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Incorporating the latest R packages as well as new case studies and applica-
tions, Using R and RStudio for Data Management, Statistical Analysis, and 
Graphics, Second Edition covers the aspects of R most often used by statisti-
cal analysts. New users of R will find the book’s simple approach easy to under-
stand while more sophisticated users will appreciate the invaluable source of 
task-oriented information. 

New to the Second Edition
• The use of RStudio, which increases the productivity of R users and helps 

users avoid error-prone cut-and-paste workflows
• New chapter of case studies illustrating examples of useful data 
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“scraping” data from the web, mining text files, and generating dynamic 
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• A detailed discussion of the philosophy and use of the knitr and markdown 
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management, statistical and mathematical functions, programming, high-
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Conveniently organized by short, clear descriptive entries, this edition continues 
to show users how to easily perform an analytical task in R. Users can quickly 
find and implement the material they need through the extensive indexing, cross-
referencing, and worked examples in the text. Datasets and code are available 
for download on a supplementary website.
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Preface to the second edition

Software systems such as R evolve rapidly, and so do the approaches and expertise of
statistical analysts.

In 2009, we began a blog in which we explored many new case studies and applications,
ranging from generating a Fibonacci series to fitting finite mixture models with concomitant
variables. We also discussed some additions to R, the RStudio integrated development
environment, and new or improved R packages. The blog now has hundreds of entries and
according to Google Analytics has received hundreds of thousands of visits.

The volume you are holding is a larger format and longer than the first edition, and
much of the new material is adapted from these blog entries, while it also includes other
improvements and additions that have emerged in the last few years.

We have extensively reorganized the material in the book and created three new chap-
ters. The firsts, “Simulation,” includes examples where data are generated from complex
models such as mixed-effects models and survival models, and from distributions using
the Metropolis–Hastings algorithm. We also explore interesting statistics and probability
examples via simulation. The second is “Special topics,” where we describe some key fea-
tures, such as processing by group, and detail several important areas of statistics, including
Bayesian methods, propensity scores, and bootstrapping. The last is “Case studies,” where
we demonstrate examples of useful data management tasks, read complex files, make and
annotate maps, show how to “scrape” data from the web, mine text files, and generate
dynamic graphics.

We also describe RStudio in detail. This powerful and easy-to-use front end adds in-
numerable features to R. In our experience, it dramatically increases the productivity of R
users, and by tightly integrating reproducible analysis tools, helps avoid error-prone “cut
and paste” workflows. Our students and colleagues find RStudio an extremely comfortable
interface.

We used a reproducible analysis system (knitr) to generate the example code and
output in the book. Code extracted from these files is provided on the book website. In
this edition, we provide a detailed discussion of the philosophy and use of these systems. In
particular, we feel that the knitr and markdown packages for R, which are tightly integrated
with RStudio, should become a part of every R user’s toolbox. We can’t imagine working
on a project without them.

The second edition of the book features extensive use of a number of new packages
that extend the functionality of the system. These include dplyr (tools for working with
dataframe-like objects and databases), ggplot2 (implementation of the Grammar of Graph-
ics), ggmap (spatial mapping using ggplot2), ggvis (to build interactive graphical displays),
httr (tools for working with URLs and HTTP), lubridate (date and time manipulations),
markdown (for simplified reproducible analysis), shiny (to build interactive web applica-
tions), swirl (for learning R, in R), tidyr (for data manipulation), and xtable (to cre-
ate publication-quality tables). Overall, these packages facilitate ever more sophisticated
analyses.

xxi
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xxii PREFACE TO THE SECOND EDITION

Finally, we’ve reorganized much of the material from the first edition into smaller, more
focused chapters. Readers will now find separate (and enhanced) chapters on data input
and output, data management, statistical and mathematical functions, and programming,
rather than a single chapter on “data management.” Graphics are now discussed in two
chapters: one on high-level types of plots, such as scatterplots and histograms, and another
on customizing the fine details of the plots, such as the number of tick marks and the color
of plot symbols.

We’re immensely gratified by the positive response the first edition elicited, and hope
the current volume will be even more useful to you.

On the web

The book website at http://www.amherst.edu/~nhorton/r2 includes the table of contents,
the indices, the HELP dataset in various formats, example code, a pointer to the blog, and
a list of errata.
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Preface to the first edition

R (R development core team, 2009) is a general purpose statistical software package used
in many fields of research. It is licensed for free, as open-source software. The system is
developed by a large group of people, almost all volunteers. It has a large and growing user
and developer base. Methodologists often release applications for general use in R shortly
after they have been introduced into the literature. While professional customer support is
not provided, there are many resources to help support users.

We have written this book as a reference text for users of R. Our primary goal is to
provide users with an easy way to learn how to perform an analytic task in this system,
without having to navigate through the extensive, idiosyncratic, and sometimes unwieldy
documentation or to sort through the huge number of add-on packages. We include many
common tasks, including data management, descriptive summaries, inferential procedures,
regression analysis, multivariate methods, and the creation of graphics. We also show some
more complex applications. In toto, we hope that the text will facilitate more efficient use
of this powerful system.

We do not attempt to exhaustively detail all possible ways available to accomplish a
given task in each system. Neither do we claim to provide the most elegant solution. We
have tried to provide a simple approach that is easy to understand for a new user, and have
supplied several solutions when it seems likely to be helpful.

Who should use this book

Those with an understanding of statistics at the level of multiple-regression analysis
should find this book helpful. This group includes professional analysts who use statistical
packages almost every day as well as statisticians, epidemiologists, economists, engineers,
physicians, sociologists, and others engaged in research or data analysis. We anticipate that
this tool will be particularly useful for sophisticated users, those with years of experience
in only one system, who need or want to use the other system. However, intermediate-
level analysts should reap the same benefit. In addition, the book will bolster the analytic
abilities of a relatively new user, by providing a concise reference manual and annotated
examples.

Using the book

The book has two indices, in addition to the comprehensive table of contents. These
include: 1) a detailed topic (subject) index in English; 2) an R command index, describing
R syntax.

Extensive example analyses of data from a clinical trial are presented; see Table B.1
(p. 237) for a comprehensive list. These employ a single dataset (from the HELP study),
described in Appendix B. Readers are encouraged to download the dataset and code from
the book website. The examples demonstrate the code in action and facilitate exploration
by the reader.

xxiii
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xxiv PREFACE TO THE FIRST EDITION

In addition to the HELP examples, a case studies and extended examples chapter uti-
lizes many of the functions, idioms and code samples introduced earlier. These include
explications of analytic and empirical power calculations, missing data methods, propensity
score analysis, sophisticated data manipulation, data gleaning from websites, map making,
simulation studies, and optimization. Entries from earlier chapters are cross-referenced to
help guide the reader.

Where to begin

We do not anticipate that the book will be read cover to cover. Instead, we hope that the
extensive indexing, cross-referencing, and worked examples will make it possible for readers
to directly find and then implement what they need. A new user should begin by reading
the first chapter, which includes a sample session and overview of the system. Experienced
users may find the case studies to be valuable as a source of ideas on problem solving in R.
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Chapter 1

Data input and output

This chapter reviews data input and output, including reading and writing files in spread-
sheet, ASCII file, native, and foreign formats.

1.1 Input

R provides comprehensive support for data input and output. In this section we address
aspects of these tasks. Datasets are organized in dataframes (A.4.6), or connected series
of rectangular arrays, which can be saved as platform-independent objects. UNIX-style
directory delimiters (forward slash) are allowed on Windows.

1.1.1 Native dataset
Example: 7.10

load(file="dir_location/savedfile") # works on all OS including Windows

or
load(file="dir_location\\savedfile") # Windows only

Note: Forward slash is supported as a directory delimiter on all operating systems; a double
backslash is supported under Windows. The file savedfile is created by save() (see 1.2.3).
Running the command print(load(file="dir location/savedfile")) will display the
objects that are added to the workspace.

1.1.2 Fixed format text files

See 1.1.9 (read more complex fixed files) and 12.2 (read variable format files).

ds = read.table("dir_location\\file.txt", header=TRUE) # Windows only

or
ds = read.table("dir_location/file.txt", header=TRUE) # all OS (including

# Windows)

Note: Forward slash is supported as a directory delimiter on all operating systems; a double
backslash is supported under Windows. If the first row of the file includes the name of the
variables, these entries will be used to create appropriate names (reserved characters such as
‘$’ or ‘[’ are changed to ‘.’) for each of the columns in the dataset. If the first row doesn’t
include the names, the header option can be left off (or set to FALSE), and the variables

1
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will be called V1, V2, . . . Vn. A limit on the number of lines to be read can be specified
through the nrows option. The read.table() function can support reading from a URL
as a filename (see 1.1.12) or browse files interactively using read.table(file.choose())

(see 4.3.7).

1.1.3 Other fixed files

See 1.1.9 (read more complex fixed files) and 12.2 (read variable format files)

Sometimes data arrives in files that are very irregular in shape. For example, there may
be a variable number of fields per line, or some data in the line may describe the remainder
of the line. In such cases, a useful generic approach is to read each line into a single character
variable, then use character variable functions (see 2.2) to extract the contents.

ds = readLines("file.txt")
or

ds = scan("file.txt")

Note: The readLines() function returns a character vector with length equal to the number
of lines read (see file()). A limit on the number of lines to be read can be specified through
the nrows option. The scan() function returns a vector, with entries separated by white
space by default. These functions read by default from standard input (see stdin() and
?connections), but can also read from a file or URL (see 1.1.12). The read.fwf() function
may also be useful for reading fixed-width files.

1.1.4 Comma-separated value (CSV) files

Example: 2.6.1

ds = read.csv("dir_location/file.csv")

Note: The stringsAsFactors option can be set to prevent automatic creation of factors
for categorical variables. A limit on the number of lines to be read can be specified through
the nrows option. The command read.csv(file.choose()) can be used to browse files
interactively (see 4.3.7). The comma-separated file can be given as a URL (see 1.1.12). The
colClasses option can be used to speed up reading large files. Caution is needed when
reading date and time variables (see 2.4).

1.1.5 Read sheets from an Excel file

library(gdata)

ds = read.xls("http://www.amherst.edu/~nhorton/r2/datasets/help.xlsx",

sheet=1)

Note: The sheet number can be provided as a number or a name.

1.1.6 Read data from R into SAS

The R package foreign includes the write.dbf() function; we recommend this as a reliable
format for extracting data from R into a SAS-ready file, though other options are possible.
Then SAS proc import can easily read the DBF file.
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tosas = data.frame(ds)

library(foreign)

write.dbf(tosas, "dir_location/tosas.dbf")

This can be read into SAS using the following commands:

proc import datafile="dir_location\tosas.dbf"

out=fromr dbms=dbf;

run;

1.1.7 Read data from SAS into R

library(foreign)

ds = read.dbf("dir_location/to_r.dbf")
or
library(sas7bdat)

helpfromSAS = read.sas7bdat("dir_location/help.sas7bdat")

Note: The first set of code assumes SAS has been used to write out a dataset in DBF format.
The second can be used with any SAS formatted dataset; it is based on a reverse-engineering
of the SAS dataset format, which SAS has not made public.

1.1.8 Reading datasets in other formats

Example: 6.6.1

library(foreign)

ds = read.dbf("filename.dbf") # DBase

ds = read.epiinfo("filename.epiinfo") # Epi Info

ds = read.mtp("filename.mtp") # Minitab portable worksheet

ds = read.octave("filename.octave") # Octave

ds = read.ssd("filename.ssd") # SAS version 6

ds = read.xport("filename.xport") # SAS XPORT file

ds = read.spss("filename.sav") # SPSS

ds = read.dta("filename.dta") # Stata

ds = read.systat("filename.sys") # Systat

Note: The foreign package can read Stata, Epi Info, Minitab, Octave, SPSS, and Systat
files (with the caveat that SAS files may be platform dependent). The read.ssd() function
will only work if SAS is installed on the local machine.

1.1.9 Reading more complex text files

See 1.1.2 (read fixed files) and 12.2 (read variable format files).

Text data files often contain data in special formats. One common example is date
variables. As an example below we consider the following data.

1 AGKE 08/03/1999 $10.49

2 SBKE 12/18/2002 $11.00

3 SEKK 10/23/1995 $5.00
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tmpds = read.table("file_location/filename.dat")

id = tmpds$V1

initials = tmpds$V2

datevar = as.Date(as.character(tmpds$V3), "%m/%d/%Y")

cost = as.numeric(substr(tmpds$V4, 2, 100))

ds = data.frame(id, initials, datevar, cost)

rm(tmpds, id, initials, datevar, cost)

or (for the date)

library(lubridate)

library(dplyr)

tmpds = mutate(tmpds, datevar = mdy(V3))

Note: This task is accomplished by first reading the dataset (with default names from
read.table() denoted V1 through V4). These objects can be manipulated using
as.character() to undo the default coding as factor variables, and coerced to the appropri-
ate data types. For the cost variable, the dollar signs are removed using the substr() func-
tion. Finally, the individual variables are bundled together as a dataframe. The lubridate

package includes functions to make handling date and time values easier; the mdy() function
is one of these.

1.1.10 Reading data with a variable number of words in a field

Reading data in a complex data format will generally require a tailored approach. Here
we give a relatively simple example and outline the key tools useful for reading in data in
complex formats. Suppose we have data as follows:

1 Las Vegas, NV --- 53.3 --- --- 1

2 Sacramento, CA --- 42.3 --- --- 2

3 Miami, FL --- 41.8 --- --- 3

4 Tucson, AZ --- 41.7 --- --- 4

5 Cleveland, OH --- 38.3 --- --- 5

6 Cincinnati, OH 15 36.4 --- --- 6

7 Colorado Springs, CO --- 36.1 --- --- 7

8 Memphis, TN --- 35.3 --- --- 8

8 New Orleans, LA --- 35.3 --- --- 8

10 Mesa, AZ --- 34.7 --- --- 10

11 Baltimore, MD --- 33.2 --- --- 11

12 Philadelphia, PA --- 31.7 --- --- 12

13 Salt Lake City, UT --- 31.9 17 --- 13

The --- means that the value is missing. Note two complexities here. First, fields are
delimited by both spaces and commas, where the latter separates the city from the state.
Second, cities may have names consisting of more than one word.
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readcities = function(thisline) {

thislen = length(thisline)

id = as.numeric(thisline[1])

v1 = as.numeric(thisline[thislen-4])

v2 = as.numeric(thisline[thislen-3])

v3 = as.numeric(thisline[thislen-2])

v4 = as.numeric(thisline[thislen-1])

v5 = as.numeric(thisline[thislen])

city = paste(thisline[2:(thislen-5)], collapse=" ")

return(list(id=id,city=city,v1=v1,v2=v2,v3=v3,v4=v4,v5=v5))

}

file =

readLines("http://www.amherst.edu/~nhorton/r2/datasets/cities.txt")

split = strsplit(file, " ") # split up fields for each line

as.data.frame(t(sapply(split, readcities)))

Note: We first write a function that processes a line and converts each field other than
the city name into a numeric variable. The function works backward from the end of the
line to find the appropriate elements, then calculates what is left over to store in the city
variable. We need each line to be converted into a character vector containing each “word”
(character strings divided by spaces) as a separate element. We’ll do this by first reading
each line, then splitting it into words. This results in a list object, where the items in the
list are the vectors of words. Then we call the readcities() function for each vector using
an invocation of sapply() (A.5.2), which avoids use of a for loop. The resulting object is
transposed, then coerced into a dataframe (see also count.fields()).

1.1.11 Read a file byte by byte

It may be necessary to read data that is not stored in ASCII (or other text) format. At
such times, it may be useful to read the raw bytes stored in the file.

finfo = file.info("full_filename")

toread = file("full_filename", "rb")

alldata = readBin(toread, integer(), size=1, n=finfo$size, endian="little")

Note: The readBin() function is used to read the file, after some initial prep work. The
function requires we input the number of data elements to read. An overestimate is OK, but
we can easily find the exact length of the file using the file.info() function; the resulting
object has a size constituent with the number of bytes. We’ll also need a connection to
the file, which is established in a call to the file() function. The size option gives the
length of the elements, in bytes, and the endian option helps describe how the bytes should
be read. The showNonASCII() and showNonASCIIfile() functions can be useful to find
non-ASCII characters in a vector or file, respectively.

1.1.12 Access data from a URL
Examples: 5.7.1, 12.4.2, and 12.4.6

ds = read.csv("http://www.amherst.edu/~nhorton/r2/datasets/help.csv")
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or

library(RCurl)

myurl = getURL("https://example.com/file.txt")

ds = readLines(textConnection(myurl))

Note: The read.csv() function, like others that read files from outside R, can access data
from a URL. The readLines() function reads arbitrary text. To read https (Hypertext
Transfer Protocol Secure) URLs, the getURL() function from the RCurl package is needed,
in conjunction with the textConnection() function (see also url()). Access through
proxy servers as well as specification of username and passwords is provided by the func-
tion download.file(). The source DropboxData() function in the repmis package can
facilitate reading data from Dropbox.com.

1.1.13 Read an XML-formatted file

A sample (flat) XML form of the HELP dataset can be found at http://www.amherst.

edu/~nhorton/r2/datasets/help.xml. The first ten lines of the file consist of:

<?xml version="1.0" encoding="iso-8859-1" ?>

<TABLE>

<HELP>

<id> 1 </id>

<e2b1 Missing="." />

<g1b1> 0 </g1b1>

<i11 Missing="." />

<pcs1> 54.2258263 </pcs1>

<mcs1> 52.2347984 </mcs1>

<cesd1> 7 </cesd1>

Here we consider reading simple files of this form. While support is available for reading
more complex types of XML files, these typically require considerable additional sophisti-
cation.

library(XML)

urlstring = "http://www.amherst.edu/~nhorton/r2/datasets/help.xml"

doc = xmlRoot(xmlTreeParse(urlstring))

tmp = xmlSApply(doc, function(x) xmlSApply(x, xmlValue))

ds = t(tmp)[,-1]

Note: The XML package provides support for reading XML files. The xmlRoot() function
opens a connection to the file, while xmlSApply() and xmlValue() are called recursively to
process the file. The returned object is a character matrix with columns corresponding to
observations and rows corresponding to variables, which in this example are then transposed.
JSON (JavaScript Object Notation) is a low-overhead alternative to XML. Support for
operations using JSON is available in the RJSONIO package on Omegahat.

1.1.14 Read an HTML table

Example: 12.4.4

HTML tables are used on websites to arrange data into rows and columns. These can be
accessed as objects within R.
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library(XML)

tables = readHTMLTable(URL)

table1 = result[[1]]

Note: In this example, all of the tables in the specified URL are downloaded, and the
contents of the first are stored in an object called table1.

1.1.15 Manual data entry

x = numeric(10)

data.entry(x)
or
x1 = c(1, 1, 1.4, 123)

x2 = c(2, 3, 2, 4.5)

Note: The data.entry() function invokes a spreadsheet that can be used to edit or other-
wise change a vector or dataframe. In this example, an empty numeric vector of length 10
is created to be populated. The data.entry() function differs from the edit() function,
which leaves the objects given as arguments unchanged, returning a new object with the
desired edits (see also the fix() function).

1.2 Output

1.2.1 Displaying data
Example: 6.6.2

See 2.1.3 (values of variables in a dataset).

dollarcents = function(x)

return(paste("$", format(round(x*100, 0)/100, nsmall=2), sep=""))

data.frame(x1, dollarcents(x3), xk, x2)
or
ds[,c("x1", "x3", "xk", "x2")]

Note: A function can be defined to format a vector as US dollars and cents by using the
round() function (see 3.2.4) to control the number of digits (2) to the right of the decimal.
Alternatively, named variables from a dataframe can be printed. The cat() function can be
used to concatenate values and display them on the console (or route them to a file using the
file option). More control on the appearance of printed values is available through use of
format() (control of digits and justification), sprintf() (use of C-style string formatting)
and prettyNum() (another routine to format using C-style specifications). The symnum()

function provides symbolic number coding (this is particularly useful for visualizations of
structure matrices).

1.2.2 Number of digits to display
Example: 2.6.1

options(digits=n)

Note: The options(digits=n) command can be used to change the default number of
decimal places to display in subsequent R output. To affect the actual significant digits in
the data, use the round() function (see 3.2.4).
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1.2.3 Save a native dataset
Example: 2.6.1

save(robject, file="savedfile")

Note: An object (typically a dataframe or a list of objects) can be read back into R using
load() (see 1.1.1).

1.2.4 Creating datasets in text format

write.csv(ds, file="full_file_location_and_name")

or
library(foreign)

write.table(ds, file="full_file_location_and_name")

Note: The sep option to write.table() can be used to change the default delimiter (space)
to an arbitrary value.

1.2.5 Creating Excel spreadsheets

library(WriteXLS)

HELP = read.csv("http://www.amherst.edu/~nhorton/r2/datasets/help.csv")

WriteXLS("HELP", ExcelFileName="newhelp.xls")

Note: The WriteXLS package provides this functionality. It uses Perl (Practical extraction
and report language, http://www.perl.org) and requires an external installation of Perl to
function. After installing Perl, this requires running the operating system command cpan

-i Text::CSV XS at the command line.

1.2.6 Creating files for use by other packages
Example: 2.6.1

See also 1.2.8 (write XML).

library(foreign)

write.dta(ds, "filename.dta")

write.dbf(ds, "filename.dbf")

write.foreign(ds, "filename.dat", "filename.sas", package="SAS")

Note: Support for writing dataframes is provided in the foreign package. It is possible to
write files directly in Stata format (see write.dta()) or DBF format (see write.dbf())
or create files with fixed fields as well as the code to read the file from within Stata, SAS,
or SPSS using write.foreign()).

1.2.7 Creating HTML formatted output

library(prettyR)

htmlize("script.R", title="mytitle", echo=TRUE)

Note: The htmlize() function within the prettyR package can be used to produce HTML
(hypertext markup language) from a script file (see A.2.1). The cat() function is used
inside the script file (here denoted by script.R) to generate output. The hwriter package
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also supports writing R objects in HTML format. In addition, general HTML files can
be created using the markdown package and the markdownToHTML() function; this can be
integrated with the knitr package for reproducible analysis and is simplified in RStudio
(11.3).

1.2.8 Creating XML datasets and output

The XML package provides support for writing XML files (see “Further resources”).

1.3 Further resources

An introduction to data input and output can be found in [181]. Paul Murrell’s Introduction
to Data Technologies text [119] provides a comprehensive introduction to XML, SQL, and
other related technologies and can be found at http://www.stat.auckland.ac.nz/~paul/
ItDT (see also Nolan and Temple Lang [122]).
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Chapter 2

Data management

This chapter reviews important data management tasks, including dataset structure, de-
rived variables, and dataset manipulations. Along with functions available in base R, we
demonstrate additional functions from the dplyr, memisc, mosaic, and tidyr packages.

2.1 Structure and metadata

2.1.1 Access variables from a dataset

The standard object to store data in R is the dataframe (see A.4.6), a rectangular collection
of variables. Variables are generally stored as vectors. Variable references must contain the
name of the object, which includes the variable, with certain exceptions.

with(ds, mean(x))

mean(ds$x)

Note: The with() and within() functions provide a way to access variables within a
dataframe. In addition, the variables can be accessed directly using the $ operator. Many
functions (e.g., lm()) allow specification of a dataset to be accessed using the data option.

The command attach() will make the variables within the named dataset available in
the workspace, while detach() will remove them from the workspace (see also conflicts()).
The Google R Style Guide [54] states that “the possibilities for creating errors when using
attach() are numerous. Avoid it.” We concur.

2.1.2 Names of variables and their types
Example: 2.6.1

str(ds)

Note: The command sapply(ds, class) will return the names and classes (e.g., numeric,
integer, or character) of each variable within a dataframe, while running summary(ds) will
provide an overview of the distribution of each column.

11
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2.1.3 Values of variables in a dataset
Example: 2.6.2

print(ds)

or

View(ds)
or

edit(ds)
or
ds[1:10,]

ds[,2:3]

Note: The print() function lists the contents of the dataframe (or any other object), while
the View() function opens a navigable window with a read-only view. The contents can be
changed using the edit() function (this is not supported in the RStudio server version).
Alternatively, any subset of the dataframe can be displayed on the screen using indexing, as
in the final example. In ds[1:10,] the first 10 rows are displayed, while in ds[,2:3] the
second and third variables. Variables can also be specified by name using a character vector
index (see A.4.2). The head() function can be used to display the first (or, using tail(),
last) values of a vector, dataset, or other object. Numbers will sometimes be displayed
in scientific notation: the command options(scipen=) can be used to influence whether
numeric values are displayed using fixed or exponential (scientific) notation.

2.1.4 Label variables

See also 2.2.19 (formatting variables).
Sometimes it is desirable to have a longer, more descriptive variable name. In general,

we do not recommend using this feature, as it tends to complicate communication between
data analysts and other readers of output.

comment(x) = "This is the label for the variable ’x’"

Note: The label for the variable can be extracted using comment(x) with no assignment or
as attributes(x)$comment.

2.1.5 Add comment to a dataset or variable
Example: 2.6.1

To help facilitate proper documentation of datasets, it can be useful to provide some anno-
tation or description.

comment(ds) = "This is a comment about the dataset"

Note: The attributes() function (see A.4.7) can be used to list all attributes, including
any comment(), while the comment() function without an argument on the right-hand side
will display the comment, if present.

2.2 Derived variables and data manipulation

This section describes the creation of new variables as a function of existing variables in a
dataset.
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2.2.1 Add derived variable to a dataset
Example: 6.6

library(dplyr)

ds = mutate(ds, newvar=myfunction(oldvar1, oldvar2, ...))
or
ds$newvar = with(ds, myfunction(oldvar1, oldvar2, ...))

Note: The routines in the dplyr package have been highly optimized, and often run dramat-
ically faster than other options. In these equivalent examples, the new variable is added to
the original dataframe. While care should be taken whenever dataframes are overwritten,
this may be less risky because the addition of the variables is not connected with other
changes.

2.2.2 Rename variables in a dataset

library(dplyr)

ds = rename(ds, new1=old1, new2=old2)
or
names(ds)[names(ds)=="old1"] = "new1"

names(ds)[names(ds)=="old2"] = "new2"
or
ds = within(ds, {new1 = old1; new2 = old2; rm(old1, old2)})

Note: The rename() function within the dplyr package provides a simple and efficient
interface to rename variables in a dataframe. Alternatively, the names() function provides
a list of names associated with an object (see A.4.6). The edit() function can be used to
view names and edit values.

2.2.3 Create string variables from numeric variables

stringx = as.character(numericx)

typeof(stringx)

typeof(numericx)

Note: The typeof() function can be used to verify the type of an object; possible val-
ues include logical, integer, double, complex, character, raw, list, NULL, closure
(function), special, and builtin (see A.4.7).

2.2.4 Create categorical variables from continuous variables
Examples: 2.6.3 and 7.10.6

newcat1 = (x >= cutpoint1) + ... + (x >= cutpointn)

or
newcat = cut(x, breaks=c(minval, cutpoint1, ..., cutpointn),

labels=c("Cut1", "Cut2", ..., "Cutn"), right=FALSE)

Note: In the first implementation, each expression within parentheses is a logical test re-
turning 1 if the expression is true, 0 if not true, and NA if x is missing. More information
about missing value coding can be found in 11.4.4.1. The cut() function provides a more
general framework (see also cut number() from the ggplot2 package).
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2.2.5 Recode a categorical variable

A categorical variable may need to be recoded to have fewer levels (see also 6.1.3, changing
reference category).

library(memisc)

newcat1=cases(

"newval1"= oldcat==val1 | oldcat==val2,

"newval2"= oldcat==valn)
or
tmpcat = oldcat

tmpcat[oldcat==val1] = newval1

tmpcat[oldcat==val2] = newval1

...

tmpcat[oldcat==valn] = newvaln

newcat = as.factor(tmpcat)

Note: The cases() function from the memisc package can be used to create the factor
vector in one operation, by specifying the Boolean conditions. Alternatively, creating the
variable can be undertaken in multiple steps. A copy of the old variable is first made, then
multiple assignments are made for each of the new levels, for observations matching the
condition inside the index (see A.4.2). In the final step, the categorical variable is coerced
into a factor (class) variable.

2.2.6 Create a categorical variable using logic

Example: 2.6.3

Here we create a trichotomous variable newvar, which takes on a missing value if the
continuous non-negative variable oldvar is less than 0, 0 if the continuous variable is 0,
value 1 for subjects in group A with values greater than 0 but less than 50 and for subjects
in group B with values greater than 0 but less than 60, or value 2 with values above those
thresholds (more information about missing value coding can be found in 11.4.4.1).

library(memisc)

tmpvar = cases(

"0" = oldvar==0,

"1" = (oldvar>0 & oldvar<50 & group=="A") |

(oldvar>0 & oldvar<60 & group=="B"),

"2" = (oldvar>=50 & group=="A") |

(oldvar>=60 & group=="B"))
or

tmpvar = rep(NA, length(oldvar))

tmpvar[oldvar==0] = 0

tmpvar[oldvar>0 & oldvar<50 & group=="A"] = 1

tmpvar[oldvar>0 & oldvar<60 & group=="B"] = 1

tmpvar[oldvar>=50 & group=="A"] = 2

tmpvar[oldvar>=60 & group=="B"] = 2

newvar = as.factor(tmpvar)

Note: Creating the variable is undertaken in multiple steps in the second approach. A
vector of the correct length is first created containing missing values. Values are updated
if they match the conditions inside the vector index (see A.4.2). Care needs to be taken in
the comparison of oldvar==0 if noninteger values are present (see 3.2.5).
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The cases() function from the memisc package provides a straightforward syntax for
derivations of this sort. The %in% operator can also be used to test whether a string is
included in a larger set of possible values (see 2.2.11 and help("%in%")).

2.2.7 Create numeric variables from string variables

numericx = as.numeric(stringx)

typeof(stringx)

typeof(numericx)
or
stringf = factor(stringx)

numericx = as.numeric(stringf)

Note: The first set of code can be used when the string variable records numbers as character
strings, and the code converts the storage type for these values. The second set of code
can be used when the values in the string variable are arbitrary and may be awkward to
enumerate for coding based on logical operations. The typeof() function can be used to
verify the type of an object (see 2.2.3 and A.4.7).

2.2.8 Extract characters from string variables

get2through4 = substr(x, start=2, stop=4)

Note: The arguments to substr() specify the input vector, start character position, and
end character position. The stringr package provides additional support for operations on
character strings.

2.2.9 Length of string variables

len = nchar(stringx)

Note: The nchar() function returns a vector of lengths of each of the elements of the
string vector given as argument, as opposed to the length() function (2.3.4) that returns
the number of elements in a vector. The stringr package provides additional support for
operations on character strings.

2.2.10 Concatenate string variables

newcharvar = paste(x1, " VAR2 ", x2, sep="")

Note: The above R code creates a character variable newcharvar containing the character
vector X1 (which may be coerced from a numeric object) followed by the string " VAR2 "

then the character vector X2. The sep="" option leaves no additional separation character
between these three strings.
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2.2.11 Set operations

newengland = c("MA", "CT", "RI", "VT", "ME", "NH")

"NY" %in% newengland

"MA" %in% newengland

Note: The first statement would return FALSE, while the second one would return TRUE.
The %in% operator also works with numeric vectors (see help("%in%")). Vector functions
for set-like operations include union(), setdiff(), setequal(), intersect(), unique(),
duplicated(), and match().

2.2.12 Find strings within string variables

Example: 7.10.9

matches = grep("pat", stringx)

positions = regexpr("pat", stringx)

> x = c("abc", "def", "abcdef", "defabc")

> grep("abc", x)

[1] 1 3 4

> regexpr("abc", x)

[1] 1 -1 1 4

attr(,"match.length")

[1] 3 -1 3 3

attr(,"useBytes")

[1] TRUE

> regexpr("abc", x) < 0

[1] FALSE TRUE FALSE FALSE

Note: The function grep() returns a list of elements in the vector given by stringx that
match the given pattern, while the regexpr() function returns a numeric list of starting
points in each string in the list (with −1 if there was no match). Testing positions < 0

generates a vector of binary indicator of matches (TRUE=no match, FALSE=a match).
The regular expressions available within grep and other related routines are quite

powerful. As an example, Boolean OR expressions can be specified using the | operator. A
comprehensive description of these operators can be found using help(regex). Additional
support for operations on character vectors can be found in the stringr package.

2.2.13 Find approximate strings

agrep(pattern, string, max.distance=n)

Note: The support within the agrep() function is more rudimentary: it calculates the
Levenshtein edit distance (total number of insertions, deletions, and substitutions required
to transform one string into another) and it returns the indices of the elements of the second
argument that are within n edits of pattern (see 2.2.12). By default, the threshold is 10%
of the pattern length.

> x = c("I ask a favour", "Pardon my error", "You are my favorite")

> agrep("favor", x, max.distance=1)

[1] 1 3
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2.2.14 Replace strings within string variables
Example: 12.2

newstring = gsub("oldpat", "newpat", oldstring)

or
x = "oldpat123"

substr(x, start=1, stop=6) = "newpat"

2.2.15 Split strings into multiple strings

strsplit(string, splitchar)

Note: The function strsplit() returns a list, each element of which is a vector containing
the parts of the input, split at each occurrence of splitchar. If the input is a single
character string, this is a list of one vector. If split is the null string, then the function
returns a list of vectors of single characters.
> x = "this is a test"

> strsplit(x, " ")

[[1]]

[1] "this" "is" "a" "test"

> strsplit(x,"")

[[1]]

[1] "t" "h" "i" "s" " " "i" "s" " " "a" " " "t" "e" "s" "t"

2.2.16 Remove spaces around string variables

noleadortrail = sub(’ +$’, ’’, sub(’^ +’, ’’, stringx))

Note: The arguments to sub() consist of a regular expression, a substitution value, and a
vector. In the first step, leading spaces are removed, then a separate call to sub() is used to
remove trailing spaces (in both cases replacing the spaces with the null string). If instead of
spaces all trailing whitespaces (e.g., tabs, space characters) should be removed, the regular
expression ’ +$’ should be replaced by ’[[:space:]]+$’.

2.2.17 Convert strings from upper to lower case

lowercasex = tolower(x)
or
lowercasex = chartr("ABCDEFGHIJKLMNOPQRSTUVWXYZ",

"abcdefghijklmnopqrstuvwxzy", x)

Note: The toupper() function can be used to convert to upper case. Arbitrary translations
from sets of characters can be made using the chartr() function. The iconv() supports
more complex encodings (e.g., from ASCII to other languages).

2.2.18 Create lagged variable

A lagged variable has the value of that variable in a previous row (typically the immediately
previous one) within that dataset. The value of lag for the first observation will be missing
(see 11.4.4.1).
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lag1 = c(NA, x[1:(length(x)-1)])

Note: This expression creates a one-observation lag, with a missing value in the first position,
and the first through second-to-last observation for the remaining entries (see lag()). Here
we demonstrate how to write a function to create lags of more than one observation.

lagk = function(x, k) {

len = length(x)

if (!floor(k)==k) {

cat("k must be an integer")

} else if (k<1 | k>(len-1)) {

cat("k must be between 1 and length(x)-1")

} else {

return(c(rep(NA, k), x[1:(len-k)]))

}

}

> lagk(1:10, 5)

[1] NA NA NA NA NA 1 2 3 4 5

2.2.19 Formatting values of variables

Example: 6.6.2

See also 2.1.4 (labelling variables).

Sometimes it is useful to display category names that are more descriptive than variable
names. In general, we do not recommend using this feature (except potentially for graphical
output), as it tends to complicate communication between data analysts and other readers of
output. In this example, character labels are associated with a numeric variable (0=Control,
1=Low Dose, and 2=High Dose).

> x = c(0, 0, 1, 1, 2); x

[1] 0 0 1 1 2

> x = factor(x, 0:2, labels=c("Control", "Low Dose", "High Dose")); x

[1] Control Control Low Dose Low Dose High Dose

Levels: Control Low Dose High Dose

Note: The rownames() function can be used to associate a variable with an identifier (which
is by default the observation number). As an example, this can be used to display the name
of a region with the value taken by a particular variable measured in that region. The
setNames() function can also be used to set the names on an object.

2.2.20 Perl interface

Perl is a high-level general-purpose programming language [154]. The RSPerl package
provides a bidirectional interface between Perl and R.

2.2.21 Accessing databases using SQL

Example: 12.7

Structured Query Language (SQL) is a flexible language for accessing and modifying databases,
data warehouses, and distributed systems. These interfaces are particularly useful when an-
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alyzing large datasets, since databases are highly optimized for certain complex operations
such as merges (joins).

The RODBC, RMySQL, and RSQLite packages provide access to SQL within R [135]. The
dplyr package provides a grammar of data manipulation that is optimized for dataframes,
datatables, and databases. The RMongo package provides an interface to NoSQL Mongo
databases (http://www.mongodb.org). Access and analysis of a large external database is
demonstrated in 12.7.

Selections and other operations can be made on dataframes using an SQL-interface with
the sqldf package.

2.3 Merging, combining, and subsetting datasets

A common task in data analysis involves the combination, collation, and subsetting of
datasets. In this section, we review these techniques for a variety of situations.

2.3.1 Subsetting observations
Example: 2.6.4

library(dplyr)

smallds = filter(ds, x==1)
or
smallds = ds[x==1,]

or
smallds = subset(ds, x==1)

Note: Each example creates a subset of a dataframe consisting of observations where X = 1.
In addition, many functions allow specification of a subset=expression option to carry
out a procedure on observations that match the expression (see also slice() in the dplyr

package). The routines in the dplyr package have been highly optimized, and often run
dramatically faster than other options.

2.3.2 Drop or keep variables in a dataset
Example: 2.6.1

It is often desirable to prune extraneous variables from a dataset to simplify analyses. This
can be done by specifying a set to keep or a set to drop.

library(dplyr)

narrow = select(ds, x1, xk)
or
narrow = ds[,c("x1", "xk")]

or
narrow = subset(ds, select = c(x1, xk))

Note: The examples create a new dataframe consisting of the variables x1 and xk. Each
approach allows the specification of a set of variables to be excluded. The routines in the
dplyr package have been highly optimized, and often run dramatically faster than other
options.

More sophisticated ways of listing the variables to be kept are available. The dplyr pack-
age includes functions starts with(), ends with(), contains(), matches(), num range(),
and one of. In base R, the command ds[,grep("x1|ˆpat", names(ds))] would keep x1

and all variables starting with pat (see 2.2.12).
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2.3.3 Random sample of a dataset

It is sometimes useful to sample a subset (here quantified as nsamp) of observations without
replacement from a larger dataset (see random number seed, 3.1.3).

library(mosaic)

newds = resample(ds, size=nsamp, replace=FALSE)
or
newds = ds[sample(nrow(ds), size=nsamp),]

Note: By default, the resample() function in the mosaic package creates a sample without
replacement from a dataframe or vector (the built-in sample() function cannot directly
sample a dataframe). The replace=TRUE option can be used to override this (e.g., when
bootstrapping, see 11.4.3). In the second example, the sample() function from base R is
used to get a random selection of row numbers, in conjunction with the nrow() function,
which returns the number of rows.

2.3.4 Observation number

> library(dplyr)

> ds = data.frame(y = c("abc", "def", "ghi"))

> ds = mutate(ds, id = 1:nrow(ds))

> ds

y id

1 abc 1

2 def 2

3 ghi 3

Note: The nrow() function returns the number of rows in a dataframe. Here, it is used
in conjunction with the : operator (4.1.3) to create a vector with the integers from 1 to
the sample size. These can then be added to the dataframe, as shown, or might be used
as row labels (see names()). The length() function returns the number of elements in a
vector, while the dim() function returns the dimension (number of rows and columns) for
a dataframe (A.4.6).

2.3.5 Keep unique values

See also 2.3.6 (duplicated values).

uniquevalues = unique(x)

uniquevalues = unique(data.frame(x1, ..., xk))

Note: The unique() function returns each of the unique values represented by the vector
or dataframe denoted by x (see also distinct() in the dplyr package).

2.3.6 Identify duplicated values

See also 2.3.5 (unique values).

duplicated(x)

Note: The duplicated() function returns a logical vector indicating a replicated value.
Note that the first occurrence is not a replicated value. Thus duplicated(c(1,1)) returns
FALSE TRUE.
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2.3.7 Convert from wide to long (tall) format

Example: 7.10.9

Data are often found in a different shape than that required for analysis. One example of
this is commonly found in longitudinal measures studies. In this setting it is convenient to
store the data in a wide or multivariate format with one line per observation, containing
typically subject-invariant factors (e.g., gender), as well as a column for each repeated
outcome. An example is given below.

id female inc80 inc81 inc82

1 0 5000 5500 6000

2 1 2000 2200 3300

3 0 3000 2000 1000

Here, the income for 1980, 1981, and 1982 are included in one row for each id.

In contrast, tools for repeated measures analyses (7.4.2) typically require a row for each
repeated outcome, as demonstrated below.

id year female inc

1 80 0 5000

1 81 0 5500

1 82 0 6000

2 80 1 2000

2 81 1 2200

2 82 1 3300

3 80 0 3000

3 81 0 2000

3 82 0 1000

In this section and in 2.3.8, we show how to convert between these two forms of this example
data.

library(dplyr); library(tidyr)

long = ds %>%

gather(year, inc, inc80:inc82) %>%

mutate(year = extract_numeric(year)) %>%

arrange(id, year)

Note: The gather() function in the tidyr package takes a dataframe, a “key” (in this case
year), “value” (in this case inc), and list of variables as arguments, and transposes the
dataset. The “key” will be the name of a new variable containing the names of the variables
in the list. The “value” will be the name of a new variable containing the values in the
variables in the list. For each row of the original dataset, the output dataset will contain
a row for each of the variables in the list, so that each variable–value pair appears exactly
once in both datasets, but in the output dataset, all the values are in the “value” column.
The non-listed variables will be repeated in each row. Here, the output from this operation
is piped (see A.5.3) to the mutate() function, which extracts the numeric value from the
year variable. Finally, the arrange() function reorders the resulting dataframe by id and
year.

2.3.8 Convert from long (tall) to wide format

See also 2.3.7 (reshape from wide to tall).
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library(dplyr); library(tidyr)

wide = long %>%

mutate(year=paste("inc", year, sep="")) %>%

spread(year, inc)

Note: This example assumes that the dataset long has repeated measures on inc for subject
id determined by the variable year. The call to mutate is needed to prepend the string
"inc" to the newly created variables, then pipe (see A.5.3) the resulting output to the
spread() function (which is the inverse of the gather() function: see 2.3.7).

2.3.9 Concatenate and stack datasets

newds = rbind(ds1, ds2)

Note: The result of rbind() is a dataframe with as many rows as the sum of rows in ds1

and ds2. Dataframes given as arguments to rbind() must have the same column names.
The similar cbind() function makes a dataframe with as many columns as the sum of the
columns in the input objects. A similar function (c()) operates on vectors.

2.3.10 Sort datasets
Example: 2.6.4

library(dplyr)

sortds = arrange(ds, x1, x2, ..., xk)
or

sortds = ds[with(ds, order(x1, x2, ..., xk)),]

Note: The arrange() function within the dplyr package provides a way to sort the rows
within dataframes. The desc() function can be applied to one of the arguments to sort
in a descending fashion. The R command sort() can also be used to sort a vector, while
order() can be used to sort dataframes by selecting a new permutation of order for the
rows. The decreasing option can be used to change the default sort order (for all variables).
As an alternative, a numeric variable can be reversed by specifying -x1 instead of x1. The
routines in the dplyr package have been highly optimized, and typically run dramatically
faster than other options.

2.3.11 Merge datasets
Example: 7.10.11

Merging datasets is commonly required when data on single units are stored in multiple
tables or datasets. We consider a simple example where variables id, year, female, and
inc are available in one dataset, and variables id and maxval in a second. For this simple
example, with the first dataset given as:

id year female inc

1 80 0 5000

1 81 0 5500

1 82 0 6000

2 80 1 2000

2 81 1 2200
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2 82 1 3300

3 80 0 3000

3 81 0 2000

3 82 0 1000

and the second given below.

id maxval

2 2400

1 1800

4 1900

The desired merged dataset would look like the following (an outer join, where all observa-
tions are included if they are present in either of the dataframes).

id year female inc maxval

1 1 81 0 5500 1800

2 1 80 0 5000 1800

3 1 82 0 6000 1800

4 2 82 1 3300 2400

5 2 80 1 2000 2400

6 2 81 1 2200 2400

7 3 82 0 1000 NA

8 3 80 0 3000 NA

9 3 81 0 2000 NA

10 4 NA NA NA 1900

merged2 = merge(ds2, ds1, by="id", all=TRUE)

or
library(dplyr)

merged = union(left_join(ds1, ds2, by="id"),

left_join(ds2, ds1, by="id"))

Note: The merge() function allows outer joins with the all=TRUE option, and left or right
joins with all.x and all.y, respectively. While dplyr is generally more flexible and faster,
it does not directly support an outer join function. This can be emulated by use of the
union() function and two calls to left join(). Multiple variables can be specified in
the by option. Other types of merges (e.g., inner joins) are supported. The command
inner join(ds1, ds2, by="id") would yield the same dataset with no missing values.

2.4 Date and time variables

The standard date functions in R return a Date class that represents the number of days
since January 1, 1970. The chron and lubridate packages also provide support for ma-
nipulations of dates.

2.4.1 Create date variable

See also 1.1.9 (read more complex files).
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dayvar = as.Date("2016-04-29")

todays_date = as.Date(Sys.time())

Note: The return value of as.Date() is a Date class object. If converted to numeric
dayvar, it represents the number of days between January 1, 1970 and April 29, 2016,
while todays date is the integer number of days since January 1, 1970 (see ISOdate()).

2.4.2 Extract weekday

wkday = weekdays(datevar)

Note: wkday contains a string with the name of the weekday of the Date object.

2.4.3 Extract month

monthval = months(datevar)

Note: The function months() returns a string with the name of the month of the Date

object.

2.4.4 Extract year

yearval = substr(as.POSIXct(datevar), 1, 4)

Note: The as.POSIXct() function returns a string representing the date, with the first four
characters corresponding to the year.

2.4.5 Extract quarter

qtrval = quarters(datevar)

Note: The function quarters() returns a string representing the quarter of the year (e.g.,
"Q1" or "Q2") given by the Date object.

2.4.6 Create time variable
Example: 12.4.2

See also 4.3.1 (timing commands)

> arbtime = as.POSIXlt("2016-04-29 17:15:45 NZDT")

> arbtime

[1] "2016-04-29 17:15:45"

> now = Sys.time()

> now

[1] "2016-04-01 10:12:11 EST"

Note: The objects arbtime and now can be compared with the subtraction operator to
monitor elapsed time.
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2.5 Further resources

Comprehensive introductions to data management in R can be found in [181]. Hadley
Wickham’s dplyr package [194] provides a number of useful data management routines
that can efficiently operated on dataframes, datatables, and databases. The tidyr package
[192] facilitates data cleaning and preparation.

2.6 Examples

To help illustrate the tools presented in this and related chapters, we apply many of the
entries to the HELP RCT data. The code can be downloaded from http://www.amherst.

edu/~nhorton/r2/examples.

2.6.1 Data input and output

We begin by reading the dataset (1.1.4), keeping only the variables that are needed (2.3.2).

> options(digits=3)

> options(width=72) # narrow output

> ds = read.csv("http://www.amherst.edu/~nhorton/r2/datasets/help.csv")

> library(dplyr)

> newds = select(ds, cesd, female, i1, i2, id, treat, f1a, f1b, f1c, f1d,

f1e, f1f, f1g, f1h, f1i, f1j, f1k, f1l, f1m, f1n, f1o, f1p, f1q, f1r,

f1s, f1t)

We can then show a summary of the dataset.

> names(newds)

[1] "cesd" "female" "i1" "i2" "id" "treat" "f1a"

[8] "f1b" "f1c" "f1d" "f1e" "f1f" "f1g" "f1h"

[15] "f1i" "f1j" "f1k" "f1l" "f1m" "f1n" "f1o"

[22] "f1p" "f1q" "f1r" "f1s" "f1t"

> str(newds[,1:10]) # structure of the first 10 variables

’data.frame’: 453 obs. of 10 variables:

$ cesd : int 49 30 39 15 39 6 52 32 50 46 ...

$ female: int 0 0 0 1 0 1 1 0 1 0 ...

$ i1 : int 13 56 0 5 10 4 13 12 71 20 ...

$ i2 : int 26 62 0 5 13 4 20 24 129 27 ...

$ id : int 1 2 3 4 5 6 7 8 9 10 ...

$ treat : int 1 1 0 0 0 1 0 1 0 1 ...

$ f1a : int 3 3 3 0 3 1 3 1 3 2 ...

$ f1b : int 2 2 2 0 0 0 1 1 2 3 ...

$ f1c : int 3 0 3 1 3 1 3 2 3 3 ...

$ f1d : int 0 3 0 3 3 3 1 3 1 0 ...

> summary(newds[,1:10]) # summary of the first 10 variables

cesd female i1 i2

Min. : 1.0 Min. :0.000 Min. : 0.0 Min. : 0.0

1st Qu.:25.0 1st Qu.:0.000 1st Qu.: 3.0 1st Qu.: 3.0

Median :34.0 Median :0.000 Median : 13.0 Median : 15.0
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Mean :32.8 Mean :0.236 Mean : 17.9 Mean : 22.6

3rd Qu.:41.0 3rd Qu.:0.000 3rd Qu.: 26.0 3rd Qu.: 32.0

Max. :60.0 Max. :1.000 Max. :142.0 Max. :184.0

id treat f1a f1b

Min. : 1 Min. :0.000 Min. :0.00 Min. :0.00

1st Qu.:119 1st Qu.:0.000 1st Qu.:1.00 1st Qu.:0.00

Median :233 Median :0.000 Median :2.00 Median :1.00

Mean :233 Mean :0.497 Mean :1.63 Mean :1.39

3rd Qu.:348 3rd Qu.:1.000 3rd Qu.:3.00 3rd Qu.:2.00

Max. :470 Max. :1.000 Max. :3.00 Max. :3.00

f1c f1d

Min. :0.00 Min. :0.00

1st Qu.:1.00 1st Qu.:0.00

Median :2.00 Median :1.00

Mean :1.92 Mean :1.56

3rd Qu.:3.00 3rd Qu.:3.00

Max. :3.00 Max. :3.00

Displaying the first few rows of data can give a more concrete sense of what is in the dataset.

> head(newds, n=3)

cesd female i1 i2 id treat f1a f1b f1c f1d f1e f1f f1g f1h f1i f1j

1 49 0 13 26 1 1 3 2 3 0 2 3 3 0 2 3

2 30 0 56 62 2 1 3 2 0 3 3 2 0 0 3 0

3 39 0 0 0 3 0 3 2 3 0 2 2 1 3 2 3

f1k f1l f1m f1n f1o f1p f1q f1r f1s f1t

1 3 0 1 2 2 2 2 3 3 2

2 3 0 0 3 0 0 0 2 0 0

3 1 0 1 3 2 0 0 3 2 0

Saving the dataset in native format (1.2.3) will ease future access. We also add a comment
(2.1.5) to help later users understand what is in the dataset.

> comment(newds) = "HELP baseline dataset"

> comment(newds)

[1] "HELP baseline dataset"

> save(ds, file="savedfile")

Saving it in a foreign format (1.1.8), say Microsoft Excel or comma-separated value format,
will allow access to other tools for analysis and display.

> write.csv(ds, file="ds.csv")

Creating data in SAS format from R can be useful; note that the R code below generates
an ASCII dataset and a SAS command file to read it into SAS.

> library(foreign)

> write.foreign(newds, "file.dat", "file.sas", package="SAS")
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2.6.2 Data display

We begin by consideration of the CESD (Center for Epidemiologic Statistics) measure of
depressive symptoms for this sample at baseline. The indexing mechanisms (see A.4.2) are
helpful in extracting subsets of a vector.

> with(newds, cesd[1:10])

[1] 49 30 39 15 39 6 52 32 50 46

> with(newds, head(cesd, 10))

[1] 49 30 39 15 39 6 52 32 50 46

It may be useful to know what high values there are.

> with(newds, cesd[cesd > 56])

[1] 57 58 57 60 58 58 57

> library(dplyr)

> filter(newds, cesd > 56) %>% select(id, cesd)

id cesd

1 71 57

2 127 58

3 200 57

4 228 60

5 273 58

6 351 58

7 13 57

In the first example, we subset to display the values matching the condition. In the second
example, the filter() function from the dplyr package is used to subset the rows, then
select() is used to display a subset of columns (these are connected using the %>% operator,
see A.5.3).

In a similar fashion, it may be useful to examine the observations with the lowest values.

> with(newds, sort(cesd)[1:4])

[1] 1 3 3 4

> with(newds, which.min(cesd))

[1] 199

2.6.3 Derived variables and data manipulation

Suppose the dataset arrived with only the individual CESD questions and not the sum.
We would need to create the CESD score. Note that there are four questions which are
asked “backwards,” meaning that high values of the response are counted for fewer points.1

We’ll approach the recoding of the flipped questions by reading the CESD items into a new
object. To demonstrate other tools, we’ll also see if there’s any missing data (11.4.4.1) and
generate some other statistics about the question responses.

1This follows from the coding instructions found at http://www.amherst.edu/~nhorton/r2/cesd.pdf.
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> library(mosaic)

> tally(~ is.na(f1g), data=newds)

TRUE FALSE

1 452

> favstats(~ f1g, data=newds)

min Q1 median Q3 max mean sd n missing

0 1 2 3 3 1.73 1.1 452 1

We utilize the tally() and favstat() functions from the mosaic package to display the
distribution and number of missing values.

Now we’re ready to create the score. We’ll generate the sum of the non-missing items,
which effectively imputes 0 for the missing values, as well as a version that imputes the
mean of the observed values instead.

> # reverse code f1d, f1h, f1l and f1p

> cesditems = with(newds, cbind(f1a, f1b, f1c, (3 - f1d), f1e, f1f, f1g,

(3 - f1h), f1i, f1j, f1k, (3 - f1l), f1m, f1n, f1o, (3 - f1p),

f1q, f1r, f1s, f1t))

> nmisscesd = apply(is.na(cesditems), 1, sum)

> ncesditems = cesditems

> ncesditems[is.na(cesditems)] = 0

> newcesd = apply(ncesditems, 1, sum)

> imputemeancesd = 20/(20-nmisscesd)*newcesd

It is prudent to review the results when deriving variables. We’ll check our re-created CESD
score against the one that came with the dataset. To ensure that missing data has been
correctly coded, we print the subjects with any missing questions.

> data.frame(newcesd, newds$cesd, nmisscesd, imputemeancesd)[nmisscesd>0,]

newcesd newds.cesd nmisscesd imputemeancesd

4 15 15 1 15.8

17 19 19 1 20.0

87 44 44 1 46.3

101 17 17 1 17.9

154 29 29 1 30.5

177 44 44 1 46.3

229 39 39 1 41.1

The output shows that the original dataset was created with unanswered questions counted
as if they had been answered with a zero. This conforms to the instructions provided with
the CESD, but might be questioned on theoretical grounds.

It is often necessary to create a new variable using logic (2.2.6). In the HELP study,
many subjects reported extreme amounts of drinking (as the baseline measure was taken
while they were in detox). Here, an ordinal measure of alcohol consumption (abstinent,
moderate, high-risk) is created using information about average consumption per day in
the 30 days prior to detox (i1, measured in standard drink units) and maximum number of
drinks per day in the 30 days prior to detox (i2). The number of drinks required for each
category differs for men and women according to NIAAA guidelines for physicians [121].
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> library(dplyr)

> library(memisc)

> newds = mutate(newds, drinkstat=

cases(

"abstinent" = i1==0,

"moderate" = (i1>0 & i1<=1 & i2<=3 & female==1) |

(i1>0 & i1<=2 & i2<=4 & female==0),

"highrisk" = ((i1>1 | i2>3) & female==1) |

((i1>2 | i2>4) & female==0)))

Again we will double check our variable creation. Here we display the observations in the
last 6 rows of the data.

> library(dplyr)

> tmpds = select(newds, i1, i2, female, drinkstat)

> tmpds[365:370,]

i1 i2 female drinkstat

365 6 24 0 highrisk

366 6 6 0 highrisk

367 0 0 0 abstinent

368 0 0 1 abstinent

369 8 8 0 highrisk

370 32 32 0 highrisk

It is also useful to focus such checks on a subset of observations. Here we show the drinking
data for moderate female drinkers.

> library(dplyr)

> filter(tmpds, drinkstat=="moderate" & female==1)

i1 i2 female drinkstat

1 1 1 1 moderate

2 1 3 1 moderate

3 1 2 1 moderate

4 1 1 1 moderate

5 1 1 1 moderate

6 1 1 1 moderate

7 1 1 1 moderate

Basic data description is an early step in analysis. Here we calculate relevant summaries of
drinking and gender.

> library(gmodels)

> with(tmpds, CrossTable(drinkstat))

Cell Contents

|-------------------------|

| N |

| N / Table Total |

|-------------------------|
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Total Observations in Table: 453

| abstinent | moderate | highrisk |

|-----------|-----------|-----------|

| 68 | 28 | 357 |

| 0.150 | 0.062 | 0.788 |

|-----------|-----------|-----------|

> with(tmpds, CrossTable(drinkstat, female,

prop.t=FALSE, prop.c=FALSE, prop.chisq=FALSE))

Cell Contents

|-------------------------|

| N |

| N / Row Total |

|-------------------------|

Total Observations in Table: 453

| female

drinkstat | 0 | 1 | Row Total |

-------------|-----------|-----------|-----------|

abstinent | 42 | 26 | 68 |

| 0.618 | 0.382 | 0.150 |

-------------|-----------|-----------|-----------|

moderate | 21 | 7 | 28 |

| 0.750 | 0.250 | 0.062 |

-------------|-----------|-----------|-----------|

highrisk | 283 | 74 | 357 |

| 0.793 | 0.207 | 0.788 |

-------------|-----------|-----------|-----------|

Column Total | 346 | 107 | 453 |

-------------|-----------|-----------|-----------|

To display gender more clearly, we create a new character variable. Note that as for other
objects in R, quoted strings are case sensitive.

> newds = transform(newds,

gender=factor(female, c(0,1), c("Male","Female")))
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> tally(~ female + gender, margin=FALSE, data=newds)

gender

female Male Female

0 346 0

1 0 107

2.6.4 Sorting and subsetting datasets

It is often useful to sort datasets (2.3.10) by the order of a particular variable (or variables).
Here we sort by CESD and drinking.

> library(dplyr)

> newds = arrange(ds, cesd, i1)

> newds[1:5, c("cesd", "i1", "id")]

cesd i1 id

1 1 3 233

2 3 1 139

3 3 13 418

4 4 4 251

5 4 9 95

It is sometimes necessary to create data that is a subset (2.3.1) of other data. Here we make
a dataset that only includes female subjects. First, we create the subset and calculate a
summary value in the resulting dataset.

> library(dplyr)

> females = filter(ds, female==1)

> with(females, mean(cesd))

[1] 36.9

> # an alternative approach

> mean(ds$cesd[ds$female==1])

[1] 36.9

To test the subsetting, we then display the mean for both genders.

> with(ds, tapply(cesd, female, mean))

0 1

31.6 36.9

> library(mosaic)

> mean(cesd ~ female, data=ds)

0 1

31.6 36.9
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Chapter 3

Statistical and mathematical
functions

This chapter reviews key statistical, probability, mathematical, and matrix functions.

3.1 Probability distributions and random
number generation

Quantiles and cumulative distribution values can be calculated easily within R. Random
variables are commonly needed for simulation and analysis. These can be generated for a
large number of distributions.

A seed can be specified for the random number generator. This is important to allow
replication of results (e.g., while testing and debugging). Information about random number
seeds can be found in 3.1.3.

Table 3.1 summarizes support for quantiles, cumulative distribution functions, and ran-
dom numbers. More information on probability distributions can be found in the CRAN
probability distributions task view (http://cran.r-project.org/web/views/
Distributions.html).

3.1.1 Probability density function
Example: 3.4.1

Here we use the normal distribution as an example; others are shown in Table 3.1 (p. 34).

y = pnorm(1.96, mean=0, sd=1)

Note: This calculates the probability that the random variable is less than the first argu-
ment. The xpnorm() function within the mosaic package provides a graphical display.

3.1.2 Quantiles of a probability density function
Example: 4.2

Similar syntax is used for a variety of distributions. Here we use the normal distribution
as an example; others are shown in Table 3.1 (p. 34).

y = qnorm(.975, mean=0, sd=1)

33
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Table 3.1: Quantiles, probabilities, and pseudo-random number generation: available dis-
tributions.

Distribution R DISTNAME
Beta beta

Beta-binomial betabin∗

Beta-normal betanorm∗

binomial binom

Cauchy cauchy

chi-square chisq

exponential exp

F f

gamma gamma

geometric geom

hypergeometric hyper

inverse normal inv.gaussian∗

Laplace alap∗

logistic logis

lognormal lnorm

negative binomial nbinom

normal norm

Poisson pois

Student’s t t

Uniform unif

Weibull weibull

Note: Prepend d to the command to compute density functions of a distribution
dDISTNAME(xvalue, parm1, ..., parmn), p for the cumulative distribution function,
pDISTNAME(xvalue, parm1, ..., parmn), q for the quantile function qDISTNAME(prob,

parm1, ..., parmn), and r to generate random variables rDISTNAME(nrand, parm1,

..., parmn), where in the last case a vector of nrand values is the result.
∗ The betabinom(), betanorm(), inv.gaussian(), and alap() (Laplace) families of dis-
tributions are available using the VGAM package.

3.1.3 Setting the random number seed

Example: 12.1.3
The default random number seed is based on the system clock. To generate a replicable
series of variates, first run set.seed(seedval) where seedval is a single integer for the
default Mersenne–Twister random number generator.

set.seed(42)

set.seed(Sys.time())

Note: More information can be found using help(.Random.seed).

3.1.4 Uniform random variables

Example: 10.1.1

x = runif(n, min=0, max=1)

Note: The arguments specify the number of variables to be created and the range over
which they are distributed.
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3.1.5 Multinomial random variables

library(Hmisc)

x = rMultinom(matrix(c(p1, p2, ..., pr), 1, r), n)

Note: The function rMultinom() from the Hmisc package allows the specification of the
desired multinomial probabilities (

∑
r pr = 1) as a 1 × r matrix. The final parameter is

the number of variates to be generated (see also rmultinom() in the stats package).

3.1.6 Normal random variables

Example: 3.4.1

x1 = rnorm(n)

x2 = rnorm(n, mean=mu, sd=sigma)

Note: The arguments specify the number of variables to be created and (optionally) the
mean and standard deviation (default µ = 0 and σ = 1).

3.1.7 Multivariate normal random variables

For the following, we first create a 3× 3 covariance matrix. Then we generate 1000 realiza-
tions of a multivariate normal vector with the appropriate correlation or covariance.

library(MASS)

mu = rep(0, 3)

Sigma = matrix(c(3, 1, 2,

1, 4, 0,

2, 0, 5), nrow=3)

xvals = mvrnorm(1000, mu, Sigma)

apply(xvals, 2, mean)
or
rmultnorm = function(n, mu, vmat, tol=1e-07)

# a function to generate random multivariate Gaussians

{

p = ncol(vmat)

if (length(mu)!=p)

stop("mu vector is the wrong length")

if (max(abs(vmat - t(vmat))) > tol)

stop("vmat not symmetric")

vs = svd(vmat)

vsqrt = t(vs$v %*% (t(vs$u) * sqrt(vs$d)))

ans = matrix(rnorm(n * p), nrow=n) %*% vsqrt

ans = sweep(ans, 2, mu, "+")

dimnames(ans) = list(NULL, dimnames(vmat)[[2]])

return(ans)

}

xvals = rmultnorm(1000, mu, Sigma)

apply(xvals, 2, mean)

Note: The returned object xvals, of dimension 1000 × 3, is generated from the variance–
covariance matrix denoted by Sigma, which has first row and column (3,1,2). An arbitrary
mean vector can be specified using the c() function.
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Several techniques are illustrated in the definition of the rmultnorm function. The first
lines test for the appropriate arguments and return an error if the conditions are not satisfied.
The singular value decomposition (see 3.3.15) is carried out on the variance–covariance
matrix, and the sweep function is used to transform the univariate normal random variables
generated by rnorm to the desired mean and covariance. The dimnames() function applies
the existing names (if any) for the variables in vmat, and the result is returned.

3.1.8 Truncated multivariate normal random variables

See also 4.1.1.

library(tmvtnorm)

x = rtmvnorm(n, mean, Sigma, lower, upper)

Note: The arguments specify the number of variables to be created, the mean, the covariance
matrix, and vectors of the lower and upper truncation values.

3.1.9 Exponential random variables

x = rexp(n, rate=lambda)

Note: The arguments specify the number of variables to be created and (optionally) the
inverse of the mean (default λ = 1).

3.1.10 Other random variables

Example: 3.4.1

The list of probability distributions supported within R can be found in Table 3.1, page
34. In addition to these distributions, the inverse probability integral transform can be
used to generate arbitrary random variables with invertible cumulative density function
F (exploiting the fact that F−1 ∼ U(0, 1)). As an example, consider the generation of
random variates from an exponential distribution with rate parameter λ, where F (X) =
1−exp(−λX) = U . Solving for X yields X = − log(1−U)/λ. If we generate a Uniform(0,1)
variable, we can use this relationship to generate an exponential with the desired rate
parameter.

lambda = 2

expvar = -log(1-runif(1))/lambda

3.2 Mathematical functions

3.2.1 Basic functions

See also 2.2 (derived variables) and 2.2.11 (sets).
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minx = min(x)

maxx = max(x)

meanx = mean(x)

modx = x1 %% x2

stddevx = sd(x)

absolutevaluex = abs(x)

squarerootx = sqrt(x)

etothex = exp(x)

xtothey = x^y

naturallogx = log(x)

logbase10x = log10(x)

logbase2x = log2(x)

logbasearbx = log(x, base=42)

Note: The first five functions operate on a column-wise basis.

3.2.2 Trigonometric functions

sinpi = sin(pi)

cos0 = cos(0)

tanval = tan(pi/4)

acosx = acos(x)

asinx = asin(x)

atanx = atan(x)

atanxy = atan2(x, y)

3.2.3 Special functions

betaxy = beta(x, y)

gammax = gamma(x)

factorialn = factorial(n)

nchooser = choose(n, r)

library(gtools)

nchooser = length(combinations(n, r)[,1])

npermr = length(permutations(n, r)[,1])

Note: The combinations() and permutations() functions return a list of possible combi-
nations and permutations.

3.2.4 Integer functions

See also 1.2.2 (rounding and number of digits to display).

nextintx = ceiling(x)

justintx = floor(x)

round2dec = round(x, 2)

roundint = round(x)

keep4sig = signif(x, 4)

movetozero = trunc(x)
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Note: The second parameter of the round() function determines how many decimal places
to round. The value of movetozero is the same as justint if x > 0 or nextint if x < 0.

3.2.5 Comparisons of floating-point variables

Because certain floating-point values of variables do not have exact decimal equivalents,
there may be some error in how they are represented on a computer. For example, if the
true value of a particular variable is 1/7, the approximate decimal is 0.1428571428571428.
For some operations (for example, tests of equality), this approximation can be problematic.

> all.equal(0.1428571, 1/7)

[1] "Mean relative difference: 3.000000900364093e-07"

> all.equal(0.1428571, 1/7, tolerance=0.0001)

[1] TRUE

Note: The tolerance option for the all.equal() function determines how many decimal
places to use in the comparison of the vectors or scalars (the default tolerance is set to the
underlying lower-level machine precision).

3.2.6 Complex numbers

Support for operations on complex numbers is available.

> (0+1i)^2 # i-squared

[1] -1+0i

Note: The above expression is equivalent to i2 = −1. Additional support is available
through the complex() function and related routines (see also Re() and Im()).

3.2.7 Derivatives

Rudimentary support for finding derivatives is available. These functions are particularly
useful for high-dimensional optimization problems (see 3.2.9).

library(mosaic)

D(x^2 ~ x)

Note: The D() function within the mosaic package returns a function that can be evaluated
or plotted using plotFun(). Second (or higher order) derivatives can be found by repeatedly
applying the D function with respect to X. This function (as well as deriv()) is useful in
numerical optimization (see the nlm(), optim() and optimize() functions).

3.2.8 Integration

Example: 10.1.6

Rudimentary support for calculus, including the evaluation of integrals, is available.

library(mosaic)

antiD(2*x ~ x)

Note: See also integrate().
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3.2.9 Optimization problems

R can be used to solve optimization (maximization) problems. As an extremely simple
example, consider maximizing the area of a rectangle with perimeter equal to 20. Each
of the sides can be represented by x and 10-x, with the area of the rectangle equal to
x ∗ (10− x).

f = function(x) { return(x*(10-x)) }

optimize(f, interval=c(0, 10), maximum=TRUE)

Note: Other optimization functions available within R include nlm(), uniroot(), optim(),
and constrOptim() (see the CRAN task view on optimization and mathematical program-
ming).

3.3 Matrix operations

Matrix operations are often needed in statistical analysis. Matrices can be created using
the matrix() function (see A.4.5): matrix operations are then immediately available. In
addition to the routines described below, the Matrix package in R is particularly useful for
manipulation of large as well as sparse matrices.

3.3.1 Create matrix from vector

In this entry, we demonstrate creating a 2 × 2 matrix consisting of the first four nonzero
integers:

A =

(
1 2
3 4

)
.

A = matrix(c(1, 2, 3, 4), nrow=2, ncol=2, byrow=TRUE)

3.3.2 Combine vectors or matrices

We demonstrate creating a matrix from a set of conformable column vectors or smaller
datasets.

A = cbind(x1, ..., xk)

A2 = c(x1, ..., xk)

Note: A is a matrix with columns made up of all the columns of x1, . . . , xk. A2 is a vector of
all of the elements in x1, followed by all of the elements of x2, etc. The rbind() function
can be used to combine the matrices as rows instead of columns, making a k × n matrix
(see also the unstack() and stack() commands).

3.3.3 Matrix addition

A = matrix(c(1, 2, 3, 4), nrow=2, ncol=2, byrow=TRUE)

B = A + A
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3.3.4 Transpose matrix

A = matrix(c(1, 2, 3, 4), nrow=2, ncol=2, byrow=TRUE)

transA = t(A)

Note: If a dataframe is transposed in this manner, it will be converted to a matrix (which
forces a single class for the objects within it).

3.3.5 Find the dimension of a matrix or dataset

A = matrix(c(1, 2, 3, 4), nrow=2, ncol=2, byrow=TRUE)

dim(A)

Note: The dim() function returns the dimension (number of rows and columns) for both
matrices and dataframes, but does not work for vectors. The length() function returns
the length of a vector or the number of elements in a matrix.

3.3.6 Matrix multiplication

A = matrix(c(1, 2, 3, 4), nrow=2, ncol=2, byrow=TRUE)

Asquared = A %*% A

3.3.7 Finding the inverse of a matrix

A = matrix(c(1, 2, 3, 4), nrow=2, ncol=2, byrow=TRUE)

Ainv = solve(A)

3.3.8 Component-wise multiplication

Unlike the matrix multiplication in 3.3.6, the result of this operation is scalar multiplication
of each element in the matrix. For example, the component-wise multiplication of(

1 2
3 4

)
with itself yields

(
1 4
9 16

)
.

A = matrix(c(1, 2, 3, 4), nrow=2, ncol=2, byrow=TRUE)

newmat = A * A

3.3.9 Create a submatrix

A = matrix(1:12, nrow=3, ncol=4, byrow=TRUE)

Asub = A[2:3, 3:4]

3.3.10 Create a diagonal matrix

A = matrix(c(1, 2, 3, 4), nrow=2, ncol=2, byrow=TRUE)

diagMat = diag(c(1, 4)) # argument is a vector

diagMat = diag(diag(A)) # A is a matrix
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Note: For a vector argument, the diag() function generates a matrix with the vector values
as the diagonals and all off-diagonals 0. For matrix A, the diag() function creates a vector
of the diagonal elements (see 3.3.11); a diagonal matrix with these diagonal entries, but
all off-diagonals set to 0, can be created by running the diag() with this vector as an
argument.

3.3.11 Create a vector of diagonal elements

A = matrix(c(1, 2, 3, 4), nrow=2, ncol=2, byrow=TRUE)

diagVals = diag(A)

3.3.12 Create a vector from a matrix

Note: This makes a row vector from all the values in the matrix.

A = matrix(c(1, 2, 3, 4), nrow=2, ncol=2, byrow=TRUE)

newvec = c(A)

3.3.13 Calculate the determinant

A = matrix(c(1, 2, 3, 4), nrow=2, ncol=2, byrow=TRUE)

det(A)

3.3.14 Find eigenvalues and eigenvectors

A = matrix(c(1, 2, 3, 4), nrow=2, ncol=2, byrow=TRUE)

Aev = eigen(A)

Aeval = Aev$values

Aevec = Aev$vectors

Note: The eigen() function in R returns a list consisting of the eigenvalues and eigenvectors,
respectively, of the matrix given as the argument.

3.3.15 Find the singular value decomposition

The singular value decomposition of a matrix A is given by A = U ∗ diag(Q) ∗ V T , where
UTU = V TV = V V T = I and Q contains the singular values of A.

A = matrix(c(1, 2, 3, 4), nrow=2, ncol=2, byrow=TRUE)

svdres = svd(A)

U = svdres$u

Q = svdres$d

V = svdres$v

Note: The svd() function returns a list with components corresponding to a vector of
singular values, a matrix with columns corresponding to the left singular values, and a
matrix with columns containing the right singular values.
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3.4 Examples

To help illustrate the tools presented in this chapter, we apply some of the entries in
examples. The R code can be downloaded from http://www.amherst.edu/~nhorton/r2/

examples.

3.4.1 Probability distributions

To demonstrate more tools, we leave the HELP dataset and show examples of how data can
be generated. We will generate values (3.1.6) from the normal and t distribution densities.

> x = seq(from=-4, to=4.2, length=100)

> normval = dnorm(x, 0, 1)

> dfval = 1

> tval = dt(x, df=dfval)

Figure 3.1 displays a plot of these distributions.
The xpnorm() function within the mosaic package may be useful for teaching purposes,

to display information about the normal density function (see Figure 3.2).
Other distributions (e.g., the exponential) can easily be displayed using the plotDist()

function within the mosaic package.

> plot(x, normval, type="n", ylab="f(x)", las=1)

> lines(x, normval, lty=1, lwd=2)

> lines(x, tval, lty=2, lwd=2)

> legend(1.1, .395, lty=1:2, lwd=2,

legend=c(expression(N(mu == 0,sigma == 1)),

paste("t with ", dfval," df", sep="")))

−4 −2 0 2 4

0.0

0.1

0.2

0.3

0.4

x

f(
x)

N(μ = 0, σ = 1)
t with 1 df

Figure 3.1: Comparison of standard normal and t distribution with 1 df
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Figure 3.2: Descriptive plot of the normal distribution

> library(mosaic)

> xpnorm(1.96, mean=0, sd=1)

If X ~ N(0,1), then

P(X <= 1.96) = P(Z <= 1.96) = 0.975

P(X > 1.96) = P(Z > 1.96) = 0.025

[1] 0.975
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Chapter 4

Programming and operating
system interface

This chapter reviews programming functions as well as interactions with the underlying
operating system.

4.1 Control flow, programming, and data generation

4.1.1 Looping
Example: 11.2

x = numeric(k) # create placeholder

for (i in 1:length(x)) {

x[i] = rnorm(1) # this is slow and inefficient!

}

or (preferably)

x = rnorm(k) # this is far better
Note: Most tasks in R that could be written as a loop are often dramatically faster if they
are encoded as a vector operation (as in the second and preferred option above). Examples
of situations where loops are particularly useful can be found in 11.1.2 and 11.2. The
along.with option for seq() and the seq along() function can also be helpful.

More information on control structures for looping and conditional processing such as
while and repeat can be found in help(Control).

4.1.2 Conditional execution
Examples: 6.6.6 and 8.7.7

if (expression1) { expression2 }

or
if (expression1) { expression2 } else { expression3 }

or
ifelse(expression, x, y)

Note: The if statement, with or without else, tests a single logical statement; it is not
an elementwise (vector) function. If expression1 evaluates to TRUE, then expression2 is
evaluated. The ifelse() function operates on vectors and evaluates the expression given
as expression and returns x if it is TRUE and y otherwise (see comparisons, A.4.2). An

45
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expression can include multi-command blocks of code (in brackets). The switch() function
may also be useful for more complicated tasks.

4.1.3 Sequence of values or patterns

Example: 10.1.3

It is often useful to generate a variable consisting of a sequence of values (e.g., the integers
from 1 to 100) or a pattern of values (1 1 1 2 2 2 3 3 3). This might be needed to generate
a variable consisting of a set of repeated values for use in a simulation or graphical display.

As an example, we demonstrate generating data from a linear regression model of the
form:

E[Y |X1, X2] = β0 + β1X1 + β2X2, V ar(Y |X) = 9, Corr(X1, X2) = 0.

# generate

seq(from=i1, to=i2, length.out=nvals)

seq(from=i1, to=i2, by=1)

seq(i1, i2)

i1:i2

rep(value, times=nvals)
or

rep(value, each=nvals)

Note: The seq function creates a vector of length val if the length.out option is speci-
fied. If the by option is included, the length is approximately (i2-i1)/byval. The i1:i2

operator is equivalent to seq(from=i1, to=i2, by=1). The rep function creates a vector
of length nvals with all values equal to value, which can be a scalar, vector, or list. The
each option repeats each element of value nvals times. The default is times.

The following code implements the model described above for n = 200.

> n = 200

> x1 = rep(c(0,1), each=n/2) # x1 resembles 0 0 0 ... 1 1 1

> x2 = rep(c(0,1), n/2) # x2 resembles 0 1 0 1 ... 0 1

> beta0 = -1; beta1 = 1.5; beta2 = .5;

> rmse = 3

> table(x1, x2)

x2

x1 0 1

0 50 50

1 50 50

> y = beta0 + beta1*x1 + beta2*x2 + rnorm(n, mean=0, sd=rmse)

> lm(y ~ x1 + x2)

4.1.4 Perform an action repeatedly over a set of variables

It is often necessary to perform a given function for a series of variables. Here, the square
of each of a list of variables is calculated as an example.



i
i

“K23166” — 2015/1/28 — 9:35 — page 47 — #73 i
i

i
i

i
i

4.1. CONTROL FLOW, PROGRAMMING, AND DATA GENERATION 47

l1 = c("x1", "x2", ..., "xk")

l2 = c("z1", "z2", ..., "zk")

for (i in 1:length(l1)) {

assign(l2[i], eval(as.name(l1[i]))^2)

}

Note: It is not straightforward to refer to objects without evaluating those objects. Assign-
ments to R objects given symbolically can be made using the assign() function. Here, a
non-obvious use of the eval() function is used to evaluate an expression after the string
value in l1 is coerced to be a symbol. This allows the values of the character vectors l1

and l2 to be evaluated (see help(assign), eval(), and substitute()).

4.1.5 Grid of values

Example: 12.8

It may be useful to generate all combinations of two or more vectors.

> expand.grid(x1=1:3, x2=c("M", "F"))

x1 x2

1 1 M

2 2 M

3 3 M

4 1 F

5 2 F

6 3 F

Note: The expand.grid() function takes two or more vectors or factors and returns a
dataframe. The first factor varies fastest. The resulting object is a matrix.

4.1.6 Debugging

browser() # create a breakpoint

debug(function) # enter the debugger when function called

Note: When a function flagged for debugging is called, the function can be executed one
statement at a time. At the prompt, commands can be entered (n for next, c for con-
tinue, where for traceback, Q for quit) or expressions can be evaluated (see browser() and
trace()). A debugging environment is available within RStudio. The debugger may be
invoked by setting a breakpoint by clicking to the left of the line number in a script, or
pressing Shift+F9. Profiling of the execution of expressions can be undertaken using the
Rprof() function (see also summaryRprof() and tracemem()). RStudio provides a series
of additional debugging tools.

4.1.7 Error recovery

try(expression, silent=FALSE)

stopifnot(expr1, ..., exprk)

Note: The try() function runs the given expression and traps any errors that may arise
(displaying them on the standard error output device). The function geterrmessage() can
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be used to display any errors. The stopifnot() function runs the given expressions and
returns an error message if all are not true (see stop() and message()).

4.2 Functions

A strength of R is its extensibility. In this section, we provide an introduction to defining
and calling functions.

A new function is defined by the syntax function(arglist) body. The body is made
up of a series of commands (or expressions), typically separated by line breaks and enclosed
in curly braces. Here, we create a function to calculate the estimated confidence interval
(CI) for a mean, as in 5.1.7.

# calculate a t confidence interval for a mean

ci.calc = function(x, ci.conf=.95) {

sampsize = length(x)

tcrit = qt(1-((1-ci.conf)/2), sampsize - 1)

mymean = mean(x)

mysd = sd(x)

return(list(civals=c(mymean-tcrit*mysd/sqrt(sampsize),

mymean+tcrit*mysd/sqrt(sampsize)), ci.conf=ci.conf))

}

Here, the appropriate quantile of the T distribution is calculated using the qt() function,
and the appropriate confidence interval is calculated and returned as a list. The function
is stored in the object ci.calc, which can then be used like any other function. For
example, ci.calc(x1) will print the CI and confidence level for the object x1. We also
demonstrate the syntax for providing a default value, so that the confidence level in the
preceding example is 0.95. User-written functions nest just as pre-existing functions do:
ci.conf(rnorm(100), 0.9) will return the CI and report that the confidence limit is 0.9
for 100 normal random variates. In this example, we explicitly return() a list of return
values. If no return statement is provided, the results of the last expression evaluation are
returned.
> ci.calc(x)

$civals

[1] 0.624 12.043

$ci.conf

[1] 0.95

If only the lower confidence interval is needed, this can be saved as an object.

> lci = ci.calc(x)$civals[1]

> lci

[1] 0.624

The default confidence level is 95%; this can be changed by specifying a different value.

> ci.calc(x, ci.conf=.90)

$civals

[1] 1.799 10.867

$ci.conf

[1] 0.9

This is equivalent to running ci.calc(x, .90), since ci.conf is the second argument to
the function.

Other examples of defined functions can be found in 2.2.18 and 5.7.4.
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4.3 Interactions with the operating system

4.3.1 Timing commands

See also 2.4.6 (time variables).

system.time(expression)

Note: The expression (e.g., call to any user-or system-defined function, see A.4.1) given as
an argument to the system.time() function is evaluated, and the user, system, and total
(elapsed) time are returned (see proc.time()).

4.3.2 Suspend execution for a time interval

Sys.sleep(numseconds)

Note: The command Sys.sleep() will pause execution for numseconds, with minimal sys-
tem impact.

4.3.3 Execute a command in the operating system

system("ls")

Note: The command ls lists the files in the current working directory (see 4.3.7 to capture
this information). When running under Windows, the shell() command can be used to
start a command window.

4.3.4 Command history

savehistory()

loadhistory()

history()

Note: The command savehistory() saves the history of recent commands, which can be
re-loaded using loadhistory() or displayed using history(). The timestamp() function
can be used to add a date and time stamp to the history.

4.3.5 Find working directory

getwd()

Note: The command getwd() displays the current working directory.
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4.3.6 Change working directory

setwd("dir_location")

Note: The command setwd() changes the current working directory to the (absolute or
relative) pathname given as an argument (see file.choose()). This can also be done
interactively under Windows and Mac OS X by selecting the Change Working Directory

option under the Misc menu, or similar options on the Session menu in RStudio.

4.3.7 List and access files

list.files()

Note: The list.files() command returns a character vector of filenames in the current
directory (by default). Recursive listings are also supported. The function file.choose()

provides an interactive file browser and can be given as an argument to functions such
as read.table() (1.1.2) or read.csv() (1.1.4). Related file operation functions include
file.access(), file.exists(), file.info(), and unlink() (see help(files) and
Sys.glob() for wildcard expansion).

4.3.8 Create temporary file

uniquefile = tempfile()

cat(x, "\n", file=uniquefile)

Note: The filenames returned by tempfile() are likely to be unique among calls in an R
session (and guaranteed not to be currently in use).

4.3.9 Redirect output

capture.output(Sys.time(), file="filename")

or
sink(file="filename")

Sys.time()

sink()

Note: The result of the first argument to capture.output() is saved as text in the filename.
This can be particularly useful for post-processing functions with long output. The sink()

function diverts all output and/or messages to a connection, until the sink() function is
run again. In this example, the output of Sys.time() is saved to a file.
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Chapter 5

Common statistical procedures

This chapter describes how to generate univariate summary statistics (such as means, vari-
ances, and quantiles) for continuous variables, display and analyze frequency tables and
cross-tabulations of categorical variables, and carry out a variety of one- and two-sample
procedures.

5.1 Summary statistics

5.1.1 Means and other summary statistics
Example: 5.7.1

mean(x)
or
library(mosaic)

favstats(x, data=ds)

Note: The mean() function accepts a numeric vector or a numeric dataframe as arguments
(date objects are also supported). Similar functions include median() (see 5.1.5 for more
quantiles), var(), sd(), min(), max(), sum(), prod(), and range() (note that the lat-
ter returns a vector containing the minimum and maximum value). The rowMeans() and
rowSums() functions (and their equivalents for columns) can be helpful for some calcu-
lations. The favstats() function in the mosaic package provides a concise summary of
the distribution of a variable (including the number of observations and missing values).
Discussion of how to calculate summary statistics by group can be found in 11.1.

5.1.2 Weighted means and other statistics

library(Hmisc)

wtd.mean(x, weights)

Note: The wtd.mean() function in the Hmisc package calculates weighted means. Other
related functions include wtd.var(), wtd.quantile(), and wtd.rank().

51
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5.1.3 Other moments
Example: 5.7.1

While skewness and kurtosis are less commonly reported than the mean and standard
deviation, they can be useful at times. Skewness is defined as the third moment around
the mean and characterizes whether the distribution is symmetric (skewness=0). Kurtosis
is a function of the fourth central moment. It characterizes peakedness, where the normal
distribution has a value of 3 and smaller values correspond to a more rounded peak and
shorter, thinner tails.

library(moments)

skewness(x)

kurtosis(x)

Note: The moments package facilitates the calculation of skewness and kurtosis within R as
well as higher-order moments (see all.moments()).

5.1.4 Trimmed mean

mean(x, trim=frac)

Note: The value frac can take on range 0 to 0.5 and specifies the fraction of observations to
be trimmed from each end of x before the mean is computed (frac=0.5 yields the median).

5.1.5 Quantiles
Example: 5.7.1

quantile(x, c(.025, .975))

quantile(x, seq(from=.95, to=.975, by=.0125))

Note: Details regarding the calculation of quantiles in quantile() can be found using
help(quantile). The ntiles() function in the mosaic package can facilitate the creation
of groups of roughly equal sizes.

5.1.6 Centering, normalizing, and scaling

scale(x)
or

(x-mean(x))/sd(x)
Note: The default behavior of scale() is to create a Z-score transformation. The scale()

function can operate on matrices and dataframes, and allows the specification of a vector
of the scaling parameters for both center and scale (see sweep(), a more general function).

5.1.7 Mean and 95% confidence interval

tcrit = qt(.975, df=length(x)-1)

mean(x) + c(-tcrit, tcrit)*sd(x)/sqrt(length(x))
or

t.test(x)$conf.int
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Note: While the appropriate 95% confidence interval can be generated in terms of the mean
and standard deviation, it is more straightforward to use the t.test() function to calculate
the relevant quantities.

5.1.8 Proportion and 95% confidence interval
Example: 11.2

binom.test(sum(x), length(x))

prop.test(sum(x), length(x))

Note: The binom.test() function calculates an exact Clopper–Pearson confidence interval
based on the F distribution [25] using the first argument as the number of successes and
the second argument as the number of trials, while prop.test() calculates an approximate
confidence interval by inverting the score test. Both allow specification of the probability
under the null hypothesis. The conf.level option can be used to change the default
confidence level.

5.1.9 Maximum likelihood estimation of parameters
Example: 5.7.1

See also 3.1.1 (probability density functions).

library(MASS)

fitdistr(x, "densityfunction")

Note: Options for densityfunction include beta, cauchy, chi-squared, exponential,
f, gamma, geometric, log-normal, lognormal, logistic, negative binomial, normal,
Poisson, t, and weibull.

5.2 Bivariate statistics

5.2.1 Epidemiologic statistics
Example: 5.7.3

sum(x==0&y==0)*sum(x==1&y==1)/(sum(x==0&y==1)*sum(x==1&y==0))

or
tab1 = table(x, y)

tab1[1,1]*tab1[2,2]/(tab1[1,2]*tab1[2,1])
or
glm1 = glm(y ~ x, family=binomial)

exp(glm1$coef[2])
or
library(epitools)

oddsratio.fisher(x, y)

oddsratio.wald(x, y)

riskratio(x, y)

riskratio.wald(x, y)

Note: The epitab() function in the epitools package provides a general interface to many
epidemiologic statistics, while expand.table() can be used to create individual level data
from a table of counts (see generalized linear models, 7.1).
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5.2.2 Test characteristics

The sensitivity of a test is defined as the probability that someone with the disease (D = 1)
tests positive (T = 1), while the specificity is the probability that someone without the
disease (D = 0) tests negative (T = 0). For a dichotomous screening measure, the sensitivity
and specificity can be defined as P (D = 1, T = 1)/P (D = 1) and P (D = 0, T = 0)/P (D =
0), respectively (see also receiver operating characteristic curves, 8.5.7).

sens = sum(D==1&T==1)/sum(D==1)

spec = sum(D==0&T==0)/sum(D==0)

Note: Sensitivity and specificity for an outcome D can be calculated for each value of a
continuous measure T using the following code.

library(ROCR)

pred = prediction(T, D)

diagobj = performance(pred, "sens", "spec")

spec = slot(diagobj, "y.values")[[1]]

sens = slot(diagobj, "x.values")[[1]]

cut = slot(diagobj, "alpha.values")[[1]]

diagmat = cbind(cut, sens, spec)

head(diagmat, 10)

Note: The ROCR package facilitates the calculation of test characteristics, including sensitiv-
ity and specificity. The prediction() function takes as arguments the continuous measure
and outcome. The returned object can be used to calculate quantities of interest (see
help(performance) for a comprehensive list). The slot() function is used to return the
desired sensitivity and specificity values for each cut score, where [[1]] denotes the first
element of the returned list (see help(list) and help(Extract)).

5.2.3 Correlation
Examples: 5.7.2 and 8.7.7

pearsoncorr = cor(x, y)

spearmancorr = cor(x, y, method="spearman")

kendalltau = cor(x, y, method="kendall")
or
cormat = cor(cbind(x1, ..., xk))

Note: Specifying method="spearman" or method="kendall" as an option to cor() gener-
ates the Spearman or Kendall correlation coefficients, respectively. A matrix of variables
(created with cbind()) can be used to generate the correlation between a set of variables.
The use option for cor() specifies how missing values are handled (either "all.obs",
"complete.obs", or "pairwise.complete.obs"). The cor.test() function can carry out
a test (or calculate the confidence interval) for a correlation.

5.2.4 Kappa (agreement)

library(irr)

kappa2(data.frame(x, y))

Note: The kappa2() function takes a dataframe (see A.4.6) as an argument. Weights can
be specified as an option.
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5.3 Contingency tables

5.3.1 Display cross-classification table
Example: 5.7.3

Contingency tables show the group membership across categorical (grouping) variables.
They are also known as cross-classification tables, cross-tabulations, and two-way tables.

library(gmodels)

CrossTable(x, y)
or
mytab = table(y, x)

addmargins(mytab)
or
library(mosaic)

tally(~ y + x, margins=TRUE, data=ds)
or
library(prettyR)

xtab(y ~ x, data=ds)

Note: The CrossTable() function in the gmodels package provides a flexible means to
generate crosstabs. It supports the missing.include option to add a category for missing
values, unused factor levels, as well as emulation of SPSS or SAS output, with cell, row,
and/or column percentages. For the table() function, the exclude=NULL option includes
categories for missing values. The addmargins() function adds (by default) the row and
column totals to a table. The colSums(), colMeans() functions (and their equivalents
for rows) can be used to efficiently calculate sums and means for numeric vectors. The
tally() function in the mosaic package supports a modeling language for categorical tables,
including a | operator to stratify by a third variable. Options for the tally() function
include format= (percent, proportion, or count) and margins=. Additional options for
table display are provided in the prettyR package xtab() function.

5.3.2 Displaying missing value categories in a table

It can be useful to display tables including missing values as a separate category (see 11.4.4.1).

table(x1, x2, useNA="ifany")

5.3.3 Pearson chi-square statistic
Example: 5.7.3

chisq.test(x, y)

or
chisq.test(ymat)

Note: The chisq.test() command can accept either two class vectors or a table of counts.
By default, a continuity correction is used (the option correct=FALSE turns this off).
A version with more verbose output (e.g., expected cell counts) can be found in the
xchisq.test() function in the mosaic package.

5.3.4 Cochran–Mantel–Haenszel test

The Cochran–Mantel–Haenszel test gives an assessment of the relationship between X1 and
X2, stratified by (or controlling for) X3. The analysis provides a way to adjust for the



i
i

“K23166” — 2015/1/28 — 9:35 — page 56 — #82 i
i

i
i

i
i

56 CHAPTER 5. COMMON STATISTICAL PROCEDURES

possible confounding effects of X3 without having to estimate parameters for them.

mantelhaen.test(x1, x2, x3)

5.3.5 Cramér’s V

Cramér’s V (or phi coefficient) is a measure of association for nominal variables.

library(vcd)

assocstats(table(x, y))

5.3.6 Fisher’s exact test
Example: 5.7.3

fisher.test(y, x)

or
fisher.test(ymat)

Note: The fisher.test() command can accept either two class vectors or a table of counts
(here denoted by ymat). For tables with many rows and/or columns, p-values can be
computed using Monte Carlo simulation using the simulate.p.value option. The Monte
Carlo p-value can be considerably less compute-intensive for large sample sizes.

5.3.7 McNemar’s test

McNemar’s test tests the null hypothesis that the proportions are equal across matched
pairs, for example, when two raters assess a population.

mcnemar.test(y, x)

Note: The mcnemar.test() command can accept either two class vectors or a matrix with
counts.

5.4 Tests for continuous variables

5.4.1 Tests for normality

shapiro.test(x)

Note: The nortest package includes a number of additional tests of normality.

5.4.2 Student’s t-test
Example: 5.7.4

t.test(y1, y2)

or
t.test(y ~ x, data=ds)

Note: The first example for the t.test() command displays how it can take two vectors (y1
and y2) as arguments to compare, or in the latter example, a single vector corresponding
to the outcome (y), with another vector indicating group membership (x) using a formula
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interface (see A.4.7 and 6.1.1). By default, the two-sample t-test uses an unequal variance
assumption. The option var.equal=TRUE can be added to specify an equal variance as-
sumption. The command var.test() can be used to formally test equality of variances.

5.4.3 Test for equal variances

The assumption of equal variances among the groups in analysis of variance and the two-
sample t-test can be assessed via Levene’s test.

var.test(y, x)

or
library(lawstat)

levene.test(y, x, location="mean")

bartlett.test(y ~ x)

Note: Other options to assess equal variance include Bartlett’s test, the Brown and Forsythe
version of Levene’s test, and O’Brien’s test, which is effectively a modification of Levene’s
test. Options to the levene.test() function provide other variants.

5.4.4 Nonparametric tests

Example: 5.7.4

wilcox.test(y1, y2)

ks.test(y1, y2)

library(coin)

median_test(y ~ x)

Note: By default, the wilcox.test() function uses a continuity correction in the normal
approximation for the p-value. The ks.test() function does not calculate an exact p-
value when there are ties. The median test shown will generate an exact p-value with the
distribution="exact" option.

5.4.5 Permutation test

Example: 5.7.4

library(coin)

oneway_test(y ~ as.factor(x), distribution=approximate(B=bnum))

or
library(mosaic)

obs = t.test(y ~ x)$statistic

res = do(10000) * t.test(y ~ shuffle(x))$statistic

tally(~ t > abs(obs), data=res)

Note: The oneway test function in the coin package implements a variety of permutation-
based tests (see the exactRankTests package). The distribution=approximate syntax
generates an empirical p-value (asymptotically equivalent to the exact p-value) based on
bnum Monte Carlo replicates. The do() function along with the shuffle() functions in
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the mosaic package can also be used to undertake permutation tests (see the package’s
resampling vignette at CRAN for details).

5.4.6 Logrank test

Example: 5.7.5

See also 8.5.11 (Kaplan–Meier plot) and 7.5.1 (Cox proportional hazards model).

library(survival)

survdiff(Surv(timevar, cens) ~ x)

Note: Other tests within the G-rho family of Fleming and Harrington [41] are supported
by specifying the rho option.

5.5 Analytic power and sample size calculations

Many simple settings lend themselves to analytic power calculations, where closed form so-
lutions are available. Other situations may require an empirical calculation, where repeated
simulation is undertaken (see 11.2).

It is straightforward to find power or sample size (given a desired power) for two-sample
comparisons of either continuous or categorical outcomes. We show simple examples for
comparing means and proportions in two groups and supply additional information on
analytic power calculation available for more complex methods.

# find sample size for two-sample t-test

power.t.test(delta=0.5, power=0.9)

# find power for two-sample t-test

power.t.test(delta=0.5, n=100)

The latter call generates the following output.

Two-sample t test power calculation

n = 100

delta = 0.5

sd = 1

sig.level = 0.05

power = 0.9404272

alternative = two.sided

NOTE: n is number in *each* group

# find sample size for two-sample test of proportions

power.prop.test(p1=.1, p2=.2, power=.9)

# find power for two-sample test of proportions

power.prop.test(p1=.1, p2=.2, n=100)

Note: The power.t.test() function requires exactly four of the five arguments (sample
size in each group, power, difference between groups, standard deviation, and significance
level) to be specified. Default values exist for sd=1 and sig.level=0.05. Other power
calculation functions can be found in the pwr package.
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5.6 Further resources

A comprehensive introduction to using R to fit common statistical models can be found
in [181]. A readable introduction to permutation-based inference can be found in [104]. A
vignette on resampling-based inference using R can be found at http://cran.r-project.
org/web/packages/mosaic/vignettes/V5Resample.pdf. Collett [26] provides an accessi-
ble introduction to survival analysis.

5.7 Examples

To help illustrate the tools presented in this chapter, we apply many of the entries to the
HELP data. The code can be downloaded from http://www.amherst.edu/~nhorton/r2/

examples.

5.7.1 Summary statistics and exploratory data analysis

We begin by reading the dataset.

> options(digits=3)

> options(width=72) # narrows output to stay in the grey box

> ds = read.csv("http://www.amherst.edu/~nhorton/r2/datasets/help.csv")

A first step is to examine some univariate statistics (5.1.1) for the baseline CESD (Center
for Epidemiologic Statistics) measure of depressive symptoms score. We can use functions
that produce a set of statistics, such as favstats(), from the mosaic package, and request
them singly.

> with(ds, mean(cesd))

[1] 32.8

> with(ds, median(cesd))

[1] 34

> with(ds, range(cesd))

[1] 1 60

> with(ds, sd(cesd))

[1] 12.5

> with(ds, var(cesd))

[1] 157

> library(mosaic)

> favstats(~ cesd, data=ds)

min Q1 median Q3 max mean sd n missing

1 25 34 41 60 32.8 12.5 453 0

> library(moments)

> with(ds, skewness(cesd))

[1] -0.26

> with(ds, kurtosis(cesd))

[1] 2.55
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We can also generate desired quantiles. Here, we find the deciles (5.1.5).

> with(ds, quantile(cesd, seq(from=0, to=1, length=11)))

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

1.0 15.2 22.0 27.0 30.0 34.0 37.0 40.0 44.0 49.0 60.0

Graphics can allow us to easily review the whole distribution of the data. Here, we generate
a histogram (8.1.4) of CESD, overlaid with its empirical PDF (8.1.5) and the closest-fitting
normal distribution (see Figure 5.1).

> with(ds, hist(cesd, main="", freq=FALSE))

> with(ds, lines(density(cesd), main="CESD", lty=2, lwd=2))

> xvals = with(ds, seq(from=min(cesd), to=max(cesd), length=100))

> with(ds, lines(xvals, dnorm(xvals, mean(cesd), sd(cesd)), lwd=2))

cesd
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Figure 5.1: Density plot of depressive symptom scores (CESD) plus superimposed histogram
and normal distribution

5.7.2 Bivariate relationships

We can calculate the correlation (5.2.3) between CESD and MCS and PCS (mental and
physical component scores). First, we show the default correlation matrix.

> cormat = cor(with(ds, cbind(cesd, mcs, pcs)))

> cormat

cesd mcs pcs

cesd 1.000 -0.682 -0.293

mcs -0.682 1.000 0.110

pcs -0.293 0.110 1.000
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To save space, we can just print a subset of the correlations.

> cormat[c(2, 3), 1]

mcs pcs

-0.682 -0.293

Figure 5.2 displays a scatterplot (8.3.1) of CESD and MCS, for the female subjects. The
plotting character (9.1.2) is the initial letter of the primary substance (alcohol, cocaine, or
heroin). A rug plot (9.1.8) is added to help demonstrate the marginal distributions.

> with(ds, plot(cesd[female==1], mcs[female==1], xlab="CESD", ylab="MCS",

type="n", bty="n"))

> with(ds, text(cesd[female==1&substance=="alcohol"],

mcs[female==1&substance=="alcohol"],"A"))

> with(ds, text(cesd[female==1&substance=="cocaine"],

mcs[female==1&substance=="cocaine"],"C"))

> with(ds, text(cesd[female==1&substance=="heroin"],

mcs[female==1&substance=="heroin"],"H"))

> with(ds, rug(jitter(mcs[female==1]), side=2))

> with(ds, rug(jitter(cesd[female==1]), side=3))
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Figure 5.2: Scatterplot of CESD and MCS for women, with primary substance shown as
the plot symbol

5.7.3 Contingency tables

Here we display the cross-classification (contingency) table (5.3.1) of homeless at baseline
by gender, calculate the observed odds ratio (OR, 5.2.1), and assess association using the
Pearson χ2 test (5.3.3) and Fisher’s exact test (5.3.6). The CrossTable() function from
the gmodels package displays contingency tables, using the SPSS format.
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> require(gmodels)

> with(ds, CrossTable(homeless, female, prop.chisq=FALSE, format="SPSS"))

Cell Contents

|-------------------------|

| Count |

| Row Percent |

| Column Percent |

| Total Percent |

|-------------------------|

Total Observations in Table: 453

| female

homeless | 0 | 1 | Row Total |

-------------|-----------|-----------|-----------|

0 | 177 | 67 | 244 |

| 72.541% | 27.459% | 53.863% |

| 51.156% | 62.617% | |

| 39.073% | 14.790% | |

-------------|-----------|-----------|-----------|

1 | 169 | 40 | 209 |

| 80.861% | 19.139% | 46.137% |

| 48.844% | 37.383% | |

| 37.307% | 8.830% | |

-------------|-----------|-----------|-----------|

Column Total | 346 | 107 | 453 |

| 76.380% | 23.620% | |

-------------|-----------|-----------|-----------|

We can easily calculate the odds ratio directly.

> or = with(ds, (sum(homeless==0 & female==0)*

sum(homeless==1 & female==1))/

(sum(homeless==0 & female==1)*

sum(homeless==1 & female==0)))

> or

[1] 0.625

We can also use the epitools package, which will generate confidence limits in addition to
the odds ratio.

> library(epitools)

> oddsobject = with(ds, oddsratio.wald(homeless, female))

> oddsobject$measure

odds ratio with 95% C.I.

Predictor estimate lower upper

0 1.000 NA NA

1 0.625 0.401 0.975
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> oddsobject$p.value

two-sided

Predictor midp.exact fisher.exact chi.square

0 NA NA NA

1 0.0381 0.0456 0.0377

The χ2 and Fisher’s exact tests are fit in R using separate commands.

> chisqval = with(ds, chisq.test(homeless, female, correct=FALSE))

> chisqval

Pearson’s Chi-squared test

data: homeless and female

X-squared = 4.32, df = 1, p-value = 0.03767

> with(ds, fisher.test(homeless, female))

Fisher’s Exact Test for Count Data

data: homeless and female

p-value = 0.0456

alternative hypothesis: true odds ratio is not equal to 1

95 percent confidence interval:

0.389 0.997

sample estimates:

odds ratio

0.626

A graphical depiction of a table can be created (see Figure 5.3); this can helpful as part of
automated report generation and reproducible analysis (see 11.3).

> library(gridExtra)

> mytab = tally(~ racegrp + substance, data=ds)

> plot.new()

> grid.table(mytab)

black

hispanic

other

white

alcohol

55

17

9

96

cocaine

125

7

7

13

heroin

31

26

10

57

Figure 5.3: Graphical display of the table of substance by race/ethnicity
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5.7.4 Two sample tests of continuous variables

We can assess gender differences in baseline age using a t-test (5.4.2) and nonparametric
procedures.

> ttres = t.test(age ~ female, data=ds)

> print(ttres)

Welch Two Sample t-test

data: age by female

t = -0.93, df = 180, p-value = 0.3537

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-2.45 0.88

sample estimates:

mean in group 0 mean in group 1

35.5 36.3

The names() function can be used to identify the objects returned by the t.test() function
(not displayed).

A permutation test can be run and used to generate a Monte Carlo p-value (5.4.5).

> library(coin)

> oneway_test(age ~ as.factor(female),

distribution=approximate(B=9999), data=ds)

Approximative 2-Sample Permutation Test

data: age by as.factor(female) (0, 1)

Z = -0.919, p-value = 0.3493

alternative hypothesis: true mu is not equal to 0

> with(ds, wilcox.test(age ~ as.factor(female), correct=FALSE))

Wilcoxon rank sum test

data: age by as.factor(female)

W = 17512, p-value = 0.3979

alternative hypothesis: true location shift is not equal to 0

> ksres = with(ds, ks.test(age[female==1], age[female==0]))

Warning: p-value will be approximate in the presence of ties

> print(ksres)

Two-sample Kolmogorov-Smirnov test

data: age[female == 1] and age[female == 0]

D = 0.063, p-value = 0.902

alternative hypothesis: two-sided
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We can also plot estimated density functions (8.1.5) for age for both groups, and shade
some areas (9.1.13) to emphasize how they overlap. We create a function (4.2) to automate
this task.

> plotdens = function(x,y, mytitle, mylab) {

densx = density(x)

densy = density(y)

plot(densx, main=mytitle, lwd=3, xlab=mylab, bty="l")

lines(densy, lty=2, col=2, lwd=3)

xvals = c(densx$x, rev(densy$x))

yvals = c(densx$y, rev(densy$y))

polygon(xvals, yvals, col="gray")

}

The polygon() function is used to fill in the area between the two curves. Results are
shown in Figure 5.4).

> mytitle = paste("Test of ages: D=", round(ksres$statistic, 3),

" p=", round(ksres$p.value, 2), sep="")

> with(ds, plotdens(age[female==1], age[female==0], mytitle=mytitle,

mylab="age (in years)"))

> legend(50, .05, legend=c("Women", "Men"), col=1:2, lty=1:2, lwd=2)
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Figure 5.4: Density plot of age by gender

5.7.5 Survival analysis: logrank test

The logrank test (5.4.6) can be used to compare estimated survival curves between groups in
the presence of censoring. Here we compare randomization groups with respect to dayslink,
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where a value of 0 for linkstatus indicates that the observation was censored, not observed,
at the time recorded in dayslink.

> library(survival)

> survobj = survdiff(Surv(dayslink, linkstatus) ~ treat,

data=ds)

> print(survobj)

Call:

survdiff(formula = Surv(dayslink, linkstatus) ~ treat, data = ds)

n=431, 22 observations deleted due to missingness.

N Observed Expected (O-E)^2/E (O-E)^2/V

treat=0 209 35 92.8 36.0 84.8

treat=1 222 128 70.2 47.6 84.8

Chisq= 84.8 on 1 degrees of freedom, p= 0

> names(survobj)

[1] "n" "obs" "exp" "var" "chisq"

[6] "na.action" "call"
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Chapter 6

Linear regression and ANOVA

Regression and analysis of variance (ANOVA) form the basis of many investigations. Here
we describe how to undertake many common tasks in linear regression (broadly defined),
while Chapter 7 discusses many generalizations, including other types of outcome variables,
longitudinal and clustered analysis, and survival methods.

Many R commands can perform linear regression, as it constitutes a special case of which
many models are generalizations. We present detailed descriptions for the lm() command,
as it offers the most flexibility and best output options tailored to linear regression in
particular. While ANOVA can be viewed as a special case of linear regression, separate
routines are available (aov()) to perform it.

R supports a flexible modeling language implemented using formulas (see help(formula)
and 6.1.1) for regression that shares functionality with the lattice graphics functions (as well
as other packages). Many of the routines available within R return or operate on lm class ob-
jects, which include objects such as coefficients, residuals, fitted values, weights, contrasts,
model matrices, and similar quantities (see help(lm)).

The CRAN statistics for the social sciences task view provides an excellent overview of
methods described here and in Chapter 7.

6.1 Model fitting

6.1.1 Linear regression
Example: 6.6.2

mod1 = lm(y ~ x1 + ... + xk, data=ds)

summary(mod1)

summary.aov(mod1)
or
form = as.formula(y ~ x1 + ... + xk)

mod1 = lm(form, data=ds)

summary(mod1)

coef(mod1)

Note: The first argument of the lm() function is a formula object, with the outcome
specified followed by the ∼ operator then the predictors. It returns a linear model ob-
ject. More information about the linear model summary() command can be found using
help(summary.lm). The coef() function extracts coefficients from a model (see also the
coefplot package). The biglm() function in the biglm package can support model fitting
to very large datasets (see 6.1.7). By default, stars are used to annotate the output of

67
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the summary() functions regarding significance levels: these can be turned off using the
command options(show.signif.stars=FALSE).

6.1.2 Linear regression with categorical covariates
Example: 6.6.2

See 6.1.4 (parameterization of categorical covariates).

ds = transform(ds, x1f = as.factor(x1))

mod1 = lm(y ~ x1f + x2 + ... + xk, data=ds)

Note: The as.factor() command creates a categorical variable from a variable. By default,
the lowest value (either numerically or lexicographically) is the reference value. The levels
option for the factor() function can be used to select a particular reference value (see
2.2.19). Ordered factors can be constructed using the ordered() function.

6.1.3 Changing the reference category

library(dplyr)

ds = mutate(ds, neworder = factor(classvar,

levels=c("level", "otherlev1", "otherlev2")))

mod1 = lm(y ~ neworder, data=ds)

Note: The first level of a factor (by default, that which appears first lexicographically) is
the reference group. This can be modified through use of the factor() function.

6.1.4 Parameterization of categorical covariates
Example: 6.6.6

The as.factor() function can be applied within any model-fitting command. Parameter-
ization of the covariate can be controlled as below.

ds = transform(ds, x1f = as.factor(x1))

mod1 = lm(y ~ x1f, contrasts=list(x1f="contr.SAS"), data=ds)

Note: The as.factor() function creates a factor object. The contrasts option for
the lm() function specifies how the levels of that factor object should be used within the
function. The levels option to the factor() function allows specification of the ordering
of levels (the default is lexicographic). An example can be found in Section 6.6.

The specification of the design matrix for analysis of variance and regression models
can be controlled using the contrasts option. Examples of options (for a factor with four
equally spaced levels) are given below.

> contr.treatment(4) > contr.poly(4)

2 3 4 .L .Q .C

1 0 0 0 [1,] -0.671 0.5 -0.224

2 1 0 0 [2,] -0.224 -0.5 0.671

3 0 1 0 [3,] 0.224 -0.5 -0.671

4 0 0 1 [4,] 0.671 0.5 0.224

> contr.SAS(4) > contr.sum(4)

1 2 3 [,1] [,2] [,3]

1 1 0 0 1 1 0 0

2 0 1 0 2 0 1 0
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3 0 0 1 3 0 0 1

4 0 0 0 4 -1 -1 -1

> contr.helmert(4)

[,1] [,2] [,3]

1 -1 -1 -1

2 1 -1 -1

3 0 2 -1

4 0 0 3

See options("contrasts") for defaults, and contrasts() or C() to apply a contrast func-
tion to a factor variable. Support for reordering factors is available within the factor()

function.

6.1.5 Linear regression with no intercept

mod1 = lm(y ~ 0 + x1 + ... + xk, data=ds)

or
mod1 = lm(y ~ x1 + ... + xk - 1, data=ds)

6.1.6 Linear regression with interactions
Example: 6.6.2

mod1 = lm(y ~ x1 + x2 + x1:x2 + x3 + ... + xk, data=ds)

or
lm(y ~ x1*x2 + x3 + ... + xk, data=ds)

Note: The * operator includes all lower-order terms (in this case main effects), while the
: operator includes only the specified interaction. So, for example, the commands y

∼ x1*x2*x3 and y ∼ x1 + x2 + x3 + x1:x2 + x1:x3 + x2:x3 + x1:x2:x3 are equiv-
alent. The syntax also works with any covariates designated as categorical using the
as.factor() command (see 6.1.2).

6.1.7 Linear regression with big data

library(biglm)

myformula = as.formula(y ~ x1)

res = biglm(myformula, chunk1)

res = update(res, chunk2)

coef(res)

Note: The biglm() and update() functions in the biglm package can fit linear (or gener-
alized linear) models with dataframes larger than memory. It allows a single large model
to be estimated in more manageable chunks, with results updated iteratively as each chunk
is processed. The chunk size will depend on the application. The data argument may be a
function, dataframe, SQLiteConnection, or RODBC connection object.
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6.1.8 One-way analysis of variance
Example: 6.6.6

ds = transform(ds, xf=as.factor(x))

mod1 = aov(y ~ xf, data=ds)

summary(mod1)

anova(mod1)

Note: The summary() command can be used to provide details of the model fit. More
information can be found using help(summary.aov). Note that summary.lm(mod1) will
display the regression parameters underlying the ANOVA model.

6.1.9 Analysis of variance with two or more factors
Example: 6.6.6

Interactions can be specified using the syntax introduced in 6.1.6 (see interaction plots,
8.5.2).

aov(y ~ as.factor(x1) + as.factor(x2), data=ds)

6.2 Tests, contrasts, and linear functions of parameters

6.2.1 Joint null hypotheses: several parameters equal 0

As an example, consider testing the null hypothesis H0 : β1 = β2 = 0.

mod1 = lm(y ~ x1 + ... + xk, data=ds)

mod2 = lm(y ~ x3 + ... + xk, data=ds)

anova(mod2, mod1)

6.2.2 Joint null hypotheses: sum of parameters

As an example, consider testing the null hypothesis H0 : β1 + β2 = 1.

mod1 = lm(y ~ x1 + ... + xk, data=ds)

covb = vcov(mod1)

coeff.mod1 = coef(mod1)

t = (coeff.mod1[2] + coeff.mod1[3] - 1)/

sqrt(covb[2,2] + covb[3,3] + 2*covb[2,3])

pvalue = 2*(1-pt(abs(t), df=mod1$df))

6.2.3 Tests of equality of parameters
Example: 6.6.8

As an example, consider testing the null hypothesis H0 : β1 = β2.

mod1 = lm(y ~ x1 + ... + xk, data=ds)

mod2 = lm(y ~ I(x1+x2) + ... + xk, data=ds)

anova(mod2, mod1)

or
library(gmodels)

estimable(mod1, c(0, 1, -1, 0, ..., 0))
or
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mod1 = lm(y ~ x1 + ... + xk, data=ds)

covb = vcov(mod1)

coeff.mod1 = coef(mod1)

t = (coeff.mod1[2]-coeff.mod1[3])/sqrt(covb[2,2]+covb[3,3]-2*covb[2,3])

pvalue = 2*(1-pt(abs(t), mod1$df))

Note: The I() function inhibits the interpretation of operators, to allow them to be used
as arithmetic operators. The estimable() function calculates a linear combination of the
parameters. The more general code below utilizes the same approach introduced in 6.2.1
for the specific test of β1 = β2 (different coding would be needed for other comparisons).

6.2.4 Multiple comparisons
Example: 6.6.7

mod1 = aov(y ~ x, data=ds)

TukeyHSD(mod1, "x")

Note: The TukeyHSD() function takes an aov object as an argument and evaluates pairwise
comparisons between all of the combinations of the factor levels of the variable x. (See
the p.adjust() function, as well as the multcomp and factorplot packages for other
multiple comparison methods, including Bonferroni, Holm, Hochberg, and false discovery
rate adjustments.)

6.2.5 Linear combinations of parameters
Example: 6.6.8

It is often useful to find predicted values for particular covariate values. Here, we calculate
the predicted value E[Y |X1 = 1, X2 = 3] = β̂0 + β̂1 + 3β̂2.

mod1 = lm(y ~ x1 + x2, data=ds)

newdf = data.frame(x1=c(1), x2=c(3))

predict(mod1, newdf, se.fit=TRUE, interval="confidence")
or
library(gmodels)

estimable(mod1, c(1, 1, 3))
or
library(mosaic)

myfun = makeFun(mod1)

myfun(x1=1, x2=3)

Note: The predict() command in R can generate estimates at any combination of param-
eter values, as specified as a dataframe that is passed as an argument. More information
on this function can be found using help(predict.lm).

6.3 Model results and diagnostics

There are many functions available to produce predicted values and diagnostics. For ad-
ditional commands not listed here, see help(influence.measures) and the “See also” in
help(lm).
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6.3.1 Predicted values
Example: 6.6.2

mod1 = lm(y ~ x, data=ds)

predicted.varname = predict(mod1)

Note: The command predict() operates on any lm object and by default generates a vector
of predicted values.

6.3.2 Residuals
Example: 6.6.2

mod1 = lm(y ~ x, data=ds)

residual.varname = residuals(mod1)

Note: The command residuals() operates on any lm object and generates a vector of
residuals. Other functions exist for aov, glm, or lme objects (see help(residuals.glm)).

6.3.3 Standardized and Studentized residuals
Example: 6.6.2

Standardized residuals are calculated by dividing the ordinary residual (observed minus
expected, yi − ŷi) by an estimate of its standard deviation. Studentized residuals are
calculated in a similar manner, where the predicted value and the variance of the residual
are estimated from the model fit while excluding that observation.

mod1 = lm(y ~ x, data=ds)

standardized.resid.varname = rstandard(mod1)

studentized.resid.varname = rstudent(mod1)

Note: The rstandard() and rstudent() functions operate on any lm object, and generate
a vector of studentized residuals (the former command includes the observation in the
calculation, while the latter does not).

6.3.4 Leverage
Example: 6.6.2

Leverage is defined as the diagonal element of the (X(XTX)−1XT ) or “hat” matrix.

mod1 = lm(y ~ x, data=ds)

leverage.varname = hatvalues(mod1)

Note: The command hatvalues() operates on any lm object and generates a vector of
leverage values.

6.3.5 Cook’s distance
Example: 6.6.2

Cook’s distance (D) is a function of the leverage (see 6.3.4) and the magnitude of the
residual. It is used as a measure of the influence of a data point in a regression model.

mod1 = lm(y ~ x, data=ds)

cookd.varname = cooks.distance(mod1)

Note: The command cooks.distance() operates on any lm object and generates a vector
of Cook’s distance values.
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6.3.6 DFFITs
Example: 6.6.2

DFFITs are a standardized function of the difference between the predicted value for the
observation when it is included in the dataset and when (only) it is excluded from the
dataset. They are used as an indicator of the observation’s influence.

mod1 = lm(y ~ x, data=ds)

dffits.varname = dffits(mod1)

Note: The command dffits() operates on any lm object and generates a vector of DFFITS
values.

6.3.7 Diagnostic plots
Example: 6.6.4

mod1 = lm(y ~ x, data=ds)

par(mfrow=c(2, 2)) # display 2 x 2 matrix of graphs

plot(mod1)

Note: The plot.lm() function (which is invoked when plot() is given a linear regression
model as an argument) can generate six plots: (1) a plot of residuals against fitted values,
(2) a Scale-Location plot of

√
(Yi − Ŷi) against fitted values, (3) a normal Q-Q plot of the

residuals, (4) a plot of Cook’s distances (6.3.5) versus row labels, (5) a plot of residuals
against leverages (6.3.4), and (6) a plot of Cook’s distances against leverage/(1−leverage).
The default is to plot the first three and the fifth. The which option can be used to specify
a different set (see help(plot.lm)).

6.3.8 Heteroscedasticity tests

library(lmtest)

bptest(y ~ x1 + ... + xk, data=ds)

Note: The bptest() function in the lmtest package performs the Breusch–Pagan test for
heteroscedasticity [18]. Other diagnostic tests are available within the package.

6.4 Model parameters and results

6.4.1 Parameter estimates
Example: 6.6.2

mod1 = lm(y ~ x, data=ds)

coeff.mod1 = coef(mod1)

Note: The first element of the vector coeff.mod1 is the intercept (assuming that a model
with an intercept was fit).

6.4.2 Standardized regression coefficients

Standardized coefficients from a linear regression model are the parameter estimates ob-
tained when the predictors and outcomes have been standardized to have a variance of 1
prior to model fitting.
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library(QuantPsyc)

mod1 = lm(y ~ x)

lm.beta(mod1)

6.4.3 Coefficient plot

Example: 6.6.3

An alternative way to display regression results (coefficients and associated confidence in-
tervals) is with a figure rather than a table [51].

library(mosaic)

mplot(mod, which=7)

Note: The specific coefficients to be displayed can be specified (or excluded, using negative
values) via the rows option.

6.4.4 Standard errors of parameter estimates

See 6.4.10 (covariance matrix).

mod1 = lm(y ~ x, data=ds)

sqrt(diag(vcov(mod1)))
or

coef(summary(mod1))[,2]

Note: The standard errors are the second column of the results from coef().

6.4.5 Confidence interval for parameter estimates

Example: 6.6.2

mod1 = lm(y ~ x, data=ds)

confint(mod1)

6.4.6 Confidence limits for the mean

These are the lower (and upper) confidence limits for the mean of observations with the
given covariate values, as opposed to the prediction limits for individual observations with
those values (see prediction limits, 6.4.7).

mod1 = lm(y ~ x, data=ds)

pred = predict(mod1, interval="confidence")

lcl.varname = pred[,2]

Note: The lower confidence limits are the second column of the results from predict().
To generate the upper confidence limits, the user would access the third column of the
predict() object. The command predict() operates on any lm() object, and with these
options generates confidence limit values. By default, the function uses the estimation
dataset, but a separate dataset of values to be used to predict can be specified. The
panel=panel.lmbands option from the mosaic package can be added to an xyplot() call
to augment the scatterplot with confidence interval and prediction bands.
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6.4.7 Prediction limits

These are the lower (and upper) prediction limits for “new” observations with the covariate
values of subjects observed in the dataset, as opposed to confidence limits for the population
mean (see confidence limits, 6.4.6).

mod1 = lm(y ~ ..., data=ds)

pred.w.lowlim = predict(mod1, interval="prediction")[,2]

Note: This code saves the second column of the results from the predict() function into
a vector. To generate the upper confidence limits, the user would access the third column
of the predict() object in R. The command predict() operates on any lm() object,
and with these options generates prediction limit values. By default, the function uses the
estimation dataset, but a separate dataset of values to be used to predict can be specified.

6.4.8 R-squared

mod1 = lm(y ~ ..., data=ds)

summary(mod1)$r.squared
or
library(mosaic)

rsquared(mod1)

6.4.9 Design and information matrix

See 3.3 (matrices).

mod1 = lm(y ~ x1 + ... + xk, data=ds)

XpX = t(model.matrix(mod1)) %*% model.matrix(mod1)
or
X = cbind(rep(1, length(x1)), x1, x2, ..., xk)

XpX = t(X) %*% X

rm(X)

Note: The model.matrix() function creates the design matrix from a linear model object.
Alternatively, this quantity can be built up using the cbind() function to glue together the
design matrix X. Finally, matrix multiplication (3.3.6) and the transpose function are used
to create the information (X ′X) matrix.

6.4.10 Covariance matrix of parameter estimates

Example: 6.6.2

See 3.3 (matrices) and 6.4.4 (standard errors).

mod1 = lm(y ~ x, data=ds)

vcov(mod1)
or
sumvals = summary(mod1)

covb = sumvals$cov.unscaled*sumvals$sigma^2

Note: Running help(summary.lm) provides details on return values.
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6.4.11 Correlation matrix of parameter estimates

See 3.3 (matrices) and 6.4.4 (standard errors).

mod1 = lm(y ~ x, data=ds)

mod1.cov = vcov(mod1)

mod1.cor = cov2cor(mod1.cov)

Note: The cov2cor() function is a convenient way to convert a covariance matrix into a
correlation matrix.

6.5 Further resources

An accessible guide to linear regression in R can be found in [36]. Cook [28] reviews
regression diagnostics. Frank Harrell’s rms (regression modeling strategies) package [61]
features extensive support for regression modeling. The CRAN statistics for the social
sciences task view provides an excellent overview of methods described here and in Chapter
7.

6.6 Examples

To help illustrate the tools presented in this chapter, we apply many of the entries to the
HELP data. The code can be downloaded from http://www.amherst.edu/~nhorton/r2/

examples.
We begin by reading in the dataset and keeping only the female subjects. To prepare

for future analyses, we create a version of substance as a factor variable (see 6.1.4) as well
as dataframes containing subsets of our data.

> options(digits=3)

> # read in Stata format

> library(foreign)

> ds = read.dta("http://www.amherst.edu/~nhorton/r2/datasets/help.dta",

convert.underscore=FALSE)

> library(dplyr)

> ds = mutate(ds, sub=factor(substance,

levels=c("heroin", "alcohol", "cocaine")))

> newds = filter(ds, female==1)

> alcohol = filter(newds, substance=="alcohol")

> cocaine = filter(newds, substance=="cocaine")

> heroin = filter(newds, substance=="heroin")

6.6.1 Scatterplot with smooth fit

As a first step to help guide estimation of a linear regression, we create a scatterplot (8.3.1)
displaying the relationship between age and the number of alcoholic drinks consumed in
the period before entering detox (variable name: i1), as well as primary substance of abuse
(alcohol, cocaine, or heroin).

Figure 6.1 displays a scatterplot of observed values for i1 (along with separate smooth
fits by primary substance). To improve legibility, the plotting region is restricted to those
with number of drinks between 0 and 40 (see plotting limits, 9.2.9).
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> with(newds, plot(age, i1, ylim=c(0,40), type="n", cex.lab=1.2,

cex.axis=1.2))

> with(alcohol, points(age, i1, pch="a"))

> with(alcohol, lines(lowess(age, i1), lty=1, lwd=2))

> with(cocaine, points(age, i1, pch="c"))

> with(cocaine, lines(lowess(age, i1), lty=2, lwd=2))

> with(heroin, points(age, i1, pch="h"))

> with(heroin, lines(lowess(age, i1), lty=3, lwd=2))

> legend(44, 38, legend=c("alcohol", "cocaine", "heroin"), lty=1:3,

cex=1.4, lwd=2, pch=c("a", "c", "h"))
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Figure 6.1: Scatterplot of observed values for age and I1 (plus smoothers by substance)
using base graphics

The pch option to the legend() command can be used to insert plot symbols in R
legends (Figure 6.1 displays the different line styles). A similar plot can be generated using
the lattice package (see Figure 6.2). Finally, a third figure can be generated using the
ggplot2 package (see Figure 6.3). Not surprisingly, the plots suggest a dramatic effect of
primary substance, with alcohol users drinking more than others. There is some indication
of an interaction with age.

6.6.2 Linear regression with interaction

Next we fit a linear regression model (6.1.1) for the number of drinks as a function of age,
substance, and their interaction (6.1.6). We also fit the model with no interaction and use
the anova() function to compare the models (the drop1() function could also be used).

> options(show.signif.stars=FALSE)

> lm1 = lm(i1 ~ sub * age, data=newds)

> lm2 = lm(i1 ~ sub + age, data=newds)
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> xyplot(i1 ~ age, groups=substance, type=c("p", "smooth"),

auto.key=list(columns=3, lines=TRUE, points=FALSE),

ylim=c(0, 40), data=newds)
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Figure 6.2: Scatterplot of observed values for age and I1 (plus smoothers by substance)
using the lattice package

> anova(lm2, lm1)

Analysis of Variance Table

Model 1: i1 ~ sub + age

Model 2: i1 ~ sub * age

Res.Df RSS Df Sum of Sq F Pr(>F)

1 103 26196

2 101 24815 2 1381 2.81 0.065

> summary.aov(lm1)

Df Sum Sq Mean Sq F value Pr(>F)

sub 2 10810 5405 22.00 1.2e-08

age 1 84 84 0.34 0.559

sub:age 2 1381 690 2.81 0.065

Residuals 101 24815 246

We observe a borderline significant interaction between age and substance group (p =
0.065). Additional information about the model can be displayed using the summary() and
confint() functions.
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> library(ggplot2)

> ggplot(data=newds, aes(x=age, y=i1)) + geom_point(aes(shape=substance)) +

stat_smooth(method=loess, level=0.50, colour="black") +

aes(linetype=substance) +

coord_cartesian(ylim = c(0, 40)) +

theme(legend.position="top") + labs(title="")
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Figure 6.3: Scatterplot of observed values for age and I1 (plus smoothers by substance)
using the ggplot2 package

> summary(lm1)

Call:

lm(formula = i1 ~ sub * age, data = newds)

Residuals:

Min 1Q Median 3Q Max

-31.92 -8.25 -4.18 3.58 49.88

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -7.770 12.879 -0.60 0.54763

subalcohol 64.880 18.487 3.51 0.00067

subcocaine 13.027 19.139 0.68 0.49763

age 0.393 0.362 1.09 0.28005

subalcohol:age -1.113 0.491 -2.27 0.02561

subcocaine:age -0.278 0.540 -0.51 0.60813
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Residual standard error: 15.7 on 101 degrees of freedom

Multiple R-squared: 0.331,Adjusted R-squared: 0.298

F-statistic: 9.99 on 5 and 101 DF, p-value: 8.67e-08

> confint(lm1)

2.5 % 97.5 %

(Intercept) -33.319 17.778

subalcohol 28.207 101.554

subcocaine -24.938 50.993

age -0.325 1.112

subalcohol:age -2.088 -0.138

subcocaine:age -1.348 0.793

It may also be useful to produce the table in LATEX format. We can use the xtable package
to display the regression results in LATEX as shown in Table 6.1.

> library(xtable)

> lmtab = xtable(lm1, digits=c(0,3,3,2,4), label="better",

> caption="Formatted results using the {\\tt xtable} package")

> print(lmtab) # output the LaTeX

Table 6.1: Formatted results using the xtable package
Estimate Std. Error t value Pr(>|t|)

(Intercept) -7.770 12.879 -0.60 0.5476
subalcohol 64.880 18.487 3.51 0.0007
subcocaine 13.027 19.139 0.68 0.4976

age 0.393 0.362 1.09 0.2801
subalcohol:age -1.113 0.491 -2.27 0.0256
subcocaine:age -0.278 0.540 -0.51 0.6081

There are many quantities of interest stored in the linear model object lm1, and these can
be viewed or extracted for further use.

> names(summary(lm1))

[1] "call" "terms" "residuals" "coefficients"

[5] "aliased" "sigma" "df" "r.squared"

[9] "adj.r.squared" "fstatistic" "cov.unscaled"

> summary(lm1)$sigma

[1] 15.7

> names(lm1)

[1] "coefficients" "residuals" "effects" "rank"

[5] "fitted.values" "assign" "qr" "df.residual"

[9] "contrasts" "xlevels" "call" "terms"

[13] "model"
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> coef(lm1)

(Intercept) subalcohol subcocaine age subalcohol:age

-7.770 64.880 13.027 0.393 -1.113

subcocaine:age

-0.278

> vcov(lm1)

(Intercept) subalcohol subcocaine age subalcohol:age

(Intercept) 165.86 -165.86 -165.86 -4.548 4.548

subalcohol -165.86 341.78 165.86 4.548 -8.866

subcocaine -165.86 165.86 366.28 4.548 -4.548

age -4.55 4.55 4.55 0.131 -0.131

subalcohol:age 4.55 -8.87 -4.55 -0.131 0.241

subcocaine:age 4.55 -4.55 -10.13 -0.131 0.131

subcocaine:age

(Intercept) 4.548

subalcohol -4.548

subcocaine -10.127

age -0.131

subalcohol:age 0.131

subcocaine:age 0.291

The entire table of regression coefficients and associated statistics can be saved as an object.

> mymodel = coef(summary(lm1))

> mymodel

Estimate Std. Error t value Pr(>|t|)

(Intercept) -7.770 12.879 -0.603 0.547629

subalcohol 64.880 18.487 3.509 0.000672

subcocaine 13.027 19.139 0.681 0.497627

age 0.393 0.362 1.086 0.280052

subalcohol:age -1.113 0.491 -2.266 0.025611

subcocaine:age -0.278 0.540 -0.514 0.608128

> mymodel[2,3] # alcohol t-value

[1] 3.51

6.6.3 Regression coefficient plot

The mplot() function in the mosaic package generates a coefficient plot (6.4.3) for the main
effects multiple regression model (see Figure 6.4).

6.6.4 Regression diagnostics

Assessing the model is an important part of any analysis. We begin by examining the
residuals (6.3.2). First, we calculate the quantiles of their distribution (5.1.5), then display
the smallest residual.
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> library(mosaic)

> mplot(lm2, which=7, rows=-1)
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Figure 6.4: Regression coefficient plot

> library(dplyr)

> newds = mutate(newds, pred = fitted(lm1), resid = residuals(lm1))

> with(newds, quantile(resid))

0% 25% 50% 75% 100%

-31.92 -8.25 -4.18 3.58 49.88

One way to print the largest value is to select the observation that matches the largest
value. We use a series of “pipe” operations (A.5.3) to select a set of variables with the
select() function, create the standardized residuals and add them to the dataset with the
rstandard() function nested in the mutate() function, and then filter() out all rows
except the one containing the maximum residual.

> library(dplyr)

> newds %>%

select(id, age, i1, sub, pred, resid) %>%

mutate(rstand = rstandard(lm1)) %>%

filter(resid==max(resid))

id age i1 sub pred resid rstand

1 9 50 71 alcohol 21.1 49.9 3.32

Graphical tools are one of the best ways to examine residuals. Figure 6.5 displays the
default diagnostic plots (6.3) from the model.

Figure 6.6 displays the empirical density of the standardized residuals, along with an
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> oldpar = par(mfrow=c(2, 2), mar=c(4, 4, 2, 2) + .1)

> plot(lm1); par(oldpar)
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Figure 6.5: Default diagnostics for linear models

overlaid normal density. The assumption that the residuals are approximately Gaussian
does not appear to be tenable.

The residual plots also indicate some potentially important departures from model as-
sumptions: further exploration and model assessment should be undertaken.

6.6.5 Fitting a regression model separately for each value
of another variable

One common task is to perform identical analyses in several groups. Here, as an example,
we consider separate linear regressions for each substance abuse group.

A matrix of the correct size is created, then a for loop is run for each unique value of
the grouping variable.

> uniquevals = unique(newds$substance)

> numunique = length(uniquevals)

> formula = as.formula(i1 ~ age)

> p = length(coef(lm(formula, data=newds)))

> res = matrix(rep(0, numunique*p), p, numunique)

> for (i in 1:length(uniquevals)) {

res[,i] = coef(lm(formula,

data=subset(newds, substance==uniquevals[i])))

}

> rownames(res) = c("intercept","slope")

> colnames(res) = uniquevals
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> library(MASS)

> std.res = rstandard(lm1)

> hist(std.res, breaks=seq(-2.5, 3.5, by=.5), main="",

xlab="standardized residuals", col="gray80", freq=FALSE)

> lines(density(std.res), lwd=2)

> xvals = seq(from=min(std.res), to=max(std.res), length=100)

> lines(xvals, dnorm(xvals, mean(std.res), sd(std.res)), lty=2)

standardized residuals
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Figure 6.6: Empirical density of residuals, with superimposed normal density

> res

heroin cocaine alcohol

intercept -7.770 5.257 57.11

slope 0.393 0.116 -0.72

6.6.6 Two-way ANOVA

Is there a statistically significant association between gender and substance abuse group with
depressive symptoms? An interaction plot (8.5.2) may be helpful in making a determination.
The interaction.plot() function can be used to carry out this task. Figure 6.7 displays
an interaction plot for CESD as a function of substance group and gender.

> library(dplyr)

> ds = mutate(ds, genf = as.factor(ifelse(female, "F", "M")))

There are indications of large effects of gender and substance group, but little suggestion of
interaction between the two. The same conclusion is reached in Figure 6.8, which displays
boxplots by substance group and gender. We begin by creating better labels for the grouping
variable, using the cases() function from the memisc package.
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> with(ds, interaction.plot(substance, genf, cesd,

xlab="substance", las=1, lwd=2))
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Figure 6.7: Interaction plot of CESD as a function of substance group and gender

> library(dplyr)

> library(memisc)

> ds = mutate(ds, subs = cases(

"Alc" = substance=="alcohol",

"Coc" = substance=="cocaine",

"Her" = substance=="heroin"))

The width of each box is proportional to the size of the sample, with the notches denoting
confidence intervals for the medians and X’s marking the observed means. Next, we proceed
to formally test whether there is a significant interaction through a two-way analysis of
variance (6.1.9). We fit models with and without an interaction, and then compare the
results. We also construct the likelihood ratio test manually.

> aov1 = aov(cesd ~ sub * genf, data=ds)

> aov2 = aov(cesd ~ sub + genf, data=ds)

> anova(aov2, aov1)

Analysis of Variance Table

Model 1: cesd ~ sub + genf

Model 2: cesd ~ sub * genf

Res.Df RSS Df Sum of Sq F Pr(>F)

1 449 65515

2 447 65369 2 146 0.5 0.61
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> boxout = with(ds,

boxplot(cesd ~ subs + genf, notch=TRUE, varwidth=TRUE,

col="gray80"))

> boxmeans = with(ds, tapply(cesd, list(subs, genf), mean))

> points(seq(boxout$n), boxmeans, pch=4, cex=2)
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Figure 6.8: Boxplot of CESD as a function of substance group and gender

> options(digits=8)

> logLik(aov1)

’log Lik.’ -1768.9186 (df=7)

> logLik(aov2)

’log Lik.’ -1769.4236 (df=5)

> lldiff = logLik(aov1)[1] - logLik(aov2)[1]

> lldiff

[1] 0.50505522

> 1 - pchisq(2*lldiff, df=2)

[1] 0.60347225

> options(digits=3)

There is little evidence (p > 0.6) of an interaction, so this term can be dropped.

> summary(aov2)

Df Sum Sq Mean Sq F value Pr(>F)

sub 2 2704 1352 9.27 0.00011

genf 1 2569 2569 17.61 3.3e-05

Residuals 449 65515 146

The AIC (Akaike Information Criterion) statistic (7.8.3) can also be used to compare models.

> AIC(aov1)

[1] 3552

> AIC(aov2)

[1] 3549
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The AIC criterion also suggests that the model without the interaction is most appropriate.
It may be useful to change the default reference level for variables. The default R design

matrix (see 6.1.4) can be changed and the model re-fit.

> contrasts(ds$sub) = contr.SAS(3)

> aov3 = lm(cesd ~ sub + genf, data=ds)

> summary(aov3)

Call:

lm(formula = cesd ~ sub + genf, data = ds)

Residuals:

Min 1Q Median 3Q Max

-32.13 -8.85 1.09 8.48 27.09

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 33.52 1.38 24.22 < 2e-16

sub1 5.61 1.46 3.83 0.00014

sub2 5.32 1.34 3.98 8.1e-05

genfM -5.62 1.34 -4.20 3.3e-05

Residual standard error: 12.1 on 449 degrees of freedom

Multiple R-squared: 0.0745,Adjusted R-squared: 0.0683

F-statistic: 12 on 3 and 449 DF, p-value: 1.35e-07

6.6.7 Multiple comparisons

We can also carry out multiple comparison (6.2.4) procedures to test each of the pairwise
differences between substance abuse groups, using the TukeyHSD() function.

> mult = TukeyHSD(aov(cesd ~ sub, data=ds), "sub")

> mult

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = cesd ~ sub, data = ds)

$sub

diff lwr upr p adj

alcohol-heroin -0.498 -3.89 2.89 0.936

cocaine-heroin -5.450 -8.95 -1.95 0.001

cocaine-alcohol -4.952 -8.15 -1.75 0.001

The alcohol group and heroin group both have significantly higher CESD scores than the
cocaine group, but the alcohol and heroin groups do not significantly differ from each other
(95% confidence interval (CI) for the difference ranges from −3.9 to 2.9). Figure 6.9 provides
a graphical display of the pairwise comparisons.

The factorplot() function in the factorplot package provides an alternative plotting
scheme. This is demonstrated using a model where the CESD scores are grouped into six
categories.
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> require(mosaic)

> mplot(mult)

Tukey's Honest Significant Differences

difference in means

alcohol−heroin

cocaine−alcohol

cocaine−heroin

−8 −6 −4 −2 0 2

●

●

●

sub

Figure 6.9: Pairwise comparisons (using Tukey HSD procedure)

> library(dplyr)

> library(factorplot)

> newds = mutate(newds, cesdgrp = cut(cesd,

breaks=c(-1, 10, 20, 30, 40, 50, 61),

labels=c("0-10", "11-20", "21-30", "31-40", "41-50", "51-60")))

> tally(~ cesdgrp, data=newds)

0-10 11-20 21-30 31-40 41-50 51-60

4 10 18 31 24 20

> mod = lm(pcs ~ age + cesdgrp, data=newds)

> fp = factorplot(mod, adjust.method="none", factor.variable="cesdgrp",

pval=0.05, two.sided=TRUE, order="natural")

Figure 6.10 provides a graphical display of the fifteen pairwise comparisons, where the
pairwise difference is displayed above the standard error of that difference (in italics).

6.6.8 Contrasts

We can also fit contrasts (6.2.3) to test hypotheses involving multiple parameters. In this
case, we can compare the CESD scores for the alcohol and heroin groups to the cocaine
group.
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> plot(fp, abbrev.char=100)
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Figure 6.10: Pairwise comparisons (using the factorplot function)

> library(gmodels)

> levels(ds$sub)

[1] "heroin" "alcohol" "cocaine"

> fit.contrast(aov2, "sub", c(1,1,-2), conf.int=0.95 )

Estimate Std. Error t value Pr(>|t|) lower CI upper CI

sub c=( 1 1 -2 ) 10.9 2.42 4.52 8.04e-06 6.17 15.7

As expected from the interaction plot (Figure 6.7), there is a statistically significant differ-
ence in this 1-degree-of-freedom comparison (p < 0.0001).



i
i

“K23166” — 2015/1/28 — 9:35 — page 90 — #116 i
i

i
i

i
i



i
i

“K23166” — 2015/1/28 — 9:35 — page 91 — #117 i
i

i
i

i
i

Chapter 7

Regression generalizations and
modeling

This chapter extends the discussion of linear regression introduced in Chapter 6 to include
many commonly used statistical methods and models. The CRAN statistics for the social
sciences task view provides an excellent overview of methods described here and in Chapter
6.

7.1 Generalized linear models

Table 7.1 displays the options to specify link functions and family of distributions for gen-
eralized linear models [111]. Description of several specific generalized linear regression
models (e.g., logistic and Poisson) can be found in subsequent sections of this chapter.

glmod1 = glm(y ~ x1 + ... + xk, family="familyname"(link="linkname"),

data=ds)

Note: More information on GLM families and links can be found using help(family).
Nested models can be compared using anova(mymod2, mymod1, test="Chisq").

7.1.1 Logistic regression model
Example: 7.10.1

glm(y ~ x1 + ... + xk, binomial, data=ds)

or
library(rms)

lrm(y ~ x1 + ... + xk, data=ds)

Note: The lrm() function within the rms package provides the so-called “c” statistic (area
under receiver operating characteristic curve, see 8.5.7) and the Nagelkerke pseudo-R2 index
[120]. Nested models can be compared using anova(mymod2, mymod1, test="Chisq").

7.1.2 Conditional logistic regression model

library(survival)

cmod = clogit(y ~ x1 + ... + xk + strata(id), data=ds)

91
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Table 7.1: Generalized linear model distributions supported
Distribution R glm()

Gaussian family="gaussian", link="identity", "log" or
"inverse"

binomial family="binomial", link="logit", "probit",

"cauchit", "log" or "cloglog"
gamma family="Gamma", link="inverse", "identity"

or "log"
Poisson family="poisson", link="log", "identity" or

"sqrt"

inverse Gaussian family="inverse.gaussian", link="1/muˆ2",
"inverse", "identity" or "sqrt"

multinomial See multinom() in nnet package
negative binomial See negative.binomial() in MASS package

overdispersed family="quasi", link="logit", "probit",

"cloglog", "identity", "inverse", "log",

"1/muˆ2" or "sqrt" (see glm.binomial.disp() in
the dispmod package)

Note: For the glm() function, the available links for each distribution are listed.

Note: The variable id identifies strata or matched sets of observations. An exact model is
fit by default.

7.1.3 Exact logistic regression

library(elrm)

ds = transform(ds, n=1)

elrmres = elrm(y/n ~ x1 + ... + xk, interest=~x1, iter=1100,

burnIn=100, data=ds)

Note: The elrm() function implements a modified MCMC (Markov Chain Monte Carlo)
algorithm to approximate exact conditional inference for logistic regression models [202].
The binomial response must be provided in the form y/n, where y specifies the number of
successes and n indicates the number of binomial trials for each row of the dataframe.

7.1.4 Ordered logistic model

Example: 7.10.6

In this model, the odds of each level of the outcome relative to all lower levels are calculated.
A key assumption of the model is that the odds are proportional across levels.

library(MASS)

polr(y ~ x1 + ... + xk, data=ds)

Note: The default link is logistic; this can be changed to probit, complementary log-log, or
Cauchy using the method option (see also ordered()).
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7.1.5 Generalized logistic model
Example: 7.10.7

library(VGAM)

mlogit = vglm(y ~ x1 + ... + xk, family=multinomial(), data=ds)

7.1.6 Poisson model
Example: 7.10.2

See 7.2.1 (zero-inflated Poisson).

glm(y ~ x1 + ... + xk, poisson, data=ds)

Note: It is always important to check assumptions for models. This is particularly true for
Poisson models, which are quite sensitive to model departures [69]. One way to assess the
fit of the model is by comparing the observed and expected cell counts, and then calculating
Pearson’s chi-square statistic. This can be carried out using the goodfit() function.

7.1.7 Negative binomial model
Example: 7.10.4

See 7.2.2 (zero-inflated negative binomial).

library(MASS)

glm.nb(y ~ x1 + ... + xk, data=ds)

7.1.8 Log-linear model

Log-linear models are a flexible approach to analysis of categorical data [3]. A log-linear
model of a three-dimensional contingency table denoted by X1, X2, and X3 might assert
that the expected counts depend on a two-way interaction between the first two variables,
but that X3 is independent of all the others:

log(mijk) = µ+ λX1
i + λX2

j + λX1,X2

ij + λX3

k

logres = loglin(table(x1, x2, x3), margin=list(c(1,2), c(3)), param=TRUE)

pvalue = 1 - with(logres, pchisq(lrt, df))

Note: The margin option specifies the dependence assumptions. In addition to the loglin()
function, the loglm() function within the MASS package provides an interface for log-linear
modeling.

7.2 Further generalizations

7.2.1 Zero-inflated Poisson model
Example: 7.10.3

Zero-inflated Poisson models can be used for count outcomes that generally follow a Poisson
distribution but for which there are (many) more observed counts of 0 than would be
expected. These data can be seen as deriving from a mixture distribution of a Poisson
and a degenerate distribution with point mass at zero (see 7.2.2, zero-inflated negative
binomial).
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library(pscl)

mod = zeroinfl(y ~ x1 + ... + xk | x2 + ... + xp, data=ds)

Note: The Poisson rate parameter of the model is specified in the usual way with a formula
as argument to zeroinfl(). The default link is log. The zero probability is modeled as
a function of the covariates specified after the “|” character. An intercept-only model can
be fit by including 1 as the second model. Support for zero-inflated negative binomial and
geometric models is available.

7.2.2 Zero-inflated negative binomial model

Zero-inflated negative binomial models can be used for count outcomes that generally follow
a negative binomial distribution but for which there are (many) more observed counts of 0
than would be expected. These data can be seen as deriving from a mixture distribution of
a negative binomial and a degenerate distribution with point mass at zero (see zero-inflated
Poisson, 7.2.1).

library(pscl)

mod = zeroinfl(y ~ x1 + ... + xk | x2 + ... + xp, dist="negbin", data=ds)

Note: The negative binomial rate parameter of the model is specified in the usual way with
a formula as argument to zeroinfl(). The default link is log. The zero probability is
modeled as a function of the covariates specified after the ‘|’ character. A single intercept
for all observations can be fit by including 1 as the model.

7.2.3 Generalized additive model
Example: 7.10.8

library(gam)

gam(y ~ s(x1, df) + lo(x2) + lo(x3, x4) + x5 + ... + xk, data=ds)

Note: Specification of a smooth term for variable x1 is given by s(x1), while a univariate or
bivariate loess fit can be included using lo(x1) or lo(x1, x2). See gam.s() and gam.lo()

within the gam package for details regarding specification of degrees of freedom or span,
respectively. Polynomial regression terms can be fit using the poly() function.

7.2.4 Nonlinear least squares model

Nonlinear least squares models [156] can be fit. As an example, consider the income in-
equality model described by Sarabia and colleagues [146]:

Y = (1− (1−X)p)
(1/p)

nls(y ~ (1- (1-x)^{p})^(1/{p}), start=list(p=0.5), trace=TRUE)

Note: We provide a starting value (0.5) within the interior of the parameter space. Finding
solutions for nonlinear least squares problems is often challenging (consult help(nls) for
information on supported algorithms as well as Section 3.2.9, optimization).



i
i

“K23166” — 2015/1/28 — 9:35 — page 95 — #121 i
i

i
i

i
i

7.3. ROBUST METHODS 95

7.3 Robust methods

7.3.1 Quantile regression model
Example: 7.10.5

Quantile regression predicts changes in the specified quantile of the outcome variable per
unit change in the predictor variables, analogous to the change in the mean predicted in
least squares regression. If the quantile so predicted is the median, this is equivalent to
minimum absolute deviation regression (as compared to least squares regression minimizing
the squared deviations).

library(quantreg)

quantmod = rq(y ~ x1 + ... + xk, tau=0.75, data=ds)

Note: The default for tau is 0.5, corresponding to median regression. If a vector is specified,
the return value includes a matrix of results.

7.3.2 Robust regression model

Robust regression refers to methods for detecting outliers and/or providing stable estimates
when they are present. Outlying variables in the outcome, predictor, or both are considered.

library(MASS)

rlm(y ~ x1 + ... + xk, data=ds)

Note: The rlm() function fits a robust linear model using M estimation. More information
can be found in the CRAN robust statistical methods task view.

7.3.3 Ridge regression model

Ridge regression is used to deal with ill-conditional regression problems, particularly those
due to multicollinearity (see also 7.8.5).

library(MASS)

ridgemod = lm.ridge(y ~ x1 + ... + xk, lambda=seq(from=a, to=b, by=c),

data=ds)

Note: Post-estimation functions supporting ridgelm objects include plot() and select().
A vector of ridge constants can be specified using the lambda option.

7.4 Models for correlated data

There is extensive support for correlated data regression models, including repeated mea-
sures, longitudinal, time series, clustered, and other related methods. Throughout this
section, we assume that repeated measurements are taken on a subject or cluster with a
common value for the variable id.
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7.4.1 Linear models with correlated outcomes

Example: 7.10.10

library(nlme)

glsres = gls(y ~ x1 + ... + xk,

correlation=corSymm(form = ~ ordervar | id),

weights=varIdent(form = ~1 | ordervar), ds)

Note: The gls() function supports estimation of generalized least squares regression models
with arbitrary specification of the variance covariance matrix. In addition to a formula
interface for the mean model, the analyst specifies a within-group correlation structure as
well as a description of the within-group heteroscedasticity structure (using the weights

option). The statement ordervar | id implies that associations are assumed within id.
Other covariance matrix options are available; see help(corClasses).

7.4.2 Linear mixed models with random intercepts

See 7.4.3 (random slope models), 7.4.4 (random coefficient models), and 11.2 (empirical
power calculations).

library(nlme)

lmeint = lme(fixed= y ~ x1 + ... + xk, random = ~ 1 | id,

na.action=na.omit, data=ds)

Note: Best linear unbiased predictors (BLUPs) of the sum of the fixed effects plus corre-
sponding random effects can be generated using the coef() function, random effect esti-
mates using the random.effects() function, and the estimated variance–covariance matrix
of the random effects using VarCorr() (see fixef() and ranef()). Normalized residuals
(using a Cholesky decomposition, see pages 238–241 of Fitzmaurice et al. [40]) can be gen-
erated using the type="normalized" option when calling residuals() using an NLME
option (more information can be found using help(residuals.lme)). A plot of the ran-
dom effects can be created using plot(lmeint). See the lmmfit package for goodness-of-fit
measures for linear mixed models with one level of clustering.

7.4.3 Linear mixed models with random slopes

Example: 7.10.11

See 7.4.2 (random intercept models) and 7.4.4 (random coefficient models).

library(nlme)

lmeslope = lme(fixed=y ~ time + x1 + ... + xk, random = ~ time | id,

na.action=na.omit, data=ds)

Note: The default covariance for the random effects is unstructured (see help(reStruct) for
other options). Best linear unbiased predictors (BLUPs) of the sum of the fixed effects plus
corresponding random effects can be generated using the coef() function, random effect
estimates using the random.effects() function, and the estimated variance covariance
matrix of the random effects using VarCorr(). A plot of the random effects can be created
using plot(lmeint).
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7.4.4 More complex random coefficient models

We can extend the random effects models introduced in 7.4.2 and 7.4.3 to three or more
subject-specific random parameters (e.g., a quadratic growth curve or spline/“broken stick”
model [40]). We use time1 and time2 to refer to two generic functions of time.

library(nlme)

lmestick = lme(fixed= y ~ time1 + time2 + x1 + ... + xk,

random = ~ time1 time2 | id, data=ds, na.action=na.omit)

Note: The default covariance for the random effects is unstructured (see help(reStruct) for
other options). Best linear unbiased predictors (BLUPs) of the sum of the fixed effects plus
corresponding random effects can be generated using the coef() function, random effect
estimates using the random.effects() function, and the estimated variance covariance
matrix of the random effects using VarCorr(). A plot of the random effects can be created
using plot(lmeint).

7.4.5 Multilevel models

Studies with multiple levels of clustering can be estimated. In a typical example, a study
might include schools (as one level of clustering) and classes within schools (a second level
of clustering), with individual students within the classrooms providing a response. Gener-
ically, we refer to levell variables, which are identifiers of cluster membership at level l.
Random effects at different levels are assumed to be uncorrelated with each other.

library(nlme)

lmres = lme(fixed= y ~ x1 + ... + xk, random= ~ 1 | level1 / level2,

data=ds)

Note: A model with k levels of clustering can be fit using the syntax: level1 / ... /

levelk.

7.4.6 Generalized linear mixed models
Examples: 7.10.13 and 11.2

library(lme4)

glmmres = glmer(y ~ x1 + ... + xk + (1|id), family=familyval, data=ds)

Note: See help(family) for details regarding specification of distribution families and link
functions.

7.4.7 Generalized estimating equations
Example: 7.10.12

library(gee)

geeres = gee(formula = y ~ x1 + ... + xk, id=id, data=ds,

family=binomial, corstr="independence")

Note: The gee() function requires that the dataframe be sorted by subject identifier.
Other correlation structures include "fixed", "stat M dep", "non stat M dep", "AR-M",
and "unstructured". Note that the "unstructured" working correlation requires careful
specification of ordering when missing data are monotone.
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7.4.8 MANOVA

library(car)

mod = lm(cbind(y1, y2, y3) ~ x1, data=ds)

Anova(mod, type="III")

Note: The car package has a vignette that provides detailed examples, including a repeated
measures ANOVA with details of use of the idata and idesign options. If the factor x1

has two levels, this is the equivalent of a Hotelling’s T 2 test. The Hotelling package (due
to James Curran) can also be used to calculate Hotelling’s T2 statistic.

7.4.9 Time series model

Time series modeling is an extensive area with a specialized language and notation. We make
only the briefest approach here. We display fitting an ARIMA (autoregressive integrated
moving average) model for the first difference, with first-order autoregression and moving
averages. The CRAN time series task view provides an overview of support available for R.

tsobj = ts(x, frequency=12, start=c(1992, 2))

arres = arima(tsobj, order=c(1, 1, 1))

Note: The ts() function creates a time series object, in this case for monthly time series
data within the variable x beginning in February 1992 (the default behavior is that the
series starts at time 1 and the number of observations per unit of time is 1). The start

option is either a single number or a vector of two integers that specify a natural time unit
and a number of samples into the time unit. The arima() function fits an ARIMA model
with AR, differencing, and MA order, all equal to 1.

7.5 Survival analysis

Survival, or failure time data, typically consist of the time until the event, as well as an
indicator of whether the event was observed or censored at that time. Throughout, we
denote the time of measurement with the variable time and censoring with a dichotomous
variable cens = 1 if censored, or = 0 if observed. More information on survival (or failure
time, or time-to-event) analysis can be found in the CRAN survival analysis task view (see
A.6.4). Other entries related to survival analysis include 5.4.6 (log-rank test) and 8.5.11
(Kaplan–Meier plot).

7.5.1 Proportional hazards (Cox) regression model

Example: 7.10.14

library(survival)

survmod = coxph(Surv(time, cens) ~ x1 + ... + xk)

Note: The Efron estimator is the default; other choices including exact and Breslow can be
specified using the method option. The cph() function within the rms package supports
time-varying covariates, while the cox.zph() function within the survival package allows
testing of the proportionality assumption, as does the simPH package.



i
i

“K23166” — 2015/1/28 — 9:35 — page 99 — #125 i
i

i
i

i
i

7.5. SURVIVAL ANALYSIS 99

7.5.2 Proportional hazards (Cox) model with frailty

library(survival)

coxph(Surv(time, cens) ~ x1 + ... + xk + frailty(id), data=ds)

Note: More information on specification of frailty models can be found using help(frailty);
support is available for t, Gamma, and Gaussian distributions.

7.5.3 Nelson–Aalen estimate of cumulative hazard

The Nelson–Aalen method provides a non-parametric estimator of the cumulative hazard
rate function in censored data problems [186].

calcna = function(time, event) {

na.fit = survfit(coxph(Surv(time, event) ~ 1), type="aalen")

jumps = c(0, na.fit$time, max(time))

# need to be careful at the beginning and end

surv = c(1, na.fit$surv, na.fit$surv[length(na.fit$surv)])

# apply appropriate transformation

neglogsurv = -log(surv)

# create placeholder of correct length

naest = numeric(length(time))

for (i in 2:length(jumps)) {

naest[which(time>=jumps[i-1] & time<=jumps[i])] =

neglogsurv[i-1] # select the appropriate value

}

return(naest)

}
or

basehaz(coxph(Surv(time, event) ~ 1))

Note: We can do the necessary housekeeping, using the fact that the Nelson–Aalen estimate
is just the negative log of the survival function (after specifying the type="aalen" option.
Similar estimates can be generated using the basehaz() function.

7.5.4 Testing the proportionality of the Cox model

There are several methods for assessing whether the proportionality assumption holds.

library(survival)

survmod = coxph(Surv(time, cens) ~ x1 + ... + xk)

cox.zph(survmod)

plot(cox.zph(survmod))

Note: The cox.zph() function supports a plot object to generate graphical displays that fa-
cilitate model assessment (see also John Fox’s Cox regression appendix at http://tinyurl.
com/foxcox).
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7.5.5 Cox model with time-varying predictors

Estimation of the Cox model with time-varying predictors requires the creation of a dataset
with separate time periods for each occurrence of the time-varying predictor. More details
can be found in John Fox’s Cox regression appendix at http://tinyurl.com/foxcox.

7.6 Multivariate statistics and discriminant procedures

This section describes some commonly used multivariate, clustering methods, and discrimi-
nant procedures [109, 164]. The multivariate statistics, cluster analysis, and psychometrics
task views on CRAN provide additional descriptions of available functionality.

7.6.1 Cronbach’s α

Example: 7.10.15

Cronbach’s α is a measure of internal consistency for a multi-item measure.

library(multilevel)

cronbach(cbind(x1, x2, ..., xk))

7.6.2 Factor analysis

Example: 7.10.16

Factor analysis is used to explain the variability of a set of measures in terms of underlying
unobservable factors. The observed measures can be expressed as linear combinations of
the factors plus random error. Factor analysis is often used as a way to guide the creation
of summary scores from individual items.

res = factanal(~ x1 + ... + xk, factors=3, scores="regression")

print(res, cutoff=0.45, sort=TRUE)

7.6.3 Recursive partitioning

Example: 7.10.17

Recursive partitioning is used to create a decision tree to classify observations from a dataset
based on categorical predictors.

library(rpart)

mod.rpart = rpart(y ~ x1 + ... + xk, method="class", data=ds)

printcp(mod.rpart)

plot(mod.rpart)

text(mod.rpart)

Note: The partykit package provides more control of the display of regression trees (see
also the CRAN machine learning task view).

7.6.4 Linear discriminant analysis

Example: 7.10.18

Linear (or Fisher) discriminant analysis is used to find linear combinations of variables that
can predict class membership.
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library(MASS)

ngroups = length(levels(group))

ldamodel = lda(y ~ x1 + ... + xk, prior=rep(1/ngroups, ngroups))

print(ldamodel)

7.6.5 Latent class analysis

Latent class analysis is a technique used to classify observations based on patterns of cate-
gorical responses.

library(poLCA)

poLCA(cbind(x1, x2, ..., x3) ~ 1, maxiter=50000, nclass=k, nrep=n, data=ds)

Note: In this example, a k class model is fit. The poLCA() function requires that the
variables are coded as positive integers. Other support for latent class models can be found
in the randomLCA and the MplusAutomation packages.

7.6.6 Hierarchical clustering

Example: 7.10.19

Many techniques exist for grouping similar variables or similar observations. These groups,
or clusters, can be overlapping or disjoint, and are sometimes placed in a hierarchical
structure so that some disjoint clusters share a higher-level cluster. Clustering tools in
the stats package include hclust() and kmeans(). The function dendrogram(), also in
the stats package, plots tree diagrams. The cluster() package contains functions pam(),
clara(), and diana(). The CRAN clustering task view has more details.

cormat = cor(cbind(x1, x2, ..., xk), use="pairwise.complete.obs")

hclustobj = hclust(dist(cormat))

7.7 Complex survey design

The appropriate analysis of sample surveys requires incorporation of complex design fea-
tures, including stratification, clustering, weights, and finite population correction. These
can be addressed for many common models. In this example, we assume that there are
variables psuvar (cluster or primary sampling unit), stratum (stratification variable), and
wt (sampling weight). Code examples are given to estimate the mean of a variable x1 as
well as a linear regression model.

library(survey)

mydesign = svydesign(id=~psuvar, strata=~stratum, weights=~wt,

fpc=~fpcvar, data=ds)

meanres = svymean(~ x1, mydesign)

regres = svyglm(y ~ x1 + ... + xk, design=mydesign)

Note: Thomas Lumley’s survey package includes support for many models. Illustrated
above are means and linear regression models, with specification of PSUs, stratification,
weight, and finite population correction. The CRAN official statistics task view provides
an overview of other implementations.
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7.8 Model selection and assessment

7.8.1 Compare two models
Example: 6.6.6

The function drop1() computes a table of changes in fit. In addition, nested modes can be
compared using the anova() function.

mod1 = lm(y ~ x1 + ... + xk, data=ds)

mod2 = lm(y ~ x3 + ... + xk, data=ds)

anova(mod2, mod1)
or
drop1(mod2)

Note: The anova() command computes analysis of variance (or deviance) tables. When
given one model as an argument, it displays the ANOVA table. When two (or more) nested
models are given, it calculates the differences between them.

7.8.2 Log-likelihood
Example: 6.6.6

See 7.8.3 (AIC).

mod1 = lm(y ~ x1 + ... + xk, data=ds)

logLik(mod1)

Note: The logLik() can operate on glm, lm, multinom, nls, Arima, gls, lme, and nlme

objects, among others.

7.8.3 Akaike Information Criterion (AIC)
Example: 6.6.6

See 7.8.2 (log-likelihood).

mod1 = lm(y ~ x1 + ... + xk, data=ds)

AIC(mod1)

Note: The AIC() function includes support for glm, lm, multinom, nls, Arima, gls, lme,
and nlme objects.

7.8.4 Bayesian Information Criterion (BIC)

See 7.8.3 (AIC).

mod1 = lm(y ~ x1 + ... + xk, data=ds)

library(nlme)

BIC(mod1)

7.8.5 LASSO model

The LASSO (least absolute shrinkage and selection operator) is a model selection method
for linear regression that minimizes the sum of squared errors subject to a constraint on
the sum of the absolute value of the coefficients. This technique, due to Tibshirani [169],
is particularly useful in data mining situations where a large number of predictors is being
considered for inclusion in the model (see also 7.3.3).
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library(lars)

lars(y ~ x1 + ... + xk, data=ds, type="lasso")

Note: The lars() function also implements least angle regression and forward stagewise
methods.

7.8.6 Hosmer–Lemeshow goodness of fit

hosmerlem = function(y, yhat, g=10) {

cutyhat = cut(yhat,

breaks = quantile(yhat, probs=seq(0,

1, 1/g)), include.lowest=TRUE)

obs = xtabs(cbind(1 - y, y) ~ cutyhat)

expect = xtabs(cbind(1 - yhat, yhat) ~ cutyhat)

chisq = sum((obs - expect)^2/expect)

P = 1 - pchisq(chisq, g-2)

return(list(chisq=chisq, p.value=P))

}

Note: The test is straightforward to code directly. The hosmerlem() function accepts a vec-
tor of observed 0 and 1 outcomes and predicted probabilities. For a more refined version that
accepts a model object as input, see http://tinyurl.com/sasrblog-hosmer-lemeshow.

7.8.7 Goodness of fit for count models
Example: 7.10.2

library(vcd)

poisfit = goodfit(x, "poisson")

The goodfit() function carries out a Pearson’s χ2 test of observed vs. expected counts.
Other distributions supported include binomial and nbinomial.

Using the code below, R can also create a hanging rootogram [174] to assess the goodness
of fit for count models. If the model fits well, then the bottom of each bar in the rootogram
should be near zero.
library(vcd)

rootogram(poisfit)

7.9 Further resources

Many of the topics covered in this chapter are active areas of statistical research and many
foundational articles are still useful. Here we provide references to texts that serve as
accessible references.

Dobson and Barnett [32] is an accessible introduction to generalized linear models, while
[111] remains a classic. Agresti [3] describes the analysis of categorical data. The CRAN
statistics for the social sciences task view provides an overview of support in this area.

Fitzmaurice, Laird, and Ware [40] is an accessible overview of mixed effects methods
while [185] reviews these methods for a variety of statistical packages. A comprehensive
review of the material in this chapter is incorporated in [37]. The text by Hardin and Hilbe
[59] provides a review of generalized estimating equations. The CRAN analysis of spatial
data task view provides a summary of tools to read, visualize, and analyze spatial data.
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Collett [26] is an accessible introduction to survival analysis. Manly [109] and Tabachnick
and Fidell [164] provide a comprehensive introduction to multivariate statistics. Särndal,
Swensson, and Wretman [148] provides a readable overview of the analysis of data from
complex surveys.

7.10 Examples

To help illustrate the tools presented in this chapter, we apply many of the entries to the
HELP data. The code can be downloaded from http://www.amherst.edu/~nhorton/r2/

examples.

> options(digits=3)

> options(show.signif.stars=FALSE)

> load("savedfile") # saved from previous chapter

The R dataset can be read in from a previously saved file (see p. 26 and 2.6.1).

7.10.1 Logistic regression

In this example we fit a logistic regression (7.1.1) modeling the probability of being homeless
(spending one or more nights in a shelter or on the street in the past six months) as a function
of predictors.

We use the glm() command to fit the logistic regression model.

> logres = glm(homeless ~ female + i1 + substance + sexrisk + indtot,

binomial, data=ds)

> summary(logres)

Call:

glm(formula = homeless ~ female + i1 + substance + sexrisk +

indtot, family = binomial, data = ds)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.75 -1.04 -0.70 1.13 2.03

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.13192 0.63347 -3.37 0.00076

female -0.26170 0.25146 -1.04 0.29800

i1 0.01749 0.00631 2.77 0.00556

substancecocaine -0.50335 0.26453 -1.90 0.05707

substanceheroin -0.44314 0.27030 -1.64 0.10113

sexrisk 0.07251 0.03878 1.87 0.06152

indtot 0.04669 0.01622 2.88 0.00399

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 625.28 on 452 degrees of freedom

Residual deviance: 576.65 on 446 degrees of freedom
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AIC: 590.7

Number of Fisher Scoring iterations: 4

There are a number of useful objects that be generated using the summary() function.

> names(summary(logres))

[1] "call" "terms" "family" "deviance"

[5] "aic" "contrasts" "df.residual" "null.deviance"

[9] "df.null" "iter" "deviance.resid" "coefficients"

[13] "aliased" "dispersion" "df" "cov.unscaled"

[17] "cov.scaled"

> summary(logres)$coefficients

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.1319 0.63347 -3.37 0.000764

female -0.2617 0.25146 -1.04 0.297998

i1 0.0175 0.00631 2.77 0.005563

substancecocaine -0.5033 0.26453 -1.90 0.057068

substanceheroin -0.4431 0.27030 -1.64 0.101128

sexrisk 0.0725 0.03878 1.87 0.061518

indtot 0.0467 0.01622 2.88 0.003993

7.10.2 Poisson regression

In this example we fit a Poisson regression model (7.1.6) for i1, the average number of
drinks per day in the 30 days prior to entering the detox center.

> poisres = glm(i1 ~ female + substance + age, poisson, data=ds)

> summary(poisres)

Call:

glm(formula = i1 ~ female + substance + age, family = poisson,

data = ds)

Deviance Residuals:

Min 1Q Median 3Q Max

-7.57 -3.69 -1.40 1.04 15.99

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.89785 0.05827 49.73 < 2e-16

female -0.17605 0.02802 -6.28 3.3e-10

substancecocaine -0.81715 0.02776 -29.43 < 2e-16

substanceheroin -1.12117 0.03392 -33.06 < 2e-16

age 0.01321 0.00145 9.08 < 2e-16

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 8898.9 on 452 degrees of freedom

Residual deviance: 6713.9 on 448 degrees of freedom
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AIC: 8425

Number of Fisher Scoring iterations: 6

It is always important to check assumptions for models. This is particularly true for Poisson
models, which are quite sensitive to model departures. There is support in the vcd package
for a Pearson’s χ2 goodness-of-fit test.

> library(vcd)

Loading required package: grid

> poisfit = with(ds, goodfit(e2b, "poisson"))

> summary(poisfit)

Goodness-of-fit test for poisson distribution

X^2 df P(> X^2)

Likelihood Ratio 208 10 3.6e-39

The results indicate that the fit is poor (χ2
10 = 208, p < 0.0001); the Poisson model does

not appear to be tenable.

7.10.3 Zero-inflated Poisson regression

A zero-inflated Poisson regression model (7.2.1) might fit better. We’ll allow a different
probability of extra zeros per level of female.

> library(pscl)

> res = zeroinfl(i1 ~ female + substance + age | female, data=ds)

> res

Call:

zeroinfl(formula = i1 ~ female + substance + age | female, data = ds)

Count model coefficients (poisson with log link):

(Intercept) female substancecocaine substanceheroin

3.05781 -0.06797 -0.72466 -0.76086

age

0.00927

Zero-inflation model coefficients (binomial with logit link):

(Intercept) female

-1.979 0.843

Women are more likely to abstain from alcohol than men: they have more than double the
odds of being in the zero-inflation group (p=0.0025), and a smaller Poisson mean among
those in the Poisson distribution (p=0.015). Other significant predictors include substance
and age, though model assumptions for count models should always be carefully verified
[69].
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7.10.4 Negative binomial regression

A negative binomial regression model (7.1.7) might also improve on the Poisson.

> library(MASS)

> nbres = glm.nb(i1 ~ female + substance + age, data=ds)

> summary(nbres)

Call:

glm.nb(formula = i1 ~ female + substance + age, data = ds,

init.theta = 0.810015139, link = log)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.414 -1.032 -0.278 0.241 2.808

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.01693 0.28928 10.43 < 2e-16

female -0.26887 0.12758 -2.11 0.035

substancecocaine -0.82360 0.12904 -6.38 1.7e-10

substanceheroin -1.14879 0.13882 -8.28 < 2e-16

age 0.01072 0.00725 1.48 0.139

(Dispersion parameter for Negative Binomial(0.81) family taken to be 1)

Null deviance: 637.82 on 452 degrees of freedom

Residual deviance: 539.60 on 448 degrees of freedom

AIC: 3428

Number of Fisher Scoring iterations: 1

Theta: 0.8100

Std. Err.: 0.0589

2 x log-likelihood: -3416.3340

7.10.5 Quantile regression

In this section, we fit a quantile regression model (7.3.1) of the number of drinks (i1) as a
function of predictors, modeling the 75th percentile (Q3).

> library(quantreg)

> quantres = rq(i1 ~ female + substance + age, tau=0.75, data=ds)

Warning: Solution may be nonunique

> summary(quantres)

Warning: Solution may be nonunique
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Call: rq(formula = i1 ~ female + substance + age, tau = 0.75, data = ds)

tau: [1] 0.75

Coefficients:

coefficients lower bd upper bd

(Intercept) 29.636 14.150 42.603

female -2.909 -7.116 3.419

substancecocaine -20.091 -29.011 -15.460

substanceheroin -22.636 -28.256 -19.115

age 0.182 -0.153 0.468

> detach(package:quantreg)

Because the quantreg package overrides needed functionality in other packages, we detach()
it after running the rq() function (see A.4.6).

7.10.6 Ordered logistic

To demonstrate an ordinal logit analysis (7.1.4), we first create an ordinal categorical vari-
able from the sexrisk variable, then model this three-level ordinal variable as a function
of cesd and pcs.

> library(MASS)

> ds = mutate(ds, sexriskcat =

as.factor(as.numeric(sexrisk >= 2) +

as.numeric(sexrisk >= 6)))

> ologit = polr(sexriskcat ~ cesd + pcs, data=ds)

> summary(ologit)

Re-fitting to get Hessian

Call:

polr(formula = sexriskcat ~ cesd + pcs, data = ds)

Coefficients:

Value Std. Error t value

cesd -3.72e-05 0.00761 -0.00489

pcs 5.23e-03 0.00876 0.59649

Intercepts:

Value Std. Error t value

0|1 -1.669 0.562 -2.971

1|2 0.944 0.556 1.698

Residual Deviance: 871.76

AIC: 879.76

7.10.7 Generalized logistic model

We can fit a generalized logistic (7.1.5) model for the categorized sexrisk variable.
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> library(VGAM)

> mlogit = vglm(sexriskcat ~ cesd + pcs,

family=multinomial(refLevel=1), data=ds)

> summary(mlogit)

Call:

vglm(formula = sexriskcat ~ cesd + pcs, family = multinomial(refLevel = 1),

data = ds)

Pearson residuals:

Min 1Q Median 3Q Max

log(mu[,2]/mu[,1]) -2 -0.6 0.8 0.8 1

log(mu[,3]/mu[,1]) -2 -0.4 -0.4 1.3 1

Coefficients:

Estimate Std. Error z value

(Intercept):1 1.478 0.89 1.7

(Intercept):2 0.686 0.95 0.7

cesd:1 -0.013 0.01 -1.1

cesd:2 -0.007 0.01 -0.5

pcs:1 0.009 0.01 0.6

pcs:2 0.010 0.01 0.7

Number of linear predictors: 2

Names of linear predictors: log(mu[,2]/mu[,1]), log(mu[,3]/mu[,1])

Dispersion Parameter for multinomial family: 1

Residual deviance: 870 on 900 degrees of freedom

Log-likelihood: -435 on 900 degrees of freedom

Number of iterations: 5

> detach(package:VGAM)

Because the VGAM package overrides needed functionality in other packages, we detach() it
after running the vglm() function (see A.4.6).

7.10.8 Generalized additive model

We can fit a generalized additive model (7.2.3), which we will later plot.

> library(gam)

Loaded gam 1.09.1

> gamreg= gam(cesd ~ female + lo(pcs) + substance, data=ds)
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> summary(gamreg)

Call: gam(formula = cesd ~ female + lo(pcs) + substance, data = ds)

Deviance Residuals:

Min 1Q Median 3Q Max

-29.158 -8.136 0.811 8.226 29.250

(Dispersion Parameter for gaussian family taken to be 135)

Null Deviance: 70788 on 452 degrees of freedom

Residual Deviance: 60288 on 445 degrees of freedom

AIC: 3519

Number of Local Scoring Iterations: 2

Anova for Parametric Effects

Df Sum Sq Mean Sq F value Pr(>F)

female 1 2202 2202 16.2 6.5e-05

lo(pcs) 1 5099 5099 37.6 1.9e-09

substance 2 1437 718 5.3 0.0053

Residuals 445 60288 135

Anova for Nonparametric Effects

Npar Df Npar F Pr(F)

(Intercept)

female

lo(pcs) 3.1 3.77 0.01

substance

> coefficients(gamreg)

(Intercept) female lo(pcs) substancecocaine

46.524 4.339 -0.277 -3.956

substanceheroin

-0.205

The gam package provides a plot() method to display the results. The estimated smoothing
function is provided in Figure 7.1.

7.10.9 Reshaping a dataset for longitudinal regression

A wide (multivariate) dataset can be reshaped (2.3.7) into a tall (longitudinal) dataset.
Here we create time-varying variables (with a suffix tv) as well as keep baseline values
(without the suffix).

> long = reshape(ds, idvar="id",

varying=list(c("cesd1", "cesd2", "cesd3", "cesd4"),

c("mcs1", "mcs2", "mcs3", "mcs4"),

c("i11", "i12", "i13", "i14"),

c("g1b1", "g1b2", "g1b3", "g1b4"),

c("pcs1", "pcs2", "pcs3", "pcs4")),

v.names=c("cesdtv", "mcstv", "i1tv", "g1btv", "pcstv"),

timevar="time", times=1:4, direction="long")



i
i

“K23166” — 2015/1/28 — 9:35 — page 111 — #137 i
i

i
i

i
i

7.10. EXAMPLES 111

> plot(gamreg, terms=c("lo(pcs)"), se=2, lwd=3)

> abline(h=0)
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Figure 7.1: Scatterplots of smoothed association of physical component score (PCS) with
CESD

While more complicated in this example (because of the need to keep the baseline values as
non-time-varying variables), the dplyr and tidyr packages can also be used to accomplish
the same task.

> library(dplyr); library(tidyr); library(stringr)

> long = gather(ds, measurement, value, cesd1, cesd2, cesd3, cesd4,

pcs1, pcs2, pcs3, pcs4, mcs1, mcs2, mcs3, mcs4,

i11, i12, i13, i14, g1b1, g1b2, g1b3, g1b4) %>%

mutate(measurement = sub("(cesd|pcs|mcs|i1|g1b)([1234])",

"\\1tv\\2", measurement)) %>%

select(measurement, value, id, cesd, homeless, female, treat) %>%

separate(measurement, into=c("measurement", "time"), sep=-2) %>%

spread(measurement, value) %>%

mutate(time = as.numeric(time)) %>%

arrange(id, time)

We begin by gathering the variables by time, denote measurement as the new variable name,
and value as the value. The mutate() function is used to modify the variable name (to
indicate that it is time-varying). This requires use of a somewhat more complicated regular
expression (Section 2.2.12). The select() function is called to bring in time-stationary
variables before the separate() function creates a time indicator. The spread() function
puts the variables into a single row per id and observation, mutate() turns the time variable
into an integer, and arrange() sorts by id and time. These functions use the pipe operator
to connect the operations (see A.5.3).

To check the results, we can compare the two datasets for the first subject (using the
filter() function in the dplyr package).
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> ds %>%

filter(id==1) %>%

select(id, pcs, pcs1, pcs2, pcs3, pcs4, mcs1, female, treat)

id pcs pcs1 pcs2 pcs3 pcs4 mcs1 female treat

1 1 58.4 54.2 NA 52.1 52.3 52.2 0 1

> long %>%

filter(id==1) %>%

select(id, time, pcs, pcstv, mcstv, female, treat)

id time pcs pcstv mcstv female treat

1 1 1 58.4 54.2 52.2 0 1

2 1 2 58.4 NA NA 0 1

3 1 3 58.4 52.1 56.1 0 1

4 1 4 58.4 52.3 58.0 0 1

Now that the dataset has been created, we can display the distribution of suicidal ideation
over time.

> library(mosaic)

> tally(~ g1btv + time, data=long)

time

g1btv 1 2 3 4

0 219 187 225 245

1 27 22 22 21

<NA> 207 244 206 187

7.10.10 Linear model for correlated data

Here we fit a general linear model for correlated data (modeling the covariance matrix
directly, 7.4.1).

> library(nlme)

> glsres = gls(cesdtv ~ treat + as.factor(time),

correlation=corSymm(form = ~ time | id),

weights=varIdent(form = ~ 1 | time),

na.action=na.omit, data=long)

> summary(glsres)

Generalized least squares fit by REML

Model: cesdtv ~ treat + as.factor(time)

Data: long

AIC BIC logLik

7550 7623 -3760

Correlation Structure: General

Formula: ~time | id

Parameter estimate(s):

Correlation:

1 2 3

2 0.584
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3 0.639 0.743

4 0.474 0.585 0.735

Variance function:

Structure: Different standard deviations per stratum

Formula: ~1 | time

Parameter estimates:

1 3 4 2

1.000 0.996 0.996 1.033

Coefficients:

Value Std.Error t-value p-value

(Intercept) 23.66 1.098 21.55 0.000

treat -0.48 1.320 -0.36 0.716

as.factor(time)2 0.28 0.941 0.30 0.763

as.factor(time)3 -0.66 0.841 -0.78 0.433

as.factor(time)4 -2.41 0.959 -2.52 0.012

Correlation:

(Intr) treat as.()2 as.()3

treat -0.627

as.factor(time)2 -0.395 0.016

as.factor(time)3 -0.433 0.014 0.630

as.factor(time)4 -0.464 0.002 0.536 0.708

Standardized residuals:

Min Q1 Med Q3 Max

-1.643 -0.874 -0.115 0.708 2.582

Residual standard error: 14.4

Degrees of freedom: 969 total; 964 residual

> anova(glsres)

Denom. DF: 964

numDF F-value p-value

(Intercept) 1 1168 <.0001

treat 1 0 0.6887

as.factor(time) 3 4 0.0145

A set of side-by-side boxplots (8.2.2) by time can be generated using the following commands
(see Figure 7.2).

7.10.11 Linear mixed (random slope) model

Here we fix a mixed-effects, or random slope model (7.4.3). In this example, we specify a
categorical fixed effect of time but a random slope across time treated continuously. We do
this by making a copy of the time variable in a new dataset. First we create an as.factor()

version of time. As an alternative, we could nest the call to as.factor() within the call to
lme().
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> library(lattice)

> bwplot(cesdtv ~ as.factor(treat)| time, xlab="TREAT",

strip=strip.custom(strip.names=TRUE, strip.levels=TRUE),

ylab="CESD", layout=c(4,1), col="black", data=long,

par.settings=list(box.rectangle=list(col="black"),

box.dot=list(col="black"), box.umbrella=list(col="black")))
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Figure 7.2: Side-by-side box plots of CESD by treatment and time

> long = transform(long, tf=as.factor(time))

> library(nlme)

> lmeslope = lme(fixed=cesdtv ~ treat + tf,

random= ~ time | id, na.action=na.omit,

data=long)

> print(lmeslope)

Linear mixed-effects model fit by REML

Data: long

Log-restricted-likelihood: -3772

Fixed: cesdtv ~ treat + tf

(Intercept) treat tf2 tf3 tf4

23.8843 -0.4353 -0.0615 -1.0142 -2.5776

Random effects:

Formula: ~time | id

Structure: General positive-definite, Log-Cholesky parametrization

StdDev Corr

(Intercept) 13.73 (Intr)

time 3.03 -0.527
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Residual 7.85

Number of Observations: 969

Number of Groups: 383

> anova(lmeslope)

numDF denDF F-value p-value

(Intercept) 1 583 1163 <.0001

treat 1 381 0 0.7257

tf 3 583 3 0.0189

We use the random.effects and predict() functions to find the predicted random effects
and predicted values, respectively.

> reffs = random.effects(lmeslope)

> reffs[1,]

(Intercept) time

1 -13.5 -0.024

> predval = predict(lmeslope, newdata=long, level=0:1)

> predval[predval$id==1,]

id predict.fixed predict.id

1.1 1 23.4 9.94

1.2 1 23.4 9.86

1.3 1 22.4 8.88

1.4 1 20.9 7.30

> vc = VarCorr(lmeslope)

> summary(vc)

Variance StdDev Corr

9.17:1 3.03:1 :1

61.58:1 7.85:1 -0.527:1

188.43:1 13.73:1 (Intr):1

The VarCorr() function calculates the variances, standard deviations, and correlations
between the random effects terms, as well as the within-group error variance and standard
deviation.

7.10.12 Generalized estimating equations

We fit a GEE model (7.4.7), using an exchangeable working correlation matrix and empirical
variance [99].

> library(gee)

> sortlong = long[order(long$id),]

> geeres = gee(formula = g1btv ~ treat + time, id=id, data=sortlong,

family=binomial, na.action=na.omit, corstr="exchangeable")
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Beginning Cgee S-function, @(#) geeformula.q 4.13 98/01/27

running glm to get initial regression estimate

(Intercept) treat time

-1.9649 0.0443 -0.1256

In addition to returning an object with results, the gee() function displays the coefficients
from a model assuming that all observations are uncorrelated.

> coef(geeres)

(Intercept) treat time

-1.85169 -0.00874 -0.14593

> sqrt(diag(geeres$robust.variance))

(Intercept) treat time

0.2723 0.2683 0.0872

> geeres$working.correlation

[,1] [,2] [,3] [,4]

[1,] 1.000 0.299 0.299 0.299

[2,] 0.299 1.000 0.299 0.299

[3,] 0.299 0.299 1.000 0.299

[4,] 0.299 0.299 0.299 1.000

7.10.13 Generalized linear mixed model

Here we fit a GLMM (7.4.6), predicting recent suicidal ideation as a function of treatment
and time. Each subject is assumed to have their own random intercept.

> library(lme4)

> glmmres = glmer(g1btv ~ treat + time + (1|id),

family=binomial(link="logit"), data=long)

> summary(glmmres)

Generalized linear mixed model fit by maximum likelihood (Laplace

Approximation) [glmerMod]

Family: binomial ( logit )

Formula: g1btv ~ treat + time + (1 | id)

Data: long

AIC BIC logLik deviance df.resid

509 528 -250 501 964

Scaled residuals:

Min 1Q Median 3Q Max

-2.0990 -0.0251 -0.0183 -0.0152 2.4879

Random effects:

Groups Name Variance Std.Dev.

id (Intercept) 61.2 7.82

Number of obs: 968, groups: id, 383
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Fixed effects:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -6.8699 0.8151 -8.43 <2e-16

treat -0.0537 0.6986 -0.08 0.939

time -0.3556 0.1724 -2.06 0.039

Correlation of Fixed Effects:

(Intr) treat

treat -0.431

time -0.362 0.002

7.10.14 Cox proportional hazards model

Here we fit a proportional hazards model (7.5.1) for the time to linkage to primary care,
with randomization group, age, gender, and CESD as predictors.

We request the Efron estimator (default), which provides a better approximation in the
case of many ties.

> library(survival)

> survobj = coxph(Surv(dayslink, linkstatus) ~ treat + age + female +

cesd, method="efron", data=ds)

> print(survobj)

Call:

coxph(formula = Surv(dayslink, linkstatus) ~ treat + age + female +

cesd, data = ds, method = "efron")

coef exp(coef) se(coef) z p

treat 1.65509 5.234 0.19324 8.565 0.000

age 0.02474 1.025 0.01032 2.397 0.017

female -0.32569 0.722 0.20382 -1.598 0.110

cesd 0.00237 1.002 0.00638 0.372 0.710

Likelihood ratio test=95 on 4 df, p=0 n= 431, number of events= 163

(22 observations deleted due to missingness)

7.10.15 Cronbach’s α

We calculate Cronbach’s α (7.6.1) for the 20 items comprising the CESD (Center for Epi-
demiologic Studies–Depression scale).

> library(multilevel)

> with(ds, cronbach(cbind(f1a, f1b, f1c, f1d, f1e, f1f, f1g, f1h,

f1i, f1j, f1k, f1l, f1m, f1n, f1o, f1p, f1q, f1r,

f1s, f1t)))

$Alpha

[1] 0.761
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$N

[1] 446

The observed α of 0.76 from the HELP study is relatively low: this may be due to ceiling
effects for this sample of subjects recruited in a detoxification unit.

7.10.16 Factor analysis

Here we consider a maximum likelihood factor analysis (7.6.2) with varimax rotation for
the individual items of the CESD (Center for Epidemiologic Studies–Depression) scale. The
individual questions can be found in Table B.2. We arbitrarily force three factors. Before
beginning, we exclude observations with missing values.

> res = with(ds, factanal(~ f1a + f1b + f1c + f1d + f1e + f1f + f1g + f1h +

f1i + f1j + f1k + f1l + f1m + f1n + f1o + f1p + f1q + f1r +

f1s + f1t, factors=3, rotation="varimax", na.action=na.omit,

scores="regression"))

> print(res, cutoff=0.45, sort=TRUE)

Call:

factanal(x = ~f1a + f1b + f1c + f1d + f1e + f1f + f1g + f1h +

f1i + f1j + f1k + f1l + f1m + f1n + f1o + f1p + f1q + f1r +

f1s + f1t, factors = 3, na.action = na.omit, scores = "regression",

rotation = "varimax")

Uniquenesses:

f1a f1b f1c f1d f1e f1f f1g f1h f1i f1j f1k f1l

0.745 0.768 0.484 0.707 0.701 0.421 0.765 0.601 0.616 0.625 0.705 0.514

f1m f1n f1o f1p f1q f1r f1s f1t

0.882 0.623 0.644 0.407 0.713 0.467 0.273 0.527

Loadings:

Factor1 Factor2 Factor3

f1c 0.618

f1e 0.518

f1f 0.666

f1k 0.523

f1r 0.614

f1h -0.621

f1l -0.640

f1p -0.755

f1o 0.532

f1s 0.802

f1a

f1b

f1d -0.454

f1g 0.471

f1i 0.463

f1j 0.495

f1m

f1n 0.485
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f1q 0.457

f1t 0.489

Factor1 Factor2 Factor3

SS loadings 3.847 2.329 1.636

Proportion Var 0.192 0.116 0.082

Cumulative Var 0.192 0.309 0.391

Test of the hypothesis that 3 factors are sufficient.

The chi square statistic is 289 on 133 degrees of freedom.

The p-value is 1.56e-13

Next, we interpret the item scores from the output. We see that the second factor loads on
the reverse coded items (H, L, P, and D, see 2.6.3). Factor 3 loads on items O and S (people
were unfriendly and I felt that people dislike me).

7.10.17 Recursive partitioning

In this example, we use recursive partitioning (7.6.3) to classify subjects based on their
homeless status, using gender, drinking, primary substance, RAB sexrisk, MCS, and PCS
as predictors.

> library(rpart)

> ds = transform(ds, sub = as.factor(substance))

> homeless.rpart = rpart(homeless ~ female + i1 + sub + sexrisk + mcs +

pcs, method="class", data=ds)

> printcp(homeless.rpart)

Classification tree:

rpart(formula = homeless ~ female + i1 + sub + sexrisk + mcs +

pcs, data = ds, method = "class")

Variables actually used in tree construction:

[1] female i1 mcs pcs sexrisk

Root node error: 209/453 = 0.5

n= 453

CP nsplit rel error xerror xstd

1 0.10 0 1.0 1.0 0.05

2 0.05 1 0.9 1.0 0.05

3 0.03 4 0.8 1.0 0.05

4 0.02 5 0.7 1.0 0.05

5 0.01 7 0.7 0.9 0.05

6 0.01 9 0.7 0.9 0.05

> library(partykit)

> plot(as.party(homeless.rpart))



i
i

“K23166” — 2015/1/28 — 9:35 — page 120 — #146 i
i

i
i

i
i

120 CHAPTER 7. REGRESSION GENERALIZATIONS AND MODELING

Figure 7.3: Recursive partitioning tree

Figure 7.3 displays the tree. To help interpret this model, we can calculate the empirical
proportion of subjects that were homeless among those with i1 < 3.5 by pcs less than 31.94
(this corresponds to Nodes 18 and 19 in the figure).

> home = with(ds, homeless[i1<3.5])

> pcslow = with(ds, pcs[i1<3.5]<=31.94)

> table(home, pcslow)

pcslow

home FALSE TRUE

0 89 2

1 31 5

> rm(home, pcslow)

Among this subset, 71.4% (5 of 7) of those with low PCS scores are homeless, while only
25.8% (31 of 120) of those with PCS scores above the threshold are homeless.

7.10.18 Linear discriminant analysis

We use linear discriminant analysis (7.6.4) to distinguish between homeless and nonhomeless
subjects.
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> library(MASS)

> ngroups = length(unique(ds$homeless))

> ldamodel = lda(homeless ~ age + cesd + mcs + pcs,

prior=rep(1/ngroups, ngroups), data=ds)

> print(ldamodel)

Call:

lda(homeless ~ age + cesd + mcs + pcs, data = ds, prior = rep(1/ngroups,

ngroups))

Prior probabilities of groups:

0 1

0.5 0.5

Group means:

age cesd mcs pcs

0 35.0 31.8 32.5 49.0

1 36.4 34.0 30.7 46.9

Coefficients of linear discriminants:

LD1

age 0.0702

cesd 0.0269

mcs -0.0195

pcs -0.0426

The results indicate that homeless subjects tend to be older, have higher CESD scores,
and lower MCS and PCS scores. Figure 7.4 displays the distribution of linear discriminant
function values by homeless status; the discrimination ability appears to be slight. The
distribution of the linear discriminant function values is shifted to the right for the homeless
subjects, though there is considerable overlap between the groups. Details on the display
of lda objects can be found using help(plot.lda).

7.10.19 Hierarchical clustering

In this example, we use hierarchical clustering (7.6.6) to group continuous variables from
the HELP dataset.

> cormat = with(ds, cor(cbind(mcs, pcs, cesd, i1, sexrisk),

use="pairwise.complete.obs"))

> hclustobj = hclust(dist(cormat))

Figure 7.5 displays the clustering. Not surprisingly, the MCS and PCS variables cluster to-
gether, since they both utilize similar questions and structures. The CESD and I1 variables
cluster together, while there is a separate node for SEXRISK.
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> plot(ldamodel)
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Figure 7.4: Graphical display of assignment probabilities or score functions from linear
discriminant analysis by actual homeless status

> plot(hclustobj)
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Figure 7.5: Results from hierarchical clustering
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Chapter 8

A graphical compendium

This chapter provides a compendium of graphical displays. More details about configuration
options can be found in Chapter 9. Examples appear throughout the book.

Producing graphics for data analysis is relatively simple. Producing graphics for pub-
lication is more complex and typically requires a great deal of time to achieve the desired
appearance. Our intent is to provide sufficient guidance so that most effects can be achieved,
but further investigation of the documentation and experimentation will doubtless be nec-
essary for specific needs. There are a huge number of options: we aim to provide a roadmap
as well as examples to illustrate the power of the package.

While many graphics can be generated using a single command, within the base graphics
system, figures are often built up element by element. For example, an empty box can
be created with a specific set of x and y axis labels and tick marks, then points can be
added with different printing characters. Text annotations can then be added, along with
legends and other additional information (see 6.6.1). The CRAN graphics task view (http:
//cran.r-project.org/web/views) provides a comprehensive listing of functionality to
create graphics.

A somewhat intimidating number of options are available, some of which can be specified
using the par() graphics parameters (see 9.2), while others can be given as options to
plotting commands (such as plot() or lines()).

A number of graphics devices are available that support different platforms and for-
mats. The default varies by platform (Windows() under Windows, X11() under Linux,
and quartz() under modern Mac OS X distributions). A device is created automatically
when a plotting command is run, or a device can be started in advance to create a file in a
particular format (e.g., the pdf() device).

A series of powerful add-on packages to create sophisticated graphics is available. These
include the grid package [118], the lattice package [147], and the ggplot2 package [188].
We will focus primarily on base graphics, but include examples of the lattice and ggplot2

systems.
Running example() for a specified function is often helpful for commands shown in this

chapter, as is demo(graphics).

8.1 Univariate plots

8.1.1 Barplot

While not typically an efficient graphical display, there are times when a barplot is appro-
priate to display counts by groups.

123
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barplot(table(x1, x2), legend=c("grp1", "grp2"), xlab="X2")

or
library(lattice)

barchart(table(x1, x2, x3))

Note: The input for the barplot() function is given as a vector or matrix of bar heights,
while the barchart() function within the lattice package supports three-dimensional
tables (see example(barplot) and example(barchart)). A similar dotchart() function
produces a horizontal slot for each group with a dot reflecting the frequency.

8.1.2 Stem-and-leaf plot

Example: 12.4.4

Stem-and-leaf plots are text-based graphics that are particularly useful to describe the
distribution of small datasets. They are often used for teaching purposes.

stem(x)

Note: The scale option can be used to increase or decrease the number of stems (default
value is 1).

8.1.3 Dotplot

Dotplots (also called Wilkinson dotplots) are a simple introductory graphic useful for pre-
senting numerical data when the dataset is small [196]. They are often used for teaching
purposes, as they help to identify clusters and gaps while conserving numerical information
(in the same manner as a stem-and-leaf plot).

library(mosaic)

dotPlot(x)

8.1.4 Histogram

Example: 5.7.1

The example in 5.7.1 demonstrates how to annotate a histogram with an overlaid normal
or kernel density estimate. Similar estimates are available for all other densities supported
(see Table 3.1).

hist(x)

Note: The default behavior for a histogram is to display frequencies on the vertical axis;
probability densities can be displayed using the freq=FALSE option. The default title is
given by paste("Histogram of" , x) where x is the name of the variable being plotted;
this can be changed with the main option. The histogram() function in the lattice

package provides an alternative implementation.

8.1.5 Density plot

A density plot displays a nonparametric estimate of the empirical probability density func-
tion (see also 8.2.3, overlaid density plots, and 8.3.5, bivariate density plots).
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plot(density(x))

or
library(lattice)

densityplot(~ x2, data=ds)

Note: The help page for density() provides guidance for specifying the default window
width and other options for densityplot().

8.1.6 Empirical cumulative probability density plot

plot(ecdf(x))

Note: The knots() function can be used to determine when the empirical density function
jumps.

8.1.7 Boxplot
Examples: 6.6.6 and 7.10.10

See also 8.2.2 (side-by-side boxplots).

boxplot(x)

Note: The boxplot() function allows sideways orientation using the horizontal=TRUE

option. The lattice package provides an alternative implementation using the bwplot()

function.

8.1.8 Violin plots

Violin plots combine a boxplot and (doubled) kernel density plot.

library(vioplot)

vioplot(x2[x1==0], x2[x1==1])

Note: Here we assume that x1 has two levels (0 and 1).

8.2 Univariate plots by grouping variable

8.2.1 Side-by-side histograms

library(lattice)

histogram(~ x2 | x1)

8.2.2 Side-by-side boxplots

See also 8.1.7 (boxplots)

boxplot(y[x==0], y[x==1], y[x==2], names=c("X=0", "X=1", "X=2"))

or
library(lattice)

bwplot(y ~ x)
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Note: The boxplot() function can be given multiple arguments of vectors to display or can
use a formula interface (which will generate a boxplot for each level of the variable x). A
number of useful options are available, including varwidth to draw the boxplots with widths
proportional to the square root of the number of observations in that group, horizontal
to reverse the default orientation, notch to display notched boxplots, and names to specify
a vector of labels for the groups. Boxplots can also be created using the bwplot() function
in the lattice package.

8.2.3 Overlaid density plots

See also 8.1.5 (density plots) and 8.3.5 (bivariate density).

library(lattice)

densityplot(~ x2, groups=x1, auto.key=TRUE)

Note: This code shows the density for a single variable plotted for each level of a second
variable.

8.2.4 Bar chart with error bars

While the graphical display with a bar, the height of which indicates the mean and vertical
lines indicating the standard error is quite common, many find these displays troubling. We
concur with graphics authorities such as Edward Tufte [172], who discourage their use, as
does Frank Harrell’s group at Vanderbilt (see biostat.mc.vanderbilt.edu/wiki/Main/

StatisticalPolicy).

library(lattice)

library(grid)

dynamitePlot = function(height, error,

names=as.character(1:length(height)),

significance=NA, ylim=c(0, maxLim), ...)

{

if (missing(error)) { error = 0 }

maxLim = 1.2 * max(mapply(sum, height, error))

mError = min(c(error, na.rm=TRUE))

barchart(height ~ names, ylim=ylim, panel=function(x,y,...) {

panel.barchart(x, y, ...)

grid.polyline(c(x,x), c(y, y+error), id=rep(x,2),

default.units=’native’,

arrow=arrow(angle=45, length=unit(mError, ’native’)))

grid.polyline(c(x,x), c(y, y-error), id=rep(x,2),

default.units=’native’,

arrow=arrow(angle=45, length=unit(mError, ’native’)))

grid.text(x=x, y=y + error + .05*maxLim, label=significance,

default.units=’native’)

}, ...)

}

Note: This graph is built up in parts using customized calls to the barchart() function.
Much of the code (due to Randall Pruim) involves setting up the appropriate axis limits,
as a function of the heights and error ranges, then drawing the lines adding the text using
calls to grid.polyline() and grid.text(). The ... option to the function passes any
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additional arguments to the panel.barchart() function, to allow further customization
(see the book by Sarkar [147]). Once defined, the function can be run using the following
syntax.

Values = c(1, 2, 5, 4)

Errors = c(0.25, 0.5, 0.33, 0.12)

Names = paste("Trial", 1:4)

Sig = c("a", "a", "b", "b")

dynamitePlot(Values, Errors, names=Names, significance=Sig)

The bargraph.CI() function within the sciplot package provides similar functionality.

8.3 Bivariate plots

8.3.1 Scatterplot
Example: 6.6.1

See 8.3.2 (scatterplot with multiple y values) and 8.4.1 (matrix of scatterplots).

plot(x, y)

Note: Many objects have default plotting methods (e.g., for a linear model object, plot.lm()
is called). More information can be found using methods(plot). Specifying type="n"

causes nothing to be plotted (but sets up axes and draws boxes, see 3.4.1). This technique
is often useful if a plot is built up part by part.

8.3.2 Scatterplot with multiple y values
Example: 8.7.1

See also 8.4.1 (matrix of scatterplots).

plot(x, y1, pch=pchval1) # create 1 plot with single y axis

points(x, y2, pch=pchval2)

...

points(x, yk, pch=pchvalk)
or
# create 1 plot with 2 separate y axes

addsecondy = function(x, y, origy, yname="Y2") {

prevlimits = range(origy)

axislimits = range(y)

axis(side=4, at=prevlimits[1] + diff(prevlimits)*c(0:5)/5,

labels=round(axislimits[1] + diff(axislimits)*c(0:5)/5, 1))

mtext(yname, side=4)

newy = (y-axislimits[1])/(diff(axislimits)/diff(prevlimits)) +

prevlimits[1]

points(x, newy, pch=2)

}

plottwoy = function(x, y1, y2, xname="X", y1name="Y1", y2name="Y2")

{

plot(x, y1, ylab=y1name, xlab=xname)

addsecondy(x, y2, y1, yname=y2name)

}

plottwoy(x, y1, y2, y1name="Y1", y2name="Y2")
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Note: To create a figure with a single y axis value, it is straightforward to repeatedly call
points() or other functions to add elements.

In the second example, two functions addsecondy() and plottwoy() are defined to add
points on a new scale and an appropriate axis on the right. This involves rescaling and
labeling the second axis (side=4) with 6 tick marks, as well as rescaling the y2 variable.

8.3.3 Scatterplot with binning

When there are many observations, scatterplots can become difficult to read because many
plot symbols will obscure one another. One solution to this problem is to use binned
scatterplots. Other options are transparent plot symbols that display as darker areas when
overlaid (8.3.4) and bivariate density plotting (8.3.5).

library(hexbin)

plot(hexbin(x, y))

8.3.4 Transparent overplotting scatterplot

When there are many observations, scatterplots can become difficult to read because many
plot symbols will obscure one another. One solution to this problem is to use transpar-
ent plot symbols that display as darker areas when overlaid. Other options are binned
scatterplots (8.3.3) and bivariate density plotting (8.3.5).

plot(x1, x2, pch=19, col="#00000022", cex=0.1)

8.3.5 Bivariate density plot

When there are many observations, scatterplots can become difficult to read because many
plot symbols will obscure one another. One solution to this problem is bivariate density
plots, which also have other uses. Other options are binned scatterplots (8.3.3) and trans-
parent overplotting (8.3.4).

smoothScatter(x, y)

or
library(GenKern)

# bivariate density

op = KernSur(x, y, na.rm=TRUE)

image(op$xords, op$yords, op$zden, col=gray.colors(100), axes=TRUE,

xlab="x var", ylab="y var")

Note: The smoothScatter() function provides a simple interface for a bivariate density
plot. The default smoother for KernSur() can be specified using the kernel option (possible
values include the default Gaussian, rectangular, triangular, Epanechnikov, biweight, cosine,
or optcosine). Bivariate density support is provided with the GenKern package. Any of the
three-dimensional plotting routines (see 8.4.4) can be used to visualize the results.
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8.3.6 Scatterplot with marginal histograms

Example: 8.7.3

scatterhist = function(x, y, xlab="x label", ylab="y label"){

zones=matrix(c(2,0,1,3), ncol=2, byrow=TRUE)

layout(zones, widths=c(4/5,1/5), heights=c(1/5,4/5))

xhist = hist(x, plot=FALSE)

yhist = hist(y, plot=FALSE)

top = max(c(xhist$counts, yhist$counts))

par(mar=c(3,3,1,1))

plot(x,y)

par(mar=c(0,3,1,1))

barplot(xhist$counts, axes=FALSE, ylim=c(0, top), space=0)

par(mar=c(3,0,1,1))

barplot(yhist$counts, axes=FALSE, xlim=c(0, top), space=0, horiz=TRUE)

par(oma=c(3,3,0,0))

mtext(xlab, side=1, line=1, outer=TRUE, adj=0,

at=.8 * (mean(x) - min(x))/(max(x)-min(x)))

mtext(ylab, side=2, line=1, outer=TRUE, adj=0,

at=(.8 * (mean(y) - min(y))/(max(y) - min(y))))

}

scatterhist(x, y)

Note: In this entry we demonstrate how to build a more complicated figure in pieces using
base graphics. The layout() function splits the graphics region into four non-equal parts,
then individual plotting functions are called.

8.4 Multivariate plots

8.4.1 Matrix of scatterplots

Example: 8.7.6

pairs(data.frame(x1, ..., xk))

Note: The pairs() function is quite flexible, since it calls user-specified functions to deter-
mine what to display on the lower triangle, diagonal, and upper triangle (examples(pairs)
illustrate its capabilities). The ggpairs() function in the GGally package can be used to
create a pairs plot with both continuous and categorical variables.

8.4.2 Conditioning plot

A conditioning plot is used to display a scatter plot for each level of one or two classification
variables.

Example: 8.7.2

coplot(y ~ x1 | x2*x3)

Note: The coplot() function displays plots of y and x1, stratified by x2 and x3. All
variables may be either numeric or factors.
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8.4.3 Contour plots

A contour plot shows the Cartesian plain with similar valued points linked by lines. The
most familiar versions of such plots may be contour maps showing lines of constant elevations
that are very useful for hiking.

contour(x, y, z)

or
filled.contour(x, y, z)

Note: The contour() function displays a standard contour plot. The filled.contour()

function creates a contour plot with colored areas between the contours.

8.4.4 3-D plots

Perspective or surface plots and needle plots can be used to visualize data in three di-
mensions. These are particularly useful when a response is observed over a grid of two-
dimensional values.

persp(x, y, z)

image(x, y, z)

library(scatterplot3d)

scatterplot3d(x, y, z)

Note: The values provided for x and y must be in ascending order.

8.5 Special-purpose plots

8.5.1 Choropleth maps
Example: 12.3.3

library(ggmap)

mymap = map_data(’state’) # need to add variable to plot

p0 = ggplot(map_data, aes(x=x, y=y, group=z)) +

geom_polygon(aes(fill = cut_number(z, 5))) +

geom_path(colour = ’gray’, linestyle = 2) +

scale_fill_brewer(palette = ’PuRd’) +

coord_map();

plot(p0)

Note: More examples of maps can be found in the ggmap package documentation.

8.5.2 Interaction plots
Example: 6.6.6

Interaction plots are used to display means by two variables (as in a two-way analysis of
variance, 6.1.9).

interaction.plot(x1, x2, y)

Note: The default statistic to compute is the mean; other options can be specified using the
fun option.
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8.5.3 Plots for categorical data

A variety of less-traditional plots can be used to graphically represent categorical data.
While these tend to have a low data-to-ink ratio, they can be useful in figures with repeated
multiples [171].

mosaicplot(table(x, y, z))

assocplot(table(x, y))

Note: The mosaicplot() function provides a graphical representation of a two-dimensional
or higher contingency table, with the area of each box representing the number of obser-
vations in that cell. The assocplot() function can be used to display the deviations from
independence for a two-dimensional contingency table. Positive deviations of observed mi-
nus expected counts are above the line and colored black, while negative deviations are
below the line and colored red. Tables can be included in graphics using the gridExtra

packages (see 5.7.3).

8.5.4 Circular plot

Circular plots are used to analyze data that wraps (e.g., directions expressed as angles, time
of day on a 24-hour clock) [39, 82].

library(circular)

plot.circular(x, stack=TRUE, bins=50)

8.5.5 Plot an arbitrary function

Example: 10.1.6

curve(expr, from=start, to=stop, n=number)

or
x = seq(from=start, to=stop, by=step)

y = expr(x)

plot(x, y)

Note: The curve() function can be used to plot an arbitrary function denoted by expr,
with n values of x between start and stop (see 9.1.5). This can also be built up in parts
by use of the seq() function. The plotFun() function in the mosaic package can be used
to plot regression models or other functions generated using makeFun().

8.5.6 Normal quantile–quantile plot

Example: 6.6.4

Quantile–quantile plots are a commonly used graphical technique to assess whether a uni-
variate sample of random variables is consistent with a Gaussian (normal) distribution.

qqnorm(x)

qqline(x)

Note: The qqline() function adds a straight line that goes through the first and third
quartiles.
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8.5.7 Receiver operating characteristic (ROC) curve

Example: 8.7.5

See also 5.2.2 (diagnostic agreement) and 7.1.1 (logistic regression).

Receiver operating characteristic curves can be used to help determine the optimal cut-
score to predict a dichotomous measure. This is particularly useful in assessing diagnostic
accuracy in terms of sensitivity (the probability of detecting the disorder if it is present),
specificity (the probability that a disorder is not detected if it is not present), and the area
under the curve (AUC). The variable x represents a predictor (e.g., individual scores) and
y a dichotomous outcome. There is a close connection between the idea of the ROC curve
and goodness of fit for logistic regression, where the latter allows multiple predictors to be
used. Support is provided within the ROCR package [160].

library(ROCR)

pred = prediction(x, y)

perf = performance(pred, "tpr", "fpr")

plot(perf)

Note: The area AUC can be calculated by specifying "auc" as an argument when calling
the performance() function.

8.5.8 Plot confidence intervals for the mean

pred.w.clim = predict(lm(y ~ x), interval="confidence")

matplot(x, pred.w.clim, lty=c(1, 2, 2), type="l", ylab="predicted y")
or
library(mosaic)

xyplot(y ~ x, panel=panel.lmbands)

Note: The first entry produces fit and confidence limits at the original observations in the
original order. If the observations aren’t sorted relative to the explanatory variable x, the
resulting plot will be a jumble. The matplot() function is used to generate lines, with a
solid line (lty=1) for predicted values and dashed line (lty=2) for the confidence bounds.
The panel.lmbands() function in the mosaic package can also be used to plot these values.

8.5.9 Plot prediction limits from a simple linear regression

pred.w.plim = predict(lm(y ~ x), interval="prediction")

matplot(x, pred.w.plim, lty=c(1, 2, 2), type="l", ylab="predicted y")

Note: This entry produces fit and confidence limits at the original observations in the
original order. If the observations aren’t sorted relative to the explanatory variable x, the
resulting plot will be a jumble. The matplot() function is used to generate lines, with a
solid line (lty=1) for predicted values and dashed line (lty=2) for the confidence bounds.

8.5.10 Plot predicted lines for each value of a variable

Here we describe how to generate plots for a variable X1 versus Y separately for each value
of the variable X2 (see conditioning plot, 8.4.2).
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plot(x1, y, pch=" ") # create an empty plot of the correct size

abline(lm(y ~ x1, subset=x2==0), lty=1, lwd=2)

abline(lm(y ~ x1, subset=x2==1), lty=2, lwd=2)

...

abline(lm(y ~ x1, subset=x2==k), lty=k+1, lwd=2)

Note: The abline() function is used to generate lines for each of the subsets, with a solid
line (lty=1) for the first group and a dashed line (lty=2) for the second (this assumes
that X2 takes on values 0–k, see 11.1.2). The plotFun() function in the mosaic package
provides another way of adding lines or arbitrary curves to a plot.

8.5.11 Kaplan–Meier plot

Example: 8.7.4

See also 5.4.6 (log-rank test).

library(survival)

fit = survfit(Surv(time, status) ~ as.factor(x), data=ds)

plot(fit, conf.int=FALSE, lty=1:length(unique(x)))

Note: The Surv() function is used to combine survival time and status, where time is length
of follow-up (interval censored data can be accommodated via an additional parameter) and
status=1 indicates an event (e.g., death) while status=0 indicates censoring. The model is
stratified by each level of the group variable x (see adding legends, 9.1.15, and different line
styles, 9.2.11). More information can be found in the CRAN survival analysis task view.

8.5.12 Hazard function plotting

The hazard function from data censored on the right can be estimated using kernel methods
(see also 8.7.4).

library(muhaz)

plot(muhaz(time, status))

Note: Estimation of hazards from multiple groups can be plotted together using the lines()
command after running muhaz() on the other groups.

8.5.13 Mean–difference plots

The Tukey mean–difference plot, popularized in medical research as the Bland–Altman plot
[6], plots the difference between two variables against their mean. This can be useful when
they are two different methods for assessing the same quantity.

baplot = function(x, y) {

bamean = (x + y)/2

badiff = (y - x)

plot(badiff ~ bamean, pch=20, xlab="mean", ylab="difference")

abline(h = c(mean(badiff), mean(badiff)+1.96 * sd(badiff),

mean(badiff)-1.96 * sd(badiff)), lty=2)

}

baplot(x, y)
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8.6 Further resources

The books by Tufte [170, 171, 172, 173] provide an excellent framework for graphical
displays, some of which build on the work of Tukey [174]. Comprehensive and acces-
sible books on graphics include [118], [147], and [188] (see also the help files at http:

//docs.ggplot2.org/current).

8.7 Examples

To help illustrate the tools presented in this chapter, we apply many of the entries to the
HELP data. The code can be downloaded from http://www.amherst.edu/~nhorton/r2/

examples. We begin by reading in the data.

> options(digits=3)

> ds = read.csv("http://www.amherst.edu/~nhorton/r2/datasets/help.csv")

8.7.1 Scatterplot with multiple axes

The following example creates a single figure that displays the relationship between CESD
and the variables indtot (Inventory of Drug Abuse Consequences, InDUC) and mcs (Mental
Component Score) for a subset of female alcohol-involved subjects. We specify two different
y-axes (8.3.2) for the figure. Some housekeeping is needed. The second y variable must be
rescaled to the range of the original, and the axis labels and tick marks added on the right.
To accomplish this, we write a function plottwoy(), which first makes the plot of the first
(left axis) y against x, adds a lowess curve through that data, then calls a second function,
addsecondy().

> plottwoy = function(x, y1, y2, xname="X", y1name="Y1", y2name="Y2") {

plot(x, y1, ylab=y1name, xlab=xname)

lines(lowess(x, y1), lwd=3)

addsecondy(x, y2, y1, yname=y2name)

}

The function addsecondy() does the work of rescaling the range of the second variable
to that of the first, adds the right axis, and plots a lowess curve through the data for the
rescaled y2 variable.

> addsecondy = function(x, y, origy, yname="Y2") {

prevlimits = range(origy)

axislimits = range(y)

axis(side=4, at=prevlimits[1] + diff(prevlimits)*c(0:5)/5,

labels=round(axislimits[1] + diff(axislimits)*c(0:5)/5, 1))

mtext(yname, side=4)

newy = (y-axislimits[1])/(diff(axislimits)/diff(prevlimits)) +

prevlimits[1]

points(x, newy, pch=2)

lines(lowess(x, newy), lty=2, lwd=3)

}

Finally, the newly defined functions can be run and Figure 8.1 generated.
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> with(ds, plottwoy(cesd[female==1&substance=="alcohol"],

indtot[female==1&substance=="alcohol"],

mcs[female==1&substance=="alcohol"], xname="cesd",

y1name="indtot", y2name="mcs"))
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Figure 8.1: Plot of InDUC and MCS vs. CESD for female alcohol-involved subjects

8.7.2 Conditioning plot

Figure 8.2 displays a conditioning plot (8.4.2) with the association between MCS and CESD
stratified by substance and report of suicidal thoughts (g1b). We first ensure that the
necessary packages are loaded (A.6.1).

> library(lattice)

Then we can set up and generate the plot. There is a similar association between CESD
and MCS for each of the substance groups. Subjects with suicidal thoughts tended to
have higher CESD scores, and the association between CESD and MCS was somewhat less
pronounced than for those without suicidal thoughts.

The lattice package has a number of settings that can be controlled by the user. We
have specified the mosaic black-and-white theme. Figure 8.3 displays the configuration
chosen for the display of Figure 8.2.

8.7.3 Scatterplot with marginal histograms

We can assess the univariate as well as bivariate distribution of the MCS and CESD scores
using a scatterplot with a marginal histogram (8.3.6), as shown in Figure 8.4.

We use the layout() function (9.2.3) to create the graphic.
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> trellis.par.set(theme=col.mosaic(bw=TRUE))

> ds = transform(ds, suicidal.thoughts = ifelse(g1b==1, "Y", "N"))

> coplot(mcs ~ cesd | suicidal.thoughts*substance,

panel=panel.smooth, data=ds)
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Figure 8.2: Association of MCS and CESD, stratified by substance and report of suicidal
thoughts

> scatterhist = function(x, y, xlab="x label", ylab="y label", cexval=1.3){

zones=matrix(c(3,1,2,4), ncol=2, byrow=TRUE)

layout(zones, widths=c(4/5,1/5), heights=c(1/5,4/5))

par(mar=c(0,0,0,0))

plot(type="n",x=1, y =1, bty="n",xaxt="n", yaxt="n")

text(x=1,y=1,paste0("n = ",min(length(x), length(y))), cex=cexval)

xhist = hist(x, plot=FALSE)

yhist = hist(y, plot=FALSE)

top = max(c(xhist$counts, yhist$counts))

par(mar=c(3.9,3.9,1,1))

plot(x,y, xlab=xlab, ylab=ylab, cex.sub=cexval,

pch=19, col="#00000044")

lines(lowess(x, y), lwd=2)

par(mar=c(0,3,1,1))

barplot(xhist$counts, axes=FALSE, ylim=c(0, top), space=0)

par(mar=c(3,0,1,1))

barplot(yhist$counts, axes=FALSE, xlim=c(0, top), space=0, horiz=TRUE)

par(oma=c(3,3,0,0))

}
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> show.settings()

superpose.symbol

● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●

superpose.line strip.background strip.shingle dot.[symbol, line]

●

●

●

●

●

ox.[dot, rectangle, umbrella]

●

add.[line, text]

Hello

World

reference.line plot.[symbol, line]

●●●

●

●

●

●
●●

●

●

●

●

●
●●

●

●

●

●

plot.shingle[plot.polygon]

histogram[plot.polygon]barchart[plot.polygon] superpose.polygon regions

Figure 8.3: Lattice settings using the mosaic black-and-white theme

8.7.4 Kaplan–Meier plot

The main outcome of the HELP study was time to linkage to primary care, as a function
of randomization group. This can be displayed using a Kaplan–Meier plot (see 8.5.11).
Detailed information regarding the Kaplan–Meier estimator at each time point can be found
by calling summary(survobj). Figure 8.5 displays the estimates, with + signs indicating
censored observations.

> library(survival)

> survobj = survfit(Surv(dayslink, linkstatus) ~ treat, data=ds)

> print(survobj)

Call: survfit(formula = Surv(dayslink, linkstatus) ~ treat, data = ds)

22 observations deleted due to missingness

records n.max n.start events median 0.95LCL 0.95UCL

treat=0 209 209 209 35 NA NA NA

treat=1 222 222 222 128 120 79 272

As reported previously [72, 145], there is a highly statistically significant effect of treatment,
with approximately 55% of clinic subjects linking to primary care, as opposed to only 15%
of control subjects.
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> with(ds, scatterhist(mcs, pcs, xlab="MCS", ylab="PCS"))

n = 453
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40
50
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70
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P
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Figure 8.4: Association of MCS and PCS with marginal histograms

8.7.5 ROC curve

Receiver operating characteristic (ROC) curves are used for diagnostic agreement (5.2.2
and 8.5.7) as well as assessing goodness of fit for logistic regression (7.1.1). These are easily
created using the ROCR package. Figure 8.6 displays the receiver operating characteristic
curve predicting suicidal thoughts using the CESD measure of depressive symptoms.

We first load the ROCR package, create a prediction object, and retrieve the area under
the curve (AUC) to use in Figure 8.6.

> library(ROCR)

> pred = with(ds, prediction(cesd, g1b))

> auc = slot(performance(pred, "auc"), "y.values")[[1]]

We can then plot the ROC curve, adding a display of cutoffs for particular CESD values
ranging from 20 to 50. These values are offset from the ROC curve using the text.adj

option.

If the continuous variable (in this case cesd) is replaced by the predicted probability
from a logistic regression model, multiple predictors can be included.

8.7.6 Pairs plot

We can qualitatively assess the associations between some of the continuous measures of
mental health, physical health, and alcohol consumption using a pairs plot or scatterplot
matrix (8.4.1). To make the results clearer, we include only the female subjects.
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> plot(survobj, lty=1:2, lwd=2, col=c(4,2))

> title("Product-Limit Survival Estimates")

> legend(20, .38, legend=c("Control", "Treatment"), lty=c(1,2), lwd=2,

col=c(4,2), cex=1.2)
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0

Product−Limit Survival Estimates
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Treatment

Figure 8.5: Kaplan–Meier estimate of time to linkage to primary care by randomization
group

A simple version with only the scatterplots could be generated easily with the pairs()

function (results not shown):

> pairs(c(ds[72:74], ds[67]))

or

> pairs(ds[c("pcs", "mcs", "cesd", "i1")])

Here instead, we demonstrate building a figure using several functions. We begin with
a function panel.hist() to display the diagonal entries (in this case, by displaying a
histogram).

> panel.hist = function(x, ...)

{

usr = par("usr"); on.exit(par(usr))

par(usr=c(usr[1:2], 0, 1.5))

h = hist(x, plot=FALSE)

breaks = h$breaks; nB = length(breaks)

y = h$counts; y = y/max(y)
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> plot(performance(pred, "tpr", "fpr"),

print.cutoffs.at=seq(from=20, to=50, by=5),

text.adj=c(1, -.5), lwd=2)

> lines(c(0, 1), c(0, 1))

> text(.6, .2, paste("AUC=", round(auc,3), sep=""), cex=1.4)

> title("ROC Curve for Model")
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ROC Curve for Model

Figure 8.6: Receiver operating characteristic curve for the logistical regression model pre-
dicting suicidal thoughts using the CESD as a measure of depressive symptoms (sensitivity
= true positive rate; 1-specificity = false positive rate)

rect(breaks[-nB], 0, breaks[-1], y, col="cyan", ...)

}

Another function is created to create a scatterplot along with a fitted line.

> panel.lm = function(x, y, col=par("col"), bg=NA, pch=par("pch"),

cex=1, col.lm="red", ...)

{

points(x, y, pch=pch, col=col, bg=bg, cex=cex)

ok = is.finite(x) & is.finite(y)

if (any(ok))

abline(lm(y[ok] ~ x[ok]))

}

These functions are called (along with the built-in panel.smooth() function) to display the
results. Figure 8.7 displays the pairs plot of CESD, MCS, PCS, and I1, with histograms
along the diagonals. For R, smoothing splines are fit on the lower triangle, linear fits on
the upper triangle, using code fragments derived from example(pairs).
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> pairs(~ cesd + mcs + pcs + i1, subset=(female==1),

lower.panel=panel.smooth, diag.panel=panel.hist,

upper.panel=panel.lm, data=ds)
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Figure 8.7: Pairs plot of variables from the HELP dataset using the lattice package

There is an indication that CESD, MCS, and PCS are interrelated, while I1 appears to
have modest associations with the other variables.

The GGally package can be used to create pairs plots for the alcohol-involved subjects
with a mixture of categorical and continuous variables (see Figure 8.8).

We begin by subsetting the data, making a version of the female variable with text
values, and then selecting only a few variables.

> library(GGally)

> library(dplyr)

> smallds = ds %>%

filter(substance=="alcohol") %>%

mutate(sex = ifelse(female==1, "female", "male")) %>%

select(cesd, mcs, sex)

8.7.7 Visualize correlation matrix

One visual analysis that might be helpful to display would be the pairwise correlations.

We utilize the approach used by Sarkar to re-create Figure 13.5 of the Lattice: Multivariate
Data Visualization with R book [147]. Other examples in that reference help to motivate
the power of the lattice package far beyond what is provided by demo(lattice).
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> ggpairs(smallds,

axisLabels="show",

diag = list(continuous = "bar", discrete = "bar"),

upper = list(continuous = "points", combo = "box"),

lower = list(continuous = "cor", combo = "facethist"))
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Figure 8.8: Pairs plot of variables from the HELP dataset using the GGally package.

> cormat = with(ds, cor(cbind(mcs, pcs, pss_fr, drugrisk,

cesd, indtot, i1, sexrisk), use="pairwise.complete.obs"))

> oldopt = options(digits=2)

> cormat

mcs pcs pss_fr drugrisk cesd indtot i1 sexrisk

mcs 1.000 0.110 0.138 -0.2058 -0.682 -0.38 -0.087 -0.1061

pcs 0.110 1.000 0.077 -0.1411 -0.293 -0.13 -0.196 0.0239

pss_fr 0.138 0.077 1.000 -0.0390 -0.184 -0.20 -0.070 -0.1128

drugrisk -0.206 -0.141 -0.039 1.0000 0.179 0.18 -0.100 -0.0055

cesd -0.682 -0.293 -0.184 0.1789 1.000 0.34 0.176 0.0157

indtot -0.381 -0.135 -0.198 0.1807 0.336 1.00 0.202 0.1132

i1 -0.087 -0.196 -0.070 -0.0999 0.176 0.20 1.000 0.0881

sexrisk -0.106 0.024 -0.113 -0.0055 0.016 0.11 0.088 1.0000

> options(oldopt)

> ds$drugrisk[is.na(ds$drugrisk)] = 0

> panel.corrgram = function(x, y, z, at, level=0.9, label=FALSE, ...)

{

require(ellipse, quietly=TRUE)

zcol = level.colors(z, at=at, col.regions=gray.colors)



i
i

“K23166” — 2015/1/28 — 9:35 — page 143 — #169 i
i

i
i

i
i

8.7. EXAMPLES 143

for (i in seq(along=z)) {

ell = ellipse(z[i], level=level, npoints=50,

scale=c(.2, .2), centre=c(x[i], y[i]))

panel.polygon(ell, col=zcol[i], border=zcol[i], ...)

}

if (label)

panel.text(x=x, y=y, lab=100*round(z, 2), cex=0.8,

col=ifelse(z < 0, "white", "black"))

}

> library(ellipse); library(lattice)

> levelplot(cormat, at=do.breaks(c(-1.01, 1.01), 20), xlab=NULL, ylab=NULL,

colorkey=list(space = "top", col=gray.colors),

scales=list(x=list(rot=90)), panel=panel.corrgram, labels=TRUE)
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Figure 8.9: Visual display of correlations (times 100)
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Chapter 9

Graphical options and
configuration

This chapter describes how to annotate graphical displays and change defaults to create
publication-quality figures, as well as details regarding how to output graphics in a variety
of file formats (9.3).

9.1 Adding elements

It is relatively simple to add features to graphs that have been generated by one of the
functions discussed in Chapter 8 that uses base graphics. For example, adding an arbitrary
line to a graphic requires only one function call with the two endpoints as arguments (9.1.1).
Other mechanisms to add to existing graphs created using the lattice package are available
(see the layer() function).

9.1.1 Arbitrary straight line

Example: 6.6.1

plot(x, y)

lines(point1, point2)
or

abline(intercept, slope)

Note: The lines() function draws lines between successive pairs of locations specified by
point1 and point2, which are each vectors with values for the x and y axes. The abline()

function draws a line based on the slope-intercept form. Vertical or horizontal lines can be
specified using the v or h option to abline().

9.1.2 Plot symbols

Example: 5.7.2

plot(x, y, pch=pchval)

or

points(x, y, string, pch=pchval)

or

145
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library(lattice)

xyplot(x ~ y, group=factor(groupvar), data=ds)
or
library(ggplot2)

qplot(x, y, col=factor(groupvar), shape=factor(groupvar), data=ds)

Note: The pch option requires either a single character or an integer code. Some use-
ful values include 20 (dot), 46 (point), 3 (plus), 5 (diamond), and 2 (triangle) (running
example(points) will display more possibilities). The size of the plotting symbol can be
changed using the cex option. The vector function text() adds the value in the variable
string to the plot at the specified location. The examples using xyplot() and qplot()

will also generate scatterplots with different plot symbols for each level of groupvar.

9.1.3 Add points to an existing graphic

Example: 6.6.1

See also 9.1.2 (specifying plotting character).

plot(x, y)

points(x, y)

9.1.4 Jitter points

Example: 5.7.2

Jittering is the process of adding a negligible amount of noise to each observed value so that
the number of observations sharing a value can be easily discerned.

jitterx = jitter(x)

Note: The default value for the range of the random uniforms is 40% of the smallest differ-
ence between values.

9.1.5 Regression line fit to points

plot(x, y)

abline(lm(y ~ x))

Note: The abline() function accepts regression objects with a single predictor as input.

9.1.6 Smoothed line

Example: 5.7.2

See also 7.10.8 (generalized additive models).

plot(...)

lines(lowess(x, y))

Note: The f parameter to lowess() can be specified to control the proportion of points
that influence the local value (larger values give more smoothness). The supsmu() (Fried-
man’s “super smoother”) and loess() (local polynomial regression fitting) functions are
alternative smoothers.



i
i

“K23166” — 2015/1/28 — 9:35 — page 147 — #173 i
i

i
i

i
i

9.1. ADDING ELEMENTS 147

9.1.7 Normal density
Example: 6.6.4

A normal density plot can be added as an annotation to a histogram or empirical density.

hist(x)

xvals = seq(from=min(x), to=max(x), length=100)

lines(pnorm(xvals, mean(x), sd(x)))

9.1.8 Marginal rug plot
Example: 5.7.2

A rug plot displays the marginal distribution on one of the margins of a scatterplot.

rug(x, side=sideval)

Note: The rug() function adds a marginal plot to one of the sides of an existing plot
(sideval=1 for bottom (default), 2 for left, 3 for top, and 4 for right side).

9.1.9 Titles
Example: 5.7.4

title(main="main", sub="sub", xlab="xlab", ylab="ylab")

Note: The title commands refer to the main title, subtitle, x axis, and y axis, respectively.
Some plotting commands (e.g., hist()) create titles by default, and the appropriate option
within those routines needs to be specified when calling them.

9.1.10 Footnotes

title(sub="sub")

Note: The sub option for the title() function generates a subtitle.

9.1.11 Text
Example: 5.7.2, 8.7.5

text(x, y, labels)

Note: Each value of the character vector labels is displayed at the specified (X,Y) coordi-
nate. The adj option can be used to change text justification to the left, center (default),
or right of the coordinate. The srt option can be used to rotate text, while cex controls
the size of the text. The font option to par() allows specification of plain, bold, italic, or
bold italic fonts (see the family option to specify the name of a different font family).
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9.1.12 Mathematical symbols

Example: 3.4.1

plot(x, y)

text(x, y, expression(mathexpression))

Note: The expression() argument can be used to embed mathematical expressions and
symbols (e.g., µ = 0, σ2 = 4) in graphical displays as text, axis labels, legends, or titles. See
help(plotmath) for more details on the form of mathexpression and example(plotmath)

for examples.

9.1.13 Arrows and shapes

Example: 5.7.4 and 8.7.6

arrows(x1, y1, x2, y2)

rect(x1, y1, x2, y2)

polygon(x, y)

library(plotrix)

draw.circle(x, y, r)

Note: The arrows(), rect(), and polygon() functions take vectors as arguments and
create the appropriate object with vertices specified by each element of those vectors.

9.1.14 Add grid

A rectangular grid can sometimes be helpful to add to an existing plot.

grid(nx=num, ny=num)

Note: The nx and ny options control the number of cells in the grid. If they are specified as
NULL, the grid aligns with the tick marks. The default shading is light gray, with a dotted
line. Further support for complex grids is available within the grid.lines() function in
the grid package.

9.1.15 Legend

Example: 3.4.1 and 5.7.4

plot(x, y)

legend(xval, yval, legend=c("Grp1","Grp2"), lty=1:2, col=3:4)

Note: The legend() command can be used to add a legend at the location (xval, yval)

to distinguish groups on a display. Line styles (9.2.11) and colors (9.2.13) can be used to
distinguish the groups. A vector of legend labels, line types, and colors can be specified
using the legend, lty, and col options, respectively.

9.1.16 Identifying and locating points

locator(n)
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Note: The locator() function identifies the position of the cursor when the mouse button
is pressed. An optional argument n specifies how many values to return. The identify()

function works in the same fashion, but returns the point closest to the cursor.

9.2 Options and parameters

Many options can be given to plots generated using base graphics. These are generally
arguments to plot(), par(), or other high-level functions (see the documentation for the
par() function).

9.2.1 Graph size

pdf("filename.pdf", width=Xin, height=Yin)

Note: The graph size is specified as an optional argument when starting a graphics device
(e.g., pdf(), 9.3.1), with arguments Xin and Yin given in inches. Other devices have similar
arguments to specify the size.

9.2.2 Grid of plots per page

Example: 6.6.4

See also 9.2.3 (more general page layouts).

par(mfrow=c(a, b))

or

par(mfcol=c(a, b))

Note: The mfrow option specifies that plots will be drawn in an a × b array by row (by
column for mfcol).

9.2.3 More general page layouts

Example: 8.7.3

See also 9.2.2 (grid of plots per page).

oldpar = par(no.readonly=TRUE)

layout(mat, widths=wvec, heights=hvec)

layout.show()

#fill the layout with plots

par(oldpar)

Note: The layout() function divides the graphics device into rows and columns, the relative
sizes of which are specified by the widths and heights vectors. The number of rows and
columns, plus the locations in the matrix to which the figures will be plotted, are specified by
mat. The elements of the mat matrix are integers showing the order in which generated plots
fill the cells. Larger and smaller figures can be plotted by repeating some integer values. The
layout.show(n) function plots the outline of the next n figures. Other options to arrange
plots on a device include par(mfrow), for regular grids of plots, and split.screen(). The
lattice package provides a different implementation of multiple plots (see the position

option).
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9.2.4 Fonts

pdf(file="plot.pdf")

par(family="Palatino")

plot(x, y)

dev.off()

Note: Supported postscript families include AvantGarde, Bookman, Courier, Helvetica,
Helvetica-Narrow, NewCenturySchoolbook, Palatino, and Times (see ?postscript).

9.2.5 Point and text size

Example: 6.6.6

plot(x, y, cex=cexval)

Note: The cex option specifies how much the plotting text and symbols should be magnified
relative to the default value of 1 (see help(par) for details on how to specify this for axes,
labels, and titles, e.g., cex.axis).

9.2.6 Box around plots

Example: 5.7.4

plot(x, y, bty=btyval)

Note: Control for the box around the plot can be specified using btyval, where if the argu-
ment is one of o (the default), l, 7, c, u, or ], the resulting box resembles the corresponding
character, while a value of n suppresses the box.

9.2.7 Size of margins

Example: 6.6.4

Margin options control how tight plots are to the printable area.

par(mar=c(bot, left, top, right), # inner margin

oma=c(bot, left, top, right)) # outer margin

Note: The vector given to mar specifies the number of lines of margin around a plot: the
default is c(5, 4, 4, 2) + 0.1. The oma option specifies additional lines outside the
entire plotting area (the default is c(0,0,0,0)). Other options to control margin spacing
include omd and omi.

9.2.8 Graphical settings

Example: 6.6.4

# change values, while saving old

oldvalues = par(...)

# restore old values for graphical settings

par(oldvalues)
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9.2.9 Axis range and style
Example: 8.7.3

plot(x, y, xlim=c(minx, maxx), ylim=c(miny, maxy), xaxs="i", yaxs="i")

Note: The xaxs and yaxs options control whether tick marks extend beyond the limits of
the plotted observations (default) or are constrained to be internal ("i"). More control is
available through the axis() and mtext() functions.

9.2.10 Axis labels, values, and tick marks
Example: 3.4.1

plot(x, y, lab=c(x, y, len), # number of tick marks

las=lasval, # orientation of tick marks

tck=tckval, # length of tick marks

tcl=tclval, # length of tick marks

xaxp=c(x1, x2, n), # coordinates of the extreme tick marks

yaxp=c(x1, x2, n), # coordinates of the extreme tick marks

xlab="X axis label", ylab="Y axis label")

Note: Options for las include 0 for always parallel, 1 for always horizontal, 2 for perpen-
dicular, and 3 for vertical.

9.2.11 Line styles
Example: 6.6.4

plot(...)

lines(x, y, lty=ltyval)

Note: Supported line type values include 0=blank, 1=solid (default), 2=dashed, 3=dotted,
4=dotdash, 5=longdash, and 6=twodash.

9.2.12 Line widths
Example: 3.4.1

plot(...)

lines(x, y, lwd=lwdval)

Note: The default for lwd is 1; the value of lwdval must be positive.

9.2.13 Colors
Example: 5.7.4

plot(...)

lines(x, y, col=colval)

Note: For more information on setting colors, see the Color Specification section within
help(par) as well as demo(colors). The colors() function lists available colors, while
the colors.plot() function within the epitools package displays a matrix of colors, and
colors.matrix() returns a matrix of color names. The display.brewer.all() function
within the RColorBrewer package is particularly useful for selecting a set of complementary
colors for a palette.
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9.2.14 Log scale

plot(x, y, log=logval)

Note: A natural log scale can be specified using the log option to plot(), where log="x"

denotes only the x axis, "y" only the y axis, and "xy" for both.

9.2.15 Omit axes
Example: 12.2

plot(x, y, xaxt="n", yaxt="n")

9.3 Saving graphs

It is straightforward to export graphics in a variety of formats. In addition to what is
described below, RStudio allows export of a plot in multiple formats along with full control
over the size and resolution.

9.3.1 PDF

pdf("file.pdf")

plot(...)

dev.off()

Note: The dev.off() function is used to close a graphics device.

9.3.2 Postscript

postscript("file.ps")

plot(...)

dev.off()

Note: The dev.off() function is used to close a graphics device.

9.3.3 RTF

Rich Text Format (RTF) is a file format developed for cross-platform document sharing.
Many word processors are able to read and write RTF documents.

It’s also possible to generate Microsoft Word files through use the markdown package
and Pandoc. This process is simplified in RStudio (see 11.3).

library(rtf)

output = "file.doc"

rtf = RTF(output)

addParagraph(rtf, "This is a plot.\n")

addPlot(rtf, plot.fun=plot,width=6, height=6, res=300, x, y)

done(rtf)

Note: This example adds text and the equivalent of plot(x, y) to an RTF file. The rtf

package vignette provides additional details for formatting graphs and tables.
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9.3.4 JPEG

jpeg("filename.jpg")

plot(...)

dev.off()

Note: The dev.off() function is used to close a graphics device.

9.3.5 Windows Metafile

win.metafile("file.wmf")

plot(...)

dev.off()

Note: The function win.metafile() is only supported under Windows. Functions that
generate multiple plots are not supported. The dev.off() function is used to close a
graphics device.

9.3.6 Bitmap image file (BMP)

bmp("filename.bmp")

plot(...)

dev.off()

Note: The dev.off() function is used to close a graphics device.

9.3.7 Tagged Image File Format

tiff("filename.tiff")

plot(...)

dev.off()

Note: The dev.off() function is used to close a graphics device.

9.3.8 PNG

png("filename.png")

plot(...)

dev.off()

Note: The dev.off() function is used to close a graphics device.

9.3.9 Closing a graphic device
Example: 8.7.4

The following code closes a graphics window. This is particularly useful when a graphics
file is being created.

dev.off()
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Chapter 10

Simulation

Simulations provide a powerful way to answer questions and explore properties of statistical
estimators and procedures. In this chapter, we will explore how to simulate data in a variety
of common settings, and apply some of the techniques introduced earlier.

10.1 Generating data

10.1.1 Generate categorical data

Simulation of data from continuous probability distributions is straightforward using the
functions detailed in 3.1.1. Simulating from categorical distributions can be done manually
or using some available functions.

> options(digits=3)

> options(width=72) # narrow output

> p = c(.1,.2,.3)

> x = runif(10000)

> mycat1 = numeric(10000)

> for (i in 0:length(p)) {

mycat1 = mycat1 + (x >= sum(p[0:i]))

}

> table(mycat1)

mycat1

1 2 3 4

955 1988 3028 4029

> mycat2 = cut(runif(10000), c(0, 0.1, 0.3, 0.6, 1))

> summary(mycat2)

(0,0.1] (0.1,0.3] (0.3,0.6] (0.6,1]

1050 2033 3041 3876

> mycat3 = sample(1:4, 10000, rep=TRUE, prob=c(.1,.2,.3,.4))

> table(mycat3)

mycat3

1 2 3 4

1023 2015 3009 3953
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The cut() function (2.2.4) bins continuous data into categories with both endpoints defined
by the arguments. Note that the min() and max() functions can be particularly useful here
in the outer categories. The sample() function as shown treats the values 1, 2, 3, 4 as a
dataset, and samples from the dataset 10,000 times with the probability of selection defined
in the prob vector.

10.1.2 Generate data from a logistic regression

Here we show how to simulate data from a logistic regression (7.1.1). Our process is to
generate the linear predictor, then apply the inverse link, and finally draw from a distribu-
tion with this parameter. This approach is useful in that it can easily be applied to other
generalized linear models (7.1). Here we make the intercept −1, the slope 0.5, and generate
5, 000 observations.

> intercept = -1

> beta = 0.5

> n = 5000

> xtest = rnorm(n, mean=1, sd=1)

> linpred = intercept + (xtest * beta)

> prob = exp(linpred)/(1 + exp(linpred))

> ytest = ifelse(runif(n) < prob, 1, 0)

While the results of summary() for a glm object is relatively concise, we can display just
the estimated values of the coefficients from the logistic regression model using the coef()

function (see 6.4.1).

> coef(glm(ytest ~ xtest, family=binomial))

(Intercept) xtest

-1.005 0.483

10.1.3 Generate data from a generalized linear mixed model

In this example, we generate data from a generalized linear mixed model (7.4.6) with a
dichotomous outcome. We generate 1500 clusters, denoted by id. There is one predictor
with a common value for all observations in a cluster (X1). Each observation within the
cluster has an order indicator (denoted by X2) that has a linear effect (beta_2), and there
is an additional predictor that varies among observations (X3). The dichotomous outcome
Y is generated from these predictors using a logistic link incorporating a normal distributed
random intercept for each cluster.

The simulation approach is an extension of that shown in the previous section (see also
4.1.3).

> n = 1500; p = 3; sigbsq = 4

> beta = c(-2, 1.5, 0.5, -1)

> id = rep(1:n, each=p) # 1 1 ... 1 2 2 ... 2 ... n

> x1 = as.numeric(id < (n+1)/2) # 1 1 ... 1 0 0 ... 0

> randint = rep(rnorm(n, 0, sqrt(sigbsq)), each=p)

> x2 = rep(1:p, n) # 1 2 ... p 1 2 ... p ...

> x3 = runif(p*n)

> linpred = beta[1] + beta[2]*x1 + beta[3]*x2 + beta[4]*x3 + randint



i
i

“K23166” — 2015/1/28 — 9:35 — page 157 — #183 i
i

i
i

i
i

10.1. GENERATING DATA 157

> expit = exp(linpred)/(1 + exp(linpred))

> y = runif(p*n) < expit # generate a logical as our outcome

We fit the model using the glmer() function from the lme4 package.

> library(lme4)

Loading required package: Matrix

Loading required package: Rcpp

> glmmres = glmer(y ~ x1 + x2 + x3 + (1|id), family=binomial(link="logit"))

> summary(glmmres)

Generalized linear mixed model fit by maximum likelihood (Laplace

Approximation) [glmerMod]

Family: binomial ( logit )

Formula: y ~ x1 + x2 + x3 + (1 | id)

AIC BIC logLik deviance df.resid

5251 5283 -2621 5241 4495

Scaled residuals:

Min 1Q Median 3Q Max

-2.019 -0.494 -0.286 0.569 2.846

Random effects:

Groups Name Variance Std.Dev.

id (Intercept) 3.09 1.76

Number of obs: 4500, groups: id, 1500

Fixed effects:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.9668 0.1633 -12.04 < 2e-16 ***

x1 1.5557 0.1319 11.80 < 2e-16 ***

x2 0.4631 0.0501 9.25 < 2e-16 ***

x3 -1.0337 0.1550 -6.67 2.5e-11 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Correlation of Fixed Effects:

(Intr) x1 x2

x1 -0.498

x2 -0.673 0.103

x3 -0.387 -0.073 -0.050

10.1.4 Generate correlated binary data

Another way to generate correlated dichotomous outcomes Y1 and Y2 is based on the proba-
bilities corresponding to the 2×2 table. Given these cell probabilities, the variable probabil-
ities can be expressed as a function of the marginal probabilities and the desired correlation,
using the methods of Lipsitz and colleagues [103]. Here we generate a sample of 1000 values
where: P (Y1 = 1) = .15, P (Y2 = 1) = .25, and Corr(Y1, Y2) = 0.40.
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> p1 = .15; p2 = .25; corr = 0.4; n = 10000

> p1p2 = corr*sqrt(p1*(1-p1)*p2*(1-p2)) + p1*p2

> library(Hmisc)

> vals = rMultinom(matrix(c(1-p1-p2+p1p2, p1-p1p2, p2-p1p2, p1p2),

nrow=1, ncol=4), n)

> y1 = rep(0, n); y2 = rep(0, n) # put zeroes everywhere

> y1[vals==2 | vals==4] = 1 # and replace them with ones

> y2[vals==3 | vals==4] = 1 # where needed

> rm(vals, p1, p2, p1p2, corr, n) # cleanup

The generated data is close to the desired values.

> cor(y1, y2)

[1] 0.429

> table(y1)

y1

0 1

8515 1485

> table(y2)

y2

0 1

7542 2458

10.1.5 Generate data from a Cox model

To simulate data from a Cox proportional hazards model (7.5.1), we need to model the
hazard functions for both time to event and time to censoring. In this example, we use a
constant baseline hazard, but this can be modified by specifying other scale parameters
for the Weibull random variables.

> # generate data from Cox model

> n = 10000

> beta1 = 2; beta2 = -1

> lambdaT = .002 # baseline hazard

> lambdaC = .004 # hazard of censoring

> x1 = rnorm(n) # standard normal

> x2 = rnorm(n)

> # true event time

> T = rweibull(n, shape=1, scale=lambdaT*exp(-beta1*x1-beta2*x2))

> C = rweibull(n, shape=1, scale=lambdaC) #censoring time

> time = pmin(T,C) #observed time is min of censored and true

> censored = (time==C) # set to 1 if event is censored

> # fit Cox model

> library(survival)

> survobj = coxph(Surv(time, (1-censored))~ x1 + x2, method="breslow")

These parameters generate data where approximately 40% of the observations are censored.
The coxph() function expects an observed event indicator. We tabulate the censoring
indicator, then display the results as well as the associated 95% confidence intervals.
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> table(censored)

censored

FALSE TRUE

5968 4032

> print(survobj)

Call:

coxph(formula = Surv(time, (1 - censored)) ~ x1 + x2, method = "breslow")

coef exp(coef) se(coef) z p

x1 2.02 7.549 0.0224 90.1 0

x2 -1.01 0.363 0.0159 -63.7 0

Likelihood ratio test=11623 on 2 df, p=0 n= 10000, number of events= 5968

> confint(survobj)

2.5 % 97.5 %

x1 1.98 2.065

x2 -1.05 -0.983

The results are similar to the true parameter values.

10.1.6 Sampling from a challenging distribution

When the cumulative density function for a probability distribution can be inverted, it
is simple to draw a sample from the distribution using the probability integral transform
(3.1.10). However, when the form of the distribution is complex, this approach may be
difficult or impossible. The Metropolis–Hastings algorithm [112] is a Markov Chain Monte
Carlo (MCMC) method for obtaining samples from a variable with an arbitrary probability
density function.

The MCMC algorithm uses a series of draws from a more common distribution, choosing
at random which of these proposed draws to accept as draws from the target distribution.
The probability of acceptance is calculated so that after the process has converged the
accepted draws form a sample from the desired distribution. A further discussion can
be found in Section 11.3 of Probability and Statistics: The Science of Uncertainty [35] or
Section 1.9 of Gelman et al. [50].

Evans and Rosenthal [35] consider a distribution with probability density function:

f(y) = c exp(−y4)(1 + |y|)3,

where c is a normalizing constant and y is defined on the whole real line.
We find the acceptance probability α(x, y) in terms of two densities, the desired f(y)

and q(x, y), a proposal density. For the proposal density, we use the normal with mean
equal to the previous value and unit variance, and find that

α(x, y) = min

{
1,
f(y)q(y, x)

f(x)q(x, y)

}
= min

{
1,
c exp (−y4)(1 + |y|)3(2π)−1/2 exp (−(y − x)2/2)

c exp (−x4)(1 + |x|)3(2π)−1/2 exp (−(x− y)2/2)

}
= min

{
1,

exp (−y4 + x4)(1 + |y|)3

(1 + |x|)3

}
.
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To begin the process, we pick an arbitrary value for X1. The Metropolis–Hastings algorithm
chooses Xn+1 as follows:

1. Generate y from a normal(Xn, 1).

2. Compute α(x, y) as above.

3. With probability α(x, y), let Xn+1 = y (use proposal value). Otherwise, with proba-
bility 1− α(x, y), let Xn+1 = Xn = x (repeat previous value).

The code below uses the first 5,000 iterations as a burn-in period, then generates 50, 000
samples using this procedure. Only every 10th value from these 50, 000 is saved, to reduce
autocorrelation. This process is known as “thinning.” We begin by writing a function to
calculate the acceptance probability.

> alphafun = function(x, y) {

return(exp(-y^4+x^4)*(1+abs(y))^3*

(1+abs(x))^-3)

}

We generate the samples by using a for() loop.

> burnin=5000; numvals=5000; thin = 10

> xn = numeric(burnin + numvals*thin)

> xn[1] = rnorm(1) # starting value

> for (i in 2:(burnin + numvals*thin)) {

propy = rnorm(1, xn[i-1], 1)

alpha = min(1, alphafun(xn[i-1], propy))

xn[i] = sample(c(propy, xn[i-1]), 1, prob=c(alpha, 1-alpha))

}

> sample = xn[5000 + (1:numvals) * 10]

We can compare the true distribution to the empirical PDF estimated from the random
draws. To do that, we need the normalizing constant c, which we calculate using R to
integrate the distribution over the positive real line.

> f = function(x) {

exp(-x^4)*(1+abs(x))^3

}

> integral = integrate(f, 0, Inf)

> c = 2 * integral$value; c

[1] 6.81

> pdfeval = function(x) {

return(1/6.809610784*exp(-x^4)*(1+abs(x))^3)

}

We find that c = 6.81.
The results are displayed in Figure 10.1, with the dashed line indicating the true distri-

bution, and the solid line the empirical PDF estimated from the simulated variates. The
normalizing constant is used to plot density using the curve() function.

Care is always needed when using MCMC methods. This example was particularly well-
behaved, in that the proposal distribution is large compared to the distance between the
two modes. Section 6.2 of Lavine [94] and Gelman et al. [50] provide accessible discussions
of dangers and diagnostics.
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> curve(pdfeval, from=-2, to=2, lwd=2, lty=2, type="l",

ylab="probability", xlab="Y")

> lines(density(sample), lwd=2, lty=1)

> legend(-1, .15, legend=c("True", "Simulated"),

lty=2:1, lwd=2, cex=1.4, bty="n")
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Figure 10.1: Plot of true and simulated distributions

10.2 Simulation applications

10.2.1 Simulation study of Student’s t-test

A common rule of thumb is that the sampling distribution of the mean is approximately
normal for samples of 30 or larger. Tim Hesterberg has argued (http://home.comcast.
net/~timhesterberg/articles/JSM08-n30.pdf) that the n ≥ 30 rule may need to be
retired. He demonstrates that for sample sizes much larger than typically thought necessary,
the one-sided error rate of the t-test is not appropriately preserved. We explore this by
generating n = 500 random exponential variables with mean 1, and carrying out a one-
sample Student’s t-test. We’ll repeat this 1000 times, and examine the coverage of the
lower and upper confidence limits.
We first generate the data and perform the test in a for() loop. The foreach package
could be used to speed up the computations if multiple cores were available.

> set.seed(42)

> numsim = 1000; n=500

> lower = numeric(numsim); upper = numeric(numsim)

> for (i in 1:numsim) {

x = rexp(n, rate=1) # skewed

testresult = t.test(x, mu=1)

lower[i] = testresult$conf.int[1] > 1

upper[i] = testresult$conf.int[2] < 1

}
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We use the tally() function (5.1.8) to display the proportions of times that the true
parameter is not captured.

> library(mosaic)

> tally(~ lower, format="percent")

0 1

97.8 2.2

> tally(~ upper, format="percent")

0 1

97.3 2.7

We observe that the test is rejecting more than it should be on the upper end of the
interval (though the overall two-sided alpha level is preserved). An alternative approach
would be to generate a matrix of random exponentials, and then use apply() to process
the computations without a for loop (results not shown).

> runttest = function(x) {return(CI=confint(t.test(x, mu=1)))}

> xmat = matrix(rexp(numsim*n), nrow=n)

> results = apply(xmat, 2, runttest)

> tally(~ results[2,] > 1)

> tally(~ results[3,] < 1)

10.2.2 Diploma (or hat-check) problem

Smith College is a selective women’s liberal arts college in Northampton, MA. One tradition
acquired since the college was founded in 1871 is to give every graduating student a diploma
at random (or more accurately, in a haphazard fashion). At the end of the ceremony, a circle
is formed, and students repeatedly pass the diplomas to the person next to them, stepping
out once they’ve received their own diploma. This problem, also known as the hat-check
problem, is featured in Mosteller [116]. Variants provide great fodder for probability courses.

The analytic solution for the expected number of students who receive their diplomas in
the initial disbursement is very straightforward. Let Xi be the event that the ith student
receives their diploma. E[Xi] = 1/n for all i, since the diplomas are assumed uniformly
distributed. If T is defined as the sum of all of the events X1 through Xn, E[T ] = n∗1/n = 1
by the rules of expectations. It is sometimes surprising to students that this result does
not depend on n. The variance is trickier, since the outcomes are not independent (if one
student receives their diploma, the probability that others will increases).

Simulation-based problem solving is increasingly common as a means to complement
and enhance analytic solutions [114, 67]. Here we simulate the number of students who
receive their diploma and calculate the variance of that quantity. We simulate n = 650
students and repeat the experiment 10,000 times. This gives the 650 diplomas a random
order, within each simulation. Next, we assign student ID numbers sequentially within the
randomly ordered (with respect to diploma number) dataset and mark whether the diploma
number matches the student ID. Finally, we count how many times the diploma matches
the desired student.

We define a function to carry out one of the simulations. The students vector is
generated and then permuted using the sample() function (see 2.3.3) to represent the
diplomas received by the ordered students. The == operator (A.4.2) is used to compare each
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of the elements of the vectors, and the number of matches is returned. The replicate()

function is used to run this multiple times and save the result.

> givedips = function(n) {

students = 1:n

diploma = sample(students, n)

return(sum(students==diploma))

}

> res = replicate(10000, givedips(650))

> table(res)

res

0 1 2 3 4 5 6

3714 3745 1749 612 147 26 7

> library(mosaic)

> favstats(res)

min Q1 median Q3 max mean sd n missing

0 0 1 2 6 0.984 0.991 10000 0

The expected value and standard deviation of the number of students who receive their
diplomas in the random disbursement are both about 1.

10.2.3 Monty Hall problem

The Monty Hall problem illustrates a simple setting where intuition is often misleading.
The situation is based on the TV game show Let’s Make a Deal. First, Monty (the host)
puts a prize behind one of three doors. Then the player chooses a door. Next (without
moving the prize), Monty opens an unselected door, revealing that the prize is not behind
it. The player may then switch to the other nonselected door. Should the player switch?

Many people see that there are now two doors to choose between and feel that since
Monty can always open a nonprize door, there’s still equal probability for each door. If
that were the case, the player might as well keep the original door. This intuition is so
attractive that when Marilyn vos Savant asserted that the player should switch (in her
Parade magazine column), there were reportedly 10,000 letters asserting she was wrong.

A correct intuitive route is to observe that Monty’s door is fixed. The probability that
the player has the right door is 1/3 before Monty opens the nonprize door, and remains 1/3
after that door is open. This means that the probability the prize is behind one of the other
doors is 2/3, both before and after Monty opens the nonprize door. After Monty opens the
nonprize door, the player gets a 2/3 chance of winning by switching to the remaining door.
If the player wants to win, they should switch doors.

One way to prove to yourself that switching improves your chances of winning is through
simulation. In fact, even deciding how to code the problem may be enough to convince
yourself to switch.

In the simulation, we assign the prize to a door, then make an initial guess. If the guess
was right, Monty can open either door. We’ll switch to the other door. Rather than have
Monty choose a door, we’ll choose one, under the assumption that Monty opened the other
one. If our initial guess was wrong, Monty will open the only remaining nonprize door, and
when we switch we’ll be choosing the prize door.

We write two helper functions. In one, Monty opens a door, choosing at random among
the nonchosen doors if the initial choice was correct, or choosing the one nonselected non-
prize door if the initial choice was wrong. The other function returns the door chosen by
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swapping. We use the sample() function (2.3.3) to randomly pick one value. We then use
these functions on each trial with the apply() statement (A.5.2).

> numsim = 10000

> doors = 1:3

> opendoor = function(x) {

# input x is a vector with two values

# first element is winner, second is choice

if (x[1]==x[2]) # guess was right

return(sample(doors[-c(x[1])], 1))

else return(doors[-c(x[1],x[2])])

}

> opendoor(c(1, 1)) # can return 2 or 3

[1] 3

> opendoor(c(1, 2)) # must return 3!

[1] 3

Recall that Monty can choose either door 2 or 3 to open when the winning door is initially
chosen. When the winning door and initial choice differ (as in the latter example), there is
only one door that can be opened.

> swapdoor = function(x) { return(doors[-c(x[1], x[2])]) }

> swapdoor(c(1,1))

[1] 2 3

> swapdoor(c(1,2))

[1] 3

The swapdoor() function works in a similar fashion. Once these parts are in place, the
simulation is straightforward.

> winner = sample(doors, numsim, replace=TRUE)

> choice = sample(doors, numsim, replace=TRUE)

> open = apply(cbind(winner, choice), 1, opendoor)

> newchoice = apply(cbind(open, choice), 1, swapdoor)

> cat("Without switching, won ",

round(sum(winner==choice)/numsim*100, 1),

" percent of the time.\n", sep="")

Without switching, won 33 percent of the time.

> cat("With switching, won ",

round(sum(winner==newchoice)/numsim*100, 1),

" percent of the time.\n", sep="")

With switching, won 67 percent of the time.

We note (with some amusement) that Monty didn’t actually offer this choice to the players:
see http://tinyurl.com/montynoswitch for an interview with the details.
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10.2.4 Censored survival

A similar problem demonstrates the ways that empirical simulations can complement ana-
lytic (closed-form) solutions. Consider an example where a recording device that measures
remote activity is placed in a remote location. The time, T , to failure of the remote device
has an exponential distribution with mean of 3 years. Since the location is so remote, the
device will not be monitored during its first two years of service. As a result, the time to
discovery of its failure is X = max(T, 2). The problem here is to determine the expected
value of the observed variable X (e.g., we need to find E[X]).

The analytic solution is fairly straightforward. We need to evaluate:

E[X ] =

∫ 2

0

2 ∗ f(u)du+

∫ ∞
2

u ∗ f(u)du,

where f(u) = 3 exp (−3u) for u > 0. We can use the calculus functions in the mosaic

package (Section 3.2.8) to find the answer.

> options(digits=6)

> library(mosaic)

> rate = 1/3

> F1 = antiD((lambda*exp(-lambda*t)) ~ t, lambda=rate) # f(T)

> F2 = antiD((t*lambda*exp(-lambda*t)) ~ t, lambda=rate) # E[T]

> 2*(F1(t=2) - F1(t=0)) + (F2(t=Inf) - F2(t=2))

[1] 3.54025

It’s also straightforward to simulate to confirm the answer.

> numsim = 100000

> fail = rexp(numsim, rate=rate)

> # map all values less than 2 to be 2

> fail[fail<2] = 2 # or mean(pmax(2, fail))

> confint(t.test(~ fail))

mean of x lower upper level

3.53548 3.51926 3.55170 0.95000

10.3 Further resources

Rizzo [136] provides a comprehensive introduction to statistical computing in R, while [68]
and [67] describe the use of R for simulation studies.
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Chapter 11

Special topics

In this chapter, we demonstrate some key programming and statistical techniques that
statisticians may encounter in daily practice.

11.1 Processing by group

One of the most common needs in analytic practice is to replicate analyses for subgroups
within the data. For example, one may need to stratify a linear regression by gender or
repeat a modeling exercise multiple times for each replicate in a simulation experiment. The
basic tools for replication in base R include the by() function and the apply() family of
functions (A.5.2). The syntax for these functions can be complicated, however, and various
packages exist that can replicate and enhance the functionality provided by apply(). One
of these is the dplyr package developed by Hadley Wickham, demonstrated below; another
is the doBy package.

11.1.1 Means by group
Examples: 5.7.4 and 2.6.4

The simplest and possibly most common task is to generate simple statistics by a grouping
variable. Here we simulate some data to demonstrate. We first use the tapply() function.

> options(digits=3)

> cat = as.factor(rep(c("blue","red"), each=50))

> y = rnorm(100)

> tapply(y, cat, mean)

blue red

-0.0335 0.2227

or

> xtabs(~ ave(y, cat, FUN=mean))

ave(y, cat, FUN = mean)

-0.0334599326462414 0.222658846376363

50 50

167
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or

> library(mosaic)

> mean(y ~ cat)

blue red

-0.0335 0.2227

or

> library(dplyr)

> ds = data.frame(y, cat)

> groups = group_by(ds, cat)

> summarise(groups, mean=mean(y))

Source: local data frame [2 x 2]

cat mean

1 blue -0.0335

2 red 0.2227

The tapply() function applies the function given as the third argument (in this case
mean()) to the vector in the first argument (y) stratified by every unique set of values
of the list of factors in the second argument (x). It returns a vector of that length with the
results of the function. Similar functionality is available using the by() or ave() functions
(see example(ave)), the latter of which returns a vector of the same length as x with each
element equal to the mean of the subset of observations with the factor level specified by
y. Many functions (e.g., mean(), median() and favstats()) within the mosaic package
support a lattice-style modeling language for summary statistics. Finally, the group by()

and summarise() functions in the dplyr package provide a powerful mechanism for grouped
operations.

11.1.2 Linear models stratified by each value of a grouping variable

We’ll use the HELP data to assess the relationship between age and drinking, by gender.
We begin by showing a way to do this from scratch, i.e., without convenience functions. It’s
often a useful programming exercise to code such routines, rather than relying on existing
functions or packages.

> ds = read.csv("http://www.amherst.edu/~nhorton/r2/datasets/help.csv")

> uniquevals = unique(ds$female)

> numunique = length(uniquevals)

> formula = as.formula(i1 ~ age)

> p = length(coef(lm(formula, data=ds)))

> params = matrix(rep(0, numunique*p), nrow=p, ncol=numunique)

> for (i in 1:length(uniquevals)) {

cat("grouping:", i, "\n")

params[,i] = coef(lm(formula, data=subset(ds,

female==uniquevals[i])))

}

grouping: 1

grouping: 2
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> rownames(params) = c("Intercept", "Age")

> colnames(params) = ifelse(uniquevals==0, "male", "female")

> params

male female

Intercept -3.693 5.829

Age 0.635 0.251

In the above code, separate regressions are fit for each value of the grouping variable z

through use of a for loop. This requires the creation of a matrix of results params to be
set up in advance, of the appropriate dimension (number of rows equal to the number of
parameters (p = k + 1) for the model, and number of columns equal to the number of
levels for the grouping variable z). Within the loop, the lm() function is called, and the
coefficients from each fit are saved in the appropriate column of the params matrix.

A simpler and more elegant approach is to use the dlply() and ldply() functions from
Hadley Wickham’s plyr package.

> library(plyr)

> models = dlply(ds, "female", function(df) {

lm(i1 ~ age, data=df)

})

> ldply(models, coef)

female (Intercept) age

1 0 -3.69 0.635

2 1 5.83 0.251

The dlply() function splits a data frame, applies a function to each of the parts, and returns
the results in a list. The ldply() function reverses this process: it splits a list, applies a
function to each element, and returns a data frame. Note that we define the function
within the call to dlply(), without giving it a name. This is often a useful technique in
apply()-like functions (A.5.2).

11.2 Simulation-based power calculations

In some settings, analytic power calculations (5.5) may not be readily available. A straight-
forward alternative is to estimate power empirically, simulating data from the proposed
design under given assumptions regarding the alternative.

We consider a study of children clustered within families. Each family has three children;
in some families all three children have an exposure of interest, while in others just one
child is exposed. In the simulation, we assume that the outcome is multivariate normal
with higher mean for those with the exposure, and 0 for those without. A compound
symmetry correlation is imposed, with equal variances for each child. We assess the power
to detect an exposure effect where the intended analysis uses a random intercept model
(7.4.2) to account for the clustering within families. With this simple covariance structure,
it is trivial to generate correlated errors directly. We specify the correlation matrix directly
and simulate the multivariate normal.

> library(MASS)

> library(nlme)

> # initialize parameters and building blocks

> effect = 0.35 # effect size
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> corr = 0.4 # intrafamilial correlation

> numsim = 1000

> n1fam = 50 # families with 3 exposed

> n2fam = 50 # families with 1 exposed and 2 unexposed

> # 3x3 compound symmetry matrix

> vmat = matrix(c

( 1, corr, corr,

corr, 1 , corr,

corr, corr, 1 ), nrow=3, ncol=3)

> # 1 1 1 ... 1 0 0 0 ... 0

> x = c(rep(1, n1fam), rep(1, n1fam), rep(1, n1fam),

rep(1, n2fam), rep(0, n2fam), rep(0, n2fam))

> # 1 2 ... n1fam 1 2 ... n1fam ...

> id = c(1:n1fam, 1:n1fam, 1:n1fam,

(n1fam+1:n2fam), (n1fam+1:n2fam), (n1fam+1:n2fam))

> power = rep(0, numsim) # initialize vector for results

The concatenate function (c()) is used to glue together the appropriate elements of the
design matrices and underlying correlation structure.

> for (i in 1:numsim) {

# all three exposed

grp1 = mvrnorm(n1fam, c(effect, effect, effect), vmat)

# only first exposed

grp2 = mvrnorm(n2fam, c(effect, 0, 0), vmat)

# concatenate the output vector

y = c(grp1[,1], grp1[,2], grp1[,3],

grp2[,1], grp2[,2], grp2[,3])

group = groupedData(y ~ x | id) # specify dependence structure

res = lme(group, random = ~ 1) # fit random intercept model

pval = summary(res)$tTable[2,5] # grab results for main parameter

power[i] = pval<=0.05 # is it statistically significant?

}

The proportion of rejections is the empirical estimate of power. This yields the following
power estimate (and confidence interval due to simulation).

> cat("\nEmpirical power for effect size of ", effect,

" is ", round(sum(power)/numsim,3), ".\n", sep="")

Empirical power for effect size of 0.35 is 0.841.

> cat("95% confidence interval is",

round(prop.test(sum(power), numsim)$conf.int, 3), "\n")

95% confidence interval is 0.817 0.863
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11.3 Reproducible analysis and output

The key idea of reproducible analysis is that data analysis code, results, and interpretation
should all be located together. This stems from the concept of “literate programming” (in
the sense of Knuth [86]) and facilitates transparent and repeatable analysis [95, 52]. Repro-
ducible analysis systems, which are becoming more widely adopted [13], help to provide a
clear audit trail and automate report creation. Ultimately, the goal is to avoid post-analysis
cut-and-paste processing, which has a high probability of introducing errors.

There are various implementations of reproducible analysis in R [95, 199], several of
which made the production of this book possible. Each of these systems functions by
allowing the analyst to combine code and text into a single file. This file is processed to
extract the code, run it through the statistical systems in batch mode, collect the results,
then integrate the text, code, output, and graphical displays into the final document. The
systems available in R are extensive and are an active area of development.

The most powerful and flexible system is the knitr package (due to Yihui Xie [199]).
The package can be used by writing a file in the LATEX document markup language, but
another useful option is to write it in the far simpler Markdown format. Markdown files
can be converted to a variety of common display and editing formats, such as PDF and
Microsoft Word, using Pandoc (http://johnmcfarlane.net/pandoc, a “Swiss Army knife”
of file conversion).

The knitr package is well-integrated with RStudio, and both LATEX/PDF and Mark-
down/Pandoc conversions to several formats are provided via single-click mechanisms. More
details can be found in [199] and [47] as well as the CRAN reproducible analysis task view
(see also http://yihui.name/knitr).

As an example of how these systems work, we demonstrate a document written in the
Markdown format using data from the built-in cars data frame. Within RStudio, a new
template R Markdown file can be generated by selecting R Markdown from the New File

option on the File menu. This generates the dialog box displayed in Figure 11.1. The
default output format is HTML, but other options are available.

Figure 11.2 displays this default Markdown input file. The file is given a title (Sample R

Markdown example) with output format set by default to HTML. Simple markup (such as
bolding) is added through use of the ** characters before and after the word Help. Blocks
of code are begun using the ‘‘‘{r} command and closed with a ‘‘‘ command (three
back quotes). In this example, the correlation between two variables is calculated and a
scatterplot is generated.

The formatted output can be generated and displayed by clicking the Knit HTML button
in RStudio, or by using the commands in the following code block, which can also be used
when running R without the benefit of RStudio.

> library(markdown); library(knitr)

> knit("filename.Rmd") # creates filename.md

> markdownToHTML("filename.md", "filename.html")

> browseURL("filename.html")

The knit() function extracts the R commands from a specially formatted R Markdown
input file (filename.Rmd), evaluates them, and integrates the resulting output, including
text and graphics, into an intermediate file (filename.md). This file is then processed
(using markdownToHTML()) to create a final display file in HTML format. A screenshot of
the results of performing these steps on the .Rmd file displayed in Figure 11.2 is displayed
in Figure 11.3.



i
i

“K23166” — 2015/1/28 — 9:35 — page 172 — #198 i
i

i
i

i
i

172 CHAPTER 11. SPECIAL TOPICS

Figure 11.1: Generating a new R Markdown file in RStudio

The knit() function operates, by default, on the convention that input files ending with
.Rmd generate a .md (Markdown) file, and files ending with .Rnw generate a .tex (LATEX)
file.

Alternatively, a PDF or Microsoft Word file can be generated in RStudio by selecting
New from the R Markdown menu, then clicking on the PDF or Word options. RStudio also
supports the creation of R Presentations using a variant of the R Markdown language.
Instructions and an example can be found by opening a new R presentations document
in RStudio.

A LATEX file can be generated using the following commands, where filename.Rnw is a
LATEX file with specific codes indicating the presence of R statements.

> library(knitr)

> knit("filename.Rnw")

The resulting filename.tex file could then be compiled with pdflatex in the operating
system, resulting in a PDF file. This is done automatically using the Compile to PDF button
in RStudio.

It’s often useful to evaluate the code separately. The Stangle() function creates a file
containing the code chunks and omitting the text. The resulting file could be run as a
script using source(), and would generate just the results seen in the woven document.
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---

title: "Sample R Markdown example"

author: "Nick Horton"

date: "October 4, 2014"

output: html_document

---

This is an R Markdown document. Markdown is a simple formatting syntax for

authoring HTML, PDF, and MS Word documents. For more details on using R

Markdown see <http://rmarkdown.rstudio.com>.

When you click the **Knit** button a document will be generated that includes

both content as well as the output of any embedded R code chunks within the

document. You can embed an R code chunk like this:

‘‘‘{r}

summary(cars)

‘‘‘

You can also embed plots, for example:

‘‘‘{r, echo=FALSE}

plot(cars)

‘‘‘

Note that the ‘echo = FALSE‘ parameter was added to the code chunk to prevent

printing of the R code that generated the plot.

Figure 11.2: Sample Markdown input file

The spin() function in the knitr package takes a formatted R script and produces an R
Markdown document. This can be helpful for those moving from the use of scripts to more
structured Markdown files.

11.4 Advanced statistical methods

In this section, we discuss implementations of modern statistical methods and techniques,
including Bayesian methods, propensity score analysis, missing data methods, and estima-
tion of finite mixture models.

11.4.1 Bayesian methods

Bayesian methods are increasingly commonly utilized, and implementations of many models
are available in R.

We focus here on Markov Chain Monte Carlo (MCMC) methods for model fitting,
which are quite general and much more flexible than closed form solutions. Diagnosis of
convergence is a critical part of any MCMC model fitting (see Gelman et. al., [50] for an
accessible introduction). Support for model assessment is provided, for example, in the
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Figure 11.3: Formatted output from R Markdown example

coda (Convergence Diagnosis and Output Analysis) package written by Kate Cowles and
others.

> library(MCMCpack)

> # linear regression

> mod1 = MCMCregress(formula, burnin=1000, mcmc=10000, data=ds)

> # logistic regression

> mod2 = MCMClogit(formula, burnin=1000, mcmc=10000, data=ds)

> # Poisson regression

> mod3 = MCMCpoisson(formula, burnin=1000, mcmc=10000, data=ds)

The CRAN task view on Bayesian inference provides an overview of the packages that
incorporate some aspect of Bayesian methodologies. Table 11.1 displays modeling functions
available within the MCMCpack package (including the three listed above). By default, the
prior mean and precision are set to 0, equivalent to an improper uniform distribution.

More general MCMC models can also be fit in R, typically in packages that call stand-
alone MCMC software such as OpenBUGS, JAGS, or WinBUGS. These packages include
BRugs, R2WinBUGS, rjags, R2jags, and runjags.
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Table 11.1: Bayesian modeling functions available within the MCMCpack package

MCMCbinaryChange() MCMC for a Binary Multiple Changepoint
Model

MCMCdynamicEI() MCMC for Quinn’s Dynamic Ecological Infer-
ence Model

MCMCdynamicIRT1d() MCMC for Dynamic One-Dimensional Item
Response Theory Model

MCMCfactanal() MCMC for Normal Theory Factor Analysis
Model

MCMChierEI() MCMC for Wakefield’s Hierarchical Ecological
Inference Model

MCMCirt1d() MCMC for One-Dimensional Item Response
Theory Model

MCMCirtHier1d() MCMC for Hierarchical One-Dimensional Item
Response Theory Model, Covariates Predicting
Latent Ideal Point (Ability)

MCMCirtKd() MCMC for K-Dimensional Item Response The-
ory Model

MCMCirtKdHet() MCMC for Heteroskedastic K-Dimensional
Item Response Theory Model

MCMCirtKdRob() MCMC for Robust K-Dimensional Item Re-
sponse Theory Model

MCMClogit() MCMC for Logistic Regression
MCMCmetrop1R() Metropolis Sampling from User-Written R

function
MCMCmixfactanal() MCMC for Mixed Data Factor Analysis Model
MCMCmnl() MCMC for Multinomial Logistic Regression
MCMCoprobit() MCMC for Ordered Probit Regression
MCMCordfactanal() MCMC for Ordinal Data Factor Analysis

Model
MCMCpoisson() MCMC for Poisson Regression
MCMCpoissonChange() MCMC for a Poisson Regression Changepoint

Model
MCMCprobit() MCMC for Probit Regression
MCMCquantreg() Bayesian Quantile Regression Using Gibbs

Sampling
MCMCregress() MCMC for Gaussian Linear Regression
MCMCSVDreg() MCMC for SVD Regression
MCMCtobit() MCMC for Gaussian Linear Regression with a

Censored Dependent Variable

11.4.1.1 Logistic regression via MCMC

One use for Bayesian logistic regression might be in the case of complete or quasi-complete
separation. Loosely, this occurs when all the subjects in some level of the exposure variables
have the same outcome status. Here, we simulate such data and demonstrate how to use
Bayesian MCMC methods to fit the model. The simulated data have 100 trials in each
of two levels of a predictor, with 0 and 5 events in the two levels. Note that the classical
estimated odds ratio is infinity, or undefined, and that different software implementations
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behave unpredictably in this instance.

> events.0=0 # for X = 0

> events.1=5 # for X = 1

> x = as.factor(c(rep(0,100), rep(1,100)))

> y = c(rep(0,100-events.0), rep(1,events.0),

rep(0, 100-events.1), rep(1, events.1))

>

> library(MCMCpack)

> logmcmc = MCMClogit(y ~ x, burnin=100, mcmc=2000, b0=0, B0=.04)

> summary(logmcmc)

Iterations = 101:2100

Thinning interval = 1

Number of chains = 1

Sample size per chain = 2000

1. Empirical mean and standard deviation for each variable,

plus standard error of the mean:

Mean SD Naive SE Time-series SE

(Intercept) -6.50 1.70 0.0381 0.0931

x1 3.42 1.77 0.0395 0.1009

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%

(Intercept) -10.606 -7.48 -6.26 -5.30 -3.97

x1 0.708 2.15 3.15 4.52 7.50

Under the default normal prior, the mean of the prior is set with b0; B0 is the prior
precision. The burnin and mcmc options define the number of iterations discarded before
inference iterations are captured, and the number of iterations for inference, respectively.

11.4.1.2 Poisson regression

In addition to problematic examples such as the quasi-complete separation seen above, it
may be desirable to consider Bayesian techniques in more conventional settings. Here, we
demonstrate a Poisson regression using the HELP dataset. We use the MCMCpoisson()

function.

> library(MCMCpack)

> posterior = with(ds,

MCMCpoisson(i1 ~ female + as.factor(substance) + age,

burnin=100, mcmc=2000))
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> summary(posterior)

Iterations = 101:2100

Thinning interval = 1

Number of chains = 1

Sample size per chain = 2000

1. Empirical mean and standard deviation for each variable,

plus standard error of the mean:

Mean SD Naive SE Time-series SE

(Intercept) 2.8888 0.06255 1.40e-03 0.005864

female -0.1728 0.03109 6.95e-04 0.002888

as.factor(substance)cocaine -0.8140 0.02817 6.30e-04 0.002329

as.factor(substance)heroin -1.1166 0.03477 7.78e-04 0.003252

age 0.0135 0.00155 3.47e-05 0.000147

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%

(Intercept) 2.7703 2.8454 2.8871 2.9349 3.0095

female -0.2355 -0.1946 -0.1734 -0.1508 -0.1105

as.factor(substance)cocaine -0.8676 -0.8325 -0.8134 -0.7935 -0.7615

as.factor(substance)heroin -1.1856 -1.1391 -1.1153 -1.0922 -1.0485

age 0.0105 0.0124 0.0135 0.0146 0.0163

Default plots are available for MCMC objects returned by MCMCpack. These can be displayed
using the command plot(posterior).

11.4.2 Propensity scores

Propensity scores can be used to attempt causal inference in an observational setting where
there are potential confounding factors [138, 139]. Here we consider comparisons of the
physical component scores (PCS) for homeless vs. nonhomeless subjects in the HELP
study. Does homelessness make people less physically competent?

First, we examine the observed difference in PCS between homeless and housed.

> lm1 = lm(pcs ~ homeless, data=ds)

> summary(lm1)

Call:

lm(formula = pcs ~ homeless, data = ds)

Residuals:

Min 1Q Median 3Q Max

-34.93 -7.90 0.64 8.39 25.81

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 49.001 0.688 71.22 <2e-16 ***
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homeless -2.064 1.013 -2.04 0.042 *

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 10.7 on 451 degrees of freedom

Multiple R-squared: 0.00912,Adjusted R-squared: 0.00693

F-statistic: 4.15 on 1 and 451 DF, p-value: 0.0422

We see statistically significant lower mean PCS for the homeless (p = 0.042). However,
subjects were not randomized to homelessness. Homelessness may be a result of confounding
factors that are associated with homelessness and cause reduced physical competence. If
we want to make causal inference about the effects of homelessness, we need to adjust for
these confounders.

11.4.2.1 Regression adjustment

One approach to this problem involves controlling for possible confounders (in this case,
age, gender, number of drinks, and MCS score) in a multiple regression model (6.1.1).

> lm2 = lm(pcs ~ homeless + age + female + i1 + mcs, data=ds)

> summary(lm2)

Call:

lm(formula = pcs ~ homeless + age + female + i1 + mcs, data = ds)

Residuals:

Min 1Q Median 3Q Max

-35.77 -6.67 0.41 7.67 26.59

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 58.2122 2.5667 22.68 < 2e-16 ***

homeless -1.1471 0.9979 -1.15 0.25099

age -0.2659 0.0641 -4.15 4e-05 ***

female -3.9552 1.1514 -3.44 0.00065 ***

i1 -0.0808 0.0254 -3.18 0.00156 **

mcs 0.0703 0.0381 1.85 0.06540 .

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 10.2 on 447 degrees of freedom

Multiple R-squared: 0.112,Adjusted R-squared: 0.102

F-statistic: 11.2 on 5 and 447 DF, p-value: 3.21e-10

Controlling for the other predictors has caused the parameter estimate to attenuate to the
point that it is no longer statistically significant (p = 0.25). While controlling for other
confounders may be effective in this problem, other situations may be more vexing, par-
ticularly if the dataset is small and the number of measured confounders is large. In such
settings, the propensity score (the probability of being homeless, conditional on other fac-
tors), can be used. Typical applications include regression adjustment for the propensity to
exposure, matching on the propensity to exposure, and stratification into similar levels of
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propensity. Propensity scores also allow easy investigation of the overlap in covariate space,
a requirement for effective multiple regression adjustment that is often ignored. Here, we
demonstrate estimating the propensities, using them in a regression adjustment, and match-
ing. Assessment of overlap resembles the assessment of the linear discriminant analysis in
7.10.18. For an example of stratification, see http://tinyurl.com/sasrblog-propensity.

11.4.2.2 Estimating the propensity score

A typical way to estimate the propensity score is to model the exposure as a function of
covariates in a logistic regression model (7.1.1). We use a formula object (see 6.1.1) to
specify the model.

> form = formula(homeless ~ age + female + i1 + mcs)

> glm1 = glm(form, family=binomial, data=ds)

> propensity = glm1$fitted

The glm1 object has a fitted element that contains the predicted probability from the
logistic regression. For ease of use, we extract it to a new object.

11.4.2.3 Regression adjustment for propensity

The simplest use of the propensity score is to include it as a continuous covariate in a
regression model.

> lm3 = lm(pcs ~ homeless + propensity, data=ds)

> summary(lm3)

Call:

lm(formula = pcs ~ homeless + propensity, data = ds)

Residuals:

Min 1Q Median 3Q Max

-34.03 -7.62 0.93 8.24 25.65

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 54.54 1.83 29.88 <2e-16 ***

homeless -1.18 1.04 -1.14 0.2569

propensity -12.89 3.94 -3.27 0.0012 **

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 10.6 on 450 degrees of freedom

Multiple R-squared: 0.0321,Adjusted R-squared: 0.0278

F-statistic: 7.47 on 2 and 450 DF, p-value: 0.000645

As with the multiple regression model, controlling for the propensity also leads to an at-
tenuated estimate of the homeless coefficient.

11.4.2.4 Matching on propensity score

Another approach matches exposed and unexposed (homeless and nonhomeless) subjects
with similar propensity scores. This typically generates a sample that is approximately
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balanced on the terms included in the propensity model. Since a confounded effect requires
a disequilibrium of the confounders between the groups, this can be an effective treatment.
Matching and comparison are straightforward to do using the Matching package.

> library(Matching)

> rr = with(ds, Match(Y=pcs, Tr=homeless, X=propensity, M=1))

> summary(rr)

Estimate... -0.80207

AI SE...... 1.4448

T-stat..... -0.55516

p.val...... 0.57878

Original number of observations.............. 453

Original number of treated obs............... 209

Matched number of observations............... 209

Matched number of observations (unweighted). 252

We see that the causal estimate of −0.80 in the matched comparison is not significantly
different from zero (p = 0.58), which is similar to the results from the other approaches
that accounted for the possible confounders.

11.4.2.5 Assessing balance after matching

It would be wise to make a further investigation of whether the matching “worked,” in the
sense of making the groups more similar with respect to the potential confounders.

For example, here are the means and standard deviations among the whole sample
(including just two covariates for space reasons).

Note that while balance was improved for both covariates, there remains some difference
between the groups. The MatchBalance() function can be used to describe the distribution
of the predictors (by homeless status) before and after matching (to save space, only the
results for age are displayed).

> longout = capture.output(MatchBalance(form, match.out=rr,

nboots=10, data=ds))

> write(longout[1:20], file = "")

***** (V1) age *****

Before Matching After Matching

mean treatment........ 36.368 36.368

mean control.......... 35.041 36.423

std mean diff......... 16.069 -0.65642

mean raw eQQ diff..... 1.5981 0.94841

med raw eQQ diff..... 1 1

max raw eQQ diff..... 7 10

mean eCDF diff........ 0.037112 0.022581

med eCDF diff........ 0.026365 0.019841

max eCDF diff........ 0.10477 0.083333
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var ratio (Tr/Co)..... 1.329 1.2671

T-test p-value........ 0.070785 0.93902

KS Bootstrap p-value.. 0.2 0.2

KS Naive p-value...... 0.16881 0.34573

KS Statistic.......... 0.10477 0.083333

The capture.output() function is used to send the voluminous output to a character string,
so that only a subset can be displayed. After matching, the age variables had distributions
that were considerably closer to each other.

The Match() function can also be used to generate a dataset containing only the matched
observations (see the index.treated and index.control components of the Match object).

11.4.3 Bootstrapping

Bootstrapping is a powerful and elegant approach to estimating the sampling distribution
of statistics. It can be implemented even in many situations where asymptotic results
are difficult to find or otherwise unsatisfactory [33]. Bootstrapping proceeds using three
steps: first, resample the dataset (with replacement) many times (typically on the order
of 10,000); then calculate the desired statistic from each resampled dataset; finally, use
the distribution of the resampled statistics to estimate the standard error of the statistic
(normal approximation method) or construct a confidence interval using quantiles of that
distribution (percentile method). There are several ways to bootstrap in R.

As an example, we consider estimating the standard error and 95% confidence interval
for the coefficient of variation (CV), defined as σ/µ, for a random variable X . We’ll generate
normal data with a mean and variance of 1.

> x = rnorm(1000, mean=1)

The user must provide code to calculate the statistic of interest as a function.

> covfun = function(x) { # multiply CV by 100

return(100*sd(x)/mean(x))

}

The replicate() function is the base R tool for repeating function calls. Here, we nest
within it a call to our covfun() function and a call to sample the data with replacement
using the sample() function.

> options(digits=4)

> res2 = replicate(2000, covfun(sample(x, replace=TRUE)))

> quantile(res2, c(.025, .975))

2.5% 97.5%

98.85 116.07

The do() function from the mosaic package provides an alternative syntax, while its
resample() function is a convenience function that provides appropriate defaults to sample.
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> options(digits=4)

> covfun(x)

[1] 106.5

> library(mosaic)

> res = do(2000) * covfun(resample(x))

> quantile(res$result, c(.025, .975))

2.5% 97.5%

98.31 115.56

The percentile interval is simple to calculate from the observed bootstrapped statistics. If
the distribution of the bootstrap samples is approximately normally distributed, a t interval
could be created by calculating the standard deviation of the bootstrap samples and finding
the appropriate multiplier for the confidence interval (more information can be found in the
mosaic package resampling vignette). Plotting the bootstrap sample estimates is helpful
to determine the form of the bootstrap distribution [65]. The do() function provides a
natural syntax for repetition (see 2.3.3 and replicate()). The boot package also provides
a rich set of routines for bootstrapping, including support for bias-corrected and accelerated
intervals.

11.4.4 Missing data

11.4.4.1 Account for missing values

Missing values are ubiquitous in most real-world investigations. R includes support for
missing value codes, though there are important aspects that need to be kept in mind by
an analyst, particularly when deriving new variables or fitting models.

Missing values are denoted by NA, a logical constant of length 1 that has no numeric
equivalent. The missing value code is distinct from the character string value "NA". The
default behavior for most R functions is to return NA if any of the input vectors have any
missing values.

> x = c(1, 2, NA)

> mean(x)

[1] NA

> mean(x, na.rm=TRUE)

[1] 1.5

> sum(na.omit(x))

[1] 3

> sum(!is.na(x))

[1] 2

The na.rm option is used within the mean() function to override the default behavior, omit
missing values, and calculate the result on the complete cases. Many other functions allow
the specification of an na.action option (e.g., for the lm() function). Common na.action

functions include na.exclude(), na.omit(), and na.fail() (see also na.action() and
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options("na.action")). The ! (not) Boolean operator allows counting of the number of
observed values (since is.na() returns a logical set to TRUE if an observation is missing).

The na.omit() function returns the dataframe with missing values omitted (if a value
is missing for a given row, all observations are removed, aka listwise deletion, see also
naresid()).

The scan() and read.table() functions have the default argument na.strings="NA".
This can be used to recode on input for situations where a numeric missing value code has
been used. The table() function provides the exclude=NULL option to include a category
for missing values. R has other kinds of “missing” values, corresponding to floating-point
standards (see also the is.infinite() and is.nan() functions).

> # remap values of x with missing value code of 999 to missing

> w = c(1, 2, 999)

> w[w==999] = NA

> w

[1] 1 2 NA

or

> w = c(1,2,999)

>

> is.na(w) = w==999 # set 999’s to missing

> w

[1] 1 2 NA

Arbitrary numeric missing values (999 in this example) can be mapped to R missing value
codes using indexing and assignment. Here, all values of x that are 999 are replaced by the
missing value code of NA. The na.pattern() function in the Hmisc package can be used to
determine the different patterns of missing values in a dataset.

11.4.4.2 Account for missing data using multiple imputation

Here, we demonstrate some of the capabilities for fitting incomplete data regression models
using multiple imputation [142, 149, 70] implemented with chained equation models [177,
131, 176].

In this example, we replicate an analysis from 7.10.1 in a version of the HELP dataset
that includes missing values for several of the predictors. While not part of the regression
model of interest, the mcs and pcs variables are included in the imputation models, which
may make the missing-at-random assumption more plausible [27].

We begin by reading in the data, then using the na.pattern() function from the Hmisc

package to characterize the patterns of missing values.

> ds =

read.csv("http://www.amherst.edu/~nhorton/r2/datasets/helpmiss.csv")

> smallds = with(ds, data.frame(homeless, female, i1, sexrisk, indtot,

mcs, pcs))

> summary(smallds)

homeless female i1 sexrisk

Min. :0.000 Min. :0.000 Min. : 0.0 Min. : 0.00
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1st Qu.:0.000 1st Qu.:0.000 1st Qu.: 3.0 1st Qu.: 3.00

Median :0.000 Median :0.000 Median : 13.0 Median : 4.00

Mean :0.466 Mean :0.236 Mean : 18.3 Mean : 4.63

3rd Qu.:1.000 3rd Qu.:0.000 3rd Qu.: 26.0 3rd Qu.: 6.00

Max. :1.000 Max. :1.000 Max. :142.0 Max. :14.00

NA’s :1

indtot mcs pcs

Min. : 4.0 Min. : 6.76 Min. :14.1

1st Qu.:32.0 1st Qu.:21.66 1st Qu.:40.4

Median :37.5 Median :28.56 Median :48.9

Mean :35.7 Mean :31.55 Mean :48.1

3rd Qu.:41.0 3rd Qu.:40.64 3rd Qu.:57.0

Max. :45.0 Max. :62.18 Max. :74.8

NA’s :14 NA’s :2 NA’s :2

> library(Hmisc)

> na.pattern(smallds)

pattern

0000000 0000011 0000100 0001100

454 2 13 1

There are 14 subjects missing indtot, 2 missing mcs as well as pcs, and 1 missing sexrisk.
In terms of patterns of missingness, there are 454 observations with complete data, 2 missing
both mcs and pcs, 13 missing indtot alone, and 1 missing sexrisk and indtot. Fitting
a logistic regression model (7.1.1) using the available data (n = 456) yields the following
results.

> glm(homeless ~ female + i1 + sexrisk + indtot, binomial,

data=smallds)

Call: glm(formula = homeless ~ female + i1 + sexrisk + indtot,

family = binomial, data = smallds)

Coefficients:

(Intercept) female i1 sexrisk indtot

-2.5278 -0.2401 0.0232 0.0562 0.0493

Degrees of Freedom: 455 Total (i.e. Null); 451 Residual

(14 observations deleted due to missingness)

Null Deviance: 630

Residual Deviance: 586 AIC: 596

Next, the mice() function within the mice package is used to impute missing values for
sexrisk, indtot, mcs, and pcs. These results are combined using glm.mids(), and results
are pooled and reported. Note that by default, all variables within the smallds data frame
are included in each of the chained equations (so that mcs and pcs are used as predictors
in each of the imputation models).
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> library(mice)

> imp = mice(smallds, m=20, maxit=25, seed=42, print=FALSE)

> summary(pool(glm.mids(homeless ~ female + i1 + sexrisk +

indtot, family=binomial, data=imp)))

est se t df Pr(>|t|) lo 95 hi 95

(Intercept) -2.53050 0.593809 -4.261 450.7 2.474e-05 -3.69748 -1.36352

female -0.24536 0.243884 -1.006 462.0 3.149e-01 -0.72462 0.23390

i1 0.02313 0.005615 4.119 462.4 4.515e-05 0.01209 0.03416

sexrisk 0.05975 0.035810 1.669 461.4 9.587e-02 -0.01062 0.13012

indtot 0.04888 0.015796 3.095 447.6 2.094e-03 0.01784 0.07993

nmis fmi lambda

(Intercept) NA 0.022932 0.018605

female 0 0.006338 0.002045

i1 0 0.005665 0.001373

sexrisk 1 0.007615 0.003322

indtot 14 0.026436 0.022095

The summary includes the number of missing observations as well as the fraction of missing
information (fmi). While the results are qualitatively similar, they do differ, which is not
surprising given the different imputation models used. Support for other missing data
models is available in the mix and mitools packages.

11.4.5 Finite mixture models with concomitant variables

Finite mixture models (FMMs) can be used in settings where some unmeasured classification
separates the observed data into groups with different exposure–outcome relationships. One
familiar example of this is a zero-inflated model (7.2.1), where some observations come from
a degenerate distribution with all mass at 0. In that case, the exposure–outcome relationship
is less interesting in the degenerate distribution group, but there would be considerable
interest in the estimated probability of group membership. Another possibly familiar setting
is the estimation of a continuous density as a mixture of normal distributions.

More generally, there could be several groups, with “concomitant” covariates predicting
group membership. Each group might have different sets of predictors and outcomes from
different distribution families. On the other hand, in a “homogenous” mixture setting,
all groups have the same distributional form, but with different parameter values. If the
covariates in the model are the same, this setting is similar to an ordinary regression model
where every observed covariate interacts with the (unobserved) group membership variable.

We’ll demonstrate with a simulated dataset. We create a variable x that predicts both
group membership and an outcome y with different linear regression parameters depending
on group. The mixing probability follows a logistic regression with intercept = −1 and
slope (log odds ratio) = 2.

The intercept and slope for the outcome are (0, 1) and (3, 1.2) for the groups, respectively.
We leave as an exercise for the reader to explore the consequences of naively fitting the model
but ignoring the mixture.

> set.seed(1492)

> n = 10000

> x = rnorm(n)
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> probgroup1 = exp(-1 + 2*x)/(1 + exp(-1 + 2*x))

> group = ifelse(probgroup1 > runif(n), 1, 0)

> y = (group * 3) + ((1 + group/5) * x) + rnorm(n)

To fit the model, we’ll use the flexmix package [96], a quite general tool written by Gruen,
Leisch, and Sarkar (other options are described in the CRAN finite mixture models task
view).

> library(flexmix)

> mixout.fm=flexmix(y ~ x, k=2, model=FLXMRglmfix(y ~ x, varFix=TRUE),

concomitant=FLXPmultinom(~ x))

The flexmix() function uses a variety of special objects that are created by other functions
the package provides. Here, we use the FLXMRglmfix() function to force equal variances
across the components and the FLXPmultinom() function to define the logistic regression
on the covariate x for the concomitant model.

The results can be generated from the output object with the parameters() function.
By default, it prints the parameters for the model in each component.

> parameters(mixout.fm)

Comp.1 Comp.2

coef.(Intercept) 2.938 -0.009559

coef.x 1.218 0.986896

sigma 1.008 1.008276

Using the which="concomitant" option generates the parameter estimates for the concomi-
tant model.

> parameters(mixout.fm, which="concomitant")

1 2

(Intercept) 0 0.9767

x 0 -2.0174

Impressive accuracy has been achieved.

11.5 Further resources

Comprehensive descriptions of reproducible analysis tools and workflow can be found in [199]
and [47], while the greport package (due to Frank Harrell) has many powerful features for
reporting of clinical trials [83]. Gelman et al. [50] is an accessible introduction to Bayesian
inference, while Albert [4] focuses on the use of R for Bayesian computations. Rubin’s review
[142] and Schafer’s book [149] provide overviews of multiple imputation, while [177, 131, 176]
describe chained equation models. Review of software implementations of missing data
models can be found in [71, 70].
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Chapter 12

Case studies

In this chapter, we explore several case studies that demonstrate the statistical computing
strengths and potential of R. This includes data management tasks, reading more complex
files, creating maps, data scraping, using the shiny system within RStudio, manipulating
larger datasets, and solving an optimization problem.

12.1 Data management and related tasks

12.1.1 Finding two closest values in a vector

Suppose we need to find the closest pair of observations for some variable. This might arise
if we were concerned that some data had been accidentally duplicated. In this case study,
we return the IDs of the two closest observations and their distance from each other. We’ll
first create some sample data and sort it, recognizing that the smallest difference must come
between two observations that are adjacent after sorting.

We begin by generating data (3.1.6), along with some subject identifiers (2.3.4).

> options(digits=3)

> ds = data.frame(x=rnorm(8), id=1:8)

Then, we sort the data. The order() function (2.3.10) is used to keep track of the sorted
random variables.

> options(digits=3)

> ds = ds[order(ds$x),]

> ds

x id

5 -0.893 5

4 -0.729 4

3 -0.609 3

2 -0.518 2

7 -0.436 7

1 0.180 1

6 1.222 6

8 1.387 8

We can use the diff() function to get the differences between observations. The which.min()
function extracts the index (location within the vector) of the smallest value. We apply

187
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this function to the diffx vector to find the location and extract that location from the id

vector.

> diffx = diff(ds$x)

> min(diffx)

[1] 0.0822

> with(ds, id[which.min(diffx)]) # first val

[1] 2

> with(ds, id[which.min(diffx) + 1]) # second val

[1] 7

12.1.2 Tabulate binomial probabilities

Suppose we wanted to assess the probability P (X = x) for a binomial random variate with
n = 10 and with p = .81, .84, . . . , .99. This could be helpful, for example, in various game
settings.

We make a vector of the binomial probabilities, using the : operator (2.3.4) to generate
a sequence of integers. After creating an empty matrix (3.3) to hold the table results, we
loop (4.1.1) through the binomial probabilities, calling the dbinom() function (3.1.1) to find
the probability that the random variable takes on that particular value. This calculation
is nested within the round() function (3.2.4) to reduce the digits displayed. Finally, we
include the vector of binomial probabilities with the results using cbind().

> p = .78 + (3 * 1:7)/100

> allprobs = matrix(nrow=length(p), ncol=11)

> for (i in 1:length(p)) {

allprobs[i,] = round(dbinom(0:10, 10, p[i]),2)

}

> table = cbind(p, allprobs)

> table

p

[1,] 0.81 0 0 0 0 0 0.02 0.08 0.19 0.30 0.29 0.12

[2,] 0.84 0 0 0 0 0 0.01 0.05 0.15 0.29 0.33 0.17

[3,] 0.87 0 0 0 0 0 0.00 0.03 0.10 0.25 0.37 0.25

[4,] 0.90 0 0 0 0 0 0.00 0.01 0.06 0.19 0.39 0.35

[5,] 0.93 0 0 0 0 0 0.00 0.00 0.02 0.12 0.36 0.48

[6,] 0.96 0 0 0 0 0 0.00 0.00 0.01 0.05 0.28 0.66

[7,] 0.99 0 0 0 0 0 0.00 0.00 0.00 0.00 0.09 0.90

12.1.3 Calculate and plot a running average

The Law of Large Numbers concerns the convergence of the arithmetic average to the ex-
pected value, as sample sizes increase. This is an important topic in mathematical statistics.
The convergence (or lack thereof, for certain distributions) can easily be visualized [68].

We define a function (4.2) to calculate the running average for a given vector, allowing
for variates from many distributions to be generated.
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> runave = function(n, gendist, ...) {

x = gendist(n, ...)

avex = numeric(n)

for (k in 1:n) {

avex[k] = mean(x[1:k])

}

return(data.frame(x, avex))

}

The runave() function takes, at a minimum, two arguments: a sample size n and function
(4.2) denoted by gendist that is used to generate samples from a distribution (3.1). In
addition, other options for the function can be specified, using the ... syntax (see 4.2).
This is used, for example, to specify the degrees of freedom for the samples generated for the
t distribution in the next code block. The loop in the runave() function could be eliminated
through use of the cumsum() function applied to the vector given as an argument, and then
divided by a vector of observation numbers.

Next, we generate the data, using our new macro and function. To make sure we have
a nice example, we first set a fixed seed (3.1.3). Recall that because the expectation of a
Cauchy random variable is undefined [137], the sample average does not converge to the
center, while a t distribution with more than 1 degree of freedom does.

> vals = 1000

> set.seed(1984)

> cauchy = runave(vals, rcauchy)

> t4 = runave(vals, rt, 4)

Now we can plot the results. We begin with an empty plot with the correct axis limits,
using the type="n" specification (8.3.1). We add the running average using the lines()

function (9.1.1) and varying the line style (9.2.11) and thickness (9.2.12) with the lty and
lwd specifications, respectively. Finally, we specify a title (9.1.9) and a legend (9.1.15). The
results are displayed in Figure 12.1.

12.1.4 Create a Fibonacci sequence

The Fibonacci numbers have many mathematical relationships and have been discovered
repeatedly in nature. They are constructed as the sum of the previous two values, initialized
with the values 1 and 1. It’s convenient to use a for loop, though other approaches (e.g.,
recursion) could be used.

> len = 10

> fibvals = numeric(len)

> fibvals[1] = 1

> fibvals[2] = 1

> for (i in 3:len) {

fibvals[i] = fibvals[i-1] + fibvals[i-2]

}

> fibvals

[1] 1 1 2 3 5 8 13 21 34 55
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> plot(c(cauchy$avex, t4$avex), xlim=c(1, vals), type="n")

> lines(1:vals, cauchy$avex, lty=1, lwd=2)

> lines(1:vals, t4$avex, lty=2, lwd=2)

> abline(0, 0)

> legend(vals*.6, -1, legend=c("Cauchy", "t with 4 df"),

lwd=2, lty=c(1, 2))
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Figure 12.1: Running average for Cauchy and t distributions

12.2 Read variable format files

Sometimes datasets are stored in variable format. For example, US Census boundary files
(available from http://www.census.gov/geo/www/cob/index.html) are available in both
proprietary and ASCII formats. An example ASCII file describing the counties of Mas-
sachusetts is available on the book website (http://www.amherst.edu/~nhorton/r2). The
first few lines are reproduced here.

1 -0.709816806854972E+02 0.427749187746914E+02

-0.709148990000000E+02 0.428865890000000E+02

-0.709148860000000E+02 0.428865640000000E+02

-0.709148860000000E+02 0.428865640000000E+02

-0.709027680000000E+02 0.428865300000000E+02

...

-0.709148990000000E+02 0.428865890000000E+02

END

The first line contains an identifier for the county (linked with a county name in an additional
file) and a latitude and longitude centroid within the polygon representing the county defined
by the remaining points. The remaining points on the boundary do not contain the identifier.
After the lines with the points, a line containing the word “END” is included. In addition,
the county boundaries contain different numbers of points. The county names, which can
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be associated by the county identifier, are stored in another dataset. To get the names onto
the map, we have to merge the centroid location dataset with the county names dataset.
They have to be sorted first. Reading this kind of data requires some care in programming.

We begin by reading in all of the input lines, keeping track of how many counties
have been observed (based on how many lines include END). This information is needed for
housekeeping purposes when collecting map points for each county.

> # read in the data

> input =

readLines("http://www.amherst.edu/~nhorton/r2/datasets/co25_d00.dat",

n=-1)

> # figure out how many counties, and how many entries

> num = length(grep("END", input))

> allvals = length(input)

> numentries = allvals-num

> # create vectors to store data

> county = numeric(numentries);

> lat = numeric(numentries)

> long = numeric(numentries)

Each line of the input file is processed in turn.

> curval = 0 # number of counties seen so far

> # loop through each line

> for (i in 1:allvals) {

if (input[i]=="END") {

curval = curval + 1

} else {

# remove extraneous spaces

nospace = gsub("[ ]+", " ", input[i])

# remove space in first column

nospace = gsub("^ ", "", nospace)

splitstring = as.numeric(strsplit(nospace, " ")[[1]])

len = length(splitstring)

if (len==3) { # new county

curcounty = splitstring[1]; county[i-curval] = curcounty

lat[i-curval] = splitstring[2]; long[i-curval] = splitstring[3]

} else if (len==2) { # continue current county

county[i-curval] = curcounty; lat[i-curval] = splitstring[1]

long[i-curval] = splitstring[2]

}

}

}

The strsplit() function is used to parse the input file. Lines containing END require incre-
menting the count of counties seen to date. If the line indicates the start of a new county,
the new county number is saved. If the line contains two fields (another set of latitudes
and longitudes), then this information is stored in the appropriate index (i-curval) of the
output vectors.

Next we read in a dataset of county names.
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> # read county names

> countynames =

read.table("http://www.amherst.edu/~nhorton/r2/datasets/co25_d00a.dat",

header=FALSE)

> names(countynames) = c("county", "countyname")

12.3 Plotting maps

12.3.1 Massachusetts counties, continued

We’re ready to plot the Massachusetts counties and annotate the plot with the names of
the counties.

To make the map, we begin by determining the plotting region, creating the plot of
boundaries, then adding the county names at the internal point that was provided. Since
the first set of points is in the interior of the county, these are not included in the values
given to the polygon function (see indexing, A.4.2).

> counties = unique(county)

> xvals = c(min(lat), max(lat)); yvals = c(range(long))

The results are displayed in Figure 12.2. Many other maps as well as more sophisticated
projections are supported with the maps package (see also the CRAN spatial statistics task
view).

> plot(xvals, yvals, pch=" ", xlab="", ylab="", xaxt="n", yaxt="n")

> for (i in 1:length(counties)) { # first element is an internal point

polygon(lat[county==counties[i]][-1], long[county==counties[i]][-1])

# plot name of county using internal point

text(lat[county==counties[i]][1], long[county==counties[i]][1],

countynames$countyname[i], cex=0.8)

}

Essex

Berkshire
Franklin

Middlesex
Worcester

Hampshire Suffolk

Hampden
Norfolk

Plymouth

Bristol

Barnstable

Dukes
Nantucket

Figure 12.2: Massachusetts counties
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12.3.2 Bike ride plot

The Pioneer Valley of Massachusetts, where we both live, is a wonderful place to take a
bike ride. In combination with technology to track GPS coordinates, time, and altitude,
information regarding outings can be displayed. The data used here can be downloaded, as
demonstrated below, from http://www.amherst.edu/~nhorton/r2/datasets/cycle.csv.

A map can be downloaded for a particular area from Google Maps, then plotted in con-
junction with latitude/longitude coordinates using functions in the ggmap package. These
routines are built on top of the ggplot2 “grammar of graphics” package. We found good
locations for Amherst using trial and error and plotted the bike ride GPS signals with the
map.

> library(ggmap)

> options(digits=4)

> amherst = c(lon=-72.52, lat=42.36)

> mymap = get_map(location=amherst, zoom=13, color="bw")

> myride =

read.csv("http://www.amherst.edu/~nhorton/r2/datasets/cycle.csv")

> head(myride, 2)

Time Ride.Time Ride.Time..secs. Stopped.Time

1 2010-10-02 16:26:54 0:00:01 0.9 0:00:00

2 2010-10-02 16:27:52 0:00:59 58.9 0:00:00

Stopped.Time..secs. Latitude Longitude Elevation..feet. Distance..miles.

1 0 42.32 -72.51 201 0.00

2 0 42.32 -72.51 159 0.04

Speed..miles.h. Pace Pace..secs. Average.Speed..miles.h. Average.Pace

1 NA NA 0.00 0:00:00

2 2.73 0:21:56 1316 2.69 0:22:17

Average.Pace..secs. Climb..feet. Calories

1 0 0 0

2 1337 0 1

The results are shown in Figure 12.3. Relatively poor cell phone service leads to sparsity in
the points in the middle of the figure. For more complex multi-dimensional graphics made
with the same data, see http://tinyurl.com/sasrblog-bikeride and http://tinyurl.

com/sasrblog-bikeride-redux.

12.3.3 Choropleth maps

Choropleth maps (see 8.5.1 and 12.6.2) are helpful for visualizing geographic data. In this
example, we use data from the built-in R dataset, USArrests, which includes United States
arrests in 1973 per 100, 000 inhabitants in various categories by state.

We’ll use the ggmap package to generate the plot. It builds on the ggplot2 package,
which implements ideas related to the “grammar of graphics” [188]. The package uses
a syntax where specific elements of the plot are added to the final product using special
functions connected by the + symbol. Some additional work is needed to merge the dataset
with the state information (2.3.11) and to sort the resulting dataframe (2.3.10) so that the
shape data for the states is plotted in order.
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> ggmap(mymap) + geom_point(aes(x=Longitude, y=Latitude), data=myride)
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Figure 12.3: Bike ride plot

> library(ggmap); library(dplyr)

> USArrests.st = mutate(USArrests,

region=tolower(rownames(USArrests)),

murder = cut_number(Murder, 5))

> us_state_map = map_data(’state’)

> map_data = merge(USArrests.st, us_state_map, by="region")

> map_data = arrange(map_data, order)

> head(select(map_data, region, Murder, murder, long, lat, group, order))

region Murder murder long lat group order

1 alabama 13.2 (12.1,17.4] -87.5 30.4 1 1

2 alabama 13.2 (12.1,17.4] -87.5 30.4 1 2

3 alabama 13.2 (12.1,17.4] -87.5 30.4 1 3

4 alabama 13.2 (12.1,17.4] -87.5 30.3 1 4

5 alabama 13.2 (12.1,17.4] -87.6 30.3 1 5

6 alabama 13.2 (12.1,17.4] -87.6 30.3 1 6

The scale fill grey() function changes the colors from the default unordered multiple
colors to an ordered and print-friendly black and white (see also scale file brewer). The
ggmap package uses the Mercator projection (see coord map() in the ggplot2 package and
mapproject in the mapproject package). Another implementation of choropleth maps can
be found in the choroplethr package.

The results are displayed in Figure 12.4. As always, the choice of groupings can have
an impact on the message conveyed by the graphical display.
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> p0 = ggplot(map_data, aes(x=long, y=lat, group=group)) +

geom_polygon(aes(fill = murder)) +

geom_path(colour=’black’) +

theme(legend.position = "bottom",

panel.background=element_rect(fill="transparent",

color=NA)) +

scale_fill_grey(start=1, end =.1) + coord_map();

> plot(p0)
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Figure 12.4: Choropleth map

12.4 Data scraping

In this section, we demonstrate various methods for extracting data from web pages, directly
from URLs, via APIs, or using table formats.

12.4.1 Scraping data from HTML files

Here, we automate data harvesting from the web, by “scraping” a URL, then reading a
datafile with two lines per observation, and plotting the results as time series data. The
data being harvested and displayed are the sales ranks from Amazon for the Cartoon Guide
to Statistics [53].

We can find the Amazon sales rank for a book by downloading the HTML code for a
desired web page and searching for the appropriate line. The code to do this relies heavily
on 1.1.9 (reading more complex data files) as well as 2.2.14 (replacing strings).

An example can be found at http://www.amherst.edu/~nhorton/r2/datasets/cartoon.
html. Many thousands of lines into the file, we find the line we’re looking for.

#8,048 in Books (<a href="http://www.amazon.com/best-sellers-books-

Amazon/zgbs/books/ref=pd_dp_ts_b_1">See Top 100 in Books</a>)
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(We’ve inserted a line break to allow for printing). If you want to see this, find out how to
View Source in your browser. In Mozilla Firefox, this is in the Web Developer tab.

Unfortunately, the line number where it appears changes periodically. Thus, to find
the line, we need to read every line of the file and parse it until we find the correct line.
Our approach will be to first look for the line with the expression <b>See Top 100 in

Books</b>. Once we’ve found the line, we can look for the # symbol, and the numbers
between there and the text in Books.

We’ll use a function to isolate the number, as annotated within the code below. To help
in comprehending the code, readers are encouraged to run the commands on a line-by-line
basis, then look at the resulting value.

> # grab contents of web page

> urlcontents = readLines("http://tinyurl.com/cartoonguide")

>

> # find line with sales rank

> linenum = suppressWarnings(grep("See Top 100 in Books", urlcontents))

>

> # split line into multiple elements

> linevals = strsplit(urlcontents[linenum], ’ ’)[[1]]

>

> # find element with sales rank number

> entry = grep("#", linevals)

> charrank = linevals[entry] # snag that entry

> charrank = substr(charrank, 2, nchar(charrank)) # kill ’#’ at start

> charrank = gsub(’,’ ,’’, charrank) # remove commas

> salesrank = as.numeric(charrank) # make it numeric

> cat("salesrank=", salesrank, "\n")

In our experience, the format of Amazon’s book pages changes often. The code above may
not work on current pages, but could be tested on the example page mentioned above,
at http://www.amherst.edu/~nhorton/r2/datasets/cartoon.html. More sophisticated
approaches to web scraping can be found in the httr package as well as Nolan and Temple
Lang [122].

12.4.2 Reading data with two lines per observation

The code from 12.4.1 was run regularly on a server by calling R in batch mode (see A.2.2),
with results stored in a cumulative file. While a date stamp was added, it was included in
the file on a different line. The file (accessible at https://www.amherst.edu/~nhorton/

r2/datasets/cartoon.txt) has the following form.

Wed Oct 9 16:00:04 EDT 2013

salesrank= 3269

Wed Oct 9 16:15:02 EDT 2013

salesrank= 4007

We begin by reading the file, then we calculate the number of entries by dividing the file’s
length by two. Next, two empty vectors of the correct length and type are created to
store the data. Once this preparatory work is completed, we loop (4.1.1) through the file,
reading in the odd-numbered lines as date/time values from the Eastern US time zone,
with daylight savings applied. The gsub() function (2.2.14) replaces matches determined
by regular expression matching. In this situation, it is used to remove the time zone from
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the line before this processing. These date/time values are read into the timeval vector.
Even-numbered lines are read into the rank vector, after removing the strings salesrank=

and NA (again using two calls to gsub()). Finally, we make a dataframe (A.4.6) from the
two vectors and display the first few lines using the head() function (1.2.1).

> library(RCurl)

> myurl =

getURL("https://www3.amherst.edu/~nhorton/r2/datasets/cartoon.txt",

ssl.verifypeer=FALSE)

> file = readLines(textConnection(myurl))

> n = length(file)/2

> rank = numeric(n)

> timeval = as.POSIXlt(rank, origin="1960-01-01")

> for (i in 1:n) {

timeval[i] = as.POSIXlt(gsub(’EST’, ’’,

gsub(’EDT’, ’’, file[(i-1)*2+1])),

tz="EST5EDT", format="%a %b %d %H:%M:%S %Y")

rank[i] = as.numeric(gsub(’NA’, ’’,

gsub(’salesrank= ’,’’, file[i*2])))

}

> timerank = data.frame(timeval, rank)

Note that the file is being read from an HTTPS (Hypertext Transfer Protocol Secure)
connection (1.1.12) and string data is converted to date and time variables (2.4.6). The
first four entries of the file are given below.

> head(timerank, 4)

timeval rank

1 2013-09-30 00:00:03 5151

2 2013-09-30 00:15:03 5151

3 2013-09-30 00:30:03 4162

4 2013-09-30 00:45:03 4162

12.4.3 Plotting time series data

While it is straightforward to make a simple plot of the data from 12.4.2 using code discussed
in 8.3.1, we’ll augment the display by indicating whether the rank was recorded in the
nighttime (eastern US time) or not. Then we’ll color the nighttime ranks differently from
the daytime ranks.

We begin by creating a new variable reflecting the date-time at the midnight before
we started collecting data. We then coerce the time values to numeric values using the
as.numeric() function (2.2.7) while subtracting that midnight value. Next, we call the
hour() function in the lubridate package (2.4) to get the hour of measurement.

> library(lubridate)

> timeofday = hour(timeval)

> night = rep(0,length(timeofday)) # vector of zeroes

> night[timeofday < 8 | timeofday > 18] = 1

The time series plot is requested by the type="l" option and symbols for the ranks
added with calls to the points() function. The abline() function adds a reference line at
the start of October. The results are displayed in Figure 12.5.
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> plot(timeval, rank, type="l", xlab="", ylab="Amazon Sales Rank")

> points(timeval[night==1], rank[night==1], cex=0.7, pch=3, col="black")

> points(timeval[night==0], rank[night==0], cex=0.7, pch=4, col="grey")

> legend(as.POSIXlt("2013-10-03 00:00:00 EDT"), 6000,

legend=c("day","night"), col=c("grey","black"), pch=c(4,3))

> abline(v=as.numeric(as.POSIXlt("2013-10-01 00:00:00 EST")), lty=2)
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Figure 12.5: Sales plot by time

12.4.4 Reading tables from HTML

In this example, we demonstrate how to read from an HTML table (1.1.14), in this case,
the list from Wikipedia of all movies and television shows set in or shot in Liverpool,
England. The URL of interest can be found at http://tinyurl.com/liverpoolTV. As
of September 2014, the second table consisted of the list of all movies set in or shot in
Liverpool. (For future reference, a version of the saved webpage can be found at http:

//www.amherst.edu/~nhorton/r2/datasets/liverpool.html.)

> require(XML)

> require(mosaic)

> wikipedia = "http://en.wikipedia.org/wiki"

> liverpool = "List_of_films_and_television_shows_set_or_shot_in_Liverpool"

> result = readHTMLTable(paste(wikipedia, liverpool, sep="/"),

stringsAsFactors=FALSE)

> table1 = result[[2]]

> names(table1)

[1] "Title" "Year" "Notes"

We can undertake some data management to reformat and reorganize the data, then display
the first records and summary statistics on the year of release.
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> require(dplyr)

> finaltable = table1 %>%

mutate(year = as.numeric(Year)) %>%

select(year, Title)

> head(finaltable, 8)

year Title

1 1901 The Arrest of Goudie

2 1994 Blood on the Dole

3 2009 Charlie Noades R.I.P.

4 2003 Dad’s Dead

5 1987 Business as Usual

6 1990 Dancin’ Thru the Dark

7 1994 Dark Summer

8 1999 David Copperfield

> favstats(~ year, data=finaltable)

min Q1 median Q3 max mean sd n missing

1901 1986 1994 2001 2010 1988 21.6 40 0

The relatively small number of movies facilitates display of the individual values using a
stem plot (8.1.2). We note that the number of movies increased dramatically in the 1980s
(more than a decade post-Beatles).

> with(finaltable, stem(year, scale=2))

The decimal point is 1 digit(s) to the right of the |

190 | 1

191 |

192 |

193 | 8

194 |

195 | 09

196 | 59

197 | 16

198 | 357888

199 | 011244445799

200 | 0011234566689

201 | 0

12.4.5 URL APIs and truly random numbers

Usually, we’re content to use a pseudo-random number generator. But sometimes we may
want numbers that are actually random. An example might be for randomizing treatment
status in a randomized controlled trial. The site Random.org provides truly random numbers
based on radio static. For long simulations that need a huge number of random numbers,
the quota system at Random.org may preclude its use. But for small to moderate needs, it
can be used to provide truly random numbers. In addition, you can purchase larger quotas
if need be.

The site provides application programming interfaces (APIs) for several types of in-
formation. We’ll demonstrate how to use these to pull vectors of uniform (0,1) random
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numbers (of 10−9 precision) and to check the quota. To generate random variates from
other distributions, you can use the inverse probability integral transform (3.1.10).

Two functions are shown below. It is necessary to enclose the character string for the
URL in the as.character() function (1.1.9).

> truerand = function(numrand) {

read.table(as.character(paste("http://www.random.org/integers/?num=",

numrand, "&min=0&max=1000000000&col=1&base=10&format=plain&rnd=new",

sep="")))/1000000000

}

>

> quotacheck = function() {

line = as.numeric(readLines(

"http://www.random.org/quota/?format=plain"))

return(line)

}

> truerand(7)

V1

1 0.901

2 0.912

3 0.387

4 0.990

5 0.154

6 0.225

7 0.780

> quotacheck()

[1] 1e+06

12.4.6 Reading from a web API

The httr package facilitates access to web application program interfaces (API). It splits the
operation into two parts: the request (data sent to the server), and the response (data sent
back from the server). As an example, consider a search for items that are tagged as being
related to the dplyr package on the stackexchange.com website (see api.stackexchange.
com for more information about the interface). Figure 12.6 displays a list of questions that
are tagged in this manner.

> library(httr)

> # Find the most recent R questions on stackoverflow

> getresult = GET("http://api.stackexchange.com",

> path="questions",

> query=list(site="stackoverflow.com", tagged="dplyr"))

> stop_for_status(getresult) # Ensure returned without error

> questions = content(getresult) # Grab content

The GET() function retrieves information from the specified URL: this can be configured
to transfer only new information (if data have already been requested). It is always a good
practice to check for errors. The content() function is used to extract content from a
request, which can then be processed.
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Figure 12.6: List of questions tagged with dplyr on the Stackexchange website

> names(questions$items[[1]]) # What does the returned data look like?

[1] "tags" "owner" "is_answered"

[4] "view_count" "answer_count" "score"

[7] "last_activity_date" "creation_date" "question_id"

[10] "link" "title"

> substr(questions$items[[1]]$title, 1, 68)

[1] "same function name: possible conflict between dplyr and other packag"

> substr(questions$items[[2]]$title, 1, 68)

[1] "determine observations not included by filtering with dplyr - R"

> substr(questions$items[[3]]$title, 1, 68)

[1] "Using R, how to split a data frame&#39;s column and then break into "

Further analysis can be undertaken with the information provided by the API. The package
also supports cookies, extraction of status codes, and progress bars (for extended down-
loads).
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12.5 Text mining

12.5.1 Retrieving data from arXiv.org

The aRxiv package facilitates access to arXiv.org, a repository of electronic preprints for a
number of scientific disciplines. It receives many thousands of new submissions each month.

> library(aRxiv)

> library(lubridate)

> library(stringr)

> library(dplyr)

> efron = arxiv_search(query=’au:"Efron" AND cat:stat*’, limit=50)

> names(efron)

[1] "id" "submitted" "updated"

[4] "title" "abstract" "authors"

[7] "affiliations" "link_abstract" "link_pdf"

[10] "link_doi" "comment" "journal_ref"

[13] "doi" "primary_category" "categories"

> dim(efron)

[1] 14 15

> efron = mutate(efron, submityear =

year(sapply(str_split(submitted, " "), "[[", 1)))

> with(efron, table(submityear))

submityear

2004 2006 2007 2008 2009 2010 2013 2014

2 1 1 4 1 2 2 1

In this example, submissions from eminent statistician Bradley Efron are downloaded, in-
cluding submission dates, lists of authors, titles, keywords, and abstracts. Note that the dou-
ble quotes are nested within the single quotes. Functions from the lubridate and stringr

packages facilitate processing the date and time string (e.g., "2004-06-23 12:59:32" for
“Rejoinder to ‘Least angle regression’” from Annals of Statistics). The string is split into a
date and time (using str split()), turned into a vector (using sapply()), then the year
value is extracted (using year()). The distribution of the 14 papers can be displayed as a
table.

Care should be taken not to overload the arXiv server. The arxiv count() function
should be run to determine the number of matches for a given search, to allow larger requests
to be downloaded in chunks.

12.5.2 Exploratory text mining

Text mining (a form of text analytics) is a fast-growing application of statistical and machine
learning techniques. There are a number of R packages that facilitate analysis of text
documents. In this example, we utilize functions from the tm package to generate a corpus
of documents (a structured set of texts) consisting of the abstracts from the previous search
of papers on arxiv.org by Brad Efron (see 12.5.1).

Here, we use the DataframeSource() function to create the corpus. Other possible
sources of text include directories, XML, or URIs (universal resource identifiers). We then
display the first abstract.
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> library(tm)

> mycorpus = VCorpus(DataframeSource(data.frame(efron$abstract)))

> head(strwrap(mycorpus[[1]]))

[1] "The purpose of model selection algorithms such as All Subsets,"

[2] "Forward Selection and Backward Elimination is to choose a linear"

[3] "model on the basis of the same set of data to which the model will"

[4] "be applied. Typically we have available a large collection of"

[5] "possible covariates from which we hope to select a parsimonious"

[6] "set for the efficient prediction of a response variable. Least"

Next we want to clean up the corpus. The tm map() function is called repeatedly to strip
whitespace, remove numbers and punctuation, map all of the text to lowercase, and elide
common English words.

> mycorpus = tm_map(mycorpus, stripWhitespace)

> mycorpus = tm_map(mycorpus, removeNumbers)

> mycorpus = tm_map(mycorpus, removePunctuation)

> mycorpus = tm_map(mycorpus, content_transformer(tolower))

> mycorpus = tm_map(mycorpus, removeWords, stopwords("english"))

> head(strwrap(mycorpus[[1]]))

[1] "purpose model selection algorithms subsets forward selection"

[2] "backward elimination choose linear model basis set data model will"

[3] "applied typically available large collection possible covariates"

[4] "hope select parsimonious set efficient prediction response"

[5] "variable least angle regression lars new model selection algorithm"

[6] "useful less greedy version traditional forward selection methods"

Finally, the DocumentTermMatrix() can be used to generate a document term matrix. This
is a sparse matrix that describes the frequency of terms in a corpus. We can display the
terms that arise in 7 or more of the abstracts.

> dtm = DocumentTermMatrix(mycorpus)

> findFreqTerms(dtm, 7)

[1] "bayes" "bayesian" "empirical" "evidence" "frequentist"

[6] "hypothesis" "methods" "model" "new"

Many more options for analysis are available (see the CRAN natural language processing
task view).

12.6 Interactive visualization

Graphical displays are increasingly interactive, with real-time response to input. A number
of systems are available to create such displays within R, including the ggvis package and
Shiny. In this section, we will describe these systems and provide examples of their use.

12.6.1 Visualization using the grammar of graphics (ggvis)

The ggvis package provides an interactive “grammar of graphics” [197] to allow web graph-
ics to be displayed and manipulated. It utilizes a syntax similar to the ggplot2 package to
create displays, which can be viewed in a browser internally and externally.
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The goal is to combine the best of R (e.g., every modeling function you can imagine) and
the best of the web (everyone has a web browser). Data manipulation and transformation
are done in R and the graphics are then rendered in a web browser. For RStudio users,
ggvis graphics display in a viewer panel.

In this example, we create an interactive graphical display using the HELP dataset, where
the user can select the size of the points, the opacity (to address overplotting, see 8.3.4),
and the fill color.

library(ggvis)

> ds = read.csv("http://www.amherst.edu/~nhorton/r2/datasets/help.csv")

> ds %>%

ggvis(x = ~ mcs, y = ~ cesd,

size := input_slider(min=10, max=100, label="size"),

opacity := input_slider(min=0, max=1, label="opacity"),

fill := input_select(choices=c("red", "green", "blue", "grey"),

selected="red", label="fill color"),

stroke := "black") %>%

layer_points()

When the ggvis() and layer points() functions are run, a viewer window is created (see
Figure 12.7). The user is able to adjust each of the controls. More information about ggvis
can be found at http://ggvis.rstudio.com.

Figure 12.7: Interactive graphical display
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12.6.2 Shiny in Markdown

RStudio supports the Shiny system, which is designed to simplify the creation of interactive
web applications. It provides automatic “reactive” linkage between inputs and outputs:
when the user clicks on one of the radio buttons, sliders, or selections, the output is re-
rendered.

Available control widgets include the functions actionButton(), checkboxGroupInput
(), checkboxInput(), dateInput(), dateRangeInput(), fileInput(), helpText(),
numericInput(), radioButtons(), selectInput(), sliderInput(), submitButton(), and
textInput(). We demonstrate use of this system by creating an interactive choropleth map
of the murder rate in US states (as previously described in 12.3.3). A template can be cre-
ated by selecting a new Markdown file with the Shiny option picked. Figure 12.8 displays
a Markdown file that creates a choropleth map that allows control over the number of bins
as well as whether to include names of the states.

---

title: "Sample Shiny in Markdown"

output: html_document

runtime: shiny

---

Shiny inputs and outputs can be embedded in a Markdown document. Outputs

are automatically updated whenever inputs change. This demonstrates

how a standard R plot can be made interactive by wrapping it in the

Shiny ‘renderPlot‘ function. The ‘selectInput‘ function creates the

input widgets used to control the plot display.

‘‘‘{r, echo=FALSE}

inputPanel(

selectInput("n_breaks", label = "Number of breaks:",

choices = c(2, 3, 4, 5, 9), selected = 5),

selectInput("labels", label = "Display labels?:",

choices = c("TRUE", "FALSE"), selected = "TRUE")

)

renderPlot({

library(choroplethr); library(dplyr)

USArrests.st = mutate(USArrests,

region=tolower(rownames(USArrests)),

value = Murder)

choroplethr(USArrests.st, "state", title="Murder Rates by State",

showLabels=input$labels,

num_buckets=as.numeric(input$n_breaks))

})

Figure 12.8: Shiny within R Markdown

The inputPanel() function is used in conjunction with the selectInput() function to
create two widgets: one to control the number of groups and the other to control whether
to display the labels for the states.
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The renderPlot() function can then access these values through the input object. The
choroplethr() function in the choropleth package is used to generate the desired figure.

When the document is run (by clicking Run Document within RStudio), the results are
displayed in a viewer window (see Figure 12.9).

Figure 12.9: Display of Shiny document within Markdown

More information about Shiny can be found at shiny.rstudio.com.

12.6.3 Creating a standalone Shiny app

It is possible to create standalone Shiny applications that can be made accessible from the
Internet. This has a major advantage over other web application frameworks that require
knowledge of HTML, CSS, or JavaScript.

A Shiny application consists of a directory with a file called app.R which contains the
user-interface definition, server script, and any additional required data, scripts, or other
resources. In this example, we will re-create our choropleth plot in a directory in ShinyApps

called choropleth.

> library(shiny)

> ui = shinyUI(bootstrapPage(

selectInput("n_breaks", label="Number of breaks:",

choices=c(2, 3, 4, 5, 9), selected=5),

selectInput("labels", label="Display labels?:",

choices = c("TRUE", "FALSE"), selected="TRUE"),

plotOutput(outputId="main_plot", height="300px", width="500px")

))
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> server = function(input, output) {

output$main_plot = renderPlot({

library(choroplethr); library(dplyr)

USArrests.st = mutate(USArrests,

region=tolower(rownames(USArrests)), value = Murder)

choroplethr(USArrests.st, "state", title="Murder Rates by State",

showLabels=input$labels, num_buckets=as.numeric(input$n_breaks))

})

}

> shinyApp(ui=ui, server=server)

The user interface is defined and saved in an object called ui by calling the function
bootstrapPage() and passing the result to the shinyUI() function. This defines two
selector widgets (through calls to selectInput()) and a call to plotOutput() (to display
the results).

Next we define the server (which is saved in an object called server). This utilizes
similar code to that introduced in 12.6.2. This process involves creating a function that
calls renderPlot() after creating the choropleth map.

Finally, the shinyApp() function is called to run the app. These commands are all saved
in the app.R file. The app can be run from within RStudio using the runApp() command.

> library(shiny)

> runApp("~/ShinyApps/choropleth")

The application will then appear in a browser. For those with a Shiny server, the app can be
viewed externally (in this case as https://r.amherst.edu/apps/nhorton/choropleth).
More information about Shiny and Shiny servers can be found at shiny.rstudio.com.

12.7 Manipulating bigger datasets

In this example, we consider analysis of the Data Expo 2009 commercial airline flight dataset
[189], which includes details of n = 123, 534, 969 flights from 1987 to 2008. We consider
the number of flights originating from Bradley International Airport (code BDL, serving
Hartford, CT and Springfield, MA). Because of the size of the data, we will demonstrate
use of a database system accessed using a structured query language (SQL) [165].

Full details are available on the Data Expo website (http://stat-computing.org/
dataexpo/2009/sqlite.html) regarding how to download the Expo data as comma-separated
files (1.6 gigabytes of compressed, 12 gigabytes uncompressed through 2008), set up and
index a database (19 gigabytes), then access it from within R.

A simple way to access databases from R is through SQLite, a self-contained, serverless,
transactional SQL database engine. To use this, the analyst installs the sqlite software li-
brary (http://sqlite.org). Next the input files must be downloaded to the local machine,
a database set up (by running sqlite3 ontime.sqlite3) at the shell command line), table
created with the appropriate fields, the files loaded using a series of .import statements,
and access speeded up by adding indexing. Then the RSQLite package can be used to create
a connection to the database.
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> library(RSQLite)

> con = dbConnect("SQLite", dbname = "/Home/Airlines/ontime.sqlite3")

> ds = dbGetQuery(con, "SELECT DayofMonth, Month, Year, Origin,

> sum(1) as numFlights FROM ontime WHERE Origin=’BDL’

> GROUP BY DayofMonth,Month,Year")

> # returns a dataframe with 7,763 rows and 5 columns

The dbGetQuery() function in the RSQLite package allows an SQL query to be sent to
the connection. Here, the SQL statement specifies the five variables to be included (one of
which is the count of flights), the name of the table ontime, what flights to include (only
those originating at BDL), and what level to aggregate (unique day). This dataset can then
be post-processed using functions from the dplyr package.

> library(dplyr)

> ds = mutate(ds, date =

> as.Date(paste(Year, "-", Month, "-", DayofMonth, sep="")))

> ds = mutate(ds, weekday = weekdays(date))

> ds = arrange(ds, date)

> mondays = filter(ds, weekday=="Monday")

The results are plotted in Figure 12.10. Similar functionality is provided for MySQL
databases using the RMySQL package.

One disadvantage of using SQL is that the syntax is similar to but not equivalent to
that of R (for example, a single equal sign is used for comparisons in SQL, but two equal
signs in R). The dplyr package provides an efficient interface to SQL databases using R
syntax. The following code yields the same results as above.

> library(dplyr)

> my_db = src_sqlite("/Home/Airlines/ontime.sqlite3")

> my_tbl = group_by(tbl(my_db, "ontime"), DayofMonth, Month, Year, Origin)

> ds = my_tbl %>%

filter(Origin=="BDL") %>%

select(DayofMonth, Month, Year, Origin) %>%

summarise(numFlights=n())

12.8 Constrained optimization: the knapsack problem

The website http://rosettacode.org/wiki/Knapsack_problem/Unbounded describes a
fanciful trip by a traveler to Shangri La. Upon leaving, the traveler is allowed to take as
much of three valuable items as they like, as long as they fit in a knapsack. A maximum of
25 weights can be taken, with a total volume of 25 cubic units. The weights, volumes, and
values of the three items are given in Table 12.1.

How can the traveler maximize the value of the items? It is straightforward to calculate
the solutions using brute force, by iterating over all possible combinations and eliminating
those that are overweight or too large to fit.

We define a number of support functions, then run over all possible values of the knapsack
contents (after expand.grid() generates the list). The findvalue() function checks the
constraints and sets the value to 0 if they are not satisfied, and otherwise calculates them
for the set. The apply() function (see 2.6.4) is used to run a function for each item of a
vector.
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> library(lattice)

> xyplot(numFlights ~ date, xlab="", ylab="number of flights on Monday",

> type="l", col="black", lwd=2, data=mondays)
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Figure 12.10: Number of flights departing Bradley airport on Mondays over time

> # Define constants and useful functions

> weight = c(0.3, 0.2, 2.0)

> volume = c(2.5, 1.5, 0.2)

> value = c(3000, 1800, 2500)

> maxwt = 25

> maxvol = 25

> # minimize the grid points we need to calculate

> max.items = floor(pmin(maxwt/weight, maxvol/volume))

>

Table 12.1: Weights, volume, and values for the knapsack problem
Item Weight Volume Value

Panacea 0.3 2.5 3000
Ichor 0.2 1.5 1800
Gold 2.0 0.2 2500
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> # useful functions

> getvalue = function(n) sum(n*value)

> getweight = function(n) sum(n*weight)

> getvolume = function(n) sum(n*volume)

>

> # main function: return 0 if constraints not met,

> # otherwise return the value of the contents, and their weight

> findvalue = function(x) {

thisweight = apply(x, 1, getweight)

thisvolume = apply(x, 1, getvolume)

fits = (thisweight <= maxwt) &

(thisvolume <= maxvol)

vals = apply(x, 1, getvalue)

return(data.frame(panacea=x[,1], ichor=x[,2], gold=x[,3],

value=fits*vals, weight=thisweight,

volume=thisvolume))

}

>

> # Find and evaluate all possible combinations

> combs = expand.grid(lapply(max.items, function(n) seq.int(0, n)))

> values = findvalue(combs)

Now we can display the solutions.

> max(values$value)

[1] 54500

> values[values$value==max(values$value),]

panacea ichor gold value weight volume

2067 9 0 11 54500 24.7 24.7

2119 6 5 11 54500 24.8 24.7

2171 3 10 11 54500 24.9 24.7

2223 0 15 11 54500 25.0 24.7

The first solution (with 9 panacea, no ichor, and 11 gold) satisfies the volume constraint,
maximizes the value, and also minimizes the weight. More sophisticated approaches are
available using the lpSolve package for linear/integer problems.
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Appendix A

Introduction to R and RStudio

This chapter provides a (brief) introduction to R and RStudio. R is a free, open-source
software environment for statistical computing and graphics [77, 130]. RStudio is an open-
source integrated developement environment for R that adds many features and produc-
tivity tools for R. The chapter includes a short history, installation information, a sample
session, background on fundamental structures and actions, information about help and
documentation, and other important topics.

R is a general-purpose package that includes support for a wide variety of modern
statistical and graphical methods (many of which have been contributed by users). It is
available for most UNIX platforms, Windows, and MacOS. The R Foundation for Statistical
Computing holds and administers the copyright of R software and documentation. R is
available under the terms of the Free Software Foundation’s GNU General Public License
in source code form.

RStudio facilitates use of R by integrating R help and documentation, providing a
workspace browser and data viewer, and supporting syntax highlighting, code completion,
and smart indentation. It integrates reproducible analysis with Sweave, knitr, and R Mark-
down (see 11.3), supports the creation of slide presentations, and includes a debugging
environment (see 4.1.6). It facilitates the creation of dynamic web applications using Shiny
(see 12.6.2). It also provides support for multiple projects as well as an interface to source
code control systems such as GitHub. It has become the default interface for many R users,
including the authors.

RStudio is available as a client (standalone) for Windows, Mac OS X, and Linux. There
is also a server version. Commercial products and support are available in addition to the
open-source offerings (see http://www.rstudio.com/ide for details).

The first versions of R were written by Ross Ihaka and Robert Gentleman at the Univer-
sity of Auckland, New Zealand, while current development is coordinated by the R Develop-
ment Core Team, a group of international volunteers. As of October 2014, this group con-
sisted of Douglas Bates, John Chambers, Peter Dalgaard, Seth Falcon, Robert Gentleman,
Kurt Hornik, Ross Ihaka, Michael Lawrence, Friedrich Leisch, Uwe Ligges, Thomas Lum-
ley, Martin Maechler, Martin Morgan, Duncan Murdoch, Paul Murrell, Martyn Plummer,
Brian Ripley, Deepayan Sarkar, Duncan Temple Lang, Luke Tierney, and Simon Urbanek.
Former members of the R Core include Heiner Schwarte (through 1999), Guido Masarotto
(through 2003), and Stefano Iacus (through 2014). Many hundreds of other people have
contributed to the development of R or developed add-on libraries and packages.

R is similar to the S language, a flexible and extensible statistical environment originally
developed in the 1980s at AT&T Bell Labs (now Alcatel–Lucent). Insightful Corporation
has continued the development of S in their commercial software package S-PLUSTM.

211
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Figure A.1: R Windows graphical user interface

New users are encouraged to download and install R from the Comprehensive R archive
network (CRAN, http://www.r-project.org, see A.1) and install RStudio from http:

//www.rstudio.com/ide. The sample session in the appendix of the Introduction to R
document, also available from CRAN (see A.2), is highly recommended.

A.1 Installation

The home page for the R project, located at http://r-project.org, is the best starting
place for information about the software. It includes links to CRAN, which features pre-
compiled binaries as well as source code for R, add-on packages, documentation (including
manuals, frequently asked questions, and the R newsletter) as well as general background
information. Mirrored CRAN sites with identical copies of these files exist all around
the world. Updates to R and packages are regularly posted on CRAN. In addition to the
instructions for installation under Windows and Mac OS X, R and RStudio are also available
for multiple Linux implementations.

A.1.1 Installation under Windows

Versions of R for Windows XP and later, including 64-bit versions, are available at CRAN.
The distribution includes Rgui.exe, which launches a self-contained windowing system
that includes a command-line interface, Rterm.exe for a command-line interface only,
Rscript.exe for batch processing only, and R.exe, which is suitable for batch or command-
line use. A screenshot of the R graphical user interface (GUI) can be found in Figure A.1.
More information on Windows-specific issues can be found in the CRAN R for Windows
FAQ (http://cran.r-project.org/bin/windows/base/rw-FAQ.html).
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Figure A.2: R Mac OS X graphical user interface

A.1.2 Installation under Mac OS X

A version of R for Mac OS X 10.6 and higher is available at CRAN. This is distributed
as a disk image containing the installer. In addition to the graphical interface version, a
command-line version (particularly useful for batch operations) can be run as the command
R. A screenshot of the graphical interface can be found in Figure A.2.

More information on Macintosh-specific issues can be found in the CRAN R for Mac
OS X FAQ (http://cran.r-project.org/bin/macosx/RMacOSX-FAQ.html).

A.1.3 RStudio

RStudio for MacOS, Windows, or Linux can be downloaded from http://www.rstudio.

com/ide. RStudio requires R to be installed on the local machine. A server version (ac-
cessible from web browsers) is also available for download. Documentation of the advanced
features in the system is available on the RStudio website. A screenshot of the RStudio
interface can be found in Figure A.3.

A.1.4 Other graphical interfaces

Other graphical user interfaces for R include the R Commander project [43], Deducer (http:
//www.deducer.org), and the SOCR (Statistics Online Computational Resource) project
(http://www.socr.ucla.edu).
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Figure A.3: RStudio graphical user interface

A.2 Running R and sample session

Once installation is complete, the recommended next step for a new user would be to start
R and run a sample session. An example from the command-line interface within Mac OS
X is given in Figure A.4.

The “>” character is the command prompt, and commands are executed once the user
presses the RETURN or ENTER key. R can be used as a calculator (as seen from the
first two commands on lines 1 and 3). New variables can be created (as on lines 5 and 8)
using the assignment operator =. If a command generates output (as on lines 6 and 11),
then it is printed on the screen, preceded by a number indicating place in the vector (this
is particularly useful if output is longer than one line, e.g., lines 23–24). Saved data (here
assigned the name ds) is read into R on line 15, then summary statistics are calculated
(lines 16–17) and individual observations are displayed (lines 23–24). The $ operator allows
access to objects within a dataframe. Alternatively, the with() function can be used to
access objects within a dataset.

It is important to remember that R is case-sensitive.

> x = 1:3

> X = seq(2, 4)

> x

[1] 1 2 3

> X

[1] 2 3 4

A very comprehensive sample session in R can be found in Appendix A of “An Introduction
to R” [180] (http://cran.r-project.org/doc/manuals/R-intro.pdf).
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% R

R version 3.1.1 (2014-07-10) -- "Sock it to Me"

Copyright (C) 2014 The R Foundation for Statistical Computing

Platform: x86_64-apple-darwin13.1.0 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.

You are welcome to redistribute it under certain conditions.

Type ’license()’ or ’licence()’ for distribution details.

Natural language support but running in an English locale

R is a collaborative project with many contributors.

Type ’contributors()’ for more information and

’citation()’ on how to cite R or R packages in publications.

Type ’demo()’ for some demos, ’help()’ for on-line help, or

’help.start()’ for an HTML browser interface to help.

Type ’q()’ to quit R.

1 > 3 + 6

2 [1] 9

3 > 2 * 3

4 [1] 6

5 > x = c(4, 5, 3, 2)

6 > x

7 [1] 4 5 3 2

8 > y = seq(1, 4)

9 > y

10 [1] 1 2 3 4

11 > mean(x)

12 [1] 3.5

13 > sd(y)

14 [1] 1.290994

15 > ds = read.csv("http://www.amherst.edu/~nhorton/r2/datasets/help.csv")

16 > mean(ds$age)

17 [1] 35.65342

18 > mean(age)

19 Error in mean(age) : object "age" not found

20 > with(ds, mean(age))

21 [1] 35.65342

22 > ds$age[1:30]

23 [1] 37 37 26 39 32 47 49 28 50 39 34 58 53 58 60 36 28 35 29 27 27

24 [22] 41 33 34 31 39 48 34 32 35

25 > q()

26 Save workspace image? [y/n/c]: n

Figure A.4: Sample session in R

A.2.1 Replicating examples from the book and sourcing commands

To help facilitate reproducibility, R commands can be bundled into a plain text file, called a
“script” file, which can be executed using the source() command. The optional argument
echo=TRUE for the source() command can be set to display each command and its output.
The book website cited above includes the R source code for the examples. The sample
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session in Figure A.4 can be executed by running the following command.

> source("http://www.amherst.edu/~nhorton/r2/examples/sampsess.R",

echo=TRUE)

Most of the examples at the end of each chapter can be executed by running the command:

> source("http://www.amherst.edu/~nhorton/r2/examples/chapterXX.R",

echo=TRUE)

where XX is replaced by the desired chapter number. In many cases, add-on packages (see
A.6.1) need to be installed prior to running the examples. To facilitate this process, we
have created a script file to load them in one step.

> source("http://www.amherst.edu/~nhorton/r2/examples/install.R",

echo=TRUE)

If needed libraries are not installed (A.6.1), the example code will generate error messages.

A.2.2 Batch mode

In addition, R can be run in batch (noninteractive) mode from a command-line interface:

% R CMD BATCH file.R

This will run the commands contained within file.R and put all output into file.Rout.
To use R in batch mode under Windows, users need to include R.exe in their path (see the
Windows R FAQ and A.1.1).

A.3 Learning R

An excellent starting point for new R users can be found in the Introduction to R, available
from CRAN (r-project.org).

A.3.1 Getting help

The system features extensive online documentation, though it can sometimes be challeng-
ing to comprehend. Each command has an associated help file that describes usage, lists
arguments, provides details of actions, references, lists other related functions, and includes
examples of its use. The help system is invoked using the command:

> ?function

or
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> help(function)

where function is the name of the function of interest. As an example, the help file for the
mean() function is accessed by the command help(mean). The output from this command
is provided in Figure A.5.

It describes the mean() function as a generic function for the (trimmed) arithmetic
mean, with arguments x (an R object), trim (the fraction of observations to trim, with
default=0; setting trim=0.5 is equivalent to calculating the median), and na.rm (should
missing values be deleted; default is na.rm=F).

Some commands (e.g., if) are reserved, so ?if will not generate the desired documenta-
tion. Running ?"if" will work (see also ?Reserved and ?Control). Other reserved words
include else, repeat, while, function, for, in, next, break, TRUE, FALSE, NULL, Inf,
NaN, and NA.

The RSiteSearch() function will search for key words or phrases in many places (in-
cluding the search engine at http://search.r-project.org). A screenshot of the results
of the command RSiteSearch("eta squared anova") can be found in Figure A.6. The
RSeek.org site can also be helpful in finding more information and examples.

Examples of many functions are available using the example() function.

> example(mean)

mean> x <- c(0:10, 50)

mean> xm <- mean(x)

mean> c(xm, mean(x, trim = 0.10))

[1] 8.75 5.50

Other useful resources are help.start(), which provides a set of online manuals, and
help.search(), which can be used to look up entries by description. The apropos()

command returns any functions in the current search list that match a given pattern (which
facilitates searching for a function based on what it does, as opposed to its name).

Other resources for help available from CRAN include the R-help mailing list (see also
A.7, support). The StackOverflow site for R (http://stackoverflow.com/questions/
tagged/r) provides a series of questions and answers for common questions that are tagged
as being related to R. New users are also encouraged to read the R FAQ (frequently asked
questions) list. RStudio provides a curated guide to resources for learning R and its exten-
sions (see http://www.rstudio.com/resources/training/online-learning).

A.3.2 swirl

The swirl system is a collection of interactive courses to teach R programming and data
science within the R console (swirlstats.com). It requires the installation of the swirl

package, then use of the install from swirl() function to download courses. Table A.1
displays the courses that were available as of October 2014. A sample session is displayed
below.

> library(swirl)

| Type swirl() when you are ready to begin.
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mean package:base R Documentation

Arithmetic Mean

Description:

Generic function for the (trimmed) arithmetic mean.

Usage:

mean(x, ...)

## Default S3 method:

mean(x, trim = 0, na.rm = FALSE, ...)

Arguments:

x: An R object. Currently there are methods for numeric/logical

vectors and date, date-time and time interval objects.

Complex vectors are allowed for ’trim = 0’, only.

trim: the fraction (0 to 0.5) of observations to be trimmed from

each end of ’x’ before the mean is computed. Values of trim

outside that range are taken as the nearest endpoint.

na.rm: a logical value indicating whether ’NA’ values should be

stripped before the computation proceeds.

...: further arguments passed to or from other methods.

Value:

If ’trim’ is zero (the default), the arithmetic mean of the values

in ’x’ is computed, as a numeric or complex vector of length one.

If ’x’ is not logical (coerced to numeric), numeric (including

integer) or complex, ’NA_real_’ is returned, with a warning.

If ’trim’ is non-zero, a symmetrically trimmed mean is computed

with a fraction of ’trim’ observations deleted from each end

before the mean is computed.

References:

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) _The New S

Language_. Wadsworth & Brooks/Cole.

See Also:

’weighted.mean’, ’mean.POSIXct’, ’colMeans’ for row and column

means.

Examples:

x <- c(0:10, 50)

xm <- mean(x)

c(xm, mean(x, trim = 0.10))

Figure A.5: Documentation on the mean() function
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Figure A.6: Display after running RSiteSearch("eta squared anova")

Table A.1: Interactive courses available within swirl

COURSE DESCRIPTION

R Programming (beginner) The basics of programming in R
R Programming Alt (beginner) Same as the original, but modified for in-class use
Data Analysis (beginner) Basic ideas in statistics and data visualization
Mathematical Biostatistics Boot
Camp (beginner)

One- and two-sample t-tests, power, and sample
size

Open Intro (beginner) A very basic introduction to statistics, data analy-
sis, and data visualization

Regression Models (intermediate) The basics of regression modeling in R
Getting and Cleaning Data (ad-
vanced)

dplyr, tidyr, lubridate, oh my!
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> install_from_swirl("Getting and Cleaning Data")

| Course installed successfully!

> swirl()

| Welcome to swirl!

| Please sign in. If you’ve been here before, use the same name as you did

| then. If you are new, call yourself something unique.

What shall I call you? Nick

| Please choose a course, or type 0 to exit swirl.

1: Getting and Cleaning Data

2: R Programming

3: Regression Models

4: Take me to the swirl course repository!

Selection: 1

| Please choose a lesson, or type 0 to return to course menu.

1: Manipulating Data with dplyr

2: Grouping and Chaining with dplyr

3: Tidying Data with tidyr

4: Dates and Times with lubridate

Selection: 1

| Attempting to load lesson dependencies...

| Package dplyr loaded correctly!

| In this lesson, you’ll learn how to manipulate data using dplyr. dplyr is

| a fast and powerful R package written by Hadley Wickham and Romain

| Francois that provides a consistent and concise grammar for manipulating

| tabular data.

...

After some preliminary introductions, the user is instructed to enter a series of commands
and explore in the console. The swirl system detects whether the correct commands have
been input.

A.4 Fundamental structures and objects

Here we provide a brief introduction to R data structures.
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A.4.1 Objects and vectors

Almost everything in R is an object, which may be initially disconcerting to a new user.
An object is simply something on which R can operate. Common objects include vectors,
matrices, arrays, factors (see 2.2.19), dataframes (akin to datasets in other systems), lists,
and functions.

The basic variable structure is a vector. Vectors can be created using the <- or =

assignment operators (which assigns the evaluated expression on the right-hand side of the
operator to the object name on the left-hand side).

> x <- c(5, 7, 9, 13, -4, 8)

> x = c(5, 7, 9, 13, -4, 8) # equivalent

The above code creates a vector of length 6 using the c() function to concatenate scalars
(2.2.10). The = operator must be used for the specification of options for functions. Other
assignment operators exist, as well as the assign() function (see 4.1.4 or help("<-") for
more information). The rm() command can be used to remove objects. The exists()

function can be utilized to determine whether an object exists.

A.4.2 Indexing

Since vector operations are so common in R, it is important to be able to access (or index)
elements within these vectors. Many different ways of indexing vectors are available. Here,
we introduce several of these, using the above example. The command x[2] would return
the second element of x (the scalar 7), and x[c(2,4)] would return the vector (7,13). The
expressions x[c(T,T,T,T,T,F)], x[1:5] and x[-6] would all return a vector consisting of
the first five elements in x (the last specifies all elements except the 6th). Knowledge and
basic comfort with these approaches to vector indexing are important to effective use of R,
as they can help with computational efficiency.

Vectors are recycled if needed, for example, when comparing each of the elements of a
vector to a scalar, as shown below.

> x>8

[1] FALSE FALSE TRUE TRUE FALSE FALSE

The above expression demonstrates the use of comparison operators (see ?Comparison).
Only the third and fourth elements of x are greater than 8. The function returns a logical
value of either TRUE or FALSE (see ?Logic).

A count of elements meeting the condition can be generated using the sum() function.

> sum(x>8)

[1] 2

The following commands create a vector of values greater than 8.

> largerthan8 = x[x>8]

> largerthan8

[1] 9 13
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Here, the expression x[x>8] can be interpreted as “the elements of x for which x is greater
than 8.” This is a difficult construction for some new users. Examples of its application can
be found in Sections 11.4.4.1 and 2.6.2.

Other comparison operators include == (equal), >= (greater than or equal), <= (less
than or equal, and != (not equal). Care needs to be taken in the comparison using == if
noninteger values are present (see 3.2.5).

A.4.3 Operators

There are many operators defined in R to carry out a variety of tasks. Many of these
were demonstrated in the sample session (assignment, arithmetic) and above examples
(comparison). Arithmetic operations include +, -, *, /, ˆ (exponentiation), %% (modulus),
and &/& (integer division). More information about operators can be found using the help
system (e.g., ?"+"). Background information on other operators and precedence rules can
be found using help(Syntax).

R supports Boolean operations (OR, AND, NOT, and XOR) using the |, ||, &, !

operators and the xor() function. The | is an “or” operator that operates on each element
of a vector, while the || is another “or” operator that stops evaluation the first time that
the result is true (see ?Logic).

A.4.4 Lists

Lists in R are generic objects that can contain other objects. List members can be named,
or referenced using numeric indices (using the [[ operator).

> newlist = list(x1="hello", x2=42, x3=TRUE)

> is.list(newlist)

[1] TRUE

> newlist

$x1

[1] "hello"

$x2

[1] 42

$x3

[1] TRUE

> newlist[[2]]

[1] 42

> newlist$x2

[1] 42

The unlist() function can be used to flatten (make a vector out of) the elements in a list
(see also relist()).

> unlisted = unlist(newlist)

> unlisted

x1 x2 x3

"hello" "42" "TRUE"

Note that unlisted objects are coerced (see 2.2.3) to a common type (in this case character).
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A.4.5 Matrices

Matrices are rectangular objects with two dimensions (see 3.3). We can create a 2 × 3
matrix, display it, and test for its type.

> A = matrix(x, 2, 3)

> A

[,1] [,2] [,3]

[1,] 5 9 -4

[2,] 7 13 8

> is.matrix(A) # is A a matrix?

[1] TRUE

> is.vector(A)

[1] FALSE

> is.matrix(x)

[1] FALSE

Comments are supported within R (any input given after a # character is ignored).
Indexing for matrices is done in a similar fashion as for vectors, albeit with a second

dimension (denoted by a comma).

> A[2,3]

[1] 8

> A[,1]

[1] 5 7

> A[1,]

[1] 5 9 -4

A.4.6 Dataframes

Analysis datasets are often stored in a dataframe, which is more general than a matrix.
This rectangular object, similar to a dataset in other systems, can be thought of as a
matrix with columns of vectors of different types (as opposed to a matrix, which consists
of vectors of the same type). The functions read.csv() (see 1.1.4) and read.table() (see
1.1.2) return dataframe objects. A simple dataframe can be created using the data.frame()
command. Access to sub-elements is achieved using the $ operator, as shown below (see also
help(Extract)). In addition, operations can be performed by column (e.g., calculation of
sample statistics).

> y = rep(11, length(x))

> y

[1] 11 11 11 11 11 11

> ds = data.frame(x, y)

> ds

x y

1 5 11



i
i

“K23166” — 2015/1/28 — 9:35 — page 224 — #250 i
i

i
i

i
i

224 APPENDIX A. INTRODUCTION TO R AND RSTUDIO

2 7 11

3 9 11

4 13 11

5 -4 11

6 8 11

> ds$x[3]

[1] 9

We can check to see if an object is a dataframe with is.data.frame(). Note that the
use of data.frame() differs from the use of cbind(), which yields a matrix object (unless
cbind() is given dataframes as inputs).

> newmat = cbind(x, y)

> newmat

x y

[1,] 5 11

[2,] 7 11

[3,] 9 11

[4,] 13 11

[5,] -4 11

[6,] 8 11

> is.data.frame(newmat)

[1] FALSE

> is.matrix(newmat)

[1] TRUE

Dataframes can be thought of as the equivalent of datasets. They can be created from
matrices using as.data.frame(), while matrices can be constructed from dataframes using
as.matrix().

Dataframes can be attached to the workspace using the attach(ds) command (see
2.1.1), though this is strongly discouraged [54]. After this command, individual columns
in ds can be referenced directly by name (e.g., x instead of ds$x). Name conflicts are a
common problem with attach() (see conflicts(), which reports on objects that exist
with the same name in two or more places on the search path).

The search() function lists attached packages and objects. To avoid cluttering the
name-space, the command detach(ds) should be used once a dataframe or package is no
longer needed.

The with() and within() commands (see 2.1.1) can be used to simplify reference to
an object within a dataframe without attaching.

The sessionInfo() function provides version information about R as well as details of
loaded packages.

> sessionInfo()

R version 3.1.1 (2014-07-10)

Platform: x86_64-apple-darwin13.1.0 (64-bit)

locale:

[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:

[1] methods stats graphics grDevices utils datasets base
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The R.Version() function provides access to components of the version and platform status.

> R.Version()

$platform

[1] "x86_64-apple-darwin10.8.0"

$arch

[1] "x86_64"

$os

[1] "darwin10.8.0"

$system

[1] "x86_64, darwin10.8.0"

$status

[1] ""

$major

[1] "3"

$minor

[1] "1.1"

$year

[1] "2014"

$month

[1] "07"

$day

[1] "10"

$‘svn rev‘

[1] "66115"

$language

[1] "R"

$version.string

[1] "R version 3.1.1 (2014-07-10)"

$nickname

[1] "Sock it to Me"

Sometimes it is desirable to remove a package (A.6.1) from the workspace. For example, a
package might define a function (4.2) with the same name as an existing function. Packages
can be detached using the syntax detach(package:PKGNAME), where PKGNAME is the name of
the package (see, for example, 7.10.5). Objects with the same name that appear in multiple
places in the environment can be accessed using the location::objectname syntax. As
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an example, to access the mean() function from the base package, the user would specify
base::mean() instead of mean().

The names of all variables within a given dataset (or more generally for sub-objects
within an object) are provided by the names() command. The names of all objects defined
within an R session can be generated using the objects() and ls() commands, which
return a vector of character strings. RStudio includes an Environment tab that lists all the
objects in the current environment.

The print() and summary() functions can be used to display simple and more complex
descriptions, respectively, of an object. Running print(object) at the command line is
equivalent to just entering the name of the object, i.e., object.

A.4.7 Attributes and classes

Objects have a set of associated attributes (such as names of variables, dimensions, or
classes) which can be displayed or sometimes changed. While a powerful concept, this can
often be initially confusing. For example, we can find the dimension of the matrix defined
earlier.

> attributes(A)

$dim

[1] 2 3

Other types of objects within R include lists (ordered objects that are not necessarily
rectangular), regression models (objects of class lm), and formulae (e.g., y ∼ x1 + x2).
Examples of the use of formulas can be found in Sections 5.4.2 and 6.1.1. R supports
object-oriented programming (see help(UseMethod)). As a result, objects within R have
an associated “Class” attribute, which changes default behaviors for some operations on
that object. Many functions have special capabilities when operating on a particular class.
For example, when summary() is applied to an lm object, the summary.lm() function is
called, while summary.aov() is called when an aov object is given as an argument. The
class() function returns the classes to which an object belongs, while the methods()

function displays all of the classes supported by a function (e.g., methods(summary)).
The attributes() command displays the attributes associated with an object, while

the typeof() function provides information about the object (e.g., logical, integer, double,
complex, character, and list). The mode() function displays the storage mode for an object.

A.4.8 Options

The options() function in R can be used to change various default behaviors, for example,
the default number of digits to display in output (options(digits=n) where n is the
preferred number). Defaults described in the book include digits, show.signif.stars,
and width. The previous options are returned when options() is called (see 8.7.7), to
allow them to be restored. The command help(options) lists all of the settable options.

A.5 Functions

A.5.1 Calling functions

Fundamental actions within R are carried out by calling functions (either built-in or user
defined). Multiple arguments may be given, separated by commas. The function carries out
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operations using the provided arguments, then returns values (an object such as a vector
or list) that are displayed (by default) or that can be saved by assignment to an object.

As an example, the quantile() function takes a vector and returns the minimum, 25th
percentile, median, 75th percentile, and maximum, though if an optional vector of quantiles
is given, those are calculated instead.

> vals = rnorm(1000) # generate 1000 standard normals

> quantile(vals)

0% 25% 50% 75% 100%

-2.8290 -0.7017 0.0171 0.6577 3.8532

> quantile(vals, c(.025, .975))

2.5% 97.5%

-2.03 1.89

Return values can be saved for later use.

> res = quantile(vals, c(.025, .975))

> res[1]

2.5%

-2.03

Options are available for many functions. These are named arguments for the functions,
and are generally added after the other arguments, also separated by commas. The docu-
mentation specifies the default action if named arguments (options) are not specified. For
the quantile() function, there is a type() option that allows specification of one of nine
algorithms for calculating quantiles. As an example, setting type=3 specifies the “nearest
even order statistic” option, which is the default for some systems (e.g., SAS).

> res = quantile(vals, probs=c(.025, .975), type=3)

Some functions allow a variable number of arguments. An example is the paste() function
(see usage in 2.2.10). The calling sequence is described in the documentation as follows.

> paste(..., sep=" ", collapse=NULL)

To override the default behavior of a space being added between elements output by
paste(), the user can specify a different value for sep.

A.5.2 The apply family of functions

Operations within R are most efficiently carried out using vector or list operations rather
than looping. The apply() function can be used to perform many actions on an object.
While somewhat subtle, the power of the vector language can be seen in this example.
The apply() command is used to calculate column means or row means of the previously
defined matrix in one fell swoop:
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> A

[,1] [,2] [,3]

[1,] 5 9 -4

[2,] 7 13 8

> apply(A, 2, mean)

[1] 6 11 2

> apply(A, 1, mean)

[1] 3.33 9.33

Option 2 specifies that the mean should be calculated for each column, while option 1 cal-
culates the mean of each row. Here, we see some of the flexibility of the system, as functions
in R (such as mean()) are also objects that can be passed as arguments to functions.

Other related functions include lapply(), which is helpful in avoiding loops when us-
ing lists; sapply() (see 2.1.2), mapply(), and vapply() to do the same for dataframes,
matrices, and vectors, respectively; and tapply() (11.1.1) performs an action on subsets
of an object. The foreach and plyr packages provide equivalent formulations for parallel
execution (see also the parallel package).

A.5.3 Pipes and connections between functions

A recent addition to R is the pipe-forwarding mechanism (%>%) within the magrittr pack-
age. This is extremely useful when using the dplyr, ggvis, and tidyr packages, among
others. Pipe forwarding is an alternative to nesting that yields code that can be read from
top to bottom. A brief introduction can be found by running vignette("magrittr") (see
2.3.7 for an example).

Here we demonstrate an example that compares traditional (nested) dplyr function
calls to the new pipe operator.

> library(dplyr)

> ds = read.csv("http://www.amherst.edu/~nhorton/r2/datasets/helpmiss.csv")

> summarise(group_by(select(filter(mutate(ds,

sex=ifelse(female==1, "F", "M")), !is.na(pcs)), age, pcs, sex),

sex), meanage=mean(age), meanpcs=mean(pcs),n=n())

Source: local data frame [2 x 4]

sex meanage meanpcs n

1 F 36.1 44.9 111

2 M 35.6 49.1 357

In this example, the output of the mutate() function is specified as the input to the
filter() function, which prunes observations that are missing the pcs variable. The
output from this function is sent to the select() function to create a subset of variables,
and the results provided to the group by() function, which collapse the dataset by gender.
The summarise() function calculates the average age and PCS (physical component score)
as well as the sample size.

This nested code is very difficult for humans to parse. An alternative would be to save
the intermediate results from the nested functions.

> ds2 = mutate(ds, sex=ifelse(female==1, "F", "M"))

> ds3 = filter(ds2, !is.na(pcs))

> ds4 = select(ds3, age, pcs, sex)
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> ds5 = group_by(ds4, sex)

> summarise(ds5, meanage=mean(age), meanpcs=mean(pcs),n=n())

Source: local data frame [2 x 4]

sex meanage meanpcs n

1 F 36.1 44.9 111

2 M 35.6 49.1 357

A disadvantage of this (somewhat clunky) approach is that it involves a lot of unnecessary
copying. This may be particularly inefficient when processing large datasets.

The same operations are done in a different (and likely more readable) manner using
the %>% operator.

> ds %>%

mutate(sex=ifelse(female==1, "F", "M")) %>%

filter(!is.na(pcs)) %>%

select(age, pcs, sex) %>%

group_by(sex) %>%

summarise(meanage=mean(age), meanpcs=mean(pcs),n=n())

Source: local data frame [2 x 4]

sex meanage meanpcs n

1 F 36.1 44.9 111

2 M 35.6 49.1 357

Here, it is clear what each operation within the “pipe stream” is doing. It is straightforward
to debug expressions in this manner by just leaving off the %>% at each line: this will only
evaluate the set of functions called to that point and display the intermediate output.

A.6 Add-ons: packages

A.6.1 Introduction to packages

Additional functionality in R is added through packages, which consist of functions, datasets,
examples, vignettes, and help files that can be downloaded from CRAN. The function
install.packages() or the windowing interface under Packages and Data can be used to
download and install packages. Alternatively, RStudio provides an easy-to-use Packages

tab to install and load packages.
The library() function can be used to load a previously installed package (i.e., one that

is included in the standard release of R or has been previously made available through use
of the install.packages() function). As an example, to install and load Frank Harrell’s
Hmisc package, two commands are needed:

> install.packages("Hmisc")

> library(Hmisc)

Once a package has been installed, it can be loaded for use in a session of R by executing
the function library(libraryname). If a package is not installed, running the library()

command will yield an error. Here, we try to load the Zelig package (which had not yet
been installed):
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> library(Zelig)

Error in library(Zelig) : there is no package called ’Zelig’

To rectify the problem, we then install the package from CRAN.

> install.packages("Zelig")

trying URL ’ftp.osuosl.org/pub/cran/bin/mavericks/contrib/Zelig_4.2-1.tgz’

Content type ’application/x-gzip’ length 3374792 bytes (3.2 Mb)

opened URL

==================================================

downloaded 3.2 Mb

The downloaded binary packages are in

/var/folders/2j/RtmpXPJ4oO/downloaded_packages

> library(Zelig)

ZELIG (Versions 4.2-1, built: 2013-09-12)

+----------------------------------------------------------------+

| Please refer to http://gking.harvard.edu/zelig for full |

| documentation or help.zelig() for help with commands and |

| models support by Zelig. |

| Zelig project citations: |

| Kosuke Imai, Gary King, and Olivia Lau. (2009). |

| ‘‘Zelig: Everyone’s Statistical Software,’’ |

| http://gking.harvard.edu/zelig |

| and |

| Kosuke Imai, Gary King, and Olivia Lau. (2008). |

| ‘‘Toward A Common Framework for Statistical Analysis |

| and Development,’’ Journal of Computational and |

| Graphical Statistics, Vol. 17, No. 4 (December) |

| pp. 892-913. |

+----------------------------------------------------------------+

Attaching package: ’Zelig’

Packages can be installed from other repositories (e.g., Omegahat or GitHub) by specifying
the repository using the repos= option, or in the case of GitHub, using the install github()

function from the devtools package).
A user can test whether a package is available by running require(packagename); this

will load the library if it is installed, and generate a warning message if it is not (as opposed
to library(), which will return an error, see 4.1.7). This is particularly useful in functions
or reproducible analysis.

A.6.2 Packages and name conflicts

Different package authors may choose the same name for functions that exist within base
R (or within other packages). This will cause the other function or object to be masked.
This can sometimes lead to confusion, when the expected version of a function is not the
one that is called. The find() function can be used to determine where in the environment
(workspace) a given object can be found.
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> find("mean")

[1] "package:base"

As an example where this might be useful, there are functions in the base and Hmisc

packages called units(). The find command would display both (in the order which they
would be accessed).

> library(Hmisc)

> find("units")

[1] "package:Hmisc" "package:base"

When the Hmisc package is loaded, the units() function from the base package is masked
and would not be used by default. To specify that the version of the function from the
base package should be used, prefix the function with the package name followed by two
colons: base::units(). The conflicts() function reports on objects that exist with the
same name in two or places on the search path.

A.6.3 Maintaining packages

The update.packages() function should be run periodically to ensure that packages are
up to date (see packageVersion()). The sessionInfo() command displays the version of
R that is running as well as information on all loaded packages.

The packrat package provides a comprehensive dependency system for R. This function-
ality can be extremely helpful to support reproducible analysis, as the exact set of packages
used for an analysis can be identified and accessed in a project. Support for Packrat is built
into RStudio.

As of October 2014, there were more than 5,900 packages available from CRAN. This
represents a tremendous investment of time and code by many developers [44]. While each
of these has met a minimal standard for inclusion, it is important to keep in mind that
packages within R are created by individuals or small groups, and not endorsed by the
R core group. As a result, they do not necessarily undergo the same level of testing and
quality assurance that the core R system does.

A.6.4 CRAN task views

The Task Views on CRAN (http://cran.r-project.org/web/views) are a very useful
resource for finding packages. These are listings of relevant packages within a particular
application area (such as multivariate statistics, psychometrics, or survival analysis). Table
A.2 displays the task views available as of October 2014.

A.6.5 Installed libraries and packages

Running the command library(help="libraryname") will display information about an
installed package. Entries in the book that utilize packages include a line specifying how
to access that library (e.g., library(foreign) in 1.1.6). As of October, 2014, the R
distribution comes with the following packages:

base Base R functions

compiler R byte code compiler

datasets Base R datasets
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Table A.2: CRAN task views

Bayesian Bayesian inference
ChemPhys Chemometrics and computational physics
Clinical Trials Design, monitoring, and analysis of clinical trials
Cluster Cluster analysis and finite mixture models
Differential Equations Differential equations
Distributions Probability distributions
Econometrics Computational econometrics
Environmetrics Analysis of ecological and environmental data
Experimental Design Design and analysis of experiments
Finance Empirical finance
Genetics Statistical genetics
Graphics Graphic displays, devices, and visualization
gR Graphical models in R
High Performance Computing High-performance and parallel computing
Machine Learning Machine and statistical learning
Medical Imaging Medical image analysis
MetaAnalysis Meta-analysis
Multivariate Multivariate statistics
Natural Language Processing Natural language processing
Numerical Mathematics Numerical mathematics
Official Statistics Official statistics and survey methodology
Optimization Optimization and mathematical programming
Pharmacokinetics Analysis of pharmacokinetic data
Phylogenetics Phylogenetics, especially comparative methods
Psychometrics Psychometric models and methods
Reproducible Research Reproducible research
Robust Robust statistical methods
Social Sciences Statistics for the social sciences
Spatial Analysis of spatial data
Spatio Temporal Handling and analyzing spatio-temporal data
Survival Survival analysis
Time Series Time series analysis
Web Technologies Web technologies and service

graphics R functions for base graphics

grDevices Graphics devices for base and grid graphics

grid A rewrite of the graphics layout capabilities, plus some support for interaction

methods Formally defined methods and classes for R objects, plus other programming
tools

parallel Support for parallel computation, including by forking and by sockets, and random-
number generation

splines Regression spline functions and classes

stats R statistical functions

stats4 Statistical functions using S4 classes

tcltk Interface and language bindings to Tcl/Tk GUI elements
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tools Tools for package development and administration

utils R utility functions

These packages are all available without having to run the library() command and are
effectively part of R.

A.6.6 Packages referenced in this book

Other packages utilized in this book include:

biglm Bounded memory linear and generalized linear models [107]

boot Bootstrap functions [19] (recommended)

BRugs R interface to the OpenBUGS MCMC software [168]

car Companion to Applied Regression [45]

choroplethr Functions to simplify the creation of choropleths (thematic maps) in R [89]

chron Chronological objects [79]

circular Circular statistics [2]

coda Output analysis and diagnostics for Markov Chain Monte Carlo simulations [127]

coefplot Plots coefficients from fitted models [90]

coin Conditional inference procedures in a permutation test framework [75]

dispmod Dispersion models [155]

devtools Tools to make developing R code easier [193]

doBy Groupwise summary statistics, LSmeans, and general linear contrasts [66]

dplyr Plyr specialized for dataframes: faster and with remote datastores [194]

ellipse Functions for drawing ellipses and ellipse-like confidence regions [117]

elrm Exact logistic regression via MCMC [202]

epitools Epidemiology tools [7]

exactRankTests Exact distributions for rank and permutation tests [74]

factorplot Plot pairwise differences [8]

flexmix Flexible mixture modeling [96]

foreach Foreach looping construct for R [133]

foreign Read data stored by Minitab, S, SAS, SPSS, Stata, Systat, Weka, dBase [129]
(recommended)

gam Generalized additive models [62]

gdata Various R programming tools for data manipulation [183]

gee Generalized estimation equation solver [21]

GenKern Functions for generating and manipulating binned kernel density estimates [105]

GGally Extension to ggplot2 [152]

ggmap A package for spatial visualization with Google Maps and OpenStreetMap [84]

ggplot2 An implementation of the grammar of graphics [188]

ggvis Implements a interactive grammar of graphics, taking the best parts of ggplot2,
combining them with Shiny’s reactive framework, and drawing web graphics using
vega. [140]
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gmodels Various R programming tools for model fitting [182]

greport Graphical reporting for clinical trials [83]

gridExtra Functions for grid graphics [9]

gtools Various R programming tools [184]

hexbin Hexagonal binning routines [22]

Hmisc Harrell miscellaneous [60]

Hotelling Hotelling’s T-squared test and variants [29]

httr Tools for working with URLs and HTTP [191]

hwriter HTML writer: outputs R objects in HTML format [124]

irr Various coefficients of interrater reliability and agreement [46]

knitr A general-purpose package for dynamic report generation in R [200]

lars Least angle regression, LASSO, and forward stagewise [63]

lattice Lattice graphics [147] (recommended)

lawstat An R package for biostatistics, public policy, and law [49]

lme4 Linear mixed-effects models [12]

lmtest Testing linear regression models [203]

lpSolve Interface to Lp solve v. 5.5 to solve linear/integer programs [16]

lubridate Makes dealing with dates a little easier [55]

magrittr A forward-pipe operator for R [10]

maps Draw geographical maps [15]

markdown Markdown rendering for R [5]

MASS Support functions and datasets for Venables and Ripley’s MASS [179] (recom-
mended)

Matching Multivariate and propensity score matching with balance optimization [157]

Matrix Sparse and dense matrix classes and methods [11] (recommended)

MCMCpack Markov Chain Monte Carlo (MCMC) package [110]

memisc Tools for survey data, graphics, programming, statistics, and simulation [34]

mice Multivariate imputation by chained equations [178]

mitools Tools for multiple imputation of missing data [108]

mix Estimation/multiple imputation for mixed categorical and continuous data [150]

moments Moments, cumulants, skewness, kurtosis, and related tests [88]

mosaic Project MOSAIC statistics and mathematics teaching utilities [128]

MplusAutomation Automating Mplus model estimation and interpretation [58]

muhaz Hazard function estimation in survival analysis [64]

multcomp Simultaneous inference in general parametric models [73]

multilevel Multilevel functions [17]

nlme Linear and nonlinear mixed-effects models [125] (recommended)

nnet Feed-forward neural networks and multinomial log-linear models [179] (recommended)

nortest Tests for normality [56]
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packrat A dependency management system for projects and their R package dependencies
[175]

partykit A toolkit for recursive partytioning [76]

plotrix Various plotting functions [97]

plyr Tools for splitting, applying and combining data [190]

poLCA Polytomous variable latent class analysis [102]

prettyR Pretty descriptive stats [98]

pscl Political science computational laboratory, Stanford University [78]

pwr Basic functions for power analysis [23]

QuantPsyc Quantitative psychology tools [42]

quantreg Quantile regression [87]

R2jags A package for running jags from R [163]

R2WinBUGS Running WinBUGS and OpenBUGS from R [162]

randomLCA Random effects latent class analysis [14]

RCurl General network (HTTP/FTP) client interface for R [92]

reshape Flexibly reshape data [187]

rjags Bayesian graphical models using MCMC [126]

RMongo MongoDB client for R [24]

rms Regression modeling strategies [61]

RMySQL R interface to the MySQL database [80]

ROCR Visualizing the performance of scoring classifiers [161]

RODBC An ODBC database interface [134]

rpart Recursive partitioning [167] (recommended)

RSQLite SQLite interface for R [81]

rtf Rich text format (RTF) output [151]

runjags Interface utilities, parallel computing methods, and additional distributions for
MCMC models in JAGS [31]

sas7bdat SAS database reader [159]

scatterplot3d 3D scatter plot [101]

sciplot Scientific graphing functions for factorial designs [115]

simPH Tools for simulating and plotting quantities of interest estimated from Cox pro-
portional hazards models [48]

shiny Shiny makes it incredibly easy to build interactive web applications with R. Auto-
matic “reactive” binding between inputs and outputs and extensive prebuilt widgets
make it possible to build beautiful, responsive, and powerful applications with minimal
effort. [141]

sqldf Perform SQL selects on R dataframes [57]

survey Analysis of complex survey samples [106]

survival Survival analysis [166] (recommended)

swirl Learn R, in R [20]
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tidyr Easily tidy data with spread and gather functions [192].

tm A framework for text mining applications within R [38]

tmvtnorm Truncated multivariate normal and Student t distribution [195]

vcd Visualizing categorical data [113]

VGAM Vector generalized linear and additive models [201]

vioplot Violin plot [1]

WriteXLS Cross-platform Perl-based R function to create Excel spreadsheets [153]

XML Tools for parsing and generating XML [91]

xtable Export tables to LATEX or HTML [30]

Zelig Everyone’s statistical software [123]

These must be downloaded, installed, and loaded prior to use (see install.packages(),
require(), and library()), though the recommended packages are included in most dis-
tributions of R. To facilitate the process of loading the other packages, we have created a
script file to load these in one step (see A.2.1).

A.6.7 Datasets available with R

A number of datasets are available within the datasets package. The data() function lists
these, while the optional package option can be used to regenerate datasets from within a
specific package.

A.7 Support and bugs

Since R is a free software project written by volunteers, there are no paid support options
available directly from the R Foundation. A number of groups provide commercial sup-
port for R and related systems, including Revolution Analytics and RStudio. In addition,
extensive resources are available to help users.

In addition to the manuals, publications, FAQs, newsletter, task views, and books listed
on the www.r-project.org web page, there are a number of mailing lists that exist to help
answer questions. Because of the volume of postings, it is important to carefully read the
posting guide at http://www.r-project.org/posting-guide.html prior to submitting a
question. These guidelines are intended to help leverage the value of the list, to avoid
embarrassment, and to optimize the allocation of limited resources to technical issues.

As in any general-purpose statistical software package, some bugs exist. More informa-
tion about the process of determining whether and how to report a problem can be found
using help(bug.report) (please also review the R FAQ).



i
i

“K23166” — 2015/1/28 — 9:35 — page 237 — #263 i
i

i
i

i
i

Appendix B

The HELP study dataset

B.1 Background on the HELP study

Data from the HELP (Health Evaluation and Linkage to Primary Care) study are used to
illustrate many of the entries. The HELP study was a clinical trial for adult inpatients re-
cruited from a detoxification unit. Patients with no primary care physician were randomized
to receive a multidisciplinary assessment and a brief motivational intervention or usual care,
with the goal of linking them to primary medical care. Funding for the HELP study was
provided by the National Institute on Alcohol Abuse and Alcoholism (R01-AA10870, Samet
PI) and the National Institute on Drug Abuse (R01-DA10019, Samet PI).

Eligible subjects were adults, who spoke Spanish or English, reported alcohol, heroin, or
cocaine as their first or second drug of choice, and either resided in proximity to the primary
care clinic to which they would be referred, or were homeless. Patients with established
primary care relationships they planned to continue, significant dementia, specific plans to
leave the Boston area that would prevent research participation, failure to provide contact
information for tracking purposes, or pregnancy were excluded.

Subjects were interviewed at baseline during their detoxification stay, and follow-up
interviews were undertaken every 6 months for 2 years. A variety of continuous, count,
discrete, and survival time predictors and outcomes were collected at each of these five
occasions.

The details of the randomized trial along with the results from a series of additional
analyses have been published [145, 132, 72, 100, 85, 144, 143, 158, 93, 198].

B.2 Roadmap to analyses of the HELP dataset

Table B.1 summarizes the analyses illustrated using the HELP dataset. These analyses
are intended to help illustrate the methods described in the book. Interested readers are
encouraged to review the published data from the HELP study for substantive analyses.

Table B.1: Analyses undertaken using the HELP dataset

Description Section (page)
Data input and output 2.6.1 (p. 25)
Summarize data contents 2.6.1 (p. 25)
Data display 2.6.1 (p. 26)
Derived variables and data manipulation 2.6.3 (p. 27)

237
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Description Section (page)
Sorting and subsetting 2.6.4 (p. 31)
Summary statistics 5.7.1 (p. 59)
Exploratory data analysis 5.7.1 (p. 59)
Bivariate relationship 5.7.2 (p. 60)
Contingency tables 5.7.3 (p. 61)
Two-sample tests 5.7.4 (p. 64)
Survival analysis (logrank test) 5.7.5 (p. 66)
Scatterplot with smooth fit 6.6.1 (p. 76)
Linear regression with interaction 6.6.2 (p. 77)
Regression coefficient plot 6.6.3 (p. 81)
Regression diagnostics 6.6.4 (p. 81)
Fitting stratified regression models 6.6.5 (p. 83)
Two-way analysis of variance (ANOVA) 6.6.6 (p. 84)
Multiple comparisons 6.6.7 (p. 87)
Contrasts 6.6.8 (p. 88)
Logistic regression 7.10.1 (p. 104)
Poisson regression 7.10.2 (p. 105)
Zero-inflated Poisson regression 7.10.3 (p. 106)
Negative binomial regression 7.10.4 (p. 107)
Quantile regression 7.10.5 (p. 107)
Ordinal logit 7.10.6 (p. 108)
Multinomial logit 7.10.7 (p. 108)
Generalized additive model 7.10.8 (p. 109)
Reshaping datasets 7.10.9 (p. 110)
General linear model for correlated data 7.10.10 (p. 112)
Random effects model 7.10.11 (p. 113)
Generalized estimating equations model 7.10.12 (p. 115)
Generalized linear mixed model 7.10.13 (p. 116)
Proportional hazards regression model 7.10.14 (p. 117)
Cronbach α 7.10.15 (p. 117)
Factor analysis 7.10.16 (p. 118)
Recursive partitioning 7.10.17 (p. 119)
Linear discriminant analysis 7.10.18 (p. 120)
Hierarchical clustering 7.10.19 (p. 121)
Scatterplot with multiple y axes 8.7.1 (p. 134)
Conditioning plot 8.7.2 (p. 135)
Scatterplot with marginal histogram 8.7.3 (p. 135)
Kaplan–Meier plot 8.7.4 (p. 137)
ROC curve 8.7.5 (p. 138)
Pairs plot 8.7.6 (p. 138)
Visualize correlation matrix 8.7.7 (p. 141)
By group processing 11.1.2 (p. 168)
Bayesian regression 11.4.1 (p. 173)
Propensity score modeling 11.4.2 (p. 177)
Multiple imputation 11.4.4.2 (p. 183)
Interactive visualization 12.6 (p. 203)
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B.3 Detailed description of the dataset

The Institutional Review Board of Boston University Medical Center approved all aspects of
the study, including the creation of the de-identified dataset. Additional privacy protection
was secured by the issuance of a Certificate of Confidentiality by the Department of Health
and Human Services.

A de-identified dataset containing the variables utilized in the end-of-chapter examples
is available for download at the book web site: http://www.amherst.edu/~nhorton/r2/

datasets/help.csv.
Variables included in the HELP dataset are described in Table B.2. A full copy of the

study instruments can be found at http://www.amherst.edu/~nhorton/help.

Table B.2: Annotated description of variables in the HELP dataset

VARIABLE DESCRIPTION VALUES NOTE
a15a Number of nights in overnight

shelter in past 6 months
0–180 See also homeless

a15b Number of nights on the street in
past 6 months

0–180 See also homeless

age Age at baseline (in years) 19–60
anysubstatus Use of any substance post-detox 0=no,

1=yes
See also daysanysub

cesd∗ Center for Epidemiologic Studies
Depression scale

0–60 Higher scores indicate
more depressive symp-
toms; see also f1a–
f1t.

d1 How many times hospitalized for
medical problems (lifetime)

0–100

daysanysub Time (in days) to first use of any
substance post-detox

0–268 See also anysubstatus

daysdrink Time (in days) to first alcoholic
drink post-detox

0–270 See also drinkstatus

dayslink Time (in days) to linkage to pri-
mary care

0–456 See also linkstatus

drinkstatus Use of alcohol post-detox 0=no,
1=yes

See also daysdrink

drugrisk∗ Risk-Assessment Battery (RAB)
drug risk score

0–21 Higher scores indicate
riskier behavior; see
also sexrisk.

e2b∗ Number of times in past 6
months entered a detox program

1–21

f1a I was bothered by things that
usually don’t bother me.

0–3#

f1b I did not feel like eating; my ap-
petite was poor.

0–3#

f1c I felt that I could not shake off
the blues even with help from my
family or friends.

0–3#

f1d I felt that I was just as good as
other people.

0–3#
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VARIABLE DESCRIPTION VALUES NOTE
f1e I had trouble keeping my mind

on what I was doing.
0–3#

f1f I felt depressed. 0–3#

f1g I felt that everything I did was
an effort.

0–3#

f1h I felt hopeful about the future. 0–3#

f1i I thought my life had been a fail-
ure.

0–3#

f1j I felt fearful. 0–3#

f1k My sleep was restless. 0–3#

f1l I was happy. 0–3#

f1m I talked less than usual. 0–3#

f1n I felt lonely. 0–3#

f1o People were unfriendly. 0–3#

f1p I enjoyed life. 0–3#

f1q I had crying spells. 0–3#

f1r I felt sad. 0–3#

f1s I felt that people dislike me. 0–3#

f1t I could not get going. 0–3#

female Gender of respondent 0=male,
1=female

g1b∗ Experienced serious thoughts of
suicide (last 30 days)

0=no,
1=yes

homeless∗ 1 or more nights on the street or
shelter in past 6 months

0=no,
1=yes

See also a15a and a15b

i1∗ Average number of drinks (stan-
dard units) consumed per day (in
the past 30 days)

0–142 See also i2

i2 Maximum number of drinks
(standard units) consumed per
day (in the past 30 days)

0–184 See also i1

id Random subject identifier 1–470
indtot∗ Inventory of Drug Use Conse-

quences (InDUC) total score
4–45

linkstatus Post-detox linkage to primary
care

0=no,
1=yes

See also dayslink

mcs∗ SF-36 Mental Component Score 7-62 Higher scores indicate
better functioning; see
also pcs.

pcrec∗ Number of primary care visits in
past 6 months

0–2 See also linkstatus,
not observed at base-
line.

pcs∗ SF-36 Physical Component
Score

14-75 Higher scores indicate
better functioning; see
also mcs.

pss fr Perceived social supports
(friends)

0–14



i
i

“K23166” — 2015/1/28 — 9:35 — page 241 — #267 i
i

i
i

i
i

B.3. DETAILED DESCRIPTION OF THE DATASET 241

VARIABLE DESCRIPTION VALUES NOTE
satreat Any BSAS substance abuse

treatment at baseline
0=no,
1=yes

sexrisk∗ Risk-Assessment Battery (RAB)
sex risk score

0–21 Higher scores indicate
riskier behavior; see
also drugrisk.

substance Primary substance of abuse alcohol,
cocaine,
or heroin

treat Randomization group 0=usual
care,
1=HELP
clinic

Notes: Observed range is provided (at baseline) for continuous variables.
∗ Denotes variables measured at baseline and follow-up (e.g., cesd is baseline measure,
cesd1 is measured at 6 months, and cesd4 is measured at 24 months).

# For each of the 20 items in HELP Section F1 (CESD), respondents were asked to
indicate how often they behaved this way during the past week (0 = rarely or none of
the time, less than 1 day; 1 = some or a little of the time, 1–2 days; 2 = occasionally
or a moderate amount of time, 3–4 days; or 3 = most or all of the time, 5–7 days);
items f1d, f1h, f1l, and f1p were reverse coded.
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Incorporating the latest R packages as well as new case studies and applica-
tions, Using R and RStudio for Data Management, Statistical Analysis, and 
Graphics, Second Edition covers the aspects of R most often used by statisti-
cal analysts. New users of R will find the book’s simple approach easy to under-
stand while more sophisticated users will appreciate the invaluable source of 
task-oriented information. 

New to the Second Edition
• The use of RStudio, which increases the productivity of R users and helps 

users avoid error-prone cut-and-paste workflows
• New chapter of case studies illustrating examples of useful data 

management tasks, reading complex files, making and annotating maps, 
“scraping” data from the web, mining text files, and generating dynamic 
graphics

• New chapter on special topics that describes key features, such as 
processing by group, and explores important areas of statistics, including 
Bayesian methods, propensity scores, and bootstrapping

• New chapter on simulation that includes examples of data generated from 
complex models and distributions 

• A detailed discussion of the philosophy and use of the knitr and markdown 
packages for R

• New packages that extend the functionality of R and facilitate sophisticated 
analyses

• Reorganized and enhanced chapters on data input and output, data 
management, statistical and mathematical functions, programming, high-
level graphics plots, and the customization of plots

Conveniently organized by short, clear descriptive entries, this edition continues 
to show users how to easily perform an analytical task in R. Users can quickly 
find and implement the material they need through the extensive indexing, cross-
referencing, and worked examples in the text. Datasets and code are available 
for download on a supplementary website.
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