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Preface

Why Gambling and Gaming?

Games are a universal part of human experience and are present in almost every
culture; the earliest games known (such as senet in Egypt or the Royal Game of
Ur in Iraq) date back to at least 2600 B.C. Games are characterized by a set
of rules regulating the behavior of players and by a set of challenges faced by
those players, which might involve a monetary or nonmonetary wager. Indeed,
the history of gaming is inextricably linked to the history of gambling, and both
have played an important role in the development of modern society.

Games have also played a very important role in the development of modern
mathematical methods, and they provide a natural framework to introduce
simple concepts that have wide applicability in real-life problems. From the
point of view of the mathematical tools used for their analysis, games can be
broadly divided between random games and strategic games. Random games
pit one or more players against “nature” that is, an unintelligent opponent
whose acts cannot be predicted with certainty. Roulette is the quintessential
example of a random game. On the other hand, strategic games pit two or more
intelligent players against each other; the challenge is for one player to outwit
their opponents. Strategic games are often subdivided into simultaneous
(e.g., rock–paper–scissors) and sequential (e.g., chess, tic-tac-toe) games,
depending on the order in which the players take their actions. However, these
categories are not mutually exclusive; most modern games involve aspects of
both strategic and random games. For example, poker incorporates elements
of random games (cards are dealt at random) with those of a sequential
strategic game (betting is made in rounds and “bluffing” can win you a game
even if your cards are worse than those of your opponent).

One of the key ideas behind the mathematical analysis of games is the ratio-
nality assumption, that is, that players are indeed interested in winning the
game and that they will take “optimal” (i.e., rational) steps to achieve this. Under
these assumptions, we can postulate a theory of how decisions are made, which
relies on the maximization of a utility function (often, but certainly not always,
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related to the amount of money that is made by playing the game). Players
attempt to maximize their own utility given the information available to them
at any given moment. In the case of random games, this involves making deci-
sions under uncertainty, which naturally leads to the study of probability. In
fact, the formal study of probability was born in the seventeenth century from
a series of questions posed by an inveterate gambler (Antoine Gambaud, known
as the Chevalier de Méré). De Méré, suffered severe financial losses for assess-
ing incorrectly his chances of winning in certain games of dice. Contrary to the
ordinary gambler of the time, he pursued the cause of his error with the help of
Blaise Pascal, which in turn led to an exchange of letters with Pierre de Fermat
and the development of probability theory.

Decision theory also plays an important role in strategic games. In this
case, optimality often means evaluating the alternatives available to other
players and finding a “best response” to them. This is often taken to mean
minimizing losses, but the two concepts are not necessarily identical. Indeed,
one important insight gleaned from game theory (the area of mathematics
that studies strategic games) is that optimal strategies for zero-sum games (i.e.,
those games where a player can win only if another loses the same amount) and
non zero-sum games can be very different. Also, it is important to highlight
that randomness plays a role even in purely strategic games. An excellent
example is the game of rock–paper–scissors. In principle, there is nothing
inherently random in the rules of this game. However, the optimal strategy for
any given player is to select his or her move uniformly at random among the
three possible options that give the game its name.

The mathematical concepts underlying the analysis of games and gambles
have practical applications in all realms of science. Take for example the game
of blackjack. When you play blackjack, you need to sequentially decide whether
to hit (i.e., get an extra card), stay (i.e., stop receiving cards) or, when appropri-
ate, double down, split, or surrender. Optimally playing the game means that
these decisions must be taken not only on the basis of the cards you have in
your hand but also on the basis of the cards shown by the dealer and all other
players. A similar problem arises in the diagnosis and treatment of medical
conditions. A doctor has access to a series of diagnostic tests and treatment
options; decisions on which one is to be used next needs to be taken sequen-
tially based on the outcomes of previous tests or treatments for this as well as
other patients. Poker provides another interesting example. As any experienced
player can attest, bluffing is one of the most important parts of the game. The
same rules that can be used to decide how to optimally bluff in poker can also be
used to design optimal auctions that allow the auctioneer to extract the highest
value assigned by the bidders to the object begin auctioned. These strategies
are used by companies such as Google and Yahoo to allocate advertising spots.
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Using this Book

The goal of this book is to introduce basic concepts of probability, statistics,
decision theory, and game theory using games. The material should be suitable
for a college-level general education course for undergraduate college students
who have taken an algebra or pre-algebra class. In our experience, motivated
high-school students who have taken an algebra course should also be capable
of handling the material.

The book is organized into 13 chapters, with about half focusing on general
concepts that are illustrated using a wide variety of games, and about half focus-
ing specifically on well-known casino games. More specifically, the first two
chapters of the book are dedicated to a basic discussion of utility and probabil-
ity theory in finite, discrete spaces. Then we move to a discussion of five popular
casino games: roulette, lotto, craps, blackjack, and poker. Roulette, which is one
of the simplest casino games to play and analyze, is used to illustrate the basic
concepts in probability such as expectations. Lotto is used to motivate counting
rules and the notions of permutations and combinatorial numbers that allow us
to compute probabilities in large equiprobable spaces. The games of craps and
blackjack are used to illustrate and develop conditional probabilities. Finally,
the discussion of poker is helpful to illustrate how many of the ideas from pre-
vious chapters fit in together. The last four chapters of the book are dedicated to
game theory and strategic games. Since this book is meant to support a general
education course, we restrict attention to simultaneous and sequential games
of perfect information and avoid games of imperfect information.

The book uses computer simulations to illustrate complex concepts and
convince students that the calculations presented in the book are correct.
Computer simulations have become a key tool in many areas of scientific
inquiry, and we believe that it is important for students to experience how easy
access to computing power has changed science over the last 25 years. During
the development of the book, we experimented with using spreadsheets but
decided that they did not provide enough flexibility. In the end we settled
for using R (https://www.r-project.org). R is an interactive environment that
allows users to easily implement simple simulations even if they have limited
experience with programming. To facilitate its use, we have included an
overview and introduction to the R in Appendix A, as well as sidebars in
each chapter that introduces features of the language that are relevant for the
examples discussed in them. With a little extra work, this book could be used
as the basis for a course that introduces students to both probability/statistics
and programming. Alternatively, the book can also be read while ignoring the
R commands and focusing only on the graphs and other output generated by it.
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In the past, we have paired the content of this book with screenings of movies
from History Channel’s Breaking Vegas series. We have found the movies Beat
the Wheel, Roulette Attack, Dice Dominator, and Professor Blackjack (each
approximately 45 min in length) particularly fitting. These movies are helpful
in explaining the rules of the games and providing an entertaining illustration
of basic concepts such as the law of large numbers.

November 2017 Abel Rodríguez
Bruno Mendes
Santa Cruz, CA
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1

An Introduction to Probability

The study of probability started in the seventeenth century when Antoine
Gambaud (who called himself the “Chevalier” de Méré) reached out to the
French mathematician Blaise Pascal for an explanation of his gambling loses.
De Méré would commonly bet that he could get at least one ace when rolling
4 six-sided dice, and he regularly made money on this bet. When that game
started to get old, he started betting on getting at least one double-one in 24
rolls of two dice. Suddenly, he was losing money!

De Méré was dumbfounded. He reasoned that two aces in two rolls are 1/6
as likely as one ace in one roll. To compensate for this lower probability, the
two dice should be rolled six times. Finally, to achieve the probability of one
ace in four rolls, the number of the rolls should be increased fourfold (to 24).
Therefore, you would expect a couple of aces to turn up in 24 double rolls with
the same frequency as an ace in four single rolls. As you will see in a minute,
although the very first statement is correct, the rest of his argument is not!

1.1 What is Probability?

Let’s start by establishing some common language. For our purposes, an
experiment is any action whose outcome cannot necessarily be predicted with
certainty; simple examples include the roll of a die and the card drawn from a
well-shuffled deck. The outcome space of an experiment is the set of all possible
outcomes associated with it; in the case of a die, it is the set {1, 2, 3, 4, 5, 6},
while for the card drawn from a deck, the outcome space has 52 elements
corresponding to all combinations of 13 numbers (A, 2, 3, 4, 5, 6, 7, 8, 9, 10,
J, Q, K) with four suits (hearts, diamonds, clubs, and spades):

{A♡, 2♡, 3♡, 4♡, 5♡, 6♡, 7♡, 8♡, 9♡, 10♡, J♡,Q♡,K♡,
A♣, 2♣, 3♣, 4♣, 5♣, 6♣, 7♣, 8♣, 9♣, 10♣, J♣,Q♣,K♣,
A♢, 2♢, 3♢, 4♢, 5♢, 6♢, 7♢, 8♢, 9♢, 10♢, J♢,Q♢,K♢,
A♠, 2♠, 3♠, 4♠, 5♠, 6♠, 7♠, 8♠, 9♠, 10♠, J♠,Q♠,K♠}

Probability, Decisions and Games: A Gentle Introduction using R, First Edition. Abel Rodríguez and Bruno Mendes.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/Rodriguez/Probability_Decisions_and_Games



2 1 An Introduction to Probability

A probability is a number between 0 and 1 that we attach to each element
of the outcome space. Informally, that number simply describes the chance
of that event happening. A probability of 1 means that the event will happen
for sure, a probability of 0 means that we are talking about an impossible
event, and numbers in between represent various degrees of certainty about
the occurrence of the event. In the future, we will denote events using capital
letters; for example,

A = {It will rain tomorrow},
B = {The number 6 will come up in the next roll of the dice},

while the probability associated with these events is denoted by P(A) and
P(B). By definition, the probability of at least one event in the outcome space
happening is 1, and therefore the sum of the probabilities associated with each
of the outcomes also has to be equal to 1. On the other hand, the probability
of an event not happening is simply the complement of the probability of the
event happening, that is,

P(A) = 1 − P(A)

where A should be read as “A not happening” or “not A.” For example, if A =
{It will rain tomorrow}, then A = {It will NOT rain tomorrow}.

There are a number of ways in which a probability can be interpreted.
Intuitively almost everyone can understand the concept of how likely some-
thing is to happen. For instance, everyone will agree on the meaning of
statements such as “it is very unlikely to rain tomorrow” or “it is very likely
that the LA Lakers will win their next game.” Problems arise when we try to
be more precise and quantify (i.e., put into numbers) how likely the event is to
occur. Mathematicians usually use two different interpretations of probability,
which are often called the frequentist and subjective interpretations.

The frequentist interpretation is used in situations where the experiment in
question can be reproduced as many times as desired. Relevant examples for
us include rolling a die, drawing cards from a well shuffled deck, or spinning
the roulette wheel. In that case, we can think about repeating the experiment
a large number of times (call it n) and recording how many of them result in
outcome A (call it zA). The probability of the event A can be defined by thinking
about what happens to the ratio zA

n
(sometimes called the empirical frequency)

as n grows.
For example, let A = {A flipped coin comes up heads}. We often assign this

event a probability of 1/2, that is, we let P(A) = 1
2
. This is often argued on the
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Sidebar 1.1 Random sampling in R

R provides easy-to-use functions to simulate the results of random experiments.
When working with discrete outcome spaces such as those that appear with
most casino and tabletop games, the function sample() is particularly useful.
The first argument of sample() is a vector whose entries correspond to the
elements of the outcome space, the second is the number of samples that we
are interested in drawing, and the third indicates whether sampling will be
performed with or without replacement (for now we are only drawing with
replacement).

For example, suppose that you want to flip a balanced coin (i.e., a coin that
has the same probability of heads and tails) multiple times:

> outspc = c("Heads","Tails") # Outcome space
> z = sample(outspc, 20, replace=TRUE) # Flip 20 times
> z

[1] "Tails" "Heads" "Tails" "Tails" "Tails" "Tails" "Heads"
[8] "Heads" "Tails" "Tails" "Tails" "Heads" "Heads" "Heads"
[15] "Heads" "Tails" "Tails" "Tails" "Heads" "Tails"

Similarly, if we want to roll a six-sided die 15 times:

> outspc = seq(1,6)
> z = sample(outspc, 15, replace=TRUE)
> z

[1] 5 2 5 4 2 1 1 2 3 1 6 5 2 6 3

basis of symmetry: there is no apparent reason why one side of a regular coin
would be more likely to come up than the other. Since you can flip a coin as
many times as you want, the frequentist interpretation of probability can be
used to interpret the value 1/2.

Because flipping the coin by hand is very time-consuming, we instead use
a computer to simulate 5000 flips of a coin and plot the cumulative empirical
frequency of heads using the following R code (please see Sidebar 1.1 for details
on how to simulate random outcomes in R and Figure 1.1 for the output).

> n = 5000
> outc = sample(c("Head","Tail"), n, replace=T)
> z = cumsum(outc=="Head")/seq(1,n)
> plot(z, xlab="Flips", ylab="Frequency of Heads",type="l")
> abline(h=0.5, col="grey")
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Figure 1.1 Cumulative empirical frequency of heads (black line) in 5000 simulated flips of a
fair coin. The gray horizontal line corresponds to the true probability 1∕2.

Note that the empirical frequency fluctuates, particularly when you have
flipped the coin just a few times. However, as the number of flips (n in our
formula) becomes larger and larger, the empirical frequency gets closer and
closer to the “true” probability 1∕2 and fluctuates less and less around it.

The convergence of the empirical frequency to the true probability of an event
is captured by the so-called law of large numbers.

Law of Large Numbers for Probabilities
Let zn represent the number of times that event A happens in a total of n
identical repetitions of an experiment, and let P(A) denote the probability of
event A. Then zn

n
approaches P(A) as n grows.

This version of the law of large numbers implies that, no matter how rare
a non-zero probability event is, if you try enough times, you will eventually
observe it. Besides providing a justification for the concept of probability, the
law of large numbers also provides a way to compute the probability of complex
events by repeating an experiment multiple times and computing the empirical
frequency associated with it. In the future, we will do this by using a computer
(as we did in our simple coin flipping example before) rather than by physically
rolling dice or drawing cards from a deck.
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Even though the frequency interpretation of probability we just described is
appealing, it cannot be applied to situations where the experiment cannot be
repeated. For example, consider the event

A = {It will rain tomorrow}.

There will be only one tomorrow, so we will only get to observe the “exper-
iment” (whether it rains or not) once. In spite of that, we can still assign a
probability to A based on our knowledge of the season, today’s weather, and
our prior experience of what that implies for the weather tomorrow. In this
case, P(A) corresponds to our “degree of belief” on tomorrow’s rain. This is
a subjective probability, in the sense that two reasonable people might not
necessarily agree on the number.

To summarize, although it is easy for us to qualitatively say how likely some
event is to happen, it is very challenging if we try to put a number to it. There
are a couple of ways in which we can think about this number:

• The frequentist interpretation of probability that is useful when we can
repeat and observe an experiment as many times as we want.

• The subjective interpretation of probability, which is useful in almost any
probability experiment where we can make a judgment of how likely an event
is to happen, even if the experiment cannot be repeated.

1.2 Odds and Probabilities

In casinos and gambling dens, it is very common to express the probability of
events in the form of odds (either in favor or against). The odds in favor of an
event A is simply the ratio of the probability of that event happening divided by
the probability of the event not happening, that is,

Odds in favor of A = P(A)
1 − P(A)

Similarly, the odds against A are simply the reciprocal of the odds in favor,
that is,

Odds against A = 1
Odds in favor of A

= 1 − P(A)
P(A)

The odds are typically represented as a ratio of integer numbers. For example,
you will often hear that the odds in favor of any given number in American
roulette are 1 to 37, or 1:37. Note that you can recover P(A) from the odds in
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favor of A through the formula,

P(A) = Odds in favor of A
1 + Odds in favor of A

In the context of casino games, the odds we have just discussed are sometimes
called the winning odds (or the losing odds). In that context, you will also hear
sometimes about payoff odds. This is a bit of a misnomer, as these represent the
ratio of payoffs, rather than the ratio of probabilities.

Payoff odds in favor of A =
Payoff to player if A happens

Payoff to player if A does not happen

For example, the winning odds in favor of any given number in American
roulette are 1 to 37, but the payoff odds for the same number are just 1 to 35
(which means that, if you win, every dollar you bet will bring back $35 in
profit). This distinction is important, as many of the odds on display in casinos
refer to these payoff odds rather than the winning odds. Keep this in mind!

1.3 Equiprobable Outcome Spaces and De Méré’s
Problem

In many problems, we can use symmetry arguments to come up with
reasonable values for the probability of simple events. For example, consider
a very simple experiment consisting of rolling a perfect, six-sided (cubic) die.
This type of dice typically has its sides marked with the numbers 1–6. We
could ask about the probability that a specific number (say, 3) comes up on top.
Since the six sides are the only possible outcomes (we discount the possibility
of the die resting on edges or vertexes!) and they are symmetric with respect
to each other, there is no reason to think that one is more likely to come up
than another. Therefore, it is natural to assign probability 1/6 to each side
of the die.

Outcome spaces where all outcomes are assumed to have the same proba-
bility (such as the outcome space associated with the roll of a six-sided die)
are called equiprobable spaces. In equiprobable spaces, the probabilities of
different events can be computed using a simple formula:

P(A) = Number of outcomes consistent with A
Total number of possible outcomes

.
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Note the similarities with the law of large numbers and the frequentist
interpretation of probability.

Although the concept of equiprobable spaces is very simple, some care needs
to be exercised when applying the formula. Let’s go back to Chevalier de Méré’s
predicament. Recall that De Méré would commonly bet that he could get at
least one ace when rolling 4 (fair) six-sided dice, and he would regularly make
money on this bet. To make the game more interesting, he started betting on
getting at least one double-one in 24 rolls of two dice, after which he started to
lose money.

Before analyzing in detail De Méré’s bets, let’s consider the outcome space
associated with rolling two dice. The same symmetry arguments we used in
the case of a single die can be used in this case, so it is natural to think of this
outcome space as equiprobable. However, there are two ways in which we
could construct the outcome space, depending on whether we consider the
order of the dice relevant or not (see Table 1.1). The first construction leads
to the conclusion that getting a double one has probability 1∕21 ≈ 0.0476190,
while the second leads to a probability of 1∕36 ≈ 0.027778. The question is,
which one is the correct one?

In order to gain some intuition, let’s run another simulation in R in which two
dice are rolled 100,000 times each.

> n = 100000
> die1 = sample(seq(1,6), n, replace=T)
> die2 = sample(seq(1,6), n, replace=T)
> sum(die1==1 & die2==1)/n

[1] 0.02765

The result of the simulation is very close to 1∕36, which suggests that this
is the right answer. A formal argument can be constructed by thinking of
the dice as being rolled sequentially rather than simultaneously. Since there

Table 1.1 Two different ways to think about the outcome space associated with rolling
two dice.

Order is irrelevant
21 outcomes in total

Order is relevant
36 outcomes in total

1–1 2–2 3–3 4–4 5–5 6–6 1–1 2–1 3–1 4–1 5–1 6–1
1–2 2–3 3–4 4–5 5–6 1–2 2–2 3–2 4–2 5–2 6–2
1–3 2–4 3–5 4–6 1–3 2–3 3–3 4–3 5–3 6–3
1–4 2–5 3–6 1–4 2–4 3–4 4–4 5–4 6–4
1–5 2–6 1–5 2–5 3–5 4–5 5–5 6–5
1–6 1–6 2–6 3–6 4–6 5–6 6–6
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are 6 possible outcomes of the first roll and another 6 possible outcomes for
the second one, there is a total of 36 combined outcomes. Since just 1 of these
36 outcomes corresponds to a pair of ones, our formula for the probability of
events in equiprobable spaces leads to the probability of 2 ones being 1/36.
Underlying this result is a simple principle that we will call the multiplication
principle of counting,

Multiplication Principle for Counting
If events A,B,C,… can each happen in na, nb, nc,…ways then they can happen
together in na × nb × nc × · · · ways.

Now, let’s go back to De Méré’s problem and use the multiplication rule to
compute the probability of winning each of his two bets. In this context, it is
easier to first compute the probability of losing the bet and, because no ties are
possible, then obtain the probability of winning the bet as

P(winning) = 1 − P(losing).

For the first bet, the multiplication rule implies that there are a total of
6 × 6 × 6 × 6 = 64 = 1296 possible outcomes when we roll 4 six-sided dice. If
we are patient enough, we can list all the possibilities:

1, 1, 1, 1
1, 1, 2, 2
1, 1, 1, 3
1, 1, 1, 4
1, 1, 1, 5
1, 1, 1, 6
1, 1, 2, 1

⋮

On the other hand, since for each single die there are five outcomes that are
not an ace, there are 54 = 625 outcomes for which De Méré losses this bet.
Again, we could potentially enumerate these outcomes

2, 2, 2, 2
2, 2, 2, 3
2, 2, 2, 4
2, 2, 2, 5
2, 2, 2, 6
2, 2, 3, 2

⋮

The probability that De Méré wins his bet is therefore

P(winning first bet) = 1 − 625
1296

= 671
1296

= 0.51775.
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You can corroborate this result with a simple simulation of 100,000 games:

> n = 100000
> die1 = sample(seq(1,6), n, replace=T)
> die2 = sample(seq(1,6), n, replace=T)
> die3 = sample(seq(1,6), n, replace=T)
> die4 = sample(seq(1,6), n, replace=T)
> sum(die1==1 | die2==1 | die3==1 | die4==1)/n

[1] 0.51961

For the second bet we can proceed in a similar way. As we discussed before,
there are 36 equiprobable outcomes when you roll 2 six-sided dice, 35 of which
are unfavorable to the bet. Therefore, there are 3624 possible outcomes when
two dice are rolled together 24 times, of which 3524 are unfavorable to the player,
and the probability of winning this bet is equal to

P(winning second bet) = 1 − 3524

3624 = 3624 − 3524

3624 ≈ 0.49140.

Again, you can verify the results of the calculation using a simulation:

> n = 100000
> outc = seq(1,6)
> numsneakeye = rep(0,n)
> for(i in 1:n){
+ die1 = sample(outc,24,replace=T)
+ die2 = sample(outc,24,replace=T)
+ numsneakeye[i] = sum(die1==1 & die2==1)
+ }
> sum(numsneakeye>=1)/n

[1] 0.49067

The fact that the probability of winning is less than 0.5 explains why De Méré
was losing money! Note, however, that if he had used 25 rolls instead of 24,
then the probability of winning would be 3625−3525

3625 ≈ 0.50553, which would have
made it a winning bet for De Méré (but not as good as the original one!).

1.4 Probabilities for Compound Events

A compound event is an event that is created by aggregating two or more simple
events. For example, we might want to know what is the probability that the
number selected by the roulette is black or even, or what is the probability that
we draw a card from the deck that is both a spade and a number.

As the examples above suggest, we are particularly interested in two types of
operations to combine events. On the one hand, the union of two events A and
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B (denoted by A ∪ B) corresponds to the event that happens if either A or B
(or both) happen. On the other hand, the intersection of two events (denoted
by A ∩ B) corresponds to the event that happens only if both A and B happen
simultaneously. The results from these operations can be represented graph-
ically using a Venn diagram (see Figure 1.2) where the simple events A and B
correspond to the rectangles. In Figure 1.2(a), the combination of the areas of
both rectangles corresponds to the union of the events. In Figure 1.2(b), the
area with the darker highlight corresponds to the intersection of both events.
The probability of the intersection of two events is sometimes called the joint
probability of the two events. In the case when this joint probability is zero
(i.e., both events cannot happen simultaneously), we say that the events are
disjoint or mutually exclusive.

In many cases, the probabilities of compound events can be computed
directly from the sample space by carefully counting favorable cases. However,
in other cases, it is easier to compute them from simpler events. Just as there is

A

B

A

B

(a)

(b)

Figure 1.2 Venn diagram for
the (a) union and
(b) intersection of two events.



1.4 Probabilities for Compound Events 11

a rule for probability of two events happening together, there is a second rule
for the probability of two alternative events (e.g., the probability of obtaining
an even number or a 2 when rolling a die), which is sometimes called the
Addition Rule of probability:

For any two events,

P(A ∪ B) = P(A) + P(B) − P(A ∩ B)

Figure 1.3 presents a graphical representation of two events using Venn
diagrams; it provides some hints at why the formula takes this form. If we
simply add P(A) and P(B), the darker region (which corresponds to P(A ∩ B))
is counted twice. Hence, we need to subtract it once in order to get the
right result. If two events are mutually exclusive (i.e., they cannot occur
at the same time, which means that P(A ∩ B) = 0), this formula reduces to
P(A ∪ B) = P(A) + P(B).

Similar rules can be constructed to compute the joint probability of two
events, P(A ∩ B). For the time being, we will only present the simplified
Multiplication Rule for the probability of independent events. Roughly speak-
ing, this rule is appropriate for when knowing that one of the events occur
does not affect the probability that the other will occur.

For any two independent events,

P(A ∩ B) = P(A)P(B).

In Chapter 5, we cover the concept of independent events in more detail and
present more general rules to compute the joint probabilities.

Figure 1.3 Venn diagram for
the addition rule.

A

B
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1.5 Exercises

1. A man has 20 shirts and 10 ties. How many different shirt-and-tie
combinations can he make?

2. If you have 5 different pants, 12 different shirts, and 3 pairs of shoes, how
many days can you go without repeating the same outfit?

3. A fair six-sided die is rolled 1,000,000 times and the number of rolls that
turn out to be either a 1 or a 5, x1,5 are recorded. From the law of large
numbers, what is the approximate value for x1,5 that you expect to see?

4. A website asks users to choose eight-letter usernames (only alphabetic
characters are allowed, and no distinction is made between lower- and
upper-case letters). How many distinct usernames are possible for the
website?

5. Provide two examples of experiments for which the probability of the
outcomes can only be interpreted from a subjective perspective. For each
one of them, justify your choice and provide a value for such probability.

6. In how many ways can 13 students be lined up?

7. Re-write the following probability using the addition rule of probability:
P(obtaining a 5 or a 6 when rolling a six-sided die).

8. Re-write the following probability using the addition rule of probability:
P(obtaining a total sum of 5 or an even sum when rolling a 2 six-sided
dice).

9. Re-write the following probability using the rule of probability for
complementary events: P(obtaining at least a 2 when rolling a six-sided
die).

10. Re-write the following probability using the rule of probability for
complementary events: P(obtaining at most a 5 when rolling a six-sided
die).

11. Consider rolling a six-sided die. Which probability rule can be applied to
the following probability

P(obtaining a number higher than 2 or a number smaller than 5).
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12. What is the probability of obtaining at least two heads when flipping a
coin three times? Which probability rule was used in your reasoning?

13. Explain what is wrong with each of the following arguments.
(a) First argument:

• In 1 roll of a six-sided die, I have 1/6 of a chance to get an ace.
• So in 4 rolls, I have 4 × 1

6
= 2

3
of a chance to get at least one ace.

(b) Second argument:
• In 1 roll of a pair of six-sided dice, I have 1/36 of a chance to get a

double ace.
• So in 24 rolls, I have 24 × 1

36
= 2

3
of a chance to get at least one

double ace.

14. What is the probability that, in a group of 30 people, at least two of them
have the same birthday. Hint: Start by computing the probability that no
two people have the same birthday.

15. [R] Write a simulation that allows you to estimate the probability in the
previous problem.

16. [R] Modify the code for the second De Méré bet to verify that if 25 rolls
are involved instead of 24 then you have a winning bet.
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2

Expectations and Fair Values

Let’s say that you are offered the following bet: you pay $1, then a coin is flipped.
If the coin comes up tails you lose your money. On the other hand, if it comes
up heads, you get back your dollar along with a 50 cents profit. Would you
take it?

Your gut feeling probably tells you that this bet is unfair and you should
not take it. As a matter of fact, in the long run, it is likely that you will lose
more money than you could possibly make (because for every dollar you lose,
you will only make a profit of 50 cents, and winning and losing have the same
probability). The concept of mathematical expectation allows us to generalize
this observation to more complex problems and formally define what a fair
game is.

2.1 Random Variables

Consider an experiment with numerically valued outcomes x1, x2,… , xn. We
call the outcome of this type of experiment a random variable, and denote it
with an uppercase letter such as X. In the case of games and bets, two related
types of numerical outcomes arise often. First, we consider the payout of a bet,
which we briefly discussed in the previous chapter.

The payout of a bet is the amount of money that is awarded to the player under
each possible outcome of a game.

The payout is all about what the player receives after game is played, and it
does not account for the amount of money that a player needs to pay to enter
it. An alternative outcome that addresses this issue is the profit of a bet:

Probability, Decisions and Games: A Gentle Introduction using R, First Edition. Abel Rodríguez and Bruno Mendes.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/Rodriguez/Probability_Decisions_and_Games
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The profit of a bet is the net change in the player’s fortune that results from each
of the possible out comes of the game and is defined as the payout minus the
cost of entry.

Profit = Payout − Cost of entry

Note that, while all payouts are typically nonnegative, profits can be either
positive or negative.

For example, consider the bet that was offered to you in the beginning of this
chapter. We can define the random variable

X = {Payout from the bet}.

As we discussed earlier, this random variable represents how much money a
player receives after playing the game. Therefore, the payout has only two possi-
ble outcomes x1 = 0 and x2 = 1.5, with associated probabilities P(X = 0) = 0.5
and P(X = 1.5) = 0.5. Alternatively, we could define the random variable

Y = {Profit from the wager},

which represents the net gain for a player. Since the price of entry to the game
is $1, the random variable Y has possible outcomes y1 = −1 (if the player loses
the game) and y2 = 0.5 (when the player wins the game), and associated prob-
abilities P(Y = −1) = 0.5 and P(Y = 0.5) = 0.5.

2.2 Expected Values

To evaluate a bet, we would like to find a way to summarize the different out-
comes and probabilities into a single number. The expectation (or expected
value) of a random value allows us to do just that.

The expectation of a random variable X with outcomes x1, x2,… , xn is a
weighted average of the outcomes, with the weights given by the probability
of each outcome:

E(X) = x1P(X = x1) + x2P(X = x2) + · · · + xnP(X = xn).

For example, the expected payout of our initial wager is

E(X) = (0)
⏟⏟⏟

x1

× (0.5)
⏟⏟⏟

P(X=x1)

+ (1.5)
⏟⏟⏟

x2

× (0.5)
⏟⏟⏟

P(X=x2)

= 0.75.
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Sidebar 2.1 More on Random Sampling in R.

In Chapter 1, we used the function sample() only to simulate outcomes in
equiprobable spaces (i.e., spaces where all outcomes have the same probability).
However, sample() can also be used to sample from nonequiprobable spaces
by including a prob option. For example, assume that you are playing a game
in which you win with probability 2/3, you tie with probability 1/12, and you
lose with probability 1/4 (note that 2/3 + 1/12 + 1/4 = 1 as we would expect).
To simulate the outcome of repeatedly playing this game 10,000 times, we use

> n = 10000
> outsp = c("Win","Tie","Lose")
> x = sample(outsp, n, replace=T, prob=c(2/3,1/12,1/4))
> sum(x=="Win") # Number of wins in the simulation

[1] 6589

The vector that follows the prob option needs to have the same length as the
number of outcomes and gives the probabilities associated with each one of
them. If the option prob is not provided (as in Chapter 1), sample() assumes
that all probabilities are equal. Hence

> x = sample(c("H","T"), n, replace=T, prob=c(1/2,1/2))

and

> x = sample(c("H","T"), n, replace=T)

are equivalent.

On the other hand, the expected profit from that bet is E(Y ) = (−1) × 0.5 +
0.5 × 0.5 = −0.25.

We can think about the expected value as the long-run “average” or “repre-
sentative” outcome for the experiment. For example, the fact that E(X) = 0.75
means that, if you play the game many times, for every dollar you pay, you
will get back from the house about 75 cents (or, alternatively, that if you
start with $1000, you will probably end up with only about $750 at the
end of the day). Similarly, the fact that E(Y ) = −0.25 means that for every
$1000 you bet you expect to lose along $250 (you lose because the expected
value is negative). This interpretation is again justified by the law of large
numbers:

Law of Large Numbers for Expectations (Law of Averages)
Let xn = 1

n
(x1 + x2 + · · · + xn) represent the average outcome of n repetitions

of a random variable X with expectation E(X). Then xn approaches E(X) as n
grows.
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Figure 2.1 Running profits from a wager that costs $1 to join and pays nothing if a coin
comes up tails and $1.50 if the coin comes up tails (solid line). The gray horizontal line
corresponds to the expected profit.

The following R code can be used to visualize how the running average of
the profit associated with our original bet approaches the expected value by
simulating the outcome of 5000 such bets and plotting it (see Figure 2.1):

> n = 5000
> outcspace = c("Win","Lose")
> res = sample(outcspace, n, replace=T)
> profit = -1*(res=="Lose") + 0.5*(res=="Win")
> runningav = cumsum(profit)/seq(1,n)
> plot(runningav, xlab="Tries", ylab="Profit", type="l")
> abline(h=-0.25, col="grey")

The expectation of a random variable has some nifty properties that will be
useful in the future. In particular,

If X and Y are random variables and a, b and c are three constant (non-random
numbers), then

E(aX + bY + c) = aE(X) + bE(Y ) + c.

To illustrate this formula, note that for the random variables X and Y we
defined in the context of our original bet, we have Y = X − 1 (recall our defini-
tion of profit and payout minus price of entry). Hence, in this case, we should
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have E(Y ) = E(X) − 1, a result that you can easily verify yourself from the facts
that E(Y ) = −0.25 and E(X) = 0.75.

2.3 Fair Value of a Bet

We could turn the previous calculation on its head by asking how much money
you would be willing to pay to enter a wager. That is, suppose that the bet we
proposed in the beginning of this chapter reads instead: you pay me $ f , then
I flip a coin. If the coin comes up tails, I get to keep your money. On the other
hand, if it comes up heads, I give you back the price of bet f along with a 50
cents profit. What is the highest value of f that you would be willing to pay? We
call the value of f the fair value of the bet.

Since you would like to make money in the long run (or, at least, not lose
money), you would probably like to have a nonnegative expected profit, that is,
E(X) ≥ 0, where X is the random variable associated with the profit generated
by the bet described earlier. Consequently, the maximum price you would be
willing to pay corresponds to the price that makes E(X) = 0 (i.e., a price such
that you do not make any money in the long term, but at least not lose any
either). If the price of the wager is f , then the expected profit of our hypothetical
wager is

E(X) = −f × 0.5 + 0.5 × 0.5 = 0.5 × (0.5 − f ).
Note that E(X) = 0 if and only if 0.5 − f = 0, or equivalently, if f = 0.5. Hence,

to participate in this wager you should be willing to pay any amount equal or
lower than the fair value of 50 cents. A game or bet whose price corresponds
to its fair value f is called a fair game or a fair bet.

The concept of fair value of a bet can be used to provide an alternative
interpretation of a probability. Consider a bet that pays $1 if event A hap-
pens, and 0 otherwise. The expected value of such a bet is 1 × P(A) + 0 ×
{1 − P(A)} = P(A), that is, we can think of P(A) as the fair value of a bet
that pays $1 if A happens, and pays nothing otherwise. This interpretation
is valid no matter whether the event can be repeated or not. Indeed, this
interpretation of probability underlies prediction markets such as PredictIt
(https://www.predictit.org) and the Iowa Electronic Market (http://tippie.biz
.uiowa.edu/iem/). Although most prediction markets are illegal in the United
States (where they are considered a form of online gambling), they do operate
in other English-speaking countries such as England and New Zealand.

2.4 Comparing Wagers

The expectation of a random variable can help us compare two bets. For
example, consider the following two wagers:
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• Wager 1: You pay $1 to enter and I roll a die. If it comes up 1, 2, 3, or 4 then
I pay you back 50 cents and get to keep 50 cents. If it comes up 5 or 6, then I
give you back your dollar and give you 50 cents on top.

• Wager 2: You pay $1 to enter and I roll a die. If it comes up 1, 2, 3, 4, or 5 then
I return to you only 75 cents and keep 25 cents. If it comes up 6 then I give
you back your dollar and give you 75 cents on top.

Let X and Y represent the profits generated by each of the bets above. It is
easy to see that, if the dice are fair,

E(X) = (−0.5) × 4
6
+ 0.5 × 2

6
≈ −0.166667,

E(Y ) = (−0.25) × 5
6
+ 0.75 × 1

6
≈ −0.083333.

These results tell you two things: (1) both bets lose money in the long term
because both have negative expected profits; (2) although both are disadvanta-
geous, the second is better than the first because it is the least negative.

You can verify the results by simulating 2000 repetitions of each of the two
bets using code that is very similar to the one we used in Section 2.2 (see
Figure 2.2, as well as Sidebar 2.1 for details on how to simulate outcomes from
nonequiprobable experiments in R).

> n = 2000
> outsp = seq(1,6)
> die1 = sample(outsp,n,replace=T)
> die2 = sample(outsp,n,replace=T)
> profit1 = 0.5*(die1>4) - 0.5*(die1<=4)
> profit2 = 0.75*(die2>5) - 0.25*(die2<=5)
> runningprf1 = cumsum(profit1)/seq(1,n)
> runningprf2 = cumsum(profit2)/seq(1,n)
> plot(runningprf1, xlab="Tries", ylab="Profit", type="l")
> lines(runningprf2, col="red", lty=2)

Note that, although early on the profit from the first bet is slightly better than
the profit from the second, once you have been playing both bets for a while the
cumulative profits revert to being close to the respective expected values.

Consider now the following pair of bets:

• Wager 3: You pay $3 to enter and I roll a die. If it comes up 1, 2, or 3, then
I keep your money. If it comes up 4, 5, or 6, then I give you back $6 (your
original bet plus a $3 profit).

• Wager 4: You pay $3 to enter and I roll a die. If it comes up 1 or 2 then I get
to keep your money. If it comes up 3, 4, 5, or 6 then I give you back $4 and a
half (your original $3 plus a profit of $1 and a half ).
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Figure 2.2 Running profits from Wagers 1 (continuous line) and 2 (dashed line).

The expectations associated with these two bets are

E(W ) = (−3) × 3
6
+ 3 × 3

6
= 0,

E(Z) = (−3) × 2
6
+ 1.5 × 4

6
= 0.

So, both bets are fair, and the expected value does not help us choose among
them. However, clearly these bets are not identical. Intuitively, the first one is
more “risky”, in the sense that the probability of losing our original bet is larger.
We can formalize this idea using the notion of variance of a random variable:

The variance of a random variable X with outcomes x1, x2,… , xn is given by

V (X) = E
{
[X − E(X)]2} = E(X2) − {E(X)}2

= x2
1P(X = x1) + · · · + x2

nP(X = xn)
− {x1P(X = x1) + · · · + xnP(X = xn)}2

As the formula indicates, the variance measures how far, on average,
outcomes are from the expectation. Hence, a larger variance reflects a bet with
more extreme outcomes, which often translates into a larger risk of losing
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money. For instance, for wagers 3 and 4, we have

V (W ) =
{
(−3)2 × 3

6
+ 32 × 3

6

}
− {0}2 = 9,

V (Z) =
{
(−3)2 × 2

6
+
(3

2

)2
× 4

6

}
− {0}2 = 4.5,

which agrees with our initial intuition. Figure 2.3 shows the running profit for
2000 simulations of each of the two wagers. As expected, the more variable
wager 3 oscillates more wildly and takes longer than the less variable wager 4
to get close to the expected value of 0.

> n = 2000
> outsp = seq(1,6)
> die3 = sample(outsp,n,replace=T)
> die4 = sample(outsp,n,replace=T)
> profit3 = 3*(die3>3) - 3*(die3<=3)
> profit4 = 1.5*(die4>2) - 3*(die4<=2)
> runningprf3 = cumsum(profit3)/seq(1,n)
> runningprf4 = cumsum(profit4)/seq(1,n)
> plot(runningprf3, xlab="Tries", ylab="Profit", type="l")
> lines(runningprf4, col="red", lty=2)
> abline(h=0, col="grey")
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Figure 2.3 Running profits from Wagers 3 (continuous line) and 4 (dashed line).
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Just like the expectation, the variance has some interesting properties. First,
the variance is always a nonnegative number (a variance of zero corresponds to
a nonrandom number). In addition,

If X is a random variable and a and b are two constant (non-random numbers),
then

V (aX + b) = a2V (X).

A word of caution is appropriate at this point. Note that a larger variance
implies not only a higher risk of losing money but also the possibility of making
more money in a single round of the game (the maximum profit from wager
3 is actually twice the maximum profit from wager 4). Therefore, if you want
to make money as fast as possible (rather than play for as long as you can),
you would typically prefer to take an additional risk and go for the bet with the
highest variance!

2.5 Utility Functions and Rational Choice Theory

The discussion about the comparison of bets presented in the previous section
is an example of the application of rational choice theory. Rational choice the-
ory simply states that individuals make decisions as if attempting to maximize
the “happiness” (utility) that they derive from their actions. However, before
we decide how to get what we want, we first need to decide what we want.
Therefore, the application of the rational choice theory comprises two distinct
steps:

1. We need to define a utility function, which is simply a quantification of a
person’s preferences with respect to certain objects or actions.

2. We need to find the combination of objects/actions that maximizes the
(expected) utility.

For example, when we previously compared wagers, our utility function
was either the monetary profit generated by the wager (in our first example)
or a function of the variance of the wager (when, as the second example, the
expected profit from all wagers was the same). However, finding appropriate
utility functions for a given situation can be a difficult task. Here are some
examples:

1. All games in a casino are biased against the players, that is, all have a negative
expected payoff. If the player’s utility function were based only on monetary
profit, nobody would gamble! Hence, a utility function that justifies people’s
gambling should include a term that accounts for the nonmonetary rewards
associated with gambling.
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2. When your dad used to play cards with you when you were five years old, his
goal was probably not to win but to entertain you. Again, a utility function
based on money probably makes no sense in this case.

3. The value of a given amount of money may depend on how much money you
already have. If you are broke, $10,000 probably represents a lot of money,
and you would be unwilling to take a bet that would make you lose that
much, even if the expected profit were positive. On the other hand, if you
are Warren Buffett or Bill Gates, taking such a bet would not be a problem.

In this book, we assume that players are only interested in the economic profit
and that the fun they derive from it (the other component of the utility func-
tion) is large enough to justify the possibility of losing money when playing. In
addition, we will assume that players are risk-averse, so among bets that have
the same expected profit, we will prefer those that have lower variances. For
this reason, in this book, we will usually look at the expected value of the game
first and, if the expected value happens to be the same for two or more choices,
we will expect the player pick the one with the lower variance (which, as we
discussed before, minimizes the risk).

2.6 Limitations of Rational Choice Theory

Rational choice theory, although useful to formulate models of human behavior,
is not always realistic. A good example of how people will easily deviate from
the strict rational behavior as defined above is Ellsberg’s Paradox. Assume that
you have an urn that contains 100 blue balls and 200 balls of other colors, some
of which are black and some of which are yellow (exactly how many are of each
color is unknown). First, you are offered the following two wagers:

• Wager 1: You receive $10 if you draw a blue ball and nothing otherwise.
• Wager 2: You receive $10 if you draw a black ball and nothing otherwise.

Which of the two wagers would you prefer? After answering this question,
you are offered the following two wagers,

• Wager 3: You receive $10 if you draw a blue or yellow ball and nothing
otherwise.

• Wager 4: You receive $10 if you draw a black or yellow ball and nothing
otherwise.

No matter how many yellow balls there really are, rational choice theory
(based on calculating expected values for each wager) predicts that if you
prefer Wager 2 to Wager 1, then you should also prefer Wager 4 to Wager
3, and vice versa. To see this, note that the expected payoff from Wager 1 is
1∕3 × 10 ≈ 3.333 (because there are exactly 100 blue balls in the urn). Con-
sequently, for Wager 2 to be preferable to wager 1, you would need to assume
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that the urn contains more than 100 black balls. But if you assume that there
are at least 100 black balls in the urn, the expected value for Wager 3 would be
at most (100∕300 + 99∕300) × 10 ≈ 6.663 (because there are at most 99 yellow
balls and exactly 100 blue ball in the urn), while the expected profit for Wager
4 would always be 200∕300 × 10 ≈ 6.666, making Wager 4 always better than
Wager 3. The paradox arises from the fact that many people who prefer Wager
1 to Wager 2 actually prefer Wager 4 to Wager 3. This might be because people
do not know how to react to the uncertainty of how many black and yellow
balls there are and prefer the wagers where there is less (apparent) uncertainty.

Another interesting example is Allais paradox. Consider three possible
prizes – prize A: $0, prize B: $1,000,000, and prize C: $5,000,000. You are first
asked to choose among two lotteries:

• Lottery 1: You get prize B ($1,000,000) for sure.
• Lottery 2: You get prize A (nothing) with probability 0.01, you get prize B

($1,000,000) with probability 0.89, or you get prize C ($5,000,000) with prob-
ability 0.10.

Then you are offered a second set of lotteries

• Lottery 3: You get prize A (nothing) with probability 0.89, or you get prize B
($1,000,000) with probability 0.11.

• Lottery 4: You get prize A (nothing) with probability 0.90, or you get prize C
($5,000,000) with probability 0.10.

Again, many subjects report that they prefer Lottery 1 to Lottery 2 and Lot-
tery 4 to Lottery 3, although rational choice theory predicts that the persons
who choose Lottery 1 should choose Lottery 3 too.

The Allais paradox is even subtler than Elsberg’s paradox, because each wager
(by itself ) has an obvious choice (1 and 4, respectively), but taking the two
wagers together, if you choose option 1 in the first wager, you should ratio-
nally choose option 3 in the second wager because they are essentially the same
option. The way we make sense of this (talk about a paradox!) is by noticing that
Lottery 1 can be seen as 89% of the time winning $1 million and the remaining
11% winning $1 million. We look at Lottery 1 in this unusual way because it
will be easier to compare it to Lottery 3 (where we win nothing 89% of the time
and $1 million 11% of the time). We can change the way we look at Lottery 4
for the same reason (to better compare it to Lottery 2): we win nothing 89% of
the time, nothing another 1% of the time, and $5 million 10% of the remaining
time. Table 2.1 summaries this alternative description for the lotteries.

You can see that Lotteries 1 and 2 are equivalent 89% of the time (they both
give you $1 million) and that Lotteries 3 and 4 are the same also 89% of the
time (they give you nothing). Let’s look at the table if we cross out the row
corresponding to what is supposed to happen 89% of the time.
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Table 2.1 Winnings for the different lotteries in Allais paradox.

Lottery 1 Lottery 2 Lottery 3 Lottery 4

Wins $1 million
89% of the time

Wins $1 million
89% of the time

Wins nothing 89%
of the time

Wins nothing 89%
of the time

Wins $1 million
11% of the time

Wins nothing 1% of
the time

Wins $1 million
11% of the time

Wins nothing 1%
of the time

Wins $5 million
10% of the time

Wins $5 million
10% of the time

Table 2.2 Winnings for 11% of the time for the different lotteries in Allais paradox.

Lottery 1 Lottery 2 Lottery 3 Lottery 4

Wins $1
million 11%
of the time

Wins nothing 1% of
the time

Wins $1 million
11% of the time

Wins nothing 1% of
the time

Wins $5 million
10% of the time

Wins $5 million
10% of the time

In Table 2.2, we see very clearly that Lotteries 1 and 3 are the same choice and
that Lotteries 2 and 4 are the same choice too. Hence, the conclusion from this
paradox is that by adding winning $1 million 89% of the time in the first wager
compared to the second wager, people deviate from the rational choice across
wagers even though there’s no reason to do so.

The bottom line from these two paradoxes is that, although rational choice
is a useful theory that can produce interesting insights, some care needs to be
exercised when applying those insights to real life problems, because it seems
that people will not necessarily make “rational” choices.

2.7 Exercises

1. Use the definition of rational choice theory to discuss in which sense gam-
bling can be considered “rational” or “irrational.”

2. Using the basic principles of the “rational player” described in the text
(mainly that a player will always try to maximize its expected value and
secondly minimize the variance of the gains), decide which of wagers
below would the player choose. In all the wagers, the player is required to
pay $1 to enter the wager.
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Wager 1: When you flip a coin and heads comes out, you lose your dollar.
If tails comes out, you get your dollar back and get an additional $0.25.

Wager 2: When you roll a die and 1 or 2 comes out, you lose your dollar;
if a 3 or a 4 comes out, you get your dollar back; and if a 5 or a 5 comes
out, you get your dollar back and an additional $0.50.

Wager 3: If you roll a die and 1, 2, or 3 comes out, you lose your dollar. If a
4 comes out, you receive your dollar back, and if a 5 or a 6 comes out,
you receive your dollar back and an additional $0.50.

3. The values of random variables are characterized by their random vari-
ability. Explain in your own words what aspect of that variability is the
expected value trying to capture. What aspect of the random variability is
the variance trying to capture?

4. If you are comparing the variance of two different random variables and
you find out one is much higher than the other, what does that mean?

5. Does high variability in the profit of a wager mean higher risk or lower
risk of losses?

6. The expected profit for a new game with price $1 is −0.0283 cents. If you
repeatedly bet $5 for 1000 times, would you expect to win or lose money
at the end of the night? How much?

7. Comment on the following statement: “A rational player will always
choose a wager with high variability because it allows for higher gains.”

8. Consider the three different stocks and their profits. Which one would a
rational player choose?
Stock A: This stock will give you a net profit of $100 with a probability 0.8,

a net profit of −$150 with probability 10%, a net profit of $200 with
probability 5% or net profit of −$500 with probability 5%.

Stock B: This stock will give you a net profit of $65 with a probability 0.8, a
net profit of −$15 with probability 10%, a net profit of $40 with prob-
ability 5% or net profit of −$50 with probability 5%.

Stock C: This other stock will give you a net profit of $100 with a probabil-
ity 0.5, a net profit of −$150 with probability 20%, a net profit of $200
with probability 15% or net profit of −$500 with probability 15%.

9. Rank your preferences for the following four lotteries (all cost $1 to enter).
Explain your choices:
• L1: Pays 0 with probability 1/2 and $40,000 with probability 1/2.
• L2: Pays 0 with probability 1/5 and $25,000 with probability 4/5.
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• L3: Pays −$10,000 (so you need to pay $10,000 if you lose!!) with prob-
ability 1/2 and $50,000 with probability 1/2.

• L4: Pays $10 with probability 1/3 and $30,000 with probability 2/3.

10. Let’s say you finally got some money to buy a decent car. You have two
alternatives: alternative U corresponds to buying a 10-old Corolla and
alternative N corresponds to buying a brand new Corolla. Each alterna-
tive has different types of costs involved (the initial cost of the car and
future maintenance costs).
• For option U , there is a 80% probability that on top of the cost of $10,000

to buy the car we will have a $2000 cost for major work on the car in
the future. There is also a probability of 15% for the future costs to be
as high as $3000 (for a total cost of $13,000). Finally, the more unlucky
are subject to the probability of 5% that future costs be as high as $5000
(for a total cost of $15,000).

• For option N , there’s a pretty high probability (90%) that there are no
major costs in maintaining the car in the future and you are subject
to just the cost of buying the car ($20,000). There is some chance (say
5%), though, that you might need a new transmission or other major
work (say, involving $1000 in costs). There’s a smaller probability (3%)
of some more serious work being necessary (say something around
$2000). And, for the really unlucky, a 2% chance one might need some
serious work done (costing something like $3000).

Which one of the two choices would one rationally recommend and why?

11. An urn contains 30 yellow balls and 70 balls of other colors (which can be
either red or blue). Suppose you are offered the following two bets:
• Wager 1: You receive $10 if you draw a yellow ball.
• Wager 2: You receive $10 if you draw a blue ball.
If you prefer the second bet over the first, which one of the following two
wagers would you prefer if you are a rational player?
• Wager 3: You receive $20 if you draw a red ball.
• Wager 4: You receive $15 if you draw a yellow or blue ball.

12. [R] Simulate the profit of both pairs of wagers in the previous exercise and
plot the results to see if you made the right decision.

13. A certain health condition has two possible treatments
• Treatment A, if successful, will extend the lifetime of the patient by 36

months. If it fails, it will neither increase nor reduce the expected life-
time of the patient. Clinical trials show that 20% of patients respond to
this treatment.
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• Treatment B, if successful, will increase the lifetime of the patient by 14
months, and 65% of the patients respond to it. In addition, 10% of the
patients subject to this treatment suffer from an adverse reaction that
reduces their expected lifetime by 2 months, and for the rest (25%) the
treatment has no effect.

Which one of the two treatments would you recommend, and why? Are
there any circumstances under which you would recommend the other
treatment? Consider both the point of view of the doctor making the rec-
ommendation and that of the patient receiving the treatment.
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3

Roulette

Roulette is one of the simpler games available in modern casinos and has
captured the popular imagination like no other. In fact, the game has been
featured in countless movies such as Humphrey Bogart’s 1942 Casablanca,
Robert Redford’s 1993 Indecent Proposal, and the 1994 German movie Run,
Lola, Run.

3.1 Rules and Bets

Roulette is played using a revolving wheel that has been divided into numbered
and color-coded pockets. There are 38 pockets in the American roulette (pop-
ular in the United States), or 37 pockets in the European roulette (common in
Monte Carlo and other European locations); see Figure 3.1. The croupier (as the
casino employee in charge of the table is known) spins the wheel and a small
ball in opposite directions. The outcome of the game depends on the pocket
where the ball falls.

Bets in roulette are placed by moving chips into appropriate locations in the
table. Roulette bets are typically divided into inside and outside bets. Outside
bets derive their name from the fact that the boxes where the bets are placed
surround the numbered boxes.

The simplest inside bet is called a straight-up, which corresponds to a bet
made to a specific number. To place this bet, you simply move your chips to the
center of the square marked with the corresponding number. The payoff odds
from a straight-up bet are 35 to 1, which means that if your number comes up
in the wheel, you get your original bet back and get a profit of $35 for each
dollar you bet. Other inside bets, such as the split or the street, are described
in Table 3.1.

The simplest of the outside bets are the color (or red/black) bets, and the
even/odd bets. As its name indicates, you win a color bet if the ball falls on a

Probability, Decisions and Games: A Gentle Introduction using R, First Edition. Abel Rodríguez and Bruno Mendes.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.
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Figure 3.1 The wheel in the French/European (left) and American (right) roulette and
respective areas of the roulette table where bets are placed.

pocket that has the same color as the one you picked. Similarly, you win an even
bet if the number that comes up in the roulette is a nonzero even number. In
both cases, the payoff odds are 1 to 1, so they are often called even bets. How-
ever, as we will see below, these even bets are not fair bets because the winning
odds are not 1 to 1. A list of outside bets is presented in Table 3.2. This list
corresponds to the bets and payoffs most commonly used in the United States;
some casinos allow for additional bets, or might slightly change the payouts
associated with them.

From a mathematical perspective, the game of roulette is one of the simplest
to analyze. For example, in American roulette, there are 38 possible outcomes
(the numbers 1–36 plus 0 and 00), which are assumed to be equiprobable.
Hence, the probability of any number coming up is 1/38. This means that the
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Table 3.1 Inside bets for the American wheel.

Bet name You are betting on… Placement of chips Payout

Straight-up A single number between
1 and 36

In the middle of number
square

35 to 1

Zero 0 In the middle of the 0 square 35 to 1
Double
zero

00 In the middle of the 00
square

35 to 1

Split Two adjoining numbers
(horizontally or vertically)

On the edge shared by both
numbers

17 to 1

Street Three numbers on the
same horizontal line

Right edge of the line 11 to 1

Square Four numbers in a square
layout (e.g., 19, 20, 22, and
23)

Corner shared by all four
numbers

8 to 1

Double
street

Two adjoining streets (see
Street row)

Rightmost on the line
separating the two streets

5 to 1

Basket One of three possibilities:
0, 1, 2 or 0, 00, 2 or 00, 2, 3

Intersection of the three
numbers

11 to 1

Top line 0, 00, 1, 2, 3 Either at the corner of 0 and
1 or the corner of 00 and 3

6 to 1

Table 3.2 Outside bets for the American wheel.

Bet name You are betting on… Placement of chips Payout

Red/black Which color the roulette will
show

Box labeled Red 1 to 1

Even/odd Whether the roulette shows a
nonzero even or odd number

Boxes labeled Even or Odd 1 to 1

1–18 Low 18 numbers Box labeled 1–18 1 to 1
19–36 High 18 numbers Box labeled 19–36 1 to 1
Dozen Either the numbers 1–12 (first

dozen), 13–24 (second dozen),
or 25–36 (third dozen)

First 12 boxes (first dozen),
second 12 boxes (second
dozen), third 12 boxes
(third dozen).

2 to 1

Column Either on 1, 4, 7, 10, 13, 16, 19,
22, 25, 28, 31, 34 (left column)
or 2, 5, 8, 11, 14, 17, 20, 23, 26,
29, 32, 35 (middle column) or
3, 6, 9, 12, 15, 18, 21, 24, 27,
30, 33, 36 (right column)

Marked box below the
corresponding column

2 to 1
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expected profit from betting $1 on a straight-up wager is

E(profit on a $1 straight-up bet)

= (−1) × 37
38

+ 35 × 1
38

= − 2
38

≈ −0.0526.

Note that the number is negative. Therefore, in the long term, you lose about
5 cents on each dollar you bet. This number is called the house advantage, and
it ensures that casinos remain a predictably profitable business (remember the
law of large numbers for expectation from Chapter 2).

Take now an even bet. There are 18 nonzero even numbers; therefore, the
expected profit from this bet is

E(profit on a $1 even bet) = (−1) × 20
38

+ 1 × 18
38

= − 2
38

≈ −0.0526.

This same calculation applies to odd, red, black, 1–18 and 19–36 bets. On the
other hand, for a split bet, we have

E(profit on a $1 split bet) = (−1) × 36
38

+ 17 × 2
38

= − 2
38

≈ −0.0526,

and for a street bet

E(profit on a $1 street bet) = (−1) × 35
38

+ 11 × 3
38

= − 2
38

≈ −0.0526.

As a matter of fact, the house advantage for almost every bet in American
roulette is the same (−2∕38). Among the bets discussed in Tables 3.1 and 3.2,
the only exception is the top line bet, which is more disadvantageous than the
other common bets:

E(profit on a $1 top line bet) = (−1) × 33
38

+ 6 × 5
38

= − 3
38

= −0.0789.

Indeed, it is more disadvantageous to play a top line bet than to simulta-
neously bet in each of the numbers included in it using straight-up bets! To
see this, consider betting $5 on a top line bet versus betting $1 simultane-
ously on each of the numbers in the top line bet (0, 00, 1, 2, 3). Due to the
properties of expectations (recall Chapter 2), the expected profit from the first
wager is

5
⏟⏟⏟

Dollar
amount
of the

bet

×
(
− 3

38

)
⏟⏟⏟

House
advantage on

the top line bet

≈ −0.3947,
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while, the expected profit from the second bet is

5
⏟⏟⏟

Dollar
amount
of the

bet

×
(
− 2

38

)
⏟⏟⏟

House
advantage on

the straight-up bet

≈ −0.2631.

This means that with the top line bet you lose on an average 50% more
even though you are betting the same amount of money to exactly the same
numbers!

Although most bets in roulette are equivalent in terms of their expected
value, the risk associated with them differs greatly. Take, for example, the
straight-up bet:

V (profit on a $1 straight-up bet)

= (−1)2 × 37
38

+ 352 × 1
38

−
(
− 2

38

)2
≈ 33.21,

while the variance of a color bet is
V (profit on a $1 color bet)

= (−1)2 × 20
38

+ 12 × 18
38

−
(
− 2

38

)2
≈ 0.9972.

These calculations highlight that the risk associated with the color bet is much
smaller than the risk associated with the straight-up bet. To verify this intuition,
let’s simulate 10,000 spins of an American roulette and plot the running profit
associated with betting $1 every time on each of the two bets:

> n = 10000
> spins = sample (38, n, replace=TRUE) # 37 and 38 are
> # 0 and 00
> redp = c(1,3,5,7,9,12,14,16,18,19,21,23,
+ 25,27,30,32,34,36) # For the color bet, we are
> # betting red, see Figure 3.1
> strp = 16 # For the straight-up bet we are betting to 3
> profit1 = (spins %in% redp) - !(spins %in% redp)
> profit2 = 35*(spins==strp) - (spins!=strp)
> runningav1 = cumsum(profit1)/seq(1,n)
> runningav2 = cumsum(profit2)/seq(1,n)
> plot(runningav1, xlab="Spin", ylab="Profit", type="l")
> lines(runningav2, col="red", lty=2)
> abline(h=-2/38, col="grey")

Figure 3.2, which shows the results from these simulations, is consistent with
the discussion we had before: although the average profits from both bets even-
tually tends to converge toward the expected value of−2∕38, the straight-up bet
(which has the highest variance) has much more volatile returns.
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Figure 3.2 Running profits from a color (solid line) and straight-up (dashed line) bet.

What should you do next time you visit a casino? It depends on what your
goal is, and how much money you have in your bankroll. If you want to play for
as long as possible before exhausting your money, you should only play color
bets (or bets with similar payouts such as the even/odd bet or the 1–18 or 19–38
bets). On the other hand, if you want to maximize the amount of money you can
potentially make from a single bet, then you should play only straight-up bets
(just like the main character in Run Lola, Run). However, in that case, you are
also maximizing the probability that you will go bankrupt very quickly. There
are no free lunches…

European roulette can be analyzed in a similar way. Payout odds are the same
as in American roulette, but now the probability of a single number is 1

37
. Hence,

the expected value of a straight-up bet is in this case

E(profit on a $1 bet on straight-up)

= (−1) × 36
37

+ 35 × 1
37

= − 1
37

≈ −0.027027.

This calculation shows that the house advantage for straight-up bets in Amer-
ican roulette is almost twice as large as for European roulette. If you have a
choice, you should always prefer roulette in Europe rather than in the United
States.
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3.2 Combining Bets

Sometimes players like to place multiple bets simultaneously on the same spin
of the roulette wheel. As an example, consider placing $2 on a bet of red and $1
on the second dozen. The payout of this simultaneous bet is going to be different
depending on the number that comes up. If a red number among the second
dozen comes up (such as 16), you win both bets and you get back the $3 you
originally bet plus a profit of $4 more (recall that the payoff odds for reds is 1 to
1, which means that you profit $1 for each dollar you bet, while the payoff of a
dozen bet is 1 to 2, meaning that you profit $2 for each dollar you bet). On the
other hand, if an odd number in the second dozen comes up you lose the even
bet, but you win the dozen bet. Table 3.3 describes the possible outcomes along
with their probabilities, payouts, and profits (remember that the entry cost of
the bet is always $3).

From Table 3.3, it is easy to see that the expected profit of this combined
bet is

E(profit) = 4 × 6
38

+ 0 × 6
38

+ 1 × 12
38

+ (−3) × 14
38

= − 6
38

.

This is the same expected profit that you would get from betting $3 on pretty
much any simple bet! This result suggests that you cannot decrease the house
advantage by combining bets. On the other hand, the variance of this bet is

V (profit) = (4)2 × 6
38

+ (0)2 × 6
38

+ (1)2 × 12
38

+ (−3)2 × 14
38

−
( 6

38

)2

= 6.13296.

Note that this value is smaller than the variance of the dozen bet, but larger
than the variance of the color bet. Therefore, even though it will not increase
your probability of winning, mixing bets allows you to tailor the risk that you
assume.

Table 3.3 Outcomes of a combined bet of $2 on red and $1 on the second dozen.

Outcome Prob Payout ($) Profit ($)

Red in second dozen (14, 16, 18,
19, 21, 23)

6/38 2 + 2 + 1 + 2 = 7 7− 3 = 4

Black in second dozen (13, 15, 17,
20, 22, 24)

6/38 1 + 2 = 3 3− 3 = 0

Red in first or third dozen (1, 3, 4,
5, 9, 12, 25, 27, 30, 32, 34, 36)

12/38 2 + 2 = 4 4− 3 = 1

All other numbers (0, 00, 2, 6, 7, 8,
10, 11, 26, 28, 29, 31, 33, 35)

14/38 0 0− 3 =−3
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3.3 Biased Wheels

So far, our analysis of the game of roulette has assumed that all numbers
have the same probability. However, in reality, the wheel is a mechanical
device subject to wear and tear so, in time, even the best roulette tends to
slightly favor some numbers (in other words, it becomes biased). For example,
this might happen because of warped axels, because of chipped/battered
pockets, or simply because the wheel is not level. Alternatively, the bias might
not be due to the wheel itself, but to the way the croupier spins the wheel or
the ball. Whatever be the reason, a biased roulette hurts the casino only if
players are aware of it, in which case they can exploit the bias to reduce (or
eliminate) the house advantage.

Let’s consider the analysis of a biased wheel. For the sake of concreteness, we
will work with a wheel that has a slightly positive bias toward three numbers and
a negative bias toward the others. A player who knows which three numbers
have a positive bias can exploit it by making simultaneous straight-up bets to
these numbers. For example, consider a biased wheel in which the numbers 2, 4,
and 21 each have a probability of 0.028 (which is slightly larger than the typical
1∕38 ≈ 0.0263 associated with an unbiased wheel), while the other 35 numbers
have all the same probability of 0.02617143 of coming up (which is necessarily
slightly lower than 1∕38 ≈ 0.0263). If the player only makes straight-up bets of
$1 to each of the three numbers favored by the wheel, the profit of the bet is

0.028
⏟⏟⏟

Probability of
obtaining a 4

× ( 36
⏟⏟⏟

Payout of 4

− 3
⏟⏟⏟

Cost

) + 0.028
⏟⏟⏟

Probability of
obtaining a 21

× ( 36
⏟⏟⏟

Payout of 21

− 3
⏟⏟⏟

Cost

)

+ 0.028
⏟⏟⏟

Probability of
obtaining a 2

× ( 36
⏟⏟⏟

Payout of 2

− 3
⏟⏟⏟

Cost

) + (1 − 3 × 0.028)
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

Probability
of other

outcomes

(−3)
⏟⏟⏟

Cost

,

which reduces to
0.084 × 33 + 0.916 × (−3) = 0.024.

Since the expected value is positive, the player will actually make money in the
long run by betting on the numbers favored by this biased roulette! The fact
a player can potentially exploit any bias in the wheel means that casinos are
unlikely to bias their wheels on purpose.

Now, let’s turn the previous calculation around to answer the following ques-
tion: how large does the combined bias of the three numbers needs to be in
order to eliminate the house advantage (and make the game of roulette fair) if
the player is able to discover it? Let x be the combined bias and assume that
we bet $1 on each number. That means that the probability of winning with the
simultaneous straight up bet is 3∕38 + x (with a profit of $ 36 − 3 = 33), and the
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probability of losing is 35∕38 − x (with a expected profit of $ −3). The expected
profit is therefore

33 ×
( 3

38
+ x

)
+ (−3) ×

(35
38

− x
)
= 99 − 105

38
+ 36x = − 6

38
+ 36x,

and to make the game fair we need x to satisfy −6∕38 + 36x = 0, or x = 1∕228.
Therefore, it is enough to change the probability of three numbers from 1∕38 ≈
0.026315 to 1∕38 + 1∕684 ≈ 0.02777 to make the house edge disappear.

We can use R to simulate a biased wheel in which the numbers 2, 4, and 21
are favored:

> n = 5000
> outspc = seq(1,38)
> pbw = rep(0,38)
> fav = c(2,4,21) # Favored pockets
> pbw[fav] = 0.028 # Probability of favored pockets
> pbw[-fav] = (1-sum(pbw[fav]))/35 # Probability of other
> spins = sample(38, n, replace=TRUE, prob=pbw)
> barplot(table(spins))

Figure 3.3 presents a bar plot of the observed empirical frequencies observed
in 5000 spins of a biased wheel coming out of the simulation above. Note that
even with 5000 spins it is not easy to identify which pockets (if any) are favored.
Indeed, from this simulation, it would appear that the wheel is biased toward
the number 28!
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Figure 3.3 Empirical frequency of each pocket in 5000 spins of a biased wheel.
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The previous simulation highlights that, even though exploiting a biased
wheel is one of the very few ways in which a player can reduce the house
edge, detecting a biased wheel with a good degree of certainty is not easy and
might require that we observe the wheel for a really long time (particularly if
the bias is small). The exact number of spins to be recorded depends both on
the size of the bias and on how certain you want to be about the existence
of the bias; a rough approximation of the necessary number can be obtained
using Chebyshev’s theorem.

Let zA∕n be the observed frequency of event A after n identical repetitions of an
experiment, and let P(A) be the probability associated with the event A. Then,
for any desired precision 𝜀,

P
( ||||

zA
n

− P(A)
|||| > 𝜀

)
≤

P(A){1 − P(A)}
n𝜀2

.

Chebyshev’s theorem links the number of repetitions of an experiment (in
our case, the number of spins) with the error committed when approximating
P(A) by the empirical frequency zA∕n. We already knew (from the law of large
numbers) that this error becomes smaller and smaller as n grows, but we had
no idea about exactly how fast it decreased. Chebyshev’s theorem fills that gap,
and it can help us determine how many spins are needed to figure out if a wheel
is biased or not.

Understanding Chebyshev’s theorem can be hard because there are so many
frequencies and probabilities involved in the definition. To gain some intuition,
consider running a large number of simulations of an unbiased wheel, each
consisting of 10,000 spins. Figure 3.4 shows curves for the cumulative empirical
frequency of any given pocket for each of 100 such simulations. Because these
are random experiments, each curve is slightly different from the others. In
spite of this, some patterns are clear. For example, you can see that the graph
looks a little bit like a horizontal funnel, wider on the left size and narrower on
the right.

We can relate the features of the graph with the different terms that appear in
Chebyshev’s theorem. For example, you can think about the width of the funnel
as the error that is committed when we approximate P(A) by the empirical fre-
quency zA∕n. Hence, the width of the funnel is, roughly speaking, equivalent to
𝜖. As expected, smaller values of 𝜖 (more precision in the estimation) requires
larger values of n, and vice versa. Furthermore, it should be clear that, for any
n, the width of the funnel is itself random. Indeed, if we do a second set of 100
simulations, the width of the funnel will be slightly different. Hence, the best
we can do is to select an n that will give us the desired width with high proba-
bility (but we can never be absolutely sure that the error is not bigger than we
want). The desired high probability is something we need to decide ourselves
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Figure 3.4 Cumulative empirical frequency for a single pocket in an unbiased wheel.

(usually 0.95, 0.99, or 0.999 are used). Note, however, that the larger the desired
probability, the larger the value of n needs to be.

To illustrate how Chebyshev’s theorem works, consider spinning a wheel
100,000 times to determine whether the probability of 00 is 1∕38. If the wheel is
unbiased, how large is the probability that the difference between the estimate
we get from this experiment and the true probability is greater than 0.001
(which is the maximum error that I am willing to admit)? A direct application
of Chebyshev’s theorem yields:

P
(||||

zA

n
− 1

38
|||| > 0.001

)
≤

1
38

× 37
38

100,000 × (0.001)2 ≈ 0.2562.

This probability is relatively high, so we actually need a much larger number
of spins to be accurate enough. How many more? Let’s say that I do not want the
probability of a 0.001 error to be more than 5%. Then, again from Chebyshev’s
theorem,

0.05 =
1

38
× 37

38

n × (0.001)2 ,

which implies that

n =
1

38
× 37

38

0.05 × (0.001)2 ≈ 512,466.
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3.4 Exercises

1. What are even bets in roulette? Are they really even?

2. Albert Einstein once said that no one could possibly win at roulette “unless
he steals money from the table while the croupier isn’t looking.” Explain
this statement in the context of the law of large numbers.

3. What is the expected value and variance for simultaneous $5 street-bet
on 22–23–24 and a $1 odd-bet in American roulette?

4. What is the expected value and variance for a simultaneous $2 square-bet
on 1–2–4–5 and a $3 bet on the first column in American roulette?

5. What is the house advantage in European roulette for the split, color, and
dozen bets?

6. In American roulette, almost all bets have the same expected value. How-
ever, do they all have the same variance? If you think that they do not, you
should show a counterexample. If you want to play for as long as possible,
what bet would you prefer?

7. What would be the house advantage in roulette if there were three “losing”
numbers in the wheel (call them 0, 00, and 000)?

8. In American-style roulette, which one of the following bets has a higher
winning probability? Which one has a higher expected payoff? Which one
has the highest variance? Which one would you prefer, and why?
• Bet $18 on red.
• Bet $2 on a split.

9. In American-style roulette, which one of the following bets has a higher
winning probability? Which one has a higher expected payoff? Which one
has the highest variance? Which one would you prefer, and why?
• Bet $10 on a double-street.
• Bet $2 on a dozen (assume that the dozen does not contain any number

from the double-street).

10. In the first and third column strategy in roulette, one bets two pieces in
the first column, two pieces in the third column and two pieces in black.
What is the expected value of this system in American roulette?
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11. Consider a roulette wheel that is positively biased toward two numbers,
9 and 34. How large does the bias need to be in order for bets on this
roulette to be fair?

12. Why are casinos unlikely to bias their roulette wheels on purpose?

13. The payoffs in roulette are selected assuming that all numbers have the
same probability (in European roulette, i.e., 1∕37 ≈ 0.027). Assume that,
after collecting many spins from one given European roulette, you find
that three numbers, 25, 17, and 34 have a slightly higher probability of
coming out (say 0.04), while the other 34 numbers have about the same
probability (0.88∕34 ≈ 0.02588). Assume that you pick a strategy where
you make $1 straight up bets to each one of the high probability numbers.
What would be the expected payoff from this bet?

14. Making the same assumptions as the previous question, but now assume
that the three biased numbers have a probability of 0.05, and the remain-
ing numbers have a probability of 0.85∕34 ≈ 0.025. Assume that you pick
a strategy where you make $1 straight up bets to each one of the high
probability numbers. What would be the expected payoff from this bet?

15. How many spins of the wheel should you observe in order to be 99% sure
that there is a bias of 0.0029238 in the usual probability for a single number
(0.02163157) in an American roulette wheel (this is a bias that not only
would cancel the house advantage but also would actually turn it into your
advantage).

16. [R] Simulate and visualize the expected value and spread of the even bet
in roulette.

17. [R] Simulate a biased roulette, where three numbers of your choice have
a probability of occurring 0.3. Produce a histogram of the simulations.
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4

Lotto and Combinatorial Numbers

Lotteries are a very common and popular type of gamble. The bet is typically
targeted to a number (or set of numbers), which are randomly selected during a
special event held one or more times a week. In most cases, the randomization
mechanism used in lotteries is such that any number has the same probability
of occurring so we are dealing with an equiprobable outcome space. In the
United States, state governments typically administer lotteries, and the profits
they generate are used to provide supplemental funding to public programs
such as public schools and colleges; for example, see http://www.calottery
.com/default.htm.

4.1 Rules and Bets

Lotto is one variant of lotteries that is extremely popular. In its simplest version,
the player pays a fixed price for a ticket (often $1) and gets to select a few
numbers (often 5 or 6) from among a longer list of them (anywhere between
42 and 90 numbers). You win different prizes depending on how many numbers
in your list match the random draw (the more matches, the larger the prize). To
reduce the risk to the organization running the lottery, the prizes are often set
as a fixed percentage of total revenue (often a 50–50% split is used, making this
type of game an extremely bad proposition, at least when compared with most
casino games). A casino version of lotto, often called keno, is also widely popular
but is even more difficult to win than the version offered by most state lotteries.

4.1.1 The Colorado Lotto

To be more specific, consider the 6-of-42 lotto offered by the Colorado Lottery
(http://www.coloradolottery.com/GAMES/LOTTO/), which is drawn twice
a week on Wednesday and Saturday evenings. This game costs $1 to play,
distributes 50% of the revenue and pays out if you match 3, 4, 5, or 6 of the

Probability, Decisions and Games: A Gentle Introduction using R, First Edition. Abel Rodríguez and Bruno Mendes.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.
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drawn numbers. We would like to compute the probability of winning for each
of these four prizes.

Since we are dealing with an equiprobable space, we use the formula,

P(winning) =
Number of groups of 6 numbers that make you win
Number of possible groups of 6 numbers (out of 42)

.

Let’s start with the probability of winning the main prize (i.e., of picking the
6 right numbers). The numerator in this case is very easy; since the order in
which the numbers come up does not matter, there is just one combination of
numbers that allows you to win.

To figure out what the denominator is, let’s start by using the multiplication
rule. We need to choose six numbers without replacement (i.e., the numbers
cannot be repeated). Therefore, we have 42 options for the first number, 41 for
the second, 40 the third, and so on. This means that, as a first approximation,
we have:

Number of possible sets
of 6 numbers (out of 42) = 42 × 41 × 40 × 39 × 38 × 37 = 3,776,965,920.

This number is known as the number of permutations of 42 objects taken 6 at
a time, and is denoted as 42P6. This number can also be computed as

42P6 = 42 × 41 × 40 × 39 × 38 × 37 × 36 × 35 × · · · × 1
36 × 35 × · · · × 1

= 42!
(42 − 6)!

,

where n! = n × (n − 1) × (n − 2) × · · · × 3 × 2 × 1 is read n factorial (with the
convention 0! = 1).

When computing the number of permutations, we implicitly assume that the
order in which the numbers appear is important. That is, we assume that the
sequences {18, 4, 16, 32, 44, 37} and {16, 32, 44, 4, 18, 37} are different. How-
ever, for the purpose of the game of lotto, these two sequences are really the
same. To adjust for this, we need to figure out how many different orderings we
have for 6 numbers. Again, we can use the multiplication rule: we need to fill
up 6 spots with 6 numbers, so there are 6 options for the first number, 5 spots
for the second, and so on. Hence, the total number of ordering of 6 numbers is
6P6 = 6 × 5 × 4 × 3 × 2 × 1 = 720.

Since our previous calculation was counting each different combination of 6
numbers 720 times, we just need to divide 42P6 = 3,776, 965,920 (the number
of subsets in which the permutation is important) by the total numbers of ways
we can order 6 digits (6P6 = 720),

Number of possible sets of 6
numbers (out of 42) that ignore

the ordering of the elements
= 42 × 41 × 40 × 39 × 38 × 37

6 × 5 × 4 × 3 × 2 × 1
= 5,245,786,

and the probability of matching exactly the 6 winning numbers

P(winning first prize) = 1
5,245,786

≈ 0.00000019063.
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Sidebar 4.1 Counting Permutations in R

The R function factorial() gives you an easy to way to compute (surprise!)
factorials.

> factorial(6) # 6! = 6*5*4*3*2*1 = 720

[1] 720

Although R does not have a special function to compute the number of per-
mutations of n objects taken in groups of m, you can use factorial() and
the formulas in this chapter to achieve the same goal. For example, to compute

42P6 you can do

> factorial(42)/factorial(36) # n!/(n-m)!

[1] 3776965920

You must be careful, however, as this might fail when n and m are large. A trick
to get around this is to use the lfactorial() function (which directly com-
putes the logarithm of the factorial) and use rules for logarithms and exponents.
For example, if you need to compute 400P2 = 400 × 399 = 159,600,

> factorial(400)/factorial(398) # Fails

Warning in factorial(400): value out of range in ’gammafn’
Warning in factorial(398): value out of range in ’gammafn’

[1] NaN

> exp(lfactorial(400) - lfactorial(398)) # Works

[1] 159600

Note that the whole calculation for the number of possible groups of 6
numbers out of 42 can be written as

42 × 41 × 40 × 39 × 38 × 37
720

= 42 × 41 × · · · × 3 × 2 × 1
(36 × 35 × · · · × 3 × 2 × 1)(6 × 5 × · · · × 2 × 1)

= 42!
36! × 6!

This quantity is known as the number of combinations of 42 elements taken 6
at a time, and is denoted as(42

6

)
or 42C6,

which is read 42 choose 6.
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Sidebar 4.2 Counting Combinations in R

R does provide a specialized function choose() for computing the number

combinations of n objects taken in groups of m. For example,
(

42
6

)
can be

computed as

> choose(42,6)

[1] 5245786

Although we know how to count the number of combinations (and permu-
tations!), it might sometimes be useful to go a little further and fully enumerate
them. The package prob provides the function urnsamples, which does
exactly that. For example, to enumerate all combinations of 5 elements taken
in groups of 3 (there are 10 of them):

> library(prob) # Remember to load the library first!
> elem = seq(1,5)
> urnsamples(elem, size=3, replace=FALSE, ordered=FALSE)

X1 X2 X3
1 1 2 3
2 1 2 4
3 1 2 5
4 1 3 4
5 1 3 5
6 1 4 5
7 2 3 4
8 2 3 5
9 2 4 5
10 3 4 5

The first argument of urnsample defines the set of elements from the
groups will be selected (in this case, the numbers between 1 and 5). The second
element is the size of the subgroup (3 in this case), and the last two control
whether elements can be reused (in which case replace should be TRUE)
and whether order matters (in which case ordered should be TRUE too).

The results discussed earlier can be extended to situations in which m objects
need to be chosen from among n of them.

The number of ways in which m ordered objects can be selected from a total of
n options is given by the permutation number

nPm = n!
(n − m)!

= n × (n − 1) × (n − 2) × · · · × 2 × 1
(n − m) × · · · × 2 × 1

.
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In the special case where we are interested in the number of ways n objects are
ordered this reduces to

nPn = n! = n × (n − 1) × (n − 2) × · · · × 2 × 1.

The number of ways in in which m unordered objects can be selected from a
total of n options is given by the combinatorial number (sometimes called the
binomial coefficient)

nCm =
( n

m

)
= n!

(n − m)! × m!

= n × (n − 1) × (n − 2) × · · · × 2 × 1
{(n − m) × · · · × 2 × 1} × {m × · · · × 2 × 1}

.

To convince yourself that the formula for the combinatorial number is
correct, consider a simple example in which we want to enumerate all the
possible options. In particular, let’s compute

(
6
3

)
, the number of ways in which

3 numbers can be selected out of 6 without repetition. Our formula above says
that (6

3

)
= 6!

3! × 3!
= 6 × 5 × 4 × 3 × 2 × 1

(3 × 2 × 1) × (3 × 2 × 1)
= 20.

This can be verified by explicitly enumerating all possible options (see
Table 4.1). Sidebars 4.1 and 4.2 discuss how to use R to enumerate and count
permutations and combinations.

Let’s proceed now to calculate the probability of winning the second prize,
that is, matching exactly 5 numbers out of 6. The denominator is the same as
before, so we do not need to repeat the calculation. For the numerator, we need
to pick 5 numbers out of the 6 that came up in the drawing, while the sixth
number needs to come up from among the 36 that are not winning numbers.
So the numerator is(6

5

)
× 36 = 36 × 6!

(6 − 5)! × 5!
= 36 × 6 × 5!

1 × 5!
= 216,

Table 4.1 List of possible groups of 3 out of 6
numbers, if the order of the numbers is not
important.

1, 2, 3 1, 3, 4 1, 4, 6 2, 3, 6 3, 4, 5
1, 2, 4 1, 3, 5 1, 5, 6 2, 4, 5 3, 4, 6
1, 2, 5 1, 3, 6 2, 3, 4 2, 4, 6 3, 5, 6
1, 2, 6 1, 4, 5 2, 3, 5 2, 5, 6 4, 5, 6
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and the probability is

P(winning second prize) =

(
6
5

)
× 36(

42
6

) = 216
5,245, 786

≈ 0.000041176.

A similar argument applies for the third prize (getting 4 out of 6 numbers).
For the number of combinations that match exactly 4 numbers, we need to
first choose 4 among the 6 winning numbers, and then 2 numbers among the
remaining 36 non-winning numbers. Hence,

P(winning third prize) =

(
6
4

)(
36
2

)
(

42
6

) = 9450
5,245, 786

≈ 0.0018014.

Finally, for the fourth prize (3 out of 6 numbers) we have

P(winning fourth prize) =

(
6
3

)(
36
3

)
(

42
6

) = 142,800
5,245, 786

= 0.027222.

The following code can be used to simulate the outcome of the Colorado
Lotto and estimate the probability of the third and fourth prizes (see Sidebar 4.3
for how to use R to sample without replacement).

> outspc = seq(1,42)
> yourticket = sample(outspc, 6, replace=FALSE)
> n = 200000
> numberofmatches = rep(0, n)
> for(i in 1:n){
+ draw = sample(outspc, 6, replace=FALSE)
+ matches = (draw %in% yourticket)
+ numberofmatches[i] = sum(matches)
+ }
> sum(numberofmatches==4)/n # Third prize

[1] 0.001855

> sum(numberofmatches==3)/n # Fourth prize

[1] 0.026755
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Sidebar 4.3 Sampling Without Replacement in R

The best way to understand sampling with and without replacement is to think
about sequentially picking distinct balls from an urn. When we sample with
replacement each ball is returned to the urn after being checked. Hence, balls
already drawn could potentially show up again in a subsequent try. On the
other hand, when sampling without replacement, balls are discarded after they
are drawn, so they cannot appear again in the future. Rolling a die is an example
of sampling with replacement: drawing a six the first time you roll the die does
not prevent you from rolling a six the second time. On the other hand, drawing
multiple cards from a deck you are sampling without replacement since the
same card cannot appear twice.

In previous chapters, our examples involved only situations in which we
were sampling without replacement and we used the function sample()
with the option replace = TRUE to generate random samples. By instead
using the option replace = FALSE, we can instead run simulations that
use sampling without replacement.

> sample(seq(1,10), 6, replace=TRUE) # Numbers can repeat

[1] 3 6 3 8 2 9

> sample(seq(1,10), 6, replace=FALSE) # No repeats

[1] 5 6 4 9 3 7

As the following error suggests, the size of the sample cannot be larger
than the number of items in the sample space when using sampling without
replacement.

> sample(seq(1,10), 12, replace=FALSE)

Error in sample.int(length(x), size, replace, prob):
cannot take a sample larger than the population when
’replace = FALSE’

4.1.2 The California Superlotto

Let’s analyze now the Superlotto game offered by the California lottery. In this
variant of lotto, 6 numbers are picked; the first 5 are selected between 1 and 47,
and the 6th number (called the Mega) is selected between 1 and 27. Note that
because the Mega is drawn separately from the other 5 numbers, it might be
equal to one of the 5 other numbers. The first prize is awarded to the tickets that
match all 6 numbers, other prizes are awarded depending on how many of the
first 5 numbers are matched, and on whether the mega is also matched or not.
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The number of different tickets in the California Superlotto is

Number of different Superlotto tickets =
(47

5

)
× 27 = 41,416, 353,

where the first term corresponds to the number of ways in which 5 numbers
can be selected out of 47, while the second term corresponds to the number
of ways in which the Mega number can be selected. Hence, the probability of
winning the first prize is

P(winning first prize) = 1
41,416, 353

.

The second prize in the California Superlotto is awarded to those tickets that
match the 5 first winning numbers but do not get the Mega number right. Using
the multiplication rule, this number is simply

P(5 out of 5 but no Mega)

=

Numbers of
sets of 5

correct first
numbers
⏞⏞⏞

1 ×

Numbers that
are not the

Mega
⏞⏞⏞

26(
47
5

)
× 27

= 26
41,416,353

.

The third prize is awarded to tickets that match the Mega number and 4 out
of the 5 first numbers. Using a similar reasoning to the previous examples

P(4 out of 5 and Mega)

=

Ways to
choose 4
correct

numbers out
of 5

⏞⏞⏞(5
4

)
×

Ways to
choose 5th

number among
the rest
⏞⏞⏞

42 ×

Ways to
choose the

Mega
⏞⏞⏞

1
(

47
5

)
× 27

= 210
41,416,353

.

The probability associated with other prizes can be computed in a similar way
(e.g., see Exercise 10).

4.2 Sharing Profits: De Méré’s Second Problem

Combinatorial numbers can be used to answer another question originally
posed to Blaise Pascal by the Chevalier De Méré. This question revolves
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around how to split the proceedings of the bets when a series of games cannot
be completed. For example, assume that John and Monica are betting on
the outcome of a series of seven games played between two teams (like the
Major League Baseball World Series). Assume also that the two teams are
evenly matched (therefore, before they start playing, all possible sequences of
seven games are equally likely), that both John and Monica bet $10 on their
respective teams, and that the first team to win four games gets its fan the
whole pot ($20). After playing four games, Monica’s team has won three of
them and John’s only one. If the series has to be canceled, how should they
split the $20 pot?

One possible answer is to split the pot evenly, as if the bets had never been
made. However, Monica would (rightfully) argue that, since her team had won
more games, she should also get a larger share of the pot. The question is, how
much larger should it be?

To answer this question, we first need to compute the probability that
Monica’s team wins its fourth game before John’s wins two more. Since the
space is equiprobable, the exact history of how we got to the current state does
not really matter (i.e., it does not matter who won what during the first four
games, as long as we have three wins and one loss for Monica’s team). Thus,
we could say that the history is,

L W W W

where W means that Monica’s team won, L means that it lost, and the under-
lined spaces correspond to the unknown outcomes associated with the last
three games. Now, let’s consider the future. Since we would typically stop
playing once one of the teams has reached four wins, there are four possible
ways in which the World Series could end up being played.

History Winner

L W W W W Monica
L W W W L W Monica
L W W W L L W Monica
L W W W L L L John

Now, it is tempting to argue that, since three out of those four futures lead
to Monica winning the bet, then the probability of her team winning is 3/4.
However, this is not quite right because the four outcomes above are not
equiprobable. Indeed, it is the whole sequences of seven characters which are
equiprobable! Accordingly, we need to consider all the possible sequences of
seven characters that start with L W W W (there are 8 of them):
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History Winner

L W W W W W W Monica
L W W W W L W Monica
L W W W W W L Monica
L W W W W L L Monica
L W W W L W W Monica
L W W W L W L Monica
L W W W L L W Monica
L W W W L L L John

Note that the first seven imply that Monica wins the bet (the first four
correspond to Monica’s team winning the fifth game in the series, the next two
correspond to Monica’s team losing the fifth but winning the sixth, and the
second to last corresponds to Monica’s team losing the fifth and sixth games but
winning the seventh), while only the last one implies that Monica will lose the
bet. Therefore, her probability of winning is 7∕8 = 0.875 and not 3∕4 = 0.75!

As before, we can convince ourselves that this reasoning is correct using a
simple simulation:

> n = 10000
> outspc = c("W", "L") # From Monica’s perspective
> gameres = matrix(0, nrow=n, ncol=3)
> for(i in 1:n){
+ gameres[i,] = sample(outspc, 3, replace=TRUE)
+ }
> numwins = rowSums(gameres=="W")
> sum(numwins >= 1)/n # Monica needs one or more wins

[1] 0.8724

Once we have computed the probability that Monica will win, we can go
back to our definition of a fair game and compute Monica’s share of the pot as
Monica’s expected profit:

E(payout for Monica) = 20 × 7
8
+ 0 × 1

8
= 17.5,

while John’s share should be

E(payout for John) = 20 × 1
8
+ 0 × 7

8
= 2.5

(note that both add up to $20, as they should).
This result can be generalized. Suppose that in the current state of the game

John needs to win n games to win the bet, and Monica needs to win m of them.
In our example above n = 3 and m = 1. Then, we need to consider an additional
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n + m − 1 rounds of the game (in our example, we considered 3 + 1 − 1 = 3).
There are 2n+m−1 possible different outcomes for these n + m − 1 rounds (23 = 8
in our example), of which(n + m − 1

m

)
+
(n + m − 1

m + 1

)
+ · · · +

(n + m − 1
n + m − 1

)

have Monica as the winner. In the previous sum, the first terms correspond
to the number of future sequences of n + m − 1 games in which Monica wins
exactly m games (the minimum it needs to get the full pot), the second corre-
sponds to the number of sequences in which she wins exactly m + 1 games, and
so on.

From the previous results, we can get the probability that Monica will win
the bet is simply

P(Monica wins the bet) =

(
n+m−1

m

)
+
(

n+m−1
m+1

)
+ · · · +

(
n+m−1
n+m−1

)
2n+m−1 .

Incidentally, note that if n = m (i.e., both teams are tied at the time the series
is halted) then

P(Monica wins the bet) = 1
2
,

which implies that the pot should be evenly split (as we would have expected,
given that the teams are evenly matched).

4.3 Exercises

1. You are a photographer sitting in a group of 10 people in a row for pictures.
How many different seating arrangements could you use?

2. Eight horses (Alabaster, Beauty, Candy, Doughty, Excellente, Friday, Great
One, and High ’n Mighty) run a race. In how many ways can the first three
finishers turn out?

3. A statistics class has 30 students. The students need to select a team
of 5 people to represent them, how many different such teams can be
formed?

4. In how many ways can I seat 5 people in a circular table?

5. In casino keno, a player chooses 10 numbers out of 80. If she matches all
the 10 numbers, she wins the first prize. What is the probability of winning
the first prize in this game? How does it compare with the probability of
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winning the Colorado Lotto (use an odds ratio to compare the results, and
interpret it)?

6. The Florida Lotto is a lottery offered in the state of Florida; the first prize
is won when you get 6 winning numbers from a list of 53 numbers. What
is the probability of winning the first prize? The second prize is won if you
get 5 of those 6 winning numbers, what is the probability of winning the
second prize?

7. What is the probability of winning the first prize of the Florida Lotto if
you buy 100 tickets? (Assume each ticket has a different set of numbers.)

8. For the New York State lottery the first prize is won if you get 6 winning
numbers from a list of 59 numbers. Calculate the probability of
winning this lottery. The third prize is obtained by getting 4 of the 6
winning numbers, calculate also the probability for this prize.

9. What is the probability of winning this last lottery if you buy 100 tickets?
What is your expected profit for this situation if each ticket costs $1?

10. What is the probability of winning the fourth prize in the California
Superlotto? The fourth prize goes to tickets that get 4 out of the 5 first
numbers correct, but miss the Mega.

11. Imagine the California SuperLotto lottery is changed so that there’s a
second Mega number (chosen from the same list of 26 numbers as the
first Mega number) and the first prize is obtained if the player gets the
5 winning numbers, the first Mega number and the second Mega number.
What is the probability of getting the first prize in the new lottery? Is this
prize harder or easier to win than the actual California SuperLotto?

12. In the California Lotto, what is the probability of getting any 3 of the
5 winning numbers and the Mega?

13. In the SuperLotto, you can get a prize if you get 4 out of the 5 winning
numbers and the Mega number, but you also get a price if you just get
4 out of the 5 winning numbers and miss the Mega number. Which of the
two prizes has higher probability of winning?

14. Which is more likely: to get 3 out of the 5 winning numbers and the Mega
number or getting the 4 out of 5 winning numbers?
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15. [R] Can you list out all the combinations of 3 numbers from the list of
numbers from 1 to 6? Check your list using R.

16. [R] Modify the R code for simulating the Colorado Lotto in order to
instead estimate the probability of the third and fourth prizes of the
California Superlotto.



59

5

The Monty Hall Paradox and Conditional Probabilities

The Monty Hall problem is loosely based on the American television game
show Let’s Make a Deal and it is named after the show’s original host, Monty
Hall. It is considered a paradox because the result appears absurd but can be
demonstrated to be true nevertheless. The problem was made famous when it
appeared in Marilyn von Savant’s Parade Magazine column in 1990, and it has
also been featured in the final episode of the 2004–2005 season of NUMB3RS,
as well as in the opening scenes of the 2008 movie 21.

5.1 The Monty Hall Paradox

Suppose you are participating in a contest and you are given a choice of three
doors: behind one door there is a car; behind the others, goats. You pick a door,
say number 1, and the host (call him Monty), who knows what’s behind each
door, opens another door, say number 3, which has a goat. He then offers you the
opportunity to switch to the other unopened door (in this case, door number
2). Should you switch doors?

Contrary to intuition, under some reasonable assumptions (mainly, that
when a random choice needs to be made, all options are chosen with the same
probability), you are better off switching because your probability of winning
the car increases. To see why this is true, we will represent the contest as a
series of decisions using a tree diagram. In a tree diagram, each level of the
tree represents a series of mutually exclusive events that can occur at a given
point in time. By following the different branches of the tree from its root, we
can represent all possible outcomes in a complex experiment.

The Monty Hall paradox involves three different sets of events: the produc-
ers of the contest need to decide which doors hides the car, the contestant
(you) needs to pick a door, and finally Monty needs to decide which other

Probability, Decisions and Games: A Gentle Introduction using R, First Edition. Abel Rodríguez and Bruno Mendes.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/Rodriguez/Probability_Decisions_and_Games
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Door where the
prize is located

1
3

1
3

1
3

1 2 3

Figure 5.1 Each branch in this tree represents a different decision and the 1∕3s represent
the probability of each door being selected to contain the prize.

(among the ones that hide a goat and have not been chosen by you) he will open.
Hence, our final tree will consist of three levels, which we will be adding to it
sequentially.

Consider the first choice. Before the contest starts, the producers are free to
place the car behind any one of the three doors. Since we assume that each door
is selected with the same probability, we end up with the tree representation
in Figure 5.1. The number next to each branch corresponds to the probability
we associate with each possible outcome. In this case, the probability of each
branch is 1∕3 because we assumed that the prize is located behind each door
with the same probability.

Now, for the second decision, you are unaware of which door hides the car,
so you are also free to select any of the three doors. Again, we assume that
you select each door with the same probability, leading to the representation in
Figure 5.2.

Door chosen
by contestant

1
3

1
3

1
3

1 3 32 21 1 2 3

Door where the
prize is located

1 2 3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

Figure 5.2 The tree structure now represents an extra level, representing the contestant
decisions and the probability for each decision to be the one chosen.
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As a consequence of the multiplication rule, if we follow along the branches
of the tree, we can obtain the probability associated with any combination of
doors by multiplying together the corresponding probabilities. Therefore, in
this case, any combination has the same probability 1/9.

Consider now Monty’s decision: unlike the previous ones, his options are
affected by the choices made by the producers and you, the contestant. To sim-
plify the explanation, consider only the branch corresponding to the car being
located behind door 3. Then, if the door chosen by you is either door 2 or door
3, Monty has a single choice for the door he will open (he cannot open the door
with the car, or the door chosen by you). On the other hand, if you chose door
1, Monty has two options (he can open either door 2 or door 3), and from our
original description, he opens each door with the same probability. Figure 5.3
shows the sub-tree associated with these decisions.

A similar argument applies if the prize is located behind either door 2 or
door 3. This leads to 12 possible paths with non-zero probability, as shown in
Table 5.1 (note that the sum of all probabilities equals 1). Of these 12 paths, six
(the ones highlighted in the table) correspond to paths where you would win
by switching. If we sum these six values (the branches correspond to mutually
exclusive events), we get

P(winning the car if you switch) = 1
9
+ 1

9
+ 1

9
+ 1

9
+ 1

9
+ 1

9
= 2

3
,

which shows that it is beneficial for the player to switch doors.
You can empirically verify these results by running the following simulation

in R:

Door chosen
by contestant

Door opened
by Monty

1
3

1
3

1
3

1
2

1
2

1 3 32 21 1 2 3

010000 1

Door where the
prize is located

1 2 3

3

Figure 5.3 Decision tree for the point when Monty decides which door to open assuming
the prize is behind door 3.
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Table 5.1 Probabilities of winning if the contestant in the Monty
problem switches doors.

Door where
the prize is

Door chosen
by contestant

Door opened
by Monty

Probability of
the scenario

1 1 2 1/18
1 1 3 1/18
1 2 3 1/9
1 3 2 1/9
2 1 3 1/9
2 2 1 1/18
2 2 3 1/18
2 3 1 1/9
3 1 2 1/9
3 2 1 1/9
3 3 1 1/18
3 3 2 1/18

Highlighted lines correspond to scenarios in which the player wins by
switching doors.

> door = seq(1,3)
> n = 10000
> winifswitch = rep(FALSE, n)
> for(i in 1:n){
+ prizelocation = sample(door, 1)
+ contestantchoice = sample(door, 1)
+ if(prizelocation==contestantchoice){
+ dooropened = sample(door[-contestantchoice], 1)
+ }else{
+ dooropened = door[-c(prizelocation,contestantchoice)]
+ }
+ doorifswitch = door[-c(dooropened,contestantchoice)]
+ winifswitch[i] = (doorifswitch==prizelocation)
+ }
> sum(winifswitch)/n

[1] 0.6707

5.2 Conditional Probabilities

The solution to the Monty Hall problem illustrates the concept of conditional
probability. Conditional probabilities simply reflect the fact that the probability
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of an event might depend on our knowledge of whether other events have
already occurred in the past or not. For example, the probability of winning
in the Monty Hall problem (i.e., choosing the door that hides the car) before
Monty opens the door is 1/3. However, once Monty has opened a door,
the probability of winning changes. This happens because we have learned
something about the space of outcomes from the fact that Monty opened
a door.

Conditional probabilities involve two events; in our example above we have

A = {Win the car} and B = {Switching door},

and we are interested in computing the probability of A if B has happened (i.e.,
the probability that you win the car if you switch doors), which we will denote
P(A ∣ B). This expression is also read as “the probability of A given B” or “the
probability of A conditional on B.” Unlike the event whose probability we want
to compute (in this case, A, or winning the car), the event we condition upon
(in this case, B, switching doors) is not random; B is an event we assume has
occurred. Consequently, generally speaking P(A ∣ B) ≠ P(B ∣ A). As a matter of
fact, it is easy to confuse the conditional probability of one event given another
with their joint probability of these events. Recall that the joint probability of A
and B, denoted P(A ∩ B), describes the probability that A and B happen simul-
taneously. In this case, both events are random (we do not know if they have
occurred or not), and we have that P(A ∩ B) = P(B ∩ A).

To further illustrate the difference between joint and conditional probabil-
ities, consider examining the association between smoking and lung cancer.
More specifically, let’s imagine we interview 1000 persons and ask them
whether they have ever smoked and also whether they have suffered from lung
cancer (the results of one such study are presented in Table 5.2). Let

S = {A randomly chosen person smokes}
C = {A randomly chosen person has suffered from lung cancer.}

We could ask what the probability is that a randomly selected person smokes
and suffers from lung cancer. If we do this, we are inquiring about the joint
probability of S and C, P(S ∩ C). By exploiting the frequentist interpretation
of probability, we could estimate P(S ∩ C) by dividing the number of people

Table 5.2 Studying the relationship between smoking and lung cancer.

Had lung cancer Never had lung cancer

Has smoked 20 180
Has not smoked 50 750
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who answered both questions affirmatively by the total number of people inter-
viewed. Hence,

P(S ∩ C) = 20
20 + 180 + 50 + 750

= 0.02.

As we can see, that probability is small. On the other hand, we could also ask
what is the probability of suffering lung cancer if you smoke, that is, P(C ∣ S).
Clearly, this is the most relevant question if you want to decide if you want
to quit smoking or not. Note that in this case there is nothing random about
whether the person smokes or not: we know that he or she does. So, we need
to compute P(C ∣ S), and we need to look only at the people who have suffered
from cancer among those that smoke, that is,

P(C ∣ S) = 20
20 + 180

= 0.1.

Note how different P(S ∩ C) and P(C ∣ S) are. Furthermore, if we define
S = {A randomly chosen person does not smoke}, we could compute P(C ∣ S),
the probability of suffering from cancer if you do not smoke,

P(C ∣ S) = 50
50 + 750

= 0.0625.

All these calculations indicate that smokers are about one and a half times
more likely than nonsmokers to suffer from lung cancer (since P(C ∣ S)∕P(C ∣
S) = 1.6). Furthermore, note that P(C ∣ S) + P(C ∣ S) ≠ 1, but P(C ∣ S) + P(C ∣
S) = 1.

Even though joint and conditional probabilities are different concepts, there
is a link between them,

The conditional probability of an event A given B can be computed as

P(A ∣ B) = P(A ∩ B)
P(B)

,

or alternatively

P(A ∩ B) = P(A ∣ B)P(B).

We implicitly used the second formula while constructing the decision tree
for the Monty Hall problem. In fact, the probabilities in the branches of the
tree are all conditional probabilities given the previous events in the tree. For
example, if we define the events

A1 = {Producers put the car behind door 1},
B1 = {Contestant choses door 1},
C2 = {Monty opens door 2.}
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Then the very first branch represents P(A1) = 1∕3, while P(B1 ∣ A1) = 1∕3
and P(C2 ∣ B1 ∩ A1) = 1∕2. Using these values, we computed the joint proba-
bility of all events in the branch as the product of all three values (just as the
formula suggests), that is,

P(A1 ∩ B1 ∩ C2) = P(C2 ∣ B1 ∩ A1)P(B1| A1)P(A1).

5.3 Independent Events

In the first few chapters, and in particular when discussing roulette, we infor-
mally used the term independent to qualify experiments where the outcome of
one trial does not affect the outcome of another. Conditional probabilities can
be used to formalize the notion of independence.

Independent Events
We say that two events A and B are independent if

P(A ∣ B) = P(A),

which implies that

P(A ∩ B) = P(A)P(B).

Intuitively, two events are independent if knowledge of whether B happened
or not does not affect the probability of A happening. To clarify this notion,
consider the Monty Hall problem again. In that case, the selection of the
door by the contestant is independent from the selection by the producers.
However, the decision by Monty is not independent from the decisions made
by the producers and the contestant, which is the reason for the apparent
paradox.

In our example involving smoking and lung cancer, we can see that cancer and
smoking are not independent: since P(C ∩ S) = 0.02 and also P(C) = 20+50

1000
=

0.07 and P(S) = 20+180
1000

= 0.2, then P(C)P(S) = 0.014 ≠ P(C ∩ S).
One consequence of independence is that formulas for the expectation and

variance of random variables simplify

If X and Y are independent random variables and a and b are two constant
(non-random numbers), then

E(XY ) = E(X)E(Y )

V (aX + bY ) = a2V (X) + b2V (Y )
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5.4 Bayes Theorem

As we discussed before, conditional probabilities are not symmetric, that
is, in general P(A ∣ B) ≠ P(B ∣ A). However, the two quantities are related.
Indeed, since P(A ∩ B) = P(A ∣ B)P(B) and also P(A ∩ B) = P(B ∣ A)P(A), we
have that

Bayes Theorem
For any two events A and B,

P(A ∣ B) = P(B ∣ A)P(A)
P(B)

When P(B) is unknown we can compute it from P(B ∣ A), P(B ∣ A), P(A), and
P(A). Figure 5.4 illustrates how an event B can be broken down in two parts,
B ∩ A and B ∩ A. By exploiting this decomposition, we obtain the following rep-
resentation:

Total Probability Law
For any two events A and B,

P(B) = P(B ∩ A) + P(B ∩ A) = P(B ∣ A)P(A) + P(B ∣ A)P(A)

Substituting back into Bayes theorem, we have

Bayes Theorem (Alternative Formulation)
For any two events A and B,

P(A ∣ B) = P(B ∣ A)P(A)
P(B)

= P(B ∣ A)P(A)
P(B ∣ A)P(A) + P(B ∣ A)P(A)

A slight generalization of Bayes theorem involves a more general partition of
the space with more than two choices.

B

A

B∩A

B∩A A

Figure 5.4 Partitioning the event space.
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General Alternative Formulation
For any events B and A1,A2,… ,Ak such that A1,A2,… ,Ak form a partition of
the space of all possible outcomes,

P(Ai ∣ B) =
P(B ∣ Ai)P(Ai)

P(B)

=
P(B ∣ Ai)P(Ai)

P(B ∣ A1)P(A1) + · · · + P(B ∣ Ak)P(Ak)

Bayes theorem is particularly useful because in many cases we might be inter-
ested in P(A ∣ B), but it is much easier to compute P(B ∣ A). For example, sup-
pose that you play the following game, which we call the game of urns. There
are three urns:

• Urn 1 contains 2 blue balls, 2 red balls and 2 yellow balls.
• Urn 2 contains 3 blue balls and 2 red balls.
• Urn 3 contains 2 blue balls and 4 yellow balls.

The dealer secretly picks an urn uniformly at random, from which she draws
a ball also uniformly at random. The dealer then presents the ball to you and
asks you to decide what urn the ball was drawn from. If you pick the right urn,
you get your wager back plus $1. Otherwise, you lose the money you bet. The
question is, how should you play?

Clearly, your answer should depend on what color shows up. For example,
you do not need to be an expert in probability to realize that if you observe a
yellow ball you should never pick urn 2 (it does not contain any yellow ball in
the first place!). However, intuition is less useful in deciding whether to pick
urn 1 or urn 3.

We can use conditional probabilities and Bayes theorem to generate a strat-
egy. Let

Y = {Ball is yellow}, U1 = {Ball extracted from urn 1},

R = {Ball is red}, U2 = {Ball extracted from urn 2},

B = {Ball is blue}, U3 = {Ball extracted from urn 3}.

Consider first the case when the dealer shows you a yellow ball. To create a
strategy, we need to compute the probabilities associated with the ball coming
from each of the urns conditional on it being yellow, that is, P(U1 ∣ Y ), P(U2 ∣
Y ), and P(U3 ∣ Y ). Then, the optimal strategy is to select the urn with the highest
probability. Using Bayes theorem, we have

P(U1 ∣ Y ) =
P(Y ∣ U1)P(U1)

P(Y ∣ U1)P(U1) + P(Y ∣ U2)P(U2) + P(Y ∣ U3)P(U3)
,
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P(U2 ∣ Y ) =
P(Y ∣ U2)P(U2)

P(Y ∣ U1)P(U1) + P(Y ∣ U2)P(U2) + P(Y ∣ U3)P(U3)
,

P(U3 ∣ Y ) =
P(Y ∣ U3)P(U3)

P(Y ∣ U1)P(U1) + P(Y ∣ U2)P(U2) + P(Y ∣ U3)P(U3)
,

(note that the denominator is the same for all three expressions, and that it
corresponds to P(Y ) because the three events U1, U2, and U3 form a partition
of all possible events).

Since the dealer picks the urns uniformly at random, we have P(U1) =
P(U2) = P(U3) = 1∕3. Also, P(Y ∣ U1) = 2∕6 = 1∕3 (because urn 1 has two
yellow balls out of six), P(Y ∣ U2) = 0 (because there are no yellow balls in urn
2), and P(Y ∣ U3) = 4∕6 = 2∕3 (because urn 3 has four yellow balls out of six).
Substituting these values we have

P(U1 ∣ Y ) =
1
3
× 1

3
1
3
× 1

3
+ 0 × 1

3
+ 2

3
× 1

3

= 1
3
,

P(U2 ∣ Y ) =
0 × 1

3
1
3
× 1

3
+ 0 × 1

3
+ 2

3
× 1

3

= 0,

P(U3 ∣ Y ) =
2
3
× 1

3
1
3
× 1

3
+ 0 × 1

3
+ 2

3
× 1

3

= 2
3
.

Therefore, if we see a yellow ball, the optimal strategy is to select urn 3.
Incidentally, note our calculation gives us the probability of drawing a yellow
ball as a byproduct, the probability of a yellow ball is P(Y ) = 1

3
× 1

3
+ 0 × 1

3
+ 2

3
× 1

3
= 1

3
.

A similar approach can be used in the case we observe a red ball,

P(U1 ∣ R) =
1
3
× 1

3
1
3
× 1

3
+ 2

5
× 1

3
+ 0 × 1

3

= 5
11

,

P(U2 ∣ R) =
2
5
× 1

3
1
3
× 1

3
+ 2

5
× 1

3
+ 0 × 1

3

= 6
11

,

P(U3 ∣ R) =
0 × 1

3
1
3
× 1

3
+ 2

5
× 1

3
+ 0 × 1

3

= 0,

where, as a byproduct, we see that P(R) = 1
3
× 1

3
+ 2

5
× 1

3
+ 0 × 1

3
= 11

45
. This

means that the optimal strategy in this case is to attribute the red ball to urn 2.
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Finally, for a blue ball

P(U1 ∣ B) =
1
3
× 1

3
1
3
× 1

3
+ 3

5
× 1

3
+ 1

3
× 1

3

= 15
57

,

P(U2 ∣ B) =
3
5
× 1

3
1
3
× 1

3
+ 2

5
× 1

3
+ 1

3
× 1

3

= 9
19

,

P(U3 ∣ B) =
1
3
× 1

3
1
3
× 1

3
+ 2

5
× 1

3
+ 1

3
× 1

3

= 15
57

,

while P(B) = 1
3
× 1

3
+ 3

5
× 1

3
+ 1

3
× 1

3
= 19

45
, so the optimal strategy is again to

attribute the blue ball to urn 2.
The probability of winning this game under the optimal strategy can be

obtained using the total probability law. Figure 5.5 shows a tree representation

Color of the
ball

Outcome

Urn called by the
optimal strategy

Urn from which
the ball was taken

1/3

1/3

1/3
1/3

1/3

2/5

2/33/5

1/3

1/3

Y

3 2 2 3

L

2 2 3 2 2

B BR RY Y R B

L L L W W W L L

1 2

0

0

3

Figure 5.5 Tree representation of the outcomes of the game of urns under the optimal
strategy that calls yellow balls as coming from Urn 3 and blue and red balls as coming from
urn 2.
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of the game. Note that the only ways to win are when a blue ball comes up from
urn 2 (which is correctly called by our strategy) and when a yellow ball is taken
from the third urn (which is again correctly called by our strategy). Hence,

P(Win) = P(B|U2)P(U2) + P(R|U2)P(U2) + P(Y |U3)P(U3)

= 3
5
× 1

3
+ 2

5
× 1

3
+ 4

6
× 1

3
= 50

90
≈ 0.5556.

The following R code simulates the game of urns and can be used to check
that the derivations shown above are correct.

> n = 10000
> urnspc = seq(1,3)
> colorpr = matrix(c(1/3,1/3,1/3,
+ 0, 2/5,3/5,
+ 2/3,0, 1/3), nrow=3, ncol=3, byrow=T)
> balls = c("Y", "R", "B")
> colnames(colorpr) = balls
> urn = rep(0,n)
> ballcolor = rep(0,n)
> optimalcall = rep(0,n)
> for(i in 1:n){
+ urn[i] = sample(urnspc,1)
+ ballcolor[i] = sample(balls, 1, replac=T,
+ prob=colorpr[urn[i],])
+ if(ballcolor[i]=="Y"){
+ optimalcall[i] = 3
+ }else{
+ optimalcall[i] = 2
+ }
+ }
> sum(ballcolor=="Y")/n # Prob of a Yellow Ball

[1] 0.3328

> sum(ballcolor=="B")/n # Prob of a Blue Ball

[1] 0.4246

> sum(optimalcall==urn)/n # Prob of winning with opt strat

[1] 0.5579

5.5 Exercises

1. There are three condemned prisoners in jail, one of whom is to be
secretly pardoned. One of the prisoners begs the warden to tell him the
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name of one of the others who will be executed, arguing that this reveals
no information about his own fate but increases his chances of being
pardoned from 1∕3 to 1∕2. The warden obliges, (secretly) flipping a coin
to decide which name to provide if the prisoner who is asking is the one
being pardoned. Does knowing the warden’s answer really change the
asking prisoner’s chances of being pardoned?

2. Ignorant Monty: In a variant of the Monty Hall problem, Monty does not
know what lies behind the door and picks one at random to open. When
he does, he is relieved that it contains a goat. Show that, in this case, it is
irrelevant whether you switch or not.

3. [R] Write a simulation that corroborates your calculations for the ignorant
Monty game.

4. You are presented with three boxes: a box containing two gold coins, a
box with two silver coins, and a box with one of each. After choosing a
box at random and withdrawing one coin at random that happens to be a
gold coin, what is the probability that the other coin is gold?

5. Consider the following table giving the joint probability for two random
variables. Are the two events X = 2 and Y = 5 independent? How about
X = 2 and Y = 1?

Y = 1 Y = 5

X = 2 0.25 0.25
X = 5 0.25 0.25

6. Consider the following table giving the joint probability for two random
variables. Are the two events X = 0 and Y = 0 independent? How about
X = 0 and Y = 2?

Y = 0 Y = 1 Y = 2

X = 0 0.25 0.15 0.10
X = 1 0.25 0.20 0.05

7. When a laboratory tests you for a particular condition (say the test is for
the presence of human immunodeficiency virus, or HIV) it can either pro-
duce a positive or negative result. The latter means there is no virus in your
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body, the former means there is a virus in your system. These tests have
rates of sensitivity (i.e., how often they correctly diagnose a person with
the disease) and rates of specificity (i.e., the rate of times the test correctly
identifies people who do not have the condition). These rates are ideally
close to 100% but, in practice, there are always false positives and false
negatives. In other words, there are always situations in which the test
says someone has the virus but the person actually doesn’t, and situations
where the test says there is no virus in the person’s system but there actu-
ally is. Let’s say we are testing a new HIV test and the results are presented
in the following 2×2 table.

Patients Patients
with HIV with no HIV

Patient with positive test 10 1
Patient with negative test 10 10,000

Based on the data and using a frequentist approach to probability, answer
the following questions

(a) What’s the probability of a person having HIV?
(b) What is the probability of the test correctly diagnosing the presence of

HIV (i.e., what is the sensitivity of the test)?
(c) What is the specificity of the test?
(d) What is the rate of false positives?
(e) What is the rate of false negatives?
(f) In terms of the usefulness to the society at large (remember this is a

communicable disease), what is more useful: a lower rate of false pos-
itives or a lower rate of false negatives?

8. Consider a competitor HIV test to the one mentioned above. Its field tests
produced the following data.

Patients Patients
with HIV with no HIV

Patient with positive test 9 2
Patient with negative test 5 10,000

Based on the data and using a frequentist approach to probability, answer
the following questions

(a) Calculate P(test is positive | person has HIV)?
(b) Calculate P(test is negative | person doesn’t have HIV)?
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(c) Calculate P(test is positive | person doesn’t have HIV)?
(d) Calculate P(test is negative | person has HIV)?
(e) Which of the two tests is preferable?

9. Compute the fair value of the game of urns described at the end of the
chapter.

10. Consider a variation of the game of urns where
• Urn 1 contains 4 blue balls, 2 red balls, and 1 yellow ball.
• Urn 2 contains 1 blue ball, 2 red balls, and 2 yellow balls.
• Urn 3 contains 2 blue balls, 1 blue ball, and 3 yellow balls.
What would your optimal strategy be in this case, and what is the fair value
of this game?

11. [R] Write a simulation for the game of urns in the previous exercise.
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6

Craps

Craps is the most popular dice game in casinos. The game has been featured in
multiple movies including Ocean’s Thirteen (2007), Snake Eyes (1998), and Big
Town (1987). The mathematical analysis of the game of craps is similar in some
ways to that of roulette (both games involve independent rounds of play), but
because each round is composed of 2 interdependent phases that have different
rules, the analysis has to be carried out carefully.

6.1 Rules and Bets

In craps you are betting on the outcome of two dice rolled simultaneously. An
appealing feature of the game is that you can play it either as the shooter (if
you are the one rolling the dice) or as a stand-by (if you are a spectator, by
betting with or against the shooter). As with roulette, players place their bets
by placing their chips on the appropriate sections of the board (see Figure 6.1).
The nicknames associated with each of the outcomes are presented in Table 6.1.

Each round of craps is comprised of two phases. The first phase consists of a
single roll called the come-out roll, and the second phase (which might consist
of multiple rolls) is called the point.

6.1.1 The Pass Line Bet

The pass line (also called win or right) bet is the most basic bet in craps, and
the shooter is obligated to make this wager in order to play. In addition to the
shooter, any spectator can participate in the pass line bet. Typically, the pass
line bet pays even odds (recall that this means that, if you win, you get your
money back plus a profit equal to your bet).

The outcome of the pass line bet is resolved as follows. If the come-out roll
is a 7 or 11 (called a natural), then the pass line bet wins automatically, and the
round ends (there is no second phase in that case). Similarly, if the come-out
roll is a 2, 3, or 12, then the pass line bet loses automatically, and again the round

Probability, Decisions and Games: A Gentle Introduction using R, First Edition. Abel Rodríguez and Bruno Mendes.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/Rodriguez/Probability_Decisions_and_Games
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Table 6.1 Names associated with different combinations of dice in craps.

1 2 3 4 5 6

1 Snake eyes – – – – –
2 Ace ddeuce Hard four – – – –
3 Easy four Five (fever

five)
Hard six – – –

4 Five (fever
five)

Easy six Natural or
seven out

Hard eight – –

5 Easy six Natural or
seven out

Easy eight Nine (nina) Hard ten –

6 Natural or
seven out

Easy eight Nine (nina) Easy ten Yo (Yo-leven) Boxcars or
Midnight

Figure 6.1 The layout of a craps table.

ends. Losing in this way is often referred to as crapping out. Finally, if any other
number is rolled (i.e., a 4, 5, 6, 8, 9, or 10), that number becomes the point and
we move into the second phase of the round.

When a point is established, the goal of the game changes. The shooter keeps
rolling the dice until either the point comes up again or a 7 comes out. If the
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Table 6.2 All possible equiprobable outcomes associated
with two dice being rolled.

1–1 2–1 3–1 4–1 5–1 6–1
1–2 2–2 3–2 4–2 5–2 6–2
1–3 2–3 3–3 4–3 5–3 6–3
1–4 2–4 3–4 4–4 5–4 6–4
1–5 2–5 3–5 4–5 5–5 6–5
1–6 2–6 3–6 4–6 5–6 6–6

Table 6.3 Sum of points associated with the roll of two dice.

Sum of
the dice

List of ways the sum
can be realized

Number of ways the
sum can be realized

2 1–1 1
3 1–2, 2–1 2
4 1–3, 3–1, 2–2 3
5 1–4, 4–1, 2–3, 3–2 4
6 1–5, 5–1, 2–4, 4–2, 3–3 5
7 1–6, 6–1, 2–5, 5–2, 3–4, 4–3 6
8 2–6, 6–2, 3–5, 5–3, 4–4 5
9 3–6, 6–3, 4–5, 5–4 4

10 4–6, 6–4, 5–5 3
11 5–6, 6–5 2
12 6–6 1

point comes out first, then the pass line bets win. On the other hand, if a 7 comes
out first (referred to as seven out), then the pass line bets lose. Note that this is
the opposite of what happens in the come-out roll, where a 7 wins the game.

Let’s analyze the pass line bet and compute the house advantage in craps.
First, recall that there are 36 outcomes for the roll of two dice, and that, as long
as the dice are fair, they are all equiprobable (see Table 6.2). To analyze craps, it
is convenient to group these 36 outcomes into 11 groups, depending on what
their sum is (see Table 6.3).

As we did for the Monty Hall problem, we can use a tree to help us compute
the probability of winning at craps (see Figure 6.2). We proceed now to fill in
the probabilities associated with each of the branches in the tree.

Since all 36 outcomes are equiprobable, it is easy to see that the probability
of getting a natural in the come-out roll (i.e., winning in the first phase if you
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NaturalPhase 1

Phase 2

Crap out 4 5 6 8 9 10

777777 54 86 9 10

W W W W W W WL L L L L L L

Figure 6.2 Tree representation for the possible results of the game of craps. Outcomes that
lead to the pass line bet winning are marked with W, while those that lead to a lose are
marked L.

make the pass line bet) is simply equal to

P
(

winning the pass line bet
in the first phase

)
= P(getting a 7 or getting an 11)

= P(getting a 7) + P(getting an 11)

= 6 + 2
36

= 8
36

= 2
9
.

Similarly, we can compute the probability of crapping out

P(crapping out) = P(getting a 2 or getting a 3 or getting a 12)
= P(getting a 2) + P(getting a 3) + P(getting a 12)

= 1 + 2 + 1
36

= 4
36

= 1
9
.

and the probability of getting each of the points is

P(point is 4) = 3
36

= 1
12

,

P(point is 5) = 4
36

= 1
9
,

P(point is 6) = 5
36

,

P(point is 8) = 5
36

,

P(point is 9) = 4
36

= 1
9
,

P(point is 10) = 3
36

= 1
12

.
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NaturalPhase 1

Phase 2

Crap out 4 5 6 8 9 10

777777 54 86 9 10

2/9 1/9 1/9 5/36 5/36 1/9 1/121/12

Figure 6.3 Tree representation for the possible results of the game of craps with the
probabilities for each of the come-out roll.

Filling these numbers into the tree we obtain Figure 6.3. Note that these prob-
abilities sum to 1, as we would have expected. Also, note that the probability of
winning during the come-out roll (2∕9) is much larger than the probability of
losing during the come-out roll (1∕9), and that both are much smaller than the
probability that a point will be made and we move to the second round of the
game (which is 2∕3).

To complete the tree, we need the probability that the game stops condition-
ally on each of the six different points that can appear in the come-out roll.
Consider first the probability of winning if the point is 4. We can break this
event down into winning in the first point roll after 4 becomes the point, or
the second point roll, or the third point roll, and so on. All of these events are
disjoint, therefore

P(win ∣ point is 4) = P(win in the first roll ∣ point is 4)

+ P
⎛⎜⎜⎝
win in the second roll

|||||
did not win in

the first roll and
point is 4

⎞⎟⎟⎠
+ P

⎛⎜⎜⎝
win in the third roll

|||||
did not win in the

first or second rolls
and point is 4

⎞⎟⎟⎠
· · ·

Now, the probability of winning in the first roll if the point is a 4 is simply the
probability of getting a 4 in a roll of the dice

P(win the first roll ∣ point is 4) = 1
12

.

On the other hand, to win in the second roll if you did not win in the first and
the point is four, your first roll must have been anything but a 4 or a 7 and your
second roll should be a 4. The probability that the first roll is not a 4 or a 7 is
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36−3−6
36

= 3
4
, while the probability that the second roll is 4 is 1∕12. Since the rolls

are independent, this means that

P

(
win in the second roll

|||||
did not win in the

first roll and point is 4

)
= 3

4
× 1

12
.

A similar argument can be used for subsequent rolls. In general, the proba-
bility of winning in k rolls if you have not won in the previous k and the point
is 4 requires that you observe a series of outcomes that looks like

X X X · · · X
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

k−1 times

4,

where X corresponds to any outcome of the dice that is not a 7 or a 4. This
sequence has probability

P(X X X · · · X
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

k−1 times

4) =
(3

4

)k−1
× 1

12
.

which leads to

P(Win ∣ point is 4) = 1
12

⏟⏟⏟

Probability
of winning in
the 1st roll

+ 1
12

× 3
4

⏟⏟⏟

probability
of winning in
the 2nd roll

+ 1
12

×
(3

4

)2

⏟⏞⏞⏞⏟⏞⏞⏞⏟

probability
of winning in
the 3rd roll

+ 1
12

×
(3

4

)3

⏟⏞⏞⏞⏟⏞⏞⏞⏟

probability
of winning in
the 4th roll

+ · · ·

= 1
12

{
1 + 3

4
+
(3

4

)2
+
(3

4

)3
+
(3

4

)4
+ · · ·

}
.

Sums as the one in brackets are called geometric sums and appear very often
when analyzing games that consist of sequences of independent trials. The fol-
lowing result is useful when dealing with geometric sums:

Finite Geometric Series
The sum of a geometric series with n + 1 terms is given by

1 + a + a2 + · · · + an = 1 − an+1

1 − a
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Note that, if |a| < 1 and n is very large then an+1 ≈ 0, which leads to

Infinite Geometric Series
The sum of an infinite geometric series is given by

1 + a + a2 + a3 + a4 + · · · = 1
1 − a

Accordingly,

1 + 3
4
+
(3

4

)2
+
(3

4

)3
+
(3

4

)4
+ · · · = 1

1 − 3
4

= 4,

and therefore

P(win ∣ point is 4) = 1
12

× 4 = 1
3
.

The following R code can be used to verify the formula for the infinite geo-
metric sum:

> a = 3/4
> n = 20
> expon = seq(0,n)
> geometricseries = a^expon
> geometricseries # Terms of the geometric series

[1] 1.000000000 0.750000000 0.562500000 0.421875000
[5] 0.316406250 0.237304688 0.177978516 0.133483887
[9] 0.100112915 0.075084686 0.056313515 0.042235136
[13] 0.031676352 0.023757264 0.017817948 0.013363461
[17] 0.010022596 0.007516947 0.005637710 0.004228283
[21] 0.003171212

> cumsum(geometricseries) # Sum steadily approaches 4

[1] 1.000000 1.750000 2.312500 2.734375 3.050781 3.288086
[7] 3.466064 3.599548 3.699661 3.774746 3.831059 3.873295
[13] 3.904971 3.928728 3.946546 3.959910 3.969932 3.977449
[19] 3.983087 3.987315 3.990486

> (1 - a^(n+1))/(1-a) # Same as last term of cumsum

[1] 3.990486

Another way to find the probability of winning when the point is 4 is to realize
that, among the nine outcomes that end the game (three that add to 4 and six
that add to 7), only the ones that add up to 4 make you win. This leads to P(win ∣
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point is 4) = 3∕9 = 1∕3, just as before. The following simulation can be used to
corroborate the calculations we just made:

> n = 10000
> result = rep(0,n)
> outspc = seq(1,6)
> point = 4
> for(i in 1:n){
+ dice = sample(outspc,2,replace=TRUE)
+ roll = sum(dice)
+ while(roll!=point & roll!=7){
+ dice = sample(outspc,2,replace=TRUE)
+ roll = sum(dice)
+ }
+ if(roll==point){
+ result[i] = "W"
+ }else{
+ result[i] = "L"
+ }
+ }
> sum(result=="W")/n

[1] 0.3357

A similar argument can be used for all the other points (and a small modifi-
cation of the code above can be used to check them, see Exercise 14):

P(win ∣ point is 4) = P(win ∣ point is 10) = 1
3
,

P(win ∣ point is 5) = P(win ∣ point is 9) = 2
5
,

P(win ∣ point is 6) = P(win ∣ point is 8) = 5
11

.

The fully filled tree is presented in Figure 6.4. Now, following the Total Prob-
ability Law we discussed in Chapter 5, we can sum the probabilities associated

NaturalPhase 1

Phase 2

Crap out 4 5 6 8 9 10

777777 54 86 9 10

2/9 1/9 1/9 5/36 5/36 1/9 1/121/12

1
3

2
3

2
5

3
5

5
11

6
11

6
11

2
5

3
5

1
3

2
3

5
11

Figure 6.4 Tree representation for the possible results of the game of craps with the
probabilities for all scenarios.
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with the paths that lead you to win the come-out roll to get
P(winning the pass line bet) = P(winning in the 1st phase)

+ P
(

winning in the 2nd
phase and point is 4

)
+ P

(
winning in the 2nd

phase and point is 5

)

+ P
(

winning in the 2nd
phase and point is 6

)
+ P

(
winning in the 2nd

phase and point is 8

)

+ P
(

winning in the 2nd
phase and point is 9

)
+ P

(
winning in the 2nd

phase and point is 10

)

Hence,
P(winning the pass line bet) = 2

9
⏟⏟⏟

Probability
winningin
1st phase

+ 1
12

⏟⏟⏟

Probability
the point is
established

as 4

× 1
3

⏟⏟⏟

Probability
winning in 2nd

phase given
the point is 4

+ 1
9

⏟⏟⏟

Probability
the point is
established

as 5

× 2
5

⏟⏟⏟

Probability
winning in 2nd

phase given
the point is 5

+ 5
36

⏟⏟⏟

Probability
the point is
established

as 6

× 5
11

⏟⏟⏟

Probability
winning in 2nd

phase given
the point is 6

+ 5
36

⏟⏟⏟

Probability
the point is
established

as 8

× 5
11

⏟⏟⏟

Probability
winning in 2nd

phase given
the point is 8

+ 1
9

⏟⏟⏟

Probability
the point is
established

as 9

× 2
5

⏟⏟⏟

Probability
winning in 2nd

phase given
the point is 9

+ 1
12

⏟⏟⏟

Probability
the point is
established

as 10

× 1
3

⏟⏟⏟

Probability
winning in 2nd

phase given
the point is 10

,

which simplifies to P(winning the pass line bet) = 244∕495 ≈ 0.4929. Further-
more, since the pass line bet pays even odds, the expected profit for every dollar
invested is

E(profit from pass line bet) = (−1) × 251
495

+ 1 × 244
495

≈ −0.01414.

As you can see, the house advantage for the pass line bet in craps is much
smaller than the house advantage in roulette! On purely monetary terms then,
there is no reason for you to ever play roulette again!
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We can extend the code we used before to check the probability of winning
given that the point is 4 to corroborate the probability of winning when playing
the pass line bet.

> n = 100000
> result = rep(0,n)
> outspc = seq(1,6)
> for(i in 1:n){
+ dice = sample(outspc,2,replace=TRUE) #First round
+ roll = sum(dice)
+ if(roll %in% c(4,5,6,8,9,10)){ #Second round
+ point = roll
+ dice = sample(outspc,2,replace=TRUE)
+ roll = sum(dice)
+ while(roll!=point & roll!=7){
+ dice = sample(outspc,2,replace=TRUE)
+ roll = sum(dice)
+ }
+ if(roll==point){
+ result[i] = "W" #Win in second round
+ }else{
+ result[i] = "L" #Lose in second round
+ }
+ }else{
+ if(roll==7 | roll==11){
+ result[i] = "W" #Win in first round
+ }else{
+ result[i] = "L" #Lose in first round
+ }
+ }
+ }
> sum(result=="W")/n

[1] 0.49454

> mean( (result=="W") - (result=="L") )

[1] -0.01092

6.1.2 The Don’t Pass Line Bet

The don’t pass line (also called lose or wrong) bet is a wager against the shooter
that is almost the mirror image of the pass line bet and also pays even odds.
The don’t pass line bet is always played as a stand-by bet that runs parallel to
the pass line bet and is resolved in the following way. If the come-out roll made
by the shooter is a 7 or 11, then the don’t pass line bet loses automatically. On
the other hand, if the come-out roll is a 2 or 3, then the don’t pass line bet wins
automatically, but if the come-out is a 12 then the game ends in a tie (this is
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sometimes called a push) and the player gets her original bet back. Finally, if a
point is made, the player betting on the don’t pass line wins if a 7 comes up first
and loses if the point comes up.

Note that, except for the outcome for 12 in the come-out roll, the don’t pass
line bet is the opposite to the pass line bet. Hence, we can easily compute the
probability of winning and the probability of tying this bet using a similar pro-
cedure to the one outlined in the previous section. This leads to

P(winning the don’t pass line bet) = 949
1980

≈ 0.47929,

P(push in the don’t pass line bet) = 1
36

≈ 0.02778,

P(losing in the don’t pass line bet) = 244
495

≈ 0.49293,

and therefore

E(profit from don’t pass line bet) = (−1) × 244
495

+ 0 × 1
36

+ 1 × 949
1980

≈ −0.01364.

Note that the don’t pass line bet is slightly less disadvantageous to the player
than the pass line bet! You can modify the simulation of the pass line bet we
provided in the previous section to check these results (see Exercise 16).

6.1.3 The Come and Don’t Come Bets

In addition to the pass and don’t pass line bets, there are two more line bets
usually offered by casinos: the come and the don’t come bets. A come bet works
almost identically to the pass line bet, but it is played out of synchrony with
and independently of it. As soon as the player makes a come bet, it starts its
own first phase regardless whether the shooter is playing his come-out roll or a
point roll. Consequently, if a 7 or 11 is rolled on the first round after the player
placed the chips in the come area of the table, it wins, but if a 2, 3, or 12 is
rolled, it loses. On the other hand, if the roll is 4, 5, 6, 8, 9, 10 then the come
bet will be moved by the base dealer onto a Box representing the number the
shooter threw. The don’t come bet is similar, but it mirrors the don’t pass line
bet instead.

6.1.4 Side Bets

In addition to line and come bets, many casinos allow for single-roll and
multi-roll bets. These bets can be placed at any time by either the shooter or
any stand-by player. Examples of a single-roll bet include snake eyes (which
involves betting on two ones coming up, typically paying 30 to 1) and the Yo
(which involves betting on 11 coming up and often pays 15 to 1). The analysis
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of these bets is very similar to the analysis of the bets in roulette. For example,
the expected profit from a snake eyes bets is

E(profit from snake eyes) = 30 × 1
36

+ (−1) × 35
36

= − 5
36

= −0.13889,

while the expected profit for Yo is

E(profit from Yo) = 15 × 2
36

+ (−1) × 34
36

= − 4
36

= −0.11111.

Note that the house advantage for these two bets is much larger than for the
line bets available in craps (as well as for any of the bets available in roulette).
Hence, these side bets are usually very bad proposition for the player.

An example of multi-roll bets is the hard way bet, in which the player bets
that the shooter will throw a 4, 6, 8, or 10 the hard way (recall Table 6.1) before
he throws a 7 or the corresponding easy way. We can use some of the ideas dis-
cussed in this chapter to compute house advantage for these bets. For example,
in the case of the hard 8 bet (which pays 9 to 1 on a winning bet), note that there
is only one dice combination that makes you win (two 4s), while there are 10
combinations that make you lose (6 ways in which 7 can happen, plus 3 and 5, 5
and 3, 2 and 6, and 6 and 2). Since any other number just forces you to continue
rolling, the probability of winning this bet is 1∕11, the probability of losing is
10∕11, and the expected profit is

E(profit from hard 8) = 9 × 1
11

+ (−1) × 10
11

= − 1
11

= −0.090909.

Again, this bet is quite bad for the players!

6.2 Exercises

1. When playing craps, what is the probability of crapping out?

2. When playing craps, if your point is 9, what is the probability that you will
win within the next four shots? What is the probability that you will lose
within the next four shots?

3. When playing craps, if your point is 5, what is the probability that you will
win within the next four shots? What is the probability that you will lose
within the next four shots?

4. If your point is 6, what is the probability that you will win the round of
craps? Show your calculations.

5. If your point is 10, what is the probability that you will win the round of
craps? Show your calculations.
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6. If your point is 11, what is the probability that you will win the round of
craps? Show your calculations.

7. Show that the probability of winning the don’t pass line bet is 949∕1980.

8. Verify the value provided in the text for the house advantage in the don’t
pass line bet.

9. The don’t pass line bet in craps is meant to be a bet against the shooter.
Indeed, the don’t pass line bet loses if the shooter gets a 7 or 11 in the
come-out roll, or if the shooter gets the point during the follow-up rolls.
However, the don’t pass line bet wins in the come-out roll only if the
shooter gets 2 or 3 but ties if the shooter gets a 12. Why are the rules
setup in this way instead of just letting the don’t pass line bets win for all
come-out rolls that are 2, 3, or 12?

10. Why does a casino allow players to retire (take back) a don’t pass line bet
after the first roll has been made, yet it does not let you do the same for
pass line bets?

11. What is the probability of winning the come and don’t come bets?

12. In craps, the field bet is a single-roll wager in which the player wins if the
next roll is 2, 3, 4, 9, 10, 11, or 12, and losses on any other number. The
typical payout for this bet is 1 to 1 if 3, 4, 9, 10 and 11, 2 to 1 on a 2, and
3 to 1 on a 12. What is the house advantage for this bet, and how does it
compare with the house advantage in the pass line bet?

13. What is the house edge on a hard 6 bet? How does it compare against the
house edge for a hard 8 bet?

14. [R] Find out the value of the cumulative sums associated with the series
1 + 1

3
+ 1

3
2 + 1

3
3 + 1

3
4 + · · · using R.

15. [R] Create a simulation to compute the probability of winning the
pass-line bet if the point is 9.

16. [R] Create a simulation to compute the probability of winning the don’t
pass line bet.
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Roulette Revisited

In this chapter, we make use of some of the concepts we learned so far to address
additional interesting questions about roulette. Although we concentrate on
roulette, many of the ideas discussed here can be extended to other games based
on independent rounds such as craps.

7.1 Gambling Systems

Gambling systems are strategies that increase or decrease the size of a bet
according to whether the player is winning or losing. They are promoted as
tools that allow players to beat the house advantage; plenty of books have been
written on the topic; and many gamblers have rediscovered the same tactics
over and over again. However, it is important to emphasize that for games that
rely on independent rounds of play such as roulette or craps, no system can be
devised to beat the house.

7.1.1 Martingale Doubling Systems

Martingale doubling systems are very simple. To play the system, you must keep
betting until you win, doubling your bet every time you lose. More specifically,
you start a betting cycle by making a small bet, such as $1. If you lose, you
double your bet and gamble again; if you win, you take your winnings and start
a new cycle by betting $1. Typically even bets, such as the color bet in roulette,
are used. However, this is not a requirement.

In a world where you can keep making bets indefinitely, the martingale
doubling system guaranties that you will make $1 at the end of a betting
cycle no matter what the probability of winning is. Indeed, say that it takes n
individual bets to complete a cycle. Since the bet is even, at that point you win
$2. Also, since you lost the previous n − 1 wagers, you have lost a total of

Probability, Decisions and Games: A Gentle Introduction using R, First Edition. Abel Rodríguez and Bruno Mendes.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/Rodriguez/Probability_Decisions_and_Games
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$ 1 + 2 + 22 + · · · + 2n−1. Note that the amount you have lost is the sum of
terms of a geometric series. Recall from Chapter 6 that

1 + a + a2 + · · · + an−1 = 1 − an

1 − a
In this case, we have a = 2. Therefore,

1 + 2 + 22 + · · · + 2n−1 = 1 − 2n

1 − 2
= 2n − 1.

and your profit for the cycle is

Profit = 2n

⏟⏟⏟

Winnings from the last
(winning) bet

− (2n − 1)
⏟⏟⏟

Accumulated losses from
previous (losing) bets

= 1

no matter what the value of n is.
At the first sight, this calculation suggests that a doubling system should allow

you to always make money. What can go wrong? The underlying assumption of
this system is that you can keep playing indefinitely until you win. However, in
real life, your bankroll is finite, and the bets you need to make to keep the system
going grow very fast. So you might not be able to cover the next bet required
by the system to keep going, at which point you will lose all your money.

To illustrate this, assume that you have $1000 and your initial bet is $1. How
many losses in a row can you take before you run out of money to make the
next bet? We just showed that the accumulated loss after n rounds of the game
is 2n − 1 (see also Table 7.1). Hence, if we lose 9 times in a row, we will only
have $489 left, which is not enough money to cover the 10th bet that the system

Table 7.1 Accumulated losses from playing a martingale doubling system
with an initial bet of $1 and an initial bankroll of $1000.

Round (n) Bet on this round Accumulated loss Money left

1 1 0 1000
2 2 1 999
3 4 3 997
4 8 7 993
5 16 15 985
6 32 31 969
7 64 63 937
8 128 127 873
9 256 255 745
10 512 511 489
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requires (which would be for $512)! In general, the number of rounds that you
can play is simply given by ⌊log2 B⌋ where B is the amount of money in your
bankroll and ⌊x⌋ means “round the number x down to the nearest integer” (in
this case, log2 1000 ≈ 9.9658, so ⌊log2 1000⌋ = 9). This expression also makes
it clear that doubling your bankroll (e.g., taking your initial money from $1000
to $2000) only buys you one additional round before you go bust!!

Now, you may argue that losing 9 times in a row when making color bets
in roulette is a very unlikely event. Because the spins of the roulette wheel are
independent, the exact probability of this happening is

P(losing 1st spin and losing 2nd spin · · · and losing 9th spin)

= P(losing 1st spin) × P(losing 2nd spin) × · · · × P(losing 9th spin)

and therefore

P(losing 9 times in a row) = 20
38

× 20
38

× · · · × 20
38

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

9 times

≈ 0.003098972.

Consequently, even if we start with $1000 and bet only $1 initially, we have
that roughly every 300 cycles we will not be able to cover the next bet and
the martingale system will fail (the exact number is 1∕0.003098972 = 322.6877
cycles). In the meantime, we would have made a profit of about $300, but even
if we reinvest the winnings we are bound to eventually run out of money to
cover the next bet required by the system.

Some additional intuition can be obtained by simulating the running profit
of playing a martingale doubling system with an initial bet $1 over 2000 spins
of the roulette:

> spins = 2000
> outspc = c("W","L")
> outpro = c(18/38, 20/38)
> profit = rep(0,spins)
> bet = 1
> for(i in 1:spins){
+ outcome = sample(outspc,1,replace=TRUE,prob=outpro)
+ if(outcome=="W"){
+ profit[i] = bet
+ bet = 1
+ }else{
+ profit[i] = -bet
+ bet = 2*bet
+ }
+ }
> plot(cumsum(profit), type="l", xlab="Spin",
+ ylab="Cumulative Profit")
> abline(h=0, lty=2)
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Figure 7.1 The solid line represents the running profits from a martingale doubling system
with $1 initial wagers for an even bet in roulette. The dashed horizontal line indicates the
zero-profit level.

Figure 7.1 shows the result of one such simulation. The increasing trend in the
cumulative profit suggests that, as advertised, the system makes money as long
as we can keep playing it indefinitely. Note, however, that the positive trend is
punctuated by sporadic big losses (of over $2000 in one case, even though our
initial bet was only $1). It is these big sporadic loses that make the system fail
in real life!

7.1.2 The Labouchère System

To play the Labouchère system, you need to decide how much money you want
to win and then write a list of positive numbers that add up to that quantity.
For the sake of argument, say that you want to make $100, and you decide to
use the numbers 15, 15, 20, 25, 20, 5 in your game. You always bet the sum of
the first and last numbers in the list (if a single number remains, you use that
number). If you win, the two numbers are removed from the list; if you lose, the
amount of the losing bet is added at the end of the list. You stop playing once
there are no more numbers in the list.

First, you need to convince yourself that the system, if completed, will indeed
allow you to win the sum of the amounts in the list. To see this, assume first
that it is your lucky day and you win all your bets straight. In our example,
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that means that the first time you bet (and win) 15 + 5 = $20, the second time
you win 15 + 20 = $35, and the third time you win 20 + 25 = $45. So the total
amount you win is 20 + 35 + 45 = $100 as expected. What if you lose your first
bet but then win all others straight? In that case, your list now contains the
numbers 15, 15, 20, 25, 20, 5, 20 and you are losing $20. But if you now win all
your bets in a row you will be making $120, so your net profit will be $100 again.
In general, by adding the amounts you lose to the end of the list you make up for
any loses you might have incurred in the middle of the game before stopping,
which ensures that you will make the desired amount of money. The following
R code simulates the running profit of the Labouchère based on an initial list
with 50 entries of $10 each used on an even roulette bet. The cumulative profit
from the system can be seen in Figure 7.2.

> outspc = c("W","L")
> outpro = c(18/38, 20/38)
> listlength = 50
> betvalue = 10
> listofbets = rep(betvalue, listlength)
> profit = 0
> while(length(listofbets)>0){
+ if(listlength==1){
+ currentbet = listofbets[1]
+ }else{
+ currentbet = listofbets[1] + listofbets[listlength]
+ }
+ outcome = sample(outspc,1,replace=TRUE,prob=outpro)
+ if(outcome=="W"){
+ profit = c(profit, currentbet)
+ listofbets = listofbets[-c(1,listlength)]
+ }else{
+ profit = c(profit, -currentbet)
+ listofbets = c(listofbets, currentbet)
+ }
+ listlength = length(listofbets)
+ }
> plot(cumsum(profit), type="l", xlab="Spin",
+ ylab="Cumulative Profit")
> abline(h=0, lty=2)

Just like the martingale doubling system, the Labouchère system would
seem to ensure that you always make money when playing roulette. However,
Labouchère systems share the same weaknesses as martingale doubling
systems. If you hit a bad enough losing streak you might run out of money
before you have the chance to recoup your previous loses or make any money.
However, as the simulation suggests, since the size of the bets in a Labouchère
system grow linearly rather than exponentially, the number of games you are
able to play before going bankrupt tends to be larger.
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Figure 7.2 Running profits from a Labouchère system with an initial list of $50 entries of
$10 for an even bet in roulette. Note that the simulation stops when the cumulative profit is
50 × 10 = 500; the number of spins necessary to reach this number will vary from
simulation to simulation.

7.1.3 D’Alembert Systems

The D’Alembert system is based on the idea that a win is less likely if you have
just won and more likely if you have just lost. Hence, you should increase the
amount of your bet after you lose and reduce it after you win. The recom-
mended progression is typically linear, so that you add a fixed quantity (say,
$1) to your bet when you lose, and subtract the same quantity every time you
win, to the table minimum.

Whereas the martingale doubling systems and the Labouchère systems are
based on mathematically sound principles (they do not work only because
in real life we do not have an infinite amount of money in the bank), the
D’Alembert system is based on an erroneous probabilistic argument. The
spins of the roulette are independent from each other, which means that the
probability of winning or losing does not depend on the past (the game is
memoryless). It is true that, before you make any spin, the probability of getting
9 loses in a row when playing even bets in roulette is very small. However, after
you have already seen 8 loses, the probability of getting the 9th is exactly the
same as the probability of getting the first one.

The following R code simulates the cumulative profit from applying the
D’Alembert system with an initial bet of $5, change in bets of $1, minimum bet
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of $1, and maximum bet of $20 to an even roulette bet. The clear decreasing
trend and large negative values in Figure 7.3 corroborate our argument that
the D’Alembert system does not work.

> n = 10000
> outspc = c("W","L")
> outpro = c(18/38, 20/38)
> profit = rep(0,n)
> currentbet = 5
> incrementbet = 1
> minimumbet = 1
> maximumbet = 20
> for(i in 1:n){
+ outcome = sample(outspc,1,replace=TRUE,prob=outpro)
+ if(outcome=="W"){
+ profit[i] = currentbet
+ currentbet = max(currentbet-1, minimumbet)
+ }else{
+ profit[i] = -currentbet
+ currentbet = min(currentbet+1, maximumbet)
+ }
+ }
> plot(cumsum(profit), type="l", xlab="Spin",
+ ylab="Cumulative Profit")
> abline(h=0, lty=2)
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Figure 7.3 Running profits over 10,000 spins from a D’Alembert system with an initial bet of
$5, change in bets of $1, minimum bet of $1 and maximum bet of $20 to an even roulette
bet.
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7.2 You are a Big Winner!

Even though the expected profit in roulette is negative, it is actually not uncom-
mon for players to be able to get ahead for a while. Indeed, you can temporarily
make a lot of money in roulette, but the law of large numbers implies that if you
want to keep it, you need to stop playing and never do it again for the rest of
your life!

For example, let’s compute the probability of winning exactly 10 rounds out
of 15 played when making $1 color bets (that would mean that you are ahead by
$5 after playing 15 rounds). There are many ways in which this could happen;
for example, you could win the first 10 rounds and lose the next 5,

W W W W W W W W W W L L L L L,

or you could lose the 2nd, 3rd, 5th, 12th, and 13th,
W L L W L W W W W W W L L W W.

Consider first the probability of each one of these sequences. Since the rounds
are independent, all sequences of 15 spins that include 10 wins and 5 loses have
the same probability,

W
⏟⏟⏟

18
38

L
⏟⏟⏟

20
38

L
⏟⏟⏟

20
38

W
⏟⏟⏟

18
38

L
⏟⏟⏟

20
38

W
⏟⏟⏟

18
38

W
⏟⏟⏟

18
38

W
⏟⏟⏟

18
38

W
⏟⏟⏟

18
38

W
⏟⏟⏟

18
38

× W
⏟⏟⏟

18
38

L
⏟⏟⏟

20
38

L
⏟⏟⏟

20
38

W
⏟⏟⏟

18
38

W
⏟⏟⏟

18
38

.

(recall that the probability of winning a color bet is 18
38

, while the probability of
losing it is 20

38
). This means that

P(W W W W W W W W W W L L L L L)

= P(W L L W L W W W W W W L L W W) =
(18

38

)10
×
(20

38

)5
.

Now, to compute the total probability of winning 10 rounds out of 15, we need
to sum the probabilities of all sequences that match the criteria. Since all of the
different sequences have the same probability, this boils down to counting the
number of sequences that match the criteria.

To compute the total number of ways in which you can get 10 wins in 15 spins,
recall again the combinatorial numbers we discussed in Chapter 4. We need to
pick 10 positions in the list out of 15, and the order in which the 10 positions are
selected is of no consequence to us. Therefore, there are

(
15
10

)
= 15!

10!×5!
= 3003

ways in which you can have 10 wins in 15 spins of a roulette. Hence,

P(winning 10 rounds out of 15) =
(15

10

)
×
(18

38

)10
×
(20

38

)5
.
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More generally, consider a random variable Z that counts the number of wins
out of n rounds. The same argument we used before leads to

P(Z = k) =
(n

k

)
×
(18

38

)k
×
(20

38

)n−k
.

Note that if Z = k, then you made $k from the rounds you won, and lost
$(n−k) from those you lost, making your profit from playing the game
k − (n − k) = 2k − n) dollars.

Now let’s put this result to good use. Say that you have been playing roulette
all night. For the sake of the argument, say you have played 300 rounds (which
means about 5 hours at a rate of 60 spins an hour) by betting $1 each time on
color. After all this, you are ahead by $20 (this means you had 20 more wins
than losses) and you feel very unlucky because you have made so little money.
Are you justified?

One way to address this question is to compute the probability that somebody
would win $20 or more after 300 games. Now, for you to be ahead by $20 or
more, you would need to win at least 160 of the 300 rounds you have played, so
we need to compute

Probability of winning
160 or more

roulette spins
⏞⏞⏞⏞⏞⏞⏞⏞⏞

P(Z ≥ 160) =

Probability of winning
160 rounds out of 300

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞(300
160

)
×
(18

38

)160
×
(20

38

)140
+

(300
161

)
×
(18

38

)161
×
(20

38

)139

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Probability of winning
161 rounds out of 300

+ · · · +
(300

300

)
×
(18

38

)300
×
(20

38

)0

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Probability of winning 300
rounds out of 300

.

Computing this quantity by hand is difficult, but you can use R to obtain the
number (see Sidebar 7.1):

> pbinom(159, size=300, prob=18/38, lower.tail=FALSE)

[1] 0.022217

This means that, for every 100 players, only about 2 would have made $20 or
more after playing for 5 hours... I would consider you quite lucky!

7.3 How Long will My Money Last?

We can use some of the tools we developed to study the martingale doubling
system to answer other interesting questions about roulette. For example, sup-
pose that you want to go out and play roulette tonight. Since the expected
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profit from this game is negative, you know for sure that you will eventually
lose all your money. However, how long you play is a random variable whose
distribution will depend on how much money you have and how much you bet
each time.

To make things simple for now, say that you start with just $1, that you bet $1
each round, that you do not reinvest your winnings, and that you try to make
your original $1 last for as long as possible by playing even bets such as a color
bet. If you are a very unlucky individual, you might lose on the first spin, so that
you might be able to play only one round. So, if you let

X = {Number of rounds you play if you have $1 and bet it all},

then we have P(X = 1) = 20∕38.
Now, for you to be able to play exactly two rounds, you would need to win

the first round and lose the second. Therefore, since spins are independent, we
have P(X = 2) = 18

38
× 20

38
. More generally, for you to play exactly k rounds, you

need to win the first k − 1 rounds and lose in the kth round, which happens
with probability

P(X = k) =
(18

38

)k−1
× 20

38
,

where k could be any integer number greater or equal than 1. Table 7.2 shows
a graph of probability as a function of k; as you would expect, the longer the
streak, the lower its probability.

To compute the average length of one such streak, that is, E(X), you would
need to compute

E(X) = 20
38

+ 2 × 18
38

× 20
38

+ 3 ×
(18

38

)2
× 20

38
+ 4 ×

(18
38

)3
× 20

38
+ · · ·

Table 7.2 Probability that you
play exactly k rounds before you
lose your first dollar for k
between 1 and 6.

k P(X = k)

1 0.5263158
2 0.2493075
3 0.1180930
4 0.0559388
5 0.0264973
6 0.0125514
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which can be rewritten as

E(X) = 20
38

+ 18
38

× 20
38

+
(18

38

)2
× 20

38
+
(18

38

)3
× 20

38
+ · · ·

+18
38

× 20
38

+
(18

38

)2
× 20

38
+
(18

38

)3
× 20

38
+ · · ·

+
(18

38

)2
× 20

38
+
(18

38

)3
× 20

38
+ · · ·

+
(18

38

)3
× 20

38
+ · · ·

⋮

With a little bit of algebra, and using again the formula for the sum of the
terms of a geometric series on each row, we get E(X) = 38

20
≈ 1.9. Accordingly,

on an average night, you would play for a little bit less than two rounds!
The previous scenario is probably too simple to be of practical use. For

example, even if you decide not to reinvest your winnings, you would probably
not go to the table with only $1. So, let’s say that you start with $10, and you
make $1 bets (but do not reinvest your winnings). There are a couple of ways
in which you can work with the random variable

Y = {Number of rounds you play if you have $10 and make $1 bets}.

If you only care about the expectation, you can proceed in the following way.
Since you make $1 bets, you can think about the gambling process as making
10 bets of $1, and riding each one until you lose the dollar. This means that you
can write

Y = X1 + X2 + X3 + · · · + X9 + X10,

where each Xi corresponds to one independent realization of our original ran-
dom variable. Therefore, we can easily see that

E(Y ) = E[X1] + E[X2] + E[X3] + · · · + E[X9] + E[X10] = 19.

In other words, if you start with $10 and make $1 bets, you can expect to play
for about 38 minutes on an average night (assuming about one spin every 2
minutes).

If you care about the whole distribution of Y , the following approach is a bit
simpler than dealing with the sum of multiple random variables. For you to play
exactly k rounds before losing all your money, you need a sequence of wins and
losses that satisfies two conditions: (1) there are exactly 10 losses, and (2) the
kth round (the last one) is a loss. In other words, you need a sequence such as

L W W W W W L L L W W L W L W W W L L W L W W W L.
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Sidebar 7.1 The Binomial Distributions in R

R includes functions that allow you to compute probabilities associated with a
host of well known random variables. For example, the functions dbinom()
and pbinom() allow you to compute P(Z = x) and either P(Z ≤ x) or P(Z > x)
when Z follows a binomial distribution. For example, for a binomial distribution
with n = 10 and p = 18∕38

P(Z = 4) =
(10

4

)(18
38

)4(20
38

)6

which can be computed in either of these two forms:

> choose(10,4)*(18/38)^4*(20/38)^6

[1] 0.224726

> dbinom(4, size=10, prob=18/38)

[1] 0.224726

On the other hand, for P(Z ≤ 4) =
∑10

x=4

(
10
x

)(
18
38

)x(
20
38

)10−x

> pbinom(4, size=10, prob=18/38)

[1] 0.4431709

while P(Z > 4) = 1 − P(Z ≤ 4) is obtained as

> pbinom(4, size=10, prob=18/38, lower.tail=FALSE)

[1] 0.5568291

Finally, the function rbinom() can be used to generate random numbers
that follow the binomial distribution:

> rbinom(12, size=10, prob=18/38)

[1] 5 3 7 3 6 2 2 6 8 2 4 5

Now, this sequence is of length 25 and (since rounds are taken together and
are independent from each other) it has probability(18

38

)15
×
(20

38

)10
.

However, note that this is not the only possible sequence that satisfies these
criteria. As a matter of fact, there are

(
24
9

)
= 24!

9!×15!
such sequences (recall

our discussion on combinatorial numbers from Chapter 4 and notice the last
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position has to be a loss, so we need to pick 9 positions for the remaining losses
among 24 options). Since all of these sequences have the same probability:

P(Y = 25) =
(24

9

)
×
(18

38

)15
×
(20

38

)10
.

More generally, the probability that you are able to play for k rounds if you
started with $n and you bet $1 per round and do not reinvest your winnings is

P(Y = k) =
(

k − 1
n

)
×
(18

38

)k−n
×
(20

38

)n

for any k ≥ n.
The case in which winnings are reinvested is a bit trickier and beyond the

scope of this book. However, a simulation in R can provide you with some
intuition:

> n = 10000
> outspc = c("W","L")
> outpro = c(18/38, 20/38)
> numspins = rep(0,n)
> for(i in 1:n){ # Simulation assumes profits get reinvested
+ bank = 10
+ spins = 0
+ while(bank>0){
+ spins = spins + 1
+ outcome = sample(outspc,1,replace=TRUE,prob=outpro)
+ bank = bank - (outcome=="L") + (outcome=="W")
+ }
+ numspins[i] = spins
+ }
> mean(numspins) # Average number of spins

[1] 191.8288

> max(numspins) # Maximum number of spins observed

[1] 4324

Note that by reinvesting your winnings you can significantly prolong the
amount of time your $10 will last. However, since the expected value of the
game is negative, you are bound to eventually go bankrupt!

7.4 Is This Wheel Biased?

In Chapter 3, we discussed the use of Chebyshev’s inequality to approximately
determine the number of spins needed to detect bias in a wheel. We consider
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now the related question of whether a sample consisting of a given number
of spins provides evidence of a biased wheel. For example, let’s assume that
you have collected the results of 10,000 roulette spins and you observe that the
number 31 has appeared 270 times (recall you would have expected to see it
just about 10,000 × 1

38
≈ 263 times in this many spins). Does this suggest that

the roulette is biased in favor of the number 31?
To answer this question, let’s compute the probability that you observe the

number 31 at least 270 times in 10,000 spins of the wheel if the roulette is not
biased,

P
⎛⎜⎜⎝
Number 31 coming up 270

or more times in 10,000
spins of an unbiased wheel

⎞⎟⎟⎠
=
(10,000

270

)
×
( 1

38

)270
×
(37

38

)9730

+
(10,000

271

)
×
( 1

38

)271
×
(37

38

)9729
+ · · · +(

10,000
10,000

)
×
( 1

38

)10,000
×
(37

38

)0
.

This leads to

P
(

Number 31 coming up 270 or
more times out of 10,000 spins

)
≈ 0.3429.

As before, you can use R to compute this number

> pbinom(269, size=10000, prob=1/38, lower.tail=FALSE)

[1] 0.3429242

Since this number is relatively large, there is little reason to think that the
wheel is biased (the difference between 263 and 270 is small enough for it to be
likely due to randomness).

7.5 Bernoulli Trials

When you look at the outcomes of multiple rounds of roulette, you are looking
at an example of a very particular type of experiment called Bernoulli trials. A
set of Bernoulli trials satisfies the following requirements:
• Each repetition of the experiment is independent from the rest.
• There are only two possible outcomes for each repetition of the experiment

(call them win and lose).
• The probabilities of winning and losing are the same for each experiment

(call the probability of success p).



7.6 Exercises 103

There are a number of interesting probability distributions associated with
Bernoulli trials. These distribution appeared in previous sections. For example,
the binomial distribution arises when we are interested in the number of wins
k among a total of n repetitions of the experiment.

The binomial distribution is given by

P(Z = k) =
(n

k

)
× pk × (1 − p)n−k

, k = 1, 2, 3,… , n

For example, the binomial distribution appears when computing the proba-
bility that a certain outcome of roulette appeared k times in n repetition of the
wheel (recall Section 7.4).

The geometric distribution arises when we want to know how many trials it
will take us to get one success,

The geometric distribution is given by

P(X = n) = p × (1 − p)n−1
, n = 1, 2, 3,…

On the other hand, the negative binomial distribution appears when we want
to know how many trials it will take us to get k successes (therefore, the geo-
metric distribution is a special case of the negative binomial when k = 1).

The negative binomial distribution is given by

P(Y = n) =
(n − 1

k − 1

)
× pk × (1 − p)n−k

, n = k, k + 1, k + 2,…

The geometric and negative binomial distributions appeared in Section 7.3
when we investigated the number of spins of a roulette wheel that you can make
before running out of money if profits are not reinvested. Note that the main
difference between the binomial and the negative binomial random variables is
what is considered fixed and what is considered random. While the binomial
distribution assumes that the number of trials n is fixed and the number of wins
k is random, the negative binomial assumes the opposite.

7.6 Exercises

1. What is the martingale doubling system? How can it fail?

2. What is the Labouchère system? How can it fail?
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3. How can minimum and maximum table bets affect the likelihood that you
go bust when using a martingale doubling system?

4. Would a martingale tripling system avoid the problems with the martin-
gale doubling system?

5. You decide to play roulette using the martingale doubling system. If your
bankroll is $30, your initial bet is $1 and you do not reinvest your win-
nings, what is the average amount of time you might expect to play?

6. You decide to play roulette using a martingale tripling system. If your
bankroll is $90, your initial bet is $1 and you do not reinvest your win-
nings, what is the average amount of time you might expect to play?

7. How could you use the martingale doubling system in craps?

8. What is the probability of winning 12 even bets in 30 spins of the roulette?

9. What is the probability of winning 12 even bets in 200 spins of the
roulette?

10. The probability of getting a 7 in the game of craps is 1/6. The famous
craps player known as the dice dominator is said to have avoided a 7 in
the point-phase of the game of craps for 30-something consecutive rolls.
To keep it simple, just imagine rolling two dice and you are only interested
in whether a 7 comes out or not; what is the probability of avoiding 7 in
35 consecutive rolls of a die?

11. Do you think you can be called a dice dominator if you can avoid 7 for 15
consecutive rolls of two dice?

12. Say that you are trying to determine if a given (European) roulette wheel
is biased in favor of the number 16. To do that you collect the outcome
of 15,000 spins, and find that 400 and 13 of them are 16s. What is the
probability of obtaining 413 or more 16s in 15,000 spins of a European
wheel if it is not biased? Is there evidence that this particular wheel is
biased?

13. In the same setting as the previous question, what is the probability of
obtaining 602 or more 16s in 15,000 spins of a European wheel if it is not
biased? Is there evidence that this particular wheel is biased?
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14. If playing American roulette you bet $1 on red each time, what is the
probability that you are ahead by at least $10 after 100 rounds?

15. In the same setting as the previous question, what is the probability that
you will be ahead by at least $2 after 500 rounds?

16. [R] Corroborate the value of P(Z ≥ 160) when Z is binomial with
n = 300 and p = 18∕38 provided by the function pbinom(159, 300,
18/38, lower.tail=FALSE) in two ways:
• By adding up the 141 terms involved in the sum.
• Using a simulation.

17. [R] Modify the simulation of the Labouchère system to estimate the prob-
ability of going bankrupt if your bank is $200 and your list consists of 20
elements, each corresponding to $10 and you are making even bets.

18. [R] Modify the simulation of an even bet in roulette to corroborate the
calculation of the expected number of spins before going bankrupt if you
do not reinvest your winnings.
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8

Blackjack

Blackjack (BJ) is a popular card game that has been depicted in movies such as
the 2008 film 21. Blackjack has become popular in good measure because it is
one of the few casino games that can potentially be broken (i.e., a strategy can
be devised to minimize or even eliminate the house advantage).

8.1 Rules and Bets

Blackjack (also called 21) is played using a standard (French-style) 52-card deck
(see Figure 8.1). The objective of the game is very simple: players try to get a
combination of cards that adds up to a number that is larger than the dealer’s
number but does not exceed 21. The value of the cards is as follows: num-
bered cards are worth their value in points, Jacks, Queens, and Kings are worth
10 points each, and Aces are worth either 1 or 11 points (whichever is more
advantageous to the player). The suits of the cards play absolutely no role in the
outcome of the game.

At the start of the round each player is dealt two cards face up, and the dealer
(let’s call her Alice) also gets two cards. Cards are usually dealt from a stack
which is called the shoe. The shoe can contain between one and eight decks.

Unlike the players, the dealer receives one card face up for everyone to see,
and one card face down (which is said to be in the hole). After receiving the
hidden card, Alice, the dealer, checks to see if she has a blackjack (an Ace plus
a 10-point card such as a Jack, Queen, King, or 10). If Alice has a blackjack, she
reveals the second card and the game ends, with all players who do not have a
blackjack losing and any player with a blackjack tying with the house.

If Alice does not have a blackjack, then each player takes a turn playing. If the
current player (let’s call her Julissa) gets a natural 21, then she has a blackjack
and automatically wins (unless, as we discussed before, the dealer also had a
blackjack, in which case they draw). While the regular payoff odds in blackjack
are 1 to 1, the payoff odds for a natural are 3 to 2 (i.e., you get a profit of $3
for each $2 you bet). If Julissa does not get a blackjack, she has the opportunity

Probability, Decisions and Games: A Gentle Introduction using R, First Edition. Abel Rodríguez and Bruno Mendes.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/Rodriguez/Probability_Decisions_and_Games
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Figure 8.1 A 52-card French-style deck.

to draw as many additional cards (one by one) as she wants. More specifically,
Julissa has the following options available to them:

• Hit: Draw an additional card. If the player’s total, including the new card, goes
above 21, the player goes bust and loses immediately, no matter whether the
dealer later also goes bust or not.

• Stay: Stop drawing cards and wait for the dealer to play her hand.
• Double-down (only available as the first action of the hand): The player can

double her bet if she agrees to stay after just one card.
• Split (only available as the first action of the hand): If the player gets a pair

of cards with identical numbers, they can split the hand into two, placing
an additional bet equal to the first one and drawing a card on each of the
two hands. From then on, the player plays two independent hands simul-
taneously; the only restrictions are that, after a split, natural blackjacks are
treated as regular 21s, and that further splits or double-downs are usually not
allowed.

• Surrender (only available as the first action of the hand): Right after the dealer
checks for blackjack, the player can surrender half of her bet and get back the
other half. Surrendering is typically a bad option.

• Insurance (only available as the first action of the hand): If the dealer upside
card is an Ace, the dealer might offer players the option to take insurance



8.2 Basic Strategy in Blackjack 109

against a blackjack before the dealer checks the hole card. The insurance bet
becomes a side bet that the dealer has blackjack and is treated independently
of the main wager. The payoff odds for this bet are 2 to 1.
Once all players have resolved their hands (either by going bust or staying),

it is the turn of the dealer, who plays a fixed strategy. If Alice the dealer has not
done so already (because of a blackjack), she shows the hole card. If the total is
less than 17, she will hit until the number is higher than 17 or goes bust. If the
dealer goes bust all players who stayed their game win. If the dealer did not go
bust, then each player compares her number against the dealer’s. If the player
has a higher number, she wins; if the player has a smaller number, she loses.
Finally, if the numbers are identical, the game is a draw and the player gets her
bet back. In all these cases, the payoff odds are 1 to 1.

A popular variation of blackjack has the dealer hitting on a soft 17. A soft
number is one made up of a combination of cards that includes an Ace that is
counted for 11 points. For example, a combination of an Ace and a 6 is a soft
17, while a combination of a King, a 6, and an Ace counts as a hard 17 . Other
variations of the rules include early surrender, re-splitting, and no doubling after
splitting. These variations are typically casino-specific and will not be discussed
in this book.

8.2 Basic Strategy in Blackjack

Blackjack is popular in good part because it is possible for players to adopt
a strategy that will minimize, or even eliminate, the house advantage. This is
because (1) since the dealer plays a fixed strategy and she shows a face-up card,
the player can adapt her strategy accordingly and (2) cards used in different
rounds are typically dealt without replacement from a common (and finite!)
deck, so the outcomes of different rounds are dependent. This is in clear con-
trast to the other games we have discussed so far (roulette, lotteries, craps)
where outcomes from different rounds are independent from each other.

In order to devise a strategy for playing blackjack, let’s consider first the prob-
ability associated with all possible dealer’s hands. Since Alice must hit when her
hand is under 17, there are 7 possible outcomes: 17, 18, 19, 20, 21, BJ, and bust
(note that 21 means any combination of cards that adds up to 21 but are not
blackjacks).

The probability of a blackjack is easy to compute,
P(Blackjack)

= P
(

First card
is an A

)
× P

(
Second card is a

10, J, Q or K
||||

First card
is an A

)

+ P
(

First card is a
10, J, Q or K

)
× P

(
Second card

is an A
||||

First card is a
10, J, Q or K

)
.
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In the case of a single-deck game this is

P(Blackjack) = 4
52

× 16
51

+ 16
52

× 4
51

= 2 × 4 × 16
52 × 51

≈ 0.04826546.

Single deck games, however, are relatively rare nowadays. In multiple deck
games, the probability of different cards does not change much after a single
card is removed. Hence, in that case, we can approximate

P(Blackjack) ≈ 4
52

× 16
52

+ 16
52

× 4
52

= 2 × 4 × 16
52 × 52

≈ 0.04733728.

Note that the only difference between the two calculations is that the denom-
inator for the probability that the second card is 52 when multiple decks
are used (i.e., we assume sampling with replacement), instead of 51 when
a single deck is used (in which case we are assuming sampling without
replacement).

The probabilities for other outcomes can be quite complicated to obtain.
Consider, for example, the probability of a 21 that is not a blackjack. This
can only happen if three or more cards are drawn; there are many possible
combinations that would lead to that outcome. For example,

• A 10-valued card, followed by a 6 and a 5.
• A 10-valued card, followed by a 5 and a 6.
• A 10-valued card, followed by a 4 and a 7.
• A 10-valued card, followed by a 4, a 2, and a 5.
• 9 followed by a 7 and then a 5.
• And so on…

A complete enumeration needs to be done carefully; for example, a 10-valued
card followed by a 7 and then a 4 is not a combination that we should consider
because it would never happen (once the 7 is drawn, the value of the hand is 17
and the dealer would stay). Since the number of combinations that we need to
consider is rather large, we just present the results (for the multiple deck case)
in Table 8.1. The following code can be used to corroborate the results using
simulations:

Table 8.1 Probability of different hands assuming that the house stays on
all 17s and that the game is being played with a large number of decks.

Result 17 18 19 20 21 BJ Bust
Probability 0.145 0.140 0.134 0.180 0.073 0.047 0.282



8.2 Basic Strategy in Blackjack 111

> n = 100000
> cardvalues = rep(c(seq(1,10), rep(10,3)), each=4)
> outcome = rep(0,n)
> for(i in 1:n){
+ hand = sample(cardvalues, 2, replace=TRUE)
+ sw = TRUE
+ while(sw){
+ isace = (hand==1)
+ if(sum(isace)>0){
+ if(sum(hand[!isace]) + sum(isace) + 10 > 21){
+ handvalue = sum(hand[!isace]) + sum(isace)
+ }else{
+ handvalue = sum(hand[!isace]) + sum(isace) + 10
+ }
+ }else{
+ handvalue = sum(hand[!isace])
+ }
+ if(handvalue>=17){
+ sw = FALSE
+ }else{
+ hand = c(hand, sample(cardvalues, 1))
+ }
+ }
+ if(handvalue>21){
+ outcome[i]="Bust"
+ }else{
+ if(handvalue==21 & length(hand)==2){
+ outcome[i] = "BJ"
+ }else{
+ outcome[i] = handvalue
+ }
+ }
+ }
> round(table(outcome)/n, 3)

outcome
17 18 19 20 21 BJ Bust

0.147 0.140 0.132 0.180 0.073 0.047 0.281

Table 8.1 provides some interesting insights into blackjack strategy. For
example, it shows that the dealer goes bust about once every four rounds.
Since the player wins when the house goes bust as long they have not gone
bust themselves, this suggests that it might be a good idea for the player to play
defensively. However, the table does not make use of the knowledge provided
by the face-up card. Indeed, note that about 30% of the cards in the deck are
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10-valued cards. Therefore, the probability that the house goes bust is larger if
the face-up card is a 6 than if it is a 10:

• If the face-up card is a 6, since the most likely scenario is that the hole card
is a 10, the most likely total for the dealer’s hand is 16. If that is the case, the
dealer will have to draw a third card. If this happens, the most likely scenario
is that the third card is a 6 or larger (probability 32∕52), which leads to the
dealer going bust. In this case, the player should play more defensively.

• If the face-up card is a 10, the probability that the dealer will be drawing a
third card is small because they will only do it if the hole card is a 2, 3, 4, 5, or
6, which has a probability of 24∕52 in a multideck game; so the probability
that she will go bust is also relatively small. In this second case, the player
should play more aggressively.

The previous discussion is formalized and generalized in Table 8.2, which
shows the probability of different possible dealer hands conditional on the
face-up card. As suggested earlier, the probability that the player goes bust
is quite high if the face-up card is either 2, 3, 4, 5, or 6, but falls dramatically
once the face-up card becomes a 7 or higher. Indeed, when the face-up card
is a 7, the highest probability outcome is a 17, and for a 8 face-up card, the
highest probability outcome is an 18, and so on. And, if the face-up card is an
A, the probability that the dealer will go bust is very small. These probabilities
suggest that it is a bad idea for the player to copy the house strategy. Instead,
the following adaptive strategy is optimal:

Table 8.2 Probability of different hands assuming that the house stays on all 17s,
conditional on the face-up card.

Face-up card End hand

17 18 19 20 21 BJ Bust

A 0.131 0.131 0.131 0.131 0.054 0.308 0.115
2 0.140 0.135 0.130 0.124 0.118 0.000 0.354
3 0.135 0.131 0.126 0.120 0.115 0.000 0.374
4 0.131 0.126 0.121 0.117 0.111 0.000 0.395
5 0.122 0.122 0.118 0.113 0.108 0.000 0.416
6 0.165 0.106 0.106 0.102 0.097 0.000 0.423
7 0.369 0.138 0.079 0.079 0.074 0.000 0.262
8 0.129 0.360 0.129 0.070 0.069 0.000 0.245
9 0.120 0.120 0.351 0.120 0.061 0.000 0228
10/J/Q/K 0.111 0.111 0.111 0.342 0.035 0.077 0.212

This table assumes that the game is being played with a large number of decks.
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• If the bank’s face-up card is either a 4, 5, or 6, the player should stay with any
hand that is 12 or more, and hit otherwise.

• If the bank’s face-up card is either a 2 or a 3, the players should stay with any
number 13 or above.

• Against any other card, the player should stay with 17 or more and should
hit otherwise.

The rationale for this strategy is directly linked to our earlier discussion. Since
the bank has a very good chance of going bust if the card being shown is a 4, 5,
or 6, the player should play very defensively, to the point of avoiding going bust
at all cost (hence the strategy of staying with 12 or more). On the other hand,
if the house shows a 7 or higher in the face-up, the probability of a good hand
for the house is very high and the player should play more aggressively to try to
get at least a 17 before staying.

A similar intuition works for the optimal splitting strategy (see Table 8.3).
Note that splitting on a double 10 is never advantageous; this is so because
the probability that the dealer will beat a 20 is very small no matter what the
face-up card is. Similarly, splitting with a double 7 is advantageous only if the
dealer shows a 7 or smaller number (for larger face-up cards, the probability
that the player goes bust or gets a number that is 17 or less is very high, while the
probability that the dealer will get a number that is 18 or more is also relatively
high).

Table 8.3 Optimal splitting strategy.

Dealer’s face-up card

Player’s card 2 3 4 5 6 7 8 9 10 A

A–A S S S S S S S S S
10–10
9–9 S S S S S S S
8–8 S S S S S S S S
7–7 S S S S S S
6–6 (S) S S S S
5–5
4–4 (S) (S)
3–3 (S) (S) S S S S
2–2 (S) (S) S S S S

S indicates that splitting is advantageous, while (S) indicates situations in which
splitting is advantageous only if doubling down is allowed. This strategy
assumes that the game is being played with a large number of decks and that
the dealer stays at all 17s.
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8.3 A Gambling System that Works: Card Counting

A key feature of blackjack is that the deck (or decks) of cards is not reshuf-
fled after each hand. Instead, multiple rounds are dealt continuously from the
same deck. This can induce some wild variations in the probabilities of different
hands. This phenomenon is more pronounced when playing with a single deck,
but it can still be exploited in multi-deck games to create a gambling system.

To see how much the probabilities of different outcomes can change in a
single-deck game, consider a situation where all Aces, 2s, 3s, 4s, 5s, and 6s have
been removed from a deck (so, there are 28 cards left in the deck; 16 ten-valued
cards, four 7s, four 8s, and four 9s). In this case, the probability of different
hands is relatively easy to compute. For example, the probability that the dealer
gets a 21 is simply the probability of getting three 7s in a row (there are no other
combinations available with the cards left in the deck), that is,

P(21) = 4
28

⏟⏟⏟

Probability that the
first card is a 7

× 3
27

⏟⏟⏟

Probability that the
second card is a 7
given first is a 7

× 2
26

⏟⏟⏟

Probability that the
third card is a 7

given the first two are 7s

≈ 0.00122.

Similarly, the probability that the dealer gets a 17 corresponds to the proba-
bility of 4 different sequences: first a 7, then a 10, or first a 10, then a 7, or first
an 8, then a 9, or first a 9, then an 8. Therefore,

P(17) = 4
28

× 16
27

+ 16
28

× 4
27

+ 4
28

× 4
27

+ 4
28

× 4
27

≈ 0.21164.

Table 8.4 summarizes the probabilities for all cases, which are very different
from those in Table 8.1 because a number of cards are not in play anymore.
The values in Table 8.4 can be corroborated using the following R code (note
that this version of the code, unlike the one presented in Section 8.2, uses
sampling without replacement):

> n = 100000
> cardvalues = rep(c(seq(7,10), rep(10,3)), each=4)
> outcome = rep(0,n)
> for(i in 1:n){
+ shuffleddeck = sample(cardvalues,
+ length(cardvalues), replace=FALSE)
+ hand = shuffleddeck[1:2]
+ currentcard = 3
+ sw = TRUE
+ while(sw){
+ isace = (hand==1)
+ if(sum(isace)>0){
+ if(sum(hand[!isace]) + sum(isace) + 10 > 21){
+ handvalue = sum(hand[!isace]) + sum(isace)
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+ }else{
+ handvalue = sum(hand[!isace]) + sum(isace) + 10
+ }
+ }else{
+ handvalue = sum(hand[!isace])
+ }
+ if(handvalue>=17){
+ sw = FALSE
+ }else{
+ hand = c(hand, shuffleddeck[currentcard])
+ currentcard = currentcard + 1
+ }
+ }
+ if(handvalue>21){
+ outcome[i]="Bust"
+ }else{
+ if(handvalue==21 & length(hand)==2){
+ outcome[i] = "BJ"
+ }else{
+ outcome[i] = handvalue
+ }
+ }
+ }
> round(table(outcome)/n, 3)

outcome
17 18 19 20 21 Bust

0.211 0.184 0.171 0.316 0.001 0.116

Table 8.4 Probability of different hands assuming that the house
stays on all 17s and that the game is being played with a sin-
gle deck where all Aces, 2s, 3s, 4s, 5s, and 6s have been removed.

Result 17 18 19 20 21 BJ Bust
Probability 0.212 0.186 0.170 0.317 0.001 0.000 0.115

A similar approach can be used to compute the probability of each outcome
conditional on the face-up card (this is analogous to the calculation behind
Table 8.2). For example, if the face-up card is a 7, the only second cards not
leading to an automatic bust are a 10 (which leads to 17) and a 7 (which leads
to drawing a third card since the running total is 14). If the second card is a 7,
then the only way the dealer will not go bust is with a third 7 (which leads to a
total of 21). Thus,

P

(
17

|||||
First card is a 7 and A,

2, 3, 4, 5, 6 removed

)
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= P

(
Second card
is 10-valued

|||||
First card is a 7 and A,

2, 3, 4, 5, 6 removed

)
= 16

27
≈ 0.59259,

P

(
21

|||||
First card is a 7 and A,

2, 3, 4, 5, 6 removed

)
= 3

27
× 2

26
≈ 0.008547,

while

P(18 ∣ First card is a 7 and A, 2, 3, 4, 5, 6 removed) = 0,

P(19 ∣ First card is a 7 and A, 2, 3, 4, 5, 6 removed) = 0,

P(20 ∣ First card is a 7 and A, 2, 3, 4, 5, 6 removed) = 0,

and

P
(

Bust
||||
First card is a 7 and A,

2, 3, 4, 5, 6 removed

)
= 1 −

Probability dealer
does not go bust

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞(16
27

+ 3
27

× 2
26

)
≈ 0.39886.

After rounding to four decimal places, these results correspond to the values
in Table 8.5. The rest of the table can be obtained in a similar way.

Because the probability of winning a hand depends greatly on which
cards are left in the deck, we can reduce (and even eliminate) the house
advantage by increasing the amount of our bet when the content of the decks
drives the odds of winning in our favor and decreasing it when the odds are
against us.

Card counting is a simple mechanism that can be used to keep track of the
cards that have appeared in previous rounds dealt since reshuffling, and then
adapting the size of the bets in order to exploit situations that are favorable

Table 8.5 Probability of different hands assuming that the house stays on all 17s,
conditional on the face-up card.

Face-up card Dealer’s final hand

17 18 19 20 21 BJ Bust

7 0.593 0.000 0.000 0.000 0.009 0.000 0.399
8 0.148 0.593 0.000 0.000 0.000 0.000 0.259
9 0.148 0.111 0.593 0.000 0.000 0.000 0.148
10/J/Q/K 0.148 0.148 0.148 0.556 0.000 0.000 0.000

This table assumes that the game is being played with a single deck and all the Aces, 2s, 3s,
4s, 5s, and 6s have been removed from a deck.
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to the player. Counting systems are based on the fact that high cards (espe-
cially Aces and 10s) benefit the player more than the dealer, while the low cards
(especially 4s, 5s, and 6s) help the dealer while hurting the player. Indeed, a
high concentration of Aces and 10s in the deck increase the player’s chances
of hitting a natural blackjack, which pays out 3:2 (unless the dealer also has
blackjack). Also, when the deck has a high concentration of 10s, players have a
better chance of winning when doubling. On the other hand, low cards benefit
the dealer, since according to blackjack rules the dealer must hit stiff hands (i.e.,
hands totaling 12–16) while the player has the option to hit or stand. Conse-
quently, a dealer holding a stiff hand will bust every time if the next card drawn
is a 10.

A number of counting systems have been devised. All of them start the count
at zero when a deck is freshly shuffled and increase/decrease the count accord-
ing to the cards that are played. The simplest point assignment for the cards
that is used in practice is the low-high count system:

• 2s, 3s, 4s, 5s, 6s are assigned a value of +1.
• 10-Valued cards and A are assigned a value of −1.
• All other numbers (7, 8, and 9) are assigned a value of 0.

When the count is high, it signals a lot of high cards left in the deck which
means that it is easier for the dealer to go bust; in this situation, you should
increase your bets because it is more likely for you to win. Different experts
suggest different thresholds for increasing the bet, one possible option (for
single-deck games) is the following:

• If your count is less than or equal to +1, bet the table minimum.
• If your count is between +2 and +3, double your minimum bet.
• If your count is between +4 and +5, triple your minimum bet.
• If your count is between +6 and +7, quadruple your minimum bet.
• If your count is +8 or more, quintuple your minimum bet.

8.4 Exercises

1. Explain why, in single-deck blackjack, there is an advantage to the player
when a large number of high cards are in the deck and the mid-valued
cards are out.

2. Why is it usually a bad idea to surrender in blackjack?

3. What actions can casinos take to reduce the advantage of card counters
in blackjack? Explain the logic behind these actions.
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4. You are playing blackjack from a single deck, and you are the only player
on the table. Your hand is K–8 and the dealer shows a 9. If you know that
all Aces, 2s, 3s, 4s, 5s, and 6s are out of the deck (but all other cards are
still in), what is the probability that you will win the hand if you stay?

5. What’s the probability of winning an insurance bet? What is your expected
profit in a game where you take an insurance bet?

6. Consider the same situation as the previous question; what is the proba-
bility that you will win when the dealer’s hand is showing a 7.

7. Consider the same situation as the previous question; what is the proba-
bility that you will win when the dealer’s hand is showing a 8.

8. When playing with a deck where all Aces, 2s, 3s, 4s, 5s, and 6s are out
of the deck (but all other cards are still in) what is the probability of the
dealer getting a 17 when her hand is showing a 10. Explain your reasoning
carefully.

9. In the same situation as the previous question, what is the probability of
the dealer getting an 18 when her hand is showing a 9. Justify your answer.

10. Still in the same situation as two previous questions, what is the proba-
bility of the dealer going bust when her hand is showing a 9. Justify your
answer.

11. When using a continuous shuffling machine (CSM), cards just used are
placed back into the deck of cards at the end of each hand. The machine
works in such a way that any of the cards just played has a chance of
coming up in the next hand (unlike in regular games, where cards that
are discarded are not reintroduced for a while). How does a CSM affect
the effectiveness of the basic strategy in blackjack? How does it affect the
effectiveness of card counting?

12. Carry out the computations required to complete Table 8.5.

13. [R] Modify the simulation presented in this chapter to re-compute the
probabilities in Table 8.1 for a single-deck game in which cards are sam-
pled without replacement.
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14. [R] Write code to evaluate the house advantage under the basic black-
jack strategy discussed in Section 8.2 assuming no insurance, surrender,
splitting, or doubling down is allowed.

15. [R] Modify the code from the previous exercise to compute the house
advantage if the player copies the house strategy. Compare your results
against those from the previous exercise.
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9

Poker

Poker is a very popular type of card game played not only in casinos but
also among friends. One of its variants, called Texas Hold’em, has become
particularly popular since sports channels such as ESPN started showcasing
championships.

Poker is different from the other games we have discussed so far in that the
players compete against each other rather than against the casino. Therefore,
even though poker has features that are akin to other random games, it is also
a game of strategy. In this section, we will discuss the random aspects of the
game and will delay the discussion of its strategic aspects until Chapter 11.

9.1 Basic Rules

Just like blackjack, poker is played using a French-style 52-card deck (recall
Figure 8.1). Each player is dealt a certain number of cards either face down or
face up. In addition, some community cards (which are shared by all players)
might be dealt. The winner of each game is the person with the highest five-card
hand; the way in which the hand is constructed using the player’s and commu-
nity cards depends on the variant of the game being played (more on this later).

Hands are ranked primarily by their type (see Table 9.1 and Figure 9.1). Card
numbers are used only to differentiate among hands of the same type. For this
purpose, the cards are ordered 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A. Suits by them-
selves do not typically play a role in defining the value of a hand, except for
helping determine if you have a flush. To understand how hands are compared,
let’s consider a few examples.

1. Assume your hand is 2♢ 2♣ 3♠ 7♡ 10♡ and your opponent’s hand is
A♢ Q♣ 4♣ 8♣ 10♢. You have one pair of 2s, while your opponent has an
Ace high card. You win the game because a pair beats a single higher card.

2. Assume now that your hand is 2♢ 2♣ Q♠ Q♡ Q♣, while your opponent’s
hand is A♠ A♣ 3♠ 3♣ 3♡. Both of you have full houses, so we need to look

Probability, Decisions and Games: A Gentle Introduction using R, First Edition. Abel Rodríguez and Bruno Mendes.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/Rodriguez/Probability_Decisions_and_Games
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Table 9.1 List of poker hands.

Rank Name Description

1 Royal flush The hand contains the A, K, Q, J and 10 of the same suit.
2 Straight flush The hand contains five cards of the same suit with

consecutive values. A can come before a 2, but not after K
(as the hand would be a Royal Flush).

3 Four of a kind (poker) The hand contains four cards of the same number (one
for each suit).

4 Full house The hand contains three cards of one number and two
cards of a different number.

5 Flush The hand contains five cards of the same suit, but not a
Straight flush.

6 Straight The hand contains five cards with consecutive number
values that are not a Straight flush.

7 Three of a kind The hand contains three cards of the same number and is
not a full house or a poker.

8 Two pairs The hand contains two pairs, each of a different number.
9 One pair The hand contains two cards of the same number and is

not a full house or a poker.
10 Highest card The hand is not any of the above.

Poker hand rankings

Royal flush

Straight flush

Straight

Three of a kind

Four of a kind

Full house

Flush High end

One pair

Two pair

Figure 9.1 Examples of poker hands.
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at the number associated with the cards in order to compare hands. We first
compare the numbers associated with the three of a kind. Since you have Qs
and your opponent has 3s, you win the hand.

3. Finally, assume that your hand is A♣ K♣ Q♣ J♣ 10♣ and your opponent’s
hand is A♡ K♡ Q♡ J♡ 10♡. Both of you have (Royal) Straight flushes, so the
hand is a tie and the pot is split among the players.

In poker, betting rounds are usually interspaced between rounds of dealing
cards (the specific details depend, again, on the variant you are playing). During
these betting rounds, players take turns deciding whether to withdraw from the
game (fold), increase their bets (raise), or match a raise by another player (call).

9.2 Variants of Poker

There is a large number of variants of poker, which differ mainly on how the
player’s hands are formed. Three of them are particularly popular nowadays.

In draw poker, a complete hand is dealt to each player, face down and, after
betting, players are allowed to improve their hand by discarding unwanted
cards and being dealt new ones. After the card exchange, a second round of
betting ensues. Five-card draw is the most popular version of draw poker.

In stud poker, cards are dealt in a prearranged combination of face-down and
face-up rounds, or streets, with a round of betting following each dealing. The
most popular stud variant today, seven-card stud, deals seven cards to each
player (three face down, four face up) from which they must make the best
possible five-card hand.

Community card poker is similar to stud poker in that cards are dealt to the
players in a combination of face-down and face-up cards. However, in commu-
nity card poker, the face-up cards are shared by all the players. Players are dealt
an incomplete hand of face-down cards, and then a number of face-up commu-
nity cards are dealt to the center of the table, each of which can be used by one or
more of the players to make a five-card hand. Texas Hold’em is the best-known
community card poker. In Texas Hold’em, each player receives two face-down
cards. In addition, five face-up community cards are shared by all players. These
cards are dealt in the following order:
1. First, the two face-down cards are dealt to each player, followed by a round

of betting.
2. The first three community cards are revealed (the flop), followed by a second

round of betting.
3. The fourth community card is revealed (the turn), followed by a third round

of betting.
4. The final community card is revealed (the river), followed by a fourth and

last round of betting.
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9.3 Additional Rules

In addition to the voluntary bets made by each player during the game, forced
bets are often employed to create incentives for the players to wager even when
hands are bad. Blinds are a forced bet placed by one or more players that is made
before the cards are dealt; these are used very often in draw and community
poker. The bring-in is another forced bet that occurs after the cards are initially
dealt, but before any other action is taken. Bring-ins are common in stud poker,
and it is required from the player with the worst set of open cards.

All in bets are another special type of wager. If you are faced with a bet you
cannot match for the lack of sufficient funds, you may bet the remainder of
your stack and declare yourself all in. You may now hold onto your cards for
the remainder of the round as if you had called every bet, but you may not win
any more money from any player above the amount of your stack.

9.4 Probabilities of Hands in Draw Poker

It is particularly easy to compute the probabilities of different hands in draw
poker because players have no information about other players’ cards. We
start by computing the probabilities of getting the different types of hands with
the first five cards. To compute these probabilities, recall that a hand of poker
consists of five cards drawn randomly without replacement from a single,
well-shuffled deck of 52 cards. Therefore, all cards have the same probability of
appearing in your hand, cards cannot repeat themselves (you can get two Qs,
like Q♢ and Q♠, but your hand cannot have two Q♠), and the order in which
the cards are arranged is irrelevant. This implies that we are dealing with an
equiprobable space where

P(Type of hand) =
Number of hands consistent with the goal

Total number of possible poker hands
.

Because we are drawing cards without replacement and order does not mat-
ter, the total number of possible hands of poker is

Total number of
possible poker hands =

(52
5

)
= 52!

5! × 47!

= 52 × 51 × 50 × 49 × 48
5 × 4 × 3 × 2 × 1

= 2,598, 960.

(Recall Chapter 4.)
Now we only need to compute the number of hands that correspond to each

one of the named hands mentioned in Table 9.1. For the Royal flush and Straight
flush, note that for each of the four suits there are 10 different possible five-card
sequences:



9.4 Probabilities of Hands in Draw Poker 125

A,2,3,4,5 2,3,4,5,6 3,4,5,6,7 4,5,6,7,8 5,6,7,8,9

6,7,8,9,10 7,8,9,10,J 8,9,10,J,Q 9,10,J,Q,K 10,J,Q,K,A

The very last one corresponds to a Royal flush, while the other nine are reg-
ular Straight flushes. Since there are four suits in the deck, which means that
there are four combinations of cards that yield a Royal flush and 36 that yield a
Straight flush. Therefore,

P(Royal flush) = 4
2,598, 960

≈ 0.00000154,

P(Straight flush) = 36
2,598, 960

≈ 0.00001385.

For four of a kind, we can split the problem into two parts: first, we figure out
how many sets of four cards with the same number can come up, and then we
figure out how many options are available for the fifth card in the hand. Since
there are 13 possible numbers, the number of possible sets of four cards is very
easy: there are 13 of them. On the other hand, the fifth card could be any of the
48 cards left in the deck. Therefore,

P(Four of a kind) = 13 × 48
2,598, 960

≈ 0.0002401.

Let’s look now at the probability of a full house. As before, we break the
problem into two parts; we first compute the number of possible trios that
can come up, and then we compute the number of pairs. For the number of
trios, we have 13 possible options for the number associated with the trio, and
we have

(
4
3

)
= 4!

3!×1!
= 4 options for the combination of suits associated with

these three cards (remember that you have four cards with each number, one
for each suit, and we need to pick three of them). Therefore, the number of
trios is 13 × 4 = 52. A similar reasoning can be used for the number of pairs;
there are now 12 possible numbers that you could use for the pair (the pair has
to have a number that is different from the trio, leaving you 12 rather than 13
options), and there are

(
4
2

)
= 4!

2!×2!
= 6 combinations of suits for that number,

for a total of 12 × 6 = 72 distinct pairs. Therefore,

P(Full house) = 13 × 4 × 12 × 6
2,598, 960

≈ 0.001440576.

Next we consider the probability of a flush, which is composed of five cards
of the same suit. Since there are four possible suits and, for a given suit, there
are

(
13
5

)
= 13!

5!×8!
= 1287 sets of five cards (recall that each suit has 13 differ-

ent cards), there are 4 × 1287 = 5148 such hands. However, this includes the
Straight flushes, which should not be included in the count and need to be sub-
tracted (recall that there are 10 Straight flushes for each suit, including Royal



126 9 Poker

flushes). Therefore, the probability of a flush is

P(Flush) = 4 × (1287 − 10)
2,598, 960

≈ 0.0019654.

The reasoning for a straight is very similar to that for the flush. Recall that
there are 10 different straight sequences:
A,2,3,4,5 2,3,4,5,6 3,4,5,6,7 4,5,6,7,8 5,6,7,8,9

6,7,8,9,10 7,8,9,10,J 8,9,10,J,Q 9,10,J,Q,K 10,J,Q,K,A

In principle, there are four options for the suit of the first card, four options
for the suit of the second, and so on. Consequently, there are 45 = 1024 com-
binations of suits for each of the 10 straight sequences. However, this number
again includes the Straight flushes, so we need to subtract them. Therefore,

P(Straight) = 10 × (1024 − 4)
2,598, 960

≈ 0.003924647.

For the probability of three of a kind, note that, as with the full house, there
are 13 options for the number and

(
4
3

)
= 4!

3!×1!
= 4 choices for the suits of these

three cards. For the fourth and fifth cards of the hand, they might be of any suit,
but their numbers need to be different from each other, and different from the
number used for the trio (otherwise, you would have a full house or four of a
kind). Accordingly, there are 4 × 4 = 16 options for the suits of the remaining
two cards and

(
12
2

)
= 12!

10!×2!
= 66 choices for their numbers, leading to:

P(Three of a kind) = 13 × 4 × 16 × 66
2,598, 960

≈ 0.02112845.

For two pairs the calculation is very similar. First, we need to pick two num-
bers out of 13 possible options (remember that the numbers in both pairs need
to be from different suits or you have four of a kind), which yields

(
13
2

)
=

13!
11!×2!

= 78 options. Then, we need to choose the suits for each of the pairs (there

are
(

4
2

)
= 4!

2!×2!
= 6 options for the suits). Finally, we need to look at the fifth

card, which can be any card out of the remaining 44 (you need to exclude the
eight cards that correspond to any of the numbers in the pairs, or you would
have a full house instead of two pairs). Therefore,

P(Two pairs) = 78 × 6 × 6 × 44
2,598, 960

≈ 0.04753902.

Finally, the probability of a single pair is

P(Single pair) = 13 × 6 × 64 × 220
2,598, 960

≈ 0.4225.

This results from realizing that there are 13 options for the number of the pair,(
4
2

)
= 4!

2!×2!
= 6 options for the suits of the two cards in the pair, 4 × 4 × 4 = 64
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options for the suit of the remaining three remaining cards, and
(

12
3

)
= 12!

9!×3!
=

220 options for the number of the three remaining cards.
The calculations we just discussed can be easily corroborated using simu-

lations. For example, the probability of three of a kind can be approximated
as

> n = 100000
> cardnumbers = rep(c(seq(2,10), "J", "Q", "K", "A"), 4)
> cardsuits = rep(c("S", "C", "H", "D"), each=13)
> isthreeofakind = rep(FALSE,n)
> for(i in 1:n){
+ carddealt = sample(seq(1,52), 5, replace=FALSE)
+ yourcardnumbers = cardnumbers[carddealt]
+ yourcardsuits = cardsuits[carddealt]
+ x = sort(table(yourcardnumbers))
+ if(length(x)==3 & x[1]==1 & x[2]==1){
+ isthreeofakind[i] = TRUE
+ }
+ }
> sum(isthreeofakind)/n

[1] 0.02221

Similarly, for the probability of two pairs,

> n = 100000
> cardnumbers = rep(c(seq(2,10), "J", "Q", "K", "A"), 4)
> cardsuits = rep(c("S", "C", "H", "D"), each=13)
> istwopairs = rep(FALSE,n)
> for(i in 1:n){
+ carddealt = sample(seq(1,52), 5, replace=FALSE)
+ yourcardnumbers = cardnumbers[carddealt]
+ yourcardsuits = cardsuits[carddealt]
+ x = sort(table(yourcardnumbers))
+ x
+ if(length(x)==3 & x[1]==1 & x[2]==2){
+ istwopairs[i] = TRUE
+ }
+ }
> sum(istwopairs)/n

[1] 0.04832

9.4.1 The Effect of Card Substitutions

We consider now how the probabilities of the different hands are affected when
you are allowed to replace some cards in your hand. For example, consider the
probability of getting a Straight flush if you are allowed to exchange up to one
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card. In this case, we can reformulate the problem as the probability of getting
a Straight flush if you are dealt six rather than five cards from the deck. Indeed,
the extra card might or might not be actually drawn depending on whether you
get the Straight flush in the first hand, but the calculation is unaffected since
you only exchange cards if you need to.

In this case, the total number of possible hands is
(

52
6

)
= 20,358, 520. To

compute the number of hands consistent with the desired outcome, note that
five of the cards need to correspond to the desired outcome (a Straight flush)
therefore, as before, there are 36 possible options for the first five cards. On the
other hand, the sixth card could potentially be any other card in the deck (so
there are 47 options left). Hence,

P
(

Straight flush if we are allowed
to exchange up to one card

)
= 36 × 47

20,358, 520

= 6 × 36
2,598, 960

≈ 0.0000831.

Hence, by allowing the player to exchange one card, the probability of a Straight
flush, although still small, is six times higher than before!

9.5 Probabilities of Hands in Texas Hold’em

Texas Hold’em is nowadays the most widely played variant of poker. The use
of multiple community cards offers more opportunities to bet than draw poker
(allowing for more strategic play) and makes the game less predictable. Indeed,
as the flop, turn, and river are revealed, the probabilities that each player wins
can change dramatically. In televised games, this is exploited for dramatic effect
by showing the cards held by the players along with the community cards and
the changing probabilities that each of the player wins.

Recall that, in Texas Hold’em, the player is first dealt two face-down cards
(sometimes called hole or pocket cards), followed by a first round of betting.
The number of possible pocket hands is relatively small,

Number of pocket hands =
(52

2

)
= 1326,

which is the number of ways in which a pair of cards can be drawn from a deck of
52 cards without replacement, and the order of the two cards is not important.
Computing the probability of the different pocket hands is Straight forward.
For example, we can compute the probability of getting a pocket pair (i.e., the
probability that the two pocket cards form a pair) as

P(Pocket pair) = 13 × 6
1326

≈ 0.0588,
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Table 9.2 List of opponent’s poker hands that can beat our two-pair.

Opponent’s winning hand Opponent’s hidden cards Probability

Two pairs Two Qs and two 8s Q & any except 2s,
8s, Qs, or Ks

204
1980

Two Ks and two 8s K & any except 2s,
8s, Qs, or Ks

204
1980

Two As and two 8s A & A 12
1980

Two Qs and two Ks Q & K 18
1980

Two Qs and two 2s Q & 2 18
1980

Two Ks and two 2s K & 2 18
1980

Three of a kind Three 8s 8 & any except 2s,
8s, Qs, or Ks

136
1980

Full house Three 2s and two 8s 2 & 2 6
1980

Three Ks and two 8s K & K 6
1980

Three Qs and two 8s Q & Q 6
1980

Three 8s and two 2s 8 & 2 12
1980

Three 8s and two Ks 8 & K 12
1980

Three 8s and two Qs 8 & Q 12
1980

Four of a kind Four 8s 8 & 8 2
1980

where the numerator comes from the fact that we have 13 different options for
the number of the pair, and

(
4
2

)
= 6 possible combinations of suits for the pair.

Computing the probability of winning a hand in Texas Hold’em requires that
we condition on the community cards that have been revealed. For example,
assume that your hand is J♣ J♠ and the face-up cards are 2♢ K♠ 8♡ Q♣ 8♣. In
that case you have two pairs, one of which is shared by all players (the pair
of 8s). The winning hands for an opponent (let’s call him Malik) are shown in
Table 9.2. We now proceed to compute the probabilities associated with each
of these hands.

If Malik has two Qs and two 8s, he will beat your two Js and two 8s. Malik
can have this hand if he holds a Q and any other card (excluding 2s, 8s, Qs,
or Ks because these would form a three of kind or a full house, which will be
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considered later). Hence,

P
⎛⎜⎜⎝
Opponent’s winning
hand with two pairs

that include a Q

⎞⎟⎟⎠
= P

(
(Q and any card but 2, 8, Q, or K) or
(any card but 2, 8, Q, or K and Q)

)
.

Now the probability that Malik gets a Q and any other card in his hand is

P(Q and any card but 2, 8, Q, or K) =

Three Qs
still in the stack
⏞⏞⏞

3
45

⏟⏟⏟

Cards you have
not seen

× (

Remaining
cards

⏞⏞⏞

44 −

Less the
three 2s

in the stack
⏞⏞⏞

3 −

Less the
two 8s

in the stack
⏞⏞⏞

2 −

Less the
two Qs

in the stack
⏞⏞⏞

2 −

Less the
three Ks

in the stack
⏞⏞⏞

3 )
44

⏟⏟⏟

Cards you have
not seen

.

The calculation for P(any card but 2, 8, Q, or K and Q) is identical. Therefore,

P
⎛⎜⎜⎝
Opponent’s winning
hand with two pairs

that include a Q

⎞⎟⎟⎠
= 3 × 34

1980
+ 34 × 3

1980
= 204

1980
.

A second way in which you can lose is if Malik has two Ks and two 8s. This
can happen if he holds a K and any other card (except 2s, 8s, Qs, or Ks, which
would produce a stronger hand than two pair and will be considered below).
This calculation goes exactly like the calculation for the previous situation. The
probability is therefore 204

1980
.

Another possibility is for Malik to have two As and two 8s. This hand can
arise if he holds two As in his hand. The probability of this occurring is

P(A and A) = 4
45

× 3
44

= 12
1980

.

Your opponent’s two pairs that beat your two pairs are two Qs and two Ks,
two Qs and two 2s, and finally two Ks and two 2s. Each of those situations can
be realized if Malik holds a Q and a K, a Q and a 2, or a K and a 2, respectively.
The probabilities for these three options are calculated the same way, so we
focus on the probability of Malik holding a Q and a K:

P(Q and K) = P(Q and K) + P(K and Q)

= 2 ×
( 3

45
× 3

44

)
= 18

1980
.

Malik can also beat you with three of a kind. This can only happen if Malik
holds an 8 and any other card (except the usual 2s, 8s, Qs, or Ks) in his hand.
Indeed, notice that if Malik holds two 2s, it will produce not a trio but a full
house if you consider the two 8s in the community cards. For the same reason,
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if Malik holds two Qs or two Ks, they will not count as three of a kind, but as
full houses. The probability of three of a kind is therefore,

P
(

8 and any card
but 2, 8, Q, or K

)
= P

(
8 and any card
but 2, 8, Q or K

)
+ P

(
Any card but 2,
8, Q or K and 8

)

= 2 ×
( 2

45
× 44 − 3 − 1 − 3 − 3

44

)

= 2 × 68
1980

= 136
1980

.

We now consider the next stronger hand, a full house. This can be realized in
six different ways:
1. Malik holds two 2s, forming a set of three 2s and two 8s.
2. Malik holds two Ks, resulting in a set of three Ks and two 8s.
3. He can hold two Qs, forming a set of three Qs and two 8s.
4. If he holds an 8 and a 2, his hand would be three 8s and two 2s.
5. He can also hold an 8 and a K, resulting in three 8s and two Ks.
6. Finally, if Malik holds an 8 and a Q, he will have three 8s and two Qs.

The probability for the first, second, and third possibilities are calculated in
the same way. For example,

P(2 and 2) = 3
45

× 2
44

= 6
1980

.

On the other hand, the probability of holding an 8 and a 2 is
P(Opponent holds an 8 and a 2) = P(8 and 2) + P(2 and 8)

= 2
45

× 3
44

+ 3
45

× 2
44

= 12
1980

,

which goes exactly the same way for the probability of obtaining a Q and a 8.
There is just one more way Malik can beat your two pairs; if he has two 8s in

his hands, he will be able to form a poker. The probability of this happening is

P(8 and 8) = 2
45

× 1
44

= 2
1980

.

Once all the cases have been considered, the probability that you lose can be
calculated as the sum of all the probabilities in the last column of Table 9.2:

P(Opponent wins) = 666
1980

≈ 0.3515152,

and the probability of a tie is the probability that Malik has the two Js left in the
deck, that is,

P(Tie) = 1(
45
2

) = 2
1980

≈ 0.001.

Given that your probability of winning is relatively large (around 66%), you
would probably do well to raise in the last round of betting!
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9.6 Exercises

1. In traditional draw poker (where you are given five cards that are unknown
to your opponents), what is the probability that you will be dealt four of a
kind in the first hand? If you were allowed to change one card, what would
be the probability?

2. What is the probability that you will be dealt a flush in the first hand in tra-
ditional draw poker? If you were allowed to change one card, what would
be the probability?

3. Considering your calculations in the previous two questions, is it benefi-
cial to the player to be allowed to swap cards?

4. In traditional draw poker, if we are allowed to exchange one card and
the current hand is 7♢10♣8♡5♢K♢, what is the probability that get a
pair if you switch only one card? What is the probability if you decide to
exchange four cards and only keep the highest card in your hand (the K♢)?

5. You are playing five-card stud poker without bring-in and only one oppo-
nent is left. You show 2♢3♠Q♠Q♡ and your hidden card is A♡. Your
opponent’s open hand is 7♡J♡K♢7♢. What is the probability that you will
win the game? How would it change if your hidden card is K♠?

6. You are playing five-card stud poker without bring-in and only one
opponent is left. You show 5♢3♠Q♠5♡ and your hidden card is 5♠. Your
opponent’s open hand is 7♡K♢7♢K♣. What is the probability that you
will win the game?

7. In a Texas Hold’em game with only two players, your hand is 8♣J♠, your
opponent’s hand is 8♢10♢ and the hand shown on the table before the
river is 2♢K♠8♠Q♡. What is the probability that you win the hand once
the river is turned? What is the probability that you will tie?

8. What would be the answer to the previous problem if you only knew one
of your opponent’s cards; in particular, what would it be if you only knew
that his hand includes 8♢? Note: This can be a bit laborious.

9. In a Texas Hold’em game with only two players, your hand is 4♢6♠, your
opponent’s hand is 10♠10♡ and the hand shown on the table before the
river is 7♢10♣8♡5♢. What is the probability that you win the hand? What
is the probability that you will tie?
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10. In a Texas Hold’em game with only two players, your hand is 10♢J♢, your
opponent’s hand is 9♠K♣ and the hand shown on the table before the river
is 9♢9♡8♣K♢. What is the probability that you win the hand? What is the
probability that you will tie?

11. In a Texas Hold’em game with only two players, your hand is 6♣A♡, your
opponent’s hand is 10♠A♢ and the hand shown on the table before the
river is 9♢7♡8♣Q♢. What is the probability that you win the hand? What
is the probability that you will tie?

12. In a Texas Hold’em game with only two players, your hand is 10♢10♠,
your opponent’s hand is unknown and the hand shown on the table
K♢K♡2♣K♠. What is the probability that you win the hand? This will be
a long calculation; it will be very good if you can start by outlining your
solution and then add details as much as possible.

13. [R] Build a simulation to corroborate the calculation of the probability of
a flush. How large do you need to make your simulation if you want to get
accurate estimates of this probability?

14. [R] The strategy for hand substitutions in draw poker is not always obvi-
ous. A common conundrum is the following: Assume that your hand con-
sists of a pair of 2, an A, and two more cards that are not 2, A, or form a
pair. Should you keep the pair of 2 and swap three cards, or should you
keep the A and swap four cards? Write a simulation in R that can help you
decide which option leads to a higher hand.

15. [R] Construct a simulation to estimate the probability that you win a
game of Hold’em if you hold K♣2♡ and the five community cards are
A♢6♡3♣K♠10♠.
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10

Strategic Zero-Sum Games with Perfect Information

So far, we have focused most of our attention on random games where the
player is pitted against a non-intelligent opponent. We now turn our attention
to strategic games, in which two rational opponents attempt to outsmart each
other. In this type of situation, players still attempt to maximize their respective
utilities, but they now need to cope with their opponent’s ability to anticipate
their actions and act accordingly. Because of this, the process of choosing the
optimal action involves predicting what our opponent will prefer when faced
with his own options, and our own optimal strategies need to be devised by
conditioning on what we expect our opponent to rationally prefer.

To emphasize the difference, compare the games of blackjack and poker.
While playing blackjack, we designed our basic strategy knowing that the
dealer will always stay with 17 or more and hit with 16 or less. That made it
reasonable for us to stay with relatively low numbers (say 14) as long as the
dealer’s face-up card suggested that he had a good chance of going bust (e.g.,
if the dealer shows a 6). This is so because the house always plays the same
strategy, and the dealer will hit with 16 even if our current hand is only 14.
This is different from the situation in poker, where we need to account for the
fact that the other players might be bluffing when they raise their bets.

We start by considering the simplest possible strategic game, which includes
two intelligent opponents who try to outwit each other in a game, where the
winnings of one player translate into losses for the other. These types of games
are called strategic zero-sum games because one player’s profit equals the loss
of its opponents.

10.1 Games with Dominant Strategies

Consider the following strategic “game” involving two companies that sell
mineral water. We will call the companies Pevier and Errian. Each company
has a fixed cost of $5000 per period, regardless of whether they sell anything
or not. The two companies are competing for the same market, and each firm

Probability, Decisions and Games: A Gentle Introduction using R, First Edition. Abel Rodríguez and Bruno Mendes.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/Rodriguez/Probability_Decisions_and_Games



136 10 Strategic Zero-Sum Games with Perfect Information

must choose a high price ($2 per bottle) or a low price ($1 per bottle). The rules
of the game are:

• At a price of $2, a total of 5000 bottles can be sold for a total revenue of
$10,000.

• At a price of $1, a total of 10,000 bottles can be sold for a total revenue of
$10,000.

• If both companies charge the same price, they split the sales evenly between
them.

• If one company charges a higher price, the company with the lower price sells
the whole amount, and the company with the higher price sells nothing.

• Both companies aim at maximizing their profit, which is simply the revenue
from sales minus the $5000 in fixed costs.

Under these rules, there are four situations that could arise:

• If both companies charge the high price ($2), then 5000 bottles are sold at a
price of $2 each, for a total revenue of $10,000 that is split evenly between
both companies. Therefore, each company has a revenue of $5000 and a net
profit of $0 once the fixed costs are subtracted.

• If both companies charge the low price ($1), then 10,000 bottles are sold at
a price of $1 each. Again the total revenue is $10,000, which is split evenly
between Errian and Pevier. As before, this leads to both companies having a
net profit of $0.

• If Pevier charges the high price and Errian the low price, then all the revenue
($10,000) goes to Errian, which makes a net profit of $5000. In turn, this
means that Pevier has no revenue and makes a net loss of $5000.

• Under the same logic, if Pevier charges the low price and Errian charges the
high price, then Pevier makes $5000 net profit and Errian loses $5000.

Table 10.1 summarizes the utility (in this case, profit) that each company gets
under each of the four combinations of strategies. This type of table is called the
normal form of the game. The first number on each cell represents Errian’s net
profit for that combination of strategies, while the second number corresponds

Table 10.1 Profits in the game between Pevier and Errian.

Pevier

Low price High price

Errian
Low price (0, 0) (5000,−5000)
High price (−5000, 5000) (0, 0)
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to Pevier’s net profit. Note that, in every box, the sum of the two numbers is the
same (zero in this case). Indeed, this game is an example of a zero-sum game.

Zero-Sum Games
In zero-sum games, the sum of utilities for all players in the game, for every com-
bination of strategies, is constant (typically, but not necessarily, zero). More infor-
mally, in a zero-sum, a player benefits only at the equal expense of its opponents.

Our goal when dealing with strategic games such as this is to predict how each
of the player will behave (in our running example, what price they will choose).
We call this prediction the solution of the game. To construct our solution, we
assume that both companies anticipate the actions of their opponent and act
accordingly to try to maximize their own profit. To do this, we first look at the
problem from Pevier’s perspective by exploring the consequences of its choices:

• First, assume that the Errian decides to set the price of its product to $1
(i.e., we are in the first row of Table 10.1). In this case, Pevier needs to pick
between losing $5000 (if it chooses the high price) or making no profit (if it
chooses the low price). Hence, Pevier’s best option (called its best response)
in this case is to set its price to $1.

• Next, assume that the Errian decides to set the price of its product to $2
(i.e., we are in the second row of Table 10.1). Therefore, Pevier will either
make no profit (if it chooses to price their water at $2) or it could potentially
make $5000 profit if it decides to set the price to $1. Again, Pevier’s best
alternative is to set the price of its water to $1.

Hence, no matter what Errian decides to do, Pevier’s optimal decision is to set
a low price (L), so Errian can reasonably expect that Pevier will do exactly that.
Because the game is symmetric (i.e., the same reasoning applies if we look at the
problem from Errian’s perspective), we can predict that Errian will also select
to price its water at the low price of $1 (L). In summary, we can be fairly certain
that the rational outcome of the game is for both players to select the low price
for their product, which we represent as (L, L). This problem is an example of a
game where both players have a dominant strategy.

Dominant Strategy
A dominant strategy is a strategy that is at least as good as the alternatives in
all circumstances and better in some. When a rational player has a dominant
strategy, we can be fairly sure that he will play exactly that strategy.

The solution (L, L) given by the dominant strategies we just found has some
interesting properties. For example, imagine that the two companies reassess
the price of their products every 6 months (i.e., they play the game multiple
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times) and they used the (L, L) strategy in the previous round. Then, as long
as they believe that the other player will stick to the strategy used this round,
none of them has an incentive to change the strategy in the next one. That is,
unilateral changes in strategy are not beneficial to any of the players, and there-
fore extremely unlikely. Note that this property is not shared by any of the other
three strategies. In addition, each player’s strategy is the best possible response
to the other’s player action (if Errian sets a low price, the best response that
Pevier can adopt is also a low price, and vice-versa). We call pairs of strategies
that satisfy these two properties Nash equilibria, in honor of John Forbes Nash,
whose life has been portrayed in the movie A Beautiful mind.

Nash Equilibrium
In a two-person game of perfect information, a pair of strategies (one for each
player) is called a Nash equilibrium if they are mutual best responses.

We can rationalize Nash equilibria as the consequence of players learning
after playing the game repeatedly. For example, assume that Errian and Pevier
play their game multiple times and that in the beginning both players adopt
the high-price strategy. After acting in this way for a while, one of the players
(say, Errian) is likely to wise up and realize that they can make money out of
their opponent by changing to a low price strategy in order to minimize loses.
But once the high-price holdout (Pevier) realizes that the other player will stick
to the low price, they will also turn to a low price strategy. Once both players
have decided to charge a low price, there is no reason for them to change their
strategies unilaterally. Note, however, that, this interpretation is useful only for
games that can be repeated over and over, just as in the case of the frequentist
interpretation of probability discussed in Chapter 1.

The strategies we have used so far involve players repeatedly using one of
their actions. This type of strategies are called pure strategies.

Pure-strategy Nash equilibrium
We say that a Nash equilibrium involves pure strategies if, in equilibrium, each
player always takes the same action.

Note that the process we used to obtain our solution to the game makes a
few assumptions about the players. First, we are assuming that all players are
rational (i.e., they maximize some utility function). Second, we assume that
all players know that the other players are rational, follow the same rules, and
know what the utility function of other players are (i.e., rationality and utility
functions are common knowledge). Finally, we are assuming that players act
simultaneously without the knowledge of the other player’s choice (in the
Perrier vs Errian example this last assumption did not make a difference, but in
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the future it might). Unless noted otherwise, we will retain these assumptions
in the remainder of this book.

10.2 Solving Games with Dominant and Dominated
Strategies

Let’s now consider another example related to politics. Two presidential
candidates (call them Ling and Matt) are engaged in a debate, and they need
to decide where they stand on two conflicting issues (e.g., whether to raise
income taxes or not) or whether they will dodge the issue. Assume that, after
extensive polls, there is agreement among political analysts on the percentage
of the vote each candidate will receive for each combination of positions.
Table 10.2 presents these percentages.

As stated earlier, the first number in each cell represents Ling’s percentage of
the vote, and the second represents Matt’s percentage. Even though the sum of
the entries in each cell is 100% instead of 0, this is still a zero-sum game. Indeed,
since the solution of the game depends on the ordering of the preferences but
not their exact values, we could subtract 50 from every entry in Table 10.2,
making the values in each entry add to 0 without altering the solution.

Let’s consider first the game from Matt’s perspective and find his best
response to each of Ling’s actions. If Ling supports an increase in taxes, Matt
should dodge the issue, leaving him with 60% of the vote. On the other hand,
if Ling decides not to support an increase in taxes, Matt should also dodge the
issue, in which case both candidates will tie. Finally, if Ling decides to dodge
the issue, Matt should yet again dodge the issue in order to get 60% of the vote.
These observations are summarized in Table 10.3.

Let’s turn to Ling’s best responses. If Matt decides to support an increase in
taxes, Ling should not support it, netting her 60% of the vote. If Matt decides
not to support the tax increase, then Ling could either not support it or
dodge the issue, which would leave her with 55% of the vote. Finally, if Matt
dodges the issue, Ling should not support the increase, again leaving both with
50% of the vote each. Again, we summarize these results in Table 10.4.

Table 10.2 Poll results for Matt versus Ling (first scenario).

Matt

Increase No increase Dodge issue

Ling
Increase (45%, 55%) (50%, 50%) (40%, 60%)
No increase (60%, 40%) (55%, 45%) (50%, 50%)
Dodge issue (45%, 55%) (55%, 45%) (40%, 60%)
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Table 10.3 Best responses for Matt (first scenario).

If Ling decides ... Matt should ...

... to support an increase in taxes, ... dodge the issue.

... not to support an increase in taxes, ... dodge the issue.

... to dodge the discussion, ... dodge the issue.

Table 10.4 Best responses for Ling (first scenario).

If Matt decides ... Ling should ...

... to support an increase in taxes, ... not support an increase in taxes.

... not to support an increase in taxes, ... not support it or dodge.

... to dodge the discussion, ... not support an increase in taxes.

Once the best responses have been obtained, the analysis of this game is
relatively simple. Note that, no matter what Ling does, Matt should always
dodge a discussion about taxes. In addition, note that no matter what Matt
does, not supporting a tax increase is always optimal for Ling. In other words,
these two strategies are dominant. Therefore, it is reasonable to expect that
Ling will not support the increase in taxes, and Matt will avoid any discussion
on the topic, leaving the electorate evenly split among the candidates. As
before, this solution corresponds to a Nash equilibrium because they are
mutual best responses, and therefore there is no incentive for the players to
unilaterally alter their strategies.

Consider now a slight modification of this political game where the share
of the vote for each candidate is instead given in Table 10.5. In this case, if
Ling chooses to support an increase in taxes Matt is better off not supporting
the increase. On the other hand, if Ling does not support an increase, Matt
should dodge the issue, and if Ling dodges the issue, Matt should not support
the increase. From Ling’s perspective, if Matt supports an increase, Ling

Table 10.5 Poll results for Matt versus Ling (second scenario).

Matt

Increase No increase Dodge issue

Ling
Increase (45%, 55%) (10%, 90%) (40%, 60%)
No increase (60%, 40%) (55%, 45%) (50%, 50%)
Dodge issue (45%, 55%) (10%, 90%) (40%, 60%)
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Table 10.6 Best responses for Matt (second scenario).

If Ling decides ... Matt should ...

... to support an increase in taxes, ... not support an increase in taxes.

... not to support an increase in taxes, ... dodge the issue.

... to dodge the discussion, ... not support an increase in taxes.

Table 10.7 Best responses for Ling (second scenario).

If Matt decides ... Ling should ...

... to support an increase in taxes, ... not support an increase in taxes.

... not to support an increase in taxes, ... not support it or dodge.

... to dodge the discussion, ... not support an increase in taxes.

should not support the increase. If Matt does not support the increase, Ling
should again not support the increase. Finally, if Matt dodges the issue of tax
increases, then Ling should (for a third time) not support the increase. These
results are summarized in Tables 10.6 and 10.7.

Unlike our previous example, Matt does not have a dominant strategy. This
might suggest that solving the game is much harder. However, this is not the
case. Not supporting the increase is a dominant strategy for Ling; consequently,
we can be sure that she will adopt it. Once we know that Ling will not support an
increase on taxes, our previous discussion suggests that Matt’s rational reaction
should be to dodge the issue, which again leads to both candidates splitting the
vote 50% each. This solution is again a Nash equilibrium.

Let’s consider one last set of payoffs, as given in Table 10.8. Tables 10.9
and 10.10 contain the best responses. In this case, none of the players has a
dominant strategy, that is, it is not immediately obvious what any given player
should do. However, it is clear what Matt should not do. Indeed, Table 10.10
suggests that Matt should never dodge the issue, as dodging is never a best
response. Similarly, from Table 10.9 note that supporting a tax increase is

Table 10.8 Poll results for Matt versus Ling (third scenario).

Matt

Increase No increase Dodge issue

Ling
Increase (35%, 65%) (10%, 90%) (60%, 40%)
No increase (45%, 55%) (55%, 45%) (50%, 50%)
Dodge issue (40%, 60%) (10%, 90%) (65%, 35%)
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Table 10.9 Best responses for Ling (third scenario).

If Ling decides ... Matt should ...

... to support an increase in taxes, ... not support an increase in taxes.

... not to support an increase in taxes, ... support an increase in taxes.

... to dodge the discussion, ... not support an increase in taxes.

Table 10.10 Best responses for Matt (third scenario).

If Matt decides ... Ling should ...

... to support an increase in taxes, ... not support an increase in taxes.

... not to support an increase in taxes, ... not support an increase in taxes.

... to dodge the discussion, ... also dodge the discussion.

never a good idea for Ling. This observation indicates that dodging (in the case
of Matt) and supporting the tax increase (in the case of Ling) are dominated
strategies.

Dominated Strategy
A strategy that is no better than the alternatives in all circumstances, and worse
in some, is called a dominated strategy. If a player has a dominated strategy, we
can be fairly certain that they will never play it.

Finding dominated strategies can help us solve a game by reducing the
number of actions that we need to consider. Indeed, since Matt will never
dodge the issue and Ling will never support an increase in taxes, we could
simply eliminate the corresponding row and column from the table and
work with the reduced game (see Table 10.11). In this reduced game, we only
need to consider Ling’s reactions to Matt supporting or not supporting an
increase in taxes and Matt’s reactions to Ling not supporting the increase or

Table 10.11 Reduced table for poll results for Matt
versus Ling.

Matt

Increase No increase

Ling
No increase (45%, 55%) (55%, 45%)
Dodge issue (40%, 60%) (10%, 90%)
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dodging the issue. Hence, it is easy to see that no matter which rational option
Matt chooses, Ling’s optimal response is not to support an increase in taxes.
In other words, even though the original game did not have any dominant
strategy, once the dominated strategies are eliminated, not supporting a tax
increase becomes a dominant strategy for Ling. The final solution of the game
is obtained by noting that Matt’s best response to Ling’s dominant strategy of
not supporting the tax is for Matt to support it, which will lead to 45% of the
electorate to support Ling and 55% to support Matt.

10.3 General Solutions for Two Person Zero-Sum
Games

When dominant or dominated strategies are present, the solution of a game
can often be obtained by applying the two insights we discussed earlier:

• If a strategy is dominant for one player, we can be sure that she will use it,
and therefore we only need to look at the best response of the other player
to the dominant strategy.

• If a strategy is dominated for one player, we can simply remove the corre-
sponding column or row of the matrix and work with the reduced game.

However, not all games have dominant or dominated strategies, so these tools
are not always enough to solve a non-zero sum game. A more general approach
to solving games uses the fact that a Nash equilibrium corresponds to the pair of
strategies that are mutual best responses. For example, consider the two-person
game whose outcomes are presented in Table 10.12. The best responses for each
of the two players are summarized in Tables 10.13 and 10.14.

It should be clear from the tables of best responses that there are no dominant
or dominated strategies for any of the players. However, note that the pair (D,A)
is made of mutual best responses (A is the best response to D and D is the best
response to A), and that this is the only pair with this characteristic. Hence the
pair (D,A) is the unique pure-strategy Nash equilibrium for this game.

Table 10.12 A game without dominant or
dominated strategies.

Player 2

A B C

Player 1
D (3,−3) (4,−4) (5,−5)
E (2,−2) (1,−1) (−6, 6)
F (−1, 1) (5,−5) (−2, 2)
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Table 10.13 Best responses for Player 1 in our
game without dominant or dominated strategies.

If Player 2 chooses ... Player 1 should choose ...

... A, ... D.

... B, ... F .

... C, ... E.

Table 10.14 Best responses for Player 2 in our
game without dominant or dominated strategies.

If Player 1 chooses ... Player 2 should choose ...

... D, ... A.

... E, ... B.

... F , ... C.

Table 10.15 Example of a game with multiple
equilibria.

Player 2

A B C

Player 1
A (0, 0) (1,−1) (0, 0)
B (−1, 1) (0, 0) (−1, 1)
C (0, 0) (1,−1) (0, 0)

It is also important to note that Nash equilibria might not be unique.
For example, consider the game represented in Table 10.15, which has four
equilibria: (A,A), (A,C), (C,A), and (C,C). In the case of zero-sum games, all
the equilibria must have the same payoffs, so players will be indifferent among
them (but for more general games such as the ones discussed in Chapter 12,
the payoffs might be different).

10.4 Exercises

1. A recent New York Times article contained the following statement:
“The answer is simple because the zero-sum game nature of our politics
demands that one party represent progress and the other the status quo.”
Explain what the phrase “zero-sum game” means in this context.



10.4 Exercises 145

2. The following table corresponds to the payoff of a zero-sum game to Player
A, when A plays the strategy in the row and B corresponds to the strategy
in the column.

Player B

L M H

Player A
D 19 0 1
F 11 9 3
U 23 7 −3

(a) Is there any dominated strategy for either player?
(b) Is there any dominant strategy for either player?
(c) What is an equilibrium strategy for this game?
(d) What is the payoff for the game?

3. The following table corresponds to the payoff of a zero-sum game to player
Liza, when Liza plays the strategy in the row and Jose choices correspond
to the strategies in the columns.

Jose

1 2 3

Liza
1 −2 1 1
2 −3 0 2
3 −4 −6 4

(a) Is there any dominated strategy for either player?
(b) Is there any dominant strategy for either player?
(c) What is an equilibrium strategy for this game?
(d) What is the payoff for the game?

4. The following table corresponds to the payoff of a zero-sum game to player
L. Gaga , when L. Gaga plays the strategy in the row, and the strategies in
the columns correspond to choices available to player Shakira.

Shakira

x y z

L. Gaga
a 2 1 3
b −1 1 2
c −1 0 1
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(a) Is there any dominated strategy for either player?
(b) Is there any dominant strategy for either player?
(c) What is an equilibrium strategy for this game?
(d) What is the payoff for the game?

5. Show that the game presented in Table 10.15 indeed has the four Nash
equilibria (A,A), (A,C), (C,A), and (C,C).

6. In a simplified, single-move sword duel, each player has four different
moves: two attacking moves (A1 and A2) and two defensive moves (D1
and D2). Attacking move A1 is very effective against attacking move A2
and defensive move D2 (it leads to a gain of 4 and 3 points, respectively,
to the player who uses it). Defensive move D1 is very effective against
attacking move A1 (leads to a gain of 2 points), it’s a poor move against
A2 (−1 point) and is marginally better than defensive move D2 (1 victory
point). Finally, defending move D2 does very badly against attacking move
A2 (−3 points). When the two players choose the same move, the result
is a draw (0 points each), and whatever one player wins/looses the other
player looses/wins (respectively). Is this a two-person zero-sum game? Is
there an equilibrium point for this game?

7. Even or odd? is a children’s two-person game in Portugal. Players take turns
saying “even” (or “odd”); on the count of three, players show a number with
their hand; one wins if the sum of both numbers is even and one said “even”,
or if the sum is odd and you said odd. A draw occurs if both players guess
right, or if both guess wrong. Is this a zero-sum game? Why? Set-up up the
game in normal form and see if it has a pure strategy.

8. Two players are bargaining over how to split 1. Both players simultaneously
name shares they would like to have, x and y, where 0 ≤ x, y ≤ 1. If the sum
of the shares is less than one, each one receives the shares they named.
On the other hand, if the sum is greater than 1 , then both players receive
zero. Show that a 50%–50% split is a pure-strategy Nash equilibrium for this
problem. Is this equilibrium unique? To answer this question, assume that
the utility function of the players is strictly monetary (i.e., they do not derive
any utility from “screwing” their opponents). Hint: Recall the definition of
a Nash equilibrium as a pair of actions that are mutual best responses. Is
a 30%–70% split an equilibrium point? Is a 1%–99% split an equilibrium
point?
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Rock–Paper–Scissors: Mixed Strategies in Zero-Sum
Games

Not all two-person, zero-sum games admit a pure-strategy equilibrium (i.e., a
solution that results in the players always using the same strategies over and
over again). A well-known example is the game of rock–paper–scissors, also
known as roshambo. Rock–paper–scissors is a hand game between two players
that simultaneously select among three gestures (corresponding to rock, paper,
or scissors). The objective of the game is to select a gesture that defeats that of
the opponent, and the winner of each round makes $1 out of the other player.
The game is resolved as follows:

• Rock breaks scissors, so rock defeats scissors.
• Scissors cut paper, therefore, scissors defeats paper.
• Paper covers rock, hence, paper defeats rock.
• If both players select the same gesture, the game results in a tie.

The payoffs of the game for our two players Jiahao and Antonio are reported
in Table 11.1. Since the outcomes for the two players add to the same quantity in
all cell, this is clearly a zero-sum game. As we have done before, our next step in
solving the game is to come up with optimal responses from each player’s point
of view (which are probably already obvious to you). Table 11.2 shows the best
responses for Jiahao. Because of the symmetry of the game, the same table also
applies to Antonio.

Note that no combination of strategies leads to a pure-strategy equilibrium:
once Jiahao knows that Antonio will play (say) rock for sure, he has a clear
incentive to continuously play paper. But once Jiahao realizes that Antonio will
play paper for sure, he has an incentive to start playing scissors. In turn, this will
lead to Antonio selecting to play rock. Consequently, players who repeatedly
play this game will tend to continuously cycle through the different gestures.
This is unlike the examples we discussed before where, once the equilibrium
strategy has been attained, there is no incentive for the players to deviate uni-
laterally.

If you have ever played rock–paper–scissor before, you have probably fig-
ured out that constantly changing your gesture in a more or less unpredictable

Probability, Decisions and Games: A Gentle Introduction using R, First Edition. Abel Rodríguez and Bruno Mendes.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/Rodriguez/Probability_Decisions_and_Games
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Table 11.1 Player’s profit in rock–paper–scissors.

Antonio

Rock Paper Scissors

Rock (0, 0) (−1, 1) (1,−1)
Jiahao Paper (1,−1) (0, 0) (−1, 1)

Scissors (−1, 1) (1,−1) (0, 0)

Table 11.2 Best responses for Jiahao in the game of
rock–paper–scissors.

If Antonio plays … Jiahao should play …

… rock, … paper.
… paper, … scissors.
… scissors, … rock.

manner is a better strategy than always selecting the same gesture. Indeed,
it turns out that the optimal strategy for this game corresponds to randomly
selecting a strategy among the three available to them. How often should they
play each strategy in rock–paper–scissor? Because the profit from playing
the game is the same ($1) under all strategies, the (correct!) intuition is that
players should alternate among strategies so that you spend about 1/3 of their
time playing each one of them. Game strategies that involve such randomly
chosen actions each time the game is played are called mixed strategies. This
is in contrast to the pure strategies we studied in the previous chapter, which
involve always using the same action.

Mixed-Strategy Nash Equilibria
We say that a Nash equilibria involves mixed strategies if, in equilibrium, each
player randomizes their actions each time they play according to a given
probability distribution over their options.

In real-life games, mixed-strategy equilibria sometimes fail to materialize
as the long-term outcome of repeated games because humans are very bad
at avoiding patterns of behavior, but they are nonetheless the optimal way to
proceed.

11.1 Finding Mixed-Strategy Equilibria

A general approach for deriving mixed-strategy equilibria in zero-sum games
is to find a set of probabilities for the actions available to each player such that



11.1 Finding Mixed-Strategy Equilibria 149

a player is indifferent to which strategy she selects if the opponent randomizes
according to their probabilities, and vice-versa. Indeed, if both players are will-
ing to randomize, then the expected utility associated with each alternative
should be the same (otherwise, the players would not randomize but would
always choose the option that maximizes their utility).

Let’s illustrate this principle using the rock–paper–scissors example. Let qr be
the probability that Antonio chooses rock on a given round, qp the probability
that he chooses paper, and qs the probability that he chooses scissors. Note
that, since these are the only three options available, these probabilities need to
satisfy qr + qp + qs = 1. The expected value of each strategy for Jiahao is then
given in Table 11.3.

Now, remember that no strategy by itself is the best one among all strategies;
this means that the rational player will have no particular preference among any
of their strategies. This in turn means that the expected values for all strategies
need to be equal to each other. For example, we could make the expected value
of the game for rock and paper, as well as that for rock and scissor, equal. This
leads to

From the first and second lines, qs − qp = qr − qs, (11.1)
From the first and third lines, qs − qp = qp − qr, (11.2)

which, together with the fact that all probabilities need to add up to one,

qs + qp + qr = 1 (11.3)

gives us a system of three equations with three unknowns (with the unknowns
corresponding to the probabilities Antonio will choose each strategy). To solve
the system of equations, first add (11.1) and (11.2) together to get

2qs − 2qp = qp − qs ⇐⇒ 3qp = 3qs ⇐⇒ qp = qs. (11.4)

Inserting this result back into (11.1), we also get

qs − qs = qr − qs ⇐⇒ qs = qr.

Table 11.3 Utility associated with different actions that Jiahao can
take if he assumes that Antonio selects rock with probability qr , paper
with probability qp and scissors with probability qs.

If Jiahao plays … The expected value of the game for Jiahao is …

… rock, … 0 × qr + (−1) × qp + 1 × qs = qs − qp.
… paper, … 1 × qr + 0 × qp + (−1) × qs = qr − qs.
… scissors, … (−1) × qr + 1 × qp + 0 × qs = qp − qr .
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Therefore, we have shown that all three probabilities need to be equal. Since
they also need to add up to 1 (recall Equation (11.3)), we get

qr + qr + qr = 1 ⇐⇒ 3qr = 1 ⇐⇒ qr =
1
3
= qp = qs.

Because of the symmetry of the game, the same argument applies to the
randomization strategy of Jiahao, and the equilibrium point of the game corre-
sponds to each player randomly (and independently) selecting a hand gesture
with equal probability among the three options available to them every time
they play. The expected value of this game is then

E
⎛⎜⎜⎝

Utility in
Rock–paper–

scissors

|||||||
Players adopt the
mixed-strategy

equilibrium

⎞⎟⎟⎠
= 0 × 1

3
+ (−1) × 1

3
+ 1 × 1

3
= 0.

Consequently, if the game is repeated multiple times and Jiahao adopts the opti-
mal mixed strategy, he is bound to at least not lose money in the long run. That
is, if the players adopt the Nash equilibrium as their strategy, then none of them
will make any money. To corroborate this, the following simulation allows you
to compare the optimal strategy implied by the Nash equilibrium (which Jiahao
always plays) against other strategies played by Antonio.

> n = 50000
> opt = c("P", "R", "S")
> player1strat = c(1/3, 1/3, 1/3)
> player2strat = c(0.1, 0.8, 0.1)
> outcome = rep(0, n) # From Jiahao perspective
> for(i in 1:n){
+ play1 = sample(opt,1,replace=T,prob=player1strat)
+ play2 = sample(opt,1,replace=T,prob=player2strat)
+ if(play1=="P"){
+ if(play2=="S"){
+ outcome[i] = "L"
+ }else{
+ if(play2=="R"){
+ outcome[i] = "W"
+ }else{
+ outcome[i] = "T"
+ }
+ }
+ }else{
+ if(play1=="R"){
+ if(play2=="S"){
+ outcome[i] = "L"
+ }else{
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+ if(play2=="P"){
+ outcome[i] = "W"
+ }else{
+ outcome[i] = "T"
+ }
+ }
+ }else{
+ if(play2=="R"){
+ outcome[i] = "L"
+ }else{
+ if(play2=="S"){
+ outcome[i] = "W"
+ }else{
+ outcome[i] = "T"
+ }
+ }
+ }
+ }
+ }
> profit = (outcome=="W") - (outcome=="L")
> mean(profit)

[1] -0.00064

In the simulation above, we assumed that Antonio picks paper 10% of the
time, rock 80% of the time, and scissors 10% of the time, but the result is the
same no matter what Antonio does: the long-run profit for both Antonio and
Jiahao is always zero. In this game, the Nash-equilibrium can be thought of
the best defensive strategy: no matter what the other player does, you cannot
lose money. The other side of that statement is that, if the other player uses the
Nash equilibrium as its strategy, then there is nothing you can do to make more
money.

Pure strategies are a special case of mixed strategies where the probability
associated with one of the alternatives is equal to 1. By expanding the space of
possible strategies to include mixed strategies, we can guarantee that a large
class of zero-sum games has a solution given by a Nash equilibrium. This is a
consequence of the minimax theorem:

Minimax Theorem
For every two-person, zero-sum game with finitely many strategies, there exists
a value V and a mixed strategy for each player, such that (1) given the strategy
for Player 2, the best payoff possible for Player 1 is V , and (2) given the strategy
for Player 1, the best payoff possible for Player 2 is −V .

In simpler words, the minimax theorem states that every two-person, zero-sum
game with finitely many strategies has at least one solution, which might involve
players using mixed strategies.
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11.2 Mixed Strategy Equilibria in Sports

Mixed strategy equilibria appear in a number of sports including baseball, foot-
ball, and soccer. For example, suppose now that you are playing soccer and, in
particular, that you will be kicking a penalty. Therefore, you need to decide how
you are going to kick (your options are to kick left, center, or right). The goal-
keeper also needs to make a similar decision about where to lunge (again, left,
center, or right). Table 11.4 presents the utility derived by each player from each
combination of strategies (the numbers correspond to the (historical) condi-
tional probabilities that a goal is scored/not scored).

As with rock–paper–scissors, there are no pure-strategy Nash equilibria for
this game. If you have ever watched soccer, this should not be surprising, a
kicker or a goal keeper who becomes predictable are typically very bad for their
teams.

To determine the mixed-strategy equilibrium we proceed as before and first
compute the expected value of the game for the kicker when the goalkeeper
randomizes their actions so that with probability ql she will lunge left, with
probability qc she will stay in the center, and with probability qr she will lunge
right. The results are presented in Table 11.5.

Since the expected utilities must be the same, equating the first two expres-
sions leads to

0.65 × ql + 0.95 × qc + 0.95 × qr = 0.95 × ql + 0 × qc + 0.95 × qr

Table 11.4 Utilities associated with different penalty kick
decisions.

Goal keeper

Left Center Right

Kicker Left (0.65,0.35) (0.95,0.05) (0.95,0.05)
Center (0.95,0.05) (0,1) (0.95,0.05)
Right (0.95,0.05) (0.95,0.05) (0.65,0.35)

Table 11.5 Utility associated with different actions taken by the kicker if
he assumes that goal keeper selects left with probability ql , center with
probability qc , and right with probability qr .

If Kicker kicks … the expected value of the game for the kicker is …

… left, … 0.65 × ql + 0.95 × qc + 0.95 × qr .
… center, … 0.95 × ql + 0 × qc + 0.95 × qr .
… right, … 0.95 × ql + 0.95 × qc + 0.65 × qr .
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⇐⇒ 0.95 × qc = 0.30 × ql

⇐⇒ qc =
0.30
0.95

× ql.

Similarly by equating the second and third expressions, we have
0.95 × ql + 0 × qc + 1 × 0.95qr = 0.95 × ql + 0.95 × qc + 1 × 0.65qr

⇐⇒ 0.95 × qc = 0.30 × qr

⇐⇒ qc =
0.30
0.95

× qr.

Note that one consequence of these two equations is that qr = ql. This makes
intuitive sense; if we look at the payoff table, we realize that the left and right
choices are interchangeable. Now, using the fact that qr + qc + ql = 1, we have

0.95
0.30

× qc + qc +
0.95
0.30

× qc = 1

⇐⇒
0.95 + 0.30 + 0.95

0.30
qc = 1

⇐⇒ qc =
0.30
2.2

≈ 0.1363,

and from there we get

ql = qr =
0.95
0.30

× 0.30
2.20

= 0.95
2.20

≈ 0.4318.

Therefore, the equilibrium strategy for the goalkeeper is to lunge to the left
about 43% of the time, to the right around 43% of the time, and to stay in the
center about 14% of the time. If we now look at the kicker’s optimal strategy,
we discover that it is identical (he should kick to the right 43% of the time, to
the left 43% of the time, and to the center 14% of the time). The expected value
of the game for the kicker, if both players stick to this strategy, is obtained by
inserting the optimum probabilities found above in any of the expressions for
the expected value of the game in Table 11.5 (recall that, by definition, they have
to be the same)

0.4318 × 0.95 + 0.4318 × 0.95 ≈ 0.82045.

This number can be interpreted as the (marginal) probability of scoring a goal
if the players follow the optimal strategy.

11.3 Bluffing as a Strategic Game with a
Mixed-Strategy Equilibrium

We turn our attention now to a very simplified version of “poker” in which you
and your opponent Alya each place a $5 bet on the table and then secretly toss
a coin with a 0 on one side and 1 on the other. You play first, and you can decide
to either pass (P) or bet (B) an additional $3. If you pass, the numbers tossed
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You

Bet

SeeFold

Your opponent

Pass

Higher number
wins $5

Higher number
wins $8

You win $5

Figure 11.1 Graphical
representation of decisions in a
simplified version of poker.

by you and Alya are compared; the largest number takes the pot ($10). If both
numbers are the same, each player gets their $5 back (a tie). On the other hand,
if you bet the extra $3, Alya might decide to see (S) or fold (F). If Alya folds,
you get the pot ($13, of which $8 are yours and $5 are Alya’s) irrespective of the
numbers tossed. If Alya decides to see she must add $3 to the pot (for a total of
$16). Again the numbers are compared; the larger number takes the $16 and if
the numbers are equal, each gets their money back. Figure 11.1 shows a decision
tree with the sequence of decisions associated with the game.

To analyze this game, we consider both rounds of bets simultaneously and
write down all strategies available to each player. Each of these strategies
will describe what action the player takes based on what the coin shows. For
example, you could decide to pass no matter whether you have a 0 or a 1 (call
this strategy pass-pass, or PP). Alternatively, you could pass whenever you
have a 0 and bet if you have a 1 (call this pass-bet, or PB), you can bet if you
have a 0 and pass if you have a 1 (call this bet-pass, or BP), or you could always
bet no matter what the outcome of the toss is for you (call this strategy bet-bet,
or BB). Intuitively, some of these strategies are very bad (e.g., playing BP is
clearly a bad idea); this will be confirmed by our analysis below. Similarly, Alya
also has four strategies, FF (fold no matter what her coin shows), SS (always
see, no matter what her coin shows), FS (fold is she has a 0 and see if she has
a 1), and SF (see if she has a 0, and fold if she has a 1).

The outcome of the game for every pair of strategies is summarized in
Table 11.6. The numbers in the table correspond to the expected profit for
each player from each particular combination of strategies. For example, if you

Table 11.6 Expected profits in the simplified poker.

Alya

FF SS SF FS

You PP (0, 0) (0, 0) (0, 0) (0, 0)
BB (5,−5) (0, 0) (4.5,−4.5) (0.5,−0.5)
PB (1.25,−1.25) (0.75,−0.75) (2,−2) (0, 0)
BP (3.75,−3.75) (−0.75, 0.75) (2.5,−2.5) (0.5,−0, 5)
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decide to play PP, you will always pass and the outcome will depend only on
the outcomes of the coin tosses no matter what strategy Alya chooses (as she
never gets to play). Therefore, all the cells in the first row of the table are equal
to zero,

E
⎛⎜⎜⎝

Profit for you from playing
P P no matter what strategy

Alya follows

⎞⎟⎟⎠
= 5

⏟⏟⏟

Your profit if
you get a 1 and

Alya
gets a 0

× 1
4

⏟⏟⏟

Probability that
you get a 1 and

Alya gets a 0

+ (−5)
⏟⏟⏟

Your profit if
you get a 0 and

Alya
gets a 1

× 1
4

⏟⏟⏟

Probability that
you get a 0 and

Alya gets a 1

+ 0
⏟⏟⏟

Your profit if
both get a 1

or both get a 0

× 2
4

⏟⏟⏟

Probability that
both get a 1

or both get a 0

= 0.

Similarly, the expected value for you when you choose strategy BB and Alya
chooses FF ,

E
(

Profit for BB and
Alya chooses FF

)
= 5

⏟⏟⏟

Your profit if
your get a 1 and

Alya
gets a 0

× 1
4

⏟⏟⏟

Probability that
you get a 1 and

Alya gets a 0

+ 5
⏟⏟⏟

Your profit if
you get a 0 and

Alya
gets a 1

× 1
4

⏟⏟⏟

Probability that
you get a 0 and

Alya gets a 1

+ 5
⏟⏟⏟

Your profit if
both get a 1

× 1
4

⏟⏟⏟

Probability that
both get a 1

+ 5
⏟⏟⏟

Your profit if
both get a 0

× 1
4

⏟⏟⏟

Probability that
both get a 0

= 5,

while the expected value for you when you choose strategy BB and Alya
chooses SS,

E
(

Profit for BB and
Alya chooses SS

)
= 8

⏟⏟⏟

Your profit if
your get a 1 and

Alya
gets a 0

× 1
4

⏟⏟⏟

Probability that
you get a 1 and

Alya gets a 0
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+ 0
⏟⏟⏟

Your profit if
you get a 0 and

Alya
gets a 1

× 1
4

⏟⏟⏟

Probability that
you get a 0 and

Alya gets a 1

+ 0
⏟⏟⏟

Your profit if
both get a 1

× 1
4

⏟⏟⏟

Probability that
both get a 1

+ (−8)
⏟⏟⏟

Your profit if
both get a 0

× 1
4

⏟⏟⏟

Probability that
both get a 0

= 5.

The remaining entries of Table 11.6 can be computed in a similar way. Once
these calculations have been completed, we can proceed to find best responses
for each player actions (see Tables 11.7 and 11.8). From these tables, it is clear
that PP and BP are dominated strategies. This is intuitively clear: if you are the
first player to play, passing no matter what your hand looks like or always bet-
ting in the first round and always folding on the second are very bad ideas.
Similarly, for Alya, FF , and SF are dominated strategies. Again this makes sense:
always folding is a bad idea for Alya, as is betting when she has a 0 and folding
when she has a 1 (she has some chance of winning if her coin shows a 1, while
the best she can do if she sees a 0 is to tie).

If we eliminate the strategies that are dominated, we end up with a reduced
payoff table (see Table 11.9). With this reduced table, it is clear that there is no
pure-strategy equilibrium for the game. To find a mixed-strategy equilibrium,

Table 11.7 Best responses for you in the simplified
poker game.

If Alya plays … you should play …

… FF , … BB.
… SS, … PB.
… SF , … BB.
… FS, … BB or BP (you are indifferent).

Table 11.8 Best responses for Alya in the simplified poker game.

If you play … Alya should play …

… PP, … FF , SS, SF , FS (she is indifferent, she never gets to play).
… BB, … SS.
… PB, … FS.
… BP, … SS.
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Table 11.9 Expected profits in the simplified poker game
after eliminating dominated strategies.

Alya

SS FS

You BB (0, 0) (0.5,−0.5)
PB (0.75,−0.75) (0, 0)

Table 11.10 Expected profits associated with different actions
you take if you assume that Alya will select SS with probability
qSS and FS with probability qFS.

If you play … the expected value of the game for you is …

… BB, … 0 × qSS + 0.50 × qFS = 0.50 × qFS .
… PB, … 0.75 × qSS + 0 × qFS = 0.75 × qSS .

we apply the same ideas we have used before (but on the reduced table, since
the dominated strategies have been discarded). First, let qSS be the probability
that Alya picks the SS strategy, and qFS be the probability that Alya picks the
FS strategy. The expected profits for each of your actions if Alya randomizes
among SS and FS according to qSS and qFS can be seen in Table 11.10.

Since the expected utility from both actions must be the same in equilibrium,
we have

0.75 × qSS = 0.50 × qFS ⇐⇒ qSS = 0.50
0.75

qFS = 2
3

qFS.

Finally, using the fact that qSS + qSF = 1, we have
2
3

qFS + qFS = 1 ⇐⇒
2 + 3

3
qFS = 1 ⇐⇒ qFS = 3

5
= 0.6

and qSS = 2
5
= 0.4. In other words, Alya should always see if she has a 1 and

should fold 60% of the time if she has a 0.
A similar calculation for your randomization probability shows that you

should play BB 60% of the times and PB the other 40% of the times. That is,
you should always bet if you have a 1, and bluff 60% of the times in which you
got a 0. Substituting these numbers back into the formulas for the expected
values we have that your expected profit from this game is

E(Your profit) = 0.75 × qPB = 3
4
× 2

5
= 3

10
= 0.3.
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That is, you win at least 30 cents on average if you play according to your
optimal mixed strategy, and Alya looses at most 30 cents on average if she plays
using their optimal strategy. None of you can do better than that. It is worth-
while to observe that your payoff is positive in this game because you are able
to play first. The fact that the first player has an advantage when bluffing is
the reason why the role of dealer in Poker rotates around all players. In addi-
tion, note that if the players were to choose their strategies simultaneously then
both players would have zero expected value (the game would be very similar
to matching pennies, see Exercise 1).

The following simulation can help you corroborate that players have no
incentive to unilaterally deviate from the Nash equilibrium. In particular, as
long as you stick to your optimal strategy (always betting if you get a 1, and
betting 60% of the time if you get a 0), there is nothing that Alya can do to
improve her outcome.

> n = 1000000
> coinspc = c(0, 1)
> raisspc = c(TRUE,FALSE)
> youstr = c(0.4, 0.6)
> oppstr = c(0.9, 0.1)
> profit = rep(0, n) # From your perspective
> for(i in 1:n){
+ yourpot = 5
+ opponentpot = 5
+ coin1 = sample(coinspc, 1)
+ coin2 = sample(coinspc, 1)
+ if(coin1==1){ # You bet
+ bet = TRUE
+ yourpot = yourpot + 3
+ }else{ # You bluff
+ bet = sample(raisspc, 1, replace=TRUE, prob=youstr)
+ yourpot = yourpot + 3*bet
+ }
+ if(bet){
+ if(coin2==0){ # Opponent sees sometimes
+ see = sample(raisspc, 1, replace=TRUE, prob=youstr)
+ if(see==TRUE){
+ opponentpot = opponentpot + 3
+ compare = TRUE
+ }else{
+ compare = FALSE
+ }
+ }else{ # Opponent sees for sure
+ opponentpot = opponentpot + 3
+ compare = TRUE
+ }
+ }else{
+ compare = TRUE
+ }
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+ if(compare){
+ if(coin1>coin2){
+ profit[i] = opponentpot
+ }else{
+ if(coin1<coin2){
+ profit[i] = -yourpot
+ }else{
+ profit[i] = 0
+ }
+ }
+ }else{
+ profit[i] = opponentpot
+ }
+ }
> mean(profit)

[1] 0.309276

11.4 Exercises

1. Matching pennies is a game played between two players, Player A and
Player B. Each player has a penny and must secretly turn the penny to
heads or tails. The players then reveal their choices simultaneously. If the
pennies match (both heads or both tails), Player A receives one dollar from
Player B (+1 for A, −1 for B). If the pennies do not match (one heads and
one tails), Player B receives one dollar from Player A (−1 for A, +1 for
B). Is there any pure-strategy equilibrium for this game? If so, what is the
expected payoff? Is there any mixed-strategy equilibrium for this game?
If so, what is the expected payoff?

2. In addition to the pure-strategy equilibrium already discussed, the game
whose payoff was given in Table 10.12 also admits mixed-strategy equi-
libria. Find these equilibrium strategies along with the payoff of the game.

3. Combat and strategy-based video games frequently feature cycles in
their characters’ or units’ effectiveness that resemble the pattern of
rock–paper–scissors. These often attempt to emulate cycles in real-world
combat (such as where cavalry are effective against archers, archers have
an edge over spearmen, and spearmen are strongest against cavalry). It is
claimed that this kind of strategy makes the game self-balancing. Explain
this claim.

4. Recall the sword duel game described in Exercise 6 from Section 10.4.
Back then we found that there’s no pure-strategy equilibrium. Find the
mixed-strategy equilibria and their expected payoff.
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5. In the website http://www.samkass.com/theories/RPSSL.html, an
extended version of rock–paper–scissors is described (it was made
popular in the TV show The Big Bang Theory). Setup the table of payoff
for this game and find its solution.

6. What about the seven-gesture version of rock–paper–scissors in http://
www.umop.com/rps7.htm?

7. Assume that we are playing the simplified “poker” where the blind is $4
(instead of $5) and the raise is another $4 (instead of $3). How should we
randomize and what would be expected value of the game for the player
that gets to act first? What would be the optimal strategy for the first player
if they knew that the second player will always see on a 1 but will only do
so 20% of the time on a 2?

8. [R] Write code to simulate the simplified game of poker described in the
previous exercise. What happens if the first player to bet deviates from
their optimal strategy, but the second player does not?

9. Why is it important in poker for players to alternate at playing blind bets?

10. Change the rock–paper–scissors game so that when scissor matches
paper, scissors gets a gain of 2 and paper a loss of −2 and when rock
matches scissors, rock gets a gain of 3 and scissors gets −3. What is
the Nash equilibrium for this game? What is the expected payoff to the
players?

11. [R] Write code to simulate the penalty kick game discussed at the
beginning of Section 11.2.

12. Do all calculations required to construct Table 11.6 and check that your
results agree with those provided in this book.
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12

The Prisoner’s Dilemma and Other Strategic
Non-zero-sum Games

The analysis of zero-sum games is relatively st‘raightforward because in that
kind of games trying to maximize the utility of one of the players is equivalent
to minimizing the utility of the other (recall that in zero-sum games whatever
one player won was always at the opponent’s expense). We will now move away
from these purely confrontational games and consider games where the inter-
ests of the players are at least partially aligned (e.g., they can earn some benefits
without necessarily making their opponents worse off). We call these games
non-zero-sum games because the sum of the outcomes for both players is not
necessarily identical under all combinations of strategies. Non-zero-sum games
sometimes lead to unexpected conclusions. In fact, we might have to stop think-
ing about Nash equilibria as providing the optimal solution for the game.

12.1 The Prisoner’s Dilemma

To motivate non-zero-sum games, consider the famous prisoner’s dilemma,
which appears in pretty much any procedural show on TV. Two men suspected
of committing a crime together are arrested and placed in separate interro-
gation rooms. This game assumes the police can only prosecute for the more
serious charge if one or both suspects confess; otherwise, they can only prose-
cute them for a lesser charge. Each suspect may either confess or remain silent,
and each one knows the consequences of their actions. If one suspect con-
fesses but the other does not, the one who confessed turns incriminate evidence
against their partner and goes free, while the other goes to jail for 20 years. On
the other hand, if both suspects confess, then both of them go to jail for 5 years.
Finally, if both suspects remain silent, they both go to jail for a year for a lesser
charge. Assuming that each criminal only cares for their own well-being, the
payoffs can be summarized in Table 12.1. Note that the sum of the payoffs is not
constant (it is −10 if both confess but −2 if both remain silent) and therefore
this is not a zero-sum game.

Probability, Decisions and Games: A Gentle Introduction using R, First Edition. Abel Rodríguez and Bruno Mendes.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/Rodriguez/Probability_Decisions_and_Games
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Table 12.1 Payoffs for the prisoner’s dilemma.

Prisoner 2

Confess Remain silent

Prisoner 1 Confess (−5,−5) (0,−20)
Remain silent (−20, 0) (−1,−1)

Table 12.2 Best responses for Prisoner 2 in the
prisoner’s dilemma game.

If Prisoner 1… Prisoner 2 should…

… confesses, … confess.
… remains silent, … confess.

From a cursory examination of the table, it would seem like remaining silent
is the optimal solution for the game (at least from the point of view of the aggre-
gate number of years that the criminals will spend in jail). However, this solution
is not a Nash equilibrium, and it is unlikely that players will adopt such strat-
egy. To see why, let’s consider the set of best responses for Prisoner 2, which are
presented in Table 12.2. Note that confessing is a dominant strategy for Pris-
oner 2 (and, by the symmetry of the game, for Prisoner 1 as well). Hence, the
Nash equilibrium corresponds to both Prisoners confessing and getting 5 years
of jail each.

This can seem somewhat contradictory at first sight. The outcome that
involves both prisoners confessing is an equilibrium, as no player has a unilat-
eral incentive to change their behavior if they know that the other prisoner will
confess. However, one can’t help but notice how this is clearly a stupid strategy
for both prisoners because both would be better off if they could coordinate
their actions so that both remained silent. This type of apparent contradiction
(where Nash equilibria are not necessarily good solutions to the game) do not
happen in zero-sum games, but are very common in non-zero-sum games.
They arise because in non-zero-sum games details such as the order of play
and the ability of the players to communicate, make binding agreements or set
side payments can have a important effect on the outcome.

12.2 The Impact of Communication and Agreements

Consider now the non-zero-sum game between Anil and Anastasiya presented
in Table 12.3. We assume that no communication, agreements, or wealth
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Table 12.3 Communication game in normal form.

Anastasiya

Strategy A Strategy B

Anil Strategy 1 (0, 0) (10, 5)
Strategy 2 (5, 10) (0, 0)

Table 12.4 Best responses for Anastasiya
in the communication game.

If Anastasiya… Anil should…

… plays A, … play 2.
… plays B, … play 1.

Table 12.5 Best responses for Anil in the
communication game.

If Anil… Anastasiya should…

… plays 1, … play B.
… plays 2, … play A.

transfers are allowed between the players; these are assumptions that we will
make throughout this book unless noted otherwise.

As with all other games, let’s consider the set of best responses for each player
(see Tables 12.4 and 12.5). The best responses are obtained by noting that, if
Anil decides to use strategy 1, then Anastasiya will choose strategy B (which
pays 5) over strategy A (which pays 0), while if Anil decides to use strategy 2,
then Anastasiya will choose strategy A (which pays 10) over strategy B (which
pays 0). Similarly, if Anastasiya decides to use strategy A, then Anil will choose
strategy 2 (which pays 5) over strategy 1 (which pays 0), while if Anastasiya
decides to use strategy B, then Anil will choose strategy 1 (which pays 10) over
strategy 2 (which pays 0).

From Tables 12.4 and 12.5, it is clear that both (2,A) and (1,B) are
pure-strategy equilibria for this game. Indeed, A is the best response to 2
and vice-versa, while B is the best response to 1 and vice-versa. In addition,
the game admits a third, mixed-strategy equilibrium. To find this additional
equilibrium point, let p be the probability that Anastasiya plays A (so that the
probability that she plays B is 1 − p). The expected payoffs for Anil are shown
in Table 12.6.
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Table 12.6 Expected utility for Anil in the communication game.

If Anil plays … the expected value of the game for Anil is …

… strategy 1, … 0 × p + 10 × (1 − p) = 10 − 10p.
… strategy 2, … 5 × p + 0 × (1 − p) = 5p.

Thus, for Anil to be indifferent among his strategies, we need

5p = 10 − 10p ⇐⇒ 15p = 10 ⇐⇒ p = 10
15

= 2
3

and the expected payoff for Anil is 5p = 10
3

. Exactly the same argument applies
to Anastasiya. Note that this is really a Nash equilibrium for the game. If Anil
plays 1 with probability 2/3, there is nothing that Anastasiya can do to improve
her expected utility over the one she would get by playing A 2/3 of the time,
and vice-versa.

Note that, unlike the pure-strategy equilibria, the mixed-strategy equilibrium
is fair (in the sense that the payoff for both players is the same, 10

3
). However,

the expected payoff of 10
3
≈ 3.333 for each player is still well below the payoffs

that any of them could obtain by playing any of the pure strategies (which is
at least 5). If communication and utility transfers among players were allowed,
both players would be better-off by playing one of the pure strategy equilibria
and having the player with the highest payoff and transferring 2.5 units to the
other player so that both make a higher benefit of 7.5 units.

12.3 Which Equilibrium?

In the case of zero-sum games, if multiple Nash equilibria exist, they all have
the same payoff. Hence, in those circumstances, the specific equilibrium the
players ultimately settle for is largely irrelevant. However, as the example from
the previous section shows, in non-zero-sum games, the payoffs of different
equilibria can be quite different. This makes interpreting Nash equilibria and
predicting the outcome of the game more difficult.

To illustrate these phenomena, consider the so-called game of chicken. The
name has its origins in a game in which two drivers drive toward each other
on a collision course: one must swerve, or both may die in the crash, but if one
driver swerves and the other does not, the one who swerved will be called a
chicken. A similar game was played by youths in the 1950s and inspired the
classic James Dean movie Rebel without a cause.

An example of a possible payoff matrix associated with this game can be seen
in Table 12.7. The payoff of−100 for each player in case of a collision is meant to
represent a big loss (at least, when compared against the small profit/loss made
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Table 12.7 The game of chicken.

Hans

Swerve Straight

Ileena Swerve 1 (0, 0) (−1, 1)
Straight 2 (1,−1) (−100,−100)

Table 12.8 Best responses for Ileena in the game of chicken.

If Hans… Ileena should…

… swerves, … go straight.
… goes straight, … swerve (better chicken than dead!).

when one player swerves and the other goes straight). The game of chicken has
been used to model a number of real-life situations, including the doctrine of
mutually assured destruction during the Cold War.

Let’s consider the best responses from each player. Table 12.8 shows the best
responses for Ileena which, because of the symmetry of the payoff table, also
apply to Hans. From this table, it is clear that there are two pure-strategy equi-
libria, which correspond to one of the players swerving and the other going
straight. In the notation of mixed-strategy equilibria, these two equilibria cor-
respond to (q = 1, p = 0) and (q = 0, p = 1), where q and p are the probabilities
that Ileena and Hans swerve, respectively. Both of these equilibria imply out-
comes in which there is no crash, but one of the players is always the “chicken”.

Besides these two pure-strategy equilibria, the game also admits a true
mixed-strategy equilibrium, which corresponds to the players swerving 99% of
the time and going straight 1%. To see this, let p be the probability that Hans
swerves. Table 12.9 presents the expected payoffs of the game for Ileena. Since,
in the equilibrium, the utilities of swerving and going straight must be same
for both options, we have

p − 1 = 101p − 100 ⇐⇒ 99 = 100p ⇐⇒ p = 99
100

The expected value of the game for this mixed-strategy equilibrium is 1 − p =
1 − 99

100
= 1

100
for each of the players.

The outcome implied by this third mixed-strategy equilibrium is a very trou-
bling one. Indeed, although the probability that both players go straight at the
same time is really small (because of independence, 1∕10,000), if the game is
played for long enough the law of large numbers ensures that a crash will even-
tually occur!
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Table 12.9 Expected utility for Ileena in the game of chicken.

If Ileena plays … the expected utility for Ileena is …

… strategy 1, … 0 × p + (−1) × (1 − p) = p − 1.
… strategy 2, … 1 × p + (−100) × (1 − p) = 101p − 100.

What equilibrium will prevail in practice, assuming that the game is played
multiple times and the players can learn from each other? Note that the utilities
of the players are

U1 = −q(1 − p) + (1 − q)p − 100(1 − q)(1 − p)
for Ileena and

U2 = q(1 − p) − (1 − q)p − 100(1 − q)(1 − p)
for Hans. Let’s assume that both players start the game playing according to the
mixed-strategy Nash equilibrium. In particular, if Ileena sticks to the optimal
strategy q = 0.99 and we can plot the utilities of both players as a function of p
(the probability that Ileena will swerve) using the following R code:

> q = 99/100
> p = seq(0, 1, length=101)
> U1 = - q*(1-p) + (1-q)*p - 100* (1-q)*(1-p)
> U2 = q*(1-p) - (1-q)*p - 100* (1-q)*(1-p)
> plot(p, U1, xlab="p", ylab="Utilities", type="l")
> lines(p, U2, lty=2)
> abline(v = 99/100, lty=3)

As expected, the point where the two utilities intersect corresponds to p =
0.99, which is the equilibrium strategy. Furthermore, Figure 12.1 shows that,
no matter what Hans does, his utility remains constant at −0.01, and there is
no incentive for him not to play the Nash equilibrium p = 0.99. However, since
the utility of Hans is constant, there is also no incentive for him to play it for
sure either! Indeed, although Hans cannot increase his profit, he can reduce (or
even increase!) the profit of Ileena. In the two extremes, if p = 1 then Hans can
on its own maximize the profit of Ileena (making it 0.01), and if p = 0 then the
profit for Ileena would be minimized (making it −1.99).

We have implicitly assumed that the outcome for Ileena does not matter to
Hans: there is no reason why Hans would prefer one of these outcomes over the
other. However, in real-life players might indeed have a preference for making
the other player better (or worse off). For the sake of argument, let’s assume
that Hans decides not to play the mixed-strategy equilibrium, but instead is a
bit more aggressive and slightly decrease his probability of swerving in order to
reduce the payoff of Ileena. The following code can be used to plot the utility of
each player as a function of q if p = 0.9:
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Figure 12.1 Expected utilities for Ileena (solid line) and Hans (dashed line) in the game of
chicken as function of the probability that Hans will swerve with probability p if we assume
that Ileena swerves with probability q = 0.99.

> q = seq(0, 1, length=101)
> p = 0.9
> U1 = - q*(1-p) + (1-q)*p - 100* (1-q)*(1-p)
> U2 = q*(1-p) - (1-q)*p - 100* (1-q)*(1-p)
> plot(q, U1, xlab="q", ylab="Utilities", type="l",
+ ylim=c(-10.9,0.01))
> lines(q, U2, lty=2)

Figure 12.2 indicates that, by adopting a slightly more aggressive strategy,
Hans has completely changed the incentives for Ileena. If Ileena realizes the
change in Hans strategy, then she will also surely change her strategy to q = 1,
which is the choice that maximizes her utility. What happens then? The follow-
ing code again plots the utilities of both players as a function of p when q = 1:

> q = 1
> p = seq(0, 1, length=101)
> U1 = - q*(1-p) + (1-q)*p - 100* (1-q)*(1-p)
> U2 = q*(1-p) - (1-q)*p - 100* (1-q)*(1-p)
> plot(p, U1, xlab="p", ylab="Utilities", type="l",
+ ylim=c(-1,1))
> lines(p, U2, lty=2)
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Figure 12.2 Expected utilities for Ileena (solid line) and Hans (dashed line) in the game of
chicken as function of the probability that Ileena will swerve with probability q if we assume
that Hans swerves with probability p = 0.9.

Figure 12.3 indicates that, once Ileena starts to swerve all the time, Hans will
start to go straight all the time, which coincides with one of the pure-strategy
Nash equilibria we identified at the beginning. But unlike the mixed-strategy
equilibria, not only the players have no incentive to deviate but they also have
strong incentives to stick to their strategies. A similar argument can be made
if the players begin playing with the mixed-strategy equilibrium and one of the
players decides to slightly increase the probability of swerving. In that case, the
first player to increase the probability will see himself trapped in an equilibrium
in which it will have to swerve all the time!

The previous discussion demonstrates that the mixed-strategy equilibrium
of the game of chicken is unstable, that is, that once one of the players slightly
deviates from it the steady state of the game will move toward a different
equilibrium. Unstable equilibria are fragile and unlikely to persist for long in
the real world. On the other hand, the pure-strategy equilibria of the game of
chicken are stable and, once adopted, small deviations are unlikely to change
the outcome of the game.

12.4 Asymmetric Games

The non-zero-sum games studied so far have been symmetric in the sense that
both players have the same strategies and payoffs. However, not all games are
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Figure 12.3 Expected utilities for Ileena (solid line) and Hans (dashed line) in the game of
chicken as function of the probability that Hans will swerve with probability p if we assume
that Ileena always swerves.

symmetric in their gains for both players; for example, consider a two-person
fencing game where each player has only one attack move and one defensive
move, but they have different gains for each player (imagine one player is a
more defensive player – Ki-Adi Mundi – and the other is more skillful in offen-
sive moves – Asajj Ventress). Table 12.10 shows the payoffs associated with
this game.

Best responses for each of the players are presented in Tables 12.11 and
12.12. Again, there are two pure-strategy equilibria, one in which Ki-Adi
always attacks and Asajj always defends, and another in which the roles are
reversed. In addition, there is a mixed-strategy equilibrium in which Ki-Adi
attacks with probability pa and defends with probability pd while Asajj attacks
with probability qa and defends with probability qd.

Table 12.10 A fictional game of swords in Star Wars.

Asajj

Attack move Defensive move

Ki-Adi Attack move (0, 0) (1, 3)
Defensive move (1, 2) (0, 0)
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Table 12.11 Best responses for Ki-Adi
in the sword game.

If Asajj… Ki-Adi should…

… attacks, … defend.
… defend, … attack.

Table 12.12 Best responses for Asajj
in the sword game.

If Ki-Adi… Asajj should…

… attacks, … defend.
… defend, … attack.

Table 12.13 Expected utility for Ki-Adi in the asymmetric
sword game.

If Ki-Adi… the expected utility for Ki-Adi is …

… attacks, … 0 × qa + 1 × qd = qd

… defends, … 1 × qa + 0 × qd = qa

Recall that qa and qd are, respectively, the probabilities that
Asajj will decide to attack or defend.

We proceed now to find pa, pd, qa, and qd. Table 12.13 presents the expected
value of the game for Ki-Adi under each of this possible actions. As we have
argued in the past, for Ki-Adi to be willing to randomize, the utility derived
from both options has to be the same in equilibrium. This means that qa = qd
and, since qa + qd = 1, we have

qa + qa = 1 ⇐⇒ qa = 1
2
.

Hence, the optimal strategy for Asajj involves attacking 50% of the time, and
defending the other 50% of the times.

We can carry out a similar calculation for Ki-Adi, with Table 12.14 presenting
the expected value for each of his choices. Equating the expected utilities we
have 3pd = 2pa, or pd = 2

3
pa. Now, using the fact that pa + pd = 1 we have

pa +
2
3

pa = 1 ⇐⇒ 3pa + 2pa = 3 ⇐⇒ 5pa = 3 ⇐⇒ pa = 3
5
.
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Table 12.14 Expected utility for Asajj in the asymmetric
sword game.

If Asajj… the expected utility for Asajj is …

… attacks, … 0 × pa + 3 × pd = 3pd

… defends, … 2 × pa + 0 × pd = 2pa

Recall that pa and pd are, respectively, the probabilities that
Ki-Adi will decide to attack or defend.

Hence, the optimal strategy for Ki-Adi is to defend 40% of the time and to use
his attacking move 60% of the time.

12.5 Exercises

1. Consider the following two-player, non-zero-sum game:

Player 2

1 2 3

Player 1 A (2, 1) (1, 1) (1, 2)
B (1, 4) (3, 2) (1, 2)
C (1, 2) (1, 2) (2, 1)

(a) Does either player have a dominant strategy?
(b) Does either player have a dominated strategy?
(c) What are all the pure-strategy Nash equilibria? If there aren’t any, is

there a mixed-strategy equilibria?

2. Consider the following two-player, non-zero-sum game:

Rose

a b c

Joe X (4,−1) (2, 3) (0, 0)
Y (−1, 2) (−2, 0) (3, 1)
Z (0, 1) (2, 1) (−2, 2)
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(a) Does either player have a dominant strategy?
(b) Does either player have a dominated strategy?
(c) What are all the pure-strategy Nash equilibria? If there aren’t any, is

there a mixed-strategy equilibrium?

3. Consider the following two-player, non-zero-sum game:

Romney

Left Center Right

Obama Left (18, 18) (15, 20) (9, 18)
Center (20, 15) (16, 16) (8, 12)
Right (18, 9) (12, 8) (0, 0)

(a) Does either player have a dominant strategy?
(b) Does either player have a dominated strategy?
(c) What are all the pure-strategy Nash equilibria? If there aren’t any, is

there a mixed-strategy equilibria?

4. Splitting three chocolate chips. Two kids are asked to write down an inte-
ger number between 1 and 3. The player with the higher number gets that
amount of chocolate chips minus the amount written by the opponent (if
they chose 2 and 1, respectively, the child that had chosen the higher num-
ber gets one chocolate chip). The kid who chooses the smaller number of
chips will get the remainder of chips (in the example above, the second
kid will get two chips). If they choose the same number of chips, they split
the three chips equally (i.e., 1.5 each). Put the game in normal form. What
is the solution of the game?

5. In the game described in the previous exercise, assume instead that the
kid with highest number gets that amount of chocolate chips minus the
amount written by the opponent, but the second opponent gets the num-
ber they asked for (to a maximum of three). First put this game in normal
form. What is the solution of this game? Explain which differences you
see between these two games.

6. Tax collection. Consider a game between a tax collector (Mary) and a tax
payer (John). John has income of 200 and may either report his income
truthfully or lie. If he reports truthfully, he pays 100 to Mary and keeps
the rest. If John lies and Mary does not audit, then John keeps all his
income. If John lies and Mary audits, then John gives all his income to
Mary. The cost of conducting an audit is 20. Suppose that both parties
move simultaneously (i.e., Mary must decide whether to audit before he
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knows John’s reported income). Find the mixed-strategy Nash equilib-
rium for this game and the equilibrium payoffs to each player.

7. In this simple coin game, players start by choosing randomly whether to
have either no coin or one coin in their hand; secondly, each of them also
needs to try to guess the sum of coins in their hands. They win if they get
the right sum and they draw when they both have the right answer; the
players loose in any other situation.

(a) Compute the payoff table associated with this game and show that this
is a non-zero-sum game.

(b) Find all pure- and mixed-strategy equilibria for this game.
(c) Which change to the rules of the previous game would turn it into a

zero-sum game?

8. A company’s cash is contained in two safes, which are kept some distance
apart. There is $90,000 in one safe and $10,000 in the other. A burglar
plans to break into one safe and have an accomplice set off the alarm in
the other one. The watchman has time to check only one safe; if he guards
the wrong one, the company loses the contents of the other safe, and if he
guards the right one, the burglar leaves empty-handed. From which safe is
a sophisticated burglar more likely to steal? With what probability? What
should the watchman do, and how much, on average, will be stolen?

9. Why do cops separately interrogate suspected accomplices of a crime?

10. Can you give a historical example in which two (groups) of countries
could be thought of as playing one of the pure-strategy equilibria in the
game of chicken? How about an example of two countries playing the
mixed-strategy equilibrium?

11. [R] Use the simulation of the game of chicken to investigate what hap-
pens if one player plays using the randomized strategy associated with
the mixed-strategy Nash equilibrium while the other player always goes
straight. Which one of the two equilibriums do you think is more likely to
become the steady state after repeated play?

12. [R] Build a simulation for the asymmetric game in Section 12.4 and con-
trast the various equilibria.
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13

Tic-Tac-Toe and Other Sequential Games
of Perfect Information

For the most part, the games we have considered so far are such that both play-
ers decide their strategies simultaneously. However, games such as chess or
checkers involve players who take turns. These sequential games are fundamen-
tally different from the simultaneous games we studied in previous chapters
because players can account for the moves previously made by their opponent
when making their own decisions. For simplicity, we will focus on games of
perfect information, in which outcomes are not randomly determined.

13.1 The Centipede Game

In the centipede game, two players (call them Carissa and Sahar) alternately face
two stacks of money. In their turn, each player must choose between passing
the stacks along, in which case both grow slightly and the next participant gets
to play, or to take the larger stack for themselves, in which case the other player
gets the smaller one and the game ends. In any case, the game ends after a
predetermined number of rounds.

In this section, we focus on a three-round version of the centipede game in
which Carissa gets to play first and faces two piles of coins, one containing $3
and the other containing $1. Each time a player decides to pass, the money
in each pile doubles. Hence, if Carissa decides to pass on the first round, the
amount of money in the stacks grows to $6 and $2, respectively, and Sahar has
to choose between taking the stack of $6, or passing the turn to Carissa (in
which case the amount of money on each stack will double again to $12 and
$4). During the third and last round, Carissa must decide whether to take the
larger stack or divide the money evenly between her and Sahar.

All possible outcomes in the centipede game can be enumerated by using a
tree similar to the decision trees we discussed in Chapters 5, 6, and 11. In this
tree, each level represents the different options available to the next player con-
ditionally on the previous plays. These trees, when accompanied by the payoffs
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Figure 13.1 Extensive-form
representation of the
centipede game.

associated with each terminal node, are called the extensive-form representa-
tion of the game (see Figure 13.1). In the extensive-form representation of a
game, each decision point corresponds to a node in the tree, while each possi-
ble decision is associated with a branch. The payoffs at the end of each branch
of the tree show the utility that each player derives from the particular combi-
nation of choices that leads to it, with the first number representing the utility
of the player who plays first.

Using the extensive-form representation of a sequential game simplifies
its solution. In sequential games, a solution is found by determining optimal
actions for each player at each stage of the game (including at those stages of
the game that we might not rationally be expected to happen). In the centipede
game we just described, this means determining what Carissa should do in the
first and third rounds of the game and what Sahar should do during the second
round (even though, as we will see in a minute, we rationally expect the game
to end in the first round).

What should Carissa and Sahar do to optimally play the centipede game?
Sahar’s strategy is relatively easy to figure out: if she gets to play, she should
take the largest stack. Indeed, it should be clear that if Sahar decides to pass
in her turn, Carissa can be expected to grab the large stack and leave Sahar
with $4 (which is worse than the $6 she could get by grabbing the largest stack
in her turn). However, Carissa’s strategy is less obvious: should she grab the
largest stack in the first round (netting her $3) or should she wait until her next
turn (in which case she will get $12)? Actually, Carissa should not be too greedy
and should take the largest stack in her first round of play (which will leave her
with $3 and Sahar with $1). Indeed, our previous discussion on Sahar’s strategy
suggests that, if Carissa passes in the first round, she will never get to play the
third one! Hence, since Sahar can be expected to take the largest stack in her
turn (leaving Carissa with only $2), Carissa is better off just if she just grabs the
larger stack in the first round and does not let Sahar play.
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The previous argument suggests that sequential games can be solved by
recursively deciding what is the best decision faced by the last player to move
and then moving up the decision tree. This procedure for solving sequential
games is known as backward induction, and it can be used to solve any finite,
two-person sequential game of perfect information.

The Backward Induction Algorithm

1. For each of the final decision nodes, solve for the optimal behavior of the play-
ers (i.e., see which is the best option for the player who plays last).

2. For each of those final decision nodes, replace the branches with the payoff
associated with the best decision of that player.

3. Repeat steps 1 and 2 for this reduced game until the initial decision node is
reached.

To illustrate how the backward induction algorithm works, let’s apply it to
the centipede game by recursively trimming the tree in Figure 13.1. Note that
Carissa is the last player to act, and she faces the decision of taking the stack
(which pays her $12) or passing (which pays her $8). The decision is easy: she
takes the stack. Once we have figured this out, we can replace the two bottom
right branches of the tree with the payoffs associated with Carissa’s optimal
decision on the third round, leading to the reduced tree in Figure 13.2.

The procedure can now be iterated. To solve for Sahar’s optimal action during
the second round of play note that, as we discussed before, she needs to decide
between taking the larger stack (a profit of $6) or passing (which, as Figure 13.2
clearly shows, leads to a profit of $4). By replacing these two branches with
Sahar’s optimal choice (taking the larger stack), we obtain another reduced tree
(see Figure 13.3). At this point, it is easy to see that Carissa should always choose
to take the largest stack in the first round of the game (which gives her a payoff
of $3) over passing (which would lead to a profit of $2 if Sahar plays optimally).

In summary, the solution of the centipede game is as follows:

• Carissa’s optimal play is to take the larger stack in the first round of play.

Figure 13.2 Reduced extensive-form
representation of the centipede game after
solving for Carissa’s optimal decision during
the third round of play.
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Figure 13.3 Reduced extensive-form representation
of the centipede game after solving for Sahar’s optimal
decision during the second round of play and Carissa’s
optimal decision during the third round of play.

• If Carissa plays suboptimally in the first round and passes, then Sahar should
take the larger stack for herself on the second round of play.

• Finally, if both players passed in the first and second rounds, then Carissa
should take the larger stack on the third turn.

If both players play optimally, then Carissa will make $3 by playing this game,
while Sahar will make $1.

13.2 Tic-Tac-Toe

Tic-tac-toe (also known as Xs and Os or noughts and crosses) is a two-player,
pencil-and-paper game in which players take turns placing their mark (an X
for one of the players and O for the other) inside the cells of a 3-by-3 grid. The
winner of the game is the first player to place three of their marks in a row (either
horizontally, vertically, or diagonally). If none of the players is able to place three
marks in a row, the game ends in a draw. Figure 13.4 shows a sequence of plays
associated with a game of tic-tac-toe in which the player represented by X plays
first and the player represented by O wins the game.

Figure 13.5 shows a small part of the extensive-form representation for
tic-tac-toe. Unlike the centipede game, the extensive form of tic-tac-toe is

Figure 13.4 A game of tic-tac-toe where
the player represented by X plays first and
the player represented by O wins the
game. The boards should be read left to
right and then top to bottom.
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Figure 13.5 A small subsection of the extensive-form representation of tic-tac-toe.

quite unwieldy. In principle, the first player has 9 possible options for their first
move, the second player can place their mark in any of 8 positions during the
second round of play (since they cannot place their mark on the square already
taken by the first player), and so on until one of the players wins. This suggests
that the number of different games of tic-tac-toe is 9! = 362,880. However,
this number is too high: a game can finish in less than 9 moves and, once a
player wins, the rest of the moves do not matter. Similarly, boards in which
both players win, or where a single player wins in two different ways are of no
interest.

In the end, the total number of possible final boards of tic-tac-toe is 255,168:
1,440 boards in which the X player wins after five moves have been made, 5,328
boards in which the O player wins after six moves, 47,952 in which the X player
wins after seven moves, 72,576 in which the O player wins after eight moves,
81,792 in which the X wins on the ninth move, and 46,080 boards that end on
a tie after nine moves. Therefore, there are 1,440 + 47,952 + 81,792 = 131,184
possible games in which the X player wins, 5,328 + 72,576 = 77,904 in which
the O player wins, and 46,080 in which the players tie.

The computation of the number of different boards mentioned earlier uses
some of the concept of combinations and permutation that we studied in
Chapter 4. For example, to compute the number of games that end after the
five moves, note that there are a total of eight lines of three squares (three
vertical, three horizontal, and two diagonal) and it matters in which order the
first player place their marks. This gives you 8 × 3! = 48 ways in which the
three Xs can be placed. On the other hand, the two Os can be placed in any
open square, of which there are six, and the order in which they are placed
matters again. Hence, the total number of games that end in the fifth move
is 48 × 6P2 = 48 × 30 = 1440. Similarly, for the number of boards that result
in a draw after nine moves, note that there is a total of 16 possible patterns
for the five Xs and four Os which have no three in a row. Since the order
in which the Xs and Os were placed in the board matters, we are looking
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at 16 × 5! × 4! = 46,080 different games. Calculations for other cases are
similar but more convoluted. Alternatively, we can explicitly enumerate all
possible options. The following code does that for the number of boards that
correspond to a win six moves:

> count = 0
> for(i1 in seq(1,9)){
+ for(i2 in seq(1,9)[-i1]){
+ for(i3 in seq(1,9)[-c(i1,i2)]){
+ for(i4 in seq(1,9)[-c(i1,i2,i3)]){
+ for(i5 in seq(1,9)[-c(i1,i2,i3,i4)]){
+ for(i6 in seq(1,9)[-c(i1,i2,i3,i4,i5)]){
+ B = matrix(0, nrow=3, ncol=3)
+ B[i1] = "X"
+ B[i2] = "O"
+ B[i3] = "X"
+ B[i4] = "O"
+ B[i5] = "X"
+ B[i6] = "O"
+ Z = (B=="X")
+ Y = (B=="O")
+ if(Z[1,1]+Z[1,2]+Z[1,3]<3 & # X didn’t win in 5
+ Z[2,1]+Z[2,2]+Z[2,3]<3 &
+ Z[3,1]+Z[3,2]+Z[3,3]<3 &
+ Z[1,1]+Z[2,1]+Z[3,1]<3 &
+ Z[1,2]+Z[2,2]+Z[3,2]<3 &
+ Z[1,3]+Z[2,3]+Z[3,3]<3 &
+ Z[1,1]+Z[2,2]+Z[3,3]<3 &
+ Z[3,1]+Z[2,2]+Z[1,3]<3){
+ if(Y[1,1]+Y[1,2]+Y[1,3]==3 |
+ Y[2,1]+Y[2,2]+Y[2,3]==3 |
+ Y[3,1]+Y[3,2]+Y[3,3]==3 |
+ Y[1,1]+Y[2,1]+Y[3,1]==3 |
+ Y[1,2]+Y[2,2]+Y[3,2]==3 |
+ Y[1,3]+Y[2,3]+Y[3,3]==3 |
+ Y[1,1]+Y[2,2]+Y[3,3]==3 |
+ Y[3,1]+Y[2,2]+Y[1,3]==3){
+ count = count + 1
+ #print(B) # Uncomment if you want to see
+ # all board configurations
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ }
> count

[1] 5328



13.3 The Game of Nim and the First- and Second-Mover Advantages 181

X

X X

O

OF

F

X

X O O

XF

F

Figure 13.6 Examples of boards in which the player using the X mark created a fork for
themselves, a situation that should be avoided by their opponent. In the left figure, player 1
(who is using the X) claimed the top left corner in their first move, then player 2 claimed the
top right corner, player 1 responded by claiming the bottom right corner, which forces
player 2 to claim the center square (in order to block a win), and player 1 claims the bottom
left corner too. At this point, player 1 has created a fork since they can win by placing a mark
on either of the cells marked with an F. Similarly, in the right figure player 1 claimed the top
left corner, player 2 responded by claiming the bottom edge square, then player 1 took the
center square, which forced player 2 to take the bottom right corner to block a win. After
that, if player 1 places their mark on the bottom left corner they would have created a fork.

At first sight, the numbers presented earlier would suggest that the
first player to move in tic-tac-toe has an advantage and would win about
131,184∕255,168 × 100% ≈ 51.4% of the time. However, if you have ever
played tic-tac-toe, you know that both players have strategies that allow them
to at least draw, and maybe win, depending on how well their opponent plays
the game. As with the centipede game, those strategies can in principle be
found using the backward induction algorithm described in the previous
section, but applying the algorithm in this case is more difficult because of the
sheer size of the tree. As a consequence, we omit the details of the derivation
and instead note that the description of the optimal strategy can be somewhat
simplified by exploiting the fact that the board is symmetric under rotations
and reflections. Indeed, the first player really has only three types of first
moves: they can either place the mark in one of the corners, in one of the
edges, or in the center. The second player must always respond to a corner
opening with a center mark, to a center opening with a corner mark and to
an edge opening with a center mark, a corner mark next to the opponent’s
opening mark, or with an edge mark opposite to the opponent’s opening mark.
Any other response from the second player would allow the first player to win.
After that, players must first attempt to block any move that could lead to their
opponent winning or opening a fork (a situation in which the opponent could
win with two possible moves, see Figure 13.6) while attempting to create a fork
for themselves or complete three marks in a row.

13.3 The Game of Nim and the First- and
Second-Mover Advantages

In the game of Nim (from the German verb “nehme,” which means “to take”)
players take turns at removing items from one or more piles, with the player



182 13 Tic-Tac-Toe and Other Sequential Games of Perfect Information

removing the last piece winning the game. Nim appeared in Europe sometime
during the fifteenth century. However, because of its similarities with the game
of Tsyanshidzi or “picking stones” it is believed to have originated in China.

Consider a version of the game of Nim involving a stack of four pieces and
two players, Ann and Mat. Starting with Ann, players take turns removing
either one or two pieces from the stack; the losing player pays $1 to the winner.
Figure 13.7 shows the reduced-form representation of this game. For example,
note that if Ann decides to remove just one piece in the first turn, Mat decides
to also remove one piece in the second round, and Ann removes one piece in
the third, then Mat automatically wins (as he can remove the last piece in the
stack during the fourth round). The outcome associated with other branches
can be derived in a similar way.

The backward induction algorithm described in Section 13.1 can be used to
derive an optimal strategy for each player and predict the outcome of the game.
We start pruning the tree at the bottom left branches. At this point, Ann should
choose to remove two pieces (which leads to her winning $1), which is bet-
ter than removing one piece (which would lead to her losing $1). Figure 13.8
presents the corresponding pruned tree.

Now we can proceed to derive Mat’s strategy during the second round of the
game. If Ann removed one piece in the first round (left side of the tree), Mat is
in an equally bad situation: no matter what he does, in both cases he will lose
$1. On the other hand, if Ann removed two pieces in the first round, Mat should
also remove two of them (as this would win him the game). The reduced tree is
presented in Figure 13.9. At this point, it is clear that Ann should remove just
one piece in the first round, which would win her the game.

In summary, the optimal strategy for this game is as follows:

• Ann should remove one piece in the first round. If Ann does so, Mat is
indifferent between removing one or two pieces in the second round. If Mat

2

2

2

2

1

1

1

1

1

–1

–1

1

–1

1

–1 1

1

–1

MatMat

Ann

Ann

Figure 13.7 Extended-form representation of the game of Nim with four initial pieces.
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Figure 13.8 Pruned tree for a game of Nim with four initial pieces after the optimal strategy
at the third round has been elucidated.

Figure 13.9 Pruned tree for a game of
Nim with four initial pieces after the
optimal strategy at the second round
has been elucidated.
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decides to remove one, Ann should remove two in the third round, winning
the game. On the other hand, if Mat decides to remove two, Ann should
remove one in the third round, again winning the game.

• If Ann removes two pieces in the first round, Mat should counter by remov-
ing two pieces, which would win him the game.

Note that in this version of Nim, Ann will always win as long she plays opti-
mally. Hence, we say that Ann has a first-mover advantage, as she can use her
first move to place herself in a position in which she cannot lose. This is because,
if Ann can leave only three pieces in the table, she is guaranteed to win no mat-
ter what Mat does afterward. And since there are only four pieces to start with,
removing a single piece in the first round puts Ann in that advantageous posi-
tion.

It is tempting to think that the player who moves first always has an advan-
tage. However, that is not the case. To see that this, consider now a version
of Nim in which there are initially six pieces on the table instead of four. Fol-
lowing a similar logic than before, we can see that if Mat plays optimally, he
will win no matter what Ann does. For a simple argument, note that if Mat
can leave only three pieces in the table, he will win for sure. Now, if Ann starts
by removing one piece in the first round, Matt can respond by removing two,
which leaves three pieces in the table. On the other hand, if Ann decides to
remove two pieces in the first round, Matt can respond by removing one piece,
again leaving three pieces in the table. In a situation such as this, we say that
Mat has a second-mover advantage.
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13.4 Can Sequential Games be Fun?

In all the three examples we have considered so far in this chapter, it was pos-
sible to find optimal strategies for the games using backward induction and,
once those strategies were obtained, the outcome of the game was predeter-
mined. As in the case of tic-tac-toe, expert players would always draw, while
in the centipede game, the first player would always make the most money and
in a game of Nim with six pieces the second player will always win. This is not
an exclusive feature of these games, as Zermelo’s theorem ensures that sequen-
tial games of perfect information always have solutions that do not involve
chance.

Zermelo’s Theorem
In any sequential and finite two-person game of perfect information in which
chance does not affect the decision making process, if the game cannot end in
a draw, then one of the two players must have a winning strategy that prevails
no matter what the opponent does.

Zermelo’s theorem would suggest that playing sequential games of perfect
information is quite boring. Indeed, once you use backward induction to break
the game (i.e., find an optimal strategy), all you need to do is stick to that optimal
strategy. If you do this, you either will always win, or will always tie, or you can
only win if your opponent makes a mistake! This is the likely reason why you
have not played tic-tac-toe since you were a kid!

However, note that backward induction requires that we construct the
extensive-form representation of the game, and then “prune” the tree back-
wards until we reach the root node. Hence, backward induction is practical
only if the number of options available to each player at each stage is small
enough that we can actually write down all those options (as was the case
with the centipede game or Nim). Even in games such as tic-tac-toe with a
relatively small number of outcomes, a computer might be needed to efficiently
construct an extensive-form representation of the game. When the number
of possible combination of plays is very large (such as in chess), applying
backward induction becomes impractical and the outcome of the game cannot
be predicted with any certainty, making the game interesting.

13.5 The Diplomacy Game

As a final example, consider modeling the relationship between two countries
in a game-theoretic context. For example, let’s say that the relationship between
the country of Zangano and the Republic of Abazi is confrontational because
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they are disputing an island that lies right between their territorial waters.
Initially, Zangano has three different moves available: invite Abazi to negotiate
a solution, ignore the issue or issue an ultimatum. On the other hand, the
Republic of Abazi has its own set of choices depending of what Zangano’s does
in the first round. If Zangano issues an invitation for negotiation, Abazi has
the choice of accepting the invitation or occupying the island. Alternatively, if
Zangano decides to ignore the whole issue, Abazi will take advantage of the
situation and will immediately invade the island. Finally, if Zangano issues an
ultimatum, the Republic of Abazi has the option to invade the island imme-
diately or back down and leave the island to Zangano. The extensive-form
representation for this game is shown in Figure 13.10.

To solve this game, we start by looking at the bottom of the tree in
Figure 13.10. Note that if Zangano offers to negotiate, the option that leads
to the highest payoff for Abazi is to accept the negotiation offer. Indeed,
remember that it is the second number in the pair that represents the gain for
Abazi. Therefore, Abazi will be comparing a payoff of 1 (if it decides to invade)
with a payoff of 2 (if they accept the negotiation offer). This observation allow
us to prune the two branches on the bottom left side of the tree and substitute
Abazi by the option “Negotiate” and the corresponding pair of gains (2,2) (see
Figure 13.11).

Next, we move on to the next possibility (Zangano ignores the issue) and
we see there is no choice for Abazi (since there is only one alternative), so we
prune that last branch and substitute “Abazi” by “Invasion by Abazi” and the
corresponding pair of gains (0, 1). Finally, under the ultimatum, Abazi will pre-
fer to backdown (a payoff of −1) instead of invading (a payout of −2), therefore,
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1
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down
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Figure 13.10 The diplomacy game in extensive form.
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Figure 13.11 First branches pruned in the diplomacy game.
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Figure 13.12 Pruned tree associated with the diplomacy game.

the last two branches are also pruned and the “Backs down” option is the only
left with the corresponding pair of gains (1,−1). The resulting pruned tree is
shown in Figure 13.12.

To complete the solution, we need to compare the payoffs associated with
Zangano’s moves from Figure 13.12. Since Zangano will choose the option
that maximizes its payoff (remember that Zangano’s payoffs correspond to
the first number on each branch), it is very clear that Zangano should choose



13.6 Exercises 187

to negotiate. Indeed, negotiating leads to a gain of 2, which is larger than the
gain of 0 from ignoring the issue (which is realized when Abazi invades), or
the gain of 1 from an ultimatum (since in that case Abazi backs down). In
summary:

• Zangano should offer to negotiate with the Republic of Abazi.
• If Zangano does offer to negotiate, Abazi should go along and negotiate, lead-

ing to a payoff of 2 for both countries. However, if Zangano (suboptimally)
decides to deliver an ultimatum, Abazi should back down, while if Zangano
(again suboptimally) decides to ignore the issue, Abazi should invade.

13.6 Exercises

1. What is the backward induction method and why is it helpful?

2. What do we mean when we say that a sequential game with perfect infor-
mation has been broken? Can there be any interest in playing a game that
has been broken against another human? How about playing it against a
computer?

3. What would the solution to the centipede game discussed in Section 13.1
be if Carissa and Sahar play the game for four rounds instead of three?
What if they play it for 1,000,000 rounds?

4. What is the solution to the sequential game depicted in the figure below?
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5. What is the solution for the sequential game depicted in the figure below?
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6. What is the solution for the sequential game depicted in the figure below?

Wash
dishes

yourself

Ignore
dirty dishes

I

Housemate Housemate Housemate

Washes
dishes 

Ignores
request

1
–3

–2
–2

–1
–2

–1
–1

Ask
housemate

to wash
dishes

Helps
Watches
TV

2
–1

–3
1

Washes
dishes 

Watches
TV

7. Construct the extensive-form representation for the game of Nim with six
initial pieces that was discussed in Section 13.3, and find optimal strate-
gies for both players.

8. A game similar to Nim. Imagine five little sticks in a row. This is a
two-person game where players take turns making a choice; at each
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turn, the player can remove one, two, or three matchsticks from the pile.
The player who chooses the last stick loses. Can you put this game in
extensive form? Find its solution.

9. What changes when you consider seven initial sticks? Discuss if it has a
solution and what is it (you can put the game in extensive form if you
want to).

10. The negotiation. Two persons who met through Craigslist are negotiating
the price of a laptop. The seller is asking $500 for the computer (let’s say
this is the actual value of the computer). The buyer has the option to pay
the asked price or to bargain; if the buyer decides to bargain he has the
choice to low-ball ($250) or to ask for a 10% discount. For each of these
options, the seller can either: refuse, accept or propose to split the differ-
ence ($375 for the low ball offer and $475 for the discount); this last option
allows the buyer to either accept or refuse that counter-offer. If there is no
agreement, both players lose $50 due to the time and effort put into meet-
ing. Put this game in extensive form and say whether it has a solution. If
there is a solution, describe it.

11. Still regarding the previous example; can you think of a simple change to
the rules of the game that would make the buyer prefer to bargain?

12. Refer back to the simple two-person coin game described earlier. Let’s
change the game so that players take turns making a guess for the sum
of the coins in their hands. If one player makes a particular choice for the
sum of coins, that choice is not available to the payer who makes a decision
second. Start by putting the game in extended form. What is the solution
to this game?

13. Still regarding the simple coin game. Let’s think about a regular gaming
situation, where your opponent starts the game. Remember that you know
what is in your hand but don’t know what is in the opponent’s hand. What
is the best answer when your opponent opens the game by saying zero?
(Your answer will contain different options depending on how many coins
you have in your hand.) What is the best answer when the opponent says
two? What is the best answer when the opponent says one?

14. Jae-Eun argues that there are 9! = 362,880 possible different tic-tac-toe
games, and Björn disagrees, saying that the number of different games is
smaller. How could you attempt to justify Jae-Eun’s statement, and why is
he wrong?
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15. [R] Write code that allows you count and print all board configurations in
tic-tac-toe in which the second player wins in eight moves.

16. [R] Write a program that plays the game of Nim with an arbitrary number
of pieces k optimally. Use your own code to play Nim!
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A

A Brief Introduction to R

R is a freely available interactive computing environment. At its most basic, you
can think of R as a fancy calculator, and you could limit yourself to using it that
way. However, R offers much richer functionalities, from the ability to generate
graphs to a flexible programming language that incorporates most standard
mechanism for flow control. Indeed,R is a very flexible language; there are often
many different ways to accomplish any given task.

Although a number of graphic user interfaces for R exist, we will be using
the standard distribution, which has a command-based interface. This means
that you need to communicate with the software by typing instructions into
a command window. For the purpose of this book, we believe that such a
stripped-down interface actually makes it easier for readers to get started. The
R language is quite intuitive, so we hope that its deployment in this book will
not prove an insurmountable obstacle even for readers with no programming
experience.

This appendix provides readers with an introduction to the R language that
covers the background needed to understand, and eventually extend, the simu-
lations we have included in each of the book chapters. Unless you have dabbled
in R before, we strongly recommend that you familiarize yourself with this
appendix. If you are interested in learning more about theR environment, there
are a variety of books online targeted at students with all levels of backgrounds!

A.1 Installing R

You can obtain R distribution bundles for Windows, Mac OS, and Linux at
the CRAN website, https://cran.r-project.org. Just click on the link that corre-
sponds to the appropriate operating system and follow the instructions. Once
R has been installed, you can execute it by clicking on the icon. In a Microsoft

Probability, Decisions and Games: A Gentle Introduction using R, First Edition. Abel Rodríguez and Bruno Mendes.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/Rodriguez/Probability_Decisions_and_Games
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Figure A.1 The R interactive command console in a Mac OS X computer. The symbol > is a
prompt for users to provide instructions; these will be executed immediately after the user
presses the RETURN key.

Windows or Mac OS X computer, you should then see an interactive command
console that looks like Figure A.1.

A.2 Simple Arithmetic

The last line in the command window is a prompt line that starts with the sym-
bol >. This indicates that R is waiting for instructions. At this point, we could
ask it, for example, to give us the sum of 5 and 7 by typing 5 + 7 in the prompt
and then pressing the RETURN key. This is what your R console should show if
you go ahead and do it:

> 5 + 7

[1] 12

Note that R provides the expected answer (the number 12) in the next
line. (For now, ignore the [1] symbol at the beginning of the line, we will
explain what it means later.) Similarly, you can perform many other arithmetic
operations:
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> 3*8 # Multiplication

[1] 24

> 5^3 # Exponentiation

[1] 125

> log10(15) # Base 10 logarithm

[1] 1.176091

> sqrt(2) # Square root

[1] 1.414214

> sqrt(
+ 2)

[1] 1.414214

The text that appears after the # symbol is a comment. We have added com-
ments to this code to explain what the different commands do. However, you
do not need to type them yourself or worry about them: any text between # and
the next RETURN is ignored by R. Furthermore, as the last command illustrates,
incomplete expressions (which could happen, e.g., when you press RETURN too
early by mistake) are continued on the next line. Continuation lines start with
the + prompt instead of the usual >.

All your standard functions (including trigonometric and exponential func-
tions) are implemented in R. In addition to your regular arithmetic operations,
you can also perform “integer” operations:

> 13/3 # Regular division

[1] 4.333333

> 13%/%3 # Integer division

[1] 4

> 13%%3 # Residual of the integer division

[1] 1
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You can get help with these functions and operators (as well as about any
other R functionality) using the help() function. help() will prompt the
creation of a separate window with the relevant information. For example, if
you type help("%/%"), then a window that contains detailed help on how to
carry out arithmetic operations will pop up.

The standard precedence of operations applies in R, with exponentiation
being resolved before multiplications/divisions and additions/subtractions
being last. However, you can use parenthesis to change the order in which
operations are carried out

> 4 + 2*3 # Firt multiply, then sum

[1] 10

> (4 + 2)*3 # First sum, then multiply

[1] 18

R can treat∞ as a number, which is represented by the symbolInf. Similarly,
undefined operations, such as dividing 0 by 0, return the NaN (“Not a Number”)
symbol:

> 3/0

[1] Inf

> 5/Inf

[1] 0

> 0/0

[1] NaN

A.3 Variables

You can store values in named variables that can later be used in expressions
just like regular numbers. For example,

> x = 3
> y = 5
> z = x^2 + 2*y - x/3
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As you could guess, variable names cannot consist of only numbers. You
should also avoid the names of existing functions or operators.

To check the current value of an object, you can simply type its name at the
prompt.

> z # Note that 3^2 + 2*5 - 3/3 = 9 + 10 - 1 = 18

[1] 18

Once an object has been created, it remains in memory until you remove it
(or close your current R session), so you can reuse it multiple times. You can
check all objects in memory by using the command ls and remove an object
from memory by using the function rm.

> ls()

[1] "x" "y" "z"

> rm("y")
> ls()

[1] "x" "z"

Some variables containing widely used constants (such as 𝜋) are already
predefined:

> pi

[1] 3.141593

> sin(pi/6)

[1] 0.5

A.4 Vectors

A vector is just a list of values that share a common name but can be accessed
independently of each other. You can think of a vector as a big box divided into
many compartments organized sequentially, with each compartment contain-
ing a different value. You can either move the whole box around or, if needed,
access the individual compartments (see Figure A.2). You can create arbitrary
vectors using the c() function.
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x [1] x [2] x [3] x [4]

x

x [5] x [6]

1 3 –5 2 –3 4

Figure A.2 A representation of
a vector x of length 6 as a
series of containers, each one
of them corresponding to a
different number.

> x = c(1,3,-5,2,-3,4) # x is a vector with 6 elements
> x

[1] 1 3 -5 2 -3 4

Generally speaking, creating vectors by using the c() function is tedious.
When the vectors follow regular patterns, you can use the rep() and seq()
commands to simplify the process.

> x = rep(3, times=7)
> x

[1] 3 3 3 3 3 3 3

> y = seq(1, 10, by=3)
> y

[1] 1 4 7 10

> u = 1:8 # Shortcut equivalent to u = seq(1, 10, by=1)
> u

[1] 1 2 3 4 5 6 7 8

> w = rep(seq(1,5), times=8)
> w

[1] 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4
[30] 5 1 2 3 4 5 1 2 3 4 5

> z = rep(seq(1,5), each=8)
> z

[1] 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 4 4
[30] 4 4 4 5 5 5 5 5 5 5 5
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The meaning of the strings [1] and [36] in the first and second lines should
now be clear: they tell you what is the index of the first element that appears in
each line. This is meant to make it easier for you to read a vector off the screen.

You can access individual elements of a vector by using the subsetting opera-
tor[], and you can find the length of a vector by using thelength() function.

> x = c(1,3,-5,2,-3,4)
> x[3] # The third element in the vector x has the value -5

[1] -5

> length(x)

[1] 6

You can also use the [] operator to create a subvector that only contains
some of the entries in the original vector. Note that negative indexes remove
entries.

> y = x[c(2,5,6)] # Create a subvector with three elements
> # corresponding to the second, fifth, and
> # sixth element of x
> y

[1] 3 -3 4

> w = x[-c(1,5)] # Create a subvector with all the elements
> # of x except the first and fifth
> w

[1] 3 -5 2 4

In many ways, vectors can be manipulated as if they were scalar variables.
For example, you can add or multiply two vectors of the same length. If you do,
operations are carried out elementwise, that is, the result is another vector of
the same length whose first element is the sum/product of the first elements in
each of the two origianl vectors and so on:

> x = c( 1,3,-2, 4)
> y = c(-3,1, 5,-6)
> z = x - y
> z

[1] 4 2 -7 10
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If the length of the two vectors is not the same, R “recycles” the entries of
the shorter vector until the sizes match. This might lead to a warning or not,
depending on whether the length of the longer vector is a multiple of the length
of the shorter one. My recommendation is that you avoid recycling until you
have gained substantial experience with R.

> x = c( 1,3,-2, 4)
> y = c(-3,1, 5)
> z = c(-3,1)
> w = x + y # Operation proceeds as if y had been defined as
+ # y = c(-3,1,5,-3) (first element is recycled)

Warning in x + y: longer object length is not a multiple of
shorter object length

> x + z # First two elements of z are recyled, no warning

[1] -2 4 -5 5

Many functions in R are vectorized, that is, if a vector is passed as the argu-
ment, then the function is applied individually to each element. This helps make
the R code easier to read.

> x = c(1,3,8,4)
> log10(x)

[1] 0.0000000 0.4771213 0.9030900 0.6020600

> 2^x

[1] 2 8 256 16

Another example of a vectorized function is cumsum(), which provides
cumulative sums of the elements of a vector. This is particularly useful if the
entries of the original vector represent the payoffs of a repeated bet, in which
case the cumulative sum represents the running profit/loss that the player has
incurred.

> x = c(1,3,8,-4)
> cumsum(x) # First entry is 1, second is 1+3, third is 1+3+8,

[1] 1 4 12 8

Some functions are not vectorized, but are instead designed to operate on
all elements of the vector simultaneously. For example, the functions sum(),
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mean(), max(), and min() give you the sum, the average, the maximum, and
the minimum of all the entries of a vector,

> sum(x) # Returns sum of the values in x

[1] 8

> mean(x) # Returns the simple average of values in x

[1] 2

> min(x) # Returns the smallest value in x

[1] -4

> max(x) # Returns the largest value in x

[1] 8

A.5 Matrices

Matrices are similar to vectors, but instead of storing elements sequentially they
do so in a rectangular array. Hence, entries on a matrix are indexed by two
numbers; the first one corresponding to the row on which it is located; and the
second corresponding to the column. Furthermore, each row or column of a
matrix is simply a vector.

You can create a matrix by starting with a long vector and then using its
elements to fill the matrix sequentially by either row or column.

> A = matrix(c(1,2,3,4,5,6), nrow=3, ncol=2)
> A # Filled by column (the default)

[,1] [,2]
[1,] 1 4
[2,] 2 5
[3,] 3 6

> A = matrix(c(1,2,3,4,5,6), nrow=3, ncol=2, byrow=T)
> A # Filled by row

[,1] [,2]
[1,] 1 2
[2,] 3 4
[3,] 5 6



200 A A Brief Introduction to R

Note that the strings [1,], [2,], and [3,] at the beginning of each line
serve to identify the rows of the matrix, while the strings [,1] and [,2] iden-
tify the columns. As this suggests, the elements of the matrix can be accessed
using the [] operator with two indexes separated by a comma. If you want to
access a whole row or a whole column of the matrix, leave the index empty (the
result will be treated as a vector).

> A = matrix(c(1,2,3,4,5,6), nrow=3, ncol=2)
> A

[,1] [,2]
[1,] 1 4
[2,] 2 5
[3,] 3 6

> A[3,2]

[1] 6

> A[3,]

[1] 3 6

> A[,2]

[1] 4 5 6

Sometimes, it is useful to compute rowwise or columnwise sums of the
elements of a matrix. The functions rowSums() and colSums() allow you
do to exactly that

> rowSums(A) # Rowwise sum

[1] 5 7 9

> colSums(A) # Columnwise sum

[1] 6 15

More general functions can be used on each row or column of the array
through the apply() function.
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> apply(A,2,sum) # Another way to do columnwise sums

[1] 6 15

> apply(A,1,min) # Rowwise minimum

[1] 1 2 3

> apply(A,2,cumsum) # Columnwise cumulative sum

[,1] [,2]
[1,] 1 4
[2,] 3 9
[3,] 6 15

A.6 Logical Objects and Operations

So far, we have only discussed variables that contain real numbers. However,
R allows for variables that contain other types of objects. One example corre-
sponds to logical variables, which take only two values (TRUE and FALSE) and
are the centerpiece of Boolean algebra.

Logical values are often the result of comparisons between other types of
objects:

> 4 <= 2 # Is 4 less or equal than 2?

[1] FALSE

> 5/2 == 9/3 - 0.5 # Is 5/2 the same as 9/3 - 0.5?

[1] TRUE

Note that, while = is the assignment operator used to assign values to
variables, == is the equal to operator involved in comparisons

> 4 == 2 # OK: Is 4 equal to 2?

[1] FALSE

> 4 = 2 # NO: Assign the value 2 to 4. Leads to error.

Error in 4 = 2: invalid (do_set) left-hand side to assignment
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You can combine results from various comparisons using the and and or
operators, which in Boolean algebra play a similar role to products and addi-
tions in standard algebra:

> 4 < 2 & 9 > 3 # ‘‘and’’ operator; both must be TRUE

[1] FALSE

> 4 < 2 | 9 > 3 # ‘‘or’’ operator; only one needs to be TRUE

[1] TRUE

> !(4 < 2) # ‘‘not’’ operator; flips the result

[1] TRUE

Just like multiplications are resolved before sums by convention, and opera-
tions are resolved before or operations. As before, you can use parentheses to
change the order in which operations are carried out:

> 4 < 2 & 4==3 | 9 > 3 # First resolve ‘‘and,’’ then the ‘‘or’’

[1] TRUE

> 4 < 2 & (4==3 | 9 > 3) # First resolve ‘‘or,’’ then the ‘‘and’’

[1] FALSE

Comparison operations are also vectorized:

> x = c(-1,2,3,1,4,6,-8,2)
> y = (x >= 2.5 & x < 6)
> y

[1] FALSE FALSE TRUE FALSE TRUE FALSE FALSE FALSE

We can check whether a variable takes at least one value among a list of
possibilities by combining multiple comparisons using or operators:

> x = c(-1,2,3,1,4,6,-8,2)
> y = (x==1 | x==5 | x==7) #Which numbers are either 1, 5 or 7
> y

[1] FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE
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However, this approach can be impractical if the number of options is large.
As an alternative, we can use the %in% function.

> x = c(-1,2,3,1,4,6,-8,2)
> y = x %in% c(1,5,7)
> y

[1] FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE

The functions any() and all() provide convenient ways to check if at least
one or if all the elements of the vector are true.

> any(y) # Is at least one element TRUE?

[1] TRUE

> all(y) # Are all elements TRUE?

[1] FALSE

> all(!y) # Are all elements FALSE?

[1] FALSE

When arithmetic functions are used with logical vectors, TRUE values are
treated as 1s and FALSE are treated as 0s.

> sum(y) # Number of TRUE values in y

[1] 3

> sum(y)==length(y) # Same as all(y)

[1] FALSE

> sum(y)>0 # Same as any(y)

[1] TRUE

Logical vectors provide another way to select entries of a vector. For example,
if we are interested in the sub-vector of x that contains the entries that are
greater than 2.5:
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> x = c(-1,2,3,1,4,6,-8,2)
> x[x >= 2.5]

[1] 3 4 6

A.7 Character Objects

Characters in R are distinguished by the fact that they are enclosed in quota-
tion marks (either single or double quote delimiters can be used, but double
quote are generally preferred). You can create character vectors and perform
comparisons with them just like you did with numeric vectors.

> x = c("Heads", "Tails")
> x

[1] "Heads" "Tails"

> z = c("CA", "NE", "OR", "OR", "CA", "UT", "CA", "OR", "NE")
> z == "CA"

[1] TRUE FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE

> z > "NE" # Comparison based on alphabetical order

[1] FALSE FALSE TRUE TRUE FALSE TRUE FALSE TRUE FALSE

Arithmetic operations are not defined for character vectors, even if they only
contain numbers:

> x = c("1", "-2", "3", "4")
> y = c("-4", "7", "1", "-2")
> x + y

Error in x + y: non-numeric argument to binary operator

However, you can coerce characters that only contain number to numer-
ical objects for which regular algebraic operations are defined using the
as.numeric() function.

> as.numeric(x) + as.numeric(y)

[1] -3 5 4 2
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A.8 Plots

You can use R to easily create plots. For example, suppose that we want to plot
the parabola f (x) = x2 − 2x + 1 in the interval [−1, 2]. To do so, we need to first
compute the value of f (x) over a fine grid of values in the interval of inter-
est. The function plot() then can be used to generate a new window that
contains a Cartesian coordinate system and a series of dots that represent the
coordinates of each point in the grid and the corresponding value of f (x) (see
Figure A.3).

> x = seq(-1,2,length=200) # A regular grid with 200 values
> y = x^2 - 2*x + 1 # Function evaluated at the grid
> plot(x, y) # Generates the plot

Figure A.3 uses dots to represent the function. However, in this case, it
would be more convenient to connect the values using lines. This can be easily
achieved using the type option. Similarly, you can change the labels of the
axes using the xlab (for the x-axis label) and the ylab (for the y-axis label)
options (see Figure A.4).

> plot(x, y, type="l", xlab="x axis", ylab="y axis")

The plot function admits a number of additional parameters that are helpful
in fine tuning graphs. Examples include col (which allows you to change the
color of the lines/points) and lty (which allows you to use dashed and dot-
ted lines). A full discussion of all options, however, is beyond the scope of this
introduction.

When creating plots, it is usually a good idea to add reference lines that
help focus attention on the features of the graph that are most relevant for the
discussion at hand or to place mutliple plots on a single graph. The function
abline() allows you to add straight reference lines to an existing plot that was
previously created using the plot() function. Similarly, the functions lines
and points can be used to add additional plots to an existing one. Figure A.5
was created using the following code.

> w = x^3 - x + 1
> plot(x, y, type="l", xlab="x axis", ylab="y axis")
> lines(x, w, lty=2) # Second dashed curve
> abline(h=1.2, lty=3) # Horizontal dotted line at 1.2
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Figure A.3 An example of a scatterplot in R]An example of a scatterplot in R.
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Figure A.4 An example of a line plot in R.
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Figure A.5 Adding multiple plots and reference lines to a single graph.

Figure A.6 Example of a
barplot in R.

A C B F D E

0
2

4
6

8



208 A A Brief Introduction to R

One last type of graph that will be useful as you move along the book is a bar
graph. As the name suggests, in a bar graph, a list of numerical values of vari-
ables are represented by the height of rectangles of equal width. The function
barplot() can be used to create a bar chart in R (see Figure A.6):

> x = c(9,6,4,2,3,8)
> coln = c("A","C","B","F","D","E")
> barplot(x, names.arg=coln)

A.9 Iterators

When the same operation needs to be repeated a large enough number of
times, sequentially inputing the commands by hand is impractical. Vectoriza-
tion sometimes offers a way to deal with these situations, but it is not always
possible or practical. For example, when the outcome of one iteration depends
on the results from previous ones, vectorization is usually not helpful. Loops
provide a flexible alternative to deal with iterated operations.

To motivate loops, consider creating a matrix with 10 rows, each
corresponding to sequences of 6 integers, all with the same starting value but
different increments (increments of 4 for the first row, increments of 5 for the
second, etc.). This can be achieved using the following code:

> A = matrix(0, nrow=10, ncol=6)
> A[1,] = seq(1, by=4, length=6)
> A[2,] = seq(1, by=5, length=6)
> A[3,] = seq(1, by=12, length=6)
> A[4,] = seq(1, by=3, length=6)
> A[5,] = seq(1, by=9, length=6)
> A[6,] = seq(1, by=1, length=6)
> A[7,] = seq(1, by=2, length=6)
> A[8,] = seq(1, by=6, length=6)
> A[9,] = seq(1, by=10, length=6)
> A[10,] = seq(1, by=8, length=6)
> A

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 1 5 9 13 17 21
[2,] 1 6 11 16 21 26
[3,] 1 13 25 37 49 61
[4,] 1 4 7 10 13 16
[5,] 1 10 19 28 37 46
[6,] 1 2 3 4 5 6
[7,] 1 3 5 7 9 11
[8,] 1 7 13 19 25 31
[9,] 1 11 21 31 41 51
[10,] 1 9 17 25 33 41
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Note that the 2nd to the 11th instructions are structurally identical. They
only differ on two features: the index of the row increases and the by argument
changes to reflect the desired increment in the sequence. for loops allow you
to accomplish the same task without having to write one separate instruction
for each row of the matrix. for loops, which allow you to repeat the same set
of instructions a fixed number times, have the following syntax:

for(counter in vector){
block of instructions to be repeated

}

The counter, which is defined within the parentheses that follow the for
instruction, is a variable that sequentially takes the values contained in vec-
tor. Roughly speaking, this is the variable that tells you how many times the
operations are going to be repeated. On the other hand, a set of instructions that
are going to be repeated, once for every value in vector, are located within
the curly brackets that follow the parentheses.

As an example, the following code uses a for loop to complete the task of
filling out the rows of a matrix with different sequences of numbers:

> A = matrix(0, nrow=10, ncol=6)
> increments = c(4,5,12,3,9,1,2,6,10,8)
> for(i in 1:10){
+ A[i,] = seq(1, by=increments[i], length=6)
+ }
> A

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 1 5 9 13 17 21
[2,] 1 6 11 16 21 26
[3,] 1 13 25 37 49 61
[4,] 1 4 7 10 13 16
[5,] 1 10 19 28 37 46
[6,] 1 2 3 4 5 6
[7,] 1 3 5 7 9 11
[8,] 1 7 13 19 25 31
[9,] 1 11 21 31 41 51
[10,] 1 9 17 25 33 41

Iterations of a loop can depend on the result of previous iterations. For
example, consider computing the first 20 terms of the Fibonacci sequence1:

1 The Fibonacci sequence has featured prominently in a number of movies as TV shows
(including the Da Vinci code). Each term is constructed by adding together the previous two
terms. The two initial terms of the recursion are both equal to 1.
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> n = 20
> fibon = c(1,1,rep(0,n-2))
> for(i in 1:(n-2)){
+ fibon[i+2] = fibon[i+1] + fibon[i]
+ }
> fibon

[1] 1 1 2 3 5 8 13 21 34 55 89
[12] 144 233 377 610 987 1597 2584 4181 6765

while loops are an alternative to for loops. Rather than being executed
a fixed number of times, while loops are executed indefinitely until a given
condition is satisfied. The syntax for a while loop is

while(condition){
block of instructions to be repeated

}

The expression that replaces the placeholder condition must result
in a single logical value (while loops are not vectorized). As before, the
block of instructions that will be repeated until the condition is satisfied
is placed between curly brackets. The condition associated with a while
loop is checked before each iteration is executed. Hence, if the condition
is not satisfied before the loop starts, the instructions inside are never
executed.

As an example of the use of while loops, consider the problem of generating
the first term of the Fibonacci sequence that is greater than 1000 (recall from
our previous example that the value of such a term is 1597). Since we do not
necessarily know in advance how many terms will need to be computed, we use
a while loop that checks on the value of the Fibonacci sequence after each
iteration and terminates if the current term is greater than 1000.

> termminus2 = 1
> termminus1 = 1
> term = termminus1 + termminus2
> while(term <= 1000){
+ termminus2 = termminus1
+ termminus1 = term
+ term = termminus1 + termminus2
+ }
> term

[1] 1597
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A.10 Selection and Forking

You might sometimes find that different pieces of your code need to be executed
depending on whether specific conditions are satisfied. For example, you might
want to set the value of a variable differently depending on whether another
variable is positive or negative. if/else statements allow you to accomplish
this goal. The syntax for an if/else loop is

if(condition){
block of instructions if condition is TRUE

}else{
block of instructions if condition is FALSE

}

As with a while loop, the expression that replaces the placeholder
condition must result in a single logical value. Depending on whether
condition is TRUE or FALSE, only the top (or bottom) block of instructions
will be executed. If an else statement is not included, then no instructions are
executed when condition is FALSE.

The following code shows an example of conditional execution:

> x = 3
> if(x>0){
+ y = 2*x
+ }else{
+ y = x - 4
+ }
> y # x is positive, so only the first branch is executed

[1] 6

if/else statements can be particularly useful in conjunction with for and
while loops. The function ifelse() is a vectorized version of the if/else,
but we will rarely use it in this book.

A.11 Other Things to Keep in Mind

Once you have finished with your work, you can save all of it by using the option
Save Workspace File… in the Workspace menu. This will prompt a
window where you can type a name for the workspace and select a folder where
it will be stored. To load the workspace at a later time, you can either double
click on the workspace file or use the option Load Workspace File… in
the same Workspace menu.
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One of the key features of R is its extendibility. A number of authors have
developed groups of specialized functions that are distributed in the form of
“packages”. A large number of packages are available from the CRAN website.
In this book, we employ the “prob”’ package developed by G. Jay Kern at
Youngstown State University. To install the package, you can use the Package
Installer option of the Packages & Data menu. Alternatively, you can
use the install.packages() function from the command line.

> install.packages("prob")

In either case, you will see a number of messages associated with the installa-
tion appear in the command windows. In most circumstances, you can ignore
these messages. Once the package has been installed, you will need to load it at
the beginning of every R session by using the library() function:

> library("prob")

Failing to load the package before using any of its functions is a common
source of errors and confusion. Please do not forget to do so!
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