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Preface

Highly concurrent applications such as user interfaces have traditionally managed state
through the mutation of global variables. Various actions are coordinated via event
handlers, which are procedural in nature.

Over time, the complexity of a system increases. New feature requests comein, and it
becomes harder and harder to reason about the application.

Functional programming presentsitself as an extremely powerful ally in building reliable
systems by eliminating mutabl e states and allowing applications to be writtenin a
declarative and composable way.

Such principles gave rise to Functional Reactive Programming and Compositional Event
Systems (CES), programming paradigms that are exceptionally useful in building
asynchronous and concurrent applications. They allow you to model mutable statesin a
functional style.

Thisbook is devoted to these ideas and presents a number of different tools and
techniques to help manage the increasing complexity of modern systems.



What this book covers

Chapter 1, What is Reactive Programming?, starts by guiding you through a compelling
example of areactive application written in ClojureScript. It then takes you on ajourney
through the history of Reactive Programming, during which some important terminology
IS introduced, setting the tone for the following chapters.

Chapter 2, A Look at Reactive Extensions, explores the basics of this Reactive
Programming framework. Its abstractions are introduced and important subjects such as
error handling and back pressure are discussed.

Chapter 3, Asynchronous Programming and Networking, walks you through building a
stock market application. It starts by using a more traditional approach and then switches
to an implementation based on Reactive Extensions, examining the trade-offs between the
two.

Chapter 4, Introduction to core.async, describes core.async, alibrary for asynchronous
programming in Clojure. Here, you learn about the building blocks of Communicating
Sequential Processes and how Reactive Applications are built with core.async.

Chapter 5, Creating Your Own CES Framework with core.async, embarks on the
ambitious endeavor of building a CES framework. It leverages knowledge gained in the
previous chapter and uses core.async as the foundation for the framework.

Chapter 6, Building a Smple ClojureScript Game with Reagi, showcases a domain where
Reactive frameworks have been used for great effects in games devel opment.

Chapter 7, The Ul as a Function, shifts gears and shows how the principles of functional
programming can be applied to web Ul development through the lens of Om, a
ClojureScript binding for Facebook-s React.

Chapter 8, Futures, presents futures as a viable aternative to some classes—reactive
applications. It examines the limitations of Clojure futures and presents an alternative:
imminent, alibrary of composable futures for Clojure.

Chapter 9, A Reactive API to Amazon Web Services, describes a case study taken from a
real project, where alot of the concepts introduced throughout this book have been put
together to interact with athird-party service.

Appendix A, The Algebra of Library Design, introduces concepts from Category Theory
that are helpful in building reusable abstractions. The appendix is optional and won+
hinder learning in the previous chapters. It presents the principles used in designing the
futures library seen in Chapter 8, Futures.

Appendix B, Bibliography, provides all the references used throughout the book.






What you need for this book

This book assumes that you have a reasonably modern desktop or laptop computer as well
as aworking Clojure environment with leiningen (see http://leiningen.org/) properly
configured.

Installation instructions depend on your platform and can be found on the leiningen
website (see http://Ieiningen.org/#install).

You are free to use any text editor of your choice, but popular choicesinclude Eclipse (see
https:.//eclipse.org/downloads/) with the Counterclockwise plugin (see
https://github.com/laurentpetit/ccw), IntelliJ (https.//www.jetbrains.com/ideal) with the
Cursive plugin (see https.//cursiveclojure.com/), Light Table (see http://lighttable.com/),
Emacs, and Vim.







Who thisbook isfor

This book isfor Clojure developers who are currently building or planning to build
asynchronous and concurrent applications and who are interested in how they can apply
the principles and tools of Reactive Programming to their daily jobs.

Knowledge of Clojure and leiningeri apopular Clojure build toolf isrequired.

The book also features several ClojureScript examples, and as such, familiarity with
ClojureScript and web development in general will be helpful.

Notwithstanding, the chapters have been carefully written in such away that aslong as
you possess knowledge of Clojure, following these examples should only require alittle
extra effort.

As this book progresses, it lays out the building blocks required by later chapters, and as
such my recommendation is that you start with Chapter 1, What is Reactive
Programming?, and work your way through subsequent chaptersin order.

A clear exception to thisis Appendix A, The Algebra of Library Design, which is optional
and can be read independent of the other§ although reading Chapter 8, Futures, might
provide a useful background.






Conventions

In this book, you will find a number of styles of text that distinguish between different
kinds of information. Here are some examples of these styles, and an explanation of their
meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLS, user input, and Twitter handles are shown as follows: ‘e can
include other contexts through the use of thei ncl ude directive.ll

A block of codeis set asfollows:
(def nunbers (atom|[]))

(defn adder [key ref ol d-state new state]
(print "Current sumis " (reduce + newstate)))

(add-wat ch nunbers :adder adder)

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

(-> (repeat-obs 5)
(rx/subscribe prn-to-repl))

N
S
Any command-line input or output is written as follows:

lein run -m si n-wave. server

New terms and important wor ds are shown in bold. Words that you see on the screen, in
menus, or dialog boxes, for example, appear in the text like this: —H this was a web
application our users would be presented with aweb server error such asthe HT TP code
500| Internal Server Error.ll

Note
Warnings or important notes appear in abox like this.

Tip
Tips and tricks appear like this.






Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book what you liked or may have disliked. Reader feedback is important for us to
develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to <f eedback @ackt pub. con», and
mention the book title via the subject of your message.

If there isatopic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.







Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help
you to get the most from your purchase.



Downloading the example code

You can download the example code files for all Packt books you have purchased from
your account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly to

youl.




Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our bookg maybe a mistake in the text or the
codd we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book. If
you find any errata, please report them by visiting http://www.packtpub.com/submit-
errata, selecting your book, clicking on the errata submission form link, and entering the
details of your errata. Once your errata are verified, your submission will be accepted and
the errata will be uploaded on our website, or added to any list of existing errata, under the
Errata section of that title. Any existing errata can be viewed by selecting your title from

http://www.packtpub.com/support.




Piracy

Piracy of copyright material on the Internet is an ongoing problem across al media. At
Packt, we take the protection of our copyright and licenses very serioudly. If you come
across any illegal copies of our works, in any form, on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at <copyr i ght @ackt pub. con» with alink to the suspected pirated
material.

We appreciate your help in protecting our authors, and our ability to bring you valuable
content.




Questions

You can contact us at <quest i ons@ackt pub. con if you are having a problem with any
aspect of this book, and we will do our best to addressiit.







Chapter 1. What is Reactive
Programming?

Reactive Programming is both an overloaded term and a broad topic. As such, this book
will focus on a specific formulation of Reactive Programming called Compositional
Event Systems (CEYS).

Before covering some history and background behind Reactive Programming and CES, |
would like to open with aworking and hopefully compelling example: an animation in
which we draw a sine wave onto aweb page.

The sine wave is simply the graph representation of the sine function. It is a smooth,
repetitive oscillation, and at the end of our animation it will look like the following
screenshot:

This example will highlight how CES:

e Urges usto think about what we would like to do as opposed to how
e Encourages small, specific abstractions that can be composed together
e Produces terse and maintainable code that is easy to change

The core of this program boils down to four lines of ClojureScript:

(-> sine-wave
(.take 600)
(.subscribe (fn [{:keys [x y]}]
(fill-rect x y "orange"))))
Simply by looking at this code it isimpossible to determine precisely what it does.
However, do take the time to read and imagine what it could do.

First, we have avariable called si ne- wave, which represents the 2D coordinates we will
draw onto the web page. The next line gives us the intuition that si ne- wave IS some sort
of collection-like abstraction: we use . t ake to retrieve 600 coordinates fromit.

Finally, we. subscri be to this—eollectionll by passing it a callback. This callback will be
called for each item in the sine-wave, finally drawing at the given x and y coordinates
using thefill-rect function.

Thisis quite abit to take in for now as we haven- seen any other code yeff but that was



the point of this little exercise: even though we know nothing about the specifics of this
example, we are able to develop an intuition of how it might work.

L et-s see what else is necessary to make this snippet animate a sine wave on our screen.



A taste of Reactive Programming

This exampleisbuilt in ClojureScript and uses HTML 5 Canvas for rendering and RxJS
(see https://github.com/Reactive-Extensions/RxJS)f  aframework for Reactive
Programming in JavaScript.

Before we start, keep in mind that we will not go into the details of these frameworks yet
[ that will happen later in this book. This means |4l be asking you to take quite afew
things at face value, so don+ worry if you don+ immediately grasp how things work. The
purpose of this exampleisto simply get us started in the world of Reactive Programming.

For this project, we will be using Chestnut (see https.//github.com/plexus/chestnut)l a
leiningen template for ClojureScript that gives us a sample working application we can
use as a skeleton.

To create our new project, head over to the command line and invoke leiningen as follows:

| ein new chest nut sin-wave
cd si n-wave

Next, we need to modify a couple of thingsin the generated project. Open up si n-
wave/ resour ces/ i ndex. ht m and update it to look like the following:

<! DOCTYPE htm >
<htm >
<head>
<link href="css/style.css" rel ="styl esheet"” type="text/css">
</ head>

<body>
<di v id="app"></div>
<script src="/js/rx.all.js" type="text/javascript"></script>

<script src="/js/app.js" type="text/javascript"></script>
<canvas id="nyCanvas" w dt h="650" hei ght="200" styl e="border: 1px solid
#d3d3d3; ">
</ body>
</htm >

This simply ensures that we import both our application code and RxJS. We haven+
downloaded RxJS yet so let-s do this now. Browse to https://github.com/Reactive-
Extens ons/RxJS/blob/master/dist/rx.all.js and save thisfile to si n-

wave/ r esour ces/ publ i c. The previous snippets also add an HTML 5 Canvas element
onto which we will be drawing.

Now, open/src/cljs/sin_wave/ core.cljs. Thisiswhere our application code will live.
You can ignore what is currently there. Make sure you have a clean date like the following
one:

(ns sin-wave. core)

(defn main [])

Finally, go back to the command ling under the si n-wave folderf and start up the
following application:



lein run -m sin-wave. server

2015-01-02 19:52:34.116:INFO oejs. Server:jetty-7.6.13.v20130916
2015-01-02 19:52: 34.158: I NFO oej s. Abstract Connector: Started

Sel ect Channel Connect or @. 0. 0. 0: 10555

Starting figwheel.

Starting web server on port 10555

Compi | ing Cl ojureScript.

Fi gwheel : Starting server at http://1ocal host: 3449

Fi gwheel : Serving files from' (dev-resources|resources)/public’

Once the previous command finishes, the application will be available at
http://1 ocal host: 10555, where you will find a blank, rectangular canvas. \We are now
ready to begin.

The main reason we are using the Chestnut template for this exampleisthat it performs
hot-reloading of our application code via websockets. This means we can have the
browser and the editor side by side, and as we update our code, we will see the results
immediately in the browser without having to reload the page.

To validate that thisis working, open your web browser-s console so that you can see the
output of the scriptsin the page. Then add thisto/src/clj s/ sin_wave/ core.cljs as
follows:

(.log js/console "hello clojurescript")

You should have seen the hel 1 o cl oj urescri pt message printed to your browser-s
console. Make sure you have a working environment up to this point as we will be relying
on this workflow to interactively build our application.

It is also a good idea to make sure we clear the canvas every time Chestnut reloads our
file. Thisis simple enough to do by adding the following snippet to our core namespace:

(def canvas (.getEl ementByld js/docunent "nyCanvas"))
(def ctx (.get Context canvas "2d"))

;; Clear canvas before doing anything el se
(.clearRect ctx 0 O (.-width canvas) (.-height canvas))



Creating time

Now that we have a working environment, we can progress with our animation. It is
probably a good idea to specify how often we would like to have a new animation frame.

This effectively means adding the concept of time to our application. You—+e free to play
with different values, but let-s start with a new frame every 10 milliseconds:

(def interval j s/ Rx. Qbservabl e.interval)
(def tine (interval 10))

As RxJSisaJdavaScript library, we need to use ClojureScript-s interoperability to call its
functions. For convenience, we bind thei nt er val function of RxJSto alocal var. We will
use this approach throughout this book when appropriate.

Next, we create an infinite stream of number§ starting at 0 that will have a new
element every 10 milliseconds. L et-s make sure this is working as expected:

(-> time
(.take 5)
(.subscribe (fn [n]
(.log js/console n))))

A WNPEFO

Tip
| use the term stream very loosely here. It will be defined more precisely later in this book.

Remember timeisinfinite, so we use. t ake in order to avoid indefinitely printing out
numbers to the console.

Our next step isto calculate the 2D coordinate representing a segment of the sine wave we
can draw. Thiswill be given by the following functions:

(defn deg-to-rad [n]
(* (/ Math/PlI 180) n))

(defn sine-coord [X]
(let [sin (Math/sin (deg-to-rad x))
y (- 100 (* sin 90))]
{:x X
'y oy
:sin sin}))

The si ne- coor d function takes an x point of our 2D Canvas and calculates they point

based on the sine of x. The constants 100 and 90 simply control how tall and sharp the
slope should be. As an example, try calculating the sine coordinate when x is 50:

(.1
o

og js/console (str (sine-coord 50)))
x 50, :y 31.05600011929198, :sin 0.766044443118978}



We will beusing ti me as the source for the values of x. Creating the sine wave now is
only amatter of combining both ti me and si ne- coor d:

(def sine-wave
(.map time sine-coord))

Just liketi me, si ne-wave isan infinite stream. The differenceis that instead of just
integers, we will now have the x and y coordinates of our sine wave, as demonstrated in
the following:

(-> sine-wave
(.take 5)
(.subscribe (fn [xysin]
(.log js/console (str xysin)))))

7, {:x 0, :y 100, :sin 0}

o {ix 1, 1y 98.42928342064448, :sin 0.01745240643728351}
vy {ix 2, 1y 96.85904529677491, :sin 0.03489949670250097}
7y {ix 3, 1y 95.28976393813505, :sin 0.052335956242943835}
o {ix 4, 1y 93.72191736302872, :sin 0.0697564737441253}

This brings us to the original code snippet which piqued our interest, alongside a function
to perform the actual drawing:

(defn fill-rect [x y colour]
(set! (.-fillStyle ctx) colour)
(.fillRect ctx xy 2 2))

(-> sine-wave
(.take 600)
(.subscribe (fn [{:keys [x y]}]
(fill-rect x y "orange"))))

Asthis point, we can save the file again and watch as the sine wave we have just created
gracefully appears on the screen.



More colors

One of the points this example sets out to illustrate is how thinking in terms of very simple
abstractions and then building more complex ones on top of them make for code that is
simpler to maintain and easier to modify.

As such, we will now update our animation to draw the sine wave in different colors. In
this case, we would like to draw the wave in red if the sine of x is negative and blue
otherwise.

We already have the sine value coming through the si ne- wave stream, so all we need to
do isto transform this stream into one that will give us the colors according to the
preceding criteria

(def colour (.map sine-wave
(fn [{:keys [sin]}]
(if (<sin 0
"red"
"blue))))

The next step isto add the new stream into the main drawing loog remember to
comment the previous one so that we don-+ end up with multiple waves being drawn at the
same time:

(-> (.zip sine-wave col our #(vector % %))
(.take 600)
(.subscribe (fn [[{:keys [x y]} colour]]
(fill-rect x y colour))))

Once we save the file, we should see a new sine wave alternating between red and blue as
the sine of x oscillates from| 1 to 1.



Making it reactive

As fun asthis has been so far, the animation we have created isn+ really reactive. Sure, it
does react to time itself, but that is the very nature of animation. Aswe will later see,
Reactive Programming is so called because programs react to external inputs such as
mouse or network events.

We will, therefore, update the animation so that the user isin control of when the color
switch occurs: the wave will start red and switch to blue when the user clicks anywhere
within the canvas area. Further clicks will ssmply alternate between red and blue.

We start by creating infinit§ as per the definition of ti mel  streams for our color
primitives as follows:

(def red (.map time (fn [_] "red")))
(def blue (.map time (fn [_] "blue")))

On their own, r ed and bl ue aren+ that interesting as their values don-+ change. We can
think of them as constant streams. They become alot more interesting when combined
with another infinite stream that cycles between them based on user input:

(def concat j s/ Rx. Qbservabl e. concat)
(def defer j s/ Rx. Qbservabl e. defer)
(def fromevent js/Rx.Cbservable.fronEvent)

(def nouse-click (fromevent canvas "click"))

(def cycl e-col our
(concat (.takeUntil red nouse-click)
(defer #(concat (.takeUntil blue nouse-click)
cycle-colour))))

Thisis our most complex update so far. If you look closely, you will also notice that
cycl e- col our iSarecursive stream; that is, it is defined in terms of itself.

When we first saw code of this nature, we took a leap of faith in trying to understand what
it does. After aquick read, however, we realized that cycl e- col our follows closely how
we might have talked about the problem: we will use red until a mouse click occurs, after
which we will use blue until another mouse click occurs. Then, we start the recursion.

The change to our animation loop is minimal:

(-> (.zip sine-wave cycl e-col our #(vector % %))
(.take 600)
(.subscribe (fn [[{:keys [x y]} colour]]
(fill-rect x y colour))))

The purpose of this book isto help you develop the instinct required to model problemsin
the way demonstrated here. After each chapter, more and more of this example will make
sense. Additionally, a number of frameworks will be used both in ClojureScript and
Clojure to give you awide range of tools to choose from.



Before we move on to that, we must take alittle detour and understand how we got here.



Exercise 1.1

Modify the previous example in such away that the sine wave is drawn using all rainbow
colors. The drawing loop should look like the following:

(-> (.zip sine-wave rai nbow col ours #(vector % %))
(.take 600)
(.subscribe (fn [[{:keys [x y]} colour]]
(fill-rect x y colour))))
Your task isto implement ther ai nbow- col our s stream. As everything up until now has
been very light on explanations, you might choose to come back to this exercise later,

once we have covered more about CES.

Therepeat, scan, and f I at Map functions may be useful in solving this exercise. Be sure
to consult RxJs-API at https://github.com/Reactive-
Extensions/RxJS/blob/master/doc/libraries/rx.complete.md.







A bit of history

Before we talk about what Reactive Programming is, it isimportant to understand how
other relevant programming paradigms influenced how we develop software. Thiswill
also help us understand the motivations behind reactive programming.

With few exceptions most of us have been taughtf either self-taught or at
school/universityl  imperative programming languages such as C and Pascal or object-
oriented languages such as Java and C++.

In both cases, the imperative programming paradigni of which object-oriented languages
are parff dictates we write programs as a series of statements that modify program state.

In order to understand what this means, let-s look at a short program written in pseudo-
code that calculates the sum and the mean value of alist of numbers:

nunbers :=[1, 2, 3, 4, 5, 6]

sum:=0

for each nunber in nunbers
sum : = sum + nunber

end

mean : = sum/ count (nunbers)

Tip

The mean value is the average of the numbersin thelist, obtained by dividing the sum by
the number of elements.

First, we create anew array of integers, called nunber s, with numbers from 1 to 6,
inclusive. Then, weinitialize sumto zero. Next, we iterate over the array of integers, one at
atime, adding to sumthe value of each number.

Lastly, we calculate and assign the average of the numbersin thelist to the nean local
variable. This concludes the program logic.

This program would print 21 for the sum and 3 for the mean, if executed.

Though a simple example, it highlights its imperative style: we set up an application state
[ sunmd and then explicitly tell the computer how to modify that state in order to calculate
the result.



Dataflow programming

The previous example has an interesting property: the value of nean clearly hasa
dependency on the contents of sum

Dataflow programming makes this relationship explicit. It models applications as a
dependency graph through which dataflowsg from operation to operatiori and as values
change, these changes are propagated to its dependencies.

Historically, dataflow programming has been supported by custom-built languages such as
Lucid and BLODI, as such, leaving other general purpose programming languages out.

L et-s see how this new insight would impact our previous example. We know that once the
last line gets executed, the value of nean is assigned and won+ change unless we explicitly
reassign the variable.

However, let-s imagine for a second that the pseudo-language we used earlier does support
dataflow programming. In that case, assigning mean to an expression that refers to both
sumand count , suchassum / count (nunbers) , would be enough to create the directed
dependency graph in the following diagram:

T
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Note that a direct side effect of this relationship is that an implicit dependency from sumto
nunber s 1S also created. This meansthat if nunber s change, the change is propagated
through the graph, first updating sumand then finally updating nean.

Thisis where Reactive Programming comes in. This paradigm builds on dataflow
programming and change propagation to bring this style of programming to languages that
don+ have native support for it.

For imperative programming languages, Reactive Programming can be made available via
libraries or language extensions. We don+ cover this approach in this book, but should the
reader want more information on the subject, please refer to dc-lib (see
https://code.google.com/p/dc-lib/) for an example. It is aframework that adds Reactive
Programming support to C++ via dataflow constraints.




Object-oriented Reactive Programming

When designing interactive applications such as desktop Graphical User Interfaces
(GUIs), we are essentially using an object-oriented approach to Reactive Programming.
We will build a simple calculator application to demonstrate this style.

Tip
Clojure isn+ an object-oriented language, but we will be interacting with parts of the Java

API to build user interfaces that were developed in an OO paradigm, hence thetitle of this
section.

L et-s start by creating a new leiningen project from the command line;

| ein new cal cul at or

Thiswill create adirectory called cal cul at or inthe current folder. Next, open the
proj ect.clj fileinyour favorite text editor and add a dependency on Seesaw, a Clojure
library for working with Java Swing:

(def proj ect cal cul ator "0.1.0- SNAPSHOT"
:description "FIXME: wite description”
surl "http://exanpl e. com Fl XVE"
:license {:name "Eclipse Public License"
curl "http://ww. eclipse.org/legal/epl-v10.htm"}
- dependencies [[org.clojure/clojure "1.5.1"]
[ seesaw "1.4.4"]])

At the time of thiswriting, the latest Seesaw version availableis 1.4.4.

Next, inthesrc/ cal cul ator/core. clj file, wedl start by requiring the Seesaw library
and creating the visual components we-| be using:

(ns cal cul ator. core
(:require [seesaw.core :refer :all]))

(native!)
(def main-frane (frame :title "Calculator” :on-close :exit))

(def field-x (text "1"))
(def field-y (text "2"))

(def result-1abel (label "Type nunbers in the boxes to add themup!"))

The preceding snippet creates awindow with thetitle Cal cul at or that ends the program
when closed. We also create two text input fields, fi el d-x and fi el d-y, aswell asalabel
that will be used to display the results, aptly named r esul t - | abel .

We would like the label to be updated automatically as soon as a user types a new number
in any of the input fields. The following code does exactly that:

(defn updat e-sum [ e]

(try
(text! result-1abel



(str "Sumis " (+ (Integer/parselnt (text field-x))
(I nteger/parselnt (text field-y)))))
(catch Exception e
(println "Error parsing input."))))

(listen field-x :key-rel eased update-sum
(listen field-y :key-rel eased updat e-sum

Thefirst function, updat e- sum is our event handler. It setsthe text of resul t - | abel tothe
sum of thevaluesinfiel d-x andfi el d-y. We use try/catch here asareally basic way to
handle errors since the key pressed might not have been a number. We then add the event
handler to the : key- r el eased event of both input fields.

Tip
In real applications, we never want a catch block such as the previous one. Thisis

considered bad style, and the catch block should do something more useful such as
logging the exception, firing a notification, or resuming the application if possible.

We are amost done. All we need to do now is add the components we have created so far
to our mai n-f rame and finally display it asfollows:

(config! main-frane :content
(bor der - panel

:north (horizontal -panel :itens [field-x field-y])
:center result-|abel
:border 5))

(defn -main [ & args]
(-> main-frame pack! show))

Now we can save the file and run the program from the command line in the project-s root
directory:

lein run -mcal cul ator. core

You should see something like the following screenshot:

® 00 Calculator

1 2

Type numbers in the boxes to add them up!

Experiment by typing some numbers in either or both text input fields and watch how the
value of the label changes automatically, displaying the sum of both numbers.

Congratulations! You have just created your first reactive application!

As alluded to previoudly, this application is reactive because the value of the result |abel
reacts to user input and is updated automatically. However, thisisn+ the whole storyf it
lacks in composability and requires us to specify the how, not the what of what we+e
trying to achieve.



Asfamiliar as this style of programming may be, making applications reactive this way
Isn+ always ideal.

Given previous discussions, we notice we still had to be fairly explicit in setting up the
relationships between the various components as evidenced by having to write a custom
handler and bind it to both input fields.

Aswe will see throughout the rest of this book, there is a much better way to handle
similar scenarios.



The most widely used reactive program

Both examples in the previous section will feel familiar to some readers. If we call the
input text fields —eellsll and the result 1abel-s handler a—formulall, we now have the
nomenclature used in modern spreadsheet applications such as Microsoft Excel.

The term Reactive Programming has only been in use in recent years, but the idea of a
reactive application isn+ new. The first electronic spreadsheet dates back to 1969 when
Rene Pardo and Remy Landau, then recent graduates from Harvard University, created
L ANPAR (LANguage for Programming Arraysat Random) [1].

It was invented to solve a problem that Bell Canada and AT& T had at the time: their
budgeting forms had 2000 cells that, when modified, forced a software re-write taking
anywhere from six months to two years.

To this day, electronic spreadsheets remain a powerful and useful tool for professionals of
various fields.



The Observer design pattern

Another similarity the keen reader may have noticed is with the Observer design pattern. It
Ismainly used in object-oriented applications as a way for objects to communicate with
each other without having any knowledge of who depends on its changes.

In Clojure, asimple version of the Observer pattern can be implemented using watches:
(def nunbers (atom|[]))

(defn adder [key ref ol d-state new state]
(print "Current sumis " (reduce + newstate)))

(add-wat ch nunbers :adder adder)

We start by creating our program state, in this case an atom holding an empty vector. Next,
we create a watch function that knows how to sum all numbersin nunber s. Finally, we
add our watch function to the numbers atom under the : adder key (useful for removing
watches).

The adder key conforms with the API contract required by add- wat ch and receives four
arguments. In this example, we only care about new- st at e.

Now, whenever we update the value of nurber s, its watch will be executed, as
demonstrated in the following:

(swap! nunbers conj 1)
;; Current sumis 1

(swap! nunbers conj 2)
;; Current sumis 3

(swap! nunbers conj 7)

7 Current sumis 10

The highlighted lines above indicate the result that is printed on the screen each time we
update the atom.

Though useful, the Observer pattern still requires some amount of work in setting up the
dependencies and the required program state in addition to being hard to compose.

That being said, this pattern has been extended and is at the core of one of the Reactive
Programming frameworks we will ook at later in this book, Microsoft-s Reactive
Extensions (Rx).



Functional Reactive Programming

Just like Reactive Programming, Functional Reactive Programming FRP for short
has unfortunately become an overloaded term.

Frameworks such as RxJava (see https.//github.com/ReactiveX/RxJava), ReactiveCocoa
(see https://github.com/ReactiveCocoa/ReactiveCocoa), and Bacon.js (see
https://baconjs.github.io/) became extremely popular in recent years and had positioned
themselves incorrectly as FRP libraries. Thisled to the confusion surrounding the
terminol ogy.

Aswe will see, these frameworks do not implement FRP but rather are inspired by it.

In the interest of using the correct terminology as well as understanding what —#spired by
FRPI means, we will have abrief look at the different formulations of FRP.



Higher-order FRP

Higher-order FRP refers to the original research on FRP developed by Conal Elliott and
Paul Hudak in their paper Functional Reactive Animation [2] from 1997. This paper
presents Fran, a domain-specific language embedded in Haskell for creating reactive
animations. It has since been implemented in several languages as alibrary aswell as
purpose built reactive languages.

If you recall the calculator example we created a few pages ago, we can see how that style
of Reactive Programming requires us to manage state explicitly by directly reading and
writing from/to the input fields. As Clojure developers, we know that avoiding state and
mutable data is a good principle to keep in mind when building software. This principleis
at the core of Functional Programming:

(->>[12 345 6]
(map inc)
(filter even?)
(reduce +))
;o 12
This short program increments by one all elementsin the original ligt, filters all even
numbers, and adds them up using r educe.

Note how we didn+ have to explicitly manage local state through at each step of the
computation.

Differently from imperative programming, we focus on what we want to do, for example
iteration, and not how we want it to be done, for example using af or loop. Thisiswhy
the implementation matches our description of the program closely. Thisis known as
declarative programming.

FRP brings the same philosophy to Reactive Programming. As the Haskell programming
language wiki on the subject has wisely put it:

FRP is about handling time-varying values like they were regular values.

Put another way, FRP is a declarative way of modeling systems that respond to input over
time.

Both statements touch on the concept of time. We-H be exploring that in the next section,
where we introduce the key abstractions provided by FRP: signals (or behaviors) and
events.






Signals and events

So far we have been dealing with the idea of programs that react to user input. Thisis of
course only a small subset of reactive systems but is enough for the purposes of this
discussion.

User input happens several times through the execution of a program: key presses, mouse
drags, and clicks are but a few examples of how a user might interact with our system. All
these interactions happen over a period of time. FRP recognizes that time is an important
aspect of reactive programs and makesit afirst-class citizen through its abstractions.

Both signals (also called behaviors) and events are related to time. Signals represent
continuous, time-varying values. Events, on the other hand, represent discrete occurrences
at agiven point in time.

For example, timeisitself asignal. It varies continuously and indefinitely. On the other
hand, a key press by a user is an event, a discrete occurrence.

It is important to note, however, that the semantics of how a signal changes need not be
continuous. Imagine asignal that represents the current (X,y) coordinates of your mouse
pointer.

Thissignal is said to change discretely as it depends on the user moving the mouse pointer
[ anevenf whichisn+t acontinuous action.






| mplementation challenges

Perhaps the most defining characteristic of classical FRPisthe use of continuous time.

This means FRP assumes that signals are changing all the time, even if their valueis still
the same, leading to needless recomputation. For example, the mouse position signal will
trigger updates to the application dependency grapii  like the one we saw previously for
the mean prograni  even when the mouse is stationary.

Another problem isthat classical FRPis synchronous by default: events are processed in
order, one at atime. Harmless at first, this can cause delays, which would render an
application unresponsive should an event take substantially longer to process.

Paul Hudak and others furthered research on higher-order FRP[7] [8] to address these
issues, but that came at the cost of expressivity.

The other formulations of FRP aim to overcome these implementation challenges.
Throughout the rest of the chapter, |41 be using signals and behaviors interchangeably.



First-order FRP

The most well-known reactive language in this category is Elm (see http://elm-lang.org/),
an FRP language that compilesto JavaScript. It was created by Evan Czaplicki and
presented in his paper EIm: Concurrent FRP for Functional GUIs[3].

Elm makes some significant changes to higher-order FRP.

It abandons the idea of continuous time and is entirely event-driven. Asaresult, it solves
the problem of needless recomputation highlighted earlier. First-order FRP combines both
behaviors and events into signals which, in contrast to higher-order FRP, are discrete.

Additionally, first-order FRP allows the programmer to specify when synchronous
processing of events isn+ necessary, preventing unnecessary processing delays.

Finally, EImisastrict programming languagé meaning arguments to functions are
evaluated eagerlyf and that isaconscious decision as it prevents space and time leaks,
which are possible in alazy language such as Haskell.

Tip
In an FRP library such as Fran, implemented in alazy language, memory usage can grow
unwieldy as computations are deferred to the absolutely last possible moment, therefore

causing a space leak. These larger computations, accumulated over time due to laziness,
can then cause unexpected delays when finally executed, causing time leaks.



Asynchronous data flow

Asynchronous Data Flow generally refers to frameworks such as Reactive Extensions
(Rx), ReactiveCocoa, and Bacon.js. It iscalled as such as it completely eliminates
synchronous updates.

These frameworks introduce the concept of Obser vable Sequences [4], sometimes called
Event Streams.

Thisformulation of FRP has the advantage of not being confined to functional languages.
Therefore, even imperative languages like Java can take advantage of this style of
programming.

Arguably, these frameworks were responsible for the confusion around FRP terminology.
Conal Elliott at some point suggested the term CES (see
https:.//twitter.com/conal/status/468875014461468677).

| have since adopted this terminology (see http://vimeo.com/100688924) as | believe it
highlights two important factors:

o A fundamental difference between CES and FRP: CESis entirely event-driven
e CESishighly composable via combinators, taking inspiration from FRP

CES isthe main focus of this book.



Arrowized FRP

Thisisthe last formulation we will look at. Arrowized FRP [5] introduces two main
differences over higher-order FRP: it uses signal functions instead of signals and is built
on top of John Hughes-Arrow combinators [6].

It is mostly about a different way of structuring code and can be implemented as a library.
As an example, EIm supports Arrowized FRP via its Automaton (see
https.//github.com/evancz/automaton) library.

Tip

The first draft of this chapter grouped the different formulations of FRP under the broad
categories of Continuous and Discrete FRP. Thanks to Evan Czaplicki-s excellent talk
Controlling Time and Space: under standing the many formulations of FRP (see
https://www.youtube.com/watch?v=Agu6jipKfYw), | was able to borrow the more

specific categories used here. These come in handy when discussing the different
approaches to FRP.







Applications of FRP

The different FRP formulations are being used today in several problem spaces by
professionals and big organizations alike. Throughout this book, we- look at several
examples of how CES can be applied. Some of these are interrelated as most modern
programs have several cross-cutting concerns, but we will highlight two main areas.



Asynchronous programming and networking

GUls are agreat example of asynchronous programming. Once you open aweb or a
desktop application, it ssimply sitsthere, idle, waiting for user input.

This state is often called the event or main event loop. It is simply waiting for external
stimuli, such as akey press, a mouse button click, new data from the network, or even a
simple timer.

Each of these stimuli is associated with an event handler that gets called when one of these
events happen, hence the asynchronous nature of GUI systems.

Thisisastyle of programming we have been used to for many years, but as business and
user needs grow, these applications grow in complexity as well, and better abstractions are
needed to handle the dependencies between all the components of an application.

Another great example that deals with managing complexity around network traffic is
Netflix, which uses CES to provide areactive API to their backend services.



Complex GUIs and animations

Games are, perhaps, the best example of complex user interfaces as they have intricate
requirements around user input and animations.

The EIm language we mentioned before is one of the most exciting effortsin building
complex GUIs. Another example is Flapjax, also targeted at web applications, but is
provided as a JavaScript library that can be integrated with existing JavaScript code bases.






Summary

Reactive Programming is al about building responsive applications. There are several
ways in which we can make our applications reactive. Some are old ideas: dataflow
programming, €l ectronic spreadsheets, and the Observer pattern are all examples. But CES
in particular has become popular in recent years.

CES aims to bring to Reactive Programming the declarative way of modeling problems
that is at the core of Functional Programming. We should worry about what and not about
how.

In next chapters, we will learn how we can apply CES to our own programs.






Chapter 2. A Look at Reactive Extensions

Reactive Extensions or RX isaReactive Programming library from Microsoft to build
complex asynchronous programs. It models time-varying values and events as observable
sequences and is implemented by extending the Observer design pattern.

Its first target platform was .NET, but Netflix has ported Rx to the VM under the name
RxJava. Microsoft also develops and maintains a port of Rx to JavaScript called RxJS,
which isthe tool we used to build the sine-wave application. The two ports work a treat
for us since Clojure runs on the VM and ClojureScript in JavaScript environments.

Aswe saw in Chapter 1, What is Reactive Programming?, Rx isinspired by Functiona
Reactive Programming but uses different terminology. In FRP, the two main abstractions
are behaviors and events. Although the implementation details are different, observable
sequences represent events. Rx also provides a behavior-like abstraction through another
datatype called Behavi or Subj ect .

In this chapter, we will:

e EXxplore Rx-s main abstraction: observables
e | earn about the duality between iterators and observables
¢ Create and manipulate observable sequences



The Observer pattern revisited

In Chapter 1, What is Reactive Programming?, we saw a brief overview of the Observer
design pattern and a simple implementation of it in Clojure using watches. Heres how we
didit:

(def nunbers (atom|[]))

(defn adder [key ref ol d-state new state]
(print "Current sumis " (reduce + newstate)))

(add-wat ch nunbers :adder adder)

In the preceding example, our observable subject isthe var, nunber s. The observer isthe
adder watch. When the observable changes, it pushes its changes to the observer
synchronously.

Now, contrast this to working with sequences:

(->>[1 2 3 45 6]
(map inc)
(filter even?)
(reduce +))

Thistime around, the vector is the subject being observed and the functions processing it
can be thought of as the observers. However, this works in a pull-based model. The vector
doesn push any elements down the sequence. Instead, map and friends ask the sequence
for more elements. This is a synchronous operation.

Rx makes sequence§ and morg behave like observables so that you can still map, filter,
and compose them just as you would compose functions over normal sequences.



Observer| an lterator-sdual

Clojure-s sequence operators such as map, filter, reduce, and so on support Java Iterables.
Asthe name implies, an Iterable is an object that can be iterated over. At alow level, this
Is supported by retrieving an Iterator reference from such object. Javas Iterator interface
looks like the following:

public interface Iterator<BE> {
bool ean hasNext () ;
E next();
voi d renove();

}

When passed in an object that implements this interface, Clojure-s sequence operators pull
datafrom it by using the next method, while using the hasNext method to know when to
stop.

Tip

Ther enmove method is required to remove its last element from the underlying collection.
Thisin-place mutation is clearly unsafe in a multithreaded environment. Whenever

Clojure implements this interface for the purposes of interoperability, the r enove method
simply throws Unsuppor t edQper at i onExcept i on.

An observable, on the other hand, has observers subscribed to it. Observers have the
following interface:

public interface Qoserver<T> {
voi d onConpl eted();
voi d onError(Throwabl e e);
voi d onNext (T t);

}

Aswe can see, an Observer implementing this interface will have its onNext method
called with the next value available from whatever observable it-s subscribed to. Hence, it
being a push-based notification model.

This duality [4] becomes clearer if welook at both the interfaces side by side:

Iterator<BE> { Qbserver <T> {
bool ean hasNext () ; voi d onConpl eted();
E next(); voi d onError(Throwabl e e);
voi d renove(); void onNext (T t);

} }

Observables provide the ability to have producers push items asynchronously to
consumers. A few examples will help solidify our understanding.






Creating Observables

This chapter is all about Reactive Extensions, so let-s go ahead and create a project called
rx- pl aygr ound that we will be using in our exploratory tour. We will use RxClojure (see
https.//github.com/ReactiveX/RxClojure), alibrary that provides Clojure bindings for
RxJava() (see https.//github.com/ReactiveX/RxJava):

$ lein new rx-playground

Open the project file and add a dependency on RxJavas Clojure bindings:

(def proj ect rx-playground "0. 1. 0- SNAPSHOT"
:description "FIXME: wite description”
curl "http://exanpl e. com FI XMVE"
:license {:nane "Eclipse Public License"
curl "http://ww. eclipse.org/legal/epl-v10.htm "}
: dependencies [[org.clojure/clojure "1.5.1"]
[io.reactivex/rxclojure "1.0.0"]11)"11)

Now, fire up a REPL in the project-s root directory so that we can start creating some
observables:

$ lein repl

The first thing we need to do isimport RxClojure, so let-s get this out of the way by typing
the following in the REPL:

(require '"[rx.lang.clojure.core :as rx])
(import '(rx Cbservable))

The simplest way to create a new observable is by calling thej ust r et ur n function:

(def obs (rx/return 10))
Now, we can subscribe to it:

(rx/subscribe obs
(fn [val ue]
(prn (str "Got value: " value))))

Thiswill print the string " Got val ue: 10" to the REPL.

The subscri be function of an observable allows us to register handlers for three main
things that happen throughout itslife cycle: new values, errors, or a notification that the
observable is done emitting values. This corresponds to the onNext , onEr r or , and
onConpl et ed methods of the Observer interface, respectively.

In the preceding example, we are ssmply subscribing to onNext , which iswhy we get
notified about the observables only value, 10.

A single-value Observable isn+ terribly interesting though. Let-s create and interact with
one that emits multiple values.

(-> (rx/seg->0 [1 23 456 7 89 10])
(rx/subscribe prn))



Thiswill print the numbers from 1 to 10, inclusive, to the REPL. seqg- >0 isaway to create
observables from Clojure sequences. It just so happens that the preceding snippet can be
rewritten using Rx-s own r ange operator:

(-> (rx/range 1 10)
(rx/subscribe prn))

Of course, this doesn+ yet present any advantages to working with raw values or
sequencesin Clojure.

But what if we need an observable that emits an undefined number of integers at agiven
interval? This becomes challenging to represent as a sequence in Clojure, but Rx makes it
trivial:

(inport '"(java.util.concurrent TineUnit))

(rx/subscribe (Observable/interval 100 Ti meUnit/ M LLI SECONDS)
prn-to-repl)

Tip
RxClojure doesn+ yet provide bindingsto al of RxJavas API. Thei nt erval methodis

one such example. We-re required to use interoperability and call the method directly on
the Gbser vabl e class from RxJava.

Observable/interval takes as arguments a number and atime unit. In this case, we are
telling it to emit an integerf starting from zerd every 100 milliseconds. If we type thisin
an REPL -connected editor, however, two things will happen:

e We will not see any output (depending on your REPL ; thisis true for Emacs)
e We will have arogue thread emitting numbers indefinitely

Both issues arise from the fact that bser vabl e/ i nt er val isthefirst factory method we
have used that doesn+ emit values synchronously. Instead, it returns an Observable that
defers the work to a separate thread.

Thefirst issue is ssimple enough to fix. Functions such as pr n will print to whatever the
dynamic var *out * is bound to. When working in certain REPL environments such as
Emacs thisis bound to the REPL stream, which iswhy we can generally see everything
we print.

However, since Rx is deferring the work to a separate thread, * out * isn+ bound to the
REPL stream anymore so we don- see the output. In order to fix this, we need to capture
the current value of *out * and bind it in our subscription. Thiswill be incredibly useful as
we experiment with Rx in the REPL. As such, let-s create a helper function for it:

(def repl-out *out*)
(defn prn-to-repl [& args]
(binding [*out* repl-out]
(apply prn args)))
Thefirst thing we do is create avar r epl - out that contains the current REPL stream.
Next, we create afunction prn-t o-repl that worksjust like pr n, except it uses the
bi ndi ng macro to create a new binding for *out * that isvalid within that scope.



This still leaves us with the rogue thread problem. Now is the appropriate time to mention
that the subscri be method from an Observable returns a subscription object. By holding
onto areference to it, we can call itsunsubscri be method to indicate that we are no
longer interested in the values produced by that observable.

Putting it all together, our interval example can be rewritten like the following:

(def subscription (rx/subscribe (Observable/interval 100
Ti meUni t/ M LLI SECONDS)

prn-to-repl))
(Thread/ sl eep 1000)

(rx/ unsubscri be subscription)

We create a new interval observable and immediately subscribeto it, just as we did before.
Thistime, however, we assign the resulting subscription to alocal var. Note that it now
uses our helper function prn-t o-repl , SO we will start seeing values being printed to the
REPL straight away.

Next, we sleep the currenf the REPLf thread for a second. Thisis enough time for the
Observable to produce numbers from 0 to 9. That-s roughly when the REPL thread wakes
up and unsubscribes from that observable, causing it to stop emitting values.



Custom Observables

Rx provides many more factory methods to create Observables (see
https://github.com/ReactiveX/RxJava/wiki/Creating-Observables), but it is beyond the
scope of this book to cover them all.

Nevertheless, sometimes, none of the built-in factoriesis what you want. For such cases,
Rx providesthe cr eat e method. We can use it to create a custom observable from scratch.

As an example, we- create our own version of the just observable we used earlier in this
chapter:

(defn just-obs [V]
(rx/ observabl e*
(fn [observer]
(rx/ on-next observer v)
(rx/ on-conpl et ed observer))))

(rx/subscribe (just-obs 20) prn)

First, we create afunction, j ust - obs, which implements our observable by calling the
obser vabl e* function.

When creating an observable this way, the function passed to obser vabl e* will get called
with an observer as soon as one subscribes to us. When this happens, we are free to do
whatever computatiori and even I/ we need in order to produce values and push them
to the observer.

We should remember to call the observer-s onConpl et ed method whenever we+e done
producing values. The preceding snippet will print 20 to the REPL.

Tip
While creating custom observablesisfairly straightforward, we should make sure we
exhaust the built-in factory functions first, only then resorting to creating our own.






Manipulating Observables

Now that we know how to create observables, we should look at what kinds of interesting
things we can do with them. In this section, we will see what it means to treat Observables
as sequences.

Wel start with something ssimple. Let-s print the sum of the first five positive even
integers from an observable of al integers:

(rx/subscribe (->> (Cbservable/interval 1 TinmeUnit/M CROSECONDS)

(rx/filter even?)

(rx/take 5)

(rx/reduce +))

prn-to-repl)
Thisis starting to look awfully familiar to us. We create an interval that will emit all
positive integers starting at zero every 1 microsecond. Then, we filter all even numbersin
this observable. Obvioudly, thisistoo big alist to handle, so we simply take the first five
elements from it. Finally, we reduce the value using +. The result is 20.

To drive home the point that programming with observablesreadlly isjust like operating on
sequences, we will ook at one more example where we will combine two different
Observable sequences. One contains the names of musicians I-m afan of and the other the
names of their respective bands:

(defn nusicians []
(rx/seqg->0 ["Janes Hetfield" "Dave Miustaine" "Kerry King"]))

(def n bands []
(rx/seqg->o0 ["Metallica" "Megadeth" "Slayer"]))

We would like to print to the REPL astring of the format Musi ci an name ' from band
nane. An added requirement is that the band names should be printed in uppercase for
Impact.

We-H start by creating another observable that contains the uppercased band names:

(def n uppercased-obs []
(rx/map (fn [s] (.toUpperCase s)) (bands)))

While not strictly necessary, this makes a reusable piece of code that can be handy in
several places of the program, thus avoiding duplication. Subscribers interested in the
original band names can keep subscribing to the bands observable.

With the two observables in hand, we can proceed to combine them:

(-> (rx/ map vector
(musi ci ans)
(upper cased- obs))
(rx/subscribe (fn [[rmusician band]]
(prn-to-repl (str musician " - from " band)))))

Once more, this example should feel familiar. The solution we were after was away to zip



the two observables together. RxClojure provides zi p behavior through map, much like
Clojure-s core map function does. We call it with three arguments: the two observablesto
zi p and afunction that will be called with both elements, one from each observable, and
should return an appropriate representation. In this case, we simply turn theminto a
Vector.

Next, in our subscriber, we simply destructure the vector in order to access the musician
and band names. We can finally print the final result to the REPL.:

"Janes Hetfield - from METALLI CA"
"Dave Mustaine - from MNEGADETH'
"Kerry King - from SLAYER'






Flatmap and friends

In the previous section, we learned how to transform and combine observables with
operations such as map, reduce, and zi p. However, the two observables abovd musicians
and bandg were perfectly capable of producing values on their own. They did not need
any extrainput.

In this section, we examine a different scenario: we-l learn how we can combine
observables, where the output of one is the input of another. We encountered f | at map
before in Chapter 1, What is Reactive Programming? If you have been wondering what its
roleis, this section addresses exactly that.

Heres what we are going to do: given an observable representing alist of al positive
integers, we-H calculate the factorial for all even numbersin that list. Since the list istoo
big, well take five items from it. The end result should be the factorials of 0, 2, 4, 6, and
8, respectively.

The first thing we need is afunction to calculate the factorial of a number n, as well as our
observable:

(defn factorial [n]
(reduce * (range 1 (inc n))))

(defn all-positive-integers []
(Qbservabl e/interval 1 TinmeUnit/ M CROSECONDS) )

Using some type of visual aid will be helpful in this section, so wedl| start with amarble
diagram representing the previous observable:

(all-positive-integers)

The middle arrow represents time and it flows from left to right. This diagram represents
an infinite Observable sequence, as indicated by the use of ellipsis at the end of it.

Since we—+e combining all the observables now, we-l create one that, given a number,
emits its factorial using the helper function defined earlier. Wel use Rx-s cr eat e method
for this purpose:

(defn fact-obs [n]

(rx/ observabl e*

(fn [observer]
(rx/ on-next observer (factorial n))



(rx/on-conpl eted observer))))

Thisisvery similar to thej ust - obs observable we created earlier in this chapter, except
that it calculates the factorial of its argument and emits the result/factorial instead, ending
the sequence immediately thereafter. The following diagram illustrates how it works:

(fac-obs 5)

We feed the number 5 to the observable, which in turn emitsits factorial, 120. The vertical
bar at the end of the time line indicates the sequence terminates then.

Running the code confirms that our function is correct:
(rx/subscribe (fact-obs 5) prn-to-repl)

120

So far so good. Now, we need to combine both observablesin order to achieve our goal.
Thisiswheref | at map of Rx comesin. We- first seeit in action and then get into the
explanation:

(rx/subscribe (->> (all-positive-integers)
(rx/filter even?)
(rx/flatmap fact-obs)
(rx/take 5))
prn-to-repl)

If we run the preceding code, it will print the factorialsfor 0, 2, 4, 6, and 8, just like we
wanted:

1

2

24
720
40320

Most of the preceding code snippet should look familiar. The first thing we do isfilter all
even numbersfrom al | - posi ti ve- nunber s. Thisleaves us with the following observable
seguence;



(-=> (all-positive-integers)
(rx/filter even?)

Much likeal | - posi tive-i nt egers, this, too, is an infinite observable.

However, the next line of our code looks alittle odd. We call f1 at map and giveit the
fact - obs function. A function we know itself returns another observable. f | at map will
call f act - obs with each value it emits. f act - obs will, in turn, return asingle-value
observable for each number. However, our subscriber doesn+ know how to deal with
observables! It-s simply interested in the factorials!

Thisiswhy, after calling f act - obs to obtain an observable, f | at map flattens all of them
Into a single observable we can subscribe to. Thisis quite amouthful, so let-s visualize

what this means:

(rx/flatmap (-> (all-positive-integers)
({filter even?)
fac-obs)

L

{fac-obs 0) (fac-obs 2) {fac-obs ...)

D B B
B

YYYY




Asyou can see in the preceding diagram, throughout the execution of f I at map, we end up
with alist of observables. However, we don+ care about each observable but rather about
the values they emit. FI at nap, then, isthe perfect tool asit combine§ flatteng all of
them into the observable sequence shown at the bottom of the figure.

You can think of f I at map as mapcat for observable sequences.

Therest of the code is straightforward. We simply take the first five elements from this
observable and subscribeto it, as we have been doing so far.



One more flatmap for theroad

You might be wondering what would happen if the observable sequence we-re
flatmapping emitted more than one value. What then?

We-l see one last example before we begin the next section in order to illustrate the
behavior of f1 at Map in such cases.

Heres an observable that emits its argument twice:

(defn repeat-obs [n]
(rx/seqg->0 (repeat 2 n)))

Using it is straightforward:

(-> (repeat-obs 5)
(rx/subscribe prn-to-repl))

k) ; 5
k) ; 5
As previously, we-H now combine this observable with the one we created earlier, al | -

posi tive-int egers. Before reading on, think about what you expect the output to be for,
say, the first three positive integers.

The codeisasfollows:

(rx/subscribe (->> (all-positive-integers)
(rx/flatmap repeat-obs)
(rx/take 6))
prn-to-repl)

And the output is as follows:

NNRFPPFL,OO

The result might be unexpected for some readers. Let-s have alook at the marble diagram
for this example and make sure we understand how it works:



{flatmap (all-positive-integers)
repeat-obs)

v

(repeat-obs 0) (repeat-obs 1) (repeat-obs 2)

@0+ |-+ - D
|
DD C

Each timer epeat - obs gets called, it emits two values and terminates. f | at map then
combines them all in a single observable, making the previous output clearer.

One last thing worth mentioning about f | at mapl and the title of this sectiorf isthat its
—friendsll refer to the several names by which f 1 at nap is known.

For instance, RX.NET callsit sel ect Many. RxJavaand Scalacall it f1 at Mapf though
RxJava has an dliasfor it called mapmvany. The Haskell community callsit bind. Though
they have different names, these functions semantics are the same and are part of a higher-
order abstraction called a Monad. We don+ need to know anything about Monads to
proceed.

The important thing to keep in mind is that when you-e sitting at the bar talking to your
friends about Compositional Event Systems, all these names mean the same thing.







Error handling

A very important aspect of building reliable applications is knowing what to do when
things go wrong. It is naive to assume that the network isreliable, that hardware won-t
fail, or that we, as developers, won+t make mistakes.

RxJava embraces this fact and provides arich set of combinatorsto deal with failure, a
few of which we examine here.



OnError
L et-s get started by creating a badly behaved observable that always throws an exception:

(defn exceptional -obs []
(rx/ observabl e*
(fn [observer]
(rx/ on-next observer (throw (Exception. "Qops. Something went

wrong”)))
(rx/on-conpl eted observer))))

Now let-s watch what happens if we subscribe to it:

(rx/subscribe (->> (exceptional -obs)
(rx/ map inc))
(fn [v] (prn-to-repl "result is " v)))

;; Exception Oops. Sonething went wong rx-playground. core/exceptional -
obs/fn--1505

The exception thrown by except i onal - obs isn+ caught anywhere so it ssmply bubbles up
to the REPL. If thiswas aweb application our users would be presented with aweb server
error such asthe HTTP code 500| Internal Server Error. Those users would probably
not use our system again.

|deally, we would like to get a chance to handle this exception gracefully, possibly
rendering afriendly error message that will let ours users know we care about them.

Aswe have seen earlier in the chapter, the subscri be function can take up to 3 functions
as arguments:

e Thefirst, or the onNext handler, is called when the observable emits a new value

e Thesecond, or onError, is caled whenever the observable throws an exception

e Thethird and last function, or onConpl et e, is called when the observable has
completed and will not emit any new items

For our purposes we are interested in the onEr r or handler, and using it is straightforward:

(rx/subscribe (->> (exceptional -obs)
(rx/ map inc))
(fn [v] (prn-to-repl "result is " v))
(fn[e] (prn-to-repl "error is " e)))

7, "error is " #<Exception java.lang. Exception: Oops. Sonething went w ong>

Thistime, instead of throwing the exception, our error handler gets called with it. This
gives us the opportunity to display an appropriate message to our users.



Catch

The use of onError gives us amuch better experience overall but it isnt very flexible.

L et-s imagine a different scenario where we have an observable retrieving data from the
network. What if, when this observer fails, we would like to present the user with a cached
value instead of an error message?

Thisiswhere the cat ch combinator comesin. It allows us to specify afunction to be
invoked when the observable throws an exception, much like onEr r or does.

Differently from onEr r or , however, cat ch has to return a new Observable that will be the
new source of items from the moment the exception was thrown:

(rx/subscribe (->> (exceptional -obs)
(rx/catch Exception e
(rx/return 10))
(rx/ map inc))
(fn [v] (prn-to-repl "result is " v)))

o "result is " 11

In the previous example, we are essentially specifying that, whenever except i onal - obs
throws, we should return the value 10. We are not limited to single values, however. In
fact, we can use any Observable we like as the new source:

(rx/subscribe (->> (exceptional -obs)
(rx/catch Exception e
(rx/seg->0 (range 5)))
(rx/ map inc))
(fn [v] (prn-to-repl "result is " v)))

"result is " 1
"result is " 2
"result is " 3
"result is " 4
"result is " 5



Retry

The last error handling combinator we-Hl examineisr et ry. This combinator is useful
when we know an error or exception is only transient so we should probably give it
another shot by resubscribing to the Observable.

First, wedl create an observable that fails when it is subscribed to for the first time.
However, the next time it is subscribed to, it succeeds and emits a new item:

(defn retry-obs []
(let [errored (atom fal se)]
(rx/ observabl e*
(fn [observer]
(if @rrored
(rx/on-next observer 20)
(do (reset! errored true)
(throw (Exception. "Qops. Sonething went wong"))))))))

L et-s see what happens if we simply subscribe to it:

(rx/subscribe (retry-obs)
(fn [v] (prn-to-repl "result is " v)))

Excepti on Oops. Sonet hing went wong rx-playground. core/retry-obs/fn-
- 1476

As expected, the exception ssmply bubbles up asin our first example. However we know
[ for the purposes of thisexampld that thisisatransient failure. Let-s see what changes
if weuseretry:

(rx/subscribe (->> (retry-obs)

(.retry))
(fn [v] (prn-to-repl "result is " v)))

o "result is " 20

Now, our code is responsible for retrying the Observable and as expected we get the
correct outpuit.

|t-s important to note that r et ry will attempt to resubscribe indefinitely until it succeeds.
This might not be what you want so Rx provides avariation, called r et ryw t h, which
allows us to specify a predicate function that controls when and if retrying should stop.

All these operators give us the tools we need to build reliable reactive applications and we
should always keep them in mind as they are, without a doubt, a great addition to our
toolbox. The RxJavawiki on the subject should be referred to for more information:
https://github.com/ReactiveX/RxJavalwiki/Error-Handling-Operators.







Backpressure

Another issue we might be faced with is the one of observables that produce items faster
than we can consume. The problem that arises in this scenario is what to do with this ever-
growing backlog of items.

As an example, think about zipping two observables together. The zi p operator (or map in
RxClojure) will only emit a new value when all observables have emitted an item.

So if one of these observablesisalot faster at producing items than the others, map will
need to buffer these items and wait for the others, which will most likely cause an error, as
shown here:

(defn fast-produci ng-obs []
(rx/map inc (Observable/interval 1 TinmeUnit/ M LLI SECONDS)))

(defn sl ow produci ng- obs []
(rx/map inc (Observable/interval 500 TimeUnit/ M LLI SECONDS)))

(rx/subscribe (->> (rx/map vector
(fast - produci ng- obs)
(sl ow produci ng- obs))

(rx/map (fn [[x y]]

(+x)))
(rx/take 10))

prn-to-repl
(fn[e] (prn-to-repl "error is " e)))

7, "error is " #<M ssi ngBackpressureException
rx. exceptions. M ssi ngBackpressur eExcepti on>

As seen in the preceding code, we have afast producing observable that emits items 500
times faster than the slower Observable. Clearly, we cant keep up with it and surely
enough, Rx throws M ssi ngBackpr essur eExcept i on.

What this exception istelling usis that the fast producing observable doesn+ support any
type of backpressurg what Rx calls Reactive pull backpressurg that is, consumers can-
tell it to go slower. Thankfully Rx provides us with combinators that are helpful in these
scenarios.



Sample

One such combinator is sanpl e, which alows usto sample an observable at a given
interval, thus throttling the source observable-s output. Let-s apply it to our previous
example:

(rx/subscribe (->> (rx/mp vector
(.sanpl e (fast-produci ng-obs) 200
Ti meUni t / M LLI SECONDS)
(sl ow produci ng- obs))
(rx/map (fn [[x y]]

(+xy)))
(rx/take 10))

prn-to-repl
(fn[e] (prn-to-repl "error is " e)))

i 204
i 404
7, 604
7 807
7, 1010
1 1206
i 1407
;o 1613
7, 1813
i 2012

The only changeisthat we call sanpl e on our fast producing Observable before calling
map. We will sampleit every 200 milliseconds.

By ignoring all other items emitted in this time slice, we have mitigated our initia
problem, even though the original Observable doesn+ support any form of backpressure.

The sample combinator is only one of the combinators useful in such cases. Others include
throttl eFirst, debounce, buf f er, and wi ndow. One drawback of this approach, however,
Isthat alot of the items generated end up being ignored.

Depending on the type of application we are building, this might be an acceptable
compromise. But what if we are interested in all items?



Backpressure strategies

If an Observable doesn+t support backpressure but we are still interested in all items it
emits, we can use one of the built-in backpressure combinators provided by Rx.

As an example we will look at one such combinator, onBackpr essur eBuf f er :

(rx/subscribe (->> (rx/map vector
(. onBackpressureBuffer (fast-producing-obs))
(sl ow produci ng- obs))

(rx/map (fn [[x y]]

(+xy)))
(rx/take 10))

prn-to-repl
(fn[e] (prn-to-repl "error is " e)))

The example is very similar to the one where we used sanpl e, but the output isfairly
different. Thistime we get all items emitted by both observables.

The onBackpr essur eBuf f er strategy implements a strategy that simply buffers al items
emitted by the slower Observable, emitting them whenever the consumer is ready. In our
case, that happens every 500 milliseconds.

Other strategiesinclude onBackpr essur eDr op and onBackpr essur eBl ock.

|t-s worth noting that Reactive pull backpressureis still work in progress and the best way
to keep up to date with progressis on the RxJavawiki on the subject:
https://github.com/ReactiveX/RxJava/wiki/Backpressure.







Summary

In this chapter, we took a deep dive into RxJava, a port form Microsoft-s Reactive
Extensions from .NET. We learned about its main abstraction, the observable, and how it
relatesto iterables.

We a so learned how to create, manipulate, and combine observablesin several ways. The
examples shown here were contrived to keep things simple. Nevertheless, all concepts
presented are extremely useful in real applications and will come in handy for our next
chapter, where we put them to use in amore substantial example.

Finally, we finished by looking at error handling and backpressure, both of which are
important characteristics of reliable applications that should aways be kept in mind.






Chapter 3. Asynchronous Programming
and Networking

Several business applications need to react to external stimulif  such as network traffid
asynchronously. An example of such software might be a desktop application that allows
us to track a company-s share prices in the stock market.

We will build this application first using a more traditional approach. In doing so, we will:
e Beableto identify and understand the drawbacks of the first design

e Learn how to use RxClojure to deal with stateful computations such as rolling

averages
¢ Rewrite the example in a declarative fashion using observable sequences, thus
reducing the complexity found in our first approach



Building a stock mar ket monitoring
application

Our stock market program will consist of three main components:

¢ A function simulating an external service from which we can query the current price
I thiswould likely be anetwork call in areal setting

¢ A scheduler that polls the preceding function at a predefined interval

e A display function responsible for updating the screen

We-H start by creating a new leiningen project, where the source code for our application
will live. Type the following on the command line and then switch into the newly created
directory:

| ein new st ock-market-nonitor
cd stock-nmarket-nonitor

Aswe-l be building a GUI for this application, go ahead and add a dependency on
Seesaw to the dependencies section of your proj ect . cl j :

[seesaw "1.4.4"]

Next, create asrc/ st ock_mar ket _moni tor/ core. clj fileinyour favorite editor. Let-s
create and configure our application-s Ul components:

(ns stock-market-nonitor.core
(:require [seesaw.core :refer :all])
(:inmport (java.util.concurrent Schedul edThr eadPool Execut or
TimeUnit)))

(native!)

(def main-franme (frame :title "Stock price nmonitor”
:wi dth 200 : height 100
:on-close :exit))

(def price-| abel (label "Price: -"))

(config! main-franme :content price-Iabel)

Asyou can see, the Ul isfairly smple. It consists of asingle label that will display a
company-s share price. We aso imported two Java classes,
Schedul edThr eadPool Execut or and Ti meUni t , which we will use shortly.

The next thing we need is our polling machinery so that we can invoke the pricing service
on a given schedule. We-Hl implement this via athread pool so as not to block the main
thread:

Tip
User interface SDKs such as swing have the concept of amairi or Ulf thread. Thisis
the thread used by the SDK to render the Ul components to the screen. As such, if we



have blocking or even simply slow running  operations execute in this thread, the user
experience will be severely affected, hence the use of athread pool to offload expensive
function calls.

(def pool (atomnil))

(defn init-schedul er [ numthreads]
(reset! pool (Schedul edThreadPool Executor. numthreads)))
(defn run-every [pool mllis f]
(.schedul eWthFi xedDel ay pool
f
O millis TimeUnit/M LLI SECONDS))

(defn shutdown [ pool ]
(println "Shutting down schedul erf ")
(. shutdown pool))

Thei ni t - schedul er function creates Schedul edThr eadPool Execut or With the given
number of threads. That-s the thread pool in which our periodic function will run. The
run-every function schedules afunctionf in the given pool to run at the interval
gpecified by ni I 1i s. Finally, shut down isafunction that will be called on program
termination and shutdown the thread pool gracefully.

The rest of the program puts all these parts together:

(defn share-price [conpany-code]
(Thread/ sl eep 200)
(rand-int 1000))

(defn -main [ & args]
(show main-frane)
(. addShut downHook (Runti nme/ get Runti ne)
(Thread. #(shutdown @ool)))
(init-scheduler 1)
(run-every @ool 500
#(->> (str "Price: " (share-price "XYZ"))
(text! price-I|abel)
i nvoke-now)))

The shar e- pri ce function slegps for 200 milliseconds to simulate network latency and
returns arandom integer between 0 and 1,000 representing the stock-s price.

Thefirst line of our - mai n function adds a shutdown hook to the runtime. This allows our
program to intercept terminatiorf such as pressing Ctrl + Cin atermina windowf and
gives us the opportunity to shutdown the thread pool.

Tip
The Schedul edThr eadPool Execut or pool creates non-daemon threads by default. A

program cannot terminate if there are any non-daemon threads alive in addition to the
program-s main thread. Thisiswhy the shutdown hook is necessary.

Next, we initialize the scheduler with a single thread and schedule afunction to be



executed every 500 milliseconds. This function asksthe shar e- pri ce function for XY Z-s
current price and updates the label.

Tip
Desktop applications require all rendering to be done in the Ul thread. However, our
periodic function runs on a separate thread and needs to update the price label. Thisiswhy

we usei nvoke- now, which is a Seesaw function that schedules its body to be executed in
the Ul thread as soon as possible.

L et-s run the program by typing the following command in the project-s root directory:

[ ein tranpoline run -m stock-market-nonitor.core

Tip

Trampolining tells leiningen not to nest our program-s JVM within its own, thus freeing us
to handle uses of Ctrl + C ourselves through shutdown hooks.

A window like the one shown in the following screenshot will be displayed, with the
values on it being updated as per the schedule implemented earlier:

® O O Stock price monitor

Price: 552

Thisisafine solution. The codeisrelatively straightforward and satisfies our original
requirements. However, if welook at the big picture, thereisafair bit of noisein our
program. Most of itslines of code are dealing with creating and managing a thread pooal,
which, while necessary, isn- central to the problem we+e solving it-s an implementation
detail.

We-H keep things as they are for the moment and add a new requirement: rolling averages.






Rolling averages

Now that we can see the up-to-date stock price for a given company, it makes sense to
display arolling average of the past, say, five stock prices. In areal scenario, this would
provide an objective view of a company-s share trend in the stock market.

L et-s extend our program to accommodate this new requirement.
First, we-l need to modify our namespace definition:

(ns stock-nmarket-nonitor.core
(:require [seesaw.core :refer :all])
(:inport (java.util.concurrent Schedul edThr eadPool Execut or
Ti meUni t)
(clojure.lang Persistent Queue)))
The only change is anew import clause, for Clojure-s Per si st ent Queue class. We will be

using that later.
We-H also need a new label to display the current running average:

(def running-avg-| abel (label "Running average: -"))
(config! main-frane :content
(bor der - panel
:north price-| abel
:center running-avg-| abel
:border 5))

Next, we need afunction to calculate rolling averages. A rolling or moving averageis
acalculation in statistics, where you take the average of a subset of itemsin a dataset. This
subset has afixed size and it shifts forward as data comesin. Thiswill become clear with
an example.

Suppose you have alist with numbers from 1 to 10, inclusive. If we use 3 as the subset
size, therolling averages are as follows:

[12345678910] => 2.0
[12345678910] =>3.0
[12345678910] =>4.0

The highlighted parts in the preceding code show the current window being used to
calculate the subset average.

Now that we know what rolling averages are, we can move on to implement it in our
program:

(defn roll-buffer [buffer num buffer-size]
(let [buffer (conj buffer num]
(if (> (count buffer) buffer-size)
(pop buffer)
buffer)))

(defn avg [ nunbers]
(float (/ (reduce + nunbers)
(count nunbers))))



(def n make-runni ng-avg [ buffer-size]
(let [buffer (atom clojure.lang. Persi stent Queue/ EMPTY) ]
(fn [n]
(swap! buffer roll-buffer n buffer-size)
(avg @uffer))))

(def running-avg (running-avg 5))

Therol I -buffer functionisautility function that takes a queue, a number, and a buffer
Size as arguments. It adds that number to the queue, popping the oldest element if the
gueue goes over the buffer limit, thus causing its contents to roll over.

Next, we have afunction for calculating the average of a collection of numbers. We cast
the result to float if there-s an uneven division.

Finally, the higher-order make- r unni ng- avg function returns a stateful, single argument
function that closes over an empty persistent queue. This queue is used to keep track of the
current subset of data.

We then create an instance of this function by calling it with a buffer size of 5 and save it
to ther unni ng- avg var. Each time we call this new function with a number, it will add it
to the queue using ther ol I - buf f er function and then finally return the average of the
items in the queue.

The code we have written to manage the thread pool will be reused asis so al that isleft
to do is update our periodic function:

(defn worker []
(let [price (share-price "XYZ")]
(->> (str "Price: " price) (text! price-|abel))
(->> (str "Running average: " (running-avg price))
(text! running-avg-|abel))))

(defn -main [& args]
(show main-frane)
(. addShut downHook (Runti nme/ get Runti ne)
(Thread. #(shutdown @ool)))
(init-scheduler 1)
(run-every @ool 500
#(i nvoke-now (worker))))

Since our function isn+ aone-liner anymore, we abstract it away in its own function called
wor ker . As before, it updates the price label, but we have also extended it to use the
runni ng- avg function created earlier.

We-re ready to run the program once more:

[ ein trampoline run -m stock-narket-nonitor.core

You should see awindow like the one shown in the following screenshot:



® O O Stock price monitor
Price: 278

Running average: 382.0

You should see that in addition to displaying the current share price for XY Z, the program
also keeps track and refreshes the running average of the stream of prices.






| dentifying problems with our current
approach

Aside from the lines of code responsible for building the user interface, our program is
roughly 48 lines long.

The core of the program resides in the shar e- pri ce and avg functions, which are
responsible for querying the price service and calculating the average of alist of n
numbers, respectively. They represent only six lines of code. Thereisalot of incidental
complexity in this small program.

Incidental complexity is complexity caused by code that is not essential to the problem at
hand. In this example, we have two sources of such complexityf we are disregarding Ul
specific code for this discussion: the thread pool and the rolling buffer function. They add
agreat deal of cognitive load to someone reading and maintaining the code.

The thread pool is external to our problem. It is only concerned with the semantics of how
to run tasks asynchronously. The rolling buffer function specifies a detailed
implementation of a queue and how to use it to represent the concept.

|deally, we should be able to abstract over these details and focus on the core of our
problem; Compositional Event Systems (CES) allows us to do just that.






Removing incidental complexity with
RxClojure

In Chapter 2, A Look at Reactive Extensions, we learned about the basic building blocks of
RxClojure, an open-source CES framework. In this section, we-l use this knowledge in
order to remove the incidental complexity from our program. Thiswill give us aclear,
declarative way to display both prices and rolling averages.

The Ul code we-ve written so far remains unchanged, but we need to make sure
RxClojure is declared in the dependencies section of our proj ect . cl j file:

[To.reactivex/rxclojure "1.0.0"]

Then, ensure we require the following library:

(ns stock-nmarket-nonitor.core
(:require [rx.lang.clojure.core :as rx]
[ seesaw. core :refer :all])
(:import (java.util.concurrent TimeUnit)
(rx Cbservable)))

The way we approach the problem thistime is aso different. Lets take alook at the first

requirement: it requires we display the current price of a company-s share in the stock
market.

Every time we query the price service, weget d possibly differentf pricefor the
company in question. Aswe saw in Chapter 2, A Look at Reactive Extensions, modeling
this as an observable sequence is easy, so weH start with that. Wel create a function that
gives us back a stock price observable for the given company:

(defn make-price-obs [conmpany-code]
(rx/return (share-price conpany-code)))

Thisis an observable that yields a single value and terminates. It-s equivalent to the
following marble diagram:

(make-price-obs “XYZ")

Part of the first requirement is that we query the service on a predefined time intervalf
every 500 milliseconds in this case. This hints at an observable we have encountered
before, aptly named interval. In order to get the polling behavior we want, we need to



combine the interval and the price observables.
Asyou probably recall, f I at map isthe tool for the job here:

(rx/flatmap (fn [_] (make-price-obs "XYZ"))
(Cbservabl e/i nterval 500
Ti meUni t / M LLI SECONDS) )

The preceding snippet creates an observable that will yield the latest stock price for XY Z
every 500 milliseconds indefinitely. It corresponds to the following diagram:

{-> [Observable/interval 500 TimeUnit/MILLISECONDS)
(rx/flatmap (fn [_] (make-price-ocbs "XYZ"))}))

'

(make-price-obs (make-price-obs ({make-price-obs
uszu } IIXYE“ } 1 szlrJ

In fact, we can ssimply subscribe to this new observable and test it out. Modify your main
function to the following snippet and run the program:

(defn -main [ & args]

(show main-frane)

(let [price-obs (rx/flatmap (fn [_] (meke-price-obs "XYZ"))

(Cbservabl e/i nterval 500
Ti meUni t/ M LLI SECONDS) ) ]
(rx/subscribe price-obs
(fn [price]
(text! price-label (str "Price: " price))))))

Thisisvery cool! We replicated the behavior of our first program with only afew lines of
code. The best part is that we did not have to worry about thread pools or scheduling

actions. By thinking about the problem in terms of observable sequences, as well as
combining existing and new observables, we were able to declaratively express what we



want the program to do.

This aready provides great benefits in maintainability and readability. However, we are
still missing the other half of our program: rolling averages.



Observablerolling aver ages

It might not be immediately obvious how we can model rolling averages as observables.
What we need to keep in mind is that pretty much anything we can think of as a sequence
of values, we can probably model as an observable sequence.

Rolling averages are no different. Let-s forget for a moment that the prices are coming
from a network call wrapped in an observable. Let-simagine we have al values we care
about in a Clojure vector:

(def val ues (range 10))

What we need is away to process these values in partitiong or buffer§ of size5in such
away that only asingle value is dropped at each interaction. In Clojure, we can use the
partition function for this purpose:

(doseq [buffer (partition 5 1 val ues)]
(prn buffer))

(01234
(12 3 45)
(2 345 6)
(3456 7)
(4567 8)

The second argument to theparti ti on function is called astep and it is the offset of how
many items should be skipped before starting a new partition. Here, we set it to 1 in order
to create the sliding window effect we need.

The big question then is: can we somehow leverage parti ti on when working with
observable sequences?

It turns out that RxJava has a transformer called buf f er just for this purpose. The previous
example can be rewritten as follows:

(-> (rx/seg->0 (vec (range 10)))
(.buffer 5 1)
(rx/subscri be
(fn [price]
(prn (str "Value: " price)))))

Tip
As mentioned previously, not al RxJavas APl is exposed through RxClojure, so here we
need to use interop to access the buf f er method from the observable sequence.

As before, the second argument to buf f er isthe offset, but it-s called ski p in the RxJava
documentation. If you run this at the REPL you+l see the following output:

"Val ue: | 1, 2, 3, 4]"
"Value: [1, 2, 3, 4, 5]"
"Value: [2, 3, 4, 5 6]"
"Value: [3, 4, 5, 6, 7]"



"Value: [4, 5, 6, 7, 8]"

Thisis exactly what we want. The only difference is that the buffer method waits until it
has enough element§ fiveinthiscasd before proceeding.

Now, we can go back to our program and incorporate this idea with our main function.
Hereiswhat it looks like:

(defn -main [ & args]
(show! main-frane)
(let [price-obs (-> (rx/flatmp nmake-price-obs
(Cbservabl e/i nterval 500
Ti meUni t/ M LLI SECONDS) )
(. publish))
sliding-buffer-obs (.buffer price-obs 5 1)]
(rx/subscribe price-obs
(fn [price]
(text! price-label (str "Price: " price))))
(rx/subscribe sliding-buffer-obs
(fn [buffer]
(text! running-avg-label (str "Running average: " (avg
buffer)))))
(.connect price-o0bs)))

The preceding snippet works by creating two observables. Thefirst one, pri ce- obs, we
had created before. The new dliding buffer observable is created using the buf f er
transformer on pri ce- obs.

We can, then, independently subscribe to each one in order to update the price and rolling
average labels. Running the program will display the same screen we-ve seen previously:

® O O Stock price monitor
Price: 278

Running average: 382.0

You might have noticed two method calls we hadn+ seen before: publ i sh and connect .

The publ i sh method returns a connectabl e observable. This means that the observable
won+ start emitting values until itsconnect method has been called. We do this here
because we want to make sure that all the subscribers receive all the values emitted by the
original observable.

In conclusion, without much additional code, we implemented all requirementsin a
concise, declarative manner that is easy to maintain and follow. We have also made the
previous roll-buffer function completely unnecessary.

The full source code for the CES version of the program is given here for reference:

(ns stock-market-nonitor.O5frp-price-nonitor-rolling-avg



(:require [rx.lang.clojure.core :as rx]
[ seesaw.core :refer :all])
(:import (java.util.concurrent TimeUnit)
(rx Qoservable)))

(nativel)

(def main-franme (frame :title "Stock price nmonitor”
:wi dth 200 : height 100
:on-close :exit))

(def price-1abel (I abel "Price: -"))
(def running-avg-1abel (label "Running average: -"))

(config! main-franme :content
(bor der - panel
:north price-|abel
:center runni ng-avg-| abel
:border 5))

(defn share-price [conpany-code]
(Thread/ sl eep 200)
(rand-int 1000))

(defn avg [ nunber s]
(float (/ (reduce + nunbers)
(count nunbers))))

(defn nmake-price-obs [_]
(rx/return (share-price "XYZ")))

(defn -main [& args]
(show! main-frane)
(let [price-obs (-> (rx/flatmap nmake-price-obs
(Cbservabl e/i nterval 500
Ti meUni t/ M LLI SECONDS) )
(. publish))
sliding-buffer-obs (.buffer price-obs 5 1)]
(rx/subscribe price-obs
(fn [price]
(text! price-label (str "Price: " price))))
(rx/subscribe sliding-buffer-obs
(fn [buffer]
(text! running-avg-I|abel (str "Running average: " (avg
buffer)))))
(.connect price-obs)))

Note how in this version of the program, we didn+ have to use a shutdown hook. Thisis
because RxClojure creates daemon threads, which are automatically terminated once the
application exits.






Summary

In this chapter, we ssmulated a real-world application with our stock market program.
We-ve written it in a somewhat traditional way using thread pools and a custom queue
implementation. We then refactored it to a CES style using RxClojure-s observable
sequences.

The resulting program is shorter, simpler, and easier to read once you get familiar with the
core concepts of RxClojure and RxJava.

In the next Chapter we will be introduced to core.async in preparation for implementing
our own basic CES framework.






Chapter 4. Introduction to core.async

L ong gone are the days when programs were required to do only one thing at atime.
Being able to perform several tasks concurrently is at the core of the vast majority of
modern business applications. This is where asynchronous programming comesin.

Asynchronous programming and, more generally, concurrencyf is about doing more
with your hardware resources than you previously could. It means fetching data from the
network or a database connection without having to wait for the result. Or, perhaps,
reading an Excel spreadsheet into memory while the user can still operate the graphical
interface. In generdl, it improves a system-s responsiveness.

In this chapter, we will look at how different platforms handle this style of programming.
More specifically, we will:

e Beintroduced to core.async-s background and API

e Solidify our understanding of core.async by re-implementing the stock market
application in terms of its abstractions

e Understand how core.async deals with error handling and backpressure

e Take abrief tour on transducers



Asynchronous programming and
concurrency

Different platforms have different programming models. For instance, JavaScript
applications are single-threaded and have an event loop. When making a network call, itis
common to register a callback that will be invoked at alater stage, when that network call
completes either successfully or with an error.

In contrast, when we—re on the VM, we can take full advantage of multithreading to
achieve concurrency. It is simple to spawn new threads via one of the many concurrency
primitives provided by Clojure, such as futures.

However, asynchronous programming becomes cumbersome. Clojure futures don-
provide a native way for us to be notified of their completion at alater stage. In addition,
retrieving values from a not-yet-completed future is a blocking operation. This can be seen
clearly in the following snippet:

(def n do-sonet hing-i nportant []
(let [f (future (do (prn "Calculating ")
(Thread/ sl eep 10000)))]
(prn "Perhaps the future has done its job?")

(prn @)

(prn "You will only see this in about 10 secondsf")))

(do-sonet hi ng-i nportant)

The second call to print dereferences the future, causing the main thread to block since it
hasnt finished yet. Thisiswhy you only see the last print after the thread in which the
future is running has finished. Callbacks can, of course, be ssmulated by spawning a
separate thread to monitor the first one, but this solution is clunky at best.

An exception to the lack of callbacksis GUI programming in Clojure. Much like
JavaScript, Clojure Swing applications also possess an event loop and can respond to user
input and invoke listeners (callbacks) to handle them.

Another option is rewriting the previous example with a custom callback that is passed
into the future:

(def n do-sonet hi ng-i nportant [call back]
(let [f (future (let [answer 42]
(Thread/ sl eep 10000)
(cal I back answer)))]
(prn "Perhaps the future has done its job?")
(prn "You should see this alnost imediately and then in 10 secs/ ")

f))

(do-sonet hi ng-i nportant (fn [answer]
(prn "Future is done. Answer is " answer)))

Thistime the order of the outputs should make more sense. However, if we return the
future from this function, we have no way to give it another callback. We have lost the



ability to perform an action when the future ends and are back to having to dereferenceit,
thus blocking the main thread againi  exactly what we wanted to avoid.

Tip
Java 8 introduces a new class, Conpl et abl eFut ur e, that allows registering a callback to be

invoked once the future completes. If that-s an option for you, you can use interop to make
Clojure leverage the new class.

Asyou might have realized, CES is closely related to asynchronous programming: the
stock market application we built in the previous chapter is an example of such a program.
Themairi or Ulf thread is never blocked by the Observables fetching data from the
network. Additionally, we were also able to register callbacks when subscribing to them.

In many asynchronous applications, however, callbacks are not the best way to go. Heavy
use of callbacks can lead to what is known as callback hell. Clojure provides a more
powerful and elegant solution.

In the next few sections, we will explore cor e. async, a Clojure library for asynchronous
programming, and how it relates to Reactive Programming.






core.async

If you-ve ever done any amount of JavaScript programming, you have probably
experienced callback hell. If you haven, the following code should give you a good idea:

http. get (' api/users/find?name=" + nanme, function(user){
http. get (' api/orders?userld=" + user.id, function(orders){
orders. forEach(function(order){
cont ai ner . append( or der);

1)
1)
1)
This style of programming can easily get out of hand instead of writing more natural,
sequential steps to achieving atask, that logic isinstead scattered across multiple
callbacks, increasing the devel oper-s cognitive load.

In response to this issue, the JavaScript community released several promises libraries that
are meant to solve the issue. We can think of promises as empty boxes we can pass into
and return from our functions. At some point in the future, another process might put a
value inside this box.

As an example, the preceding snippet can be written with promises like the following:

http. get (' api/users/find?nane=" + nane)
.then(function(user){
return http.get('api/orders?userld=" + user.id);

})

.then(function(orders){
orders. forEach(function(order){
cont ai ner. append( order);

1)
1)
The preceding snippet shows how using promises can flatten your callback pyramid, but
they don+ eliminate callbacks. Thet hen function is a public function of the promises API.
It is definitely a step in the right direction as the code is composable and easier to read.

Aswe tend to think in sequences of steps, however, we would like to write the following:

user = http.get (' api/users/find?nanme=" + nane);
orders = http.get(' api/orders?userld=" + user.id);
orders. forEach(function(order){

cont ai ner. append( order);

1)

Even though the code |ooks synchronous, the behavior should be no different from the
previous examples. Thisis exactly what cor e. async lets us do in both Clojure and
ClojureScript.



Communicating sequential processes

Thecore. async library is built on an old idea. The foundation upon which it lies was first
described by Tony Hoarg of Quicksort famd in his 1978 paper Communicating
Sequential Processes (CSP; see http://www.cs.ucf.edu/courses/cop4020/sum2009/CSP-
hoare.pdf). CSP has since been extended and implemented in several languages, the latest
of which being Googles Go programming language.

It is beyond the scope of this book to go into the details of this seminal paper, so what
followsis asimplified description of the main idess.

In CSP, work is modeled using two main abstractions: channels and processes. CSPis also
message-driven and, as such, it completely decouples the producer from the consumer of
the message. It is useful to think of channels as blocking queues.

A simplistic approach demonstrating these basic abstractions is as follows:

(inport '"java.util.concurrent. ArrayBl ocki ngQueue)

(defn producer [c]
(prn "Taking a nap")
(Thread/ sl eep 5000)
(prn "Now putting a name in queuel")
(.put ¢ "Leo"))

(defn consuner [c]
(prn "Attenpting to take val ue from queue now ")
(prn (str "CGot it. Hello " (.take c) "!'")))

(def chan (ArrayBl ocki ngQueue. 10))

(future (consumer chan))
(future (producer chan))

Running this code in the REPL should show us output similar to the following:

"Attenpting to take value from queue now "

"Taki ng a nap"

;; then 5 seconds | ater

"Now putting a nane in que queuel "

"CGot it. Hello Leo!"

In order not to block our program, we start both the consumer and the producer in their
own threads using afuture. Since the consumer was started first, we most likely will see
its output immediately. However, as soon as it attempts to take a value from the channelf
or queud it will block. It will wait for a value to become available and will only proceed
after the producer isdonetaking itsnag clearly avery important task.

Now, let-s compare it with a solution using core.async. First, create a new leiningen
project and add a dependency on it:

[org.clojure/core.async "0.1.278. 0- 76b25b- al pha"]
Now, type thisin the REPL or in your core namespace:



(ns core-async-pl ayground. core
(:require [clojure.core.async :refer [go chan <! >I tineout]]))

(defn prn-with-thread-id [s]
(prn (str s " - Thread id: " (.getld (Thread/currentThread)))))

(defn producer [c]
(go (prn-with-thread-id "Taking a nap ")
(<! (tinmeout 5000))
(prn-with-thread-id "Now putting a nane in que queuel ")
(>!' ¢ "Le0")))

(defn consuner [c]
(go (prn-with-thread-id "Attenpting to take value from queue now ")
(prn-with-thread-id (str "Got it. Hello " (<! ¢c) "I"))))

(def ¢ (chan))

(consuner c)
(producer c)

Thistime we are using a helper function, pr n-wi t h-t hr ead- i d, which appends the current
thread ID to the output string. | will explain why shortly, but apart from that, the output
will have been equivalent to the previous one:

"Attenpting to take value from queue now - Thread id: 43"
"Taking a nap - Thread id: 44"

"Now putting a nanme in que queuel - Thread id: 48"

"CGot it. Hello Leo! - Thread id: 48"

Structurally, both solutions look fairly similar, but since we are using quite afew new
functions here, let-s break it down:

e chan isafunction that createsacor e. async channel. As mentioned previoudly, it can
be thought of as a concurrent blocking queue and is the main abstraction in the
library. By default chan creates an unbounded channel, but cor e. async provides
many more useful channel constructors, afew of which we-Hl be using later.

e tinmeout isanother such channel constructor. It gives us a channel that will wait for a
given amount of time before returning nil to the taking process, closing itself
iImmediately afterward. Thisisthecore. async equivalent of Thread/deep.

e Thefunctions>! and <! are used to put and take values from a channel, respectively.
The caveat is that they have to be used inside ago block, aswe will explain later.

® go isamacro that takes abody of expression§ which form ago blockl and creates
lightweight processes. Thisis where the magic happens. Inside ago block, any calls
to>! and <! that would ordinarily block waiting for values to be available in
channels are instead parked. Parking is a specia type of blocking used internally in
the state machine of cor e. async. The blog post by Huey Petersen covers this state
machine in depth (see http://hueypetersen.com/posts/2013/08/02/the-state-machines-
of-core-async/).

Go blocks are the very reason for which | chose to print the thread IDs in our example. If
we look closely, weH readlize that the last two statements were executed in the same thread



[ thisisn+ true 100 percent of the time as concurrency isinherently non-deterministic.
Thisis afundamental difference between cor e. async and solutions using threads/futures.

Threads can be expensive. On the VM, their default stack size is 512 kilobyteg
configurable viathe - xss VM startup option. When developing a highly concurrent
system, creating thousands of threads can quickly drain the resources of the machine the
application is running on.

cor e. async acknowledges this limitation and gives us lightweight processes. Internally,
they do share athread pool, but instead of wastefully creating athread per go block,
threads are recycled and reused when a put/take operation is waiting for a value to become
available.

Tip
At the time of writing, the thread pool used by cor e. async defaultsto the number of

available processors x 2, + 42. So, a machine with eight processors will have a pool with
58 threads.

Therefore, it is common for cor e. async applications to have dozens of thousands of
lightweight processes. They are extremely cheap to create.

Since thisis a book on Reactive Programming, the question that might be in your head
now is. can we build reactive applications using cor e. async? The short answer isyes, we
can! To proveit, we will revisit our stock market application and rewrite it using

core. async.






Rewriting the stock mar ket application
with core.async

By using an example we are familiar with, we are able to focus on the differences between
all approaches discussed so far, without getting side tracked with new, specific domain
rules.

Before we dive into the implementation, let-s quickly do an overview of how our solution
should work.

Just like in our previous implementations, we have a service from which we can query
share prices. Where our approach differs, however, is adirect consequence of how
cor e. async channels work.

On agiven schedule, we would like to write the current price to acor e. async channel.
This might ook like so:

(go (>! out 10)) (def out (chan))

{share-price)

after 500msecs..

(go (>! out 20)) | (def out (chan))

{share-price)

after 500msecs..

(go (>! out 19)) (def out (chan))

{share-price) » 10 20

This process will continuously put pricesin the out channel. We need to do two things
with each price: display it and display the calculated sliding window. Since we like our
functions decoupled, we will use two go blocks, one for each task:

out1) (display-price 10)

1

(def out (chan)) (g© 5
10 20

_ {gD (<i

sliding-window 20)

Hold on. There seems to be something off with our approach. Once we take a price from



the output channel, it is not available any longer to be taken by other go blocks, so, instead
of calculating the sliding window starting with 10, our function ends up getting the second
value, 20. With this approach, we will end up with a sliding window that calculates a
gliding window with roughly every other item, depending on how consistent the
interleaving between the go blocksiis.

Clearly, thisis not what we want, but it helps us think about the problem alittle more. The
semantics of cor e. async prevent us from reading a value from a channel more than once.
Most of the time, this behavior isjust fingd especialy if you think of them as queues. So
how can we provide the same value to both functions?

To solve this problem, we will take advantage of another channel constructor provided by
core. async called br oadcast . Asthe nameimplies, br oadcast returnsachannel, which,
when written to, writes its value into the channels passed to it as arguments. Effectively,
this changes our high-level picture to something like the following:

price-ch

)
(def out fij/'//"
(broadcast price-ch

(go (>! out 10)) sliding-buffer-chj)

(share-price)

In summary, we will have a go loop writing prices to this broadcast channel, which will
then forward its values to the two channels from which we will be operating: prices and
the sliding window.

With the general ideain place, we are ready to dive into the code.




| mplementing the application code

We already have a project depending on cor e. async that we created in the previous
section, so we-l be working off that. Let-s start by adding an extra dependency on seesaw
to your proj ect. clj file:

: dependencies [[org.clojure/clojure "1.5.1"]
[org.clojure/core.async "0.1.278. 0- 76b25b- al pha"]
[ seesaw "1.4.4"]]

Next, create afile called st ock_mar ket . ¢l j inthesrc directory and add this namespace
declaration:

(ns core-async-pl ayground. st ock- mar ket
(:require [clojure.core.async
:refer [go chan <! >! timeout go-loop map>] :as async])
(:require [clojure.core.async.lab :refer [broadcast]])
(:use [seesaw.core]))

This might be a good point to restart your REPL if you haven+ done so. Don+ worry
about any functions we haven-t seen yet. Wel get afeel for them in this section.

The GUI code remains largely unchanged, so no explanation should be necessary for the
next snippet:

(native!)

(def main-frame (frane :title "Stock price nonitor"
:wi dth 200 : hei ght 100
:on-close :exit))

(def price-| abel (label "Price: -"))
(def runni ng-avg-|abel (label "Running average: -"))

(config! main-franme :content
(bor der - panel
:north price-| abel
:center running-avg-| abe
:border 5))

(defn share-price [conpany-code]
(Thread/ sl eep 200)
(rand-int 1000))

(defn avg [ nunbers]
(float (/ (reduce + nunbers)
(count nunbers))))

(defn roll-buffer [buffer val buffer-size]
(let [buffer (conj buffer val)]
(if (> (count buffer) buffer-size)
(pop buffer)
buffer)))

(defn make-sliding-buffer [buffer-size]



(let [buffer (atom clojure.lang. Persistent Queue/ EMPTY) ]
(fn [n]
(swap! buffer roll-buffer n buffer-size))))

(def sliding-buffer (make-sliding-buffer 5))

The only difference isthat now we have asl i di ng- buf f er function that returns a window
of data. Thisisin contrast with our original application, wherether ol I i ng- avg function
was responsible for both creating the window and calculating the average. This new
design ismore general asit makes this function easier to reuse. The diding logic is the
same, however.

Next, we have our main application logic using cor e. async:

(defn broadcast-at-interval [nsecs task & ports]
(go-1oop [out (apply broadcast ports)]
(<! (tineout nsecs))
(>! out (task))
(recur out)))

(defn -main [ & args]
(show main-frane)
(let [prices-ch (chan)
sliding-buffer-ch (map> sliding-buffer (chan))]
(broadcast-at-interval 500 #(share-price "XYZ") prices-ch sliding-
buf fer-ch)

(go-loop []
(when-let [price (<! prices-ch)]
(text! price-label (str "Price: " price))
(recur)))

(go-loop []
(when-let [buffer (<! sliding-buffer-ch)]
(text! running-avg-|abel (str "Running average: " (avg buffer)))

(recur)))))
L et-s walk through the code.

Thefirst function, br oadcast - at -i nt erval , iIsresponsible for creating the broadcasting
channel. It receives a variable number of arguments: a number of milliseconds describing
the interval, the function representing the task to be executed, and a sequence of one of
more output channels. These channels are used to create the broadcasting channel to
which the go loop will be writing prices.

Next, we have our main function. Thel et block iswhere the interesting bits are. Aswe
discussed in our high-level diagrams, we need two output channels: one for prices and one
for the dliding window. They are both created in the following:

(let [prices-ch (chan)
sliding-buffer-ch (map> sliding-buffer (chan))]

pri ces- ch should be self-explanatory; however, sl i di ng- buf f er - ch isusing afunction
we haven+ encountered before: map>. Thisis yet another useful channel constructor in



cor e. async. It takes two arguments: a function and atarget channel. It returns a channel
that applies this function to each value before writing it to the target channel. An example
will help illustrate how it works:

(def ¢ (map> sliding-buffer (chan 10)))
(go (doseq [n (range 10)]

(> ¢cn)))
(go (doseq [n (range 10)]

(prn (vec (<! ¢)))))
;o [0]

., [0 1]

., [0 1 2]

7o [0 1 2 3]
7 [0 1 2 3 4]
77 [1 2 3 4 5]
77 [2 3 45 6]
77 [3 45 6 7]
;7 [4 56 7 8]
7, [5 6 7 8 9]

That is, we write a price to the channel and get a sliding window on the other end. Findly,
we create the two go blocks containing the side effects. They loop indefinitely, getting
values from both channels and updating the user interface.

You can seeit in action by running the program from the terminal:

$ lein run -m core-async-pl ayground. st ock- mar ket






Error handling

Back in Chapter 2, A Look at Reactive Extensions, we |earned how Reactive Extensions
treats errors and exceptions. It provides arich set of combinators to deal with exceptional
cases and are straightforward to use.

Despite being a pleasure to work with, cor e. async doesn+ ship with much support for
exception handling. In fact, if we write our code with only the happy path in mind we
don+ even know an error occurred!

L et-s have alook at an example:

(defn get-data []
(throw (Exception. "Bad things happen!")))

(defn process []
(let [result (chan)]
;; do sone processingf
(go (>! result (get-data)))
result))

In the preceding snippet, we introduced two functions:

® get - dat a SsImulates afunction that fetches data from the network or an in-memory
cache. In this case it simply throws an exception.

e process isafunction that depends on get - dat a to do something interesting and puts
the result into a channel, which is returned at the end.

L et-s watch what happens when we put this together:

(go (let [result (<! (->> (process "data")
(map> #(* % %)
(map> #(prn %9)))]
(prn "result is: " result)))

Nothing happens. Zero, zip, zilch, nada

Thisis precisely the problem with error handling in cor e. async: by default, our
exceptions are swallowed by the go block as it runs on a separate thread. We are left in
this state where we don+ really know what happened.

Not all islost, however. David Nolen outlined on his blog a pattern for dealing with such
asynchronous exceptions. It only requires afew extralines of code.

We start by defining a helper function and macrg this would probably live in a utility
namespace we require anywhere we use cor e. async:

(defn throwerr [e]
(when (instance? Throwable e) (throw e))
e)

(defmacro <? [ch]
“(throwerr (async/<! ~ch)))



Thet hrow err function receives avalue and, if it-s a subclass of Thr owabl e, it isthrown.
Otherwise, it issimply returned.

The macro <2 isessentially adrop-in replacement for <! . In fact, it uses<! to get the value
out of the channel but passesittot hr owerr first.

With these utilitiesin place, we need to make a couple of changes, first to our process
function:

(defn process []
(let [result (chan)]
;; do sone processingf
(go (>! result (try (get-data)
(catch Exception e

e))))
result))
The only changeis that we wrapped get - dat a inat ry/cat ch block. Look closely at the
cat ch block: it simply returns the exception.

Thisisimportant as we need to ensure the exception gets put into the channel.

Next, we update our consumer code:

(go (try (let [result (<? (->> (process "data")
(map> #(* % %)
(map> #(prn %9)))]
(prn "result is: " result))
(catch Exception e
(prn "Qops, an error happened! W better do sonething about it
here!"))))
;; "Oops, an error happened! W better do sonething about it here!"

Thistime we use <? in place of <! . This makes sense as it will rethrow any exceptions
found in the channel. As aresult we can now useasimpletry/cat ch to regain control
over our exceptions.






Backpressure

The main mechanism by which cor e. async allows for coordinating backpressure is

buffering. cor e. async doesn+ allow unbounded buffers as this can be a source of bugs
and a resource hog.

Instead, we are required to think hard about our application-s unique needs and choose an
appropriate buffering strategy.



Fixed buffer

Thisisthe simplest form of buffering. It isfixed to a chosen number n, alowing producers
to put items in the channel without having to wait for consumers:

(def result (chan (buffer 5)))
(go-1oop []

(<! (async/tinmeout 1000))
(when-let [x (<! result)]
(prn "CGot value: " Xx)

(recur)))

(go (doseq [n (range 5)]
(>! result n))
(prn "Done putting val ues!")
(close! result))

"Done putting val ues!"
"Got value: " O

; "CGot value: " 1

; "Cot value: " 2

; "CGot value: " 3
"CGot value: " 4

In the preceding example, we created a buffer of size 5 and started ago loop to consume
valuesfromit. Thego loop usesati neout channel to delay its start.

Then, we start another go block that puts numbers from O to 4 into the result channel and
prints to the console once it-s done.

By then, the first timeout will have expired and we will see the values printed to the
REPL.

Now let-s watch what happens if the buffer isn large enough:

(def result (chan (buffer 2)))
(go-loop []

(<! (async/tinmeout 1000))
(when-let [x (<! result)]
(prn "CGot value: " Xx)

(recur)))

(go (doseq [n (range 5)]
(>! result n))
(prn "Done putting val ues!")
(close! Result))
; "CGot value: " O
; "CGot value: " 1
"CGot value: " 2
; "Done putting val ues!”
; "CGot value: " 3
"Cot value: " 4

Thistime our buffer sizeis 2 but everything else is the same. Asyou can see the go loop
finishes much later asit attempted to put another value in the result channel and was



blocked/parked since its buffer was full.

Aswith most things, this might be OK but if we are not willing to block afast producer
just because we can+ consume its items fast enough, we must look for another option.



Dropping buffer

A dropping buffer also has a fixed size. However, instead of blocking producerswhenitis
full, it simply ignores any new items as shown here:

(def result (chan (dropping-buffer 2)))
(go-1oop []
(<! (async/tineout 1000))
(when-let [x (<! result)]
(prn "CGot value: " Xx)
(recur)))

(go (doseq [n (range 5)]
(>! result n))
(prn "Done putting val ues!")
(close! result))

;; "Done putting val ues!"
;o "CGot value: " O
;o "CGot value: " 1

Asbefore, we still have a buffer of size two, but this time the producer ends quickly
without ever getting blocked. The dr oppi ng- buf f er simply ignored all items over its
limit.



Sliding buffer

A drawback of dropping buffersis that we might not be processing the latest items at a
given time. For the times where processing the latest information is a must, we can use a
dliding buffer:

(def result (chan (sliding-buffer 2)))
(go-1oop []
(<! (async/tinmeout 1000))
(when-let [x (<! result)]
(prn "CGot value: " Xx)
(recur)))

(go (doseq [n (range 5)]
(>! result n))
(prn "Done putting val ues!")
(close! result))

"Done putting val ues!"
; "CGot value: " 3
"Got value: " 4

As before, we only get two values but they are the latest ones produced by the go loop.

When the limit of the sliding buffer is overrun, cor e. async drops the oldest items to make
room for the newest ones. | end up using this buffering strategy most of the time.






Transducers

Before we finish up with our cor e. async portion of the book, it would be unwise of me
not to mention what is coming up in Clojure 1.7 as well as how this affectscore. async.

At the time of thiswriting, Clojures latest releaseis 1. 7. 0- al pha5f and even though itis
an alpharelease, alot of peopld myself included arealready using it in production.

As such, afinal version could be just around the corner and perhaps by the time you read
this, 1.7 final will be out already.

One of the big changesin this upcoming release is the introduction of t r ansducers. We
will not cover the nuts and bolts of it here but rather focus on what it means at a high-level
with examples using both Clojure sequences and cor e. async channels.

If you would like to know more | recommend Carin Meier-s Green Eggs and Transducers
blog post (http://gigasquidsoftware.com/blog/2014/09/06/green-eggs-and-transducers/).
It-s a great placeto start.

Additionally, the official Clojure documentation site on the subject is another useful
resource (http://clojure.org/transducers).

L et-s get started by creating a new leiningen project:
$ lein new core-async-transducers

Now, open your proj ect . cl j file and make sure you have the right dependencies:

: dependencies [[org.clojure/clojure "1.7.0-al pha5"]
[org.clojure/core.async "0.1.346.0-17112a-al pha"]]

Next, fire up a REPL session in the project root and require cor e. async, which we will be
using shortly:

$ lein repl
user> (require '[clojure.core.async :refer [go chan map< filter< into > <!
go-l oop cl ose! pipe]l])

We will start with afamiliar example:

(->> (range 10)
(rmap inc) ;; Creates a new sequence
(filter even?) ;; Creates a new sequence
(prn "result is "))

;; "result is " (246 8 10)

The preceding snippet is straightforward and highlights an interesting property of what
happens when we apply combinators to Clojure sequences: each combinator creates an
intermediate sequence.

In the previous example, we ended up with three in total: the one created by r ange, the
one created by map, and finally the one created by fi | t er . Most of the time, this won-+



really be an issue but for large sequences this means a lot of unnecessary allocation.
Starting in Clojure 1.7, the previous example can be written like so:

(def xform

(conp (map inc)
(filter even?))) ;; no internedi ate sequence created

(->> (range 10)
(sequence xform
(prn "result is "))
7 "result is " (2 46 8 10)

The Clojure documentation describes transducers as composable algorithmic
transformations. L et-s see why that is.

In the new version, awhole range of the core sequence combinators, such as map and
filter, have gained an extraarity: if you don+ passit a collection, it instead returns a
transducer.

In the previous example, (map i nc) returns atransducer that knows how to apply the
functioni nc to elements of a sequence. Similarly, (filter even?) returnsatransducer
that will eventually filter elements of a sequence. Neither of them do anything yet, they
simply return functions.

Thisisinteresting because transducers are composable. We build larger and more complex
transducers by using simple function composition:

(def xform
(conp (map inc)
(filter even?)))
Once we have our transducer ready, we can apply it to a collection in afew different ways.
For this example, we chose sequence asit will return alazy sequence of the applications
of the given transducer to the input sequence:

(->> (range 10)
(sequence xform
(prn "result is "))
;; "result is " (2 46 8 10)

As previously highlighted, this code does not create intermediate sequences; transducers
extract the very core of the algorithmic transformation at hand and abstracts it away from
having to deal with sequences directly.



Transducers and core.async

We might now be asking ourselves hat do transducers have to do with cor e. async?ll

It turns out that once we-re able to extract the core of these transformations and put them
together using simple function composition, there is nothing stopping us from using
transducers with data structures other than sequences!

Letsrevisit our first example using standard cor e. async functions:

(def result (chan 10))

(def transfornmed
(->> result
(map< inc) ;; creates a new channe
(filter< even?) ;; creates a new channe

(into [])))

(go
(prn "result is " (<! transforned)))

(go
(doseq [n (range 10)]
(>! result n))
(close! result))

7y "result is " [2 4 6 8 10]

This code should look familiar by now: it-sthe cor e. async equivalent of the sequence-
only version shown earlier. As before, we have unnecessary allocations here as well,
except that this time we—e allocating channels.

With the new support for transducers, cor e. async can take advantage of the same
transformation defined earlier:

(def result (chan 10))

(def xform

(conmp (map inc)
(filter even?))) ;; no intermedi ate channels created

(def transforned (->> (pipe result (chan 10 xform)
(into [])))

(go
(prn "result is " (<! transforned)))

(go
(doseq [n (range 10)]
(>! result n))
(close! result))

; "result is " [2 4 6 8 10]



The code remains largely unchanged except we now use the same xf or mtransformation
defined earlier when creating a new channel. It-s important to note that we did not have to
use cor e. async combinator§ in fact alot of these combinators have been deprecated and
will be removed in future versions of cor e. async.

The functionsmap and fi | t er used to define xf or mare the same ones we used previously,
that is, they are core Clojure functions.

Thisisthe next big advantage of using transducers. by removing the underlying data
structure from the equation viatransducers, libraries such ascor e. async can reuse
Clojures core combinators to prevent unnecessary allocation and code duplication.

It-s not too far fetched to imagine other frameworks like RxClojure could take advantage
of transducers aswell. All of them would be able to use the same core function across
substantially different data structures and contexts: sequences, channels, and Obervables.

Tip
The concept of extracting the essence of computations disregarding their underlying data

structures is an exciting topic and has been seen before in the Haskell community,
although they deal with lists specifically.

Two papers worth mentioning on the subject are Sream Fusion [11] by Duncan Couitts,
Roman Leshchinskiy and Don Stewart and Transforming programs to eliminate trees [12]
by Philip Wadler. There are some overlaps so the reader might find these interesting.






Summary

By now, | hope to have proved that you can write reactive applications using cor e. async.
It-s an extremely powerful and flexible concurrency model with arich API. If you can
design your solution in terms of queues, most likely cor e. async isthe tool you want to
reach for.

Thisversion of the stock market application is shorter and simpler than the version using
only the standard Java APl we developed earlier in thisbooki for instance, we didn-
have to worry about thread pools. On the other hand, it feels like it is alittle more complex
than the version implemented using Reactive Extensions in Chapter 3, Asynchronous
Programming and Networking.

Thisis because cor e. async operates at alower level of abstraction when compared to
other frameworks. This becomes especially obviousin our application as we had to worry
about creating broadcasting channels, go loops, and so ori  all of which can be considered
incidental complexity, not directly related to the problem at hand.

cor e. async does, however, provide an excellent foundation for building our own CES
abstractions. Thisiswhat we will be exploring next.






Chapter 5. Creating Your Own CES
Framework with core.async

In the previous chapter, it was alluded to that cor e. async operates at alower level of
abstraction when compared to other frameworks such as RxClojure or RxJava.

Thisis because most of the time we have to think carefully about the channels we are
creating as well as what types and sizes of buffersto use, whether we need pub/sub
functionality, and so on.

Not all applications require such level of control, however. Now that we are familiar with
the motivations and main abstractions of cor e. async we can embark into writing a
minimal CES framework using cor e. async as the underlying foundation.

By doing so, we avoid having to think about thread pool management as the framework
takes care of that for us.

In this chapter, we will cover the following topics:

¢ Building a CES framework using cor e. async asits underlying concurrency strategy
e Building an application that uses our CES framework
¢ Understanding the trade-offs of the different approaches presented so far



A minimal CES framework

Before we get start on the details, we should define at a high level what minimal means.

L et-s start with the two main abstractions our framework will provide: behaviors and event
streams.

If you can recall from Chapter 1, What is Reactive Programming?, behaviors represent
continuous, time-varying values such as time or a mouse position behavior. Event streams,
on the other hand, represent discrete occurrences at a point in time T, such as key press.

Next, we should think about what kinds of operations we would like to support. Behaviors
arefairly simple so at the very minimum we need to:

e Create new behaviors
¢ Retrieve the current value of abehavior
e Convert abehavior into an event stream

Event streams have more interesting logic in play and we should at least support these
operations.

Push/deliver avalue down the stream

Create a stream from agiven interval

Transform the stream with the map and fi | t er operations
Combine streams with f | at map

Subscribe to a stream

Thisisasmall subset but big enough to demonstrate the overall architecture of a CES
framework. Once we-re done, we-l use it to build a simple example.



Clojureor ClojureScript?

Here wel shift gears and add another requirement to our little library: it should work both
in Clojure and ClojureScript. At first, this might sound like a tough requirement. However,
remember that cor e. asyncf the foundation of our frameworkl works both on the JvM
and in JavaScript. This means we have alot less work to do to make it happen.

It does mean, however, that we need to be capable of producing two artifacts from our
library: aj ar file and a JavaScript file. Luckily, there are leiningen plugins, which help us
do that and we will be using a couple of them:

e | ein-cljsbuil d (seehttps://github.com/emezeske/lein-cljsbuild): Leiningen plugin
to make building ClojureScript easy

e cljx (see https://github.com/lynaghk/clix): A preprocessor used to write portable
Clojure codebases, that is, write asingle file and output both . clj and. cl j s files

You don+ need to understand these librariesin great detail. We are only using their basic
functionality and will be explaining the bits and pieces as we encounter them.

L et-s get started by creating a new leiningen project. We- call our framework respondent
 one of the many synonyms for the word reactive:

$ lein new respondent

We need to make afew changesto the proj ect . cl j fileto include the dependencies and
configurations we- be using. First, make sure the project dependencies look like the
following:

: dependencies [[org.clojure/clojure "1.5.1"]
[org.clojure/core.async "0.1.303. 0-886421-al pha"]
[org.clojure/clojurescript "0.0-2202"]]

There should be no surprises here. Still in the project file, add the necessary plugins:

:plugins [[com kem ngl abs/cljx "0.3.2"]

[lein-cljsbuild "1.0.3"]]
These are the plugins that we-ve mentioned previously. By themselves they don+ do
much, however, and need to be configured.

For cl j x, add the following to the project file:

ccljx {:builds [{:source-paths ["src/cl]x"]
»output-path "target/cl asses”
crules :clj}

{:source-paths ["src/cljx"]
;output-path "target/cl asses”
crules :cljs}]}
- hooks [cljx.hooks]

The previous snippet deserves some explanation. cl j x allows usto write code that is
portable between Clojure and ClojureScript by placing annotations its preprocessor can
understand. We will see later what these annotations look like, but this chunk of



configuration tellscl j x where to find the annotated files and where to output them once
they—re processed.

For example, based on the preceding rules, if we have afilecalled src/cljx/core. cljx
and we run the preprocessor we will end up with thet ar get/ cl asses/ core. clj and
target/cl asses/ core. cl j s output files. The hooks, on the other hand, are simply a
convenient way to automatically run cl j x whenever we start a REPL session.

The next part of the configurationisfor cl j sbui | d:

:cljsbuild
{:builds [{:source-paths ["target/cl asses"]

:conpiler {:output-to "target/main.js"}}]}
cl j sbui | d provides leiningen tasks to compile Clojuresript source code into JavaScript.
We know from our preceding cl j x configuration that the sour ce. cl j s fileswill be under
t ar get/ cl asses, SO here were simply telling cl j sbui | d to compile al ClojureScript files
in that directory and spit the contentsto t ar get/ mai n. j s. Thisisthe last piece needed for
the project file.

Go ahead and delete these files created by the leiningen template as we worn+ be using
them:

$ rm src/respondent/core. cl |
$ rmtest/respondent/core_test.cl]

Then, create anew core. cl j x fileunder src/ cl j x/ respondent/ and add the following
namespace declaration:

(ns respondent. core
(:refer-clojure :exclude [filter map deliver])

#+cl |
(:inmport [clojure.lang | Deref])

#+cl |
(:require [clojure.core.async :as async
:refer [go go-loop chan <! >! tinmeout
map> filter> close! nmult tap untap]])
#+cljs
(:require [cljs.core.async :as async
:refer [chan <! >! tinmeout map> filter>
close! mult tap untap]])

#+cljs
(:require-macros [respondent.core :refer [behavior]]
[cljs.core.async. macros :refer [go go-loop]]))

Here, we start seeing cl j x annotations. cl j x issimply atext preprocessor, so when it is
processing afileusingclj rule§ asseeninthe configuration it will keep thes-
expressions preceded by the annotation #+cl j in the output file, while removing the ones
prefixed by #+cl j s. The reverse process happens when using cl j s rules.

Thisis necessary because macros need to be compiled on the VM, so they have to be



included separately using the : r equi r e- macr os namespace option when using
ClojureScript. Don+t worry about the cor e. async functions we haven-+ encountered
before; they will be explained as we use them to build our framework.

Also, note how we are excluding functions from the Clojure standard APl aswe wish to
use the same names and don+ want any undesired naming collisions.

This section set us up with anew project and the plugins and configurations needed for
our framework. We-re ready to start implementing it.



Designing the public API

One of the requirements for behaviors we agreed on is the ability to turn a given behavior
into an event stream. A common way of doing thisis by sampling a behavior at a specific
interval. If we take the mouse position behavior as an example, by sampling it every x
seconds we get an event stream, which will emit the current mouse position at discrete
pointsin time.

Thisleads to the following protocol:

(def prot ocol | Behavi or
(sanmple [b interval]
"Turns this Behavior into an EventStream fromthe sanpled val ues at the
given interval "))

It has asingle function, sanpl e, which we described in the preceding code. There are
more things we need to do with a behavior, but for now thiswill suffice.

Our next main abstraction isEvent St r eam whichf based on the requirements seen
previouslyf leadsto the following protocol:

(def protocol | Event Stream
(map [s f]
"Returns a new stream containing the result of applying f
to the values in s")
(filter [s pred]
"Returns a new streamcontaining the itens froms
for which pred returns true")
(flatmap [s f]
"Takes a function f fromvalues in s to a new Event Stream
Returns an Event Stream contai ning values fromall underlying streans
conbi ned. ")
(deliver [s val ue]
"Delivers a value to the streams")
(conpl eted? [s]
"Returns true if this stream has stopped emtting val ues. Fal se
ot herwi se. "))

This gives us afew basic functions to transform and query an event stream. It does leave
out the ability to subscribe to a stream. Don+ worry, | didn-t forget it!

Although, it is common to subscribe to an event stream, the protocol itself doesn+
mandate it and this is because the operation fits best in its own protocol:

(def protocol | Qoservabl e
(subscribe [obs f] "Register a callback to be invoked when the underlying
sour ce changes.
Returns a token the subscriber can use to cancel the subscription."))

Asfar as subscriptions go, it is useful to have away of unsubscribing from a stream. This
can be implemented in a couple of ways, but docst ri ng of the preceding function hints at
a specific one: atoken that can be used to unsubscribe from a stream. This|leadsto our last
protocol:



(def prot ocol | Token
(di spose [tK]
"Cal | ed when the subscriber isn't interested in receiving nore itens"))



| mplementing tokens

The token type is the ssmplest in the whole framework as it has got a single function with
a straightforward implementation:

(deftype Token [ch]
| Token
(di spose [ _]
(close! ch)))

It simply closes whatever channel it is given, stopping events from flowing through
subscriptions.



| mplementing event streams

The event stream implementation, on the other hand, is the most complex in our
framework. We-| tackle it gradually, implementing and experimenting as we go.

First, let-slook at our main constructor function, event - st r ean

(defn event-stream

"Creates and returns a new event stream You can optionally provide an
exi sting

core.async channel as the source for the new streant

([]

(event -stream (chan)))

([ch]
(let [multiple (nmult ch)
conmpl eted (atom fal se)]
(Event Stream ch nultiple conpleted))))

Thedocst ri ng should be sufficient to understand the public API. What might not be
clear, however, iswhat all the constructor arguments mean. From left to right, the
arguments to Event St r eamare:

e ch: Thisisthecore. async channel backing this stream.

e multiple: Thisisaway to broadcast information from one channel to many other
channels. It-sacore. async concept we will be explaining shortly.

e conpl et ed: A Boolean flag indicating whether this event stream has completed and
will not emit any new values.

From the implementation, you can see that the multiple is created from the channel
backing the stream. nul ti pl e works kind of like a broadcast. Consider the following
example:

(def in (chan))
(def multiple (mult in))

(def out-1 (chan))
(tap multiple out-1)

(def out-2 (chan))
(tap multiple out-2)
(go (>! in "Single put!"))

(go (prn "Got fromout-1 " (<! out-1)))
(go (prn "Got fromout-2 " (<! out-2)))

In the previous snippet, we create an input channel, i n, and nul t of it called mul ti pl e.
Then, we create two output channels, out - 1 and out - 2, which are both followed by a call
totap. This essentially means that whatever values are written to i n will be taken by

mul ti pl e and written to any channels tapped into it as the following output shows:

"Got fromout-1 " "Single put!”
"Got fromout-2 " "Single put!”

Thiswill make understanding the Event St r eamimplementation easier.



Next, let-s have alook at what a minimal implementation of the Event St r eamlooks like
thefollowing make sure the implementation goes before the constructor function
described earlier:

(decl are event-stream

(deftype Event Stream [channel rmultiple conpl et ed]
| Event St ream

(map [_ f]
(let [out (map> f (chan))]
(tap rmultiple out)
(event-streamout)))

(deliver [_ val ue]
(if (= value ::conplete)
(do (reset! conpleted true)
(go (>! channel val ue)
(cl ose! channel)))
(go (>! channel value))))

| Qbservabl e
(subscribe [this f]
(let [out (chan)]
(tap multiple out)

(go-loop []
(let [value (<! out)]

(when (and val ue (not= value ::conplete))
(f val ue)

(recur))))
(Token. out))))
For now, we have chosen to implement only the map and del i ver functions from the
| Event St r eamprotocol. This allows usto deliver values to the stream as well as transform
those values.

However, this would not be very useful if we could not retrieve the values delivered. This
Iswhy we also implement the subscri be function from the | Gbser vabl e protocol.

In anutshell, map needs to take a value from the input stream, apply afunction to it, and
send it to the newly created stream. We do this by creating an output channel that taps on
current nul ti pl e. We then use this channél to back the new event stream.

Thedel i ver function smply puts the value into the backing channel. If the value isthe
namespaced keyword : : conpl et e, we update the conpl et ed atom and close the backing
channel. This ensures the stream will not emit any other values.

Finally, we have the subscri be function. The way subscribers are notified is by using an
output channel tapped to backing mul ti pl e. We loop indefinitely calling the subscribing
function whenever a new value is emitted.

We finish by returning a token, which will close the output channel once disposed, causing
the go- | oop to stop.



L et-s make sure that all this makes sense by experimenting with a couple of examplesin
the REPL:

(def esl (event-strean))

(subscribe esl #(prn "first event streamemtted: " %)
(deliver esl 10)
,, "first event streamemtted: " 10

(def es2 (map esl #(* 2 %))
(subscribe es2 #(prn "second event streamenitted: " %)

(deliver esl 20)
o "first event streamenmitted: " 20
;. "second event streamemtted: " 40

Excellent! We have a minimal, working implementation of our | Event St r eamprotocol!

The next function wedl implement isfilter anditisvery similar to map:

(filter [_ pred]
(let [out (filter> pred (chan))]
(tap multiple out)
(event-streamout)))

The only differenceisthat we usethefi |t er > function and pr ed should be a Boolean
function:

(def esl (event-stream)

(def es2 (filter esl even?))

(subscribe esl #(prn "first event streamemtted: " %)
(subscri be es2 #(prn "second event streamemtted: " %)

(deliver esl 2)
(deliver esl 3)
(deliver esl 4)

;o "first event streamemtted: " 2
;. "second event streamemtted: " 2
;o "first event streamemtted: " 3
i "first event streamemtted: " 4
;. "second event streamenitted: " 4

Aswe witness, es2 only emits anew value if and only if that value is an even number.
Tip

If you are following along, typing the examples step by step, you will need to restart your
REPL whenever we add new functionsto any def t ype definition. Thisis because def t ype

generates and compiles a Java class when evaluated. As such, ssimply reloading the
namespace won- be enough.

Alternatively, you can use atool such ast ool s. namespace (See
https://github.com/clojure/tool s.namespace) that addresses some of these REPL reloading
limitations.




Moving down our list, we now havef | at map:

(flatmap [_ f]
(let [es (event-stream
out (chan)]
(tap multiple out)

(go-1oop []
(when-let [a (<! out)]
(let [mb (f a)]
(subscribe nb (fn [b]
(deliver es b)))

(recur))))
es))
We-ve encountered this operator before when surveying Reactive Extensions. Thisiswhat
our docstring says about it:

Takes a function f from values in sto a new EventSream.
Returns an EventStream containing values from all underlying streams combined.

Thismeansf | at map needs to combine all the possible event streams into a single output
event stream. As before, we tap a new channel to the nul ti pl e stream, but then we loop
over the output channel, applying f to each output value.

However, aswe saw, f itself returns a new event stream, so we simply subscribe to it.
Whenever the function registered in the subscription gets called, we deliver that value to
the output event stream, effectively combining al streamsinto a single one.

Consider the following example:

(defn range-es [n]
(let [es (event-stream (chan n))]
(doseq [n (range n)]
(deliver es n))
es))

(def esl (event-streamn))

(def es2 (flatmap esl range-es))

(subscribe esl #(prn "first event streamenmtted: " %)
(subscri be es2 #(prn "second event streamemtted: " %)

(deliver esl 2)
"first event streamemtted: " 2

"second event streamemtted: 0
"second event streamemtted: " 1

(deliver esl 3)

;o "first event streamemtted: " 3
"second event streamemitted: " O
"second event streamemitted: " 1
"second event streamemitted: " 2

We have afunction, r ange- es, that receives a number n and returns an event stream that
emits numbers from o0 to n. As before, we have a starting stream, es1, and atransformed
stream created with f | at map, es2.



We can see from the preceding output that the stream created by r ange- es gets flattened
into es2 allowing usto receive all values by ssmply subscribing to it once.

This leaves us with single function from | Event St r eamleft to implement:

(conmpleted? [ ] @onpl et ed)

conpl et ed? Simply returns the current value of the conpl et ed atom. We are now ready to
implement behaviors.



| mplementing behaviors

If you recall, the | Behavi or protocol has a single function called sanpl e whose docstring
states: Turns this Behavior into an EventStream from the sampled values at the given
interval.

In order to implement sanpl e, we will first create a useful helper function that we will call
frominterval:

(defn frominterval

"Creates and returns a new event stream which emts values at the given
i nterval

If no other argunents are given, the values start at 0 and increnment by
one at each delivery.

If given seed and succ it emts seed and applies succ to seed to get
the next value. It then applies succ to the previous result and so on."
([ msecs]
(frominterval nsecs 0 inc))
([ msecs seed succ]
(let [es (event-strean)]
(go-loop [tinmeout-ch (tinmeout nsecs)
val ue seed]
(when-not (conpl eted? es)
(<! timeout-ch)
(deliver es val ue)
(recur (tinmeout nmsecs) (succ value))))

es)))

Thedocst ri ng function should be clear enough at this stage, but we would like to ensure
we understand its behavior correctly by trying it at the REPL:

(def esl (frominterval 500))
(def esl-token (subscribe esl #(prn "Got: " %))

i "Got: "0
;, "CGot: "1
;, "CGot: "2

3

;7 "CGot: "
iaiébése esl-t oken)
As expected, es1 emits integers starting at zero at 500-millisecond intervals. By default, it

would emit numbers indefinitely; therefore, we keep areference to the token returned by
calling subscri be.

Thisway we can dispose it whenever we-fe done, causing es- 1 to complete and stop
emitting items.

Next, we can finally implement the Behavi or type:

(deftype Behavior [f]
| Behavi or
(sanple [_ interval]
(frominterval interval (f) (fn [& args] (f))))
| Der ef



(#+clj deref #+cljs -deref [_]
(1))

(def macro behavi or [ & body]
"(Behavior. #(do ~@ody)))

A behavior is created by passing it afunction. You can think of this function as a generator
responsible for generating the next value in this event stream.

This generator function will be called whenever we (1) der ef the Behavi or or (2) at the
interval given to sanpl e.

Thebehavi or macro isthere for convenience and allows us to create a new Behavi or
without wrapping the body in afunction ourselves:

(def tinme-behavior (behavior (SysteninanoTine)))

@i ne- behavi or
1 201003153977194

@i me- behavi or

;; 201005133457949
In the preceding example, we defined t i me- behavi or that always contains the current
system time. We can then turn this behavior into a stream of discrete events by using the
sanpl e function:

(def tinme-stream (sanple tinme-behavior 1500))

(def token (subscribe tinme-stream #(prn "Tinme is " %))
"Time is " 201668521217402
"Time is " 201670030219351

(di spose token)
Tip
Always remember to keep areference to the subscription token when dealing with infinite

streams such as the ones created by sanpl e and f rom i nt er val , or else you might incur
undesired memory leaks.

Congratulations! We have aworking, minimal CES framework using cor e. async!

We didn prove it works with ClojureScript, however, which was one of the main
requirements early on. That-s okay. We will be tackling that soon by developing asimple
ClojureScript application, which makes use of our new framework.

In order to do this, we need to deploy the framework to our local Maven repository. From
the project root, type the following | ei n command:

$ leininstall

Rewriting src/cljx to target/classes (clj) with features #{clj} and O
transformati ons.

Rewriting src/cljx to target/classes (cljs) with features #{cljs} and 1
transformati ons.



Created respondent/target/respondent-0. 1. 0- SNAPSHOT. j ar
W ot e respondent/pom xm






Exercises

The following sections have afew exercises for you.



Exercise5.1

Extend our current Event St r eamimplementation to include afunction called t ake. It
works much like Clojures coret ake function for sequences: it will take n items from the
underlying event stream after which it will stop emitting items.

A sample interaction, which takes the first five items emitted from the original event
stream, is shown here:

(def esl (frominterval 500))
(def take-es (take esl 5))

(subscribe take-es #(prn "Take values: " %)

"Take val ues: "
"Take val ues: "
"Take val ues: "
"Take val ues: "
"Take val ues: "

Tip
Keeping some state might be useful here. Atoms can help. Additionally, try to think of a
way to dispose of any unwanted subscriptions required by the solution.

A WNEFLO



Exercise 5.2

In this exercise, we will add afunction called zi p that zips together items emitted from
two different event streamsinto a vector.

A sample interaction with the zi p function is as follows:

(def esl (frominterval 500))
(def es2 (map (frominterval 500) #(* %2)))
(def zipped (zip esl es2))

(def token (subscribe zipped #(prn "Zipped values: " %))

; "Zipped values: " [0 O]
; "Zipped values: " [1 2]
; "Zipped values: " [2 4]
; "Zipped values: " [3 6]

"Zi pped values: " [4 8]

(di spose token)
Tip
For this exercise, we need away to know when we have enough items to emit from both

event streams. Managing thisinternal state can betricky at first. Clojuresref typesand,
in particular, dosync, can be of use.






A respondent application

This chapter would not be complete if we didn+ go through the whole development life
cycle of deploying and using the new framework in anew application. Thisis the purpose
of this section.

The application we will build is extremely ssimple. All it doesis track the position of the
mouse using the reactive primitives we built into respondent.

To that end, we will be using the excellent lein templatecl j s-start (see
https://github.com/magomimmo/cljs-start), created by Mimmo Cosenzato help developers
get started with ClojureScript.

L et-s get started:

lein new cljs-start respondent-app

Next, let-s modify the project file to include the following dependencies:

[cl ojure-reactive-programm ng/ respondent "0. 1. 0- SNAPSHOT" ]
[prismatic/domry "0.1.2"]

The first dependency is self-explanatory. It-s ssmply our own framework. donmy isaDOM
manipulation library for ClojureScript. We briefly use it when building our web page.

Next, edit the dev- r esour ces/ publ i ¢/ i ndex. ht m file to match the following:

<l doctype htnl >
<htm | ang="en">
<head>
<meta charset="utf-8">

<titl e>Exanpl e: tracking nouse position</title>

<I--Tif It IE 9]>

<script src="http://htm 5shiv. googl ecode. com svn/trunk/htm 5.js">
</script>

<ITendif]-->
</ head>

<body>

<div id="test">

<hl>Mouse (x,y) coordinates:</hl>
</ di v>
<di v id="nouse-xy">
(0,0)

</ di v>

<script src="js/respondent_app.js"></script>
</ body>
</htm >

In the preceding snippet, we created a new di v element, which will contain the mouse
position. It defaultsto (0, 0) .

The last piece of the puzzle is modifying src/ cl j s/ respondent _app/ core. cl j s to match
the following:



(ns respondent - app. core
(:require [respondent.core :as r]

[ domy. core :as dommy])
(:use-macros

[domy. macros :only [sel 1]]))

(def nouse-pos-stream (r/event-strean))
(set! (.-onnobusenove js/docunent)
(fn [e]
(r/deliver nouse-pos-stream|[(.-pageX e) (.-pageY e)])))

(r/subscri be nouse-pos-stream

(fn [[x yl]
(domry/set-text! (sell :#nouse-Xxy)

(str "(" x","y ")"))))
Thisisour main application logic. It creates an event stream to which we deliver the
current mouse position from the onnousenove event of the browser window.

L ater, we simply subscribe to it and use domy to select and set the text of the di v element
we added previously.

We are now ready to use the app! Let-s start by compiling ClojureScript:

$ lein compile

This should take afew seconds. If all iswell, the next thing to do isto start a REPL
session and start up the server:

$ lein repl
user=> (run)

Now, point your browser to htt p: / /1 ocal host : 3000/ and drag the mouse around to see
Its current position.

Congratulations on successfully developing, deploying, and using your own CES
framework!






CESversus core.async

At this stage, you might be wondering when you should choose one approach over the
other. After al, as demonstrated at the beginning of this chapter, we could usecor e. async
to do everything we have done using r espondent .

It all comes down to using theright level of abstraction for the task at hand.

cor e. async gives us many low level primitives that are extremely useful when working
with processes, which need to talk to each other. Thecore. async channelswork as
concurrent blocking queues and are an excellent synchronization mechanism in these
scenarios.

However, it makes other solutions harder to implement: for instance, channels are single-
take by default, so if we have multiple consumers interested in the values put inside a
channel, we have to implement the distribution ourselves using tools such asnul t and

t ap.

CES frameworks, on the other hand, operate at a higher level of abstraction and work with
multiple subscribers by defaullt.

Additionally, cor e. async relies on side effects, as can be seen by the use of functions such
as>! inside go blocks. Frameworks such as RxClojure promote stream transformations by
the use of pure functions.

Thisis not to say there aren side effects in CES frameworks. There most definitely are.
However, as a consumer of the library, thisis mostly hidden from our eyes, allowing us to
think of most of our code as simple sequence transformations.

In conclusion, different application domains will benefit more or less from either approach
[ sometimes they can benefit from both. We should think hard about our application
domain and analyze the types of solutions and idioms developers are most likely to design.
Thiswill point usin the direction of better abstraction for whatever application we are
developing at agiven time.






Summary

In this chapter, we developed our very own CES framework. By developing our own
framework, we have solidified our understanding of both CES and how to effectively use

core. async.

Theideathat cor e. async could be used as the foundation of a CES framework isn+ mine,
however. James Reeves (see https.//github.com/weavejester)f creator of the routing
library Compojur e (see https://github.com/weavej ester/compojure) and many other useful
Clojurelibrarie§ also saw the same potential and set off to write Reagi (see
https://github.com/weave ester/reagi), a CES library built on top of core. async, similar in
spirit to the one we developed in this chapter.

He has put alot more effort into it, making it a more robust option for a pure Clojure
framework. We-l be looking at it in the next chapter.






Chapter 6. Building a Simple
ClojureScript Game with Reag

In the previous chapter, we learned how a framework for Compositional Event Systems
(CES) works by building our own framework, which we called respondent. It gave usa
great insight into the main abstractions involved in such a piece of software aswell asa
good overview of cor e. async, Clojures library for asynchronous programming and the
foundation of our framework.

Respondent is but atoy framework, however. We paid little attention to cross-cutting
concerns such as memory efficiency and exception handling. That is okay aswe used it as
avehicle for learning more about handling and composing event systems with

cor e. async. Additionally, its design is intentionally similar to Reagi-s design.

In this chapter, we will:

e | earn about Reagi, a CES framework built on top of core. async

e Use Reagi to build the rudiments of a ClojureScript game that will teach us how to
handle user input in a clean and maintainable way

o Briefly compare Reagi to other CES frameworks and get afeel for when to use each
one



Setting up the project

Have you ever played Asteroids? If you haven+, Asteroids is an arcade space shooter first
released by Atari in 1979. In Asteroids, you are the pilot of a ship flying through space. As
you do so, you get surrounded by asteroids and flying saucers you have to shoot and
destroy.

Developing the whole game in one chapter is too ambitious and would distract us from the
subject of this book. We will limit ourselves to making sure we have a ship on the screen
we can fly around as well as shoot space bullets into the void. By the end of this chapter,
we will have something that looks like what is shown in the following screenshot:

To get started, we will create anewd oj ureScri pt project using the same leiningen
template we used in the previous chapter, cl j s-start (see
https://qithub.com/magomimmo/cljs-start):

lein new cljs-start reagi-gane

Next, add the following dependencies to your project file:

[org.clojure/clojurescript "0.0-2138"]
[reagi "0.10.0"]
[rmhul | /monet "0.1.12"]

The last dependency, monet (see https://github.com/rm-hull/monet), is a ClojureScript
library you can use to work with HTML 5 Canvas. It is a high-level wrapper on top of the
Canvas APl and makes interacting with it alot smpler.

Before we continue, it-s probably a good idea to make sure our setup is working properly.
Change into the project directory, start a Clojure REPL, and then start the embedded web
server:

cd reagi - gane/



[ ein repl

Conpi ling C ojureScript.

Compi | i ng "dev-resources/public/js/reagi _ganme.js" from ("src/cljs"
"test/cljs" "dev-resources/tools/repl")...

user=> (run)

2014-06-14 19:21:40.381:INFO oejs. Server:jetty-7.6.8.v20121106
2014-06-14 19: 21:40.403: I NFO oej s. Abstract Connector: Started

Sel ect Channel Connect or @. 0. 0. 0: 3000

#<Server org.eclipse.jetty.server. Server @1f 6292b>

Thiswill compile the ClojureScript source files to JavaScript and start the sample web
server. In your browser, navigate to ht t p: / /1 ocal host : 3000/ . If you see something like
the following, we are good to go:

ClojureScript

Welcome to ClojureScript!

Aswe will be working with HTML 5 Canvas, we need an actual canvas to render to. Lets
update our HTML document to include that. It-s located under dev-
resour ces/ public/index. htm :

<l doctype htnl >
<htm | ang="en">
<head>
<neta charset="utf-8">
<title>bREPL Connection</title>
<I--Tif It IE 9]>
<script src="http://htm 5shiv. googl ecode. com’ svn/trunk/htm 5.js">
</script>
<I[endif]-->
</ head>

<body>
<canvas id="canvas" w dt h="800" hei ght="600"></canvas>
<script src="js/reagi _gane.|s"></script>
</ body>
</htm >

We have added acanvas DOM element to our document. All rendering will happen in this
context.



Game entities

Our game will have only two entities: one representing the spaceship and the other
representing bullets. To better organize the code, we will put all entity-related codein its
ownfile src/cljs/reagi _game/entities.cljs. Thisfilewill also contain some of the
rendering logic, so we-l need to require nonet :

(ns reagi-gane.entities
(:require [nonet.canvas :as canvas]
[ monet . geonetry :as geony))

Next, we-H add afew helper functions to avoid repeating ourselves too much:

(defn shape-x [shape]
(-> shape :pos deref :x))

(defn shape-y [shape]
(-> shape :pos deref :y))

(def n shape-angl e [shape]
@ : angl e shape))

(defn shape-data [x y angl e]
{: pos (atom{:x x :y Vy})
-angle (atomangle)})
The first three functions are simply a shorter way of getting data out of our shape data
structure. The shape- dat a function creates a structure. Note that we are using at ons, one
of Clojure-s reference types, to represent a shape-s position and angle.

Thisway, we can safely pass our shape data into monet-s rendering functions and still be
able to update it in a consistent way.

Next up is our ship constructor function. Thisis where the bulk of the interaction with
monet happens:

(defn ship-entity [ship]
(canvas/entity {:x (shape-x ship)
:y (shape-y ship)
:angl e (shape-angle ship)}
(fn [val ue]

(-> val ue
(assoc :x (shape-x ship))
(assoc :y (shape-y ship))

(assoc :angle (shape-angle ship))))

(fn [ctx val]

(-> ctx

canvas/ save
(canvas/translate (:x val) (:y val))
(canvas/rotate (:angle val))
(canvas/ begi n- pat h)
(canvas/ nmove-to 50 0)
(canvas/line-to 0 -15)
(canvas/line-to 0 15)



(canvas/fill)
canvas/restore))))

Thereis quite abit going on, so let-s break it down.

canvas/ entity ISamonet constructor and expects you to provide three arguments that
describe our ship: itsinitial x, y coordinates and angle, an update function that gets called
in the draw loop, and adraw function that is responsible for actually drawing the shape
onto the screen after each update.

The update function is fairly straightforward:

(fn [val ue]

(-> val ue
(assoc :Xx (shape-x ship))
(assoc :y (shape-y ship))

(assoc :angle (shape-angle ship))))
We simply update its attributes to the current values from the ship-s atoms.
The next function, responsible for drawing, interacts with monet-s APl more heavily:

(fn [ctx val]
(-> ctx

canvas/ save
(canvas/translate (:x val) (:y val))
(canvas/rotate (:angle val))
(canvas/ begi n- pat h)
(canvas/ nove-to 50 0)
(canvas/line-to 0 -15)
(canvas/line-to 0 15)
(canvas/fill)
canvas/restore))

We start by saving the current context so that we can restore things such as drawing style
and canvas positioning later. Next, we trand ate the canvas to the ship-s x,y coordinates
and rotate it according to its angle. We then start drawing our shape, atriangle, and finish
by restoring our saved context.

The next function also creates an entity, our bullet:

(decl are nove-forward!)

(defn make-bullet-entity [nonet-canvas key shape]
(canvas/entity {:x (shape-x shape)
'y (shape-y shape)
:angl e (shape-angl e shape)}
(fn [val ue]

(when (not
(geoni cont ai ned?

{:x 0:y O
w (.-width (:canvas nonet-canvas))
-h (.-height (:canvas nonet-canvas))}

{:x (shape-x shape)
:y (shape-y shape)
:r 5}))



(canvas/renove-entity nonet-canvas key))
(rmove- forward! shape)

(-> val ue
(assoc :x (shape-x shape))
(assoc :y (shape-y shape))

(assoc :angl e (shape-angle shape))))

(fn [ctx val]

(-> ctx

canvas/ save
(canvas/translate (:x val) (:y val))
(canvas/rotate (:angle val))
(canvas/fill-style "red")
(canvas/circle {:x 10 :y 0 :r 5})
canvas/restore))))

As before, let-s inspect the updat e and dr awi ng functions. We-| start with updat e:

(fn [val ue]

(when (not
(geont cont ai ned?
{:x0:y O

:w (.-width (:canvas nonet-canvas))
:h (.-height (:canvas nonet-canvas))}
: X (shape-x shape)
:y (shape-y shape)
:r 5}))

(canvas/renove-entity nonet-canvas key))
(nmove-forward! shape)

{

(-> val ue
(assoc :x (shape-x shape))
(assoc :y (shape-y shape))

(assoc :angle (shape-angle shape))))

Bullets have alittle more logic in their update function. As you fire them from the ship,
we might create hundreds of these entities, so it-s a good practice to get rid of them as
soon as they go off the visible canvas area. That-s the first thing the function does: it uses
geon cont ai ned? to check whether the entity is within the dimensions of the canvas,
removing it when it isn+.

Different from the ship, however, bullets don+ need user input in order to move. Once
fired, they move on their own. That-s why the next thing we do is call nove- f orwar d! We
haven- implemented this function yet, so we had to declare it beforehand. We-l get to it.

Once the bullet-s coordinates and angle have been updated, we simply return the new
entity.

The draw function is a bit simpler than the ship-s version mostly due to its shape being
simpler; it-sjust ared circle:

(fn [ctx val]
(-> ctx
canvas/ save
(canvas/translate (:x val) (:y val))
(canvas/rotate (:angle val))
(canvas/fill-style "red")



(canvas/circle {:x 10 :y 0 :r 5})
canvas/restore))

Now, we-l move on to the functions responsible for updating our shape-s coordinates and
angle, starting with nove! :

(def speed 200)

(defn cal cul ate-x [angl e]
(* speed (/ (* (Math/cos angle)
Mat h/ Pl)
180)))

(defn cal cul ate-y [angl e]
(* speed (/ (* (Math/sin angle)
Mat h/ Pl)
180)))

(defn nove! [shape f]
(Il et [pos (:pos shape)]
(swap! pos (fn [xy]
(-> xy
(update-in [:x]
#(f % (cal cul ate-x
(shape-angl e shape))))
(update-in [:y]
#(f % (cal cul ate-y
(shape-angl e shape)))))))))

To keep things simple, both the ship and bullets use the same speed value to calculate their
positioning, here defined as 200.

nove! takestwo arguments:. the shape map and afunction f . This function will either be
the + (plus) or the - (minus) function, depending on whether we-+e moving forward or
backward, respectively. Next, it updates the shape-s x,y coordinates using some basic
trigonometry.

If you—+e wondering why we are passing the plus and minus functions as arguments, it-s
all about not repeating ourselves, as the next two functions show:

(defn nove-forward! [shape]
(nmove! shape +))

(defn nove-backward! [shape]
(nove! shape -))

With movement taken care of, the next step isto write the rotation functions:

(defn rotate! [shape f]
(swap! (:angle shape) #(f % (/ (/ Math/PlI 3) 20))))

(defn rotate-right! [shape]
(rotate! shape +))

(defn rotate-left! [shape]
(rotate! shape -))



So far, we-ve got ship movement covered! But what good is our ship if we can+ fire
bullets? L et-s make sure we have that covered as well:

(defn fire! [nonet-canvas shi p]
(let [entity-key (keyword (gensym "bullet"))
dat a (shape-data (shape-x ship)
(shape-y ship)
(shape-angl e ship))
bul l et (make-bullet-entity nonet-canvas
entity-key
dat a) ]
(canvas/ add-entity nonet-canvas entity-key bullet)))

Theftire! function takestwo arguments. areference to the game canvas and the ship. It
then creates a new bullet by calling nake- bul | et - ent i t y and adds it to the canvas.

Note how we use Clojure-s gensymfunction to create a unique key for the new entity. We
use this key to remove an entity from the game.

This concludes the code for theent i ti es namespace.

Tip

gensymis quite heavily used in writing hygienic macros as you can be sure that the
generated symbols will not clash with any local bindings belonging to the code using the
macro. Macros are beyond the scope of this book, but you might find this series of macro

exercises useful in the learning process, at https.//github.com/leonardoborges/clojure-
macros-workshop.




Putting it all together

We-re now ready to assemble our game. Go ahead and open the core namespace file,
src/cljs/reagi _gane/ core. cljs, and add the following:

(ns reagi-gamne. core
(:require [nonet.canvas :as canvas]
[reagi.core :as r]
[clojure.set :as set]
[reagi -ganme.entities :as entities
:refer [nove-forward! nove-backward! rotate-left! rotate-
right! firel]]))

The following snippet sets up various data structures and references we-H need in order to
develop the game:

(def canvas-dom (. getEl ementByld js/docunent "canvas"))
(def nonet-canvas (canvas/init canvas-dom "2d"))

(def ship
(entities/shape-data (/ (.-width (:canvas nonet-canvas)) 2)
(/ (.-height (:canvas nonet-canvas)) 2)

0))
(def ship-entity (entities/ship-entity ship))

(canvas/ add-entity nonet-canvas :ship-entity ship-entity)
(canvas/ draw | oop nonet - canvas)

We start by creating nonet - canvas from areference to our canvas DOM element. We
then create our ship data, placing it at the center of the canvas, and add the entity to
nonet - canvas. Finally, we start a draw-loop, which will handle our animations using the
browser-s native capabilitie§ internaly it callswi ndow. r equest Ani mat i onFr ane(), if
available, but it falls back to wi ndow. set Ti menout () otherwise.

If you wereto try the application now, this would be enough to draw the ship on the
middle of the screen, but nothing else would happen as we haven+ started handling user
Input yet.

Asfar as user input goes, we—e concerned with afew actions:

¢ Ship movement: rotation, forward, and backward
¢ Firing the ship-sgun
e Pausing the game

To account for these actions, wel define some constants that represent the ASCII codes
of the keysinvolved:

(def UP 38)
(def RIGHT 39)
(def DOWN 40)
(def LEFT 37)
(def FIRE 32) ;; space



(def PAUSE 80) ;; lower-case P

This should look sensible as we are using the keys traditionally used for these types of
actions,



Modeling user input as event streams

One of the things discussed in the earlier chaptersisthat if you can think of eventsasalist
of things that haven+ happened yet; you can probably model it as an event stream. In our
case, thislist is composed by the keys the player presses during the game and can be
visualized like so:

Thereis a catch though. Most games need to handle simultaneously pressed keys.

Say you—e flying the spaceship forwards. You don+ want to have to stop it in order to
rotate it to the left and then continue moving forwards. What you want is to press |eft at
the same time you-re pressing up and have the ship respond accordingly.

This hints at the fact that we need to be able to tell whether the player is currently pressing
multiple keys. Traditionally thisis done in JavaScript by keeping track of which keys are
being held down in a map-like object, using flags. Something similar to the following
Snippet:

var keysPressed = {};

docunent . addEvent Li st ener (' keydown', function(e) {
keysPressed| e. keyCode] = true;

}, false);

docunent . addEvent Li st ener (' keyup', function(e) {
keysPressed[ e. keyCode] = fal se;

}, false);

Then, later in the game loop, you would check whether there are multiple keys being
pressed:

function gameLoop() {
if (keyPressed[ UP] && keyPressed[ LEFT]) {
/'l update ship position

}
1. ..

}
While this code works, it relies on mutating the keyspPr essed object which isn ideal.

Additionally, with a setup similar to the preceding one, the keysPr essed object is global
to the application as it is needed both in the keyup/keydown event handlers as well asin the
game loop itself.

In functional programming, we strive to eliminate or reduce the amount of global mutable



state in order to write readable, maintainable code that is less error-prone. We will apply
these principles here.

As seen in the preceding JavaScript example, we can register callbacks to be notified
whenever akeyup or keydown event happens. Thisis useful aswe can easily turn them
Into event streams:

(defn keydown-stream []
(let [out (r/events)]
(set! (.-onkeydown js/document)
#(r/deliver out [::down (.-keyCode %]))
out))

(defn keyup-stream[]
(let [out (r/events)]
(set! (.-onkeyup |js/document)
#(r/deliver out [::up (.-keyCode %]))
out))
Both keydown- st r eamand keyup- st r eamreturn a new stream to which they deliver events

whenever they happen. Each event istagged with a keyword, so we can easily identify its
type.

We would like to handle both types of events simultaneously and as such we need away
to combine these two streams into asingle one.

There are many ways in which we can combine streams, for example, using operators
such aszi p and I at map. For thisinstance, however, we are interested in the ner ge
operator. ner ge creates anew stream that emits values from both streams as they arrive:



This gives us enough to start creating our stream of active keys. Based on what we have
discussed so far, our stream looks something like the following at the moment:

(def active-keys-stream
(->> (r/merge (keydown-stream (keyup-stream)

)
To keep track of which keys are currently pressed, we will use a ClojureScript set. This

way we don+ have to worry about setting flagsto true or falsg we can ssmply perform
standard set operations and add/remove keys from the data structure.

The next thing we need is away to accumulate the pressed keys into this set as new events
are emitted from the merged stream.

In functional programming, whenever we wish to accumulate or aggregate some type of
data over a sequence of values, we user educe.

Most if notalf CES frameworks have thisfunction built-in. RxJavacallsit scan.
Reagi, on the other hand, callsit r educe, making it intuitive to functional programmersin
general.

That isthe function we will use to finish the implementation of act i ve- keys- st r eam
(def active-keys-stream

(->> (r/merge (keydown-stream (keyup-stream)
(r/reduce (fn [acc [event-type key-code]]



(condp = event-type
::down (conj acc key-code)
c:up (disj acc key-code)
acc))

#{})
(r/sanple 25)))

r/ reduce takes three arguments: a reducing function, an optional initial/seed value, and
the stream to reduce over.

Our seed value is an empty set asinitially the user hasn yet pressed any keys. Then, our
reducing function checks the event type, removing or adding the key from/to the set as
appropriate.

Asaresult, what we have is a stream like the one represented as follows:

reduce




Working with the active keys stream

The ground work we-ve done so far will make sure we can easily handle game eventsin a
clean and maintainable way. The main idea behind having a stream representing the game
keysisthat now we can partition it much like we would a normal list.

For instance, if were interested in all events where the key pressed is up, we would run
the following code:

(->> active-keys-stream
(r/filter (partial sonme #{UP}))
(r/map (fn [_] (.log js/console "Pressed upf"))))

Similarly, for eventsinvolving the FI Re key, we could do the following:

(->> active-keys-stream
(r/filter (partial sone #{FIRE}))
(r/map (fn [_] (.log js/console "Pressed firel"))))

Thisworks because in Clojure, sets can be used as predicates. We can quickly verify this
at the REPL :

user> (def nunbers #{12 13 14})

#' user/ nunbers

user> (sone #{12} nunbers)

12

user> (sone #{15} nunbers)

nil

By representing the events as a stream, we can easily operate on them using familiar
sequence functionssuch asmap andfilter.

Writing code like this, however, is alittle repetitive. The two previous examples are pretty
much saying something along these lines: filter all events matching a given predicate pr ed
and then map the f function over them. We can abstract this pattern in afunction we-l call
filter-map:

(defn filter-map [pred f & args]
(->> active-keys-stream
(r/filter (partial sone pred))

(r/map (fn [_] (apply f args)))))
With this helper function in place, it becomes easy to handle our game actions:

(filter-map #{FIRE} fire!l nonet-canvas ship)
(filter-map #{UP} nmove-forward! ship)
(filter-map #{DOWN} nove-backward! ship)
(filter-map #{RI GHT} rotate-right! ship)
(filter-map #{LEFT} rotate-left! shi p)

The only thing missing now is taking care of pausing the animations when the player
presses the PAUSE key. We follow the same logic as above, but with a dlight change:

(defn pause! [_]
(if @:updating? nonet-canvas)



(canvas/ st op- updat i ng nonet - canvas)
(canvas/start-updati ng nonet-canvas)))

(->> active-keys-stream
(r/filter (partial sone #{PAUSE}))
(r/throttle 100)
(r/map pause!))

Monet makes a flag available that tells us whether it is currently updating the animation
state. We use that as a cheap mechanism to —pausell the game.

Note that act i ve- keys- st r eampushes events as they happen so, if auser isholding a
button down for any amount of time, we will get multiple events for that key. As such, we
would probably get multiple occurrences of the PAUSE key in avery short amount of time.
Thiswould cause the game to frantically stop/start. In order to prevent this from
happening, we throttle the filtered stream and ignore all PAUSE events that happenin a
window shorter than 100 milliseconds.

To make sure we didn—+ miss anything, thisiswhat our src/ cl j s/ reagi _gane/ core.cljs
file should look like, in full:

(ns reagi -gane. core
(:require [nonet.canvas :as canvas]
[reagi.core :as r]
[clojure.set :as set]
[reagi-gane.entities :as entities
:refer [nove-forward! nove-backward! rotate-left! rotate-
right! fire!]]))

(def canvas-dom (.getEl enmentByld js/docunent "canvas"))
(def nonet-canvas (canvas/init canvas-dom "2d"))

(def ship (entities/shape-data (/ (.-width (:canvas nonet-canvas)) 2)
(/ (.-height (:canvas nonet-canvas)) 2)

0))
(def ship-entity (entities/ship-entity ship))

(canvas/ add-entity nonet-canvas :ship-entity ship-entity)
(canvas/ draw- | oop nonet - canvas)

(def UP 38)

(def RIGHT 39)

(def DOWN 40)

(def LEFT 37)

(def FIRE 32) ;; space

(def PAUSE 80) ;; |ower-case P

(defn keydown-stream []
(let [out (r/events)]
(set! (.-onkeydown js/docunent) #(r/deliver out [::down (.-keyCode

N1))
out))



(defn keyup-stream[]
(let [out (r/events)]
(set! (.-onkeyup |js/docunent) #(r/deliver out [::up (.-keyCode %]))
out))

(def active-keys-stream
(->> (r/merge (keydown-stream (keyup-stream)
(r/reduce (fn [acc [event-type key-code]]
(condp = event-type
::down (conj acc key-code)
c:up (disj acc key-code)
acc))

#{})
(r/sanple 25)))

(defn filter-map [pred f & args]
(->> active-keys-stream
(r/filter (partial sonme pred))

(r/map (fn [_] (apply f args)))))

(filter-map #{FIRE} fire! nonet-canvas ship)
(filter-map #{UP} nove-forward! ship)
(filter-map #{DOWN} nove-backward! ship)
(filter-map #{RI GHT} rotate-right! ship)
(filter-map #{LEFT} rotate-left! shi p)

(def n pause! [ _]
(if @ :updating? nonet-canvas)
(canvas/ st op- updati ng nonet - canvas)
(canvas/ start-updati ng nonet-canvas)))

(->> active-keys-stream
(r/filter (partial sone #{PAUSE}))
(r/throttle 100)
(r/map pause!))

This completes the code and we-fe now ready to have alook at the results.

If you still have the server running from earlier in this chapter, smply exit the REPL, start
It again, and start the embedded web server:

lein repl

Compi | ing C ojureScript.

Compi | i ng "dev-resources/public/js/reagi _gane.js" from ("src/cljs"
"test/cljs" "dev-resources/tools/repl")...

user=> (run)

2014-06-14 19:21:40.381:INFO oejs. Server:jetty-7.6.8.v20121106
2014-06-14 19: 21:40. 403: 1 NFO oej s. Abstract Connector: Started

Sel ect Channel Connect or @. 0. 0. 0: 3000

#<Server org.eclipse.jetty.server. Server @1f 6292b>

Thiswill compile the latest version of our ClojureScript source to JavaScript.

Alternatively, you can leave the REPL running and ssimply ask cl j sbui | d to auto-compile
the source code from another terminal window:

lein cljsbuild auto



Compi | i ng "dev-resources/public/js/reagi _gane.js" from ("src/cljs"
"test/cljs" "dev-resources/tools/repl")...

Successful Iy conpil ed "dev-resources/public/js/reagi _gane.js" in 13.23869
seconds.

Now you can point your browser to ht t p: // | ocal host : 3000/ and fly around your
spaceship! Don+ forget to shoot some bullets as well!






Reagi and other CES frameworks

Back in Chapter 4, Introduction to core.async, we had an overview of the main differences
between cor e. async and CES. Another question that might have arisen in this chapter is
this: how do we decide which CES framework to use?

The answer isless clear than before and often depends on the specifics of the tool being
looked at. We have learned about two such tools so far: Reactive Extensions
(encompassing RxJS, RxJava, and RxClojure) and Reagi.

Reactive Extensions (Rx) is a much more mature framework. Itsfirst version for the
NET platform was released in 2011 and the ideas in it have since evolved substantially.

Additionally, ports for other platforms such as RxJava are being heavily used in
production by big names such as Netflix.

A drawback of Rx isthat if you would like to use it both in the browser and on the server,
you have to use two separate frameworks, RxJS and RxJava, respectively. While they do
share the same API, they are different codebases, which can incur bugs that might have
been solved in one port but not yet in another.

For Clojure developers, it also means relying more on interoperability to interact with the
full API of Rx.

Reagi, on the other hand, is anew player in this space but builds on the solid foundation
laid out by core. async. It isfully developed in Clojure and solves the in-browser/on-
server issue by compiling to both Clojure and ClojureScript.

Reagi also allows seamless integration with cor e. async viafunctions such asport and
subscri be, which alow channels to be created from event streams.

Moreover, the use of cor e. async in ClojureScript applications is becoming ubiquitous, so
chances are you aready have it as a dependency. This makes Reagi an attractive option for
the times when we need a higher level of abstraction than the one provided by

core. async.






Summary

In this chapter, we learned how we can use the techniques from reactive programming we
have learned so far in order to write code that is cleaner and easier to maintain. To do so,
we insisted on thinking about asynchronous events simply as lists and saw how that way
of thinking lendsitself quite easily to being modeled as an event stream. All our game has
to do, then, is operate on these streams using familiar sequence processing functions.

We also learned the basics of Reagi, aframework for CES similar to the one we created in
Chapter 4, Introduction to core.async, but that is more feature rich and robust.

In the next chapter, we will take a break from CES and see how a more traditional reactive
approach based on data flows can be useful.






Chapter 7. The Ul asa Function

So far we have taken ajourney through managing complexity by efficiently handling and
modeling asynchronous workflows in terms of streams of data. In particular, Chapter 4,
Introduction to core.async and Chapter 5, Creating Your Own CES Framework with
core.async explored what-s involved in libraries that provide primitives and combinators
for Compositional Event Systems. We also built a simple ClojureScript application that
made use of our framework.

One thing you might have noticed is that none of the examples so far have dealt with what
happens to the data once we are ready to present it to our users. It-s still an open question
that we, as application developers, need to answer.

In this chapter, we will look at one way to handle Reactive User Interfacesin web
applications using React (see http://facebook.github.io/react/), a modern JavaScript
framework developed by Facebook, as well as:

Learn how React renders user interfaces efficiently

Be introduced to Om, a ClojureScript interface to React

Learn how Om leverages persistent data structures for performance

Develop two fully working ClojureScript applications with Om, including the use of
cor e. async for intercomponent communication



The problem with complex web Uls

With the rise of single-page web applications, it became a must to be able to manage the
growth and complexity of a JavaScript codebase. The same appliesto ClojureScript.

In an effort to manage this complexity, a plethora of JavaScript MV C frameworks have
emerged such as AngularJS, Backbone.js, Ember.js, and KnockoutJS to name afew.

They are very different, but share afew common features:

¢ Give single-page applications more structure by providing models, views, controllers,
templates, and so on

e Provide client-side routing

e Two-way data binding

In this chapter, we-H be focusing on the last goal.

Two-way data binding is absolutely crucial if we are to develop even a moderately
complex single-page web application. Here-s how it works.

Suppose we-re developing a phone book application. More than likely, we will have a
modefl or entity, map, what have you that represents a contact. The contact model
might have attributes such as name, phone number, and e-mail address.

Of course, this application would not be all that useful if users couldn+ update contact
information, so we will need aform which displays the current details for a contact and
lets you update the contact-s information.

The contact model might have been loaded viaan AJAX request and then might have used
explicit DOM manipulation code to display the form. Thiswould look something like the
following pseudo-code:

function editContact(contactld) {
cont act Servi ce. get (contactld, function(data) {
cont act For m set Nane( dat a. nane) ;
cont act For m set Phone( dat a. phone) ;
contact Form set Emai | (data. emai |l ) ;

})
}
But what happens when the user updates someone-s information? We need to store it
somehow. On clicking on save, afunction such as the following would do the trick,
assuming you~e using jQuery:

$("save-button").click(function(){
cont act Servi ce. updat e(contact Form seri alize(), function(){
fl ashMessage. set (" Cont act Updated. ")

})

This seemingly harmless code poses a big problem. The contact model for this particular
person is now out of date. If we were still devel oping web applications the old way, where
we reload the page at every update, this wouldn- be a problem. However, the whole point
of single-page web applications is to be responsive, so it keeps alot of state on the client,



and it is important to keep our models synced with our views.

Thisiswhere two-way data binding comes in. An example from AngularJS would look
like the following:

/1 JS
/1 in the Controller
$scope. contact = {
nane: 'Leonardo Borges',
phone ' +61 XXX XXX XXX',
emai | : ' | eonardoborges.rj @nuail.com

}

<l-- HTM. -->

<l-- inthe View -->

<forne
<i nput type="text" name="contactNane" ng-nodel ="contact.name"/>
<i nput type="text" nanme="contact Phone" ng-nodel ="contact. phone"/>
<i nput type="text" nanme="contactEmail" ng-nodel ="contact.email"/>

</fornmp

Angular isn the target of this chapter, so | won+t dig into the details. All we need to know
from this exampleisthat $scope ishow we tell Angular to make our contact model
available to our views. In the view, the custom attribute ng- nodel tells Angular to look up
that property in the scope. This establishes a two-way relationship in such away that when
your model data changes in the scope, Angular refreshes the Ul. Similarly, if the user edits
the form, Angular updates the model, keeping everything in sync.

There are, however, two main problems with this approach:

¢ |t can be slow. The way Angular and friends implement two-way data binding is,
roughly speaking, by attaching event handlers and watchers to view both custom-
attributes and model attributes. For complex enough user interfaces, you will start
noticing that the Ul becomes slower to render, diminishing the user experience.

¢ [t relies heavily on mutation. Asfunctional programmers, we strive to limit side
effects to a minimum.

The slowness that comes with this and similar approaches is two-fold: firstly, AngularJS
and friends have to —watchll all properties of every model in the scope in order to track
updates. Once the framework determines that data has changed in the model, it then looks
up parts of the Ul, which depend on that informatiori  such as the fragments using ng-
model abovd and then it re-renders them.

Secondly, the DOM isthe slowest part of most single-page web applications. If we think
about it for amoment, these frameworks are triggering dozens or perhaps hundreds of
DOM event handlersin order to keep the datain sync, each of which ends up updating a
nodd or severdl inthe DOM.

Don+ take my word for it though. | ran a simple benchmark to compare a pure calculation
versus locating a DOM element and updating its value to the result of the said calculation.
Here aretheresult§ |-ve used JSPerf to run the benchmark, and these results are for



Chrome 37.0.2062.94 on Mac OS X Mavericks (see http://jsperf.com/purefunctions-vs-
dom):

docunent . get El enent sByNane("suni')[0].value = 1 + 2
/'l Operations per second: 2,090,202

1+ 2
/1l Operations per second: 780,538,120

Updating the DOM is orders of magnitude slower than performing a simple calculation. It
seems logical that we would want to do thisin the most efficient manner possible.

However, if we don+ keep our datain sync, we-fe back at square one. There should be a
way by which we can drastically reduce the amount of rendering being done, while
retaining the convenience of two-way data binding. Can we have our cake and eat it too?



