

Clojure	Reactive	Programming

Table	of	Contents

Clojure	Reactive	Programming

Credits

About	the	Author

Acknowledgments

About	the	Reviewers

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	subscribe?

Free	access	for	Packt	account	holders

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Errata

Piracy

Questions

1.	What	is	Reactive	Programming?

A	taste	of	Reactive	Programming

Creating	time

More	colors

Making	it	reactive

Exercise	1.1

A	bit	of	history

Dataflow	programming

Object-oriented	Reactive	Programming

The	most	widely	used	reactive	program

The	Observer	design	pattern

Functional	Reactive	Programming

Higher-order	FRP

Signals	and	events

Implementation	challenges

First-order	FRP

Asynchronous	data	flow

Arrowized	FRP

Applications	of	FRP

Asynchronous	programming	and	networking

Complex	GUIs	and	animations

Summary

2.	A	Look	at	Reactive	Extensions

The	Observer	pattern	revisited

Observer	–	an	Iterator’s	dual

Creating	Observables

Custom	Observables

Manipulating	Observables

Flatmap	and	friends

One	more	flatmap	for	the	road

Error	handling

OnError

Catch

Retry

Backpressure

Sample

Backpressure	strategies

Summary

3.	Asynchronous	Programming	and	Networking

Building	a	stock	market	monitoring	application

Rolling	averages

Identifying	problems	with	our	current	approach

Removing	incidental	complexity	with	RxClojure

Observable	rolling	averages

Summary

4.	Introduction	to	core.async

Asynchronous	programming	and	concurrency

core.async

Communicating	sequential	processes

Rewriting	the	stock	market	application	with	core.async

Implementing	the	application	code

Error	handling

Backpressure

Fixed	buffer

Dropping	buffer

Sliding	buffer

Transducers

Transducers	and	core.async

Summary

5.	Creating	Your	Own	CES	Framework	with	core.async

A	minimal	CES	framework

Clojure	or	ClojureScript?

Designing	the	public	API

Implementing	tokens

Implementing	event	streams

Implementing	behaviors

Exercises

Exercise	5.1

Exercise	5.2

A	respondent	application

CES	versus	core.async

Summary

6.	Building	a	Simple	ClojureScript	Game	with	Reagi

Setting	up	the	project

Game	entities

Putting	it	all	together

Modeling	user	input	as	event	streams

Working	with	the	active	keys	stream

Reagi	and	other	CES	frameworks

Summary

7.	The	UI	as	a	Function

The	problem	with	complex	web	UIs

Enter	React.js

Lessons	from	functional	programming

ClojureScript	and	Om

Building	a	simple	Contacts	application	with	Om

The	Contacts	application	state

Setting	up	the	Contacts	project

Application	components

Om	cursors

Filling	in	the	blanks

Intercomponent	communication

Creating	an	agile	board	with	Om

The	board	state

Components	overview

Lifecycle	and	component	local	state

Remaining	components

Utility	functions

Exercises

Summary

8.	Futures

Clojure	futures

Fetching	data	in	parallel

Imminent	–	a	composable	futures	library	for	Clojure

Creating	futures

Combinators	and	event	handlers

The	movies	example	revisited

Futures	and	blocking	IO

Summary

9.	A	Reactive	API	to	Amazon	Web	Services

The	problem

Infrastructure	automation

AWS	resources	dashboard

CloudFormation

The	describeStacks	endpoint

The	describeStackResources	endpoint

EC2

The	describeInstances	endpoint

RDS

The	describeDBInstances	endpoint

Designing	the	solution

Running	the	AWS	stub	server

Setting	up	the	dashboard	project

Creating	AWS	Observables

Combining	the	AWS	Observables

Putting	it	all	together

Exercises

Summary

A.	The	Algebra	of	Library	Design

The	semantics	of	map

Functors

The	Option	Functor

Finding	the	average	of	ages

Applicative	Functors

Gathering	stats	about	ages

Monads

Summary

B.	Bibliography

Index

Clojure	Reactive	Programming

Clojure	Reactive	Programming
Copyright	©	2015	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	March	2015

Production	reference:	1160315

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78398-666-8

www.packtpub.com

http://www.packtpub.com

Credits
Author

Leonardo	Borges

Reviewers

Eduard	Bondarenko

Colin	Jones

Michael	Kohl

Falko	Riemenschneider

Acquisition	Editor

Harsha	Bharwani

Content	Development	Editor

Arun	Nadar

Technical	Editor

Tanvi	Bhatt

Copy	Editors

Vikrant	Phadke

Sameen	Siddiqui

Project	Coordinator

Neha	Bhatnagar

Proofreaders

Simran	Bhogal

Maria	Gould

Indexer

Mariammal	Chettiyar

Graphics

Abhinash	Sahu

Production	Coordinator

Manu	Joseph

Cover	Work

Manu	Joseph

About	the	Author
Leonardo	Borges	is	a	programming	languages	enthusiast	who	loves	writing	code,
contributing	to	open	source	software,	and	speaking	on	subjects	he	feels	strongly	about.
After	nearly	5	years	of	consulting	at	ThoughtWorks,	where	he	worked	in	two	commercial
Clojure	projects,	among	many	others,	he	is	now	a	software	engineer	at	Atlassian.	He	uses
Clojure	and	ClojureScript	to	help	build	real-time	collaborative	editing	technology.	This	is
his	first	full-length	book,	but	he	contributed	a	couple	of	chapters	to	Clojure	Cookbook,
O’Reilly.

Leonardo	has	founded	and	runs	the	Sydney	Clojure	User	Group	in	Australia.	He	also
writes	posts	about	software,	focusing	on	functional	programming,	on	his	website
(http://www.leonardoborges.com).	When	he	isn’t	writing	code,	he	enjoys	riding
motorcycles,	weightlifting,	and	playing	the	guitar.

http://www.leonardoborges.com

Acknowledgments
I	would	like	to	take	this	opportunity	and	start	by	thanking	my	family:	my	grandparents,
Altamir	and	Alba,	for	their	tireless	support;	my	mother,	Sônia,	for	her	unconditional	love
and	motivation;	and	my	uncle,	Altamir	Filho,	for	supporting	me	when	I	decided	to	go	to
school	at	night	so	that	I	could	start	working	as	a	programmer.	Without	them,	I	would	have
never	pursued	software	engineering.

I	would	also	like	to	thank	my	fiancee,	Enif,	who	answered	with	a	resounding	“yes”	when
asked	whether	I	should	take	up	the	challenge	of	writing	a	book.	Her	patience,	love,
support,	and	words	of	encouragement	were	invaluable.

During	the	writing	process,	Packt	Publishing	involved	several	reviewers	and	their
feedback	was	extremely	useful	in	making	this	a	better	book.	To	these	reviewers,	thank
you.

I	am	also	sincerely	grateful	for	my	friends	who	provided	crucial	feedback	on	key	chapters,
encouraging	me	at	every	step	of	the	way:	Claudio	Natoli,	Fábio	Lessa,	Fabio	Pereira,
Julian	Gamble,	Steve	Buikhuizen,	and	many	others,	who	would	take	multiple	pages	to	list.

Last	but	not	least,	a	warm	thanks	to	the	staff	at	Packt	Publishing,	who	helped	me	along	the
whole	process,	being	firm	and	responsible,	yet	understanding.

Each	of	you	helped	make	this	happen.	Thank	you!

About	the	Reviewers
Eduard	Bondarenko	is	a	software	developer	living	in	Kiev,	Ukraine.	He	started
programming	using	Basic	on	ZXSpectrum	a	long	time	ago.	Later,	he	worked	in	the	web
development	domain.

He	has	used	Ruby	on	Rails	for	about	8	years.	Having	used	Ruby	for	a	long	time,	he
discovered	Clojure	in	early	2009,	and	liked	the	language.	Besides	Ruby	and	Clojure,	he	is
interested	in	Erlang,	Go,	Scala,	and	Haskell	development.

Colin	Jones	is	director	of	software	services	at	8th	Light,	where	he	builds	web,	mobile,
and	desktop	systems	for	clients	of	all	sizes.	He’s	the	author	of	Mastering	Clojure	Macros:
Write	Cleaner,	Faster,	Smarter	Code,	Pragmatic	Bookshelf.	Colin	participates	actively	in
the	Clojure	open	source	community,	including	work	on	the	Clojure	Koans,	REPLy,
leiningen,	and	makes	small	contributions	to	Clojure	itself.

Michael	Kohl	has	been	developing	with	Ruby	since	2004	and	got	acquainted	with	Clojure
in	2009.	He	has	worked	as	a	systems	administrator,	journalist,	systems	engineer,	German
teacher,	software	developer,	and	penetration	tester.	He	currently	makes	his	living	as	a
senior	Ruby	on	Rails	developer.	He	previously	worked	with	Packt	Publishing	as	a
technical	reviewer	for	Ruby	and	MongoDB	Web	Development	Beginner’s	Guide.

Falko	Riemenschneider	started	programming	in	1989.	In	the	last	15	years,	he	has	worked
on	numerous	Java	Enterprise	software	projects	for	backends	as	well	as	frontends.	He’s
especially	interested	in	designing	complex	rich-user	interfaces.	In	2012,	he	noticed	and
learned	Clojure.	He	quickly	came	in	contact	with	ideas	such	as	FRP	and	CSP	that	show
great	potential	for	a	radically	simpler	UI	architecture	for	desktop	and	in-browser	clients.

Falko	works	for	itemis,	a	Germany-based	software	consultancy	firm	with	strong
competence	for	language-	and	model-based	software	development.	He	cofounded	a
Clojure	user	group,	and	encourages	other	developers	within	and	outside	itemis	to	learn
functional	programming.

Falko	posts	regularly	on	http://www.falkoriemenschneider.de.

http://www.falkoriemenschneider.de

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and
more
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	read	Packt’s	entire	library	of	books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Free	access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	9	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

http://www.PacktPub.com

Preface
Highly	concurrent	applications	such	as	user	interfaces	have	traditionally	managed	state
through	the	mutation	of	global	variables.	Various	actions	are	coordinated	via	event
handlers,	which	are	procedural	in	nature.

Over	time,	the	complexity	of	a	system	increases.	New	feature	requests	come	in,	and	it
becomes	harder	and	harder	to	reason	about	the	application.

Functional	programming	presents	itself	as	an	extremely	powerful	ally	in	building	reliable
systems	by	eliminating	mutable	states	and	allowing	applications	to	be	written	in	a
declarative	and	composable	way.

Such	principles	gave	rise	to	Functional	Reactive	Programming	and	Compositional	Event
Systems	(CES),	programming	paradigms	that	are	exceptionally	useful	in	building
asynchronous	and	concurrent	applications.	They	allow	you	to	model	mutable	states	in	a
functional	style.

This	book	is	devoted	to	these	ideas	and	presents	a	number	of	different	tools	and
techniques	to	help	manage	the	increasing	complexity	of	modern	systems.

What	this	book	covers
Chapter	1,	What	is	Reactive	Programming?,	starts	by	guiding	you	through	a	compelling
example	of	a	reactive	application	written	in	ClojureScript.	It	then	takes	you	on	a	journey
through	the	history	of	Reactive	Programming,	during	which	some	important	terminology
is	introduced,	setting	the	tone	for	the	following	chapters.

Chapter	2,	A	Look	at	Reactive	Extensions,	explores	the	basics	of	this	Reactive
Programming	framework.	Its	abstractions	are	introduced	and	important	subjects	such	as
error	handling	and	back	pressure	are	discussed.

Chapter	3,	Asynchronous	Programming	and	Networking,	walks	you	through	building	a
stock	market	application.	It	starts	by	using	a	more	traditional	approach	and	then	switches
to	an	implementation	based	on	Reactive	Extensions,	examining	the	trade-offs	between	the
two.

Chapter	4,	Introduction	to	core.async,	describes	core.async,	a	library	for	asynchronous
programming	in	Clojure.	Here,	you	learn	about	the	building	blocks	of	Communicating
Sequential	Processes	and	how	Reactive	Applications	are	built	with	core.async.

Chapter	5,	Creating	Your	Own	CES	Framework	with	core.async,	embarks	on	the
ambitious	endeavor	of	building	a	CES	framework.	It	leverages	knowledge	gained	in	the
previous	chapter	and	uses	core.async	as	the	foundation	for	the	framework.

Chapter	6,	Building	a	Simple	ClojureScript	Game	with	Reagi,	showcases	a	domain	where
Reactive	frameworks	have	been	used	for	great	effects	in	games	development.

Chapter	7,	The	UI	as	a	Function,	shifts	gears	and	shows	how	the	principles	of	functional
programming	can	be	applied	to	web	UI	development	through	the	lens	of	Om,	a
ClojureScript	binding	for	Facebook’s	React.

Chapter	8,	Futures,	presents	futures	as	a	viable	alternative	to	some	classes’	reactive
applications.	It	examines	the	limitations	of	Clojure	futures	and	presents	an	alternative:
imminent,	a	library	of	composable	futures	for	Clojure.

Chapter	9,	A	Reactive	API	to	Amazon	Web	Services,	describes	a	case	study	taken	from	a
real	project,	where	a	lot	of	the	concepts	introduced	throughout	this	book	have	been	put
together	to	interact	with	a	third-party	service.

Appendix	A,	The	Algebra	of	Library	Design,	introduces	concepts	from	Category	Theory
that	are	helpful	in	building	reusable	abstractions.	The	appendix	is	optional	and	won’t
hinder	learning	in	the	previous	chapters.	It	presents	the	principles	used	in	designing	the
futures	library	seen	in	Chapter	8,	Futures.

Appendix	B,	Bibliography,	provides	all	the	references	used	throughout	the	book.

What	you	need	for	this	book
This	book	assumes	that	you	have	a	reasonably	modern	desktop	or	laptop	computer	as	well
as	a	working	Clojure	environment	with	leiningen	(see	http://leiningen.org/)	properly
configured.

Installation	instructions	depend	on	your	platform	and	can	be	found	on	the	leiningen
website	(see	http://leiningen.org/#install).

You	are	free	to	use	any	text	editor	of	your	choice,	but	popular	choices	include	Eclipse	(see
https://eclipse.org/downloads/)	with	the	Counterclockwise	plugin	(see
https://github.com/laurentpetit/ccw),	IntelliJ	(https://www.jetbrains.com/idea/)	with	the
Cursive	plugin	(see	https://cursiveclojure.com/),	Light	Table	(see	http://lighttable.com/),
Emacs,	and	Vim.

http://leiningen.org/
http://leiningen.org/#install
https://eclipse.org/downloads/
https://github.com/laurentpetit/ccw
https://www.jetbrains.com/idea/
https://cursiveclojure.com/
http://lighttable.com/

Who	this	book	is	for
This	book	is	for	Clojure	developers	who	are	currently	building	or	planning	to	build
asynchronous	and	concurrent	applications	and	who	are	interested	in	how	they	can	apply
the	principles	and	tools	of	Reactive	Programming	to	their	daily	jobs.

Knowledge	of	Clojure	and	leiningen—a	popular	Clojure	build	tool—is	required.

The	book	also	features	several	ClojureScript	examples,	and	as	such,	familiarity	with
ClojureScript	and	web	development	in	general	will	be	helpful.

Notwithstanding,	the	chapters	have	been	carefully	written	in	such	a	way	that	as	long	as
you	possess	knowledge	of	Clojure,	following	these	examples	should	only	require	a	little
extra	effort.

As	this	book	progresses,	it	lays	out	the	building	blocks	required	by	later	chapters,	and	as
such	my	recommendation	is	that	you	start	with	Chapter	1,	What	is	Reactive
Programming?,	and	work	your	way	through	subsequent	chapters	in	order.

A	clear	exception	to	this	is	Appendix	A,	The	Algebra	of	Library	Design,	which	is	optional
and	can	be	read	independent	of	the	others—although	reading	Chapter	8,	Futures,	might
provide	a	useful	background.

Conventions
In	this	book,	you	will	find	a	number	of	styles	of	text	that	distinguish	between	different
kinds	of	information.	Here	are	some	examples	of	these	styles,	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“We	can
include	other	contexts	through	the	use	of	the	include	directive.”

A	block	of	code	is	set	as	follows:

(def	numbers	(atom	[]))

(defn	adder	[key	ref	old-state	new-state]

		(print	"Current	sum	is	"	(reduce	+	new-state)))

(add-watch	numbers	:adder	adder)

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,	the	relevant
lines	or	items	are	set	in	bold:

(->	(repeat-obs	5)

				(rx/subscribe	prn-to-repl))

;;	5

;;	5

Any	command-line	input	or	output	is	written	as	follows:

lein	run	-m	sin-wave.server

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,	in
menus,	or	dialog	boxes,	for	example,	appear	in	the	text	like	this:	“If	this	was	a	web
application	our	users	would	be	presented	with	a	web	server	error	such	as	the	HTTP	code
500	–	Internal	Server	Error.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	may	have	disliked.	Reader	feedback	is	important	for	us	to
develop	titles	that	you	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	send	an	e-mail	to	<feedback@packtpub.com>,	and
mention	the	book	title	via	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	for	all	Packt	books	you	have	purchased	from
your	account	at	http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can
visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to
you.

http://www.packtpub.com
http://www.packtpub.com/support

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	would	report	this	to	us.	By	doing	so,	you	can	save
other	readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If
you	find	any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-
errata,	selecting	your	book,	clicking	on	the	errata	submission	form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	on	our	website,	or	added	to	any	list	of	existing	errata,	under	the
Errata	section	of	that	title.	Any	existing	errata	can	be	viewed	by	selecting	your	title	from
http://www.packtpub.com/support.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Piracy
Piracy	of	copyright	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works,	in	any	form,	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors,	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
You	can	contact	us	at	<questions@packtpub.com>	if	you	are	having	a	problem	with	any
aspect	of	this	book,	and	we	will	do	our	best	to	address	it.

mailto:questions@packtpub.com

Chapter	1.	What	is	Reactive
Programming?
Reactive	Programming	is	both	an	overloaded	term	and	a	broad	topic.	As	such,	this	book
will	focus	on	a	specific	formulation	of	Reactive	Programming	called	Compositional
Event	Systems	(CES).

Before	covering	some	history	and	background	behind	Reactive	Programming	and	CES,	I
would	like	to	open	with	a	working	and	hopefully	compelling	example:	an	animation	in
which	we	draw	a	sine	wave	onto	a	web	page.

The	sine	wave	is	simply	the	graph	representation	of	the	sine	function.	It	is	a	smooth,
repetitive	oscillation,	and	at	the	end	of	our	animation	it	will	look	like	the	following
screenshot:

This	example	will	highlight	how	CES:

Urges	us	to	think	about	what	we	would	like	to	do	as	opposed	to	how
Encourages	small,	specific	abstractions	that	can	be	composed	together
Produces	terse	and	maintainable	code	that	is	easy	to	change

The	core	of	this	program	boils	down	to	four	lines	of	ClojureScript:

(->	sine-wave

				(.take	600)

				(.subscribe	(fn	[{:keys	[x	y]}]

																		(fill-rect	x	y	"orange"))))

Simply	by	looking	at	this	code	it	is	impossible	to	determine	precisely	what	it	does.
However,	do	take	the	time	to	read	and	imagine	what	it	could	do.

First,	we	have	a	variable	called	sine-wave,	which	represents	the	2D	coordinates	we	will
draw	onto	the	web	page.	The	next	line	gives	us	the	intuition	that	sine-wave	is	some	sort
of	collection-like	abstraction:	we	use	.take	to	retrieve	600	coordinates	from	it.

Finally,	we	.subscribe	to	this	“collection”	by	passing	it	a	callback.	This	callback	will	be
called	for	each	item	in	the	sine-wave,	finally	drawing	at	the	given	x	and	y	coordinates
using	the	fill-rect	function.

This	is	quite	a	bit	to	take	in	for	now	as	we	haven’t	seen	any	other	code	yet—but	that	was

the	point	of	this	little	exercise:	even	though	we	know	nothing	about	the	specifics	of	this
example,	we	are	able	to	develop	an	intuition	of	how	it	might	work.

Let’s	see	what	else	is	necessary	to	make	this	snippet	animate	a	sine	wave	on	our	screen.

A	taste	of	Reactive	Programming
This	example	is	built	in	ClojureScript	and	uses	HTML	5	Canvas	for	rendering	and	RxJS
(see	https://github.com/Reactive-Extensions/RxJS)—a	framework	for	Reactive
Programming	in	JavaScript.

Before	we	start,	keep	in	mind	that	we	will	not	go	into	the	details	of	these	frameworks	yet
—that	will	happen	later	in	this	book.	This	means	I’ll	be	asking	you	to	take	quite	a	few
things	at	face	value,	so	don’t	worry	if	you	don’t	immediately	grasp	how	things	work.	The
purpose	of	this	example	is	to	simply	get	us	started	in	the	world	of	Reactive	Programming.

For	this	project,	we	will	be	using	Chestnut	(see	https://github.com/plexus/chestnut)—a
leiningen	template	for	ClojureScript	that	gives	us	a	sample	working	application	we	can
use	as	a	skeleton.

To	create	our	new	project,	head	over	to	the	command	line	and	invoke	leiningen	as	follows:

lein	new	chestnut	sin-wave

cd	sin-wave

Next,	we	need	to	modify	a	couple	of	things	in	the	generated	project.	Open	up	sin-
wave/resources/index.html	and	update	it	to	look	like	the	following:

<!DOCTYPE	html>

<html>

		<head>

				<link	href="css/style.css"	rel="stylesheet"	type="text/css">

		</head>

		<body>

				<div	id="app"></div>

				<script	src="/js/rx.all.js"	type="text/javascript"></script>

				<script	src="/js/app.js"	type="text/javascript"></script>

				<canvas	id="myCanvas"	width="650"	height="200"	style="border:1px	solid	

#d3d3d3;">

		</body>

</html>

This	simply	ensures	that	we	import	both	our	application	code	and	RxJS.	We	haven’t
downloaded	RxJS	yet	so	let’s	do	this	now.	Browse	to	https://github.com/Reactive-
Extensions/RxJS/blob/master/dist/rx.all.js	and	save	this	file	to	sin-
wave/resources/public.	The	previous	snippets	also	add	an	HTML	5	Canvas	element
onto	which	we	will	be	drawing.

Now,	open	/src/cljs/sin_wave/core.cljs.	This	is	where	our	application	code	will	live.
You	can	ignore	what	is	currently	there.	Make	sure	you	have	a	clean	slate	like	the	following
one:

(ns	sin-wave.core)

(defn	main	[])

Finally,	go	back	to	the	command	line—under	the	sin-wave	folder—and	start	up	the
following	application:

https://github.com/Reactive-Extensions/RxJS
https://github.com/plexus/chestnut
https://github.com/Reactive-Extensions/RxJS/blob/master/dist/rx.all.js

lein	run	-m	sin-wave.server

2015-01-02	19:52:34.116:INFO:oejs.Server:jetty-7.6.13.v20130916

2015-01-02	19:52:34.158:INFO:oejs.AbstractConnector:Started	

SelectChannelConnector@0.0.0.0:10555

Starting	figwheel.

Starting	web	server	on	port	10555	.

Compiling	ClojureScript.

Figwheel:	Starting	server	at	http://localhost:3449

Figwheel:	Serving	files	from	'(dev-resources|resources)/public'

Once	the	previous	command	finishes,	the	application	will	be	available	at
http://localhost:10555,	where	you	will	find	a	blank,	rectangular	canvas.	We	are	now
ready	to	begin.

The	main	reason	we	are	using	the	Chestnut	template	for	this	example	is	that	it	performs
hot-reloading	of	our	application	code	via	websockets.	This	means	we	can	have	the
browser	and	the	editor	side	by	side,	and	as	we	update	our	code,	we	will	see	the	results
immediately	in	the	browser	without	having	to	reload	the	page.

To	validate	that	this	is	working,	open	your	web	browser’s	console	so	that	you	can	see	the
output	of	the	scripts	in	the	page.	Then	add	this	to	/src/cljs/sin_wave/core.cljs	as
follows:

(.log	js/console	"hello	clojurescript")

You	should	have	seen	the	hello	clojurescript	message	printed	to	your	browser’s
console.	Make	sure	you	have	a	working	environment	up	to	this	point	as	we	will	be	relying
on	this	workflow	to	interactively	build	our	application.

It	is	also	a	good	idea	to	make	sure	we	clear	the	canvas	every	time	Chestnut	reloads	our
file.	This	is	simple	enough	to	do	by	adding	the	following	snippet	to	our	core	namespace:

(def	canvas	(.getElementById	js/document	"myCanvas"))

(def	ctx				(.getContext	canvas	"2d"))

;;	Clear	canvas	before	doing	anything	else

(.clearRect	ctx	0	0	(.-width	canvas)	(.-height	canvas))

Creating	time
Now	that	we	have	a	working	environment,	we	can	progress	with	our	animation.	It	is
probably	a	good	idea	to	specify	how	often	we	would	like	to	have	a	new	animation	frame.

This	effectively	means	adding	the	concept	of	time	to	our	application.	You’re	free	to	play
with	different	values,	but	let’s	start	with	a	new	frame	every	10	milliseconds:

(def	interval			js/Rx.Observable.interval)

(def	time							(interval	10))

As	RxJS	is	a	JavaScript	library,	we	need	to	use	ClojureScript’s	interoperability	to	call	its
functions.	For	convenience,	we	bind	the	interval	function	of	RxJS	to	a	local	var.	We	will
use	this	approach	throughout	this	book	when	appropriate.

Next,	we	create	an	infinite	stream	of	numbers—starting	at	0—that	will	have	a	new
element	every	10	milliseconds.	Let’s	make	sure	this	is	working	as	expected:

(->	time

				(.take	5)

				(.subscribe	(fn	[n]

																		(.log	js/console	n))))

;;	0

;;	1

;;	2

;;	3

;;	4

Tip
I	use	the	term	stream	very	loosely	here.	It	will	be	defined	more	precisely	later	in	this	book.

Remember	time	is	infinite,	so	we	use	.take	in	order	to	avoid	indefinitely	printing	out
numbers	to	the	console.

Our	next	step	is	to	calculate	the	2D	coordinate	representing	a	segment	of	the	sine	wave	we
can	draw.	This	will	be	given	by	the	following	functions:

(defn	deg-to-rad	[n]

		(*	(/	Math/PI	180)	n))

(defn	sine-coord	[x]

		(let	[sin	(Math/sin	(deg-to-rad	x))

								y			(-	100	(*	sin	90))]

				{:x			x

					:y			y

					:sin	sin}))

The	sine-coord	function	takes	an	x	point	of	our	2D	Canvas	and	calculates	the	y	point
based	on	the	sine	of	x.	The	constants	100	and	90	simply	control	how	tall	and	sharp	the
slope	should	be.	As	an	example,	try	calculating	the	sine	coordinate	when	x	is	50:

(.log	js/console	(str	(sine-coord	50)))

;;{:x	50,	:y	31.05600011929198,	:sin	0.766044443118978}

We	will	be	using	time	as	the	source	for	the	values	of	x.	Creating	the	sine	wave	now	is
only	a	matter	of	combining	both	time	and	sine-coord:

(def	sine-wave

		(.map	time	sine-coord))

Just	like	time,	sine-wave	is	an	infinite	stream.	The	difference	is	that	instead	of	just
integers,	we	will	now	have	the	x	and	y	coordinates	of	our	sine	wave,	as	demonstrated	in
the	following:

(->	sine-wave

				(.take	5)

				(.subscribe	(fn	[xysin]

																		(.log	js/console	(str	xysin)))))

	;;	{:x	0,	:y	100,	:sin	0}	

	;;	{:x	1,	:y	98.42928342064448,	:sin	0.01745240643728351}	

	;;	{:x	2,	:y	96.85904529677491,	:sin	0.03489949670250097}	

	;;	{:x	3,	:y	95.28976393813505,	:sin	0.052335956242943835}	

	;;	{:x	4,	:y	93.72191736302872,	:sin	0.0697564737441253}	

This	brings	us	to	the	original	code	snippet	which	piqued	our	interest,	alongside	a	function
to	perform	the	actual	drawing:

(defn	fill-rect	[x	y	colour]

		(set!	(.-fillStyle	ctx)	colour)

		(.fillRect	ctx	x	y	2	2))

(->	sine-wave

				(.take	600)

				(.subscribe	(fn	[{:keys	[x	y]}]

																		(fill-rect	x	y	"orange"))))

As	this	point,	we	can	save	the	file	again	and	watch	as	the	sine	wave	we	have	just	created
gracefully	appears	on	the	screen.

More	colors
One	of	the	points	this	example	sets	out	to	illustrate	is	how	thinking	in	terms	of	very	simple
abstractions	and	then	building	more	complex	ones	on	top	of	them	make	for	code	that	is
simpler	to	maintain	and	easier	to	modify.

As	such,	we	will	now	update	our	animation	to	draw	the	sine	wave	in	different	colors.	In
this	case,	we	would	like	to	draw	the	wave	in	red	if	the	sine	of	x	is	negative	and	blue
otherwise.

We	already	have	the	sine	value	coming	through	the	sine-wave	stream,	so	all	we	need	to
do	is	to	transform	this	stream	into	one	that	will	give	us	the	colors	according	to	the
preceding	criteria:

(def	colour	(.map	sine-wave

																		(fn	[{:keys	[sin]}]

																				(if	(<	sin	0)

																						"red"

																						"blue"))))

The	next	step	is	to	add	the	new	stream	into	the	main	drawing	loop—remember	to
comment	the	previous	one	so	that	we	don’t	end	up	with	multiple	waves	being	drawn	at	the
same	time:

(->	(.zip	sine-wave	colour	#(vector	%	%2))

				(.take	600)

				(.subscribe	(fn	[[{:keys	[x	y]}	colour]]

																		(fill-rect	x	y	colour))))

Once	we	save	the	file,	we	should	see	a	new	sine	wave	alternating	between	red	and	blue	as
the	sine	of	x	oscillates	from	–1	to	1.

Making	it	reactive
As	fun	as	this	has	been	so	far,	the	animation	we	have	created	isn’t	really	reactive.	Sure,	it
does	react	to	time	itself,	but	that	is	the	very	nature	of	animation.	As	we	will	later	see,
Reactive	Programming	is	so	called	because	programs	react	to	external	inputs	such	as
mouse	or	network	events.

We	will,	therefore,	update	the	animation	so	that	the	user	is	in	control	of	when	the	color
switch	occurs:	the	wave	will	start	red	and	switch	to	blue	when	the	user	clicks	anywhere
within	the	canvas	area.	Further	clicks	will	simply	alternate	between	red	and	blue.

We	start	by	creating	infinite—as	per	the	definition	of	time—streams	for	our	color
primitives	as	follows:

(def	red		(.map	time	(fn	[_]	"red")))

(def	blue	(.map	time	(fn	[_]	"blue")))

On	their	own,	red	and	blue	aren’t	that	interesting	as	their	values	don’t	change.	We	can
think	of	them	as	constant	streams.	They	become	a	lot	more	interesting	when	combined
with	another	infinite	stream	that	cycles	between	them	based	on	user	input:

(def	concat					js/Rx.Observable.concat)

(def	defer						js/Rx.Observable.defer)

(def	from-event	js/Rx.Observable.fromEvent)

(def	mouse-click	(from-event	canvas	"click"))

(def	cycle-colour

		(concat	(.takeUntil	red	mouse-click)

										(defer	#(concat	(.takeUntil	blue	mouse-click)

																										cycle-colour))))

This	is	our	most	complex	update	so	far.	If	you	look	closely,	you	will	also	notice	that
cycle-colour	is	a	recursive	stream;	that	is,	it	is	defined	in	terms	of	itself.

When	we	first	saw	code	of	this	nature,	we	took	a	leap	of	faith	in	trying	to	understand	what
it	does.	After	a	quick	read,	however,	we	realized	that	cycle-colour	follows	closely	how
we	might	have	talked	about	the	problem:	we	will	use	red	until	a	mouse	click	occurs,	after
which	we	will	use	blue	until	another	mouse	click	occurs.	Then,	we	start	the	recursion.

The	change	to	our	animation	loop	is	minimal:

(->	(.zip	sine-wave	cycle-colour	#(vector	%	%2))

				(.take	600)

				(.subscribe	(fn	[[{:keys	[x	y]}	colour]]

																		(fill-rect	x	y	colour))))

The	purpose	of	this	book	is	to	help	you	develop	the	instinct	required	to	model	problems	in
the	way	demonstrated	here.	After	each	chapter,	more	and	more	of	this	example	will	make
sense.	Additionally,	a	number	of	frameworks	will	be	used	both	in	ClojureScript	and
Clojure	to	give	you	a	wide	range	of	tools	to	choose	from.

Before	we	move	on	to	that,	we	must	take	a	little	detour	and	understand	how	we	got	here.

Exercise	1.1
Modify	the	previous	example	in	such	a	way	that	the	sine	wave	is	drawn	using	all	rainbow
colors.	The	drawing	loop	should	look	like	the	following:

(->	(.zip	sine-wave	rainbow-colours	#(vector	%	%2))

				(.take	600)

				(.subscribe	(fn	[[{:keys	[x	y]}	colour]]

																		(fill-rect	x	y	colour))))

Your	task	is	to	implement	the	rainbow-colours	stream.	As	everything	up	until	now	has
been	very	light	on	explanations,	you	might	choose	to	come	back	to	this	exercise	later,
once	we	have	covered	more	about	CES.

The	repeat,	scan,	and	flatMap	functions	may	be	useful	in	solving	this	exercise.	Be	sure
to	consult	RxJs’	API	at	https://github.com/Reactive-
Extensions/RxJS/blob/master/doc/libraries/rx.complete.md.

https://github.com/Reactive-Extensions/RxJS/blob/master/doc/libraries/rx.complete.md

A	bit	of	history
Before	we	talk	about	what	Reactive	Programming	is,	it	is	important	to	understand	how
other	relevant	programming	paradigms	influenced	how	we	develop	software.	This	will
also	help	us	understand	the	motivations	behind	reactive	programming.

With	few	exceptions	most	of	us	have	been	taught—either	self-taught	or	at
school/university—imperative	programming	languages	such	as	C	and	Pascal	or	object-
oriented	languages	such	as	Java	and	C++.

In	both	cases,	the	imperative	programming	paradigm—of	which	object-oriented	languages
are	part—dictates	we	write	programs	as	a	series	of	statements	that	modify	program	state.

In	order	to	understand	what	this	means,	let’s	look	at	a	short	program	written	in	pseudo-
code	that	calculates	the	sum	and	the	mean	value	of	a	list	of	numbers:

numbers	:=	[1,	2,	3,	4,	5,	6]

sum	:=	0

for	each	number	in	numbers

		sum	:=	sum	+	number

end

mean	:=	sum	/	count(numbers)

Tip
The	mean	value	is	the	average	of	the	numbers	in	the	list,	obtained	by	dividing	the	sum	by
the	number	of	elements.

First,	we	create	a	new	array	of	integers,	called	numbers,	with	numbers	from	1	to	6,
inclusive.	Then,	we	initialize	sum	to	zero.	Next,	we	iterate	over	the	array	of	integers,	one	at
a	time,	adding	to	sum	the	value	of	each	number.

Lastly,	we	calculate	and	assign	the	average	of	the	numbers	in	the	list	to	the	mean	local
variable.	This	concludes	the	program	logic.

This	program	would	print	21	for	the	sum	and	3	for	the	mean,	if	executed.

Though	a	simple	example,	it	highlights	its	imperative	style:	we	set	up	an	application	state
—sum—and	then	explicitly	tell	the	computer	how	to	modify	that	state	in	order	to	calculate
the	result.

Dataflow	programming
The	previous	example	has	an	interesting	property:	the	value	of	mean	clearly	has	a
dependency	on	the	contents	of	sum.

Dataflow	programming	makes	this	relationship	explicit.	It	models	applications	as	a
dependency	graph	through	which	data	flows—from	operation	to	operation—and	as	values
change,	these	changes	are	propagated	to	its	dependencies.

Historically,	dataflow	programming	has	been	supported	by	custom-built	languages	such	as
Lucid	and	BLODI,	as	such,	leaving	other	general	purpose	programming	languages	out.

Let’s	see	how	this	new	insight	would	impact	our	previous	example.	We	know	that	once	the
last	line	gets	executed,	the	value	of	mean	is	assigned	and	won’t	change	unless	we	explicitly
reassign	the	variable.

However,	let’s	imagine	for	a	second	that	the	pseudo-language	we	used	earlier	does	support
dataflow	programming.	In	that	case,	assigning	mean	to	an	expression	that	refers	to	both
sum	and	count,	such	as	sum	/	count(numbers),	would	be	enough	to	create	the	directed
dependency	graph	in	the	following	diagram:

Note	that	a	direct	side	effect	of	this	relationship	is	that	an	implicit	dependency	from	sum	to
numbers	is	also	created.	This	means	that	if	numbers	change,	the	change	is	propagated
through	the	graph,	first	updating	sum	and	then	finally	updating	mean.

This	is	where	Reactive	Programming	comes	in.	This	paradigm	builds	on	dataflow
programming	and	change	propagation	to	bring	this	style	of	programming	to	languages	that
don’t	have	native	support	for	it.

For	imperative	programming	languages,	Reactive	Programming	can	be	made	available	via
libraries	or	language	extensions.	We	don’t	cover	this	approach	in	this	book,	but	should	the
reader	want	more	information	on	the	subject,	please	refer	to	dc-lib	(see
https://code.google.com/p/dc-lib/)	for	an	example.	It	is	a	framework	that	adds	Reactive
Programming	support	to	C++	via	dataflow	constraints.

https://code.google.com/p/dc-lib/

Object-oriented	Reactive	Programming
When	designing	interactive	applications	such	as	desktop	Graphical	User	Interfaces
(GUIs),	we	are	essentially	using	an	object-oriented	approach	to	Reactive	Programming.
We	will	build	a	simple	calculator	application	to	demonstrate	this	style.

Tip
Clojure	isn’t	an	object-oriented	language,	but	we	will	be	interacting	with	parts	of	the	Java
API	to	build	user	interfaces	that	were	developed	in	an	OO	paradigm,	hence	the	title	of	this
section.

Let’s	start	by	creating	a	new	leiningen	project	from	the	command	line:

lein	new	calculator

This	will	create	a	directory	called	calculator	in	the	current	folder.	Next,	open	the
project.clj	file	in	your	favorite	text	editor	and	add	a	dependency	on	Seesaw,	a	Clojure
library	for	working	with	Java	Swing:

(defproject	calculator	"0.1.0-SNAPSHOT"

		:description	"FIXME:	write	description"

		:url	"http://example.com/FIXME"

		:license	{:name	"Eclipse	Public	License"

												:url	"http://www.eclipse.org/legal/epl-v10.html"}

		:dependencies	[[org.clojure/clojure	"1.5.1"]

																	[seesaw	"1.4.4"]])	

At	the	time	of	this	writing,	the	latest	Seesaw	version	available	is	1.4.4.

Next,	in	the	src/calculator/core.clj	file,	we’ll	start	by	requiring	the	Seesaw	library
and	creating	the	visual	components	we’ll	be	using:

(ns	calculator.core

		(:require	[seesaw.core	:refer	:all]))

(native!)

(def	main-frame	(frame	:title	"Calculator"	:on-close	:exit))

(def	field-x	(text	"1"))

(def	field-y	(text	"2"))

(def	result-label	(label	"Type	numbers	in	the	boxes	to	add	them	up!"))

The	preceding	snippet	creates	a	window	with	the	title	Calculator	that	ends	the	program
when	closed.	We	also	create	two	text	input	fields,	field-x	and	field-y,	as	well	as	a	label
that	will	be	used	to	display	the	results,	aptly	named	result-label.

We	would	like	the	label	to	be	updated	automatically	as	soon	as	a	user	types	a	new	number
in	any	of	the	input	fields.	The	following	code	does	exactly	that:

(defn	update-sum	[e]

		(try

				(text!	result-label

									(str	"Sum	is	"	(+	(Integer/parseInt	(text	field-x))

																											(Integer/parseInt	(text	field-y)))))

				(catch	Exception	e

						(println	"Error	parsing	input."))))

(listen	field-x	:key-released	update-sum)

(listen	field-y	:key-released	update-sum)

The	first	function,	update-sum,	is	our	event	handler.	It	sets	the	text	of	result-label	to	the
sum	of	the	values	in	field-x	and	field-y.	We	use	try/catch	here	as	a	really	basic	way	to
handle	errors	since	the	key	pressed	might	not	have	been	a	number.	We	then	add	the	event
handler	to	the	:key-released	event	of	both	input	fields.

Tip
In	real	applications,	we	never	want	a	catch	block	such	as	the	previous	one.	This	is
considered	bad	style,	and	the	catch	block	should	do	something	more	useful	such	as
logging	the	exception,	firing	a	notification,	or	resuming	the	application	if	possible.

We	are	almost	done.	All	we	need	to	do	now	is	add	the	components	we	have	created	so	far
to	our	main-frame	and	finally	display	it	as	follows:

(config!	main-frame	:content

									(border-panel

										:north	(horizontal-panel	:items	[field-x	field-y])

										:center	result-label

										:border	5))

(defn	-main	[&	args]

		(->	main-frame	pack!	show!))

Now	we	can	save	the	file	and	run	the	program	from	the	command	line	in	the	project’s	root
directory:

lein	run	-m	calculator.core

You	should	see	something	like	the	following	screenshot:

Experiment	by	typing	some	numbers	in	either	or	both	text	input	fields	and	watch	how	the
value	of	the	label	changes	automatically,	displaying	the	sum	of	both	numbers.

Congratulations!	You	have	just	created	your	first	reactive	application!

As	alluded	to	previously,	this	application	is	reactive	because	the	value	of	the	result	label
reacts	to	user	input	and	is	updated	automatically.	However,	this	isn’t	the	whole	story—it
lacks	in	composability	and	requires	us	to	specify	the	how,	not	the	what	of	what	we’re
trying	to	achieve.

As	familiar	as	this	style	of	programming	may	be,	making	applications	reactive	this	way
isn’t	always	ideal.

Given	previous	discussions,	we	notice	we	still	had	to	be	fairly	explicit	in	setting	up	the
relationships	between	the	various	components	as	evidenced	by	having	to	write	a	custom
handler	and	bind	it	to	both	input	fields.

As	we	will	see	throughout	the	rest	of	this	book,	there	is	a	much	better	way	to	handle
similar	scenarios.

The	most	widely	used	reactive	program
Both	examples	in	the	previous	section	will	feel	familiar	to	some	readers.	If	we	call	the
input	text	fields	“cells”	and	the	result	label’s	handler	a	“formula”,	we	now	have	the
nomenclature	used	in	modern	spreadsheet	applications	such	as	Microsoft	Excel.

The	term	Reactive	Programming	has	only	been	in	use	in	recent	years,	but	the	idea	of	a
reactive	application	isn’t	new.	The	first	electronic	spreadsheet	dates	back	to	1969	when
Rene	Pardo	and	Remy	Landau,	then	recent	graduates	from	Harvard	University,	created
LANPAR	(LANguage	for	Programming	Arrays	at	Random)	[1].

It	was	invented	to	solve	a	problem	that	Bell	Canada	and	AT&T	had	at	the	time:	their
budgeting	forms	had	2000	cells	that,	when	modified,	forced	a	software	re-write	taking
anywhere	from	six	months	to	two	years.

To	this	day,	electronic	spreadsheets	remain	a	powerful	and	useful	tool	for	professionals	of
various	fields.

The	Observer	design	pattern
Another	similarity	the	keen	reader	may	have	noticed	is	with	the	Observer	design	pattern.	It
is	mainly	used	in	object-oriented	applications	as	a	way	for	objects	to	communicate	with
each	other	without	having	any	knowledge	of	who	depends	on	its	changes.

In	Clojure,	a	simple	version	of	the	Observer	pattern	can	be	implemented	using	watches:

(def	numbers	(atom	[]))

(defn	adder	[key	ref	old-state	new-state]

		(print	"Current	sum	is	"	(reduce	+	new-state)))

(add-watch	numbers	:adder	adder)

We	start	by	creating	our	program	state,	in	this	case	an	atom	holding	an	empty	vector.	Next,
we	create	a	watch	function	that	knows	how	to	sum	all	numbers	in	numbers.	Finally,	we
add	our	watch	function	to	the	numbers	atom	under	the	:adder	key	(useful	for	removing
watches).

The	adder	key	conforms	with	the	API	contract	required	by	add-watch	and	receives	four
arguments.	In	this	example,	we	only	care	about	new-state.

Now,	whenever	we	update	the	value	of	numbers,	its	watch	will	be	executed,	as
demonstrated	in	the	following:

(swap!	numbers	conj	1)

;;	Current	sum	is		1

(swap!	numbers	conj	2)

;;	Current	sum	is		3

(swap!	numbers	conj	7)

;;	Current	sum	is		10

The	highlighted	lines	above	indicate	the	result	that	is	printed	on	the	screen	each	time	we
update	the	atom.

Though	useful,	the	Observer	pattern	still	requires	some	amount	of	work	in	setting	up	the
dependencies	and	the	required	program	state	in	addition	to	being	hard	to	compose.

That	being	said,	this	pattern	has	been	extended	and	is	at	the	core	of	one	of	the	Reactive
Programming	frameworks	we	will	look	at	later	in	this	book,	Microsoft’s	Reactive
Extensions	(Rx).

Functional	Reactive	Programming
Just	like	Reactive	Programming,	Functional	Reactive	Programming—FRP	for	short—
has	unfortunately	become	an	overloaded	term.

Frameworks	such	as	RxJava	(see	https://github.com/ReactiveX/RxJava),	ReactiveCocoa
(see	https://github.com/ReactiveCocoa/ReactiveCocoa),	and	Bacon.js	(see
https://baconjs.github.io/)	became	extremely	popular	in	recent	years	and	had	positioned
themselves	incorrectly	as	FRP	libraries.	This	led	to	the	confusion	surrounding	the
terminology.

As	we	will	see,	these	frameworks	do	not	implement	FRP	but	rather	are	inspired	by	it.

In	the	interest	of	using	the	correct	terminology	as	well	as	understanding	what	“inspired	by
FRP”	means,	we	will	have	a	brief	look	at	the	different	formulations	of	FRP.

https://github.com/ReactiveX/RxJava
https://github.com/ReactiveCocoa/ReactiveCocoa
https://baconjs.github.io/

Higher-order	FRP
Higher-order	FRP	refers	to	the	original	research	on	FRP	developed	by	Conal	Elliott	and
Paul	Hudak	in	their	paper	Functional	Reactive	Animation	[2]	from	1997.	This	paper
presents	Fran,	a	domain-specific	language	embedded	in	Haskell	for	creating	reactive
animations.	It	has	since	been	implemented	in	several	languages	as	a	library	as	well	as
purpose	built	reactive	languages.

If	you	recall	the	calculator	example	we	created	a	few	pages	ago,	we	can	see	how	that	style
of	Reactive	Programming	requires	us	to	manage	state	explicitly	by	directly	reading	and
writing	from/to	the	input	fields.	As	Clojure	developers,	we	know	that	avoiding	state	and
mutable	data	is	a	good	principle	to	keep	in	mind	when	building	software.	This	principle	is
at	the	core	of	Functional	Programming:

(->>	[1	2	3	4	5	6]

					(map	inc)

					(filter	even?)

					(reduce	+))

;;	12

This	short	program	increments	by	one	all	elements	in	the	original	list,	filters	all	even
numbers,	and	adds	them	up	using	reduce.

Note	how	we	didn’t	have	to	explicitly	manage	local	state	through	at	each	step	of	the
computation.

Differently	from	imperative	programming,	we	focus	on	what	we	want	to	do,	for	example
iteration,	and	not	how	we	want	it	to	be	done,	for	example	using	a	for	loop.	This	is	why
the	implementation	matches	our	description	of	the	program	closely.	This	is	known	as
declarative	programming.

FRP	brings	the	same	philosophy	to	Reactive	Programming.	As	the	Haskell	programming
language	wiki	on	the	subject	has	wisely	put	it:

FRP	is	about	handling	time-varying	values	like	they	were	regular	values.

Put	another	way,	FRP	is	a	declarative	way	of	modeling	systems	that	respond	to	input	over
time.

Both	statements	touch	on	the	concept	of	time.	We’ll	be	exploring	that	in	the	next	section,
where	we	introduce	the	key	abstractions	provided	by	FRP:	signals	(or	behaviors)	and
events.

Signals	and	events
So	far	we	have	been	dealing	with	the	idea	of	programs	that	react	to	user	input.	This	is	of
course	only	a	small	subset	of	reactive	systems	but	is	enough	for	the	purposes	of	this
discussion.

User	input	happens	several	times	through	the	execution	of	a	program:	key	presses,	mouse
drags,	and	clicks	are	but	a	few	examples	of	how	a	user	might	interact	with	our	system.	All
these	interactions	happen	over	a	period	of	time.	FRP	recognizes	that	time	is	an	important
aspect	of	reactive	programs	and	makes	it	a	first-class	citizen	through	its	abstractions.

Both	signals	(also	called	behaviors)	and	events	are	related	to	time.	Signals	represent
continuous,	time-varying	values.	Events,	on	the	other	hand,	represent	discrete	occurrences
at	a	given	point	in	time.

For	example,	time	is	itself	a	signal.	It	varies	continuously	and	indefinitely.	On	the	other
hand,	a	key	press	by	a	user	is	an	event,	a	discrete	occurrence.

It	is	important	to	note,	however,	that	the	semantics	of	how	a	signal	changes	need	not	be
continuous.	Imagine	a	signal	that	represents	the	current	(x,y)	coordinates	of	your	mouse
pointer.

This	signal	is	said	to	change	discretely	as	it	depends	on	the	user	moving	the	mouse	pointer
—an	event—which	isn’t	a	continuous	action.

Implementation	challenges
Perhaps	the	most	defining	characteristic	of	classical	FRP	is	the	use	of	continuous	time.

This	means	FRP	assumes	that	signals	are	changing	all	the	time,	even	if	their	value	is	still
the	same,	leading	to	needless	recomputation.	For	example,	the	mouse	position	signal	will
trigger	updates	to	the	application	dependency	graph—like	the	one	we	saw	previously	for
the	mean	program—even	when	the	mouse	is	stationary.

Another	problem	is	that	classical	FRP	is	synchronous	by	default:	events	are	processed	in
order,	one	at	a	time.	Harmless	at	first,	this	can	cause	delays,	which	would	render	an
application	unresponsive	should	an	event	take	substantially	longer	to	process.

Paul	Hudak	and	others	furthered	research	on	higher-order	FRP	[7]	[8]	to	address	these
issues,	but	that	came	at	the	cost	of	expressivity.

The	other	formulations	of	FRP	aim	to	overcome	these	implementation	challenges.

Throughout	the	rest	of	the	chapter,	I’ll	be	using	signals	and	behaviors	interchangeably.

First-order	FRP
The	most	well-known	reactive	language	in	this	category	is	Elm	(see	http://elm-lang.org/),
an	FRP	language	that	compiles	to	JavaScript.	It	was	created	by	Evan	Czaplicki	and
presented	in	his	paper	Elm:	Concurrent	FRP	for	Functional	GUIs	[3].

Elm	makes	some	significant	changes	to	higher-order	FRP.

It	abandons	the	idea	of	continuous	time	and	is	entirely	event-driven.	As	a	result,	it	solves
the	problem	of	needless	recomputation	highlighted	earlier.	First-order	FRP	combines	both
behaviors	and	events	into	signals	which,	in	contrast	to	higher-order	FRP,	are	discrete.

Additionally,	first-order	FRP	allows	the	programmer	to	specify	when	synchronous
processing	of	events	isn’t	necessary,	preventing	unnecessary	processing	delays.

Finally,	Elm	is	a	strict	programming	language—meaning	arguments	to	functions	are
evaluated	eagerly—and	that	is	a	conscious	decision	as	it	prevents	space	and	time	leaks,
which	are	possible	in	a	lazy	language	such	as	Haskell.

Tip
In	an	FRP	library	such	as	Fran,	implemented	in	a	lazy	language,	memory	usage	can	grow
unwieldy	as	computations	are	deferred	to	the	absolutely	last	possible	moment,	therefore
causing	a	space	leak.	These	larger	computations,	accumulated	over	time	due	to	laziness,
can	then	cause	unexpected	delays	when	finally	executed,	causing	time	leaks.

http://elm-lang.org/

Asynchronous	data	flow
Asynchronous	Data	Flow	generally	refers	to	frameworks	such	as	Reactive	Extensions
(Rx),	ReactiveCocoa,	and	Bacon.js.	It	is	called	as	such	as	it	completely	eliminates
synchronous	updates.

These	frameworks	introduce	the	concept	of	Observable	Sequences	[4],	sometimes	called
Event	Streams.

This	formulation	of	FRP	has	the	advantage	of	not	being	confined	to	functional	languages.
Therefore,	even	imperative	languages	like	Java	can	take	advantage	of	this	style	of
programming.

Arguably,	these	frameworks	were	responsible	for	the	confusion	around	FRP	terminology.
Conal	Elliott	at	some	point	suggested	the	term	CES	(see
https://twitter.com/conal/status/468875014461468677).

I	have	since	adopted	this	terminology	(see	http://vimeo.com/100688924)	as	I	believe	it
highlights	two	important	factors:

A	fundamental	difference	between	CES	and	FRP:	CES	is	entirely	event-driven
CES	is	highly	composable	via	combinators,	taking	inspiration	from	FRP

CES	is	the	main	focus	of	this	book.

https://twitter.com/conal/status/468875014461468677
http://vimeo.com/100688924

Arrowized	FRP
This	is	the	last	formulation	we	will	look	at.	Arrowized	FRP	[5]	introduces	two	main
differences	over	higher-order	FRP:	it	uses	signal	functions	instead	of	signals	and	is	built
on	top	of	John	Hughes’	Arrow	combinators	[6].

It	is	mostly	about	a	different	way	of	structuring	code	and	can	be	implemented	as	a	library.
As	an	example,	Elm	supports	Arrowized	FRP	via	its	Automaton	(see
https://github.com/evancz/automaton)	library.

Tip
The	first	draft	of	this	chapter	grouped	the	different	formulations	of	FRP	under	the	broad
categories	of	Continuous	and	Discrete	FRP.	Thanks	to	Evan	Czaplicki’s	excellent	talk
Controlling	Time	and	Space:	understanding	the	many	formulations	of	FRP	(see
https://www.youtube.com/watch?v=Agu6jipKfYw),	I	was	able	to	borrow	the	more
specific	categories	used	here.	These	come	in	handy	when	discussing	the	different
approaches	to	FRP.

https://github.com/evancz/automaton
https://www.youtube.com/watch?v=Agu6jipKfYw

Applications	of	FRP
The	different	FRP	formulations	are	being	used	today	in	several	problem	spaces	by
professionals	and	big	organizations	alike.	Throughout	this	book,	we’ll	look	at	several
examples	of	how	CES	can	be	applied.	Some	of	these	are	interrelated	as	most	modern
programs	have	several	cross-cutting	concerns,	but	we	will	highlight	two	main	areas.

Asynchronous	programming	and	networking
GUIs	are	a	great	example	of	asynchronous	programming.	Once	you	open	a	web	or	a
desktop	application,	it	simply	sits	there,	idle,	waiting	for	user	input.

This	state	is	often	called	the	event	or	main	event	loop.	It	is	simply	waiting	for	external
stimuli,	such	as	a	key	press,	a	mouse	button	click,	new	data	from	the	network,	or	even	a
simple	timer.

Each	of	these	stimuli	is	associated	with	an	event	handler	that	gets	called	when	one	of	these
events	happen,	hence	the	asynchronous	nature	of	GUI	systems.

This	is	a	style	of	programming	we	have	been	used	to	for	many	years,	but	as	business	and
user	needs	grow,	these	applications	grow	in	complexity	as	well,	and	better	abstractions	are
needed	to	handle	the	dependencies	between	all	the	components	of	an	application.

Another	great	example	that	deals	with	managing	complexity	around	network	traffic	is
Netflix,	which	uses	CES	to	provide	a	reactive	API	to	their	backend	services.

Complex	GUIs	and	animations
Games	are,	perhaps,	the	best	example	of	complex	user	interfaces	as	they	have	intricate
requirements	around	user	input	and	animations.

The	Elm	language	we	mentioned	before	is	one	of	the	most	exciting	efforts	in	building
complex	GUIs.	Another	example	is	Flapjax,	also	targeted	at	web	applications,	but	is
provided	as	a	JavaScript	library	that	can	be	integrated	with	existing	JavaScript	code	bases.

Summary
Reactive	Programming	is	all	about	building	responsive	applications.	There	are	several
ways	in	which	we	can	make	our	applications	reactive.	Some	are	old	ideas:	dataflow
programming,	electronic	spreadsheets,	and	the	Observer	pattern	are	all	examples.	But	CES
in	particular	has	become	popular	in	recent	years.

CES	aims	to	bring	to	Reactive	Programming	the	declarative	way	of	modeling	problems
that	is	at	the	core	of	Functional	Programming.	We	should	worry	about	what	and	not	about
how.

In	next	chapters,	we	will	learn	how	we	can	apply	CES	to	our	own	programs.

Chapter	2.	A	Look	at	Reactive	Extensions
Reactive	Extensions—or	Rx—is	a	Reactive	Programming	library	from	Microsoft	to	build
complex	asynchronous	programs.	It	models	time-varying	values	and	events	as	observable
sequences	and	is	implemented	by	extending	the	Observer	design	pattern.

Its	first	target	platform	was	.NET,	but	Netflix	has	ported	Rx	to	the	JVM	under	the	name
RxJava.	Microsoft	also	develops	and	maintains	a	port	of	Rx	to	JavaScript	called	RxJS,
which	is	the	tool	we	used	to	build	the	sine-wave	application.	The	two	ports	work	a	treat
for	us	since	Clojure	runs	on	the	JVM	and	ClojureScript	in	JavaScript	environments.

As	we	saw	in	Chapter	1,	What	is	Reactive	Programming?,	Rx	is	inspired	by	Functional
Reactive	Programming	but	uses	different	terminology.	In	FRP,	the	two	main	abstractions
are	behaviors	and	events.	Although	the	implementation	details	are	different,	observable
sequences	represent	events.	Rx	also	provides	a	behavior-like	abstraction	through	another
data	type	called	BehaviorSubject.

In	this	chapter,	we	will:

Explore	Rx’s	main	abstraction:	observables
Learn	about	the	duality	between	iterators	and	observables
Create	and	manipulate	observable	sequences

The	Observer	pattern	revisited
In	Chapter	1,	What	is	Reactive	Programming?,	we	saw	a	brief	overview	of	the	Observer
design	pattern	and	a	simple	implementation	of	it	in	Clojure	using	watches.	Here’s	how	we
did	it:

(def	numbers	(atom	[]))

(defn	adder	[key	ref	old-state	new-state]

		(print	"Current	sum	is	"	(reduce	+	new-state)))

(add-watch	numbers	:adder	adder)	

In	the	preceding	example,	our	observable	subject	is	the	var,	numbers.	The	observer	is	the
adder	watch.	When	the	observable	changes,	it	pushes	its	changes	to	the	observer
synchronously.

Now,	contrast	this	to	working	with	sequences:

(->>	[1	2	3	4	5	6]

					(map	inc)

					(filter	even?)

					(reduce	+))

This	time	around,	the	vector	is	the	subject	being	observed	and	the	functions	processing	it
can	be	thought	of	as	the	observers.	However,	this	works	in	a	pull-based	model.	The	vector
doesn’t	push	any	elements	down	the	sequence.	Instead,	map	and	friends	ask	the	sequence
for	more	elements.	This	is	a	synchronous	operation.

Rx	makes	sequences—and	more—behave	like	observables	so	that	you	can	still	map,	filter,
and	compose	them	just	as	you	would	compose	functions	over	normal	sequences.

Observer	–	an	Iterator’s	dual
Clojure’s	sequence	operators	such	as	map,	filter,	reduce,	and	so	on	support	Java	Iterables.
As	the	name	implies,	an	Iterable	is	an	object	that	can	be	iterated	over.	At	a	low	level,	this
is	supported	by	retrieving	an	Iterator	reference	from	such	object.	Java’s	Iterator	interface
looks	like	the	following:

public	interface	Iterator<E>	{

				boolean	hasNext();

				E	next();

				void	remove();

}

When	passed	in	an	object	that	implements	this	interface,	Clojure’s	sequence	operators	pull
data	from	it	by	using	the	next	method,	while	using	the	hasNext	method	to	know	when	to
stop.

Tip
The	remove	method	is	required	to	remove	its	last	element	from	the	underlying	collection.
This	in-place	mutation	is	clearly	unsafe	in	a	multithreaded	environment.	Whenever
Clojure	implements	this	interface	for	the	purposes	of	interoperability,	the	remove	method
simply	throws	UnsupportedOperationException.

An	observable,	on	the	other	hand,	has	observers	subscribed	to	it.	Observers	have	the
following	interface:

public	interface	Observer<T>	{

				void	onCompleted();

				void	onError(Throwable	e);

				void	onNext(T	t);

}

As	we	can	see,	an	Observer	implementing	this	interface	will	have	its	onNext	method
called	with	the	next	value	available	from	whatever	observable	it’s	subscribed	to.	Hence,	it
being	a	push-based	notification	model.

This	duality	[4]	becomes	clearer	if	we	look	at	both	the	interfaces	side	by	side:

Iterator<E>	{																							Observer<T>	{

				boolean	hasNext();																		void	onCompleted();

				E	next();																											void	onError(Throwable	e);

				void	remove();																						void	onNext(T	t);

}																																							}

Observables	provide	the	ability	to	have	producers	push	items	asynchronously	to
consumers.	A	few	examples	will	help	solidify	our	understanding.

Creating	Observables
This	chapter	is	all	about	Reactive	Extensions,	so	let’s	go	ahead	and	create	a	project	called
rx-playground	that	we	will	be	using	in	our	exploratory	tour.	We	will	use	RxClojure	(see
https://github.com/ReactiveX/RxClojure),	a	library	that	provides	Clojure	bindings	for
RxJava()	(see	https://github.com/ReactiveX/RxJava):

$	lein	new	rx-playground

Open	the	project	file	and	add	a	dependency	on	RxJava’s	Clojure	bindings:

(defproject	rx-playground	"0.1.0-SNAPSHOT"

		:description	"FIXME:	write	description"

		:url	"http://example.com/FIXME"

		:license	{:name	"Eclipse	Public	License"

												:url	"http://www.eclipse.org/legal/epl-v10.html"}

		:dependencies	[[org.clojure/clojure	"1.5.1"]

																	[io.reactivex/rxclojure	"1.0.0"]])"]])

Now,	fire	up	a	REPL	in	the	project’s	root	directory	so	that	we	can	start	creating	some
observables:

$	lein	repl

The	first	thing	we	need	to	do	is	import	RxClojure,	so	let’s	get	this	out	of	the	way	by	typing
the	following	in	the	REPL:

(require	'[rx.lang.clojure.core	:as	rx])

(import	'(rx	Observable))

The	simplest	way	to	create	a	new	observable	is	by	calling	the	justreturn	function:

(def	obs	(rx/return	10))

Now,	we	can	subscribe	to	it:

(rx/subscribe	obs

														(fn	[value]

																(prn	(str	"Got	value:	"	value))))

This	will	print	the	string	"Got	value:	10"	to	the	REPL.

The	subscribe	function	of	an	observable	allows	us	to	register	handlers	for	three	main
things	that	happen	throughout	its	life	cycle:	new	values,	errors,	or	a	notification	that	the
observable	is	done	emitting	values.	This	corresponds	to	the	onNext,	onError,	and
onCompleted	methods	of	the	Observer	interface,	respectively.

In	the	preceding	example,	we	are	simply	subscribing	to	onNext,	which	is	why	we	get
notified	about	the	observable’s	only	value,	10.

A	single-value	Observable	isn’t	terribly	interesting	though.	Let’s	create	and	interact	with
one	that	emits	multiple	values:

(->	(rx/seq->o	[1	2	3	4	5	6	7	8	9	10])

				(rx/subscribe	prn))

https://github.com/ReactiveX/RxClojure
https://github.com/ReactiveX/RxJava

This	will	print	the	numbers	from	1	to	10,	inclusive,	to	the	REPL.	seq->o	is	a	way	to	create
observables	from	Clojure	sequences.	It	just	so	happens	that	the	preceding	snippet	can	be
rewritten	using	Rx’s	own	range	operator:

(->	(rx/range	1	10)

				(rx/subscribe	prn))

Of	course,	this	doesn’t	yet	present	any	advantages	to	working	with	raw	values	or
sequences	in	Clojure.

But	what	if	we	need	an	observable	that	emits	an	undefined	number	of	integers	at	a	given
interval?	This	becomes	challenging	to	represent	as	a	sequence	in	Clojure,	but	Rx	makes	it
trivial:

(import	'(java.util.concurrent	TimeUnit))

(rx/subscribe	(Observable/interval	100	TimeUnit/MILLISECONDS)

														prn-to-repl)

Tip
RxClojure	doesn’t	yet	provide	bindings	to	all	of	RxJava’s	API.	The	interval	method	is
one	such	example.	We’re	required	to	use	interoperability	and	call	the	method	directly	on
the	Observable	class	from	RxJava.

Observable/interval	takes	as	arguments	a	number	and	a	time	unit.	In	this	case,	we	are
telling	it	to	emit	an	integer—starting	from	zero—every	100	milliseconds.	If	we	type	this	in
an	REPL-connected	editor,	however,	two	things	will	happen:

We	will	not	see	any	output	(depending	on	your	REPL;	this	is	true	for	Emacs)
We	will	have	a	rogue	thread	emitting	numbers	indefinitely

Both	issues	arise	from	the	fact	that	Observable/interval	is	the	first	factory	method	we
have	used	that	doesn’t	emit	values	synchronously.	Instead,	it	returns	an	Observable	that
defers	the	work	to	a	separate	thread.

The	first	issue	is	simple	enough	to	fix.	Functions	such	as	prn	will	print	to	whatever	the
dynamic	var	*out*	is	bound	to.	When	working	in	certain	REPL	environments	such	as
Emacs’,	this	is	bound	to	the	REPL	stream,	which	is	why	we	can	generally	see	everything
we	print.

However,	since	Rx	is	deferring	the	work	to	a	separate	thread,	*out*	isn’t	bound	to	the
REPL	stream	anymore	so	we	don’t	see	the	output.	In	order	to	fix	this,	we	need	to	capture
the	current	value	of	*out*	and	bind	it	in	our	subscription.	This	will	be	incredibly	useful	as
we	experiment	with	Rx	in	the	REPL.	As	such,	let’s	create	a	helper	function	for	it:

(def		repl-out	*out*)

(defn	prn-to-repl	[&	args]

		(binding	[*out*	repl-out]

				(apply	prn	args)))

The	first	thing	we	do	is	create	a	var	repl-out	that	contains	the	current	REPL	stream.
Next,	we	create	a	function	prn-to-repl	that	works	just	like	prn,	except	it	uses	the
binding	macro	to	create	a	new	binding	for	*out*	that	is	valid	within	that	scope.

This	still	leaves	us	with	the	rogue	thread	problem.	Now	is	the	appropriate	time	to	mention
that	the	subscribe	method	from	an	Observable	returns	a	subscription	object.	By	holding
onto	a	reference	to	it,	we	can	call	its	unsubscribe	method	to	indicate	that	we	are	no
longer	interested	in	the	values	produced	by	that	observable.

Putting	it	all	together,	our	interval	example	can	be	rewritten	like	the	following:

	(def	subscription	(rx/subscribe	(Observable/interval	100	

TimeUnit/MILLISECONDS)

																																prn-to-repl))

(Thread/sleep	1000)

(rx/unsubscribe	subscription)

We	create	a	new	interval	observable	and	immediately	subscribe	to	it,	just	as	we	did	before.
This	time,	however,	we	assign	the	resulting	subscription	to	a	local	var.	Note	that	it	now
uses	our	helper	function	prn-to-repl,	so	we	will	start	seeing	values	being	printed	to	the
REPL	straight	away.

Next,	we	sleep	the	current—the	REPL—thread	for	a	second.	This	is	enough	time	for	the
Observable	to	produce	numbers	from	0	to	9.	That’s	roughly	when	the	REPL	thread	wakes
up	and	unsubscribes	from	that	observable,	causing	it	to	stop	emitting	values.

Custom	Observables
Rx	provides	many	more	factory	methods	to	create	Observables	(see
https://github.com/ReactiveX/RxJava/wiki/Creating-Observables),	but	it	is	beyond	the
scope	of	this	book	to	cover	them	all.

Nevertheless,	sometimes,	none	of	the	built-in	factories	is	what	you	want.	For	such	cases,
Rx	provides	the	create	method.	We	can	use	it	to	create	a	custom	observable	from	scratch.

As	an	example,	we’ll	create	our	own	version	of	the	just	observable	we	used	earlier	in	this
chapter:

(defn	just-obs	[v]

		(rx/observable*

			(fn	[observer]

					(rx/on-next	observer	v)

					(rx/on-completed	observer))))

(rx/subscribe	(just-obs	20)	prn)

First,	we	create	a	function,	just-obs,	which	implements	our	observable	by	calling	the
observable*	function.

When	creating	an	observable	this	way,	the	function	passed	to	observable*	will	get	called
with	an	observer	as	soon	as	one	subscribes	to	us.	When	this	happens,	we	are	free	to	do
whatever	computation—and	even	I/O—we	need	in	order	to	produce	values	and	push	them
to	the	observer.

We	should	remember	to	call	the	observer’s	onCompleted	method	whenever	we’re	done
producing	values.	The	preceding	snippet	will	print	20	to	the	REPL.

Tip
While	creating	custom	observables	is	fairly	straightforward,	we	should	make	sure	we
exhaust	the	built-in	factory	functions	first,	only	then	resorting	to	creating	our	own.

https://github.com/ReactiveX/RxJava/wiki/Creating-Observables

Manipulating	Observables
Now	that	we	know	how	to	create	observables,	we	should	look	at	what	kinds	of	interesting
things	we	can	do	with	them.	In	this	section,	we	will	see	what	it	means	to	treat	Observables
as	sequences.

We’ll	start	with	something	simple.	Let’s	print	the	sum	of	the	first	five	positive	even
integers	from	an	observable	of	all	integers:

(rx/subscribe	(->>	(Observable/interval	1	TimeUnit/MICROSECONDS)

																			(rx/filter	even?)

																			(rx/take	5)

																			(rx/reduce	+))

																			prn-to-repl)

This	is	starting	to	look	awfully	familiar	to	us.	We	create	an	interval	that	will	emit	all
positive	integers	starting	at	zero	every	1	microsecond.	Then,	we	filter	all	even	numbers	in
this	observable.	Obviously,	this	is	too	big	a	list	to	handle,	so	we	simply	take	the	first	five
elements	from	it.	Finally,	we	reduce	the	value	using	+.	The	result	is	20.

To	drive	home	the	point	that	programming	with	observables	really	is	just	like	operating	on
sequences,	we	will	look	at	one	more	example	where	we	will	combine	two	different
Observable	sequences.	One	contains	the	names	of	musicians	I’m	a	fan	of	and	the	other	the
names	of	their	respective	bands:

(defn	musicians	[]

		(rx/seq->o	["James	Hetfield"	"Dave	Mustaine"	"Kerry	King"]))

(defn	bands					[]

		(rx/seq->o	["Metallica"	"Megadeth"	"Slayer"]))

We	would	like	to	print	to	the	REPL	a	string	of	the	format	Musician	name	–	from:	band
name.	An	added	requirement	is	that	the	band	names	should	be	printed	in	uppercase	for
impact.

We’ll	start	by	creating	another	observable	that	contains	the	uppercased	band	names:

(defn	uppercased-obs	[]

		(rx/map	(fn	[s]	(.toUpperCase	s))	(bands)))

While	not	strictly	necessary,	this	makes	a	reusable	piece	of	code	that	can	be	handy	in
several	places	of	the	program,	thus	avoiding	duplication.	Subscribers	interested	in	the
original	band	names	can	keep	subscribing	to	the	bands	observable.

With	the	two	observables	in	hand,	we	can	proceed	to	combine	them:

(->	(rx/map	vector

												(musicians)

												(uppercased-obs))

				(rx/subscribe	(fn	[[musician	band]]

																				(prn-to-repl	(str	musician	"	-	from:	"	band)))))

Once	more,	this	example	should	feel	familiar.	The	solution	we	were	after	was	a	way	to	zip

the	two	observables	together.	RxClojure	provides	zip	behavior	through	map,	much	like
Clojure’s	core	map	function	does.	We	call	it	with	three	arguments:	the	two	observables	to
zip	and	a	function	that	will	be	called	with	both	elements,	one	from	each	observable,	and
should	return	an	appropriate	representation.	In	this	case,	we	simply	turn	them	into	a
vector.

Next,	in	our	subscriber,	we	simply	destructure	the	vector	in	order	to	access	the	musician
and	band	names.	We	can	finally	print	the	final	result	to	the	REPL:

"James	Hetfield	-	from:	METALLICA"

"Dave	Mustaine	-	from:	MEGADETH"

"Kerry	King	-	from:	SLAYER"

Flatmap	and	friends
In	the	previous	section,	we	learned	how	to	transform	and	combine	observables	with
operations	such	as	map,	reduce,	and	zip.	However,	the	two	observables	above—musicians
and	bands—were	perfectly	capable	of	producing	values	on	their	own.	They	did	not	need
any	extra	input.

In	this	section,	we	examine	a	different	scenario:	we’ll	learn	how	we	can	combine
observables,	where	the	output	of	one	is	the	input	of	another.	We	encountered	flatmap
before	in	Chapter	1,	What	is	Reactive	Programming?	If	you	have	been	wondering	what	its
role	is,	this	section	addresses	exactly	that.

Here’s	what	we	are	going	to	do:	given	an	observable	representing	a	list	of	all	positive
integers,	we’ll	calculate	the	factorial	for	all	even	numbers	in	that	list.	Since	the	list	is	too
big,	we’ll	take	five	items	from	it.	The	end	result	should	be	the	factorials	of	0,	2,	4,	6,	and
8,	respectively.

The	first	thing	we	need	is	a	function	to	calculate	the	factorial	of	a	number	n,	as	well	as	our
observable:

(defn	factorial	[n]

		(reduce	*	(range	1	(inc	n))))

(defn	all-positive-integers	[]

		(Observable/interval	1	TimeUnit/MICROSECONDS))

Using	some	type	of	visual	aid	will	be	helpful	in	this	section,	so	we’ll	start	with	a	marble
diagram	representing	the	previous	observable:

The	middle	arrow	represents	time	and	it	flows	from	left	to	right.	This	diagram	represents
an	infinite	Observable	sequence,	as	indicated	by	the	use	of	ellipsis	at	the	end	of	it.

Since	we’re	combining	all	the	observables	now,	we’ll	create	one	that,	given	a	number,
emits	its	factorial	using	the	helper	function	defined	earlier.	We’ll	use	Rx’s	create	method
for	this	purpose:

(defn	fact-obs	[n]

		(rx/observable*

			(fn	[observer]

					(rx/on-next	observer	(factorial	n))

					(rx/on-completed	observer))))

This	is	very	similar	to	the	just-obs	observable	we	created	earlier	in	this	chapter,	except
that	it	calculates	the	factorial	of	its	argument	and	emits	the	result/factorial	instead,	ending
the	sequence	immediately	thereafter.	The	following	diagram	illustrates	how	it	works:

We	feed	the	number	5	to	the	observable,	which	in	turn	emits	its	factorial,	120.	The	vertical
bar	at	the	end	of	the	time	line	indicates	the	sequence	terminates	then.

Running	the	code	confirms	that	our	function	is	correct:

(rx/subscribe	(fact-obs	5)	prn-to-repl)

;;	120

So	far	so	good.	Now,	we	need	to	combine	both	observables	in	order	to	achieve	our	goal.
This	is	where	flatmap	of	Rx	comes	in.	We’ll	first	see	it	in	action	and	then	get	into	the
explanation:

(rx/subscribe	(->>	(all-positive-integers)

																			(rx/filter		even?)

																			(rx/flatmap	fact-obs)

																			(rx/take	5))

														prn-to-repl)

If	we	run	the	preceding	code,	it	will	print	the	factorials	for	0,	2,	4,	6,	and	8,	just	like	we
wanted:

1

2

24

720

40320

Most	of	the	preceding	code	snippet	should	look	familiar.	The	first	thing	we	do	is	filter	all
even	numbers	from	all-positive-numbers.	This	leaves	us	with	the	following	observable
sequence:

Much	like	all-positive-integers,	this,	too,	is	an	infinite	observable.

However,	the	next	line	of	our	code	looks	a	little	odd.	We	call	flatmap	and	give	it	the
fact-obs	function.	A	function	we	know	itself	returns	another	observable.	flatmap	will
call	fact-obs	with	each	value	it	emits.	fact-obs	will,	in	turn,	return	a	single-value
observable	for	each	number.	However,	our	subscriber	doesn’t	know	how	to	deal	with
observables!	It’s	simply	interested	in	the	factorials!

This	is	why,	after	calling	fact-obs	to	obtain	an	observable,	flatmap	flattens	all	of	them
into	a	single	observable	we	can	subscribe	to.	This	is	quite	a	mouthful,	so	let’s	visualize
what	this	means:

As	you	can	see	in	the	preceding	diagram,	throughout	the	execution	of	flatmap,	we	end	up
with	a	list	of	observables.	However,	we	don’t	care	about	each	observable	but	rather	about
the	values	they	emit.	Flatmap,	then,	is	the	perfect	tool	as	it	combines—flattens—all	of
them	into	the	observable	sequence	shown	at	the	bottom	of	the	figure.

You	can	think	of	flatmap	as	mapcat	for	observable	sequences.

The	rest	of	the	code	is	straightforward.	We	simply	take	the	first	five	elements	from	this
observable	and	subscribe	to	it,	as	we	have	been	doing	so	far.

One	more	flatmap	for	the	road
You	might	be	wondering	what	would	happen	if	the	observable	sequence	we’re
flatmapping	emitted	more	than	one	value.	What	then?

We’ll	see	one	last	example	before	we	begin	the	next	section	in	order	to	illustrate	the
behavior	of	flatMap	in	such	cases.

Here’s	an	observable	that	emits	its	argument	twice:

(defn	repeat-obs	[n]

		(rx/seq->o	(repeat	2	n)))

Using	it	is	straightforward:

(->	(repeat-obs	5)

				(rx/subscribe	prn-to-repl))

;;	5

;;	5

As	previously,	we’ll	now	combine	this	observable	with	the	one	we	created	earlier,	all-
positive-integers.	Before	reading	on,	think	about	what	you	expect	the	output	to	be	for,
say,	the	first	three	positive	integers.

The	code	is	as	follows:

(rx/subscribe	(->>	(all-positive-integers)

																			(rx/flatmap	repeat-obs)

																			(rx/take	6))

														prn-to-repl)

And	the	output	is	as	follows:

0

0

1

1

2

2

The	result	might	be	unexpected	for	some	readers.	Let’s	have	a	look	at	the	marble	diagram
for	this	example	and	make	sure	we	understand	how	it	works:

Each	time	repeat-obs	gets	called,	it	emits	two	values	and	terminates.	flatmap	then
combines	them	all	in	a	single	observable,	making	the	previous	output	clearer.

One	last	thing	worth	mentioning	about	flatmap—and	the	title	of	this	section—is	that	its
“friends”	refer	to	the	several	names	by	which	flatmap	is	known.

For	instance,	Rx.NET	calls	it	selectMany.	RxJava	and	Scala	call	it	flatMap—though
RxJava	has	an	alias	for	it	called	mapMany.	The	Haskell	community	calls	it	bind.	Though
they	have	different	names,	these	functions	semantics	are	the	same	and	are	part	of	a	higher-
order	abstraction	called	a	Monad.	We	don’t	need	to	know	anything	about	Monads	to
proceed.

The	important	thing	to	keep	in	mind	is	that	when	you’re	sitting	at	the	bar	talking	to	your
friends	about	Compositional	Event	Systems,	all	these	names	mean	the	same	thing.

Error	handling
A	very	important	aspect	of	building	reliable	applications	is	knowing	what	to	do	when
things	go	wrong.	It	is	naive	to	assume	that	the	network	is	reliable,	that	hardware	won’t
fail,	or	that	we,	as	developers,	won’t	make	mistakes.

RxJava	embraces	this	fact	and	provides	a	rich	set	of	combinators	to	deal	with	failure,	a
few	of	which	we	examine	here.

OnError
Let’s	get	started	by	creating	a	badly	behaved	observable	that	always	throws	an	exception:

(defn	exceptional-obs	[]

		(rx/observable*

			(fn	[observer]

					(rx/on-next	observer	(throw	(Exception.	"Oops.	Something	went	

wrong")))

					(rx/on-completed	observer))))

Now	let’s	watch	what	happens	if	we	subscribe	to	it:

(rx/subscribe	(->>	(exceptional-obs)

																			(rx/map	inc))

														(fn	[v]	(prn-to-repl	"result	is	"	v)))

;;	Exception	Oops.	Something	went	wrong		rx-playground.core/exceptional-

obs/fn--1505

The	exception	thrown	by	exceptional-obs	isn’t	caught	anywhere	so	it	simply	bubbles	up
to	the	REPL.	If	this	was	a	web	application	our	users	would	be	presented	with	a	web	server
error	such	as	the	HTTP	code	500	–	Internal	Server	Error.	Those	users	would	probably
not	use	our	system	again.

Ideally,	we	would	like	to	get	a	chance	to	handle	this	exception	gracefully,	possibly
rendering	a	friendly	error	message	that	will	let	ours	users	know	we	care	about	them.

As	we	have	seen	earlier	in	the	chapter,	the	subscribe	function	can	take	up	to	3	functions
as	arguments:

The	first,	or	the	onNext	handler,	is	called	when	the	observable	emits	a	new	value
The	second,	or	onError,	is	called	whenever	the	observable	throws	an	exception
The	third	and	last	function,	or	onComplete,	is	called	when	the	observable	has
completed	and	will	not	emit	any	new	items

For	our	purposes	we	are	interested	in	the	onError	handler,	and	using	it	is	straightforward:

(rx/subscribe	(->>	(exceptional-obs)

																			(rx/map	inc))

														(fn	[v]	(prn-to-repl	"result	is	"	v))

														(fn	[e]	(prn-to-repl	"error	is	"	e)))

;;	"error	is	"	#<Exception	java.lang.Exception:	Oops.	Something	went	wrong>

This	time,	instead	of	throwing	the	exception,	our	error	handler	gets	called	with	it.	This
gives	us	the	opportunity	to	display	an	appropriate	message	to	our	users.

Catch
The	use	of	onError	gives	us	a	much	better	experience	overall	but	it	isn’t	very	flexible.

Let’s	imagine	a	different	scenario	where	we	have	an	observable	retrieving	data	from	the
network.	What	if,	when	this	observer	fails,	we	would	like	to	present	the	user	with	a	cached
value	instead	of	an	error	message?

This	is	where	the	catch	combinator	comes	in.	It	allows	us	to	specify	a	function	to	be
invoked	when	the	observable	throws	an	exception,	much	like	OnError	does.

Differently	from	OnError,	however,	catch	has	to	return	a	new	Observable	that	will	be	the
new	source	of	items	from	the	moment	the	exception	was	thrown:

(rx/subscribe	(->>	(exceptional-obs)

																			(rx/catch	Exception	e

																							(rx/return	10))

																			(rx/map	inc))

														(fn	[v]	(prn-to-repl	"result	is	"	v)))

;;	"result	is	"	11

In	the	previous	example,	we	are	essentially	specifying	that,	whenever	exceptional-obs
throws,	we	should	return	the	value	10.	We	are	not	limited	to	single	values,	however.	In
fact,	we	can	use	any	Observable	we	like	as	the	new	source:

(rx/subscribe	(->>	(exceptional-obs)

																			(rx/catch	Exception	e

																					(rx/seq->o	(range	5)))

																			(rx/map	inc))

														(fn	[v]	(prn-to-repl	"result	is	"	v)))

;;	"result	is	"	1

;;	"result	is	"	2

;;	"result	is	"	3

;;	"result	is	"	4

;;	"result	is	"	5

Retry
The	last	error	handling	combinator	we’ll	examine	is	retry.	This	combinator	is	useful
when	we	know	an	error	or	exception	is	only	transient	so	we	should	probably	give	it
another	shot	by	resubscribing	to	the	Observable.

First,	we’ll	create	an	observable	that	fails	when	it	is	subscribed	to	for	the	first	time.
However,	the	next	time	it	is	subscribed	to,	it	succeeds	and	emits	a	new	item:

(defn	retry-obs	[]

		(let	[errored	(atom	false)]

				(rx/observable*

					(fn	[observer]

							(if	@errored

									(rx/on-next	observer	20)

									(do	(reset!	errored	true)

													(throw	(Exception.	"Oops.	Something	went	wrong"))))))))

Let’s	see	what	happens	if	we	simply	subscribe	to	it:

(rx/subscribe	(retry-obs)

														(fn	[v]	(prn-to-repl	"result	is	"	v)))

;;	Exception	Oops.	Something	went	wrong		rx-playground.core/retry-obs/fn-

-1476

As	expected,	the	exception	simply	bubbles	up	as	in	our	first	example.	However	we	know
—for	the	purposes	of	this	example—that	this	is	a	transient	failure.	Let’s	see	what	changes
if	we	use	retry:

(rx/subscribe	(->>	(retry-obs)

																			(.retry))

														(fn	[v]	(prn-to-repl	"result	is	"	v)))

;;	"result	is	"	20

Now,	our	code	is	responsible	for	retrying	the	Observable	and	as	expected	we	get	the
correct	output.

It’s	important	to	note	that	retry	will	attempt	to	resubscribe	indefinitely	until	it	succeeds.
This	might	not	be	what	you	want	so	Rx	provides	a	variation,	called	retryWith,	which
allows	us	to	specify	a	predicate	function	that	controls	when	and	if	retrying	should	stop.

All	these	operators	give	us	the	tools	we	need	to	build	reliable	reactive	applications	and	we
should	always	keep	them	in	mind	as	they	are,	without	a	doubt,	a	great	addition	to	our
toolbox.	The	RxJava	wiki	on	the	subject	should	be	referred	to	for	more	information:
https://github.com/ReactiveX/RxJava/wiki/Error-Handling-Operators.

https://github.com/ReactiveX/RxJava/wiki/Error-Handling-Operators

Backpressure
Another	issue	we	might	be	faced	with	is	the	one	of	observables	that	produce	items	faster
than	we	can	consume.	The	problem	that	arises	in	this	scenario	is	what	to	do	with	this	ever-
growing	backlog	of	items.

As	an	example,	think	about	zipping	two	observables	together.	The	zip	operator	(or	map	in
RxClojure)	will	only	emit	a	new	value	when	all	observables	have	emitted	an	item.

So	if	one	of	these	observables	is	a	lot	faster	at	producing	items	than	the	others,	map	will
need	to	buffer	these	items	and	wait	for	the	others,	which	will	most	likely	cause	an	error,	as
shown	here:

(defn	fast-producing-obs	[]

		(rx/map	inc	(Observable/interval	1	TimeUnit/MILLISECONDS)))

(defn	slow-producing-obs	[]

		(rx/map	inc	(Observable/interval	500	TimeUnit/MILLISECONDS)))

(rx/subscribe	(->>	(rx/map	vector

																											(fast-producing-obs)

																											(slow-producing-obs))

																			(rx/map	(fn	[[x	y]]

																													(+	x	y)))

																			(rx/take	10))

														prn-to-repl

														(fn	[e]	(prn-to-repl	"error	is	"	e)))

;;	"error	is	"	#<MissingBackpressureException	

rx.exceptions.MissingBackpressureException>

As	seen	in	the	preceding	code,	we	have	a	fast	producing	observable	that	emits	items	500
times	faster	than	the	slower	Observable.	Clearly,	we	can’t	keep	up	with	it	and	surely
enough,	Rx	throws	MissingBackpressureException.

What	this	exception	is	telling	us	is	that	the	fast	producing	observable	doesn’t	support	any
type	of	backpressure—what	Rx	calls	Reactive	pull	backpressure—that	is,	consumers	can’t
tell	it	to	go	slower.	Thankfully	Rx	provides	us	with	combinators	that	are	helpful	in	these
scenarios.

Sample
One	such	combinator	is	sample,	which	allows	us	to	sample	an	observable	at	a	given
interval,	thus	throttling	the	source	observable’s	output.	Let’s	apply	it	to	our	previous
example:

(rx/subscribe	(->>	(rx/map	vector

																											(.sample	(fast-producing-obs)	200

																																				TimeUnit/MILLISECONDS)

																											(slow-producing-obs))

																			(rx/map	(fn	[[x	y]]

																													(+	x	y)))

																			(rx/take	10))

														prn-to-repl

														(fn	[e]	(prn-to-repl	"error	is	"	e)))

;;	204

;;	404

;;	604

;;	807

;;	1010

;;	1206

;;	1407

;;	1613

;;	1813

;;	2012

The	only	change	is	that	we	call	sample	on	our	fast	producing	Observable	before	calling
map.	We	will	sample	it	every	200	milliseconds.

By	ignoring	all	other	items	emitted	in	this	time	slice,	we	have	mitigated	our	initial
problem,	even	though	the	original	Observable	doesn’t	support	any	form	of	backpressure.

The	sample	combinator	is	only	one	of	the	combinators	useful	in	such	cases.	Others	include
throttleFirst,	debounce,	buffer,	and	window.	One	drawback	of	this	approach,	however,
is	that	a	lot	of	the	items	generated	end	up	being	ignored.

Depending	on	the	type	of	application	we	are	building,	this	might	be	an	acceptable
compromise.	But	what	if	we	are	interested	in	all	items?

Backpressure	strategies
If	an	Observable	doesn’t	support	backpressure	but	we	are	still	interested	in	all	items	it
emits,	we	can	use	one	of	the	built-in	backpressure	combinators	provided	by	Rx.

As	an	example	we	will	look	at	one	such	combinator,	onBackpressureBuffer:

(rx/subscribe	(->>	(rx/map	vector

																											(.onBackpressureBuffer	(fast-producing-obs))

																											(slow-producing-obs))

																			(rx/map	(fn	[[x	y]]

																													(+	x	y)))

																			(rx/take	10))

														prn-to-repl

														(fn	[e]	(prn-to-repl	"error	is	"	e)))

;;	2

;;	4

;;	6

;;	8

;;	10

;;	12

;;	14

;;	16

;;	18

;;	20

The	example	is	very	similar	to	the	one	where	we	used	sample,	but	the	output	is	fairly
different.	This	time	we	get	all	items	emitted	by	both	observables.

The	onBackpressureBuffer	strategy	implements	a	strategy	that	simply	buffers	all	items
emitted	by	the	slower	Observable,	emitting	them	whenever	the	consumer	is	ready.	In	our
case,	that	happens	every	500	milliseconds.

Other	strategies	include	onBackpressureDrop	and	onBackpressureBlock.

It’s	worth	noting	that	Reactive	pull	backpressure	is	still	work	in	progress	and	the	best	way
to	keep	up	to	date	with	progress	is	on	the	RxJava	wiki	on	the	subject:
https://github.com/ReactiveX/RxJava/wiki/Backpressure.

https://github.com/ReactiveX/RxJava/wiki/Backpressure

Summary
In	this	chapter,	we	took	a	deep	dive	into	RxJava,	a	port	form	Microsoft’s	Reactive
Extensions	from	.NET.	We	learned	about	its	main	abstraction,	the	observable,	and	how	it
relates	to	iterables.

We	also	learned	how	to	create,	manipulate,	and	combine	observables	in	several	ways.	The
examples	shown	here	were	contrived	to	keep	things	simple.	Nevertheless,	all	concepts
presented	are	extremely	useful	in	real	applications	and	will	come	in	handy	for	our	next
chapter,	where	we	put	them	to	use	in	a	more	substantial	example.

Finally,	we	finished	by	looking	at	error	handling	and	backpressure,	both	of	which	are
important	characteristics	of	reliable	applications	that	should	always	be	kept	in	mind.

Chapter	3.	Asynchronous	Programming
and	Networking
Several	business	applications	need	to	react	to	external	stimuli—such	as	network	traffic—
asynchronously.	An	example	of	such	software	might	be	a	desktop	application	that	allows
us	to	track	a	company’s	share	prices	in	the	stock	market.

We	will	build	this	application	first	using	a	more	traditional	approach.	In	doing	so,	we	will:

Be	able	to	identify	and	understand	the	drawbacks	of	the	first	design
Learn	how	to	use	RxClojure	to	deal	with	stateful	computations	such	as	rolling
averages
Rewrite	the	example	in	a	declarative	fashion	using	observable	sequences,	thus
reducing	the	complexity	found	in	our	first	approach

Building	a	stock	market	monitoring
application
Our	stock	market	program	will	consist	of	three	main	components:

A	function	simulating	an	external	service	from	which	we	can	query	the	current	price
—this	would	likely	be	a	network	call	in	a	real	setting
A	scheduler	that	polls	the	preceding	function	at	a	predefined	interval
A	display	function	responsible	for	updating	the	screen

We’ll	start	by	creating	a	new	leiningen	project,	where	the	source	code	for	our	application
will	live.	Type	the	following	on	the	command	line	and	then	switch	into	the	newly	created
directory:

lein	new	stock-market-monitor

cd	stock-market-monitor

As	we’ll	be	building	a	GUI	for	this	application,	go	ahead	and	add	a	dependency	on
Seesaw	to	the	dependencies	section	of	your	project.clj:

[seesaw	"1.4.4"]

Next,	create	a	src/stock_market_monitor/core.clj	file	in	your	favorite	editor.	Let’s
create	and	configure	our	application’s	UI	components:

(ns	stock-market-monitor.core

		(:require	[seesaw.core	:refer	:all])

		(:import	(java.util.concurrent	ScheduledThreadPoolExecutor

																																	TimeUnit)))

(native!)

(def	main-frame	(frame	:title	"Stock	price	monitor"

																							:width	200	:height	100

																							:on-close	:exit))

(def	price-label							(label	"Price:	-"))

(config!	main-frame	:content	price-label)

As	you	can	see,	the	UI	is	fairly	simple.	It	consists	of	a	single	label	that	will	display	a
company’s	share	price.	We	also	imported	two	Java	classes,
ScheduledThreadPoolExecutor	and	TimeUnit,	which	we	will	use	shortly.

The	next	thing	we	need	is	our	polling	machinery	so	that	we	can	invoke	the	pricing	service
on	a	given	schedule.	We’ll	implement	this	via	a	thread	pool	so	as	not	to	block	the	main
thread:

Tip
User	interface	SDKs	such	as	swing	have	the	concept	of	a	main—or	UI—thread.	This	is
the	thread	used	by	the	SDK	to	render	the	UI	components	to	the	screen.	As	such,	if	we

have	blocking—or	even	simply	slow	running—	operations	execute	in	this	thread,	the	user
experience	will	be	severely	affected,	hence	the	use	of	a	thread	pool	to	offload	expensive
function	calls.

(def	pool	(atom	nil))

(defn	init-scheduler	[num-threads]

		(reset!	pool		(ScheduledThreadPoolExecutor.	num-threads)))

(defn	run-every	[pool	millis	f]

		(.scheduleWithFixedDelay	pool

																											f

																											0	millis	TimeUnit/MILLISECONDS))

(defn	shutdown	[pool]

		(println	"Shutting	down	scheduler…")

		(.shutdown	pool))

The	init-scheduler	function	creates	ScheduledThreadPoolExecutor	with	the	given
number	of	threads.	That’s	the	thread	pool	in	which	our	periodic	function	will	run.	The
run-every	function	schedules	a	function	f	in	the	given	pool	to	run	at	the	interval
specified	by	millis.	Finally,	shutdown	is	a	function	that	will	be	called	on	program
termination	and	shutdown	the	thread	pool	gracefully.

The	rest	of	the	program	puts	all	these	parts	together:

(defn	share-price	[company-code]

		(Thread/sleep	200)

		(rand-int	1000))

(defn	-main	[&	args]

		(show!	main-frame)

		(.addShutdownHook	(Runtime/getRuntime)

																				(Thread.	#(shutdown	@pool)))

		(init-scheduler	1)

		(run-every	@pool	500

													#(->>	(str	"Price:	"	(share-price	"XYZ"))

																			(text!	price-label)

																			invoke-now)))

The	share-price	function	sleeps	for	200	milliseconds	to	simulate	network	latency	and
returns	a	random	integer	between	0	and	1,000	representing	the	stock’s	price.

The	first	line	of	our	-main	function	adds	a	shutdown	hook	to	the	runtime.	This	allows	our
program	to	intercept	termination—such	as	pressing	Ctrl	+	C	in	a	terminal	window—and
gives	us	the	opportunity	to	shutdown	the	thread	pool.

Tip
The	ScheduledThreadPoolExecutor	pool	creates	non-daemon	threads	by	default.	A
program	cannot	terminate	if	there	are	any	non-daemon	threads	alive	in	addition	to	the
program’s	main	thread.	This	is	why	the	shutdown	hook	is	necessary.

Next,	we	initialize	the	scheduler	with	a	single	thread	and	schedule	a	function	to	be

executed	every	500	milliseconds.	This	function	asks	the	share-price	function	for	XYZ’s
current	price	and	updates	the	label.

Tip
Desktop	applications	require	all	rendering	to	be	done	in	the	UI	thread.	However,	our
periodic	function	runs	on	a	separate	thread	and	needs	to	update	the	price	label.	This	is	why
we	use	invoke-now,	which	is	a	Seesaw	function	that	schedules	its	body	to	be	executed	in
the	UI	thread	as	soon	as	possible.

Let’s	run	the	program	by	typing	the	following	command	in	the	project’s	root	directory:

lein	trampoline	run	-m	stock-market-monitor.core

Tip
Trampolining	tells	leiningen	not	to	nest	our	program’s	JVM	within	its	own,	thus	freeing	us
to	handle	uses	of	Ctrl	+	C	ourselves	through	shutdown	hooks.

A	window	like	the	one	shown	in	the	following	screenshot	will	be	displayed,	with	the
values	on	it	being	updated	as	per	the	schedule	implemented	earlier:

This	is	a	fine	solution.	The	code	is	relatively	straightforward	and	satisfies	our	original
requirements.	However,	if	we	look	at	the	big	picture,	there	is	a	fair	bit	of	noise	in	our
program.	Most	of	its	lines	of	code	are	dealing	with	creating	and	managing	a	thread	pool,
which,	while	necessary,	isn’t	central	to	the	problem	we’re	solving—it’s	an	implementation
detail.

We’ll	keep	things	as	they	are	for	the	moment	and	add	a	new	requirement:	rolling	averages.

Rolling	averages
Now	that	we	can	see	the	up-to-date	stock	price	for	a	given	company,	it	makes	sense	to
display	a	rolling	average	of	the	past,	say,	five	stock	prices.	In	a	real	scenario,	this	would
provide	an	objective	view	of	a	company’s	share	trend	in	the	stock	market.

Let’s	extend	our	program	to	accommodate	this	new	requirement.

First,	we’ll	need	to	modify	our	namespace	definition:

(ns	stock-market-monitor.core

		(:require	[seesaw.core	:refer	:all])

		(:import	(java.util.concurrent	ScheduledThreadPoolExecutor

																																	TimeUnit)

											(clojure.lang	PersistentQueue)))

The	only	change	is	a	new	import	clause,	for	Clojure’s	PersistentQueue	class.	We	will	be
using	that	later.

We’ll	also	need	a	new	label	to	display	the	current	running	average:

(def	running-avg-label	(label	"Running	average:	-"))

(config!	main-frame	:content

									(border-panel

										:north		price-label

										:center	running-avg-label

										:border	5))

Next,	we	need	a	function	to	calculate	rolling	averages.	A	rolling—or	moving—average	is
a	calculation	in	statistics,	where	you	take	the	average	of	a	subset	of	items	in	a	dataset.	This
subset	has	a	fixed	size	and	it	shifts	forward	as	data	comes	in.	This	will	become	clear	with
an	example.

Suppose	you	have	a	list	with	numbers	from	1	to	10,	inclusive.	If	we	use	3	as	the	subset
size,	the	rolling	averages	are	as	follows:

[1	2	3	4	5	6	7	8	9	10]	=>	2.0

[1	2	3	4	5	6	7	8	9	10]	=>	3.0

[1	2	3	4	5	6	7	8	9	10]	=>	4.0

The	highlighted	parts	in	the	preceding	code	show	the	current	window	being	used	to
calculate	the	subset	average.

Now	that	we	know	what	rolling	averages	are,	we	can	move	on	to	implement	it	in	our
program:

(defn	roll-buffer	[buffer	num	buffer-size]

		(let	[buffer	(conj	buffer	num)]

				(if	(>	(count	buffer)	buffer-size)

						(pop	buffer)

						buffer)))

(defn	avg	[numbers]

		(float	(/	(reduce	+	numbers)

												(count	numbers))))

(defn	make-running-avg	[buffer-size]

		(let	[buffer	(atom	clojure.lang.PersistentQueue/EMPTY)]

				(fn	[n]

						(swap!	buffer	roll-buffer	n	buffer-size)

						(avg	@buffer))))

(def	running-avg	(running-avg	5))

The	roll-buffer	function	is	a	utility	function	that	takes	a	queue,	a	number,	and	a	buffer
size	as	arguments.	It	adds	that	number	to	the	queue,	popping	the	oldest	element	if	the
queue	goes	over	the	buffer	limit,	thus	causing	its	contents	to	roll	over.

Next,	we	have	a	function	for	calculating	the	average	of	a	collection	of	numbers.	We	cast
the	result	to	float	if	there’s	an	uneven	division.

Finally,	the	higher-order	make-running-avg	function	returns	a	stateful,	single	argument
function	that	closes	over	an	empty	persistent	queue.	This	queue	is	used	to	keep	track	of	the
current	subset	of	data.

We	then	create	an	instance	of	this	function	by	calling	it	with	a	buffer	size	of	5	and	save	it
to	the	running-avg	var.	Each	time	we	call	this	new	function	with	a	number,	it	will	add	it
to	the	queue	using	the	roll-buffer	function	and	then	finally	return	the	average	of	the
items	in	the	queue.

The	code	we	have	written	to	manage	the	thread	pool	will	be	reused	as	is	so	all	that	is	left
to	do	is	update	our	periodic	function:

(defn	worker	[]

		(let	[price	(share-price	"XYZ")]

				(->>	(str	"Price:	"	price)	(text!	price-label))

				(->>	(str	"Running	average:	"	(running-avg	price))

									(text!	running-avg-label))))

(defn	-main	[&	args]

		(show!	main-frame)

		(.addShutdownHook	(Runtime/getRuntime)

																				(Thread.	#(shutdown	@pool)))

		(init-scheduler	1)

		(run-every	@pool	500

													#(invoke-now	(worker))))

Since	our	function	isn’t	a	one-liner	anymore,	we	abstract	it	away	in	its	own	function	called
worker.	As	before,	it	updates	the	price	label,	but	we	have	also	extended	it	to	use	the
running-avg	function	created	earlier.

We’re	ready	to	run	the	program	once	more:

lein	trampoline	run	-m	stock-market-monitor.core

You	should	see	a	window	like	the	one	shown	in	the	following	screenshot:

You	should	see	that	in	addition	to	displaying	the	current	share	price	for	XYZ,	the	program
also	keeps	track	and	refreshes	the	running	average	of	the	stream	of	prices.

Identifying	problems	with	our	current
approach
Aside	from	the	lines	of	code	responsible	for	building	the	user	interface,	our	program	is
roughly	48	lines	long.

The	core	of	the	program	resides	in	the	share-price	and	avg	functions,	which	are
responsible	for	querying	the	price	service	and	calculating	the	average	of	a	list	of	n
numbers,	respectively.	They	represent	only	six	lines	of	code.	There	is	a	lot	of	incidental
complexity	in	this	small	program.

Incidental	complexity	is	complexity	caused	by	code	that	is	not	essential	to	the	problem	at
hand.	In	this	example,	we	have	two	sources	of	such	complexity—we	are	disregarding	UI
specific	code	for	this	discussion:	the	thread	pool	and	the	rolling	buffer	function.	They	add
a	great	deal	of	cognitive	load	to	someone	reading	and	maintaining	the	code.

The	thread	pool	is	external	to	our	problem.	It	is	only	concerned	with	the	semantics	of	how
to	run	tasks	asynchronously.	The	rolling	buffer	function	specifies	a	detailed
implementation	of	a	queue	and	how	to	use	it	to	represent	the	concept.

Ideally,	we	should	be	able	to	abstract	over	these	details	and	focus	on	the	core	of	our
problem;	Compositional	Event	Systems	(CES)	allows	us	to	do	just	that.

Removing	incidental	complexity	with
RxClojure
In	Chapter	2,	A	Look	at	Reactive	Extensions,	we	learned	about	the	basic	building	blocks	of
RxClojure,	an	open-source	CES	framework.	In	this	section,	we’ll	use	this	knowledge	in
order	to	remove	the	incidental	complexity	from	our	program.	This	will	give	us	a	clear,
declarative	way	to	display	both	prices	and	rolling	averages.

The	UI	code	we’ve	written	so	far	remains	unchanged,	but	we	need	to	make	sure
RxClojure	is	declared	in	the	dependencies	section	of	our	project.clj	file:

[io.reactivex/rxclojure	"1.0.0"]

Then,	ensure	we	require	the	following	library:

(ns	stock-market-monitor.core

		(:require	[rx.lang.clojure.core	:as	rx]

												[seesaw.core	:refer	:all])

		(:import	(java.util.concurrent	TimeUnit)

											(rx	Observable)))

The	way	we	approach	the	problem	this	time	is	also	different.	Let’s	take	a	look	at	the	first
requirement:	it	requires	we	display	the	current	price	of	a	company’s	share	in	the	stock
market.

Every	time	we	query	the	price	service,	we	get	a—possibly	different—price	for	the
company	in	question.	As	we	saw	in	Chapter	2,	A	Look	at	Reactive	Extensions,	modeling
this	as	an	observable	sequence	is	easy,	so	we’ll	start	with	that.	We’ll	create	a	function	that
gives	us	back	a	stock	price	observable	for	the	given	company:

(defn	make-price-obs	[company-code]

		(rx/return	(share-price	company-code)))

This	is	an	observable	that	yields	a	single	value	and	terminates.	It’s	equivalent	to	the
following	marble	diagram:

Part	of	the	first	requirement	is	that	we	query	the	service	on	a	predefined	time	interval—
every	500	milliseconds	in	this	case.	This	hints	at	an	observable	we	have	encountered
before,	aptly	named	interval.	In	order	to	get	the	polling	behavior	we	want,	we	need	to

combine	the	interval	and	the	price	observables.

As	you	probably	recall,	flatmap	is	the	tool	for	the	job	here:

(rx/flatmap	(fn	[_]	(make-price-obs	"XYZ"))

																				(Observable/interval	500	

																																									TimeUnit/MILLISECONDS))

The	preceding	snippet	creates	an	observable	that	will	yield	the	latest	stock	price	for	XYZ
every	500	milliseconds	indefinitely.	It	corresponds	to	the	following	diagram:

In	fact,	we	can	simply	subscribe	to	this	new	observable	and	test	it	out.	Modify	your	main
function	to	the	following	snippet	and	run	the	program:

(defn	-main	[&	args]

		(show!	main-frame)

		(let	[price-obs	(rx/flatmap	(fn	[_]	(make-price-obs	"XYZ"))

																														(Observable/interval	500	

TimeUnit/MILLISECONDS))]

				(rx/subscribe	price-obs

																		(fn	[price]

																				(text!	price-label	(str	"Price:	"	price))))))

This	is	very	cool!	We	replicated	the	behavior	of	our	first	program	with	only	a	few	lines	of
code.	The	best	part	is	that	we	did	not	have	to	worry	about	thread	pools	or	scheduling
actions.	By	thinking	about	the	problem	in	terms	of	observable	sequences,	as	well	as
combining	existing	and	new	observables,	we	were	able	to	declaratively	express	what	we

want	the	program	to	do.

This	already	provides	great	benefits	in	maintainability	and	readability.	However,	we	are
still	missing	the	other	half	of	our	program:	rolling	averages.

Observable	rolling	averages
It	might	not	be	immediately	obvious	how	we	can	model	rolling	averages	as	observables.
What	we	need	to	keep	in	mind	is	that	pretty	much	anything	we	can	think	of	as	a	sequence
of	values,	we	can	probably	model	as	an	observable	sequence.

Rolling	averages	are	no	different.	Let’s	forget	for	a	moment	that	the	prices	are	coming
from	a	network	call	wrapped	in	an	observable.	Let’s	imagine	we	have	all	values	we	care
about	in	a	Clojure	vector:

(def	values	(range	10))

What	we	need	is	a	way	to	process	these	values	in	partitions—or	buffers—of	size	5	in	such
a	way	that	only	a	single	value	is	dropped	at	each	interaction.	In	Clojure,	we	can	use	the
partition	function	for	this	purpose:

(doseq	[buffer	(partition	5	1	values)]

		(prn	buffer))

(0	1	2	3	4)

(1	2	3	4	5)

(2	3	4	5	6)

(3	4	5	6	7)

(4	5	6	7	8)

...

The	second	argument	to	the	partition	function	is	called	a	step	and	it	is	the	offset	of	how
many	items	should	be	skipped	before	starting	a	new	partition.	Here,	we	set	it	to	1	in	order
to	create	the	sliding	window	effect	we	need.

The	big	question	then	is:	can	we	somehow	leverage	partition	when	working	with
observable	sequences?

It	turns	out	that	RxJava	has	a	transformer	called	buffer	just	for	this	purpose.	The	previous
example	can	be	rewritten	as	follows:

(->	(rx/seq->o	(vec	(range	10)))

				(.buffer	5	1)

				(rx/subscribe

					(fn	[price]

							(prn	(str	"Value:	"	price)))))

Tip
As	mentioned	previously,	not	all	RxJava’s	API	is	exposed	through	RxClojure,	so	here	we
need	to	use	interop	to	access	the	buffer	method	from	the	observable	sequence.

As	before,	the	second	argument	to	buffer	is	the	offset,	but	it’s	called	skip	in	the	RxJava
documentation.	If	you	run	this	at	the	REPL	you’ll	see	the	following	output:

"Value:	[0,	1,	2,	3,	4]"

"Value:	[1,	2,	3,	4,	5]"

"Value:	[2,	3,	4,	5,	6]"

"Value:	[3,	4,	5,	6,	7]"

"Value:	[4,	5,	6,	7,	8]"

...

This	is	exactly	what	we	want.	The	only	difference	is	that	the	buffer	method	waits	until	it
has	enough	elements—five	in	this	case—before	proceeding.

Now,	we	can	go	back	to	our	program	and	incorporate	this	idea	with	our	main	function.
Here	is	what	it	looks	like:

(defn	-main	[&	args]

		(show!	main-frame)

		(let	[price-obs	(->	(rx/flatmap	make-price-obs

																																		(Observable/interval	500	

TimeUnit/MILLISECONDS))

																						(.publish))

								sliding-buffer-obs	(.buffer	price-obs	5	1)]

				(rx/subscribe	price-obs

																		(fn	[price]

																				(text!	price-label	(str	"Price:	"	price))))

				(rx/subscribe	sliding-buffer-obs

																		(fn	[buffer]

																				(text!	running-avg-label	(str	"Running	average:	"	(avg	

buffer)))))

				(.connect	price-obs)))

The	preceding	snippet	works	by	creating	two	observables.	The	first	one,	price-obs,	we
had	created	before.	The	new	sliding	buffer	observable	is	created	using	the	buffer
transformer	on	price-obs.

We	can,	then,	independently	subscribe	to	each	one	in	order	to	update	the	price	and	rolling
average	labels.	Running	the	program	will	display	the	same	screen	we’ve	seen	previously:

You	might	have	noticed	two	method	calls	we	hadn’t	seen	before:	publish	and	connect.

The	publish	method	returns	a	connectable	observable.	This	means	that	the	observable
won’t	start	emitting	values	until	its	connect	method	has	been	called.	We	do	this	here
because	we	want	to	make	sure	that	all	the	subscribers	receive	all	the	values	emitted	by	the
original	observable.

In	conclusion,	without	much	additional	code,	we	implemented	all	requirements	in	a
concise,	declarative	manner	that	is	easy	to	maintain	and	follow.	We	have	also	made	the
previous	roll-buffer	function	completely	unnecessary.

The	full	source	code	for	the	CES	version	of	the	program	is	given	here	for	reference:

(ns	stock-market-monitor.05frp-price-monitor-rolling-avg

		(:require	[rx.lang.clojure.core	:as	rx]

												[seesaw.core	:refer	:all])

		(:import	(java.util.concurrent	TimeUnit)

											(rx	Observable)))

(native!)

(def	main-frame	(frame	:title	"Stock	price	monitor"

																							:width	200	:height	100

																							:on-close	:exit))

(def	price-label							(label	"Price:	-"))

(def	running-avg-label	(label	"Running	average:	-"))

(config!	main-frame	:content

									(border-panel

										:north		price-label

										:center	running-avg-label

										:border	5))

(defn	share-price	[company-code]

		(Thread/sleep	200)

		(rand-int	1000))

(defn	avg	[numbers]

		(float	(/	(reduce	+	numbers)

												(count	numbers))))

(defn	make-price-obs	[_]

		(rx/return	(share-price	"XYZ")))

(defn	-main	[&	args]

		(show!	main-frame)

		(let	[price-obs	(->	(rx/flatmap	make-price-obs

																																		(Observable/interval	500	

TimeUnit/MILLISECONDS))

																						(.publish))

								sliding-buffer-obs	(.buffer	price-obs	5	1)]

				(rx/subscribe	price-obs

																		(fn	[price]

																				(text!	price-label	(str	"Price:	"	price))))

				(rx/subscribe	sliding-buffer-obs

																		(fn	[buffer]

																				(text!	running-avg-label	(str	"Running	average:	"	(avg	

buffer)))))

				(.connect	price-obs)))

Note	how	in	this	version	of	the	program,	we	didn’t	have	to	use	a	shutdown	hook.	This	is
because	RxClojure	creates	daemon	threads,	which	are	automatically	terminated	once	the
application	exits.

Summary
In	this	chapter,	we	simulated	a	real-world	application	with	our	stock	market	program.
We’ve	written	it	in	a	somewhat	traditional	way	using	thread	pools	and	a	custom	queue
implementation.	We	then	refactored	it	to	a	CES	style	using	RxClojure’s	observable
sequences.

The	resulting	program	is	shorter,	simpler,	and	easier	to	read	once	you	get	familiar	with	the
core	concepts	of	RxClojure	and	RxJava.

In	the	next	Chapter	we	will	be	introduced	to	core.async	in	preparation	for	implementing
our	own	basic	CES	framework.

Chapter	4.	Introduction	to	core.async
Long	gone	are	the	days	when	programs	were	required	to	do	only	one	thing	at	a	time.
Being	able	to	perform	several	tasks	concurrently	is	at	the	core	of	the	vast	majority	of
modern	business	applications.	This	is	where	asynchronous	programming	comes	in.

Asynchronous	programming—and,	more	generally,	concurrency—is	about	doing	more
with	your	hardware	resources	than	you	previously	could.	It	means	fetching	data	from	the
network	or	a	database	connection	without	having	to	wait	for	the	result.	Or,	perhaps,
reading	an	Excel	spreadsheet	into	memory	while	the	user	can	still	operate	the	graphical
interface.	In	general,	it	improves	a	system’s	responsiveness.

In	this	chapter,	we	will	look	at	how	different	platforms	handle	this	style	of	programming.
More	specifically,	we	will:

Be	introduced	to	core.async’s	background	and	API
Solidify	our	understanding	of	core.async	by	re-implementing	the	stock	market
application	in	terms	of	its	abstractions
Understand	how	core.async	deals	with	error	handling	and	backpressure
Take	a	brief	tour	on	transducers

Asynchronous	programming	and
concurrency
Different	platforms	have	different	programming	models.	For	instance,	JavaScript
applications	are	single-threaded	and	have	an	event	loop.	When	making	a	network	call,	it	is
common	to	register	a	callback	that	will	be	invoked	at	a	later	stage,	when	that	network	call
completes	either	successfully	or	with	an	error.

In	contrast,	when	we’re	on	the	JVM,	we	can	take	full	advantage	of	multithreading	to
achieve	concurrency.	It	is	simple	to	spawn	new	threads	via	one	of	the	many	concurrency
primitives	provided	by	Clojure,	such	as	futures.

However,	asynchronous	programming	becomes	cumbersome.	Clojure	futures	don’t
provide	a	native	way	for	us	to	be	notified	of	their	completion	at	a	later	stage.	In	addition,
retrieving	values	from	a	not-yet-completed	future	is	a	blocking	operation.	This	can	be	seen
clearly	in	the	following	snippet:

(defn	do-something-important	[]

		(let	[f	(future	(do	(prn	"Calculating…")

																						(Thread/sleep	10000)))]

				(prn	"Perhaps	the	future	has	done	its	job?")

				(prn	@f)

				(prn	"You	will	only	see	this	in	about	10	seconds…")))

(do-something-important)

The	second	call	to	print	dereferences	the	future,	causing	the	main	thread	to	block	since	it
hasn’t	finished	yet.	This	is	why	you	only	see	the	last	print	after	the	thread	in	which	the
future	is	running	has	finished.	Callbacks	can,	of	course,	be	simulated	by	spawning	a
separate	thread	to	monitor	the	first	one,	but	this	solution	is	clunky	at	best.

An	exception	to	the	lack	of	callbacks	is	GUI	programming	in	Clojure.	Much	like
JavaScript,	Clojure	Swing	applications	also	possess	an	event	loop	and	can	respond	to	user
input	and	invoke	listeners	(callbacks)	to	handle	them.

Another	option	is	rewriting	the	previous	example	with	a	custom	callback	that	is	passed
into	the	future:

(defn	do-something-important	[callback]

		(let	[f	(future	(let	[answer	42]

																				(Thread/sleep	10000)

																				(callback	answer)))]

				(prn	"Perhaps	the	future	has	done	its	job?")

				(prn	"You	should	see	this	almost	immediately	and	then	in	10	secs…")

					f))

(do-something-important	(fn	[answer]

																										(prn	"Future	is	done.	Answer	is	"	answer)))

This	time	the	order	of	the	outputs	should	make	more	sense.	However,	if	we	return	the
future	from	this	function,	we	have	no	way	to	give	it	another	callback.	We	have	lost	the

ability	to	perform	an	action	when	the	future	ends	and	are	back	to	having	to	dereference	it,
thus	blocking	the	main	thread	again—exactly	what	we	wanted	to	avoid.

Tip
Java	8	introduces	a	new	class,	CompletableFuture,	that	allows	registering	a	callback	to	be
invoked	once	the	future	completes.	If	that’s	an	option	for	you,	you	can	use	interop	to	make
Clojure	leverage	the	new	class.

As	you	might	have	realized,	CES	is	closely	related	to	asynchronous	programming:	the
stock	market	application	we	built	in	the	previous	chapter	is	an	example	of	such	a	program.
The	main—or	UI—thread	is	never	blocked	by	the	Observables	fetching	data	from	the
network.	Additionally,	we	were	also	able	to	register	callbacks	when	subscribing	to	them.

In	many	asynchronous	applications,	however,	callbacks	are	not	the	best	way	to	go.	Heavy
use	of	callbacks	can	lead	to	what	is	known	as	callback	hell.	Clojure	provides	a	more
powerful	and	elegant	solution.

In	the	next	few	sections,	we	will	explore	core.async,	a	Clojure	library	for	asynchronous
programming,	and	how	it	relates	to	Reactive	Programming.

core.async
If	you’ve	ever	done	any	amount	of	JavaScript	programming,	you	have	probably
experienced	callback	hell.	If	you	haven’t,	the	following	code	should	give	you	a	good	idea:

http.get('api/users/find?name='	+	name,	function(user){

		http.get('api/orders?userId='	+	user.id,	function(orders){

				orders.forEach(function(order){

						container.append(order);

				});

		});

});

This	style	of	programming	can	easily	get	out	of	hand—instead	of	writing	more	natural,
sequential	steps	to	achieving	a	task,	that	logic	is	instead	scattered	across	multiple
callbacks,	increasing	the	developer’s	cognitive	load.

In	response	to	this	issue,	the	JavaScript	community	released	several	promises	libraries	that
are	meant	to	solve	the	issue.	We	can	think	of	promises	as	empty	boxes	we	can	pass	into
and	return	from	our	functions.	At	some	point	in	the	future,	another	process	might	put	a
value	inside	this	box.

As	an	example,	the	preceding	snippet	can	be	written	with	promises	like	the	following:

http.get('api/users/find?name='	+	name)

		.then(function(user){

				return	http.get('api/orders?userId='	+	user.id);

		})

		.then(function(orders){

				orders.forEach(function(order){

						container.append(order);

				});

		});		

The	preceding	snippet	shows	how	using	promises	can	flatten	your	callback	pyramid,	but
they	don’t	eliminate	callbacks.	The	then	function	is	a	public	function	of	the	promises	API.
It	is	definitely	a	step	in	the	right	direction	as	the	code	is	composable	and	easier	to	read.

As	we	tend	to	think	in	sequences	of	steps,	however,	we	would	like	to	write	the	following:

user			=	http.get('api/users/find?name='	+	name);

orders	=	http.get('api/orders?userId='	+	user.id);

orders.forEach(function(order){

		container.append(order);

});

Even	though	the	code	looks	synchronous,	the	behavior	should	be	no	different	from	the
previous	examples.	This	is	exactly	what	core.async	lets	us	do	in	both	Clojure	and
ClojureScript.

Communicating	sequential	processes
The	core.async	library	is	built	on	an	old	idea.	The	foundation	upon	which	it	lies	was	first
described	by	Tony	Hoare—of	Quicksort	fame—in	his	1978	paper	Communicating
Sequential	Processes	(CSP;	see	http://www.cs.ucf.edu/courses/cop4020/sum2009/CSP-
hoare.pdf).	CSP	has	since	been	extended	and	implemented	in	several	languages,	the	latest
of	which	being	Google’s	Go	programming	language.

It	is	beyond	the	scope	of	this	book	to	go	into	the	details	of	this	seminal	paper,	so	what
follows	is	a	simplified	description	of	the	main	ideas.

In	CSP,	work	is	modeled	using	two	main	abstractions:	channels	and	processes.	CSP	is	also
message-driven	and,	as	such,	it	completely	decouples	the	producer	from	the	consumer	of
the	message.	It	is	useful	to	think	of	channels	as	blocking	queues.

A	simplistic	approach	demonstrating	these	basic	abstractions	is	as	follows:

(import	'java.util.concurrent.ArrayBlockingQueue)

(defn	producer	[c]

		(prn	"Taking	a	nap")

		(Thread/sleep	5000)

		(prn	"Now	putting	a	name	in	queue…")

		(.put	c	"Leo"))

(defn	consumer	[c]

		(prn	"Attempting	to	take	value	from	queue	now…")

		(prn	(str	"Got	it.	Hello	"	(.take	c)	"!")))

(def	chan	(ArrayBlockingQueue.	10))

(future	(consumer	chan))

(future	(producer	chan))

Running	this	code	in	the	REPL	should	show	us	output	similar	to	the	following:

"Attempting	to	take	value	from	queue	now…"

"Taking	a	nap"

;;	then	5	seconds	later

"Now	putting	a	name	in	que	queue…"

"Got	it.	Hello	Leo!"

In	order	not	to	block	our	program,	we	start	both	the	consumer	and	the	producer	in	their
own	threads	using	a	future.	Since	the	consumer	was	started	first,	we	most	likely	will	see
its	output	immediately.	However,	as	soon	as	it	attempts	to	take	a	value	from	the	channel—
or	queue—it	will	block.	It	will	wait	for	a	value	to	become	available	and	will	only	proceed
after	the	producer	is	done	taking	its	nap—clearly	a	very	important	task.

Now,	let’s	compare	it	with	a	solution	using	core.async.	First,	create	a	new	leiningen
project	and	add	a	dependency	on	it:

[org.clojure/core.async	"0.1.278.0-76b25b-alpha"]

Now,	type	this	in	the	REPL	or	in	your	core	namespace:

http://www.cs.ucf.edu/courses/cop4020/sum2009/CSP-hoare.pdf

(ns	core-async-playground.core

		(:require	[clojure.core.async	:refer	[go	chan	<!	>!	timeout]]))

(defn	prn-with-thread-id	[s]

		(prn	(str	s	"	-	Thread	id:	"	(.getId	(Thread/currentThread)))))

(defn	producer	[c]

		(go	(prn-with-thread-id	"Taking	a	nap	")

						(<!	(timeout	5000))

						(prn-with-thread-id	"Now	putting	a	name	in	que	queue…")

						(>!	c	"Leo")))

(defn	consumer	[c]

		(go	(prn-with-thread-id	"Attempting	to	take	value	from	queue	now…")

						(prn-with-thread-id	(str	"Got	it.	Hello	"	(<!	c)	"!"))))

(def	c	(chan))

(consumer	c)

(producer	c)

This	time	we	are	using	a	helper	function,	prn-with-thread-id,	which	appends	the	current
thread	ID	to	the	output	string.	I	will	explain	why	shortly,	but	apart	from	that,	the	output
will	have	been	equivalent	to	the	previous	one:

"Attempting	to	take	value	from	queue	now…	-	Thread	id:	43"

"Taking	a	nap		-	Thread	id:	44"

"Now	putting	a	name	in	que	queue…	-	Thread	id:	48"

"Got	it.	Hello	Leo!	-	Thread	id:	48"

Structurally,	both	solutions	look	fairly	similar,	but	since	we	are	using	quite	a	few	new
functions	here,	let’s	break	it	down:

chan	is	a	function	that	creates	a	core.async	channel.	As	mentioned	previously,	it	can
be	thought	of	as	a	concurrent	blocking	queue	and	is	the	main	abstraction	in	the
library.	By	default	chan	creates	an	unbounded	channel,	but	core.async	provides
many	more	useful	channel	constructors,	a	few	of	which	we’ll	be	using	later.
timeout	is	another	such	channel	constructor.	It	gives	us	a	channel	that	will	wait	for	a
given	amount	of	time	before	returning	nil	to	the	taking	process,	closing	itself
immediately	afterward.	This	is	the	core.async	equivalent	of	Thread/sleep.
The	functions	>!	and	<!	are	used	to	put	and	take	values	from	a	channel,	respectively.
The	caveat	is	that	they	have	to	be	used	inside	a	go	block,	as	we	will	explain	later.
go	is	a	macro	that	takes	a	body	of	expressions—which	form	a	go	block—and	creates
lightweight	processes.	This	is	where	the	magic	happens.	Inside	a	go	block,	any	calls
to	>!	and	<!	that	would	ordinarily	block	waiting	for	values	to	be	available	in
channels	are	instead	parked.	Parking	is	a	special	type	of	blocking	used	internally	in
the	state	machine	of	core.async.	The	blog	post	by	Huey	Petersen	covers	this	state
machine	in	depth	(see	http://hueypetersen.com/posts/2013/08/02/the-state-machines-
of-core-async/).

Go	blocks	are	the	very	reason	for	which	I	chose	to	print	the	thread	IDs	in	our	example.	If
we	look	closely,	we’ll	realize	that	the	last	two	statements	were	executed	in	the	same	thread

http://hueypetersen.com/posts/2013/08/02/the-state-machines-of-core-async/

—this	isn’t	true	100	percent	of	the	time	as	concurrency	is	inherently	non-deterministic.
This	is	a	fundamental	difference	between	core.async	and	solutions	using	threads/futures.

Threads	can	be	expensive.	On	the	JVM,	their	default	stack	size	is	512	kilobytes—
configurable	via	the	-Xss	JVM	startup	option.	When	developing	a	highly	concurrent
system,	creating	thousands	of	threads	can	quickly	drain	the	resources	of	the	machine	the
application	is	running	on.

core.async	acknowledges	this	limitation	and	gives	us	lightweight	processes.	Internally,
they	do	share	a	thread	pool,	but	instead	of	wastefully	creating	a	thread	per	go	block,
threads	are	recycled	and	reused	when	a	put/take	operation	is	waiting	for	a	value	to	become
available.

Tip
At	the	time	of	writing,	the	thread	pool	used	by	core.async	defaults	to	the	number	of
available	processors	x	2,	+	42.	So,	a	machine	with	eight	processors	will	have	a	pool	with
58	threads.

Therefore,	it	is	common	for	core.async	applications	to	have	dozens	of	thousands	of
lightweight	processes.	They	are	extremely	cheap	to	create.

Since	this	is	a	book	on	Reactive	Programming,	the	question	that	might	be	in	your	head
now	is:	can	we	build	reactive	applications	using	core.async?	The	short	answer	is	yes,	we
can!	To	prove	it,	we	will	revisit	our	stock	market	application	and	rewrite	it	using
core.async.

Rewriting	the	stock	market	application
with	core.async
By	using	an	example	we	are	familiar	with,	we	are	able	to	focus	on	the	differences	between
all	approaches	discussed	so	far,	without	getting	side	tracked	with	new,	specific	domain
rules.

Before	we	dive	into	the	implementation,	let’s	quickly	do	an	overview	of	how	our	solution
should	work.

Just	like	in	our	previous	implementations,	we	have	a	service	from	which	we	can	query
share	prices.	Where	our	approach	differs,	however,	is	a	direct	consequence	of	how
core.async	channels	work.

On	a	given	schedule,	we	would	like	to	write	the	current	price	to	a	core.async	channel.
This	might	look	like	so:

This	process	will	continuously	put	prices	in	the	out	channel.	We	need	to	do	two	things
with	each	price:	display	it	and	display	the	calculated	sliding	window.	Since	we	like	our
functions	decoupled,	we	will	use	two	go	blocks,	one	for	each	task:

Hold	on.	There	seems	to	be	something	off	with	our	approach.	Once	we	take	a	price	from

the	output	channel,	it	is	not	available	any	longer	to	be	taken	by	other	go	blocks,	so,	instead
of	calculating	the	sliding	window	starting	with	10,	our	function	ends	up	getting	the	second
value,	20.	With	this	approach,	we	will	end	up	with	a	sliding	window	that	calculates	a
sliding	window	with	roughly	every	other	item,	depending	on	how	consistent	the
interleaving	between	the	go	blocks	is.

Clearly,	this	is	not	what	we	want,	but	it	helps	us	think	about	the	problem	a	little	more.	The
semantics	of	core.async	prevent	us	from	reading	a	value	from	a	channel	more	than	once.
Most	of	the	time,	this	behavior	is	just	fine—especially	if	you	think	of	them	as	queues.	So
how	can	we	provide	the	same	value	to	both	functions?

To	solve	this	problem,	we	will	take	advantage	of	another	channel	constructor	provided	by
core.async	called	broadcast.	As	the	name	implies,	broadcast	returns	a	channel,	which,
when	written	to,	writes	its	value	into	the	channels	passed	to	it	as	arguments.	Effectively,
this	changes	our	high-level	picture	to	something	like	the	following:

In	summary,	we	will	have	a	go	loop	writing	prices	to	this	broadcast	channel,	which	will
then	forward	its	values	to	the	two	channels	from	which	we	will	be	operating:	prices	and
the	sliding	window.

With	the	general	idea	in	place,	we	are	ready	to	dive	into	the	code.

Implementing	the	application	code
We	already	have	a	project	depending	on	core.async	that	we	created	in	the	previous
section,	so	we’ll	be	working	off	that.	Let’s	start	by	adding	an	extra	dependency	on	seesaw
to	your	project.clj	file:

		:dependencies	[[org.clojure/clojure	"1.5.1"]

																	[org.clojure/core.async	"0.1.278.0-76b25b-alpha"]

																	[seesaw	"1.4.4"]]

Next,	create	a	file	called	stock_market.clj	in	the	src	directory	and	add	this	namespace
declaration:

(ns	core-async-playground.stock-market

		(:require	[clojure.core.async

													:refer	[go	chan	<!	>!	timeout	go-loop	map>]	:as	async])

		(:require	[clojure.core.async.lab	:refer	[broadcast]])

		(:use	[seesaw.core]))

This	might	be	a	good	point	to	restart	your	REPL	if	you	haven’t	done	so.	Don’t	worry
about	any	functions	we	haven’t	seen	yet.	We’ll	get	a	feel	for	them	in	this	section.

The	GUI	code	remains	largely	unchanged,	so	no	explanation	should	be	necessary	for	the
next	snippet:

(native!)

(def	main-frame	(frame	:title	"Stock	price	monitor"

																							:width	200	:height	100

																							:on-close	:exit))

(def	price-label							(label	"Price:	-"))

(def	running-avg-label	(label	"Running	average:	-"))

(config!	main-frame	:content

									(border-panel

										:north		price-label

										:center	running-avg-label

										:border	5))

(defn	share-price	[company-code]

		(Thread/sleep	200)

		(rand-int	1000))

(defn	avg	[numbers]

		(float	(/	(reduce	+	numbers)

												(count	numbers))))

(defn	roll-buffer	[buffer	val	buffer-size]

		(let	[buffer	(conj	buffer	val)]

				(if	(>	(count	buffer)	buffer-size)

						(pop	buffer)

						buffer)))

(defn	make-sliding-buffer	[buffer-size]

		(let	[buffer	(atom	clojure.lang.PersistentQueue/EMPTY)]

				(fn	[n]

						(swap!	buffer	roll-buffer	n	buffer-size))))

(def	sliding-buffer	(make-sliding-buffer	5))

The	only	difference	is	that	now	we	have	a	sliding-buffer	function	that	returns	a	window
of	data.	This	is	in	contrast	with	our	original	application,	where	the	rolling-avg	function
was	responsible	for	both	creating	the	window	and	calculating	the	average.	This	new
design	is	more	general	as	it	makes	this	function	easier	to	reuse.	The	sliding	logic	is	the
same,	however.

Next,	we	have	our	main	application	logic	using	core.async:

(defn	broadcast-at-interval	[msecs	task	&	ports]

		(go-loop	[out	(apply	broadcast	ports)]

				(<!	(timeout	msecs))

				(>!	out	(task))

				(recur	out)))

(defn	-main	[&	args]

		(show!	main-frame)

		(let	[prices-ch									(chan)

								sliding-buffer-ch	(map>	sliding-buffer	(chan))]

				(broadcast-at-interval	500	#(share-price	"XYZ")	prices-ch	sliding-

buffer-ch)

				(go-loop	[]

						(when-let	[price	(<!	prices-ch)]

								(text!	price-label	(str	"Price:	"	price))

								(recur)))

				(go-loop	[]

						(when-let	[buffer	(<!	sliding-buffer-ch)]

								(text!	running-avg-label	(str	"Running	average:	"	(avg	buffer)))

								(recur)))))

Let’s	walk	through	the	code.

The	first	function,	broadcast-at-interval,	is	responsible	for	creating	the	broadcasting
channel.	It	receives	a	variable	number	of	arguments:	a	number	of	milliseconds	describing
the	interval,	the	function	representing	the	task	to	be	executed,	and	a	sequence	of	one	of
more	output	channels.	These	channels	are	used	to	create	the	broadcasting	channel	to
which	the	go	loop	will	be	writing	prices.

Next,	we	have	our	main	function.	The	let	block	is	where	the	interesting	bits	are.	As	we
discussed	in	our	high-level	diagrams,	we	need	two	output	channels:	one	for	prices	and	one
for	the	sliding	window.	They	are	both	created	in	the	following:

...

		(let	[prices-ch									(chan)

								sliding-buffer-ch	(map>	sliding-buffer	(chan))]

...

prices-ch	should	be	self-explanatory;	however,	sliding-buffer-ch	is	using	a	function
we	haven’t	encountered	before:	map>.	This	is	yet	another	useful	channel	constructor	in

core.async.	It	takes	two	arguments:	a	function	and	a	target	channel.	It	returns	a	channel
that	applies	this	function	to	each	value	before	writing	it	to	the	target	channel.	An	example
will	help	illustrate	how	it	works:

(def	c	(map>	sliding-buffer	(chan	10)))

(go	(doseq	[n	(range	10)]

						(>!	c	n)))

(go	(doseq	[n	(range	10)]

						(prn		(vec	(<!	c)))))

;;	[0]

;;	[0	1]

;;	[0	1	2]

;;	[0	1	2	3]

;;	[0	1	2	3	4]

;;	[1	2	3	4	5]

;;	[2	3	4	5	6]

;;	[3	4	5	6	7]

;;	[4	5	6	7	8]

;;	[5	6	7	8	9]

That	is,	we	write	a	price	to	the	channel	and	get	a	sliding	window	on	the	other	end.	Finally,
we	create	the	two	go	blocks	containing	the	side	effects.	They	loop	indefinitely,	getting
values	from	both	channels	and	updating	the	user	interface.

You	can	see	it	in	action	by	running	the	program	from	the	terminal:

$	lein	run	-m	core-async-playground.stock-market

Error	handling
Back	in	Chapter	2,	A	Look	at	Reactive	Extensions,	we	learned	how	Reactive	Extensions
treats	errors	and	exceptions.	It	provides	a	rich	set	of	combinators	to	deal	with	exceptional
cases	and	are	straightforward	to	use.

Despite	being	a	pleasure	to	work	with,	core.async	doesn’t	ship	with	much	support	for
exception	handling.	In	fact,	if	we	write	our	code	with	only	the	happy	path	in	mind	we
don’t	even	know	an	error	occurred!

Let’s	have	a	look	at	an	example:

(defn	get-data	[]

		(throw	(Exception.	"Bad	things	happen!")))

(defn	process	[]

		(let	[result	(chan)]

				;;	do	some	processing…

				(go	(>!	result	(get-data)))

				result))

In	the	preceding	snippet,	we	introduced	two	functions:

get-data	simulates	a	function	that	fetches	data	from	the	network	or	an	in-memory
cache.	In	this	case	it	simply	throws	an	exception.
process	is	a	function	that	depends	on	get-data	to	do	something	interesting	and	puts
the	result	into	a	channel,	which	is	returned	at	the	end.

Let’s	watch	what	happens	when	we	put	this	together:

	(go	(let	[result		(<!	(->>	(process	"data")

																											(map>	#(*	%	%))

																											(map>	#(prn	%))))]

						(prn	"result	is:	"	result)))

Nothing	happens.	Zero,	zip,	zilch,	nada.

This	is	precisely	the	problem	with	error	handling	in	core.async:	by	default,	our
exceptions	are	swallowed	by	the	go	block	as	it	runs	on	a	separate	thread.	We	are	left	in
this	state	where	we	don’t	really	know	what	happened.

Not	all	is	lost,	however.	David	Nolen	outlined	on	his	blog	a	pattern	for	dealing	with	such
asynchronous	exceptions.	It	only	requires	a	few	extra	lines	of	code.

We	start	by	defining	a	helper	function	and	macro—this	would	probably	live	in	a	utility
namespace	we	require	anywhere	we	use	core.async:

(defn	throw-err	[e]

		(when	(instance?	Throwable	e)	(throw	e))

		e)

(defmacro	<?	[ch]

		`(throw-err	(async/<!	~ch)))

The	throw-err	function	receives	a	value	and,	if	it’s	a	subclass	of	Throwable,	it	is	thrown.
Otherwise,	it	is	simply	returned.

The	macro	<?	is	essentially	a	drop-in	replacement	for	<!.	In	fact,	it	uses	<!	to	get	the	value
out	of	the	channel	but	passes	it	to	throw-err	first.

With	these	utilities	in	place,	we	need	to	make	a	couple	of	changes,	first	to	our	process
function:

(defn	process	[]

		(let	[result	(chan)]

				;;	do	some	processing…

				(go	(>!	result	(try	(get-data)

																								(catch	Exception	e

																										e))))

				result))

The	only	change	is	that	we	wrapped	get-data	in	a	try/catch	block.	Look	closely	at	the
catch	block:	it	simply	returns	the	exception.

This	is	important	as	we	need	to	ensure	the	exception	gets	put	into	the	channel.

Next,	we	update	our	consumer	code:

(go	(try	(let	[result		(<?	(->>	(process	"data")

																																(map>	#(*	%	%))

																																(map>	#(prn	%))))]

											(prn	"result	is:	"	result))

									(catch	Exception	e

											(prn	"Oops,	an	error	happened!	We	better	do	something	about	it	

here!"))))

;;	"Oops,	an	error	happened!	We	better	do	something	about	it	here!"

This	time	we	use	<?	in	place	of	<!.	This	makes	sense	as	it	will	rethrow	any	exceptions
found	in	the	channel.	As	a	result	we	can	now	use	a	simple	try/catch	to	regain	control
over	our	exceptions.

Backpressure
The	main	mechanism	by	which	core.async	allows	for	coordinating	backpressure	is
buffering.	core.async	doesn’t	allow	unbounded	buffers	as	this	can	be	a	source	of	bugs
and	a	resource	hog.

Instead,	we	are	required	to	think	hard	about	our	application’s	unique	needs	and	choose	an
appropriate	buffering	strategy.

Fixed	buffer
This	is	the	simplest	form	of	buffering.	It	is	fixed	to	a	chosen	number	n,	allowing	producers
to	put	items	in	the	channel	without	having	to	wait	for	consumers:

(def	result	(chan	(buffer	5)))

(go-loop	[]

		(<!	(async/timeout	1000))

		(when-let	[x	(<!	result)]

				(prn	"Got	value:	"	x)

				(recur)))

(go		(doseq	[n	(range	5)]

							(>!	result	n))

					(prn	"Done	putting	values!")

					(close!	result))

;;	"Done	putting	values!"

;;	"Got	value:	"	0

;;	"Got	value:	"	1

;;	"Got	value:	"	2

;;	"Got	value:	"	3

;;	"Got	value:	"	4

In	the	preceding	example,	we	created	a	buffer	of	size	5	and	started	a	go	loop	to	consume
values	from	it.	The	go	loop	uses	a	timeout	channel	to	delay	its	start.

Then,	we	start	another	go	block	that	puts	numbers	from	0	to	4	into	the	result	channel	and
prints	to	the	console	once	it’s	done.

By	then,	the	first	timeout	will	have	expired	and	we	will	see	the	values	printed	to	the
REPL.

Now	let’s	watch	what	happens	if	the	buffer	isn’t	large	enough:

(def	result	(chan	(buffer	2)))

(go-loop	[]

		(<!	(async/timeout	1000))

		(when-let	[x	(<!	result)]

				(prn	"Got	value:	"	x)

				(recur)))

(go		(doseq	[n	(range	5)]

							(>!	result	n))

					(prn	"Done	putting	values!")

					(close!	Result))

;;	"Got	value:	"	0

;;	"Got	value:	"	1

;;	"Got	value:	"	2

;;	"Done	putting	values!"

;;	"Got	value:	"	3

;;	"Got	value:	"	4

This	time	our	buffer	size	is	2	but	everything	else	is	the	same.	As	you	can	see	the	go	loop
finishes	much	later	as	it	attempted	to	put	another	value	in	the	result	channel	and	was

blocked/parked	since	its	buffer	was	full.

As	with	most	things,	this	might	be	OK	but	if	we	are	not	willing	to	block	a	fast	producer
just	because	we	can’t	consume	its	items	fast	enough,	we	must	look	for	another	option.

Dropping	buffer
A	dropping	buffer	also	has	a	fixed	size.	However,	instead	of	blocking	producers	when	it	is
full,	it	simply	ignores	any	new	items	as	shown	here:

(def	result	(chan	(dropping-buffer	2)))

(go-loop	[]

		(<!	(async/timeout	1000))

		(when-let	[x	(<!	result)]

				(prn	"Got	value:	"	x)

				(recur)))

(go		(doseq	[n	(range	5)]

							(>!	result	n))

					(prn	"Done	putting	values!")

					(close!	result))

;;	"Done	putting	values!"

;;	"Got	value:	"	0

;;	"Got	value:	"	1

As	before,	we	still	have	a	buffer	of	size	two,	but	this	time	the	producer	ends	quickly
without	ever	getting	blocked.	The	dropping-buffer	simply	ignored	all	items	over	its
limit.

Sliding	buffer
A	drawback	of	dropping	buffers	is	that	we	might	not	be	processing	the	latest	items	at	a
given	time.	For	the	times	where	processing	the	latest	information	is	a	must,	we	can	use	a
sliding	buffer:

(def	result	(chan	(sliding-buffer	2)))

(go-loop	[]

		(<!	(async/timeout	1000))

		(when-let	[x	(<!	result)]

				(prn	"Got	value:	"	x)

				(recur)))

(go		(doseq	[n	(range	5)]

							(>!	result	n))

					(prn	"Done	putting	values!")

					(close!	result))

;;	"Done	putting	values!"

;;	"Got	value:	"	3

;;	"Got	value:	"	4

As	before,	we	only	get	two	values	but	they	are	the	latest	ones	produced	by	the	go	loop.

When	the	limit	of	the	sliding	buffer	is	overrun,	core.async	drops	the	oldest	items	to	make
room	for	the	newest	ones.	I	end	up	using	this	buffering	strategy	most	of	the	time.

Transducers
Before	we	finish	up	with	our	core.async	portion	of	the	book,	it	would	be	unwise	of	me
not	to	mention	what	is	coming	up	in	Clojure	1.7	as	well	as	how	this	affects	core.async.

At	the	time	of	this	writing,	Clojure’s	latest	release	is	1.7.0-alpha5—and	even	though	it	is
an	alpha	release,	a	lot	of	people—myself	included—are	already	using	it	in	production.

As	such,	a	final	version	could	be	just	around	the	corner	and	perhaps	by	the	time	you	read
this,	1.7	final	will	be	out	already.

One	of	the	big	changes	in	this	upcoming	release	is	the	introduction	of	transducers.	We
will	not	cover	the	nuts	and	bolts	of	it	here	but	rather	focus	on	what	it	means	at	a	high-level
with	examples	using	both	Clojure	sequences	and	core.async	channels.

If	you	would	like	to	know	more	I	recommend	Carin	Meier’s	Green	Eggs	and	Transducers
blog	post	(http://gigasquidsoftware.com/blog/2014/09/06/green-eggs-and-transducers/).
It’s	a	great	place	to	start.

Additionally,	the	official	Clojure	documentation	site	on	the	subject	is	another	useful
resource	(http://clojure.org/transducers).

Let’s	get	started	by	creating	a	new	leiningen	project:

$	lein	new	core-async-transducers

Now,	open	your	project.clj	file	and	make	sure	you	have	the	right	dependencies:

...

		:dependencies	[[org.clojure/clojure	"1.7.0-alpha5"]

																	[org.clojure/core.async	"0.1.346.0-17112a-alpha"]]

...

Next,	fire	up	a	REPL	session	in	the	project	root	and	require	core.async,	which	we	will	be
using	shortly:

$	lein	repl

user>	(require	'[clojure.core.async	:refer	[go	chan	map<	filter<	into	>!	<!	

go-loop	close!	pipe]])

We	will	start	with	a	familiar	example:

(->>	(range	10)

					(map	inc)											;;	creates	a	new	sequence

					(filter	even?)						;;	creates	a	new	sequence

					(prn	"result	is	"))

;;	"result	is	"	(2	4	6	8	10)

The	preceding	snippet	is	straightforward	and	highlights	an	interesting	property	of	what
happens	when	we	apply	combinators	to	Clojure	sequences:	each	combinator	creates	an
intermediate	sequence.

In	the	previous	example,	we	ended	up	with	three	in	total:	the	one	created	by	range,	the
one	created	by	map,	and	finally	the	one	created	by	filter.	Most	of	the	time,	this	won’t

http://gigasquidsoftware.com/blog/2014/09/06/green-eggs-and-transducers/
http://clojure.org/transducers

really	be	an	issue	but	for	large	sequences	this	means	a	lot	of	unnecessary	allocation.

Starting	in	Clojure	1.7,	the	previous	example	can	be	written	like	so:

(def	xform

		(comp	(map	inc)

								(filter	even?)))		;;	no	intermediate	sequence	created

(->>	(range	10)

					(sequence	xform)

					(prn	"result	is	"))

;;	"result	is	"	(2	4	6	8	10)

The	Clojure	documentation	describes	transducers	as	composable	algorithmic
transformations.	Let’s	see	why	that	is.

In	the	new	version,	a	whole	range	of	the	core	sequence	combinators,	such	as	map	and
filter,	have	gained	an	extra	arity:	if	you	don’t	pass	it	a	collection,	it	instead	returns	a
transducer.

In	the	previous	example,	(map	inc)	returns	a	transducer	that	knows	how	to	apply	the
function	inc	to	elements	of	a	sequence.	Similarly,	(filter	even?)	returns	a	transducer
that	will	eventually	filter	elements	of	a	sequence.	Neither	of	them	do	anything	yet,	they
simply	return	functions.

This	is	interesting	because	transducers	are	composable.	We	build	larger	and	more	complex
transducers	by	using	simple	function	composition:

(def	xform

		(comp	(map	inc)

								(filter	even?)))

Once	we	have	our	transducer	ready,	we	can	apply	it	to	a	collection	in	a	few	different	ways.
For	this	example,	we	chose	sequence	as	it	will	return	a	lazy	sequence	of	the	applications
of	the	given	transducer	to	the	input	sequence:

(->>	(range	10)

					(sequence	xform)

					(prn	"result	is	"))

;;	"result	is	"	(2	4	6	8	10)

As	previously	highlighted,	this	code	does	not	create	intermediate	sequences;	transducers
extract	the	very	core	of	the	algorithmic	transformation	at	hand	and	abstracts	it	away	from
having	to	deal	with	sequences	directly.

Transducers	and	core.async
We	might	now	be	asking	ourselves	“What	do	transducers	have	to	do	with	core.async?”

It	turns	out	that	once	we’re	able	to	extract	the	core	of	these	transformations	and	put	them
together	using	simple	function	composition,	there	is	nothing	stopping	us	from	using
transducers	with	data	structures	other	than	sequences!

Let’s	revisit	our	first	example	using	standard	core.async	functions:

(def	result	(chan	10))

(def	transformed

		(->>	result

							(map<	inc)						;;	creates	a	new	channel

							(filter<	even?)	;;	creates	a	new	channel

							(into	[])))					

(go

		(prn	"result	is	"	(<!	transformed)))

(go

		(doseq	[n	(range	10)]

				(>!	result	n))

		(close!	result))

;;	"result	is	"	[2	4	6	8	10]	

This	code	should	look	familiar	by	now:	it’s	the	core.async	equivalent	of	the	sequence-
only	version	shown	earlier.	As	before,	we	have	unnecessary	allocations	here	as	well,
except	that	this	time	we’re	allocating	channels.

With	the	new	support	for	transducers,	core.async	can	take	advantage	of	the	same
transformation	defined	earlier:

(def	result	(chan	10))

(def	xform	

					(comp	(map	inc)

											(filter	even?)))		;;	no	intermediate	channels	created

(def	transformed	(->>	(pipe	result	(chan	10	xform))

																						(into	[])))

(go

		(prn	"result	is	"	(<!	transformed)))

(go

		(doseq	[n	(range	10)]

				(>!	result	n))

		(close!	result))

;;	"result	is	"	[2	4	6	8	10]

The	code	remains	largely	unchanged	except	we	now	use	the	same	xform	transformation
defined	earlier	when	creating	a	new	channel.	It’s	important	to	note	that	we	did	not	have	to
use	core.async	combinators—in	fact	a	lot	of	these	combinators	have	been	deprecated	and
will	be	removed	in	future	versions	of	core.async.

The	functions	map	and	filter	used	to	define	xform	are	the	same	ones	we	used	previously,
that	is,	they	are	core	Clojure	functions.

This	is	the	next	big	advantage	of	using	transducers:	by	removing	the	underlying	data
structure	from	the	equation	via	transducers,	libraries	such	as	core.async	can	reuse
Clojure’s	core	combinators	to	prevent	unnecessary	allocation	and	code	duplication.

It’s	not	too	far	fetched	to	imagine	other	frameworks	like	RxClojure	could	take	advantage
of	transducers	as	well.	All	of	them	would	be	able	to	use	the	same	core	function	across
substantially	different	data	structures	and	contexts:	sequences,	channels,	and	Obervables.

Tip
The	concept	of	extracting	the	essence	of	computations	disregarding	their	underlying	data
structures	is	an	exciting	topic	and	has	been	seen	before	in	the	Haskell	community,
although	they	deal	with	lists	specifically.

Two	papers	worth	mentioning	on	the	subject	are	Stream	Fusion	[11]	by	Duncan	Coutts,
Roman	Leshchinskiy	and	Don	Stewart	and	Transforming	programs	to	eliminate	trees	[12]
by	Philip	Wadler.	There	are	some	overlaps	so	the	reader	might	find	these	interesting.

Summary
By	now,	I	hope	to	have	proved	that	you	can	write	reactive	applications	using	core.async.
It’s	an	extremely	powerful	and	flexible	concurrency	model	with	a	rich	API.	If	you	can
design	your	solution	in	terms	of	queues,	most	likely	core.async	is	the	tool	you	want	to
reach	for.

This	version	of	the	stock	market	application	is	shorter	and	simpler	than	the	version	using
only	the	standard	Java	API	we	developed	earlier	in	this	book—for	instance,	we	didn’t
have	to	worry	about	thread	pools.	On	the	other	hand,	it	feels	like	it	is	a	little	more	complex
than	the	version	implemented	using	Reactive	Extensions	in	Chapter	3,	Asynchronous
Programming	and	Networking.

This	is	because	core.async	operates	at	a	lower	level	of	abstraction	when	compared	to
other	frameworks.	This	becomes	especially	obvious	in	our	application	as	we	had	to	worry
about	creating	broadcasting	channels,	go	loops,	and	so	on—all	of	which	can	be	considered
incidental	complexity,	not	directly	related	to	the	problem	at	hand.

core.async	does,	however,	provide	an	excellent	foundation	for	building	our	own	CES
abstractions.	This	is	what	we	will	be	exploring	next.

Chapter	5.	Creating	Your	Own	CES
Framework	with	core.async
In	the	previous	chapter,	it	was	alluded	to	that	core.async	operates	at	a	lower	level	of
abstraction	when	compared	to	other	frameworks	such	as	RxClojure	or	RxJava.

This	is	because	most	of	the	time	we	have	to	think	carefully	about	the	channels	we	are
creating	as	well	as	what	types	and	sizes	of	buffers	to	use,	whether	we	need	pub/sub
functionality,	and	so	on.

Not	all	applications	require	such	level	of	control,	however.	Now	that	we	are	familiar	with
the	motivations	and	main	abstractions	of	core.async	we	can	embark	into	writing	a
minimal	CES	framework	using	core.async	as	the	underlying	foundation.

By	doing	so,	we	avoid	having	to	think	about	thread	pool	management	as	the	framework
takes	care	of	that	for	us.

In	this	chapter,	we	will	cover	the	following	topics:

Building	a	CES	framework	using	core.async	as	its	underlying	concurrency	strategy
Building	an	application	that	uses	our	CES	framework
Understanding	the	trade-offs	of	the	different	approaches	presented	so	far

A	minimal	CES	framework
Before	we	get	start	on	the	details,	we	should	define	at	a	high	level	what	minimal	means.

Let’s	start	with	the	two	main	abstractions	our	framework	will	provide:	behaviors	and	event
streams.

If	you	can	recall	from	Chapter	1,	What	is	Reactive	Programming?,	behaviors	represent
continuous,	time-varying	values	such	as	time	or	a	mouse	position	behavior.	Event	streams,
on	the	other	hand,	represent	discrete	occurrences	at	a	point	in	time	T,	such	as	key	press.

Next,	we	should	think	about	what	kinds	of	operations	we	would	like	to	support.	Behaviors
are	fairly	simple	so	at	the	very	minimum	we	need	to:

Create	new	behaviors
Retrieve	the	current	value	of	a	behavior
Convert	a	behavior	into	an	event	stream

Event	streams	have	more	interesting	logic	in	play	and	we	should	at	least	support	these
operations:

Push/deliver	a	value	down	the	stream
Create	a	stream	from	a	given	interval
Transform	the	stream	with	the	map	and	filter	operations
Combine	streams	with	flatmap
Subscribe	to	a	stream

This	is	a	small	subset	but	big	enough	to	demonstrate	the	overall	architecture	of	a	CES
framework.	Once	we’re	done,	we’ll	use	it	to	build	a	simple	example.

Clojure	or	ClojureScript?
Here	we’ll	shift	gears	and	add	another	requirement	to	our	little	library:	it	should	work	both
in	Clojure	and	ClojureScript.	At	first,	this	might	sound	like	a	tough	requirement.	However,
remember	that	core.async—the	foundation	of	our	framework—works	both	on	the	JVM
and	in	JavaScript.	This	means	we	have	a	lot	less	work	to	do	to	make	it	happen.

It	does	mean,	however,	that	we	need	to	be	capable	of	producing	two	artifacts	from	our
library:	a	jar	file	and	a	JavaScript	file.	Luckily,	there	are	leiningen	plugins,	which	help	us
do	that	and	we	will	be	using	a	couple	of	them:

lein-cljsbuild	(see	https://github.com/emezeske/lein-cljsbuild):	Leiningen	plugin
to	make	building	ClojureScript	easy
cljx	(see	https://github.com/lynaghk/cljx):	A	preprocessor	used	to	write	portable
Clojure	codebases,	that	is,	write	a	single	file	and	output	both	.clj	and	.cljs	files

You	don’t	need	to	understand	these	libraries	in	great	detail.	We	are	only	using	their	basic
functionality	and	will	be	explaining	the	bits	and	pieces	as	we	encounter	them.

Let’s	get	started	by	creating	a	new	leiningen	project.	We’ll	call	our	framework	respondent
—one	of	the	many	synonyms	for	the	word	reactive:

$	lein	new	respondent

We	need	to	make	a	few	changes	to	the	project.clj	file	to	include	the	dependencies	and
configurations	we’ll	be	using.	First,	make	sure	the	project	dependencies	look	like	the
following:

:dependencies	[[org.clojure/clojure	"1.5.1"]

															[org.clojure/core.async	"0.1.303.0-886421-alpha"]

															[org.clojure/clojurescript	"0.0-2202"]]

There	should	be	no	surprises	here.	Still	in	the	project	file,	add	the	necessary	plugins:

:plugins	[[com.keminglabs/cljx	"0.3.2"]

										[lein-cljsbuild	"1.0.3"]]

These	are	the	plugins	that	we’ve	mentioned	previously.	By	themselves	they	don’t	do
much,	however,	and	need	to	be	configured.

For	cljx,	add	the	following	to	the	project	file:

:cljx	{:builds	[{:source-paths	["src/cljx"]

																	:output-path	"target/classes"

																	:rules	:clj}

																{:source-paths	["src/cljx"]

																	:output-path	"target/classes"

																	:rules	:cljs}]}

		:hooks	[cljx.hooks]

The	previous	snippet	deserves	some	explanation.	cljx	allows	us	to	write	code	that	is
portable	between	Clojure	and	ClojureScript	by	placing	annotations	its	preprocessor	can
understand.	We	will	see	later	what	these	annotations	look	like,	but	this	chunk	of

https://github.com/emezeske/lein-cljsbuild
https://github.com/lynaghk/cljx

configuration	tells	cljx	where	to	find	the	annotated	files	and	where	to	output	them	once
they’re	processed.

For	example,	based	on	the	preceding	rules,	if	we	have	a	file	called	src/cljx/core.cljx
and	we	run	the	preprocessor	we	will	end	up	with	the	target/classes/core.clj	and
target/classes/core.cljs	output	files.	The	hooks,	on	the	other	hand,	are	simply	a
convenient	way	to	automatically	run	cljx	whenever	we	start	a	REPL	session.

The	next	part	of	the	configuration	is	for	cljsbuild:

:cljsbuild

{:builds	[{:source-paths	["target/classes"]

											:compiler	{:output-to	"target/main.js"}}]}

cljsbuild	provides	leiningen	tasks	to	compile	Clojuresript	source	code	into	JavaScript.
We	know	from	our	preceding	cljx	configuration	that	the	source.cljs	files	will	be	under
target/classes,	so	here	we’re	simply	telling	cljsbuild	to	compile	all	ClojureScript	files
in	that	directory	and	spit	the	contents	to	target/main.js.	This	is	the	last	piece	needed	for
the	project	file.

Go	ahead	and	delete	these	files	created	by	the	leiningen	template	as	we	won’t	be	using
them:

$	rm	src/respondent/core.clj

$	rm	test/respondent/core_test.clj

Then,	create	a	new	core.cljx	file	under	src/cljx/respondent/	and	add	the	following
namespace	declaration:

(ns	respondent.core

		(:refer-clojure	:exclude	[filter	map	deliver])

		#+clj

		(:import	[clojure.lang	IDeref])

		#+clj

		(:require	[clojure.core.async	:as	async

													:refer	[go	go-loop	chan	<!	>!	timeout

																					map>	filter>	close!	mult	tap	untap]])

		#+cljs

		(:require	[cljs.core.async	:as	async

													:refer	[chan	<!	>!	timeout	map>	filter>

																					close!	mult	tap	untap]])

		#+cljs

		(:require-macros	[respondent.core	:refer	[behavior]]

																			[cljs.core.async.macros	:refer	[go	go-loop]]))

Here,	we	start	seeing	cljx	annotations.	cljx	is	simply	a	text	preprocessor,	so	when	it	is
processing	a	file	using	clj	rules—as	seen	in	the	configuration—it	will	keep	the	s-
expressions	preceded	by	the	annotation	#+clj	in	the	output	file,	while	removing	the	ones
prefixed	by	#+cljs.	The	reverse	process	happens	when	using	cljs	rules.

This	is	necessary	because	macros	need	to	be	compiled	on	the	JVM,	so	they	have	to	be

included	separately	using	the	:require-macros	namespace	option	when	using
ClojureScript.	Don’t	worry	about	the	core.async	functions	we	haven’t	encountered
before;	they	will	be	explained	as	we	use	them	to	build	our	framework.

Also,	note	how	we	are	excluding	functions	from	the	Clojure	standard	API	as	we	wish	to
use	the	same	names	and	don’t	want	any	undesired	naming	collisions.

This	section	set	us	up	with	a	new	project	and	the	plugins	and	configurations	needed	for
our	framework.	We’re	ready	to	start	implementing	it.

Designing	the	public	API
One	of	the	requirements	for	behaviors	we	agreed	on	is	the	ability	to	turn	a	given	behavior
into	an	event	stream.	A	common	way	of	doing	this	is	by	sampling	a	behavior	at	a	specific
interval.	If	we	take	the	mouse	position	behavior	as	an	example,	by	sampling	it	every	x
seconds	we	get	an	event	stream,	which	will	emit	the	current	mouse	position	at	discrete
points	in	time.

This	leads	to	the	following	protocol:

(defprotocol	IBehavior

		(sample	[b	interval]

				"Turns	this	Behavior	into	an	EventStream	from	the	sampled	values	at	the	

given	interval"))

It	has	a	single	function,	sample,	which	we	described	in	the	preceding	code.	There	are
more	things	we	need	to	do	with	a	behavior,	but	for	now	this	will	suffice.

Our	next	main	abstraction	is	EventStream,	which—based	on	the	requirements	seen
previously—leads	to	the	following	protocol:

(defprotocol	IEventStream

		(map								[s	f]

				"Returns	a	new	stream	containing	the	result	of	applying	f

				to	the	values	in	s")

		(filter					[s	pred]

				"Returns	a	new	stream	containing	the	items	from	s

				for	which	pred	returns	true")

		(flatmap				[s	f]

				"Takes	a	function	f	from	values	in	s	to	a	new	EventStream.

				Returns	an	EventStream	containing	values	from	all	underlying	streams	

combined.")

		(deliver				[s	value]

				"Delivers	a	value	to	the	stream	s")

		(completed?	[s]

				"Returns	true	if	this	stream	has	stopped	emitting	values.	False	

otherwise."))

This	gives	us	a	few	basic	functions	to	transform	and	query	an	event	stream.	It	does	leave
out	the	ability	to	subscribe	to	a	stream.	Don’t	worry,	I	didn’t	forget	it!

Although,	it	is	common	to	subscribe	to	an	event	stream,	the	protocol	itself	doesn’t
mandate	it	and	this	is	because	the	operation	fits	best	in	its	own	protocol:

(defprotocol	IObservable

		(subscribe	[obs	f]	"Register	a	callback	to	be	invoked	when	the	underlying	

source	changes.

			Returns	a	token	the	subscriber	can	use	to	cancel	the	subscription."))

As	far	as	subscriptions	go,	it	is	useful	to	have	a	way	of	unsubscribing	from	a	stream.	This
can	be	implemented	in	a	couple	of	ways,	but	docstring	of	the	preceding	function	hints	at
a	specific	one:	a	token	that	can	be	used	to	unsubscribe	from	a	stream.	This	leads	to	our	last
protocol:

(defprotocol	IToken

		(dispose	[tk]

				"Called	when	the	subscriber	isn't	interested	in	receiving	more	items"))

Implementing	tokens
The	token	type	is	the	simplest	in	the	whole	framework	as	it	has	got	a	single	function	with
a	straightforward	implementation:

(deftype	Token	[ch]

		IToken

		(dispose	[_]

				(close!	ch)))

It	simply	closes	whatever	channel	it	is	given,	stopping	events	from	flowing	through
subscriptions.

Implementing	event	streams
The	event	stream	implementation,	on	the	other	hand,	is	the	most	complex	in	our
framework.	We’ll	tackle	it	gradually,	implementing	and	experimenting	as	we	go.

First,	let’s	look	at	our	main	constructor	function,	event-stream:

(defn	event-stream

		"Creates	and	returns	a	new	event	stream.	You	can	optionally	provide	an	

existing

		core.async	channel	as	the	source	for	the	new	stream"

		([]

					(event-stream	(chan)))

		([ch]

					(let	[multiple		(mult	ch)

											completed	(atom	false)]

							(EventStream.	ch	multiple	completed))))

The	docstring	should	be	sufficient	to	understand	the	public	API.	What	might	not	be
clear,	however,	is	what	all	the	constructor	arguments	mean.	From	left	to	right,	the
arguments	to	EventStream	are:

ch:	This	is	the	core.async	channel	backing	this	stream.
multiple:	This	is	a	way	to	broadcast	information	from	one	channel	to	many	other
channels.	It’s	a	core.async	concept	we	will	be	explaining	shortly.
completed:	A	Boolean	flag	indicating	whether	this	event	stream	has	completed	and
will	not	emit	any	new	values.

From	the	implementation,	you	can	see	that	the	multiple	is	created	from	the	channel
backing	the	stream.	multiple	works	kind	of	like	a	broadcast.	Consider	the	following
example:

		(def	in	(chan))

		(def	multiple	(mult	in))

		(def	out-1	(chan))

		(tap	multiple	out-1)

		(def	out-2	(chan))

		(tap	multiple	out-2)

		(go	(>!	in	"Single	put!"))

		(go	(prn	"Got	from	out-1	"	(<!	out-1)))

		(go	(prn	"Got	from	out-2	"	(<!	out-2)))

In	the	previous	snippet,	we	create	an	input	channel,	in,	and	mult	of	it	called	multiple.
Then,	we	create	two	output	channels,	out-1	and	out-2,	which	are	both	followed	by	a	call
to	tap.	This	essentially	means	that	whatever	values	are	written	to	in	will	be	taken	by
multiple	and	written	to	any	channels	tapped	into	it	as	the	following	output	shows:

"Got	from	out-1	"	"Single	put!"

"Got	from	out-2	"	"Single	put!"

This	will	make	understanding	the	EventStream	implementation	easier.

Next,	let’s	have	a	look	at	what	a	minimal	implementation	of	the	EventStream	looks	like
the	following—make	sure	the	implementation	goes	before	the	constructor	function
described	earlier:

(declare	event-stream)

(deftype	EventStream	[channel	multiple	completed]

		IEventStream

		(map	[_	f]

				(let	[out	(map>	f	(chan))]

						(tap	multiple	out)

						(event-stream	out)))

		(deliver	[_	value]

				(if	(=	value	::complete)

						(do	(reset!	completed	true)

										(go	(>!	channel	value)

														(close!	channel)))

						(go	(>!	channel	value))))

		IObservable

		(subscribe	[this	f]

				(let	[out	(chan)]

						(tap	multiple	out)

						(go-loop	[]

								(let	[value	(<!	out)]

										(when	(and	value	(not=	value	::complete))

												(f	value)

												(recur))))

						(Token.	out))))

For	now,	we	have	chosen	to	implement	only	the	map	and	deliver	functions	from	the
IEventStream	protocol.	This	allows	us	to	deliver	values	to	the	stream	as	well	as	transform
those	values.

However,	this	would	not	be	very	useful	if	we	could	not	retrieve	the	values	delivered.	This
is	why	we	also	implement	the	subscribe	function	from	the	IObservable	protocol.

In	a	nutshell,	map	needs	to	take	a	value	from	the	input	stream,	apply	a	function	to	it,	and
send	it	to	the	newly	created	stream.	We	do	this	by	creating	an	output	channel	that	taps	on
current	multiple.	We	then	use	this	channel	to	back	the	new	event	stream.

The	deliver	function	simply	puts	the	value	into	the	backing	channel.	If	the	value	is	the
namespaced	keyword	::complete,	we	update	the	completed	atom	and	close	the	backing
channel.	This	ensures	the	stream	will	not	emit	any	other	values.

Finally,	we	have	the	subscribe	function.	The	way	subscribers	are	notified	is	by	using	an
output	channel	tapped	to	backing	multiple.	We	loop	indefinitely	calling	the	subscribing
function	whenever	a	new	value	is	emitted.

We	finish	by	returning	a	token,	which	will	close	the	output	channel	once	disposed,	causing
the	go-loop	to	stop.

Let’s	make	sure	that	all	this	makes	sense	by	experimenting	with	a	couple	of	examples	in
the	REPL:

		(def	es1	(event-stream))

		(subscribe	es1	#(prn	"first	event	stream	emitted:	"	%))

		(deliver	es1	10)

		;;	"first	event	stream	emitted:	"	10

		(def	es2	(map	es1	#(*	2	%)))

		(subscribe	es2	#(prn	"second	event	stream	emitted:	"	%))

		(deliver	es1	20)

		;;	"first	event	stream	emitted:	"	20

		;;	"second	event	stream	emitted:	"	40

Excellent!	We	have	a	minimal,	working	implementation	of	our	IEventStream	protocol!

The	next	function	we’ll	implement	is	filter	and	it	is	very	similar	to	map:

		(filter	[_	pred]

				(let	[out	(filter>	pred	(chan))]

						(tap	multiple	out)

						(event-stream	out)))

The	only	difference	is	that	we	use	the	filter>	function	and	pred	should	be	a	Boolean
function:

		(def	es1	(event-stream))

		(def	es2	(filter	es1	even?))

		(subscribe	es1	#(prn	"first	event	stream	emitted:	"	%))

		(subscribe	es2	#(prn	"second	event	stream	emitted:	"	%))

		(deliver	es1	2)

		(deliver	es1	3)

		(deliver	es1	4)

		;;	"first	event	stream	emitted:	"	2

		;;	"second	event	stream	emitted:	"	2

		;;	"first	event	stream	emitted:	"	3

		;;	"first	event	stream	emitted:	"	4

		;;	"second	event	stream	emitted:	"	4

As	we	witness,	es2	only	emits	a	new	value	if	and	only	if	that	value	is	an	even	number.

Tip
If	you	are	following	along,	typing	the	examples	step	by	step,	you	will	need	to	restart	your
REPL	whenever	we	add	new	functions	to	any	deftype	definition.	This	is	because	deftype
generates	and	compiles	a	Java	class	when	evaluated.	As	such,	simply	reloading	the
namespace	won’t	be	enough.

Alternatively,	you	can	use	a	tool	such	as	tools.namespace	(see
https://github.com/clojure/tools.namespace)	that	addresses	some	of	these	REPL	reloading
limitations.

https://github.com/clojure/tools.namespace

Moving	down	our	list,	we	now	have	flatmap:

(flatmap	[_	f]

				(let	[es	(event-stream)

										out	(chan)]

						(tap	multiple	out)

						(go-loop	[]

								(when-let	[a	(<!	out)]

										(let	[mb	(f	a)]

												(subscribe	mb	(fn	[b]

																												(deliver	es	b)))

												(recur))))

						es))

We’ve	encountered	this	operator	before	when	surveying	Reactive	Extensions.	This	is	what
our	docstring	says	about	it:

Takes	a	function	f	from	values	in	s	to	a	new	EventStream.

Returns	an	EventStream	containing	values	from	all	underlying	streams	combined.

This	means	flatmap	needs	to	combine	all	the	possible	event	streams	into	a	single	output
event	stream.	As	before,	we	tap	a	new	channel	to	the	multiple	stream,	but	then	we	loop
over	the	output	channel,	applying	f	to	each	output	value.

However,	as	we	saw,	f	itself	returns	a	new	event	stream,	so	we	simply	subscribe	to	it.
Whenever	the	function	registered	in	the	subscription	gets	called,	we	deliver	that	value	to
the	output	event	stream,	effectively	combining	all	streams	into	a	single	one.

Consider	the	following	example:

		(defn	range-es	[n]

				(let	[es	(event-stream	(chan	n))]

						(doseq	[n	(range	n)]

								(deliver	es	n))

						es))

		(def	es1	(event-stream))

		(def	es2	(flatmap	es1	range-es))

		(subscribe	es1	#(prn	"first	event	stream	emitted:	"	%))

		(subscribe	es2	#(prn	"second	event	stream	emitted:	"	%))

		(deliver	es1	2)

		;;	"first	event	stream	emitted:	"	2

		;;	"second	event	stream	emitted:	"	0

		;;	"second	event	stream	emitted:	"	1

		(deliver	es1	3)

		;;	"first	event	stream	emitted:	"	3

		;;	"second	event	stream	emitted:	"	0

		;;	"second	event	stream	emitted:	"	1

		;;	"second	event	stream	emitted:	"	2

We	have	a	function,	range-es,	that	receives	a	number	n	and	returns	an	event	stream	that
emits	numbers	from	0	to	n.	As	before,	we	have	a	starting	stream,	es1,	and	a	transformed
stream	created	with	flatmap,	es2.

We	can	see	from	the	preceding	output	that	the	stream	created	by	range-es	gets	flattened
into	es2	allowing	us	to	receive	all	values	by	simply	subscribing	to	it	once.

This	leaves	us	with	single	function	from	IEventStream	left	to	implement:

		(completed?	[_]	@completed)

completed?	simply	returns	the	current	value	of	the	completed	atom.	We	are	now	ready	to
implement	behaviors.

Implementing	behaviors
If	you	recall,	the	IBehavior	protocol	has	a	single	function	called	sample	whose	docstring
states:	Turns	this	Behavior	into	an	EventStream	from	the	sampled	values	at	the	given
interval.

In	order	to	implement	sample,	we	will	first	create	a	useful	helper	function	that	we	will	call
from-interval:

(defn	from-interval

		"Creates	and	returns	a	new	event	stream	which	emits	values	at	the	given

interval.

		If	no	other	arguments	are	given,	the	values	start	at	0	and	increment	by

one	at	each	delivery.

		If	given	seed	and	succ	it	emits	seed	and	applies	succ	to	seed	to	get

the	next	value.	It	then	applies	succ	to	the	previous	result	and	so	on."

		([msecs]

					(from-interval	msecs	0	inc))

		([msecs	seed	succ]

					(let	[es	(event-stream)]

							(go-loop	[timeout-ch	(timeout	msecs)

																	value	seed]

									(when-not	(completed?	es)

											(<!	timeout-ch)

											(deliver	es	value)

											(recur	(timeout	msecs)	(succ	value))))

							es)))

The	docstring	function	should	be	clear	enough	at	this	stage,	but	we	would	like	to	ensure
we	understand	its	behavior	correctly	by	trying	it	at	the	REPL:

		(def	es1	(from-interval	500))

		(def	es1-token	(subscribe	es1	#(prn	"Got:	"	%)))

		;;	"Got:	"	0

		;;	"Got:	"	1

		;;	"Got:	"	2

		;;	"Got:	"	3

		;;	...

		(dispose	es1-token)

As	expected,	es1	emits	integers	starting	at	zero	at	500-millisecond	intervals.	By	default,	it
would	emit	numbers	indefinitely;	therefore,	we	keep	a	reference	to	the	token	returned	by
calling	subscribe.

This	way	we	can	dispose	it	whenever	we’re	done,	causing	es-1	to	complete	and	stop
emitting	items.

Next,	we	can	finally	implement	the	Behavior	type:

(deftype	Behavior	[f]

		IBehavior

		(sample	[_	interval]

				(from-interval	interval	(f)	(fn	[&	args]	(f))))

		IDeref

		(#+clj	deref	#+cljs	-deref	[_]

				(f)))

(defmacro	behavior	[&	body]

		`(Behavior.	#(do	~@body)))

A	behavior	is	created	by	passing	it	a	function.	You	can	think	of	this	function	as	a	generator
responsible	for	generating	the	next	value	in	this	event	stream.

This	generator	function	will	be	called	whenever	we	(1)	deref	the	Behavior	or	(2)	at	the
interval	given	to	sample.

The	behavior	macro	is	there	for	convenience	and	allows	us	to	create	a	new	Behavior
without	wrapping	the	body	in	a	function	ourselves:

		(def	time-behavior	(behavior	(System/nanoTime)))

		@time-behavior

		;;	201003153977194

		@time-behavior

		;;	201005133457949

In	the	preceding	example,	we	defined	time-behavior	that	always	contains	the	current
system	time.	We	can	then	turn	this	behavior	into	a	stream	of	discrete	events	by	using	the
sample	function:

		(def	time-stream	(sample	time-behavior	1500))

		(def	token							(subscribe	time-stream	#(prn	"Time	is	"	%)))

		;;	"Time	is	"	201668521217402

		;;	"Time	is	"	201670030219351

		;;	...

		

		(dispose	token)

Tip
Always	remember	to	keep	a	reference	to	the	subscription	token	when	dealing	with	infinite
streams	such	as	the	ones	created	by	sample	and	from-interval,	or	else	you	might	incur
undesired	memory	leaks.

Congratulations!	We	have	a	working,	minimal	CES	framework	using	core.async!

We	didn’t	prove	it	works	with	ClojureScript,	however,	which	was	one	of	the	main
requirements	early	on.	That’s	okay.	We	will	be	tackling	that	soon	by	developing	a	simple
ClojureScript	application,	which	makes	use	of	our	new	framework.

In	order	to	do	this,	we	need	to	deploy	the	framework	to	our	local	Maven	repository.	From
the	project	root,	type	the	following	lein	command:

$	lein	install

Rewriting	src/cljx	to	target/classes	(clj)	with	features	#{clj}	and	0	

transformations.

Rewriting	src/cljx	to	target/classes	(cljs)	with	features	#{cljs}	and	1	

transformations.

Created	respondent/target/respondent-0.1.0-SNAPSHOT.jar

Wrote	respondent/pom.xml

Exercises
The	following	sections	have	a	few	exercises	for	you.

Exercise	5.1
Extend	our	current	EventStream	implementation	to	include	a	function	called	take.	It
works	much	like	Clojure’s	core	take	function	for	sequences:	it	will	take	n	items	from	the
underlying	event	stream	after	which	it	will	stop	emitting	items.

A	sample	interaction,	which	takes	the	first	five	items	emitted	from	the	original	event
stream,	is	shown	here:

(def	es1	(from-interval	500))

(def	take-es	(take	es1	5))

(subscribe	take-es	#(prn	"Take	values:	"	%))

;;	"Take	values:	"	0

;;	"Take	values:	"	1

;;	"Take	values:	"	2

;;	"Take	values:	"	3

;;	"Take	values:	"	4

Tip
Keeping	some	state	might	be	useful	here.	Atoms	can	help.	Additionally,	try	to	think	of	a
way	to	dispose	of	any	unwanted	subscriptions	required	by	the	solution.

Exercise	5.2
In	this	exercise,	we	will	add	a	function	called	zip	that	zips	together	items	emitted	from
two	different	event	streams	into	a	vector.

A	sample	interaction	with	the	zip	function	is	as	follows:

(def	es1	(from-interval	500))

(def	es2	(map	(from-interval	500)	#(*	%	2)))

(def	zipped	(zip	es1	es2))

(def	token	(subscribe	zipped	#(prn	"Zipped	values:	"	%)))

;;	"Zipped	values:	"	[0	0]

;;	"Zipped	values:	"	[1	2]

;;	"Zipped	values:	"	[2	4]

;;	"Zipped	values:	"	[3	6]

;;	"Zipped	values:	"	[4	8]

(dispose	token)

Tip
For	this	exercise,	we	need	a	way	to	know	when	we	have	enough	items	to	emit	from	both
event	streams.	Managing	this	internal	state	can	be	tricky	at	first.	Clojure’s	ref	types	and,
in	particular,	dosync,	can	be	of	use.

A	respondent	application
This	chapter	would	not	be	complete	if	we	didn’t	go	through	the	whole	development	life
cycle	of	deploying	and	using	the	new	framework	in	a	new	application.	This	is	the	purpose
of	this	section.

The	application	we	will	build	is	extremely	simple.	All	it	does	is	track	the	position	of	the
mouse	using	the	reactive	primitives	we	built	into	respondent.

To	that	end,	we	will	be	using	the	excellent	lein	template	cljs-start	(see
https://github.com/magomimmo/cljs-start),	created	by	Mimmo	Cosenza	to	help	developers
get	started	with	ClojureScript.

Let’s	get	started:

lein	new	cljs-start	respondent-app

Next,	let’s	modify	the	project	file	to	include	the	following	dependencies:

[clojure-reactive-programming/respondent	"0.1.0-SNAPSHOT"]

[prismatic/dommy	"0.1.2"]

The	first	dependency	is	self-explanatory.	It’s	simply	our	own	framework.	dommy	is	a	DOM
manipulation	library	for	ClojureScript.	We’ll	briefly	use	it	when	building	our	web	page.

Next,	edit	the	dev-resources/public/index.html	file	to	match	the	following:

<!doctype	html>

<html	lang="en">

<head>

				<meta	charset="utf-8">

				<title>Example:	tracking	mouse	position</title>

				<!--[if	lt	IE	9]>

				<script	src="http://html5shiv.googlecode.com/svn/trunk/html5.js">

</script>

				<![endif]-->

</head>

<body>

				<div	id="test">

								<h1>Mouse	(x,y)	coordinates:</h1>

				</div>

				<div	id="mouse-xy">

						(0,0)

				</div>

				<script	src="js/respondent_app.js"></script>

</body>

</html>

In	the	preceding	snippet,	we	created	a	new	div	element,	which	will	contain	the	mouse
position.	It	defaults	to	(0,0).

The	last	piece	of	the	puzzle	is	modifying	src/cljs/respondent_app/core.cljs	to	match
the	following:

https://github.com/magomimmo/cljs-start

	(ns	respondent-app.core

		(:require	[respondent.core	:as	r]

												[dommy.core	:as	dommy])

		(:use-macros

			[dommy.macros	:only	[sel1]]))

(def	mouse-pos-stream	(r/event-stream))

(set!	(.-onmousemove	js/document)

						(fn	[e]

								(r/deliver	mouse-pos-stream	[(.-pageX	e)	(.-pageY	e)])))

(r/subscribe	mouse-pos-stream

													(fn	[[x	y]]

															(dommy/set-text!	(sel1	:#mouse-xy)

																																(str	"("	x	","	y	")"))))

This	is	our	main	application	logic.	It	creates	an	event	stream	to	which	we	deliver	the
current	mouse	position	from	the	onmousemove	event	of	the	browser	window.

Later,	we	simply	subscribe	to	it	and	use	dommy	to	select	and	set	the	text	of	the	div	element
we	added	previously.

We	are	now	ready	to	use	the	app!	Let’s	start	by	compiling	ClojureScript:

$	lein	compile

This	should	take	a	few	seconds.	If	all	is	well,	the	next	thing	to	do	is	to	start	a	REPL
session	and	start	up	the	server:

$	lein	repl

user=>	(run)

Now,	point	your	browser	to	http://localhost:3000/	and	drag	the	mouse	around	to	see
its	current	position.

Congratulations	on	successfully	developing,	deploying,	and	using	your	own	CES
framework!

CES	versus	core.async
At	this	stage,	you	might	be	wondering	when	you	should	choose	one	approach	over	the
other.	After	all,	as	demonstrated	at	the	beginning	of	this	chapter,	we	could	use	core.async
to	do	everything	we	have	done	using	respondent.

It	all	comes	down	to	using	the	right	level	of	abstraction	for	the	task	at	hand.

core.async	gives	us	many	low	level	primitives	that	are	extremely	useful	when	working
with	processes,	which	need	to	talk	to	each	other.	The	core.async	channels	work	as
concurrent	blocking	queues	and	are	an	excellent	synchronization	mechanism	in	these
scenarios.

However,	it	makes	other	solutions	harder	to	implement:	for	instance,	channels	are	single-
take	by	default,	so	if	we	have	multiple	consumers	interested	in	the	values	put	inside	a
channel,	we	have	to	implement	the	distribution	ourselves	using	tools	such	as	mult	and
tap.

CES	frameworks,	on	the	other	hand,	operate	at	a	higher	level	of	abstraction	and	work	with
multiple	subscribers	by	default.

Additionally,	core.async	relies	on	side	effects,	as	can	be	seen	by	the	use	of	functions	such
as	>!	inside	go	blocks.	Frameworks	such	as	RxClojure	promote	stream	transformations	by
the	use	of	pure	functions.

This	is	not	to	say	there	aren’t	side	effects	in	CES	frameworks.	There	most	definitely	are.
However,	as	a	consumer	of	the	library,	this	is	mostly	hidden	from	our	eyes,	allowing	us	to
think	of	most	of	our	code	as	simple	sequence	transformations.

In	conclusion,	different	application	domains	will	benefit	more	or	less	from	either	approach
—sometimes	they	can	benefit	from	both.	We	should	think	hard	about	our	application
domain	and	analyze	the	types	of	solutions	and	idioms	developers	are	most	likely	to	design.
This	will	point	us	in	the	direction	of	better	abstraction	for	whatever	application	we	are
developing	at	a	given	time.

Summary
In	this	chapter,	we	developed	our	very	own	CES	framework.	By	developing	our	own
framework,	we	have	solidified	our	understanding	of	both	CES	and	how	to	effectively	use
core.async.

The	idea	that	core.async	could	be	used	as	the	foundation	of	a	CES	framework	isn’t	mine,
however.	James	Reeves	(see	https://github.com/weavejester)—creator	of	the	routing
library	Compojure	(see	https://github.com/weavejester/compojure)	and	many	other	useful
Clojure	libraries—also	saw	the	same	potential	and	set	off	to	write	Reagi	(see
https://github.com/weavejester/reagi),	a	CES	library	built	on	top	of	core.async,	similar	in
spirit	to	the	one	we	developed	in	this	chapter.

He	has	put	a	lot	more	effort	into	it,	making	it	a	more	robust	option	for	a	pure	Clojure
framework.	We’ll	be	looking	at	it	in	the	next	chapter.

https://github.com/weavejester
https://github.com/weavejester/compojure
https://github.com/weavejester/reagi

Chapter	6.	Building	a	Simple
ClojureScript	Game	with	Reagi
In	the	previous	chapter,	we	learned	how	a	framework	for	Compositional	Event	Systems
(CES)	works	by	building	our	own	framework,	which	we	called	respondent.	It	gave	us	a
great	insight	into	the	main	abstractions	involved	in	such	a	piece	of	software	as	well	as	a
good	overview	of	core.async,	Clojure’s	library	for	asynchronous	programming	and	the
foundation	of	our	framework.

Respondent	is	but	a	toy	framework,	however.	We	paid	little	attention	to	cross-cutting
concerns	such	as	memory	efficiency	and	exception	handling.	That	is	okay	as	we	used	it	as
a	vehicle	for	learning	more	about	handling	and	composing	event	systems	with
core.async.	Additionally,	its	design	is	intentionally	similar	to	Reagi’s	design.

In	this	chapter,	we	will:

Learn	about	Reagi,	a	CES	framework	built	on	top	of	core.async
Use	Reagi	to	build	the	rudiments	of	a	ClojureScript	game	that	will	teach	us	how	to
handle	user	input	in	a	clean	and	maintainable	way
Briefly	compare	Reagi	to	other	CES	frameworks	and	get	a	feel	for	when	to	use	each
one

Setting	up	the	project
Have	you	ever	played	Asteroids?	If	you	haven’t,	Asteroids	is	an	arcade	space	shooter	first
released	by	Atari	in	1979.	In	Asteroids,	you	are	the	pilot	of	a	ship	flying	through	space.	As
you	do	so,	you	get	surrounded	by	asteroids	and	flying	saucers	you	have	to	shoot	and
destroy.

Developing	the	whole	game	in	one	chapter	is	too	ambitious	and	would	distract	us	from	the
subject	of	this	book.	We	will	limit	ourselves	to	making	sure	we	have	a	ship	on	the	screen
we	can	fly	around	as	well	as	shoot	space	bullets	into	the	void.	By	the	end	of	this	chapter,
we	will	have	something	that	looks	like	what	is	shown	in	the	following	screenshot:

To	get	started,	we	will	create	a	newClojureScript	project	using	the	same	leiningen
template	we	used	in	the	previous	chapter,	cljs-start	(see
https://github.com/magomimmo/cljs-start):

lein	new	cljs-start	reagi-game

Next,	add	the	following	dependencies	to	your	project	file:

			[org.clojure/clojurescript	"0.0-2138"]

			[reagi	"0.10.0"]

			[rm-hull/monet	"0.1.12"]

The	last	dependency,	monet	(see	https://github.com/rm-hull/monet),	is	a	ClojureScript
library	you	can	use	to	work	with	HTML	5	Canvas.	It	is	a	high-level	wrapper	on	top	of	the
Canvas	API	and	makes	interacting	with	it	a	lot	simpler.

Before	we	continue,	it’s	probably	a	good	idea	to	make	sure	our	setup	is	working	properly.
Change	into	the	project	directory,	start	a	Clojure	REPL,	and	then	start	the	embedded	web
server:

cd	reagi-game/

https://github.com/magomimmo/cljs-start
https://github.com/rm-hull/monet

lein	repl

Compiling	ClojureScript.

Compiling	"dev-resources/public/js/reagi_game.js"	from	("src/cljs"	

"test/cljs"	"dev-resources/tools/repl")...

user=>	(run)

2014-06-14	19:21:40.381:INFO:oejs.Server:jetty-7.6.8.v20121106

2014-06-14	19:21:40.403:INFO:oejs.AbstractConnector:Started	

SelectChannelConnector@0.0.0.0:3000

#<Server	org.eclipse.jetty.server.Server@51f6292b>

This	will	compile	the	ClojureScript	source	files	to	JavaScript	and	start	the	sample	web
server.	In	your	browser,	navigate	to	http://localhost:3000/.	If	you	see	something	like
the	following,	we	are	good	to	go:

As	we	will	be	working	with	HTML	5	Canvas,	we	need	an	actual	canvas	to	render	to.	Let’s
update	our	HTML	document	to	include	that.	It’s	located	under	dev-
resources/public/index.html:

<!doctype	html>

<html	lang="en">

		<head>

				<meta	charset="utf-8">

				<title>bREPL	Connection</title>

				<!--[if	lt	IE	9]>

								<script	src="http://html5shiv.googlecode.com/svn/trunk/html5.js">

</script>

								<![endif]-->

		</head>

		<body>

				<canvas	id="canvas"	width="800"	height="600"></canvas>

				<script	src="js/reagi_game.js"></script>

		</body>

</html>

We	have	added	a	canvas	DOM	element	to	our	document.	All	rendering	will	happen	in	this
context.

Game	entities
Our	game	will	have	only	two	entities:	one	representing	the	spaceship	and	the	other
representing	bullets.	To	better	organize	the	code,	we	will	put	all	entity-related	code	in	its
own	file,	src/cljs/reagi_game/entities.cljs.	This	file	will	also	contain	some	of	the
rendering	logic,	so	we’ll	need	to	require	monet:

(ns	reagi-game.entities

		(:require	[monet.canvas	:as	canvas]

												[monet.geometry	:as	geom]))

Next,	we’ll	add	a	few	helper	functions	to	avoid	repeating	ourselves	too	much:

(defn	shape-x	[shape]

		(->	shape	:pos	deref	:x))

(defn	shape-y	[shape]

		(->	shape	:pos	deref	:y))

(defn	shape-angle	[shape]

		@(:angle	shape))

(defn	shape-data	[x	y	angle]

		{:pos			(atom	{:x	x	:y	y})

			:angle	(atom	angle)})

The	first	three	functions	are	simply	a	shorter	way	of	getting	data	out	of	our	shape	data
structure.	The	shape-data	function	creates	a	structure.	Note	that	we	are	using	atoms,	one
of	Clojure’s	reference	types,	to	represent	a	shape’s	position	and	angle.

This	way,	we	can	safely	pass	our	shape	data	into	monet’s	rendering	functions	and	still	be
able	to	update	it	in	a	consistent	way.

Next	up	is	our	ship	constructor	function.	This	is	where	the	bulk	of	the	interaction	with
monet	happens:

(defn	ship-entity	[ship]

		(canvas/entity	{:x	(shape-x	ship)	

																		:y	(shape-y	ship)	

																		:angle	(shape-angle	ship)}

																	(fn	[value]

																			(->	value

																							(assoc	:x					(shape-x	ship))

																							(assoc	:y					(shape-y	ship))

																							(assoc	:angle	(shape-angle	ship))))

																	(fn	[ctx	val]

																			(->	ctx

																							canvas/save

																							(canvas/translate	(:x	val)	(:y	val))

																							(canvas/rotate	(:angle	val))

																							(canvas/begin-path)

																							(canvas/move-to	50	0)

																							(canvas/line-to	0	-15)

																							(canvas/line-to	0	15)

																							(canvas/fill)

																							canvas/restore))))

There	is	quite	a	bit	going	on,	so	let’s	break	it	down.

canvas/entity	is	a	monet	constructor	and	expects	you	to	provide	three	arguments	that
describe	our	ship:	its	initial	x,	y	coordinates	and	angle,	an	update	function	that	gets	called
in	the	draw	loop,	and	a	draw	function	that	is	responsible	for	actually	drawing	the	shape
onto	the	screen	after	each	update.

The	update	function	is	fairly	straightforward:

(fn	[value]

		(->	value

						(assoc	:x					(shape-x	ship))

						(assoc	:y					(shape-y	ship))

						(assoc	:angle	(shape-angle	ship))))

We	simply	update	its	attributes	to	the	current	values	from	the	ship’s	atoms.

The	next	function,	responsible	for	drawing,	interacts	with	monet’s	API	more	heavily:

(fn	[ctx	val]

			(->	ctx

							canvas/save

							(canvas/translate	(:x	val)	(:y	val))

							(canvas/rotate	(:angle	val))

							(canvas/begin-path)

							(canvas/move-to	50	0)

							(canvas/line-to	0	-15)

							(canvas/line-to	0	15)

							(canvas/fill)

							canvas/restore))

We	start	by	saving	the	current	context	so	that	we	can	restore	things	such	as	drawing	style
and	canvas	positioning	later.	Next,	we	translate	the	canvas	to	the	ship’s	x,y	coordinates
and	rotate	it	according	to	its	angle.	We	then	start	drawing	our	shape,	a	triangle,	and	finish
by	restoring	our	saved	context.

The	next	function	also	creates	an	entity,	our	bullet:

(declare	move-forward!)

(defn	make-bullet-entity	[monet-canvas	key	shape]

		(canvas/entity	{:x	(shape-x	shape)	

																		:y	(shape-y	shape)	

																		:angle	(shape-angle	shape)}

																	(fn	[value]

																			(when	(not	

																											(geom/contained?	

																													{:x	0	:y	0

																														:w	(.-width	(:canvas	monet-canvas))

																														:h	(.-height	(:canvas	monet-canvas))}

																													{:x	(shape-x	shape)	

																														:y	(shape-y	shape)	

																														:r	5}))

																					(canvas/remove-entity	monet-canvas	key))

																			(move-forward!	shape)

																			(->	value

																							(assoc	:x					(shape-x	shape))

																							(assoc	:y					(shape-y	shape))

																							(assoc	:angle	(shape-angle	shape))))

																	(fn	[ctx	val]

																			(->	ctx

																							canvas/save

																							(canvas/translate	(:x	val)	(:y	val))

																							(canvas/rotate	(:angle	val))

																							(canvas/fill-style	"red")

																							(canvas/circle	{:x	10	:y	0	:r	5})

																							canvas/restore))))

As	before,	let’s	inspect	the	update	and	drawing	functions.	We’ll	start	with	update:

(fn	[value]

		(when	(not	

									(geom/contained?	

										{:x	0	:y	0

											:w	(.-width	(:canvas	monet-canvas))

											:h	(.-height	(:canvas	monet-canvas))}

										{:x	(shape-x	shape)	

											:y	(shape-y	shape)	

											:r	5}))

				(canvas/remove-entity	monet-canvas	key))

		(move-forward!	shape)

		(->	value

						(assoc	:x					(shape-x	shape))

						(assoc	:y					(shape-y	shape))

						(assoc	:angle	(shape-angle	shape))))

Bullets	have	a	little	more	logic	in	their	update	function.	As	you	fire	them	from	the	ship,
we	might	create	hundreds	of	these	entities,	so	it’s	a	good	practice	to	get	rid	of	them	as
soon	as	they	go	off	the	visible	canvas	area.	That’s	the	first	thing	the	function	does:	it	uses
geom/contained?	to	check	whether	the	entity	is	within	the	dimensions	of	the	canvas,
removing	it	when	it	isn’t.

Different	from	the	ship,	however,	bullets	don’t	need	user	input	in	order	to	move.	Once
fired,	they	move	on	their	own.	That’s	why	the	next	thing	we	do	is	call	move-forward!	We
haven’t	implemented	this	function	yet,	so	we	had	to	declare	it	beforehand.	We’ll	get	to	it.

Once	the	bullet’s	coordinates	and	angle	have	been	updated,	we	simply	return	the	new
entity.

The	draw	function	is	a	bit	simpler	than	the	ship’s	version	mostly	due	to	its	shape	being
simpler;	it’s	just	a	red	circle:

(fn	[ctx	val]

																			(->	ctx

																							canvas/save

																							(canvas/translate	(:x	val)	(:y	val))

																							(canvas/rotate	(:angle	val))

																							(canvas/fill-style	"red")

																							(canvas/circle	{:x	10	:y	0	:r	5})

																							canvas/restore))

Now,	we’ll	move	on	to	the	functions	responsible	for	updating	our	shape’s	coordinates	and
angle,	starting	with	move!:

(def	speed	200)

(defn	calculate-x	[angle]

		(*	speed	(/	(*	(Math/cos	angle)

																	Math/PI)

														180)))

(defn	calculate-y	[angle]

		(*	speed	(/	(*	(Math/sin	angle)

																	Math/PI)

														180)))

(defn	move!	[shape	f]

		(let	[pos	(:pos	shape)]

				(swap!	pos	(fn	[xy]

																	(->	xy

																					(update-in	[:x]

																																#(f	%	(calculate-x

																																							(shape-angle	shape))))

																					(update-in	[:y]

																																#(f	%	(calculate-y

																																							(shape-angle	shape)))))))))

To	keep	things	simple,	both	the	ship	and	bullets	use	the	same	speed	value	to	calculate	their
positioning,	here	defined	as	200.

move!	takes	two	arguments:	the	shape	map	and	a	function	f.	This	function	will	either	be
the	+	(plus)	or	the	-	(minus)	function,	depending	on	whether	we’re	moving	forward	or
backward,	respectively.	Next,	it	updates	the	shape’s	x,y	coordinates	using	some	basic
trigonometry.

If	you’re	wondering	why	we	are	passing	the	plus	and	minus	functions	as	arguments,	it’s
all	about	not	repeating	ourselves,	as	the	next	two	functions	show:

(defn	move-forward!	[shape]

		(move!	shape	+))

(defn	move-backward!	[shape]

		(move!	shape	-))

With	movement	taken	care	of,	the	next	step	is	to	write	the	rotation	functions:

(defn	rotate!	[shape	f]

		(swap!	(:angle	shape)	#(f	%	(/	(/	Math/PI	3)	20))))

(defn	rotate-right!	[shape]

		(rotate!	shape	+))

(defn	rotate-left!	[shape]

		(rotate!	shape	-))

So	far,	we’ve	got	ship	movement	covered!	But	what	good	is	our	ship	if	we	can’t	fire
bullets?	Let’s	make	sure	we	have	that	covered	as	well:

(defn	fire!	[monet-canvas	ship]

		(let	[entity-key	(keyword	(gensym	"bullet"))

								data	(shape-data	(shape-x	ship)

																									(shape-y	ship)

																									(shape-angle	ship))

								bullet	(make-bullet-entity	monet-canvas

																																			entity-key

																																			data)]

				(canvas/add-entity	monet-canvas	entity-key	bullet)))

The	fire!	function	takes	two	arguments:	a	reference	to	the	game	canvas	and	the	ship.	It
then	creates	a	new	bullet	by	calling	make-bullet-entity	and	adds	it	to	the	canvas.

Note	how	we	use	Clojure’s	gensym	function	to	create	a	unique	key	for	the	new	entity.	We
use	this	key	to	remove	an	entity	from	the	game.

This	concludes	the	code	for	the	entities	namespace.

Tip
gensym	is	quite	heavily	used	in	writing	hygienic	macros	as	you	can	be	sure	that	the
generated	symbols	will	not	clash	with	any	local	bindings	belonging	to	the	code	using	the
macro.	Macros	are	beyond	the	scope	of	this	book,	but	you	might	find	this	series	of	macro
exercises	useful	in	the	learning	process,	at	https://github.com/leonardoborges/clojure-
macros-workshop.

https://github.com/leonardoborges/clojure-macros-workshop

Putting	it	all	together
We’re	now	ready	to	assemble	our	game.	Go	ahead	and	open	the	core	namespace	file,
src/cljs/reagi_game/core.cljs,	and	add	the	following:

(ns	reagi-game.core

		(:require	[monet.canvas	:as	canvas]

												[reagi.core	:as	r]

												[clojure.set	:as	set]

												[reagi-game.entities	:as	entities

													:refer	[move-forward!	move-backward!	rotate-left!	rotate-

right!	fire!]]))

The	following	snippet	sets	up	various	data	structures	and	references	we’ll	need	in	order	to
develop	the	game:

(def	canvas-dom	(.getElementById	js/document	"canvas"))

(def	monet-canvas	(canvas/init	canvas-dom	"2d"))

(def	ship	

							(entities/shape-data	(/	(.-width	(:canvas	monet-canvas))	2)

																												(/	(.-height	(:canvas	monet-canvas))	2)

																												0))

(def	ship-entity	(entities/ship-entity	ship))

(canvas/add-entity	monet-canvas	:ship-entity	ship-entity)

(canvas/draw-loop	monet-canvas)

We	start	by	creating	monet-canvas	from	a	reference	to	our	canvas	DOM	element.	We
then	create	our	ship	data,	placing	it	at	the	center	of	the	canvas,	and	add	the	entity	to
monet-canvas.	Finally,	we	start	a	draw-loop,	which	will	handle	our	animations	using	the
browser’s	native	capabilities—internally	it	calls	window.requestAnimationFrame(),	if
available,	but	it	falls	back	to	window.setTimemout()	otherwise.

If	you	were	to	try	the	application	now,	this	would	be	enough	to	draw	the	ship	on	the
middle	of	the	screen,	but	nothing	else	would	happen	as	we	haven’t	started	handling	user
input	yet.

As	far	as	user	input	goes,	we’re	concerned	with	a	few	actions:

Ship	movement:	rotation,	forward,	and	backward
Firing	the	ship’s	gun
Pausing	the	game

To	account	for	these	actions,	we’ll	define	some	constants	that	represent	the	ASCII	codes
of	the	keys	involved:

(def	UP				38)

(def	RIGHT	39)

(def	DOWN		40)

(def	LEFT		37)

(def	FIRE		32)	;;	space

(def	PAUSE	80)	;;	lower-case	P

This	should	look	sensible	as	we	are	using	the	keys	traditionally	used	for	these	types	of
actions.

Modeling	user	input	as	event	streams
One	of	the	things	discussed	in	the	earlier	chapters	is	that	if	you	can	think	of	events	as	a	list
of	things	that	haven’t	happened	yet;	you	can	probably	model	it	as	an	event	stream.	In	our
case,	this	list	is	composed	by	the	keys	the	player	presses	during	the	game	and	can	be
visualized	like	so:

There	is	a	catch	though.	Most	games	need	to	handle	simultaneously	pressed	keys.

Say	you’re	flying	the	spaceship	forwards.	You	don’t	want	to	have	to	stop	it	in	order	to
rotate	it	to	the	left	and	then	continue	moving	forwards.	What	you	want	is	to	press	left	at
the	same	time	you’re	pressing	up	and	have	the	ship	respond	accordingly.

This	hints	at	the	fact	that	we	need	to	be	able	to	tell	whether	the	player	is	currently	pressing
multiple	keys.	Traditionally	this	is	done	in	JavaScript	by	keeping	track	of	which	keys	are
being	held	down	in	a	map-like	object,	using	flags.	Something	similar	to	the	following
snippet:

var	keysPressed	=	{};

document.addEventListener('keydown',	function(e)	{

			keysPressed[e.keyCode]	=	true;

},	false);

document.addEventListener('keyup',	function(e)	{

			keysPressed[e.keyCode]	=	false;

},	false);

Then,	later	in	the	game	loop,	you	would	check	whether	there	are	multiple	keys	being
pressed:

function	gameLoop()	{

			if	(keyPressed[UP]	&&	keyPressed[LEFT])	{

						//	update	ship	position

			}

			//	...

}

While	this	code	works,	it	relies	on	mutating	the	keysPressed	object	which	isn’t	ideal.

Additionally,	with	a	setup	similar	to	the	preceding	one,	the	keysPressed	object	is	global
to	the	application	as	it	is	needed	both	in	the	keyup/keydown	event	handlers	as	well	as	in	the
game	loop	itself.

In	functional	programming,	we	strive	to	eliminate	or	reduce	the	amount	of	global	mutable

state	in	order	to	write	readable,	maintainable	code	that	is	less	error-prone.	We	will	apply
these	principles	here.

As	seen	in	the	preceding	JavaScript	example,	we	can	register	callbacks	to	be	notified
whenever	a	keyup	or	keydown	event	happens.	This	is	useful	as	we	can	easily	turn	them
into	event	streams:

(defn	keydown-stream	[]

		(let	[out	(r/events)]

				(set!	(.-onkeydown	js/document)	

										#(r/deliver	out	[::down	(.-keyCode	%)]))

				out))

(defn	keyup-stream	[]

		(let	[out	(r/events)]

				(set!	(.-onkeyup			js/document)	

										#(r/deliver	out	[::up	(.-keyCode	%)]))

				out))

Both	keydown-stream	and	keyup-stream	return	a	new	stream	to	which	they	deliver	events
whenever	they	happen.	Each	event	is	tagged	with	a	keyword,	so	we	can	easily	identify	its
type.

We	would	like	to	handle	both	types	of	events	simultaneously	and	as	such	we	need	a	way
to	combine	these	two	streams	into	a	single	one.

There	are	many	ways	in	which	we	can	combine	streams,	for	example,	using	operators
such	as	zip	and	flatmap.	For	this	instance,	however,	we	are	interested	in	the	merge
operator.	merge	creates	a	new	stream	that	emits	values	from	both	streams	as	they	arrive:

This	gives	us	enough	to	start	creating	our	stream	of	active	keys.	Based	on	what	we	have
discussed	so	far,	our	stream	looks	something	like	the	following	at	the	moment:

(def	active-keys-stream

		(->>	(r/merge	(keydown-stream)	(keyup-stream))

							...

))

To	keep	track	of	which	keys	are	currently	pressed,	we	will	use	a	ClojureScript	set.	This
way	we	don’t	have	to	worry	about	setting	flags	to	true	or	false—we	can	simply	perform
standard	set	operations	and	add/remove	keys	from	the	data	structure.

The	next	thing	we	need	is	a	way	to	accumulate	the	pressed	keys	into	this	set	as	new	events
are	emitted	from	the	merged	stream.

In	functional	programming,	whenever	we	wish	to	accumulate	or	aggregate	some	type	of
data	over	a	sequence	of	values,	we	use	reduce.

Most—if	not	all—CES	frameworks	have	this	function	built-in.	RxJava	calls	it	scan.
Reagi,	on	the	other	hand,	calls	it	reduce,	making	it	intuitive	to	functional	programmers	in
general.

That	is	the	function	we	will	use	to	finish	the	implementation	of	active-keys-stream:

(def	active-keys-stream

		(->>	(r/merge	(keydown-stream)	(keyup-stream))

						(r/reduce	(fn	[acc	[event-type	key-code]]

										(condp	=	event-type

														::down	(conj	acc	key-code)

														::up	(disj	acc	key-code)

														acc))

										#{})

						(r/sample	25)))

r/reduce	takes	three	arguments:	a	reducing	function,	an	optional	initial/seed	value,	and
the	stream	to	reduce	over.

Our	seed	value	is	an	empty	set	as	initially	the	user	hasn’t	yet	pressed	any	keys.	Then,	our
reducing	function	checks	the	event	type,	removing	or	adding	the	key	from/to	the	set	as
appropriate.

As	a	result,	what	we	have	is	a	stream	like	the	one	represented	as	follows:

Working	with	the	active	keys	stream
The	ground	work	we’ve	done	so	far	will	make	sure	we	can	easily	handle	game	events	in	a
clean	and	maintainable	way.	The	main	idea	behind	having	a	stream	representing	the	game
keys	is	that	now	we	can	partition	it	much	like	we	would	a	normal	list.

For	instance,	if	we’re	interested	in	all	events	where	the	key	pressed	is	UP,	we	would	run
the	following	code:

(->>	active-keys-stream

					(r/filter	(partial	some	#{UP}))

					(r/map	(fn	[_]	(.log	js/console	"Pressed	up…"))))

Similarly,	for	events	involving	the	FIRE	key,	we	could	do	the	following:

(->>	active-keys-stream

					(r/filter	(partial	some	#{FIRE}))

					(r/map	(fn	[_]	(.log	js/console	"Pressed	fire…"))))

This	works	because	in	Clojure,	sets	can	be	used	as	predicates.	We	can	quickly	verify	this
at	the	REPL:

user>	(def	numbers	#{12	13	14})

#'user/numbers

user>	(some	#{12}	numbers)

12

user>	(some	#{15}	numbers)

nil

By	representing	the	events	as	a	stream,	we	can	easily	operate	on	them	using	familiar
sequence	functions	such	as	map	and	filter.

Writing	code	like	this,	however,	is	a	little	repetitive.	The	two	previous	examples	are	pretty
much	saying	something	along	these	lines:	filter	all	events	matching	a	given	predicate	pred
and	then	map	the	f	function	over	them.	We	can	abstract	this	pattern	in	a	function	we’ll	call
filter-map:

(defn	filter-map	[pred	f	&	args]

		(->>	active-keys-stream

							(r/filter	(partial	some	pred))

							(r/map	(fn	[_]	(apply	f	args)))))

With	this	helper	function	in	place,	it	becomes	easy	to	handle	our	game	actions:

(filter-map	#{FIRE}		fire!	monet-canvas	ship)

(filter-map	#{UP}				move-forward!		ship)

(filter-map	#{DOWN}		move-backward!	ship)

(filter-map	#{RIGHT}	rotate-right!		ship)

(filter-map	#{LEFT}		rotate-left!			ship)

The	only	thing	missing	now	is	taking	care	of	pausing	the	animations	when	the	player
presses	the	PAUSE	key.	We	follow	the	same	logic	as	above,	but	with	a	slight	change:

(defn	pause!	[_]

		(if	@(:updating?	monet-canvas)

				(canvas/stop-updating	monet-canvas)

				(canvas/start-updating	monet-canvas)))

(->>	active-keys-stream

					(r/filter	(partial	some	#{PAUSE}))

					(r/throttle	100)

					(r/map	pause!))

Monet	makes	a	flag	available	that	tells	us	whether	it	is	currently	updating	the	animation
state.	We	use	that	as	a	cheap	mechanism	to	“pause”	the	game.

Note	that	active-keys-stream	pushes	events	as	they	happen	so,	if	a	user	is	holding	a
button	down	for	any	amount	of	time,	we	will	get	multiple	events	for	that	key.	As	such,	we
would	probably	get	multiple	occurrences	of	the	PAUSE	key	in	a	very	short	amount	of	time.
This	would	cause	the	game	to	frantically	stop/start.	In	order	to	prevent	this	from
happening,	we	throttle	the	filtered	stream	and	ignore	all	PAUSE	events	that	happen	in	a
window	shorter	than	100	milliseconds.

To	make	sure	we	didn’t	miss	anything,	this	is	what	our	src/cljs/reagi_game/core.cljs
file	should	look	like,	in	full:

(ns	reagi-game.core

		(:require	[monet.canvas	:as	canvas]

												[reagi.core	:as	r]

												[clojure.set	:as	set]

												[reagi-game.entities	:as	entities

													:refer	[move-forward!	move-backward!	rotate-left!	rotate-

right!	fire!]]))

(def	canvas-dom	(.getElementById	js/document	"canvas"))

(def	monet-canvas	(canvas/init	canvas-dom	"2d"))

(def	ship	(entities/shape-data	(/	(.-width	(:canvas	monet-canvas))	2)

																															(/	(.-height	(:canvas	monet-canvas))	2)

																															0))

(def	ship-entity	(entities/ship-entity	ship))

(canvas/add-entity	monet-canvas	:ship-entity	ship-entity)

(canvas/draw-loop	monet-canvas)

(def	UP				38)

(def	RIGHT	39)

(def	DOWN		40)

(def	LEFT		37)

(def	FIRE		32)	;;	space

(def	PAUSE	80)	;;	lower-case	P

(defn	keydown-stream	[]

		(let	[out	(r/events)]

				(set!	(.-onkeydown	js/document)	#(r/deliver	out	[::down	(.-keyCode	

%)]))

				out))

(defn	keyup-stream	[]

		(let	[out	(r/events)]

				(set!	(.-onkeyup			js/document)	#(r/deliver	out	[::up	(.-keyCode	%)]))

				out))

(def	active-keys-stream

		(->>	(r/merge	(keydown-stream)	(keyup-stream))

						(r/reduce	(fn	[acc	[event-type	key-code]]

										(condp	=	event-type

														::down	(conj	acc	key-code)

														::up	(disj	acc	key-code)

														acc))

										#{})

						(r/sample	25)))

(defn	filter-map	[pred	f	&	args]

		(->>	active-keys-stream

							(r/filter	(partial	some	pred))

							(r/map	(fn	[_]	(apply	f	args)))))

(filter-map	#{FIRE}		fire!	monet-canvas	ship)

(filter-map	#{UP}				move-forward!		ship)

(filter-map	#{DOWN}		move-backward!	ship)

(filter-map	#{RIGHT}	rotate-right!		ship)

(filter-map	#{LEFT}		rotate-left!			ship)

(defn	pause!	[_]

		(if	@(:updating?	monet-canvas)

				(canvas/stop-updating	monet-canvas)

				(canvas/start-updating	monet-canvas)))

(->>	active-keys-stream

					(r/filter	(partial	some	#{PAUSE}))

					(r/throttle	100)

					(r/map	pause!))

This	completes	the	code	and	we’re	now	ready	to	have	a	look	at	the	results.

If	you	still	have	the	server	running	from	earlier	in	this	chapter,	simply	exit	the	REPL,	start
it	again,	and	start	the	embedded	web	server:

lein	repl

Compiling	ClojureScript.

Compiling	"dev-resources/public/js/reagi_game.js"	from	("src/cljs"	

"test/cljs"	"dev-resources/tools/repl")...

user=>	(run)

2014-06-14	19:21:40.381:INFO:oejs.Server:jetty-7.6.8.v20121106

2014-06-14	19:21:40.403:INFO:oejs.AbstractConnector:Started	

SelectChannelConnector@0.0.0.0:3000

#<Server	org.eclipse.jetty.server.Server@51f6292b>

This	will	compile	the	latest	version	of	our	ClojureScript	source	to	JavaScript.

Alternatively,	you	can	leave	the	REPL	running	and	simply	ask	cljsbuild	to	auto-compile
the	source	code	from	another	terminal	window:

lein	cljsbuild	auto

Compiling	"dev-resources/public/js/reagi_game.js"	from	("src/cljs"	

"test/cljs"	"dev-resources/tools/repl")...

Successfully	compiled	"dev-resources/public/js/reagi_game.js"	in	13.23869	

seconds.

Now	you	can	point	your	browser	to	http://localhost:3000/	and	fly	around	your
spaceship!	Don’t	forget	to	shoot	some	bullets	as	well!

Reagi	and	other	CES	frameworks
Back	in	Chapter	4,	Introduction	to	core.async,	we	had	an	overview	of	the	main	differences
between	core.async	and	CES.	Another	question	that	might	have	arisen	in	this	chapter	is
this:	how	do	we	decide	which	CES	framework	to	use?

The	answer	is	less	clear	than	before	and	often	depends	on	the	specifics	of	the	tool	being
looked	at.	We	have	learned	about	two	such	tools	so	far:	Reactive	Extensions
(encompassing	RxJS,	RxJava,	and	RxClojure)	and	Reagi.

Reactive	Extensions	(Rx)	is	a	much	more	mature	framework.	Its	first	version	for	the
.NET	platform	was	released	in	2011	and	the	ideas	in	it	have	since	evolved	substantially.

Additionally,	ports	for	other	platforms	such	as	RxJava	are	being	heavily	used	in
production	by	big	names	such	as	Netflix.

A	drawback	of	Rx	is	that	if	you	would	like	to	use	it	both	in	the	browser	and	on	the	server,
you	have	to	use	two	separate	frameworks,	RxJS	and	RxJava,	respectively.	While	they	do
share	the	same	API,	they	are	different	codebases,	which	can	incur	bugs	that	might	have
been	solved	in	one	port	but	not	yet	in	another.

For	Clojure	developers,	it	also	means	relying	more	on	interoperability	to	interact	with	the
full	API	of	Rx.

Reagi,	on	the	other	hand,	is	a	new	player	in	this	space	but	builds	on	the	solid	foundation
laid	out	by	core.async.	It	is	fully	developed	in	Clojure	and	solves	the	in-browser/on-
server	issue	by	compiling	to	both	Clojure	and	ClojureScript.

Reagi	also	allows	seamless	integration	with	core.async	via	functions	such	as	port	and
subscribe,	which	allow	channels	to	be	created	from	event	streams.

Moreover,	the	use	of	core.async	in	ClojureScript	applications	is	becoming	ubiquitous,	so
chances	are	you	already	have	it	as	a	dependency.	This	makes	Reagi	an	attractive	option	for
the	times	when	we	need	a	higher	level	of	abstraction	than	the	one	provided	by
core.async.

Summary
In	this	chapter,	we	learned	how	we	can	use	the	techniques	from	reactive	programming	we
have	learned	so	far	in	order	to	write	code	that	is	cleaner	and	easier	to	maintain.	To	do	so,
we	insisted	on	thinking	about	asynchronous	events	simply	as	lists	and	saw	how	that	way
of	thinking	lends	itself	quite	easily	to	being	modeled	as	an	event	stream.	All	our	game	has
to	do,	then,	is	operate	on	these	streams	using	familiar	sequence	processing	functions.

We	also	learned	the	basics	of	Reagi,	a	framework	for	CES	similar	to	the	one	we	created	in
Chapter	4,	Introduction	to	core.async,	but	that	is	more	feature	rich	and	robust.

In	the	next	chapter,	we	will	take	a	break	from	CES	and	see	how	a	more	traditional	reactive
approach	based	on	data	flows	can	be	useful.

Chapter	7.	The	UI	as	a	Function
So	far	we	have	taken	a	journey	through	managing	complexity	by	efficiently	handling	and
modeling	asynchronous	workflows	in	terms	of	streams	of	data.	In	particular,	Chapter	4,
Introduction	to	core.async	and	Chapter	5,	Creating	Your	Own	CES	Framework	with
core.async	explored	what’s	involved	in	libraries	that	provide	primitives	and	combinators
for	Compositional	Event	Systems.	We	also	built	a	simple	ClojureScript	application	that
made	use	of	our	framework.

One	thing	you	might	have	noticed	is	that	none	of	the	examples	so	far	have	dealt	with	what
happens	to	the	data	once	we	are	ready	to	present	it	to	our	users.	It’s	still	an	open	question
that	we,	as	application	developers,	need	to	answer.

In	this	chapter,	we	will	look	at	one	way	to	handle	Reactive	User	Interfaces	in	web
applications	using	React	(see	http://facebook.github.io/react/),	a	modern	JavaScript
framework	developed	by	Facebook,	as	well	as:

Learn	how	React	renders	user	interfaces	efficiently
Be	introduced	to	Om,	a	ClojureScript	interface	to	React
Learn	how	Om	leverages	persistent	data	structures	for	performance
Develop	two	fully	working	ClojureScript	applications	with	Om,	including	the	use	of
core.async	for	intercomponent	communication

http://facebook.github.io/react/

The	problem	with	complex	web	UIs
With	the	rise	of	single-page	web	applications,	it	became	a	must	to	be	able	to	manage	the
growth	and	complexity	of	a	JavaScript	codebase.	The	same	applies	to	ClojureScript.

In	an	effort	to	manage	this	complexity,	a	plethora	of	JavaScript	MVC	frameworks	have
emerged	such	as	AngularJS,	Backbone.js,	Ember.js,	and	KnockoutJS	to	name	a	few.

They	are	very	different,	but	share	a	few	common	features:

Give	single-page	applications	more	structure	by	providing	models,	views,	controllers,
templates,	and	so	on
Provide	client-side	routing
Two-way	data	binding

In	this	chapter,	we’ll	be	focusing	on	the	last	goal.

Two-way	data	binding	is	absolutely	crucial	if	we	are	to	develop	even	a	moderately
complex	single-page	web	application.	Here’s	how	it	works.

Suppose	we’re	developing	a	phone	book	application.	More	than	likely,	we	will	have	a
model—or	entity,	map,	what	have	you—that	represents	a	contact.	The	contact	model
might	have	attributes	such	as	name,	phone	number,	and	e-mail	address.

Of	course,	this	application	would	not	be	all	that	useful	if	users	couldn’t	update	contact
information,	so	we	will	need	a	form	which	displays	the	current	details	for	a	contact	and
lets	you	update	the	contact’s	information.

The	contact	model	might	have	been	loaded	via	an	AJAX	request	and	then	might	have	used
explicit	DOM	manipulation	code	to	display	the	form.	This	would	look	something	like	the
following	pseudo-code:

function	editContact(contactId)	{

		contactService.get(contactId,	function(data)	{

				contactForm.setName(data.name);

				contactForm.setPhone(data.phone);

				contactForm.setEmail(data.email);

		})

}

But	what	happens	when	the	user	updates	someone’s	information?	We	need	to	store	it
somehow.	On	clicking	on	save,	a	function	such	as	the	following	would	do	the	trick,
assuming	you’re	using	jQuery:

$("save-button").click(function(){

		contactService.update(contactForm.serialize(),	function(){

				flashMessage.set("Contact	Updated.")

		})

This	seemingly	harmless	code	poses	a	big	problem.	The	contact	model	for	this	particular
person	is	now	out	of	date.	If	we	were	still	developing	web	applications	the	old	way,	where
we	reload	the	page	at	every	update,	this	wouldn’t	be	a	problem.	However,	the	whole	point
of	single-page	web	applications	is	to	be	responsive,	so	it	keeps	a	lot	of	state	on	the	client,

and	it	is	important	to	keep	our	models	synced	with	our	views.

This	is	where	two-way	data	binding	comes	in.	An	example	from	AngularJS	would	look
like	the	following:

//	JS

//	in	the	Controller

$scope.contact	=	{

		name:	'Leonardo	Borges',

		phone	'+61	xxx	xxx	xxx',

		email:	'leonardoborges.rj@gmail.com'

}

<!--	HTML	-->

<!--	in	the	View	-->

<form>

		<input	type="text"	name="contactName"		ng-model="contact.name"/>

		<input	type="text"	name="contactPhone"	ng-model="contact.phone"/>

		<input	type="text"	name="contactEmail"	ng-model="contact.email"/>

</form>

Angular	isn’t	the	target	of	this	chapter,	so	I	won’t	dig	into	the	details.	All	we	need	to	know
from	this	example	is	that	$scope	is	how	we	tell	Angular	to	make	our	contact	model
available	to	our	views.	In	the	view,	the	custom	attribute	ng-model	tells	Angular	to	look	up
that	property	in	the	scope.	This	establishes	a	two-way	relationship	in	such	a	way	that	when
your	model	data	changes	in	the	scope,	Angular	refreshes	the	UI.	Similarly,	if	the	user	edits
the	form,	Angular	updates	the	model,	keeping	everything	in	sync.

There	are,	however,	two	main	problems	with	this	approach:

It	can	be	slow.	The	way	Angular	and	friends	implement	two-way	data	binding	is,
roughly	speaking,	by	attaching	event	handlers	and	watchers	to	view	both	custom-
attributes	and	model	attributes.	For	complex	enough	user	interfaces,	you	will	start
noticing	that	the	UI	becomes	slower	to	render,	diminishing	the	user	experience.
It	relies	heavily	on	mutation.	As	functional	programmers,	we	strive	to	limit	side
effects	to	a	minimum.

The	slowness	that	comes	with	this	and	similar	approaches	is	two-fold:	firstly,	AngularJS
and	friends	have	to	“watch”	all	properties	of	every	model	in	the	scope	in	order	to	track
updates.	Once	the	framework	determines	that	data	has	changed	in	the	model,	it	then	looks
up	parts	of	the	UI,	which	depend	on	that	information—such	as	the	fragments	using	ng-
model	above—and	then	it	re-renders	them.

Secondly,	the	DOM	is	the	slowest	part	of	most	single-page	web	applications.	If	we	think
about	it	for	a	moment,	these	frameworks	are	triggering	dozens	or	perhaps	hundreds	of
DOM	event	handlers	in	order	to	keep	the	data	in	sync,	each	of	which	ends	up	updating	a
node—or	several—in	the	DOM.

Don’t	take	my	word	for	it	though.	I	ran	a	simple	benchmark	to	compare	a	pure	calculation
versus	locating	a	DOM	element	and	updating	its	value	to	the	result	of	the	said	calculation.
Here	are	the	results—I’ve	used	JSPerf	to	run	the	benchmark,	and	these	results	are	for

Chrome	37.0.2062.94	on	Mac	OS	X	Mavericks	(see	http://jsperf.com/purefunctions-vs-
dom):

document.getElementsByName("sum")[0].value	=	1	+	2		

//	Operations	per	second:	2,090,202

1	+	2		

//	Operations	per	second:	780,538,120

Updating	the	DOM	is	orders	of	magnitude	slower	than	performing	a	simple	calculation.	It
seems	logical	that	we	would	want	to	do	this	in	the	most	efficient	manner	possible.

However,	if	we	don’t	keep	our	data	in	sync,	we’re	back	at	square	one.	There	should	be	a
way	by	which	we	can	drastically	reduce	the	amount	of	rendering	being	done,	while
retaining	the	convenience	of	two-way	data	binding.	Can	we	have	our	cake	and	eat	it	too?

http://jsperf.com/purefunctions-vs-dom

Enter	React.js
As	we’ll	see	in	this	chapter,	the	answer	to	the	question	posed	in	the	previous	section	is	a
resounding	yes	and,	as	you	might	have	guessed,	it	involves	React.js.

But	what	makes	it	special?

It’s	wise	to	start	with	what	React	is	not.	It	is	not	an	MVC	framework	and	as	such	it	is	not	a
replacement	for	the	likes	of	AngularJS,	Backbone.js,	and	so	on.	React	focuses	solely	on
the	V	in	MVC,	and	presents	a	refreshingly	different	way	to	think	about	user	interfaces.	We
must	take	a	slight	detour	in	order	to	explore	how	it	does	that.

Lessons	from	functional	programming
As	functional	programmers,	we	don’t	need	to	be	convinced	of	the	benefits	of
immutability.	We	bought	into	the	premise	long	ago.	However,	should	we	not	be	able	to	use
immutability	efficiently,	it	would	not	have	become	commonplace	in	functional
programming	languages.

We	owe	it	to	the	huge	amount	of	research	that	went	into	Purely	Functional	Data
Structures—first	by	Okasaki	in	his	book	of	the	same	title	(see
http://www.amazon.com/Purely-Functional-Structures-Chris-
Okasaki/dp/0521663504/ref=sr_1_1?ie=UTF8&qid=1409550695&sr=8-
1&keywords=purely+functional+data+structures)	and	then	improved	by	others.

Without	it,	our	programs	would	be	ballooning,	both	in	space	and	runtime	complexity.

The	general	idea	is	that	given	a	data	structure,	the	only	way	to	update	it	is	by	creating	a
copy	of	it	with	the	desired	delta	applied:

(conj	[1	2	3]	4)	;;	[1	2	3	4]

In	the	preceding	image,	we	have	a	simplistic	view	of	how	conj	operates.	On	the	left,	you
have	the	underlying	data	structure	representing	the	vector	we	wish	to	update.	On	the	right,
we	have	the	newly	created	vector,	which,	as	we	can	see,	shares	some	structure	with	the
previous	vector,	as	well	as	containing	our	new	item.

Tip
In	reality,	the	underlying	data	structure	is	a	tree	and	the	representation	was	simplified	for
the	purposes	of	this	book.	I	highly	recommend	referring	to	Okasaki’s	book	should	the
reader	want	more	details	on	how	purely	functional	data	structures	work.

Additionally,	these	functions	are	considered	pure.	That	is,	it	relates	every	input	to	a	single
output	and	does	nothing	else.	This	is,	in	fact,	remarkably	similar	to	how	React	handles
user	interfaces.

If	we	think	of	a	UI	as	a	visual	representation	of	a	data	structure,	which	reflects	the	current
state	of	our	application,	we	can,	without	too	much	effort,	think	of	UI	updates	as	a	simple

http://www.amazon.com/Purely-Functional-Structures-Chris-Okasaki/dp/0521663504/ref=sr_1_1?ie=UTF8&qid=1409550695&sr=8-1&keywords=purely+functional+data+structures

function	whose	input	is	the	application	state	and	the	output	is	a	DOM	representation.

You’ll	have	noticed	I	didn’t	say	the	output	is	rendering	to	the	DOM—that	would	make	the
function	impure	as	rendering	is	clearly	a	side	effect.	It	would	also	make	it	just	as	slow	as
the	alternatives.

This	DOM	representation	is	essentially	a	tree	of	DOM	nodes	that	model	how	your	UI
should	look,	and	nothing	else.

React	calls	this	representation	a	Virtual	DOM	,	and	roughly	speaking,	instead	of
watching	individual	bits	and	pieces	of	application	state	that	trigger	a	DOM	re-render	upon
change,	React	turns	your	UI	into	a	function	to	which	you	give	the	whole	application	state.

When	you	give	this	function	the	new	updated	state,	React	renders	that	state	to	the	Virtual
DOM.	Remember	the	Virtual	DOM	is	simply	a	data	structure,	so	the	rendering	is
extremely	fast.	Once	it’s	done,	React	does	one	of	two	things:

It	commits	the	Virtual	DOM	to	the	actual	DOM	if	this	is	the	first	render.
Otherwise,	it	compares	the	new	Virtual	DOM	with	the	current	Virtual	DOM,	cached
from	the	previous	render	of	the	application.	It	then	uses	an	efficient	diff	algorithm	to
compute	the	minimum	set	of	changes	required	to	update	the	real	DOM.	Finally,	it
commits	this	delta	to	the	DOM.

Without	digging	into	the	nuts	and	bolts	of	React,	this	is	essentially	how	it	is	implemented
and	the	reason	it	is	faster	than	the	alternatives.	Conceptually,	React	hits	the	“refresh”
button	whenever	your	application	state	changes.

Another	great	benefit	is	that	by	thinking	of	your	UI	as	a	function	from	application	state	to
a	Virtual	DOM,	we	recover	some	of	the	reasoning	we’re	able	to	do	when	working	with
immutable	data	structures	in	functional	languages.

In	the	upcoming	sections,	we	will	understand	why	this	is	a	big	win	for	us	Clojure
developers.

ClojureScript	and	Om
Why	have	I	spent	six	pages	talking	about	JavaScript	and	React	in	a	Clojure	book?	I
promise	I’m	not	trying	to	waste	your	precious	time;	we	simply	needed	some	context	to
understand	what’s	to	come.

Om	is	a	ClojureScript	interface	to	React.js	developed	by	the	prolific	and	amazing
individual	David	Nolen,	from	Cognitect.	Yes,	he	has	also	developed	core.logic,
core.match,	and	the	ClojureScript	compiler.	That’s	how	prolific.	But	I	digress.

When	Facebook	released	React,	David	immediately	saw	the	potential	and,	more
importantly,	how	to	take	advantage	of	the	assumptions	we	are	able	to	make	when
programming	in	Clojure,	the	most	important	of	which	is	that	data	structures	don’t	change.

React	provides	several	component	life-cycle	functions	that	allow	developers	to	control
various	properties	and	behaviors.	One	in	particular,	shouldComponentUpdate,	is	used	to
decide	whether	a	component	needs	to	be	re-rendered.

React	has	a	big	challenge	here.	JavaScript	is	inherently	mutable,	so	it	is	extremely	hard,
when	comparing	Virtual	DOM	Trees,	to	identify	which	nodes	have	changed	in	an	efficient
way.	React	employs	a	few	heuristics	in	order	to	avoid	O(n	3)	worst-case	performance	and
is	able	to	do	it	in	O(n)	most	of	the	time.	Since	heuristics	aren’t	perfect,	we	can	choose	to
provide	our	own	implementation	of	shouldComponentUpdate	and	take	advantage	of	the
knowledge	we	possess	when	rendering	a	component.

ClojureScript,	on	the	other	hand,	uses	immutable	data	structures.	As	such,	Om	provides
the	simplest	and	most	efficient	implementation	possible	for	shouldComponentUpdate:	a
simple	reference	equality	check.

Because	we’re	always	dealing	with	immutable	data	structures,	in	order	to	know	whether
two	trees	are	the	same,	all	we	need	to	do	is	compare	whether	their	roots	are	the	same.	If
they	are,	we’re	done.	Otherwise,	descend	and	repeat	the	process.	This	is	guaranteed	to
yield	O(log	n)	runtime	complexity	and	allows	Om	to	always	render	the	UI	from	the	root
efficiently.

Of	course,	performance	isn’t	the	only	thing	that’s	good	about	Om—we	will	now	explore
what	makes	an	Om	application.

Building	a	simple	Contacts	application
with	Om
This	chapter	has	been	very	text	heavy	so	far.	It’s	time	we	get	our	hands	dirty	and	build	a
simple	Om	application.	Since	we	talked	about	contacts	before,	that’s	what	we	will	start
with.

The	main	driver	behind	React	and	Om	is	the	ability	to	build	highly	reusable,	self-
contained	components	and,	as	such,	even	in	a	simple	Contacts	application,	we	will	have
multiple	components	working	in	concert	to	achieve	a	common	goal.

This	is	what	our	users	should	be	able	to	do	in	the	application:

Display	a	list	of	contacts	currently	in	storage
Display	the	details	of	a	given	contact
Edit	the	details	of	a	specific	contact

And	once	we’re	done,	it	will	look	like	the	following:

The	Contacts	application	state
As	mentioned	previously,	Om/React	will	eventually	render	the	DOM	based	on	our
application	state.	We’ll	be	using	data	that’s	in	memory	to	keep	the	example	simple.	Here’s
what	our	application	state	will	look	like:

(def	app-state

		(atom	{:contacts	{1	{:id				1

																							:name		"James	Hetfield"

																							:email	"james@metallica.com"

																							:phone	"+1	XXX	XXX	XXX"}

																				2	{:id				2

																							:name		"Adam	Darski"

																							:email	"the.nergal@behemoth.pl"

																							:phone	"+48	XXX	XXX	XXX"}}

									:selected-contact-id	[]

									:editing	[false]}))

The	reason	we	keep	the	state	in	an	atom	is	that	Om	uses	that	to	re-render	the	application	if
we	swap!	or	reset!	it,	for	instance,	if	we	load	some	data	from	the	server	after	the
application	has	been	rendered	for	the	first	time.

The	data	in	the	state	itself	should	be	mostly	self-explanatory.	We	have	a	map	containing
all	contacts,	a	key	representing	whether	there	is	currently	a	contact	selected,	and	a	flag	that
indicates	whether	we	are	currently	editing	the	selected	contact.	What	might	look	odd	is
that	both:selected-contact-id	and	:editing	keys	point	to	a	vector.	Just	bear	with	me
for	a	moment;	the	reason	for	this	will	become	clear	shortly.

Now	that	we	have	a	draft	of	our	application	state,	it’s	time	we	think	about	how	the	state
will	flow	through	the	different	components	in	our	app.	A	picture	is	worth	a	thousand
words,	so	the	following	diagram	shows	the	high-level	architecture	through	which	our	data
will	flow:

In	the	preceding	image,	each	function	corresponds	to	an	Om	component.	At	the	very	least,
they	take	some	piece	of	data	as	their	initial	state.	What	is	interesting	in	this	image	is	that
as	we	descend	into	our	more	specialized	components,	they	request	less	state	than	the	main
component,	contacts-app.	For	instance,	the	contacts-view	component	needs	all	contacts
as	well	as	the	ID	of	the	selected	contact.	The	details-panel-view	component,	on	the
other	hand,	only	needs	the	currently	selected	contact,	and	whether	it’s	being	edited	or	not.
This	is	a	common	pattern	in	Om	and	we	usually	want	to	avoid	over-sharing	the	application
state.

With	a	rough	understanding	of	our	high-level	architecture,	we	are	ready	to	start	building
our	Contacts	application.

Setting	up	the	Contacts	project
Once	again,	we	will	use	a	leiningen	template	to	help	us	get	started.	This	time	we’ll	be
using	om-start	(see	https://github.com/magomimmo/om-start-template),	also	by	Mimmo
Cosenza	(see	https://github.com/magomimmo).	Type	this	in	the	terminal	to	create	a	base
project	using	this	template:

lein	new	om-start	contacts

cd	contacts

Next,	let’s	open	the	project.clj	file	and	make	sure	we	have	the	same	versions	for	the
various	different	dependencies	the	template	pulls	in.	This	is	just	so	that	we	don’t	have	any
surprises	with	incompatible	versions:

...

		:dependencies	[[org.clojure/clojure	"1.6.0"]

																	[org.clojure/clojurescript	"0.0-2277"]

																	[org.clojure/core.async	"0.1.338.0-5c5012-alpha"]

																	[om	"0.7.1"]

																	[com.facebook/react	"0.11.1"]]

...

To	validate	the	new	project	skeleton,	still	in	the	terminal,	type	the	following	to	auto-
compile	your	ClojureScript	source	files:

lein	cljsbuild	auto

Compiling	ClojureScript.

Compiling	"dev-resources/public/js/contacts.js"	from	("src/cljs"	"dev-

resources/tools/repl")...

Successfully	compiled	"dev-resources/public/js/contacts.js"	in	9.563	

seconds.

Now,	we	should	see	the	template	default	“Hello	World”	page	if	we	open	the	dev-
resources/public/index.html	file	in	the	browser.

https://github.com/magomimmo/om-start-template
https://github.com/magomimmo

Application	components
The	next	thing	we’ll	do	is	open	the	src/cljs/contacts/core.cljs	file,	which	is	where
our	application	code	will	go,	and	make	sure	it	looks	like	the	following	so	that	we	have	a
clean	slate	with	the	appropriate	namespace	declaration:

(ns	contacts.core

		(:require	[om.core	:as	om	:include-macros	true]

												[om.dom	:as	dom	:include-macros	true]))

(enable-console-print!)

(def	app-state

		(atom	{:contacts	{1	{:id				1

																							:name		"James	Hetfield"

																							:email	"james@metallica.com"

																							:phone	"+1	XXX	XXX	XXX"}

																				2	{:id				2

																							:name		"Adam	Darski"

																							:email	"the.nergal@behemoth.pl"

																							:phone	"+48	XXX	XXX	XXX"}}

									:selected-contact-id	[]

									:editing	[false]}))

(om/root

		contacts-app

		app-state

		{:target	(.	js/document	(getElementById	"app"))})

Every	Om	application	starts	with	a	root	component	created	by	the	om/root	function.	It
takes	as	arguments	a	function	representing	a	component—contacts-app—the	initial	state
of	the	application—app-state—and	a	map	of	options	of	which	the	only	one	we	care
about	is	:target,	which	tells	Om	where	to	mount	our	root	component	on	the	DOM.

In	this	instance,	it	will	mount	on	a	DOM	element	whose	ID	is	app.	This	element	was	given
to	us	by	the	om-start	template	and	is	located	in	the	dev-resources/public/index.html
file.

Of	course,	this	code	won’t	compile	yet,	as	we	don’t	have	the	contacts-app	template.
Let’s	solve	that	and	create	it	above	the	preceding	declaration—we’re	implementing	the
components	bottom-up:

(defn	contacts-app	[data	owner]

		(reify

				om/IRender

				(render	[this]

						(let	[[selected-id	:as	selected-id-cursor]	

												(:selected-contact-id	data)]

								(dom/div	nil

																	(om/build	contacts-view

																											{:contacts												(:contacts	data)

																												:selected-id-cursor	selected-id-cursor})

																	(om/build	details-panel-view

																											{:contact								(get-in	data	[:contacts	

selected-id])

																												:editing-cursor	(:editing	data)}))))))

This	snippet	introduces	a	number	of	new	features	and	terminology,	so	it	deserves	a	few
paragraphs.

When	describing	om/root,	we	saw	that	its	first	argument	must	be	an	Om	component.	The
contact-app	function	creates	one	by	reifying	the	om/IRender	protocol.	This	protocol
contains	a	single	function—render—which	gets	called	when	the	application	state
changes.

Tip
Clojure	uses	reify	to	implement	protocols	or	Java	interfaces	on	the	fly,	without	the	need	to
create	a	new	type.	You	can	read	more	about	this	on	the	data	types	page	of	the	Clojure
documentation	at	http://clojure.org/datatypes.

The	render	function	must	return	an	Om/React	component	or	something	React	knows	how
to	render—such	as	a	DOM	representation	of	the	component.	The	arguments	to	contacts-
app	are	straightforward:	data	is	the	component	state	and	owner	is	the	backing	React
component.

Moving	down	the	source	file,	in	the	implementation	of	render,	we	have	the	following:

(let	[[selected-id	:as	selected-id-cursor]	

						(:selected-contact-id	data)]

		...)

If	we	recall	from	our	application	state,	the	value	of	:selected-contact-id	is,	at	this
stage,	an	empty	vector.	Here,	then,	we	are	destructuring	this	vector	and	giving	it	a	name.
What	you	might	be	wondering	now	is	why	we	bound	the	vector	to	a	variable	named
selected-id-cursor.	This	is	to	reflect	the	fact	that	at	this	point	in	the	life	cycle	of	a
component,	selected-id-cursor	isn’t	a	vector	any	longer	but	rather	it	is	a	cursor.

http://clojure.org/datatypes

Om	cursors
Once	om/root	creates	our	root	component,	sub-components	don’t	have	direct	access	to	the
state	atom	any	longer.	Instead,	components	receive	a	cursor	created	from	the	application
state.

Cursors	are	data	structures	that	represent	a	place	in	the	original	state	atom.	You	can	use
cursors	to	read,	delete,	update,	or	create	a	value	with	no	knowledge	of	the	original	data
structure.	Let’s	take	the	selected-id-cursor	cursor	as	an	example:

At	the	top,	we	have	our	original	application	state,	which	Om	turns	into	a	cursor.	When	we
request	the	:selected-contact-id	key	from	it,	Om	gives	us	another	cursor	representing
that	particular	place	in	the	data	structure.	It	just	so	happens	that	its	value	is	the	empty
vector.

What	is	interesting	about	this	cursor	is	that	if	we	update	its	value	using	one	of	Om’s	state
transition	functions	such	as	om/transact!	and	om/update!—we	will	explain	these	shortly
—it	knows	how	to	propagate	the	change	up	the	tree	and	all	the	way	back	to	the	application
state	atom.

This	is	important	because	as	we	have	briefly	stated	before,	it	is	common	practice	to	have
our	more	specialized	components	depend	on	specific	parts	of	the	application	state	required
for	its	correct	operation.

By	using	cursors,	we	can	easily	propagate	changes	without	knowing	what	the	application
state	looks	like,	thus	avoiding	the	need	to	access	the	global	state.

Tip
You	can	think	of	cursors	as	zippers.	Conceptually,	they	serve	a	similar	purpose	but	have
different	APIs.

Filling	in	the	blanks
Moving	down	the	contacts-app	component,	we	now	have	the	following:

(dom/div	nil

																	(om/build	contacts-view

																											{:contacts												(:contacts	data)

																												:selected-id-cursor	selected-id-cursor})

																	(om/build	details-panel-view

																											{:contact								(get-in	data	[:contacts	

selected-id])

																												:editing-cursor	(:editing	data)}))

The	dom	namespace	contains	thin	wrappers	around	React’s	DOM	classes.	It’s	essentially
the	data	structure	representing	what	the	application	will	look	like.	Next,	we	see	two
examples	of	how	we	can	create	Om	components	inside	another	Om	component.	We	use
the	om/build	function	for	that	and	create	the	contacts-view	and	details-panel-view
components.	The	om/build	function	takes	as	arguments	the	component	function,	the
component	state,	and,	optionally,	a	map	of	options	which	aren’t	important	for	this
example.

At	this	point,	we	have	already	started	to	limit	the	state	we	will	pass	into	the	sub-
components	by	creating	sub-cursors.

According	to	the	source	code,	the	next	component	we	should	look	at	is	contacts-view.
Here	it	is	in	full:

(defn	contacts-view	[{:keys	[contacts	selected-id-cursor]}	owner]

		(reify

				om/IRender

				(render	[_]

						(dom/div	#js	{:style	#js	{:float	"left"

																																												:width	"50%"}}

															(apply	dom/ul	nil

																						(om/build-all	contact-summary-view	(vals	contacts)

																																				{:shared	{:selected-id-cursor	selected-

id-cursor}}))))))

Hopefully,	the	source	of	this	component	looks	a	little	more	familiar	now.	As	before,	we
reify	om/IRender	to	provide	a	DOM	representation	of	our	component.	It	comprises	a
single	div	element.	This	time	we	give	as	the	second	argument	to	dom/div	a	hash-map
representing	HTML	attributes.	We	are	using	some	inline	styles,	but	ideally	we	would	use
an	external	style	sheet.

Tip
If	you	are	not	familiar	with	the	#js	{…}	syntax,	it’s	simply	a	reader	macro	that	expands	to
(clj->js	{…})	in	order	to	convert	a	ClojureScript	hash-map	into	a	JavaScript	object.	The
only	thing	to	watch	for	is	that	it	is	not	recursive,	as	evidenced	by	the	nested	use	of	#js.

The	third	argument	to	dom/div	is	slightly	more	complex	than	what	we	have	seen	so	far:

(apply	dom/ul	nil

																						(om/build-all	contact-summary-view	(vals	contacts)

																																				{:shared	{:selected-id-cursor	selected-

id-cursor}}))

Each	contact	will	be	represented	by	a	li	(list	item)	HTML	node,	so	we	start	by	wrapping
the	result	into	a	dom/ul	element.	Then,	we	use	om/build-all	to	build	a	list	of	contact-
summary-view	components.	Om	will,	in	turn,	call	om/build	for	each	contact	in	vals
contacts.

Lastly,	we	use	the	third	argument	to	om/build-all—the	options	map—to	demonstrate
how	we	can	share	state	between	components	without	the	use	of	global	state.	We’ll	see	how
that’s	used	in	the	next	component,	contact-summary-view:

		(defn	contact-summary-view	[{:keys	[name	phone]	:as	contact}	owner]

		(reify

				om/IRender

				(render	[_]

						(dom/li	#js	{:onClick	#(select-contact!	@contact

																																														(om/get-shared	owner	

:selected-id-cursor))}

														(dom/span	nil	name)

														(dom/span	nil	phone)))))

If	we	think	of	our	application	as	a	tree	of	components,	we	have	now	reached	one	of	its
leaves.	This	component	simply	returns	a	dom/li	node	with	the	contact’s	name	and	phone
in	it,	wrapped	in	dom/span	nodes.

It	also	installs	a	handler	to	the	dom/li	onClick	event,	which	we	can	use	to	update	the
state	cursor.

We	use	om/get-shared	to	access	the	shared	state	we	installed	earlier	and	pass	the
resulting	cursor	into	select-contact!	We	also	pass	the	current	contact,	but,	if	you	look
closely,	we	have	to	deref	it	first:

@contact

The	reason	for	this	is	that	Om	doesn’t	allow	us	to	manipulate	cursors	outside	of	the	render
phase.	By	derefing	the	cursor,	we	have	its	most	recent	underlying	value.	Now	select-
contact!	has	all	it	needs	to	perform	the	update:

(defn	select-contact!	[contact	selected-id-cursor]

		(om/update!	selected-id-cursor	0	(:id	contact)))

We	simply	use	om/update!	to	set	the	value	of	the	selected-id-cursor	cursor	at	index	0
to	the	id	of	the	contact.	As	mentioned	previously,	the	cursor	takes	care	of	propagating	the
change.

Tip
You	can	think	of	om/update!	as	the	cursors	version	of	clojure.core/reset!	used	in
atoms.	Conversely,	the	same	applies	to	om/transact!	and	clojure.core/swap!,
respectively.

We	are	moving	at	a	good	pace.	It’s	time	we	look	at	the	next	component,	details-panel-

view:

(defn	details-panel-view	[data	owner]

		(reify

				om/IRender

				(render	[_]

						(dom/div	#js	{:style	#js	{:float	"right"

																																:width	"50%"}}

															(om/build	contact-details-view	data)

															(om/build	contact-details-form-view	data)))))

This	component	should	now	look	fairly	familiar.	All	it	does	is	build	two	other
components,	contact-details-view	and	contact-details-form-view:

(defn	contact-details-view	[{{:keys	[name	phone	email	id]	:as	contact}	

:contact

																													editing	:editing-cursor}

																												owner]

		(reify

				om/IRender

				(render	[_]

						(dom/div	#js	{:style	#js	{:display	(if	(get	editing	0)	"none"	"")}}

													(dom/h2	nil	"Contact	details")

													(if	contact

															(dom/div	nil

																								(dom/h3	#js	{:style	#js	{:margin-bottom	"0px"}}	

(:name	contact))

																								(dom/span	nil	(:phone	contact))	(dom/br	nil)

																								(dom/span	nil	(:email	contact))	(dom/br	nil)

																								(dom/button	#js	{:onClick	#(om/update!	editing	0	

true)}

																																				"Edit"))

															(dom/span	nil	"No	contact	selected"))))))

The	contact-details-view	component	receives	two	pieces	of	state:	the	contact	and	the
editing	flag.	If	we	have	a	contact,	we	simply	render	the	component.	However,	we	use	the
editing	flag	to	hide	it,	if	we	are	editing	it.	This	is	so	that	we	can	show	the	edit	form	in	the
next	component.	We	also	install	an	onClick	handler	to	the	Edit	button	so	that	we	can
update	the	editing	cursor.

The	contact-details-form-view	component	receives	the	same	arguments	but	renders
the	following	form	instead:

(defn	contact-details-form-view	[{{:keys	[name	phone	email	id]	:as	contact}	

:contact

																																		editing	:editing-cursor}

																																	owner]

		(reify

				om/IRender

				(render	[_]

						(dom/div	#js	{:style	#js	{:display	(if	(get	editing	0)	""	"none")}}

															(dom/h2	nil	"Contact	details")

															(if	contact

																	(dom/div	nil

																										(dom/input	#js	{:type	"text"

																																																			:value	name

																																																			:onChange	#(update-

contact!	%	contact	:name)})

																										(dom/input	#js	{:type	"text"

																																																			:value	phone

																																																			:onChange	#(update-

contact!	%	contact	:phone)})

																										(dom/input	#js	{:type	"text"

																																																			:value	email

																																																			:onChange	#(update-

contact!	%	contact	:email)})

																										(dom/button	#js	{:onClick	#(om/update!	editing	0	

false)}

																																																				"Save"))

															(dom/div	nil	"No	contact	selected"))))))

This	is	the	component	responsible	for	actually	updating	the	contact	information	based	on
the	form.	It	does	so	by	calling	update-contact!	with	the	JavaScript	event,	the	contact
cursor,	and	the	key	representing	the	attribute	to	be	updated:

(defn	update-contact!	[e	contact	key]

		(om/update!	contact	key	(..	e	-target	-value)))

As	before,	we	simply	use	om/update!	instead	of	om/transact!	as	we	are	simply	replacing
the	value	of	the	cursor	attribute	with	the	current	value	of	the	form	field	which	triggered
the	event	e.

Note
If	you’re	not	familiar	with	the	..	syntax,	it’s	simply	a	convenience	macro	for	Java	and
JavaScript	interoperability.	The	previous	example	expands	to:

(.	(.	e	-target)	-value)

This	and	other	interoperability	operators	are	described	in	the	Java	Interop	page	of	the
Clojure	website	(see	http://clojure.org/java_interop).

This	is	it.	Make	sure	your	code	is	still	compiling—or	if	you	haven’t	yet,	start	the	auto-
compilation	by	typing	the	following	in	the	terminal:

lein	cljsbuild	auto

Then,	open	up	dev-resources/public/index.html	again	in	your	browser	and	take	our
Contacts	app	for	a	spin!	Note	in	particular	how	the	application	state	is	always	in	sync
while	you	edit	the	contact	attributes.

If	there	are	any	issues	at	this	stage,	make	sure	the	src/cljs/contacts/core.cljs	file
matches	the	companion	code	for	this	book.

http://clojure.org/java_interop

Intercomponent	communication
In	our	previous	example,	the	components	we	built	communicated	with	each	other
exclusively	through	the	application	state,	both	for	reading	and	transacting	data.	While	this
approach	works,	it	is	not	always	the	best	except	for	very	simple	use	cases.	In	this	section,
we	will	learn	an	alternate	way	of	performing	this	communication	using	core.async
channels.

The	application	we	will	build	is	a	super	simple	virtual	agile	board.	If	you’ve	heard	of	it,
it’s	similar	to	Trello	(see	https://trello.com/).	If	you	haven’t,	fear	not,	it’s	essentially	a	task
management	web	application	in	which	you	have	cards	that	represent	tasks	and	you	move
them	between	columns	such	as	Backlog,	In	Progress,	and	Done.

By	the	end	of	this	section,	the	application	will	look	like	the	following:

We’ll	limit	ourselves	to	a	single	feature:	moving	cards	between	columns	by	dragging	and
dropping	them.	Let’s	get	started.

https://trello.com/

Creating	an	agile	board	with	Om
We’re	already	familiar	with	the	om-start	(see	https://github.com/magomimmo/om-start-
template)	leiningen	template,	and	since	there	is	no	reason	to	change	it,	that’s	what	we	will
use	to	create	our	project—which	I	called	om-pm	for	Om	Project	Management:

lein	new	om-start	om-pm

cd	om-pm

As	before,	we	should	ensure	we	have	the	right	dependencies	in	our	project.clj	file:

		:dependencies	[[org.clojure/clojure	"1.6.0"]

																	[org.clojure/clojurescript	"0.0-2511"]

																	[org.om/om	"0.8.1"]

																	[org.clojure/core.async	"0.1.346.0-17112a-alpha"]

																	[com.facebook/react	"0.12.2"]]

Now	validate	that	we	are	in	good	shape	by	making	sure	the	project	compiles	properly:

lein	cljsbuild	auto

Compiling	ClojureScript.

Compiling	"dev-resources/public/js/om_pm.js"	from	("src/cljs"	"dev-

resources/tools/repl")...

Successfully	compiled	"dev-resources/public/js/om_pm.js"	in	13.101	seconds.

Next,	open	the	src/cljs/om_pm/core.cljs	file	and	add	the	namespaces	that	we	will	be
using	to	build	the	application:

(ns	om-pm.core

		(:require	[om.core	:as	om	:include-macros	true]

												[om.dom	:as	dom	:include-macros	true]

												[cljs.core.async	:refer	[put!	chan	<!]]

												[om-pm.util	:refer	[set-transfer-data!	get-transfer-data!	move-

card!]])

		(:require-macros	[cljs.core.async.macros	:refer	[go	go-loop]]))

The	main	difference	this	time	is	that	we	are	requiring	core.async	functions	and	macros.
We	don’t	yet	have	an	om-pm.util	namespace,	but	we’ll	get	to	that	at	the	end.

https://github.com/magomimmo/om-start-template

The	board	state
It’s	time	we	think	what	our	application	state	will	look	like.	Our	main	entity	in	this
application	is	the	card,	which	represents	a	task	and	has	the	attributes	id,	title,	and
description.	We	will	start	by	defining	a	couple	of	cards:

(def	cards	[{:id	1

													:title	"Groceries	shopping"

													:description	"Almond	milk,	mixed	nuts,	eggs…"}

												{:id	2

													:title	"Expenses"

													:description	"Submit	last	client's	expense	report"}])

This	isn’t	our	application	state	yet,	but	rather	a	part	of	it.	Another	important	piece	of	state
is	a	way	to	track	which	cards	are	on	which	columns.	To	keep	things	simple,	we	will	work
with	only	three	columns:	Backlog,	In	Progress,	and	Done.	By	default,	all	cards	start	out
in	the	backlog:

(def	app-state

		(atom	{:cards	cards

									:columns	[{:title	"Backlog"

																				:cards	(mapv	:id	cards)}

																			{:title	"In	Progress"

																				:cards	[]}

																			{:title	"Done"

																				:cards	[]}]}))

This	is	all	the	state	we	need.	Columns	have	a	:title	and	a	:cards	attribute,	which
contains	the	IDs	of	all	cards	in	that	column.

Additionally,	we	will	have	a	helper	function	to	make	finding	cards	more	convenient:

(defn	card-by-id	[id]

		(first	(filterv	#(=	id	(:id	%))	cards)))

Tip
Beware	of	lazy	sequences

You	might	have	noticed	the	use	of	mapv	instead	of	map	for	retrieving	the	cards	IDs.	This	is
a	subtle	but	important	difference:	map	is	lazy	by	default,	but	Om	can	only	create	cursors
for	maps	and	vectors.	Using	mapv	gives	us	a	vector	back,	avoiding	laziness	altogether.

Had	we	not	done	that,	Om	would	consider	the	list	of	IDs	as	a	normal	value	and	we	would
not	be	able	to	transact	it.

Components	overview
There	are	many	ways	to	slice	up	an	Om	application	into	components,	and	in	this	section,
we	will	present	one	way	as	we	walk	through	each	component’s	implementation.

The	approach	we	will	follow	is	similar	to	our	previous	application	in	that	from	this	point
on,	we	present	the	components	bottom-up.

Before	we	see	our	first	component,	however,	we	should	start	with	Om’s	own	root
component:

(om/root	project-view	app-state

									{:target	(.	js/document	(getElementById	"app"))})

This	gives	us	a	hint	as	to	what	our	next	component	will	be,	project-view:

(defn	project-view	[app	owner]

		(reify

				om/IInitState

				(init-state	[_]

						{:transfer-chan	(chan)})

				om/IWillMount

				(will-mount	[_]

						(let	[transfer-chan	(om/get-state	owner	:transfer-chan)]

								(go-loop	[]

										(let	[transfer-data	(<!	transfer-chan)]

												(om/transact!	app	:columns	

																										#(move-card!	%	transfer-data))

												(recur)))))

				om/IRenderState

				(render-state	[this	state]

						(dom/div	nil

															(apply	dom/ul	nil

																						(om/build-all	column-view	(:columns	app)

																																				{:shared					{:cards	(:cards	app)}

																																					:init-state	state}))))))

Lifecycle	and	component	local	state
The	previous	component	is	fairly	different	from	the	ones	we	have	seen	so	far.	More
specifically,	it	implements	two	new	protocols:	om/IInitState	and	om/IWillMount.
Additionally,	we	dropped	om/IRender	altogether	in	favor	of	om/IRenderState.	Before	we
explain	what	these	new	protocols	are	good	for,	we	need	to	discuss	our	high-level	design.

The	project-view	component	is	our	application’s	main	entry	point	and	receives	the	whole
application	state	as	its	first	argument.	As	in	our	earlier	Contacts	application,	it	then
instantiates	the	remaining	components	with	the	data	they	need.

Different	from	the	Contacts	example,	however,	it	creates	a	core.async	channel
—transfer-chan—which	works	as	a	message	bus.	The	idea	is	that	when	we	drag	a	card
from	one	column	and	drop	it	on	another,	one	of	our	components	will	put	a	transfer	event
in	this	channel	and	let	someone	else—most	likely	a	go	block—perform	the	actual	move
operation.

This	is	done	in	the	following	snippet	taken	from	the	component	shown	earlier:

				om/IInitState

				(init-state	[_]

						{:transfer-chan	(chan)})

This	creates	what	Om	calls	the	component	local	state.	It	uses	a	different	lifecycle	protocol,
om/IInitState,	which	is	guaranteed	to	be	called	only	once.	After	all,	we	need	a	single
channel	for	this	component.	init-state	should	return	a	map	representing	the	local	state.

Now	that	we	have	the	channel,	we	need	to	install	a	go-loop	to	handle	messages	sent	to	it.
For	this	purpose,	we	use	a	different	protocol:

				om/IWillMount

				(will-mount	[_]

						(let	[transfer-chan	(om/get-state	owner	:transfer-chan)]

								(go-loop	[]

										(let	[transfer-data	(<!	transfer-chan)]

												(om/transact!	app	:columns	#(move-card!	%	transfer-data))

												(recur)))))

Like	the	previous	protocol,	om/IWillMount	is	also	guaranteed	to	be	called	once	in	the
component	life	cycle.	It	is	called	when	it	is	about	to	be	mounted	into	the	DOM	and	is	the
perfect	place	to	install	the	go-loop	into	our	channel.

Tip
When	creating	core.async	channels	in	Om	applications,	it	is	important	to	avoid	creating
them	inside	life-cycle	functions	that	are	called	multiple	times.	Besides	non-deterministic
behavior,	this	is	a	source	of	memory	leaks.

We	get	hold	of	it	from	the	component	local	state	using	the	om/get-state	function.	Once
we	get	a	message,	we	transact	the	state.	We	will	see	what	transfer-data	looks	like	very
shortly.

We	complete	the	component	by	implementing	its	render	function:

...

om/IRenderState

				(render-state	[this	state]

						(dom/div	nil

															(apply	dom/ul	nil

																						(om/build-all	column-view	(:columns	app)

																																				{:shared					{:cards	(:cards	app)}

																																					:init-state	state}))))

...

The	om/IRenderState	function	serves	the	same	purpose	of	om/IRender,	that	is,	it	should
return	the	DOM	representation	of	what	the	component	should	look	like.	However,	it
defines	a	different	function,	render-state,	which	receives	the	component	local	state	as	its
second	argument.	This	state	contains	the	map	we	created	during	the	init-state	phase.

Remaining	components
Next,	we	will	build	multiple	column-view	components,	one	per	column.	Each	of	them
receives	the	list	of	cards	from	the	application	state	as	their	shared	state.	We	will	use	that	to
retrieve	the	card	details	from	the	IDs	we	store	in	each	column.

We	also	use	the	:init-state	key	to	initialize	the	local	state	of	each	column	view	with	our
channel,	since	all	columns	need	a	reference	to	it.	Here’s	what	the	component	looks	like:

(defn	column-view	[{:keys	[title	cards]}	owner]

		(reify

				om/IRenderState

				(render-state	[this	{:keys	[transfer-chan]}]

						(dom/div	#js	{:style						#js	{:border		"1px	solid	black"

																																					:float			"left"

																																					:height		"100%"

																																					:width			"320px"

																																					:padding	"10px"}

																				:onDragOver	#(.preventDefault	%)

																				:onDrop					#(handle-drop	%	transfer-chan	title)}

															(dom/h2	nil	title)

															(apply	dom/ul	#js	{:style	#js	{:list-style-type	"none"

																																														:padding									"0px"}}

																						(om/build-all	(partial	card-view	title)

																																				(mapv	card-by-id	cards)))))))

The	code	should	look	fairly	familiar	at	this	point.	We	used	inline	CSS	in	the	example	to
keep	it	simple,	but	in	a	real	application,	we	would	probably	have	used	an	external	style
sheet.

We	implement	render-state	once	more	to	retrieve	the	transfer	channel,	which	will	be
used	when	handling	the	onDrop	JavaScript	event.	This	event	is	fired	by	the	browser	when
a	user	drops	a	draggable	DOM	element	onto	this	component.	handle-drop	takes	care	of
that	like	so:

(defn	handle-drop	[e	transfer-chan	column-title]

		(.preventDefault	e)

		(let	[data	{:card-id												

														(js/parseInt	(get-transfer-data!	e	"cardId"))

														:source-column						

														(get-transfer-data!	e	"sourceColumn")

														:destination-column	

														column-title}]

				(put!	transfer-chan	data)))

This	function	creates	the	transfer	data—a	map	with	the	keys	:card-id,	:source-column,
and	:destination-column—which	is	everything	we	need	to	move	the	cards	between
columns.	Finally,	we	put!	it	into	the	transfer	channel.

Next,	we	build	a	number	or	card-view	components.	As	mentioned	previously,	Om	can’t
create	cursors	from	lazy	sequences,	so	we	use	filterv	to	give	each	card-view	a	vector
containing	their	respective	cards.	Let’s	see	its	source:

(defn	card-view	[column	{:keys	[id	title	description]	:as	card}	owner]

		(reify

				om/IRender

				(render	[this]

						(dom/li	#js	{:style	#js	{:border	"1px	solid	black"}

																			:draggable	true

																			:onDragStart	(fn	[e]

																																		(set-transfer-data!	e	"cardId"	id)

																																		(set-transfer-data!	e	"sourceColumn"	

column))}

														(dom/span	nil	title)

														(dom/p	nil	description)))))

As	this	component	doesn’t	need	any	local	state,	we	go	back	to	using	the	IRender	protocol.
Additionally,	we	make	it	draggable	and	install	an	event	handler	on	the	onDragStart	event,
which	will	be	triggered	when	the	user	starts	dragging	the	card.

This	event	handler	sets	the	transfer	data,	which	we	use	from	handle-drop.

We	have	glossed	over	the	fact	that	these	components	use	a	few	utility	functions.	That’s
OK,	as	we	will	now	define	them	in	a	new	namespace.

Utility	functions
Go	ahead	and	create	a	new	file	under	src/cljs/om_pm/	called	util.cljs	and	add	the
following	namespace	declaration:

(ns	om-pm.util)

For	consistency,	we	will	look	at	the	functions	bottom-up,	starting	with	move-card!:

(defn	column-idx	[title	columns]

		(first	(keep-indexed	(fn	[idx	column]

																									(when		(=	title	(:title	column))

																											idx))

																							columns)))

(defn	move-card!	[columns	{:keys	[card-id	source-column	destination-

column]}]

		(let	[from	(column-idx	source-column						columns)

								to			(column-idx	destination-column	columns)]

				(->	columns

								(update-in	[from	:cards]	(fn	[cards]

																																			(remove	#{card-id}	cards)))

								(update-in	[to			:cards]	(fn	[cards]

																																			(conj	cards	card-id))))))

The	move-card!	function	receives	a	cursor	for	the	columns	in	our	application	state	and
simply	moves	card-id	between	the	source	and	destination.	You	will	notice	we	didn’t	need
any	access	to	core.async	or	Om	specific	functions,	which	means	this	function	is	pure	and
therefore	easy	to	test.

Next,	we	have	the	functions	that	handle	transfer	data:

(defn	set-transfer-data!	[e	key	value]

		(.setData	(->	e	.-nativeEvent	.-dataTransfer)

												key	value))

(defn	get-transfer-data!	[e	key]

		(->	(->	e	.-nativeEvent	.-dataTransfer)

						(.getData	key)))

These	functions	use	JavaScript	interoperability	to	interact	with	HTML’s	DataTransfer
(see	https://developer.mozilla.org/en-US/docs/Web/API/DataTransfer)	object.	This	is	how
browsers	share	data	related	to	drag	and	drop	events.

Now,	let’s	simply	save	the	file	and	make	sure	the	code	compiles	properly.	We	can	finally
open	dev-resources/public/index.html	in	the	browser	and	play	around	with	the
product	of	our	work!

https://developer.mozilla.org/en-US/docs/Web/API/DataTransfer

Exercises
In	this	exercise,	we	will	modify	the	om-pm	project	we	created	in	the	previous	section.	The
objective	is	to	add	keyboard	shortcuts	so	that	power	users	can	operate	the	agile	board
more	efficiently.

The	shortcuts	to	be	supported	are:

The	up,	down,	left,	and	right	arrow	keys:	These	allow	the	user	to	navigate	through
the	cards,	highlighting	the	current	one
The	n	and	p	keys:	These	are	used	to	move	the	current	card	to	the	next	(right)	or
previous	(left)	column,	respectively

The	key	insight	here	is	to	create	a	new	core.async	channel,	which	will	contain	key	press
events.	These	events	will	then	trigger	the	actions	outlined	previously.	We	can	use	the
Google	closure	library	to	listen	for	events.	Just	add	the	following	require	to	the
application	namespace:

(:require	[goog.events	:as	events])

Then,	use	this	function	to	create	a	channel	from	DOM	events:

	(defn	listen	[el	type]

		(let	[c	(chan)]

				(events/listen	el	type	#(put!	c	%))

				c))

The	actual	logic	of	moving	the	cards	around	based	on	keyboard	shortcuts	can	be
implemented	in	a	number	of	ways,	so	don’t	forget	to	compare	your	solution	with	the
answers	provided	in	this	book’s	companion	code.

Summary
In	this	chapter,	we	saw	a	different	approach	on	how	to	handle	reactive	web	interfaces	by
Om	and	React.	In	turn,	these	frameworks	make	this	possible	and	painless	by	applying
functional	programming	principles	such	as	immutability	and	persistent	data	structures	for
efficient	rendering.

We	also	learned	to	think	the	Om	way	by	structuring	our	applications	as	a	series	of
functions,	which	receive	state	and	output	a	DOM	representation	of	state	changes.

Additionally,	we	saw	that	by	structuring	application	state	transitions	through	core.async
channels,	we	separate	the	presentation	logic	from	the	code,	which	will	actually	perform
the	work,	making	our	components	even	easier	to	reason	about.

In	the	next	chapter,	we	will	turn	to	an	often	overlooked	yet	useful	tool	for	creating	reactive
applications:	Futures.

Chapter	8.	Futures
The	first	step	towards	reactive	applications	is	to	break	out	of	synchronous	processing.	In
general,	applications	waste	a	lot	of	time	waiting	for	things	to	happen.	Maybe	we	are
waiting	on	an	expensive	computation—say,	calculating	the	1000th	Fibonacci	number.
Perhaps	we	are	waiting	for	some	information	to	be	written	to	the	database.	We	could	also
be	waiting	for	a	network	call	to	return,	bringing	us	the	latest	recommendations	from	our
favorite	online	store.

Regardless	of	what	we’re	waiting	for,	we	should	never	block	clients	of	our	application.
This	is	crucial	to	achieve	the	responsiveness	we	desire	when	building	reactive	systems.

In	an	age	where	processing	cores	are	abundant—my	MacBook	Pro	has	eight	processor
cores—blocking	APIs	severely	underutilizes	the	resources	we	have	at	our	disposal.

As	we	approach	the	end	of	this	book,	it	is	appropriate	to	step	back	a	little	and	appreciate
that	not	all	classes	of	problems	that	deal	with	concurrent,	asynchronous	computations
require	the	machinery	of	frameworks	such	as	RxJava	or	core.async.

In	this	chapter,	we	will	look	at	another	abstraction	that	helps	us	develop	concurrent,
asynchronous	applications:	futures.	We	will	learn	about:

The	problems	and	limitations	with	Clojure’s	implementation	of	futures
An	alternative	to	Clojure’s	futures	that	provides	asynchronous,	composable	semantics
How	to	optimize	concurrency	in	the	face	of	blocking	IO

Clojure	futures
The	first	step	toward	fixing	this	issue—that	is,	to	prevent	a	potentially	long-running	task
from	blocking	our	application—is	to	create	new	threads,	which	do	the	work	and	wait	for	it
to	complete.	This	way,	we	keep	the	application’s	main	thread	free	to	serve	more	clients.

Working	directly	with	threads,	however,	is	tedious	and	error-prone,	so	Clojure’s	core
library	includes	futures,	which	are	extremely	simple	to	use:

(def	f	(clojure.core/future

									(println	"doing	some	expensive	work…")

									(Thread/sleep	5000)

									(println	"done")

									10))

(println	"You'll	see	me	before	the	future	finishes")

;;	doing	some	expensive	work…

;;	You'll	see	me	before	the	future	finishes

;;	done

In	the	preceding	snippet,	we	invoke	the	clojure.core/future	macro	with	a	body
simulating	an	expensive	computation.	In	this	example,	it	simply	sleeps	for	5	seconds
before	returning	the	value	10.	As	the	output	demonstrates,	this	does	not	block	the	main
thread,	which	is	free	to	serve	more	clients,	pick	work	items	from	a	queue,	or	what	have
you.

Of	course,	the	most	interesting	computations,	such	as	the	expensive	one,	return	results	we
care	about.	This	is	where	the	first	limitation	of	Clojure	futures	becomes	apparent.	If	we
attempt	to	retrieve	the	result	of	a	future—by	derefing	it—before	it	has	completed,	the
calling	thread	will	block	until	the	future	returns	a	value.	Try	running	the	following	slightly
modified	version	of	the	previous	snippet:

(def	f	(clojure.core/future

									(println	"doing	some	expensive	work…")

									(Thread/sleep	5000)

									(println	"done")

									10))

(println	"You'll	see	me	before	the	future	finishes")

@f

(println	"I	could	be	doing	something	else.	Instead	I	had	to	wait")

;;	doing	some	expensive	work…

;;	You'll	see	me	before	the	future	finishes

;;	5	SECONDS	LATER

;;	done

;;	I	could	be	doing	something	else.	Instead,	I	had	to	wait

The	only	difference	now	is	that	we	immediately	try	to	deref	the	future	after	we	create	it.
Since	the	future	isn’t	done,	we	sit	there	waiting	for	5	seconds	until	it	returns	its	value.
Only	then	is	our	program	allowed	to	continue.

In	general,	this	poses	a	problem	when	building	modular	systems.	Often,	a	long-running

operation	like	the	one	described	earlier	would	be	initiated	within	a	specific	module	or
function,	and	handed	over	to	the	next	logical	step	for	further	processing.

Clojure	futures	don’t	allow	us	to	schedule	a	function	to	be	executed	when	the	future
finishes	in	order	to	perform	such	further	processing.	This	is	an	important	feature	in
building	reactive	systems.

Fetching	data	in	parallel
To	understand	better	the	issues	outlined	in	the	previous	section,	let’s	build	a	more	complex
example	that	fetches	data	about	one	of	my	favorite	movies,	The	Lord	of	the	Rings.

The	idea	is	that	given	the	movie,	we	wish	to	retrieve	its	actors	and,	for	each	actor,	retrieve
the	movies	they	have	been	a	part	of.	We	also	would	like	to	find	out	more	information
about	each	actor,	such	as	their	spouses.

Additionally,	we	will	match	each	actor’s	movie	against	the	list	of	top	five	movies	in	order
to	highlight	them	as	such.	Finally,	the	result	will	be	printed	to	the	screen.

From	the	problem	statement,	we	identify	the	following	two	main	characteristics	we	will
need	to	account	for:

Some	of	these	tasks	need	to	be	performed	in	parallel
They	establish	dependencies	on	each	other

To	get	started,	let’s	create	a	new	leiningen	project:

lein	new	clj-futures-playground

Next,	open	the	core	namespace	file	in	src/clj_futures_playground/core.clj	and	add
the	data	we	will	be	working	with:

(ns	clj-futures-playground.core

		(:require	[clojure.pprint	:refer	[pprint]]))

(def	movie

		{:name	"Lord	of	The	Rings:	The	Fellowship	of	The	Ring"

			:cast	["Cate	Blanchett"

										"Elijah	Wood"

										"Liv	Tyler"

										"Orlando	Bloom"]})

(def	actor-movies

		[{:name	"Cate	Blanchett"

				:movies	["Lord	of	The	Rings:	The	Fellowship	of	The	Ring"

													"Lord	of	The	Rings:	The	Return	of	The	King"

													"The	Curious	Case	of	Benjamin	Button"]}

			{:name	"Elijah	Wood"

				:movies	["Eternal	Sunshine	of	the	Spotless	Mind"

													"Green	Street	Hooligans"

													"The	Hobbit:	An	Unexpected	Journey"]}

			{:name	"Liv	Tyler"

				:movies	["Lord	of	The	Rings:	The	Fellowship	of	The	Ring"

													"Lord	of	The	Rings:	The	Return	of	The	King"

													"Armageddon"]}

			{:name	"Orlando	Bloom"

				:movies	["Lord	of	The	Rings:	The	Fellowship	of	The	Ring"

													"Lord	of	The	Rings:	The	Return	of	The	King"

													"Pirates	of	the	Caribbean:	The	Curse	of	the	Black	Pearl"]}])

(def	actor-spouse

		[{:name	"Cate	Blanchett"				:spouse	"Andrew	Upton"}

			{:name	"Elijah	Wood"							:spouse	"Unknown"}

			{:name	"Liv	Tyler"									:spouse	"Royston	Langdon"}

			{:name	"Orlando	Bloom"					:spouse	"Miranda	Kerr"}])

(def	top-5-movies

		["Lord	of	The	Rings:	The	Fellowship	of	The	Ring"

			"The	Matrix"

			"The	Matrix	Reloaded"

			"Pirates	of	the	Caribbean:	The	Curse	of	the	Black	Pearl"

			"Terminator"])

The	namespace	declaration	is	simple	and	only	requires	the	pprint	function,	which	will
help	us	print	our	result	in	an	easy-to-read	format.	With	all	the	data	in	place,	we	can	create
the	functions	that	will	simulate	remote	services	responsible	for	fetching	the	relevant	data:

(defn	cast-by-movie	[name]

		(future	(do	(Thread/sleep	5000)

														(:cast		movie))))

(defn	movies-by-actor	[name]

		(do	(Thread/sleep	2000)

						(->>	actor-movies

											(filter	#(=	name	(:name	%)))

											first)))

(defn	spouse-of	[name]

		(do	(Thread/sleep	2000)

						(->>	actor-spouse

											(filter	#(=	name	(:name	%)))

											first)))

(defn	top-5	[]

		(future	(do	(Thread/sleep	5000)

														top-5-movies)))

Each	service	function	sleeps	the	current	thread	by	a	given	amount	of	time	to	simulate	a
slow	network.	The	functions	cast-by-movie	and	Top	5	each	returns	a	future,	indicating
we	wish	to	fetch	this	data	on	a	different	thread.	The	remaining	functions	simply	return	the
actual	data.	They	will	also	be	executed	in	a	different	thread,	however,	as	we	will	see
shortly.

The	next	thing	we	need	is	a	function	to	aggregate	all	fetched	data,	match	spouses	to	actors,
and	highlight	movies	in	the	Top	5	list.	We’ll	call	it	the	aggregate-actor-data	function:

(defn	aggregate-actor-data	[spouses	movies	top-5]

		(map	(fn	[{:keys	[name	spouse]}	{:keys	[movies]}]

									{:name			name

										:spouse	spouse

										:movies	(map	(fn	[m]

																									(if	(some	#{m}	top-5)

																											(str	m	"	-	(top	5)")

																											m))

																							movies)})

							spouses

							movies))

The	preceding	function	is	fairly	straightforward.	It	simply	zips	spouses	and	movies
together,	building	a	map	of	keys	:name,	:spouse,	and	:movies.	It	further	transforms
movies	to	append	the	Top	5	suffix	to	the	ones	in	the	top-5	list.

The	last	piece	of	the	puzzle	is	the	-main	function,	which	allows	us	to	run	the	program
from	the	command	line:

(defn	-main	[&	args]

		(time	(let	[cast				(cast-by-movie	"Lord	of	The	Rings:	The	Fellowship	of	

The	Ring")

														movies		(pmap	movies-by-actor	@cast)

														spouses	(pmap	spouse-of	@cast)

														top-5			(top-5)]

										(prn	"Fetching	data…")

										(pprint	(aggregate-actor-data	spouses	movies	@top-5))

										(shutdown-agents))))

There	are	a	number	of	things	worth	highlighting	in	the	preceding	snippet.

First,	we	wrap	the	whole	body	in	a	call	to	time,	a	simple	benchmarking	function	that
comes	with	Clojure.	This	is	just	so	we	know	how	long	the	program	took	to	fetch	all	data—
this	information	will	become	relevant	later.

Then,	we	set	up	a	number	of	let	bindings.	The	first,	cast,	is	the	result	of	calling	cast-
by-movie,	which	returns	a	future.

The	next	binding,	movies,	uses	a	function	we	haven’t	seen	before:	pmap.

The	pmap	function	works	like	map,	except	the	function	is	mapped	over	the	items	in	the	list
in	parallel.	The	pmap	function	uses	futures	under	the	covers	and	that	is	the	reason	movies-
by-actor	doesn’t	return	a	future—it	leaves	that	for	pmap	to	handle.

Tip
The	pmap	function	is	actually	meant	for	CPU-bound	operations,	but	is	used	here	to	keep
the	code	simple.	In	the	face	of	blocking	IO,	pmap	wouldn’t	perform	optimally.	We	will	talk
more	about	blocking	IO	later	in	this	chapter.

We	get	the	list	of	actors	by	derefing	the	cast	binding,	which,	as	we	saw	in	the	previous
section,	blocks	the	current	thread	waiting	for	the	asynchronous	fetch	to	finish.	Once	all
results	are	ready,	we	simply	call	the	aggregate-actor-data	function.

Lastly,	we	call	the	shutdown-agents	function,	which	shuts	down	the	Thread	Pool
backing	futures	in	Clojure.	This	is	necessary	for	our	program	to	terminate	properly,
otherwise	it	would	simply	hang	in	the	terminal.

To	run	the	program,	type	the	following	in	the	terminal,	under	the	project’s	root	directory:

lein	run	-m	clj-futures-playground.core

"Fetching	data…"

({:name	"Cate	Blanchett",

		:spouse	"Andrew	Upton",

		:movies

		("Lord	of	The	Rings:	The	Fellowship	of	The	Ring	-	(top	5)"

			"Lord	of	The	Rings:	The	Return	of	The	King"

			"The	Curious	Case	of	Benjamin	Button")}

	{:name	"Elijah	Wood",

		:spouse	"Unknown",

		:movies

		("Eternal	Sunshine	of	the	Spotless	Mind"

			"Green	Street	Hooligans"

			"The	Hobbit:	An	Unexpected	Journey")}

	{:name	"Liv	Tyler",

		:spouse	"Royston	Langdon",

		:movies

		("Lord	of	The	Rings:	The	Fellowship	of	The	Ring	-	(top	5)"

			"Lord	of	The	Rings:	The	Return	of	The	King"

			"Armageddon")}

	{:name	"Orlando	Bloom",

		:spouse	"Miranda	Kerr",

		:movies

		("Lord	of	The	Rings:	The	Fellowship	of	The	Ring	-	(top	5)"

			"Lord	of	The	Rings:	The	Return	of	The	King"

			"Pirates	of	the	Caribbean:	The	Curse	of	the	Black	Pearl	-	(top	5)")})

"Elapsed	time:	10120.267	msecs"

You	will	have	noticed	that	the	program	takes	a	while	to	print	the	first	message.
Additionally,	because	futures	block	when	they	are	derefed	,	the	program	doesn’t	start
fetching	the	list	of	top	five	movies	until	it	has	completely	finished	fetching	the	cast	of	The
Lord	of	The	Rings.

Let’s	have	a	look	at	why	that	is	so:

		(time	(let	[cast				(cast-by-movie	"Lord	of	The	Rings:	The	Fellowship	of	

The	Ring")

														;;	the	following	line	blocks

														movies		(pmap	movies-by-actor	@cast)

														spouses	(pmap	spouse-of	@cast)

														top-5			(top-5)]

The	highlighted	section	in	the	preceding	snippet	shows	where	the	program	blocks	waiting
for	cast-by-movie	to	finish.	As	stated	previously,	Clojure	futures	don’t	give	us	a	way	to
run	some	piece	of	code	when	the	future	finishes—like	a	callback—forcing	us	to	block	too
soon.

This	prevents	top-5—a	completely	independent	parallel	data	fetch—from	running	before
we	retrieve	the	movie’s	cast.

Of	course,	this	is	a	contrived	example,	and	we	could	solve	this	particular	annoyance	by
calling	top-5	before	anything	else.	The	problem	is	that	the	solution	isn’t	always	crystal
clear	and	ideally	we	should	not	have	to	worry	about	the	order	of	execution.

As	we	will	see	in	the	next	section,	there	is	a	better	way.

Imminent	–	a	composable	futures	library
for	Clojure
In	the	past	few	months,	I	have	been	working	on	an	open	source	library	that	aims	to	fix	the
previous	issues	with	Clojure	futures.	The	result	of	this	work	is	called	imminent	(see
https://github.com/leonardoborges/imminent).

The	fundamental	difference	is	that	imminent	futures	are	asynchronous	by	default	and
provide	a	number	of	combinators	that	allow	us	to	declaratively	write	our	programs	without
having	to	worry	about	its	order	of	execution.

The	best	way	to	demonstrate	how	the	library	works	is	to	rewrite	the	previous	movies
example	in	it.	We	will	do	this	in	two	steps.

First,	we	will	examine	individually	the	bits	of	imminent’s	API	that	will	be	part	of	our	final
solution.	Then,	we’ll	put	it	all	together	in	a	working	application.	Let’s	start	by	creating	a
new	project:

lein	new	imminent-playground

Next,	add	a	dependency	on	imminent	to	your	project.clj:

:dependencies	[[org.clojure/clojure	"1.6.0"]

															[com.leonardoborges/imminent	"0.1.0"]]

Then,	create	a	new	file,	src/imminent_playground/repl.clj,	and	add	imminent’s	core
namespace:

(ns	imminent-playground.repl

		(:require	[imminent.core	:as	Ii]))

(def		repl-out	*out*)

(defn	prn-to-repl	[&	args]

		(binding	[*out*	repl-out]

				(apply	prn	args)))

The	preceding	snippet	also	creates	a	helper	function	that	is	useful	when	we’re	dealing	with
multiple	threads	in	the	REPL—this	will	be	explained	in	detail	later,	but	for	now	just	take
this	as	being	a	reliable	way	to	print	to	the	REPL	across	multiple	threads.

Feel	free	to	type	this	in	the	REPL	as	we	go	along.	Otherwise,	you	can	require	the
namespace	file	from	a	running	REPL	like	so:

(require	'imminent-playground.repl)

All	the	following	examples	should	be	in	this	file.

https://github.com/leonardoborges/imminent

Creating	futures
Creating	a	future	in	imminent	isn’t	much	different	from	creating	a	future	in	Clojure.	It’s	as
simple	as	the	following:

(def	age	(i/future	31))

;;	#<Future@2ea0ca7d:	#<Success@3e4dec75:	31>>

What	looks	very	different,	however,	is	the	return	value.	A	key	decision	in	imminent’s	API
is	to	represent	the	value	of	a	computation	as	either	a	Success	or	a	Failure	type.	Success,
as	in	the	preceding	example,	wraps	the	result	of	the	computation.	Failure,	as	you	might
have	guessed,	will	wrap	any	exceptions	that	happened	in	the	future:

(def	failed-computation			(i/future	(throw	(Exception.	"Error"))))

;;	#<Future@63cd0d58:	#<Failure@2b273f98:	#<Exception	java.lang.Exception:	

Error>>>

(def	failed-computation-1	(i/failed-future	:invalid-data))

;;	#<Future@a03588f:	#<Failure@61ab196b:	:invalid-data>>

As	you	can	see,	you’re	not	limited	to	exceptions	only.	We	can	use	the	failed-future
function	to	create	a	future	that	completes	immediately	with	the	given	reason,	which,	in	the
second	example,	is	simply	a	keyword.

The	next	question	we	might	ask	is	“How	do	we	get	the	result	out	of	a	future?”.	As	with
Clojure	futures,	we	can	deref	it	as	follows:

@age											;;	#<Success@3e4dec75:	31>

(deref	@age)			;;	31

(i/dderef	age)	;;	31

The	idiom	of	using	a	double-deref	is	common,	so	imminent	provides	the	convenience
shown,	dderef,	which	is	equivalent	to	calling	deref	twice.

However,	different	from	Clojure	futures,	this	is	a	non-blocking	operation,	so	if	the	future
hasn’t	completed	yet,	the	following	is	what	you’ll	get:

@(i/future	(do	(Thread/sleep	500)

															"hello"))

;;	:imminent.future/unresolved

The	initial	state	of	a	future	is	unresolved,	so	unless	you	are	absolutely	certain	a	future	has
completed,	derefing	might	not	be	the	best	way	to	work	with	the	result	of	a	computation.
This	is	where	combinators	become	useful.

Combinators	and	event	handlers
Let’s	say	we	would	like	to	double	the	value	in	the	age	future.	As	we	would	with	lists,	we
can	simply	map	a	function	over	the	future	to	do	just	this:

(def	double-age	(i/map	age	#(*	%	2)))

;;	#<Future@659684cb:	#<Success@7ce85f87:	62>>

Tip
While	i/future	schedules	its	body	for	execution	on	a	separate	thread,	it’s	worth	noting
that	future	combinators	such	as	map,	filter,	and	so	on,	do	not	create	a	new	thread
immediately.	Instead,	they	schedule	a	function	to	be	executed	asynchronously	in	the
thread	pool	once	the	original	future	completes.

Another	way	to	do	something	with	the	value	of	a	future	is	to	use	the	on-success	event
handler	that	gets	called	with	the	wrapped	value	of	the	future	in	case	it	is	successful:

(i/on-success	age	#(prn-to-repl	(str	"Age	is:	"	%)))

;;	"Age	is:	31"

Similarly,	an	on-failure	handler	exists,	which	does	the	same	for	Failure	types.	While	on
the	subject	of	failures,	imminent	futures	understand	the	context	in	which	they	are	being
executed	and,	if	the	current	future	yields	a	Failure,	it	simply	short-circuits	the
computation:

(->	failed-computation

				(i/map	#(*	%	2)))

;;	#<Future@7f74297a:	#<Failure@2b273f98:	#<Exception	java.lang.Exception:	

Error>>>

In	the	preceding	example,	we	don’t	get	a	new	error,	but	rather	the	original	exception
contained	in	failed-computation.	The	function	passed	to	map	never	runs.

The	decision	to	wrap	the	result	of	a	future	in	a	type	such	as	Success	or	Failure	might
seem	arbitrary	but	is	actually	quite	the	opposite.	Both	types	implement	the	protocol
IReturn—and	a	couple	of	other	ones—which	comes	with	a	set	of	useful	functions,	one	of
which	is	map:

(i/map	(i/success	"hello")

							#(str	%	"	world"))

;;	#<Success@714eea92:	"hello	world">

(i/map	(i/failure	"error")

							#(str	%	"	world"))

;;	#<Failure@6d685b65:	"error">

We	get	a	similar	behavior	here	as	we	did	previously:	mapping	a	function	over	a	failure
simply	short-circuits	the	whole	computation.	If	you	do,	however,	wish	to	map	over	the
failure,	you	can	use	map’s	counterpart	map-failure,	which	behaves	similarly	to	map	but	is
its	inverse:

(i/map-failure	(i/success	"hello")

															#(str	%	"	world"))

;;	#<Success@779af3f4:	"hello">

(i/map-failure	(i/failure	"Error")

															#(str	"We	failed:	"	%))

;;	#<Failure@52a02597:	"We	failed:	Error">

This	plays	well	with	the	last	event	handlers	imminent	provides—on-complete:

(i/on-complete	age

															(fn	[result]

																	(i/map	result	#(prn-to-repl	"success:	"	%))

																	(i/map-failure	result	#(prn-to-repl	"error:	"	%))))

;;	"success:	"	31

On	contrary	to	on-success	and	on-failure,	on-complete	calls	the	provided	function
with	the	result	type	wrapper,	so	it	is	a	convenient	way	to	handle	both	cases	in	a	single
function.

Coming	back	to	combinators,	sometimes	we	will	need	to	map	a	function	over	a	future,
which	itself	returns	a	future:

(defn	range-future	[n]

		(i/const-future	(range	n)))

(def	age-range	(i/map	age	range-future))

;;	#<Future@3d24069e:	#<Success@82e8e6e:	#<Future@2888dbf4:	#

<Success@312084f6:	(0	1	2…)>>>>

The	range-future	function	returns	a	successful	future	that	yields	a	range	of	n.	The
const-future	function	is	analogous	to	failed-future,	except	it	immediately	completes
the	future	with	a	Success	type.

However,	we	end	up	with	a	nested	future,	which	is	almost	never	what	you	want.	That’s
OK.	This	is	precisely	the	scenario	in	which	you	would	use	another	combinator,	flatmap.

You	can	think	of	it	as	mapcat	for	futures—it	flattens	the	computation	for	us:

(def	age-range	(i/flatmap	age	range-future))

;;	#<Future@601c1dfc:	#<Success@55f4bcaf:	(0	1	2…)>>

Another	very	useful	combinator	is	used	to	bring	together	multiple	computations	to	be	used
in	a	single	function—sequence:

(def	name	(i/future	(do	(Thread/sleep	500)

																								"Leo")))

(def	genres	(i/future	(do	(Thread/sleep	500)

																										["Heavy	Metal"	"Black	Metal"	"Death	Metal"	"Rock	

'n	Roll"])))

(->		(i/sequence	[name	age	genres])

					(i/on-success

						(fn	[[name	age	genres]]

								(prn-to-repl	(format	"%s	is	%s	years	old	and	enjoys	%s"

																													name

																													age

																													(clojure.string/join	","	genres))))))

;;	"Leo	is	31	years	old	and	enjoys	Heavy	Metal,Black	Metal,Death	Metal,Rock	

'n	Roll"

Essentially,	sequence	creates	a	new	future,	which	will	complete	only	when	all	other
futures	in	the	vector	have	completed	or	any	one	of	them	have	failed.

This	is	a	nice	segue	into	the	last	combinator	we	will	look	at—map-future—which	we
would	use	in	place	of	pmap,	used	in	the	movies	example:

(defn	calculate-double	[n]

		(i/const-future	(*	n	2)))

(->	(i/map-future	calculate-double	[1	2	3	4])

				i/await

				i/dderef)

;;	[2	4	6	8]

In	the	preceding	example,	calculate-double	is	a	function	that	returns	a	future	with	the
value	n	doubled.	The	map-future	function	then	maps	calculate-double	over	the	list,
effectively	performing	the	calculations	in	parallel.	Finally,	map-future	sequences	all
futures	together,	returning	a	single	future,	which	yields	the	result	of	all	computations.

Because	we	are	performing	a	number	of	parallel	computations	and	don’t	really	know
when	they	will	finish,	we	call	await	on	the	future,	which	is	a	way	to	block	the	current
thread	until	its	result	is	ready.	In	general,	you	would	use	the	combinators	and	event
handlers	instead,	but	for	this	example,	using	await	is	acceptable.

Imminent’s	API	provides	many	more	combinators,	which	help	us	write	asynchronous
programs	in	a	declarative	way.	This	section	gave	us	a	taste	of	what	is	possible	with	the
API	and	is	enough	to	allow	us	to	write	the	movies	example	using	imminent	futures.

The	movies	example	revisited
Still	within	our	imminent-playground	project,	open	the
src/imminent_playground/core.clj	file	and	add	the	appropriate	definitions:

(ns	imminent-playground.core

		(:require	[clojure.pprint	:refer	[pprint]]

												[imminent.core	:as	i]))

(def	movie…)

(def	actor-movies…)

(def	actor-spouse…)

(def	top-5-movies…)

We	will	be	using	the	same	data	as	in	the	previous	program,	represented	in	the	preceding
snippet	by	the	use	of	ellipses.	Simply	copy	the	relevant	declarations	over.

The	service	functions	will	need	small	tweaks	in	this	new	version:

(defn	cast-by-movie	[name]

		(i/future	(do	(Thread/sleep	5000)

																(:cast		movie))))

(defn	movies-by-actor	[name]

		(i/future	(do	(Thread/sleep	2000)

																(->>	actor-movies

																					(filter	#(=	name	(:name	%)))

																					first))))

(defn	spouse-of	[name]

		(i/future	(do	(Thread/sleep	2000)

																(->>	actor-spouse

																					(filter	#(=	name	(:name	%)))

																					first))))

(defn	top-5	[]

		(i/future	(do	(Thread/sleep	5000)

																top-5-movies)))

(defn	aggregate-actor-data	[spouses	movies	top-5]

				...)

The	main	difference	is	that	all	of	them	now	return	an	imminent	future.	The	aggregate-
actor-data	function	is	also	the	same	as	before.

This	brings	us	to	the	-main	function,	which	was	rewritten	to	use	imminent	combinators:

(defn	-main	[&	args]

		(time	(let	[cast				(cast-by-movie	"Lord	of	The	Rings:	The	Fellowship	of	

The	Ring")

														movies		(i/flatmap	cast	#(i/map-future	movies-by-actor	%))

														spouses	(i/flatmap	cast	#(i/map-future	spouse-of	%))

														result		(i/sequence	[spouses	movies	(top-5)])]

										(prn	"Fetching	data…")

										(pprint	(apply	aggregate-actor-data

																						(i/dderef	(i/await	result)))))))

The	function	starts	much	like	its	previous	version,	and	even	the	first	binding,	cast,	looks
familiar.	Next	we	have	movies,	which	is	obtained	by	fetching	an	actor’s	movies	in
parallel.	This	in	itself	returns	a	future,	so	we	flatmap	it	over	the	cast	future	to	obtain	our
final	result:

movies		(i/flatmap	cast	#(i/map-future	movies-by-actor	%))

spouses	works	in	exactly	the	same	way	as	movies,	which	brings	us	to	result.	This	is
where	we	would	like	to	bring	all	asynchronous	computations	together.	Therefore,	we	use
the	sequence	combinator:

result		(i/sequence	[spouses	movies	(top-5)])

Finally,	we	decide	to	block	on	the	result	future—by	using	await—so	we	can	print	the
final	result:

(pprint	(apply	aggregate-actor-data

																						(i/dderef	(i/await	result)))

We	run	the	program	in	the	same	way	as	before,	so	simply	type	the	following	in	the
command	line,	under	the	project’s	root	directory:

lein	run	-m	imminent-playground.core

"Fetching	data…"

({:name	"Cate	Blanchett",

		:spouse	"Andrew	Upton",

		:movies

		("Lord	of	The	Rings:	The	Fellowship	of	The	Ring	-	(top	5)"

			"Lord	of	The	Rings:	The	Return	of	The	King"

			"The	Curious	Case	of	Benjamin	Button")}

...

"Elapsed	time:	7088.398	msecs"

The	result	output	was	trimmed	as	it	is	exactly	the	same	as	before,	but	two	things	are
different	and	deserve	attention:

The	first	output,	Fetching	data…,	is	printed	to	the	screen	a	lot	faster	than	in	the
example	using	Clojure	futures
The	overall	time	it	took	to	fetch	all	that	is	shorter,	clocking	in	at	just	over	7	seconds

This	highlights	the	asynchronous	nature	of	imminent	futures	and	combinators.	The	only
time	we	had	to	wait	is	when	we	explicitly	called	await	at	the	end	of	the	program.

More	specifically,	the	performance	boost	comes	from	the	following	section	in	the	code:

(let	[...

						result		(i/sequence	[spouses	movies	(top-5)])]

			...)

Because	none	of	the	previous	bindings	block	the	current	thread,	we	never	have	to	wait	to

kick	off	top-5	in	parallel,	shaving	off	roughly	3	seconds	from	the	overall	execution	time.
We	didn’t	have	to	explicitly	think	about	the	order	of	execution—the	combinators	simply
did	the	right	thing.

Finally,	one	last	difference	is	that	we	didn’t	have	to	explicitly	call	shutdown-agents	as
before.	The	reason	for	this	is	that	imminent	uses	a	different	type	of	thread	pool:	a
ForkJoinPool	(see
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ForkJoinPool.html).

This	pool	has	a	number	of	advantages—each	with	its	own	trade-off—over	the	other	thread
pools,	and	one	characteristic	is	that	we	don’t	need	to	explicitly	shut	it	down—all	threads	it
creates	daemon	threads.

When	the	JVM	shuts	down,	it	hangs	waiting	for	all	non-daemon	threads	to	finish.	Only
then	does	it	exit.	That’s	why	using	Clojure	futures	would	cause	the	JVM	to	hang,	if	we
had	not	called	shutdown-agents.

All	threads	created	by	the	ForkJoinPool	are	set	as	daemon	threads	by	default:	when	the
JVM	attempts	to	shut	down,	and	if	the	only	threads	running	are	daemon	ones,	they	are
abandoned	and	the	JVM	exits	gracefully.

Combinators	such	as	map	and	flatmap,	as	well	as	the	functions	sequence	and	map-future,
aren’t	exclusive	to	futures.	They	have	many	more	fundamental	principles	by	which	they
abide,	making	them	useful	in	a	range	of	domains.	Understanding	these	principles	isn’t
necessary	for	following	the	contents	of	this	book.	Should	you	want	to	know	more	about
these	principles,	please	refer	to	the	Appendix	,	The	Algebra	of	Library	Design.

http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ForkJoinPool.html

Futures	and	blocking	IO
The	choice	of	using	ForkJoinPool	for	imminent	is	deliberate.	The	ForkJoinPool—added
on	Java	7—is	extremely	smart.	When	created,	you	give	it	a	desired	level	of	parallelism,
which	defaults	to	the	number	of	available	processors.

ForkJoinPool	then	attempts	to	honor	the	desired	parallelism	by	dynamically	shrinking	and
expanding	the	pool	as	required.	When	a	task	is	submitted	to	this	pool,	it	doesn’t
necessarily	create	a	new	thread	if	it	doesn’t	have	to.	This	allows	the	pool	to	serve	an
extremely	large	number	of	tasks	with	a	much	smaller	number	of	actual	threads.

However,	it	cannot	guarantee	such	optimizations	in	the	face	of	blocking	IO,	as	it	can’t
know	whether	the	thread	is	blocking	waiting	for	an	external	resource.	Nevertheless,
ForkJoinPool	provides	a	mechanism	by	which	threads	can	notify	the	pool	when	they
might	block.

Imminent	takes	advantage	of	this	mechanism	by	implementing	the	ManagedBlocker	(see
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ForkJoinPool.ManagedBlocker.html
interface—and	provides	another	way	to	create	futures,	as	demonstrated	here:

		(->	(immi/blocking-future	

							(Thread/sleep	100)

							10)

						(immi/await))

		;;	#<Future@4c8ac77a:	#<Success@45525276:	10>>

		(->	(immi/blocking-future-call

							(fn	[]

									(Thread/sleep	100)

									10))

						(immi/await))

		;;	#<Future@37162438:	#<Success@5a13697f:	10>>

The	blocking-future	and	blocking-future-call	have	the	same	semantics	as	their
counterparts,	future	and	future-call,	but	should	be	used	when	the	task	to	be	performed
is	of	a	blocking	nature	(that	is,	not	CPU-bound).	This	allows	the	ForkJoinPool	to	better
utilize	its	resources,	making	it	a	powerful	and	flexible	solution.

http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ForkJoinPool.ManagedBlocker.html

Summary
In	this	chapter,	we	learned	that	Clojure	futures	leave	a	lot	to	be	desired.	More	specifically,
Clojure	futures	don’t	provide	a	way	to	express	dependencies	between	results.	It	doesn’t
mean,	however,	that	we	should	dismiss	futures	altogether.

They	are	still	a	useful	abstraction	and	with	the	right	semantics	for	asynchronous
computations	and	a	rich	set	of	combinators—such	as	the	ones	provided	by	imminent—
they	can	be	a	big	ally	in	building	reactive	applications	that	are	performant	and	responsive.
Sometimes,	this	is	all	we	need.

For	the	times	where	we	need	to	model	data	that	varies	over	time,	we	turn	to	richer
frameworks	inspired	by	Functional	Reactive	Programming	(FRP)	and	Compositional
Event	Systems	(CES)	—such	as	RxJava—or	Communicating	Sequential	Processes
(CSP)	—such	as	core.async.	As	they	have	a	lot	more	to	offer,	much	of	this	book	has
been	dedicated	to	those	approaches.

In	the	next	chapter,	we	will	go	back	to	discussing	FRP/CES	by	way	of	a	case	study.

Chapter	9.	A	Reactive	API	to	Amazon
Web	Services
Throughout	this	book,	we	have	learned	a	number	of	tools	and	techniques	to	aid	us	in
building	reactive	applications—futures	with	imminent,	Observables	with
RxClojure/RxJava,	channels	with	core.async—and	even	in	building	reactive	user
interfaces	using	Om	and	React.

In	the	process,	we	also	became	acquainted	with	the	concept	of	Functional	Reactive
Programming	and	Compositional	Event	Systems,	as	well	as	what	makes	them	different.

In	this	last	chapter,	we	will	bring	a	few	of	these	different	tools	and	concepts	together	by
developing	an	application	based	on	a	real-world	use	case	from	a	client	I	worked	with	in
Sydney,	Australia.	We	will:

Describe	the	problem	of	infrastructure	automation	we	were	trying	to	solve
Have	a	brief	look	at	some	of	Amazon’s	AWS	services
Build	an	AWS	dashboard	using	the	concepts	we	have	learned	so	far

The	problem
This	client—which	we	will	call	BubbleCorp	from	now	on—had	a	big	problem	that	is	all
too	common	and	well	known	to	big	enterprises:	one	massive	monolithic	application.

Besides	making	them	move	slow,	as	individual	components	can’t	be	evolved
independently,	this	application	makes	deployment	incredibly	hard	due	to	its	environment
constraints:	all	infrastructure	needs	to	be	available	in	order	for	the	application	to	work	at
all.

As	a	result,	developing	new	features	and	bug	fixes	involves	having	only	a	handful	of
development	environments	shared	across	dozens	of	developers	each.	This	requires	a
wasteful	amount	of	coordination	between	teams	just	so	that	they	won’t	step	on	each
other’s	toes,	contributing	to	slow	the	whole	life-cycle	further.

The	long-term	solution	to	this	problem	is	to	break	down	this	big	application	into	smaller
components,	which	can	be	deployed	and	worked	on	independently,	but	as	good	as	this
sounds,	it’s	a	laborious	and	lengthy	process.

As	a	first	step,	BubbleCorp	decided	the	best	thing	they	could	improve	in	the	short	term	is
to	give	developers	the	ability	to	work	in	the	application	independently	from	each	other,
which	implies	being	able	to	create	a	new	environment	as	well.

Given	the	infrastructure	constraints,	running	the	application	on	a	single	developer	machine
is	prohibitive.

Instead,	they	turned	to	infrastructure	automation:	they	wanted	a	tool	that,	with	the	press	of
a	button,	would	spin	up	a	completely	new	environment.

This	new	environment	would	be	already	preconfigured	with	the	proper	application
servers,	database	instances,	DNS	entries,	and	everything	else	needed	to	run	the
application.

This	way,	developers	would	only	need	to	deploy	their	code	and	test	their	changes,	without
having	to	worry	about	the	application	setup.

Infrastructure	automation
Amazon	Web	Services	(AWS)	is	the	most	mature	and	comprehensive	cloud	computing
platform	available	today,	and	as	such	it	was	a	natural	choice	for	BubbleCorp	to	host	its
infrastructure	in.

If	you	haven’t	used	AWS	before,	don’t	worry,	we’ll	focus	only	on	a	few	of	its	services:

Elastic	Compute	Cloud	(EC2):	A	service	that	provides	users	with	the	ability	to	rent
virtual	computers	in	which	to	run	their	applications.
Relational	Database	Service	(RDS):	This	can	be	thought	of	as	a	specialized	version
of	EC2	that	provides	managed	database	services.
CloudFormation:	With	CloudFormation,	users	have	the	ability	to	specify
infrastructure	templates,	called	stacks,	of	several	different	AWS	resources—such	as
EC2,	AWS,	and	many	others—as	well	as	how	they	interact	with	each	other.	Once
written,	the	infrastructure	template	can	be	sent	to	AWS	to	be	executed.

For	BubbleCorp,	the	idea	was	to	write	these	infrastructure	templates,	which	once
submitted	would	result	into	a	completely	new,	isolated	environment	containing	all	data
and	components	required	to	run	its	app.	At	any	given	time,	there	would	be	dozens	of	these
environments	running	with	developers	working	on	them.

As	decent	a	plan	as	this	sounds,	big	corporations	usually	have	an	added	burden:	cost
centers.	Unfortunately,	BubbleCorp	can’t	simply	allow	developers	to	log	into	the	AWS
Console—where	we	can	manage	AWS	resources—and	spin	up	environments	at	will.	They
needed	a	way	to,	among	other	things,	add	cost	center	metadata	to	the	environment	to
handle	their	internal	billing	process.

This	brings	us	to	the	application	we	will	be	focusing	on	for	the	remainder	of	this	chapter.

AWS	resources	dashboard
My	team	and	I	were	tasked	with	building	a	web-based	dashboard	for	AWS.	This
dashboard	would	allow	developers	to	log	in	using	their	BubbleCorp’s	credentials	and,
once	authenticated,	create	new	CloudFormation	environments	as	well	as	visualize	the
status	of	each	individual	resource	within	a	CloudFormation	stack.

The	application	itself	is	fairly	involved,	so	we	will	focus	on	a	subset	of	it:	interfacing	with
the	necessary	AWS	services	in	order	to	gather	information	about	the	status	of	each
individual	resource	in	a	given	CloudFormation	stack.

Once	finished,	this	is	what	our	simplified	dashboard	will	look	like:

It	will	display	the	ID,	type,	and	current	status	of	each	resource.	This	might	not	seem	like
much	for	now,	but	given	that	all	this	information	is	coming	from	different,	independent
web	services,	it	is	far	too	easy	to	end	up	with	unnecessarily	complex	code.

We	will	be	using	ClojureScript	for	this	and	therefore	the	JavaScript	version	of	the	AWS
SDK,	whose	documentation	can	be	found	at	http://aws.amazon.com/sdk-for-node-js/.

Before	we	get	started,	let’s	have	a	look	at	each	of	the	AWS	Services	APIs	we	will	be
interacting	with.

Tip
In	reality,	we	will	not	be	interacting	with	the	real	AWS	services	but	rather	a	stub	server
provided	for	download	from	the	book’s	GitHub	repository.

The	reason	for	this	is	to	make	following	this	chapter	easier,	as	you	won’t	need	to	create	an
account	as	well	as	generate	an	API	access	key	to	interact	with	AWS.

Additionally,	creating	resources	incurs	cost,	and	the	last	thing	I	want	is	for	you	to	be
charged	hundreds	of	dollars	at	the	end	of	the	month	because	someone	accidentally	left
resources	running	for	longer	than	they	should—trust	me	it	has	happened	before.

http://aws.amazon.com/sdk-for-node-js/

CloudFormation
The	first	service	we	will	look	at	is	CloudFormation.	This	makes	sense	as	the	APIs	found
in	here	will	give	us	a	starting	point	for	finding	information	about	the	resources	in	a	given
stack.

The	describeStacks	endpoint
This	endpoint	is	responsible	for	listing	all	stacks	associated	with	a	particular	AWS
account.	For	a	given	stack,	its	response	looks	like	the	following:

{"Stacks"

			[{"StackId"

					"arn:aws:cloudformation:ap-southeast-2:337944750480:stack/DevStack-

62031/1",

					"StackStatus"	"CREATE_IN_PROGRESS",

					"StackName"	"DevStack-62031",

					"Parameters"	[{"ParameterKey"	"DevDB",	"ParameterValue"	nil}]}]}

Unfortunately,	it	doesn’t	say	anything	about	which	resources	belong	to	this	stack.	It	does,
however,	give	us	the	stack	name,	which	we	can	use	to	look	up	resources	in	the	next
service.

The	describeStackResources	endpoint
This	endpoint	receives	many	arguments,	but	the	one	we’re	interested	in	is	the	stack	name,
which,	once	provided,	returns	the	following:

{"StackResources"

			[{"PhysicalResourceId"	"EC2123",

					"ResourceType"	"AWS::EC2::Instance"},

				{"PhysicalResourceId"	"EC2456",

					"ResourceType"	"AWS::EC2::Instance"}

				{"PhysicalResourceId"	"EC2789",

					"ResourceType"	"AWS::EC2::Instance"}

				{"PhysicalResourceId"	"RDS123",

					"ResourceType"	"AWS::RDS::DBInstance"}

				{"PhysicalResourceId"	"RDS456",

					"ResourceType"	"AWS::RDS::DBInstance"}]}

We	seem	to	be	getting	somewhere	now.	This	stack	has	several	resources:	three	EC2
instances	and	two	RDS	instances—not	too	bad	for	only	two	API	calls.

However,	as	we	mentioned	previously,	our	dashboard	needs	to	show	the	status	of	each	of
the	resources.	With	the	list	of	resource	IDs	at	hand,	we	need	to	look	to	other	services	that
could	give	us	detailed	information	about	each	resource.

EC2
The	next	service	we	will	look	at	is	specific	to	EC2.	As	we	will	see,	the	responses	of	the
different	services	aren’t	as	consistent	as	we	would	like	them	to	be.

The	describeInstances	endpoint
This	endpoint	sounds	promising.	Based	on	the	documentation,	it	seems	we	can	give	it	a
list	of	instance	IDs	and	it	will	give	us	back	the	following	response:

{"Reservations"

			[{"Instances"

					[{"InstanceId"	"EC2123",

							"Tags"

							[{"Key"	"StackType",	"Value"	"Dev"}

								{"Key"	"junkTag",	"Value"	"should	not	be	included"}

								{"Key"	"aws:cloudformation:logical-id",	"Value"	"theDude"}],

							"State"	{"Name"	"running"}}

						{"InstanceId"	"EC2456",

							"Tags"

							[{"Key"	"StackType",	"Value"	"Dev"}

								{"Key"	"junkTag",	"Value"	"should	not	be	included"}

								{"Key"	"aws:cloudformation:logical-id",	"Value"	"theDude"}],

							"State"	{"Name"	"running"}}

						{"InstanceId"	"EC2789",

							"Tags"

							[{"Key"	"StackType",	"Value"	"Dev"}

								{"Key"	"junkTag",	"Value"	"should	not	be	included"}

								{"Key"	"aws:cloudformation:logical-id",	"Value"	"theDude"}],

							"State"	{"Name"	"running"}}]}]}

Buried	in	this	response,	we	can	see	the	State	key,	which	gives	us	the	status	of	that
particular	EC2	instance.	This	is	all	we	need	as	far	as	EC2	goes.	This	leaves	us	with	RDS
to	handle.

RDS
One	might	be	tempted	to	think	that	getting	the	statuses	of	RDS	instances	would	be	just	as
easy	as	with	EC2.	Let’s	see	if	that	is	the	case.

The	describeDBInstances	endpoint
This	endpoint	is	equivalent	in	purpose	to	the	analogous	EC2	endpoint	we	just	looked	at.
Its	input,	however,	is	slightly	different:	it	accepts	a	single	instance	ID	as	input	and,	as	of
the	time	of	this	writing,	doesn’t	support	filters.

This	means	that	if	our	stack	has	multiple	RDS	instances—say,	in	a	primary/replica	setup
—we	need	to	make	multiple	API	calls	to	gather	information	about	each	one	of	them.	Not	a
big	deal,	of	course,	but	a	limitation	to	be	aware	of.

Once	given	a	specific	database	instance	ID,	this	service	responds	with	the	following	code:

{"DBInstances"

			[{"DBInstanceIdentifier"	"RDS123",	"DBInstanceStatus"	"available"}]}

The	fact	that	a	single	instance	comes	inside	a	vector	hints	at	the	fact	that	filtering	will	be
supported	in	the	future.	It	just	hasn’t	happened	yet.

Designing	the	solution
We	now	have	all	the	information	we	need	to	start	designing	our	application.	We	need	to
coordinate	four	different	API	calls	per	CloudFormation	stack:

describeStacks:	To	list	all	available	stacks
describeStackResources:	To	retrieve	details	of	all	resources	contained	in	a	stack
describeInstances:	To	retrieve	details	of	all	EC2	instances	in	a	stack
describeDBInstances:	To	retrieve	details	of	all	DB2	instances	in	a	stack

Next,	I	would	like	you	to	step	back	for	a	moment	and	think	about	how	you	would	design
code	like	this.	Go	ahead,	I’ll	wait.

Now	that	you’re	back,	let’s	have	a	look	at	one	possible	approach.

If	we	recall	the	screenshot	of	what	the	dashboard	would	look	like,	we	realize	that,	for	the
purposes	of	our	application,	the	difference	between	EC2	and	RDS	resources	can	be
completely	ignored	so	long	as	each	one	has	the	attributes	ID,	type,	and	status.

This	means	whatever	our	solution	may	be,	it	has	to	somehow	provide	a	uniform	way	of
abstracting	the	different	resource	types.

Additionally,	apart	from	describeStacks	and	describeStackResources,	which	need	to
be	called	sequentially,	describeInstances	and	describeDBInstances	can	be	executed
concurrently,	after	which	we	will	need	a	way	to	merge	the	results.

Since	an	image	is	worth	a	thousand	words,	the	following	image	is	what	we	would	like	the
workflow	to	look	like:

The	preceding	image	highlights	a	number	of	key	aspects	of	our	solution:

We	start	by	retrieving	stacks	by	calling	describeStacks
Next,	for	each	stack,	we	call	describeStackResources	to	retrieve	a	list	of	resources
for	each	one
Then,	we	split	the	list	by	type,	ending	with	a	list	of	EC2	and	one	with	RDS	resources
We	proceed	by	concurrently	calling	describeInstances	and	describeDBInstances,
yielding	two	lists	of	results,	one	per	resource	type
As	the	response	formats	are	different,	we	transform	each	resource	into	a	uniform
representation
Lastly,	we	merge	all	results	into	a	single	list,	ready	for	rendering

This	is	quite	a	bit	to	take	in,	but	as	you	will	soon	realize,	our	solution	isn’t	too	far	off	this
high-level	description.

We	can	quite	easily	think	of	this	problem	as	having	information	about	several	different
types	of	instances	flowing	through	this	graph	of	API	calls—being	transformed	as	needed
in	between—until	we	arrive	at	the	information	we’re	after,	in	the	format	we	would	like	to
work	with.

As	it	turns	out,	a	great	way	to	model	this	problem	is	to	use	one	of	the	Reactive

abstractions	we	learned	about	earlier	in	this	book:	Observables.

Running	the	AWS	stub	server
Before	we	jump	into	writing	our	dashboard,	we	should	make	sure	our	AWS	stub	server	is
properly	set	up.	The	stub	server	is	a	Clojure	web	application	that	simulates	how	the	real
AWS	API	behaves	and	is	the	backend	our	dashboard	will	talk	to.

Let’s	start	by	going	into	our	terminal,	cloning	the	book	repository	using	Git	and	then
starting	the	stub	server:

$	git	clone	https://github.com/leonardoborges/ClojureReactiveProgramming

$	cd	ClojureReactiveProgramming/code/chapter09/aws-api-stub

$	lein	ring	server-headless	3001

2014-11-23	17:33:37.766:INFO:oejs.Server:jetty-7.6.8.v20121106

2014-11-23	17:33:37.812:INFO:oejs.AbstractConnector:Started	

SelectChannelConnector@0.0.0.0:3001

Started	server	on	port	3001

This	will	have	started	the	server	on	port	3001.	To	validate	it	is	working	as	expected,	point
your	browser	to	http://localhost:3001/cloudFormation/describeStacks.	You	should
see	the	following	JSON	response:

{

				"Stacks":	[

								{

												"Parameters":	[

																{

																				"ParameterKey":	"DevDB",

																				"ParameterValue":	null

																}

],

												"StackStatus":	"CREATE_IN_PROGRESS",

												"StackId":	"arn:aws:cloudformation:ap-southeast-

2:337944750480:stack/DevStack-62031/1",

												"StackName":	"DevStack-62031"

								}

]

}

Setting	up	the	dashboard	project
As	we	previously	mentioned,	we	will	be	developing	the	dashboard	using	ClojureScript
with	the	UI	rendered	using	Om.	Additionally,	as	we	have	chosen	Observables	as	our	main
Reactive	abstraction,	we	will	need	RxJS,	one	of	the	many	implementations	of	Microsoft’s
Reactive	Extensions.	We	will	be	pulling	these	dependencies	into	our	project	shortly.

Let’s	create	a	new	ClojureScript	project	called	aws-dash	using	the	om-start	leiningen
template:

$	lein	new	om-start	aws-dash

This	gives	us	a	starting	point,	but	we	should	make	sure	our	versions	all	match.	Open	up
the	project.clj	file	found	in	the	root	directory	of	the	new	project	and	ensure	the
dependencies	section	looks	like	the	following:

...

		:dependencies	[[org.clojure/clojure	"1.6.0"]

																	[org.clojure/clojurescript	"0.0-2371"]

																	[org.clojure/core.async	"0.1.346.0-17112a-alpha"]

																	[om	"0.5.0"]

																	[com.facebook/react	"0.9.0"]

																	[cljs-http	"0.1.20"]

																	[com.cognitect/transit-cljs	"0.8.192"]]

			:plugins	[[lein-cljsbuild	"1.0.3"]]

...

This	is	the	first	time	we	see	the	last	two	dependencies.	cljs-http	is	a	simple	HTTP
library	we	will	use	to	make	AJAX	requests	to	our	AWS	stub	server.	transit-cljs	allows
us	to,	among	other	things,	parse	JSON	responses	into	ClojureScript	data	structures.

Tip
Transit	itself	is	a	format	and	a	set	of	libraries	through	which	applications	developed	in
different	technologies	can	speak	to	each	other.	In	this	case,	we	are	using	the	Clojurescript
library	to	parse	JSON,	but	if	you’re	interested	in	learning	more,	I	recommend	reading	the
official	blog	post	announcement	by	Rich	Hickey	at
http://blog.cognitect.com/blog/2014/7/22/transit.

Next,	we	need	RxJS,	which,	being	a	JavaScript	dependency,	isn’t	available	via	leiningen.
That’s	OK.	We	will	simply	download	it	into	the	application	output	directory,	aws-
dash/dev-resources/public/js/:

$	cd	aws-dash/dev-resources/public/js/

$	wget	https://raw.githubusercontent.com/Reactive-

Extensions/RxJS/master/dist/rx.all.js

--2014-11-23	18:00:21--		https://raw.githubusercontent.com/Reactive-

Extensions/RxJS/master/dist/rx.all.js

Resolving	raw.githubusercontent.com…	103.245.222.133

Connecting	to	raw.githubusercontent.com|103.245.222.133|:443…	connected.

HTTP	request	sent,	awaiting	response…	200	OK

Length:	355622	(347K)	[text/plain]

Saving	to:	'rx.all.js'

http://blog.cognitect.com/blog/2014/7/22/transit

100%[========================>]	355,622						966KB/s			in	0.4s

2014-11-23	18:00:24	(966	KB/s)	-	'rx.all.js'	saved	[355622/355622]

Moving	on,	we	need	to	make	our	application	aware	of	our	new	dependency	on	RxJS.
Open	the	aws-dash/dev-resources/public/index.html	file	and	add	a	script	tag	to	pull
in	RxJS:

<html>

		<body>

				<div	id="app"></div>

				<script	src="http://fb.me/react-0.9.0.js"></script>

				<script	src="js/rx.all.js"></script>

				<script	src="js/aws_dash.js"></script>

		</body>

</html>

With	all	the	dependencies	in	place,	let’s	start	the	auto-compilation	for	our	ClojureScript
source	files	as	follows:

$	cd	aws-dash/

$	lein	cljsbuild	auto

Compiling	ClojureScript.

Compiling	"dev-resources/public/js/aws_dash.js"	from	("src/cljs"	"dev-

resources/tools/repl")...

Successfully	compiled	"dev-resources/public/js/aws_dash.js"	in	0.981	

seconds.

Creating	AWS	Observables
We’re	now	ready	to	start	implementing	our	solution.	If	you	recall	from	the	Reactive
Extensions	chapter,	RxJava/RxJS/RxClojure	ship	with	several	useful	Observables.
However,	when	the	built-in	Observables	aren’t	enough,	it	gives	us	the	tools	to	build	our
own.

Since	it	is	highly	unlikely	RxJS	already	provides	Observables	for	Amazon’s	AWS	API,	we
will	start	by	implementing	our	own	primitive	Observables.

To	keep	things	neat,	we	will	do	this	in	a	new	file,	under	aws-
dash/src/cljs/aws_dash/observables.cljs:

(ns	aws-dash.observables

		(:require-macros	[cljs.core.async.macros	:refer	[go]])

		(:require	[cljs-http.client	:as	http]

												[cljs.core.async	:refer	[<!]]

												[cognitect.transit	:as	t]))

(def	r	(t/reader	:json))

(def		aws-endpoint	"http://localhost:3001")

(defn	aws-uri	[path]

		(str	aws-endpoint	path))

The	namespace	declaration	requires	the	necessary	dependencies	we	will	need	in	this	file.
Note	how	there	is	no	explicit	dependency	on	RxJS.	Since	it	is	a	JavaScript	dependency
that	we	manually	pulled	in,	it	is	globally	available	for	us	to	use	via	JavaScript
interoperability.

The	next	line	sets	up	a	transit	reader	for	JSON,	which	we	will	use	when	parsing	the	stub
server	responses.

Then,	we	define	the	endpoint	we	will	be	talking	to	as	well	as	a	helper	function	to	build	the
correct	URIs.	Make	sure	the	variable	aws-endpoint	matches	the	host	and	port	of	the	stub
server	started	in	the	previous	section.

All	Observables	we	are	about	to	create	follow	a	common	structure:	they	make	a	request	to
the	stub	server,	extract	some	information	from	the	response,	optionally	transforming	it,
and	then	emit	each	item	in	the	transformed	sequence	into	the	new	Observable	sequence.

To	avoid	repetition,	this	pattern	is	captured	in	the	following	function:

(defn	observable-seq	[uri	transform]

		(.create	js/Rx.Observable

											(fn	[observer]

													(go	(let	[response						(<!	(http/get	uri	{:with-credentials?	

false}))

																							data										(t/read	r	(:body	response))

																							transformed			(transform	data)]

																			(doseq	[x	transformed]

																					(.onNext	observer	x))

																			(.onCompleted	observer)))

													(fn	[]	(.log	js/console	"Disposed")))))

Let’s	break	this	function	down:

observable-seq	receives	two	arguments:	the	backend	URI	to	which	we	will	issue	a
GET	request,	and	a	transform	function	which	is	given	the	raw	parsed	JSON
response	and	returns	a	sequence	of	transformed	items.
Then,	it	calls	the	create	function	of	the	RxJS	object	Rx.Observable.	Note	how	we
make	use	of	JavaScript	interoperability	here:	we	access	the	create	function	by
prepending	it	with	a	dot	much	like	in	Java	interoperability.	Since	Rx.Observable	is	a
global	object,	we	access	it	by	prepending	the	global	JavaScript	namespace
ClojureScript	makes	available	to	our	program,	js/Rx.Observable.
The	Observable’s	create	function	receives	two	arguments.	One	is	a	function	that	gets
called	with	an	Observer	to	which	we	can	push	items	to	be	published	in	the
Observable	sequence.	The	second	function	is	a	function	that	is	called	whenever	this
Observable	is	disposed	of.	This	is	the	function	where	we	could	perform	any	cleanup
needed.	In	our	case,	this	function	simply	logs	the	fact	that	it	is	called	to	the	console.

The	first	function	is	the	one	that	interests	us	though:

(fn	[observer]

		(go	(let	[response						(<!	(http/get	uri	

																																								{:with-credentials?	

																																									false}))

												data										(t/read	r	(:body	response))

												transformed			(transform	data)]

								(doseq	[x	transformed]

										(.onNext	observer	x))

								(.onCompleted	observer))))

As	soon	as	it	gets	called,	it	performs	a	request	to	the	provided	URI	using	cljs-http’s	get
function,	which	returns	a	core.async	channel.	That’s	why	the	whole	logic	is	inside	a	go
block.

Next,	we	use	the	transit	JSON	reader	we	configured	previously	to	parse	the	body	of	the
response,	feeding	the	result	into	the	transform	function.	Remember	this	function,	as	per
our	design,	returns	a	sequence	of	things.	Therefore,	all	that	is	left	to	do	is	push	each	item
into	the	observer	in	turn.

Once	we’re	done,	we	indicate	that	this	Observable	sequence	won’t	emit	any	new	item	by
invoking	the	.onCompleted	function	of	the	observer	object.

Now,	we	can	proceed	creating	our	Observables	using	this	helper	function,	starting	with	the
one	responsible	for	retrieving	CloudFormation	stacks:

(defn	describe-stacks	[]

		(observable-seq	(aws-uri	"/cloudFormation/describeStacks")

																		(fn	[data]

																				(map	(fn	[stack]	{:stack-id			(stack	"StackId")

																																					:stack-name	(stack	"StackName")})

																									(data	"Stacks")))))

This	creates	an	observable	that	will	emit	one	item	per	stack,	in	the	following	format:

({:stack-id	"arn:aws:cloudformation:ap-southeast-

2:337944750480:stack/DevStack-62031/1",	:stack-name	"DevStack-62031"})

Now	that	we	have	stacks,	we	need	an	Observable	to	describe	its	resources:

(defn	describe-stack-resources	[stack-name]

		(observable-seq	(aws-uri	"/cloudFormation/describeStackResources")

																		(fn	[data]

																				(map	(fn	[resource]

																											{:resource-id	(resource	"PhysicalResourceId")

																												:resource-type	(resource	"ResourceType")})

																									(data	"StackResources")))))

It	has	a	similar	purpose	and	emits	resource	items	in	the	following	format:

({:resource-id	"EC2123",	:resource-type	"AWS::EC2::Instance"}

	{:resource-id	"EC2456",	:resource-type	"AWS::EC2::Instance"}

	{:resource-id	"EC2789",	:resource-type	"AWS::EC2::Instance"}

	{:resource-id	"RDS123",	:resource-type	"AWS::RDS::DBInstance"}

	{:resource-id	"RDS456",	:resource-type	"AWS::RDS::DBInstance"})

Since	we’re	following	our	strategy	almost	to	the	letter,	we	need	two	more	observables,	one
for	each	instance	type:

(defn	describe-instances	[instance-ids]

		(observable-seq	(aws-uri	"/ec2/describeInstances")

																		(fn	[data]

																				(let	[instances	(mapcat	(fn	[reservation]

																																														(reservation	"Instances"))

																																												(data	"Reservations"))]

																						(map	(fn	[instance]

																													{:instance-id		(instance	"InstanceId")

																														:type								"EC2"

																														:status						(get-in	instance	["State"	

"Name"])})

																											instances)))))

(defn	describe-db-instances	[instance-id]

		(observable-seq	(aws-uri	(str	"/rds/describeDBInstances/"	instance-id))

																		(fn	[data]

																				(map	(fn	[instance]

																											{:instance-id	(instance	"DBInstanceIdentifier")

																												:type								"RDS"

																												:status						(instance	"DBInstanceStatus")})

																									(data	"DBInstances")))))

Each	of	which	will	emit	resource	items	in	the	following	formats	for	EC2	and	RDS,
respectively:

({:instance-id	"EC2123",	:type	"EC2",	:status	"running"}	...)

({:instance-id	"RDS123",	:type	"RDS",	:status	"available"}	...)

Combining	the	AWS	Observables
It	seems	we	have	all	major	pieces	in	place	now.	All	that	is	left	to	do	is	to	combine	the
more	primitive,	basic	Observables	we	just	created	into	more	complex	and	useful	ones	by
combining	them	to	aggregate	all	the	data	we	need	in	order	to	render	our	dashboard.

We	will	start	by	creating	a	function	that	combines	both	the	describe-stacks	and
describe-stack-resources	Observables:

(defn	stack-resources	[]

		(->	(describe-stacks)

						(.map	#(:stack-name	%))

						(.flatMap	describe-stack-resources)))

Starting	in	the	previous	example,	we	begin	to	see	how	defining	our	API	calls	in	terms	of
Observable	sequences	pays	off:	it’s	almost	simple	combining	these	two	Observables	in	a
declarative	manner.

Remember	the	role	of	flatMap:	as	describe-stack-resources	itself	returns	an
Observable,	we	use	flatMap	to	flatten	both	Observables,	as	we	have	done	before	in
various	different	abstractions.

The	stack-resources	Observable	will	emit	resource	items	for	all	stacks.	According	to
our	plan,	we	would	like	to	fork	the	processing	here	in	order	to	concurrently	retrieve	EC2
and	RDS	instance	data.

By	following	this	train	of	thought,	we	arrive	at	two	more	functions	that	combine	and
transform	the	previous	Observables:

(defn	ec2-instance-status	[resources]

		(->	resources

						(.filter	#(=	(:resource-type	%)	"AWS::EC2::Instance"))

						(.map	#(:resource-id	%))

						(.reduce	conj	[])

						(.flatMap	describe-instances)))

(defn	rds-instance-status	[resources]

		(->	resources

						(.filter	#(=	(:resource-type	%)	"AWS::RDS::DBInstance"))

						(.map	#(:resource-id	%))

						(.flatMap	describe-db-instances)))

Both	the	functions	receive	an	argument,	resources,	which	is	the	result	of	calling	the
stack-resources	Observable.	That	way,	we	only	need	to	call	it	once.

Once	again,	it	is	fairly	simple	to	combine	the	Observables	in	a	way	that	makes	sense,
following	our	high-level	idea	described	previously.

Starting	with	resources,	we	filter	out	the	types	we’re	not	interested	in,	retrieve	its	IDs,
and	request	its	detailed	information	by	flatmapping	the	describe-instances	and
describe-db-instances	Observables.

Note,	however,	that	due	to	a	limitation	in	the	RDS	API	described	earlier,	we	have	to	call	it

multiple	times	to	retrieve	information	about	all	RDS	instances.

This	seemingly	fundamental	difference	in	how	we	use	the	API	becomes	a	minor
transformation	in	our	EC2	observable,	which	simply	accumulates	all	IDs	into	a	vector	so
that	we	can	retrieve	them	all	at	once.

Our	simple	Reactive	API	to	Amazon	AWS	is	now	complete,	leaving	us	with	the	UI	to
create.

Putting	it	all	together
Let’s	now	turn	to	building	our	user	interface.	It’s	a	simple	one,	so	let’s	just	jump	into	it.
Open	up	aws-dash/src/cljs/aws_dash/core.cljs	and	add	the	following:

(ns	aws-dash.core

		(:require	[aws-dash.observables	:as	obs]

												[om.core	:as	om	:include-macros	true]

												[om.dom	:as	dom	:include-macros	true]))

(enable-console-print!)

(def	app-state	(atom	{:instances	[]}))

(defn	instance-view	[{:keys	[instance-id	type	status]}	owner]

		(reify

				om/IRender

				(render	[this]

						(dom/tr	nil

														(dom/td	nil	instance-id)

														(dom/td	nil	type)

														(dom/td	nil	status)))))

(defn	instances-view	[instances	owner]

		(reify

				om/IRender

				(render	[this]

						(apply	dom/table	#js	{:style	#js	{:border	"1px	solid	black;"}}

													(dom/tr	nil

																					(dom/th	nil	"Id")

																					(dom/th	nil	"Type")

																					(dom/th	nil	"Status"))

													(om/build-all	instance-view	instances)))))

(om/root

	(fn	[app	owner]

			(dom/div	nil

												(dom/h1	nil	"Stack	Resource	Statuses")

												(om/build	instances-view	(:instances	app))))

	app-state

	{:target	(.	js/document	(getElementById	"app"))})

Our	application	state	contains	a	single	key,	:instances,	which	starts	as	an	empty	vector.
As	we	can	see	from	each	Om	component,	instances	will	be	rendered	as	rows	in	a	HTML
table.

After	saving	the	file,	make	sure	the	web	server	is	running	by	starting	it	from	the	REPL:

lein	repl

Compiling	ClojureScript.

nREPL	server	started	on	port	58209	on	host	127.0.0.1	-	

nrepl://127.0.0.1:58209

REPL-y	0.3.5,	nREPL	0.2.6

Clojure	1.6.0

Java	HotSpot(TM)	64-Bit	Server	VM	1.8.0_25-b17

				Docs:	(doc	function-name-here)

										(find-doc	"part-of-name-here")

		Source:	(source	function-name-here)

	Javadoc:	(javadoc	java-object-or-class-here)

				Exit:	Control+D	or	(exit)	or	(quit)

	Results:	Stored	in	vars	*1,	*2,	*3,	an	exception	in	*e

user=>	(run)

2015-02-08	21:02:34.503:INFO:oejs.Server:jetty-7.6.8.v20121106

2015-02-08	21:02:34.545:INFO:oejs.AbstractConnector:Started	

SelectChannelConnector@0.0.0.0:3000

#<Server	org.eclipse.jetty.server.Server@35bc3669>

You	should	now	be	able	point	your	browser	to	http://localhost:3000/,	but,	as	you
might	have	guessed,	you	will	see	nothing	but	an	empty	table.

This	is	because	we	haven’t	yet	used	our	Reactive	AWS	API.

Let’s	fix	it	and	bring	it	all	together	at	the	bottom	of	core.cljs:

(def	resources	(obs/stack-resources))

(.subscribe	(->	(.merge		(obs/rds-instance-status	resources)

																									(obs/ec2-instance-status	resources))

																(.reduce	conj	[]))

												#(swap!	app-state	assoc	:instances	%))

Yes,	this	is	all	we	need!	We	create	a	stack-resources	Observable	and	pass	it	as	an
argument	to	both	rds-instance-status	and	ec2-instance-status,	which	will
concurrently	retrieve	status	information	about	all	instances.

Next,	we	create	a	new	Observable	by	merging	the	previous	two	followed	by	a	call	to
.reduce,	which	will	accumulate	all	information	into	a	vector,	convenient	for	rendering.

Finally,	we	simply	subscribe	to	this	Observable	and,	when	it	emits	its	results,	we	simply
update	our	application	state,	leaving	Om	to	do	all	the	rendering	for	us.

Save	the	file	and	make	sure	ClojureScript	has	compiled	successfully.	Then,	go	back	to
your	browser	at	http://localhost:3000/,	and	you	should	see	all	instance	statuses,	as
pictured	at	the	beginning	of	this	chapter.

Exercises
With	our	previous	approach,	the	only	way	to	see	new	information	about	the	AWS
resources	is	by	refreshing	the	whole	page.	Modify	our	implementation	in	such	a	way	that
it	queries	the	stub	services	every	so	often—say,	every	500	milliseconds.

Tip
The	interval	function	from	RxJS	can	be	helpful	in	solving	this	exercise.	Think	how	you
might	use	it	together	with	our	existing	stream	by	reviewing	how	flatMap	works.

Summary
In	this	chapter,	we	looked	at	a	real	use	case	for	Reactive	applications:	building	a
dashboard	for	AWS	CloudFormation	stacks.

We	have	seen	how	thinking	of	all	the	information	needed	as	resources/items	flowing
through	a	graph	fits	nicely	with	how	one	creates	Observables.

In	addition,	by	creating	primitive	Observables	that	do	one	thing	only	gives	us	a	nice
declarative	way	to	combine	them	into	more	complex	Observables,	giving	us	a	degree	of
reuse	not	usually	found	with	common	techniques.

Finally,	we	packaged	it	together	with	a	simple	Om-based	interface	to	demonstrate	how
using	different	abstractions	in	the	same	application	does	not	add	to	complexity	as	long	as
the	abstractions	are	chosen	carefully	for	the	problem	at	hand.

This	brings	us	to	the	end	of	what	hopefully	was	an	enjoyable	and	informative	journey
through	the	different	ways	of	Reactive	Programming.

Far	from	being	a	complete	reference,	this	book	aims	to	provide	you,	the	reader,	with
enough	information,	as	well	as	concrete	tools	and	examples	that	you	can	apply	today.

It	is	also	my	hope	that	the	references	and	exercises	included	in	this	book	prove	themselves
useful,	should	you	wish	to	expand	your	knowledge	and	seek	out	more	details.

Lastly,	I	strongly	encourage	you	to	turn	the	page	and	read	the	Appendix	,	The	Algebra	of
Library	Design,	as	I	truly	believe	it	will,	if	nothing	else,	make	you	think	hard	about	the
importance	of	composition	in	programming.

I	sincerely	wish	this	book	has	been	as	entertaining	and	instructional	to	read	as	it	was	to
write.

Thank	you	for	reading.	I	look	forward	to	seeing	the	great	things	you	build.

Appendix	A.	The	Algebra	of	Library
Design
You	might	have	noticed	that	all	reactive	abstractions	we	have	encountered	in	this	book
have	a	few	things	in	common.	For	one,	they	work	as	“container-like”	abstractions:

Futures	encapsulate	a	computation	that	eventually	yields	a	single	value
Observables	encapsulate	computations	that	can	yield	multiple	values	over	time	in	the
shape	of	a	stream
Channels	encapsulate	values	pushed	to	them	and	can	have	them	popped	from	it,
working	as	a	concurrent	queue	through	which	concurrent	processes	communicate

Then,	once	we	have	this	“container,”	we	can	operate	on	it	in	a	number	of	ways,	which	are
very	similar	across	the	different	abstractions	and	frameworks:	we	can	filter	the	values
contained	in	them,	transform	them	using	map,	combine	abstractions	of	the	same	type	using
bind/flatMap/selectMany,	execute	multiple	computations	in	parallel,	aggregate	the
results	using	sequence,	and	much	more.

As	such,	even	though	the	abstractions	and	their	underlying	workings	are	fundamentally
different,	it	still	feels	they	belong	to	some	type	of	higher-level	abstractions.

In	this	appendix,	we	will	explore	what	these	higher-level	abstractions	are,	the	relationship
between	them,	and	how	we	can	take	advantage	of	them	in	our	projects.

The	semantics	of	map
We	will	get	started	by	taking	a	look	at	one	of	the	most	used	operations	in	these
abstractions:	map.

We’ve	been	using	map	for	a	long	time	in	order	to	transform	sequences.	Thus,	instead	of
creating	a	new	function	name	for	each	new	abstraction,	library	designers	simply	abstract
the	map	operation	over	its	own	container	type.

Imagine	the	mess	we	would	end	up	in	if	we	had	functions	such	as	transform-observable,
transform-channel,	combine-futures,	and	so	on.

Thankfully,	this	is	not	the	case.	The	semantics	of	map	are	well	understood	to	the	point	that
even	if	a	developer	hasn’t	used	a	specific	library	before,	he	will	almost	always	assume	that
map	will	apply	a	function	to	the	value(s)	contained	within	whatever	abstraction	the	library
provides.

Let’s	look	at	three	examples	we	encountered	in	this	book.	We	will	create	a	new	leiningen
project	in	which	to	experiment	with	the	contents	of	this	appendix:

$	lein	new	library-design

Next,	let’s	add	a	few	dependencies	to	our	project.clj	file:

...

:dependencies	[[org.clojure/clojure	"1.6.0"]

															[com.leonardoborges/imminent	"0.1.0"]

															[com.netflix.rxjava/rxjava-clojure	"0.20.7"]

															[org.clojure/core.async	"0.1.346.0-17112a-alpha"]

															[uncomplicate/fluokitten	"0.3.0"]]

...

Don’t	worry	about	the	last	dependency—we’ll	get	to	it	later	on.

Now,	start	an	REPL	session	so	that	we	can	follow	along:

$	lein	repl

Then,	enter	the	following	into	your	REPL:

(require	'[imminent.core	:as	i]

									'[rx.lang.clojure.core	:as	rx]

									'[clojure.core.async	:as	async])

(def		repl-out	*out*)

(defn	prn-to-repl	[&	args]

		(binding	[*out*	repl-out]

				(apply	prn	args)))

(->	(i/const-future	31)

				(i/map	#(*	%	2))

				(i/on-success	#(prn-to-repl	(str	"Value:	"	%))))

(as->	(rx/return	31)	obs

						(rx/map	#(*	%	2)	obs)

						(rx/subscribe	obs	#(prn-to-repl	(str	"Value:	"	%))))

(def	c								(chan))

(def	mapped-c	(async/map<	#(*	%	2)	c))

(async/go	(async/>!	c	31))

(async/go	(prn-to-repl	(str	"Value:	"	(async/<!	mapped-c))))

"Value:	62"

"Value:	62"

"Value:	62"

The	three	examples—using	imminent,	RxClojure,	and	core.async,	respectively—look
remarkably	similar.	They	all	follow	a	simple	recipe:

1.	 Put	the	number	31	inside	their	respective	abstraction.
2.	 Double	that	number	by	mapping	a	function	over	the	abstraction.
3.	 Print	its	result	to	the	REPL.

As	expected,	this	outputs	the	value	62	three	times	to	the	screen.

It	would	seem	map	performs	the	same	abstract	steps	in	all	three	cases:	it	applies	the
provided	function,	puts	the	resulting	value	in	a	fresh	new	container,	and	returns	it.	We
could	continue	generalizing,	but	we	would	just	be	rediscovering	an	abstraction	that
already	exists:	Functors.

Functors
Functors	are	the	first	abstraction	we	will	look	at	and	they	are	rather	simple:	they	define	a
single	operation	called	fmap.	In	Clojure,	Functors	can	be	represented	using	protocols	and
are	used	for	containers	that	can	be	mapped	over.	Such	containers	include,	but	are	not
limited	to,	lists,	Futures,	Observables,	and	channels.

Tip
The	Algebra	in	the	title	of	this	Appendix	refers	to	Abstract	Algebra,	a	branch	of
Mathematics	that	studies	algebraic	structures.	An	algebraic	structure	is,	to	put	it	simply,	a
set	with	one	or	more	operations	defined	on	it.

As	an	example,	consider	Semigroups,	which	is	one	such	algebraic	structure.	It	is	defined
to	be	a	set	of	elements	together	with	an	operation	that	combines	any	two	elements	of	this
set.	Therefore,	the	set	of	positive	integers	together	with	the	addition	operation	form	a
Semigroup.

Another	tool	used	for	studying	algebraic	structures	is	called	Category	Theory,	of	which
Functors	are	part	of.

We	won’t	delve	too	much	into	the	theory	behind	all	this,	as	there	are	plenty	of	books	[9]
[10]	available	on	the	subject.	It	was,	however,	a	necessary	detour	to	explain	the	title	used
in	this	appendix.

Does	this	mean	all	of	these	abstractions	implement	a	Functor	protocol?	Unfortunately,	this
is	not	the	case.	As	Clojure	is	a	dynamic	language	and	it	didn’t	have	protocols	built	in—
they	were	added	in	version	1.2	of	the	language—these	frameworks	tend	to	implement
their	own	version	of	the	map	function,	which	doesn’t	belong	to	any	protocol	in	particular.

The	only	exception	is	imminent,	which	implements	the	protocols	included	in	fluokitten,
a	Clojure	library	providing	concepts	from	Category	theory	such	as	Functors.

This	is	a	simplified	version	of	the	Functor	protocol	found	in	fluokitten:

(defprotocol	Functor

		(fmap	[fv	g]))

As	mentioned	previously,	Functors	define	a	single	operation.	fmap	applies	the	function	g
to	whatever	value	is	inside	the	container,	Functor,	fv.

However,	implementing	this	protocol	does	not	guarantee	that	we	have	actually
implemented	a	Functor.	This	is	because,	in	addition	to	implementing	the	protocol,
Functors	are	also	required	to	obey	a	couple	of	laws,	which	we	will	examine	briefly.

The	identity	law	is	as	follows:

(=	(fmap	a-functor	identity)

			(identity	a-functor))

The	preceding	code	is	all	we	need	to	verify	this	law.	It	simply	says	that	mapping	the
identity	function	over	a-functor	is	the	same	as	simply	applying	the	identity	function

to	the	Functor	itself.

The	composition	law	is	as	follows:

(=	(fmap	a-functor	(comp	f	g))

			(fmap	(fmap	a-functor	g)	f))

The	composition	law,	in	turn,	says	that	if	we	compose	two	arbitrary	functions	f	and	g,	take
the	resulting	function	and	apply	that	to	a-functor,	that	is	the	same	as	mapping	g	over	the
Functor	and	then	mapping	f	over	the	resulting	Functor.

No	amount	of	text	will	be	able	to	replace	practical	examples,	so	we	will	implement	our
own	Functor,	which	we	will	call	Option.	We	will	then	revisit	the	laws	to	ensure	we	have
respected	them.

The	Option	Functor
As	Tony	Hoare	once	put	it,	null	references	are	his	one	billion	dollar	mistake
(http://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-
Hoare).	Regardless	of	background,	you	no	doubt	will	have	encountered	versions	of	the
dreadful	NullPointerException.	This	usually	happens	when	we	try	to	call	a	method	on
an	object	reference	that	is	null.

Clojure	embraces	null	values	due	to	its	interoperability	with	Java,	its	host	language,	but	it
provides	improved	support	for	dealing	with	them.

The	core	library	is	packed	with	functions	that	do	the	right	thing	if	passed	a	nil	value—
Clojure’s	version	of	Java’s	null.	For	instance,	how	many	elements	are	there	in	a	nil
sequence?

(count	nil)	;;	0

Thanks	to	conscious	design	decisions	regarding	nil,	we	can,	for	the	most	part,	afford	not
worry	about	it.	For	all	other	cases,	the	Option	Functor	might	be	of	some	help.

The	remaining	of	the	examples	in	this	appendix	should	be	in	a	file	called	option.clj
under	library-design/src/library_design/.	You’re	welcome	to	try	this	in	the	REPL	as
well.

Let’s	start	our	next	example	by	adding	the	namespace	declaration	as	well	as	the	data	we
will	be	working	with:

(ns	library-design.option

		(:require	[uncomplicate.fluokitten.protocols	:as	fkp]

												[uncomplicate.fluokitten.core	:as	fkc]

												[uncomplicate.fluokitten.jvm	:as	fkj]

												[imminent.core	:as	I]))

(def	pirates	[{:name	"Jack	Sparrow"				:born	1700	:died	1740	:ship	"Black	

Pearl"}

														{:name	"Blackbeard"						:born	1680	:died	1750	:ship	"Queen	

Anne's	Revenge"}

														{:name	"Hector	Barbossa"	:born	1680	:died	1740	:ship	nil}])

(defn	pirate-by-name	[name]

		(->>	pirates

							(filter	#(=	name	(:name	%)))

							first))

(defn	age	[{:keys	[born	died]}]

		(-	died	born))

As	a	Pirates	of	the	Caribbean	fan,	I	thought	it	would	be	interesting	to	play	with	pirates	for
this	example.	Let’s	say	we	would	like	to	calculate	Jack	Sparrow’s	age.	Given	the	data	and
functions	we	just	covered,	this	is	a	simple	task:

		(->	(pirate-by-name	"Jack	Sparrow")

						age)	;;	40

http://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare

However,	what	if	we	would	like	to	know	Davy	Jones’	age?	We	don’t	actually	have	any
data	for	this	pirate,	so	if	we	run	our	program	again,	this	is	what	we’ll	get:

(->	(pirate-by-name	"Davy	Jones")

						age)	;;	NullPointerException			clojure.lang.Numbers.ops	

(Numbers.java:961)

There	it	is.	The	dreadful	NullPointerException.	This	happens	because	in	the
implementation	of	the	age	function,	we	end	up	trying	to	subtract	two	nil	values,	which	is
incorrect.	As	you	might	have	guessed,	we	will	attempt	to	fix	this	by	using	the	Option
Functor.

Traditionally,	Option	is	implemented	as	an	algebraic	data	type,	more	specifically	a	sum
type	with	two	variants:	Some	and	None.	These	variants	are	used	to	identify	whether	a	value
is	present	or	not	without	using	nils.	You	can	think	of	both	Some	and	None	as	subtypes	of
Option.

In	Clojure,	we	will	represent	them	using	records:

(defrecord	Some	[v])

(defrecord	None	[])

(defn	option	[v]

		(if	v

				(Some.	v)

				(None.)))

As	we	can	see,	Some	can	contain	a	single	value	whereas	None	contains	nothing.	It’s	simply
a	marker	indicating	the	absence	of	content.	We	have	also	created	a	helper	function	called
option,	which	creates	the	appropriate	record	depending	on	whether	its	argument	is	nil	or
not.

The	next	step	is	to	extend	the	Functor	protocol	to	both	records:

(extend-protocol	fkp/Functor

		Some

		(fmap	[f	g]

				(Some.	(g	(:v	f))))

		None

		(fmap	[_	_]

				(None.)))

Here’s	where	the	semantic	meaning	of	the	Option	Functor	becomes	apparent:	as	Some
contains	a	value,	its	implementation	of	fmap	simply	applies	the	function	g	to	the	value
inside	the	Functor	f,	which	is	of	type	Some.	Finally,	we	put	the	result	inside	a	new	Some
record.

Now	what	does	it	mean	to	map	a	function	over	a	None?	You	probably	guessed	that	it
doesn’t	really	make	sense—the	None	record	holds	no	values.	The	only	thing	we	can	do	is
return	another	None.	As	we	will	see	shortly,	this	gives	the	Option	Functor	a	short-
circuiting	semantic.

Tip
In	the	fmap	implementation	of	None,	we	could	have	returned	a	reference	to	this	instead	of
a	new	record	instance.	I’ve	not	done	so	simply	to	make	it	clear	that	we	need	to	return	an
instance	of	None.

Now	that	we’ve	implemented	the	Functor	protocol,	we	can	try	it	out:

(->>	(option	(pirate-by-name	"Jack	Sparrow"))

					(fkc/fmap	age))	;;	#library_design.option.Some{:v	40}

(->>	(option	(pirate-by-name	"Davy	Jones"))

					(fkc/fmap	age))	;;	#library_design.option.None{}

The	first	example	shouldn’t	hold	any	surprises.	We	convert	the	pirate	map	we	get	from
calling	pirate-by-name	into	an	option,	and	then	fmap	the	age	function	over	it.

The	second	example	is	the	interesting	one.	As	stated	previously,	we	have	no	data	about
Davy	Jones.	However,	mapping	age	over	it	does	not	throw	an	exception	any	longer,
instead	returning	None.

This	might	seem	like	a	small	benefit,	but	the	bottom	line	is	that	the	Option	Functor	makes
it	safe	to	chain	operations	together:

(->>	(option	(pirate-by-name	"Jack	Sparrow"))

					(fkc/fmap	age)

					(fkc/fmap	inc)

					(fkc/fmap	#(*	2	%)))	;;	#library_design.option.Some{:v	82}

(->>	(option	(pirate-by-name	"Davy	Jones"))

					(fkc/fmap	age)

					(fkc/fmap	inc)

					(fkc/fmap	#(*	2	%)))	;;	#library_design.option.None{}

At	this	point,	some	readers	might	be	thinking	about	the	some->	macro—introduced	in
Clojure	1.5—and	how	it	effectively	achieves	the	same	result	as	the	Option	Functor.	This
intuition	is	correct	as	demonstrated	as	follows:

(some->	(pirate-by-name	"Davy	Jones")

								age

								inc

								(*	2))	;;	nil

The	some->	macro	threads	the	result	of	the	first	expression	through	the	first	form	if	it	is
not	nil.	Then,	if	the	result	of	that	expression	isn’t	nil,	it	threads	it	through	the	next	form
and	so	on.	As	soon	as	any	of	the	expressions	evaluates	to	nil,	some->	short-circuits	and
returns	nil	immediately.

That	being	said,	Functor	is	a	much	more	general	concept,	so	as	long	as	we	are	working
with	this	concept,	our	code	doesn’t	need	to	change	as	we	are	operating	at	a	higher	level	of
abstraction:

(->>	(i/future	(pirate-by-name	"Jack	Sparrow"))

					(fkc/fmap	age)

					(fkc/fmap	inc)

					(fkc/fmap	#(*	2	%)))	;;	#<Future@30518bfc:	#<Success@39bd662c:	82>>

In	the	preceding	example,	even	though	we	are	working	with	a	fundamentally	different	tool
—futures—the	code	using	the	result	did	not	have	to	change.	This	is	only	possible	because
both	Options	and	futures	are	Functors	and	implement	the	same	protocol	provided	by
fluokitten.	We	have	gained	composability	and	simplicity	as	we	can	use	the	same	API	to
work	with	various	different	abstractions.

Speaking	of	composability,	this	property	is	guaranteed	by	the	second	law	of	Functors.
Let’s	see	if	our	Option	Functor	respects	this	and	the	first—the	identity—laws:

;;	Identity

(=	(fkc/fmap	identity	(option	1))

			(identity	(option	1)))	;;	true

;;	Composition

(=	(fkc/fmap	(comp	identity	inc)	(option	1))

			(fkc/fmap	identity	(fkc/fmap	inc	(option	1))))	;;	true

And	we’re	done,	our	Option	Functor	is	a	lawful	citizen.	The	remaining	two	abstractions
also	come	paired	with	their	own	laws.	We	will	not	cover	the	laws	in	this	section,	but	I
encourage	the	reader	to	read	about	them
(http://www.leonardoborges.com/writings/2012/11/30/monads-in-small-bites-part-i-
functors/).

http://www.leonardoborges.com/writings/2012/11/30/monads-in-small-bites-part-i-functors/

Finding	the	average	of	ages
In	this	section,	we	will	explore	a	different	use	case	for	the	Option	Functor.	We	would	like
to,	given	a	number	of	pirates,	calculate	the	average	of	their	ages.	This	is	simple	enough	to
do:

(defn	avg	[&	xs]

		(float	(/	(apply	+	xs)	(count	xs))))

(let	[a	(some->	(pirate-by-name	"Jack	Sparrow")	age)

						b	(some->	(pirate-by-name	"Blackbeard")	age)

						c	(some->	(pirate-by-name	"Hector	Barbossa")	age)]

		(avg	a	b	c))	;;	56.666668

Note	how	we	are	using	some->	here	to	protect	us	from	nil	values.	Now,	what	happens	if
there	is	a	pirate	for	which	we	have	no	information?

(let	[a	(some->	(pirate-by-name	"Jack	Sparrow")	age)

						b	(some->	(pirate-by-name	"Davy	Jones")	age)

						c	(some->	(pirate-by-name	"Hector	Barbossa")	age)]

		(avg	a	b	c))	;;	NullPointerException			clojure.lang.Numbers.ops	

(Numbers.java:961)

It	seems	we’re	back	at	square	one!	It’s	worse	now	because	using	some->	doesn’t	help	if	we
need	to	use	all	values	at	once,	as	opposed	to	threading	them	through	a	chain	of	function
calls.

Of	course,	not	all	is	lost.	All	we	need	to	do	is	check	if	all	values	are	present	before
calculating	the	average:

(let	[a	(some->	(pirate-by-name	"Jack	Sparrow")	age)

						b	(some->	(pirate-by-name	"Davy	Jones")	age)

						c	(some->	(pirate-by-name	"Hector	Barbossa")	age)]

		(when	(and	a	b	c)

				(avg	a	b	c)))	;;	nil

While	this	works	perfectly	fine,	our	implementation	suddenly	had	to	become	aware	that
any	or	all	of	the	values	a,	b,	and	c	could	be	nil.	The	next	abstraction	we	will	look	at,
Applicative	Functors,	fixes	this.

Applicative	Functors
Like	Functors,	Applicative	Functors	are	a	sort	of	container	and	defines	two	operations:

(defprotocol	Applicative

		(pure	[av	v])

		(fapply	[ag	av]))

The	pure	function	is	a	generic	way	to	put	a	value	inside	an	Applicative	Functor.	So	far,	we
have	been	using	the	option	helper	function	for	this	purpose.	We	will	be	using	it	a	little
later.

The	fapply	function	will	unwrap	the	function	contained	in	the	Applicative	ag	and	apply	it
to	the	value	contained	in	the	applicative	av.

The	purpose	of	both	the	functions	will	become	clear	with	an	example,	but	first,	we	need	to
promote	our	Option	Functor	into	an	Applicative	Functor:

(extend-protocol	fkp/Applicative

		Some

		(pure	[_	v]

				(Some.	v))

		(fapply	[ag	av]

				(if-let	[v	(:v	av)]

						(Some.	((:v	ag)	v))

						(None.)))

		None

		(pure	[_	v]

				(Some.	v))

		(fapply	[ag	av]

				(None.)))

The	implementation	of	pure	is	the	simplest.	All	it	does	is	wrap	the	value	v	into	an	instance
of	Some.	Equally	simple	is	the	implementation	of	fapply	for	None.	As	there	is	no	value,	we
simply	return	None	again.

The	fapply	implementation	of	Some	ensures	both	arguments	have	a	value	for	the	:v
keyword—strictly	speaking	they	both	have	to	be	instances	of	Some.	If	:v	is	non-nil,	it
applies	the	function	contained	in	ag	to	v,	finally	wrapping	the	result.	Otherwise,	it	returns
None.

This	should	be	enough	to	try	our	first	example	using	the	Applicative	Functor	API:

(fkc/fapply	(option	inc)	(option	2))

;;	#library_design.option.Some{:v	3}

(fkc/fapply	(option	nil)	(option	2))

;;	#library_design.option.None{}

We	are	now	able	to	work	with	Functors	that	contain	functions.	Additionally,	we	have	also
preserved	the	semantics	of	what	should	happen	when	any	of	the	Functors	don’t	have	a

value.

We	can	now	revisit	the	age	average	example	from	before:

(def	age-option	(comp	(partial	fkc/fmap	age)	option	pirate-by-name))

(let	[a	(age-option	"Jack	Sparrow")

						b	(age-option	"Blackbeard")

						c	(age-option	"Hector	Barbossa")]

		(fkc/<*>	(option	(fkj/curry	avg	3))

											a	b	c))

;;	#library_design.option.Some{:v	56.666668}

Tip
The	vararg	function	<*>	is	defined	by	fluokitten	and	performs	a	left-associative	fapply
on	its	arguments.	Essentially,	it	is	a	convenience	function	that	makes	(<*>	f	g	h)
equivalent	to	(fapply	(fapply	f	g)	h).

We	start	by	defining	a	helper	function	to	avoid	repetition.	The	age-option	function
retrieves	the	age	of	a	pirate	as	an	option	for	us.

Next,	we	curry	the	avg	function	to	3	arguments	and	put	it	into	an	option.	Then,	we	use	the
<*>	function	to	apply	it	to	the	options	a,	b,	and	c.	We	get	to	the	same	result,	but	have	the
Applicative	Functor	take	care	of	nil	values	for	us.

Tip
Function	currying

Currying	is	the	technique	of	transforming	a	function	of	multiple	arguments	into	a	higher-
order	function	of	a	single	argument	that	returns	more	single-argument	functions	until	all
arguments	have	been	supplied.

Roughly	speaking,	currying	makes	the	following	snippets	equivalent:

(def	curried-1	(fkj/curry	+	2))

(def	curried-2	(fn	[a]

																	(fn	[b]

																			(+	a	b))))

((curried-1	10)	20)	;;	30

((curried-2	10)	20)	;;	30

Using	Applicative	Functors	this	way	is	so	common	that	the	pattern	has	been	captured	as
the	function	alift,	as	shown	in	the	following:

	(defn	alift

		"Lifts	a	n-ary	function	`f`	into	a	applicative	context"

		[f]

		(fn	[&	as]

				{:pre		[(seq	as)]}

				(let	[curried	(fkj/curry	f	(count	as))]

						(apply	fkc/<*>

													(fkc/fmap	curried	(first	as))

													(rest	as)))))

The	alift	function	is	responsible	for	lifting	a	function	in	such	a	way	that	it	can	be	used
with	Applicative	Functors	without	much	ceremony.	Because	of	the	assumptions	we	are
able	to	make	about	Applicative	Functors—for	instance,	that	it	is	also	a	Functor—we	can
write	generic	code	that	can	be	re-used	across	any	Applicatives.

With	alift	in	place,	our	age	average	example	turns	into	the	following:

(let	[a	(age-option	"Jack	Sparrow")

						b	(age-option	"Blackbeard")

						c	(age-option	"Hector	Barbossa")]

		((alift	avg)	a	b	c))

;;	#library_design.option.Some{:v	56.666668}

We	lift	avg	into	an	Applicative	compatible	version,	making	the	code	look	remarkably	like
simple	function	application.	And	since	we	are	not	doing	anything	interesting	with	the	let
bindings,	we	can	simplify	it	further	as	follows:

((alift	avg)	(age-option	"Jack	Sparrow")

													(age-option	"Blackbeard")

													(age-option	"Hector	Barbossa"))

;;	#library_design.option.Some{:v	56.666668}

((alift	avg)	(age-option	"Jack	Sparrow")

													(age-option	"Davy	Jones")

													(age-option	"Hector	Barbossa"))

;;	#library_design.option.None{}

As	with	Functors,	we	can	take	the	code	as	it	is,	and	simply	replace	the	underlying
abstraction,	preventing	repetition	once	again:

((alift	avg)	(i/future	(some->	(pirate-by-name	"Jack	Sparrow")	age))

													(i/future	(some->	(pirate-by-name	"Blackbeard")	age))

													(i/future	(some->	(pirate-by-name	"Hector	Barbossa")	age)))

;;	#<Future@17b1be96:	#<Success@16577601:	56.666668>>

Gathering	stats	about	ages
Now	that	we	can	safely	calculate	the	average	age	of	a	number	of	pirates,	it	might	be
interesting	to	take	this	further	and	calculate	the	median	and	standard	deviation	of	the
pirates’	ages,	in	addition	to	their	average	age.

We	already	have	a	function	to	calculate	the	average,	so	let’s	just	create	the	ones	to
calculate	the	median	and	the	standard	deviation	of	a	list	of	numbers:

(defn	median	[&	ns]

		(let	[ns	(sort	ns)

								cnt	(count	ns)

								mid	(bit-shift-right	cnt	1)]

				(if	(odd?	cnt)

						(nth	ns	mid)

						(/	(+	(nth	ns	mid)	(nth	ns	(dec	mid)))	2))))

(defn	std-dev	[&	samples]

		(let	[n	(count	samples)

	 mean	(/	(reduce	+	samples)	n)

	 intermediate	(map	#(Math/pow	(-	%1	mean)	2)	samples)]

				(Math/sqrt

					(/	(reduce	+	intermediate)	n))))

With	these	functions	in	place,	we	can	write	the	code	that	will	gather	all	the	stats	for	us:

		(let		[a							(some->	(pirate-by-name	"Jack	Sparrow")				age)

									b							(some->	(pirate-by-name	"Blackbeard")						age)

									c							(some->	(pirate-by-name	"Hector	Barbossa")	age)

									avg					(avg	a	b	c)

									median		(median	a	b	c)

									std-dev	(std-dev	a	b	c)]

				{:avg	avg

					:median	median

					:std-dev	std-dev})

		;;	{:avg	56.666668,

		;;		:median	60,

		;;		:std-dev	12.472191289246473}

This	implementation	is	fairly	straightforward.	We	first	retrieve	all	ages	we’re	interested	in
and	bind	them	to	the	locals	a,	b,	and	c.	We	then	reuse	the	values	when	calculating	the
remaining	stats.	We	finally	gather	all	results	in	a	map	for	easy	access.

By	now	the	reader	will	probably	know	where	we’re	headed:	what	if	any	of	those	values	is
nil?

		(let		[a							(some->	(pirate-by-name	"Jack	Sparrow")				age)

									b							(some->	(pirate-by-name	"Davy	Jones")						age)

									c							(some->	(pirate-by-name	"Hector	Barbossa")	age)

									avg					(avg	a	b	c)

									median		(median	a	b	c)

									std-dev	(std-dev	a	b	c)]

				{:avg	avg

					:median	median

					:std-dev	std-dev})

		;;	NullPointerException			clojure.lang.Numbers.ops	(Numbers.java:961)

The	second	binding,	b,	returns	nil,	as	we	don’t	have	any	information	about	Davy	Jones.
As	such,	it	causes	the	calculations	to	fail.	Like	before,	we	can	change	our	implementation
to	protect	us	from	such	failures:

		(let		[a							(some->	(pirate-by-name	"Jack	Sparrow")				age)

									b							(some->	(pirate-by-name	"Davy	Jones")						age)

									c							(some->	(pirate-by-name	"Hector	Barbossa")	age)

									avg					(when	(and	a	b	c)	(avg	a	b	c))

									median		(when	(and	a	b	c)	(median	a	b	c))

									std-dev	(when	(and	a	b	c)	(std-dev	a	b	c))]

				(when	(and	a	b	c)

						{:avg	avg

							:median	median

							:std-dev	std-dev}))

		;;	nil

This	time	it’s	even	worse	than	when	we	only	had	to	calculate	the	average;	the	code	is
checking	for	nil	values	in	four	extra	spots:	before	calling	the	three	stats	functions	and	just
before	gathering	the	stats	into	the	result	map.

Can	we	do	better?

Monads
Our	last	abstraction	will	solve	the	very	problem	we	raised	in	the	previous	section:	how	to
safely	perform	intermediate	calculations	by	preserving	the	semantics	of	the	abstractions
we’re	working	with—in	this	case,	options.

It	should	be	no	surprise	now	that	fluokitten	also	provides	a	protocol	for	Monads,
simplified	and	shown	as	follows:

(defprotocol	Monad

		(bind	[mv	g]))

If	you	think	in	terms	of	a	class	hierarchy,	Monads	would	be	at	the	bottom	of	it,	inheriting
from	Applicative	Functors,	which,	in	turn,	inherit	from	Functors.	That	is,	if	you’re
working	with	a	Monad,	you	can	assume	it	is	also	an	Applicative	and	a	Functor.

The	bind	function	of	monads	takes	a	function	g	as	its	second	argument.	This	function
receives	as	input	the	value	contained	in	mv	and	returns	another	Monad	containing	its
result.	This	is	a	crucial	part	of	the	contract:	g	has	to	return	a	Monad.

The	reason	why	will	become	clearer	after	some	examples.	But	first,	let’s	promote	our
Option	abstraction	to	a	Monad—at	this	point,	Option	is	already	an	Applicative	Functor
and	a	Functor:

(extend-protocol	fkp/Monad

		Some

		(bind	[mv	g]

				(g	(:v	mv)))

		None

		(bind	[_	_]

				(None.)))

The	implementation	is	fairly	simple.	In	the	None	version,	we	can’t	really	do	anything,	so
just	like	we	have	been	doing	so	far,	we	return	an	instance	of	None.

The	Some	implementation	extracts	the	value	from	the	Monad	mv	and	applies	the	function	g
to	it.	Note	how	this	time	we	don’t	need	to	wrap	the	result	as	the	function	g	already	returns
a	Monad	instance.

Using	the	Monad	API,	we	could	sum	the	ages	of	our	pirates	as	follows:

(def	opt-ctx	(None.))

(fkc/bind	(age-option	"Jack	Sparrow")

										(fn	[a]

												(fkc/bind	(age-option	"Blackbeard")

																						(fn	[b]

																								(fkc/bind	(age-option	"Hector	Barbossa")

																																		(fn	[c]

																																				(fkc/pure	opt-ctx	

																																														(+	a	b	c))))))))

;;	#library_design.option.Some{:v	170.0}

Firstly,	we	are	making	use	of	Applicative’s	pure	function	in	the	inner-most	function.
Remember	that	role	of	pure	is	to	provide	a	generic	way	to	put	a	value	into	an	Applicative
Functor.	Since	Monads	are	also	Applicative,	we	make	use	of	them	here.

However,	since	Clojure	is	a	dynamically	typed	language,	we	need	to	hint	pure	with	the
context—container—type	we	wish	to	use.	This	context	is	simply	an	instance	of	either
Some	or	None.	They	both	have	the	same	pure	implementation.

While	we	do	get	the	right	answer,	the	preceding	example	is	far	from	what	we	would	like
to	write	due	to	its	excessive	nesting.	It	is	also	hard	to	read.

Thankfully,	fluokitten	provides	a	much	better	way	to	write	monadic	code,	called	the	do-
notation:

(fkc/mdo	[a	(age-option	"Jack	Sparrow")

										b	(age-option	"Blackbeard")

										c	(age-option	"Hector	Barbossa")]

									(fkc/pure	opt-ctx		(+	a	b	c)))

;;	#library_design.option.Some{:v	170.0}

Suddenly,	the	same	code	becomes	a	lot	cleaner	and	easier	to	read,	without	losing	any	of
the	semantics	of	the	Option	Monad.	This	is	because	mdo	is	a	macro	that	expands	to	the
code	equivalent	of	the	nested	version,	as	we	can	verify	by	expanding	the	macro	as
follows:

(require	'[clojure.walk	:as	w])

(w/macroexpand-all	'(fkc/mdo	[a	(age-option	"Jack	Sparrow")

																														b	(age-option	"Blackbeard")

																														c	(age-option	"Hector	Barbossa")]

																													(option		(+	a	b	c))))

;;	(uncomplicate.fluokitten.core/bind

;;		(age-option	"Jack	Sparrow")

;;		(fn*

;;			([a]

;;				(uncomplicate.fluokitten.core/bind

;;					(age-option	"Blackbeard")

;;					(fn*

;;						([b]

;;							(uncomplicate.fluokitten.core/bind

;;								(age-option	"Hector	Barbossa")

;;								(fn*	([c]	(fkc/pure	opt-ctx	(+	a	b	c)))))))))))

Tip
It	is	important	to	stop	for	a	moment	here	and	appreciate	the	power	of	Clojure—and	Lisp	in
general.

Languages	such	as	Haskell	and	Scala,	which	make	heavy	use	of	abstractions	such	as
Functors,	Applicative,	and	Monads,	also	have	their	own	versions	of	the	do-notation.
However,	this	support	is	baked	into	the	compiler	itself.

As	an	example,	when	Haskell	added	do-notation	to	the	language,	a	new	version	of	the
compiler	was	released,	and	developers	wishing	to	use	the	new	feature	had	to	upgrade.

In	Clojure,	on	the	other	hand,	this	new	feature	can	be	shipped	as	a	library	due	to	the	power
and	flexibility	of	macros.	This	is	exactly	what	fluokitten	has	done.

Now,	we	are	ready	to	go	back	to	our	original	problem,	gathering	stats	about	the	pirates’
ages.

First,	we	will	define	a	couple	of	helper	functions	that	convert	the	result	of	our	stats
functions	into	the	Option	Monad:

(def	avg-opt					(comp	option	avg))

(def	median-opt		(comp	option	median))

(def	std-dev-opt	(comp	option	std-dev))

Here,	we	take	advantage	of	function	composition	to	create	monadic	versions	of	existing
functions.

Next,	we	will	rewrite	our	solution	using	the	monadic	do-notation	we	learned	earlier:

(fkc/mdo	[a							(age-option	"Jack	Sparrow")

										b							(age-option	"Blackbeard")

										c							(age-option	"Hector	Barbossa")

										avg					(avg-opt	a	b	c)

										median		(median-opt	a	b	c)

										std-dev	(std-dev-opt	a	b	c)]

									(option	{:avg	avg

																		:median	median

																		:std-dev	std-dev}))

;;	#library_design.option.Some{:v	{:avg	56.666668,

;;																																	:median	60,

;;																																	:std-dev	12.472191289246473}}

This	time	we	were	able	to	write	the	function	as	we	normally	would,	without	having	to
worry	about	whether	any	values	in	the	intermediate	computations	are	empty	or	not.	This
semantic	that	is	the	very	essence	of	the	Option	Monad	is	still	preserved,	as	can	be	seen	in
the	following:

(fkc/mdo	[a							(age-option	"Jack	Sparrow")

										b							(age-option	"Blackbeard")

										c							(age-option	"Hector	Barbossa")

										avg					(avg-opt	a	b	c)

										median		(median-opt	a	b	c)

										std-dev	(std-dev-opt	a	b	c)]

									(fkc/pure	opt-ctx	{:avg	avg

																		:median	median

																		:std-dev	std-dev}))

;;	#library_design.option.None{}

For	the	sake	of	completeness,	we	will	use	futures	to	demonstrate	how	the	do-notation
works	for	any	Monad:

(def	avg-fut					(comp	i/future-call	avg))

(def	median-fut		(comp	i/future-call	median))

(def	std-dev-fut	(comp	i/future-call	std-dev))

(fkc/mdo	[a							(i/future	(some->	(pirate-by-name	"Jack	Sparrow")	age))

										b							(i/future	(some->	(pirate-by-name	"Blackbeard")	age))

										c							(i/future	(some->	(pirate-by-name	"Hector	Barbossa")	

age))

										avg					(avg-fut	a	b	c)

										median		(median-fut	a	b	c)

										std-dev	(std-dev-fut	a	b	c)]

									(i/const-future	{:avg	avg

																										:median	median

																										:std-dev	std-dev}))

;;	#<Future@3fd0b0d0:	#<Success@1e08486b:	{:avg	56.666668,

;;																																									:median	60,

;;																																									:std-dev	12.472191289246473}>>

Summary
This	appendix	has	taken	us	on	a	brief	tour	of	the	world	of	category	theory.	We	learned
three	of	its	abstractions:	Functors,	Applicative	Functors,	and	Monads.	They	were	the
guiding	principle	behind	imminent’s	API.

To	deepen	our	knowledge	and	understanding,	we	implemented	our	own	Option	Monad,	a
common	abstraction	used	to	safely	handle	the	absence	of	values.

We	have	also	seen	that	using	these	abstractions	allow	us	to	make	some	assumptions	about
our	code,	as	seen	in	functions	such	as	alift.	There	are	many	other	functions	we	would
normally	rewrite	over	and	over	again	for	different	purposes,	but	that	can	be	reused	if	we
recognize	our	code	fits	into	one	of	the	abstractions	learned.

Finally,	I	hope	this	encourages	readers	to	explore	category	theory	more,	as	it	will
undoubtedly	change	the	way	you	think.	And	if	I	can	be	so	bold,	I	hope	this	will	also
change	the	way	you	design	libraries	in	the	future.

Appendix	B.	Bibliography
[1]	Rene	Pardo	and	Remy	Landau,	The	World’s	First	Electronic	Spreadsheet:
http://www.renepardo.com/articles/spreadsheet.pdf

[2]	Conal	Elliott	and	Paul	Hudak,	Functional	Reactive	Animation:
http://conal.net/papers/icfp97/icfp97.pdf

[3]	Evan	Czaplicki,	Elm:	Concurrent	FRP	for	Functional	GUIs:	http://elm-
lang.org/papers/concurrent-frp.pdf

[4]	Erik	Meijer,	Subject/Observer	is	Dual	to	Iterator:
http://csl.stanford.edu/~christos/pldi2010.fit/meijer.duality.pdf

[5]	Henrik	Nilsson,	Antony	Courtney	and	John	Peterson,	Functional	Reactive
Programming,	Continued:	http://haskell.cs.yale.edu/wp-
content/uploads/2011/02/workshop-02.pdf

[6]	John	Hughes,	Generalising	Monads	to	Arrows:
http://www.cse.chalmers.se/~rjmh/Papers/arrows.pdf

[7]	Zhanyong	Wan,	Walid	Taha	and	Paul	Hudak,	Real-Time	FRP:
http://haskell.cs.yale.edu/wp-content/uploads/2011/02/rt-frp.pdf

[8]	Walid	Taha,	Zhanyong	Wan,	and	Paul	Hudak,	Event-Driven	FRP:
http://www.cs.yale.edu/homes/zwan/papers/mcu/efrp.pdf

[9]	Benjamin	C.	Pierce,	Basic	Category	Theory	for	Computer	Scientists:
http://www.amazon.com/Category-Computer-Scientists-Foundations-Computing-
ebook/dp/B00MG7E5WE/ref=sr_1_7?ie=UTF8&qid=1423484917&sr=8-
7&keywords=category+theory

[10]	Steve	Awodey,	Category	Theory	(Oxford	Logic	Guides):
http://www.amazon.com/Category-Theory-Oxford-Logic-
Guides/dp/0199237182/ref=sr_1_2?ie=UTF8&qid=1423484917&sr=8-
2&keywords=category+theory

[11]	Duncan	Coutts,	Roman	Leshchinskiy,	and	Don	Stewart,	Stream	Fusion:
http://code.haskell.org/~dons/papers/icfp088-coutts.pdf

[12]	Philip	Wadler,	Transforming	programs	to	eliminate	trees:
http://homepages.inf.ed.ac.uk/wadler/papers/deforest/deforest.ps

http://www.renepardo.com/articles/spreadsheet.pdf
http://conal.net/papers/icfp97/icfp97.pdf
http://elm-lang.org/papers/concurrent-frp.pdf
http://csl.stanford.edu/~christos/pldi2010.fit/meijer.duality.pdf
http://haskell.cs.yale.edu/wp-content/uploads/2011/02/workshop-02.pdf
http://www.cse.chalmers.se/~rjmh/Papers/arrows.pdf
http://haskell.cs.yale.edu/wp-content/uploads/2011/02/rt-frp.pdf
http://www.cs.yale.edu/homes/zwan/papers/mcu/efrp.pdf
http://www.amazon.com/Category-Computer-Scientists-Foundations-Computing-ebook/dp/B00MG7E5WE/ref=sr_1_7?ie=UTF8&qid=1423484917&sr=8-7&keywords=category+theory
http://www.amazon.com/Category-Theory-Oxford-Logic-Guides/dp/0199237182/ref=sr_1_2?ie=UTF8&qid=1423484917&sr=8-2&keywords=category+theory
http://code.haskell.org/~dons/papers/icfp088-coutts.pdf
http://homepages.inf.ed.ac.uk/wadler/papers/deforest/deforest.ps

Index
A

Abstract	Algebra
about	/	Functors

agile	board
creating,	with	Om	/	Creating	an	agile	board	with	Om
state	/	The	board	state
components	/	Components	overview
lifecycle	/	Lifecycle	and	component	local	state
component	local	state	/	Lifecycle	and	component	local	state
multiple	column-view	components,	creating	/	Remaining	components
utility	functions,	adding	/	Utility	functions

Applicative	Functors
about	/	Applicative	Functors
pure	function	/	Applicative	Functors
fapply	function	/	Applicative	Functors
vararg	function	/	Applicative	Functors
stats,	calculating	of	ages	/	Gathering	stats	about	ages

Arrowized	FRP
about	/	Arrowized	FRP

Asteroids
about	/	Setting	up	the	project

asynchronous	data	flow
about	/	Asynchronous	data	flow

asynchronous	programming
about	/	Asynchronous	Compositional	Event	System	(CES)aboutprogramming
and	concurrency

Automaton
URL	/	Arrowized	FRP

AWS
using	/	Infrastructure	automation
EC2	/	Infrastructure	automation
RDS	/	Infrastructure	automation
CloudFormation	/	Infrastructure	automation

AWS	resources	dashboard
building	/	AWS	resources	dashboard
building,	with	CloudFormation	/	CloudFormation
building,	with	EC2	/	EC2
building,	with	RDS	/	RDS
designing	/	Designing	the	solution
stub	server,	setting	up	/	Running	the	AWS	stub	server
setting	up	/	Setting	up	the	dashboard	project

Observables,	creating	/	Creating	AWS	Observables
Observables,	combining	/	Combining	the	AWS	Observables
user	interface,	building	/	Putting	it	all	together

B
backpressure

about	/	Backpressure
sample	combinator	/	Sample
strategies	/	Backpressure	strategies
reference	link	/	Backpressure	strategies

Bacon.js
URL	/	Functional	Reactive	Programming
about	/	Asynchronous	data	flow

blocking	IO
about	/	Futures	and	blocking	IO

buffering
about	/	Backpressure
fixed	buffer	/	Fixed	buffer
dropping	buffer	/	Dropping	buffer
sliding	buffer	/	Sliding	buffer

C
catch	combinator

about	/	Catch
CES

versus	FRP	/	Asynchronous	data	flow
versus	core.async	/	CES	versus	core.async

Chestnut
URL	/	A	taste	of	Reactive	Programming

cljs-start
URL	/	A	respondent	application,	Setting	up	the	project

cljx
URL	/	Clojure	or	ClojureScript?
about	/	Clojure	or	ClojureScript?

Clojure
URL,	for	documentation	/	Application	components
futures	/	Clojure	futures

Clojurescript
about	/	ClojureScript	and	Om

ClojureScript	game
project,	setting	up	/	Setting	up	the	project
game	entities,	creating	/	Game	entities
implementing	/	Putting	it	all	together
user	input,	modeling	as	event	streams	/	Modeling	user	input	as	event	streams
active	keys	stream,	working	with	/	Working	with	the	active	keys	stream

CloudFormation
about	/	Infrastructure	automation
used,	for	building	AWS	resources	dashboard	/	CloudFormation
describeStacks	endpoint	/	The	describeStacks	endpoint
describeStackResources	endpoint	/	The	describeStackResources	endpoint

combinators
using	/	Combinators	and	event	handlers

complex	Web	UIs
problems	/	The	problem	with	complex	web	UIs
features	/	The	problem	with	complex	web	UIs

Compositional	Event	System	(CES)
about	/	Asynchronous	Compositional	Event	System	(CES)aboutprogramming
and	concurrency

Compositional	Event	Systems
about	/	One	more	flatmap	for	the	road

concurrency
about	/	Asynchronous	Compositional	Event	System	(CES)aboutprogramming
and	concurrency

Contacts	application

building	/	Building	a	simple	Contacts	application	with	Om
state	/	The	Contacts	application	state
project,	setting	up	/	Setting	up	the	Contacts	project
components	/	Application	components
cursors,	using	/	Om	cursors
contacts-app	component,	creating	/	Filling	in	the	blanks
contacts-view	component,	creating	/	Filling	in	the	blanks
contact-summary-view	component,	creating	/	Filling	in	the	blanks
details-panel-view	component,	creating	/	Filling	in	the	blanks
contact-details-view	component,	creating	/	Filling	in	the	blanks
contact-details-form-view	component,	creating	/	Filling	in	the	blanks
contact	information,	updating	/	Filling	in	the	blanks

core.async
about	/	core.async
CSP	/	Communicating	sequential	processes
stock	market	application,	rewriting	/	Rewriting	the	stock	market	application	with
core.async
error	handling	/	Error	handling
backpressure	/	Backpressure
transducers	/	Transducers	and	core.async
features	/	Summary
versus	CES	/	CES	versus	core.async

core.async	channels
using	/	Intercomponent	communication

CSP
about	/	Communicating	sequential	processes
URL	/	Communicating	sequential	processes

cursors
about	/	Om	cursors

D
data

fetching,	in	parallel	/	Fetching	data	in	parallel
dataflow	programming

about	/	Dataflow	programming
DataTransfer

reference	link	/	Utility	functions
dc-lib

URL	/	Dataflow	programming
describeDBInstances	endpoint

about	/	The	describeDBInstances	endpoint
describeInstances	endpoint

about	/	The	describeInstances	endpoint
describeStackResources	endpoint

about	/	The	describeStackResources	endpoint
describeStacks	endpoint

about	/	The	describeStacks	endpoint
dropping	buffer

about	/	Dropping	buffer

E
EC2

about	/	Infrastructure	automation
used,	for	building	AWS	resources	dashboard	/	EC2
describeInstances	endpoint	/	The	describeInstances	endpoint

Elm
about	/	First-order	FRP
URL	/	First-order	FRP

error	handling
about	/	Error	handling
onError	combinator	/	OnError
catch	combinator	/	Catch
retry	combinator	/	Retry
reference	link	/	Retry
in	core.async	/	Error	handling

event	handlers
using	/	Combinators	and	event	handlers

events
about	/	Signals	and	events

F
factory	methods

reference	link	/	Custom	Observables
first-order	FRP

about	/	First-order	FRP
fixed	buffer

about	/	Fixed	buffer
Flapjax

about	/	Complex	GUIs	and	animations
flatmap

about	/	Flatmap	and	friends
with	multiple	values	/	One	more	flatmap	for	the	road

ForkJoinPool
URL	/	The	movies	example	revisited
using	/	Futures	and	blocking	IO

FRP
about	/	Functional	Reactive	Programming
implementation	challenges	/	Implementation	challenges
versus	CES	/	Asynchronous	data	flow

FRP,	use	cases
asynchronous	programming	/	Asynchronous	programming	and	networking
networking	/	Asynchronous	programming	and	networking
complex	GUIs	/	Complex	GUIs	and	animations
animations	/	Complex	GUIs	and	animations

Functional	Programming
about	/	Lessons	from	functional	programming

function	currying
about	/	Applicative	Functors

Functors
about	/	Functors
Option	Functor	/	The	Option	Functor
Applicative	Functors	/	Applicative	Functors

futures
about	/	Clojure	futures
creating,	in	imminent	/	Creating	futures
blocking	IO	/	Futures	and	blocking	IO

G
Graphical	User	Interfaces	(GUIs)

about	/	Object-oriented	Reactive	Programming

H
Haskell

about	/	Monads
higher-order	FRP

about	/	Higher-order	FRP
history,	Reactive	Programming

about	/	A	bit	of	history
dataflow	programming	/	Dataflow	programming
object-oriented	Reactive	Programming	/	Object-oriented	Reactive	Programming
LANguage	for	Programming	Arrays	at	Random	(LANPAR)	/	The	most	widely
used	reactive	program
Observer	design	pattern	/	The	Observer	design	pattern
FRP	/	Functional	Reactive	Programming
higher-order	FRP	/	Higher-order	FRP

I
imminent

about	/	Imminent	–	a	composable	futures	library	for	Clojure
URL	/	Imminent	–	a	composable	futures	library	for	Clojure
futures,	creating	/	Creating	futures
combinators,	using	/	Combinators	and	event	handlers
event	handlers,	using	/	Combinators	and	event	handlers
example	/	The	movies	example	revisited

implementation	challenges,	FRP
first-order	FRP	/	First-order	FRP
asynchronous	data	flow	/	Asynchronous	data	flow
Arrowized	FRP	/	Arrowized	FRP

incidental	complexity
about	/	Identifying	problems	with	our	current	approach
removing,	with	RxClojure	/	Removing	incidental	complexity	with	RxClojure

infrastructure	automation
problem	/	The	problem
with	AWS	/	Infrastructure	automation

intercomponent	communication
about	/	Intercomponent	communication
agile	board,	creating	/	Creating	an	agile	board	with	Om

Iterator	interface
about	/	Observer	–	an	Iterator’s	dual

J
Java	Interop

URL	/	Filling	in	the	blanks
JSPerf

URL	/	The	problem	with	complex	web	UIs

L
LANguage	for	Programming	Arrays	at	Random	(LANPAR)

about	/	The	most	widely	used	reactive	program
lein-cljsbuild

URL	/	Clojure	or	ClojureScript?
about	/	Clojure	or	ClojureScript?

M
macros

reference	link	/	Game	entities
ManagedBlocker

reference	link	/	Futures	and	blocking	IO
map

about	/	The	semantics	of	map
Functors	/	Functors

Mimmo	Cosenza
URL	/	Setting	up	the	Contacts	project

minimal	CES	framework
about	/	A	minimal	CES	framework
project,	setting	up	/	Clojure	or	ClojureScript?
public	API,	designing	/	Designing	the	public	API
tokens,	implementing	/	Implementing	tokens
event	streams,	implementing	/	Implementing	event	streams
behaviors,	implementing	/	Implementing	behaviors
respondent	application,	building	/	A	respondent	application

Monad
about	/	One	more	flatmap	for	the	road

Monads
about	/	Monads
bind	function	/	Monads
using	/	Monads
example	/	Monads

monet
URL	/	Setting	up	the	project

N
Netflix

about	/	Asynchronous	programming	and	networking

O
object-oriented	Reactive	Programming

about	/	Object-oriented	Reactive	Programming
Observables

creating	/	Creating	AWS	Observables
combining	/	Combining	the	AWS	Observables

observables
creating	/	Creating	Observables
custom	observables,	creating	/	Custom	Observables
manipulating	/	Manipulating	Observables

Observable	Sequences
about	/	Asynchronous	data	flow

Observer	design	pattern
about	/	The	Observer	design	pattern,	The	Observer	pattern	revisited
Iterator	interface	/	Observer	–	an	Iterator’s	dual

Om
about	/	ClojureScript	and	Om
Contacts	application,	building	/	Building	a	simple	Contacts	application	with	Om
agile	board,	creating	/	Creating	an	agile	board	with	Om

om-start	template
URL	/	Setting	up	the	Contacts	project

Om	Project	Management	/	Creating	an	agile	board	with	Om
onError	combinator

about	/	OnError
Option	Functor

about	/	The	Option	Functor
use	case	/	Finding	the	average	of	ages

P
Purely	Functional	Data	Structures

about	/	Lessons	from	functional	programming
URL	/	Lessons	from	functional	programming

R
RDS

about	/	Infrastructure	automation
used,	for	building	AWS	resources	dashboard	/	RDS
describeDBInstances	endpoint	/	The	describeDBInstances	endpoint

React.js
about	/	Enter	React.js
Functional	Programming	/	Lessons	from	functional	programming

ReactiveCocoa
URL	/	Functional	Reactive	Programming
about	/	Asynchronous	data	flow

Reactive	Extensions	(Rx)
about	/	Asynchronous	data	flow,	Reagi	and	other	CES	frameworks
drawbacks	/	Reagi	and	other	CES	frameworks

Reagi
comparing,	with	other	CES	frameworks	/	Reagi	and	other	CES	frameworks
about	/	Reagi	and	other	CES	frameworks

respondent	application
building	/	A	respondent	application

retry	combinator
about	/	Retry

Rx
observables,	creating	/	Creating	Observables
observables,	manipulating	/	Manipulating	Observables
flatmap	/	Flatmap	and	friends

RX
error	handling	/	Error	handling

RxClojure
URL	/	Creating	Observables

RxJava
URL	/	Functional	Reactive	Programming,	Creating	Observables

RxJS
URL	/	A	taste	of	Reactive	Programming

S
sample	combinator

about	/	Sample
Scala

about	/	Monads
ScheduledThreadPoolExecutor	pool	/	Building	a	stock	market	monitoring	application
Semigroups

about	/	Functors
signals

about	/	Signals	and	events
sine	wave	animation

creating	/	A	taste	of	Reactive	Programming
time,	creating	/	Creating	time
coloring	/	More	colors
updating	/	Making	it	reactive
enhancing	/	Exercise	1.1

sliding	buffer
about	/	Sliding	buffer

stock	market	application
rewriting,	with	core.async	/	Rewriting	the	stock	market	application	with
core.async
application	code,	implementing	/	Implementing	the	application	code

stock	market	monitoring	application
building	/	Building	a	stock	market	monitoring	application
rolling	averages,	displaying	/	Rolling	averages
problems,	identifying	/	Identifying	problems	with	our	current	approach
incidental	complexity,	removing	with	RxClojure	/	Removing	incidental
complexity	with	RxClojure
observable	rolling	averages	/	Observable	rolling	averages

stub	server
setting	up	/	Running	the	AWS	stub	server

T
Thread	Pool

about	/	Fetching	data	in	parallel
tools.namespace

URL	/	Implementing	event	streams
using	/	Implementing	event	streams

transducers
about	/	Transducers
reference	link	/	Transducers
with	core.async	/	Transducers	and	core.async

transit
about	/	Setting	up	the	dashboard	project
URL	/	Setting	up	the	dashboard	project

Trello
URL	/	Intercomponent	communication

V
Virtual	DOM

about	/	Lessons	from	functional	programming

	Clojure Reactive Programming
	Credits
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. What is Reactive Programming?
	A taste of Reactive Programming
	Creating time
	More colors
	Making it reactive
	Exercise 1.1
	A bit of history
	Dataflow programming
	Object-oriented Reactive Programming
	The most widely used reactive program
	The Observer design pattern
	Functional Reactive Programming
	Higher-order FRP
	Signals and events
	Implementation challenges
	First-order FRP
	Asynchronous data flow
	Arrowized FRP
	Applications of FRP
	Asynchronous programming and networking
	Complex GUIs and animations
	Summary
	2. A Look at Reactive Extensions
	The Observer pattern revisited
	Observer – an Iterator's dual
	Creating Observables
	Custom Observables
	Manipulating Observables
	Flatmap and friends
	One more flatmap for the road
	Error handling
	OnError
	Catch
	Retry
	Backpressure
	Sample
	Backpressure strategies
	Summary
	3. Asynchronous Programming and Networking
	Building a stock market monitoring application
	Rolling averages
	Identifying problems with our current approach
	Removing incidental complexity with RxClojure
	Observable rolling averages
	Summary
	4. Introduction to core.async
	Asynchronous programming and concurrency
	core.async
	Communicating sequential processes
	Rewriting the stock market application with core.async
	Implementing the application code
	Error handling
	Backpressure
	Fixed buffer
	Dropping buffer
	Sliding buffer
	Transducers
	Transducers and core.async
	Summary
	5. Creating Your Own CES Framework with core.async
	A minimal CES framework
	Clojure or ClojureScript?
	Designing the public API
	Implementing tokens
	Implementing event streams
	Implementing behaviors
	Exercises
	Exercise 5.1
	Exercise 5.2
	A respondent application
	CES versus core.async
	Summary
	6. Building a Simple ClojureScript Game with Reagi
	Setting up the project
	Game entities
	Putting it all together
	Modeling user input as event streams
	Working with the active keys stream
	Reagi and other CES frameworks
	Summary
	7. The UI as a Function
	The problem with complex web UIs
	Enter React.js
	Lessons from functional programming
	ClojureScript and Om
	Building a simple Contacts application with Om
	The Contacts application state
	Setting up the Contacts project
	Application components
	Om cursors
	Filling in the blanks
	Intercomponent communication
	Creating an agile board with Om
	The board state
	Components overview
	Lifecycle and component local state
	Remaining components
	Utility functions
	Exercises
	Summary
	8. Futures
	Clojure futures
	Fetching data in parallel
	Imminent – a composable futures library for Clojure
	Creating futures
	Combinators and event handlers
	The movies example revisited
	Futures and blocking IO
	Summary
	9. A Reactive API to Amazon Web Services
	The problem
	Infrastructure automation
	AWS resources dashboard
	CloudFormation
	The describeStacks endpoint
	The describeStackResources endpoint
	EC2
	The describeInstances endpoint
	RDS
	The describeDBInstances endpoint
	Designing the solution
	Running the AWS stub server
	Setting up the dashboard project
	Creating AWS Observables
	Combining the AWS Observables
	Putting it all together
	Exercises
	Summary
	A. The Algebra of Library Design
	The semantics of map
	Functors
	The Option Functor
	Finding the average of ages
	Applicative Functors
	Gathering stats about ages
	Monads
	Summary
	B. Bibliography
	Index

