	in	this	chapter:	template	<class	ListType,	class	ValueType>	void
merge(ListType&	leftList,	ListType&	rightList,	ListType&	result)	{

ListType::Iterator	leftPosition	=	leftList.begin();
ListType::Iterator	rightPosition	=	rightList.begin();

while	((leftPosition	!=	leftList.end())	&&	(rightPosition
!=	rightList.end()))	{

if	(*leftPosition	<	*rightPosition)	{

result.add(*leftPosition);	++leftPosition;

}

else	{

result.add(*rightPosition);	++rightPosition;

}

}

	

while	(leftPosition	!=	leftList.end())	{

result.add(*leftPosition);	++leftPosition;

}

	

while	(rightPosition	!=	rightList.end())	{

result.add(*rightPosition);	++rightPosition;

}

}

	

	

The	quick	sort	algorithm

	

The	quick	sort	algorithm	selects	the	first	value	(called	the	pivot	value)	and	then
places	all	values	less	than	the	pivot	value	in	the	smaller	sublist,	and	all	values
greater	or	equal	to	the	pivot	value	in	the	larger	sublist.	Then	the	two	lists	are
sorted	by	recursive	calls	and	then	just	concatenated	together.	Let's	look	at	the
following	example:	template	<class	ListType,	class	ValueType>	void
quickSort(ListType&	list)	{

if	(list.size()	>	1)	{

ListType	smaller,	larger;	ValueType	pivotValue	=
*list.begin();

ListType::Iterator	position	=	list.begin();	++position;

	

for	(;position	!=	list.end();	++position)	{

if	(*position	<	pivotValue)	{

smaller.add(*position);	}

else	{

larger.add(*position);	}

}

	

quickSort<ListType,ValueType>(smaller);
quickSort<ListType,ValueType>(larger);	list	=	smaller;

list.add(pivotValue);	list.add(larger);

}

}

The	merge	sort	algorithm	is	balanced	in	a	way	that	it	always	divides	the	list	into
two	equal	parts	and	sorts	them.	The	algorithm	must	iterate	through	the	list	once
to	divide	them	into	two	sublists	and	sorts	the	sublists.	Given	a	list	of	values,	it
must	iterate	through	its	n	values	and	divide	the	list	log2n	times.	Therefore,	merge
sort	O(n	log2n).

The	quick	sort	algorithm,	on	the	other	hand,	is,	in	the	worst	case	(if	the	list	is
already	sorted),	no	better	than	insert,	select,	or	bubble	sort:	O(n2).	However,	it	is
fast	in	the	average	case.

	

	

	

Summary
In	this	chapter,	we	have	created	classes	for	the	abstract	datatypes	list	and	set.	A
list	is	an	ordered	structure	with	a	beginning	and	an	end,	while	a	set	is	an
unordered	structure.

We	started	off	with	rather	simple	versions	where	the	list	had	separate	classes	for
the	cell	and	iterator.	Then	we	created	a	more	advanced	version	where	we	used
templates	and	operator	overloading.	We	also	placed	the	cell	and	iterator	classes
inside	the	list	class.	Finally,	we	introduced	overloaded	reference	methods.

In	the	same	way,	we	started	by	creating	a	rather	simple	and	ineffective	version	of
the	set	class.	Then	we	created	a	more	advanced	version	with	templates	and
operator	overloading,	where	we	stored	the	values	in	order	to	be	able	to	perform
the	union,	intersection,	and	difference	operations	in	a	more	effective	way.

Moreover,	we	have	implemented	the	linear	and	binary	search	algorithms.	The
linear	search	works	on	every	unordered	sequence,	but	it	is	rather	ineffective.	The
binary	search	is	more	effective,	but	it	only	works	on	ordered	sequences.

Finally,	we	looked	into	sorting	algorithms.	We	started	with	the	simple	but	rather
ineffective	insert,	select,	and	bubble	sort	algorithms.	Then	we	continued	with	the
more	advanced	and	effective	merge	and	quick	sort	algorithms.

In	the	next	chapter,	we	will	start	to	build	a	library	management	system.

	

Building	a	Library	Management
System
In	this	chapter,	we	study	a	system	for	the	management	of	a	library.	We	continue
to	develop	C++	classes,	as	in	the	previous	chapters.	However,	in	this	chapter,	we
develop	a	more	real-world	system.	The	library	system	of	this	chapter	can	be	used
by	a	real	library.

The	library	is	made	up	of	sets	of	books	and	customers.	The	books	keep	track	of
which	customers	have	borrowed	or	reserved	them.	The	customers	keep	track	of
which	books	they	have	borrowed	and	reserved.

The	main	idea	is	that	the	library	holds	a	set	of	books	and	a	set	of	customers.
Each	book	is	marked	as	borrowed	or	unborrowed.	If	it	is	borrowed,	the	identity
number	of	the	customer	that	borrowed	the	book	is	stored.	Moreover,	a	book	can
also	be	reserved	by	one	or	several	customers.	Therefore,	each	book	also	holds	a
list	of	identity	numbers	for	the	customers	that	have	reserved	the	book.	It	must	be
a	list	rather	than	a	set,	since	the	book	shall	be	loaned	to	the	customers	in	the
order	that	they	reserved	the	book.

Each	customer	holds	two	sets	with	the	identity	numbers	of	the	book	they	have
borrowed	and	reserved.	In	both	cases,	we	use	sets	rather	than	lists	since	the	order
they	have	borrowed	or	reserved	the	books	does	not	matter.

In	this	chapter,	we	will	cover	the	following	topics:

Working	with	classes	for	books	and	customers	that	constitute	a	small
database	with	integer	numbers	as	keys.
Working	with	standard	input	and	output	streams,	where	we	write
information	about	the	books	and	customers,	and	prompt	the	user	for	input.
Working	with	file	handling	and	streams.	The	books	and	customers	are
written	and	read	with	standard	C++	file	streams.
Finally,	we	work	with	the	generic	classes	set	and	list	from	the	C++
standard	library.

The	Book	class
We	have	three	classes:	Book,	Customer,	and	Library:

The	Book	class	keeps	track	of	a	book.	Each	book	has	an	author	and	a	title,
and	a	unique	identity	number.
The	Customer	class	keeps	track	of	a	customer.	Each	customer	has	a	name	and
an	address,	and	a	unique	identity	number.
The	Library	class	keeps	track	of	the	library	operations,	such	as	adding	and
removing	books	and	customers,	borrowing,	returning,	and	reserving	books,
as	well	as	listing	books	and	customers.
The	main	function	simply	creates	an	object	of	the	Library	class.

Moreover,	each	book	holds	information	on	whether	it	is	borrowed	at	the
moment.	If	it	is	borrowed,	the	identity	number	of	the	customer	who	has
borrowed	the	book	is	also	stored.	Each	book	also	holds	a	list	of	reservations.	In
the	same	way,	each	customer	holds	sets	of	books	currently	borrowed	and
reserved.

The	Book	class	holds	two	constructors.	The	first	constructor	is	a	default
constructor	and	is	used	when	reading	books	from	a	file.	The	second	constructor
is	used	when	adding	a	new	book	to	the	library.	It	takes	the	name	of	the	author
and	the	title	of	the	book	as	parameters.

Book.h

class	Book	{	

		public:	

				Book(void);	

				Book(const	string&	author,	const	string&	title);	

The	author	and	title	methods	simply	return	the	author	and	title	of	the	book:

const	string&	author(void)	const	{	return	m_author;	}	

				const	string&	title(void)	const	{	return	m_title;	}	

The	books	of	the	library	can	be	read	from	and	written	to	a	file:

void	read(ifstream&	inStream);	

				void	write(ofstream&	outStream)	const;	

A	book	can	be	borrowed,	reserved,	or	returned.	A	reservation	can	also	be
removed.	Note	that	when	a	book	is	borrowed	or	reserved,	we	need	to	provide	the
identity	number	of	the	customer.	However,	that	is	not	necessary	when	returning	a
book,	since	the	Book	class	keeps	track	of	the	customer	that	has	currently	borrowed
the	book:

void	borrowBook(int	customerId);	

				int	reserveBook(int	customerId);	

				void	unreserveBookation(int	customerId);	

				void	returnBook();	

When	the	book	is	borrowed,	the	customer's	identity	number	is	stored,	which	is
returned	by	bookId:

int	bookId(void)	const	{	return	m_bookId;	}	

The	borrowed	method	returns	true	if	the	book	is	borrowed	at	the	moment.	In	that
case,	customerId	returns	the	identity	number	of	the	customer	who	has	borrowed	the
book:

bool	borrowed(void)	const	{	return	m_borrowed;	}	

				int	customerId(void)	const	{	return	m_customerId;	}	

A	book	can	be	reserved	by	a	list	of	customers,	and	reservationList	returns	that	list:

list<int>&	reservationList(void)	{	return	m_reservationList;	}	

The	MaxBookId	field	is	static,	which	means	that	it	is	common	to	all	objects	of	the
class:

static	int	MaxBookId;	

The	output	stream	operator	writes	the	information	of	the	book:

friend	ostream&	operator<<(ostream&	outStream,	

																															const	Book&	book);	

The	m_borrowed	field	is	true	when	the	book	is	borrowed.	The	identity	of	the	book
and	potential	borrower	are	stored	in	m_bookId	and	m_customerId:

private:	

						bool	m_borrowed	=	false;	

						int	m_bookId,	m_customerId;	

The	name	of	the	author	and	the	title	of	the	book	are	stored	in	m_author	and	m_title:

string	m_author,	m_title;	

More	than	one	customer	can	reserve	a	book.	When	they	do,	their	identities	are
stored	in	m_reservationList.	It	is	a	list	rather	than	a	set	because	the	reservations	are
stored	in	order.	When	a	book	is	returned,	the	next	customer,	in	reservation	order,
borrows	the	book:

list<int>	m_reservationList;	

						};	

In	this	chapter,	we	use	the	generic	set,	map,	and	list	classes	from	the	C++	standard
library.	Their	specifications	are	stored	in	the	Set,	Map,	and	List	header	files.	The	set
and	list	classes	hold	a	set	and	a	list	similar	to	our	set	and	list	classes	in	the
previous	chapter.	A	map	is	a	structure	where	each	value	is	identified	by	a	unique
key	in	order	to	provide	fast	access.

Book.cpp

#include	<Set>	

				#include	<Map>	

				#include	<List>	

				#include	<String>	

				#include	<FStream>	

				using	namespace	std;	

	

				#include	"Book.h"	

				#include	"Customer.h"	

				#include	"Library.h"	

Since	MaxBookId	is	static,	we	initialize	it	with	the	double	colon	(::)	notation.	Every
static	field	needs	to	be	initialized	outside	the	class	definition:

int	Book::MaxBookId	=	0;	

The	default	constructor	does	nothing.	It	is	used	when	reading	from	a	file.
Nevertheless,	we	still	must	have	a	default	constructor	to	create	objects	of	the	Book
class:

Book::Book(void)	{	

						//	Empty.	

				}	

When	a	new	book	is	created,	it	is	assigned	a	unique	identity	number.	The
identity	number	is	stored	in	MaxBookId,	which	is	increased	for	each	new	Book	object:

Book::Book(const	string&	author,	const	string&	title)	

					:m_bookId(++MaxBookId),	

						m_author(author),	

						m_title(title)	{	

						//	Empty.	

				}	

Writing	the	book

	

A	book	is	written	to	a	stream	in	a	similar	manner.	However,	instead	of	read	we
use	write.	They	work	in	a	similar	manner:	void	Book::write(ofstream&
outStream)	const	{

outStream.write((char*)	&m_bookId,	sizeof	m_bookId);

When	reading	a	string	we	use	getline	instead	of	the	stream	operator,	since	the
stream	operator	reads	one	word	only,	while	getline	reads	several	words.	When
writing	to	a	stream,	however,	we	can	use	the	stream	operator.	It	does	not	matter
whether	the	name	and	title	are	made	up	of	one	or	several	words:	outStream	<<
m_author	<<	endl;	outStream	<<	m_title	<<	endl;

outStream.write((char*)	&m_borrowed,	sizeof
m_borrowed);	outStream.write((char*)	&m_customerId,
sizeof	m_customerId);

Similar	to	the	reading	case	here,	we	first	write	the	number	of	reservations	in	the
list.	Then	we	write	the	reservation	identities	themselves:	{	int
reservationListSize	=	m_reservationList.size();	outStream.write((char*)
&reservationListSize,	sizeof	reservationListSize);

for	(int	customerId	:	m_reservationList)	{

outStream.write((char*)	&customerId,	sizeof
customerId);	}

}

}

	

	

Reading	the	book
When	reading	any	kind	of	value	(except	strings)	from	a	file,	we	use	the	read
method,	which	reads	a	fixed	number	of	bytes.	The	sizeof	operator	gives	us	the
size,	in	bytes,	of	the	m_bookId	field.	The	sizeof	operator	can	also	be	used	to	find	the
size	of	a	type.	For	instance,	sizeof	(int)	gives	us	the	size	in	bytes	of	a	value	of	the
type	int.	The	type	must	be	enclosed	in	parentheses:	void	Book::read(ifstream&
inStream)	{	
inStream.read((char*)	&m_bookId,	sizeof	m_bookId);

When	reading	string	values	from	a	file,	we	use	the	C++	standard	function	getline
to	read	the	name	of	the	author	and	the	title	of	the	book.	It	would	not	work	to	use
the	input	stream	operator	if	the	name	is	made	up	of	more	than	one	word.	If	the
author	or	title	is	made	up	of	more	than	one	word,	only	the	first	word	would	be
read.	The	remaining	words	would	not	be	read:	getline(inStream,	m_author);
getline(inStream,	m_title);

Note	that	we	use	the	read	method	to	read	the	value	of	the	m_borrowed	field,	too,
even	though	it	holds	the	bool	type	rather	than	int:

inStream.read((char*)	&m_borrowed,	sizeof	m_borrowed);

				inStream.read((char*)	&m_customerId,	sizeof	m_customerId);

When	reading	the	reservation	list,	we	first	read	the	number	of	reservations	in	the
list.	Then	we	read	the	reservation	identity	numbers	themselves:

				{	int	reservationListSize;

						inStream.read((char*)	&reservationListSize,

																		sizeof	reservationListSize);

						for	(int	count	=	0;	count	<	reservationListSize;	++count)	{

								int	customerId;

								inStream.read((char*)	&customerId,	sizeof	customerId);

								m_reservationList.push_back(customerId);

						}

				}

		}	

Borrowing	and	reserving	the	book

	

When	the	book	is	borrowed,	m_borrowed	becomes	true	and	m_customerId	is	set	to	the
identity	number	of	the	customer	that	borrowed	the	book:	void
Book::borrowBook(int	customerId)	{

m_borrowed	=	true;

m_customerId	=	customerId;	}

It	is	a	little	bit	different	when	the	book	is	reserved.	While	a	book	can	be
borrowed	by	one	customer	only,	it	can	be	reserved	by	more	than	one	customer.
The	identity	number	of	the	customer	is	added	to	m_reservationList.	The	size	of	the
list	is	returned	for	the	caller	to	know	their	position	in	the	reservation	list:	int
Book::reserveBook(int	customerId)	{

m_reservationList.push_back(customerId);	return
m_reservationList.size();	}

When	the	book	is	returned,	we	just	set	m_borrowed	to	false.	We	do	not	need	to	set
m_customerId	to	anything	specific.	It	is	not	relevant	as	long	as	the	book	is	not
borrowed:	void	Book::returnBook()	{

m_borrowed	=	false;

}

A	customer	can	remove	themselves	from	the	reservation	list.	In	that	case,	we	call

remove	on	m_reservationList:	void	Book::unreserveBookation(int	customerId)	{

m_reservationList.remove(customerId);	}

	

	

Displaying	the	book

	

The	output	stream	operator	writes	the	title	and	author	of	the	book.	If	the	book	is
borrowed,	the	customer's	name	is	written,	and	if	the	reservation	list	is	full,	the
reservation	customers'	names	are	written:	ostream&	operator<<(ostream&
outStream,	const	Book&	book)	{

outStream	<<	"""	<<	book.m_title	<<	""	by	"	<<
book.m_author;

We	use	the	double-colon	notation	(::)	when	accessing	a	static	field,	such	as
s_customerMap	in	Library:	if	(book.m_borrowed)	{

outStream	<<	endl	<<	"	Borrowed	by:	"

<<	Library::s_customerMap[book.m_customerId].name()
<<	".";	}

	

if	(!book.m_reservationList.empty())	{

outStream	<<	endl	<<	"	Reserved	by:	";

bool	first	=	true;

for	(int	customerId	:	book.m_reservationList)	{

outStream	<<	(first	?	""	:	",")	<<
Library::s_customerMap[customerId].name();	first	=
false;

}

	

outStream	<<	".";	}

	

return	outStream;

}

	

	

The	Customer	class
The	Customer	class	keeps	track	of	a	customer.	It	holds	sets	of	the	books	the
customer	currently	has	borrowed	and	reserved.

Customer.h

class	Customer	{	

		public:	

				Customer(void);	

				Customer(const	string&	name,	const	string&	address);	

	

				void	read(ifstream&	inStream);	

				void	write(ofstream&	outStream)	const;	

	

				void	borrowBook(int	bookId);	

				void	reserveBook(int	bookId);	

				void	returnBook(int	bookId);	

				void	unreserveBook(int	bookId);	

The	hasBorrowed	method	returns	true	if	the	customer	has	at	least	one	book
borrowed	at	the	moment.	In	the	Library	class	in	the	next	section,	it	is	not	possible
to	remove	a	customer	who	currently	has	borrowed	books:

bool	hasBorrowed(void)	const	{	return	!m_loanSet.empty();	}	

	

				const	string&	name(void)	const	{return	m_name;}	

				const	string&	address(void)	const	{return	m_address;}	

				int	id(void)	const	{return	m_customerId;}	

In	the	same	way,	as	in	the	Book	class,	which	was	used	previously,	we	use	the	static
field	MaxCustomerId	to	count	the	identity	number	of	the	customers.	We	also	use	the
output	stream	operator	to	write	information	about	the	customer:

static	int	MaxCustomerId;	

				friend	ostream&	operator<<(ostream&	outStream,	

																															const	Customer&	customer);	

Each	customer	has	a	name,	address,	and	unique	identity	number.	The	sets
m_loanSet	and	m_reservationSet	hold	the	identity	numbers	of	the	books	currently
borrowed	and	reserved	by	the	customer.	Note	that	we	use	sets	instead	of	lists,
since	the	order	of	the	books	borrowed	and	reserved	does	not	matter:

private:	

						int	m_customerId;	

						string	m_name,	m_address;	

						set<int>	m_loanSet,	m_reservationSet;	

		};	

Customer.cpp

#include	<Set>	

				#include	<Map>	

				#include	<List>	

				#include	<String>	

				#include	<FStream>	

				using	namespace	std;	

	

				#include	"Book.h"	

				#include	"Customer.h"	

				#include	"Library.h"	

Since	MaxCustomerId	is	a	static	field,	it	needs	to	be	defined	outside	the	class:

int	Customer::MaxCustomerId;	

The	default	constructor	is	used	when	loading	objects	from	a	file	only.	Therefore,
there	is	no	need	to	initialize	the	fields:

Customer::Customer(void)	{	

						//	Empty.	

				}	

The	second	constructor	is	used	when	creating	new	book	objects.	We	use	the
MaxCustomerId	field	to	initialize	the	identity	number	of	the	customer;	we	also
initialize	their	name	and	address:

Customer::Customer(const	string&	name,	const	string&	address)	

					:m_customerId(++MaxCustomerId),	

						m_name(name),	

						m_address(address)	{	

						//	Empty.	

				}	

Reading	the	customer	from	a	file

	

The	read	method	reads	the	information	on	a	customer	from	the	file	stream:	void
Customer::read(ifstream&	inStream)	{

inStream.read((char*)	&m_customerId,	sizeof
m_customerId);

In	the	same	way,	as	in	the	read	method	of	the	Book	class,	we	have	to	use	the	getline
function	instead	of	the	input	stream	operator,	since	the	input	stream	operator
would	read	one	word	only:	getline(inStream,	m_name);	getline(inStream,
m_address);

{	int	loanSetSize;

inStream.read((char*)	&loanSetSize,	sizeof	loanSetSize);

for	(int	count	=	0;	count	<	loanSetSize;	++count)	{

int	bookId;

inStream.read((char*)	&bookId,	sizeof	bookId);
m_loanSet.insert(bookId);	}

}

	

{	int	reservationListSize;	inStream.read((char*)
&reservationListSize,	sizeof	reservationListSize);

for	(int	count	=	0;	count	<	reservationListSize;	++count)
{

int	bookId;

inStream.read((char*)	&bookId,	sizeof	bookId);
m_loanSet.insert(bookId);	}

}

}

	

	

Writing	the	customer	to	a	file

	

The	write	method	writes	information	on	the	customer	to	the	stream	in	the	same
way	as	in	the	Book	class	previously:	void	Customer::write(ofstream&	outStream)
const	{

outStream.write((char*)	&m_customerId,	sizeof
m_customerId);	outStream	<<	m_name	<<	endl;
outStream	<<	m_address	<<	endl;

When	writing	a	set,	we	first	write	the	size	of	the	set,	and	then	the	individual
values	of	the	set:	{	int	loanSetSize	=	m_loanSet.size();	outStream.write((char*)
&loanSetSize,	sizeof	loanSetSize);

for	(int	bookId	:	m_loanSet)	{

outStream.write((char*)	&bookId,	sizeof	bookId);	}

}

	

{	int	reservationListSize	=	m_reservationSet.size();
outStream.write((char*)	&reservationListSize,	sizeof
reservationListSize);

for	(int	bookId	:	m_reservationSet)	{

outStream.write((char*)	&bookId,	sizeof	bookId);	}

}

}

	

	

Borrowing	and	reserving	a	book

	

When	a	customer	borrows	a	book,	it	is	inserted	into	the	loan	set	of	the	customer:
void	Customer::borrowBook(int	bookId)	{

m_loanSet.insert(bookId);	}

In	the	same	way,	when	a	customer	reserves	a	book,	it	is	inserted	into	the
reservation	set	of	the	customer:	void	Customer::reserveBook(int	bookId)	{

m_reservationSet.insert(bookId);	}

When	a	customer	returns	or	unreserves	a	book,	it	is	removed	from	the	loan	set	or
reservation	set:	void	Customer::returnBook(int	bookId)	{

m_loanSet.erase(bookId);

}

	

void	Customer::unreserveBook(int	bookId)	{

m_reservationSet.erase(bookId);	}

	

	

Displaying	the	customer

	

The	output	stream	operator	writes	the	name	and	address	of	the	customer.	If	the
customer	has	borrowed	or	reserved	books,	they	are	written	too:	ostream&
operator<<(ostream&	outStream,	const	Customer&	customer){

outStream	<<	customer.m_customerId	<<	".	"	<<
customer.m_name	<<	",	"	<<	customer.m_address	<<	".";

if	(!customer.m_loanSet.empty())	{

outStream	<<	endl	<<	"	Borrowed	books:	";

bool	first	=	true;	for	(int	bookId	:	customer.m_loanSet)	{

outStream	<<	(first	?	""	:	",")	<<
Library::s_bookMap[bookId].author();	first	=	false;	}

}

	

if	(!customer.m_reservationSet.empty())	{

outStream	<<	endl	<<	"	Reserved	books:	";

bool	first	=	true;	for	(int	bookId	:
customer.m_reservationSet)	{

outStream	<<	(first	?	""	:	",")	<<
Library::s_bookMap[bookId].title();	first	=	false;	}

}

	

return	outStream;

}

	

	

The	Library	class
Finally,	the	Library	class	handles	the	library	itself.	It	performs	a	set	of	tasks
regarding	borrowing	and	returning	books.

Library.h

class	Library	{	

		public:	

				Library();	

	

		private:	

				static	string	s_binaryPath;	

The	lookupBook	method	looks	up	a	book	by	the	author	and	title.	It	returns	true	if
the	book	is	found.	If	it	is	found,	its	information	(an	object	of	the	Book	class)	is
copied	into	the	object	pointed	at	by	bookPtr:

bool	lookupBook(const	string&	author,	const	string&	title,	

																				Book*	bookPtr	=	nullptr);	

In	the	same	way,	lookupCustomer	looks	up	a	customer	by	the	name	and	address.	If
the	customer	is	found,	true	is	returned,	and	the	information	is	copied	into	the
object	pointed	at	by	customerPtr:

bool	lookupCustomer(const	string&	name,	const	string&	address,	

																								Customer*	customerPtr	=	nullptr);	

The	application	of	this	chapter	revolves	around	the	following	methods.	They
perform	the	tasks	of	the	library	system.	Each	of	the	methods	will	prompt	the	user
for	input	and	then	perform	a	task,	such	as	borrowing	or	returning	a	book.

The	following	methods	perform	one	task	each,	which	are	looking	up	the
information	about	a	book	or	a	customer,	adding	or	deleting	a	book,	listing	the
books,	adding	and	deleting	books	from	the	library,	and	borrowing,	reserving,	and
returning	books:

void	addBook(void);	

				void	deleteBook(void);	

				void	listBooks(void);	

				void	addCustomer(void);	

				void	deleteCustomer(void);	

				void	listCustomers(void);	

				void	borrowBook(void);	

				void	reserveBook(void);	

				void	returnBook(void);	

The	load	and	save	methods	are	called	at	the	beginning	and	the	end	of	the
execution:

void	load();		

				void	save();	

There	are	two	maps	holding	the	books	and	the	customers	of	the	library.	As
mentioned	previously,	a	map	is	a	structure	where	each	value	is	identified	by	a
unique	key	in	order	to	provide	fast	access.	The	unique	identity	numbers	of	the
books	and	customers	are	the	keys:

public:	

				static	map<int,Book>	s_bookMap;	

				static	map<int,Customer>	s_customerMap;	

};	

Library.cpp

#include	<Set>	

#include	<Map>	

#include	<List>	

#include	<String>	

#include	<FStream>	

#include	<IOStream>	

#include	<Algorithm>	

using	namespace	std;	

	

#include	"Book.h"	

#include	"Customer.h"	

#include	"Library.h"	

	

map<int,Book>	Library::s_bookMap;	

map<int,Customer>	Library::s_customerMap;	

Between	executions,	the	library	information	is	stored	in	the	Library.bin	file	on	the
hard	drive.	Note	that	we	use	two	backslashes	to	represent	one	backslash	in	the
string.	The	first	backslash	indicates	that	the	character	is	a	special	character,	and
the	second	backslash	states	that	it	is	a	backslash:

string	Library::s_binaryPath("Library.bin");	

The	constructor	loads	the	library,	presents	a	menu,	and	iterates	until	the	user
quits.	Before	the	execution	is	finished,	the	library	is	saved:

Library::Library(void)	{	

Before	the	menu	is	presented,	the	library	information	(books,	customers,	loans,
and	reservations)	is	loaded	from	the	file:

load();	

The	while	statement	continues	as	long	as	quit	is	true.	It	remains	false	until	the
user	chooses	the	Quit	option	from	the	menu:

bool	quit	=	false;	

		while	(!quit)	{	

				cout	<<	"1.	Add	Book"	<<	endl	

									<<	"2.	Delete	Book"	<<	endl	

									<<	"3.	List	Books"	<<	endl	

									<<	"4.	Add	Customer"	<<	endl	

									<<	"5.	Delete	Customer"	<<	endl	

									<<	"6.	List	Customers"	<<	endl	

									<<	"7.	Borrow	Book"	<<	endl	

									<<	"8.	Reserve	Book"	<<	endl	

									<<	"9.	Return	Book"	<<	endl	

									<<	"0.	Quit"	<<	endl	

									<<	":	";	

The	user	inputs	an	integer	value	from	the	console	input	stream	(cin),	which	is
stored	in	choice:

int	choice;	

				cin	>>	choice;	

We	use	a	switch	statement	to	perform	the	requested	task:

switch	(choice)	{	

						case	1:	

								addBook();	

								break;	

	

						case	2:	

								deleteBook();	

								break;	

	

						case	3:	

								listBooks();	

								break;	

	

						case	4:	

								addCustomer();	

								break;	

	

						case	5:	

								deleteCustomer();	

								break;	

	

						case	6:	

								listCustomers();	

								break;	

	

						case	7:	

								borrowBook();	

								break;	

	

						case	8:	

								reserveBook();	

								break;	

	

						case	9:	

								returnBook();	

								break;	

	

						case	0:	

								quit	=	true;	

								break;	

				}	

	

				cout	<<	endl;	

		}	

Before	the	program	is	finished,	the	library	information	is	saved:

save();	

				}	

Looking	up	books	and	customers

	

The	lookupBook	method	iterates	through	the	book	map.	It	returns	true	if	a	book
with	the	author	and	title	exists.	If	the	book	exists,	its	information	is	copied	to	the
object	pointed	at	by	the	bookPtr	parameter	and	true	is	returned,	as	long	as	the
pointer	is	not	null.	If	the	book	does	not	exist,	false	is	returned,	and	no
information	is	copied	into	the	object:

bool	Library::lookupBook(const	string&	author,	

								const	string&	title,	Book*	bookPtr	/*	=	nullptr*/)	{	

						for	(const	pair<int,Book>&	entry	:	s_bookMap)	{	

								const	Book&	book	=	entry.second;	

Note	that	bookPtr	may	be	nullptr.	In	that	case,	only	true	is	returned,	and	no
information	is	written	to	the	object	pointed	at	by	bookPtr:

if	((book.author()	==	author)	&&	(book.title()	==	title))	{	

						if	(bookPtr	!=	nullptr)	{	

								*bookPtr	=	book;	

						}	

	

						return	true;	

				}	

		}	

	

		return	false;	

}	

In	the	same	way,	lookupCustomer	iterates	through	the	customer	map	and	returns
true,	as	well	as	copies	the	customer	information	to	a	Customer	object	if	a	customer
with	the	name	exists:

bool	Library::lookupCustomer(const	string&	name,	

							const	string&	address,	Customer*	customerPtr	/*=nullptr*/){	

						for	(const	pair<int,Customer>&	entry	:	s_customerMap)	{	

								const	Customer&	customer	=	entry.second;	

Also,	in	this	case,	customerPtr	may	be	nullptr.	In	that	case,	only	true	is	returned.
When	adding	a	new	customer,	we	would	like	to	know	if	there	already	is	a
customer	with	the	same	name	and	address:

if	((customer.name()	==	name)	&&	

								(customer.address()	==	address))	{	

						if	(customerPtr	!=	nullptr)	{	

								*customerPtr	=	customer;	

						}	

	

						return	true;	

				}	

		}	

	

		return	false;	

}	

	

	

Adding	a	book

	

The	addBook	method	prompts	the	user	for	the	name	and	title	of	the	new	book:	void
Library::addBook(void)	{

string	author;

cout	<<	"Author:	";	cin	>>	author;

string	title;

cout	<<	"Title:	";	cin	>>	title;

If	a	book	with	the	author	and	title	already	exists,	an	error	message	is	displayed:	if
(lookupBook(author,	title))	{

cout	<<	endl	<<	"The	book	""	<<	title	<<	""	by	"

<<	author	<<	"	already	exists."	<<	endl;	return;

}

If	the	book	does	not	already	exist,	we	create	a	new	Book	object	that	we	add	to	the
book	map:	Book	book(author,	title);	s_bookMap[book.bookId()]	=	book;	cout	<<
endl	<<	"Added:	"	<<	book	<<	endl;	}

	

	

Deleting	a	book

	

The	deleteBook	method	prompts	the	user	for	the	author	and	title	of	the	book,	and
deletes	it	if	it	exists:	void	Library::deleteBook()	{

string	author;

cout	<<	"Author:	";	cin	>>	author;

	

string	title;

cout	<<	"Title:	";

cin	>>	title;

If	the	book	does	not	exist,	an	error	message	is	displayed:	Book	book;

if	(!lookupBook(author,	title,	&book))	{

cout	<<	endl	<<	"There	is	no	book	""	<<	title	<<	""	by	"

<<	"author	"	<<	author	<<	"."	<<	endl;	return;

}

When	a	book	is	being	deleted,	we	iterate	through	all	customers	and,	for	each
customer,	return,	and	unreserve	the	book.	We	do	that	for	every	book	just	in	case
the	book	has	been	borrowed	or	reserved	by	customers.	In	the	next	chapter,	we
will	work	with	pointers,	which	allow	us	to	return	and	unreserve	books	in	a	more
effective	manner.

Note	that	when	we	iterate	through	a	map	and	obtain	each	Customer	object,	we	need
to	put	it	back	in	the	map	after	we	have	modified	the	values	of	its	fields:	for
(pair<int,Customer>	entry	:	s_customerMap)	{

Customer&	customer	=	entry.second;
customer.returnBook(book.bookId());
customer.unreserveBook(book.bookId());
s_customerMap[customer.id()]	=	customer;	}

Finally,	when	we	have	made	sure	the	book	exists,	and	when	we	have	returned
and	unreserved	it,	we	remove	it	from	the	book	map:
s_bookMap.erase(book.bookId());	cout	<<	endl	<<	"Deleted."	<<	endl;	}

	

	

Listing	the	books

	

The	listBook	method	is	quite	simple.	First,	we	check	if	the	book	map	is	empty.	If
it	is	empty,	we	write	"No	books."	If	the	book	map	is	not	empty,	we	iterate	through
it,	and	for	each	book,	we	write	its	information	to	the	console	output	stream
(cout):

void	Library::listBooks(void)	{	

						if	(s_bookMap.empty())	{	

								cout	<<	"No	books."	<<	endl;	

								return;	

						}	

	

						for	(const	pair<int,Book>&	entry	:	s_bookMap)	{	

								const	Book&	book	=	entry.second;	

								cout	<<	book	<<	endl;	

						}	

				}	

	

	

Adding	a	customer

	

The	addCustomer	method	prompts	the	user	for	the	name	and	address	of	the	new
customer:	void	Library::addCustomer(void)	{

string	name;

cout	<<	"Name:	";	cin	>>	name;

string	address;

cout	<<	"Address:	";	cin	>>	address;

If	a	customer	with	the	same	name	and	address	already	exists,	an	error	message	is
displayed:	if	(lookupCustomer(name,	address))	{

cout	<<	endl	<<	"A	customer	with	name	"	<<	name	<<	"
and	address	"	<<	address	<<	"	already	exists."

<<	endl;	return;

}

Finally,	we	create	a	new	Customer	object	that	we	add	to	the	customer	map:
Customer	customer(name,	address);	s_customerMap[customer.id()]	=	customer;
cout	<<	endl	<<	"Added."	<<	endl;	}

	

	

Deleting	a	customer

	

The	deleteCustomer	method	deletes	the	customer	if	they	exist:	void
Library::deleteCustomer(void)	{

string	name;

cout	<<	"Name:	";	cin	>>	name;

	

string	address;

cout	<<	"Address:	";	cin	>>	address;

Customer	customer;

if	(!lookupCustomer(name,	address,	&customer))	{

cout	<<	endl	<<	"There	is	no	customer	with	name	"	<<
name	<<	"	and	address	"	<<	address	<<	"."	<<	endl;
return;

}

If	the	customer	has	borrowed	at	least	one	book,	it	must	be	returned	before	the

customer	can	be	removed:	if	(customer.hasBorrowed())	{

cout	<<	"Customer	"	<<	name	<<	"	has	borrowed	at	least
"

<<	"one	book	and	cannot	be	deleted."	<<	endl;	return;

}

However,	if	the	customer	has	reserved	books,	we	just	unreserve	them	before
removing	the	customer:	for	(pair<int,Book>	entry	:	s_bookMap)	{

Book&	book	=	entry.second;
book.unreserveBookation(customer.id());
s_bookMap[book.bookId()]	=	book;	}

	

cout	<<	endl	<<	"Deleted."	<<	endl;
s_customerMap.erase(customer.id());	}

	

	

Listing	the	customers

	

The	listCustomer	method	works	in	a	way	similar	to	listBooks.	If	there	are	no
customers,	we	write	"No	Customers."	If	there	are	customers,	we	write	them	to	the
console	output	stream	(cout):

void	Library::listCustomers(void)	{	

						if	(s_customerMap.empty())	{	

								cout	<<	"No	customers."	<<	endl;	

								return;	

						}	

	

						for	(const	pair<int,Customer>&	entry	:	s_customerMap)	{	

								const	Customer&	customer	=	entry.second;	

								cout	<<	customer	<<	endl;	

						}	

				}	

	

	

Borrowing	a	book
The	borrowBook	method	prompts	the	user	for	the	author	and	title	of	the	book:

void	Library::borrowBook(void)	{	

						string	author;	

						cout	<<	"Author:	";	

						cin	>>	author;	

	

						string	title;	

						cout	<<	"Title:	";	

						cin	>>	title;	

If	a	book	with	the	author	and	title	does	not	exist,	an	error	message	is	displayed:

Book	book;	

				if	(!lookupBook(author,	title,	&book))	{	

						cout	<<	endl	<<	"There	is	no	book	""	<<	title	<<	""	by	"	

											<<	"author	"	<<	author	<<	"."	<<	endl;	

						return;	

				}	

Also,	if	the	book	is	already	borrowed,	an	error	message	is	displayed:

if	(book.borrowed())	{	

						cout	<<	endl	<<	"The	book	""	<<	title	<<	""	by	"	<<	author	

											<<	"	has	already	been	borrowed."	<<	endl;	

						return;	

				}	

Then	we	prompt	the	user	for	the	customer's	name	and	address:

string	name;	

		cout	<<	"Customer	name:	";	

		cin	>>	name;	

	

		string	address;	

		cout	<<	"Adddress:	";	

		cin	>>	address;	

If	there	is	no	customer	with	the	name	and	address,	an	error	message	is	displayed:

Customer	customer;	

				if	(!lookupCustomer(name,	address,	&customer))	{	

						cout	<<	endl	<<	"There	is	no	customer	with	name	"	<<	name	

											<<	"	and	address	"	<<	address	<<	"."	<<	endl;	

						return;	

				}	

However,	if	the	book	exists	and	is	not	already	borrowed,	and	the	customer	exists,

we	add	the	book	to	the	loan	set	of	the	customer	and	mark	the	book	as	to	be
borrowed	by	the	customer:

book.borrowBook(customer.id());	

				customer.borrowBook(book.bookId());	

Note	that	we	have	to	put	the	Book	and	Customer	objects	back	into	their	maps	after
we	have	altered	them.	In	the	next	chapter,	we	will	work	with	a	more	direct
approach	to	pointers:

s_bookMap[book.bookId()]	=	book;	

				s_customerMap[customer.id()]	=	customer;	

				cout	<<	endl	<<	"Borrowed."	<<	endl;	

		}	

Reserving	a	book
The	reserveBook	method	works	in	the	same	way	as	borrowBook.	It	prompts	the	user
for	the	author	and	title	of	the	book:

void	Library::reserveBook(void)	{	

						string	author;	

						cout	<<	"Author:	";	

						cin	>>	author;	

	

						string	title;	

						cout	<<	"Title:	";	

						cin	>>	title;	

Similar	to	the	borrowBook	case,	we	check	that	the	book	with	the	author	and	title
exists:

Book	book;	

		if	(!lookupBook(author,	title,	&book))	{	

				cout	<<	endl	<<	"There	is	no	book	""	<<	title	<<	""	by	"	

									<<	"author	"	<<	author	<<	"."	<<	endl;	

				return;	

		}	

However,	one	difference	compared	to	borrowBook	is	that	the	book	must	have	been
borrowed	in	order	to	be	reserved.	If	it	has	not	been	borrowed,	there	is	no	point
reserving	it.	In	that	case,	the	user	should	borrow	the	book	instead:

if	(!book.borrowed())	{	

				cout	<<	endl	<<	"The	book	with	author	"	<<	author	

									<<	"	and	title	""	<<	title	<<	""	has	not	been	"	

									<<	"borrowed.	Please	borrow	the	book	instead."	<<	endl;	

				return;	

		}	

If	the	book	exists	and	has	not	been	borrowed,	we	prompt	the	user	for	the	name	and
address	of	the	customer:

string	name;	

		cout	<<	"Customer	name:	";	

		cin	>>	name;	

	

		string	address;	

		cout	<<	"Address:	";	

		cin	>>	address;	

If	the	customer	does	not	exist,	an	error	message	is	displayed:

Customer	customer;	

		if	(!lookupCustomer(name,	address,	&customer))	{	

				cout	<<	endl	<<	"No	customer	with	name	"	<<	name	

									<<	"	and	address	"	<<	address	<<	"	exists."	<<	endl;	

				return;	

		}	

Moreover,	if	a	book	has	already	been	borrowed	by	the	customer,	we	display	an
error	message:

if	(book.customerId()	==	customer.id())	{	

						cout	<<	endl	<<	"The	book	has	already	been	borrowed	by	"	

											<<	name	<<	"."	<<	endl;	

						return;	

				}	

If	the	book	exists	and	has	been	borrowed,	but	not	by	the	customer,	we	add	the
customer	to	the	reservation	list	for	the	book	and	the	book	to	the	reservation	set
of	the	customer:

customer.reserveBook(book.bookId());	

				int	position	=	book.reserveBook(customer.id());	

Also,	in	this	case,	we	have	to	put	the	Book	and	Customer	objects	back	into	their
maps:

s_bookMap[book.bookId()]	=	book;	

				s_customerMap[customer.id()]	=	customer;	

Finally,	we	write	the	position	of	the	customer	in	the	reservation	list:

cout	<<	endl	<<	position	<<	"nd	reserve."	<<	endl;	

		}	

Returning	a	Book

	

The	returnBook	method	prompts	the	user	for	the	author	and	title	of	the	book:	void
Library::returnBook(void)	{

string	author;

cout	<<	"Author:	";

cin	>>	author;

	

string	title;

cout	<<	"Title:	";

cin	>>	title;

If	the	book	does	not	exist,	an	error	message	is	displayed:	Book	book;

if	(!lookupBook(author,	title,	&book))	{

cout	<<	endl	<<	"No	book	""	<<	title	<<	""	by	"	<<
author	<<	"	exists."	<<	endl;	return;

}

If	the	book	has	not	been	borrowed,	an	error	message	is	displayed:	if
(!book.borrowed())	{

cout	<<	endl	<<	"The	book	""	<<	title	<<	""	by	"	<<
author	<<	""	has	not	been	borrowed."	<<	endl;	return;

}

Unlike	the	methods	described	previously,	in	this	case,	we	do	not	ask	for	the
customer.	Instead,	we	return	the	book	and	look	up	the	book	in	the	reservation	list
of	each	customer:	book.returnBook();	cout	<<	endl	<<	"Returned."	<<	endl;

Customer	customer	=
s_customerMap[book.customerId()];
customer.returnBook(book.bookId());
s_customerMap[customer.id()]	=	customer;

If	the	book	has	been	reserved,	we	look	up	the	first	customer	in	the	reservation
list,	remove	them	from	the	reservation	list,	and	let	them	borrow	the	book:
list<int>&	reservationList	=	book.reservationList();

if	(!reservationList.empty())	{

int	newCustomerId	=	reservationList.front();
reservationList.erase(reservationList.begin());
book.borrowBook(newCustomerId);

Customer	newCustomer	=

s_customerMap[newCustomerId];
newCustomer.borrowBook(book.bookId());

s_customerMap[newCustomerId]	=	newCustomer;	cout
<<	endl	<<	"Borrowed	by	"	<<	newCustomer.name()	<<
endl;	}

	

s_bookMap[book.bookId()]	=	book;

}

	

	

Saving	the	library	information	to	a
file

	

When	saving	the	library	information,	we	first	open	the	file:	void	Library::save()
{

ofstream	outStream(s_binaryPath);

If	the	file	was	correctly	opened,	first	we	write	the	number	of	books,	and	then	we
write	the	information	for	each	book	by	calling	write	on	the	Book	objects:	if
(outStream)	{

int	numberOfBooks	=	s_bookMap.size();
outStream.write((char*)	&numberOfBooks,	sizeof
numberOfBooks);

for	(const	pair<int,Book>&	entry	:	s_bookMap)	{

const	Book&	book	=	entry.second;
book.write(outStream);

}

In	the	same	way,	we	write	the	number	of	customers,	and	then	the	information	of
each	customer,	by	calling	write:	int	numberOfCustomers	=
s_customerMap.size();	outStream.write((char*)	&numberOfCustomers,	sizeof
numberOfCustomers);

for	(const	pair<int,Customer>&	entry	:	s_customerMap)
{

const	Customer&	customer	=	entry.second;
customer.write(outStream);

}

}

}

	

	

Loading	the	library	information	from
a	file

	

When	loading	the	library	information	from	a	file,	we	use	the	same	method	we
would	for	read.	We	start	by	opening	the	file:	void	Library::load()	{

ifstream	inStream(s_binaryPath);

We	read	the	number	of	books	and	then	the	information	of	each	book:	if
(inStream)	{

int	numberOfBooks;

inStream.read((char*)	&numberOfBooks,	sizeof
numberOfBooks);

For	each	book,	we	create	a	new	Book	object,	read	its	information	by	calling	read,
and	add	it	to	the	book	map.	We	also	calculate	the	new	value	of	the	MaxBookId	static
field	by	assigning	it	the	maximum	value	of	itself	and	the	identity	number	of	the
book:	for	(int	count	=	0;	count	<	numberOfBooks;	++count)	{

Book	book;

book.read(inStream);

s_bookMap[book.bookId()]	=	book;	Book::MaxBookId	=
max(Book::MaxBookId,	book.bookId());	}

In	the	same	way,	we	read	the	number	of	customers	and	then	the	information	of
each	customer	by	calling	read:	int	numberOfCustomers;	inStream.read((char*)
&numberOfCustomers,	sizeof	numberOfCustomers);

For	each	customer,	we	create	a	Customer	object,	read	its	information	from	the	file,
add	it	to	the	customer	map,	and	calculate	a	new	value	for	the	MaxCustomerId	static
field:	for	(int	count	=	0;	count	<	numberOfCustomers;	++count)	{

Customer	customer;

customer.read(inStream);	s_customerMap[customer.id()]
=	customer;	Customer::MaxCustomerId	=

max(Customer::MaxCustomerId,	customer.id());	}

}

}

	

	

The	main	function

	

Finally,	we	write	the	main	function,	which	executes	the	library.	It	is	quite	easy;	the
only	thing	to	do	is	to	instantiate	an	object	of	the	Library	class.	Then	the
constructor	displays	the	main	menu:	Main.cpp

#include	<Set>	#include	<Map>	#include	<List>	#include	<String>	#include	<FStream>	

#include	<IOStream>	using	namespace	std;	

				#include	"Book.h"	

				#include	"Customer.h"	

				#include	"Library.h"	

	

				void	main(void)	{	

						Library();	

				}	

	

	

Summary
In	this	chapter,	we	built	a	library	management	system	made	up	of	the	classes
Book,	Customer,	and	Library.

The	Book	class	holds	information	about	a	book.	Each	Book	object	holds	a	unique
identity	number.	It	also	keeps	track	of	the	borrower	(if	the	book	is	borrowed)	and
a	list	of	reservations.	In	the	same	way,	the	Customer	class	holds	information	about
a	customer.	Similar	to	the	book,	each	customer	holds	a	unique	identity	number.
Each	Customer	object	also	holds	a	set	of	borrowed	and	reserved	books.	Finally,	the
Library	class	provides	a	set	of	services,	such	as	adding	and	removing	books	and
customers,	borrowing,	returning,	and	reserving	books,	as	well	as	displaying	lists
of	books	and	customers.

In	this	chapter,	each	book	and	customer	have	a	unique	identity	number.	In	the
next	chapter,	we	will	look	into	to	the	library	system	again.	However,	we	will
omit	the	identity	numbers	and	work	with	pointers	instead.

Library	Management	System	with
Pointers

	

In	this	chapter,	we	will	continue	to	study	a	system	for	the	management	of	a
library.	Similar	to	Chapter	3,	Building	a	Library	Management	System,	we	have
three	classes—Book,	Customer,	and	Library.	However,	there	is	one	large	difference:
we	do	not	work	with	identity	numbers.	Instead,	we	work	with	pointers;	each	Book
object	holds	a	pointer	to	the	customer	(an	object	of	the	Customer	class)	that	has
borrowed	the	book	as	well	as	a	list	of	pointers	to	the	customers	that	have
reserved	the	book.	In	the	same	way,	each	customer	holds	sets	of	pointers	for	the
books	(objects	of	the	Book	class)	they	have	borrowed	and	reserved.

However,	this	approach	gives	rise	to	a	problem;	we	cannot	store	the	values	of
pointers	directly	in	the	file.	Instead,	when	we	save	the	file	we	need	to	convert
from	pointers	to	indexes	in	the	book	and	customer	lists,	and	when	we	load	the
file	we	need	to	transform	the	indexes	back	to	pointers.	This	process	is	called
marshmallowing.

In	this	chapter,	we	are	going	to	dive	deeper	into	the	following	topics:

Just	as	in	Chapter	3,	Building	a	Library	Management	System,	we	will	work
with	classes	for	books	and	customers	that	constitute	a	small	database.
However,	in	this	chapter,	we	will	work	directly	with	pointers	instead	of
integer	numbers.
As	we	work	with	pointers	instead	of	integer	numbers,	the	file	handling
becomes	more	complicated.	We	need	to	perform	a	process	called
marshmallowing.
Finally,	we	will	work	with	the	generic	standard	C++	classes,	set	and	list.
However,	in	this	chapter	they	hold	pointers	to	book	and	customer	objects
instead	of	objects.

	

	

The	Book	class
Similar	to	the	system	of	the	previous	chapter,	we	have	three	classes:	Book,
Customer,	and	Library.	The	Book	class	keeps	track	of	a	book,	where	each	book	has	an
author	and	a	title.	The	Customer	class	keeps	track	of	a	customer,	where	each
customer	has	a	name	and	an	address.	The	Library	class	keeps	track	of	the	library
operations,	such	as	borrowing,	returning,	and	reserving.	Finally,	the	main	function
simply	creates	an	object	of	the	Library	class.

The	Book	class	is	similar	to	the	Book	class	of	Chapter	3,	Building	a	Library
Management	System.	The	only	real	difference	is	that	there	are	no	identity
numbers,	only	pointers.

Book.h:

class	Customer;	

	

				class	Book	{	

						public:	

						Book();	

						Book(const	string&	author,	const	string&	title);	

	

						const	string&	author()	const	{	return	m_author;	}	

						const	string&	title()	const	{	return	m_title;	}	

				

						void	read(ifstream&	inStream);	

						void	write(ofstream&	outStream)	const;	

	

						int	reserveBook(Customer*	customerPtr);	

						void	removeReservation(Customer*	customerPtr);	

						void	returnBook();	

We	do	not	have	a	method	returning	the	identity	number	of	the	book,	since	the
books	in	this	chapter	do	not	use	identity	numbers.

The	borrowedPtr	method	returns	the	address	of	the	customer	who	has	borrowed	the
book,	or	nullptr	if	the	book	is	not	borrowed	at	the	moment.	It	comes	in	two
versions,	where	the	first	version	returns	a	reference	to	a	pointer	to	a	Customer
object.	In	that	way,	we	can	assign	a	new	value	of	the	pointer	to	the	customer.	The
second	version	is	constant,	which	means	that	we	can	call	it	on	constant	objects:

Customer*&	borrowerPtr()	{	return	m_borrowerPtr;	}	

				const	Customer*	borrowerPtr()	const	{	return	m_borrowerPtr;	}	

Note	that	we	do	not	have	a	borrowed	method	in	this	chapter.	We	do	not	need	it
since	borrowerPtr	returns	nullptr	if	the	book	is	not	borrowed	at	the	moment.

In	this	chapter,	reservationPtrList	returns	a	list	of	customer	pointers	instead	of
integer	values.	It	comes	in	two	versions,	where	the	first	version	returns	a
reference	to	the	list.	In	that	way,	we	can	add	and	remove	pointers	from	the	list.
The	second	version	is	constant	and	returns	a	constant	list,	which	means	it	can	be
called	on	constant	Book	objects	and	returns	a	list	that	cannot	be	changed:

list<Customer*>&	reservationPtrList()	

																					{	return	m_reservationPtrList;	}	

				const	list<Customer*>	reservationPtrList()	const	

																										{	return	m_reservationPtrList;	}	

The	output	stream	operator	works	in	the	same	way	as	in	Chapter	3,	Building	a
Library	Management	System:

friend	ostream&	operator<<(ostream&	outStream,	

										const	Book&	book);	

The	m_author	and	m_title	fields	are	strings	similar	to	Chapter	3,	Building	a	Library
Management	System:

private:	

						string	m_author,	m_title;	

However,	we	have	omitted	the	m_bookId	field,	since	we	do	not	use	identity
numbers	in	this	chapter.	We	have	also	replaced	the	m_borrowedId	and	m_customerId
fields	with	m_borrowerPtr,	which	is	initialized	to	nullptr	since	the	book	is	not
borrowed	from	the	beginning:

Customer*	m_borrowerPtr	=	nullptr;	

The	m_reservationPtrList	field	holds	a	list	of	pointers	to	the	customers	that	have
reserved	the	book,	rather	than	a	list	of	integer	identity	numbers	of	Chapter	3,
Building	a	Library	Management	System:

list<Customer*>	m_reservationPtrList;	

						};	

Book.cpp:

#include	<Set>	

				#include	<Map>	

				#include	<String>	

				#include	<FStream>	

				#include	<Algorithm>	

				using	namespace	std;	

	

				#include	"Book.h"	

				#include	"Customer.h"	

				#include	"Library.h"	

The	default	constructor	is	similar	to	the	constructor	of	Chapter	3,	Building	a
Library	Management	System:

Book::Book()	{	

						//	Empty.	

				}	

The	second	constructor	is	also	similar	to	the	constructor	of	Chapter	3,	Building	a
Library	Management	System.	However,	there	is	no	m_bookId	field	to	initialize:

Book::Book(const	string&	author,	const	string&	title)	

				:m_author(author),	

				m_title(title)	{	

						//	Empty.	

				}	

Reading	and	writing	the	book

	

The	read	and	write	methods	have	been	shortened	in	this	chapter.	They	only	read
and	write	the	author	and	title	of	the	book.	The	potential	loan	and	reservation	lists
are	read	and	written	by	the	save	and	write	methods	of	the	Library	class:	void
Book::read(ifstream&	inStream)	{

getline(inStream,	m_author);	getline(inStream,	m_title);	}

	

void	Book::write(ofstream&	outStream)	const	{

outStream	<<	m_author	<<	endl;	outStream	<<	m_title
<<	endl;	}

	

	

Borrowing	and	reserving	the	book

	

When	a	customer	reserves	a	book,	the	pointer	to	the	Customer	object	is	added	to
the	reservation	pointer	list	of	the	book.	The	size	of	the	list	is	returned	for	the
customer	to	be	notified	of	their	position	in	the	reservation	list:	int
Book::reserveBook(Customer*	borrowerPtr)	{

m_reservationPtrList.push_back(borrowerPtr);	return
m_reservationPtrList.size();

}

When	a	customer	returns	a	book,	we	simply	set	m_borrowerPtr	to	nullptr,	which
indicates	that	the	book	is	no	longer	borrowed:	void	Book::returnBook()	{

m_borrowerPtr	=	nullptr;

}

The	removeReservation	method	simply	removes	the	customer	pointer	from	the
reservation	list:	void	Book::removeReservation(Customer*	customerPtr)	{

m_reservationPtrList.remove(customerPtr);	}

	

	

Displaying	the	book

	

The	output	stream	operator	writes	the	title	and	author,	the	customer	that	has
borrowed	the	book	(if	any),	and	the	customers	that	have	reserved	the	book	(if
any):	ostream&	operator<<(ostream&	outStream,	const	Book&	book)	{

outStream	<<	"""	<<	book.m_title	<<	""	by	"	<<
book.m_author;

If	the	book	is	borrowed,	we	write	the	borrower	to	the	stream:	if
(book.m_borrowerPtr	!=	nullptr)	{

outStream	<<	endl	<<	"	Borrowed	by:	"

<<	book.m_borrowerPtr->name()	<<	".";	}

If	the	reservation	list	of	the	book	is	not	empty,	we	iterate	through	it,	and	for	each
reservation,	we	write	the	customer:	if	(!book.m_reservationPtrList.empty())	{

outStream	<<	endl	<<	"	Reserved	by:	";

bool	first	=	true;

for	(Customer*	customerPtr	:	book.m_reservationPtrList)
{

outStream	<<	(first	?	""	:	",")	<<	customerPtr->name();

first	=	false;

}

	

outStream	<<	".";	}

	

return	outStream;

	

	

The	Customer	class
The	Customer	class	of	this	chapter	is	similar	to	the	Customer	class	of	Chapter	3,
Building	a	Library	Management	System.	Again,	in	this	case,	the	difference	is
that	we	work	with	pointers	instead	of	integer	identity	numbers.

Customer.h:

class	Customer	{	

		public:	

				Customer();	

				Customer(const	string&	name,	const	string&	address);	

	

				const	string&	name()	const	{	return	m_name;	}	

				const	string&	address()	const	{	return	m_address;	}	

	

				void	read(ifstream&	inStream);	

				void	write(ofstream&	outStream)	const;	

The	borrowBook,	returnBook,	reserveBook,	and	unreserveBook	take	a	pointer	to	a	Book
object	as	the	parameter:

void	borrowBook(Book*	bookPtr);	

				void	returnBook(Book*	bookPtr);	

				void	reserveBook(Book*	bookPtr);	

				void	unreserveBook(Book*	bookPtr);	

The	loadPtrSet	and	reservationPtrSet	methods	return	sets	of	Book	pointers,	rather
than	sets	of	integer	identity	numbers:

set<Book*>&	loanPtrSet()	{	return	m_loanPtrSet;	}	

				const	set<Book*>	loanPtrSet()	const	{	return	m_loanPtrSet;	}	

	

				set<Book*>&	reservationPtrSet(){	return	m_reservationPtrSet;	}	

				const	set<Book*>	reservationPtrSet()	const	

																					{	return	m_reservationPtrSet;	}	

The	output	stream	operator	is	unchanged,	compared	to	Chapter	3,	Building	a
Library	Management	System:

friend	ostream&	operator<<(ostream&	outStream,	

																															const	Customer&	customer);	

The	m_name	and	m_address	fields	store	the	name	and	address	of	the	customer,	just	as
in	Chapter	3,	Building	a	Library	Management	System:

private:	

				string	m_name,	m_address;	

The	m_loanPtrSet	and	m_reservationPtrSet	fields	hold	pointers	to	Book	objects,	rather
than	integer	identity	numbers:

set<Book*>	m_loanPtrSet,	m_reservationPtrSet;	

						};	

Customer.cpp:

#include	<Set>	

				#include	<Map>	

				#include	<String>	

				#include	<FStream>	

				using	namespace	std;	

	

				#include	"Book.h"	

				#include	"Customer.h"	

				#include	"Library.h"	

The	constructors	are	similar	to	the	constructors	of	Chapter	3,	Building	a	Library
Management	System.	The	first	constructor	does	nothing	and	is	called	when	the
customer	list	is	loaded	from	a	file:

Customer::Customer()	{	

					//	Empty.	

				}	

The	second	constructor	initializes	the	name	and	address	of	the	customer.
However,	compared	to	the	constructor	of	Chapter	3,	Building	a	Library
Management	System,	there	is	no	m_customerId	field	to	initialize:

Customer::Customer(const	string&	name,	const	string&	address)	

				:m_name(name),	

				m_address(address)	{	

							//	Empty.	

				}	

Reading	and	writing	the	customer

	

Similar	to	the	preceding	Book	case,	the	read	and	write	methods	have	been
shortened.	They	only	read	and	write	the	name	and	address.	The	loan	and
reservation	sets	are	read	and	written	in	the	Library	class,	shown	as	follows:	void
Customer::read(ifstream&	inStream)	{

getline(inStream,	m_name);	getline(inStream,
m_address);	}

	

void	Customer::write(ofstream&	outStream)	const	{

outStream	<<	m_name	<<	endl;	outStream	<<	m_address
<<	endl;	}

	

	

Borrowing	and	reserving	a	book

	

The	borrowBook	method	adds	the	book	pointer	to	the	loan	set	and	removes	it	from
the	reservation	set	in	case	it	was	reserved:	void	Customer::borrowBook(Book*
bookPtr)	{

m_loanPtrSet.insert(bookPtr);
m_reservationPtrSet.erase(bookPtr);	}

The	reserveBook	method	simply	adds	the	book	pointer	to	the	reservation	list,	and
returnBook	and	unreserveBook	remove	the	book	pointer	from	the	loan	and	reservation
sets:	void	Customer::reserveBook(Book*	bookPtr)	{

m_reservationPtrSet.insert(bookPtr);	}

	

void	Customer::returnBook(Book*	bookPtr)	{

m_loanPtrSet.erase(bookPtr);

}

	

void	Customer::unreserveBook(Book*	bookPtr)	{

m_reservationPtrSet.erase(bookPtr);	}

	

	

Displaying	the	customer

	

The	output	stream	operator	works	in	the	same	way	as	in	Chapter	3,	Building	a
Library	Management	System.	It	writes	the	name	and	address	of	the	customer,	as
well	as	the	sets	of	borrowed	and	reserved	books	(if	any):	ostream&
operator<<(ostream&	outStream,	const	Customer&	customer){

outStream	<<	customer.m_name	<<	",	"

<<	customer.m_address	<<	".";

If	the	loan	list	of	the	customer	is	not	empty,	we	iterate	through	it,	and	for	each
loan,	we	write	the	book:	if	(!customer.m_loanPtrSet.empty())	{

outStream	<<	endl	<<	"	Borrowed	books:	";

bool	first	=	true;

for	(const	Book*	bookPtr	:	customer.m_loanPtrSet)	{

outStream	<<	(first	?	""	:	",	")	<<	bookPtr->author();	first
=	false;

}

}

In	the	same	way,	if	the	reservation	list	of	the	customer	is	not	empty,	we	iterate
through	it,	and	for	each	reservation,	we	write	the	book:	if
(!customer.m_reservationPtrSet.empty())	{

outStream	<<	endl	<<	"	Reserved	books:	";

bool	first	=	true;

for	(Book*	bookPtr	:	customer.m_reservationPtrSet)	{

outStream	<<	(first	?	""	:	",	")	<<	bookPtr->author();	first
=	false;

}

}

	

return	outStream;

	

	

The	Library	class

	

The	Library	class	is	quite	similar	to	its	counterpart	in	Chapter	3,	Building	a	Library
Management	System.	However,	we	have	added	lookup	methods	to	transform
between	pointers	and	list	indexes	when	saving	and	loading	the	library
information	to	a	file:	Library.h:

class	Library	{	

		public:	

				Library();	

The	destructor	deallocates	all	the	dynamically	allocated	memory	of	this
application:	~Library();

private:

static	string	s_binaryPath;

The	lookupBook	and	lookupCustomer	methods	return	pointers	to	Book	and	Customer
objects.	If	the	book	or	customer	does	not	exist,	nullptr	is	returned:	Book*
lookupBook(const	string&	author,	const	string&	title);	Customer*
lookupCustomer(const	string&	name,	const	string&	address);

void	addBook();

void	deleteBook();

void	listBooks();

void	addCustomer();

void	deleteCustomer();	void	listCustomers();	void
borrowBook();

void	reserveBook();

void	returnBook();

The	lookupBookIndex	and	lookupCustomerIndex	methods	take	a	pointer,	search	the	book
and	customer	lists	after	the	object	pointed	at,	and	return	its	index	in	the	lists:	int
lookupBookIndex(const	Book*	bookPtr);	int	lookupCustomerIndex(const
Customer*	customerPtr);

The	lookupBookPtr	and	lookupCustomerPtr	methods	take	an	index	and	return	a	pointer
to	the	object	at	the	position	in	the	book	and	customer	lists:	Book*
lookupBookPtr(int	bookIndex);	Customer*	lookupCustomerPtr(int
customerIndex);

The	save	and	write	methods	save	and	load	the	library	information	from	a	file.
However,	they	are	more	complicated	than	their	counterparts	in	Chapter	3,	Building
a	Library	Management	System:	void	save();	void	load();

The	m_bookPtrList	and	m_customerPtrList	fields	hold	pointers	to	Book	and	Customer
objects,	rather	than	the	objects	themselves,	as	in	Chapter	3,	Building	a	Library
Management	System:	list<Book*>	m_bookPtrList;	list<Customer*>
m_customerPtrList;	};

Library.cpp:

#include	<Set>	#include	<Map>	

			#include	<List>	

			#include	<String>	#include	<FStream>	#include	<IOStream>	#include	<CAssert>	using	

namespace	std;	

https://cdp.packtpub.com/c___by_example/wp-admin/post.php?post=47&action=edit#post_43

	

			#include	"Book.h"	

			#include	"Customer.h"	

			#include	"Library.h"	

	

			string	Library::s_binaryPath("C:\Users\Stefan\Library.binary");	

The	constructor	is	identical	to	the	constructor	of	Chapter	3,	Building	a	Library
Management	System:	Library::Library()	{

load();

	

bool	quit	=	false;

while	(!quit)	{

cout	<<	"1.	Add	Book"	<<	endl	<<	"2.	Delete	Book"	<<
endl	<<	"3.	List	Books"	<<	endl	<<	"4.	Add	Customer"
<<	endl	<<	"5.	Delete	Customer"	<<	endl	<<	"6.	List
Customers"	<<	endl	<<	"7.	Borrow	Book"	<<	endl	<<	"8.
Reserve	Book"	<<	endl	<<	"9.	Return	Book"	<<	endl	<<
"0.	Quit"	<<	endl	<<	":	";

https://cdp.packtpub.com/c___by_example/wp-admin/post.php?post=47&action=edit#post_43

	

int	choice;

cin	>>	choice;	cout	<<	endl;

switch	(choice)	{

case	1:

addBook();

break;

	

case	2:

deleteBook();

break;

	

case	3:

listBooks();

break;

	

case	4:

addCustomer();

break;

	

case	5:

deleteCustomer();	break;

	

case	6:

listCustomers();	break;

	

case	7:

borrowBook();

break;

	

case	8:

reserveBook();

break;

	

case	9:

returnBook();

break;

	

case	0:

quit	=	true;

break;

}

	

cout	<<	endl;	}

	

save();

}

	

	

Looking	up	books	and	customers

	

The	lookupBook	method	of	this	chapter	searches	for	the	Book	object	with	the	author
and	title,	in	a	way	similar	to	Chapter	3,	Building	a	Library	Management	System.
However,	if	it	finds	a	Book	object	that	matches	the	author	and	title,	it	does	not
copy	the	information	to	a	given	object.	Instead,	it	simply	returns	a	pointer	to	the
object.	If	it	does	not	find	the	Book	object,	nullptr	is	returned:	Book*
Library::lookupBook(const	string&	author,	const	string&	title)	{

for	(Book*	bookPtr	:	m_bookPtrList)	{

if	((bookPtr->author()	==	author)	&&	(bookPtr->title()
==	title))	{

return	bookPtr;

}

}

	

return	nullptr;

}

In	the	same	way,	lookupCustomer	tries	to	find	a	Customer	object	that	matches	the

https://cdp.packtpub.com/c___by_example/wp-admin/post.php?post=47&action=edit#post_43

name	and	address.	If	it	finds	the	object,	its	pointer	is	returned.	If	it	does	not	find
it,	nullptr	is	returned:	Customer*	Library::lookupCustomer(const	string&	name,
const	string&	address)	{

for	(Customer*	customerPtr	:	m_customerPtrList)	{

if	((customerPtr->name()	==	name)	&&	(customerPtr-
>address()	==	address))	{

return	customerPtr;	}

}

return	nullptr;

	

	

Adding	a	book

	

The	addBook	method	prompts	the	user	for	the	author	and	the	title:	void
Library::addBook()	{

string	author;

cout	<<	"Author:	";	cin	>>	author;

	

string	title;

cout	<<	"Title:	";	cin	>>	title;

When	checking	if	the	book	already	exists,	we	call	lookupBook.	If	the	book	exists,	a
pointer	to	the	Book	object	is	returned.	If	the	book	does	not	exist,	nullptr	is
returned.	Therefore,	we	test	whether	the	return	value	does	not	equal	nullptr.	If	it
does	not	equal	nullptr,	the	book	already	exists	and	an	error	message	is	displayed:
if	(lookupBook(author,	title)	!=	nullptr)	{

cout	<<	endl	<<	"The	book	""	<<	title	<<	""	by	"

<<	author	<<	"	already	exists."	<<	endl;	return;

}

When	adding	the	book,	we	dynamically	create	a	new	Book	object	with	the	new
operator.	We	use	the	standard	C++	assert	macro	to	check	that	the	book	pointer	is
not	null.	If	it	is	null,	the	execution	will	be	aborted	with	an	error	message:	Book*
bookPtr	=	new	Book(author,	title);	assert(bookPtr	!=	nullptr);
m_bookPtrList.push_back(bookPtr);	cout	<<	endl	<<	"Added."	<<	endl;	}

	

	

Deleting	a	book
The	deleteBook	method	deletes	a	book	from	the	library	by	prompting	the	user
about	the	author	and	title	of	the	book.	If	the	book	exists,	we	return,	unreserve,
and	delete	it:

void	Library::deleteBook()	{	

							string	author;	

							cout	<<	"Author:	";	

							cin	>>	author;	

	

							string	title;	

							cout	<<	"Title:	";	

							cin	>>	title;	

We	obtain	a	pointer	to	the	Book	object	by	calling	lookupBook:

Book*	bookPtr	=	lookupBook(author,	title);	

If	the	pointer	is	nullptr,	the	book	does	not	exist	and	an	error	message	is
displayed:

if	(bookPtr	==	nullptr)	{	

									cout	<<	endl	<<	"The	book	""	<<	title	<<	""	by	"	

											<<	author	<<	"	does	not	exist."	<<	endl;	

									return;	

							}	

We	check	whether	the	book	has	been	borrowed	by	looking	up	the	borrower:

Customer*	borrowerPtr	=	bookPtr->borrowerPtr();	

If	the	pointer	returned	by	borrowerPtr	is	not	nullptr,	we	return	the	book	by	calling
returnBook	of	the	borrower.	In	that	way,	the	book	is	no	longer	registered	as
borrowed	by	the	customer:

if	(borrowerPtr	!=	nullptr)	{	

				borrowerPtr->returnBook(bookPtr);	

		}	

Moreover,	we	need	to	check	whether	the	book	has	been	reserved	by	any	other
customer.	We	do	so	by	obtaining	the	reservation	list	of	the	book	and,	for	every
customer	in	the	list,	we	unreserve	the	book:

list<Customer*>	reservationPtrList	=	

						bookPtr->reservationPtrList();	

Note	that	we	do	not	check	whether	the	book	has	actually	been	reserved	by	the
customer,	we	simply	unreserve	the	book.	Also	note	that	we	do	not	need	to	put
back	any	object	to	the	list,	since	we	work	with	pointers	to	objects	and	do	not
copy	objects:

for	(Customer*	reserverPtr	:	reservationPtrList)	{	

								reserverPtr->unreserveBook(bookPtr);	

						}

When	removing	the	book,	we	remove	the	book	pointer	from	the	book	pointer
list,	and	then	deallocate	the	Book	object.	It	may	seem	strange	that	we	first	display
the	message	and	then	delete	the	book	pointer.	However,	it	has	to	be	in	that	order.
After	we	have	deleted	the	object,	we	can	do	nothing	with	it.	We	cannot	delete	the
object	and	then	write	it,	it	would	cause	memory	errors:
m_bookPtrList.remove(bookPtr);	n	cout	<<	endl	<<	"Deleted:"	<<	bookPtr	<<
endl;	delete	bookPtr;	}

Listing	the	books

	

When	listing	the	books,	we	first	check	whether	the	list	is	empty.	If	it	is	empty,
we	simply	write	"No	books.":

void	Library::listBooks()	{	

						if	(m_bookPtrList.empty())	{	

							cout	<<	"No	books."	<<	endl;	

							return;	

						}	

				}

However,	if	the	list	is	not	empty,	we	iterate	through	the	book	pointer	list	and,	for
each	book	pointer,	dereference	the	pointer	and	write	the	information:

for	(const	Book*	bookPtr	:	m_bookPtrList)	{	

								cout	<<	(*bookPtr)	<<	endl;	

								}	

				}	

	

	

Adding	a	customer

	

The	addCustomer	method	prompts	the	user	for	the	name	and	address	of	the
customer:	void	Library::addCustomer()	{

string	name;

cout	<<	"Name:	";	cin	>>	name;

	

string	address;

cout	<<	"Address:	";	cin	>>	address;

If	a	customer	with	the	name	and	address	already	exists,	an	error	message	is
displayed:	if	(lookupCustomer(name,	address)	!=	nullptr)	{

cout	<<	endl	<<	"A	customer	with	name	"	<<	name	<<	"
and	address	"	<<	address	<<	"	already	exists."

<<	endl;

return;

}

When	adding	the	customer,	we	dynamically	create	a	new	Customer	object	that	we
add	to	the	customer	object	pointer	list:	Customer*	customerPtr	=	new
Customer(name,	address);	assert(customerPtr	!=	nullptr);
m_customerPtrList.push_back(customerPtr);	cout	<<	endl	<<	"Added."	<<	endl;
}

	

	

Deleting	a	customer

	

When	deleting	a	customer,	we	look	them	up	and	display	an	error	message	if	they
do	not	exist:	void	Library::deleteCustomer()	{

string	name;

cout	<<	"Customer	name:	";	cin	>>	name;

	

string	address;

cout	<<	"Address:	";	cin	>>	address;

	

Customer*	customerPtr	=	lookupCustomer(name,
address);

If	the	customer	with	the	given	name	and	address	does	not	exist,	an	error	message
is	displayed.	Consider	the	following	code:	if	(customerPtr	==	nullptr)	{

cout	<<	endl	<<	"Customer	"	<<	name	<<	"	does	not
exists."	<<	endl;	return;

}

If	the	customer	has	borrowed	at	least	one	book,	they	cannot	be	deleted,	and	an
error	message	is	displayed,	which	is	shown	as	follows:	if	(!customerPtr-
>loanPtrSet().empty())	{

cout	<<	"The	customer	"	<<	customerPtr->name()	<<	"
has	borrowed	books	and	cannot	be	deleted."	<<	endl;
return;

}

However,	if	the	customer	has	not	borrowed	any	books,	the	customer	is	first
removed	from	the	reservation	list	of	every	book	in	the	library,	shown	in	the
following	code:	for	(Book*	bookPtr	:	m_bookPtrList)	{

bookPtr->removeReservation(customerPtr);	}

Then	the	customer	is	removed	from	the	customer	list,	and	the	Customer	object	is
deallocated	by	the	delete	operator.	Again,	note	that	we	first	must	write	the
customer	information,	and	then	delete	its	object.	The	other	way	around	would
not	have	worked	since	we	cannot	inspect	a	deleted	object.	That	would	have
caused	memory	errors:	m_customerPtrList.remove(customerPtr);	cout	<<	endl
<<	"Deleted."	<<	(*customerPtr)	<<	endl;	delete	customerPtr;

}

	

	

Listing	the	customers

	

When	listing	the	customer,	we	go	through	the	customer	list	and,	for	each
customer,	dereference	the	Customer	object	pointer	and	write	the	information	of	the
object:

void	Library::listCustomers()	{	

						if	(m_customerPtrList.empty())	{	

								cout	<<	"No	customers."	<<	endl;	

								return;	

						}	

	

						for	(const	Customer*	customerPtr:	m_customerPtrList)	{	

								cout	<<	(*customerPtr)	<<	endl;	

						}	

				}

	

	

Borrowing	a	book

	

When	borrowing	a	book,	we	start	by	prompting	the	user	for	the	author	and	title,
which	is	shown	in	the	following	code	snippet:	void	Library::borrowBook()	{

string	author;

cout	<<	"Author:	";

cin	>>	author;

	

string	title;

cout	<<	"Title:	";

cin	>>	title;

We	look	up	the	book	and	if	the	book	does	not	exist,	an	error	message	is
displayed,	which	is	shown	in	the	following	code:	Book*	bookPtr	=
lookupBook(author,	title);

if	(bookPtr	==	nullptr)	{

cout	<<	endl	<<	"There	is	no	book	""	<<	title	<<	""	by	"
<<	author	<<	"."	<<	endl;	return;

}

If	the	book	has	already	been	borrowed	by	another	customer,	it	cannot	be
borrowed	again:	if	(bookPtr->borrowerPtr()	!=	nullptr)	{

cout	<<	endl	<<	"The	book	""	<<	title	<<	""	by	"	<<
author	<<	"	has	already	been	borrowed."	<<	endl;	return;

}

We	prompt	the	user	for	the	name	and	address	of	the	customer:	string	name;	cout
<<	"Customer	name:	";	cin	>>	name;

	

string	address;

cout	<<	"Address:	";

cin	>>	address;

	

Customer*	customerPtr	=	lookupCustomer(name,
address);

If	there	is	no	customer	with	the	given	name	and	address,	an	error	message	is
displayed:	if	(customerPtr	==	nullptr)	{

cout	<<	endl	<<	"No	customer	with	name	"	<<	name	<<	"

and	address	"	<<	address	<<	"	exists."	<<	endl;	return;

}

Finally,	we	add	the	book	to	the	customer's	loan	set	and	we	mark	the	customer	as
the	borrower	of	the	book:	bookPtr->borrowerPtr()	=	customerPtr;	customerPtr-
>borrowBook(bookPtr);	cout	<<	endl	<<	"Borrowed."	<<	endl;	}

	

	

Reserving	a	book
The	reservation	process	is	similar	to	the	preceding	borrowing	process.	We
prompt	the	user	for	the	author	and	title	of	the	book,	as	well	as	the	name	and
address	of	the	customer,	which	is	shown	as	follows:

void	Library::reserveBook()	{	

						string	author;	

						cout	<<	"Author:	";	

						cin	>>	author;	

	

						string	title;	

						cout	<<	"Title:	";	

						cin	>>	title;	

	

				Book*	bookPtr	=	lookupBook(author,	title);	

If	the	book	does	not	exist,	an	error	message	is	displayed:

if	(bookPtr	==	nullptr)	{	

						cout	<<	endl	<<	"There	is	no	book	""	<<	title	

									<<	""	by	"	<<	author	<<	"."	<<	endl;	

						return;	

				}	

If	the	book	has	not	been	borrowed,	it	is	not	possible	to	reserve	it.	Instead,	we
encourage	the	user	to	borrow	the	book:

if	(bookPtr->borrowerPtr()	==	nullptr)	{	

							cout	<<	endl	<<	"The	book	""	<<	title	<<	""	by	"	

									<<	author	<<	"	has	not	been	not	borrowed.	"	

									<<	"Please	borrow	the	book	instead	of	reserving	it."	

									<<	endl;	

						return;	

				}	

We	prompt	the	user	for	the	name	and	address	of	the	customer:

string	name;	

					cout	<<	"Customer	name:	";	

					cin	>>	name;	

	

					string	address;	

					cout	<<	"Address:	";	

					cin	>>	address;	

	

					Customer*	customerPtr	=	lookupCustomer(name,	address);	

If	the	customer	does	not	exist,	an	error	message	is	displayed:

if	(customerPtr	==	nullptr)	{	

						cout	<<	endl	<<	"There	is	no	customer	with	name	"	<<	name	

									<<	"	and	address	"	<<	address	<<	"."	<<	endl;	

						return;	

					}	

If	the	customer	has	already	borrowed	the	book,	they	cannot	also	reserve	the
book:

if	(bookPtr->borrowerPtr()	==	customerPtr)	{	

						cout	<<	endl	<<	"The	book	has	already	been	borrowed	by	"	

									<<	name	<<	"."	<<	endl;	

						return;	

					}	

Finally,	we	add	the	customer	to	the	reservation	list	of	the	book	and	we	add	the
book	to	the	reservation	set	of	the	customer.	Note	that	there	is	a	list	of	reservation
customers	for	the	book,	while	there	is	a	set	of	reserved	books	for	the	customer.
The	reason	for	this	is	that	when	a	book	is	returned,	the	first	customer	in	the
reservation	list	borrows	the	book.	There	are	no	such	restrictions	when	it	comes
to	a	set	of	reservations	for	a	customer:	int	position	=	bookPtr-
>reserveBook(customerPtr);	customerPtr->reserveBook(bookPtr);

We	notify	the	customer	of	its	position	on	the	reservation	list:

cout	<<	endl	<<	position	<<	"nd	reserve."	<<	endl;	

					}

Returning	a	book

	

When	returning	a	book,	we	prompt	the	user	for	its	author	and	title.	However,	we
do	not	ask	for	the	customer	who	has	borrowed	the	book.	That	information	is
already	stored	in	the	Book	object:	void	Library::returnBook()	{

string	author;

cout	<<	"Author:	";	cin	>>	author;

	

string	title;

cout	<<	"Title:	";

cin	>>	title;

	

Book*	bookPtr	=	lookupBook(author,	title);

If	the	book	with	the	given	author	and	title	does	not	exist,	an	error	message	is
displayed:	if	(bookPtr	==	nullptr)	{

cout	<<	endl	<<	"There	is	no	book	""	<<	title	<<	""	by	"

<<	author	<<	"."	<<	endl;	return;

}

	

Customer*	customerPtr	=	bookPtr->borrowerPtr();

If	the	customer	with	the	given	name	and	address	does	not	exist,	an	error	message
is	displayed:	if	(customerPtr	==	nullptr)	{

cout	<<	endl	<<	"The	book	""	<<	title	<<	""	by	"

<<	author	<<	"	has	not	been	borrowed."	<<	endl;	return;

}

	

bookPtr->returnBook();

customerPtr->returnBook(bookPtr);	cout	<<	endl	<<
"Returned."	<<	endl;

When	we	have	returned	the	book,	we	need	to	find	out	whether	any	customer	has
reserved	it:	list<Customer*>&	reservationPtrList	=

bookPtr->reservationPtrList();

If	there	is	at	least	one	customer	in	the	reservation	list	of	the	book,	we	obtain	that

customer,	remove	them	from	the	reservation	list	of	the	book,	mark	the	customer
as	the	borrower	of	the	book,	and	add	the	book	to	the	loan	set	of	the	customer:	if
(!reservationPtrList.empty())	{

Customer*	newCustomerPtr	=	reservationPtrList.front();
reservationPtrList.erase(reservationPtrList.begin());

bookPtr->borrowBook(newCustomerPtr);
newCustomerPtr->borrowBook(bookPtr);	cout	<<	endl
<<	"Borrowed	by	"

<<	newCustomerPtr->name()	<<	endl;	}

}

	

	

Looking	up	books	and	customers

	

When	saving	and	loading	the	library	information	from	a	file,	we	need	to
transform	between	pointers	to	Book	and	Customer	objects	and	indexes	in	the	book
and	customer	lists.	The	lookupIndex	method	takes	a	pointer	to	a	Book	object	and
returns	its	index	in	the	book	list:	int	Library::lookupBookIndex(const	Book*
bookPtr)	{

int	index	=	0;

	

for	(Book*	testPtr	:	m_bookPtrList)	{

if	(bookPtr	==	testPtr)	{

return	index;

}

	

++index;

}

If	we	reach	this	point,	the	execution	is	aborted	with	an	error	message	by	the

assert	macro.	However,	we	should	not	reach	this	point,	since	the	Book	pointer
should	be	in	the	book	pointer	list:	assert(false);	return	-1;

}

The	lookupBookPtr	method	performs	the	opposite	task.	It	finds	the	Book	object
pointer	at	the	position	given	by	bookIndex	in	the	book	pointer	list.	The	assert	macro
aborts	the	execution	with	an	error	message	if	the	index	is	outside	the	scope	of
the	list.	However,	that	should	not	happen	since	all	indexes	shall	be	within	the
scope:	Book*	Library::lookupBookPtr(int	bookIndex)	{

assert((bookIndex	>=	0)	&&	(bookIndex	<	((int)
m_bookPtrList.size())));

auto	iterator	=	m_bookPtrList.begin();	for	(int	count	=	0;
count	<	bookIndex;	++count)	{

++iterator;

}

	

return	*iterator;	}

The	lookupCustomerIndex	method	gives	the	index	of	the	Customer	pointer	in	the
customer	pointer	list,	in	the	same	way	as	shown	in	the	preceding	lookupBookIndex
method:	int	Library::lookupCustomerIndex(const	Customer*	customerPtr)	{

int	index	=	0;

	

for	(Customer*	testPtr	:	m_customerPtrList)	{

if	(customerPtr	==	testPtr)	{

return	index;

}

	

++index;

}

	

assert(false);

return	-1;

}

The	lookupCustomerPtr	method	looks	up	the	index	of	the	Customer	pointer	in	the
customer	pointer	list	in	the	same	way	as	shown	in	the	preceding	lookupBookPtr
method:	Customer*	Library::lookupCustomerPtr(int	customerIndex)	{

assert((customerIndex	>=	0)	&&	(customerIndex	<	((int)

m_customerPtrList.size())));

auto	iterator	=	m_customerPtrList.begin();	for	(int	count
=	0;	count	<	customerIndex;	++count)	{

++iterator;

}

	

return	*iterator;	}

	

	

Marshmallowing

	

The	save	and	load	methods	of	the	Library	class	of	this	chapter	are	a	bit	more
complicated	than	their	counterparts	in	Chapter	3,	Building	a	Library	Management
System.	The	reason	for	this	is	that	we	cannot	save	pointers	directly,	since	a
pointer	holds	a	memory	address	that	can	be	changed	between	executions.
Instead,	we	need	to	save	their	indexes	to	the	file.	The	process	of	transforming
pointers	to	indexes	and	indexes	to	pointers	is	called	marshmallowing.	When
saving	the	library,	we	divide	the	saving	process	into	several	steps:

Saving	the	book	list:	At	this	point,	we	save	the	author	and	title	only.
Saving	the	customer	list:	At	this	point,	we	save	the	name	and	address	only.
For	each	book:	Save	the	borrower	(if	the	book	is	borrowed)	and	the
(possibly	empty)	reservation	list.	We	save	the	customer	list	indexes,	rather
than	the	pointers	to	the	customers.
For	each	customer,	we	save	the	loan	and	reservation	sets.	We	save	the	book
list	indexes,	rather	than	the	pointers	to	the	books.

	

	

Saving	the	library	information	to	a
file
The	Save	method	opens	the	file	and,	if	it	was	successfully	opened,	reads	the
books	and	customers	of	the	library:

				void	Library::save()	{	

						ofstream	outStream(s_binaryPath);	

Writing	the	book	objects

	

We	save	the	book	objects.	We	only	save	the	author	and	title	of	the	books	by
calling	write	for	each	Book	object.	We	do	not	save	the	potential	borrower	and
reservation	list	at	this	point.

We	start	by	writing	the	number	of	books	in	the	list	to	the	file:	if	(outStream)	{

{	int	bookPtrListSize	=	m_bookPtrList.size();
outStream.write((char*)	&bookPtrListSize,	sizeof
bookPtrListSize);

Then	we	write	the	information	of	each	book	to	the	file	by	calling	write	on	each
Book	object	pointer:	for	(const	Book*	bookPtr	:	m_bookPtrList)	{

bookPtr->write(outStream);	}

}

	

	

Writing	the	customer	objects

	

We	save	the	customer	objects.	Similar	to	the	preceding	book	case,	we	only	save
the	name	and	address	of	the	customers	by	calling	write	for	each	Customer	object.
We	do	not	save	sets	of	borrowed	and	reserved	books	at	this	point.

In	the	same	way,	as	in	the	preceding	book	case,	we	start	by	writing	the	number
of	customers	on	the	list	to	the	file:

{	int	customerPtrListSize	=	m_customerPtrList.size();	

						outStream.write((char*)	&customerPtrListSize,	

																						sizeof	customerPtrListSize);	

Then	we	write	the	information	of	each	customer	to	the	file	by	calling	the	write
method	on	each	Customer	object	pointer:

for	(const	Customer*	customerPtr	:	m_customerPtrList)	{	

								customerPtr->write(outStream);	

						}	

				}	

	

	

Writing	the	borrower	index
For	each	Book	object,	if	the	book	is	borrowed	we	look	up	and	save	the	index	of
the	Customer,	rather	than	the	pointer	to	the	object:	for	(const	Book*	bookPtr	:
m_bookPtrList)	{	{	const	Customer*	borrowerPtr	=	bookPtr->borrowerPtr();

For	each	book,	we	start	by	checking	if	it	has	been	borrowed.	If	it	has	been
borrowed,	we	write	the	value	true	to	the	file,	to	indicate	that	it	is	borrowed:

if	(borrowerPtr	!=	nullptr)	{	

										bool	borrowed	=	true;	

										outStream.write((char*)	&borrowed,	sizeof	borrowed);	

Then	we	look	up	the	index	of	the	customer	that	has	borrowed	the	book	in	the
customer	pointer	list	and	write	the	index	to	the	file:

int	loanIndex	=	lookupCustomerIndex(borrowerPtr);	

										outStream.write((char*)	&loanIndex,	sizeof	loanIndex);	

								}	

If	the	book	is	not	borrowed,	we	just	write	the	value	false	to	the	file,	to	indicate
that	the	book	has	not	been	borrowed:

else	{	

										bool	borrowed	=	false;	

										outStream.write((char*)	&borrowed,	sizeof	borrowed);	

								}	

						}	

Writing	the	reservation	indexes

	

As	a	book	can	be	reserved	for	more	than	one	customer,	we	iterate	through	the	list
of	reservations	and	save	the	index	of	each	customer	in	the	reservation	list:

{	const	list<Customer*>&	reservationPtrList	=	

										bookPtr->reservationPtrList();	

For	each	book,	we	start	by	writing	the	number	of	reservations	of	the	book	to	the
file:

int	reserveSetSize	=	reservationPtrList.size();	

								outStream.write((char*)	&reserveSetSize,	

																								sizeof	reserveSetSize);	

Then	we	iterate	through	the	reservation	list	and,	for	each	reservation,	we	look	up
and	write	the	index	of	each	customer	that	reserved	the	book:

for	(const	Customer*	customerPtr	:	reservationPtrList)	{	

										int	customerIndex	=	lookupCustomerIndex(customerPtr);	

										outStream.write((char*)	&customerIndex,	

																										sizeof	customerIndex);	

								}	

						}	

				}

	

	

Writing	the	loan	book	indexes

	

For	each	customer,	we	save	the	indexes	of	the	books	they	have	borrowed.	First,
we	save	the	size	of	the	loan	list	and	then	the	book	indexes:	for	(const	Customer*
customerPtr	:	m_customerPtrList)	{

{	const	set<Book*>&	loanPtrSet	=

customerPtr->loanPtrSet();

For	each	customer,	we	start	by	writing	the	number	of	loans	to	the	file:	int
loanPtrSetSize	=	loanPtrSet.size();	outStream.write((char*)	&loanPtrSetSize,
sizeof	loanPtrSetSize);

Then	we	iterate	through	the	loan	set	and,	for	each	loan,	we	look	up	and	write	the
index	of	each	book	to	the	file:	for	(const	Book*	customerPtr	:	loanPtrSet)	{

int	customerIndex	=	lookupBookIndex(customerPtr);
outStream.write((char*)	&customerIndex,	sizeof
customerIndex);

}

}

	

	

Writing	the	reservation	book	indexes

	

In	the	same	way,	for	each	customer,	we	save	the	indexes	of	the	books	they	have
reserved.	First,	we	save	the	size	of	the	reservation	list	and	then	the	indexes	of	the
books	they	reserved:

{	const	set<Book*>&	reservedPtrSet	=	

										customerPtr->reservationPtrSet();	

For	each	customer,	we	start	by	writing	the	number	of	reserved	books	to	the	file:

int	reservationPtrSetSize	=	reservationPtrSet.size();	

								outStream.write((char*)	&reservationPtrSetSize,	

																								sizeof	reservationPtrSetSize);	

Then	we	iterate	through	the	reservation	set	and,	for	each	reservation,	we	look	up
and	write	the	index	of	each	book	to	the	file:

for	(const	Book*	reservedPtr	:	reservationPtrSet)	{	

										int	customerIndex	=	lookupBookIndex(reservedPtr);	

										outStream.write((char*)	&customerIndex,	

																										sizeof	customerIndex);	

								}	

						}	

				}	

		}	

}	

	

	

Loading	the	library	information	from
a	file
When	loading	the	file,	we	proceed	in	the	same	manner	as	when	we	saved	the
file:

				void	Library::load()	{	

						ifstream	inStream(s_binaryPath);	

Reading	the	book	objects

	

We	read	the	size	of	the	book	list,	and	then	the	books	themselves.	Remember	that
we	have	so	far	read	the	author	and	title	of	the	books	only:	if	(inStream)	{

{	int	bookPtrListSize;

We	start	by	reading	the	number	of	books:	inStream.read((char*)
&bookPtrListSize,	sizeof	bookPtrListSize);

Then	we	read	the	books	themselves.	For	each	book,	we	dynamically	allocate	a
Book	object,	read	its	information	by	calling	read	on	the	pointer,	and	add	the	pointer
to	the	book	pointer	list:	for	(int	count	=	0;	count	<	bookPtrListSize;	++count)	{

Book	*bookPtr	=	new	Book();	assert(bookPtr	!=	nullptr);
bookPtr->read(inStream);
m_bookPtrList.push_back(bookPtr);	}

}

	

	

Reading	the	customer	objects

	

In	the	same	way,	we	read	the	size	of	the	customer	list	and	then	the	customers
themselves.	Up	until	this	point,	we	read	the	name	and	address	of	the	customers
only:

{	int	customerPtrListSize;	

We	start	by	reading	the	number	of	customers:

inStream.read((char*)	&customerPtrListSize,	

																				sizeof	customerPtrListSize);	

Then	we	read	the	customers	themselves.	For	each	customer,	we	dynamically
allocate	a	Customer	object,	read	its	information	by	calling	read	on	the	pointer,	and
add	the	pointer	to	the	book	pointer	list:

for	(int	count	=	0;	count	<	customerPtrListSize;	++count)	{	

								Customer	*customerPtr	=	new	Customer();	

								assert(customerPtr	!=	nullptr);	

								customerPtr->read(inStream);	

								m_customerPtrList.push_back(customerPtr);	

						}	

				}	

	

	

Reading	the	borrower	index

	

For	each	book,	we	read	the	customers	that	have	borrowed	it	(if	any)	and	the	list
of	customers	that	have	reserved	the	book:	for	(Book*	bookPtr	:	m_bookPtrList)
{

{	bool	borrowed;

inStream.read((char*)	&borrowed,	sizeof	borrowed);

If	borrowed	is	true,	the	book	has	been	borrowed.	In	that	case,	we	read	the	index	of
the	customer.	We	then	look	up	the	pointer	of	the	Customer	object,	which	we	add	to
the	reservation	list	of	the	book:	if	(borrowed)	{

int	loanIndex;

inStream.read((char*)	&loanIndex,	sizeof	loanIndex);
bookPtr->borrowerPtr()	=
lookupCustomerPtr(loanIndex);	}

If	borrowed	is	false,	the	book	has	not	been	borrowed.	In	that	case,	we	set	the
pointer	to	the	customer	that	has	borrowed	the	book	to	nullptr:	else	{

bookPtr->borrowerPtr()	=	nullptr;	}

}

	

	

Reading	the	reservation	indexes

	

For	each	book,	we	also	read	the	reservation	list.	First,	we	read	the	size	of	the	list
and	then	the	customer	indexes	themselves:	{	list<Customer*>&
reservationPtrList	=

bookPtr->reservationPtrList();	int	reservationPtrListSize;

We	start	by	reading	the	number	of	reservations	of	the	book:
inStream.read((char*)	&reservationPtrListSize,	sizeof	reservationPtrListSize);

For	each	reservation,	we	read	the	index	of	the	customer	and	call	lookupCustomerPtr
to	obtain	the	pointer	to	the	Customer	object,	which	we	add	to	the	reservation
pointer	list	of	the	book:	for	(int	count	=	0;	count	<	reservationPtrListSize;
++count)	{

int	customerIndex;	inStream.read((char*)
&customerIndex,	sizeof	customerIndex);	Customer*
customerPtr	=

lookupCustomerPtr(customerIndex);
reservationPtrList.push_back(customerPtr);	}

}

}

	

	

Reading	the	loan	book	indexes

	

For	each	customer,	we	read	the	set	of	borrowed	books:	for	(Customer*
customerPtr	:	m_customerPtrList)	{

{	set<Book*>&	loanPtrSet	=	customerPtr->loanPtrSet();
int	loanPtrSetSize	=	loanPtrSet.size();

We	start	by	reading	the	size	of	the	loan	list:	inStream.read((char*)
&loanPtrSetSize,	sizeof	loanPtrSetSize);

For	each	loan,	we	read	the	index	of	the	book	and	call	lookupBookPtr	to	obtain	the
pointer	to	the	Book	object,	which	we	add	to	the	loan	pointer	list:	for	(int	count	=	0;
count	<	loanPtrSetSize;	++count)	{

int	bookIndex;

inStream.read((char*)	&bookIndex,	sizeof	bookIndex);
Book*	bookPtr	=	lookupBookPtr(bookIndex);
loanPtrSet.insert(bookPtr);

}

}

	

	

Reading	the	reservation	book	indexes

	

In	the	same	way,	for	each	customer,	we	read	the	set	of	reserved	books:

{	set<Book*>&	reservationPtrSet	=	

										customerPtr->reservationPtrSet();	

We	start	by	reading	the	size	of	the	reservation	list:

int	reservationPtrSetSize	=	reservationPtrSet.size();	

								inStream.read((char*)	&reservationPtrSetSize,	

																						sizeof	reservationPtrSetSize);	

For	each	reservation,	we	read	the	index	of	the	book	and	call	lookupBookPtr	to
obtain	the	pointer	to	the	Book	object,	which	we	add	to	the	reservation	pointer	list:

for	(int	count	=	0;	count	<	reservationPtrSetSize;	

													++count)	{	

										int	bookIndex;	

										inStream.read((char*)	&bookIndex,	sizeof	bookIndex);	

										Book*	bookPtr	=	lookupBookPtr(bookIndex);	

										reservationPtrSet.insert(bookPtr);	

								}	

						}	

				}	

		}	

}

	

	

Deallocating	memory

	

Since	we	have	added	dynamically	allocated	Book	and	Customer	objects	to	the	lists,
we	need	to	deallocate	them	at	the	end	of	the	execution.	The	destructor	iterates
through	the	book	and	customer	pointer	lists	and	deallocates	all	the	book	and
customer	pointers:

Library::~Library()	{	

						for	(const	Book*	bookPtr	:	m_bookPtrList)	{	

								delete	bookPtr;	

						}	

	

						for	(const	Customer*	customerPtr	:	m_customerPtrList)	{	

								delete	customerPtr;	

						}	

				}	

	

	

The	main	function
Similar	to	Chapter	3,	Building	a	Library	Management	System,	the	main	function
simply	creates	a	Library	object:

Main.cpp

				#include	<Set>	

				#include	<Map>	

				#include	<String>	

				#include	<FStream>	

				#include	<IOStream>	

				using	namespace	std;	

	

				#include	"Book.h"	

				#include	"Customer.h"	

				#include	"Library.h"	

	

				void	main()	{	

						Library();	

				}

Summary
In	this	chapter,	we	built	a	library	management	system	similar	to	the	system	of	Ch
apter	3,	Building	a	Library	Management	System.	However,	we	omitted	all	integer
identity	numbers	and	replaced	them	with	pointers.	This	gives	us	the	advantage
that	we	can	store	loans	and	reservations	more	directly,	but	it	also	makes	it	harder
for	us	to	save	and	load	them	into	a	file.

In	Chapter	5,	Qt	Graphical	Applications,	we	will	look	at	graphical	applications.

	

Qt	Graphical	Applications

	

In	Chapter	4,	Library	Management	System	with	Pointers,	we	developed	abstract
datatypes	and	a	library	management	system.	However,	those	applications	were
text-based.	In	this	chapter,	we	will	look	into	three	graphical	applications	that	we
will	develop	with	the	Qt	graphical	library:

Clock:	We	will	develop	an	analog	clock	with	hour,	minute,	and	second
hands,	with	lines	to	mark	hours,	minutes,	and	seconds
The	drawing	program:	A	program	that	draws	lines,	rectangles,	and
ellipses	in	different	colors
The	editor:	A	program	where	the	user	can	input	and	edit	text

We	will	also	learn	about	the	Qt	library:

Windows	and	widgets
Menus	and	toolbars
Drawing	figures	and	writing	text	in	the	window
How	to	catch	mouse	and	keyboard	events

	

	

Creating	the	clock	application
In	this	chapter	and	the	next	chapter,	we	will	work	with	Qt,	which	is	an	object-
oriented	class	library	for	graphical	applications.	We	will	also	work	with	Qt
Creator,	instead	of	Visual	Studio,	which	is	an	integrated	development
environment.

Setting	up	the	environment
When	creating	a	new	graphical	project	in	Qt	Creator,	we	select	New	File	or
Project	in	the	File	menu,	which	makes	the	New	File	or	Project	dialog	window
become	visible.	We	select	Qt	Widgets	Application,	and	click	the	Choose	button.

Then	the	Introduction	and	Project	Location	dialog	becomes	visible.	We	name	the
project	Clock,	place	it	in	an	appropriate	location,	and	click	the	Next	button.	In	the
KitSelection	dialog,	we	select	the	latest	version	of	the	Qt	library,	and	click	Next.
In	the	Class	Information	dialog,	we	name	the	base	class	of	the	application	clock.
Normally,	the	window	of	a	graphical	application	inherits	a	window	class.	In	this
case,	however,	we	are	dealing	with	a	relatively	simple	application.	Therefore,	we
inherit	the	Qt	class	QWidget,	even	though	a	widget	often	refers	to	a	smaller
graphical	object	that	is	often	embedded	in	the	window.	In	Qt	Creator,	it	is
possible	to	add	forms.	However,	we	do	not	use	that	feature	in	this	chapter.
Therefore,	we	uncheck	the	Generate	form	option.

All	class	names	in	Qt	start	with	the	letter	Q.

Finally,	in	the	Project	Management	dialog,	we	simply	accept	the	default	values
and	click	Finish	to	generate	the	project,	with	the	files	Clock.h	and	Clock.cpp.

The	Clock	class
The	project	is	made	up	by	the	files	Clock.h,	Clock.cpp,	and	Main.cpp.	The	class
definition	looks	a	little	bit	different	compared	to	the	classes	of	the	previous
chapters.	We	enclose	the	class	definition	with	include	guards.	That	is,	we	must
enclose	the	class	definition	with	the	preprocessor	directive	ifndef,	define,	and
endif.	The	preprocessor	performs	text	substitutions.

The	ifndef	and	endif	directives	work	as	the	if	statement	in	C++.	If	the	condition	is
not	true,	the	code	between	the	directives	is	omitted.	In	this	case,	the	code	is
included	only	if	the	CLOCK_H	macro	has	not	previously	been	defined.	If	the	code	is
included,	the	macro	becomes	defined	at	the	next	line	with	the	define	directive.	In
this	way,	the	class	definition	is	included	in	the	project	only	once.	Moreover,	we
also	include	the	system	header	files	QWidget	and	QTimer	in	the	Clock.h	header	file
rather	than	the	Clock.cpp	definition	file.

Clock.h:

#ifndef	CLOCK_H	

				#define	CLOCK_H	

	

				#include	<QWidget>	

				#include	<QTimer>	

Since	Clock	is	a	subclass	of	the	Qt	QWidget	class,	the	Q_OBJECT	macro	must	be
included,	which	includes	certain	code	from	the	Qt	library.	We	need	it	to	use	the
SIGNAL	and	SLOT	macros	shown	here:

class	Clock	:	public	QWidget	{	

						Q_OBJECT	

The	constructor	takes	a	pointer	to	its	parent	widget,	for	which	the	default	is
nullptr:

public:	

						Clock(QWidget*	parentWidgetPtr	=	nullptr);	

The	paintEvent	method	is	called	by	the	framework	every	time	the	window	needs
to	be	repainted.	It	takes	a	pointer	to	a	QPaintEvent	object	as	parameter,	which	can
be	used	to	determine	in	which	way	the	repainting	shall	be	performed:

void	paintEvent(QPaintEvent	*eventPtr);	

QTimer	is	a	Qt	system	class	that	handles	a	timer.	We	will	use	that	to	move	the
hands	of	the	clock:

private:	

								QTimer	m_timer;	

				};	

	

				#endif	//	CLOCK_H	

The	definition	file	is	mainly	made	up	of	the	paintEvent	method,	which	handles	the
painting	of	the	clock.

Clock.cpp:

#include	<QtWidgets>	

				#include	"Clock.h"

In	the	constructor,	we	call	the	base	class	QWidget	with	the	parentWidgetPtr	parameter
(which	may	be	nullptr):

Clock::Clock(QWidget*	parentWidgetPtr	/*	=	nullptr	*/)	

					:QWidget(parentWidgetPtr)	{	

We	set	the	title	of	the	window	to	Clock.	In	Qt,	we	always	use	the	tr	function	for
literal	text,	which	in	turn	calls	the	Qt	method	translate	in	the	Qt	QCoreApplication
class	that	makes	sure	the	text	is	translated	into	a	form	suitable	to	be	displayed.
We	also	resize	the	size	of	the	window	to	1000	x	500	pixels,	which	is	appropriate
for	most	screens:

setWindowTitle(tr("Clock"));	

				resize(1000,	500);	

We	need	a	way	to	connect	the	timer	with	the	clock	widget:	when	the	timer	has
finished	its	countdown,	the	clock	shall	be	updated.	For	that	purpose,	Qt	provides
us	with	the	Signal	and	Slot	system.	When	the	timer	reaches	its	countdown,	it
calls	its	method	timeout.	We	use	the	connect	method	together	with	the	SIGNAL	and
SLOT	macros	to	connect	the	call	to	timeout	with	the	call	to	the	update	method	in	the
Qt	QWidget	class,	which	updates	the	drawing	of	the	clock.	The	SIGNAL	macro
registers	that	the	call	to	timeout	shall	raise	a	signal,	the	SLOT	macro	registers	that
the	update	method	shall	be	called	when	the	signal	is	raised,	and	the	connect
method	connects	the	signal	with	the	slot.	We	have	set	up	a	connection	between
the	timer's	timeout	and	the	update	of	the	clock:

m_timer.setParent(this);	

						connect(&m_timer,	SIGNAL(timeout()),	this,	SLOT(update()));	

						m_timer.start(100);	

				}

The	paintEvent	method	is	called	every	time	the	window	needs	to	be	repainted.	It
may	be	due	to	some	external	cause,	such	as	the	user	resizes	the	window.	It	may
also	be	due	to	a	call	to	the	update	method	of	the	QMainWindow	class,	which	in	turn
eventually	calls	paintEvent.

In	this	case,	we	do	not	need	any	information	about	the	event,	so	we	enclose	the
eventPtr	parameter	in	comments.	The	width	and	height	methods	give	the	width	and
height	of	the	paintable	part	of	the	window,	in	pixels.	We	call	the	qMin	method	to
decide	the	minimum	side	of	the	window,	and	the	currentTime	method	of	the	QTime
class	to	find	the	current	time	for	the	clock:

void	Clock::paintEvent(QPaintEvent*	/*	eventPtr	*/)	{	

						int	side	=	qMin(width(),	height());	

						QTime	time	=	QTime::currentTime();

The	QPainter	class	can	be	viewed	as	a	painting	canvas.	We	start	by	initializing	it
to	appropriate	aliasing.	We	then	call	the	translate	and	scale	methods	to	transform
the	physical	size	in	pixels	to	the	logical	size	of	200	*	200	units:

QPainter	painter(this);	

						painter.setRenderHint(QPainter::Antialiasing);	

						painter.setRenderHint(QPainter::TextAntialiasing);	

						painter.translate(width()	/	2,	height()	/	2);	

						painter.scale(side	/	200.0,	side	/	200.0);	

We	paint	60	lines	for	the	minutes.	Every	fifth	line	shall	be	a	little	bit	longer	to
mark	the	current	hours.	For	each	minute,	we	draw	a	line,	and	then	we	call	the	Qt
rotate	method,	which	rotates	the	drawing	by	6	degrees.	In	this	way,	we	rotate	the
drawing	by	6	degrees	60	times,	which	sums	up	to	360	degrees,	a	whole	lap:

for	(int	second	=	0;	second	<=	60;	++second)	{	

								if	((second	%	5)	==	0)	{	

										painter.drawLine(QPoint(0,	81),	QPoint(0,	98));	

								}	

								else	{	

										painter.drawLine(QPoint(0,	90),	QPoint(0,	98));	

								}	

A	complete	leap	is	360	degrees.	For	each	line	we	rotate	by	6	degrees,	since	360
divided	by	60	is	6	degrees.	When	we	are	finished	with	the	rotations,	the	drawing
is	reset	to	its	original	settings:

painter.rotate(6);	

						}		

We	obtain	the	current	hour,	minute,	second,	and	millisecond	from	the	QTime
object:

double	hours	=	time.hour(),	minutes	=	time.minute(),	

													seconds	=	time.second(),	milliseconds	=	time.msec();	

We	set	the	pen	color	to	black	and	the	background	color	to	gray:

painter.setPen(Qt::black);	

						painter.setBrush(Qt::gray);

We	define	the	endpoints	of	the	hour	hand.	The	hour	hand	is	a	little	bit	thicker
and	shorter	than	the	minute	and	second	hands.	We	define	three	points	that
constitute	the	endpoint	of	the	hour	hand.	The	base	of	the	hour	hand	is	16	units
long	and	located	8	units	from	the	origin.	Therefore,	we	set	the	x	coordinate	of
the	base	points	to	8	and	-8,	and	the	y	coordinate	to	8.	Finally,	we	define	the	length
of	the	hour	hand	to	60	units.	The	value	is	negative	in	order	to	correspond	with
current	rotation:

{	static	const	QPoint	hourHand[3]	=	

										{QPoint(8,	8),	QPoint(-8,	8),	QPoint(0,	-60)};

The	save	method	saves	the	current	settings	of	the	QPointer	object.	The	settings	are
later	restored	by	the	restore	method:

painter.save();	

We	find	out	the	exact	angle	of	the	current	hour	hand	by	calculating	the	hours,
minutes,	seconds,	and	milliseconds.	We	then	rotate	to	set	the	hour	hand.	Each
hour	corresponds	to	30	degrees,	since	we	have	12	hours,	and	360	degrees
divided	by	12	is	30	degrees:

double	hour	=	hours	+	(minutes	/	60.0)	+	(seconds	/	3600.0)	+	

																						(milliseconds	/	3600000.0);	

								painter.rotate(30.0	*	hour);	

We	call	the	drawConvexPloygon	method	with	the	three	points	of	the	hour	hand:

painter.drawConvexPolygon(hourHand,	3);	

								painter.restore();	

						}	

We	draw	the	minute	hand	in	the	same	way.	It	is	a	little	bit	thinner	and	longer
than	the	hour	hand.	Another	difference	is	that	while	we	had	12	hours,	we	now
have	60	minutes.	This	gives	that	each	minute	corresponds	to	6	degrees,	since	360
degrees	divided	by	60	is	6	degrees:

{	static	const	QPoint	minuteHand[3]	=	

										{QPoint(6,	8),	QPoint(-6,	8),	QPoint(0,	-70)};	

								painter.save();	

When	calculating	the	current	minute	angle,	we	use	the	minutes,	seconds,	and
milliseconds:

double	minute	=	minutes	+	(seconds	/	60.0)	+	

																								(milliseconds	/	60000.0);	

								painter.rotate(6.0	*	minute);	

								painter.drawConvexPolygon(minuteHand,	3);	

								painter.restore();	

						}

The	drawing	of	the	second	hand	is	almost	identical	to	the	drawing	of	the
previous	minute	hand.	The	only	difference	is	that	we	only	use	seconds	and
milliseconds	to	calculate	the	second	angle:

{	static	const	QPoint	secondHand[3]	=	

										{QPoint(4,	8),	QPoint(-4,	8),	QPoint(0,	-80)};	

	

								painter.save();	

								double	second	=	seconds	+	(milliseconds	/	1000);	

								painter.rotate(6.0	*	second);	

								painter.drawConvexPolygon(secondHand,	3);	

								painter.restore();	

						}	

				}	

The	main	function
In	the	main	function,	we	initialize	and	start	the	Qt	application.	The	main	function
can	take	the	parameters	argc	and	argv.	It	holds	the	command-line	arguments	of	the
applications;	argc	holds	the	number	of	arguments	and	the	argv	array	holds	the
arguments	themselves.	The	first	entry	of	argv	always	holds	the	path	to	the
execution	file,	and	the	last	entry	is	always	nullptr.	The	QApplication	class	takes	argc
and	argv	and	initializes	the	Qt	application.	We	create	an	object	of	our	Clock	class,
and	call	show	to	make	it	visible.	Finally,	we	call	exec	of	the	QApplication	object.

Main.cpp:

#include	<QApplication>	

				#include	"Clock.h"	

	

				int	main(int	argc,	char	*argv[])	{	

						QApplication	application(argc,	argv);	

						Clock	Clock;	

						Clock.show();	

						return	application.exec();	

				}

To	execute	the	application,	we	select	the	Run	option	on	the	project:

The	execution	will	continue	until	the	user	closes	the	Clock	window	by	pressing
the	close	button	in	the	top-right	corner:	

Setting	up	reusable	classes	for
windows	and	widgets
In	graphical	applications,	there	are	windows	and	widgets.	A	window	is	often	a
complete	window	with	a	frame	holding	title,	menu	bar,	and	buttons	for	closing
and	resizing	the	window.	A	widget	is	often	a	smaller	graphical	object,	often
embedded	in	a	window.	In	the	Clock	project,	we	used	only	a	widget	class	that
inherits	the	QWidget	class.	However,	in	this	section	we	will	leave	the	Clock	project
and	look	into	more	advanced	applications	with	both	a	window	and	a	widget.	The
window	holds	the	frame	with	the	menu	bar	and	toolbar,	while	the	widget	is
located	in	the	window	and	takes	care	of	the	graphical	content.

In	the	following	sections	of	this	chapter,	we	will	look	into	a	drawing	program
and	an	editor.	Those	applications	are	typical	document	applications,	where	we
open	and	save	documents,	as	well	as	also	cut,	copy,	paste,	and	delete	elements	of
the	document.	In	order	to	add	menus	and	toolbars	to	the	window,	we	need	to
inherit	the	two	Qt	classes,	QMainWindow	and	QWidget.	We	need	QMainWindow	to	add
menus	and	toolbars	to	the	window	frame,	and	QWidget	to	draw	images	in	the
window's	area.

In	order	to	reuse	the	document	code	in	the	applications	introduced	in	the
remaining	part	of	this	chapter	and	in	the	next	chapter,	in	this	section,	we	define
the	classes	MainWindow	and	DocumentWidget.	Those	classes	will	then	be	used	by	the
drawing	program	and	the	editor	later	in	the	following	sections	of	this	chapter.
MainWindow	sets	up	a	window	with	the	File	and	Edit	menus	and	toolbars,	while
DocumentWidget	provides	a	framework	that	sets	up	skeleton	code	for	the	New,	Open,
Save,	SaveAs,	Cut,	Copy,	Paste,	Delete,	and	Exit	items.	In	this	section,	we	will	not	create
a	new	Qt	project,	we	will	just	write	the	classes	MainWindow	and	DocumentWidget,	which
are	used	as	base	classes	in	the	drawing	program	and	editor	later	in	this	chapter,
and	the	LISTENER	macro,	which	is	used	to	set	up	menu	and	toolbar	items.

Adding	a	listener
A	listener	is	a	method	that	is	called	when	the	user	selects	a	menu	item	or	a
toolbar	item.	The	Listener	macro	adds	a	listener	to	the	class.

Listener.h:

#ifndef	LISTENER_H	

				#define	LISTENER_H	

	

				#include	<QObject>

Due	to	Qt	rules	regarding	menus	and	toolbars,	the	listener	called	by	the	Qt
Framework	in	response	to	a	user	action	must	be	a	function	rather	than	a	method.

A	method	belongs	to	a	class,	while	a	function	is	free-standing.

The	DefineListener	macro	defines	both	a	friendly	function	and	a	method.	The	Qt
Framework	calls	the	function,	which	in	turns	calls	the	method:

#define	DEFINE_LISTENER(BaseClass,	Listener)											

						friend	bool	Listener(QObject*	baseObjectPtr)	{							

									return	((BaseClass*)	baseObjectPtr)->Listener();		

						}																																																				

						bool	Listener()																																						

The	Listener	macro	is	defined	as	a	pointer	to	the	method:

#define	LISTENER(Listener)	(&::Listener)	

The	listener	method	takes	an	QObject	pointer	as	a	parameter	and	returns	a	Boolean
value:

typedef	bool	(*Listener)(QObject*);	

				#endif	//	LISTENER_H	

The	base	window	class
The	MainWindow	class	sets	up	a	document	window	with	the	File	and	Edit	menus	and
toolbars.	It	also	provides	the	addAction	method,	which	is	intended	for	subclasses	to
add	application-specific	menus	and	toolbars.

MainWindow.h:

#ifndef	MAINWINDOW_H	

				#define	MAINWINDOW_H	

	

				#include	<QMainWindow>	

				#include	<QActionGroup>	

				#include	<QPair>	

				#include	<QMap>	

	

				#include	"Listener.h"	

				#include	"DocumentWidget.h"	

	

				class	MainWindow	:	public	QMainWindow	{	

						Q_OBJECT	

	

						public:	

								MainWindow(QWidget*	parentWidgetPtr	=	nullptr);	

								~MainWindow();	

	

						protected:	

								void	addFileMenu();	

								void	addEditMenu();	

The	addAction	method	adds	a	menu	item,	with	a	potential	accelerator	key,	toolbar
icon,	and	listeners	to	mark	the	item	with	a	checkbox	or	a	radio	button:

protected:	

								void	addAction(QMenu*	menuPtr,	QString	text,	

																							const	char*	onSelectPtr,	

																							QKeySequence	acceleratorKey	=	0,	

																							QString	iconName	=	QString(),	

																							QToolBar*	toolBarPtr	=	nullptr,	

																							QString	statusTip	=	QString(),	

																							Listener	enableListener	=	nullptr,	

																							Listener	checkListener	=	nullptr,	

																							QActionGroup*	groupPtr	=	nullptr);	

We	use	the	DefineListener	macro	to	add	a	listener	to	decide	whether	a	menu	item
shall	be	enabled.	The	listeners	return	true	if	the	item	shall	be	enabled.
DocumentWidget	is	a	sub	class	of	the	Qt	class	QWidget,	which	we	will	define	in	the
next	section.	With	the	DEFINE_LISTENER	macro,	we	add	the	isSaveEnabled,	isCutEnabled,
isCopyEnabled,	isPasteEnabled,	and	isDeleteEnabled	methods	to	the	MainWindow	class.

They	will	be	called	when	the	user	selects	a	menu	item:

DEFINE_LISTENER(DocumentWidget,	isSaveEnabled);	

								DEFINE_LISTENER(DocumentWidget,	isCutEnabled);	

								DEFINE_LISTENER(DocumentWidget,	isCopyEnabled);	

								DEFINE_LISTENER(DocumentWidget,	isPasteEnabled);	

								DEFINE_LISTENER(DocumentWidget,	isDeleteEnabled);	

The	onMenuShow	method	is	called	before	a	menu	becomes	visible;	it	calls	the
listener	of	the	items	of	the	menu	to	decide	whether	they	shall	be	disabled	or
annotated	by	a	checkbox	or	a	radio	button.	It	is	also	called	by	the	framework	in
order	to	disable	toolbar	icons:

public	slots:	

								void	onMenuShow();

The	m_enableMap	and	m_checkMap	fields	hold	maps	of	listeners	for	the	menu	items.
The	preceding	onMenuShow	method	uses	them	to	decide	whether	to	disable	the	item,
or	annotate	it	with	a	checkbox	or	a	radio	button:

private:	

								QMap<QAction*,QPair<QObject*,Listener>>	m_enableMap,	

																																																m_checkMap;	

				};	

	

				#endif	//	MAINWINDOW_H	

MainWindow.cpp:

#include	"MainWindow.h"	

				#include	<QtWidgets>	

The	constructor	calls	the	constructor	of	the	Qt	QMainWindow	class,	with	the	parent
widget	pointer	as	its	parameter:

MainWindow::MainWindow(QWidget*	parentWidgetPtr	/*=	nullptr*/)	

					:QMainWindow(parentWidgetPtr)	{	

				}	

When	a	menu	item	is	added,	it	is	connected	to	an	action.	The	destructor
deallocates	all	actions	of	the	menu	bar:

MainWindow::~MainWindow()	{	

						for	(QAction*	actionPtr	:	menuBar()->actions())	{	

								delete	actionPtr;	

						}	

				}	

The	addFileMenu	method	adds	the	standard	File	menu	to	the	menu	bar;	menubar	is	a

Qt	method	that	returns	a	pointer	to	the	menu	bar	of	the	window:

void	MainWindow::addFileMenu()	{	

						QMenu*	fileMenuPtr	=	menuBar()->addMenu(tr("&File"));

Similar	to	the	connect	method	which	connects	the	menu	item	with	the	onMenuShow
method	in	the	following	code	snippet.	The	Qt	macros	SIGNAL	and	SLOT	ensure	that
onMenuShow	is	called	before	the	menu	becomes	visible.	The	onMenuShow	method	sets
the	enable,	checkbox,	and	radio	bottom	status	for	each	item	of	the	menu	before
the	menu	becomes	visible.	It	also	sets	the	enable	status	of	toolbars	images.	The
aboutToShow	method	is	called	before	each	menu	becomes	visible	in	order	to	enable
or	disable	the	items,	and	to	possibly	mark	them	with	check	boxes	or	radio
buttons:

connect(fileMenuPtr,	SIGNAL(aboutToShow()),	this,	

														SLOT(onMenuShow()));	

The	Qt	addToolBar	method	adds	a	toolbar	to	the	window's	frame.	When	we	call
addAction	here,	the	menu	item	will	be	added	to	the	menu	and,	if	present,	to	the
toolbar:

QToolBar	*fileToolBarPtr	=	addToolBar(tr("File"));	

The	addAction	method	adds	the	New,	Open,	Save,	SaveAs,	and	Exit	menu	items.	It	takes
the	following	parameters:

A	pointer	to	the	menu	the	item	shall	belong	to.
The	item	text.	The	ampersand	(&)	before	the	text	(&New)	indicates	that	the
next	letter	(N)	will	be	underlined,	and	that	the	user	can	select	that	item	by
pressing	Alt-N.
Accelerator	information.	QKeySequence	is	a	Qt	enumeration	holding	accelerator
key	combinations.	QKeySequence::New	indicates	that	the	user	can	select	the	item
by	pressing	Ctrl-N.	The	text	Ctrl+N	will	also	be	added	to	the	item	text.
The	name	of	an	icon	file	(new).	The	icon	of	the	file	is	displayed	both	to	the
left	of	the	item	text	and	on	the	toolbar.	The	icon	file	itself	is	added	to	the
project	in	Qt	Creator.
A	pointer	to	the	toolbar,	nullptr	if	the	item	is	not	connected	to	a	toolbar.
The	text	displayed	when	the	user	hovers	with	the	mouse	over	the	toolbar
item.	Ignored	if	the	item	is	not	connected	to	a	toolbar.
Listeners	(default	nullptr)	that	are	called	before	the	menu	and	toolbar

become	visible,	and	deciding	whether	the	item	is	enabled	or	marked	with	a
checkbox	or	a	radio	button:

addAction(fileMenuPtr,	tr("&New"),	SLOT(onNew()),	

												QKeySequence::New,	tr("new"),	fileToolBarPtr,	

												tr("Create	a	new	file"));	

	

		addAction(fileMenuPtr,	tr("&Open"),	SLOT(onOpen()),	

												QKeySequence::Open,	tr("open"),	fileToolBarPtr,	

												tr("Open	an	existing	file"));	

When	there	are	no	changes	in	the	document	since	it	was	last	saved,	the
document	does	not	need	to	be	saved	and	the	Save	item	shall	be	disabled.
Therefore,	we	add	an	extra	parameter,	indicating	that	the	isSaveEnabled	method
shall	be	called	to	enable	or	disable	the	menu	and	toolbar	item:

addAction(fileMenuPtr,	tr("&Save"),	SLOT(onSave()),	

																QKeySequence::Save,	tr("save"),	fileToolBarPtr,	

																tr("Save	the	document	to	disk"),	

																LISTENER(isSaveEnabled));	

The	SaveAs	menu	item	has	no	key	sequence.	Moreover,	it	does	not	have	a	toolbar
entry.	Therefore,	the	name	of	the	icon	file	and	the	toolbar	text	are	default	QString
objects	and	the	toolbar	pointer	is	nullptr:

addAction(fileMenuPtr,	tr("Save	&As"),	SLOT(onSaveAs()),	

																0,	QString(),	nullptr,	QString(),	

																LISTENER(isSaveEnabled));	

The	addSeparator	method	adds	a	horizontal	line	between	two	items:

fileMenuPtr->addSeparator();	

						addAction(fileMenuPtr,	tr("E&xit"),	

																SLOT(onExit()),	QKeySequence::Quit);	

				}	

The	addEditMenu	method	adds	the	Edit	menu	to	the	window's	menu	bar	in	the	same
way	as	the	preceding	File	menu:

void	MainWindow::addEditMenu()	{	

						QMenu*	editMenuPtr	=	menuBar()->addMenu(tr("&Edit"));	

						QToolBar*	editToolBarPtr	=	addToolBar(tr("Edit"));	

						connect(editMenuPtr,	SIGNAL(aboutToShow()),	

														this,	SLOT(onMenuShow()));	

	

						addAction(editMenuPtr,	tr("&Cut"),	SLOT(onCut()),	

																QKeySequence::Cut,	tr("cut"),	editToolBarPtr,	

										tr("Cut	the	current	selection's	contents	to	the	clipboard"),	

																LISTENER(isCutEnabled));	

	

						addAction(editMenuPtr,	tr("&Copy"),	SLOT(onCopy()),	

																QKeySequence::Copy,	tr("copy"),	editToolBarPtr,	

									tr("Copy	the	current	selection's	contents	to	the	clipboard"),	

																LISTENER(isCopyEnabled));	

	

						addAction(editMenuPtr,	tr("&Paste"),	SLOT(onPaste()),	

																QKeySequence::Paste,	tr("paste"),	editToolBarPtr,	

								tr("Paste	the	current	selection's	contents	to	the	clipboard"),	

																LISTENER(isPasteEnabled));	

	

						editMenuPtr->addSeparator();	

						addAction(editMenuPtr,	tr("&Delete"),	SLOT(onDelete()),	

																QKeySequence::Delete,	tr("delete"),	editToolBarPtr,	

																tr("Delete	the	current	selection"),	

																LISTENER(isDeleteEnabled));	

				}	

The	addAction	method	adds	a	menu	item	to	the	menu	bar	and	a	toolbar	icon	to	the
toolbar.	It	also	connects	the	item	with	the	onSelectPtr	method	that	is	called	when
the	user	selects	the	item,	and	methods	that	enable	the	item	and	annotate	it	with	a
checkbox	or	radio	button.	An	accelerator	is	added	to	the	action,	unless	it	is	zero.
The	groupPtr	parameter	defines	whether	the	item	is	part	of	a	group.	If	checkListener
is	not	nullptr,	the	item	is	annotated	with	a	checkbox	if	groupPtr	is	nullptr,	and	with
a	radio	button	if	it	is	not.	In	the	case	of	radio	buttons,	only	one	radio	button	in
the	group	will	be	marked	at	the	same	time:

void	MainWindow::addAction(QMenu*	menuPtr,	QString	itemText,	

																															const	char*	onSelectPtr,	

																															QKeySequence	acceleratorKey	/*	=	0	*/,	

																															QString	iconName	/*=	QString()*/,	

																															QToolBar*	toolBarPtr	/*=	nullptr*/,	

																															QString	statusTip	/*=	QString()*/,	

																															Listener	enableListener	/*=	nullptr*/,	

																															Listener	checkListener	/*=	nullptr*/,	

																															QActionGroup*	groupPtr	/*=	nullptr*/)	{	

						QAction*	actionPtr;	

If	iconName	is	not	empty,	we	load	the	icon	from	the	file	in	the	project	resource	and
then	create	a	new	QAction	object	with	the	icon:

if	(!iconName.isEmpty())	{	

								const	QIcon	icon	=	QIcon::fromTheme("document-"	+	iconName,	

																											QIcon(":/images/"	+	iconName	+	".png"));	

								actionPtr	=	new	QAction(icon,	itemText,	this);	

						}	

If	iconName	is	empty,	we	create	a	new	QAction	object	without	the	icon:

else	{	

								actionPtr	=	new	QAction(itemText,	this);	

						}

We	connect	the	menu	item	to	the	selection	method.	When	the	user	selects	the

item,	or	clicks	on	the	toolbar	icon,	onSelectPtr	is	called:

connect(actionPtr,	SIGNAL(triggered()),	

														centralWidget(),	onSelectPtr);	

If	the	accelerator	key	is	not	zero,	we	add	it	to	the	action	pointer:

if	(acceleratorKey	!=	0)	{	

								actionPtr->setShortcut(acceleratorKey);	

						}	

Finally,	we	add	the	action	pointer	to	the	menu	pointer	in	order	for	it	to	process
the	user's	item	selection:

menuPtr->addAction(actionPtr);	

If	toolBarPtr	is	not	nullptr,	we	add	the	action	to	the	toolbar	of	the	window:

if	(toolBarPtr	!=	nullptr)	{	

								toolBarPtr->addAction(actionPtr);	

						}	

If	the	status	tip	is	not	empty,	we	add	it	to	the	tooltip	and	status	tip	of	the	toolbar:

if	(!statusTip.isEmpty())	{	

										actionPtr->setToolTip(statusTip);	

										actionPtr->setStatusTip(statusTip);	

						}	

If	the	enable	listener	is	not	null,	we	add	to	m_enableMap	a	pair	made	up	of	a	pointer
to	the	central	widget	of	the	window	and	the	listener.	We	also	call	the	listener	to
initialize	the	enable	status	of	the	menu	item	and	toolbar	icon:

if	(enableListener	!=	nullptr)	{	

								QWidget*	widgetPtr	=	centralWidget();	

								m_enableMap[actionPtr]	=	

										QPair<QObject*,Listener>(widgetPtr,	enableListener);	

								actionPtr->setEnabled(enableListener(widgetPtr));	

						}	

In	the	same	way,	if	the	check	listener	is	not	null,	we	add	a	pointer	to	the	central
widget	of	the	window	and	the	listener	to	m_checkMap.	Both	m_enableMap	and	m_checkMap
are	used	by	onMenuShow,	as	follows.	We	also	call	the	listener	to	initialize	the	check
status	of	the	menu	item	(toolbar	icons	are	not	checked):

if	(checkListener	!=	nullptr)	{	

								actionPtr->setCheckable(true);	

								QWidget*	widgetPtr	=	centralWidget();	

								m_checkMap[actionPtr]	=	

										QPair<QObject*,Listener>(widgetPtr,	checkListener);	

								actionPtr->setChecked(checkListener(widgetPtr));	

						}	

Finally,	if	the	group	pointer	is	not	null,	we	add	the	action	to	it.	In	that	way,	the
menu	item	will	be	annotated	by	a	radio	button	rather	than	a	checkbox.	The
framework	does	also	keep	track	of	the	groups	and	makes	sure	only	one	of	the
radio	buttons	of	each	group	is	marked	at	the	same	time:

if	(groupPtr	!=	nullptr)	{	

								groupPtr->addAction(actionPtr);	

						}	

				}	

The	onMenuShow	method	is	called	before	a	menu	or	toolbar	icon	becomes	visible.	It
makes	sure	each	item	is	enabled	or	disabled,	and	that	the	items	are	annotated
with	checkboxes	or	radio	buttons.

We	start	by	iterating	through	the	enable	map.	For	each	entry	in	the	map,	we	look
up	the	widget	and	the	enable	function.	We	call	the	function,	which	returns	true	or
false,	and	use	the	result	to	enable	or	disable	the	item	by	calling	setEnabled	on	the
action	object	pointer:

void	MainWindow::onMenuShow()	{	

						for	(QMap<QAction*,QPair<QObject*,Listener>>::iterator	i	=	

											m_enableMap.begin();	i	!=	m_enableMap.end();	++i)	{	

								QAction*	actionPtr	=	i.key();	

								QPair<QObject*,Listener>	pair	=	i.value();	

								QObject*	baseObjectPtr	=	pair.first;	

								Listener	enableFunction	=	pair.second;	

								actionPtr->setEnabled(enableFunction(baseObjectPtr));	

						}	

In	the	same	way,	we	iterate	through	the	check	map.	For	each	entry	in	the	map,
we	look	up	the	widget	and	the	check	function.	We	call	the	function	and	use	the
result	to	check	the	item	by	calling	setCheckable	and	setChecked	on	the	action	object
pointer.	The	Qt	Framework	makes	sure	the	item	is	annotated	by	radio	buttons	if
it	belongs	to	a	group,	and	a	checkbox	if	it	does	not:

for	(QMap<QAction*,QPair<QObject*,Listener>>::iterator	i	=	

											m_checkMap.begin();	i	!=	m_checkMap.end();	++i)	{	

								QAction*	actionPtr	=	i.key();	

								QPair<QObject*,Listener>	pair	=	i.value();	

								QObject*	baseObjectPtr	=	pair.first;	

								Listener	checkFunction	=	pair.second;	

								actionPtr->setCheckable(true);	

								actionPtr->setChecked(checkFunction(baseObjectPtr));	

						}	

				}	

The	base	widget	class
DocumentWidget	is	a	skeleton	framework	for	applications	that	handle	documents.	It
handles	the	loading	and	saving	of	the	document,	and	provides	methods	to	be
overridden	by	subclasses	for	the	Cut,	Copy,	Paste,	and	Delete	menu	items.

While	the	preceding	MainWindow	class	handles	the	window	frame,	with	its	menus
and	toolbars,	the	DocumentWidget	class	handles	the	drawing	of	the	window's	content.
The	idea	is	that	the	subclass	of	MainWindow	creates	an	object	of	a	subclass	to
DocumentWidget	that	it	puts	at	the	centrum	of	the	window.	See	the	constructors	of
DrawingWindow	and	EditorWindow	in	the	following	sections.

DocumentWidget.h:

#ifndef	DOCUMENTWIDGET_H	

				#define	DOCUMENTWIDGET_H	

	

				#include	"Listener.h"	

				#include	<QWidget>	

				#include	<QtWidgets>	

				#include	<FStream>	

				using	namespace	std;	

	

				class	DocumentWidget	:	public	QWidget	{	

						Q_OBJECT	

The	constructor	takes	the	name	of	the	application,	to	be	displayed	at	the	top
banner	of	the	window,	the	filename	mask	to	be	used	when	loading	and	storing
documents	with	the	standard	file	dialogs,	and	a	pointer	to	a	potential	parent
widget	(normally	the	enclosing	main	window):

public:	

								DocumentWidget(const	QString&	name,	const	QString&	fileMask,	

																							QWidget*	parentWidgetPtr);	

								~DocumentWidget();

The	setFilePath	method	sets	the	path	of	the	current	document.	The	path	is
displayed	at	the	top	banner	of	the	window	and	is	given	as	a	default	path	in	the
standard	load	and	save	dialogs:

protected:	

								void	setFilePath(QString	filePath);	

When	a	document	has	been	changed,	the	modified	flag	(sometimes	called	the
dirty	flag)	is	set.	This	causes	an	asterisk	(*)	to	appear	next	to	the	file	path	at	the
top	banner	of	the	window,	and	the	Save	and	SaveAs	menu	items	to	be	enabled:

public:	

								void	setModifiedFlag(bool	flag);	

The	setMainWindowTitle	method	is	an	auxiliary	method	that	puts	together	the	title	of
the	window.	It	is	made	up	by	the	file	path	and	a	potential	asterisk	(*)	to	indicate
whether	the	modified	flag	is	set:

private:	

								void	setMainWindowTitle();	

The	closeEvent	method	is	overridden	from	QWidget	and	is	called	when	the	user
closes	the	window.	By	setting	fields	of	the	eventPtr	parameter,	the	closing	can	be
prevented.	For	example,	if	the	document	has	not	been	saved,	the	user	can	be
asked	if	they	want	to	save	the	document	or	cancel	the	closing	of	the	window:

public:	

								virtual	void	closeEvent(QCloseEvent*	eventPtr);	

The	isClearOk	method	is	an	auxiliary	method	that	displays	a	message	box	if	the
user	tries	to	close	the	window	or	exit	the	application	without	saving	the
document:

private:	

								bool	isClearOk(QString	title);	

The	following	methods	are	called	by	the	framework	when	the	user	selects	a
menu	item	or	clicks	a	toolbar	icon.	In	order	for	that	to	work,	we	mark	the
methods	as	slots,	which	is	necessary	for	the	SLOT	macro	in	the	connect	call:

public	slots:	

								virtual	void	onNew();	

								virtual	void	onOpen();	

								virtual	bool	onSave();	

								virtual	bool	onSaveAs();	

								virtual	void	onExit();

When	a	document	has	not	been	changed,	it	is	not	necessary	to	save	it.	In	that
case,	the	Save	and	SaveAs	menu	items	and	toolbars	images	shall	be	disabled.	The
isSaveEnabled	method	is	called	by	onMenuShow	before	the	File	menu	becomes	visible.
It	returns	true	only	when	the	document	has	been	changed	and	needs	to	be	saved:

virtual	bool	isSaveEnabled();	

The	tryWriteFile	method	is	an	auxiliary	method	that	tries	to	write	the	file.	If	it
fails,	a	message	box	displays	an	error	message:

private:	

								bool	tryWriteFile(QString	filePath);	

The	following	methods	are	virtual	methods	intended	to	be	overridden	by
subclasses.	They	are	called	when	the	user	selects	the	New,	Save,	SaveAs,	and	Open
menu	items:

protected:	

								virtual	void	newDocument()	=	0;	

								virtual	bool	writeFile(const	QString&	filePath)	=	0;	

								virtual	bool	readFile(const	QString&	filePath)	=	0;	

The	following	methods	are	called	before	the	edit	menu	becomes	visible,	and
they	decide	whether	the	Cut,	Copy,	Paste,	and	Delete	items	shall	be	enabled:

public:	

								virtual	bool	isCutEnabled();	

								virtual	bool	isCopyEnabled();	

								virtual	bool	isPasteEnabled();	

								virtual	bool	isDeleteEnabled();	

The	following	methods	are	called	when	the	user	selects	the	Cut,	Copy,	Paste,	and
Delete	items	or	toolbar	icons:

public	slots:	

								virtual	void	onCut();	

								virtual	void	onCopy();	

								virtual	void	onPaste();	

								virtual	void	onDelete();	

The	m_applicationName	field	holds	the	name	of	the	application,	not	the	document.	In
the	next	sections,	the	names	will	be	Drawing	and	Editor.	The	m_fileMask	field
holds	the	mask	that	is	used	when	loading	and	saving	the	document	with	the
standard	dialogs.	For	instance,	let	us	say	that	we	have	documents	with	the
ending	.abc.	Then	the	mask	could	be	Abc	files	(.abc).	The	m_filePath	field	holds	the
path	of	the	current	document.	When	the	document	is	new	and	not	yet	saved,	the
field	holds	the	empty	string.

Finally,	m_modifiedFlag	is	true	when	the	document	has	been	modified	and	needs	to
be	saved	before	the	application	quits:

private:	

								QString	m_applicationName,	m_fileMask,	m_filePath;	

								bool	m_modifiedFlag	=	false;	

				};	

Finally,	there	are	some	overloaded	auxiliary	operators.	The	addition	and
subtraction	operators	add	and	subtract	a	point	with	a	size,	and	a	rectangle	with	a
size:

QPoint&	operator+=(QPoint&	point,	const	QSize&	size);	

				QPoint&	operator-=(QPoint&	point,	const	QSize&	size);	

	

				QRect&	operator+=(QRect&	rect,	int	size);	

				QRect&	operator-=(QRect&	rect,	int	size);	

The	writePoint	and	readPoint	methods	write	and	read	a	point	from	an	input	stream:

void	writePoint(ofstream&	outStream,	const	QPoint&	point);	

				void	readPoint(ifstream&	inStream,	QPoint&	point);	

The	writeColor	and	readColor	methods	write	and	read	a	color	from	an	input	stream:

void	writeColor(ofstream&	outStream,	const	QColor&	color);	

				void	readColor(ifstream&	inStream,	QColor&	color);	

The	makeRect	method	creates	a	rectangle	with	point	as	its	center	and	size	as	its	size:

QRect	makeRect(const	QPoint&	centerPoint,	int	halfSide);	

				#endif	//	DOCUMENTWIDGET_H	

DocumentWidget.cpp:

#include	<QtWidgets>	

				#include	<QMessageBox>	

	

				#include	"MainWindow.h"	

				#include	"DocumentWidget.h"	

The	constructor	sets	the	name	of	the	application,	the	file	mask	for	the	save	and
load	standard	dialogs,	and	a	pointer	to	the	enclosing	parent	widget	(usually	the
enclosing	main	window):

DocumentWidget::DocumentWidget(const	QString&	name,	

																				const	QString&	fileMask,	QWidget*	parentWidgetPtr)	

					:m_applicationName(name),	

						m_fileMask(fileMask),	

						QWidget(parentWidgetPtr)	{	

								setMainWindowTitle();	

						}	

The	destructor	does	nothing,	it	is	included	for	completeness	only:

DocumentWidget::~DocumentWidget()	{	

						//	Empty.	

				}	

The	setFilePath	method	calls	setMainWindowTitle	to	update	the	text	on	the	top	banner
of	the	window:

void	DocumentWidget::setFilePath(QString	filePath)	{	

						m_filePath	=	filePath;	

						setMainWindowTitle();	

				}	

The	setModifiedFlag	method	also	calls	setMainWindowTitle	to	update	the	text	on	the
top	banner	of	the	window.	Moreover,	it	calls	onMenuShow	on	the	parent	widget	to
update	the	icons	of	the	toolbars:

void	DocumentWidget::setModifiedFlag(bool	modifiedFlag)	{	

						m_modifiedFlag	=	modifiedFlag;	

						setMainWindowTitle();	

						((MainWindow*)	parentWidget())->onMenuShow();	

				}	

The	title	displayed	at	the	top	banner	of	the	toolbar	is	the	application	name,	the
document	file	path	(if	not	empty),	and	an	asterisk	if	the	document	has	been
modified	without	being	saved:

void	DocumentWidget::setMainWindowTitle()	{	

						QString	title=	m_applicationName	+	

														(m_filePath.isEmpty()	?	""	:	("	["	+	m_filePath	+	"]"))+	

														(m_modifiedFlag	?	"	*"	:	"");	

						this->parentWidget()->setWindowTitle(title);	

				}	

The	isClearOk	method	displays	a	message	box	if	the	document	has	been	modified
without	being	saved.	The	user	can	select	one	of	the	following	buttons:

Yes:	The	document	is	saved,	and	the	application	quits.	However,	if	the
saving	fails,	an	error	message	is	displayed	and	the	application	does	not	quit.
No:	The	application	quits	without	saving	the	document.
Cancel:	The	closing	of	the	application	is	cancelled.	The	document	is	not
saved.

bool	DocumentWidget::isClearOk(QString	title)	{	

						if	(m_modifiedFlag)	{	

								QMessageBox	messageBox(QMessageBox::Warning,	

																															title,	QString());	

								messageBox.setText(tr("The	document	has	been	modified."));	

								messageBox.setInformativeText(

																			tr("Do	you	want	to	save	your	changes?"));	

								messageBox.setStandardButtons(QMessageBox::Yes	|	

																														QMessageBox::No	|	QMessageBox::Cancel);	

								messageBox.setDefaultButton(QMessageBox::Yes);	

	

								switch	(messageBox.exec())	{	

										case	QMessageBox::Yes:	

												return	onSave();	

	

										case	QMessageBox::No:	

												return	true;	

	

										case	QMessageBox::Cancel:	

												return	false;	

								}	

						}	

	

						return	true;	

				}	

If	the	document	is	cleared,	newDocument	is	called,	which	is	intended	to	be
overridden	by	a	subclass	to	perform	application-specific	initialization.	Moreover,
the	modified	flag	and	the	file	path	are	cleared.	Finally,	the	Qt	update	method	is
called	to	force	a	repainting	of	the	window's	content:

void	DocumentWidget::onNew()	{	

						if	(isClearOk(tr("New	File")))	{	

								newDocument();	

								setModifiedFlag(false);	

								setFilePath(QString());	

								update();	

						}	

				}	

If	the	document	is	cleared,	onOpen	uses	the	standard	open	dialog	to	obtain	the	file
path	of	the	document:

void	DocumentWidget::onOpen()	{	

						if	(isClearOk(tr("Open	File")))	{	

								QString	file	=	

										QFileDialog::getOpenFileName(this,	tr("Open	File"),	

																							tr("C:\Users\Stefan\Documents\"	

																										"A	A_Cpp_By_Example\Draw"),	

																		m_fileMask	+	tr(";;Text	files	(*.txt)"));	

If	the	file	was	successfully	read,	the	modified	flag	is	cleared,	the	file	path	is	set,
and	update	is	called	to	force	a	repainting	of	the	window:

if	(!file.isEmpty())	{	

										if	(readFile(file))	{	

												setModifiedFlag(false);	

												setFilePath(file);	

												update();	

										}	

However,	if	the	reading	was	not	successful,	a	message	box	with	an	error
message	is	displayed:

else	{	

												QMessageBox	messageBox;	

												messageBox.setIcon(QMessageBox::Critical);	

												messageBox.setText(tr("Read	File"));	

												messageBox.setInformativeText(tr("Could	not	read	"")	+	

																																										m_filePath		+	tr("""));	

												messageBox.setStandardButtons(QMessageBox::Ok);	

												messageBox.setDefaultButton(QMessageBox::Ok);	

												messageBox.exec();	

										}	

								}	

						}	

				}	

The	ifSaveEnabled	method	simply	returns	the	value	of	m_modifiedFlag.	However,	we
need	the	method	for	the	listener	to	work:

bool	DocumentWidget::isSaveEnabled()	{	

						return	m_modifiedFlag;	

				}	

The	onSave	method	is	called	when	the	user	selects	the	Save	or	SaveAs	menu	item	or
toolbar	icon.	If	the	document	has	already	been	given	a	name,	we	simply	try	to
write	the	file.	However,	if	it	has	not	yet	been	given	a	name	we	call	OnSaveAs,
which	displays	the	standard	Save	dialog	for	the	user:

bool	DocumentWidget::onSave()	{	

						if	(!m_filePath.isEmpty())	{	

								return	tryWriteFile(m_filePath);	

						}	

						else	{	

								return	onSaveAs();	

						}	

				}	

The	onSaveAs	method	is	called	when	the	user	selects	the	SaveAs	menu	item	(there	is
no	toolbar	icon	for	this	item).	It	opens	the	standard	open	dialog	and	tries	to	write
the	file.	If	the	writing	was	not	successful,	false	is	returned.	The	reason	for	this	is
that	isClearOk	closes	the	window	only	if	the	writing	was	successful:

bool	DocumentWidget::onSaveAs()	{	

						QString	filePath	=	

														QFileDialog::getSaveFileName(this,	tr("Save	File"),	

																			tr("C:\Users\Stefan\Documents\"	

																						"A	A_Cpp_By_Example\Draw"),	

																m_fileMask	+	tr(";;Text	files	(*.txt)"));	

	

						if	(!filePath.isEmpty())	{	

								return	tryWriteFile(filePath);	

						}	

						else	{	

								return	false;	

						}	

				}	

The	tryWriteFile	method	tries	to	write	the	file	by	calling	write,	which	is	intended
to	be	overridden	by	a	subclass.	If	it	succeeded,	the	modified	flag	and	the	file
path	are	set.	If	the	file	was	not	successfully	written,	a	message	box	with	an	error
message	is	displayed:

bool	DocumentWidget::tryWriteFile(QString	filePath)	{	

						if	(writeFile(filePath))	{	

								setModifiedFlag(false);	

								setFilePath(filePath);	

								return	true;	

						}	

						else	{	

								QMessageBox	messageBox;	

								messageBox.setIcon(QMessageBox::Critical);	

								messageBox.setText(tr("Write	File"));	

								messageBox.setInformativeText(tr("Could	not	write	"")	+	

																																						filePath		+	tr("""));	

								messageBox.setStandardButtons(QMessageBox::Ok);	

								messageBox.setDefaultButton(QMessageBox::Ok);	

								messageBox.exec();	

								return	false;	

						}	

				}	

The	onExit	method	is	called	when	the	user	selects	the	Exit	menu	item.	It	checks
whether	it	is	clear	to	close	the	window,	and	exits	the	application	if	it	is:

void	DocumentWidget::onExit()	{	

						if	(isClearOk(tr("Exit")))	{	

								qApp->exit(0);	

						}	

				}	

The	default	behavior	of	isCutEnabled	and	isDeleteEnabled	is	to	call	isCopyEnabled,	since
they	often	are	enabled	on	the	same	conditions:

bool	DocumentWidget::isCutEnabled()	{	

						return	isCopyEnabled();	

				}	

	

				bool	DocumentWidget::isDeleteEnabled()	{	

						return	isCopyEnabled();	

				}	

The	default	behavior	of	onCut	is	to	simply	call	onCopy	and	onDelete:

void	DocumentWidget::onCut()	{	

						onCopy();	

						onDelete();	

				}	

The	default	behavior	of	the	rest	of	the	cut-and-copy	methods	is	to	return	false
and	do	nothing,	which	will	leave	the	menu	items	disabled	unless	the	subclass
overrides	the	methods:

bool	DocumentWidget::isCopyEnabled()	{	

						return	false;	

				}	

	

				void	DocumentWidget::onCopy()	{	

						//	Empty.	

				}	

	

				bool	DocumentWidget::isPasteEnabled()	{	

						return	false;	

				}	

	

				void	DocumentWidget::onPaste()	{	

						//	Empty.	

				}	

					

				void	DocumentWidget::onDelete()	{	

						//	Empty.	

}	

Finally,	closeEvent	is	called	when	the	user	tries	to	close	the	window.	If	the
window	is	ready	to	be	cleared,	accept	is	called	on	eventPtr,	which	causes	the
window	to	be	closed,	and	exit	is	called	on	the	global	qApp	object,	which	causes
the	application	to	quit:

void	DocumentWidget::closeEvent(QCloseEvent*	eventPtr)	{	

						if	(isClearOk(tr("Close	Window")))	{	

								eventPtr->accept();	

								qApp->exit(0);	

						}	

However,	if	the	window	is	not	ready	to	be	cleared,	ignore	is	called	on	eventPtr,
which	causes	the	window	to	remain	open	(and	the	application	to	continue):

else	{	

								eventPtr->ignore();	

						}	

				}	

Moreover,	there	are	also	the	set	of	auxiliary	functions	for	handling	points,	sizes,
rectangles,	and	color.	The	following	operators	add	and	subtract	a	point	with	a
size,	and	return	the	resulting	point:

QPoint&	operator+=(QPoint&	point,	const	QSize&	size)	{	

						point.setX(point.x()	+	size.width());	

						point.setY(point.y()	+	size.height());	

						return	point;	

				}	

	

				QPoint&	operator-=(QPoint&	point,	const	QSize&	size)	{	

						point.setX(point.x()	-	size.width());	

						point.setY(point.y()	-	size.height());	

						return	point;	

				}	

The	following	operators	add	and	subtract	an	integer	from	a	rectangle,	and	return
the	resulting	rectangle.	The	addition	operator	expands	the	size	of	the	rectangle	in
every	direction,	while	the	subtraction	operator	shrinks	the	rectangle	in	every
direction:

QRect&	operator+=(QRect&	rect,	int	size)	{	

						rect.setLeft(rect.left()	-	size);	

						rect.setTop(rect.top()	-	size);	

						rect.setWidth(rect.width()	+	size);	

						rect.setHeight(rect.height()	+	size);	

						return	rect;	

				}	

	

				QRect&	operator-=(QRect&	rect,	int	size)	{	

						rect.setLeft(rect.left()	+	size);	

						rect.setTop(rect.top()	+	size);	

						rect.setWidth(rect.width()	-	size);	

						rect.setHeight(rect.height()	-	size);	

						return	rect;	

				}	

The	writePoint	and	readPoint	functions	write	and	read	a	point	from	a	file.	They
write	and	read	the	x	and	y	coordinates	separately:

void	writePoint(ofstream&	outStream,	const	QPoint&	point)	{	

						int	x	=	point.x(),	y	=	point.y();	

						outStream.write((char*)	&x,	sizeof	x);	

						outStream.write((char*)	&y,	sizeof	y);	

				}	

	

				void	readPoint(ifstream&	inStream,	QPoint&	point)	{	

						int	x,	y;	

						inStream.read((char*)	&x,	sizeof	x);	

						inStream.read((char*)	&y,	sizeof	y);	

						point	=	QPoint(x,	y);	

				}	

The	writeColor	and	readColor	functions	write	and	read	a	color	from	a	file.	A	color	is
made	up	of	the	red,	green,	and	blue	components.	Each	component	is	an	integer
value	between	0	and	255	inclusive.	The	methods	write	and	read	the	components
from	a	file	stream:

void	writeColor(ofstream&	outStream,	const	QColor&	color)	{	

						int	red	=	color.red(),	green	=	color.green(),	

						blue	=	color.blue();	

						outStream.write((char*)	&red,	sizeof	red);	

						outStream.write((char*)	&green,	sizeof	green);	

						outStream.write((char*)	&blue,	sizeof	blue);	

				}	

	

				void	readColor(ifstream&	inStream,	QColor&	color)	{	

						int	red,	green,	blue;	

						inStream.read((char*)	&red,	sizeof	red);	

						inStream.read((char*)	&green,	sizeof	green);	

						inStream.read((char*)	&blue,	sizeof	blue);

When	the	components	have	been	read,	we	create	a	QColor	object	that	we	assign
the	color	parameter:

color	=	QColor(red,	green,	blue);	

				}	

The	makeRect	function	creates	a	rectangle	centered	around	the	point:

QRect	makeRect(const	QPoint&	centerPoint,	int	halfSide)	{	

						return	QRect(centerPoint.x()	-	halfSide,	

																			centerPoint.y()	-	halfSide,	

																			2	*	halfSide,	2	*	halfSide);	

				}	

Building	the	drawing	program
Let's	now	start	a	new	project,	where	we	take	advantage	of	the	main	window	and
document	widget	classes	of	the	previous	section—The	drawing	program.	We
will	start	with	a	basic	version	in	this	chapter,	and	we	will	continue	to	build	a
more	advanced	version	in	the	next	chapter.	With	the	drawing	program	of	this
chapter	we	can	draw	lines,	rectangles,	and	ellipses	in	different	colors.	We	can
also	save	and	load	our	drawings.	Note	that	in	this	project	the	window	and	widget
classes	inherit	from	the	MainWindow	and	DocumentWidget	classes	of	the	previous
section.

	

The	Figure	base	class
The	figures	of	the	application	constitute	a	class	hierarchy	where	the	Figure	is	the
base	class.	Its	subclasses	are	Line,	RectangleX,	and	EllipseX,	which	are	described
later	on.	We	cannot	use	the	names	Rectangle	and	Ellipse	for	our	classes,	since
that	would	clash	with	Qt	methods	with	the	same	names.	I	have	chosen	to	simply
add	an	'X'	to	the	names.

The	Figure	class	is	abstract,	which	means	that	we	cannot	create	an	object	of	the
class.	We	can	only	use	it	as	a	base	class,	which	sub	classes	inherit.

Figure.h:

#ifndef	FIGURE_H	

				#define	FIGURE_H	

	

				enum	FigureId	{LineId,	RectangleId,	EllipseId};	

	

				#include	<QtWidgets>	

				#include	<FStream>	

				using	namespace	std;	

	

				class	Figure	{	

						public:	

								Figure();	

The	following	methods	are	pure	virtual,	which	means	that	they	do	not	need	to	be
defined.	A	class	with	at	least	one	pure	virtual	method	becomes	abstract.	The	sub
classes	must	define	all	the	pure	virtual	methods	of	all	its	base	classes,	or	become
abstract	themselves.	In	this	way,	it	is	guaranteed	that	all	methods	of	all	non-
abstract	classes	are	defined.

Each	sub	class	defines	getId	and	returns	the	identity	enumeration	of	its	class:

virtual	FigureId	getId()	const	=	0;	

Each	figure	has	a	first	and	last	point,	and	it	is	up	to	each	sub	class	to	define
them:

virtual	void	initializePoints(QPoint	point)	=	0;	

				virtual	void	setLastPoint(QPoint	point)	=	0;	

The	isClick	method	returns	true	if	the	figure	is	hit	by	the	point:

virtual	bool	isClick(QPoint	mousePoint)	=	0;	

The	move	method	moves	the	figures	a	certain	distance:

virtual	void	move(QSize	distance)	=	0;	

The	draw	method	draws	the	figure	on	the	painter	area:

virtual	void	draw(QPainter	&painter)	const	=	0;	

The	write	and	read	methods	write	and	read	the	figure	from	a	file;	write	is	constant
since	it	does	not	change	the	figure:

virtual	bool	write(ofstream&	outStream)	const;	

				virtual	bool	read(ifstream&	inStream);	

The	color	method	returns	the	color	of	the	figure.	It	comes	in	two	versions,	where
the	first	version	is	constant	and	returns	a	reference	to	a	constant	QColor	object,
while	the	second	version	is	non-constant	and	returns	a	reference	to	a	non-
constant	object:

const	QColor&	color()	const	{return	m_color;}	

				QColor&	color()	{return	m_color;}

The	filled	methods	apply	to	two-dimensional	figures	(rectangles	and	ellipses)
only.	They	return	true	if	the	figure	is	filled.	Note	that	the	second	version	returns	a
reference	to	the	m_filled	field,	which	allows	the	caller	of	the	method	to	modify
the	value	of	m_filled:

virtual	bool	filled()	const	{return	m_filled;}	

				virtual	bool&	filled()	{return	m_filled;}	

When	a	figure	is	marked,	it	is	drawn	with	small	squares	at	its	corners.	The	side
of	the	squares	are	defined	by	the	static	field	Tolerance:

static	const	int	Tolerance;	

The	writeColor	and	readColor	methods	are	auxiliary	methods	that	read	and	write	a
color.	They	are	static	since	they	are	called	by	methods	outside	the	Figure	class
hierarchy:

static	void	writeColor(ofstream&	outStream,	

	

																															const	QColor&	color);	

								static	void	readColor(ifstream&	inStream,	QColor&	color);	

Each	figure	has	a	color,	and	it	could	be	marked	or	filled:

private:	

								QColor	m_color;	

								bool	m_marked	=	false,	m_filled	=	false;	

				};	

	

				#endif	

The	Figure.cpp	file	holds	the	definitions	of	the	Figure	class.	It	defines	the	Tolerance
field	as	well	as	the	write	and	read	methods.

Figure.cpp:

#include	"..\MainWindow\DocumentWidget.h"	

				#include	"Figure.h"	

Tolerance	must	be	defined	and	initialized	in	global	space	since	it	is	static.	We
define	the	size	of	the	mark	squares	to	be	6	pixels:

const	int	Figure::Tolerance(6);	

The	default	constructor	is	called	only	when	figures	are	read	from	a	file:

Figure::Figure()	{	

						//	Empty.	

				}

The	write	and	read	methods	write	and	read	the	color	of	the	figure,	and	whether	the
figure	is	filled:

bool	Figure::write(ofstream&	outStream)	const	{	

						writeColor(outStream,	m_color);	

						outStream.write((char*)	&m_filled,	sizeof	m_filled);	

						return	((bool)	outStream);	

				}	

	

				bool	Figure::read(ifstream&	inStream)	{	

						readColor(inStream,	m_color);	

						inStream.read((char*)	&m_filled,	sizeof	m_filled);	

						return	((bool)	inStream);	

				}	

The	Line	sub	class
The	Line	class	is	a	sub	class	of	Figure.	It	becomes	non-abstract	by	defining	each
pure	virtual	method	of	Figure.	A	line	is	drawn	between	two	end-points,
represented	by	the	m_firstPoint	to	m_lastPoint	fields	in	Line:

Line.h:

#ifndef	LINE_H	

				#define	LINE_H	

	

				#include	<FStream>	

				using	namespace	std;	

	

				#include	"Figure.h"	

	

				class	Line	:	public	Figure	{	

						public:

The	default	constructor	is	called	only	when	reading	Line	objects	from	a	file;	getId
simply	returns	the	identity	enumeration	of	the	line:

Line();	

				FigureId	getId()	const	{return	LineId;}	

A	line	has	two	endpoints.	Both	points	are	set	when	the	line	is	created,	the	second
point	is	then	modified	when	the	user	moves	it:

void	initializePoints(QPoint	point);	

				void	setLastPoint(QPoint	point);	

The	isClick	method	returns	true	if	the	mouse	click	is	located	on	the	line	(with
some	tolerance):

bool	isClick(QPoint	mousePoint);	

The	move	method	moves	the	line	(both	its	end-points)	the	given	distance:

void	move(QSize	distance);	

The	draw	method	draws	the	line	on	the	QPainter	object:

void	draw(QPainter&	painter)	const;	

The	write	and	read	methods	write	and	read	the	end-points	of	the	line	from	a	file
stream:

bool	write(ofstream&	outStream)	const;	

				bool	read(ifstream&	inStream);	

The	first	and	last	points	of	the	line	are	stored	in	the	Line	object:

private:	

						QPoint	m_firstPoint,	m_lastPoint;	

				};	

	

				#endif	

The	Line.cpp	file	defines	the	methods	of	the	Line	class.

Line.cpp:

#include	"..\MainWindow\DocumentWidget.h"	

				#include	"Line.h"	

	

				Line::Line()	{	

						//	Empty.	

				}

The	initializePoints	method	is	called	when	the	user	adds	a	new	line	to	the
drawing.	It	sets	both	its	end-points:

void	Line::initializePoints(QPoint	point)	{	

						m_firstPoint	=	point;	

						m_lastPoint	=	point;	

				}	

The	setLastPoint	method	is	called	when	the	user	has	added	the	line	and	modifies
its	shape.	It	sets	the	last	point:

void	Line::setLastPoint(QPoint	point)	{	

						m_lastPoint	=	point;	

				}	

The	isClick	method	tests	whether	the	user	has	clicked	with	the	mouse	on	the	line.

We	have	two	cases	to	consider.	The	first	case	is	a	special	case	that	occurs	when
the	line	is	completely	vertical,	when	the	x-coordinates	of	the	end-points	are
equal.	We	use	the	Qt	QRect	class	to	create	a	rectangle	surrounding	the	line,	and
test	whether	the	point	is	enclosed	in	the	rectangle:

bool	Line::isClick(QPoint	mousePoint)	{	

						if	(m_firstPoint.x()	==	m_lastPoint.x())	{	

								QRect	lineRect(m_firstPoint,	m_lastPoint);	

								lineRect.normalized();	

								lineRect	+=	Tolerance;	

								return	lineRect.contains(mousePoint);	

						}

In	a	general	case,	where	the	line	is	not	vertical,	we	start	by	creating	an	enclosing
rectangle	and	test	if	the	mouse	point	is	in	it.	If	it	is,	we	set	leftPoint	to	the
leftmost	point	of	firstPoint	and	lastPoint,	and	rightPoint	to	the	rightmost	point.	We
then	calculate	the	width	(lineWidth)	and	height	(lineHeight)	of	the	enclosing
rectangle,	as	well	as	the	distance	between	rightPoint	and	mousePoint	in	the	x	and	y
directions	(diffWidth	and	diffHeight).

Due	to	uniformity,	the	following	equation	is	true	if	the	mouse	pointer	hits	the
line:

However,	in	order	for	the	left-hand	expression	to	become	exactly	zero,	the	user
has	to	click	exactly	on	the	line.	Therefore,	let	us	allow	for	a	small	tolerance.
Let's	use	the	Tolerance	field:

else	{	

										QPoint	leftPoint	=	(m_firstPoint.x()	<	m_lastPoint.x())	

																													?	m_firstPoint	:	m_lastPoint,	

																	rightPoint	=	(m_firstPoint.x()	<	m_lastPoint.x())	

																														?	m_lastPoint	:	m_firstPoint;	

	

										if	((leftPoint.x()	<=	mousePoint.x())	&&	

														(mousePoint.x()	<=	rightPoint.x()))	{	

												int	lineWidth	=	rightPoint.x()	-	leftPoint.x(),	

																lineHeight	=	rightPoint.y()	-	leftPoint.y();	

	

												int	diffWidth	=	mousePoint.x()	-	leftPoint.x(),	

																diffHeight	=	mousePoint.y()	-	leftPoint.y();	

We	must	convert	lineHeight	to	a	double	in	order	to	perform	non-integer	division:

return	(fabs(diffHeight	-	(((double)	lineHeight)	/	

																							lineWidth)	*	diffWidth)	<=	Tolerance);	

								}	

If	the	mouse	point	is	located	outside	the	rectangle	enclosing	the	line,	we	simply
return	false:

return	false;	

						}	

				}	

The	move	method	simply	moves	both	the	endpoints	of	the	line:

void	Line::move(QSize	distance)	{	

						m_firstPoint	+=	distance;	

						m_lastPoint	+=	distance;	

				}	

When	drawing	the	line,	we	set	the	pen	color	and	draw	the	line.	The	color	method
of	the	Figure	class	returns	the	color	of	the	line:

void	Line::draw(QPainter&	painter)	const	{	

						painter.setPen(color());	

						painter.drawLine(m_firstPoint,	m_lastPoint);	

				}	

When	writing	the	line,	we	first	call	write	in	Figure	to	write	the	color	of	the	figure.
We	then	write	the	endpoints	of	the	line.	Finally,	we	return	the	Boolean	value	of
the	output	stream,	which	is	true	if	the	writing	was	successful:

bool	Line::write(ofstream&	outStream)	const	{	

						Figure::write(outStream);	

						writePoint(outStream,	m_firstPoint);	

						writePoint(outStream,	m_lastPoint);	

						return	((bool)	outStream);	

				}

In	the	same	way,	when	reading	the	line,	we	first	call	read	in	Figure	to	read	the
color	of	the	line.	We	then	read	the	endpoints	of	the	line	and	return	the	Boolean
value	of	the	input	stream:

bool	Line::read(ifstream&	inStream)	{	

						Figure::read(inStream);	

						readPoint(inStream,	m_firstPoint);	

						readPoint(inStream,	m_lastPoint);	

						return	((bool)	inStream);	

				}	

The	Rectangle	sub	class
RectangleX	is	a	sub	class	of	Figure	that	handles	a	rectangle.	Similar	to	Line,	it	holds
two	points,	which	holds	opposite	corners	of	the	rectangle:

Rectangle.h

#ifndef	RECTANGLE_H	

				#define	RECTANGLE_H	

	

				#include	<FStream>	

				using	namespace	std;	

	

				#include	"Figure.h"	

	

				class	RectangleX	:	public	Figure	{	

						public:	

Similar	to	the	preceding	Line	class,	RectangleX	has	a	default	constructor	that	is	used
when	reading	the	object	from	a	file:

RectangleX();	

								virtual	FigureId	getId()	const	{return	RectangleId;}	

	

								RectangleX(const	RectangleX&	rectangle);	

	

								virtual	void	initializePoints(QPoint	point);	

								virtual	void	setLastPoint(QPoint	point);	

	

								virtual	bool	isClick(QPoint	mousePoint);	

								virtual	void	move(QSize	distance);	

								virtual	void	draw(QPainter&	painter)	const;	

					

								virtual	bool	write(ofstream&	outStream)	const;	

								virtual	bool	read(ifstream&	inStream);	

	

						protected:	

								QPoint	m_topLeft,	m_bottomRight;	

				};	

	

				#endif	

Rectangle.cpp

#include	"..\MainWindow\DocumentWidget.h"	

				#include	"Rectangle.h"	

	

				RectangleX::RectangleX()	{	

						//	Empty.	

				}	

The	initializePoints	and	setLastPoint	methods	work	in	a	way	similar	to	their
counterparts	in	Line:	initializePoints	sets	both	the	corner	points,	while	setLastPoint
sets	the	last	corner	point:

void	RectangleX::initializePoints(QPoint	point)	{	

						m_topLeft	=	point;	

						m_bottomRight	=	point;	

				}	

	

				void	RectangleX::setLastPoint(QPoint	point)	{	

						m_bottomRight	=	point;	

				}	

The	isClick	method	is	simpler	than	its	counterpart	in	Line:

bool	RectangleX::isClick(QPoint	mousePoint)	{	

						QRect	areaRect(m_topLeft,	m_bottomRight);	

If	the	rectangle	is	filled,	we	simply	check	whether	the	mouse	click	hit	the
rectangle	by	calling	contains	in	QRect:

if	(filled())	{	

								return	areaRect.contains(mousePoint);	

						}	

If	the	rectangle	is	not	filled,	we	need	to	check	whether	the	mouse	clicked	on	the
border	of	the	rectangle.	To	do	so,	we	create	two	slightly	smaller	and	larger
rectangles.	If	the	mouse	click	hit	the	larger	rectangle,	but	not	the	smaller	one,	we
consider	the	rectangle	border	to	be	hit:

else	{	

								QRect	largeAreaRect(areaRect),	smallAreaRect(areaRect);	

	

								largeAreaRect	+=	Tolerance;	

								smallAreaRect	-=	Tolerance;	

					

								return	largeAreaRect.contains(mousePoint)	&&	

															!smallAreaRect.contains(mousePoint);	

						}	

	

						return	false;	

				}	

When	moving	the	rectangle,	we	simply	move	the	first	and	last	corners:

void	RectangleX::move(QSize	distance)	{	

						addSizeToPoint(m_topLeft,	distance);	

						addSizeToPoint(m_bottomRight,	distance);	

				}	

When	drawing	a	rectangle,	we	first	set	the	pen	color	by	calling	color	in	Figure:

void	RectangleX::draw(QPainter&	painter)	const	{	

						painter.setPen(color());	

If	the	rectangle	is	filled,	we	simply	call	fillRect	on	the	QPainter	object:

if	(filled())	{	

								painter.fillRect(QRect(m_topLeft,	m_bottomRight),	color());	

						}	

If	the	rectangle	is	unfilled,	we	disable	the	brush	to	make	the	rectangle	hollow,
and	we	then	call	drawRect	on	the	QPainter	object	to	draw	the	border	of	the
rectangle:

else	{	

								painter.setBrush(Qt::NoBrush);	

								painter.drawRect(QRect(m_topLeft,	m_bottomRight));	

						}	

				}	

The	write	method	first	calls	write	in	Figure,	and	it	then	writes	the	first	and	last
corners	of	the	rectangle:

bool	RectangleX::write(ofstream&	outStream)	const	{	

						Figure::write(outStream);	

						writePoint(outStream,	m_topLeft);	

						writePoint(outStream,	m_bottomRight);	

						return	((bool)	outStream);	

				}

In	the	same	way,	read	first	calls	read	in	Figure,	and	then	reads	the	first	and	last
corners	of	the	rectangle:

bool	RectangleX::read	(ifstream&	inStream)	{	

						Figure::read(inStream);	

						readPoint(inStream,	m_topLeft);	

						readPoint(inStream,	m_bottomRight);	

						return	((bool)	inStream);	

				}	

The	Ellipse	sub	class
EllipseX	is	a	sub	class	of	RectangleX	that	handles	an	ellipse.	Part	of	the	functionality
of	RectangleX	is	reused	in	EllipseX.	More	specifically,	initializePoints,	setLastPoint,
move,	write,	and	read	are	overridden	from	RectangleX.

Ellipse.h:

#ifndef	ELLIPSE_H	

				#define	ELLIPSE_H	

	

				#include	"Rectangle.h"	

	

				class	EllipseX	:	public	RectangleX	{	

						public:	

								EllipseX();	

								FigureId	getId()	const	{return	EllipseId;}	

	

								EllipseX(const	EllipseX&	ellipse);	

	

								bool	isClick(QPoint	mousePoint);	

								void	draw(QPainter&	painter)	const;	

				};	

	

				#endif	

Ellipse.cpp:

#include	"..\MainWindow\DocumentWidget.h"	

				#include	"Ellipse.h"	

	

				EllipseX::EllipseX()	{	

						//	Empty.	

				}

The	isClick	method	of	EllipseX	is	similar	to	its	counterpart	in	RectangleX.	We	use	the
Qt	QRegion	class	to	create	elliptic	objects	that	we	compare	to	the	mouse	click:

bool	EllipseX::isClick(QPoint	mousePoint)	{	

						QRect	normalRect(m_topLeft,	m_bottomRight);	

						normalRect.normalized();	

If	the	ellipse	is	filled,	we	create	an	elliptic	region	and	test	whether	the	mouse
click	hit	the	region:

if	(filled())	{	

								QRegion	normalEllipse(normalRect,	QRegion::Ellipse);	

								return	normalEllipse.contains(mousePoint);	

						}	

If	the	ellipse	in	unfilled,	we	create	slightly	smaller	and	larger	elliptic	regions.	If
the	mouse	click	hit	the	smaller	region,	but	not	the	smaller	one,	we	consider	the
border	of	the	ellipse	to	be	hit:

else	{	

								QRect	largeRect(normalRect),	smallRect(normalRect);	

								largeRect	+=	Tolerance;	

								smallRect	-=	Tolerance;	

	

								QRegion	largeEllipse(largeRect,	QRegion::Ellipse),	

																smallEllipse(smallRect,	QRegion::Ellipse);	

	

								return	(largeEllipse.contains(mousePoint)	&&	

																!smallEllipse.contains(mousePoint));	

						}	

				}	

When	drawing	an	ellipse,	we	first	set	the	pen	color	by	calling	color	in	Figure:

void	EllipseX::draw(QPainter&	painter)	const	{	

						painter.setPen(color());	

If	the	ellipse	is	filled,	we	set	the	brush	and	draw	the	ellipse:

if	(filled())	{	

								painter.setBrush(color());	

								painter.drawEllipse(QRect(m_topLeft,	m_bottomRight));	

						}

If	the	ellipse	is	unfilled,	we	set	the	brush	to	hollow	and	draw	the	ellipse	border:

else	{	

								painter.setBrush(Qt::NoBrush);	

								painter.drawEllipse(QRect(m_topLeft,	m_bottomRight));	

						}	

				}

Drawing	the	window
The	DrawingWindow	class	is	a	sub	class	to	the	MainWindow	class	of	the	previous	section.

DrawingWindow.h:

#ifndef	DRAWINGWINDOW_H	

				#define	DRAWINGWINDOW_H	

	

				#include	<QMainWindow>	

				#include	<QActionGroup>	

	

				#include	"..\MainWindow\MainWindow.h"	

				#include	"DrawingWidget.h"	

	

				class	DrawingWindow	:	public	MainWindow	{	

						Q_OBJECT	

	

						public:	

								DrawingWindow(QWidget*	parentWidgetPtr	=	nullptr);	

								~DrawingWindow();	

	

						public:	

								void	closeEvent(QCloseEvent	*eventPtr)

													{	m_drawingWidgetPtr->closeEvent(eventPtr);	}	

	

						private:	

								DrawingWidget*	m_drawingWidgetPtr;	

								QActionGroup*	m_figureGroupPtr;	

				};	

	

				#endif	//	DRAWINGWINDOW_H	

DrawingWindow.cpp:

#include	"..\MainWindow\DocumentWidget.h"	

				#include	"DrawingWindow.h"

The	constructor	sets	the	size	of	the	window	to	1000	*	500	pixels:

DrawingWindow::DrawingWindow(QWidget*	parentWidgetPtr	

																																	/*	=	nullptr	*/)	

					:MainWindow(parentWidgetPtr)	{	

						resize(1000,	500);	

The	m_drawingWidgetPtr	field	is	initialized	to	point	at	an	object	of	the	DrawingWidget
class,	which	is	then	set	to	the	center	part	of	the	window:

m_drawingWidgetPtr	=	new	DrawingWidget(this);	

						setCentralWidget(m_drawingWidgetPtr);	

The	standard	file	menu	is	added	to	the	window	menu	bar:

addFileMenu();	

We	then	add	the	application-specific	format	menu.	It	is	connected	to	the
onMenuShow	method	of	the	DocumentWidget	class	of	the	previous	section:

{	QMenu*	formatMenuPtr	=	menuBar()->addMenu(tr("F&ormat"));	

								connect(formatMenuPtr,	SIGNAL(aboutToShow()),	

																this,	SLOT(onMenuShow()));	

The	format	menu	holds	the	color	and	fill	items:

addAction(formatMenuPtr,	tr("&Color"),	

																		SLOT(onColor()),	QKeySequence(Qt::ALT	+	Qt::Key_C),	

																		QString(),	nullptr,	tr("Figure	Color"));	

The	fill	item	will	be	enabled	when	the	next	figure	of	the	drawing	program	is	a
two-dimensional	figure	(rectangle	or	ellipse):

addAction(formatMenuPtr,	tr("&Fill"),	

																		SLOT(onFill()),	QKeySequence(Qt::CTRL	+	Qt::Key_F),	

																		QString(),	nullptr,	tr("Figure	Fill"),	

																		LISTENER(isFillEnabled));	

						}	

For	the	figure	menu,	we	create	a	new	action	group	for	the	line,	rectangle,	and
ellipse	item.	Only	one	of	them	shall	be	marked	at	the	same	time:

{	m_figureGroupPtr	=	new	QActionGroup(this);	

	

								QMenu*	figureMenuPtr	=	menuBar()->addMenu(tr("F&igure"));	

								connect(figureMenuPtr,	SIGNAL(aboutToShow()),	

																this,	SLOT(onMenuShow()));

The	currently	selected	item	shall	be	marked	with	a	radio	button:

addAction(figureMenuPtr,	tr("&Line"),	

																		SLOT(onLine()),	QKeySequence(Qt::CTRL	+	Qt::Key_L),	

																		QString(),	nullptr,	tr("Line	Figure"),	nullptr,	

																		LISTENER(isLineChecked),	m_figureGroupPtr);	

								addAction(figureMenuPtr,	tr("&Rectangle"),	

																		SLOT(onRectangle()),	

																		QKeySequence(Qt::CTRL	+	Qt::Key_R),	

																		QString(),	nullptr,	tr("Rectangle	Figure"),	nullptr,	

																		LISTENER(isRectangleChecked),	m_figureGroupPtr);	

								addAction(figureMenuPtr,	tr("&Ellipse"),	

																		SLOT(onEllipse()),	

																		QKeySequence(Qt::CTRL	+	Qt::Key_E),	

																		QString(),	nullptr,	tr("Ellipse	Figure"),	nullptr,	

																		LISTENER(isEllipseChecked),	m_figureGroupPtr);	

						}	

				}	

The	destructor	deallocates	the	figure	group	that	was	dynamically	allocated	in	the
constructor:

DrawingWindow::~DrawingWindow()	{	

						delete	m_figureGroupPtr;	

				}	

Drawing	the	widget
DrawingWidget	is	a	sub	class	of	DocumentWidget	in	the	previous	section.	It	handles
mouse	input,	painting	of	the	figures,	as	well	as	saving	and	loading	of	the
drawing.	It	also	provides	methods	for	deciding	when	the	menu	items	shall	be
marked	and	enabled.

DrawingWidget.h:

#ifndef	DRAWINGWIDGET_H	

				#define	DRAWINGWIDGET_H	

	

				#include	"..\MainWindow\MainWindow.h"	

				#include	"..\MainWindow\DocumentWidget.h"	

				#include	"Figure.h"	

	

				class	DrawingWidget	:	public	DocumentWidget	{	

						Q_OBJECT	

	

						public:	

								DrawingWidget(QWidget*	parentWidgetPtr);	

								~DrawingWidget();	

The	mousePressEvent,	mouseReleaseEvent,	and	mouseMoveEvent	are	overridden	methods	that
are	called	when	the	user	presses	or	releases	one	of	the	mouse	keys	or	moves	the
mouse:

public:	

								void	mousePressEvent(QMouseEvent	*eventPtr);	

								void	mouseReleaseEvent(QMouseEvent	*eventPtr);	

								void	mouseMoveEvent(QMouseEvent	*eventPtr);	

The	paintEvent	method	is	called	when	the	window	needs	to	be	repainted.	That	can
happen	for	several	reasons.	For	instance,	the	user	can	modify	the	size	of	the
window.	The	repainting	can	also	be	forced	by	a	call	to	the	update	method,	which
causes	paintEvent	to	be	called	eventually:

void	paintEvent(QPaintEvent	*eventPtr);	

The	newDocument	method	is	called	when	the	user	selects	the	new	menu	item,
writeFile	is	called	when	the	user	selects	the	save	or	save	as	item,	and	readFile	is
called	when	the	user	selects	the	open	item:

private:	

								void	newDocument()	override;	

								bool	writeFile(const	QString&	filePath);	

								bool	readFile(const	QString&	filePath);	

								Figure*	createFigure(FigureId	figureId);	

The	onColor	and	onFill	methods	are	called	when	the	user	selects	the	color	and	fill
menu	items:

public	slots:	

								void	onColor();	

								void	onFill();	

The	isFillEnabled	method	is	called	before	the	user	selects	the	format	menu.	If	it
returns	true,	the	fill	item	becomes	enabled:

DEFINE_LISTENER(DrawingWidget,	isFillEnabled);

The	isLineChecked,	isRectangleChecked,	and	isEllipseChecked	methods	are	also	called
before	the	figure	menu	becomes	visible.	The	items	become	marked	with	a	radio
button	if	the	methods	return	true:

DEFINE_LISTENER(DrawingWidget,	isLineChecked);	

								DEFINE_LISTENER(DrawingWidget,	isRectangleChecked);	

								DEFINE_LISTENER(DrawingWidget,	isEllipseChecked);	

The	onLine,	onRectangle,	and	isEllipse	methods	are	called	when	the	user	selects	the
line,	rectangle,	and	ellipse	menu	items:

void	onLine();	

								void	onRectangle();	

								void	onEllipse();	

When	running,	the	application	can	hold	the	Idle,	Create,	or	Move	modes:

Idle:	When	the	application	is	waiting	for	input	from	the	user.
Create:	When	the	user	is	adding	a	new	figure	to	the	drawing.	Occurs	when
the	user	presses	the	left	mouse	button	without	hitting	a	figure.	A	new	figure
is	added	and	its	end-point	is	modified	until	the	user	releases	the	mouse
button.
Move:	When	the	user	is	moving	a	figure.	Occurs	when	the	user	presses	the
left	mouse	button	and	hitting	a	figure.	The	figure	is	moved	until	the	user
releases	the	mouse	button.

private:	

								enum	ApplicationMode	{Idle,	Create,	Move};	

								ApplicationMode	m_applicationMode	=	Idle;	

								void	setApplicationMode(ApplicationMode	mode);	

The	m_currColor	field	holds	the	color	of	the	next	figure	to	be	added	by	the	user;
m_currFilled	decides	whether	the	next	figure	(if	it	is	a	rectangle	or	an	ellipse)	shall
be	filled.	The	m_addFigureId	method	holds	the	identity	integer	of	the	next	type	of
figure	(line,	rectangle,	or	ellipse)	to	be	added	by	the	user:

QColor	m_currColor	=	Qt::black;	

								bool	m_currFilled	=	false;	

								FigureId	m_addFigureId	=	LineId;	

When	the	user	presses	a	mouse	button	and	moves	a	figure,	we	need	to	store	the
previous	mouse	point	in	order	to	calculate	the	distance	the	figure	has	been
moved	since	the	last	mouse	events:

QPoint	m_mousePoint;

Finally,	m_figurePtrList	holds	pointers	to	the	figures	of	the	drawing.	The	top-most
figure	in	the	drawing	is	placed	at	the	end	of	the	list:

QList<Figure*>	m_figurePtrList;	

				};	

	

				#endif	//	DRAWINGWIDGET_H	

DrawingWidget.cpp:

#include	"..\MainWindow\DocumentWidget.h"	

				#include	"DrawingWidget.h"	

	

				#include	"Line.h"	

				#include	"Rectangle.h"	

				#include	"Ellipse.h"	

The	constructor	calls	the	constructor	the	base	class	DocumentWidget	with	the	title
Drawing.	It	also	sets	the	save	and	load	mask	to	Drawing	files	(*.drw),	which	means
that	the	default	files	selected	by	the	standard	save	and	load	dialogs	have	the
suffix	drw:

DrawingWidget::DrawingWidget(QWidget*	parentWidgetPtr)	

					:DocumentWidget(tr("Drawing"),	tr("Drawing	files	(*.drw)"),	

																					parentWidgetPtr)	{	

						//	Empty.	

				}	

The	destructor	deallocates	the	figure	pointers	of	the	figure	pointer	list:

DrawingWidget::~DrawingWidget()	{	

						for	(Figure*	figurePtr	:	m_figurePtrList)	{	

								delete	figurePtr;	

						}	

				}	

The	setApplicationMode	method	sets	the	application	mode	and	calls	onMenuShow	in	the
main	window	for	the	toolbar	icons	to	be	correctly	enabled:

void	DrawingWidget::setApplicationMode(ApplicationMode	mode)	{	

						m_applicationMode	=	mode;	

						((MainWindow*)	parent())->onMenuShow();	

				}

When	the	user	selects	the	new	menu	item,	newDocument	is	called.	The	figures	of	the
figure	pointer	list	are	deallocated,	and	the	list	itself	is	cleared:

void	DrawingWidget::newDocument()	{	

						for	(Figure*	figurePtr	:	m_figurePtrList)	{	

								delete	figurePtr;	

						}	

						m_figurePtrList.clear();	

The	next	figure	to	be	added	by	the	user	is	a	black	line,	and	the	filled	status	is
false:

m_currColor	=	Qt::black;	

						m_addFigureId	=	LineId;	

						m_currFilled	=	false;	

				}	

The	writeFile	method	is	called	when	the	user	selects	the	save	or	save	as	menu
items:

bool	DrawingWidget::writeFile(const	QString&	filePath)	{	

						ofstream	outStream(filePath.toStdString());	

We	start	by	writing	the	current	color	and	fill	status.	We	then	continue	by	writing
the	size	of	the	figure	pointer	list,	and	the	figures	themselves:

if	(outStream)	{	

								writeColor(outStream,	m_currColor);	

								outStream.write((char*)	&m_currFilled,	sizeof	m_currFilled);	

	

								int	size	=	m_figurePtrList.size();	

								outStream.write((char*)	&size,	sizeof	size);	

For	each	figure,	we	first	write	its	identity	number,	and	we	then	write	the	figure
itself:

for	(Figure*	figurePtr	:	m_figurePtrList)	{	

										FigureId	figureId	=	figurePtr->getId();	

										outStream.write((char*)	&figureId,	sizeof	figureId);	

										figurePtr->write(outStream);	

								}	

	

								return	((bool)	outStream);	

						}	

If	the	file	was	not	possible	to	open,	false	is	returned:

return	false;	

				}

The	readFile	method	is	called	when	the	user	selects	the	open	menu	item.	In	the
same	way	as	in	writeFile	previously,	we	read	the	color	and	fill	status,	the	size	of
the	figure	pointer	list,	and	then	the	figures	themselves:

bool	DrawingWidget::readFile(const	QString&	filePath)	{	

						ifstream	inStream(filePath.toStdString());	

	

						if	(inStream)	{	

								readColor(inStream,	m_currColor);	

								inStream.read((char*)	&m_currFilled,	sizeof	m_currFilled);	

	

								int	size;	

								inStream.read((char*)	&size,	sizeof	size);	

When	reading	the	figure,	we	first	read	its	identity	number,	and	call	createFigure	to
create	an	object	of	the	class	corresponding	to	the	figure's	identity	number.	We
then	read	the	fields	of	the	figure	by	calling	read	on	its	pointer.	Note	that	we	do
not	really	know	(or	care)	what	kind	of	figure	it	is.	We	simply	call	read	to	the
figure	pointer,	which	in	fact	points	to	an	object	of	Line,	RectangleX,	or	EllipseX:

for	(int	count	=	0;	count	<	size;	++count)	{	

										FigureId	figureId	=	(FigureId)	0;	

										inStream.read((char*)	&figureId,	sizeof	figureId);	

										Figure*	figurePtr	=	createFigure(figureId);	

										figurePtr->read(inStream);	

										m_figurePtrList.push_back(figurePtr);	

								}	

	

								return	((bool)	inStream);	

						}	

	

						return	false;	

				}	

The	createFigure	method	dynamically	creates	an	object	of	the	Line,	RectangleX,	or
EllipseX	class,	depending	on	the	value	of	the	figureId	parameter:

Figure*	DrawingWidget::createFigure(FigureId	figureId)	{	

						Figure*	figurePtr	=	nullptr;	

	

						switch	(figureId)	{	

								case	LineId:	

										figurePtr	=	new	Line();	

										break;	

	

								case	RectangleId:	

										figurePtr	=	new	RectangleX();	

										break;	

	

								case	EllipseId:	

										figurePtr	=	new	EllipseX();	

										break;	

						}	

	

						return	figurePtr;	

				}	

The	onColor	method	is	called	when	the	user	selects	the	color	menu	item.	It	sets	the
color	of	the	next	figure	to	be	added	by	the	user:

void	DrawingWidget::onColor()	{	

						QColor	newColor	=	QColorDialog::getColor(m_currColor,	this);	

	

						if	(newColor.isValid()	&&	(m_currColor	!=	newColor))	{	

								m_currColor	=	newColor;	

								setModifiedFlag(true);	

						}	

				}	

The	isFillEnabled	method	is	called	before	the	format	menu	becomes	visible,	and
returns	true	if	the	next	figure	to	be	added	by	the	user	is	a	rectangle	or	an	ellipse:

bool	DrawingWidget::isFillEnabled()	{	

						return	(m_addFigureId	==	RectangleId)	||	

													(m_addFigureId	==	EllipseId);	

				}	

The	onFill	method	is	called	when	the	user	selects	fill	menu	item.	It	inverts	the
m_currFilled	field.	It	also	sets	the	modified	flag	since	the	document	has	been
affected:

void	DrawingWidget::onFill()	{	

						m_currFilled	=	!m_currFilled;	

						setModifiedFlag(true);	

				}	

The	isLineChecked,	isRectangleChecked,	and	isEllipseChecked	methods	are	called	before
the	figure	menu	becomes	visible.	If	they	return	true,	the	items	become	checked
with	a	radio	button	if	the	next	figure	to	be	added	is	the	figure	in	question:

bool	DrawingWidget::isLineChecked()	{	

						return	(m_addFigureId	==	LineId);	

				}	

	

				bool	DrawingWidget::isRectangleChecked()	{	

						return	(m_addFigureId	==	RectangleId);	

				}	

	

				bool	DrawingWidget::isEllipseChecked()	{	

						return	(m_addFigureId	==	EllipseId);	

				}	

The	onLine,	onRectangle,	and	onEllipse	methods	are	called	when	the	user	selects	the
items	in	the	figure	menu.	They	set	the	next	figure	to	be	added	by	the	user	to	the
figure	in	question:

void	DrawingWidget::onLine()	{	

						m_addFigureId	=	LineId;	

				}	

	

				void	DrawingWidget::onRectangle()	{	

						m_addFigureId	=	RectangleId;	

				}	

	

				void	DrawingWidget::onEllipse()	{	

						m_addFigureId	=	EllipseId;	

				}	

The	mousePressEvent	method	is	called	every	time	the	user	presses	one	of	the	mouse
keys.	First,	we	need	to	check	if	they	have	pressed	the	left	mouse	key:

void	DrawingWidget::mousePressEvent(QMouseEvent*	eventPtr)	{	

						if	(eventPtr->buttons()	==	Qt::LeftButton)	{	

In	the	call	to	mouseMoveEvent	in	the	following	snippet,	we	need	to	keep	track	of	the
latest	mouse	point	in	order	to	calculate	the	distance	between	mouse	movements.
Therefore,	we	set	m_mousePoint	to	the	mouse	point:

m_mousePoint	=	eventPtr->pos();	

We	iterate	through	the	figure	pointer	list	and,	for	each	figure,	we	check	if	the
figure	has	been	hit	by	the	mouse	click	by	calling	isClick.	We	need	to	iterate
backwards	in	a	rather	awkward	manner	in	order	to	find	the	top-most	figure	first.
We	use	the	reverse_iterator	class	and	the	rbegin	and	rend	methods	in	order	to	iterate
backwards:

for	(QList<Figure*>::reverse_iterator	iterator	=	

													m_figurePtrList.rbegin();	

													iterator	!=	m_figurePtrList.rend();	++iterator)	{

We	use	the	dereference	operator	(*)	to	obtain	the	figure	pointer	in	the	list:

Figure*	figurePtr	=	*iterator;	

If	the	figure	has	been	hit	by	the	mouse	click,	we	set	the	application	mode	to
move.	We	also	place	the	figure	at	the	end	of	the	list,	so	that	it	appears	to	be	top-
most	in	the	drawing,	by	calling	removeOne	and	push_back	on	the	list.	Finally,	we
break	the	loop	since	we	have	found	the	figure	we	are	looking	for:

if	(figurePtr->isClick(m_mousePoint))	{	

												setApplicationMode(Move);	

												m_figurePtrList.removeOne(figurePtr);	

												m_figurePtrList.push_back(figurePtr);	

												break;	

										}	

								}	

If	the	application	mode	is	still	idle	(has	not	moved),	we	have	not	found	a	figure
hit	by	the	mouse	click.	In	that	case,	we	set	the	application	mode	to	create	and
call	createFigure	to	find	a	figure	to	copy.	We	then	set	the	color	and	filled	status	as
well	as	the	points	of	the	figure.	Finally,	we	add	the	figure	pointer	to	the	figure
pointer	list	by	calling	push_back	(which	is	added	at	the	end	of	the	list	in	order	for	it
to	appear	at	the	top	of	the	drawing)	and	set	the	modified	flag	to	true,	since	the
drawing	has	been	modified:

if	(m_applicationMode	==	Idle)	{	

										setApplicationMode(Create);	

										Figure*	newFigurePtr	=	createFigure(m_addFigureId);	

										newFigurePtr->color()	=	m_currColor;	

										newFigurePtr->filled()	=	m_currFilled;	

										newFigurePtr->initializePoints(m_mousePoint);	

										m_figurePtrList.push_back(newFigurePtr);	

										setModifiedFlag(true);	

								}	

						}	

				}	

The	mouseMoveEvent	is	called	every	time	the	user	moves	the	mouse.	First,	we	need
to	check	that	the	user	presses	the	left	mouse	key	when	they	move	the	mouse:

void	DrawingWidget::mouseMoveEvent(QMouseEvent*	eventPtr)	{	

						if	(eventPtr->buttons()	==	Qt::LeftButton)	{	

								QPoint	newMousePoint	=	eventPtr->pos();

We	then	check	the	application	mode.	If	we	are	in	the	process	of	adding	a	new
figure	to	the	drawing,	we	modify	its	last	point:

switch	(m_applicationMode)	{	

										case	Create:	

												m_figurePtrList.back()->setLastPoint(m_mousePoint);	

												break;	

If	we	are	in	the	process	of	moving	a	figure,	we	calculate	the	distance	since	the

last	mouse	event	and	move	the	figure	placed	at	the	end	of	the	figure	pointer	list.
Remember	that	the	figure	hit	by	the	mouse	click	was	placed	at	the	end	of	the
figure	pointer	list	in	the	preceding	mousePressEvent:

case	Move:	{	

														QSize	distance(newMousePoint.x()	-	m_mousePoint.x(),	

																													newMousePoint.y()	-	m_mousePoint.y());	

														m_figurePtrList.back()->move(distance);	

														setModifiedFlag(true);	

												}	

												break;	

								}	

Finally,	we	update	the	current	mouse	point	for	the	next	call	to	mouseMoveEvent.	We
also	call	the	update	method	to	force	a	repainting	of	the	window:

m_mousePoint	=	newMousePoint;	

								update();	

						}	

				}	

The	mouseReleaseEvent	method	is	called	when	the	user	releases	one	of	the	mouse
buttons.	We	set	the	application	mode	to	idle:

void	DrawingWidget::mouseReleaseEvent(QMouseEvent*	eventPtr)	{	

						if	(eventPtr->buttons()	==	Qt::LeftButton)	{	

								setApplicationMode(Idle);	

						}	

				}	

The	paintEvent	method	is	called	every	time	the	window	needs	to	be	repainted.	It
may	happen	for	several	reasons.	For	instance,	the	user	may	have	changed	the
size	of	the	window.	It	may	also	be	a	result	of	a	call	to	update	in	the	Qt	QWidget
class,	which	forces	a	repainting	of	the	window	and	an	eventual	call	to	paintEvent.

We	start	by	creating	a	QPainter	object,	which	can	be	regarded	as	canvas	to	paint
on,	and	set	suitable	rendering.	We	then	iterate	through	the	figure	pointer	list,	and
draw	each	figure.	In	this	way,	the	last	figure	in	the	list	is	drawn	at	the	top	of	the
drawing:

void	DrawingWidget::paintEvent(QPaintEvent*	/*	eventPtr	*/)	{	

						QPainter	painter(this);	

						painter.setRenderHint(QPainter::Antialiasing);	

						painter.setRenderHint(QPainter::TextAntialiasing);	

	

						for	(Figure*	figurePtr	:	m_figurePtrList)	{	

								figurePtr->draw(painter);	

						}	

				}	

The	main	function
Finally,	we	start	the	application	in	the	main	function	by	creating	an	application
object,	showing	the	main	window	and	executing	the	application.

Main.cpp:

#include	"DrawingWindow.h"	

				#include	<QApplication>	

	

				int	main(int	argc,	char	*argv[])	{	

						QApplication	application(argc,	argv);	

						DrawingWindow	drawingWindow;	

						drawingWindow.show();	

						return	application.exec();	

				}

The	following	output	is	received:

Building	an	editor
The	next	application	is	an	editor,	where	the	user	can	input	and	edit	text.	The
current	input	position	is	indicated	by	a	caret.	It	is	possible	to	move	the	caret	with
the	arrow	keys	and	by	clicking	with	the	mouse.

The	Caret	class
The	Caret	class	handles	the	caret;	that	is,	the	blinking	vertical	line	marking	the
position	of	the	next	character	to	be	input.

Caret.h:

#ifndef	CARET_H	

				#define	CARET_H	

	

				#include	<QObject>	

				#include	<QWidget>	

				#include	<QTimer>	

	

				class	Caret	:	public	QObject	{	

						Q_OBJECT	

	

						public:	

								Caret(QWidget*	parentWidgetPtr	=	nullptr);

The	show	and	hide	methods	show	and	hide	the	caret.	In	this	application,	the	caret	is
never	hidden.	However,	in	the	advanced	version	in	the	next	chapter,	the	caret
will	be	hidden	on	some	occasions:

void	show();	

								void	hide();	

The	set	method	sets	the	current	size	and	position	of	the	caret,	and	paint	paints	it
on	the	QPainter	object:

void	set(QRect	rect);	

								void	paint(QPainter&	painter);	

The	onTimer	method	is	called	every	time	the	caret	blinks:

public	slots:	

								void	onTimer(void);	

	

						private:	

								QWidget*	m_parentWidgetPtr;	

The	m_visible	field	is	true	when	the	caret	is	visible:

bool	m_visible,	m_blink;	

The	m_rect	field	handles	the	timer	that	makes	the	caret	blink:

QRect	m_rect;	

The	m_timer	field	handles	the	timer	that	makes	the	caret	blink:

QTimer	m_timer;	

				};	

	

				#endif	//	CARET_H	

The	Caret.cpp	file	holds	the	definitions	of	the	methods	of	the	Caret	class.

Caret.cpp:

#include	"Caret.h"	

				#include	<QPainter>

The	constructor	connects	the	timer	signal	to	onTimer,	with	the	result	that	onTimer	is
called	for	every	timeout.	The	timer	is	then	initialized	to	500	milliseconds.	That	is,
onTimer	will	be	called	every	500	milliseconds,	and	the	caret	becomes	shown	and
hidden	every	500	milliseconds:

Caret::Caret(QWidget*	parentWidgetPtr)	

						:m_parentWidgetPtr(parentWidgetPtr)	{	

						m_timer.setParent(this);	

						connect(&m_timer,	SIGNAL(timeout()),	this,	SLOT(onTimer()));	

						m_timer.start(500);	

				}	

The	show	and	hide	methods	set	the	m_visible	field	and	force	a	repainting	of	the	caret
area	by	calling	update	on	the	parent	window:

void	Caret::show()	{	

						m_visible	=	true;	

						m_parentWidgetPtr->update(m_rect);	

				}	

	

				void	Caret::hide()	{	

						m_visible	=	false;	

						m_parentWidgetPtr->update(m_rect);	

				}	

The	set	method	sets	the	size	and	position	of	the	caret.	However,	the	width	of	the
caret	is	always	set	to	one,	which	makes	it	appear	as	a	thin	vertical	line:

void	Caret::set(QRect	rect)	{	

						m_rect	=	rect;	

						m_rect.setWidth(1);	

						m_parentWidgetPtr->update(m_rect);	

				}	

The	onTimer	method	is	called	every	500	milliseconds.	It	inverts	m_blink	and	forces
a	repaint	of	the	caret.	This	gives	the	result	that	the	caret	blinks	at	an	interval	of
one	second:

void	Caret::onTimer(void)	{	

						m_blink	=	!m_blink;	

						m_parentWidgetPtr->update(m_rect);	

				}

The	paint	method	is	called	every	time	the	caret	needs	to	be	repainted.	The	caret	is
drawn	if	both	m_visible	and	m_blink	are	true,	which	they	are	if	the	caret	is	set	to	be
visible	and	the	caret	is	blinking;	that	is,	that	the	caret	is	visible	in	the	blinking
interval.	The	area	of	the	caret	is	cleared	before	the	call	to	paint,	so	that	if	no
drawing	occurs,	the	caret	is	cleared:

void	Caret::paint(QPainter&	painter)	{	

						if	(m_visible	&&	m_blink)	{	

								painter.save();	

								painter.setPen(Qt::NoPen);	

								painter.setBrush(Qt::black);	

								painter.drawRect(m_rect);	

								painter.restore();	

						}	

				}	

Drawing	the	editor	window

	

EditorWindow	is	a	sub	class	of	MainWindow	in	the	previous	section.	It	handles	the
closing	of	the	window.	Moreover,	it	also	handles	the	key	press	event.

EditorWindow.h:

#ifndef	EDITORWINDOW_H	

				#define	EDITORWINDOW_H	

	

				#include	<QMainWindow>	#include	<QActionGroup>	#include	<QPair>	

				#include	<QMap>	

	

				#include	"..\MainWindow\MainWindow.h"	

				#include	"EditorWidget.h"	

	

				class	EditorWindow	:	public	MainWindow	{	

						Q_OBJECT	

	

						public:	

								EditorWindow(QWidget*	parentWidgetPtr	=	nullptr);	~EditorWindow();	

The	keyPressEvent	method	is	called	every	time	the	user	presses	a	key,	and	closeEvent
is	called	when	the	user	tries	closing	the	window:	protected:	void
keyPressEvent(QKeyEvent*	eventPtr);	void	closeEvent(QCloseEvent*
eventPtr);

private:

EditorWidget*	m_editorWidgetPtr;	};

	

#endif	//	EDITORWINDOW_H

The	EditorWindow	class	is	in	fact	rather	small.	It	only	defines	the	constructor	and
the	destructor,	as	well	as	the	keyPressEvent	and	closePressEvent	methods.

EditorWindow.cpp:

#include	"EditorWindow.h"	

				#include	<QtWidgets>	

The	constructor	sets	the	size	of	the	window	to	1000	*	500	pixels	and	adds	the
standard	file	menu	to	the	menu	bar:	EditorWindow::EditorWindow(QWidget*
parentWidgetPtr	/*=	nullptr*/)	:MainWindow(parentWidgetPtr)	{

resize(1000,	500);

m_editorWidgetPtr	=	new	EditorWidget(this);
setCentralWidget(m_editorWidgetPtr);	addFileMenu();

}

	

EditorWindow::~EditorWindow()	{

//	Empty.

}

The	keyPressEvent	and	closeEvent	methods	just	pass	the	message	to	their	counterpart
methods	in	the	editor	widget,	which	is	located	at	the	center	of	the	window:	void
EditorWindow::keyPressEvent(QKeyEvent*	eventPtr)	{

m_editorWidgetPtr->keyPressEvent(eventPtr);	}

	

void	EditorWindow::closeEvent(QCloseEvent*	eventPtr)
{

m_editorWidgetPtr->closeEvent(eventPtr);	}

	

	

Drawing	the	editor	widget
The	EditorWidget	class	is	a	sub	class	of	DocumentWidget	of	the	previous	section.	It
catches	the	key,	mouse,	resizing,	and	closing	events.	It	also	overrides	the
methods	for	saving	and	loading	documents.

EditorWidget.h:

#ifndef	EDITORWIDGET_H	

				#define	EDITORWIDGET_H	

	

				#include	<QWidget>	

				#include	<QMap>	

				#include	<QMenu>	

				#include	<QToolBar>	

				#include	<QPair>	

				#include	"Caret.h"	

	

				#include	"..\MainWindow\DocumentWidget.h"	

	

				class	EditorWidget	:	public	DocumentWidget	{	

						Q_OBJECT	

	

						public:	

								EditorWidget(QWidget*	parentWidgetPtr);	

The	keyPressEvent	is	called	when	the	user	presses	a	key,	and	mousePressEvent	is	called
when	the	user	clicks	with	the	mouse:

void	keyPressEvent(QKeyEvent*	eventPtr);	

								void	mousePressEvent(QMouseEvent*	eventPtr);	

The	mouseToIndex	method	is	an	auxiliary	method	that	calculates	the	index	of	the
character	the	user	clicks	at	with	the	mouse:

private:	

								int	mouseToIndex(QPoint	point);	

The	paintEvent	method	is	called	when	the	window	needs	to	be	repainted,	and
resizeEvent	is	called	when	the	user	resizes	the	window.	We	catch	the	resize	event
in	this	application	because	we	want	to	recalculate	the	number	of	characters	that
fits	on	each	line:

public:	

								void	paintEvent(QPaintEvent*	eventPtr);	

								void	resizeEvent(QResizeEvent*	eventPtr);

Similar	to	the	drawing	program	in	the	previous	section,	newDocument	is	called	when
the	user	selects	the	New	menu	item,	writeFile	is	called	when	the	user	selects	the
save	or	save	as	items,	and	readFile	is	called	when	the	user	selects	the	open	item:

private:	

								void	newDocument(void);	

								bool	writeFile(const	QString&	filePath);	

								bool	readFile(const	QString&	filePath);	

The	setCaret	method	is	called	to	set	the	caret	as	a	response	to	user	input	or	a
mouse	click:

private:	

								void	setCaret();	

When	the	user	moves	the	caret	up	or	down,	we	need	to	find	the	index	of
character	over	or	under	the	caret.	The	easiest	way	to	do	that	is	to	simulate	a
mouse	click:

void	simulateMouseClick(int	x,	int	y);	

The	calculate	method	is	an	auxiliary	method	that	calculates	the	number	of	lines,
and	the	position	of	each	character	on	each	line:

private:	

								void	calculate();	

The	m_editIndex	field	holds	the	index	of	the	position	for	the	user	to	input	text.	That
position	is	also	where	the	caret	is	visible:

int	m_editIndex	=	0;	

The	m_caret	field	holds	the	caret	of	the	application:

Caret	m_caret;	

The	text	of	the	editor	is	stored	in	m_editorText:

QString	m_editorText;	

The	text	of	the	editor	may	be	distributed	over	several	lines;	m_lineList	keeps	track
of	the	first	and	last	index	of	each	line:

QList<QPair<int,int>>	m_lineList;	

The	preceding	calculate	method	calculates	the	rectangle	of	each	character	in	the
editor	text,	and	places	them	in	m_rectList:

QList<QRect>	m_rectList;

In	the	application	of	this	chapter,	all	characters	hold	the	same	font,	which	is
stored	in	TextFont:

static	const	QFont	TextFont;	

FontWidth	and	FontHeight	hold	the	width	and	height	of	a	character	in	TextFont:

int	FontWidth,	FontHeight;	

				};	

	

				#endif	//	EDITORWIDGET_H	

The	EditorWidget	class	is	rather	large.	It	defines	the	functionality	of	the	editor.

EditorWidget.cpp:

#include	"EditorWidget.h"	

				#include	<QtWidgets>	

				using	namespace	std;	

We	initialize	the	text	font	to	12-point	Courier	New:

const	QFont	EditorWidget::TextFont("Courier	New",	12);	

The	constructor	sets	the	title	to	Editor	and	the	file	suffix	for	the	standard	Load
and	Save	dialogs	to	edi.	The	height	and	average	width,	in	pixels,	of	a	character	in
the	text	font	are	set	with	the	Qt	QMetrics	class.	The	rectangle	of	each	character	is
calculated,	and	the	caret	is	set	to	the	first	character	in	the	text:

EditorWidget::EditorWidget(QWidget*	parentWidgetPtr)	

					:DocumentWidget(tr("Editor"),	tr("Editor	files	(*.edi)"),	

																					parentWidgetPtr),	

						m_caret(this),	

						m_editorText(tr("Hello	World"))	{	

						QFontMetrics	metrics(TextFont);

						FontHeight	=	metrics.height();

						FontWidth	=	metrics.averageCharWidth();

						calculate();	

						setCaret();	

						m_caret.show();	

				}	

The	newDocument	method	is	called	when	the	user	selects	the	new	menu	item.	It

clears	the	text,	sets	the	caret,	and	recalculates	the	character	rectangles:

void	EditorWidget::newDocument(void)	{	

						m_editIndex	=	0;	

						m_editorText.clear();	

						calculate();	

						setCaret();	

				}	

The	writeFile	method	is	called	when	the	user	selects	the	save	or	save	as	menu
items.	It	simply	writes	the	current	text	of	the	editor:

bool	EditorWidget::writeFile(const	QString&	filePath)	{	

						QFile	file(filePath);	

						if	(file.open(QIODevice::WriteOnly	|	QIODevice::Text))	{	

								QTextStream	outStream(&file);	

								outStream	<<	m_editorText;	

We	use	the	Ok	field	of	the	input	stream	to	decide	if	the	writing	was	successful:

return	((bool)	outStream.Ok);	

						}	

If	it	was	not	possible	to	open	the	file	for	writing,	false	is	returned:

return	false;	

				}	

The	readFile	method	is	called	when	the	user	selects	the	load	menu	item.	It	reads
all	the	text	of	the	editor	by	calling	readAll	on	the	input	stream:

bool	EditorWidget::readFile(const	QString&	filePath)	{	

						QFile	file(filePath);	

	

						if	(file.open(QIODevice::ReadOnly	|	QIODevice::Text))	{	

								QTextStream	inStream(&file);	

								m_editorText	=	inStream.readAll();	

When	the	text	has	been	read,	the	character	rectangles	are	calculated,	and	the
caret	is	set:

calculate();	

								setCaret();	

We	use	the	Ok	field	of	the	input	stream	to	decide	if	the	reading	was	successful:

return	((bool)	inStream.Ok);	

						}	

If	it	was	not	possible	to	open	the	file	for	reading,	false	is	returned:

return	false;	

				}

The	mousePressEvent	is	called	when	the	user	presses	one	of	the	mouse	buttons.	If
the	user	presses	the	left	button,	we	call	mouseToIndex	to	calculate	the	index	of	the
character	clicked	at,	and	set	the	caret	to	that	index:

void	EditorWidget::mousePressEvent(QMouseEvent*	eventPtr)	{	

						if	(eventPtr->buttons()	==	Qt::LeftButton)	{	

								m_editIndex	=	mouseToIndex(eventPtr->pos());	

								setCaret();	

						}	

				}	

The	keyPressEvent	is	called	when	the	user	presses	a	key.	First,	we	check	if	it	is	an
arrow	key,	the	delete,	backspace,	or	return	key.	If	it	is	not,	we	insert	the	character
at	the	position	indicated	by	the	caret:

void	EditorWidget::keyPressEvent(QKeyEvent*	eventPtr)	{	

						switch	(eventPtr->key())	{	

If	the	key	is	the	left-arrow	key,	and	if	the	edit	caret	is	not	already	located	at	the
beginning	of	the	text,	we	decrease	the	edit	index:

case	Qt::Key_Left:	

										if	(m_editIndex	>	0)	{	

												--m_editIndex;	

										}	

										break;	

If	the	key	is	the	right-arrow	key,	and	if	the	edit	caret	is	not	already	located	at	the
end	of	the	text,	we	increase	the	edit	index:

case	Qt::Key_Right:	

										if	(m_editIndex	<	m_editorText.size())	{	

												++m_editIndex;	

										}	

										break;	

If	the	key	is	the	up-arrow	key,	and	if	the	edit	caret	is	not	already	located	at	the
top	of	the	editor,	we	call	similateMouseClick	to	simulate	that	the	user	clicks	with	the
mouse	at	a	point	slightly	over	the	current	index.	In	that	way,	the	new	edit	index
will	at	the	line	over	the	current	line:

case	Qt::Key_Up:	{	

												QRect	charRect	=	m_rectList[m_editIndex];	

	

												if	(charRect.top()	>	0)	{	

														int	x	=	charRect.left()	+	(charRect.width()	/	2),	

																		y	=	charRect.top()	-	1;	

														simulateMouseClick(x,	y);	

												}	

										}	

										break;	

If	the	key	is	the	down-arrow	key,	we	call	similateMouseClick	to	simulate	that	the
user	clicks	with	the	mouse	at	a	point	slightly	under	the	current	index.	In	that
way,	we	the	edit	carat	will	be	located	at	the	character	directly	beneath	the	current
character.	Note	that	if	the	index	is	already	at	the	bottom	line,	nothing	happens:

case	Qt::Key_Down:	{	

												QRect	charRect	=	m_rectList[m_editIndex];	

												int	x	=	charRect.left()	+	(charRect.width()	/	2),	

																y	=	charRect.bottom()	+	1;	

												simulateMouseClick(x,	y);	

										}	

										break;	

If	the	user	presses	the	delete	key,	and	the	edit	index	is	not	already	beyond	the
end	of	the	text,	the	current	character	is	removed:

case	Qt::Key_Delete:	

										if	(m_editIndex	<	m_editorText.size())	{	

												m_editorText.remove(m_editIndex,	1);	

												setModifiedFlag(true);	

										}	

										break;	

If	the	user	presses	the	backspace	key,	and	the	edit	index	is	not	already	at	the
beginning	of	the	text,	the	character	before	the	current	character	is	removed:

case	Qt::Key_Backspace:	

										if	(m_editIndex	>	0)	{	

												m_editorText.remove(--m_editIndex,	1);	

												setModifiedFlag(true);	

										}	

										break;	

If	the	user	presses	the	return	key,	the	newline	character	(n)	is	inserted:

case	Qt::Key_Return:	

										m_editorText.insert(m_editIndex++,	'n');	

										setModifiedFlag(true);	

										break;

If	the	user	presses	a	readable	character,	it	is	given	by	the	text	method,	and	we
insert	its	first	character	at	the	edit	index:

default:	{	

												QString	text	=	eventPtr->text();	

	

												if	(!text.isEmpty())	{	

														m_editorText.insert(m_editIndex++,	text[0]);	

														setModifiedFlag(true);	

												}	

										}	

										break;	

						}		

When	the	text	has	been	modified,	we	need	to	calculate	the	character	rectangles,
set	the	caret,	and	force	a	repaint	by	calling	update:

calculate();	

						setCaret();	

						update();	

				}	

The	similateMouseClick	method	simulates	a	mouse	click	by	calling	mousePressEvent
and	mousePressRelease	with	the	given	point:

void	EditorWidget::simulateMouseClick(int	x,	int	y)	{	

						QMouseEvent	pressEvent(QEvent::MouseButtonPress,	QPointF(x,	y),	

																							Qt::LeftButton,	Qt::NoButton,	Qt::NoModifier);	

						mousePressEvent(&pressEvent);	

						QMouseEvent	releaseEvent(QEvent::MouseButtonRelease,	

																															QPointF(x,	y),	Qt::LeftButton,	

																															Qt::NoButton,	Qt::NoModifier);	

						mousePressEvent(&releaseEvent);	

				}	

The	setCaret	method	creates	a	rectangle	holding	the	size	and	position	of	the	caret,
and	then	hides,	sets,	and	shows	the	caret:

void	EditorWidget::setCaret()	{	

						QRect	charRect	=	m_rectList[m_editIndex];	

						QRect	caretRect(charRect.left(),	charRect.top(),	

																						1,	charRect.height());	

						m_caret.hide();	

						m_caret.set(caretRect);	

						m_caret.show();	

				}

The	mouseToIndex	method	calculates	the	edit	index	of	the	given	mouse	point:

int	EditorWidget::mouseToIndex(QPoint	mousePoint)	{	

						int	x	=	mousePoint.x(),	y	=	mousePoint.y();	

First,	we	set	the	y	coordinate	to	the	text,	in	case	it	is	below	the	text:

if	(y	>	(FontHeight	*	m_lineList.size()))	{	

								y	=	((FontHeight	*	m_lineList.size())	-	1);	

						}	

We	calculate	the	line	of	the	mouse	point:

int	lineIndex	=	y	/	FontHeight;	

						QPair<int,int>	lineInfo	=	m_lineList[lineIndex];	

						int	firstIndex	=	lineInfo.first,	lastIndex	=	lineInfo.second;	

We	find	the	index	on	that	line:

if	(x	>	((lastIndex	-	firstIndex	+	1)	*	FontWidth))	{	

								return	(lineIndex	==	(m_lineList.size()	-	1))	

															?	(lineInfo.second	+	1)	:	lineInfo.second;	

						}	

						else	{	

								return	firstIndex	+	(x	/	FontWidth);	

						}	

		

						return	0;	

				}	

The	resizeEvent	method	is	called	when	the	user	changes	the	size	of	the	window.
The	character	rectangles	are	recalculated	since	the	lines	may	be	shorter	or
longer:

void	EditorWidget::resizeEvent(QResizeEvent*	eventPtr)	{	

						calculate();	

						DocumentWidget::resizeEvent(eventPtr);	

				}	

The	calculate	method	is	called	every	time	there	has	been	a	change	in	the	text	or
when	the	window	size	has	been	changed.	It	iterates	through	the	text	and
calculates	the	rectangle	for	each	character:

void	EditorWidget::calculate()	{	

						m_lineList.clear();	

						m_rectList.clear();	

						int	windowWidth	=	width();

First,	we	need	to	divide	the	text	into	lines.	Each	line	continues	until	it	does	not
fit	in	the	window,	until	we	reach	a	new	line,	or	until	the	text	ends:

{	int	firstIndex	=	0,	lineWidth	=	0;	

								for	(int	charIndex	=	0;	charIndex	<	m_editorText.size();	

													++charIndex)	{	

										QChar	c	=	m_editorText[charIndex];	

	

										if	(c	==	'n')	{	

												m_lineList.push_back	

																							(QPair<int,int>(firstIndex,	charIndex));	

												firstIndex	=	charIndex	+	1;	

												lineWidth	=	0;	

										}	

										else	{	

												if	((lineWidth	+	FontWidth)	>	windowWidth)	{	

														if	(firstIndex	==	charIndex)	{	

																m_lineList.push_back	

																											(QPair<int,int>(firstIndex,	charIndex));	

																firstIndex	=	charIndex	+	1;	

														}	

														else	{	

																m_lineList.push_back(QPair<int,int>(firstIndex,	

																																																				charIndex	-	1));	

																firstIndex	=	charIndex;	

														}	

	

														lineWidth	=	0;	

												}	

												else	{	

														lineWidth	+=	FontWidth;	

												}	

										}	

								}	

	

								m_lineList.push_back(QPair<int,int>(firstIndex,	

																																												m_editorText.size()	-	1));	

						}	

We	then	iterate	through	the	lines	and,	for	each	line,	calculate	the	rectangle	of
each	character:

{	int	top	=	0;	

								for	(int	lineIndex	=	0;	lineIndex	<	m_lineList.size();	

													++lineIndex)	{	

										QPair<int,int>	lineInfo	=	m_lineList[lineIndex];	

										int	firstIndex	=	lineInfo.first,	

														lastIndex	=	lineInfo.second,	left	=	0;	

	

										for	(int	charIndex	=	firstIndex;	

															charIndex	<=	lastIndex;	++charIndex){	

												QRect	charRect(left,	top,	FontWidth,	FontHeight);	

												m_rectList.push_back(charRect);	

												left	+=	FontWidth;	

										}	

	

										if	(lastIndex	==	(m_editorText.size()	-	1))	{	

												QRect	lastRect(left,	top,	1,	FontHeight);	

												m_rectList.push_back(lastRect);	

										}	

	

										top	+=	FontHeight;	

								}	

						}	

				}	

The	paintEvent	method	is	called	when	the	window	needs	to	be	repainted:

void	EditorWidget::paintEvent(QPaintEvent*	/*eventPtr*/)	{	

						QPainter	painter(this);	

						painter.setRenderHint(QPainter::Antialiasing);	

						painter.setRenderHint(QPainter::TextAntialiasing);	

						painter.setFont(TextFont);	

						painter.setPen(Qt::black);	

						painter.setBrush(Qt::white);	

We	iterate	through	the	text	of	the	editor	and,	for	each	character	except	the	new

line,	we	write	in	its	appropriate	position:

for	(int	index	=	0;	index	<	m_editorText.length();	++index)	{	

								QChar	c	=	m_editorText[index];	

	

								if	(c	!=	'n')	{	

										QRect	rect	=	m_rectList[index];	

										painter.drawText(rect,	c);	

								}	

						}	

	

						m_caret.paint(painter);	

				}

The	main	function
Finally,	the	main	function	works	in	a	way	similar	to	the	previous	applications	of
this	chapter—we	create	an	application,	create	an	editor	window,	and	execute	the
application.

Main.cpp:

#include	"EditorWindow.h"	

#include	<QApplication>	

	

int	main(int	argc,	char	*argv[])	{	

		QApplication	application(argc,	argv);	

		EditorWindow	editorWindow;	

		editorWindow.show();	

		return	application.exec();	

}	

The	following	output	is	obtained:

Summary
In	this	chapter,	we	have	developed	three	graphical	applications	with	the	Qt
library—an	analog	clock,	a	drawing	program,	and	an	editor.	The	clock	shows	the
current	hour,	minute,	and	second.	In	the	drawing	program	we	can	draw	lines,
rectangles,	and	ellipses,	and	in	the	editor,	we	can	input	and	edit	text.

In	the	next	chapter,	we	will	continue	to	work	with	the	applications,	and	develop
more	advanced	versions.

	

Enhancing	the	Qt	Graphical
Applications

	

In	Chapter	5,	Qt	Graphical	Applications,	we	developed	graphical	Qt	applications
involving	an	analog	clock,	a	drawing	program,	and	an	editor.	In	this	chapter,	we
will	continue	to	work	on	the	three	graphical	applications	of	Chapter	5,	Qt
Graphical	Applications.	However,	we	will	make	the	following	improvements:

Clock:	We	will	add	digits	to	the	clock	dial
The	drawing	program:	We	will	add	the	ability	to	move	and	modify
figures,	to	cut	and	paste	them,	and	to	mark	one	or	several	figures
The	editor:	We	will	add	the	ability	to	change	font	and	alignment	as	well	as
to	mark	a	text	block

In	this	chapter,	we	will	continue	to	work	with	the	Qt	libraries:

Windows	and	widgets
Menus	and	toolbars
Mouse	and	keyboard	events

	

	

https://cdp.packtpub.com/c___by_example/wp-admin/post.php?post=72&action=edit#post_67

Improving	the	clock
In	this	chapter,	we	will	replace	the	version	of	clock	dial	markings	with	digits.

The	Clock	class

	

The	Clock	class	definition	is	similar	to	the	one	in	Chapter	5,	Qt	Graphical
Applications.	The	timer	updates	the	window	10	times	each	second.	The
constructor	initializes	the	clock	and	paintEvent	is	called	every	time	the	window
needs	to	be	repainted.

Clock.h:

#ifndef	CLOCK_H	

			#define	CLOCK_H	

	

			#include	<QWidget>	

			#include	<QTimer>	

	

			class	Clock	:	public	QWidget	{	

					Q_OBJECT	

	

					public:	

							Clock(QWidget	*parentWidget	=	nullptr);	void	paintEvent(QPaintEvent	

*eventPtr);	

https://cdp.packtpub.com/c___by_example/wp-admin/post.php?post=72&action=edit#post_67

					private:	

					QTimer	m_timer;	

			};	

	

			#endif	//	CLOCK_H	

Clock.cpp:

#include	<QtWidgets>	#include	"Clock.h"	

Similar	to	Chapter	5,	Qt	Graphical	Applications,	the	constructor	sets	the	header	of
the	window	to	Clock	Advanced,	the	window	size	to	1000	x	500	pixels,	initializes	the
timer	to	send	a	timeout	message	every	100	milliseconds,	and	connect	the	timeout
message	to	the	update	method,	which	forces	the	window	to	be	repainted	for	each
timeout:	Clock::Clock(QWidget	*parentWidget	/*=	nullptr*/)
:QWidget(parentWidget)	{

setWindowTitle(tr("Clock	Advanced"));	resize(1000,
500);

	

m_timer.setParent(this);

connect(&m_timer,	SIGNAL(timeout()),	this,
SLOT(update()));	m_timer.start(100);

}

The	paintEvent	method	is	called	every	time	the	window	needs	to	be	repainted.	We

https://cdp.packtpub.com/c___by_example/wp-admin/post.php?post=72&action=edit#post_67

will	start	by	calculating	the	side	of	the	clock	and	obtaining	the	current	time:	void
Clock::paintEvent(QPaintEvent*	/*event*/)	{

int	side	=	qMin(width(),	height());	QTime	time	=
QTime::currentTime();

We	then	create	and	initialize	a	QPainter	object.	We	call	translate	and	scale	to	match
the	physical	size	(pixels)	to	the	logical	size	of	200	x	200	units:	QPainter
painter(this);	painter.setRenderHint(QPainter::Antialiasing);
painter.setRenderHint(QPainter::TextAntialiasing);	painter.translate(width()	/	2,
height()	/	2);	painter.scale(side	/	200.0,	side	/	200.0);

As	we	write	digits	to	the	clock	in	this	version	of	the	chapter,	we	add	the	font
Times	New	Roman,	12	points,	to	the	painter:	painter.setFont(QFont(tr("Times	New
Roman"),	12));

We	write	the	digits	of	the	clock,	1	to	12,	as	shown	in	the	following	code:	for	(int
hour	=	1;	hour	<=	12;	++hour)	{

QString	text;

text.setNum(hour);

A	whole	leap	is	360°	and	the	angle	between	two	consecutive	digits	is	30°,	since
360	divided	by	12	is	30:	double	angle	=	(30.0	*	hour)	-	90;	double	radius	=	90.0;

The	x	and	y	coordinates	of	the	digits	are	calculated	by	the	sine	and	cosine
functions.	However,	first,	we	need	to	transform	the	degrees	to	radians	since	sine
and	cosine	accept	radians	only.	This	is	shown	in	the	following	code:	double	x	=
radius	*	qCos(qDegreesToRadians(angle)),	y	=	radius	*
qSin(qDegreesToRadians(angle));

The	drawText	methods	write	the	digit,	as	follows:	QRect	rect(x	-	100,	y	-	100,	200,
200);	painter.drawText(rect,	Qt::AlignHCenter	|

Qt::AlignVCenter,	text);	}

When	the	digits	have	been	written,	we	draw	the	hour,	minute,	and	second	hands	in
the	same	way	as	in	Chapter	5,	Qt	Graphical	Applications:	double	hours	=
time.hour(),	minutes	=	time.minute(),	seconds	=	time.second(),	milliseconds	=
time.msec();

painter.setPen(Qt::black);

painter.setBrush(Qt::gray);

	

{	static	const	QPoint	hourHand[3]	=

{QPoint(8,	8),	QPoint(-8,	8),	QPoint(0,	-60)};

painter.save();

double	hour	=	hours	+	(minutes	/	60.0)	+	(seconds	/
3600.0)	+

(milliseconds	/	3600000.0);	painter.rotate(30.0	*	hour);
painter.drawConvexPolygon(hourHand,	3);
painter.restore();

}

	

https://cdp.packtpub.com/c___by_example/wp-admin/post.php?post=72&action=edit#post_67

{	static	const	QPoint	minuteHand[3]	=

{QPoint(6,	8),	QPoint(-6,	8),	QPoint(0,	-70)};

painter.save();

double	minute	=	minutes	+	(seconds	/	60.0)	+

(milliseconds	/	60000.0);	painter.rotate(6.0	*	minute);
painter.drawConvexPolygon(minuteHand,	3);
painter.restore();

}

	

{	static	const	QPoint	secondHand[3]	=

{QPoint(4,	8),	QPoint(-4,	8),	QPoint(0,	-80)};

painter.save();

double	second	=	seconds	+	(milliseconds	/	1000);
painter.rotate(6.0	*	second);
painter.drawConvexPolygon(secondHand,	3);
painter.restore();

}

}

	

	

The	main	function
The	main	function	is	similar	to	the	one	in	Chapter	5,	Qt	Graphical	Applications.	It
creates	an	application	object,	initializes	the	clock,	and	executes	the	application.

Main.cpp:

#include	<QApplication>	

#include	"Clock.h"	

	

int	main(int	argc,	char	*argv[])	{	

		QApplication	application(argc,	argv);	

		Clock	Clock;	

		Clock.show();	

		return	application.exec();	

}	

Output:

https://cdp.packtpub.com/c___by_example/wp-admin/post.php?post=72&action=edit#post_67

Improving	the	drawing	program
The	drawing	program	of	this	chapter	is	a	more	advanced	version	of	the	drawing
program	of	Chapter	5,	Qt	Graphical	Applications.	In	this	version,	it	is	possible	to
modify	a	figure,	to	enclose	one	or	more	figures	and	then	change	their	colors,	and
to	cut	and	paste	figures.

	

https://cdp.packtpub.com/c___by_example/wp-admin/post.php?post=72&action=edit#post_67

The	Figure	class

	

The	Figure	class	is	rather	similar	to	the	one	in	Chapter	5,	Qt	Graphical	Applications.
However,	isInside,	doubleClick,	modify,	and	marked	have	been	added.

Figure.h:

#ifndef	FIGURE_H	

				#define	FIGURE_H	

	

				enum	FigureId	{LineId,	RectangleId,	EllipseId};	

				#include	<QtWidgets>	

				#include	<FStream>	

				using	namespace	std;	

	

				class	Figure	{	

						public:	

						Figure();	

In	this	version,	the	pure	virtual	clone	method	has	been	added.	That	is	due	to	the
cut	and	paste.	When	pasting	a	figure	we	want	to	create	a	copy	of	it,	without

https://cdp.packtpub.com/c___by_example/wp-admin/post.php?post=72&action=edit#post_67

actually	knowing	which	class	the	object	belongs	to.	We	could	not	do	that	with
the	copy	constructor	only.	This	is	actually	the	main	point	of	this	section:	how	to
use	pure	virtual	methods	and	how	to	take	advantage	of	dynamic	binding.	We
need	clone,	which	calls	the	copy	constructor	of	its	class	to	return	a	pointer	to	the
new	object:	virtual	Figure*	clone()	const	=	0;

virtual	FigureId	getId()	const	=	0;	virtual	void
initializePoints(QPoint	point)	=	0;

In	this	version	of	the	drawing	program,	onClick	sets	fields	to	indicate	whether	the
figure	shall	be	modified	or	moved.	If	the	user	grabs	one	of	the	marked	points	of
the	figure	(which	varies	between	different	kinds	of	figures),	the	figure	shall	be
modified.	Otherwise,	it	shall	be	moved.	The	modify	method	is	called	when	the
user	grabs	one	of	the	corners	of	the	figure.	In	that	case,	the	figure	shall	be
modified	rather	than	moved:	virtual	bool	isClick(QPoint	mousePoint)	=	0;
virtual	void	modify(QSize	distance)	=	0;

The	isInside	method	returns	true	if	the	figure	is	completely	enclosed	in	the	area.	It
is	called	when	the	user	encloses	figures	with	the	mouse:	virtual	bool
isInside(QRect	area)	=	0;

The	doubleClick	method	is	called	when	the	user	double-clicks	at	the	figure,	each
figure	performs	some	suitable	action:	virtual	void	doubleClick(QPoint
mousePoint)	=	0;

virtual	void	move(QSize	distance)	=	0;	virtual	void
draw(QPainter	&painter)	const	=	0;

virtual	bool	write(ofstream&	outStream)	const;	virtual
bool	read(ifstream&	inStream);

The	marked	methods	return	and	set	the	m_marked	field.	When	a	figure	is	marked,	it	is
annotated	with	small	squares:	bool	marked()	const	{return	m_marked;}

bool&	marked()	{return	m_marked;}

	

const	QColor&	color()	const	{return	m_color;}

QColor&	color()	{return	m_color;}

	

virtual	bool	filled()	const	{return	m_filled;}

virtual	bool&	filled()	{return	m_filled;}

	

static	const	int	Tolerance;

	

private:

QColor	m_color;

bool	m_marked	=	false,	m_filled	=	false;	};

	

#endif

Figure.cpp:

#include	"..\MainWindow\DocumentWidget.h"	

				#include	"Figure.h"	

	

				const	int	Figure::Tolerance(6);	

				Figure::Figure()	{	

							//	Empty.	

				}	

The	write	and	read	methods	write	and	read	the	color	of	the	figure	and	whether	it	is
filled.	However,	they	do	not	write	or	read	the	marked	status.	A	figure	is	always
unmarked	when	written	or	read:	bool	Figure::write(ofstream&	outStream)	const
{

writeColor(outStream,	m_color);	outStream.write((char*)
&m_filled,	sizeof	m_filled);	return	((bool)	outStream);

}

	

bool	Figure::read(ifstream&	inStream)	{

readColor(inStream,	m_color);	inStream.read((char*)
&m_filled,	sizeof	m_filled);	return	((bool)	inStream);

}

	

	

The	Line	class
The	Line	class	is	a	subclass	of	Figure.

Line.h:

#ifndef	LINE_H	

				#define	LINE_H	

		

				#include	<FStream>	

				using	namespace	std;	

	

				#include	"Figure.h"	

	

				class	Line	:	public	Figure	{	

						public:	

						Line();	

						FigureId	getId()	const	{return	LineId;}	

						In	addition	to	the		

						Line(const	Line&	line);	

						Figure*	clone()	const;	

	

						void	initializePoints(QPoint	point);	

As	mentioned	in	the	preceding	Figure	section,	isClick	decided	whether	the	line
shall	be	modified	or	moved.	If	the	user	grabs	one	of	its	endpoints,	only	that
endpoint	shall	be	moved.	If	the	user	grabs	the	line	between	the	endpoints,	the
line	shall	be	moved.	That	is,	both	the	endpoints	of	the	line	shall	be	moved:

bool	isClick(QPoint	mousePoint);	

The	isInside	method	checks	whether	the	line	is	completely	enclosed	by	the	area:

bool	isInside(QRect	area);	

The	doubleClick	method	does	nothing	in	the	Line	class.	However,	we	still	need	to
define	it,	since	it	is	pure	virtual	in	Figure.	If	we	had	not	defined	it,	Line	would
have	been	abstract:

void	doubleClick(QPoint	/*	mousePoint	*/)	{/*	Empty.	*/}	

The	modify	method	modifies	the	line	in	accordance	with	the	settings	of	the
preceding	isClick.	If	the	user	grabs	one	of	the	endpoints,	that	endpoint	is	moved.
Otherwise,	the	whole	line	(both	the	endpoints)	is	moved:

void	modify(QSize	distance);	

				void	move(QSize	distance);	

The	area	method	returns	a	slightly	larger	area	if	the	line	is	marked,	in	order	to
include	the	marking	squares:

QRect	area()	const;	

				void	draw(QPainter&	painter)	const;	

	

				bool	write(ofstream&	outStream)	const;	

				bool	read(ifstream&	inStream);	

The	m_lineMode	field	keeps	track	of	the	movement	or	modification	of	the	line.
When	the	line	is	created,	m_lineMode	is	set	to	LastPoint.	When	the	user	grabs	the
first	or	last	endpoint	of	the	line,	m_lineMode	is	set	to	FirstPoint	or	LastPoint.	When
the	user	grabs	the	line	between	the	endpoints,	m_lineMode	is	set	to	MoveLine:

private:	

									enum	{FirstPoint,	LastPoint,	MoveLine}	m_lineMode;	

									QPoint	m_firstPoint,	m_lastPoint;	

The	isPointInLine	method	decides	whether	the	user	has	clicked	on	the	line,	with
some	tolerance:

static	bool	isPointInLine(QPoint	m_firstPoint,	

																														QPoint	m_lastPoint,	QPoint	point);	

				};	

	

				#endif	

Line.cpp:

#include	"..\MainWindow\DocumentWidget.h"	

				#include	"Line.h"	

When	a	line	becomes	created,	the	line	mode	is	set	to	the	last	point.	That	means
that	the	last	point	of	the	line	will	be	changed	when	the	user	moves	the	mouse:

Line::Line()	

				:m_lineMode(LastPoint)	{	

						//	Empty.	

				}	

The	clone	method	is	called	when	a	line	is	being	pasted.	The	copy	constructor	of
Figure	is	called	to	set	the	color	of	the	figure.	Note	that	we	call	the	Figure
constructor	with	a	Line	object	as	a	parameter,	even	though	it	takes	a	reference	to	a
Figure	object	as	a	parameter.	We	are	allowed	to	do	this	since	Line	is	a	subclass	of
Figure	and	the	Line	object	will	be	transformed	into	a	Figure	object	during	the	call.

Moreover,	the	first	and	last	endpoints	are	copied.	Note	that	we	do	need	to	copy
the	value	m_lineMode	since	its	value	is	set	when	the	user	creates,	modifies,	or
moves	the	line	only:

Line::Line(const	Line&	line)	

					:Figure(line),	

							m_firstPoint(line.m_firstPoint),	

							m_lastPoint(line.m_lastPoint)	{	

						//	Empty.	

					}	

The	clone	method	uses	the	copy	constructor	to	create	a	new	object,	which	is	then
returned:

Figure*	Line::clone()	const	{	

						Line*	linePtr	=	new	Line(*this);	

						return	linePtr;	

				}	

The	initializePoints	method	is	called	shortly	after	the	line	is	being	created.	The
reason	for	this	call	is	that	we	do	not	create	a	Line	object	directly.	Instead,	we
create	the	line	indirectly	by	calling	clone.	We	then	need	to	initialize	the	end-
points	by	calling	initializePoints:

void	Line::initializePoints(QPoint	point)	{	

						m_firstPoint	=	point;	

						m_lastPoint	=	point;	

				}	

The	isClick	method	is	called	when	the	user	clicks	with	the	mouse.	First,	we	check
whether	they	have	clicked	at	the	first	endpoint.	We	use	the	Tolerance	field	to
create	a	small	square,	with	the	first	endpoint	in	its	center.	If	the	user	clicks	on	the
square,	m_lineMode	is	set	to	FirstPoint	and	true	is	returned:

bool	Line::isClick(QPoint	mousePoint)	{	

						QRect	firstSquare(makeRect(m_firstPoint,	Tolerance));	

	

					if	(firstSquare.contains(mousePoint))	{	

							m_lineMode	=	FirstPoint;	

							return	true;	

					}	

In	the	same	way,	we	create	a	small	square	with	the	last	endpoint	in	its	center.	If
the	user	clicks	at	the	square,	m_lineMode	is	set	to	LastPoint	and	true	is	returned:

QRect	lastSquare(makeRect(m_lastPoint,	Tolerance));	

	

				if	(lastSquare.contains(mousePoint))	{	

						m_lineMode	=	LastPoint;	

						return	true;	

				}	

If	the	user	does	not	click	on	either	of	the	endpoints,	we	check	if	they	click	on	the
line	itself.	If	they	do,	m_lineMode	is	set	to	ModeLine	and	true	is	returned:

if	(isPointInLine(m_firstPoint,	m_lastPoint,	mousePoint))	{	

						m_lineMode	=	MoveLine;	

						return	true;	

				}	

Finally,	if	the	user	does	not	click	on	one	of	the	endpoints	or	the	line	itself,	they
missed	the	line	altogether	and	false	is	returned:

return	false;	

				}	

The	isInside	method	returns	true	if	the	line	is	completely	enclosed	by	the	area.	It
is	quite	easy,	we	just	check	whether	the	two	end-points	are	located	inside	the
area:

bool	Line::isInside(QRect	area)	{	

					return	area.contains(m_firstPoint)	&&	

							area.contains(m_lastPoint);	

				}	

The	isPointInLine	method	is	identical	to	isClick	in	the	version	of	Chapter	5,	Qt
Graphical	Applications:

bool	Line::isPointInLine(QPoint	m_firstPoint,	QPoint	m_lastPoint,

																									QPoint	point)	{

		if	(m_firstPoint.x()	==	m_lastPoint.x())	{

				QRect	lineRect(m_firstPoint,	m_lastPoint);

				lineRect.normalized();

				lineRect	+=	Tolerance;

				return	lineRect.contains(point);

		}

		else	{

				QPoint	leftPoint	=	(m_firstPoint.x()	<	m_lastPoint.x())

																							?	m_firstPoint	:	m_lastPoint,

											rightPoint	=	(m_firstPoint.x()	<	m_lastPoint.x())

																							?	m_lastPoint	:	m_firstPoint;

				if	((leftPoint.x()	<=	point.x())	&&

								(point.x()	<=	rightPoint.x()))	{

						int	lineWidth	=	rightPoint.x()	-	leftPoint.x(),

										lineHeight	=	rightPoint.y()	-	leftPoint.y();

						int	diffWidth	=	point.x()	-	leftPoint.x(),

										diffHeight	=	point.y()	-	leftPoint.y();

						double	delta	=	fabs(diffHeight	-

															(diffWidth	*	((double)	lineHeight)	/	lineWidth));

						return	(delta	<=	Tolerance);

				}

				return	false;

		}

}

The	modify	method	moves	the	first	or	last	endpoint,	or	both	of	them,	depending	on
the	settings	of	m_lineMode	in	the	preceding	isClick	method:

void	Line::modify(QSize	distance)	{	

						switch	(m_lineMode)	{	

								case	FirstPoint:	

								m_firstPoint	+=	distance;	

								break;	

	

								case	LastPoint:	

								m_lastPoint	+=	distance;	

								break;	

	

								case	MoveLine:	

								move(distance);	

								break;	

						}	

				}	

The	move	method	simply	moves	both	the	end-points	of	the	line:

void	Line::move(QSize	distance)	{	

						m_firstPoint	+=	distance;	

						m_lastPoint	+=	distance;	

				}	

The	draw	method	draws	the	line.	The	difference	between	this	version	and	the
version	of	Chapter	5,	Qt	Graphical	Applications,	is	that	it	also	draws	the	squares	at
the	end-points	of	the	line	if	it	is	marked:

void	Line::draw(QPainter&	painter)	const	{	

						painter.setPen(color());	

						painter.drawLine(m_firstPoint,	m_lastPoint);	

	

						if	(marked())	{	

								painter.fillRect(makeRect(m_firstPoint,	Tolerance),	

																					Qt::black);	

								painter.fillRect(makeRect(m_lastPoint,	Tolerance),	

																					Qt::black);	

						}	

				}	

The	area	method	returns	the	area	covering	the	line.	If	the	line	is	marked,	the	area
is	slightly	expanded	in	order	to	cover	the	squares	marking	the	endpoints:

QRect	Line::area()	const	{	

						QRect	lineArea(m_firstPoint,	m_lastPoint);	

						lineArea.normalized();	

	

						if	(marked())	{	

									lineArea	+=	Tolerance;	

						}	

	

						return	lineArea;	

				}	

Similar	to	the	version	of	Chapter	5,	Qt	Graphical	Applications,	write	and	read	call
their	counterparts	in	Figure	and	then	write	and	read	the	two	endpoints	of	the	line:

bool	Line::write(ofstream&	outStream)	const	{	

						Figure::write(outStream);	

						writePoint(outStream,	m_firstPoint);	

						writePoint(outStream,	m_lastPoint);	

						return	((bool)	outStream);	

				}	

	

				bool	Line::read(ifstream&	inStream)	{	

						Figure::read(inStream);	

						readPoint(inStream,	m_firstPoint);	

						readPoint(inStream,	m_lastPoint);	

						return	((bool)	inStream);	

				}	

https://cdp.packtpub.com/c___by_example/wp-admin/post.php?post=72&action=edit#post_67

The	Rectangle	class

	

RectangleX	is	a	subclass	of	Figure.	It	is	an	expanded	version	of	the	version	of	Chapter	
5,	Qt	Graphical	Applications.	The	isClick	method	has	been	modified,	doubleClick
and	modify	have	been	added.

Rectangle.h:

#ifndef	RECTANGLE_H	

				#define	RECTANGLE_H	

	

				#include	<FStream>	

				using	namespace	std;	

	

				#include	"Figure.h"	

	

				class	RectangleX	:	public	Figure	{	

						public:	

						RectangleX();	

						virtual	FigureId	getId()	const	{return	RectangleId;}	

https://cdp.packtpub.com/c___by_example/wp-admin/post.php?post=72&action=edit#post_67

	

						RectangleX(const	RectangleX&	rectangle);	Figure*	clone()	const;	

	

						virtual	void	initializePoints(QPoint	point);	

						virtual	bool	isClick(QPoint	mousePoint);	virtual	void	modify(QSize	

distance);	

						virtual	bool	isInside(QRect	area);	virtual	void	doubleClick(QPoint	

mousePoint);	

						virtual	void	move(QSize	distance);	virtual	QRect	area()	const;	

						virtual	void	draw(QPainter&	painter)	const;	

						virtual	bool	write(ofstream&	outStream)	const;	virtual	bool	

read(ifstream&	inStream);	

						private:	

								enum	{TopLeftPoint,	TopRightPoint,	BottomRightPoint,	BottomLeftPoint,	

MoveRectangle}	m_rectangleMode;	

						protected:	

								QPoint	m_topLeft,	m_bottomRight;	};	

	

				#endif	

Rectangle.cpp:

#include	<CAssert>	#include	"..\MainWindow\DocumentWidget.h"	

				#include	"Rectangle.h"	

When	a	rectangle	is	added	by	the	user,	its	mode	is	BottomRightPoint.	That	means
that	the	bottom-right	corner	of	the	rectangle	will	be	moved	when	the	user	moves
the	mouse:	RectangleX::RectangleX()	:m_rectangleMode(BottomRightPoint)	{

//	Empty.

}

The	copy	constructor	copies	the	rectangle.	More	specifically,	first	it	calls	the
copy	constructor	of	the	Figure	class,	then	it	copies	the	top-left	and	bottom-right
corner.	Note	that	it	does	not	copy	the	m_rectangleMode	field,	since	it	is	used	when
the	user	moves	the	mouse	only:	RectangleX::RectangleX(const	RectangleX&
rectangle)	:Figure(rectangle),

m_topLeft(rectangle.m_topLeft),

m_bottomRight(rectangle.m_bottomRight)	{

//	Empty.

}

The	clone	method	creates	and	returns	a	pointer	to	a	new	object	by	calling	the
copy	constructor:	Figure*	RectangleX::clone()	const	{

RectangleX*	rectanglePtr	=	new	RectangleX(*this);
return	rectanglePtr;

}

	

void	RectangleX::initializePoints(QPoint	point)	{

m_topLeft	=	point;

m_bottomRight	=	point;

}

The	isClick	method	is	called	when	the	user	clicks	with	the	mouse.	Similar	to	the
preceding	bool	Line,	we	start	by	checking	whether	they	have	clicked	at	any	of	the
corners.	If	they	have	not,	we	check	whether	they	have	clicked	on	the	rectangle
border	or	inside	the	rectangle,	depending	on	whether	it	is	filled.

We	start	by	defining	a	small	square	covering	the	top-left	corner.	If	the	user	clicks
on	it,	we	set	the	m_rectangleMode	field	to	TopLeftPoint	and	return	true:	bool
RectangleX::isClick(QPoint	mousePoint)	{

QRect	topLeftRect(makeRect(m_topLeft,	Tolerance));

if	(topLeftRect.contains(mousePoint))	{

m_rectangleMode	=	TopLeftPoint;	return	true;

}

We	continue	by	defining	a	square	covering	the	top-right	corner.	If	the	user	clicks
on	it,	we	set	m_rectangleMode	to	TopRightPoint	and	return	true:	QPoint

topRightPoint(m_bottomRight.x(),	m_topLeft.y());	QRect
topRectRight(makeRect(topRightPoint,	Tolerance));

if	(topRectRight.contains(mousePoint))	{

m_rectangleMode	=	TopRightPoint;	return	true;

}

If	the	user	clicks	at	the	square	covering	the	bottom-right	corner,	we	set
m_rectangleMode	to	BottomRightPoint	and	return	true:	QRect
m_bottomRightRect(makeRect(m_bottomRight,	Tolerance));

if	(m_bottomRightRect.contains(mousePoint))	{

m_rectangleMode	=	BottomRightPoint;	return	true;

}

If	the	user	clicks	at	the	square	covering	the	bottom-left	corner,	we	set
m_rectangleMode	to	BottomLeftPoint	and	return	true:	QPoint
bottomLeftPoint(m_topLeft.x(),	m_bottomRight.y());	QRect
bottomLeftRect(makeRect(bottomLeftPoint,	Tolerance));

if	(bottomLeftRect.contains(mousePoint))	{

m_rectangleMode	=	BottomLeftPoint;	return	true;

}

If	the	user	does	not	click	at	any	of	the	corners	of	the	rectangle,	we	check	the

rectangle	itself.	If	it	is	filled,	we	check	whether	the	mouse	pointer	is	located
inside	the	rectangle	itself.	If	it	is,	we	set	m_rectangleMode	to	MoveRectangle	and	return
true:	QRect	areaRect(m_topLeft,	m_bottomRight);

if	(filled())	{

if	(areaRect.contains(mousePoint))	{

m_rectangleMode	=	MoveRectangle;	return	true;

}

}

If	the	rectangle	is	not	filled,	we	define	slightly	larger	and	smaller	rectangles.	If
the	mouse	click	is	located	inside	the	larger	rectangle,	but	not	in	the	smaller	one,
we	set	m_rectangleMode	to	MoveRectangle	and	return	true:	else	{

QRect	largeAreaRect(areaRect),
smallAreaRect(areaRect);

largeAreaRect	+=	Tolerance;

smallAreaRect	-=	Tolerance;

	

if	(largeAreaRect.contains(mousePoint)	&&
!smallAreaRect.contains(mousePoint))	{

m_rectangleMode	=	MoveRectangle;	return	true;

}

}

Finally,	if	the	user	does	not	click	at	one	of	the	corners	or	the	rectangle	itself,	they
missed	the	rectangle	and	we	return	false:	return	false;

}

The	isInside	method	is	quite	simple.	We	simply	check	if	the	top-left	and	bottom-
right	corners	are	located	inside	the	rectangle:	bool	RectangleX::isInside(QRect
area)	{

return	area.contains(m_topLeft)	&&
area.contains(m_bottomRight);	}

The	doubleClick	method	is	called	when	the	user	double-clicks	with	the	mouse.	If
the	call	to	onClick	returns	true,	doubleClick	is	called.	In	the	rectangle	case,	the	filled
status	is	changed—a	filled	rectangle	becomes	unfilled	and	an	unfilled	rectangle
becomes	filled:	void	RectangleX::doubleClick(QPoint	mousePoint)	{

if	(isClick(mousePoint))	{

The	first	call	to	filled	is	a	call	to	the	version	that	returns	a	reference	to	the
m_filled	field,	which	allows	us	to	change	the	returned	value:	filled()	=	!filled();	}

}

The	modify	method	modifies	the	rectangle	in	accordance	with	the	m_rectangleMode
field,	which	was	set	by	the	preceding	isClick.	If	it	is	set	to	one	of	the	four	corners,

we	modify	that	corner.	If	not,	we	move	the	whole	rectangle:	void
RectangleX::modify(QSize	distance)	{

switch	(m_rectangleMode)	{

case	TopLeftPoint:

m_topLeft	+=	distance;

break;

	

case	TopRightPoint:

m_topLeft.setY(m_topLeft.y()	+	distance.height());
m_bottomRight.setX(m_bottomRight.x()	+
distance.width());	break;

	

case	BottomRightPoint:

m_bottomRight	+=	distance;

break;

	

case	BottomLeftPoint:

m_topLeft.setX(m_topLeft.x()	+	distance.width());
m_bottomRight.setY(m_bottomRight.y()	+
distance.height());	break;

	

case	MoveRectangle:

move(distance);

break;

}

}

The	move	method	is	quite	simple.	It	just	changes	the	top-left	and	bottom-right
corners:	void	RectangleX::move(QSize	distance)	{

m_topLeft	+=	distance;

m_bottomRight	+=	distance;

}

The	area	method	returns	the	area	covering	the	rectangle.	If	it	is	marked,	we
slightly	expand	the	area	in	order	for	it	to	cover	the	marking	squares:	QRect
RectangleX::area()	const	{

QRect	areaRect(m_topLeft,	m_bottomRight);
areaRect.normalized();

	

if	(marked())	{

areaRect	+=	Tolerance;

}

	

return	areaRect;

}

The	draw	method	draws	the	rectangle;	with	a	full	brush	it	is	filled	and	with	a
hollow	brush	if	it	is	unfilled:	void	RectangleX::draw(QPainter&	painter)	const	{

painter.setPen(color());

	

if	(filled())	{

painter.fillRect(QRect(m_topLeft,	m_bottomRight),
color());	}

else	{

painter.setBrush(Qt::NoBrush);
painter.drawRect(QRect(m_topLeft,	m_bottomRight));	}

If	the	rectangle	is	marked,	the	four	squares	covering	the	corners	of	the	rectangle
are	also	drawn:	if	(marked())	{

painter.fillRect(makeRect(m_topLeft,	Tolerance),
Qt::black);	QPoint	topRight(m_bottomRight.x(),
m_topLeft.y());	painter.fillRect(makeRect(topRight,
Tolerance),	Qt::black);
painter.fillRect(makeRect(m_bottomRight,	Tolerance),
Qt::black);

QPoint	bottomLeft(m_topLeft.x(),	m_bottomRight.y());
painter.fillRect(makeRect(bottomLeft,	Tolerance),
Qt::black);	}

}

The	write	and	read	methods	first	call	their	counterparts	in	Figure	in	order	to	write
and	read	the	color	of	the	rectangle.	Then	it	writes	and	reads	the	top-left	and
bottom-right	corners:	bool	RectangleX::write(ofstream&	outStream)	const	{

Figure::write(outStream);

writePoint(outStream,	m_topLeft);	writePoint(outStream,
m_bottomRight);	return	((bool)	outStream);

}

	

bool	RectangleX::read	(ifstream&	inStream)	{

Figure::read(inStream);

readPoint(inStream,	m_topLeft);

readPoint(inStream,	m_bottomRight);	return	((bool)
inStream);

}

	

	

The	Ellipse	class

	

EllipseX	is	a	direct	sub	class	of	RectangleX	and	an	indirect	subclass	of	Figure	that
draws	a	filled	or	unfilled	ellipse:	EllipseX.h:

#ifndef	ELLIPSE_H	

				#define	ELLIPSE_H	

	

				#include	"Rectangle.h"	

	

				class	EllipseX	:	public	RectangleX	{	

						public:	

						EllipseX();	

						FigureId	getId()	const	{return	EllipseId;}	

	

						EllipseX(const	EllipseX&	ellipse);	Figure*	clone()	const;	

Similar	to	the	preceding	rectangle	case,	isClick	checks	whether	the	user	grabs	the
ellipse	in	one	of	its	four	corners,	or	if	the	ellipse	itself	shall	be	moved:	bool
isClick(QPoint	mousePoint);

The	modify	method	modifies	the	ellipse	in	accordance	with	the	settings	of
following	m_ellipseMode	in	preceding	isClick:	void	modify(QSize	distance);	void
draw(QPainter&	painter)	const;

While	the	preceding	rectangle	could	be	grabbed	by	its	four	corners,	the	ellipse
can	be	grabbed	by	its	left,	top,	right,	and	bottom	points.	Therefore,	we	need	to
add	the	CreateEllipse	enumeration	value,	which	modifies	the	bottom-right	corner
of	the	area	covering	the	ellipse:	private:

enum	{CreateEllipse,	LeftPoint,	TopPoint,	RightPoint,
BottomPoint,	MoveEllipse}	m_ellipseMode;	};

	

#endif

EllipseX.cpp:

#include	<CAssert>	#include	"..\MainWindow\DocumentWidget.h"	

				#include	"Ellipse.h"	

In	contrast	to	the	preceding	line	and	rectangle	cases,	we	set	the	m_ellipseMode	field
to	CreateEllipse,	which	is	valid	when	the	ellipse	is	being	created	only:
EllipseX::EllipseX()	:m_ellipseMode(CreateEllipse)	{

//	Empty.

}

The	copy	constructor	does	not	need	to	set	the	m_topLeft	and	m_bottomRight	fields,
since	it	is	taken	care	of	by	the	copy	constructor	of	RectangleX,	which	is	being
called	by	the	copy	constructor	of	EllipseX:	EllipseX::EllipseX(const	EllipseX&
ellipse)	:RectangleX(ellipse)	{

//	Empty.

}

	

Figure*	EllipseX::clone()	const	{

EllipseX*	ellipsePtr	=	new	EllipseX(*this);	return
ellipsePtr;

}

Similar	to	the	preceding	rectangle	case,	isClick	checks	whether	the	user	grabs	the
ellipse	by	one	of	its	four	points.	However,	in	the	ellipse	case,	we	do	not	check
the	corners	of	the	rectangle.	Instead,	we	check	the	left,	top,	right,	and	bottom
position	of	the	ellipse.	We	create	a	small	square	for	each	of	those	positions	and
check	whether	the	user	clicks	on	them.	If	they	do,	we	set	the	m_ellipseMode	field	to
an	appropriate	value	and	return	true:	bool	EllipseX::isClick(QPoint	mousePoint)
{

QPoint	leftPoint(m_topLeft.x(),	(m_topLeft.y()	+
m_bottomRight.y())	/	2);	QRect
leftRect(makeRect(leftPoint,	Tolerance));

if	(leftRect.contains(mousePoint))	{

m_ellipseMode	=	LeftPoint;	return	true;

}

	

QPoint	topPoint((m_topLeft.x()	+	m_bottomRight.x())	/
2,	m_topLeft.y());

QRect	topRect(makeRect(topPoint,	Tolerance));

if	(topRect.contains(mousePoint))	{

m_ellipseMode	=	TopPoint;

return	true;

}

	

QPoint	rightPoint(m_bottomRight.x(),	(m_topLeft.y()	+
m_bottomRight.y())	/	2);	QRect
rightRect(makeRect(rightPoint,	Tolerance));

if	(rightRect.contains(mousePoint))	{

m_ellipseMode	=	RightPoint;	return	true;

}

	

QPoint	bottomPoint((m_topLeft.x()	+
m_bottomRight.x())	/	2,	m_bottomRight.y());	QRect
bottomRect(makeRect(bottomPoint,	Tolerance));

if	(bottomRect.contains(mousePoint))	{

m_ellipseMode	=	BottomPoint;	return	true;

}

If	the	user	does	not	click	on	any	of	the	four	positions,	we	check	whether	they
click	on	the	ellipse	itself.	If	it	is	filled,	we	use	the	Qt	QRegion	class	to	create	an
elliptic	region	and	we	check	whether	the	mouse	point	is	located	inside	the
region:	QRect	normalRect(m_topLeft,	m_bottomRight);
normalRect.normalized();

	

if	(filled())	{

QRegion	normalEllipse(normalRect,	QRegion::Ellipse);

if	(normalEllipse.contains(mousePoint))	{

m_ellipseMode	=	MoveEllipse;	return	true;

}

}

If	the	ellipse	is	unfilled,	we	create	slightly	larger	and	smaller	elliptic	regions	and
then	check	whether	the	mouse	point	is	located	inside	the	larger	region,	and	also
inside	the	smaller	one:	else	{

QRect	largeRect(normalRect),	smallRect(normalRect);
largeRect	+=	Tolerance;

smallRect	-=	Tolerance;

	

QRegion	largeEllipse(largeRect,	QRegion::Ellipse),
smallEllipse(smallRect,	QRegion::Ellipse);

if	(largeEllipse.contains(mousePoint)	&&
!smallEllipse.contains(mousePoint))	{

m_ellipseMode	=	MoveEllipse;	return	true;

}

}

Finally,	if	the	user	does	not	click	at	any	of	the	grabbing	positions	or	the	ellipse
itself,	we	return	false:	return	false;

}

The	modify	method	modifies	the	ellipse	in	accordance	with	the	settings	of
m_ellipseMode	in	onClick:	void	EllipseX::modify(QSize	distance)	{

switch	(m_ellipseMode)	{

case	CreateEllipse:

m_bottomRight	+=	distance;	break;

	

case	LeftPoint:

m_topLeft.setX(m_topLeft.x()	+	distance.width());	break;

	

case	RightPoint:

m_bottomRight.setX(m_bottomRight.x()	+
distance.width());	break;

	

case	TopPoint:

m_topLeft.setY(m_topLeft.y()	+	distance.height());
break;

	

case	BottomPoint:

m_bottomRight.setY(m_bottomRight.y()	+
distance.height());	break;

	

case	MoveEllipse:

move(distance);

break;

}

}

The	draw	method	draws	the	ellipse	with	a	solid	brush	if	it	is	filled,	and	with	a
hollow	brush	if	it	is	unfilled:	void	EllipseX::draw(QPainter&	painter)	const	{

painter.setPen(color());

	

if	(filled())	{

painter.setBrush(color());
painter.drawEllipse(QRect(m_topLeft,	m_bottomRight));
}

else	{

painter.setBrush(Qt::NoBrush);
painter.drawEllipse(QRect(m_topLeft,	m_bottomRight));
}

If	the	ellipse	is	marked,	the	four	squares	covering	the	top,	left,	right,	and	bottom
points	of	the	ellipse	are	also	drawn:	if	(marked())	{
QPoint	leftPoint(m_topLeft.x(),
(m_topLeft.y()	+	m_bottomRight.y())/2);
painter.fillRect(makeRect(leftPoint,	Tolerance),	Qt::black);

QPoint	topPoint((m_topLeft.x()	+	m_bottomRight.x())	/	2,
m_topLeft.y());
painter.fillRect(makeRect(topPoint,	Tolerance),	Qt::black);

QPoint	rightPoint(m_bottomRight.x(),
(m_topLeft.y()	+	m_bottomRight.y())	/	2);
painter.fillRect(makeRect(rightPoint,	Tolerance),	Qt::black);

QPoint	bottomPoint((m_topLeft.x()	+	m_bottomRight.x())	/	2,
m_bottomRight.y());
painter.fillRect(makeRect(bottomPoint,	Tolerance),	Qt::black);
}
}

	

	

The	DrawingWindow	class

	

The	DrawingWindow	class	is	similar	to	the	version	of	the	previous	chapter.	It
overrides	the	closeEvent	method.

DrawingWindow.h:

#ifndef	DRAWINGWINDOW_H	

				#define	DRAWINGWINDOW_H	

	

				#include	<QMainWindow>	

				#include	<QActionGroup>	

	

				#include	"..\MainWindow\MainWindow.h"	

				#include	"DrawingWidget.h"	

	

				class	DrawingWindow	:	public	MainWindow	{	

						Q_OBJECT	

	

						public:	

						DrawingWindow(QWidget	*parentWidget	=	nullptr);	~DrawingWindow();	

	

						public:	

						void	closeEvent(QCloseEvent	*eventPtr)	{	m_drawingWidgetPtr-

>closeEvent(eventPtr);	}	

	

						private:	

							DrawingWidget*	m_drawingWidgetPtr;	QActionGroup*	m_figureGroupPtr;	};	

	

				#endif	//	DRAWINGWINDOW_H	

DrawingWindow.cpp:

#include	"..\MainWindow\DocumentWidget.h"	

				#include	"DrawingWindow.h"	

The	constructor	initializes	the	window	size	to	1000	x	500	pixels,	puts	the
drawing	widget	in	the	middle	of	the	window,	adds	the	standard	File	and	Edit
menus,	and	adds	the	application-specific	Format	and	Figure	menus:
DrawingWindow::DrawingWindow(QWidget	*parentWidget	/*=	nullptr*/)
:MainWindow(parentWidget)	{
resize(1000,	500);

m_drawingWidgetPtr	=	new	DrawingWidget(this);
setCentralWidget(m_drawingWidgetPtr);
addFileMenu();

addEditMenu();

The	Format	menu	holds	the	Color,	Fill,	and	Modify	items	as	well	as	the	Figure
submenu:	{	QMenu*	formatMenuPtr	=	menuBar()->addMenu(tr("F&ormat"));
connect(formatMenuPtr,	SIGNAL(aboutToShow()),	this,
SLOT(onMenuShow()));

addAction(formatMenuPtr,	tr("&Color"),
SLOT(onColor()),	QKeySequence(Qt::ALT	+
Qt::Key_C),	QString(),	nullptr,	tr("Figure	Color"));

addAction(formatMenuPtr,	tr("&Fill"),	SLOT(onFill()),
QKeySequence(Qt::CTRL	+	Qt::Key_F),	QString(),
nullptr,	tr("Figure	Fill"),	LISTENER(isFillEnabled));

The	user	selects	the	Modify	item	when	they	want	to	mark	or	modify	existing
figures	instead	of	adding	new	figures:	m_figureGroupPtr	=	new
QActionGroup(this);	addAction(formatMenuPtr,	tr("&Modify"),
SLOT(onModify()),

QKeySequence(Qt::CTRL	+	Qt::Key_M),	QString(),
nullptr,	tr("Modify	Figure"),	nullptr,
LISTENER(isModifyChecked),	m_figureGroupPtr);

The	Figure	menu	is	a	submenu	holding	the	Line,	Rectangle,	and	Ellipse	items.	It
becomes	a	submenu	when	we	add	it	to	the	Format	menu:	{	QMenu*
figureMenuPtr	=

formatMenuPtr->addMenu(tr("&Figure"));
connect(figureMenuPtr,	SIGNAL(aboutToShow()),	this,
SLOT(onMenuShow()));

addAction(figureMenuPtr,	tr("&Line"),	SLOT(onLine()),

QKeySequence(Qt::CTRL	+	Qt::Key_L),	QString(),
nullptr,	tr("Line	Figure"),	nullptr,
LISTENER(isLineChecked),	m_figureGroupPtr);

addAction(figureMenuPtr,	tr("&Rectangle"),
SLOT(onRectangle()),	QKeySequence(Qt::CTRL	+
Qt::Key_R),	QString(),	nullptr,	tr("Rectangle	Figure"),
nullptr,	LISTENER(isRectangleChecked),
m_figureGroupPtr);

addAction(figureMenuPtr,	tr("&Ellipse"),
SLOT(onEllipse()),	QKeySequence(Qt::CTRL	+
Qt::Key_E),	QString(),	nullptr,	tr("Ellipse	Figure"),
nullptr,	LISTENER(isEllipseChecked),
m_figureGroupPtr);	}

}

}

	

DrawingWindow::~DrawingWindow()	{

delete	m_figureGroupPtr;

}

	

	

The	DrawingWidget	class
The	DrawingWidget	class	is	the	main	class	of	the	application.	It	catches	the	mouse
and	paint	events.	It	also	catches	the	menu	item	selections	of	the	File,	Edit,	and
Figure	menus.

DrawingWidget.h:

#ifndef	DRAWINGWIDGET_H	

				#define	DRAWINGWIDGET_H	

	

				#include	"..\MainWindow\MainWindow.h"	

				#include	"..\MainWindow\DocumentWidget.h"	

				#include	"Figure.h"	

	

				class	DrawingWidget	:	public	DocumentWidget	{	

						Q_OBJECT	

	

						public:	

						DrawingWidget(QWidget*	parentWidget);	

						~DrawingWidget();	

		

						public:	

						void	mousePressEvent(QMouseEvent	*eventPtr);	

						void	mouseMoveEvent(QMouseEvent	*eventPtr);	

						void	mouseReleaseEvent(QMouseEvent	*eventPtr);	

						void	mouseDoubleClickEvent(QMouseEvent	*eventPtr);	

						void	paintEvent(QPaintEvent	*eventPtr);	

	

						private:	

						void	newDocument(void);	

						bool	writeFile(const	QString&	filePath);	

						bool	readFile(const	QString&	filePath);	

						Figure*	createFigure(FigureId	figureId);	

Unlike	the	version	of	Chapter	5,	Qt	Graphical	Applications,	this	version	overrides
the	cut	and	copy	event	methods:

public	slots:	

							bool	isCopyEnabled();	

							void	onCopy(void);	

							bool	isPasteEnabled();	

							void	onPaste(void);	

							void	onDelete(void);	

							void	onColor(void);	

	

							DEFINE_LISTENER(DrawingWidget,	isFillEnabled);	

							void	onFill(void);	

			

							DEFINE_LISTENER(DrawingWidget,	isModifyChecked);	

							void	onModify(void);	

	

							DEFINE_LISTENER(DrawingWidget,	isLineChecked);	

							void	onLine(void);	

	

							DEFINE_LISTENER(DrawingWidget,	isRectangleChecked);	

							void	onRectangle(void);	

	

							DEFINE_LISTENER(DrawingWidget,	isEllipseChecked);	

							void	onEllipse(void);	

The	m_applicationMode	field	holds	the	values	Idle,	ModifySingle,	or	ModifyRectangle.	The
Idle	mode	is	active	when	the	user	is	not	pressing	the	mouse.	The	ModifySingle
mode	becomes	active	when	the	user	grabs	a	figure	and	modifies	or	moves	it
(depending	on	which	part	of	the	figure	the	user	grabs).	Finally,	the	ModifyRectangle
mode	becomes	active	when	the	user	clicks	at	the	window	without	hitting	a
figure.	In	that	case,	a	rectangle	is	shown,	and	every	figure	enclosed	by	the
rectangle	becomes	marked	when	the	user	releases	the	mouse	button.	The	user
can	delete	or	cut	and	paste	the	marked	figure,	or	change	their	color	or	the	filled
status.	When	the	user	releases	the	mouse	button,	the	Application	mode	again
becomes	Idle:

private:	

				enum	ApplicationMode	{Idle,	ModifySingle,	ModifyRectangle};	

				ApplicationMode	m_applicationMode	=	Idle;	

				void	setApplicationMode(ApplicationMode	mode);

The	m_actionMode	field	holds	the	values	Modify	or	Add.	In	Modify	mode,	when	the	user
clicks	with	the	mouse,	m_applicationMode	is	set	to	ModifySingle	or	ModifyRectangle,
depending	on	whether	they	hit	a	figure.	In	Add	mode,	a	new	figure	is	added,
regardless	of	whether	the	user	hits	a	figure.	The	kind	of	figure	to	be	added	is	set
by	m_addFigureId,	which	holds	the	values	LineId,	RectangleId,	or	EllipseId:

enum	ActionMode	{Modify,	Add};	

				ActionMode	m_actionMode	=	Add;	

				FigureId	m_addFigureId	=	LineId;	

The	color	of	the	next	figure	to	be	added	to	the	drawing	is	initialized	to	black,	and
the	filled	status	is	initialized	to	false	(unfilled).	In	both	cases,	it	can	later	be
changed	by	the	user:

QColor	m_nextColor	=	Qt::black;	

				bool	m_nextFilled	=	false;	

We	need	to	save	the	latest	mouse	point	in	order	to	calculate	distances	between
mouse	movements:

QPoint	m_mousePoint;	

Pointers	to	the	figures	of	the	drawing	are	stored	in	m_figurePtrList.	The	top-most
figure	is	stored	at	the	end	of	the	list.	When	the	user	cuts	or	copies	one	or	several
figures,	the	figures	are	copied	and	the	pointers	to	the	copies	are	stored	in
m_copyPtrList:

QList<Figure*>	m_figurePtrList,	m_copyPtrList;	

When	m_actionMode	holds	Modify	and	the	user	presses	the	mouse	button	without
hitting	a	figure,	a	rectangle	becomes	visible	in	the	window.	That	rectangle	is
stored	in	m_insideRectangle:

QRect	m_insideRectangle;	

			};	

	

			#endif	//	DRAWINGWIDGET_H	

DrawingWidget.cpp:

#include	<CAssert>	

				#include	"..\MainWindow\DocumentWidget.h"	

	

				#include	"DrawingWidget.h"	

				#include	"Line.h"	

				#include	"Rectangle.h"	

				#include	"Ellipse.h"	

The	constructor	calls	the	constructor	of	the	base	class	DocumentWidget	to	set	the
header	of	the	window	to	Drawing	Advanced,	and	to	set	the	file	suffix	of	the	drawing
files	to	drw:

DrawingWidget::DrawingWidget(QWidget*	parentWidget)	

				:DocumentWidget(tr("Drawing	Advanced"),	

																	tr("Drawing	files	(*.drw)"),	

																	parentWidget)	{	

							//	Empty.	

				}		

The	destructor	does	nothing,	it	has	been	included	for	the	sake	of	completeness
only:

DrawingWidget::~DrawingWidget()	{	

							//	Empty.	

				}	

The	setApplicationMode	method	sets	the	application	mode	and	calls	onMenuShow	in	the
main	window	for	the	toolbar	icons	to	be	correctly	enabled:

void	DrawingWidget::setApplicationMode(ApplicationMode	mode)	{	

						m_applicationMode	=	mode;	

						((MainWindow*)	parent())->onMenuShow();	

}	

The	newDocument	method	is	called	when	the	user	selects	the	New	menu	item.	We	start
by	deallocating	every	figure	in	the	figure	and	copy	pointer	lists,	and	they	clear
the	list	themselves:

void	DrawingWidget::newDocument(void)	{	

						for	(Figure*	figurePtr	:	m_figurePtrList)	{	

						delete	figurePtr;	

				}	

	

				for	(Figure*	copyPtr	:	m_copyPtrList)	{	

						delete	copyPtr;	

				}	

	

				m_figurePtrList.clear();	

				m_copyPtrList.clear();	

The	current	color	and	filled	status	are	set	to	black	and	false	(unfilled).	The	action
mode	is	set	to	Add	and	the	add	figure	identity	is	set	to	LineId,	which	means	that
when	the	user	presses	the	mouse	button	a	black	line	is	added	to	the	drawing:

m_nextColor	=	Qt::black;	

						m_nextFilled	=	false;	

						m_actionMode	=	Add;	

						m_addFigureId	=	LineId;	

				}	

The	writeFile	method	is	called	when	the	user	selects	the	Save	or	Save	As	menu
items:

bool	DrawingWidget::writeFile(const	QString&	filePath)	{	

						ofstream	outStream(filePath.toStdString());	

If	the	file	was	successfully	opened,	we	start	by	writing	the	next	color	and	filled
status:

if	(outStream)	{	

				writeColor(outStream,	m_nextColor);	

				outStream.write((char*)	&m_nextFilled,	sizeof	m_nextFilled);	

We	then	write	the	number	of	figures	in	the	drawing,	and	then	we	write	the
figures	themselves:

int	size	=	m_figurePtrList.size();	

						outStream.write((char*)	&size,	sizeof	size);	

For	each	figure,	first	we	write	its	identity	value,	we	then	write	the	figure	itself	by

calling	write	on	its	pointer.	Note	that	we	do	not	know	which	class	the	figure
pointer	points	at.	We	do	not	need	to	know	that,	since	write	is	a	pure	virtual
method	in	the	base	class	Figure:

for	(Figure*	figurePtr	:	m_figurePtrList)	{	

						FigureId	figureId	=	figurePtr->getId();	

						outStream.write((char*)	&figureId,	sizeof	figureId);	

						figurePtr->write(outStream);	

				}	

We	return	the	output	stream	converted	to	bool,	which	is	true	if	the	writing	was
successful:

return	((bool)	outStream);	

		}	

If	the	file	was	not	successfully	opened,	we	return	false:

return	false;	

		}	

The	readFile	method	is	called	when	the	user	selects	the	Open	menu	item.	We	read
the	parts	of	the	file	in	the	same	order	as	we	wrote	them	in	the	preceding	writeFile:

bool	DrawingWidget::readFile(const	QString&	filePath)	{	

						ifstream	inStream(filePath.toStdString());	

If	the	file	was	successfully	opened,	we	start	by	reading	the	next	color	and	filled
status:

if	(inStream)	{	

						readColor(inStream,	m_nextColor);	

						inStream.read((char*)	&m_nextFilled,	sizeof	m_nextFilled);

We	then	write	the	number	of	figures	in	the	drawing,	and	then	we	write	the
figures	themselves:

int	size;	

				inStream.read((char*)	&size,	sizeof	size);	

For	each	figure,	first	we	read	its	identity	value,	we	then	create	a	figure	of	the
class	indicated	by	the	identity	value	by	calling	createFigure.	Finally,	we	read	the
figure	itself	by	calling	write	on	its	pointer:

for	(int	count	=	0;	count	<	size;	++count)	{	

						FigureId	figureId	=	(FigureId)	0;	

						inStream.read((char*)	&figureId,	sizeof	figureId);	

						Figure*	figurePtr	=	createFigure(figureId);	

						figurePtr->read(inStream);	

						m_figurePtrList.push_back(figurePtr);	

				}	

We	return	the	input	stream	converted	to	bool,	which	is	true	if	the	reading	was
successful:

return	((bool)	inStream);	

			}	

If	the	file	was	not	successfully	opened,	we	return	false:

return	false;	

}	

The	createFigure	method	dynamically	creates	an	object	of	the	Line,	RectangleX,	or
EllipseX	class,	depending	on	the	value	of	the	figureId	parameter:

Figure*	DrawingWidget::createFigure(FigureId	figureId)	{	

						Figure*	figurePtr	=	nullptr;	

	

						switch	(figureId)	{	

								case	LineId:	

									figurePtr	=	new	Line();	

									break;	

	

									case	RectangleId:	

									figurePtr	=	new	RectangleX();	

									break;	

	

									case	EllipseId:	

									figurePtr	=	new	EllipseX();	

									break;	

						}	

	

						return	figurePtr;	

				}	

The	isCopyEnable	method	is	called	before	the	Edit	menu	becomes	visible	in	order
to	enable	the	Copy	item.	It	is	also	called	by	the	framework	in	order	to	enable	the
Copy	toolbar	icon.	It	returns	true	if	at	least	one	figure	is	marked,	and	by	then	it	is
ready	to	be	copied.	If	it	returns	true,	the	Copy	item	and	toolbar	icon	become
enabled:

bool	DrawingWidget::isCopyEnabled()	{	

						for	(Figure*	figurePtr	:	m_figurePtrList)	{	

								if	(figurePtr->marked())	{	

										return	true;	

								}	

						}	

	

						return	false;	

				}	

The	onCopy	method	is	called	when	the	user	selects	the	Copy	menu	item.	To	start
with,	it	deallocates	every	figure	in	the	copy	pointer	list	and	clears	the	list	itself:

void	DrawingWidget::onCopy(void)	{	

						for	(Figure*	copyPtr	:	m_copyPtrList)	{	

									delete	copyPtr;	

						}	

		

						m_copyPtrList.clear();	

Then,	we	iterate	through	the	figure	pointer	list	and	add	the	pointer	to	a	copy	of
each	marked	figure	to	the	copy	pointer	list.	We	call	clone	on	each	figure	pointer
to	provide	us	with	the	copy:

for	(Figure*	figurePtr	:	m_figurePtrList)	{	

					if	(figurePtr->marked())	{	

							m_copyPtrList.push_back(figurePtr->clone());	

					}	

			}	

}	

The	isPasteEnabled	method	is	called	before	the	Edit	menu	becomes	visible	to
enable	the	Paste	item.	It	is	also	called	by	the	framework	to	enable	the	paste
toolbar	icon.	If	the	copy	pointer	list	is	not	empty,	it	returns	true,	and	thereby
enables	the	Paste	item	and	image.	That	is,	it	returns	true	if	there	are	figures	ready
to	be	pasted:

bool	DrawingWidget::isPasteEnabled()	{	

						return	!m_copyPtrList.isEmpty();	

			}	

The	onPaste	method	is	called	when	the	user	selects	the	Paste	item	in	the	Edit
menu,	or	when	they	select	the	paste	image	in	the	edit	toolbar.	We	iterate	through
the	copy	pointer	list	and	add	a	copy	(which	we	obtain	by	calling	clone)	of	the
figure	to	the	figure	pointer	list,	after	we	have	moved	it	10	pixels	downwards	and
to	the	right:

void	DrawingWidget::onPaste(void)	{	

						for	(Figure*	copyPtr	:	m_copyPtrList)	{	

								Figure*	pastePtr	=	copyPtr->clone();	

								pastePtr->move(QSize(10,	10));	

								m_figurePtrList.push_back(pastePtr);	

						}	

Finally,	when	the	figures	have	been	added	to	the	list,	we	force	an	eventual	call	to
the	paintEvent	by	calling	update:

update();	

		}	

The	onDelete	method	is	called	every	time	the	user	selects	the	Delete	menu	item	or
toolbar	icon.	We	iterate	through	the	figure	pointer	list	and	remove	every	marked
figure:

void	DrawingWidget::onDelete(void)	{	

							for	(Figure*	figurePtr	:	m_figurePtrList)	{	

									if	(figurePtr->marked())	{	

									m_figurePtrList.removeOne(figurePtr);	

									delete	figurePtr;	

							}	

					}	

Also,	in	this	case,	we	force	an	eventual	call	to	paintEvent	by	calling	the	update
method,	after	the	figures	have	been	deleted:

update();	

		}	

The	onColor	method	is	called	every	time	the	user	selects	the	Color	item	in	the
Format	menu.	We	start	by	obtaining	the	new	color	by	calling	the	static	method
getColor	in	the	Qt	QColorDialog	class:

void	DrawingWidget::onColor(void)	{	

						QColor	newColor	=	QColorDialog::getColor(m_nextColor,	this);	

If	the	color	is	valid,	which	it	is	if	the	user	has	closed	the	dialog	by	pressing	the
Ok	button	rather	than	the	Cancel	button,	and	if	they	have	chosen	a	new	color,	we
set	the	next	color	to	the	new	color	and	set	the	modified	flag.	We	also	iterate
through	the	figure	pointer	list	and,	for	each	marked	figure,	set	the	color	of	the
figure:

if	(newColor.isValid()	&&	(m_nextColor	!=	newColor))	{	

						m_nextColor	=	newColor;	

						setModifiedFlag(true);	

	

						for	(Figure*	figurePtr	:	m_figurePtrList)	{	

								if	(figurePtr->marked())	{	

										figurePtr->color()	=	m_nextColor;	

If	at	least	one	figure	is	marked,	we	force	an	eventual	call	to	paintEvent	by	calling
update:

update();	

									}	

							}	

					}	

			}	

The	isFillEnabled	method	is	called	before	the	Fill	item	in	the	Format	menu
becomes	visible:

bool	DrawingWidget::isFillEnabled(void)	{	

						switch	(m_actionMode)	{	

In	Modify	mode,	we	iterate	through	the	figure	pointer	list.	If	at	least	one	rectangle
or	ellipse	is	marked,	we	return	true	and	the	item	becomes	enabled:

case	Modify:	

						for	(Figure*	figurePtr	:	m_figurePtrList)	{	

								if	(figurePtr->marked()	&&	

												((figurePtr->getId()	==	RectangleId)	||	

													(figurePtr->getId()	==	EllipseId)))	{	

										return	true;	

								}	

						}	

If	no	rectangle	or	ellipse	is	marked,	we	return	false	and	the	item	becomes
disabled:

return	false;	

In	the	Add	mode,	we	return	true	if	the	next	figure	to	be	added	by	the	user	is	a
rectangle	or	an	ellipse:

case	Add:	

						return	(m_addFigureId	==	RectangleId)	||	

													(m_addFigureId	==	EllipseId);	

				}	

We	are	not	supposed	to	reach	this	point.	The	assert	macro	call	is	for	debugging
purposes	only.	However,	we	still	must	return	a	value	at	the	end	of	the	method:

assert(false);	

				return	true;	

			}	

The	onFill	method	is	called	when	the	user	selects	the	Fill	item	in	the	Format
menu:

void	DrawingWidget::onFill(void)	{	

						switch	(m_actionMode)	{	

In	the	Modify	mode,	we	iterate	through	the	figure	pointer	list	and	invert	the	filled
status	of	all	marked	figures.	If	at	least	one	figure	changes,	we	force	an	eventual
call	to	paintEvent	by	calling	update:

case	Modify:	

						for	(Figure*	figurePtr	:	m_figurePtrList)	{	

								if	(figurePtr->marked())	{	

										figurePtr->filled()	=	!figurePtr->filled();	

										update();	

								}	

						}	

We	also	invert	the	filled	status	of	the	next	figure	to	be	added:

m_nextFilled	=	!m_nextFilled;	

						break;	

In	the	Add	mode,	we	invert	the	filled	status	of	the	next	figure	to	be	added	by	the
user:

case	Add:	

							m_nextFilled	=	!m_nextFilled;	

							break;	

				}	

		}	

The	isModifyChecked	method	is	called	before	the	Modify	item	in	the	Format	menu
becomes	visible.	In	Modify	mode,	it	returns	true	and	enables	the	item:

bool	DrawingWidget::isModifyChecked(void)	{	

						return	(m_actionMode	==	Modify);	

				}	

The	onModify	method	is	called	when	the	user	selects	the	Modify	item	in	the	Format
menu.	It	sets	the	action	mode	to	Modify:

void	DrawingWidget::onModify(void)	{	

						m_actionMode	=	Modify;	

				}	

The	isLineChecked	method	is	called	before	the	Line	item	in	the	Add	submenu
becomes	visible.	It	returns	true,	and	the	item	becomes	checked	(with	a	radio
button,	since	the	item	belongs	to	a	group)	in	case	of	add	action	mode,	and	the
next	figure	to	be	added	is	a	line:

bool	DrawingWidget::isLineChecked(void)	{	

						return	(m_actionMode	==	Add)	&&	(m_addFigureId	==	LineId);	

				}	

The	onLine	method	is	called	when	the	user	selects	the	Line	item	in	the	Add
submenu.	It	set	the	action	mode	to	Add	and	the	next	figure	to	be	added	by	the	user
to	a	line:

void	DrawingWidget::onLine(void)	{	

						m_actionMode	=	Add;	

						m_addFigureId	=	LineId;	

				}	

The	isRectangleChecked	method	is	called	before	the	Rectangle	item	in	the	Add
submenu	becomes	visible.	It	returns	true	in	case	of	Add	action	mode	and	if	the
next	figure	to	be	added	is	a	rectangle:

bool	DrawingWidget::isRectangleChecked(void)	{	

						return	(m_actionMode	==	Add)	&&	(m_addFigureId	==	RectangleId);	

				}	

The	onRectangle	method	is	called	when	the	user	selects	the	Rectangle	item.	It	sets
the	action	mode	to	Add	and	the	next	figure	to	be	added	by	the	user	to	a	rectangle:

void	DrawingWidget::onRectangle(void)	{	

						m_actionMode	=	Add;	

						m_addFigureId	=	RectangleId;	

				}	

The	isEllipseChecked	method	is	called	before	the	Ellipse	item	in	the	Add	submenu
becomes	visible.	It	returns	true	in	case	of	Add	action	mode	and	if	the	next	figure	to
be	added	is	an	ellipse:

bool	DrawingWidget::isEllipseEnabled(void)	{	

						return	!isEllipseChecked();	

				}	

The	onEllipse	method	is	called	when	the	user	selects	the	Ellipse	item.	It	sets	the
action	mode	to	Add	and	the	next	figure	to	be	added	by	the	user	to	an	ellipse:

void	DrawingWidget::onEllipse(void)	{	

						m_actionMode	=	Add;	

						m_addFigureId	=	EllipseId;	

				}		

The	mousePressEvent	method	is	called	when	the	user	presses	one	of	the	mouse
buttons.	We	store	the	mouse	point	in	m_mousePoint,	to	be	used	in	mouseMoveEvent	as
follows:

void	DrawingWidget::mousePressEvent(QMouseEvent*	eventPtr)	{	

							if	(eventPtr->buttons()	==	Qt::LeftButton)	{	

							m_mousePoint	=	eventPtr->pos();	

In	case	of	Modify	mode,	we	first	iterate	through	the	figure	pointer	list	and	unmark
every	figure:

switch	(m_actionMode)	{	

						case	Modify:	{	

										for	(Figure*	figurePtr	:	m_figurePtrList)	{	

											figurePtr->marked()	=	false;	

										}	

We	then	iterate	through	the	list	again,	to	find	if	the	user	has	hit	a	figure.	Since
the	top-most	figure	is	placed	at	the	end	of	the	list,	we	need	to	iterate	through	the
list	backward.	We	do	so	by	using	the	reverse_iterator	type	of	the	Qt	QList	class:

m_clickedFigurePtr	=	nullptr;	

					for	(QList<Figure*>::reverse_iterator	iterator	=	

									m_figurePtrList.rbegin();	

					iterator	!=	m_figurePtrList.rend();	++iterator)	{	

								Figure*	figurePtr	=	*iterator;	

If	we	found	out	(by	calling	isClick	on	the	figure)	that	a	figure	has	been	hit	by	the
user's	mouse	click,	we	set	the	application	mode	to	ModifySingle	and	mark	the
figure.	We	also	remove	it	from	the	list	and	add	it	to	the	end	of	the	list,	to	make	it
appear	top-most	in	the	drawing.	Finally,	we	break	the	loop	since	we	have	found
a	figure:

if	(figurePtr->isClick(m_mousePoint))	{	

						setApplicationMode(ModifySingle);	

						m_clickedFigurePtr	=	figurePtr;	

						figurePtr->marked()	=	true;	

						m_figurePtrList.removeOne(figurePtr);	

						m_figurePtrList.push_back(figurePtr);	

						break;	

				}	

		}	

If	we	have	not	found	a	figure,	we	set	the	application	mode	to	ModifyRectangle	and
initialize	the	top-most	and	bottom-right	corners	of	the	enclosing	rectangle	to	the
mouse	point:

if	(m_clickedFigurePtr	==	nullptr)	{	

						setApplicationMode(ModifyRectangle);	

						m_insideRectangle	=	QRect(m_mousePoint,	m_mousePoint);	

				}	

				}	

				break;	

In	case	of	Add	action	mode,	we	create	a	new	figure	by	calling	createFigure	with	the
identity	of	the	next	figure	to	be	added	by	the	user	as	a	parameter.	We	then	set	the
color,	filled	status	of	the	new	figure,	and	initialize	its	endpoints:

case	Add:	{	

										Figure*	newFigurePtr	=	createFigure(m_addFigureId);	

										newFigurePtr->color()	=	m_nextColor;	

										newFigurePtr->filled()	=	m_nextFilled;	

										newFigurePtr->initializePoints(m_mousePoint);	

When	the	new	figure	has	been	created	and	initialized,	we	add	it	at	the	end	of	the
figure	pointer	list	and	set	the	application	mode	to	ModifySingle,	since	the
mouseMoveEvent	method	will	continue	to	modify	the	last	figure	in	the	list,	just	as	if
the	user	had	hit	a	figure	in	the	Modify	mode.	We	also	set	the	modified	flag	since
we	have	added	a	figure	to	the	drawing:

m_figurePtrList.push_back(newFigurePtr);	

						setApplicationMode(ModifySingle);	

						setModifiedFlag(true);	

						}	

						break;	

				}	

Finally,	we	force	an	eventual	call	to	paintEvent	by	calling	update:

update();	

						}	

				}	

The	mouseMoveEvent	method	is	called	when	the	user	moves	the	mouse.	If	they	also
press	the	left	mouse	button,	we	save	the	mouse	point	to	future	calls	to
mouseMoveEvent	and	calculate	the	distance	since	the	last	call	to	mousePressEvent	or
mouseMoveEvent:

void	DrawingWidget::mouseMoveEvent(QMouseEvent*	eventPtr)	{	

						if	(eventPtr->buttons()	==	Qt::LeftButton)	{	

								QPoint	newMousePoint	=	eventPtr->pos();	

								QSize	distance(newMousePoint.x()	-	m_mousePoint.x(),	

																							newMousePoint.y()	-	m_mousePoint.y());	

								m_mousePoint	=	newMousePoint;	

In	the	Modify	mode,	we	modify	the	current	figure	(the	figure	placed	at	the	end	of
the	figure	pointer	list)	by	calling	modify.	Remember	that	the	figure	can	be	either
modified	or	moved,	depending	on	the	settings	in	the	call	to	isClick	in	onMousePress
previously.	We	also	set	the	modified	flag	since	the	figure	has	been	altered:

switch	(m_applicationMode)	{	

						case	ModifySingle:	

								m_figurePtrList.back()->modify(distance);	

								setModifiedFlag(true);	

								break;	

In	case	of	the	enclosing	rectangle,	we	just	update	its	bottom-right	corner.	Note
that	we	do	not	set	the	modified	flag	since	no	figure	has	yet	been	altered:

case	ModifyRectangle:	

						m_insideRectangle.setBottomRight(m_mousePoint);	

						break;	

				}	

Finally,	we	force	an	eventual	call	to	paintEvent	by	calling	update:

update();	

						}	

			}	

The	mouseReleaseEvent	method	is	called	when	the	user	releases	a	mouse	button.	If	it
is	the	left	mouse	button,	we	check	the	application	mode.	The	only	mode	we
actually	are	interested	in	is	the	enclosing	rectangle	mode:

void	DrawingWidget::mouseReleaseEvent(QMouseEvent*	eventPtr)	{	

							if	(eventPtr->buttons()	==	Qt::LeftButton)	{	

									switch	(m_applicationMode)	{	

											case	ModifyRectangle:	{	

													QList<Figure*>	insidePtrList;	

We	iterate	through	the	figure	pointer	list	and	call	isInside	on	each	figure.	Each
figure	that	is	completely	enclosed	by	the	rectangle	becomes	marked,	removed
from	the	list,	and	added	to	insidePtrList	to	be	later	added	at	the	end	of	the	figure
pointer	list:

for	(Figure*	figurePtr	:	m_figurePtrList)	{	

						if	(figurePtr->isInside(m_insideRectangle))	{	

								figurePtr->marked()	=	true;	

								m_figurePtrList.removeOne(figurePtr);	

								insidePtrList.push_back(figurePtr);	

						}	

				}	

Each	figure	which	is	completely	enclosed	by	the	rectangle	is	removed	from	the
figure	pointer	list:

for	(Figure*	figurePtr	:	insidePtrList)	{	

						m_figurePtrList.removeOne(figurePtr);	

				}	

Finally,	all	enclosed	figures	are	added	at	the	end	of	the	list	in	order	to	appear	top-
most	in	the	drawing:

m_figurePtrList.append(insidePtrList);	

				}	

				break;	

				}	

When	the	user	has	released	the	mouse	button,	the	application	mode	is	set	to	idle,

and	we	force	an	eventual	call	to	paintEvent	by	calling	update:

setApplicationMode(Idle);	

							update();	

						}	

				}	

The	mouseDoubleClick	method	is	called	when	the	user	double-clicks	one	of	the
buttons.	However,	mouseClickEvent	is	always	called	before	mouseDoubleClickEvent.	If
the	preceding	call	to	mouseClickEvent	has	made	m_clickedFigurePtr	point	at	the	clicked
figure,	we	call	doubleClick	on	that	figure.	This	may	cause	some	change	in	the
figure,	depending	on	which	kind	of	figure	it	is:

void	DrawingWidget::mouseDoubleClickEvent(QMouseEvent	

							*eventPtr)	{	

						if	((eventPtr->buttons()	==	Qt::LeftButton)	&&	

										(m_clickedFigurePtr	!=	nullptr))	{	

								m_clickedFigurePtr->doubleClick(eventPtr->pos());	

								update();	

						}	

				}	

Finally,	paintEvent	is	called	when	the	content	of	the	window	needs	to	be	repainted.
Before	the	call,	the	framework	clears	the	window:

void	DrawingWidget::paintEvent(QPaintEvent*	/*	

							eventPtr	*/)	{	

					QPainter	painter(this);	

					painter.setRenderHint(QPainter::Antialiasing);	

					painter.setRenderHint(QPainter::TextAntialiasing);	

We	iterate	through	the	figure	pointer	list	and	draw	every	figure.	The	last	figure	in
the	list	is	placed	at	the	end	of	the	list,	to	appear	at	the	top	of	the	drawing:

for	(Figure*	figurePtr	:	m_figurePtrList)	{	

							figurePtr->draw(painter);	

					}	

In	case	of	enclosing	rectangle	mode,	we	draw	a	hollow	rectangle	with	a	light-
gray	border:

if	(m_applicationMode	==	ModifyRectangle)	{	

						painter.setPen(Qt::lightGray);	

						painter.setBrush(Qt::NoBrush);	

						painter.drawRect(m_insideRectangle);	

				}	

		}	

The	main	function
The	main	function	is	similar	to	the	main	function	of	the	previous	applications—it
creates	an	application,	shows	the	drawing	window,	and	starts	the	execution	of
the	application.

Main.cpp:

#include	"DrawingWindow.h"	

				#include	<QApplication>	

	

				int	main(int	argc,	char	*argv[])	{	

						QApplication	application(argc,	argv);	

						DrawingWindow	drawingWindow;	

						drawingWindow.show();	

						return	application.exec();	

				}	

The	output	is	shown	in	the	following	screenshot:

Improving	the	editor
The	editor	of	this	chapter	is	a	more	advanced	version	of	the	editor	of	Chapter	5,	Qt
Graphical	Applications.	In	this	version,	it	is	possible	to	change	the	font	and
alignment	of	the	text,	to	mark	text,	and	to	cut	and	paste	text.

The	EditorWindow	class

	

The	EditorWindow	class	of	this	chapter	is	similar	to	the	class	of	Chapter	5,	Qt
Graphical	Applications.	It	catches	the	key	pressing	event	and	the	window
closing	event.

EditorWindow.h:

#ifndef	EDITORWINDOW_H	

				#define	EDITORWINDOW_H	

	

				#include	<QMainWindow>	

				#include	<QActionGroup>	

				#include	<QPair>	

				#include	<QMap>	

	

				#include	"..\MainWindow\MainWindow.h"	

				#include	"EditorWidget.h"	

	

				class	EditorWindow	:	public	MainWindow	{	

https://cdp.packtpub.com/c___by_example/wp-admin/post.php?post=72&action=edit#post_67

						Q_OBJECT	

	

						public:	

						EditorWindow(QWidget	*parentWidgetPtr	=	nullptr);	~EditorWindow();	

	

						protected:	

						void	keyPressEvent(QKeyEvent*	eventPtr);	void	closeEvent(QCloseEvent*	

eventPtr);	

						private:	

						EditorWidget*	m_editorWidgetPtr;	

						QActionGroup*	m_alignmentGroupPtr;	};	

	

				#endif	//	EDITORWINDOW_H	

EditorWindow.cpp:

#include	"EditorWindow.h"	

#include	<QtWidgets>	

The	constructor	initializes	the	editor	window.	It	sets	the	size	of	the	window	to
1000	x	500	pixels.	It	also	dynamically	creates	an	editor	widget	and	adds	the
standard	File	and	Edit	menus:	EditorWindow::EditorWindow(QWidget
parentWidgetPtr	/=	nullptr*/)
:MainWindow(parentWidgetPtr)	{

resize(1000,	500);

m_editorWidgetPtr	=	new	EditorWidget(this);
setCentralWidget(m_editorWidgetPtr);
addFileMenu();
addEditMenu();

The	Figure	menu	is	different,	compared	to	Chapter	5,	Qt	Graphical	Applications.
We	add	the	item	Font	and	the	submenu	Alignment,	to	which,	in	turn,	we	add	the
three	items:	left,	center,	and	right:	{	QMenu*	formatMenuPtr	=	menuBar()-
>addMenu(tr("F&ormat"));	connect(formatMenuPtr,	SIGNAL(aboutToShow()),
this,	SLOT(onMenuShow()));

addAction(formatMenuPtr,	tr("&Font"),
SLOT(onFont()),	0,	QString(),	nullptr,	QString(),
LISTENER(isFontEnabled));

	

{	QMenu*	alignmentMenuPtr	=

formatMenuPtr->addMenu(tr("&Alignment"));
connect(alignmentMenuPtr,	SIGNAL(aboutToShow()),
this,	SLOT(onMenuShow()));

We	also	add	a	toolbar	for	the	Alignment	menu:	QToolBar*	alignmentToolBarPtr	=
addToolBar(tr("Alignment"));	m_alignmentGroupPtr	=	new
QActionGroup(this);

addAction(alignmentMenuPtr,	tr("&Left"),
SLOT(onLeft()),	QKeySequence(Qt::ALT	+	Qt::Key_L),
tr("left"),	alignmentToolBarPtr,	tr("Left-aligned	text"),

nullptr,	LISTENER(isLeftChecked));
addAction(alignmentMenuPtr,	tr("&Center"),
SLOT(onCenter()),

QKeySequence(Qt::ALT	+	Qt::Key_C),	tr("center"),
alignmentToolBarPtr,	tr("Center-aligned	text"),	nullptr,
LISTENER(isCenterChecked));
addAction(alignmentMenuPtr,	tr("&Right"),
SLOT(onRight()),

QKeySequence(Qt::ALT	+	Qt::Key_R),	tr("right"),
alignmentToolBarPtr,	tr("Right-aligned	text"),	nullptr,
LISTENER(isRightChecked));	}

}

	

m_editorWidgetPtr->setModifiedFlag(false);	}

	

EditorWindow::~EditorWindow()	{

delete	m_alignmentGroupPtr;

}

The	key	pressing	event	and	the	window	closing	event	are	passed	on	to	the	editor
widget:	void	EditorWindow::keyPressEvent(QKeyEvent*	eventPtr)	{

m_editorWidgetPtr->keyPressEvent(eventPtr);	}

void	EditorWindow::closeEvent(QCloseEvent*	eventPtr)	{	

						m_editorWidgetPtr->closeEvent(eventPtr);	}	

	

	

The	EditorWidget	class
The	EditorWidget	class	is	similar	to	the	version	of	Chapter	5,	Qt	Graphical
Applications.	However,	methods	and	listeners	to	handle	the	font	and	alignment
have	been	added.

EditorWidget.h:

#ifndef	EDITORWIDGET_H	

				#define	EDITORWIDGET_H	

	

				#include	<QWidget>	

				#include	<QMap>	

				#include	<QMenu>	

				#include	<QToolBar>	

				#include	<QPair>	

				#include	"Caret.h"	

	

				#include	"..\MainWindow\Listener.h"	

				#include	"..\MainWindow\DocumentWidget.h"	

	

				class	EditorWidget	:	public	DocumentWidget	{	

						Q_OBJECT	

	

						public:	

						EditorWidget(QWidget*	parentWidgetPtr);	

						void	keyPressEvent(QKeyEvent*	eventPtr);	

	

						private:	

						void	keyEditPressEvent(QKeyEvent*	eventPtr);	

						void	keyMarkPressEvent(QKeyEvent*	eventPtr);	

The	mousePresseEvent,	mouseMoveEvent,	and	mouseReleaseEvent	are	called	when	the	user
presses	a	mouse	button,	moves	the	mouse,	and	releases	the	mouse	button:

public:	

						void	mousePressEvent(QMouseEvent*	eventPtr);	

						void	mouseMoveEvent(QMouseEvent*	eventPtr);	

						void	mouseReleaseEvent(QMouseEvent*	eventPtr);	

	

				private:	

						int	mouseToIndex(QPoint	point);	

	

				public:	

						void	paintEvent(QPaintEvent*	eventPtr);	

						void	resizeEvent(QResizeEvent*	eventPtr);	

The	newDocument	method	is	called	when	the	user	selects	the	New	menu	item,
writeFile	is	called	when	they	select	Save	or	Save	As,	and	readFile	is	called	when
they	select	the	Open	menu	item:

private:	

						void	newDocument(void);	

						bool	writeFile(const	QString&	filePath);	

						bool	readFile(const	QString&	filePath);	

	

				public	slots:	

						bool	isCopyEnabled();	

						void	onCopy(void);	

						bool	isPasteEnabled();	

						void	onPaste(void);	

						void	onDelete(void);	

	

						DEFINE_LISTENER(EditorWidget,	isFontEnabled);	

						void	onFont(void);	

The	isLeftChecked,	isCenterChecked,	and	isRightChecked	methods	are	called	before	the
Alignment	submenu	becomes	visible.	They	then	annotate	a	radio	button	to	the
selected	alignment:

DEFINE_LISTENER(EditorWidget,	isLeftChecked);	

				DEFINE_LISTENER(EditorWidget,	isCenterChecked);	

				DEFINE_LISTENER(EditorWidget,	isRightChecked);	

The	onLeft,	onCenter,	and	onRight	methods	are	called	when	the	user	selects	one	of
the	items	of	the	Alignment	submenu:

void	onLeft(void);	

						void	onCenter(void);	

						void	onRight(void);	

	

						private:	

							void	setCaret();	

							void	simulateMouseClick(int	x,	int	y);	

In	this	version	of	the	editor,	we	have	two	modes—edit	and	mark.	The	edit	mark
is	active	when	the	user	inputs	text	or	moves	the	caret	with	the	arrow	key,	while
the	mark	mode	is	active	when	the	user	has	marked	a	block	of	the	code	with	the
mouse.	The	caret	is	visible	in	edit	mode,	but	not	in	mark	mode:

private:	

						enum	Mode	{Edit,	Mark}	m_mode;	

The	text	can	be	aligned	in	the	left,	center,	and	right	direction:

enum	Alignment	{Left,	Center,	Right}	m_alignment;	

In	edit	mode,	m_editIndex	holds	the	index	to	place	the	next	character	to	be	input	by
the	user,	which	also	is	the	position	of	the	caret.	In	mark	mode,	m_firstIndex	and
m_lastIndex	hold	the	indexes	of	the	first	and	last	marked	character:

int	m_editIndex,	m_firstIndex,	m_lastIndex;	

The	m_caret	object	holds	the	caret	of	the	editor.	The	caret	is	visible	in	edit	mode,
but	not	in	mark	mode:

Caret	m_caret;	

The	m_editorText	field	holds	the	text	of	the	editor,	and	m_copyText	holds	the	text
which	is	cut	or	pasted	by	the	user:

QString	m_editorText,	m_copyText;	

The	text	of	the	editor	is	divided	into	lines;	the	index	of	the	first	and	last	character
of	each	line	is	stored	in	m_lineList:

QList<QPair<int,int>>	m_lineList;	

The	current	font	of	the	text	is	stored	in	m_textFont.	The	height	in	pixels	of	a
character	of	the	current	font	is	stored	in	m_fontHeight:

QFont	m_textFont;	

				int	m_fontHeight;	

The	mousePressEvent	and	mouseMoveEvent	methods	store	the	last	mouse	point	in	order
to	calculate	the	distance	between	mouse	events:

Qt::MouseButton	m_button;	

Similar	to	the	method	of	Chapter	5,	Qt	Graphical	Applications,	calculate	is	an
auxiliary	method	that	calculates	the	enclosing	rectangle	of	each	character	of	the
text.	However,	the	version	of	this	chapter	is	more	complicated	since	it	has	to	take
into	consideration	whether	the	text	is	left,	center,	or	right-aligned:

void	calculate();	

The	enclosing	rectangles	are	stored	in	m_rectList,	and	then	used	by	the	caret	and
paintEvent:

QList<QRect>	m_rectList;	

				};	

	

				#endif	//	EDITORWIDGET_H	

EditorWidget.cpp:

#include	"EditorWidget.h"	

				#include	<QtWidgets>	

				#include	<CAssert>	

				using	namespace	std;	

The	constructor	sets	the	window	header	to	Editor	Advanced	and	the	file	suffix	to
edi:

EditorWidget::EditorWidget(QWidget*	parentWidgetPtr)	

					:DocumentWidget(tr("Editor	Advanced"),	

									tr("Editor	files	(*.edi)"),	parentWidgetPtr),	

The	text	font	is	initialized	to	12	point	Times	New	Roman.	The	application	mode	is	set
to	edit,	the	index	of	the	next	character	to	be	input	by	the	user	is	set	to	zero,	and
the	text	is	left-	aligned	from	the	beginning:

m_textFont(tr("Times	New	Roman"),	12),	

								m_mode(Edit),	

								m_editIndex(0),	

								m_alignment(Left),	

								m_caret(this)	{	

The	rectangles	enclosing	the	characters	are	calculated	by	calculate,	the	caret	is
initialized	and	shown	since	the	application	holds	edit	mode	from	the	beginning:

calculate();	

					setCaret();	

					m_caret.show();	

			}	

The	newDocument	method	is	called	when	the	user	selects	the	New	menu	item.	We
start	by	setting	the	application	mode	to	edit	and	the	edit	index	to	zero.	The	text
font	is	set	to	12	point	Times	New	Roman.	The	text	of	the	editor	is	cleared,	the
rectangles	enclosing	the	characters	are	calculated	by	calculate,	and	the	caret	is
set:

void	EditorWidget::newDocument(void)	{	

						m_mode	=	Edit;	

						m_editIndex	=	0;	

						m_textFont	=	QFont(tr("Times	New	Roman"),	12);	

						m_editorText.clear();	

						calculate();	

						setCaret();	

				}	

The	writeFile	method	is	called	when	the	user	selects	the	Save	or	Save	As	menu
items.	The	file	format	is	quite	simple:	we	write	the	font	on	the	first	line,	and	then
the	text	of	the	editor	on	the	following	lines:

bool	EditorWidget::writeFile(const	QString&	filePath)	{	

						QFile	file(filePath);	

						if	(file.open(QIODevice::WriteOnly	|	QIODevice::Text))	{	

						QTextStream	outStream(&file);	

						outStream	<<	m_textFont.toString()	<<	endl	<<	m_editorText;	

We	use	the	Ok	field	of	the	input	stream	to	decide	if	the	writing	was	successful:

return	((bool)	outStream.Ok);	

			}	

If	we	could	not	open	the	file	for	writing,	we	return	false:

return	false;	

			}	

The	readFile	method	is	called	when	the	user	selects	the	Open	menu	items.	Similar
to	writeFile	previously,	we	read	the	first	line	and	initialize	the	text	font	with	the
text.	We	then	read	the	editor	text:

bool	EditorWidget::readFile(const	QString&	filePath)	{	

						QFile	file(filePath);	

	

						if	(file.open(QIODevice::ReadOnly	|	QIODevice::Text))	{	

								QTextStream	inStream(&file);	

								m_textFont.fromString(inStream.readLine());	

								m_editorText	=	inStream.readAll();	

When	the	text	is	read,	we	call	calculate	to	calculate	the	rectangles	enclosing	the
characters	of	the	text.	We	then	set	the	caret	and	return	true,	since	the	reading	was
successful:

calculate();	

						setCaret();	

We	use	the	Ok	field	of	the	input	stream	to	decide	if	the	reading	was	successful:

return	((bool)	inStream.Ok);	

				}	

If	we	could	not	open	the	file	for	reading,	we	return	false:

return	false;	

			}	

The	isCopyEnabled	method	is	called	before	the	Edit	menu	becomes	visible.	It	is	also
called	by	the	framework	to	decide	whether	the	copy	toolbar	icon	shall	be
enabled.	It	returns	true	(and	the	item	becomes	enabled)	if	the	application	holds

mark	mode,	which	means	that	the	user	has	marked	a	part	of	the	text,	which	can
be	copied:

bool	EditorWidget::isCopyEnabled()	{	

						return	(m_mode	==	Mark);	

				}	

The	onCopy	method	is	called	when	the	user	selects	the	Copy	item.	We	copy	the
marked	text	into	m_EditorText:

void	EditorWidget::onCopy(void)	{	

						int	minIndex	=	qMin(m_firstIndex,	m_lastIndex),	

						maxIndex	=	qMax(m_firstIndex,	m_lastIndex);	

	

						m_copyText	=	

								m_editorText.mid(minIndex,	maxIndex	-	minIndex	+	1);	

				}	

The	isPasteEnabled	method	is	also	called	before	the	Edit	menu	becomes	visible.	It
returns	true	(and	the	item	becomes	visible)	if	the	copy	text	is	not	empty.	That	is,
if	there	is	a	block	of	text	that	has	been	copied	and	is	ready	to	be	pasted:

bool	EditorWidget::isPasteEnabled()	{	

						return	!m_copyText.isEmpty();	

				}	

The	onPaste	method	is	called	when	the	user	selects	the	Paste	menu	item.	In	mark
mode,	we	call	onDelete,	which	causes	the	marked	text	to	be	deleted:

void	EditorWidget::onPaste(void)	{	

						if	(m_mode	==	Mark)	{	

									onDelete();	

						}	

We	then	insert	the	copied	text	into	the	editor	text.	We	also	update	m_editIndex,
since	the	edit	index	after	the	text	has	been	copied	shall	be	the	position	after	the
inserted	text:

m_editorText.insert(m_editIndex,	m_copyText);	

					m_editIndex	+=	m_copyText.size();	

Finally,	we	calculate	the	rectangles	enclosing	the	characters	of	the	text,	set	the
caret	to	the	new	index,	set	the	modified	flag	since	the	text	has	been	altered,	and
call	update	to	force	an	eventual	call	to	paintEvent	in	order	to	display	the	new	text:

calculate();	

					setCaret();	

					setModifiedFlag(true);	

					update();	

					}	

The	onDelete	method	is	called	when	the	user	selects	the	Delete	menu	item	or	the
Delete	toolbar	icon.	The	effect	is	similar	to	the	event	when	the	user	presses	the
Delete	key.	Therefore,	we	prepare	a	keypress	event	with	the	Delete	key,	which
we	use	as	a	parameter	in	the	call	to	keyPressEvent.

Note	that	there	is	no	isDeleteEnabled	method	because	the	user	can	always	use	the
Delete	item.	In	edit	mode,	the	next	character	is	deleted.	In	mark	mode,	the
marked	text	is	deleted:

void	EditorWidget::onDelete(void)	{	

						QKeyEvent	event(QEvent::KeyPress,	Qt::Key_Delete,	

																		Qt::NoModifier);	

						keyPressEvent(&event);	

				}	

isCopyEnabled	is	called	before	the	Format	menu	becomes	visible.	It	returns	true	in
edit	mode,	since	it	would	be	illogical	to	change	the	font	on	all	characters	when	a
subset	of	them	is	marked:

bool	EditorWidget::isFontEnabled()	{	

						return	(m_mode	==	Edit);	

				}	

The	onFont	method	is	called	when	the	user	selects	the	Font	menu	item.	We	let	the
user	select	the	new	font	with	the	Qt	QFontDialog	class:

void	EditorWidget::onFont(void)	{	

							bool	pressedOkButton;	

							QFont	newFont	=	

									QFontDialog::getFont(&pressedOkButton,	m_textFont,	this);	

If	the	user	closes	the	dialog	by	pressing	the	Ok	button,	we	set	the	font	of	the
editor	(m_textFont)	field	and	the	modified	flag:

if	(pressedOkButton)	{	

								m_textFont	=	newFont;	

								setModifiedFlag(true);	

We	calculate	the	newly	enclosed	rectangles	by	calling	calculate,	set	the	caret,	and
force	an	eventual	call	to	paintEvent	by	calling	update:

calculate();	

						m_caret.set(m_rectList[m_editIndex]);	

						update();	

					}	

			}	

The	isLeftChecked,	isCenterChecked,	and	isRightChecked	methods	are	called	before	the
alignment	submenu	becomes	visible.	They	return	true	to	the	current	alignment:

bool	EditorWidget::isLeftChecked(void)	{	

						return	(m_alignment	==	Left);	

				}	

	

				bool	EditorWidget::isCenterChecked(void)	{	

						return	(m_alignment	==	Center);	

				}	

	

				bool	EditorWidget::isRightChecked(void)	{	

						return	(m_alignment	==	Right);	

				}	

The	onLeft,	onCenter,	and	onRight	methods	are	called	when	the	user	selects	the	Left,
Center,	and	Right	menu	item.	They	set	the	alignment	and	the	modified	flag.

They	also	calculate	the	new	enclosing	rectangles,	set	the	caret,	and	force	an
eventual	call	to	paintEvent	by	calling	update:

void	EditorWidget::onLeft(void)	{	

						m_alignment	=	Left;	

						setModifiedFlag(true);	

						calculate();	

						setCaret();	

						update();	

				}	

	

				void	EditorWidget::onCenter(void)	{	

						m_alignment	=	Center;	

						setModifiedFlag(true);	

						calculate();	

						setCaret();	

						update();	

				}	

	

				void	EditorWidget::onRight(void)	{	

						m_alignment	=	Right;	

						setModifiedFlag(true);	

						calculate();	

						setCaret();	

						update();	

				}	

The	mousePressEvent	method	is	called	when	the	user	presses	one	of	the	mouse
buttons.	We	call	mouseToIndex	to	find	the	character	index	the	user	clicked	on.	For
the	time	being,	both	the	first	and	last	mark	index	is	set	to	the	mouse	index.	The
last	index	may	later	be	changed	by	a	call	to	mouseMoveEvent	in	the	following
snippet.	Finally,	the	mode	is	set	to	mark,	and	the	caret	is	hidden:

void	EditorWidget::mousePressEvent(QMouseEvent*	eventPtr)	{	

						if	(eventPtr->buttons()	==	Qt::LeftButton)	{	

									m_firstIndex	=	m_lastIndex	=	mouseToIndex(eventPtr->pos());	

									m_mode	=	Mark;	

									m_caret.hide();	

							}	

				}	

The	mouseMoveEvent	method	is	called	when	the	user	moves	the	mouse.	We	set	the
last	mark	index	to	the	mouse	index	and	force	an	eventual	call	to	paintEvent	by
calling	update:

void	EditorWidget::mouseMoveEvent(QMouseEvent*	eventPtr)	{	

						if	(eventPtr->buttons()	==	Qt::LeftButton)	{	

									m_lastIndex	=	mouseToIndex(eventPtr->pos());	

									update();	

						}	

				}	

The	mouseReleaseEvent	method	is	called	when	the	user	releases	the	mouse	button.	If
the	user	has	moved	the	mouse	to	the	original	start	position	of	the	mouse
movement,	there	is	nothing	to	mark	and	we	set	the	application	in	edit	mode.	In
that	case,	we	set	the	edit	index	to	the	first	mark	index,	and	set	and	show	the	caret
(since	it	shall	be	visible	in	edit	mode).	Finally,	we	force	an	eventual	call	to
paintEvent	by	calling	update:

void	EditorWidget::mouseReleaseEvent(QMouseEvent*	eventPtr)	{	

						if	(eventPtr->buttons()	==	Qt::LeftButton)	{	

								if	(m_firstIndex	==	m_lastIndex)	{	

										m_mode	=	Edit;	

										m_editIndex	=	m_firstIndex;	

										setCaret();	

										m_caret.show();	

										update();	

								}	

						}	

				}	

keyPressEvent	is	called	when	the	user	presses	a	key	on	the	keyboard.	Depending	on
the	application	mode	(edit	or	mark),	we	call	keyEditPressEvent	or	the	following
keyMarkPressEvent	to	further	process	the	key	event:

void	EditorWidget::keyPressEvent(QKeyEvent*	eventPtr)	{	

							switch	(m_mode)	{	

									case	Edit:	

									keyEditPressEvent(eventPtr);	

									break;	

	

									case	Mark:	

									keyMarkPressEvent(eventPtr);	

									break;	

							}	

					}

keyEditPressEvent	handles	the	key	press	in	edit	mode.	First,	we	check	if	the	key	is
an	arrow	key,	page	up	or	down,	Delete,	Backspace,	or	return	key:

void	EditorWidget::keyEditPressEvent(QKeyEvent*	eventPtr)	{	

						switch	(eventPtr->key())	{	

In	the	case	of	the	left-arrow	key,	we	move	the	edit	index	one	step	backward,
unless	it	is	already	at	the	beginning	of	the	text:

case	Qt::Key_Left:	

							if	(m_editIndex	>	0)	{	

										--m_editIndex;	

							}	

							break;	

In	the	case	of	the	right-arrow	key,	we	mode	the	edit	index	one	step	forward,
unless	it	is	already	at	the	end	of	the	text:

case	Qt::Key_Right:	

						if	(m_editIndex	<	m_editorText.size())	{	

								++m_editIndex;	

						}	

						break;	

In	the	case	of	the	up-arrow	key,	we	calculate	the	appropriate	x	and	y	position	for
the	character	on	the	previous	line,	unless	it	is	already	on	top	of	the	text.	We	then
call	simulateMouseClick,	which	has	the	same	effect	as	if	the	user	has	clicked	on	the
character	above	the	line:

case	Qt::Key_Up:	{	

							QRect	charRect	=	m_rectList[m_editIndex];	

	

							if	(charRect.top()	>	0)	{	

									int	x	=	charRect.left()	+	(charRect.width()	/	2),	

													y	=	charRect.top()	-	1;	

									simulateMouseClick(x,	y);	

							}	

					}	

					break;	

In	the	same	way,	in	the	case	of	the	down-arrow	key,	we	move	the	edit	index	one
line	downwards	unless	it	is	already	at	the	bottom	of	the	text.

We	calculate	the	appropriate	x	and	y	position	for	the	character	on	the	line	below
and	call	simulateMouseClick,	which	has	the	same	effect	as	if	the	user	has	clicked	at
the	point:

case	Qt::Key_Down:	{	

							QRect	charRect	=	m_rectList[m_editIndex];	

							int	x	=	charRect.left()	+	(charRect.width()	/	2),	

											y	=	charRect.bottom()	+	1;	

							simulateMouseClick(x,	y);	

					}	

					break;	

In	the	case	of	the	Delete	key,	we	remove	the	current	key,	unless	we	are	at	the	end
of	the	text.	That	is,	if	we	are	one	step	beyond	the	last	character:

case	Qt::Key_Delete:	

						if	(m_editIndex	<	m_editorText.size())	{	

								m_editorText.remove(m_editIndex,	1);	

								setModifiedFlag(true);	

						}	

						break;	

In	the	case	of	the	backspace	key,	we	move	the	edit	index	one	step	backward,
unless	it	already	is	at	the	beginning	of	the	text,	and	call	onDelete.	In	this	way,	we
remove	the	previous	character	and	move	the	edit	index	one	step	backward:

case	Qt::Key_Backspace:	

					if	(m_editIndex	>	0)	{	

							--m_editIndex;	

							onDelete();	

					}	

					break;	

In	the	case	of	the	return	key,	we	simply	insert	the	new	line	character	to	the	text:

case	Qt::Key_Return:	

						m_editorText.insert(m_editIndex++,	'n');	

						setModifiedFlag(true);	

						break;	

If	the	key	is	not	a	special	key,	we	check	whether	it	is	a	regular	character	by
calling	text	on	the	key	event	pointer.	If	the	text	is	not	empty,	add	its	first
character	to	the	text:

default:	{	

								QString	text	=	eventPtr->text();	

	

								if	(!text.isEmpty())	{	

										m_editorText.insert(m_editIndex++,	text[0]);	

										setModifiedFlag(true);	

								}	

					}	

					break;	

				}	

Finally,	we	calculate	the	enclosing	rectangles,	set	the	caret,	and	force	an	eventual
call	to	paintEvent	by	calling	update:

calculate();	

				setCaret();	

				update();	

		}	

keyMarkPressEvent	is	called	when	the	user	presses	a	key	in	mark	mode:

void	EditorWidget::keyMarkPressEvent(QKeyEvent*	eventPtr)	{	

						switch	(eventPtr->key())	{	

In	case	of	the	left-arrow	key,	we	set	the	application	to	edit	mode	and	the	edit
index	to	the	minimum	of	the	first	and	last	marked	index.	However,	if	the
minimum	index	is	located	at	the	beginning	of	the	text,	we	do	nothing:

case	Qt::Key_Left:	{	

								int	minIndex	=	qMin(m_firstIndex,	m_lastIndex);	

	

								if	(minIndex	>	0)	{	

										m_mode	=	Edit;	

										m_caret.show();	

										m_editIndex	=	minIndex;	

								}	

						}	

						break;	

On	the	other	hand,	in	the	case	of	the	right-arrow	key,	we	set	the	application	to
edit	mode	and	the	edit	index	to	the	maximum	of	the	first	and	last	marked	index.
However,	if	the	maximum	index	is	located	at	the	end	of	the	text,	we	do	nothing:

case	Qt::Key_Right:	{	

						int	maxIndex	=	qMax(m_firstIndex,	m_lastIndex);	

	

						if	(maxIndex	<	m_editorText.size())	{	

								m_mode	=	Edit;	

								m_caret.show();	

								m_editIndex	=	maxIndex;

}	

				}	

				break;	

In	case	of	the	up	and	down	arrows,	we	simulate	a	mouse	click	one	line	above	or
below	the	current	line,	just	as	in	the	previous	edit	case:

case	Qt::Key_Up:	{	

							QRect	charRect	=	m_rectList[m_editIndex];	

	

							if	(charRect.top()	>	0)	{	

									int	x	=	charRect.left()	+	(charRect.width()	/	2),	

													y	=	charRect.top()	-	1;	

									simulateMouseClick(x,	y);	

							}	

					}	

					break;	

	

					case	Qt::Key_Down:	{	

								QRect	charRect	=	m_rectList[m_editIndex];	

								int	x	=	charRect.left()	+	(charRect.width()	/	2),	

												y	=	charRect.bottom()	+	1;	

								simulateMouseClick(x,	y);	

						}	

						break;	

In	the	mark	mode,	the	delete	and	backspace	keys	perform	the	same	task—they
delete	the	marked	text:

case	Qt::Key_Delete:	

				case	Qt::Key_Backspace:	{	

								int	minIndex	=	qMin(m_firstIndex,	m_lastIndex),	

												maxIndex	=	qMax(m_firstIndex,	m_lastIndex);	

We	remove	the	marked	text	from	the	edit	text,	set	the	modified	flag,	set	the
application	to	edit	mode,	set	the	edit	index	to	the	minimum	of	the	first	and	last
marked	index,	and	show	the	caret:

m_editorText.remove(minIndex,	maxIndex	-	minIndex);	

								setModifiedFlag(true);	

								m_mode	=	Edit;	

								m_editIndex	=	minIndex;	

								m_caret.show();	

						}	

						break;	

The	return	key	case	is	similar	to	the	previous	edit	mode	case,	with	the	difference
that	we	first	delete	the	marked	text.	We	then	add	a	new	line	to	the	editor	text:

case	Qt::Key_Return:	

							onDelete();	

							m_editorText.insert(m_editIndex++,	'n');	

							setModifiedFlag(true);	

							break;	

If	the	key	is	not	a	special	key,	we	check	if	it	is	a	regular	key	by	calling	text	on
the	key	event	pointer.	If	the	text	is	not	empty,	the	user	has	printed	a	regular	key,
and	we	insert	the	first	character	in	the	editor	text:

default:	{	

							QString	text	=	eventPtr->text();	

	

							if	(!text.isEmpty())	{	

									onDelete();	

									m_editorText.insert(m_editIndex++,	text[0]);	

									setModifiedFlag(true);	

							}	

				}	

				break;	

				}	

Finally,	we	calculate	the	new	rectangles	enclosing	the	characters,	set	the	caret,
and	force	an	eventual	call	to	paintEvent	by	calling	update:

calculate();	

					setCaret();	

					update();	

				}	

The	simulateMouseClick	method	is	called	when	the	user	moves	the	caret	up	or	down.
It	simulates	a	mouse	click	by	calling	mousePressEvent	and	mouseReleaseEvent,	with
suitably	prepared	event	objects:

void	EditorWidget::simulateMouseClick(int	x,	int	y)	{	

						QMouseEvent	pressEvent(QEvent::MouseButtonPress,	QPointF(x,	y),	

										Qt::LeftButton,	Qt::NoButton,	Qt::NoModifier);	

						mousePressEvent(&pressEvent);	

						QMouseEvent	releaseEvent(QEvent::MouseButtonRelease,	

																					QPointF(x,	y),	Qt::LeftButton,	

																					Qt::NoButton,	Qt::NoModifier);	

						mousePressEvent(&releaseEvent);	

				}	

The	setCaret	method	sets	the	caret	to	the	appropriate	size	and	position	in	edit
mode.	Firstly,	we	use	m_editIndex	to	find	the	rectangle	of	the	correct	character.	We
then	create	a	new	rectangle	that	is	of	only	one-pixel	width,	in	order	for	the	caret
to	appear	as	a	thin	vertical	line:

void	EditorWidget::setCaret()	{	

						QRect	charRect	=	m_rectList[m_editIndex];	

						QRect	caretRect(charRect.left(),	charRect.top(),	

																		1,	charRect.height());	

						m_caret.set(caretRect);	

				}	

The	mouseToIndex	method	takes	a	mouse	point	and	returns	the	index	of	the
character	at	that	point.	Unlike	the	version	of	Chapter	5,	Qt	Graphical	Applications,
we	need	to	take	into	consideration	that	the	text	may	be	center	or	right-aligned:

int	EditorWidget::mouseToIndex(QPoint	point)	{	

							int	x	=	point.x(),	y	=	point.y();	

If	the	mouse	point	is	below	the	text	of	the	editor,	the	index	of	the	last	character	is
returned:

if	(y	>	(m_fontHeight	*	m_lineList.size()))	{	

						return	m_editorText.size();	

				}	

Otherwise,	we	start	by	finding	the	line	of	the	mouse	point,	and	obtain	the

indexes	of	the	first	and	last	character	on	the	line:

else	{	

						int	lineIndex	=	y	/	m_fontHeight;	

						QPair<int,int>	lineInfo	=	m_lineList[lineIndex];	

						int	firstIndex	=	lineInfo.first,	lastIndex	=	lineInfo.second;	

If	the	mouse	point	is	located	to	the	left	of	the	first	character	on	the	line	(which	it
may	be	if	the	text	is	center	or	right-aligned),	we	return	the	index	of	the	first
character	of	the	line:

if	(x	<	m_rectList[firstIndex].left())	{	

								return	firstIndex;	

					}	

If	the	mouse	point,	on	the	other	hand,	is	located	to	the	right	of	the	line,	we	return
the	index	of	the	character	next	to	the	last	character	of	the	line:

else	if	(x	>=	m_rectList[lastIndex].right())	{	

						return	(lastIndex	+	1);	

				}	

Otherwise,	we	iterate	through	the	character	on	the	line	and,	for	each	character,
we	check	whether	the	mouse	point	is	located	inside	the	character's	enclosing
rectangle:

else	{	

							for	(int	charIndex	=	firstIndex	+	1;	

											charIndex	<=	lastIndex;	++charIndex){	

											int	left	=	m_rectList[charIndex].left();	

If	the	mouse	point	is	located	inside	the	rectangle,	we	check	if	it	is	closest	to	the
left	or	right	border	of	the	rectangle.	If	it	is	closest	to	the	left	border,	we	return	the
index	of	the	character.	If	it	is	closest	to	the	right	border,	we	instead	return	the
index	of	the	next	character:

if	(x	<	left)	{	

										int	last	=	m_rectList[charIndex	-	1].left();	

										int	leftSize	=	x	-	last,	rightSize	=	left	-	x;	

										return	(leftSize	<	rightSize)	?	(charIndex	-	1)	

																																								:	charIndex;	

										}	

								}	

						}	

				}	

We	are	not	supposed	to	reach	this	point.	The	assert	macro	is	added	for	debugging
purposes	only:

assert(false);	

						return	0;	

			}	

The	resizeEvent	method	is	called	when	the	user	resizes	the	window.	We	calculate
the	rectangles	enclosing	the	characters,	since	the	width	of	the	window	may	have
changed,	which	may	cause	the	lines	to	hold	fewer	or	more	characters:

void	EditorWidget::resizeEvent(QResizeEvent*	eventPtr)	{	

						calculate();	

						DocumentWidget::resizeEvent(eventPtr);	

				}	

The	calculate	method	divides	the	text	into	lines,	and	calculates	the	rectangles
enclosing	every	character	of	the	text.	The	indexes	of	the	first	and	last	character
of	each	line	are	stored	in	m_lineList,	and	the	enclosing	rectangles	are	stored	in
m_rectList:

void	EditorWidget::calculate()	{	

						m_lineList.clear();	

						m_rectList.clear();	

We	use	the	Qt	QFontMetrics	class	to	obtain	the	height	of	a	character	of	the	editor
font.	The	height	is	stored	in	m_fontHeight.	The	width	method	gives	the	width	of	the
window	content,	in	pixels:

QFontMetrics	metrics(m_textFont);	

						m_fontHeight	=	metrics.height();	

						QList<int>	charWidthList,	lineWidthList;	

						int	windowWidth	=	width();	

We	start	by	iterating	through	the	editor	text	in	order	to	divide	the	text	into	lines:

{	int	firstIndex	=	0,	lineWidth	=	0;	

								for	(int	charIndex	=	0;	charIndex	<	m_editorText.size();	

											++charIndex)	{	

										QChar	c	=	m_editorText[charIndex];	

When	we	encounter	a	new	line,	we	add	the	first	and	last	index	of	the	current	line
to	m_lineList:

if	(c	==	'n')	{	

								charWidthList.push_back(1);	

								lineWidthList.push_back(lineWidth);	

								m_lineList.push_back	

																			(QPair<int,int>(firstIndex,	charIndex));	

								firstIndex	=	charIndex	+	1;	

								lineWidth	=	0;	

						}	

Otherwise,	we	call	the	width	method	of	the	Qt	QMetrics	object	to	obtain	the	width
of	the	character,	in	pixels:

else	{	

								int	charWidth	=	metrics.width(c);	

								charWidthList.push_back(charWidth);	

If	the	character	makes	the	width	of	the	line	exceed	the	width	of	the	window
content,	we	add	the	first	and	last	index	to	m_lineList	and	start	a	new	line.

However,	we	have	two	different	cases	to	consider.	If	the	current	character	is	the
first	character	of	the	line,	we	have	the	(rather	unlikely)	situation	that	the	width	of
that	character	exceeds	the	width	of	the	window	content.	In	that	case,	we	add	the
index	of	that	character	as	both	the	first	and	last	index	to	m_lineList.	The	first	index
of	the	next	line	is	the	character	next	to	that	character:

if	((lineWidth	+	charWidth)	>	windowWidth)	{	

							if	(firstIndex	==	charIndex)	{	

									lineWidthList.push_back(windowWidth);	

									m_lineList.push_back	

														(QPair<int,int>(firstIndex,	charIndex));	

									firstIndex	=	charIndex	+	1;	

							}	

If	the	current	character	is	not	the	first	character	of	the	line,	we	add	the	indexes	of
the	first	character	and	the	character	preceding	the	current	character	to	m_lineList.
The	index	of	the	next	line	becomes	the	index	of	the	current	character:

else	{	

										lineWidthList.push_back(lineWidth);	

										m_lineList.push_back(QPair<int,int>(firstIndex,	

														charIndex	-	1));	

										firstIndex	=	charIndex;	

							}	

							lineWidth	=	0;	

				}	

If	the	character	does	not	make	the	width	of	the	line	exceed	the	width	of	the
window	content,	we	simply	add	the	width	of	the	character	to	the	width	of	the
line:

else	{	

										lineWidth	+=	charWidth;	

									}	

				}	

		}	

Finally,	we	need	to	add	the	last	line	to	m_lineList:

m_lineList.push_back(QPair<int,int>(firstIndex,	

											m_editorText.size()	-	1));	

						lineWidthList.push_back(lineWidth);	

				}	

When	we	have	divided	the	text	into	lines,	we	continue	to	calculate	the	enclosing
rectangles	of	the	individual	characters.	We	start	by	setting	top	to	zero,	since	it
holds	the	top	position	of	the	line.	It	will	be	increased	by	the	line	height	for	each
line:

{	int	top	=	0,	left;	

								for	(int	lineIndex	=	0;	lineIndex	<	m_lineList.size();	

											++lineIndex)	{	

								QPair<int,int>	lineInfo	=	m_lineList[lineIndex];	

								int	lineWidth	=	lineWidthList[lineIndex];	

								int	firstIndex	=	lineInfo.first,	

											lastIndex	=	lineInfo.second;	

Depending	on	the	alignment	of	the	text,	we	need	to	decide	where	the	line	starts.
In	the	case	of	left	alignment,	we	set	the	left	position	of	the	line	to	zero:

switch	(m_alignment)	{	

								case	Left:	

										left	=	0;	

										break;	

In	case	of	center	alignment,	we	set	the	left	position	to	half	of	the	difference
between	the	width	of	the	window	content	and	the	line.	In	this	way,	the	line	will
appear	at	the	center	of	the	window:

case	Center:	

										left	=	(windowWidth	-	lineWidth)	/	2;	

										break;	

In	case	of	right	alignment,	we	set	the	left	position	to	the	difference	between	the
width	of	the	window	content	and	the	line.	In	this	way,	the	line	will	appear	to	the
right	in	the	window:

case	Right:	

										left	=	windowWidth	-	lineWidth;	

										break;	

							}	

Finally,	when	we	have	decided	the	starting	left	position	of	the	line	and	the	width
of	each	individual	character	of	the	text,	we	iterate	through	the	line	and	calculate
the	enclosing	rectangle	for	each	character:

for	(int	charIndex	=	firstIndex;	

											charIndex	<=	lastIndex;++charIndex){	

								int	charWidth	=	charWidthList[charIndex];	

								QRect	charRect(left,	top,	charWidth,	m_fontHeight);	

								m_rectList.push_back(charRect);	

								left	+=	charWidth;	

					}	

For	the	very	last	line	of	the	text,	we	add	a	rectangle	holding	the	position	beyond
the	last	character:

if	(lastIndex	==	(m_editorText.size()	-	1))	{	

								QRect	lastRect(left,	top,	1,	m_fontHeight);	

								m_rectList.push_back(lastRect);	

						}	

The	top	field	is	increased	by	the	height	of	the	line	for	each	new	line:

top	+=	m_fontHeight;	

								}	

						}	

				}	

The	paintEvent	method	is	called	by	the	framework	every	time	the	window	needs
to	be	repainted,	or	when	we	force	a	repainting	by	calling	update.	The	framework
clears	the	content	of	the	window	before	the	call	to	paintEvent:

First,	we	create	a	QPinter	object	that	we	then	use	to	write	on.	We	set	some
rendering	and	the	font	of	the	text:

void	EditorWidget::paintEvent(QPaintEvent*	/*	eventPtr	*/)	{	

							QPainter	painter(this);	

							painter.setRenderHint(QPainter::Antialiasing);	

							painter.setRenderHint(QPainter::TextAntialiasing);	

							painter.setFont(m_textFont);	

We	calculate	the	minimum	and	maximum	index	of	the	marked	text	(even	though
we	do	not	yet	know	if	the	application	holds	mark	mode):

int	minIndex	=	qMin(m_firstIndex,	m_lastIndex),	

							maxIndex	=	qMax(m_firstIndex,	m_lastIndex);	

We	iterate	through	the	text	of	the	editor.	We	write	every	character	except	a	new
line:

for	(int	index	=	0;	index	<	m_editorText.length();	++index)	{	

							QChar	c	=	m_editorText[index];	

If	the	character	is	marked,	we	write	it	with	white	text	on	a	black	background:

if	(c	!=	'n')	{	

						if	((m_mode	==	Mark)	&&	

										(index	>=	minIndex)	&&	(index	<	maxIndex))	{	

								painter.setPen(Qt::white);	

								painter.setBackground(Qt::black);	

						}	

If	the	character	is	not	marked,	we	write	it	with	black	text	on	a	white	background:

else	{	

								painter.setPen(Qt::black);	

								painter.setBrush(Qt::white);	

						}	

When	the	colors	of	the	text	and	background	have	been	set,	we	look	up	the
rectangle	enclosing	the	character	and	write	the	character	itself:

QRect	rect	=	m_rectList[index];	

						painter.drawText(rect,	c);	

				}	

		}	

Finally,	we	also	paint	the	caret:

m_caret.paint(&painter);	

				}	

The	main	function
The	main	function	is	similar	to	the	main	function	of	the	previous	applications:	it
creates	an	application,	shows	the	drawing	window,	and	starts	the	execution	of
the	application.

Main.cpp:

#include	"EditorWindow.h"	

#include	<QApplication>	

	

int	main(int	argc,	char	*argv[])	{	

		QApplication	application(argc,	argv);	

		EditorWindow	editorWindow;	

		editorWindow.show();	

		return	application.exec();	

}	

The	output	is	shown	in	the	following	screenshot:

Summary

	

In	this	chapter,	we	have	developed	more	advanced	versions	of	the	analog	clock,
the	drawing	program,	and	the	editor.	The	clock	shows	the	current	hour,	minute,
and	second.	The	drawing	program,	allows	the	user	to	draw	lines,	rectangles,	and
ellipses.	The	editor	allows	the	user	to	input	and	edit	text.	The	clock	face	has
digits	instead	of	lines.	In	the	drawing	program	we	can	mark,	modify,	and	cut	and
paste	figures,	and	in	the	editor,	we	can	change	font	and	alignment	and	mark	a
text	block.

In	Chapter	7,	The	Games,	we	will	start	developing	the	games	Othello	and	Nought
and	Crosses.

	

	

	

The	Games

	

In	Chapter	6,	Enhancing	the	QT	Graphical	Applications,	we	developed	an	analog
clock,	a	drawing	program,	and	an	editor	with	the	Qt	graphical	library.	In	this
chapter,	we	continue	by	developing	the	Othello	and	Noughts	and	Crosses	games
with	the	Qt	library.	You	will	find	a	description	of	these	games	after	this
introduction.	We	start	in	this	chapter	with	basic	versions,	where	two	players	play
against	each	other.	In	Chapter	8,	The	Computer	Plays,	we	improve	the	games	so
that	the	computer	plays	against	the	human.

Topics	we	will	cover	in	this	chapter	include:

Introduction	to	game	theory.	We	develop	a	game	grid	where	the	players
take	turns	to	add	their	marks	to	the	game	grid.
We	announce	the	winner.	In	Othello,	after	each	move,	we	calculate	how
many	of	the	opponent's	marks	can	be	changed.	When	every	position	of	the
game	grid	has	been	occupied,	we	declare	the	winner	or	a	draw.
In	Noughts	and	Crosses,	we	count	the	number	of	marks	in	a	row.	If	there
are	five	marks	in	a	row,	we	declare	the	winner.
We	continue	to	use	C++	features	such	as	classes,	fields,	and	methods.	We
also	continue	to	use	Qt	features	such	as	windows	and	widgets.

	

	

Othello
In	Othello,	the	game	grid	is	empty	at	the	beginning	of	the	game.	During	the
game,	two	players	take	turns	adding	marks,	colored	in	black	and	white,	to	the
game	grid.	Each	time	a	player	adds	a	mark,	we	look	at	the	other	marks	and	see	if
the	new	mark	causes	any	of	the	opponent’s	marks	to	be	enclosed.	In	that	case,
we	swap	the	color	of	the	opponent’s	enclosed	marks.

For	instance,	if	the	black	player	adds	a	black	mark	in	a	position	where	the	three
marks	to	the	left	are	white	and	the	fourth	mark	is	black,	the	three	white	marks
are	being	enclosed	by	the	two	black	marks,	and	they	are	swapped	to	black
marks.	When	every	position	on	the	game	grid	has	been	occupied	by	white	and
black	marks,	we	count	the	marks	and	the	player	with	the	most	marks	is	the
winner.	If	there	is	an	equal	number	of	black	and	white	marks,	it	is	a	draw.

Here's	what	our	game	should	look	like:

The	game	widget
First	of	all,	we	need	a	game	grid.	The	GameWidget	class	is	common	to	all	the
applications	of	this	chapter	and	of	Chapter	8,	The	Computer	Plays.	In	Chapter	5,	Qt
Graphical	Applications	and	Chapter	6,	Enhancing	the	QT	Graphical	Applications,
we	developed	the	DocumentWidget	class,	since	we	worked	with	document-based
applications.	In	this	chapter	and	Chapter	8,	The	Computer	Plays,	we	instead
develop	the	GameWidget	class.

The	DocumentWidget	class	of	the	two	previous	chapters	and	the	GameWidget	class	of
this	chapter	and	the	next	chapter	have	both	similarities	and	differences.	They	are
both	subclasses	of	the	Qt	class	QWidget,	and	they	are	both	intended	to	be
embedded	in	a	window.	However,	while	DocumentWidget	was	intended	to	hold	a
document,	GameWidget	is	intended	to	hold	a	game	grid.	It	draws	the	grid	and
catches	mouse	clicks	in	the	positions	of	the	grid.	GameWidget	is	an	abstract	class
that	lets	it	its	subclass	define	methods	that	are	called	when	the	user	clicks	the
mouse	or	when	a	mark	in	one	of	the	positions	of	the	game	grid	needs	to	be
repainted.

However,	we	reuse	the	MainWindow	class	from	the	previous	chapters	to	hold	the
main	window	of	the	application,	with	its	menu	bar.

GameWidget.h

#ifndef	GAMEWIDGET_H	

#define	GAMEWIDGET_H	

	

#include	<QPainter>	

#include	<QMouseEvent>	

#include	<QMessageBox>	

	

#include	"..\MainWindow\MainWindow.h"	

	

class	GameWidget	:	public	QWidget	{	

		Q_OBJECT	

The	constructor	initializes	the	number	of	rows	and	columns	of	the	game	grid:

public:	

						GameWidget(int	rows,	int	columns,	QWidget*	parentWidget);	

The	clearGrid	method	sets	every	position	in	the	game	grid	to	zero,	which	is
assumed	to	represent	an	empty	position.	Therefore,	every	class	that	inherits
GameWidget	shall	let	the	value	zero	represent	an	empty	position:

void	clearGrid();	

The	resizeEvent	method	is	called	when	the	user	changes	the	size	of	the	window.
Since	the	number	of	rows	and	columns	is	constant,	the	width	and	height	of	each
position	is	changed	in	accordance	with	the	new	size	of	the	window:

void	resizeEvent(QResizeEvent	*eventPtr);	

The	mousePressEvent	is	called	when	the	user	presses	one	of	the	mouse	buttons,
paintEvent	is	called	when	the	window	needs	to	be	repainted,	and	closeEvent	is
called	when	the	user	clicks	on	the	close	box	at	the	top-right	corner	of	the
window:

void	mousePressEvent(QMouseEvent	*eventPtr);	

						void	paintEvent(QPaintEvent	*eventPtr);	

						void	closeEvent(QCloseEvent	*eventPtr);	

The	mouseMark	and	drawMark	methods	are	pure	virtual	methods	intended	to	be
overridden	by	subclasses;	mouseMark	is	called	when	the	user	clicks	at	a	position	in
the	grid,	and	drawMark	is	called	when	a	position	needs	to	be	repainted.	They	are
pure	virtual	methods,	whereas	GameWidget	is	abstract,	which	means	that	it	is	only
possible	to	use	GameWidget	as	a	base	class.	The	subclasses	of	GameWidget	must
override	the	methods	to	become	non-abstract:

virtual	void	mouseMark(int	row,	int	column)	=	0;	

				virtual	void	drawMark(QPainter&	painter,	

																										const	QRect&	markRect,	int	mark)	=	0;	

The	isQuitOk	method	displays	a	message	box	that	asks	the	user	if	they	really	want
to	quit	the	game:

private:	

				bool	isQuitOk();	

The	isQuitEnabled	method	is	called	before	the	Game	menu	becomes	visible.	The	Quit
item	is	enabled	when	a	game	is	in	progress:

public	slots:	

				DEFINE_LISTENER(GameWidget,	isQuitEnabled);	

The	onQuit	and	onExit	methods	are	called	when	the	user	selects	the	Quit	or	Exit
menu	items:

void	onQuit();	

				void	onExit();	

The	isGameInProgress	and	setGameInProgress	methods	return	and	set	the	value	of	the
m_gameInProgress	field:

protected:	

				bool	isGameInProgress()	const	{return	m_gameInProgress;}	

				void	setGameInProgress(bool	active)	

																										{m_gameInProgress	=	active;}	

The	get	and	set	methods	get	and	set	a	value	at	a	position	in	the	game	grid.	The
value	is	an	integer;	remember	that	an	empty	position	is	assumed	to	hold	the
value	zero:

protected:	

						int	get(int	row,	int	column)	const;	

						void	set(int	row,	int	column,	int	value);	

The	m_gameInProgress	field	is	true	as	long	as	a	game	is	in	progress.	The	m_rows	and
m_columns	fields	hold	the	number	of	rows	and	columns	of	the	game	grid;	m_rowHeight
and	m_columnWidth	hold	the	height	and	width	in	pixels	of	each	position	in	the	game
grid.	Finally,	m_gameGrid	is	a	pointer	to	a	buffer	holding	the	values	of	the	positions
of	the	game	grid:

private:	

							bool	m_gameInProgress	=	false;	

							int	m_rows,	m_columns;	

							int	m_rowHeight,	m_columnWidth;	

							int*	m_gameGrid;	

					};	

	

					#endif	//	GAMEWIDGET_H	

The	GameWidget.cpp	file	holds	the	definitions	of	the	methods	of	the	GameWidget	class,
the	mouse	event	methods,	and	the	menu	methods,	as	well	as	the	drawings	and
settings	of	the	marks.

GameWidget.cpp

#include	"GameWidget.h"	

#include	<QApplication>	

#include	<CAssert>	

The	constructor	initializes	the	number	of	rows	and	columns	of	the	grid,
dynamically	allocates	its	memory,	and	calls	clearGrid	to	clear	the	grid:

GameWidget::GameWidget(int	rows,	int	columns,	

																							QWidget*	parentWidget)	

	:QWidget(parentWidget),	

		m_rows(rows),	

		m_columns(columns),	

		m_gameGrid(new	int[rows	*	columns])	{	

		assert(rows	>	0);	

		assert(columns	>	0);	

		clearGrid();	

}	

The	get	method	returns	the	value	at	the	position	indicated	by	the	row	and	column
and	set	sets	the	value.	The	buffer	holding	the	values	is	organized	in	rows.	That
is,	the	first	part	of	the	buffer	holds	the	first	row,	and	then	the	second	row,	and	so
on:

int	GameWidget::get(int	row,	int	column)	const	{	

		return	m_gameGrid[(row	*	m_columns)	+	column];	

}	

	

void	GameWidget::set(int	row,	int	column,	int	value)	{	

		m_gameGrid[(row	*	m_columns)	+	column]	=	value;	

}	

The	clearGrid	method	sets	every	position	to	zero,	since	zero	is	assumed	to
represent	an	empty	position:

void	GameWidget::clearGrid()	{	

		for	(int	row	=	0;	row	<	m_rows;	++row)	{	

				for	(int	column	=	0;	column	<	m_columns;	++column)	{	

						set(row,	column,	0);	

				}	

		}	

}	

The	Quit	menu	item	is	enabled	as	long	as	a	game	is	in	progress:

bool	GameWidget::isQuitEnabled()	{	

		return	m_gameInProgress;	

}	

If	a	game	is	in	progress	when	the	user	selects	to	quit	the	game,	a	message	box
with	a	confirmation	question	is	displayed:

bool	GameWidget::isQuitOk()	{	

		if	(m_gameInProgress)	{	

				QMessageBox	messageBox(QMessageBox::Warning,	

																											tr("Quit"),	QString());	

				messageBox.setText(tr("Quit	the	Game."));	

				messageBox.setInformativeText	

																		(tr("Do	you	really	want	to	quit	the	game?"));	

				messageBox.setStandardButtons(QMessageBox::Yes	|	

																																		QMessageBox::No);	

				messageBox.setDefaultButton(QMessageBox::No);	

If	the	user	presses	the	Yes	button,	true	is	returned:

return	(messageBox.exec()	==	QMessageBox::Yes);	

		}	

	

		return	true;	

}

	

The	onQuit	method	is	called	when	the	user	selects	the	Quit	menu	item.	If	the	call
to	isQuitOk	returns	true,	m_gameInProgress	is	set	to	false	and	update	is	called,	which
eventually	forces	a	repaint	of	the	window	where	the	game	grid	is	cleared.

void	GameWidget::onQuit()	{	

		if	(isQuitOk())	{	

				m_gameInProgress	=	false;	

				update();	

		}	

}	

The	onExit	method	is	called	when	the	user	selects	the	Exit	menu	item.	If	the	call
to	isQuitOk	returns	true,	the	application	is	exited.	This	is	shown	in	the	following
code:

void	GameWidget::onExit()	{	

		if	(isQuitOk())	{	

				qApp->exit(0);	

		}	

}	

The	resizeEvent	method	is	called	when	the	user	resizes	the	window.	The	row
height	and	column	width	are	recalculated	since	the	number	of	rows	and	columns
is	constant	regardless	of	the	size	of	the	window.	We	divide	the	height	and	width
of	the	window	by	the	number	of	rows	and	columns	plus	two,	since	we	add	extra
rows	and	columns	as	margins.	Consider	the	following	code:

void	GameWidget::resizeEvent(QResizeEvent*	eventPtr)	{	

		m_rowHeight	=	height()	/	(m_rows	+	2);	

		m_columnWidth	=	width()	/	(m_columns	+	2);	

		QWidget::resizeEvent(eventPtr);	

		update();	

}	

The	mousePressEvent	method	is	called	when	the	user	clicks	on	the	window:

void	GameWidget::mousePressEvent(QMouseEvent*	eventPtr)	{	

							if	(m_gameInProgress	&&

													(eventPtr->button()	==	Qt::LeftButton))	{	

							QPoint	mousePoint	=	eventPtr->pos();	

The	column	width	and	row	height	are	subtracted	from	the	mouse	point,	since	the
game	grid	is	enclosed	by	margins:

mousePoint.setX(mousePoint.x()	-	m_columnWidth);	

				mousePoint.setY(mousePoint.y()	-	m_rowHeight);	

If	the	mouse	point	is	located	inside	one	of	the	game	grid	positions,	and	that
position	is	empty	(zero),	the	pure	virtual	method	mouseMark	is	called,	which	takes
care	of	the	actual	action	of	the	mouse	click.	In	the	next	section,	black	and	white
marks	are	added	to	the	game	grid,	and	in	the	Noughts	and	Crosses	application
later	on.	Noughts	and	crosses	are	added	to	the	game	grid:

int	row	=	mousePoint.y()	/	m_rowHeight,	

									column	=	mousePoint.x()	/	m_columnWidth;	

If	the	rows	and	columns	clicked	are	located	in	the	game	grid	(rather	than	in	the
margins	outside	the	game	grid)	and	the	position	is	empty	(zero),	we	call	the
mouseMark,	which	is	a	pure	virtual	method,	with	the	row	and	column:

if	((row	<	m_rows)	&&	(column	<	m_columns)	&&	

								(get(row,	column)	==	0))	{	

						mouseMark(row,	column);	

						update();	

				}	

		}	

}	

The	paintEvent	method	is	called	when	the	window	needs	to	be	repainted.	If	a
game	is	in	progress	(m_gameInProgress	is	true),	the	rows	and	columns	are	written,
and	then	for	each	position	in	the	game	grid,	the	pure	virtual	method	drawMark	is
called,	which	takes	care	of	the	actual	painting	of	each	position:

void	GameWidget::paintEvent(QPaintEvent*	/*eventPtr*/)	{	

		if	(m_gameInProgress)	{	

				QPainter	painter(this);	

				painter.setRenderHint(QPainter::Antialiasing);	

				painter.setRenderHint(QPainter::TextAntialiasing);	

First,	we	iterate	through	the	rows	and	for	each	row,	we	write	a	letter	from	A	to	Z.
There	are	26	letters	of	the	alphabet,	and	we	assume	there	are	no	more	than	26
rows:

for	(int	row	=	0;	row	<	m_rows;	++row)	{	

						QString	text;	

						text.sprintf("%c",	(char)	(((int)	'A')	+	row));	

						QRect	charRect(0,	(row	+	1)	*	m_rowHeight,	

																					m_columnWidth,	m_rowHeight);	

						painter.drawText(charRect,	Qt::AlignCenter	|	

																							Qt::AlignHCenter,	text);	

				}	

Then	we	iterate	through	the	columns,	and	for	each	column,	we	write	its	number:

for	(int	column	=	0;	column	<	m_columns;	++column)	{	

						QString	text;	

						text.sprintf("%i",	column);	

						QRect	charRect((column	+	1)	*	m_columnWidth,	0,	

																					m_columnWidth,	m_rowHeight);	

						painter.drawText(charRect,	Qt::AlignCenter	|	

																							Qt::AlignHCenter,	text);	

				}	

	

				painter.save();	

				painter.translate(m_columnWidth,	m_rowHeight);	

A	pure	virtual	method	is	a	method	that	is	not	intended	to	be	defined
in	the	class,	only	in	its	subclasses.	A	class	holding	at	least	one	pure
virtual	method	becomes	abstract,	which	means	that	it	is	not
possible	to	create	objects	of	the	class.	The	class	can	only	be	used
as	a	base	class	in	a	class	hierarchy.	A	class	that	inherits	an
abstract	class	must	define	each	pure	virtual	method	of	the	base
class,	or	become	abstract	itself.

Finally,	we	iterate	through	the	game	grid,	and	for	each	position,	we	call	the	pure
virtual	method	drawMark	with	the	rectangle	of	the	position	and	its	current	mark:

for	(int	row	=	0;	row	<	m_rows;	++row)	{	

						for	(int	column	=	0;	column	<	m_columns;	++column)	{	

								QRect	markRect(column	*	m_columnWidth,	row	*	m_rowHeight,	

																							m_columnWidth,	m_rowHeight);	

								painter.setPen(Qt::black);	

								painter.drawRect(markRect);	

								painter.fillRect(markRect,	Qt::lightGray);	

								drawMark(painter,	markRect,	get(row,	column));	

						}	

				}	

	

				painter.restore();	

					}	

				}	

The	closeEvent	method	is	called	when	the	user	clicks	on	the	close	box	at	the	top-
right	corner	of	the	window.	If	the	call	to	isQuitOk	returns	true,	the	window	is
closed,	and	the	application	is	exited:

void	GameWidget::closeEvent(QCloseEvent*	eventPtr)	{	

		if	(isQuitOk())	{	

				eventPtr->accept();	

				qApp->exit(0);	

		}	

		else	{	

				eventPtr->ignore();	

		}	

}	

The	OthelloWindow	class
The	Othello	class	is	a	subclass	of	MainWindow	from	Chapter	6,	Enhancing	the	QT
Graphical	Applications.	It	adds	menus	to	the	window	and	sets	the	OthelloWidget
class	here,	which	is	a	subclass	of	GameWidget,	to	its	central	widget.

OthelloWindow.h

#ifndef	OTHELLOWINDOW_H	

		#define	OTHELLOWINDOW_H	

	

		#include	"..\MainWindow\MainWindow.h"	

		#include	"OthelloWidget.h"	

	

		class	OthelloWindow	:	public	MainWindow	{	

				Q_OBJECT	

	

				public:	

						OthelloWindow(QWidget	*parentWidget	=	nullptr);	

						~OthelloWindow();	

	

						void	closeEvent(QCloseEvent	*eventPtr)	

								{m_othelloWidgetPtr->closeEvent(eventPtr);}	

The	m_othelloWidgetPtr	field	holds	a	pointer	to	the	widget	located	in	the	center	of
the	window.	It	points	at	an	object	of	the	OthelloWidget	class.	This	is	shown	in	the
following	code:

private:	

				OthelloWidget*	m_othelloWidgetPtr;	

};	

	

#endif	//	OTHELLOWINDOW_H	

The	OthelloWindow.cpp	file	defines	the	methods	of	the	OthelloWIndow	class.

OthelloWindow.cpp

#include	"OthelloWidget.h"	

#include	"OthelloWindow.h"	

#include	<QtWidgets>	

The	constructor	sets	the	title	of	the	window	to	Othello	and	the	size	to	1000	x	500
pixels:

OthelloWindow::OthelloWindow(QWidget	*parentWidget	/*=	nullptr*/)

	:MainWindow(parentWidget)	{

		setWindowTitle(tr("Othello"));

		resize(1000,	500);

An	OthelloWidget	object	is	dynamically	created	and	placed	at	the	center	of	the
window:

m_othelloWidgetPtr	=	new	OthelloWidget(this);	

				setCentralWidget(m_othelloWidgetPtr);	

We	add	the	menu	Game	to	the	menu	bar	and	connect	the	onMenuShow	method	to	the
menu,	which	causes	it	to	be	called	before	the	menu	becomes	visible:

{	QMenu*	gameMenuPtr	=	menuBar()->addMenu(tr("&Game"));	

				connect(gameMenuPtr,	SIGNAL(aboutToShow()),	

												this,	SLOT(onMenuShow()));	

The	user	can	choose	the	black	or	white	color	to	make	the	first	move.	The
isBlackStartsEnabled	and	isWhiteStartsEnabled	methods	are	called	before	the	items
become	visible.	The	items	become	disabled	when	a	game	is	in	progress:

addAction(gameMenuPtr,	tr("&Black	Starts"),	

														SLOT(onBlackStarts()),	0,	

														tr("Black	Starts"),	nullptr,tr("Black	Starts"),	

														LISTENER(isBlackStartsEnabled));	

	

				addAction(gameMenuPtr,	tr("&White	Starts"),	

														SLOT(onWhiteStarts()),	0,	

														tr("White	Starts"),	nullptr,	tr("White	Starts"),	

														LISTENER(isWhiteStartsEnabled));	

	

				gameMenuPtr->addSeparator();	

When	a	game	is	in	progress,	the	user	can	quit	the	game.	The	item	becomes
disabled	when	no	game	is	in	progress:

addAction(gameMenuPtr,	tr("&Quit	the	Game"),	

														SLOT(onQuit()),	

														QKeySequence(Qt::CTRL	+	Qt::Key_Q),	

														tr("Quit	Game"),	nullptr,	tr("Quit	the	Game"),	

														LISTENER(isQuitEnabled));	

The	user	can	exit	the	application	at	any	time:

addAction(gameMenuPtr,	tr("E&xit"),	

														SLOT(onExit()),	QKeySequence::Quit);	

		}	

}	

The	destructor	deallocates	the	Othello	widget	in	the	center	of	the	window:

OthelloWindow::~OthelloWindow()	{	

		delete	m_othelloWidgetPtr;	

}	

The	OthelloWidget	class
OthelloWidget	is	a	subclass	of	the	GameWidget	class	we	defined	at	the	beginning	of
this	chapter.	It	becomes	a	non-abstract	class	by	overriding	mouseMark	and	drawMark,
which	are	called	when	the	user	clicks	at	a	position	in	the	game	grid	and	when	a
position	needs	to	be	repainted.

OthelloWidget.h

#ifndef	OTHELLOWIDGET_H	

#define	OTHELLOWIDGET_H	

	

#include	"..\MainWindow\GameWidget.h"	

	

#define	ROWS				8	

#define	COLUMNS	8	

A	mark	in	Othello	can	be	black	or	white.	We	use	the	Mark	enumeration	to	store
values	on	the	game	grid.	The	Empty	item	holds	a	value	of	zero,	which	is	assumed
to	be	GameWidget	to	represent	an	empty	position:

enum	Mark	{Empty	=	0,	Black,	White};	

	

class	OthelloWidget	:	public	GameWidget	{	

		Q_OBJECT	

	

		public:	

				OthelloWidget(QWidget*	parentWidget);	

	

				void	mouseMark(int	row,	int	column);	

				void	drawMark(QPainter&	painter,	

																		const	QRect&	markRect,	int	mark);	

The	isBlackStartsEnabled	and	isWhiteStartsEnabled	listeners	are	called	before	the
BlackStarts	and	WhiteStarts	menu	items	become	visible	in	order	to	enable	them.
Note	that	the	listeners	and	methods	must	be	marked	as	public	slots	for	the	menu
framework	to	allow	them	as	listeners:

public	slots:	

					DEFINE_LISTENER(OthelloWidget,	isBlackStartsEnabled);	

					DEFINE_LISTENER(OthelloWidget,	isWhiteStartsEnabled);	

The	onBlackStarts	and	onWhiteStarts	methods	are	called	when	the	BlackStarts	and
WhiteStarts	menu	items	are	selected	by	the	user:

void	onBlackStarts();	

				void	onWhiteStarts();	

The	checkWinner	method	checks	if	every	position	on	the	game	grid	has	been
occupied	by	a	black	or	white	mark.	If	it	has,	the	marks	are	counted,	and	the
winner	is	announced	unless	it	is	a	draw:

private:	

					void	checkWinner();	

The	turn	method	is	called	when	one	of	the	players	has	made	a	move.	It	calculates
the	positions	to	be	turned	as	a	result	of	the	move:

void	turn(int	row,	int	column,	Mark	mark);	

The	calculateMark	method	calculates	the	set	of	marks	to	be	turned	if	the	player
places	the	mark	in	the	position	given	by	the	row	and	column:

void	calculateMark(int	row,	int	column,	Mark	mark,	

																							QSet<QPair<int,int>>&	resultSet);	

The	m_nextMark	field	is	alternatively	given	the	values	Black	and	White	of	the
preceding	Mark	enumeration,	depending	on	which	player	is	about	to	do	the	next
move.

It	is	initialized	by	onBlackStarts	or	onWhiteStarts,	as	shown	in	the	previous	code:

Mark	m_nextMark;	

};	

	

#endif	//	OTHELLOWIDGET_H	

The	OthelloWidget	class	holds	the	functionality	of	the	game.	It	allows	the	player	to
add	black	and	white	marks	to	the	game	grid,	turn	marks,	and	announce	the
winner.

OthelloWidget.cpp

#include	"OthelloWidget.h"	

#include	"OthelloWindow.h"	

	

#include	<QTime>	

#include	<CTime>	

#include	<CAssert>	

using	namespace	std;	

	

OthelloWidget::OthelloWidget(QWidget*	parentWidget)	

	:GameWidget(ROWS,	COLUMNS,	parentWidget)	{	

		//	Empty.	

}	

The	BlackStarts	and	WhiteStarts	menu	items	are	enabled	when	there	is	not	already	a
game	in	progress:

bool	OthelloWidget::isBlackStartsEnabled()	{	

		return	!isGameInProgress();	

}	

	

bool	OthelloWidget::isWhiteStartsEnabled()	{	

		return	!isGameInProgress();	

}	

The	onBlackStarts	and	onWhiteStarts	methods	set	a	new	game	in	progress,	set	the
mark	to	make	the	first	move	(black	or	white),	clear	the	grid,	and	update	the
window	to	paint	an	empty	game	grid:

void	OthelloWidget::onBlackStarts()	{	

		setGameInProgress(true);	

		m_nextMark	=	Black;	

		update();	

}	

	

void	OthelloWidget::onWhiteStarts()	{	

		setGameInProgress(true);	

		m_nextMark	=	White;	

		update();	

}	

The	onMouseMark	is	called	when	the	player	clicks	an	empty	position	on	the	game
grid.	We	set	the	position	with	the	next	mark,	turn	every	mark	that	is	affected	by
the	move,	and	update	the	window	to	reflect	the	change:

void	OthelloWidget::mouseMark(int	row,	int	column)	{	

		set(row,	column,	m_nextMark);	

		turn(row,	column,	m_nextMark);	

		update();	

We	check	if	the	move	has	caused	the	game	grid	to	become	full	and	switch	the
next	mark:

checkWinner();	

		m_nextMark	=	(m_nextMark	==	Black)	?	White	:	Black;	

}	

The	drawMark	method	is	called	when	a	position	in	the	game	grid	needs	to	be
repainted.	We	draw	a	black	or	white	ellipse	with	black	borders	if	the	position	is
not	empty.	If	the	position	is	empty,	we	do	nothing.	Note	that	the	framework
clears	the	window	before	the	call	to	repaint:

void	OthelloWidget::drawMark(QPainter&	painter,	

					const	QRect&	markRect,	int	mark)	{	

		painter.setPen(Qt::black);	

		painter.drawRect(markRect);	

		painter.fillRect(markRect,	Qt::lightGray);	

	

		switch	(mark)	{	

				case	Black:	

						painter.setPen(Qt::black);	

						painter.setBrush(Qt::black);	

						painter.drawEllipse(markRect);	

						break;	

	

				case	White:	

						painter.setPen(Qt::white);	

						painter.setBrush(Qt::white);	

						painter.drawEllipse(markRect);	

						break;	

	

				case	Empty:	

						break;

}	

}	

The	checkWinner	method	counts	the	number	of	positions	that	are	occupied	by	black
and	white	marks	or	are	empty:

void	OthelloWidget::checkWinner()	{	

		int	blacks	=	0,	whites	=	0,	empties	=	0;	

	

		for	(int	row	=	0;	row	<	ROWS;	++row)	{	

				for	(int	column	=	0;	column	<	COLUMNS;	++column)	{	

						switch	(get(row,	column))	{	

								case	Black:	

										++blacks;	

										break;	

	

								case	White:	

										++whites;	

										break;	

	

								case	Empty:	

										++empties;	

										break;	

						}	

				}	

		}	

If	there	are	no	empty	positions	left,	the	game	is	over,	and	we	announce	the
winner,	unless	it	is	a	draw.	The	winner	is	the	player	with	the	most	marks	in	their
color:

if	(empties	==	0)	{	

				QMessageBox	messageBox(QMessageBox::Information,	

								tr("Victory"),	QString());	

				QString	text;	

	

				if	(blacks	==	whites)	{	

						text.sprintf("A	Draw.");	

				}	

				else	if	(blacks	>	whites)	{	

						text.sprintf("The	Winner:	Black");	

				}	

				else	{	

						text.sprintf("The	Winner:	White");	

				}	

	

				messageBox.setText(text);	

				messageBox.setStandardButtons(QMessageBox::Ok);	

				messageBox.exec();	

				setGameInProgress(false);	

	

				clearGrid();	

				update();	

		}	

}	

The	turn	method	calls	calculateMark	to	obtain	the	set	of	positions	where	the	mark
shall	be	turned.	Then	each	position	in	the	set	is	set	to	the	mark	in	question.

In	this	application,	turn	is	the	only	method	that	calls	calculateMark.	However,	in	Cha
pter	8,	The	Computer	Plays,	calculateMark	will	also	be	called	to	calculate	the	move
of	the	computer	player.	Therefore,	the	functionality	of	turn	and	calculateMark	are
divided	into	two	methods:

void	OthelloWidget::turn(int	row,	int	column,	Mark	mark)	{	

		QSet<QPair<int,int>>	totalSet;	

		calculateMark(row,	column,	mark,	totalSet);	

	

		for	(QPair<int,int>	pair	:	totalSet)	{	

				int	row	=	pair.first,	column	=	pair.second;	

				set(row,	column,	mark);	

		}	

}	

The	calculateMark	method	counts	the	number	of	marks	that	will	be	turned	for	each
position	on	the	game	grid,	in	all	eight	directions:

void	OthelloWidget::calculateMark(int	row,	int	column,	

				Mark	playerMark,	QSet<QPair<int,int>>&	totalSet){	

Each	integer	pair	in	directionArray	refers	to	a	direction	in	accordance	with	the
compass	rising:

QPair<int,int>	directionArray[]	=	

				{QPair<int,int>(-1,	0),			//	North	

					QPair<int,int>(-1,	1),			//	Northeast	

					QPair<int,int>(0,	1),				//	East	

					QPair<int,int>(1,	1),				//	Southeast	

					QPair<int,int>(1,	0),				//	South	

					QPair<int,int>(1,	-1),			//	Southwest	

					QPair<int,int>(0,	-1),			//	West	

					QPair<int,int>(-1,	-1)};	//	Northwest	

The	size	of	an	array	can	be	decided	by	dividing	its	total	size	(in	bytes)	by	the
size	of	its	first	value:

int	arraySize	=	

				(sizeof	directionArray)	/	(sizeof	directionArray[0]);	

We	iterate	through	the	directions	and,	for	each	direction,	keep	moving	as	long	as
we	find	the	mark	of	the	opponent:

for	(int	index	=	0;	index	<	arraySize;	++index)	{	

				QPair<int,int>	pair	=	directionArray[index];	

The	row	and	column	fields	hold	the	current	row	and	column	as	long	as	we	iterate	in
that	direction:

int	rowStep	=	pair.first,	columnStep	=	pair.second,	

								currRow	=	row,	currColumn	=	column;	

We	gather	the	marks	we	find	during	the	iteration	in	directionSet:

QSet<QPair<int,int>>	directionSet;	

	

				while	(true)	{	

						currRow	+=	rowStep;	

						currColumn	+=	columnStep;	

If	we	reach	one	of	the	borders	of	the	game	grid,	or	if	we	find	an	empty	position,
we	break	the	iteration:

if	((currRow	<	0)	||	(currRow	==	ROWS)	||	

										(currColumn	<	0)	||	(currColumn	==	COLUMNS)	||	

										(get(currRow,	currColumn)	==	Empty))	{	

break;	

}	

If	we	find	the	player's	mark,	we	add	the	direction	set	to	the	total	set	and	break
the	iteration:

else	if	(get(currRow,	currColumn)	==	playerMark)	{	

		totalSet	+=	directionSet;	

		break;	

}	

If	we	do	not	find	the	player's	mark	or	an	empty	position,	we	have	found	the
opponent's	mark,	and	we	add	its	position	to	the	direction	set:

else	{	

								directionSet.insert(QPair<int,int>(row,	column));	

						}	

				}	

		}	

}	

The	main	function

	

The	main	function	works	in	the	same	way	as	in	the	previous	Qt	applications.	It
creates	an	application,	shows	the	Othello	window,	and	executes	the	applications.
The	execution	continues	until	the	exit	method	is	called,	which	it	is	when	the	user
closes	the	window	or	selects	the	Exit	menu	item.

Main.cpp

#include	"OthelloWidget.h"	

#include	"OthelloWindow.h"	

#include	<QApplication>	

int	main(int	argc,	char	*argv[])	{	

		QApplication	application(argc,	argv);	OthelloWindow	othelloWindow;	

othelloWindow.show();	

		return	application.exec();	}	

	

	

Noughts	and	crosses

	

The	Noughts	and	Crosses	application	sets	up	a	game	grid	and	allows	two	players
to	play	each	other.	In	Noughts	and	Crosses,	two	players	take	turns	adding
noughts	and	crosses	to	a	game	grid.	The	player	that	first	manages	to	place	five
marks	in	a	row	wins	the	game.	The	marks	can	be	placed	horizontally,	vertically,
or	diagonally.	While	each	player	tries	to	place	five	of	their	own	marks	in	a	row,
they	must	also	try	to	prevent	the	opponent	from	placing	five	marks	in	a	row.

In	Chapter	8,	The	Computer	Plays,	the	computer	plays	against	the	human.

	

	

	

The	NaCWindow	class

	

We	reuse	the	GameWidget	from	the	game	widget	section.	The	NaCWindow	class	is
similar	to	OthelloWindow.	It	adds	the	Nought	Begins	and	Cross	Begins	menu	items	to	the
window's	menu	bar.

NaCWindow.h

#ifndef	NACWINDOW_H	

#define	NACWINDOW_H	

	

#include	"..\MainWindow\MainWindow.h"	

#include	"NaCWidget.h"	

	

class	NaCWindow	:	public	MainWindow	{	

		Q_OBJECT	

	

		public:	

				NaCWindow(QWidget	*parentWidget	=	nullptr);	~NaCWindow();	

	

		public:	

				void	closeEvent(QCloseEvent	*eventPtr)	override	{m_nacWidgetPtr-

>closeEvent(eventPtr);}	

	

		private:	

				NaCWidget*	m_nacWidgetPtr;	};	

	

#endif	//	NACWINDOW_H	

The	NaCWindow.cpp	file	holds	the	definitions	of	the	methods	of	the	NacWindow	class.

NaCWindow.cpp

#include	"NaCWindow.h"	

#include	<QtWidgets>	

	

NaCWindow::NaCWindow(QWidget	*parentWidget	/*=	nullptr*/)	

:MainWindow(parentWidget)	{	

		setWindowTitle(tr("Noughts	and	Crosses"));	resize(1000,	500);	

	

		m_nacWidgetPtr	=	new	NaCWidget(this);	setCentralWidget(m_nacWidgetPtr);	

		{	QMenu*	gameMenuPtr	=	menuBar()->addMenu(tr("&Game"));	connect(gameMenuPtr,	

SIGNAL(aboutToShow()),	this,	SLOT(onMenuShow()));	

				addAction(gameMenuPtr,	tr("&Nought	Starts"),	SLOT(onNoughtStarts()),	0,	

tr("Nought	Starts"),	nullptr,	tr("Nought	Starts"),	

LISTENER(isNoughtStartsEnabled));	

				addAction(gameMenuPtr,	tr("&Cross	Starts"),	SLOT(onCrossStarts()),	0,	

tr("Cross	Starts"),	nullptr,	tr("Cross	Starts"),	

LISTENER(isCrossStartsEnabled));	

				gameMenuPtr->addSeparator();	

				addAction(gameMenuPtr,	tr("&Quit	the	Game"),	SLOT(onQuit()),	

QKeySequence(Qt::CTRL	+	Qt::Key_Q),	tr("Quit	Game"),	nullptr,	tr("Quit	the	

Game"),	LISTENER(isQuitEnabled));	

				addAction(gameMenuPtr,	tr("E&xit"),	SLOT(onExit()),	QKeySequence::Quit);	}	

}	

	

NaCWindow::~NaCWindow()	{	

		delete	m_nacWidgetPtr;	

}	

	

	

The	NaCWidget	class
The	NaCWidget	class	handles	the	functionality	of	Noughts	and	Crosses.	It	allows
two	players	to	play	each	other.	In	Chapter	8,	The	Computer	Plays,	we	will	write	a
game	where	the	computer	plays	the	human.

NaCWidget.h

#ifndef	NACWIDGET_H	

#define	NACWIDGET_H	

	

#include	"..\MainWindow\GameWidget.h"	

	

#define	ROWS				26	

#define	COLUMNS	26	

Similar	to	the	Othello	application,	a	position	in	the	game	grid	can	hold	one	of
three	values:

Empty	(which	is	zero)
Nought

Cross

The	Mark	enumeration	corresponds	to	the	Empty,	Nought,	and	Cross	values:

enum	Mark	{Empty	=	0,	Nought,	Cross};	

	

class	NaCWidget	:	public	GameWidget	{	

		Q_OBJECT	

	

		public:	

				NaCWidget(QWidget*	parentWidget);	

	

				void	mouseMark(int	row,	int	column);	

				void	drawMark(QPainter&	painter,	

																		const	QRect&	markRect,	int	mark);	

	

		public	slots:	

				DEFINE_LISTENER(NaCWidget,	isNoughtStartsEnabled);	

				void	onNoughtStarts();	

	

				DEFINE_LISTENER(NaCWidget,	isCrossStartsEnabled);	

				void	onCrossStarts();	

	

		private:	

				void	checkWinner(int	row,	int	column,	Mark	mark);	

				int	countMarks(int	row,	int	column,	int	rowStep,	

																			int	columnStep,	Mark	mark);	

	

				Mark	m_nextMark;	

};	

	

#endif	//	NACWIDGET_H	

The	NaCWidget.cpp	file	holds	the	definitions	of	the	methods	of	the	NaCWidget	class.

NaCWidget.cpp

#include	"NaCWidget.h"	

#include	<CTime>	

	

NaCWidget::NaCWidget(QWidget*	parentWidget)	

	:GameWidget(ROWS,	COLUMNS,	parentWidget)	{	

		//	Empty.	

}	

The	isNoughtStartsEnabled	and	isCrossStartsEnabled	methods	are	called	before	the	Game
menu	becomes	visible.	The	Noughts	Begins	and	Cross	Begins	menu	items	are	enabled
if	there	is	no	game	in	progress:

bool	NaCWidget::isCrossStartsEnabled()	{	

		return	!isGameInProgress();	

}	

	

bool	NaCWidget::isNoughtStartsEnabled()	{	

		return	!isGameInProgress();	

}	

The	onNoughtBegins	and	onCrossBegins	methods	are	called	when	the	user	selects	the
Nought	Begins	and	Cross	Begins	menu	items.	They	set	the	game	in	progress,	set	the
first	mark	to	make	the	first	move	(m_nextMark),	and	force	a	repainting	of	the	game
grid	by	calling	update:

void	NaCWidget::onNoughtStarts()	{	

		setGameInProgress(true);	

		m_nextMark	=	Nought;	

		update();	

}	

	

void	NaCWidget::onCrossStarts()	{	

		setGameInProgress(true);	

		m_nextMark	=	Cross;	

		update();	

}	

The	mouseMark	method	is	called	when	the	players	click	a	position	in	the	game	grid.
We	set	the	next	mark	at	the	position,	check	if	one	of	the	players	has	won	the
game,	swap	the	next	move,	and	repaint	the	window	by	calling	update:

void	NaCWidget::mouseMark(int	row,	int	column)	{	

		set(row,	column,	m_nextMark);	

		checkWinner(row,	column,	m_nextMark);	

		m_nextMark	=	(m_nextMark	==	Nought)	?	Cross	:	Nought;	

		update();	

}	

The	drawMark	method	is	called	when	a	position	in	the	game	grid	needs	to	be
repainted:

void	NaCWidget::drawMark(QPainter&	painter,	

				const	QRect&	markRect,	int	mark)	{	

We	set	the	pen	color	to	black,	and	in	the	case	of	a	nought,	we	draw	an	ellipse,	as
follows:

painter.setPen(Qt::black);	

		switch	(mark)	{	

				case	Nought:	

						painter.drawEllipse(markRect);	

						break;	

In	the	case	of	a	cross,	we	draw	two	lines	between	the	top-left	and	bottom-right
corners	and	between	the	top-right	and	bottom-left	corners:

case	Cross:	

						painter.drawLine(markRect.topLeft(),	

																							markRect.bottomRight());	

						painter.drawLine(markRect.topRight(),	

																							markRect.bottomLeft());	

						break;	

In	the	case	of	an	empty	position,	we	do	nothing.	Remember	that	the	framework
clears	the	window	before	the	repainting:

case	Empty:	

						break;	

		}	

}	

When	a	player	has	made	a	move,	we	check	if	the	move	has	led	to	victory.	We
call	countMarks	in	four	directions	to	checkWinner	and	see	if	the	move	has	caused	five
marks	in	a	row:

void	NaCWidget::checkWinner(int	row,	int	column,	Mark	mark)	{	

For	the	north	and	south	directions,	the	code	would	be:

if	((countMarks(row,	column,	-1,	0,	mark)	>=	5)	||	

For	the	west	and	east	directions,	the	code	would	be:

(countMarks(row,	column,	0,	-1,	mark)	>=	5)	||	

	

For	the	northwest	and	southeast	directions,	the	code	would	be:

(countMarks(row,	column,	-1,	1,	mark)	>=5)||	

For	southeast	and	northwest,	it	would	be:

(countMarks(row,	column,	1,	1,	mark)	>=	5))	{	

If	the	move	has	caused	five	marks	in	a	row,	we	display	a	message	box	with	the
winner	(black	or	white).	In	Noughts	and	Crosses,	there	can	be	no	draw:

QMessageBox	messageBox(QMessageBox::Information,	

																											tr("Victory"),	QString());	

				QString	text;	

				text.sprintf("The	Winner:	%s.",	

																	(mark	==	Nought)	?	"Nought"	:	"Cross");	

	

				messageBox.setText(text);	

				messageBox.setStandardButtons(QMessageBox::Ok);	

				messageBox.exec();	

				setGameInProgress(false);	

The	game	grid	is	cleared,	and	is	thereby	ready	for	another	game:

clearGrid();	

				update();	

		}	

}	

The	countMarks	method	counts	the	number	of	marks	in	a	row.	We	countMarks	the
number	of	marks	in	both	directions.	For	instance,	if	both	rowStep	and	columnStep	are
minus	one,	we	decrease	the	current	row	and	column	by	one	for	each	iteration.
That	means	that	we	call	countMarks	in	the	northeast	direction	in	the	first	iteration.
In	the	second	iteration,	we	call	countMarks	in	the	opposite	direction,	that	is,	in	the
southwest	direction:

int	NaCWidget::countMarks(int	row,	int	column,	int	rowStep,	

																										int	columnStep,	Mark	mark)	{	

		int	countMarks	=	0;	

We	keep	counting	until	we	encounter	one	of	the	game	grid	borders,	or	we	find	a
mark	that	is	not	the	mark	we	are	counting,	that	is,	the	mark	of	the	opposite

player	or	an	empty	mark:

{	int	currentRow	=	row,	currentColumn	=	column;	

						while	((currentRow	>=	0)	&&	(currentRow	<	ROWS)	&&	

													(currentColumn	>=	0)	&&	(currentColumn	<	COLUMNS)	&&	

													(get(currentRow,	currentColumn)	==	mark))	{	

										++countMarks;	

										currentRow	+=	rowStep;	

										currentColumn	+=	columnStep;	

									}	

				}	

In	the	second	iteration,	we	subtract	the	row	and	column	steps	instead	of	adding
them.	In	this	way,	we	call	countMarks	in	the	opposite	direction.	We	also	initialize
the	current	rows	and	columns	by	adding	the	steps	in	order,	so	we	do	not
countMarks	the	middle	mark	twice:

{	int	currentRow	=	row	+	rowStep,	

								currentColumn	=	column	+	columnStep;	

						while	((currentRow	>=	0)	&&	(currentRow	<	ROWS)	&&	

											(currentColumn	>=	0)	&&	(currentColumn	<	COLUMNS)	&&	

											(get(currentRow,	currentColumn)	==	mark))	{	

								++countMarks;	

								currentRow	-=	rowStep;	

								currentColumn	-=	columnStep;	

						}	

					}	

	

				return	countMarks;	

		}	

The	main	function
The	main	function	creates	the	application,	shows	the	window,	and	executes	the
application	until	the	user	closes	the	window	or	selects	the	Exit	menu	item.

Main.cpp

#include	"NaCWidget.h"	

#include	"NaCWindow.h"	

#include	<QApplication>	

	

int	main(int	argc,	char	*argv[])	{	

		QApplication	application(argc,	argv);	

		NaCWindow	mainWindow;	

		mainWindow.show();	

		return	application.exec();	

}	

The	output	for	the	preceding	code	is	as	follows:

Summary

	

In	this	chapter,	we	developed	the	two	games,	Othello	and	Noughts	and	Crosses.
We	were	introduced	to	game	theory,	and	we	developed	a	game	grid	where	the
players	take	turns	to	add	their	marks.	In	Othello,	we	developed	methods	to	count
the	number	of	marks	to	change	for	each	move,	and	in	Noughts	and	Crosses,	we
developed	methods	to	recognize	if	one	of	the	players	had	managed	to	place	five
marks	in	a	row—if	they	had,	we	declared	them	the	winner.

In	Chapter	8,	The	Computer	Plays,	we	will	develop	more	advanced	versions	of
these	games,	where	the	computer	plays	against	a	human.

	

	

	

The	Computer	Plays

	

In	this	chapter,	we	continue	to	work	on	the	Othello	and	Noughts	and	Crosses
games.	The	new	part	of	this	chapter	is	the	computer	playing	against	the	human;
instead	of	two	human	players,	the	computer	plays	against	a	human.

Topics	we	will	cover	in	this	chapter	include:

Game-theory	reasoning.	In	both	games,	the	human	or	the	computer	can
make	the	first	move,	and	we	add	code	for	the	computer	to	play	against	the
human.
In	Othello,	for	each	move,	we	scan	the	game	grid	and	try	to	find	the	move
that	causes	the	highest	number	of	the	human's	marks	to	be	swapped.
In	Noughts	and	Crosses,	we	try	to	find	the	position	in	the	game	grid	that
gives	us	the	highest	number	of	marks	in	a	row,	or,	if	the	human	is	about	to
get	five	in	row,	we	have	to	place	the	computer’s	mark	in	a	position	that
prevents	that.
An	introduction	to	random	number	generation.	If	the	computer	can	choose
between	several	equivalent	moves,	it	shall	randomly	select	one	of	the
moves.
We	continue	to	use	C++	features	such	as	classes,	fields,	and	methods.	We
also	continue	to	use	Qt	features	such	as	windows	and	widgets.

	

	

Othello
In	the	Othello	application	of	this	chapter,	we	reuse	the	MainWindow	and
GameWidget	classes	of	the	previous	chapter.

The	OthelloWindow	class

	

The	OthelloWindow	class	is	rather	similar	to	its	counterpart	in	the	previous	chapter.
However,	in	addition	to	the	menus	and	items,	the	window	of	this	version	also
holds	submenus.	The	submenus	will	be	added	by	calling	the	addAction	method	in
the	OthelloWindow.cpp	file.

OthelloWindow.h

#ifndef	OTHELLOWINDOW_H	

#define	OTHELLOWINDOW_H	

	

#include	"..\MainWindow\MainWindow.h"	

#include	"OthelloWidget.h"	

	

class	OthelloWindow	:	public	MainWindow	{	

		Q_OBJECT	

	

		public:	

				OthelloWindow(QWidget	*parentWidget	=	nullptr);	~OthelloWindow();	

	

				void	closeEvent(QCloseEvent	*eventPtr)	{m_othelloWidgetPtr-

>closeEvent(eventPtr);}	

	

		private:	

				OthelloWidget*	m_othelloWidgetPtr;	};	

	

#endif	//	OTHELLOWINDOW_H	

The	OthelloWindow.cpp	file	holds	the	definitions	of	the	methods	of	the	OthelloWindow
class.

OthelloWindow.cpp

#include	"OthelloWidget.h"	

#include	"OthelloWindow.h"	

#include	<QtWidgets>	

The	title	of	the	window	has	been	changed	to	Othello	Advanced:
OthelloWindow::OthelloWindow(QWidget	*parentWidget	/*=	nullptr*/)
:MainWindow(parentWidget)	{

setWindowTitle(tr("Othello	Advanced"));	resize(1000,
500);

	

m_othelloWidgetPtr	=	new	OthelloWidget(this);

setCentralWidget(m_othelloWidgetPtr);

{	QMenu*	gameMenuPtr	=	menuBar()-
>addMenu(tr("&Game"));	connect(gameMenuPtr,
SIGNAL(aboutToShow()),	this,	SLOT(onMenuShow()));

There	are	two	submenus	of	the	Game	menu,	Computer	Starts	and	Human	Starts:	{
QMenu*	computerStartsMenuPtr	=

gameMenuPtr->addMenu(tr("&Computer	Starts"));
connect(computerStartsMenuPtr,
SIGNAL(aboutToShow()),	this,	SLOT(onMenuShow()));

The	Computer	Starts	submenu	holds	the	two	items	Computer	Black	and	Computer	White:
addAction(computerStartsMenuPtr,	tr("Computer	&Black"),
SLOT(onComputerStartsBlack()),	0,	tr("Computer	Black"),	nullptr,
tr("Computer	Black"),	LISTENER(isComputerStartsBlackEnabled));

addAction(computerStartsMenuPtr,	tr("Computer
&White"),	SLOT(onComputerStartsWhite()),	0,
tr("Computer	White"),	nullptr,	tr("Computer	White"),
LISTENER(isComputerStartsWhiteEnabled));	}

The	Human	Starts	submenu	holds	two	items,	Human	Black	and	Human	White:	{	QMenu*
humanStartsMenuPtr	=

gameMenuPtr->addMenu(tr("&Human	Starts"));
connect(humanStartsMenuPtr,	SIGNAL(aboutToShow()),
this,	SLOT(onMenuShow()));

addAction(humanStartsMenuPtr,	tr("Human	&Black"),
SLOT(onHumanStartsBlack()),	0,	tr("Human	Black"),
nullptr,	tr("Human	Black"),
LISTENER(isHumanStartsBlackEnabled));

addAction(humanStartsMenuPtr,	tr("Human	&White"),
SLOT(onHumanStartsWhite()),	0,	tr("Human	White"),
nullptr,	tr("Human	White"),
LISTENER(isHumanStartsWhiteEnabled));	}

	

gameMenuPtr->addSeparator();

addAction(gameMenuPtr,	tr("&Quit	the	Game"),
SLOT(onQuit()),

QKeySequence(Qt::CTRL	+	Qt::Key_Q),	tr("Quit
Game"),	nullptr,	tr("Quit	the	Game"),
LISTENER(isQuitEnabled));

addAction(gameMenuPtr,	tr("E&xit"),i	SLOT(onExit()),
QKeySequence::Quit);	}

}

	

OthelloWindow::~OthelloWindow()	{

delete	m_othelloWidgetPtr;

}

	

	

The	OthelloWidget	Class

	

The	OthelloWidget	class	holds	the	functionality	of	Othello.	It	allows	the	computer
to	play	against	a	human:	OthelloWidget.h

#ifndef	OTHELLOWIDGET_H	

#define	OTHELLOWIDGET_H	

	

#include	"..\MainWindow\GameWidget.h"	

	

#define	ROWS				8	

#define	COLUMNS	8	

	

enum	Mark	{Empty	=	0,	Black,	White};	

	

class	OthelloWidget	:	public	GameWidget	{	

		Q_OBJECT	

	

		public:	

				OthelloWidget(QWidget*	parentWidget);	

				void	mouseMark(int	row,	int	column);	void	drawMark(QPainter&	painter,	const	

QRect&	markRect,	int	mark);	

		public	slots:	

				DEFINE_LISTENER(OthelloWidget,	isComputerStartsBlackEnabled);	

DEFINE_LISTENER(OthelloWidget,	isComputerStartsWhiteEnabled);	

DEFINE_LISTENER(OthelloWidget,	isHumanStartsBlackEnabled);	

DEFINE_LISTENER(OthelloWidget,	isHumanStartsWhiteEnabled);	

				void	onComputerStartsBlack();	

				void	onComputerStartsWhite();	

				void	onHumanStartsBlack();	

				void	onHumanStartsWhite();	

	

		private:	

				bool	checkWinner();	

				void	turn(int	row,	int	column,	Mark	mark);	void	calculateComputerMove();	

				void	calculateTurns(int	row,	int	column,	Mark	mark,	QSet<QPair<int,int>>&	

totalSet,	int&	neighbours);	Mark	m_humanMark,	m_computerMark;	};	

	

#endif	//	OTHELLOWIDGET_H	

The	OthelloWidget.cpp	file	holds	the	definitions	of	the	methods	of	the	OthelloWidget
class:	OthelloWidget.cpp

#include	"OthelloWidget.h"	

#include	"OthelloWindow.h"	

	

#include	<QTime>	

#include	<CTime>	

#include	<CAssert>	

using	namespace	std;	

	

OthelloWidget::OthelloWidget(QWidget*	parentWidget)	:GameWidget(ROWS,	COLUMNS,	

parentWidget)	{	

		//	Empty.	

}	

The	isComputerStartsBlackEnabled,	isComputerStartsWhiteEnabled,	isHumanStartsBlackEnabled,
and	isHumanStartsWhiteEnabled	methods	are	called	before	the	Computer	Starts	and	Human
Starts	submenus.	They	become	enabled	if	there	is	no	game	in	progress:	bool
OthelloWidget::isComputerStartsBlackEnabled()	{

return	!isGameInProgress();

}

	

bool	OthelloWidget::isComputerStartsWhiteEnabled()	{

return	!isGameInProgress();

}

	

bool	OthelloWidget::isHumanStartsBlackEnabled()	{

return	!isGameInProgress();

}

	

bool	OthelloWidget::isHumanStartsWhiteEnabled()	{

return	!isGameInProgress();

}

The	onComputerStartsBlack	and	onComputerStartsWhite	methods	are	called	when	the	user
selects	one	of	the	items	of	the	Computer	Starts	submenu.	They	set	the	computer
mark	to	black	or	white,	start	the	game	by	setting	the	mark	in	the	middle	of	the
game	grid,	and	update	the	window:	void
OthelloWidget::onComputerStartsBlack()	{

setGameInProgress(true);

set(ROWS	/	2,	COLUMNS	/	2,	m_computerMark	=
Black);	m_humanMark	=	White;

update();

}

	

void	OthelloWidget::onComputerStartsWhite()	{

setGameInProgress(true);

set(ROWS	/	2,	COLUMNS	/	2,	m_computerMark	=
White);	m_humanMark	=	Black;

update();

}

The	onHumanStartsBlack	and	onHumanStartsWhite	methods	are	called	when	the	user
selects	one	of	the	items	of	the	Human	Starts	submenu.	They	set	the	computer	mark
to	black	or	white	and	update	the	window.	They	do	not	set	any	mark	in	the	game
grid.	Instead,	the	human	is	to	make	the	first	move:	void
OthelloWidget::onHumanStartsBlack()	{

setGameInProgress(true);

m_humanMark	=	Black;

m_computerMark	=	White;

update();

}

	

void	OthelloWidget::onHumanStartsWhite()	{

setGameInProgress(true);

m_humanMark	=	White;

m_computerMark	=	Black;

update();

}

The	mouseMark	method	is	called	when	the	user	clicks	one	empty	position	in	the
game	grid.	We	start	by	setting	the	next	mark	at	the	position,	and	turn	the	marks
as	a	result	of	the	move:	void	OthelloWidget::mouseMark(int	row,	int	column)	{

set(row,	column,	m_humanMark);

turn(row,	column,	m_humanMark);

update();

If	the	human's	move	did	not	cause	the	game	grid	to	become	full,	we	call	to
calculateComputerMove	to	set	the	computer	mark	to	the	position,	causing	the
maximum	number	of	opposite	marks	to	be	turned.	We	then	update	the	window
and	call	checkWinner	again	to	decide	if	the	computer	move	caused	the	game	grid	to
become	full:	if	(!checkWinner())	{

calculateComputerMove();

update();

checkWinner();

}

}

The	drawMark	method	is	called	when	a	position	in	the	game	grid	needs	to	be
repainted.	It	draws	the	mark	in	the	same	way	as	in	the	previous	chapter:	void
OthelloWidget::drawMark(QPainter&	painter,	const	QRect&	markRect,	int
mark)	{

painter.setPen(Qt::black);

painter.drawRect(markRect);

painter.fillRect(markRect,	Qt::lightGray);

switch	(mark)	{

case	Black:

painter.setPen(Qt::black);

painter.setBrush(Qt::black);

painter.drawEllipse(markRect);

break;

	

case	White:

painter.setPen(Qt::white);

painter.setBrush(Qt::white);

painter.drawEllipse(markRect);

break;

	

case	Empty:

break;

}

}

The	checkWinner	method	of	this	chapter	is	also	similar	to	its	counterpart	in	the
previous	chapter.	It	checks	whether	the	game	grid	is	full.	If	it	is	full,	the	winner
is	announced,	or	else	it	is	a	draw:	bool	OthelloWidget::checkWinner()	{

int	blacks	=	0,	whites	=	0,	empties	=	0;

for	(int	row	=	0;	row	<	ROWS;	++row)	{

for	(int	column	=	0;	column	<	COLUMNS;	++column)	{

switch	(get(row,	column))	{

case	Black:

++blacks;

break;

	

case	White:

++whites;

break;

	

case	Empty:

++empties;

break;

}

}

}

	

if	(empties	==	0)	{

QMessageBox	messageBox(QMessageBox::Information,
tr("Victory"),	QString());	QString	text;

	

if	(blacks	>	whites)	{

text.sprintf("The	Winner:	%s.",	(m_computerMark	==
Black)	?	"Computer"	:	"Human");	}

else	if	(whites	>	blacks)	{

text.sprintf("The	Winner:	%s.",	(m_computerMark	==

White)	?	"Computer"	:	"Human");	}

else	{

text.sprintf("A	Draw.");

}

	

messageBox.setText(text);

messageBox.setStandardButtons(QMessageBox::Ok);
messageBox.exec();

setGameInProgress(false);

clearGrid();

update();

	

return	true;

}

	

return	false;

}

The	calculateComputerMove	method	calculates	the	move	of	the	computer	that
generates	the	highest	number	of	turned	opposite	marks.	We	iterate	through	the
computer	marks	and,	for	each	mark,	call	calculateTurns	to	obtain	the	maximum
number	of	opposite	marks	that	would	be	turned	if	we	placed	the	marks	at	that
position.	For	each	mark,	we	also	obtain	the	number	of	neighbours,	which	is
valuable	if	we	do	not	find	any	marks	to	turn.

The	maxTurnSetSize	and	maxNeighbours	fields	hold	the	maximum	number	of	turnable
marks	and	neighbours;	maxTurnSetList	holds	a	list	of	the	maximum	sets	of
positions	of	turnable	marks,	and	maxNeighboursList	holds	a	list	of	the	maximum
number	of	neighbours:	void	OthelloWidget::calculateComputerMove()	{

int	maxTurnSetSize	=	0,	maxNeighbours	=	0;
QList<QSet<QPair<int,int>>>	maxTurnSetList;
QList<QPair<int,int>>	maxNeighboursList;

We	iterate	through	all	the	positions	in	the	game	grid.	For	each	empty	position,
we	obtain	the	number	of	opposite	marks	to	be	turned	if	we	were	to	place	our
mark	in	that	position.	We	also	obtain	the	number	of	opposite	neighbours:	for	(int
row	=	0;	row	<	ROWS;	++row)	{

for	(int	column	=	0;	column	<	COLUMNS;	++column)	{

if	(get(row,	column)	==	Empty)	{

QSet<QPair<int,int>>	turnSet;	int	neighbours	=	0;

calculateTurns(row,	column,	m_computerMark,	turnSet,

neighbours);	int	turnSetSize	=	turnSet.size();

If	we	find	a	set	of	turnable	marks	that	is	larger	than	the	current	maximum	set,	we
set	the	maxTurnSetSize	field	to	the	size	of	the	new	turnable	set,	insert	the	current
position	in	the	set,	clear	maxTurnSetList	(since	we	do	not	want	its	previous	smaller
sets),	and	add	the	new	set.

We	add	the	current	set	for	the	sake	of	simplicity;	it	is	easier	to	add	it	to	the	set
than	to	store	it	in	any	other	way:	if	(turnSetSize	>	maxTurnSetSize)	{

maxTurnSetSize	=	turnSetSize;
turnSet.insert(QPair<int,int>(row,	column));
maxTurnSetList.clear();

maxTurnSetList.append(turnSet);	}

If	the	new	set	is	not	empty	and	of	equal	size	to	the	maximum	set,	then	we	simply
add	it	to	maxTurnSetList:	else	if	((turnSetSize	>	0)	&&	(turnSetSize	==
maxTurnSetSize))	{

turnSet.insert(QPair<int,int>(row,	column));
maxTurnSetList.append(turnSet);	}

We	also	check	the	number	of	neighbours	of	the	current	position.	We	work	in	the
same	way	as	in	the	turnable	set	case.	If	the	neighbours	are	more	than	the
maximum	number	of	neighbours,	we	clear	maxNeighboursList	and	add	the	new
position:	if	(neighbours	>	maxNeighbours)	{

maxNeighbours	=	neighbours;
maxNeighboursList.clear();

maxNeighboursList.append(QPair<int,int>(row,

column));	}

If	there	is	at	least	one	neighbour,	and	the	neighbours	is	equal	to	the	maximum
number	of	neighbours,	we	add	it	to	the	maxNeighboursList	list:	else	if	((neighbours	>
0)	&&	(neighbours	==	maxNeighbours))	{

maxNeighboursList.append(QPair<int,int>(row,
column));	}

}

}

}

If	there	is	at	least	one	position	where	we	will	turn	at	least	one	opposite	mark,	we
choose	it.	If	there	are	several	positions	that	will	turn	the	same	amount	of
opposite	marks,	we	randomly	select	one	of	them.	We	use	the	C	standard
functions	srand,	rand,	and	time	to	obtain	a	random	integer	number.

The	random	number	generator	algorithm	takes	a	start	value	and	then	generates	a
sequence	of	random	numbers.	The	srand	function	initializes	the	generator	with	a
start	value,	and	then	rand	is	called	repeatedly	in	order	to	obtain	new	random
numbers.	In	order	to	not	call	srand	with	the	same	start	value	every	time	(which
would	result	in	the	same	random	number	sequence),	we	call	srand	with	the	result
of	a	call	to	the	time	standard	C	function,	which	returns	the	number	of	seconds
since	January	1,	1970.	In	this	way,	the	random	number	generator	is	initialized
with	a	new	value	for	each	game,	and	we	obtain	a	new	sequence	of	random
numbers	by	repeatedly	calling	rand:	if	(maxTurnSetSize	>	0)	{

srand(time(NULL));

int	index	=	rand()	%	maxTurnSetList.size();

QSet<QPair<int,int>>	maxTurnSet	=
maxTurnSetList[index];

When	we	have	obtained	the	set	of	positions	to	be	turned,	we	iterate	through	the
set	and	set	the	computer	mark	to	all	its	positions:	for	(QPair<int,int>	position	:
maxTurnSet)	{

int	row	=	position.first,	column	=	position.second;
set(row,	column,	m_computerMark);	}

}

If	there	is	no	position	that	would	cause	opposite	marks	to	be	turned,	we	look	at
the	neighbours	instead.	In	the	same	way,	we	randomly	select	one	of	the	positions
with	the	maximum	number	of	neighbours.	Note	that	we	do	not	need	to	iterate
through	any	set;	in	this	case,	we	only	set	one	mark:	else	{

assert(!maxNeighboursList.empty());
srand(time(NULL));

int	index	=	rand()	%	maxNeighboursList.size();
QPair<int,int>	position	=	maxNeighboursList[index];	int
row	=	position.first,	column	=	position.second;	set(row,
column,	m_computerMark);	}

}

The	turn	method	is	called	when	the	human	has	made	a	move.	It	calls	calculateMark
to	obtain	a	set	of	turnable	opposite	marks,	and	then	iterates	through	the	set	and
sets	each	position	in	the	game	grid:	void	OthelloWidget::turn(int	row,	int
column,	Mark	mark)	{

QSet<QPair<int,int>>	turnSet;	calculateMark(row,
column,	mark,	turnSet);

for	(QPair<int,int>	pair	:	turnSet)	{

int	row	=	pair.first,	column	=	pair.second;	set(row,
column,	mark);

}

}

The	calculateTurns	method	calculates	the	set	of	turnable	opposite	marks	and
number	of	neighbours	of	the	given	position:	void
OthelloWidget::calculateTurns(int	row,	int	column,	Mark
playerMark,QSet<QPair<int,int>>&	totalSet,	int&	neighbours)	{

Each	integer	pair	in	directionArray	refers	to	a	direction	in	accordance	with	the
compass	rising:	QPair<int,int>	directionArray[]	=

{QPair<int,int>(-1,	0),	//	North	QPair<int,int>(-1,	1),	//
Northeast	QPair<int,int>(0,	1),	//	East	QPair<int,int>(1,
1),	//	Southeast	QPair<int,int>(1,	0),	//	South
QPair<int,int>(1,	-1),	//	Southwest	QPair<int,int>(0,	-1),
//	West	QPair<int,int>(-1,	-1)};	//	Northwest

The	size	of	an	array	can	be	decided	by	dividing	its	total	size	(in	bytes)	by	the
size	of	its	first	value:	int	arraySize	=

(sizeof	directionArray)	/	(sizeof	directionArray[0]);

neighbours	=	0;

int	opponentMark	=	(playerMark	==	Black)	?	White	:
Black;

We	iterate	through	the	directions	and,	for	each	direction,	keep	moving	as	long	as
we	find	the	mark	of	the	opponent:	for	(int	index	=	0;	index	<	arraySize;	++index)
{

QPair<int,int>	pair	=	directionArray[index];

The	row	and	column	fields	hold	the	current	row	and	column	as	long	as	we	iterate
through	a	direction:	int	rowStep	=	pair.first,	columnStep	=	pair.second,	currRow
=	row,	currColumn	=	column;

First,	we	check	if	we	have	a	neighbor	of	the	opponent	mark	in	the	closest
position.	If	we	have	not	reached	one	of	the	borders	of	the	game	grid,	and	if	there
is	an	opponent	mark	in	the	position,	we	increase	neighbours:	if	(((row	+	rowStep)
>=	0)	&&	((row	+	rowStep)	<	ROWS)	&&	((column	+	rowStep)	>=	0)	&&
((column	+	columnStep)	<	COLUMNS)	&&	(get(row	+	rowStep,	column	+
rowStep)	==	opponentMark))	{

++neighbours;

}

We	gather	the	marks	we	find	during	the	iteration	in	directionSet:
QSet<QPair<int,int>>	directionSet;

while	(true)	{

currRow	+=	rowStep;

currColumn	+=	columnStep;

If	we	reach	one	of	the	borders	of	the	game	grid,	or	if	we	find	an	empty	position,
we	break	the	iteration:	if	((currRow	<	0)	||	(currRow	==	ROWS)	||

(currColumn	<	0)	||	(currColumn	==	COLUMNS)	||

(get(currRow,	currColumn)	==	Empty))	{

break;

}

If	we	find	the	player's	mark,	we	add	the	directionSet	to	the	total	set	and	break	the
iterations:	else	if	(get(currRow,	currColumn)	==	playerMark)	{

totalSet	+=	directionSet;

break;

}

If	we	do	find	the	player's	mark	or	an	empty	position,	we	have	found	the
opponent's	mark,	and	we	add	its	position	to	the	direction	set:	else	{

directionSet.insert(QPair<int,int>(row,	column));	}

}

}

}

	

	

The	main	function

	

As	always,	the	main	function	creates	an	application,	shows	the	window,	and
executes	the	application	until	the	user	closes	the	window	or	selects	the	Exit
menu	item.

Main.cpp

#include	"OthelloWidget.h"	

#include	"OthelloWindow.h"	

#include	<QApplication>	

int	main(int	argc,	char	*argv[])	{	

		QApplication	application(argc,	argv);	OthelloWindow	othelloWindow;	

othelloWindow.show();	

		return	application.exec();	}	

	

	

Noughts	and	Crosses
The	Noughts	and	Crosses	application	of	this	chapter	is	based	on	the	version	in
the	previous	chapter.	The	difference	is	that	in	this	version	the	computer	plays
against	a	human.

The	NaCWindow	class

	

The	NaCWindow	class	is	similar	to	the	OthelloWindow	class	in	the	previous	section	(NaC
is	an	abbreviation	for	Noughts	and	Crosses).	It	adds	two	submenus	to	the	game
menu,	where	the	computer	or	human	makes	the	first	move	and	selects	a	nought
or	cross:	NaCWindow.h

#ifndef	NACWINDOW_H	

#define	NACWINDOW_H	

	

#include	"..\MainWindow\MainWindow.h"	

#include	"NaCWidget.h"	

	

class	NaCWindow	:	public	MainWindow	{	

		Q_OBJECT	

	

		public:	

				NaCWindow(QWidget	*parentWidget	=	nullptr);	~NaCWindow();	

	

		public:	

				void	closeEvent(QCloseEvent	*eventPtr)	{m_nacWidgetPtr-

>closeEvent(eventPtr);}	

	

		private:	

				NaCWidget*	m_nacWidgetPtr;	

};	

	

#endif	//	NACWINDOW_H	

The	NaCWindow.cpp	file	holds	the	definitions	of	the	methods	of	the	NaCWindow	class:
NaCWindow.cpp

#include	"NaCWindow.h"	

#include	<QtWidgets>	

The	title	has	been	changed	to	Noughts	and	Crosses	Advanced:
NaCWindow::NaCWindow(QWidget	*parentWidget	/*=	nullptr*/)
:MainWindow(parentWidget)	{

setWindowTitle(tr("Noughts	and	Crosses	Advanced"));
resize(1000,	500);

	

m_nacWidgetPtr	=	new	NaCWidget(this);
setCentralWidget(m_nacWidgetPtr);

{	QMenu*	gameMenuPtr	=	menuBar()-
>addMenu(tr("&Game"));	connect(gameMenuPtr,
SIGNAL(aboutToShow()),	this,	SLOT(onMenuShow()));

{	QMenu*	computerStartsMenuPtr	=

gameMenuPtr->addMenu(tr("&Computer	Starts"));
connect(computerStartsMenuPtr,
SIGNAL(aboutToShow()),	this,	SLOT(onMenuShow()));

addAction(computerStartsMenuPtr,	tr("Computer
&Nought"),	SLOT(onComputerStartsNought()),	0,
tr("Computer	Nought"),	nullptr,	tr("Computer	Nought"),
LISTENER(isComputerStartsNoughtEnabled));

addAction(computerStartsMenuPtr,	tr("Computer
&Cross"),	SLOT(onComputerStartsCross()),	0,
tr("Computer	Cross"),	nullptr,	tr("Computer	Cross"),
LISTENER(isComputerStartsCrossEnabled));	}

	

{	QMenu*	humanStartsMenuPtr	=

gameMenuPtr->addMenu(tr("&Human	Starts"));
connect(humanStartsMenuPtr,	SIGNAL(aboutToShow()),
this,	SLOT(onMenuShow()));

addAction(humanStartsMenuPtr,	tr("Human	&Nought"),
SLOT(onHumanNought()),	0,	tr("Human	Nought"),
nullptr,	tr("Human	Nought"),
LISTENER(isHumanNoughtEnabled));

addAction(humanStartsMenuPtr,	tr("Human	&Cross"),
SLOT(onHumanCross()),	0,	tr("Human	Cross"),	nullptr,
tr("Human	Cross"),
LISTENER(isHumanCrossEnabled));	}

	

gameMenuPtr->addSeparator();

addAction(gameMenuPtr,	tr("&Quit	the	Game"),
SLOT(onQuit()),

QKeySequence(Qt::CTRL	+	Qt::Key_Q),	tr("Quit
Game"),	nullptr,	tr("Quit	the	Game"),
LISTENER(isQuitEnabled));

addAction(gameMenuPtr,	tr("E&xit"),	SLOT(onExit()),
QKeySequence::Quit);	}

}

	

NaCWindow::~NaCWindow()	{

delete	m_nacWidgetPtr;

}

	

	

The	NaCWidget	class

	

The	NaCWidget	class	has	been	improved	compared	to	the	version	in	the	previous
chapter.	It	holds	the	calculateComputerMove	and	calculateMarkValue	methods	for	the
computer	to	play	against	the	human:	NaCWidget.h

#ifndef	NACWIDGET_H	

#define	NACWIDGET_H	

	

#include	"..\MainWindow\GameWidget.h"	

	

#define	ROWS				26	

#define	COLUMNS	26	

	

enum	Mark	{Empty	=	0,	Nought,	Cross};	

class	NaCWidget	:	public	GameWidget	{	

		Q_OBJECT	

	

		public:	

				NaCWidget(QWidget*	parentWidget);	

				void	mouseMark(int	row,	int	column);	void	drawMark(QPainter&	painter,	const	

QRect&	markRect,	int	mark);	

		public	slots:	

				DEFINE_LISTENER(NaCWidget,	isComputerStartsNoughtEnabled);	

DEFINE_LISTENER(NaCWidget,	isComputerStartsCrossEnabled);	

DEFINE_LISTENER(NaCWidget,	isHumanStartsNoughtEnabled);	

DEFINE_LISTENER(NaCWidget,	isHumanStartsCrossEnabled);	

				void	onComputerStartsNought();	

				void	onComputerStartsCross();	

				void	onHumanStartsNought();	

				void	onHumanStartsCross();	

	

		private:	

				bool	checkWinner(int	row,	int	column,	Mark	mark);	int	countMarks(int	row,	

int	column,	int	rowStep,	int	columnStep,	Mark	mark);	void	

calculateComputerMove(int&	row,	int	&column);	double	calculateMarkValue(int	

row,	int	column,	Mark	mark);	

				Mark	m_humanMark,	m_computerMark;	};	

	

#endif	//	NACWIDGET_H	

The	NaCWidget.cpp	file	holds	the	definitions	of	the	methods	of	the	NaCWidget	class:
NaCWidget.cpp

#include	"NaCWidget.h"	

#include	<CTime>	

#include	<CAssert>	

	

NaCWidget::NaCWidget(QWidget*	parentWidget)	:GameWidget(ROWS,	COLUMNS,	

parentWidget)	{	

		//	Empty.	

}	

The	isComputerStartsNoughtEnabled,	isComputerStartsCrossEnabled,
isHumanStartsNoughtEnabled,	and	isHumanStartsCrossEnabled	methods	decide	whether	to
enable	the	Computer	Nought,	Computer	Cross,	Human	Nought,	and	Human	cross	menu	items.
They	are	all	enabled	when	there	is	no	game	in	progress:	bool
NaCWidget::isComputerStartsNoughtEnabled()	{

return	!isGameInProgress();

}

	

bool	NaCWidget::isComputerStartsCrossEnabled()	{

return	!isGameInProgress();

}

	

bool	NaCWidget::isHumanStartsNoughtEnabled()	{

return	!isGameInProgress();

}

	

bool	NaCWidget::isHumanStartsCrossEnabled()	{

return	!isGameInProgress();

}

The	onComputerStartsNought,	onComputerStartsCross,	onHumanStartsNought,	and
onHumanStartsCross	are	called	when	the	user	selects	the	Computer	Noughts,	Computer
Cross,	Human	Noughts,	and	Human	Cross	menu	items.	They	set	the	game	in	progress,	set
the	computer	and	human	marks	to	nought	and	cross,	and	update	the	window.	In
cases	where	the	computer	makes	the	first	move,	it	is	placed	in	the	middle	of	the
game	grid	in	order	to	use	the	game	grid	as	effectively	as	possible:	void
NaCWidget::onComputerStartsNought()	{

setGameInProgress(true);

set(ROWS	/2,	COLUMNS	/	2,	m_computerMark	=
Nought);	m_humanMark	=	Cross;

update();

}

	

void	NaCWidget::onComputerStartsCross()	{

setGameInProgress(true);

set(ROWS	/2,	COLUMNS	/	2,	m_computerMark	=
Cross);	m_humanMark	=	Nought;

update();

}

	

void	NaCWidget::onHumanStartsNought()	{

setGameInProgress(true);

m_computerMark	=	Cross;

m_humanMark	=	Nought;

update();

}

	

void	NaCWidget::onHumanStartsCross()	{

setGameInProgress(true);

m_computerMark	=	Nought;

m_humanMark	=	Cross;

update();

}

The	mouseMark	method	is	called	when	the	human	player	clicks	an	empty	position	in
the	game	grid.	We	start	by	setting	the	mark	to	the	position	and	updating	the
window:	void	NaCWidget::mouseMark(int	row,	int	column)	{

set(row,	column,	m_humanMark);

update();

If	the	human's	move	did	not	cause	them	to	win	the	game,	we	calculate	the	next
move	of	the	computer,	set	the	position,	check	if	the	move	has	caused	the
computer	to	win	the	game,	and	update	the	window:	if	(!checkWinner(row,
column,	m_humanMark))	{

calculateComputerMove(row,	column);	set(row,	column,
m_computerMark);	checkWinner(row,	column,
m_computerMark);	update();

}

}

The	drawMark	method	is	called	when	a	position	needs	to	be	repainted.	It	is	similar
to	its	counterpart	in	the	previous	chapter.	It	draws	a	nought	or	a	cross:	void
NaCWidget::drawMark(QPainter&	painter,	const	QRect&	markRect,	int	mark)	{

painter.setPen(Qt::black);

	

switch	(mark)	{

case	Nought:

painter.drawEllipse(markRect);	break;

	

case	Cross:

painter.drawLine(markRect.topLeft(),
markRect.bottomRight());
painter.drawLine(markRect.topRight(),
markRect.bottomLeft());	break;

	

case	Empty:

break;

}

}

The	checkWinner	method	is	also	similar	to	its	counterpart	in	the	previous	chapter.	It
decides	if	the	latest	move	has	caused	five	marks	in	a	row.	If	it	has,	the	winner	is
announced:	bool	NaCWidget::checkWinner(int	row,	int	column,	Mark	mark)	{

if	((countMarks(row,	column,	-1,	0,	mark)	>=	5)	||

(countMarks(row,	column,	0,	-1,	mark)	>=	5)	||

(countMarks(row,	column,	-1,	1,	mark)	>=	5)	||

(countMarks(row,	column,	1,	1,	mark)	>=	5))	{

QMessageBox	messageBox(QMessageBox::Information,
tr("Victory"),	QString());	QString	text;

text.sprintf("The	Winner:	%s.",	(mark	==
m_computerMark)	?	"Computer"	:	"Human");

messageBox.setText(text);

messageBox.setStandardButtons(QMessageBox::Ok);

messageBox.exec();

setGameInProgress(false);

clearGrid();

update();

return	true;

}

	

return	false;

}

The	countMarks	method	counts	the	number	of	marks	in	a	row.	It	has	been	improved
compared	to	its	counterpart	in	the	previous	chapter.	In	this	version,	we	also
count	the	highest	possible	number	of	marks	in	a	row	that	the	move	can	lead	to.
Since	countMarks	is	called	by	calculateComputerMove,	we	need	to	know	how	many
marks	in	a	row	the	move	may	lead	to:	double	NaCWidget::countMarks(int	row,
int	column,	int	rowStep,	int	columnStep,	Mark	mark)	{

The	markCount	field	holds	the	number	of	marks	in	a	row	that	we	would	get	if	we
placed	our	mark	at	the	given	position;	freeCount	holds	the	number	of	marks	in	a
row	we	possibly	can	get	if	we	continue	to	add	marks	in	that	row.	The	reason	is
that	the	computer	will	not	add	marks	to	a	row	that	cannot	become	five	in	a	row:
double	markCount	=	0;	int	freeCount	=	0;

We	iterate	through	the	game	grid	in	the	given	direction:	{	bool	marked	=	true;	int

currentRow	=	row,	currentColumn	=	column;

while	((currentRow	>=	0)	&&	(currentRow	<	ROWS)
&&	(currentColumn	>=	0)	&&	(currentColumn	<
COLUMNS))	{

As	long	as	we	find	the	mark,	we	increase	both	markCount	and	freeCount:	if
(get(currentRow,	currentColumn)	==	mark)	{

if	(marked)	{

++markCount;

}

	

++freeCount;

}

If	we	find	an	empty	position,	we	add	0.4	(since	a	free	row	is	better	than	a	closed
row)	to	the	markCount,	and	continue	to	increase	the	freeCount:	else	if
(get(currentRow,	currentColumn)	==	Empty)	{

if	(marked)	{

markCount	+=	0.4;

}

	

marked	=	false;

++freeCount;

}

If	we	find	neither	the	computer	mark	nor	an	empty	position,	we	must	have	found
the	human's	mark,	and	we	break	the	iteration:	else	{

break;

}

At	the	end	of	each	iteration,	we	add	the	row	and	columns	steps	to	the	current
row	and	column:	currentRow	+=	rowStep;	currentColumn	+=	columnStep;

}

}

We	perform	a	similar	iteration	in	the	opposite	direction.	The	only	difference	is
that	we	subtract	the	row	and	columns	steps	at	the	end	of	each	iteration,	instead	of
adding	to	them:	{	bool	marked	=	true;	int	currentRow	=	row	+	rowStep,
currentColumn	=	column	+	columnStep;

while	((currentRow	>=	0)	&&	(currentRow	<	ROWS)
&&	(currentColumn	>=	0)	&&	(currentColumn	<
COLUMNS))	{

if	(get(currentRow,	currentColumn)	==	mark)	{

if	(marked)	{

++markCount;

}

}

else	if	(get(currentRow,	currentColumn)	==	Empty)	{

if	(marked)	{

markCount	+=	0.4;

}

	

marked	=	false;

++freeCount;

}

else	{

break;

}

	

currentRow	-=	rowStep;

currentColumn	-=	columnStep;

}

}

If	the	free	count	is	at	least	five,	we	return	the	mark	count.	If	it	is	less	than	five,
we	return	zero,	since	we	cannot	obtain	five	in	a	row	in	this	direction:	return
(freeCount	>=	5)	?	markCount	:	0;	}

The	calculateComputerMove	method	calculates	the	computer	move	that	causes	the
maximum	numbers	of	marks	in	a	row.	We	count	both	the	computer	and	human's
rows,	since	we	may	be	facing	a	situation	where	we	need	to	stop	the	human	from
winning	instead	of	maximizing	the	computer's	chance	to	win.

The	maxComputerValue	and	maxHumanValue	fields	hold	the	maximum	number	of	marks
in	a	row	that	we	have	found	so	far.	The	maxComputerList	and	maxHumanList	hold	the
position	that	causes	the	maximum	number	of	marks	in	a	row	for	the	computer
and	the	human:	void	NaCWidget::calculateComputerMove(int&	maxRow,int
&maxColumn){

double	maxComputerValue	=	0,	maxHumanValue	=	0;
QList<QPair<int,int>>	maxComputerList,
maxHumanList;

We	iterate	through	the	game	grid.	For	each	empty	position,	we	try	to	set	the
computer	and	human	mark	and	see	how	many	marks	in	a	row	that	would	cause:

for	(int	row	=	0;	row	<	ROWS;	++row)	{

for	(int	column	=	0;	column	<	COLUMNS;	++column)	{

if	(get(row,	column)	==	Empty)	{

set(row,	column,	m_computerMark);

We	obtain	the	maximum	number	of	marks	in	a	row	for	the	computer	and	human
mark.	If	it	is	larger	than	the	previous	maximum	number,	we	clear	the	list	and	add
the	position	to	the	list:	{	double	computerValue	=

calculateMarkValue(row,	column,	m_computerMark);

if	(computerValue	>	maxComputerValue)	{

maxComputerValue	=	computerValue;
maxComputerList.clear();
maxComputerList.append(QPair<int,int>(row,	column));
}

If	the	new	number	of	marks	in	a	row	is	greater	than	zero	or	equals	the	maximum
number,	we	just	add	the	position:	else	if	((computerValue	>	0)	&&
(computerValue	==	maxComputerValue))	{

maxComputerList.append(QPair<int,int>(row,	column));
}

}

We	do	the	same	for	the	human	mark	as	the	computer	mark:	set(row,	column,

m_humanMark);

{	double	humanValue	=

calculateMarkValue(row,	column,	m_humanMark);

if	(humanValue	>	maxHumanValue)	{

maxHumanValue	=	humanValue;	maxHumanList.clear();

maxHumanList.append(QPair<int,int>(row,	column));	}

else	if	((humanValue	>	0)	&&	(humanValue	==
maxHumanValue))	{

maxHumanList.append(QPair<int,int>(row,	column));	}

}

Finally,	we	reset	the	position	to	the	empty	value:	set(row,	column,	Empty);	}

}

}

The	computer	or	human	must	have	at	least	one	in	a	row	for	a	position:
assert(!maxComputerList.empty()	&&	!maxHumanList.empty());

If	the	computer's	value	is	at	least	two	and	larger	the	human	value,	or	if	the
human	value	is	less	the	four,	we	randomly	select	one	of	the	computer's
maximum	moves:	if	((maxComputerValue	>=	2)	&&	((maxComputerValue	>=

maxHumanValue)	||

(maxHumanValue	<	3.8)))	{

srand(time(NULL));

QPair<int,int>	pair	=

maxComputerList[rand()	%	maxComputerList.size()];
maxRow	=	pair.first;

maxColumn	=	pair.second;

}

However,	if	the	computer	cannot	make	at	least	two	in	a	row,	or	if	the	human	is
about	to	get	five	in	a	row,	we	randomly	select	one	of	the	human's	maximum
moves:	else	{

srand(time(NULL));

QPair<int,int>	pair	=

maxHumanList[rand()	%	maxHumanList.size()];
maxRow	=	pair.first;

maxColumn	=	pair.second;

}

}

The	calculateMarkValue	method	calculates	the	maximum	number	of	marks	in	a	row
that	the	given	position	may	cause	by	calculating	the	larger	value	of	its	four
directions:	double	NaCWidget::calculateMarkValue(int	row,	int	column,	Mark
mark)	{

return	qMax(qMax(countMarks(row,	column,	-1,	0,
mark),	countMarks(row,	column,	0,	-1,	mark)),
qMax(countMarks(row,	column,	-1,	1,	mark),
countMarks(row,	column,	1,	1,	mark)));	}

	

	

The	main	function
Finally,	the	main	function	works	at	it	always	does	in	the	Qt	applications:

Main.cpp

#include	"NaCWidget.h"	

#include	"NaCWindow.h"	

#include	<QApplication>	

	

int	main(int	argc,	char	*argv[])	{	

		QApplication	application(argc,	argv);	

		NaCWindow	mainWindow;	

		mainWindow.show();	

		return	application.exec();	

}	

	

Summary

	

In	this	chapter,	we	have	developed	more	advanced	versions	of	the	games	of	the
previous	chapter.	In	both	Othello	and	Noughts	and	Crosses,	we	have	added	code
that	lets	the	computer	play	against	the	human.	In	Othello,	we	looked	for	the
position	in	the	game	grid	that	would	cause	the	highest	number	of	the	opponent’s
marks	to	be	changed.	In	Noughts	and	Crosses,	we	searched	for	the	move	that
gave	the	computer	the	highest	possible	number	of	marks	in	a	row,	preferably	five
in	a	row.	However,	we	also	had	to	search	for	the	potential	number	of	marks	in	a
row	for	the	opponent,	and	prevent	their	next	move	if	it	led	to	victory.	Now,	I
suggest	that	you	sit	back	and	enjoy	a	couple	of	rounds	with	the	computer	before
moving	on	to	the	next	chapter.

In	the	next	chapter,	we	will	start	developing	a	Domain-Specific	Language
(DSL),	which	is	a	language	intended	for	a	specific	domain.	We	will	develop	a
DSL	for	specifying	the	drawings	of	graphical	objects,	such	as	lines,	rectangles,
ellipses,	and	text,	as	well	as	the	settings	for	color,	font,	pen	and	brush	style,	and
alignment.	We	will	also	write	a	viewer	that	displays	the	graphical	objects.

	

	

	

Domain-Specific	Language

	

In	the	previous	chapters,	we	developed	the	games	Othello	and	Noughts	and
Crosses	with	the	Qt	library.	In	this	chapter,	we	will	start	to	develop	a	Domain-
Specific	Language	(DSL),	which	is	a	language	intended	for	a	specific	domain.
More	specifically,	we	will	develop	a	language	for	writing	graphical	objects	in	a
Qt	widget.	The	language	allows	us	to	draw	lines,	rectangles,	ellipses,	and	to
write	text.	Moreover,	it	does	allow	us	to	choose	color	as	well	as	pen	and	brush
style	for	the	graphical	objects.	It	also	allows	us	to	choose	font	and	alignment	for
the	text.

Topics	we	will	cover	in	this	chapter	include:

First,	we	will	informally	look	into	the	source	code	of	our	DSL	by	looking	at
an	example.	We	will	draw	graphical	objects	and	set	their	color,	style,	and
font.
We	will	formally	define	our	language	with	grammar.
When	we	have	defined	the	grammar,	we	write	the	scanner.	The	scanner
reads	the	source	code	and	recognizes	meaningful	sequences	of	characters,
called	tokens.
When	we	have	written	the	scanner,	we	write	the	parser.	The	parser	can	be
considered	the	heart	of	our	DSL.	It	requests	new	tokens	from	the	scanner,
when	needed.	It	checks	that	the	source	code	complies	with	the	grammar,
and	it	generates	a	sequence	of	actions.	Each	action	holds	an	instruction,
such	as	setting	the	color	or	drawing	a	line.
Finally,	we	write	a	viewer	that	reads	the	action	sequence	generated	by	the
parser	and	displays	the	graphical	objects	in	a	Qt	widget.

	

	

Introducing	the	source	language	–	a
simple	example
The	source	language	of	our	DSL	is	made	up	by	a	sequence	of	instructions.	There
are	instructions	for	drawing	graphical	objects	such	as	lines,	rectangles,	ellipses,
and	text.	We	also	have	instructions	for	setting	the	color	and	style	of	the	objects
as	well	as	font	and	alignment	of	the	text.	Finally,	there	is	instruction	for
assigning	values	to	a	name.

Let	us	look	at	an	example.	The	following	code	draws	a	rectangle	and	writes	text.
Note	that	the	language	is	not	case-sensitive,	that	is,	it	does	not	matter	whether
we	use	small	or	capital	letters	in	our	code.	We	start	by	defining	the	top-left
corner	of	a	rectangle:

topLeft	=	point(100,	100);	

We	use	the	coordinate	operators	to	extract	the	x	and	y	coordinates	of	the	top-left
point	and	define	the	bottom-right	corner:

left	=	xCoordinate(topleft);	

		top	=	yCoordinate(topLeft);	

		bottomRight	=	point(left	+	100,	top	+	100);	

We	use	the	predefined	values	DashLine	and	CrossPatterns	to	set	the	style	of	the	pen
and	brush:

SetPenStyle(DashLine);	

		SetBrushStyle(CrossPattern);	

We	use	the	predefined	color	Black	for	the	pen	and	create	our	own	color	Purple	for
the	brush.	We	can	create	a	new	color	with	three	values	corresponding	to	their
red,	green,	and	blue	components.	Each	component	can	hold	a	value	between	0
and	255,	inclusive:

SetPenColor(Black);	

		PurpleColor	=	color(128,	0,	128);	

		SetBrushColor(PurpleColor);	

		DrawRectangle(topLeft,	bottomRight);	

We	continue	to	add	a	text,	with	font	and	alignment.	We	choose	12	point	Times	New
Roman	with	left	horizontal	alignment	and	top	vertical	alignment:

SetFont(font("Times	New	Roman",	12));	

		SetHorizontalAlignment(AlignLeft);	

		SetVerticalAlignment(AlignTop);	

		DrawText(point(300,	150),	"Hello,	DSL!");

The	instructions	of	this	example	will	be	divided	into	meaningful	parts	by	the
scanner;	the	parser	will	check	that	the	instructions	comply	with	the	grammar	and
generate	a	sequence	of	actions	read	by	the	viewer	and	display	the	following	Qt
widget:

The	grammar	of	the	source	language
The	source	language	of	our	DSL	needs	to	be	exactly	defined.	We	do	that	by
defining	grammar	for	the	language.	Grammar	is	made	up	by	rules	(in	italic
style),	keywords	(in	bold	style),	separations,	and	punctuations.

The	program	rule	is	the	start	rule.	The	arrow	(->)	means	that	a	program	is	made	up
by	an	instructions	list.	The	arrow	can	be	read	as:	program	->	instructionList

In	the	grammar,	an	asterisk	(*)	means	zero	or	more.	Hence,	an	instruction	list	is
made	up	by	zero	or	more	instructions:	instructionList	->	instruction*

The	assignment	instruction	takes	a	name	followed	by	the	assignment	operator
(=),	an	expression,	and	a	semicolon.	The	instructions	for	setting	the	pen	and
brush	color	and	style	take	one	expression,	so	do	the	settings	of	the	font	and
alignment.	The	instructions	for	drawing	lines,	rectangles,	and	text	take	two
expressions.	Note	that	every	instruction	is	terminated	by	a	semicolon	(;).

The	vertical	bar	(|)	can	be	read	as	or.	An	instruction	is	an	assignment	or	the
setting	of	the	pen	color	or	the	setting	of	the	brush	color,	and	so	on:	instruction	->
name	=	expression;	|	SetPenColor(expression);	|	SetPenStyle(expression);	|
SetBrushColor(expression);	|	SetBrushStyle(expression);	|	SetFont(expression);	|
SetHorizontalAlignment(expression);	|	SetVerticalAlignment(expression);	|
DrawLine(expression,	expression);	|	DrawRectangle(expression,	expression);	|
DrawEllipse(expression,	expression);	|	DrawText(expression,	expression);

The	next	part	of	the	parser	to	define	is	the	expressions.	First,	we	look	at	the
operators	of	the	expressions.	We	also	have	to	look	into	the	priority	of	the
operators.	For	instance,	multiplication	and	division	have	higher	priority	than
addition	and	subtraction.	The	operators	of	the	grammar	have	the	following
priorities:

Expression Operator Priority

Addition	Subtraction +	- Lowest

Multiplication	Division *	/

Primary

point

xCoordinate

yCoordinate

color

font

(expression)

name

value

Highest

	

We	define	two	rules	each	for	addition	and	subtraction,	as	well	as	for
multiplication	and	division.	We	start	with	the	lowest	priority	level,	which	is
addition	and	subtraction.	In	the	expression	rule	we	call	the	mulDivExpression	rule,
which	handles	multiplication	and	division	expressions,	and	we	call	the
expressionRest	rule	to	examine	the	rest	of	the	expression:	expression	->
mulDivExpression	expressionRest

In	the	expressionRest	rule	we	look	into	the	next	token.	If	it	is	a	plus	or	a	minus,	we
have	an	addition	or	subtraction	expression.	We	call	mulDivExpression	to	handle
expressions	of	higher	priority.	Finally,	we	call	the	expressionRest	rule	again	in	case
of	another	plus	or	minus.	However,	if	the	first	token	is	neither	a	plus	nor	a
minus,	we	do	nothing:	expressionRest	->	+	mulDivExpression	expressionRest	|	-
mulDivExpression	expressionRest	|	/*	empty	*/

mulDivExpression	and	mulDivExpressionRest	work	in	the	same	way	as	expression	and
expressionRest	shown	previously:	mulDivExpression	->	primaryExpression
mulDivExpressionRest	mulDivExpressionRest	->	*	primaryExpression
mulDivExpressionRest	|	/	primaryExpression	mulDivExpressionRest	|	/*	empty
*/

The	primary	expression	is	a	point,	an	x	or	y	coordinate,	a	color,	a	font,	a	name,	or
a	value.	A	point	is	made	up	by	two	expressions	holding	the	x	and	y	coordinate	of
the	point.	A	coordinate	takes	an	expression	holding	a	point	and	gives	it	an	x	or	y

coordinate:	primaryExpression	->	point(expression,	expression)	|
xCoordinate(expression)	|	yCoordinate(expression)

A	color	expression	is	made	up	by	its	red,	green,	and	blue	components,	while	a
font	expression	is	made	up	by	the	name	and	size	of	the	font:	|	color(expression,
expression,	expression)	|	font(expression,	expression)

An	expression	can	be	enclosed	in	parentheses	in	order	to	change	the	priority	of
the	expression.	For	instance,	in	the	expression	2	+	3	x	4,	multiplication	takes
precedence	over	addition,	but	in	the	expression	(2	+	3)	x	4,	addition	takes
precedence	over	multiplication:	|	(expression)

Finally,	an	expression	can	be	a	name	earlier	associated	with	a	value,	or	simply	a
value:	|	name	|	value

The	target	language

	

The	target	language	is	defined	by	a	sequence	of	actions.	Informally,	the	actions
correspond	to	the	instructions	of	the	grammar.	We	have	actions	for	setting	the
color	or	style	of	a	pen	or	a	brush,	and	for	setting	the	horizontal	or	vertical
alignment	of	the	text,	as	well	as	actually	drawing	the	lines,	rectangles,	ellipses,
and	text	of	the	drawing.	Later	in	this	chapter,	we	will	write	a	parser	that
generates	a	sequence	of	actions,	and	a	viewer	that	reads	the	actions	and	displays
graphical	objects	in	a	Qt	widget.

An	Action	object	holds	the	identity	of	the	action	(which	is	defined	by	the	TokenId
enumeration	in	the	Token	class,	as	follows)	together	with,	at	most,	two	values.

Action.h:

#ifndef	ACTION_H	

#define	ACTION_H	

	

#include	"Token.h"	

#include	"Value.h"	

	

class	Action	{	

		public:	

				Action(TokenId	actionId,	const	Value&	value1	=	Value(),	const	Value&	value2	

=	Value());	

				Action(const	Action&	action);	Action	operator=(const	Action&	action);	

				TokenId	id()	const	{return	m_actionId;}	

				const	Value&	value1()	const	{return	m_value1;}	

				const	Value&	value2()	const	{return	m_value2;}	

	

		private:	

				TokenId	m_actionId;	Value	m_value1,	m_value2;	};	

	

#endif	//	ACTION_H	

The	Action.cpp	file	holds	the	definitions	of	the	methods	of	the	Action	class.

Action.cpp:

#include	"Action.h"

The	constructor	takes	the	action	identity	and	at	most	two	values:
Action::Action(TokenId	actionId,	const	Value&	value1	/*=	Value()*/,	const
Value&	value2	/*=	Value()*/)	:m_actionId(actionId),	m_value1(value1),

m_value2(value2)	{

//	Empty.

}

	

	

The	colors
When	setting	the	color	of	the	pen	or	brush,	we	need	to	submit	the	color	with	the
instruction.	We	can	use	the	color	rule	in	the	preceding	grammar	to	create	our
own	color.	However,	there	is	a	set	of	predefined	colors	of	the	Qt	class	QColor.	The
following	scanner	defines	a	set	of	predefined	QColor	objects	(Aqua,	Black,	...)	and
maps	them	to	their	names.	For	instance,	the	user	can	write	the	following
instruction	in	the	source	code:

SetPenColor(Aqua);	

In	that	case,	since	the	name	Aqua	is	associated	with	the	QColor	object	Aqua,	the	pen
color	is	set	to	Aqua.

Colors.h:

#ifndef	COLOR_H	

#define	COLOR_H	

	

#include	<QWidget>	

	

extern	QColor	

		Aqua,	Black,	Blue,	Brown,	Cyan,	Gray,	Green,	Lime,	Magenta,	

		Navyblue,	Orange,	Orchid,	Pink,	Purple,	Red,	Silver,	Snow,	

		SteelBlue,	SystemColor,	Turquoise,	Violet,	White,	Yellow;	

	

#endif	//	COLOR_H	

The	Colors.cpp	file	holds	the	definitions	of	the	colors	in	the	Colors.h	file.

Colors.cpp:

#include	"Colors.h"

Each	color	is	defined	by	its	red,	green,	and	blue	component.	Each	component
holds	a	value	from	0	to	255,	inclusive.	For	instance,	the	Blue	color	holds	the	full
value	of	the	blue	component	and	zero	of	the	other	components,	while	Yellow	is	a
blend	of	red	and	green:

QColor	

		Aqua(0,	255,	255),	Black(0,	0,	0),	Blue(0,	0,	255),	

		Brown(165,	42,	42),	Cyan(0,	255,	255),	Gray(127,	127,	127),	

		Green(0,	128,	0),	Lime(0,	255,	0),	Magenta(255,	0,	255),	

		Navyblue(159,	175,	223),	Orange(255,	165,	0),	

		Orchid(218,	112,	214),	Pink(255,	192,	203),	

		Purple(128,	0,	128),	Red(255,	0,	0),	Silver(192,	192,	192),	

		Snow(255,	250,	250),		SteelBlue(70,	130,	180),	

		SystemColor(0,	0,	0),	Turquoise(64,	224,	208),	

		Violet(238,	130,	238),	White(255,	255,	255),	

		Yellow(255,	255,	0);	

Error	handling
There	are	some	functions	for	error	handling:	check	checks	whether	a	condition	is
true	and	reports	an	error	if	it	is	not.	The	syntaxError	and	semanticError	functions
report	a	syntactic	and	semantic	error,	while	error	throws	an	exception	that	is
caught	and	reported	by	the	main	function.

Error.h:

#ifndef	ERROR_H	

#define	ERROR_H	

	

#include	<QString>	

	

void	error(const	QString&	message);	

void	syntaxError();	

void	syntaxError(const	QString&	message);	

void	semanticError(const	QString&	message);	

void	check(bool	condition,	const	QString&	message);	

	

#endif	//	ERROR_H	

The	Error.cpp	file	holds	the	definitions	of	the	Error.h	file.

Error.cpp:

#include	<SStream>	

#include	<Exception>	

using	namespace	std;	

	

#include	"Error.h"	

	

extern	int	g_lineNo	=	1;	

	

void	error(const	QString&	message)	{	

		throw	exception(message.toStdString().c_str());	

}	

We	use	the	C++	stringstream	standard	class	to	compound	the	error	message:

void	syntaxError()	{	

		stringstream	stringStream;	

		stringStream	<<	"Syntax	error	at	line	"	<<	g_lineNo	<<	".";	

The	str	method	returns	an	object	of	the	C++	string	standard	class,	and	c_str
returns	a	character	pointer	that	is	converted	to	a	QString	object	in	the	error	call:

error(stringStream.str().c_str());	

}	

A	syntax	error	occurs	when	the	scanner	finds	a	character	sequence	that	does	not
constitute	a	token,	or	when	the	parser	detects	that	the	token	sequence	does	not
comply	with	the	grammar.	We	will	cover	the	topic	soon;	for	now,	just	remember
that	a	scanner	can	report	errors	too:

void	syntaxError(const	QString&	message)	{	

		stringstream	stringStream;	

		stringStream	<<	"Syntax	error	at	line	"	<<	g_lineNo	

															<<	":	"	<<	message.toStdString()	<<	".";	

		error(stringStream.str().c_str());	

}	

A	semantic	error	occurs	when	an	unknown	name	is	found,	or	when	the	types	of
an	expression	do	not	comply:

void	semanticError(const	QString&	message)	{	

		stringstream	stringStream;	

		stringStream	<<	"Sematic	error:	"	

															<<	message.toStdString()	<<	".";	

		error(stringStream.str().c_str());	

}

The	check	method	has	a	similar	effect	to	the	assert	macro.	It	checks	whether	the
condition	is	true.	If	it	is	not	true,	semanticError	is	called,	which	eventually	throws
an	error	exception:

void	check(bool	condition,	const	QString&	message)	{	

		if	(!condition)	{	

				semanticError(message);	

		}	

}	

The	value

	

There	are	several	kinds	of	values	in	the	language,	which	are	used	to	set	the	color
or	style	of	the	pen	or	brush,	or	to	set	the	end-points	of	a	line,	or	to	set	the	name
of	the	font,	or	the	alignment	of	the	text:	numerical	(double),	string	(QString),	color
(QColor),	font	(QFont),	point	(QPoint),	pen	style	(Qt::PenStyle),	brush	style
(Qt::BrushStyle),	and	horizontal	or	vertical	alignment	(Qt::AlignmentFlag).

Value.h:

#ifndef	VALUE_H	

#define	VALUE_H	

	

#include	<IOStream>	

using	namespace	std;	

	

#include	<QtWidgets>	

	

enum	TypeId	{NumericalTypeId,	StringTypeId,	ColorTypeId,	PenStyleTypeId,	

BrushStyleId,	AlignmentTypeId,	FontTypeId,	PointTypeId};	

class	Value	{	

		public:	

				Value();	

				Value(double	numericalValue);	Value(const	QString&	stringValue);	

Value(const	QPoint&	pointValue);	Value(const	QColor&	colorValue);	Value(const	

QFont&	fontValue);	Value(const	Qt::PenStyle&	penStyleValue);	Value(const	

Qt::BrushStyle&	brushStyleValue);	Value(const	Qt::AlignmentFlag&	alignment);	

				Value(const	Value&	value);	Value&	operator=(const	Value&	value);	

				bool	isNumerical()	const	{return	(m_typeId==NumericalTypeId);}	

				bool	isString()	const	{	return	(m_typeId	==	StringTypeId);	}	

				bool	isColor()	const	{	return	(m_typeId	==	ColorTypeId);	}	

				bool	isFont()	const	{	return	(m_typeId	==	FontTypeId);	}	

				bool	isPoint()	const	{	return	(m_typeId	==	PointTypeId);	}	

				bool	isPenStyle()	const	{return	(m_typeId	==	PenStyleTypeId);}	

				bool	isBrushStyle()	const	{return	(m_typeId	==	BrushStyleId);}	

				bool	isAlignment()	const	{return	(m_typeId==AlignmentTypeId);}	

	

				double	numericalValue()	const	{	return	m_numericalValue;	}	

				const	QString&	stringValue()	const	{	return	m_stringValue;	}	

				const	QColor&	colorValue()	const	{	return	m_colorValue;	}	

				const	QFont&	fontValue()	const	{	return	m_fontValue;	}	

				const	QPoint&	pointValue()	const	{	return	m_pointValue;	}	

				const	Qt::PenStyle&	penStyleValue()	const	{	return	m_penStyleValue;	}	

				const	Qt::BrushStyle&	brushStyleValue()	const	{	return	m_brushStyleValue;	}	

				const	Qt::AlignmentFlag&	alignmentValue()	const	{	return	m_alignmentValue;	

}	

	

		private:	

				TypeId	m_typeId;	

				double	m_numericalValue;	QString	m_stringValue;	

				QPoint	m_pointValue;	

				QColor	m_colorValue;	

				QFont	m_fontValue;	

				Qt::PenStyle	m_penStyleValue;	Qt::BrushStyle	m_brushStyleValue;	

Qt::AlignmentFlag	m_alignmentValue;	};	

	

#endif	//	VALUE_H	

The	Value.cpp	file	holds	the	definitions	of	the	methods	of	the	Value	class.

Value.cpp:

#include	<CAssert>	using	namespace	std;	

	

#include	"Value.h"	

	

Value::Value()	{	

		//	Empty.	

}	

The	non-default	constructors	initialize	the	Value	object	with	appropriate	values:
Value::Value(double	numericalValue)	:m_typeId(NumericalTypeId),
m_numericalValue(numericalValue)	{

//	Empty.

}

	

Value::Value(const	QPoint&	pointValue)
:m_typeId(PointTypeId),

m_pointValue(pointValue)	{

//	Empty.

}

	

	

The	scanner
The	scanner	is	a	part	of	the	application	that	accepts	the	source	code	and
generates	a	sequence	of	tokens.	A	token	is	the	smallest	meaningful	part	of	the
source	code.	For	instance,	the	characters	f,	o,	n,	and	t	make	up	the	keyword	font,
and	the	characters	1,	2,	and	3	constitute	the	numerical	value	123.

However,	first	we	need	the	Token	class	to	keep	track	of	the	tokens.	The	m_tokenId
field	is	set	to	a	value	of	the	enumeration	TokenId.	In	the	case	of	a	name,	the	m_name
field	holds	the	name,	and	in	the	case	of	a	value,	the	m_value	field	holds	the	value.

Token.h:

#ifndef	TOKEN_H	

#define	TOKEN_H	

	

#include	<QWidget>	

#include	"Value.h"	

The	TokenId	enumeration	holds	all	the	tokens	of	the	scanner.	They	are	divided	into
keywords,	operators,	punctuation,	and	separators,	as	well	as	names	and	values.
In	order	to	avoid	converting	between	different	enumerations,	the	TokenId
enumeration	is	used	by	the	scanner,	parser,	and	viewer.	The	TokenId	enumeration
is	used	by	the	scanner	to	distinguish	between	the	different	tokens	by	the	parser
when	type	checking	and	evaluating	expressions,	and	by	the	Action	class	to
distinguish	between	different	actions.

The	first	part	(ColorId	to	YCoordinateId)	is	keywords	of	the	language:

enum	TokenId	{ColorId,	DrawEllipseId,	DrawLineId,	

														DrawRectangleId,	DrawTextId,	FontId,		

														PointId,	SetBrushColorId,	SetBrushStyleId,	

														SetFontId,	SetHorizontalAlignmentId,	

														SetPenColorId,	SetPenStyleId,	

														SetVerticalAlignmentId,	

														XCoordinateId,	YCoordinateId,	

The	second	part	(AddId	to	DivideId)	is	operators:

AddId,	SubtractId,	MultiplyId,	DivideId,	

The	next	part	is	parentheses,	assignment	(=),	comma,	and	semicolon:

LeftParenthesisId,	RightParenthesisId,	

														AssignId,	CommaId,	SemicolonId,	

Finally,	the	last	part	is	the	name,	value,	and	end-of-file	marking:

NameId,	ValueId,	EndOfFileId};	

	

class	Token{	

		public:	

				Token();	

				Token(TokenId	tokenId);	

				Token(TokenId	tokenId,	const	QString&	name);	

				Token(TokenId	tokenId,	const	Value&	value);	

Each	token	can	be	annotated	with	a	name	or	a	value:

TokenId	id()	const	{return	m_tokenId;}	

				const	QString&	name()	const	{	return	m_name;	}	

				const	Value&	value()	const	{	return	m_value;	}	

	

		private:	

				TokenId	m_tokenId;	

				QString	m_name;	

				Value	m_value;	

};	

	

#endif	//	TOKEN_H

The	Token.cpp	file	holds	the	definitions	of	the	methods	of	the	Token	class.

Token.cpp:

#include	"Token.h"	

The	default	token	is	initialized	with	an	end-of-file	token:

Token::Token()	

	:m_tokenId(EndOfFileId)	{	

		//	Empty.	

}	

Most	tokens	hold	only	a	value	of	the	TokenId	enumeration:

Token::Token(TokenId	tokenId)	

	:m_tokenId(tokenId)	{	

		//	Empty.	

}	

Tokens	can	also	hold	a	name	or	a	value:

Token::Token(TokenId	tokenId,	const	QString&	name)	

	:m_tokenId(tokenId),	

		m_name(name)	{	

		//	Empty.	

}	

	

Token::Token(TokenId	tokenId,	const	Value&	value)	

	:m_tokenId(tokenId),	

		m_value(value)	{	

		//	Empty.	

}	

The	Scanner	class	takes	the	source	code	and	divides	it	into	tokens.	A	token	can
also	be	associated	by	a	name	or	a	value.

Scanner.h:

#ifndef	SCANNER_H	

#define	SCANNER_H	

	

#include	"Token.h"	

#include	"Colors.h"

The	init	method	initializes	the	names	of	the	keywords	and	operators:

class	Scanner	{	

		public:	

				static	void	init();	

				Scanner(QString&	buffer);	

The	nextToken	method	scans	the	buffer	and	returns	the	next	token.	If	there	is	no
recognizable	token,	an	error	exception	is	thrown	that	is	later	caught	by	the	main
function:

public:	

				Token	nextToken();	

The	m_buffer	field	holds	the	source	code;	m_bufferIndex	holds	the	index	of	the	next
character	in	the	buffer	to	be	examined	(the	index	is	initialized	to	zero);
m_keywordMap	holds	the	names	of	the	keywords;	m_valueMap	holds	a	map	of	color,
alignment,	and	pen	and	brush	style	values,	and	m_operatorList	hold	a	list	of
operators:

private:	

				QString	m_buffer;	

				int	m_bufferIndex	=	0;	

In	previous	chapters,	we	have	used	the	C++	standard	classes	map,	set,	list,	vector,
and	stack.	In	this	chapter,	we	will	use	the	Qt	classes	QMap,	QSet,	QList,	QVector,	and
QStack	instead.	They	work	approximately	in	the	same	way:

static	QMap<QString,TokenId>	m_keywordMap;	

				static	QMap<QString,Value>	m_valueMap;	

				static	QList<pair<QString,TokenId>>	m_operatorList;	

};	

	

#endif	//	SCANNER_H	

The	Scanner.cpp	file	holds	the	definitions	of	the	methods	of	the	Scanner	class.

Scanner.cpp:

#include	<SStream>	

#include	<IOStream>	

#include	<Exception>	

using	namespace	std;	

	

#include	"Error.h"	

#include	"Scanner.h"	

	

QMap<QString,Value>	Scanner::m_valueMap;	

QMap<QString,TokenId>	Scanner::m_keywordMap;	

QList<pair<QString,	TokenId>>	Scanner::m_operatorList;	

The	g_lineNo	global	field	keeps	track	of	the	current	line	in	the	source	code,	in
order	for	the	error	messages	to	state	the	line	number:

extern	int	g_lineNo;	

The	ADD_TO_OPERATOR_LIST	macro	adds	a	token	to	the	operator	list.	For	instance,
ADD_TO_OPERATOR_LIST("+",	AddId)	adds	the	pair	of	"+"	and	AddId	to	the	list:

#define	ADD_TO_OPERATOR_LIST(text,	token)																						

		m_operatorList.push_back(pair<QString,TokenId>(text,	token));	

	

void	Scanner::init()	{	

		ADD_TO_OPERATOR_LIST("+",	AddId)	

		ADD_TO_OPERATOR_LIST("-",	SubtractId)	

		ADD_TO_OPERATOR_LIST("*",	MultiplyId)	

		ADD_TO_OPERATOR_LIST("/",	DivideId)	

		ADD_TO_OPERATOR_LIST("(",	LeftParenthesisId)	

		ADD_TO_OPERATOR_LIST(")",	RightParenthesisId)	

		ADD_TO_OPERATOR_LIST("=",	AssignId)	

		ADD_TO_OPERATOR_LIST(",",	CommaId)	

		ADD_TO_OPERATOR_LIST(";",	SemicolonId)	

The	ADD_TO_KEYWORD_MAP	macro	adds	a	keyword	to	the	keyword	map.	For	instance,
ADD_TO_KEYWORD_MAP(ColorId)	adds	the	pair	of	Color	and	ColorId	to	the	map.	Note	that
the	Id	part	of	the	keyword	(the	last	two	characters)	text	is	removed:

#define	ADD_TO_KEYWORD_MAP(x)	{																								

		QString	s(#x);																																							

		m_keywordMap[s.toLower().left(s.length()	-	2)]	=	x;	}	

	

		ADD_TO_KEYWORD_MAP(ColorId)	

		ADD_TO_KEYWORD_MAP(DrawEllipseId)	

		ADD_TO_KEYWORD_MAP(DrawLineId)	

		ADD_TO_KEYWORD_MAP(DrawRectangleId)	

		ADD_TO_KEYWORD_MAP(DrawTextId)	

		ADD_TO_KEYWORD_MAP(FontId)	

		ADD_TO_KEYWORD_MAP(PointId)	

		ADD_TO_KEYWORD_MAP(SetBrushColorId)	

		ADD_TO_KEYWORD_MAP(SetBrushStyleId)	

		ADD_TO_KEYWORD_MAP(SetFontId)	

		ADD_TO_KEYWORD_MAP(SetHorizontalAlignmentId)	

		ADD_TO_KEYWORD_MAP(SetPenColorId)	

		ADD_TO_KEYWORD_MAP(SetPenStyleId)	

		ADD_TO_KEYWORD_MAP(SetVerticalAlignmentId)	

		ADD_TO_KEYWORD_MAP(XCoordinateId)	

		ADD_TO_KEYWORD_MAP(YCoordinateId)	

The	ADD_TO_VALUE_MAP	macro	adds	a	value	to	the	value	map.	For	instance,
ADD_TO_VALUE_MAP(Aqua)	adds	the	pair	of	aqua	and	the	QColor	object	Aqua	to	the	map.
Note	that	the	text	is	converted	to	lower	case.	Also	note	that	only	the	last	part
after	the	last	potential	pair	of	colons	(::)	is	included:

#define	ADD_TO_VALUE_MAP(x)	{																											

		QString	s(#x);																																								

		QString	t	=	s.toLower();																														

		int	i	=	t.lastIndexOf("::");																										

		m_valueMap[(i	==	-1)	?	t	:	t.mid(i	+	2)]	=	Value(x);	}	

ADD_TO_VALUE_MAP(Qt::AlignLeft)	adds	the	pair	of	align	left	and	the	Qt::PenStyle	value
to	the	map.	Again,	note	that	only	the	last	segment	of	the	value's	name	is	stored	as
text:

ADD_TO_VALUE_MAP(Qt::AlignLeft)	

		ADD_TO_VALUE_MAP(Qt::AlignTop)	

	

		ADD_TO_VALUE_MAP(Qt::PenStyle::NoPen)	

		ADD_TO_VALUE_MAP(Qt::PenStyle::SolidLine)	

	

		ADD_TO_VALUE_MAP(Qt::BrushStyle::NoBrush)	

		ADD_TO_VALUE_MAP(Qt::BrushStyle::SolidPattern)	

	

		ADD_TO_VALUE_MAP(Aqua)	

		ADD_TO_VALUE_MAP(Black)	

}	

In	the	constructor,	we	load	the	buffer	into	the	m_buffer	field.	We	also	add	the	null-
character	('')	in	order	to	find	the	end	of	the	buffer	in	an	easier	way:

Scanner::Scanner(QString&	buffer)	

	:m_buffer(buffer)	{	

		m_buffer.append('');	

}	

The	nextToken	method	scans	the	buffer	and	returns	the	token	found.	First,	we

iterate	as	long	as	we	find	new-line,	white-space,	or	line	comment.	In	case	of	a
new	line,	we	increase	the	line	count:

Token	Scanner::nextToken()	{	

		while	(true)	{	

				if	(m_buffer[m_bufferIndex]	==	'n')	{	

						++g_lineNo;	

						++m_bufferIndex;	

				}	

A	white-space	is	regular	space,	a	horizontal	or	vertical	tabulator,	a	return
character,	or	new	line.	We	use	the	isSpace	method	to	check	whether	the	character
is	a	white-space:

else	if	(m_buffer[m_bufferIndex].isSpace())	{	

						++m_bufferIndex;	

				}	

If	we	encounter	the	beginning	of	a	line	comment	(//),	we	continue	until	we	find
the	end	of	the	line	('n')	or	the	end	of	the	buffer	(''):

else	if	(m_buffer.indexOf("//",	m_bufferIndex)	==	

													m_bufferIndex)	{	

						while	((m_buffer[m_bufferIndex]	!=	QChar('n'))	&&	

													(m_buffer[m_bufferIndex]	!=	QChar('')))	{	

								++m_bufferIndex;	

						}	

				}	

If	we	do	not	find	a	new	line,	white-space,	or	line	comment,	we	break	the
iteration	and	continue	looking	for	the	next	token:

else	{	

						break;	

				}	

		}	

When	we	have	scanned	through	the	potential	white-spaces	and	comments,	we
start	looking	for	the	real	tokens.	We	start	by	checking	if	the	next	character	in	the
buffer	is	a	null	character	('').	If	it	is	a	null	character,	we	have	found	the	end	of
the	source	code	and	return	end-of-file.	Remember	that	we	added	a	null	character
at	the	end	of	the	buffer	in	the	constructor,	just	to	be	able	to	recognize	the	end	of
the	file:

if	(m_buffer[m_bufferIndex]	==	QChar(''))	{	

				return	Token(EndOfFileId);	

		}	

If	the	next	token	is	not	end-of-file,	we	check	if	it	is	an	operator.	We	iterate
through	the	operator	list	and	check	if	the	buffer	begins	with	any	of	the	operator's
text.	For	instance,	the	add	operator	holds	the	text	+:

for	(const	pair<QString,TokenId>&	pair	:	m_operatorList)	{	

				const	QString&	operatorText	=	pair.first;	

				TokenId	tokenId	=	pair.second;

When	we	have	found	the	operator,	we	increment	the	buffer	index,	and	return	the
token:

if	(m_buffer.indexOf(operatorText,	m_bufferIndex)	==	

								m_bufferIndex)	{	

						m_bufferIndex	+=	operatorText.length();	

						return	Token(tokenId);	

				}	

		}	

If	the	buffer	does	not	begin	with	an	operator,	we	look	after	a	name	representing	a
keyword,	a	value,	or	simply	a	name.	We	start	by	checking	if	the	buffer	begins
with	a	letter	or	the	underscore	character	('_'),	since	a	name	is	allowed	to	start
with	a	letter	or	an	underscore.	However,	the	remaining	characters	can	be	digits
besides	the	letters	and	underscores:

if	(m_buffer[m_bufferIndex].isLetter()	||	

						(m_buffer[m_bufferIndex]	==	'_'))	{	

				int	index	=	m_bufferIndex;	

We	iterate	until	we	find	a	character	that	is	not	a	letter,	digit,	or	underscore:

while	(m_buffer[index].isLetterOrNumber()	||	

											(m_buffer[index]	==	'_'))	{	

						++index;	

				}	

We	extract	the	text	and	increase	the	buffer	index:

int	size	=	index	-	m_bufferIndex;	

				QString	text	=	m_buffer.mid(m_bufferIndex,	size).toLower();	

				m_bufferIndex	+=	size;	

The	text	can	hold	a	keyword,	a	value,	or	a	name.	First,	we	check	whether	the	text
is	present	in	the	keyword	map.	If	it	is	present,	we	just	return	the	token	associated
with	the	keyword	text:

if	(m_keywordMap.contains(text))	{	

						return	Token(m_keywordMap[text]);	

				}	

We	then	check	whether	the	text	is	present	in	the	value	map.	If	it	is	present,	we
return	a	value	token	with	the	value	annotated	to	the	token.	The	value	can	later	be
obtained	by	the	parser:

else	if	(m_valueMap.contains(text))	{	

						return	Token(ValueId,	m_valueMap[text]);	

				}

If	the	text	is	neither	a	keyword	nor	a	value,	we	assume	that	it	is	a	name	and
return	a	name	token	with	the	name	annotated	to	the	token.	The	name	can	later	be
obtained	by	the	parser:

else	{	

						return	Token(NameId,	text);	

				}	

		}	

When	we	have	looked	for	a	name	without	finding	it,	we	start	looking	for	a	string
instead.	A	string	is	a	text	enclosed	by	double	quotes	('"').	If	the	next	character	in
the	buffer	is	a	double	quote,	it	is	the	beginning	of	a	text.	We	remove	the	double
quote	from	the	buffer	and	iterate	until	we	find	the	end	quote	of	the	text:

if	(m_buffer[m_bufferIndex]	==	'"')	{	

				int	index	=	m_bufferIndex	+	1;	

	

				while	(m_buffer[index]	!=	'"')	{	

If	we	find	a	null	character	before	the	end	of	the	text,	a	syntax	error	is	reported
since	we	have	found	the	end	of	the	file	inside	the	text:

if	(m_buffer[index]	==	QChar(''))	{	

								syntaxError("unfinished	string");	

						}	

	

						++index;	

				}	

When	we	have	found	the	end	quote,	we	increase	the	buffer	index	and	return	a
value	token	with	the	text	as	its	annotated	value.	The	text	can	later	be	obtained	by
the	parser:

int	size	=	index	-	m_bufferIndex	+	1;	

				QString	text	=	m_buffer.mid(m_bufferIndex,	size);	

				m_bufferIndex	+=	size;	

				return	Token(ValueId,	Value(text));	

		}	

If	the	next	character	in	the	buffer	is	a	digit,	we	have	found	a	numerical	value,

with	or	without	decimals.	First,	we	iterate	as	long	as	we	find	digits	in	the	buffer:

if	(m_buffer[m_bufferIndex].isDigit())	{	

				int	index	=	m_bufferIndex;	

					

				while	(m_buffer[index].isDigit())	{	

						++index;	

				}

When	we	no	longer	find	any	digits,	we	check	whether	the	next	character	in	the
buffer	is	a	dot	('.').	If	it	is	a	dot,	we	continue	to	iterate	as	long	as	we	find	digits:

if	(m_buffer[index]	==	'.')	{	

						++index;	

	

						while	(m_buffer[index].isDigit())	{	

								++index;	

						}	

				}	

When	we	no	longer	find	any	digits,	we	increase	the	buffer	index	and	return	a
value	token	with	the	annotated	value.	The	value	can	later	be	obtained	by	the
parser:

int	size	=	index	-	m_bufferIndex;	

				QString	text	=	m_buffer.mid(m_bufferIndex,	size);	

				m_bufferIndex	+=	size;	

				return	Token(ValueId,	Value(text.toDouble()));	

		}	

Finally,	if	none	of	the	preceding	cases	apply,	the	source	code	is	syntactically
incorrect,	and	we	report	a	syntax	error:

syntaxError();	

We	return	an	end-of-file	token,	simply	because	we	have	to	return	a	value.
However,	we	will	never	reach	this	point	of	the	code	since	the	syntaxError	call
caused	an	exception	to	be	thrown:

return	Token(EndOfFileId);	

}	

Now	that	we	have	looked	at	the	scanner,	we	will	continue	to	look	at	the	parser	in
the	next	section.

Building	the	parser
Now	that	we	have	looked	into	the	scanner,	it	is	time	to	move	on	to	the	parser.
The	parser	checks	that	the	source	code	complies	with	the	grammar.	It	also
performs	type	checking	and	generates	the	action	list,	which	is	later	displayed	by
the	viewer,	as	follows.	The	Parser	class	mirrors	the	grammar	in	that	way	the	it
holds	one	method	for	each	grammar	rule.

Parser.h:

#ifndef	PARSER_H	

#define	PARSER_H	

	

#include	"Action.h"	

#include	"Scanner.h"	

The	constructor	takes	a	grammar	object	and	the	action	list,	which	is	empty	at	the
beginning.	The	parser	calls	the	scanner	each	time	it	needs	a	new	token:

class	Parser	{	

		public:	

				Parser(Scanner&	m_scanner,	QList<Action>&	actionList);	

The	match	method	checks	whether	the	given	token	equals	the	next	token	obtained
by	the	scanner.	If	it	does	not,	a	syntax	error	is	reported:

private:	

				void	match(TokenId	tokenId);	

The	remaining	methods	of	the	Parser	class	are	divided	into	methods	for
instructions	and	expressions	in	the	grammar,	as	well	as	methods	for	type
checking	and	evaluation	of	expressions:

void	instructionList();	

				void	instruction();	

We	also	add	a	method	to	the	parser	for	each	expression	rule	in	the	grammar:

Value	expression();	

				Value	expressionRest(Value	leftValue);	

				Value	mulDivExpression();	

				Value	mulDivExpressionRest(Value	leftValue);	

				Value	primaryExpression();	

				Value	primaryExpression();	

When	evaluating	the	values	of	expressions,	we	need	to	check	the	types	of	the
values.	For	instance,	when	adding	two	values,	both	of	the	operands	shall	have
numerical	values:

void	checkType(TokenId	operatorId,	const	Value&	value);	

				void	checkType(TokenId	operatorId,	const	Value&	leftValue,	

																			const	Value&	rightValue);	

				Value	evaluate(TokenId	operatorId,	const	Value&	value);	

				Value	evaluate(TokenId	operatorId,	const	Value&	leftValue,	

																			const	Value&	rightValue);

The	m_lookAhead	field	holds	the	next	token	obtained	by	the	scanner,	and	m_scanner
holds	the	scanner	itself.	The	m_actionList	field	holds	a	reference	to	the	action	list
given	in	the	constructor.	Finally,	m_assignMap	holds	a	map	for	the	names	assigned
to	values	by	the	assignment	rule:

private:	

				Token	m_lookAHead;	

				Scanner&	m_scanner;	

				QList<Action>&	m_actionList;	

				QMap<QString,Value>	m_assignMap;																																																																																																																																																																																																												

};	

	

#endif	//	PARSER_H	

The	Parser.cpp	file	holds	the	definitions	of	the	methods	of	the	Parser	class.

Parser.cpp:

#include	<CAssert>	

using	namespace	std;	

	

#include	"Value.h"	

#include	"Token.h"	

#include	"Scanner.h"	

#include	"Parser.h"	

#include	"Error.h"	

The	constructor	initializes	the	references	to	the	scanner	and	the	action	list,	and
sets	the	m_lookAHead	field	to	the	first	token	obtained	by	the	scanner.	Then	the
parsing	process	begins	by	calling	instructionList.	When	the	instruction	list	has
been	parsed,	the	only	remaining	token	shall	be	the	end-of-file	token:

Parser::Parser(Scanner&	m_scanner,	QList<Action>&	actionList)	

	:m_scanner(m_scanner),	

		m_actionList(actionList)	{	

		m_lookAHead	=	m_scanner.nextToken();	

		instructionList();	

		match(EndOfFileId);	

}	

The	g_lineNo	field	keeps	track	of	the	current	line	of	the	source	code	so	that	a
syntax	error	can	be	reported	with	the	correct	line	number:

extern	int	g_lineNo;

The	instructionList	method	keeps	iterating	until	it	encounters	the	end-of-file
token:

void	Parser::instructionList()	{	

		while	(m_lookAHead.id()	!=	EndOfFileId)	{	

				instruction();	

		}	

}	

The	match	method	compares	the	next	token	obtained	by	the	scanner	with	the
given	token.	If	they	do	not	comply,	a	syntax	error	is	reported.	If	they	do	comply,
the	next	token	is	obtained	by	the	scanner:

void	Parser::match(TokenId	tokenId)	{	

		if	(m_lookAHead.id()	!=	tokenId)	{	

				syntaxError();	

		}	

	

		m_lookAHead	=	m_scanner.nextToken();	

}	

Parsing	the	instructions	of	the
language

	

The	instruction	method	holds	a	sequence	of	switch	cases,	one	case	for	each
category	of	instructions.	We	will	look	into	the	next	token	obtained	by	the
scanner:	void	Parser::instruction()	{

TokenId	tokenId	=	m_lookAHead.id();

In	the	case	of	a	name,	we	parse	the	name,	assignment	(=),	the	following
expression,	and	a	semicolon:	switch	(tokenId)	{

case	NameId:	{

QString	assignName	=	m_lookAHead.name();
match(NameId);

match(AssignId);

Value	assignValue	=	expression();	match(SemicolonId);

If	the	name	is	already	associated	with	a	value,	a	semantic	error	is	reported:
check(!m_assignMap.contains(assignName),	"the	name	""	+	assignName	+	""
defined	twiced");	m_assignMap[assignName]	=	assignValue;	}

break;

The	settings	of	pen	and	brush	colors	and	styles,	as	well	as	fonts	and	alignments,
are	a	little	bit	more	complicated.	We	call	expression	to	parse	and	evaluate	the
value	of	an	expression.	The	type	of	the	expression	is	checked,	and	an	Action
object	is	added	to	the	action	list:	case	SetPenColorId:	case	SetPenStyleId:

case	SetBrushColorId:

case	SetBrushStyleId:

case	SetFontId:

case	SetHorizontalAlignmentId:	case
SetVerticalAlignmentId:	{

match(tokenId);

match(LeftParenthesisId);	Value	value	=	expression();
match(RightParenthesisId);	match(SemicolonId);
checkType(tokenId,	value);
m_actionList.push_back(Action(tokenId,	value));	}

break;

The	drawing	of	lines,	rectangles,	ellipses,	and	text	takes	two	expressions,	whose
values	are	evaluated	and	type	checked:	case	DrawLineId:	case	DrawRectangleId:

case	DrawEllipseId:

case	DrawTextId:	{

match(tokenId);

match(LeftParenthesisId);	Value	firstValue	=
expression();	match(CommaId);

Value	secondValue	=	expression();
match(RightParenthesisId);	match(SemicolonId);
checkType(tokenId,	firstValue,	secondValue);
m_actionList.push_back(Action(tokenId,	firstValue,
secondValue));	}

break;

If	none	of	the	preceding	tokens	apply,	a	syntax	error	is	reported:	default:
syntaxError();

}

}

	

	

Parsing	the	expressions	of	the
language

	

An	expression,	at	its	lowest	priority	level,	is	made	up	by	two	multiplication	or
division	expressions.	First,	we	call	mulDivExpression,	which	is	the	next	expression
in	increasing	priority	order,	to	obtain	the	left	value	of	a	possible	addition	or
subtraction	expression,	and	then	expressionRest,	which	checks	if	there	actually	is
such	an	expression:	Value	Parser::expression()	{

Value	leftValue	=	mulDivExpression	();	return
expressionRest(leftValue);

}

The	expressionRest	method	checks	whether	the	next	token	is	a	plus	or	a	minus.	In
that	case,	we	have	an	addition	or	subtraction	expression,	the	token	is	matched,
the	left	and	right	values	are	type	checked,	and	the	resulting	expression	is
evaluated	and	returned:	Value	Parser::expressionRest(Value	leftValue)	{

TokenId	tokenId	=	m_lookAHead.id();

	

switch	(tokenId)	{

case	AddId:

case	SubtractId:	{

match(tokenId);

Value	rightValue	=	mulDivExpression();
check(leftValue.isNumerical()	&&
rightValue.isNumerical(),	"non-numerical	values	in
arithmetic	expression");	Value	resultValue	=

evaluate(tokenId,	leftValue,	rightValue);	return
expressionRest(resultValue);	}

	

default:

return	leftValue;

}

}

The	mulDivExpression	method	works	in	a	way	similar	to	expression	shown
previously.	It	calls	primaryExpression	and	mulDivExpressionRest,	which	look	for
multiplication	and	division.	Multiplication	and	division	have	higher	priority	than
addition	and	subtraction.	As	stated	in	The	grammar	of	source	language	section
previously,	we	need	a	new	pair	of	rules	in	the	grammar,	with	two	pairs	of
methods	in	the	parser	for	the	addition/subtraction	and	multiplication/division
expressions:	Value	Parser::mulDivExpression()	{

Value	leftValue	=	primaryExpression();	return
mulDivExpressionRest(leftValue);	}

	

Value	Parser::mulDivExpressionRest(Value	leftValue)	{

TokenId	tokenId	=	m_lookAHead.id();

	

switch	(tokenId)	{

case	MultiplyId:

case	DivideId:	{

match(tokenId);

Value	rightValue	=	primaryExpression();
check(leftValue.isNumerical()	&&
rightValue.isNumerical(),	"non-numerical	values	in
arithmetic	expression");	Value	resultValue	=

evaluate(tokenId,	leftValue,	rightValue);	return
mulDivExpressionRest	(resultValue);	}

	

default:

return	leftValue;

}

}

Finally,	the	primary	expression	is	made	up	by	a	point,	coordinate,	color,	or	font
expression.	It	can	also	be	made	up	by	an	expression	enclosed	in	parentheses,	a
name	(in	which	case	we	look	up	its	value),	or	a	value:	Value
Parser::primaryExpression()	{

TokenId	tokenId	=	m_lookAHead.id();

The	coordinate	expression	takes	a	point	and	returns	its	x	or	y	coordinate.	We
match	the	keyword	and	the	parentheses	and	call	expressions	in	between.	We	then
check	that	the	value	of	the	expression	is	a	point,	and	finally	call	evaluate	to
extract	the	x	or	y	coordinate:	switch	(tokenId)	{

case	XCoordinateId:

case	YCoordinateId:	{

match(tokenId);

match(LeftParenthesisId);

Value	value	=	expression();

match(RightParenthesisId);

check(value.isPoint(),

"not	a	point	in	coordinate	expression");
checkType(tokenId,	value);

return	evaluate(tokenId,	value);	}

break;

A	point	expression	is	made	up	by	the	keyword	point	and	two	numerical
expressions:	the	x	and	y	coordinate:	case	PointId:	{

match(PointId);

match(LeftParenthesisId);

Value	xValue	=	expression();

match(CommaId);

Value	yValue	=	expression();

match(RightParenthesisId);

check(xValue.isNumerical()	&&	yValue.isNumerical(),
"non-numerical	values	in	point	expression");	return
Value(QPoint(xValue.numericalValue(),
yValue.numericalValue()));	}

A	color	expression	is	made	up	by	the	keyword	color	and	three	numerical
expressions:	the	red,	green,	and	blue	components:	case	ColorId:	{

match(ColorId);

match(LeftParenthesisId);

Value	redValue	=	expression();	match(CommaId);

Value	greenValue	=	expression();	match(CommaId);

Value	blueValue	=	expression();
match(RightParenthesisId);

check(redValue.isNumerical()	&&
greenValue.isNumerical()	&&	blueValue.isNumerical(),
"non-numerical	values	in	color	expression");	return
Value(QColor(redValue.numericalValue(),
greenValue.numericalValue(),
blueValue.numericalValue()));	}

A	font	expression	is	made	up	by	the	keyword	font	and	two	expressions:	the	name
of	the	font	(string)	and	its	size	(numerical):	case	FontId:	{

match(FontId);

match(LeftParenthesisId);

Value	nameValue	=	expression();	match(CommaId);

Value	sizeValue	=	expression();
match(RightParenthesisId);

check(nameValue.isString()	&&	sizeValue.isNumerical(),
"invalid	types	in	font	expression");	return
Value(QFont(nameValue.stringValue(),
sizeValue.numericalValue()));	}

An	expression	can	be	enclosed	by	parentheses.	In	that	case,	we	match	the
parentheses	and	call	expression	in	between	to	obtain	the	value	of	the	expression:
case	LeftParenthesisId:	{

match(LeftParenthesisId);

Value	value	=	expression();

match(RightParenthesisId);

return	value;

}

In	case	of	a	name,	we	look	up	its	value	in	the	assignment	map	and	return	the
value.	If	there	is	no	value,	a	semantic	error	is	reported:	case	NameId:	{

QString	lookupName	=	m_lookAHead.name();
match(NameId);

check(m_assignMap.contains(lookupName),	"unknown
name:	""	+	lookupName	+	"".");	return

m_assignMap[lookupName];	}

In	the	case	of	a	value,	we	simply	return	the	value:	case	ValueId:	{

Value	value	=	m_lookAHead.value();	match(ValueId);

return	value;

}

In	any	other	case,	a	syntax	error	is	reported:	default:

syntaxError();

return	Value();

}

}

	

	

Type	checking	the	expression

	

The	first	checkType	method	checks	the	type	of	an	expression	with	one	value.	When
setting	a	pen	or	brush	style,	the	type	must	be	a	pen	or	brush	style,	respectively:
void	Parser::checkType(TokenId	codeId,	const	Value&	value)	{

switch	(codeId)	{

case	SetPenStyleId:

check(value.isPenStyle(),	"not	a	pen-style	value");	break;

	

case	SetBrushStyleId:

check(value.isBrushStyle(),	"not	a	brush-style	value");
break;

When	setting	a	color	or	a	font,	the	value	must	be	a	color	or	a	font,	respectively:
case	SetPenColorId:	case	SetBrushColorId:

check(value.isColor(),	"not	a	color	value");	break;

	

case	SetFontId:

check(value.isFont(),	"not	a	font	value");	break;

When	setting	an	alignment,	the	value	must	be	an	alignment:	case
SetHorizontalAlignmentId:	case	SetVerticalAlignmentId:

check(value.isAlignment(),	"not	an	alignment	value");
break;

When	extracting	the	x	or	y	coordinate	from	a	point,	the	value	must	be	a	point:
case	XCoordinateId:	case	YCoordinateId:

check(value.isPoint(),	"not	a	point	value");	break;

}

}

The	second	checkType	method	takes	two	values.	The	drawing	instructions	must
take	two	points:	void	Parser::checkType(TokenId	codeId,	const	Value&
leftValue,	const	Value&	rightValue)	{

switch	(codeId)	{

case	DrawLineId:

case	DrawRectangleId:

case	DrawEllipseId:

check(leftValue.isPoint()	&&	rightValue.isPoint(),	"non-

point	values	in	draw	expression");	break;

The	drawing	of	text	instructions	must	take	a	point	and	a	string:	case	DrawTextId:
check(leftValue.isPoint()	&&	rightValue.isString(),	"invalid	values	in	text-
drawing	expression");	break;

}

}

	

	

Evaluating	the	values	of	the
expressions

	

The	first	evaluate	method	returns	the	value	of	an	expression	with	one	value.	The	x
and	y	coordinate	operators	return	the	x	or	y	coordinate	of	the	point:	Value
Parser::evaluate(TokenId	codeId,	const	Value&	value)	{

switch	(codeId)	{

case	XCoordinateId:	return	Value((double)
value.pointValue().x());

case	YCoordinateId:	return	Value((double)
value.pointValue().y());

The	assertion	is	for	debugging	purposes	only,	and	we	return	false	simply	because
the	method	has	to	return	a	value:	default:	assert(false);

return	false;

}

}

Finally,	the	second	evaluate	method	evaluates	the	value	of	expressions	with	two
values.	First,	we	extract	numerical	values	and	evaluate	the	arithmetic
expressions:	Value	Parser::evaluate(TokenId	codeId,	const	Value&	leftValue,

const	Value&	rightValue)	{

double	leftNumericalValue	=	leftValue.numericalValue(),
rightNumericalValue	=	rightValue.numericalValue();

switch	(codeId)	{

case	AddId:

return	Value(leftNumericalValue	+	rightNumericalValue);

case	SubtractId:

return	Value(leftNumericalValue	-	rightNumericalValue);

case	MultiplyId:

return	Value(leftNumericalValue	*	rightNumericalValue);

In	case	of	division	by	zero,	a	semantic	error	is	reported:	case	DivideId:	if
(rightNumericalValue	==	0)	{

semanticError("division	by	zero");	}

	

return	Value(leftNumericalValue	/	rightNumericalValue);

Finally,	in	the	point	expression,	we	return	a	point	value	holding	the	two
numerical	values	holding	its	x	and	y	coordinates:	case	PointId:	return

Value(QPoint(leftNumericalValue,	rightNumericalValue));

As	in	the	first	evaluate	case	previously,	the	assertion	is	for	debugging	purposes
only,	and	we	return	false	simply	because	the	method	has	to	return	a	value:
default:	assert(false);

return	Value();

}

}

	

	

The	viewer
Finally,	it	is	time	to	write	the	viewer,	the	last	part	of	our	DSL.	The	viewer
iterates	through	the	actions	and	displays	the	graphical	objects.	The	ViewerWidget
class	inherits	the	Qt	class	QWidget,	which	displays	a	widget	on	the	screen.

ViewerWidget.h:

#ifndef	MAINWIDGET_H	

#define	MAINWIDGET_H	

	

#include	<QWidget>	

#include	<QtWidgets>	

#include	"Value.h"	

#include	"Colors.h"	

#include	"Action.h"	

	

class	ViewerWidget	:	public	QWidget	{	

		Q_OBJECT	

The	constructor	calls	the	constructor	of	the	base	class	QWidget	and	stores	a
reference	to	the	action	list:

public:	

				ViewerWidget(const	QList<Action>&	actionList,	

																	QWidget	*parentWidget	=	nullptr);	

The	main	part	of	the	class	is	the	paintEvent	method.	It	gets	called	every	time	the
widget	needs	to	be	repainted	and	iterates	through	the	actions	list:

void	paintEvent(QPaintEvent	*eventPtr);	

The	default	constructor	of	QFont	is	called,	which	initializes	the	font	to	an
appropriate	system	font.	Both	the	horizontal	and	vertical	alignment	is	centered.
Finally,	m_actionList	holds	a	reference	to	the	action	list	generated	by	the	parser:

private:	

				Qt::Alignment	m_horizontalAlignment	=	Qt::AlignHCenter,	

																		m_verticalAlignment	=	Qt::AlignVCenter;	

				const	QList<Action>&	m_actionList;	

};	

	

#endif	//	MAINWIDGET_H	

The	ViewerWidget.cpp	file	holds	the	definitions	of	the	methods	of	the	ViewerWidget

class.

ViewerWidget.cpp:

#include	<QtWidgets>	

#include	"ViewerWidget.h"	

The	constructor	calls	the	constructor	of	the	base	class	QWidget	with	the	parent
widget,	initializes	the	m_actionList	reference,	sets	the	title	of	the	widget,	and	sets
an	appropriate	size:

ViewerWidget::ViewerWidget(const	QList<Action>&	actionList,	

																											QWidget	*parentWidget)	

	:QWidget(parentWidget),	

		m_actionList(actionList)	{	

		setWindowTitle(tr("Domain	Specific	Language"));	

		resize(500,	300);	

}	

The	paintEvent	method	is	called	every	time	the	widget	needs	to	be	repainted.	First,
the	QPainter	object	painter	is	defined,	we	then	iterate	through	the	action	list:

void	ViewerWidget::paintEvent(QPaintEvent*	/*event*/)	{	

		QPainter	painter(this);	

	

		for	(const	Action&	action	:	m_actionList)	{	

				switch	(action.id())	{	

The	SetPenColor	action	creates	a	new	pen	with	the	new	color	and	current	style,
which	is	added	to	painter.	In	the	same	way,	the	SetPenStyle	action	creates	a	pen
with	the	new	style	and	the	current	color:

case	SetPenColorId:	{	

										QColor	penColor	=	action.value1().colorValue();	

										QPen	pen(penColor);	

										pen.setStyle(painter.pen().style());	

										painter.setPen(pen);	

								}	

								break;	

	

						case	SetPenStyleId:	{	

										Qt::PenStyle	penStyle	=	action.value1().penStyleValue();	

										QPen	pen(penStyle);	

										pen.setColor(painter.pen().color());	

										painter.setPen(pen);	

								}	

								break;	

We	set	the	color	and	style	of	the	brush	in	the	same	way	as	we	set	the	pen
previously.	The	only	difference	is	that	we	create	a	brush	instead	of	a	pen:

case	SetBrushColorId:	{	

										QColor	brushColor	=	action.value1().colorValue();	

										QBrush	brush(brushColor);	

										brush.setStyle(painter.brush().style());	

										painter.setBrush(brush);	

								}	

								break;	

	

						case	SetBrushStyleId:	{	

										Qt::BrushStyle	brushStyle	=	

												action.value1().brushStyleValue();	

										QBrush	brush(brushStyle);	

										brush.setColor(painter.brush().color());	

										painter.setBrush(brush);	

								}	

								break;	

In	the	case	of	the	font,	we	call	setFont	on	painter.	Thereafter,	the	font	is	associated
to	painter,	and	will	be	used	when	writing	text:

case	SetFontId:	{	

										QFont	font	=	action.value1().fontValue();	

										painter.setFont(font);	

								}	

								break;	

The	horizontal	and	vertical	alignment	are	stored	in	m_horizontalAlignment	and
m_verticalAlignment,	which	are	values	that	are	later	used	when	writing	text:

case	SetHorizontalAlignmentId:	

								m_horizontalAlignment	=	action.value1().alignmentValue();	

								break;	

	

						case	SetVerticalAlignmentId:	

								m_verticalAlignment	=	action.value1().alignmentValue();	

								break;	

Now,	it	is	time	to	actually	draw	some	graphical	objects.	A	line	is	simply	drawn
between	two	points,	while	a	rectangle	or	ellipse	has	top-left	and	bottom-right
corners,	which	are	placed	in	a	rectangle	that	is	used	as	a	parameter	to	the	calls	to
drawRect	and	drawEllipse:

case	DrawLineId:	

								painter.drawLine(action.value1().pointValue(),	

																									action.value2().pointValue());	

								break;	

	

						case	DrawRectangleId:	{	

										QRect	rect(action.value1().pointValue(),	

																					action.value2().pointValue());	

	

										painter.drawRect(rect);	

								}	

								break;	

	

						case	DrawEllipseId:	{	

										QRect	rect(action.value1().pointValue(),	

																					action.value2().pointValue());	

	

										painter.drawEllipse(rect);	

								}	

								break;	

Finally,	we	write	text.	We	start	by	extracting	the	point	to	center	the	text	around
and	the	text	to	draw.	We	then	obtain	the	size	of	the	text	(in	pixels)	with	the	Qt
QFontMetrics	class:

case	DrawTextId:		{	

										QPoint	point	=	action.value1().pointValue();	

										const	QString&	text	=	action.value2().stringValue();	

										QFontMetrics	metrics(painter.font());	

										QSize	size	=	metrics.size(0,	text);	

In	the	case	of	left	horizontal	alignment,	the	left	side	of	the	text	is	the	x
coordinate	of	the	point.	In	the	case	of	center	alignment,	the	left	side	of	the	text	is
moved	to	the	left	with	half	the	text	width,	and	in	the	case	of	right	alignment,	the
left	side	is	moved	to	the	left	with	the	whole	text	width:

switch	(m_horizontalAlignment)	{	

												case	Qt::AlignHCenter:	

														point.rx()	-=	size.width()	/	2;	

														break;	

	

												case	Qt::AlignRight:	

														point.rx()	-=	size.width();	

														break;	

										}	

In	the	same	way:	in	the	case	of	top	vertical	alignment,	the	top	side	of	the	text	is
the	y	coordinate	of	the	point.	In	the	case	of	center	alignment,	the	top	side	of	the
text	is	moved	upwards	with	half	of	the	text	height,	and	in	the	case	of	bottom
alignment,	the	top	side	is	moved	upwards	with	the	whole	text	height:

switch	(m_verticalAlignment)	{	

												case	Qt::AlignVCenter:	

														point.ry()	-=	size.height()	/	2;	

														break;	

	

												case	Qt::AlignBottom:	

														point.ry()	-=	size.height();	

														break;	

										}	

	

										painter.drawText(point,	text);	

								}	

								break;	

				}	

		}	

}	

The	main	function

	

Finally,	the	main	function	calls	the	init	static	method	on	the	scanner	in	order	to
initialize	its	tokens,	keywords,	and	values.	A	QApplication	object	is	created,	the
source	code	is	read	and	parsed,	and	the	viewer	widget	is	created.	It	executes	the
action	list	and	displays	the	graphical	objects.	The	application	executes	until	the
user	presses	the	close	button	in	the	top-right	corner.

Main.cpp:

#include	<QApplication>	#include	<QMessageBox>	

#include	"Action.h"	

#include	"Error.h"	

#include	"Scanner.h"	

#include	"Parser.h"	

#include	"ViewerWidget.h"	

	

int	main(int	argc,	char	*argv[])	{	

		Scanner::init();	

		QApplication	application(argc,	argv);	

		try	{	

				QString	path	=	"C:\Input.dsl";	QFile	file(path);	

				if	(!file.open(QIODevice::ReadOnly))	{	

						error("Cannot	open	file	""	+	path	+	""	for	reading.");	}	

	

				QString	buffer(file.readAll());	Scanner	scanner(buffer);	

				QList<Action>	actionList;	Parser(scanner,	actionList);	

				ViewerWidget	mainWidget(actionList);	mainWidget.show();	

				return	application.exec();	}	

In	the	case	of	a	syntactic	or	semantic	error,	its	message	is	displayed	in	a	message
box:	catch	(exception	e)	{

QMessageBox	messageBox(QMessageBox::Information,
QString("Error"),	QString(e.what()));
messageBox.exec();

}

}

	

	

Summary
In	this	chapter,	we	started	to	develop	a	DSL	that	generates	a	sequence	of	actions
creating	graphical	objects,	which	are	viewed	in	a	widget.	Our	DSL	supports
instructions	for	drawing	graphical	objects	such	as	lines,	rectangles,	ellipses,	and
text,	and	for	setting	the	color,	style,	and	alignment	of	the	objects.	It	also	supports
expressions	with	arithmetic	operators.

The	language	of	our	DSL	is	defined	by	grammar	and	is	made	up	by	a	scanner
that	scans	the	text	for	meaningful	parts,	the	parser	checks	that	the	source	code
complies	with	the	grammar	and	generates	a	sequence	of	actions,	which	is	read
and	executed	by	the	viewer.

In	the	next	chapter,	we	will	continue	to	develop	our	DSL.	The	DSL	of	this
chapter	only	supports	code	executed	in	straight	sequence.	However,	in	the	next
chapter,	we	will	add	function	calls	as	well	as	selection	and	iteration	(the	if	and
while	instructions).

Advanced	Domain-Specific	Language

	

In	the	previous	chapter,	we	developed	a	domain-specific	language	(DSL).	In
this	chapter,	we	will	improve	the	language	in	several	ways:

We	will	add	selection	and	iteration.	More	specifically,	we	will	add	the	if
and	while	instructions.	In	the	language	of	the	previous	chapter,	the	actions
were	executed	in	a	straightforward	manner.	In	this	chapter,	it	is	possible	to
select	between	alternatives	and	to	iterate	over	a	part	of	the	code.
We	will	add	variables.	In	the	previous	chapter,	we	could	assign	values	to	a
name	once.	In	this	chapter,	however,	values	are	assigned	to	names	that	can
be	reassigned	during	the	execution	of	the	program.
We	add	functions,	with	parameters	and	return	values.	In	the	previous
chapter,	a	program	was	made	up	of	a	sequence	of	instructions.	In	this
chapter,	it	is	a	sequence	of	functions.	Similar	to	C++,	there	must	be	a	main
function	where	the	execution	starts.
Finally,	we	will	add	another	module	in	the	process	from	the	source	code	to
the	viewer.	In	the	previous	chapter,	the	parser	generated	a	sequence	of
actions	that	were	displayed	by	the	viewer.	In	this	chapter,	the	parser
generates	a	sequence	of	directives,	which	in	turn	are	evaluated	to	actions
by	the	evaluator.
Since	the	language	of	this	chapter	supports	selection,	iteration,	variables,
and	functions	calls,	it	starts	to	look	like	a	traditional	programming
language.

Topics	we	will	cover	in	this	chapter	include:

Just	as	in	the	previous	chapter,	we	will	informally	look	into	the	source	code
of	our	DSL	by	looking	at	an	example.	However,	in	this	example	we	will	use
variables	and	function	calls,	we	will	also	use	the	if	and	while	instructions.
We	will	then	formally	define	our	language	with	grammar.	The	grammar	is
an	extension	of	the	grammar	of	the	last	chapter.	We	will	add	instructions	for

functions	definitions,	calls,	and	returns,	as	well	as	selection	(if)	and
iteration	(while).
When	we	have	defined	the	grammar,	we	will	write	the	scanner.	The
scanner	of	this	chapter	is	almost	identical	to	the	scanner	of	the	previous
chapter.	The	only	difference	is	that	we	will	add	a	few	keywords.
When	we	have	written	the	scanner,	we	will	write	the	parser.	The	parser	is
an	extension	of	the	parser	of	the	previous	chapter,	we	add	methods	for
functions,	selection,	and	iteration.	However,	the	parser	of	the	previous
chapter	generated	a	sequence	of	actions,	which	were	read	and	executed	by
the	viewer.	In	this	chapter,	however,	the	parser	instead	generates	a
sequence	of	directives	that	are	read	by	the	evaluator.
In	this	chapter,	the	next	step	is	the	evaluator	rather	than	the	viewer.	The
evaluator	takes	the	directive	sequence	generated	by	the	parser,	and
generates	a	sequence	of	actions	which	are	read	and	executed	by	the	viewer.
The	evaluator	works	with	maps	that	assign	values	to	names.	There	is	a
stack	of	value	maps	that	make	sure	that	each	called	function	gets	its	own
fresh	value	map.	There	is	also	a	value	stack	that	stores	temporary	values
when	evaluating	expressions.	Finally,	there	is	the	call	stack,	holding	return
addresses	for	function	calls.
Finally,	the	viewer	works	in	the	same	way	as	in	the	previous	chapter.	It
iterates	through	the	action	list	generated	by	the	evaluator	and	displays	the
graphical	objects	in	a	Qt	widget.

	

	

Improving	the	source	language	–	an
example
Let's	look	at	a	new	example,	where	we	define	and	call	a	function	named	triangle
that	draws	a	triangle	with	different	pens	in	different	sizes.	Note	that	the	functions
do	not	have	to	occur	in	any	particular	order.

We	start	by	setting	the	left	and	length	variables	to	50.	They	hold	the	x	coordinate
of	the	left-most	corner	of	the	first	triangle,	and	its	base	length.	We	also	set	the
index	variable	to	zero;	its	value	will	be	used	in	the	while	iteration:

function	main()	{	

		left	=	50;	

		length	=	50;	

		index	=	0;	

We	continue	to	iterate	as	long	as	index	is	less	than	four.	Note	that	in	this	chapter
we	add	Boolean	values	to	the	Value	class.	When	index	holds	an	even	value,	we	set
the	pen	style	to	a	solid	line,	and	when	it	holds	an	odd	value,	we	set	the	pen	style
to	a	dashed	line.	Note	that	we	have	extended	the	language	with	relational
expressions	and	the	modulus	(%)	operator:

while	(index	<	4)	{	

				if	((index	%	2)	==	0)	{	

						SetPenStyle(SolidLine);	

				}	

				else	{	

						SetPenStyle(DashLine);	

				}	

We	set	the	top-left	point	of	the	triangle,	and	call	the	drawTriangle	function	to
perform	the	actual	drawing	of	the	triangle:

topLeft	=	point(left,	25);	

												call	drawTriangle(topLeft,	length);	

After	the	call	to	triangle,	we	increase	the	base	length	of	the	next	triangle,	and	the
left-most	corner:

length	=	length	+	25;	

				left	=	left	+	length;	

				index	=	index	+	1;	

		}	

}	

In	the	drawTriangle	function,	we	call	getTopRight	and	getBottomMiddle	functions	to
obtain	the	top-right	and	bottom-middle	points	of	the	triangle.	Finally,	we	draw
the	three	lines	of	the	triangle	by	calling	drawLine:

function	drawTriangle(topLeft,	length)	{	

		topRight	=	call	getTopRight(topLeft,	length);	

		bottomMiddle	=	call	getBottomMiddle(topLeft,	length);	

		drawLine(topLeft,	topRight);	

		drawLine(topRight,	bottomMiddle);	

		drawLine(bottomMiddle,	topLeft);	

}	

The	getTopRight	function	extracts	the	x	and	y	coordinate	of	the	top-left	point,	and
returns	a	point	where	the	x	coordinate	has	been	increased	by	the	length	of	the
base	of	the	triangle:

function	getTopRight(topLeft,	length)	{	

		return	point(xCoordinate(topLeft)	+	length,	

															yCoordinate(topLeft));	

}	

The	getBottomMiddle	function	also	extracts	the	x	and	y	coordinates	of	the	top-left
point.	Then	it	calculates	the	x	and	y	coordinates	of	the	middle-bottom	point	and
returns	point:

function	getBottomMiddle(topLeft,	length)	{	

		left	=	xCoordinate(topLeft);	

		top	=	yCoordinate(topLeft);	

		middle	=	left	+	length	/	2;	

		bottom	=	top	+	length;	

		return	point(middle,	bottom);	

}	

The	output	of	the	execution	of	the	code	is	shown	in	the	following	screenshot:

Improving	the	grammar
In	this	chapter,	we	will	improve	the	grammar	of	our	language.	To	begin	with,	a
program	is	made	up	by	a	sequence	of	functions	rather	than	instructions.
Technically,	a	program	can	hold	zero	functions.	However,	a	semantic	error	will
report	that	the	main	function	is	missing:

program	->	functionDefinitionList	

functionDefinitionList	->	functionDefinition*

The	definition	of	a	function	is	made	up	by	the	keyword	function,	a	list	of	names
enclosed	by	parentheses	and	a	list	of	instructions	enclosed	by	brackets.	The
nameList	is	made	up	of	zero	or	more	names,	separated	by	commas:

functionDefinition	->	function	name(nameList)	{	instructionList	}	

When	it	comes	to	instructions,	we	add	the	calling	of	a	function.	We	can	either
call	the	function	directly,	as	an	instruction	(calldrawTriangle	in	the	preceding
example),	or	as	a	part	of	an	expression	(callgetTopRight	and	callgetBottomMiddle).

We	also	add	the	while	instruction	and	the	if	instructions,	with	or	without	the	else
part.	Finally,	there	is	also	the	block	instruction:	a	list	of	instructions	enclosed	by
brackets:

instruction	->	callExpression	;	

													|	while	(expression)	instruction	

													|	if	(expression)	instruction	

													|	if	(expression)	instruction	else	instruction	

													|	{	instructionList	}	

													|	...	

	

callInstruction	->	callExpression	;	

When	it	comes	to	expressions,	the	only	difference	is	that	we	have	added	function
calls.	The	expressionList	is	a	list	of	zero	or	more	expressions,	separated	by
commas:

primaryExpression	->	call	name(expressionList)	

																			|

The	Token	and	the	Scanner

	

Similar	to	the	previous	chapter,	the	final	target	code	of	the	language	is	the
actions,	even	though	they	are	generated	by	an	evaluator	rather	than	the	parser.
The	Action	class	is	identical	to	the	class	of	the	previous	chapter.	So	are	the	Value
and	ViewerWidget	classes,	as	well	as	the	colors	and	error	handling.	However,	the
Token	and	Scanner	classes	have	been	extended.	The	TokenId	enumeration	has	been
extended	with	more	token	identities.

Token.h:

class	Token	{	

		//	...	

		enum	TokenId	{BlockId,	CallId,	ElseId,	FunctionId,	GotoId,	IfId,	IfNotGotoId,	

ReturnId,	WhileId,	//	...	

															};	

		//	...	

};	

In	the	same	way,	init	in	Scanner	has	been	extended	with	the	keywords.

Scanner.cpp:

void	Scanner::init()	{	

		ADD_TO_KEYWORD_MAP(CallId)	ADD_TO_KEYWORD_MAP(ElseId)	

ADD_TO_KEYWORD_MAP(FunctionId)	ADD_TO_KEYWORD_MAP(IfId)	

		ADD_TO_KEYWORD_MAP(ReturnId)	ADD_TO_KEYWORD_MAP(WhileId)	//	...	

}	

	

	

The	parser
The	parser	has	been	extended	with	methods	corresponding	to	the	new	rules	of
the	grammar.	Moreover,	the	parser	of	this	chapter	does	not	generate	actions;
instead,	it	generates	directives.	The	reason	for	this	is	that,	while	the	source	code
of	the	previous	chapter	holds	instructions	that	were	executed	from	the	beginning
to	the	end,	the	source	code	of	this	chapter	holds	selection,	iteration,	and	function
calls	that	can	alter	the	flow	of	the	instructions.	Therefore,	it	makes	sense	to
introduce	a	middle	layer—the	parser	generates	directives	that	are	evaluated	to
become	actions.

Since	the	language	of	this	chapter	supports	functions,	we	need	the	Function	class
to	store	the	functions.	It	stores	the	names	of	the	formal	parameters	and	the	start
address	of	the	function.

Function.h:

#ifndef	FUNCTION_H	

#define	FUNCTION_H	

	

#include	<QtWidgets>	

	

#include	"Value.h"	

#include	"Action.h"	

	

class	Function	{	

		public:	

				Function()	{}	

				Function(const	QList<QString>&	nameList,	int	address);	

				const	QList<QString>&	nameList()	const	{return	m_nameList;}	

				int	address()	{return	m_address;}	

	

				Function(const	Function&	function);	

				Function	operator=(const	Function&	function);	

	

		private:	

				QList<QString>	m_nameList;	

				int	m_address;	

};	

	

#endif	//	FUNCTION_H	

The	Function.cpp	file	holds	the	definitions	of	the	methods	of	the	Function	class.

Function.cpp:

#include	"Function.h"	

	

Function::Function(const	QList<QString>&	nameList,	int	address)	

	:m_nameList(nameList),	

		m_address(address)	{	

		//	Empty.	

}	

	

Function::Function(const	Function&	function)	

	:m_nameList(function.m_nameList),	

		m_address(function.m_address)	{	

		//	Empty.	

}	

	

Function	Function::operator=(const	Function&	function)	{	

		m_nameList	=	function.m_nameList;	

		m_address	=	function.m_address;	

		return	*this;	

}	

Since	the	parser	in	this	chapter	generates	a	sequence	of	directives	rather	than
actions,	we	also	need	the	Directive	class	to	hold	the	directives.	In	most	cases,	a
Directive	object	only	holds	its	identity	of	the	TokenId	enumeration.	However,	in	the
case	of	a	function	call,	we	need	to	store	the	name	of	the	function	and	the	number
of	actual	parameters.	In	the	case	of	a	function	definition,	we	store	a	reference	to
the	Function	object.	In	the	case	of	an	expression	made	up	by	a	name	of	a	value,	we
need	to	store	the	name	or	value.	Finally,	there	are	several	kinds	of	jump
directives,	in	which	case	we	need	to	store	the	address.

Directive.h:

#ifndef	DIRECTIVE_H	

#define	DIRECTIVE_H	

	

#include	<QtWidgets>	

	

#include	"Token.h"	

#include	"Value.h"	

#include	"Function.h"	

	

class	Directive	{	

		public:	

				Directive(TokenId	tokenId);	

				Directive(TokenId	tokenId,	int	address);	

				Directive(TokenId	tokenId,	const	QString&	name);	

				Directive(TokenId	tokenId,	const	QString&	name,	

														int	parameters);	

				Directive(TokenId	tokenId,	const	Value&	value);	

				Directive(TokenId	tokenId,	const	Function&	function);	

	

				Directive(const	Directive&	directive);	

				Directive	operator=(const	Directive&	directive);	

	

				TokenId	directiveId()	{return	m_directiveId;}	

				const	QString&	name()	{return	m_name;}	

				const	Value&	value()	{return	m_value;}	

				const	Function&	function()	{return	m_function;}	

	

				int	parameters()	const	{return	m_parameters;}	

				int	address()	const	{return	m_address;}	

				void	setAddress(int	address)	{m_address	=	address;}	

	

		private:										

				TokenId	m_directiveId;	

				QString	m_name;	

				int	m_parameters,	m_address;	

				Value	m_value;	

				Function	m_function;	

};	

	

#endif	//	DIRECTIVE_H	

The	Directive.cpp	file	holds	the	definitions	of	the	methods	of	the	Directive	class.

Directive.cpp:

#include	"Directive.h"

In	most	cases,	we	only	create	an	object	of	the	Directive	class	with	a	directive
identity:

Directive::Directive(TokenId	directiveId)	

	:m_directiveId(directiveId)	{	

		//	Empty.	

}	

The	jump	directives	need	the	jump	address:

Directive::Directive(TokenId	directiveId,	int	address)	

	:m_directiveId(directiveId),	

		m_address(address)	{	

		//	Empty.	

}	

When	assigning	a	value	to	a	variable,	we	need	the	name	of	the	variable.
However,	we	do	not	need	the	value	since	it	will	be	stored	on	a	stack.	Also,	when
an	expression	is	made	up	of	a	name,	we	need	to	store	the	name:

Directive::Directive(TokenId	directiveId,	const	QString&	name)	

	:m_directiveId(directiveId),	

		m_name(name)	{	

		//	Empty.	

}	

The	directive	for	function	calls	needs	the	name	of	the	function	and	the	number	of
actual	parameters:

Directive::Directive(TokenId	directiveId,	const	QString&	name,	

																					int	parameters)	

	:m_directiveId(directiveId),	

		m_name(name),	

		m_parameters(parameters)	{	

		//	Empty.	

}	

When	an	expression	is	made	up	simply	of	a	value,	we	just	store	the	value	in	the
directive:

Directive::Directive(TokenId	directiveId,	const	Value&	value)	

	:m_directiveId(directiveId),	

		m_value(value)	{	

		//	Empty.	

}	

Finally,	in	a	function	definition	we	store	an	object	of	the	Function	class:

Directive::Directive(TokenId	directiveId,	

																					const	Function&	function)	

	:m_directiveId(directiveId),	

		m_function(function)	{	

		//	Empty.	

}	

The	Parser	class	has	been	extended	with	the	methods	for	the	new	rules	in	the
grammar:	function	definitions	and	the	if,	while,	call,	and	return	instructions.

Parser.h:

//	...	

	

class	Parser	{	

		private:	

				void	functionDefinitionList();	

				void	functionDefinition();	

	

The	nameList	method	gathers	the	formal	parameters	of	the	function,	while
expressionList	gathers	the	actual	parameters	of	the	function	call:

QList<QString>	nameList();	

												int	expressionList();	

The	callExpression	method	has	also	been	added	to	the	Parser	class,	since	a	function
can	be	explicitly	called	as	an	instruction,	or	as	a	part	of	an	expression:

void	callExpression();	

				//	...	

};	

The	Parser.cpp	file	holds	the	definitions	of	the	methods	of	the	Parser	class.

The	start	method	of	the	parser	of	this	chapter	is	functionDefinitionList.	It	calls
functionDefinition	as	long	as	it	does	not	reach	end-of-file.

Parser.cpp:

void	Parser::functionDefinitionList()	{	

		while	(m_lookAHead.id()	!=	EndOfFileId)	{	

				functionDefinition();	

		}	

}	

The	functionDefinition	method	parses	a	function	definition.	We	start	by	matching
the	function	keyword	and	store	the	name	of	the	function:

void	Parser::functionDefinition()	{	

		match(FunctionId);	

		QString	name	=	m_lookAHead.name();	

		match(NameId);	

The	function	name	is	followed	by	the	parameter	name	list	enclosed	by
parenthesis.	We	store	the	name	list	in	the	nList	field.	We	cannot	call	the	field
nameList,	since	that	name	has	already	been	taken	by	the	method:

match(LeftParenthesisId);	

		QList<QString>	nList	=	nameList();	

		match(RightParenthesisId);	

We	store	the	current	size	of	the	directive	list	size	as	the	start	address	of	the
function,	create	a	Function	object	with	the	name	list	and	start	address,	and	add	a
Directive	object	with	the	function	to	the	directive	list:

int	startAddress	=	(int)	m_directiveList.size();	

			Function	function(nList,	startAddress);	

			m_directiveList.push_back(Directive(FunctionId,	function));	

The	name	list	is	followed	by	a	list	of	instructions	enclosed	by	brackets:

match(LeftBracketId);	

		instructionList();	

		match(RightBracketId);	

Just	to	be	sure	the	function	really	returns	the	controls	back	to	the	calling
function,	we	add	a	Directive	object	with	the	return	token	identity:

m_directiveList.push_back(Directive(ReturnId));	

When	the	function	has	been	defined,	we	check	that	there	is	no	other	function
with	the	same	name:

check(!m_functionMap.contains(name),	

								"function	""	+	name	+	""	already	defined");	

If	the	function	is	named	"main",	it	is	the	start	function	of	the	program	and	it
cannot	have	parameters:

check(!((name	==	"main")	&&	(nList.size()	>	0)),	

								"function	"main"	cannot	have	parameters");	

Finally,	we	add	the	function	to	the	functionMap:

m_functionMap[name]	=	function;	

}

The	nameList	method	parses	a	comma-separated	list	of	names	enclosed	in
parentheses:

QList<QString>	Parser::nameList()	{	

		QList	<QString>	nameList;	

We	continue	as	long	as	we	do	not	encounter	a	right	parenthesis:

while	(m_lookAHead.id()	!=	RightParenthesisId)	{	

				QString	name	=	m_lookAHead.name();	

				nameList.push_back(name);	

				match(NameId);	

After	we	have	matched	the	name,	we	check	whether	the	next	token	is	a	right
parenthesis.	If	it	is,	we	have	reached	the	end	of	the	name	list	and	break	the
iteration:

if	(m_lookAHead.id()	==	RightParenthesisId)	{	

						break;	

				}	

If	the	next	token	is	not	a	right	parenthesis,	we	instead	assume	that	it	is	a	comma,
match	it,	and	continue	to	iterate	with	the	next	expression:

match(CommaId);	

		}	

Finally,	before	we	return	the	name	list,	we	need	to	check	that	no	name	occurs
twice	in	the	name	list.	We	iterate	through	the	name	list	and	add	the	names	to	a

set:

QSet<QString>	nameSet;	

		for	(const	QString&	name	:	nameList)	{	

				if	(nameSet.contains(name))	{	

						semanticError("parameter	""	+	name	+	""	defined	twice");	

				}	

	

				nameSet.insert(name);	

		}	

	

		return	nameList;	

}	

	

The	instructionList	method	looks	a	little	bit	different	in	this	chapter	since	it	is
placed	inside	a	block	of	instructions.	We	iterate	as	long	as	we	do	not	encounter	a
right	bracket:

void	Parser::instructionList()	{	

		while	(m_lookAHead.id()	!=	RightBracketId)	{	

				instruction();	

		}	

}

As	a	function	can	be	explicitly	called	as	an	instruction,	or	as	part	of	an
expression,	we	simply	call	callExpression	and	match	the	semicolon	in	the	case	of	a
call	instruction:

void	Parser::instruction()	{	

		switch	(m_lookAHead.id())	{	

				case	CallId:	

						callExpression();	

						match(SemicolonId);	

						break;	

In	the	return	instruction,	we	match	the	return	keyword	and	check	whether	it	is
followed	by	a	semicolon.	If	it	is	not	followed	by	a	semicolon,	we	parse	an
expression	and	then	assume	that	the	next	token	is	a	semicolon.	Note	that	we	do
not	store	the	result	of	the	expression.	The	evaluator	will	place	its	value	on	a
stack	later	in	the	process:

case	ReturnId:	

						match(ReturnId);	

	

						if	(m_lookAHead.id()	!=	SemicolonId)	{	

								expression();	

						}	

	

						m_directiveList.push_back(Directive(ReturnId));	

						match(SemicolonId);	

						break;	

In	the	case	of	the	if	keyword,	we	match	it	and	parse	an	expression	enclosed	by
parentheses:

case	IfId:	{	

								match(IfId);	

								match(LeftParenthesisId);	

								expression();	

								match(RightParenthesisId);	

If	the	expression	becomes	evaluated	to	a	false	value,	we	shall	jump	over	the
instruction	following	the	if	expression.	Therefore,	we	add	a	IfNotGoto	directive,
intending	to	jump	over	the	instruction	following	the	if	keyword:

	

int	ifNotIndex	=	(int)	m_directiveList.size();	

								m_directiveList.push_back(Directive(IfNotGotoId,	0));	

								instruction();

If	the	instruction	is	followed	by	the	else	keyword,	we	match	it	and	add	a	Goto
directive,	that	is	intended	to	jump	over	the	else	part	in	the	case	of	a	true	value	of
the	expression	of	the	if	instruction:

if	(m_lookAHead.id()	==	ElseId)	{	

										match(ElseId);	

										int	elseIndex	=	(int)	m_directiveList.size();	

										m_directiveList.push_back(Directive(GotoId,	0));	

We	then	set	the	jump	address	of	the	preceding	IfNotTrue	directive.	If	the
expression	is	not	true,	the	program	shall	jump	to	this	point:

m_directiveList[ifNotIndex].	

												setAddress((int)	m_directiveList.size());	

										instruction();	

On	the	other	hand,	if	the	expression	of	the	if	instruction	is	true,	the	program
shall	jump	over	the	else	part	to	this	point:

m_directiveList[elseIndex].	

												setAddress((int)	m_directiveList.size());	

								}	

If	the	if	instruction	is	not	followed	by	the	else	keyword,	it	shall	jump	to	this
point	in	the	program	if	the	expression	is	not	true:

else	{	

										m_directiveList[ifNotIndex].	

												setAddress((int)	m_directiveList.size());	

								}	

						}	

						break;	

In	the	case	of	the	while	keyword,	we	match	it	and	store	the	current	index	of	the
directive	list	in	order	for	the	program	to	jump	back	to	this	point	after	every
iteration:

case	WhileId:	{	

								match(WhileId);	

								int	whileIndex	=	(int)	m_directiveList.size();	

We	then	parse	the	expression	and	its	enclosing	parentheses:

match(LeftParenthesisId);	

								expression();	

								match(RightParenthesisId);

In	the	case	that	the	expression	is	not	true,	we	add	an	IfNotGoto	directive	in	order
for	the	program	to	jump	out	of	the	iteration:

int	ifNotIndex	=	(int)	m_directiveList.size();	

								m_directiveList.push_back(Directive(IfNotGotoId,	0));	

								instruction();	

We	add	a	Goto	directive	after	the	instruction	following	the	while	expression,	so
that	the	program	can	jump	back	to	the	expression	at	the	end	of	each	iteration:

m_directiveList.push_back(Directive(GotoId,	whileIndex));	

Finally,	we	set	the	address	of	the	IfNotTrue	directive	at	the	beginning	of	the	while
instruction,	so	that	it	can	jump	to	this	point	in	the	program	if	the	expression	is
not	true:

m_directiveList[ifNotIndex].	

										setAddress((int)	m_directiveList.size());	

						}	

						break;	

In	the	case	of	a	left	bracket,	we	have	a	sequence	of	instructions	enclosed	by
brackets.	We	parse	the	pair	of	brackets	and	call	instructionList:

case	LeftBracketId:	

						match(LeftBracketId);	

						instructionList();	

						match(RightBracketId);	

						break;	

Finally,	in	the	case	of	a	name,	we	have	an	assignment.	We	match	the	name
keyword,	and	the	assignment	operator	(=),	parse	the	expression,	and	match	the
semicolon.	We	then	add	an	Assign	object	to	the	directive	list	holding	the	name	to
be	assigned	a	value.	Note	that	we	do	not	store	the	value	of	the	expression,	since
it	will	be	pushed	on	a	value	stack	by	the	evaluator:

case	NameId:	{	

								QString	name	=	m_lookAHead.name();	

								match(NameId);	

								match(AssignId);	

								expression();	

								match(SemicolonId);	

								m_directiveList.push_back(Directive(AssignId,	name));	

						}	

						break;	

							

						//	...	

		}	

}	

The	callExpression	method	matches	the	call	keyword,	stores	the	name	of	the
function,	parses	the	parameter	expressions,	and	adds	a	Directive	object	holding
the	call	to	the	directive	list.	Note	that	we	do	not	check	whether	the	function
exists	or	count	the	number	of	parameters	at	this	point,	since	the	function	may	be
not	yet	defined.	All	type	checking	is	taken	care	of	by	the	evaluator	later	in	the
process:

void	Parser::callExpression()	{	

		match(CallId);	

		QString	name	=	m_lookAHead.name();	

		match(NameId);	

		match(LeftParenthesisId);	

		int	size	=	expressionList();	

		match(RightParenthesisId);	

		m_directiveList.push_back(Directive(CallId,	name,	size));	

}	

The	expressionList	method	parses	a	list	of	expressions.	Unlike	the	preceding	name
list	case,	we	do	not	return	the	list	itself,	only	its	size.	The	expressions	generate
directives	of	their	own,	their	values	are	stored	on	a	stack	by	the	evaluator	later	in
the	process:

int	Parser::expressionList()	{	

		int	size	=	0;	

We	iterate	as	long	as	we	do	not	encounter	a	right	parenthesis:

while	(m_lookAHead.id()	!=	RightParenthesisId)	{	

				expression();	

				++size;	

After	parsing	the	expression,	we	check	whether	the	next	token	is	a	right
parenthesis.	If	it	is,	the	expression	list	is	finished	and	we	break	the	iteration:

if	(m_lookAHead.id()	==	RightParenthesisId)	{	

						break;	

				}	

If	the	next	token	is	not	a	right	parenthesis,	we	assume	it	is	a	comma,	match	it,
and	continue	the	iteration:

match(CommaId);	

		}

Finally,	after	the	iteration,	we	return	the	number	of	expressions:

return	size;	

}	

The	evaluator
The	evaluator	evaluates	a	sequence	of	directives	and	generates	a	list	of	actions
that	are	later	read	and	executed	by	the	viewer.	The	evaluation	starts	with	the
directive	on	the	first	line,	which	is	a	jump	to	the	start	address	of	the	main	function.
The	evaluation	stops	when	it	encounters	a	return	directive	without	a	return
address.	In	that	case,	we	have	reached	the	end	of	main	and	the	execution	shall	be
finished.

The	evaluator	works	against	a	stack	of	values.	Each	time	a	value	has	been
evaluated	it	is	pushed	on	the	stack,	and	each	time	values	are	needed	to	evaluate
an	expression	they	are	popped	from	the	stack.

Evaluator.h:

#ifndef	EVALUATOR_H	

#define	EVALUATOR_H	

	

#include	<QtWidgets>	

	

#include	"Error.h"	

#include	"Directive.h"	

#include	"Action.h"	

#include	"Function.h"	

The	constructor	of	the	Evaluator	class	evaluates	the	directive	list	with	the	help	of
the	functions	map:

class	Evaluator	{	

		public:	

				Evaluator(const	QList<Directive>&	directiveList,	

														QList<Action>&	actionList,	

														QMap<QString,Function>	functionMap);

The	checkType	and	evaluate	methods	are	identical	to	the	previous	chapter.	They
have	been	moved	from	Parser	to	Evaluator.	The	checkType	methods	check	that	the
expressions	associated	with	the	token	have	the	correct	types,	and	the	evaluate
methods	evaluates	the	expressions:

private:	

				void	checkType(TokenId	tokenId,	const	Value&	value);	

				void	checkType(TokenId	tokenId,	const	Value&	leftValue,	

																			const	Value&	rightValue);	

	

				Value	evaluate(TokenId	tokenId,	const	Value&	value);	

				Value	evaluate(TokenId	tokenId,	const	Value&	leftValue,	

																			const	Value&	rightValue);	

When	an	expression	is	being	evaluated,	its	value	is	pushed	on	m_valueStack.	When
a	variable	is	assigned	a	value,	its	name	and	the	value	are	stored	in	m_valueMap.
Note	that,	in	this	chapter,	a	value	can	be	assigned	to	a	variable	more	than	once.
When	a	function	calls	another	function,	the	value	map	of	the	calling	function	is
pushed	on	m_valueMapStack	in	order	to	give	the	called	function	a	fresh	value	map,
and	the	return	address	is	pushed	on	m_returnAddressStack:

QStack<Value>	m_valueStack;	

				QMap<QString,Value>	m_valueMap;	

				QStack<QMap<QString,Value>>	m_valueMapStack;	

				QStack<int>	m_returnAddressStack;	

};	

	

#endif	//	EVALUATOR_H	

The	Evaluator.cpp	file	holds	the	definitions	of	the	methods	of	the	Evaluator	class:

Evaluator.cpp:

#include	<CAssert>	

using	namespace	std;	

	

#include	"Error.h"	

#include	"Evaluator.h"	

The	constructor	of	the	Evaluator	class	can	be	regarded	as	the	heart	of	the
evaluator.

The	directiveIndex	field	in	the	constructor	is	the	index	of	the	current	Directive
object	in	the	directive	list.	Normally,	it	is	increased	for	each	iteration.	However,
it	can	be	assigned	different	values	due	to	if	or	while	instructions	as	well	as
function	calls	and	returns:

Evaluator::Evaluator(const	QList<Directive>&	directiveList,	

																					QList<Action>&	actionList,	

																					QMap<QString,Function>	functionMap)	{	

		int	directiveIndex	=	0;	

	

		while	(true)	{	

				Directive	directive	=	directiveList[directiveIndex];	

				TokenId	directiveId	=	directive.directiveId();	

When	a	function	is	called,	we	start	by	looking	up	the	function	name	in	the
function	map	and	report	a	semantic	error	if	we	do	not	find	it.	Then	we	check	that

the	number	of	actual	parameters	equals	the	number	of	formal	parameters	(the
size	of	the	name	list	in	the	Function	object):

switch	(directiveId)	{	

						case	CallId:	{	

										QString	name	=	directive.name();	

										check(functionMap.contains(name),	

																"missing	function:	""	+	name	+	""");	

										Function	function	=	functionMap[name];	

										check(directive.parameters()	==	

																function.nameList().size(),	

																"invalid	number	of	parameters");	

When	we	call	the	function,	we	push	the	index	of	the	next	directive	on	the	return
address	stack,	so	that	the	called	function	can	return	to	the	correct	address.	We
push	the	value	map	of	the	calling	function	at	the	value	map	stack,	so	we	can
retrieve	it	after	the	call.	We	then	clear	the	value	map	so	that	it	is	fresh	to	be	used
by	the	called	function.	Finally,	we	set	the	directive	index	to	the	start	address	of
the	called	function,	which	moves	the	control	to	the	beginning	of	the	called
function.	Note	that	we	do	nothing	about	the	actual	parameter	expressions.	They
have	already	been	evaluated,	and	their	values	are	pushed	at	the	value	stack:

m_returnAddressStack.push(directiveIndex	+	1);	

										m_valueMapStack.push(m_valueMap);	

										m_valueMap.clear();	

										directiveIndex	=	function.address();	

								}	

								break;

At	the	beginning	of	a	function,	we	pop	the	value	stack	for	each	parameter	and
associate	each	parameter	name	with	its	value	in	the	value	map.	Remember	that
the	parameter	expressions	were	evaluated	before	the	call	to	the	function,	and	that
their	values	were	pushed	on	the	value	stack.	Also	remember	that	the	first
parameter	was	pushed	first	and	is	placed	below	the	other	parameters	in	the	stack,
which	is	why	we	assign	the	parameters	in	reverse	order.	Finally,	remember	that
the	value	map	of	the	calling	function	was	pushed	on	the	value	map	stack,	and
that	the	value	stack	was	cleared	during	the	function	call,	so	that	the	current	value
map	is	empty	at	the	beginning	of	the	function:

case	FunctionId:	{	

										const	Function&	function	=	directive.function();	

										const	QList<QString>&	nameList	=	function.nameList();	

	

										for	(int	listIndex	=	((int)	nameList.size()	-	1);	

															listIndex	>=	0;	--listIndex)	{	

												const	QString&	name	=	nameList[listIndex];	

												m_valueMap[name]	=	m_valueStack.pop();	

										}	

								}	

								++directiveIndex;	

								break;	

When	returning	from	a	function,	we	first	check	whether	the	return	address	stack
is	empty.	If	it	is	not	empty,	we	perform	a	normal	function	return.	We	restore	the
value	map	of	the	calling	function	by	popping	the	value	map	stack.	We	also	set
the	directive	index	to	the	address	following	the	function	call	by	popping	the
return	address	stack:

case	ReturnId:	

								if	(!m_returnAddressStack.empty())	{	

										m_valueMap	=	m_valueMapStack.pop();	

										directiveIndex	=	m_returnAddressStack.pop();	

								}	

If	the	return	address	stack	is	empty,	however,	we	have	a	special	case—we	have
reached	the	end	of	the	main	function.	In	that	case,	we	shall	not	return	to	a	calling
function	(there	is	no	calling	function).	Instead,	we	shall	just	finish	the	execution
of	the	evaluator	by	calling	return.	Remember	that	we	are	in	the	constructor	of	the
Evaluator	class,	and	that	we	return	from	the	constructor:

else	{	

										return;	

								}	

								break;

The	IfNotGoto	directive	has	been	added	by	the	parser	when	parsing	the	if	or	while
instructions.	We	pop	the	value	stack;	if	it	is	false	we	perform	a	jump	by	setting
the	directive	index	by	calling	the	address	method	of	the	directive.	Remember	that
we,	in	this	chapter,	have	added	Boolean	values	to	the	Value	class:

case	IfNotGotoId:	{	

										Value	value	=	m_valueStack.pop();	

	

										if	(!value.booleanValue())	{	

												directiveIndex	=	directive.address();	

										}	

If	the	value	is	true,	we	do	not	perform	a	jump;	we	simply	increase	the	directive
index:

else	{	

												++directiveIndex;	

										}	

								}	

								break;	

The	Goto	directive	performs	an	unconditional	jump;	we	simply	set	the	new
directive	index.	Since	the	IfNotGoto	and	Goto	directives	have	been	generated	by	the
parser,	we	do	not	need	to	perform	any	type	checking:

case	GotoId:	

								directiveIndex	=	directive.address();	

								break;	

The	set	directives	work	in	a	way	corresponding	to	the	parser	of	the	previous
chapter.	The	value	of	the	expression	has	been	pushed	to	the	value	stack	during
the	evaluation	of	an	earlier	directive.	We	pop	the	value	of	the	value	stack	and
check	that	it	holds	the	correct	type.	Then	we	add	the	action	with	the	value	to	the
action	list	and	increase	the	directive	index:

case	SetPenColorId:	

						case	SetPenStyleId:	

						case	SetBrushColorId:	

						case	SetBrushStyleId:	

						case	SetFontId:	

						case	SetHorizontalAlignmentId:	

						case	SetVerticalAlignmentId:	{	

										Value	value	=	m_valueStack.pop();	

										checkType(directiveId,	value);	

										actionList.push_back(Action(directiveId,	value));	

										++directiveIndex;	

								}	

								break;

Also,	the	draw	directives	are	similar	to	the	parser	in	the	previous	chapter.	Their
first	and	second	value	are	popped	in	reverse	order,	since	the	first	value	was
pushed	first	and	thereby	is	placed	below	the	second	value	on	the	stack.	We	then
check	that	the	values	have	correct	types,	add	the	action	to	the	action	list,	and
increase	the	directive	index:

case	DrawLineId:	

						case	DrawRectangleId:	

						case	DrawEllipseId:	

						case	DrawTextId:	{	

										Value	secondValue	=	m_valueStack.pop();	

										Value	firstValue	=	m_valueStack.pop();	

										checkType(directiveId,	firstValue,	secondValue);	

										actionList.push_back(Action(directiveId,	firstValue,	

																																						secondValue));	

										++directiveIndex;	

								}	

								break;	

The	assignment	directive	associates	a	name	with	the	value	in	the	value	map.
Note	that	if	the	name	already	has	been	associated	with	a	value,	the	previous
value	is	overwritten.	Also	note	that	the	value	map	is	local	to	the	current	function,

potential	calling	functions	have	their	own	value	maps	pushed	on	the	value	map
stack:

case	AssignId:	{	

										Value	value	=	m_valueStack.pop();	

										m_valueMap[directive.name()]	=	value;	

										++directiveIndex;	

								}	

								break;	

In	an	expression	with	one	value,	its	value	is	popped	from	the	stack,	its	type	is
checked,	and	the	resulting	value	of	the	expression	is	evaluated	and	pushed	on	the
value	stack.	Finally,	the	directive	index	is	increased:

case	XCoordinateId:	

						case	YCoordinateId:	{	

										Value	value	=	m_valueStack.pop();	

										checkType(directiveId,	value);	

										Value	resultValue	=	evaluate(directiveId,	value);	

										m_valueStack.push(resultValue);	

										++directiveIndex;	

								}	

								break;

In	an	expression	with	two	values,	its	first	and	second	value	are	popped	from	the
stack	(in	reverse	order),	their	types	are	checked,	and	the	resulting	value	of	the
expression	is	evaluated	and	pushed	on	the	value	stack.	Finally,	the	directive
index	is	increased:

case	AddId:	

						case	SubtractId:	

						case	MultiplyId:	

						case	DivideId:	

						case	PointId:	{	

										Value	rightValue	=	m_valueStack.pop();	

										Value	leftValue	=	m_valueStack.pop();	

										checkType(directiveId,	leftValue,	rightValue);	

										Value	resultValue	=	

												evaluate(directiveId,	leftValue,	rightValue);	

										m_valueStack.push(resultValue);	

										++directiveIndex;	

								}	

								break;	

In	a	color	expression,	the	red,	green,	and	blue	component	values	are	popped
from	the	value	stack	(in	reverse	order),	their	types	are	checked,	and	the	resulting
color	is	pushed	on	the	value	stack.	Finally,	the	directive	index	is	increased:

case	ColorId:	{	

										Value	blueValue	=	m_valueStack.pop();	

										Value	greenValue	=	m_valueStack.pop();	

										Value	redValue	=	m_valueStack.pop();	

										checkColorType(redValue,	greenValue,	blueValue);	

										QColor	color(redValue.numericalValue(),	

																							greenValue.numericalValue(),	

																							blueValue.numericalValue());	

										m_valueStack.push(Value(color));	

										++directiveIndex;	

								}	

								break;	

In	a	font	expression,	the	values	of	the	name	and	size	are	popped	from	the	value
stack	(in	reverse	order)	and	their	types	are	checked.	The	resulting	font	is	pushed
on	the	value	stack	and	the	directive	index	is	increased:

case	FontId:	{	

										Value	sizeValue	=	m_valueStack.pop();	

										Value	nameValue	=	m_valueStack.pop();	

										checkFontType(nameValue,	sizeValue,	

																								boldValue,	italicValue);	

										QFont	font(nameValue.stringValue(),	

																					sizeValue.numericalValue());	

										m_valueStack.push(Value(font));	

										++directiveIndex;	

								}	

								break;	

In	the	case	of	a	name,	we	look	up	its	value	and	push	it	on	the	value	stack	and
increase	the	directive	index.	If	there	is	no	value	associated	with	the	name,	a
semantic	error	is	reported:

case	NameId:	{	

										QString	name	=	directive.name();	

										check(m_valueMap.contains(name),	

																"unknown	name:	""	+	name	+""");	

										m_valueStack.push(m_valueMap[name]);	

										++directiveIndex;	

								}	

								break;	

Finally,	when	we	have	a	value,	we	just	push	it	on	the	value	stack	and	increase
the	directive	index:

case	ValueId:	

								m_valueStack.push(directive.value());	

								++directiveIndex;	

								break;	

				}	

		}	

}	

The	main	function

	

Finally,	the	main	function	is	almost	identical	to	the	previous	function.

Main.cpp:

#include	<QApplication>	#include	<QMessageBox>	#include	<IOStream>	using	

namespace	std;	

	

#include	"Action.h"	

#include	"Error.h"	

#include	"Scanner.h"	

#include	"Parser.h"	

#include	"Evaluator.h"	

#include	"ViewerWidget.h"	

	

int	main(int	argc,	char	*argv[])	{	

		Scanner::init();	

		QApplication	application(argc,	argv);	

		try	{	

				QString	path	=	"C:\Input.dsl";	

				QFile	file(path);	

				if	(!file.open(QIODevice::ReadOnly))	{	

						error("Cannot	open	file	""	+	path	+	""	for	reading.");	}	

	

				QString	buffer(file.readAll());	Scanner	scanner(buffer);	

The	only	difference	is	that	the	parser	generates	a	sequence	of	directives	rather
than	actions,	as	well	as	a	function	map,	which	is	sent	to	the	evaluator	that
generates	the	final	action	list	that	is	read	and	executed	by	the	viewer	that
displays	the	graphical	objects:	QList<Directive>	directiveList;
QMap<QString,Function>	functionMap;	Parser(scanner,	directiveList,
functionMap);

QList<Action>	actionList;	Evaluator
evaluator(directiveList,	actionList,	functionMap);

ViewerWidget	mainWidget(actionList);
mainWidget.show();

return	application.exec();	}

catch	(exception	e)	{

QMessageBox	messageBox(QMessageBox::Information,
QString("Error"),	QString(e.what()));

messageBox.exec();

}

}

	

	

Summary
In	this	chapter,	we	have	improved	the	DSL	that	we	started	to	work	on	in	the
previous	chapter.	We	have	added	selection,	iteration,	variables,	and	function
calls.	We	have	also	added	the	evaluator,	which	takes	the	directives	generated	by
the	parser	and	generates	the	actions	read	and	executed	by	the	viewer.	When	the
directives	are	being	executed,	the	values	of	the	expressions	are	stored	on	a	stack,
the	values	assigned	to	names	are	stored	in	a	map,	and	the	return	address	of
function	calls	are	stored	on	a	stack.

This	was	the	final	chapter,	I	hope	you	have	enjoyed	the	book!

	

Other	Books	You	May	Enjoy
If	you	enjoyed	this	book,	you	may	be	interested	in	these	other	books	by	Packt:

Beginning	C++	Programming
Richard	Grimes

ISBN:	978-1-78712-494-3

Get	familiar	with	the	structure	of	C++	projects
Identify	the	main	structures	in	the	language:	functions	and	classes
Feel	confident	about	being	able	to	identify	the	execution	flow	through	the
code
Be	aware	of	the	facilities	of	the	standard	library
Gain	insights	into	the	basic	concepts	of	object	orientation
Know	how	to	debug	your	programs
Get	acquainted	with	the	standard	C++	library

Modern	C++	Programming	Cookbook

https://www.packtpub.com/application-development/beginning-c-programming
https://www.packtpub.com/application-development/modern-c-programming-cookbook

Marius	Bancila

ISBN:	978-1-78646-518-4

Get	to	know	about	the	new	core	language	features	and	the	problems	they
were	intended	to	solve
Understand	the	standard	support	for	threading	and	concurrency	and	know
how	to	put	them	on	work	for	daily	basic	tasks
Leverage	C++’s	features	to	get	increased	robustness	and	performance
Explore	the	widely-used	testing	frameworks	for	C++	and	implement
various	useful	patterns	and	idioms
Work	with	various	types	of	strings	and	look	at	the	various	aspects	of
compilation
Explore	functions	and	callable	objects	with	a	focus	on	modern	features
Leverage	the	standard	library	and	work	with	containers,	algorithms,	and
iterators
Use	regular	expressions	for	find	and	replace	string	operations
Take	advantage	of	the	new	filesystem	library	to	work	with	files	and
directories
Use	the	new	utility	additions	to	the	standard	library	to	solve	common
problems	developers	encounter	including	string_view,	any,	optional	and
variant	types

Leave	a	review	-	let	other	readers
know	what	you	think
Please	share	your	thoughts	on	this	book	with	others	by	leaving	a	review	on	the
site	that	you	bought	it	from.	If	you	purchased	the	book	from	Amazon,	please
leave	us	an	honest	review	on	this	book's	Amazon	page.	This	is	vital	so	that	other
potential	readers	can	see	and	use	your	unbiased	opinion	to	make	purchasing
decisions,	we	can	understand	what	our	customers	think	about	our	products,	and
our	authors	can	see	your	feedback	on	the	title	that	they	have	worked	with	Packt
to	create.	It	will	only	take	a	few	minutes	of	your	time,	but	is	valuable	to	other
potential	customers,	our	authors,	and	Packt.	Thank	you!

	

	Title Page
	Copyright and Credits
	C++17 By Example

	Dedication
	Packt Upsell
	Why subscribe?
	PacktPub.com

	Contributors
	About the author
	About the reviewer
	Packt is searching for authors like you

	Preface
	Who this book is for
	What this book covers
	To get the most out of this book
	Download the example code files
	Download the color images
	Conventions used

	Get in touch
	Reviews

	Getting Started with C++
	Rolling the dice
	Understanding classes – the Car class
	Extending the Car class

	A class hierarchy – the Person, Student, and Employee classes
	A simple data type – the stack
	A more advanced data type – the queue
	Summary

	Data Structures and Algorithms
	The List class
	The Cell class
	The Iterator class
	The List class
	Adding a list to an existing list
	Erasing a value from the list

	The Set class
	Union, intersection, and difference operations

	Basic searching and sorting
	The select sort algorithm
	The insert sort algorithm
	The bubble sort algorithm

	The extended List class
	The ReverseIterator class

	The extended Set class
	Union, intersection, and difference

	Advanced searching and sorting
	The merge sort algorithm
	The quick sort algorithm

	Summary

	Building a Library Management System
	The Book class
	Writing the book
	Reading the book
	Borrowing and reserving the book
	Displaying the book

	The Customer class
	Reading the customer from a file
	Writing the customer to a file
	Borrowing and reserving a book
	Displaying the customer

	The Library class
	Looking up books and customers
	Adding a book
	Deleting a book
	Listing the books
	Adding a customer
	Deleting a customer
	Listing the customers
	Borrowing a book
	Reserving a book
	Returning a Book
	Saving the library information to a file
	Loading the library information from a file

	The main function
	Summary

	Library Management System with Pointers
	The Book class
	Reading and writing the book
	Borrowing and reserving the book
	Displaying the book

	The Customer class
	Reading and writing the customer
	Borrowing and reserving a book
	Displaying the customer

	The Library class
	Looking up books and customers
	Adding a book
	Deleting a book
	Listing the books
	Adding a customer
	Deleting a customer
	Listing the customers
	Borrowing a book
	Reserving a book
	Returning a book
	Looking up books and customers
	Marshmallowing
	Saving the library information to a file
	Writing the book objects
	Writing the customer objects
	Writing the borrower index
	Writing the reservation indexes
	Writing the loan book indexes
	Writing the reservation book indexes

	Loading the library information from a file
	Reading the book objects
	Reading the customer objects
	Reading the borrower index
	Reading the reservation indexes
	Reading the loan book indexes
	Reading the reservation book indexes

	Deallocating memory
	The main function

	Summary

	Qt Graphical Applications
	Creating the clock application
	Setting up the environment
	The Clock class
	The main function

	Setting up reusable classes for windows and widgets
	Adding a listener
	The base window class
	The base widget class

	Building the drawing program
	The Figure base class
	The Line sub class
	The Rectangle sub class
	The Ellipse sub class
	Drawing the window
	Drawing the widget
	The main function

	Building an editor
	The Caret class
	Drawing the editor window
	Drawing the editor widget
	The main function

	Summary

	Enhancing the Qt Graphical Applications
	Improving the clock
	The Clock class
	The main function

	Improving the drawing program
	The Figure class
	The Line class
	The Rectangle class
	The Ellipse class
	The DrawingWindow class
	The DrawingWidget class
	The main function

	Improving the editor
	The EditorWindow class
	The EditorWidget class
	The main function

	Summary

	The Games
	Othello
	The game widget
	The OthelloWindow class
	The OthelloWidget class
	The main function

	Noughts and crosses
	The NaCWindow class
	The NaCWidget class
	The main function

	Summary

	The Computer Plays
	Othello
	The OthelloWindow class
	The OthelloWidget Class
	The main function

	Noughts and Crosses
	The NaCWindow class
	The NaCWidget class
	The main function

	Summary

	Domain-Specific Language
	Introducing the source language – a simple example
	The grammar of the source language
	The target language
	The colors
	Error handling
	The value

	The scanner
	Building the parser
	Parsing the instructions of the language
	Parsing the expressions of the language
	Type checking the expression
	Evaluating the values of the expressions

	The viewer
	The main function
	Summary

	Advanced Domain-Specific Language
	Improving the source language – an example
	Improving the grammar
	The Token and the Scanner
	The parser
	The evaluator
	The main function
	Summary

	Other Books You May Enjoy
	Leave a review - let other readers know what you think

