

C lojure R eactive Program m ing

Table of C ontents

C lojure R eactive Program m ing

C redits

A bout the A uthor

A cknow ledgm ents

A bout the R eview ers

w w w .PacktPub.com

Support files, eB ooks, discount offers, and m ore

W hy subscribe?

Free access for Packt account holders

Preface

W hat this book covers

W hat you need for this book

W ho this book is for

C onventions

R eader feedback

C ustom er support

D ow nloading the exam ple code

Errata

Piracy

Q uestions

1. W hat is R eactive Program m ing?

A taste of R eactive Program m ing

C reating tim e

M ore colors

M aking it reactive

Exercise 1.1

A bit of history

D ataflow program m ing

O bject-oriented R eactive Program m ing

The m ost w idely used reactive program

The O bserver design pattern

Functional R eactive Program m ing

H igher-order FR P

Signals and events

Im plem entation challenges

First-order FR P

A synchronous data flow

A rrow ized FR P

A pplications of FR P

A synchronous program m ing and netw orking

C om plex G U Is and anim ations

Sum m ary

2. A Look at R eactive Extensions

The O bserver pattern revisited

O bserver an Iterator‒s dual

C reating O bservables

C ustom O bservables

M anipulating O bservables

Flatm ap and friends

O ne m ore flatm ap for the road

Error handling

O nError

C atch

R etry

B ackpressure

Sam ple

B ackpressure strategies

Sum m ary

3. A synchronous Program m ing and N etw orking

B uilding a stock m arket m onitoring application

R olling averages

Identifying problem s w ith our current approach

R em oving incidental com plexity w ith R xC lojure

O bservable rolling averages

Sum m ary

4. Introduction to core.async

A synchronous program m ing and concurrency

core.async

C om m unicating sequential processes

R ew riting the stock m arket application w ith core.async

Im plem enting the application code

Error handling

B ackpressure

Fixed buffer

D ropping buffer

Sliding buffer

Transducers

Transducers and core.async

Sum m ary

5. C reating Your O w n C ES Fram ew ork w ith core.async

A m inim al C ES fram ew ork

C lojure or C lojureScript?

D esigning the public A PI

Im plem enting tokens

Im plem enting event stream s

Im plem enting behaviors

Exercises

Exercise 5.1

Exercise 5.2

A respondent application

C ES versus core.async

Sum m ary

6. B uilding a Sim ple C lojureScript G am e w ith R eagi

Setting up the project

G am e entities

Putting it all together

M odeling user input as event stream s

W orking w ith the active keys stream

R eagi and other C ES fram ew orks

Sum m ary

7. The U I as a Function

The problem w ith com plex w eb U Is

Enter R eact.js

Lessons from functional program m ing

C lojureScript and O m

B uilding a sim ple C ontacts application w ith O m

The C ontacts application state

Setting up the C ontacts project

A pplication com ponents

O m cursors

Filling in the blanks

Intercom ponent com m unication

C reating an agile board w ith O m

The board state

C om ponents overview

Lifecycle and com ponent local state

R em aining com ponents

U tility functions

Exercises

Sum m ary

8. Futures

C lojure futures

Fetching data in parallel

Im m inent a com posable futures library for C lojure

C reating futures

C om binators and event handlers

The m ovies exam ple revisited

Futures and blocking IO

Sum m ary

9. A R eactive A PI to A m azon W eb Services

The problem

Infrastructure autom ation

AW S resources dashboard

C loudForm ation

The describeStacks endpoint

The describeStackR esources endpoint

EC 2

The describeInstances endpoint

R D S

The describeD B Instances endpoint

D esigning the solution

R unning the AW S stub server

Setting up the dashboard project

C reating AW S O bservables

C om bining the AW S O bservables

Putting it all together

Exercises

Sum m ary

A . The A lgebra of Library D esign

The sem antics of m ap

Functors

The O ption Functor

Finding the average of ages

A pplicative Functors

G athering stats about ages

M onads

Sum m ary

B . B ibliography

Index

C lojure R eactive Program m ing

C lojure R eactive Program m ing
C opyright ̈ 2015 Packt Publishing

A ll rights reserved. N o part of this book m ay be reproduced, stored in a retrieval system ,
or transm itted in any form or by any m eans, w ithout the prior w ritten perm ission of the
publisher, except in the case of brief quotations em bedded in critical articles or review s.

Every effort has been m ade in the preparation of this book to ensure the accuracy of the
inform ation presented. H ow ever, the inform ation contained in this book is sold w ithout
w arranty, either express or im plied. N either the author, nor Packt Publishing, and its
dealers and distributors w ill be held liable for any dam ages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide tradem ark inform ation about all of the
com panies and products m entioned in this book by the appropriate use of capitals.
H ow ever, Packt Publishing cannot guarantee the accuracy of this inform ation.

First published: M arch 2015

Production reference: 1160315

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

B irm ingham B 3 2PB , U K .

ISB N 978-1-78398-666-8

w w w .packtpub.com

C redits
A uthor

Leonardo B orges

R eview ers

Eduard B ondarenko

C olin Jones

M ichael K ohl

Falko R iem enschneider

A cquisition E ditor

H arsha B harw ani

C ontent D evelopm ent E ditor

A run N adar

Technical E ditor

Tanvi B hatt

C opy E ditors

V ikrant Phadke

Sam een Siddiqui

Project C oordinator

N eha B hatnagar

Proofreaders

Sim ran B hogal

M aria G ould

Indexer

M ariam m al C hettiyar

G raphics

A bhinash Sahu

Production C oordinator

M anu Joseph

C over W ork

M anu Joseph

A bout the A uthor
L eonardo B orges is a program m ing languages enthusiast w ho loves w riting code,
contributing to open source softw are, and speaking on subjects he feels strongly about.
A fter nearly 5 years of consulting at ThoughtW orks, w here he w orked in tw o com m ercial
C lojure projects, am ong m any others, he is now a softw are engineer at A tlassian. H e uses
C lojure and C lojureScript to help build real-tim e collaborative editing technology. This is
his first full-length book, but he contributed a couple of chapters to C lojure C ookbook,
O ‒Reilly.

Leonardo has founded and runs the Sydney C lojure U ser G roup in A ustralia. H e also
w rites posts about softw are, focusing on functional program m ing, on his w ebsite
(http://w w w .leonardoborges.com). W hen he isn‒t w riting code, he enjoys riding
m otorcycles, w eightlifting, and playing the guitar.

A cknow ledgm ents
I w ould like to take this opportunity and start by thanking m y fam ily: m y grandparents,
A ltam ir and A lba, for their tireless support; m y m other, Sònia, for her unconditional love
and m otivation; and m y uncle, A ltam ir Filho, for supporting m e w hen I decided to go to
school at night so that I could start w orking as a program m er. W ithout them , I w ould have
never pursued softw are engineering.

I w ould also like to thank m y fiancee, Enif, w ho answ ered w ith a resounding ―yes‖ w hen
asked w hether I should take up the challenge of w riting a book. H er patience, love,
support, and w ords of encouragem ent w ere invaluable.

D uring the w riting process, Packt Publishing involved several review ers and their
feedback w as extrem ely useful in m aking this a better book. To these review ers, thank
you.

I am also sincerely grateful for m y friends w ho provided crucial feedback on key chapters,
encouraging m e at every step of the w ay: C laudio N atoli, Fßbio Lessa, Fabio Pereira,
Julian G am ble, Steve B uikhuizen, and m any others, w ho w ould take m ultiple pages to list.

Last but not least, a w arm thanks to the staff at Packt Publishing, w ho helped m e along the
w hole process, being firm and responsible, yet understanding.

Each of you helped m ake this happen. Thank you!

A bout the R eview ers
E duard B ondarenko is a softw are developer living in K iev, U kraine. H e started
program m ing using B asic on ZX Spectrum a long tim e ago. Later, he w orked in the w eb
developm ent dom ain.

H e has used R uby on R ails for about 8 years. H aving used R uby for a long tim e, he
discovered C lojure in early 2009, and liked the language. B esides R uby and C lojure, he is
interested in Erlang, G o, Scala, and H askell developm ent.

C olin Jones is director of softw are services at 8th Light, w here he builds w eb, m obile,
and desktop system s for clients of all sizes. H e‒s the author of M astering C lojure M acros:
W rite C leaner, Faster, Sm arter C ode, Pragm atic Bookshelf. C olin participates actively in
the C lojure open source com m unity, including w ork on the C lojure K oans, R EPLy,
leiningen, and m akes sm all contributions to C lojure itself.

M ichael K ohl has been developing w ith R uby since 2004 and got acquainted w ith C lojure
in 2009. H e has w orked as a system s adm inistrator, journalist, system s engineer, G erm an
teacher, softw are developer, and penetration tester. H e currently m akes his living as a
senior R uby on R ails developer. H e previously w orked w ith Packt Publishing as a
technical review er for Ruby and M ongoD B W eb D evelopm ent Beginner‒s G uide.

Falko R iem enschneider started program m ing in 1989. In the last 15 years, he has w orked
on num erous Java Enterprise softw are projects for backends as w ell as frontends. H e‒s
especially interested in designing com plex rich-user interfaces. In 2012, he noticed and
learned C lojure. H e quickly cam e in contact w ith ideas such as FR P and C SP that show
great potential for a radically sim pler U I architecture for desktop and in-brow ser clients.

Falko w orks for item is, a G erm any-based softw are consultancy firm w ith strong
com petence for language- and m odel-based softw are developm ent. H e cofounded a
C lojure user group, and encourages other developers w ithin and outside item is to learn
functional program m ing.

Falko posts regularly on http://w w w .falkoriem enschneider.de.

w w w .PacktPub.com

Support files, eB ooks, discount offers, and
m ore
For support files and dow nloads related to your book, please visit w w w .PacktPub.com .

D id you know that Packt offers eB ook versions of every book published, w ith PD F and
ePub files available? You can upgrade to the eB ook version at w w w .PacktPub.com and as
a print book custom er, you are entitled to a discount on the eB ook copy. G et in touch w ith
us at <service@packtpub.com> for m ore details.

A t w w w .PacktPub.com , you can also read a collection of free technical articles, sign up
for a range of free new sletters and receive exclusive discounts and offers on Packt books
and eB ooks.

https://w w w 2.packtpub.com /books/subscription/packtlib

D o you need instant solutions to your IT questions? PacktLib is Packt‒s online digital
book library. H ere, you can search, access, and read Packt‒s entire library of books.

W hy subscribe?
Fully searchable across every book published by Packt
C opy and paste, print, and bookm ark content
O n dem and and accessible via a w eb brow ser

Free access for Packt account holders
If you have an account w ith Packt at w w w .PacktPub.com , you can use this to access
PacktLib today and view 9 entirely free books. Sim ply use your login credentials for
im m ediate access.

Preface
H ighly concurrent applications such as user interfaces have traditionally m anaged state
through the m utation of global variables. Various actions are coordinated via event
handlers, w hich are procedural in nature.

O ver tim e, the com plexity of a system increases. N ew feature requests com e in, and it
becom es harder and harder to reason about the application.

Functional program m ing presents itself as an extrem ely pow erful ally in building reliable
system s by elim inating m utable states and allow ing applications to be w ritten in a
declarative and com posable w ay.

Such principles gave rise to Functional R eactive Program m ing and C om positional Event
System s (C ES), program m ing paradigm s that are exceptionally useful in building
asynchronous and concurrent applications. They allow you to m odel m utable states in a
functional style.

This book is devoted to these ideas and presents a num ber of different tools and
techniques to help m anage the increasing com plexity of m odern system s.

W hat this book covers
C hapter 1, W hat is Reactive Program m ing?, starts by guiding you through a com pelling
exam ple of a reactive application w ritten in C lojureScript. It then takes you on a journey
through the history of R eactive Program m ing, during w hich som e im portant term inology
is introduced, setting the tone for the follow ing chapters.

C hapter 2, A Look at Reactive Extensions, explores the basics of this R eactive
Program m ing fram ew ork. Its abstractions are introduced and im portant subjects such as
error handling and back pressure are discussed.

C hapter 3, Asynchronous Program m ing and N etw orking, w alks you through building a
stock m arket application. It starts by using a m ore traditional approach and then sw itches
to an im plem entation based on R eactive Extensions, exam ining the trade-offs betw een the
tw o.

C hapter 4, Introduction to core.async, describes core.async, a library for asynchronous
program m ing in C lojure. H ere, you learn about the building blocks of C om m unicating
Sequential Processes and how R eactive A pplications are built w ith core.async.

C hapter 5, C reating Your O w n C ES Fram ew ork w ith core.async, em barks on the
am bitious endeavor of building a C ES fram ew ork. It leverages know ledge gained in the
previous chapter and uses core.async as the foundation for the fram ew ork.

C hapter 6, Building a Sim ple C lojureScript G am e w ith Reagi, show cases a dom ain w here
R eactive fram ew orks have been used for great effects in gam es developm ent.

C hapter 7, The U I as a Function, shifts gears and show s how the principles of functional
program m ing can be applied to w eb U I developm ent through the lens of O m , a
C lojureScript binding for Facebook‒s R eact.

C hapter 8, Futures, presents futures as a viable alternative to som e classes‒ reactive
applications. It exam ines the lim itations of C lojure futures and presents an alternative:
im m inent, a library of com posable futures for C lojure.

C hapter 9, A Reactive API to Am azon W eb Services, describes a case study taken from a
real project, w here a lot of the concepts introduced throughout this book have been put
together to interact w ith a third-party service.

A ppendix A , The Algebra of Library D esign, introduces concepts from C ategory Theory
that are helpful in building reusable abstractions. The appendix is optional and w on‒t
hinder learning in the previous chapters. It presents the principles used in designing the
futures library seen in C hapter 8, Futures.

A ppendix B , Bibliography, provides all the references used throughout the book.

W hat you need for this book
This book assum es that you have a reasonably m odern desktop or laptop com puter as w ell
as a w orking C lojure environm ent w ith leiningen (see http://leiningen.org/) properly
configured.

Installation instructions depend on your platform and can be found on the leiningen
w ebsite (see http://leiningen.org/#install).

You are free to use any text editor of your choice, but popular choices include Eclipse (see
https://eclipse.org/dow nloads/) w ith the C ounterclockw ise plugin (see
https://github.com /laurentpetit/ccw), IntelliJ (https://w w w .jetbrains.com /idea/) w ith the
C ursive plugin (see https://cursiveclojure.com /), Light Table (see http://lighttable.com /),
Em acs, and V im .

W ho this book is for
This book is for C lojure developers w ho are currently building or planning to build
asynchronous and concurrent applications and w ho are interested in how they can apply
the principles and tools of R eactive Program m ing to their daily jobs.

K now ledge of C lojure and leiningen a popular C lojure build tool is required.

The book also features several C lojureScript exam ples, and as such, fam iliarity w ith
C lojureScript and w eb developm ent in general w ill be helpful.

N otw ithstanding, the chapters have been carefully w ritten in such a w ay that as long as
you possess know ledge of C lojure, follow ing these exam ples should only require a little
extra effort.

A s this book progresses, it lays out the building blocks required by later chapters, and as
such m y recom m endation is that you start w ith C hapter 1, W hat is Reactive
Program m ing?, and w ork your w ay through subsequent chapters in order.

A clear exception to this is A ppendix A , The Algebra of Library D esign, w hich is optional
and can be read independent of the others although reading C hapter 8, Futures, m ight
provide a useful background.

C onventions
In this book, you w ill find a num ber of styles of text that distinguish betw een different
kinds of inform ation. H ere are som e exam ples of these styles, and an explanation of their
m eaning.

C ode w ords in text, database table nam es, folder nam es, filenam es, file extensions,
pathnam es, dum m y U R Ls, user input, and Tw itter handles are show n as follow s: ―W e can
include other contexts through the use of the include directive.‖

A block of code is set as follow s:

(def numbers (atom []))

(defn adder [key ref old-state new-state]

 (print "Current sum is " (reduce + new-state)))

(add-watch numbers :adder adder)

W hen w e w ish to draw your attention to a particular part of a code block, the relevant
lines or item s are set in bold:

(-> (repeat-obs 5)

 (rx/subscribe prn-to-repl))

;; 5

;; 5

A ny com m and-line input or output is w ritten as follow s:

lein run -m sin-wave.server

N ew term s and im portant w ords are show n in bold. W ords that you see on the screen, in
m enus, or dialog boxes, for exam ple, appear in the text like this: ―If this w as a w eb
application our users w ould be presented w ith a w eb server error such as the H T T P code
500 Internal Server E rror.‖

N ote
W arnings or im portant notes appear in a box like this.

Tip
Tips and tricks appear like this.

R eader feedback
Feedback from our readers is alw ays w elcom e. Let us know w hat you think about this
book w hat you liked or m ay have disliked. R eader feedback is im portant for us to
develop titles that you really get the m ost out of.

To send us general feedback, sim ply send an e-m ail to <feedback@packtpub.com>, and
m ention the book title via the subject of your m essage.

If there is a topic that you have expertise in and you are interested in either w riting or
contributing to a book, see our author guide at w w w .packtpub.com /authors.

C ustom er support
N ow that you are the proud ow ner of a Packt book, w e have a num ber of things to help
you to get the m ost from your purchase.

D ow nloading the exam ple code
You can dow nload the exam ple code files for all Packt books you have purchased from
your account at http://w w w .packtpub.com . If you purchased this book elsew here, you can
visit http://w w w .packtpub.com /support and register to have the files e-m ailed directly to
you.

E rrata
A lthough w e have taken every care to ensure the accuracy of our content, m istakes do
happen. If you find a m istake in one of our books m aybe a m istake in the text or the
code w e w ould be grateful if you w ould report this to us. B y doing so, you can save
other readers from frustration and help us im prove subsequent versions of this book. If
you find any errata, please report them by visiting http://w w w .packtpub.com /subm it-
errata, selecting your book, clicking on the errata subm ission form link, and entering the
details of your errata. O nce your errata are verified, your subm ission w ill be accepted and
the errata w ill be uploaded on our w ebsite, or added to any list of existing errata, under the
Errata section of that title. A ny existing errata can be view ed by selecting your title from
http://w w w .packtpub.com /support.

Piracy
Piracy of copyright m aterial on the Internet is an ongoing problem across all m edia. A t
Packt, w e take the protection of our copyright and licenses very seriously. If you com e
across any illegal copies of our w orks, in any form , on the Internet, please provide us w ith
the location address or w ebsite nam e im m ediately so that w e can pursue a rem edy.

Please contact us at <copyright@packtpub.com> w ith a link to the suspected pirated
m aterial.

W e appreciate your help in protecting our authors, and our ability to bring you valuable
content.

Q uestions
You can contact us at <questions@packtpub.com> if you are having a problem w ith any
aspect of this book, and w e w ill do our best to address it.

C hapter 1. W hat is R eactive
Program m ing?
R eactive Program m ing is both an overloaded term and a broad topic. A s such, this book
w ill focus on a specific form ulation of R eactive Program m ing called C om positional
E vent System s (C E S).

B efore covering som e history and background behind R eactive Program m ing and C ES, I
w ould like to open w ith a w orking and hopefully com pelling exam ple: an anim ation in
w hich w e draw a sine w ave onto a w eb page.

The sine w ave is sim ply the graph representation of the sine function. It is a sm ooth,
repetitive oscillation, and at the end of our anim ation it w ill look like the follow ing
screenshot:

This exam ple w ill highlight how C ES:

U rges us to think about w hat w e w ould like to do as opposed to how
Encourages sm all, specific abstractions that can be com posed together
Produces terse and m aintainable code that is easy to change

The core of this program boils dow n to four lines of C lojureScript:

(-> sine-wave

 (.take 600)

 (.subscribe (fn [{:keys [x y]}]

 (fill-rect x y "orange"))))

Sim ply by looking at this code it is im possible to determ ine precisely w hat it does.
H ow ever, do take the tim e to read and im agine w hat it could do.

First, w e have a variable called sine-wave, w hich represents the 2D coordinates w e w ill
draw onto the w eb page. The next line gives us the intuition that sine-wave is som e sort
of collection-like abstraction: w e use .take to retrieve 600 coordinates from it.

Finally, w e .subscribe to this ―collection‖ by passing it a callback. This callback w ill be
called for each item in the sine-w ave, finally draw ing at the given x and y coordinates
using the fill-rect function.

This is quite a bit to take in for now as w e haven‒t seen any other code yet but that w as

the point of this little exercise: even though w e know nothing about the specifics of this
exam ple, w e are able to develop an intuition of how it m ight w ork.

Let‒s see w hat else is necessary to m ake this snippet anim ate a sine w ave on our screen.

A taste of R eactive Program m ing
This exam ple is built in C lojureScript and uses H TM L 5 C anvas for rendering and R xJS
(see https://github.com /R eactive-Extensions/R xJS) a fram ew ork for R eactive
Program m ing in JavaScript.

B efore w e start, keep in m ind that w e w ill not go into the details of these fram ew orks yet
 that w ill happen later in this book. This m eans I‒ll be asking you to take quite a few
things at face value, so don‒t w orry if you don‒t im m ediately grasp how things w ork. The
purpose of this exam ple is to sim ply get us started in the w orld of R eactive Program m ing.

For this project, w e w ill be using C hestnut (see https://github.com /plexus/chestnut) a
leiningen tem plate for C lojureScript that gives us a sam ple w orking application w e can
use as a skeleton.

To create our new project, head over to the com m and line and invoke leiningen as follow s:

lein new chestnut sin-wave

cd sin-wave

N ext, w e need to m odify a couple of things in the generated project. O pen up sin-
wave/resources/index.html and update it to look like the follow ing:

<!DOCTYPE html>

<html>

 <head>

 <link href="css/style.css" rel="stylesheet" type="text/css">

 </head>

 <body>

 <div id="app"></div>

 <script src="/js/rx.all.js" type="text/javascript"></script>

 <script src="/js/app.js" type="text/javascript"></script>

 <canvas id="myCanvas" width="650" height="200" style="border:1px solid

#d3d3d3;">

 </body>

</html>

This sim ply ensures that w e im port both our application code and R xJS. W e haven‒t
dow nloaded R xJS yet so let‒s do this now . B row se to https://github.com /R eactive-
Extensions/R xJS/blob/m aster/dist/rx.all.js and save this file to sin-
wave/resources/public. The previous snippets also add an H TM L 5 C anvas elem ent
onto w hich w e w ill be draw ing.

N ow , open /src/cljs/sin_wave/core.cljs. This is w here our application code w ill live.
You can ignore w hat is currently there. M ake sure you have a clean slate like the follow ing
one:

(ns sin-wave.core)

(defn main [])

Finally, go back to the com m and line under the sin-wave folder and start up the
follow ing application:

lein run -m sin-wave.server

2015-01-02 19:52:34.116:INFO:oejs.Server:jetty-7.6.13.v20130916

2015-01-02 19:52:34.158:INFO:oejs.AbstractConnector:Started

SelectChannelConnector@0.0.0.0:10555

Starting figwheel.

Starting web server on port 10555 .

Compiling ClojureScript.

Figwheel: Starting server at http://localhost:3449

Figwheel: Serving files from '(dev-resources|resources)/public'

O nce the previous com m and finishes, the application w ill be available at
http://localhost:10555, w here you w ill find a blank, rectangular canvas. W e are now
ready to begin.

The m ain reason w e are using the C hestnut tem plate for this exam ple is that it perform s
hot-reloading of our application code via w ebsockets. This m eans w e can have the
brow ser and the editor side by side, and as w e update our code, w e w ill see the results
im m ediately in the brow ser w ithout having to reload the page.

To validate that this is w orking, open your w eb brow ser‒s console so that you can see the
output of the scripts in the page. Then add this to /src/cljs/sin_wave/core.cljs as
follow s:

(.log js/console "hello clojurescript")

You should have seen the hello clojurescript m essage printed to your brow ser‒s
console. M ake sure you have a w orking environm ent up to this point as w e w ill be relying
on this w orkflow to interactively build our application.

It is also a good idea to m ake sure w e clear the canvas every tim e C hestnut reloads our
file. This is sim ple enough to do by adding the follow ing snippet to our core nam espace:

(def canvas (.getElementById js/document "myCanvas"))

(def ctx (.getContext canvas "2d"))

;; Clear canvas before doing anything else

(.clearRect ctx 0 0 (.-width canvas) (.-height canvas))

C reating tim e
N ow that w e have a w orking environm ent, w e can progress w ith our anim ation. It is
probably a good idea to specify how often w e w ould like to have a new anim ation fram e.

This effectively m eans adding the concept of tim e to our application. You‒re free to play
w ith different values, but let‒s start w ith a new fram e every 10 m illiseconds:

(def interval js/Rx.Observable.interval)

(def time (interval 10))

A s R xJS is a JavaScript library, w e need to use C lojureScript‒s interoperability to call its
functions. For convenience, w e bind the interval function of R xJS to a local var. W e w ill
use this approach throughout this book w hen appropriate.

N ext, w e create an infinite stream of num bers starting at 0 that w ill have a new
elem ent every 10 m illiseconds. Let‒s m ake sure this is w orking as expected:

(-> time

 (.take 5)

 (.subscribe (fn [n]

 (.log js/console n))))

;; 0

;; 1

;; 2

;; 3

;; 4

Tip
I use the term stream very loosely here. It w ill be defined m ore precisely later in this book.

R em em ber tim e is infinite, so w e use .take in order to avoid indefinitely printing out
num bers to the console.

O ur next step is to calculate the 2D coordinate representing a segm ent of the sine w ave w e
can draw . This w ill be given by the follow ing functions:

(defn deg-to-rad [n]

 (* (/ Math/PI 180) n))

(defn sine-coord [x]

 (let [sin (Math/sin (deg-to-rad x))

 y (- 100 (* sin 90))]

 {:x x

 :y y

 :sin sin}))

The sine-coord function takes an x point of our 2D C anvas and calculates the y point
based on the sine of x. The constants 100 and 90 sim ply control how tall and sharp the
slope should be. A s an exam ple, try calculating the sine coordinate w hen x is 50:

(.log js/console (str (sine-coord 50)))

;;{:x 50, :y 31.05600011929198, :sin 0.766044443118978}

W e w ill be using time as the source for the values of x. C reating the sine w ave now is
only a m atter of com bining both time and sine-coord:

(def sine-wave

 (.map time sine-coord))

Just like time, sine-wave is an infinite stream . The difference is that instead of just
integers, w e w ill now have the x and y coordinates of our sine w ave, as dem onstrated in
the follow ing:

(-> sine-wave

 (.take 5)

 (.subscribe (fn [xysin]

 (.log js/console (str xysin)))))

 ;; {:x 0, :y 100, :sin 0}

 ;; {:x 1, :y 98.42928342064448, :sin 0.01745240643728351}

 ;; {:x 2, :y 96.85904529677491, :sin 0.03489949670250097}

 ;; {:x 3, :y 95.28976393813505, :sin 0.052335956242943835}

 ;; {:x 4, :y 93.72191736302872, :sin 0.0697564737441253}

This brings us to the original code snippet w hich piqued our interest, alongside a function
to perform the actual draw ing:

(defn fill-rect [x y colour]

 (set! (.-fillStyle ctx) colour)

 (.fillRect ctx x y 2 2))

(-> sine-wave

 (.take 600)

 (.subscribe (fn [{:keys [x y]}]

 (fill-rect x y "orange"))))

A s this point, w e can save the file again and w atch as the sine w ave w e have just created
gracefully appears on the screen.

M ore colors
O ne of the points this exam ple sets out to illustrate is how thinking in term s of very sim ple
abstractions and then building m ore com plex ones on top of them m ake for code that is
sim pler to m aintain and easier to m odify.

A s such, w e w ill now update our anim ation to draw the sine w ave in different colors. In
this case, w e w ould like to draw the w ave in red if the sine of x is negative and blue
otherw ise.

W e already have the sine value com ing through the sine-wave stream , so all w e need to
do is to transform this stream into one that w ill give us the colors according to the
preceding criteria:

(def colour (.map sine-wave

 (fn [{:keys [sin]}]

 (if (< sin 0)

 "red"

 "blue"))))

The next step is to add the new stream into the m ain draw ing loop rem em ber to
com m ent the previous one so that w e don‒t end up w ith m ultiple w aves being draw n at the
sam e tim e:

(-> (.zip sine-wave colour #(vector % %2))

 (.take 600)

 (.subscribe (fn [[{:keys [x y]} colour]]

 (fill-rect x y colour))))

O nce w e save the file, w e should see a new sine w ave alternating betw een red and blue as
the sine of x oscillates from 1 to 1.

M aking it reactive
A s fun as this has been so far, the anim ation w e have created isn‒t really reactive. Sure, it
does react to tim e itself, but that is the very nature of anim ation. A s w e w ill later see,
R eactive Program m ing is so called because program s react to external inputs such as
m ouse or netw ork events.

W e w ill, therefore, update the anim ation so that the user is in control of w hen the color
sw itch occurs: the w ave w ill start red and sw itch to blue w hen the user clicks anyw here
w ithin the canvas area. Further clicks w ill sim ply alternate betw een red and blue.

W e start by creating infinite as per the definition of time stream s for our color
prim itives as follow s:

(def red (.map time (fn [_] "red")))

(def blue (.map time (fn [_] "blue")))

O n their ow n, red and blue aren‒t that interesting as their values don‒t change. W e can
think of them as constant stream s. They becom e a lot m ore interesting w hen com bined
w ith another infinite stream that cycles betw een them based on user input:

(def concat js/Rx.Observable.concat)

(def defer js/Rx.Observable.defer)

(def from-event js/Rx.Observable.fromEvent)

(def mouse-click (from-event canvas "click"))

(def cycle-colour

 (concat (.takeUntil red mouse-click)

 (defer #(concat (.takeUntil blue mouse-click)

 cycle-colour))))

This is our m ost com plex update so far. If you look closely, you w ill also notice that
cycle-colour is a recursive stream ; that is, it is defined in term s of itself.

W hen w e first saw code of this nature, w e took a leap of faith in trying to understand w hat
it does. A fter a quick read, how ever, w e realized that cycle-colour follow s closely how
w e m ight have talked about the problem : w e w ill use red until a m ouse click occurs, after
w hich w e w ill use blue until another m ouse click occurs. Then, w e start the recursion.

The change to our anim ation loop is m inim al:

(-> (.zip sine-wave cycle-colour #(vector % %2))

 (.take 600)

 (.subscribe (fn [[{:keys [x y]} colour]]

 (fill-rect x y colour))))

The purpose of this book is to help you develop the instinct required to m odel problem s in
the w ay dem onstrated here. A fter each chapter, m ore and m ore of this exam ple w ill m ake
sense. A dditionally, a num ber of fram ew orks w ill be used both in C lojureScript and
C lojure to give you a w ide range of tools to choose from .

B efore w e m ove on to that, w e m ust take a little detour and understand how w e got here.

E xercise 1.1
M odify the previous exam ple in such a w ay that the sine w ave is draw n using all rainbow
colors. The draw ing loop should look like the follow ing:

(-> (.zip sine-wave rainbow-colours #(vector % %2))

 (.take 600)

 (.subscribe (fn [[{:keys [x y]} colour]]

 (fill-rect x y colour))))

Your task is to im plem ent the rainbow-colours stream . A s everything up until now has
been very light on explanations, you m ight choose to com e back to this exercise later,
once w e have covered m ore about C ES.

The repeat, scan, and flatMap functions m ay be useful in solving this exercise. B e sure
to consult R xJs‒ A PI at https://github.com /R eactive-
Extensions/R xJS/blob/m aster/doc/libraries/rx.com plete.m d.

A bit of history
B efore w e talk about w hat R eactive Program m ing is, it is im portant to understand how
other relevant program m ing paradigm s influenced how w e develop softw are. This w ill
also help us understand the m otivations behind reactive program m ing.

W ith few exceptions m ost of us have been taught either self-taught or at
school/university im perative program m ing languages such as C and Pascal or object-
oriented languages such as Java and C ++.

In both cases, the im perative program m ing paradigm of w hich object-oriented languages
are part dictates w e w rite program s as a series of statem ents that m odify program state.

In order to understand w hat this m eans, let‒s look at a short program w ritten in pseudo-
code that calculates the sum and the m ean value of a list of num bers:

numbers := [1, 2, 3, 4, 5, 6]

sum := 0

for each number in numbers

 sum := sum + number

end

mean := sum / count(numbers)

Tip
The m ean value is the average of the num bers in the list, obtained by dividing the sum by
the num ber of elem ents.

First, w e create a new array of integers, called numbers, w ith num bers from 1 to 6,
inclusive. Then, w e initialize sum to zero. N ext, w e iterate over the array of integers, one at
a tim e, adding to sum the value of each num ber.

Lastly, w e calculate and assign the average of the num bers in the list to the mean local
variable. This concludes the program logic.

This program w ould print 21 for the sum and 3 for the m ean, if executed.

Though a sim ple exam ple, it highlights its im perative style: w e set up an application state
 sum and then explicitly tell the com puter how to m odify that state in order to calculate
the result.

D ataflow program m ing
The previous exam ple has an interesting property: the value of mean clearly has a
dependency on the contents of sum.

D ataflow program m ing m akes this relationship explicit. It m odels applications as a
dependency graph through w hich data flow s from operation to operation and as values
change, these changes are propagated to its dependencies.

H istorically, dataflow program m ing has been supported by custom -built languages such as
Lucid and B LO D I, as such, leaving other general purpose program m ing languages out.

Let‒s see how this new insight w ould im pact our previous exam ple. W e know that once the
last line gets executed, the value of mean is assigned and w on‒t change unless w e explicitly
reassign the variable.

H ow ever, let‒s im agine for a second that the pseudo-language w e used earlier does support
dataflow program m ing. In that case, assigning mean to an expression that refers to both
sum and count, such as sum / count(numbers), w ould be enough to create the directed
dependency graph in the follow ing diagram :

N ote that a direct side effect of this relationship is that an im plicit dependency from sum to
numbers is also created. This m eans that if numbers change, the change is propagated
through the graph, first updating sum and then finally updating mean.

This is w here R eactive Program m ing com es in. This paradigm builds on dataflow
program m ing and change propagation to bring this style of program m ing to languages that
don‒t have native support for it.

For im perative program m ing languages, R eactive Program m ing can be m ade available via
libraries or language extensions. W e don‒t cover this approach in this book, but should the
reader w ant m ore inform ation on the subject, please refer to dc-lib (see
https://code.google.com /p/dc-lib/) for an exam ple. It is a fram ew ork that adds R eactive
Program m ing support to C ++ via dataflow constraints.

O bject-oriented R eactive Program m ing
W hen designing interactive applications such as desktop G raphical U ser Interfaces
(G U Is), w e are essentially using an object-oriented approach to R eactive Program m ing.
W e w ill build a sim ple calculator application to dem onstrate this style.

Tip
C lojure isn‒t an object-oriented language, but w e w ill be interacting w ith parts of the Java
A PI to build user interfaces that w ere developed in an O O paradigm , hence the title of this
section.

Let‒s start by creating a new leiningen project from the com m and line:

lein new calculator

This w ill create a directory called calculator in the current folder. N ext, open the
project.clj file in your favorite text editor and add a dependency on Seesaw , a C lojure
library for w orking w ith Java Sw ing:

(defproject calculator "0.1.0-SNAPSHOT"

 :description "FIXME: write description"

 :url "http://example.com/FIXME"

 :license {:name "Eclipse Public License"

 :url "http://www.eclipse.org/legal/epl-v10.html"}

 :dependencies [[org.clojure/clojure "1.5.1"]

 [seesaw "1.4.4"]])

A t the tim e of this w riting, the latest Seesaw version available is 1.4.4.

N ext, in the src/calculator/core.clj file, w e‒ll start by requiring the Seesaw library
and creating the visual com ponents w e‒ll be using:

(ns calculator.core

 (:require [seesaw.core :refer :all]))

(native!)

(def main-frame (frame :title "Calculator" :on-close :exit))

(def field-x (text "1"))

(def field-y (text "2"))

(def result-label (label "Type numbers in the boxes to add them up!"))

The preceding snippet creates a w indow w ith the title Calculator that ends the program
w hen closed. W e also create tw o text input fields, field-x and field-y, as w ell as a label
that w ill be used to display the results, aptly nam ed result-label.

W e w ould like the label to be updated autom atically as soon as a user types a new num ber
in any of the input fields. The follow ing code does exactly that:

(defn update-sum [e]

 (try

 (text! result-label

 (str "Sum is " (+ (Integer/parseInt (text field-x))

 (Integer/parseInt (text field-y)))))

 (catch Exception e

 (println "Error parsing input."))))

(listen field-x :key-released update-sum)

(listen field-y :key-released update-sum)

The first function, update-sum, is our event handler. It sets the text of result-label to the
sum of the values in field-x and field-y. W e use try/catch here as a really basic w ay to
handle errors since the key pressed m ight not have been a num ber. W e then add the event
handler to the :key-released event of both input fields.

Tip
In real applications, w e never w ant a catch block such as the previous one. This is
considered bad style, and the catch block should do som ething m ore useful such as
logging the exception, firing a notification, or resum ing the application if possible.

W e are alm ost done. A ll w e need to do now is add the com ponents w e have created so far
to our main-frame and finally display it as follow s:

(config! main-frame :content

 (border-panel

 :north (horizontal-panel :items [field-x field-y])

 :center result-label

 :border 5))

(defn -main [& args]

 (-> main-frame pack! show!))

N ow w e can save the file and run the program from the com m and line in the project‒s root
directory:

lein run -m calculator.core

You should see som ething like the follow ing screenshot:

Experim ent by typing som e num bers in either or both text input fields and w atch how the
value of the label changes autom atically, displaying the sum of both num bers.

C ongratulations! You have just created your first reactive application!

A s alluded to previously, this application is reactive because the value of the result label
reacts to user input and is updated autom atically. H ow ever, this isn‒t the w hole story it
lacks in com posability and requires us to specify the how , not the w hat of w hat w e‒re
trying to achieve.

A s fam iliar as this style of program m ing m ay be, m aking applications reactive this w ay
isn‒t alw ays ideal.

G iven previous discussions, w e notice w e still had to be fairly explicit in setting up the
relationships betw een the various com ponents as evidenced by having to w rite a custom
handler and bind it to both input fields.

A s w e w ill see throughout the rest of this book, there is a m uch better w ay to handle
sim ilar scenarios.

T he m ost w idely used reactive program
B oth exam ples in the previous section w ill feel fam iliar to som e readers. If w e call the
input text fields ―cells‖ and the result label‒s handler a ―form ula‖, w e now have the
nom enclature used in m odern spreadsheet applications such as M icrosoft Excel.

The term R eactive Program m ing has only been in use in recent years, but the idea of a
reactive application isn‒t new . The first electronic spreadsheet dates back to 1969 w hen
R ene Pardo and R em y Landau, then recent graduates from H arvard U niversity, created
L A N PA R (L A N guage for Program m ing A rrays at R andom) [1].

It w as invented to solve a problem that B ell C anada and AT& T had at the tim e: their
budgeting form s had 2000 cells that, w hen m odified, forced a softw are re-w rite taking
anyw here from six m onths to tw o years.

To this day, electronic spreadsheets rem ain a pow erful and useful tool for professionals of
various fields.

T he O bserver design pattern
A nother sim ilarity the keen reader m ay have noticed is w ith the O bserver design pattern. It
is m ainly used in object-oriented applications as a w ay for objects to com m unicate w ith
each other w ithout having any know ledge of w ho depends on its changes.

In C lojure, a sim ple version of the O bserver pattern can be im plem ented using w atches:

(def numbers (atom []))

(defn adder [key ref old-state new-state]

 (print "Current sum is " (reduce + new-state)))

(add-watch numbers :adder adder)

W e start by creating our program state, in this case an atom holding an em pty vector. N ext,
w e create a w atch function that know s how to sum all num bers in numbers. Finally, w e
add our w atch function to the num bers atom under the :adder key (useful for rem oving
w atches).

The adder key conform s w ith the A PI contract required by add-watch and receives four
argum ents. In this exam ple, w e only care about new-state.

N ow , w henever w e update the value of numbers, its w atch w ill be executed, as
dem onstrated in the follow ing:

(swap! numbers conj 1)

;; Current sum is 1

(swap! numbers conj 2)

;; Current sum is 3

(swap! numbers conj 7)

;; Current sum is 10

The highlighted lines above indicate the result that is printed on the screen each tim e w e
update the atom .

Though useful, the O bserver pattern still requires som e am ount of w ork in setting up the
dependencies and the required program state in addition to being hard to com pose.

That being said, this pattern has been extended and is at the core of one of the R eactive
Program m ing fram ew orks w e w ill look at later in this book, M icrosoft‒s R eactive
E xtensions (R x).

Functional R eactive Program m ing
Just like R eactive Program m ing, Functional R eactive Program m ing FR P for short
has unfortunately becom e an overloaded term .

Fram ew orks such as R xJava (see https://github.com /R eactiveX /R xJava), R eactiveC ocoa
(see https://github.com /R eactiveC ocoa/R eactiveC ocoa), and B acon.js (see
https://baconjs.github.io/) becam e extrem ely popular in recent years and had positioned
them selves incorrectly as FR P libraries. This led to the confusion surrounding the
term inology.

A s w e w ill see, these fram ew orks do not im plem ent FR P but rather are inspired by it.

In the interest of using the correct term inology as w ell as understanding w hat ―inspired by
FR P‖ m eans, w e w ill have a brief look at the different form ulations of FR P.

H igher-order FR P
H igher-order FR P refers to the original research on FR P developed by C onal Elliott and
Paul H udak in their paper Functional Reactive Anim ation [2] from 1997. This paper
presents Fran, a dom ain-specific language em bedded in H askell for creating reactive
anim ations. It has since been im plem ented in several languages as a library as w ell as
purpose built reactive languages.

If you recall the calculator exam ple w e created a few pages ago, w e can see how that style
of R eactive Program m ing requires us to m anage state explicitly by directly reading and
w riting from /to the input fields. A s C lojure developers, w e know that avoiding state and
m utable data is a good principle to keep in m ind w hen building softw are. This principle is
at the core of Functional Program m ing:

(->> [1 2 3 4 5 6]

 (map inc)

 (filter even?)

 (reduce +))

;; 12

This short program increm ents by one all elem ents in the original list, filters all even
num bers, and adds them up using reduce.

N ote how w e didn‒t have to explicitly m anage local state through at each step of the
com putation.

D ifferently from im perative program m ing, w e focus on w hat w e w ant to do, for exam ple
iteration, and not how w e w ant it to be done, for exam ple using a for loop. This is w hy
the im plem entation m atches our description of the program closely. This is know n as
declarative program m ing.

FR P brings the sam e philosophy to R eactive Program m ing. A s the H askell program m ing
language w iki on the subject has w isely put it:

FRP is about handling tim e-varying values like they w ere regular values.

Put another w ay, FR P is a declarative w ay of m odeling system s that respond to input over
tim e.

B oth statem ents touch on the concept of tim e. W e‒ll be exploring that in the next section,
w here w e introduce the key abstractions provided by FR P: signals (or behaviors) and
events.

Signals and events
So far w e have been dealing w ith the idea of program s that react to user input. This is of
course only a sm all subset of reactive system s but is enough for the purposes of this
discussion.

U ser input happens several tim es through the execution of a program : key presses, m ouse
drags, and clicks are but a few exam ples of how a user m ight interact w ith our system . A ll
these interactions happen over a period of tim e. FR P recognizes that tim e is an im portant
aspect of reactive program s and m akes it a first-class citizen through its abstractions.

B oth signals (also called behaviors) and events are related to tim e. Signals represent
continuous, tim e-varying values. Events, on the other hand, represent discrete occurrences
at a given point in tim e.

For exam ple, tim e is itself a signal. It varies continuously and indefinitely. O n the other
hand, a key press by a user is an event, a discrete occurrence.

It is im portant to note, how ever, that the sem antics of how a signal changes need not be
continuous. Im agine a signal that represents the current (x,y) coordinates of your m ouse
pointer.

This signal is said to change discretely as it depends on the user m oving the m ouse pointer
 an event w hich isn‒t a continuous action.

Im plem entation challenges
Perhaps the m ost defining characteristic of classical FR P is the use of continuous tim e.

This m eans FR P assum es that signals are changing all the tim e, even if their value is still
the sam e, leading to needless recom putation. For exam ple, the m ouse position signal w ill
trigger updates to the application dependency graph like the one w e saw previously for
the m ean program even w hen the m ouse is stationary.

A nother problem is that classical FR P is synchronous by default: events are processed in
order, one at a tim e. H arm less at first, this can cause delays, w hich w ould render an
application unresponsive should an event take substantially longer to process.

Paul H udak and others furthered research on higher-order FR P [7] [8] to address these
issues, but that cam e at the cost of expressivity.

The other form ulations of FR P aim to overcom e these im plem entation challenges.

Throughout the rest of the chapter, I‒ll be using signals and behaviors interchangeably.

First-order FR P
The m ost w ell-know n reactive language in this category is Elm (see http://elm -lang.org/),
an FR P language that com piles to JavaScript. It w as created by Evan C zaplicki and
presented in his paper Elm : C oncurrent FRP for Functional G U Is [3].

Elm m akes som e significant changes to higher-order FR P.

It abandons the idea of continuous tim e and is entirely event-driven. A s a result, it solves
the problem of needless recom putation highlighted earlier. First-order FR P com bines both
behaviors and events into signals w hich, in contrast to higher-order FR P, are discrete.

A dditionally, first-order FR P allow s the program m er to specify w hen synchronous
processing of events isn‒t necessary, preventing unnecessary processing delays.

Finally, Elm is a strict program m ing language m eaning argum ents to functions are
evaluated eagerly and that is a conscious decision as it prevents space and tim e leaks,
w hich are possible in a lazy language such as H askell.

Tip
In an FR P library such as Fran, im plem ented in a lazy language, m em ory usage can grow
unw ieldy as com putations are deferred to the absolutely last possible m om ent, therefore
causing a space leak. These larger com putations, accum ulated over tim e due to laziness,
can then cause unexpected delays w hen finally executed, causing tim e leaks.

A synchronous data flow
A synchronous D ata Flow generally refers to fram ew orks such as R eactive E xtensions
(R x), R eactiveC ocoa, and B acon.js. It is called as such as it com pletely elim inates
synchronous updates.

These fram ew orks introduce the concept of O bservable Sequences [4], som etim es called
Event Stream s.

This form ulation of FR P has the advantage of not being confined to functional languages.
Therefore, even im perative languages like Java can take advantage of this style of
program m ing.

A rguably, these fram ew orks w ere responsible for the confusion around FR P term inology.
C onal Elliott at som e point suggested the term C ES (see
https://tw itter.com /conal/status/468875014461468677).

I have since adopted this term inology (see http://vim eo.com /100688924) as I believe it
highlights tw o im portant factors:

A fundam ental difference betw een C ES and FR P: C ES is entirely event-driven
C ES is highly com posable via com binators, taking inspiration from FR P

C ES is the m ain focus of this book.

A rrow ized FR P
This is the last form ulation w e w ill look at. A rrow ized FR P [5] introduces tw o m ain
differences over higher-order FR P: it uses signal functions instead of signals and is built
on top of John H ughes‒ A rrow com binators [6].

It is m ostly about a different w ay of structuring code and can be im plem ented as a library.
A s an exam ple, Elm supports A rrow ized FR P via its A utom aton (see
https://github.com /evancz/autom aton) library.

Tip
The first draft of this chapter grouped the different form ulations of FR P under the broad
categories of C ontinuous and D iscrete FR P. Thanks to Evan C zaplicki‒s excellent talk
C ontrolling Tim e and Space: understanding the m any form ulations of FRP (see
https://w w w .youtube.com /w atch?v=A gu6jipK fY w), I w as able to borrow the m ore
specific categories used here. These com e in handy w hen discussing the different
approaches to FR P.

A pplications of FR P
The different FR P form ulations are being used today in several problem spaces by
professionals and big organizations alike. Throughout this book, w e‒ll look at several
exam ples of how C ES can be applied. Som e of these are interrelated as m ost m odern
program s have several cross-cutting concerns, but w e w ill highlight tw o m ain areas.

A synchronous program m ing and netw orking
G U Is are a great exam ple of asynchronous program m ing. O nce you open a w eb or a
desktop application, it sim ply sits there, idle, w aiting for user input.

This state is often called the event or m ain event loop. It is sim ply w aiting for external
stim uli, such as a key press, a m ouse button click, new data from the netw ork, or even a
sim ple tim er.

Each of these stim uli is associated w ith an event handler that gets called w hen one of these
events happen, hence the asynchronous nature of G U I system s.

This is a style of program m ing w e have been used to for m any years, but as business and
user needs grow , these applications grow in com plexity as w ell, and better abstractions are
needed to handle the dependencies betw een all the com ponents of an application.

A nother great exam ple that deals w ith m anaging com plexity around netw ork traffic is
N etflix, w hich uses C ES to provide a reactive A PI to their backend services.

C om plex G U Is and anim ations
G am es are, perhaps, the best exam ple of com plex user interfaces as they have intricate
requirem ents around user input and anim ations.

The Elm language w e m entioned before is one of the m ost exciting efforts in building
com plex G U Is. A nother exam ple is Flapjax, also targeted at w eb applications, but is
provided as a JavaScript library that can be integrated w ith existing JavaScript code bases.

Sum m ary
R eactive Program m ing is all about building responsive applications. There are several
w ays in w hich w e can m ake our applications reactive. Som e are old ideas: dataflow
program m ing, electronic spreadsheets, and the O bserver pattern are all exam ples. B ut C ES
in particular has becom e popular in recent years.

C ES aim s to bring to R eactive Program m ing the declarative w ay of m odeling problem s
that is at the core of Functional Program m ing. W e should w orry about w hat and not about
how .

In next chapters, w e w ill learn how w e can apply C ES to our ow n program s.

C hapter 2. A L ook at R eactive E xtensions
R eactive Extensions or R x is a R eactive Program m ing library from M icrosoft to build
com plex asynchronous program s. It m odels tim e-varying values and events as observable
sequences and is im plem ented by extending the O bserver design pattern.

Its first target platform w as .N ET, but N etflix has ported R x to the JV M under the nam e
R xJava. M icrosoft also develops and m aintains a port of R x to JavaScript called R xJS,
w hich is the tool w e used to build the sine-w ave application. The tw o ports w ork a treat
for us since C lojure runs on the JV M and C lojureScript in JavaScript environm ents.

A s w e saw in C hapter 1, W hat is Reactive Program m ing?, R x is inspired by Functional
R eactive Program m ing but uses different term inology. In FR P, the tw o m ain abstractions
are behaviors and events. A lthough the im plem entation details are different, observable
sequences represent events. R x also provides a behavior-like abstraction through another
data type called BehaviorSubject.

In this chapter, w e w ill:

Explore R x‒s m ain abstraction: observables
Learn about the duality betw een iterators and observables
C reate and m anipulate observable sequences

T he O bserver pattern revisited
In C hapter 1, W hat is Reactive Program m ing?, w e saw a brief overview of the O bserver
design pattern and a sim ple im plem entation of it in C lojure using w atches. H ere‒s how w e
did it:

(def numbers (atom []))

(defn adder [key ref old-state new-state]

 (print "Current sum is " (reduce + new-state)))

(add-watch numbers :adder adder)

In the preceding exam ple, our observable subject is the var, numbers. The observer is the
adder w atch. W hen the observable changes, it pushes its changes to the observer
synchronously.

N ow , contrast this to w orking w ith sequences:

(->> [1 2 3 4 5 6]

 (map inc)

 (filter even?)

 (reduce +))

This tim e around, the vector is the subject being observed and the functions processing it
can be thought of as the observers. H ow ever, this w orks in a pull-based m odel. The vector
doesn‒t push any elem ents dow n the sequence. Instead, map and friends ask the sequence
for m ore elem ents. This is a synchronous operation.

R x m akes sequences and m ore behave like observables so that you can still m ap, filter,
and com pose them just as you w ould com pose functions over norm al sequences.

O bserver an Iterator‒s dual
C lojure‒s sequence operators such as m ap, filter, reduce, and so on support Java Iterables.
A s the nam e im plies, an Iterable is an object that can be iterated over. A t a low level, this
is supported by retrieving an Iterator reference from such object. Java‒s Iterator interface
looks like the follow ing:

public interface Iterator<E> {

 boolean hasNext();

 E next();

 void remove();

}

W hen passed in an object that im plem ents this interface, C lojure‒s sequence operators pull
data from it by using the next m ethod, w hile using the hasNext m ethod to know w hen to
stop.

Tip
The remove m ethod is required to rem ove its last elem ent from the underlying collection.
This in-place m utation is clearly unsafe in a m ultithreaded environm ent. W henever
C lojure im plem ents this interface for the purposes of interoperability, the remove m ethod
sim ply throw s UnsupportedOperationException.

A n observable, on the other hand, has observers subscribed to it. O bservers have the
follow ing interface:

public interface Observer<T> {

 void onCompleted();

 void onError(Throwable e);

 void onNext(T t);

}

A s w e can see, an O bserver im plem enting this interface w ill have its onNext m ethod
called w ith the next value available from w hatever observable it‒s subscribed to. H ence, it
being a push-based notification m odel.

This duality [4] becom es clearer if w e look at both the interfaces side by side:

Iterator<E> { Observer<T> {

 boolean hasNext(); void onCompleted();

 E next(); void onError(Throwable e);

 void remove(); void onNext(T t);

} }

O bservables provide the ability to have producers push item s asynchronously to
consum ers. A few exam ples w ill help solidify our understanding.

C reating O bservables
This chapter is all about R eactive Extensions, so let‒s go ahead and create a project called
rx-playground that w e w ill be using in our exploratory tour. W e w ill use R xC lojure (see
https://github.com /R eactiveX /R xC lojure), a library that provides C lojure bindings for
RxJava() (see https://github.com /R eactiveX /R xJava):

$ lein new rx-playground

O pen the project file and add a dependency on R xJava‒s C lojure bindings:

(defproject rx-playground "0.1.0-SNAPSHOT"

 :description "FIXME: write description"

 :url "http://example.com/FIXME"

 :license {:name "Eclipse Public License"

 :url "http://www.eclipse.org/legal/epl-v10.html"}

 :dependencies [[org.clojure/clojure "1.5.1"]

 [io.reactivex/rxclojure "1.0.0"]])"]])

N ow , fire up a R EPL in the project‒s root directory so that w e can start creating som e
observables:

$ lein repl

The first thing w e need to do is im port R xC lojure, so let‒s get this out of the w ay by typing
the follow ing in the R EPL:

(require '[rx.lang.clojure.core :as rx])

(import '(rx Observable))

The sim plest w ay to create a new observable is by calling the justreturn function:

(def obs (rx/return 10))

N ow , w e can subscribe to it:

(rx/subscribe obs

 (fn [value]

 (prn (str "Got value: " value))))

This w ill print the string "Got value: 10" to the R EPL.

The subscribe function of an observable allow s us to register handlers for three m ain
things that happen throughout its life cycle: new values, errors, or a notification that the
observable is done em itting values. This corresponds to the onNext, onError, and
onCompleted m ethods of the O bserver interface, respectively.

In the preceding exam ple, w e are sim ply subscribing to onNext, w hich is w hy w e get
notified about the observable‒s only value, 10.

A single-value O bservable isn‒t terribly interesting though. Let‒s create and interact w ith
one that em its m ultiple values:

(-> (rx/seq->o [1 2 3 4 5 6 7 8 9 10])

 (rx/subscribe prn))

This w ill print the num bers from 1 to 10, inclusive, to the R EPL. seq->o is a w ay to create
observables from C lojure sequences. It just so happens that the preceding snippet can be
rew ritten using R x‒s ow n range operator:

(-> (rx/range 1 10)

 (rx/subscribe prn))

O f course, this doesn‒t yet present any advantages to w orking w ith raw values or
sequences in C lojure.

B ut w hat if w e need an observable that em its an undefined num ber of integers at a given
interval? This becom es challenging to represent as a sequence in C lojure, but R x m akes it
trivial:

(import '(java.util.concurrent TimeUnit))

(rx/subscribe (Observable/interval 100 TimeUnit/MILLISECONDS)

 prn-to-repl)

Tip
R xC lojure doesn‒t yet provide bindings to all of R xJava‒s A PI. The interval m ethod is
one such exam ple. W e‒re required to use interoperability and call the m ethod directly on
the Observable class from R xJava.

O bservable/interval takes as argum ents a num ber and a tim e unit. In this case, w e are
telling it to em it an integer starting from zero every 100 m illiseconds. If w e type this in
an R EPL-connected editor, how ever, tw o things w ill happen:

W e w ill not see any output (depending on your R EPL; this is true for Em acs)
W e w ill have a rogue thread em itting num bers indefinitely

B oth issues arise from the fact that Observable/interval is the first factory m ethod w e
have used that doesn‒t em it values synchronously. Instead, it returns an O bservable that
defers the w ork to a separate thread.

The first issue is sim ple enough to fix. Functions such as prn w ill print to w hatever the
dynam ic var *out* is bound to. W hen w orking in certain R EPL environm ents such as
Em acs‒, this is bound to the R EPL stream , w hich is w hy w e can generally see everything
w e print.

H ow ever, since R x is deferring the w ork to a separate thread, *out* isn‒t bound to the
R EPL stream anym ore so w e don‒t see the output. In order to fix this, w e need to capture
the current value of *out* and bind it in our subscription. This w ill be incredibly useful as
w e experim ent w ith R x in the R EPL. A s such, let‒s create a helper function for it:

(def repl-out *out*)

(defn prn-to-repl [& args]

 (binding [*out* repl-out]

 (apply prn args)))

The first thing w e do is create a var repl-out that contains the current R EPL stream .
N ext, w e create a function prn-to-repl that w orks just like prn, except it uses the
binding m acro to create a new binding for *out* that is valid w ithin that scope.

This still leaves us w ith the rogue thread problem . N ow is the appropriate tim e to m ention
that the subscribe m ethod from an O bservable returns a subscription object. B y holding
onto a reference to it, w e can call its unsubscribe m ethod to indicate that w e are no
longer interested in the values produced by that observable.

Putting it all together, our interval exam ple can be rew ritten like the follow ing:

 (def subscription (rx/subscribe (Observable/interval 100

TimeUnit/MILLISECONDS)

 prn-to-repl))

(Thread/sleep 1000)

(rx/unsubscribe subscription)

W e create a new interval observable and im m ediately subscribe to it, just as w e did before.
This tim e, how ever, w e assign the resulting subscription to a local var. N ote that it now
uses our helper function prn-to-repl, so w e w ill start seeing values being printed to the
R EPL straight aw ay.

N ext, w e sleep the current the R EPL thread for a second. This is enough tim e for the
O bservable to produce num bers from 0 to 9. That‒s roughly w hen the R EPL thread w akes
up and unsubscribes from that observable, causing it to stop em itting values.

C ustom O bservables
R x provides m any m ore factory m ethods to create O bservables (see
https://github.com /R eactiveX /R xJava/w iki/C reating-O bservables), but it is beyond the
scope of this book to cover them all.

N evertheless, som etim es, none of the built-in factories is w hat you w ant. For such cases,
R x provides the create m ethod. W e can use it to create a custom observable from scratch.

A s an exam ple, w e‒ll create our ow n version of the just observable w e used earlier in this
chapter:

(defn just-obs [v]

 (rx/observable*

 (fn [observer]

 (rx/on-next observer v)

 (rx/on-completed observer))))

(rx/subscribe (just-obs 20) prn)

First, w e create a function, just-obs, w hich im plem ents our observable by calling the
observable* function.

W hen creating an observable this w ay, the function passed to observable* w ill get called
w ith an observer as soon as one subscribes to us. W hen this happens, w e are free to do
w hatever com putation and even I/O w e need in order to produce values and push them
to the observer.

W e should rem em ber to call the observer‒s onCompleted m ethod w henever w e‒re done
producing values. The preceding snippet w ill print 20 to the R EPL.

Tip
W hile creating custom observables is fairly straightforw ard, w e should m ake sure w e
exhaust the built-in factory functions first, only then resorting to creating our ow n.

M anipulating O bservables
N ow that w e know how to create observables, w e should look at w hat kinds of interesting
things w e can do w ith them . In this section, w e w ill see w hat it m eans to treat O bservables
as sequences.

W e‒ll start w ith som ething sim ple. Let‒s print the sum of the first five positive even
integers from an observable of all integers:

(rx/subscribe (->> (Observable/interval 1 TimeUnit/MICROSECONDS)

 (rx/filter even?)

 (rx/take 5)

 (rx/reduce +))

 prn-to-repl)

This is starting to look aw fully fam iliar to us. W e create an interval that w ill em it all
positive integers starting at zero every 1 m icrosecond. Then, w e filter all even num bers in
this observable. O bviously, this is too big a list to handle, so w e sim ply take the first five
elem ents from it. Finally, w e reduce the value using +. The result is 20.

To drive hom e the point that program m ing w ith observables really is just like operating on
sequences, w e w ill look at one m ore exam ple w here w e w ill com bine tw o different
O bservable sequences. O ne contains the nam es of m usicians I‒m a fan of and the other the
nam es of their respective bands:

(defn musicians []

 (rx/seq->o ["James Hetfield" "Dave Mustaine" "Kerry King"]))

(defn bands []

 (rx/seq->o ["Metallica" "Megadeth" "Slayer"]))

W e w ould like to print to the R EPL a string of the form at Musician name ῾ from: band
name. A n added requirem ent is that the band nam es should be printed in uppercase for
im pact.

W e‒ll start by creating another observable that contains the uppercased band nam es:

(defn uppercased-obs []

 (rx/map (fn [s] (.toUpperCase s)) (bands)))

W hile not strictly necessary, this m akes a reusable piece of code that can be handy in
several places of the program , thus avoiding duplication. Subscribers interested in the
original band nam es can keep subscribing to the bands observable.

W ith the tw o observables in hand, w e can proceed to com bine them :

(-> (rx/map vector

 (musicians)

 (uppercased-obs))

 (rx/subscribe (fn [[musician band]]

 (prn-to-repl (str musician " - from: " band)))))

O nce m ore, this exam ple should feel fam iliar. The solution w e w ere after w as a w ay to zip

the tw o observables together. R xC lojure provides zip behavior through m ap, m uch like
C lojure‒s core map function does. W e call it w ith three argum ents: the tw o observables to
zip and a function that w ill be called w ith both elem ents, one from each observable, and
should return an appropriate representation. In this case, w e sim ply turn them into a
vector.

N ext, in our subscriber, w e sim ply destructure the vector in order to access the m usician
and band nam es. W e can finally print the final result to the R EPL:

"James Hetfield - from: METALLICA"

"Dave Mustaine - from: MEGADETH"

"Kerry King - from: SLAYER"

Flatm ap and friends
In the previous section, w e learned how to transform and com bine observables w ith
operations such as m ap, reduce, and zip. H ow ever, the tw o observables above m usicians
and bands w ere perfectly capable of producing values on their ow n. They did not need
any extra input.

In this section, w e exam ine a different scenario: w e‒ll learn how w e can com bine
observables, w here the output of one is the input of another. W e encountered flatmap
before in C hapter 1, W hat is Reactive Program m ing? If you have been w ondering w hat its
role is, this section addresses exactly that.

H ere‒s w hat w e are going to do: given an observable representing a list of all positive
integers, w e‒ll calculate the factorial for all even num bers in that list. Since the list is too
big, w e‒ll take five item s from it. The end result should be the factorials of 0, 2, 4, 6, and
8, respectively.

The first thing w e need is a function to calculate the factorial of a num ber n, as w ell as our
observable:

(defn factorial [n]

 (reduce * (range 1 (inc n))))

(defn all-positive-integers []

 (Observable/interval 1 TimeUnit/MICROSECONDS))

U sing som e type of visual aid w ill be helpful in this section, so w e‒ll start w ith a m arble
diagram representing the previous observable:

The m iddle arrow represents tim e and it flow s from left to right. This diagram represents
an infinite O bservable sequence, as indicated by the use of ellipsis at the end of it.

Since w e‒re com bining all the observables now , w e‒ll create one that, given a num ber,
em its its factorial using the helper function defined earlier. W e‒ll use R x‒s create m ethod
for this purpose:

(defn fact-obs [n]

 (rx/observable*

 (fn [observer]

 (rx/on-next observer (factorial n))

 (rx/on-completed observer))))

This is very sim ilar to the just-obs observable w e created earlier in this chapter, except
that it calculates the factorial of its argum ent and em its the result/factorial instead, ending
the sequence im m ediately thereafter. The follow ing diagram illustrates how it w orks:

W e feed the num ber 5 to the observable, w hich in turn em its its factorial, 120. The vertical
bar at the end of the tim e line indicates the sequence term inates then.

R unning the code confirm s that our function is correct:

(rx/subscribe (fact-obs 5) prn-to-repl)

;; 120

So far so good. N ow , w e need to com bine both observables in order to achieve our goal.
This is w here flatmap of R x com es in. W e‒ll first see it in action and then get into the
explanation:

(rx/subscribe (->> (all-positive-integers)

 (rx/filter even?)

 (rx/flatmap fact-obs)

 (rx/take 5))

 prn-to-repl)

If w e run the preceding code, it w ill print the factorials for 0, 2, 4, 6, and 8, just like w e
w anted:

1

2

24

720

40320

M ost of the preceding code snippet should look fam iliar. The first thing w e do is filter all
even num bers from all-positive-numbers. This leaves us w ith the follow ing observable
sequence:

M uch like all-positive-integers, this, too, is an infinite observable.

H ow ever, the next line of our code looks a little odd. W e call flatmap and give it the
fact-obs function. A function w e know itself returns another observable. flatmap w ill
call fact-obs w ith each value it em its. fact-obs w ill, in turn, return a single-value
observable for each num ber. H ow ever, our subscriber doesn‒t know how to deal w ith
observables! It‒s sim ply interested in the factorials!

This is w hy, after calling fact-obs to obtain an observable, flatmap flattens all of them
into a single observable w e can subscribe to. This is quite a m outhful, so let‒s visualize
w hat this m eans:

A s you can see in the preceding diagram , throughout the execution of flatmap, w e end up
w ith a list of observables. H ow ever, w e don‒t care about each observable but rather about
the values they em it. Flatmap, then, is the perfect tool as it com bines flattens all of
them into the observable sequence show n at the bottom of the figure.

You can think of flatmap as m apcat for observable sequences.

The rest of the code is straightforw ard. W e sim ply take the first five elem ents from this
observable and subscribe to it, as w e have been doing so far.

O ne m ore flatm ap for the road
You m ight be w ondering w hat w ould happen if the observable sequence w e‒re
flatm apping em itted m ore than one value. W hat then?

W e‒ll see one last exam ple before w e begin the next section in order to illustrate the
behavior of flatMap in such cases.

H ere‒s an observable that em its its argum ent tw ice:

(defn repeat-obs [n]

 (rx/seq->o (repeat 2 n)))

U sing it is straightforw ard:

(-> (repeat-obs 5)

 (rx/subscribe prn-to-repl))

;; 5

;; 5

A s previously, w e‒ll now com bine this observable w ith the one w e created earlier, all-
positive-integers. B efore reading on, think about w hat you expect the output to be for,
say, the first three positive integers.

The code is as follow s:

(rx/subscribe (->> (all-positive-integers)

 (rx/flatmap repeat-obs)

 (rx/take 6))

 prn-to-repl)

A nd the output is as follow s:

0

0

1

1

2

2

The result m ight be unexpected for som e readers. Let‒s have a look at the m arble diagram
for this exam ple and m ake sure w e understand how it w orks:

Each tim e repeat-obs gets called, it em its tw o values and term inates. flatmap then
com bines them all in a single observable, m aking the previous output clearer.

O ne last thing w orth m entioning about flatmap and the title of this section is that its
―friends‖ refer to the several nam es by w hich flatmap is know n.

For instance, R x.N ET calls it selectMany. R xJava and Scala call it flatMap though
R xJava has an alias for it called mapMany. The H askell com m unity calls it bind. Though
they have different nam es, these functions sem antics are the sam e and are part of a higher-
order abstraction called a M onad. W e don‒t need to know anything about M onads to
proceed.

The im portant thing to keep in m ind is that w hen you‒re sitting at the bar talking to your
friends about C om positional E vent System s, all these nam es m ean the sam e thing.

E rror handling
A very im portant aspect of building reliable applications is know ing w hat to do w hen
things go w rong. It is naive to assum e that the netw ork is reliable, that hardw are w on‒t
fail, or that w e, as developers, w on‒t m ake m istakes.

R xJava em braces this fact and provides a rich set of com binators to deal w ith failure, a
few of w hich w e exam ine here.

O nE rror
Let‒s get started by creating a badly behaved observable that alw ays throw s an exception:

(defn exceptional-obs []

 (rx/observable*

 (fn [observer]

 (rx/on-next observer (throw (Exception. "Oops. Something went

wrong")))

 (rx/on-completed observer))))

N ow let‒s w atch w hat happens if w e subscribe to it:

(rx/subscribe (->> (exceptional-obs)

 (rx/map inc))

 (fn [v] (prn-to-repl "result is " v)))

;; Exception Oops. Something went wrong rx-playground.core/exceptional-

obs/fn--1505

The exception throw n by exceptional-obs isn‒t caught anyw here so it sim ply bubbles up
to the R EPL. If this w as a w eb application our users w ould be presented w ith a w eb server
error such as the H T T P code 500 Internal Server E rror. Those users w ould probably
not use our system again.

Ideally, w e w ould like to get a chance to handle this exception gracefully, possibly
rendering a friendly error m essage that w ill let ours users know w e care about them .

A s w e have seen earlier in the chapter, the subscribe function can take up to 3 functions
as argum ents:

The first, or the onNext handler, is called w hen the observable em its a new value
The second, or onError, is called w henever the observable throw s an exception
The third and last function, or onComplete, is called w hen the observable has
com pleted and w ill not em it any new item s

For our purposes w e are interested in the onError handler, and using it is straightforw ard:

(rx/subscribe (->> (exceptional-obs)

 (rx/map inc))

 (fn [v] (prn-to-repl "result is " v))

 (fn [e] (prn-to-repl "error is " e)))

;; "error is " #<Exception java.lang.Exception: Oops. Something went wrong>

This tim e, instead of throw ing the exception, our error handler gets called w ith it. This
gives us the opportunity to display an appropriate m essage to our users.

C atch
The use of onError gives us a m uch better experience overall but it isn‒t very flexible.

Let‒s im agine a different scenario w here w e have an observable retrieving data from the
netw ork. W hat if, w hen this observer fails, w e w ould like to present the user w ith a cached
value instead of an error m essage?

This is w here the catch com binator com es in. It allow s us to specify a function to be
invoked w hen the observable throw s an exception, m uch like OnError does.

D ifferently from OnError, how ever, catch has to return a new O bservable that w ill be the
new source of item s from the m om ent the exception w as throw n:

(rx/subscribe (->> (exceptional-obs)

 (rx/catch Exception e

 (rx/return 10))

 (rx/map inc))

 (fn [v] (prn-to-repl "result is " v)))

;; "result is " 11

In the previous exam ple, w e are essentially specifying that, w henever exceptional-obs
throw s, w e should return the value 10. W e are not lim ited to single values, how ever. In
fact, w e can use any O bservable w e like as the new source:

(rx/subscribe (->> (exceptional-obs)

 (rx/catch Exception e

 (rx/seq->o (range 5)))

 (rx/map inc))

 (fn [v] (prn-to-repl "result is " v)))

;; "result is " 1

;; "result is " 2

;; "result is " 3

;; "result is " 4

;; "result is " 5

R etry
The last error handling com binator w e‒ll exam ine is retry. This com binator is useful
w hen w e know an error or exception is only transient so w e should probably give it
another shot by resubscribing to the O bservable.

First, w e‒ll create an observable that fails w hen it is subscribed to for the first tim e.
H ow ever, the next tim e it is subscribed to, it succeeds and em its a new item :

(defn retry-obs []

 (let [errored (atom false)]

 (rx/observable*

 (fn [observer]

 (if @errored

 (rx/on-next observer 20)

 (do (reset! errored true)

 (throw (Exception. "Oops. Something went wrong"))))))))

Let‒s see w hat happens if w e sim ply subscribe to it:

(rx/subscribe (retry-obs)

 (fn [v] (prn-to-repl "result is " v)))

;; Exception Oops. Something went wrong rx-playground.core/retry-obs/fn-

-1476

A s expected, the exception sim ply bubbles up as in our first exam ple. H ow ever w e know
 for the purposes of this exam ple that this is a transient failure. Let‒s see w hat changes
if w e use retry:

(rx/subscribe (->> (retry-obs)

 (.retry))

 (fn [v] (prn-to-repl "result is " v)))

;; "result is " 20

N ow , our code is responsible for retrying the O bservable and as expected w e get the
correct output.

It‒s im portant to note that retry w ill attem pt to resubscribe indefinitely until it succeeds.
This m ight not be w hat you w ant so R x provides a variation, called retryWith, w hich
allow s us to specify a predicate function that controls w hen and if retrying should stop.

A ll these operators give us the tools w e need to build reliable reactive applications and w e
should alw ays keep them in m ind as they are, w ithout a doubt, a great addition to our
toolbox. The R xJava w iki on the subject should be referred to for m ore inform ation:
https://github.com /R eactiveX /R xJava/w iki/Error-H andling-O perators.

B ackpressure
A nother issue w e m ight be faced w ith is the one of observables that produce item s faster
than w e can consum e. The problem that arises in this scenario is w hat to do w ith this ever-
grow ing backlog of item s.

A s an exam ple, think about zipping tw o observables together. The zip operator (or map in
R xC lojure) w ill only em it a new value w hen all observables have em itted an item .

So if one of these observables is a lot faster at producing item s than the others, map w ill
need to buffer these item s and w ait for the others, w hich w ill m ost likely cause an error, as
show n here:

(defn fast-producing-obs []

 (rx/map inc (Observable/interval 1 TimeUnit/MILLISECONDS)))

(defn slow-producing-obs []

 (rx/map inc (Observable/interval 500 TimeUnit/MILLISECONDS)))

(rx/subscribe (->> (rx/map vector

 (fast-producing-obs)

 (slow-producing-obs))

 (rx/map (fn [[x y]]

 (+ x y)))

 (rx/take 10))

 prn-to-repl

 (fn [e] (prn-to-repl "error is " e)))

;; "error is " #<MissingBackpressureException

rx.exceptions.MissingBackpressureException>

A s seen in the preceding code, w e have a fast producing observable that em its item s 500
tim es faster than the slow er O bservable. C learly, w e can‒t keep up w ith it and surely
enough, R x throw s MissingBackpressureException.

W hat this exception is telling us is that the fast producing observable doesn‒t support any
type of backpressure w hat R x calls Reactive pull backpressure that is, consum ers can‒t
tell it to go slow er. Thankfully R x provides us w ith com binators that are helpful in these
scenarios.

Sam ple
O ne such com binator is sample, w hich allow s us to sam ple an observable at a given
interval, thus throttling the source observable‒s output. Let‒s apply it to our previous
exam ple:

(rx/subscribe (->> (rx/map vector

 (.sample (fast-producing-obs) 200

 TimeUnit/MILLISECONDS)

 (slow-producing-obs))

 (rx/map (fn [[x y]]

 (+ x y)))

 (rx/take 10))

 prn-to-repl

 (fn [e] (prn-to-repl "error is " e)))

;; 204

;; 404

;; 604

;; 807

;; 1010

;; 1206

;; 1407

;; 1613

;; 1813

;; 2012

The only change is that w e call sample on our fast producing O bservable before calling
map. W e w ill sam ple it every 200 m illiseconds.

B y ignoring all other item s em itted in this tim e slice, w e have m itigated our initial
problem , even though the original O bservable doesn‒t support any form of backpressure.

The sam ple com binator is only one of the com binators useful in such cases. O thers include
throttleFirst, debounce, buffer, and window. O ne draw back of this approach, how ever,
is that a lot of the item s generated end up being ignored.

D epending on the type of application w e are building, this m ight be an acceptable
com prom ise. B ut w hat if w e are interested in all item s?

B ackpressure strategies
If an O bservable doesn‒t support backpressure but w e are still interested in all item s it
em its, w e can use one of the built-in backpressure com binators provided by R x.

A s an exam ple w e w ill look at one such com binator, onBackpressureBuffer:

(rx/subscribe (->> (rx/map vector

 (.onBackpressureBuffer (fast-producing-obs))

 (slow-producing-obs))

 (rx/map (fn [[x y]]

 (+ x y)))

 (rx/take 10))

 prn-to-repl

 (fn [e] (prn-to-repl "error is " e)))

;; 2

;; 4

;; 6

;; 8

;; 10

;; 12

;; 14

;; 16

;; 18

;; 20

The exam ple is very sim ilar to the one w here w e used sample, but the output is fairly
different. This tim e w e get all item s em itted by both observables.

The onBackpressureBuffer strategy im plem ents a strategy that sim ply buffers all item s
em itted by the slow er O bservable, em itting them w henever the consum er is ready. In our
case, that happens every 500 m illiseconds.

O ther strategies include onBackpressureDrop and onBackpressureBlock.

It‒s w orth noting that R eactive pull backpressure is still w ork in progress and the best w ay
to keep up to date w ith progress is on the R xJava w iki on the subject:
https://github.com /R eactiveX /R xJava/w iki/B ackpressure.

Sum m ary
In this chapter, w e took a deep dive into R xJava, a port form M icrosoft‒s R eactive
Extensions from .N ET. W e learned about its m ain abstraction, the observable, and how it
relates to iterables.

W e also learned how to create, m anipulate, and com bine observables in several w ays. The
exam ples show n here w ere contrived to keep things sim ple. N evertheless, all concepts
presented are extrem ely useful in real applications and w ill com e in handy for our next
chapter, w here w e put them to use in a m ore substantial exam ple.

Finally, w e finished by looking at error handling and backpressure, both of w hich are
im portant characteristics of reliable applications that should alw ays be kept in m ind.

C hapter 3. A synchronous Program m ing
and N etw orking
Several business applications need to react to external stim uli such as netw ork traffic
asynchronously. A n exam ple of such softw are m ight be a desktop application that allow s
us to track a com pany‒s share prices in the stock m arket.

W e w ill build this application first using a m ore traditional approach. In doing so, w e w ill:

B e able to identify and understand the draw backs of the first design
Learn how to use R xC lojure to deal w ith stateful com putations such as rolling
averages
R ew rite the exam ple in a declarative fashion using observable sequences, thus
reducing the com plexity found in our first approach

B uilding a stock m arket m onitoring
application
O ur stock m arket program w ill consist of three m ain com ponents:

A function sim ulating an external service from w hich w e can query the current price
 this w ould likely be a netw ork call in a real setting
A scheduler that polls the preceding function at a predefined interval
A display function responsible for updating the screen

W e‒ll start by creating a new leiningen project, w here the source code for our application
w ill live. Type the follow ing on the com m and line and then sw itch into the new ly created
directory:

lein new stock-market-monitor

cd stock-market-monitor

A s w e‒ll be building a G U I for this application, go ahead and add a dependency on
Seesaw to the dependencies section of your project.clj:

[seesaw "1.4.4"]

N ext, create a src/stock_market_monitor/core.clj file in your favorite editor. Let‒s
create and configure our application‒s U I com ponents:

(ns stock-market-monitor.core

 (:require [seesaw.core :refer :all])

 (:import (java.util.concurrent ScheduledThreadPoolExecutor

 TimeUnit)))

(native!)

(def main-frame (frame :title "Stock price monitor"

 :width 200 :height 100

 :on-close :exit))

(def price-label (label "Price: -"))

(config! main-frame :content price-label)

A s you can see, the U I is fairly sim ple. It consists of a single label that w ill display a
com pany‒s share price. W e also im ported tw o Java classes,
ScheduledThreadPoolExecutor and TimeUnit, w hich w e w ill use shortly.

The next thing w e need is our polling m achinery so that w e can invoke the pricing service
on a given schedule. W e‒ll im plem ent this via a thread pool so as not to block the m ain
thread:

Tip
U ser interface SD K s such as sw ing have the concept of a m ain or U I thread. This is
the thread used by the SD K to render the U I com ponents to the screen. A s such, if w e

have blocking or even sim ply slow running operations execute in this thread, the user
experience w ill be severely affected, hence the use of a thread pool to offload expensive
function calls.

(def pool (atom nil))

(defn init-scheduler [num-threads]

 (reset! pool (ScheduledThreadPoolExecutor. num-threads)))

(defn run-every [pool millis f]

 (.scheduleWithFixedDelay pool

 f

 0 millis TimeUnit/MILLISECONDS))

(defn shutdown [pool]

 (println "Shutting down scheduler")

 (.shutdown pool))

The init-scheduler function creates ScheduledThreadPoolExecutor w ith the given
num ber of threads. That‒s the thread pool in w hich our periodic function w ill run. The
run-every function schedules a function f in the given pool to run at the interval
specified by millis. Finally, shutdown is a function that w ill be called on program
term ination and shutdow n the thread pool gracefully.

The rest of the program puts all these parts together:

(defn share-price [company-code]

 (Thread/sleep 200)

 (rand-int 1000))

(defn -main [& args]

 (show! main-frame)

 (.addShutdownHook (Runtime/getRuntime)

 (Thread. #(shutdown @pool)))

 (init-scheduler 1)

 (run-every @pool 500

 #(->> (str "Price: " (share-price "XYZ"))

 (text! price-label)

 invoke-now)))

The share-price function sleeps for 200 m illiseconds to sim ulate netw ork latency and
returns a random integer betw een 0 and 1,000 representing the stock‒s price.

The first line of our -main function adds a shutdow n hook to the runtim e. This allow s our
program to intercept term ination such as pressing C trl + C in a term inal w indow and
gives us the opportunity to shutdow n the thread pool.

Tip
The ScheduledThreadPoolExecutor pool creates non-daem on threads by default. A
program cannot term inate if there are any non-daem on threads alive in addition to the
program ‒s m ain thread. This is w hy the shutdow n hook is necessary.

N ext, w e initialize the scheduler w ith a single thread and schedule a function to be

executed every 500 m illiseconds. This function asks the share-price function for X Y Z‒s
current price and updates the label.

Tip
D esktop applications require all rendering to be done in the U I thread. H ow ever, our
periodic function runs on a separate thread and needs to update the price label. This is w hy
w e use invoke-now, w hich is a Seesaw function that schedules its body to be executed in
the U I thread as soon as possible.

Let‒s run the program by typing the follow ing com m and in the project‒s root directory:

lein trampoline run -m stock-market-monitor.core

Tip
Tram polining tells leiningen not to nest our program ‒s JV M w ithin its ow n, thus freeing us
to handle uses of C trl + C ourselves through shutdow n hooks.

A w indow like the one show n in the follow ing screenshot w ill be displayed, w ith the
values on it being updated as per the schedule im plem ented earlier:

This is a fine solution. The code is relatively straightforw ard and satisfies our original
requirem ents. H ow ever, if w e look at the big picture, there is a fair bit of noise in our
program . M ost of its lines of code are dealing w ith creating and m anaging a thread pool,
w hich, w hile necessary, isn‒t central to the problem w e‒re solving it‒s an im plem entation
detail.

W e‒ll keep things as they are for the m om ent and add a new requirem ent: rolling averages.

R olling averages
N ow that w e can see the up-to-date stock price for a given com pany, it m akes sense to
display a rolling average of the past, say, five stock prices. In a real scenario, this w ould
provide an objective view of a com pany‒s share trend in the stock m arket.

Let‒s extend our program to accom m odate this new requirem ent.

First, w e‒ll need to m odify our nam espace definition:

(ns stock-market-monitor.core

 (:require [seesaw.core :refer :all])

 (:import (java.util.concurrent ScheduledThreadPoolExecutor

 TimeUnit)

 (clojure.lang PersistentQueue)))

The only change is a new im port clause, for C lojure‒s PersistentQueue class. W e w ill be
using that later.

W e‒ll also need a new label to display the current running average:

(def running-avg-label (label "Running average: -"))

(config! main-frame :content

 (border-panel

 :north price-label

 :center running-avg-label

 :border 5))

N ext, w e need a function to calculate rolling averages. A rolling or m oving average is
a calculation in statistics, w here you take the average of a subset of item s in a dataset. This
subset has a fixed size and it shifts forw ard as data com es in. This w ill becom e clear w ith
an exam ple.

Suppose you have a list w ith num bers from 1 to 10, inclusive. If w e use 3 as the subset
size, the rolling averages are as follow s:

[1 2 3 4 5 6 7 8 9 10] => 2.0

[1 2 3 4 5 6 7 8 9 10] => 3.0

[1 2 3 4 5 6 7 8 9 10] => 4.0

The highlighted parts in the preceding code show the current w indow being used to
calculate the subset average.

N ow that w e know w hat rolling averages are, w e can m ove on to im plem ent it in our
program :

(defn roll-buffer [buffer num buffer-size]

 (let [buffer (conj buffer num)]

 (if (> (count buffer) buffer-size)

 (pop buffer)

 buffer)))

(defn avg [numbers]

 (float (/ (reduce + numbers)

 (count numbers))))

(defn make-running-avg [buffer-size]

 (let [buffer (atom clojure.lang.PersistentQueue/EMPTY)]

 (fn [n]

 (swap! buffer roll-buffer n buffer-size)

 (avg @buffer))))

(def running-avg (running-avg 5))

The roll-buffer function is a utility function that takes a queue, a num ber, and a buffer
size as argum ents. It adds that num ber to the queue, popping the oldest elem ent if the
queue goes over the buffer lim it, thus causing its contents to roll over.

N ext, w e have a function for calculating the average of a collection of num bers. W e cast
the result to float if there‒s an uneven division.

Finally, the higher-order make-running-avg function returns a stateful, single argum ent
function that closes over an em pty persistent queue. This queue is used to keep track of the
current subset of data.

W e then create an instance of this function by calling it w ith a buffer size of 5 and save it
to the running-avg var. Each tim e w e call this new function w ith a num ber, it w ill add it
to the queue using the roll-buffer function and then finally return the average of the
item s in the queue.

The code w e have w ritten to m anage the thread pool w ill be reused as is so all that is left
to do is update our periodic function:

(defn worker []

 (let [price (share-price "XYZ")]

 (->> (str "Price: " price) (text! price-label))

 (->> (str "Running average: " (running-avg price))

 (text! running-avg-label))))

(defn -main [& args]

 (show! main-frame)

 (.addShutdownHook (Runtime/getRuntime)

 (Thread. #(shutdown @pool)))

 (init-scheduler 1)

 (run-every @pool 500

 #(invoke-now (worker))))

Since our function isn‒t a one-liner anym ore, w e abstract it aw ay in its ow n function called
worker. A s before, it updates the price label, but w e have also extended it to use the
running-avg function created earlier.

W e‒re ready to run the program once m ore:

lein trampoline run -m stock-market-monitor.core

You should see a w indow like the one show n in the follow ing screenshot:

You should see that in addition to displaying the current share price for X Y Z, the program
also keeps track and refreshes the running average of the stream of prices.

Identifying problem s w ith our current
approach
A side from the lines of code responsible for building the user interface, our program is
roughly 48 lines long.

The core of the program resides in the share-price and avg functions, w hich are
responsible for querying the price service and calculating the average of a list of n
num bers, respectively. They represent only six lines of code. There is a lot of incidental
com plexity in this sm all program .

Incidental com plexity is com plexity caused by code that is not essential to the problem at
hand. In this exam ple, w e have tw o sources of such com plexity w e are disregarding U I
specific code for this discussion: the thread pool and the rolling buffer function. They add
a great deal of cognitive load to som eone reading and m aintaining the code.

The thread pool is external to our problem . It is only concerned w ith the sem antics of how
to run tasks asynchronously. The rolling buffer function specifies a detailed
im plem entation of a queue and how to use it to represent the concept.

Ideally, w e should be able to abstract over these details and focus on the core of our
problem ; C om positional E vent System s (C E S) allow s us to do just that.

R em oving incidental com plexity w ith
R xC lojure
In C hapter 2, A Look at Reactive Extensions, w e learned about the basic building blocks of
R xC lojure, an open-source C ES fram ew ork. In this section, w e‒ll use this know ledge in
order to rem ove the incidental com plexity from our program . This w ill give us a clear,
declarative w ay to display both prices and rolling averages.

The U I code w e‒ve w ritten so far rem ains unchanged, but w e need to m ake sure
R xC lojure is declared in the dependencies section of our project.clj file:

[io.reactivex/rxclojure "1.0.0"]

Then, ensure w e require the follow ing library:

(ns stock-market-monitor.core

 (:require [rx.lang.clojure.core :as rx]

 [seesaw.core :refer :all])

 (:import (java.util.concurrent TimeUnit)

 (rx Observable)))

The w ay w e approach the problem this tim e is also different. Let‒s take a look at the first
requirem ent: it requires w e display the current price of a com pany‒s share in the stock
m arket.

Every tim e w e query the price service, w e get a possibly different price for the
com pany in question. A s w e saw in C hapter 2, A Look at Reactive Extensions, m odeling
this as an observable sequence is easy, so w e‒ll start w ith that. W e‒ll create a function that
gives us back a stock price observable for the given com pany:

(defn make-price-obs [company-code]

 (rx/return (share-price company-code)))

This is an observable that yields a single value and term inates. It‒s equivalent to the
follow ing m arble diagram :

Part of the first requirem ent is that w e query the service on a predefined tim e interval
every 500 m illiseconds in this case. This hints at an observable w e have encountered
before, aptly nam ed interval. In order to get the polling behavior w e w ant, w e need to

com bine the interval and the price observables.

A s you probably recall, flatmap is the tool for the job here:

(rx/flatmap (fn [_] (make-price-obs "XYZ"))

 (Observable/interval 500

 TimeUnit/MILLISECONDS))

The preceding snippet creates an observable that w ill yield the latest stock price for X Y Z
every 500 m illiseconds indefinitely. It corresponds to the follow ing diagram :

In fact, w e can sim ply subscribe to this new observable and test it out. M odify your m ain
function to the follow ing snippet and run the program :

(defn -main [& args]

 (show! main-frame)

 (let [price-obs (rx/flatmap (fn [_] (make-price-obs "XYZ"))

 (Observable/interval 500

TimeUnit/MILLISECONDS))]

 (rx/subscribe price-obs

 (fn [price]

 (text! price-label (str "Price: " price))))))

This is very cool! W e replicated the behavior of our first program w ith only a few lines of
code. The best part is that w e did not have to w orry about thread pools or scheduling
actions. B y thinking about the problem in term s of observable sequences, as w ell as
com bining existing and new observables, w e w ere able to declaratively express w hat w e

w ant the program to do.

This already provides great benefits in m aintainability and readability. H ow ever, w e are
still m issing the other half of our program : rolling averages.

O bservable rolling averages
It m ight not be im m ediately obvious how w e can m odel rolling averages as observables.
W hat w e need to keep in m ind is that pretty m uch anything w e can think of as a sequence
of values, w e can probably m odel as an observable sequence.

R olling averages are no different. Let‒s forget for a m om ent that the prices are com ing
from a netw ork call w rapped in an observable. Let‒s im agine w e have all values w e care
about in a C lojure vector:

(def values (range 10))

W hat w e need is a w ay to process these values in partitions or buffers of size 5 in such
a w ay that only a single value is dropped at each interaction. In C lojure, w e can use the
partition function for this purpose:

(doseq [buffer (partition 5 1 values)]

 (prn buffer))

(0 1 2 3 4)

(1 2 3 4 5)

(2 3 4 5 6)

(3 4 5 6 7)

(4 5 6 7 8)

...

The second argum ent to the partition function is called a step and it is the offset of how
m any item s should be skipped before starting a new partition. H ere, w e set it to 1 in order
to create the sliding w indow effect w e need.

The big question then is: can w e som ehow leverage partition w hen w orking w ith
observable sequences?

It turns out that R xJava has a transform er called buffer just for this purpose. The previous
exam ple can be rew ritten as follow s:

(-> (rx/seq->o (vec (range 10)))

 (.buffer 5 1)

 (rx/subscribe

 (fn [price]

 (prn (str "Value: " price)))))

Tip
A s m entioned previously, not all R xJava‒s A PI is exposed through R xC lojure, so here w e
need to use interop to access the buffer m ethod from the observable sequence.

A s before, the second argum ent to buffer is the offset, but it‒s called skip in the R xJava
docum entation. If you run this at the R EPL you‒ll see the follow ing output:

"Value: [0, 1, 2, 3, 4]"

"Value: [1, 2, 3, 4, 5]"

"Value: [2, 3, 4, 5, 6]"

"Value: [3, 4, 5, 6, 7]"

"Value: [4, 5, 6, 7, 8]"

...

This is exactly w hat w e w ant. The only difference is that the buffer m ethod w aits until it
has enough elem ents five in this case before proceeding.

N ow , w e can go back to our program and incorporate this idea w ith our m ain function.
H ere is w hat it looks like:

(defn -main [& args]

 (show! main-frame)

 (let [price-obs (-> (rx/flatmap make-price-obs

 (Observable/interval 500

TimeUnit/MILLISECONDS))

 (.publish))

 sliding-buffer-obs (.buffer price-obs 5 1)]

 (rx/subscribe price-obs

 (fn [price]

 (text! price-label (str "Price: " price))))

 (rx/subscribe sliding-buffer-obs

 (fn [buffer]

 (text! running-avg-label (str "Running average: " (avg

buffer)))))

 (.connect price-obs)))

The preceding snippet w orks by creating tw o observables. The first one, price-obs, w e
had created before. The new sliding buffer observable is created using the buffer
transform er on price-obs.

W e can, then, independently subscribe to each one in order to update the price and rolling
average labels. R unning the program w ill display the sam e screen w e‒ve seen previously:

You m ight have noticed tw o m ethod calls w e hadn‒t seen before: publish and connect.

The publish m ethod returns a connectable observable. This m eans that the observable
w on‒t start em itting values until its connect m ethod has been called. W e do this here
because w e w ant to m ake sure that all the subscribers receive all the values em itted by the
original observable.

In conclusion, w ithout m uch additional code, w e im plem ented all requirem ents in a
concise, declarative m anner that is easy to m aintain and follow . W e have also m ade the
previous roll-buffer function com pletely unnecessary.

The full source code for the C ES version of the program is given here for reference:

(ns stock-market-monitor.05frp-price-monitor-rolling-avg

 (:require [rx.lang.clojure.core :as rx]

 [seesaw.core :refer :all])

 (:import (java.util.concurrent TimeUnit)

 (rx Observable)))

(native!)

(def main-frame (frame :title "Stock price monitor"

 :width 200 :height 100

 :on-close :exit))

(def price-label (label "Price: -"))

(def running-avg-label (label "Running average: -"))

(config! main-frame :content

 (border-panel

 :north price-label

 :center running-avg-label

 :border 5))

(defn share-price [company-code]

 (Thread/sleep 200)

 (rand-int 1000))

(defn avg [numbers]

 (float (/ (reduce + numbers)

 (count numbers))))

(defn make-price-obs [_]

 (rx/return (share-price "XYZ")))

(defn -main [& args]

 (show! main-frame)

 (let [price-obs (-> (rx/flatmap make-price-obs

 (Observable/interval 500

TimeUnit/MILLISECONDS))

 (.publish))

 sliding-buffer-obs (.buffer price-obs 5 1)]

 (rx/subscribe price-obs

 (fn [price]

 (text! price-label (str "Price: " price))))

 (rx/subscribe sliding-buffer-obs

 (fn [buffer]

 (text! running-avg-label (str "Running average: " (avg

buffer)))))

 (.connect price-obs)))

N ote how in this version of the program , w e didn‒t have to use a shutdow n hook. This is
because R xC lojure creates daem on threads, w hich are autom atically term inated once the
application exits.

Sum m ary
In this chapter, w e sim ulated a real-w orld application w ith our stock m arket program .
W e‒ve w ritten it in a som ew hat traditional w ay using thread pools and a custom queue
im plem entation. W e then refactored it to a C ES style using R xC lojure‒s observable
sequences.

The resulting program is shorter, sim pler, and easier to read once you get fam iliar w ith the
core concepts of R xC lojure and R xJava.

In the next C hapter w e w ill be introduced to core.async in preparation for im plem enting
our ow n basic C ES fram ew ork.

C hapter 4. Introduction to core.async
Long gone are the days w hen program s w ere required to do only one thing at a tim e.
B eing able to perform several tasks concurrently is at the core of the vast m ajority of
m odern business applications. This is w here asynchronous program m ing com es in.

A synchronous program m ing and, m ore generally, concurrency is about doing m ore
w ith your hardw are resources than you previously could. It m eans fetching data from the
netw ork or a database connection w ithout having to w ait for the result. O r, perhaps,
reading an Excel spreadsheet into m em ory w hile the user can still operate the graphical
interface. In general, it im proves a system ‒s responsiveness.

In this chapter, w e w ill look at how different platform s handle this style of program m ing.
M ore specifically, w e w ill:

B e introduced to core.async‒s background and A PI
Solidify our understanding of core.async by re-im plem enting the stock m arket
application in term s of its abstractions
U nderstand how core.async deals w ith error handling and backpressure
Take a brief tour on transducers

A synchronous program m ing and
concurrency
D ifferent platform s have different program m ing m odels. For instance, JavaScript
applications are single-threaded and have an event loop. W hen m aking a netw ork call, it is
com m on to register a callback that w ill be invoked at a later stage, w hen that netw ork call
com pletes either successfully or w ith an error.

In contrast, w hen w e‒re on the JV M , w e can take full advantage of m ultithreading to
achieve concurrency. It is sim ple to spaw n new threads via one of the m any concurrency
prim itives provided by C lojure, such as futures.

H ow ever, asynchronous program m ing becom es cum bersom e. C lojure futures don‒t
provide a native w ay for us to be notified of their com pletion at a later stage. In addition,
retrieving values from a not-yet-com pleted future is a blocking operation. This can be seen
clearly in the follow ing snippet:

(defn do-something-important []

 (let [f (future (do (prn "Calculating")

 (Thread/sleep 10000)))]

 (prn "Perhaps the future has done its job?")

 (prn @f)

 (prn "You will only see this in about 10 seconds")))

(do-something-important)

The second call to print dereferences the future, causing the m ain thread to block since it
hasn‒t finished yet. This is w hy you only see the last print after the thread in w hich the
future is running has finished. C allbacks can, of course, be sim ulated by spaw ning a
separate thread to m onitor the first one, but this solution is clunky at best.

A n exception to the lack of callbacks is G U I program m ing in C lojure. M uch like
JavaScript, C lojure Sw ing applications also possess an event loop and can respond to user
input and invoke listeners (callbacks) to handle them .

A nother option is rew riting the previous exam ple w ith a custom callback that is passed
into the future:

(defn do-something-important [callback]

 (let [f (future (let [answer 42]

 (Thread/sleep 10000)

 (callback answer)))]

 (prn "Perhaps the future has done its job?")

 (prn "You should see this almost immediately and then in 10 secs")

 f))

(do-something-important (fn [answer]

 (prn "Future is done. Answer is " answer)))

This tim e the order of the outputs should m ake m ore sense. H ow ever, if w e return the
future from this function, w e have no w ay to give it another callback. W e have lost the

ability to perform an action w hen the future ends and are back to having to dereference it,
thus blocking the m ain thread again exactly w hat w e w anted to avoid.

Tip
Java 8 introduces a new class, CompletableFuture, that allow s registering a callback to be
invoked once the future com pletes. If that‒s an option for you, you can use interop to m ake
C lojure leverage the new class.

A s you m ight have realized, C ES is closely related to asynchronous program m ing: the
stock m arket application w e built in the previous chapter is an exam ple of such a program .
The m ain or U I thread is never blocked by the O bservables fetching data from the
netw ork. A dditionally, w e w ere also able to register callbacks w hen subscribing to them .

In m any asynchronous applications, how ever, callbacks are not the best w ay to go. H eavy
use of callbacks can lead to w hat is know n as callback hell. C lojure provides a m ore
pow erful and elegant solution.

In the next few sections, w e w ill explore core.async, a C lojure library for asynchronous
program m ing, and how it relates to R eactive Program m ing.

core.async
If you‒ve ever done any am ount of JavaScript program m ing, you have probably
experienced callback hell. If you haven‒t, the follow ing code should give you a good idea:

http.get('api/users/find?name=' + name, function(user){

 http.get('api/orders?userId=' + user.id, function(orders){

 orders.forEach(function(order){

 container.append(order);

 });

 });

});

This style of program m ing can easily get out of hand instead of w riting m ore natural,
sequential steps to achieving a task, that logic is instead scattered across m ultiple
callbacks, increasing the developer‒s cognitive load.

In response to this issue, the JavaScript com m unity released several prom ises libraries that
are m eant to solve the issue. W e can think of prom ises as em pty boxes w e can pass into
and return from our functions. A t som e point in the future, another process m ight put a
value inside this box.

A s an exam ple, the preceding snippet can be w ritten w ith prom ises like the follow ing:

http.get('api/users/find?name=' + name)

 .then(function(user){

 return http.get('api/orders?userId=' + user.id);

 })

 .then(function(orders){

 orders.forEach(function(order){

 container.append(order);

 });

 });

The preceding snippet show s how using prom ises can flatten your callback pyram id, but
they don‒t elim inate callbacks. The then function is a public function of the prom ises A PI.
It is definitely a step in the right direction as the code is com posable and easier to read.

A s w e tend to think in sequences of steps, how ever, w e w ould like to w rite the follow ing:

user = http.get('api/users/find?name=' + name);

orders = http.get('api/orders?userId=' + user.id);

orders.forEach(function(order){

 container.append(order);

});

Even though the code looks synchronous, the behavior should be no different from the
previous exam ples. This is exactly w hat core.async lets us do in both C lojure and
C lojureScript.

C om m unicating sequential processes
The core.async library is built on an old idea. The foundation upon w hich it lies w as first
described by Tony H oare of Q uicksort fam e in his 1978 paper C om m unicating
Sequential Processes (C SP; see http://w w w .cs.ucf.edu/courses/cop4020/sum 2009/C SP-
hoare.pdf). C SP has since been extended and im plem ented in several languages, the latest
of w hich being G oogle‒s G o program m ing language.

It is beyond the scope of this book to go into the details of this sem inal paper, so w hat
follow s is a sim plified description of the m ain ideas.

In C SP, w ork is m odeled using tw o m ain abstractions: channels and processes. C SP is also
m essage-driven and, as such, it com pletely decouples the producer from the consum er of
the m essage. It is useful to think of channels as blocking queues.

A sim plistic approach dem onstrating these basic abstractions is as follow s:

(import 'java.util.concurrent.ArrayBlockingQueue)

(defn producer [c]

 (prn "Taking a nap")

 (Thread/sleep 5000)

 (prn "Now putting a name in queue")

 (.put c "Leo"))

(defn consumer [c]

 (prn "Attempting to take value from queue now")

 (prn (str "Got it. Hello " (.take c) "!")))

(def chan (ArrayBlockingQueue. 10))

(future (consumer chan))

(future (producer chan))

R unning this code in the R EPL should show us output sim ilar to the follow ing:

"Attempting to take value from queue now"

"Taking a nap"

;; then 5 seconds later

"Now putting a name in que queue"

"Got it. Hello Leo!"

In order not to block our program , w e start both the consum er and the producer in their
ow n threads using a future. Since the consum er w as started first, w e m ost likely w ill see
its output im m ediately. H ow ever, as soon as it attem pts to take a value from the channel
or queue it w ill block. It w ill w ait for a value to becom e available and w ill only proceed
after the producer is done taking its nap clearly a very im portant task.

N ow , let‒s com pare it w ith a solution using core.async. First, create a new leiningen
project and add a dependency on it:

[org.clojure/core.async "0.1.278.0-76b25b-alpha"]

N ow , type this in the R EPL or in your core nam espace:

(ns core-async-playground.core

 (:require [clojure.core.async :refer [go chan <! >! timeout]]))

(defn prn-with-thread-id [s]

 (prn (str s " - Thread id: " (.getId (Thread/currentThread)))))

(defn producer [c]

 (go (prn-with-thread-id "Taking a nap ")

 (<! (timeout 5000))

 (prn-with-thread-id "Now putting a name in que queue")

 (>! c "Leo")))

(defn consumer [c]

 (go (prn-with-thread-id "Attempting to take value from queue now")

 (prn-with-thread-id (str "Got it. Hello " (<! c) "!"))))

(def c (chan))

(consumer c)

(producer c)

This tim e w e are using a helper function, prn-with-thread-id, w hich appends the current
thread ID to the output string. I w ill explain w hy shortly, but apart from that, the output
w ill have been equivalent to the previous one:

"Attempting to take value from queue now - Thread id: 43"

"Taking a nap - Thread id: 44"

"Now putting a name in que queue - Thread id: 48"

"Got it. Hello Leo! - Thread id: 48"

Structurally, both solutions look fairly sim ilar, but since w e are using quite a few new
functions here, let‒s break it dow n:

chan is a function that creates a core.async channel. A s m entioned previously, it can
be thought of as a concurrent blocking queue and is the m ain abstraction in the
library. B y default chan creates an unbounded channel, but core.async provides
m any m ore useful channel constructors, a few of w hich w e‒ll be using later.
timeout is another such channel constructor. It gives us a channel that w ill w ait for a
given am ount of tim e before returning nil to the taking process, closing itself
im m ediately afterw ard. This is the core.async equivalent of T hread/sleep.
The functions >! and <! are used to put and take values from a channel, respectively.
The caveat is that they have to be used inside a go block, as w e w ill explain later.
go is a m acro that takes a body of expressions w hich form a go block and creates
lightw eight processes. This is w here the m agic happens. Inside a go block, any calls
to >! and <! that w ould ordinarily block w aiting for values to be available in
channels are instead parked. Parking is a special type of blocking used internally in
the state m achine of core.async. The blog post by H uey Petersen covers this state
m achine in depth (see http://hueypetersen.com /posts/2013/08/02/the-state-m achines-
of-core-async/).

G o blocks are the very reason for w hich I chose to print the thread ID s in our exam ple. If
w e look closely, w e‒ll realize that the last tw o statem ents w ere executed in the sam e thread

 this isn‒t true 100 percent of the tim e as concurrency is inherently non-determ inistic.
This is a fundam ental difference betw een core.async and solutions using threads/futures.

Threads can be expensive. O n the JV M , their default stack size is 512 kilobytes
configurable via the -Xss JV M startup option. W hen developing a highly concurrent
system , creating thousands of threads can quickly drain the resources of the m achine the
application is running on.

core.async acknow ledges this lim itation and gives us lightw eight processes. Internally,
they do share a thread pool, but instead of w astefully creating a thread per go block,
threads are recycled and reused w hen a put/take operation is w aiting for a value to becom e
available.

Tip
A t the tim e of w riting, the thread pool used by core.async defaults to the num ber of
available processors x 2, + 42. So, a m achine w ith eight processors w ill have a pool w ith
58 threads.

Therefore, it is com m on for core.async applications to have dozens of thousands of
lightw eight processes. They are extrem ely cheap to create.

Since this is a book on R eactive Program m ing, the question that m ight be in your head
now is: can w e build reactive applications using core.async? The short answ er is yes, w e
can! To prove it, w e w ill revisit our stock m arket application and rew rite it using
core.async.

R ew riting the stock m arket application
w ith core.async
B y using an exam ple w e are fam iliar w ith, w e are able to focus on the differences betw een
all approaches discussed so far, w ithout getting side tracked w ith new , specific dom ain
rules.

B efore w e dive into the im plem entation, let‒s quickly do an overview of how our solution
should w ork.

Just like in our previous im plem entations, w e have a service from w hich w e can query
share prices. W here our approach differs, how ever, is a direct consequence of how
core.async channels w ork.

O n a given schedule, w e w ould like to w rite the current price to a core.async channel.
This m ight look like so:

This process w ill continuously put prices in the out channel. W e need to do tw o things
w ith each price: display it and display the calculated sliding w indow . Since w e like our
functions decoupled, w e w ill use tw o go blocks, one for each task:

H old on. There seem s to be som ething off w ith our approach. O nce w e take a price from

the output channel, it is not available any longer to be taken by other go blocks, so, instead
of calculating the sliding w indow starting w ith 10, our function ends up getting the second
value, 20. W ith this approach, w e w ill end up w ith a sliding w indow that calculates a
sliding w indow w ith roughly every other item , depending on how consistent the
interleaving betw een the go blocks is.

C learly, this is not w hat w e w ant, but it helps us think about the problem a little m ore. The
sem antics of core.async prevent us from reading a value from a channel m ore than once.
M ost of the tim e, this behavior is just fine especially if you think of them as queues. So
how can w e provide the sam e value to both functions?

To solve this problem , w e w ill take advantage of another channel constructor provided by
core.async called broadcast. A s the nam e im plies, broadcast returns a channel, w hich,
w hen w ritten to, w rites its value into the channels passed to it as argum ents. Effectively,
this changes our high-level picture to som ething like the follow ing:

In sum m ary, w e w ill have a go loop w riting prices to this broadcast channel, w hich w ill
then forw ard its values to the tw o channels from w hich w e w ill be operating: prices and
the sliding w indow .

W ith the general idea in place, w e are ready to dive into the code.

Im plem enting the application code
W e already have a project depending on core.async that w e created in the previous
section, so w e‒ll be w orking off that. Let‒s start by adding an extra dependency on seesaw
to your project.clj file:

 :dependencies [[org.clojure/clojure "1.5.1"]

 [org.clojure/core.async "0.1.278.0-76b25b-alpha"]

 [seesaw "1.4.4"]]

N ext, create a file called stock_market.clj in the src directory and add this nam espace
declaration:

(ns core-async-playground.stock-market

 (:require [clojure.core.async

 :refer [go chan <! >! timeout go-loop map>] :as async])

 (:require [clojure.core.async.lab :refer [broadcast]])

 (:use [seesaw.core]))

This m ight be a good point to restart your R EPL if you haven‒t done so. D on‒t w orry
about any functions w e haven‒t seen yet. W e‒ll get a feel for them in this section.

The G U I code rem ains largely unchanged, so no explanation should be necessary for the
next snippet:

(native!)

(def main-frame (frame :title "Stock price monitor"

 :width 200 :height 100

 :on-close :exit))

(def price-label (label "Price: -"))

(def running-avg-label (label "Running average: -"))

(config! main-frame :content

 (border-panel

 :north price-label

 :center running-avg-label

 :border 5))

(defn share-price [company-code]

 (Thread/sleep 200)

 (rand-int 1000))

(defn avg [numbers]

 (float (/ (reduce + numbers)

 (count numbers))))

(defn roll-buffer [buffer val buffer-size]

 (let [buffer (conj buffer val)]

 (if (> (count buffer) buffer-size)

 (pop buffer)

 buffer)))

(defn make-sliding-buffer [buffer-size]

 (let [buffer (atom clojure.lang.PersistentQueue/EMPTY)]

 (fn [n]

 (swap! buffer roll-buffer n buffer-size))))

(def sliding-buffer (make-sliding-buffer 5))

The only difference is that now w e have a sliding-buffer function that returns a w indow
of data. This is in contrast w ith our original application, w here the rolling-avg function
w as responsible for both creating the w indow and calculating the average. This new
design is m ore general as it m akes this function easier to reuse. The sliding logic is the
sam e, how ever.

N ext, w e have our m ain application logic using core.async:

(defn broadcast-at-interval [msecs task & ports]

 (go-loop [out (apply broadcast ports)]

 (<! (timeout msecs))

 (>! out (task))

 (recur out)))

(defn -main [& args]

 (show! main-frame)

 (let [prices-ch (chan)

 sliding-buffer-ch (map> sliding-buffer (chan))]

 (broadcast-at-interval 500 #(share-price "XYZ") prices-ch sliding-

buffer-ch)

 (go-loop []

 (when-let [price (<! prices-ch)]

 (text! price-label (str "Price: " price))

 (recur)))

 (go-loop []

 (when-let [buffer (<! sliding-buffer-ch)]

 (text! running-avg-label (str "Running average: " (avg buffer)))

 (recur)))))

Let‒s w alk through the code.

The first function, broadcast-at-interval, is responsible for creating the broadcasting
channel. It receives a variable num ber of argum ents: a num ber of m illiseconds describing
the interval, the function representing the task to be executed, and a sequence of one of
m ore output channels. These channels are used to create the broadcasting channel to
w hich the go loop w ill be w riting prices.

N ext, w e have our m ain function. The let block is w here the interesting bits are. A s w e
discussed in our high-level diagram s, w e need tw o output channels: one for prices and one
for the sliding w indow . They are both created in the follow ing:

...

 (let [prices-ch (chan)

 sliding-buffer-ch (map> sliding-buffer (chan))]

...

prices-ch should be self-explanatory; how ever, sliding-buffer-ch is using a function
w e haven‒t encountered before: map>. This is yet another useful channel constructor in

core.async. It takes tw o argum ents: a function and a target channel. It returns a channel
that applies this function to each value before w riting it to the target channel. A n exam ple
w ill help illustrate how it w orks:

(def c (map> sliding-buffer (chan 10)))

(go (doseq [n (range 10)]

 (>! c n)))

(go (doseq [n (range 10)]

 (prn (vec (<! c)))))

;; [0]

;; [0 1]

;; [0 1 2]

;; [0 1 2 3]

;; [0 1 2 3 4]

;; [1 2 3 4 5]

;; [2 3 4 5 6]

;; [3 4 5 6 7]

;; [4 5 6 7 8]

;; [5 6 7 8 9]

That is, w e w rite a price to the channel and get a sliding w indow on the other end. Finally,
w e create the tw o go blocks containing the side effects. They loop indefinitely, getting
values from both channels and updating the user interface.

You can see it in action by running the program from the term inal:

$ lein run -m core-async-playground.stock-market

E rror handling
B ack in C hapter 2, A Look at Reactive Extensions, w e learned how R eactive Extensions
treats errors and exceptions. It provides a rich set of com binators to deal w ith exceptional
cases and are straightforw ard to use.

D espite being a pleasure to w ork w ith, core.async doesn‒t ship w ith m uch support for
exception handling. In fact, if w e w rite our code w ith only the happy path in m ind w e
don‒t even know an error occurred!

Let‒s have a look at an exam ple:

(defn get-data []

 (throw (Exception. "Bad things happen!")))

(defn process []

 (let [result (chan)]

 ;; do some processing

 (go (>! result (get-data)))

 result))

In the preceding snippet, w e introduced tw o functions:

get-data sim ulates a function that fetches data from the netw ork or an in-m em ory
cache. In this case it sim ply throw s an exception.
process is a function that depends on get-data to do som ething interesting and puts
the result into a channel, w hich is returned at the end.

Let‒s w atch w hat happens w hen w e put this together:

 (go (let [result (<! (->> (process "data")

 (map> #(* % %))

 (map> #(prn %))))]

 (prn "result is: " result)))

N othing happens. Zero, zip, zilch, nada.

This is precisely the problem w ith error handling in core.async: by default, our
exceptions are sw allow ed by the go block as it runs on a separate thread. W e are left in
this state w here w e don‒t really know w hat happened.

N ot all is lost, how ever. D avid N olen outlined on his blog a pattern for dealing w ith such
asynchronous exceptions. It only requires a few extra lines of code.

W e start by defining a helper function and m acro this w ould probably live in a utility
nam espace w e require anyw here w e use core.async:

(defn throw-err [e]

 (when (instance? Throwable e) (throw e))

 e)

(defmacro <? [ch]

 `(throw-err (async/<! ~ch)))

The throw-err function receives a value and, if it‒s a subclass of Throwable, it is throw n.
O therw ise, it is sim ply returned.

The m acro <? is essentially a drop-in replacem ent for <!. In fact, it uses <! to get the value
out of the channel but passes it to throw-err first.

W ith these utilities in place, w e need to m ake a couple of changes, first to our process
function:

(defn process []

 (let [result (chan)]

 ;; do some processing

 (go (>! result (try (get-data)

 (catch Exception e

 e))))

 result))

The only change is that w e w rapped get-data in a try/catch block. Look closely at the
catch block: it sim ply returns the exception.

This is im portant as w e need to ensure the exception gets put into the channel.

N ext, w e update our consum er code:

(go (try (let [result (<? (->> (process "data")

 (map> #(* % %))

 (map> #(prn %))))]

 (prn "result is: " result))

 (catch Exception e

 (prn "Oops, an error happened! We better do something about it

here!"))))

;; "Oops, an error happened! We better do something about it here!"

This tim e w e use <? in place of <!. This m akes sense as it w ill rethrow any exceptions
found in the channel. A s a result w e can now use a sim ple try/catch to regain control
over our exceptions.

B ackpressure
The m ain m echanism by w hich core.async allow s for coordinating backpressure is
buffering. core.async doesn‒t allow unbounded buffers as this can be a source of bugs
and a resource hog.

Instead, w e are required to think hard about our application‒s unique needs and choose an
appropriate buffering strategy.

Fixed buffer
This is the sim plest form of buffering. It is fixed to a chosen num ber n, allow ing producers
to put item s in the channel w ithout having to w ait for consum ers:

(def result (chan (buffer 5)))

(go-loop []

 (<! (async/timeout 1000))

 (when-let [x (<! result)]

 (prn "Got value: " x)

 (recur)))

(go (doseq [n (range 5)]

 (>! result n))

 (prn "Done putting values!")

 (close! result))

;; "Done putting values!"

;; "Got value: " 0

;; "Got value: " 1

;; "Got value: " 2

;; "Got value: " 3

;; "Got value: " 4

In the preceding exam ple, w e created a buffer of size 5 and started a go loop to consum e
values from it. The go loop uses a timeout channel to delay its start.

Then, w e start another go block that puts num bers from 0 to 4 into the result channel and
prints to the console once it‒s done.

B y then, the first tim eout w ill have expired and w e w ill see the values printed to the
R EPL.

N ow let‒s w atch w hat happens if the buffer isn‒t large enough:

(def result (chan (buffer 2)))

(go-loop []

 (<! (async/timeout 1000))

 (when-let [x (<! result)]

 (prn "Got value: " x)

 (recur)))

(go (doseq [n (range 5)]

 (>! result n))

 (prn "Done putting values!")

 (close! Result))

;; "Got value: " 0

;; "Got value: " 1

;; "Got value: " 2

;; "Done putting values!"

;; "Got value: " 3

;; "Got value: " 4

This tim e our buffer size is 2 but everything else is the sam e. A s you can see the go loop
finishes m uch later as it attem pted to put another value in the result channel and w as

blocked/parked since its buffer w as full.

A s w ith m ost things, this m ight be O K but if w e are not w illing to block a fast producer
just because w e can‒t consum e its item s fast enough, w e m ust look for another option.

D ropping buffer
A dropping buffer also has a fixed size. H ow ever, instead of blocking producers w hen it is
full, it sim ply ignores any new item s as show n here:

(def result (chan (dropping-buffer 2)))

(go-loop []

 (<! (async/timeout 1000))

 (when-let [x (<! result)]

 (prn "Got value: " x)

 (recur)))

(go (doseq [n (range 5)]

 (>! result n))

 (prn "Done putting values!")

 (close! result))

;; "Done putting values!"

;; "Got value: " 0

;; "Got value: " 1

A s before, w e still have a buffer of size tw o, but this tim e the producer ends quickly
w ithout ever getting blocked. The dropping-buffer sim ply ignored all item s over its
lim it.

Sliding buffer
A draw back of dropping buffers is that w e m ight not be processing the latest item s at a
given tim e. For the tim es w here processing the latest inform ation is a m ust, w e can use a
sliding buffer:

(def result (chan (sliding-buffer 2)))

(go-loop []

 (<! (async/timeout 1000))

 (when-let [x (<! result)]

 (prn "Got value: " x)

 (recur)))

(go (doseq [n (range 5)]

 (>! result n))

 (prn "Done putting values!")

 (close! result))

;; "Done putting values!"

;; "Got value: " 3

;; "Got value: " 4

A s before, w e only get tw o values but they are the latest ones produced by the go loop.

W hen the lim it of the sliding buffer is overrun, core.async drops the oldest item s to m ake
room for the new est ones. I end up using this buffering strategy m ost of the tim e.

Transducers
B efore w e finish up w ith our core.async portion of the book, it w ould be unw ise of m e
not to m ention w hat is com ing up in C lojure 1.7 as w ell as how this affects core.async.

A t the tim e of this w riting, C lojure‒s latest release is 1.7.0-alpha5 and even though it is
an alpha release, a lot of people m yself included are already using it in production.

A s such, a final version could be just around the corner and perhaps by the tim e you read
this, 1.7 final w ill be out already.

O ne of the big changes in this upcom ing release is the introduction of transducers. W e
w ill not cover the nuts and bolts of it here but rather focus on w hat it m eans at a high-level
w ith exam ples using both C lojure sequences and core.async channels.

If you w ould like to know m ore I recom m end C arin M eier‒s G reen Eggs and Transducers
blog post (http://gigasquidsoftw are.com /blog/2014/09/06/green-eggs-and-transducers/).
It‒s a great place to start.

A dditionally, the official C lojure docum entation site on the subject is another useful
resource (http://clojure.org/transducers).

Let‒s get started by creating a new leiningen project:

$ lein new core-async-transducers

N ow , open your project.clj file and m ake sure you have the right dependencies:

...

 :dependencies [[org.clojure/clojure "1.7.0-alpha5"]

 [org.clojure/core.async "0.1.346.0-17112a-alpha"]]

...

N ext, fire up a R EPL session in the project root and require core.async, w hich w e w ill be
using shortly:

$ lein repl

user> (require '[clojure.core.async :refer [go chan map< filter< into >! <!

go-loop close! pipe]])

W e w ill start w ith a fam iliar exam ple:

(->> (range 10)

 (map inc) ;; creates a new sequence

 (filter even?) ;; creates a new sequence

 (prn "result is "))

;; "result is " (2 4 6 8 10)

The preceding snippet is straightforw ard and highlights an interesting property of w hat
happens w hen w e apply com binators to C lojure sequences: each com binator creates an
interm ediate sequence.

In the previous exam ple, w e ended up w ith three in total: the one created by range, the
one created by map, and finally the one created by filter. M ost of the tim e, this w on‒t

really be an issue but for large sequences this m eans a lot of unnecessary allocation.

Starting in C lojure 1.7, the previous exam ple can be w ritten like so:

(def xform

 (comp (map inc)

 (filter even?))) ;; no intermediate sequence created

(->> (range 10)

 (sequence xform)

 (prn "result is "))

;; "result is " (2 4 6 8 10)

The C lojure docum entation describes transducers as com posable algorithm ic
transform ations. Let‒s see w hy that is.

In the new version, a w hole range of the core sequence com binators, such as map and
filter, have gained an extra arity: if you don‒t pass it a collection, it instead returns a
transducer.

In the previous exam ple, (map inc) returns a transducer that know s how to apply the
function inc to elem ents of a sequence. Sim ilarly, (filter even?) returns a transducer
that w ill eventually filter elem ents of a sequence. N either of them do anything yet, they
sim ply return functions.

This is interesting because transducers are com posable. W e build larger and m ore com plex
transducers by using sim ple function com position:

(def xform

 (comp (map inc)

 (filter even?)))

O nce w e have our transducer ready, w e can apply it to a collection in a few different w ays.
For this exam ple, w e chose sequence as it w ill return a lazy sequence of the applications
of the given transducer to the input sequence:

(->> (range 10)

 (sequence xform)

 (prn "result is "))

;; "result is " (2 4 6 8 10)

A s previously highlighted, this code does not create interm ediate sequences; transducers
extract the very core of the algorithm ic transform ation at hand and abstracts it aw ay from
having to deal w ith sequences directly.

Transducers and core.async
W e m ight now be asking ourselves ―W hat do transducers have to do w ith core.async?‖

It turns out that once w e‒re able to extract the core of these transform ations and put them
together using sim ple function com position, there is nothing stopping us from using
transducers w ith data structures other than sequences!

Let‒s revisit our first exam ple using standard core.async functions:

(def result (chan 10))

(def transformed

 (->> result

 (map< inc) ;; creates a new channel

 (filter< even?) ;; creates a new channel

 (into [])))

(go

 (prn "result is " (<! transformed)))

(go

 (doseq [n (range 10)]

 (>! result n))

 (close! result))

;; "result is " [2 4 6 8 10]

This code should look fam iliar by now : it‒s the core.async equivalent of the sequence-
only version show n earlier. A s before, w e have unnecessary allocations here as w ell,
except that this tim e w e‒re allocating channels.

W ith the new support for transducers, core.async can take advantage of the sam e
transform ation defined earlier:

(def result (chan 10))

(def xform

 (comp (map inc)

 (filter even?))) ;; no intermediate channels created

(def transformed (->> (pipe result (chan 10 xform))

 (into [])))

(go

 (prn "result is " (<! transformed)))

(go

 (doseq [n (range 10)]

 (>! result n))

 (close! result))

;; "result is " [2 4 6 8 10]

The code rem ains largely unchanged except w e now use the sam e xform transform ation
defined earlier w hen creating a new channel. It‒s im portant to note that w e did not have to
use core.async com binators in fact a lot of these com binators have been deprecated and
w ill be rem oved in future versions of core.async.

The functions map and filter used to define xform are the sam e ones w e used previously,
that is, they are core C lojure functions.

This is the next big advantage of using transducers: by rem oving the underlying data
structure from the equation via transducers, libraries such as core.async can reuse
C lojure‒s core com binators to prevent unnecessary allocation and code duplication.

It‒s not too far fetched to im agine other fram ew orks like R xC lojure could take advantage
of transducers as w ell. A ll of them w ould be able to use the sam e core function across
substantially different data structures and contexts: sequences, channels, and O bervables.

Tip
The concept of extracting the essence of com putations disregarding their underlying data
structures is an exciting topic and has been seen before in the H askell com m unity,
although they deal w ith lists specifically.

Tw o papers w orth m entioning on the subject are Stream Fusion [11] by D uncan C outts,
R om an Leshchinskiy and D on Stew art and Transform ing program s to elim inate trees [12]
by Philip W adler. There are som e overlaps so the reader m ight find these interesting.

Sum m ary
B y now , I hope to have proved that you can w rite reactive applications using core.async.
It‒s an extrem ely pow erful and flexible concurrency m odel w ith a rich A PI. If you can
design your solution in term s of queues, m ost likely core.async is the tool you w ant to
reach for.

This version of the stock m arket application is shorter and sim pler than the version using
only the standard Java A PI w e developed earlier in this book for instance, w e didn‒t
have to w orry about thread pools. O n the other hand, it feels like it is a little m ore com plex
than the version im plem ented using R eactive Extensions in C hapter 3, Asynchronous
Program m ing and N etw orking.

This is because core.async operates at a low er level of abstraction w hen com pared to
other fram ew orks. This becom es especially obvious in our application as w e had to w orry
about creating broadcasting channels, go loops, and so on all of w hich can be considered
incidental com plexity, not directly related to the problem at hand.

core.async does, how ever, provide an excellent foundation for building our ow n C ES
abstractions. This is w hat w e w ill be exploring next.

C hapter 5. C reating Your O w n C E S
Fram ew ork w ith core.async
In the previous chapter, it w as alluded to that core.async operates at a low er level of
abstraction w hen com pared to other fram ew orks such as R xC lojure or R xJava.

This is because m ost of the tim e w e have to think carefully about the channels w e are
creating as w ell as w hat types and sizes of buffers to use, w hether w e need pub/sub
functionality, and so on.

N ot all applications require such level of control, how ever. N ow that w e are fam iliar w ith
the m otivations and m ain abstractions of core.async w e can em bark into w riting a
m inim al C ES fram ew ork using core.async as the underlying foundation.

B y doing so, w e avoid having to think about thread pool m anagem ent as the fram ew ork
takes care of that for us.

In this chapter, w e w ill cover the follow ing topics:

B uilding a C ES fram ew ork using core.async as its underlying concurrency strategy
B uilding an application that uses our C ES fram ew ork
U nderstanding the trade-offs of the different approaches presented so far

A m inim al C E S fram ew ork
B efore w e get start on the details, w e should define at a high level w hat m inim al m eans.

Let‒s start w ith the tw o m ain abstractions our fram ew ork w ill provide: behaviors and event
stream s.

If you can recall from C hapter 1, W hat is Reactive Program m ing?, behaviors represent
continuous, tim e-varying values such as tim e or a m ouse position behavior. Event stream s,
on the other hand, represent discrete occurrences at a point in tim e T, such as key press.

N ext, w e should think about w hat kinds of operations w e w ould like to support. B ehaviors
are fairly sim ple so at the very m inim um w e need to:

C reate new behaviors
R etrieve the current value of a behavior
C onvert a behavior into an event stream

Event stream s have m ore interesting logic in play and w e should at least support these
operations:

Push/deliver a value dow n the stream
C reate a stream from a given interval
Transform the stream w ith the map and filter operations
C om bine stream s w ith flatmap
Subscribe to a stream

This is a sm all subset but big enough to dem onstrate the overall architecture of a C ES
fram ew ork. O nce w e‒re done, w e‒ll use it to build a sim ple exam ple.

C lojure or C lojureScript?
H ere w e‒ll shift gears and add another requirem ent to our little library: it should w ork both
in C lojure and C lojureScript. A t first, this m ight sound like a tough requirem ent. H ow ever,
rem em ber that core.async the foundation of our fram ew ork w orks both on the JV M
and in JavaScript. This m eans w e have a lot less w ork to do to m ake it happen.

It does m ean, how ever, that w e need to be capable of producing tw o artifacts from our
library: a jar file and a JavaScript file. Luckily, there are leiningen plugins, w hich help us
do that and w e w ill be using a couple of them :

lein-cljsbuild (see https://github.com /em ezeske/lein-cljsbuild): Leiningen plugin
to m ake building C lojureScript easy
cljx (see https://github.com /lynaghk/cljx): A preprocessor used to w rite portable
C lojure codebases, that is, w rite a single file and output both .clj and .cljs files

You don‒t need to understand these libraries in great detail. W e are only using their basic
functionality and w ill be explaining the bits and pieces as w e encounter them .

Let‒s get started by creating a new leiningen project. W e‒ll call our fram ew ork respondent
 one of the m any synonym s for the w ord reactive:

$ lein new respondent

W e need to m ake a few changes to the project.clj file to include the dependencies and
configurations w e‒ll be using. First, m ake sure the project dependencies look like the
follow ing:

:dependencies [[org.clojure/clojure "1.5.1"]

 [org.clojure/core.async "0.1.303.0-886421-alpha"]

 [org.clojure/clojurescript "0.0-2202"]]

There should be no surprises here. Still in the project file, add the necessary plugins:

:plugins [[com.keminglabs/cljx "0.3.2"]

 [lein-cljsbuild "1.0.3"]]

These are the plugins that w e‒ve m entioned previously. B y them selves they don‒t do
m uch, how ever, and need to be configured.

For cljx, add the follow ing to the project file:

:cljx {:builds [{:source-paths ["src/cljx"]

 :output-path "target/classes"

 :rules :clj}

 {:source-paths ["src/cljx"]

 :output-path "target/classes"

 :rules :cljs}]}

 :hooks [cljx.hooks]

The previous snippet deserves som e explanation. cljx allow s us to w rite code that is
portable betw een C lojure and C lojureScript by placing annotations its preprocessor can
understand. W e w ill see later w hat these annotations look like, but this chunk of

configuration tells cljx w here to find the annotated files and w here to output them once
they‒re processed.

For exam ple, based on the preceding rules, if w e have a file called src/cljx/core.cljx
and w e run the preprocessor w e w ill end up w ith the target/classes/core.clj and
target/classes/core.cljs output files. The hooks, on the other hand, are sim ply a
convenient w ay to autom atically run cljx w henever w e start a R EPL session.

The next part of the configuration is for cljsbuild:

:cljsbuild

{:builds [{:source-paths ["target/classes"]

 :compiler {:output-to "target/main.js"}}]}

cljsbuild provides leiningen tasks to com pile C lojuresript source code into JavaScript.
W e know from our preceding cljx configuration that the source.cljs files w ill be under
target/classes, so here w e‒re sim ply telling cljsbuild to com pile all C lojureScript files
in that directory and spit the contents to target/main.js. This is the last piece needed for
the project file.

G o ahead and delete these files created by the leiningen tem plate as w e w on‒t be using
them :

$ rm src/respondent/core.clj

$ rm test/respondent/core_test.clj

Then, create a new core.cljx file under src/cljx/respondent/ and add the follow ing
nam espace declaration:

(ns respondent.core

 (:refer-clojure :exclude [filter map deliver])

 #+clj

 (:import [clojure.lang IDeref])

 #+clj

 (:require [clojure.core.async :as async

 :refer [go go-loop chan <! >! timeout

 map> filter> close! mult tap untap]])

 #+cljs

 (:require [cljs.core.async :as async

 :refer [chan <! >! timeout map> filter>

 close! mult tap untap]])

 #+cljs

 (:require-macros [respondent.core :refer [behavior]]

 [cljs.core.async.macros :refer [go go-loop]]))

H ere, w e start seeing cljx annotations. cljx is sim ply a text preprocessor, so w hen it is
processing a file using clj rules as seen in the configuration it w ill keep the s-
expressions preceded by the annotation #+clj in the output file, w hile rem oving the ones
prefixed by #+cljs. The reverse process happens w hen using cljs rules.

This is necessary because m acros need to be com piled on the JV M , so they have to be

included separately using the :require-macros nam espace option w hen using
C lojureScript. D on‒t w orry about the core.async functions w e haven‒t encountered
before; they w ill be explained as w e use them to build our fram ew ork.

A lso, note how w e are excluding functions from the C lojure standard A PI as w e w ish to
use the sam e nam es and don‒t w ant any undesired nam ing collisions.

This section set us up w ith a new project and the plugins and configurations needed for
our fram ew ork. W e‒re ready to start im plem enting it.

D esigning the public A PI
O ne of the requirem ents for behaviors w e agreed on is the ability to turn a given behavior
into an event stream . A com m on w ay of doing this is by sam pling a behavior at a specific
interval. If w e take the m ouse position behavior as an exam ple, by sam pling it every x
seconds w e get an event stream , w hich w ill em it the current m ouse position at discrete
points in tim e.

This leads to the follow ing protocol:

(defprotocol IBehavior

 (sample [b interval]

 "Turns this Behavior into an EventStream from the sampled values at the

given interval"))

It has a single function, sample, w hich w e described in the preceding code. There are
m ore things w e need to do w ith a behavior, but for now this w ill suffice.

O ur next m ain abstraction is EventStream, w hich based on the requirem ents seen
previously leads to the follow ing protocol:

(defprotocol IEventStream

 (map [s f]

 "Returns a new stream containing the result of applying f

 to the values in s")

 (filter [s pred]

 "Returns a new stream containing the items from s

 for which pred returns true")

 (flatmap [s f]

 "Takes a function f from values in s to a new EventStream.

 Returns an EventStream containing values from all underlying streams

combined.")

 (deliver [s value]

 "Delivers a value to the stream s")

 (completed? [s]

 "Returns true if this stream has stopped emitting values. False

otherwise."))

This gives us a few basic functions to transform and query an event stream . It does leave
out the ability to subscribe to a stream . D on‒t w orry, I didn‒t forget it!

A lthough, it is com m on to subscribe to an event stream , the protocol itself doesn‒t
m andate it and this is because the operation fits best in its ow n protocol:

(defprotocol IObservable

 (subscribe [obs f] "Register a callback to be invoked when the underlying

source changes.

 Returns a token the subscriber can use to cancel the subscription."))

A s far as subscriptions go, it is useful to have a w ay of unsubscribing from a stream . This
can be im plem ented in a couple of w ays, but docstring of the preceding function hints at
a specific one: a token that can be used to unsubscribe from a stream . This leads to our last
protocol:

(defprotocol IToken

 (dispose [tk]

 "Called when the subscriber isn't interested in receiving more items"))

Im plem enting tokens
The token type is the sim plest in the w hole fram ew ork as it has got a single function w ith
a straightforw ard im plem entation:

(deftype Token [ch]

 IToken

 (dispose [_]

 (close! ch)))

It sim ply closes w hatever channel it is given, stopping events from flow ing through
subscriptions.

Im plem enting event stream s
The event stream im plem entation, on the other hand, is the m ost com plex in our
fram ew ork. W e‒ll tackle it gradually, im plem enting and experim enting as w e go.

First, let‒s look at our m ain constructor function, event-stream:

(defn event-stream

 "Creates and returns a new event stream. You can optionally provide an

existing

 core.async channel as the source for the new stream"

 ([]

 (event-stream (chan)))

 ([ch]

 (let [multiple (mult ch)

 completed (atom false)]

 (EventStream. ch multiple completed))))

The docstring should be sufficient to understand the public A PI. W hat m ight not be
clear, how ever, is w hat all the constructor argum ents m ean. From left to right, the
argum ents to EventStream are:

ch: This is the core.async channel backing this stream .
multiple: This is a w ay to broadcast inform ation from one channel to m any other
channels. It‒s a core.async concept w e w ill be explaining shortly.
completed: A B oolean flag indicating w hether this event stream has com pleted and
w ill not em it any new values.

From the im plem entation, you can see that the m ultiple is created from the channel
backing the stream . multiple w orks kind of like a broadcast. C onsider the follow ing
exam ple:

 (def in (chan))

 (def multiple (mult in))

 (def out-1 (chan))

 (tap multiple out-1)

 (def out-2 (chan))

 (tap multiple out-2)

 (go (>! in "Single put!"))

 (go (prn "Got from out-1 " (<! out-1)))

 (go (prn "Got from out-2 " (<! out-2)))

In the previous snippet, w e create an input channel, in, and mult of it called multiple.
Then, w e create tw o output channels, out-1 and out-2, w hich are both follow ed by a call
to tap. This essentially m eans that w hatever values are w ritten to in w ill be taken by
multiple and w ritten to any channels tapped into it as the follow ing output show s:

"Got from out-1 " "Single put!"

"Got from out-2 " "Single put!"

This w ill m ake understanding the EventStream im plem entation easier.

N ext, let‒s have a look at w hat a m inim al im plem entation of the EventStream looks like
the follow ing m ake sure the im plem entation goes before the constructor function
described earlier:

(declare event-stream)

(deftype EventStream [channel multiple completed]

 IEventStream

 (map [_ f]

 (let [out (map> f (chan))]

 (tap multiple out)

 (event-stream out)))

 (deliver [_ value]

 (if (= value ::complete)

 (do (reset! completed true)

 (go (>! channel value)

 (close! channel)))

 (go (>! channel value))))

 IObservable

 (subscribe [this f]

 (let [out (chan)]

 (tap multiple out)

 (go-loop []

 (let [value (<! out)]

 (when (and value (not= value ::complete))

 (f value)

 (recur))))

 (Token. out))))

For now , w e have chosen to im plem ent only the map and deliver functions from the
IEventStream protocol. This allow s us to deliver values to the stream as w ell as transform
those values.

H ow ever, this w ould not be very useful if w e could not retrieve the values delivered. This
is w hy w e also im plem ent the subscribe function from the IObservable protocol.

In a nutshell, map needs to take a value from the input stream , apply a function to it, and
send it to the new ly created stream . W e do this by creating an output channel that taps on
current multiple. W e then use this channel to back the new event stream .

The deliver function sim ply puts the value into the backing channel. If the value is the
nam espaced keyw ord ::complete, w e update the completed atom and close the backing
channel. This ensures the stream w ill not em it any other values.

Finally, w e have the subscribe function. The w ay subscribers are notified is by using an
output channel tapped to backing multiple. W e loop indefinitely calling the subscribing
function w henever a new value is em itted.

W e finish by returning a token, w hich w ill close the output channel once disposed, causing
the go-loop to stop.

Let‒s m ake sure that all this m akes sense by experim enting w ith a couple of exam ples in
the R EPL:

 (def es1 (event-stream))

 (subscribe es1 #(prn "first event stream emitted: " %))

 (deliver es1 10)

 ;; "first event stream emitted: " 10

 (def es2 (map es1 #(* 2 %)))

 (subscribe es2 #(prn "second event stream emitted: " %))

 (deliver es1 20)

 ;; "first event stream emitted: " 20

 ;; "second event stream emitted: " 40

Excellent! W e have a m inim al, w orking im plem entation of our IEventStream protocol!

The next function w e‒ll im plem ent is filter and it is very sim ilar to map:

 (filter [_ pred]

 (let [out (filter> pred (chan))]

 (tap multiple out)

 (event-stream out)))

The only difference is that w e use the filter> function and pred should be a B oolean
function:

 (def es1 (event-stream))

 (def es2 (filter es1 even?))

 (subscribe es1 #(prn "first event stream emitted: " %))

 (subscribe es2 #(prn "second event stream emitted: " %))

 (deliver es1 2)

 (deliver es1 3)

 (deliver es1 4)

 ;; "first event stream emitted: " 2

 ;; "second event stream emitted: " 2

 ;; "first event stream emitted: " 3

 ;; "first event stream emitted: " 4

 ;; "second event stream emitted: " 4

A s w e w itness, es2 only em its a new value if and only if that value is an even num ber.

Tip
If you are follow ing along, typing the exam ples step by step, you w ill need to restart your
R EPL w henever w e add new functions to any deftype definition. This is because deftype
generates and com piles a Java class w hen evaluated. A s such, sim ply reloading the
nam espace w on‒t be enough.

A lternatively, you can use a tool such as tools.namespace (see
https://github.com /clojure/tools.nam espace) that addresses som e of these R EPL reloading
lim itations.

M oving dow n our list, w e now have flatmap:

(flatmap [_ f]

 (let [es (event-stream)

 out (chan)]

 (tap multiple out)

 (go-loop []

 (when-let [a (<! out)]

 (let [mb (f a)]

 (subscribe mb (fn [b]

 (deliver es b)))

 (recur))))

 es))

W e‒ve encountered this operator before w hen surveying R eactive Extensions. This is w hat
our docstring says about it:

Takes a function f from values in s to a new EventStream .

Returns an EventStream containing values from all underlying stream s com bined.

This m eans flatmap needs to com bine all the possible event stream s into a single output
event stream . A s before, w e tap a new channel to the multiple stream , but then w e loop
over the output channel, applying f to each output value.

H ow ever, as w e saw , f itself returns a new event stream , so w e sim ply subscribe to it.
W henever the function registered in the subscription gets called, w e deliver that value to
the output event stream , effectively com bining all stream s into a single one.

C onsider the follow ing exam ple:

 (defn range-es [n]

 (let [es (event-stream (chan n))]

 (doseq [n (range n)]

 (deliver es n))

 es))

 (def es1 (event-stream))

 (def es2 (flatmap es1 range-es))

 (subscribe es1 #(prn "first event stream emitted: " %))

 (subscribe es2 #(prn "second event stream emitted: " %))

 (deliver es1 2)

 ;; "first event stream emitted: " 2

 ;; "second event stream emitted: " 0

 ;; "second event stream emitted: " 1

 (deliver es1 3)

 ;; "first event stream emitted: " 3

 ;; "second event stream emitted: " 0

 ;; "second event stream emitted: " 1

 ;; "second event stream emitted: " 2

W e have a function, range-es, that receives a num ber n and returns an event stream that
em its num bers from 0 to n. A s before, w e have a starting stream , es1, and a transform ed
stream created w ith flatmap, es2.

W e can see from the preceding output that the stream created by range-es gets flattened
into es2 allow ing us to receive all values by sim ply subscribing to it once.

This leaves us w ith single function from IEventStream left to im plem ent:

 (completed? [_] @completed)

completed? sim ply returns the current value of the completed atom . W e are now ready to
im plem ent behaviors.

Im plem enting behaviors
If you recall, the IBehavior protocol has a single function called sample w hose docstring
states: Turns this Behavior into an EventStream from the sam pled values at the given
interval.

In order to im plem ent sample, w e w ill first create a useful helper function that w e w ill call
from-interval:

(defn from-interval

 "Creates and returns a new event stream which emits values at the given

interval.

 If no other arguments are given, the values start at 0 and increment by

one at each delivery.

 If given seed and succ it emits seed and applies succ to seed to get

the next value. It then applies succ to the previous result and so on."

 ([msecs]

 (from-interval msecs 0 inc))

 ([msecs seed succ]

 (let [es (event-stream)]

 (go-loop [timeout-ch (timeout msecs)

 value seed]

 (when-not (completed? es)

 (<! timeout-ch)

 (deliver es value)

 (recur (timeout msecs) (succ value))))

 es)))

The docstring function should be clear enough at this stage, but w e w ould like to ensure
w e understand its behavior correctly by trying it at the R EPL:

 (def es1 (from-interval 500))

 (def es1-token (subscribe es1 #(prn "Got: " %)))

 ;; "Got: " 0

 ;; "Got: " 1

 ;; "Got: " 2

 ;; "Got: " 3

 ;; ...

 (dispose es1-token)

A s expected, es1 em its integers starting at zero at 500-m illisecond intervals. B y default, it
w ould em it num bers indefinitely; therefore, w e keep a reference to the token returned by
calling subscribe.

This w ay w e can dispose it w henever w e‒re done, causing es-1 to com plete and stop
em itting item s.

N ext, w e can finally im plem ent the Behavior type:

(deftype Behavior [f]

 IBehavior

 (sample [_ interval]

 (from-interval interval (f) (fn [& args] (f))))

 IDeref

 (#+clj deref #+cljs -deref [_]

 (f)))

(defmacro behavior [& body]

 `(Behavior. #(do ~@body)))

A behavior is created by passing it a function. You can think of this function as a generator
responsible for generating the next value in this event stream .

This generator function w ill be called w henever w e (1) deref the Behavior or (2) at the
interval given to sample.

The behavior m acro is there for convenience and allow s us to create a new Behavior
w ithout w rapping the body in a function ourselves:

 (def time-behavior (behavior (System/nanoTime)))

 @time-behavior

 ;; 201003153977194

 @time-behavior

 ;; 201005133457949

In the preceding exam ple, w e defined time-behavior that alw ays contains the current
system tim e. W e can then turn this behavior into a stream of discrete events by using the
sample function:

 (def time-stream (sample time-behavior 1500))

 (def token (subscribe time-stream #(prn "Time is " %)))

 ;; "Time is " 201668521217402

 ;; "Time is " 201670030219351

 ;; ...

 (dispose token)

Tip
A lw ays rem em ber to keep a reference to the subscription token w hen dealing w ith infinite
stream s such as the ones created by sample and from-interval, or else you m ight incur
undesired m em ory leaks.

C ongratulations! W e have a w orking, m inim al C ES fram ew ork using core.async!

W e didn‒t prove it w orks w ith C lojureScript, how ever, w hich w as one of the m ain
requirem ents early on. That‒s okay. W e w ill be tackling that soon by developing a sim ple
C lojureScript application, w hich m akes use of our new fram ew ork.

In order to do this, w e need to deploy the fram ew ork to our local M aven repository. From
the project root, type the follow ing lein com m and:

$ lein install

Rewriting src/cljx to target/classes (clj) with features #{clj} and 0

transformations.

Rewriting src/cljx to target/classes (cljs) with features #{cljs} and 1

transformations.

Created respondent/target/respondent-0.1.0-SNAPSHOT.jar

Wrote respondent/pom.xml

E xercises
The follow ing sections have a few exercises for you.

E xercise 5.1
Extend our current EventStream im plem entation to include a function called take. It
w orks m uch like C lojure‒s core take function for sequences: it w ill take n item s from the
underlying event stream after w hich it w ill stop em itting item s.

A sam ple interaction, w hich takes the first five item s em itted from the original event
stream , is show n here:

(def es1 (from-interval 500))

(def take-es (take es1 5))

(subscribe take-es #(prn "Take values: " %))

;; "Take values: " 0

;; "Take values: " 1

;; "Take values: " 2

;; "Take values: " 3

;; "Take values: " 4

Tip
K eeping som e state m ight be useful here. A tom s can help. A dditionally, try to think of a
w ay to dispose of any unw anted subscriptions required by the solution.

E xercise 5.2
In this exercise, w e w ill add a function called zip that zips together item s em itted from
tw o different event stream s into a vector.

A sam ple interaction w ith the zip function is as follow s:

(def es1 (from-interval 500))

(def es2 (map (from-interval 500) #(* % 2)))

(def zipped (zip es1 es2))

(def token (subscribe zipped #(prn "Zipped values: " %)))

;; "Zipped values: " [0 0]

;; "Zipped values: " [1 2]

;; "Zipped values: " [2 4]

;; "Zipped values: " [3 6]

;; "Zipped values: " [4 8]

(dispose token)

Tip
For this exercise, w e need a w ay to know w hen w e have enough item s to em it from both
event stream s. M anaging this internal state can be tricky at first. C lojure‒s ref types and,
in particular, dosync, can be of use.

A respondent application
This chapter w ould not be com plete if w e didn‒t go through the w hole developm ent life
cycle of deploying and using the new fram ew ork in a new application. This is the purpose
of this section.

The application w e w ill build is extrem ely sim ple. A ll it does is track the position of the
m ouse using the reactive prim itives w e built into respondent.

To that end, w e w ill be using the excellent lein tem plate cljs-start (see
https://github.com /m agom im m o/cljs-start), created by M im m o C osenza to help developers
get started w ith C lojureScript.

Let‒s get started:

lein new cljs-start respondent-app

N ext, let‒s m odify the project file to include the follow ing dependencies:

[clojure-reactive-programming/respondent "0.1.0-SNAPSHOT"]

[prismatic/dommy "0.1.2"]

The first dependency is self-explanatory. It‒s sim ply our ow n fram ew ork. dommy is a D O M
m anipulation library for C lojureScript. W e‒ll briefly use it w hen building our w eb page.

N ext, edit the dev-resources/public/index.html file to m atch the follow ing:

<!doctype html>

<html lang="en">

<head>

 <meta charset="utf-8">

 <title>Example: tracking mouse position</title>

 <!--[if lt IE 9]>

 <script src="http://html5shiv.googlecode.com/svn/trunk/html5.js">

</script>

 <![endif]-->

</head>

<body>

 <div id="test">

 <h1>Mouse (x,y) coordinates:</h1>

 </div>

 <div id="mouse-xy">

 (0,0)

 </div>

 <script src="js/respondent_app.js"></script>

</body>

</html>

In the preceding snippet, w e created a new div elem ent, w hich w ill contain the m ouse
position. It defaults to (0,0).

The last piece of the puzzle is m odifying src/cljs/respondent_app/core.cljs to m atch
the follow ing:

 (ns respondent-app.core

 (:require [respondent.core :as r]

 [dommy.core :as dommy])

 (:use-macros

 [dommy.macros :only [sel1]]))

(def mouse-pos-stream (r/event-stream))

(set! (.-onmousemove js/document)

 (fn [e]

 (r/deliver mouse-pos-stream [(.-pageX e) (.-pageY e)])))

(r/subscribe mouse-pos-stream

 (fn [[x y]]

 (dommy/set-text! (sel1 :#mouse-xy)

 (str "(" x "," y ")"))))

This is our m ain application logic. It creates an event stream to w hich w e deliver the
current m ouse position from the onmousemove event of the brow ser w indow .

Later, w e sim ply subscribe to it and use dommy to select and set the text of the div elem ent
w e added previously.

W e are now ready to use the app! Let‒s start by com piling C lojureScript:

$ lein compile

This should take a few seconds. If all is w ell, the next thing to do is to start a R EPL
session and start up the server:

$ lein repl

user=> (run)

N ow , point your brow ser to http://localhost:3000/ and drag the m ouse around to see
its current position.

C ongratulations on successfully developing, deploying, and using your ow n C ES
fram ew ork!

C E S versus core.async
A t this stage, you m ight be w ondering w hen you should choose one approach over the
other. A fter all, as dem onstrated at the beginning of this chapter, w e could use core.async
to do everything w e have done using respondent.

It all com es dow n to using the right level of abstraction for the task at hand.

core.async gives us m any low level prim itives that are extrem ely useful w hen w orking
w ith processes, w hich need to talk to each other. The core.async channels w ork as
concurrent blocking queues and are an excellent synchronization m echanism in these
scenarios.

H ow ever, it m akes other solutions harder to im plem ent: for instance, channels are single-
take by default, so if w e have m ultiple consum ers interested in the values put inside a
channel, w e have to im plem ent the distribution ourselves using tools such as mult and
tap.

C ES fram ew orks, on the other hand, operate at a higher level of abstraction and w ork w ith
m ultiple subscribers by default.

A dditionally, core.async relies on side effects, as can be seen by the use of functions such
as >! inside go blocks. Fram ew orks such as R xC lojure prom ote stream transform ations by
the use of pure functions.

This is not to say there aren‒t side effects in C ES fram ew orks. There m ost definitely are.
H ow ever, as a consum er of the library, this is m ostly hidden from our eyes, allow ing us to
think of m ost of our code as sim ple sequence transform ations.

In conclusion, different application dom ains w ill benefit m ore or less from either approach
 som etim es they can benefit from both. W e should think hard about our application
dom ain and analyze the types of solutions and idiom s developers are m ost likely to design.
This w ill point us in the direction of better abstraction for w hatever application w e are
developing at a given tim e.

Sum m ary
In this chapter, w e developed our very ow n C ES fram ew ork. B y developing our ow n
fram ew ork, w e have solidified our understanding of both C ES and how to effectively use
core.async.

The idea that core.async could be used as the foundation of a C ES fram ew ork isn‒t m ine,
how ever. Jam es R eeves (see https://github.com /w eavejester) creator of the routing
library C om pojure (see https://github.com /w eavejester/com pojure) and m any other useful
C lojure libraries also saw the sam e potential and set off to w rite R eagi (see
https://github.com /w eavejester/reagi), a C ES library built on top of core.async, sim ilar in
spirit to the one w e developed in this chapter.

H e has put a lot m ore effort into it, m aking it a m ore robust option for a pure C lojure
fram ew ork. W e‒ll be looking at it in the next chapter.

C hapter 6. B uilding a Sim ple
C lojureScript G am e w ith R eagi
In the previous chapter, w e learned how a fram ew ork for C om positional E vent System s
(C E S) w orks by building our ow n fram ew ork, w hich w e called respondent. It gave us a
great insight into the m ain abstractions involved in such a piece of softw are as w ell as a
good overview of core.async, C lojure‒s library for asynchronous program m ing and the
foundation of our fram ew ork.

R espondent is but a toy fram ew ork, how ever. W e paid little attention to cross-cutting
concerns such as m em ory efficiency and exception handling. That is okay as w e used it as
a vehicle for learning m ore about handling and com posing event system s w ith
core.async. A dditionally, its design is intentionally sim ilar to R eagi‒s design.

In this chapter, w e w ill:

Learn about R eagi, a C ES fram ew ork built on top of core.async
U se R eagi to build the rudim ents of a C lojureScript gam e that w ill teach us how to
handle user input in a clean and m aintainable w ay
B riefly com pare R eagi to other C ES fram ew orks and get a feel for w hen to use each
one

Setting up the project
H ave you ever played A steroids? If you haven‒t, A steroids is an arcade space shooter first
released by A tari in 1979. In A steroids, you are the pilot of a ship flying through space. A s
you do so, you get surrounded by asteroids and flying saucers you have to shoot and
destroy.

D eveloping the w hole gam e in one chapter is too am bitious and w ould distract us from the
subject of this book. W e w ill lim it ourselves to m aking sure w e have a ship on the screen
w e can fly around as w ell as shoot space bullets into the void. B y the end of this chapter,
w e w ill have som ething that looks like w hat is show n in the follow ing screenshot:

To get started, w e w ill create a newClojureScript project using the sam e leiningen
tem plate w e used in the previous chapter, cljs-start (see
https://github.com /m agom im m o/cljs-start):

lein new cljs-start reagi-game

N ext, add the follow ing dependencies to your project file:

 [org.clojure/clojurescript "0.0-2138"]

 [reagi "0.10.0"]

 [rm-hull/monet "0.1.12"]

The last dependency, m onet (see https://github.com /rm -hull/m onet), is a C lojureScript
library you can use to w ork w ith H TM L 5 C anvas. It is a high-level w rapper on top of the
C anvas A PI and m akes interacting w ith it a lot sim pler.

B efore w e continue, it‒s probably a good idea to m ake sure our setup is w orking properly.
C hange into the project directory, start a C lojure R EPL, and then start the em bedded w eb
server:

cd reagi-game/

lein repl

Compiling ClojureScript.

Compiling "dev-resources/public/js/reagi_game.js" from ("src/cljs"

"test/cljs" "dev-resources/tools/repl")...

user=> (run)

2014-06-14 19:21:40.381:INFO:oejs.Server:jetty-7.6.8.v20121106

2014-06-14 19:21:40.403:INFO:oejs.AbstractConnector:Started

SelectChannelConnector@0.0.0.0:3000

#<Server org.eclipse.jetty.server.Server@51f6292b>

This w ill com pile the C lojureScript source files to JavaScript and start the sam ple w eb
server. In your brow ser, navigate to http://localhost:3000/. If you see som ething like
the follow ing, w e are good to go:

A s w e w ill be w orking w ith H TM L 5 C anvas, w e need an actual canvas to render to. Let‒s
update our H TM L docum ent to include that. It‒s located under dev-
resources/public/index.html:

<!doctype html>

<html lang="en">

 <head>

 <meta charset="utf-8">

 <title>bREPL Connection</title>

 <!--[if lt IE 9]>

 <script src="http://html5shiv.googlecode.com/svn/trunk/html5.js">

</script>

 <![endif]-->

 </head>

 <body>

 <canvas id="canvas" width="800" height="600"></canvas>

 <script src="js/reagi_game.js"></script>

 </body>

</html>

W e have added a canvas D O M elem ent to our docum ent. A ll rendering w ill happen in this
context.

G am e entities
O ur gam e w ill have only tw o entities: one representing the spaceship and the other
representing bullets. To better organize the code, w e w ill put all entity-related code in its
ow n file, src/cljs/reagi_game/entities.cljs. This file w ill also contain som e of the
rendering logic, so w e‒ll need to require monet:

(ns reagi-game.entities

 (:require [monet.canvas :as canvas]

 [monet.geometry :as geom]))

N ext, w e‒ll add a few helper functions to avoid repeating ourselves too m uch:

(defn shape-x [shape]

 (-> shape :pos deref :x))

(defn shape-y [shape]

 (-> shape :pos deref :y))

(defn shape-angle [shape]

 @(:angle shape))

(defn shape-data [x y angle]

 {:pos (atom {:x x :y y})

 :angle (atom angle)})

The first three functions are sim ply a shorter w ay of getting data out of our shape data
structure. The shape-data function creates a structure. N ote that w e are using atoms, one
of C lojure‒s reference types, to represent a shape‒s position and angle.

This w ay, w e can safely pass our shape data into m onet‒s rendering functions and still be
able to update it in a consistent w ay.

N ext up is our ship constructor function. This is w here the bulk of the interaction w ith
m onet happens:

(defn ship-entity [ship]

 (canvas/entity {:x (shape-x ship)

 :y (shape-y ship)

 :angle (shape-angle ship)}

 (fn [value]

 (-> value

 (assoc :x (shape-x ship))

 (assoc :y (shape-y ship))

 (assoc :angle (shape-angle ship))))

 (fn [ctx val]

 (-> ctx

 canvas/save

 (canvas/translate (:x val) (:y val))

 (canvas/rotate (:angle val))

 (canvas/begin-path)

 (canvas/move-to 50 0)

 (canvas/line-to 0 -15)

 (canvas/line-to 0 15)

 (canvas/fill)

 canvas/restore))))

There is quite a bit going on, so let‒s break it dow n.

canvas/entity is a m onet constructor and expects you to provide three argum ents that
describe our ship: its initial x, y coordinates and angle, an update function that gets called
in the draw loop, and a draw function that is responsible for actually draw ing the shape
onto the screen after each update.

The update function is fairly straightforw ard:

(fn [value]

 (-> value

 (assoc :x (shape-x ship))

 (assoc :y (shape-y ship))

 (assoc :angle (shape-angle ship))))

W e sim ply update its attributes to the current values from the ship‒s atom s.

The next function, responsible for draw ing, interacts w ith m onet‒s A PI m ore heavily:

(fn [ctx val]

 (-> ctx

 canvas/save

 (canvas/translate (:x val) (:y val))

 (canvas/rotate (:angle val))

 (canvas/begin-path)

 (canvas/move-to 50 0)

 (canvas/line-to 0 -15)

 (canvas/line-to 0 15)

 (canvas/fill)

 canvas/restore))

W e start by saving the current context so that w e can restore things such as draw ing style
and canvas positioning later. N ext, w e translate the canvas to the ship‒s x,y coordinates
and rotate it according to its angle. W e then start draw ing our shape, a triangle, and finish
by restoring our saved context.

The next function also creates an entity, our bullet:

(declare move-forward!)

(defn make-bullet-entity [monet-canvas key shape]

 (canvas/entity {:x (shape-x shape)

 :y (shape-y shape)

 :angle (shape-angle shape)}

 (fn [value]

 (when (not

 (geom/contained?

 {:x 0 :y 0

 :w (.-width (:canvas monet-canvas))

 :h (.-height (:canvas monet-canvas))}

 {:x (shape-x shape)

 :y (shape-y shape)

 :r 5}))

 (canvas/remove-entity monet-canvas key))

 (move-forward! shape)

 (-> value

 (assoc :x (shape-x shape))

 (assoc :y (shape-y shape))

 (assoc :angle (shape-angle shape))))

 (fn [ctx val]

 (-> ctx

 canvas/save

 (canvas/translate (:x val) (:y val))

 (canvas/rotate (:angle val))

 (canvas/fill-style "red")

 (canvas/circle {:x 10 :y 0 :r 5})

 canvas/restore))))

A s before, let‒s inspect the update and drawing functions. W e‒ll start w ith update:

(fn [value]

 (when (not

 (geom/contained?

 {:x 0 :y 0

 :w (.-width (:canvas monet-canvas))

 :h (.-height (:canvas monet-canvas))}

 {:x (shape-x shape)

 :y (shape-y shape)

 :r 5}))

 (canvas/remove-entity monet-canvas key))

 (move-forward! shape)

 (-> value

 (assoc :x (shape-x shape))

 (assoc :y (shape-y shape))

 (assoc :angle (shape-angle shape))))

B ullets have a little m ore logic in their update function. A s you fire them from the ship,
w e m ight create hundreds of these entities, so it‒s a good practice to get rid of them as
soon as they go off the visible canvas area. That‒s the first thing the function does: it uses
geom/contained? to check w hether the entity is w ithin the dim ensions of the canvas,
rem oving it w hen it isn‒t.

D ifferent from the ship, how ever, bullets don‒t need user input in order to m ove. O nce
fired, they m ove on their ow n. That‒s w hy the next thing w e do is call move-forward! W e
haven‒t im plem ented this function yet, so w e had to declare it beforehand. W e‒ll get to it.

O nce the bullet‒s coordinates and angle have been updated, w e sim ply return the new
entity.

The draw function is a bit sim pler than the ship‒s version m ostly due to its shape being
sim pler; it‒s just a red circle:

(fn [ctx val]

 (-> ctx

 canvas/save

 (canvas/translate (:x val) (:y val))

 (canvas/rotate (:angle val))

 (canvas/fill-style "red")

 (canvas/circle {:x 10 :y 0 :r 5})

 canvas/restore))

N ow , w e‒ll m ove on to the functions responsible for updating our shape‒s coordinates and
angle, starting w ith move!:

(def speed 200)

(defn calculate-x [angle]

 (* speed (/ (* (Math/cos angle)

 Math/PI)

 180)))

(defn calculate-y [angle]

 (* speed (/ (* (Math/sin angle)

 Math/PI)

 180)))

(defn move! [shape f]

 (let [pos (:pos shape)]

 (swap! pos (fn [xy]

 (-> xy

 (update-in [:x]

 #(f % (calculate-x

 (shape-angle shape))))

 (update-in [:y]

 #(f % (calculate-y

 (shape-angle shape)))))))))

To keep things sim ple, both the ship and bullets use the sam e speed value to calculate their
positioning, here defined as 200.

move! takes tw o argum ents: the shape m ap and a function f. This function w ill either be
the + (plus) or the - (m inus) function, depending on w hether w e‒re m oving forw ard or
backw ard, respectively. N ext, it updates the shape‒s x,y coordinates using som e basic
trigonom etry.

If you‒re w ondering w hy w e are passing the plus and m inus functions as argum ents, it‒s
all about not repeating ourselves, as the next tw o functions show :

(defn move-forward! [shape]

 (move! shape +))

(defn move-backward! [shape]

 (move! shape -))

W ith m ovem ent taken care of, the next step is to w rite the rotation functions:

(defn rotate! [shape f]

 (swap! (:angle shape) #(f % (/ (/ Math/PI 3) 20))))

(defn rotate-right! [shape]

 (rotate! shape +))

(defn rotate-left! [shape]

 (rotate! shape -))

So far, w e‒ve got ship m ovem ent covered! B ut w hat good is our ship if w e can‒t fire
bullets? Let‒s m ake sure w e have that covered as w ell:

(defn fire! [monet-canvas ship]

 (let [entity-key (keyword (gensym "bullet"))

 data (shape-data (shape-x ship)

 (shape-y ship)

 (shape-angle ship))

 bullet (make-bullet-entity monet-canvas

 entity-key

 data)]

 (canvas/add-entity monet-canvas entity-key bullet)))

The fire! function takes tw o argum ents: a reference to the gam e canvas and the ship. It
then creates a new bullet by calling make-bullet-entity and adds it to the canvas.

N ote how w e use C lojure‒s gensym function to create a unique key for the new entity. W e
use this key to rem ove an entity from the gam e.

This concludes the code for the entities nam espace.

Tip
gensym is quite heavily used in w riting hygienic m acros as you can be sure that the
generated sym bols w ill not clash w ith any local bindings belonging to the code using the
m acro. M acros are beyond the scope of this book, but you m ight find this series of m acro
exercises useful in the learning process, at https://github.com /leonardoborges/clojure-
m acros-w orkshop.

Putting it all together
W e‒re now ready to assem ble our gam e. G o ahead and open the core nam espace file,
src/cljs/reagi_game/core.cljs, and add the follow ing:

(ns reagi-game.core

 (:require [monet.canvas :as canvas]

 [reagi.core :as r]

 [clojure.set :as set]

 [reagi-game.entities :as entities

 :refer [move-forward! move-backward! rotate-left! rotate-

right! fire!]]))

The follow ing snippet sets up various data structures and references w e‒ll need in order to
develop the gam e:

(def canvas-dom (.getElementById js/document "canvas"))

(def monet-canvas (canvas/init canvas-dom "2d"))

(def ship

 (entities/shape-data (/ (.-width (:canvas monet-canvas)) 2)

 (/ (.-height (:canvas monet-canvas)) 2)

 0))

(def ship-entity (entities/ship-entity ship))

(canvas/add-entity monet-canvas :ship-entity ship-entity)

(canvas/draw-loop monet-canvas)

W e start by creating monet-canvas from a reference to our canvas D O M elem ent. W e
then create our ship data, placing it at the center of the canvas, and add the entity to
monet-canvas. Finally, w e start a draw -loop, w hich w ill handle our anim ations using the
brow ser‒s native capabilities internally it calls window.requestAnimationFrame(), if
available, but it falls back to window.setTimemout() otherw ise.

If you w ere to try the application now , this w ould be enough to draw the ship on the
m iddle of the screen, but nothing else w ould happen as w e haven‒t started handling user
input yet.

A s far as user input goes, w e‒re concerned w ith a few actions:

Ship m ovem ent: rotation, forw ard, and backw ard
Firing the ship‒s gun
Pausing the gam e

To account for these actions, w e‒ll define som e constants that represent the A SC II codes
of the keys involved:

(def UP 38)

(def RIGHT 39)

(def DOWN 40)

(def LEFT 37)

(def FIRE 32) ;; space

(def PAUSE 80) ;; lower-case P

This should look sensible as w e are using the keys traditionally used for these types of
actions.

M odeling user input as event stream s
O ne of the things discussed in the earlier chapters is that if you can think of events as a list
of things that haven‒t happened yet; you can probably m odel it as an event stream . In our
case, this list is com posed by the keys the player presses during the gam e and can be
visualized like so:

There is a catch though. M ost gam es need to handle sim ultaneously pressed keys.

Say you‒re flying the spaceship forw ards. You don‒t w ant to have to stop it in order to
rotate it to the left and then continue m oving forw ards. W hat you w ant is to press left at
the sam e tim e you‒re pressing up and have the ship respond accordingly.

This hints at the fact that w e need to be able to tell w hether the player is currently pressing
m ultiple keys. Traditionally this is done in JavaScript by keeping track of w hich keys are
being held dow n in a m ap-like object, using flags. Som ething sim ilar to the follow ing
snippet:

var keysPressed = {};

document.addEventListener('keydown', function(e) {

 keysPressed[e.keyCode] = true;

}, false);

document.addEventListener('keyup', function(e) {

 keysPressed[e.keyCode] = false;

}, false);

Then, later in the gam e loop, you w ould check w hether there are m ultiple keys being
pressed:

function gameLoop() {

 if (keyPressed[UP] && keyPressed[LEFT]) {

 // update ship position

 }

 // ...

}

W hile this code w orks, it relies on m utating the keysPressed object w hich isn‒t ideal.

A dditionally, w ith a setup sim ilar to the preceding one, the keysPressed object is global
to the application as it is needed both in the keyup/keydown event handlers as w ell as in the
gam e loop itself.

In functional program m ing, w e strive to elim inate or reduce the am ount of global m utable

state in order to w rite readable, m aintainable code that is less error-prone. W e w ill apply
these principles here.

A s seen in the preceding JavaScript exam ple, w e can register callbacks to be notified
w henever a keyup or keydown event happens. This is useful as w e can easily turn them
into event stream s:

(defn keydown-stream []

 (let [out (r/events)]

 (set! (.-onkeydown js/document)

 #(r/deliver out [::down (.-keyCode %)]))

 out))

(defn keyup-stream []

 (let [out (r/events)]

 (set! (.-onkeyup js/document)

 #(r/deliver out [::up (.-keyCode %)]))

 out))

B oth keydown-stream and keyup-stream return a new stream to w hich they deliver events
w henever they happen. Each event is tagged w ith a keyw ord, so w e can easily identify its
type.

W e w ould like to handle both types of events sim ultaneously and as such w e need a w ay
to com bine these tw o stream s into a single one.

There are m any w ays in w hich w e can com bine stream s, for exam ple, using operators
such as zip and flatmap. For this instance, how ever, w e are interested in the merge
operator. merge creates a new stream that em its values from both stream s as they arrive:

This gives us enough to start creating our stream of active keys. B ased on w hat w e have
discussed so far, our stream looks som ething like the follow ing at the m om ent:

(def active-keys-stream

 (->> (r/merge (keydown-stream) (keyup-stream))

 ...

))

To keep track of w hich keys are currently pressed, w e w ill use a C lojureScript set. This
w ay w e don‒t have to w orry about setting flags to true or false w e can sim ply perform
standard set operations and add/rem ove keys from the data structure.

The next thing w e need is a w ay to accum ulate the pressed keys into this set as new events
are em itted from the m erged stream .

In functional program m ing, w henever w e w ish to accum ulate or aggregate som e type of
data over a sequence of values, w e use reduce.

M ost if not all C ES fram ew orks have this function built-in. R xJava calls it scan.
R eagi, on the other hand, calls it reduce, m aking it intuitive to functional program m ers in
general.

That is the function w e w ill use to finish the im plem entation of active-keys-stream:

(def active-keys-stream

 (->> (r/merge (keydown-stream) (keyup-stream))

 (r/reduce (fn [acc [event-type key-code]]

 (condp = event-type

 ::down (conj acc key-code)

 ::up (disj acc key-code)

 acc))

 #{})

 (r/sample 25)))

r/reduce takes three argum ents: a reducing function, an optional initial/seed value, and
the stream to reduce over.

O ur seed value is an em pty set as initially the user hasn‒t yet pressed any keys. Then, our
reducing function checks the event type, rem oving or adding the key from /to the set as
appropriate.

A s a result, w hat w e have is a stream like the one represented as follow s:

W orking w ith the active keys stream
The ground w ork w e‒ve done so far w ill m ake sure w e can easily handle gam e events in a
clean and m aintainable w ay. The m ain idea behind having a stream representing the gam e
keys is that now w e can partition it m uch like w e w ould a norm al list.

For instance, if w e‒re interested in all events w here the key pressed is UP, w e w ould run
the follow ing code:

(->> active-keys-stream

 (r/filter (partial some #{UP}))

 (r/map (fn [_] (.log js/console "Pressed up"))))

Sim ilarly, for events involving the FIRE key, w e could do the follow ing:

(->> active-keys-stream

 (r/filter (partial some #{FIRE}))

 (r/map (fn [_] (.log js/console "Pressed fire"))))

This w orks because in C lojure, sets can be used as predicates. W e can quickly verify this
at the R EPL:

user> (def numbers #{12 13 14})

#'user/numbers

user> (some #{12} numbers)

12

user> (some #{15} numbers)

nil

B y representing the events as a stream , w e can easily operate on them using fam iliar
sequence functions such as map and filter.

W riting code like this, how ever, is a little repetitive. The tw o previous exam ples are pretty
m uch saying som ething along these lines: filter all events m atching a given predicate pred
and then m ap the f function over them . W e can abstract this pattern in a function w e‒ll call
filter-map:

(defn filter-map [pred f & args]

 (->> active-keys-stream

 (r/filter (partial some pred))

 (r/map (fn [_] (apply f args)))))

W ith this helper function in place, it becom es easy to handle our gam e actions:

(filter-map #{FIRE} fire! monet-canvas ship)

(filter-map #{UP} move-forward! ship)

(filter-map #{DOWN} move-backward! ship)

(filter-map #{RIGHT} rotate-right! ship)

(filter-map #{LEFT} rotate-left! ship)

The only thing m issing now is taking care of pausing the anim ations w hen the player
presses the PAUSE key. W e follow the sam e logic as above, but w ith a slight change:

(defn pause! [_]

 (if @(:updating? monet-canvas)

 (canvas/stop-updating monet-canvas)

 (canvas/start-updating monet-canvas)))

(->> active-keys-stream

 (r/filter (partial some #{PAUSE}))

 (r/throttle 100)

 (r/map pause!))

M onet m akes a flag available that tells us w hether it is currently updating the anim ation
state. W e use that as a cheap m echanism to ―pause‖ the gam e.

N ote that active-keys-stream pushes events as they happen so, if a user is holding a
button dow n for any am ount of tim e, w e w ill get m ultiple events for that key. A s such, w e
w ould probably get m ultiple occurrences of the PAUSE key in a very short am ount of tim e.
This w ould cause the gam e to frantically stop/start. In order to prevent this from
happening, w e throttle the filtered stream and ignore all PAUSE events that happen in a
w indow shorter than 100 m illiseconds.

To m ake sure w e didn‒t m iss anything, this is w hat our src/cljs/reagi_game/core.cljs
file should look like, in full:

(ns reagi-game.core

 (:require [monet.canvas :as canvas]

 [reagi.core :as r]

 [clojure.set :as set]

 [reagi-game.entities :as entities

 :refer [move-forward! move-backward! rotate-left! rotate-

right! fire!]]))

(def canvas-dom (.getElementById js/document "canvas"))

(def monet-canvas (canvas/init canvas-dom "2d"))

(def ship (entities/shape-data (/ (.-width (:canvas monet-canvas)) 2)

 (/ (.-height (:canvas monet-canvas)) 2)

 0))

(def ship-entity (entities/ship-entity ship))

(canvas/add-entity monet-canvas :ship-entity ship-entity)

(canvas/draw-loop monet-canvas)

(def UP 38)

(def RIGHT 39)

(def DOWN 40)

(def LEFT 37)

(def FIRE 32) ;; space

(def PAUSE 80) ;; lower-case P

(defn keydown-stream []

 (let [out (r/events)]

 (set! (.-onkeydown js/document) #(r/deliver out [::down (.-keyCode

%)]))

 out))

(defn keyup-stream []

 (let [out (r/events)]

 (set! (.-onkeyup js/document) #(r/deliver out [::up (.-keyCode %)]))

 out))

(def active-keys-stream

 (->> (r/merge (keydown-stream) (keyup-stream))

 (r/reduce (fn [acc [event-type key-code]]

 (condp = event-type

 ::down (conj acc key-code)

 ::up (disj acc key-code)

 acc))

 #{})

 (r/sample 25)))

(defn filter-map [pred f & args]

 (->> active-keys-stream

 (r/filter (partial some pred))

 (r/map (fn [_] (apply f args)))))

(filter-map #{FIRE} fire! monet-canvas ship)

(filter-map #{UP} move-forward! ship)

(filter-map #{DOWN} move-backward! ship)

(filter-map #{RIGHT} rotate-right! ship)

(filter-map #{LEFT} rotate-left! ship)

(defn pause! [_]

 (if @(:updating? monet-canvas)

 (canvas/stop-updating monet-canvas)

 (canvas/start-updating monet-canvas)))

(->> active-keys-stream

 (r/filter (partial some #{PAUSE}))

 (r/throttle 100)

 (r/map pause!))

This com pletes the code and w e‒re now ready to have a look at the results.

If you still have the server running from earlier in this chapter, sim ply exit the R EPL, start
it again, and start the em bedded w eb server:

lein repl

Compiling ClojureScript.

Compiling "dev-resources/public/js/reagi_game.js" from ("src/cljs"

"test/cljs" "dev-resources/tools/repl")...

user=> (run)

2014-06-14 19:21:40.381:INFO:oejs.Server:jetty-7.6.8.v20121106

2014-06-14 19:21:40.403:INFO:oejs.AbstractConnector:Started

SelectChannelConnector@0.0.0.0:3000

#<Server org.eclipse.jetty.server.Server@51f6292b>

This w ill com pile the latest version of our C lojureScript source to JavaScript.

A lternatively, you can leave the R EPL running and sim ply ask cljsbuild to auto-com pile
the source code from another term inal w indow :

lein cljsbuild auto

Compiling "dev-resources/public/js/reagi_game.js" from ("src/cljs"

"test/cljs" "dev-resources/tools/repl")...

Successfully compiled "dev-resources/public/js/reagi_game.js" in 13.23869

seconds.

N ow you can point your brow ser to http://localhost:3000/ and fly around your
spaceship! D on‒t forget to shoot som e bullets as w ell!

R eagi and other C E S fram ew orks
B ack in C hapter 4, Introduction to core.async, w e had an overview of the m ain differences
betw een core.async and C ES. A nother question that m ight have arisen in this chapter is
this: how do w e decide w hich C ES fram ew ork to use?

The answ er is less clear than before and often depends on the specifics of the tool being
looked at. W e have learned about tw o such tools so far: R eactive Extensions
(encom passing R xJS, R xJava, and R xC lojure) and R eagi.

R eactive E xtensions (R x) is a m uch m ore m ature fram ew ork. Its first version for the
.N ET platform w as released in 2011 and the ideas in it have since evolved substantially.

A dditionally, ports for other platform s such as R xJava are being heavily used in
production by big nam es such as N etflix.

A draw back of R x is that if you w ould like to use it both in the brow ser and on the server,
you have to use tw o separate fram ew orks, R xJS and R xJava, respectively. W hile they do
share the sam e A PI, they are different codebases, w hich can incur bugs that m ight have
been solved in one port but not yet in another.

For C lojure developers, it also m eans relying m ore on interoperability to interact w ith the
full A PI of R x.

R eagi, on the other hand, is a new player in this space but builds on the solid foundation
laid out by core.async. It is fully developed in C lojure and solves the in-brow ser/on-
server issue by com piling to both C lojure and C lojureScript.

R eagi also allow s seam less integration w ith core.async via functions such as port and
subscribe, w hich allow channels to be created from event stream s.

M oreover, the use of core.async in C lojureScript applications is becom ing ubiquitous, so
chances are you already have it as a dependency. This m akes R eagi an attractive option for
the tim es w hen w e need a higher level of abstraction than the one provided by
core.async.

Sum m ary
In this chapter, w e learned how w e can use the techniques from reactive program m ing w e
have learned so far in order to w rite code that is cleaner and easier to m aintain. To do so,
w e insisted on thinking about asynchronous events sim ply as lists and saw how that w ay
of thinking lends itself quite easily to being m odeled as an event stream . A ll our gam e has
to do, then, is operate on these stream s using fam iliar sequence processing functions.

W e also learned the basics of R eagi, a fram ew ork for C ES sim ilar to the one w e created in
C hapter 4, Introduction to core.async, but that is m ore feature rich and robust.

In the next chapter, w e w ill take a break from C ES and see how a m ore traditional reactive
approach based on data flow s can be useful.

C hapter 7. T he U I as a Function
So far w e have taken a journey through m anaging com plexity by efficiently handling and
m odeling asynchronous w orkflow s in term s of stream s of data. In particular, C hapter 4,
Introduction to core.async and C hapter 5, C reating Your O w n C ES Fram ew ork w ith
core.async explored w hat‒s involved in libraries that provide prim itives and com binators
for C om positional E vent System s. W e also built a sim ple C lojureScript application that
m ade use of our fram ew ork.

O ne thing you m ight have noticed is that none of the exam ples so far have dealt w ith w hat
happens to the data once w e are ready to present it to our users. It‒s still an open question
that w e, as application developers, need to answ er.

In this chapter, w e w ill look at one w ay to handle R eactive U ser Interfaces in w eb
applications using R eact (see http://facebook.github.io/react/), a m odern JavaScript
fram ew ork developed by Facebook, as w ell as:

Learn how R eact renders user interfaces efficiently
B e introduced to O m , a C lojureScript interface to R eact
Learn how O m leverages persistent data structures for perform ance
D evelop tw o fully w orking C lojureScript applications w ith O m , including the use of
core.async for intercom ponent com m unication

T he problem w ith com plex w eb U Is
W ith the rise of single-page w eb applications, it becam e a m ust to be able to m anage the
grow th and com plexity of a JavaScript codebase. The sam e applies to C lojureScript.

In an effort to m anage this com plexity, a plethora of JavaScript M V C fram ew orks have
em erged such as A ngularJS, B ackbone.js, Em ber.js, and K nockoutJS to nam e a few .

They are very different, but share a few com m on features:

G ive single-page applications m ore structure by providing m odels, view s, controllers,
tem plates, and so on
Provide client-side routing
Tw o-w ay data binding

In this chapter, w e‒ll be focusing on the last goal.

Tw o-w ay data binding is absolutely crucial if w e are to develop even a m oderately
com plex single-page w eb application. H ere‒s how it w orks.

Suppose w e‒re developing a phone book application. M ore than likely, w e w ill have a
m odel or entity, m ap, w hat have you that represents a contact. The contact m odel
m ight have attributes such as nam e, phone num ber, and e-m ail address.

O f course, this application w ould not be all that useful if users couldn‒t update contact
inform ation, so w e w ill need a form w hich displays the current details for a contact and
lets you update the contact‒s inform ation.

The contact m odel m ight have been loaded via an A JA X request and then m ight have used
explicit D O M m anipulation code to display the form . This w ould look som ething like the
follow ing pseudo-code:

function editContact(contactId) {

 contactService.get(contactId, function(data) {

 contactForm.setName(data.name);

 contactForm.setPhone(data.phone);

 contactForm.setEmail(data.email);

 })

}

B ut w hat happens w hen the user updates som eone‒s inform ation? W e need to store it
som ehow . O n clicking on save, a function such as the follow ing w ould do the trick,
assum ing you‒re using jQ uery:

$("save-button").click(function(){

 contactService.update(contactForm.serialize(), function(){

 flashMessage.set("Contact Updated.")

 })

This seem ingly harm less code poses a big problem . The contact m odel for this particular
person is now out of date. If w e w ere still developing w eb applications the old w ay, w here
w e reload the page at every update, this w ouldn‒t be a problem . H ow ever, the w hole point
of single-page w eb applications is to be responsive, so it keeps a lot of state on the client,

and it is im portant to keep our m odels synced w ith our view s.

This is w here tw o-w ay data binding com es in. A n exam ple from A ngularJS w ould look
like the follow ing:

// JS

// in the Controller

$scope.contact = {

 name: 'Leonardo Borges',

 phone '+61 xxx xxx xxx',

 email: 'leonardoborges.rj@gmail.com'

}

<!-- HTML -->

<!-- in the View -->

<form>

 <input type="text" name="contactName" ng-model="contact.name"/>

 <input type="text" name="contactPhone" ng-model="contact.phone"/>

 <input type="text" name="contactEmail" ng-model="contact.email"/>

</form>

A ngular isn‒t the target of this chapter, so I w on‒t dig into the details. A ll w e need to know
from this exam ple is that $scope is how w e tell A ngular to m ake our contact m odel
available to our view s. In the view , the custom attribute ng-model tells A ngular to look up
that property in the scope. This establishes a tw o-w ay relationship in such a w ay that w hen
your m odel data changes in the scope, A ngular refreshes the U I. Sim ilarly, if the user edits
the form , A ngular updates the m odel, keeping everything in sync.

There are, how ever, tw o m ain problem s w ith this approach:

It can be slow . The w ay A ngular and friends im plem ent tw o-w ay data binding is,
roughly speaking, by attaching event handlers and w atchers to view both custom -
attributes and m odel attributes. For com plex enough user interfaces, you w ill start
noticing that the U I becom es slow er to render, dim inishing the user experience.
It relies heavily on m utation. A s functional program m ers, w e strive to lim it side
effects to a m inim um .

The slow ness that com es w ith this and sim ilar approaches is tw o-fold: firstly, A ngularJS
and friends have to ―w atch‖ all properties of every m odel in the scope in order to track
updates. O nce the fram ew ork determ ines that data has changed in the m odel, it then looks
up parts of the U I, w hich depend on that inform ation such as the fragm ents using ng-
model above and then it re-renders them .

Secondly, the D O M is the slow est part of m ost single-page w eb applications. If w e think
about it for a m om ent, these fram ew orks are triggering dozens or perhaps hundreds of
D O M event handlers in order to keep the data in sync, each of w hich ends up updating a
node or several in the D O M .

D on‒t take m y w ord for it though. I ran a sim ple benchm ark to com pare a pure calculation
versus locating a D O M elem ent and updating its value to the result of the said calculation.
H ere are the results I‒ve used JSPerf to run the benchm ark, and these results are for

C hrom e 37.0.2062.94 on M ac O S X M avericks (see http://jsperf.com /purefunctions-vs-
dom):

document.getElementsByName("sum")[0].value = 1 + 2

// Operations per second: 2,090,202

1 + 2

// Operations per second: 780,538,120

U pdating the D O M is orders of m agnitude slow er than perform ing a sim ple calculation. It
seem s logical that w e w ould w ant to do this in the m ost efficient m anner possible.

H ow ever, if w e don‒t keep our data in sync, w e‒re back at square one. There should be a
w ay by w hich w e can drastically reduce the am ount of rendering being done, w hile
retaining the convenience of tw o-w ay data binding. C an w e have our cake and eat it too?

