

1.1

1.2

1.2.1

1.3

1.3.1

1.3.2

1.3.3

1.3.4

1.3.5

1.3.6

1.4

1.4.1

1.4.1.1

1.4.2

1.4.3

1.4.4

1.4.5

1.4.6

1.4.7

1.4.8

1.4.9

1.4.10

1.4.11

1.4.12

1.4.13

1.5

1.5.1

1.5.1.1

1.5.1.2

1.5.2

Table	of	Contents
Introduction

Getting	Started

Why	TypeScript

JavaScript

Equality

References

Null	vs.	Undefined

this

Closure

Number

Future	JavaScript	Now

Classes

Classes	Emit

Arrow	Functions

Rest	Parameters

let

const

Destructuring

Spread	Operator

for...of

Iterators

Template	Strings

Promise

Generators

Async	Await

Project

Compilation	Context

tsconfig.json

Which	Files?

Declaration	Spaces

2

1.5.3

1.5.3.1

1.5.3.2

1.5.4

1.5.5

1.6

1.7

1.8

1.8.1

1.8.2

1.8.3

1.8.3.1

1.8.3.2

1.8.4

1.8.5

1.8.6

1.8.7

1.8.8

1.8.9

1.8.10

1.8.11

1.8.12

1.8.13

1.8.14

1.8.15

1.8.16

1.8.17

1.8.18

1.8.19

1.8.20

1.8.21

1.8.22

1.9

1.10

Modules

File	Module	Details

globals.d.ts

Namespaces

Dynamic	Import	Expressions

Node.js	QuickStart

Browser	QuickStart

TypeScript's	Type	System

JS	Migration	Guide

@types

Ambient	Declarations

Declaration	Files

Variables

Interfaces

Enums

lib.d.ts

Functions

Callable

Type	Assertion

Freshness

Type	Guard

Literal	Types

Readonly

Generics

Type	Inference

Type	Compatibility

Never	Type

Discriminated	Unions

Index	Signatures

Moving	Types

Exception	Handling

Mixins

JSX

Options

3

1.10.1

1.10.2

1.11

1.11.1

1.12

1.12.1

1.12.2

1.12.3

1.12.4

1.12.5

1.12.6

1.12.7

1.12.8

1.12.9

1.12.10

1.12.11

1.12.12

1.12.13

1.12.14

1.12.15

1.12.16

1.12.17

1.12.18

1.12.19

1.12.20

1.12.21

1.13

1.14

1.15

1.15.1

1.15.2

1.15.2.1

1.15.2.2

noImplicitAny

strictNullChecks

Testing

Jest

TIPs

String	Based	Enums

Nominal	Typing

Stateful	Functions

Bind	is	Bad

Currying

Type	Instantiation

Lazy	Object	Literal	Initialization

Classes	are	Useful

Avoid	Export	Default

Limit	Property	Setters

null	is	bad

outFile	caution

JQuery	tips

static	constructors

singleton	pattern

Function	parameters

Truthy

Build	Toggles

Barrel

Create	Arrays

Typesafe	Event	Emitter

StyleGuide

Common	Errors

TypeScript	Compiler	Internals

Program

AST

TIP:	Visit	Children

TIP:	SyntaxKind	enum

4

1.15.2.3

1.15.3

1.15.4

1.15.4.1

1.15.5

1.15.5.1

1.15.5.2

1.15.5.3

1.15.5.4

1.15.5.5

1.15.6

1.15.6.1

1.15.6.2

1.15.7

1.15.7.1

1.15.7.2

1.15.8

Trivia

Scanner

Parser

Parser	Functions

Binder

Binder	Functions

Binder	Declarations

Binder	Container

Binder	SymbolTable

Binder	Error	Reporting

Checker

Checker	Diagnostics

Checker	Error	Reporting

Emitter

Emitter	Functions

Emitter	SourceMaps

Contributing

5

TypeScript	Deep	Dive
I've	been	looking	at	the	issues	that	turn	up	commonly	when	people	start	using	TypeScript.
This	is	based	on	the	lessons	from	Stack	Overflow	/	DefinitelyTyped	and	general	engagement
with	the	TypeScript	community.	You	can	follow	for	updates	and	don't	forget	to	★	on	GitHub	

Reviews
Thanks	for	the	wonderful	book.	Learned	a	lot	from	it.	(link)
Its	probably	the	Best	TypeScript	book	out	there.	Good	Job	(link)
Love	how	precise	and	clear	the	examples	and	explanations	are!	(link)
For	the	low,	low	price	of	free,	you	get	pages	of	pure	awesomeness.	Chock	full	of	source
code	examples	and	clear,	concise	explanations,	TypeScript	Deep	Dive	will	help	you
learn	TypeScript	development.	(link)
Just	a	big	thank	you!	Best	TypeScript	2	detailed	explanation!	(link)
This	gitbook	got	my	project	going	pronto.	Fluent	easy	read	5	stars.	(link)
I	recommend	the	online	#typescript	book	by	@basarat	you'll	love	it.(link)
I've	always	found	this	by	@basarat	really	helpful.	(link)
We	must	highlight	TypeScript	Deep	Dive,	an	open	source	book.(link)
Great	online	resource	for	learning.	(link)
Thank	you	for	putting	this	book	together,	and	for	all	your	hard	work	within	the	TypeScript
community.	(link)
TypeScript	Deep	Dive	is	one	of	the	best	technical	texts	I've	read	in	a	while.	(link)
Thanks	@basarat	for	the	TypeScript	Deep	Dive	Book.	Help	me	a	lot	with	my	first
TypeScript	project.	(link)
Thanks	to	@basarat	for	this	great	#typescript	learning	resource.	(link)
Guyz	excellent	book	on	Typescript(@typescriptlang)	by	@basarat	(link)
Leaning	on	the	legendary	@basarat's	"TypeScript	Deep	Dive"	book	heavily	at	the
moment	(link)
numTimesPointedPeopleToBasaratsTypeScriptBook++;	(link)
A	book	not	only	for	typescript,	a	good	one	for	deeper	javascript	knowledge	as	well.	link
In	my	new	job,	we're	using	@typescriptlang,	which	I	am	new	to.	This	is	insanely	helpful
huge	thanks,	@basarat!	link
Thank	you	for	writing	TypeScript	Deep	Dive.	I	have	learned	so	much.	link
Loving	@basarat's	@typescriptlang	online	book	basarat.gitbooks.io/typescript/#	loaded
with	great	recipes!	link
Microsoft	doc	is	great	already,	but	if	want	to	"dig	deeper"	into	TypeScript	I	find	this	book

Introduction

6

http://stackoverflow.com/tags/typescript/topusers
https://github.com/DefinitelyTyped/
https://github.com/TypeStrong/
https://twitter.com/basarat
https://github.com/basarat/typescript-book
https://www.gitbook.com/book/basarat/typescript/discussions/21#comment-1468279131934
https://twitter.com/thelondonjs/status/756419561570852864
https://twitter.com/joe_mighty/status/758290957280346112
https://www.nativescript.org/blog/details/free-book-typescript-deep-dive
https://www.gitbook.com/book/basarat/typescript/discussions/38
https://twitter.com/thebabellion/status/779888195559235584
https://twitter.com/markpieszak/status/788099306590969860
https://twitter.com/Brocco/status/789887640656945152
https://www.siliconrepublic.com/enterprise/typescript-programming-javascript
https://twitter.com/rdfuhr/status/790193307708076035
https://github.com/basarat/typescript-book/pull/183#issuecomment-257799713
https://twitter.com/borekb/status/794287092272599040
https://twitter.com/betolinck/status/797901548562960384
https://twitter.com/markuse1501/status/799116176815230976
https://twitter.com/deeinlove/status/813245965507260417
https://twitter.com/sitapati/status/814379404956532737
https://twitter.com/brocco/status/814227741696462848
https://www.gitbook.com/book/basarat/typescript/discussions/59
https://twitter.com/netchkin/status/855339390566096896
https://twitter.com/buctwbzs/status/857198618704355328?refsrc=email&s=11
https://twitter.com/ericliprandi/status/857608837309677568

of	great	value	link
Thanks,	this	is	a	great	book		 link
Deep	dive	to	typescript	is	awesome	in	so	many	levels.	i	find	it	very	insightful.	Thanks
link
@basarat's	intro	to	@typescriptlang	is	still	one	of	the	best	going	(if	not	THE	best)	link

Get	Started
If	you	are	here	to	read	the	book	online	get	started.

Other	Options
You	can	also	download	one	of	the	following:

EPUB	for	iPad,	iPhone,	Mac
PDF	for	Windows	and	others
MOBI	for	Kindle

Special	Thanks
All	the	amazing	contributors	

Share
Share	URL:	http://basarat.gitbooks.io/typescript/

Introduction

7

https://twitter.com/caludio/status/876729910550831104
https://twitter.com/jjwonmin/status/885666375548547073
https://twitter.com/orenmizr/status/891083492787970053
https://twitter.com/stevealee/status/953953255968698368
http://basarat.gitbooks.io/typescript/content/docs/getting-started.html
https://www.gitbook.com/download/epub/book/basarat/typescript
https://www.gitbook.com/download/pdf/book/basarat/typescript
https://www.gitbook.com/download/mobi/book/basarat/typescript
https://github.com/basarat/typescript-book/graphs/contributors
http://basarat.gitbooks.io/typescript/

Getting	Started	with	TypeScript
TypeScript	Version

Getting	Started	With	TypeScript
TypeScript	compiles	into	JavaScript.	JavaScript	is	what	you	are	actually	going	to	execute
(either	in	the	browser	or	on	the	server).	So	you	are	going	to	need	the	following:

TypeScript	compiler	(OSS	available	in	source	and	on	NPM)
A	TypeScript	editor	(you	can	use	notepad	if	you	want	but	I	use	alm	 .	Also	lots	of	other
IDES	support	it	as	well)

TypeScript	Version
Instead	of	using	the	stable	TypeScript	compiler	we	will	be	presenting	a	lot	of	new	stuff	in	this
book	that	may	not	be	associated	with	a	version	number	yet.	I	generally	recommend	people
to	use	the	nightly	version	because	the	compiler	test	suite	only	catches	more	bugs	over
time.

You	can	install	it	on	the	command	line	as

npm	install	-g	typescript@next

Getting	Started

8

https://github.com/Microsoft/TypeScript/
https://www.npmjs.com/package/typescript
https://alm-tools.github.io/
https://github.com/Microsoft/TypeScript/wiki/TypeScript-Editor-Support

And	now	the	command	line		tsc		will	be	the	latest	and	greatest.	Various	IDEs	support	it	too,
e.g.

	alm		always	ships	with	the	latest	TypeScript	version.
You	can	ask	vscode	to	use	this	version	by	creating		.vscode/settings.json		with	the
following	contents:

{

		"typescript.tsdk":	"./node_modules/typescript/lib"

}

Getting	the	Source	Code
The	source	for	this	book	is	available	in	the	books	github	repository
https://github.com/basarat/typescript-book/tree/master/code	most	of	the	code	samples	can
be	copied	into	alm	and	you	can	play	with	them	as	is.	For	code	samples	that	need	additional
setup	(e.g.	npm	modules),	we	will	link	you	to	the	code	sample	before	presenting	the	code.
e.g.

	this/will/be/the/link/to/the/code.ts	

//	This	will	be	the	code	under	discussion

With	a	dev	setup	out	of	the	way	let's	jump	into	TypeScript	syntax.

Getting	Started

9

https://github.com/basarat/typescript-book/tree/master/code

Why	TypeScript
There	are	two	main	goals	of	TypeScript:

Provide	an	optional	type	system	for	JavaScript.
Provide	planned	features	from	future	JavaScript	editions	to	current	JavaScript	engines

The	desire	for	these	goals	is	motivated	below.

The	TypeScript	type	system
You	might	be	wondering	"Why	add	types	to	JavaScript?"

Types	have	proven	ability	to	enhance	code	quality	and	understandability.	Large	teams
(Google,	Microsoft,	Facebook)	have	continually	arrived	at	this	conclusion.	Specifically:

Types	increase	your	agility	when	doing	refactoring.	It's	better	for	the	compiler	to	catch
errors	than	to	have	things	fail	at	runtime.
Types	are	one	of	the	best	forms	of	documentation	you	can	have.	The	function	signature
is	a	theorem	and	the	function	body	is	the	proof.

However	types	have	a	way	of	being	unnecessarily	ceremonious.	TypeScript	is	very
particular	about	keeping	the	barrier	to	entry	as	low	as	possible.	Here's	how:

Your	JavaScript	is	TypeScript

TypeScript	provides	compile	time	type	safety	for	your	JavaScript	code.	This	is	no	surprise
given	its	name.	The	great	thing	is	that	the	types	are	completely	optional.	Your	JavaScript
code		.js		file	can	be	renamed	to	a		.ts		file	and	TypeScript	will	still	give	you	back	valid
	.js		equivalent	to	the	original	JavaScript	file.	TypeScript	is	intentionally	and	strictly	a
superset	of	JavaScript	with	optional	Type	checking.

Types	can	be	Implicit

TypeScript	will	try	to	infer	as	much	of	the	type	information	as	it	can	in	order	to	give	you	type
safety	with	minimal	cost	of	productivity	during	code	development.	For	example,	in	the
following	example	TypeScript	will	know	that	foo	is	of	type		number		below	and	will	give	an
error	on	the	second	line	as	shown:

Why	TypeScript

10

var	foo	=	123;

foo	=	'456';	//	Error:	cannot	assign	`string`	to	`number`

//	Is	foo	a	number	or	a	string?

This	type	inference	is	well	motivated.	If	you	do	stuff	like	shown	in	this	example,	then,	in	the
rest	of	your	code,	you	cannot	be	certain	that		foo		is	a		number		or	a		string	.	Such	issues
turn	up	often	in	large	multi-file	code	bases.	We	will	deep	dive	into	the	type	inference	rules
later.

Types	can	be	Explicit

As	we've	mentioned	before,	TypeScript	will	infer	as	much	as	it	can	safely,	however	you	can
use	annotations	to:

1.	 Help	along	the	compiler,	and	more	importantly	document	stuff	for	the	next	developer
who	has	to	read	your	code	(that	might	be	future	you!).

2.	 Enforce	that	what	the	compiler	sees,	is	what	you	thought	it	should	see.	That	is	your
understanding	of	the	code	matches	an	algorithmic	analysis	of	the	code	(done	by	the
compiler).

TypeScript	uses	postfix	type	annotations	popular	in	other	optionally	annotated	languages
(e.g.	ActionScript	and	F#).

var	foo:	number	=	123;

So	if	you	do	something	wrong	the	compiler	will	error	e.g.:

var	foo:	number	=	'123';	//	Error:	cannot	assign	a	`string`	to	a	`number`

We	will	discuss	all	the	details	of	all	the	annotation	syntax	supported	by	TypeScript	in	a	later
chapter.

Types	are	structural

In	some	languages	(specifically	nominally	typed	ones)	static	typing	results	in	unnecessary
ceremony	because	even	though	you	know	that	the	code	will	work	fine	the	language
semantics	force	you	to	copy	stuff	around.	This	is	why	stuff	like	automapper	for	C#	is	vital	for
C#.	In	TypeScript	because	we	really	want	it	to	be	easy	for	JavaScript	developers	with	a

Why	TypeScript

11

http://automapper.org/

minimum	cognitive	overload,	types	are	structural.	This	means	that	duck	typing	is	a	first	class
language	construct.	Consider	the	following	example.	The	function		iTakePoint2D		will	accept
anything	that	contains	all	the	things	(x		and		y)	it	expects:

interface	Point2D	{

				x:	number;

				y:	number;

}

interface	Point3D	{

				x:	number;

				y:	number;

				z:	number;

}

var	point2D:	Point2D	=	{	x:	0,	y:	10	}

var	point3D:	Point3D	=	{	x:	0,	y:	10,	z:	20	}

function	iTakePoint2D(point:	Point2D)	{	/*	do	something	*/	}

iTakePoint2D(point2D);	//	exact	match	okay

iTakePoint2D(point3D);	//	extra	information	okay

iTakePoint2D({	x:	0	});	//	Error:	missing	information	`y`

Type	errors	do	not	prevent	JavaScript	emit

To	make	it	easy	for	you	to	migrate	your	JavaScript	code	to	TypeScript,	even	if	there	are
compilation	errors,	by	default	TypeScript	will	emit	valid	JavaScript	the	best	that	it	can.	e.g.

var	foo	=	123;

foo	=	'456';	//	Error:	cannot	assign	a	`string`	to	a	`number`

will	emit	the	following	js:

var	foo	=	123;

foo	=	'456';

So	you	can	incrementally	upgrade	your	JavaScript	code	to	TypeScript.	This	is	very	different
from	how	many	other	language	compilers	work	and	yet	another	reason	to	move	to
TypeScript.

Types	can	be	ambient

A	major	design	goal	of	TypeScript	was	to	make	it	possible	for	you	to	safely	and	easily	use
existing	JavaScript	libraries	in	TypeScript.	TypeScript	does	this	by	means	of	declaration.
TypeScript	provides	you	with	a	sliding	scale	of	how	much	or	how	little	effort	you	want	to	put

Why	TypeScript

12

in	your	declarations,	the	more	effort	you	put	the	more	type	safety	+	code	intelligence	you
get.	Note	that	definitions	for	most	of	the	popular	JavaScript	libraries	have	already	been
written	for	you	by	the	DefinitelyTyped	community	so	for	most	purposes	either:

1.	 The	definition	file	already	exists.
2.	 Or	at	the	very	least,	you	have	a	vast	list	of	well	reviewed	TypeScript	declaration

templates	already	available

As	a	quick	example	of	how	you	would	author	your	own	declaration	file,	consider	a	trivial
example	of	jquery.	By	default	(as	is	to	be	expected	of	good	JS	code)	TypeScript	expects	you
to	declare	(i.e.	use		var		somewhere)	before	you	use	a	variable

$('.awesome').show();	//	Error:	cannot	find	name	`$`

As	a	quick	fix	you	can	tell	TypeScript	that	there	is	indeed	something	called		$:

declare	var	$:	any;

$('.awesome').show();	//	Okay!

If	you	want	you	can	build	on	this	basic	definition	and	provide	more	information	to	help
protect	you	from	errors:

declare	var	$:	{

				(selector:string):	any;

};

$('.awesome').show();	//	Okay!

$(123).show();	//	Error:	selector	needs	to	be	a	string

We	will	discuss	the	details	of	creating	TypeScript	definitions	for	existing	JavaScript	in	detail
later	once	you	know	more	about	TypeScript	(e.g.	stuff	like		interface		and	the		any).

Future	JavaScript	=>	Now
TypeScript	provides	a	number	of	features	that	are	planned	in	ES6	for	current	JavaScript
engines	(that	only	support	ES5	etc).	The	typescript	team	is	actively	adding	these	features
and	this	list	is	only	going	to	get	bigger	over	time	and	we	will	cover	this	in	its	own	section.	But
just	as	a	specimen	here	is	an	example	of	a	class:

Why	TypeScript

13

https://github.com/borisyankov/DefinitelyTyped
https://jquery.com/

class	Point	{

				constructor(public	x:	number,	public	y:	number)	{

				}

				add(point:	Point)	{

								return	new	Point(this.x	+	point.x,	this.y	+	point.y);

				}

}

var	p1	=	new	Point(0,	10);

var	p2	=	new	Point(10,	20);

var	p3	=	p1.add(p2);	//	{	x:	10,	y:	30	}

and	the	lovely	fat	arrow	function:

var	inc	=	x	=>	x+1;

Summary

In	this	section	we	have	provided	you	with	the	motivation	and	design	goals	of	TypeScript.
With	this	out	of	the	way	we	can	dig	into	the	nitty	gritty	details	of	TypeScript.

Why	TypeScript

14

Your	JavaScript	is	TypeScript
There	were	(and	will	continue	to	be)	a	lot	of	competitors	in	Some	syntax	to	JavaScript
compilers.	TypeScript	is	different	from	them	in	that	Your	JavaScript	is	TypeScript.	Here's	a
diagram:

However	it	does	mean	that	you	need	to	learn	JavaScript	(the	good	news	is	you	only	need	to
learn	JavaScript).	TypeScript	is	just	standardizing	all	the	ways	you	provide	good
documentation	on	JavaScript.

Just	giving	you	a	new	syntax	doesn't	help	fix	bugs	(looking	at	you	CoffeeScript).
Creating	a	new	language	abstracts	you	too	far	from	your	runtimes,	communities
(looking	at	you	Dart).

TypeScript	is	just	JavaScript	with	docs.

JavaScript

15

Making	JavaScript	Better
TypeScript	will	try	to	protect	you	from	portions	of	JavaScript	that	never	worked	(so	you	don't
need	to	remember	this	stuff):

[]	+	[];	//	JavaScript	will	give	you	""	(which	makes	little	sense),	TypeScript	will	er

ror

//

//	other	things	that	are	nonsensical	in	JavaScript

//	-	don't	give	a	runtime	error	(making	debugging	hard)

//	-	but	TypeScript	will	give	a	compile	time	error	(making	debugging	unnecessary)

//

{}	+	[];	//	JS	:	0,	TS	Error

[]	+	{};	//	JS	:	"[object	Object]",	TS	Error

{}	+	{};	//	JS	:	NaN	or	[object	Object][object	Object]	depending	upon	browser,	TS	Error

"hello"	-	1;	//	JS	:	NaN,	TS	Error

function	add(a,b)	{

		return

				a	+	b;	//	JS	:	undefined,	TS	Error	'unreachable	code	detected'

}

Essentially	TypeScript	is	linting	JavaScript.	Just	doing	a	better	job	at	it	than	other	linters	that
don't	have	type	information.

You	still	need	to	learn	JavaScript
That	said	TypeScript	is	very	pragmatic	about	the	fact	that	you	do	write	JavaScript	so	there
are	some	things	about	JavaScript	that	you	still	need	to	know	in	order	to	not	be	caught	off-
guard.	Let's	discuss	them	next.

Note:	TypeScript	is	a	superset	of	JavaScript.	Just	with	documentation	that	can	actually
be	used	by	compilers	/	IDEs	;)

JavaScript

16

Equality
One	thing	to	be	careful	about	in	JavaScript	is	the	difference	between		==		and		===	.	As
JavaScript	tries	to	be	resilient	against	programming	errors		==		tries	to	do	type	coercion
between	two	variables	e.g.	converts	a	string	to	a	number	so	that	you	can	compare	with	a
number	as	shown	below:

console.log(5	==	"5");	//	true			,	TS	Error

console.log(5	===	"5");	//	false	,	TS	Error

However	the	choices	JavaScript	makes	are	not	always	ideal.	For	example	in	the	below
example	the	first	statement	is	false	because		""		and		"0"		are	both	strings	and	are	clearly
not	equal.	However	in	the	second	case	both		0		and	the	empty	string	("")	are	falsy	(i.e.
behave	like		false)	and	are	therefore	equal	with	respect	to		==	.	Both	statements	are	false
when	you	use		===	.

console.log(""	==	"0");	//	false

console.log(0	==	"");	//	true

console.log(""	===	"0");	//	false

console.log(0	===	"");	//	false

Note	that		string	==	number		and		string	===	number		are	both	compile	time	errors	in
TypeScript,	so	you	don't	normally	need	to	worry	about	this.

Similar	to		==		vs.		===	,	there	is		!=		vs.		!==	

So	ProTip:	Always	use		===		and		!==		except	for	null	checks,	which	we	cover	later.

Structural	Equality
If	you	want	to	compare	two	objects	for	structural	equality		==	/	===		are	not	sufficient.	e.g.

console.log({a:123}	==	{a:123});	//	False

console.log({a:123}	===	{a:123});	//	False

To	do	such	checks	use	the	deep-equal	npm	package	e.g.

Equality

17

https://www.npmjs.com/package/deep-equal

import	*	as	deepEqual	from	"deep-equal";

console.log(deepEqual({a:123},{a:123}));	//	True

Equality

18

References
Beyond	literals,	any	Object	in	JavaScript	(including	functions,	arrays,	regexp	etc)	are
references.	This	means	the	following

Mutations	are	across	all	references

var	foo	=	{};

var	bar	=	foo;	//	bar	is	a	reference	to	the	same	object

foo.baz	=	123;

console.log(bar.baz);	//	123

Equality	is	for	references

var	foo	=	{};

var	bar	=	foo;	//	bar	is	a	reference

var	baz	=	{};	//	baz	is	a	*new	object*	distinct	from	`foo`

console.log(foo	===	bar);	//	true

console.log(foo	===	baz);	//	false

References

19

Null	and	Undefined
Fact	is	you	will	need	to	deal	with	both.	Just	check	for	either	with		==		check.

///	Imagine	you	are	doing	`foo.bar	==	undefined`	where	bar	can	be	one	of:

console.log(undefined	==	undefined);	//	true

console.log(null	==	undefined);	//	true

console.log(0	==	undefined);	//	false

console.log(''	==	undefined);	//	false

console.log(false	==	undefined);	//	false

Recommend		==	null		to	check	for	both		undefined		or		null	.	You	generally	don't	want	to
make	a	distinction	between	the	two.

undefined
Remember	how	I	said	you	should	use		==	null	.	Of	course	you	do	(cause	I	just	said	it	^).
Don't	use	it	for	root	level	things.	In	strict	mode	if	you	use		foo		and		foo		is	undefined	you
get	a		ReferenceError		exception	and	the	whole	call	stack	unwinds.

You	should	use	strict	mode	...	and	in	fact	the	TS	compiler	will	insert	it	for	you	if	you	use
modules	...	more	on	those	later	in	the	book	so	you	don't	have	to	be	explicit	about	it	:)

So	to	check	if	a	variable	is	defined	or	not	at	a	global	level	you	normally	use		typeof	:

if	(typeof	someglobal	!==	'undefined')	{

		//	someglobal	is	now	safe	to	use

		console.log(someglobal);

}

Null	vs.	Undefined

20

this
Any	access	to		this		keyword	within	a	function	is	actually	controlled	by	how	the	function	is
actually	called.	It	is	commonly	referred	to	as	the	“calling	context.”

Here	is	an	example:

function	foo()	{

		console.log(this);

}

foo();	//	logs	out	the	global	e.g.	`window`	in	browsers

let	bar	=	{

		foo

}

bar.foo();	//	Logs	out	`bar`	as	`foo`	was	called	on	`bar`

So	be	mindful	of	your	usage	of		this	.	If	you	want	to	disconnect		this		in	a	class	from	the
calling	context	use	an	arrow	function,	more	on	that	later.

this

21

Closure
The	best	thing	that	JavaScript	ever	got	was	closures.	A	function	in	JavaScript	has	access	to
any	variables	defined	in	the	outer	scope.	Closures	are	best	explained	with	examples:

function	outerFunction(arg)	{

				var	variableInOuterFunction	=	arg;

				function	bar()	{

								console.log(variableInOuterFunction);	//	Access	a	variable	from	the	outer	scope

				}

				//	Call	the	local	function	to	demonstrate	that	it	has	access	to	arg

				bar();

}

outerFunction("hello	closure");	//	logs	hello	closure!

You	can	see	that	the	inner	function	has	access	to	a	variable	(variableInOuterFunction)	from
the	outer	scope.	The	variables	in	the	outer	function	have	been	closed	by	(or	bound	in)	the
inner	function.	Hence	the	term	closure.	The	concept	in	itself	is	simple	enough	and	pretty
intuitive.

Now	the	awesome	part:	The	inner	function	can	access	the	variables	from	the	outer	scope
even	after	the	outer	function	has	returned.	This	is	because	the	variables	are	still	bound	in
the	inner	function	and	not	dependent	on	the	outer	function.	Again	let's	look	at	an	example:

function	outerFunction(arg)	{

				var	variableInOuterFunction	=	arg;

				return	function()	{

								console.log(variableInOuterFunction);

				}

}

var	innerFunction	=	outerFunction("hello	closure!");

//	Note	the	outerFunction	has	returned

innerFunction();	//	logs	hello	closure!

Reason	why	it's	awesome

It	allows	you	to	compose	objects	easily	e.g.	the	revealing	module	pattern:

Closure

22

function	createCounter()	{

				let	val	=	0;

				return	{

								increment()	{	val++	},

								getVal()	{	return	val	}

				}

}

let	counter	=	createCounter();

counter.increment();

console.log(counter.getVal());	//	1

counter.increment();

console.log(counter.getVal());	//	2

At	a	high	level	it	is	also	what	makes	something	like	Node.js	possible	(don't	worry	if	it	doesn't
click	in	your	brain	right	now.	It	will	eventually):

//	Pseudo	code	to	explain	the	concept

server.on(function	handler(req,	res)	{

				loadData(req.id).then(function(data)	{

								//	the	`res`	has	been	closed	over	and	is	available

								res.send(data);

				})

});

Closure

23

Number
Whenever	you	are	handling	numbers	in	any	programming	language	you	need	to	be	aware	of
the	idiosyncrasies	of	how	the	language	handles	numbers.	Here	are	few	critical	pieces	of
information	about	numbers	in	JavaScript	that	you	should	be	aware	of.

Core	Type

JavaScript	has	only	one	number	type.	It	is	a	double-precision	64-bit		Number	.	Below	we
discuss	its	limitations	along	with	a	recommended	solution.

Decimal

For	those	familiar	with	doubles	/	float	in	other	languages,	you	would	know	that	binary	floating
point	numbers	do	not	map	correctly	to	Decimal	numbers.	A	trivial	(and	famous)	example	with
JavaScript's	built	in	numbers	is	shown	below:

console.log(.1	+	.2);	//	0.30000000000000004

For	true	decimal	math	use		big.js		mentioned	below.

Integer

The	integer	limits	represented	by	the	built	in	number	type	are		Number.MAX_SAFE_INTEGER		and
	Number.MIN_SAFE_INTEGER	.

console.log({max:	Number.MAX_SAFE_INTEGER,	min:	Number.MIN_SAFE_INTEGER});

//	{max:	9007199254740991,	min:	-9007199254740991}

Safe	in	this	context	refers	to	the	fact	that	the	value	cannot	be	the	result	of	a	rounding	error.

The	unsafe	values	are		+1	/	-1		away	from	these	safe	values	and	any	amount	of	addition	/
subtraction	will	round	the	result	to	those	unsafe	values.

console.log(Number.MAX_SAFE_INTEGER	+	20	===	Number.MAX_SAFE_INTEGER	+	1);	//	true!

console.log(Number.MIN_SAFE_INTEGER	-	20	===	Number.MIN_SAFE_INTEGER	-	1);	//	true!

To	check	safety	you	can	use	ES6		Number.isSafeInteger	:

Number

24

//	Safe	value

console.log(Number.isSafeInteger(Number.MAX_SAFE_INTEGER));	//	true

//	Unsafe	value

console.log(Number.isSafeInteger(Number.MAX_SAFE_INTEGER	+	1));	//	false

//	Because	it	might	have	been	rounded	to	it	due	to	overflow

console.log(Number.isSafeInteger(Number.MAX_SAFE_INTEGER	+	10));	//	false

For	arbitrary	precision	integer	math	use		big.js		mentioned	below.

big.js

Whenever	you	use	math	for	financial	calculations	(e.g.	GST	calculation,	money	with	cents
addition	etc)	use	a	library	like	big.js	which	is	designed	for

Perfect	decimal	math.
Safe	out	of	bound	integer	values

Installation	is	simple:

npm	install	big.js	@types/big.js

Quick	Usage	example:

import	{	Big	}	from	'big.js';

export	const	foo	=	new	Big('111.11111111111111111111');

export	const	bar	=	foo.plus(new	Big('0.00000000000000000001'));

//	To	get	a	number:

const	x:	number	=	Number(bar.toString());	//	Looses	the	precision

Do	not	use	this	library	for	math	used	for	UI	/	performance	intensive	purposes	e.g	charts,
canvas	drawing	etc.

NaN

When	some	number	calculation	is	not	representable	by	a	valid	number,	JavaScript	returns	a
special		NaN		value.	A	classic	example	is	imaginary	numbers:

console.log(Math.sqrt(-1));	//	NaN

Number

25

https://github.com/MikeMcl/big.js/

Note:	Equality	checks	don't	work	on		NaN		values.	Instead	use		Number.isNaN		instead:

//	Don't	do	this

console.log(NaN	===	NaN);	//	false!!

//	Do	this

console.log(Number.isNaN(NaN));	//	true

Infinity

The	outer	bounds	of	values	representable	in	Number	are	available	as	static
	Number.MAX_VALUE		and		-Number.MAX_VALUE		values.

console.log(Number.MAX_VALUE);		//	1.7976931348623157e+308

console.log(-Number.MAX_VALUE);	//	-1.7976931348623157e+308

Values	outside	the	range	where	precision	isn't	changed	are	clamped	to	these	limits	e.g.

console.log(Number.MAX_VALUE	+	1	==	Number.MAX_VALUE);			//	true!

console.log(-Number.MAX_VALUE	-	1	==	-Number.MAX_VALUE);	//	true!

Values	outside	the	range	where	precision	is	changed	resolve	to	special	values		Infinity	/	-
Infinity		e.g.

console.log(Number.MAX_VALUE	+	10**1000);		//	Infinity

console.log(-Number.MAX_VALUE	-	10**1000);	//	-Infinity

Of-course,	these	special	infinity	values	also	show	up	with	arithmetic	that	requires	it	e.g.

console.log(1	/	0);	//	Infinity

console.log(-1	/	0);	//	-Infinity

You	can	use	these		Infinity		values	manually	or	using	static	members	of	the		Number		class
as	shown	below:

console.log(Number.POSITIVE_INFINITY	===	Infinity);		//	true

console.log(Number.NEGATIVE_INFINITY	===	-Infinity);	//	true

Fortunately	comparison	operators	(<		/		>)	work	reliably	on	infinity	values:

Number

26

console.log(Infinity	>		1);	//	true

console.log(-Infinity	<	-1);	//	true

Infinitesimal

The	smallest	non-zero	value	representable	in	Number	is	available	as	static
	Number.MIN_VALUE	

console.log(Number.MIN_VALUE);		//	5e-324

Values	smaller	than		MIN_VALUE		("underflow	values")	are	converted	to	0.

console.log(Number.MIN_VALUE	/	10);		//	0

Further	intuition:	Just	like	values	bigger	than		Number.MAX_VALUE		get	clamped	to
INFINITY,	values	smaller	than		Number.MIN_VALUE		get	clamped	to		0	.

Number

27

Future	JavaScript:	Now
One	of	the	main	selling	points	of	TypeScript	is	that	it	allows	you	to	use	a	bunch	of	features
from	ES6	and	beyond	in	current	(ES3	and	ES5	level)	JavaScript	engines	(like	current
browsers	and	Node.js).	Here	we	deep	dive	into	why	these	features	are	useful	followed	by
how	these	features	are	implemented	in	TypeScript.

Note:	Not	all	of	these	features	are	slated	for	immediate	addition	to	JavaScript	but	provide
great	utility	to	your	code	organization	and	maintenance.	Also	note	that	you	are	free	to	ignore
any	of	the	constructs	that	don't	make	sense	for	your	project,	although	you	will	end	up	using
most	of	them	eventually	;)

Future	JavaScript	Now

28

Classes

The	reason	why	it's	important	to	have	classes	in	JavaScript	as	a	first	class	item	is	that:

1.	 Classes	offer	a	useful	structural	abstraction
2.	 Provides	a	consistent	way	for	developers	to	use	classes	instead	of	every	framework

(emberjs,reactjs	etc)	coming	up	with	their	own	version.
3.	 Object	Oriented	Developers	already	understand	classes.

Finally	JavaScript	developers	can	have		class	.	Here	we	have	a	basic	class	called	Point:

class	Point	{

				x:	number;

				y:	number;

				constructor(x:	number,	y:	number)	{

								this.x	=	x;

								this.y	=	y;

				}

				add(point:	Point)	{

								return	new	Point(this.x	+	point.x,	this.y	+	point.y);

				}

}

var	p1	=	new	Point(0,	10);

var	p2	=	new	Point(10,	20);

var	p3	=	p1.add(p2);	//	{x:10,y:30}

This	class	generates	the	following	JavaScript	on	ES5	emit:

var	Point	=	(function	()	{

				function	Point(x,	y)	{

								this.x	=	x;

								this.y	=	y;

				}

				Point.prototype.add	=	function	(point)	{

								return	new	Point(this.x	+	point.x,	this.y	+	point.y);

				};

				return	Point;

})();

This	is	a	fairly	idiomatic	traditional	JavaScript	class	pattern	now	as	a	first	class	language
construct.

Inheritance

Classes

29

Classes	in	TypeScript	(like	other	languages)	support	single	inheritance	using	the		extends	
keyword	as	shown	below:

class	Point3D	extends	Point	{

				z:	number;

				constructor(x:	number,	y:	number,	z:	number)	{

								super(x,	y);

								this.z	=	z;

				}

				add(point:	Point3D)	{

								var	point2D	=	super.add(point);

								return	new	Point3D(point2D.x,	point2D.y,	this.z	+	point.z);

				}

}

If	you	have	a	constructor	in	your	class	then	you	must	call	the	parent	constructor	from	your
constructor	(TypeScript	will	point	this	out	to	you).	This	ensures	that	the	stuff	that	it	needs	to
set	on		this		gets	set.	Followed	by	the	call	to		super		you	can	add	any	additional	stuff	you
want	to	do	in	your	constructor	(here	we	add	another	member		z).

Note	that	you	override	parent	member	functions	easily	(here	we	override		add)	and	still	use
the	functionality	of	the	super	class	in	your	members	(using		super.		syntax).

Statics

TypeScript	classes	support		static		properties	that	are	shared	by	all	instances	of	the	class.
A	natural	place	to	put	(and	access)	them	is	on	the	class	itself	and	that	is	what	TypeScript
does:

class	Something	{

				static	instances	=	0;

				constructor()	{

								Something.instances++;

				}

}

var	s1	=	new	Something();

var	s2	=	new	Something();

console.log(Something.instances);	//	2

You	can	have	static	members	as	well	as	static	functions.

Access	Modifiers

Classes

30

TypeScript	supports	access	modifiers		public	,	private		and		protected		which	determine
the	accessibility	of	a		class		member	as	shown	below:

accessible	on 	public	 	protected	 	private	

class yes yes yes

class	children yes yes no

class	instances yes no no

If	an	access	modifier	is	not	specified	it	is	implicitly		public		as	that	matches	the	convenient
nature	of	JavaScript	.

Note	that	at	runtime	(in	the	generated	JS)	these	have	no	significance	but	will	give	you
compile	time	errors	if	you	use	them	incorrectly.	An	example	of	each	is	shown	below:

class	FooBase	{

				public	x:	number;

				private	y:	number;

				protected	z:	number;

}

//	EFFECT	ON	INSTANCES

var	foo	=	new	FooBase();

foo.x;	//	okay

foo.y;	//	ERROR	:	private

foo.z;	//	ERROR	:	protected

//	EFFECT	ON	CHILD	CLASSES

class	FooChild	extends	FooBase	{

				constructor()	{

						super();

								this.x;	//	okay

								this.y;	//	ERROR:	private

								this.z;	//	okay

				}

}

As	always	these	modifiers	work	for	both	member	properties	and	member	functions.

Abstract

	abstract		can	be	thought	of	as	an	access	modifier.	We	present	it	separately	because
opposed	to	the	previously	mentioned	modifiers	it	can	be	on	a		class		as	well	as	any	member
of	the	class.	Having	an		abstract		modifier	primarily	means	that	such	functionality	cannot	be
directly	invoked	and	a	child	class	must	provide	the	functionality.

	abstract		classes	cannot	be	directly	instantiated.	Instead	the	user	must	create	some

Classes

31

	class		that	inherits	from	the		abstract	class	.
	abstract		members	cannot	be	directly	accessed	and	a	child	class	must	provide	the
functionality.

Constructor	is	optional

The	class	does	not	need	to	have	a	constructor.	e.g.	the	following	is	perfectly	fine.

class	Foo	{}

var	foo	=	new	Foo();

Define	using	constructor

Having	a	member	in	a	class	and	initializing	it	like	below:

class	Foo	{

				x:	number;

				constructor(x:number)	{

								this.x	=	x;

				}

}

is	such	a	common	pattern	that	TypeScript	provides	a	shorthand	where	you	can	prefix	the
member	with	an	access	modifier	and	it	is	automatically	declared	on	the	class	and	copied
from	the	constructor.	So	the	previous	example	can	be	re-written	as	(notice		public
x:number):

class	Foo	{

				constructor(public	x:number)	{

				}

}

Property	initializer

This	is	a	nifty	feature	supported	by	TypeScript	(from	ES7	actually).	You	can	initialize	any
member	of	the	class	outside	the	class	constructor,	useful	to	provide	default	(notice		members
=	[])

Classes

32

class	Foo	{

				members	=	[];		//	Initialize	directly

				add(x)	{

								this.members.push(x);

				}

}

Classes

33

What's	up	with	the	IIFE

The	js	generated	for	the	class	could	have	been:

function	Point(x,	y)	{

				this.x	=	x;

				this.y	=	y;

}

Point.prototype.add	=	function	(point)	{

				return	new	Point(this.x	+	point.x,	this.y	+	point.y);

};

The	reason	its	wrapped	in	an	Immediately-Invoked	Function	Expression	(IIFE)	i.e.

(function	()	{

				//	BODY

				return	Point;

})();

has	to	do	with	inheritance.	It	allows	TypeScript	to	capture	the	base	class	as	a	variable
	_super		e.g.

var	Point3D	=	(function	(_super)	{

				__extends(Point3D,	_super);

				function	Point3D(x,	y,	z)	{

								_super.call(this,	x,	y);

								this.z	=	z;

				}

				Point3D.prototype.add	=	function	(point)	{

								var	point2D	=	_super.prototype.add.call(this,	point);

								return	new	Point3D(point2D.x,	point2D.y,	this.z	+	point.z);

				};

				return	Point3D;

})(Point);

Notice	that	the	IIFE	allows	TypeScript	to	easily	capture	the	base	class		Point		in	a		_super	
variable	and	that	is	used	consistently	in	the	class	body.

	__extends	

You	will	notice	that	as	soon	as	you	inherit	a	class	TypeScript	also	generates	the	following
function:

Classes	Emit

34

var	__extends	=	this.__extends	||	function	(d,	b)	{

				for	(var	p	in	b)	if	(b.hasOwnProperty(p))	d[p]	=	b[p];

				function	__()	{	this.constructor	=	d;	}

				__.prototype	=	b.prototype;

				d.prototype	=	new	__();

};

Here		d		refers	to	the	derived	class	and		b		refers	to	the	base	class.	This	function	does	two
things:

1.	 copies	the	static	members	of	the	base	class	onto	the	child	class	i.e.		for	(var	p	in	b)
if	(b.hasOwnProperty(p))	d[p]	=	b[p];	

2.	 sets	up	the	child	class	function's	prototype	to	optionally	lookup	members	on	the	parent's
	proto		i.e.	effectively		d.prototype.__proto__	=	b.prototype	

People	rarely	have	trouble	understanding	1,	but	many	people	struggle	with	2.	So	an
explanation	is	in	order.

	d.prototype.__proto__	=	b.prototype	

After	having	tutored	many	people	about	this	I	find	the	following	explanation	to	be	simplest.
First	we	will	explain	how	the	code	from		__extends		is	equivalent	to	the	simple
	d.prototype.__proto__	=	b.prototype	,	and	then	why	this	line	in	itself	is	significant.	To
understand	all	this	you	need	to	know	these	things:

1.	 	__proto__	

2.	 	prototype	

3.	 effect	of		new		on		this		inside	the	called	function
4.	 effect	of		new		on		prototype		and		__proto__	

All	objects	in	JavaScript	contain	a		__proto__		member.	This	member	is	often	not	accessible
in	older	browsers	(sometimes	documentation	refers	to	this	magical	property	as
	[[prototype]]).	It	has	one	objective:	If	a	property	is	not	found	on	an	object	during	lookup
(e.g.		obj.property)	then	it	is	looked	up	at		obj.__proto__.property	.	If	it	is	still	not	found
then		obj.__proto__.__proto__.property		till	either:	it	is	found	or	the	latest		.__proto__		itself	is
null.	This	explains	why	JavaScript	is	said	to	support	prototypal	inheritance	out	of	the	box.
This	is	shown	in	the	following	example,	which	you	can	run	in	the	chrome	console	or	Node.js:

Classes	Emit

35

var	foo	=	{}

//	setup	on	foo	as	well	as	foo.__proto__

foo.bar	=	123;

foo.__proto__.bar	=	456;

console.log(foo.bar);	//	123

delete	foo.bar;	//	remove	from	object

console.log(foo.bar);	//	456

delete	foo.__proto__.bar;	//	remove	from	foo.__proto__

console.log(foo.bar);	//	undefined

Cool	so	you	understand		__proto__	.	Another	useful	information	is	that	all		function	s	in
JavaScript	have	a	property	called		prototype		and	that	it	has	a	member		constructor	
pointing	back	to	the	function.	This	is	shown	below:

function	Foo()	{	}

console.log(Foo.prototype);	//	{}	i.e.	it	exists	and	is	not	undefined

console.log(Foo.prototype.constructor	===	Foo);	//	Has	a	member	called	`constructor`	p

ointing	back	to	the	function

Now	let's	look	at	effect	of		new		on		this		inside	the	called	function.	Basically		this		inside
the	called	function	is	going	to	point	to	the	newly	created	object	that	will	be	returned	from	the
function.	It's	simple	to	see	if	you	mutate	a	property	on		this		inside	the	function:

function	Foo()	{

				this.bar	=	123;

}

//	call	with	the	new	operator

var	newFoo	=	new	Foo();

console.log(newFoo.bar);	//	123

Now	the	only	other	thing	you	need	to	know	is	that	calling		new		on	a	function	assigns	the
	prototype		of	the	function	to	the		__proto__		of	the	newly	created	object	that	is	returned	from
the	function	call.	Here	is	the	code	you	can	run	to	completely	understand	it:

function	Foo()	{	}

var	foo	=	new	Foo();

console.log(foo.__proto__	===	Foo.prototype);	//	True!

That's	it.	Now	look	at	the	following	straight	out	of		__extends	.	I've	taken	the	liberty	to	number
these	lines:

Classes	Emit

36

1		function	__()	{	this.constructor	=	d;	}

2			__.prototype	=	b.prototype;

3			d.prototype	=	new	__();

Reading	this	function	in	reverse	the		d.prototype	=	new	__()		on	line	3	effectively	means
	d.prototype	=	{__proto__	:	__.prototype}		(because	of	the	effect	of		new		on		prototype		and
	__proto__),	combining	it	with	the	previous	line	(i.e.	line	2		__.prototype	=	b.prototype;)	you
get		d.prototype	=	{__proto__	:	b.prototype}	.

But	wait,	we	wanted		d.prototype.__proto__		i.e.	just	the	proto	changed	and	maintain	the	old
	d.prototype.constructor	.	This	is	where	the	significance	of	the	first	line	(i.e.		function	__()	{
this.constructor	=	d;	})	comes	in.	Here	we	will	effectively	have		d.prototype	=	{__proto__	:
__.prototype,	d.constructor	=	d}		(because	of	the	effect	of		new		on		this		inside	the	called
function).	So,	since	we	restore		d.prototype.constructor	,	the	only	thing	we	have	truly
mutated	is	the		__proto__		hence		d.prototype.__proto__	=	b.prototype	.

	d.prototype.__proto__	=	b.prototype		significance

The	significance	is	that	it	allows	you	to	add	member	functions	to	a	child	class	and	inherit
others	from	the	base	class.	This	is	demonstrated	by	the	following	simple	example:

function	Animal()	{	}

Animal.prototype.walk	=	function	()	{	console.log('walk')	};

function	Bird()	{	}

Bird.prototype.__proto__	=	Animal.prototype;

Bird.prototype.fly	=	function	()	{	console.log('fly')	};

var	bird	=	new	Bird();

bird.walk();

bird.fly();

Basically		bird.fly		will	be	looked	up	from		bird.__proto__.fly		(remember	that		new		makes
the		bird.__proto__		point	to		Bird.prototype)	and		bird.walk		(an	inherited	member)	will	be
looked	up	from		bird.__proto__.__proto__.walk		(as		bird.__proto__	==	Bird.prototype		and
	bird.__proto__.__proto__		==		Animal.prototype).

Classes	Emit

37

Arrow	Functions
Tip:	Arrow	Function	Need
Tip:	Arrow	Function	Danger
Tip:	Libraries	that	use		this	
Tip:	Arrow	Function	inheritance
Tip:	Quick	object	return

Arrow	Functions

Lovingly	called	the	fat	arrow	(because		->		is	a	thin	arrow	and		=>		is	a	fat	arrow)	and	also
called	a	lambda	function	(because	of	other	languages).	Another	commonly	used	feature	is
the	fat	arrow	function		()=>something	.	The	motivation	for	a	fat	arrow	is:

1.	 You	don't	need	to	keep	typing		function	
2.	 It	lexically	captures	the	meaning	of		this	
3.	 It	lexically	captures	the	meaning	of		arguments	

For	a	language	that	claims	to	be	functional,	in	JavaScript	you	tend	to	be	typing		function	
quite	a	lot.	The	fat	arrow	makes	it	simple	for	you	to	create	a	function

var	inc	=	(x)=>x+1;

	this		has	traditionally	been	a	pain	point	in	JavaScript.	As	a	wise	man	once	said	"I	hate
JavaScript	as	it	tends	to	lose	the	meaning	of		this		all	too	easily".	Fat	arrows	fix	it	by
capturing	the	meaning	of		this		from	the	surrounding	context.	Consider	this	pure	JavaScript
class:

function	Person(age)	{

				this.age	=	age;

				this.growOld	=	function()	{

								this.age++;

				}

}

var	person	=	new	Person(1);

setTimeout(person.growOld,1000);

setTimeout(function()	{	console.log(person.age);	},2000);	//	1,	should	have	been	2

If	you	run	this	code	in	the	browser		this		within	the	function	is	going	to	point	to		window	
because		window		is	going	to	be	what	executes	the		growOld		function.	Fix	is	to	use	an	arrow
function:

Arrow	Functions

38

function	Person(age)	{

				this.age	=	age;

				this.growOld	=	()	=>	{

								this.age++;

				}

}

var	person	=	new	Person(1);

setTimeout(person.growOld,1000);

setTimeout(function()	{	console.log(person.age);	},2000);	//	2

The	reason	why	this	works	is	the	reference	to		this		is	captured	by	the	arrow	function	from
outside	the	function	body.	This	is	equivalent	to	the	following	JavaScript	code	(which	is	what
you	would	write	yourself	if	you	didn't	have	TypeScript):

function	Person(age)	{

				this.age	=	age;

				var	_this	=	this;		//	capture	this

				this.growOld	=	function()	{

								_this.age++;			//	use	the	captured	this

				}

}

var	person	=	new	Person(1);

setTimeout(person.growOld,1000);

setTimeout(function()	{	console.log(person.age);	},2000);	//	2

Note	that	since	you	are	using	TypeScript	you	can	be	even	sweeter	in	syntax	and	combine
arrows	with	classes:

class	Person	{

				constructor(public	age:number)	{}

				growOld	=	()	=>	{

								this.age++;

				}

}

var	person	=	new	Person(1);

setTimeout(person.growOld,1000);

setTimeout(function()	{	console.log(person.age);	},2000);	//	2

A	sweet	video	about	this	pattern	

Tip:	Arrow	Function	Need

Arrow	Functions

39

https://egghead.io/lessons/typescript-make-usages-of-this-safe-in-class-methods

Beyond	the	terse	syntax,	you	only	need	to	use	the	fat	arrow	if	you	are	going	to	give	the
function	to	someone	else	to	call.	Effectively:

var	growOld	=	person.growOld;

//	Then	later	someone	else	calls	it:

growOld();

If	you	are	going	to	call	it	yourself,	i.e.

person.growOld();

then		this		is	going	to	be	the	correct	calling	context	(in	this	example		person).

Tip:	Arrow	Function	Danger

In	fact	if	you	want		this		to	be	the	calling	context	you	should	not	use	the	arrow	function.	This
is	the	case	with	callbacks	used	by	libraries	like	jquery,	underscore,	mocha	and	others.	If	the
documentation	mentions	functions	on		this		then	you	should	probably	just	use	a		function	
instead	of	a	fat	arrow.	Similarly	if	you	plan	to	use		arguments		don't	use	an	arrow	function.

Tip:	Arrow	functions	with	libraries	that	use		this	

Many	libraries	do	this	e.g.		jQuery		iterables	(one	example	http://api.jquery.com/jquery.each/)
will	use		this		to	pass	you	the	object	that	it	is	currently	iterating	over.	In	this	case	if	you	want
to	access	the	library	passed		this		as	well	as	the	surrounding	context	just	use	a	temp
variable	like		_self		like	you	would	in	the	absence	of	arrow	functions.

let	_self	=	this;

something.each(function()	{

				console.log(_self);	//	the	lexically	scoped	value

				console.log(this);	//	the	library	passed	value

});

Tip:	Arrow	functions	and	inheritance

If	you	have	an	instance	method	as	an	arrow	function	then	it	goes	on		this	.	Since	there	is
only	one		this		such	functions	cannot	participate	in	a	call	to		super		(super		only	works	on
prototype	members).	You	can	easily	get	around	it	by	creating	a	copy	of	the	method	before
overriding	it	in	the	child.

Arrow	Functions

40

http://api.jquery.com/jquery.each/

class	Adder	{

				constructor(public	a:	number)	{}

				//	This	function	is	now	safe	to	pass	around

				add	=	(b:	number):	number	=>	{

								return	this.a	+	b;

				}

}

class	ExtendedAdder	extends	Adder	{

				//	Create	a	copy	of	parent	before	creating	our	own

				private	superAdd	=	this.add;

				//	Now	create	our	override

				add	=	(b:	number):	number	=>	{

								return	this.superAdd(b);

				}

}

Tip:	Quick	object	return

Sometimes	you	need	a	function	that	just	returns	a	simple	object	literal.	However,	something
like

//	WRONG	WAY	TO	DO	IT

var	foo	=	()	=>	{

				bar:	123

};

is	parsed	as	a	block	containing	a	JavaScript	Label	by	JavaScript	runtimes	(cause	of	the
JavaScript	specification).

If	that	doesn't	make	sense,	don't	worry,	as	you	get	a	nice	compiler	error	from	TypeScript
saying	"unused	label"	anyways.	Labels	are	an	old	(and	mostly	unused)	JavaScript
feature	that	you	can	ignore	as	a	modern	GOTO	considered	bad	experienced	developer

You	can	fix	it	by	surrounding	the	object	literal	with		()	:

//	Correct	

var	foo	=	()	=>	({

				bar:	123

});

Arrow	Functions

41

Rest	Parameters

Rest	parameters	(denoted	by		...argumentName		for	the	last	argument)	allow	you	to	quickly
accept	multiple	arguments	in	your	function	and	get	them	as	an	array.	This	is	demonstrated	in
the	below	example.

function	iTakeItAll(first,	second,	...allOthers)	{

				console.log(allOthers);

}

iTakeItAll('foo',	'bar');	//	[]

iTakeItAll('foo',	'bar',	'bas',	'qux');	//	['bas','qux']

Rest	parameters	can	be	used	in	any	function	be	it		function	/	()=>	/	class	member	.

Rest	Parameters

42

let

	var		Variables	in	JavaScript	are	function	scoped.	This	is	different	from	many	other
languages	(C#	/	Java	etc.)	where	the	variables	are	block	scoped.	If	you	bring	a	block	scoped
mindset	to	JavaScript,	you	would	expect	the	following	to	print		123	,	instead	it	will	print		456	:

var	foo	=	123;

if	(true)	{

				var	foo	=	456;

}

console.log(foo);	//	456

This	is	because		{		does	not	create	a	new	variable	scope.	The	variable		foo		is	the	same
inside	the	if	block	as	it	is	outside	the	if	block.	This	is	a	common	source	of	errors	in
JavaScript	programming.	This	is	why	TypeScript	(and	ES6)	introduces	the		let		keyword	to
allow	you	to	define	variables	with	true	block	scope.	That	is	if	you	use		let		instead	of		var	
you	get	a	true	unique	element	disconnected	from	what	you	might	have	defined	outside	the
scope.	The	same	example	is	demonstrated	with		let	:

let	foo	=	123;

if	(true)	{

				let	foo	=	456;

}

console.log(foo);	//	123

Another	place	where		let		would	save	you	from	errors	is	loops.

var	index	=	0;

var	array	=	[1,	2,	3];

for	(let	index	=	0;	index	<	array.length;	index++)	{

				console.log(array[index]);

}

console.log(index);	//	0

In	all	sincerity	we	find	it	better	to	use		let		whenever	possible	as	it	leads	to	lesser	surprises
for	new	and	existing	multi-lingual	developers.

Functions	create	a	new	scope

Since	we	mentioned	it,	we'd	like	to	demonstrate	that	functions	create	a	new	variable	scope
in	JavaScript.	Consider	the	following:

let

43

var	foo	=	123;

function	test()	{

				var	foo	=	456;

}

test();

console.log(foo);	//	123

This	behaves	as	you	would	expect.	Without	this	it	would	be	very	difficult	to	write	code	in
JavaScript.

Generated	JS

The	JS	generated	by	TypeScript	is	simple	renaming	of	the		let		variable	if	a	similar	name
already	exists	in	the	surrounding	scope.	E.g.	the	following	is	generated	as	is	with	a	simple
replacement	of		var		with		let	:

if	(true)	{

				let	foo	=	123;

}

//	becomes	//

if	(true)	{

				var	foo	=	123;

}

However	if	the	variable	name	is	already	taken	by	the	surrounding	scope	then	a	new	variable
name	is	generated	as	shown	(notice		_foo):

var	foo	=	'123';

if	(true)	{

				let	foo	=	123;

}

//	becomes	//

var	foo	=	'123';

if	(true)	{

				var	_foo	=	123;	//	Renamed

}

Switch

You	can	wrap	your		case		bodies	in		{}		to	reuse	variable	names	reliably	in	different		case	
statement	as	shown	below:

let

44

switch	(name)	{

				case	'x':	{

								let	x	=	5;

								//	...

								break;

				}

				case	'y':	{

								let	x	=	10;

								//	...

								break;

				}

}

let	in	closures

A	common	programming	interview	question	for	a	JavaScript	developer	is	what	is	the	log	of
this	simple	file:

var	funcs	=	[];

//	create	a	bunch	of	functions

for	(var	i	=	0;	i	<	3;	i++)	{

				funcs.push(function()	{

								console.log(i);

				})

}

//	call	them

for	(var	j	=	0;	j	<	3;	j++)	{

				funcs[j]();

}

One	would	have	expected	it	to	be		0,1,2	.	Surprisingly	it	is	going	to	be		3		for	all	three
functions.	Reason	is	that	all	three	functions	are	using	the	variable		i		from	the	outer	scope
and	at	the	time	we	execute	them	(in	the	second	loop)	the	value	of		i		will	be		3		(that's	the
termination	condition	for	the	first	loop).

A	fix	would	be	to	create	a	new	variable	in	each	loop	specific	to	that	loop	iteration.	As	we've
learnt	before	we	can	create	a	new	variable	scope	by	creating	a	new	function	and
immediately	executing	it	(i.e.	the	IIFE	pattern	from	classes		(function()	{	/*	body	*/	})();)
as	shown	below:

let

45

var	funcs	=	[];

//	create	a	bunch	of	functions

for	(var	i	=	0;	i	<	3;	i++)	{

				(function()	{

								var	local	=	i;

								funcs.push(function()	{

												console.log(local);

								})

				})();

}

//	call	them

for	(var	j	=	0;	j	<	3;	j++)	{

				funcs[j]();

}

Here	the	functions	close	over	(hence	called	a		closure)	the	local	variable	(conveniently
named		local)	and	use	that	instead	of	the	loop	variable		i	.

Note	that	closures	come	with	a	performance	impact	(they	need	to	store	the	surrounding
state).

The	ES6		let		keyword	in	a	loop	would	have	the	same	behavior	as	the	previous	example:

var	funcs	=	[];

//	create	a	bunch	of	functions

for	(let	i	=	0;	i	<	3;	i++)	{	//	Note	the	use	of	let

				funcs.push(function()	{

								console.log(i);

				})

}

//	call	them

for	(var	j	=	0;	j	<	3;	j++)	{

				funcs[j]();

}

Using	a		let		instead	of		var		creates	a	variable		i		unique	to	each	loop	iteration.

Summary

	let		is	extremely	useful	to	have	for	the	vast	majority	of	code.	It	can	greatly	enhance	your
code	readability	and	decrease	the	chance	of	a	programming	error.

let

46

const

	const		is	a	very	welcomed	addition	offered	by	ES6	/	TypeScript.	It	allows	you	to	be
immutable	with	variables.	This	is	good	from	a	documentation	as	well	as	a	runtime
perspective.	To	use	const	just	replace		var		with		const	:

const	foo	=	123;

The	syntax	is	much	better	(IMHO)	than	other	languages	that	force	the	user	to	type
something	like		let	constant	foo		i.e.	a	variable	+	behavior	specifier.

	const		is	a	good	practice	for	both	readability	and	maintainability	and	avoids	using	magic
literals	e.g.

//	Low	readability

if	(x	>	10)	{

}

//	Better!

const	maxRows	=	10;

if	(x	>	maxRows)	{

}

const	declarations	must	be	initialized

The	following	is	a	compiler	error:

const	foo;	//	ERROR:	const	declarations	must	be	initialized

Left	hand	side	of	assignment	cannot	be	a	constant

Constants	are	immutable	after	creation,	so	if	you	try	to	assign	them	to	a	new	value	it	is	a
compiler	error:

const	foo	=	123;

foo	=	456;	//	ERROR:	Left-hand	side	of	an	assignment	expression	cannot	be	a	constant

Block	Scoped

A		const		is	block	scoped	like	we	saw	with		let	:

const

47

const	foo	=	123;

if	(true)	{

				const	foo	=	456;	//	Allowed	as	its	a	new	variable	limited	to	this	`if`	block

}

Deep	immutability

A		const		works	with	object	literals	as	well,	as	far	as	protecting	the	variable	reference	is
concerned:

const	foo	=	{	bar:	123	};

foo	=	{	bar:	456	};	//	ERROR	:	Left	hand	side	of	an	assignment	expression	cannot	be	a	

constant

However	it	still	allows	sub	properties	of	objects	to	be	mutated,	as	shown	below:

const	foo	=	{	bar:	123	};

foo.bar	=	456;	//	Allowed!

console.log(foo);	//	{	bar:	456	}

For	this	reason	I	recommend	using		const		with	primitives	or	immutable	data	structures.

const

48

Destructuring

TypeScript	supports	the	following	forms	of	Destructuring	(literally	named	after	de-structuring
i.e.	breaking	up	the	structure):

1.	 Object	Destructuring
2.	 Array	Destructuring

It	is	easy	to	think	of	destructuring	as	an	inverse	of	structuring.	The	method	of	structuring	in
JavaScript	is	the	object	literal:

var	foo	=	{

				bar:	{

								bas:	123

				}

};

Without	the	awesome	structuring	support	built	into	JavaScript,	creating	new	objects	on	the
fly	would	indeed	be	very	cumbersome.	Destructuring	brings	the	same	level	of	convenience
to	getting	data	out	of	a	structure.

Object	Destructuring

Destructuring	is	useful	because	it	allows	you	to	do	in	a	single	line,	what	would	otherwise
require	multiple	lines.	Consider	the	following	case:

var	rect	=	{	x:	0,	y:	10,	width:	15,	height:	20	};

//	Destructuring	assignment

var	{x,	y,	width,	height}	=	rect;

console.log(x,	y,	width,	height);	//	0,10,15,20

rect.x	=	10;

({x,	y,	width,	height}	=	rect);	//	assign	to	existing	variables	using	outer	parentheses

console.log(x,	y,	width,	height);	//	10,10,15,20

Here	in	the	absence	of	destructuring	you	would	have	to	pick	off		x,y,width,height		one	by
one	from		rect	.

To	assign	an	extracted	variable	to	a	new	variable	name	you	can	do	the	following:

Destructuring

49

//	structure

const	obj	=	{"some	property":	"some	value"};

//	destructure

const	{"some	property":	someProperty}	=	obj;

console.log(someProperty	===	"some	value");	//	true

Additionally	you	can	get	deep	data	out	of	a	structure	using	destructuring.	This	is	shown	in
the	following	example:

var	foo	=	{	bar:	{	bas:	123	}	};

var	{bar:	{bas}}	=	foo;	//	Effectively	`var	bas	=	foo.bar.bas;`

Object	Destructuring	with	rest

You	can	pick	up	any	number	of	elements	from	the	an	object	and	get	an	object	of	the
remaining	elements	using	object	destructuring	with	rest.

var	{w,	x,	...remaining}	=	{w:	1,	x:	2,	y:	3,	z:	4};

console.log(w,	x,	remaining);	//	1,	2,	{y:3,z:4}

A	common	use	case	is	also	to	ignore	certain	properties.	For	example:

//	Example	function

function	goto(point2D:	{x:	number,	y:	number})	{

		//	Imagine	some	code	that	might	break

		//	if	you	pass	in	an	object

		//	with	more	items	than	desired

}

//	Some	point	you	get	from	somewhere

const	point3D	=	{x:	1,	y:	2,	z:	3};

/**	A	nifty	use	of	rest	to	remove	extra	properties	*/

const	{	z,	...point2D	}	=	point3D;

goto(point2D);

Array	Destructuring

A	common	programming	question:	"How	to	swap	two	variables	without	using	a	third	one?".
The	TypeScript	solution:

var	x	=	1,	y	=	2;

[x,	y]	=	[y,	x];

console.log(x,	y);	//	2,1

Destructuring

50

Note	that	array	destructuring	is	effectively	the	compiler	doing	the		[0],	[1],	...		and	so	on
for	you.	There	is	no	guarantee	that	these	values	will	exist.

Array	Destructuring	with	rest

You	can	pick	up	any	number	of	elements	from	the	array	and	get	an	array	of	the	remaining
elements	using	array	destructuring	with	rest.

var	[x,	y,	...remaining]	=	[1,	2,	3,	4];

console.log(x,	y,	remaining);	//	1,	2,	[3,4]

Array	Destructuring	with	ignores

You	can	ignore	any	index	by	simply	leaving	its	location	empty	i.e.		,	,		in	the	left	hand	side
of	the	assignment.	For	example:

var	[x,	,	...remaining]	=	[1,	2,	3,	4];

console.log(x,	remaining);	//	1,	[3,4]

JS	Generation

The	JavaScript	generation	for	non	ES6	targets	simply	involves	creating	temporary	variables,
just	like	you	would	have	to	do	yourself	without	native	language	support	for	destructuring	e.g.

var	x	=	1,	y	=	2;

[x,	y]	=	[y,	x];

console.log(x,	y);	//	2,1

//	becomes	//

var	x	=	1,	y	=	2;

_a	=	[y,x],	x	=	_a[0],	y	=	_a[1];

console.log(x,	y);

var	_a;

Summary

Destructuring	can	make	your	code	more	readable	and	maintainable	by	reducing	the	line
count	and	making	the	intent	clear.	Array	destructuring	can	allow	you	to	use	arrays	as	though
they	were	tuples.

Destructuring

51

Destructuring

52

Spread	Operator

The	main	objective	of	the	spread	operator	is	to	spread	the	elements	of	an	array	or	object.
This	is	best	explained	with	examples.

Apply

A	common	use	case	is	to	spread	an	array	into	the	function	arguments.	Previously	you	would
need	to	use		Function.prototype.apply	:

function	foo(x,	y,	z)	{	}

var	args	=	[0,	1,	2];

foo.apply(null,	args);

Now	you	can	do	this	simply	by	prefixing	the	arguments	with		...		as	shown	below:

function	foo(x,	y,	z)	{	}

var	args	=	[0,	1,	2];

foo(...args);

Here	we	are	spreading	the		args		array	into	positional		arguments	.

Destructuring

We've	already	seen	one	usage	of	this	in	destructuring:

var	[x,	y,	...remaining]	=	[1,	2,	3,	4];

console.log(x,	y,	remaining);	//	1,	2,	[3,4]

The	motivation	here	is	to	simply	make	it	easy	for	you	to	capture	the	remaining	elements	of
an	array	when	destructuring.

Array	Assignment

The	spread	operator	allows	you	to	easily	place	an	expanded	version	of	an	array	into	another
array.	This	is	demonstrated	in	the	example	below:

var	list	=	[1,	2];

list	=	[...list,	3,	4];

console.log(list);	//	[1,2,3,4]

Spread	Operator

53

Object	spread

You	can	also	spread	an	object	into	another	object.	A	common	use	case	is	to	simply	add	a
property	to	an	object	without	mutating	the	original:

const	point2D	=	{x:	1,	y:	2};

/**	Create	a	new	object	by	using	all	the	point2D	props	along	with	z	*/

const	point3D	=	{...point2D,	z:	3};

Another	common	use	case	is	a	simple	shallow	extend:

const	foo	=	{a:	1,	b:	2};

const	bar	=	{c:	1,	d:	2};

/**	Merge	foo	and	bar	*/

const	fooBar	=	{...foo,	...bar};

Summary

	apply		is	something	that	you	would	inevitably	do	in	JavaScript,	so	it's	good	to	have	a	better
syntax	where	you	don't	have	that	ugly		null		for	the		this		argument.	Also	having	a
dedicated	syntax	for	moving	arrays	out	of	(destructuring)	or	into	(assignment)	other	arrays
provides	neat	syntax	for	when	you	are	doing	array	processing	on	partial	arrays.

Spread	Operator

54

for...of

A	common	error	experienced	by	beginning	JavaScript	developers	is	that		for...in		for	an
array	does	not	iterate	over	the	array	items.	Instead	it	iterates	over	the	keys	of	the	object
passed	in.	This	is	demonstrated	in	the	below	example.	Here	you	would	expect		9,2,5		but
you	get	the	indexes		0,1,2	:

var	someArray	=	[9,	2,	5];

for	(var	item	in	someArray)	{

				console.log(item);	//	0,1,2

}

This	is	one	of	the	reasons	why		for...of		exists	in	TypeScript	(and	ES6).	The	following
iterates	over	the	array	correctly	logging	out	the	members	as	expected:

var	someArray	=	[9,	2,	5];

for	(var	item	of	someArray)	{

				console.log(item);	//	9,2,5

}

Similarly	TypeScript	has	no	trouble	going	through	a	string	character	by	character	using
	for...of	:

var	hello	=	"is	it	me	you're	looking	for?";

for	(var	char	of	hello)	{

				console.log(char);	//	is	it	me	you're	looking	for?

}

JS	Generation

For	pre	ES6	targets	TypeScript	will	generate	the	standard		for	(var	i	=	0;	i	<	list.length;
i++)		kind	of	loop.	For	example	here's	what	gets	generated	for	our	previous	example:

for...of

55

var	someArray	=	[9,	2,	5];

for	(var	item	of	someArray)	{

				console.log(item);

}

//	becomes	//

for	(var	_i	=	0;	_i	<	someArray.length;	_i++)	{

				var	item	=	someArray[_i];

				console.log(item);

}

You	can	see	that	using		for...of		makes	intent	clearer	and	also	decreases	the	amount	of
code	you	have	to	write	(and	variable	names	you	need	to	come	up	with).

Limitations

If	you	are	not	targeting	ES6	or	above,	the	generated	code	assumes	the	property		length	
exists	on	the	object	and	that	the	object	can	be	indexed	via	numbers	e.g.		obj[2]	.	So	it	is
only	supported	on		string		and		array		for	these	legacy	JS	engines.

If	TypeScript	can	see	that	you	are	not	using	an	array	or	a	string	it	will	give	you	a	clear	error
"is	not	an	array	type	or	a	string	type";

let	articleParagraphs	=	document.querySelectorAll("article	>	p");

//	Error:	Nodelist	is	not	an	array	type	or	a	string	type

for	(let	paragraph	of	articleParagraphs)	{

				paragraph.classList.add("read");

}

Use		for...of		only	for	stuff	that	you	know	to	be	an	array	or	a	string.	Note	that	this	limitation
might	be	removed	in	a	future	version	of	TypeScript.

Summary

You	would	be	surprised	at	how	many	times	you	will	be	iterating	over	the	elements	of	an
array.	The	next	time	you	find	yourself	doing	that,	give		for...of		a	go.	You	might	just	make
the	next	person	who	reviews	your	code	happy.

for...of

56

Iterators

Iterator	itself	is	not	a	TypeScript	or	ES6	feature,	Iterator	is	a	Behavioral	Design	Pattern
common	for	Object	oriented	programming	languages.	It	is,	generally,	an	object	which
implements	the	following	interface:

interface	Iterator<T>	{

				next(value?:	any):	IteratorResult<T>;

				return?(value?:	any):	IteratorResult<T>;

				throw?(e?:	any):	IteratorResult<T>;

}

This	interface	allows	to	retrieve	a	value	from	some	collection	or	sequence	which	belongs	to
the	object.

The		IteratorResult		is	simply	a		value	+	done		pair:

interface	IteratorResult<T>	{

				done:	boolean;

				value:	T;

}

Imagine	that	there's	an	object	of	some	frame,	which	includes	the	list	of	components	of	which
this	frame	consists.	With	Iterator	interface	it	is	possible	to	retrieve	components	from	this
frame	object	like	below:

Iterators

57

class	Component	{

		constructor	(public	name:	string)	{}

}

class	Frame	implements	Iterator<Component>	{

		private	pointer	=	0;

		constructor(public	name:	string,	public	components:	Component[])	{}

		public	next():	IteratorResult<Component>	{

				if	(this.pointer	<	this.components.length)	{

						return	{

								done:	false,

								value:	this.components[this.pointer++]

						}

				}	else	{

						return	{

								done:	true

						}

				}

		}

}

let	frame	=	new	Frame("Door",	[new	Component("top"),	new	Component("bottom"),	new	Comp

onent("left"),	new	Component("right")]);

let	iteratorResult1	=	frame.next();	//{	done:	false,	value:	Component	{	name:	'top'	}	}

let	iteratorResult2	=	frame.next();	//{	done:	false,	value:	Component	{	name:	'bottom'

	}	}

let	iteratorResult3	=	frame.next();	//{	done:	false,	value:	Component	{	name:	'left'	}

	}

let	iteratorResult4	=	frame.next();	//{	done:	false,	value:	Component	{	name:	'right'	

}	}

let	iteratorResult5	=	frame.next();	//{	done:	true	}

//It	is	possible	to	access	the	value	of	iterator	result	via	the	value	property:

let	component	=	iteratorResult1.value;	//Component	{	name:	'top'	}

Again.	Iterator	itself	is	not	a	TypeScript	feature,	this	code	could	work	without	implementing
Iterator	and	IteratorResult	interfaces	explicitly.	However	it	is	very	helpful	to	use	these
common	ES6	interfaces	for	code	consistency.

Ok,	Nice,	but	could	be	more	helpful.	ES6	defines	the	iterable	protocol	which	includes
[Symbol.iterator]		symbol		if	Iterable	interface	implemented:

Iterators

58

//...

class	Frame	implements	Iterable<Component>	{

		constructor(public	name:	string,	public	components:	Component[])	{}

		[Symbol.iterator]()	{

				let	pointer	=	0;

				let	components	=	this.components;

				return	{

						next():	IteratorResult<Component>	{

								if	(pointer	<	components.length)	{

										return	{

												done:	false,

												value:	components[pointer++]

										}

								}	else	{

										return	{

												done:	true,

												value:	null

										}

								}

						}

				}

		}

}

let	frame	=	new	Frame("Door",	[new	Component("top"),	new	Component("bottom"),	new	Comp

onent("left"),	new	Component("right")]);

for	(let	cmp	of	frame)	{

		console.log(cmp);

}

Unfortunately		frame.next()		won't	work	with	this	pattern	and	it	also	looks	a	bit	clunky.
IterableIterator	interface	to	the	rescue!

Iterators

59

//...

class	Frame	implements	IterableIterator<Component>	{

		private	pointer	=	0;

		constructor(public	name:	string,	public	components:	Component[])	{}

		public	next():	IteratorResult<Component>	{

				if	(this.pointer	<	this.components.length)	{

						return	{

								done:	false,

								value:	this.components[this.pointer++]

						}

				}	else	{

						return	{

								done:	true,

								value:	null

						}

				}

		}

		[Symbol.iterator]():	IterableIterator<Component>	{

				return	this;

		}

}

//...

Both		frame.next()		and		for		cycle	now	work	fine	with	IterableIterator	interface.

Iterator	does	not	have	to	iterate	a	finite	value.	The	typical	example	is	a	Fibonacci	sequence:

Iterators

60

class	Fib	implements	IterableIterator<number>	{

		protected	fn1	=	0;

		protected	fn2	=	1;

		constructor(protected	maxValue?:	number)	{}

		public	next():	IteratorResult<number>	{

				var	current	=	this.fn1;

				this.fn1	=	this.fn2;

				this.fn2	=	current	+	this.fn1;

				if	(this.maxValue	!=	null	&&	current	>=	this.maxValue)	{

						return	{

								done:	true,

								value:	null

						}	

				}	

				return	{

						done:	false,

						value:	current

				}

		}

		[Symbol.iterator]():	IterableIterator<number>	{

				return	this;

		}

}

let	fib	=	new	Fib();

fib.next()	//{	done:	false,	value:	0	}

fib.next()	//{	done:	false,	value:	1	}

fib.next()	//{	done:	false,	value:	1	}

fib.next()	//{	done:	false,	value:	2	}

fib.next()	//{	done:	false,	value:	3	}

fib.next()	//{	done:	false,	value:	5	}

let	fibMax50	=	new	Fib(50);

console.log(Array.from(fibMax50));	//	[0,	1,	1,	2,	3,	5,	8,	13,	21,	34]

let	fibMax21	=	new	Fib(21);

for(let	num	of	fibMax21)	{

		console.log(num);	//Prints	fibonacci	sequence	0	to	21

}

Building	code	with	iterators	for	ES5	target

Iterators

61

Code	examples	above	require	ES6	target,	however	it	could	work	with	ES5	target	as	well	if
target	JS	engine	supports		Symbol.iterator	.	This	can	be	achieved	by	using	ES6	lib	with
ES5	target	(add	es6.d.ts	to	your	project)	to	make	it	compile.	Compiled	code	should	work	in
node	4+,	Google	Chrome	and	in	some	other	browsers.

Iterators

62

Template	Strings

Syntactically	these	are	strings	that	use	backticks	(i.e.	`)	instead	of	single	(')	or	double	(")
quotes.	The	motivation	of	Template	Strings	is	three	fold:

String	Interpolation
Multiline	Strings
Tagged	Templates

String	Interpolation

Another	common	use	case	is	when	you	want	to	generate	some	string	out	of	some	static
strings	+	some	variables.	For	this	you	would	need	some	templating	logic	and	this	is	where
template	strings	get	their	name	from.	Here's	how	you	would	potentially	generate	an	html
string	previously:

var	lyrics	=	'Never	gonna	give	you	up';

var	html	=	'<div>'	+	lyrics	+	'</div>';

Now	with	template	strings	you	can	just	do:

var	lyrics	=	'Never	gonna	give	you	up';

var	html	=	`<div>${lyrics}</div>`;

Note	that	any	placeholder	inside	the	interpolation	(${		and		})	is	treated	as	a	JavaScript
expression	and	evaluated	as	such	e.g.	you	can	do	fancy	math.

console.log(`1	and	1	make	${1	+	1}`);

Multiline	Strings

Ever	wanted	to	put	a	newline	in	a	JavaScript	string?	Perhaps	you	wanted	to	embed	some
lyrics?	You	would	have	needed	to	escape	the	literal	newline	using	our	favorite	escape
character		\	,	and	then	put	a	new	line	into	the	string	manually		\n		at	the	next	line.	This	is
shown	below:

var	lyrics	=	"Never	gonna	give	you	up	\

\nNever	gonna	let	you	down";

With	TypeScript	you	can	just	use	a	template	string:

Template	Strings

63

var	lyrics	=	`Never	gonna	give	you	up

Never	gonna	let	you	down`;

Tagged	Templates

You	can	place	a	function	(called	a		tag)	before	the	template	string	and	it	gets	the
opportunity	to	pre	process	the	template	string	literals	plus	the	values	of	all	the	placeholder
expressions	and	return	a	result.	A	few	notes:

All	the	static	literals	are	passed	in	as	an	array	for	the	first	argument.
All	the	values	of	the	placeholders	expressions	are	passed	in	as	the	remaining
arguments.	Most	commonly	you	would	just	use	rest	parameters	to	convert	these	into	an
array	as	well.

Here	is	an	example	where	we	have	a	tag	function	(named		htmlEscape)	that	escapes	the
html	from	all	the	placeholders:

var	say	=	"a	bird	in	hand	>	two	in	the	bush";

var	html	=	htmlEscape	`<div>	I	would	just	like	to	say	:	${say}</div>`;

//	a	sample	tag	function

function	htmlEscape(literals,	...placeholders)	{

				let	result	=	"";

				//	interleave	the	literals	with	the	placeholders

				for	(let	i	=	0;	i	<	placeholders.length;	i++)	{

								result	+=	literals[i];

								result	+=	placeholders[i]

												.replace(/&/g,	'&')

												.replace(/"/g,	'"')

												.replace(/'/g,	''')

												.replace(/</g,	'<')

												.replace(/>/g,	'>');

				}

				//	add	the	last	literal

				result	+=	literals[literals.length	-	1];

				return	result;

}

Generated	JS

For	pre	ES6	compile	targets	the	code	is	fairly	simple.	Multiline	strings	become	escaped
strings.	String	interpolation	becomes	string	concatenation.	Tagged	Templates	become
function	calls.

Template	Strings

64

Summary

Multiline	strings	and	string	interpolation	are	just	great	things	to	have	in	any	language.	It's
great	that	you	can	now	use	them	in	your	JavaScript	(thanks	TypeScript!).	Tagged	templates
allow	you	to	create	powerful	string	utilities.

Template	Strings

65

Promise
The		Promise		class	is	something	that	exists	in	many	modern	JavaScript	engines	and	can	be
easily	polyfilled.	The	main	motivation	for	promises	is	to	bring	synchronous	style	error
handling	to	Async	/	Callback	style	code.

Callback	style	code

In	order	to	fully	appreciate	promises	let's	present	a	simple	sample	that	proves	the	difficulty	of
creating	reliable	Async	code	with	just	callbacks.	Consider	the	simple	case	of	authoring	an
async	version	of	loading	JSON	from	a	file.	A	synchronous	version	of	this	can	be	quite
simple:

import	fs	=	require('fs');

function	loadJSONSync(filename:	string)	{

				return	JSON.parse(fs.readFileSync(filename));

}

//	good	json	file

console.log(loadJSONSync('good.json'));

//	non-existent	file,	so	fs.readFileSync	fails

try	{

				console.log(loadJSONSync('absent.json'));

}

catch	(err)	{

				console.log('absent.json	error',	err.message);

}

//	invalid	json	file	i.e.	the	file	exists	but	contains	invalid	JSON	so	JSON.parse	fails

try	{

				console.log(loadJSONSync('invalid.json'));

}

catch	(err)	{

				console.log('invalid.json	error',	err.message);

}

There	are	three	behaviors	of	this	simple		loadJSONSync		function,	a	valid	return	value,	a	file
system	error	or	a	JSON.parse	error.	We	handle	the	errors	with	a	simple	try/catch	as	you	are
used	to	when	doing	synchronous	programming	in	other	languages.	Now	let's	make	a	good

Promise

66

https://github.com/stefanpenner/es6-promise

async	version	of	such	a	function.	A	decent	initial	attempt	with	a	trivial	error	checking	logic
would	be	as	follows:

import	fs	=	require('fs');

//	A	decent	initial	attempt	but	not	correct.	We	explain	the	reasons	below

function	loadJSON(filename:	string,	cb:	(error:	Error,	data:	any)	=>	void)	{

				fs.readFile(filename,	function	(err,	data)	{

								if	(err)	cb(err);

								else	cb(null,	JSON.parse(data));

				});

}

Simple	enough,	it	takes	a	callback,	passes	any	file	system	errors	to	the	callback.	If	no	file
system	errors,	it	returns	the		JSON.parse		result.	A	few	points	to	keep	in	mind	when	working
with	async	functions	based	on	callbacks	are:

1.	 Never	call	the	callback	twice.
2.	 Never	throw	an	error.

This	simple	function	however	fails	to	accommodate	for	point	two.	In	fact		JSON.parse		throws
an	error	if	it	is	passed	bad	JSON	and	the	callback	never	gets	called	and	the	application
crashes.	This	is	demonstrated	in	the	below	example:

import	fs	=	require('fs');

//	A	decent	initial	attempt	but	not	correct

function	loadJSON(filename:	string,	cb:	(error:	Error,	data:	any)	=>	void)	{

				fs.readFile(filename,	function	(err,	data)	{

								if	(err)	cb(err);

								else	cb(null,	JSON.parse(data));

				});

}

//	load	invalid	json

loadJSON('invalid.json',	function	(err,	data)	{

				//	This	code	never	executes

				if	(err)	console.log('bad.json	error',	err.message);

				else	console.log(data);

});

A	naive	attempt	at	fixing	this	would	be	to	wrap	the		JSON.parse		in	a	try	catch	as	shown	in	the
below	example:

Promise

67

import	fs	=	require('fs');

//	A	better	attempt	...	but	still	not	correct

function	loadJSON(filename:	string,	cb:	(error:	Error)	=>	void)	{

				fs.readFile(filename,	function	(err,	data)	{

								if	(err)	{

												cb(err);

								}

								else	{

												try	{

																cb(null,	JSON.parse(data));

												}

												catch	(err)	{

																cb(err);

												}

								}

				});

}

//	load	invalid	json

loadJSON('invalid.json',	function	(err,	data)	{

				if	(err)	console.log('bad.json	error',	err.message);

				else	console.log(data);

});

However	there	is	a	subtle	bug	in	this	code.	If	the	callback	(cb),	and	not		JSON.parse	,
throws	an	error,	since	we	wrapped	it	in	a		try	/	catch	,	the		catch		executes	and	we	call	the
callback	again	i.e.	the	callback	gets	called	twice!	This	is	demonstrated	in	the	example	below:

Promise

68

import	fs	=	require('fs');

function	loadJSON(filename:	string,	cb:	(error:	Error)	=>	void)	{

				fs.readFile(filename,	function	(err,	data)	{

								if	(err)	{

												cb(err);

								}

								else	{

												try	{

																cb(null,	JSON.parse(data));

												}

												catch	(err)	{

																cb(err);

												}

								}

				});

}

//	a	good	file	but	a	bad	callback	...	gets	called	again!

loadJSON('good.json',	function	(err,	data)	{

				console.log('our	callback	called');

				if	(err)	console.log('Error:',	err.message);

				else	{

								//	let's	simulate	an	error	by	trying	to	access	a	property	on	an	undefined	vari

able

								var	foo;

								//	The	following	code	throws	`Error:	Cannot	read	property	'bar'	of	undefined`

								console.log(foo.bar);

				}

});

$	node	asyncbadcatchdemo.js

our	callback	called

our	callback	called

Error:	Cannot	read	property	'bar'	of	undefined

This	is	because	our		loadJSON		function	wrongfully	wrapped	the	callback	in	a		try		block.
There	is	a	simple	lesson	to	remember	here.

Simple	lesson:	Contain	all	your	sync	code	in	a	try	catch,	except	when	you	call	the
callback.

Following	this	simple	lesson,	we	have	a	fully	functional	async	version	of		loadJSON		as	shown
below:

Promise

69

import	fs	=	require('fs');

function	loadJSON(filename:	string,	cb:	(error:	Error)	=>	void)	{

				fs.readFile(filename,	function	(err,	data)	{

								if	(err)	return	cb(err);

								//	Contain	all	your	sync	code	in	a	try	catch

								try	{

												var	parsed	=	JSON.parse(data);

								}

								catch	(err)	{

												return	cb(err);

								}

								//	except	when	you	call	the	callback

								return	cb(null,	parsed);

				});

}

Admittedly	this	is	not	hard	to	follow	once	you've	done	it	a	few	times	but	nonetheless	it’s	a	lot
of	boiler	plate	code	to	write	simply	for	good	error	handling.	Now	let's	look	at	a	better	way	to
tackle	asynchronous	JavaScript	using	promises.

Creating	a	Promise
A	promise	can	be	either		pending		or		fulfilled		or		rejected	.

Promise

70

Let's	look	at	creating	a	promise.	It's	a	simple	matter	of	calling		new		on		Promise		(the
promise	constructor).	The	promise	constructor	is	passed		resolve		and		reject		functions	for
settling	the	promise	state:

const	promise	=	new	Promise((resolve,	reject)	=>	{

				//	the	resolve	/	reject	functions	control	the	fate	of	the	promise

});

Subscribing	to	the	fate	of	the	promise

The	promise	fate	can	be	subscribed	to	using		.then		(if	resolved)	or		.catch		(if	rejected).

const	promise	=	new	Promise((resolve,	reject)	=>	{

				resolve(123);

});

promise.then((res)	=>	{

				console.log('I	get	called:',	res	===	123);	//	I	get	called:	true

});

promise.catch((err)	=>	{

				//	This	is	never	called

});

const	promise	=	new	Promise((resolve,	reject)	=>	{

				reject(new	Error("Something	awful	happened"));

});

promise.then((res)	=>	{

				//	This	is	never	called

});

promise.catch((err)	=>	{

				console.log('I	get	called:',	err.message);	//	I	get	called:	'Something	awful	happe

ned'

});

TIP:	Promise	Shortcuts

Quickly	creating	an	already	resolved	promise:		Promise.resolve(result)	
Quickly	creating	an	already	rejected	promise:		Promise.reject(error)	

Chain-ability	of	Promises

The	chain-ability	of	promises	is	the	heart	of	the	benefit	that	promises	provide.	Once	you
have	a	promise,	from	that	point	on,	you	use	the		then		function	to	create	a	chain	of
promises.

If	you	return	a	promise	from	any	function	in	the	chain,		.then		is	only	called	once	the

Promise

71

value	is	resolved:

Promise.resolve(123)

				.then((res)	=>	{

								console.log(res);	//	123

								return	456;

				})

				.then((res)	=>	{

								console.log(res);	//	456

								return	Promise.resolve(123);	//	Notice	that	we	are	returning	a	Promise

				})

				.then((res)	=>	{

								console.log(res);	//	123	:	Notice	that	this	`then`	is	called	with	the	resolved

	value

								return	123;

				})

You	can	aggregate	the	error	handling	of	any	preceding	portion	of	the	chain	with	a	single
	catch	:

//	Create	a	rejected	promise

Promise.reject(new	Error('something	bad	happened'))

				.then((res)	=>	{

								console.log(res);	//	not	called

								return	456;

				})

				.then((res)	=>	{

								console.log(res);	//	not	called

								return	123;

				})

				.then((res)	=>	{

								console.log(res);	//	not	called

								return	123;

				})

				.catch((err)	=>	{

								console.log(err.message);	//	something	bad	happened

				});

The		catch		actually	returns	a	new	promise	(effectively	creating	a	new	promise	chain):

Promise

72

//	Create	a	rejected	promise

Promise.reject(new	Error('something	bad	happened'))

				.then((res)	=>	{

								console.log(res);	//	not	called

								return	456;

				})

				.catch((err)	=>	{

								console.log(err.message);	//	something	bad	happened

								return	123;

				})

				.then((res)	=>	{

								console.log(res);	//	123

				})

Any	synchronous	errors	thrown	in	a		then		(or		catch)	result	in	the	returned	promise	to
fail:

Promise.resolve(123)

				.then((res)	=>	{

								throw	new	Error('something	bad	happened');	//	throw	a	synchronous	error

								return	456;

				})

				.then((res)	=>	{

								console.log(res);	//	never	called

								return	Promise.resolve(789);

				})

				.catch((err)	=>	{

								console.log(err.message);	//	something	bad	happened

				})

Only	the	relevant	(nearest	tailing)		catch		is	called	for	a	given	error	(as	the	catch	starts	a
new	promise	chain).

Promise

73

Promise.resolve(123)

				.then((res)	=>	{

								throw	new	Error('something	bad	happened');	//	throw	a	synchronous	error

								return	456;

				})

				.catch((err)	=>	{

								console.log('first	catch:	'	+	err.message);	//	something	bad	happened

								return	123;

				})

				.then((res)	=>	{

								console.log(res);	//	123

								return	Promise.resolve(789);

				})

				.catch((err)	=>	{

								console.log('second	catch:	'	+	err.message);	//	never	called

				})

A		catch		is	only	called	in	case	of	an	error	in	the	preceeding	chain:

Promise.resolve(123)

				.then((res)	=>	{

								return	456;

				})

				.catch((err)	=>	{

								console.log("HERE");	//	never	called

				})

The	fact	that:

errors	jump	to	the	tailing		catch		(and	skip	any	middle		then		calls)	and
synchronous	errors	also	get	caught	by	any	tailing		catch	.

effectively	provides	us	with	an	async	programming	paradigm	that	allows	better	error
handling	than	raw	callbacks.	More	on	this	below.

TypeScript	and	promises

The	great	thing	about	TypeScript	is	that	it	understands	the	flow	of	values	through	a	promise
chain:

Promise

74

Promise.resolve(123)

				.then((res)	=>	{

									//	res	is	inferred	to	be	of	type	`number`

									return	true;

				})

				.then((res)	=>	{

								//	res	is	inferred	to	be	of	type	`boolean`

				});

Of	course	it	also	understands	unwrapping	any	function	calls	that	might	return	a	promise:

function	iReturnPromiseAfter1Second():	Promise<string>	{

				return	new	Promise((resolve)	=>	{

								setTimeout(()	=>	resolve("Hello	world!"),	1000);

				});

}

Promise.resolve(123)

				.then((res)	=>	{

								//	res	is	inferred	to	be	of	type	`number`

								return	iReturnPromiseAfter1Second();	//	We	are	returning	`Promise<string>`

				})

				.then((res)	=>	{

								//	res	is	inferred	to	be	of	type	`string`

								console.log(res);	//	Hello	world!

				});

Converting	a	callback	style	function	to	return	a	promise

Just	wrap	the	function	call	in	a	promise	and

	reject		if	an	error	occurs,
	resolve		if	it	is	all	good.

E.g.	let's	wrap		fs.readFile	:

import	fs	=	require('fs');

function	readFileAsync(filename:	string):	Promise<any>	{

				return	new	Promise((resolve,reject)	=>	{

								fs.readFile(filename,(err,result)	=>	{

												if	(err)	reject(err);

												else	resolve(result);

								});

				});

}

Promise

75

Revisiting	the	JSON	example

Now	let's	revisit	our		loadJSON		example	and	rewrite	an	async	version	that	uses	promises.	All
that	we	need	to	do	is	read	the	file	contents	as	a	promise,	then	parse	them	as	JSON	and	we
are	done.	This	is	illustrated	in	the	below	example:

function	loadJSONAsync(filename:	string):	Promise<any>	{

				return	readFileAsync(filename)	//	Use	the	function	we	just	wrote

																.then(function	(res)	{

																				return	JSON.parse(res);

																});

}

Usage	(notice	how	similar	it	is	to	the	original		sync		version	introduced	at	the	start	of	this
section):

//	good	json	file

loadJSONAsync('good.json')

				.then(function	(val)	{	console.log(val);	})

				.catch(function	(err)	{

								console.log('good.json	error',	err.message);	//	never	called

				})

//	non-existent	json	file

				.then(function	()	{

								return	loadJSONAsync('absent.json');

				})

				.then(function	(val)	{	console.log(val);	})	//	never	called

				.catch(function	(err)	{

								console.log('absent.json	error',	err.message);

				})

//	invalid	json	file

				.then(function	()	{

								return	loadJSONAsync('invalid.json');

				})

				.then(function	(val)	{	console.log(val);	})	//	never	called

				.catch(function	(err)	{

								console.log('bad.json	error',	err.message);

				});

The	reason	why	this	function	was	simpler	is	because	the	"	loadFile	(async)	+		JSON.parse	
(sync)	=>		catch	"	consolidation	was	done	by	the	promise	chain.	Also	the	callback	was	not
called	by	us	but	called	by	the	promise	chain	so	we	didn't	have	the	chance	of	making	the
mistake	of	wrapping	it	in	a		try/catch	.

Parallel	control	flow

Promise

76

We	have	seen	how	trivial	doing	a	serial	sequence	of	async	tasks	is	with	promises.	It	is
simply	a	matter	of	chaining		then		calls.

However	you	might	potentially	want	to	run	a	series	of	async	tasks	and	then	do	something
with	the	results	of	all	of	these	tasks.		Promise		provides	a	static		Promise.all		function	that
you	can	use	to	wait	for		n		number	of	promises	to	complete.	You	provide	it	with	an	array	of
	n		promises	and	it	gives	you	an	array	of		n		resolved	values.	Below	we	show	Chaining	as
well	as	Parallel:

//	an	async	function	to	simulate	loading	an	item	from	some	server

function	loadItem(id:	number):	Promise<{	id:	number	}>	{

				return	new	Promise((resolve)	=>	{

								console.log('loading	item',	id);

								setTimeout(()	=>	{	//	simulate	a	server	delay

												resolve({	id:	id	});

								},	1000);

				});

}

//	Chaining

let	item1,	item2;

loadItem(1)

				.then((res)	=>	{

								item1	=	res;

								return	loadItem(2);

				})

				.then((res)	=>	{

								item2	=	res;

								console.log('done');

				});	//	overall	time	will	be	around	2s

//	Parallel

Promise.all([loadItem(1),	loadItem(2)])

				.then((res)	=>	{

								[item1,	item2]	=	res;

								console.log('done');

				});	//	overall	time	will	be	around	1s

Sometimes,	you	want	to	run	a	series	of	async	tasks,	but	you	get	all	you	need	as	long	as	any
one	of	these	tasks	is	settled.		Promise		provides	a	static		Promise.race		function	for	this
scenario:

Promise

77

var	task1	=	new	Promise(function(resolve,	reject)	{

				setTimeout(resolve,	1000,	'one');

});

var	task2	=	new	Promise(function(resolve,	reject)	{

				setTimeout(resolve,	2000,	'two');

});

Promise.race([task1,	task2]).then(function(value)	{

		console.log(value);	//	"one"

		//	Both	resolve,	but	task1	resolves	faster

});

Converting	callback	functions	to	promise

The	most	reliable	way	to	do	this	is	to	hand	write	it.	e.g.	converting		setTimeout		into	a
promisified		delay		function	is	super	easy:

const	delay	=	(ms:	number)	=>	new	Promise(res	=>	setTimeout(res,	ms));

Note	that	there	is	a	handy	dandy	function	in	NodeJS	that	does	this		node	style	function	=>
promise	returning	function		magic	for	you:

/**	Sample	usage	*/

import	fs	=	require('fs');

import	util	=	require('util');

const	readFile	=	util.promisify1(fs.readFile);

Promise

78

Generators
NOTE:	You	cannot	use	generators	in	TypeScript	in	a	meaningful	way	(the	ES5	emitter
is	in	progress).	However	that	will	change	soon	so	we	still	have	this	chapter.

	function	*		is	the	syntax	used	to	create	a	generator	function.	Calling	a	generator	function
returns	a	generator	object.	The	generator	object	just	follows	the	iterator	interface	(i.e.	the
	next	,		return		and		throw		functions).

There	are	two	key	motivations	behind	generator	functions:

Lazy	Iterators

Generator	functions	can	be	used	to	create	lazy	iterators	e.g.	the	following	function	returns	an
infinite	list	of	integers	on	demand:

function*	infiniteSequence()	{

				var	i	=	0;

				while(true)	{

								yield	i++;

				}

}

var	iterator	=	infiniteSequence();

while	(true)	{

				console.log(iterator.next());	//	{	value:	xxxx,	done:	false	}	forever	and	ever

}

Of	course	if	the	iterator	does	end,	you	get	the	result	of		{	done:	true	}		as	demonstrated
below:

function*	idMaker(){

		let	index	=	0;

		while(index	<	3)

				yield	index++;

}

let	gen	=	idMaker();

console.log(gen.next());	//	{	value:	0,	done:	false	}

console.log(gen.next());	//	{	value:	1,	done:	false	}

console.log(gen.next());	//	{	value:	2,	done:	false	}

console.log(gen.next());	//	{	done:	true	}

Generators

79

Externally	Controlled	Execution

This	is	the	part	of	generators	that	is	truly	exciting.	It	essentially	allows	a	function	to	pause	its
execution	and	pass	control	(fate)	of	the	remainder	of	the	function	execution	to	the	caller.

A	generator	function	does	not	execute	when	you	call	it.	It	just	creates	a	generator	object.
Consider	the	following	example	along	with	a	sample	execution:

function*	generator(){

				console.log('Execution	started');

				yield	0;

				console.log('Execution	resumed');

				yield	1;

				console.log('Execution	resumed');

}

var	iterator	=	generator();

console.log('Starting	iteration');	//	This	will	execute	before	anything	in	the	generat

or	function	body	executes

console.log(iterator.next());	//	{	value:	0,	done:	false	}

console.log(iterator.next());	//	{	value:	1,	done:	false	}

console.log(iterator.next());	//	{	value:	undefined,	done:	true	}

If	you	run	this	you	get	the	following	output:

$	node	outside.js

Starting	iteration

Execution	started

{	value:	0,	done:	false	}

Execution	resumed

{	value:	1,	done:	false	}

Execution	resumed

{	value:	undefined,	done:	true	}

The	function	only	starts	execution	once		next		is	called	on	the	generator	object.
The	function	pauses	as	soon	as	a		yield		statement	is	encountered.
The	function	resumes	when		next		is	called.

So	essentially	the	execution	of	the	generator	function	is	controllable	by	the	generator
object.

Our	communication	using	the	generator	has	been	mostly	one	way	with	the	generator
returning	values	for	the	iterator.	One	extremely	powerful	feature	of	generators	in	JavaScript
is	that	they	allow	two	way	communications!

you	can	control	the	resulting	value	of	the		yield		expression	using
	iterator.next(valueToInject)	

Generators

80

you	can	throw	an	exception	at	the	point	of	the		yield		expression	using
	iterator.throw(error)	

The	following	example	demonstrates		iterator.next(valueToInject)	:

function*	generator()	{

				var	bar	=	yield	'foo';

				console.log(bar);	//	bar!

}

const	iterator	=	generator();

//	Start	execution	till	we	get	first	yield	value

const	foo	=	iterator.next();

console.log(foo.value);	//	foo

//	Resume	execution	injecting	bar

const	nextThing	=	iterator.next('bar');

The	following	example	demonstrates		iterator.throw(error)	:

function*	generator()	{

				try	{

								yield	'foo';

				}

				catch(err)	{

								console.log(err.message);	//	bar!

				}

}

var	iterator	=	generator();

//	Start	execution	till	we	get	first	yield	value

var	foo	=	iterator.next();

console.log(foo.value);	//	foo

//	Resume	execution	throwing	an	exception	'bar'

var	nextThing	=	iterator.throw(new	Error('bar'));

So	here	is	the	summary:

	yield		allows	a	generator	function	to	pause	its	communication	and	pass	control	to	an
external	system
the	external	system	can	push	a	value	into	the	generator	function	body
the	external	system	can	throw	an	exception	into	the	generator	function	body

How	is	this	useful?	Jump	to	the	next	section	async/await	and	find	out.

Generators

81

Async	Await
A	PRO	egghead	video	course	that	covers	the	same	material

As	a	thought	experiment	imagine	the	following:	a	way	to	tell	the	JavaScript	runtime	to	pause
the	executing	of	code	on	the		await		keyword	when	used	on	a	promise	and	resume	only
once	(and	if)	the	promise	returned	from	the	function	is	settled:

//	Not	actual	code.	A	thought	experiment

async	function	foo()	{

				try	{

								var	val	=	await	getMeAPromise();

								console.log(val);

				}

				catch(err)	{

								console.log('Error:	',	err.message);

				}

}

When	the	promise	settles	execution	continues,

if	it	was	fulfilled	then	await	will	return	the	value,
if	it's	rejected	an	error	will	be	thrown	synchronously	which	we	can	catch.

This	suddenly	(and	magically)	makes	asynchronous	programming	as	easy	as	synchronous
programming.	Three	things	needed	for	this	thought	experiment	are:

Ability	to	pause	function	execution.
Ability	to	put	a	value	inside	the	function.
Ability	to	throw	an	exception	inside	the	function.

This	is	exactly	what	generators	allowed	us	to	do!	The	thought	experiment	is	actually	real	and
so	is	the		async	/	await		implementation	in	TypeScript	/	JavaScript.	Under	the	covers	it	just
uses	generators.

Generated	JavaScript

You	don't	have	to	understand	this,	but	it's	fairly	simple	if	you've	read	up	on	generators.	The
function		foo		can	be	simply	wrapped	up	as	follows:

Async	Await

82

https://egghead.io/courses/async-await-using-typescript

const	foo	=	wrapToReturnPromise(function*	()	{

				try	{

								var	val	=	yield	getMeAPromise();

								console.log(val);

				}

				catch(err)	{

								console.log('Error:	',	err.message);

				}

});

where	the		wrapToReturnPromise		just	executes	the	generator	function	to	get	the		generator	
and	then	use		generator.next()	,	if	the	value	is	a		promise		it	would		then	+	catch		the
promise	and	depending	upon	the	result	call		generator.next(result)		or
	generator.throw(error)	.	That's	it!

Async	Await	Support	in	TypeScript

Async	-	Await	has	been	supported	by	TypeScript	since	version	1.7.	Asynchronous	functions
are	prefixed	with	the	async	keyword;	await	suspends	the	execution	until	an	asynchronous
function	return	promise	is	fulfilled	and	unwraps	the	value	from	the	Promise	returned.	It	was
only	supported	for	target	es6	transpiling	directly	to	ES6	generators.

TypeScript	2.1	added	the	capability	to	ES3	and	ES5	run-times,	meaning	you’ll	be	free	to
take	advantage	of	it	no	matter	what	environment	you’re	using.	It's	important	to	notice	that	we
can	use	async	/	await	with	TypeScript	2.1	and	many	browsers	are	supported,	of	course,
having	globally	added	a	polyfill	for	Promise.

Let's	see	this	example	and	take	a	look	at	this	code	to	figure	out	how	TypeScript	async	/
await	notation	works:

Async	Await

83

https://www.typescriptlang.org/docs/handbook/release-notes/typescript-1-7.html
https://www.typescriptlang.org/docs/handbook/release-notes/typescript-2-1.html

function	delay(milliseconds:	number,	count:	number):	Promise<number>	{

				return	new	Promise<number>(resolve	=>	{

												setTimeout(()	=>	{

																resolve(count);

												},	milliseconds);

								});

}

//	async	function	always	returns	a	Promise

async	function	dramaticWelcome():	Promise<void>	{

				console.log("Hello");

				for	(let	i	=	0;	i	<	5;	i++)	{

								//	await	is	converting	Promise<number>	into	number

								const	count:number	=	await	delay(500,	i);

								console.log(count);

				}

				console.log("World!");

}

dramaticWelcome();

Transpiling	to	ES6	(--target	es6)

Async	Await

84

var	__awaiter	=	(this	&&	this.__awaiter)	||	function	(thisArg,	_arguments,	P,	generator

)	{

				return	new	(P	||	(P	=	Promise))(function	(resolve,	reject)	{

								function	fulfilled(value)	{	try	{	step(generator.next(value));	}	catch	(e)	{	r

eject(e);	}	}

								function	rejected(value)	{	try	{	step(generator["throw"](value));	}	catch	(e)	

{	reject(e);	}	}

								function	step(result)	{	result.done	?	resolve(result.value)	:	new	P(function	(

resolve)	{	resolve(result.value);	}).then(fulfilled,	rejected);	}

								step((generator	=	generator.apply(thisArg,	_arguments	||	[])).next());

				});

};

function	delay(milliseconds,	count)	{

				return	new	Promise(resolve	=>	{

								setTimeout(()	=>	{

												resolve(count);

								},	milliseconds);

				});

}

//	async	function	always	returns	a	Promise

function	dramaticWelcome()	{

				return	__awaiter(this,	void	0,	void	0,	function*	()	{

								console.log("Hello");

								for	(let	i	=	0;	i	<	5;	i++)	{

												//	await	is	converting	Promise<number>	into	number

												const	count	=	yield	delay(500,	i);

												console.log(count);

								}

								console.log("World!");

				});

}

dramaticWelcome();

You	can	see	full	example	here.

Transpiling	to	ES5	(--target	es5)

var	__awaiter	=	(this	&&	this.__awaiter)	||	function	(thisArg,	_arguments,	P,	generator

)	{

				return	new	(P	||	(P	=	Promise))(function	(resolve,	reject)	{

								function	fulfilled(value)	{	try	{	step(generator.next(value));	}	catch	(e)	{	r

eject(e);	}	}

								function	rejected(value)	{	try	{	step(generator["throw"](value));	}	catch	(e)	

{	reject(e);	}	}

								function	step(result)	{	result.done	?	resolve(result.value)	:	new	P(function	(

resolve)	{	resolve(result.value);	}).then(fulfilled,	rejected);	}

								step((generator	=	generator.apply(thisArg,	_arguments	||	[])).next());

				});

};

var	__generator	=	(this	&&	this.__generator)	||	function	(thisArg,	body)	{

Async	Await

85

https://cdn.rawgit.com/basarat/typescript-book/705e4496/code/async-await/es6/asyncAwaitES6.js

				var	_	=	{	label:	0,	sent:	function()	{	if	(t[0]	&	1)	throw	t[1];	return	t[1];	},	t

rys:	[],	ops:	[]	},	f,	y,	t,	g;

				return	g	=	{	next:	verb(0),	"throw":	verb(1),	"return":	verb(2)	},	typeof	Symbol	=

==	"function"	&&	(g[Symbol.iterator]	=	function()	{	return	this;	}),	g;

				function	verb(n)	{	return	function	(v)	{	return	step([n,	v]);	};	}

				function	step(op)	{

								if	(f)	throw	new	TypeError("Generator	is	already	executing.");

								while	(_)	try	{

												if	(f	=	1,	y	&&	(t	=	y[op[0]	&	2	?	"return"	:	op[0]	?	"throw"	:	"next"])	&

&	!(t	=	t.call(y,	op[1])).done)	return	t;

												if	(y	=	0,	t)	op	=	[0,	t.value];

												switch	(op[0])	{

																case	0:	case	1:	t	=	op;	break;

																case	4:	_.label++;	return	{	value:	op[1],	done:	false	};

																case	5:	_.label++;	y	=	op[1];	op	=	[0];	continue;

																case	7:	op	=	_.ops.pop();	_.trys.pop();	continue;

																default:

																				if	(!(t	=	_.trys,	t	=	t.length	>	0	&&	t[t.length	-	1])	&&	(op[0]	=

==	6	||	op[0]	===	2))	{	_	=	0;	continue;	}

																				if	(op[0]	===	3	&&	(!t	||	(op[1]	>	t[0]	&&	op[1]	<	t[3])))	{	_.lab

el	=	op[1];	break;	}

																				if	(op[0]	===	6	&&	_.label	<	t[1])	{	_.label	=	t[1];	t	=	op;	break

;	}

																				if	(t	&&	_.label	<	t[2])	{	_.label	=	t[2];	_.ops.push(op);	break;	

}

																				if	(t[2])	_.ops.pop();

																				_.trys.pop();	continue;

												}

												op	=	body.call(thisArg,	_);

								}	catch	(e)	{	op	=	[6,	e];	y	=	0;	}	finally	{	f	=	t	=	0;	}

								if	(op[0]	&	5)	throw	op[1];	return	{	value:	op[0]	?	op[1]	:	void	0,	done:	true

	};

				}

};

function	delay(milliseconds,	count)	{

				return	new	Promise(function	(resolve)	{

								setTimeout(function	()	{

												resolve(count);

								},	milliseconds);

				});

}

//	async	function	always	returns	a	Promise

function	dramaticWelcome()	{

				return	__awaiter(this,	void	0,	void	0,	function	()	{

								var	i,	count;

								return	__generator(this,	function	(_a)	{

												switch	(_a.label)	{

																case	0:

																				console.log("Hello");

																				i	=	0;

																				_a.label	=	1;

																case	1:

																				if	(!(i	<	5))	return	[3	/*break*/,	4];

Async	Await

86

																				return	[4	/*yield*/,	delay(500,	i)];

																case	2:

																				count	=	_a.sent();

																				console.log(count);

																				_a.label	=	3;

																case	3:

																				i++;

																				return	[3	/*break*/,	1];

																case	4:

																				console.log("World!");

																				return	[2	/*return*/];

												}

								});

				});

}

dramaticWelcome();

You	can	see	full	example	here.

Note:	for	both	target	scenarios,	we	need	to	make	sure	our	run-time	has	an	ECMAScript-
compliant	Promise	available	globally.	That	might	involve	grabbing	a	polyfill	for	Promise.	We
also	need	to	make	sure	that	TypeScript	knows	Promise	exists	by	setting	your	lib	flag	to
something	like	"dom",	"es2015"	or	"dom",	"es2015.promise",	"es5".	We	can	see	what
browsers	DO	have	Promise	support	(native	and	polyfilled)	here.

Async	Await

87

https://cdn.rawgit.com/basarat/typescript-book/705e4496/code/async-await/es5/asyncAwaitES5.js
https://kangax.github.io/compat-table/es6/#test-Promise

Project
To	create	a	successful	project	using	TypeScript	you	need	to	understand	the	various	project
organization	language	features	available.	In	this	section	we	will	cover	"compilation	context",
declaration	spaces	and	modules.

Project

88

Compilation	Context
The	compilation	context	is	basically	just	a	fancy	term	for	grouping	of	the	files	that	TypeScript
will	parse	and	analyze	to	determine	what	is	valid	and	what	isn't.	Along	with	the	information
about	which	files,	the	compilation	context	contains	information	about	which	compiler	options.
A	great	way	to	define	this	logical	grouping	(we	also	like	to	use	the	term	project)	is	using	a
	tsconfig.json		file.

Compilation	Context

89

Basic

It	is	extremely	easy	to	get	started	with	tsconfig.json	as	the	basic	file	you	need	is:

{}

i.e.	an	empty	JSON	file	at	the	root	of	your	project.	This	way	TypeScript	will	include	all	the
	.ts		files	in	this	directory	(and	sub	directories)	as	a	part	of	the	compilation	context.	It	will
also	select	a	few	sane	default	compiler	options.

compilerOptions

You	can	customize	the	compiler	options	using		compilerOptions	:

{

		"compilerOptions":	{

				/*	Basic	Options	*/																							

				"target":	"es5",																							/*	Specify	ECMAScript	target	version:	'ES3'

	(default),	'ES5',	'ES2015',	'ES2016',	'ES2017',	or	'ESNEXT'.	*/

				"module":	"commonjs",																		/*	Specify	module	code	generation:	'commonj

s',	'amd',	'system',	'umd'	or	'es2015'.	*/

				"lib":	[],																													/*	Specify	library	files	to	be	included	in	

the	compilation:		*/

				"allowJs":	true,																							/*	Allow	javascript	files	to	be	compiled.	*/

				"checkJs":	true,																							/*	Report	errors	in	.js	files.	*/

				"jsx":	"preserve",																					/*	Specify	JSX	code	generation:	'preserve',

	'react-native',	or	'react'.	*/

				"declaration":	true,																			/*	Generates	corresponding	'.d.ts'	file.	*/

				"sourceMap":	true,																					/*	Generates	corresponding	'.map'	file.	*/

				"outFile":	"./",																							/*	Concatenate	and	emit	output	to	single	fi

le.	*/

				"outDir":	"./",																								/*	Redirect	output	structure	to	the	directo

ry.	*/

				"rootDir":	"./",																							/*	Specify	the	root	directory	of	input	file

s.	Use	to	control	the	output	directory	structure	with	--outDir.	*/

				"removeComments":	true,																/*	Do	not	emit	comments	to	output.	*/

				"noEmit":	true,																								/*	Do	not	emit	outputs.	*/

				"importHelpers":	true,																	/*	Import	emit	helpers	from	'tslib'.	*/

				"downlevelIteration":	true,												/*	Provide	full	support	for	iterables	in	'f

or-of',	spread,	and	destructuring	when	targeting	'ES5'	or	'ES3'.	*/

				"isolatedModules":	true,															/*	Transpile	each	file	as	a	separate	module

	(similar	to	'ts.transpileModule').	*/

				/*	Strict	Type-Checking	Options	*/								

				"strict":	true,																								/*	Enable	all	strict	type-checking	options.

tsconfig.json

90

	*/

				"noImplicitAny":	true,																	/*	Raise	error	on	expressions	and	declarati

ons	with	an	implied	'any'	type.	*/

				"strictNullChecks":	true,														/*	Enable	strict	null	checks.	*/

				"noImplicitThis":	true,																/*	Raise	error	on	'this'	expressions	with	a

n	implied	'any'	type.	*/

				"alwaysStrict":	true,																		/*	Parse	in	strict	mode	and	emit	"use	stric

t"	for	each	source	file.	*/

				/*	Additional	Checks	*/																			

				"noUnusedLocals":	true,																/*	Report	errors	on	unused	locals.	*/

				"noUnusedParameters":	true,												/*	Report	errors	on	unused	parameters.	*/

				"noImplicitReturns":	true,													/*	Report	error	when	not	all	code	paths	in	

function	return	a	value.	*/

				"noFallthroughCasesInSwitch":	true,				/*	Report	errors	for	fallthrough	cases	in	s

witch	statement.	*/

				/*	Module	Resolution	Options	*/											

				"moduleResolution":	"node",												/*	Specify	module	resolution	strategy:	'nod

e'	(Node.js)	or	'classic'	(TypeScript	pre-1.6).	*/

				"baseUrl":	"./",																							/*	Base	directory	to	resolve	non-absolute	m

odule	names.	*/

				"paths":	{},																											/*	A	series	of	entries	which	re-map	imports

	to	lookup	locations	relative	to	the	'baseUrl'.	*/

				"rootDirs":	[],																								/*	List	of	root	folders	whose	combined	cont

ent	represents	the	structure	of	the	project	at	runtime.	*/

				"typeRoots":	[],																							/*	List	of	folders	to	include	type	definiti

ons	from.	*/

				"types":	[],																											/*	Type	declaration	files	to	be	included	in

	compilation.	*/

				"allowSyntheticDefaultImports":	true,		/*	Allow	default	imports	from	modules	with	

no	default	export.	This	does	not	affect	code	emit,	just	typechecking.	*/

				/*	Source	Map	Options	*/																		

				"sourceRoot":	"./",																				/*	Specify	the	location	where	debugger	shou

ld	locate	TypeScript	files	instead	of	source	locations.	*/

				"mapRoot":	"./",																							/*	Specify	the	location	where	debugger	shou

ld	locate	map	files	instead	of	generated	locations.	*/

				"inlineSourceMap":	true,															/*	Emit	a	single	file	with	source	maps	inst

ead	of	having	a	separate	file.	*/

				"inlineSources":	true,																	/*	Emit	the	source	alongside	the	sourcemaps

	within	a	single	file;	requires	'--inlineSourceMap'	or	'--sourceMap'	to	be	set.	*/

				/*	Experimental	Options	*/																

				"experimentalDecorators":	true,								/*	Enables	experimental	support	for	ES7	dec

orators.	*/

				"emitDecoratorMetadata":	true										/*	Enables	experimental	support	for	emittin

g	type	metadata	for	decorators.	*/

		}

}

tsconfig.json

91

These	(and	more)	compiler	options	will	be	discussed	later.

TypeScript	compiler

Good	IDEs	come	with	built	in	support	for	on	the	fly		ts		to		js		compilation.	If	however	you
want	to	run	the	TypeScript	compiler	manually	from	the	command	line	when	using
	tsconfig.json		you	can	do	it	in	a	few	ways.

Just	run		tsc		and	it	will	look	for		tsconfig.json		in	the	current	as	well	as	all	parent
folders	till	it	finds	it.
Run		tsc	-p	./path-to-project-directory	.	Of	course	the	path	can	be	a	complete	or
relative	to	the	current	directory.

You	can	even	start	the	TypeScript	compiler	in	watch	mode	using		tsc	-w		and	it	will	watch
your	TypeScript	project	files	for	changes.

tsconfig.json

92

Which	files?
You	can	either	use		files		to	be	explicit:

{

				"files":[

								"./some/file.ts"

]

}

or		include		and		exclude		to	specify	files.	E.g.:

{

				"include":[

								"./folder"

],

				"exclude":[

								"./folder/**/*.spec.ts",

								"./folder/someSubFolder"

]

}

Some	notes:

if		files		is	specified,	other	options	are	ignored
	/*		(e.g.	sample	usage		somefolder//*)	means	all	folder	and	any	files	(the
extensions		.ts	/	.tsx		will	be	included	and	even		.js	/	.jsx		if		allowJs		is	true)

Which	Files?

93

Declaration	Spaces
There	are	two	declaration	spaces	in	TypeScript:	the	variable	declaration	space	and	the	type
declaration	space.	These	concepts	are	explored	below.

Type	Declaration	Space

The	type	declaration	space	contains	stuff	that	can	be	used	as	a	type	annotation.	E.g.	the
following	are	a	few	type	declarations:

class	Foo	{};

interface	Bar	{};

type	Bas	=	{};

This	means	that	you	can	use		Foo	,		Bar	,		Bas	,	etc.	as	a	type	annotation.	E.g.:

var	foo:	Foo;

var	bar:	Bar;

var	bas:	Bas;

Notice	that	even	though	you	have		interface	Bar	,	you	can't	use	it	as	a	variable	because	it
doesn't	contribute	to	the	variable	declaration	space.	This	is	shown	below:

interface	Bar	{};

var	bar	=	Bar;	//	ERROR:	"cannot	find	name	'Bar'"

The	reason	why	it	says		cannot	find	name		is	because	the	name		Bar		is	not	defined	in	the
variable	declaration	space.	That	brings	us	to	the	next	topic	"Variable	Declaration	Space".

Variable	Declaration	Space

The	variable	declaration	space	contains	stuff	that	you	can	use	as	a	variable.	We	saw	that
having		class	Foo		contributes	a	type		Foo		to	the	type	declaration	space.	Guess	what?	it
also	contributes	a	variable		Foo		to	the	variable	declaration	space	as	shown	below:

class	Foo	{};

var	someVar	=	Foo;

var	someOtherVar	=	123;

This	is	great	as	sometimes	you	want	to	pass	classes	around	as	variables.	Remember	that:

Declaration	Spaces

94

we	couldn't	use	something	like	an		interface		that	is	only	in	the	type	declaration	space
as	a	variable.

Similarly	something	that	you	declare	with		var	,	is	only	in	the	variable	declaration	space	and
cannot	be	used	as	a	type	annotation:

var	foo	=	123;

var	bar:	foo;	//	ERROR:	"cannot	find	name	'foo'"

The	reason	why	it	says		cannot	find	name		is	because	the	name		foo		is	not	defined	in	the
type	declaration	space.

Declaration	Spaces

95

Modules

Global	Module

By	default	when	you	start	typing	code	in	a	new	TypeScript	file	your	code	is	in	a	global
namespace.	As	a	demo	consider	a	file		foo.ts	:

var	foo	=	123;

If	you	now	create	a	new	file		bar.ts		in	the	same	project,	you	will	be	allowed	by	the
TypeScript	type	system	to	use	the	variable		foo		as	if	it	was	available	globally:

var	bar	=	foo;	//	allowed

Needless	to	say	having	a	global	namespace	is	dangerous	as	it	opens	your	code	up	for
naming	conflicts.	We	recommend	using	file	modules	which	are	presented	next.

File	Module

Also	called	external	modules.	If	you	have	an		import		or	an		export		at	the	root	level	of	a
TypeScript	file	then	it	creates	a	local	scope	within	that	file.	So	if	we	were	to	change	the
previous		foo.ts		to	the	following	(note	the		export		usage):

export	var	foo	=	123;

We	will	no	longer	have		foo		in	the	global	namespace.	This	can	be	demonstrated	by	creating
a	new	file		bar.ts		as	follows:

var	bar	=	foo;	//	ERROR:	"cannot	find	name	'foo'"

If	you	want	to	use	stuff	from		foo.ts		in		bar.ts		you	need	to	explicitly	import	it.	This	is
shown	in	an	updated		bar.ts		below:

import	{	foo	}	from	"./foo";

var	bar	=	foo;	//	allowed

Modules

96

Using	an		import		in		bar.ts		not	only	allows	you	to	bring	in	stuff	from	other	files,	but	also
marks	the	file		bar.ts		as	a	module	and	therefore,	declarations	in		bar.ts		don't	pollute	the
global	namespace	either.

What	JavaScript	is	generated	from	a	given	TypeScript	file	that	uses	external	modules	is
driven	by	the	compiler	flag	called		module	.

Modules

97

External	modules
There	is	a	lot	of	power	and	usability	packed	into	the	TypeScript	external	module	pattern.
Here	we	discuss	its	power	and	some	patterns	needed	to	reflect	real	world	usages.

Clarification:	commonjs,	amd,	es	modules,	others

First	up	we	need	to	clarify	the	(awful)	inconsistency	of	the	module	systems	out	there.	I'll	just
give	you	my	current	recommendation	and	remove	the	noise	i.e.	not	show	you	all	the	other
ways	things	can	work.

From	the	same	TypeScript	you	can	generate	different	JavaScript	depending	upon	the
	module		option.	Here	are	things	you	can	ignore	(I	am	not	interested	in	explaining	dead	tech):

AMD:	Do	not	use.	Was	browser	only.
SystemJS:	Was	a	good	experiment.	Superseded	by	ES	modules.
ES	Modules:	Not	ready	yet.

Now	these	are	just	the	options	for	generating	the	JavaScript.	Instead	of	these	options	use
	module:commonjs	

How	you	write	TypeScript	modules	is	also	a	bit	of	a	mess.	Again	here	is	how	not	to	do	it
today:

	import	foo	=	require('foo')	.	i.e.		import/require	.	Use	ES	module	syntax	instead.

Cool,	with	that	out	of	the	way,	lets	look	at	the	ES	module	syntax.

Summary:	Use		module:commonjs		and	use	the	ES	module	syntax	to	import	/	export	/
author	modules.

ES	Module	syntax

Exporting	a	variable	(or	type)	is	as	easy	as	prefixing	the	keyword		export		e.g.

//	file	`foo.ts`

export	let	someVar	=	123;

export	type	SomeType	=	{

		foo:	string;

};

Exporting	a	variable	or	type	in	a	dedicated		export		statement	e.g.

File	Module	Details

98

//	file	`foo.ts`

let	someVar	=	123;

type	SomeType	=	{

		foo:	string;

};

export	{

		someVar,

		SomeType

};

Exporting	a	variable	or	type	in	a	dedicated		export		statement	with	renaming	e.g.

//	file	`foo.ts`

let	someVar	=	123;

export	{	someVar	as	aDifferentName	};

Import	a	variable	or	a	type	using		import		e.g.

//	file	`bar.ts`

import	{	someVar,	SomeType	}	from	'./foo';

Import	a	variable	or	a	type	using		import		with	renaming	e.g.

//	file	`bar.ts`

import	{	someVar	as	aDifferentName	}	from	'./foo';

Import	everything	from	a	module	into	a	name	with		import	*	as		e.g.

//	file	`bar.ts`

import	*	as	foo	from	'./foo';

//	you	can	use	`foo.someVar`	and	`foo.SomeType`	and	anything	else	that	foo	might	e

xport.

Import	a	file	only	for	its	side	effect	with	a	single	import	statement:

import	'core-js';	//	a	common	polyfill	library

Re-Exporting	all	the	items	from	another	module

export	*	from	'./foo';

Re-Exporting	only	some	items	from	another	module

File	Module	Details

99

export	{	someVar	}	from	'./foo';

Re-Exporting	only	some	items	from	another	module	with	renaming

export	{	someVar	as	aDifferentName	}	from	'./foo';

Default	exports/imports

As	you	will	learn	later,	I	am	not	a	fan	of	default	exports.	Neverthless	here	is	syntax	for	export
and	using	default	exports

Export	using		export	default	
before	a	variable	(no		let	/	const	/	var		needed)
before	a	function
before	a	class

//	some	var

export	default	someVar	=	123;

//	OR	Some	function

export	default	function	someFunction()	{	}

//	OR	Some	class

export	default	class	SomeClass	{	}

Import	using	the		import	someName	from	"someModule"		syntax	(you	can	name	the	import
whatever	you	want)	e.g.

import	someLocalNameForThisFile	from	"../foo";

Module	paths

I	am	just	going	to	assume		moduleResolution:	commonjs	.	This	is	the	option	you	should
have	in	your	TypeScript	config.	This	setting	is	implied	automatically	by
	module:commonjs	.

There	are	two	distinct	kinds	of	modules.	The	distinction	is	driven	by	the	path	section	of	the
import	statment	(e.g.		import	foo	from	'THIS	IS	THE	PATH	SECTION').

Relative	path	modules	(where	path	starts	with		.		e.g.		./someFile		or
	../../someFolder/someFile		etc.)
Other	dynamic	lookup	modules	(e.g.		'core-js'		or		'typestyle'		or		'react'		or	even
	'react/core'		etc.)

File	Module	Details

100

The	main	difference	is	how	the	module	is	resolved	on	the	file	system.

I	will	use	a	conceptual	term	place	that	I	will	explain	after	mentioning	the	lookup	pattern.

Relative	path	modules

Easy,	just	follow	the	relative	path	:)	e.g.

if	file		bar.ts		does		import	*	as	foo	from	'./foo';		then	place		foo		must	exist	in	the
same	folder.
if	file		bar.ts		does		import	*	as	foo	from	'../foo';		then	place		foo		must	exist	in	a
folder	up.
if	file		bar.ts		does		import	*	as	foo	from	'../someFolder/foo';		then	one	folder	up,
there	must	be	a	folder		someFolder		with	a	place		foo	

Or	any	other	relative	path	you	can	think	of	:)

Dynamic	lookup

When	the	import	path	is	not	relative,	lookup	is	driven	by	node	style	resolution.	Here	I	only
give	a	simple	example:

You	have		import	*	as	foo	from	'foo'	,	the	following	are	the	places	that	are	checked	in
order

	./node_modules/foo	

	../node_modules/foo	

	../../node_modules/foo	

Till	root	of	file	system
You	have		import	*	as	foo	from	'something/foo'	,	the	following	are	the	places	that	are
checked	in	order

	./node_modules/something/foo	

	../node_modules/something/foo	

	../../node_modules/something/foo	

Till	root	of	file	system

What	is	place

When	I	say	places	that	are	checked	I	mean	that	the	following	things	are	checked	in	that
place.	e.g.	for	a	place		foo	:

If	the	place	is	a	file,	e.g.		foo.ts	,	hurray!
else	if	the	place	is	a	folder	and	there	is	a	file		foo/index.ts	,	hurray!

File	Module	Details

101

https://nodejs.org/api/modules.html#modules_all_together

else	if	the	place	is	a	folder	and	there	a		foo/package.json		and	there	is	a	file	specified	in
the		types		key	in	the	package.json	that	exists,	then	hurray!
else	if	the	place	is	a	folder	and	there	a		package.json		and	there	is	a	file	specified	in	the
	main		key	in	the	package.json	that	exists,	then	hurray!

By	file	I	actually	mean		.ts		/		.d.ts		and		.js	.

And	that's	it.	You	are	now	module	lookup	experts	(not	a	small	feat!).

Overturning	dynamic	lookup	just	for	types

You	can	declare	a	module	globally	for	your	project	by	using		declare	module	'somePath'		and
then	imports	will	resolve	magically	to	that	path

e.g.

//	globals.d.ts

declare	module	'foo'	{

		//	Some	variable	declarations

		export	var	bar:	number;	/*sample*/

}

and	then:

//	anyOtherTsFileInYourProject.ts

import	*	as	foo	from	'foo';

//	TypeScript	assumes	(without	doing	any	lookup)	that

//	foo	is	{bar:number}

	import/require		for	importing	type	only

The	following	statement:

import	foo	=	require('foo');

actually	does	two	things:

Imports	the	type	information	of	the	foo	module.
Specifies	a	runtime	dependency	on	the	foo	module.

You	can	pick	and	choose	so	that	only	the	type	information	is	loaded	and	no	runtime
dependency	occurs.	Before	continuing	you	might	want	to	recap	the	declaration	spaces
section	of	the	book.

File	Module	Details

102

If	you	do	not	use	the	imported	name	in	the	variable	declaration	space	then	the	import	is
completely	removed	from	the	generated	JavaScript.	This	is	best	explained	with	examples.
Once	you	understand	this	we	will	present	you	with	use	cases.

Example	1

import	foo	=	require('foo');

will	generate	the	JavaScript:

That's	right.	An	empty	file	as	foo	is	not	used.

Example	2

import	foo	=	require('foo');

var	bar:	foo;

will	generate	the	JavaScript:

var	bar;

This	is	because		foo		(or	any	of	its	properties	e.g.		foo.bas)	is	never	used	as	a	variable.

Example	3

import	foo	=	require('foo');

var	bar	=	foo;

will	generate	the	JavaScript	(assuming	commonjs):

var	foo	=	require('foo');

var	bar	=	foo;

This	is	because		foo		is	used	as	a	variable.

Use	case:	Lazy	loading

File	Module	Details

103

Type	inference	needs	to	be	done	upfront.	This	means	that	if	you	want	to	use	some	type	from
a	file		foo		in	a	file		bar		you	will	have	to	do:

import	foo	=	require('foo');

var	bar:	foo.SomeType;

However	you	might	want	to	only	load	the	file		foo		at	runtime	under	certain	conditions.	For
such	cases	you	should	use	the		import	ed	name	only	in	type	annotations	and	not	as	a
variable.	This	removes	any	upfront	runtime	dependency	code	being	injected	by	TypeScript.
Then	manually	import	the	actual	module	using	code	that	is	specific	to	your	module	loader.

As	an	example,	consider	the	following		commonjs		based	code	where	we	only	load	a	module
	'foo'		on	a	certain	function	call:

import	foo	=	require('foo');

export	function	loadFoo()	{

				//	This	is	lazy	loading	`foo`	and	using	the	original	module	*only*	as	a	type	annot

ation

				var	_foo:	typeof	foo	=	require('foo');

				//	Now	use	`_foo`	as	a	variable	instead	of	`foo`.

}

A	similar	sample	in		amd		(using	requirejs)	would	be:

import	foo	=	require('foo');

export	function	loadFoo()	{

				//	This	is	lazy	loading	`foo`	and	using	the	original	module	*only*	as	a	type	annot

ation

				require(['foo'],	(_foo:	typeof	foo)	=>	{

								//	Now	use	`_foo`	as	a	variable	instead	of	`foo`.

				});

}

This	pattern	is	commonly	used:

in	web	apps	where	you	load	certain	JavaScript	on	particular	routes,
in	node	applications	where	you	only	load	certain	modules	if	needed	to	speed	up
application	bootup.

Use	case:	Breaking	Circular	dependencies

File	Module	Details

104

Similar	to	the	lazy	loading	use	case	certain	module	loaders	(commonjs/node	and
amd/requirejs)	don't	work	well	with	circular	dependencies.	In	such	cases	it	is	useful	to	have
lazy	loading	code	in	one	direction	and	loading	the	modules	upfront	in	the	other	direction.

Use	case:	Ensure	Import

Sometimes	you	want	to	load	a	file	just	for	the	side	effect	(e.g.	the	module	might	register	itself
with	some	library	like	CodeMirror	addons	etc.).	However	if	you	just	do	a		import/require		the
transpiled	JavaScript	will	not	contain	a	dependency	on	the	module	and	your	module	loader
(e.g.	webpack)	might	completely	ignore	the	import.	In	such	cases	you	can	use	a
	ensureImport		variable	to	ensure	that	the	compiled	JavaScript	takes	a	dependency	on	the
module	e.g.:

import	foo	=	require('./foo');

import	bar	=	require('./bar');

import	bas	=	require('./bas');

const	ensureImport:	any	=

				foo

				||	bar

				||	bas;

File	Module	Details

105

https://codemirror.net/doc/manual.html#addons

globals.d.ts
We	discussed	global	vs.	file	modules	when	covering	projects	and	recommended	using	file
based	modules	and	not	polluting	the	global	namespace.

Nevertheless,	if	you	have	beginning	TypeScript	developers	you	can	give	them	a
	globals.d.ts		file	to	put	interfaces	/	types	in	the	global	namespace	to	make	it	easy	to	have
some	types	just	magically	available	for	consumption	in	all	your	TypeScript	code.

For	any	code	that	is	going	to	generate	JavaScript	we	highly	recommend	using	file
modules.

	globals.d.ts		is	great	for	adding	extensions	to		lib.d.ts		if	you	need	to.
It's	good	for	quick		declare	module	"some-library-you-dont-care-to-get-defs-for";		when
doing	TS	to	JS	migrations.

globals.d.ts

106

Namespaces
Namespaces	provide	you	with	a	convenient	syntax	around	a	common	pattern	used	in
JavaScript:

(function(something)	{

				something.foo	=	123;

})(something	||	(something	=	{}))

Basically		something	||	(something	=	{})		allows	an	anonymous	function
	function(something)	{}		to	add	stuff	to	an	existing	object	(the		something	||		portion)	or	start
a	new	object	then	add	stuff	to	that	object	(the		||	(something	=	{})		portion).	This	means
that	you	can	have	two	such	blocks	split	by	some	execution	boundary:

(function(something)	{

				something.foo	=	123;

})(something	||	(something	=	{}))

console.log(something);	//	{foo:123}

(function(something)	{

				something.bar	=	456;

})(something	||	(something	=	{}))

console.log(something);	//	{foo:123,	bar:456}

This	is	commonly	used	in	the	JavaScript	land	for	making	sure	that	stuff	doesn't	leak	into	the
global	namespace.	With	file	based	modules	you	don't	need	to	worry	about	this,	but	the
pattern	is	still	useful	for	logical	grouping	of	a	bunch	of	functions.	Therefore	TypeScript
provides	the		namespace		keyword	to	group	these	e.g.:

Namespaces

107

namespace	Utility	{

				export	function	log(msg)	{

								console.log(msg);

				}

				export	function	error(msg)	{

								console.error(msg);

				}

}

//	usage

Utility.log('Call	me');

Utility.error('maybe!');

The		namespace		keyword	generates	the	same	JavaScript	that	we	saw	earlier:

(function	(Utility)	{

//	Add	stuff	to	Utility

})(Utility	||	(Utility	=	{}));

One	thing	to	note	is	that	namespaces	can	be	nested	so	you	can	do	stuff	like		namespace
Utility.Messaging		to	nest	a		Messaging		namespace	under		Utility	.

For	most	projects	we	recommend	using	external	modules	and	using		namespace		for	quick
demos	and	porting	old	JavaScript	code.

Namespaces

108

Dynamic	import	expressions
Dynamic	import	expressions	are	a	new	feature	and	part	of	ECMAScript	that	allows	users
to	asynchronously	request	a	module	at	any	arbitrary	point	in	your	program.	TC39	JavaScript
committee	has	it’s	own	proposal	which	is	in	stage	3,	and	it’s	called	import()	proposal	for
JavaScript.

From	other	side,	webpack	bundler	has	a	feature	called	Code	Splitting	which	allows	you	to
split	your	bundle	into	chunks	which	can	be	downloaded	asynchronously	at	a	later	time.	For
instance,	this	allows	to	serve	a	minimal	bootstrap	bundle	first	and	to	asynchronously	load
additional	features	later.

At	first	glance,	it’s	natural	to	think	(if	we	are	using	webpack	in	our	dev	workflow)	that	by
using	TypeScript	2.4	dynamic	import	expressions,	will	automatically	produce	bundle
chunks	and	automatically	code-split	you	JS	final	bundle.	BUT,	that	is	not	as	easy	as	it
seems,	because	it	depends	on	the	tsconfig.json	configuration	we	are	working	with.

The	thing	is	that	webpack	code	splitting	supports	two	similar	techniques	to	achieve	this	goal:
using	import()	(preferred,	ECMAScript	proposal)	and	require.ensure()	(legacy,	webpack
specific).	And	what	that	means	is	the	expected	TypeScript	output	is	leave	the	import()
statement	as	it	is	instead	of	transpile	it	to	anything	else.

Let’s	see	and	example	to	figure	out	how	to	configure	webpack	+	TypeScript	2.4.

In	the	following	code	I	want	to	lazy	load	the	library	moment	but	I	am	interested	on	code
splitting	as	well,	which	means,	having	moment	library	in	a	separate	chunk	of	JS	(javascript
file)	and	that	will	be	loaded	only	when	required.

import(/*	webpackChunkName:	"momentjs"	*/	"moment")

		.then((moment)	=>	{

						//	lazyModule	has	all	of	the	proper	types,	autocomplete	works,

						//	type	checking	works,	code	references	work	\o/

						const	time	=	moment().format();

						console.log("TypeScript	>=	2.4.0	Dynamic	Import	Expression:");

						console.log(time);

		})

		.catch((err)	=>	{

						console.log("Failed	to	load	moment",	err);

		});

Here	is	the	tsconfig.json:

Dynamic	Import	Expressions

109

https://github.com/tc39/proposal-dynamic-import
https://webpack.js.org/guides/code-splitting/
https://github.com/Microsoft/TypeScript/wiki/What%27s-new-in-TypeScript#dynamic-import-expressions

{

				"compilerOptions":	{

								"target":	"es5",																										

								"module":	"esnext",																					

								"lib":	[

												"dom",

												"es5",

												"scripthost",

												"es2015.promise"

],																																								

								"jsx":	"react",																											

								"declaration":	false,																					

								"sourceMap":	true,																								

								"outDir":	"./dist/js",																				

								"strict":	true,																											

								"moduleResolution":	"node",															

								"typeRoots":	[

												"./node_modules/@types"

],																																								

								"types":	[

												"node",

												"react",

												"react-dom"

]																																							

				}

}

Important	notes:

Using	"module":	"esnext"	TypeScript	produces	the	mimic	import()	statement	to	be
input	for	Webpack	Code	Splitting.
For	further	information	read	this	article:	Dynamic	Import	Expressions	and	webpack	2
Code	Splitting	integration	with	TypeScript	2.4.

You	can	see	full	example	here.

Dynamic	Import	Expressions

110

https://blog.josequinto.com/2017/06/29/dynamic-import-expressions-and-webpack-code-splitting-integration-with-typescript-2-4/
https://cdn.rawgit.com/basarat/typescript-book/705e4496/code/dynamic-import-expressions/dynamicImportExpression.js

TypeScript	with	Node.js
TypeScript	has	had	first	class	support	for	Node.js	since	inception.	Here's	how	to	setup	a
quick	Node.js	project:

Note:	many	of	these	steps	are	actually	just	common	practice	Node.js	setup	steps

1.	 Setup	a	Node.js	project		package.json	.	Quick	one	:		npm	init	-y	
2.	 Add	TypeScript	(npm	install	typescript	--save-dev)
3.	 Add		node.d.ts		(npm	install	@types/node	--save-dev)
4.	 Init	a		tsconfig.json		for	TypeScript	options	(npx	tsc	--init)
5.	 Make	sure	you	have		compilerOptions.module:commonjs		in	your	tsconfig.json

That's	it!	Fire	up	your	IDE	(e.g.		alm	-o)	and	play	around.	Now	you	can	use	all	the	built	in
node	modules	(e.g.		import	fs	=	require('fs');)	with	all	the	safety	and	developer
ergonomics	of	TypeScript!

Bonus:	Live	compile	+	run
Add		ts-node		which	we	will	use	for	live	compile	+	run	in	node	(npm	install	ts-node	--
save-dev)
Add		nodemon		which	will	invoke		ts-node		whenever	a	file	is	changed	(npm	install
nodemon	--save-dev)

Now	just	add	a		script		target	to	your		package.json		based	on	your	application	entry	e.g.
assuming	its		index.ts	:

		"scripts":	{

				"start":	"npm	run	build:live",

				"build:live":	"nodemon	--exec	./node_modules/.bin/ts-node	--	./index.ts"

		},

So	you	can	now	run		npm	start		and	as	you	edit		index.ts	:

nodemon	reruns	its	command	(ts-node)
ts-node	transpiles	automatically	picking	up	tsconfig.json	and	the	installed	typescript
version,
ts-node	runs	the	output	javascript	through	Node.js.

Creating	TypeScript	node	modules

Node.js	QuickStart

111

A	lesson	on	creating	typescript	node	modules

Using	modules	written	in	TypeScript	is	super	fun	as	you	get	great	compile	time	safety	and
autocomplete	(essentially	executable	documentation).

Creating	a	high	quality	TypeScript	module	is	simple.	Assume	the	following	desired	folder
structure	for	your	package:

package

├─	package.json

├─	tsconfig.json

├─	src

│		├─	All	your	source	files

│		├─	index.ts

│		├─	foo.ts

│		└─	...

└─	lib

		├─	All	your	compiled	files

		├─	index.d.ts

		├─	index.js

		├─	foo.d.ts

		├─	foo.js

		└─	...

In	your		tsconfig.json	

have		compilerOptions	:		"outDir":	"lib"		and		"declaration":	true		<	This
generates	declaration	and	js	files	in	the	lib	folder
have		include:	["./src/**/*"]		<	This	includes	all	the	files	from	the		src		dir.

In	your		package.json		have

	"main":	"lib/index"		<	This	tells	Node.js	to	load		lib/index.js	
	"types":	"lib/index"		<	This	tells	TypeScript	to	load		lib/index.d.ts	

Example	package:

	npm	install	typestyle		for	TypeStyle
Usage:		import	{	style	}	from	'typestyle';		will	be	completely	type	safe.

MORE:

If	you	package	depends	on	other	TypeScript	authored	packages,	put	them	in
	dependencies	/	devDependencies	/	peerDependencies		just	like	you	would	with	raw	JS
packages.
If	you	package	depends	on	other	JavaScript	authored	packages	and	you	want	to	use	it
type	safely	in	your	project,	put	their	types	e.g.		@types/foo		in		devDependencies	.
JavaScript	types	should	be	managed	out	of	bound	from	the	main	NPM	streams.	The

Node.js	QuickStart

112

https://egghead.io/lessons/typescript-create-high-quality-npm-packages-using-typescript
https://www.npmjs.com/package/typestyle

JavaScript	ecosystem	breaks	types	without	semantic	versioning	too	commonly,	so	if
your	users	need	types	for	these	they	should	install	the		@types/foo		version	that	works
for	them.

Bonus	points
Such	NPM	modules	work	just	fine	with	browserify	(using	tsify)	or	webpack	(using	ts-loader).

Node.js	QuickStart

113

TypeScript	in	the	browser
If	you	are	using	TypeScript	to	create	a	web	application	here	are	my	recommendations:

General	Machine	Setup
Install	Node.js

Project	Setup
Create	a	project	dir:

mkdir	your-project

cd	your-project

Create		tsconfig.json	.	We	discuss	modules	here.	Also	good	to	have	it	setup	for		tsx	
compilation	out	of	the	box:

{

				"compilerOptions":	{

								"target":	"es5",

								"module":	"commonjs",

								"sourceMap":	true,

								"jsx":	"react"

				},

				"exclude":	[

								"node_modules"

],

				"compileOnSave":	false

}

Create	an	npm	project:

npm	init	-y

Install	TypeScript-nightly,		webpack	,		ts-loader	

npm	install	typescript@next	webpack	ts-loader	--save-dev

Browser	QuickStart

114

https://nodejs.org/en/download/
https://github.com/Microsoft/TypeScript
https://github.com/webpack/webpack
https://github.com/TypeStrong/ts-loader/

Create	a		webpack.config.js		to	bundle	your	modules	into	a	single		bundle.js		file	that
contains	all	your	resources:

module.exports	=	{

		devtool:	'inline-source-map',

		entry:	'./src/app.tsx',

		output:	{

				path:	__dirname	+	'/public',

				filename:	'build/app.js'

		},

		resolve:	{

				extensions:	['.ts',	'.tsx',	'.js']

		},

		module:	{

				rules:	[

						{	test:	/\.tsx?$/,	loader:	'ts-loader'	}

]

		}

}

Setup	an	npm	script	to	run	a	build.	Also	have	it	run		typings	install		on		npm	install	.
In	your		package.json		add	a		script		section:

"scripts":	{

				"watch":	"webpack	--watch"

},

Now	just	run	the	following	(in	the	directory	that	contains		webpack.config.js):

npm	run	watch

Now	if	you	make	edits	to	your		ts		or		tsx		file	webpack	will	generate		bundle.js		for	you.
Serve	this	up	using	your	web	server	.

More
If	you	are	going	to	use	React	(which	I	highly	recommend	you	give	a	look),	here	are	a	few
more	steps:

npm	i	react	react-dom	@types/react	@types/react-dom	--save

A	demo		index.html	:

Browser	QuickStart

115

<html>

				<head>

								<meta	charset="UTF-8"	/>

								<title>Hello	React!</title>

				</head>

				<body>

								<div	id="root"></div>

								<!--	Main	-->

								<script	src="./dist/bundle.js"></script>

				</body>

</html>

A	demo		./src/app.tsx	:

import	*	as	React	from	"react";

import	*	as	ReactDOM	from	"react-dom";

const	Hello	=	(props:	{	compiler:	string,	framework:	string	})	=>	{

				return	(

								<div>

												<div>{props.compiler}</div>

												<div>{props.framework}</div>

								</div>

);

}

ReactDOM.render(

				<Hello	compiler="TypeScript"	framework="React"	/>,

				document.getElementById("root")

);

You	can	clone	this	demo	project	here:	https://github.com/basarat/react-typescript

Live	reload
Add	webpack	dev	server.	Super	easy:

Install	:		npm	install	webpack-dev-server	
Add	to	your		package.json	:		"start":	"webpack-dev-server	--hot	--inline	--no-info"	

Now	when	you	run		npm	start		it	will	start	the	webpack	dev	server	with	live	reload.

Browser	QuickStart

116

https://github.com/basarat/react-typescript

TypeScript	Type	System
We	covered	the	main	features	of	the	TypeScript	Type	System	back	when	we	discussed	Why
TypeScript?.	The	following	are	a	few	key	takeaways	from	that	discussion	which	don't	need
further	explanation:

The	type	system	in	typescript	is	designed	to	be	optional	so	that	your	javascript	is
typescript.
TypeScript	does	not	block	JavaScript	emit	in	the	presence	of	Type	Errors,	allowing	you
to	progressively	update	your	JS	to	TS.

Now	let's	start	with	the	syntax	of	the	TypeScript	type	system.	This	way	you	can	start	using
these	annotations	in	your	code	immediately	and	see	the	benefit.	This	will	prepare	you	for	a
deeper	dive	later.

Basic	Annotations
As	mentioned	before	Types	are	annotated	using		:TypeAnnotation		syntax.	Anything	that	is
available	in	the	type	declaration	space	can	be	used	as	a	Type	Annotation.

The	following	example	demonstrates	type	annotations	can	be	used	for	variables,	function
parameters	and	function	return	values:

var	num:	number	=	123;

function	identity(num:	number):	number	{

				return	num;

}

Primitive	Types

The	JavaScript	primitive	types	are	well	represented	in	the	TypeScript	type	system.	This
means		string	,		number	,		boolean		as	demonstrated	below:

TypeScript's	Type	System

117

var	num:	number;

var	str:	string;

var	bool:	boolean;

num	=	123;

num	=	123.456;

num	=	'123';	//	Error

str	=	'123';

str	=	123;	//	Error

bool	=	true;

bool	=	false;

bool	=	'false';	//	Error

Arrays

TypeScript	provides	dedicated	type	syntax	for	arrays	to	make	it	easier	for	you	to	annotate
and	document	your	code.	The	syntax	is	basically	postfixing		[]		to	any	valid	type	annotation
(e.g.		:boolean[]).	It	allows	you	to	safely	do	any	array	manipulation	that	you	would	normally
do	and	protects	you	from	errors	like	assigning	a	member	of	the	wrong	type.	This	is
demonstrated	below:

var	boolArray:	boolean[];

boolArray	=	[true,	false];

console.log(boolArray[0]);	//	true

console.log(boolArray.length);	//	2

boolArray[1]	=	true;

boolArray	=	[false,	false];

boolArray[0]	=	'false';	//	Error!

boolArray	=	'false';	//	Error!

boolArray	=	[true,	'false'];	//	Error!

Interfaces

Interfaces	are	the	core	way	in	TypeScript	to	compose	multiple	type	annotations	into	a	single
named	annotation.	Consider	the	following	example:

TypeScript's	Type	System

118

interface	Name	{

				first:	string;

				second:	string;

}

var	name:	Name;

name	=	{

				first:	'John',

				second:	'Doe'

};

name	=	{											//	Error	:	`second`	is	missing

				first:	'John'

};

name	=	{											//	Error	:	`second`	is	the	wrong	type

				first:	'John',

				second:	1337

};

Here	we've	composed	the	annotations		first:	string		+		second:	string		into	a	new
annotation		Name		that	enforces	the	type	checks	on	individual	members.	Interfaces	have	a	lot
of	power	in	TypeScript	and	we	will	dedicate	an	entire	section	to	how	you	can	use	that	to	your
advantage.

Inline	Type	Annotation

Instead	of	creating	a	new		interface		you	can	annotate	anything	you	want	inline	using		:{
/*Structure*/	}	.	The	previous	example	presented	again	with	an	inline	type:

var	name:	{

				first:	string;

				second:	string;

};

name	=	{

				first:	'John',

				second:	'Doe'

};

name	=	{											//	Error	:	`second`	is	missing

				first:	'John'

};

name	=	{											//	Error	:	`second`	is	the	wrong	type

				first:	'John',

				second:	1337

};

TypeScript's	Type	System

119

Inline	types	are	great	for	quickly	providing	a	one	off	type	annotation	for	something.	It	saves
you	the	hassle	of	coming	up	with	(a	potentially	bad)	type	name.	However,	if	you	find	yourself
putting	in	the	same	type	annotation	inline	multiple	times	it's	a	good	idea	to	consider
refactoring	it	into	an	interface	(or	a		type	alias		covered	later	in	this	section).

Special	Types
Beyond	the	primitive	types	that	have	been	covered	there	are	few	types	that	have	special
meaning	in	TypeScript.	These	are		any	,		null	,		undefined	,		void	.

any

The		any		type	holds	a	special	place	in	the	TypeScript	type	system.	It	gives	you	an	escape
hatch	from	the	type	system	to	tell	the	compiler	to	bugger	off.		any		is	compatible	with	any
and	all	types	in	the	type	system.	This	means	that	anything	can	be	assigned	to	it	and	it	can
be	assigned	to	anything.	This	is	demonstrated	in	the	example	below:

var	power:	any;

//	Takes	any	and	all	types

power	=	'123';

power	=	123;

//	Is	compatible	with	all	types

var	num:	number;

power	=	num;

num	=	power;

If	you	are	porting	JavaScript	code	to	TypeScript,	you	are	going	to	be	close	friends	with		any	
in	the	beginning.	However,	don't	take	this	friendship	too	seriously	as	it	means	that	it	is	up	to
you	to	ensure	the	type	safety.	You	are	basically	telling	the	compiler	to	not	do	any	meaningful
static	analysis.

	null		and		undefined	

The		null		and		undefined		JavaScript	literals	are	effectively	treated	by	the	type	system	the
same	as	something	of	type		any	.	These	literals	can	be	assigned	to	any	other	type.	This	is
demonstrated	in	the	below	example:

TypeScript's	Type	System

120

var	num:	number;

var	str:	string;

//	These	literals	can	be	assigned	to	anything

num	=	null;

str	=	undefined;

	:void	

Use		:void		to	signify	that	a	function	does	not	have	a	return	type:

function	log(message):	void	{

				console.log(message);

}

Generics
Many	algorithms	and	data	structures	in	computer	science	do	not	depend	on	the	actual	type
of	the	object.	However	you	still	want	to	enforce	a	constraint	between	various	variables.	A
simple	toy	example	is	a	function	that	takes	a	list	of	items	and	returns	a	reversed	list	of	items.
The	constraint	here	is	between	what	is	passed	in	to	the	function	and	what	is	returned	by	the
function:

function	reverse<T>(items:	T[]):	T[]	{

				var	toreturn	=	[];

				for	(let	i	=	items.length	-	1;	i	>=	0;	i--)	{

								toreturn.push(items[i]);

				}

				return	toreturn;

}

var	sample	=	[1,	2,	3];

var	reversed	=	reverse(sample);

console.log(reversed);	//	3,2,1

//	Safety!

reversed[0]	=	'1';					//	Error!

reversed	=	['1',	'2'];	//	Error!

reversed[0]	=	1;							//	Okay

reversed	=	[1,	2];					//	Okay

TypeScript's	Type	System

121

Here	you	are	basically	saying	that	the	function		reverse		takes	an	array	(items:	T[])	of
some	type		T		(notice	the	type	parameter	in		reverse<T>)	and	returns	an	array	of	type		T	
(notice		:	T[]).	Because	the		reverse		function	returns	items	of	the	same	type	as	it	takes,
TypeScript	knows	the		reversed		variable	is	also	of	type		number[]		and	will	give	you	Type
safety.	Similarly	if	you	pass	in	an	array	of		string[]		to	the	reverse	function	the	returned
result	is	also	an	array	of		string[]		and	you	get	similar	type	safety	as	shown	below:

var	strArr	=	['1',	'2'];

var	reversedStrs	=	reverse(strArr);

reversedStrs	=	[1,	2];	//	Error!

In	fact	JavaScript	arrays	already	have	a		.reverse		function	and	TypeScript	does	indeed	use
generics	to	define	its	structure:

interface	Array<T>	{

	reverse():	T[];

	//	...

}

This	means	that	you	get	type	safety	when	calling		.reverse		on	any	array	as	shown	below:

var	numArr	=	[1,	2];

var	reversedNums	=	numArr.reverse();

reversedNums	=	['1',	'2'];	//	Error!

We	will	discuss	more	about	the		Array<T>		interface	later	when	we	present		lib.d.ts		in	the
section	Ambient	Declarations.

Union	Type
Quite	commonly	in	JavaScript	you	want	to	allow	a	property	to	be	one	of	multiple	types	e.g.	a
	string		or	a		number	.	This	is	where	the	union	type	(denoted	by		|		in	a	type	annotation	e.g.
	string|number)	comes	in	handy.	A	common	use	case	is	a	function	that	can	take	a	single
object	or	an	array	of	the	object	e.g.:

TypeScript's	Type	System

122

function	formatCommandline(command:	string[]|string)	{

				var	line	=	'';

				if	(typeof	command	===	'string')	{

								line	=	command.trim();

				}	else	{

								line	=	command.join('	').trim();

				}

				//	Do	stuff	with	line:	string

}

Intersection	Type
	extend		is	a	very	common	pattern	in	JavaScript	where	you	take	two	objects	and	create	a
new	one	that	has	the	features	of	both	these	objects.	An	Intersection	Type	allows	you	to	use
this	pattern	in	a	safe	way	as	demonstrated	below:

function	extend<T,	U>(first:	T,	second:	U):	T	&	U	{

				let	result	=	<T	&	U>	{};

				for	(let	id	in	first)	{

								result[id]	=	first[id];

				}

				for	(let	id	in	second)	{

								if	(!result.hasOwnProperty(id))	{

												result[id]	=	second[id];

								}

				}

				return	result;

}

var	x	=	extend({	a:	"hello"	},	{	b:	42	});

//	x	now	has	both	`a`	and	`b`

var	a	=	x.a;

var	b	=	x.b;

Tuple	Type
JavaScript	doesn't	have	first	class	tuple	support.	People	generally	just	use	an	array	as	a
tuple.	This	is	exactly	what	the	TypeScript	type	system	supports.	Tuples	can	be	annotated
using		:[typeofmember1,	typeofmember2]		etc.	A	tuple	can	have	any	number	of	members.
Tuples	are	demonstrated	in	the	below	example:

TypeScript's	Type	System

123

var	nameNumber:	[string,	number];

//	Okay

nameNumber	=	['Jenny',	8675309];

//	Error!

nameNumber	=	['Jenny',	'867-5309'];

Combine	this	with	the	destructuring	support	in	TypeScript,	tuples	feel	fairly	first	class	despite
being	arrays	underneath:

var	nameNumber:	[string,	number];

nameNumber	=	['Jenny',	8675309];

var	[name,	num]	=	nameNumber;

Type	Alias
TypeScript	provides	convenient	syntax	for	providing	names	for	type	annotations	that	you
would	like	to	use	in	more	than	one	place.	The	aliases	are	created	using	the		type	SomeName	=
someValidTypeAnnotation		syntax.	An	example	is	demonstrated	below:

type	StrOrNum	=	string|number;

//	Usage:	just	like	any	other	notation

var	sample:	StrOrNum;

sample	=	123;

sample	=	'123';

//	Just	checking

sample	=	true;	//	Error!

Unlike	an		interface		you	can	give	a	type	alias	to	literally	any	type	annotation	(useful	for
stuff	like	union	and	intersection	types).	Here	are	a	few	more	examples	to	make	you	familiar
with	the	syntax:

type	Text	=	string	|	{	text:	string	};

type	Coordinates	=	[number,	number];

type	Callback	=	(data:	string)	=>	void;

TypeScript's	Type	System

124

TIP:	If	you	need	to	have	hierarchies	of	Type	annotations	use	an		interface	.	They	can
be	used	with		implements		and		extends	

TIP:	Use	a	type	alias	for	simpler	object	structures	(like		Coordinates)	just	to	give	them	a
semantic	name.	Also	when	you	want	to	give	semantic	names	to	Union	or	Intersection
types,	a	Type	alias	is	the	way	to	go.

Summary
Now	that	you	can	start	annotating	most	of	your	JavaScript	code	we	can	jump	into	the	nitty
gritty	details	of	all	the	power	available	in	the	TypeScript's	Type	System.

TypeScript's	Type	System

125

Migrating	From	JavaScript
Assuming:

you	know	JavaScript.
you	know	patterns	and	build	tools	(e.g.	webpack)	used	in	the	project.

With	that	assumption	out	of	the	way,	in	general	the	process	consists	of	the	following	steps:

Add	a		tsconfig.json	.
Change	your	source	code	file	extensions	from		.js		to		.ts	.	Start	suppressing	errors
using		any	.
Write	new	code	in	TypeScript	and	make	as	little	use	of		any		as	possible.
Go	back	to	the	old	code	and	start	adding	type	annotations	and	fix	identified	bugs.
Use	ambient	definitions	for	third	party	JavaScript	code.

Let	us	discuss	a	few	of	these	points	further.

Note	that	all	JavaScript	is	valid	TypeScript.	That	is	to	say	that	if	you	give	the	TypeScript
compiler	some	JavaScript	->	the	JavaScript	emitted	by	the	TypeScript	compiler	will	behave
exactly	the	same	as	the	original	JavaScript.	This	means	that	changing	the	extension	from
	.js		to		.ts		will	not	adversely	affect	your	codebase.

Suppressing	Errors

TypeScript	will	immediately	start	TypeChecking	your	code	and	your	original	JavaScript	code
might	not	be	as	neat	as	you	thought	it	was	and	hence	you	get	diagnostic	errors.	Many	of
these	errors	you	can	suppress	with	using		any		e.g.:

var	foo	=	123;

var	bar	=	'hey';

bar	=	foo;	//	ERROR:	cannot	assign	a	number	to	a	string

Even	though	the	error	is	valid	(and	in	most	cases	the	inferred	information	will	be	better	than
what	the	original	authors	of	different	portions	of	the	code	bases	imagined),	your	focus	will
probably	be	writing	new	code	in	TypeScript	while	progressively	updating	the	old	code	base.
Here	you	can	suppress	this	error	with	a	type	assertion	as	shown	below:

JS	Migration	Guide

126

var	foo	=	123;

var	bar	=	'hey';

bar	=	foo	as	any;	//	Okay!

In	other	places	you	might	want	to	annotate	something	as		any		e.g.:

function	foo()	{

				return	1;

}

var	bar	=	'hey';

bar	=	foo();	//	ERROR:	cannot	assign	a	number	to	a	string

Suppressed:

function	foo():	any	{	//	Added	`any`

				return	1;

}

var	bar	=	'hey';

bar	=	foo();	//	Okay!

Note:	Suppressing	errors	is	dangerous,	but	it	allows	you	to	take	notice	of	errors	in	your
new	TypeScript	code.	You	might	want	to	leave		//	TODO:		comments	as	you	go	along.**

Third	Party	JavaScript

You	can	change	your	JavaScript	to	TypeScript,	but	you	can't	change	the	whole	world	to	use
TypeScript.	This	is	where	TypeScript's	ambient	definition	support	comes	in.	In	the	beginning
we	recommend	you	create	a		vendor.d.ts		(the		.d.ts		extension	specifies	the	fact	that	this
is	a	declaration	file)	and	start	adding	dirty	stuff	to	it.	Alternatively	create	a	file	specific	for	the
library	e.g.		jquery.d.ts		for	jquery.

Note:	Well	maintained	and	strongly	typed	definitions	for	nearly	the	top	90%	JavaScript
libraries	out	there	exists	in	an	OSS	Repository	called	DefinitelyTyped.	We	recommend
looking	there	before	creating	your	own	definitions	as	we	present	here.	Nevertheless	this
quick	and	dirty	way	is	vital	knowledge	to	decrease	your	initial	friction	with	TypeScript**.

Consider	the	case	of		jquery	,	you	can	create	a	trivial	definition	for	it	quite	easily:

declare	var	$:	any;

JS	Migration	Guide

127

https://github.com/borisyankov/DefinitelyTyped

Sometimes	you	might	want	to	add	an	explicit	annotation	on	something	(e.g.		JQuery)	and
you	need	something	in	type	declaration	space.	You	can	do	that	quite	easily	using	the		type	
keyword:

declare	type	JQuery	=	any;

declare	var	$:	JQuery;

This	provides	you	an	easier	future	update	path.

Again,	a	high	quality		jquery.d.ts		exists	at	DefinitelyTyped.	But	you	now	know	how	to
overcome	any	JavaScript	->	TypeScript	friction	quickly	when	using	third	party	JavaScript.
We	will	look	at	ambient	declarations	in	detail	next.

Third	Party	NPM	modules
Similar	to	global	variable	declaration	you	can	declare	a	global	module	quite	easily.	E.g.	for
	jquery		if	you	want	to	use	it	as	a	module	(https://www.npmjs.com/package/jquery)	you	can
write	the	following	yourself:

declare	module	"jquery";

And	then	you	can	import	it	in	your	file	as	needed:

import	*	as	$	from	"jquery";

Again,	a	high	quality		jquery.d.ts		exists	at	DefinitelyTyped	that	provides	a	much	higher
quality	jquery	module	declaration.	But	it	might	not	exist	for	your	library,	so	now	you	have
a	quick	low	friction	way	of	continuing	the	migration	

External	non	js	resources
You	can	even	allow	import	of	any	file	e.g.		.css		files	(if	you	are	using	something	like
webpack	style	loaders	or	css	modules)	with	a	simple		*		style	declaration	(ideally	in	a
	globals.d.ts		file):

declare	module	"*.css";

Now	people	can		import	*	as	foo	from	"./some/file.css";	

JS	Migration	Guide

128

https://github.com/borisyankov/DefinitelyTyped
https://www.npmjs.com/package/jquery
https://github.com/borisyankov/DefinitelyTyped

Similarly	if	you	are	using	html	templates	(e.g.	angular)	you	can:

declare	module	"*.html";

JS	Migration	Guide

129

	@types	

Definitely	Typed	is	definitely	one	of	TypeScript's	greatest	strengths.	The	community	has
effectively	gone	ahead	and	documented	the	nature	of	nearly	90%	of	the	top	JavaScript
projects	out	there.

This	means	that	you	can	use	these	projects	in	a	very	interactive	and	exploratory	manner,	no
need	to	have	the	docs	open	in	a	seperate	window	and	making	sure	you	don't	make	a	typo.

Using		@types	
Installation	is	fairly	simple	as	it	just	works	on	top	of		npm	.	So	as	an	example	you	can	install
type	definitions	for		jquery		simply	as:

npm	install	@types/jquery	--save-dev

	@types		supports	both	global	and	module	type	definitions.

Global		@types	

By	default	any	definitions	that	support	global	consumption	are	included	automatically.	E.g.
for		jquery		you	should	be	able	to	just	start	using		$		globally	in	your	project.

However	for	libraries	(like		jquery)	I	generally	recommend	using	modules:

Module		@types	

After	installation,	no	special	configuration	is	required	really.	You	just	use	it	like	a	module	e.g.:

import	*	as	$	from	"jquery";

//	Use	$	at	will	in	this	module	:)

Controlling	Globals
As	can	be	seen	having	a	definition	that	supports	global	leak	in	automatically	can	be	a
problem	for	some	team	so	you	can	chose	to	explicitly	only	bring	in	the	types	that	make
sense	using	the		tsconfig.json			compilerOptions.types		e.g.:

@types

130

https://github.com/DefinitelyTyped/DefinitelyTyped

{

				"compilerOptions":	{

								"types"	:	[

												"jquery"

]

				}

}

The	above	shows	a	sample	where	only		jquery		will	be	allowed	to	be	used.	Even	if	the
person	installs	another	definition	like		npm	install	@types/node		its	globals	(e.g.		process)	will
not	leak	into	your	code	until	you	add	them	to	the		tsconfig.json		types	option.

@types

131

https://nodejs.org/api/process.html

Ambient	Declarations
As	we	mentioned	in	why	TypeScript:

A	major	design	goal	of	TypeScript	was	to	make	it	possible	for	you	to	safely	and	easily
use	existing	JavaScript	libraries	in	TypeScript.	TypeScript	does	this	by	means	of
declaration.

Ambient	declarations	allow	you	to	safely	use	existing	popular	JavaScript	libraries	and
incrementally	migrate	your	JavaScript/CoffeeScript/Other-Compile-To-Js-Language	project
to	TypeScript.

Studying	patterns	in	ambient	declarations	for	third	party	JavaScript	code	is	good	practice	for
annotating	your	TypeScript	code	base	as	well.	This	is	why	we	present	it	so	early	on.

Ambient	Declarations

132

Declaration	file

You	can	tell	TypeScript	that	you	are	trying	to	describe	code	that	exists	elsewhere	(e.g.
written	in	JavaScript/CoffeeScript/The	runtime	environment	like	the	browser	or	Node.js)
using	the		declare		keyword.	As	a	quick	example:

foo	=	123;	//	Error:	`foo`	is	not	defined

vs.

declare	var	foo:	any;

foo	=	123;	//	allowed

You	have	the	option	of	putting	these	declarations	in	a		.ts		file	or	in	a		.d.ts		file.	We	highly
recommend	that	in	your	real	world	projects	you	use	a	separate		.d.ts		(start	with	one	called
something	like		globals.d.ts		or		vendor.d.ts).

If	a	file	has	the	extension		.d.ts		then	each	root	level	definition	must	have	the		declare	
keyword	prefixed	to	it.	This	helps	make	it	clear	to	the	author	that	there	will	be	no	code
emitted	by	TypeScript.	The	author	needs	to	ensure	that	the	declared	item	will	exist	at
runtime.

Ambient	declarations	is	a	promise	that	you	are	making	with	the	compiler.	If	these
do	not	exist	at	runtime	and	you	try	to	use	them,	things	will	break	without	warning.
Ambient	declarations	are	like	docs.	If	the	source	changes	the	docs	need	to	be	kept
updated.	So	you	might	have	new	behaviours	that	work	at	runtime	but	no	one's
updated	the	ambient	declaration	and	hence	you	get	compiler	errors.

Declaration	Files

133

Variables

For	example	to	tell	TypeScript	about	the		process		variable	you	can	do:

declare	var	process:	any;

You	don't	need	to	do	this	for		process		as	there	is	already	a	community	maintained
	node.d.ts	.

This	allows	you	to	use	the		process		variable	without	TypeScript	complaining:

process.exit();

We	recommend	using	an	interface	wherever	possible	e.g.:

interface	Process	{

				exit(code?:	number):	void;

}

declare	var	process:	Process;

This	allows	other	people	to	extend	the	nature	of	these	global	variables	while	still	telling
TypeScript	about	such	modifications.	E.g.	consider	the	following	case	where	we	add	an
	exitWithLogging		function	to	process	for	our	amusement:

interface	Process	{

				exitWithLogging(code?:	number):	void;

}

process.exitWithLogging	=	function()	{

				console.log("exiting");

				process.exit.apply(process,	arguments);

};

Let's	look	at	interfaces	in	a	bit	more	detail	next.

Variables

134

https://nodejs.org/api/process.html
https://github.com/DefinitelyTyped/DefinitelyTyped/blob/master/types/node/index.d.ts

Interfaces
Interfaces	have	zero	runtime	JS	impact.	There	is	a	lot	of	power	in	TypeScript	interfaces	to
declare	the	structure	of	variables.

The	following	two	are	equivalent	declarations,	the	first	uses	an	inline	annotation,	the	second
uses	an	interface:

//	Sample	A

declare	var	myPoint:	{	x:	number;	y:	number;	};

//	Sample	B

interface	Point	{

				x:	number;	y:	number;

}

declare	var	myPoint:	Point;

However	the	beauty	of	Sample	B	is	that	if	someone	authors	a	library	that	builds	on	the
	myPoint		library	to	add	new	members,	they	can	easily	add	to	the	existing	declaration	of
	myPoint	:

//	Lib	a.d.ts

interface	Point	{

				x:	number;	y:	number;

}

declare	var	myPoint:	Point;

//	Lib	b.d.ts

interface	Point	{

				z:	number;

}

//	Your	code

var	myPoint.z;	//	Allowed!

This	is	because	interfaces	in	TypeScript	are	open	ended.	This	is	a	vital	tenet	of
TypeScript	that	it	allows	you	to	mimic	the	extensibility	of	JavaScript	using	interfaces.

Classes	can	implement	interfaces
If	you	want	to	use	classes	that	must	follow	an	object	structure	that	someone	declared	for	you
in	an		interface		you	can	use	the		implements		keyword	to	ensure	compatibility:

Interfaces

135

interface	Point	{

				x:	number;	y:	number;

}

class	MyPoint	implements	Point	{

				x:	number;	y:	number;	//	Same	as	Point

}

Basically	in	the	presence	of	that		implements	,	any	changes	in	that	external		Point		interface
will	result	in	a	compile	error	in	your	code	base	so	you	can	easily	keep	it	in	sync:

interface	Point	{

				x:	number;	y:	number;

				z:	number;	//	New	member

}

class	MyPoint	implements	Point	{	//	ERROR	:	missing	member	`z`

				x:	number;	y:	number;

}

Note	that		implements		restricts	the	structure	of	the	class	instances	i.e.:

var	foo:	Point	=	new	MyPoint();

And	stuff	like		foo:	Point	=	MyPoint		is	not	the	same	thing.

TIPs

Not	every	interface	is	implementable	easily

Interfaces	are	designed	to	declare	any	arbitrarily	crazy	structure	that	might	be	present	in
JavaScript.

Consider	the	following	interface	where	something	is	callable	with		new	:

interface	Crazy	{

				new	():	{

								hello:	number

				};

}

You	would	essentially	have	something	like:

Interfaces

136

class	CrazyClass	implements	Crazy	{

				constructor()	{

								return	{	hello:	123	};

				}

}

//	Because

const	crazy	=	new	CrazyClass();	//	crazy	would	be	{hello:123}

You	can	declare	all	the	crazy	JS	out	there	with	interfaces	and	even	use	them	safely	from
TypeScript.	Doesn't	mean	you	can	use	TypeScript	classes	to	implement	them.

Interfaces

137

Enums
Enums	and	numbers
Enums	and	strings
Changing	the	number	associated	with	an	enum
Enums	are	open	ended
Enums	as	flags
Const	enums
Enum	with	static	functions

Enums

An	enum	is	a	way	to	organize	a	collection	of	related	values.	Many	other	programming
languages	(C/C#/Java)	have	an		enum		data	type	but	JavaScript	does	not.	However
TypeScript	does.	Here	is	an	example	definition	of	a	TypeScript	enum:

enum	CardSuit	{

				Clubs,

				Diamonds,

				Hearts,

				Spades

}

//	Sample	usage

var	card	=	CardSuit.Clubs;

//	Safety

card	=	"not	a	member	of	card	suit";	//	Error	:	string	is	not	assignable	to	type	`CardS

uit`

Enums	and	Numbers

TypeScript	enums	are	number	based.	This	means	that	numbers	can	be	assigned	to	an
instance	of	the	enum,	and	so	can	anything	else	that	is	compatible	with		number	.

enum	Color	{

				Red,

				Green,

				Blue

}

var	col	=	Color.Red;

col	=	0;	//	Effectively	same	as	Color.Red

Enums	and	Strings

Enums

138

Before	we	look	further	into	enums	let's	look	at	the	JavaScript	that	it	generates,	here	is	a
sample	TypeScript:

enum	Tristate	{

				False,

				True,

				Unknown

}

generates	the	following	JavaScript:

var	Tristate;

(function	(Tristate)	{

				Tristate[Tristate["False"]	=	0]	=	"False";

				Tristate[Tristate["True"]	=	1]	=	"True";

				Tristate[Tristate["Unknown"]	=	2]	=	"Unknown";

})(Tristate	||	(Tristate	=	{}));

let's	focus	on	the	line		Tristate[Tristate["False"]	=	0]	=	"False";	.	Within	it
	Tristate["False"]	=	0		should	be	self	explanatory,	i.e.	sets		"False"		member	of		Tristate	
variable	to	be		0	.	Note	that	in	JavaScript	the	assignment	operator	returns	the	assigned
value	(in	this	case		0).	Therefore	the	next	thing	executed	by	the	JavaScript	runtime	is
	Tristate[0]	=	"False"	.	This	means	that	you	can	use	the		Tristate		variable	to	convert	a
string	version	of	the	enum	to	a	number	or	a	number	version	of	the	enum	to	a	string.	This	is
demonstrated	below:

enum	Tristate	{

				False,

				True,

				Unknown

}

console.log(Tristate[0]);	//	"False"

console.log(Tristate["False"]);	//	0

console.log(Tristate[Tristate.False]);	//	"False"	because	`Tristate.False	==	0`

Changing	the	number	associated	with	an	Enum

By	default	enums	are		0		based	and	then	each	subsequent	value	increments	by	1
automatically.	As	an	example	consider	the	following:

Enums

139

enum	Color	{

				Red,					//	0

				Green,			//	1

				Blue					//	2

}

However	you	can	change	the	number	associated	with	any	enum	member	by	assigning	to	it
specifically.	This	is	demonstrated	below	where	we	start	at	3	and	start	incrementing	from
there:

enum	Color	{

				DarkRed	=	3,		//	3

				DarkGreen,				//	4

				DarkBlue						//	5

}

TIP:	I	quite	commonly	initialize	the	first	enum	with		=	1		as	it	allows	me	to	do	a	safe
truthy	check	on	an	enum	value.

Enums	are	open	ended

Here	is	the	generated	JavaScript	for	an	enum	shown	again:

var	Tristate;

(function	(Tristate)	{

				Tristate[Tristate["False"]	=	0]	=	"False";

				Tristate[Tristate["True"]	=	1]	=	"True";

				Tristate[Tristate["Unknown"]	=	2]	=	"Unknown";

})(Tristate	||	(Tristate	=	{}));

We	already	explained	the		Tristate[Tristate["False"]	=	0]	=	"False";		portion.	Now	notice
the	surrounding	code		(function	(Tristate)	{	/*code	here	*/	})(Tristate	||	(Tristate	=
{}));		specifically	the		(Tristate	||	(Tristate	=	{}));		portion.	This	basically	captures	a
local	variable		TriState		that	will	either	point	to	an	already	defined		Tristate		value	or
initialize	it	with	a	new	empty		{}		object.

This	means	that	you	can	split	(and	extend)	an	enum	definition	across	multiple	files.	For
example	below	we	have	split	the	definition	for		Color		into	two	blocks

Enums

140

enum	Color	{

				Red,

				Green,

				Blue

}

enum	Color	{

				DarkRed	=	3,

				DarkGreen,

				DarkBlue

}

Note	that	you	should	reinitialize	the	first	member	(here		DarkRed	=	3)	in	a	continuation	of	an
enum	to	get	the	generated	code	not	clobber	values	from	a	previous	definition	(i.e.	the		0	,
	1	,	...	so	on	values).	TypeScript	will	warn	you	if	you	don't	anyways	(error	message		In	an
enum	with	multiple	declarations,	only	one	declaration	can	omit	an	initializer	for	its	first

enum	element.).

Enums	as	flags

One	excellent	use	of	enums	is	the	ability	to	use	enums	as		Flags	.	Flags	allow	you	to	check
if	a	certain	condition	from	a	set	of	conditions	is	true.	Consider	the	following	example	where
we	have	a	set	of	properties	about	animals:

enum	AnimalFlags	{

				None											=	0,

				HasClaws							=	1	<<	0,

				CanFly									=	1	<<	1,

				EatsFish							=	1	<<	2,

				Endangered					=	1	<<	3

}

Here	we	are	using	the	left	shift	operator	to	move		1		around	a	certain	level	of	bits	to	come
up	with	bitwise	disjoint	numbers		0001	,		0010	,		0100		and		1000		(these	are	decimals
	1	,	2	,	4	,	8		if	you	are	curious).	The	bitwise	operators		|		(or)	/		&		(and)	/		~		(not)	are
your	best	friends	when	working	with	flags	and	are	demonstrated	below:

Enums

141

enum	AnimalFlags	{

				None											=	0,

				HasClaws							=	1	<<	0,

				CanFly									=	1	<<	1,

}

function	printAnimalAbilities(animal)	{

				var	animalFlags	=	animal.flags;

				if	(animalFlags	&	AnimalFlags.HasClaws)	{

								console.log('animal	has	claws');

				}

				if	(animalFlags	&	AnimalFlags.CanFly)	{

								console.log('animal	can	fly');

				}

				if	(animalFlags	==	AnimalFlags.None)	{

								console.log('nothing');

				}

}

var	animal	=	{	flags:	AnimalFlags.None	};

printAnimalAbilities(animal);	//	nothing

animal.flags	|=	AnimalFlags.HasClaws;

printAnimalAbilities(animal);	//	animal	has	claws

animal.flags	&=	~AnimalFlags.HasClaws;

printAnimalAbilities(animal);	//	nothing

animal.flags	|=	AnimalFlags.HasClaws	|	AnimalFlags.CanFly;

printAnimalAbilities(animal);	//	animal	has	claws,	animal	can	fly

Here:

we	used		|=		to	add	flags
a	combination	of		&=		and		~		to	clear	a	flag
	|		to	combine	flags

Note:	you	can	combine	flags	to	create	convenient	shortcuts	within	the	enum	definition
e.g.		EndangeredFlyingClawedFishEating		below:

enum	AnimalFlags	{

				None											=	0,

				HasClaws							=	1	<<	0,

				CanFly									=	1	<<	1,

				EatsFish							=	1	<<	2,

				Endangered					=	1	<<	3,

				EndangeredFlyingClawedFishEating	=	HasClaws	|	CanFly	|	EatsFish	|	Endangered,

}

Enums

142

Const	Enums

If	you	have	an	enum	definition	like	the	following:

enum	Tristate	{

				False,

				True,

				Unknown

}

var	lie	=	Tristate.False;

The	line		var	lie	=	Tristate.False		is	compiled	to	the	JavaScript		var	lie	=	Tristate.False	
(yes,	output	is	same	as	input).	This	means	that	at	execution	the	runtime	will	need	to	lookup
	Tristate		and	then		Tristate.False	.	To	get	a	performance	boost	here	you	can	mark	the
	enum		as	a		const	enum	.	This	is	demonstrated	below:

const	enum	Tristate	{

				False,

				True,

				Unknown

}

var	lie	=	Tristate.False;

generates	the	JavaScript:

var	lie	=	0;

i.e.	the	compiler:

1.	 Inlines	any	usages	of	the	enum	(0		instead	of		Tristate.False).
2.	 Does	not	generate	any	JavaScript	for	the	enum	definition	(there	is	no		Tristate	

variable	at	runtime)	as	its	usages	are	inlined.

Const	enum	preserveConstEnums

Inlining	has	obvious	performance	benefits.	The	fact	that	there	is	no		Tristate		variable	at
runtime	is	simply	the	compiler	helping	you	out	by	not	generating	JavaScript	that	is	not
actually	used	at	runtime.	However	you	might	want	the	compiler	to	still	generate	the
JavaScript	version	of	the	enum	definition	for	stuff	like	number	to	string	or	string	to	number
lookups	as	we	saw.	In	this	case	you	can	use	the	compiler	flag		--preserveConstEnums		and	it
will	still	generate	the		var	Tristate		definition	so	that	you	can	use		Tristate["False"]		or
	Tristate[0]		manually	at	runtime	if	you	want.	This	does	not	impact	inlining	in	any	way.

Enums

143

Enum	with	static	functions

You	can	use	the	declaration		enum		+		namespace		merging	to	add	static	methods	to	an	enum.
The	following	demonstrates	an	example	where	we	add	a	static	member		isBusinessDay		to
an	enum		Weekday	:

enum	Weekday	{

				Monday,

				Tuesday,

				Wednesday,

				Thursday,

				Friday,

				Saturday,

				Sunday

}

namespace	Weekday	{

				export	function	isBusinessDay(day:	Weekday)	{

								switch	(day)	{

												case	Weekday.Saturday:

												case	Weekday.Sunday:

																return	false;

												default:

																return	true;

								}

				}

}

const	mon	=	Weekday.Monday;

const	sun	=	Weekday.Sunday;

console.log(Weekday.isBusinessDay(mon));	//	true

console.log(Weekday.isBusinessDay(sun));	//	false

Enums

144

lib.d.ts
Example	Usage
Inside	look
Modifying	Native	types
Using	custom	lib.d.ts
Compiler		target		effect	on	lib.d.ts
	lib		option
Polyfill	for	old	JavaScript	engines

	lib.d.ts	

A	special	declaration	file		lib.d.ts		ships	with	every	installation	of	TypeScript.	This	file
contains	the	ambient	declarations	for	various	common	JavaScript	constructs	present	in
JavaScript	runtimes	and	the	DOM.

This	file	is	automatically	included	in	the	compilation	context	of	a	TypeScript	project.
The	objective	of	this	file	is	to	make	it	easy	for	you	to	start	writing	type	checked
JavaScript	code.

You	can	exclude	this	file	from	the	compilation	context	by	specifying	the		--noLib		compiler
command	line	flag	(or		"noLib"	:	true		in		tsconfig.json).

Example	Usage

As	always	let's	look	at	examples	of	this	file	being	used	in	action:

var	foo	=	123;

var	bar	=	foo.toString();

This	code	type	checks	fine	because	the		toString		function	is	defined	in		lib.d.ts		for	all
JavaScript	objects.

If	you	use	the	same	sample	code	with	the		noLib		option	you	get	a	type	check	error:

var	foo	=	123;

var	bar	=	foo.toString();	//	ERROR:	Property	'toString'	does	not	exist	on	type	'number

'.

So	now	that	you	understand	the	importance	of		lib.d.ts		what	does	its	contents	look	like?
We	examine	that	next.

lib.d.ts

145

	lib.d.ts		inside	look

The	contents	of		lib.d.ts		are	primarily	a	bunch	of	variable	declarations	e.g.		window	,
	document	,		math		and	a	bunch	of	similar	interface	declarations	e.g.		Window		,		Document	,
	Math	.

The	simplest	way	to	discover	what	is	what	is	to	type	in	code	that	you	know	works	e.g.
	Math.floor		and	then	F12	(go	to	definition)	using	your	IDE	(atom-typescript	has	great
support	for	this).

Let's	look	at	a	sample	variable	declaration,	e.g.		window		is	defined	as:

declare	var	window:	Window;

That	is	just	a	simple		declare	var		followed	by	the	variable	name	(here		window)	and	an
interface	for	a	type	annotation	(here	the		Window		interface).	These	variables	generally	point
to	some	global	interface	e.g.	here	is	a	small	sample	of	the	(actually	quite	massive)		Window	
interface:

interface	Window	extends	EventTarget,	WindowTimers,	WindowSessionStorage,	WindowLocalS

torage,	WindowConsole,	GlobalEventHandlers,	IDBEnvironment,	WindowBase64	{

				animationStartTime:	number;

				applicationCache:	ApplicationCache;

				clientInformation:	Navigator;

				closed:	boolean;

				crypto:	Crypto;

				//	so	on	and	so	forth...

}

You	can	see	that	here	is	a	lot	of	type	information	in	these	interfaces.	In	the	absence	of
TypeScript	you	would	need	to	keep	this	in	your	head.	Now	you	can	offload	that	knowledge
on	the	compiler	with	easy	access	to	it	using	things	like		intellisense	.

There	is	a	good	reason	for	using	interfaces	for	these	globals.	It	allows	you	to	add	additional
properties	to	these	globals	without	a	need	to	change		lib.d.ts	.	We	will	cover	this	concept
next.

Modifying	native	types

Since	an		interface		in	TypeScript	is	open	ended	this	means	that	you	can	just	add	members
to	the	interfaces	declared	in		lib.d.ts		and	TypeScript	will	pick	up	on	the	additions.	Note
that	you	need	to	make	these	changes	in	a	global	module	for	these	interfaces	to	get

lib.d.ts

146

associated	with		lib.d.ts	.	We	even	recommend	creating	a	special	file	called		globals.d.ts	
for	this	purpose.

Here	are	a	few	example	cases	where	we	add	stuff	to		window	,		Math	,		Date	:

Example		window	

Just	add	stuff	to	the		Window		interface	e.g.:

interface	Window	{

				helloWorld():	void;

}

This	will	allow	you	to	use	it	in	a	type	safe	manner:

//	Add	it	at	runtime

window.helloWorld	=	()	=>	console.log('hello	world');

//	Call	it

window.helloWorld();

//	Misuse	it	and	you	get	an	error:

window.helloWorld('gracius');	//	Error:	Supplied	parameters	do	not	match	the	signature

	of	the	call	target

Example		Math	

The	global	variable		Math		is	defined	in		lib.d.ts		as	(again,	use	your	dev	tools	to	navigate
to	definition):

/**	An	intrinsic	object	that	provides	basic	mathematics	functionality	and	constants.	*/

declare	var	Math:	Math;

i.e.	the	variable		Math		is	an	instance	of	the		Math		interface.	The		Math		interface	is	defined
as:

interface	Math	{

				E:	number;

				LN10:	number;

				//	others	...

}

lib.d.ts

147

This	means	that	if	you	want	to	add	stuff	to	the		Math		global	variable	you	just	need	to	add	it
to	the		Math		global	interface,	e.g.	consider	the		seedrandom		project	which	adds	a
	seedrandom		function	to	the	global		Math		object.	This	can	be	declared	quite	easily:

interface	Math	{

				seedrandom(seed?:	string);

}

And	then	you	can	just	use	it:

Math.seedrandom();

//	or

Math.seedrandom("Any	string	you	want!");

Example		Date	

If	you	will	look	on	the	definition	of	the		Date		variable	in		lib.d.ts		you	will	find:

declare	var	Date:	DateConstructor;

The	interface		DateConstructor		is	similar	to	what	you	have	seen	before	with		Math		and
	Window		in	that	it	contains	members	you	can	use	off	of	the		Date		global	variable	e.g.
	Date.now()	.	In	addition	to	these	members	it	contains	construct	signatures	which	allow	you
to	create		Date		instances	(e.g.		new	Date()).	A	snippet	of	the		DateConstructor		interface	is
shown	below:

interface	DateConstructor	{

				new	():	Date;

				//	...	other	construct	signatures

				now():	number;

				//	...	other	member	functions

}

Consider	the	project		datejs	.	DateJS	adds	members	to	both	the		Date		global	variable	and
	Date		instances.	Therefore	a	TypeScript	definition	for	this	library	would	look	like	(BTW	the
community	has	already	written	this	for	you	in	this	case):

lib.d.ts

148

https://www.npmjs.com/package/seedrandom
https://github.com/abritinthebay/datejs
https://github.com/DefinitelyTyped/DefinitelyTyped/blob/master/types/datejs/index.d.ts

/**	DateJS	Public	Static	Methods	*/

interface	DateConstructor	{

				/**	Gets	a	date	that	is	set	to	the	current	date.	The	time	is	set	to	the	start	of	t

he	day	(00:00	or	12:00	AM)	*/

				today():	Date;

				//	...	so	on	and	so	forth

}

/**	DateJS	Public	Instance	Methods	*/

interface	Date	{

				/**	Adds	the	specified	number	of	milliseconds	to	this	instance.	*/

				addMilliseconds(milliseconds:	number):	Date;

				//	...	so	on	and	so	forth

}

This	allows	you	to	do	stuff	like	the	following	in	a	TypeSafe	manner:

var	today	=	Date.today();

var	todayAfter1second	=	today.addMilliseconds(1000);

Example		string	

If	you	look	inside		lib.d.ts		for	string	you	will	find	stuff	similar	to	what	we	saw	for		Date	
(String		global	variable,		StringConstructor		interface,		String		interface).	One	thing	of	note
though	is	that	the		String		interface	impacts	string	literals	as	well	as	demonstrated	in	the
below	code	sample:

interface	String	{

				endsWith(suffix:	string):	boolean;

}

String.prototype.endsWith	=	function(suffix:	string):	boolean	{

				var	str:	string	=	this;

				return	str	&&	str.indexOf(suffix,	str.length	-	suffix.length)	!==	-1;

}

console.log('foo	bar'.endsWith('bas'));	//	false

console.log('foo	bas'.endsWith('bas'));	//	true

Similar	variable	/	interfaces	exist	for	other	things	that	have	both	static	and	instance	member
like		Number	,		Boolean	,		RegExp	,	etc.	and	these	interfaces	affect	literal	instances	of	these
types	as	well.

Example		string		redux

lib.d.ts

149

We	recommended	creating	a		global.d.ts		for	maintainability	reasons.	However	you	can
break	into	the	global	namespace	from	within	a	file	module	if	you	desire	so.	This	is	done
using		declare	global	{	/*global	namespace	here*/	}	.	E.g.	the	previous	example	can	also	be
done	as:

//	Ensure	this	is	treated	as	a	module.

export	{};

declare	global	{

				interface	String	{

								endsWith(suffix:	string):	boolean;

				}

}

String.prototype.endsWith	=	function(suffix:	string):	boolean	{

				var	str:	string	=	this;

				return	str	&&	str.indexOf(suffix,	str.length	-	suffix.length)	!==	-1;

}

console.log('foo	bar'.endsWith('bas'));	//	false

console.log('foo	bas'.endsWith('bas'));	//	true

Using	your	own	custom	lib.d.ts

As	we	mentioned	earlier	using	the		noLib		boolean	compiler	flag	causes	TypeScript	to
exclude	the	automatic	inclusion	of		lib.d.ts	.	There	are	various	reasons	why	this	is	a	useful
feature.	Here	are	a	few	of	the	common	ones:

You	are	running	in	a	custom	JavaScript	environment	that	differs	significantly	from	the
standard	browser	based	runtime	environment.
You	like	to	have	strict	control	over	the	globals	available	in	your	code.	E.g.	lib.d.ts
defines		item		as	a	global	variable	and	you	don't	want	this	to	leak	into	your	code.

Once	you	have	excluded	the	default		lib.d.ts		you	can	include	a	similarly	named	file	into
your	compilation	context	and	TypeScript	will	pick	it	up	for	type	checking.

Note:	be	careful	with		--noLib	.	Once	you	are	in	noLib	land,	if	you	chose	to	share	your
project	with	others,	they	will	be	forced	into	noLib	land	(or	rather	your	lib	land).	Even
worse,	if	you	bring	their	code	into	your	project	you	might	need	to	port	it	to	your	lib	based
code.

Compiler	target	effect	on		lib.d.ts	

lib.d.ts

150

Setting	the	compiler	target	to	be		es6		causes	the		lib.d.ts		to	include	additional	ambient
declarations	for	more	modern	(es6)	stuff	like		Promise	.	This	magical	effect	of	the	compiler
target	changing	the	ambience	of	the	code	is	desirable	for	some	people	and	for	others	it's
problematic	as	it	conflates	code	generation	with	code	ambience.

However	if	you	want	finer	grained	control	of	your	environment	you	should	use	the		--lib	
option	which	we	discuss	next.

lib	option

Sometimes	(many	times)	you	want	to	decouple	the	relationship	between	the	compile	target
(the	generated	JavaScript	version)	and	the	ambient	library	support.	A	common	example	is
	Promise	,	e.g.	today	(in	June	2016)	you	most	likely	want	to		--target	es5		but	still	use	latest
stuff	like		Promise	.	To	support	this	you	can	take	explicit	control	of		lib		using	the		lib	
compiler	option.

Note:	using		--lib		decouples	any	lib	magic	from		--target		giving	you	better	control.

You	can	provide	this	option	on	the	command	line	or	in		tsconfig.json		(recommended):

Command	line:

tsc	--target	es5	--lib	dom,es6

tsconfig.json:

"compilerOptions":	{

				"lib":	["dom",	"es6"]

}

The	libs	can	be	categorized	into	categories:

JavaScript	Bulk	Feature:
es5
es6
es2015
es7
es2016
es2017
esnext

Runtime	Environment
dom
dom.iterable

lib.d.ts

151

webworker
scripthost

ESNext	By-feature	options	(even	smaller	than	bulk	feature)
es2015.core
es2015.collection
es2015.generator
es2015.iterable
es2015.promise
es2015.proxy
es2015.reflect
es2015.symbol
es2015.symbol.wellknown
es2016.array.include
es2017.object
es2017.sharedmemory
esnext.asynciterable

NOTE:	the		--lib		option	provides	extremely	fine	tuned	control.	So	you	most	likey	want
to	pick	an	item	from	the	bulk	+	enviroment	categories.	If	--lib	is	not	specified	a	default
library	is	injected:

For	--target	es5	=>	es5,	dom,	scripthost
For	--target	es6	=>	es6,	dom,	dom.iterable,	scripthost

My	Personal	Recommentation:

"compilerOptions":	{

				"target":	"es5",

				"lib":	["es6",	"dom"]

}

Example	Including	Symbol	with	ES5	Symbol	API	is	not	included	when	target	is	es5.	In	fact,
we	receive	an	error	like:	[ts]	Cannot	find	name	'Symbol'.	We	can	use	"target":	"es5"	in
combination	with	"lib"	to	provide	Symbol	API	in	TypeScript:

"compilerOptions":	{

				"target":	"es5",

				"lib":	["es5",	"dom",	"scripthost",	"es2015.symbol"]

}

Polyfill	for	old	JavaScript	engines

lib.d.ts

152

Egghead	PRO	Video	on	this	subject

There	are	quite	a	few	runtime	features	that	are	like		Map		/		Set		and	even		Promise		(this	list
will	ofcourse	change	over	time)	that	you	can	use	with	modern		lib		options.	To	use	these	all
you	need	to	do	is	use		core-js	.	Simply	install:

npm	install	core-js	--save-dev

And	add	an	import	to	your	application	entry	point:

import	"core-js";

And	it	should	polyfill	these	runtime	features	for	you	.

lib.d.ts

153

https://egghead.io/lessons/typescript-using-es6-and-esnext-with-typescript

Parameter	Annotations
Return	Type	Annotation
Optional	Parameters
Overloading

Functions
The	TypeScript	type	system	pays	a	lot	of	love	to	functions,	after	all	they	are	the	core	building
block	of	a	composable	system.

Parameter	annotations

Of	course	you	can	annotate	function	parameters	just	like	you	can	annotate	other	variables:

//	variable	annotation

var	sampleVariable:	{	bar:	number	}

//	function	parameter	annotation

function	foo(sampleParameter:	{	bar:	number	})	{	}

Here	I	used	inline	type	annotations.	Of	course	you	can	use	interfaces	etc.

Return	type	annotation

You	can	annotate	the	return	type	after	the	function	parameter	list	with	the	same	style	as	you
use	for	a	variable,	e.g.		:	Foo		in	the	below	example:

interface	Foo	{

				foo:	string;

}

//	Return	type	annotated	as	`:	Foo`

function	foo(sample:	Foo):	Foo	{

				return	sample;

}

Of	course	I	used	an		interface		here,	but	you	are	free	to	use	other	annotations	e.g.	inline
annotations.

Quite	commonly	you	don't	need	to	annotate	the	return	type	of	a	function	as	it	can	generally
be	inferred	by	the	compiler.

Functions

154

interface	Foo	{

				foo:	string;

}

function	foo(sample:	Foo)	{

				return	sample;	//	inferred	return	type	'Foo'

}

However	it	is	generally	a	good	idea	to	add	these	annotation	to	help	with	errors	e.g.:

function	foo()	{

				return	{	fou:	'John	Doe'	};	//	You	might	not	find	this	misspelling	`foo`	till	it's

	too	late

}

sendAsJSON(foo());

If	you	don't	plan	to	return	anything	from	a	function	to	you	can	annotate	it	as		:void	.	You	can
generally	drop		:void		and	leave	it	to	the	inference	engine	though.

Optional	Parameters

You	can	mark	a	parameter	as	optional:

function	foo(bar:	number,	bas?:	string):	void	{

				//	..

}

foo(123);

foo(123,	'hello');

Alternatively	you	can	even	provide	a	default	value	(using		=	someValue		after	the	parameter
declaration)	which	will	get	injected	for	you	if	the	caller	doesn't	provide	that	argument:

function	foo(bar:	number,	bas:	string	=	'hello')	{

				console.log(bar,	bas);

}

foo(123);											//	123,	hello

foo(123,	'world');		//	123,	world

Overloading

Functions

155

TypeScript	allows	you	to	declare	function	overloads.	This	is	useful	for	documentation	+	type
safety	purpose.	Consider	the	following	code:

function	padding(a:	number,	b?:	number,	c?:	number,	d?:	any)	{

				if	(b	===	undefined	&&	c	===	undefined	&&	d	===	undefined)	{

								b	=	c	=	d	=	a;

				}

				else	if	(c	===	undefined	&&	d	===	undefined)	{

								c	=	a;

								d	=	b;

				}

				return	{

								top:	a,

								right:	b,

								bottom:	c,

								left:	d

				};

}

If	you	look	at	the	code	carefully	you	realize	the	meaning	of		a	,	b	,	c	,	d		change	based	on
how	many	arguments	are	passed	in.	Also	the	function	only	expects		1	,		2		or		4	
arguments.	These	constraints	can	be	enforced	and	documented	using	function	overloading.
You	just:

declare	the	function	header	multiple	times,
the	last	function	header	is	the	one	that	is	actually	active	within	the	function	body	but	is
not	available	to	the	outside	world.

This	is	shown	below:

Functions

156

//	Overloads

function	padding(all:	number);

function	padding(topAndBottom:	number,	leftAndRight:	number);

function	padding(top:	number,	right:	number,	bottom:	number,	left:	number);

//	Actual	implementation	that	is	a	true	representation	of	all	the	cases	the	function	b

ody	needs	to	handle

function	padding(a:	number,	b?:	number,	c?:	number,	d?:	number)	{

				if	(b	===	undefined	&&	c	===	undefined	&&	d	===	undefined)	{

								b	=	c	=	d	=	a;

				}

				else	if	(c	===	undefined	&&	d	===	undefined)	{

								c	=	a;

								d	=	b;

				}

				return	{

								top:	a,

								right:	b,

								bottom:	c,

								left:	d

				};

}

Here	the	first	three	function	signatures	are	what	is	available	as	valid	calls	to		padding	:

padding(1);	//	Okay:	all

padding(1,1);	//	Okay:	topAndBottom,	leftAndRight

padding(1,1,1,1);	//	Okay:	top,	right,	bottom,	left

padding(1,1,1);	//	Error:	Not	a	part	of	the	available	overloads

Of	course	it's	important	for	the	final	declaration	(the	true	declaration	as	seen	from	inside	the
function)	to	be	compatible	with	all	the	overloads.	This	is	because	that	is	the	true	nature	of
the	function	calls	that	the	function	body	needs	to	account	for.

Function	overloading	in	TypeScript	doesn't	come	with	any	runtime	overhead.	It	just
allows	you	to	document	the	manner	you	expect	the	function	to	be	called	in	and	the
compiler	holds	the	rest	of	your	code	in	check.

Functions

157

Callable
You	can	annotate	callables	as	a	part	of	a	type	or	an	interface	as	follows

interface	ReturnString	{

		():	string

}

An	instance	of	such	an	interface	would	be	a	function	that	returns	a	string	e.g.

declare	const	foo:	ReturnString;

const	bar	=	foo();	//	bar	is	inferred	as	a	string

Obvious	examples

Of	course	such	a	callable	annotation	can	also	specify	any	arguments	/	optional	arguments	/
rest	arguments	as	needed.	e.g.	here	is	a	complex	example:

interface	Complex	{

		(foo:	string,	bar?:	number,	...others:	boolean[]):	number;

}

They	can	even	specify	overloads:

interface	Overloaded	{

		(foo:	string):	string

		(foo:	number):	number

}

//	example	implementation

const	overloaded:	Overloaded	=	(foo)	=>	foo;

//	example	usage

const	str	=	overloaded('');	//	str	is	inferred	string

const	number	=	overloaded(123);	//	num	is	inferred	number

Of	course	like	all	bodies	of	interfaces	/	types	you	can	use	these	as	variable	type	annotations
e.g.

Callable

158

const	overloaded:	{

		(foo:	string):	string

		(foo:	number):	number

}	=	(foo)	=>	foo;

Arrow	Syntax

To	make	it	easy	to	specify	callable	signatures	TypeScript	also	allows	simple	arrow	type
annotations	e.g.	a	function	that	takes	a		number		and	returns	a		string		can	be	annotated	as:

const	simple:	(foo:	number)	=>	string

				=	(foo)	=>	foo.toString();

Only	limitation	of	the	arrow	syntax:	You	can't	specify	overloads.	For	overloads	you	must	use
the	full	bodied		{	(someArgs):	someReturn	}		syntax.

Newable

Newable	is	just	a	special	type	of	callable	type	annotation	with	the	prefix		new	.	It	simply
means	that	you	need	to	invoke	with		new		e.g.

interface	CallMeWithNewToGetString	{

		new():	string

}

//	Usage	

declare	const	Foo:	CallMeWithNewToGetString;

const	bar	=	new	Foo();	//	bar	is	inferred	to	be	of	type	string

Callable

159

Type	Assertion
TypeScript	allows	you	to	override	its	inferred	and	analyzed	view	of	types	in	any	way	you
want	to.	This	is	done	by	a	mechanism	called	"type	assertion".	TypeScript's	type	assertion	is
purely	you	telling	the	compiler	that	you	know	about	the	types	better	than	it	does,	and	that	it
should	not	second	guess	you.

A	common	use	case	for	type	assertion	is	when	you	are	porting	over	code	from	JavaScript	to
TypeScript.	For	example	consider	the	following	pattern:

var	foo	=	{};

foo.bar	=	123;	//	Error:	property	'bar'	does	not	exist	on	`{}`

foo.bas	=	'hello';	//	Error:	property	'bas'	does	not	exist	on	`{}`

Here	the	code	errors	because	the	inferred	type	of		foo		is		{}		i.e.	an	object	with	zero
properties.	Therefore	you	are	not	allowed	to	add		bar		or		bas		to	it.	You	can	fix	this	simply
by	a	type	assertion		as	Foo	:

interface	Foo	{

				bar:	number;

				bas:	string;

}

var	foo	=	{}	as	Foo;

foo.bar	=	123;

foo.bas	=	'hello';

	as	foo		vs.		<foo>	

Originally	the	syntax	that	was	added	was		<foo>	.	This	is	demonstrated	below:

var	foo:	any;

var	bar	=	<string>	foo;	//	bar	is	now	of	type	"string"

However	there	is	an	ambiguity	in	the	language	grammar	when	using		<foo>		style	assertions
in	JSX:

var	foo	=	<string>bar;

</string>

Therefore	it	is	now	recommended	that	you	just	use		as	foo		for	consistency.

Type	Assertion

160

Type	Assertion	vs.	Casting

The	reason	why	it's	not	called	"type	casting"	is	that	casting	generally	implies	some	sort	of
runtime	support.	However	type	assertions	are	purely	a	compile	time	construct	and	a	way	for
you	to	provide	hints	to	the	compiler	on	how	you	want	your	code	to	be	analyzed.

Assertion	considered	harmful

In	many	cases	assertion	will	allow	you	to	easily	migrate	legacy	code	(and	even	copy	paste
other	code	samples	into	your	codebase),	however	you	should	be	careful	with	your	use	of
assertions.	Take	our	original	code	as	a	sample,	the	compiler	will	not	protect	you	from
forgetting	to	actually	add	the	properties	you	promised:

interface	Foo	{

				bar:	number;

				bas:	string;

}

var	foo	=	{}	as	Foo;

//	ahhhh	forget	something?

Also	another	common	thought	is	using	an	assertion	as	a	means	of	providing	autocomplete
e.g.:

interface	Foo	{

				bar:	number;

				bas:	string;

}

var	foo	=	<Foo>{

				//	the	compiler	will	provide	autocomplete	for	properties	of	Foo

				//	But	it	is	easy	for	the	developer	to	forget	adding	all	the	properties

				//	Also	this	code	is	likely	to	break	if	Foo	gets	refactored	(e.g.	a	new	property	a

dded)

};

but	the	hazard	here	is	the	same,	if	you	forget	a	property	the	compiler	will	not	complain.	It	is
better	if	you	do	the	following:

interface	Foo	{

				bar:	number;

				bas:	string;

}

var	foo:Foo	=	{

				//	the	compiler	will	provide	autocomplete	for	properties	of	Foo

};

Type	Assertion

161

In	some	cases	you	might	need	to	create	a	temporary	variable,	but	at	least	you	will	not	be
making	(possibly	false)	promises	and	instead	relying	on	the	type	inference	to	do	the
checking	for	you.

Double	assertion

The	type	assertion	despite	being	a	bit	unsafe	as	we've	shown,	is	not	completely	open
season.	E.g.	the	following	is	a	very	valid	use	case	(e.g.	the	user	thinks	the	event	passed	in
will	be	a	more	specific	case	of	an	event)	and	the	type	assertion	works	as	expected:

function	handler	(event:	Event)	{

				let	mouseEvent	=	event	as	MouseEvent;

}

However	the	following	is	most	likely	an	error	and	TypeScript	will	complain	as	shown	despite
the	user's	type	assertion:

function	handler(event:	Event)	{

				let	element	=	event	as	HTMLElement;	//	Error:	Neither	'Event'	nor	type	'HTMLElemen

t'	is	assignable	to	the	other

}

If	you	still	want	that	Type,	you	can	use	a	double	assertion,	but	first	asserting	to		any		which	is
compatible	with	all	types	and	therefore	the	compiler	no	longer	complains:

function	handler(event:	Event)	{

				let	element	=	event	as	any	as	HTMLElement;	//	Okay!

}

How	typescript	determines	if	a	single	assertion	is	not
enough

Basically,	the	assertion	from	type		S		to		T		succeeds	if	either		S		is	a	subtype	of		T		or		T		is
a	subtype	of		S	.	This	is	to	provide	extra	safety	when	doing	type	assertions	...	completely
wild	assertions	can	be	very	unsafe	and	you	need	to	use		any		to	be	that	unsafe.

Type	Assertion

162

Freshness
Allowing	extra	properties
Use	Case:	React

Freshness
TypeScript	provides	a	concept	of	Freshness	(also	called	strict	object	literal	checking)	to
make	it	easier	to	type	check	object	literals	that	would	otherwise	be	structurally	type
compatible.

Structural	typing	is	extremely	convenient.	Consider	the	following	piece	of	code.	This	allows
you	to	very	conveniently	upgrade	your	JavaScript	to	TypeScript	while	still	preserving	a	level
of	type	safety:

function	logName(something:	{	name:	string	})	{

				console.log(something.name);

}

var	person	=	{	name:	'matt',	job:	'being	awesome'	};

var	animal	=	{	name:	'cow',	diet:	'vegan,	but	has	milk	of	own	species'	};

var	random	=	{	note:	`I	don't	have	a	name	property`	};

logName(person);	//	okay

logName(animal);	//	okay

logName(random);	//	Error:	property	`name`	is	missing

However	structural	typing	has	a	weakness	in	that	it	allows	you	to	misleadingly	think	that
something	accepts	more	data	than	it	actually	does.	This	is	demonstrated	in	the	following
code	which	TypeScript	will	error	on	as	shown:

function	logName(something:	{	name:	string	})	{

				console.log(something.name);

}

logName({	name:	'matt'	});	//	okay

logName({	name:	'matt',	job:	'being	awesome'	});	//	Error:	object	literals	must	only	s

pecify	known	properties.	`job`	is	excessive	here.

Note	that	this	error	only	happens	on	object	literals.	Without	this	error	one	might	look	at	the
call		logName({	name:	'matt',	job:	'being	awesome'	})		and	think	that	logName	would	do
something	useful	with		job		where	as	in	reality	it	will	completely	ignore	it.

Another	big	use	case	is	with	interfaces	that	have	optional	members,	without	such	object
literal	checking,	a	typo	would	type	check	just	fine.	This	is	demonstrated	below:

Freshness

163

function	logIfHasName(something:	{	name?:	string	})	{

				if	(something.name)	{

								console.log(something.name);

				}

}

var	person	=	{	name:	'matt',	job:	'being	awesome'	};

var	animal	=	{	name:	'cow',	diet:	'vegan,	but	has	milk	of	own	species'	};

logIfHasName(person);	//	okay

logIfHasName(animal);	//	okay

logIfHasName({neme:	'I	just	misspelled	name	to	neme'});	//	Error:	object	literals	must

	only	specify	known	properties.	`neme`	is	excessive	here.

The	reason	why	only	object	literals	are	type	checked	this	way	is	because	in	this	case
additional	properties	that	aren't	actually	used	is	almost	always	a	typo	or	a	misunderstanding
of	the	API.

Allowing	extra	properties

A	type	can	include	an	index	signature	to	explicitly	indicate	that	excess	properties	are
permitted:

var	x:	{	foo:	number,	[x:	string]:	any	};

x	=	{	foo:	1,	baz:	2	};		//	Ok,	`baz`	matched	by	index	signature

Use	Case:	React	State

Facebook	ReactJS	offers	a	nice	use	case	for	object	freshness.	Quite	commonly	in	a
component	you	call		setState		with	only	a	few	properties	instead	of	passing	in	all	the
properties,	i.e.:

//	Assuming

interface	State	{

		foo:	string;

		bar:	string;

}

//	You	want	to	do:	

this.setState({foo:	"Hello"});	//	Error:	missing	property	bar

//	But	because	state	contains	both	`foo`	and	`bar`	TypeScript	would	force	you	to	do:	

this.setState({foo:	"Hello",	bar:	this.state.bar}};

Freshness

164

https://facebook.github.io/react/

Using	the	idea	of	freshness	you	would	mark	all	the	members	as	optional	and	you	still	get	to
catch	typos!:

//	Assuming

interface	State	{

		foo?:	string;

		bar?:	string;

}

//	You	want	to	do:	

this.setState({foo:	"Hello"});	//	Yay	works	fine!

//	Because	of	freshness	it's	protected	against	typos	as	well!

this.setState({foos:	"Hello"}};	//	Error:	Objects	may	only	specify	known	properties

//	And	still	type	checked

this.setState({foo:	123}};	//	Error:	Cannot	assign	number	to	a	string

Freshness

165

Type	Guard
User	Defined	Type	Guards

Type	Guard
Type	Guards	allow	you	to	narrow	down	the	type	of	an	object	within	a	conditional	block.

typeof

TypeScript	is	aware	of	the	usage	of	the	JavaScript		instanceof		and		typeof		operators.	If
you	use	these	in	a	conditional	block,	TypeScript	will	understand	the	type	of	the	variable	to	be
different	within	that	conditional	block.	Here	is	a	quick	example	where	TypeScript	realizes	that
a	particular	function	does	not	exist	on		string		and	points	out	what	was	probably	a	user
typo:

function	doSomething(x:	number	|	string)	{

				if	(typeof	x	===	'string')	{	//	Within	the	block	TypeScript	knows	that	`x`	must	be

	a	string

								console.log(x.subtr(1));	//	Error,	'subtr'	does	not	exist	on	`string`

								console.log(x.substr(1));	//	OK

				}

				x.substr(1);	//	Error:	There	is	no	guarantee	that	`x`	is	a	`string`

}

instanceof

Here	is	an	example	with	a	class	and		instanceof	:

Type	Guard

166

class	Foo	{

				foo	=	123;

				common	=	'123';

}

class	Bar	{

				bar	=	123;

				common	=	'123';

}

function	doStuff(arg:	Foo	|	Bar)	{

				if	(arg	instanceof	Foo)	{

								console.log(arg.foo);	//	OK

								console.log(arg.bar);	//	Error!

				}

				if	(arg	instanceof	Bar)	{

								console.log(arg.foo);	//	Error!

								console.log(arg.bar);	//	OK

				}

				console.log(arg.common);	//	OK

				console.log(arg.foo);	//	Error!

				console.log(arg.bar);	//	Error!

}

doStuff(new	Foo());

doStuff(new	Bar());

TypeScript	even	understands		else		so	when	an		if		narrows	out	one	type	it	knows	that
within	the	else	it's	definitely	not	that	type.	Here	is	an	example:

Type	Guard

167

class	Foo	{

				foo	=	123;

}

class	Bar	{

				bar	=	123;

}

function	doStuff(arg:	Foo	|	Bar)	{

				if	(arg	instanceof	Foo)	{

								console.log(arg.foo);	//	OK

								console.log(arg.bar);	//	Error!

				}

				else	{		//	MUST	BE	Bar!

								console.log(arg.foo);	//	Error!

								console.log(arg.bar);	//	OK

				}

}

doStuff(new	Foo());

doStuff(new	Bar());

in

The		in		operator	does	a	safe	check	for	the	existance	of	a	property	on	an	object	and	can	be
used	as	a	type	guard.	E.g.

interface	A	{

		x:	number;

}

interface	B	{

		y:	string;

}

function	doStuff(q:	A	|	B)	{

		if	('x'	in	q)	{

				//	q:	A

		}

		else	{

				//	q:	B

		}

}

Literal	Type	Guard

When	you	have	literal	types	in	a	union	you	can	check	them	to	discriminate	e.g.

Type	Guard

168

type	Foo	=	{

		kind:	'foo',	//	Literal	type	

		foo:	number

}

type	Bar	=	{

		kind:	'bar',	//	Literal	type	

		bar:	number

}

function	doStuff(arg:	Foo	|	Bar)	{

				if	(arg.kind	===	'foo')	{

								console.log(arg.foo);	//	OK

								console.log(arg.bar);	//	Error!

				}

				else	{		//	MUST	BE	Bar!

								console.log(arg.foo);	//	Error!

								console.log(arg.bar);	//	OK

				}

}

User	Defined	Type	Guards

JavaScript	doesn't	have	very	rich	runtime	introspection	support	built	in.	When	you	are	using
just	plain	JavaScript	Objects	(using	structural	typing	to	your	advantage),	you	do	not	even
have	access	to		instanceof		or		typeof	.	For	these	cases	you	can	create	User	Defined	Type
Guard	functions.	These	are	just	functions	that	return		someArgumentName	is	SomeType	.	Here	is
an	example:

Type	Guard

169

/**

	*	Just	some	interfaces

	*/

interface	Foo	{

				foo:	number;

				common:	string;

}

interface	Bar	{

				bar:	number;

				common:	string;

}

/**

	*	User	Defined	Type	Guard!

	*/

function	isFoo(arg:	any):	arg	is	Foo	{

				return	arg.foo	!==	undefined;

}

/**

	*	Sample	usage	of	the	User	Defined	Type	Guard

	*/

function	doStuff(arg:	Foo	|	Bar)	{

				if	(isFoo(arg))	{

								console.log(arg.foo);	//	OK

								console.log(arg.bar);	//	Error!

				}

				else	{

								console.log(arg.foo);	//	Error!

								console.log(arg.bar);	//	OK

				}

}

doStuff({	foo:	123,	common:	'123'	});

doStuff({	bar:	123,	common:	'123'	});

Type	Guard

170

Literals
Literals	are	exact	values	that	are	JavaScript	primitives.

String	Literals

You	can	use	a	string	literal	as	a	type.	For	example:

let	foo:	'Hello';

Here	we	have	created	a	variable	called		foo		that	will	only	allow	the	literal	value		'Hello'		to
be	assigned	to	it.	This	is	demonstrated	below:

let	foo:	'Hello';

foo	=	'Bar';	//	Error:	"Bar"	is	not	assignable	to	type	"Hello"

They	are	not	very	useful	on	their	own	but	can	be	combined	in	a	type	union	to	create	a
powerful	(and	useful)	abstraction	e.g.:

type	CardinalDirection	=

				"North"

				|	"East"

				|	"South"

				|	"West";

function	move(distance:	number,	direction:	CardinalDirection)	{

				//	...

}

move(1,"North");	//	Okay

move(1,"Nurth");	//	Error!

Other	literal	types

TypeScript	also	supports		boolean	,		numbers		as	literals,	e.g.:

type	OneToFive	=	1	|	2	|	3	|	4	|	5;

type	Bools	=	true	|	false;

Inference

Literal	Types

171

Quite	commonly	you	get	an	error	like		Type	string	is	not	assignable	to	type	"foo"	.	The
following	example	demonstrates	this.

function	iTakeFoo(foo:	'foo')	{	}

const	test	=	{

		someProp:	'foo'

};

iTakeFoo(test.someProp);	//	Error:	Argument	of	type	string	is	not	assignable	to	parame

ter	of	type	'foo'

This	is	because		test		is	inferred	to	be	of	type		{someProp:	string}	.	The	fix	here	is	to	use	a
simple	type	assertion	to	tell	TypeScript	the	literal	you	want	it	to	infer	as	shown	below:

function	iTakeFoo(foo:	'foo')	{	}

const	test	=	{

		someProp:	'foo'	as	'foo'

};

iTakeFoo(test.someProp);	//	Okay!

Use	cases

Valid	use	cases	for	string	literal	types	are:

String	based	enums

TypeScript	enums	are	number	based.	You	can	use	string	literals	with	union	types	to	mock	a
string	based	enum	as	we	did	in	the		CardinalDirection		example	above.	You	can	even
generate	a		Key:Value		structure	using	the	following	function:

/**	Utility	function	to	create	a	K:V	from	a	list	of	strings	*/

function	strEnum<T	extends	string>(o:	Array<T>):	{[K	in	T]:	K}	{

		return	o.reduce((res,	key)	=>	{

				res[key]	=	key;

				return	res;

		},	Object.create(null));

}

And	then	generate	the	literal	type	union	using		keyof	typeof	.	Here	is	a	complete	example:

Literal	Types

172

/**	Utility	function	to	create	a	K:V	from	a	list	of	strings	*/

function	strEnum<T	extends	string>(o:	Array<T>):	{[K	in	T]:	K}	{

		return	o.reduce((res,	key)	=>	{

				res[key]	=	key;

				return	res;

		},	Object.create(null));

}

/**

		*	Sample	create	a	string	enum

		*/

/**	Create	a	K:V	*/

const	Direction	=	strEnum([

		'North',

		'South',

		'East',

		'West'

])

/**	Create	a	Type	*/

type	Direction	=	keyof	typeof	Direction;

/**	

		*	Sample	using	a	string	enum

		*/

let	sample:	Direction;

sample	=	Direction.North;	//	Okay

sample	=	'North';	//	Okay

sample	=	'AnythingElse';	//	ERROR!

Modelling	existing	JavaScript	APIs

E.g.	CodeMirror	editor	has	an	option		readOnly		that	can	either	be	a		boolean		or	the	literal
string		"nocursor"		(effective	valid	values		true,false,"nocursor").	It	can	be	declared	as:

readOnly:	boolean	|	'nocursor';

Discriminated	Unions

We	will	cover	this	later	in	the	book.

Literal	Types

173

https://codemirror.net/doc/manual.html#option_readOnly

readonly
TypeScript's	type	system	allows	you	to	mark	individual	properties	on	an	interface	as
	readonly	.	This	allows	you	to	work	in	a	functional	way	(unexpected	mutation	is	bad):

function	foo(config:	{

				readonly	bar:	number,

				readonly	bas:	number

})	{

				//	..

}

let	config	=	{	bar:	123,	bas:	123	};

foo(config);

//	You	can	be	sure	that	`config`	isn't	changed	

Of	course	you	can	use		readonly		in		interface		and		type		definitions	as	well	e.g.:

type	Foo	=	{

				readonly	bar:	number;

				readonly	bas:	number;

}

//	Initialization	is	okay

let	foo:	Foo	=	{	bar:	123,	bas:	456	};

//	Mutation	is	not

foo.bar	=	456;	//	Error:	Left-hand	side	of	assignment	expression	cannot	be	a	constant	

or	a	read-only	property

You	can	even	declare	a	class	property	as		readonly	.	You	can	initialize	them	at	the	point	of
declaration	or	in	the	constructor	as	shown	below:

class	Foo	{

				readonly	bar	=	1;	//	OK

				readonly	baz:	string;

				constructor()	{

								this.baz	=	"hello";	//	OK

				}

}

Readonly

Readonly

174

There	is	a	type		Readonly		that	takes	a	type		T		and	marks	all	of	its	properties	as		readonly	
using	mapped	types.	Here	is	a	demo	that	uses	it	in	practice:

type	Foo	=	{

		bar:	number;

		bas:	number;

}

type	FooReadonly	=	Readonly<Foo>;	

let	foo:Foo	=	{bar:	123,	bas:	456};

let	fooReadonly:FooReadonly	=	{bar:	123,	bas:	456};

foo.bar	=	456;	//	Okay

fooReadonly.bar	=	456;	//	ERROR:	bar	is	readonly

Various	Use	Cases

ReactJS

One	library	that	loves	immutability	is	ReactJS,	you	could	mark	your		Props		and		State		to	be
immutable	e.g.:

interface	Props	{

				readonly	foo:	number;

}

interface	State	{

				readonly	bar:	number;

}

export	class	Something	extends	React.Component<Props,State>	{

		someMethod()	{

				//	You	can	rest	assured	no	one	is	going	to	do

				this.props.foo	=	123;	//	ERROR:	(props	are	immutable)

				this.state.baz	=	456;	//	ERROR:	(one	should	use	this.setState)		

		}

}

You	do	no	need	to	however	as	the	type	definitions	for	React	mark	these	as		readonly		for
you	(by	internally	wrapping	the	passed	in	generic	types	with	the		Readonly		type	mentioned
above).

Readonly

175

export	class	Something	extends	React.Component<{	foo:	number	},	{	baz:	number	}>	{

		//	You	can	rest	assured	no	one	is	going	to	do

		someMethod()	{

				this.props.foo	=	123;	//	ERROR:	(props	are	immutable)

				this.state.baz	=	456;	//	ERROR:	(one	should	use	this.setState)		

		}

}

Seamless	Immutable

You	can	even	mark	index	signatures	as	readonly:

/**

	*	Declaration

	*/

interface	Foo	{

				readonly[x:	number]:	number;

}

/**

	*	Usage

	*/

let	foo:	Foo	=	{	0:	123,	2:	345	};

console.log(foo[0]);			//	Okay	(reading)

foo[0]	=	456;										//	Error	(mutating):	Readonly

This	is	great	if	you	want	to	use	native	JavaScript	arrays	in	an	immutable	fashion.	In	fact
TypeScript	ships	with	a		ReadonlyArray<T>		interface	to	allow	you	to	do	just	that:

let	foo:	ReadonlyArray<number>	=	[1,	2,	3];

console.log(foo[0]);			//	Okay

foo.push(4);											//	Error:	`push`	does	not	exist	on	ReadonlyArray	as	it	mutates	

the	array

foo	=	foo.concat([4]);	//	Okay:	create	a	copy

Automatic	Inference

In	some	cases	the	compiler	can	automatically	infer	a	particular	item	to	be	readonly	e.g.
within	a	class	if	you	have	a	property	that	only	has	a	getter	but	no	setter,	it	is	assumed
readonly	e.g.:

Readonly

176

class	Person	{

				firstName:	string	=	"John";

				lastName:	string	=	"Doe";

				get	fullName()	{

								return	this.firstName	+	this.lastName;

				}

}

const	person	=	new	Person();

console.log(person.fullName);	//	John	Doe

person.fullName	=	"Dear	Reader";	//	Error!	fullName	is	readonly

Difference	from		const	
	const	

1.	 is	for	a	variable	reference
2.	 the	variable	cannot	be	reassigned	to	anything	else.

	readonly		is

1.	 for	a	property
2.	 the	property	can	be	modified	because	of	aliasing

Sample	explaining	1:

const	foo	=	123;	//	variable	reference

var	bar:	{

				readonly	bar:	number;	//	for	property

}

Sample	explaining	2:

let	foo:	{

				readonly	bar:	number;

}	=	{

								bar:	123

				};

function	iMutateFoo(foo:	{	bar:	number	})	{

				foo.bar	=	456;

}

iMutateFoo(foo);	//	The	foo	argument	is	aliased	by	the	foo	parameter

console.log(foo.bar);	//	456!

Readonly

177

Basically		readonly		ensures	that	cannot	be	modified	by	me,	but	if	you	give	it	to	someone
that	doesn't	have	that	guarantee	(allowed	for	type	compatibility	reasons)	they	can	modify	it.
Of	course	if		iMutateFoo		said	that	they	do	not	mutate		foo.bar		the	compiler	would	correctly
flag	it	as	an	error	as	shown:

interface	Foo	{

				readonly	bar:	number;

}

let	foo:	Foo	=	{

				bar:	123

};

function	iTakeFoo(foo:	Foo)	{

				foo.bar	=	456;	//	Error!	bar	is	readonly

}

iTakeFoo(foo);	//	The	foo	argument	is	aliased	by	the	foo	parameter

Readonly

178

Generics
The	key	motivation	for	generics	is	to	provide	meaningful	type	constraints	between	members.
The	members	can	be:

Class	instance	members
Class	methods
function	arguments
function	return	value

Motivation	and	samples
Consider	the	simple		Queue		(first	in,	first	out)	data	structure	implementation.	A	simple	one	in
TypeScript	/	JavaScript	looks	like:

class	Queue	{

		private	data	=	[];

		push	=	(item)	=>	this.data.push(item);

		pop	=	()	=>	this.data.shift();

}

One	issue	with	this	implementation	is	that	it	allows	people	to	add	anything	to	the	queue	and
when	they	pop	it	-	it	can	be	anything.	This	is	shown	below,	where	someone	can	push	a
	string		onto	the	queue	while	the	usage	actually	assumes	that	only		numbers		where	pushed
in:

class	Queue	{

		private	data	=	[];

		push	=	(item)	=>	this.data.push(item);

		pop	=	()	=>	this.data.shift();

}

const	queue	=	new	Queue();

queue.push(0);

queue.push("1");	//	Ops	a	mistake

//	a	developer	walks	into	a	bar

console.log(queue.pop().toPrecision(1));

console.log(queue.pop().toPrecision(1));	//	RUNTIME	ERROR

Generics

179

One	solution	(and	in	fact	the	only	one	in	languages	that	don't	support	generics)	is	to	go
ahead	and	create	special	classes	just	for	these	contraints.	E.g.	a	quick	and	dirty	number
queue:

class	QueueNumber	{

		private	data	=	[];

		push	=	(item:	number)	=>	this.data.push(item);

		pop	=	():	number	=>	this.data.shift();

}

const	queue	=	new	QueueNumber();

queue.push(0);

queue.push("1");	//	ERROR	:	cannot	push	a	string.	Only	numbers	allowed

//	^	if	that	error	is	fixed	the	rest	would	be	fine	too

Of	course	this	can	quickly	become	painful	e.g.	if	you	want	a	string	queue	you	have	to	go
through	all	that	effort	again.	What	you	really	want	is	a	way	to	say	that	whatever	the	type	is	of
the	stuff	getting	pushed	it	should	be	the	same	for	whatever	gets	popped.	This	is	done	easily
with	a	generic	parameter	(in	this	case,	at	the	class	level):

/**	A	class	definition	with	a	generic	parameter	*/

class	Queue<T>	{

		private	data	=	[];

		push	=	(item:	T)	=>	this.data.push(item);

		pop	=	():	T	=>	this.data.shift();

}

/**	Again	sample	usage	*/

const	queue	=	new	Queue<number>();

queue.push(0);

queue.push("1");	//	ERROR	:	cannot	push	a	string.	Only	numbers	allowed

//	^	if	that	error	is	fixed	the	rest	would	be	fine	too

Another	example	that	we	have	already	seen	is	that	of	a	reverse	function,	here	the	constraint
is	between	what	gets	passed	into	the	function	and	what	the	function	returns:

Generics

180

function	reverse<T>(items:	T[]):	T[]	{

				var	toreturn	=	[];

				for	(let	i	=	items.length	-	1;	i	>=	0;	i--)	{

								toreturn.push(items[i]);

				}

				return	toreturn;

}

var	sample	=	[1,	2,	3];

var	reversed	=	reverse(sample);

console.log(reversed);	//	3,2,1

//	Safety!

reversed[0]	=	'1';					//	Error!

reversed	=	['1',	'2'];	//	Error!

reversed[0]	=	1;							//	Okay

reversed	=	[1,	2];					//	Okay

In	this	section	you	have	seen	examples	of	generics	being	defined	at	class	level	and	at
function	level.	One	minor	addition	worth	mentioning	is	that	you	can	have	generics	created
just	for	a	member	function.	As	a	toy	example	consider	the	following	where	we	move	the
	reverse		function	into	a		Utility		class:

class	Utility	{

		reverse<T>(items:	T[]):	T[]	{

						var	toreturn	=	[];

						for	(let	i	=	items.length	-	1;	i	>=	0;	i--)	{

										toreturn.push(items[i]);

						}

						return	toreturn;

		}

}

TIP:	You	can	call	the	generic	parameter	whatever	you	want.	It	is	conventional	to	use
	T	,		U	,		V		when	you	have	simple	generics.	If	you	have	more	than	one	generic
argument	try	to	use	meaningful	names	e.g.		TKey		and		TValue		(conventional	to	prefix
with		T		as	generics	are	also	called	templates	in	other	languages	e.g.	C++).

Generics	in	TSX
Because		.tsx		/		.jsx		uses	syntax	like		<div>		to	denote	JSX	blocks	it	offers	a	few	unique
challenges	for	Generics.

Quick	Tip:	Use		as	Foo		syntax	for	type	assertions	as	we	mentioned	before.

Generics

181

Generic	functions

Something	like	the	following	works	fine:

function	foo<T>(x:	T):	T	{	return	x;	}

However	using	an	arrow	generic	function	will	not:

const	foo	=	<T>(x:	T)	=>	x;	//	ERROR	:	unclosed	`T`	tag

Workaround:	Use		extends		on	the	generic	parameter	to	hint	the	compiler	that	it's	a	generic,
e.g.:

const	foo	=	<T	extends	{}>(x:	T)	=>	x;

Generic	Components

Since	JSX	doesn't	have	a	syntax	for	providing	a	generic	parameter	you	need	to	specialize
the	component	using	a	type	assertion	before	creating	it,	e.g.:

/**	Generic	component	*/

type	SelectProps<T>	=	{	items:	T[]	}

class	Select<T>	extends	React.Component<SelectProps<T>,	any>	{	}

/**	Specialization	*/

interface	StringSelect	{	new	():	Select<string>	};

const	StringSelect	=	Select	as	StringSelect;

/**	Usage	*/

const	Form	=	()=>	<StringSelect	items={['a',	'b']}	/>;

Useless	Generic
I've	seen	people	use	generics	just	for	the	heck	of	it.	The	question	to	ask	is	what	constraint
are	you	trying	to	describe.	If	you	can't	answer	it	easily	you	probably	have	a	useless	generic.
E.g.	people	have	attempted	to	type	the	Node.js		require		function	as:

declare	function	require<T>(name:	string):	T;

In	this	case	you	can	see	that	the	type		T		is	only	used	in	one	place.	So	there	is	not
constraint	between	members.	You	would	be	better	off	with	a	type	assertion	in	this	case:

Generics

182

declare	function	require(name:	string):	any;

const	something	=	require('something')	as	TypeOfSomething;

This	is	just	an	example;	if	you	are	considering	on	using	this		require		typings,	you	don't
need	to	because:

1.	 It's	already	there	in		node.d.ts	:	you	can	install	using		npm	install	@types/node	--save-
dev	.

2.	 You	should	consider	using	the	type	definitions	for	your	library	e.g.	for	jquery		npm
install	@types/jquery	--save-dev		instead	of	using	raw		require	.

Design	Pattern:	Convenience	generic

The	previous	example	of		require<T>		was	intentionally	meant	to	make	clear	the	fact	that
generics	used	only	once	are	no	better	than	an	assertion	in	terms	of	type	safety.	That	said
they	do	provide	convenience	to	your	API.

An	example	is	a	function	that	loads	a	json	response.	It	returns	a	promise	of	whatever	type
you	pass	in:

const	getJSON	=	<T>(config:	{

				url:	string,

				headers?:	{	[key:	string]:	string	},

		}):	Promise<T>	=>	{

				const	fetchConfig	=	({

						method:	'GET',

						'Accept':	'application/json',

						'Content-Type':	'application/json',

						...(config.headers	||	{})

				});

				return	fetch(config.url,	fetchConfig)

						.then<T>(response	=>	response.json());

		}

Note	that	you	still	have	to	explicitly	annotate	what	you	want,	but	the		getJSON<T>		signature
	(config)	=>	Promise<T>		saves	you	a	few	key	strokes:

Generics

183

type	LoadUsersResponse	=	{

		users:	{

				name:	string;

				email:	string;

		}[];

}

function	loadUsers()	{

		return	getJSON<LoadUsersResponse>({	url:	'https://example.com/users'	});

}

Also		Promise<T>		as	a	return	value	is	definitely	better	than	alternatives	like		Promise<any>	.

Generics

184

Type	Inference	in	TypeScript
TypeScript	can	infer	(and	then	check)	the	type	of	a	variable	based	on	a	few	simple	rules.
Because	these	rules	are	simple	you	can	train	your	brain	to	recognize	safe	/	unsafe	code	(it
happened	for	me	and	my	team	mates	quite	quickly).

The	types	flowing	is	just	how	I	imagine	in	my	brain	the	flow	of	type	information.

Definition
Types	of	a	variable	are	inferred	by	definition.

let	foo	=	123;	//	foo	is	a	`number`

let	bar	=	"Hello";	//	bar	is	a	`string`

foo	=	bar;	//	Error:	cannot	assign	`string`	to	a	`number`

This	is	an	example	of	types	flowing	from	right	to	left.

Return
The	return	type	is	inferred	by	the	return	statements	e.g.	the	following	function	is	inferred	to
return	a		number	.

function	add(a:	number,	b:	number)	{

				return	a	+	b;

}

This	is	an	example	of	types	flowing	bottom	out.

Assignment
The	type	of	the	function	parameters	/	return	can	also	be	inferred	by	assignment	e.g.	here	we
say	that		foo		is	an		Adder	,	that	makes	the	type	of		a		and		b		to	infer	as		number	.

type	Adder	=	(a:	number,	b:	number)	=>	number;

let	foo:	Adder	=	(a,	b)	=>	a	+	b;

Type	Inference

185

This	fact	can	be	demonstrated	by	the	below	code	which	raises	an	error	as	you	would	hope:

type	Adder	=	(a:	number,	b:	number)	=>	number;

let	foo:	Adder	=	(a,	b)	=>	{

				a	=	"hello";	//	Error:	cannot	assign	`string`	to	a	`number`

				return	a	+	b;

}

This	is	an	example	of	types	flowing	from	left	to	right.

The	same	assignment	style	type	inference	works	if	you	create	a	function	for	a	callback
argument.	After	all	an		argument	->	parameter	is	just	another	form	of	variable	assignment.

type	Adder	=	(a:	number,	b:	number)	=>	number;

function	iTakeAnAdder(adder:	Adder)	{

				return	adder(1,	2);

}

iTakeAnAdder((a,	b)	=>	{

				//	a	=	"hello";	//	Would	Error:	cannot	assign	`string`	to	a	`number`

				return	a	+	b;

})

Structuring
These	simple	rules	also	work	in	the	presence	of	structuring	(object	literal	creation).	For
example	in	the	following	case	the	type	of		foo		is	inferred	to	be		{a:number,	b:number}	

let	foo	=	{

				a:	123,

				b:	456

};

//	foo.a	=	"hello";	//	Would	Error:	cannot	assign	`string`	to	a	`number`

Similarly	for	arrays:

const	bar	=	[1,2,3];

//	bar[0]	=	"hello";	//	Would	error:	cannot	assign	`string`	to	a	`number`

And	of	course	any	nesting:

Type	Inference

186

let	foo	=	{

				bar:	[1,	3,	4]

};

foo.bar[0]	=	'hello';	//	Would	error:	cannot	assign	`string`	to	a	`number`

Destructuring
And	of	course,	they	also	work	with	destructuring,	both	objects:

let	foo	=	{

				a:	123,

				b:	456

};

let	{a}	=	foo;

//	a	=	"hello";	//	Would	Error:	cannot	assign	`string`	to	a	`number`

and	arrays:

const	bar	=	[1,	2];

let	[a,	b]	=	bar;

//	a	=	"hello";	//	Would	Error:	cannot	assign	`string`	to	a	`number`

And	if	the	function	parameter	can	be	inferred,	so	can	its	destructured	properties.	For
example	here	we	destructure	the	argument	into	its		a	/	b		members.

type	Adder	=	(numbers:	{	a:	number,	b:	number	})	=>	number;

function	iTakeAnAdder(adder:	Adder)	{

				return	adder({	a:	1,	b:	2	});

}

iTakeAnAdder(({a,	b})	=>	{	//	Types	of	`a`	and	`b`	are	inferred

				//	a	=	"hello";	//	Would	Error:	cannot	assign	`string`	to	a	`number`

				return	a	+	b;

})

Type	Guards
We	have	already	seen	how	Type	Guards	help	change	and	narrow	down	types	(particularly	in
the	case	of	unions).	Type	guards	are	just	another	form	of	type	inference	for	a	variable	in	a
block.

Warnings

Type	Inference

187

Be	careful	around	parameters

Types	do	not	flow	into	the	function	parameters	if	it	cannot	be	inferred	from	an	assignment.
For	example	in	the	following	case	the	compiler	does	not	know	the	type	of		foo		so	it	cannot
infer	the	type	of		a		or		b	.

const	foo	=	(a,b)	=>	{	/*	do	something	*/	};

However	if		foo		was	typed	the	function	parameters	type	can	be	inferred	(a	,	b		are	both
inferred	to	be	of	type	number	in	the	example	below).

type	TwoNumberFunction	=	(a:	number,	b:	number)	=>	void;

const	foo:	TwoNumberFunction	=	(a,	b)	=>	{	/*	do	something	*/	};

Be	careful	around	return

Although	TypeScript	can	generally	infer	the	return	type	of	a	function,	it	might	not	be	what	you
expect.	For	example	here	function		foo		has	a	return	type	of		any	.

function	foo(a:	number,	b:	number)	{

				return	a	+	addOne(b);

}

//	Some	external	function	in	a	library	someone	wrote	in	JavaScript

function	addOne(a)	{

				return	a	+	1;

}

This	is	because	the	return	type	is	impacted	by	the	poor	type	definition	for		addOne		(a		is
	any		so	the	return	of		addOne		is		any		so	the	return	of		foo		is		any).

I	find	it	simplest	to	always	be	explicit	about	function	/	returns.	After	all	these	annotations
are	a	theorem	and	the	function	body	is	the	proof.

There	are	other	cases	that	one	can	imagine,	but	the	good	news	is	that	there	is	a	compiler
flag	that	can	help	catch	such	bugs.

	noImplicitAny	

The	flag		noImplicitAny		instructs	the	compiler	to	raise	an	error	if	it	cannot	infer	the	type	of	a
variable	(and	therefore	can	only	have	it	as	an	implicit		any		type).	You	can	then

either	say	that	yes	I	want	it	to	be	of	type		any		by	explicitly	adding	an		:	any		type
annotation

Type	Inference

188

help	the	compiler	out	by	adding	a	few	more	correct	annotations.

Type	Inference

189

Type	Compatibility
Soundness
Structural
Generics
Variance
Functions

Return	Type
Number	of	arguments
Optional	and	rest	parameters
Types	of	arguments

Enums
Classes
Generics
FootNote:	Invariance

Type	Compatibility
Type	Compatibility	(as	we	discuss	here)	determines	if	one	thing	can	be	assigned	to	another.
E.g.		string		and		number		are	not	compatible:

let	str:	string	=	"Hello";

let	num:	number	=	123;

str	=	num;	//	ERROR:	`number`	is	not	assignable	to	`string`

num	=	str;	//	ERROR:	`string`	is	not	assignable	to	`number`

Soundness
TypeScript's	type	system	is	designed	to	be	convenient	and	allows	for	unsound	behaviours
e.g.	anything	can	be	assigned	to		any		which	essentially	means	you	telling	the	compiler	to
allow	you	to	do	whatever	you	want:

let	foo:	any	=	123;

foo	=	"Hello";

//	Later

foo.toPrecision(3);	//	Allowed	as	you	typed	it	as	`any`

Structural

Type	Compatibility

190

TypeScript	objects	are	structurally	typed.	This	means	the	names	don't	matter	as	long	as	the
structures	match

interface	Point	{

				x:	number,

				y:	number

}

class	Point2D	{

				constructor(public	x:number,	public	y:number){}

}

let	p:	Point;

//	OK,	because	of	structural	typing

p	=	new	Point2D(1,2);

This	allows	you	to	create	objects	on	the	fly	(like	you	do	in	vanilla	JS)	and	still	have	safety	for
whenever	it	can	be	inferred.

Also	more	data	is	considered	fine:

interface	Point2D	{

				x:	number;

				y:	number;

}

interface	Point3D	{

				x:	number;

				y:	number;

				z:	number;

}

var	point2D:	Point2D	=	{	x:	0,	y:	10	}

var	point3D:	Point3D	=	{	x:	0,	y:	10,	z:	20	}

function	iTakePoint2D(point:	Point2D)	{	/*	do	something	*/	}

iTakePoint2D(point2D);	//	exact	match	okay

iTakePoint2D(point3D);	//	extra	information	okay

iTakePoint2D({	x:	0	});	//	Error:	missing	information	`y`

Variance
Variance	is	an	easy	to	understand	and	important	concept	for	type	compatibility	analysis.

For	simple	types		Base		and		Child	,	if		Child		is	a	child	of		Base	,	then	instances	of		Child	
can	be	assigned	to	a	variable	to	type		Base	.

This	is	polymorphism	101

Type	Compatibility

191

In	type	compatibility	of	complex	types	composed	of	such		Base		and		Child		depending	on
where	the		Base		and		Child		in	similar	scenarios	is	driven	by	variance.

Covariant	:	(corporate)	only	in	same	direction
Contravariant	:	(contra	aka	negative)	only	in	opposite	direction
Bivariant	:	(bi	aka	both)	both	co	and	contra.
Invariant	:	if	the	types	are	aren't	exact	then	they	are	incompatible.

Note:	For	a	completely	sound	type	system	in	the	presence	of	mutable	data	like
JavaScript,		invariant		is	the	only	valid	option.	But	as	mentioned	convenience	forces
us	to	make	unsound	choices.

Functions
There	are	a	few	subtle	things	to	consider	when	comparing	two	functions.

Return	Type

	covariant	:	The	return	type	must	contain	at	least	enough	data.

/**	Type	Heirarchy	*/

interface	Point2D	{	x:	number;	y:	number;	}

interface	Point3D	{	x:	number;	y:	number;	z:	number;	}

/**	Two	sample	functions	*/

let	iMakePoint2D	=	():	Point2D	=>	({	x:	0,	y:	0	});

let	iMakePoint3D	=	():	Point3D	=>	({	x:	0,	y:	0,	z:	0	});

/**	Assignment	*/

iMakePoint2D	=	iMakePoint3D;	//	Okay

iMakePoint3D	=	iMakePoint2D;	//	ERROR:	Point2D	is	not	assignable	to	Point3D

Number	of	arguments

Less	arguments	are	okay	(i.e.	functions	can	chose	to	ignore	additional	args).	After	all	you
are	guaranteed	to	be	called	with	at	least	enough	arguments.

Type	Compatibility

192

let	iTakeSomethingAndPassItAnErr

				=	(x:	(err:	Error,	data:	any)	=>	void)	=>	{	/*	do	something	*/	};

iTakeSomethingAndPassItAnErr(()	=>	null)	//	Okay

iTakeSomethingAndPassItAnErr((err)	=>	null)	//	Okay

iTakeSomethingAndPassItAnErr((err,	data)	=>	null)	//	Okay

//	ERROR:	function	may	be	called	with	`more`	not	being	passed	in

iTakeSomethingAndPassItAnErr((err,	data,	more)	=>	null);	//	ERROR

Optional	and	Rest	Parameters

Optional	(pre	determined	count)	and	Rest	parameters	(any	count	of	arguments)	are
compatible,	again	for	convenience.

let	foo	=	(x:number,	y:	number)	=>	{	/*	do	something	*/	}

let	bar	=	(x?:number,	y?:	number)	=>	{	/*	do	something	*/	}

let	bas	=	(...args:	number[])	=>	{	/*	do	something	*/	}

foo	=	bar	=	bas;

bas	=	bar	=	foo;

Note:	optional	(in	our	example		bar)	and	non	optional	(in	our	example		foo)	are	only
compatible	if	strictNullChecks	is	false.

Types	of	arguments

	bivariant		:	This	is	designed	to	support	common	event	handling	scenarios

Type	Compatibility

193

/**	Event	Hierarchy	*/

interface	Event	{	timestamp:	number;	}

interface	MouseEvent	extends	Event	{	x:	number;	y:	number	}

interface	KeyEvent	extends	Event	{	keyCode:	number	}

/**	Sample	event	listener	*/

enum	EventType	{	Mouse,	Keyboard	}

function	addEventListener(eventType:	EventType,	handler:	(n:	Event)	=>	void)	{

				/*	...	*/

}

//	Unsound,	but	useful	and	common.	Works	as	function	argument	comparison	is	bivariant

addEventListener(EventType.Mouse,	(e:	MouseEvent)	=>	console.log(e.x	+	","	+	e.y));

//	Undesirable	alternatives	in	presence	of	soundness

addEventListener(EventType.Mouse,	(e:	Event)	=>	console.log((<MouseEvent>e).x	+	","	+	

(<MouseEvent>e).y));

addEventListener(EventType.Mouse,	<(e:	Event)	=>	void>((e:	MouseEvent)	=>	console.log(

e.x	+	","	+	e.y)));

//	Still	disallowed	(clear	error).	Type	safety	enforced	for	wholly	incompatible	types

addEventListener(EventType.Mouse,	(e:	number)	=>	console.log(e));

Also	makes		Array<Child>		assignable	to		Array<Base>		(covariance)	as	the	functions	are
compatible.	Array	covariance	requires	all		Array<Child>		functions	to	be	assignable	to
	Array<Base>		e.g.		push(t:Child)		is	assignable	to		push(t:Base)		which	is	made	possible	by
function	argument	bivariance.

This	can	be	confusing	for	people	coming	from	other	languages	who	would	expect	the
following	to	error	but	will	not	in	TypeScript:

/**	Type	Heirarchy	*/

interface	Point2D	{	x:	number;	y:	number;	}

interface	Point3D	{	x:	number;	y:	number;	z:	number;	}

/**	Two	sample	functions	*/

let	iTakePoint2D	=	(point:	Point2D)	=>	{	/*	do	something	*/	}

let	iTakePoint3D	=	(point:	Point3D)	=>	{	/*	do	something	*/	}

iTakePoint3D	=	iTakePoint2D;	//	Okay	:	Reasonable

iTakePoint2D	=	iTakePoint3D;	//	Okay	:	WHAT

Enums
Enums	are	compatible	with	numbers,	and	numbers	are	compatible	with	enums.

Type	Compatibility

194

enum	Status	{	Ready,	Waiting	};

let	status	=	Status.Ready;

let	num	=	0;

status	=	num;	//	OKAY

num	=	status;	//	OKAY

Enum	values	from	different	enum	types	are	considered	incompatible.	This	makes
enums	useable	nominally	(as	opposed	to	structurally)

enum	Status	{	Ready,	Waiting	};

enum	Color	{	Red,	Blue,	Green	};

let	status	=	Status.Ready;

let	color	=	Color.Red;

status	=	color;	//	ERROR

Classes
Only	instance	members	and	methods	are	compared.	constructors	and	statics	play	no
part.

class	Animal	{

				feet:	number;

				constructor(name:	string,	numFeet:	number)	{	/**	do	something	*/	}

}

class	Size	{

				feet:	number;

				constructor(meters:	number)	{	/**	do	something	*/	}

}

let	a:	Animal;

let	s:	Size;

a	=	s;		//	OK

s	=	a;		//	OK

	private		and		protected		members	must	originate	from	the	same	class.	Such	members
essentially	make	the	class	nominal.

Type	Compatibility

195

/**	A	class	hierarchy	*/

class	Animal	{	protected	feet:	number;	}

class	Cat	extends	Animal	{	}

let	animal:	Animal;

let	cat:	Cat;

animal	=	cat;	//	OKAY

cat	=	animal;	//	OKAY

/**	Looks	just	like	Animal	*/

class	Size	{	protected	feet:	number;	}

let	size:	Size;

animal	=	size;	//	ERROR

size	=	animal;	//	ERROR

Generics
Since	TypeScript	has	a	structural	type	system,	type	parameters	only	affect	compatibility
when	used	by	member.	For	example,	in	the	following		T		has	no	impact	on	compatibility:

interface	Empty<T>	{

}

let	x:	Empty<number>;

let	y:	Empty<string>;

x	=	y;		//	okay,	y	matches	structure	of	x

However	if		T		is	used,	it	will	play	a	role	in	compatibility	based	on	its	instantiation	as	shown
below:

interface	NotEmpty<T>	{

				data:	T;

}

let	x:	NotEmpty<number>;

let	y:	NotEmpty<string>;

x	=	y;		//	error,	x	and	y	are	not	compatible

In	cases	where	generic	arguments	haven't	been	instantiated	they	are	substituted	by		any	
before	checking	compatibility:

Type	Compatibility

196

let	identity	=	function<T>(x:	T):	T	{

				//	...

}

let	reverse	=	function<U>(y:	U):	U	{

				//	...

}

identity	=	reverse;		//	Okay	because	(x:	any)=>any	matches	(y:	any)=>any

Generics	involving	classes	are	matched	by	relevant	class	compatability	as	mentioned
before.	e.g.

class	List<T>	{

		add(val:	T)	{	}

}

class	Animal	{	name:	string;	}

class	Cat	extends	Animal	{	meow()	{	}	}

const	animals	=	new	List<Animal>();

animals.add(new	Animal());	//	Okay	

animals.add(new	Cat());	//	Okay	

const	cats	=	new	List<Cat>();

cats.add(new	Animal());	//	Error	

cats.add(new	Cat());	//	Okay

FootNote:	Invariance
We	said	invariance	is	the	only	sound	option.	Here	is	an	example	where	both		contra		and
	co		variance	are	shown	to	be	unsafe	for	arrays.

Type	Compatibility

197

/**	Hierarchy	*/

class	Animal	{	constructor(public	name:	string){}	}

class	Cat	extends	Animal	{	meow()	{	}	}

/**	An	item	of	each	*/

var	animal	=	new	Animal("animal");

var	cat	=	new	Cat("cat");

/**

	*	Demo	:	polymorphism	101

	*	Animal	<=	Cat

	*/

animal	=	cat;	//	Okay

cat	=	animal;	//	ERROR:	cat	extends	animal

/**	Array	of	each	to	demonstrate	variance	*/

let	animalArr:	Animal[]	=	[animal];

let	catArr:	Cat[]	=	[cat];

/**

	*	Obviously	Bad	:	Contravariance

	*	Animal	<=	Cat

	*	Animal[]	>=	Cat[]

	*/

catArr	=	animalArr;	//	Okay	if	contravariant

catArr[0].meow();	//	Allowed	but	BANG		at	runtime

/**

	*	Also	Bad	:	covariance

	*	Animal	<=	Cat

	*	Animal[]	<=	Cat[]

	*/

animalArr	=	catArr;	//	Okay	if	covariant

animalArr.push(new	Animal('another	animal'));	//	Just	pushed	an	animal	into	catArr!

catArr.forEach(c	=>	c.meow());	//	Allowed	but	BANG		at	runtime

Type	Compatibility

198

Never
A	video	lesson	on	the	never	type

Programming	language	design	does	have	a	concept	of	bottom	type	that	is	a	natural
outcome	as	soon	as	you	do	code	flow	analysis.	TypeScript	does	code	flow	analysis	(ᚕ)	and
so	it	needs	to	reliably	represent	stuff	that	might	never	happen.

The		never		type	is	used	in	TypeScript	to	denote	this	bottom	type.	Cases	when	it	occurs
naturally:

A	function	never	returns	(e.g.	if	the	function	body	has		while(true){})
A	function	always	throws	(e.g.	in		function	foo(){throw	new	Error('Not	Implemented')}	
the	return	type	of		foo		is		never)

Of	course	you	can	use	this	annotation	your	self	as	well

let	foo:	never;	//	Okay

However		never		can	only	ever	be	assigned	to	another	never.	e.g.

let	foo:	never	=	123;	//	Error:	Type	number	is	not	assignable	to	never

//	Okay	as	the	function's	return	type	is	`never`

let	bar:	never	=	(()	=>	{	throw	new	Error('Throw	my	hands	in	the	air	like	I	just	dont	

care')	})();

Great.	Now	let's	just	jump	into	its	key	use	case	:)

Use	case:	Exhaustive	Checks
You	can	call	never	functions	in	a	never	context.

Never	Type

199

https://egghead.io/lessons/typescript-use-the-never-type-to-avoid-code-with-dead-ends-using-typescript

function	foo(x:	string	|	number):	boolean	{

		if	(typeof	x	===	"string")	{

				return	true;

		}	else	if	(typeof	x	===	"number")	{

				return	false;

		}

		//	Without	a	never	type	we	would	error	:

		//	-	Not	all	code	paths	return	a	value	(strict	null	checks)

		//	-	Or	Unreachable	code	detected

		//	But	because	typescript	understands	that	`fail`	function	returns	`never`

		//	It	can	allow	you	to	call	it	as	you	might	be	using	it	for	runtime	safety	/	exhaust

ive	checks.

		return	fail("Unexhaustive!");

}

function	fail(message:	string):	never	{	throw	new	Error(message);	}

And	because		never		is	only	assignable	to	another		never		you	can	use	it	for	compile	time
exhaustive	checks	as	well.	This	is	covered	in	the	discriminated	union	section.

Confusion	with	 	void	
As	soon	as	someone	tells	you	that		never		is	returned	when	a	function	never	exits	gracefully
you	intutively	want	to	think	of	it	as	the	same	as		void		However		void		is	a	Unit.		never		is	a
falsum.

A	function	that	returns	nothing	returns	a	Unit		void	.	However	a	function	that	never	returns
(or	always	throws)	returns		never	.		void		is	something	that	can	be	assigned	(without
	strictNullChecking)	but		never		can		never		be	assigned	to	anything	other	than		never	.

Never	Type

200

Discriminated	Union

If	you	have	a	class	with	a	literal	member	then	you	can	use	that	property	to	discriminate
between	union	members.

As	an	example	consider	the	union	of	a		Square		and		Rectangle	,	here	we	have	a	member
	kind		that	exists	on	both	union	members	and	is	of	a	particular	literal	type:

interface	Square	{

				kind:	"square";

				size:	number;

}

interface	Rectangle	{

				kind:	"rectangle";

				width:	number;

				height:	number;

}

type	Shape	=	Square	|	Rectangle;

If	you	use	a	type	guard	style	check	(==	,		===	,		!=	,		!==)	or		switch		on	the	discriminant
property	(here		kind)	TypeScript	will	realize	that	the	object	must	be	of	the	type	that	has	that
specific	literal	and	do	a	type	narrowing	for	you	:)

function	area(s:	Shape)	{

				if	(s.kind	===	"square")	{

								//	Now	TypeScript	*knows*	that	`s`	must	be	a	square	;)

								//	So	you	can	use	its	members	safely	:)

								return	s.size	*	s.size;

				}

				else	{

								//	Wasn't	a	square?	So	TypeScript	will	figure	out	that	it	must	be	a	Rectangle	

;)

								//	So	you	can	use	its	members	safely	:)

								return	s.width	*	s.height;

				}

}

Exhaustive	Checks

Quite	commonly	you	want	to	make	sure	that	all	members	of	a	union	have	some	code(action)
against	them.

Discriminated	Unions

201

interface	Square	{

				kind:	"square";

				size:	number;

}

interface	Rectangle	{

				kind:	"rectangle";

				width:	number;

				height:	number;

}

//	Someone	just	added	this	new	`Circle`	Type

//	We	would	like	to	let	TypeScript	give	an	error	at	any	place	that	*needs*	to	cater	fo

r	this

interface	Circle	{

				kind:	"circle";

				radius:	number;

}

type	Shape	=	Square	|	Rectangle	|	Circle;

As	an	example	of	where	stuff	goes	bad:

function	area(s:	Shape)	{

				if	(s.kind	===	"square")	{

								return	s.size	*	s.size;

				}

				else	if	(s.kind	===	"rectangle")	{

								return	s.width	*	s.height;

				}

				//	Would	it	be	great	if	you	could	get	TypeScript	to	give	you	an	error?

}

You	can	do	that	by	simply	adding	a	fall	through	and	making	sure	that	the	inferred	type	in	that
block	is	compatible	with	the		never		type.	For	example	if	you	add	the	exhastive	check	you
get	a	nice	error:

Discriminated	Unions

202

function	area(s:	Shape)	{

				if	(s.kind	===	"square")	{

								return	s.size	*	s.size;

				}

				else	if	(s.kind	===	"rectangle")	{

								return	s.width	*	s.height;

				}

				else	{

								//	ERROR	:	`Circle`	is	not	assignable	to	`never`

								const	_exhaustiveCheck:	never	=	s;

				}

}

That	forces	you	to	handle	this	new	case	:

function	area(s:	Shape)	{

				if	(s.kind	===	"square")	{

								return	s.size	*	s.size;

				}

				else	if	(s.kind	===	"rectangle")	{

								return	s.width	*	s.height;

				}

				else	if	(s.kind	===	"circle")	{

								return	Math.PI	*	(s.radius	**2);

				}

				else	{

								//	Okay	once	more

								const	_exhaustiveCheck:	never	=	s;

				}

}

Switch

TIP:	of	course	you	can	also	do	it	in	a		switch		statement:

function	area(s:	Shape)	{

				switch	(s.kind)	{

								case	"square":	return	s.size	*	s.size;

								case	"rectangle":	return	s.width	*	s.height;

								case	"circle":	return	Math.PI	*	s.radius	*	s.radius;

								default:	const	_exhaustiveCheck:	never	=	s;

				}

}

strictNullChecks

Discriminated	Unions

203

If	using	strictNullChecks	and	doing	exhaustive	checks	you	should	return	the
	_exhaustiveCheck		variable	(of	type		never)	as	well,	otherwise	TypeScript	infers	a	possible
return	of		undefined	.	So:

function	area(s:	Shape)	{

				switch	(s.kind)	{

								case	"square":	return	s.size	*	s.size;

								case	"rectangle":	return	s.width	*	s.height;

								case	"circle":	return	Math.PI	*	s.radius	*	s.radius;

								default:

										const	_exhaustiveCheck:	never	=	s;

										return	_exhaustiveCheck;

				}

}

Redux

A	popular	library	that	makes	use	of	this	is	redux.

Here	is	the	gist	of	redux	with	TypeScript	type	annotations	added:

import	{	createStore	}	from	'redux'

type	Action

		=	{

				type:	'INCREMENT'

		}

		|	{

				type:	'DECREMENT'

		}

/**

	*	This	is	a	reducer,	a	pure	function	with	(state,	action)	=>	state	signature.

	*	It	describes	how	an	action	transforms	the	state	into	the	next	state.

	*

	*	The	shape	of	the	state	is	up	to	you:	it	can	be	a	primitive,	an	array,	an	object,

	*	or	even	an	Immutable.js	data	structure.	The	only	important	part	is	that	you	should

	*	not	mutate	the	state	object,	but	return	a	new	object	if	the	state	changes.

	*

	*	In	this	example,	we	use	a	`switch`	statement	and	strings,	but	you	can	use	a	helper	

that

	*	follows	a	different	convention	(such	as	function	maps)	if	it	makes	sense	for	your

	*	project.

	*/

function	counter(state	=	0,	action:	Action)	{

		switch	(action.type)	{

		case	'INCREMENT':

				return	state	+	1

		case	'DECREMENT':

Discriminated	Unions

204

https://github.com/reactjs/redux#the-gist

				return	state	-	1

		default:

				return	state

		}

}

//	Create	a	Redux	store	holding	the	state	of	your	app.

//	Its	API	is	{	subscribe,	dispatch,	getState	}.

let	store	=	createStore(counter)

//	You	can	use	subscribe()	to	update	the	UI	in	response	to	state	changes.

//	Normally	you'd	use	a	view	binding	library	(e.g.	React	Redux)	rather	than	subscribe(

)	directly.

//	However	it	can	also	be	handy	to	persist	the	current	state	in	the	localStorage.

store.subscribe(()	=>

		console.log(store.getState())

)

//	The	only	way	to	mutate	the	internal	state	is	to	dispatch	an	action.

//	The	actions	can	be	serialized,	logged	or	stored	and	later	replayed.

store.dispatch({	type:	'INCREMENT'	})

//	1

store.dispatch({	type:	'INCREMENT'	})

//	2

store.dispatch({	type:	'DECREMENT'	})

//	1

Using	it	with	TypeScript	gives	you	safety	against	typo	errors,	increased	refactor-ability	and
self	documenting	code	.

Discriminated	Unions

205

Index	Signatures
An		Object		in	JavaScript	(and	hence	TypeScript)	can	be	accessed	with	a	string	to	hold	a
reference	to	any	other	JavaScript	object.

Here	is	a	quick	example:

let	foo:any	=	{};

foo['Hello']	=	'World';

console.log(foo['Hello']);	//	World

We	store	a	string		"World"		under	the	key		"Hello"	.	Remember	we	said	it	can	store	any
JavaScript	object,	so	lets	store	a	class	instance	just	to	show	the	concept:

class	Foo	{

		constructor(public	message:	string){};

		log(){

				console.log(this.message)

		}

}

let	foo:any	=	{};

foo['Hello']	=	new	Foo('World');

foo['Hello'].log();	//	World

Also	remember	that	we	said	that	it	can	be	accessed	with	a	string.	If	you	pass	some	any
other	object	to	the	index	signature	the	JavaScript	runtime	actually	calls		.toString		on	it
before	getting	the	result.	This	is	demonstrated	below:

let	obj	=	{

		toString(){

				console.log('toString	called')

				return	'Hello'

		}

}

let	foo:any	=	{};

foo[obj]	=	'World';	//	toString	called

console.log(foo[obj]);	//	toString	called,	World

console.log(foo['Hello']);	//	World

Note	that		toString		will	get	called	whenever	the		obj		is	used	in	an	index	position.

Index	Signatures

206

Arrays	are	slightly	different.	For		number		indexing	JavaScript	VMs	will	try	to	optimise
(depending	on	things	like	is	it	actually	an	array	and	do	the	structures	of	items	stored	match
etc.).	So		number		should	be	considered	as	a	valid	object	accessor	in	its	own	right	(distinct
from		string).	Here	is	a	simple	array	example:

let	foo	=	['World'];

console.log(foo[0]);	//	World

So	that's	JavaScript.	Now	let's	look	at	TypeScript	graceful	handling	of	this	concept.

TypeScript	Index	Signature
First	off,	because	JavaScript	implicitly	calls		toString		on	any	object	index	signature,
TypeScript	will	give	you	an	error	to	prevent	beginners	from	shooting	themselves	in	the	foot	(I
see	users	shooting	themselves	in	their	feet	when	using	JavaScript	all	the	time	on
stackoverflow):

let	obj	=	{

		toString(){

				return	'Hello'

		}

}

let	foo:any	=	{};

//	ERROR:	the	index	signature	must	be	string,	number	...

foo[obj]	=	'World';

//	FIX:	TypeScript	forces	you	to	be	explicit

foo[obj.toString()]	=	'World';

The	reason	for	forcing	the	user	to	be	explicit	is	because	the	default		toString	
implementation	on	an	object	is	pretty	awful,	e.g.	on	v8	it	always	returns		[object	Object]	:

let	obj	=	{message:'Hello'}

let	foo:any	=	{};

//	ERROR:	the	index	signature	must	be	string,	number	...

foo[obj]	=	'World';

//	Here	is	what	you	actually	stored!

console.log(foo["[object	Object]"]);	//	World

Of	course		number		is	supported	because

Index	Signatures

207

1.	 its	needed	for	excellent	Array	/	Tuple	support.
2.	 even	if	you	use	it	for	an		obj		its	default		toString		implementation	is	nice	(not		[object

Object]).

Point	2	is	shown	below:

console.log((1).toString());	//	1

console.log((2).toString());	//	2

So	lesson	1:

TypeScript	index	signatures	must	be	either		string		or		number	

Quick	note:		symbols		are	also	valid	and	supported	by	TypeScript.	But	let's	not	go	there	just
yet.	Baby	steps.

Declaring	an	index	signature

So	we've	been	using		any		to	tell	TypeScript	to	let	us	do	whatever	we	want.	We	can	actually
specify	an	index	signature	explicitly.	E.g.	say	you	want	to	make	sure	than	anything	that	is
stored	in	an	object	using	a	string	conforms	to	the	structure		{message:	string}	.	This	can	be
done	with	the	declaration		{	[index:string]	:	{message:	string}	}	.	This	is	demonstrated
below:

let	foo:{	[index:string]	:	{message:	string}	}	=	{};

/**

	*	Must	store	stuff	that	conforms	the	structure

	*/

/**	Ok	*/

foo['a']	=	{	message:	'some	message'	};

/**	Error:	must	contain	a	`message`	or	type	string.	You	have	a	typo	in	`message`	*/

foo['a']	=	{	messages:	'some	message'	};

/**

	*	Stuff	that	is	read	is	also	type	checked

	*/

/**	Ok	*/

foo['a'].message;

/**	Error:	messages	does	not	exist.	You	have	a	typo	in	`message`	*/

foo['a'].messages;

Index	Signatures

208

TIP:	the	name	of	the	index	signature	e.g.		index		in		{	[index:string]	:	{message:
string}	}		has	no	significance	for	TypeScript	and	really	for	readability.	e.g.	if	its	user
names	you	can	do		{	[username:string]	:	{message:	string}	}		to	help	the	next	dev
who	looks	at	the	code	(which	just	might	happen	to	be	you).

Of	course		number		indexes	are	also	supported	e.g.		{	[count:	number]	:
SomeOtherTypeYouWantToStoreEgRebate	}	

All	members	must	conform	to	the		string		index
signature

As	soon	as	you	have	a		string		index	signature,	all	explicit	members	must	also	conform	to
that	index	signature.	This	is	shown	below:

/**	Okay	*/

interface	Foo	{

		[key:string]:	number

		x:	number;

		y:	number;

}

/**	Error	*/

interface	Bar	{

		[key:string]:	number

		x:	number;

		y:	string;	//	Property	`y`	must	of	of	type	number

}

This	is	to	provide	safety	so	that	any	string	access	gives	the	same	result:

interface	Foo	{

		[key:string]:	number

		x:	number;

}

let	foo:	Foo	=	{x:1,y:2};

//	Directly

foo['x'];	//	number

//	Indirectly

let	x	=	'x'

foo[x];	//	number

Using	a	limited	set	of	string	literals

An	index	signature	can	require	that	index	strings	be	members	of	a	union	of	literal	strings	by
using	Mapped	Types	e.g.:

Index	Signatures

209

type	Index	=	'a'	|	'b'	|	'c'

type	FromIndex	=	{	[k	in	Index]?:	number	}

const	good:	FromIndex	=	{b:1,	c:2}

//	Error:

//	Type	'{	b:	number;	c:	number;	d:	number;	}'	is	not	assignable	to	type	'FromIndex'.

//		Object	literal	may	only	specify	known	properties,	and	'd'	does	not	exist	in	type	'

FromIndex'.

const	bad:	FromIndex	=	{b:1,	c:2,	d:3};

This	is	often	used	together	with		keyof	typeof		to	capture	vocabulary	types,	described	on	the
next	page.

The	specification	of	the	vocabulary	can	be	deferred	generically:

type	FromSomeIndex<K	extends	string>	=	{	[key	in	K]:	number	}

Having	both		string		and		number		indexers

This	is	not	a	common	use	case,	but	TypeScript	compiler	supports	it	nonetheless.

However	it	has	the	restriction	that	the		string		indexer	is	more	strict	than	the		number	
indexer.	This	is	intentional	e.g.	to	allow	typing	stuff	like:

interface	ArrStr	{

		[key:	string]:	string	|	number;	//	Must	accomodate	all	members

		[index:	number]:	string;	//	Can	be	a	subset	of	string	indexer

		//	Just	an	example	member

		length:	number;

}

Design	Pattern:	Nested	index	signature

API	consideration	when	adding	index	signatures

Quite	commonly	in	the	JS	community	you	will	see	APIs	that	abuse	string	indexers.	e.g.	a
common	pattern	among	CSS	in	JS	libraries:

Index	Signatures

210

interface	NestedCSS	{

		color?:	string;

		[selector:	string]:	string	|	NestedCSS;

}

const	example:	NestedCSS	=	{

		color:	'red',

		'.subclass':	{

				color:	'blue'

		}

}

Try	not	to	mix	string	indexers	with	valid	values	this	way.	E.g.	a	typo	in	the	padding	will
remain	uncaught:

const	failsSilently:	NestedCSS	=	{

		colour:	'red',	//	No	error	as	`colour`	is	a	valid	string	selector

}

Instead	seperate	out	the	nesting	into	its	own	property	e.g.	in	a	name	like		nest		(or
	children		or		subnodes		etc.):

interface	NestedCSS	{

		color?:	string;

		nest?:	{

				[selector:	string]:	NestedCSS;

		}

}

const	example:	NestedCSS	=	{

		color:	'red',

		nest:	{

				'.subclass':	{

						color:	'blue'

				}

		}

}

const	failsSilently:	NestedCSS	=	{

		colour:	'red',	//	TS	Error:	unknown	property	`colour`

}

Index	Signatures

211

TypeScripts	type	system	is	extremely	powerful	in	that	you	can	do	supremely	powerful	things
in	the	language	moving	/	slicing	/	dicing	types	in	ways	that	are	not	possible	in	any	single
language	out	there.

This	is	because	TypeScript	is	designed	to	allow	you	to	work	seamlessly	with	a	highly
dynamic	language	like	JavaScript.	Here	we	cover	a	few	tricks	for	moving	types	around	in
TypeScript.

Key	motivation	for	these	:	You	change	one	thing	and	everything	else	just	updates
automatically	and	you	get	nice	errors	if	something	is	going	to	break,	like	a	well	designed
constraint	system.

Copying	both	the	Type	+	Value

If	you	want	to	move	a	class	around	you	might	be	tempted	to	do	the	following:

class	Foo	{	}

var	Bar	=	Foo;

var	bar:	Bar;	//	ERROR:	"cannot	find	name	'Bar'"

This	is	an	error	because		var		only	copied	the		Foo		into	the	variable	declaration	space	and
you	therefore	cannot	use		Bar		as	a	type	annotation.	The	proper	way	is	to	use	the		import	
keyword.	Note	that	you	can	only	use	the		import		keyword	in	such	a	way	if	you	are	using
namespaces	or	modules	(more	on	these	later):

namespace	importing	{

				export	class	Foo	{	}

}

import	Bar	=	importing.Foo;

var	bar:	Bar;	//	Okay

This		import		trick	only	works	for	things	that	are	both	type	and	a	variable.

Capturing	the	type	of	a	variable

You	can	actually	use	a	variable	in	a	type	annotation	using	the		typeof		operator.	This	allows
you	to	tell	the	compiler	that	one	variable	is	the	same	type	as	another.	Here	is	an	example	to
demonstrate	this:

Moving	Types

212

var	foo	=	123;

var	bar:	typeof	foo;	//	`bar`	has	the	same	type	as	`foo`	(here	`number`)

bar	=	456;	//	Okay

bar	=	'789';	//	ERROR:	Type	`string`	is	not	`assignable`	to	type	`number`

Capturing	the	type	of	a	class	member

Similar	to	capturing	the	type	of	a	variable,	you	just	declare	a	variable	purely	for	type
capturing	purposes:

class	Foo	{

		foo:	number;	//	some	member	whose	type	we	want	to	capture

}

//	Purely	to	capture	type

declare	let	_foo:	Foo;

//	Same	as	before

let	bar:	typeof	_foo.foo;

Capturing	the	type	of	magic	strings

Lots	of	JavaScript	libraries	and	frameworks	work	off	of	raw	JavaScript	strings.	You	can	use
	const		variables	to	capture	their	type	e.g.

//	Capture	both	the	*type*	and	*value*	of	magic	string:

const	foo	=	"Hello	World";

//	Use	the	captured	type:

let	bar:	typeof	foo;

//	bar	can	only	ever	be	assigned	to	`Hello	World`

bar	=	"Hello	World";	//	Okay!

bar	=	"anything	else	";	//	Error!

In	this	example		bar		has	the	literal	type		"Hello	World"	.	We	cover	this	more	in	the	literal
type	section.

Capturing	the	name	of	the	keys

The		keyof		operator	lets	you	capture	the	key	names	of	a	type.	E.g.	you	can	use	it	to	capture
the	key	names	of	a	variable	by	first	grabbing	its	type	using		typeof	:

Moving	Types

213

https://basarat.gitbooks.io/typescript/content/docs/types/literal-types.html

const	colors	=	{

		red:	'red',

		blue:	'blue'

}

type	Colors	=	keyof	typeof	colors;

let	color:	Colors;

color	=	'red';	//	okay

color	=	'blue';	//	okay

color	=	'anythingElse';	//	Error

This	allows	you	to	have	stuff	like	string	enums	+	constants	quite	easily,	as	you	just	saw	in
the	above	example.

Moving	Types

214

Exception	Handling
JavaScript	has	an		Error		class	that	you	can	use	for	exceptions.	You	throw	an	error	with	the
	throw		keyword.	You	can	catch	it	with	a		try		/		catch		block	pair	e.g.

try	{

		throw	new	Error('Something	bad	happened');

}

catch(e)	{

		console.log(e);

}

Error	Sub	Types
Beyond	the	built	in		Error		class	there	are	a	few	additional	built-in	error	classes	that	inherit
from		Error		that	the	JavaScript	runtime	can	throw:

RangeError

Creates	an	instance	representing	an	error	that	occurs	when	a	numeric	variable	or	parameter
is	outside	of	its	valid	range.

//	Call	console	with	too	many	arguments

console.log.apply(console,	new	Array(1000000000));	//	RangeError:	Invalid	array	length

ReferenceError

Creates	an	instance	representing	an	error	that	occurs	when	de-referencing	an	invalid
reference.	e.g.

'use	strict';

console.log(notValidVar);	//	ReferenceError:	notValidVar	is	not	defined

SyntaxError

Creates	an	instance	representing	a	syntax	error	that	occurs	while	parsing	code	that	isn't
valid	JavaScript.

Exception	Handling

215

1***3;	//	SyntaxError:	Unexpectd	token	*

TypeError

Creates	an	instance	representing	an	error	that	occurs	when	a	variable	or	parameter	is	not	of
a	valid	type.

('1.2').toPrecision(1);	//	TypeError:	'1.2'.toPrecision	is	not	a	function

URIError

Creates	an	instance	representing	an	error	that	occurs	when		encodeURI()		or		decodeURI()	
are	passed	invalid	parameters.

decodeURI('%');	//	URIError:	URI	malformed

Always	use		Error	
Beginner	JavaScript	developers	sometimes	just	throw	raw	strings	e.g.

try	{

		throw	'Something	bad	happened';

}

catch(e)	{

		console.log(e);

}

Don't	do	that.	The	fundamental	benefit	of		Error		objects	is	that	they	automatically	keep
track	of	where	they	were	built	and	originated	as	the		stack		property.

Raw	strings	result	in	a	very	painful	debugging	experience	and	complicate	error	analysis	from
logs.

You	don't	have	to		throw		an	error
It	is	okay	to	pass	an		Error		object	around.	This	is	conventional	in	Node.js	callback	style
code	which	take	callbacks	with	the	first	argument	as	an	error	object.

Exception	Handling

216

function	myFunction	(callback:	(e?:	Error))	{

		doSomethingAsync(function	()	{

				if	(somethingWrong)	{

						callback(new	Error('This	is	my	error'))

				}	else	{

						callback();

				}

		});

}

Exceptional	cases
	Exceptions	should	be	exceptional		is	a	common	saying	in	computer	science.	There	are	a
few	reasons	why	this	is	true	for	JavaScript	(and	TypeScript)	as	well.

Unclear	where	it	is	thrown

Consider	the	following	piece	of	code:

try	{

		const	foo	=	runTask1();

		const	bar	=	runTask2();

}

catch(e)	{

		console.log('Error:',	e);

}

The	next	developer	cannot	know	which	funtion	might	throw	the	error.	The	person	reviewing
the	code	cannot	know	without	reading	the	code	for	task1	/	task2	and	other	functions	they
might	call	etc.

Makes	graceful	handling	hard

You	can	try	to	make	it	graceful	with	explicit	catch	around	each	thing	that	might	throw:

Exception	Handling

217

try	{

		const	foo	=	runTask1();

}

catch(e)	{

		console.log('Error:',	e);

}

try	{

		const	bar	=	runTask2();

}

catch(e)	{

		console.log('Error:',	e);

}

But	now	if	you	need	to	pass	stuff	from	the	first	task	to	the	second	one	the	code	becomes
messy:	(notice		foo		mutation	requiring		let		+	explicit	need	for	annotating	it	because	it
cannot	be	inferred	from	the	return	of		runTask1):

let	foo:	number;	//	Notice	use	of	`let`	and	explicit	type	annotation

try	{

		foo	=	runTask1();

}

catch(e)	{

		console.log('Error:',	e);

}

try	{

		const	bar	=	runTask2(foo);

}

catch(e)	{

		console.log('Error:',	e);

}

Not	well	represented	in	the	type	system

Consider	the	function:

function	validate(value:	number)	{

		if	(value	<	0	||	value	>	100)	throw	new	Error('Invalid	value');

}

Using		Error		for	such	cases	is	a	bad	idea	as	it	is	not	represented	in	the	type	definition	for
the	validate	function	(which	is		(value:number)	=>	void).	Instead	a	better	way	to	create	a
validate	method	would	be:

Exception	Handling

218

function	validate(value:	number):	{error?:	string}	{

		if	(value	<	0	||	value	>	100)	return	{error:'Invalid	value'};

}

And	now	its	represented	in	the	type	system.

Unless	you	want	to	handle	the	error	in	a	very	generic	(simple	/	catch-all	etc)	way,	don't
throw	an	error.

Exception	Handling

219

Mixins
TypeScript	(and	JavaScript)	classes	support	strict	single	inheritance.	So	you	cannot	do:

class	User	extends	Tagged,	Timestamped	{	//	ERROR	:	no	multiple	inheritance

}

Another	way	of	building	up	classes	from	reusable	components	is	to	build	them	by	combining
simpler	partial	classes	called	mixins.

The	idea	is	simple,	instead	of	a	class	A	extending	class	B	to	get	its	functionality,	function	B
takes	class	A	and	returns	a	new	class	with	this	added	functionality.	Function		B		is	a	mixin.

[A	mixin	is]	a	function	that

1.	 takes	a	constructor,
2.	 creates	a	class	that	extends	that	constructor,	with	new	functionality
3.	 returns	the	new	class

A	complete	example

//	Needed	for	all	mixins

type	Constructor<T	=	{}>	=	new	(...args:	any[])	=>	T;

////////////////////

//	Example	mixins

////////////////////

//	A	mixin	that	adds	a	property

function	Timestamped<TBase	extends	Constructor>(Base:	TBase)	{

		return	class	extends	Base	{

				timestamp	=	Date.now();

		};

}

//	a	mixin	that	adds	a	property	and	methods

function	Activatable<TBase	extends	Constructor>(Base:	TBase)	{

		return	class	extends	Base	{

				isActivated	=	false;

				activate()	{

						this.isActivated	=	true;

				}

				deactivate()	{

						this.isActivated	=	false;

				}

Mixins

220

		};

}

////////////////////

//	Usage	to	compose	classes

////////////////////

//	Simple	class

class	User	{

		name	=	'';

}

//	User	that	is	Timestampted

const	TimestampedUser	=	Timestamped(User);

//	User	that	is	Timestamped	and	Activatable

const	TimestampedActivatableUser	=	Timestamped(Activatable(User));

////////////////////

//	Using	the	composed	classes

////////////////////

const	timestampedUserExample	=	new	TimestampedUser();

console.log(timestampedUserExample.timestamp);

const	timestampedActivatableUserExample	=	new	TimestampedActivatableUser();

console.log(timestampedActivatableUserExample.timestamp);

console.log(timestampedActivatableUserExample.isActivated);

Let's	decompose	this	example.

Take	a	constructor
Mixins	take	a	class	and	extend	it	with	new	functionality.	So	we	need	to	define	what	is	a
constructor.	Easy	as:

//	Needed	for	all	mixins

type	Constructor<T	=	{}>	=	new	(...args:	any[])	=>	T;

Extend	the	class	and	return	it
Pretty	easy:

Mixins

221

//	A	mixin	that	adds	a	property

function	Timestamped<TBase	extends	Constructor>(Base:	TBase)	{

		return	class	extends	Base	{

				timestamp	=	Date.now();

		};

}

And	that	is	it	

Mixins

222

JSX	Support
TypeScript	supports	JSX	transpilation	and	code	analysis.	If	you	are	unfamiliar	with	JSX	here
is	an	excerpt	from	the	official	website:

JSX	is	a	XML-like	syntax	extension	to	ECMAScript	without	any	defined	semantics.	It's
NOT	intended	to	be	implemented	by	engines	or	browsers.	It's	NOT	a	proposal	to
incorporate	JSX	into	the	ECMAScript	spec	itself.	It's	intended	to	be	used	by	various
preprocessors	(transpilers)	to	transform	these	tokens	into	standard	ECMAScript.

The	motivation	behind	JSX	is	to	allow	users	to	write	HTML	like	views	in	JavaScript	so	that
you	can:

Have	the	view	Type	Checked	by	the	same	code	that	is	going	to	check	your	JavaScript
Have	the	view	be	aware	of	the	context	it	is	going	to	operate	under	(i.e.	strengthen	the
controller-view	connection	in	traditional	MVC)

This	decreases	the	chances	of	errors	and	increases	the	maintainability	of	your	user
interfaces.	The	main	consumer	of	JSX	at	this	point	is	ReactJS	from	facebook.	This	is	the
usage	of	JSX	that	we	will	discuss	here.

Setup
Use	files	with	the	extension		.tsx		(instead	of		.ts).
Use		"jsx"	:	"react"		in	your		tsconfig.json	's		compilerOptions	.
Install	the	definitions	for	JSX	and	React	into	your	project	:	(npm	i	-D	@types/react
@types/react-dom).
Import	react	into	your		.tsx		files	(import	*	as	React	from	"react").

HTML	Tags	vs.	Components
React	can	either	render	HTML	tags	(strings)	or	React	components	(classes).	The	JavaScript
emit	for	these	elements	is	different	(React.createElement('div')		vs.
	React.createElement(MyComponent)).	The	way	this	is	determined	is	by	the	case	of	the	first
letter.		foo		is	treated	as	an	HTML	tag	and		Foo		is	treated	as	a	component.

Type	Checking

JSX

223

https://facebook.github.io/jsx/
http://facebook.github.io/react/

HTML	Tags

An	HTML	Tag		foo		is	to	be	of	the	type		JSX.IntrinsicElements.foo	.	These	types	are	already
defined	for	all	the	major	tags	in	a	file		react-jsx.d.ts		which	we	had	you	install	as	a	part	of
the	setup.	Here	is	a	sample	of	the	the	contents	of	the	file:

declare	module	JSX	{

				interface	IntrinsicElements	{

								a:	React.HTMLAttributes;

								abbr:	React.HTMLAttributes;

								div:	React.HTMLAttributes;

								span:	React.HTMLAttributes;

								///	so	on	...

				}

}

Components

Components	are	type	checked	based	on	the		props		property	of	the	component.	This	is
modeled	after	how	JSX	is	transformed	i.e.	the	attributes	become	the		props		of	the
component.

To	create	React	components	we	recommend	using	ES6	classes.	The		react.d.ts		file
defines	the		React.Component<Props,State>		class	which	you	should	extend	in	your	own	class
providing	your	own		Props		and		State		interfaces.	This	is	demonstrated	below:

interface	Props	{

		foo:	string;

}

class	MyComponent	extends	React.Component<Props,	{}>	{

				render()	{

								return	{this.props.foo}

				}

}

<MyComponent	foo="bar"	/>

React	JSX	Tip:	Interface	for	renderable

React	can	render	a	few	things	like		JSX		or		string	.	There	are	all	consolidated	into	the	type
	React.ReactNode		so	use	it	for	when	you	want	to	accept	renderables	e.g.

JSX

224

interface	Props	{

		header:	React.ReactNode;

		body:	React.ReactNode;

}

class	MyComponent	extends	React.Component<Props,	{}>	{

				render()	{

								return	<div>

												{header}

												{body}

								</div>;

				}

}

<MyComponent	foo="bar"	/>

React	JSX	Tip:	Accept	an	instance	of	a	Component

The	react	type	definitions	provide		React.ReactElement<T>		to	allow	you	to	annotate	the	result
of	a		<T/>		class	component	instantiation.	e.g.

class	MyAwesomeComponent	extends	React.Component	{

		render()	{

				return	<div>Hello</div>;

		}

}

const	foo:	React.ReactElement<MyAwesomeComponent>	=	<MyAwesomeComponent	/>;	//	Okay

const	bar:	React.ReactElement<MyAwesomeComponent>	=	<NotMyAwesomeComponent	/>;	//	Erro

r!

Of	course	you	can	use	this	as	a	function	argument	annotation	and	even	React
component	prop	member.

React	JSX	Tip:	Generic	components

There's	no	syntax	in	JSX	to	apply	generic	parameters	to	a	generic	component.	You	must
first	store	the	generic	class	in	a	variable	that	removes	any	generic	parameters	with	concrete
types.	As	an	example	we	replace		T		with	the	concrete		string		type:

JSX

225

/**	A	generic	component	*/

type	SelectProps<T>	=	{	items:	T[]	}

class	Select<T>	extends	React.Component<SelectProps<T>,	any>	{	}

/**	Specialize	Select	to	use	with	strings	*/

const	StringSelect	=	Select	as	{	new	():	Select<string>	};

/**	Usage	*/

const	Form	=	()	=>	<StringSelect	items={['a','b']}	/>;

If	your	constructor	takes	props	you	can	accomodate	that	too:

/**	Generic	component	*/

interface	SelectProps<T>	{	items:	T[]	}

class	Select<T>	extends	Component<SelectProps<T>,	any>	{

				constructor(props:	SelectProps<T>)	{	super(props)	}

}

/**	Specialization	*/

const	StringSelect	=	Select	as	{	new	(props:	SelectProps<string>):	GenericList<string>

	};

Non	React	JSX
TypeScript	provides	you	with	the	ability	to	use	something	other	than	React	with	JSX	in	a
type	safe	manner.	The	following	lists	the	customizability	points,	but	note	that	this	is	for
advanced	UI	framework	authors:

You	can	disable		react		style	emit	by	using		"jsx"	:	"preserve"		option.	This	means	that
JSX	is	emitted	as	is	and	then	you	can	use	your	own	custom	transpiler	to	transpile	the
JSX	portions.
Using	the		JSX		global	module:

You	can	control	what	HTML	tags	are	available	and	how	they	are	type	checked	by
customizing	the		JSX.IntrinsicElements		interface	members.
When	using	components:

You	can	control	which		class		must	be	inherited	by	components	by
customizing	the	default		interface	ElementClass	extends	React.Component<any,
any>	{	}		declaration.
You	can	control	which	property	is	used	to	type	check	the	attributes	(the	default
is		props)	by	customizing	the		declare	module	JSX	{	interface
ElementAttributesProperty	{	props:	{};	}	}		declaration.

	reactNamespace	

JSX

226

Passing		--reactNamespace	<JSX	factory	Name>		along	with		--jsx	react		allows	for	using	a
different	JSX	factory	from	the	default		React	.

The	new	factory	name	will	be	used	to	call		createElement		functions.

Example

import	{jsxFactory}	from	"jsxFactory";

var	div	=	<div>Hello	JSX!</div>

Compiled	with:

tsc	--jsx	react	--reactNamespace	jsxFactory	--m	commonJS

Results	in:

"use	strict";

var	jsxFactory_1	=	require("jsxFactory");

var	div	=	jsxFactory_1.jsxFactory.createElement("div",	null,	"Hello	JSX!");

JSX

227

Convenience	vs.	Soundness
There	are	a	few	things	that	TypeScript	prevents	you	from	doing	out	of	the	box	e.g	using	a
variable	that	isn't	ever	declared	(of	course	you	can	use	a	declaration	file	for	external
systems).

That	said,	traditionally	programming	languages	have	a	hard	boundary	between	what	is	and
isn't	allowed	by	the	type	system.	TypeScript	is	different	in	that	it	gives	you	control	on	where
you	put	the	slider.	This	is	really	to	allow	you	to	use	the	JavaScript	you	know	and	love	with	as
much	safety	as	you	want.	There	are	lot	of	compiler	options	to	control	exactly	this	slider	so
let's	have	a	look.

Boolean	Options

	compilerOptions		that	are		boolean		can	be	specified	as		compilerOptions		in		tsconfig.json	:

{

				"compilerOptions":	{

								"someBooleanOption":	true

				}

}

or	on	the	command	line

tsc	--someBooleanOption

All	of	these	are		false		by	default.

Click	here	to	see	all	compiler	options.

Options

228

https://www.typescriptlang.org/docs/handbook/compiler-options.html

noImplicitAny
There	are	some	things	that	cannot	be	inferred	or	inferring	them	might	result	in	errors	that
might	be	unexpected.	A	fine	example	is	function	arguments.	If	you	don't	annotate	them	its
unclear	what	should	and	shouldn't	be	valid	e.g.

function	log(someArg)	{

		sendDataToServer(someArg);

}

//	What	arg	is	valid	and	what	isn't?

log(123);

log('hello	world');

So	if	you	don't	annotate	some	function	argument	TypeScript	assumes		any		and	moves	on.
This	essentially	turns	off	type	checking	for	such	cases	which	is	what	a	JavaScript	dev	would
expect	but	can	catch	people	that	want	high	safety	off	guard.	Hence	there	is	an	option
	noImplicitAny		that	when	switched	on	will	flag	the	cases	where	the	type	cannot	be	inferred
e.g.

function	log(someArg)	{	//	Error	:	someArg	has	an	implicit	`any`	type

		sendDataToServer(someArg);

}

of	course	you	can	then	go	ahead	an	annotate:

function	log(someArg:	number)	{

		sendDataToServer(someArg);

}

And	if	you	truly	want	zero	safety	you	can	mark	it	explicitly	as		any	:

function	log(someArg:	any)	{

		sendDataToServer(someArg);

}

noImplicitAny

229

	strictNullChecks	

By	default		null		and		undefined		are	assignable	to	all	types	in	TypeScript	e.g.

let	foo:	number	=	123;

foo	=	null;	//	Okay

foo	=	undefined;	//	Okay

This	is	modelled	after	how	a	lot	of	people	write	JavaScript.	However	like	all	things,
TypeScript	allows	you	to	be	explicit	about	what	can	and	cannot	be	assigned	a		null		or
	undefined	.

In	strict	null	checking	mode,		null		and		undefined		are	different:

let	foo	=	undefined;

foo	=	null;	//	NOT	Okay

Let	say	we	have	a		Member		interface:

interface	Member	{

		name:	string,

		age?:	number

}

Not	every		Member		will	provide	their	age,	so		age		is	an	optional	property,	meaning	the	value
of		age		may	or	may	not	be		undefined	.

	undefined		is	the	root	of	all	evil.	It	often	leads	to	runtime	errors.	It	is	easy	to	write	code	that
will	throw		Error		at	runtime:

getMember()

		.then(member:	Member	=>	{

				const	stringifyAge	=	member.age.toString()	//	Cannot	read	property	'toString'	of	u

ndefined

		})

But	in	strict	null	checking	mode,	this	error	will	be	caught	at	compile	time:

getMember()

		.then(member:	Member	=>	{

				const	stringifyAge	=	member.age.toString()	//	Object	is	possibly	'undefined'

		})

strictNullChecks

230

Non-Null	Assertion	Operator

A	new		!		post-fix	expression	operator	may	be	used	to	assert	that	its	operand	is	non-null
and	non-undefined	in	contexts	where	the	type	checker	is	unable	to	conclude	that	fact.	For
example:

//	Compiled	with	--strictNullChecks

function	validateEntity(e?:	Entity)	{

				//	Throw	exception	if	e	is	null	or	invalid	entity

}

function	processEntity(e?:	Entity)	{

				validateEntity(e);

				let	a	=	e.name;		//	TS	ERROR:	e	may	be	null.

				let	b	=	e!.name;		//	Assert	that	e	is	non-null.	This	allows	you	to	access	name

}

Note	that	it	is	just	an	assertion,	and	just	like	type	assertions	you	are	responsible	for
making	sure	the	value	is	not	null.	A	non-null	assertion	is	essentially	you	telling	the
compiler	"I	know	it's	not	null	so	let	me	use	it	as	though	it's	not	null".

strictNullChecks

231

Testing
TypeScript	can	be	used	with	any	JavaScript	testing	framework	that	you	want.	In	the	worst
case	you	can	always	do	a	simple		TypeScript	->	JavaScript		transform	and	go	your	merry
way.

That	said,	in	this	section	look	at	options	that	we	have	enjoyed	greatly	

Testing

232

Using	Jest	with	TypeScript
Pro	egghead	lesson	on	Jest	/	TypeScript

No	testing	solution	out	there	is	perfect.	That	said,	jest	is	an	excellent	unit	testing	option
which	provides	great	TypeScript	support.

Note:	We	assume	you	start	off	with	a	simple	node	package.json	setup.	Also	all
TypeScript	files	should	be	in	a		src		folder	which	is	always	recommended	(even	without
Jest)	for	a	clean	project	setup.

Step	1:	Install
Install	the	following	using	npm:

npm	i	jest	@types/jest	ts-jest	-D

Explanation:

Install		jest		framwork	(jest)
Install	the	types	for		jest		(@types/jest)
Install	the	TypeScript	preprocessor	for	jest	(ts-jest)	which	allows	jest	to	transpile
TypeScript	on	the	fly	and	have	source-map	support	built	in.
Save	all	of	these	to	your	dev	dependencies	(testing	is	almost	always	a	npm	dev-
dependency)

Step	2:	Configure	Jest
Add	the	following		jest.config.js		file	to	the	root	of	your	project:

Jest

233

https://egghead.io/lessons/typescript-getting-started-with-jest-using-typescript

module.exports	=	{

		"roots":	[

				"<rootDir>/src"

],

		"transform":	{

				"^.+\\.tsx?$":	"ts-jest"

		},

		"testRegex":	"(/__tests__/.*|(\\.|/)(test|spec))\\.(jsx?|tsx?)$",

		"moduleFileExtensions":	[

				"ts",

				"tsx",

				"js",

				"jsx",

				"json",

				"node"

]

}

Explanation:

We	always	recommend	having	all	TypeScript	files	in	a		src		folder	in	your	project.	We
assume	this	is	true	and	specify	this	using		roots		option.
The		transform		config	just	tells		jest		to	use		ts-jest		for	ts	/	tsx	files.
The		testRegex		tells	Jest	to	look	for	tests	in	any		__tests__		folder	AND	also	any	files
anywhere	that	use	the		(.test|.spec).(js|jsx|ts|tsx)		extension	e.g.		asdf.test.tsx	
etc.
The		moduleFileExtensions		tells	jest	to	our	file	extensions.	This	is	needed	as	we	add
	ts	/	tsx		into	the	defaults	(js|jsx|json|node).

Step	3:	Run	tests
Run		npx	jest		from	your	project	root	and	jest	will	execute	any	tests	you	have.

Optional:	Add	script	target	for	npm	scripts

Add		package.json	:

{

		"test":	"jest"

}

This	allows	you	to	run	the	tests	with	a	simple		npm	t	.
And	even	in	watch	mode	with		npm	t	--	--watch	.

Jest

234

Optional:	Run	jest	in	watch	mode

	npx	jest	-w	

Example

For	a	file		foo.ts	:

export	const	sum

=	(...a:	number[])	=>

		a.reduce((acc,	val)	=>	acc	+	val,	0);

A	simple		foo.test.ts	:

import	{	sum	}	from	'../';

test('basic',	()	=>	{

		expect(sum()).toBe(0);

});

test('basic	again',	()	=>	{

		expect(sum(1,	2)).toBe(3);

});

Notes:

Jest	provides	the	global		test		function.
Jest	comes	prebuilt	with	assertions	in	the	form	of	the	global		expect	.

Example	async

Jest	has	built-in	async/await	support.	e.g.

test('basic',async	()	=>	{

		expect(sum()).toBe(0);

});

test('basic	again',	async	()	=>	{

		expect(sum(1,	2)).toBe(3);

},	1000	/*	optional	timeout	*/);

Reasons	why	we	like	jest
For	details	on	these	features	see	jest	website

Jest

235

http://facebook.github.io/jest/

Built-in	assertion	library.
Great	TypeScript	support.
Very	reliable	test	watcher.
Snapshot	testing.
Built-in	coverage	reports.
Built-in	async/await	support.

Jest

236

TIPs
In	this	section	we	present	a	number	of	tips	that	we	have	collected	over	the	course	of	using
TypeScript	in	the	real	world.

TIPs

237

String	enums
Sometimes	you	need	a	collection	of	strings	collected	under	a	common	key.	Prior	to
TypeScript	2.4,	TypeScript	only	supported	number-based	enums.	If	using	versions	prior	to
2.4,	a	work-around	is	to	use	string	literal	types	to	create	string	based	enums	by	combining
with	union	types.

String	Based	Enums

238

Nominal	Typing
The	TypeScript	type	system	is	structural	and	this	is	one	of	the	main	motivating	benefits.
However,	there	are	real-world	use	cases	for	a	system	where	you	want	two	variables	to	be
differentiated	because	they	have	a	different	type	name	even	if	they	have	the	same	structure.
A	very	common	use	case	is	identity	structures	(which	are	generally	just	strings	with
semantics	associated	with	their	name	in	languages	like	C#/Java).

There	are	a	few	patterns	that	have	emerged	in	the	community.	I	cover	them	in	decreasing
order	of	personal	preference:

Using	literal	types
This	pattern	uses	generics	and	literal	types:

/**	Generic	Id	type	*/

type	Id<T	extends	string>	=	{

		type:	T,

		value:	string,

}

/**	Specific	Id	types	*/

type	FooId	=	Id<'foo'>;

type	BarId	=	Id<'bar'>;

/**	Optional:	contructors	functions	*/

const	createFoo	=	(value:	string):	FooId	=>	({	type:	'foo',	value	});

const	createBar	=	(value:	string):	BarId	=>	({	type:	'bar',	value	});

let	foo	=	createFoo('sample')

let	bar	=	createBar('sample');

foo	=	bar;	//	Error

foo	=	foo;	//	Okay

Advantages
No	need	for	any	type	assertions

Disadvantage
The	structure		{type,value}		might	not	be	desireable	and	need	server	serialization
support

Using	Enums

Nominal	Typing

239

Enums	in	TypeScript	offer	a	certain	level	of	nominal	typing.	Two	enum	types	aren't	equal	if
they	differ	by	name.	We	can	use	this	fact	to	provide	nominal	typing	for	types	that	are
otherwise	structurally	compatible.

The	workaround	involves:

Creating	a	brand	enum.
Creating	the	type	as	an	intersection	(&)	of	the	brand	enum	+	the	actual	structure.

This	is	demonstrated	below	where	the	structure	of	the	types	is	just	a	string:

//	FOO

enum	FooIdBrand	{}

type	FooId	=	FooIdBrand	&	string;

//	BAR

enum	BarIdBrand	{}

type	BarId	=	BarIdBrand	&	string;

/**

	*	Usage	Demo

	*/

var	fooId:	FooId;

var	barId:	BarId;

//	Safety!

fooId	=	barId;	//	error

barId	=	fooId;	//	error

//	Newing	up

fooId	=	'foo'	as	FooId;

barId	=	'bar'	as	BarId;

//	Both	types	are	compatible	with	the	base

var	str:	string;

str	=	fooId;

str	=	barId;

Using	Interfaces
Because		numbers		are	type	compatible	with		enum	s	the	previous	technique	cannot	be	used
for	them.	Instead	we	can	use	interfaces	to	break	the	structural	compatibility.	This	method	is
still	used	by	the	TypeScript	compiler	team,	so	worth	mentioning.	Using		_		prefix	and	a
	Brand		suffix	is	a	convention	I	strongly	recommend	(and	the	one	followed	by	the	TypeScript
team).

The	workaround	involves	the	following:

Nominal	Typing

240

https://github.com/Microsoft/TypeScript/blob/7b48a182c05ea4dea81bab73ecbbe9e013a79e99/src/compiler/types.ts#L693-L698

adding	an	unused	property	on	a	type	to	break	structural	compatibility.
using	a	type	assertion	when	needing	to	new	up	or	cast	down.

This	is	demonstrated	below:

//	FOO

interface	FooId	extends	String	{

				_fooIdBrand:	string;	//	To	prevent	type	errors

}

//	BAR

interface	BarId	extends	String	{

				_barIdBrand:	string;	//	To	prevent	type	errors

}

/**

	*	Usage	Demo

	*/

var	fooId:	FooId;

var	barId:	BarId;

//	Safety!

fooId	=	barId;	//	error

barId	=	fooId;	//	error

fooId	=	<FooId>barId;	//	error

barId	=	<BarId>fooId;	//	error

//	Newing	up

fooId	=	'foo'	as	any;

barId	=	'bar'	as	any;

//	If	you	need	the	base	string

var	str:	string;

str	=	fooId	as	any;

str	=	barId	as	any;

Nominal	Typing

241

Stateful	Functions
A	common	feature	in	other	programming	languages	is	usage	of	the		static		keyword	to
increase	the	lifetime	(not	scope)	of	a	function	variable	to	live	beyond	function	invocations.
Here	is	a		C		sample	that	achieves	this:

void	called()	{

				static	count	=	0;

				count++;

				printf("Called	:	%d",	count);

}

int	main	()	{

				called();	//	Called	:	1

				called();	//	Called	:	2

				return	0;

}

Since	JavaScript	(or	TypeScript)	doesn't	have	function	statics	you	can	achieve	the	same
thing	using	various	abstractions	that	wrap	over	a	local	variable	e.g.	using	a		class		:

const	{called}	=	new	class	{

				count	=	0;

				called	=	()	=>	{

								this.count++;

								console.log(`Called	:	${this.count}`);

				}

};

called();	//	Called	:	1

called();	//	Called	:	2

C++	developers	also	try	and	achieve	this	using	a	pattern	they	call		functor		(a	class
that	overrides	the	operator		()).

Stateful	Functions

242

Bind	is	Harmful
This	is	the	definition	of		bind		in		lib.d.ts	:

bind(thisArg:	any,	...argArray:	any[]):	any;

As	you	can	see	it	returns	any!	That	means	that	calling		bind		on	a	function	will	cause	you	to
completely	lose	any	type	safety	of	the	original	function	signature.

For	example	the	following	compiles:

function	twoParams(a:number,b:number)	{

				return	a	+	b;

}

let	curryOne	=	twoParams.bind(null,123);

curryOne(456);	//	Okay	but	is	not	type	checked!

curryOne('456');	//	Allowed	because	it	wasn't	type	checked!

A	better	way	to	write	it	would	be	with	a	simple	arrow	function	with	an	explicit	type	annotation:

function	twoParams(a:number,b:number)	{

				return	a	+	b;

}

let	curryOne	=	(x:number)=>twoParams(123,x);

curryOne(456);	//	Okay	and	type	checked!

curryOne('456');	//	Error!

But	if	you	expect	a	curried	function	there	is	a	better	pattern	for	that.

Class	Members

Another	common	use	is	to	use		bind		to	ensure	the	correct	value	of		this		when	passing
around	class	functions.	Don't	do	that!

The	following	demonstrates	the	fact	that	you	lose	parameter	type	safety	if	you	use		bind	:

Bind	is	Bad

243

class	Adder	{

				constructor(public	a:	string)	{	}

				add(b:	string):	string	{

								return	this.a	+	b;

				}

}

function	useAdd(add:	(x:	number)	=>	number)	{

				return	add(456);

}

let	adder	=	new	Adder('mary	had	a	little	');

useAdd(adder.add.bind(adder));	//	No	compile	error!

useAdd((x)	=>	adder.add(x));	//	Error:	number	is	not	assignable	to	string

If	you	have	a	class	member	function	that	you	expect	to	pass	around,	use	an	arrow	function
in	the	first	place	e.g	one	would	write	the	same		Adder		class	as:

class	Adder	{

				constructor(public	a:	string)	{	}

				//	This	function	is	now	safe	to	pass	around

				add	=	(b:	string):	string	=>	{

								return	this.a	+	b;

				}

}

Another	alternative	is	to	manually	specify	the	type	of	the	variable	you	are	binding	e.g.

const	add:	typeof	adder.add	=	adder.add.bind(adder);

Bind	is	Bad

244

Currying
Just	use	a	chain	of	fat	arrow	functions:

//	A	curried	function

let	add	=	(x:	number)	=>	(y:	number)	=>	x	+	y;

//	Simple	usage

add(123)(456);

//	partially	applied

let	add123	=	add(123);

//	fully	apply	the	function

add123(456);

Currying

245

Type	Instantiation	for	Generics
Say	you	have	something	that	has	a	generic	parameter	e.g.	a	class		Foo	:

class	Foo<T>{

				foo:	T;

}

You	want	to	create	a	specialized	version	for	it	for	a	particular	type.	The	pattern	is	to	copy	the
item	into	a	new	variable	and	give	it	the	type	annotation	with	the	generics	replaced	with
concrete	types.	E.g	if	you	want	a	class		Foo<number>	:

class	Foo<T>{

				foo:	T;

}

let	FooNumber	=	Foo	as	{	new	():Foo<number>	};	//	ref	1

In		ref	1		you	are	saying	that		FooNumber		is	the	same	as		Foo		but	just	treat	it	as	something
that	when	called	with	the		new		operator	gives	an	instance	of		Foo<Number>	.

Inheritance

The	Type	assertion	pattern	is	unsafe	in	that	it	trusts	you	to	do	the	right	thing.	A	common
pattern	in	other	languages	for	classes	is	to	just	use	inheritance	:

class	FooNumber	extends	Foo<number>{}

One	word	of	caution	here:	if	you	use	decorators	on	the	base	class	then	the	inherited	class
might	not	have	the	same	behavior	as	the	base	class	(it	is	no	longer	wrapped	by	the
decorator).

Of	course	if	you	are	not	specializing	classes	you	still	have	to	come	up	with	a	coercion	/
assertion	pattern	that	works	and	hence	we	showed	the	general	assertion	pattern	first,	e.g.:

function	id<T>(x:	T)	{	return	x;	}

const	idNum	=	id	as	{(x:number):number};

Inspired	by	this	stackoverflow	question

Type	Instantiation

246

http://stackoverflow.com/a/34864705/390330

Type	Instantiation

247

Lazy	Object	Literal	Initialization
Quite	commonly	in	JavaScript	code	bases	you	would	initialize	and	object	literals	in	the
following	manner:

let	foo	=	{};

foo.bar	=	123;

foo.bas	=	"Hello	World";

As	soon	as	you	move	the	code	to	TypeScript	you	will	start	to	get	Errors	like	the	following:

let	foo	=	{};

foo.bar	=	123;	//	Error:	Property	'bar'	does	not	exist	on	type	'{}'

foo.bas	=	"Hello	World";	//	Error:	Property	'bas'	does	not	exist	on	type	'{}'

This	is	because	from	the	state		let	foo	=	{}	,	TypeScript	infers	the	type	of		foo		(left	hand
side	of	initializing	assignment)	to	be	the	type	of	the	right	hand	side		{}		(i.e.	an	object	with
no	properties).	So,	it	error	if	you	try	to	assign	to	a	property	it	doesn't	know	about.

Ideal	Fix

The	proper	way	to	initialize	an	object	in	TypeScript	is	to	do	it	in	the	assignment:

let	foo	=	{

				bar:	123,

				bas:	"Hello	World",

};

This	is	also	great	for	code	review	and	code	maintainability	purposes.

Quick	Fix

If	you	have	a	large	JavaScript	code	base	that	you	are	migrating	to	TypeScript	the	ideal	fix
might	not	be	a	viable	solution	for	you.	In	that	case	you	can	carefully	use	a	type	assertion	to
silence	the	compiler:

let	foo	=	{}	as	any;

foo.bar	=	123;

foo.bas	=	"Hello	World";

Lazy	Object	Literal	Initialization

248

Middle	Ground

Of	course	using	the		any		assertion	can	be	very	bad	as	it	sort	of	defeats	the	safety	of
TypeScript.	The	middle	ground	fix	is	to	create	an		interface		to	ensure

Good	Docs
Safe	assignment

This	is	shown	below:

interface	Foo	{

				bar:	number

				bas:	string

}

let	foo	=	{}	as	Foo;

foo.bar	=	123;

foo.bas	=	"Hello	World";

Here	is	a	quick	example	that	shows	the	fact	that	using	the	interface	can	save	you:

interface	Foo	{

				bar:	number

				bas:	string

}

let	foo	=	{}	as	Foo;

foo.bar	=	123;

foo.bas	=	"Hello	World";

//	later	in	the	codebase:

foo.bar	=	'Hello	Stranger';	//	Error:	You	probably	misspelled	`bas`	as	`bar`,	cannot	a

ssign	string	to	number

}

Lazy	Object	Literal	Initialization

249

Classes	Are	Useful
It	is	very	common	to	have	the	following	structure:

function	foo()	{

				let	someProperty;

				//	Some	other	initialization	code

				function	someMethod()	{

								//	Do	some	stuff	with	`someProperty`

								//	And	potentially	other	things

				}

				//	Maybe	some	other	methods

				return	{

								someMethod,

								//	Maybe	some	other	methods

				};

}

This	is	known	as	the	revealing	module	pattern	and	quite	common	in	JavaScript	(taking
advantage	of	JavaScript	closure).

If	you	use	file	modules	(which	you	really	should	as	global	scope	is	bad)	then	your	file	is
effectively	the	same.	However	there	are	too	many	cases	where	people	will	write	code	like
the	following:

let	someProperty;

function	foo()	{

			//	Some	initialization	code

}

foo();	//	some	initialization	code

someProperty	=	123;	//	some	more	initialization

//	Some	utility	function	not	exported

//	later

export	function	someMethod()	{

}

Even	though	I	am	not	a	big	fan	of	inheritance	I	do	find	that	letting	people	use	classes	helps
them	organize	their	code	better.	The	same	developer	would	intuitively	write	the	following:

Classes	are	Useful

250

class	Foo	{

				public	someProperty;

				constructor()	{

								//	some	initialization

				}

				public	someMethod()	{

								//	some	code

				}

				private	someUtility()	{

								//	some	code

				}

}

export	=	new	Foo();

And	its	not	just	developers,	creating	dev	tools	that	provide	great	visualizations	over	classes
are	much	more	common,	and	there	is	one	less	pattern	your	team	needs	to	understand	and
maintain.

PS:	There	is	nothing	wrong	in	my	opinion	with	shallow	class	hierarchies	if	they	provide
significant	reuse	and	reduction	in	boiler	plate.

Classes	are	Useful

251

	export	default		can	lead	to	problems
Let's	go	with	an	example.	Consider	you	have	a	file		foo.ts		with	the	following	contents:

class	Foo	{

}

export	default	Foo;

You	would	import	it	(in		bar.ts)	using	ES6	syntax	as	follows:

import	Foo	from	"./foo";

There	are	a	few	maintainability	concerns	here:

If	you	refactor		Foo		in		foo.ts		it	will	not	rename	it	in		bar.ts	.
If	you	end	up	needing	to	export	more	stuff	from		foo.ts		(which	is	what	many	of	your
files	will	have)	then	you	have	to	juggle	the	import	syntax.

For	this	reason	I	recommend	simple	exports	+	destructured	import.	E.g.		foo.ts	:

export	class	Foo	{

}

And	then:

import	{Foo}	from	"./foo";

Avoid	Export	Default

252

Bonus	points:	You	even	get	autocomplete	at	this		import	{/*here*/}	from	"./foo";	
cursor	location.	Gives	your	developers	a	bit	of	wrist	relief.

Bonus	points:	Better	commonJs	experience.	With		default		there	is	horrible
experience	for	commonjs	users	who	have	to		const	{default}	=	require('module/foo');	
instead	of		const	{Foo}	=	require('module/foo')	

Bonus	points:	You	don't	get	typos	like	one	dev	doing		import	Foo	from	"./foo";		and
another	doing		import	foo	from	"./foo";	

Bonus	points:	Auto	import	quickfix	works	better.	You	use		Foo		and	auto	import	will
write	down		import	{	Foo	}	from	"./foo";		cause	its	a	well	defined	name	exported	from
a	module.

Bonus	points:	Re-exporting	is	unnecessarily	hard.	Re-exporting	is	common	for	the
root		index		file	in	npm	packages	e.g.		import	Foo	from	"./foo";	export	{	Foo	}		(with
default)	vs.		export	*	from	"./foo"		(with	named	exports).

Avoid	Export	Default

253

Limit	usage	of	property	setters
Prefer	explicit	set/get	functions	(e.g.		setBar		and		getBar		functions)	over	setters/getters.

Consider	the	following	code:

foo.bar	=	{

				a:	123,

				b:	456

};

In	the	presence	of	setter/getters:

class	Foo	{

				a:	number;

				b:	number;

				set	bar(value:{a:number,b:number})	{

								this.a	=	value.a;

								this.b	=	value.b;

				}

}

let	foo	=	new	Foo();

This	is	not	a	good	use	of	property	setters.	The	person	reading	the	first	code	sample	has	no
context	about	all	the	things	that	will	change.	Where	as	someone	calling		foo.setBar(value)	
might	have	an	idea	that	something	might	change	on		foo	.

Bonus	points:	Find	references	works	better	if	you	have	different	functions.	In	TypeScript
tools	if	you	find	references	for	a	getter	or	a	setter	you	get	both	whereas	with	explicit
function	calls	you	only	get	references	to	the	relevant	function.

Limit	Property	Setters

254

Null	is	Bad
JavaScript	(and	by	extension	TypeScript)	has	two	bottom	types	:		null		and		undefined	.
They	are	intended	to	mean	different	things:

Something	hasn't	been	initialized	:		undefined	
Something	is	currently	unavailable:		null	

Most	other	languages	only	have	one	(commonly	called		null).	Since	by	default	JavaScript
will	evaluate	an	uninitialized	variable	/	parameter	/	property	to		undefined		(you	don't	get	a
choice)	we	recommend	you	just	use	that	for	your	own	unavailable	status	and	don't	bother
with		null	.

Real	world	discussions
TypeScript	team	doesn't	use		null		:	TypeScript	coding	guidelines	and	it	hasn't	caused	any
problems.	Douglas	Crockford	thinks		null		is	a	bad	idea	and	we	should	all	just	use
	undefined	

Dealing	with		null		style	code	bases
If	your	code	base	interacts	with	other	APIs	that	might	give	you	a		null		you	check	with		==
undefined		(instead	of		===).	Using	this	is	safe	even	for	other	potentially	falsy	values.

///	Image	you	are	doing	`foo	==	undefined`	where	foo	can	be	one	of:

console.log(undefined	==	undefined);	//	true

console.log(null	==	undefined);	//	true

console.log(0	==	undefined);	//	false

console.log(''	==	undefined);	//	false

console.log(false	==	undefined);	//	false

Additional	tips

Limit	explicit	use	of		undefined	

Also	because	TypeScript	gives	you	the	opportunity	to	document	your	structures	separately
from	values	instead	of	stuff	like:

null	is	bad

255

https://github.com/Microsoft/TypeScript/wiki/Coding-guidelines#null-and-undefined
https://www.youtube.com/watch?v=PSGEjv3Tqo0&feature=youtu.be&t=9m21s

function	foo(){

		//	if	Something

		return	{a:1,b:2};

		//	else

		return	{a:1,b:undefined};

}

you	should	use	a	type	annotation:

function	foo():{a:number,b?:number}{

		//	if	Something

		return	{a:1,b:2};

		//	else

		return	{a:1};

}

Node	style	callbacks

Node	style	callback	functions	(e.g.		(err,somethingElse)=>{	/*	something	*/	})	are	generally
called	with		err		set	to		null		if	there	isn't	an	error.	You	generally	just	use	a	truthy	check	for
this	anyways:

fs.readFile('someFile',	'utf8',	(err,data)	=>	{

		if	(err)	{

				//	do	something

		}

		//	no	error

});

When	creating	your	own	APIs	it's	okay	to	use		null		in	this	case	for	consistency.	In	all
sincerity	for	your	own	APIs	you	should	look	at	promises,	in	that	case	you	actually	don't	need
to	bother	with	absent	error	values	(you	handle	them	with		.then		vs.		.catch).

Don't	use		undefined		as	a	means	of	denoting	validity

For	example	an	awful	function	like	this:

function	toInt(str:string)	{

		return	str	?	parseInt(str)	:	undefined;

}

can	be	much	better	written	like	this:

null	is	bad

256

function	toInt(str:	string):	{	valid:	boolean,	int?:	number	}	{

		const	int	=	parseInt(str);

		if	(isNaN(int))	{

				return	{	valid:	false	};

		}

		else	{

				return	{	valid:	true,	int	};

		}

}

null	is	bad

257

	--outFile		is	BAD
Its	a	bad	idea	for	you	to	use	because	of	the	following	reasons:

Runtime	Errors
Fast	compile
Global	scope
Hard	to	analyze
Hard	to	scale
	_references	

Code	reuse
Multiple	Targets
Isolated	Compile

Runtime	Errors
If	your	code	depends	on	any	form	of	js	ordering	you	will	get	random	errors	at	runtime.

class	inheritance	can	break	at	runtime.

Consider		foo.ts	:

class	Foo	{

}

and	a		bar.ts	:

class	Bar	extends	Foo	{

}

If	you	fail	to	compile	it	in	correct	order	e.g.	perhaps	alphabetically		tsc	bar.ts	foo.ts		the
code	will	compile	fine	but	error	at	runtime	with		ReferenceError	.

module	splitting	can	fail	at	runtime.

Consider		foo.ts	:

outFile	caution

258

module	App	{

				export	var	foo	=	123;

}

And		bar.ts	:

module	App	{

				export	var	bar	=	foo	+	456;

}

If	you	fail	to	compile	it	in	correct	order	e.g.	perhaps	alphabetically		tsc	bar.ts	foo.ts		the
code	will	compile	fine	but	silently	fail	at	runtime	with		bar		set	to		NaN	.

Fast	compile
If	you	use		--out		then	single		.ts		files	cannot	be	codegened	into	single		.js		files	in
isolation	without	unnecessary	hacks.		--out		essentially	forces	a	slower	incremental	build.

Also	source	maps	are	positionally	sensitive	and	run-length	encoded	so	most	of	the	map	has
to	be	rebuilt	on	a	recompile	if	you	use	source	maps	(which	you	should!).	At	high-10s	to	100s
kloc	combined	it’s	going	to	get	slow.

Global	Scope
Sure	you	can	use	name	spaces	but	its	still	on		window		if	you	run	it	in	the	browser.
Namespaces	are	just	an	unnecessary	workaround.	Also		///	<reference		comments
introduce	an	global	context	in	your	code	that	can	get	hard	to	maintain.

Also	if	your	company	has	several	teams	working	independently	and	then	someone	decides
to	try	integrating	two	independently	written	apps	there	is	a	high	likelihood	of	a	name	conflict.

Hard	to	analyze
We	wish	to	provide	more	code	analysis	tools.	These	will	be	easier	if	you	provide	us	with	the
dependency	chain	(implicitly	there	on	a	silver	platter	using	external	modules).

Also	its	not	just	the	dev	tools	that	have	a	hard	time	making	sense	of	the	code.	The	next
human	needs	to	understand	a	lot	of	the	code	base	before	they	start	to	understand	where
stuff	is	actually	imported	from.	Using	internal	modules	also	makes	code	difficult	to	review	in
isolation	e.g.	on	github.

outFile	caution

259

Hard	to	scale
Really	just	a	result	of	random	runtime	errors	+	slower	and	slower	compile	times	+	difficulty	in
understanding	someone	else's	code.

	_references.ts	

Isn't	supported	by		tsconfig.json		:
https://github.com/Microsoft/TypeScript/issues/2472#issuecomment-85330803	You'll	have	to
manually	sort	the		files		array.

Code	reuse
If	you	want	to	reuse	a	portion	of	your	code	in	another	project,	with	all	that	implicit
dependency	management,	it	will	be	difficult	to	port	it	over	without	potential	runtime	errors.

Multiple	Targets
Also	if	you	decide	to	reuse	your	browser	code	in	something	like	nodejs	(e.g.	for	testing	APIs)
you	are	going	to	need	to	port	it	over	to	a	module	system	or	come	up	with	ugly	hacks	to	make
the	nodejs		global		your	new	global	scope	(i.e.		window).

Isolated	Compile
Files	cannot	be	compiled	in	isolation.	E.g.	consider		a.ts	:

module	M	{

		var	s	=	t;

}

Will	have	different	output	depending	upon	whether	there	is	a		b.ts		of	the	form:

module	M	{

		export	var	t	=	5;

}

or

outFile	caution

260

https://github.com/Microsoft/TypeScript/issues/2472#issuecomment-85330803

var	t	=	5;

So		a.ts		cannot	be	compiled	in	isolation.

Summary
	--out		is	really	the	job	of	some	build	tool.	And	even	such	a	build	tool	can	benefit	from	the
dependency	mentions	provided	by	external	modules.	So	we	recommend	you	use	external
modules	and	then	let	the	build	tool	create	a	single		.js		for	you	if	you	so	desire.

https://twitter.com/nycdotnet/status/613705850574778368

outFile	caution

261

https://github.com/Microsoft/TypeScript/issues/2715
https://twitter.com/nycdotnet/status/613705850574778368

JQuery	Tips
Note:	you	need	to	install	the		jquery.d.ts		file	for	these	tips

Quickly	define	a	new	plugin

Just	create		jquery-foo.d.ts		with:

interface	JQuery	{

		foo:	any;

}

And	now	you	can	use		$('something').foo({whateverYouWant:'hello	jquery	plugin'})	

JQuery	tips

262

Static	Constructors	in	TypeScript
TypeScript		class		(like	JavaScript		class)	cannot	have	a	static	constructor.	However	you
can	get	the	same	effect	quite	easily	by	just	calling	it	yourself:

class	MyClass	{

				static	initialize()	{

								//	Initialization

				}

}

MyClass.initialize();

static	constructors

263

Singleton	Pattern
The	conventional	singleton	pattern	is	really	something	that	is	used	to	overcome	the	fact	that
all	code	must	be	in	a		class	.

class	Singleton	{

				private	static	instance:	Singleton;

				private	constructor()	{

								//	do	something	construct...

				}

				static	getInstance()	{

								if	(!Singleton.instance)	{

												Singleton.instance	=	new	Singleton();

												//	...	any	one	time	initialization	goes	here	...

								}

								return	Singleton.instance;

				}

				someMethod()	{	}

}

let	something	=	new	Singleton()	//	Error:	constructor	of	'Singleton'	is	private.

let	instance	=	Singleton.getInstance()	//	do	something	with	the	instance...

However	if	you	don't	want	lazy	initialization	you	can	instead	just	use	a		namespace	:

namespace	Singleton	{

				//	...	any	one	time	initialization	goes	here	...

				export	function	someMethod()	{	}

}

//	Usage

Singleton.someMethod();

Warning	:	Singleton	is	just	a	fancy	name	for	global

For	most	projects		namespace		can	additionally	be	replaced	by	a	module.

//	someFile.ts

//	...	any	one	time	initialization	goes	here	...

export	function	someMethod()	{	}

//	Usage

import	{someMethod}	from	"./someFile";

singleton	pattern

264

http://stackoverflow.com/a/142450/390330

singleton	pattern

265

Function	Parameters
If	you	have	a	function	that	takes	too	many	parameters,	or	parameters	of	the	same	type,	then
you	might	want	to	consider	changing	the	function	to	take	an	object	instead.

Consider	the	following	function:

function	foo(flagA:	boolean,	flagB:	boolean)	{

		//	your	awesome	function	body	

}

With	such	a	function	definition	it's	quite	easy	to	invoke	it	incorrectly	e.g.		foo(flagB,	flagA)	
and	you	would	get	no	help	from	the	compiler.

Instead,	convert	the	function	to	take	an	object:

function	foo(config:	{flagA:	boolean,	flagB:	boolean})	{

		const	{flagA,	flagB}	=	config;

		//	your	awesome	function	body	

}

Now	the	function	calls	will	look	like		foo({flagA,	flagB})		which	makes	it	much	easier	to	spot
mistakes	and	code	review.

Note	:	If	your	function	is	simple	enough,	and	you	don't	expect	much	churn,	then	feel
free	to	ignore	this	advice	.

Function	parameters

266

Truthy
JavaScript	has	a	concept	of		truthy		i.e.	things	that	evaluate	like		true		would	in	certain
positions	(e.g.		if		conditions	and	the	boolean		&&			||		operators).	The	following	things	are
truthy	in	JavaScript.	An	example	is	any	number	other	than		0		e.g.

if	(123)	{	//	Will	be	treated	like	`true`

		console.log('Any	number	other	than	0	is	truthy');

}

Something	that	isn't	truthy	is	called		falsy	.

Here's	a	handy	table	for	your	reference.

Variable	Type When	it	is	falsy When	it	is
truthy

	boolean	 	false	 	true	

	string	
	''		(empty
string) any	other	string

	number	 	0			NaN	 any	other
number

	null	 always never

	undefined	 always never

Any	other	Object	including	empty	ones	like
	{}	,	[]	 never always

Being	explicit

The		!!		pattern

Quite	commonly	it	helps	to	be	explicit	that	the	intent	is	to	treat	the	value	as	a		boolean		and
convert	it	into	a	true	boolean	(one	of		true	|	false).	You	can	easily	convert	values	to	a	true
boolean	by	prefixing	it	with		!!		e.g.		!!foo	.	Its	just		!		used	twice.	The	first		!		converts	the
variable	(in	this	case		foo)	to	a	boolean	but	inverts	the	logic	(truthy	-	!	>		false	,	falsy	-	!	>
	true).	The	second	one	toggles	it	again	to	match	the	nature	of	the	original	object	(e.g.	truthy
-	!	>		false		-	!	>		true).

It	is	common	to	use	this	pattern	in	lots	of	places	e.g.

Truthy

267

//	Direct	variables

const	hasName	=	!!name;

//	As	members	of	objects

const	someObj	=	{

		hasName:	!!name

}

//	e.g.	ReactJS

{!!someName	&&	<div>{someName}</div>}

Truthy

268

Build	Toggles
It	is	common	to	switch	in	JavaScript	projects	based	on	where	they	are	being	run.	You	can	do
this	quite	easily	with	webpack	as	its	supports	dead	code	elimination	based	on	environment
variables.

Add	different	targets	in	your		package.json			scripts	:

"build:test":	"webpack	-p	--config	./src/webpack.config.js",

"build:prod":	"webpack	-p	--define	process.env.NODE_ENV='\"production\"'	--config	./sr

c/webpack.config.js",

Of	course	I	am	assuming	you	have		npm	install	webpack	--save-dev	.	Now	you	can	run		npm
run	build:test		etc.

Using	this	variable	is	super	easy	as	well:

/**

	*	This	interface	makes	sure	we	don't	miss	adding	a	property	to	both	`prod`	and	`test`

	*/

interface	Config	{

		someItem:	string;

}

/**

	*	We	only	export	a	single	thing.	The	config.

	*/

export	let	config:	Config;

/**

	*	`process.env.NODE_ENV`	definition	is	driven	from	webpack

	*

	*	The	whole	`else`	block	will	be	removed	in	the	emitted	JavaScript

	*		for	a	production	build

	*/

if	(process.env.NODE_ENV	===	'production')	{

		config	=	{

				someItem:	'prod'

		}

		console.log('Running	in	prod');

}	else	{

		config	=	{

				someItem:	'test'

		}

		console.log('Running	in	test');

}

Build	Toggles

269

We	use		process.env.NODE_ENV		just	because	it	is	conventional	in	a	lot	of	JavaScript
libraries	themselves	e.g.		React	.

Build	Toggles

270

Barrel
A	barrel	is	a	way	to	rollup	exports	from	several	modules	into	a	single	convenient	module.
The	barrel	itself	is	a	module	file	that	re-exports	selected	exports	of	other	modules.

Imagine	the	following	class	structure	in	a	library:

//	demo/foo.ts

export	class	Foo	{}

//	demo/bar.ts

export	class	Bar	{}

//	demo/baz.ts

export	class	Baz	{}

Without	a	barrel,	a	consumer	would	need	three	import	statements:

import	{	Foo	}	from	'../demo/foo';

import	{	Bar	}	from	'../demo/bar';

import	{	Baz	}	from	'../demo/baz';

You	can	instead	add	a	barrel		demo/index.ts		containing	the	following:

//	demo/index.ts

export	*	from	'./foo';	//	re-export	all	of	its	exports

export	*	from	'./bar';	//	re-export	all	of	its	exports

export	*	from	'./baz';	//	re-export	all	of	its	exports

Now	the	consumer	can	import	what	it	needs	from	the	barrel:

import	{	Foo,	Bar,	Baz	}	from	'../demo';	//	demo/index.ts	is	implied

Named	exports

Instead	of	exporting	*	you	can	chose	to	export	the	module	in	a	name.	Eg.	assume	that
	baz.ts		has	functions:

Barrel

271

//	demo/foo.ts

export	class	Foo	{}

//	demo/bar.ts

export	class	Bar	{}

//	demo/baz.ts

export	function	getBaz()	{}

export	function	setBaz()	{}

If	you	would	rather	not	export		getBaz		/		setBaz		from	demo	you	can	instead	put	them	in	a
variable	by	importing	them	in	a	name	and	exporting	that	name	as	shown	below:

//	demo/index.ts

export	*	from	'./foo';	//	re-export	all	of	its	exports

export	*	from	'./bar';	//	re-export	all	of	its	exports

import	*	as	baz	from	'./baz';	//	import	as	a	name

export	{	baz	};	//	export	the	name

And	now	the	consumer	would	look	like:

import	{	Foo,	Bar,	baz	}	from	'../demo';	//	demo/index.ts	is	implied

//	usage

baz.getBaz();

baz.setBaz();

//	etc.	...

Barrel

272

Creating	arrays
Creating	an	empty	array	is	super	easy:

const	foo:string[]	=	[];

If	you	want	to	create	an	array	pre-filled	with	some	content	use	the	ES6
	Array.prototype.fill	:

const	foo:string[]	=	new	Array(3).fill('');

console.log(foo);	//	['','',''];

Create	Arrays

273

Typesafe	Event	Emitter
Conventionally	in	Node.js	and	traditional	JavaScript	you	have	a	single	event	emitter.	This
event	emitter	internally	tracks	listener	for	different	event	types	e.g.

const	emitter	=	new	EventEmitter();

//	Emit:	

emitter.emit('foo',	foo);

emitter.emit('bar',	bar);

//	Listen:	

emitter.on('foo',	(foo)=>console.log(foo));

emitter.on('bar',	(bar)=>console.log(bar));

Essentially		EventEmitter		internally	stores	data	in	the	form	of	mapped	arrays:

{foo:	[fooListeners],	bar:	[barListeners]}

Instead,	for	the	sake	of	event	type	safety,	you	can	create	an	emitter	per	event	type:

const	onFoo	=	new	TypedEvent<Foo>();

const	onBar	=	new	TypedEvent<Bar>();

//	Emit:	

onFoo.emit(foo);

onBar.emit(bar);

//	Listen:	

onFoo.on((foo)=>console.log(foo));

onBar.on((bar)=>console.log(bar));

This	has	the	following	advantages:

The	types	of	events	are	easily	discoverable	as	variables.
The	event	emitter	variables	are	easily	refactored	independently.
Type	safety	for	event	data	structures.

Reference	TypedEvent

Typesafe	Event	Emitter

274

export	interface	Listener<T>	{

		(event:	T):	any;

}

export	interface	Disposable	{

		dispose();

}

/**	passes	through	events	as	they	happen.	You	will	not	get	events	from	before	you	star

t	listening	*/

export	class	TypedEvent<T>	{

		private	listeners:	Listener<T>[]	=	[];

		private	listenersOncer:	Listener<T>[]	=	[];

		on	=	(listener:	Listener<T>):	Disposable	=>	{

				this.listeners.push(listener);

				return	{

						dispose:	()	=>	this.off(listener)

				};

		}

		once	=	(listener:	Listener<T>):	void	=>	{

				this.listenersOncer.push(listener);

		}

		off	=	(listener:	Listener<T>)	=>	{

				var	callbackIndex	=	this.listeners.indexOf(listener);

				if	(callbackIndex	>	-1)	this.listeners.splice(callbackIndex,	1);

		}

		emit	=	(event:	T)	=>	{

				/**	Update	any	general	listeners	*/

				this.listeners.forEach((listener)	=>	listener(event));

				/**	Clear	the	`once`	queue	*/

				this.listenersOncer.forEach((listener)	=>	listener(event));

				this.listenersOncer	=	[];

		}

		pipe	=	(te:	TypedEvent<T>):	Disposable	=>	{

				return	this.on((e)	=>	te.emit(e));

		}

}

Typesafe	Event	Emitter

275

TypeScript	StyleGuide	and	Coding
Conventions

An	unofficial	TypeScript	StyleGuide

People	have	asked	me	for	my	opinions	on	this.	Personally	I	don't	enforce	these	a	lot	on	my
teams	and	projects	but	it	does	help	to	have	these	mentioned	as	a	tie	breaker	when	someone
feels	the	need	to	have	such	strong	consistency.	There	are	other	things	that	I	feel	much	more
strongly	about	and	those	are	covered	in	the	tips	chapter	(e.g.	type	assertion	is	bad,	property
setters	are	bad)	.

Key	Sections:

Variable
Class
Interface
Type
Namespace
Enum
	null		vs.		undefined	
Formatting
Single	vs.	Double	Quotes
Tabs	vs.	Spaces
Use	semicolons
Annotate	Arrays	as		Type[]	
File	Names
	type		vs		interface	

Variable	and	Function
Use		camelCase		for	variable	and	function	names

Reason:	Conventional	JavaScript

Bad

var	FooVar;

function	BarFunc()	{	}

StyleGuide

276

Good

var	fooVar;

function	barFunc()	{	}

Class
Use		PascalCase		for	class	names.

Reason:	This	is	actually	fairly	conventional	in	standard	JavaScript.

Bad

class	foo	{	}

Good

class	Foo	{	}

Use		camelCase		of	class	members	and	methods

Reason:	Naturally	follows	from	variable	and	function	naming	convention.

Bad

class	Foo	{

				Bar:	number;

				Baz()	{	}

}

Good

class	Foo	{

				bar:	number;

				baz()	{	}

}

Interface
Use		PascalCase		for	name.

Reason:	Similar	to	class

StyleGuide

277

Use		camelCase		for	members.

Reason:	Similar	to	class

Don't	prefix	with		I	

Reason:	Unconventional.		lib.d.ts		defines	important	interfaces	without	an		I		(e.g.
Window,	Document	etc).

Bad

interface	IFoo	{

}

Good

interface	Foo	{

}

Type
Use		PascalCase		for	name.

Reason:	Similar	to	class

Use		camelCase		for	members.

Reason:	Similar	to	class

Namespace
Use		PascalCase		for	names

Reason:	Convention	followed	by	the	TypeScript	team.	Namespaces	are	effectively	just
a	class	with	static	members.	Class	names	are		PascalCase		=>	Namespace	names	are
	PascalCase	

Bad

namespace	foo	{

}

Good

StyleGuide

278

namespace	Foo	{

}

Enum
Use		PascalCase		for	enum	names

Reason:	Similar	to	Class.	Is	a	Type.

Bad

enum	color	{

}

Good

enum	Color	{

}

Use		PascalCase		for	enum	member

Reason:	Convention	followed	by	TypeScript	team	i.e.	the	language	creators	e.g
	SyntaxKind.StringLiteral	.	Also	helps	with	translation	(code	generation)	of	other
languages	into	TypeScript.

Bad

enum	Color	{

				red

}

Good

enum	Color	{

				Red

}

Null	vs.	Undefined
Prefer	not	to	use	either	for	explicit	unavailability

StyleGuide

279

Reason:	these	values	are	commonly	used	to	keep	a	consistent	structure	between
values.	In	TypeScript	you	use	types	to	denote	the	structure

Bad

let	foo	=	{x:123,y:undefined};

Good

let	foo:{x:number,y?:number}	=	{x:123};

Use		undefined		in	general	(do	consider	returning	an	object	like
	{valid:boolean,value?:Foo}		instead)

Bad

return	null;

Good

return	undefined;

Use		null		where	its	a	part	of	the	API	or	conventional

Reason:	It	is	conventional	in	Node.js	e.g.		error		is		null		for	NodeBack	style
callbacks.

Bad

cb(undefined)

Good

cb(null)

Use	truthy	check	for	objects	being		null		or		undefined	

Bad

if	(error	===	null)

Good

StyleGuide

280

if	(error)

Use		==	undefined		/		!=	undefined		(not		===		/		!==)	to	check	for		null		/		undefined	
on	primitives	as	it	works	for	both		null	/	undefined		but	not	other	falsy	values	(like
	''	,	0	,	false)	e.g.

Bad

if	(error	!==	null)

Good

if	(error	!=	undefined)

PS:	More	about		null	

Formatting
The	TypeScript	compiler	ships	with	a	very	nice	formatting	language	service.	Whatever
output	it	gives	by	default	is	good	enough	to	reduce	the	cognitive	overload	on	the	team.

Use		tsfmt		to	automatically	format	your	code	on	the	command	line.	Also	your	IDE
(atom/vscode/vs/sublime)	already	has	formatting	support	built-in.

Examples:

//	Space	before	type	i.e.	foo:<space>string

const	foo:	string	=	"hello";

Quotes
Prefer	single	quotes	(')	unless	escaping.

StyleGuide

281

https://github.com/vvakame/typescript-formatter

Reason:	More	JavaScript	teams	do	this	(e.g.	airbnb,	standard,	npm,	node,
google/angular,	facebook/react).	Its	easier	to	type	(no	shift	needed	on	most	keyboards).
Prettier	team	recommends	single	quotes	as	well

Double	quotes	are	not	without	merit:	Allows	easier	copy	paste	of	objects	into	JSON.
Allows	people	to	use	other	languages	to	work	without	changing	their	quote	character.
Allows	you	to	use	apostrophes	e.g.		He's	not	going.	.	But	I'd	rather	not	deviate	from
where	the	JS	Community	is	fairly	decided.

When	you	can't	use	double	quotes,	try	using	back	ticks	(`).

Reason:	These	generally	represent	the	intent	of	complex	enough	strings.

Spaces
Use		2		spaces.	Not	tabs.

Reason:	More	JavaScript	teams	do	this	(e.g.	airbnb,	idiomatic,	standard,	npm,	node,
google/angular,	facebook/react).	The	TypeScript/VSCode	teams	use	4	spaces	but	are
definitely	the	exception	in	the	ecosystem.

Semicolons
Use	semicolons.

Reasons:	Explicit	semicolons	helps	language	formatting	tools	give	consistent	results.
Missing	ASI	(automatic	semicolon	insertion)	can	trip	new	devs	e.g.		foo()	\n
(function(){})		will	be	a	single	statement	(not	two).	Recommended	by	TC39	as	well.

Array
Annotate	arrays	as		foos:Foo[]		instead	of		foos:Array<Foo>	.

Reasons:	Its	easier	to	read.	Its	used	by	the	TypeScript	team.	Makes	easier	to	know
something	is	an	array	as	the	mind	is	trained	to	detect		[]	.

Filename
Name	files	with		camelCase	.	E.g.		accordian.tsx	,		myControl.tsx	,		utils.ts	,		map.ts		etc.

Reason:	Conventional	across	many	JS	teams.

StyleGuide

282

https://github.com/airbnb/javascript
https://github.com/feross/standard
https://github.com/npm/npm
https://github.com/nodejs/node
https://github.com/angular/angular/
https://github.com/facebook/react
https://github.com/prettier/prettier/issues/1105
https://github.com/airbnb/javascript
https://github.com/rwaldron/idiomatic.js
https://github.com/feross/standard
https://github.com/npm/npm
https://github.com/nodejs/node
https://github.com/angular/angular/
https://github.com/facebook/react

type	vs.	interface
Use		type		when	you	might	need	a	union	or	intersection:

type	Foo	=	number	|	{	someProperty:	number	}

Use		interface		when	you	want		extends		or		implements		e.g

interface	Foo	{

		foo:	string;

}

interface	FooBar	extends	Foo	{

		bar:	string;

}

class	X	implements	FooBar	{

		foo:	string;

		bar:	string;

}

Otherwise	use	whatever	makes	you	happy	that	day.

StyleGuide

283

Common	Errors
In	this	section	we	explain	a	number	of	common	error	codes	that	users	experience	in	the	real
world.

TS2304
Samples:

	Cannot	find	name	ga	

You	are	probably	using	a	third	party	library	(e.g.	google	analytics)	and	don't	have	it
	declare	d.	TypeScript	tries	to	save	you	from	spelling	mistakes	and	using	variables	without
declaring	them	so	you	need	to	be	explicit	on	anything	that	is	available	at	runtime	because	of
you	including	some	external	library	(more	on	how	to	fix	it).

TS2307
Samples:

	Cannot	find	module	'underscore'	

You	are	probably	using	a	third	party	library	(e.g.	underscore)	as	a	module	(more	on
modules)	and	don't	have	the	ambient	declaration	file	for	it	(more	on	ambient	declarations).

TS1148
Sample:

Cannot	compile	modules	unless	the	'--module'	flag	is	provided

Checkout	the	section	on	modules.

Catch	clause	variable	cannot	have	a	type
annotation
Sample:

Common	Errors

284

try	{	something();	}

catch	(e:	Error)	{	//	Catch	clause	variable	cannot	have	a	type	annotation

}

TypeScript	is	protecting	you	from	JavaScript	code	in	the	wild	being	wrong.	Use	a	type	guard
instead:

try	{	something();	}

catch	(e)	{

		if	(e	instanceof	Error){

				//	Here	you	go.

		}

}

Interface		ElementClass		cannot	simultaneously
extend	types		Component		and		Component	
This	happens	when	you	have	two		react.d.ts		(@types/react/index.d.ts)	in	the	compilation
context.

Fix:

Delete		node_modules		and	any		package-lock		(or	yarn	lock)	and		npm	install		again.
If	it	doesn't	work,	find	the	invalid	module	(all	modules	used	by	your	project	should	have
	react.d.ts		as	a		peerDependency		and	not	a	hard		dependency)	and	report	it	on	their
project.

For	search	indexing
You	can	ignore	reading	this.	This	section	is	for	search	engine	indexing.

Other	modules	that	people	tend	to	use	and	get	errors:

Cannot	find	name	$
Cannot	find	module	jquery

Common	Errors

285

Compiler
The	typescript	compiler	source	is	located	under	the		src/compiler		folder.

It	is	split	into	the	follow	key	parts:

Scanner	(scanner.ts)
Parser	(parser.ts)
Binder	(binder.ts)
Checker	(checker.ts)
Emitter	(emitter.ts)

Each	of	these	get	their	own	unique	files	in	the	source.	These	parts	will	be	explained	later	on
in	this	chapter.

BYOTS
We	have	a	project	called	Bring	Your	Own	TypeScript	(BYOTS)	which	makes	it	easier	to	play
around	with	the	compiler	API	e.g.	by	exposing	internal	APIs.	You	can	use	it	to	expose	your
local	app's	version	of	TypeScript	globally.

Syntax	vs.	Semantics
Just	because	something	is	syntactically	correct	doesn't	mean	it	is	semantically	correct.
Consider	the	following	piece	of	TypeScript	code	which	although	syntactically	valid	is
semantically	wrong

var	foo:	number	=	"not	a	number";

	Semantic		means	"meaning"	in	English.	This	concept	is	useful	to	have	in	your	head.

Processing	Overview
The	following	is	a	quick	review	of	how	these	key	parts	of	the	TypeScript	compiler	compose:

SourceCode	~~	scanner	~~>	Token	Stream

TypeScript	Compiler	Internals

286

https://github.com/Microsoft/TypeScript/tree/master/src/compiler
https://github.com/basarat/byots

Token	Stream	~~	parser	~~>	AST

AST	~~	binder	~~>	Symbols

	Symbol		is	the	primary	building	block	of	the	TypeScript	semantic	system.	As	shown	the
symbols	are	created	as	a	result	of	binding.	Symbols	connect	declaration	nodes	in	the	AST	to
other	declarations	contributing	to	the	same	entity.

Symbols	+	AST	are	what	is	used	by	the	checker	to	semantically	validate	the	source	code

AST	+	Symbols	~~	checker	~~>	Type	Validation

Finally	When	a	JS	output	is	requested:

AST	+	Checker	~~	emitter	~~>	JS

There	are	a	few	additional	files	in	the	TypeScript	compiler	that	provide	utilities	to	many	of
these	key	portions	which	we	cover	next.

File:	Utilities
	core.ts		:	core	utilities	used	by	the	TypeScript	compiler.	A	few	important	ones:

	let	objectAllocator:	ObjectAllocator		:	is	a	variable	defined	as	a	singleton	global.	It
provides	the	definitions	for		getNodeConstructor		(Nodes	are	covered	when	we	look	at
	parser		/		AST),		getSymbolConstructor		(Symbols	are	covered	in		binder),
	getTypeConstructor		(Types	are	covered	in		checker),		getSignatureConstructor	
(Signatures	are	the	index,	call	and	construct	signatures).

File:	Key	Data	Structures
	types.ts		contains	key	data	structures	and	interfaces	uses	throughout	the	compiler.	Here	is
a	sampling	of	a	few	key	ones:

	SyntaxKind		The	AST	node	type	is	identified	by	the		SyntaxKind		enum.
	TypeChecker		This	is	the	interface	provided	by	the	TypeChecker.
	CompilerHost		This	is	used	by	the		Program		to	interact	with	the		System	.
	Node		An	AST	node.

TypeScript	Compiler	Internals

287

File:	System
	system.ts	.	All	interaction	of	the	TypeScript	compiler	with	the	operating	system	goes
through	a		System		interface.	Both	the	interface	and	its	implementations	(WScript		and
	Node)	are	defined	in		system.ts	.	You	can	think	of	it	as	the	Operating	Environment	(OE).

Now	that	you	have	an	overview	of	the	major	files,	we	can	look	at	the	concept	of		Program	

TypeScript	Compiler	Internals

288

Program
Defined	in		program.ts	.	The	compilation	context	(a	concept	we	covered	previously)	is
represented	within	the	TypeScript	compiler	as	a		Program	.	It	consists	of		SourceFile	s	and
compiler	options.

Usage	of		CompilerHost	

Its	interaction	mechanism	with	the	OE:

	Program		-uses->		CompilerHost		-uses->		System	

The	reason	for	having	a		CompilerHost		as	a	point	of	indirection	is	that	it	allows	its	interface	to
be	more	finely	tuned	for		Program		needs	and	not	bother	with	OE	needs	(e.g.	the		Program	
doesn't	care	about		fileExists		a	function	provided	by		System).

There	are	other	users	of		System		as	well	(e.g.	tests).

SourceFile

The	program	provides	an	API	to	get	the	Source	Files		getSourceFiles():	SourceFile[];	.
Each	is	represented	as	a	root-level	node	for	an	AST	(called		SourceFile).

Program

289

Node
The	basic	building	block	of	the	Abstract	Syntax	Tree	(AST).	In	general	a		Node		represents
non-terminals	in	the	language	grammar;	however,	some	terminals	are	kept	in	the	tree	such
as	identifiers	and	literals.

Two	key	things	make	up	an	AST	node's	documentation.	The	node's		SyntaxKind		which
identifies	its	type	within	the	AST,	and	its		interface	,	the	API	the	node	provides	when
instantiated	into	the	AST.

Here	are	a	few	key		interface	Node		members:

	TextRange		members	that	identify	the	node's		start		and		end		in	the	source	file.
	parent?:	Node		the	parent	of	the	node	in	the	AST.

There	are	other	additional	members	for		Node		flags	and	modifiers	etc.	that	you	can	lookup
by	searching		interface	Node		in	the	source	code	but	the	ones	we	mentioned	are	vital	for
node	traversal.

SourceFile
	SyntaxKind.SourceFile	

	interface	SourceFile	.

Each		SourceFile		is	a	top-level	AST	node	that	is	contained	in	the		Program	.

AST

290

AST	Tip:	Visit	Children

There	is	a	utility	function		ts.forEachChild		that	allows	you	to	visit	all	the	child	nodes	of	any
Node	in	the	AST.

Here	is	simplified	snippet	of	the	source	code	to	demonstrate	how	it	functions:

export	function	forEachChild<T>(node:	Node,	cbNode:	(node:	Node)	=>	T,	cbNodeArray?:	(

nodes:	Node[])	=>	T):	T	{

								if	(!node)	{

												return;

								}

								switch	(node.kind)	{

												case	SyntaxKind.BinaryExpression:

																return	visitNode(cbNode,	(<BinaryExpression>node).left)	||

																				visitNode(cbNode,	(<BinaryExpression>node).operatorToken)	||

																				visitNode(cbNode,	(<BinaryExpression>node).right);

												case	SyntaxKind.IfStatement:

																return	visitNode(cbNode,	(<IfStatement>node).expression)	||

																				visitNode(cbNode,	(<IfStatement>node).thenStatement)	||

																				visitNode(cbNode,	(<IfStatement>node).elseStatement);

												//	lots	more

Basically	it	checks		node.kind		and	based	on	that	assumes	an	interface	offered	by	the		node	
and	calls	the		cbNode		on	the	children.	Note,	however	that	this	function	doesn't	call
	visitNode		for	all	children	(e.g.	SyntaxKind.SemicolonToken).	If	you	want	all	the	children	of
a	node	in	the	AST	just	call		.getChildren		member	function	of	the		Node	.

E.g.	here	is	a	function	that	prints	the	verbose		AST		of	a	node:

function	printAllChildren(node:	ts.Node,	depth	=	0)	{

				console.log(new	Array(depth+1).join('----'),	ts.syntaxKindToName(node.kind),	node.

pos,	node.end);

				depth++;

				node.getChildren().forEach(c=>	printAllChildren(c,	depth));

}

We	will	see	a	sample	usage	of	this	function	when	we	discuss	the	parser	further.

TIP:	Visit	Children

291

AST	Tip:	SyntaxKind

	SyntaxKind		is	defined	as	a		const	enum	,	here	is	a	sample:

export	const	enum	SyntaxKind	{

				Unknown,

				EndOfFileToken,

				SingleLineCommentTrivia,

				//	...	LOTS	more

It's	a		const	enum		(a	concept	we	covered	previously)	so	that	it	gets	inlined	(e.g.
	ts.SyntaxKind.EndOfFileToken		becomes		1)	and	we	don't	get	a	dereferencing	cost	when
working	with	the	AST.	However	the	compiler	is	compiled	with		--preserveConstEnums	
compiler	flag	so	that	the	enum	is	still	available	at	runtime.	So	in	JavaScript	you	can	use
	ts.SyntaxKind.EndOfFileToken		if	you	want.	Additionally	you	can	convert	these	enum
members	to	display	strings	using	the	following	function:

export	function	syntaxKindToName(kind:	ts.SyntaxKind)	{

				return	(<any>ts).SyntaxKind[kind];

}

TIP:	SyntaxKind	enum

292

Trivia

Trivia	(called	that	because	it's		trivial)	represent	the	parts	of	the	source	text	that	are
largely	insignificant	for	normal	understanding	of	the	code.	For	example;	whitespace,
comments,	and	even	conflict	markers.	Trivia	is	not	stored	in	the	AST	(to	keep	it	lightweight).
However	it	can	be	fetched	on	demand	using	a	few		ts.*		APIs.

Before	we	show	them	you	need	to	understand	the	following:

Trivia	Ownership

In	General:

A	token	owns	any	trivia	after	it	on	the	same	line	upto	the	next	token.
Any	comment	after	that	line	is	associated	with	the	following	token.

For	leading	and	ending	comments	in	a	file:

The	first	token	in	the	source	file	gets	all	the	initial	trivia.
The	last	sequence	of	trivia	in	the	file	is	tacked	onto	the	end-of-file	token,	which
otherwise	has	zero	width.

Trivia	APIs

For	most	basic	uses,	comments	are	the	"interesting"	trivia.	The	comments	that	belong	to	a
Node	can	be	fetched	through	the	following	functions:

Function Description

	ts.getLeadingCommentRanges	

Given	the	source	text	and	position	within	that	text,
returns	ranges	of	comments	between	the	first	line
break	following	the	given	position	and	the	token	itself
(probably	most	useful	with		ts.Node.getFullStart).

	ts.getTrailingCommentRanges	

Given	the	source	text	and	position	within	that	text,
returns	ranges	of	comments	until	the	first	line	break
following	the	given	position	(probably	most	useful	with
	ts.Node.getEnd).

As	an	example,	imagine	this	portion	of	a	source	file:

debugger;/*hello*/

				//bye

		/*hi*/				function

Trivia

293

	getLeadingCommentRanges		for	the		function		will	only	return	the	last	2	comments		//bye		and
	/*hi*/	.

Appropriately,	calling		getTrailingCommentRanges		on	the	end	of	the	debugger	statement	will
extract	the		/*hello*/		comment.

Token	Start/Full	Start

Nodes	have	what	is	called	a	"token	start"	and	a	"full	start".

Token	Start:	the	more	natural	version,	which	is	the	position	in	file	where	the	text	of	a
token	begins
Full	Start:	the	point	at	which	the	scanner	began	scanning	since	the	last	significant	token

AST	nodes	have	an	API	for		getStart		and		getFullStart	.	In	the	following	example:

debugger;/*hello*/

				//bye

		/*hi*/				function

for		function		the	token	start	is	at		function		whereas	full	start	is	at		/*hello*/	.	Note	that	full
start	even	includes	the	trivia	that	would	otherwise	be	owned	by	the	previous	node.

Trivia

294

Scanner
The	source	code	for	the	TypeScript	scanner	is	located	entirely	in		scanner.ts	.	Scanner	is
controlled	internally	by	the		Parser		to	convert	the	source	code	to	an	AST.	Here	is	what	the
desired	outcome	is.

SourceCode	~~	scanner	~~>	Token	Stream	~~	parser	~~>	AST

Usage	by	Parser

There	is	a	singleton		scanner		created	in		parser.ts		to	avoid	the	cost	of	creating	scanners
over	and	over	again.	This	scanner	is	then	primed	by	the	parser	on	demand	using	the
	initializeState		function.

Here	is	a	simplied	version	of	the	actual	code	in	the	parser	that	you	can	run	demonstrating
this	concept:

	code/compiler/scanner/runScanner.ts	

import	*	as	ts	from	"ntypescript";

//	TypeScript	has	a	singelton	scanner

const	scanner	=	ts.createScanner(ts.ScriptTarget.Latest,	/*skipTrivia*/	true);

//	That	is	initialized	using	a	function	`initializeState`	similar	to

function	initializeState(text:	string)	{

				scanner.setText(text);

				scanner.setOnError((message:	ts.DiagnosticMessage,	length:	number)	=>	{

								console.error(message);

				});

				scanner.setScriptTarget(ts.ScriptTarget.ES5);

				scanner.setLanguageVariant(ts.LanguageVariant.Standard);

}

//	Sample	usage

initializeState(`

var	foo	=	123;

`.trim());

//	Start	the	scanning

var	token	=	scanner.scan();

while	(token	!=	ts.SyntaxKind.EndOfFileToken)	{

				console.log(ts.formatSyntaxKind(token));

				token	=	scanner.scan();

}

Scanner

295

This	will	print	out	the	following	:

VarKeyword

Identifier

FirstAssignment

FirstLiteralToken

SemicolonToken

Scanner	State

After	you	call		scan		the	scanner	updates	its	local	state	(position	in	the	scan,	current	token
details	etc).	The	scanner	provides	a	bunch	of	utility	functions	to	get	the	current	scanner
state.	In	the	below	sample	we	create	a	scanner	and	then	use	it	to	identify	the	tokens	as	well
as	their	positions	in	the	code.

	code/compiler/scanner/runScannerWithPosition.ts	

//	Sample	usage

initializeState(`

var	foo	=	123;

`.trim());

//	Start	the	scanning

var	token	=	scanner.scan();

while	(token	!=	ts.SyntaxKind.EndOfFileToken)	{

				let	currentToken	=	ts.formatSyntaxKind(token);

				let	tokenStart	=	scanner.getStartPos();

				token	=	scanner.scan();

				let	tokenEnd	=	scanner.getStartPos();

				console.log(currentToken,	tokenStart,	tokenEnd);

}

This	will	print	out	the	following:

VarKeyword	0	3

Identifier	3	7

FirstAssignment	7	9

FirstLiteralToken	9	13

SemicolonToken	13	14

Standalone	scanner

Even	though	the	typescript	parser	has	a	singleton	scanner	you	can	create	a	standalone
scanner	using		createScanner		and	use	its		setText	/	setTextPos		to	scan	at	different	points	in
a	file	for	your	amusement.

Scanner

296

Scanner

297

Parser
The	sourcecode	for	the	TypeScript	parser	is	located	entirely	in		parser.ts	.	Scanner	is
controlled	internally	by	the		Parser		to	convert	the	source	code	to	an	AST.	Here	is	a	review
of	what	the	desired	outcome	is.

SourceCode	~~	scanner	~~>	Token	Stream	~~	parser	~~>	AST

The	parser	is	implemented	as	a	singleton	(similar	reasons	to		scanner	,	don't	want	to
recreate	it	if	we	can	reinit	it).	It	is	actually	implemented	as		namespace	Parser		which	contains
state	variables	for	the	Parser	as	well	as	a	singleton		scanner	.	As	mentioned	before	it
contains	a		const	scanner	.	The	parser	functions	manage	this	scanner.

Usage	by	program

Parser	is	driven	indirectly	by	Program	(indirectly	as	its	actually	by		CompilerHost		which	we
mentioned	previously).	Basically	this	is	the	simplified	call	stack:

Program	->

				CompilerHost.getSourceFile	->

								(global	function	parser.ts).createSourceFile	->

												Parser.parseSourceFile

The		parseSourceFile		not	only	primes	the	state	for	the	Parser	but	also	primes	the	state	for
the		scanner		by	calling		initializeState	.	It	then	goes	on	to	parse	the	source	file	using
	parseSourceFileWorker	.

Sample	Usage

Before	we	dig	too	deep	into	the	parser	internals,	here	is	a	sample	code	that	uses	the
TypeScript's	parser	to	get	the	AST	of	a	source	file	(using		ts.createSourceFile),	and	then
print	it.

	code/compiler/parser/runParser.ts	

Parser

298

import	*	as	ts	from	"ntypescript";

function	printAllChildren(node:	ts.Node,	depth	=	0)	{

				console.log(new	Array(depth	+	1).join('----'),	ts.formatSyntaxKind(node.kind),	nod

e.pos,	node.end);

				depth++;

				node.getChildren().forEach(c=>	printAllChildren(c,	depth));

}

var	sourceCode	=	`

var	foo	=	123;

`.trim();

var	sourceFile	=	ts.createSourceFile('foo.ts',	sourceCode,	ts.ScriptTarget.ES5,	true);

printAllChildren(sourceFile);

This	will	print	out	the	following:

SourceFile	0	14

----	SyntaxList	0	14

--------	VariableStatement	0	14

------------	VariableDeclarationList	0	13

----------------	VarKeyword	0	3

----------------	SyntaxList	3	13

--------------------	VariableDeclaration	3	13

------------------------	Identifier	3	7

------------------------	FirstAssignment	7	9

------------------------	FirstLiteralToken	9	13

------------	SemicolonToken	13	14

----	EndOfFileToken	14	14

This	looks	like	a	(very	right	sided)	tree	if	you	tilt	your	head	to	the	left.

Parser

299

Parser	Functions

As	mentioned		parseSourceFile		sets	up	the	initial	state	and	passes	the	work	onto
	parseSourceFileWorker		function.

	parseSourceFileWorker	

Starts	by	creating	a		SourceFile		AST	node.	Then	it	goes	into	parsing	source	code	starting
from	the		parseStatements		function.	Once	that	returns,	it	then	completes	the		SourceFile	
node	with	additional	information	such	as	its		nodeCount	,		identifierCount		and	such.

	parseStatements	

One	of	the	most	significant		parseFoo		style	functions	(a	concept	we	cover	next).	It	switches
by	the	the	current		token		returned	from	the	scanner.	E.g.	if	the	current	token	is	a
	SemicolonToken		it	will	call	out	to		parseEmptyStatement		to	create	an	AST	node	for	an	empty
statement.

Node	creation

The	parser	has	a	bunch	of		parserFoo		functions	with	bodies	that	create		Foo		nodes.	These
are	generally	called	(from	other	parser	functions)	at	a	time	where	a		Foo		node	is	expected.
A	typical	sample	of	this	process	is	the		parseEmptyStatement()		function	which	is	used	to
parse	out	empty	statements	like		;;;;;;	.	Here	is	the	function	in	its	entirety

function	parseEmptyStatement():	Statement	{

				let	node	=	<Statement>createNode(SyntaxKind.EmptyStatement);

				parseExpected(SyntaxKind.SemicolonToken);

				return	finishNode(node);

}

It	shows	three	critical	functions		createNode	,		parseExpected		and		finishNode	.

	createNode	

The	parser's		createNode		function		function	createNode(kind:	SyntaxKind,	pos?:	number):
Node		is	responsible	for	creating	a	Node,	setting	up	its		SyntaxKind		as	passed	in,	and	set	the
initial	position	if	passed	in	(or	use	the	position	from	the	current	scanner	state).

	parseExpected	

Parser	Functions

300

The	parser's		parseExpected		function		function	parseExpected(kind:	SyntaxKind,
diagnosticMessage?:	DiagnosticMessage):	boolean		will	check	that	the	current	token	in	the
parser	state	matches	the	desired		SyntaxKind	.	If	not	it	will	either	report	the
	diagnosticMessage		sent	in	or	create	a	generic	one	of	the	form		foo	expected	.	It	internally
uses	the		parseErrorAtPosition		function	(which	uses	the	scanning	positions)	to	give	good
error	reporting.

	finishNode	

The	parser's		finishNode		function		function	finishNode<T	extends	Node>(node:	T,	end?:
number):	T		sets	up	the		end		position	for	the	node	and	additional	useful	stuff	like	the
	parserContextFlags		it	was	parsed	under	as	well	as	if	there	were	any	errors	before	parsing
this	node	(if	there	were	then	we	cannot	reuse	this	AST	node	in	incremental	parsing).

Parser	Functions

301

Binder
Most	JavaScript	transpilers	out	there	are	simpler	than	TypeScript	because	they	provide	little
in	the	way	of	code	analysis.	The	typical	JavaScript	transpilers	only	have	the	following	flow:

SourceCode	~~Scanner~~>	Tokens	~~Parser~~>	AST	~~Emitter~~>	JavaScript

While	the	above	architecture	is	true	as	a	simplified	understand	of	TypeScript	js	generation,	a
key	feature	of	TypeScript	is	its	Semantic	system.	In	order	to	assist	type	checking	(performed
by		checker),	the		binder		(in		binder.ts)	is	used	to	connect	the	various	parts	of	the	source
code	into	a	coherent	type	system	that	can	then	be	used	by	the		checker	.	The	main
responsibility	of	the	binder	is	to	create	the	Symbols.

Symbol

Symbols	connect	declaration	nodes	in	the	AST	to	other	declarations	contributing	to	the
same	entity.	Symbols	are	the	basic	building	block	of	the	Semantic	system.	The	symbol
constructor	is	defined	in		core.ts		(and		binder		actually	uses	the
	objectAllocator.getSymbolConstructor		to	get	its	hands	on	it).	Here	is	the	constructor:

function	Symbol(flags:	SymbolFlags,	name:	string)	{

				this.flags	=	flags;

				this.name	=	name;

				this.declarations	=	undefined;

}

	SymbolFlags		is	a	flag	enum	and	is	really	used	to	identify	additional	classifications	of	the
symbol	(e.g	the	scope	of	a	variable	flags		FunctionScopedVariable		or		BlockScopedVariable	
or	others)

Usage	by	Checker

The		binder		is	actually	used	internally	by	the	type		checker		which	in	turn	is	used	by	the
	program	.	The	simplified	call	stack	looks	like:

Binder

302

program.getTypeChecker	->

				ts.createTypeChecker	(in	checker)->

								initializeTypeChecker	(in	checker)	->

												for	each	SourceFile	`ts.bindSourceFile`	(in	binder)

												//	followed	by

												for	each	SourceFile	`ts.mergeSymbolTable`	(in	checker)

The	unit	of	work	for	the	binder	is	a	SourceFile.	The		binder.ts		is	driven	by		checker.ts	.

Binder

303

Binder	function

Two	critical	binder	functions	are		bindSourceFile		and		mergeSymbolTable	.	We	will	take	a	look
at	these	next.

	bindSourceFile	

Basically	checks	if	the		file.locals		is	defined,	if	not	it	hands	over	to	(a	local	function)
	bind	.

Note:		locals		is	defined	on		Node		and	is	of	type		SymbolTable	.	Note	that		SourceFile		is	also
a		Node		(in	fact	a	root	node	in	the	AST).

TIP:	local	functions	are	used	heavily	within	the	TypeScript	compiler.	A	local	function	very
likely	uses	variables	from	the	parent	function	(captured	by	closure).	In	the	case	of		bind		(a
local	function	within		bindSourceFile)	it	(or	function	it	calls)	will	setup	the		symbolCount		and
	classifiableNames		among	others,	that	are	then	stored	on	the	returned		SourceFile	.

	bind	

Bind	takes	any		Node		(not	just		SourceFile).	First	thing	it	does	is	assign	the		node.parent		(if
	parent		variable	has	been	setup	...	which	again	is	something	the	binder	does	during	its
processing	within	the		bindChildren		function),	then	hands	off	to		bindWorker		which	does	the
heavy	lifting.	Finally	it	calls		bindChildren		(a	function	that	simply	stores	the	binder	state	e.g.
current		parent		within	its	function	local	vars,	then	calls		bind		on	each	child,	and	then
restores	the	binder	state).	Now	let's	look	at		bindWorker		which	is	the	more	interesting
function.

	bindWorker	

This	function	switches	on		node.kind		(of	type		SyntaxKind)	and	delegates	work	to	the
appropriate		bindFoo		function	(also	defined	within		binder.ts).	For	example	if	the		node		is	a
	SourceFile		it	calls	(eventually	and	only	if	its	an	external	file	module)
	bindAnonymousDeclaration	

	bindFoo		functions

There	are	few	pattern	common	to		bindFoo		functions	as	well	as	some	utility	functions	that
these	use.	One	function	that	is	almost	always	used	is	the		createSymbol		function.	It	is
presented	in	its	entirety	below:

Binder	Functions

304

function	createSymbol(flags:	SymbolFlags,	name:	string):	Symbol	{

				symbolCount++;

				return	new	Symbol(flags,	name);

}

As	you	can	see	it	is	simply	keeping	the		symbolCount		(a	local	to		bindSourceFile)	up	to	date
and	creating	the	symbol	with	the	specified	parameters.

Binder	Functions

305

Symbols	and	Declarations

Linking	between	a		node		and	a		symbol		is	performed	by	a	few	functions.	One	function	that
is	used	to	bind	the		SourceFile		node	to	the	source	file	Symbol	(in	case	of	an	external
module)	is	the		addDeclarationToSymbol		function

Note	:	the		Symbol		for	an	external	module	source	file	is	setup	as		flags	:
SymbolFlags.ValueModule		and		name:	'"'	+	removeFileExtension(file.fileName)	+	'"').

function	addDeclarationToSymbol(symbol:	Symbol,	node:	Declaration,	symbolFlags:	Symbol

Flags)	{

				symbol.flags	|=	symbolFlags;

				node.symbol	=	symbol;

				if	(!symbol.declarations)	{

								symbol.declarations	=	[];

				}

				symbol.declarations.push(node);

				if	(symbolFlags	&	SymbolFlags.HasExports	&&	!symbol.exports)	{

								symbol.exports	=	{};

				}

				if	(symbolFlags	&	SymbolFlags.HasMembers	&&	!symbol.members)	{

								symbol.members	=	{};

				}

				if	(symbolFlags	&	SymbolFlags.Value	&&	!symbol.valueDeclaration)	{

								symbol.valueDeclaration	=	node;

				}

}

The	important	linking	portions:

Creates	a	link	to	the	Symbol	from	the	AST	node	(node.symbol).
Adds	the	node	as	one	of	the	declarations	of	the	Symbol	(symbol.declarations).

Declaration

Declaration	is	just	a		node		with	an	optional	name.	In		types.ts	

interface	Declaration	extends	Node	{

				_declarationBrand:	any;

				name?:	DeclarationName;

}

Binder	Declarations

306

Binder	Declarations

307

Container

An	AST	node	can	be	a	container.	This	determines	the	kinds	of		SymbolTables		the	Node	and
associated	Symbol	will	have.	Container	is	an	abstract	concept	(i.e.	has	no	associated	data
structure).	The	concept	is	driven	by	a	few	things,	one	being	the		ContainerFlags		enum.	The
function		getContainerFlags		(in		binder.ts)	drives	this	flag	and	is	presented	below:

function	getContainerFlags(node:	Node):	ContainerFlags	{

				switch	(node.kind)	{

								case	SyntaxKind.ClassExpression:

								case	SyntaxKind.ClassDeclaration:

								case	SyntaxKind.InterfaceDeclaration:

								case	SyntaxKind.EnumDeclaration:

								case	SyntaxKind.TypeLiteral:

								case	SyntaxKind.ObjectLiteralExpression:

												return	ContainerFlags.IsContainer;

								case	SyntaxKind.CallSignature:

								case	SyntaxKind.ConstructSignature:

								case	SyntaxKind.IndexSignature:

								case	SyntaxKind.MethodDeclaration:

								case	SyntaxKind.MethodSignature:

								case	SyntaxKind.FunctionDeclaration:

								case	SyntaxKind.Constructor:

								case	SyntaxKind.GetAccessor:

								case	SyntaxKind.SetAccessor:

								case	SyntaxKind.FunctionType:

								case	SyntaxKind.ConstructorType:

								case	SyntaxKind.FunctionExpression:

								case	SyntaxKind.ArrowFunction:

								case	SyntaxKind.ModuleDeclaration:

								case	SyntaxKind.SourceFile:

								case	SyntaxKind.TypeAliasDeclaration:

												return	ContainerFlags.IsContainerWithLocals;

								case	SyntaxKind.CatchClause:

								case	SyntaxKind.ForStatement:

								case	SyntaxKind.ForInStatement:

								case	SyntaxKind.ForOfStatement:

								case	SyntaxKind.CaseBlock:

												return	ContainerFlags.IsBlockScopedContainer;

								case	SyntaxKind.Block:

												//	do	not	treat	blocks	directly	inside	a	function	as	a	block-scoped-contai

ner.

												//	Locals	that	reside	in	this	block	should	go	to	the	function	locals.	Othe

wise	'x'

												//	would	not	appear	to	be	a	redeclaration	of	a	block	scoped	local	in	the	f

ollowing

Binder	Container

308

												//	example:

												//

												//						function	foo()	{

												//										var	x;

												//										let	x;

												//						}

												//

												//	If	we	placed	'var	x'	into	the	function	locals	and	'let	x'	into	the	loca

ls	of

												//	the	block,	then	there	would	be	no	collision.

												//

												//	By	not	creating	a	new	block-scoped-container	here,	we	ensure	that	both	

'var	x'

												//	and	'let	x'	go	into	the	Function-container's	locals,	and	we	do	get	a	co

llision

												//	conflict.

												return	isFunctionLike(node.parent)	?	ContainerFlags.None	:	ContainerFlags.

IsBlockScopedContainer;

				}

				return	ContainerFlags.None;

}

It	is	only	invoked	from	the	binder's		bindChildren		function	which	sets	up	a	node	as	a
	container		and/or	a		blockScopedContainer		depending	upon	the	evaluation	of	the
	getContainerFlags		function.	The	function		bindChildren		is	presented	below:

//	All	container	nodes	are	kept	on	a	linked	list	in	declaration	order.	This	list	is	us

ed	by

//	the	getLocalNameOfContainer	function	in	the	type	checker	to	validate	that	the	local

	name

//	used	for	a	container	is	unique.

function	bindChildren(node:	Node)	{

				//	Before	we	recurse	into	a	node's	chilren,	we	first	save	the	existing	parent,	con

tainer

				//	and	block-container.		Then	after	we	pop	out	of	processing	the	children,	we	rest

ore

				//	these	saved	values.

				let	saveParent	=	parent;

				let	saveContainer	=	container;

				let	savedBlockScopeContainer	=	blockScopeContainer;

				//	This	node	will	now	be	set	as	the	parent	of	all	of	its	children	as	we	recurse	in

to	them.

				parent	=	node;

				//	Depending	on	what	kind	of	node	this	is,	we	may	have	to	adjust	the	current	conta

iner

				//	and	block-container.			If	the	current	node	is	a	container,	then	it	is	automatic

ally

				//	considered	the	current	block-container	as	well.		Also,	for	containers	that	we	k

Binder	Container

309

now

				//	may	contain	locals,	we	proactively	initialize	the	.locals	field.	We	do	this	bec

ause

				//	it's	highly	likely	that	the	.locals	will	be	needed	to	place	some	child	in	(for	

example,

				//	a	parameter,	or	variable	declaration).

				//

				//	However,	we	do	not	proactively	create	the	.locals	for	block-containers	because	

it's

				//	totally	normal	and	common	for	block-containers	to	never	actually	have	a	block-s

coped

				//	variable	in	them.		We	don't	want	to	end	up	allocating	an	object	for	every	'bloc

k'	we

				//	run	into	when	most	of	them	won't	be	necessary.

				//

				//	Finally,	if	this	is	a	block-container,	then	we	clear	out	any	existing	.locals	o

bject

				//	it	may	contain	within	it.		This	happens	in	incremental	scenarios.		Because	we	c

an	be

				//	reusing	a	node	from	a	previous	compilation,	that	node	may	have	had	'locals'	cre

ated

				//	for	it.		We	must	clear	this	so	we	don't	accidently	move	any	stale	data	forward	

from

				//	a	previous	compilation.

				let	containerFlags	=	getContainerFlags(node);

				if	(containerFlags	&	ContainerFlags.IsContainer)	{

								container	=	blockScopeContainer	=	node;

								if	(containerFlags	&	ContainerFlags.HasLocals)	{

												container.locals	=	{};

								}

								addToContainerChain(container);

				}

				else	if	(containerFlags	&	ContainerFlags.IsBlockScopedContainer)	{

								blockScopeContainer	=	node;

								blockScopeContainer.locals	=	undefined;

				}

				forEachChild(node,	bind);

				container	=	saveContainer;

				parent	=	saveParent;

				blockScopeContainer	=	savedBlockScopeContainer;

}

As	you	might	recall	from	section	on	binder	functions	:		bindChildren		is	called	from	the		bind	
function.	So	we	have	the	recursive	binding	setup	:		bind		calls		bindChildren		calls		bind		for
each	child.

Binder	Container

310

Binder	Container

311

SymbolTable

SymbolTable	is	implemented	as	a	simple	HashMap.	Here	is	the	interface	(types.ts):

interface	SymbolTable	{

				[index:	string]:	Symbol;

}

SymbolTables	are	initialized	by	binding.	There	are	a	few	SymbolTables	used	by	the
compiler:

On		Node	:

locals?:	SymbolTable;																			//	Locals	associated	with	node

On		Symbol	:

members?:	SymbolTable;																		//	Class,	interface	or	literal	instance	members

exports?:	SymbolTable;																		//	Module	exports

Note:	We	saw		locals		getting	initialized	(to		{})	by		bindChildren		based	on
	ContainerFlags	.

SymbolTable	population

SymbolTables	are	populated	with		Symbols		primarily	by	a	call	to		declareSymbol	.	This
function	is	presented	below	in	entirety:

/**

	*	Declares	a	Symbol	for	the	node	and	adds	it	to	symbols.	Reports	errors	for	conflicti

ng	identifier	names.

	*	@param	symbolTable	-	The	symbol	table	which	node	will	be	added	to.

	*	@param	parent	-	node's	parent	declaration.

	*	@param	node	-	The	declaration	to	be	added	to	the	symbol	table

	*	@param	includes	-	The	SymbolFlags	that	node	has	in	addition	to	its	declaration	type

	(eg:	export,	ambient,	etc.)

	*	@param	excludes	-	The	flags	which	node	cannot	be	declared	alongside	in	a	symbol	tab

le.	Used	to	report	forbidden	declarations.

	*/

function	declareSymbol(symbolTable:	SymbolTable,	parent:	Symbol,	node:	Declaration,	in

cludes:	SymbolFlags,	excludes:	SymbolFlags):	Symbol	{

				Debug.assert(!hasDynamicName(node));

Binder	SymbolTable

312

				//	The	exported	symbol	for	an	export	default	function/class	node	is	always	named	"

default"

				let	name	=	node.flags	&	NodeFlags.Default	&&	parent	?	"default"	:	getDeclarationNa

me(node);

				let	symbol:	Symbol;

				if	(name	!==	undefined)	{

								//	Check	and	see	if	the	symbol	table	already	has	a	symbol	with	this	name.		If	

not,

								//	create	a	new	symbol	with	this	name	and	add	it	to	the	table.		Note	that	we	d

on't

								//	give	the	new	symbol	any	flags	*yet*.		This	ensures	that	it	will	not	conflict

								//	with	the	'excludes'	flags	we	pass	in.

								//

								//	If	we	do	get	an	existing	symbol,	see	if	it	conflicts	with	the	new	symbol	we

're

								//	creating.		For	example,	a	'var'	symbol	and	a	'class'	symbol	will	conflict	w

ithin

								//	the	same	symbol	table.		If	we	have	a	conflict,	report	the	issue	on	each

								//	declaration	we	have	for	this	symbol,	and	then	create	a	new	symbol	for	this

								//	declaration.

								//

								//	If	we	created	a	new	symbol,	either	because	we	didn't	have	a	symbol	with	thi

s	name

								//	in	the	symbol	table,	or	we	conflicted	with	an	existing	symbol,	then	just	ad

d	this

								//	node	as	the	sole	declaration	of	the	new	symbol.

								//

								//	Otherwise,	we'll	be	merging	into	a	compatible	existing	symbol	(for	example	

when

								//	you	have	multiple	'vars'	with	the	same	name	in	the	same	container).		In	thi

s	case

								//	just	add	this	node	into	the	declarations	list	of	the	symbol.

								symbol	=	hasProperty(symbolTable,	name)

												?	symbolTable[name]

												:	(symbolTable[name]	=	createSymbol(SymbolFlags.None,	name));

								if	(name	&&	(includes	&	SymbolFlags.Classifiable))	{

												classifiableNames[name]	=	name;

								}

								if	(symbol.flags	&	excludes)	{

												if	(node.name)	{

																node.name.parent	=	node;

												}

												//	Report	errors	every	position	with	duplicate	declaration

												//	Report	errors	on	previous	encountered	declarations

												let	message	=	symbol.flags	&	SymbolFlags.BlockScopedVariable

																?	Diagnostics.Cannot_redeclare_block_scoped_variable_0

Binder	SymbolTable

313

																:	Diagnostics.Duplicate_identifier_0;

												forEach(symbol.declarations,	declaration	=>	{

																file.bindDiagnostics.push(createDiagnosticForNode(declaration.name	||	

declaration,	message,	getDisplayName(declaration)));

												});

												file.bindDiagnostics.push(createDiagnosticForNode(node.name	||	node,	messa

ge,	getDisplayName(node)));

												symbol	=	createSymbol(SymbolFlags.None,	name);

								}

				}

				else	{

								symbol	=	createSymbol(SymbolFlags.None,	"__missing");

				}

				addDeclarationToSymbol(symbol,	node,	includes);

				symbol.parent	=	parent;

				return	symbol;

}

Which	SymbolTable	is	populated	is	driven	by	the	first	argument	to	this	function.	e.g.	when
adding	a	declaration	to	a	container	of	kind		SyntaxKind.ClassDeclaration		or
	SyntaxKind.ClassExpression		the	function		declareClassMember		will	get	called	which	has	the
following	code:

function	declareClassMember(node:	Declaration,	symbolFlags:	SymbolFlags,	symbolExclude

s:	SymbolFlags)	{

				return	node.flags	&	NodeFlags.Static

								?	declareSymbol(container.symbol.exports,	container.symbol,	node,	symbolFlags,

	symbolExcludes)

								:	declareSymbol(container.symbol.members,	container.symbol,	node,	symbolFlags,

	symbolExcludes);

}

Binder	SymbolTable

314

Binder	Error	Reporting

Binding	errors	are	added	to	the	sourceFile's	list	of		bindDiagnostics	.

An	example	error	detected	during	binding	is	the	use	of		eval		or		arguments		as	a	variable
name	in		use	strict		scenario.	The	relevant	code	is	presented	in	its	entirety	below
(checkStrictModeEvalOrArguments		is	called	from	multiple	places,	call	stacks	originating	from
	bindWorker		which	calls	different	functions	for	different	node		SyntaxKind):

function	checkStrictModeEvalOrArguments(contextNode:	Node,	name:	Node)	{

				if	(name	&&	name.kind	===	SyntaxKind.Identifier)	{

								let	identifier	=	<Identifier>name;

								if	(isEvalOrArgumentsIdentifier(identifier))	{

												//	We	check	first	if	the	name	is	inside	class	declaration	or	class	express

ion;	if	so	give	explicit	message

												//	otherwise	report	generic	error	message.

												let	span	=	getErrorSpanForNode(file,	name);

												file.bindDiagnostics.push(createFileDiagnostic(file,	span.start,	span.leng

th,

																getStrictModeEvalOrArgumentsMessage(contextNode),	identifier.text));

								}

				}

}

function	isEvalOrArgumentsIdentifier(node:	Node):	boolean	{

				return	node.kind	===	SyntaxKind.Identifier	&&

								((<Identifier>node).text	===	"eval"	||	(<Identifier>node).text	===	"arguments"

);

}

function	getStrictModeEvalOrArgumentsMessage(node:	Node)	{

				//	Provide	specialized	messages	to	help	the	user	understand	why	we	think	they're	in

				//	strict	mode.

				if	(getContainingClass(node))	{

								return	Diagnostics.Invalid_use_of_0_Class_definitions_are_automatically_in_str

ict_mode;

				}

				if	(file.externalModuleIndicator)	{

								return	Diagnostics.Invalid_use_of_0_Modules_are_automatically_in_strict_mode;

				}

				return	Diagnostics.Invalid_use_of_0_in_strict_mode;

}

Binder	Error	Reporting

315

Binder	Error	Reporting

316

Checker
Like	we	mentioned	before	checker	is	the	thing	that	makes	TypeScript	uniquely	more
powerful	than	just	another	JavaScript	transpiler.	The	checker	is	located	in		checker.ts		and
at	this	moment	it	is	23k+	lines	of	TypeScript	(largest	part	of	the	compiler).

Usage	by	Program

The		checker		is	initialized	by		program	.	The	following	is	a	sampling	of	the	call	stack	(we
showed	the	same	one	when	looking	at		binder):

program.getTypeChecker	->

				ts.createTypeChecker	(in	checker)->

								initializeTypeChecker	(in	checker)	->

												for	each	SourceFile	`ts.bindSourceFile`	(in	binder)

												//	followed	by

												for	each	SourceFile	`ts.mergeSymbolTable`	(in	checker)

Association	with	Emitter

True	type	checking	happens	once	a	call	is	made	to		getDiagnostics	.	This	function	is	called
e.g.	once	a	request	is	made	to		Program.emit	,	in	which	case	the	checker	returns	an
	EmitResolver		(progarm	calls	the	checkers		getEmitResolver		function)	which	is	just	a	set	of
functions	local	to		createTypeChecker	.	We	will	mention	this	again	when	we	look	at	the
emitter.

Here	is	the	call	stack	right	down	to		checkSourceFile		(a	function	local	to		createTypeChecker).

program.emit	->

				emitWorker	(program	local)	->

								createTypeChecker.getEmitResolver	->

												//	First	call	the	following	functions	local	to	createTypeChecker

												call	getDiagnostics	->

																getDiagnosticsWorker	->

																				checkSourceFile

												//	then

												return	resolver

												(already	initialized	in	createTypeChecker	using	a	call	to	local	createReso

lver())

Checker

317

Checker

318

Global	Namespace	Merging

Within		initializeTypeChecker		the	following	code	exists:

//	Initialize	global	symbol	table

forEach(host.getSourceFiles(),	file	=>	{

				if	(!isExternalModule(file))	{

								mergeSymbolTable(globals,	file.locals);

				}

});

Which	basically	merges	all	the		global		symbols	into	the		let	globals:	SymbolTable	=	{};		(in
	createTypeChecker)	SymbolTable.		mergeSymbolTable		primarily	calls		mergeSymbol	.

Checker	Diagnostics

319

Checker	error	reporting

The	checker	uses	the	local		error		function	to	report	errors.	Here	is	the	function:

function	error(location:	Node,	message:	DiagnosticMessage,	arg0?:	any,	arg1?:	any,	arg

2?:	any):	void	{

				let	diagnostic	=	location

								?	createDiagnosticForNode(location,	message,	arg0,	arg1,	arg2)

								:	createCompilerDiagnostic(message,	arg0,	arg1,	arg2);

				diagnostics.add(diagnostic);

}

Checker	Error	Reporting

320

Emitter
There	are	two		emitters		provided	with	the	TypeScript	compiler:

	emitter.ts	:	this	is	the	emitter	you	are	most	likely	to	be	interested	in.	Its	the	TS	->
JavaScript	emitter.
	declarationEmitter.ts	:	this	is	the	emitter	used	to	create	a	declaration	file	(a		.d.ts)
for	a	TypeScript	source	file	(a		.ts		file).

We	will	look	at		emitter.ts		in	this	section.

Usage	by		program	

Program	provides	an		emit		function.	This	function	primarily	delegates	to		emitFiles	
function	in		emitter.ts	.	Here	is	the	call	stack:

Program.emit	->

				`emitWorker`	(local	in	program.ts	createProgram)	->

								`emitFiles`	(function	in	emitter.ts)

One	thing	that	the		emitWorker		provides	to	the	emitter	(via	an	argument	to		emitFiles)	is	an
	EmitResolver	.		EmitResolver		is	provided	by	the	program's	TypeChecker,	basically	it	a
subset	of	local	functions	from		createChecker	.

Emitter

321

	emitFiles	

Defined	in		emitter.ts		here	is	the	function	signature:

//	targetSourceFile	is	when	users	only	want	one	file	in	entire	project	to	be	emitted.	

This	is	used	in	compileOnSave	feature

export	function	emitFiles(resolver:	EmitResolver,	host:	EmitHost,	targetSourceFile?:	S

ourceFile):	EmitResult	{

	EmitHost		is	a	just	a	simplified	(as	in	narrowed	down)	version	of		CompilerHost		(and	is	at
runtime	actually	a		CompilerHost		for	many	use	cases).

The	most	interesting	call	stack	from		emitFiles		is	the	following:

emitFiles	->

				emitFile(jsFilePath,	targetSourceFile)	->

								emitJavaScript(jsFilePath,	targetSourceFile);

	emitJavaScript	

There	is	a	lot	of	good	comments	in	this	function	so	we	present	it	below	:

function	emitJavaScript(jsFilePath:	string,	root?:	SourceFile)	{

				let	writer	=	createTextWriter(newLine);

				let	write	=	writer.write;

				let	writeTextOfNode	=	writer.writeTextOfNode;

				let	writeLine	=	writer.writeLine;

				let	increaseIndent	=	writer.increaseIndent;

				let	decreaseIndent	=	writer.decreaseIndent;

				let	currentSourceFile:	SourceFile;

				//	name	of	an	exporter	function	if	file	is	a	System	external	module

				//	System.register([...],	function	(<exporter>)	{...})

				//	exporting	in	System	modules	looks	like:

				//	export	var	x;	...	x	=	1

				//	=>

				//	var	x;...	exporter("x",	x	=	1)

				let	exportFunctionForFile:	string;

				let	generatedNameSet:	Map<string>	=	{};

				let	nodeToGeneratedName:	string[]	=	[];

				let	computedPropertyNamesToGeneratedNames:	string[];

				let	extendsEmitted	=	false;

				let	decorateEmitted	=	false;

				let	paramEmitted	=	false;

Emitter	Functions

322

				let	awaiterEmitted	=	false;

				let	tempFlags	=	0;

				let	tempVariables:	Identifier[];

				let	tempParameters:	Identifier[];

				let	externalImports:	(ImportDeclaration	|	ImportEqualsDeclaration	|	ExportDeclarat

ion)[];

				let	exportSpecifiers:	Map<ExportSpecifier[]>;

				let	exportEquals:	ExportAssignment;

				let	hasExportStars:	boolean;

				/**	Write	emitted	output	to	disk	*/

				let	writeEmittedFiles	=	writeJavaScriptFile;

				let	detachedCommentsInfo:	{	nodePos:	number;	detachedCommentEndPos:	number	}[];

				let	writeComment	=	writeCommentRange;

				/**	Emit	a	node	*/

				let	emit	=	emitNodeWithoutSourceMap;

				/**	Called	just	before	starting	emit	of	a	node	*/

				let	emitStart	=	function	(node:	Node)	{	};

				/**	Called	once	the	emit	of	the	node	is	done	*/

				let	emitEnd	=	function	(node:	Node)	{	};

				/**	Emit	the	text	for	the	given	token	that	comes	after	startPos

						*	This	by	default	writes	the	text	provided	with	the	given	tokenKind

						*	but	if	optional	emitFn	callback	is	provided	the	text	is	emitted	using	the	call

back	instead	of	default	text

						*	@param	tokenKind	the	kind	of	the	token	to	search	and	emit

						*	@param	startPos	the	position	in	the	source	to	start	searching	for	the	token

						*	@param	emitFn	if	given	will	be	invoked	to	emit	the	text	instead	of	actual	toke

n	emit	*/

				let	emitToken	=	emitTokenText;

				/**	Called	to	before	starting	the	lexical	scopes	as	in	function/class	in	the	emitt

ed	code	because	of	node

						*	@param	scopeDeclaration	node	that	starts	the	lexical	scope

						*	@param	scopeName	Optional	name	of	this	scope	instead	of	deducing	one	from	the	

declaration	node	*/

				let	scopeEmitStart	=	function(scopeDeclaration:	Node,	scopeName?:	string)	{	};

				/**	Called	after	coming	out	of	the	scope	*/

				let	scopeEmitEnd	=	function()	{	};

				/**	Sourcemap	data	that	will	get	encoded	*/

				let	sourceMapData:	SourceMapData;

				if	(compilerOptions.sourceMap	||	compilerOptions.inlineSourceMap)	{

								initializeEmitterWithSourceMaps();

				}

Emitter	Functions

323

				if	(root)	{

								//	Do	not	call	emit	directly.	It	does	not	set	the	currentSourceFile.

								emitSourceFile(root);

				}

				else	{

								forEach(host.getSourceFiles(),	sourceFile	=>	{

												if	(!isExternalModuleOrDeclarationFile(sourceFile))	{

																emitSourceFile(sourceFile);

												}

								});

				}

				writeLine();

				writeEmittedFiles(writer.getText(),	/*writeByteOrderMark*/	compilerOptions.emitBOM

);

				return;

				///	BUNCH	OF	LOCAL	FUNCTIONS

}

Basically	it	sets	up	a	bunch	of	locals	(these	function	form	the	bulk	of		emitter.ts)	and	then
hands	off	to	a	local	function		emitSourceFile		which	kicks	off	the	emit.	The		emitSourceFile	
function	just	sets	up	the		currentSourceFile		and	in	turn	hands	off	to	a	local		emit		function.

function	emitSourceFile(sourceFile:	SourceFile):	void	{

				currentSourceFile	=	sourceFile;

				exportFunctionForFile	=	undefined;

				emit(sourceFile);

}

The		emit		function	handles	comment	emit	+	actual	JavaScript	emit.	The	actual	JavaScript
emit	is	the	job	of		emitJavaScriptWorker		function.

	emitJavaScriptWorker	

The	complete	function:

function	emitJavaScriptWorker(node:	Node)	{

				//	Check	if	the	node	can	be	emitted	regardless	of	the	ScriptTarget

				switch	(node.kind)	{

								case	SyntaxKind.Identifier:

												return	emitIdentifier(<Identifier>node);

								case	SyntaxKind.Parameter:

												return	emitParameter(<ParameterDeclaration>node);

								case	SyntaxKind.MethodDeclaration:

								case	SyntaxKind.MethodSignature:

												return	emitMethod(<MethodDeclaration>node);

								case	SyntaxKind.GetAccessor:

Emitter	Functions

324

								case	SyntaxKind.SetAccessor:

												return	emitAccessor(<AccessorDeclaration>node);

								case	SyntaxKind.ThisKeyword:

												return	emitThis(node);

								case	SyntaxKind.SuperKeyword:

												return	emitSuper(node);

								case	SyntaxKind.NullKeyword:

												return	write("null");

								case	SyntaxKind.TrueKeyword:

												return	write("true");

								case	SyntaxKind.FalseKeyword:

												return	write("false");

								case	SyntaxKind.NumericLiteral:

								case	SyntaxKind.StringLiteral:

								case	SyntaxKind.RegularExpressionLiteral:

								case	SyntaxKind.NoSubstitutionTemplateLiteral:

								case	SyntaxKind.TemplateHead:

								case	SyntaxKind.TemplateMiddle:

								case	SyntaxKind.TemplateTail:

												return	emitLiteral(<LiteralExpression>node);

								case	SyntaxKind.TemplateExpression:

												return	emitTemplateExpression(<TemplateExpression>node);

								case	SyntaxKind.TemplateSpan:

												return	emitTemplateSpan(<TemplateSpan>node);

								case	SyntaxKind.JsxElement:

								case	SyntaxKind.JsxSelfClosingElement:

												return	emitJsxElement(<JsxElement|JsxSelfClosingElement>node);

								case	SyntaxKind.JsxText:

												return	emitJsxText(<JsxText>node);

								case	SyntaxKind.JsxExpression:

												return	emitJsxExpression(<JsxExpression>node);

								case	SyntaxKind.QualifiedName:

												return	emitQualifiedName(<QualifiedName>node);

								case	SyntaxKind.ObjectBindingPattern:

												return	emitObjectBindingPattern(<BindingPattern>node);

								case	SyntaxKind.ArrayBindingPattern:

												return	emitArrayBindingPattern(<BindingPattern>node);

								case	SyntaxKind.BindingElement:

												return	emitBindingElement(<BindingElement>node);

								case	SyntaxKind.ArrayLiteralExpression:

												return	emitArrayLiteral(<ArrayLiteralExpression>node);

								case	SyntaxKind.ObjectLiteralExpression:

												return	emitObjectLiteral(<ObjectLiteralExpression>node);

								case	SyntaxKind.PropertyAssignment:

												return	emitPropertyAssignment(<PropertyDeclaration>node);

								case	SyntaxKind.ShorthandPropertyAssignment:

												return	emitShorthandPropertyAssignment(<ShorthandPropertyAssignment>node);

								case	SyntaxKind.ComputedPropertyName:

												return	emitComputedPropertyName(<ComputedPropertyName>node);

								case	SyntaxKind.PropertyAccessExpression:

												return	emitPropertyAccess(<PropertyAccessExpression>node);

								case	SyntaxKind.ElementAccessExpression:

												return	emitIndexedAccess(<ElementAccessExpression>node);

Emitter	Functions

325

								case	SyntaxKind.CallExpression:

												return	emitCallExpression(<CallExpression>node);

								case	SyntaxKind.NewExpression:

												return	emitNewExpression(<NewExpression>node);

								case	SyntaxKind.TaggedTemplateExpression:

												return	emitTaggedTemplateExpression(<TaggedTemplateExpression>node);

								case	SyntaxKind.TypeAssertionExpression:

												return	emit((<TypeAssertion>node).expression);

								case	SyntaxKind.AsExpression:

												return	emit((<AsExpression>node).expression);

								case	SyntaxKind.ParenthesizedExpression:

												return	emitParenExpression(<ParenthesizedExpression>node);

								case	SyntaxKind.FunctionDeclaration:

								case	SyntaxKind.FunctionExpression:

								case	SyntaxKind.ArrowFunction:

												return	emitFunctionDeclaration(<FunctionLikeDeclaration>node);

								case	SyntaxKind.DeleteExpression:

												return	emitDeleteExpression(<DeleteExpression>node);

								case	SyntaxKind.TypeOfExpression:

												return	emitTypeOfExpression(<TypeOfExpression>node);

								case	SyntaxKind.VoidExpression:

												return	emitVoidExpression(<VoidExpression>node);

								case	SyntaxKind.AwaitExpression:

												return	emitAwaitExpression(<AwaitExpression>node);

								case	SyntaxKind.PrefixUnaryExpression:

												return	emitPrefixUnaryExpression(<PrefixUnaryExpression>node);

								case	SyntaxKind.PostfixUnaryExpression:

												return	emitPostfixUnaryExpression(<PostfixUnaryExpression>node);

								case	SyntaxKind.BinaryExpression:

												return	emitBinaryExpression(<BinaryExpression>node);

								case	SyntaxKind.ConditionalExpression:

												return	emitConditionalExpression(<ConditionalExpression>node);

								case	SyntaxKind.SpreadElementExpression:

												return	emitSpreadElementExpression(<SpreadElementExpression>node);

								case	SyntaxKind.YieldExpression:

												return	emitYieldExpression(<YieldExpression>node);

								case	SyntaxKind.OmittedExpression:

												return;

								case	SyntaxKind.Block:

								case	SyntaxKind.ModuleBlock:

												return	emitBlock(<Block>node);

								case	SyntaxKind.VariableStatement:

												return	emitVariableStatement(<VariableStatement>node);

								case	SyntaxKind.EmptyStatement:

												return	write(";");

								case	SyntaxKind.ExpressionStatement:

												return	emitExpressionStatement(<ExpressionStatement>node);

								case	SyntaxKind.IfStatement:

												return	emitIfStatement(<IfStatement>node);

								case	SyntaxKind.DoStatement:

												return	emitDoStatement(<DoStatement>node);

								case	SyntaxKind.WhileStatement:

												return	emitWhileStatement(<WhileStatement>node);

Emitter	Functions

326

								case	SyntaxKind.ForStatement:

												return	emitForStatement(<ForStatement>node);

								case	SyntaxKind.ForOfStatement:

								case	SyntaxKind.ForInStatement:

												return	emitForInOrForOfStatement(<ForInStatement>node);

								case	SyntaxKind.ContinueStatement:

								case	SyntaxKind.BreakStatement:

												return	emitBreakOrContinueStatement(<BreakOrContinueStatement>node);

								case	SyntaxKind.ReturnStatement:

												return	emitReturnStatement(<ReturnStatement>node);

								case	SyntaxKind.WithStatement:

												return	emitWithStatement(<WithStatement>node);

								case	SyntaxKind.SwitchStatement:

												return	emitSwitchStatement(<SwitchStatement>node);

								case	SyntaxKind.CaseClause:

								case	SyntaxKind.DefaultClause:

												return	emitCaseOrDefaultClause(<CaseOrDefaultClause>node);

								case	SyntaxKind.LabeledStatement:

												return	emitLabelledStatement(<LabeledStatement>node);

								case	SyntaxKind.ThrowStatement:

												return	emitThrowStatement(<ThrowStatement>node);

								case	SyntaxKind.TryStatement:

												return	emitTryStatement(<TryStatement>node);

								case	SyntaxKind.CatchClause:

												return	emitCatchClause(<CatchClause>node);

								case	SyntaxKind.DebuggerStatement:

												return	emitDebuggerStatement(node);

								case	SyntaxKind.VariableDeclaration:

												return	emitVariableDeclaration(<VariableDeclaration>node);

								case	SyntaxKind.ClassExpression:

												return	emitClassExpression(<ClassExpression>node);

								case	SyntaxKind.ClassDeclaration:

												return	emitClassDeclaration(<ClassDeclaration>node);

								case	SyntaxKind.InterfaceDeclaration:

												return	emitInterfaceDeclaration(<InterfaceDeclaration>node);

								case	SyntaxKind.EnumDeclaration:

												return	emitEnumDeclaration(<EnumDeclaration>node);

								case	SyntaxKind.EnumMember:

												return	emitEnumMember(<EnumMember>node);

								case	SyntaxKind.ModuleDeclaration:

												return	emitModuleDeclaration(<ModuleDeclaration>node);

								case	SyntaxKind.ImportDeclaration:

												return	emitImportDeclaration(<ImportDeclaration>node);

								case	SyntaxKind.ImportEqualsDeclaration:

												return	emitImportEqualsDeclaration(<ImportEqualsDeclaration>node);

								case	SyntaxKind.ExportDeclaration:

												return	emitExportDeclaration(<ExportDeclaration>node);

								case	SyntaxKind.ExportAssignment:

												return	emitExportAssignment(<ExportAssignment>node);

								case	SyntaxKind.SourceFile:

												return	emitSourceFileNode(<SourceFile>node);

				}

}

Emitter	Functions

327

Recursion	is	done	by	simply	calling	other		emitFoo		function	from	these	functions	as	needed
e.g.	from		emitFunctionDeclaration		:

function	emitFunctionDeclaration(node:	FunctionLikeDeclaration)	{

				if	(nodeIsMissing(node.body))	{

								return	emitOnlyPinnedOrTripleSlashComments(node);

				}

				if	(node.kind	!==	SyntaxKind.MethodDeclaration	&&	node.kind	!==	SyntaxKind.MethodS

ignature)	{

								//	Methods	will	emit	the	comments	as	part	of	emitting	method	declaration

								emitLeadingComments(node);

				}

				//	For	targeting	below	es6,	emit	functions-like	declaration	including	arrow	functi

on	using	function	keyword.

				//	When	targeting	ES6,	emit	arrow	function	natively	in	ES6	by	omitting	function	ke

yword	and	using	fat	arrow	instead

				if	(!shouldEmitAsArrowFunction(node))	{

								if	(isES6ExportedDeclaration(node))	{

												write("export	");

												if	(node.flags	&	NodeFlags.Default)	{

																write("default	");

												}

								}

								write("function");

								if	(languageVersion	>=	ScriptTarget.ES6	&&	node.asteriskToken)	{

												write("*");

								}

								write("	");

				}

				if	(shouldEmitFunctionName(node))	{

								emitDeclarationName(node);

				}

				emitSignatureAndBody(node);

				if	(languageVersion	<	ScriptTarget.ES6	&&	node.kind	===	SyntaxKind.FunctionDeclara

tion	&&	node.parent	===	currentSourceFile	&&	node.name)	{

								emitExportMemberAssignments((<FunctionDeclaration>node).name);

				}

				if	(node.kind	!==	SyntaxKind.MethodDeclaration	&&	node.kind	!==	SyntaxKind.MethodS

ignature)	{

								emitTrailingComments(node);

				}

}

Emitter	Functions

328

Emitter	Functions

329

Emitter	SourceMaps

We	said	that	the	bulk	of	the		emitter.ts		is	the	local	function		emitJavaScript		(we	showed
the	initialization	routine	of	this	function	before).	It	basically	sets	up	a	bunch	of	locals	and	hits
off	to		emitSourceFile	.	The	following	is	a	revisiting	of	the	function,	this	time	focusing	on
	SourceMap		stuff:

function	emitJavaScript(jsFilePath:	string,	root?:	SourceFile)	{

				//	STUFF	removed

				let	writeComment	=	writeCommentRange;

				/**	Write	emitted	output	to	disk	*/

				let	writeEmittedFiles	=	writeJavaScriptFile;

				/**	Emit	a	node	*/

				let	emit	=	emitNodeWithoutSourceMap;

				/**	Called	just	before	starting	emit	of	a	node	*/

				let	emitStart	=	function	(node:	Node)	{	};

				/**	Called	once	the	emit	of	the	node	is	done	*/

				let	emitEnd	=	function	(node:	Node)	{	};

				/**	Emit	the	text	for	the	given	token	that	comes	after	startPos

						*	This	by	default	writes	the	text	provided	with	the	given	tokenKind

						*	but	if	optional	emitFn	callback	is	provided	the	text	is	emitted	using	the	call

back	instead	of	default	text

						*	@param	tokenKind	the	kind	of	the	token	to	search	and	emit

						*	@param	startPos	the	position	in	the	source	to	start	searching	for	the	token

						*	@param	emitFn	if	given	will	be	invoked	to	emit	the	text	instead	of	actual	toke

n	emit	*/

				let	emitToken	=	emitTokenText;

				/**	Called	to	before	starting	the	lexical	scopes	as	in	function/class	in	the	emitt

ed	code	because	of	node

						*	@param	scopeDeclaration	node	that	starts	the	lexical	scope

						*	@param	scopeName	Optional	name	of	this	scope	instead	of	deducing	one	from	the	

declaration	node	*/

				let	scopeEmitStart	=	function(scopeDeclaration:	Node,	scopeName?:	string)	{	};

				/**	Called	after	coming	out	of	the	scope	*/

				let	scopeEmitEnd	=	function()	{	};

				/**	Sourcemap	data	that	will	get	encoded	*/

				let	sourceMapData:	SourceMapData;

				if	(compilerOptions.sourceMap	||	compilerOptions.inlineSourceMap)	{

Emitter	SourceMaps

330

								initializeEmitterWithSourceMaps();

				}

				if	(root)	{

								//	Do	not	call	emit	directly.	It	does	not	set	the	currentSourceFile.

								emitSourceFile(root);

				}

				else	{

								forEach(host.getSourceFiles(),	sourceFile	=>	{

												if	(!isExternalModuleOrDeclarationFile(sourceFile))	{

																emitSourceFile(sourceFile);

												}

								});

				}

				writeLine();

				writeEmittedFiles(writer.getText(),	/*writeByteOrderMark*/	compilerOptions.emitBOM

);

				return;

				///	BUNCH	OF	LOCAL	FUNCTIONS

The	important	function	call	here	:		initializeEmitterWithSourceMaps		which	is	a	function	local
to		emitJavaScript		that	overrides	some	locals	that	were	already	defined	here.	At	the	bottom
of		initializeEmitterWithSourceMaps		you	will	notice	the	overriding:

				//	end	of	`initializeEmitterWithSourceMaps`

				writeEmittedFiles	=	writeJavaScriptAndSourceMapFile;

				emit	=	emitNodeWithSourceMap;

				emitStart	=	recordEmitNodeStartSpan;

				emitEnd	=	recordEmitNodeEndSpan;

				emitToken	=	writeTextWithSpanRecord;

				scopeEmitStart	=	recordScopeNameOfNode;

				scopeEmitEnd	=	recordScopeNameEnd;

				writeComment	=	writeCommentRangeWithMap;

This	means	that	the	bulk	of	emitter	code	can	not	care	about		SourceMap		and	just	use	these
local	functions	the	same	way	with	or	without	SourceMaps.

Emitter	SourceMaps

331

Contributing
TypeScript	is	OSS	and	on	GitHub	and	the	team	welcomes	community	input.

Setup

Super	easy:

git	clone	https://github.com/Microsoft/TypeScript.git

cd	TypeScript

npm	install	-g	jake

npm	install

Setup	Fork

You	would	obviously	need	to	setup	Microsoft/TypeScript	as	an		upstream		remote	and	your
own	fork	(use	the	GitHub	fork	button)	as		origin	:

git	remote	rm	origin

git	remote	rm	upstream

git	remote	add	upstream	https://github.com/Microsoft/TypeScript.git

git	remote	add	origin	https://github.com/basarat/TypeScript.git

Additionally	I	like	to	work	off	branches	like		bas/		to	have	it	show	up	cleaner	in	the	branch
listings.

Running	Tests

There	are	lots	of		test		and		build		options	in	their	JakeFile.	You	can	run	all	tests	with		jake
runtests	

Baselines

Baselines	are	used	to	manage	if	there	are	any	changes	in	the	expected	output	of	the
TypeScript	compiler.	Baselines	are	located	in		tests/baselines	.

Reference	(expected)	baselines:		tests/baselines/reference	
Generated	(in	this	test	run)	baselines	:		tests/baselines/local		(this	folder	is	in
.gitignore)

Contributing

332

https://github.com/Microsoft/TypeScript

If	there	are	any	differences	between	these	folders	tests	will	fail.	You	can	diff	the	two
folders	with	tools	like	BeyondCompare	or	KDiff3.

If	you	think	these	changes	in	generated	files	are	valid	then	accept	baselines	using		jake
baseline-accept	.	The	changes	to		reference		baselines	will	now	show	as	a	git	diff	you	can
commit.

Note	that	if	you	don't	run	all	tests	then	use		jake	baseline-accept[soft]		which	will	only
copy	over	the	new	files	and	not	delete	the	whole		reference		directory.

Test	Categories

There	are	different	categories	for	different	scenarios	and	even	different	test	infrastructures.
Here	are	a	few	of	these	explained.

Compiler	Tests

These	ensure	that	compiling	a	file	:

generates	errors	as	expected
generated	JS	as	expected
types	are	identified	as	expected
symbols	are	identified	as	expected

These	expectations	are	validated	using	the	baselines	infrastructure.

Creating	a	Compiler	Test

Test	can	be	created	by	adding	a	new	file		yourtest.ts		to		tests/cases/compiler	.	As	soon	as
you	do	so	and	run	the	tests	you	should	get	baseline	failure.	Accept	these	baselines	(to	get
them	to	show	up	in	git),	and	tweak	them	to	be	what	you	expect	them	to	be	...	now	get	the
tests	to	pass.

Run	all	of	these	in	isolation	using		jake	runtests	tests=compiler	,	or	just	your	new	file	using
	jake	runtests	tests=compiler/yourtest	

I	will	even	often	do		jake	runtests	tests=compiler/yourtest	||	jake	baseline-accept[soft]	
and	get	the	diff	in		git	.

Debugging	Tests

	jake	runtests-browser	tests=theNameOfYourTest		and	debugging	in-browser	usually	works
pretty	well.

Contributing

333

More

An	article	by	Remo	:	https://dev.to/remojansen/learn-how-to-contribute-to-the-typescript-
compiler-on-github-through-a-real-world-example-4df0	

Contributing

334

https://dev.to/remojansen/learn-how-to-contribute-to-the-typescript-compiler-on-github-through-a-real-world-example-4df0

	Introduction
	Getting Started
	Why TypeScript

	JavaScript
	Equality
	References
	Null vs. Undefined
	this
	Closure
	Number

	Future JavaScript Now
	Classes
	Classes Emit

	Arrow Functions
	Rest Parameters
	let
	const
	Destructuring
	Spread Operator
	for...of
	Iterators
	Template Strings
	Promise
	Generators
	Async Await

	Project
	Compilation Context
	tsconfig.json
	Which Files?

	Declaration Spaces
	Modules
	File Module Details
	globals.d.ts

	Namespaces
	Dynamic Import Expressions

	Node.js QuickStart
	Browser QuickStart
	TypeScript's Type System
	JS Migration Guide
	@types
	Ambient Declarations
	Declaration Files
	Variables

	Interfaces
	Enums
	lib.d.ts
	Functions
	Callable
	Type Assertion
	Freshness
	Type Guard
	Literal Types
	Readonly
	Generics
	Type Inference
	Type Compatibility
	Never Type
	Discriminated Unions
	Index Signatures
	Moving Types
	Exception Handling
	Mixins

	JSX
	Options
	noImplicitAny
	strictNullChecks

	Testing
	Jest

	TIPs
	String Based Enums
	Nominal Typing
	Stateful Functions
	Bind is Bad
	Currying
	Type Instantiation
	Lazy Object Literal Initialization
	Classes are Useful
	Avoid Export Default
	Limit Property Setters
	null is bad
	outFile caution
	JQuery tips
	static constructors
	singleton pattern
	Function parameters
	Truthy
	Build Toggles
	Barrel
	Create Arrays
	Typesafe Event Emitter

	StyleGuide
	Common Errors
	TypeScript Compiler Internals
	Program
	AST
	TIP: Visit Children
	TIP: SyntaxKind enum
	Trivia

	Scanner
	Parser
	Parser Functions

	Binder
	Binder Functions
	Binder Declarations
	Binder Container
	Binder SymbolTable
	Binder Error Reporting

	Checker
	Checker Diagnostics
	Checker Error Reporting

	Emitter
	Emitter Functions
	Emitter SourceMaps

	Contributing

