
www.allitebooks.com

http://www.allitebooks.org

Mastering React

Master the art of building modern web applications
using React

Adam Horton

Ryan Vice

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Mastering React

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: February 2016

Production reference: 1170216

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78355-856-8

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Authors
Adam Horton

Ryan Vice

Reviewer
Tung Dao

Commissioning Editor
Veena Pagare

Acquisition Editor
Kirk D'costa

Content Development Editor
Rashmi Suvarna

Technical Editor
Vivek Pala

Copy Editor
Neha Vyas

Project Coordinator
Judie Jose

Proofreader
Safis Editing

Indexer
Mariammal Chettiyar

Graphics
Disha Haria

Production Coordinator
Nilesh Mohite

Cover Work
Nilesh Mohite

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Foreword

We've all heard the old phrase, "Don't reinvent the wheel."

On the surface, I understand the wisdom of this ancient idiom, especially in the
way it relates to software craftsmanship. Programmers are expected to always
work within known patterns and get it shipped as fast as possible. We have so
many words in software engineering to disparage the act of seemingly needless
experimentation and rework—stop yak shaving, bikeshedding, gold plating,
tinkering, configuring, fiddling, experimenting, reworking, or creating special
snowflake architectures. Also, we have heard "stop chasing waterfalls and stick to
the rivers and lakes that you're used to." Indeed, the noblest of software developers
proudly stand on the shoulders of giants by implementing best practices and
established standards. By contrast, the epitome of software self-indulgence is a shop
with Not Invented Here Syndrome. Stick to the plan, stay focused, stop wasting time,
and do what we already know works.

If ever a community of software developers rejected the total adoption of this
worldview, it is the serious practitioners of JavaScript. The constantly moving
target of browser capability, the never-ending inflow of developers with varied
backgrounds, and the ever-evolving standards of JavaScript itself conspire to forge
an expectation of mutability in the stack.

Reinvention is commonplace and always has been. When interacting with the DOM
on a browser was problematic, a target for reinvention was set. Sizzle, jQuery, and
eventually the native implementation, querySelectorAll, were born of a fundamental
dissatisfaction with existing standards. From the ashes of the best practice of XML,
JSON ascended as the dominant standard for web communication. Download a
JavaScript framework today, and it could be using any number of patterns. Look
upon the wheels of varying shapes and sizes: MVVM, MVC, MVW, MVP, Chain
of Responsibility, PubSub, Event-Driven, Declarative, Functional, Object-Oriented,
Modules, Prototypes. There is no one true way to architect a program. Furthermore,
even a cursory glance at the world of preprocessors, such as CoffeeScript, LiveScript,
Babel, Typescript, and ArnoldC, proves that developers are feverishly reinventing
even JavaScript itself. Nothing is sacred, and perhaps that is why JavaScript has
progressed so rapidly.

www.allitebooks.com

http://www.allitebooks.org

I remember the first time I learned about React. I was attending a fairly well-known
conference in San Francisco, and during lunch, I had the fortune of sitting next to
some developers from Facebook and Khan Academy, who made for some lively
conversation. At the time, the most popular tools were Ember, Backbone, and—of
course—Angular (there were something to the tune of thirty talks on that topic at the
conference). We began to discuss the pros and cons of the existing tooling, and some
of the difficulties, we felt, were because of the prevailing opinions on how to abstract
a web application. It was then that the person sitting next to me said, "Perhaps
you should join the React family," and he invited me to see his one and only talk
that day. Of course, I went. It ended up being the most valuable (and at the time,
controversial) presentation I attended.

This lunchtime conversationalist, who had introduced himself as Pete Hunt, turned
out to be a core contributor to a new way of thinking about web applications. I
attended his talk and knew immediately that I was looking upon the next great
reinvention of the wheel in JavaScript. Normal two-way data binding techniques
were eschewed for a clearer one-way data flow, and the standard MVC pattern of
application organization had been rethought and re-forged into actions, stores, and
dispatchers. However, the most interesting and radical feature of React was its way
of dealing with the troublesome DOM—completely and unapologetically rebuilding
it from the ground up in JavaScript.

If you've picked up this book, you are already interested in the future of JavaScript.
This recurring theme of reinvention has been more relevant than ever in the last few
years. React, ES6, modern build systems, scaffolding, and many more are the new
tools populating the JavaScript landscape. This book is important because it teaches
React alongside this modern ecosystem. After reading this book, you'll understand
the principles needed to plan, design, and, ultimately, write a real application.

I can think of no better teacher for this exciting journey into the frontier of
application design than Adam. I first met him when I was a student and have
since had the pleasure of seeing him speak at Thunder Plains, a conference focused
on the latest and greatest in the world of web development. He presented a
whimsical collection of his personal projects, such as a lander game-based midpoint
displacement and a completely rebuilt 3D ray casting engine in vanilla JavaScript.

Adam is a unique flavor of programmer. He works like a scientist, tinkerer, and
craftsman. He is neither afraid to rebuild an existing system to better understand it,
nor is he afraid to experiment in new ways to seek better ways of achieving his goals.
When navigating these exciting new happenings in the world of JavaScript, you need
a guide that encourages critical thinking, exploration, and discovery.

www.allitebooks.com

http://www.allitebooks.org

Your other guide is Ryan Vice, who has, over the years, thrice held the title of
Microsoft MVP, published books on enterprise architecture, spoken frequently at
industry events, and worked in the battle-hardened trenches of software development.
More importantly though, Ryan created his own shop, Vice Software LLC, that puts
React at the center of their webstack to solve their problems. His real-world experience
in production of React projects qualifies him as an excellent teacher to help you on
your way to building your own applications on the bleeding-edge of the web.

Reinventing the wheel is necessary. If you disagree, then I challenge you to attach to
your car the first wheels ever invented. Stick to your convictions and roll mirthfully
along the highway propelled by cumbersome stone disks. I will be dreaming of
flying cars and betting on JavaScript.

Jesse Harlin

http://jesseharlin.net/

JavaScript Architect and Community Leader

www.allitebooks.com

http://jesseharlin.net/
http://www.allitebooks.org

About the Authors

Adam Horton is an avid retro gamer as well as a creator, destroyer, and rebuilder
of all things Web, computing, and gaming. He started his career as a firmware
developer for the high-end Superdome server division at Hewlett Packard. There, the
JavaScript and C he wrought directed the power, cooling, health, and configuration
of those behemoth devices. Since then, he has been a web developer for PayPal,
utilizing cross-domain JavaScript techniques with an emphasis on user identity.
Lately, at ESO Solutions, he's a lead JavaScript developer for next-generation, pre-
hospital electronic health record (EHR) field collection applications.

Adam believes in an inclusive, ubiquitous, and open Web. He values pragmatism
and practice over dogma in the design and implementation of computing
applications and education.

I'd like to thank my wife for her enduring patience and support. She
is the wind at my back that presses forward all of my endeavors,
including this book. I'd also like to thank my parents for constantly
fueling a stray rocket of a child while he tuned his guidance system.

Ryan Vice is the founder and chief architect of Vice Software, which specializes
in practical, tailored solutions for clients, whether they are looking to get their MVP
to market or modernize existing applications. On top of offering more competitive
prices across the board, Vice Software offers skill-based pricing, which means you
only pay architect rates when needed and pay much lower production rates for
simpler feature work. Ryan has also been awarded Microsoft's MVP award three
times, has published one other book on software architecture, and frequently speaks
at conferences and events in Texas. Additionally, Ryan is lucky enough to be married
to his wife, Heather, and spends most of his free time trying to keep up with their
three kids, Grace, Dylan, and Noah.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewer

Tung Dao is a full-stack developer with several years of experience building
websites and services.

Currently, he works as a software engineer at FPT Software, Vietnam, where he
builds RESTful web services involving NoSQL and Elasticsearch. In his free time, he
is busy building web apps in Clojure/Go or hacking his Raspberry Pi.

Nowadays, his front-end work is mostly done in ClojureScript/Reagent (React
binding in Clojure). Working over a binding did hide some of the great ideas in
React. This book is a refresher to him, as he works with the next generation of
JavaScript (ES6) and the re-explorer core React philosophy.

Many thanks to the authors and the staff at Packt Publishing for all
their hard work and support.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

[i]

Table of Contents
Preface vii
Chapter 1: Introduction to React 1

Hello React 1
JSX 6

How it works 6
Decompiling JSX 8
Structure of render result 9

props 11
How it works 12
propTypes 13
getDefaultProps 15

state 16
How it works 17

Summary 18
Chapter 2: Component Composition and Lifecycle 19

How to compose simple components 19
Composing components with behavior 21

How it works 23
Accessing a component's children 27
Component lifecycle - mounting and unmounting 32
Component lifecycle – updating events 35

How it works 38
Summary 41

Chapter 3: Dynamic Components, Mixins, Forms, and More JSX 43
Dynamic components 43

How it works 45
Mixins 47

How it works 49

Table of Contents

[ii]

Forms 51
Controlled components - the read-only input 51

How it works 52
Controlled components - the read and write input 52

How it works 53
Isn't that harder than it needs to be? 54

Controlled components – a simple form 55
How it works 57
But what about the best practices? 58
Refactoring the form to be data driven 59
How it works 60

Validation 60
Validation types 61
The react-validation-mixin example 62

Summary 75
Chapter 4: Anatomy of a React Application 77

What is a single-page application? 78
Three aspects of a SPA design 79

Build systems 80
Choosing a build system 81
Module systems 83

CSS preprocessors 85
Compiling the modern JS syntax and JSX templates 85
Front-end architecture components 86

The front-end router 87
Front-end models 87
Views, view models, and view controllers 88
Messaging and eventing 88
Other utility needs 88

The application design 89
Creating wireframes 90
Main data entities and the API 92
Main views, site map, and routes 93

Summary 94
Chapter 5: Starting a React Application 95

Application design 95
Creating wireframes 95

User-related views 96
Post-related views 98

Data entities 99
Main views and the sitemap 100

Preparing the development environment 101
Installing Node and its dependencies 101
Installing and configuring Webpack 103

Table of Contents

[iii]

The Webpack configuration 104
Considerations before starting 109

React and rendering 109
Starting the app 111

The directory structure 111
The mock database 112
index.html 112
js/app.jsx 113
Main views 115
Linking views with React Router 116

Summary 118
Chapter 6: React Blog App Part 1 – Actions and Common
Components 119

Reflux actions 120
Reusable components and base styles 121

Base styles 121
Inputs and loading indicator 125

The BasicInput component 125
The loader component 126

The application header 128
Summary 128

Chapter 7: React Blog App Part 2 – Users 129
Code manifest 130
Application runtime configuration 131
Mixins and dependencies 131

Reading and writing cookies 131
The form utilities mixin 132

User-related stores 135
The session context store 135
The user store 137

User views 139
The log in view 139
The create user view 141

Mixins and lifecycle methods 146
The user profile image 147
Form validation and submission 147

The user view component 149
The user list view 150
The user view 152

Other affected views 152
The app header 152

Summary 153

Table of Contents

[iv]

Chapter 8: React Blog App Part 3 – Posts 155
Code manifest 155
The posts store 156
Post views 158

Post create/edit 158
Mixins and lifecycle methods 163
Form submission 164

The post view 164
The post list component 169
The post list view 171

Other affected views 172
The user view 172

Summary 173
Chapter 9: React Blog App Part 4 – Infinite Scroll and Search 175

Infinite scroll loading 176
Infinite scroll code manifest 177
Modifying the posts store 177
Modifying the post list component 180

Searching posts 184
Search feature code manifest 184
The search store 185
Modifying the posts store 185
Modifying the application header 188
Modifying the post list component 190

Final thoughts 193
Suggested improvements 193

Level up the blog app 194
Moving forward 194

Chapter 10: Animation in React 195
Animation terms 196
CSS transitions using class switching 196

JavaScript code 197
CSS source 198

Animating DOM enter and exit 199
Popover menus 200
JavaScript source 200
CSS source 202
List filtering 205
JavaScript source 206
CSS source 209

Table of Contents

[v]

Using the React-Motion animation library 210
How React-Motion works 210
Clock animation 211
JavaScript source 211
CSS source 218

Summary 220
Index 221

[vii]

Preface
The book before you is a collaboration between myself—a web-focused, day-to-day
code slinger—and Ryan Vice—a veteran .NET expert turned web application Maven
and entrepreneur. I met Ryan at my current company while creating very complex web
applications for emergency response outfits, such as EMS. At that time, the company
was building a revolution of its flagship product. While it was still a very early time
for React, it offered something above and beyond all the current MV* frameworks: a
fresh approach to blazing-fast rendering. Since speed is paramount in the emergency
response industry, we embraced React. When an opportunity came along to write about
React, Ryan tapped me for assistance, and this book is the result of that.

It's great timing for a technology such as React. The open web platform has
succeeded because of a simple tenet: never break the Web. As a result, the DOM, the
in-browser data representation of a rendered web page, has grown to be enormous
and somewhat unwieldy. Every small touch on the DOM cascades into a flurry of
calculation and reconciliation in order to update pixels on the screen. React treats
the DOM as the expensive resource that it is and makes operations on the DOM
minimal. The time saved is better spent running your complex application logic.

In this book, you'll learn the fundamentals of React as well as a pragmatic approach
to making web applications. You'll also learn how to choose the right tools for your
needs. In the first three chapters, we'll start by thoroughly covering basic React
topics such as state, props, and JSX, as well as the more complex subject of forms
and validation. Chapter 4, Anatomy of a React Application, is something unique to a
book like this: a tour of web application anatomy and some design techniques that
can help you formulate a clear plan to build your apps. In chapters 5 through 9,
we'll build a multiuser blog application using the design techniques and supporting
libraries explored in the previous two chapters. Finally, in Chapter 10, Animation in
React, we'll have some fun by navigating through the many ways you can create cool
animations using React.

Preface

[viii]

What this book covers
Chapter 1, Introduction to React, explains the basics of React JS, starting with a
simple Hello World example and moving forward thru types of React entities
and their definitions.

Chapter 2, Component Composition and Lifecycle, explores nesting components and
managing their state as they come and go from the DOM.

Chapter 3, Dynamic Components, Mixins, Forms, and More JSX, explores React form
basics and patterns for validation in React.

Chapter 4, Anatomy of a React Application, teaches how to approach web application
design and how to choose from the vast menu of web technologies available within
the context of React being your primary choice. Practice technical design and learn
how to generate artifacts that guide development.

Chapter 5, Starting a React Application, begins with a fully featured React multiuser
blog application. Prepare a development environment. Install all of the tools. Scaffold
the application views.

Chapter 6, React Blog App Part 1 – Actions and Common Components, establishes a
application communication strategy using Reflux Actions. Here, we will create some
common components.

Chapter 7, React Blog App Part 2– Users, explains how to implement user account
management for our prototype application.

Chapter 8, React Blog App Part 3 – Posts, covers creating and viewing blog posts.

Chapter 9, React Blog App Part 4 – Infinite Scroll and Search, explains how to add two
features: infinite scroll loading and search.

Chapter 10, Animation in React, reveals web animation techniques in React.

Preface

[ix]

What you need for this book
All of the software used in this book is open source, so it's free to use. You'll need a
web browser (obviously) and the ability to install Node and npm. Some command-
line access will be needed. For the command-line tasks, Bash is recommended. It is
readily available for OSX and Linux as well as Windows through Git (git-bash). In
this book, we'll use Node 4.x and React 0.14.

Who this book is for
This book is focused on web professionals who already understand JavaScript, CSS,
and working in the web-browser environment. Previous experience with other web
application frameworks isn't required, but may help. Comfort with the command
line will also make things easier.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We then defined a second object literal that defines a componentWillMount method
that calls console.log and passes componentWillMount from ReactMixin2."

Blocks of code and inline code uses the following format:

var path = require('path')
, webpack = require('webpack')
;

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

 PostStore.getPostsByPage(
 this.state.page,
 Object.assign({}, this.state.search ? {q: this.state.search} :
{}, this.props)
).then(function (results) {
 var data = results.results;

www.allitebooks.com

http://www.allitebooks.org

Preface

[x]

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Click on
the OK button to see the output."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

About the code samples
The first three chapters in this book are a React primer. These chapters are example
driven and contain concise working examples of each concept which can be easily
run in an Internet connected browser. A similar format is used in Chapter 10,
Animation in React for the animation examples. The rest of the chapters with code
listings, 4 thru 9, are contained in ZIP files included with the book and obtained from
the Packt website.

Where to get the code samples
Each code sample in the first 3 chapters is hosted on Ryan's GitHub
(RyanAtViceSoftware) as a Gist (https://gist.github.com/RyanAtViceSoftware).
A Gist is a small Git repository that is meant to store only a few files and they are a
perfect fit for the kind of small example we will be looking at in the first three chapters.

Similarly, the Chapter 10, Animation in React animation examples can be found on
Adam's GitHub Gists (https://gist.github.com/digitalicarus).

How to run the code
After the first few examples, we will take advantage of the integration that exists
between JsFiddle (http://JsFiddle.net/), a JavaScript online sandbox, and
GitHub Gists. The integration allows for each Gist referenced in the text to be opened
as a "Fiddle" and run live in a browser. Below is a screen shot of a Fiddle.

https://gist.github.com/RyanAtViceSoftware
https://gist.github.com/digitalicarus
http://JsFiddle.net/

Preface

[xi]

Fiddle: http://j.mp/MasteringReact-1-2-1-Fiddle

As you can see, there are four sections to a JsFiddle:

1. HTML: The HTML markup that will be used to generate the result view.
2. CSS: The CSS markup that will be used to generate the result view.
3. Babel: The JavaScript that will be run in the result view. Note that Babel is a

JavaScript compiler will compile JSX to JavaScript.
4. Result: The results of linking the HTML to the CSS and JavaScript and

running them all together.

http://j.mp/MasteringReact-1-2-1-Fiddle

Preface

[xii]

I encourage you to open each fiddle as you follow along and run the fiddle by
clicking the Run button shown as follows:

Once you have opened a code sample, play around with the code a bit to make sure
you understand how everything works.

We will cover some of the basics of using JsFiddle as we go along
but would encourage you to take a look at the documentation if you
haven't used JsFiddle before (http://doc.jsfiddle.net/).

JsFiddle is designed to allow for experimenting with code and you will find it's
a great tool to allow for you to quickly learn the concepts presented here in an
interactive fashion.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

http://doc.jsfiddle.net/

Preface

[xiii]

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[xiv]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[1]

Introduction to React
This book is an advanced book on React but we wanted to provide a primer on the
basics so that this book could be both comprehensive and accessible. We will not
spend a lot of time on all of the subtleties of each technique that we will look at here.
We will instead look at concise samples that illustrate the tools and techniques that
we are covering. We will also have links to where you can easily access and run the
code samples as you follow along.

In this chapter, we will be covering the following concepts:

• About the code samples
• Hello World sample in React
• JSX
• props
• state

Hello React
For the first example we will create a fully working Hello World-style example using
React by undertaking the following steps:

1. Create a new HTML file and call it hello-react.html.
2. Paste the following code in hello-react.html:

<!DOCTYPE html>
<html>
<head lang="en">
 <meta charset="UTF-8">
 <title>Hello React</title>
 <script src="https://fb.me/react-with-addons-0.14.0.js">

Introduction to React

[2]

 </script>
 <script src="https://fb.me/react-dom-0.14.0.js">
 </script>
</head>
<body>

<script>
 var HelloReact = React.createClass({
 render: function() {
 return React.DOM.h1(null, 'Hello React');
 }
 });

 ReactDOM.render(React.createElement(HelloReact), document.
body);
</script>
</body>
</html>

3. Open HelloReactJs.html in a browser and you should see something
similar to the image that follows:

React is a component-based framework that allows creating composable view
components. The first thing that we have to do to be able to create a component in
React is to include the React source as shown below:

<script src="https://fb.me/react-with-addons-0.14.0.js"></script>
<script src="https://fb.me/react-dom-0.14.0.js"></script>

As of version 0.13.0, React splits its API into two files. Now, there is
one file that contains the browser-specific DOM code and another
file that contains the rest of React's API. This was done because
React is being used in more and more places and currently is used
by React Native to build mobile applications. It can also be used
to build Windows and Mac desktop applications using platforms
such as Electron..

Chapter 1

[3]

This will bring in version v0.14.0 of React, and then the code in the script block that
is shown in the following code creates a ReactElement parameter of type h1 and sets
children to be the string Hello React:

React.createElement('h1', null, 'Hello React');

We pass the ReactElement parameter that is created by this call as the first argument
to the ReactDOM.render() method shown as follows:

ReactDOM.render(
 React.createElement('h1', null, 'Hello React'),
 document.body);

React's render method is taking a ReactElement parameter as its first argument and
a document.body DOM element as its second argument. The render method will
then write the HTML generated by the first argument, the ReactElement, as a child
of the second argument, the document.body DOM element. You can see the results
in Chrome's Elements tab, as shown in the following screenshot:

Introduction to React

[4]

As you can see, we now have an h1 element in our DOM that contains the string
Hello React as a child.

However, you might be wondering how this is component based and you'd be right
in being skeptical as we haven't created a component yet. Components are one of the
things that really makes React a powerful and flexible framework so let's see what
our example looks like if we update it to create a component. To do this, update the
script in hello-react.html as shown in the following code, and refresh the browser
to verify that our program still works the same:

var HelloReact = React.createClass({
 render: function() {
 return React.DOM.h1(null, 'Hello React');
 }
 });

ReactDOM.render(React.createElement(HelloReact), document.body);

Now we are creating a HelloReact JavaScript variable and assigning it a newly
created React component that is created using the React.createClass() method as
shown below:

var HelloReact = React.createClass({
 render: function() {
 return React.DOM.h1(null, 'Hello React');
 }
 });

The createClass() method takes an object that must specify a render method. The
render method is responsible for returning a single ReactClass to be rendered. Here
we are creating a ReactClass that represents an h1 DOM element that contains the
string Hello React.

Chapter 1

[5]

Note that we are now using the React.DOM API to create our
h1 ReactElement instance. The React.DOM API provides
convenience methods for creating common HTML elements and
internally calls the React.createElement() method and passes
the needed parameters for us. It may seem odd that the React.
DOM part of the API was not moved to ReactDOM like ReactDOM.
Render. However, it appears that the React team has decided that
the HTML semantics and UI widgets are part of their universal
approach to building UIs, while the actual rendering is platform
specific. Here's an excerpt from the React documentation about the
restructuring.
"As we look at packages such as react-native, react-art, react-canvas,
and react-three, it has become clear that the beauty and essence of
React has nothing to do with browsers or the DOM.
To make this more clear and to make it easier to build more
environments that React can render, we're splitting the main React
package into two: react and react-dom. This paves the way to
writing components that can be shared between the Web version of
React and React Native. We don't expect all the code in an app to
be shared, but we want to be able to share the components that do
behave in the same manner across platforms.
The React package contains React.createElement,
.createClass, .Component, .PropTypes, .Children, and
the other helpers related to elements and component classes.
We think of these as isomorphic or universal helpers that you need
to build components."

As shown in the following code, we then call the React.render() method and pass
the results of calling React.createElement(HelloReact):

ReactDOM.render(React.createElement(HelloReact), document.body);

Now we've updated our code to create a React component and, as we will see, these
components will offer a lot of power and flexibility to our web applications.

Source code: http://bit.ly/MasteringReact-1-1-Gist

www.allitebooks.com

http://bit.ly/MasteringReact-1-1-Gist
http://www.allitebooks.org

Introduction to React

[6]

JSX
In order to make its component API easier to use, React has its own syntax called
JSX, which combines JavaScript and HTML. Let's take a look at updating our
sample code to use JSX by copying the following code into hello-react.html and
refreshing our browser:

<!DOCTYPE html>
<html>
<head lang="en">
 <meta charset="UTF-8">
 <title>Hello React</title>
 <script src="https://fb.me/react-with-addons-0.14.0.js"></script>
 <script src="https://fb.me/react-dom-0.14.0.js"></script>
 <script src="http://fb.me/JSXTransformer-0.13.1.js"></script>
</head>
<body>

<script>
 var HelloReact = React.createClass({
 render: function() {
 return React.DOM.h1(null, 'Hello React');
 }
 });

 ReactDOM.render(React.createElement(HelloReact), document.body);
</script>
</body>
</html>

Note that we are assigning a type of "text/jsx" to our script tag
in the preceding sample.

How it works
The first thing we had to do to make this work was to add a reference to the JSX
Transformer file shown in the following code:

<script src="http://fb.me/JSXTransformer-0.13.1.js"></script>

Chapter 1

[7]

Note that using an in browser transformer is only recommended
for testing. We will look into more appropriate ways to transform
the JSX code to JavaScript in later chapters. Also note that as of 0.14
React recommends using Babel for doing JSX transforms and has
deprecated it's JSX Transformer.

Next we updated our component creation code as shown below:

 var HelloReact = React.createClass({
 render: function() {
 return <h1>Hello React</h1>;
 }
 });

Now instead of calling into the React API to define our components DOM structure,
we just write the desired DOM structure inline within our return statement.

As we will see later, we can even reference other react components
as HTML elements!

And now we can just pass the HTML tag version of our component into the React.
render() method to have it rendered to the DOM:

 ReactDOM.render(<HelloReact />, document.body);

Notice how we no longer need to call React.createElement(). This is because the
JSX compiler will make the call for us.

Source code: http://j.mp/MasteringReact-1-2-Gist

Now that we have seen how to set up a page to host the React application, we will
start using JsFiddle to look at the examples. The example we just looked at is in the
fiddle (http://j.mp/MasteringReact-1-2-1-Fiddle).

http://j.mp/MasteringReact-1-2-Gist
http://j.mp/MasteringReact-1-2-1-Fiddle

Introduction to React

[8]

Follow that link and click the Run button to run the code. You should see the
following output:

Decompiling JSX
Babel has created a tool that allows seeing the decompiled JavaScript that would
be created during JSX transformation. The Babel tool is shown in the following
screenshot, and you can find the tool at https://babeljs.io/repl/:

https://babeljs.io/repl/

Chapter 1

[9]

The JSX Compiler has two code windows. The code window on the left is where
you can put JSX, and the results of compiling it to React's API is shown in the code
window on the right.

Structure of render result
There are a few things we should take note of about using JSX to create the
ReactElement parameter that you return from your component's render() method.
Let's say that we want to write Hello React code in two lines. You might be
tempted to structure your code like the code that follows:

var HelloMessage = React.createClass({
 render: function() {
 return <div>Hello React</div> // error
 <div>How are you?</div>;
 }
});

However, if we paste this code into the JSX Compiler we will see the following error:

Error: Parse Error: Line 1: Adjacent JSX elements must be wrapped in
an enclosing tag

Introduction to React

[10]

The error here is indicating that we need to wrap our JSX in a single root element
shown in the following code:

var HelloMessage = React.createClass({
 render: function() {
 return <div> // works
 <div>Hello React</div>
 <div>How are you?</div>
 </div>;
 }
});

If we paste this in the JSX compiler we won't see any errors and, instead, we will see
the compiled React API code as shown below:

var HelloMessage = React.createClass({displayName: "HelloMessage",
 render: function() {
 return React.createElement("div", null, " // works",
 React.createElement("div", null, "Hello React"),
 React.createElement("div", null, "How are you?")
);
 }
});

Source code: http://j.mp/MasteringReact-1-3-Gist

Looking at the code generated by the compiler we can see why our previous code
structure wouldn't work as our JavaScript return statement can only return a single
ReactElement. Because of this we have to return a single root node and can't return
multiple adjacent sibling nodes as the error pointed out. However, now that we have
added a root node, everything works and we can see in the compiled output that we
are creating a div that contains two <div> tags and returning a single ReactElement.

Now we might want to format our code better for readability and we could be
tempted to do something, as shown in the following code:

var HelloReact = React.createClass({
 render: function() {
 return {
 <div>
 <div>Hello React</div>
 <div>How are you?</div>
 </div>
};
 }
});

http://j.mp/MasteringReact-1-3-Gist

Chapter 1

[11]

This will not throw an error in the JSX Compiler but it will throw the runtime error
shown in the following code:

Uncaught Error: Invariant Violation: HelloReact.render(): A valid
ReactComponent must be returned. You may have returned undefined, an
array or some other invalid object.

Source code: http://j.mp/MasteringReact-1-4-Gist
Fiddle: http://j.mp/MasteringReact-1-4-Fiddle
You will need to open the developer tools in your browser and
look in the console output to see the error.

All is not lost though because simply wrapping our JSX in parenthesis will allow
us more flexibility when formatting our code. The following code sample uses
this approach and we will no longer get an error when we run it. I like using this
approach as it lets me keep my code nice and neatly formatted:

var HelloReact = React.createClass({
 render: function() {
 return (
 <div>
 <div>Hello React</div>
 <div>How are you?</div>
 </div>
);
 }
});

Source code: http://j.mp/MasteringReact-1-5-Gist
Fiddle: http://j.mp/MasteringReact-1-5-Fiddle

props
So far our components have not been configurable. Clearly we would want to be able
to define a component that can take arguments via the component's HTML element
attributes. The following code shows how we can do this:

var HelloReact = React.createClass({
 render: function() {
 return (
 <div>
 <div>Hello React</div>

http://j.mp/MasteringReact-1-4-Gist
http://j.mp/MasteringReact-1-4-Fiddle
http://j.mp/MasteringReact-1-5-Gist
http://j.mp/MasteringReact-1-5-Fiddle

Introduction to React

[12]

 <div>{this.props.message}</div>
 </div>
);
 }
});

ReactDOM.render(
 <HelloReact message='Message from props'/>,
 document.getElementById('view'));

Note that props are immutable and not dynamic. To change the
value of a prop requires rerendering the component.

How it works
React components have props collections that will be populated from the
component's HTML attributes that the component is declared with. So, in the
following code, we are setting the message attribute of the prop collection to
Message from props:

React.render(
 <HelloReact message='Message from props'/>,
 document.getElementById('view'));

Now, in our component's definition, we can access the value that message was set to
by using this.props.message.

Note that if we want to access this in JSX markup, we need to surround the code with
brackets, shown in the following code:

var HelloReact = React.createClass({
 render: function() {
 return (
 <div>
 <div>Hello React</div>
 <div>{this.props.message}</div>
 </div>
);
 }
});

Chapter 1

[13]

Source code: http://j.mp/Mastering-React-1-6-Gist
Fiddle: http://j.mp/Mastering-React-1-6-Fiddle

We can also copy prop values to local variables as shown in the following code, and
then reference the local variables in our JSX markup shown in the following code:

var HelloReact = React.createClass({
 render: function() {

 var localMessage = this.props.message;

 return (
 <div>
 <div>Hello React</div>
 <div>{localMessage}</div>
 </div>
);
 }
});

We can use any valid JavaScript expression between the brackets in our JSX so we
could update the previous example shown in the following code:

{localMessage + ' and from JSX'}

This will concatenate the value contained in the localMessage variable with the
string 'and from JSX', resulting in the output shown in the following screenshot:

propTypes
We would also like to be able to validate our props and we can do some basic
validations using propTypes as shown in the following code:

var HelloReact = React.createClass({
 propTypes: {
 message: React.PropTypes.string,

http://j.mp/Mastering-React-1-6-Gist
http://j.mp/Mastering-React-1-6-Fiddle

Introduction to React

[14]

 number: React.PropTypes.number,
 requiredString: React.PropTypes.string.isRequired
 },
 render: function() {
 return (
 <div>
 <div>Hello React</div>
 <div>{this.props.message}</div>
 </div>
);
 }
});

ReactDOM.render(
 <HelloReact message='How are you' number='not a number'/>,
 document.getElementById('view'));

Now, if we run this code and look at the warnings in the console of our browser's
debug tools we will see the warnings shown in the following code. These warnings
indicate that we have two invalid props:

Warning: Failed propType: Invalid prop `number` of type `string`
supplied to `HelloReact`, expected `number`.

Warning: Failed propType: Required prop `requiredString` was not
specified in `HelloReact`.

By defining the propTypes property of the component's class we were able to
configure validations to enforce that our message prop is a string, our number is a
number, and our requiredString is a string that is required. Then, when we define
our component as shown in the following code, we violate some of our validation
rules and get appropriate warning messages:

React.render(
 <HelloReact message='How are you' number='not a number'/>,
 document.getElementById('view'));

Source code: http://j.mp/Mastering-React-1-7-Gist
Fiddle: http://j.mp/Mastering-React-1-7-Fiddle

http://j.mp/Mastering-React-1-7-Gist
http://j.mp/Mastering-React-1-7-Fiddle

Chapter 1

[15]

getDefaultProps
We can also provide default property values that will get used if an attribute isn't
specified in the HTML markup declaring our component. The following code
shows how we can create a default value for the message prop by defining a
getDefaultProps method:

var HelloReact = React.createClass({
 getDefaultProps: function() {
 return {
 message: 'I am from default'
 };
 },
 render: function() {
 return (
 <div>
 <div>Hello React</div>
 <div>{this.props.message}</div>
 </div>
);
 }
});

ReactDOM.render(
 <HelloReact />,
 document.getElementById('view'));

Now when we run the code we will see the output as shown below:

Source code: http://j.mp/Mastering-React-1-8-Gist
Fiddle: http://j.mp/Mastering-React-1-8-Fiddle

http://j.mp/Mastering-React-1-8-Gist
http://j.mp/Mastering-React-1-8-Fiddle

Introduction to React

[16]

state
So far our components are static and don't allow for dynamic behavior, which isn't
very interesting and we would need to be able to make our components dynamic for
them to be useful. React components have the concept of state to allow for dynamic
behavior. The following code shows how we can use state to create some simple
dynamic behavior:

var HelloReact = React.createClass({
 getInitialState: function() {
 return {
 message: 'I am from default state'
 };
 },
 updateMessage: function(e) {
 this.setState({message: e.target.value});
 },
 render: function() {
 return (
 <div>
 <input type='text' onChange={this.updateMessage}/>
 <div>Hello React</div>
 <div>{this.state.message}</div>
 </div>
);
 }
});

ReactDOM.render(
 <HelloReact />,
 document.getElementById('view'));

Go ahead and run the code and you will see the output as shown below:

Chapter 1

[17]

Now type something into the text box and you will see that the I am from
default state will change to something dynamically as you type, as shown in the
following screenshot:

Source code: http://j.mp/Mastering-React-1-9-Gist
Fiddle: http://j.mp/Mastering-React-1-9-Fiddle

How it works
We are seeing a few new concepts here. First, we are wiring up our dynamic
property from the state collection using the following code:

<div>{this.state.message}</div>

Now, anytime this.state.message changes we will see that change reflected in the
browser because React will rerender our component. Next, we need to wire up our
UI to allow us to update this.state.message in response to user input. To do this
we will take advantage of the synthetic events' capabilities of React's virtual DOM.

The virtual DOM is described on React's website, as shown below:
"React abstracts away the DOM from you, giving a simpler programming
model and better performance."
The virtual DOM exposes synthetic events and you can learn more
about React's synthetic events here:
https://facebook.github.io/react/docs/events.html

We use the following code to subscribe the this.updateMessage method to the
onChange synthetic event:

<input type='text' onChange={this.updateMessage}/>

http://j.mp/Mastering-React-1-9-Gist
http://j.mp/Mastering-React-1-9-Fiddle
https://facebook.github.io/react/docs/events.html

Introduction to React

[18]

Now, anytime we change the text in our textbox, this.updateMessage will be
called, which is shown in the following code:

 updateMessage: function(e) {
 this.setState({message: e.target.value});
 },

Here we are capturing the synthetic event's argument, e, and then calling this.
setState and passing in a JavaScript object with a message property that is set to
the value of e.target (our text box). The this.setState() method is added to
our React component by React and it will update the component's state with the
properties that are defined in the JSON object that is passed in, and then rerender the
component using the new state. Components in React are meant to be state machines
and changing the state transitions the UI from one visual state to another.

Note that this.setState() method will merge the existing
this.state with the object that is passed in. This means that
you only need to specify the properties that you want to update
as it will not delete any properties that are not defined in the
JSON object, which are currently defined on this.state.

The only remaining detail in the code sample is how we are able to declare a default
state by defining a getInitialState() method:

 getInitialState: function() {
 return {
 message: 'I am from default state'
 };
 },

The object we return from the getInitialState() method will be used to initialize
our component's state.

Summary
In this chapter we looked at the most basic and fundamental concepts in React. We
saw how to create components, how to pass in data to them using props, and how to
make them dynamic using state.

In the next chapter we will look at component composition and component lifecycle.

[19]

Component Composition
and Lifecycle

Now that we've covered the basics of creating components let's look at how we can
compose our components to make more complex views. We will also look at how
we can hook into a component's lifecycle events so that we can execute code before
and after our component renders as well as prevent rendering based on incoming
changes to state and props.

In this chapter we will be covering the following concepts:

• Component composition
 ° How to compose simple components
 ° Composing components with behavior
 ° How to access child components

• Component lifecycle
 ° Mounting and unmounting events
 ° Updating events

How to compose simple components
One of the best things about React is that it is component based allowing us to easily
compose our application from small autonomous components. Let's break up our
Hello React application into smaller components to see how we can take advantage
of React's component system.

Component Composition and Lifecycle

[20]

Let's start by separating our app into two components. We will make the Hello React
title its own component called HelloMessage as shown below:

The code to create our HelloMessage component is shown in the following code:

var HelloMessage = React.createClass({
 render: function() {
 return <div>{this.props.message}</div>;
 }
});

This code defines a new component that simply writes out this.props.message in
a <div> tag. Next let's update the rest of our code to use this new component to write
out Hello React as shown in the following code:

var HelloReact = React.createClass({
 getInitialState: function() {
 return { message: 'default'}
 },
 updateMessage: function () {
 console.info('updateMessage');
 this.setState({
 message: this.refs.messageTextBox.value
});
 },
 render: function() {
 return (
 <div>
 <HelloMessage message='Hello React'></HelloMessage>
 <input type='text' ref='messageTextBox' />
 <button onClick={this.updateMessage}>Update</button>
 <div>{this.state.message}</div>
 </div>
);
 }
});

ReactDOM.render(
 <HelloReact/>,
 document.getElementById('view'));

Chapter 2

[21]

In this code we are simply referencing our HelloMessage component and then
setting message to Hello React as shown again in the following code:

<HelloMessage message='Hello React'></HelloMessage>

This example is simple and contrived but it shows how easy it is to start breaking
our application into smaller reusable chunks. This allows us to write our application
by creating and using a Domain Specific Language (DSL). With our new DSL our
JSX markup is made up of readable custom tags like HelloMessage instead of blocks
of HTML markup. This will allow us to improve the readability and organization of
our code dramatically.

Source code: http://j.mp/Mastering-React-2-1-Gist
Fiddle: http://j.mp/Mastering-React-2-1-Fiddle

Composing components with behavior
Now let's make things more interesting by updating our app to be composed of
components that have behavior. We are going to create a view with a form that
allows for updating our HelloMessage as shown in the following screenshot:

If we click an Edit button then that button will change to an Update button and the
associated text input box will be enabled. This will allow us to set the First Name
or Last Name that is displayed in our HelloMessage component. After setting a
First Name or Last Name we can then click the associated Update button and the
HelloMessage will be updated to display the new first and last name. The preceding
image shows what the component looks like after putting Ryan for First Name and
Vice for Last Name and clicking an Update button.

Let's take a look at the following code:

var HelloMessage = React.createClass({
 render: function() {
 return <h2>{this.props.message}</h2>;

http://j.mp/Mastering-React-2-1-Gist
http://j.mp/Mastering-React-2-1-Fiddle

Component Composition and Lifecycle

[22]

 }
});

var TextBox = React.createClass({
 getInitialState: function() {
 return { isEditing: false }
 },
 update: function() {
 this.props.update(this.refs.messageTextBox.value);
 this.setState(
 {
 isEditing: false
 });
 },
 edit: function() {
 this.setState({ isEditing: true});
 },
 render: function() {
 return (
 <div>
 {this.props.label}

 <input type='text' ref='messageTextBox'
disabled={!this.state.isEditing}/>
 {
 this.state.isEditing ?
 <button onClick={this.update}>Update</button>
 :
 <button onClick={this.edit}>Edit</button>
 }
 </div>
);
 }
});

var HelloReact = React.createClass({
 getInitialState: function () {
 return { firstName: '', lastName: ''}
 },
 update: function(key, value) {
 var newState = {};
 newState[key] = value;
 this.setState(newState);
 },
 render: function() {

Chapter 2

[23]

 return (
 <div>
 <HelloMessage
 message={'Hello ' + this.state.firstName + ' ' +
this.state.lastName}>
 </HelloMessage>
 <TextBox label='First Name' update={this.update.
bind(this, 'firstName')}>
 </TextBox>
 <TextBox label='Last Name'
 update={this.update.bind(this, 'lastName')}>
 </TextBox>
 </div>
);
 }
});

ReactDOM.render(
 <HelloReact/>,
 document.getElementById('view'));

Run the code and get a feel for how it works.

Source code: http://j.mp/Mastering-React-2-2-Gist
Fiddle: http://j.mp/Mastering-React-2-2-Fiddle

How it works
We have divided our view into the components shown in the following screenshot:

http://j.mp/Mastering-React-2-2-Gist
http://j.mp/Mastering-React-2-2-Fiddle

Component Composition and Lifecycle

[24]

The HelloMessage component is the same one that we created in the previous
example but now we've added a new TextBox component to the mix. Each TextBox
component has a label, text input and button as shown in the following screenshot:

We declare two instances of our TextBox component in our HelloReact
component's render method shown in the following code:

var HelloReact = React.createClass({
 getInitialState: function () {
 return { firstName: '', lastName: ''}
 },
 update: function(key, value) {
 var newState = {};
 newState[key] = value;
 this.setState(newState);
 },
 render: function() {
 return (
 <div>
 <HelloMessage
 message={'Hello '
+ this.state.firstName + ' '
+ this.state.lastName}>
 </HelloMessage>
 <TextBox label='First Name'
update={this.update.bind(null, 'firstName')}>
 </TextBox>
 <TextBox label='Last Name'
update={this.update.bind(null, 'lastName')}>
 </TextBox>
 </div>
);
 }
});

Chapter 2

[25]

Here we are creating two TextBox component instances and setting their label and
update properties. The update property needs to be set to the callback function that
will be called when the input component's onChange event fires (we will look more
closely at this in the following code). We are setting the update property to the new
method created by calling Javascript's bind method on this.update shown in the
following code:

update={this.update.bind(null, 'lastName')}

If you are not familiar with JavaScript's bind method it will return a new method that
allows us to do two things. First, it allows us to set the function's context which is the
value of the this variable in the function's scope. Second, it allows us to curry the
method's arguments, which allows us to prepend arguments to the argument array
that will be used to call the method when it's invoked. We are passing null for the first
parameter as we are not interested in changing the functions context and this will result
in this.update being called in the context of our HelloReact component instance
meaning that this.setState will refer to HelloReact.setState which is what we
want. More interesting to our goal, we are using JavaScript's bind method to curry the
this.update function's arguments. Doing this allows us to provide the this.update
method a key argument from HelloReact render's method. This technique allows us to
configure how our callback method will be called. Here we are using JavaScript's bind
method to let the consuming component pass the key argument when it invokes the
update callback method in response to an onChange synthetic event.

In the HelloReact component's update method, as shown in the following code,
we are expecting to be passed a key and value. As we just discussed, the key was
sent via the bind method and we will use the key along with the value that was
passed from the react synthetic event to update the HelloReact component's state.
We update the state by first creating a new object called newState. Then we use
JavaScript's index operator on the newState object with our key to create a new
property on the newState object using JavaScript's index operator. We then assign
value to the new property that was created on the newState object. Finally we call
this.setState and pass in newState which will merge newState with this.state
causing our component to rerender with the updated value.

 update: function(key, value) {
 var newState = {};
 newState[key] = value;
 this.setState(newState);
 },

After updating our state our HelloMessage.message property will be updated
shown in the following code:

{'Hello ' + this.state.firstName + ' ' + this.state.lastName}

www.allitebooks.com

http://www.allitebooks.org

Component Composition and Lifecycle

[26]

This will make it so that our HelloMessage will get rerendered and updated every
time the HelloReact components state is updated from the call to this.setState
method from the this.update method.

Next let's look at the TextBox component that will call the HelloReact component's
update method. The TextBox component's code is shown below:

var TextBox = React.createClass({
 getInitialState: function() {
 return { isEditing: false }
 },
 update: function() {
 this.props.update(this.refs.messageTextBox.value);
 this.setState(
 {
 isEditing: false
 });
 }

Here we first pass the value in our text input via this.refs.messageTextBox.value
into the this.props.update method. We then update our state so that isEditing
is false. As we saw in the preceding code, we used JavaScript's bind method to wire
up the TextBox.update property. Now when we call this.props.update(value)
this will result in the call being this.props.update(key, value) where key
was assigned in the bind call in the HelloReact component's render method. The
remaining code in TextBox deals with controlling the components enabled and
disabled state and the text displayed in button shown in the following code:

 edit: function() {
 this.setState({ isEditing: true});
 },
 render: function() {
 return (
 <div>
 {this.props.label}

 <input type='text'
ref='messageTextBox'
disabled={!this.state.isEditing}/>
 {
 this.state.isEditing ?
 <button onClick={this.update}>
Update
 </button>
 :
 <button onClick={this.edit}>

Chapter 2

[27]

Edit
 </button>
 }
 </div>
);
 }
});

We are defining an edit method that simply sets this.state.isEditing to true
by calling the this.setState method. Then we are defining a render method that
creates a label, an input text box and a button. We are using JavaScript's ternary
operator to conditionally create a different button depending on the value of this.
state.isEditing. If this.state.isEditing is true then we create an Update
button while if this.state.isEditing is false we will create an Edit button. We
also set our input component's disabled property to !this.state.Editing so that
our input will be disabled when we are not editing.

Accessing a component's children
In React when we want to access the inner HTML of a component or a component
that's been embedded inside of a component we can use this.props.children.
This feature is very similar to Angular's Transclusion, WebComponent's Contents
or Ember's Yield. To demonstrate this we are going to update the button from our
previous example to be the Button component shown in the following code:

var Button = React.createClass({
 render: function() {
 return (
<button onClick={this.props.onClick}>
{this.props.children}
</button>
);
 }
});

What we have created here is Button component that can have its opening and closing
tags wrapped around the HTML elements and React components that it wants to
display within the button that it will render. To demonstrate this we will create a
component for displaying glyph icons using bootstrap shown in the following code:

var GlyphIcon = React.createClass({
 render: function() {
 return (
<span className={'glyphicon glyphicon-'

Component Composition and Lifecycle

[28]

+ this.props.icon}>

);
 }
});

Note that to make this work we updated the JsFiddle references
to include a reference to Twitter's Bootstrap framework. For
more information about Bootstrap see the documentation here:
http://getbootstrap.com/

Our GlyphIcon component will simplify displaying a bootstrap Glyphicon if we
simply configure it by specifying the last part of the Glyphicon's style name. In the
following screenshot, we have shown a few of the Glyphicon styles:

So for example we can display a pencil by specifying pencil for our GlyhIcon
component's icon property. Next we will update our TextBox component to use our
GlyhIcon class shown in the following code:

 render: function() {
 return (
 <div>
 {this.props.label}

 <input
type='text'
ref='messageTextBox'
disabled={!this.state.isEditing}/>
 {

http://getbootstrap.com/

Chapter 2

[29]

 this.state.isEditing ?
 <Button onClick={this.update}>
<GlyphIcon icon='ok'/> Update
 </Button>
 :
 <Button onClick={this.edit}>
<GlyphIcon icon='pencil'/> Edit
 </Button>
 }
 </div>
);
 }

In this code we are using our button component to wrap both a GlyphIcon
component and also some text which will allow us to display buttons with both
text and icon's as shown in the following screenshot:

The full code is shown below:

var HelloMessage = React.createClass({
 render: function() {
 return <h2>{this.props.message}</h2>;
 }
});

var Button = React.createClass({
 render: function() {
 return (
<button onClick={this.props.onClick}>
{this.props.children}
</button>
);
 }
});

var GlyphIcon = React.createClass({

Component Composition and Lifecycle

[30]

 render: function() {
 return (
<span className={'glyphicon glyphicon-'
+ this.props.icon}>

);
 }
});

var TextBox = React.createClass({
 getInitialState: function() {
 return { isEditing: false, text: this.props.label }
 },
 update: function() {
 this.setState(
 {
 text: this.refs.messageTextBox.getDOMNode().value,
 isEditing: false
 });
 this.props.update();
 },
 edit: function() {
 this.setState({ isEditing: true});
 },
 render: function() {
 return (
 <div>
 {this.props.label}

 <input
type='text'
ref='messageTextBox'
disabled={!this.state.isEditing}/>
 {
 this.state.isEditing ?
 <Button onClick={this.update}>
<GlyphIcon icon='ok'/> Update
 </Button>
 :
 <Button onClick={this.edit}>
<GlyphIcon icon='pencil'/> Edit
 </Button>
 }
 </div>
);

Chapter 2

[31]

 }
});

var HelloReact = React.createClass({
 getInitialState: function () {
 return { firstName: '', lastName: ''}
 },
 update: function () {
 this.setState({
 firstName:
 this.refs.firstName.refs.messageTextBox.getDOMNode().
value,
 lastName:
 this.refs.lastName.refs.messageTextBox.getDOMNode().
value});
 },
 render: function() {
 return (
 <div>
 <HelloMessage
 message={'Hello ' + this.state.firstName + ' ' +
this.state.lastName}>
 </HelloMessage>
 <TextBox label='First Name' ref='firstName'
 update={this.update}>
 </TextBox>
 <TextBox label='Last Name' ref='lastName'
 update={this.update}>
 </TextBox>
 </div>
);
 }
});

ReactDOM.render(
 <HelloReact/>,
 document.getElementById('view'));

Source code: http://j.mp/Mastering-React-2-3-Gist
Fiddle: http://j.mp/Mastering-React-2-3a-Fiddle

http://j.mp/Mastering-React-2-3-Gist
http://j.mp/Mastering-React-2-3a-Fiddle

Component Composition and Lifecycle

[32]

Component lifecycle - mounting and
unmounting
Components in React have a lifecycle of events that we can easily subscribe to by
defining the associated methods on our component definition object. Let's go ahead
and update our previous example to see this feature in action.

var HelloMessage = React.createClass({
 componentWillMount: function() {
 console.log('componentWillMount');
 },
 componentDidMount: function() {
 console.log('componentDidMount');
 },
 componentWillUnmount: function() {
 console.log('componentWillUnmount');
 },
 render: function() {
 console.log('render');
 return <h2>{this.props.message}</h2>;
 }
});

Here we have updated our HelloMessage component to log to the console the
following three React component lifecycle events:

• componentWillMount: This event will be called right before a component
mounts

• componentDidMount: This event will be called right after a component mounts
• componentWillUnmount: This event will be called right before a component

unmounts

We are also logging our render method to the console so that we can see when the
various lifecycle events occur relative to render.

Let's also update our HelloReact component to add a button that will reload our
HelloMessage component allowing us to see what happens when it unmounts.
We've added this button to the render method shown in the following code:

 render: function() {
 return (
 <div>
 <HelloMessage
 message={'Hello '

Chapter 2

[33]

+ this.state.firstName + ' '
+ this.state.lastName}>
 </HelloMessage>
 <TextBox label='First Name' ref='firstName'
 update={this.update}>
 </TextBox>
 <TextBox label='Last Name' ref='lastName'
 update={this.update}>
 </TextBox>
 <button onClick={this.reload}>Reload</button>
 </div>
);
 }

And then let us add a reload method to our HelloReact component that will call
React.unmountComponentAtNode which will unmount our component. We then call
ReactDOM.render to mount our component.

 reload: function() {
 ReactDOM.unmountComponentAtNode(
document.getElementById('view'));
 ReactDOM.render(
 <HelloReact/>,
 document.getElementById('view'));
 },

Source code: http://j.mp/Mastering-React-2-4a-Gist
Fiddle: http://j.mp/Mastering-React-2-4a-Fiddle

Now let's go ahead and run the code in JsFiddle and open our browsers debugging
tools (F12 in Chrome) so that we can see the console output. After running the code
we see the following output:

http://j.mp/Mastering-React-2-4a-Gist
http://j.mp/Mastering-React-2-4a-Fiddle

Component Composition and Lifecycle

[34]

And as we can see we get a call to componentWillMount right before Render is
called and then we get a call to componentDidMount right after render is called. This
gives us an opportunity to run code both before and after our render method. Next
let's add a First Name and we can see what happens in the console as shown below:

We get one more call to render but componentWillMount and componentDidMount
are not called because our HelloMessage component is already mounted and we are
simply causing React to call the HelloMessage.render method. Let's set a last name
and look at the console output:

Probably no surprise here but we find that render is called again but that none of
the lifecycle events are called. Next let's click the Reload button and look at the
following output:

Chapter 2

[35]

Now we see that componentWillUnmount is called as our component is unmounted
and then we repeat the same sequence we saw earlier as the component is
mounted again.

Component lifecycle – updating events
There are also events that will allow us to execute code relative to when our
component's state and properties get updated. To demonstrate this we will
look at the sample application shown below:

This is an extremely contrived example that is intended to help us see updating
events in action. This application has two buttons:

• Like button: This button will increase the like count
• Unlike button: This button will decrease the like count

Component Composition and Lifecycle

[36]

The application also has the following features:

• It displays a total count of likes
• It has a GlyphIcon component that will show an up arrow if the like count is

increasing or a down arrow if the like count is decreasing
• It will not update the view until after we have two or more likes

Let's take a look at how we can implement these features by taking advantage of the
updating lifecycle events as shown in the following code:

var Button = React.createClass({
 render() {
 return (
<button onClick={this.props.onClick}>
{this.props.children}
</button>
);
 }
});

var GlyphIcon = React.createClass({
 render() {
 return (
<span className={'glyphicon glyphicon-'
+ this.props.icon}>

);
 }
});

var HelloReact = React.createClass({
 getDefaultProps() {
 return {likes: 0};
 },
 getInitialState() {
 return {isIncreasing: false};
 },
 componentWillReceiveProps(nextProps) {
 this._logPropsAndState('componentWillReceiveProps()');
 console.log('nextProps.likes: ' + nextProps.likes);

 this.setState({
isIncreasing: nextProps.likes > this.props.likes
 });

Chapter 2

[37]

 },
 shouldComponentUpdate(nextProps, nextState) {
 this._logPropsAndState('shouldComponentUpdate()');
 console.log(
'nextProps.likes: ',
nextProps.likes,
' nextState.isIncreasing: ',
nextState.isIncreasing);
 return nextProps.likes > 1;
 },
 componentDidUpdate(prevProps, prevState) {
 this._logPropsAndState('componentDidUpdate');
 console.log(
'prevProps.likes: ',
prevProps.likes,
' prevState.isIncreasing:',
prevState.isIncreasing);
 console.log('componentDidUpdate() gives an opportunity to
execute code after react is finished updating the DOM.');
 },
 _logPropsAndState(callingFunction) {
 console.log('=> ' + callingFunction);
 console.log('this.props.likes: ' + this.props.likes);
 console.log('this.state.isIncreasing: '
+ this.state.isIncreasing);
 },
 like() {
 this.setProps({likes: this.props.likes+1});
 },
 unlike() {
 this.setProps({likes: this.props.likes-1});
 },
 render() {
this._logPropsAndState("render()");
 return (
 <div>
 <Button onClick={this.like}>
<GlyphIcon icon='thumbs-up'/> Like
</Button>
 <Button onClick={this.unlike}>
<GlyphIcon icon='thumbs-down'/> Unlike
</Button>

 Likes {this.props.likes}

Component Composition and Lifecycle

[38]

 <GlyphIcon icon={
(this.state.isIncreasing)
? 'circle-arrow-up' : 'circle-arrow-down'}/>
 </div>
);
 }
});

ReactDOM.render(
 <HelloReact/>,
 document.getElementById('view'));

Source code: http://j.mp/Mastering-React-2-5a-Gist
Fiddle: http://j.mp/Mastering-React-2-5-Fiddle

How it works
We've implemented the following component lifecycle events in our HelloReact
component in the preceding code:

• componentWillReceiveProps

• shouldComponentUpdate

• componentDidUpdate

We've also added a good bit of logging code that will allow us to see the state and
properties of our component in these lifecycle event methods. We've added the method
shown in the following code that we can call and write out the calling method name
along with the current value of this.props.likes and this.state.isIncreasing.

 _logPropsAndState(callingFunction) {
 console.log('=> ' + callingFunction);
 console.log('this.props.likes: ' + this.props.likes);
 console.log('this.state.isIncreasing: ' + this.state.
isIncreasing);
 },

http://j.mp/Mastering-React-2-5a-Gist
http://j.mp/Mastering-React-2-5-Fiddle

Chapter 2

[39]

Let's run the code and confirm that it works as described in the preceding code. First
let's click the Like button. We will see that clicking the Like button does not have
any effect on the UI because of the rule we added to the shouldComponentUpdate
method as shown below:

Here we are looking at the console log and can see that the
componentWillReceiveProps method is called after the render method but
before our components state is updated. When the componentWillReceiveProps
method is called the props haven't changed from what we saw in the render
method and this.props.likes is 0 and this.state.isIncreasing is false.

We also see that the componentWillReceiveProps is passed the future value of
this.props in the nextProps argument and we can see that nextProps.likes is 1
as we would expect.

The componentWillReceiveProps method also gives us an opportunity to apply our
business rule to determine if the component's like count is increasing or decreasing
as shown in the following code:

 componentWillReceiveProps(nextProps) {
 this._logPropsAndState('componentWillReceiveProps()');
 console.log('nextProps.likes: ' + nextProps.likes);

 this.setState({
isIncreasing: nextProps.likes > this.props.likes});
 }

Component Composition and Lifecycle

[40]

We also see in the console that the shouldComponentUpdate method is
called. The shouldComponentUpdate gets all the information available in the
componentWillReceiveProps method but is also passed the future value of the
this.state property via the nextState argument. Looking at the nextState.
isIncreasing property we can see that it is true meaning that this.state.
isIncreasing will be true when the component renders which is what we would
expect. The updated value of this.state.isIncreasing reflects the call to this.
setState from the componentWillReceiveProps method shown in the preceding
code. The shouldComponentUpdate method also gives us an opportunity to apply
our business rule that prevents the component from updating if the this.props.
likes property is less than 2 as shown in the following code:

 shouldComponentUpdate(nextProps, nextState) {
 this._logPropsAndState('shouldComponentUpdate()');
 console.log('nextProps.likes: '
+ nextProps.likes
 + ' nextState.isIncreasing: '
+ nextState.isIncreasing);
 return nextProps.likes > 1;
 }

By returning false when evaluating nextProps.likes > 1, we are preventing our
component from updating.

Next clear the console and click the Like button for a second time. We will see
that the UI now updates to show two likes, an up arrow to indicate that likes are
increasing as well as the log statements as shown below:

Chapter 2

[41]

Here we see in our log statements that we now get a call to the componentDidUpdate
method which gets the previous properties and previous state passed to it allowing
us to execute business rules and logic after our component updates. We are not
implementing any rules at this time and are simply writing out some values to
demonstrate this feature. The componentDidUpdate method is called now
because we are returning true from componentShouldUpdate when evaluating
nextProps.likes > 1.

This expression now evaluates to true because the nextProps.likes
property is 2.

Now let's click the Like button again followed by clicking the Unlike button.
We will now see that our GlyphIcon arrow is pointing down as shown in the
following screenshot:

This is because we've set this.state.isIncreasing to false in our
componentWillReceiveProps method because this expression nextProps.likes >
this.props.likes now evaluates to false.

Summary
In this chapter we looked at how to compose components and how to access child
components and\or the inner HTML of our components. We then looked at how
to hook into the component lifecycle events to allow us to execute logic relative to
mounting events and updating events.

In the next chapter will look at mixin's, dynamic components, property validation
and forms.

[43]

Dynamic Components,
Mixins, Forms, and More JSX
In this chapter we are going to wrap up our coverage of the basics of React by
looking at the following concepts.

• Dynamic components
• Mixins
• Forms
• Validation

We will see how dynamic components allow us to easily compose our application
out of the component ecosystem we create for application by mostly using
imperative JavaScript. Next we will look at how we can share functionality via the
mixins feature that allows us to hook into our component's lifecycle events and fire
custom logic as well as allowing us to extend our components API by extending
them with new methods. After that we will look at some idiosyncrasies when
working with forms in React and we will follow that up by looking at one options for
validating our forms.

Dynamic components
We will often have the need to have components dynamically create child
components at runtime based on the runtime state of the application. Let's take a
look at how we can do this using the code that follows:

var UserRow = React.createClass({
render: function() {
 return (
 <tr>

Dynamic Components, Mixins, Forms, and More JSX

[44]

 <td>{this.props.user.userName}</td>
 <td>

 {this.props.user.email}

 </td>
 </tr>
);
 }
});

var UserList = React.createClass({
getInitialState: function() {
 return {
 users: [
 {
 id: 1,
 userName: 'RyanVice',
 email: 'ryan@vicesoftware.com'
 },
 {
 id: 2,
 userName: 'AdamHorton',
 email: 'digitalicarus@gmail.com'
 }]
 };
 },
 render: function() {
 var users = this.state.users.map(
 function(user) {
 // key prevents react warning
 return (
 <UserRow user={user}
 key={user.id}/>)
 });

 return (
 <table>
 <tr>
 <th>User Name</th>
 <th>Email Address</th>
 </tr>
 {users}
 </table>

Chapter 3

[45]

);
 }
});

ReactDOM.render(
 <UserList/>,
 document.getElementById('view'));

Source code: http://j.mp/Mastering-React-3-1-Gist
Fiddle: http://j.mp/Mastering-React-3-1-Fiddle

Let's run this code and you will see output like shown as follows:

How it works
As shown in the following screenshot, the view is made up of two components, first
is UserList and the second is UserRow:

The UserRow component that is shown below simply writes out a table row with two
columns that contain the user name and user email which are taken as input to the
component via props.

var UserRow = React.createClass({
render: function() {
 return (
 <tr>
 <td>{this.props.user.userName}</td>
 <td>

 {this.props.user.email}

http://j.mp/Mastering-React-3-1-Gist
http://j.mp/Mastering-React-3-1-Fiddle

Dynamic Components, Mixins, Forms, and More JSX

[46]

 </td>
 </tr>
);
 }
});

Next the UserList component's render function iterates over this.state.users
by using the JavaScript map function and returns a UserRow component for each
element in this.state.users and initializes UserRow.user and UserRow.key
appropriately as shown below. We then return {users} in as part of our markup in
the return statement and React at runtime will add our list of UserRow components
to the rendered output as expected.

 render: function() {
 var users = this.state.users.map(
 function(user) {
 // key prevents react warning
 return (
 <UserRow user={user}
 key={user.id}/>)
 });

 return (
 <table>
 <tr>
 <th>User Name</th>
 <th>Email Address</th>
 </tr>
 {users}
 </table>
);
 }

Note that setting a key property on collections of child
components, as we did above, allows React to uniquely identify
the child components during virtual DOM rendering and this
will help React more efficiently batch updates to the DOM
for you. Also note that not providing a key property on child
components will result in a warning being written to the console.

Chapter 3

[47]

Mixins
mixins is a React feature that allows you to share cross cutting concerns with
components. A mixin is simply an Object Literal that is used to add behavior
to a component. It's an implementation of the decorator pattern and the mixin
you create can provide implementations of React's component lifecycle events
(componentWillMount, componentDidMount, and so on) and those will be called
during your component's lifecycle along with the component's lifecycle methods.

Here are the details from React's documentation:
A nice feature of mixins is that if a component is using multiple
mixins and several mixins define the same lifecycle method (i.e.
several mixins want to do some cleanup when the component
is destroyed), all of the lifecycle methods are guaranteed to be
called. Methods defined on mixins run in the order mixins were
listed, followed by a method call on the component.

Let's take a look at a code sample below.

var ReactMixin1 = {
 log: function(message) {
 console.log(message);
 },
 componentWillMount: function() {
 this.log('componentWillMount from ReactMixin1');
 }
};

var ReactMixin2 = {
 componentWillMount: function() {
 console.log('componentWillMount from ReactMixin2');
 }
};

var HelloMessage = React.createClass({
mixins: [ReactMixin1, ReactMixin2],
 componentWillMount: function() {
 this.log('componentWillMount from HelloMessage');
 },
 render: function() {
 return <h2>{this.props.message}</h2>;
 }
});

Dynamic Components, Mixins, Forms, and More JSX

[48]

var Button = React.createClass({
 mixins: [ReactMixin2, ReactMixin1],
 clicked: function() {
 this.log(this.props.text + ' clicked');
 },
 componentWillMount: function() {
 this.log('componentWillMount from Button');
 },
 render: function() {
 return <button onClick={this.clicked}>{this.props.text}</
button>
 }
});

var HelloReact = React.createClass({
 render: function() {
 return (
 <div>
 <HelloMessage message='Hi'/>
 <Button text='OK'/>
 </div>
);
 }
});

ReactDOM.render(
 <HelloReact/>,
 document.getElementById('view'));

Source code: http://j.mp/Mastering-React-3-2-Gist
Fiddle: http://j.mp/Mastering-React-3-2-Fiddle

Let's go ahead and run this code with the console open so we can see the console.
log output. Click the OK button and then you will see the output shown as follows:

http://j.mp/Mastering-React-3-2-Gist
http://j.mp/Mastering-React-3-2-Fiddle

Chapter 3

[49]

As you can see we have two logs for componentWillMount from ReactMixin1 and
componentWillMount from ReactMixin2. One pair of calls is for our HelloMessage
component shown as follows:

And one pair for our Button component is shown as follows:

Take note of how each of these pairs of calls is then followed by a call from each
component's componentWillMount (HelloMessage and Button). Also note that for
HelloMessage we get ReactMixin1 and then ReactMixin2 while for Button we get
the opposite order. Then note that we get one message sent from the Button instance
declared in our HelloReact component shown as follows:

How it works
To take advantage of mixins we have created an object literal that defines a log
method and a componentWillMount method that in turn calls this.log and logs
out componentWillMount from ReactMixin1. We then assign that object literal to a
ReactMixin1 variable shown as follows:

var ReactMixin1 = {
 log: function(message) {
 console.log(message);
 },
 componentWillMount: function() {
 this.log('componentWillMount from ReactMixin1');
 }
};

Dynamic Components, Mixins, Forms, and More JSX

[50]

We then defined a second object literal that defines a componentWillMount method
that calls console.log and passes componentWillMount from ReactMixin2 shown
as follows:

var ReactMixin2 = {
 componentWillMount: function() {
 console.log('componentWillMount from ReactMixin2');
 }
};

We then use our object literals, ReactMixin1 and ReactMixin2, as mixins in our
HelloMessage component by adding them to the HelloMessage.mixins array
shown as follows:

var HelloMessage = React.createClass({
 mixins: [ReactMixin1, ReactMixin2],
 componentWillMount: function() {
 this.log('componentWillMount from HelloMessage');
 },
 render: function() {
 return <h2>{this.props.message}</h2>;
 }
});

After being added to the HelloMessage.mixins array our ReactMixin1 will do
two things:

• It will decorate our HelloMessage.componentWillMount lifecycle method by
adding additional behavior. As we saw ReactMixin1.componentWillMount
will be called followed by a call to ReactMixin2.componentWillMount
followed by the call to HelloMessage.componentWillMount.

• It will make the log method available to the HelloMessage component.
We are then able to use this.long in the HellowMessage.
componentWillMount method.

We then wire up ReactMixin2 followed by ReactMixin1 in our Button component
shown as follows:

var Button = React.createClass({
 mixins: [ReactMixin2, ReactMixin1],
 clicked: function() {
 this.log(this.props.text + ' clicked');
 },
 componentWillMount: function() {
 this.log('componentWillMount from Button');
 },

Chapter 3

[51]

 render: function() {
 return <button onClick={this.clicked}>{this.props.text}</
button>
 }
});

Adding the components in the reverse order from HelloMessage shows that the
order that our mixins will be called is the same order as the order they are added to
the mixins array in.

We also use this.log from ReactMixin1 mixin in the Button.clicked method to
log out this.props.text + ' clicked' which is why we see OK clicked in the
console output.

Forms
Form components such as <input/>, <textarea/> and <option/> are handled
differently by React as they allow for being mutated by the users input unlike
static components like <div/> or <h1/>. As we will the dynamic nature of form
components combined with the determination of React components can lead to some
unexpected things when you are first learning React.

Controlled components - the read-only input
Let's start by exploring the concept of controlled components by looking at the
following code:

var TextBox = React.createClass({
 render: function() {
 return <input type='text' value='Read only'/>;
 }
});

ReactDOM.render(
 <TextBox/>,
 document.getElementById('view'));

Source code: http://j.mp/Mastering-React-3-3-Gist
Fiddle: http://j.mp/Mastering-React-3-3-Fiddle

http://j.mp/Mastering-React-3-3-Gist
http://j.mp/Mastering-React-3-3-Fiddle

Dynamic Components, Mixins, Forms, and More JSX

[52]

Let's now run this code and try and change the text displayed in the text box.

As you can see the TextBox element doesn't allow the text for being updated and as
you type the text displayed, "Read only", doesn't change.

How it works
The reason that our TextBox element doesn't change as we type is because in React
an input with its value prop set like the one below is a controlled component.

var TextBox = React.createClass({
 render: function() {
 return <input type='text' value='Read only'/>;
 }
});

What it means to be a controlled component is that the input will always display
the value that is currently assigned to the input's value prop. In our code we haven't
provided a way for the input's value to change so our component always displays
"Read only" and it ignores incoming input from the keyboard. This is because React
form components are not wired up to respond to the peripheral input like keyboards.
And this is because, as we just discussed, React form components are only wired to
display what is set on the input component's value prop.

Controlled components - the read and
write input
Let's now see what happens when we wire up controlled components to state and
props by looking at the following code:

var ExampleForm = React.createClass({
 getInitialState: function() {
 return { message: 'Read and write' }
 },
 getDefaultProps: function () {
 return { message: 'Read only' }
 },
 onChange: function(event) {

Chapter 3

[53]

 this.setState({message: event.target.value});
 },
 render: function() {
 return (
<div>
 <input id='readOnly' className='form-control'
type='text'
 value={this.props.message}/>
 <input id='readAndWrite' className="form-control"
type='text'
 value={this.state.message}
 onChange={this.onChange}/>
 </div>
);
 }
});

ReactDOM.render(
 <ExampleForm/>,
 document.getElementById('view'));

Source code: http://j.mp/Mastering-React-3-4-Gist
Fiddle: http://j.mp/Mastering-React-3-4-Fiddle

Run the code and you will see the output shown as follows:

If you try and change the values in the two text input boxes you will see that you can't
change the Read only text b-ox but you can change the Read and write text box.

How it works
The Read only text box is the input with id of readOnly and has it's value set to
this.props.message shown as follows:

<input id='readOnly' className='form-control' type='text'
 value={this.props.message}/>

http://j.mp/Mastering-React-3-4-Gist
http://j.mp/Mastering-React-3-4-Fiddle

Dynamic Components, Mixins, Forms, and More JSX

[54]

Note that this.props.message is given a default value of Read only from the
ExampleForm.getDefaultProps method shown as follows:

getDefaultProps: function () {
 return { message: 'Read only' }
 },

Because React component props are immutable and because in our example this.
props.message is only set inside the ExampleForm component that declares our
Read only input box our Read only text input box can't be changed.

However, the Read and write input box with the id set to readAndWrite is set to
this.state.message and it's onChange synthetic event is set to the this.onChange
method shown as follows:

 <input id='readAndWrite' className="form-control" type='text'
 value={this.state.message}
 onChange={this.onChange}/>

In the onChange method we are then taking the event that is passed in from the
React synthetic event and then calling this.setState({message: event.target.
value}). This call will update this.state.message reflect the input that the user
sends in via a keyboard or some other input device.

 onChange: function(event) {
 this.setState({message: event.target.value});
 },

Updating state in this way will cause a rerender and when the component's render
method is called it will use the current value from this.state.message allowing
our component to be dynamic to update it's displayed value.

Isn't that harder than it needs to be?
If you are familiar with two way data binding frameworks then this probably seems
like a lot of work to do something in React that is really simple in frameworks that
support two way databinding. However, the React team chose to follow a one way
data flow model below.

In React, data flows one way: from owner to child. This is because
data only flows one direction in the Von Neumann model of
computing. You can find the source at https://facebook.
github.io/react/docs/two-way-binding-helpers.html.

https://facebook.github.io/react/docs/two-way-binding-helpers.html
https://facebook.github.io/react/docs/two-way-binding-helpers.html

Chapter 3

[55]

React's philosophy is all about performance and maintainability. Both of those
goals benefit from using one way data flows down the component hierarchy. If you
are using a large complex web application then it becomes much easier to reason
about the application when data flows in one direction. It gets even better when
state is minimized to the smallest set of state needed and maintained as high in the
component hierarchy as possible. Below is some guidance from the React team taken
from the documentation about organizing data flows and state in React applications.

Remember: React is all about one-way data flow in the component hierarchy. It may
not be immediately clear which component should own what state. This is often
the most challenging part for newcomers to understand, so follow these steps to
figure it out:

For each piece of state in your application identify every component that renders
something based on that state. Then, find a common owner component (a single
component above all the components that need the state in the hierarchy). Either the
common owner or another component higher up in the hierarchy should own the state.

If you can't find a component where it makes sense to own the state, create a new
component simply for holding the state and add it somewhere in the hierarchy
above the common owner component. The source code can be found at:
https://facebook.github.io/react/docs/thinking-in-react.html.

That said, I think that once you start building larger applications you will appreciate
the maintainability provided by this approach and we look at more complex
examples in the upcoming chapters so you will get to see a better example of this
aspect of React. For now though, let's take a look at how we can organize a simple
form around these best practices.

Controlled components – a simple form
Let's take a look at a simple form now using controlled components.

var TextBox = React.createClass({
 render: function() {
 return (
 <input className='form-control'
 name={this.props.name}
 type='text'
 value={this.props.value}
 onChange={this.props.onChange}/>
);
 }
});

https://facebook.github.io/react/docs/thinking-in-react.html

Dynamic Components, Mixins, Forms, and More JSX

[56]

var ExampleForm = React.createClass({
 getInitialState: function () {
 return { form: { firstName: 'Ryan', lastName: 'Vice'} }
 },
 onChange: function(event) {
 this.state.form[event.target.name] = event.target.value;

 this.setState({form: this.state.form});
 },
 onSubmit: function(event) {
 event.preventDefault();

 alert('Form submitted. firstName: ' +
 this.state.form.firstName +
 ', lastName: ' +
 this.state.form.lastName);

 },
 render: function() {
 var self = this;
 return (
 <form onSubmit={this.onSubmit}>
 <TextBox name='firstName'
 value={this.state.form.firstName}
 onChange={this.onChange}/>
 <TextBox name='lastName'
 value={this.state.form.lastName}
 onChange={this.onChange}/>
 <button className='btn btn-success'
 type='submit'>Submit</button>
 </form>
);
 }
});

ReactDOM.render(
 <ExampleForm/>,
 document.getElementById('view'));

Source code: http://j.mp/Mastering-React-3-5-Gist
Fiddle: http://j.mp/Mastering-React-3-5-Fiddle

http://j.mp/Mastering-React-3-5-Gist
http://j.mp/Mastering-React-3-5-Fiddle

Chapter 3

[57]

Run the Fiddle, click Submit and you will see the following output:

How it works
This code creates a simple first name, last name form by doing the following.

Create a reusable TextBox component that allows for wiring up name,
value and onChange in a consistent way.

var TextBox = React.createClass({
 render: function() {
 return (
 <input className='form-control'
 name={this.props.name}
 type='text'
 value={this.props.value}
 onChange={this.props.onChange}/>
);
 }
});

1. In our ExampleForm component we create a simple form for the first name
and last name using our TextBox component. We also wire up form's
onSubmit to the this.onSubmit method and wire up each TextBox instance
onChange to this.onChange.
 render: function() {
 var self = this;
 return (
 <form onSubmit={this.onSubmit}>

Dynamic Components, Mixins, Forms, and More JSX

[58]

 <TextBox name='firstName'
 value={this.state.form.firstName}
 onChange={this.onChange}/>
 <TextBox name='lastName'
 value={this.state.form.lastName}
 onChange={this.onChange}/>
 <button className='btn btn-success'
 type='submit'>Submit</button>
 </form>
);
 }

2. We wire up our ExampleForm.onChange method to allow our controlled
components to be dynamic and to reflect our users input in the UI. Note that we
are taking advantage of JavaScript's implementation of objects as dictionaries
here to set the property on this.state.form. Using this kind of approach will
greatly reduce boiler plate that you need to write to wire up inputs.
 onChange: function(event) {
 this.state.form[event.target.name] = event.target.value;

 this.setState({form: this.state.form})
 }

3. We then wire up ExampleForm.onSubmit method to first suppress the
default form behavior of HTML which will prevent a server side postback
and then we show an alert with the first name and last name values that were
entered into our form.
 onSubmit: function(event) {
 event.preventDefault();

 alert('Form submitted. firstName: ' +
 this.state.form.firstName +
 ', lastName: ' +
 this.state.form.lastName);
 }

But what about the best practices?
Now we've looked at how it works but let's take a minute to focus on how we
followed React's best practices around state. The following is a quick refresher
on the best practices.

Chapter 3

[59]

For each piece of state in your application, you have to identify every component
that renders something based on that state. Then, find a common owner component
(a single component above all the components that need the state in the hierarchy).
Either the common owner or another component higher up in the hierarchy should
own the state.

If you can't find a component where it makes sense to own the state, create a new
component simply for holding the state and add it somewhere in the hierarchy above
the common owner component.

In the example above we applied these best practices in a way that is often
called Smart and Dumb components but also called fat and skinny, stateful and
pure, screens and components, and so on The approach involves dividing your
components into two categories, Smart components that contain state and Dumb
components that are immutable and only use props. Organizing your components
in this way aligns really well with the React best practices and will make your app
easier to understand and reason about.

In our example we have created the ExampleForm smart component that contains all
the state for our application and the TextBox dumb component that is immutable
and just provides a seam for our text input components allowing us to easily provide
consistency in how we layout and wire up our text inputs. By using this approach
we've moved the state out of the TextBox component and into the ExampleForm.
The example form is then able to store the state for all the TextBox instances and will
update the TextBox instances with any changes in state through TextBox props.

Refactoring the form to be data driven
The modular design of our application makes it trivial to make our form data driven
by changing our render method as shown below.

render: function() {
 var self = this;
 return (
 <form onSubmit={this.onSubmit}>
 {Object.keys(this.state.form).map(
 function(key) {
 return (
 <TextBox name={key}
 value={self.state.form[key]}
 onChange={self.onChange}/>
)
 })
 }

Dynamic Components, Mixins, Forms, and More JSX

[60]

 <button className='btn btn-success'
type='submit'>Submit</button>
 </form>
);

Source code: http://j.mp/Mastering-React-3-6-Gist
Fiddle: http://j.mp/Mastering-React-3-6a-Fiddle

How it works
All we did here was replace the static TextBox component instances with code that
dynamically generates the TextBox components based on this.state.form shown
as follows:

 {Object.keys(this.state.form).map(
 function(key) {
 return (
 <TextBox name={key}
 value={self.state.form[key]}
 onChange={self.onChange}/>
)
 })
 }

The Object.keys method will return a collection of all the property names on
this.state.form and we then call map on that collection to generate our TextBox
instances. From here there are many exciting things we could do. We could make
our TextBox component more generic so that it takes an input type from the data
that it's generated from and instead of just being a TextBox it could be a FormInput
component that could be text, checkbox, and so on. There are micro frameworks, like
Formsy that take this idea and add great features like validation to the mix. Speaking
of validation, let's take a closer look at validation in React.

Validation
In this chapter we looked at forms but how to do we handle validating the user
input? There's good and bad news on this for React users. The bad news is that this is
not a concern that React address for us. However, the good news is that we have a lot
of options when it comes to validation because React is focuses only on displaying
and modifying the screen and not validating it. Our first options is that we could
simply write our validation logic into our components or other JavaScript modules.

http://j.mp/Mastering-React-3-6-Gist
http://j.mp/Mastering-React-3-6a-Fiddle

Chapter 3

[61]

Note we will look at using the CommonJs pattern in react to
create modules in upcoming chapters.

If we started out writing our validation logic this way then we'd likely see some
patterns emerging and wan't to write some library style components, mixins and
modules to reduce repetition and provide consistency. We could definitely roll
our own solution to validating our apps as we saw at end of the last section where
we looked at creating data driven forms. We could use generic components and\
or custom mixins to create our own library that would make writing forms and
validation code easier. However, people have already done this and there are
also open source libraries out there that can make things easier when it comes to
validation. One of the key benefits of working in React is that you are working with
a micro framework that only cares about view concerns and you can mix and match
it with other tools allowing for a lot more flexibility than you will find in larger
frameworks like AngularJs or EmberJs

Validation types
There are several places in a client-server style application that we can put validation
logic. If we are using a relational database we can have validation that enforces the
structure of our data for data coming into the database. On the server if we are using
an N-Tier architecture we can have logic in our domain model and domain services,
we can also have validation logic in our repositories or Data Access Objects (DAO).
No matter what patterns we are using we can add validation logic to each tier of our
application. In the same way we can have validation logic at the transport layer and
validating that the data coming into our REST API is valid. However, none of those
concerns are things that address with our React code as React is a view concern.
This means that in a Client Server application we would only be looking at how to
address Client Side validation within the context of React.

Note that React is very flexible and it is possible to create
applications with React that don't follow a Client Server
architecture. While you can build web applications with React
you can also use React in Thick Client applications using
technologies like NW.js or Electron. You can also use React to
write native mobile applications using React Native. And that's
just some of the options available at the time of this writing. I'm
sure we will see many other options come and go over time.
However, for our conversation about React validation options we
will refer to React's area of concern as being on the Client Side.

Dynamic Components, Mixins, Forms, and More JSX

[62]

When writing client side validations and validating a form there are two scopes that
we need to be able to validate at on the client side. We need to be able to do simple
field level validations and more complex form level validations. Let's now take a
closer look at these two concepts.

Field-level validation
Field level validation is validating a single input, in isolation, for simple things like
whether a field is required, whether a field's length is under a maximum length or
over a minimum, or whether a field satisfies a regular expression for things like
emails, social security numbers, and so on.

Form-level validation
In addition to validating a form's various fields against simple rules in isolation we
also need the ability to validate our form against complex rules that consider more
than one field. For example, we may need to make sure that two fields are the same
when confirming an email address or password doesn't have an obvious typo. Or
we could have fields that are required when another field has a certain value, like
requiring filling out a shipping address when it's not the same as a billing address.
There's a whole host of complex business rules that we could need to validate that
would require more than one field of data to process and these more complex, multi
field rules fall into the scope of form level validations.

The react-validation-mixin example
Let's now take a look at one tool that we can use to do validations in React, the react-
validation-mixin. This library takes advantage of React's mixin functionality to allow
you to easily support both field and form level validations.

Getting the code
For this example we won't have a Fiddle because we need to use the React-
validation-mixin which is easily installed using NPM (Node Package Manager) and
accessed via the CommonJs require syntax. We will look in detail into setting up a
React application to allow for consuming Node package dependencies in up coming
chapters so I won't dive into those details here. For this code I've created a GitHub
repository that you can either clone using Git or simply download as a ZIP file.

The following is the repository URL:
https://github.com/RyanAtViceSoftware/
MasteringReactJsValidationExample

https://github.com/RyanAtViceSoftware/MasteringReactJsValidationExample
https://github.com/RyanAtViceSoftware/MasteringReactJsValidationExample

Chapter 3

[63]

If you haven't used GitHub before you will find the clone and download options on
the right side of the page shown as follows:

Running the code
Once you get the code cloned or downloaded and extracted you can run the code by
doing the following:

1. Execute from command prompt (Windows) or terminal (Mac)
npm install

2. Execute from command prompt (Windows) or terminal (Mac)
npm start

3. Open index.html in a browser.

You open index.html by simply right clicking on the file in
Windows Explorer (PC) or Finder (Mac and then selecting to
open the file with your favorite browser.

Dynamic Components, Mixins, Forms, and More JSX

[64]

Now you should see a page like the one shown as follows:

Note that these steps will run watchify that will rebuild
dist/bundle.js anytime you change the code in app.jsx.
The bundle.js file is what is being linked to in index.html
file. This setup allows you can change the code in app.jsx
and save your changes to regenerate bundle.js. Feel free to
experiment with the code and just make sure that you save
and then let the build finish before you refresh the browser.
You can tell the build is finished by watching the terminal\
console window that you ran the npm start command in.

Chapter 3

[65]

We have implemented several field level validation rules here shown as follows:

If you submit the form without adding any text to the boxes you will see the
validations shown above. These validations fire when a text box loses focus so that
the user isn't alerted until they've had a chance to provide valid data. Here we are
getting the React-validation-mixin default messaging for a required field violation
and a regular expression violation. The User Name field is indicating that it is a
required field and the Password field is indicating that it is not matching a regular
expression that requires that our password be between 3 and 30 characters long and
only contains letters and numbers.

Note that here we are using the default error messages and that
in real code we would want to provide more user appropriate
messages. We will look at how to do that in a moment.

www.allitebooks.com

http://www.allitebooks.org

Dynamic Components, Mixins, Forms, and More JSX

[66]

Next let's take a look at how this web application implements a more complex form
level validation. Enter ryan for the User Name field and then badryanpassword for
Password shown as follows:

Now click the submit button and you will see the alert box shown below and the
form won't be submitted.

Chapter 3

[67]

This is an example of a more complex form level validation as we are looking at
more than one field, User Name and Password, and applying a rule against both of
them. Note that you will also see alert boxes if you click submit and any of the field
validations fail as we are re-running those rules as part of our form validations as
you would want to do.

Getting the code
Note that the first thing we had to do was install the React validation mixin
module using NPM. We won't cover those details here but you can find installation
instructions on their site at. Now let's look at the code found in app.jsx file which
is the only file in our solution with logic. There is also an index.html that simply
allows from displaying our components and references the needed JavaScript files.
However, the heart of what we need to focus on here is all in the app.jsx file so let's
take a look at that code now.

Because this example is longer we will look at the code in a few parts. The first thing
we are doing in app.jsx is to bring in the dependencies that our code needs using
CommonJs syntax as shown below.

'use strict';
var React = require('react');
var Joi = require('joi');
var JoiValidationStrategy = require('joi-validation-strategy');
var ReactValidationMixin = require('react-validation-mixin');

We will cover CommonJs more in upcoming chapters but for now what is important
is to know that require("dependency-name") allows us to pull in a dependency
and assign it to a variable that we can then use in the file that we are in. Here we
have pulled in React, joi, joi validation strategy and react-validation-mixin and
assigned them all to local variables.

Next we create a ValidatedInput component to wrap our fields so that we can
easily implement a consistent form layout and provide a consistent field API for our
form through our ValidatedInput component.

var ValidatedInput = React.createClass({
 renderHelpText: function(message) {
 return (

 {message}

);
 },
 render: function() {
 var error

Dynamic Components, Mixins, Forms, and More JSX

[68]

 = this.props.getValidationMessages(
 this.props.name);

 var formClass = "form-group";

 if (error.length > 0) {
 formClass = formClass + " has-error";
 }

 return (
 <div className={formClass}>
 <label className="control-label" htmlFor={this.props.
name}>
 {this.props.label}
 </label>
 <input className="form-control" {...this.props}/>
 {this.renderHelpText(error)}
 </div>
);
 }
});

All we are doing here is allowing for all the props that are applied to the
ValidatedInput to be wired to our input as shown below.

<input className="form-control" {...this.props}/>

Using {...this.props} allows us to easily use this component to handle all the
bootstrap styles and layout while delegating the controlled component wire up to the
consuming component. We are adding an input with a label that will reference the
input element's name by setting the label element's for={this.props.name} value.
We've also added an error that will be displayed if:

this.props.getValidationMessages(this.props.name)

Next let's look at the Demo component below which contains our form.

var Demo = React.createClass({
 validatorTypes: {
 userName: Joi.string().required().label('User Name'),
 password: Joi.string().required().regex(/[a-zA-Z0-9]{3,30}/).
label('Password')
 },

 getValidatorData: function() {
 return this.state;
 },

Chapter 3

[69]

 getInitialState: function() {
 return {
 userName: "",
 password: ""
 };
 },

onSubmit(event) {
 event.preventDefault();

 // Handle field level validations
 var onValidate = function(error) {

 if (error) {
 if (error.userName) {
 alert(error.userName);
 }

 if (error.password) {
 alert(error.password);
 }
 }

 // Handle form level validations
 var passwordContainsUserName
 = this.state.password.indexOf(
 this.state.userName) > -1;

 if (this.state.userName
 && passwordContainsUserName) {
 alert("Password cannot contain the user name.");
 return;
 }

 if (!error) {
 alert("Account created!");
 }
 };

 this.props.validate(onValidate.bind(this));
 },

 onChange: function(event) {
 var state = {};
 state[event.target.name] = event.target.value;
 this.setState(state);
 },

 render: function() {

Dynamic Components, Mixins, Forms, and More JSX

[70]

 return (
 <div className="container">
 <form onSubmit={this.onSubmit}>
 <ValidatedInput
 name="userName"
 type="text"
 ref="userName"
 placeholder="Enter User Name"
 label="User Name"
 value={this.state.userName}
 onChange={this.onChange}
 onBlur={this.props.handleValidation("userName")}
 getValidationMessages=
 {this.props.getValidationMessages}/>
 <ValidatedInput
 name="password"
 className="form-control"
 type="text"
 ref="password"
 placeholder="Enter Password"
 label="Password"
 value={this.state.password}
 onChange={this.onChange}
 onBlur={this.props.handleValidation("password")}
 getValidationMessages=
 {this.props.getValidationMessages}/>
 <button className="btn btn-success" type="submit">
 Submit
 </button>
 </form>
 </div>
);
 }
});

We start by implementing React-validation-mixin's validatorTypes property that
defines our validation rules shown as follows:

var Demo = React.createClass({
 validatorTypes: {
 userName: Joi.string().required().label("User Name"),
 password: Joi.string().required().regex(/[a-zA-Z0-9]{3,30}/).
label("Password")
 },

Chapter 3

[71]

Here we are using Joi to make userName a required string with a label of User
Name. We are also defining password to be a required string. We then use a regular
expression so that our password must be between 3 and 30 characters that are either
letters or numbers and we set the label to Password.

Next we define react-validation-mixin's getValidatorData method which returns the
data that the validation rules will be applied too. In the getValidatorData method we
simply return this.state and we are initializing this.state in getInitialState to
return empty strings for userName and password shown as follows:

 getValidatorData: function() {
 return this.state;
 },
 getInitialState: function() {
 return {
 userName: "",
 password: ""
 };
 },

One of the things I like about react-validation-mixin is that it is very small and
focused and relies on another library, Joi, for defining simple field level validation
rules as we saw earlier in the code.

Next let's look at the render method that lays out and wires up our form shown
as follows:

 render: function() {
 return (
 <form onSubmit={this.onSubmit}>
 <ValidatedInput
 name="userName"
 type="text"
 ref="userName"
 placeholder="Enter User Name"
 label="User Name"
 value={this.state.userName}
 onChange={this.onChange}
 onBlur={this.props.handleValidation("userName")}
 getValidationMessages=
 {this.props.getValidationMessages}/>
 <ValidatedInput
 name="password"
 className="form-control"
 type="text"
 ref="password"

Dynamic Components, Mixins, Forms, and More JSX

[72]

 placeholder="Enter Password"
 label="Password"
 value={this.state.password}
 onChange={this.onChange}
 onBlur={this.props.handleValidation("password")}
 getValidationMessages=
 {this.props.getValidationMessages}/>
 <button className="btn btn-success" type="submit">
 Submit
 </button>
 </form>
);
 }

Here we are doing the following:

assigning form.onSubmit to this.onSubmit so that we can be
notified when the form is submitted and execute our form level
validations.
<form onSubmit={this.onSubmit}>

1. In onSubmit we are preventing the default HTML handling so the page
doesn't post back and then we are able easily do form level validations as
we have access to this.state and can execute whatever logic we like here.
When a validation rule fails we are just showing an alert box but you can and
should do something more appropriate in your project code. Here we are first
creating an onValidate function that takes an error and then performs field
level validations using the properties of the error argument that was passed
in. We will pass this onValidate function into the this.props.validate
method that is part of the react-validation-mixin. The this.props.validate
method it will then run the validation rules we configured above and pass
any errors to onValidate in the first argument which is the error argument
in our code. Additionally we are calling bind(this) on onValidate so that
our this context is correctly set to our component instance and not the React
runtime. Now when our onValidate callback function is called we can easily
access this.props and this.state to do our complex validations.
 onSubmit(event) {
 event.preventDefault();

 // Handle field level validations
 var onValidate = function(error) {

 if (error) {
 if (error.userName) {
 alert(error.userName);

Chapter 3

[73]

 }

 if (error.password) {
 alert(error.password);
 }
 }

 // Handle form level validations
 var passwordContainsUserName
 = this.state.password.indexOf(
 this.state.userName) > -1;

 if (this.state.userName
 && passwordContainsUserName) {
 alert("Password cannot contain the user name.");
 return;
 }

 if (!error) {
 alert("Account created!");
 }
 };

 this.props.validate(onValidate.bind(this));
 },

2. Assigning the ValidatedInput value to properties of our state so that our
inputs will be dynamic.
 <ValidatedInput
 name="userName"
 type="text"
 ref="userName"
 placeholder="Enter User Name"
 label="User Name"
 value={this.state.userName}
 onChange={this.onChange}
 onBlur={this.props.
handleValidation('userName')}
 getValidationMessages=
 {this.props.getValidationMessages}/>

Dynamic Components, Mixins, Forms, and More JSX

[74]

3. Assigning our ValdiatedInput instances' onChange properties to this.
onChange so that we can update the state when onChange fires. Once this.
onChange is called we are then taking advantage of how JavaScript objects
are dictionaries to dynamically update our state based on the event.target.
name. Here we are indexing into our state object with state[event.target.
name]. This allows us to keep our code generic and reduce boilerplate code by
following the simple convention that we assign the name attribute of our inputs
to the same name that we use for that input's data on our state object. This trick
allows us to avoid having to write a function for each controlled component.
 onChange: function(event) {
 var state = {};
 state[event.target.name] = event.target.value;
 this.setState(state);
 },

4. Assigning onBlur to this.props.handleValidation so that when
our text input's lose focus it's associated validation rules will fire. The
handleValidation function was added to our component by the react-
validation-mixin and provides a convenient way to validate a field via a key
from an event handler. When the handleValidaiton function is called our
form will re-render if there is a validation error allowing us to display the
error as we did in the ValidatedInput component we saw earlier in the code.

5. Assigning this.props.getValidationMessages to our ValidatedInput
instance's getValidationMessages property. The getValidationMessages
function expects a call back that will be called to check for error messages
that will be displayed as shown in the following code. We are simply
delegating this call to this.props.getValidationMessages which is part
of the react-validation-mixin which will use the configured label to create a
standard user friendly error message.

6. Adding a submit button that will cause our form to submit shown as follows:

 <button className="btn btn-success" type="submit">
 Submit
 </button>

Now we have looked at doing simple field and complex form level validations using
the react-validation-mixin. At the time of this writing there are several validation
libraries available in the open source community to choose from and if you're feeling
adventurous you could write your own which is a technique we will explore in the
future chapters.

Chapter 3

[75]

Summary
In this chapter we looked at dynamic components and saw how we could easily
create repeated collections of components. We then looked a mixins and saw how
we can decorate lifecycle events and share functionality with this extensibility point.
Next we looked at forms and saw how when we set value we create a controlled
component. We then discussed validation and looked at an example of how we
could use the react-validation-mixin to handle both field and form level validations.

We have now covered most of the basic aspects of React and will now dive into some
of the more advanced topics and look at some more substantial examples.

[77]

Anatomy of a React
Application

In an application of any reasonable complexity, React plays a significant but limited
role. React is a component rendering and composition system for views. This
definition leaves out many facets of a complete application. In this chapter, we will
explore complex web application design as three aspects. We will also identify the
subcomponents of each aspect and develop a rationale for choosing particular tools
to service each aspect.

In this chapter, we are going to cover the following:

• What is a Single Page Application (SPA)?
• Aspects of a SPA design
• Build systems
• CSS preprocessors
• Compiling modern JS syntax and JSX templates
• Front-end architecture components
• Application design

The goal of this chapter is to become familiar with the structure of web applications
and the technologies involved. In the following chapters, 5 through 9, a full-featured
multi-user blog application will be built. The preparation provided here will guide
you not only with the configuration of the blog application, but will also introduce
you to a few design procedures. The design procedures will define the components
of the app and how they are interconnected. In the application design section of this
chapter, an email application is used as an example in order to illustrate the design
tasks for the first time. In Chapter 5, Starting a React Application, the same procedures
are followed once more for the blog application. Then, in chapters 6-9, we'll flesh out
the feature code for the multi-user blog application prototype.

Anatomy of a React Application

[78]

What is a single-page application?
A single-page application (SPA) is a rich application—one that delivers the same
features, functionality, and sophistication normally associated with a desktop or
native application. In a SPA, only one main document, or page, is loaded into the
browser. After the initial document load, other resources, such as scripts, stylesheets,
data, and assets such as images, are loaded asynchronously, but the initially
requested document does not change. In other words, throughout the lifecycle of the
application, the content of the URL in front of the hash mark (#) typically does not
change. As a result, the browser never requests any subsequent "page". The history
API in modern browsers does allow changes to the URL before the hash without an
entire page request, but most JavaScript frameworks and routing libraries use the
portion after the hash exclusively for front-end routing. For simplicity, we'll operate
using this clear separation of server-side and client-side routes.

http://example.com/app

SERVER ROUTE CLIENT ROUTE

#/primary View

The portion of the URL before the hash mark is a server-bound (browser request) route.
The portion after the hash mark is the client-side route controlled by the SPA.

Navigation is handled on the front end through a router. The front-end router reacts
to URL changes after the hash. This portion of the URL was historically used for
contextual linking between headings within a web page via anchor tags referencing
the hashed URLs, sometimes called jump links. When the application changes the
contents of the URL after the hash, a view system morphs the DOM by composing
and rendering different high-level views. The mapping between these URL changes
and views is done via the router configuration. Any change before the hash belongs
to the server route and would result in a new browser document request. By
definition, a SPA exclusively drives navigation through front-end routes only.

At the highest level, a SPA still consists of a front end and back end. Historically, the
back end performed most of the application logic and the front end merely handled
the concern of presenting an interactive facade to the user in order to display data
and gather input. With a SPA, the back end is typically just a persistence mechanism
and an API whose design could still be largely defined by front-end modeling. In
a SPA, the front end now handles all significant routing, DOM construction and
composition, and view modeling. View models are projections or subsets of one or
more of the models in the application or problem domain.

Chapter 4

[79]

Three aspects of a SPA design
A SPA can be conceived in three parts: a build system, front-end architecture
components, and application design. Application design is called out specifically
because it is instrumental in defining the server API as well as moving forward
with the actual implementation. The artifacts that result from the application design
process bridge the gap between the various needed parts, and the interesting use of
those parts in an actual implementation. We'll begin by identifying the various parts
and end by exploring a few design procedures. This will carry us nicely into the next
chapter, where we will begin to implement an actual application.

The following diagram illustrates the three major aspects of a SPA design and
their relationships:

3 ASPECTS OF A
SPA DESIGN FRONT END

BUILD SYSTEM

ARCHITECTURE

1

2

ROUTER

MODELS

VIEWS

MESSAGING
&

EVENTING

HTTP
OR WEB
SOCKETS

SERVER

PERSISTENCE
A
P
I

3 APPLICATION DESIGN

WIREFRAMES

DATA ENTITIES
DEFINITIONS

SITEMAP

VIEWS

API & MODELS

ROUTER CONFIG

In the diagram, you can see a clear association between the core front-end models
and the server API, as well as the somewhat nebulous relationship between the
application design and everything else. Stay with me on the application design
aspect. It will generate some meaningful artifacts and make both the relationships in
the anatomy diagram and the implementation of our application clearer.

Anatomy of a React Application

[80]

As we explore these aspects and their details, we'll also address how there are
lots of options for each detail, offer some thoughts on trade-offs for each option,
and ultimately describe a choice with some justification. There are so many ways
to address each problem that, sooner or later, you just need to choose and move
forward. How you make such choices should take into account the problem you
are trying to solve, the other components you have already chosen, and obvious
advantages each choice offers your particular application. Try to avoid naïve
comparison analysis that is rampant on the Web (X versus Y) and focus on what
each option actually does, which qualities of it appeal to you personally and how
those qualities apply to the problem at hand. Popularity of an option should be
considered in two regards:

• The ease of finding information on the option (documentation quality, help
forums, thoughtful examples in blogs, etc)

• General acceptance of that option within the community of practitioners
using the components you've already chosen

In other words, if you've already chosen React for its strengths at component
composition and rendering performance, then you should probably lean a bit into
other tools that are trending in the React community in order to have better support.

Build systems
Building a SPA (as opposed to an older style web application) means that
many application concerns have migrated to the front end, making the client-
side responsibilities necessarily more complex. Also, the nature of modern web
development lends itself to an endless buffet of tools aimed at making HTML,
JavaScript, and CSS more manageable.

3 ASPECTS OF A
SPA DESIGN FRONT END

BUILD SYSTEM

ARCHITECTURE

1

2

ROUTER

MODELS

VIEWS

MESSAGING
&

EVENTING

HTTP
OR WEB
SOCKETS

SERVER

PERSISTENCE
A
P
I

3 APPLICATION DESIGN

WIREFRAMES

DATA ENTITIES
DEFINITIONS

SITEMAP

VIEWS

API & MODELS

ROUTER CONFIG

The front-end build system

Chapter 4

[81]

Here are some of the types of tools for managing code complexity:

• Module and code packaging/delivery systems
• CSS preprocessors
• Next-generation JavaScript syntax (ES6 and beyond)
• Templates and other syntax processing (needed for JSX)

In terms of managing complexity, the first item in this list is paramount. Being able
to organize portions of code, inject it into other portions, and efficiently deliver it to
the browser is essential for making web applications.

Choosing a build system
The build system will tie all of the builders and preprocessors together into
a manageable pipeline of transformations for development and, ultimately,
deployment.

For small experiments, using the in-browser JSX compiler is great. You can also
use the ES6 (ECMAScript 6) Harmony syntax if you use <script type="text/
jsx;harmony=true">. This feature was added in React 0.11.

For serious work, though, it is recommended that you use a build system for JSX
compilation, CSS preprocessing (such as LESS and SASS), as well as for bundling
your application into payloads of an efficiently small number of files. There are many
solutions for this, and it seems that there's a new one every couple of months. An
early and enduring favorite is Grunt, in which build tasks are specified in code but
resemble a large configuration file. When streams caught on in the node community,
a stream pipelining build task system was created called Gulp.

Typically, a module system is paired with a build system in order to manage
dependencies. CommonJS and Asynchronous Module Definition (AMD) are the
prominent modularity strategies. AMD is valued for its natural disposition toward
asynchronous loading, and CommonJS is valued for its familiar looking syntax and
use in NodeJS.

Anatomy of a React Application

[82]

Alongside build tools are scaffolding tools that whip your filesystem structure into
a ready-to-code state. These tools also download requisite libraries and perform
configuration by asking you to answer a series of yes or no questions. One very
popular scaffolding tool is Yeoman, which handles all these scaffolding tasks. While
Gulp is used for general task running and sequencing, a Gulp-related answer to
the scaffolding aspect exists called Slush. As previously stated, these types of tools
(and JS frameworks for that matter) are released on a continual basis. Developing
an aptitude for identifying the trade-offs and merits of new tools without getting
overwhelmed or too complacent with a particular set is an essential skill. Shiny
new ones are always on the horizon but, whichever you choose, you should spend
enough time with them to complete a nontrivial project in order to know where
their true power lies. Doing this will hone your technical judgment and help you to
develop a personal style.

Within this swirl of options, there's a very versatile tool that the React JS community
seems to have gravitated toward called Webpack. Webpack is substantial. It has
a pluggable interface and a project build specification mechanism, which can
intelligently split your code into chunks for efficient delivery to the browser. It uses
a streaming pipeline style similar to Gulp but, unlike Gulp, which uses standard
NodeJS imperative streaming code, Webpack configuration defines a build pipeline
using a more succinct syntax. It also carries the burden of code chunk dependency
calculation and dynamic loading. Further, it supports both CommonJS and AMD
style dependency syntax. Chunk specification in Webpack is defined by syntax that
closely resembles AMD-style dependency injection (DI) syntax. Webpack also has a
server component which is used to dynamically generate necessary code chunks and
hot load them into the browser environment during development. It's quite a full-
featured and impressive tool.

In summary, a complete build system and pipeline includes a scaffolding aspect
to kick-start your project organization, the means to optimize a dependency tree, a
modularization component to express the dependency hierarchy, any precompilation
processes (CSS preprocessors and ES6 transpilers), code minification steps for
packaging, and active reload mechanisms for development. Take the time to try the
latest tools, but for pragmatic purposes, the path of least resistance is to use what
your community is using. For instance, you may find it easier to get help if you use
Webpack while exploring React. So, that's what we'll use going forward. We are
going to leave some of the details of Webpack aside for personal exploration, but we
will examine an interesting project configuration that uses many features of Webpack
for our example project.

Chapter 4

[83]

Module systems
There are two dominant module system styles in the JavaScript community: AMD
and CommonJS.

CommonJS
CommonJS is traditional in that a single assignment statement is used to specify a
portion of code to be imported into the target code. The statement looks like this:
var someModule = require('path/to/module');. A key point to this structure is
that, for the module referenced by the variable to be immediately used in a following
statement, the module assignment must block until the module code can be loaded.
So, it had better be loaded or your JS code would have to pause! Though, a more
advanced parser, which understands both JavaScript and CommonJS syntax, can
look ahead to require statements and build an intelligent dependency graph for
preloading and concatenation. CommonJS syntax is the natively supported module
system in NodeJS. It is also the style used in the JavaScript core language going
forward from ES6.

Here's a quick note about CommonJS with Webpack. Typically,
the way you call for a CommonJS module is by assigning the
result of a require invocation to a var statement. This means
that the var statement could potentially pollute the function
scope in which it was defined, as var statements do. Webpack,
though, wraps the module within another function scope.
In fact, it rewrites your require invocation to a Webpack one
that can intelligently load application chunks. So, your var
statements within a Webpack module become effectively
isolated. This is a nice extra isolation that brings CommonJS
within Webpack closer to the isolation and DI style of AMD.

AMD
AMD (Asynchronous Module Definition) is a specification in which module code is
encapsulated into the invocation of a function named define. The define signature is
comprised of the following parameters:

• First, an optional module name (the module is referred to by filename if this
parameter is omitted)

• Next, an optional list (array) of dependencies by name or filesystem location
• Finally, and most importantly, the definition of the module itself as an IIFE

(immediately invoking function expression)

Anatomy of a React Application

[84]

The IIFE (also the module definition function) signature contains positional
parameters that directly map in arity (number of parameters) and parameter order
to the dependencies specified in the previous define parameter, the dependency
array. This allows assignment and symbol renaming upon invocation of the target
module, our IIFE. Another way to say this is that the dependencies you specify in the
dependency array parameter will directly be mapped to the function parameters of
the module being defined, allowing you to name dependencies whatever you want
within the module. This syntax lends itself to a more natural-feeling asynchronous
loading pattern for JavaScript. It is considered more natural for asynchronous
loading for two reasons.

First, it is a common pattern in JavaScript to make the final parameter to a function
signature a callback for continuation of execution. It is also generally expected that
the callee will invoke the function supplied in the final parameter asynchronously.
This is the callback pattern for asynchronous JS.

Second, the define invocation itself establishes a registry of modules and their
dependencies. This lends an AMD system to all sorts of optimization opportunities
where modules can be loaded and executed more efficiently. For instance, as define
invocations occur, the AMD system could begin loading the modules in turn. Logical
branches within code can call define for subsequent on-demand loading. Here's
another example of a possible optimization: the AMD system could lazily load
modules only when required and fetch them from the server. A final reason AMD
may be considered "natural" is that the syntax not only resembles a historically
familiar pattern used in JavaScript, but also closely mirrors other DI systems.

Our module choice
I personally bought into the syntactical style and more "natural" asynchronicity of
AMD during the duration of the great module debate. However, in the following
chapters, we'll use CommonJS for pragmatic reasons. ES6 uses this style and has a lot
of other great features that we want to use. The moment of judgment on this debate
has largely passed as NodeJS and JavaScript natively support CommonJS going
forward. Finally, there are a lot of tools, including Webpack, that take the burden of
asynchronous loading and packaging of code for the wire off of the developer, even
when using the CommonJS syntax. As such, further mentions of JavaScript modules
will loosely imply the ES6 CommonJS style. It is the path of least resistance.

Chapter 4

[85]

CSS preprocessors
CSS preprocessors are a fantastic way to organize CSS. They help to simplify
complicated selectors, handle vendor prefixing, establish variables for reuse in layout
measurements and color calculations, and even roll up image references into the
stylesheet, eliminating extra HTTP requests. If you are a serious web developer, you
need to get comfortable with CSS preprocessors.

The two prominent options are LESS and SASS. While many CSS gurus seem to
advocate SASS, we are going to use LESS. This is not a stance on preprocessors in
general, but this book is about React and we are already using Node for tooling
because of Webpack. LESS syntax, while perhaps a bit less powerful, more closely
resembles actual CSS and runs a bit more easily just with JavaScript (specifically node),
while SASS requires Ruby or a Node bridge to native bindings. So, the barrier to entry,
both cognitively and environmentally, is lower overall for our project using LESS.

Compiling the modern JS syntax and
JSX templates
ECMAScript 6 (ES6), a long overdue update to the specification upon which
JavaScript is based, has many useful features and additional convenient syntax. It
heralded a future of frequent updates to the language, so you should get familiar
with what it has to offer.

If we are going to inhabit React-land, we should use JSX. It's a very convenient way
to compose React components, albeit a leaky abstraction of HTML (really XML). It
looks like HTML, but it's really just shorthand for JS. Remembering this mantra at all
times can keep you out of trouble: JSX is a dialect of JavaScript, not HTML.

In regard to language features, browsers don't really support a particular version of
JavaScript. Adoption of features is more fluid. Browser updates roll out chunks or
bursts of the latest features. Having many moving targets is annoying for a developer,
but transpilers come to the rescue! It turns out, we can just write using our favorite
features. Luckily, the hardworking people of the web development community have
managed to make implementations of new features in runtime environments that
don't explicitly support them via transcompilation (aka source-to-source compilers)
and polyfills (runtime supported code that fills in missing features). A couple of
past popular transpilers were Google Traceur compiler and 6to5. 6to5 was renamed
to Babel because the maintainers wanted to be more forward looking than just
compiling ES6 to ES5. Babel will support ES6 and beyond as new features are ratified.
It's also generally easy to use and includes JSX support! One wonderful tool lets us
use the latest and greatest of JavaScript and do JSX compilation.

Anatomy of a React Application

[86]

Front-end architecture components
A user interface is all about views. The primary views tend to map directly to user
goals. For instance, in an email application, you read and send emails. So, your
primary views could be "inbox" and "create email". In most applications, defining
the primary views typically consists of taking the system nouns (document, email,
order, user, post, etc) and making a view for each associated verb, usually "find"
and "create/edit".

The following diagram highlights the front-end architecture aspect of an SPA design:

3 ASPECTS OF A
SPA DESIGN FRONT END

BUILD SYSTEM

ARCHITECTURE

1

2

ROUTER

MODELS

VIEWS

MESSAGING
&

EVENTING

HTTP
OR WEB
SOCKETS

SERVER

PERSISTENCE
A
P
I

3 APPLICATION DESIGN

WIREFRAMES

DATA ENTITIES
DEFINITIONS

SITEMAP

VIEWS

API & MODELS

ROUTER CONFIG

Front-end architecture components

In a React app, your front-end architecture components are:

• The router
• Models
• Views (Layout and CSS)
• View models (compositions of system models)
• View controllers (logic and rules in the view)
• Messaging and eventing mechanisms

Chapter 4

[87]

The front-end router
As mentioned at the beginning of this chapter, the front-end router is a piece of
software that reacts to changes in the URL after the hash mark. The result of the
routing is a transition between major views. This changes the user's context or
workflow. An obvious choice for a front-end router in a React application is React
Router. It handles all of the standard functions needed from a router. Router
functions include the ability to map routes to views or compositions of views as well
as to break apart the hashed part of the route into positional parameters and query
parameters (everything after the "?" in the URL). The query parameters are packaged
neatly into props for the components targeted for render by the router.

Front-end models
In the front end, models are often correlated one-to-one with the data entities of
the application at large. Early on, there wasn't a particular solution for this concern
targeted for React applications, although Backbone models were probably most
often used for this purpose. Now there are several solutions specifically targeted at
React applications.

Facebook, the creators and general maintainers of React, have devised a modeling
pattern they call Flux. Flux embraces a one-way data flow model and works by
supplying three types of entities: stores, actions, and the dispatcher. Actions are just
verbs in the system, commands. When an action occurs, the dispatcher routes it to
interested listeners, the stores. Stores are essentially bags of data that can be queried
via actions and emit store change events which views respond to by updating
internal state and re-rendering if needed.

Another model solution targeted at React with growing popularity is Reflux. Reflux
is very similar to Flux but omits the dispatcher. Reflux was crafted with the notion
that the dispatcher isn't particularly useful and is just extra work. Instead, in Reflux,
actions are commands but are merely named commands that can be published or
subscribed to directly. So, stores listen to actions directly instead of being mapped
through the dispatcher and, just as in the Flux architecture, generate store events that
can be listened to by views. Because of this simplification in Reflux, we'll use it in our
prototype application in the application building chapters. Reflux also supplies some
useful mixins for our views listening to stores. These mixins will automatically tie the
payload of the store event emission to a state variable in our views and call setState
whenever there is a store change.

Anatomy of a React Application

[88]

Views, view models, and view controllers
These entities are the ones that will be taken care of by React. The view is an instance
of a React component that was specified via React.createClass. Logic within that
component definition is effectively the view controller. The internal component state
or a portion of that state could be considered the view models in a React application.
View models in our blog app will be the portions of internal state set by our Reflux
stores via the convenience of the Reflux mixins. View models (component state) in
the app may also be a composition of more than one store, if necessary.

Messaging and eventing
With everything in our app componentized, we'll need a way to coordinate reactions
to changing data, user interactions, and possibly scheduled events. In React, a parent
component can communicate to a child component via props. The child can react to
prop changes using the componentWillReceiveProps lifecycle method. However,
our data stores aren't part of this component hierarchy, and it's nice to have a general
communication bus for communications besides those within the view hierarchy.
For this, we can use actions in Reflux. Actions are merely publish-subscribe eventing
mechanisms. In addition, actions can be specified as asynchronous and supply a
promise interface. This is sufficient for just about any SPA. As a bonus, we can go to
a single place, our action definitions object, to see a list of all the verbs in the system
and whether or not they are async. Nice!

Other utility needs
At this point, we have everything related to view management and front-end
communication covered but an important piece is still missing: the bold double-
headed arrow in the diagram pointing between front-end models (now stores) and
the server API. For this, we really just need a simple AJAX library. This is usually
baked into frameworks and other toolkit libraries such as jQuery and Backbone, but
such libraries also come with a lot of things that we don't really need. Superagent is a
great example of a full-featured AJAX library. Its clean, chainable, interface handles
different REST verbs and HTTP headers and supplies a promise. Consider React to
be in the spirit of the Unix philosophy, which espouses the virtue of "doing only one
thing, and doing it well". React does views, only views, and does them well. Likewise
Superagent does HTTP requests, only HTTP requests, and it does them well.

The last item of note in service of our blog application is some sort of rich text editor.
After all, editing plain unformatted text would make a pure, albeit rather dull blogging
experience. There are lots of options here. Among the ones I considered were Hallo
and Quill. Both were simpler than TinyMCE or Aloha Editor, which I also evaluated.
After some thought, Quill was chosen because unlike Hallo, which operates as a
jQuery UI plugin, Quill does not require any additional libraries to operate.

Chapter 4

[89]

The application design
First, a disclaimer: I am not a trained designer, but like most, I have some
assumptions and notions in the department. Here are some tips that don't just apply
to visual and interaction design, but also to software design in general. Think about
the fewest number of things that identify what you are building. For starters, eschew
all the features swirling in your brain. To begin a plan, focus is required. It will pay
off when we start coding. Try to sum up the application using one word. For our
impending blog app "posts" is an apt choice. For a lunar lander game "physics" comes
to mind. For an adventure game, maybe that one word is "story". If you understand
the number one thing that your app is supposed to get right and let it guide you
throughout design and development, then it will at least do that one thing well.

In the next chapter, the following design tasks will be repeated for the blog
application, which will be built over the course of chapters 5 through 9. In that
application, the focus is on posts and people (bloggers). As such, the design should
initially address text. A lot of color and other flourishes are probably okay, but in the
spirit of simplicity, use of space and typography will be our primary concerns. So,
we'll focus on placement, workflow (find posts, read posts, and follow an interesting
author), and making things clear and easy to read.

The following diagram highlights the application design aspect of an SPA design:

3 ASPECTS OF A
SPA DESIGN FRONT END

BUILD SYSTEM

ARCHITECTURE

1

2

ROUTER

MODELS

VIEWS

MESSAGING
&

EVENTING

HTTP
OR WEB
SOCKETS

SERVER

PERSISTENCE
A
P
I

3 APPLICATION DESIGN

WIREFRAMES

DATA ENTITIES
DEFINITIONS

SITEMAP

VIEWS

API & MODELS

ROUTER CONFIG

The application design aspect.

Anatomy of a React Application

[90]

The diagram shows how a few simple design procedures translate directly into
implementations in our front-end application architecture. With a bit of upfront
planning, we can save a lot of time. You don't have to have an eye for design to follow
a process which will make ongoing code decisions a lot easier. In the next chapter,
before we actually start writing the code, we'll make a few lists and diagrams. Right
now, as a preview, let's explore these design procedures, what the output of each looks
like, and how it will serve us when we actually begin to write code.

The following design procedures use an email application as an example. We'll
repeat these procedures for the blog application in the next chapter.

Creating wireframes
This is a screen designing process. Sometimes it's good to just start sketching. Start
drawing an interface that captures the placement of items and core user interactions
in the application. There are a lot of tools that can be used for wireframing, but I
prefer to dive in with a pen and paper. Color, fonts, and other final touches aren't
necessary here. The aim is twofold:

• Information hierarchy: Spatial relationships and placement of data on screen
• User interactions: Navigation and user workflow (menus, links, and so on)

For the information hierarchy, think about the user goal in each main view, and how
they would use each main component in sequence within each workflow. This will
help you choose the correct size and placement in order to guide their eyes through
their tasks linearly.

For interactions, stick with precedent. A chief principle of usability is "don't make me
think". It turns out that Don't Make Me Think is also a very concise book on usability by
Steve Krug, and is recommended reading for anyone making interfaces on the Web.
Try to put primary and secondary navigation in a typical area. If you have primary
action buttons, such as confirm buttons, give them a bit more visual weight and put
them near the right edge of the screen (closer to a thumb on a mobile device).

Chapter 4

[91]

The following diagram shows a wireframe for a familiar type of web application, an
email web app:

FIND AND READ EMAIL

CREATE NEW EMAIL

LOGO

LOGO

SUBJECT FROM
DATE/TIME

CONTACTS

CONTACTS

<CURRENT DATE/TIME>

8:38 PM 6/14/2015

FOLDERS

FOLDERS

<FOLDER NAME OR SEARCH TERMS>

NEW MESSAGE

...

...

from name
read subject _______

Junk
Sent

Inbox_____

Junk
Sent

Inbox_____

FORWARD REPLY

76

76

NEW EMAIL

+

NEW EMAIL

+

Search

Search

FROM NAME
unread subject

Subject

To

Message

SENDSAVE

In the email application wireframe example, you can see how using a simple format
such as a pen and paper can establish focus on component placement, relative size,
and user workflow without the distractions of color, font choice, specific graphics,
and the like. For your applications, you'll want to make a handful of these to capture
the primary views that service main user goals. For email, this could be as few as
two: "find mail" and "create new mail".

Examining the wireframes also forecasts reusable components. In the example image
these would be: the header, contacts control, icon button, email list, and so on.

Anatomy of a React Application

[92]

Main data entities and the API
Make a list of the main data entities in your app. This list should be quite short. One
of the entities is probably the main focus of the app. For example, in an email app,
the most important data item by far is the email! Alongside that, you'd probably
have contacts and folders. If this list starts getting long, perhaps you are getting a
little too detailed. To get an initial list, think about what objects a user would expect
to see on a main page or screen of your app if you were to ask them conversationally.

Next, you can define an API for data persistence by writing out each entity and the
standard list of verbs for data augmentation: C.R.U.D. (create, read, update, and
delete). In the case of a RESTful API for a web application, the verbs would be POST,
GET, PUT, and DELETE, respectively. Here's an example for an email application:

Entity name Data members Operations
Mails • mail uid

• folder uid
• from email
• from name
• to
• subject
• body
• new

• create
• read
• delete

Folders • folder uid
• folder name

• create
• read
• update
• delete

Contacts • contact uid
• contact name
• contact email
• contact photo

• create
• read
• update
• delete

Most main entities will have the full complement of data operations. Often, they
will have a read operation to get one instance and one or more read operations to
get a collection of instances. Also, expect every main data entity to have a unique
identifier (uid).

Chapter 4

[93]

Main views, site map, and routes
Identifying the main views in the app is simple. They are usually just the user
goals in regard to the main subject of the app. If you decide to wireframe most of
your app, you've probably already identified all of these views. In the email app,
two obvious main views could be a list of emails (inbox) and "create/edit email".
You'll probably want to add the primary navigation view (often a header) to this list
even though it's likely embedded in many or all of the main views. It will help when
making the sitemap.

Once you have the main views figured out, you can make a sitemap. Sitemap is a bit
of a misnomer here. After all, this isn't a website; it's an application! Still, this term
is somewhat apt since it's also used as the name of a real artifact that can be used to
index your application for Search Engine Optimization (SEO).

Make a box for each main view and draw lines for user navigation between them.
Don't be surprised if your sitemap looks like a spider web instead of a tree. This is
the difference between a sitemap for an application, which deals with views, and one
for a website, which deals with a hierarchy of pages. The following is an example of
a sitemap for a Twitter-like application:

PR
IM

AR
Y

VI
EW

S

* POST STREAM IS PRIMARY
(MOST IMPORTANT) VIEW

LOGIN
POST STREAM
HEADER NAV
USER PROFILE
MESSAGES
POST

LOGIN

HEADER

POST STREAM POST

USER PROFILE

MESSAGES

my feed

search

my profile

tag search

SITE-MAP FOR A
TWITTER-LIKE
APPLICATION

A wireframe for a twitter-like application

Anatomy of a React Application

[94]

Finally, we've reached the goal of this exercise that will allow us to being coding in
earnest. Armed with the main views and the sitemap, you can now easily produce
your router configuration. Each main view will be able to be linked and bookmarked.
This final step will be especially useful when we design the blog application in the
next chapter. The sitemap will allow us to scaffold our application workflows using
React Router before filling in the details for the view logic and data management.

Summary
After reviewing a list of application aspects and some of the tools, it's apparent that
programming applications for the web browser has become quite complex! Of course,
if your application is very small and limited to only a single workflow or two, you may
like to omit some of these tools. Although, it's best to become comfortable with all of
them. They are the tools of your trade. Indeed, the reason for reaching for a tool like
React is because it reduces complexity and affords power and performance for very
complex interactive applications such as Facebook, the impetus for React's existence.

Finally, it's important to understand that just knowing a list of problems and possible
tools isn't enough to effectively compose them into something complete. Some
forethought and a design procedure can greatly improve both the coding process and
the end result. A planning process is as important a part of an application developer's
repertoire as their ability to decompose the parts of the app and choose software.

In the next chapter, we'll reiterate some of the tool choices here and repeat the design
procedures for a multi-user blog application. The artifacts produced by this process
will then be used to guide the construction of the app.

[95]

Starting a React Application
The aims of this chapter are to formulate a plan, set up the environment, and
scaffold the code. First, we'll work through the application design tasks described
in the previous chapter. Then, we'll fetch development tools and configure the
programming environment. In the end we'll have a running skeleton of our
application and will have covered the following technical subjects:

• Webpack: This is the build automation and development server. We'll get a
basic configuration working that will service ES6 and JSX compilation, code
bundling, hot loading React components, and polyfilling.

• React application structure: Though there are many ways to arrange the
parts of your application using scaffolding tools, such as Yeoman, they make
a lot of assumptions during the process. In this chapter we'll arrange the
structure ourselves.

• React router: The user experience starts at the address bar or a link to your
application. There are many expectations that come with using an application
or website hosted in a web browser, such as bookmarking and deep linking.
Setting up the router early is prudent since this is where everything really
begins.

Application design
In Chapter 4, Anatomy of a React Application, we looked at a few design tasks that help
to establish intent before coding in earnest. We will repeat those tasks for our blog
application. The ultimate goal is to support blog entry for multiple users.

Creating wireframes
Starting with pen and paper is an approachable way to define a problem. We know
we'll need a blog post entry screen to author rich text, a means to sign up a new user,
a means for that user to log in, and ways to view the posts and the users.

Starting a React Application

[96]

User-related views
The user-related views include not only the ones that manage the user entity, but also
those that manage the login session. The following figure shows the log in view:

REACTION JOIN LOG INsearch

LOG IN

username

password

LOG IN

LOG IN

Log in view

The log in screen is the simplest form in the application: just one heading, two fields,
and a submit button.

Here is the user sign-up screen. It is the largest and most complex input form in
the application:

REACTION JOIN LOG INsearch

BECOME AN AUTHOR

blog name

username

first name

password

last name

email

I'M READY!

profile image

CHOOSE

SIGN UP

User create (sign-up) view

Chapter 5

[97]

The sign-up screen could also be used to edit an existing user account. Using the
same component for creation and editing is a common practice. When we implement
this screen in the next chapter, we will use a trick to get a profile image from disk
and persist it to the document database as text.

Finally, the user view displays a read-only form of the user profile and a filtered list
of posts authored by the specific user:

REACTION JOIN LOG INsearch

BLOG NAME
First Name Last Name

LARGER
PROFILE
IMAGE

POST LIST
OF

THIS USER'S
POSTS

~

User view

Our first representation of a user includes the profile image, the name of their blog,
and their name. The user's posts will be displayed beneath the profile information.

Starting a React Application

[98]

Post-related views
The wireframes in this section constitute the screens for creating and viewing posts.
First, let's look at the wireframe for the post creation view:

REACTION LOG OUTsearch HELLO NAME: WRITE

~

<RICH TEXT CONTROLS>

POST TITLE
...

Hello World!

POST

Create post view

This is where we'll put our rich text editor, Quill. The post title is a large, prominent,
input field followed by a separator.

The next wireframe depicts the default view for the application, the post list view:

REACTION JOIN LOG INsearch

BLOG TITLE
blogger name MM/DD/YY H:M:S

BLOG TITLE 2
other blogger

Summary
text

read more

LOAD ON
SCROLL

All
LOADED

LOADING...

Showing X posts

POST BELONGS
TO LOGGED
IN USER

BLOG NAME
username

BLOG NAME 2
username..........

EDIT POST

SHOW ALL POSTS

Post list view

Chapter 5

[99]

This is the home view. It depicts the application header, the list of all posts, a loading
message when the user scrolls, and a final Showing X Posts message with the total
number of posts currently loaded. The user list appears on the right side of the
screen. Clicking one of the users navigates to the user view screen shown in the
previous figure.

There are two instances of obvious component repetition: a list of posts that now
appears both on the user view and this post list view, and a representation of the
user that has the photo, the name of their blog, and their name. When we set up the
file structure, we'll account for these as reusable components.

Finally, the last post-related wireframe is for a single post entry:

REACTION JOIN LOG INsearch

BLOG POST TITLE
First Name Last Name DATE & TIME

View Post

The top portion of the post view is a mixture of user data and post information. The
post title, date, and time are from the post data and the user photo and name are
from the user data. The lines in the wireframe represent rendered markup created by
the Quill editor from the create post view.

Data entities
Users and posts are the primary data entities. Post deletion and user editing and
deletion are left unimplemented for the sake of brevity, but could easily be added by
you later. Other enhancement ideas are suggested at the end of the application tour
in Chapter 9, React Blog App Part 4 – Infinite Scroll and Search.

Starting a React Application

[100]

Entity Name Data Members Operations
Posts • post id

• user id
• body
• date
• summary

• create
• edit

Users • user id
• blog name
• user name
• password
• profile

image
• first name
• last name

• create

Main views and the sitemap
Almost every main view is already sketched up from our wireframes. To capture
the user workflows through the app, add the header bar component to that list. The
header component is the first place an author will go to sign up, log in, or create a
new post. It's the most explicit navigation in the application, resulting from direct
user interaction. The navigation that occurs as a result of clicking on a post or user
is subtler. The navigation that occurs after completing the create user or create post
forms is automatic. The obvious destination choice is the read-only view version of
the successfully submitted item.

All of the aforementioned navigation is represented in the next figure as an arrow in
our final design task, the sitemap:

Chapter 5

[101]

LOG OUT

POST
LIST
VIEW

POST VIEW

LOGIN

CREATE
POST

CREATE
USER

USER
POST LIST

USER

header

USER
LISTPOST

LIST
POST

Sitemap

It is apparent from the wireframes that the header is in each main view, but it's
only represented on the home view (all posts) of the sitemap in order to depict its
navigation options just once.

Preparing the development environment
Before we start coding, we'll need to get our development tools installed and
configured. This involves installing some Node modules and writing the Webpack
configuration file.

Installing Node and its dependencies
Node.JS is needed to run Webpack automation, the Webpack dev server, and the
JSON mock server. Head over to Nodejs.org and follow the installation instructions
for your operating system. You'll also need a terminal to run commands and view the
output of Webpack as it runs compilation steps. The Windows terminal is serviceable,
but if you install Git for Windows it comes with a better shell called git-bash (which is
part of MinGW, a minimalist GNU environment for Windows).

Initialize a Node project by running npm init and answering the prompts. The
defaults will work for us, so you can just press Enter and accept each default. This will
create the package.json file, which will contain a manifest of module versions for
our development dependencies. If you haven't already, open a terminal, create a new
directory, and execute the command:

npm init

Before installing and configuring Webpack, some Node packages must be fetched;
these will be needed for the application code. If you need a refresher on why we've
chosen these particular packages you can flip back to the previous chapter.

Starting a React Application

[102]

As mentioned before, Node Package Manager (npm) uses the configuration file named
package.json. This file contains some metadata about your project, but the most
important part is the manifests of modules and their respective versions. Node and
npm use a pragmatic versioning scheme called semver (semantic versioning). Semver
makes it clear when there's a breaking API change in a module revision. The version
numbers consist of three components: major, minor, and patch. Different versions of
the major component indicate API incompatibility. Different versions of the minor
component denote backward-compatible API additions within the same major version.
Changes to the patch component indicate defect fixes, and are always backward-
compatible. The packages listed in package.json will each have a complete version,
often with a tilde '~' in front of it. This means any non-breaking version near the stated
version number will suffice when fetching updates or installing a fresh set of modules
when there are none currently in the node_modules folder.

It can be tedious to manage the versions in package.json. Luckily, when you
execute npm install you can ask npm to add version detail for a newly fetched
module to the configuration in package.json. There are two kinds of dependencies:
ones that are required for the app to run in production, and ones that are only
needed for development. To make npm append the version detail to the file
for application runtime dependencies, you can add the option --save to your
npm install command. To get version information added to package.json for
development dependencies, use --save-dev. Note that these web projects move
very fast and change APIs from time to time. If you have problems with any of the
code in this book, it's a good idea to reference the versions of modules referenced in
the package.json file included in the respective chapter's code zip file.

To install our application dependencies, run the commands below. Alternatively you
can just use the package.json file from one of the code zip files for this chapter.

npm install --save react

npm install –-save react-dom

npm install --save react-addons-update

npm install --save react-router

npm install --save history

npm install --save reflux

npm install --save reflux-promise

npm install --save superagent

npm install --save classnames

npm install --save quill

npm install --save moment

Chapter 5

[103]

Let's talk briefly here about Moment. If you code your own date manipulation math
and formatting, you will have a bad time. It may seem simple on the surface, but it
is definitely not. Moment is the premier date library for JS. Why aren't there loads of
date libraries like everything else in JS? Because people don't want to (and usually
shouldn't) code date and time math!

There is another item here that was not discussed in Chapter 4, Anatomy of a React
Application. Classnames is a generic CSS class name string constructor module with
semantics very similar to ng-class in Angular. It's a handy way to construct class
names together based on the state of our React components. So handy, in fact, that it
was part of the React addons for a while before it was broken out into a separate utility.
You can find the documentation and source on GitHub under JedWatson's account.

The react-dom package is necessary for rendering and finding DOM elements. It
was split from the main React package in version 0.14 in order to make things more
modular. Similarly, React addons have also been split out. We'll use the react-
addons-update module to create copies of objects.

The history module is used by react-router to manage browser history.

An update to the Reflux project split out the promise interface for asynchronous
actions. So, reflux-promise is included here to add the promise interface back into
those actions.

Installing and configuring Webpack
Install Webpack and the Webpack dev server. Here the Webpack dev server is
installed globally so that the command is easily available from any command path.

npm install --save webpack

npm install -g webpack-dev-server

Within our Webpack configuration we are going to use the following: the Babel JS
transpiler for ES6 and JSX, the React hot-loader so we'll have to refresh our browser
less often, and the Webpack dev server to host our application locally. Reusable
Webpack components are called loaders. You'll find that similar sorts of pluggable
pieces are called tasks in Gulp or Grunt. They are transformations on source
files performed in a pipeline fashion. Install each of these modules using the npm
command:

npm install --save babel

npm install --save babel-core

npm install --save babel-polyfill

npm install --save babel-loader

Starting a React Application

[104]

npm install --save babel-preset-es2015

npm install --save babel-preset-react

npm install --save-dev react-hot-loader

A few more loaders and supporting modules are needed for Less CSS pre-processing:

npm install --save less

npm install --save less-loader

npm install --save style-loader

npm install --save css-loader

npm install --save autoprefixer-loader

Finally, install the mock dev server for our REST interface.

npm install -g json-server

We'll need to restart the webpack-dev-server from time to time. To make this
simple, add a script to the package.json file. Inside that file, there's a member called
scripts with a default test target. Alongside the test member, add one called
start with a dev server start string like this.

...
"scripts": {
 "test": "echo \"Error: no test specified\" && exit 1",
 "start": "webpack-dev-server --progress --colors --watch"
}

Don't forget to add that comma after the test value!

The Webpack configuration
The listing for the Webpack configuration file is a bit lengthy. It is broken into sections
in the text, but it's really just one JS object. Once this configuration file is written, it still
won't be ready to run until we start scaffolding the entry points. You can follow along
with the listing by looking at the webpack.config.js file included in ch5-1.zip.

Webpack configuration starts by including the path module and the Webpack
module. We'll be specifying a lot of directory locations in this file. The path module
is used to make definitions of file paths simple and safe across operating systems.
The path module handles operating system differences, such as different slashes
used as path separators. The entire Webpack configuration is a single object exported
in webpack.config.js.

Chapter 5

[105]

var path = require('path')
, webpack = require('webpack')
;

module.exports = {

Entry and output sections
The Webpack configuration file starts with the entry and output sections. We
only have one entry point and one output file, but you could define multiple ones
if desired. The entry modules are loaded in order and the last one is exported. The
first item in entry enables the client portion of our dev server. The second provides
an avenue for our react-hot loader to push updated React components to our
application without a refresh.

We can get all the non-transformable code-backed polyfills for ES6 by including the
babel-polyfill runtime. This includes features such as generators, promises, array
map, and many more. Further, this Babel runtime polyfill technique doesn't pollute
the global namespace as traditional ones can.

Finally, our app entry point is listed. The output value is the file name that will go into
the index.html file. This final output file will include all of the transformed code.

 entry: [
 // WebpackDevServer host and port
 'webpack-dev-server/client?http://localhost:8080',
 'webpack/hot/only-dev-server',
 'babel-polyfill',
 './js/app' // Your app's entry point
],
 output: {
 filename: "js/bundle.js"
 },

The plugins section
Next is the plugins section. HotModuleReplacementPlugin allows the server to
push changed JS modules into the browser execution context without a page refresh.
Next, NoErrorsPlugin will prevent erroneously built code from propagating into
our hot-loaded browser environment, where it would certainly cause exceptions.
Error output from the build will still appear on the console where we execute our
dev server via npm start, but the bundle app.js file will not be rebuilt and replaced
until the compile errors are resolved.

Starting a React Application

[106]

I've left a small snippet in the plugins section for an array utilities polyfill. We won't
need it since Babel will provide array utility functions (such as map, forEach, reduce,
and so on) as part of the transpilation process. The commented out example is left in
the listing to show how to include some global JavaScript in your Webpack bundle
for any cases where global polyfilling is needed.

 plugins: [
 new webpack.HotModuleReplacementPlugin(),
 new webpack.NoErrorsPlugin(),

 // example of polyfilling with webpack
 // alternatively, just include the babel runtime option below
 // and get Promises, Generators, Map, and much more!
 // You can even get forward looking proposed features
 // for ES7 and beyond with the
 // stage query parameter below
 // https://babeljs.io/docs/usage/experimental/
 // welcome to the future of JavaScript! :)
 //new webpack.ProvidePlugin({
 // 'arrayutils': 'imports?this=>global!exports?global.
arrayutils!arrayutils'
 //})
],

The resolve section
This section is for file location resolution. The extensions array is used when Webpack
attempts to locate an imported code file in our application code. Alias is just what it
sounds like, short names for paths during module search. Since Node has a handy
__dirname variable we can make an alias for our application root. We'll use this
throughout the app when we import modules instead of grappling with relative paths.

 resolve: {
 // require files in app without specifying extensions
 extensions: ['', '.js', '.json', '.jsx', '.less'],
 alias: {
 // convenient anchor point for nested modules
 'appRoot': path.join(__dirname, 'js'),
 'vendor': 'appRoot/vendor'
 }
 },

https://babeljs.io/docs/usage/experimental/
https://babeljs.io/docs/usage/experimental/

Chapter 5

[107]

The module section
The module section contains Webpack loaders. The loaders look cryptic, but they
are simply a transformation pipeline for text files. They are applied by testing
filenames using regular expressions. We've added the Less autoprefixer plugin to the
transformation pipeline for .less files in order to automatically inject CSS vendor
prefixes for the browsers specified by the browsers parameter.

The most interesting loader section in our list is the one for .js and .jsx files.
This loader pipeline runs Babel on our files; this does both the ES6 and JSX
transformations. When a loader pipeline contains multiple items, as it does here, they
are applied from right to left. The react hot loader is to the left of Babel so that it runs
after it.

 module: {
 loaders: [
 {
 test: /\.less$/,
 loader: 'style-loader!css-
loader!autoprefixer?browsers=last 2 version!less-loader'
 },
 {
 test: /\.css$/,
 loader: 'style-loader!css-loader'
 },
 {
 test: /\.(png|jpg)$/,
 // inline base64 URLs for <=8k images,
 // use direct URLs for the rest
 loader: 'url-loader?limit=8192'
 },
 {
 test: /\.jsx?$/,
 include: [
 // files to apply this loader to
 path.join(__dirname, 'js')
],
 // loaders process from right to left
 loaders: [
 'react-hot',
 'babel?presets[]=react,presets[]=es2015',
 'reflux-wrap-loader'
]
 }
]
 } // end module
};

Starting a React Application

[108]

Babel is separated completely into submodules as of version 6. This means that,
without these other modules, Babel will do nothing to transform the files. The Babel
submodules are called presets in Babel parlance. Here we have included the react
preset, which handles the JSX compilation, and the es2015 preset, which provides all
of our ES6 goodness.

Ahead of the Babel and react-hot loaders is the reflux-wrap-loader. The source for
this loader should be located in the file web_modules/reflux-wrap-loader/index.
js. Go ahead and make this directory structure, and use the code listing below for
the index.js file inside the reflux-wrap-loader directory. Webpack automatically
searches the node_modules and web_modules directories for loaders. The reflux-
wrap-loader is a simple example of a loader.

module.exports = function (source) {
 this.cacheable && this.cacheable();
 var newSource;

 if (/reflux-core.*index.js$/.test(this.resourcePath)) {
 newSource = ";import RefluxPromise from 'reflux-promise';\n";
 newSource += source;
 newSource += ";\nReflux.use(RefluxPromise(Promise));";
 }
 return newSource || source;
};

As mentioned before, a loader simply transforms text files. Since the Reflux project
split out promises into a separate package, it's necessary to call Reflux.use on the
reflux-promise package. There's not a great place to do this in the application
modules, since every module would have to do it to be sure it was done without
worrying about execution order. So, instead it's done here in a loader by wrapping
the Reflux module and adding the invocation for the import and the use method.
The loader matches on the reflux-core file and frames it with the invocation
text to include the promise interface. This loader will be run before the Babel
transformation, so we can use the ES6 import syntax without generating a build
error. The loader will run on every file so you must be sure to return the original
source if you want the loader to do nothing to the file. The cacheable() invocation
instructs Webpack that, after the transformation, the result for the reflux-core file can
be cached indefinitely.

Chapter 5

[109]

Considerations before starting
Whew! I think we're ready to start, but before we dive into the code I want to impart
how I believe you should think about the render step in the React component
lifecycle as well as a way to approach browser support and form validation.

React and rendering
The way you should think about the React render function is much like the definition
of a mathematical function: f(state) = UI. React treats the DOM as a rendering
target, much like a computer program or game treats the Graphics Processing Unit
(GPU). State is kind of like the arrays of object data (vertices, and so on). That data
is prepared for shipment to the GPU, and the rendering portion of the component
lifecycle is kind of like the OpenGL rendering pipeline that consumes that data
(state). The render function itself would be the shader code that processes the
geometry and pixels in this analogy, and the virtual DOM would be the framebuffer.
In the GPU analogy, object data and state go into the render pipeline and the result is
an array of pixel data. In React, state goes into the render pipeline and a virtual DOM
tree is the result.

This means that, when a potential render cascade begins (shouldComponentUpdate
à componentWillUpdate à render), you shouldn't change the state. It's already too
late for that sort of thing. That's worth saying again; the render function should
be pure and never affect state or props. You are welcome to make intermediary
variables in the render function to create projections (transformations) of state that
are easier to consume by render logic, just don't change the state itself.

This application structure is quite powerful and is the reason that the React Native
project can exist. The DOM isn't something that you typically interact with directly in
React as you would with jQuery, for instance. Other native targets, such as iOS Cocoa,
are just other rendering targets with their own specific render function. This one-
way structure and focus on efficiency (for what is often the most expensive part of an
application, getting pixels onto the screen) is what makes React special and, in some
ways, more flexible for cross-platform development than other JavaScript libraries.

Browser support
For our application we want to use modern browsers: browsers that the vast majority
of people use. This means being a bit choosy. Of course, in a real scenario you have
to consider the target users who will actually use the application and support them,
even if it means substantial additional effort. For example, if you make a government
services website you may need to support an older IE browser if some users are
citizens who use library computers that are often older and locked into running older
browsers.

Starting a React Application

[110]

Conventional wisdom in the web community often asserts that we should start
with the lowest common denominator (that is, the worst browser in terms of feature
support) and work our way up to the fancier browsers. This is known as progressive
enhancement. This is slightly at odds with a technique known as polyfilling in which
newer features are back-ported to older browsers.

Polyfills are JavaScript code included to port features into browsers that do not
yet support them natively. They enable you to write code as if the feature exists in
an older browser. If it does already exist in the browser, the polyfill does nothing
and the native code is used. They are often very cheap in terms of code size and
performance. While not always on par with native speed, performance is acceptable
(in some cases better!). A moment ago, I mentioned that this is slightly at odds with
progressive enhancement because, with polyfills, you write code as if those features
exist in browsers where they do not. However, it's not entirely at odds with the
progressive enhancement strategy. One could argue that starting with the lowest
supported browser set, then polyfilling, and then moving on to more complex
features that will only be exhibited in newer browsers still fits the strategy. If you
are supporting older browsers and following the progressive enhancement strategy,
then significant user goals should still be achievable on those older browsers.

For our purposes (learning new stuff), we are focusing on interesting new technology
and getting a prototype running easily. So, we'll start with our desired tech and fill
it in using polyfills where we are compelled to do so, but we'll avoid writing two or
more specific portions of code that have the same effect for two or more browsers.

Using the Babel runtime trick that you saw in the Webpack configuration section
eliminates our immediate need for traditional polyfilling.

Form validation
In Chapter 3, Dynamic Components, Mixins, Forms, and More JSX there was some
discussion about validation. In that discussion, three means of immediate (field-level)
validation were explored: view level, view model level, and model level. A conclusion
there stated that, for system consistency, a model containing the constraints and a
shared mechanism to exercise constraints was an ideal architecture. While that is still
the contention of this text, in this chapter we want to focus on application structure,
mostly views. So, we are going to cheat a little and do minimal validation in the view
via a small helper. The constraints will reside inside their respective view components.
This is, in part, due to the fact that we are using JSON Server as a mock back-end. To
build a model of validation constraints while using a simple document store would
take time away from exploring our primary application architecture components
(views, stores, and actions) and their interconnections.

Chapter 5

[111]

Starting the app
We will begin exploring the construction of the application in detail in the next
chapter. To finish up here, we'll lay the groundwork for file structure, and stub out
the main views. We'll boot up our dev server and mock back-end, then add some
linking between views using React Router.

The directory structure
Make a directory structure that looks like this:

If you are using a POSIX shell (such as Bash, the default shell on Mac OSX), here are
a couple of commands to quickly create the directory structure:

mkdir -p db css/{components,vendor,views} js/{components,mixins,stores,ve
ndor,views}

mkdir -p {css,js}/{components,views}/{users,posts} js/vendor/polyfills

Notice that the components and views subdirectories in js are mirrored in the css
directory. Mirroring view and component structures in the style directories is an
easy way to keep track of which styles belong to which JS constructs. Don't forget the
directory made earlier for the reflux-wrap-loader.

Starting a React Application

[112]

The mock database
In the db directory, create a file called db.json with the following content:

{"posts":[], "users":[]}

That's it! That's our database for json-server. If you want to try running it, open a
new terminal and execute this command from the root of your app:

json-server db/db.json

index.html
The index.html file is merely a shell to include the application as bundled by Webpack.

<!DOCTYPE html>
<html>
 <head>
 <script type="text/javascript">
 WebFontConfig = {
 google: { families: ['Open+Sans:300italic,400italic,600italic
,700italic,800italic,400,300,600,700,800:latin'] }
 };
 (function() {
 var wf = document.createElement('script');
 wf.src = ('https:' == document.location.protocol ? 'https' :
'http') +
 '://ajax.googleapis.com/ajax/libs/webfont/1/webfont.js';
 wf.type = 'text/javascript';
 wf.async = 'true';
 var s = document.getElementsByTagName('script')[0];
 s.parentNode.insertBefore(wf, s);
 })();
 </script>
 </head>
 <body>
 <div id="app"></div>
 <script src="js/bundle.js"></script>
 </body>
</html>

You may remember that our app bundle output file is js/bundle.js from the
Webpack configuration. There is a <div> tag with the id app that we'll target to
render the React app. The script tag at the top is font loading code taken from Google
Fonts.

Chapter 5

[113]

js/app.jsx
This is where it all starts. This main application file includes the React Router,
primary views, and the router configuration.

import React from 'react';
import ReactDom from 'react-dom';
import { Router, Route, IndexRoute } from 'react-router';
import CSS from '../css/app.less';
import AppHeader from 'appRoot/views/appHeader';
import Login from 'appRoot/views/login';
import PostList from 'appRoot/views/posts/list';
import PostView from 'appRoot/views/posts/view';
import PostEdit from 'appRoot/views/posts/edit';
import UserList from 'appRoot/views/users/list';
import UserView from 'appRoot/views/users/view';
import UserEdit from 'appRoot/views/users/edit';

// Components must be uppercase - regular DOM is lowercase
let AppLayout = React.createClass({
render: function () {
 return (
 <div className="app-container">
 <AppHeader />
 <main>
 {React.cloneElement(this.props.children, this.props)}
 </main>
 </div>
);
 }
});

let routes = (
<Route path="/" component={ AppLayout }>
 <IndexRoute component={ PostList } />
 <Route
 path="posts/:pageNum/?"
 component={ PostList }
 ignoreScrollBehavior
 />
 <Route
 path="/posts/create"
 component={ PostEdit }
 />
 <Route

Starting a React Application

[114]

 path="/posts/:postId/edit"
 component={ PostEdit }
 />
 <Route
 path="posts/:postId"
 component={ PostView }
 />
 <Route
 path="/users"
 component={ UserList }
 />
 <Route
 path="/users/create"
 component={ UserEdit }
 />
 <Route
 path="/users/:userId"
 component={ UserView }
 />
 <Route
 path="/users/:userId/edit"
 component={ UserEdit }
 />
 <Route
 path="/login"
 component={ Login }
 />
 <Route path="*" component={ PostList } />
 </Route>
);

ReactDom.render(<Router>{routes}</Router>, document.
getElementById('app'));

React and React Router are imported because most of this file is router configuration.
Next is a set of imports for our top-level views. Those are the views designed in the
wireframes and sitemaps. After the imports, we see our first React component, which
represents the app itself: AppLayout. The root of the router configuration will target
this component.

After the application component, the JSX representing the routing table is defined as
routes. This router configuration maps URL paths in a nested structure directly to
the views that will be composed into the application component. These tags won't
actually be rendered. They are used as configuration.

Chapter 5

[115]

Each route has a path for the URL and a component, which is one of the top-level
views imported at the top of the file. A special tag named IndexRoute could be
considered the home view. Our home view is the PostList top-level view that
shows all the blog posts. Finally, there's a * route that's like a 404 handler for the
front-end. By putting PostList as the handler for this route we ensure that, if
someone types in a random URL, the app will route to the home view.

Be sure to capitalize the names of your components. In React,
lower-case component names are reserved for built-in components
that correspond to DOM tags.

Last, the Router component is rendered. This causes the router to begin listening to
URL changes. The top route / uses the AppLayout component. The components that
should be rendered by the routes are supplied as children. Those children are included
in the AppLayout and any relevant props supplied through the router are applied to
them through the React.cloneElement method within the AppLayout source.

Main views
If we try to run the code now, it will emit errors because our imports in app.jsx won't
resolve to files on disk. So, go ahead and make some components for the main views.
After that, we'll wire them up to exercise the links shown as arrows in our sitemap.

The main views all reside in the js/views directory. For each of the main views,
login.jsx and appHeader.jsx, as well as edit.jsx, list.jsx, and view.jsx in
both the posts/ and users/ directories, make a simple React component container.
We'll start each of these by importing React. This goes at the top of each file.

import React from 'react';

Then, export a React component with the minimum requirement, a render function.

export default React.createClass({
 render: function () {
 return ();
 }
});

The render function needs to return React DOM. Using the following table for each
of the files, add a JSX tag inside the return parentheses with a className and some
content that has the name of the component. Each of these files, once again, is in the
js/views directory.

Starting a React Application

[116]

Note: Your render function return value, and any other portion of
JSX code you set on a variable, must always have only one root tag.

File JSX
login.jsx <form className="login-form">login form</

form>

appHeader.jsx <header className="app-header">app header</
header>

posts/edit.jsx <form className="post-edit">post edit</form>

posts/list.jsx <div className="post-list-view">post list
view</div>

posts/view.jsx <div className="post-view-full">post view</
div>

users/edit.jsx <form className="user-edit">user edit</form>

users/list.jsx <ul className="user-list">user list</
li>

users/view.jsx <div className="user-view">user view</div>

Before booting up the Webpack dev server, create the app.less file also referenced
by an import in app.jsx. Just add an empty file for now.

Now, boot the dev server by executing npm start in another terminal. If you
navigate to localhost:8080 in your browser, you should see a pretty sparse page
that says app header and post list view. You can also visit the routes we defined and
see the stubbed views.

At this point your code should look like the code in ch5-1.zip.

Linking views with React Router
There are three main ways to transition views through React Router. The first simply
changes the URL in the address bar of the browser. The second involves using the
Link component supplied by the library. The third employs the History mixin,
which will surface the pushState method on your component. We'll look at these
usages for the app. The next few changes can be found in ch5-2.zip.

js/views/appHeader.jsx
The application header component needs a link to the login view. The Link
component is imported from React Router. The Log In link is the simplest form of
Link without any extra parameters. It is added to the appHeader.jsx file render
function like this:

Chapter 5

[117]

import React from 'react';
import { Link } from 'react-router';

export default React.createClass({
 render: function () {
 return (
 <header className="app-header">
 app header
 <Link to="/login">Log In</Link>
 </header>
);
 }
});

js/views/login.jsx
Now that we can get to the log in view, modify the login.jsx component with a
Log In button.

import React from 'react';
import { History } from 'react-router';

export default React.createClass({
 mixins: [History],
 logIn: function (e) {
 this.history.pushState('', '/');
 },
 render: function () {
 return (
 <form className="login-form" onSubmit={this.logIn}>
 <button type="submit">Log In</button>
 </form>
);
 }
});

Here we've added the History mixin to get access to the pushState function. The
component logIn function is triggered when the form is submitted. The pushState
function forwards the user to the root route, /. In the next chapter, it will actually log
the user in. If your dev server is still running, you should see your browser window
update automatically as soon as you save the file.

Starting a React Application

[118]

Summary
In this chapter, we started the application not by jumping directly into the code, but
by doing a bit of planning first. The design tasks we explored are a good way to get
your priorities straight. We also laid the groundwork for the application by setting
up the Webpack build pipeline and scaffolding out all of our main views.

In the next four chapters, the blog application will be built in earnest. This is done in
four major parts:

Chapter 6, React Blog App Part 1 – Actions and Common Components

Chapter 7, React Blog App Part 2– Users

Chapter 8, React Blog App Part 3 – Posts

Chapter 9, React Blog App Part 4 – Infinite Scroll and Search

[119]

React Blog App
Part 1 – Actions and

Common Components
Armed with the groundwork laid in the last chapter (app design, development
environment setup, and file structure), we'll press forward with writing the blog
application in earnest. The next four chapters, including this one, are a tour through
the blog application code. The application should allow log in and log out. It should
also allow multiple users (bloggers) to post. It will eventually include a search
feature and infinite scroll loading for post lists. At the end of this chapter, the
following will have been covered:

• React component composition: Examining our views and sitemap will yield
reusable components we can compose into many places in the application

• Reflux Actions: A simple messaging system for React

The construction of the application is split into the following four parts:

• Part 1: Actions and common components
• Part 2: User account management
• Part 3: Blog post operations
• Part 4: Infinite scroll and search

For now, we are going to examine Reflux Actions (the verbs of the application), some
base CSS, and a few components that are used widely within the app: BasicInput,
Loader, and the Application header.

React Blog App Part 1 – Actions and Common Components

[120]

Reflux actions
Actions are a simple messaging system. Action configuration has a flexible syntax
and, like the rest of Reflux, many shortcut syntactical forms are provided for
convenience.

It isn't necessary to go into all of the various forms of syntax here, as the
documentation is clear and succinct. All actions have a name and are listenable. The
important part is that there are action methods that are immediate and ones that are
asynchronous. Action listeners can respond to both types. Asynchronous actions
provide a promise interface when reflux-promise is used. This promise interface was
set up in the last chapter via a Webpack loader, reflux-wrap-loader, which wrapped
the Reflux module with the necessary invocations to use reflux-promise.

Here are the actions defined as a single module:

File: js/actions.js

import Reflux from 'reflux';

export default Reflux.createActions({
 'getPost': {
 asyncResult: true
 },
 'modifyPost': {
 asyncResult: true
 },
 'login': {
 asyncResult: true
 },
 'logOut': {},
 'createUser': {
 asyncResult: true
 },
 'editUser': {
 asyncResult: true
 },
 'search': {},
 'getSessionContext': {}
});

It's apparent here which actions are asynchronous. Callers invoking an asynchronous
action can use promise then and catch methods to consume the result or any errors.
login is asynchronous because we'll fetch the users from our prototype back end to
recognize an account, but logOut will merely destroy a cookie on the front end.

Chapter 6

[121]

Each action is a function object (functor) that can be invoked directly in order to
trigger listeners. For example, if the actions module we just defined is imported into
another code file as the variable actions, then the logOut action can be invoked like
this: actions.logOut();.

We'll see more on how Reflux actions are used in the next chapter when the first
action handlers are built. If you would like to familiarize yourself with the Actions
interface beforehand, head over to the Reflux GitHub page at https://github.com/
reflux/refluxjs. For now, just take a mental note that there are two ways to listen
to actions:

• Using a Reflux Store's listenTo or listenToMany methods within
a store itself

• Using the listenables shorthand property within a store

So, stores listen to actions. View components trigger actions and listen to stores.
This is the one-way data flow of the Flux and Reflux architectures.

Reusable components and base styles
Grab the ch6.zip file to follow along. Much of the CSS is either self-explanatory or
beyond our target scope for this text. The top-level application Less/CSS is covered
here. It includes the base styles for commonly used tags and overall layout. Later, the
.less files are called out in the file manifests but not in the chapter code listings. As
the application building chapters progress, all of the code, including .less files, can
be found in the .zip file for each respective chapter.

Base styles
The base styles, variables, mixins, and vendor styles, are comprised of these files:
app.less, colors.less, mixins.less, quill.snow.less, and normalize.less.
The main application .less file, app.less , contains the primary layout and some
shared styles for the entire app. It's a bit long, but it contains all of the primary styles
and layout for main components, such as the header. Here's the app.less file, we'll
dive into the details after the listing:

File: css/app.less

@import "vendor/normalize.less";
@import "mixins.less";
@import "colors.less";

html, body {

https://github.com/reflux/refluxjs
https://github.com/reflux/refluxjs

React Blog App Part 1 – Actions and Common Components

[122]

 font-family: 'Open Sans' sans-serif;
 height: 100%;
 * {
 font-family: 'Open Sans' sans-serif;
 }
}
a {
 cursor: pointer;
}
// layout
.app-container {
 height: 100%;

 .app-header {
 position: absolute;
 top: 0;
 height: 40px;
 width: 100%;
 min-width: 800px;
 z-index: 100;
 }
 main {
 width: 100%;
 min-width: 800px;
 height: ~'calc(100% - 40px)';
 position: absolute;
 top: 40px;
 //padding: 40px 0 0 0;

 &>* {
 overflow-y: auto;
 height: 100%;
 width: 100%;
 }
 }
}
// standard across application
fieldset {
 border: none;

 legend {
 text-transform: uppercase;
 letter-spacing: 2px;
 text-align: center;

Chapter 6

[123]

 margin: 10px 0;
 }

 .basic-input {
 width: 100%;
 }

 button[type=submit] {
 float: right;
 margin: 20px 0 0 0;
 }
}
hr {
 width: 50px;
 content: '';
 position: relative;

 border-width: 0 0 0 0;
 height: 20px;

 &:before {
 position: absolute;
 display: block;
 color: #aaa;
 content: '§';
 font-size: 18px;
 transform: scaleX(6) rotateZ(-90deg) ;
 height: 10px;
 font-weight: 100;
 line-height: 10px;
 width: 20px;
 text-align: center;
 left: 50%;
 margin-left: -10px;
 top: 5px;
 }
}
button {
 background-color: #bbb;
 color: black;

 line-height: 40px;
 text-transform: uppercase;
 font-size: 12px;

React Blog App Part 1 – Actions and Common Components

[124]

 letter-spacing: 1px;
 padding: 0 10px;
 border: none;
 outline: none;

 &[type="submit"] {
 background-color: darken(@blue, 20%);
 color: white;

 &:focus,&:hover {
 background: #000099;
 }
 }
 box-shadow: 1px 3px 2px 0px #666;
 transition: transform 100ms ease, box-shadow 100ms ease;

 &:active {
 transform: translateY(2px);
 box-shadow: 1px 1px 2px 0px #666;
 }
}
@import "vendor/quill.snow.less";
@import "views/appHeader.less";

Starting with the imports at the top, normalize.less is a style reset. Use style resets
in your CSS to normalize the styles in all browsers so there's an equal starting point
for your application-specific styles. The normalize reset is less aggressive than some
other resets, which remove all native browser styling.

The mixins.less file is where we put reusable functions in for our Less code. Less
functions are invocable portions of styles that generate a group of CSS rules in the
final output at the point where they were invoked. For this app, the file has just one
function called slidelink. The slidelink function will be used to animate a fancy
underline on links in the app header bar upon hover.

The colors.less file contains reusable hex color values stored as Less variables.

The rest of the styles in the app.less file are used for the general layout of main
application views. In this file, there's positioning for the header bar, but the styles
for the bar itself will go into a separate file for that component. Most notable are the
fieldset styles, because they are used in all of the forms. The universal hr style is a
little squiggle separator used to visually break up fieldsets.

The file ends with an import used for styling the Quill rich text editor as well as
an import for the appHeader.less file. That .less file can also be found in this
chapter's code listing zip file, ch6.zip.

Chapter 6

[125]

Inputs and loading indicator
These two components are used in many places throughout the application. Here is a
manifest of the files for each component:

• BasicInput: js/components/basicInput.jsx, css/components/
basicInput.less

• Loader: js/components/loader.jsx, css/components/loader.less

The BasicInput component
The BasicInput component is a container used to encapsulate an input coupled with
help/hint text or an error message. A similar wrapper approach is often used to pair
an input with its label.

File: js/components/basicInput.js

import React from 'react';
import update from 'react-addons-update';
import ClassNames from 'classnames';

let Types = React.PropTypes;

export default React.createClass({
 // this is how you enforce property types in React
 propTypes: {
 helpText: Types.string,
 error: Types.string
 },
 render: function () {
 return (
 <div className={ClassNames({'basic-input': true, 'error': this.
props.error})} {...this.props} >
 <input
 className={this.props.error ? 'error' : ''}
 {...update(this.props, {children: {$set: null}})} />
 {this.props.children}
 <aside>{this.props.helptext || this.props.error || ' '}</
aside>
 </div>
);
 }
});

www.allitebooks.com

http://www.allitebooks.org

React Blog App Part 1 – Actions and Common Components

[126]

The first item to notice is the propTypes member. This React feature enforces type
checking on the props passed into the component. It's also a nice way to define the
interface to the React component in one place.

There are two interesting parts in the render function. The first is the use of the
Classnames library. As mentioned in the last chapter, this is a class string builder
similar to Angular's ng-class functionality. There's an optional "error" class applied to
the top-level div in the component if the error prop is set. The "error" class turns the
help text and field underline red. This red underline style, and the rest of the styles
for the BasicInput component, can be found in css/components/basicInput.less.

The second interesting part in the render function stems from the fact that input
tags should not have children. Since children are included in the props member, the
update add-on function is used to produce a duplicate props member that omits the
children from the rest of the props. This copy that omits any children props is used
to cascade properties used on the BasicInput component tag down to the internal
input tag. The children elements composed into a BasicInput instance are then
rendered after the input tag.

The BasicInput component with an inline validation error

Before we're finished with the BasicInput component, the import for the respective
.less file needs to be added at the bottom of our app.less file:

@import "components/basicInput.less";

For future .less files in the file manifests, it is assumed that an import should be
placed at the bottom of the app.less file. Any CSS files not explored in the chapter
text reside in the chapter ZIP files.

The loader component
The loader component will be used anywhere we need to display a loading
treatment while waiting for a server response. Here is the loader component source:

File: js/components/loader.jsx

import React from 'react';
import ClassNames from 'classnames';

export default React.createClass({

Chapter 6

[127]

 render: function () {
 // like ng-class, but for React!
 var classes = ClassNames({
 'loader-container': true,
 'inline': this.props.inline
 });
 return (
 <div className="loader">
 <div className={classes}>
 <aside></aside>
 <aside></aside>
 <aside></aside>
 <aside></aside>
 <aside></aside>
 </div>
 </div>
);
 }
});

The loader component is made up of five elements (we chose aside elements here)
wrapped in two containing divs. The asides are tiles that flip and fade in sequence.
The first wrapper is a positioning container. There's an optional prop, "inline"
consumed by this component that adds a class to make the loader flow with the
content. This is used for post lists. Without it, the loader is positioned absolutely in
the center of the app by default. The second, outermost, wrapper is used to define a
perspective container. The flip animation looks more natural (not flat) when there's
some perspective applied via this container. Here's what the loader animation looks
like in action:

The loader animation

You'll find the animation CSS in ch6.zip in the css/components/loader.less file.

React Blog App Part 1 – Actions and Common Components

[128]

The application header
The application header will include our log in and log out links and eventually a
link to compose a blog entry. It is ubiquitous across all main views. As such, it
resides in our main application component and is just one JSX file along with its
respective LESS file:

• Application header : js/view/appHeader.jsx, css/views/appHeader.
less

File: js/view/appHeader.jsx

import React from 'react';
import { Link } from 'react-router';

export default React.createClass({
 render: function () {
 return (
 <header className="app-header">
 <Link to="/"><h1>ReΛction</h1></Link>
 <section className="account-ctrl">
 <Link to="/users/create">Join</Link>
 <Link to="/login">Log In</Link>
 </section>
 </header>
);
 }
});

The application header component includes the name of the app, "Reaction", with a
stylized "A", that links to the home (post list) view. There are just a couple of links
here for now: a link to sign up and a link to log in. Later, we'll add a search box.
Also, once the user is able to log in, we'll add a log out link and a link to the blog post
entry page.

Summary
We're just getting started. With some base styles in place and our input wrapper
component, BasicInput, we can start building out real features in the next chapter.
We'll start with users so there's an identity that can be attached to each blog entry.

[129]

React Blog App
Part 2 – Users

This chapter covers user session management as well as creating, viewing, and
listing users (bloggers).

Our primary focus for the app is posts, but a post must be associated with a user
identity. User account management is an often-underestimated and complex part of
applications. One of the more difficult aspects of account management is security. Since
we are making a mock application, we won't have much security. We are going to
establish the user identity with a simple comparison during log in. If we moved beyond
this prototype into a real, deployable, application, we'd replace most of this session
management code with software that's suited specifically for user identity management.

This chapter comprises all of the code needed to get our user management in order.
Since the application is already scaffolded, the code breakdown benefits from being
organized by entity type (configurations, stores, and views). By the end of this chapter
we'll be able to sign up, log in, log out, list, and view user accounts. The application
throughout this chapter can be found in the ch7.zip code bundle.

The construction of the application is done in four parts:

• Part 1: Actions and common components
• Part 2: User account management
• Part 3: Blog post operations
• Part 4: Infinite scroll and search

React Blog App Part 2–Users

[130]

Code manifest
Below is a manifest for all of the code in this chapter. You can follow along with code
listings in the ch7.zip code bundle included with this book.

The user and session context stores are the first time the API endpoint will appear.
The API URL root resides in the application configuration module:

• Application configuration: js/appConfig.js

Getting user accounts fully up-and-running will introduce these dependencies.
One is for managing cookies' client-side. The other is for form validation. Here are
those dependencies:

• Cookie reader/writer: js/vendor/cookie.js
• Form utilities mixin: js/mixins/utility.js

For our application, we are mocking user account management. So, there's a separate
store for managing the session and another store for the user data:

• Session context store: js/stores/sessionContext.js
• Users store: js/stores/users.js

User-related views, and their respective styles, include:

• Login view: js/views/login.jsx
• User edit view: js/views/users/edit.jsx, css/views/user/edit.less
• User view component: js/components/users/view.jsx, css/components/

users/view.less

• User list view: js/views/users/list.jsx, css/views/user/list.less
• User view: js/views/users/view.jsx, css/views/user/view.less

Another affected view, which we have already defined and will need to update, is
the application header:

• Application header: js/views/appHeader.jsx (add session awareness,
welcome, logout)

Chapter 7

[131]

Application runtime configuration
The appConfig module keeps application-level configuration details all in one place.

File: js/appConfig.js

export default {
 pageSize: 10,
 apiRoot: '//localhost:3000',
 postSummaryLength: 512,
 loadTimeSimMs: 2000
};

At this point in development, only the apiRoot is needed. The other items you see
in the source will be used later. The pageSize variable is for the infinite scroll feature
we'll implement in Chapter 9, React Blog App Part 4 – Infinite Scroll and Search. The
postSummaryLength member is for the summary post descriptions, which appear
in post lists in the next chapter. Finally, the loadTimeSimMs is an artificial delay
we'll use to get a sense of how the application would feel with non-trivial server
communication latency.

Mixins and dependencies
The items in this section contain supporting code for the views. The cookie reader/
writer will be used to mock session management. The form utility mixin will be used
to validate the individual form elements in all of the forms.

Reading and writing cookies
Maintaining a user session can be complex. To make it as real as possible, the session
detail is put into cookies. Reading and writing cookies is a simple parsing process,
but there's no need to suffer the minutiae of it. So, we picked up a simple cookie
reader/writer JavaScript utility from the Mozilla Developer Network (MDN)
cookies documentation page (https://developer.mozilla.org/en-US/docs/Web/
API/Document/cookie). This code was put into the file cookie.js and placed in the
js/vendor folder. In an application with real user session management, the cookies
would be secure HTTP-only cookies and JavaScript would not be able to read them.

https://developer.mozilla.org/en-US/docs/Web/API/Document/cookie
https://developer.mozilla.org/en-US/docs/Web/API/Document/cookie

React Blog App Part 2–Users

[132]

The form utilities mixin
This mixin will be used to validate form inputs. It is needed at this point for the user
creation form and log in view.

File: js/mixins/utility.js

import ReactDOM from 'react-dom';

/**
 * returns the failed constraints { errors: [] } or true if valid
 * constraints are a map of supported constraint names and values
 * validators return true if valid, false otherwise
 */
export function validate (val, constraints) {
 var errors = [];
 var validators = {
 minlength: {
 fn: function (val, cVal) {
 return typeof val === 'string' && val.length >= cVal;
 },
 msg: function (val, cVal) {
 return 'minimum ' + cVal + ' characters';
 }
 },
 required: {
 fn: function (val) {
 return typeof val === 'string' ?
 !/^\s*$/.test(val) : val !== undefined && val !== null;
 },
 msg: function () {
 return 'required field';
 }
 },
 exclusive: {
 fn: function (val, list) {
 if (!(list instanceof Array)) { return false; }
 return list.filter(function (v) {
 return v === val;
 }) < 1;
 },
 msg: function (val) {
 return val + ' is already taken';
 }
 }
 };

Chapter 7

[133]

 if (!constraints || typeof constraints !== 'object') {
 return true;
 }

 // exercise each constraint
 for (let constraint in constraints) {
 let validator, currentConstraint;

 if (
 constraints.hasOwnProperty(constraint) &&
 validators.hasOwnProperty(constraint.toLowerCase())
) {
 validator = validators[constraint.toLowerCase()];
 currentConstraint = constraints[constraint];

 if (!validator.fn(val, currentConstraint)) {
 errors.push({
 constraint: constraint, // the failed constraint
 msg: validator.msg(val, currentConstraint)
 });
 };
 }
 }
 return errors.length > 0 ? {errors: errors} : true;
} // end validate function

// The Mixin
export var formMixins = {
 getInputEle: function (ref) {
 if (!this.isMounted()) { return; }
 return this.refs[ref] ?
 ReactDOM.findDOMNode(this.refs[ref]).querySelector('input') :
 ReactDOM.findDOMNode(this).querySelector('[name='+ref+']
input');
 },
 validateField: function (fieldName, constraintOverride) {
 let fieldVal = this.getInputEle(fieldName).value
 , currentConstraint
 , errors
 ;

 if (fieldName in this.constraints) {
 currentConstraint = constraintOverride || this.
constraints[fieldName];

React Blog App Part 2–Users

[134]

 errors = validate(fieldVal, currentConstraint);
 return !!errors.errors ? errors.errors : false;
 } else {
 return true;
 }
 }
};

This utility module exports an object called formMixins that supplies two functions.
The first function, getInputEle, is needed for the BasicInput wrapper component
because it encapsulates the input elements in the app. Passing as a parameter either
the ref attribute on the BasicInput or the field name attribute to the getInputEle
function returns the input field wrapped by the BasicInput identified by the
parameter. The getInputEle function is used primarily by the validateField
function within this mixin in order to access the value of the input during validation.
Another option would have been to supply an interface inside the BasicInput
component itself to retrieve the input value.

The second function, validateField, is used by the views containing forms (user
create view and post edit view) to evaluate a list of constraint objects. Since this is
a mixin, the constraint objects will be defined directly on the component member
constraints within each view component. This way, the mixin can reference
the constraints member directly from this. Each constraint object contains sets of
identifiers (constraint names) and values. One constraint object should be defined per
field within the component that hosts the form fields to be validated. The identifiers
are the name of the constraint and correlate with a member in the validators
variable inside the validate function at the top of this mixin module. The value in
the constraint is typically a boundary. For instance, the minLength identifier could
have a value of 3 if we didn't want a form field to have fewer than three characters.

As stated before, the validateField mixin function obtains the constraints member
from this, which is the mixing component instance. However, there are cases during
validation where the caller may want to temporarily change those constraints. Our
specific case involves checking for duplicate user names during creation of a user.
Since the user store could change during runtime, we need a way to transfer the list
of users to our validation engine at the moment the exclusive validator runs. This is
the purpose of the constraintOverride parameter. You'll see it used later in the user
create view.

The validateField function exercises the constraints against the respective form
field value. Each validator defined in the mixin consists of a function that returns
a Boolean and another function that returns an error message. After each constraint
is checked, an array of error results is returned. Error results in the array contain
the identifier (name) of the failed constraint and an error message for the calling
component to display on the UI.

Chapter 7

[135]

User-related stores
There are two stores that deal with users. The user store maintains a collection of users
and responds to creation and modification actions. The session context store is used to
mock user sessions in a nearly genuine fashion by managing a cookie. We'll start with
the session context store.

The session context store will respond to the login and logOut actions and set a login
context cookie accordingly. Of course, if we were using real sessions the cookie would
be set implicitly by an HTTP header via a server response to log in. Further, the cookies
used in a real scenario would be the secure variety and not typically readable by
JavaScript in the majority of browsers.

The session context store
This store represents the logged in state of the user. As such, its primary interface is its
action handlers for login and logOut. Here's the source for the session context store:

File: js/stores/sessionContext.js

import Reflux from 'reflux';
import Actions from 'appRoot/actions';
import Request from 'superagent';
import Config from 'appRoot/appConfig';
import Cookie from 'appRoot/vendor/cookie';

export default Reflux.createStore({
 listenables: Actions,
 endpoint: Config.apiRoot + '/users',
 context: { loggedIn: false },
 getInitialState: function () {
 this.context = JSON.parse(Cookie.getItem('session')) ||
{};
 this.context.loggedIn = this.context.loggedIn || false;
 return this.context;
 },
 getResponseResolver: function (action) {
 return function (err, res) {
 if (res.ok && res.body instanceof Array && res.body.length > 0)
{
 this.context = res.body[0];
 this.context.loggedIn = true;
 this.context.profileImageData = null;

 this.trigger(this.context);

React Blog App Part 2–Users

[136]

 action.completed();

 Cookie.setItem('session', JSON.stringify(this.context));
 } else {
 action.failed();
 }
 }.bind(this);
 },
 getSessionInfo: function () {
 return JSON.parse(Cookie.getItem('session'));
 },
 onLogin: function (name, pass) {
 Request
 .get(this.endpoint)
 .query({
 'username': name,
 'password': pass
 })
 .end(this.getResponseResolver(Actions.login))
 ;
 },
 onLogOut: function () {
 Cookie.removeItem('session');
 this.context = { loggedIn: false };
 this.trigger(this.context);
 return true;
 }
});

A convenient way for a component to listen to a group of actions in a Reflux Store is
to assign the actions to a member called listenables. When using this mechanism,
action handler names on the store are inferred by prepending the action name with
on and camel-casing the result. This is what connects the onLogin and onLogOut
members as listeners to their respective actions. At the top of the store there are also
assignments for an initial login context, called context, and the location of the API,
called endpoint. The application configuration is imported here to obtain the root of
the JSON Server endpoint.

This store responds to two actions, login and logOut. superagent is used (imported
as Request) to call HTTP GET on the /users endpoint. Additional query parameters
for the username and password are supplied in the invocation of the query function.
The response is resolved in a separate function supplied by getResponseResolver in
order to keep the code clean and abstract response resolution for different scenarios.

Chapter 7

[137]

If the query returned a result length greater than zero, then the local store member
context is assigned the first returned item (there should only be one result if the
username and password are unique). To determine the logged-in state between browser
refreshes, a loggedIn Boolean is added to the context. Two interfaces are then serviced:
the store listenable is triggered with the login context as a parameter, and the login
action promise is resolved by the response resolver by calling complete on the action.
Finally, and the part that makes the session stick, the login context is store in a cookie
called session. Pay special attention to the fact that the profile image data is nulled out
before attempting to store the cookie. Cookies have a limitation of 4 kilobytes, and the
image data would cause the cookie to not save if the context value exceeded this limit.

If the user refreshes the browser, the store is initialized in getInitialState
by parsing the cookie back out using the cookie parser library. Before returning
the context, the loggedIn convenience Boolean is set. Returning a value in the
getInitialState method of the store will set the initial state of any component
using the Reflux connect mixin to connect to this store.

Logging out is a simple procedure. The cookie parser has a removal method,
removeItem. This removal method is invoked to purge the cookie from browser
cookie storage. As with the login action, the store listeners are triggered with what
is now a single value in the context containing a single member: the convenience
variable loggedIn set to false.

The user store
The user store will marshal user profile details to and from the JSON Server back
end. Here's the source:

File: js/stores/users.js

import Reflux from 'reflux';
import Actions from 'appRoot/actions';
import Request from 'superagent';
import Config from 'appRoot/appConfig';

import SessionContext from 'appRoot/stores/sessionContext';

export default Reflux.createStore({
 listenables: Actions,
 users: [],
 endpoint: Config.apiRoot + '/users',
 init: function () {
 Request
 .get(this.endpoint)

React Blog App Part 2–Users

[138]

 .end(function (err, res) {
 if (res.ok) {
 this.users = res.body;
 this.trigger(this.users);
 } else {
 }
 }.bind(this));
 },
 // called when mixin is used to init the component state
 getInitialState: function () {
 return this.users;
 },
 modifyUser: function (method, details, action) {
 Request
 [method](this.endpoint)
 .send(details)
 .end(function (err, res) {
 if (res.ok) {
 Actions.login(res.body.username, res.password)
 .then(function () {
 action.completed(res.body);
 });
 } else {
 action.failed(err);
 }
 }.bind(this));
 ;
 },
 onCreateUser: function (details) {
 this.modifyUser('post', details, Actions.createUser);
 },
 onEditUser: function (details) {
 this.modifyUser('put', details, Actions.editUser);
 }
});

The user store interacts with JSON Server to persist the user details gathered in the
user creation view. This store is initialized using the same API endpoint used in
the session store. Like the session store, this store is assigning handlers to actions
through listenables. Two actions, createUser and editUser, have handlers here,
but fully implementing editUser is left as a reader exercise. This would be achieved
by adding some code to the user create view. If you would like to implement the user
edit feature, doing so would involve reconstituting user data into the create/edit
form and calling the edit action handled here.

Chapter 7

[139]

The onEditUser action handler was left here to show that the code for create and
edit can be reused and differs only by HTTP method. For both the createUser and
editUser actions, the HTTP method, details of the data to persist, and the async
action that should be resolved are all supplied to the modifyUser function of this
store. superagent is used once again, but in this case the send function is used for
HTTP methods containing a request body, such as PUT and POST. In contrast, the
previous session store code used query since it used the GET HTTP method. If the
data persists correctly, then we've successfully created a user. The login action is
then invoked to automatically log the new user in before resolving the createUser
action by calling its complete method.

User views
Now that the session management and user store plumbing are in place, we turn our
attention to user-related views and components.

The log in view
The log in view is our simplest form. Here's what it looks like in action:

The log in view

Here's the source for the log in view:

React Blog App Part 2–Users

[140]

File: js/views/login.jsx

import React from 'react';
import { History } from 'react-router';
import BasicInput from 'appRoot/components/basicInput';
import Actions from 'appRoot/actions';

export default React.createClass({
 mixins: [History],
 getInitialState: function () { return {}; },
 logIn: function (e) {
 var detail = {};

 Array.prototype.forEach.call(
 e.target.querySelectorAll('input'),
 function (v) {
 detail[v.getAttribute('name')] = v.value;
 });
 e.preventDefault();
 e.stopPropagation();

 Actions.login(detail.username, detail.password)
 .then(function () {
 this.history.pushState('', '/');
 }.bind(this))
 ['catch'](function () {
 this.setState({'loginError': 'bad username or password'});
 }.bind(this))
 ;
 },
 render: function () {
 return (
 <form className="login-form" onSubmit={this.logIn}>
 <fieldset>
 <legend>Log In</legend>
 <BasicInput name="username" type="text"
placeholder="username" />
 <BasicInput name="password" type="password"
placeholder="password" />
 { this.state.loginError && <aside className="error">{this.
state.loginError}</aside> }
 <button type="submit">Log In</button>
 </fieldset>
 </form>
);
 }
});

Chapter 7

[141]

The log in view is a garden-variety username and password form. BasicInput proxies
type attributes through to the contained input tags. The onSubmit prop on the form
is assigned the local logIn component function, which submits the form.

When the logIn function is triggered, the values for username and password are
gathered up and used to invoke the login action. Before that, the submit event is
prevented from doing a regular form submission by invoking the event object's
preventDefault method. This is a common practice when using asynchronous
HTTP requests and is used here to ensure the user has had a chance to complete the
form before accidentally triggering validation. If able to log in, the user is navigated
to the root route, the post list view. If log in fails due to the action being rejected
in the user store, it is assumed that the username or password were bad and a
form-level error state, loginError, is displayed.

The create user view
The following screenshot depicts the create user or join view. The blog name,
username, and password are all required fields. The CSS specific to this view can be
found inside the ch7.zip code bundle in the file css/views/users/edit.less.

User create (edit) view

React Blog App Part 2–Users

[142]

The user creation form is the most involved view of the application because of the
volume and variety of form fields with inline validation. The listing here is lengthy,
but we'll break it down afterwards by visiting the mixins and lifecycle methods, then
the profile image feature, and finally the form validation and submission procedure.

Here's the source for the user creation form:

File: js/views/users/edit.jsx

import React from 'react';
import { History } from 'react-router';
import Reflux from 'reflux';
import update from 'react-addons-update';
import BasicInput from 'appRoot/components/basicInput';
import Actions from 'appRoot/actions';
import UserStore from 'appRoot/stores/users';
import {formMixins} from 'appRoot/mixins/utility';

export default React.createClass({
 mixins: [
 Reflux.connect(UserStore, 'users'),
 History,
 formMixins
],
 getInitialState: function () {
 return { validity: {} };
 },
 componentWillMount: function () {
 this.setPlaceholderImage();
 },
 constraints: {
 'username': {
 required: true,
 minlength: 3
 },
 'password': {
 required: true,
 minlength: 5
 },
 'blogName': {
 required: true,
 minlength: 5
 }
 },

Chapter 7

[143]

 createUser: function (e) {
 var detail = {}
 , validationState = {}
 , hasErrors = false
 ;

 e.preventDefault();

 // node list isn't necessarily an array but can be iterable
 Array.prototype.forEach.call(
 this.refs.form.querySelectorAll('input'),
 function (v) {
 let fieldName = v.getAttribute('name')
 , errors
 ;

 detail[fieldName] = v.value;

 errors = fieldName === 'username' ?
 this.validateField(fieldName, update(this.constraints.
username, {
 exclusive: { $set: this.state.users.map(function (v) {
return v.username; }) }
 })) :
 this.validateField(fieldName);

 !hasErrors && errors.length && v.focus(); // first encountered
error
 hasErrors = hasErrors || errors.length;
 validationState[fieldName] = { $set: errors.length ?
errors[0].msg : null };
 }.bind(this));

 if (this.state.profileImageData) {
 detail.profileImageData = this.state.profileImageData;
 }

 this.setState(update(this.state, { validity: validationState }));
 if (!hasErrors) {
 Actions.createUser(detail)
 .then(function (result) {
 // go to newly created entry
 this.history.pushState('', `/users/${result.id}`);
 }.bind(this))
 ;
 }

React Blog App Part 2–Users

[144]

 },
 imageLoadedHandler: function (e) {
 var imageSize = atob(decodeURI(e.target.result).
replace(/^.*base64,/,'')).length;

 this.setState({sizeExceeded: imageSize > 1024*1000});
 if (this.state.sizeExceeded /* || bad image */) {
 this.setPlaceholderImage();
 } else {
 this.setState({profileImageData: e.target.result});
 }
 },
 userImageUpload: function (e) {
 var file = e.target.files[0]
 , reader = new FileReader()
 ;

 reader.onload = this.imageLoadedHandler;
 reader.readAsDataURL(file);
 },
 setPlaceholderImage: function (e) {
 var fileVal = this.getInputEle('profileImage');
 fileVal = fileVal ? fileVal.value : '';

 if (!typeof fileVal === 'string' || /^\s*$/.test(fileVal)) {
 this.setState({
 'profileImageData': 'data:image/svg+xml;base64,
PD94bWwgdmVyc2lvbj0iMS4wIj8+Cjxzdmcgd2lkdGg9IjgwIiBo
ZWlnaHQ9IjgwIiB4bWxucz0iaHR0cDovL3d3dy53My5vcmcvMjAwMC9zdmciPgog
PCEtLSBDcmVhdGVkIHdpdGggTWV0aG9kIERyYXcgLSBodHRwOi8vZ2l0aHViLmNvb
S9kdW9waXhlbC9NZXRob2QtRHJhdy8gLS0+CiA8Zz4KICA8dGl0bGU+YmFja2dyb3
VuZDwvdGl0bGU+CiAgPHJlY3QgZmlsbD0iIzAwZmZmZiIgaWQ9ImNhbnZhc19iYWNrZ3
JvdW5kIiBoZWlnaHQ9IjgyIiB3aWR0aD0iODIiIHk9Ii0xIiB4PSItMSIvPgogIDxn
IGRpc3BsYXk9Im5vbmUiIG92ZXJmbG93PSJ2aXNpYmxlIiB5PSIwIiB4PSIwIiBoZWlna
HQ9IjEwMCUiIHdpZHRoPSIxMDAlIiBpZD0iY2FudmFzR3JpZCI+CiAgIDxyZWN0IGZpb
Gw9InVybCgjZ3JpZHBhdHRlcm4pIiBzdHJva2Utd2lkdGg9IjAiIHk9IjAiIHg9IjAi
IGhlaWdodD0iMTAwJSIgd2lkdGg9IjEwMCUiLz4KICA8L2c+CiA8L2c+CiA8Zz4
KICA8dGl0bGU+TGF5ZXIgMTwvdGl0bGU+CiAgPGVsbGlwc2Ugcnk9IjE1IiByeD0i
MTUiIGlkPSJzdmdfMSIgY3k9IjMyLjUiIGN4PSI0MCIgc3Ryb2tlLXdpZHRoPSIyIi
BzdHJva2U9IiMwMDAiIGZpbGw9IiNmZmYiLz4KICA8ZWxsaXBzZSBzdHJva2U9Ii
MwMDAiIHJ5PSI2MS41IiByeD0iMzguNDk5OTk4IiBpZD0ic3ZnXzIiIGN5PSIxMTIi
IGN4PSIzOS41IiBzdHJva2Utd2lkdGg9IjIiIGZpbGw9IiNmZmYiLz4KIDwvZz4
KPC9zdmc+'
 });
 }
 },

Chapter 7

[145]

 chooseFile: function () {
 this.getInputEle('profileImage').click();
 },
 render: function () {

 // noValidate disables native validation
 // to avoid react collisions with native state
 return (
 <form ref="form"
 className="user-edit"
 name="useredit"
 onSubmit={function (e) { e.preventDefault(); }}
 noValidate>
 <fieldset>
 <legend>become an author</legend>

 <BasicInput
 type="text"
 name="blogName"
 placeholder="blog name"
 error={this.state.validity.blogName}
 autoFocus />
 <hr/>
 <BasicInput
 type="text"
 name="username"
 placeholder="username"
 minLength="3"
 error={this.state.validity.username}
 />
 <BasicInput
 type="password"
 name="password"
 minLength="6"
 placeholder="password"
 error={this.state.validity.password}
 required />

 <div className="profile-image-container">
 <label>profile image</label>
 <img className="profile-img" src={this.state.
profileImageData}/>
 <BasicInput name="profileImage" type="file"

React Blog App Part 2–Users

[146]

ref="profileImage" onChange={this.userImageUpload}
helptext={this.state.sizeExceeded ? 'less than 1MB' : ''}>
 <button onClick={this.chooseFile}>choose file</button>
 </BasicInput>
 </div>

 <BasicInput type="text" name="firstName" placeholder="first
name" />
 <BasicInput type="text" name="lastName" placeholder="last
name" />
 <BasicInput type="email" name="email" placeholder="email"
/>

 <button type="submit" onClick={this.createUser}>I'm ready to
write</button>
 </fieldset>
 </form>
);
 }
});

Mixins and lifecycle methods
The best way to browse the code of a React component is to visit the mixins, then the
lifecycle methods, and finally the render function. Let's begin with the mixins and
lifecycle methods.

Three mixins are being used here. The first is the Reflux connect mixin, which
maintains a strong connection between the users store and a local component state
member called users. The next mixin is the React Router History mixin, which will
be used to navigate the user to the root route upon successful user creation. The last
mixin is our formMixins, which supplies the validateField method.

There are two React lifecycle methods, getInitialState and componentWillMount.
It's typical (and recommended) to scaffold component state members in
getInitialState if the state is a complex object, as seen here. This is so that
nested checks for object existence aren't needed in the render method. In this
componentWillMount method, a local state member is set for a placeholder user
profile image.

Chapter 7

[147]

The user profile image
Let's jump into how the image code works. JSON Server stores a JSON document
and, as such, it's easier to store the user profile image as a string in that file instead
of having to implement binary file storage for our prototype application. When the
component is preparing to mount (componentWillMount), setPlaceholderImage
is used to set the Base64 image data to a hard-coded image string for a blank user
avatar. Base64 is a wire-friendly text representation of binary data and also happens
to be a valid resource identifier for an img tag src attribute.

Now, look at the div element with the class name profile-image-container. The
first node within that div is an img tag that contains the Base64 of our image data
bound to the src attribute. Just after the img tag is the proxy input component,
BasicInput. The file input is validated when the onChange handler fires. During
validation, if the image max size is exceeded, a sizeExceeded state is populated
with an error message. This message is bound to the helpText prop of the file input,
informing the user of a 1MB image size limit. The button inside the BasicInput uses
a handler that simulates a click on the real file input. This is a common practice for
styling file inputs, radio buttons, and other native elements that have shadow DOM
elements (implicit elements that aren't easily styled or scripted across browsers). The
native file element is moved off the screen with CSS and a surrogate styled set of
elements forwards events to it. The synthetic click event triggers the native browser
behavior of displaying a file selection dialog.

Finally comes the real trick. The onChange handler fires in response to file selection
and calls userImageUpload, which creates a new FileReader instance. FileReader
is a somewhat new means to read files from JavaScript and now has wide browser
support. The FileReader instance hands control off to imageLoadedHandler once
the file is read completely. The imageLoadedHandler function checks the boundaries
of the image size. If the image fits, the state for the image data is set to a url data
encoding from the image read from disk. If not, we revert back to the placeholder
image source data.

Form validation and submission
There are several actions within a form that can inadvertently cause submission,
such as hitting the Enter key on the last field. This can cause a premature submission
action that triggers our validation procedure. To prevent this, the onSubmit handler
placed on the form element prevents these automatic sorts of submission by calling
preventDefault on the event object. The real submit process is triggered by the form
submit button, which calls createUser. By controlling this submit process completely,
the validation routine is able to check the fields predictably and all at once.

React Blog App Part 2–Users

[148]

In the createUser function all of the form inputs are gathered up. For each input, the
validateField mixin is called. If you remember from the description of this mixin,
there is a means to override the value of a validation constraint. This is done for the
username exclusive constraint. Mapping over the user store collection produces a
list of the current usernames to use in validation for uniqueness. This is done for every
submission because the user store contents could potentially change during runtime.

Each field that could generate a validation error according to the constraints member
on the component will receive a message from the validateField method. The
messages are collected and used to populate a validity map state member that maps
each field name to a list of its errors, if any. This is accomplished using the update
function, an immutability helper supplied by React. Update is an object extension
mechanism supplied by a React add-on. It provides the ability to describe only the
changes necessary to generate a new object based on a previous one. It's like a fancy
Object.assign. You can see how these errors in the state validity map are propagated
into the BasicInputs using the error prop for those tags inside the render function.

If no errors are found, then the createUser action is invoked. If the user is created,
then the pushState method supplied by React Router History mixin is used to
navigate to the user view for the user that was just created.

The next screenshot shows inline validation in action:

Validation in action

Chapter 7

[149]

The user view component
There is a user view and a user view component. The user view is effectively a user
profile page. It will eventually have both the user profile data and a collection of that
user's posts. The user view component is just the user information part, without the
posts. It's a separate component because the user information is used both in the user
profile view and within the user list view. To reiterate, the user view component is a
representation of the user that is used on the user profile page (the user view) and on
the main post list view (our home view) to display a list of all bloggers.

Here's the source for the user view component:

File: js/components/users/view.jsx

import React from 'react';
import Reflux from 'reflux';
import Classnames from 'classnames';
import UserStore from 'appRoot/stores/users';

export default React.createClass({
 mixins: [
 Reflux.connectFilter(UserStore, 'user', function (users) {
 // This syntax is necessary because babel runtime
 // polyfill statically analyzes code and cannot infer
 // the type of users and, by extension, the correct
 // "find" method
 return Array.find(users, function (user) {
 return user.id === parseInt(this.props.userId, 10);
 }.bind(this));
 })
],
 render: function () {
 var user = this.state.user;

 // you must have a root element!
 return user ? (
 <div className={Classnames({
 'user': true,
 'small': this.props.small
 })}>
 <img className={Classnames({
 'profile-img': true,
 'small': this.props.small
 })} src={user.profileImageData} />
 <div className="user-meta">

React Blog App Part 2–Users

[150]

 {user.blogName}
 <small>
 {user.firstName} {user.lastName}
 </small>
 </div>
 </div>
) : <div className="user" />;
 }
});

The first item of note here is the connectFilter mixin. The user store is a collection,
but for this view we just want one user. The connectFilter mixin will run any time
the user store changes via trigger. The mixin will set state using the filter function's
return value, which in this case is the user being displayed in this component.

The user view component receives the userId as a prop. The userId value is used
in the connect filter to ensure that this component instance is always connected to
the correct user. Since we are using the Babel runtime, there are already many ES6
features included. However, to accomplish the find polyfill for arrays, Babel does
a static code analysis. Since there's no way to know that the find method should be
polyfilled from a generic symbol named find, the find method must be used on the
Array class itself for Babel to know how to safely do the code replacement.

The render function is pretty basic. Multiple user properties from the user state set
by the connectFilter mixin are peppered into the UI. An additional prop called
small can be used to render a smaller profile image and lay out the component
differently. This is for the smaller view, and is used later in the list of users on our
home page, the post list view.

The user list view
This view simply iterates over user data items in the system and invokes the user
view component for each user. The following screenshot shows how that looks:

User list view

Chapter 7

[151]

Here is the source for the user list view:

File: js/views/users/list.jsx

import React from 'react';
import Reflux from 'reflux';
import { Link } from 'react-router';
import UserStore from 'appRoot/stores/users';
import UserView from 'appRoot/components/users/view';

export default React.createClass({
 mixins: [
 Reflux.connect(UserStore, 'users')
],
 render: function () {
 return (
 <ul className="user-list">
 {this.state.users ?
 this.state.users.map(function (v) {
 return (
 <li key={v.id}>
 <Link to={`/users/${v.id}`}>
 <UserView userId={v.id} small={true} />
 </Link>

);
 }) : []
 }

);
 }
});

This is one of the simplest components. The primary purpose of this component is
to later embed it into the post list view. It is bound to the user store via the Reflux
connect mixin. The render function iterates over the users and invokes the user
view component we just reviewed. Don't forget to key React DOM collections in the
renderer. The small prop is used to render a more list-friendly size of the user view
component. Each user view component is wrapped with a Link component supplied
by React Router. This renders an anchor tag that navigates to the user view (profile),
which is defined next.

React Blog App Part 2–Users

[152]

The user view
The user view is the user profile page. Later this will include a list of the user's post.
For now, it just invokes the user view component with the userId value supplied by
the router through the params prop.

File: js/views/users/view.jsx

import React from 'react';
import UserView from 'appRoot/components/users/view';

export default React.createClass({
 render: function () {
 return (
 <div className="user-view">
 <UserView userId={this.props.params.userId} />
 </div>
);
 }
});

Other affected views
The only previously defined view that needs modification for a logged-in user is the
application header.

The app header
There's now a notion of the user being logged in. Adjustments need to be made to
the application header to configure the links for login, logout, sign-up, and creating a
new blog post. The application header component source now looks like this:

File: js/views/appHeader.jsx

import React from 'react';
import Reflux from 'reflux';
import { Link, History } from 'react-router';
import Actions from 'appRoot/actions';
import SessionStore from 'appRoot/stores/sessionContext';

export default React.createClass({
 mixins: [
 Reflux.connect(SessionStore, 'session'),
 History

Chapter 7

[153]

],
 logOut: function () {
 Actions.logOut();
 this.history.pushState('', '/');
 },
 render: function () {
 return (
 <header className="app-header">
 <Link to="/"><h1>ReΛction</h1></Link>
 <section className="account-ctrl">
 {
 this.state.session.loggedIn ?
 (<Link to="/posts/create">
 Hello {this.state.session.username}, write something!
 </Link>) :
 <Link to="/users/create">Join</Link>
 }
 {
 this.state.session.loggedIn ?
 Log Out :
 <Link to="/login">Log In</Link>
 }
 </section>
 </header>
);
 }
});

What's new here is switching the display based on the loggedIn state. The loggedIn
state is garnered from the session store. The React Router History pushState
function is used for log out, and a rather plain Link component is used to navigate to
the log in view. If the user is logged in, a greeting is displayed that links to the post
creation view, which is defined in the next chapter.

Summary
Now we can sign up, log in, and log out. The sign-up form is the most complicated
component in the system, because it is a large form with a substantial amount of
validation. The next thing to do is the blogging experience… finally!

[155]

React Blog App
Part 3 – Posts

This chapter contains all of the code necessary to create, edit, list, and view blog
entries. It also includes integration with the Quill rich text editor. You can follow
along with the code, including all of the necessary Less/CSS for this portion of the
app, in ch8.zip.

The construction of the application is split into the following four parts:

• Part 1: Actions and common components
• Part 2: User account management
• Part 3: Blog post operations
• Part 4: Infinite scroll and search

Code manifest
The following is a manifest for all of the code in this chapter. You can follow along
with code listings in ch8.zip.

There's just one store for posts.

• Posts store: js/stores/posts.js

Post-related views covered, and their respective styles, include:

• Post create/edit view: js/views/posts/edit.jsx, css/views/posts/edit.
less

• Post view: js/views/posts/view.jsx, css/views/posts/view.less

React Blog App Part 3 – Posts

[156]

• Post list component: js/components/posts/list.jsx, css/components/
posts/list.less

• Post list view: js/views/posts/list.jsx, css/views/posts/list.less

Affected views:

• User view: js/views/users/view.jsx (add user posts)

The posts store
At this point, the posts store allows fetching a single post or all of the posts in the
system. This will be revised to fetch batches of posts in Chapter 9, React Blog App Part
4 – Infinite Scroll and Search, for the infinite scroll loading feature.

Here's the posts store source:

File: js/stores/posts.js

import Reflux from 'reflux';
import Actions from 'appRoot/actions';
import Request from 'superagent';
import Config from 'appRoot/appConfig';

export default Reflux.createStore({
 listenables: Actions,
 endpoint: Config.apiRoot + '/posts',
 posts: [],
 // called when mixin is used to init the component state
 getInitialState: function () {
 return this.posts;
 },
 init: function () {
 Request
 .get(this.endpoint)
 .end(function (err, res) {
 if (res.ok) {
 this.posts = res.body;
 this.trigger(this.posts);
 } else {
 }
 }.bind(this));
 },
 //-- ACTION HANDLERS
 onGetPost: function (id) {

Chapter 8

[157]

 function req () {
 Request
 .get(this.endpoint)
 .query({
 id: id
 })
 .end(function (err, res) {
 if (res.ok) {
 if (res.body.length > 0) {
 Actions.getPost.completed(res.body[0]);
 } else {
 Actions.getPost.failed('Post (' + id + ') not found');
 }
 } else {
 Actions.getPost.failed(err);
 }
 });
 }
 Config.loadTimeSimMs ? setTimeout(req.bind(this), Config.
loadTimeSimMs) : req();
 },
 onModifyPost: function (post, id) {
 function req () {
 Request
 [id ? 'put' : 'post'](id ? this.endpoint+'/'+id : this.
endpoint)
 .send(post)
 .end(function (err, res) {
 if (res.ok) {
 Actions.modifyPost.completed(res);
 // if there's already a post in our local store we need to
modify it
 // if not, add this one
 var existingPostIdx = Array.findIndex(this.posts, function
(post) {
 return res.body.id == post.id;
 });

 if (existingPostIdx > -1) {
 this.posts[existingPostIdx] = res.body;
 } else {
 this.posts.push(res.body);
 }
 } else {
 Actions.modifyPost.completed();

React Blog App Part 3 – Posts

[158]

 }
 }.bind(this));
 }
 Config.loadTimeSimMs ? setTimeout(req.bind(this), Config.
loadTimeSimMs) : req();
 }
});

The posts store is a simple collection for now, similar to the users store. As with the
users store, endpoint and posts members are defined directly on the store.

When the store is initialized via Reflux, the init interface function is called and a
request is made for all of the posts. Like the user store, the getInitialState method
returns the local collection member, which in this case is posts.

Like the user store, there is one modify method that handles both creation and
editing. This time, though, we decide whether this is an edit (PUT) based on a pre-
existing id passed as a parameter.

Finally, the action handler, onGetPost, handles post fetching by id.

Post views
Now that we can persist posts to our JSON Server, we turn to the views.

Post create/edit
This is the view that is used to create and edit blog posts. The editor markup is
omitted in the listing in the text, as it is very long and isn't needed to explain the
component. You can see the complete source, including the Quill markup, in ch8.
zip. As with the user creation screen in the previous chapter, we'll start with the
mixins and React lifecycle methods, then go through the form submission sequence.

Chapter 8

[159]

Here is what the post create/edit view will look like when we are done:

Post creation view with the Quill-rich text editor

Here is the post create/edit view source:

File: js/views/posts/edit.jsx

import React from 'react';
import { History } from 'react-router';
import update from 'react-addons-update';
import Reflux from 'reflux';
import Quill from 'quill';
import Moment from 'moment';
import Config from 'appRoot/appConfig';
import Actions from 'appRoot/actions';
import BasicInput from 'appRoot/components/basicInput';
import Loader from 'appRoot/components/loader';
import Session from 'appRoot/stores/sessionContext';
import {formMixins} from 'appRoot/mixins/utility';

export default React.createClass({
 mixins: [
 Reflux.connect(Session, 'session'),
 History,

React Blog App Part 3 – Posts

[160]

 formMixins
],
 getInitialState: function () {
 return { loading: true, validity: {}, post: {} };
 },
 constraints: {
 title: {
 required: true,
 minlength: 5
 }
 },
 componentWillMount: function () {
 this.editMode = this.props.params.hasOwnProperty('postId');
 this.createMode = !this.editMode;
 this.postId = this.editMode ? this.props.params.postId : null;

 this.setState({ loading: this.editMode ? true : false });

 if (this.editMode) {
 Actions.getPost(this.postId)
 .then(function (post) {
 setTimeout(function () {
 //console.log("POST", post);
 this.setState({ post: post, loading: false });
 this.initQuill(post.body);
 }.bind(this), 2000);
 }.bind(this))
 ['catch'](function (err) {
 this.setState({ error: err, loading: false });
 }.bind(this));
 }
 },
 componentDidMount: function () {
 var newPostTmpl = '<div>Hello World!</div><div>This is my
story...</div><div>
</div>';
 !this.editMode && this.initQuill(newPostTmpl);
 },
 initQuill: function (html) {
 if (!this.quill) {
 this.quill = new Quill(this.refs.editor, {
 theme: 'snow',
 modules: {
 'link-tooltip': true,
 'image-tooltip': true,

Chapter 8

[161]

 'toolbar': {
 container: this.refs.toolbar
 }
 }
 });
 }
 this.quill.setHTML(html);
 },
 submit: function (e) {
 var postBody = this.quill.getHTML().replace(/data-
reactid="[^"]+"/g, '')
 , fullText = this.quill.getText()
 , summary = fullText.slice(0, Config.postSummaryLength)
 , errors = this.validateField('title');
 ;

 e.preventDefault();
 if(errors.length > 0) {
 this.setState(update(this.state, { validity: { title: { $set:
errors[0].msg } } }));
 this.getInputEle('title').focus();
 } else {
 Actions.modifyPost({
 title: this.getInputEle('title').value,
 body: postBody,
 user: this.state.session.id,
 date: Moment().valueOf(), // unix UTC milliseconds
 summary: summary
 }, this.postId)
 .then(function (result) {
 // go to newly created entry
 this.history.pushState('', `/posts/${result.body.id}`);
 }.bind(this))
 ;
 }
 },
 titleChange: function (e) {
 this.setState(update(this.state, {
 post: {
 title: { $set: e.target.value }
 }
 }));
 },

React Blog App Part 3 – Posts

[162]

 // form parts of component is always the same so render won't diff
 render: function () {
 return (
 <form
 className="post-edit"
 onSubmit={this.submit}
 >
 { this.state.loading ? <Loader /> : [] }
 <fieldset
 style={{ display: this.state.loading || this.state.error ?
'none' : 'block'}}
 >
 <BasicInput
 type="text"
 ref="title"
 name="title"
 value={this.state.post.title}
 error={this.state.validity.title}
 onChange={this.titleChange}
 placeholder="post title"
 />
 <hr/>

 <div className="rich-editor">
 {/* The quill markup goes here. It is quite long as it
includes all of the menus and options for the editor. Take a look at
the code in ch8.zip for this portion. */}
 </div>
 <button type="submit">{this.editMode ? 'Edit Post' : 'Create
Post'}</button>
 </fieldset>
 </form>
);
 }
});

Chapter 8

[163]

Mixins and lifecycle methods
As was the case with the user edit component in the last chapter, the best way to
read a React component is to look at mixins, various lifecycle methods, and, finally,
the render lifecycle method. First, though, let's get the Quill editor markup out of the
way. The largest portion of this code is contained within the <div> tag with the class
"rich-editor". It is omitted from this code listing because of its length. It is listed in
full in the ch8.zip code bundle. This code inside the <div> tag with the class "rich-
editor" is the markup required by Quill. It's dangerous to render a portion of DOM
that is managed by another library. Execution can get tangled between React and
the library because React uses the DOM diffing and point modification technique,
while the alien component erroneously assumes that it's in full control of the DOM.
In this case, it's somewhat safe to include it, though, as long as we invoke the Quill
constructor on the target DOM at the right stage in the component lifecycle. For
us, the right stage is the componentDidMount method, or any time after the first
render. Also, don't put any bindings or interpolation, or use any other React DOM
manipulation mechanisms in the Quill markup so that React will leave this portion
of the DOM untouched after the initial render.

In the mixins, a state session member is tied to the session store in order to correlate
this post submission with the logged-in user. As in the user create view, the Router
History mixin is included to redirect the user after successful post submission. The
formMixins utility mixin is included to perform form validation.

The bootstrapping lifecycle methods are more complex here because of the Quill
editor. First, the getInitialState method stubs out pieces of the state that will
be used in render. Having the state object fully structured before render helps
avoid having to use superfluous object existence checks in the render method. The
getInitialState method also sets a loading variable if this is a post edit scenario,
during which we need to fetch the blog post information from the server before
allowing edits.

As stated before, we should wait until the first time the DOM is rendered to
initialize the Quill editor. The DOM is ready when the componentDidMount
method is invoked, but we need to delay the initialization of the editor if we are
editing an existing post and have to fetch the data. So, if the view wasn't passed
a post id via props, then it's assumed that we are creating a new post. For a new
post, the Quill editor is initialized with some "hello world" placeholder content in
componentDidMount. If a post id was passed, and edit mode is assumed, then the
post is fetched using the getPost action serviced by the post store. When the post
returns, its data is set into the component state and the Quill editor is initialized with
the editable content from the server.

React Blog App Part 3 – Posts

[164]

Form submission
Form submission is attached to the onSubmit prop in this component, which
invokes the local submit method. The only constraints for this component are the
required and minlength constraints for the blog title. The constraints are defined
in the constraints member of the component. The interesting part of the submit
method is how the content from the rich editor is handled. The Quill editor can
supply both plain text and HTML markup. The plain text is retrieved and truncated
to a summary value based on a length in the appConfig.js file. This summary text
is what is used in the post list component as a teaser for the contents of each blog
entry. The date and time are formatted as UTC milliseconds for persistence. This is to
ensure that they are normalized against a single time zone and easy to compare for
sorting using JSON Server's sort capability. Always store datetime values with UTC
offsets to ensure accurate comparability.

The HTML markup for the post entry is also obtained from the Quill editor. A
regular expression is used to trim off some of the decorative attributes React has
put onto the Quill markup. This decoration could have been avoided via the
dangerouslySetInnerHtml attribute in React, but then we would have had to
put the entire Quill markup into a separate text template instead of inline in the
component. The dangerouslySetInnerHtml mechanism is another way to avoid
having React accidentally manage portions of DOM and is often used when jQuery
plugins are included in a React app.

In submit, if all goes well with the blog title validation, the modifyPost action is
invoked to save the blog entry. Another helper method supplied by formMixins, called
getInputEle, is used to dig out the blog title input HTML element from its BasicInput
component wrapper. Once the post submission returns successfully, the History mixin
method, pushState, is used to forward the user to view the newly created blog post.

The post view
The post view is both a primary view and a standalone component. Because it's
both, it could have resided in the components folder, but we've opted for the view
folder in order to more easily create a mental map of our top-level views. It has two
view modes that are switched via a "mode" prop. The summary view mode is used
when this component is rendered inside the post list component. The full view is for
when this component is used as a primary view to display an entire blog post. Both
modes, full and summary, contain the blogger profile image, the title of the blog
post, the blogger name, and the date and time of the post. This information is styled
slightly differently for each mode. The primary difference between the modes is that
the summary mode shows the shortened teaser plain text that we saved in the post
creation process as well as an edit button (if the blogger matches the logged-in user).
The full view shows the entire post rendered as HTML.

Chapter 8

[165]

Here is sneak peek at the "summary" mode for the post view that appears in the post
list component:

The summary mode

Now, here is the post view in "full" mode with the complete, formatted blog entry:

The full view mode

React Blog App Part 3 – Posts

[166]

Here's the source for the post view:

File: js/views/posts/view.jsx

import React from 'react';
import Reflux from 'reflux';
import { Link } from 'react-router';
import ClassNames from 'classnames';
import Moment from 'moment';
import Actions from 'appRoot/actions';
import PostStore from 'appRoot/stores/posts';
import UserStore from 'appRoot/stores/users';
import Session from 'appRoot/stores/sessionContext';
import Loader from 'appRoot/components/loader';

let dateFormat = 'MM/DD/YYYY HH:mm:ss';

export default React.createClass({
 mixins: [
 Reflux.connect(Session, 'session'),
 Reflux.connect(UserStore, 'users')
],

Here, we see two uses of the Reflux "connect" mixin. One is used to tie local state to
the current session, and the other is used to connect local state to the users collection.
The users collection is used in the component to correlate the post information in the
view to the user data associated with the post:

 getInitialState: function () {
 return {
 post: this.props.post
 };
 },
 componentWillMount: function () {
 if (this.state.post) {
 } else {
 // get post from query params
 this.getPost();
 }
 },

Chapter 8

[167]

There are two ways that the post data can be set inside the component. The first is
by passing the post record directly as a prop. This mechanism is used when this
component is included inside the post list component to display summary views
of each post. The getInitialState lifecycle method handles this case and sets
the local post state as soon as the bootstrapping process for the component begins.
In the componentWillMount method, the state is checked to determine if the post
information is already there. If it isn't present at this stage, the second way to get post
data is used.

The second way to source the post data uses the postId from the router params
supplied by React Router to fetch the post from the server. The post fetch is done in the
getPost method. A local loading state is set, but we are careful to check the mounted
state of the component. In this particular sequence, componentWillMount has
triggered the getPost method. React will complain if setState is called during the
bootstrap sequence, but we can simply assign the member directly during this phase.

 getUserFromPost: function (post) {
 return Array.find(this.state.users, function (user) {
 return user.id === post.user;
 });
 },
 getPost: function () {
 if (this.isMounted()) {
 this.setState({loading: true});
 } else {
 this.state.loading = true;
 }

 Actions.getPost(this.props.params.postId)
 .then(function (data) {
 //this.state.posts = this.state.posts.concat(data);
 this.setState({
 loading: false,
 post: data
 });
 }.bind(this));
 },
 render: function () {
 if (this.state.loading) { return <Loader />; }
 var post = this.state.post
 , user = this.getUserFromPost(post)
 , name = user.firstName && user.lastName ?
 user.firstName + ' ' + user.lastName :
 user.firstName ?
 user.firstName :
 user.username
 ;

React Blog App Part 3 – Posts

[168]

 return this.props.mode === 'summary' ? (
 // SUMMARY / LIST VIEW
 <li className="post-view-summary">
 <aside>
 <img className="profile-img small" src={user.
profileImageData} />
 <div className="post-metadata">
 {post.title}
 {name}
 {Moment(post.date, 'x').format(dateFormat)}
 </div>
 </aside>
 <summary>{post.summary}</summary>

 <Link to={`/posts/${post.id}`}>read more</Link>
 {
 user.id === this.state.session.id ? (
 <div>
 <Link to={`/posts/${post.id}/edit`}>
 <button>edit post</button>
 </Link>
 </div>
) : ''
 }

) : (
 // FULL POST VIEW
 <div className="post-view-full">

 <div className="post-view-container">
 <h2>
 <img className="profile-img" src={user.profileImageData}
/>
 <div className="post-metadata">
 {post.title}
 {name}
 {Moment(post.date, 'x').format(dateFormat)}
 </div>
 </h2>
 <section className="post-body" dangerouslySetInnerHTML={{__
html: post.body}}>
 </section>
 </div>
 </div>
);
 }
});

Chapter 8

[169]

Now turn your attention to the render function. If the loading state is set, we only
render the loader component. If the post is already loaded, the user information
is retrieved with the getUserFromPost method. This method searches the user
collection bound to the user store via the Reflux connect mixin. Since the first and
last name aren't required at signup, some formatting is done on the user name parts
with a fallback on the user's login name.

The user information portions of both the summary and full mode are essentially
the same. There are two important differences, however. First, in the summary
mode, an edit button is displayed if the logged-in user owns the post. The button
is wrapped with a router Link, which navigates to the create/edit post view.
The second key difference is that, while the post summary text is bound directly
via an expression in the summary mode, the post body in the full view uses the
dangerouslySetInnerHTML attribute to inject the richly formatted post DOM into
the component. As mentioned before, this mechanism adds objects to the DOM in a
way that makes React avoid them during the execution of its DOM diffing algorithm.

The post list component
The post list component is separated from the post list view because it will also be
used in the user view to display a list of a specific user's posts.

Here's what the post list component looks like when rendered:

The post list component

React Blog App Part 3 – Posts

[170]

Here's the source for the post list component:

File: js/components/posts/list.jsx

import React from 'react';
import Reflux from 'reflux';
import PostStore from 'appRoot/stores/posts';
import PostView from 'appRoot/views/posts/view';

export default React.createClass({
 mixins: [
 Reflux.connect(PostStore, 'posts')
],
 render: function () {
 var posts = this.props.user ? this.state.posts.filter(function
(post) {
 return post.user == this.props.user;
 }.bind(this)) : this.state.posts;

 var postsUI = posts.map(function (post) {
 return <PostView key={post.id} post={post} mode="summary"/>;
 });

 return (
 <div className="post-list">

 {postsUI}

 </div>
);
 }
});

At this stage in the development of the app, the post list component attaches a local
"posts" state member directly to the post store via the Reflux connect mixin. During
render, if the user prop is supplied, the posts in this list are filtered by user id. Any
time a list of items is rendered in a React component, a unique key must be supplied.
This is required for the DOM diffing process. React can intelligently reuse portions of
DOM if it knows which portions belong to specific collection members.

Don't forget that, any time a list of items is rendered in a
React component, a unique key must be supplied. React won't
let you forget by warning you in the console.

Chapter 8

[171]

The post list view
The post list view, our home view, is a very simple composition of the post list
component without any parameter and the user list component. The post list
component handles the aforementioned React collection keying and will eventually
also handle infinite loading.

Here's what the post list view will look like in action:

The post list view

Here is the post list view source:

File: js/views/posts/list.jsx
import React from 'react';
import UserList from 'appRoot/views/users/list';
import PostList from 'appRoot/components/posts/list';

export default React.createClass({
 render: function () {
 return (
 <div className="post-list-view">
 <PostList />
 <div className="users-list">
 <UserList />
 </div>
 </div>
);
 }
});

React Blog App Part 3 – Posts

[172]

We know we are building things right. A top-level view that is a simple composition
of reusable components is a sign of good abstraction.

Other affected views
Now that the post list component is prepared, it needs to be added to the user
view (profile).

The user view
The post list component is added to the user view to display the user's posts on their
profile page. This fleshes out the user view into a more interesting destination. The
user view is reached when someone clicks on a user profile in other parts of the app.

Here's what the user view looks like with their posts included:

The user view (profile page)

Here is the user view source with a list of posts added:

File: js/views/users/view.jsx
import React from 'react';
import UserView from 'appRoot/components/users/view';
import PostList from 'appRoot/components/posts/list';

Chapter 8

[173]

export default React.createClass({
 render: function () {
 return (
 <div className="user-view">
 <UserView userId={this.props.params.userId} />
 <hr />
 <PostList user={this.props.params.userId} />
 </div>
);
 }
});

It's a very simple modification. All that has been added is a separator hr tag and the
post list component with the user id attribute supplied from the route parameters.

Summary
The application is in a relatively complete state at this point. We have our users and
posts and almost all of the desired operations on each. However, querying every post
in both the main post list page and in the user profile is terribly inefficient. In the
next chapter, we'll add two features to remedy this inefficiency: infinite scroll loading
and a search feature.

[175]

React Blog App Part 4 –
Infinite Scroll and Search

In this chapter, two enhancements are made to the application: pagination through
infinite scroll loading, and a posts search. All modern blogs and micro blogs, such as
Tumblr and Twitter, use an infinite scroll feature in place of explicit pagination to load
blog entries in chunks. Since this is now a standard user experience, we'll implement it
here. Infinite scroll isn't quite enough, though. Another reasonable user expectation for
an app that manages large collections is the presence of a search feature. Luckily, our
prototype backend software, JSON Server, has a full-text search capability.

The construction of the application is split into the following four parts:

• Part I: Actions and common components
• Part II: User account management
• Part III: Blog post operations
• Part IV: Infinite scroll and search

The two features introduced in this chapter are split into two code bundles. The code
from the previous several chapters all the way through the infinite scroll feature can
be found in ch9-1.zip. All of the final code for the blog application, including both
the infinite scroll feature and the search feature, is found in ch9-2.zip.

React Blog App Part 4 – Infinite Scroll and Search

[176]

Infinite scroll loading
So far, we can create users and create posts. When the number of posts gets lengthy
it's useful to load the list in chunks. The visual we'll need, the loader animation
component, is already complete. So, the logic parts are all that need to be updated.
The user view and the post list view both include the post list component. The
shared post list component will handle the pagination. So, each of those views will
benefit from this enhancement without modification. We are now going to use the
posts store more as a service interface than a store. Ostensibly, its role as a store
could retain more of its classic definition if we decided to cache certain posts or
pages as a later enhancement. All of the code for this feature section can be found in
ch9-1.zip. Changes and additions in the source are highlighted here in the text.

The following screenshot shows what infinite scroll loading will look like when
we're finished:

Infinite scroll in action

Chapter 9

[177]

Infinite scroll code manifest
The following is a manifest of all of the files involved in the infinite scroll feature.

The posts store will need to be modified to request posts in page chunks.

• Posts store: js/stores/posts.js

The post list component will drive the pagination process by requesting chunks.

• Post list component: js/components/posts/list.jsx

Modifying the posts store
To achieve pagination, we've simply surfaced a page request method,
getPostsByPage, in the posts store. The pagination support from the server is
achieved through JSON Server's ability to slice collections with _start and _end
query parameters. It also supports sorting, which is used here to sort by date via
the _sort and _order query parameters. It's left up to the caller to supply the page
number, but page size is stored in the application configuration.

Since we are no longer retaining a structure for the posts, the init method,
getInitialState, the posts member, as well as the insertion or replacement within
the posts structure on modify, are all gone.

Here's the new source for the posts store. Changes are substantial and reside almost
entirely in the new getPostsByPage function, so just the function signature is
highlighted rather than the entire function.

File: js/stores/posts.js

import Reflux from 'reflux';
import Actions from 'appRoot/actions';
import Request from 'superagent';
import Config from 'appRoot/appConfig';

export default Reflux.createStore({
 listenables: Actions,
 endpoint: Config.apiRoot + '/posts',
 // posts, init, and getInitialState are removed. getPostsByPage
handles list requests
 getPostsByPage: function (page = 1, params) {
 var start = Config.pageSize * (page-1)
 , end = start + Config.pageSize
 , query = {
 // newest to oldest

React Blog App Part 4 – Infinite Scroll and Search

[178]

 '_sort': 'date',
 '_order': 'DESC',
 '_start': Config.pageSize * (page-1),
 '_end': Config.pageSize * (page-1) + Config.pageSize
 }
 , us = this
 ;

 if (typeof params === 'object') {
 // ES6 extend object
 Object.assign(query, params);
 }

 if (this.currentRequest) {
 this.currentRequest.abort();
 this.currentRequest = null;
 }

 return new Promise(function (resolve, reject) {
 us.currentRequest = Request.get(us.endpoint);
 us.currentRequest
 .query(query)
 .end(function (err, res) {
 var results = res.body;
 function complete () {
 // unfortunately if multiple request had been made
 // They would all get resolved on the first
 // invocation of this function
 // Undesireable, when we are rapid firing searches
 // Actions.getPostsByPage.completed({ start: query._start,
end: query._end, results: results });
 resolve({
 start: query._start,
 end: query._end,
 results: results
 });
 }
 if (res.ok) {
 Config.loadTimeSimMs ? setTimeout(complete, Config.
loadTimeSimMs) : complete();
 } else {
 reject(Error(err));
 // same outcome as above
 // Actions.getPostsByPage.failed(err);

Chapter 9

[179]

 }
 this.currentRequest = null;
 }.bind(us));
 });
 },
 //-- ACTION HANDLERS
 onGetPost: function (id) {
 function req () {
 Request
 .get(this.endpoint)
 .query({
 id: id
 })
 .end(function (err, res) {
 // Here we no longer insert into the local posts member
 if (res.ok) {
 if (res.body.length > 0) {
 Actions.getPost.completed(res.body[0]);
 } else {
 Actions.getPost.failed('Post (' + id + ') not found');
 }
 } else {
 Actions.getPost.failed(err);
 }
 });
 }
 Config.loadTimeSimMs ? setTimeout(req.bind(this), Config.
loadTimeSimMs) : req();
 },
 onModifyPost: function (post, id) {
 function req () {
 Request
 [id ? 'put' : 'post'](id ? this.endpoint+'/'+id : this.
endpoint)
 .send(post)
 .end(function (err, res) {
 if (res.ok) {
 Actions.modifyPost.completed(res);
 } else {
 Actions.modifyPost.completed();
 }
 });
 }
 Config.loadTimeSimMs ?

React Blog App Part 4 – Infinite Scroll and Search

[180]

 setTimeout(req.bind(this), Config.loadTimeSimMs) : req();
 }
});

We used to fetch all of the posts in the init method and then use the connect mixin
in components to wire component state directly to the store. The difference here is the
use of the getPostsByPage method. The modify post and get post action handlers are
the same as before. Note that the signature for this method has a parameter default
of 1 for page number. This syntax is another ES6 treat.

To achieve the pagination, a query is formed to perform an HTTP GET against the
JSON Server endpoint. _sort, _order, _start, and _end are parameters supplied
by JSON Server to manage collection pagination. Notice that there's an additional
parameter to the method that is just called params. This is for any case where callers
want to augment the AJAX call with any additional query parameters. Folding in
any additional query parameters is achieved by extending the object before transport
using the ES6 Object.assign method.

Another notable aspect of the getPostsByPage method is that it uses its own ES6
promise interface instead of relying on the async mechanism supplied by Reflux
actions. In fact, it's just a method on the store and not really an async action handler.
This is because of a wrinkle in the way async action handlers in Reflux operate.
In Reflux, when an action is resolved using the completed method, all of the listeners
on that action are fired at once. This means that all then handlers will be called
simultaneously for each resolution despite invocations originating from different
components with different parameters. For now this isn't an issue because, in the
post list component, we'll avoid firing multiple requests at once. However, soon we'll
add a search feature that needs to be able to deal with rapid requests since requests
will occur in quick succession as the user types. To make resolution more explicit
and manage each request promise individually for the search scenario, the async
action mechanism has been bypassed.

Along with the post result set, the promise is resolved with the start and end pointers
used in the query so that the results can always be accurately spliced into the
consuming component's local copy.

Modifying the post list component
The list component needs to track its current page as well as make a new page request
when the user scrolls. Almost all of this is new code. Every method in the following
source except for render is new, so we've just highlighted the new method names.

Chapter 9

[181]

File: js/components/posts/list.jsx

import React from 'react';
import ReactDOM from 'react-dom';
import Config from 'appRoot/appConfig';
import PostStore from 'appRoot/stores/posts';
import PostView from 'appRoot/views/posts/view';
import Loader from 'appRoot/components/loader';

export default React.createClass({
getInitialState: function () {
 return {
 page: 1,
 posts: []
 };
 },
 componentWillMount: function () {
 this.getNextPage();
 },
 componentDidMount: function () {
 var ele = ReactDOM.findDOMNode(this).parentNode
 , style
 ;
 while (ele) {
 style = window.getComputedStyle(ele);

 if (style.overflow.length ||
 style.overflowY.length ||
 /body/i.test(ele.nodeName)
) {
 this.scrollParent = ele;
 break;
 } else {
 ele = ele.parentNode;
 }
 }
 this.scrollParent.addEventListener('scroll', this.onScroll);
 },
 componentWillUnmount: function () {
 this.scrollParent
 .removeEventListener('scroll', this.onScroll);
 },
 onScroll: function (e) {
 var scrollEle = this.scrollParent

React Blog App Part 4 – Infinite Scroll and Search

[182]

 , scrollDiff = Math.abs(scrollEle.scrollHeight - (scrollEle.
scrollTop + scrollEle.clientHeight))
 ;

 if (!this.state.loading &&
 !this.state.hitmax &&
 scrollDiff < 100
) {
 this.getNextPage();
 }
 },
 getNextPage: function () {
 this.setState({
 loading: true
 });

 PostStore.getPostsByPage(
 this.state.page,
 this.props
).then(function (results) {
 var data = results.results;

 // Make sure we put the data in the correct
 // location in the array.
 // If many results are resolved at once
 // trust the request data for start and end
 // instead of some internal state
 Array.prototype.splice.apply(this.state.posts, [results.start,
results.end].concat(data));

 // user may navigate away –
 // changing state would cause a warning
 // So, check if we're mounted when this promise resolves
 this.isMounted() && this.setState({
 loading: false,
 hitmax: data.length === 0 || data.length < Config.pageSize,
 page: this.state.page+1
 });
 }.bind(this), function (err) {});
 },
 render: function () {
 var postsUI = this.state.posts.map(function (post) {
 return <PostView key={post.id} post={post} mode="summary"/>;
 });

 return (
 <div className="post-list">

Chapter 9

[183]

 {postsUI}

 {this.state.hitmax && !this.state.loading ?
 (
 <div className="total-posts-msg">
 showing { this.state.posts.length } posts
 </div>
) : ''
 }
 {this.state.loading ? <Loader inline={true} /> : ''}
 </div>
);
 }
});

The component itself is going to maintain a local list of posts and a current page
number. These are defaulted during the bootstrap process in the getInitialState
method. When the component is about to mount, the componentWillMount method
fetches the first page. The getNextPage method manages the loading state and
fetches from the store via the getPostsByPage method. First, though, let's look at the
componentDidMount method, which attaches the scroll event handlers.

To attach the scroll behavior, the scroll parent must be found. First, the DOM element
for this component is obtained, then the code traverses up the DOM in a while loop.
This traversal continues until it hits the first element that has an overflow CSS property
set to auto, indicating a scrollable container. This is a tricky way to find the scroll parent
in both the post list view and the user view by simply styling the container that we
want to scroll as we usually would. Once the scroll parent is located, the scroll handler
is attached. In the scroll handler, onScroll, some boundaries are checked on every
scroll event to determine if the scroll parent is within 100 pixels from the bottom of its
scroll height. If it is near the bottom, we aren't currently loading a page, and we haven't
already hit the max number of available posts, then the getNextPage method is called.

Turning our attention to the getNextPage method, you can see that the
getPostsByPage method is called on the store with the component props used as the
additional query parameters. The props are passed through so that the user ID prop,
user, in the user view flows through to the HTTP request. This prop goes all the
way to the request to JSON Server to filter by user. When the promise resolves, the
results are returned and spliced into the local collection. Before setState is called,
a check is made to be sure the component is mounted in case the user has navigated
away while the request was in flight. React will generate a warning if a setState is
invoked on the context of a destroyed component. The hitmax member is a Boolean
used to determine if there aren't any more posts to fetch. It is actively calculated each
time a post payload is returned.

React Blog App Part 4 – Infinite Scroll and Search

[184]

Finally, the loader is added to the render method. Also, if the maximum number of
posts has been reached, a message is displayed reporting the number of posts that
have loaded. You may remember this message from our wireframes way back in
Chapter 5, Starting a React Application.

Searching posts
Remember that little search box we slipped into the header in our wireframes?
We also made the post list a separate component since it appears both on our home
view as well as in the user view.

Now, we'll wire that search field to the post list component. The search box is always
there, while the post list comes and goes. This is an opportunity to use a store for a
purely front-end concern. The search information in the header bar is just a piece of
data that various ephemeral components in the application will potentially need. It's
like any other application model managed by a store, except that it's not backed by a
server request.

The final application code, including the search feature, can be found in the ch9-2.
zip code bundle. The listings are long, but the additions are minimal. Since they are
more surgical changes, the differences between the last listing are highlighted here as
they were in the Infinite Scroll Loading section.

The search feature in action

Search feature code manifest
Here are all the files involved in the search feature.

The search store is a new store. It is a front-end only store to dispatch the value of the
search query to subscribers.

• Search store: js/stores/search.js

Chapter 9

[185]

The posts store is the only store affected by the introduction of the search feature.

• Posts store: js/stores/posts.js

Views affected by the introduction of the search feature include:

• Application header: js/views/appHeader.jsx, css/views/appHeader.
less (add search input)

• Post list component: js/components/posts/list.jsx

The search store
The search store is the simplest store you'll ever encounter. Here's the quite terse
source code:

File: js/stores/search.js

import Reflux from 'reflux';
import Actions from 'appRoot/actions';

export default Reflux.createStore({
 listenables: Actions,
 // called when mixin is used to init the component state
 getInitialState: function () {
 return this.query;
 },
 onSearch: function (search) {
 this.query = search;
 this.trigger(search);
 }
});

The search store listens to the search action, sets a local query member, and then
emits the query text to listeners using trigger. It's always a good idea to implement
the getInitialState method so the Reflux connect family of mixins can set the
initial state during component Bootstrap.

Modifying the posts store
The only change here is to remedy a defect with the way that JSON Server handles
queries. The q parameter does a full text search on resources, but seems to override
the other user filter parameter. So, we've added an extra filter to the store to handle
this scenario in which both are needed. That small change is highlighted in the
following code:

React Blog App Part 4 – Infinite Scroll and Search

[186]

File: js/stores/posts.js

import Reflux from 'reflux';
import Actions from 'appRoot/actions';
import Request from 'superagent';
import Config from 'appRoot/appConfig';

export default Reflux.createStore({
 listenables: Actions,
 endpoint: Config.apiRoot + '/posts',
 getPostsByPage: function (page = 1, params) {
 var start = Config.pageSize * (page-1)
 , end = start + Config.pageSize
 , query = {
 // newest to oldest
 '_sort': 'date',
 '_order': 'DESC',
 '_start': Config.pageSize * (page-1),
 '_end': Config.pageSize * (page-1) + Config.pageSize
 }
 , us = this
 ;

 if (typeof params === 'object') {
 // ES6 extend object
 Object.assign(query, params);
 }

 if (this.currentRequest) {
 this.currentRequest.abort();
 this.currentRequest = null;
 }

 return new Promise(function (resolve, reject) {
 us.currentRequest = Request.get(us.endpoint);
 us.currentRequest
 .query(query)
 .end(function (err, res) {
 var results = res.body;
 function complete () {
 // unfortunately if multiple request had been made
 // They would all get resolved on the first
 // invocation of this function
 // This is undesireable, especially

Chapter 9

[187]

 // when we are rapid firing searches
 // Actions.getPostsByPage.completed({ start: query._start,
end: query._end, results: results });
 resolve({
 start: query._start,
 end: query._end,
 results: results
 });
 }
 if (res.ok) {
 // if using q param (search),
 // filter by other params,
 // cause JSON server doesn't
 // This is a problem with json-server
 // realistically we'd fix this on our real server
 if (params.q) {
 results = results.filter(function (post) {
 return params.user ?
 post.user == params.user : true;
 });
 }
 Config.loadTimeSimMs ?
 setTimeout(complete, Config.loadTimeSimMs) :
 complete();
 } else {
 reject(Error(err));
 // same outcome as above
 // Actions.getPostsByPage.failed(err);
 }
 this.currentRequest = null;
 }.bind(us));
 });
 },
 //-- ACTION HANDLERS
 onGetPost: function (id) {
 function req () {
 Request
 .get(this.endpoint)
 .query({
 id: id
 })
 .end(function (err, res) {
 if (res.ok) {
 if (res.body.length > 0) {

React Blog App Part 4 – Infinite Scroll and Search

[188]

 Actions.getPost.completed(res.body[0]);
 } else {
 Actions.getPost.failed('Post ('+id+') not found');
 }
 } else {
 Actions.getPost.failed(err);
 }
 });
 }
 Config.loadTimeSimMs ?
 setTimeout(req.bind(this), Config.loadTimeSimMs) :
 req();
 },
 onModifyPost: function (post, id) {
 function req () {
 Request
 [id ? 'put' : 'post'](id ? this.endpoint+'/'+id : this.
endpoint)
 .send(post)
 .end(function (err, res) {
 if (res.ok) {
 Actions.modifyPost.completed(res);
 } else {
 Actions.modifyPost.completed();
 }
 });
 }
 Config.loadTimeSimMs ?
 setTimeout(req.bind(this), Config.loadTimeSimMs) :
 req();
 }
});

Modifying the application header
In the application header, a search input is added to the render method. The search
handler takes the text value from the box and invokes the search action handled by
the search store, which then emits the search query to listeners of the store. Here's the
source to the application header including the new search code:

Chapter 9

[189]

File: js/views/appHeader.jsx

import React from 'react';
import Reflux from 'reflux';
import { Link, History } from 'react-router';
import Actions from 'appRoot/actions';
import SessionStore from 'appRoot/stores/sessionContext';

export default React.createClass({
 mixins: [
 Reflux.connect(SessionStore, 'session'),
 History
],
 logOut: function () {
 Actions.logOut();
 this.history.pushState('', '/');
 },
 search: function () {
 var searchVal = this.refs.search.value;
 Actions.search(searchVal);
 },
 render: function () {
 return (
 <header className="app-header">
 <Link to="/"><h1>ReΛction</h1></Link>
 <section className="account-ctrl">
 <input
 ref="search"
 type="search"
 placeholder="search"
 defaultValue={this.state.initialQuery}
 onChange={this.search} />
 {
 this.state.session.loggedIn ?
 (<Link to="/posts/create">
 Hello {this.state.session.username}, write
something!
 </Link>) :
 <Link to="/users/create">Join</Link>
 }
 {
 this.state.session.loggedIn ?
 Log Out :
 <Link to="/login">Log In</Link>

React Blog App Part 4 – Infinite Scroll and Search

[190]

 }
 </section>
 </header>
);
 }
});

Modifying the post list component
The post list component will listen to the search store and reset its scroll pagination
to load a fresh, matched, set of posts. Here are the changes:

File: js/components/posts/list.jsx

import React from 'react';
import ReactDOM from 'react-dom';
import Config from 'appRoot/appConfig';
import PostStore from 'appRoot/stores/posts';
import SearchStore from 'appRoot/stores/search';
import PostView from 'appRoot/views/posts/view';
import Loader from 'appRoot/components/loader';

export default React.createClass({
 getInitialState: function () {
 return {
 page: 1,
 posts: []
 };
 },
 componentWillMount: function () {
 this.searchUnsubscribe = SearchStore.listen(this.onSearch);
 this.getNextPage();
 },
 componentDidMount: function () {
 var ele = ReactDOM.findDOMNode(this).parentNode
 , style
 ;
 while (ele) {
 style = window.getComputedStyle(ele);

 if (style.overflow.length ||
 style.overflowY.length ||
 /body/i.test(ele.nodeName)
) {

Chapter 9

[191]

 this.scrollParent = ele;
 break;
 } else {
 ele = ele.parentNode;
 }
 }
 this.scrollParent.addEventListener('scroll', this.onScroll);
 },
 componentWillUnmount: function () {
 this.searchUnsubscribe();
 this.scrollParent.removeEventListener('scroll', this.onScroll);
 },
 onSearch: function (search) {
 this.setState({
 page: 1,
 posts: [],
 search: search
 });
 this.getNextPage();
 },
 onScroll: function (e) {
 var scrollEle = this.scrollParent
 , scrollDiff = Math.abs(scrollEle.scrollHeight - (scrollEle.
scrollTop + scrollEle.clientHeight))
 ;

 if (!this.state.loading &&
 !this.state.hitmax &&
 scrollDiff < 100
) {
 this.getNextPage();
 }
 },
 getNextPage: function () {
 this.setState({
 loading: true
 });

 PostStore.getPostsByPage(
 this.state.page,
 Object.assign({}, this.state.search ? {q: this.state.search} :
{}, this.props)
).then(function (results) {
 var data = results.results;

 // make sure we put the data in the correct

React Blog App Part 4 – Infinite Scroll and Search

[192]

 // location in the array
 // if many results resolved at once,
 // trust the request data for start and end
 // from the results instead of some internal state
 Array.prototype.splice.apply(this.state.posts, [results.start,
results.end].concat(data));

 // user may navigate away –
 // changing state would cause a warning
 // so, check if we're mounted when this promise resolves
 this.isMounted() && this.setState({
 loading: false,
 hitmax: data.length === 0 || data.length < Config.pageSize,
 page: this.state.page+1
 });
 }.bind(this), function (err) {});
 },
 render: function () {
 var postsUI = this.state.posts.map(function (post) {
 return <PostView key={post.id} post={post} mode="summary"/>;
 });

 return (
 <div className="post-list">

 {postsUI}

 {this.state.hitmax && !this.state.loading ?
 (
 <div className="total-posts-msg">
 showing { this.state.posts.length } posts
 </div>
) : ''
 }
 {this.state.loading ? <Loader inline={true} /> : ''}
 </div>
);
 }
});

Chapter 9

[193]

The post list component now listens to the search store via the onSearch method,
which is attached to the search store in the componentWillMount lifecycle method.

When a search is triggered, onSearch resets the page to 1, the first page of the search
results. It also clears out the locally held posts, and sets a local state member to the
search query contents. Last, onSearch invokes the getNextPage method to fetch the
first page of results.

Only one small modification in getNextPage remains to complete the search feature.
The extra query parameters for the getPostsByPage service call may include the
user parameter for the user view. So, Object.assign, an ES6 mechanism used for
object extension, is used to layer in the q parameter needed for the JSON Server full
text search.

Our infinite scroll works as usual, but now using this extra search parameter, q, on
top of the rest of the query details. When the search content changes, the pagination
details are reset and infinite scroll loading proceeds as before.

Final thoughts
Making a web application is very involved, but if you start with a plan, the
structure of your React components, and the design of the data flow, things become
manageable. Even after all of this effort, there are several things to be done if we
want the app to be production ready. The following are a few suggestions for
interesting enhancements.

Suggested improvements
That was a lot of work, but this application is still pretty basic. Here are some things
you could try to make the application even more interesting:

• Implement delete post
• Implement edit user (profile)
• Implement delete user
• Add a comment stream for posts
• Add a post tagging feature and search or filter by tag

React Blog App Part 4 – Infinite Scroll and Search

[194]

Level up the blog app
The following enhancements would make the application production ready:

• Wire up cloud deployment
• Implement real user accounts, or …
• Introduce a social media login capability
• Add more social media integration - publish links to new entries

on Twitter or Facebook

Moving forward
In the next chapter, several methods for implementing animation in React
applications are explored.

[195]

Animation in React
Animation in React is the same as any web animation. Web animation techniques
typically involve setting CSS class names on elements, or setting CSS properties
directly on elements via the style attribute. Animation is achieved when CSS classes
or attributes change CSS properties, which are either the target of the transition
easing declaration, or directly manipulated frame-by-frame via JavaScript.
Animation can also be achieved on SVG elements by changing path properties
directly as well as through SVG animate elements and related animation properties
that are specific to SVG. In this chapter, we won't cover SVG animation, but the
animation techniques are very similar to animating other DOM elements.

Common instances of web animation include elements being added or removed
from the DOM, or an application workflow state change. Examples of a workflow
state change include a menu being opened or closed, or photo gallery navigation.
Some animations are subtle and used mostly for a stylish effect, like a color change
or shifting shadow on button hover.

In this chapter we'll cover:

• Animating by changing CSS class names as the result of a component state
change

• Animating DOM addition and removal using ReactCSSTransitionGroup
• More complex animation via requestAnimationFrame in conjunction with

Cheng Lou's React-Motion library

All of the code examples are available as GitHub gists, and can be viewed live on
JSFiddle in the same fashion as the first chapters of this book. For each example, a ZIP
file of the gist code, which is designed to work with JSFiddle, is also supplied. We'll look
at the CSS and JavaScript for each example. First, let's review some animation terms.

Animation in React

[196]

Animation terms
In animation, a term that appears frequently is tweening. In animation, even in the
hand-drawn medium, the most important or expressive frames are called keyframes.
For smooth animation, all of the keyframes and frames in between the keyframes need
to be carefully crafted or automatically calculated. This process is called tweening.
Another term that crops up in animation is easing. Easing refers to mathematical
functions of time that determine the state of an item being animated between two
points. CSS has some built-in easing functions, which can be invoked as values of the
transition-timing-function CSS property. Built-in easing function include values
such as linear, ease-in, ease-out, and so on. Linear is what you would expect: an item
tweened linearly moves at a constant speed between two endpoints. Another example:
ease-in means that the value will start changing speedily and slow as it approaches its
destination, similar to someone pressing on the brakes of a car at a stoplight.

CSS transitions using class switching
Simple animations can be done with CSS class changes (the className attribute
in React). The classNames library used in our prototype blog app, which closely
resembles ng-class (for those familiar with Angular JS), is a handy way to construct
CSS class name sets based on component state.

In this example, component state is used to drive class names on a tag. This is one of
the simplest ways to achieve animation effects using React. An interesting UI pattern
for hiding configuration controls, or extra information, is to make a card component.
When triggered, the card flips over to reveal another view with the extra info.

The source code of the cardflipanimation.zip file
can be found at http://bit.ly/Mastering-React-
10-flipanim-gist and a live example can be found at
http://j.mp/Mastering-React-10-flipanim-fiddle.

Here's what the card flip looks like in action.

http://bit.ly/Mastering-React-10-flipanim-gist
http://bit.ly/Mastering-React-10-flipanim-gist
http://j.mp/Mastering-React-10-flipanim-fiddle

Chapter 10

[197]

JavaScript code
Here's the code for an individual card component.

var Card = React.createClass({
 getInitialState: function () { return {}; },
 flip: function () {
 this.setState({flipped: !this.state.flipped});
 },
 render: function () {
 return (
 <div
 onClick={this.flip}
 className={classNames('card-component', {'flipped': this.state.
flipped})}>
 <div className="front">
 <div className="inner">{this.props.children}</div>
 </div>
 <div className="back"> </div>
 </div>
);
 }
});

The Card component is self-contained and tracks its own flipped state. The flip
method toggles the flipped state when the card is clicked. The Classnames library
is used to apply the "flipped" class or remove the class based on the value of the
flipped state each time the component renders. The identity of the card is conveyed
through any children that are nested inside an instance of the component. This will
let us put content inside the face of the card as shown in the following Deck code.

var Deck = React.createClass({
 cards: ['A', 'B', 'C'],
 render: function () {
 var cards = this.cards.map(function (cardIdentity) {
 return <Card key={cardIdentity}>{cardIdentity}</Card>;
 }.bind(this));
 return <div className="deck-component">{cards}</div>;
 }
});
ReactDOM.render(<Deck />, document.getElementById('app'));

Animation in React

[198]

The Deck component is a simple collection of Card instances. Strings for card content
are used as children in each respective rendered card. Arbitrary React DOM could
also have been used within the card component. When creating a collection of React
components, always supply a unique key so that React will intelligently calculate
DOM differences and render efficiently. We are reusing the card identity as the key
since it's simple, comparable, and unique.

CSS source
.deck-component {
 perspective: 1000px;
}
.card-component {
 position: relative;
 display: inline-block;
 cursor: pointer;
 width: 50px;
 height:50px;
 margin: 10px;
 transition: transform 300ms ease;
 transform-style: preserve-3d;
}
.card-component.flipped {
 transform: rotateY(180deg);
}
.card-component > * {
 position: absolute;
 top:0;
 left:0;
 width:100%;
 height: 100%;
 display: flex;
 align-items: center;
 justify-content: center;
 border: 1px solid #ddd;
 border-radius: 8px;
 backface-visibility: hidden;
}
.card-component .front {
 background-color: white;
 transform: rotateY(0deg);
 z-index: 1;
}

Chapter 10

[199]

.card-component .back {
 background-color: #1e5799;
 background: linear-gradient(to top, #1e5799 0%,#7db9e8 100%); /* W3C
*/
 transform: rotateY(180deg);
}

This is as simple as CSS animation gets. The card-component class defines a
transition against the transform property with an animation duration of 300ms
and a transition-timing-function value of ease. These details could be defined
as separate transition-* CSS declarations but can also be combined into one
transition declaration, as they are here. The preserve-3d transform-style declaration
is essential to use on the top-level wrapper for the card component in order to give
the appearance of depth when the flip animation occurs.

Within the card component wrapper are front and back elements positioned using
the direct child selector > *. To make the front and back overlap they are absolutely
positioned with the same coordinates and size. It's always important to also include
backface-visibility set to hidden when creating a flip animation so that one side
doesn't "shine" through the other when the outer element is being flipped.

To transform the Card into the flipped state, the entire back of the card is first
rotated 180 degrees. When the Card click handler, flip, is triggered, the "flipped"
class is added to the container element. The element, including its front and back
children, are flipped via the CSS transform property. Since the transform property
is targeted by the transition property, the browser automatically animates the
rotation according to the aforementioned transformation details.

Animating DOM enter and exit
Being able to introduce UI elements and dismiss them in a way that's fluid and
not abrupt is an important part of a nice user experience. Having elements pop
in and out of the DOM can be jarring. To animate components entering and
leaving the DOM, React supplies a pair of interfaces: ReactTransitionGroup and
ReactCSSTransitionGroup. These interfaces provide hooks to component mounting
and unmounting lifecycle events. For ReactCSSTransitionGroup, the hooks are the
automatic addition and removal of CSS class names using a documented naming
convention. In these examples, we'll use the ReactCSSTransitionGroup interface.

Animation in React

[200]

Popover menus
The first example of DOM enter and exit animation is a popover menu. You've
probably seen these sorts of menu boxes that pop up over everything when invoked
and disappear when dismissed by clicking outside the box or selecting a menu
item. The full code listing is in the following information box. Going forward we'll
intersperse the code with commentary on how it works. This is because the listings
get a bit longer as the complexity of the code increases.

The source code of the ZIP file named popoveranimation.
zip, can be found at http://bit.ly/Mastering-React-
10-popoveranim-gist and a live example can be found at
http://j.mp/Mastering-React-10-popoveranim-fiddle.

Here's what the menu popover DOM enter and exit animation looks like in action.

JavaScript source
var ReactCSSTransitionGroup = React.addons.CSSTransitionGroup;
var Popover = React.createClass({
 render: function () {
 return (
 <div className="popover-component">
 {this.props.children}
 </div>
);
 }
});

The popover component renders its contents into a <div> tag with the class name
popover-component. We'll use that <div> tag to style the look and positioning of the
popover container.

var App = React.createClass({
 getInitialState: function() { return {}; },
 toggleMenu: function (id) {
 this.setState({
 'activeMenu': this.state.activeMenu === id ? null : id

http://bit.ly/Mastering-React-10-popoveranim-gist
http://bit.ly/Mastering-React-10-popoveranim-gist
http://j.mp/Mastering-React-10-popoveranim-fiddle

Chapter 10

[201]

 });
 },

The App component serves to provide a small amount of layout to contain the two
popovers. It will also drive the animation. The toggleMenu function will be the
target of menu click events and track a unique ID of the currently active menu. This
way we can hide any open menu when another is opened.

 render: function () {
 return (
 <div className="application">
 <header>
 <h1>My Rad App</h1>
 <nav>

 <li onClick={this.toggleMenu.bind(this, 1)}>
 <label>Menu 1</label>
 <ReactCSSTransitionGroup
 transitionName="popoveranim"
 transitionEnterTimeout={350}
 transitionLeaveTimeout={350}>
 {this.state.activeMenu === 1 ?
 <Popover key={1}>
 Menu 1 Content

 Goto Google
 </Popover>
 : []
 }
 </ReactCSSTransitionGroup>

 <li onClick={this.toggleMenu.bind(this, 2)}>
 <label>Menu 2</label>
 <ReactCSSTransitionGroup
 transitionName="popoveranim"
 transitionEnterTimeout={350}
 transitionLeaveTimeout={350}>
 {this.state.activeMenu === 2 ?
 <Popover key={2}>
 Menu 2 Content
 <nav>

 Menu 2 item
 another menu 2 item

 </nav>

Animation in React

[202]

 </Popover>
 : []
 }
 </ReactCSSTransitionGroup>

By wrapping the two popovers in the ReactCSSTransitionGroup with a
transitionName attribute, it is ensured that a sequence of class names will be
applied to a popover element in succession. They are applied when React determines
that the child popover component should be added or purged from the DOM. This
determination is driven by the activeMenu component state. The sequence of classes
is used to style transition animations. In this case, the sequence of class names will be
popoveranim-enter, popoveranim-enter-active, popover-leave, and popover-
leave-active. The transitionEnterTimeout and transitionLeaveTimeout
attributes ensure that the desired states will be reached even if there's a failure with
the animation due to a mistake in the CSS.

 </nav>
 </header>
 <main>
 Lorem Ipsum
 </main>
 </div>
);
 }
});
ReactDOM.render(<App />, document.getElementById('app'));

CSS source
html *, body * {
 margin: 0;
 padding: 0;
 font-family: Verdana, arial;
}
header {
 background-color: #dcdcdc;
 box-shadow: 0 1px 4px #666;
 height: 40px;
 line-height: 40px;
}
header h1 {
 margin: 0;

Chapter 10

[203]

 padding: 0 0 0 50px;
 font-size: 16px;
 display: inline;
}
header > nav {
 display: inline-block;
 float: right;
 margin: 0 80px 0 0;
}
header > nav ul {
 list-style-type: none;
 padding: 0;
}
header > nav li {
 display: inline-block;
 position: relative;
}
header > nav li > label {
 display: block;
 color: #44e;
 cursor: pointer;
 padding: 0 10px;
 /* prevent text selection */
 -webkit-touch-callout: none;
 -webkit-user-select: none;
 -moz-user-select: none;
 -ms-user-select: none;
 user-select: none;
}
header > nav li > label:hover {
 background-color: #eee;
}
main {
 padding: 50px;
}

All of the preceding styles serve as layout to create a header bar. The header bar
contains a small menu, which is the stage for our popover elements and their
animations. The li elements in the <nav> tag have a relative position so that we
can adjust the location of the popovers to be next to the menu items that invoke
them. Let's dive into the code for the popovers and their animations.

.popover-component {
 position: absolute;
 top: 40px;

Animation in React

[204]

 left: 50%;
 margin-left: -80px;
 font-size: 12px;
 width: 160px;
 background-color: white;
 border-radius: 8px;
 border: 1px solid gray;
 box-shadow: 1px 2px 4px gray;
 line-height: 12px;
 padding: 10px;
}

This code above has positioning for our popover, as well as some framing for the
visual box of the popover. Next is a small CSS pseudo element that creates a small
caret pointing up at the menu item associated with the popover.

.popover-component:before, .popover-component::before {
 content: '';
 width: 15px;
 height: 15px;
 position: absolute;
 transform: rotateZ(-45deg);
 top: -9px;
 left: 50%;
 margin-left: -15px;

 background-color: white;
 border-style: solid;
 border-width: 1px 1px 0 0;
 border-color: gray;
}

The before pseudo element above is a triangle using the same border and background
as the popover container. You can see this little triangle pointing up in the screenshot
of the popover animation shown in the introduction of this section. The triangle is
actually a rotated square with borders on only two sides to make a little triangle.

.popover-component ul {
 list-style: square inside;
 padding: 5px 10px;
}
.popover-component li {
 display: list-item;
 white-space: nowrap;
}

Chapter 10

[205]

.popover-component strong {
 white-space: nowrap;
}

These few styles are just a bit of code to adjust the visuals of the list items inside our
popover menus.

/* ReactCSSTransitionGroup Animation styles*/
.popoveranim-enter {
 opacity: 0.01;
 transform: translateY(10px);
}

.popoveranim-enter.popoveranim-enter-active {
 opacity: 1;
 transform: translateY(0px);
 transition: opacity .3s ease, transform .3s ease;
}

.popoveranim-leave {
 opacity: 1;
}

.popoveranim-leave.popoveranim-leave-active {
 opacity: 0.01;
 transition: opacity .3s ease;
}

Now that we are finally at the animation code, it's quite short! Both the opacity
and transform properties are animated to give fade in and rise effects. The
ReactCSSTransitionGroup mechanism that applies these classes first applies the
appropriate enter or leave style based on if the component is entering or leaving
the DOM. It then layers on the associated active style.

List filtering
This example uses a combination of animations facilitated by
ReactCSSTransitionGroup. Here, DOM enter/exit is transitioned as well as the
height CSS property on the list container. The example also uses measurement of
incoming list items to give an extra effect which makes room when items are added
back to the display.

Animation in React

[206]

The source code of the file named listfilteranimation.zip,
can be found at http://bit.ly/Mastering-React-10-
listanim-gist and a live example can be found at http://j.
mp/Mastering-React-10-listanim-fiddle.

Here's what the list filter animation looks like in action. Items fly out when removed
from the DOM. When items are added to the DOM, the height is tweened to make
room for the new items flying back in.

JavaScript source
var ReactCSSTransitionGroup = React.addons.CSSTransitionGroup;
var gameSystems = [
 'Sega Genesis',
 'Sega Saturn',
 'Sega Dreamcast',
 'Nintendo Entertainment System',
 'Super Nintendo',
 'PC',
 'PC Engine',
 'Gameboy',
 'Playstation',
 'PSP'
];

This gameSystems member is our test list.

var SuperFlyList = React.createClass({
 propTypes: {
 filter: React.PropTypes.string
 },
 getInitialState: function () { return {}; },
 componentDidMount: function () {
 this.setState({
 eleHeight: ReactDOM.findDOMNode(this).querySelector('li').

http://bit.ly/Mastering-React-10-listanim-gist
http://bit.ly/Mastering-React-10-listanim-gist
http://j.mp/Mastering-React-10-listanim-fiddle
http://j.mp/Mastering-React-10-listanim-fiddle

Chapter 10

[207]

lientHeight
 });
 },

We are going to tween the height when new items are added. To do this we need to
know how tall each list item will end up being. We wait for componentDidMount so
items are in the DOM, and then measure the height. The height value is stored as
a state member. We could have also stored it directly on the component by setting
this.eleHeight, instead of the state member.

 render: function () {
 var itemsToDisplay = this.props.list
 .map(function (item, idx) {
 return { name: item, key: idx };
 })
 .filter(function (item) {
 return this.props.filter ? item.name.toLowerCase()
 .indexOf(this.props.filter) !== -1 : true;
 }.bind(this))
 .map(function (item, idx) {
 return (
 <li
 key={item.key}
 style={{top: this.state.eleHeight*idx+'px'}}>
 {item.name}

);
 }.bind(this));

In the first part of the render function, we gather up the items and filter them based
on the filter prop. This is how the outer component can push a filter string into the
list component. First, we map them to create an artificial key. For the key, we used
the original array index from the unfiltered list. After mapping our example list to
get a key and filtering the list, we map the resulting items to React li components.
Don't forget to put the unique key on each element. The original array index is used
as the key, because the filtered set indices will change as items are purged. This is
also the reason the original filter converts the simple strings in the array to objects
containing the artificial key before the subsequent filtering, so that we can carry the
values and the manufactured keys through the filter.

 var totalHeight = itemsToDisplay.length * this.state.eleHeight;

The total height for the list is calculated based on the original measurement in
componentDidMount multiplied by the number of items that pass the filter during
this render cycle. We need to adjust the height because any new arrivals to the DOM
will be relatively positioned within this container.

Animation in React

[208]

 return (
 <ReactCSSTransitionGroup
 className="super-fly-list-component"
 style={{height: totalHeight + 'px'}}
 component="ul"
 transitionName="superfly"
 transitionEnterTimeout={300}
 transitionLeaveTimeout={300}>
 <li className="measure" key="measure">
 {itemsToDisplay}
 </ReactCSSTransitionGroup>
);
 }
});

Just like the popover example, ReactCSSTransitionGroup is used to strategically
apply enter and leave classes with names based on the transitionName property
of that JSX tag. Note that we always render the measurement li element into the
DOM. This is needed to measure our li height reliably in componentDidMount,
especially when we are transitioning from zero matches to one or more. There are
a couple of extra tricks here. The first trick is that this is the first time we are seeing
a state calculation being used directly to change a CSS property on an element, the
ReactCSSTransitionGroup tag itself. The second trick is that we are using the
ReactCSSTransitionGroup not only to drive the animation of its children, but
rendering it as the appropriate ul tag by using the component attribute.

var App = React.createClass({
 getInitialState: function () { return {}; },
 search: function () {
 this.setState({query: ReactDOM.findDOMNode(this.refs.search).
value});
 },
 render: function () {
 return (
 <main>
 <label>
 Search:
 <input ref="search" type="text" onChange={this.search} />
 </label>
 <SuperFlyList list={gameSystems} filter={this.state.query} />
 </main>
);
 }
});

Chapter 10

[209]

The App component is a wrapper with a search input. It drives the search query into
the list component. A change handler sets the query state, which is bound to a prop
of SuperFlyList.

ReactDOM.render(<App />, document.getElementById('app'));

This final line renders the App component into the DOM.

CSS source
.super-fly-list-component .measure {
 position: absolute;
 left: -9999px;
}

This preceding rule pushes the measurement li off the screen.

.super-fly-list-component {
 position: relative;
}
.super-fly-list-component li {
 position: absolute;
 transition: opacity .3s ease, transform .3s ease, top .1s ease;
}

Each list item is absolutely positioned so that we can animate its top position. This is
done automatically by the browser's calculation for top because top isn't explicitly
declared. When the new list is rendered, all of the others will naturally recalculate their
top position to make room for the new items. The transition will animate this aspect
so that the items appear to make room for the new ones coming in. The opacity and
transform properties are also animated to perform the fade and fly in and out effect.

/* ReactCSSTransitionGroup Animation styles*/
.superfly-enter {
 opacity: 0.01;
 transform: translateX(-100px);
}
.superfly-enter.superfly-enter-active {
 opacity: 1;
 transform: translateX(0px);
 transition-delay: 0.25s; /* wait a bit for space to be made */
}
.superfly-leave {
 opacity: 1;
 transform: translateX(0px);
}

Animation in React

[210]

.superfly-leave.superfly-leave-active {
 opacity: 0.01;
 transform: translateX(100px);
}

The animation code is similar to the last example. On enter, we translate in from
the left and fade in. There's a small delay placed on enter to emphasize the height
transition for some time while room is being made for items. On leave, a list item is
translated out to the right and faded out.

Using the React-Motion animation library
React-Motion is a very nice physics based animation library created by Cheng Lou,
an avid contributor to many things React. In some ways, React-Motion is similar
to jQuery animate. Specifically, it's a fancy interface to tween numbers. In previous
examples, animation was achieved by strategically changing CSS classes attached to
elements. When classes change CSS properties, which are the target of a transition
property, the browser automatically uses the declared transition property details to
handle animation frame-by-frame. Another, more direct, way to animate is to change
CSS declarations on the style attribute of the virtual DOM elements themselves.

How React-Motion works
Animation on the web is a process of interpolating intermediate values of properties,
such as position, over the course of some time between starting and ending values. To
calculate these in-between values, or to tween them using a library, typically involves
specifying the start and end values, the duration over which you want the animation
to take place, and the easing function or a name for the way the intermediate values
are calculated. React-Motion does this tweening calculation a bit differently than using
easing function by offering a very basic and flexible interface. The interface is called a
spring, and it uses stiffness and damping values to calculate the intermediate steps. It
also integrates nicely into the React rendering process and is JSX friendly.

There's one quick item to note if you read the GitHub documentation for React-Motion.
The documentation says that the Motion component parameters defaultStyle
and style should have the same shape. This is referring to data structures. React-
Motion springs are very flexible, allowing these values to be objects, arrays, or objects
containing arrays or other objects. Just be sure that both parameters, defaultStyle
and style, are the same shape or structure so that the library knows how to correlate
the numbers being tweened or interpolated. This allows React-Motion to tween many
properties at once.

For this example we are using version 0.3.1 of React-Motion.

Chapter 10

[211]

Clock animation
This animation example uses React-Motion to animate the hands of a clock. The clock
is a set of overlapping canvas elements. The clock is continuously animating and the
time can be set using input fields for hours, minutes, and seconds.

The source code of the file clockanimation.zip can be found
at http://bit.ly/Mastering-React-10-clockanim-gist
and a live example can be found at http://j.mp/Mastering-
React-10-clockanim-fiddle.

Here are some static shots of the clock animation demo in action.

JavaScript source
var Motion = ReactMotion.Motion
, spring = ReactMotion.spring
;

Motion is the simplest React-Motion animation component and the one that we'll use
here. There's also a spring function, which handles easing functions via a simple
interface using physics semantics of a spring: stiffness and damping.

var Clock = React.createClass({
 getInitialState: function () {
 return { baseDate: new Date(), hours: 0, mins: 0, secs: 0 };
 },

http://bit.ly/Mastering-React-10-clockanim-gist
http://j.mp/Mastering-React-10-clockanim-fiddle
http://j.mp/Mastering-React-10-clockanim-fiddle

Animation in React

[212]

As the time counts forward, it does so from a base date. This is initially the time
when the component is instantiated but will be replaced if props for hours,
minutes, and seconds are passed in. More on this is discussed later when the
componentWillReceiveProps method is explained. The initial values for hours,
minutes, and seconds are also set in that method. These values will be in degrees for
the rotation of the clock hands.

 componentDidMount: function () {
 var node = ReactDOM.findDOMNode(this)
 , get = node.querySelector.bind(node)
 , parts = node.querySelectorAll('canvas')
 , faceCtx = get('.clockface').getContext('2d')
 , hourCtx = get('.hourhand').getContext('2d')
 , minCtx = get('.minutehand').getContext('2d')
 , secondCtx = get('.secondhand').getContext('2d')
 , width = node.clientWidth
 , height = node.clientHeight
 ;

Here we are just getting references to our canvas elements and their canvas drawing
context in order to set a baseline clock drawing to 12:00:00. We are about to draw
into the canvas elements, so this is done in componentDidMount after the canvas
elements are first placed into the DOM.

 Array.prototype.forEach.call(parts, function (canvas) {
 canvas.setAttribute('width', width);
 canvas.setAttribute('height', height);
 });

Set all of the canvas dimensions equal to the container dimensions.

 // render off pixel boundaries for bolder lines
 faceCtx.translate(.5, .5);

This is a common trick to make a canvas draw appropriately bold lines. If you
draw on the lines of the pixel grid, then the adjacent pixels will get anti-aliased to a
lighter color. Think of it like pouring a finite amount of water onto the ridge of an
ice cube tray. Each adjacent tray cell would get about half of the water. This context
translation aligns strokes to the middle of the cell/pixel.

 // create the clock face
 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11].forEach(
 function (mult) {
 faceCtx.save();
 faceCtx.translate(width>>1,height>>1);
 faceCtx.rotate((360 / 12 * mult) * (Math.PI / 180));

Chapter 10

[213]

 faceCtx.translate(0, -(width>>1));
 faceCtx.beginPath();
 // longer ticks every 3 hours
 faceCtx.moveTo(0, (mult)%3 ? 8 : 15);
 faceCtx.lineTo(0, 1);
 faceCtx.stroke();
 faceCtx.restore();
 });

This code draws the tick marks for the hours on the clock face. It does this by
drawing one tick, then rotating the context and repeating the draw commands.
A longer tick is drawn every three hours as is typical on round clock faces.

 faceCtx.beginPath();
 faceCtx.arc(width>>1, height>>1, (width>>1)-1 , 0, 2 * Math.PI,
false);
 faceCtx.stroke();

This part draws the clock face circle using the arc method. You may notice a
somewhat cryptic trick here that was also in the previous code chunk. The double
greater-than symbol is a bit shift to the right. This is a divide by two, but don't do it
unless you know your operand is divisible by two or you'll lose precision.

 // create the clock hands
 hourCtx.translate(width>>1, width>>1); // center
 hourCtx.lineWidth = 5;
 hourCtx.moveTo(0,0);
 hourCtx.lineTo(0, -(width>>1) +18);
 hourCtx.stroke();

 minCtx.translate(width>>1, width>>1);
 minCtx.strokeStyle = "#666";
 minCtx.lineWidth = 2;
 minCtx.moveTo(0,0);
 minCtx.lineTo(0, -(width>>1) + 10);
 minCtx.stroke();

 secondCtx.translate(width>>1, width>>1);
 secondCtx.strokeStyle = "#f00"; // red second hand
 secondCtx.lineWidth = 2;
 secondCtx.moveTo(0,12);
 secondCtx.lineTo(0, -(width>>1) + 2);
 secondCtx.stroke();

The preceding code draws the hands of our clock into each respective canvas.

Animation in React

[214]

 // start with initial state base date
 this.setBaseDate(this.state.baseDate);
 // begin aggressively calculating updates
 window.requestAnimationFrame(this.tick);
 },

This kicks off time calculation. The call to setBaseDate will initialize our starting point
for time measurement. Then requestAnimationFrame begins collating time passage.

 componentWillReceiveProps: function (nextProps) {
 var newBaseDate = new Date();
 // if props aren't parseable set date to current
 if (!isNaN(parseInt(nextProps.hours,10) + parseInt(nextProps.
mins,10) + parseInt(nextProps.secs,10))) {
 newBaseDate.setHours(nextProps.hours%24);
 newBaseDate.setMinutes(nextProps.mins%60);
 newBaseDate.setSeconds(nextProps.secs%60);
 this.setBaseDate(newBaseDate);
 } else {
 this.setBaseDate(new Date());
 }
 },

The componentWillReceiveProps lifecycle event is the interface used to set time
from outside the component. There are props for hours (hours), minutes (mins), and
seconds (secs). If the props are changed, they are checked for validity and a new
base date is established. If they change and aren't valid, then we reset base date to
the current time.

 setBaseDate: function (date) {
 this.setState({ baseDate: date });
 this.startTick = new Date(); // re-establish starting point
 },
 format: function (num) {
 return num > 9 ? num : '0'+num;
 },

This format function is used during render to display the numeric form of the time.
It prepends a zero to the time component if it's a single digit.

 tick: function () {
 var nextTick = new Date()
 , diff = nextTick.valueOf() - this.startTick.valueOf()
 ;

 // Here we use a logical OR to clamp

Chapter 10

[215]

 // the values to whole numbers
 // This allows us to render just once per second
 // while aggressively updating our time data
 var clockState = {
 hoursDisp: ((this.state.baseDate.
getHours()+diff/1000/3600)|0),
 minsDisp: ((this.state.baseDate.getMinutes()+diff/1000/60)|0),
 secsDisp: ((this.state.baseDate.getSeconds()+diff/1000)|0),
 };
 clockState.amPm = clockState.hoursDisp%24 > 12 ? 'pm':'am';

 // degrees
 clockState.hours = clockState.hoursDisp*30;
 clockState.mins = clockState.minsDisp*6;
 clockState.secs = clockState.secsDisp*6;

 this.setState(clockState);
 // resume updates at 60fps
 window.requestAnimationFrame(this.tick);
 },

The tick function is probably the most interesting part of this demo aside from
the usage of React-Motion. Every time tick is called, it calculates how much time
has passed since our base date (startTick). Invoking valueOf on a Date object in
JavaScript returns the UTC milliseconds, or time since the Unix Epoch (January 1,
1970 00:00:00). If you are curious about why it's that date, search for unix time or
epoch time. There's a storied past which includes technical reasoning for that date
and time. For our purposes, it gives a common point from which we can calculate
our time difference.

After the time difference from the base date is calculated, some state is prepared and
set. There's another trick here. Each of the clockState components has |0 after it.
This logical or truncates a floating-point number in JavaScript to the whole part of
the number (without rounding) very efficiently. This is important for only triggering
a render when appropriate, as you will soon see.

Notice that requestAnimationFrame is used to calculate the time passage
continuously. Browsers attempt to render at 60 frames per second. When they re-
render the page they attempt to reconcile DOM changes and navigate the specificity
of CSS in order to finally lay out the actual pixels onto the screen. This can be an
expensive process and, if you change the DOM with abandon, it can cause a lot of
recalculation thrash. Think of requestAnimationFrame as a means to say, "hey
browser, next time you decide to re-calc and re-render, please run this function first".

Animation in React

[216]

This means that our clock calculation will run at roughly 60 frames per second or
every 16.667 milliseconds. That's pretty fast, and we don't want the React render
pipeline to run that fast. This is what the next lifecycle method is for.

 // only allow render when there's a value change
 shouldComponentUpdate: function (nextProps, nextState) {
 return (
 nextState.hours !== this.state.hours ||
 nextState.mins !== this.state.mins ||
 nextState.secs !== this.state.secs
);
 },

The shouldComponentUpdate method is how we can aggressively track the time
with requestAnimationFrame, but only render the component when a full hour,
minute, or second changes. This is why earlier the values were truncated with a
logical or, so that this lifecycle method only returns true every second or so. This
means that the clock time will remain accurate. It will not accidentally skip a second
because of a browser hiccup, but it will also not render inefficiently. However, we
don't want the clock hands to move instantaneously between whole number values.
This is where React-Motion finally comes into the picture. It will handle the tweening
of the clock hands between the one-second renders of the greater clock component.

 render: function () {
 return (
 <div className="clock-component">
 <canvas ref="clockface" className="clockface"></canvas>
 <Motion style={{
 hours: spring(this.state.hours),
 mins: spring(this.state.mins),
 secs: spring(this.state.secs)
 }}>

The next animation endpoint for our Motion component is an object, style, and is
managed using the spring function. The spring function calculates the interpolated
values using an easing function implied by the stiffness and damping configuration.
Here, we let spring use the defaults for those values. If we wanted to we could pass
a second parameter (array) to each spring invocation where the first array value was
the stiffness and the second was the damping.

 {({hours,mins,secs}) =>
 <div className="hands">
 <canvas ref="hourhand" className="hourhand" style={{
 WebkitTransform: `rotate(${hours}deg)`,
 transform: `rotate(${hours}deg)`

Chapter 10

[217]

 }}></canvas>
 <canvas ref="minutehand" className="minutehand" style={{
 WebkitTransform: `rotate(${mins}deg)`,
 transform: `rotate(${mins}deg)`
 }}></canvas>
 <canvas ref="secondhand" className="secondhand" style={{
 WebkitTransform: `rotate(${secs}deg)`,
 transform: `rotate(${secs}deg)`
 }}></canvas>
 </div>
 }
 </Motion>

These components within the Motion component will be rapidly rendered as a result
of the React-Motion spring tweening operation. The current value for each internal
frame calculation will be available in the hours, mins, and secs parameters. As we
did before with the list animation example height, the interpolated values are placed
directly into the style attribute of each respective virtual DOM clock hand canvas
element.

 <pre className="digital">
 {this.format(this.state.hoursDisp%12)}:{this.format(this.
state.minsDisp%60)}:{this.format(this.state.secsDisp%60)} {this.state.
amPm}
 </pre>
 </div>
);
 }
});

The preceding code is just a small digital display to go below our animated clock. It
will only render once a second as allowed by shouldComponentUpdate.

var ClockExample = React.createClass({
 getInitialState: function () { return {}; },
 getVal: function (name) {
 return ReactDOM.findDOMNode(this.refs[name]).value;
 },
 setTime: function () {
 this.setState({
 hours: this.getVal('hours'),
 mins: this.getVal('mins'),
 secs: this.getVal('secs')
 });
 },

Animation in React

[218]

The wrapper interface component, ClockExample, keeps its own state for hours,
minutes, and seconds, and manages them with interactive inputs and a set button. The
set button calls the setTime handler here and sets the state for each time component.

 render: function () {
 return (
 <div className="clock-example">
 <fieldset>
 <legend>Set the time</legend>
 <label>hours <input maxLength="2" ref="hours" /></label>
 <label>minutes <input maxLength="2" ref="mins" /></label>
 <label>seconds <input maxLength="2" ref="secs" /></label>
 <button onClick={this.setTime}>SET</button>
 </fieldset>
 <Clock hours={this.state.hours} mins={this.state.mins}
secs={this.state.secs}/>
 </div>
);
 }
});

When setTime is called, the values from the inputs are set on the local state of this
outer component, triggering a render. When this component renders, the state for
hours, minutes, and seconds is passed to our animated clock via props.

ReactDOM.render(<ClockExample />, document.getElementById('app'));

Don't forget to render the top-level component.

CSS source
* {
 box-sizing: border-box;
}

.clock-example {
 display: -webkit-flex; /*safari*/
 display: flex;
 align-items: flex-start;
 width: 300px;
 justify-content: space-between;
}

Flexbox is a wonderful layout tool. It is used here to put the clock controls and the
clock component side by side.

Chapter 10

[219]

.clock-example fieldset {
 width: 150px;
}
.clock-example input {
 display: block;
 line-height: 18px;
 border: 1px solid #aaa;
 border-radius: 4px;
 width: 100%;
}
.clock-example button {
 border: none;
 color: white;
 background-color: #446688;
 margin: 10px 0;
 padding: 10px 20px;
 cursor: pointer;
 outline: none;
 box-shadow: 1px 1px 2px #aaa;
}
.clock-example button:active {
 transform: translateY(2px);
 transition: transform .1s ease;
 box-shadow: 0 0 2px #aaa;
}

The preceding styles are visual treatment for the input form used to set the time into
the clock component.

.clock-component {
 position: relative;
 width: 100px;
 height: 100px;
 margin: 20px;
}
.clock-component canvas {
 position: absolute;
 left: 0;
 top: 0;
}
.clock-component .digital {
 position: absolute;
 bottom: -35px;
 width: 100%;
 text-align: center;
}:

Animation in React

[220]

The actual clock component styles place all the canvas components (clock hands) on
top of one another so they overlap correctly. The small digital display is positioned
under the animated clock. Notice that, unlike the popover and menu animation
examples, there aren't any animation styles for the clock component. The React-Motion
component and spring handles all of that!

Summary
Animation on the web exists in a few fundamental forms that mostly involve
changing out CSS classes, directly manipulating the style attribute, or a
combination of the two. There's more sophistication and flexibility to discover
when using the lower level ReactTransitionGroup interface, but the
ReactCSSTransitionGroup mechanism, simple class swapping, or React-Motion
will get you just about anywhere you need to be. There are also loads of other great
examples on the React-Motion GitHub page (https://github.com/chenglou/
react-motion), such as animated list reordering and follow the leader style cursor
animation. They are definitely worth checking out.

https://github.com/chenglou/react-motion
https://github.com/chenglou/react-motion

[221]

Index
A
application design, email application

about 90
API 92
data entities 92
main views 93, 94
routes 93, 94
site map 93, 94
wireframes, creating 90, 91

application design, blog application
data entities 99, 100
main views 100, 101
sitemap 100, 101
wireframes, creating 95

application header 128
Asynchronous Module Definition

(AMD) 81-83

B
Babel

about 85
URL 8

base styles 121-124
BasicInput component 125, 126
blog application

application design 95
development environment, preparing 101
directory structure 111
enhancements 193, 194
improvements 193
index.html file 112
js/app.jsx 113, 114

main views 115, 116
mock database 112
starting 111
views, linking with React Router 116

blog application, considerations
about 109
browser support 109
form validation 110
React render function, defining 109

Bootstrap
URL 28

build system
about 79-81
module systems 83
selecting 81, 82

C
cardflipanimation.zip file

URL 196
clockanimation.zip file

URL 211
CommonJS 81-83
component composition

about 19
children, accessing 27-31
simple components, composing 19-21
with behavior 21-27

component lifecycle
about 32
events, updating 35
mounting 32
unmounting 32-34
working 38-41

[222]

controlled components
best practices 58
one-way data flow model 54, 55
used, for creating simple form 55-58
with read and write input 52-54
with read-only input 51, 52

cookies
reading 131
writing 131

create user view
about 141, 142
form submission 147
form validation 147
lifecycle methods 146
mixins 146
user profile image 147

create, read, update, and delete
(C.R.U.D.) 92

CSS preprocessors
about 85
LESS 85
SASS 85

CSS transitions
CSS source 199
JavaScript code 197, 198
with class switching 196

D
Data Access Objects (DAO) 61
dependency injection (DI) 82
development environment, blog application

dependencies, installing 101-103
Node, installing 101-103
preparing 101
Webpack, installing 103, 104

Domain Specific Language (DSL) 21
DOM enter and exit

animating 199
CSS source 203-205, 209, 210
JavaScript source 200-202, 206-209
list, filtering 205, 206
popover menu 200

Dumb components 59
dynamic components

about 43-45
UserList component 45, 46

UserRow component 45, 46

E
easing 196
ECMAScript 6 (ES6) 85

F
Fiddle

URL 21
Flexbox 218
Flux

about 87
actions 87
dispatcher 87
stores 87

forms
about 51
controlled components 51, 52
creating, with controlled components 55-58
refactoring 59, 60
submission, handling 164

form utilities mixin 132-134
front-end architecture components

about 79, 80, 86
eventing 88
front-end models 87
front-end router 87
messaging 88
utilities, requisites 88
view controllers 88
view models 88
views 88

G
GitHub repository

URL 62
Graphics Processing Unit (GPU) 109
Grunt 81, 103
Gulp 81, 103

H
Hello React example

about 1-5
source code, URL 5

[223]

I
immediately invoking function expression

(IIFE) 83
infinite scroll

code manifest 177
loading 176
post list component, modifying 180-183
posts store, modifying 177-180

J
JsFiddle

URL 7
JS syntax

compiling 85
JSX

about 6
decompiling 8
render result, structure 9-11
templates, compiling 85
working with 6, 8

K
keyframes 196

L
LASS 85
lifecycle methods 163
listfilteranimation.zip file

URL 206
loader component 125-127
loaders 103
log in view 139-141

M
mixins

about 47-49, 131, 163
cookies, reading 131
cookies, writing 131
form utilities mixin 132-134
implementing 49-51

module systems
about 83
Asynchronous Module Definition

(AMD) 83
CommonJS 83
selecting 84

Mozilla Developer Network (MDN) cookies
URL 131

N
Node

installing 101-103
URL 101

Node Package Manager (NPM) 62

P
polyfills 85, 110
popoveranimation.zip file

URL 200
popover menus

creating 200
post create/edit view

about 158, 159
form submission 164
lifecycle methods 163
mixins 163

post list component
about 169, 170
adding, to user view 172, 173

posts store 156-158
post views

about 158
full view mode 164-169
post create/edit 158, 159
post list component 169, 170
post list view 171, 172
summary view mode 164-169

presets 108
props

about 11, 12
getDefaultProps method, defining 15
propTypes, using 13, 14
working with 12, 13

[224]

R
React-Motion animation library

CSS source 218-220
JavaScript source 211-218
used, for animating clock 211
using 210
working with 210

React Router
about 87, 95
views, linking with 116

react-validation-mixin example
code, obtaining 62-74
code, running 63-67

Reflux 87
Reflux actions

about 120, 121
reference link 121

reusable components
about 121
application header 128
BasicInput component 125, 126
loader component 125-127

routes 114

S
SASS 85
Search Engine Optimization (SEO) 93
search feature

application header, modifying 188
code manifest 184
post list component, modifying 190-193
posts store, modifying 185
posts, searching 184
search store, handling 185

semver 102
session context store 135, 136
single-page application (SPA) 78
Slush 82
Smart components 59
SPA design

application design 79, 80
build system 79, 80
front-end architecture components 79, 80

spring 210

state
about 16
working with 17, 18

T
tweening 196
two-way binding

reference link 54

U
user management

application runtime configuration 131
code manifest 130
with dependencies 131
with mixins 131

user-related stores
about 135
session context store 135, 136
user store 137, 138

user views
about 139
app header 152, 153
create user view 141, 142
log in view 139-141
post list component, adding 172, 173
user list view 150, 151
user profile page 152
user view component 149, 150

V
validation

field-level validation 62
form-level validation 62
handling 60
react-validation-mixin example 62
types 61, 62

views, blog application
js/views/appHeader.jsx 116
js/views/login.jsx 117
linking, with React Router 116

virtual DOM
about 17
URL 17

[225]

W
Webpack

about 82, 95
configuring 103, 104
installing 103, 104

Webpack configuration file
about 104
entry section 105
module section 107, 108
output section 105
plugins section 105
resolve section 106

wireframes, blog application
creating 95
post-related views 98, 99
user-related views 96, 97

Y
Yeoman 82, 95

Thank you for buying
Mastering React

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

React.js Essentials
ISBN: 978-1-78355-162-0 Paperback: 208 pages

A fast-paced guide to designing and building scalable
and maintainable web apps with React.js

1. Build maintainable and performant user
interfaces for your web applications using
React.js.

2. Create reusable React.js components to save time
and effort in maintaining your user interfaces.

3. Learn how to build a ready-to-deploy React.
js web application, following our step-by-step
tutorial.

Learning Ionic
ISBN: 978-1-78355-260-3 Paperback: 388 pages

Build real-time and hybrid mobile applications
with Ionic

1. Create hybrid mobile applications by
combining the capabilities of Ionic, Cordova,
and AngularJS.

2. Reduce the time to market your application
using Ionic, that helps in rapid application
development.

3. Detailed code examples and explanations,
helping you get up and running with Ionic
quickly and easily.

Please check www.PacktPub.com for information on our titles

Ext JS Application Development
Blueprints
ISBN: 978-1-78439-530-8 Paperback: 340 pages

Develop robust and maintainable projects that exceed
client expectations using Ext JS

1. Learn about the tools and ideas that support the
architecture of an Ext JS 5 application.

2. Design and build rich real-world Ext JS 5
applications based on a set of client requirements.

3. Make strong architectural decisions based on
project specifications with this practical guide.

Mastering AngularJS UI
Development [Video]
ISBN: 978-1-78528-991-0 Duration: 1:27 hours

Master the art of creating amazing, reliable,
and dynamic user interfaces for your AngularJS
applications with the help of a real-world application

1. Comprehend the process of creating quality
AngularJS UI from scratch to completion.

2. Understand key concepts related to building
AngularJS UI, such as interacting with APIs,
writing reusable components, and persisting
user data.

3. Explore AngularJS UI Bootstrap and implement
its key features into your applications.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	Foreword
	About the Authors
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introduction to ReactJs
	Hello React
	JSX
	How it works
	Decompiling JSX
	Structure of render result

	props
	How it works
	propTypes
	getDefaultProps

	state
	How it works

	Summary

	Chapter 2: Component Composition
and Lifecycle
	How to compose simple components
	Composing components with behavior
	How it works

	Accessing a component's children
	Component lifecycle - mounting and unmounting
	Component lifecycle – updating events
	How it works

	Summary

	Chapter 3: Dynamic Components, Mixins, Forms, and More JSX
	Dynamic components
	How it works

	Mixins
	How it works

	Forms
	Controlled components - the read-only input
	How it works

	Controlled components - the read and
write input
	How it works
	Isn't that harder than it needs to be?

	Controlled components – a simple form
	How it works
	But what about the best practices?
	Refactoring the form to be data driven
	How it works

	Validation
	Validation types
	The react-validation-mixin example

	Summary

	Chapter 4: Anatomy of a React Application
	What is a single-page application?
	Three aspects of a SPA design
	Build systems
	Choosing a build system
	Module systems

	CSS preprocessors
	Compiling the modern JS syntax and
JSX templates
	Front-end architecture components
	The front-end router
	Front-end models
	Views, view models, and view controllers
	Messaging and eventing
	Other utility needs

	The application design
	Creating wireframes
	Main data entities and the API
	Main views, site map, and routes

	Summary

	Chapter 5: Starting a React Application
	Application design
	Creating wireframes
	User-related views
	Post-related views

	Data entities
	Main views and the sitemap

	Preparing the development environment
	Installing Node and its dependencies
	Installing and configuring Webpack
	The Webpack configuration

	Considerations before starting
	React and rendering

	Starting the app
	The directory structure
	The mock database
	index.html
	js/app.jsx
	Main views
	Linking views with React Router

	Summary

	Chapter 6: React Blog App
Part 1 – Actions and Common Components
	Reflux actions
	Reusable components and base styles
	Base styles
	Inputs and loading indicator
	The BasicInput component
	The loader component

	The application header

	Summary

	Chapter 7: React Blog App Part 2–Users
	Code manifest
	Application runtime configuration
	Mixins and dependencies
	Reading and writing cookies
	The form utilities mixin

	User-related stores
	The session context store
	The user store

	User views
	The log in view
	The create user view
	Mixins and life cycle methods
	The user profile image
	Form validation and submission

	The user view component
	The user list view
	The user view

	Other affected views
	The app header

	Summary

	Chapter 8: React Blog App
Part 3 – Posts
	Code manifest
	The posts store
	Post views
	Post create/edit
	Mixins and lifecycle methods
	Form submission

	The post view
	The post list component
	The post list view

	Other affected views
	The user view

	Summary

	Chapter 9: React Blog App Part 4 – Infinite Scroll and Search
	Infinite scroll loading
	Infinite scroll code manifest
	Modifying the posts store
	Modifying the post list component

	Searching posts
	Search feature code manifest
	The search store
	Modifying the posts store
	Modifying the application header
	Modifying the post list component

	Final thoughts
	Suggested improvements
	Level up the blog app

	Moving forward

	Chapter 10: Animation in React
	Animation terms
	CSS transitions using class switching
	JavaScript code
	CSS source

	Animating DOM enter and exit
	Popover menus
	JavaScript source
	CSS source
	List filtering
	JavaScript source
	CSS source

	Using the React-Motion animation library
	How React-Motion works
	Clock animation
	JavaScript source
	CSS source

	Summary

	Index

