

An Introduction to Programming in Go
Copyright © 2012 by Caleb Doxsey

All rights reserved. No part of this book may be
reproduced or transmitted in any form or by any
means, electronic or mechanical, including
photocopying, recording, or by any information storage
and retrieval system without the written permission of
the author, except where permitted by law.

ISBN: 978-1478355823

Cover art by Abigail Doxsey Anderson.

Portions of this text are reproduced from work created
and shared by Google and used according to terms
described in the Creative Commons 3.0 Attribution
License.

Contents

1 Getting Started 1

1.1 Files and Folders 2
1.2 The Terminal 5
1.3 Text Editors 9
1.4 Go Tools 13

2 Your First Program 15

2.1 How to Read a Go Program 17
3 Types 23

3.1 Numbers 24
3.2 Strings 29
3.3 Booleans 31

4 Variables 35

4.1 How to Name a Variable 39
4.2 Scope 40
4.3 Constants 43
4.4 Defining Multiple Variables 44
4.5 An Example Program 45

5 Control Structures 47

5.1 For 48
5.2 If 51
5.3 Switch 55

6 Arrays, Slices and Maps 58

6.1 Arrays 58
6.2 Slices 64
6.3 Maps 67

7 Functions 76

7.1 Your Second Function 77
7.2 Returning Multiple Values 82
7.3 Variadic Functions 82

7.4 Closure 84
7.5 Recursion 86
7.6 Defer, Panic & Recover 88

8 Pointers 92

8.1 The * and & operators 93
8.2 new 94

9 Structs and Interfaces 97

9.1 Structs 98
9.2 Methods 101
9.3 Interfaces 104

10 Concurrency 108

10.1 Goroutines 108
10.2 Channels 111

11 Packages 120

11.1 Creating Packages 121
11.2 Documentation 124

12 Testing 127

13 The Core Packages 132

13.1 Strings 132
13.2 Input / Output 134
13.3 Files & Folders 135
13.4 Errors 140
13.5 Containers & Sort 141
13.6 Hashes & Cryptography 144
13.7 Servers 147
13.8 Parsing Command Line Arguments 155
13.9 Synchronization Primitives 156

14 Next Steps 159

14.1 Study the Masters 159
14.2 Make Something 160
14.3 Team Up 161

1 Getting Started

Computer programming is the art, craft and science of
writing programs which define how computers operate.
This book will teach you how to write computer pro-
grams using a programming language designed by
Google named Go.

Go is a general purpose programming language with
advanced features and a clean syntax. Because of its
wide availability on a variety of platforms, its robust
well-documented common library, and its focus on
good software engineering principles, Go is an ideal
language to learn as your first programming language.

The process we use to write software using Go (and
most programming languages) is fairly straightfor-
ward:

1. Gather requirements

2. Find a solution

3. Write source code to implement the solution

1

Getting Started 2

4. Compile the source code into an executable

5. Run and test the program to make sure it works

This process is iterative (meaning its done many
times) and the steps usually overlap. But before we
write our first program in Go there are a few prerequi-
site concepts we need to understand.

1.1 Files and Folders

A file is a collection of data stored as a unit with a
name. Modern operating systems (like Windows or
Mac OSX) contain millions of files which store a large
variety of different types of information – everything
from text documents to executable programs to multi-
media files.

All files are stored in the same way on a computer:
they all have a name, a definite size (measured in
bytes) and an associated type. Typically the file's type
is signified by the file's extension – the part of the file
name that comes after the last .. For example a file
with the name hello.txt has the extension txt which
is used to represent textual data.

Folders (also called directories) are used to group files
together. They can also contain other folders. On Win-

3 Getting Started

dows file and folder paths (locations) are represented
with the \ (backslash) character, for example:
C:\Users\john\example.txt. example.txt is the file
name, it is contained in the folder john, which is itself
contained in the folder Users which is stored on drive C
(which represents the primary physical hard drive in
Windows). On OSX (and most other operating sys-
tems) file and folder paths are represented with the /
(forward slash) character, for example:
/Users/john/example.txt. Like on Windows
example.txt is the file name, it is contained in the
folder john, which is in the folder Users. Unlike Win-
dows, OSX does not specify a drive letter where the file
is stored.

Getting Started 4

Windows

On Windows files and folders can be browsed using
Windows Explorer (accessible by double-clicking “My
Computer” or typing win+e):

5 Getting Started

OSX

On OSX files and folders can be browsed using Finder
(accessible by clicking the Finder icon – the face icon
in the lower left bar):

1.2 The Terminal

Most of the interactions we have with computers today
are through sophisticated graphical user interfaces
(GUIs). We use keyboards, mice and touchscreens to
interact with visual buttons or other types of controls
that are displayed on a screen.

It wasn't always this way. Before the GUI we had the
terminal – a simpler textual interface to the computer

Getting Started 6

where rather than manipulating buttons on a screen
we issued commands and received replies. We had a
conversation with the computer.

And although it might appear that most of the comput-
ing world has left behind the terminal as a relic of the
past, the truth is that the terminal is still the funda-
mental user interface used by most programming lan-
guages on most computers. The Go programming lan-
guage is no different, and so before we write a program
in Go we need to have a rudimentary understanding of
how a terminal works.

Windows

In Windows the terminal (also known as the command
line) can be brought up by typing the windows key + r
(hold down the windows key then press r), typing
cmd.exe and hitting enter. You should see a black win-
dow appear that looks like this:

7 Getting Started

By default the command line starts in your home di-
rectory. (In my case this is C:\Users\caleb) You issue
commands by typing them in and hitting enter. Try
entering the command dir, which lists the contents of
a directory. You should see something like this:

C:\Users\caleb>dir
 Volume in drive C has no label.
 Volume Serial Number is B2F5-F125

Followed by a list of the files and folders contained in
your home directory. You can change directories by us-
ing the command cd. For example you probably have a
folder called Desktop. You can see its contents by en-
tering cd Desktop and then entering dir. To go back to
your home directory you can use the special directory
name .. (two periods next to each other): cd ... A sin-
gle period represents the current folder (known as the
working folder), so cd . doesn't do anything. There are

Getting Started 8

a lot more commands you can use, but this should be
enough to get you started.

OSX

In OSX the terminal can be reached by going to Finder
→ Applications → Utilities → Terminal. You should
see a window like this:

By default the terminal starts in your home directory.
(In my case this is /Users/caleb) You issue commands
by typing them in and hitting enter. Try entering the
command ls, which lists the contents of a directory.
You should see something like this:

9 Getting Started

caleb-min:~ caleb$ ls
Desktop Downloads Movies Pictures
Documents Library Music Public

These are the files and folders contained in your home
directory (in this case there are no files). You can
change directories using the cd command. For example
you probably have a folder called Desktop. You can see
its contents by entering cd Desktop and then entering
ls. To go back to your home directory you can use the
special directory name .. (two periods next to each
other): cd ... A single period represents the current
folder (known as the working folder), so cd . doesn't do
anything. There are a lot more commands you can use,
but this should be enough to get you started.

1.3 Text Editors

The primary tool programmers use to write software is
a text editor. Text editors are similar to word process-
ing programs (Microsoft Word, Open Office, …) but un-
like such programs they don't do any formatting, (No
bold, italic, …) instead they operate only on plain text.
Both OSX and Windows come with text editors but
they are highly limited and I recommend installing a
better one.

To make the installation of this software easier an in-

Getting Started 10

staller is available at the book's website:
http://www.golang-book.com/. This installer will in-
stall the Go tool suite, setup environmental variables
and install a text editor.

Windows

For windows the installer will install the Scite text ed-
itor. You can open it by going to Start → All Programs
→ Go → Scite. You should see something like this:

The text editor contains a large white text area where
text can be entered. To the left of this text area you
can see the line numbers. At the bottom of the window

11 Getting Started

is a status bar which displays information about the
file and your current location in it (right now it says
that we are on line 1, column 1, text is being inserted
normally, and we are using windows-style newlines).

You can open files by going to File → Open and brows-
ing to your desired file. Files can be saved by going to
File → Save or File → Save As.

As you work in a text editor it is useful to learn key-
board shortcuts. The menus list the shortcuts to their
right. Here are a few of the most common:

• Ctrl + S – save the current file
• Ctrl + X – cut the currently selected text (remove it

and put it in your clipboard so it can be pasted later)
• Ctrl + C – copy the currently selected text
• Ctrl + V – paste the text currently in the clipboard
• Use the arrow keys to navigate, Home to go to the

beginning of the line and End to go to the end of the
line

• Hold down shift while using the arrow keys (or
Home and End) to select text without using the
mouse

• Ctrl + F – brings up a find in file dialog that you can
use to search the contents of a file

Getting Started 12

OSX

For OSX the installer installs the Text Wrangler text
editor:

Like Scite on Windows Text Wrangler contains a large
white area where text is entered. Files can be opened
by going to File → Open. Files can be saved by going to
File → Save or File → Save As. Here are some useful
keyboard shortcuts: (Command is the ⌘ key)

13 Getting Started

• Command + S – save the current file
• Command + X – cut the currently selected text (re-

move it and put it in your clipboard so it can be
pasted later)

• Command + C – copy the currently selected text
• Command + V – paste the text currently in the clip-

board
• Use the arrow keys to navigate
• Command + F – brings up a find in file dialog that

you can use to search the contents of a file

1.4 Go Tools

Go is a compiled programming language, which means
source code (the code you write) is translated into a
language that your computer can understand. There-
fore before we can write a Go program, we need the Go
compiler.

The installer will setup Go for you automatically. We
will be using version 1 of the language. (More informa-
tion can be found at http://www.golang.org)

Let's make sure everything is working. Open up a ter-
minal and type the following:

go version

Getting Started 14

You should see the following:

go version go1.0.2

Your version number may be slightly different. If you
get an error about the command not being recognized
try restarting your computer.

The Go tool suite is made up of several different com-
mands and sub-commands. A list of those commands is
available by typing:

go help

We will see how they are used in subsequent chapters.

2 Your First Program

Traditionally the first program you write in any pro-
gramming language is called a “Hello World” program
– a program that simply outputs Hello World to your
terminal. Let's write one using Go.

First create a new folder where we can store our pro-
gram. The installer you used in chapter 1 created a
folder in your home directory named Go. Create a
folder named ~/Go/src/golang-book/chapter2. (Where
~ means your home directory) From the terminal you
can do this by entering the following commands:

mkdir Go/src/golang-book
mkdir Go/src/golang-book/chapter2

Using your text editor type in the following:

15

Your First Program 16

package main

import "fmt"

// this is a comment

func main() {
 fmt.Println("Hello World")
}

Make sure your file is identical to what is shown here
and save it as main.go in the folder we just created.
Open up a new terminal and type in the following:

cd Go/src/golang-book/chapter2
go run main.go

You should see Hello World displayed in your termi-
nal. The go run command takes the subsequent files
(separated by spaces), compiles them into an exe-
cutable saved in a temporary directory and then runs
the program. If you didn't see Hello World displayed
you may have made a mistake when typing in the pro-
gram. The Go compiler will give you hints about where
the mistake lies. Like most compilers, the Go compiler
is extremely pedantic and has no tolerance for mis-
takes.

17 Your First Program

2.1 How to Read a Go Program

Let's look at this program in more detail. Go programs
are read top to bottom, left to right. (like a book) The
first line says this:

package main

This is know as a “package declaration”. Every Go pro-
gram must start with a package declaration. Packages
are Go's way of organizing and reusing code. There are
two types of Go programs: executables and libraries.
Executable applications are the kinds of programs that
we can run directly from the terminal. (in Windows
they end with .exe) Libraries are collections of code
that we package together so that we can use them in
other programs. We will explore libraries in more de-
tail later, for now just make sure to include this line in
any program you write.

The next line is a blank line. Computers represent
newlines with a special character (or several charac-
ters). Newlines, spaces and tabs are known as white-
space (because you can't see them). Go mostly doesn't
care about whitespace, we use it to make programs
easier to read. (You could remove this line and the pro-
gram would behave in exactly the same way)

Your First Program 18

Then we see this:

import "fmt"

The import keyword is how we include code from other
packages to use with our program. The fmt package
(shorthand for format) implements formatting for in-
put and output. Given what we just learned about
packages what do you think the fmt package's files
would contain at the top of them?

Notice that fmt above is surrounded by double quotes.
The use of double quotes like this is known as a “string
literal” which is a type of “expression”. In Go strings
represent a sequence of characters (letters, numbers,
symbols, …) of a definite length. Strings are described
in more detail in the next chapter, but for now the im-
portant thing to keep in mind is that an opening "
character must eventually be followed by another "
character and anything in between the two is included
in the string. (The " character itself is not part of the
string)

The line that starts with // is known as a comment.
Comments are ignored by the Go compiler and are
there for your own sake (or whoever picks up the
source code for your program). Go supports two differ-

19 Your First Program

ent styles of comments: // comments in which all the
text between the // and the end of the line is part of
the comment and /* */ comments where everything
between the *s is part of the comment. (And may in-
clude multiple lines)

After this you see a function declaration:

func main() {
 fmt.Println("Hello World")
}

Functions are the building blocks of a Go program.
They have inputs, outputs and a series of steps called
statements which are executed in order. All functions
start with the keyword func followed by the name of
the function (main in this case), a list of zero or more
“parameters” surrounded by parentheses, an optional
return type and a “body” which is surrounded by curly
braces. This function has no parameters, doesn't re-
turn anything and has only one statement. The name
main is special because it's the function that gets called
when you execute the program.

The final piece of our program is this line:

 fmt.Println("Hello World")

Your First Program 20

This statement is made of three components. First we
access another function inside of the fmt package
called Println (that's the fmt.Println piece, Println
means Print Line). Then we create a new string that
contains Hello World and invoke (also known as call or
execute) that function with the string as the first and
only argument.

At this point we've already seen a lot of new terminol-
ogy and you may be a bit overwhelmed. Sometimes its
helpful to deliberately read your program out loud.
One reading of the program we just wrote might go
like this:

Create a new executable program, which references
the fmt library and contains one function called
main. That function takes no arguments, doesn't re-
turn anything and does the following: Access the
Println function contained inside of the fmt pack-
age and invoke it using one argument – the string
Hello World.

The Println function does the real work in this pro-
gram. You can find out more about it by typing the fol-
lowing in your terminal:

godoc fmt Println

21 Your First Program

Among other things you should see this:

Println formats using the default formats for
its operands and writes to standard output.
Spaces are always added between operands and a
newline is appended. It returns the number of
bytes written and any write error encountered.

Go is a very well documented programming language
but this documentation can be difficult to understand
unless you are already familiar with programming lan-
guages. Nevertheless the godoc command is extremely
useful and a good place to start whenever you have a
question.

Back to the function at hand, this documentation is
telling you that the Println function will send what-
ever you give to it to standard output – a name for the
output of the terminal you are working in. This func-
tion is what causes Hello World to be displayed.

In the next chapter we will explore how Go stores and
represents things like Hello World by learning about
types.

Your First Program 22

Problems

1. What is whitespace?

2. What is a comment? What are the two ways of
writing a comment?

3. Our program began with package main. What
would the files in the fmt package begin with?

4. We used the Println function defined in the fmt
package. If we wanted to use the Exit function
from the os package what would we need to do?

5. Modify the program we wrote so that instead of
printing Hello World it prints Hello, my name
is followed by your name.

3 Types

In the last chapter we used the data type string to
store Hello World. Data types categorize a set of re-
lated values, describe the operations that can be done
on them and define the way they are stored. Since
types can be a difficult concept to grasp we will look at
them from a couple different perspectives before we
see how they are implemented in Go.

Philosophers sometimes make a distinction between
types and tokens. For example suppose you have a dog
named Max. Max is the token (a particular instance or
member) and dog is the type (the general concept).
“Dog” or “dogness” describes a set of properties that all
dogs have in common. Although oversimplistic we
might reason like this: All dogs have 4 legs, Max is a
dog, therefore Max has 4 legs. Types in programming
languages work in a similar way: All strings have a
length, x is a string, therefore x has a length.

In mathematics we often talk about sets. For example:
ℝ (the set of all real numbers) or ℕ (the set of all natu-
ral numbers). Each member of these sets shares prop-

23

Types 24

erties with all the other members of the set. For exam-
ple all natural numbers are associative: “for all natu-
ral numbers a, b, and c, a + (b + c) = (a + b) + c and a ×
(b × c) = (a × b) × c.” In this way sets are similar to
types in programming languages since all the values of
a particular type share certain properties.

Go is a statically typed programming language. This
means that variables always have a specific type and
that type cannot change. Static typing may seem cum-
bersome at first. You'll spend a large amount of your
time just trying to fix your program so that it finally
compiles. But types help us reason about what our pro-
gram is doing and catch a wide variety of common mis-
takes.

Go comes with several built-in data types which we
will now look at in more detail.

3.1 Numbers

Go has several different types to represent numbers.
Generally we split numbers into two different kinds:
integers and floating-point numbers.

Integers

Integers – like their mathematical counterpart – are

25 Types

numbers without a decimal component. (…, -3, -2, -1,
0, 1, …) Unlike the base-10 decimal system we use to
represent numbers, computers use a base-2 binary sys-
tem.

Our system is made up of 10 different digits. Once
we've exhausted our available digits we represent
larger numbers by using 2 (then 3, 4, 5, …) digits put
next to each other. For example the number after 9 is
10, the number after 99 is 100 and so on. Computers
do the same, but they only have 2 digits instead of 10.
So counting looks like this: 0, 1, 10, 11, 100, 101, 110,
111 and so on. The other difference between the num-
ber system we use and the one computers use is that
all of the integer types have a definite size. They only
have room for a certain number of digits. So a 4 bit in-
teger might look like this: 0000, 0001, 0010, 0011,
0100. Eventually we run out of space and most com-
puters just wrap around to the beginning. (Which can
result in some very strange behavior)

Go's integer types are: uint8, uint16, uint32, uint64,
int8, int16, int32 and int64. 8, 16, 32 and 64 tell us
how many bits each of the types use. uint means “un-
signed integer” while int means “signed integer”. Un-
signed integers only contain positive numbers (or
zero). In addition there two alias types: byte which is
the same as uint8 and rune which is the same as

Types 26

int32. Bytes are an extremely common unit of mea-
surement used on computers (1 byte = 8 bits, 1024
bytes = 1 kilobyte, 1024 kilobytes = 1 megabyte, …)
and therefore Go's byte data type is often used in the
definition of other types. There are also 3 machine de-
pendent integer types: uint, int and uintptr. They are
machine dependent because their size depends on the
type of architecture you are using.

Generally if you are working with integers you should
just use the int type.

Floating Point Numbers

Floating point numbers are numbers that contain a
decimal component (real numbers). (1.234, 123.4,
0.00001234, 12340000) Their actual representation on
a computer is fairly complicated and not really neces-
sary in order to know how to use them. So for now we
need only keep the following in mind:

1. Floating point numbers are inexact. Occasion-
ally it is not possible to represent a number. For
example computing 1.01 - 0.99 results in
0.020000000000000018 – A number extremely
close to what we would expect, but not exactly
the same.

27 Types

2. Like integers floating point numbers have a cer-
tain size (32 bit or 64 bit). Using a larger sized
floating point number increases it's precision.
(how many digits it can represent)

3. In addition to numbers there are several other
values which can be represented: “not a num-
ber” (NaN, for things like 0/0) and positive and
negative infinity. (+∞ and −∞)

Go has two floating point types: float32 and float64
(also often referred to as single precision and double
precision respectively) as well as two additional types
for representing complex numbers (numbers with
imaginary parts): complex64 and complex128. Generally
we should stick with float64 when working with float-
ing point numbers.

Example

Let's write an example program using numbers. First
create a folder called chapter3 and make a main.go file
containing the following:

Types 28

package main

import "fmt"

func main() {
 fmt.Println("1 + 1 =", 1 + 1)
}

If you run the program and you should see this:

$ go run main.go
1 + 1 = 2

Notice that this program is very similar to the pro-
gram we wrote in chapter 2. It contains the same pack-
age line, the same import line, the same function dec-
laration and uses the same Println function. This time
instead of printing the string Hello World we print the
string 1 + 1 = followed by the result of the expression
1 + 1. This expression is made up of three parts: the
numeric literal 1 (which is of type int), the + operator
(which represents addition) and another numeric lit-
eral 1. Let's try the same thing using floating point
numbers:

 fmt.Println("1 + 1 =", 1.0 + 1.0)

Notice that we use the .0 to tell Go that this is a float-

29 Types

ing point number instead of an integer. Running this
program will give you the same result as before.

In addition to addition Go has several other operators:

+ addition

- subtraction

* multiplication

/ division

% remainder

3.2 Strings

As we saw in chapter 2 a string is a sequence of char-
acters with a definite length used to represent text. Go
strings are made up of individual bytes, usually one
for each character. (Characters from other languages
like Chinese are represented by more than one byte)

String literals can be created using double quotes
"Hello World" or back ticks `Hello World`. The differ-
ence between these is that double quoted strings can-
not contain newlines and they allow special escape se-
quences. For example \n gets replaced with a newline
and \t gets replaced with a tab character.

Types 30

Several common operations on strings include finding
the length of a string: len("Hello World"), accessing
an individual character in the string: "Hello
World"[1], and concatenating two strings together:
"Hello " + "World". Let's modify the program we cre-
ated earlier to test these out:

package main

import "fmt"

func main() {
 fmt.Println(len("Hello World"))
 fmt.Println("Hello World"[1])
 fmt.Println("Hello " + "World")
}

A few things to notice:

1. A space is also considered a character, so the
string's length is 11 not 10 and the 3rd line has
"Hello " instead of "Hello".

2. Strings are “indexed” starting at 0 not 1. [1]
gives you the 2nd element not the 1st. Also notice
that you see 101 instead of e when you run this
program. This is because the character is repre-
sented by a byte (remember a byte is an
integer).

31 Types

One way to think about indexing would be to
show it like this instead: "Hello World"1. You'd
read that as “The string Hello World sub 1,”
“The string Hello World at 1” or “The second
character of the string Hello World”.

3. Concatenation uses the same symbol as addi-
tion. The Go compiler figures out what to do
based on the types of the arguments. Since both
sides of the + are strings the compiler assumes
you mean concatenation and not addition. (Ad-
dition is meaningless for strings)

3.3 Booleans

A boolean value (named after George Boole) is a spe-
cial 1 bit integer type used to represent true and false
(or on and off). Three logical operators are used with
boolean values:

&& and

|| or

! not

Here is an example program showing how they can be

Types 32

used:

func main() {
 fmt.Println(true && true)
 fmt.Println(true && false)
 fmt.Println(true || true)
 fmt.Println(true || false)
 fmt.Println(!true)
}

Running this program should give you:

$ go run main.go
true
false
true
true
false

We usually use truth tables to define how these opera-
tors work:

Expression Value

true && true true

true && false false

false && true false

false && false false

33 Types

Expression Value

true || true true

true || false true

false || true true

false || false false

Expression Value

!true false

!false true

These are the simplest types included with Go and
form the foundation from which all later types are
built.

Types 34

Problems

1. How are integers stored on a computer?

2. We know that (in base 10) the largest 1 digit
number is 9 and the largest 2 digit number is
99. Given that in binary the largest 2 digit num-
ber is 11 (3), the largest 3 digit number is 111
(7) and the largest 4 digit number is 1111 (15)
what's the largest 8 digit number? (hint: 101-1 =
9 and 102-1 = 99)

3. Although overpowered for the task you can use
Go as a calculator. Write a program that com-
putes 321325 × 424521 and prints it to the ter-
minal. (Use the * operator for multiplication)

4. What is a string? How do you find its length?

5. What's the value of the expression (true &&
false) || (false && true) || !(false &&

false)?

4 Variables

Up until now we have only seen programs that use lit-
eral values (numbers, strings, etc.) but such programs
aren't particularly useful. To make truly useful pro-
grams we need to learn two new concepts: variables
and control flow statements. This chapter will explore
variables in more detail.

A variable is a storage location, with a specific type
and an associated name. Let's change the program we
wrote in chapter 2 so that it uses a variable:

package main

import "fmt"

func main() {
 var x string = "Hello World"
 fmt.Println(x)
}

Notice that the string literal from the original program
still appears in this program, but rather than send it
directly to the Println function we assign it to a vari-

35

Variables 36

able instead. Variables in Go are created by first using
the var keyword, then specifying the variable name (x),
the type (string) and finally assigning a value to the
variable (Hello World). The last step is optional so an
alternative way of writing the program would be like
this:

package main

import "fmt"

func main() {
 var x string
 x = "Hello World"
 fmt.Println(x)
}

Variables in Go are similar to variables in algebra but
there are some subtle differences:

First when we see the = symbol we have a tendency to
read that as “x equals the string Hello World”. There's
nothing wrong with reading our program that way, but
it's better to read it as “x takes the string Hello World”
or “x is assigned the string Hello World”. This distinc-
tion is important because (as their name would sug-
gest) variables can change their value throughout the
lifetime of a program. Try running the following:

37 Variables

package main

import "fmt"

func main() {
 var x string
 x = "first"
 fmt.Println(x)
 x = "second"
 fmt.Println(x)
}

In fact you can even do this:

var x string
x = "first "
fmt.Println(x)
x = x + "second"
fmt.Println(x)

This program would be nonsense if you read it like an
algebraic theorem. But it makes sense if you are care-
ful to read the program as a list of commands. When
we see x = x + "second" we should read it as “assign
the concatenation of the value of the variable x and the
string literal second to the variable x.” The right side
of the = is done first and the result is then assigned to
the left side of the =.

The x = x + y form is so common in programming that

Variables 38

Go has a special assignment statement: +=. We could
have written x = x + "second" as x += "second" and it
would have done the same thing. (Other operators can
be used the same way)

Another difference between Go and algebra is that we
use a different symbol for equality: ==. (Two equal
signs next to each other) == is an operator like + and it
returns a boolean. For example:

 var x string = "hello"
 var y string = "world"
 fmt.Println(x == y)

This program should print false because hello is not
the same as world. On the other hand:

 var x string = "hello"
 var y string = "hello"
 fmt.Println(x == y)

This will print true because the two strings are the
same.

Since creating a new variable with a starting value is
so common Go also supports a shorter statement:

39 Variables

 x := "Hello World"

Notice the : before the = and that no type was speci-
fied. The type is not necessary because the Go compiler
is able to infer the type based on the literal value you
assign the variable. (Since you are assigning a string
literal, x is given the type string) The compiler can
also do inference with the var statement:

 var x = "Hello World"

The same thing works for other types:

 x := 5
 fmt.Println(x)

Generally you should use this shorter form whenever
possible.

4.1 How to Name a Variable

Naming a variable properly is an important part of
software development. Names must start with a letter
and may contain letters, numbers or the _ (underscore)
symbol. The Go compiler doesn't care what you name a
variable so the name is meant for your (and others)

Variables 40

benefit. Pick names which clearly describe the vari-
able's purpose. Suppose we had the following:

 x := "Max"
 fmt.Println("My dog's name is", x)

In this case x is not a very good name for a variable. A
better name would be:

 name := "Max"
 fmt.Println("My dog's name is", name)

or even:

 dogsName := "Max"
 fmt.Println("My dog's name is", dogsName)

In this last case we use a special way to represent mul-
tiple words in a variable name known as lower camel
case (also know as mixed case, bumpy caps, camel
back or hump back). The first letter of the first word is
lowercase, the first letter of the subsequent words is
uppercase and all the other letters are lowercase.

4.2 Scope

Going back to the program we saw at the beginning of

41 Variables

the chapter:

package main

import "fmt"

func main() {
 var x string = "Hello World"
 fmt.Println(x)
}

Another way of writing this program would be like
this:

package main

import "fmt"

var x string = "Hello World"

func main() {
 fmt.Println(x)
}

Notice that we moved the variable outside of the main
function. This means that other functions can access
this variable:

Variables 42

var x string = "Hello World"

func main() {
 fmt.Println(x)
}

func f() {
 fmt.Println(x)
}

The f function now has access to the x variable. Now
suppose that we wrote this instead:

func main() {
 var x string = "Hello World"
 fmt.Println(x)
}

func f() {
 fmt.Println(x)
}

If you run this program you should see an error:

.\main.go:11: undefined: x

The compiler is telling you that the x variable inside of
the f function doesn't exist. It only exists inside of the
main function. The range of places where you are al-
lowed to use x is called the scope of the variable. Ac-

43 Variables

cording to the language specification “Go is lexically
scoped using blocks”. Basically this means that the
variable exists within the nearest curly braces { } (a
block) including any nested curly braces (blocks), but
not outside of them. Scope can be a little confusing at
first; as we see more Go examples it should become
more clear.

4.3 Constants

Go also has support for constants. Constants are basi-
cally variables whose values cannot be changed later.
They are created in the same way you create variables
but instead of using the var keyword we use the const
keyword:

package main

import "fmt"

func main() {
 const x string = "Hello World"
 fmt.Println(x)
}

This:

Variables 44

 const x string = "Hello World"
 x = "Some other string"

Results in a compile-time error:

.\main.go:7: cannot assign to x

Constants are a good way to reuse common values in a
program without writing them out each time. For ex-
ample Pi in the math package is defined as a constant.

4.4 Defining Multiple Variables

Go also has another shorthand when you need to de-
fine multiple variables:

var (
 a = 5
 b = 10
 c = 15
)

Use the keyword var (or const) followed by parenthe-
ses with each variable on its own line.

45 Variables

4.5 An Example Program

Here's an example program which takes in a number
entered by the user and doubles it:

package main

import "fmt"

func main() {
fmt.Print("Enter a number: ")
var input float64
fmt.Scanf("%f", &input)

output := input * 2

fmt.Println(output)
}

We use another function from the fmt package to read
the user input (Scanf). &input will be explained in a
later chapter, for now all we need to know is that Scanf
fills input with the number we enter.

Variables 46

Problems

1. What are two ways to create a new variable?

2. What is the value of x after running:
x := 5; x += 1?

3. What is scope and how do you determine the
scope of a variable in Go?

4. What is the difference between var and const?

5. Using the example program as a starting point,
write a program that converts from Fahrenheit
into Celsius. (C = (F - 32) * 5/9)

6. Write another program that converts from feet
into meters. (1 ft = 0.3048 m)

5 Control Structures

Now that we know how to use variables it's time to
start writing some useful programs. First let's write a
program that counts to 10, starting from 1, with each
number on its own line. Using what we've learned so
far we could write this:

package main

import "fmt"

func main() {
 fmt.Println(1)
 fmt.Println(2)
 fmt.Println(3)
 fmt.Println(4)
 fmt.Println(5)
 fmt.Println(6)
 fmt.Println(7)
 fmt.Println(8)
 fmt.Println(9)
 fmt.Println(10)
}

Or this:

47

Control Structures 48

package main
import "fmt"

func main() {
 fmt.Println(`1
2
3
4
5
6
7
8
9
10`)
}

But both of these programs are pretty tedious to write.
What we need is a way of doing something multiple
times.

5.1 For

The for statement allows us to repeat a list of state-
ments (a block) multiple times. Rewriting our previous
program using a for statement looks like this:

49 Control Structures

package main

import "fmt"

func main() {
 i := 1
 for i <= 10 {
 fmt.Println(i)
 i = i + 1
 }
}

First we create a variable called i that we use to store
the number we want to print. Then we create a for
loop by using the keyword for, providing a conditional
expression which is either true or false and finally
supplying a block to execute. The for loop works like
this:

1. We evaluate (run) the expression i <= 10 (“i less
than or equal to 10”). If this evaluates to true
then we run the statements inside of the block.
Otherwise we jump to the next line of our pro-
gram after the block. (in this case there is noth-
ing after the for loop so we exit the program)

2. After we run the statements inside of the block
we loop back to the beginning of the for state-
ment and repeat step 1.

Control Structures 50

The i = i + 1 line is extremely important, because
without it i <= 10 would always evaluate to true and
our program would never stop. (When this happens
this is referred to as an infinite loop)

As an exercise lets walk through the program like a
computer would:

• Create a variable named i with the value 1

• Is i <= 10? Yes.

• Print i

• Set i to i + 1 (i now equals 2)

• Is i <= 10? Yes.

• Print i

• Set i to i + 1 (i now equals 3)

• …
• Set i to i + 1 (i now equals 11)

• Is i <= 10? No.

• Nothing left to do, so exit

Other programming languages have a lot of different
types of loops (while, do, until, foreach, …) but Go only
has one that can be used in a variety of different ways.
The previous program could also have been written
like this:

51 Control Structures

func main() {
 for i := 1; i <= 10; i++ {
 fmt.Println(i)
 }
}

Now the conditional expression also contains two other
statements with semicolons between them. First we
have the variable initialization, then we have the con-
dition to check each time and finally we “increment”
the variable. (adding 1 to a variable is so common that
we have a special operator: ++. Similarly subtracting 1
can be done with --)

We will see additional ways of using the for loop in
later chapters.

5.2 If

Let's modify the program we just wrote so that instead
of just printing the numbers 1-10 on each line it also
specifies whether or not the number is even or odd.
Like this:

Control Structures 52

1 odd
2 even
3 odd
4 even
5 odd
6 even
7 odd
8 even
9 odd
10 even

First we need a way of determining whether or not a
number is even or odd. An easy way to tell is to divide
the number by 2. If you have nothing left over then the
number is even, otherwise it's odd. So how do we find
the remainder after division in Go? We use the % oper-
ator. 1 % 2 equals 1, 2 % 2 equals 0, 3 % 2 equals 1 and
so on.

Next we need a way of choosing to do different things
based on a condition. For that we use the if state-
ment:

if i % 2 == 0 {
 // even
} else {
 // odd
}

An if statement is similar to a for statement in that it

53 Control Structures

has a condition followed by a block. If statements also
have an optional else part. If the condition evaluates
to true then the block after the condition is run, other-
wise either the block is skipped or if the else block is
present that block is run.

If statements can also have else if parts:

if i % 2 == 0 {
 // divisible by 2
} else if i % 3 == 0 {
 // divisible by 3
} else if i % 4 == 0 {
 // divisible by 4
}

The conditions are checked top down and the first one
to result in true will have its associated block exe-
cuted. None of the other blocks will execute, even if
their conditions also pass. (So for example the number
8 is divisible by both 4 and 2, but the // divisible by
4 block will never execute because the // divisible by
2 block is done first)

Putting it all together we have:

Control Structures 54

func main() {
 for i := 1; i <= 10; i++ {

 if i % 2 == 0 {
 fmt.Println(i, "even")
 } else {
 fmt.Println(i, "odd")
 }
 }
}

Let's walk through this program:

• Create a variable i of type int and give it the value 1

• Is i less than or equal to 10? Yes: jump to the block

• Is the remainder of i ÷ 2 equal to 0? No: jump to the
else block

• Print i followed by odd

• Increment i (the statement after the condition)

• Is i less than or equal to 10? Yes: jump to the block

• Is the remainder of i ÷ 2 equal to 0? Yes: jump to the
if block

• Print i followed by even

• …

The remainder operator, while rarely seen outside of
elementary school, turns out to be really useful when
programming. You'll see it turn up everywhere from
zebra striping tables to partitioning data sets.

55 Control Structures

5.3 Switch

Suppose we wanted to write a program that printed
the English names for numbers. Using what we've
learned so far we might start by doing this:

if i == 0 {
 fmt.Println("Zero")
} else if i == 1 {
 fmt.Println("One")
} else if i == 2 {
 fmt.Println("Two")
} else if i == 3 {
 fmt.Println("Three")
} else if i == 4 {
 fmt.Println("Four")
} else if i == 5 {
 fmt.Println("Five")
}

Since writing a program in this way would be pretty
tedious Go provides another statement to make this
easier: the switch statement. We can rewrite our pro-
gram to look like this:

Control Structures 56

switch i {
case 0: fmt.Println("Zero")
case 1: fmt.Println("One")
case 2: fmt.Println("Two")
case 3: fmt.Println("Three")
case 4: fmt.Println("Four")
case 5: fmt.Println("Five")
default: fmt.Println("Unknown Number")
}

A switch statement starts with the keyword switch fol-
lowed by an expression (in this case i) and then a se-
ries of cases. The value of the expression is compared
to the expression following each case keyword. If they
are equivalent then the statement(s) following the : is
executed.

Like an if statement each case is checked top down
and the first one to succeed is chosen. A switch also
supports a default case which will happen if none of
the cases matches the value. (Kind of like the else in
an if statement)

These are the main control flow statements. Additional
statements will be explored in later chapters.

57 Control Structures

Problems

1. What does the following program print:

i := 10
if i > 10 {
 fmt.Println("Big")
} else {
 fmt.Println("Small")
}

2. Write a program that prints out all the numbers
evenly divisible by 3 between 1 and 100. (3, 6, 9,
etc.)

3. Write a program that prints the numbers from 1
to 100. But for multiples of three print "Fizz" in-
stead of the number and for the multiples of five
print "Buzz". For numbers which are multiples
of both three and five print "FizzBuzz".

6 Arrays, Slices and Maps

In chapter 3 we learned about Go's basic types. In this
chapter we will look at three more built-in types: ar-
rays, slices and maps.

6.1 Arrays

An array is a numbered sequence of elements of a sin-
gle type with a fixed length. In Go they look like this:

var x [5]int

x is an example of an array which is composed of 5
ints. Try running the following program:

58

59 Arrays, Slices and Maps

package main

import "fmt"

func main() {
var x [5]int
x[4] = 100
fmt.Println(x)

}

You should see this:

[0 0 0 0 100]

x[4] = 100 should be read “set the 5th element of the
array x to 100”. It might seem strange that x[4] repre-
sents the 5th element instead of the 4th but like strings,
arrays are indexed starting from 0. Arrays are ac-
cessed in a similar way. We could change
fmt.Println(x) to fmt.Println(x[4]) and we would get
100.

Here's an example program that uses arrays:

Arrays, Slices and Maps 60

func main() {
var x [5]float64
x[0] = 98
x[1] = 93
x[2] = 77
x[3] = 82
x[4] = 83

var total float64 = 0
for i := 0; i < 5; i++ {

total += x[i]
}
fmt.Println(total / 5)

}

This program computes the average of a series of test
scores. If you run it you should see 86.6. Let's walk
through the program:

• First we create an array of length 5 to hold our test
scores, then we fill up each element with a grade

• Next we setup a for loop to compute the total score
• Finally we divide the total score by the number of el-

ements to find the average

This program works, but Go provides some features we
can use to improve it. First these 2 parts: i < 5 and
total / 5 should throw up a red flag for us. Say we

61 Arrays, Slices and Maps

changed the number of grades from 5 to 6. We would
also need to change both of these parts. It would be
better to use the length of the array instead:

var total float64 = 0
for i := 0; i < len(x); i++ {

total += x[i]
}
fmt.Println(total / len(x))

Go ahead and make these changes and run the pro-
gram. You should get an error:

$ go run tmp.go
command-line-arguments
.\tmp.go:19: invalid operation: total / 5
(mismatched types float64 and int)

The issue here is that len(x) and total have different
types. total is a float64 while len(x) is an int. So we
need to convert len(x) into a float64:

fmt.Println(total / float64(len(x)))

This is an example of a type conversion. In general to
convert between types you use the type name like a
function.

Arrays, Slices and Maps 62

Another change to the program we can make is to use
a special form of the for loop:

var total float64 = 0
for i, value := range x {

total += value
}
fmt.Println(total / float64(len(x)))

In this for loop i represents the current position in the
array and value is the same as x[i]. We use the key-
word range followed by the name of the variable we
want to loop over.

Running this program will result in another error:

$ go run tmp.go
command-line-arguments
.\tmp.go:16: i declared and not used

The Go compiler won't allow you to create variables
that you never use. Since we don't use i inside of our
loop we need to change it to this:

63 Arrays, Slices and Maps

var total float64 = 0
for _, value := range x {

total += value
}
fmt.Println(total / float64(len(x)))

A single _ (underscore) is used to tell the compiler that
we don't need this. (In this case we don't need the iter-
ator variable)

Go also provides a shorter syntax for creating arrays:

x := [5]float64{ 98, 93, 77, 82, 83 }

We no longer need to specify the type because Go can
figure it out. Sometimes arrays like this can get too
long to fit on one line, so Go allows you to break it up
like this:

x := [5]float64{
98,
93,
77,
82,
83,

}

Notice the extra trailing , after 83. This is required by

Arrays, Slices and Maps 64

Go and it allows us to easily remove an element from
the array by commenting out the line:

x := [4]float64{
98,
93,
77,
82,
// 83,

}

This example illustrates a major issue with arrays:
their length is fixed and part of the array's type name.
In order to remove the last item, we actually had to
change the type as well. Go's solution to this problem
is to use a different type: slices.

6.2 Slices

A slice is a segment of an array. Like arrays slices are
indexable and have a length. Unlike arrays this length
is allowed to change. Here's an example of a slice:

 var x []float64

The only difference between this and an array is the
missing length between the brackets. In this case x
has been created with a length of 0.

65 Arrays, Slices and Maps

If you want to create a slice you should use the built-in
make function:

x := make([]float64, 5)

This creates a slice that is associated with an underly-
ing float64 array of length 5. Slices are always associ-
ated with some array, and although they can never be
longer than the array, they can be smaller. The make
function also allows a 3rd parameter:

x := make([]float64, 5, 10)

10 represents the capacity of the underlying array
which the slice points to:

Another way to create slices is to use the [low : high]
expression:

arr := []float64{1,2,3,4,5}
x := arr[0:5]

Arrays, Slices and Maps 66

low is the index of where to start the slice and high is
the index where to end it (but not including the index
itself). For example while arr[0:5] returns
[1,2,3,4,5], arr[1:4] returns [2,3,4].

For convenience we are also allowed to omit low, high
or even both low and high. arr[0:] is the same as
arr[0:len(arr)], arr[:5] is the same as arr[0:5] and
arr[:] is the same as arr[0:len(arr)].

Slice Functions

Go includes two built-in functions to assist with slices:
append and copy. Here is an example of append:

func main() {
slice1 := []int{1,2,3}
slice2 := append(slice1, 4, 5)
fmt.Println(slice1, slice2)

}

After running this program slice1 has [1,2,3] and
slice2 has [1,2,3,4,5]. append creates a new slice by
taking an existing slice (the first argument) and ap-
pending all the following arguments to it.

Here is an example of copy:

67 Arrays, Slices and Maps

func main() {
slice1 := []int{1,2,3}
slice2 := make([]int, 2)
copy(slice2, slice1)
fmt.Println(slice1, slice2)

}

After running this program slice1 has [1,2,3] and
slice2 has [1,2]. The contents of slice1 are copied
into slice2, but since slice2 has room for only two ele-
ments only the first two elements of slice1 are copied.

6.3 Maps

A map is an unordered collection of key-value pairs.
Also known as an associative array, a hash table or a
dictionary, maps are used to look up a value by its as-
sociated key. Here's an example of a map in Go:

var x map[string]int

The map type is represented by the keyword map, fol-
lowed by the key type in brackets and finally the value
type. If you were to read this out loud you would say “x
is a map of strings to ints.”

Like arrays and slices maps can be accessed using
brackets. Try running the following program:

Arrays, Slices and Maps 68

var x map[string]int
x["key"] = 10
fmt.Println(x)

You should see an error similar to this:

panic: runtime error: assignment to entry in nil
map

goroutine 1 [running]:
main.main()
 main.go:7 +0x4d

goroutine 2 [syscall]:
created by runtime.main

C:/Users/ADMINI~1/AppData/Local/Temp/2/bindi
t269497170/go/src/pkg/runtime/proc.c:221
exit status 2

Up till now we have only seen compile-time errors.
This is an example of a runtime error. As the name
would imply, runtime errors happen when you run the
program, while compile-time errors happen when you
try to compile the program.

The problem with our program is that maps have to be
initialized before they can be used. We should have
written this:

69 Arrays, Slices and Maps

x := make(map[string]int)
x["key"] = 10
fmt.Println(x["key"])

If you run this program you should see 10 displayed.
The statement x["key"] = 10 is similar to what we
saw with arrays but the key, instead of being an inte-
ger, is a string because the map's key type is string.
We can also create maps with a key type of int:

x := make(map[int]int)
x[1] = 10
fmt.Println(x[1])

This looks very much like an array but there are a few
differences. First the length of a map (found by doing
len(x)) can change as we add new items to it. When
first created it has a length of 0, after x[1] = 10 it has
a length of 1. Second maps are not sequential. We have
x[1], and with an array that would imply there must
be an x[0], but maps don't have this requirement.

We can also delete items from a map using the built-in
delete function:

delete(x, 1)

Arrays, Slices and Maps 70

Let's look at an example program that uses a map:

package main

import "fmt"

func main() {
elements := make(map[string]string)
elements["H"] = "Hydrogen"
elements["He"] = "Helium"
elements["Li"] = "Lithium"
elements["Be"] = "Beryllium"
elements["B"] = "Boron"
elements["C"] = "Carbon"
elements["N"] = "Nitrogen"
elements["O"] = "Oxygen"
elements["F"] = "Fluorine"
elements["Ne"] = "Neon"

fmt.Println(elements["Li"])
}

elements is a map that represents the first 10 chemical
elements indexed by their symbol. This is a very com-
mon way of using maps: as a lookup table or a dictio-
nary. Suppose we tried to look up an element that
doesn't exist:

fmt.Println(elements["Un"])

If you run this you should see nothing returned. Tech-

71 Arrays, Slices and Maps

nically a map returns the zero value for the value type
(which for strings is the empty string). Although we
could check for the zero value in a condition
(elements["Un"] == "") Go provides a better way:

name, ok := elements["Un"]
fmt.Println(name, ok)

Accessing an element of a map can return two values
instead of just one. The first value is the result of the
lookup, the second tells us whether or not the lookup
was successful. In Go we often see code like this:

if name, ok := elements["Un"]; ok {
fmt.Println(name, ok)

}

First we try to get the value from the map, then if it's
successful we run the code inside of the block.

Like we saw with arrays there is also a shorter way to
create maps:

Arrays, Slices and Maps 72

elements := map[string]string{
"H": "Hydrogen",
"He": "Helium",
"Li": "Lithium",
"Be": "Beryllium",
"B": "Boron",
"C": "Carbon",
"N": "Nitrogen",
"O": "Oxygen",
"F": "Fluorine",
"Ne": "Neon",

}

Maps are also often used to store general information.
Let's modify our program so that instead of just stor-
ing the name of the element we store its standard
state (state at room temperature) as well:

func main() {
elements := map[string]map[string]string{

"H": map[string]string{
"name":"Hydrogen",
"state":"gas",

},
"He": map[string]string{

"name":"Helium",
"state":"gas",

},
"Li": map[string]string{

"name":"Lithium",
"state":"solid",

},

73 Arrays, Slices and Maps

"Be": map[string]string{
"name":"Beryllium",
"state":"solid",

},
"B": map[string]string{

"name":"Boron",
"state":"solid",

},
"C": map[string]string{

"name":"Carbon",
"state":"solid",

},
"N": map[string]string{

"name":"Nitrogen",
"state":"gas",

},
"O": map[string]string{

"name":"Oxygen",
"state":"gas",

},
"F": map[string]string{

"name":"Fluorine",
"state":"gas",

},
"Ne": map[string]string{

"name":"Neon",
"state":"gas",

},
}

if el, ok := elements["Li"]; ok {
fmt.Println(el["name"], el["state"])

}
}

Notice that the type of our map has changed from

Arrays, Slices and Maps 74

map[string]string to map[string]map[string]string.
We now have a map of strings to maps of strings to
strings. The outer map is used as a lookup table based
on the element's symbol, while the inner maps are
used to store general information about the elements.
Although maps are often used like this, in chapter 9
we will see a better way to store structured informa-
tion.

75 Arrays, Slices and Maps

Problems

1. How do you access the 4th element of an array or
slice?

2. What is the length of a slice created using:
make([]int, 3, 9)?

3. Given the array:

x := [6]string{"a","b","c","d","e","f"}

what would x[2:5] give you?

4. Write a program that finds the smallest number
in this list:

x := []int{
 48,96,86,68,
 57,82,63,70,
 37,34,83,27,
 19,97, 9,17,
}

7 Functions

A function is an independent section of code that maps
zero or more input parameters to zero or more output
parameters. Functions (also known as procedures or
subroutines) are often represented as a black box: (the
black box represents the function)

Until now the programs we have written in Go have
used only one function:

func main() {}

We will now begin writing programs that use more
than one function.

76

77 Functions

7.1 Your Second Function

Remember this program from chapter 6:

func main() {
xs := []float64{98,93,77,82,83}

total := 0.0
for _, v := range xs {

total += v
}
fmt.Println(total / float64(len(xs)))

}

This program computes the average of a series of num-
bers. Finding the average like this is a very general
problem, so its an ideal candidate for definition as a
function.

The average function will need to take in a slice of
float64s and return one float64. Insert this before the
main function:

func average(xs []float64) float64 {
panic("Not Implemented")

}

Functions start with the keyword func, followed by the
function's name. The parameters (inputs) of the func-

Functions 78

tion are defined like this: name type, name type, ….
Our function has one parameter (the list of scores) that
we named xs. After the parameters we put the return
type. Collectively the parameters and the return type
are known as the function's signature.

Finally we have the function body which is a series of
statements between curly braces. In this body we in-
voke a built-in function called panic which causes a
run time error. (We'll see more about panic later in
this chapter) Writing functions can be difficult so it's a
good idea to break the process into manageable
chunks, rather than trying to implement the entire
thing in one large step.

Now lets take the code from our main function and
move it into our average function:

func average(xs []float64) float64 {
total := 0.0
for _, v := range xs {

total += v
}
return total / float64(len(xs))

}

Notice that we changed the fmt.Println to be a return
instead. The return statement causes the function to
immediately stop and return the value after it to the

79 Functions

function that called this one. Modify main to look like
this:

func main() {
xs := []float64{98,93,77,82,83}
fmt.Println(average(xs))

}

Running this program should give you exactly the
same result as the original. A few things to keep in
mind:

• The names of the parameters don't have to match in
the calling function. For example we could have done
this:

func main() {
someOtherName := []float64{98,93,77,82,83}
fmt.Println(average(someOtherName))

}

And our program would still work.

• Functions don't have access to anything in the call-
ing function. This won't work:

Functions 80

func f() {
fmt.Println(x)

}
func main() {

x := 5
f()

}

We need to either do this:

func f(x int) {
fmt.Println(x)

}
func main() {

x := 5
f(x)

}

Or this:

var x int = 5
func f() {

fmt.Println(x)
}
func main() {

f()
}

• Functions are built up in a “stack”. Suppose we had
this program:

81 Functions

func main() {
fmt.Println(f1())

}
func f1() int {

return f2()
}
func f2() int {

return 1
}

We could visualize it like this:

Each time we call a function we push it onto the call
stack and each time we return from a function we
pop the last function off of the stack.

• We can also name the return type:

func f2() (r int) {
 r = 1
 return
}

Functions 82

7.2 Returning Multiple Values

Go is also capable of returning multiple values from a
function:

func f() (int, int) {
return 5, 6

}

func main() {
x, y := f()

}

Three changes are necessary: change the return type
to contain multiple types separated by ,, change the
expression after the return so that it contains multiple
expressions separated by , and finally change the as-
signment statement so that multiple values are on the
left side of the := or =.

Multiple values are often used to return an error value
along with the result (x, err := f()), or a boolean to
indicate success (x, ok := f()).

7.3 Variadic Functions

There is a special form available for the last parameter
in a Go function:

83 Functions

func add(args ...int) int {
total := 0
for _, v := range args {

total += v
}
return total

}
func main() {

fmt.Println(add(1,2,3))
}

By using ... before the type name of the last parame-
ter you can indicate that it takes zero or more of those
parameters. In this case we take zero or more ints. We
invoke the function like any other function except we
can pass as many ints as we want.

This is precisely how the fmt.Println function is im-
plemented:

func Println(a ...interface{}) (n int, err
error)

The Println function takes any number of values of
any type. (The special interface{} type will be dis-
cussed in more detail in chapter 9)

We can also pass a slice of ints by following the slice
with ...:

Functions 84

func main() {
xs := []int{1,2,3}
fmt.Println(add(xs...))

}

7.4 Closure

It is possible to create functions inside of functions:

func main() {
add := func(x, y int) int {

return x + y
}
fmt.Println(add(1,1))

}

add is a local variable that has the type func(int, int)
int (a function that takes two ints and returns an
int). When you create a local function like this it also
has access to other local variables (remember scope
from chapter 4):

85 Functions

func main() {
x := 0
increment := func() int {

x++
return x

}
fmt.Println(increment())
fmt.Println(increment())

}

increment adds 1 to the variable x which is defined in
the main function's scope. This x variable can be ac-
cessed and modified by the increment function. This is
why the first time we call increment we see 1 dis-
played, but the second time we call it we see 2 dis-
played.

A function like this together with the non-local vari-
ables it references is known as a closure. In this case
increment and the variable x form the closure.

One way to use closure is by writing a function which
returns another function which – when called – can
generate a sequence of numbers. For example here's
how we might generate all the even numbers:

Functions 86

func makeEvenGenerator() func() uint {
i := uint(0)
return func() (ret uint) {

ret = i
i += 2
return

}
}
func main() {

nextEven := makeEvenGenerator()
fmt.Println(nextEven()) // 0
fmt.Println(nextEven()) // 2
fmt.Println(nextEven()) // 4

}

makeEvenGenerator returns a function which generates
even numbers. Each time it's called it adds 2 to the lo-
cal i variable which – unlike normal local variables –
persists between calls.

7.5 Recursion

Finally a function is able to call itself. Here is one way
to compute the factorial of a number:

87 Functions

func factorial(x uint) uint {
if x == 0 {

return 1
}

return x * factorial(x-1)
}

factorial calls itself, which is what makes this func-
tion recursive. In order to better understand how this
function works, lets walk through factorial(2):

• Is x == 0? No. (x is 2)

• Find the factorial of x – 1

• Is x == 0? No. (x is 1)

• Find the factorial of x – 1

• Is x == 0? Yes, return 1.

• return 1 * 1

• return 2 * 1

Closure and recursion are powerful programming tech-
niques which form the basis of a paradigm known as
functional programming. Most people will find func-
tional programming more difficult to understand than
an approach based on for loops, if statements, vari-
ables and simple functions.

Functions 88

7.6 Defer, Panic & Recover

Go has a special statement called defer which sched-
ules a function call to be run after the function com-
pletes. Consider the following example:

package main

import "fmt"

func first() {
fmt.Println("1st")

}
func second() {

fmt.Println("2nd")
}
func main() {

defer second()
first()

}

This program prints 1st followed by 2nd. Basically de-
fer moves the call to second to the end of the function:

func main() {
 first()
 second()
}

defer is often used when resources need to be freed in
some way. For example when we open a file we need to

89 Functions

make sure to close it later. With defer:

f, _ := os.Open(filename)
defer f.Close()

This has 3 advantages: (1) it keeps our Close call near
our Open call so its easier to understand, (2) if our func-
tion had multiple return statements (perhaps one in
an if and one in an else) Close will happen before
both of them and (3) deferred functions are run even if
a run-time panic occurs.

Panic & Recover

Earlier we created a function that called the panic
function to cause a run time error. We can handle a
run-time panic with the built-in recover function.
recover stops the panic and returns the value that was
passed to the call to panic. We might be tempted to use
it like this:

Functions 90

package main

import "fmt"

func main() {
panic("PANIC")
str := recover()
fmt.Println(str)

}

But the call to recover will never happen in this case
because the call to panic immediately stops execution
of the function. Instead we have to pair it with defer:

package main

import "fmt"

func main() {
defer func() {

str := recover()
fmt.Println(str)

}()
panic("PANIC")

}

A panic generally indicates a programmer error (for
example attempting to access an index of an array
that's out of bounds, forgetting to initialize a map, etc.)
or an exceptional condition that there's no easy way to
recover from. (Hence the name “panic”)

91 Functions

Problems

1. sum is a function which takes a slice of numbers
and adds them together. What would its func-
tion signature look like in Go?

2. Write a function which takes an integer and
halves it and returns true if it was even or false
if it was odd. For example half(1) should return
(0, false) and half(2) should return (1,
true).

3. Write a function with one variadic parameter
that finds the greatest number in a list of num-
bers.

4. Using makeEvenGenerator as an example, write a
makeOddGenerator function that generates odd
numbers.

5. The Fibonacci sequence is defined as: fib(0) =
0, fib(1) = 1, fib(n) = fib(n-1) + fib(n-2).
Write a recursive function which can find
fib(n).

6. What are defer, panic and recover? How do you
recover from a run-time panic?

8 Pointers

When we call a function that takes an argument, that
argument is copied to the function:

func zero(x int) {
x = 0

}
func main() {

x := 5
zero(x)
fmt.Println(x) // x is still 5

}

In this program the zero function will not modify the
original x variable in the main function. But what if we
wanted to? One way to do this is to use a special data
type known as a pointer:

92

93 Pointers

func zero(xPtr *int) {
*xPtr = 0

}
func main() {

x := 5
zero(&x)
fmt.Println(x) // x is 0

}

Pointers reference a location in memory where a value
is stored rather than the value itself. (They point to
something else) By using a pointer (*int) the zero
function is able to modify the original variable.

8.1 The * and & operators

In Go a pointer is represented using the * (asterisk)
character followed by the type of the stored value. In
the zero function xPtr is a pointer to an int.

* is also used to “dereference” pointer variables. Deref-
erencing a pointer gives us access to the value the
pointer points to. When we write *xPtr = 0 we are say-
ing “store the int 0 in the memory location xPtr refers
to”. If we try xPtr = 0 instead we will get a compiler
error because xPtr is not an int it's a *int, which can
only be given another *int.

Finally we use the & operator to find the address of a

Pointers 94

variable. &x returns a *int (pointer to an int) because x
is an int. This is what allows us to modify the original
variable. &x in main and xPtr in zero refer to the same
memory location.

8.2 new

Another way to get a pointer is to use the built-in new
function:

func one(xPtr *int) {
*xPtr = 1

}
func main() {

xPtr := new(int)
one(xPtr)
fmt.Println(*xPtr) // x is 1

}

new takes a type as an argument, allocates enough
memory to fit a value of that type and returns a
pointer to it.

In some programming languages there is a significant
difference between using new and &, with great care be-
ing needed to eventually delete anything created with
new. Go is not like this, it's a garbage collected pro-
gramming language which means memory is cleaned
up automatically when nothing refers to it anymore.

95 Pointers

Pointers are rarely used with Go's built-in types, but
as we will see in the next chapter, they are extremely
useful when paired with structs.

Pointers 96

Problems

1. How do you get the memory address of a vari-
able?

2. How do you assign a value to a pointer?

3. How do you create a new pointer?

4. What is the value of x after running this pro-
gram:

func square(x *float64) {
 *x = *x * *x
}
func main() {
 x := 1.5
 square(&x)
}

5. Write a program that can swap two integers
(x := 1; y := 2; swap(&x, &y) should give you
x=2 and y=1).

9 Structs and Interfaces

Although it would be possible for us to write programs
only using Go's built-in data types, at some point it
would become quite tedious. Consider a program that
interacts with shapes:

package main

import ("fmt"; "math")

func distance(x1, y1, x2, y2 float64) float64 {
a := x2 – x1
b := y2 – y1
return math.Sqrt(a*a + b*b)

}

func rectangleArea(x1, y1, x2, y2 float64)
float64 {

l := distance(x1, y1, x1, y2)
w := distance(x1, y1, x2, y1)
return l * w

}

func circleArea(x, y, r float64) float64 {
return math.Pi * r*r

}

97

Structs and Interfaces 98

func main() {
var rx1, ry1 float64 = 0, 0
var rx2, ry2 float64 = 10, 10
var cx, cy, cr float64 = 0, 0, 5

fmt.Println(rectangleArea(rx1, ry1, rx2,
ry2))

fmt.Println(circleArea(cx, cy, cr))
}

Keeping track of all the coordinates makes it difficult
to see what the program is doing and will likely lead to
mistakes.

9.1 Structs

An easy way to make this program better is to use a
struct. A struct is a type which contains named fields.
For example we could represent a Circle like this:

type Circle struct {
x float64
y float64
r float64

}

The type keyword introduces a new type. It's followed
by the name of the type (Circle), the keyword struct
to indicate that we are defining a struct type and a
list of fields inside of curly braces. Each field has a

99 Structs and Interfaces

name and a type. Like with functions we can collapse
fields that have the same type:

type Circle struct {
x, y, r float64

}

Initialization

We can create an instance of our new Circle type in a
variety of ways:

var c Circle

Like with other data types, this will create a local Cir-
cle variable that is by default set to zero. For a struct
zero means each of the fields is set to their correspond-
ing zero value (0 for ints, 0.0 for floats, "" for strings,
nil for pointers, …) We can also use the new function:

c := new(Circle)

This allocates memory for all the fields, sets each of
them to their zero value and returns a pointer.
(*Circle) More often we want to give each of the fields
a value. We can do this in two ways. Like this:

Structs and Interfaces 100

c := Circle{x: 0, y: 0, r: 5}

Or we can leave off the field names if we know the or-
der they were defined:

c := Circle{0, 0, 5}

Fields

We can access fields using the . operator:

fmt.Println(c.x, c.y, c.r)
c.x = 10
c.y = 5

Let's modify the circleArea function so that it uses a
Circle:

func circleArea(c Circle) float64 {
return math.Pi * c.r*c.r

}

In main we have:

c := Circle{0, 0, 5}
fmt.Println(circleArea(c))

101 Structs and Interfaces

One thing to remember is that arguments are always
copied in Go. If we attempted to modify one of the
fields inside of the circleArea function, it would not
modify the original variable. Because of this we would
typically write the function like this:

func circleArea(c *Circle) float64 {
return math.Pi * c.r*c.r

}

And change main:

c := Circle{0, 0, 5}
fmt.Println(circleArea(&c))

9.2 Methods

Although this is better than the first version of this
code, we can improve it significantly by using a special
type of function known as a method:

func (c *Circle) area() float64 {
return math.Pi * c.r*c.r

}

In between the keyword func and the name of the
function we've added a “receiver”. The receiver is like a

Structs and Interfaces 102

parameter – it has a name and a type – but by creating
the function in this way it allows us to call the function
using the . operator:

fmt.Println(c.area())

This is much easier to read, we no longer need the &
operator (Go automatically knows to pass a pointer to
the circle for this method) and because this function
can only be used with Circles we can rename the func-
tion to just area.

Let's do the same thing for the rectangle:

type Rectangle struct {
x1, y1, x2, y2 float64

}

func (r *Rectangle) area() float64 {
l := distance(r.x1, r.y1, r.x1, r.y2)
w := distance(r.x1, r.y1, r.x2, r.y1)
return l * w

}

main has:

r := Rectangle{0, 0, 10, 10}
fmt.Println(r.area())

103 Structs and Interfaces

Embedded Types

A struct's fields usually represent the has-a relation-
ship. For example a Circle has a radius. Suppose we
had a person struct:

type Person struct {
 Name string
}
func (p *Person) Talk() {
 fmt.Println("Hi, my name is", p.Name)
}

And we wanted to create a new Android struct. We
could do this:

type Android struct {
 Person Person
 Model string
}

This would work, but we would rather say an Android
is a Person, rather than an Android has a Person. Go
supports relationships like this by using an embedded
type. Also known as anonymous fields, embedded
types look like this:

Structs and Interfaces 104

type Android struct {
 Person
 Model string
}

We use the type (Person) and don't give it a name.
When defined this way the Person struct can be ac-
cessed using the type name:

a := new(Android)
a.Person.Talk()

But we can also call any Person methods directly on
the Android:

a := new(Android)
a.Talk()

The is-a relationship works this way intuitively: Peo-
ple can talk, an android is a person, therefore an an-
droid can talk.

9.3 Interfaces

You may have noticed that we were able to name the
Rectangle's area method the same thing as the Circle's
area method. This was no accident. In both real life

105 Structs and Interfaces

and in programming, relationships like these are com-
monplace. Go has a way of making these accidental
similarities explicit through a type known as an Inter-
face. Here is an example of a Shape interface:

type Shape interface {
area() float64

}

Like a struct an interface is created using the type
keyword, followed by a name and the keyword
interface. But instead of defining fields, we define a
“method set”. A method set is a list of methods that a
type must have in order to “implement” the interface.

In our case both Rectangle and Circle have area meth-
ods which return float64s so both types implement the
Shape interface. By itself this wouldn't be particularly
useful, but we can use interface types as arguments to
functions:

func totalArea(shapes ...Shape) float64 {
var area float64
for _, s := range shapes {

area += s.area()
}
return area

}

Structs and Interfaces 106

We would call this function like this:

fmt.Println(totalArea(&c, &r))

Interfaces can also be used as fields:

type MultiShape struct {
shapes []Shape

}

We can even turn MultiShape itself into a Shape by giv-
ing it an area method:

func (m *MultiShape) area() float64 {
var area float64
for _, s := range m.shapes {

area += s.area()
}
return area

}

Now a MultiShape can contain Circles, Rectangles or
even other MultiShapes.

107 Structs and Interfaces

Problems

1. What's the difference between a method and a
function?

2. Why would you use an embedded anonymous
field instead of a normal named field?

3. Add a new method to the Shape interface called
perimeter which calculates the perimeter of a
shape. Implement the method for Circle and
Rectangle.

10 Concurrency

Large programs are often made up of many smaller
sub-programs. For example a web server handles re-
quests made from web browsers and serves up HTML
web pages in response. Each request is handled like a
small program.

It would be ideal for programs like these to be able to
run their smaller components at the same time (in the
case of the web server to handle multiple requests).
Making progress on more than one task simultane-
ously is known as concurrency. Go has rich support for
concurrency using goroutines and channels.

10.1 Goroutines

A goroutine is a function that is capable of running
concurrently with other functions. To create a gorou-
tine we use the keyword go followed by a function invo-
cation:

108

109 Concurrency

package main

import "fmt"

func f(n int) {
for i := 0; i < 10; i++ {

fmt.Println(n, ":", i)
}

}

func main() {
go f(0)
var input string
fmt.Scanln(&input)

}

This program consists of two goroutines. The first gor-
outine is implicit and is the main function itself. The
second goroutine is created when we call go f(0). Nor-
mally when we invoke a function our program will exe-
cute all the statements in a function and then return
to the next line following the invocation. With a gorou-
tine we return immediately to the next line and don't
wait for the function to complete. This is why the call
to the Scanln function has been included; without it
the program would exit before being given the opportu-
nity to print all the numbers.

Goroutines are lightweight and we can easily create
thousands of them. We can modify our program to run
10 goroutines by doing this:

Concurrency 110

func main() {
 for i := 0; i < 10; i++ {
 go f(i)
 }
 var input string
 fmt.Scanln(&input)
}

You may have noticed that when you run this program
it seems to run the goroutines in order rather than si-
multaneously. Let's add some delay to the function us-
ing time.Sleep and rand.Intn:

package main

import (
"fmt"
"time"
"math/rand"

)

func f(n int) {
for i := 0; i < 10; i++ {

fmt.Println(n, ":", i)
amt := time.Duration(rand.Intn(250))
time.Sleep(time.Millisecond * amt)

}
}

111 Concurrency

func main() {
 for i := 0; i < 10; i++ {
 go f(i)
 }
 var input string
 fmt.Scanln(&input)
}

f prints out the numbers from 0 to 10, waiting between
0 and 250 ms after each one. The goroutines should
now run simultaneously.

10.2 Channels

Channels provide a way for two goroutines to commu-
nicate with one another and synchronize their execu-
tion. Here is an example program using channels:

Concurrency 112

package main

import (
"fmt"
"time"

)

func pinger(c chan string) {
for i := 0; ; i++ {

c <- "ping"
}

}
func printer(c chan string) {

for {
msg := <- c
fmt.Println(msg)
time.Sleep(time.Second * 1)

}
}
func main() {

var c chan string = make(chan string)

go pinger(c)
go printer(c)

var input string
fmt.Scanln(&input)

}

This program will print “ping” forever (hit enter to
stop it). A channel type is represented with the key-
word chan followed by the type of the things that are
passed on the channel (in this case we are passing
strings). The <- (left arrow) operator is used to send

113 Concurrency

and receive messages on the channel. c <- "ping"
means send "ping". msg := <- c means receive a mes-
sage and store it in msg. The fmt line could also have
been written like this: fmt.Println(<-c) in which case
we could remove the previous line.

Using a channel like this synchronizes the two gorou-
tines. When pinger attempts to send a message on the
channel it will wait until printer is ready to receive
the message. (this is known as blocking) Let's add an-
other sender to the program and see what happens.
Add this function:

func ponger(c chan string) {
for i := 0; ; i++ {

c <- "pong"
}

}

And modify main:

Concurrency 114

func main() {
var c chan string = make(chan string)

go pinger(c)
go ponger(c)
go printer(c)

var input string
fmt.Scanln(&input)

}

The program will now take turns printing “ping” and
“pong”.

Channel Direction

We can specify a direction on a channel type thus re-
stricting it to either sending or receiving. For example
pinger's function signature can be changed to this:

func pinger(c chan<- string)

Now c can only be sent to. Attempting to receive from c
will result in a compiler error. Similarly we can change
printer to this:

func printer(c <-chan string)

115 Concurrency

A channel that doesn't have these restrictions is
known as bi-directional. A bi-directional channel can
be passed to a function that takes send-only or receive-
only channels, but the reverse is not true.

Select

Go has a special statement called select which works
like a switch but for channels:

Concurrency 116

func main() {
c1 := make(chan string)
c2 := make(chan string)

go func() {
for {

c1 <- "from 1"
time.Sleep(time.Second * 2)

}
}()
go func() {

for {
c2 <- "from 2"
time.Sleep(time.Second * 3)

}
}()
go func() {

for {
select {
case msg1 := <- c1:

fmt.Println(msg1)
case msg2 := <- c2:

fmt.Println(msg2)
}

}
}()

var input string
fmt.Scanln(&input)

}

This program prints “from 1” every 2 seconds and
“from 2” every 3 seconds. select picks the first channel
that is ready and receives from it (or sends to it). If

117 Concurrency

more than one of the channels are ready then it ran-
domly picks which one to receive from. If none of the
channels are ready, the statement blocks until one be-
comes available.

The select statement is often used to implement a
timeout:

select {
case msg1 := <- c1:

fmt.Println("Message 1", msg1)
case msg2 := <- c2:

fmt.Println("Message 2", msg2)
case <- time.After(time.Second):

fmt.Println("timeout")
}

time.After creates a channel and after the given dura-
tion will send the current time on it. (we weren't inter-
ested in the time so we didn't store it in a variable) We
can also specify a default case:

Concurrency 118

select {
case msg1 := <- c1:

fmt.Println("Message 1", msg1)
case msg2 := <- c2:

fmt.Println("Message 2", msg2)
case <- time.After(time.Second):

fmt.Println("timeout")
default:

fmt.Println("nothing ready")
}

The default case happens immediately if none of the
channels are ready.

Buffered Channels

It's also possible to pass a second parameter to the
make function when creating a channel:

c := make(chan int, 1)

This creates a buffered channel with a capacity of 1.
Normally channels are synchronous; both sides of the
channel will wait until the other side is ready. A
buffered channel is asynchronous; sending or receiving
a message will not wait unless the channel is already
full.

119 Concurrency

Problems

1. How do you specify the direction of a channel
type?

2. Write your own Sleep function using time.After.

3. What is a buffered channel? How would you cre-
ate one with a capacity of 20?

11 Packages

Go was designed to be a language that encourages
good software engineering practices. An important
part of high quality software is code reuse – embodied
in the principle “Don't Repeat Yourself.”

As we saw in chapter 7 functions are the first layer we
turn to allow code reuse. Go also provides another
mechanism for code reuse: packages. Nearly every pro-
gram we've seen so far included this line:

import "fmt"

fmt is the name of a package that includes a variety of
functions related to formatting and output to the
screen. Bundling code in this way serves 3 purposes:

1. It reduces the chance of having overlapping
names. This keeps our function names short and
succinct

2. It organizes code so that its easier to find code

120

121 Packages

you want to reuse.

3. It speeds up the compiler by only requiring re-
compilation of smaller chunks of a program. Al-
though we use the package fmt, we don't have to
recompile it every time we change our program.

11.1 Creating Packages

Packages only really make sense in the context of a
separate program which uses them. Without this sepa-
rate program we have no way of using the package we
create. Let's create an application that will use a pack-
age we will write. Create a folder in ~/Go/src/golang-
book called chapter11. Inside that folder create a file
called main.go which contains this:

package main

import "fmt"
import "golang-book/chapter11/math"

func main() {
xs := []float64{1,2,3,4}
avg := math.Average(xs)
fmt.Println(avg)

}

Now create another folder inside of the chapter11

Packages 122

folder called math. Inside of this folder create a file
called math.go that contains this:

package math

func Average(xs []float64) float64 {
total := float64(0)
for _, x := range xs {

total += x
}
return total / float64(len(xs))

}

Using a terminal in the math folder you just created
run go install. This will compile the math.go program
and create a linkable object file:
~/Go/pkg/os_arch/golang-book/chapter11/math.a.
(where os is something like windows and arch is some-
thing like amd64)

Now go back to the chapter11 folder and run go run
main.go. You should see 2.5. Some things to note:

1. math is the name of a package that is part of
Go's standard distribution, but since Go pack-
ages can be hierarchical we are safe to use the
same name for our package. (The real math pack-
age is just math, ours is golang-
book/chapter11/math)

123 Packages

2. When we import our math library we use its full
name (import "golang-book/chapter11/math"),
but inside of the math.go file we only use the last
part of the name (package math).

3. We also only use the short name math when we
reference functions from our library. If we
wanted to use both libraries in the same pro-
gram Go allows us to use an alias:

import m "golang-book/chapter11/math"

func main() {
 xs := []float64{1,2,3,4}
 avg := m.Average(xs)
 fmt.Println(avg)
}

m is the alias.

4. You may have noticed that every function in the
packages we've seen start with a capital letter.
In Go if something starts with a capital letter
that means other packages (and programs) are
able to see it. If we had named the function
average instead of Average our main program
would not have been able to see it.

It's a good practice to only expose the parts of

Packages 124

our package that we want other packages using
and hide everything else. This allows us to
freely change those parts later without having
to worry about breaking other programs, and it
makes our package easier to use.

5. Package names match the folders they fall in.
There are ways around this, but it's a lot easier
if you stay within this pattern.

11.2 Documentation

Go has the ability to automatically generate documen-
tation for packages we write in a similar way to the
standard package documentation. In a terminal run
this command:

godoc golang-book/chapter11/math Average

You should see information displayed for the function
we just wrote. We can improve this documentation by
adding a comment before the function:

// Finds the average of a series of numbers
func Average(xs []float64) float64 {

If you run go install in the math folder, then re-run

125 Packages

the godoc command you should see our comment below
the function definition. This documentation is also
available in web form by running this command:

godoc -http=":6060"

and entering this URL into your browser:

http://localhost:6060/pkg/

You should be able to browse through all of the pack-
ages installed on your system.

Packages 126

Problems

1. Why do we use packages?

2. What is the difference between an identifier
that starts with a capital letter and one which
doesn’t? (Average vs average)

3. What is a package alias? How do you make one?

4. We copied the average function from chapter 7
to our new package. Create Min and Max func-
tions which find the minimum and maximum
values in a slice of float64s.

5. How would you document the functions you cre-
ated in #3?

12 Testing

Programming is not easy; even the best programmers
are incapable of writing programs that work exactly as
intended every time. Therefore an important part of
the software development process is testing. Writing
tests for our code is a good way to ensure quality and
improve reliability.

Go includes a special program that makes writing
tests easier, so let's create some tests for the package
we made in the last chapter. In the math folder from
chapter11 create a new file called math_test.go that
contains this:

127

Testing 128

package math

import "testing"

func TestAverage(t *testing.T) {
var v float64
v = Average([]float64{1,2})
if v != 1.5 {

t.Error("Expected 1.5, got ", v)
}

}

Now run this command:

go test

You should see this:

$ go test
PASS
ok golang-book/chapter11/math 0.032s

The go test command will look for any tests in any of
the files in the current folder and run them. Tests are
identified by starting a function with the word Test
and taking one argument of type *testing.T. In our
case since we're testing the Average function we name
the test function TestAverage.

129 Testing

Once we have the testing function setup we write tests
that use the code we're testing. In this case we know
the average of [1,2] should be 1.5 so that's what we
check. It's probably a good idea to test many different
combinations of numbers so let's change our test pro-
gram a little:

package math

import "testing"

type testpair struct {
values []float64
average float64

}

var tests = []testpair{
{ []float64{1,2}, 1.5 },
{ []float64{1,1,1,1,1,1}, 1 },
{ []float64{-1,1}, 0 },

}

func TestAverage(t *testing.T) {
for _, pair := range tests {

v := Average(pair.values)
if v != pair.average {

t.Error(
"For", pair.values,
"expected", pair.average,
"got", v,

)
}

}
}

Testing 130

This is a very common way to setup tests (abundant
examples can be found in the source code for the pack-
ages included with Go). We create a struct to repre-
sent the inputs and outputs for the function. Then we
create a list of these structs (pairs). Then we loop
through each one and run the function.

131 Testing

Problems

1. Writing a good suite of tests is not always easy,
but the process of writings tests often reveals
more about a problem then you may at first re-
alize. For example, with our Average function
what happens if you pass in an empty list
([]float64{})? How could we modify the func-
tion to return 0 in this case?

2. Write a series of tests for the Min and Max func-
tions you wrote in the previous chapter.

13 The Core Packages

Instead of writing everything from scratch, most real
world programming depends on our ability to interface
with existing libraries. This chapter will take a look at
some of the most commonly used packages included
with Go.

First a word of warning: although some of these li-
braries are fairly obvious (or have been explained in
previous chapters), many of the libraries included with
Go require specialized domain specific knowledge (for
example: cryptography). It is beyond the scope of this
book to explain these underlying technologies.

13.1 Strings

Go includes a large number of functions to work with
strings in the strings package:

132

133 The Core Packages

package main

import (
"fmt"
"strings"

)

func main() {
fmt.Println(

// true
strings.Contains("test", "es"),

// 2
strings.Count("test", "t"),

// true
strings.HasPrefix("test", "te"),

// true
strings.HasSuffix("test", "st"),

// 1
strings.Index("test", "e"),

// "a-b"
strings.Join([]string{"a","b"}, "-"),

// == "aaaaa"
strings.Repeat("a", 5),

// "bbaa"
strings.Replace("aaaa", "a", "b", 2),

// []string{"a","b","c","d","e"}
strings.Split("a-b-c-d-e", "-"),

The Core Packages 134

// "test"
strings.ToLower("TEST"),

// "TEST"
strings.ToUpper("test"),

)
}

Sometimes we need to work with strings as binary
data. To convert a string to a slice of bytes (and vice-
versa) do this:

arr := []byte("test")
str := string([]byte{'t','e','s','t'})

13.2 Input / Output

Before we look at files we need to understand Go's io
package. The io package consists of a few functions,
but mostly interfaces used in other packages. The two
main interfaces are Reader and Writer. Readers support
reading via the Read method. Writers support writing
via the Write method. Many functions in Go take
Readers or Writers as arguments. For example the io
package has a Copy function which copies data from a
Reader to a Writer:

135 The Core Packages

func Copy(dst Writer, src Reader) (written
int64, err error)

To read or write to a []byte or a string you can use
the Buffer struct found in the bytes package:

var buf bytes.Buffer
buf.Write([]byte("test"))

A Buffer doesn't have to be initialized and supports
both the Reader and Writer interfaces. You can convert
it into a []byte by calling buf.Bytes(). If you only need
to read from a string you can also use the
strings.NewReader function which is more efficient
than using a buffer.

13.3 Files & Folders

To open a file in Go use the Open function from the os
package. Here is an example of how to read the con-
tents of a file and display them on the terminal:

The Core Packages 136

package main

import (
"fmt"
"os"

)

func main() {
file, err := os.Open("test.txt")
if err != nil {

// handle the error here
return

}
defer file.Close()

// get the file size
stat, err := file.Stat()
if err != nil {

return
}

// read the file
bs := make([]byte, stat.Size())
_, err = file.Read(bs)
if err != nil {

return
}

str := string(bs)
fmt.Println(str)

}

We use defer file.Close() right after opening the file
to make sure the file is closed as soon as the function

137 The Core Packages

completes. Reading files is very common, so there's a
shorter way to do this:

package main

import (
"fmt"
"io/ioutil"

)

func main() {
bs, err := ioutil.ReadFile("test.txt")
if err != nil {

return
}
str := string(bs)
fmt.Println(str)

}

Here is how we can create a file:

The Core Packages 138

package main

import (
"os"

)

func main() {
file, err := os.Create("test.txt")
if err != nil {

// handle the error here
return

}
defer file.Close()

file.WriteString("test")
}

To get the contents of a directory we use the same
os.Open function but give it a directory path instead of
a file name. Then we call the Readdir method:

139 The Core Packages

package main

import (
"fmt"
"os"

)

func main() {
dir, err := os.Open(".")
if err != nil {

return
}
defer dir.Close()

fileInfos, err := dir.Readdir(-1)
if err != nil {

return
}
for _, fi := range fileInfos {

fmt.Println(fi.Name())
}

}

Often we want to recursively walk a folder (read the
folder's contents, all the sub-folders, all the sub-sub-
folders, …). To make this easier there's a Walk function
provided in the path/filepath package:

The Core Packages 140

package main

import (
"fmt"
"os"
"path/filepath"

)

func main() {
filepath.Walk(".", func(path string, info

os.FileInfo, err error) error {
fmt.Println(path)
return nil

})
}

The function you pass to Walk is called for every file
and folder in the root folder. (in this case .)

13.4 Errors

Go has a built-in type for errors that we have already
seen (the error type). We can create our own errors by
using the New function in the errors package:

141 The Core Packages

package main

import "errors"

func main() {
err := errors.New("error message")

}

13.5 Containers & Sort

In addition to lists and maps Go has several more col-
lections available underneath the container package.
We'll take a look at the container/list package as an
example.

List

The container/list package implements a dou-
bly-linked list. A linked list is a type of data structure
that looks like this:

Each node of the list contains a value (1, 2, or 3 in this
case) and a pointer to the next node. Since this is a
doubly-linked list each node will also have pointers to
the previous node. This list could be created by this

The Core Packages 142

program:

package main

import ("fmt" ; "container/list")

func main() {
var x list.List
x.PushBack(1)
x.PushBack(2)
x.PushBack(3)

for e := x.Front(); e != nil; e=e.Next() {
fmt.Println(e.Value.(int))

}
}

The zero value for a List is an empty list (a *List can
also be created using list.New). Values are appended
to the list using PushBack. We loop over each item in
the list by getting the first element, and following all
the links until we reach nil.

Sort

The sort package contains functions for sorting arbi-
trary data. There are several predefined sorting func-
tions (for slices of ints and floats) Here's an example
for how to sort your own data:

143 The Core Packages

package main

import ("fmt" ; "sort")

type Person struct {
Name string
Age int

}

type ByName []Person

func (this ByName) Len() int {
return len(this)

}
func (this ByName) Less(i, j int) bool {

return this[i].Name < this[j].Name
}
func (this ByName) Swap(i, j int) {

this[i], this[j] = this[j], this[i]
}

func main() {
kids := []Person{

{"Jill",9},
{"Jack",10},

}
sort.Sort(ByName(kids))
fmt.Println(kids)

}

The Sort function in sort takes a sort.Interface and
sorts it. The sort.Interface requires 3 methods: Len,
Less and Swap. To define our own sort we create a new
type (ByName) and make it equivalent to a slice of what

The Core Packages 144

we want to sort. We then define the 3 methods.

Sorting our list of people is then as easy as casting the
list into our new type. We could also sort by age by do-
ing this:

type ByAge []Person
func (this ByAge) Len() int {

return len(this)
}
func (this ByAge) Less(i, j int) bool {

return this[i].Age < this[j].Age
}
func (this ByAge) Swap(i, j int) {

this[i], this[j] = this[j], this[i]
}

13.6 Hashes & Cryptography

A hash function takes a set of data and reduces it to a
smaller fixed size. Hashes are frequently used in pro-
gramming for everything from looking up data to eas-
ily detecting changes. Hash functions in Go are broken
into two categories: cryptographic and non-crypto-
graphic.

The non-cryptographic hash functions can be found
underneath the hash package and include adler32,
crc32, crc64 and fnv. Here's an example using crc32:

145 The Core Packages

package main

import (
"fmt"
"hash/crc32"

)

func main() {
h := crc32.NewIEEE()
h.Write([]byte("test"))
v := h.Sum32()
fmt.Println(v)

}

The crc32 hash object implements the Writer inter-
face, so we can write bytes to it like any other Writer.
Once we've written everything we want we call
Sum32() to return a uint32. A common use for crc32 is
to compare two files. If the Sum32 value for both files is
the same, it's highly likely (though not 100% certain)
that the files are the same. If the values are different
then the files are definitely not the same:

The Core Packages 146

package main

import (
"fmt"
"hash/crc32"
"io/ioutil"

)

func getHash(filename string) (uint32, error) {

bs, err := ioutil.ReadFile("test1.txt")
if err != nil {

return 0, err
}
h := crc32.NewIEEE()
h.Write(bs)
return h.Sum32(), nil

}

func main() {
h1, err := getHash("test1.txt")
if err != nil {

return
}
h2, err := getHash("test2.txt")
if err != nil {

return
}
fmt.Println(h1, h2, h1 == h2)

}

Cryptographic hash functions are similar to their non-
cryptographic counterparts, but they have the added
property of being hard to reverse. Given the crypto-
graphic hash of a set of data, it's extremely difficult to

147 The Core Packages

determine what made the hash. These hashes are of-
ten used in security applications.

One common cryptographic hash function is known as
SHA-1. Here's how it is used:

package main

import (
"fmt"
"crypto/sha1"

)

func main() {
h := sha1.New()
h.Write([]byte("test"))
bs := h.Sum([]byte{})
fmt.Println(bs)

}

This example is very similar to the crc32 one, because
both crc32 and sha1 implement the hash.Hash inter-
face. The main difference is that whereas crc32 com-
putes a 32 bit hash, sha1 computes a 160 bit hash.
There is no native type to represent a 160 bit number,
so we use a slice of 20 bytes instead.

13.7 Servers

Writing network servers in Go is very easy. We will

The Core Packages 148

first take a look at how to create a TCP server:

package main

import (
"encoding/gob"
"fmt"
"net"

)

func server() {
// listen on a port
ln, err := net.Listen("tcp", ":9999")
if err != nil {

fmt.Println(err)
return

}
for {

// accept a connection
c, err := ln.Accept()
if err != nil {

fmt.Println(err)
continue

}
// handle the connection
go handleServerConnection(c)

}
}

149 The Core Packages

func handleServerConnection(c net.Conn) {
// receive the message
var msg string
err := gob.NewDecoder(c).Decode(&msg)
if err != nil {

fmt.Println(err)
} else {

fmt.Println("Received", msg)
}

c.Close()
}

func client() {
// connect to the server
c, err := net.Dial("tcp", "127.0.0.1:9999")
if err != nil {

fmt.Println(err)
return

}

// send the message
msg := "Hello World"
fmt.Println("Sending", msg)
err = gob.NewEncoder(c).Encode(msg)
if err != nil {

fmt.Println(err)
}

c.Close()
}

The Core Packages 150

func main() {
go server()
go client()

var input string
fmt.Scanln(&input)

}

This example uses the encoding/gob package which
makes it easy to encode Go values so that other Go
programs (or the same Go program in this case) can
read them. Additional encodings are available in pack-
ages underneath encoding (like encoding/json) as well
as in 3rd party packages. (for example we could use
labix.org/v2/mgo/bson for bson support)

HTTP

HTTP servers are even easier to setup and use:

151 The Core Packages

package main

import ("net/http" ; "io")

func hello(res http.ResponseWriter, req
*http.Request) {

res.Header().Set(
"Content-Type",
"text/html",

)
io.WriteString(

res,
`<doctype html>

<html>
<head>

<title>Hello World</title>
</head>
<body>

Hello World!
</body>

</html>`,
)

}

func main() {
http.HandleFunc("/hello", hello)
http.ListenAndServe(":9000", nil)

}

HandleFunc handles a URL route (/hello) by calling the
given function. We can also handle static files by using
FileServer:

The Core Packages 152

http.Handle(
"/assets/",
http.StripPrefix(

"/assets/",
http.FileServer(http.Dir("assets")),

),
)

RPC

The net/rpc (remote procedure call) and
net/rpc/jsonrpc packages provide an easy way to ex-
pose methods so they can be invoked over a network.
(rather than just in the program running them)

153 The Core Packages

package main

import (
"fmt"
"net"
"net/rpc"

)

type Server struct {}
func (this *Server) Negate(i int64, reply
*int64) error {

*reply = -i
return nil

}

func server() {
rpc.Register(new(Server))
ln, err := net.Listen("tcp", ":9999")
if err != nil {

fmt.Println(err)
return

}
for {

c, err := ln.Accept()
if err != nil {

continue
}
go rpc.ServeConn(c)

}
}

The Core Packages 154

func client() {
c, err := rpc.Dial("tcp", "127.0.0.1:9999")
if err != nil {

fmt.Println(err)
return

}
var result int64
err = c.Call("Server.Negate", int64(999),

&result)
if err != nil {

fmt.Println(err)
} else {

fmt.Println("Server.Negate(999) =",
result)

}
}

func main() {
go server()
go client()

var input string
fmt.Scanln(&input)

}

This program is similar to the TCP example, except
now we created an object to hold all the methods we
want to expose and we call the Negate method from the
client. See the documentation in net/rpc for more de-
tails.

155 The Core Packages

13.8 Parsing Command Line Arguments

When we invoke a command on the terminal it's possi-
ble to pass that command arguments. We've seen this
with the go command:

go run myfile.go

run and myfile.go are arguments. We can also pass
flags to a command:

go run -v myfile.go

The flag package allows us to parse arguments and
flags sent to our program. Here's an example program
that generates a number between 0 and 6. We can
change the max value by sending a flag (-max=100) to
the program:

The Core Packages 156

package main

import ("fmt";"flag";"math/rand")

func main() {
// Define flags
maxp := flag.Int("max", 6, "the max value")
// Parse
flag.Parse()
// Generate a number between 0 and max
fmt.Println(rand.Intn(*maxp))

}

Any additional non-flag arguments can be retrieved
with flag.Args() which returns a []string.

13.9 Synchronization Primitives

The preferred way to handle concurrency and synchro-
nization in Go is through goroutines and channels as
discussed in chapter 10. However Go does provide
more traditional multithreading routines in the sync
and sync/atomic packages.

Mutexes

A mutex (mutal exclusive lock) locks a section of code
to a single thread at a time and is used to protect
shared resources from non-atomic operations. Here is
an example of a mutex:

157 The Core Packages

package main

import (
"fmt"
"sync"
"time"

)
func main() {

m := new(sync.Mutex)

for i := 0; i < 10; i++ {
go func(i int) {

m.Lock()
fmt.Println(i, "start")
time.Sleep(time.Second)
fmt.Println(i, "end")
m.Unlock()

}(i)
}

var input string
fmt.Scanln(&input)

}

When the mutex (m) is locked any other attempt to lock
it will block until it is unlocked. Great care should be
taken when using mutexes or the synchronization
primitives provided in the sync/atomic package.

Traditional multithreaded programming is difficult;
it's easy to make mistakes and those mistakes are
hard to find, since they may depend on a very specific,
relatively rare, and difficult to reproduce set of circum-

The Core Packages 158

stances. One of Go's biggest strengths is that the con-
currency features it provides are much easier to under-
stand and use properly than threads and locks.

14 Next Steps

We now have all the information we need to write
most Go programs. But it would be dangerous to con-
clude that therefore we are competent programmers.
Programming is as much a craft as it is just having
knowledge. This chapter will provide you with some
suggestions about how best to master the craft of pro-
gramming.

14.1 Study the Masters

Part of becoming a good artist or writer is studying the
works of the masters. It's no different with program-
ming. One of the best ways to become a skilled pro-
grammer is to study the source code produced by oth-
ers. Go is well suited to this task since the source code
for the entire project is freely available.

For example we might take a look at the source code to
the io/ioutil library available at:

http://golang.org/src/pkg/io/ioutil/ioutil.go

159

Next Steps 160

Read the code slowly and deliberately. Try to under-
stand every line and read the supplied comments. For
example in the ReadFile method there's a comment
that says this:

// It's a good but not certain bet that FileInfo
// will tell us exactly how much to read, so
// let's try it but be prepared for the answer
// to be wrong.

This method probably started out simpler than what it
became so this is a great example of how programs can
evolve after testing and why it's important to supply
comments with those changes. All of the source code
for all of the packages is available at:

http://golang.org/src/pkg/

14.2 Make Something

One of the best ways to hone your skills is to practice
coding. There are a lot of ways to do this: You could
work on challenging programming problems from sites
like Project Euler (http://projecteuler.net/) or try your
hand at a larger project. Perhaps try to implement a
web server or write a simple game.

161 Next Steps

14.3 Team Up

Most real-world software projects are done in teams,
therefore learning how to work in a team is crucial. If
you can, find a friend – maybe a classmate – and team
up on a project. Learn how to divide a project into
pieces you can both work on simultaneously.

Another option is to work on an open source project.
Find a 3rd party library, write some code (perhaps fix a
bug), and submit it to the maintainer. Go has a grow-
ing community which can be reached via the mailing
list (http://groups.google.com/group/golang-nuts).

	1 Getting Started
	1.1 Files and Folders
	Windows
	OSX

	1.2 The Terminal
	Windows
	OSX

	1.3 Text Editors
	Windows
	OSX

	1.4 Go Tools

	2 Your First Program
	2.1 How to Read a Go Program
	Problems

	3 Types
	3.1 Numbers
	Integers
	Floating Point Numbers
	Example

	3.2 Strings
	3.3 Booleans
	Problems

	4 Variables
	4.1 How to Name a Variable
	4.2 Scope
	4.3 Constants
	4.4 Defining Multiple Variables
	4.5 An Example Program
	Problems

	5 Control Structures
	5.1 For
	5.2 If
	5.3 Switch
	Problems

	6 Arrays, Slices and Maps
	6.1 Arrays
	6.2 Slices
	Slice Functions

	6.3 Maps
	Problems

	7 Functions
	7.1 Your Second Function
	7.2 Returning Multiple Values
	7.3 Variadic Functions
	7.4 Closure
	7.5 Recursion
	7.6 Defer, Panic & Recover
	Panic & Recover
	Problems

	8 Pointers
	8.1 The * and & operators
	8.2 new
	Problems

	9 Structs and Interfaces
	9.1 Structs
	Initialization
	Fields

	9.2 Methods
	Embedded Types

	9.3 Interfaces
	Problems

	10 Concurrency
	10.1 Goroutines
	10.2 Channels
	Channel Direction
	Select
	Buffered Channels
	Problems

	11 Packages
	11.1 Creating Packages
	11.2 Documentation
	Problems

	12 Testing
	Problems

	13 The Core Packages
	13.1 Strings
	13.2 Input / Output
	13.3 Files & Folders
	13.4 Errors
	13.5 Containers & Sort
	List
	Sort

	13.6 Hashes & Cryptography
	13.7 Servers
	HTTP
	RPC

	13.8 Parsing Command Line Arguments
	13.9 Synchronization Primitives
	Mutexes

	14 Next Steps
	14.1 Study the Masters
	14.2 Make Something
	14.3 Team Up

