
 

  

 

 

 

 
 

 

 

Quang Hung Nguyen 

BUILDING A WEB APPLICATION WITH LARAVEL 5 
 

 

 

 
 

 

 

 

 

 

 

 

 
 

 

 

 

 

  



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

BUILDING A WEB APPLICATION WITH LARAVEL 5 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Quang Hung Nguyen 
Bachelor thesis 
Autumn 2015 
Business Information Technology 
Oulu University of Applied Sciences



3 

CONTENTS 

1 INTRODUCTION .................................................................................................................................... 4 
2 LARAVEL ................................................................................................................................................ 6 

2.1 Structure of a Laravel 5 application ............................................................................. 7 
2.2 Model-View-Controller and Middleware ....................................................................... 8 
2.3 Contracts and Repository pattern .............................................................................. 10 
2.4 Blade template ........................................................................................................... 14 
2.5 Package manager: Composer ................................................................................... 15 
2.6 Artisan ........................................................................................................................ 16 
2.7 Setup working environment and workflow ................................................................. 16 

3 BUILDING APPLICATION WITH LARAVEL ......................................................................................... 18 
3.1 The movie review application .................................................................................... 18 
3.2 Creating and configuring new application .................................................................. 20 
3.3 Migration files and Eloquent models creation ............................................................ 21 
3.4 Middleware and controller .......................................................................................... 24 

4 CONCLUSION ...................................................................................................................................... 30 
REFERENCES ............................................................................................................................................ 31 
APPENDICES ............................................................................................................................................. 33 
 

  



4 

1 Introduction 

In modern IT industry, it is essential for web developers to know at least one battle-proven framework. 

Laravel is one of the most successful PHP framework in 2015, based on annual framework popularity 

survey conducted by SitePoint (SitePoint, The Best PHP Framework for 2015: SitePoint Survey Results, 
cited, 25.10.2015).  

 

There are several advantages and benefits of using web framework in general and Laravel in particular. 

Framework is a product of collective intelligence, comprising many robust libraries and convenient tools 

from other developers. They help to reduce most of the repetitive tasks and complex tasks in simple 

interface, which means developers can write less and do more with highest quality in a certain amount of 

time. Therefore, using a reliable framework also help to lower the development cost. 

 

Furthermore, using a robust web framework also helps to strengthen the security of the application. It does 
not require developers have a deep knowledge about security. There are many forms and types of cyber 

attacks, fortunately, Laravel as well as most of web frameworks support several features to prevent basic 

security vulnerabilities such as SQL injection, cross-site request forgery (CRF) and cross-site scripting 

(XSS). 

 

Moreover, Laravel also provides a well-structured skeleton for building big projects. Basically, Laravel 

employ the famous MVC architectural pattern, which helps organizing code better. MVC pattern separate 

the business logic (models), the control coordination (controllers) and the presentation of data (views) into 

3 different layers. In other words, the heart of MVC pattern is the idea of “Separation of concern” (Adam 

Freeman, Pro Design Patterns in Swift, page 529). The framework also supports modular architect which 

enables developers separate code into independent workable modules.  

 

The main outcome of this thesis is to build a movie review website which allow users give ratings for their 

favorite movies, browsing movies by genres and searching for a movie. In order to give review or rating, 

guest must open an account and login to the system. In the backend side, administrators can also create 

and manage new genres, movies, reviews and users. 

 

The motivation behind this project is the need for a movie reviews website that help people get a glance of 
upcoming movies or un-watched movies. In fact, more and more movies are released in theaters, 

approximately 500 movies each year. In 2013 and 2014, there were 659 and 707 movies were released 



5 

respectively in North America (Motion Picture Association of America, Theatrical Market Statistics 2014, 

cited 30.11.2015). It is hard for movie lovers to choose their suitable titles because of fast pace of life.  

 

There are several famous movie review websites on the internet, however there is no equivalent website 

in Vietnamese. Thus, I want to make a similar site for Vietnamese netizens, but the website user interface 

will be implemented in multiple languages. Additionally, the collected movie data and reviews from users 

can be used for further study: building a movies recommendation system. The suggestion system will 

need a relatively large enough amount of ratings data from users in order to make suggestions. Therefore, 

it is necessary to create review website to collect enough data first. 
 

As mentioned previously, using a framework (Laravel 5.1 in particular) helps to improve the quality and the 

development cost in overall. In consequence, Laravel 5.1 is a good choice to use to build a movie review 

website. It is also a good opportunity for me to upgrade my knowledge from Laravel 4 to Laravel 5.1 and 

apply it in a practical project. Laravel 4.x is released for a long time and now it is replaced by Laravel 5.x. 

There are no much differences between Laravel 5.0, 5.1 and 5.2, therefore it is fast to upgrade the 

application to the next Laravel minor version. Moreover, in this document, I assume that readers have 

some basic understanding about web development as well as Laravel 4. Therefore, I will only cover 

several common Laravel features and focus mainly on new features in Laravel 5 in this thesis. 
 

 

 

 

 

 

 



6 

2 Laravel 

Laravel is a clean and well-structured web framework for PHP development. According to its author, 

Laravel is “The PHP framework for Web artisans” (Laravel official website, homepage, cited 25.10.2015). 

 
Over years, PHP gained the bad reputation because of many badly written websites. PHP is an easy-to-

learn language, and it was designed mainly for small web sites. The name “PHP” originally came from the 

term “Personal home page” (PHP official website, History of PHP, cited 25.10.2015). However, in the past 

couple of years, PHP has been evolved to bring many modern new features such as namespace, traits 

and a de facto package manager: Composer.  

 

“Laravel decided to hop on the shoulder of giants and embrace these pre-existing mature components.”  

(Martin Bean, Laravel 5 Essentials, page 3) 

 
Laravel is also built on top of Symfony HTTP foundation, which is a solid, flexible and testable HTTP 

foundation for PHP application. Besides Laravel, latest version of Drupal, phpBB and other open sources 

projects also use Symfony HTTP foundation as a essential part of theirs core (Projects using Symfony). 

Moreover, Laravel also leverages other Symfony components and several various popular PHP libraries 

such as SwiftMailer, Carbon, Doctrine. etc. (Packagist: The PHP Package Repository, The Laravel 

Framework, cited 20.11.2015) 

 

Basically, Laravel is a fully MVC-compliant framework (Maks Surguy, History of Laravel PHP framework, 

Eloquence emerging, cited 21.04.2015). It comprises all necessary components for a MVC web framework 
and highly configurable. The framework come along with Eloquent, a simple ORM and blade templating 

language that helps developers build website in shorter time and less effort 

 

 . 

 

 

 

 

  



7 

2.1 Structure of a Laravel 5 application 

Basically, all user-defined code live in app directory (Figure 1). It is the heart of Laravel application where 

all HTTP requests are handled. In app folder, each type of application layer is stored in separate sub 

folders. Previously in Laravel 4, the app folder keeps all application’s logic, framework code as well as 

configuration files. However, in Laravel 5, the app folder is trimmed down and mainly stores application 

logic classes including model, controllers, commands, middleware etc. By default, the app directory is auto 

loaded by Composer using PSR-4 auto loading standard. It worth to know that most of class types in app 

folder can be created via artisan commands (Laravel official website, Artisan Console, cited 20.11.2015). 

 

In addition, other type resources such as blade templates, LESS or SASS files, CoffeeScript and language 
files are now stored outside the resources folder instead of the app folder. Tests and migration folder are 

also moved out of app folder. However, vendor and bootstrap and public folder still remain the same place 

as in Laravel 4. 
. 
├── app # Your Laravel application 
│   ├── Commands 
│   ├── Console 
│   ├── Events 
│   ├── Exceptions 
│   ├── Handlers 
│   ├── Http 
│   ├── Providers 
├── artisan # Artisan command-line utility 
├── bootstrap 
│   ├── app.php 
│   ├── autoload.php 
│   └── cache 
├── composer.json 
├── config 
├── database 
│   ├── migrations # Database migration classes 
│   └── seeds # Database seeder classes 
├── package.json 
├── phpspec.yml 
├── phpunit.xml # PHPUnit configuration file 
├── public 
│   ├── assets 
│   ├── favicon.ico 
│   ├── index.php # Entry point to run the application 
│   ├── packages 
│   ├── robots.txt 
├── resources 
│   ├── assets 
│   ├── lang 
│   └── views # Contain blade template 
├── server.php # A lightweight local development server 
├── storage 
│   ├── app # App storage, like file uploads etc 
│   ├── framework # Framework storage (cache) 
│   └── logs # Application-generated logs 
├── tests # Contain all test cases 
└── vendor # All third-party libraries installed by Composer 

Figure 1 Laravel application structure 



8 

 

 

2.2 Model-View-Controller and Middleware 

Model-View-Controller is one of the most popular architectural design pattern for web application (Figure 

2).The concept was originally invented by Trygve Reenskaug in 1970s as part of a Smalltalk system being 

developed at Xerox PARC before the born of World Wide Web and the era of personal computer (c2.com, 

Model View Controller History, cited 25.10.2015). It is worth noting that that Laravel is a fully MVC-

compliant framework (Maks Surguy, History of Laravel PHP framework, Eloquence emerging, cited 

21.04.2015). Therefore, it is important for Laravel developer to understand this pattern thoroughly.  

 
The most essential idea is to separate application/business logic from the user interface. It provides a 

basic structure to organize your code in order to improve the maintainability. In other words, instead of 

mixing logic PHP code into the same file with HTML markups, they are split into three separate layers. 

Moreover, it is not only improving the source code readability but also help to separate the work between 

front end and backend developers. 

 

 
Figure 2 MVC pattern diagram 

 

 



9 

Model is an abstraction layer, which presents data in an application. In general, it usually corresponds to 

the records in DBMS database or any type of storage engine such as NoSQL or Microsoft Access. In 

Laravel 5, a Model usually extends from Eloquent master class and presenting a table in database. (Martin 

Bean, Laravel 5 Essentials, page 8) 

 

View is the layer that present data in suitable and in desire format for end client, and usually presented as 

a HTML web page. It is the final visual presentation of data in a web application that Controller has 

received based on the change from Model. Laravel 5 come along with Blade template language, which 

allow developers create reusable and maintainable layouts and template components. (Martin Bean, 
Laravel 5 Essentials, page 9) 

 

Basically, controller is the layer that handles requests and return appropriate responses to the correct 

View. Therefore, Controller acts as a coordinator between View and Model. In other words, it is the logical 

layer of the application. For example, controller can receive form submission from the View and perform 

validation, writing valid data to a database, and redirecting users to other routes. (Martin Bean, Laravel 5 

Essentials, page 9) 

 

Laravel 5 come with new concept that supplement to Controller: Middleware. The Figure 3 explains the 
relations between middlewares and application as well as client requests and responses. It is a convenient 

mechanism to control and security check all incoming requests and responses with proper header (Laravel 

official website, HTTP Middleware page, cited 03.01.2016) 

 

 
Figure 3 Middleware illustration 

 



10 

2.3 Contracts and Repository pattern 

Basically, repository pattern and contracts in Laravel 5 is used to make application more flexible and 

easier to test than fat controller. It is also a way to organize the source code better. The main idea is 

instead of your code is tightly coupled to a concrete implementation, you can easily write an alternative 

implementation of any given contracts. 

 

 
Figure 4 Repository layer 

Figure 5 illustrates a particular tightly coupled function, and it is hard to maintain and extend because of 

two reasons: Firstly, it is tied to App\Models\Movie class. Particularly it is a class extends from Eloquent. If 

developer want to switch to another data storage such as Mongo DB, he/she need to refactor the whole 

application source code. Secondly, fat controller is hard to test, because developer has to simulate 

request data from client browser, and normally controller return a html response, which is hard to validate 

the raw result. 
 1 public function doUpsert(Request $request, $id = null) 
 2 { 
 3   $form = $this->form(\App\Forms\MovieForm::class); 

 4  
 5   if (!$form->isValid()) { 
 6       return redirect()->back()->withErrors($form->getErrors())->withInput(); 
 7     } 
 8  
 9   $movie = (empty($id)) ? new Movie : Movie::find($id); 
10   $movie->fill($request->all()); 
11   $movie->user()->associate(Auth::user()); 
12   $movie->save(); 
13  
14   return redirect()->route('admin.movies'); 
15 } 

Figure 5. A sample tightly coupled function in controller 

 



11 

Firstly, within fat controller function, all business logics and database interactions are written in each 

function and they are not reusable in others. Secondly, when the storage engine need to be changed, the 

whole code base have to be refactored. It takes more resources (e.g: time and money) and contains 

higher probability risk for hidden bugs. It also violate the clean code principles: don’t repeat yourself and 

single responsibility principle.  

 

When repository pattern is used, it is much easier to change the logic and easier to write unit test. The 

Figure 6 illustrates an example of loose-coupled controller function where all actual database 

create/update code is separated from business logic code. 
 
 1 public function doUpsert(Request $request, $id = null) 
 2 { 
 3     $form = $this->form(\App\Forms\MovieForm::class); 

 4  
 5     if (!$form->isValid()) { 
 6         return redirect()->back()->withErrors($form->getErrors())->withInput(); 
 7     } 
 8  
 9     if (empty($id)) { 
10         $this->movie->create(Auth::user()->id, $request->all(), $request); 
11     } else { 
12         $this->movie->update($id, Auth::user()->id, $request->all(), $request); 
13     } 
14  
15     return redirect()->route('admin.movies'); 
16 } 

Figure 6. An example of loosely coupled function 

The Figure 7 illustrates a particular contract. It creates a common contract of all repositories which 

technically an PHP interface. Contracts contains all required methods that the concrete repository classes 

need to implement.  

 
 1 <?php namespace App\Contracts; 
 2  
 3 interface RepositoryInterface { 
 4  
 5     public function find($id); 
 6  
 7     public function create($user_id, array $data, $request); 
 8  
 9     public function update($id, $user_id, array $data, $request); 
10    
11     public function delete($id); 
12  
13     public function all(); 
14  



12 

15     public function get(); 
16 } 

Figure 7 An example of contract 

The interface can easily bind to the concrete implementation as demonstrated in Figure 8, and it helps 

developers easily change the implementation later. Moreover, each repository interface and its concrete 

implementation have to be registered in AppServiceProvider. It is the static way to bind the contract with 

its implementation.  

 
 1 <?php namespace App\Providers; 
 2  
 3 use Illuminate\Support\ServiceProvider; 
 4  
 5 class AppServiceProvider extends ServiceProvider { 
 6  
 7     public function register() 
 8     { 
 9         $this->app->bind( 
10             'Illuminate\Contracts\Auth\Registrar', 
11             'App\Services\Registrar' 
12         ); 
13  
14         $this->app->bind( 
15             'App\Contracts\MovieRepositoryInterface', 
16             'App\Repositories\MovieRepository' 
17         ); 
18     } 
19 } 

Figure 8 Contract and concrete implementation binding 

Particularly, MovieRepository which currently use Eloquent and MySQL as shown in Figure 9. The 

mapping can be easily changed to MovieMongoDBRepository that connect to MongoDB in the future or in 

complex situations. Laravel supports contextual bindings for the situation where two classes use the same 

interface, but they require different implementations. Developers can also bind the interface with the 
desired concrete class based on certain context (Laravel official website, Service Container, cited 

31.05.2016). 

 

 
 1 <?php namespace App\Repositories; 
 2  
 3 use App\Models\Movie; 
 4 use App\Contracts\MovieRepositoryInterface; 
 5  
 6 class MovieRepository implements MovieRepositoryInterface { 
 7  
 8     public function __construct(\App\Models\Movie $movie) { 
 9         $this->movie = $movie; 



13 

10     } 
11  
12     public function find($id) { 
13         return $this->movie->find($id); 
14     } 
15  
16     public function create($user_id, array $data, $request) { 
17         $movie = new Movie; 
18         return $this->upsertMovie($movie, $user_id, $data, $request); 
19     } 
20  
21     public function update($id, $user_id, array $data, $request) { 
22         $movie = Movie::find($id); 
23         return $this->upsertMovie($movie, $user_id, $data, $request); 
24     } 
25  
26     private function upsertMovie($movie, $user_id, $data, $request) 
27     { 
28         $movie->fill($data); 
29         $movie->user()->associate($user_id); 
30  
31         $image_ext = $request->file('image')->getClientOriginalExtension(); 
32  
33         if (!empty($data['image'])) { 
34             $movie->image = str_replace('/', '_', $data['image'] . str_random(12)) 
. '.' . $image_ext; 
35         } 
36          
37         if (!empty($data['genre_id'])) { 
38             $movie->genre()->associate((int)$data['genre_id']); 
39         } 
40  
41         $request->file('image')->move( 
42             base_path() . '/public/images/movies/', $movie->image 
43         ); 
44  
45         return $movie->save(); 
46     } 
47  
48     public function delete($id) { 
49         return; 
50     } 
51  
52     public function all() 
53     { 
54         return Movie::orderBy('year', 'desc')->get(); 
55     } 
56  
57     public function news() 
58     { 
59         return Movie::where('year', '>=', 2000)->orderBy('year', 'desc')-
>limit(5)->get(); 
60     } 



14 

61      
62     public function get() { 
63         return Movie::get(); 
64     } 
65 }  

Figure 9 Concrete implementation of movie repository 

 

 
 

2.4 Blade template 

In web development, templating engine/language is a template preprocessor to combine all view elements 

to form the final finished web page. The main purpose is to separated application logic to its presentations 

(Cristian Darie, Beginning PHP and PostgreSQL E-Commerce: From Novice to Professional, page 22). 

Laravel 5 support Blade templating language, it is an essential tool to create and manage hierarchical 

(inheritance and sections) layouts (Laravel official website, Blade Templates, cited 01.12.2015). With 

Blade template language, developers can easily create common master view as well as the particular 

content of each child view. Each individual view can have different and unique markups, all sub views are 

inherited common sections (e.g.: view header, footer and menu) from master, and only page-specific 
content must be defined in each sub view. 

 

Blade templating language contains a small set of directives and control structures. In order to use it we 

need to know the basics of Blade. Fundamentally, blade templating language will be parsed into PHP 

code at the end. The Figure 10 illustrates how blade templating statements are finally parsed into PHP 

code. 

Blade Standard PHP syntax 
{!! $var !!} <?php echo $var;?> 

{{ $var }} <?php echo htmlentities($var); ?> 

@if ($cond) ... @endif 

 
<?php if ($cond): ?>...<?php endif; ?> 

@foreach($values as 

$value)...@endforeach 

<?php foreach($values as $value):?>...<?php 

endforeach;?> 

@while(true)...@endwhile <?php while(true):?>...<?php endwhile;?> 

Figure 10 Blade syntax and equivalent parsed PHP code 

Blade templating language also supports directives to create master layout with multiple inherit sections. 

The Figure 11 explains several important directives in Blade and its application.  



15 

 

Blade syntax Application 
@section…@end Define a section in template 

@extends(‘template_name’) Extend from an exists template 

@parent Inherit from parent template 
 

@yield('content') Define a section in parent template that can be replaced in the 
child templates. 

Figure 11 Blade templating language directives 

2.5 Package manager: Composer 

As previously described, Laravel is built on top of several third-party libraries. Instead of including all these 

external dependencies in its source code, Laravel uses Composer to manage its dependencies. 

Composer is a PHP tool, which allows you declare all required libraries in your project (in composer.json) 

and it will manage (install/update) it for you. Composer is inspired by other popular dependency mangers 

in other languages, such as Ruby’s Bundler or npm in Node.js. It has quickly become de-facto 
dependency manager in PHP. 

 

Developer can easily create new Laravel project via composer. Composer will check if your environment 

settings meets Laravel 5 requirements or not. 

composer create-project laravel/laravel --prefer-dist 

Composer will show warnings if your working environment does not meet the requirements.  For example: 

 
- This package requires php >=5.5.9 but your PHP version (5.4.30) does not satisfy 
that requirement. 
 

(Composer website, Getting started page, cited 25.10.2015) 

  



16 

2.6 Artisan  

There are several common tasks that developers need to do repetitively during the development process.  

Those common tasks contain a lot of boilerplate code which can be constructed automatically. Therefore, 

Laravel provide artisan - a built-in command line interface. It is a collection of useful command utilities 

to help developer quickly create the skeleton code or doing some administration tasks. (Laravel official 

website, Artisan Console, cited 20.11.2015) 

 

Artisan helps developers build and manipulate database schema (data definition) via migration files. We 

can also swiftly create Controller, Model, Middleware and Event classes via this interface without copy-

and-paste boilerplate codes. 
 

Moreover, besides the existing utilities, developers can make their own commands and execute them via 

artisan. For instance, we can create a command to backup our database every 15 minutes and send it to 

backup server. Queue jobs can be also managed via this command interface. 

2.7 Setup working environment and workflow 

In order to set up and create the first Laravel application, developers need to set-up the proper 

environment for Laravel 5. Traditionally, developers install each component of LAMP stack separately. 

However, it is not good for working on collaborative project. Therefore, Vagrant is introduced to overcome 

that issue.  

 

The Laravel framework has a few system requirements: 
• PHP >= 5.5.9 

• Mcrypt PHP Extension 

• OpenSSL PHP Extension 

• Mbstring PHP Extension 

• Tokenizer PHP Extension 

 

As of PHP 5.5, some OS distributions may require you to manually install the PHP JSON extension. When 

using Ubuntu, this can be done via apt-get install php5-json. (Laravel official website, Installation 

page, cited 25.10.2015) 

 

 

 



17 

 

Laravel comes with officially development environment: Homestead. It is an official pre-packaged Vagrant 

box that includes all basic necessary software for Laravel development including the Nginx web server, 

PHP 7.0, MySQL, Postgres, Redis, Memcached, Node. Homestead is built on top of vagrant, and both of 

them run cross-platform, disposable and easy to maintain. If something went wrong, the whole 

development environment can be destroyed and re-created in few minutes. 

 
Traditionally, developers have various choices to build their local web development environment, ranging 

from all-in-one server stack (e.g: XAMPP, Zend Server), via package manager like homebrew, apt and 
yum to built and install each individual component from source code. 

 

The problem is you can have multiple projects running various PHP, Redis, Node.js version. Moreover, 

developers in one team can have different local server setups. There are many different combination of 

package dependencies and software version for each local server. However, it is very important to make 

sure your local and testing environment match with production server. Therefore, there is possibility for a 

local test passed code but cannot run on production server due to different OS or software version. 

 

Virtualization is an answer for this problem, with homestead and vagrant developers can setup their own 
working environment to match other developers, and more importantly with production server. With 

vagrant, every team member who is involved in a collaborative project can easily share a unified working 

environment. Moreover, it is fast and simple when the whole team need to upgrade all development OS 

and tools. 

 

  



18 

3 Building application with Laravel 

3.1 The movie review application 

In this chapter, the actual movie review application will be built with Laravel in order to demonstrate 

corresponding Laravel 5 features. Basically, users are able to browse through list of movies as shown in 

Figure 12. Moreover, they can go further in to movie details page and leave reviews as well as rating for 

that movies.  
 

 
Figure 12 All movie list page design 

The Figure 13 illustrates the appearance of a particular movie detail page. The page shows all information 

about that movie such as title, synopsis, published year and duration. In addition, it also displays all users’ 

reviews and a form for registered users who want to leave a review and rating for that movie. 

 

The UI interfaces also reflects real life situation, where different Laravel features and techniques are 

employed to create web application. Although, not all movie review application features are shown in this 

chapter, the selected features and techniques in the two illustrations are enough for building all other 

features. 



19 

 

 
Figure 13 Movie details page 



20 

 

3.2 Creating and configuring new application 

It is very easy to install Laravel and create new application with composer. After Laravel is installed, 
developers can create new Laravel application in terminal with this simple command: laravel new. For 

example, “laravel new movies” would create a new “movies” directory with the framework and all 

dependencies installed. 

 
laravel new movies 
 

After the new application is created, environment file has to be changed in order to meet development 

environment otherwise Laravel cannot connect to database and other services. Developers can file all 

configuration files in config directory, but most of them read values from .env file. Generally, all sensitive 

data such as database or email credentials and basic application setting are set in .env file. Normally, this 
environment file is not pushed to version control server (e.g: git or svn) due to security reasons. This is a 

example of an environment file (.env): 

 
 1 APP_ENV=local 
 2 APP_DEBUG=true 
 3 APP_KEY=oOeFlqzBxJQwJymSHcbUY0eYIHcSW4CX 
 4  
 5 AUTH_DRIVER=ELOQUENT 
 6 AUTH_MODEL=USER 
 7 AUTH_TABLE=USERS 
 8 SESSION_DRIVER=file 
 9  
10 DB_HOST=localhost 
11 DB_DATABASE=movie_review 
12 DB_USERNAME=root 
13 DB_PASSWORD= 
14  
15 CACHE_DRIVER=file 
16 SESSION_DRIVER=file 
17 QUEUE_DRIVER=sync 
18  
19 MAIL_DRIVER=smtp 
20 MAIL_HOST=mailtrap.io 
21 MAIL_PORT=2525 
22 MAIL_USERNAME=null 
23 MAIL_PASSWORD=null 
 

  



21 

3.3 Migration files and Eloquent models creation 

As previously discussed, models are the presentation layer of data in our application. They are usually 

mapped with tables in database. Laravel 5 is equipped with Eloquent ORM, a simple ActiveRecord 

implementation, that helps developers interact with database tables more effectively by making reusable 

and concise code (Laravel official website, Eloquent: Getting Started, cited, 05.12.2015). Moreover, in 

order to support database schema version management, Laravel 5 also packaged with Migration tool. It is 

like version control of your database, enabling all team members can create, modify and share the 

database schema (Laravel official website, Database: Migrations, cited, 05.12.2015). 

 

Normally, the first and most essential step is to create database schema (migrations) based on the ERD 
diagram. Afterward, the Eloquent models need to be defined to match with the database design. These 

models help developers interact with certain tables in database effectively by converting tabular data to 

objects. It also helps developers reuse and handle SQL query easier by supporting relationship mapping 

and query builder (Laravel official website, Eloquent: Relationships, cited 30.05.2016). 

 

The Figure 14 illustrates an example of a migration which is created by Laravel. The user table definition is 

written in the up method. When the command “php artisan migrate” is run, the code inside up method will 

be executed to create a new table named “users” in database. Noted that user migration file is always 

created by default in Laravel 5 installation, it is not required to run any command to create this migration 
file. However, with user-defined tables, developers need to create corresponding migration file manually or 

using “php artisan” utility. 
 

 1 <?php 
 2 use Illuminate\Database\Schema\Blueprint; 
 3 use Illuminate\Database\Migrations\Migration; 
 4  
 5 class CreateUsersTable extends Migration { 
 6  
 7     /** 
 8      * Run the migrations. 
 9      * 
10      * @return void 
11      */ 
12     public function up() 
13     { 
14         Schema::create('users', function(Blueprint $table) 
15         { 
16             $table->increments('id'); 
17             $table->string('name'); 
18             $table->string('email')->unique(); 
19             $table->string('password', 60); 



22 

20             $table->rememberToken(); 
21             $table->timestamps(); 
22         }); 
23     } 
24 } 

Figure 14 A sample migration file 

Figure 8 demonstrates how a user-defined migration file is created using artisan utility. It is a good practice 

that to use the artisan tool instead of create it manually, because the utility also adds date time to the file 

name that keeps our migrations file in chronological order. The command will create a new backbone 

migration file. Developers only need to add table definition code inside “up” method.  

 
Figure 15 Command to create a migration file for movies table 

 1 <?php 
 2 use Illuminate\Database\Schema\Blueprint; 
 3 use Illuminate\Database\Migrations\Migration; 
 4  
 5 class CreateMoviesTable extends Migration 
 6 { 
 7     /** 
 8      * Run the migrations. 
 9      * 
10      * @return void 
11      */ 
12     public function up() 
13     { 
14         Schema::create('movies', function (Blueprint $table) { 
15             $table->increments('id'); 
16             $table->integer('user_id')->unsigned()->index(); 
17             $table->string('title'); 
18             $table->string('synopsis'); 
19             $table->integer('year'); 
20             $table->integer('duration'); 
21             $table->foreign('user_id') 
22                 ->references('id') 
23                 ->on('users') 
24                 ->onDelete('cascade'); 
25             $table->timestamps(); 
26             $table->softDeletes(); 
27         }); 



23 

28     } 
29 } 

 

Figure 16 User-defined migration file with foreign key declaration 

The Figure 9 illustrates how a table with primary key and foreign key is defined. It also explains how 

developer can easily add timestamp field (creation time and update time) to the table. Moreover, Laravel 
also support soft delete feature that help we logically delete an entry in database by marking it as deleted. 

It is a convenient feature that allow developers resurrect data when it is accidentally removed by users. 

 

After migration files and tables in database were created, Eloquent models need to be built based on the 

created tables. The  Figure 17 illustrates a particular eloquent model with all mapped attributes as well as 

its relationships. It also explains how developers can create custom attribute for a model. The custom 

attribute must follow the naming convention “getXXXAttribute”, and it can be automatically accessed in 

other places as an attribute of the model. 

 
 
 1 <?php namespace App\Models; 
 2  
 3 use Illuminate\Database\Eloquent\Model; 
 4  
 5  
 6 class Movie extends Model 
 7 { 
 8     /** 
 9      * The database table used by the model. 
10      * 
11      * @var string 
12      */ 
13     protected $table = 'movies'; 
14  
15     /** 
16      * The attributes that are mass assignable. 
17      * 
18      * @var array 
19      */ 
20     protected $fillable = ['title', 'image', 'year', 'duration', 'synopsis']; 
21  
22  
23     public function getImagePathAttribute() 
24     { 
25         return '/images/movies/' . $this->image; 
26     } 
27  
28     public function getShortSynopsisAttribute() 
29     { 
30         return str_limit($this->synopsis, 225); 



24 

31     } 
32  
33     public function user() 
34     { 
35         return $this->belongsTo('App\User'); 
36     } 
37  
38     public function genre() 
39     { 
40         return $this->belongsTo('App\Models\Genre'); 
41     } 
42 } 

Figure 17 Movie model 

3.4 Middleware and controller 

Authentication and authorization is one of the most important part of any IT system involves users. In this 

paper, authentication and authorization is consider as one entity which is  inseparable. Laravel 5 provides 

several tools for developers to easily and securely implement this feature. As mentioned earlier in chapter 

2, middleware enable developer control and security check all incoming requests and handle them 
properly. Sepecificly, guest and auth middleware are used to create authentication and authorization 

mechanism. 

 

In this movie review system, guests are allowed to register and sign in to leave comments and reviews. 

Moreover, registered users can not access to administrator control panel, which mean certain type of user 

can only access certain zone in the system. Therefore, this feature needs at least two essential parts: 

registration, authentication and authorization part.  

 

Although PHP don’t have any standard in authenticate users, Laravel 5 is facilitated with an ready-to-use 
package for authentication including controllers, routes and views. The main authentication controller is 

placed at app/Http/Controllers/Auth/AuthController.php. The controller use 

AuthenticatesAndRegistersUsers trait which contains all neccessary methods to handle essential actions 

such as login, logout.  

 

There are two main type of users in this system: normal users and administrators. Therefore, two 

middleware classes need to be implemented: Authenticate and AdminAuthenticate. Basically an 

administrator is a normal user with admin role, and a normal user is an authenticated guest. 

 



25 

Laravel 5 does not natively support to handle roles and permissions in the system. However, there is a 

package to support that purpose: “bican/roles”.  Before using “bican/roles”, it must be installed via 

composer as following commands: 

 
$ composer require "bican/roles:2.1.*" 
$ composer update 

Figure 18 Install bican/roles package using composer 

Besides that, admin role also need to be created, and admin users must be assigned admin role. Firstly, 

admin role must be generated via a command as in Figure 19. Note that to keep it simple, only the most 

essential parts of the commands are shown. Moreover, each role in the system need to created separately 

depends on the requirements. For example, moderator or premium user can be created along with admin 
and guest role. 

 

 1 <?php 
 2 try { 
 3    $adminRole = Role::create([ 
 4         'name' => 'Admin', 
 5         'slug' => 'admin', 
 6         'description' => 'Admin role', // optional 
 7         'level' => 1, // optional, set to 1 by default 
 8     ]); 
 9     $this->info('Admin role is created'); 
10 } catch(\Exception $ex){ 
11     $this->error($ex->getMessage()); 
12 }   

Figure 19 Create admin role in the system 

 
To simplify the process, instead of creating GUI for making new admin, a make-admin command is made 

for this purpose. The User model also need to be modified to support authorization. Specifically, 

Authenticatable, HasRoleAndPermission, CanResetPassword trait must be used in the model as 

illustrated in Figure 20. 
 
 1 <?php 
 2 class User extends Model implements AuthenticatableContract, 
CanResetPasswordContract { 
 3  
 4     use Authenticatable, CanResetPassword, HasRoleAndPermission; 
 5  
 6     protected $table = 'users'; 
 7      
 8     protected $fillable = ['name', 'email', 'password']; 
 9  
10     protected $hidden = ['password', 'remember_token']; 



26 

11 } 
 

Figure 20 User model with authentication's traits 

 
1 $email = $this->argument('email'); 
2 $user  = User::where('email', '=', $email)->first(); 
3 $adminRole = Role::where('name', '=' , 'admin')->first(); 
4 $user->attachRole($adminRole); 

Figure 21 Create a new admin user with admin role 

After creating admin role, the previously created admin user must be attach with the new role. The Figure 
21 demonstrates how a user can be associated with a role. From now on, there are two types of users in 

the system: registered users and administrators.  

 
 
 1 <?php 
 2 namespace App\Http\Controllers\Auth; 
 3 use App\User; 
 4 use Validator; 
 5 use App\Http\Controllers\Controller; 
 6 use Illuminate\Foundation\Auth\ThrottlesLogins; 
 7 use Illuminate\Foundation\Auth\AuthenticatesAndRegistersUsers; 
 8  
 9 class AuthController extends Controller 
10 { 
11     use AuthenticatesAndRegistersUsers, ThrottlesLogins; 
12  
13     public function __construct() 
14     { 
15         $this->middleware('guest', ['except' => 'getLogout']); 
16     } 
17  
18     protected function validator(array $data) 
19     { 
20         return Validator::make($data, [ 
21             'name' => 'required|max:255', 
22             'email' => 'required|email|max:255|unique:users', 
23             'password' => 'required|confirmed|min:6', 
24         ]); 
25     } 
26  
27     protected function create(array $data) 
28     { 
29         return User::create([ 
30             'name' => $data['name'], 
31             'email' => $data['email'], 
32             'password' => bcrypt($data['password']), 
33         ]); 
34     } 
35 } 



27 

Figure 22 Authentication controller 

 

The Figure 12 illustrates the general layout design of movie list page. The page comprises two main list: 

general movie list on the left and newest movie list on the right. Movie poster, movie title and short 

synopsis are shown in each list. When users click on the movie title, it will redirect them to movie detail 

page. 
 

 

The controller for movie list page is pretty simple, it only fetches two movie lists and pass them to the view. 

Basically, the movie lists are only different in sorting order. Data retrieving and sorting is quite easy with 

Eloquent as illustrated in Figure 22, one movie collection is sorted by title and the other is sorted by year.  

 
 1     // Movie controller 
 2     public function movies() 
 3     { 
 4         $movies     = $this->movie->all(); 
 5         $new_movies = $this->movie->news(); 
 6  
 7         return view('front.movies',[ 
 8             'movies' => $movies, 
 9             'news'   => $new_movies 
10         ]); 
11     } 
12     //Movie repository 
13     public function all() 
14     { 
15         return Movie::orderBy('title', asc)->get(); 
16     } 
17  
18     public function news() 
19     { 
20         return Movie::where('year', '>=', 2000)->orderBy('year', 'desc')-
>limit(5)->get(); 
21     } 

 

Figure 23 Movie controller and related repository code 

 

As shown in the Figure 13, it describes the appearance of movie detail page. Beside all movie details 

information such as title, published year, poster, synopsis etc. the page also includes movie review form 

for registered user and the list of users’ reviews. 
 



28 

Before writing main business logic code in controller, all necessary routes must be defined. The Figure 24 

illustrates how routes are registered.  Basically the desired paths have to be mapped with corresponding 

controller action. The routes can also be aliased with shorter name for re-used with route helper later. 

When the responsible action is changed, developers only need to change the “uses” part without refactory 

all places using alias name of the route. 

 

 
1 Route::get('/movie/{id}', [ 
2     'as'   => 'front.movie', 
3     'uses' => '\App\Http\Controllers\Front\Movie@movie' 
4 ]); 
5  
6 Route::post('/movie/doReview/{id}', [ 
7     'as'   => 'admin.movie.doReview', 
8     'uses' => '\App\Http\Controllers\Front\Movie@doReview' 
9 ]); 

Figure 24 Routes for movie detail page and movie review function 

 

The Figure 25 explains how the review form is created with LaravelFormBuilder package. In this form, 

there are three elements: a textbox for review title, a drop box is initialized with values from 1 to 5 and a 

submit button. 

 
 1 <?php 
 2  
 3 namespace App\Forms; 
 4  
 5 use Kris\LaravelFormBuilder\Form; 
 6  
 7 class ReviewForm extends Form 
 8 { 
 9     public function buildForm() 
10     { 
11         $this->add('title', 'text', [ 
12             'rules' => 'required|min:5', 
13         ])->add('rating', 'select', [ 
14             'choices' => [1, 2, 3, 4, 5], 
15             'empty_value' => '-- select --' 
16         ])->add('content', 'textarea', [ 
17             'rules' => 'required|min:4', 
18         ])->add('save', 'submit', [ 
19             'template' => 'elements.form.button', 
20             'attr' => ['class'=>'btn btn-primary pull-right'], 
21             'label' => trans('common.save') 
22         ]); 
23     } 
24 } 



29 

Figure 25 Review form code 

The Figure 26 llustrate how movie controller can displays the movie detail page as well as handle the 

review submission from that page. The movie detail page only process input data to display information of 

related movie and the review form in the bottom of that page. The doReview action in the movie controller 

is responsible for validating and saving (via movie repository class) review to database. After inserting new 

review to the database, it will redirect the user back to the movie detail page. However, if the submitted 
data is invalid, the controller will redirect users back to the previous page with extra error messages. 

 

 
 1 <?php     
 2     // Movie controller 
 3     public function movie(FormBuilder $formBuilder, $id) 
 4     { 
 5         $movie   = $this->movie->find($id); 
 6         $reviews = $this->review->all(); 
 7  
 8         $form = $formBuilder->create(\App\Forms\ReviewForm::class, [ 
 9             'method' => 'POST', 
10             'class' => 'form-horizontal', 
11             'url' => route('admin.movie.doReview', ['id' => $id]) 
12         ]); 
13  
14         return view('front.movie',[ 
15             'movie' => $movie, 
16             'reviews'=> $reviews, 
17             'form'  => $form 
18         ]); 
19     } 
20  
21     public function doReview(Request $request, $movie_id) 
22     { 
23         if (empty(Auth::user()->id)) { 
24             return redirect()->back(); 
25         } 
26  
27         $form = $this->form(\App\Forms\ReviewForm::class); 
28  
29         if (!$form->isValid()) { 
30             return redirect()->back()->withErrors($form->getErrors())-
>withInput(); 
31         } 
32  
33         $this->review->create(Auth::user()->id, $movie_id, $request->all()); 
34  
35         return redirect()->back(); 
36     } 

Figure 26 Code handles movie details page routes 



30 

4 Conclusion 

Laravel 5 is an ideal choice for PHP developers that want to create fast prototype as well as large scale 

project later. The learning curve is also not so steep, because its documentation is very comprehensive 

and clear. The Laravel community is also big and web developers can easily find answers for theirs 
questions and resources on the internet. 

 

Laravel 5 is a full stack and rich feature web frameworks, it has everything that web developers may need. 

From development environment, database migration, MVC structure etc.  It is worth to mention that 

Laravel equipped with artisan which is a very handy toolset. The framework also come with its own 

ORM (Eloquent), a beautiful and simple ActiveRecord implementation. Moreover, Laravel 5 is very easy to 

test, comparing to Laravel 4. Unfortunately, testing is not demonstrated in this thesis.  

 

Furthermore, it is very to control dependencies and install new packages with composer. Composer will 
find and install the given packages in composer.json including all dependencies. Besides Laravel itself, 

there are several good packages that developers can install via composer. They help developers build 

modern web application faster web application with less effort such as form builder, image processing, or 

mail sender packages. 

 

The project goal is to demonstrate how to use Laravel 5 in practice, therefore in this thesis all features are 

simplified. There are still a lot of rooms for improvements in term of functionality and usability. However, 

Laravel shown that it is a promising framework to study and to spend time more in further study projects 

as well as working projects. In Laravel version, not only the overall structure is changed but also many 
other essential features were added such as middleware, contracts and route cache. The testability of the 

framework is also improved. Laravel now enables developers write controller tests easier. (Laravel official 

website, Release notes, cited 13.05.2016) 

 

With PHP 7, the overall performance of PHP is improved dramatically. Currently, Laravel 5.2 is the latest 

version and the project itself was written in PHP 5.x but it is compatible with PHP 7. This is a good thing 

for all who use PHP in production. Furthermore, Laravel project is very promising in the future with the 

next major version. In summary, Laravel is outstanding PHP framework and it helps developers easily 

practice clean code and TDD as well as contribute to the software industry. 
 

 



31 

REFERENCES 

Adam Freeman. 2015. Pro Design Patterns in Swift. USA: Springer Science 

 

Cunningham & Cunningham, Inc. Model View Controller History. Cited 20.10.2015, 
http://c2.com/cgi/wiki?ModelViewControllerHistory 

 

Cristian Darie. 2006. Beginning PHP and PostgreSQL E-Commerce: From Novice to Professional 

(Beginning, from Novice to Professional). United States: Apress 

 

History of PHP. Cited 25.10.2015, http://fi2.php.net/manual/en/history.php.php 

 

Laravel - The PHP framework for web artisans. Cited 25.10.2015, http://laravel.com/ 

 
Laravel official website. Installation. Cited 25.10.2015, http://laravel.com/docs/5.1  

 

Laravel official website. Artisan Console. Cited 20.11.2015, 

http://laravel.com/docs/5.1/artisan 

 

Laravel official website. Blade. Cited 01.12.2015, http://laravel.com/docs/5.1/blade 

 

Laravel official website. Eloquent: Getting Started. Cited 05.12.2015, 

http://laravel.com/docs/5.1/eloquent 
 

Laravel official website. Eloquent: Relationships. Cited 30.05.2016, https://laravel.com/docs/5.1/eloquent-

relationships 

 

The Laravel Framework. Packagist: The PHP package repository. Cited 25.10.2015, 

https://packagist.org/packages/laravel/framework  

 

Laravel official website. Database: Migrations. Cited 05.12.2015, 

http://laravel.com/docs/5.1/migrations 
 

Laravel official website. HTTP Middleware. Cited 03.01.2016, 

https://laravel.com/docs/5.1/middleware 



32 

Laravel official website. Service Container. Cited 31.05.2016, 

https://laravel.com/docs/master/container#contextual-binding 

 

Martin Bean. 2015. Laravel 5 Essentials. United Kingdom: Packt Publishing 

 

Projects using Symfony. Cited 25.10.2015, http://symfony.com/projects  

 

Motion Picture Association of America website, Theatrical Market Statistics 2014. Cited 30.11.2015, 

http://www.mpaa.org/wp-content/uploads/2015/03/MPAA-Theatrical-Market-Statistics-2014.pdf 
 

The Best PHP Framework for 2015: SitePoint Survey Results. Cited 25.10.2015, 

http://www.sitepoint.com/best-php-framework-2015-sitepoint-survey-results/ 

 

Wikipedia. Laravel. Cited 20.11.2015, https://en.wikipedia.org/wiki/Laravel 

 

 

 

  



33 

APPENDICES 

Use cases diagram 

- User 

 
 

  



34 

- Admin 

 
 
 

 

 

 

 

 



35 

Entity-relationship diagram 

 

 


