
Docker for
Data Science

Building Scalable and Extensible
Data Infrastructure Around the
Jupyter Notebook Server
—
Joshua Cook

www.allitebooks.com

../../www.allitebooks.org/default.htm

Docker for Data
Science

Building Scalable and Extensible
Data Infrastructure Around the

Jupyter Notebook Server

Joshua Cook

www.allitebooks.com

../../www.allitebooks.org/default.htm

Docker for Data Science

Joshua Cook 				
Santa Monica, California, USA			

ISBN-13 (pbk): 978-1-4842-3011-4		 ISBN-13 (electronic): 978-1-4842-3012-1
DOI 10.1007/978-1-4842-3012-1

Library of Congress Control Number: 2017952396

Copyright © 2017 by Joshua Cook

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even
if they are not identified as such, is not to be taken as an expression of opinion as to whether or
not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Cover image by Freepik (www.freepik.com)

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Celestin Suresh John
Development Editor: Laura Berendson
Technical Reviewer: Jeeva S. Chelladhurai
Coordinating Editor: Prachi Mehta
Copy Editor: Mary Behr

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is
a California LLC and the sole member (owner) is Springer Science + Business Media Finance
Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions
and licenses are also available for most titles. For more information, reference our Print and eBook
Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-3011-4.
For more detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

www.allitebooks.com

www.freepik.com
mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
../../www.apress.com/rights-permissions
../../www.apress.com/rights-permissions
www.apress.com/bulk-sales
../../www.apress.com/978-1-4842-3011-4
../../www.apress.com/source-code
../../www.allitebooks.org/default.htm

To my wife, Aylin.

www.allitebooks.com

../../www.allitebooks.org/default.htm

v

Contents at a Glance

About the Author�� xv

About the Technical Reviewer�� xvii

Acknowledgments��� xix

Introduction��� xxi

■■Chapter 1: Introduction��� 1

■■Chapter 2: Docker�� 29

■■Chapter 3: Interactive Programming��� 49

■■Chapter 4: The Docker Engine��� 71

■■Chapter 5: The Dockerfile�� 81

■■Chapter 6: Docker Hub��� 103

■■Chapter 7: The Opinionated Jupyter Stacks�������������������������������� 119

■■Chapter 8: The Data Stores�� 137

■■Chapter 9: Docker Compose�� 179

■■Chapter 10: Interactive Software Development��������������������������� 213

Index��� 253

www.allitebooks.com

../../www.allitebooks.org/default.htm

vii

Contents

About the Author�� xv

About the Technical Reviewer�� xvii

Acknowledgments��� xix

Introduction��� xxi

■■Chapter 1: Introduction��� 1

“Big Data”�� 1

Recommended Practice for Learning��� 2

Set up a New AWS Account��� 2

Configure a Key Pair�� 3

Infrastructure Limitations on Data��� 14

Pull the jupyter/scipy-notebook image�� 15

Run the jupyter/scipy-notebook Image��� 16

Monitor Memory Usage��� 17

What Size Data Set Will Cause a Memory Exception?��� 17

What Size Dataset Is Too Large to Be Used to Fit Different Kinds of
Simple Models?��� 22

Summary�� 27

■■Chapter 2: Docker�� 29

Docker Is Not a Virtual Machine��� 30

Containerization��� 30

www.allitebooks.com

../../www.allitebooks.org/default.htm

﻿ ■ Contents

viii

A Containerized Application��� 32

The Docker Container Ecosystem�� 32

The Docker Client�� 33

The Host�� 34

The Docker Engine��� 34

The Docker Image and the Docker Container�� 34

The Docker Registry�� 35

Get Docker�� 36

Docker for Linux�� 36

Docker for Mac�� 40

Docker for Windows�� 40

Docker Toolbox�� 41

Hello, Docker!��� 42

Basic Networking in Docker�� 45

Summary�� 47

■■Chapter 3: Interactive Programming��� 49

Jupyter as Persistent Interactive Computing��� 49

How Not to Program Interactively�� 49

Setting Up a Minimal Computational Project��� 50

Writing the Source Code for the Evaluation of a Bessel Function��������������������������� 51

Performing Your Calculation Using Docker�� 51

Compile Your Source Code�� 53

Execute Compiled Binary��� 54

How to Program Interactively��� 55

Launch IPython Using Docker�� 55

Persistence�� 56

Jupyter Notebooks��� 57

Port Connections��� 63

www.allitebooks.com

../../www.allitebooks.org/default.htm

﻿ ■ Contents

ix

Data Persistence in Docker��� 65

Attach a Volume��� 69

Summary�� 69

■■Chapter 4: The Docker Engine��� 71

Examining the Docker Workstation�� 71

Hello, World in a Container��� 74

Run Echo as a Service�� 76

Isolating the Bootstrap Time�� 77

A Daemonized Hello World��� 78

Summary�� 79

■■Chapter 5: The Dockerfile�� 81

Best Practices�� 81

Stateless Containers�� 81

Single-Concern Containers�� 82

Project: A Repo of Docker Images�� 82

Prepare for Local Development��� 82

Configure GitHub��� 83

Building Images Using Dockerfiles�� 83

Dockerfile Syntax��� 83

Designing the gsl Image�� 84

The Docker Build Cache�� 87

Anaconda��� 88

Design the miniconda3 Image��� 88

tini��� 96

ENTRYPOINT�� 97

Design the ipython Image�� 98

Run the ipython Image as a New Container�� 100

Summary�� 101

www.allitebooks.com

../../www.allitebooks.org/default.htm

﻿ ■ Contents

x

■■Chapter 6: Docker Hub��� 103

Docker Hub��� 103

Alternatives to Docker Hub�� 103

Docker ID and Namespaces��� 104

Image Repositories��� 104

Search for Existing Repositories�� 105

Tagged Images��� 106

Tags on the Python Image��� 107

Official Repositories�� 108

Pushing to Docker Hub��� 108

Create a New Repository��� 110

Push an Image��� 111

Pull the Image from Docker Hub�� 113

Tagged Image on Docker Hub�� 118

Summary�� 118

■■Chapter 7: The Opinionated Jupyter Stacks�������������������������������� 119

High-Level Overview�� 121

jupyter/base-notebook�� 122

Notebook Security��� 122

The Default Environment��� 124

Managing Python Versions�� 125

Extending the Jupyter Image Using conda Environments������������������������������������� 127

Using joyvan to Install Libraries��� 130

Ephemeral Container Extension��� 130

Maintaining Semi-Persistent Changes to Images�� 134

Summary�� 135

www.allitebooks.com

../../www.allitebooks.org/default.htm

﻿ ■ Contents

xi

■■Chapter 8: The Data Stores�� 137

Serialization��� 137

Serialization Formats and Methods��� 138

Binary Encoding in Python��� 139

Redis�� 139

Pull the redis Image��� 139

Docker Data Volumes and Persistence��� 141

Create and View a New Data Volume��� 142

Launch Redis as a Persistent Service��� 142

Connecting Containers via Legacy Links��� 143

Using Redis with Jupyter��� 145

A Simple Redis Example�� 147

Track an Iterative Process Across Notebooks�� 148

Pass a Dictionary via a JSON Dump�� 148

Pass a Numpy Array as a Bytestring�� 150

MongoDB�� 151

Set Up a New AWS t2.micro��� 152

Configure the New AWS t2.micro for Docker��� 153

Pull the mongo Image�� 153

Create and View a New Data Volume��� 153

Launch MongoDB as a Persistent Service��� 154

Verify MongoDB Installation�� 155

Using MongoDB with Jupyter�� 155

MongoDB Structure��� 156

pymongo�� 157

Mongo and Twitter��� 158

Obtain Twitter Credentials��� 159

www.allitebooks.com

../../www.allitebooks.org/default.htm

﻿ ■ Contents

xii

Collect Tweets by Geolocation��� 162

Insert Tweets Into Mongo�� 164

PostgreSQL��� 164

Pull the postgres Image��� 165

Create New Data Volume��� 165

Launch PostgreSQL as a Persistent Service�� 166

Verify PostgreSQL Installation��� 166

Docker Container Networking�� 167

Minimally Verify the Jupyter-PostgreSQL Connection��� 170

Connnecting Containers by Name��� 171

Using PostgreSQL with Jupyter��� 174

Jupyter, PostgreSQL, Pandas, and psycopg2��� 174

Minimal Verification��� 174

Loading Data into PostgreSQL��� 175

PostgreSQL Binary Type and Numpy��� 176

Summary�� 178

■■Chapter 9: Docker Compose�� 179

Install docker-compose�� 179

What Is docker-compose?�� 180

Docker Compose Versions��� 181

Build a Simple Docker Compose Application��������������������������������������� 181

Run Your Application with Compose�� 183

Jupyter and Mongo with Persistence��� 187

Specifying the Build Context��� 188

Specify the Environment File��� 189

Data Persistence��� 190

Build Your Application with Compose�� 191

Scaling an AWS Application via Instance Type������������������������������������� 195

﻿ ■ Contents

xiii

Restart Docker Compose Application��� 199

Complete the Computation��� 199

Encode Tweets as Document Vectors�� 201

Switch AWS Instance Type to t2.micro��� 202

Retrieve Tweets from MongoDB and Compare�� 203

Docker Compose Networks�� 204

Jupyter and Postgres with Persistence�� 205

Specifying the Build Context��� 207

Build and Run Your Application with Compose�� 209

Summary�� 211

■■Chapter 10: Interactive Software Development��������������������������� 213

A Quick Guide to Organizing Computational Biology Projects�������������� 214

A Project Framework for Interactive Development������������������������������ 215

Project Root Design Pattern��� 216

Initialize Project�� 217

Examine Database Requirements�� 218

Managing the Project via Git��� 224

Adding a Database to Your Application��� 226

Interactive Development�� 232

Create a Python Module Using Jupyter��� 234

Add Delayed Processing to Your Application�� 236

Extending the Postgres Module�� 242

Updating Your Python Module�� 246

Summary�� 251

Index��� 253

xv

About the Author

Joshua Cook is a mathematician. He writes code in
Bash, C, and Python and has done pure and applied
computational work in geo-spatial predictive modeling,
quantum mechanics, semantic search, and artificial
intelligence. He also has 10 years experience teaching
mathematics at the secondary and post-secondary
level. His research interests lie in high-performance
computing, interactive computing, feature extraction,
and reinforcement learning. He is always willing to
discuss orthogonality or to explain why Fortran is the
language of the future over a warm or cold beverage.

xvii

About the Technical
Reviewer

Jeeva S. Chelladhurai has been working as a DevOps
specialist at the IBM GTS Labs for the last 9 years. He is
the co-author of Learning Docker, published by
PacktPub, UK. He has more than 20 years of IT industry
experience. He has technically managed and mentored
diverse teams across the globe in envisaging and
building pioneering telecommunication products. He
specializes in DevOps, automation, and cloud solution
delivery, with a focus on data center optimization,
software-defined environments (SDEs), and distributed
application development, deployment, and delivery
using the newest Docker technology. Jeeva is also a
strong proponent of the agile methodologies, DevOps,

and IT automation. He holds a master’s degree in computer science from Manonmaniam
Sundaranar University and a graduation certificate in project management from Boston
University, Boston, Massachusetts, USA. Besides his official responsibilities, he writes
book chapters and authors research papers. He has been instrumental in crafting
reusable technical assets for IBM solution architects and consultants. He speaks in
technical forums on DevOps technologies and tools. He hosts one of the largest Open
Source communities in Bangalore (www.meetup.com/opensourceblr/). His LinkedIn
profile can be found at www.linkedin.com/in/JeevaChelladhurai.

../../www.meetup.com/opensourceblr/default.htm
../../www.linkedin.com/in/JeevaChelladhurai

xix

Acknowledgments

Thanks to Mike Frantz, Gilad Gressel, Devon Muraoka, Bharat Ramanathan, Nash Taylor,
Matt Zhou, and DSI Santa Monica Cohorts 3 and 4 for talking through some of the more
abstract concepts herein with me. Thanks to Chad Arnett for keeping it weird. Thanks to
Jim Kruidenier and Jussi Eloranta for teaching an old dog new tricks. Thanks to my father
for continually inspiring me and my mother for giving me my infallible belief in goodness.
Thanks to Momlo for paving the way and Dablo for his curiosity. Thanks to my wife, Aylin,
for her belief in me and tolerance for the word “eigenvector.”

xxi

Introduction

This text is designed to teach the concepts and techniques of Docker and its ecosystem
as applied to the field of data science. Besides introducing the core Docker technologies
(the container and image, the engine, the Dockerfile), this book contains a discussion on
building larger integrated systems using the Jupyter Notebook Server and open source
data stores MongoDB, PostgreSQL, and Redis.

The first chapter walks the reader through a recommended hardware configuration
for working through the text using an AWS t2.micro. Chapters 2 and 3 introduce
the core technologies used in the book, Docker and Jupyter, as well as the idea of
interactive programming. Chapters 4, 5, 6, and 9 dig deeper into specific areas of the
Docker ecosystem. Chapter 7 explores the official Jupyter Docker images developed and
maintained by the Jupyter development team. Chapter 8 introduces the Docker images
for three open source data stores. Chapters 9 and 10 tie everything together, connecting
Jupyter to data stores using Docker Compose. After having completed the book, readers
are encouraged to reread Chapter 3 and Chapter 10 to begin to develop their own
interactive software development style.

The concepts presented herein can be challenging, especially in terms of the
abstraction of computer resources and processes. That said, no requisite knowledge is
assumed. An attempt has been made to build the discussion from base principles. With
this in mind, the reader should be comfortable working at the command line and have
an adventurous and inquisitive spirit. We hope that readers with an intermediate to
advanced understanding of Docker, Jupyter, or both will gain a deeper understanding of
the concepts and learn novel approaches to the solving of computational problems using
these tools.

../../dx.doi.org/10.1007/978-1-4842-3012-1_2
../../dx.doi.org/10.1007/978-1-4842-3012-1_3
../../dx.doi.org/10.1007/978-1-4842-3012-1_4
../../dx.doi.org/10.1007/978-1-4842-3012-1_5
../../dx.doi.org/10.1007/978-1-4842-3012-1_6
../../dx.doi.org/10.1007/978-1-4842-3012-1_9
../../dx.doi.org/10.1007/978-1-4842-3012-1_7
../../dx.doi.org/10.1007/978-1-4842-3012-1_8
../../dx.doi.org/10.1007/978-1-4842-3012-1_9
../../dx.doi.org/10.1007/978-1-4842-3012-1_10
../../dx.doi.org/10.1007/978-1-4842-3012-1_3
../../dx.doi.org/10.1007/978-1-4842-3012-1_10

1© Joshua Cook 2017
J. Cook, Docker for Data Science, DOI 10.1007/978-1-4842-3012-1_1

CHAPTER 1

Introduction

The typical data scientist consistently has a series of extremely complicated problems on
their mind beyond considerations stemming from their system infrastructure. Still, it is
inevitable that infrastructure issues will present themselves. To oversimplify, we might
draw a distinction between the “modeling problem” and the “engineering problem.” The
data scientist is uniquely qualified to solve the former, but can often come up short in
solving the latter.

Docker has been widely adopted by the system administrator and DevOps
community as a modern solution to the challenges presented in high availability and high
performance computing.1 Docker is being used for the following: transitioning legacy
applications to a more modern “microservice”-based approach, facilitating continuous
integration and continuous deployment for the integration of new code, and optimizing
infrastructure usage.

In this book, I discuss Docker as a tool for the data scientist, in particular in
conjunction with the popular interactive programming platform Jupyter. Using Docker
and Jupyter, the data scientist can easily take ownership of their system configuration and
maintenance, prototype easily deployable and scalable data solutions, and trivially clone
entire systems with an eye toward replicability and communication. In short, I propose
that skill with Docker is just enough knowledge of systems operations to make the data
scientist dangerous. Having done this, I propose that Docker can add high performance
and availability tools to the data scientist’s toolbelt and fundamentally change the way
that models are developed, prototyped, and scaled.

“Big Data”
A precise definition of “big data” will elude even the most seasoned data wizard. I favor
the idea that big data is the exact scope of data that is no longer manageable without
explicit consideration to its scope. This will no doubt vary from individual to individual
and from development team to development team. I believe that mastering the concepts
and techniques associated with Docker presented herein will drastically increase the size
and scope of what exactly big data is for any reader.

1www.docker.com/use-cases

../../www.docker.com/use-cases

Chapter 1 ■ Introduction

2

Recommended Practice for Learning
In this first chapter, you jump will headlong into using Docker and Jupyter on a cloud
system. I hope that readers have a solid grasp of the Python numerical computing stack,
although I believe that nearly anyone should be able to work their way through this book
with enough curiosity and liberal Googling.

For the purposes of working through this book, I recommend using a sandbox
system. If you are able to install Docker in an isolated, non-mission critical setting, you
can work through this text without fear of “breaking things.” For this purpose, I here
describe the process of setting up a minimal cloud-based system for running Docker
using Amazon Web Services (AWS).

As of the writing of this book, AWS is the dominant cloud-based service provider.
I don’t endorse the idea that its dominance is a reason a priori to use its services. Rather,
I present an AWS solution here as one that will be the easiest to adopt by the largest group
of people. Furthermore, I believe that this method will generalize to other cloud-based
offerings such as DigitalOcean2 or Google Cloud Platform,3 provided that the reader has
secure shell (ssh) access to these systems and that they are running a Linux variant.

I present instructions for configuring a system using Elastic Compute Cloud (EC2).
New users receive 750 hours of free usage on their T2.micro platform and I believe that
this should be more than enough for the typical reader’s journey through this text.

Over the next few pages, I outline the process of configuring an AWS EC2 system for
the purposes of working through this text. This process consists of

	 1.	 Configuring a key pair

	 2.	 Creating a new security group

	 3.	 Creating a new EC2 instance

	 4.	 Configuring the new instance to use Docker

Set up a New AWS Account
To begin, set up an AWS account if you do not already have one.4

■■ Note  This work can be done in any region, although it is recommended that readers
take note of which region they have selected for work (Figure 1-1). For reasons I have long
forgotten, I choose to work in us-west-2.

2www.digitalocean.com
3https://cloud.google.com
4Instructions for creating a new AWS account can be found at https://aws.amazon.com/
premiumsupport/knowledge-center/create-and-activate-aws-account/.

../../www.digitalocean.com/default.htm
../../https@cloud.google.com/default.htm
../../https@aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/default.htm
../../https@aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/default.htm

Chapter 1 ■ Introduction

3

Configure a Key Pair
In order to interface with your sandbox system running on AWS EC2, you will need an ssh
key pair. Amazon EC2 uses public-key cryptography to facilitate all connections to running
EC2 instances.5 In your case, this means the creation of a secure connection between your
local system and a sandbox system you will configure on an EC2 instance. To do this, you
will create an ssh key pair locally and import the public component of the key pair into
AWS. When you create a new instance, you have AWS provision the new instance with the
public key, so that you can use your local private key to connect to the instance.

■■ Note  Windows users are encouraged to make use of the excellent Git BASH tool
available as part of the Git for Windows package here: https://git-for-windows.github.io.
Git BASH will include all of the necessary command line tools that you will be using,
including ssh-keygen and ssh.

In Listing 1-1, you use the ssh-keygen tool to create a key pair on your local system.
For these purposes (that is, a disposable sandbox AWS system), you can leave all fields
blank, including a passphrase to use the ssh key. The location in which you save the key
will vary from system to system. The default location on my system is ~/.ssh/id_rsa
where ~ signifies the current user’s home directory.6 This process will create id_rsa and
id_rsa.pub, a key pair. You will place the id_rsa.pub key into systems you wish to access
and thus be able to ssh into these systems using the id_rsa file.

Listing 1-1.  Create a New Key Pair

$ ssh-keygen -t rsa
Generating public/private rsa key pair.
Enter file in which to save the key (/home/ubuntu/.ssh/id_rsa):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:

Figure 1-1.  Readers should take note of the region in which they are working

5http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
6www.gnu.org/software/bash/manual/html_node/Tilde-Expansion.html

../../https@git-for-windows.github.io/default.htm
../../docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
../../www.gnu.org/software/bash/manual/html_node/Tilde-Expansion.html

Chapter 1 ■ Introduction

4

Your identification has been saved in /home/ubuntu/.ssh/id_rsa.
Your public key has been saved in /home/ubuntu/.ssh/id_rsa.pub.
The key fingerprint is:
SHA256:g5IYNQMf1n1jW5p36Y9I/qSPxnckhT665KtiB06xu2U ubuntu@ip-172-31-43-19
The key's randomart image is:
+---[RSA 2048]----+
| ..*. . |
| + +. . + . |
| . . o * o |
| o . .. + . + .|
| . o . So . + . |
| . +. . = .|
| o oE+.o.* |
| =o.o*+o o|
| ..+.o**o. |
+----[SHA256]-----+

In Listing 1-2, you verify that the contents of the key using the cat tool. You display a
public key that was created on a remote Ubuntu system, as can be seen at the end of the
key (ubuntu@ip-172-31-43-19). This should appear similar on any system.

Listing 1-2.  Verify Newly Created ssh-key

$ cat ~/.ssh/id_rsa.pub
ssh-rsa
AAAAB3NzaC1yc2EAAAADAQABAAABAQDdnHPEiq1a4OsDDY+g9luWQS8pCjBmR
64MmsrQ9MaIaE5shIcFB1Kg3pGwJpypiZjoSh9pS55S9LckNsBfn8Ff42ALLj
R8y+WlJKVk/0DvDXgGVcCc0t/uTvxVx0bRruYxLW167J89UnxnJuRZDLeY9fD
OfIzSR5eglhCWVqiOzB+OsLqR1W04Xz1oStID78UiY5msW+EFg25Hg1wepYMC
JG/Zr43ByOYPGseUrbCqFBS1KlQnzfWRfEKHZbtEe6HbWwz1UDL2NrdFXxZAI
XYYoCVtl4WXd/WjDwSjbMmtf3BqenVKZcP2DQ9/W+geIGGjvOTfUdsCHennYI
EUfEEP ubuntu@ip-172-31-43-19

Create a New Key Pair on AWS
Log in to your AWS control panel and navigate to the EC2 Dashboard, as shown in
Figure 1-2. First, access “Services” (Figure 1-2, #1) then access “EC2” (Figure 1-2, #2).
The Services link can be accessed from any page in the AWS website.

Chapter 1 ■ Introduction

5

Once at the EC2 control panel, access the Key Pairs pane using either link (Figure 1-3).

Figure 1-2.  Access the EC2 control panel

Figure 1-3.  Access key pairs in the EC2 Ddashboard

Chapter 1 ■ Introduction

6

From the Key Pairs pane, choose “Import Key Pair.” This will activate a modal that
you can use to create a new key pair associated with a region on your AWS account. Make
sure to give the key pair a computer-friendly name, like from-MacBook-2017. Paste the
contents of your public key (id_rsa.pub) into the public key contents. Prior to clicking
Import, your key should appear as in Figure 1-4. Click Import to create the new key.

■■ Note  Many AWS assets are created uniquely by region. Key pairs created in one region
will not be available in another.

You have created a key pair between AWS and your local system. When you create a
new instance, you will instruct AWS to provision the instance with this key pair and thus
you will be able to access the cloud-based system from your local system.

Figure 1-4.  Import a new key pair

Figure 1-5.  Connect to AWS from your local machine using an SSH key

Chapter 1 ■ Introduction

7

■■ Note  The terminology can be a bit confusing. AWS refers to an uploaded public key as a
“key pair.” To be clear, you are uploading the public component of a key pair you have created
on your system (e.g. id_rsa.pub). The private key will remain on your system (e.g. id_rsa).

Create a New Security Group
From the EC2 Dashboard, access the Security Group pane using either link (Figure 1-6).

From the Security Group pane, click “Create Security Group.” Give the security
group a computer friendly group name like jupyter_docker. Give the security group a
description like “Open access to Jupyter and Docker default ports.” Use the default
VPC. Access the Inbound tab and configure the following security rules:

•	 SSH: Port Range: 22, Source: Anywhere

•	 HTTP: Port Range: 80, Source: Anywhere

•	 HTTPS: Port Range: 443, Source: Anywhere

•	 Custom TCP Rule: Port Range: 2376, Source: Anywhere

•	 Custom TCP Rule: Port Range: 8888, Source: Anywhere

Figure 1-6.  Access security groups in the EC2 Dashboard

Chapter 1 ■ Introduction

8

When you have added all of these rules, it should appear as in Figure 1-7. Table 1-1
shows a list of ports and the services that will be accessible over these ports.

Table 1-1.  Ports and Usages

Port Service Available

22 SSH

80 HTTP

443 HTTPS

2376 Docker Hub

8888 Jupyter

Figure 1-7.  Inbound rules for new security group

Chapter 1 ■ Introduction

9

Create a New EC2 Instance
To create a new instance, start from the EC2 Dashboard and click the Launch Instance
button (Figure 1-8).

The launching of a new instance is a multi-step process that walks the user through
all configurations necessary. The first tab is “Choose AMI.” An AMI is an Amazon
Machine Image7 and contains the software you will need to run your sandbox machine.
I recommend choosing the latest stable Ubuntu Server release that is free-tier eligible. At
the time of writing, this was ami-efd0428f, Ubuntu Server 16.04 LTS (HVM), SSD Volume
Type (Figure 1-9).

The second tab is “Choose Instance Type.” In usage, I have found that the free tier,
t2.micro (Figure 1-10), is sufficient for many applications, especially the sort of sandbox-
type work that might be done in working through this text. This is to say that while working
through the text, you may not be doing extended work on datasets, but rather learning
about how to configure different systems. As such, your memory needs may be diminished.
The ultimate goal is for the reader to be able to create and destroy machines at will. At this
level of mastery, the reader can choose the minimum requirements for any application.

Figure 1-8.  Launch a new instance

Figure 1-9.  Choose the latest stable Ubuntu Server release as AMI

7http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html

../../docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html

Chapter 1 ■ Introduction

10

The third tab, “Configure Instance,” can be safely ignored.
The fourth tab is “Add Storage.” This option is also specific to intended usage.

It should be noted that Jupyter Docker images can take up more than 5GB of disk
space in the local image cache. For this reason, it is recommended to raise the value from
the default 8GB to somewhere in the neighborhood of 20GB.

The fifth tab, “Add Tags,” can be safely ignored.
The sixth tab, “Configure Security Group,” is critical for the proper functioning of

your systems. Previously, you configured a new security group to be used by your system.
You will need to assign the security group that you just created, jupyter_docker, to
the instance you are configuring. Choose “Select an existing security group,” and then
select the security group you just created. Verify that ports 22, 80, 443, 2376, and 8888 are
available in the Inbound Rules at the bottom of the tab (Figure 1-11).

■■ Note  Most readers will receive a warning from AWS at this final phase that says
something to the effect of “Improve your instances' security. Your security group,
jupyter_docker, is open to the world.” It is the opinion of this author that this warning can
be safely ignored. The warning is letting us know that the instance we are preparing to
launch can be accessed on the open web. This is intentional and by design. In this first and
last conversation about system security, we will wave our hands at the concern and quickly
move to the business of developing short-lifespan scalable systems.

Figure 1-10.  Use the t2.micro type

Chapter 1 ■ Introduction

11

Finally, click “Review and Launch.” Here, you see the specific configuration of the
EC2 instance you will be creating. Verify that you are creating a t2.micro running the
latest free tier-eligible version of Ubuntu Server and that it is available to all traffic, and
then click the Launch button (Figure 1-12).

Figure 1-11.  Configure the security group for all traffic

Figure 1-12.  Launch the new EC2 instance

Chapter 1 ■ Introduction

12

In a final confirmation step, you will see a modal titled “Select an existing key pair
or create a new key pair.” Select the key pair you previously created. Check the box
acknowledging access to that key pair and launch the instance (Figure 1-13).

You should see a notification that the instance is now running. Click the View
Instances tab in the lower right corner to be taken to the EC2 Dashboard Instances pane,
where you should see your new instance running.

Make note of the IP address of the new instance (Figure 1-14).

Figure 1-13.  Select the key pair previously imported

Figure 1-14.  Note the IP address of a running instance

Chapter 1 ■ Introduction

13

Configure the New EC2 Instance for Using Docker
Having set up an EC2 instance, you ssh into the instance using the IP you just obtained in
order to provision the new instance with Docker (Listing 1-3).

Listing 1-3.  SSH into EC2 Instance

$ ssh ubuntu@54.244.109.176
Welcome to Ubuntu 16.04.2 LTS (GNU/Linux 4.4.0-64-generic x86_64)
...

■■ Note  The first time you access your EC2 instance, you should see the following
message: The authenticity of host '54.244.109.176 (54.244.109.176)' can't be
established ... Are you sure you want to continue connecting (yes/no)? This is
expected. You should hit <ENTER> to accept or type yes and hit <ENTER>.

Next (Listing 1-4), you install and configure Docker using a convenient install script
provided by the Docker team. The script is obtained from get.docker.com and passed via
pipe (|) to a shell (sh).

Listing 1-4.  Install Docker Via a Shell Script

$ curl -sSL https://get.docker.com/ | sh
apparmor is enabled in the kernel and apparmor utils were already installed
+ sudo -E sh -c sleep 3; apt-get update
...
+ sudo -E sh -c docker version
Client:
 Version: 17.04.0-ce
 API version: 1.28
 Go version: go1.7.5
 Git commit: 4845c56
 Built: Mon Apr 3 18:07:42 2017
 OS/Arch: linux/amd64

Server:
 Version: 17.04.0-ce
 API version: 1.28 (minimum version 1.12)
 Go version: go1.7.5
 Git commit: 4845c56
 Built: Mon Apr 3 18:07:42 2017
 OS/Arch: linux/amd64
 Experimental: false

...

Chapter 1 ■ Introduction

14

In Listing 1-5, you add the ubuntu user to the docker group. By default, the command
line docker client will require sudo access in order to issue commands to the docker
daemon. You can add the ubuntu user to the docker group in order to allow the ubuntu
user to issue commands to docker without sudo.

Listing 1-5.  Add the Ubuntu User to the Docker Group

$ sudo usermod -aG docker ubuntu

Finally, in order to force the changes to take effect, you reboot the system (Listing 1-6).
As an alternative to rebooting the system, users can simply disconnect and reconnect to
their remote system.

Listing 1-6.  Restart the Docker Daemon

$ sudo reboot

The reboot will have the effect of closing the secure shell to your EC2 instance. After
waiting a few moments, reconnect to the system. At this point, your system will be ready for
use. sudo should no longer be required to issue commands to the docker client. You can
verify this by connecting to your remote system and checking the dock version (Listing 1-7).

Listing 1-7.  Log into the Remote System and Check the Docker Version

$ ssh ubuntu@54.244.109.176
$ docker -v
Docker version 17.04.0-ce, build 4845c56

Infrastructure Limitations on Data
Before commencing with the nuts and bolts of using Docker and Jupyter to build scalable
systems for computational programming, let’s conduct a simple series of experiments
with this new AWS instance. You’ll begin with a series of simple questions:

What size dataset is too large for a t2.micro to load into memory?
What size dataset is so large that, on a t2.micro, it will prevent Jupyter
from fitting different kinds of simple machine learning classification
models8 (e.g. a K Nearest Neighbor model)? A Decision Tree model? A
Logistic Regression? A Support Vector Classifier?

To answer these questions, you will proceed in the following fashion:

	 1.	 Run the jupyter/scipy-notebook image using Docker on
your AWS instance.

	 2.	 Monitor memory usage at runtime and as you load each
dataset using docker stats.

8http://scikit-learn.org/stable/tutorial/machine_learning_map/

www.allitebooks.com

../../scikit-learn.org/stable/tutorial/machine_learning_map/default.htm
../../www.allitebooks.org/default.htm

Chapter 1 ■ Introduction

15

	 3.	 Use the sklearn.datasets.make_classification function to
create datasets of arbitrary sizes using a Jupyter Notebook and
perform a fit.

	 4.	 Restart the Python kernel after each model is fit.

	 5.	 Take note of the dataset size that yields a memory exception.

Pull the jupyter/scipy-notebook image
Since you are working on a freshly provisioned AWS instance, you must begin by pulling
the Docker image with which you wish to work, the jupyter/scipy-notebook. This can
be done using the docker pull command, as shown in Listing 1-8. The image is pulled
from Project Jupyter’s public Docker Hub account.9

Listing 1-8.  Pull the jupyter/scipy-notebook image.

ubuntu@ip-172-31-6-246:~$ docker pull jupyter/scipy-notebook
Using default tag: latest
latest: Pulling from jupyter/scipy-notebook
693502eb7dfb: Pull complete
a3782c2efb41: Pull complete
9cb32b776a40: Pull complete
e539f5722cd5: Pull complete
b4690d4047c6: Pull complete
121dc465f5c6: Pull complete
c352772bbcfd: Pull complete
eeda14d1c421: Pull complete
0057b9e76c8a: Pull complete
e63bd87d75dd: Pull complete
055904fbc069: Pull complete
d336770b8a83: Pull complete
d61dbef85c7d: Pull complete
c1559927bbf2: Pull complete
ee5b638d15a3: Pull complete
dc937a931aca: Pull complete
4327c0faf37c: Pull complete
b37332c24e8c: Pull complete
b230bdb41817: Pull complete
765fecb84d9c: Pull complete
97efa424ddfa: Pull complete
ccfb7ed42913: Pull complete
2fb2abb673ce: Pull complete
Digest: sha256:04ad7bdf5b9b7fe88c3d0f71b91fd5f71fb45277ff7729dbe7ae20160c7a56df
Status: Downloaded newer image for jupyter/scipy-notebook:latest

9http://hub.docker.com/u/jupyter/

../../hub.docker.com/u/jupyter/default.htm

Chapter 1 ■ Introduction

16

Once you have pulled the image, it is now present in your docker images cache.
Anytime you wish to run a new Jupyter container, Docker will load the container from the
image in your cache.

Run the jupyter/scipy-notebook Image
In Listing 1-9, you run a Jupyter Notebook server using the minimum viable docker
run command. Here, the -p flag serves to link port 8888 on the host machine, your EC2
instance, to the port 8888 on which the Jupyter Notebook server is running in the Docker
container.

Listing 1-9.  Run Jupyter Notebook Server

$ docker run -p 8888:8888 jupyter/scipy-notebook
[I 22:10:01.236 NotebookApp] Writing notebook server cookie secret to /home/
jovyan/.local/share/jupyter/runtime/notebook_cookie_secret
[W 22:10:01.326 NotebookApp] WARNING: The notebook server is listening on
all IP addresses and not using encryption. This is not recommended.
[I 22:10:01.351 NotebookApp] JupyterLab alpha preview extension loaded from
/opt/conda/lib/python3.5/site-packages/jupyterlab
[I 22:10:01.358 NotebookApp] Serving notebooks from local directory: /home/
jovyan/work
[I 22:10:01.358 NotebookApp] 0 active kernels
[I 22:10:01.358 NotebookApp] The Jupyter Notebook is running at: http://[all
ip addresses on your system]:8888/?token=7b02e3aadb29c42ff066a7290d81dd48e4
4ce62bd7f2bd0a
[I 22:10:01.359 NotebookApp] Use Control-C to stop this server and shut down
all kernels (twice to skip confirmation).
[C 22:10:01.359 NotebookApp]

 �Copy/paste this URL into your browser when you connect for the first
time, to login with a token: http://localhost:8888/?token=7b02e3aadb29c4
2ff066a7290d81dd48e44ce62bd7f2bd0a.

The output from the running Jupyter Notebook server provides you with an
authentication token (token=7b02e3aadb29c42ff066a7290d81dd48e44ce62bd7f2bd0a)
you can use to access the Notebook server through a browser. You can do this using the
URL provided with the exception that you will need to replace localhost with the IP
address of your EC2 instance (Listing 1-10).

Listing 1-10.  The URL of a Jupyter Instance Running on AWS with an Access Token
Passed as a Query Parameter

http://54.244.109.176:8888/?token=1c32913725d84a76e7b3f04c45b91e17b77f
3c3574779101.

Chapter 1 ■ Introduction

17

Monitor Memory Usage
In Listing 1-11, you have a look at your running container using the docker ps command.
You will see a single container running with the jupyter/scipy-notebook image.

Listing 1-11.  Monitor Running Docker Containers

$ docker ps
CNID IMAGE COMMAND CREATED STATUS PORTS NAMES
cfef jupyter/
 scipy... "tini..." 10 min ago Up 10 min 0.0.0.0:8888-> friendly_
 8888/tcp curie

Next, you use docker stats to monitor the active memory usage of your running
containers (Listing 1-12). docker stats is an active process you will use to watch
memory usage throughout.

Listing 1-12.  Monitor Docker Memory Usage.

$ docker stats
CONTAINER CPU % MEM USAGE / LIMIT MEM % NET I/O BLOCK I/O PIDS
cfef9714b1c5 0.00% 49.73MiB / 990.7MiB 5.02% 60.3kB / 10.4MB / 0B 2
 1.36MB

You can see several things here germane to the questions above. The server is
currently using none of the allotted CPU.10 You can see that the Docker container has
nearly 1GB of memory available to it, and of this, it is using 5%, or about 50MB. The 1GB
matches your expectation of the amount of memory available to a t2.micro.

What Size Data Set Will Cause a Memory Exception?
You are going to be using Jupyter Notebook to run the tests. First, you will create a new
notebook using the Python 3 kernel (Figure 1-15).

10My t2.micro has but a single CPU.

Figure 1-15.  Create a new notebook

Chapter 1 ■ Introduction

18

In Listing 1-13, you examine your memory usage once more. (After launching a new
notebook, the current memory usage increases to about 9% of the 1GB.)

Listing 1-13.  Monitor Docker Memory Usage

$ docker stats
CONTAINER CPU % MEM USAGE / LIMIT MEM % NET I/O BLOCK I/O PIDS
cfef9714b1c5 0.01% 87.18MiB / 990.7MiB 8.80% 64.2kB / 12.6MB / 13
 1.48MB 217kB

If you close and halt (Figure 1-16) your running notebook, you can see memory
usage return to the baseline of about 5% of the 1GB (Listing 1-14).

Listing 1-14.  Monitor Docker Memory Usage

$ docker stats
CONTAINER CPU % MEM USAGE / LIMIT MEM % NET I/O BLOCK I/O PIDS
cfef9714b1c5 0.00% 55.31MiB / 990.7MiB 5.58% 109kB / 12.4MB / 4
 1.56MB 397kB

The Python machine learning library scikit-learn11 has a module dedicated
to loading canonical datasets and generating synthetic datasets: sklearn.datasets.
Relaunch your notebook and load the make_classification function from this module
(Listing 1-15, Figure 1-17), using the standard Python syntax for importing a function
from a module. Examine memory usage once more (Listing 1-16).

Listing 1-15.  Import make_classification

In [1]: from sklearn.datasets import make_classification

Figure 1-16.  Close and halt a running notebook

11http://scikit-learn.org/

../../scikit-learn.org/default.htm

Chapter 1 ■ Introduction

19

Listing 1-16.  Monitor Docker Memory Usage

$ docker stats
CONTAINER CPU % MEM USAGE / LIMIT MEM % NET I/O BLOCK I/O PIDS
cfef9714b1c5 0.04% 148.3MiB / 990.7MiB 14.97% 242kB / 49.3MB / 13
 4.03MB 340kB

Next (Listing 1-17, Figure 1-18), you create a new classification dataset using the
default values. You then use the %whos IPython magic command12 to display the size of
the dataset in memory. After this, you examine memory usage (Listing 1-18).

Listing 1-17.  Create a New Classification Dataset Using Default Values

In [2]: X, y = make_classification()
In [3]: %whos
Variable Type Data/Info

X ndarray 100x20: 2000 elems, type 'float64', �16000

bytes
make_classification function <function make_classification at �0x7feb19

2669d8>
y ndarray 100: 100 elems, type 'int64', 800 bytes

Listing 1-18.  Monitor Docker Memory Usage

$ docker stats
CONTAINER CPU % MEM USAGE / LIMIT MEM % NET I/O BLOCK I/O PIDS
cfef9714b1c5 0.01% 152MiB / 990.7MiB 15.35% 268kB / 54.1MB / 13
 4.1MB 926kB

Figure 1-17.  Import make_classification

Figure 1-18.  Import make_classification

12https://ipython.org/ipython-doc/3/interactive/magics.html#magic-whos

../../https@ipython.org/ipython-doc/3/interactive/magics.html#magic-whos

Chapter 1 ■ Introduction

20

So far you are minimally taxing your system. Take note of the size of the dataset, size
in Python memory, and Docker system usage associated with this default classification
dataset and then restart the Python kernel (Figure 1-19).

Next, you rerun the same experiment, increasing the size of your feature set by a
factor of 10 (Listing 1-19, Figure 1-20). In Listing 1-20, you examine Docker system usage.

Listing 1-19.  Create a New Classification Dataset

In [2]: X, y = make_classification(n_samples=1000, n_features=20)
In [3]: %whos
Variable Type Data/Info

X ndarray 100x20: 2000 elems, type `float64`, �160000

bytes
make_classification function <function make_classification at �0x7feb19

2669d8>
y ndarray 100: 100 elems, type `int64`, 8000 bytes

Listing 1-20.  Monitor Docker Memory Usage

$ docker stats
CONTAINER CPU % MEM USAGE / LIMIT MEM % NET I/O BLOCK I/O PIDS
cfef9714b1c5 0.01% 149.7MiB / 990.7MiB 15.11% 286kB / 54.5MB / 13
 4.13MB 1.13MB

Figure 1-20.  Import make_classification

Figure 1-19.  Restart the Python kernel

Chapter 1 ■ Introduction

21

Repeat the experiment several more times, capturing the results in Table 1-2. Each
time, restart the kernel, create a new dataset that is 10 times larger than the previous, and
then examine the result in terms of memory usage using the IPython magic command
%whos and the docker stats tool.

Restart the Python kernel after each dataset is created. Take note of the dataset size
that causes a memory exception.

When you attempt to create a classification dataset of size 100000 by 2000, you will
hit a MemoryError, as seen in Listing 1-21 and Figure 1-21.

Listing 1-21.  MemoryError When Attempting to Create a Classification Dataset

In [2]: X, y = make_classification(n_samples=100000, n_features=2000)

MemoryError Traceback (most recent call last)
<ipython-input-2-df42c0ced9d5> in <module>()
----> 1 X, y = make_classification(n_samples=100000, n_features=2000)

/opt/conda/lib/python3.5/site-packages/sklearn/datasets/samples_generator.
py in make_classification(n_samples, n_features, n_informative, n_redundant,
n_repeated, n_classes, n_clusters_per_class, weights, flip_y, class_sep,
hypercube, shift, scale, shuffle, random_state)

Table 1-2.  Classification Dataset Memory Footprint on t2.micro

Shape of Feature Set Size in Python Memory Docker System Usage

100 × 20 .016MB 152MB

1000 × 20 .16MB 149.7MB

1000 × 200 1.525MB 152.8MB

10000 × 200 15.25MB 162.6MB

10000 × 2000 152.6MB 279.7MB

100000 × 2000 Memory Exception N/A

Figure 1-21.  MemoryError when attempting to create a classification dataset

Chapter 1 ■ Introduction

22

 179
 180 # Initialize X and y
--> 181 X = np.zeros((n_samples, n_features))
 182 y = np.zeros(n_samples, dtype=np.int)
 183

MemoryError:

And with that, you have hit the memory ceiling for your current system. It is not a
particularly large dataset: 100,000 rows and 2000 columns. But then again, you are not
working with a particularly large system either: a single CPU and 1GB of RAM. Certainly, you
can imagine situations in which you will want to work with larger datasets on larger systems.

What Size Dataset Is Too Large to Be Used to Fit Different
Kinds of Simple Models?
Next, let’s answer the second question. Let’s do this by starting with a fresh Docker
container. First, in Listing 1-22, you again use docker ps to display running containers.

Listing 1-22.  Monitor Running Docker Containers

$ docker ps
CNID IMAGE COMMAND CREATED STATUS PORTS NAMES
cfef jupyter/ "tini..." 53 min ago Up 53 min 0.0.0.0:8888-> friendly_
 scipy... 8888/tcp curie

In Listing 1-23, you stop and then remove this container.

Listing 1-23.  Stop and Remove a Running Container

$ docker stop friendly_curie
friendly_curie
ubuntu@ip-172-31-1-64:~$ docker rm friendly_curie
friendly_curie

Next, in Listing 1-24, you launch a brand new jupyter/scipy-notebook container.

Listing 1-24.  Run Jupyter Notebook Server

$ docker run -p 8888:8888 jupyter/scipy-notebook
[I 20:05:42.246 NotebookApp] Writing notebook server cookie secret to /home/
jovyan/.local/share/jupyter/runtime/notebook_cookie_secret
...

 Copy/paste this URL into your browser when you connect for the first time,
 to login with a token:
 �http://localhost:8888/?token=7a65c3c7dc6ea294a38397a48cc1ffe110ea13

8aef6d42c4

Chapter 1 ■ Introduction

23

Make sure to take note of the new security token (7a65c3c7dc6ea294a38397a48
cc1ffe110ea138aef6d42c4) and again use the AWS instance’s IP address in lieu of
localhost (Listing 1-25).

Listing 1-25.  The URL of the New Jupyter Instance Running on AWS with an Access
Token Passed as a Query Parameter

http://54.244.109.176:8888/?token=7a65c3c7dc6ea294a38397a48cc1ffe110ea138ae
f6d42c4

Before you start, measure the baseline usage for this current container via docker
stats (Listing 1-26).

Listing 1-26.  Monitor Docker Memory Usage

$ docker stats
CONTAINER CPU % MEM USAGE / LIMIT MEM % NET I/O BLOCK I/O PIDS
22efba43b763 0.00% 43.29MiB / 990.7MiB 4.37% 768B / 0B / 0B 2
 486B

You again create a new Python 3 Notebook and set out to answer this second
question. In Listing 1-27, you examine the memory usage of your Docker machine with a
brand new notebook running.

Listing 1-27.  Monitor Docker Memory Usage

$ docker stats
CONTAINER CPU % MEM USAGE / LIMIT MEM % NET I/O BLOCK I/O PIDS
22efba43b763 0.04% 90.69MiB / 990.7MiB 9.15% 58.8kB / 0B / 217kB 13
 1.3MB

The approach to solving this problem will be slightly different and will make heavier use
of docker stats. The %whos IPython magic command cannot be used to display memory
usage of a fit model and, in fact, a trivial method for measuring memory usage does not
exist.13 You will take advantage of your knowledge of the space in memory occupied by the
data created by make_classification and this baseline performance you just measured.

You will use the code pattern in Listing 1-28 to perform this analysis.

Listing 1-28.  Create a New Classification Dataset and Perform Naïve Model Fit

from sklearn.datasets import make_classification
from sklearn.<model_module> import <model>
X, y = make_classification(<shape>)
model = <model>()
model.fit(X, y)
model.score(X, y)

13https://stackoverflow.com/questions/449560/how-do-i-determine-the-size-of-an-
object-in-python

../../https@stackoverflow.com/questions/449560/how-do-i-determine-the-size-of-an-object-in-python
../../https@stackoverflow.com/questions/449560/how-do-i-determine-the-size-of-an-object-in-python

Chapter 1 ■ Introduction

24

For example, use the following code to fit the smallest KNeighborsClassifier
(Listing 1-29), DecisionTreeClassifier (Listing 1-30), LogisticRegression (1-31), and
SVC (Listing 1-32). You will then modify the scope of the data for each subsequent test.

Listing 1-29.  Fit the smallest KNeighborsClassifier

from sklearn.datasets import make_classification
from sklearn.neighbors import KNeighborsClassifier
X, y = make_classification(1000, 20)
model = KNeighborsClassifier()
model.fit(X, y)
model.score(X, y)

Listing 1-30.  Fit the smallest DecisionTreeClassifier

from sklearn.datasets import make_classification
from sklearn.tree import DecisionTreeClassifier
X, y = make_classification(1000, 20)
model = DecisionTreeClassifier()
model.fit(X, y)
model.score(X, y)

Listing 1-31.  Fit the smallest LogisticRegression

from sklearn.datasets import make_classification
from sklearn.linear_model import LogisticRegression
X, y = make_classification(1000, 20)
model = LogisticRegression()
model.fit(X, y)
model.score(X, y)

Listing 1-32.  Fit the smallest SVC

from sklearn.datasets import make_classification
from sklearn.neighbors import SVC
X, y = make_classification(1000, 20)
model = SVC()
model.fit(X, y)
model.score(X, y)

You then use docker stats to examine the Docker system usage. In between each
test, you use docker restart (Listing 1-33) followed by the container id 22efba43b763
to reset the memory usage on the container. After restart the container, you will typically
have to confirm restarting the Jupyter kernel as well (Figure 1-22).

Listing 1-33.  Restart Your Docker Container

$ docker restart 22efba43b763

Chapter 1 ■ Introduction

25

Figure 1-22.  Confirm a restart of the Jupyter kernel

The results of this experiment are captured in Table 1-3 and Figure 1-23.

Table 1-3.  Classification of Dataset and Model Memory Footprint on t2.micro

Shape of
Feature Set

Model Type Dataset System
Usage (MB)

Dataset and
Fit Peak System
Usage (MB)

Difference
(MB)

Baseline (No
Notebook
running)

N/A N/A N/A 40.98

Baseline
(Notebook
running)

N/A N/A N/A 76.14

100 × 20 KNeighborsClassifier 99.9 100.0 0.1

100 × 20 DecisionTreeClassifier 103.2 103.3 0.1

100 × 20 LogisticRegression 102.5 102.6 0.1

100 × 20 SVC 101.2 101.4 0.2

1000 × 20 KNeighborsClassifier 100.3 100.4 0.1

1000 × 20 DecisionTreeClassifier 103.7 103.8 0.1

1000 × 20 LogisticRegression 104.9 105.1 0.2

1000 × 20 SVC 104.9 105.5 0.6

1000 × 200 KNeighborsClassifier 106.3 106.9 0.6

1000 × 200 DecisionTreeClassifier 104.8 105.7 0.9

1000 × 200 LogisticRegression 102.0 102.3 0.3

1000 × 200 SVC 104.6 106.0 1.4

10000 × 200 KNeighborsClassifier 115.5 117.8 2.3

10000 × 200 DecisionTreeClassifier 119.8 127.8 8.0

(continued)

Chapter 1 ■ Introduction

26

Decision Tree
K Nearest Neighbor
Logistic Regression
Support Vector Classifier

101

100

Pe
ak

 U
sa

ge

10-1

10
0 x

 20

10
00

 x
20

10
00

 x
20

0

Dataset
10

00
0 x

 20
0

10
00

0 x
 20

00

Figure 1-23.  Dataset vs. Peak Usage by model

Shape of
Feature Set

Model Type Dataset System
Usage (MB)

Dataset and
Fit Peak System
Usage (MB)

Difference
(MB)

10000 × 200 LogisticRegression 121.3 122.6 1.3

10000 × 200 SVC 121.1 286.7 165.6

10000 × 2000 KNeighborsClassifier 256.4 275.1 18.7

10000 × 2000 DecisionTreeClassifier 257.1 333.6 76.5

10000 × 2000 LogisticRegression 258.6 564.9 306.3

10000 × 2000 SVC 256.3 491.9 235.6

Table 1-3.  (continued)

Measuring Scope of Data Capable of Fitting on T2.Micro
In the previous test, a 10000 row x 2000 column dataset was the largest that you were
able to successfully load into memory. In this test, you were able to successfully fit a
naïve implementation of four different machine learning models against each of the
datasets that you were able to load into memory. That said, you can see that neither the
LogisticRegression nor the SVC (Support Vector Classifier) are capable of handling
much more.

Chapter 1 ■ Introduction

27

Summary
In this chapter, I introduced the core subjects of this text, Docker and Jupyter, and
discussed a recommended practice for working through this text, which is using a
disposable Linux instance on Amazon Web Services. I provided detailed instructions for
configuring, launching, and provisioning such an instance. Having launched an instance,
you used Docker and Jupyter to explore a toy big data example, diagnosing memory
performance as you loaded and fit models using a synthetic classification dataset
generated by scikit-learn.

I did not intended for this chapter to have been the moment when you thoroughly
grasped using Docker and Jupyter to build systems for performing data science. Rather,
I hope that it has served as a substantive introduction to the topic. Rather than simply
stating what Docker and Jupyter are, I wanted you to see what these two technologies are
by using them.

In the chapters ahead, you will explore many aspects of the Docker and Jupyter
ecosystems. Later, you will learn about the open source data stores Redis, MongoDB, and
PostgreSQL, and how to integrate them into your Docker-based applications. Finally, you
will learn about the Docker Compose tool and how to tie all of these pieces together in a
single docker-compose.yml file.

29© Joshua Cook 2017
J. Cook, Docker for Data Science, DOI 10.1007/978-1-4842-3012-1_2

CHAPTER 2

Docker

Docker is a way to isolate a process from the system on which it is running. It allows us
to isolate the code written to define an application and the resources required to run
that application from the hardware on which it runs. We add a layer of complexity to
our software, but in doing so gain the advantage of ensuring that our local development
environment will be identical to any possible environment into which we would deploy the
application. If a system can run Docker, a system can run our process. With the addition of
a thin layer of abstraction we become hardware independent. On its face, this would seem
to be an impossible task. As of 2014, there were 285 actively maintained Linux distributions
and multiple major versions of both OS X and Windows. How could we possibly write a
system to allow for all possible development, testing, and production environments?

Docker solves this problem via containerization. We will never be able to guarantee
that our remote environments will be running the same OS as we are locally. We often
know for a fact that it never will (I develop using Mac OS X and usually deploy to systems
running Ubuntu). That said, as visualized in Figure 2-1, we can guarantee that both our
development and deployment environments will be able to run the Docker engine. We
write our application to be run as a container by the Docker engine—we containerize our
application—and thus ensure compatibility across platforms. We are not concerned about
the underlying operating system or hardware, only that it is running the Docker engine.

Figure 2-1.  Deploying across heterogenous infrastructure. Note that the technology stack
might be completely different across systems, but we deploy an identical container.

Chapter 2 ■ Docker

30

Using the suite of Docker tools we build our applications to run as a Docker
container. Once built, we verify our images by running them on our local system. Having
confirmed this, it is trivial to deploy our containerized application to a remote machine
that is running the Docker engine. We run the system in exactly the same way regardless
of operating system or hardware. Docker lets developers be OS agnostic.

Docker Is Not a Virtual Machine
Docker is not a Virtual Machine (VM) technology.1 That said, it is useful to briefly look
at what VM technology is. Many will be familiar with VM technology, especially as a VM
being run using a tool such as VirtualBox. Using one of these tools, a single computer,
the host runs many VM instances, guests. Each guest uses a large file on disk to define its
isolated operating and file system. Each guest runs as a single, resource-intensive process
on the host CPU.

For the purposes of most users, the guest behaves as a stand-alone computer, very
similar in practical use to the host machine on which it runs. In other words, a VM feels
like virtualized hardware. Downsides to VM technology include the consumption of
large swaths of hard drive space to store a bulky operating system and the consumption of
considerable CPU resources in maintaining all of the processes required of a full OS.

Containerization
Containerization is a virtualization method, but containers are not VMs in the way that
most think of them. The confusion is understandable. Like containers, it is even possible
to define VMs using the software Vagrant. But to be clear, a VM is using one kind of
virtualization. Containerization is a different type of virtualization altogether.

The Linux Containers (LXC) project is a vendor-neutral project designed to provide
a native set of tools and libraries for the containment of processes from the broader Linux
system on which they are being run. LXC runs in the same operating system as its host.
The stated goal of LXC is “to create an environment as close as possible to a standard
Linux installation but without the need for a separate kernel.” Put another way, LXC
allows processes to be containerized.

Containerization seeks to virtualize processes. Thus, a containerized process is
running in an environment optimized for its purposes, but is being run using the system
resources of the host computer. The LXC library has been carefully designed to allow a
containerized process to run as a virtualized process (see Figure 2-2) on its host system
without the need to run a full operating system. LXCs have low overheads and better
performance compared to VMs.

1https://blog.docker.com/2016/03/containers-are-not-vms/

../../https@linuxcontainers.org/lxc/introduction/default.htm
../../https@blog.docker.com/2016/03/containers-are-not-vms/default.htm

Chapter 2 ■ Docker

31

In June of 2015, Docker helped to launch the Open Container Project. Docker
donated its library runc to serve as an iteration upon LXC. While Docker is no longer
running LXC at its core, the principle remains: Docker is not a virtual machine. Docker is
leveraging virtualization technology to achieve the isolation of processes or services from
the host systems.

Throughout this text, you will be consistently faced with two problems in running
your processes via Docker: networking (connecting to your processes) and maintaining
the persistence of data. With these latest innovations in managing containers, Docker
is now moving toward stronger tools for managing both issues. With Docker managing
networking and persistence, once these processes have been abstracted or containerized
they can be run at will on any system.

Figure 2-2.  A virtualized process

../../https@www.opencontainers.org/about
../../https@blog.docker.com/2016/03/containers-are-not-vms/default.htm

Chapter 2 ■ Docker

32

A Containerized Application
On top of providing a method for running a containerized application, Docker also
provides a set of tools for building applications as microservices. Docker’s build system
provides a system for packaging an application with all of its dependencies. Those who
are comfortable with working with Ruby’s bundler and Gemfile system or Python’s conda
and environment.yml system will be right at home in using a Dockerfile to define the
requirements of their system using a minimal text file. Using this Dockerfile, stateless
and immutable applications are defined to run as “compiled” processes on a host system
running the Docker engine. In doing so, Docker attempts to liberate the software engineer
from dependency on the hardware on which their code will run.

The Docker Container Ecosystem
You begin looking at Docker by focusing on the ecosystem of the container. Later, you will
leverage Docker’s tools for composing larger systems with the containers you have built.
In the immediate ecosystem (see Figure 2-3) of the Docker container, it is important to
keep track of the following concepts:

•	 The Docker CLI client

•	 The host

•	 The Docker engine or daemon

•	 The Docker image

•	 The Docker container

•	 The Docker registry, typically Docker Hub

•	 Docker Compose

Chapter 2 ■ Docker

33

■■ Note  You will eschew completely the use of the GUI tool Kitematic in favor of a wholly
command line-oriented approach to managing Docker.

The Docker Client
The Docker client is a command line interface used to give instructions to the Docker
engine regardless of the details of the engine’s implementation on your system. This
is similar to the client-server architecture of the Web, in which a client system uses an
interface (typically a web browser, but possibly a RESTful API) to interact with a remote
server. In the case of Docker, the Docker client talks to the Docker engine that performs
the work of containers and containerization.

While you work through this text, you will be using the Docker command line
interface as your client and the engine will be running on your local system or on a t2.
micro as recommended in Chapter 1. Using the Docker client, you tell the Docker daemon
to pull an image from a registry. You can then tell the Docker daemon to run that image.
Having done so, you might ask the engine which ps or containers are currently running.2

To list commands available to the Docker client, either run docker with no
parameters or execute docker help. Depending on your Docker system configuration,
you may be required to preface each docker command with sudo. To avoid having to
use sudo with the docker command, your system administrator can create a Unix group
called docker and add users to it.

Figure 2-3.  The Docker ecosystem

2This command is a descendent of the bash command ps. In bash, this command lists running
processes, whereas in Docker this command lists running containers. This fits with our
understanding of the Docker container as a virtualized process.

../../dx.doi.org/10.1007/978-1-4842-3012-1_1

Chapter 2 ■ Docker

34

The Host
The host is a machine on which you will run the Docker daemon/engine. Locally,
the host will depend upon your Docker configuration. If you are running Docker for
Linux, Docker for Mac, or Docker for Windows, the host will be your system itself. If
you are running Docker Toolbox, the host will be a virtual machine running on Oracle’s
VirtualBox software. The Docker Toolbox provides tools to assist in the proper creation
of this virtual machine. You might also set up a remote machine to serve as your host.
The important thing is that while you will always need a host, the details of this host are
irrelevant. The host might be a virtual machine on your Mac, a c4.8xlarge EC2 instance
on Amazon Web Services, or a bare metal server in your university basement. Regardless,
your application will behave the same.

In certain situations, it may be necessary to identify the IP address of the host. This is
typically not necessary with Docker for Linux, Docker for Mac, or Docker for Windows, in
which Docker is running either natively (Linux) or native-like (Mac, Windows). In other
cases, the IP address of the host can be identified using the docker-machine command
line tool, specifically, docker-machine ls (see Listing 2-1).

Listing 2-1.  Display Docker Hosts Associated with the Running Attached Docker Engine

$ docker-machine ls
NAME ACTIVE DRIVER STATE URL SWARM DOCKER ERRORS
default - virtualbox Running tcp://192.168.99.100:2376 v1.13.0

The Docker Engine
The Docker engine is a persistent process that manages containers. It is running as a
background service or daemon on the host. In fact, the engine is occasionally referred
to as the Docker daemon. The Docker engine does the core work of Docker: building,
running, and distributing your Docker containers. In this text, you will interact with the
engine directly but will do so through the Docker client. The power of Docker lies in
your ability to work with the engine via the Docker client. You will hand the managing of
your processes over to the Docker engine. If you can do so on one system, you can count
on any work you do to behave the same when on any other machine that is capable of
running the Docker engine.

The Docker Image and the Docker Container
Docker images are read-only. This is not to say that we can’t make changes to an image,
but that once we have made changes, what we have is a new kind of image. I like to think
about languages with immutable data structures such as tuples in Python. Once you
define a tuple, you can’t modify it, although you can define a new tuple that takes the
original and modifies it in some way.

Chapter 2 ■ Docker

35

The Docker engine has several methods for building our own images. These include
the Docker client and via a domain-specific language (DSL) known as the Dockerfile.
We can also download images that other people have created.

Docker containers are instances of Docker images. They are stand-alone, containing
everything a single instance of an application needs to run (OS, dependencies, source,
metadata), and can be run, started, stopped, moved, and deleted. They are also isolated
and secure.

It is helpful to think of Docker images and containers in terms of object-oriented
programming. An image is a defined “class” of container that we might create. A container
is then an “instance” or “object” of that class. The Docker engine will manage multiple
containers running on the host. When the engine runs a container from an image, it adds
a read-write layer on top of the image in which our application can run.

Truthfully, however, this analogy of the image-container relationship as object-
oriented programming is a weak analogy. A stronger analogy is the analogy of Docker as
a compiled language. In this analog, we might think of a Dockerfile as source code, an
image as a compiled binary, and a running container as a running process. It is clearly an
intended analog considering that we use the command docker ps to display currently
running containers. This analogy is helpful in a few ways. For one, it brings the build
process to the forefront of our understanding of working with Docker. For another, it
helps to reinforce the idea that containers are ephemeral, just like running processes.
When they end their lifecycle, their state is effectively lost.

The Docker Registry
Docker registries hold images. These are public or private stores from which you upload
or download images. For the purposes of this book, you will use the public Docker
registry at Docker Hub.3 Docker Hub is the source of the official images of the major
open source technologies you will be using including Jupyter, PostgreSQL, Redis, and
MongoDB.

Docker Compose
Docker Compose is a tool for assembling microservices and applications consisting of
multiple containers. These microservices and applications are designed using a single
YAML file and can be built, run, and scaled, each via a single command. Docker Compose
is particularly useful for the data scientist in building standalone computational systems
comprised of Jupyter and one or more data stores (e.g. Redis).

3https://hub.docker.com

www.allitebooks.com

../../https@hub.docker.com/default.htm
../../www.allitebooks.org/default.htm

Chapter 2 ■ Docker

36

Get Docker
As of the writing of this text there are four core ways to install Docker across the major
operating systems:

•	 Docker for Linux

•	 Docker for Mac

•	 Docker for Windows

•	 Docker Toolbox

It is recommended that systems be configured to use at least 2GB of RAM. I have
not encountered significant issues in allowing the Docker engine to use all available
resources, like CPUs and RAM.

■■ Note  I once more recommend that the reader use a sandbox system on a t2.micro
as outlined in Chapter 1. Chapter 1 contains instructions for configuring an AWS instance
running Ubuntu.

Docker for Linux
Docker for Linux runs natively on most major Linux operating systems. It is driven from the
command line using bash or similar shell. It is useful to note that running Docker for Linux
is the most common configuration used on remote servers. It is a worthwhile exercise for
Mac and Windows developers to familiarize themselves with this configuration. That said,
the experience is very similar across platforms. Detailed instructions for a list of available
operating systems are available at https://docs.docker.com/engine/installation/. Here,
I focus on installation instructions for an Ubuntu system. For installation on other Linux
distributions, readers should refer to the link for specific instructions.

Installing Docker on an Ubuntu System
Installing Docker from the command line provides the highest degree of flexibility. On an
Ubuntu system (here, I use Ubuntu 16.04.2), this can be done via the apt tool.

■■ Note  These instructions are for installing Docker on Ubuntu. Users wishing to install
Docker on another Linux variant should refer to the specific instructions for their system at
https://docs.docker.com/engine/installation/.

In Listing 2-2, you use apt search to examine the packages associated with Docker
that are available for installation via apt. You run apt update first to ensure that you have
the latest list of available packages.

../../dx.doi.org/10.1007/978-1-4842-3012-1_1
../../dx.doi.org/10.1007/978-1-4842-3012-1_1
../../https@docs.docker.com/engine/installation/default.htm

Chapter 2 ■ Docker

37

Listing 2-2.  Display Docker Packages Available for Installation

$ apt update
$ apt search docker
Sorting... Done
Full Text Search... Done

...

docker/xenial 1.5-1 amd64
 System tray for KDE3/GNOME2 docklet applications

docker-compose/xenial 1.5.2-1 all
 Punctual, lightweight development environments using Docker

docker-doc/xenial-updates 1.12.6-0ubuntu1~16.04.1 all
 Linux container runtime -- documentation

docker-registry/xenial 2.3.0~ds1-1 amd64
 Docker toolset to pack, ship, store, and deliver content

docker.io/xenial-updates 1.12.6-0ubuntu1~16.04.1 amd64
 Linux container runtime

...

The package in which you have the most interest is the docker.io package. This
package contains both the Docker daemon, also known as the Docker container runtime,
and the Docker command line interface (CLI) executable. In Listing 2-3, you use apt
policy to display meta-information available for the docker.io package. As of the writing
of this text, the docker.io package available via apt is version 1.12.6.

Listing 2-3.  Display Meta-Information for docker.io Package

$ apt policy docker.io
docker.io:
 Installed: (none)
 Candidate: 1.12.6-0ubuntu1~16.04.1
 Version table:
 1.12.6-0ubuntu1~16.04.1 500
 �500 http://us-west-2.ec2.archive.ubuntu.com/ubuntu xenial-updates/

universe amd64 Packages
 1.10.3-0ubuntu6 500
 �500 http://us-west-2.ec2.archive.ubuntu.com/ubuntu xenial/universe

amd64 Packages

■■ Note  The 500 preceding each policy statement is a priority number and signifies that
the package is “installable” on the system.

Chapter 2 ■ Docker

38

You begin your installation by ensuring that you have no older versions of docker
installed (Listing 2-4). If you receive the message “Package ‘docker’ is not installed, so not
removed,” this means docker is not installed and you can proceed.

Listing 2-4.  Remove Previous Installations of docker

$ sudo apt remove docker
Reading package lists... Done
Building dependency tree
Reading state information... Done
Package 'docker' is not installed, so not removed
0 upgraded, 0 newly installed, 0 to remove and 43 not upgraded.

Configure Docker Repository
To install Docker, you will use the Docker recommended best practice of installing from
the Docker repository. In order to do this, you will first need to set up the repository. You
will be doing so for Docker CE. First, in Listing 2-5, you will allow apt to use a repository
over HTTPS.

Listing 2-5.  Allow apt to Use a Repository Over HTTPS

$ sudo apt-get install \
> apt-transport-https \
> ca-certificates \
> curl \
> software-properties-common
Reading package lists... Done
Building dependency tree
Reading state information... Done
ca-certificates is already the newest version (20160104ubuntu1).
apt-transport-https is already the newest version (1.2.19).
curl is already the newest version (7.47.0-1ubuntu2.2).
software-properties-common is already the newest version (0.96.20.5).
0 upgraded, 0 newly installed, 0 to remove and 43 not upgraded.

Then, in Listing 2-6, you will add Docker’s official GPG key.

Listing 2-6.  Add Docker’s Official GPG Key

$ curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add
-
OK
$ sudo apt-key fingerprint 0EBFCD88
pub 4096R/0EBFCD88 2017-02-22
 Key fingerprint = 9DC8 5822 9FC7 DD38 854A E2D8 8D81 803C 0EBF CD88
uid Docker Release (CE deb) <docker@docker.com>
sub 4096R/F273FCD8 2017-02-22

Chapter 2 ■ Docker

39

Finally, in Listing 2-7, you add the appropriate Docker repository for your system
architecture.

Listing 2-7.  Add Your System’s Specific Docker Repository

$ sudo add-apt-repository \
> "deb [arch=$(dpkg --print-architecture)] https://download.docker.com/
linux/ubuntu \
> $(lsb_release -cs) \
> stable"

Install from Docker Repository
Having configured the Docker repository, you can install using the canonical apt update
(Listing 2-8) and apt install (Listing 2-9).

Listing 2-8.  Update the apt Registry

$ sudo apt update
...
Get:6 https://download.docker.com/linux/ubuntu xenial/stable amd64 Packages
[1,479 B]
...
43 packages can be upgraded. Run 'apt list --upgradable' to see them.

Listing 2-9.  Install docker.

$ sudo apt install -y docker-ce
Reading package lists... Done
...
Preparing to unpack .../docker-ce_17.03.1~ce-0~ubuntu-xenial_amd64.deb ...
Unpacking docker-ce (17.03.1~ce-0~ubuntu-xenial) ...
...
Processing triggers for ureadahead (0.100.0-19) ...

Manage Docker as a Non-Root User
On Linux systems, the Docker engine binds to a Unix port rather than a TCP port. This port
is typically owned by root and must be accessed via sudo in order to receive commands
from the Docker client. A common pattern for Docker users on Linux systems is to create a
docker group and add users to the group, as demonstrated in Listing 2-10. When the Docker
daemon is restarted, it makes the port bound to the Docker engine read/writeable by the
docker group. The outcome is that users are able to issue commands to the engine without
prepending sudo to their commands. Note that this is not, strictly speaking, necessary.

Listing 2-10.  Create a docker Group on Linux Systems

$ sudo groupadd docker $ sudo usermod -aG docker $USER

Chapter 2 ■ Docker

40

Log out and back in to see the changes take effect. At this point, users will be able to
issues commands to the engine via docker without issuing sudo.

Docker for Mac
Docker for Mac runs Docker using the HyperKit4 VM. It is driven from the command line
using bash or similar shell. Detailed instructions as well as specific system requirements
are available at https://docs.docker.com/docker-for-mac/. The stable channel for
installation is recommended.

Scripts for bash completion come prepackaged with the Docker for Mac application.
To activate bash completion, simply symlink these files to your bash_completion.d/
directory (see Listing 2-11).

Listing 2-11.  Symlink Bash Completion Files on Mac OS X

$ ln -s /Applications/Docker.app/Contents/Resources/etc/docker.bash-
completion /usr/local/etc/bash_completion.d/docker
$ ln -s /Applications/Docker.app/Contents/Resources/etc/docker-machine.bash-
completion /usr/local/etc/bash_completion.d/docker-machine
$ ln -s /Applications/Docker.app/Contents/Resources/etc/docker-compose.bash-
completion /usr/local/etc/bash_completion.d/docker-compose

Docker for Windows
Docker for Windows runs using Microsoft Hyper-V. It is driven from the command line
using PowerShell. Detailed instructions as well as specific system requirements are
available at https://docs.docker.com/docker-for-windows/. Installing Docker for
Windows can be somewhat challenging. It should be noted that Docker for Windows can
only be used on Windows 10 Pro or Enterprise 64-bit operating systems and requires

•	 64-bit processor with Second Level Address Translation (SLAT)

•	 4GB system RAM at minimum

•	 BIOS-level hardware virtualization support

The following notes have been helpful during past installations:

•	 Make sure to press OK if prompted to enable Hyper-V during the
Docker install.

•	 Select “Shared Drives” from the Docker settings and make sure to
share the C: drive. This can be done via Docker settings (Figure 2-4).

4https://github.com/docker/HyperKit/

../../https@docs.docker.com/docker-for-mac/default.htm
../../https@docs.docker.com/docker-for-windows/default.htm
../../https@github.com/docker/HyperKit/default.htm

Chapter 2 ■ Docker

41

•	 If necessary, disable the firewall or create an exception.

•	 Make sure to use Windows PowerShell to access the issue
commands to the engine.

Docker Toolbox
Docker Toolbox is available for older Mac or Windows systems that do not meet the
requirements of the more natively implemented Docker for Mac or Docker for Windows.
Docker Toolbox includes several tools:

•	 Docker Machine for running docker-machine commands

•	 Docker Engine for running the docker commands

•	 Docker Compose for running the docker-compose commands

•	 Kitematic, the Docker GUI

•	 A shell preconfigured for a Docker command-line environment

•	 Oracle VirtualBox

Installation instructions are available here: https://docs.docker.com/toolbox/
overview/. Docker Toolbox users will need to use the Docker Quickstart Terminal
command line environment to issue commands to the Docker engine. Installation of
Docker Toolbox will create a local docker-machine using VirtualBox that serves as the host.

Figure 2-4.  Access Docker settings

../../https@docs.docker.com/toolbox/overview/default.htm
../../https@docs.docker.com/toolbox/overview/default.htm

Chapter 2 ■ Docker

42

Hello, Docker!
Minimally, using Docker to run your code consists of the following:

	 1.	 Pull a precompiled image or build an image from a
Dockerfile.

	 2.	 Run the image as a new container.

If you have just installed Docker for this first time, you might try some minimal
commands as verification that the Docker client is correctly installed and available on
your path. Listings 2-12, 2-13, and 2-14 demonstrate three ways that this can be done:
docker version, docker help, or which docker work well as a minimal test.

Listing 2-12.  Display the Docker Version

$ docker version
sudo docker version
Client:
 Version: 17.03.1-ce
 API version: 1.27
 Go version: go1.7.5
 Git commit: c6d412e
 Built: Mon Mar 27 17:14:09 2017
 OS/Arch: linux/amd64

Server:
 Version: 17.03.1-ce
 API version: 1.27 (minimum version 1.12)
 Go version: go1.7.5
 Git commit: c6d412e
 Built: Mon Mar 27 17:14:09 2017
 OS/Arch: linux/amd64
 Experimental: false

■■ Note  Running this command gives information on the version of docker running on
both the Docker client and the server.

Listing 2-13.  Display Docker Help

$ docker help

Usage: docker COMMAND

A self-sufficient runtime for containers

...

Chapter 2 ■ Docker

43

Listing 2-14.  Display the Location of the Docker Binary.

$ which docker
/usr/local/bin/docker

Having verified that the Docker client is properly installed, you can move on to the
canonical “Hello, World!” as demonstrated in Listing 2-15.

Listing 2-15.  Run the hello-world Image

$ docker run hello-world
Unable to find image 'hello-world:latest' locally
latest: Pulling from library/hello-world
78445dd45222: Pull complete
Digest: sha256:c5515758d4c5e1e838e9cd307f6c6a0d620b5e07e6f927b07d05f6d12a1ac8d7
Status: Downloaded newer image for hello-world:latest

Hello from Docker!

This message shows that your installation appears to be working correctly.
To generate this message, Docker took the following steps:

	 1.	 The Docker client contacted the Docker daemon.

	 2.	 The Docker daemon pulled the hello-world image from the
Docker Hub.

	 3.	 The Docker daemon created a new container from that image,
which runs the executable that produces the output you are
currently reading.

	 4.	 The Docker daemon streamed that output to the Docker
client, which sent it to your terminal.

To try something more ambitious, you can run an Ubuntu container with

 $ docker run -it ubuntu bash

Share images, automate workflows, and more with a free Docker ID from https://
cloud.docker.com/.

For more examples and ideas, visit https://docs.docker.com/engine/userguide/.
And with that, you have verified that Docker is correctly installed and functioning.

When you execute this command, the Docker client sends the run hello-world
command to the Docker engine. The Docker engine then does the following:

	 1.	 Checks for the hello-world image in your local cache of
images.

	 2.	 If the image does not exist locally, downloads the image from
Docker Hub.

	 3.	 Creates a new container using the image.

../../https@cloud.docker.com/default.htm
../../https@cloud.docker.com/default.htm
../../https@docs.docker.com/engine/userguide/default.htm

Chapter 2 ■ Docker

44

	 4.	 Allocates a filesystem and adds a read-write layer to the top of
the image.

	 5.	 Sets up an IP address for the system.

	 6.	 Executes the shell command /hello as specified in the
image’s Dockerfile.

	 7.	 Upon completion of this process, terminates the container
and shuts down.

Listing 2-16 demonstrates sort of an elemental Docker command: run the latest
Ubuntu image, (run ubuntu) and connect to it via a bash shell (-i -t /bin/bash). When
you execute this command, the Docker client sends the command to the Docker engine.
The Docker engine does the following:

	 1.	 Checks for the ubuntu image in your local cache of images.

	 2.	 Downloads the image from Docker Hub, unless the image
exists locally.

	 3.	 Creates a new container using the image.

	 4.	 Allocates a filesystem and adds a read-write layer to the top of
the image.

	 5.	 Sets up an IP address for the system.

	 6.	 Executes the process /bin/bash within the container.

	 7.	 Connects you via your current terminal to the running /bin/
bash process.

Listing 2-16.  Run the Base ubuntu Image and Connect to It Via Shell

$ docker run -it ubuntu /bin/bash
root@eb5f4278d040:/#

You will be connected to the running ubuntu container until you shut down. You can
interact (see Listing 2-17) with this process as though it were your native Ubuntu system
to which you were connected via a bash shell.

Listing 2-17.  Interact with Ubuntu Running as a Docker Container.

root@8b9461e1d7dd:/# ls
bin dev home lib64 mnt proc run srv tmp var
boot etc lib media opt root sbin sys usr
root@8b9461e1d7dd:/# ps
 PID TTY TIME CMD
 1 ? 00:00:00 bash
 12 ? 00:00:00 ps
root@8b9461e1d7dd:/# ps aux

Chapter 2 ■ Docker

45

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 1 0.0 0.1 18240 3212 ? S<s 04:00 0:00 /bin/bash
root 13 0.0 0.1 34424 2808 ? R<+ 04:01 0:00 ps aux
root@8b9461e1d7dd:/# exit
joshuacook@LOCALHOST:~$

Here, you ended our session by typing Ctrl+D as if you were connected to a remote
system via ssh. In doing so, you have control returned to your local system, the host on
which Docker is running.

It is useful to take note of the state while your Ubuntu image was running. It is not
unusual that ls would show a complete standard Linux filesystem. It is not unusual that
ps would return just a few items. It is highly unusual that ps aux would return two items.
ps aux shows (a) processes for all users, (u) showing the owner of the process, and (x)
including processes that are not attached to any terminal. In other words, in running
ps aux, you have effectively shown all of the processes currently running on the system.
Again, it is highly unusual that only processes running on the system are the shell through
which you have connected (PID 1 /bin/bash) and the ps aux you are using to display
running processes (PID 13 ps aux). Let that sink in. Essentially, your Docker container is
running one process. More on this later.

Basic Networking in Docker
The final introductory piece you will examine before proceeding is networking in Docker.
Many of the containers you will be working with will need to be accessed from the host
using a network protocol such as TCP or HTTP. Luckily, Docker handles networking for
us. In a minimal sense, you will manage networking via Docker by publishing ports.

In publishing a port, you explicitly bind a port or range of ports from a running
container to the host. This is done via the (lowercase p) –p flag. This command makes
explicit a connection between the host and the container. As such, it can only be defined
as an argument passed to the Docker engine.

The pattern used in publishing a port is –p host_port:container_port. Let’s say, for
example, that I run a Flask5 app, defined in a container called my_flask_app, on port 5000, via
the command docker run –p 7777:5000 my_flask_app. In this case, I am publishing the
port 5000 in the container on the port 7777 on the host. In other words, whatever is available
on the container at port 5000 will be available on the host at port 7777. The effect of this to me
as the local end user is that I can access the Flask app I have defined in my browser at http://
localhost:7777 (or port 7777 on the host’s IP if I am using Docker Toolbox).

The Python module SimpleHTTPServer can be used to run a file server to the
directory from which it is launched. In Listing 2-18, you use a single command to launch
a file server via a Docker container. The Docker daemon pulls the python image and uses
it to run the Python module using the command python -m SimpleHTTPServer. The
server runs on the default port of 8000 within the container. You link this to the port 5000
on your host and are able to access the file server through the browser (Figure 2-5) at
http://localhost:8000.

5http://flask.pocoo.org

../../flask.pocoo.org/default.htm

Chapter 2 ■ Docker

46

Listing 2-18.  Launch the File Server Via the Docker Container

$ docker run -v ~:/home -p 5000:8000 python:2.7 python -m SimpleHTTPServer
Unable to find image 'python:2.7' locally
2.7: Pulling from library/python
6d827a3ef358: Already exists
2726297beaf1: Pull complete
7d27bd3d7fec: Pull complete
44ae682c18a3: Pull complete
824bd01a76a3: Pull complete
69702776c399: Pull complete
7be4e7612dd4: Pull complete
Digest: sha256:bda277274d53484e4026f96379205760a424061933f91816a6d66784c5e8
afdf
Status: Downloaded newer image for python:2.7
172.17.0.1 - - [16/Apr/2017 14:58:54] "GET / HTTP/1.1" 200 -

■■ Note  There are subtle nuances to running Docker on disparate systems.
In most cases, Docker Toolbox users will be able to access the simple file server at
http://192.168.99.100:5000. Docker for Linux/Mac/Windows users should use
http://localhost:5000.

Figure 2-5.  Local file servers available via browser

../../192.168.99.100_3A5000/default.htm

Chapter 2 ■ Docker

47

Summary
In this chapter, I formally introduced Docker and its ecosystem. I defined
containerization and how it is useful to our work. I provided instructions for installing
Docker on a few popular operating systems. Finally, you ran the Docker hello-world
image and the Docker python image, using the latter to run a simple web server.

Having completed this chapter, I hope that you have an understanding of what
exactly Docker is and some understanding of why it exists. I hope that you are aware of
the various components of the Docker ecosystem. Readers should be able to run basic
commands via the Docker client such as docker help, docker ps, and docker run.

In the next chapter, I will formally introduce Jupyter. As with everything in this text,
I will be doing so using Docker. In subsequent chapters, you will explore in greater depth
individual components of the Docker ecosystem, such as the Docker engine (or daemon),
the Dockerfile, and Docker Hub.

49© Joshua Cook 2017
J. Cook, Docker for Data Science, DOI 10.1007/978-1-4842-3012-1_3

CHAPTER 3

Interactive Programming

Interactive computing is a dialog between people and machines.

—Beki Grinter1

Jupyter is a web-based interactive application. Jupyter is a presentation environment.
Jupyter is a new paradigm in programming. Jupyter is a way to save complex terminal
sessions. All of this is to say that Jupyter is many things and, in this author’s humble
opinion, one of the most exciting innovations in computing in recent years. Jupyter is
fundamentally changing the way we write code. To be sure, Jupyter doesn’t replace vim,
Sublime Text, or PyCharm. Jupyter replaces if __name__ == "__main__":.

Jupyter as Persistent Interactive Computing
We might see Jupyter as one part of a larger trend in the way we all engage with
technology. We all actively interact with our computers every day. We pass a query to
a search engine or to an online mapping tool and expect an immediate response. We
change data in the cells and columns of a spreadsheet program and expect connected
cells and columns to update instantaneously. We ask a voice interface in our connected
home to dim the lights or play the latest pop song and expect immediate results. This is
what we expect of our computers, and in this expectation it is easy to lose sight of the fact
that this is fundamentally different from classical computer science.

How Not to Program Interactively
In order to illustrate the difference, it is useful to have a look at the C programming
language. C is a descendent of Fortran and an ancestor of Python, all three of which live
on today in practical everyday use. Many computational engineers do their work using
Python and its computational libraries numpy and scipy, blissfully unaware of the fact
that their core language is actually a high-level wrapper to C and their numerical libraries
are actually high-level wrappers to the Fortran libraries BLAS and LAPACK. Never mind that
they are totally unaware of what a development workflow looked like using C and BLAS.
Until the somewhat recent advent of numpy, the computational engineer was forced to use
a very different workflow.

1https://beki70.wordpress.com/2011/01/27/what-is-interactive-computing/

../../https@beki70.wordpress.com/2011/01/27/what-is-interactive-computing/default.htm

Chapter 3 ■ Interactive Programming

50

C is a compiled language. A functioning program, even one performing a simple
mathematical calculation, requires considerable steps to bring it to life. Source code
files must be written. This source code often includes references to header files existing
elsewhere on the system. The code must be compiled into a binary including references
to these header files and linked to any underlying compiled libraries used by the binary.
Finally, the binary is executed, returning the results of the computation.

We will briefly demonstrate how this process works on a trivial calculation using
the GNU Scientific Library (GSL). The GSL is a software library written in C used for
computational mathematics. The GSL sits on top of a lower-level implementation of BLAS
providing a layer of abstraction for ease in the development process.

Setting Up a Minimal Computational Project
As you are going to have more than one type of file to keep track of, it would behoove you
to have a well-defined project directory. You first define a folder to hold your work, ch_3_
minimal_comp, and three subdirectories, bin, docker, and src, to your compiled binaries,
Dockerfile, and source code, respectively. Upon completing this, on a Unix-like system,
you might use the command tree to display your project hierarchy. If you do not have tree
installed, you can do so using brew, apt, yum, or another package manager (see Listing 3-1),
depending upon your system.

Listing 3-1.  Install the Tree

$ # change apt to brew, yum, or the appropriate package manager for your
system
$ apt install tree

Next, in Listing 3-2, you make the directories necessary to begin your project. This
is followed by Listing 3-3, in which you use the tree tool to display the project repository
you have created.

Listing 3-2.  Make the Project Directories

$ mkdir ch_3_minimal_comp ch_3_minimal_comp/bin ch_3_minimal_comp/src ch_3_
minimal_comp/docker

Listing 3-3.  Display the Current State of Your Minimal Computational Project

$ tree
.
└── ch_3_minimal_comp
 ├── bin
 ├── docker
 └── src

../../https@www.gnu.org/software/gsl/default.htm
../../www.netlib.org/blas/default.htm

Chapter 3 ■ Interactive Programming

51

Writing the Source Code for the Evaluation of a Bessel
Function
Next, you create a new file, bessel.c, to be stored in the src directory, containing your
source code (see Listing 3-4). Note that it includes two include statements, references
to external code files containing extended functionality you will use in this program,
stdio.h and gsl/gsl_sf_bessel.h. You will need to explicitly tell your compiler how to
handle these files using an include statement and a linking statement.

Listing 3-4.  Evaluation of the Zero-Order Bessel Function of the First Kind at x=5

// src/bessel.c
#include <stdio.h>
#include <gsl/gsl_sf_bessel.h>

int main(void)
{
 double x = 5.0;
 double y = gsl_sf_bessel_J0(x);
 printf("J0(%g) = %.18e\n", x, y);
 return 0;
}

Performing Your Calculation Using Docker
The completion of this calculation will require two separate processes. You will need to
compile your source code into a binary and then execute this binary. As before, you will
let Docker manage these processes. You will do so using a docker image defined by the
Dockerfile shown in Listing 3-5.

■■ Note  This image is built as an addition to the gcc image available on Docker Hub at
https://hub.docker.com/_/gcc/.

Listing 3-5.  GSL Dockerfile

FROM gcc

LABEL maintainer=@joshuacook

RUN apt-get update && \
 apt-get install -y \
 gsl-bin \
 libgsl0-dbg \
 libgsl0-dev \
 libgsl0ldbl

../../https@hub.docker.com/_/gcc/default.htm

Chapter 3 ■ Interactive Programming

52

You save this file as Dockerfile in your docker directory. After doing this, you again
use the tree command to display the state of your project (Listing 3-6).

Listing 3-6.  Display the Current State of Your Minimal Computational Project

$ cd ch_3_minimal_comp
$ tree
.
├── bin
├── docker
 │ └── Dockerfile
└── src
 └── bessel.c

You build the image for use with the docker build command. In your shell, you
should currently be in the ch_3_minimal_comp directory. This is critical because your
docker build command will make relative reference to a Dockerfile containing the
definition of the image you wish to build. Here, you give the image a name via the -t flag,
gsl. You specify that the build process should look for a Dockerfile within the relatively
referenced directory docker. Listing 3-7 shows the complete command executed.

Listing 3-7.  Build the gsl Docker Image

$ docker build -t gsl docker
Sending build context to Docker daemon 2.048 kB
Step 1/3 : FROM gcc
latest: Pulling from library/gcc
693502eb7dfb: Already exists

...

Status: Downloaded newer image for gcc:latest
 ---> 408d218617ca
Step 2/3 : MAINTAINER @joshuacook
 ---> Running in 43a89bcd4fae
 ---> 97faa5ea6f1e
Removing intermediate container 43a89bcd4fae
Step 3/3 : RUN apt-get update && apt-get install -y gsl-bin
libgsl0-dbg libgsl0-dev libgsl0ldbl
 ---> Running in 988614cb6d56

...
---> 568814736d4b
Removing intermediate container 988614cb6d56
Successfully built 568814736d4b

When the build completes, this image will be available for use globally. You can
verify this via the docker images command (see Listing 3-8).

Chapter 3 ■ Interactive Programming

53

Listing 3-8.  Display Local Docker Images

$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
gsl latest b3f3b5f49e4a 24 hours ago 1.52 GB
...

Compile Your Source Code
Next, you compile your source code. To compile, you will use the following docker run
outlined in Listing 3-9.

Listing 3-9.  Compile the Bessel Function Binary

$ docker run \
 -v 'pwd':/home \
 gsl \
 gcc \
 -I /usr/include/ \
 -L /usr/lib/ -lgsl -lgslcblas \
 /home/src/bessel.c
 -o /home/bin/bessel

This command instructs the Docker engine to

•	 Run a container.

•	 Attach the current working directory ('pwd') to the location /
home within the container.

•	 Use the gsl image as a basis.

■■ Note  You make use of bash’s inline execution functionality via two backticks.
Executing pwd prints your working directory (your current location). Running this in backticks
substitutes your working directory in place. Thus, -v 'pwd':/home attaches your working
directory to the directory /home in your docker container.

Users interacting with the Docker engine using PowerShell, that is, Docker for Windows
users, will need to use the alternative ${pwd} (e.g. -v ${pwd}:/home).

References to file locations are made relative to where they will be mounted within
the container. The container will

•	 Run a single process, the Gnu C compiler, gcc.

•	 Include a reference to the location of the gsl header files
(-I /usr/include/).

Chapter 3 ■ Interactive Programming

54

•	 Link the gsl libraries (-L /usr/lib/ -lgsl -lgslcblas).

•	 Use /home/src/bessel.c as source.

•	 Output (-o) a binary to /home/bin/Bessel.

The process should complete very quickly. When the Docker engine attached your
directory as a volume, a two-way connection was created. Because of this, the compiled
binary is now present in your host machine’s file system. In Listing 3-10, you once more
display the state of your project using the tree tool.

Listing 3-10.  Display the Current State of Your Minimal Computational Project

$ tree
.
├── bin
 │ └── bessel
├── docker
 │ └── Dockerfile
└── src
 └── bessel.c

Execute Compiled Binary
Finally, you execute your compiled binary to retrieve the value of your calculation. Again,
you must ask the Docker engine to manage this process for you, if for no other reason
than that the binary was compiled to run on a gsl container.

It is worth emphasizing this last point. You could be working through these
exercises on literally any operating system and hardware configuration. You are working
with Docker to abstract your work away from your specific configuration. This means,
however, that your binary has not been compiled to run on your local hardware/software
configuration. It has been compiled to run on a gsl Docker container defined by the gsl
Docker image. In this case, it is compiled to run on debian:jesse.

In Listing 3-11, you execute your compiled binary using Docker.

Listing 3-11.  Execute the Bessel Function Binary

$ docker run -v 'pwd':/home gsl_image /home/bin/bessel
J0(5) = -1.775967713143382642e-01

But what if you wish to know the value at x=6 or x=7? In this case, you would need to
go through the entire process once more: edit code, compile code, execute code. While
there are significant advantages to writing code to run using the GSL, rapid iteration
during the development cycle is not one of them and interaction is an impossibility. This
entire process has been a demonstration of how not to code interactively.

Chapter 3 ■ Interactive Programming

55

How to Program Interactively
Jump 30 years forward. Put that compiler down! Thanks to the work of pioneers like
Travis Oliphant and Fernando Perez, on numpy and iPython, we can perform this trivial
calculation in the way that it was meant to be performed: trivially. numpy (I say “num”-
“pie” to my elders and “num”-“pee” to my peers) is short for numerical Python and
provides us with a high-level wrapper to a lower-level implementation of BLAS. IPython is
short for interactive Python and is a highly-evolved Python REPL (read-eval-print loop)
with a set of tools for interacting with any and all Python libraries.

■■ Note  The reader should be careful not to confuse IPython, the command line REPL, and
IPython Notebook, the legacy notebook server that has evolved into Jupyter.

Launch IPython Using Docker
Let’s perform this trivial calculation. In Listing 3-12, you activate ipython using the
jupyter/scipy-notebook Docker image.

Listing 3-12.  Launch ipython Using the jupyter/scipy-notebook Image

$ docker run -it jupyter/scipy-notebook ipython
Python 3.5.2 |Continuum Analytics, Inc.| (default, Jul 2 2016, 17:53:06)
Type "copyright", "credits" or "license" for more information.

IPython 5.1.0 -- An enhanced Interactive Python.
? -> Introduction and overview of IPython's features.
%quickref -> Quick reference.
help -> Python's own help system.
object? -> Details about 'object', use 'object??' for extra details.

In Listing 3-13, you perform the same calculation you performed earlier, although
your process is not so elaborate. You first import the libraries necessary to evaluate
a Bessel function in numpy, much as you imported the header files stdio.h and gsl/
gsl_sf_bessel.h in your bessel.c file. Here, you import the special module from the
scipy library. The special module contains a function called jv that is used to evaluate
a “Bessel function of the first kind of real order and complex argument.” You pass the
arguments (0,5), signifying that you wish to evaluate the zero-order function at 5.

Listing 3-13.  Evaluation of the Zero-Order Bessel Function of the First Kind at x=5

In [1]: import scipy.special as spc

In [2]: spc.jv(0, 5)
Out[2]: -0.17759677131433838

Chapter 3 ■ Interactive Programming

56

Performing these computations in an interactive REPL, your IPython environment, it
is trivial to run the function twice more. This is interactive programming! In Listing 3-14,
you run the functions with the arguments (0,6) and (0,7).

Listing 3-14.  Evaluation of the Zero-Order Bessel Function of the First Kind at x=6 and x=7

In [3]: spc.jv(0, 6)
Out[3]: 0.15064525725099703

In [4]: spc.jv(0, 7)
Out[4]: 0.30007927051955563

Having perfomed all of the computations you set out to perform, you press Ctrl+D
twice to exit. In doing so, you terminate the ipython process (being managed by your
Docker daemon) and the container shuts down.

Persistence
With that your process has died and your container has shut down. For your intents and
purposes your work is lost forever. There is real power to interaction but not if we have
to repeat everything we have done every time we step away and return. We could write a
short Python module that performs these calculations and then use Python (via Docker)
to execute the module. In Listing 3-15, you write a short file named bessel.py that
performs the same three computations you just performed interactively.

Listing 3-15.  Three Bessel Function Calculations

import scipy.special as spc
print(spc.jv(0, 5))
print(spc.jv(0, 6))
print(spc.jv(0, 7))

In Listing 3-16, you once more display the state of your project using the tree tool.

Listing 3-16.  Display the Current State of Your Minimal Computational Project

$ tree
.
├── bin
 │ └── bessel
├── docker
 │ └── Dockerfile
└── src
 ├── bessel.c
 └── bessel.py

In Listing 3-17, you execute your file, bessel.py.

Chapter 3 ■ Interactive Programming

57

■■ Note  In order to run this, you must mount the directory containing your files as a
volume to the location where the jupyter/scipy-notebook will look for files, in this case /
home/jovyan.

Listing 3-17.  Execute bessel.py Using Docker

$ docker run -v 'pwd'/src:/home/jovyan/work jupyter/scipy-notebook python
bessel.py
-0.177596771314
0.150645257251
0.30007927052

But now you are back to not programming interactively.

Jupyter Notebooks
Jupyter Notebooks are the evolution of IPython. Jupyter allows users to combine live
code, markdown- and latex-rich text, images, plots, and more in a single document. As
the successor to the IPython notebook, Jupyter was renamed as the platform began to
support other software kernels. Because it began with support for Julia, Python, and R,
it was renamed as JuPyteR, though now the platform supports Scala, Haskell, and Ruby,
amongst many others. A list of all kernels supported can be found at https://github.
com/jupyter/jupyter/wiki/Jupyter-kernels. Henceforth, you will use Jupyter as your
main interface for interactive programming.

Opinionated Docker Stacks
Jupyter provides opinionated stacks for use in a variety of contexts: the All Spark stack, the
minimal stack, etc. We have already been using the scipy stack. Let’s take a look at the demo
stack. The demo stack can be tried immediately by visiting https://try.jupyter.org and
is a fully-functioning jupyter system with multiple kernels (Bash, Haskell, Julia, Python 2
and 3, R, Ruby, and Scala) preinstalled.

Security in the Jupyter Notebook Server
One core best practice defined by the Jupyter Docker images maintained by the Jupyter
Team is the generation of a security token at container runtime. As part of the run
process, a new Jupyter container will generate and write to logs a token that must be
passed as a query parameter or entered into the password field in order to interact with
the system. This is only necessary the first time that Jupyter is loaded in the browser. The
significance of this is that a Jupyter Noteook Server is safe from intruders should we wish
to host it on the open web (as described in Chapter 1).

../../https@github.com/jupyter/jupyter/wiki/Jupyter-kernels
../../https@github.com/jupyter/jupyter/wiki/Jupyter-kernels
../../https@hub.docker.com/r/jupyter
../../https@hub.docker.com/r/jupyter/all-spark-notebook/default.htm
../../https@hub.docker.com/r/jupyter/minimal-notebook/default.htm
../../https@hub.docker.com/r/jupyter/scipy-notebook/default.htm
../../https@hub.docker.com/r/jupyter/demo/default.htm
../../https@hub.docker.com/r/jupyter/demo/default.htm
../../https@try.jupyter.org/default.htm
../../dx.doi.org/10.1007/978-1-4842-3012-1_1

Chapter 3 ■ Interactive Programming

58

Listing 3-18 demonstrates this by running the jupyter/scipy-notebook image in a
new container on port 8888.

Listing 3-18.  Run the jupyter/scipy-notebook Image

$ docker run -p 8888:8888 jupyter/scipy-notebook
...
 [I 18:53:31.565 NotebookApp] The Jupyter Notebook is running at: http://
[all ip addresses on your system]:8888/?token=44dab68c1bc7b1662041853573f37
cfa03f13d029d397816
[I 18:53:31.565 NotebookApp] Use Control-C to stop this server and shut down
all kernels (twice to skip confirmation).
[C 18:53:31.566 NotebookApp]

 Copy/paste this URL into your browser when you connect for the first time,
 to login with a token:
 �http://localhost:8888/?token=44dab68c1bc7b1662041853573f37cfa03f13d02

9d397816

The logs have displayed the token and generated an URL that can be copied and
pasted into a browser. You can access the Jupyter Notebook Server by visiting either
localhost (Listing 3-19) or the IP identified when you ran docker-machine followed by
port 8888 (Listing 3-20).

Listing 3-19.  Visiting Jupyter on localhost port 8888 with Provided Token

http://localhost:8888/?token=44dab68c1bc7b1662041853573f37cfa03f13d02
9d397816

Listing 3-20.  Visiting Jupyter on an IP at port 8888 with Provided Token

http://192.168.99.100:8888/?token=44dab68c1bc7b1662041853573f37cfa03f13d02
9d397816

■■ Note  The URL generated in the logs will always list the base URL as http://
localhost:8888 even if the server is being run on a different IP and using a different port.
You must modify the URL to reflect the proper IP and port in order to access your systems.

Jupyter Demo Stack
Let’s bring the Jupyter Demo Stack online in your local environment. If you are running
Docker for Linux, Docker for Mac, or Docker for Windows, you will be able to access any
exposed Docker containers by visiting http://localhost in a browser at the appropriate
port. If you have been running the Docker daemon on a virtual machine (i.e. if you are
running Docker Toolbox on Mac or Windows), you will need to get the IP of the virtual
host and access your machine there instead. Typically, your Docker virtual machine will

Chapter 3 ■ Interactive Programming

59

be named default. You can find this IP by using the docker-machine ip (see Listing 3-21).
Just to reiterate, this is not necessary when using Docker for Linux, Docker for Mac, or
Docker for Windows.

Table 3-1 summarizes how you will access your system.

Listing 3-21.  Get the IP of Your Host Machine

$ docker-machine ip default
192.168.99.100

This signifies that the Docker host virtual machine is available at 192.168.99.100.
Your machine may be available at a different IP address.

■■ Note  This command only needs to be run by host systems using Docker Toolbox.
Systems running Docker for Linux, Docker for Mac, or Docker for Windows will be able to
access their Jupyter Notebook server in browser using localhost.

Launch the jupyter/demo image
To launch an image, you will first pull it from Docker Hub (see Listing 3-22). You could
have done this implicitly via the run command but running it explicitly gives greater
insight into what you are doing.

Table 3-1.  Accessing Your Docker System

OS Docker System Shell Access Jupyter at

Linux Docker for Linux Bash localhost:8888

MacOS
>= 10.10.3
(Yosemite)

Docker for Mac Bash localhost:8888

MacOS >= 10.8
(Mountain
Lion)

Docker Toolbox for Max Docker Quickstart
Terminal

#DOCKERIP:8888

Windows
10 Pro,
Enterprise, or
Education

Docker for Windows Windows
PowerShell

localhost:8888

Windows 7,
8, 8.1, or 10
Home

Docker Toolbox for
Windows

Docker Quickstart
Terminal

#DOCKERIP:8888

Chapter 3 ■ Interactive Programming

60

Listing 3-22.  Pull the Jupyter Demo from Docker Hub

$ docker pull jupyter/demo
Using default tag: latest
latest: Pulling from jupyter/demo
...
Digest: sha256:d3dd87e52ca1edbfc8b65ad68bfa91f15eb0660d218c64fd5cdb039c1
fa10818
Status: Downloaded newer image for jupyter/demo:latest

Having pulled the image, you run the image using the docker run command
(see Listing 3-23).

Listing 3-23.  Run the Jupyter Demo

$ docker run -p 8888:8888 jupyter/demo
[I 02:54:37.454 NotebookApp] Writing notebook server cookie secret to /home/
jovyan/.local/share/jupyter/runtime/notebook_cookie_secret
[W 02:54:37.537 NotebookApp] WARNING: The notebook server is listening on
all IP addresses and not using encryption. This is not recommended.
[I 02:54:37.580 NotebookApp] Serving notebooks from local directory: /home/
jovyan/work
[I 02:54:37.580 NotebookApp] 0 active kernels
[I 02:54:37.580 NotebookApp] The Jupyter Notebook is running at: http://[all
ip addresses on your system]:8888/
[I 02:54:37.580 NotebookApp] Use Control-C to stop this server and shut down
all kernels (twice to skip confirmation).

The vast majority of the output in Listing 3-23 is output generated by the Jupyter
application and written to the standard logger. As you are running the container in
foreground mode, the output is written to your terminal.

You may recall that earlier you attached your working directory to the directory
/home/jovyan. You can see in the output here that this is the directory from which Jupyter
is serving files:

[I 02:54:37.580 NotebookApp] Serving notebooks from local directory: /home/
jovyan/work

■■ Note  Some legacy Jupyter images serve notebooks from the local directory, /home/
jovyan/work. More recent Jupyter images serve notebooks from the local directory, /home/
jovyan/. This will have some impact on your work in terms of the folder used to mount a
local directory to a directory within the Jupyter container. If you always use -v 'pwd':/
home/jovyan, then there should be no issues with accessing files or file persistence. It is
worth emphasizing that local directory in this context refers to the local directory within the
running Docker container.

Chapter 3 ■ Interactive Programming

61

The Jupyter File System
Visiting the application in your browser, you first see the main Jupyter File System
(Figure 3-1).

You can launch a Jupyter file by clicking any of the files in the file system or launch a
new file via the “New” menu in the upper right corner.

Open the “Welcome to Python” file by clicking it. After a brief warning about using
the file on the free hosting on Rackspace (which you can ignore because you are hosting it
yourself), you see the barest of instructions on executing code in a Jupyter file in the first
markdown cell (Listing 3-24, Figure 3-2).

Listing 3-24.  Run Some Python Code!

To run the code below:
Click on the cell to select it.
Press SHIFT+ENTER on your keyboard ...

The next cell contains a block of Python (Listing 3-25), which you can execute by
pressing Shift+Enter as instructed. The code generates a time series plot of random data
(Figure 3-3). Figure 3-4 shows the entire code and result in a Jupyter Notebook.

Figure 3-1.  The Jupyter file system

Figure 3-2.  Minimal instructions

Chapter 3 ■ Interactive Programming

62

Listing 3-25.  Introduction to Python

In [1]: %matplotlib notebook
 import pandas as pd
 import numpy as np
 import matplotlib

 from matplotlib import pyplot as plt
 import seaborn as sns

 �ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000',
periods=1000))

 ts = ts.cumsum()

 df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index,
 columns=['A', 'B', 'C', 'D'])
 df = df.cumsum()
 df.plot(); plt.legend(loc='best')
Out[1]: <matplotlib.legend.Legend at 0x7f73cc716b38>

Figure 3-3.  Random time-series data

Chapter 3 ■ Interactive Programming

63

Close the Jupyter file by selecting File ➤ Close and Halt. This will terminate the kernel,
an IPython process connected to your in-browser notebook, and close the browser window.

You can shut down the Jupyter application by pressing Ctrl+C twice. This will terminate
the jupyter notebook process being managed by Docker and thus shut the container down.

^C[I 03:10:32.463 NotebookApp] Interrupted...
[I 03:10:32.464 NotebookApp] Shutting down kernels

Port Connections
Let’s take a brief look at ports. You will also launch your container in detached mode via
the -d flag (Listing 3-26).

Figure 3-4.  Try a Jupyter Python demo

Chapter 3 ■ Interactive Programming

64

Listing 3-26.  Run the jupyter/demo Image in Detached Mode

$ docker run -d -p 5000:8888 jupyter/demo
2040f677ad7ffa4666d0d9826e00175a15315ae2b2422314924f6022d6b65622

In Listing 3-15, you run the jupyter/demo image in detached mode, exposing
port 8888 to port 5000. You can access the machine by visiting localhost:5000 or
192.168.99.100:5000. Because you ran the container in detached mode, the command
returns the <container_id> of your container. As you are running the container in
detached mode, the Jupyter logger’s output is not written to your terminal. You can
access the output via the logs command. In order to obtain the randomly generated
access token, you will need to do just this.

In Listing 3-27, you use the docker ps command to obtain the name of your
container in order to access its logs.

Listing 3-27.  Display the Containers Currently Running

$ docker ps
CONTAINER ID IMAGE COMMAND PORTS NAMES
2040f677ad7f jupyter/demo "tini ..." 0.0.0.0:5000-\>8888/tcp �furious_

archimedes

Note that in addition to assigning the container a <container_id>, the Docker
daemon also assigned a name, furious_archimedes. Names are randomly assigned,
typically an adjective and the surname of a famous scientist. You can use this name to
access the generated logs for your container (Listing 3-28). You will need to access the
logs in order to obtain your access token.

Listing 3-28.  Display Logs for a Container Running in Detached Mode

$ docker logs furious_archimedes
[I 15:38:05.402 NotebookApp] Writing notebook server cookie secret to /home/
jovyan/.local/share/jupyter/runtime/notebook_cookie_secret
[W 15:38:05.455 NotebookApp] WARNING: The notebook server is listening on
all IP addresses and not using encryption. This is not recommended.
[I 15:38:05.471 NotebookApp] Serving notebooks from local directory: /home/
jovyan/work
[I 15:38:05.471 NotebookApp] 0 active kernels
[I 15:38:05.471 NotebookApp] The Jupyter Notebook is running at: http://[all
ip addresses on your system]:8888/?token=a7ae5855be48acdb99d12f06f03354cc0b
ede5a941f10d22
[I 15:38:05.472 NotebookApp] Use Control-C to stop this server and shut down
all kernels (twice to skip confirmation).
[C 15:38:05.472 NotebookApp]

 �Copy/paste this URL into your browser when you connect for the first
time, to login with a token:

 �http://localhost:8888/?token=a7ae5855be48acdb99d12f06f03354cc0bede5a941
f10d22

...

Chapter 3 ■ Interactive Programming

65

Port Mappings
You can look at the port mappings for your container with the docker port command
(Listing 3-29). This signifies that port 8888 on your container is mapped via the TCP
protocol to port 5000 on the host machine (0.0.0.0). If you are running Docker on a
virtual machine (i.e. if you are using Docker Toolbox), then access to this port will be at
localhost with respect to the container. This is to say that it will have an IP on your
system. You identified this IP earlier via docker-machine ip default where default was
the name you assigned to your virtual machine. From the persepective of the Docker
daemon you are accessing the container’s 8888 port via localhost:5000, but if you are
running a virtual machine you are accessing it at 192.168.99.100:5000 (Figure 3-5).

Listing 3-29.  Examine the Port of a Running Container

$ docker port furious_archimedes
8888/tcp -\> 0.0.0.0:5000

Data Persistence in Docker
Let’s consider persistence in Docker. To do this, you will do a quick exercise in Jupyter. The
content is fairly basic and is used here solely to demonstrate persistence. Visit the Jupyter
application in your browser. Once there, create a new Python file and run a basic calculation
on that file. Listing 3-30 is a simple snippet of code for generating a plot for a basic quadratic
curve (Figure 3-6). Figure 3-7 shows the entire code and result in a Jupyter Notebook.

Figure 3-5.  Accessing Jupyter via localhost

Chapter 3 ■ Interactive Programming

66

Listing 3-30.  Plot a Basic Quadratic

In [1]: %matplotlib notebook
 import numpy as np
 import matplotlib.pyplot as plt
In [2]: x = np.arange(1,10,1)
 f = lambda x: x**2
 y = f(x)
In [3]: plt.plot(x,y)

Out[3]: <matplotlib.lines.Line2D at 0x7f73cc269978>

Figure 3-6.  A basic quadratic curve

Chapter 3 ■ Interactive Programming

67

Rename the file as Basic Quadratic, save your changes, then choose “Close and
Halt” from the file menu. Returning to the Jupyter file system, you should see the file you
just created (Figure 3-8).

Figure 3-7.  Generating a basic quadratic curve in a notebook

Chapter 3 ■ Interactive Programming

68

Next, shut down your running instance and confirm that it is no longer running by
using docker stop and docker ps (Listing 3-31).

Listing 3-31.  Shut Down a Running Container

$ docker stop furious_archimedes
furious_archimedes
$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

Now, in Listing 3-32, you start a new Jupyter image. You will need to access the
token once more. Here, you view the logs using the returned container id rather than the
container’s name.

Listing 3-32.  Run the jupyter/demo Image in Detached Mode

$ docker run -d -p 5000:8888 jupyter/demo
5999d158488d410ac5fbf3a646e4a962d307e968d3cd2f53e60e0a0c7bbe262c
$ docker logs
5999d158488d410ac5fbf3a646e4a962d307e968d3cd2f53e60e0a0c7bbe262c

Visit the Jupyter application in your browser. The file you just created is gone. Data
has not persisted from instance to instance. This is a problem.

Figure 3-8.  Your file in the Jupyter file system

Chapter 3 ■ Interactive Programming

69

Attach a Volume
This problem can be solved via a run argument. You can attach a volume via a run
argument with the flag -v. Note that if you are running Docker on a virtual machine,
Mac or Windows, you are only able to mount volumes from /Users (OS X) or C:\Users
(Windows), and volumes may need to be made explicitly available to the docker daemon.

You pass the -v flag a single argument that consists of <local_dir>:<container_id>.
The Jupyter Demo stack is serving files from /home/jovyan. You will serve files in ~/src to /
home/jovyan/src. Note that you must use the absolute path (i.e. /Users/joshuacook/src).

In Listing 3-33, you run in detached mode and attach a volume.

Listing 3-33.  Run an Image and Attach a Volume

$ docker run \
 -v /Users/joshuacook/src:/home/jovyan/src \
 -d -p 5000:8888 \
 jupyter/demo
273ff71c6755670e21accd197461dd4256fbeb129393d137733f36bcb5432a55

Repeat the above experiment and create a new file called Basic Quadratic.
You should notice three things.

•	 All files in ~/src should be immediately available to your Jupyter
application.

•	 Any files that are written into the src directory on the
containerized Jupyter application should be written to ~/src on
your machine.

•	 Thus these files should persist from launch to launch.

It is worth repeating this here: if you wish to persist the work that you have done
while running Jupyter via Docker, the best practice is to use the -v flag at runtime to
mount a local directory to your container.

Summary
In this chapter you did quite a bit. You explored to some extent the nature of non-interactive
and interactive programming using Docker. You explored the running of various Jupyter
Docker images on your system for the purposes of interactive programming. You detailed
the Jupyter Team-defined best practice in notebook security and how to access your Jupyter
Notebook Server in a browser. Finally, you briefly explored how port mappings and file
persistence can affect your work when using Docker to run Jupyter. I hope that, after this
chapter, you are comfortable running Jupyter on your system using Docker, especially in
terms of

	 1.	 Identifying your security token

	 2.	 Identifying your IP and port

	 3.	 Persisting the work you do beyond the lifespan of a container

Chapter 3 ■ Interactive Programming

70

You will revisit Jupyter in Chapter 7, when you explore in some depth the publicly
available Docker images written by the Jupyter team for the purposes of running and
extending Jupyter via Docker.

../../dx.doi.org/10.1007/978-1-4842-3012-1_7

71© Joshua Cook 2017
J. Cook, Docker for Data Science, DOI 10.1007/978-1-4842-3012-1_4

CHAPTER 4

The Docker Engine

The Docker engine is the core technology upon which you will do your work. For your
purposes, you can think of the Docker engine as the Docker daemon and the Docker
client you use to give the daemon instructions. Docker as a whole consists of both the
engine and the Hub, the latter of which is used to store images. If I have not emphasized
this enough, the magic happens because we can count on the Docker engine to work the
same way no matter our underlying hardware (or virtual hardware) and operating system.
We build it using the Docker engine, we test it using the Docker engine, and we deploy it
using the Docker engine.

Examining the Docker Workstation
Docker is a rapidly changing technology. As such, it is best to refer to Docker’s latest
instructions on installation. The base installation includes each of the core technologies
we will be using: docker, docker-machine, and docker-compose.

Running the command docker alone returns usage. If you are ever in doubt as
to which commands can be run and which arguments they require, try running the
command with no arguments (see Listing 4-1).

Listing 4-1.  Display Docker Usage

$ docker

Usage: docker COMMAND

A self-sufficient runtime for containers
...

You can display system-wide information using the docker info command (Listing 4-2).
Either docker or docker info can also function as a minimal verification of a working Docker
installation.

Chapter 4 ■ The Docker Engine

72

Listing 4-2.  Display Docker System Info

$ docker info
Containers: 12
 Running: 2
 Paused: 0
 Stopped: 10
Images: 23
Server Version: 17.06.0-ce
...

In Listing 4-3, you pull the minimal Docker image, alpine, to your local collection of
images. alpine is

A minimal Docker image based on Alpine Linux with a complete package
index and only 5MB in size!

and provides an excellent starting point for building minimal images.

Listing 4-3.  Pull the alpine Docker Image

$ docker pull alpine
Using default tag: latest
latest: Pulling from library/alpine
0a8490d0dfd3: Pull complete
Digest: sha256:dfbd4a3a8ebca874ebd2474f044a0b33600d4523d03b0df76e5c5986cb02d7e8
Status: Downloaded newer image for alpine:latest

When you pulled the hello-world or ubuntu image, you did so implicitly as part of the
docker run command (see Figure 4-1). In Listing 4-3, you explicitly pull the image. Since
you did not specify a tag for pulling, the Docker engine defaults to using the tag named
latest. The Docker engine then finds the latest alpine image by name on Docker Hub and
downloads the image to a local image cache (see Figure 4-1). The alpine image consists of a
single layer. Had it consisted of more than one layer, they would have been pulled in parallel.

../../https@hub.docker.com/_/alpine/default.htm

Chapter 4 ■ The Docker Engine

73

If you wish to run an interactive shell to the alpine image you downloaded, you can
do so via the run command (see Listing 4-4). You will receive a shell prompt for a shell
attached to the alpine image. Press Ctrl+D to terminate the shell process and return to
the host system.

Listing 4-4.  Run an Interactive Shell to an alpine Container

$ docker run -it alpine /bin/sh
/ # ls
bin etc lib mnt root sbin sys usr
dev home media proc run srv tmp var
/ # whoami
root
/ # ps
PID USER TIME COMMAND
1 root 0:00 /bin/sh
7 root 0:00 ps
/ # ps aux
PID USER TIME COMMAND
1 root 0:00 /bin/sh
8 root 0:00 ps aux

In Listing 4-4, the -i flag starts an interactive container. The -t flag allocates a
pseudo-TTY command line interpreter or shell that attaches stdin and stdout. You ran
the ls command and displayed the directories in the root directory (‘/’) of the running
Docker container. You then ran ps and ps aux to display processes attached to the
current shell and all process, respectively.

Pulling and running Ubuntu with implicit pull

Client

> docker run > docker pull

> docker run

alpine alpine

Checks cache

alpine

alpine

Run from cache

Checks cache

implicit pull

UbuntuUbuntu

Ubuntu

Run from cache

IMAGE

CONTAINER

CONTAINER

IMAGE

IMAGE

IMAGE IMAGE

Cache Registry Client Cache Registry

Pulling and running alpine with explicit pull

Figure 4-1.  Implicit vs. explicit pulls of images from the Docker Registry

Chapter 4 ■ The Docker Engine

74

What exactly have you done? Well, it’s somewhat abstract. You have launched an
instance of the alpine image. The Docker engine then created a temporary layer on top of
this image that you can interact with. The underlying image and this read/write layer on
top of that image comprise a Docker container. The Docker engine then connected you
to the container via a generic shell. Here you have root access to that running container.
The results of any actions you conduct while connected via the shell are written to the top
read/write layer.

As discussed in Chapter 2, a Docker container can be thought of as a virtualized
process. We will continue to use this way of thinking, and I will use the terms process
and container somewhat interchangeably. So far, you have used docker ps to display
processes currently being managed by the Docker daemon (that is, the currently running
containers). In Listing 4-5, you display all processes/containers, including those that have
terminated via docker ps -a. Here, the -a flag signifies that all containers should be
shown, including those that have exited.

Listing 4-5.  Display All Docker Processes

$ docker ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
b04dfee8fc1c alpine "/bin/sh" 49 minutes ago Exited ... clever_khorana

Here you see the process you recently terminated. The container created to run the
process has the container id b04dfee8fc1c.

When you terminate the shell, the Docker engine stops the container. The container
defined by the alpine image and the read/write layer created at runtime continue to exist
in your cache. The read/write layer, however, is associated with this container, not the
underlying image. If you launch a new container by running the same command again, the
Docker engine will create a new read/write layer on top of the base image as a new container.

In Listing 4-6, you create a new container, shut down, and list all processes once
more. You can see that you now have two containers that have exited associated with the
alpine image.

Listing 4-6.  Create a Second alpine Container, Terminate, and Display All Processes

$ docker run -it alpine /bin/sh
/ #^d
$ docker ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
b04dfee8fc1c alpine "/bin/sh" 49 minutes ago Exited ... clever_khorana
4d3cc1c5471d alpine "/bin/sh" 59 minutes ago Exited ... suspicious_ritchie

Hello, World in a Container
docker run is used to run an application as a container. Let’s walk through this. Let’s
begin by displaying the currently running docker processes (see Listing 4-7).

../../dx.doi.org/10.1007/978-1-4842-3012-1_2

Chapter 4 ■ The Docker Engine

75

Listing 4-7.  Display the Docker Processes

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

You should see the headers of an empty table signifying that there are no containers/
processes currently running. You may see other processes there and that is okay for your
purposes.

You can view the images that you currently have in your image cache. You can do this
via the docker images command, as shown in Listing 4-8.

Listing 4-8.  Display Docker Images

$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
alpine latest 88e169ea8f46 7 weeks ago 3.98 MB
ubuntu latest b549a9959a66 31 hours ago 188 MB
hello-world latest 690ed74de00f 4 weeks ago 960 B

If you have been following along, you should have three images. The significance of
these three images is that they are stored locally. You can run a container defined by any
one of them instantly; that is to say, the image does not need to be implicitly pulled before
the container is run. In Listing 4-9, you run the hello-world image.

Listing 4-9.  Run the hello-world Image

$ docker run hello-world
Hello from Docker.
This message shows that your installation appears to be working correctly.

To generate this message, Docker took the following steps:

	 1.	 The Docker client contacted the Docker daemon.

	 2.	 The Docker daemon pulled the “hello-world” image from the
Docker Hub.

	 3.	 The Docker daemon created a new container from that image
which runs the executable that produces the output you are
currently reading.

	 4.	 The Docker daemon streamed that output to the Docker
client, which sent it to your terminal.

Previously, you ran this command and had to wait while the images were pulled
from the registry. Now it runs immediately and shows the same response.

In Listing 4-10, you display processes currently being managed by Docker; again
you should see none of the processes you have been working with in this chapter. The
significance of this is that the hello-world image launched, displayed its message, and
then shut down again.

Chapter 4 ■ The Docker Engine

76

Listing 4-10.  Display Currently Running Containers/Processes

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

Run Echo as a Service
Next, let’s echo the phrase “Hello, World!” as a service. In the Docker ecosystem, a service
is a process that has been “containerized.” As you may have noticed, I have been referring
to the results of a docker run command as a container/process. This idea is critical to
what we are attempting to do. We are wrapping a process in a container, like “Hello World!”
as you pass a command to be executed by your container (Listing 4-11).

Listing 4-11.  Echo “Hello, World!” as a Service

$ docker run alpine /bin/echo 'Hello, World!'
Hello World!

Again, you display currently running containers/processes to confirm that the
alpine container shut down again (Listing 4-12). Again, none of the processes with
which you have been working are running. The alpine image launched, used the echo
command to echo “Hello World!,” and then shut down.

Listing 4-12.  Display Currently Running Containers/Processes

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

The gravity of this may not be apparent. To fully comprehend what is happening, let’s
time the whole thing. Let’s use the built-in time command to see how long it takes to echo
a string as a service. In Listing 4-13, you do this by running time and then the command
you ran previously.

Listing 4-13.  Time the Execution of the Echo Service

$ time docker run alpine /bin/echo 'Hello World!'
Hello World!

real 0m1.300s
user 0m0.019s
sys 0m0.030s

Now you use the built-in time command to see how long it takes to do the same
natively (that is, directly on your machine); see Listing 4-14.

Chapter 4 ■ The Docker Engine

77

Listing 4-14.  Time the Execution of echo Natively

$ time echo 'Hello World!'
Hello World!

real 0m0.006s
user 0m0.000s
sys 0m0.001s

That is a pretty significant jump. Running the command in the Docker instance
made the task take 200 times longer. But consider this from another perspective. Instead,
consider the fact that booting up an entire alpine instance only added about a second to
your processing time.

Isolating the Bootstrap Time
In Listing 4-15, you attempt to isolate the bootstrap time. First, you run and time a hard
sleep, again with the time command. The sleep command simply puts the shell to sleep
for a specified amount of time. This will allow you to explicitly control timing.

Listing 4-15.  Time a Hard Sleep Natively

$ time sleep 2

real 0m2.012s
user 0m0.001s
sys 0m0.003s

In Listing 4-16, you run this hard sleep as a service and time the execution. It is
useful to spend a moment to look at how this is done. In Listing 4-16, you run time
docker run alpine /bin/sleep 2. You are timing the use of docker to manage a sleep
of 2 seconds run in a container defined by the alpine image.

Listing 4-16.  Time a Hard Sleep as a Service

$ time docker run alpine /bin/sleep 2

real 0m3.061s
user 0m0.014s
sys 0m0.013s

Note that you see approximately the same increase. In your rudimentary testing, you
can take this to signify that “containerizing” your service adds about a second to your
runtime. This is significant when echoing “Hello World!” or performing a hard sleep of 2
seconds. This is completely negligible when running a jupyter server or performing a long
calculation with numpy.

Chapter 4 ■ The Docker Engine

78

A Daemonized Hello World
You will ultimately want to daemonize your Docker containers (that is, set them up to
run indefinitely as background processes). You do this by running your containers in
detached mode via the -d flag.

Let’s run alpine in detached mode (that is, run the image as a container, and leave
it running in the background). In order to keep it running, you will give it a job to do,
namely echo “hello world” every second ad infinitum. Alternatively, you could give it a
more complex job to do, such as a long arithmetic operation or to listen for web requests,
but for demonstration purposes, this will suffice (Listing 4-17).

Listing 4-17.  Run the Alpine Image in Detached Mode

$ docker run -d alpine /bin/sh -c "while true; do echo hello world; sleep 1;
done"

In Listing 4-18, you again display the running containers/processes. Because you
passed the run command the -d flag for detached mode, it is still running.

Listing 4-18.  Display Currently Running Containers/Processes

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
9201755545d1 alpine "/bin/sh ..." 51 seconds ago Up ... upbeat_easley

But how do you confirm that it is doing the job it has been tasked with? You can do
this via the command docker logs. In Listing 4-19, you request the logs associate with
the alpine container named upbeat_easley.

Listing 4-19.  Show Logs for a Detached Container

$ docker logs upbeat_easley
hello world
hello world
...

Here, you view logs for your container currently running in detached mode. Not the
most exciting log, but sufficient to confirm that your container is doing its job.

Let’s give it a rest, using the stop command to shut it down. In Listing 4-20, you stop
the alpine container upbeat_easley.

Listing 4-20.  Stop a Detached Container

$ docker stop upbeat_easley

Chapter 4 ■ The Docker Engine

79

Summary
This was chapter was the shortest thus far in the text. In it, you explored a few aspects of
asking Docker to manage processes as Docker containers. The substance of this chapter
is somewhat abstract. A thorough understanding of the material is not, strictly speaking,
necessary for the mastery of the big-picture concepts in this book. Readers who are
interested in digging deeper into the nuances of the Docker engine are encouraged to
peruse the excellent and in-depth documentations available at http://docs.docker.com.

../../docs.docker.com/default.htm

81© Joshua Cook 2017
J. Cook, Docker for Data Science, DOI 10.1007/978-1-4842-3012-1_5

CHAPTER 5

The Dockerfile

Every Docker image is defined as a stack of layers, each defining fundamental, stateless
changes to the image. The first layer might be the virtual machine’s operating system
(a Debian or Ubuntu Docker image), the next the installation of dependencies necessary
for your application to run, and all the way up to the source code of your application. The
best way to leverage this system is via a Dockerfile.

Best Practices
A Dockerfile is a way to script the building of an image. This script uses a domain-specific
language to tell the Docker daemon how to sequentially build a Docker image. When the
daemon is instructed to build an image, it does so by reading the necessary instructions
from a Dockerfile.

Docker holds the following as best practices when creating Dockerfiles:

•	 Containers should be ephemeral or stateless, in that they can be
reinstantiated with a minimum of set up and configuration.

•	 Use a .dockerignore file, similar to a .gitignore.

•	 Avoid installing unnecessary packages.

•	 Each container should have only one concern.

•	 Minimize the number of layers.

•	 Sort multiline arguments.

Stateless Containers
A best practice in modern software development is software that runs as isolated
processes sharing nothing between them, often referred to as microservices.1 While
an application may run more than one process at a time, these processes should be
stateless. If any information is to be persisted beyond the termination of the process,
this information should be written to a stateful backing service such as a database
(like MongoDB or Postgres) or a key-value store (like Redis).

1https://en.wikipedia.org/wiki/Microservices

../../https@en.wikipedia.org/wiki/Microservices

Chapter 5 ■ The Dockerfile

82

We look at Docker containers as abstractions of system processes, in fact, thinking of
Docker containers as processes being managed by the Docker daemon. As such, it is also
best practice to define our Docker images, and thus the running containers which they
define, as completely stateless. We should be able to shut down a container and remove
it from our system, then start an identical container using the same image, and run
command with no effect to our work.

Single-Concern Containers
Early iterations of Dockerfile best practices held to the mantra “one process per
container.” As Docker has matured, sticking to one process for each container has proven
untenable. Jupyter is actually a prime example of a container that can’t be defined to run
via a single process.

That said, best practice holds that each container should be defined to have a single
concern. Jupyter may require multiple processes to function properly but we will dedicate
a single container to running Jupyter. Should we wish to interface with a Postgres
database, we would use a second container concerned with this database. The end goal is
to keep application concerns separate and modular.

Project: A Repo of Docker Images
In this chapter, you will be developing a repository of Dockerfiles, each defining a
separate image you might use in the course of your work. In the process of developing
and maintaining these images defined via a Dockerfile, you will explore the syntax of
defining an image and best practices in building and maintaining images. Your ultimate
goal is to create a suite of images that will become your primary building blocks in
developing modular systems for performing the work of the data scientist.

Prepare for Local Development
First, you will prepare your local machine for the development work you will be doing. In
Listing 5-1, you do this by creating a directory for your project and initializing it as a git
repository.

Listing 5-1.  Prepare for Local Development

$ mkdir ch_5_dockerfiles && cd ch_5_dockerfiles
$ git init
$ touch README.md
$ git add README.md
$ git commit -m 'init'

Chapter 5 ■ The Dockerfile

83

Configure GitHub
On GitHub, create a repo called Dockerfiles. Once you have created the repo, connect
your local directory to the remote GitHub repo (Listing 5-2).

■■ Note  You will need to configure your GitHub account for connection via SSH.
Documentation for this is available at https://help.github.com/articles/connecting-
to-github-with-ssh/.

Listing 5-2.  Connect the Local Repo to GitHub

$ git remote add origin git@github.com:<username>/dockerfiles.git
$ git push -u origin master

Building Images Using Dockerfiles
The connection between the Dockerfile and a built (compiled) Docker image is the
docker build command. The build command tells the Docker daemon to construct an
image using the specified context and a Dockerfile. Context refers to the collection
of files that will be used to build the specific image. The context will be specified by an
included PATH. You can take a look at the requirements of docker build to see what this
might look like (Listing 5-3).

Listing 5-3.  Display docker build help

$ docker build
"docker build" requires exactly 1 argument(s).
See 'docker build --help'.

Usage: docker build [OPTIONS] PATH | URL | -

As you can see, docker build requires a PATH or a URL as the final argument. This is
the context.

Dockerfile Syntax
Dockerfiles are built using a simple domain-specific language (see Listing 5-4).
Instructions are case-insensitive but by convention are written in all caps. Instructions
are passed sequentially and Dockerfiles should be thought of as scripts passed to the
Docker daemon.

Listing 5-4.  Dockerfile syntax

Comment
INSTRUCTION arguments

../../https@help.github.com/articles/connecting-to-github-with-ssh/default.htm
../../https@help.github.com/articles/connecting-to-github-with-ssh/default.htm

Chapter 5 ■ The Dockerfile

84

Designing the gsl Image
The first image you will construct is the same image you used in Chapter 3, the GSL
image. This image is used for compiling code using the GNU Scientific Library (GSL),
a suite of C tools used in computational mathematics, especially using the BLAS
ecosystem. You build this image using the gcc2 image as a base image, and in doing so
ensure that you have all of the tools necessary to compile your C code.

Create the gsl Source Directory
First, you make a directory for this specific image and instantiate your Dockerfile
(Listing 5-5).

Listing 5-5.  Create a Directory for the gsl Image Containing an Empty Dockerfile

$ mkdir gsl
$ touch gsl/Dockerfile

In Listing 5-6, to build the gsl image, you use the docker build command, using
the relatively-referenced folder gsl as context. The -t flag tells the daemon to name that
image joshuacook/gsl. Your initial attempt at a build fails because you have not added
any commands to the Dockerfile.

Listing 5-6.  Run a Docker Build

$ docker build -t joshuacook/gsl gsl
sending build context to Docker daemon 53.25 kB
Error response from daemon: The Dockerfile (Dockerfile) cannot be empty

Define the gsl Image
Let’s define the gsl image as you did in Chapter 3, using three layers, defined by three
commands, as seen in Listing 5-7.

Listing 5-7.  gsl/Dockerfile

FROM gcc

LABEL maintainer=@joshuacook

RUN apt-get update && \
 apt-get install -y \
 gsl-bin \
 libgsl0-dbg \
 libgsl0-dev \
 libgsl0ldbl

2https://en.wikipedia.org/wiki/GNU_Compiler_Collection

../../dx.doi.org/10.1007/978-1-4842-3012-1_3
../../dx.doi.org/10.1007/978-1-4842-3012-1_3
../../https@en.wikipedia.org/wiki/GNU_Compiler_Collection

Chapter 5 ■ The Dockerfile

85

Build the gsl Image
In Listing 5-8, having defined the image using a Dockerfile, you build the image using the
docker build command, again naming the image and providing the gsl directory as context.

Listing 5-8.  Run a Docker Build

$ docker build -t joshuacook/gsl gsl
sending build context to Docker daemon 14.85 kB
Step 1 : FROM gcc
latest: Pulling from library/gcc

693502eb7dfb: Pull complete
...
e6a66f7b6a7a: Pull complete
Digest: sha256:c1fa0b3eeba33a7b9da5ab7de7fa2c520760f778b5e5d1db38791d0da7b841b9
Status: Downloaded newer image for gcc:latest
 ---> 408d218617ca
Step 2 : LABEL maintainer @joshuacook
 ---> Running in 723583dd01d6
 ---> 20bbe26b8b8a
Removing intermediate container 723583dd01d6
Step 3 : RUN apt-get update && apt-get install -y
gsl-bin libgsl0-dbg libgsl0-dev libgsl0ldbl
 ---> Running in ed02ca384066
Get:1 http://security.debian.org jessie/updates InRelease [63.1 kB]
...

FROM gcc

The first layer uses the FROM instruction to define the base image from which you will
build your image. A valid Dockerfile must always begin with a FROM instruction. Best
practice recommends that all but advanced use cases should begin their images by
pulling FROM the Docker Public Repositories. To reiterate, FROM must be the first non-
comment instruction in the Dockerfile. Here, you are pulling the from the gcc image.

FROM can be used with the following three syntaxes:

•	 FROM <image>

•	 FROM <image>:<tag>

•	 FROM <image>@<digest>

■■ Note  The use of tag or digest are optional. If neither is provided, the tag is assumed
to be latest, corresponding to the latest available build at Docker Hub.

../../https@docs.docker.com/engine/tutorials/dockerrepos/default.htm
../../https@hub.docker.com/_/gcc/default.htm

Chapter 5 ■ The Dockerfile

86

LABEL maintainer=@joshuacook

The second layer uses the LABEL instruction to define metadata associated with your
image. Each LABEL is a key-value pair. In this case, you associate the key maintainer (of the
image) to the value (the Docker Hub user), joshuacook. Images can have multiple LABELs.

To view an image’s LABELs, you use the docker inspect command. In Listing 5-9,
you do this for the joshuacook/gsl image that you just built.

Listing 5-9.  Inspect the joshuacook/gsl Image

$ docker inspect joshuacook/gsl
...
 "Labels": {
 "maintainer": "@joshuacook"
 }
...

RUN apt-get update && apt-get install

The final layer of the image uses the RUN instruction, in this case to install the libraries
necessary for using the GNU Scientific Library. The RUN instruction uses /bin/sh to
execute any provided commands in a new layer on top of the current image. The results
of the execution become the new image.

■■ Note  We use a \ (backslash) to continue a single instruction across multiple lines.
Thus, the instructions in Listing 5-10 and the Listing 5-11 are functionally equivalent.

Listing 5-10.  apt Install Over Multiple Lines

RUN apt-get update && \
 apt-get install -y \
 gsl-bin \
 libgsl0-dbg \
 libgsl0-dev \
 libgsl0ldbl

Listing 5-11.  apt Install in a Single Line

RUN apt-get update && apt-get install -y gsl-bin libgsl0-dbg libgsl0-dev
libgsl0ldbl

Commit Changes to GitHub
Before you move on, you should git commit the changes that you have made to your
Dockerfile and push the changes to GitHub (see Listing 5-12).

Chapter 5 ■ The Dockerfile

87

Listing 5-12.  Commit Changes and Push to GitHub

$ git add gsl/Dockerfile
$ git commit -m 'GSL IMAGE - initial build'
$ git push

The Docker Build Cache
Recall that the structure of a Docker image is defined as a stack of images, each defining
a stateless change to the image. Because each of them is built as a separate abstraction
layer, changes to the Docker image are made from the top down when rebuilding the
image. If you have only made changes to the code sitting on the top-most layer, this is the
only layer of the image that will be rebuilt.

You can examine the build cache by adding a new layer to your GSL image. Let’s
add a new layer to your image containing another library you might be interested in for
performing data science tasks in C. Add the line in Listing 5-13 to your Dockerfile.

Listing 5-13.  Add an Additional Dependency Layer to joshuacook/gsl

RUN apt-get update && \
 apt-get install -y gdb

In Listing 5-14, you rebuild the image.

Listing 5-14.  Rerun the joshuacook/gsl Image Build

$ docker build -t joshuacook/gsl gsl
Sending build context to Docker daemon 2.048 kB
Step 1/4 : FROM gcc
 ---> 408d218617ca
Step 2/4 : LABEL maintainer @joshuacook
 ---> Using cache
 ---> ba0d6482c28a
Step 3/4 : RUN apt-get update && apt-get install -y
gsl-bin libgsl0-dbg libgsl0-dev libgsl0ldbl
 ---> Using cache
 ---> 8706282586fc
Step 4/4 : RUN apt-get install -y gdb
 ---> Running in c491003e5a95

...

 ---> 53111721b96a
Removing intermediate container c491003e5a95
Successfully built 53111721b96a
...

www.allitebooks.com

../../www.allitebooks.org/default.htm

Chapter 5 ■ The Dockerfile

88

■■ Note  During this build process, steps 1-3 were not executed as before. Prior to executing
each step, the Docker daemon compares the step to the individual layers of an existing
instance of the same image in the local cache. If they match, the build uses the existing
layers (i.e. the Docker Build Cache) to build the image. As a result, a build with no changes is
idempotent, meaning that the initial command builds the image, but subsequent builds have
no additional effect. Listing 5-15 demonstrates the idempotency of the docker build process.

Listing 5-15.  Rerun the Identical Build Once More

$ docker build -t joshuacook/gsl gsl
Sending build context to Docker daemon 2.048 kB
Step 1/4 : FROM gcc
 ---> 408d218617ca
Step 2/4 : LABEL maintainer @joshuacook
 ---> Using cache
 ---> ba0d6482c28a
Step 3/4 : RUN apt-get update && apt-get install -y
gsl-bin libgsl0-dbg libgsl0-dev libgsl0ldbl
 ---> Using cache
 ---> 8706282586fc
Step 4/4 : RUN apt-get install -y gdb
 ---> Using cache
 ---> 53111721b96a
Successfully built 53111721b96a

A more interesting and useful result is that a build will only run steps following the
first step upon which you have made a change, as demonstrated in Listing 5-15.

Anaconda
Anaconda is a freemium distribution of the Python and R programming languages for
large-scale data processing, predictive analytics, and scientific computing. You will use
Anaconda to drive your Jupyter platform. The conda command is the primary interface
for managing Anaconda installations. Miniconda is a small “bootstrap” version that
includes only conda and conda-build, and installs Python. As an exercise, however, you
will design your own miniconda image modeled after the miniconda image distributed by
Continuum Analytics that can be used to minimally run IPython.

Design the miniconda3 Image
In Chapter 3, you used the jupyter/scipy-notebook image to run IPython using
the scipy library. This is a perfectly reasonable usage of that image. It contains all of
the libraries that you need. Furthermore, storing two independently defined images

../../dx.doi.org/10.1007/978-1-4842-3012-1_3

Chapter 5 ■ The Dockerfile

89

(one for the purpose of running Jupyter with scipy and the other for the purpose of
running IPython with scipy) would consume unnecessary disk space in the interest
of having single-usage images. Finally, running IPython from the jupyter image is a
recommended best practice from the IPython team.3 Ultimately, you will do the same.

Create the miniconda3 Source Directory
Again, in Listing 5-16, you begin by creating a directory to hold the source code
associated with this image.

Listing 5-16.  Create a Directory for the miniconda3 Image Containing an Empty
Dockerfile

$ mkdir miniconda3
$ touch miniconda3/Dockerfile

In Listing 5-17, you use the tree tool to display the overall structure of your docker
images project to this point.

Listing 5-17.  Use tree to Show Project Progress

$ tree
.
├── README.md
├── gsl
 │ └── Dockerfile
└── miniconda3
 └── Dockerfile

Begin the Image with FROM, ARG, and MAINTAINER
You begin your image with the FROM instruction, which sets the base image upon which
you will build your image. A valid Dockerfile requires a FROM instruction as its first
instruction. In Listing 5-18, you take your cues from the Jupyter project and build using
the debian image.

Listing 5-18.  miniconda3/Dockerfile

FROM debian

3https://hub.docker.com/r/ipython/ipython/

../../https@hub.docker.com/_/debian/default.htm
../../https@hub.docker.com/r/ipython/ipython/default.htm

Chapter 5 ■ The Dockerfile

90

In Listing 5-19, you build the image.

Listing 5-19.  Build the miniconda3 Image

$ docker build -t miniconda3 miniconda3
Sending build context to Docker daemon 2.048 kB
Step 1/1 : FROM debian
latest: Pulling from library/debian
6d827a3ef358: Pull complete
Digest: sha256:72f784399fd2719b4cb4e16ef8e369a39dc67f53d978cd3e2e7bf4e502c
7b793
Status: Downloaded newer image for debian:latest
 ---> 8cedef9d7368
Successfully built 8cedef9d7368

Here, you have built an image with a single layer: your underlying operating system.
In Listing 5-20, you list images in your image cache.

Listing 5-20.  Show Cached Images

$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
debian latest 47af6ca8a14a 8 days ago 125.1 MB
miniconda3 latest 47af6ca8a14a 5 minutes ago 125.1 MB
...

■■ Note  The debian image and the miniconda3 image have the exact same IMAGE ID.
This is because they are the same image.

Commit Changes to the Local Repository
You will be building a fairly complicated image here and as such it is best practice to
commit to the local git repository frequently. In Listing 5-21, you make your first commit
for this image.

Listing 5-21.  Commit Changes

$ git add Dockerfile
$ git commit -m 'MINICONDA3 IMAGE. Added FROM instruction.'

In Listing 5-22, you add a label for the maintainer of the image, as you did previously
for the gsl image. Again, this is not required, but it is conventional.

Listing 5-22.  miniconda3/Dockerfile

FROM debian
LABEL maintainer=@joshuacook

Chapter 5 ■ The Dockerfile

91

In Listing 5-23, you add an ARG instruction. The ARG instruction is used to define an
environment variable that is available at build or runtime.

Listing 5-23.  miniconda3/Dockerfile

FROM debian
LABEL maintainer=@joshuacook
ARG DEBIAN_FRONTEND=noninteractive

Here you use the ARG instruction to define an environment variable that will describe
the behavior of your interaction with your Debian container. You could also have defined an
ARG with no value and then passed the value to the build as an argument (see Listing 5-24).

Listing 5-24.  An ARG Passed at Build Time

$ DEBIAN_FRONTEND=noninteractive docker build -t some_image .

■■ Note  You declare the value of an argument inline with the docker build command.

There is yet a third way to declare environment variables. The Jupyter image defined
by the Jupyter development team uses the ENV instruction to achieve the same purpose.
After reading this thread4 on the Docker team’s GitHub page, I chose to use the ARG
instruction. Any of them will work but it is important to only use one.

Idempotently Run the Build
In Listing 5-25, you run the build. As you have previously run the build for your first layer,
this will not need to be executed, and the build will pick up only the most recent additions.

Listing 5-25.  Run the Build

$ docker build -t miniconda3 miniconda3
Sending build context to Docker daemon 2.048 kB
Step 1/3 : FROM debian
 ---> a2ff708b7413
Step 2/3 : LABEL maintainer @joshuacook
 ---> Using cache
 ---> c140313c988e
Step 3/3 : ARG DEBIAN_FRONTEND=noninteractive
 ---> Running in b927c25267f0
 ---> da987fd59d24
Removing intermediate container b927c25267f0
Successfully built da987fd59d24

4https://github.com/docker/docker/issues/4032

../../https@github.com/docker/docker/issues/4032

Chapter 5 ■ The Dockerfile

92

Now you’re getting somewhere. You have added three lines to your Dockerfile.
When you ran the build, it either 1) used a pre-existing layer as in the case at Step 1 or 2)
created a new layer containing the results of the step.

■■ Note  The debian image was not pulled this time. There was nothing new to do here!

Commit Changes to the Local Repository
In Listing 5-26, you again commit your changes to the local repository.

Listing 5-26.  Commit Changes

$ git add Dockerfile
$ git commit -m 'MINICONDA3 IMAGE. Added maintainer LABEL and ARG
instruction'

Provision the miniconda3 Image
Ultimately, your Jupyter application will run on a containerized Debian machine. As with
any application, it will have many dependencies, or system-level applications, that the
Debian system must be able to execute in order to function properly. Were you building
this system manually, that is without Docker, you would use the command line package
manager appropriate to your operating system (apt for Ubuntu or Debian, yum for
CentOS, or brew for Mac OS X) in a process known as provisioning.

The Docker daemon has no native way of provisioning, but rather has a mechanism
for leveraging the base system’s package manager via the RUN instruction (Listing 5-27).

Listing 5-27.  The RUN Instruction

RUN <command>

This has the effect of running <command> in a shell to the image (i.e. /bin/sh -c
<command>). Similar to scripting in a shell language, you can add a backslash (\) to the
end of a line to continue that command on the next line. In other words, the statements in
Listing 5-28 and Listing 5-29 are equivalent.

Listing 5-28.  A RUN Instruction

RUN /bin/bash -c 'source $HOME/.bashrc ; echo $HOME'

Listing 5-29.  Another RUN Instruction

RUN /bin/bash -c 'source $HOME/.bashrc ;\
echo $HOME'

Chapter 5 ■ The Dockerfile

93

In Listing 5-30, you provision the thin operating system for the miniconda3 image.

Listing 5-30.  miniconda3/Dockerfile

RUN apt-get update --fix-missing && \
 apt-get install -y \
 wget bzip2 ca-certificates \
 libglib2.0-0 libxext6 libsm6 libxrender1

Run the Build
At this point, you actually have some meat to your image. Let’s go ahead and build it
(Listing 5-31).

■■ Note  In Step 4/4, the RUN instruction is blissfully unaware of those line breaks. They
are simply there for us in order to make the Dockerfile more readable.

Listing 5-31.  Run the Build

$ docker build -t miniconda3 miniconda3
Sending build context to Docker daemon 2.56 kB
Step 1/4 : FROM debian
 ---> a2ff708b7413
Step 2/4 : LABEL maintainer @joshuacook
 ---> Using cache
 ---> c140313c988e
Step 3/4 : ARG DEBIAN_FRONTEND=noninteractive
 ---> Using cache
 ---> 6be1e058f2de
Step 4/4 : RUN apt-get update && apt-get install -yq --no-
install-recommends build-essential bzip2 ca-
certificates git libglib2.0-0 libsm6 libxrender1 wget
&& apt-get clean && rm -rf /var/lib/apt/lists/*
 ---> Running in 642c7d024e55
Get:1 http://security.debian.org jessie/updates InRelease [63.1 kB]
Ign http://deb.debian.org jessie InRelease
Get:2 http://deb.debian.org jessie-updates InRelease [145 kB]
...

This phase of the build will take some time. For now, let’s hold off on examining the
output. Again, running a Docker build is idempotent, meaning that no matter how many
times you run it, you receive the same output. You will wait for this run to complete and
then run the build once more to receive a compact output (Listing 5-32).

Chapter 5 ■ The Dockerfile

94

Listing 5-32.  Idempotently Run the Build

$ docker build -t miniconda3 miniconda3
Sending build context to Docker daemon 2.56 kB
Step 1/4 : FROM debian
 ---> a2ff708b7413
Step 2/4 : LABEL maintainer @joshuacook
 ---> Using cache
 ---> c140313c988e
Step 3/4 : ARG DEBIAN_FRONTEND=noninteractive
 ---> Using cache
 ---> c140313c988e
Step 4/4 : RUN apt-get update && apt-get install -yq --no-
install-recommends build-essential bzip2 ca-
certificates git libglib2.0-0 libsm6 libxrender1 wget
&& apt-get clean && rm -rf /var/lib/apt/lists/*
 ---> Using cache
 ---> bb1ae69e4c8a
Successfully built bb1ae69e4c8a

In Listing 5-32, you can see that the build output contains four steps representing the
four instruction in your Dockerfile. The way that Docker works, it creates or uses a cached
image for each step. At Step 1, you tell the Docker daemon which image you will be using as
your base image FROM debian. After each step, you have a new layer and thus a new image
and IMAGE ID. Let’s have a look at the images in your cache once more (Listing 5-33).

Listing 5-33.  Display Images in the Local Image Cache

$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
debian latest 47af6ca8a14a 8 days ago 125.1 MB
miniconda3 latest bb1ae69e4c8a About a minute ago 1.636 GB
...

■■ Note  The final layer’s ID, bb1ae69e4c8a, matches the IMAGE ID of the miniconda3 image.

Commit Changes to the Local Repository
In Listing 5-34, you again commit your changes to the local repository.

Listing 5-34.  Commit Changes

$ git add Dockerfile
$ git commit -m 'MINICONDA3 IMAGE. OS provision statement.'

Chapter 5 ■ The Dockerfile

95

Install Miniconda
In Listing 5-35, you install Miniconda via a RUN instruction. You have taken this command
directly from the Continuum Analytics Docker image for Miniconda.5 It varies slightly
from the installation of Miniconda for the jupyter/base-notebook image.

Listing 5-35.  miniconda3/Dockerfile

RUN echo 'export PATH=/opt/conda/bin:$PATH' > /etc/profile.d/conda.sh && \
wget --quiet \
 �https://repo.continuum.io/miniconda/Miniconda3-4.3.11-Linux-x86_64.sh -O

~/miniconda.sh && \
 /bin/bash ~/miniconda.sh -b -p /opt/conda && \
 rm ~/miniconda.sh

Run the Build
In Listing 5-36, you run the build to install Miniconda3.

Listing 5-36.  Run the Build

$ docker build -t miniconda3 miniconda3
Sending build context to Docker daemon 2.56 kB
...
Step 5/5 : RUN echo 'export PATH=/opt/conda/bin:$PATH' > /etc/profile.d/
conda.sh && wget --quiet https://repo.continuum.io/miniconda/Miniconda3-
4.3.11-Linux-x86_64.sh -O ~/miniconda.sh && /bin/bash ~/miniconda.sh -b
-p /opt/conda && rm ~/miniconda.sh
 ---> Running in 6e3605df5b68
...
Python 3.6.0 :: Continuum Analytics, Inc.
creating default environment...
installation finished.
 ---> 02b8f5d04aeb
Removing intermediate container 6e3605df5b68
Successfully built 02b8f5d04aeb

Commit the Changes to the Local Repository
In Listing 5-37, you again commit your changes to the local repository.

Listing 5-37.  Commit Changes

$ git add Dockerfile
$ git commit -m 'MINICONDA3 IMAGE. Install miniconda3.'

5https://github.com/ContinuumIO/docker-images/blob/master/miniconda3/Dockerfile

../../https@github.com/ContinuumIO/docker-images/blob/master/miniconda3/Dockerfile

Chapter 5 ■ The Dockerfile

96

tini
I think it a bit beyond of the progress you have made to this point to begin a discussion
of the PID 1 “Zombie” process problem at this point. The short of it is this: Docker best
practices are that we not run unnecessary processes when running our containers. This
includes the typical systemd or sysvinit that would be run by your operating system to
handle processes and signals. This can lead to containers that can’t be gracefully stopped
or zombie containers that persist when they should have died.

For now, let’s simply handle this situation the way that the Continuum development
team does and use tini. tini is a lightweight solution to this problem with no
additional dependencies. It reaps zombies, spawns a single process (which will run as
PID 1), and when the tini’s first child process has exited, tini exits as well.

In Listing 5-38, you include tini in your container.

Listing 5-38.  miniconda3/Dockerfile

RUN apt-get install -y curl grep sed dpkg && \
 �TINI_VERSION=`curl https://github.com/krallin/tini/releases/latest |

grep -o "/v.*\"" | sed 's:^..\(.*\).$:\1:'` && \
 �curl -L "https://github.com/krallin/tini/releases/download/v${TINI_

VERSION}/tini_${TINI_VERSION}.deb" > tini.deb && \
 dpkg -i tini.deb && \
 rm tini.deb && \
 apt-get clean

Run the Build
In Listing 5-39, you run the build to install tini.

Listing 5-39.  Run the Build

$ docker build -t miniconda3 miniconda3
Sending build context to Docker daemon 2.56 kB
...
Step 6/6 : RUN apt-get install -y curl grep sed dpkg && TINI_
VERSION=`curl https://github.com/krallin/tini/releases/latest | grep -o
"/v.*\"" | sed 's:^..\(.*\).$:\1:'` && curl -L "https://github.com/
krallin/tini/releases/download/v${TINI_VERSION}/tini_${TINI_VERSION}.deb" >
tini.deb && dpkg -i tini.deb && rm tini.deb && apt-get clean
 ---> Running in b6fa6f29121c
...
Successfully built ce5eb4345473

Commit the Changes to the Local Repository
In Listing 5-40, you again commit your changes to the local repository.

Chapter 5 ■ The Dockerfile

97

Listing 5-40.  Commit Changes

$ git add Dockerfile
$ git commit -m 'MINICONDA3 IMAGE. Install tini.'

Configure the Environment Variable with ENV
In order to make sure that your container runs properly, you need to configure a few
environment variables. In Listing 5-41, you do this with the ENV instruction. You first
specify some language specific variables,6 and then you make sure that the conda binary
is in the PATH.

Listing 5-41.  miniconda3/Dockerfile

ENV LANG=C.UTF-8 LC_ALL=C.UTF-8
ENV PATH /opt/conda/bin:$PATH

ENTRYPOINT
Ultimately, you provide an ENTRYPOINT for your container. The ENTRYPOINT instruction
specifies the process(es) to be launched when the image is instantiated. In Listing 5-42,
you tell Docker to run tini as PID 1.

Listing 5-42.  miniconda3/Dockerfile

ENTRYPOINT ["/usr/bin/tini", "--"]

Run the Build
In Listing 5-43, you run the build to set your environment variables and the ENTRYPOINT.

Listing 5-43.  Run the Build

$ docker build -t miniconda3 miniconda3
Sending build context to Docker daemon 3.072 kB
...
Step 7/9 : ENV LANG C.UTF-8 LC_ALL C.UTF-8
...
Step 8/9 : ENV PATH /opt/conda/bin:$PATH
...
Step 9/9 : ENTRYPOINT /usr/bin/tini --
 ---> Running in 3c3776056958
 ---> 014cc8d97486
Removing intermediate container 3c3776056958
Successfully built 014cc8d97486
Successfully tagged miniconda3:latest

6http://unix.stackexchange.com/questions/87745/what-does-lc-all-c-do

../../unix.stackexchange.com/questions/87745/what-does-lc-all-c-do

Chapter 5 ■ The Dockerfile

98

Commit the Changes to the Local Repository
In Listing 5-44, you again commit your changes to the local repository. As this marks the
completion of your miniconda3 image, you also push your changes to GitHub.

Listing 5-44.  Commit Changes

$ git add Dockerfile
$ git commit -m 'MINICONDA3 IMAGE. Set env and entrypoint.'
$ git push

Design the ipython Image
Your miniconda3 image is significantly smaller than most of the other images in the
Jupyter stack precisely because it comes with next to nothing preinstalled. If you wish to
run ipython, you are going to need to install this library. Let’s use the FROM instruction
once more to build an ipython image using the miniconda3 image that you just designed.

Create the ipython Source Directory
First, you make a directory for this specific image and instantiate your Dockerfile
(Listing 5-45).

Listing 5-45.  Create a Directory for the ipython Image Containing an Empty Dockerfile

$ mkdir ipython
$ touch ipython/Dockerfile

Define the ipython Image
Let’s define the ipython image, using three layers, defined by three commands, as seen in
Listing 5-46.

Listing 5-46.  ipython/Dockerfile

FROM miniconda3
LABEL maintainer=@joshuacook
RUN conda update conda && \
 conda install --quiet --yes ipython && \
 conda clean -tipsy

Install ipython with conda
The only novel command here is using conda to install ipython. conda is a package
manager much like apt, but it is designed for managing Python packages. Here, you
use conda to install ipython. Astute Pythonistas will notice that we have eschewed
configuring any sort of virtual environment.

Chapter 5 ■ The Dockerfile

99

Define the Default Runtime Command
Your final instruction in the ipython Dockerfile is to give the image a default runtime
command via the CMD7 instruction. Each Dockerfile can contain a single CMD instruction,
although this instruction is not required. Per the Dockerfile best practices,8 the CMD
instruction should be used to run the software contained by an image and should always
be used in the form CMD ["executable", "param1", "param2"...]. In Listing 5-47, you
add an instruction to your Dockerfile to execute ipython at runtime.

Listing 5-47.  ipython/Dockerfile

FROM miniconda3
LABEL maintainer=@joshuacook
RUN conda update conda && \
 conda install --quiet --yes ipython && \
 conda clean -tipsy
CMD ["ipython"]

Build the ipython Image
In Listing 5-48, having defined the image using a Dockerfile, you build the image
using the docker build command, again naming the image and providing the ipython
directory as context.

Listing 5-48.  Run a Docker Build

$ docker build -t ipython ipython
Sending build context to Docker daemon 2.048 kB
Step 1/4 : FROM jupyter-base
 ---> 014cc8d97486
Step 2/4 : LABEL maintainer @joshuacook
 ---> Using cache
 ---> 938a406795a2
Step 3/4 : RUN conda update conda && conda install --quiet --yes ipython
&& conda clean -tipsy
 ---> Running in 64910e75091f
Fetching package metadata
Solving package specifications: .

Package plan for installation in environment /opt/conda:

7https://docs.docker.com/engine/reference/builder/#cmd
8https://docs.docker.com/engine/userguide/eng-image/
dockerfile_best-practices/#cmd

../../https@docs.docker.com/engine/reference/builder/#cmd
../../https@docs.docker.com/engine/userguide/eng-image/dockerfile_best-practices/#cmd
../../https@docs.docker.com/engine/userguide/eng-image/dockerfile_best-practices/#cmd

Chapter 5 ■ The Dockerfile

100

The following packages will be UPDATED:

 conda: 4.3.11-py36_0 --> 4.3.14-py36_0

...
 ---> f9a032f0a9a5.
Removing intermediate container 64910e75091f
Step 4/4 : CMD ipython
 ---> Running in 5839183d3d00
 ---> 98f0b133173e
Removing intermediate container 5839183d3d00
Successfully built 98f0b133173e
Successfully tagged ipython:latest

Commit the Changes to GitHub
In Listing 5-49, you commit this new image and push the changes to GitHub.

Listing 5-49.  Commit the Changes and Push to GitHub

$ git add ipython/Dockerfile
$ git commit -m 'IPYTHON. Initial build'
$ git push

Run the ipython Image as a New Container
Finally, having developed your design and built your ipython image, let’s run the
image as a new container. In Listing 5-50, you run ipython as an interactive terminal
containerized process. You terminate the process via Ctrl+D.

Listing 5-50.  Run the ipython Image as a New Interactive Terminal Containerized Process

$ docker run -it ipython
Python 3.6.0 |Continuum Analytics, Inc.| (default, Dec 23 2016, 12:22:00)
Type "copyright", "credits" or "license" for more information.

IPython 5.3.0 -- An enhanced Interactive Python.
? -> Introduction and overview of IPython's features.
%quickref -> Quick reference.
help -> Python's own help system.
object? -> Details about 'object', use 'object??' for extra details.

In [1]: import requests

In [2]: resp = requests.get('http://google.com')

Chapter 5 ■ The Dockerfile

101

In [3]: resp.status_code
Out[3]: 200

In [4]:
Do you really want to exit ([y]/n)?

Summary
In this chapter, I introduced the Dockerfile, the file type used to define an image in the
Docker ecosystem. You explored several common instructions used in the definition
of Dockerfiles. You also defined three images, the third built using the second as its
base image. After reading this chapter, you should be familiar with the definition of new
images using Docker best practices.

103© Joshua Cook 2017
J. Cook, Docker for Data Science, DOI 10.1007/978-1-4842-3012-1_6

CHAPTER 6

Docker Hub

Equipped with tools for developing our own images, it quickly becomes important to be
able to save and share the images we have written beyond our system. Docker Registries
allow us to do just this. For your purposes, the public Docker Registry, Docker Hub, will
be more than sufficient, though it is worth noting that other registries exist and that it is
possible to create and host your own registry.

Overall, the Docker Registry consists of three technologies: the Index, the Registry,
and the Repository. In this text, a cursory understanding of how these technologies interact
is sufficient. The Index tracks meta-information associated with users, organizations,
namespaces, and repositories. The Repository is similar to a git repository in that it tracks
multiple versions of a project (that is, a Docker image). The Registry contains the images
and the repository graph comprising a Repository.

Docker Hub
A Docker Registry is a server-side application that can be used to distribute Docker
images. We are most interested in the free-to-use, public Docker Registry, Docker Hub.1
Docker Hub is to Docker somewhat as GitHub is to Git. It allows us to use existing Docker
repositories and allows us to build and host our own images. It will serve for the vast
majority of your work as your sole Docker Registry from which you will discover the
images you will use, manage the development of your images, and automate the build
process as you move toward production-ready images.

Alternatives to Docker Hub
Two of the most popular alternative public registries are Quay.io2 and the Google
Container Registry.3 Quay.io is a public and private registry service run by CoreOS.
CoreOS is the developer of the primary container engine alternative to Docker, rkt.4
In the past year, however, CoreOS and Docker seem to be working more as allies than
competitors and Quay.io can serve as a registry for both Docker and rkt-defined images.
Quay has tools for the maintenance of images by organizations and teams plus workflow
automation tools, and it is an excellent alternative to Docker Hub.

1http://hub.docker.com/
2http://quay.io/
3http://gcr.io/
4https://coreos.com/rkt

../../hub.docker.com/default.htm
../../quay.io/default.htm
../../gcr.io/default.htm
../../https@coreos.com/rkt

Chapter 6 ■ Docker Hub

104

Google was an early organizational adopter of containerization technology and is the
origin of one of the community’s most beloved tools, the orchestration tool Kubernetes. It
is no surprise that Google has its own container registry, the Google Container Registry.
For our purposes, that is, for the purposes of data science, we might most be interested
in using the GCR as the home of the in-house images for Google’s machine intelligence
library, Tensorflow.5

Docker ID and Namespaces
In order to leverage the services offered by Docker Hub, you will create a Docker ID. A
new Docker ID can be created via the Docker Cloud sign-up page.6 Creation of a Docker
ID will require email verification.

Once created, your Docker ID also becomes your main namespace you will use for
all of your images hosted on Docker Hub. My Docker ID is joshuacook. Were I to push the
gsl image we created in Chapter 4 to Docker Hub, this image would be available at the
namespace/tag combination of joshuacook/gsl. More generally, the namespace/tag of
an image hosted on Docker Hub will appear as in Listing 6-1.

Listing 6-1.  General Namespace/Tag for an Image on Docker Hub

<namespace>/<repository_name>:<tag>

Were you to use an image not hosted on Docker Hub, such as the Tensorflow GPU
image as in Listing 6-2, you would need to specify the full URI including the registry
address, following the pattern outlined in Listing 6-3.

Listing 6-2.  Full URI for the Latest Tensorflow GPU Image

gcr.io/tensorflow/tensorflow:latest-gpu

Listing 6-3.  General URI for a Registry-Hosted Image

<registry_address>/<namespace>/<repository_name>:<tag>

Image Repositories
A repository on Docker Hub is a collection of tagged, built Docker images sharing the
same purpose. Visiting my user page, you can see all of the Docker repositories I am
currently maintaining (Figure 6-1). Each repository contains one or more images that
have been previously defined and built, either locally or via the Docker Hub Automated
Build process.

5www.tensorflow.org/
6https://cloud.docker.com/

../../dx.doi.org/10.1007/978-1-4842-3012-1_4
../../www.tensorflow.org/default.htm
../../https@cloud.docker.com/default.htm

Chapter 6 ■ Docker Hub

105

Search for Existing Repositories
As previously noted, the Docker Hub registry is the default registry used by the Docker
CLI. As such, it is a trivial process to search the Docker Hub for relevant images using the
Docker CLI using the docker search command. A keyword search via the docker search
command checks the keyword against image name, users, and organizations, as well as
an image description. In Listing 6-4, you search Docker Hub for miniconda images.

■■ Note  Images are returned in descending order based upon their number of stars.

Listing 6-4.  Search Docker Hub for miniconda Images

$ docker search miniconda
NAME DESCRIPTION STARS
OFFICIAL AUTOMATED
continuumio/miniconda Powerful and flexible package ... 38
[OK]
alaindomissy/docker-miniconda docker-miniconda 2
[OK]
yamitzky/miniconda-neologd Dockernized mecab-ipadic-NEolo... 2
[OK]
show0k/alpine-miniconda An alpine based image with min... 1
[OK]
kentwait/miniconda-mpi Docker container for developin... 1
[OK]
pottava/miniconda Miniconda images based on Alpi... 1
[OK]

Figure 6-1.  My Docker Hub user profile

Chapter 6 ■ Docker Hub

106

The search returns results both where the search term miniconda appears in the
name and in the description. Having identified the image you wish to use, you can pull
the image as you did in Chapter 3 using docker pull (Listing 6-5).

Listing 6-5.  Pull the continuumio/miniconda Image

$ docker pull continuumio/miniconda
Using default tag: latest
latest: Pulling from continuumio/miniconda
8ad8b3f87b37: Pull complete
090d0f0e845b: Pull complete
3cc1bbd57a94: Pull complete
bd7b36ac12a3: Pull complete
Digest: sha256:f7e0a8a86a6d194e748c5884f53ddbbde33b08a666bed5370e453f35bbc3ec57
Status: Downloaded newer image for continuumio/miniconda:latest

Tagged Images
There is an active,7 well-known, and friendly split in the Python community between
versions 2 and 3. The implications of this are that any Python technology must be capable
of being run against two major versions of Python. On your personal computer, this is a
significant task requiring package managers supporting both Python 2 and 3 and a virtual
environment system such as virtualenv or that provided by conda. With Docker, this task
is trivially managed with a Docker image tag.

Image tags define variations in the definition of an image under a single namespace
and repository combination. Tags have no semantic meaning, nor does your Docker Id
or the name of your repository. They serve solely to distinguish between subtle changes
made to images.

An image can be given a tag in any of three ways:

	 1.	 An image can be tagged at build time simply by appending
:<tag> to the end of the name given to the image (Listing 6-6).
Using this method, a tagged image will be associated with a
specific Dockerfile.

	 2.	 An image can be tagged afterward using the docker tag
command (Listing 6-7). Using this method, a tagged image
will be associated with a specific Dockerfile.

	 3.	 Ephemeral changes made to a container can be persisted as a
new image using the docker commit command (Listing 6-8).
Using this method, no Dockerfile will exist describing the
ephemeral changes made to the image.

7The latest version of IPython, however, does not support Python 2 (http://ipython.readthedocs.io/
en/stable/).

../../dx.doi.org/10.1007/978-1-4842-3012-1_3
../../ipython.readthedocs.io/en/stable/default.htm
../../ipython.readthedocs.io/en/stable/default.htm

Chapter 6 ■ Docker Hub

107

Figure 6-2.  The Python Official Repository page

Listing 6-6.  Tag an Image During a Build

$ docker build -t <namespace>/<repository_name>:<tag>

Listing 6-7.  Retag an Existing Local Image

$ docker tag <existing_image> <namespace>/<repository_name>:<tag>

Listing 6-8.  Commit Changes to a Container as a Tagged Image

$ docker commit <existing_container> <namespace>/<repository_name>:<tag>

You will revisit this last as a best practice in maintaining semipersistent changes to
images in the next chapter.

Tags on the Python Image
The python image can be found at the official repository page8 for Python. Visiting the Tags
tab, you can see specific information about the dozens of tags associated with the Python
repository. The Python repository uses image tags to not only manage the Python 2 and
Python 3 split, but to manage four different versions of Python 3. From the official repository
page, you can link to the Dockerfiles used to define the individually tagged images in the
Python repository (see Figure 6-2).

8https://hub.docker.com/_/python/

../../https@hub.docker.com/_/python/default.htm

Chapter 6 ■ Docker Hub

108

Official Repositories
Docker maintains a set of curated Docker images for the major open-source technologies.
These official repositories are designed using established best practices in writing
Dockerfiles (and more likely than not are maintained by tianon9). You saw your first
official repository in the Official Repository for Python. With the exception of the jupyter
image (which you shall treat as though it is an Official Repository), you will nearly always
use Official Repositories as your base image.

Pushing to Docker Hub
To demonstrate the process of pushing to Docker Hub, you will create a new image,
numpy-notebook. This image will use the jupyter/base-notebook image as its base and
add numpy. Recall that the jupyter/base-notebook image includes only Python 3. You
will only add numpy for Python 3.

■■ Note  In Chapter 5, you configured your system for local development by setting up
a project to be tracked via git and GitHub. This is a best practice. You will not go through
this practice for the creation of an image in this chapter. This is not because it is not a
good practice, but rather because I wish to emphasize that working with Docker Hub is
independent from working with git.

In Listing 6-9, you create a new local directory to hold your project and a
subdirectory to serve the context for your new image.

Listing 6-9.  Create a New Local Directory and Context Subdirectory

$ mkdir ch_6_dockerfiles && cd ch_6_dockerfiles
$ mkdir numpy

In Listing 6-10, you create a new Dockerfile (shown in Listing 6-11). The new image
is defined using the jupyter/base-notebook image as a base. In order to install numpy
you briefly switch the image’s USER to root. You use conda to install numpy and then
switch back to USER jovyan.

■■ Note  You switch to the user root to install the libraries and switch back to user jovyan
upon completion. This is considered a best practice and ensures that you do not run the
notebook server with too much system privilege. More on this in Chapter 7.

9https://github.com/tianon

../../dx.doi.org/10.1007/978-1-4842-3012-1_5
../../dx.doi.org/10.1007/978-1-4842-3012-1_7
../../https@github.com/tianon

Chapter 6 ■ Docker Hub

109

Listing 6-10.  Create a New Dockerfile

$ vi numpy/Dockerfile

Listing 6-11.  The numpy Dockerfile

FROM jupyter/base-notebook
USER root
RUN conda install --yes numpy
USER jovyan

In Listing 6-12, you build the numpy image using the docker build command. Note
that the term numpy shows up twice in the command. The first (-t numpy) refers to the tag
or name that you are giving to the image. The second, the last word in the command, refers
to the relatively referenced build context, in this case the subdirectory named numpy.

Listing 6-12.  Build the numpy Image

$ docker build -t numpy numpy
Sending build context to Docker daemon 2.048kB
Step 1/4 : FROM jupyter/base-notebook
...
Step 2/4 : USER root
...
Step 3/4 : RUN conda install numpy
...
Step 4/4 : USER jovyan
...
Successfully built 2570ccf8069f
Successfully tagged numpy:latest

In Listing 6-13, you run the ipython REPL using the numpy image you just built as a
means of testing your installation. You use Ctrl+D to exit the containerized process after
completing a trivial calculation.

Listing 6-13.  Run ipython from the numpy Image

$ docker run -it numpy ipython
Python 3.6.1 | packaged by conda-forge | (default, May 23 2017, 14:16:20)
Type 'copyright', 'credits' or 'license' for more information
IPython 6.1.0 -- An enhanced Interactive Python. Type '?' for help.

In [1]: import numpy as np

In [2]: u = np.array((1,2))

In [3]: np.linalg.norm(u)
Out[3]: 2.2360679774997898

In [4]:
Do you really want to exit ([y]/n)?

Chapter 6 ■ Docker Hub

110

Create a New Repository
Creating a new repository can be done via a Docker Hub user profile (see Figure 6-3). You
will be prompted to give the repository a name, a short description, and a full description.
You will also be asked whether the repository should be public or private. By default, new
repositories will be public.

Again, there is no semantic meaning to the name given to a repository. With regard
to the description, you should recall that keywords entered in the description were found
by the docker search function.

■■ Note  You could also choose to create the repository in any organization where you
have the proper privileges.

You create a new repository called numpy with the short description “Numerical
Python” and the full description “Built on jupyter/base-notebook.” The new repository is
shown in Figure 6-4.

Figure 6-3.  Create a new repository

Chapter 6 ■ Docker Hub

111

Push an Image
You might wish to push the work you did on your numpy image. Local images created in
the manner discussed in Chapter 5 can be pushed to Docker Hub with little fuss, provided
they are named in the <namespace>/<repository_name>:<tag> pattern. In order to push
your work, you first revisit the state of the images on your system via the docker images
command (Listing 6-14), especially to examine the numpy image you just created.

Listing 6-14.  Display Local Images

$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
numpy latest 2570ccf8069f 33 minutes ago 925MB
jupyter/ latest 161472bc6c75 2 weeks ago 657MB
base-notebook
debian latest 47af6ca8a14a 2 weeks ago 125.1 MB
miniconda3 latest 5865a6cfa8c2 2 weeks ago 1.64 GB

■■ Note  None of your images have a namespace or a tag.

Figure 6-4.  The new joshuacook/numpy repository

../../dx.doi.org/10.1007/978-1-4842-3012-1_5

Chapter 6 ■ Docker Hub

112

Again, there are three ways to give a tag to an image: 1) at build-time using docker
build 2) after build-time using docker tag, and 3) by committing changes made to a
container as an image using docker commit. In Listing 6-15, you give the numpy image a
tag and a namespace using the docker tag command.

Listing 6-15.  Tag an Image

$ docker tag numpy joshuacook/numpy:1.13.0

In Listing 6-16, you once more display your local images.

Listing 6-16.  Display Local Images

$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
numpy latest 2570ccf8069f 34 minutes ago 925MB
joshuacook/ 1.13.0 2570ccf8069f 34 minutes ago 925MB
numpy
jupyter/ latest 161472bc6c75 2 weeks ago 657MB
base-notebook
debian latest 47af6ca8a14a 2 weeks ago 125.1MB
miniconda3 latest 5865a6cfa8c2 2 weeks ago 1.64GB

You now have an image with the namespace/repository combination of joshuacook/
numpy and the tag of 1.13.0. Note that it has an identical image id with the numpy image.
Docker is not storing two identical images, but rather maintaining two references to the
same image.

In order to push to Docker Hub, you must log in via the Docker CLI using
docker login (Listing 6-17).

Listing 6-17.  Log in to Docker Hub

$ docker login
Login with your Docker ID to push and pull images from Docker Hub. If you
don't have a Docker ID, head over to https://hub.docker.com to create one.
Username (joshuacook):
Password:
Login Succeeded

Once you have properly tagged your image and logged in, you use the docker push
command (Listing 6-18).

Chapter 6 ■ Docker Hub

113

Listing 6-18.  Push the ipython Image to Docker Hub

$ docker push joshuacook/numpy:1.13.0
The push refers to a repository [docker.io/joshuacook/numpy]
2bcb5be18c74: Pushed
72c56d765cf2: Mounted from jupyter/base-notebook
317e6c337ef3: Mounted from jupyter/base-notebook
1a2fceb0b4da: Mounted from jupyter/base-notebook
c65670cc3813: Mounted from jupyter/base-notebook
52b6625b711f: Mounted from jupyter/base-notebook
93329dd321d3: Mounted from jupyter/base-notebook
7c10c4ddeab0: Mounted from jupyter/base-notebook
290b555a5673: Mounted from jupyter/base-notebook
6b538a724de5: Mounted from jupyter/base-notebook
f02f8903fe33: Mounted from jupyter/base-notebook
406306ca7a80: Mounted from jupyter/base-notebook
cff5883220e6: Mounted from jupyter/base-notebook
d17d48b2382a: Mounted from jupyter/base-notebook
1.13.0: digest: sha256:ccd8f21923c7538ae7a4d0606e203dce072d601494e570cf4c3d1
d08ca7a84e2 size: 3246

Pull the Image from Docker Hub
You can verify the success of your push by pulling the image from Docker Hub. Of course,
if you have the image locally, the locally cached image will be used when the image is
requested. In order to test the success, you first inspect the contents of your local image
using the docker inspect command in order to use this for verification (Listing 6-19).
You are interested in the "RootFS" key in the JSON returned by the inspect command, as
it provides a sha256 description10 description of each layer associated with the image.

Listing 6-19.  Inspect the ipython Image

$ docker inspect joshuacook/numpy:1.13.0
...
 "RootFS": {
 "Type": "layers",
 "Layers": [
 �"sha256:d17d48b2382adda1fd94284c51d725f0226bf20b07f4d29ce09

596788bed7e8e",
 �"sha256:cff5883220e61c711e6345366431e2eb28d8b408ae02c21c135

6797932379f7f",
 �"sha256:406306ca7a8025fd3430c01289c18e5ed18f0a144e7b6f1bc59

2ad38817f52a3",
 �"sha256:f02f8903fe334cbe7184c6d57fc08e6b5d26b607fce64c090c0

79d2a996f14a3",

10https://en.wikipedia.org/wiki/SHA-2

../../https@en.wikipedia.org/wiki/SHA-2

Chapter 6 ■ Docker Hub

114

 �"sha256:6b538a724de5d6ecdbfa4583dc34a228a46c3ee0c4d309a481e
9dfad675de380",

 �"sha256:290b555a56733ef2f2a005e6c7a3c38d894674239aed4777290
92687c414015d",

 �"sha256:7c10c4ddeab02a978638181a43ac67d43036fc6bf67e9888544
debbd63aa11b3",

 �"sha256:93329dd321d38f8394e015b422cf3680be1de5568f7248a3b63
5df329b2fe47b",

 �"sha256:52b6625b711fbf05039b819e2d13161f5c36c1909ad61779efe
dae05a5fdc51c",

 �"sha256:c65670cc38137214111c9e1587cb200e32e74de13fc2957752d
6354f75da6278",

 �"sha256:1a2fceb0b4daff636aa021a223b46c308a94e52f084c9feea39
5b68f672be6cb",

 �"sha256:317e6c337ef3c57618c38257236cc02e254f2f8d499249fbc04
0208f25c360d9",

 �"sha256:72c56d765cf2ae7ce7626b5a35bf0eba94f8c49b1a8d894b999
949846b2ded71",

 �"sha256:2bcb5be18c742a706f4667ce18b59e45d777e01d2423aac3c03
5c0d2831e34fc"

]
 }
...

You will use these layer descriptions to verify against the image once you have pulled
it from Docker Hub.

Next, you attempt to remove the joshuacook/ipython:3.6 image from your local
cache (Listing 6-20).

Listing 6-20.  Remove the Image from Local Cache

$ docker rmi numpy
Untagged: numpy:latest
$ docker rmi joshuacook/numpy:1.13.0
Error response from daemon: conflict: unable to remove repository reference
"joshuacook/numpy:1.13.0" (must force) - container 817ba39439d7 is using its
referenced image 2570ccf8069f

In doing so, you see an error. This error signifies that a stopped container is using the
image. You must first remove the stopped container in order to remove the image. You
first display stopped containers via the -a flag (display all) and docker ps (Listing 6-21).

Chapter 6 ■ Docker Hub

115

Listing 6-21.  Display All Containers

$ docker ps -a
CONTAINER ID
IMAGE COMMAND CREATED STATUS NAMES
817ba39439d7 "tini -- ipyth" 29 min... Exited (0) 28 min... gifted_clarke
2570ccf8069f
fd66407a5358 "tini -- ipyth" 38 min... Exited (0) 36 min... peaceful_
2570ccf8069f ardinghelli
...

Two stopped containers reference image f9a032f0a9a5, your local ipython image.
You must remove all of them (Listing 6-22).

Listing 6-22.  Remove All Stopped ipython Containers

$ docker rm 817ba39439d7 fd66407a5358
fd66407a5358
fd66407a5358

Now you are able to remove the locally cached image (Listing 5-23).

Listing 6-23.  Remove the Image from Local Cache

$ docker rmi joshuacook/ipython:3.6
Untagged: joshuacook/numpy:1.13.0
Untagged: joshuacook/numpy@sha256:ccd8f21923c7538ae7a4d0606e203dce072d601494
e570cf4c3d1d08ca7a84e2
Deleted: sha256:2570ccf8069f2333fc3c52cdeca9890dd4cb6b7a27ee7752aa97d8a2bc4
e1bf6
Deleted: sha256:b66f2cee6b59bb573462448ee4766890737e74523fa3d14b99a418c57a1
e67f1
Deleted: sha256:fe5d8ad29a14a9f6405de89aa47ef8c511965aff9d8b20cbeeffe34ee6f
e6f19
Deleted: sha256:eddb59d7cee362460c5d62be665d004d008f724a3e65ad44ad1129cfb86
f3f61

You now pull the image from Docker Hub to verify its contents (Listing 6-24).

Listing 6-24.  Pull the ipython Image from Docker Hub

$ docker pull joshuacook/numpy:1.13.0
1.13.0: Pulling from joshuacook/numpy
693502eb7dfb: Already exists
490c0d36e714: Already exists
b47c251cda4e: Already exists
5f06af7aed8b: Already exists
6486d270a020: Already exists
825ae89ffbbc: Already exists

../../dx.doi.org/10.1007/978-1-4842-3012-1_5#Par78

Chapter 6 ■ Docker Hub

116

0eb855700e1f: Already exists
3ea165122423: Already exists
57f4c53afea9: Already exists
960ee91f3ec0: Already exists
d685ecb69227: Already exists
86a69e035999: Already exists
166ce3ece426: Already exists
9c7191cb9c0e: Pull complete
Digest: sha256:ccd8f21923c7538ae7a4d0606e203dce072d601494e570cf4c3d1d08ca7a
84e2
Status: Downloaded newer image for joshuacook/numpy:1.13.0

Once more you run the docker inspect command (Listing 6-25).

Listing 6-25.  Inspect the numpy Image After a Successful Pull

$ docker inspect joshuacook/numpy:1.13.0
...
 "RootFS": {
 "Type": "layers",
 "Layers": [
 �"sha256:d17d48b2382adda1fd94284c51d725f0226bf20b07f4d29ce09

596788bed7e8e",
 �"sha256:cff5883220e61c711e6345366431e2eb28d8b408ae02c21c135

6797932379f7f",
 �"sha256:406306ca7a8025fd3430c01289c18e5ed18f0a144e7b6f1bc59

2ad38817f52a3",
 �"sha256:f02f8903fe334cbe7184c6d57fc08e6b5d26b607fce64c090c0

79d2a996f14a3",
 �"sha256:6b538a724de5d6ecdbfa4583dc34a228a46c3ee0c4d309a481e

9dfad675de380",
 �"sha256:290b555a56733ef2f2a005e6c7a3c38d894674239aed4777290

92687c414015d",
 �"sha256:7c10c4ddeab02a978638181a43ac67d43036fc6bf67e9888544

debbd63aa11b3",
 �"sha256:93329dd321d38f8394e015b422cf3680be1de5568f7248a3b63

5df329b2fe47b",
 �"sha256:52b6625b711fbf05039b819e2d13161f5c36c1909ad61779efe

dae05a5fdc51c",
 �"sha256:c65670cc38137214111c9e1587cb200e32e74de13fc2957752d

6354f75da6278",
 �"sha256:1a2fceb0b4daff636aa021a223b46c308a94e52f084c9feea39

5b68f672be6cb",
 �"sha256:317e6c337ef3c57618c38257236cc02e254f2f8d499249fbc04

0208f25c360d9",
 �"sha256:72c56d765cf2ae7ce7626b5a35bf0eba94f8c49b1a8d894b999

949846b2ded71",

Chapter 6 ■ Docker Hub

117

 �"sha256:2bcb5be18c742a706f4667ce18b59e45d777e01d2423aac3c03
5c0d2831e34fc"

]
 }
...

Note that the sha256 description of the images layers after the pull matches the
description of the layers prior to the pull. It is of note that the pull proves to be rather trivial,
only needing to fetch a single layer from Docker Hub. This is because most of the layers
associated with your numpy image exist as the jupyter/base-notebook image. You used the
jupyter/base-notebook image as the base upon which you built your ipython image! This
fact can be verified by inspecting the jupyter/base-notebook image (Listing 6-26).

Listing 6-26.  Inspect the jupyter/base-notebook Image

$ docker inspect jupyter/base-notebook
...
 "RootFS": {
 "Type": "layers",
 "Layers": [
 �"sha256:d17d48b2382adda1fd94284c51d725f0226bf20b07f4d29ce09

596788bed7e8e",
 �"sha256:cff5883220e61c711e6345366431e2eb28d8b408ae02c21c135

6797932379f7f",
 �"sha256:406306ca7a8025fd3430c01289c18e5ed18f0a144e7b6f1bc59

2ad38817f52a3",
 �"sha256:f02f8903fe334cbe7184c6d57fc08e6b5d26b607fce64c090c0

79d2a996f14a3",
 �"sha256:6b538a724de5d6ecdbfa4583dc34a228a46c3ee0c4d309a481e

9dfad675de380",
 �"sha256:290b555a56733ef2f2a005e6c7a3c38d894674239aed4777290

92687c414015d",
 �"sha256:7c10c4ddeab02a978638181a43ac67d43036fc6bf67e9888544

debbd63aa11b3",
 �"sha256:93329dd321d38f8394e015b422cf3680be1de5568f7248a3b63

5df329b2fe47b",
 �"sha256:52b6625b711fbf05039b819e2d13161f5c36c1909ad61779efe

dae05a5fdc51c",
 �"sha256:c65670cc38137214111c9e1587cb200e32e74de13fc2957752d

6354f75da6278",
 �"sha256:1a2fceb0b4daff636aa021a223b46c308a94e52f084c9feea39

5b68f672be6cb",
 �"sha256:317e6c337ef3c57618c38257236cc02e254f2f8d499249fbc04

0208f25c360d9",
 �"sha256:72c56d765cf2ae7ce7626b5a35bf0eba94f8c49b1a8d894b999

949846b2ded71"
]
 }
...

Chapter 6 ■ Docker Hub

118

■■ Note  The thirteen layers that comprise the jupyter/base-notebook image are exactly
the thirteen layers of the numpy image.

Tagged Image on Docker Hub
Finally, let’s visit the Tags tab on the Docker Hub page associated with your numpy
repository (Figure 6-5). Here, you can see that that tagged image you pushed is indeed
available on Docker Hub.

Summary
In this chapter, you looked at using Docker Hub as a cloud-based store for the images you
have built. You learned about multiple versions of images, looking at how tags are used
to track multiple versions of the Python community image. You created a new image for
using the numpy library built using the jupyter/base-notebook image as a base, tagged
it with the current version of numpy, and pushed it to your Docker Hub account. After
this chapter, I hope that you are familiar with the process of creating a new image from a
Dockerfile and know how to push an image that you create to Docker Hub.

Figure 6-5.  The joshuacook/numpy Docker Hub page

119© Joshua Cook 2017
J. Cook, Docker for Data Science, DOI 10.1007/978-1-4842-3012-1_7

CHAPTER 7

The Opinionated Jupyter
Stacks

The Jupyter Notebook is based on a set of open standards for interactive
computing.

—Project Jupyter1

Project Jupyter developed out of an academic environment and out of the project came
not simply a groundbreaking application, but also a well-defined set of protocols for the
interactive computing paradigm. With regard to the notebook, these protocols include
the notebook document format, an interactive computing protocol, and the kernel. These
and the other protocols defining the Jupyter ecosystem are maintained by an openly-
governed steering council.2 Beyond the protocols defining the interactive computing via
Jupyter and maintaining the numerous projects that comprise the ecosystem, Project
Jupyter also maintains a GitHub repository containing numerous well-defined Jupyter
Docker images: the Opinionated Jupyter Stacks.3

It is a trivial endeavor to launch a Jupyter Notebook server within a Docker container.
In Listing 7-1, you do this using the -P (publish all) flag, which publishes all exposed ports
to random ports on the host.

Listing 7-1.  Launch a Jupyter scipy-notebook Server

$ docker run -d -P jupyter/scipy-notebook
72da8ca9ac9d4c694477350c500e9d793769788a26148a144e6c29448b5b4840

To use this container, you will need to know to which port on your host system
port 8888 in the container has been published (Listing 7-2) and will need to obtain the
notebook server’s security token (Listing 7-3). In Listing 7-2, you use the docker port
command to obtain the port mappings for your container using the first four characters,
72da, of the container id returned when you started the container, 72da8ca9ac9d4....

1http://jupyter.org/
2http://jupyter.org/about.html
3https://github.com/jupyter/docker-stacks

../../jupyter.org/default.htm
../../jupyter.org/about.html
../../https@github.com/jupyter/docker-stacks

Chapter 7 ■ The Opinionated Jupyter Stacks

120

■■ Note  A Docker container can be referenced by as few characters
are required to establish a unique container reference. The container,
72da8ca9ac9d4c694477350c500e9d793769788a26148a144e6c29448b5b4840, could be
referenced by 7, if no other container ids begin with 7.

Listing 7-2.  Obtain a Port Mapping for the Container

$ docker port 72da
8888/tcp -> 0.0.0.0:32769

In Listing 7-3, you use the docker exec command to send a command to your Jupyter
Notebook server within the docker container where it is being run. You again use the first
four characters of the container id to reference the container and then send the container
the command jupyter notebook list. This has the effect of opening a shell to the
container, running this command in the shell, displaying the result, and closing the shell.

Listing 7-3.  Obtain a Security Token for Running Jupyter Notebook Server

$ docker exec 72da jupyter notebook list
Currently running servers:
http://localhost:8888/?token=61d6ead40b05daea402d9843ad7932bc937
da41841575765 :: /home/jovyan

Bear in mind that the URL provided here refers to the URL where the notebook
server can be reached within the Docker container. The actual location would be to use
the IP of your docker machine (localhost or the IP of your AWS instance or the virtual
machine on which you are running Docker) and the port you obtained in the previous
command. Listing 7-4 shows this URL if using Docker for Linux, Docker for Mac, or
Docker for Windows. Listing 7-5 shows the most likely URL if using Docker Toolbox.
(Refer to Listing 1-10 in Chapter 1 to review accessing your Jupyter system on AWS.)

Listing 7-4.  The Current Jupyter URL If Using Docker for Linux/Mac/Windows

http://localhost:32769/?token=61d6ead40b05daea402d9843ad7932bc937
da41841575765

Listing 7-5.  The Likely Current Jupyter URL If Using Docker for Toolbox

http://192.168.99.100:32769/?token=61d6ead40b05daea402d9843ad7932bc937
da41841575765

../../dx.doi.org/10.1007/978-1-4842-3012-1_1#Par83
../../dx.doi.org/10.1007/978-1-4842-3012-1_1

Chapter 7 ■ The Opinionated Jupyter Stacks

121

High-Level Overview
The Project Jupyter Docker stacks provide eight notebook images beginning with a
base-notebook image upon which all subsequent images depend:

	 1.	 base-notebook

	 2.	 minimal-notebook

	 3.	 scipy-notebook

	 4.	 r-notebook

	 5.	 tensorflow-notebook

	 6.	 datascience-notebook

	 7.	 pyspark-notebook

	 8.	 all-spark-notebook

Each image has an eponymous folder in the GitHub jupyter/docker-stacks
project, as well as an equivalent repository hosted under the jupyter user namespace on
Docker Hub. Figure 7-1 shows the dependencies of these images.

Figure 7-1.  Jupyter Docker stack dependency graph

../../https@github.com/jupyter/docker-stacks
../../hub.docker.com/u/jupyter/default.htm

Chapter 7 ■ The Opinionated Jupyter Stacks

122

■■ Note  The base-notebook uses Debian “jesse”4 and thus provides the container
operating system for every notebook image.

jupyter/base-notebook
The jupyter/base-notebook image defines a minimal Jupyter Notebook server. It is
solely provisioned with Miniconda for Python 3 and does not come provisioned with
Python 2 nor any scientific computing packages (from numpy on up). It does define the
essential patterns that will be used to define Jupyter images through the entire stack:
the use of the init binary tini, the addition of the unprivileged user jovyan,5 and the
inclusion of various startup scripts that will be used to run the server.

You will rarely use the base-notebook image in practice, but will take the
development patterns written here as best practices. Any changes you might make to an
image downstream will need to be made considering these practices. You have done so
already when you mounted a volume of local files to your server being run in a container
in Chapter 2. You mounted these files from your working directory to the container
directory /home/jovyan using the flag -v `pwd`:/home/jovyan, as in Listing 7-6.

Listing 7-6.  Attach a Host Directory to a Container

$ docker run -d -v `pwd`:/home/jovyan -P jupyter/scipy-notebook

The use of the /home/jovyan directory as root notebook directory is defined in the
Dockerfile defining the base-notebook image (Listing 7-7).

Listing 7-7.  base-notebook Dockerfile

...
ENV NB_USER jovyan
...
WORKDIR /home/$NB_USER/work
...

Notebook Security
It is not uncommon to run a notebook server as a publicly accessible server over the open
web. Furthermore, a notebook server is capable of running arbitrary code. As such, it is
a best practice6 to restrict access to a notebook server. The Opinionated Jupyter Stacks
define a series of security best practices, largely defined in the Dockerfile for the
base-notebook image.

4www.debian.org/releases/jessie/
5Jovyan means “related to Jupiter” (Jupyter).
6http://jupyter-notebook.readthedocs.io/en/latest/security.html

../../dx.doi.org/10.1007/978-1-4842-3012-1_2
../../www.debian.org/releases/jessie/default.htm
../../jupyter-notebook.readthedocs.io/en/latest/security.html

Chapter 7 ■ The Opinionated Jupyter Stacks

123

By default, a notebook server running in a container requires a randomly generated
security token to be passed as a query parameter when accessed through the browser.
You saw earlier how this token can be obtained by sending the jupyter notebook list
command to a running container via docker exec (Listing 7-3). The base-notebook
image defines the start-notebook.sh script used as the default command passed to
tini at runtime. This script can be used to define an alternative authentication method,
although this is not recommended.

In an installation in which you can guarantee security (or in which you are
comfortable being somewhat less restrictive, such as a temporary AWS instance), you
may wish to grant sudo access to the jovyan user. This can be done by passing the
environment variable GRANT_SUDO=yes. Additionally, the container must be run by the
root user. Listing 7-8 shows a complete command for running a notebook server and
granting password-less sudo to the jovyan user.

Listing 7-8.  Run a Notebook Server and Grant Password-less sudo to the jovyan User

$ docker run -d -e GRANT_SUDO=yes --user root jupyter/scipy-notebook
a811689f2e09737e2c9686849320a424889b2ac9eeb57e0f3df2940edc600628

Granting sudo access to the jovyan user is useful while working in an exploratory
capacity. You may wish to quickly install Linux binaries that are not part of your image
without going through a full image build cycle. With sudo access granted, this is possible.

If you connect to the running container via docker exec, you can see that tini
has been launched by the root user (Listing 7-9). The GRANT_SUDO flag has the effect of
launching the jupyter notebook process, owned by jovyan, via su jupyter notebook.

Listing 7-9.  Connect to a Running Container as root and View the Running Processes

$ docker exec -it a811 ps aux
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 1 1.0 0.0 4224 668 ? Ss 23:41 0:00 �tini -- start

-notebook.sh
root 6 0.4 0.1 46360 3084 ? S 23:41 0:00 �su jovyan -c

env ...
jovyan 9 33.2 2.4 183488 50612 ? Ss 23:41 0:01 �/opt/conda/

bin/python ...
root 13 0.0 0.1 19100 2556 ? Rs 23:41 0:00 ps aux

A notebook server running without this flag (Listing 7-10) will appear as in Listing 7-11.
Note that tini has been launched by jovyan and that no su command has been run to grant
sudo to jovyan.

Chapter 7 ■ The Opinionated Jupyter Stacks

124

Listing 7-10.  Run a Notebook Server

$ docker run -d jupyter/base-notebook
e900cbb66babb23f8b7764506482e32e300b8ad351e4ea15a0260266ca517738

Listing 7-11.  Connect to a Running Container as jovyan and View the Running Processes

$ docker exec e900 ps aux
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
jovyan 1 0.0 0.0 4224 656 ? Ss 23:35 0:00 �tini -- start-

notebook.sh
jovyan 5 1.1 2.4 183404 50576 ? S 23:35 �0:01 �/opt/conda/bin/

python ...
jovyan 2 0.0 0.1 19100 2436 ? Rs 23:37 0:00 ps aux

The Default Environment
The base-notebook Dockerfile installs miniconda3 and the latest stable version
of Python 3. It also defines the default conda environment, root, which will be used
throughout to manage your Python 3 installation. You can see the miniconda version and
the name of your Python 3 environment by running an interactive bash shell to a base-
notebook container (Listing 7-12).

■■ Note  ipython, python, pip, easy_install, and conda are all available in this
environment and reference the conda/python versions installed in the base-notebook
Dockerfile.

Listing 7-12.  Identify the Python 3 conda Environment.

$ docker run -it --rm jupyter/base-notebook bash
jovyan@c9fb2312c5b8:~$ conda info -a
Current conda install:

 platform : linux-64
 conda version : 4.2.12
 conda is private : False
 conda-env version : 4.2.12
 conda-build version : not installed
 python version : 3.5.2.final.0

...

conda environments:
#
root * /opt/conda

Chapter 7 ■ The Opinionated Jupyter Stacks

125

It is worth noting that you could have run the same command in an already running
container, as in Listing 7-13. Listing 7-13 has the effect of running the command via
a shell (as opposed to a bash shell) and will close the shell when the command has
completed execution. Here, wizardly_hawking refers to the randomly generated name
for a running container.

Listing 7-13.  Alternatively Identify the Python 3 conda Environment

$ docker exec wizardly_hawking conda info -a
Current conda install:

...

Here you can see that you are running Python 3.5.2 and have a single Python
environment root. You can verify that the root environment is running 3.5.2 by sourcing
the root environment and checking the Python version (Listing 7-14). The source
activate command has the effect of configuring the global python to use the python
binary available at /opt/conda/bin/python.

Listing 7-14.  Check the Python Version for root Environment

jovyan@ c9fb2312c5b8:~$ source activate root
(root) jovyan@ c9fb2312c5b8:~$ python --version
Python 3.5.2 :: Continuum Analytics, Inc.
(root) jovyan@ c9fb2312c5b8:~$ which python
/opt/conda/bin/python

Managing Python Versions
With the release of IPython 6 and the drop of support for Python 2, in this author’s
opinion there is no need to explicitly work with environments within a Docker image. It
is perfectly reasonable to have one Docker image dedicated to running the latest stable
version of Python, another image dedicated to running a legacy version of Python for an
application that is useful but not worth updating, and still another image dedicated to
running the latest alpha build of Python on all the same system. This is, in fact, a perfect
use case for Docker. The dependencies of each implementation are completely isolated
from each other when running in their own containers. For the time being, however, as
the community continues to make the measured migration from Python 2 to Python 3, we
will need to continue to explicitly manage environments running within our containers,
for the primary purpose of maintaining simultaneous py2 and py3 environments. To do
this, we will use conda’s native capacity for managing environments.7

7https://conda.io/docs/using/envs.html

../../https@conda.io/docs/using/envs.html

Chapter 7 ■ The Opinionated Jupyter Stacks

126

It is worth noting, before digging into the details of environment implementation,
that switching environments in a running notebook or while creating a new notebook is
a trivial task. We are investigating environments for the purposes of understanding the
best way to add new libraries that are not installed by default. Figure 7-2 shows how new
notebooks using different Python kernels can be created. Figure 7-3 shows how the kernel
can be switched for a running notebook.

Naively Extending a Jupyter Image using a Dockerfile
For the majority of the work you will do, you will take an image from the Jupyter Docker
stacks and add libraries specific to your work as needed using the build process described
in Chapter 4. Suppose, for example, that you wish to develop a semantic analysis project
on Twitter data using the Python machine learning library scikit-learn and storing the
data in a MongoDB database. scikit-learn is included by default with the jupyter/
scipy-notebook image, but the python mongo interface library, pymongo, is not. A naive
approach to building this image might use the Dockerfile described in Listing 7-15.

Figure 7-3.  Change the kernel in a running notebook

Figure 7-2.  Select a kernel when creating a new notebook

../../dx.doi.org/10.1007/978-1-4842-3012-1_4

Chapter 7 ■ The Opinionated Jupyter Stacks

127

Listing 7-15.  Dockerfile Extending the jupyter/scipy-notebook for Semantic Analysis

FROM jupyter/scipy-notebook
RUN pip install pymongo

You could then build the image using the docker build command (Listing 7-16) and
run a container defined by this image using docker run (Listing 7-17).

Listing 7-16.  Build the semantic_analysis Image

$ docker build -t semantic_analysis.

Listing 7-17.  Run the semantic_analysis Container

$ docker run -d -P semantic_analysis
67cf8215ed6ad75c3709455bcdfffb72fb92df2abae3627962ba63677e06c45a
$ docker port 67cf
8888/tcp -> 0.0.0.0:32776
$ docker exec 67cf jupyter notebook list
Currently running servers:
http://localhost:8888/?token=d57ccd98004c383215c03ce25a7df85ec7796e04f8
ca4723 :: /home/jovyan

You can now access your semantic_analysis container using the URL of http://loc
alhost:32776/?token=d57ccd98004c383215c03ce25a7df85ec7796e04f8ca4723.

Extending the Jupyter Image Using conda Environments
The original tool for managing Python environments is the virtualenv tool, still widely
used today. Both virtualenv and the conda environments allow the user to create
isolated Python environments on the same system, similar to the Bundler tool for Ruby
programming. The Jupyter Docker stacks use conda environments to manage environments
and you will leverage the existing environments to install packages for a Python 2 kernel
independent of the installation of packages for a Python 3 kernel and vice versa.

You can manually switch back and forth between the two using the source activate
command. This is done automatically at kernel launch by the notebook server, where
necessary. In Listing 7-18, you examine the conda environments on the jupyter/scipy-
notebook image.

■■ Note  base-notebook and minimal-notebook only have Python 3, but scipy-notebook
and all child images have both Python 2 and Python 3.

../../https@virtualenv.pypa.io/en/stable/default.htm
../../bundler.io/default.htm

Chapter 7 ■ The Opinionated Jupyter Stacks

128

Listing 7-18.  Display Location and Version of python Binaries for Default, root, and
python2 Environments

$ docker run -it --rm jupyter/scipy-notebook bash
jovyan@83a2aec2da92:~$ which python
/opt/conda/bin/python
jovyan@83a2aec2da92:~$ python --version
Python 3.5.2 :: Continuum Analytics, Inc.
jovyan@83a2aec2da92:~$ source activate root
(root) jovyan@83a2aec2da92:~$ python --version
Python 3.5.2 :: Continuum Analytics, Inc.
(root) jovyan@83a2aec2da92:~$ source activate python2
(python2) jovyan@83a2aec2da92:~$ python --version
Python 2.7.12

A proper extension of a base jupyter image would do so for each of the conda
environments available on the image, as seen in Listing 7-19. Here, you are installing the
pymongo library for both conda environments.

Listing 7-19.  A Proper Extension of the jupyter/scipy-notebook Image

FROM jupyter/scipy-notebook

USER root

python 3 environment is named root
RUN conda install --name root \
 pymongo

python 2 environement is named python2
RUN conda install --name python2\
 pymongo

USER jovyan

■■ Note  You switch to the user root to install the libraries and switch back to user jovyan
upon completion. This is considered a best practice and ensures that you do not run the
notebook server with too much system privilege.

Once more you build the image using the docker build command (Listing 7-20) and
run a container defined by this image using docker run (Listing 7-21). It is not necessary to
give the image a new name. You simply overwrite the previous semantic_analysis image.

Chapter 7 ■ The Opinionated Jupyter Stacks

129

Listing 7-20.  Build the semantic_analysis Image

$ docker build -t semantic_analysis .

Listing 7-21.  Run the semantic_analysis Container

$ docker run -d -P semantic_analysis
ca525dbeb79b8e38a52db192b7388136e61e4a1534817f76ba5eefd8ffc0246e
$ docker port ca52
8888/tcp -> 0.0.0.0:32777
$ docker exec ca52 jupyter notebook list
Currently running servers:
http://localhost:8888/?token=d57ccd98004c383215c03ce25a7df85ec7796e04f8
ca4723 :: /home/jovyan

You can now access your new semantic_analysis container using the URL http://
localhost:32777/?token=d57ccd98004c383215c03ce25a7df85ec7796e04f8ca4723.

One final consideration in extending jupyter images is that some python libraries
may only be available via pip. You may wish to install the python library twitter for
interfacing with the Twitter API. Again, you should install the library for both conda
environments, as you have done in Listing 7-22.

Listing 7-22.  A Proper Extension of the jupyter/scipy-notebook Image using pip

FROM jupyter/scipy-notebook

USER root

python 3 environment is named root
RUN conda install --yes --name root \
 pymongo

python 2 environement is named python2
RUN conda install --yes--name python2\
 pymongo

install libraries via pip using bash and activating respective environment
RUN ["bash", "-c", "source activate root && pip install twitter"]
RUN ["bash", "-c", "source activate python2 && pip install twitter "]

USER jovyan

../../https@pypi.python.org/pypi/twitter

Chapter 7 ■ The Opinionated Jupyter Stacks

130

Using joyvan to Install Libraries
In Listing 7-22, you make use of a variant to the Dockerfile RUN syntax. You have
previously used the RUN instruction using the syntax RUN <command>. This is known as
the shell form of the RUN instruction. Using the command in this form has the effect of
sending the command to an image via /bin/sh or the default shell.

Installing via pip will not work using this syntax. This is because in order to install into
the correct conda environment, you need to activate the appropriate environment using
the source command. The source command is not available to the default shell (/bin/sh).
It is available to bash. In order to use bash, you must use the alternative syntax for the RUN
instruction, the exec form. The exec form uses the syntax RUN ["executable", "param1",
"param2"]. You use RUN ["bash", "-c", "source activate <environment> && pip
install twitter "]. This has the effect of opening a bash shell to your image and

	 1.	 Activating the appropriate environment

	 2.	 Installing twitter via pip

Ephemeral Container Extension
Finally, let’s discuss a best practice in adding libraries to a running container using the
jovyan user. Prior to doing so, however, I should mention the implications of making
changes to a running container. In Chapter 2, you explored persistence in containers, but
did so solely with regard to files you might be working on while using Jupyter. You wanted
to make sure that changes to files persisted beyond the lifespan of a container. I did not,
however, discuss persistence of libraries you might install, either at the system level using
the apt package manager favored by the base-notebook’s operating system Debian or at
the Python level using any of the included python package managers.

In practice, you will face the exact same challenges. With regard to system and
pythonic libraries, however, I recommend making these changes via a Dockerfile as a
best practice, as described above. That said, it is also a best practice to separate the writing
of python code from the maintenance of Docker images. You will, no doubt, in the course
of development, come across a situation where you wish to install a library for quick use.
A best practice is certainly to quickly install the needed library and continue developing.

You should be aware, however, of the implications of what you are doing. As soon as
you stop and remove the container in which you have made these changes, the changes
will be gone. This is by design. You must also guard yourself against keeping aging
containers around long after their lifecycle because you wish to keep the changes you
have made to them. With this in mind, I have found the following to be a best practice for
installing ephemeral packages on running containers.

../../dx.doi.org/10.1007/978-1-4842-3012-1_2

Chapter 7 ■ The Opinionated Jupyter Stacks

131

The ipython magix-sx command,8 for which ! (bang) serves as a shorthand, can be
used to run a command in a shell to the underlying system from a notebook. In this way,
you can install libraries via conda (Listing 7-23), pip (Listing 7-25), or apt (Listing 7-27) in
the moment, without opening a terminal to the container.

■■ Note  apt requires that password-less sudo has been granted to jovyan at container
runtime, as outlined above.

Listing 7-23.  Install a Package via conda Using ipython Magic Shell Process Command.

In [1]: import pymongo
 --
 �ImportError Traceback (most recent

call last)
 <ipython-input-1-ec8fdd1cd630> in <module>()
 ----> 1 import pymongo

 ImportError: No module named 'pymongo'
In [2]: !conda install pymongo --yes

 Fetching package metadata
 Solving package specifications:

 ...

 Linking packages ...
 [COMPLETE]|######################################| 100%

The environment into which the library will be installed is a function of which kernel
is being run. Figure 7-4 shows the Python 3 kernel. Recall that this is associated with the
conda root environment.

8https://ipython.org/ipython-doc/3/interactive/magics.html#magic-sx

../../https@ipython.org/ipython-doc/3/interactive/magics.html#magic-sx

Chapter 7 ■ The Opinionated Jupyter Stacks

132

You can verify that the package has indeed been added to the correct environment
by opening a shell to the container and running a conda list (Listing 7-24).

Listing 7-24.  Verify Library Installation

$ docker exec -it kickass_engelbart bash
jovyan@67cf8215ed6a:~$ conda list --name root | grep pymongo
pymongo 3.2.2 py35_0 conda-forge
jovyan@67cf8215ed6a:~$ conda list --name python2 | grep pymongo
jovyan@67cf8215ed6a:~$

The library is available to the root environment but it is not available to the python2
environment. Were you to switch kernels and run the command once more, it would be
available to python2. These changes to the container will persist as long as the container
is running. If you wish for these changes to persist for more than the most trivial usage, it
is recommended to make these changes permanent by making them to the image itself,
as outlined above.

In Listing 7-25, you install twitter into the python2 environment using pip via a
notebook. See Figure 7-5 for the results.

Figure 7-4.  Install pymongo into the root environment using a notebook

Chapter 7 ■ The Opinionated Jupyter Stacks

133

Listing 7-25.  Install a Package via pip Using ipython Magic Shell Process Command

In [1]: import twitter
 --
 �ImportError �Traceback (most recent

call last)
 <ipython-input-1-645f6dc1896f> in <module>()
 ----> 1 import twitter

 ImportError: No module named 'twitter'
In [2]: !pip install twitter

 Collecting twitter
 Downloading twitter-1.17.1-py2.py3-none-any.whl (55kB)
 �100% |████████████████████████████████| 61kB

2.4MB/s ta 0:00:01
 Installing collected packages: twitter
 Successfully installed twitter-1.17.1

Figure 7-5.  Install twitter into the python2 environment using a notebook

Again, you can verify that the package has indeed been added to the correct
environment by opening a shell to the container and running a conda list (Listing 7-26).

Listing 7-26.  Verify Library Installation.

$ docker exec -it kickass_engelbart bash
jovyan@67cf8215ed6a:~$ conda list --name root | grep twitter
jovyan@67cf8215ed6a:~$ conda list --name python2 | grep twitter
twitter 1.17.1 <pip>
jovyan@67cf8215ed6a:~$

Chapter 7 ■ The Opinionated Jupyter Stacks

134

Maintaining Semi-Persistent Changes to Images
The DevOps-minded reader will no doubt be troubled by the installation of libraries in
a running Jupyter container. You have thus far clung to the notion that the best practice
in working with containers is that they can be shut down, removed, and restarted at
any time without any loss to your workflow. Were you to reap kickass_engelbart and
start your notebook in a new container, this new container would not have twitter or
mongo installed. This presents only a mild inconvenience as you have a record of libraries
you will need to install in the magix-sx command in your notebooks: !conda install
pymongo --yes and !pip install twitter. You may wish, however, to persist these
changes in a defined container.

■■ Warning T his practice is not recommended as a permanent image development
practice. This is recommended as a temporary measure on a project-by-project basis.

You can add temporary changes (Listing 7-27) made to an image using the docker
commit command. I recommend using a tag to name the image. Here you add the
twitter-mongo tag to the base image, jupyter/scipy-notebook.

Listing 7-27.  Persist Temporary Changes to an Image Using a Tag

$ docker commit kickass_engelbart jupyter/scipy-notebook:twitter-mongo

In Listing 7-28, you display images in your image cache. You can see that you now
have two images in your local cache, jupyter/scipy-notebook:latest and jupyter/
scipy-notebook:twitter-mongo.

Listing 7-28.  Display Local Images

$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
jupyter/scipy-notebook twitter-mongo dfbb7599770d 4 seconds ago 5.37GB
jupyter/scipy-notebook latest 3dc12029099d 24 hours ago 5.35GB

You can launch your modified image as any other image using docker run (Listing 7-29).

Listing 7-29.  Launch jupyter/scipy-notebook:twitter-mongo

$ docker run -d -v `pwd`:/home/jovyan -p 8888:8888 jupyter/scipy-
notebook:twitter-mongo

Chapter 7 ■ The Opinionated Jupyter Stacks

135

Summary
In this chapter, you looked at the Docker images defined by the Jupyter team for quick
launch and extension of the Jupyter Notebook server using Docker. I briefly discussed
default notebook security strategies. I also presented several strategies for extending
Jupyter images using the Jupyter Team’s images as base. Following this chapter, I hope
you feel comfortable accessing the right Jupyter image for your work and adding to this
image to meet the needs of a given project.

137© Joshua Cook 2017
J. Cook, Docker for Data Science, DOI 10.1007/978-1-4842-3012-1_8

CHAPTER 8

The Data Stores

In this chapter, let’s extend the discussion beyond the Jupyter Notebook server to
explore open source data store technologies and how we can use Docker to simplify the
process of working with these technologies. I propose that using Docker, it is possible to
streamline the process to an extent that using a data store for even the smallest of datasets
becomes a practical matter. I’ll show you a series of best practices for designing and
deploying data stores, a set of practices that will be sufficient for working with all but the
largest of data sets. Conforming to Docker best practice, you will work with Docker Hub
official images throughout this chapter.

You will look at three data store technologies here: Redis, MongoDB, and
PostgreSQL. Deploying and using these three technologies as services managed by
Docker will require you to pay specific attention to two things:

	 1.	 Managing persistence in Docker containers using volumes

	 2.	 Networking between Docker containers

With regard to data persistence, you will establish a simple-but-effective best
practice using Docker volumes that will be repeated for each data store. With regard to
networking, you will explore three different options: legacy links, deploying a service on
its own AWS instance, and manually creating bridge networks. You will look at legacy
links for running Redis, AWS for running Mongo, and manual network creation for
running PostgreSQL, but to be clear, any of these techniques could be applied to any
of the data stores. I am merely presenting them in this fashion for learning purposes. It
is recommended that you absorb all three networking techniques and choose the best
option for each project you find yourself working on.

You will be sourcing each of the data stores from their respective Docker Hub
community pages.

Serialization
A central task in the workflow of any data scientist is the storage, transmission, and
reconstruction of data structures and object states. This process is known as serialization. It
is a well-solved problem and you will have several tools at your disposal to manage this task.
In this chapter, you will look at serialization in terms of converting objects in memory to their
binary representation as well as the use of the popular JSON format for serialization as a text
file. In Chapter 9, you will see a second format of text file serialization, the YAML format.

../../dx.doi.org/10.1007/978-1-4842-3012-1_9

Chapter 8 ■ The Data Stores

138

You will be serializing and deserializing primarily for the purposes of sharing objects
and data across processes. In particular, you will be storing data in your databases, as
well as caching objects in Redis for the purposes of using them in a separate notebook or
process. Later, in Chapter 9, you will begin to define application architecture using code.
In this case, you will be serializing your application configuration.

Serialization Formats and Methods
This book places an emphasis on working in Python. As such, it will focus on two
Python-specific methods for serializing data: pickling and serializing via bytestring. In
addition, you will look at appropriate uses for two text-based approaches to serializing
data: JSON and YAML. JSON (JavaScript Object Notation) is a machine-readable subset
of the JavaScript programming language that has been adopted by the programming
community as a human readable, language agnostic approach to serialization. YAML
is an alternative solution to the exact same problem. Both JSON and YAML are able to
use the standard primitive data types: integers, floating-point numbers, Booleans, and
null values, in addition to strings. For providing larger structures, both make use of the
associative array, often called the dictionary, and the ordered list, also known as the array,
the vector, the list, or the sequence. A dictionary holds data using key-value pairs; a list
holds data using a numerical index. The two mainly differ in syntax. JSON (Listing 8-1)
makes use of nested braces and brackets to define data structures, while YAML (Listing 8-2)
achieves the same purpose using white space. Note that in the following two examples,
none of the keys used have any syntactical meaning.

Listing 8-1.  A Sample JSON Object

{'this_json' : 'is a JSON object',
 'a nested object' : {
 'obj_id' : 123,
 'object value' : 'temperamental',
 'is_nested' : true
 },
 'a list': [1,2,3,4],
 'a list of strings': ['green eggs', 'ham'],
 'last_used' : null
}

Listing 8-2.  A Sample YAML Object

this_yaml: is a YAML object
a_nested_object:
 obj_id: 123
 object_value: 'temperamental'
 is_nested: true
a_list:
 - 1
 - 2

../../dx.doi.org/10.1007/978-1-4842-3012-1_9

Chapter 8 ■ The Data Stores

139

 - 3
 - 4
a_list_of_strings:
 - green eggs
 - ham
last_used: null

Binary Encoding in Python
The Python pickle module is the preferred method for serialization of Python objects and
data to binary byte streams. There are a few fundamental differences between pickling
data and serializing using JSON or YAML. As noted, both JSON and YAML are human
readable. An object converted to a byte stream is not human readable. JSON and YAML
serialized objects will be readable by a process run in any language, while a pickled object
will only be readable in Python. Because a pickled object does not have to be concerned
with interoperability, a wide variety of Python objects can be pickled, whereas only
dictionaries can be serialized using JSON or YAML. For the data scientist, this includes
but is not limited to the numpy array, the pandas DataFrame, or the sklearn Model. Over
the next chapter, you will explore a variety of methods for encoding data to a binary byte
stream using Python.

Redis
Redis1 is an open source, in-memory data structure store. It stores data values of
several different types associated to a given key. In your stack, you will use Redis for
two purposes. First, it will serve as a cache for persisting objects beyond the lifespan
of a Python process or in-between Jupyter Notebooks. Second, you will use Redis as
a message broker in order to perform delayed job processing from your notebooks
using the Python library named rq. In this chapter, you will address the first use case; a
discussion of the second use case happens in Chapter 10.

Pull the redis Image
You can retrieve the redis image from the Docker Hub using docker pull, as in Listing 8-3.
The Docker Hub page2 for the redis image outlines much of what I will discuss in the
next few pages including basic configuration, persistent storage, and connecting to Redis
from another container.

1https://redis.io
2http://hub.docker.com/_/redis

../../dx.doi.org/10.1007/978-1-4842-3012-1_10
../../https@redis.io/default.htm
../../hub.docker.com/_/redis

Chapter 8 ■ The Data Stores

140

Listing 8-3.  Pull the redis Image from Docker Hub

$ docker pull redis
Using default tag: latest
latest: Pulling from library/redis
6d827a3ef358: Already exists
787f13ab8ea9: Pull complete
...
Digest: sha256:1b358a2b0dc2629af3ed75737e2f07e5b3408eabf76a8fa99606ec0c276a93f8
Status: Downloaded newer image for redis:latest

■■ Note  You already had the first layer of the redis image in your local Docker image
cache and the pull command notifies you that layer 6d827a3ef358 “Already exists”.
This is because Redis uses the same base image as Jupyter, that is, they both begin their
respective Dockerfiles with FROM debian:jesse.

You can minimally verify that the image functions by running a Redis container
in detached mode (-d) (Listing 8-4) and sending a ping command to the server via the
redis-cli (Listing 8-5). To interface with Redis via the redis-cli you need to issue the
command via a docker exec statement issued to the proper container. When the
Redis server running in the container responds with PONG, you know that all is good.

Listing 8-4.  Run a Redis Container in Detached Mode

$ docker run -d redis
96d6ddb6d06f1422b11193ac84a18346f3be53fd7912dc38b6301c0573171647

In Listing 8-5, you issue a command to the running Redis container via
docker exec, making reference to the running container by the first four characters
of its container id, 96d6.

Listing 8-5.  Ping the Redis Server

$ docker exec 96d6 redis-cli ping
PONG

Finally, you shut down and remove your running Redis container (Listing 8-6).

Listing 8-6.  Shut Down and Remove the Running Redis Container

$ docker stop 96d6
96d6
$ docker rm 96d6
96d6

Chapter 8 ■ The Data Stores

141

Docker Data Volumes and Persistence
In thinking about running the data stores using Docker, it is helpful to think of them as
services (or microservices) that are being managed by Docker. Recall that containers
themselves should be ephemeral. You should be able to start, stop, and discard
containers at will. If the data in your data store is saved within the container, it will be
lost each time a container is cycled. Just as when running a Jupyter Notebook server,
persistence of data beyond the lifespan of a container will be mission critical for all of
your data store containers. Let’s loosely define this idea of a “service” as a container
and its persistent data.

■■ Note  It is worth emphasizing that I am loosely defining the idea of a “service.” We are
not working with the Docker tool service.

With notebooks, you persisted data by mounting a host directory as a data volume using
the volume flag (-v) (Listing 3-32). With your data stores, you will address the issue by using
data volumes.3 A data volume is a specially designed container specifically designed to persist
data beyond the lifespan of associated containers. Now you can think of a service as the
container and its linked volume (Figure 8-1). Because the data volume persists beyond the
lifespan of a single container, you can start, stop, and remove the container, and attach a
new container to the existing data volume, without any loss of data.

3https://docs.docker.com/edge/engine/reference/commandline/volume/

Figure 8-1.  Redis as a persistent service being managed by Docker

../../dx.doi.org/10.1007/978-1-4842-3012-1_3#Par110
../../https@docs.docker.com/edge/engine/reference/commandline/volume/default.htm

Chapter 8 ■ The Data Stores

142

Create and View a New Data Volume
First, you create a new data volume (Listing 8-7).

Listing 8-7.  Create a New Redis Data Volume Container

$ docker volume create --name redis-dbstore
redis-dbstore

Volumes exist apart from containers and thus are viewed independently using the
docker volume ls command (Listing 8-8).

Listing 8-8.  View Current Docker Volumes

$ docker volume ls
DRIVER VOLUME NAME
local redis-dbstore

Launch Redis as a Persistent Service
You will connect to the newly created volume at runtime in order to allow your Redis
container to persist its data beyond its lifespan. In addition to connecting to the data
volume, you will run the Redis container in detached mode (-d) and give the container a
name (--name) (Listing 8-9).

■■ Note  You mount the docker volume to the /data directory in the Redis container.
This location is specified in the Dockerfile used to define the redis image, which can be
viewed on the Redis public page on Docker Hub.4 Care must be taken with each data store,
as each will be looking for its data cache in a separate location (Table 8-1).

Table 8-1.  Location of Data Cache Within Container by Image

Image Data Cache Loction

Redis /data

Mongo /data/db

Postgres /var/lib/postgresql/data

Listing 8-9.  Launch Redis with an Attached Volume

$ docker run -d --name this_redis -v redis-dbstore:/data redis
b216a67caedc934b09341cf1642e89079be09d52b607ce4ddecdeaae5b5ae704

4https://hub.docker.com/_/redis/

../../https@hub.docker.com/_/redis/default.htm

Chapter 8 ■ The Data Stores

143

You can verify the persistence of data in the following manner. In Listing 8-10, you
create a new incr object on your Redis server using the redis-cli, and ping the incr
twice more for good measure.

Listing 8-10.  Create a New incr Object via redis-cli

$ docker exec this_redis redis-cli incr mycounter
1
$ docker exec this_redis redis-cli incr mycounter
2
$ docker exec this_redis redis-cli incr mycounter
3

In Listing 8-11, you shut down and remove the container named this_redis.

Listing 8-11.  Shut Down and Remove this_redis

$ docker stop this_redis && docker rm this_redis
this_redis
this_redis

Next, in Listing 8-12, you start up a new container using the same command as before.
If the data has persisted, then a subsequent incr command will yield a 4 (Listing 8-13).

Listing 8-12.  Start Up a New Redis Instance for Use

$ docker run -d --name this_redis -v redis-dbstore:/data redis
12fe7cea2e63aa2055585fd97b6b9205774a59bbf716672f71e5d75858c7cd72

Listing 8-13.  Issue an incr Command via redis-cli

$ docker exec this_redis redis-cli incr mycounter
4

You received a response of 4 because the volume you have created and attached
to each container in turn has allowed you to persist the Redis data between container
instances. You can think of this as starting and stopping Redis as a native process that
reconnects to a stored file on disk each time it runs.

Connecting Containers via Legacy Links
Having solved the persistence issue, let’s now overcome the next hurdle: connecting
to your container. The easiest way to connect to a container running on the same host
machine is via the --link flag at runtime. This is done simply by adding the --link flag
with a reference to a named running container to the docker run command issued to
launch a new container. In Listing 8-14, you launch a new Jupyter container with a link to
your named Redis container, this_redis, as visualized in Figure 8-2.

Chapter 8 ■ The Data Stores

144

Listing 8-14.  Launch a New Jupyter Container Linked to the Running Redis Container

$ docker run -d -v `pwd`:/home/jovyan --link this_redis jupyter/scipy-notebook
d6f09196bf85861df23eeb2f11bd68396287464d00febe27cda93024a3666251

It is worth the effort to spend a moment studying the form of the connection created
by this link. You will do so by opening a bash shell to the running Jupyter container and
examining the environment (Listing 8-15). Again, you use the shorthand of the first four
characters of the container id d6f0 to facilitate your connection.

Listing 8-15.  Explore the Environment of a Running Jupyter Container

$ docker exec -it d6f0 bash
jovyan@d6f09196bf85:~$ env | grep THIS_REDIS
THIS_REDIS_PORT_6379_TCP=tcp://172.17.0.2:6379
THIS_REDIS_NAME=/determined_wilson/this_redis
THIS_REDIS_PORT=tcp://172.17.0.2:6379
THIS_REDIS_PORT_6379_TCP_PORT=6379
THIS_REDIS_ENV_REDIS_VERSION=3.2.8
THIS_REDIS_PORT_6379_TCP_PROTO=tcp
THIS_REDIS_ENV_GOSU_VERSION=1.7
THIS_REDIS_ENV_REDIS_DOWNLOAD_SHA1=6780d1abb66f33a97aad0edbe020403d0a15b67f
THIS_REDIS_ENV_REDIS_DOWNLOAD_URL=http://download.redis.io/releases/redis-3.2.8.tar.gz
THIS_REDIS_PORT_6379_TCP_ADDR=172.17.0.2

Figure 8-2.  Connecting Redis and Jupyter on the same system

Chapter 8 ■ The Data Stores

145

Here, you use the env command line tool to display the defined environment.
You then pipe (|) the output of the command to the grep tool matching on the pattern
THIS_REDIS. Note that docker has defined numerous environment variables with the
name THIS_REDIS. This environment variable will always be an all-caps version of the
container’s name. Your container is named this_redis, and thus the environment
variables will use THIS_REDIS.

You will be able to use any of these environment variables to facilitate your
connection to Redis rather than needing to take note of an IP address each time you run
the container.

In Listing 8-16, you demonstrate this by sending a ping from the Jupyter container to
the Redis container using the environment variable, THIS_REDIS_PORT_6379_TCP_ADDR.
Note that you use the $ syntax to reference the environment variable.5

Listing 8-16.  Ping Redis from Jupyter

jovyan@d6f09196bf85:~$ ping -c 4 $THIS_REDIS_PORT_6379_TCP_ADDR
PING 172.17.0.2 (172.17.0.2): 56 data bytes
64 bytes from 172.17.0.2: icmp_seq=0 ttl=64 time=0.470 ms
64 bytes from 172.17.0.2: icmp_seq=1 ttl=64 time=0.136 ms
64 bytes from 172.17.0.2: icmp_seq=2 ttl=64 time=0.120 ms
64 bytes from 172.17.0.2: icmp_seq=3 ttl=64 time=0.085 ms
--- 172.17.0.2 ping statistics ---
4 packets transmitted, 4 packets received, 0% packet loss
round-trip min/avg/max/stddev = 0.085/0.203/0.470/0.155 ms

■■ Warning A t the time of this writing, the --link flag is a deprecated legacy feature.
Per the Docker documentation, “it may be eventually removed.” For our purposes, it provides
such a straightforward method for connecting containers that I think it worth discussing,
even though it has been deprecated.

Using Redis with Jupyter
This minimal connection is sufficient to verify that your containers are able to
communicate with each other, but you will need to be able to interface with the redis
server from within a Jupyter Notebook. By default, the jupyter/scipy-notebook image
does not include the Redis Python library necessary to interface with a Redis server from
within a Python process. While it is best practice to define a new image that includes the
libraries that you wish to use, here you will use an ephemeral installation of the Redis
library inside a running container to demonstrate how you might quickly interface with
the Redis server from within a notebook.

5http://tldp.org/LDP/abs/html/ivr.html

../../tldp.org/LDP/abs/html/ivr.html

Chapter 8 ■ The Data Stores

146

In Listing 8-17 and Figure 8-3, you can see that the container does not in fact have
the Python library Redis, after which you install the library using pip executed in a
subprocess from the Jupyter notebook.6

Listing 8-17.  Install Redis via a Shell Call to a Jupyter Notebook

In [1]: import redis

 ImportError Traceback (most recent call last)
 <ipython-input-1-6872e27f77ac> in <module>()
 ----> 1 import redis

 ImportError: No module named 'redis'
In [2]: !pip install redis
 Collecting redis
 Downloading redis-2.10.5-py2.py3-none-any.whl (60kB)
 100% |████████████████████████████████| 61kB 2.5MB/s ta 0:00:01
 Installing collected packages: redis
 Successfully installed redis-2.10.5
 You are using pip version 8.1.2, however version 9.0.1 is available.
 You should consider upgrading via the 'pip install --upgrade pip' command.

Figure 8-3.  Install Redis via a shell call from a Jupyter Notebook

6http://ipython.readthedocs.io/en/stable/interactive/python-ipython-diff.
html?highlight=!ls#quick-overview

../../ipython.readthedocs.io/en/stable/interactive/python-ipython-diff.html@highlight=!ls#quick-overview
../../ipython.readthedocs.io/en/stable/interactive/python-ipython-diff.html@highlight=!ls#quick-overview

Chapter 8 ■ The Data Stores

147

A Simple Redis Example
Having configured the jupyter/scipy-notebook container with the Python Redis
library, you are ready to begin using the service. You can think of Redis as giving you
the ability to read and write values to RAM, allowing you to persist these values beyond
the lifespan of a process or between currently running processes. Each of the examples
below demonstrates this by using Redis to share values between two running Jupyter
Notebooks.

Figure 8-4 demonstrates connecting two separate notebooks to the Redis service
using the pattern outlined in Listing 8-18.

Listing 8-18.  Connect to the Redis Service

In [1]: from redis import Redis
 from os import environ
 REDIS = Redis(host=environ['THIS_REDIS_PORT_6379_TCP_ADDR'])

Figure 8-4.  Instatiate a Redis connection from two separate notebooks

Next, in Figure 8-5, you set a key-value pair in Redis from the left notebook and
retrieve the value in the right notebook, using the code patterns in Listing 8-19 and 8-20,
respectively.

Listing 8-19.  Set a Key-Value Pair in Redis

In [2]: REDIS.set('foo', 42)

Listing 8-20.  Get a Value from Redis

In [2]: REDIS.get('foo')
Out[2]: b'42'

Figure 8-5.  Store a key-value pair from one notebook to be retrieved by another

The power of what you have done here may not at first be obvious. You have shared a
value from one notebook to another (i.e. one python process to another). Such a tool can
be extraordinarily valuable.

Chapter 8 ■ The Data Stores

148

Track an Iterative Process Across Notebooks
In Figure 8-6, you see how Redis can be used to track the development of an iterative
process. You use the code pattern outlined in Listing 8-21 to mock the execution of an
iterative process and the code pattern in Listing 8-22 to check the progress of the process
while it is in the midst of execution.

Listing 8-21.  Mock an Iterative Process

In [3]: import time
 def some_iterative_process():
 time.sleep(1)
In [4]: count = 0
 REDIS.set('count', 0)

 while count < 30:
 some_iterative_process()
 count = REDIS.incr('count')

Listing 8-22.  Get the Incrementor Value from Redis

In [2]: REDIS.get('count')
Out[2]: 8

Figure 8-6.  Track an iterative process across notebooks

The In [*] on the left notebook indicates that the process is currently running.
You obtain the current count in the right notbook by retrieving the count from Redis.
The count is continually updated at each iteration by the process being run on the right.

Pass a Dictionary via a JSON Dump
You might also pass a dictionary of values from one notebook to another using Redis.
Figure 8-7 demonstrates this with a dictionary containing potential model parameters.
You use the code pattern in Listing 8-23 to define the dictionary and pass it to Redis. You
use the pattern in Listing 8-24 to first load the object from Redis and then to convert it to a
Python dictionary.

Chapter 8 ■ The Data Stores

149

Listing 8-23.  Define a Dictionary and Pass It to Redis

In [5]: import numpy as np
 import json
 model_params = {
 'C': list(np.logspace(-3,3,7)),
 'penalty': 'l1',
 'solver' : 'newton-cg'
 }

 REDIS.set('model_params', json.dumps(model_params))
Out[5]: True

Listing 8-24.  Load a Dictionary from Redis

In [4]: REDIS.get('model_params')
Out[4]: b'{"C": [0.001, 0.01, 0.1, 1.0, 10.0, 100.0, 1000.0],
 "solver": "newton-cg", "penalty": "l1"}'
In [5]: import json
 json.loads(REDIS.get('model_params').decode())
Out[5]: {'C': [0.001, 0.01, 0.1, 1.0, 10.0, 100.0, 1000.0],
 'penalty': 'l1',
 'solver': 'newton-cg'}

Figure 8-7.  Pass a dictionary via a JSON dump

In the receiving notebook, when you initially load the object from Redis, it is
returned as a bytestring, as is denoted by the leading b when the string is displayed in
Out[4]. Most objects returned by Redis will be returned as bytestrings, and you must
take special care to handle them. Here, you wish the object to be a dictionary. To have
the object load as a dictionary, you first use the .decode() function included as part of the
Python bytes class. This converts the object to a string. You then pass this string to the
json.loads() function, which converts the string to the dictionary you see displayed
as Out[5].

Chapter 8 ■ The Data Stores

150

Pass a Numpy Array as a Bytestring
numpy’s natural capacity for working with bytestrings makes it an excellent partner for Redis
and it is very straightforward to pass numpy arrays and vectors. In Listings 8-25 and 8-26,
you encode and store, and then load and decode, a numpy array.

Note that in order to convert an array to a bytestring, you must first convert it to a
vector. This is done using the .ravel() function included as part of the np.array class.
This function converts an array of shape (n, m) to a vector of shape (n*m,). You then
convert the vector to a bytestring using the .tostring() function.

To convert from a bytestring, you use the numpy function np.fromstring() before
using the .reshape() function to convert the resulting vector back into an array. See
Figure 8-8.

Throughout the process, you have had to keep track of the shape of the original array
manually. In this case, you did so by storing the number of rows (n) and the number of
columns (m) in Redis and then retrieving them when necessary.

Listing 8-25.  Encode a numpy Array as a bytestring and Pass it to Redis

In [6]: import numpy as np
 A = np.array([
 [1,1,1],
 [2,2,2],
 [3,3,3]
])
 n,m = A.shape

 encoded_A = A.ravel().tostring()
 REDIS.set('encoded_A', encoded_A)
 REDIS.set('A_n', n)
 REDIS.set('A_m', m)
Out[6]: True

Figure 8-8.  Pass a numpy array as a bytestring

Chapter 8 ■ The Data Stores

151

Listing 8-26.  Load a numpy Array and Decode

In [6]: import numpy as np
 A_bytestring = REDIS.get('encoded_A')
 A_encoded = np.fromstring(A_bytestring, dtype=int)
 n = int(REDIS.get('A_n').decode())
 m = int(REDIS.get('A_m').decode())
 A = A_encoded.reshape(n, m)
 A
Out[6]: array([[1, 1, 1],
 [2, 2, 2],
 [3, 3, 3]])

■■ Note  By default, np.fromstring() will convert a passed bytestring to a vector of
floating point values. Since you passed a vector of integers, you must specify this type
when converting from bytestring, as you have done with np.fromstring(A_bytestring,
dtype=int).

MongoDB
Redis is a data structure store. It is largely concerned with storing individual object
instances. MongoDB is a database. It is concerned with storing many instances of the
same type. MongoDB calls each instance that it stores a document and stores these
documents using a JSON-like format. This format also lends itself to working with the
Python dictionary class.

As compared to other databases, MongoDB is known for its flexibility. Rather than
dealing with complex schema in order to store object instances, you can quickly and
easily add an object to a MongoDB collection without concerning yourself with the very
idea of schema. Such an approach to databases is known as NoSQL, and MongoDB is
perhaps the most widely used NoSQL database.

With regard to data persistence, you will use the same approach you used in setting
up Redis. With regard to networking, you will take a slightly different approach. Rather
than configuring MongoDB to run alongside a Jupyter service, you will configure Mongo
to run on an AWS instance. The advantages of this come down to networking.

If you expose the necessary port in the Mongo container to the corresponding
port on the host container, you no longer need to worry about networking. You simply
connect to the IP address of the AWS machine. I have found this solution to be in
practice slightly easier than configuring a bridge network to connect two containers
on the same host system and does not use the now deprecated --link method
previously discussed.

Chapter 8 ■ The Data Stores

152

■■ Note  As the recommended practice was for you to follow along in this book using a
t2.micro, you may currently be using an AWS instance to do the work in this book. This is by
design and I hope that this is still the case. The intent of the following section is for you to
run MongoDB on a system that is apart from the one on which you are currently working. If
you are currently working on an AWS instance, this means that you will now be working on
two AWS instances. You will have these two instances communicate with each other over
the open internet.

Set Up a New AWS t2.micro
You did this work earlier in Chapter 1, so I will merely outline the steps necessary to bring
a new t2.micro online:

	 1.	 From the AWS EC2 Dashboard, select “Launch Instance.”

	 2.	 On the Choose AMI tab, choose Ubuntu Server 16.04.

	 3.	 On the Choose Instance Type tab, choose t2.micro.

	 4.	 On the Add Storage tab, use the default setting of 8GB.

	 5.	 On the Configure Security Group tab, choose “Create a new
security group.”

a.	 Confirm that inbound SSH traffic can be accepted over
port 22 from anywhere.

b.	 Add a rule that accepts inbound traffic over port 2376
from anywhere. This port will allow you to pull images
from Docker Hub.

c.	 Add a rule that accepts inbound traffic over port 27017
from anywhere. This is the default port for accessing
MongoDB.

	 6.	 Review and launch an instance, taking care to confirm
that you have access to the SSH keys stored with your AWS
account.

■■ Note  You have added port 27017 to this Security Group so that you can access
MongoDB on its default port over the open web. If Redis is configured on its own
AWS instance, then port 6379 will need to be added to the Security Group. If
PostgreSQL is configured on its own AWS instance, then 5432 will need to be added to
the Security Group.

../../dx.doi.org/10.1007/978-1-4842-3012-1_1

Chapter 8 ■ The Data Stores

153

7https://hub.docker.com/_/mongo/

Configure the New AWS t2.micro for Docker
As before, you provision the new instance with Docker in order to do your work. Again,
I will outline steps without a great deal of explanation. Code for this configuration is
provided in Listing 8-27. Readers seeking additional information are referred to the
detailed description of this process in Chapter 1.

	 1.	 Take note of the IP address of the newly configured AWS
instance.

	 2.	 SSH into the instance using that IP address.

	 3.	 Install Docker via a shell script.

	 4.	 Add the ubuntu user to the docker group.

	 5.	 Log out and back in.

Listing 8-27.  Provision the AWS Instance with Docker

 (local) $ ssh ubuntu@255.255.255.255
(remote) $ curl -sSL https://get.docker.com/ | sh
(remote) $ sudo usermod -aG docker ubuntu

After this last command, log out of the ssh session to AWS and log back in to
configure MongoDB.

Pull the mongo Image
As with the redis image, you will retrieve the mongo image from its public page on Docker
Hub.7 The page also provides details about configuring Mongo. For your purposes, you
are most interested in reading about the specifics of the default configuration. In Listing 8-28,
you pull the image.

Listing 8-28.  Pull the mongo Image

 (local) $ ssh ubuntu@255.255.255.255
(remote) $ docker pull mongo

Create and View a New Data Volume
As with Redis, you will persist the data associated with your MongoDB by creating a
data volume that will live beyond a container running Mongo. Again, you can think of
MongoDB as a “service” comprised of the container running Mongo and the associated
data volume (Figure 8-9). To set this up, you simply create a data volume for your Mongo
data, as outlined in Listing 8-29.

../../https@hub.docker.com/_/mongo/default.htm
../../dx.doi.org/10.1007/978-1-4842-3012-1_1

Chapter 8 ■ The Data Stores

154

Listing 8-29.  Create and View a New Mongo Data Volume

$ docker volume create --name mongo-dbstore
$ docker volume ls
DRIVER VOLUME NAME
local mongo-dbstore
local redis-dbstore

Figure 8-9.  MongoDB as a persistent service being managed by Docker

Launch MongoDB as a Persistent Service
You connect to the newly created volume at runtime in order to allow your Mongo
container to persist its data beyond its lifespan (Listing 8-30).

■■ Note  You mount the docker volume to the /data/db directory in the Mongo container.
This location is specified in the Dockerfile used to define the mongo image, which can be
viewed on the Mongo public page on Docker Hub.8

8https://hub.docker.com/_/mongo/

../../https@hub.docker.com/_/mongo/default.htm

Chapter 8 ■ The Data Stores

155

Listing 8-30.  Launch mongo with an Attached Volume

$ docker run -d --name this_mongo -v mongo-dbstore:/data/db -p 27017:27017 mongo
38a2f19d72a09851dc32cb874817a45274e888dd93aca01b5500cbfe9fb9364c

Verify MongoDB Installation
You can verify that you are running the mongo service by connecting to the running
MongoDB via the MongoDB client, mongo, issued via docker exec (Listing 8-31).

■■ Warning  Both the image and the client share the same name, mongo. It is important to
keep track of which is being referred to as you do your work. In the issuing of the command
in Listing 8-31, mongo refers to the command line client you are using to interface with the
running MongoDB.

In Listing 8-31, you connect and then insert a trivial document to a mongo
collection. You are inserting the JSON object {"foo":1} into the collection test. You then
search for the document you inserted using the .find() command.

Listing 8-31.  Connect to mongo and Insert a Document

$ docker exec -it this_mongo mongo
MongoDB shell version v3.4.4
...
> db.test.insert({"foo":1})
WriteResult({ "nInserted" : 1 })
> db.test.find()
{ "_id" : ObjectId("591a00ee33e4717a80d8c92d"), "foo" : 1 }

Using MongoDB with Jupyter
As with Redis, you will need to be able to connect to MongoDB from within a Jupyter
notebook. As before, you will need to install the necessary Python library, pymongo, and
you will do this via a pip install issued through a notebook (Figure 8-10, Listing 8-32).

Listing 8-32.  Install pymongo via a shell Call from a Jupyter Notebook

In [1]: !pip install pymongo
 Collecting pymongo
 Downloading pymongo-3.4.0-cp35-cp35m-manylinux1_x86_64.whl (359kB)
 100% |████████████████████████████████| 368kB 700kB/s ta 0:00:01
 Installing collected packages: pymongo
 Successfully installed pymongo-3.4.0

Chapter 8 ■ The Data Stores

156

MongoDB Structure
As a NoSQL database, MongoDB has a minimal approach to structure. MongoDB has
three kinds of entities:

	 1.	 The database

	 2.	 The collection

	 3.	 The document

These entities relate to each other in that databases hold collections which hold
documents (Figure 8-11). Each document9 is a binary representation of a JSON data
record. Documents are composed of key-value pairs where a value can be any of the
BSON data types.10

Figure 8-11.  MongoDB hierarchy

Figure 8-10.  Install pymongo via a shell call from a Jupyter Notebook

9https://docs.mongodb.com/manual/core/document/#bson-document-format
10https://docs.mongodb.com/manual/reference/bson-types/

../../https@docs.mongodb.com/manual/core/document/#bson-document-format
../../https@docs.mongodb.com/manual/reference/bson-types/default.htm

Chapter 8 ■ The Data Stores

157

11http://api.mongodb.com/python/current/

pymongo
pymongo11 is a Python module containing the MongoDB tools recommended for working
with the database. You begin (Listing 8-33) by instantiating a connection to MongoDB
using pymongo.MongoClient. Here, you use the IP address of your AWS instance on which
MongoDB is running.

Listing 8-33.  Connect to MongoDB

In [2]: from pymongo import MongoClient
 client = MongoClient('255.255.255.255', 27017)

■■ Note  If using the default port of 27017 as you have done (Listing 8-30), it is not
necessary to specify the port.

pymongo has a very useful “get or create” mechanism for both databases and collections.
Databases and collections are accessed using either attribute-style (client.database_
name) or dictionary-style (client['test-database']). If the database exists, this method
will return a reference to the existing database or collection (“get”). If the database does
not exists, this method will create the database or collection and then return a reference
to it (“create”). The creation happens at the time of insertion of a document.

In Listing 8-34, you display currently extant databases.

Listing 8-34.  Display Databases

In [3]: client.database_names()
Out[3]: ['admin', 'local', 'test']

Next, in Listing 8-35, you create a reference to a new database and once more show
databases. Note that the database named my_database does not yet exist.

Listing 8-35.  Create Database Reference and Display Databases

In [4]: db_ref = client.my_database
 client.database_names()
Out[4]: ['admin', 'local', 'test']

Next, in Listing 8-36, you create a reference to a new collection in my_database and
then show databases, as well as collections, associated with my_database. Note that the
database my_database still does not yet exist.

../../api.mongodb.com/python/current/default.htm

Chapter 8 ■ The Data Stores

158

Listing 8-36.  Create Collection Reference and Display Databases and Collections

In [5]: coll_ref = db_ref.my_collection
 client.database_names(), db_ref.collection_names()
Out[5]: (['admin', 'local', 'test'], [])

In Listing 8-37, you create a new Python dictionary and insert the dictionary into
your collection using the .insert_one() class function.

Listing 8-37.  Insert a Document into a Collection

In [6]: sample_doc = {"name":"Joshua", "message":"Hi!", 'my_array' :
[1,2,3,4,5,6,7,9]}
 coll_ref.insert_one(sample_doc)
Out[6]: <pymongo.results.InsertOneResult at 0x7efc749726c0>

In Listing 8-38, you show the databases as well as the collections associated with
my_database. As can be seen, now your database and collection both exist as they were
created on insertion.

Listing 8-38.  Display Databases and Collections

In [7]: client.database_names(), db_ref.collection_names()
Out[7]: (['admin',
 'local',
 'my_database',
 'test'],
 ['my_collection'])

In Listing 8-39, you demonstrate an interesting behavior of MongoDB. You drop
all elements from my_collection using the .drop() class function and then show the
databases and the collections associated with my_database once more. Note that neither
my_database nor my_collection continue to exist. In other words, databases and
collections exist solely as containers for documents.

Listing 8-39.  Drop All my_collection Documents and Display Databases and Collections

In [8]: my_collection.drop()
 client.database_names(), db_ref.collection_names()
Out[8]: (['admin', 'local', 'test'], [])

Mongo and Twitter
To demonstrate a simple usage for MongoDB with Jupyter, you will implement a basic
Twitter streamer that inserts captured tweets into a MongoDB collection. Twitter data
represents an ideal use case for the NoSQL MongoDB. Each tweet obtained via the
Twitter API is received as an unstructured nested JSON object. Adding such an object to
a SQL database would be a non-trivial task by any measure involving numerous foreign

Chapter 8 ■ The Data Stores

159

keys and JoinTables as the user seeks to manage each of the one-to-one, one-to-many,
and many-to-one relationships built into the tweet. Adding such an object to Mongo,
on the other hand, is a trivial task. MongoDB’s native Binary JSON (BSON) format was
designed precisely to accept such an object.

Obtain Twitter Credentials
In order to follow along, you must obtain API credentials for accessing the Twitter API.
This is done by creating a Twitter application.

In order to do this, follow these steps:

	 1.	 Visit https://apps.twitter.com and sign in.

	 2.	 Choose “Create New App” (Figure 8-12).

	 3.	 Give the new app a name, description, and website. For
your purposes, the values of these responses are irrelevant,
although the website will need to have a valid URL structure.

	 4.	 Agree to the Developer Agreement and click “Create your
Twitter Application” (Figure 8-13).

Figure 8-12.  Create a new Twitter app

Figure 8-13.  Agree to the developer terms and create the app

Once the new app is created, you will see details of your new app as shown in Figure 8-14.

Figure 8-14.  Your new Twitter app

../../https@apps.twitter.com/default.htm

Chapter 8 ■ The Data Stores

160

Next, you will need to access your credentials on the “Keys and Access Tokens” tab.
You will need a total of four values:

	 1.	 A consumer key (API Key) (Figure 8-15)

	 2.	 A consumer secret (API Secret) (Figure 8-15)

	 3.	 An access token (Figure 8-17)

	 4.	 An access token secret (Figure 8-17)

The consumer key and consumer secret should be generated by default at the time
of app creation. The access token and access token secret will need to be generated
(Figure 8-16).

Figure 8-15.  Consumer key and consumer secret

Figure 8-16.  Generate access tokens

Chapter 8 ■ The Data Stores

161

Once these items have been obtained, enter the values into a cell in a new Jupyter
Notebook as strings, as in Listing 8-40. Note that the code pattern has been included
for easy copy-and-paste, but readers will need to replace each None value with the
appropriate credential value as a string.

Listing 8-40.  Load Twitter Credentials as Strings

In [9]: CONSUMER_KEY = None
 CONSUMER_SECRET = None
 ACCESS_TOKEN = None
 ACCESS_SECRET = None

In Listing 8-41, you install the twitter library using a system call, as you have done
previously with pymongo and redis.

Listing 8-41.  Install the twitter Library

In [10]: !pip install twitter
 Collecting twitter
 Downloading twitter-1.17.1-py2.py3-none-any.whl (55kB)
 100% |████████████████████████████████| 61kB 932kB/s ta 0:00:011
 Installing collected packages: twitter
 Successfully installed twitter-1.17.1

You next instantiate a twitter.OAuth object using the Python twitter module and
the credentials you have just loaded (Listing 8-42). You will use this object to facilitate
your connection to Twitter’s API.

Listing 8-42.  Instatiate the twitter.OAuth Object

In [11]: from twitter import OAuth
 oauth = OAuth(ACCESS_TOKEN, ACCESS_SECRET, CONSUMER_KEY, CONSUMER_SECRET)

Figure 8-17.  Access token and access token secret

Chapter 8 ■ The Data Stores

162

Collect Tweets by Geolocation
For this example, you will be using Twitter’s Public Stream.12 Applications that are able
to connect to a streaming endpoint will receive a sample of public data flowing through
Twitter and will be able to do so without polling or concern of API rate limits. In other
words, the Public Stream is a safe and sanctioned way to collect a sample of live public
tweets. That said, even this sample will return a great deal of unordered data.

In order to provide a modicum of order to your Twitter stream, you will restrict
incoming tweets using a geolocation13 bounding box,14 or bbox. You can easily obtain a
bbox for a location of interest using the Klokantech BoundingBox Tool.15 In Figure 8-18,
you obtain a bbox for Santa Monica, California in the United States, making sure to select
CSV Raw as the copy and paste format.

Figure 8-18.  Obtain a bbox for Santa Monica, California

12https://dev.twitter.com/streaming/public
13https://dev.twitter.com/streaming/overview/request-parameters#locations
14http://wiki.openstreetmap.org/wiki/Bounding_Box
15http://boundingbox.klokantech.com

When you use a bbox to filter tweets, you will obtain only geolocated tweets falling
within the bbox. Each bounding box should be specified as a pair of longitude and
latitude pairs, with the southwest corner of the bounding box coming first, following
geoJSON order (longitude, latitude).

Having obtained these values, you use them to define your bbox (Listing 8-43),
defining the CSV list of values as a string.

../../https@dev.twitter.com/streaming/public
../../https@dev.twitter.com/streaming/overview/request-parameters#locations
../../wiki.openstreetmap.org/wiki/Bounding_Box
../../boundingbox.klokantech.com/default.htm

Chapter 8 ■ The Data Stores

163

16https://github.com/sixohsix/twitter#the-twitterstream-class
17https://docs.python.org/3/howto/functional.html?#functional-howto-iterators

Listing 8-43.  Define a bbox for Santa Monica, California

In [12]: los_angeles_bbox = "-118.551346,33.96666,-118.443428,34.05056"

Finally, you instantiate a twitter.TwitterStream16 object you will use to collect
tweets (Listing 8-44). twitter.TwitterStream provides an interface to the Twitter Stream
API in Python. The result of calling a method on this object is an iterator17 that yields
tweets decoded from the Twitter stream as JSON objects.

Listing 8-44.  Instatiate a TwitterStream and an Associated Iterator

In [13]: from twitter import TwitterStream

 twitter_stream = TwitterStream(auth=oauth)
 twitterator = twitter_stream.statuses.filter(locations=los_angeles_bbox)

Following the instantiation of your twitterator, each subsequent next call will
yield a tweet (Listing 8-45), a massive, nested JSON object.

Listing 8-45.  Obtain the Next Tweet

In [14]: next(twitterator)
 {
 ...
 'created_at': 'Sun May 28 20:20:10 +0000 2017',
 ...
 'place': {'attributes': {},
 'bounding_box': {'coordinates': [[[-118.668404, 33.704538],
 [-118.668404, 34.337041],
 [-118.155409, 34.337041],
 [-118.155409, 33.704538]]],
 'type': 'Polygon'},
 ...
 },
 ...
 'quoted_status': {
 ...
 'text': "I'm in LA now and it's freakin' awesome �",
 ...
 }
 }

../../https@github.com/sixohsix/twitter#the-twitterstream-class
../../https@docs.python.org/3/howto/functional.html@#functional-howto-iterators

Chapter 8 ■ The Data Stores

164

Insert Tweets Into Mongo
Twitter is a wonderful source of messy, “real” data. Wrangling it into a database is where
MongoDB truly shines. Using your twitterator object and the .insert_one() class
function this can be done in a single line of code (Listing 8-46).

Listing 8-46.  Insert the Next Tweet into my_collection

In [14]: my_collection.insert_one(next(twitterator))
Out[14]: <pymongo.results.InsertOneResult at 0x7f697c03cbd0>

You can verify the tweet’s insertion and retrieve it with the .count() (Listing 8-47)
and .find_one() class functions (Listing 8-48).

Listing 8-47.  Count Objects in my_collection

In [15]: my_collection.count()
Out[15]: 1

Listing 8-48.  Read One Object from my_collection

In [15]: my_collection.find_one()
Out[16]: {'_id': ObjectId('592b57ae042cee05c85ecf1d'),
 ...
 �'text': '@sccrphobia11 Cubs 4 Dodgers 9 All runs in game were

scored by homers by both
 teams. 7 HRs in all through 7 innings.',
 ...
 }

PostgreSQL
PostgreSQL18 is an open source, object-relational database system. I favor the use of
PostgreSQL over other structured query language (SQL) databases because of its wide
adoption by the industry as well as for its native array and binary object types. A major
selling point of SQL databases is their capacity for working with structured data. The
creation of these structures is in and of itself an art and well beyond the scope of this text.
Herein, I will emphasize PostgreSQL’s natural aptitude for working with CSV files. I will
also briefly explain PostgreSQL’s array and binary types as natural partners to our work in
the numpy/scipy stack.

You will continue to use the docker volume tool to persist data beyond the lifespan
of a container. You will look at yet a third approach to managing networking in Docker,
exploring the docker network tool.

18www.postgresql.org/about/

../../www.postgresql.org/about/default.htm

Chapter 8 ■ The Data Stores

165

19https://hub.docker.com/_/postgres/

■■ Note T he configuration of network connections using docker network should be
considered an advanced technique. You may skip this section with no peril to your learning
and connect to PostgreSQL using either of the techniques outlined above.

If you do attempt to configure their connection to PostgreSQL using docker network,
I assume that you are working on the host system where you have been running Jupyter.

Pull the postgres Image
As before, you retrieve the postgres image from its public page on Docker Hub.19 In
Listing 8-49, you pull the image.

Listing 8-49.  Pull the postgres Image

$ docker pull postgres
Using default tag: latest
latest: Pulling from library/postgres
...
Digest: sha256:a2e6e6012a9056fa7647df5746119768bdb0bf4e82bb04819d5a8e450968a967
Status: Downloaded newer image for postgres:latest

Create New Data Volume
Following the previous pattern, you can think of PostgreSQL as a “service” comprised of
the container running postgres and an associate data volume (Figure 8-19). In Listing 8-50,
you create a new data volume.

Listing 8-50.  Create a New postgres Data Volume

$ docker volume create --name pg-datastore

../../https@hub.docker.com/_/postgres/default.htm

Chapter 8 ■ The Data Stores

166

Launch PostgreSQL as a Persistent Service
Again, you connect to the new data volume at runtime (Listing 8-51).

■■ Note  You mount the Docker volume to the /var/lib/postgresql/data directory in the
Postgres container.

Listing 8-51.  Display the Default Docker Networks

$ docker run -d --name this_postgres -v pg-dbstore:/var/lib/postgresql/data
-p 5432:5432 postgres
f9751d99f09d691dc3f04d246c502f1fa4ff3ae059632428a65affa3e5307f17

Verify PostgreSQL Installation
You can verify your PostgreSQL service by connecting to the running container via the
PostgreSQL client, psql, issued via docker exec (Listing 8-53). Note that in order to do
this you must specify a DBNAME and a USERNAME (Listing 8-52). As defined in the postgres
image, the default value for both of these is postgres.

Figure 8-19.  PostgreSQL as a persistent service being mangaged by Docker

Chapter 8 ■ The Data Stores

167

Listing 8-52.  Display psql Help

$ docker exec this_postgres psql --help
psql is the PostgreSQL interactive terminal.

Usage:
 psql [OPTION]... [DBNAME [USERNAME]]
...

Listing 8-53.  Connect to postgres, Create a Table, and Insert and Select a record

$ docker exec -it this_postgres psql postgres postgres
psql (9.6.3)
Type "help" for help.

postgres=# CREATE TABLE test (_id INTEGER, name TEXT);
CREATE TABLE
postgres=# INSERT INTO test VALUES (1,'Joshua');
INSERT 0 1
postgres=# SELECT * FROM test LIMIT 1;
 _id | name
-----+--------
 1 | Joshua
(1 row)

postgres=# \q

Docker Container Networking
You can connect two containers, such as a postgres service and a jupyter service, using
Docker networking. By default, the Docker installation creates three networks for you.
You will not need to create any additional networks; however, you will need to know how
the default networks function. Listing 8-54 shows the three networks created for you by
using the docker network ls command.

Listing 8-54.  Display the Default Docker Networks

$ docker network ls
NETWORK ID NAME DRIVER
c9fced8bcbc9 bridge bridge
3bec69979ce4 host host
d8d9192909eb none null

In this text, you will only use the bridge network. It is the network that new
containers connect to by default at runtime. It is possible to see this network on a Unix-
variant host machine by running the ifconfig command, as seen in Listing 8-55.

Chapter 8 ■ The Data Stores

168

Listing 8-55.  Display the Host Network Configuration

$ ifconfig
...
docker0 Link encap:Ethernet HWaddr 02:42:e4:f6:31:5a
 inet addr:172.17.0.1 Bcast:0.0.0.0 Mask:255.255.0.0
 inet6 addr: fe80::42:e4ff:fef6:315a/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:49037 errors:0 dropped:0 overruns:0 frame:0
 TX packets:38968 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:31550630 (31.5 MB) TX bytes:4105362 (4.1 MB)
...

You can connect to a running postgres container using a bash shell via the docker
exec command, as seen in Listing 8-56.

Listing 8-56.  Connect to this_postgres

$ docker exec -it this_postgres bash
root@f9751d99f09d:/#

From within the running container, you can see its network configuration by using
the same ifconfig command (Listing 8-57). Note that you will first have to install the tool
ifconfig using the package manager apt.

Listing 8-57.  Container Network Configuration

root@f9751d99f09d:/data# apt update
Get:1 http://security.debian.org jessie/updates InRelease [63.1 kB]
...
Fetched 9949 kB in 3s (2535 kB/s)

root@f9751d99f09d:/data# apt install net-tools
...

root@f9751d99f09d:/data# ifconfig
...
eth0 Link encap:Ethernet HWaddr 02:42:ac:11:00:04
 inet addr:172.17.0.2 Bcast:0.0.0.0 Mask:255.255.0.0
 inet6 addr: fe80::42:acff:fe11:4/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:1715 errors:0 dropped:0 overruns:0 frame:0
 TX packets:492 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:10299480 (9.8 MiB) TX bytes:35243 (34.4 KiB)
...

root@f9751d99f09d:/data# exit

Chapter 8 ■ The Data Stores

169

You can see in Listing 8-57 that the Postgres container has an address of 172.17.0.2
on the network on which it is running. In Listing 8-55, you saw that the docker bridge
network exists on 172.17.0.1 on your host machine.

■■ Note T his inspection of the network from within the container is not necessary for
configuring the network. It is done solely for demonstration purposes.

Next, in Listing 8-58, you inspect the bridge network using the docker network
inspect tool.

Listing 8-58.  Inspect the Bridge Network

$ docker network inspect bridge
[
 {
 "Name": "bridge",
 �"Id": "c9fced8bcbc9279ec29d880199e20795777c0bf9b2e7578f0d594a03981ff524",
 "Scope": "local",
 "Driver": "bridge",
 "EnableIPv6": false,
 "IPAM": {
 "Driver": "default",
 "Options": null,
 "Config": [
 {
 "Subnet": "172.17.0.1/16"
 }
]
 },
 "Internal": false,
 "Containers": {
 �"f9751d99f09d691dc3f04d246c502f1fa4ff3ae059632428a65affa3e5307f17": {
 "Name": "this_postgres",
 "EndpointID": �"a9820c6df3120c7fc4a98f09372b1e51252

ceb937aaa18f7a9eec001cc6e2760",
 "MacAddress": "02:42:ac:11:00:04",
 "IPv4Address": "172.17.0.2/16",
 "IPv6Address": ""
 }
 },
 ...
 }
]

Here you can see the bridge network with address 172.17.0.1 and the Postgres
container running on the network on 172.17.0.2.

Chapter 8 ■ The Data Stores

170

Minimally Verify the Jupyter-PostgreSQL Connection
Next, you will attempt to connect to the running Postgres container using a Jupyter
Notebook. In Listing 8-59, you launch a new Jupyter container using the docker run
command.

Listing 8-59.  Launch a Jupyter Container

$ docker run -v `pwd`:/home/jovyan -p 8888:8888 jupyter/scipy-notebook

First, you identify the running Jupyter container by using the docker ps command,
as shown in Listing 8-60.

Listing 8-60.  Show Running Containers

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS
f9751d99f09d postgres "docker-entrypoint.sh" 22 minutes ago Up 22 minutes ...
cce1148863a2 jupyter/scipy-notebook
 "tini -- start-notebo" 2 minutes ago Up 2 minutes ...

As previously noted, when you launch a new container, by default it will be
connected to the bridge network.

In Listing 8-61, you verify this using the docker network inspect tool.

Listing 8-61.  Inspect Bridge Network

$ docker network inspect bridge
docker network inspect bridge
[
 {
 "Name": "bridge",
 ...
 "Containers": {
 �"12fe7cea2e63b622c7804d1df96fbe2afce25d014e850b4fdec4e2e5498fde1b": {
 "Name": "this_postgres",
 �"EndpointID": �"a9820c6df3120c7fc4a98f09372b1e51252ceb937

aaa18f7a9eec001cc6e2760",
 "MacAddress": "02:42:ac:11:00:04",
 "IPv4Address": "172.17.0.2/16",
 "IPv6Address": ""
 },
 �"cce1148863a22d11272ca031ded06139b2f0372d92aca269fd0d50234a30cf1c": {
 "Name": "hungry_cray",
 �"EndpointID": �"cde785070465ea79d4d9296895cb09f5975ec06a22

caca090fab789ca10b1d90",
 "MacAddress": "02:42:ac:11:00:03",

Chapter 8 ■ The Data Stores

171

 "IPv4Address": "172.17.0.3/16",
 "IPv6Address": ""
 },
 },
 ...
]

Here you see that the Postgres container is still running on 172.17.0.2 and the
jupyter/scipy-notebook container is running on 172.17.0.3. More importantly, because
both of these containers are on the same network, you will be able to connect to one from
the other. In Listing 8-62, you verify this by opening a bash shell to the jupyter/scipy-
notebook container and verifying that you can ping the Postgres container at its IP on the
bridge network.

Listing 8-62.  Ping the Postgres Container from the jupyter/scipy-notebook Container

$ docker exec -it hungry_cray bash
jovyan@cce1148863a2:~$ ping -c 3 172.17.0.2
PING 172.17.0.2 (172.17.0.2): 56 data bytes
64 bytes from 172.17.0.2: icmp_seq=0 ttl=64 time=0.138 ms
64 bytes from 172.17.0.2: icmp_seq=1 ttl=64 time=0.103 ms
64 bytes from 172.17.0.2: icmp_seq=2 ttl=64 time=0.116 ms
--- 172.17.0.2 ping statistics ---
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max/stddev = 0.103/0.119/0.138/0.000 ms

Connnecting Containers by Name
To use the bridge network in order to connect to another Docker container, you are going
to need to identify the IP address of that container on the bridge network, which, as you
have just seen, a fairly non-trivial process. For your purposes, it may be easier to create
an additional network and connect your containers to that network. If you have been
following to this point, you should have two containers currently running, a jupyter/
scipy-notebook and a Postgres container, as shown in Listing 8-63.

Listing 8-63.  Show Running Containers

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED ... NAMES
f9751d99f09d postgres "docker-entrypoint.sh" 22 minutes ago... this_postgres
cce1148863a2 jupyter/scipy-notebook
 "tini -- start-notebo" 2 minutes ago... hungry_cray

Using the docker network tool, it will be possible to create a network and to connect
these running containers to that network. Once you have connected these containers to
the new network, you will be able to connect to them by name (by this_postgres and
hungry_cray).

Chapter 8 ■ The Data Stores

172

First, you create a new bridge network to be used by your containers (Listing 8-64)
using the docker network create command.

Listing 8-64.  Create a New bridge Network

$ docker network create jupyter_bridge
b8146c1af3a91abe4c123b9234d372e098fd71f1f0facd3e8251da2e864253ee

You can inspect the new network using the docker network inspect command, as
shown in Listing 8-65.

Listing 8-65.  Inspect the New bridge Network

$ docker network inspect jupyter_bridge
[
 {
 "Name": "jupyter_bridge",
 "Id": �"b8146c1af3a91abe4c123b9234d372e098fd71f1f0facd3

e8251da2e864253ee",
 "Scope": "local",
 "Driver": "bridge",
 "EnableIPv6": false,
 "IPAM": {
 "Driver": "default",
 "Options": {},
 "Config": [
 {
 "Subnet": "172.18.0.0/16",
 "Gateway": "172.18.0.1" }
]
 },
 "Internal": false,
 "Containers": {},
 "Options": {},
 "Labels": {}
 }
]

Here you see the new network you have created. You can see that it has no containers
currently connected. In Listing 8-66, you connect the jupyter/scipy-notebook
container, hungry_cray, and the Postgres container, this_postgres, to the new network
you have created, after which you inspect the network once more.

Listing 8-66.  Add the Running Containers to the New Bridge Network

$ docker network connect jupyter_bridge hungry_cray
$ docker network connect jupyter_bridge this_postgres
$ docker network inspect jupyter_bridge
[

Chapter 8 ■ The Data Stores

173

 {
 "Name": "jupyter_bridge",
 ...
 "Containers": {
 �"cce1148863a22d11272ca031ded06139b2f0372d92aca269fd0d50234a30

cf1c": {
 "Name": "hungry_cray",
 �"EndpointID": �"e01136684ea417200178a0afaaf634f39cd92f332

cb91b34a81dd7f7fcbbfc43",
 "MacAddress": "02:42:ac:19:00:02",
 "IPv4Address": "172.25.0.2/16",
 "IPv6Address": ""
 },
 �"f9751d99f09d691dc3f04d246c502f1fa4ff3ae059632428a65affa3

e5307f17": {
 "Name": "this_postgres",
 �"EndpointID": �"ae9a95c157092da3adbcb251ff9c370820f6b7ad9

f20a8df44cb971352af4cc9",
 "MacAddress": "02:42:ac:19:00:03",
 "IPv4Address": "172.25.0.3/16",
 "IPv6Address": ""
 }
 },
 ...
 }
]

Because you have connected these two containers to the same non-default bridge
network, they will be able to resolve each other’s location by container name, as shown in
Listing 8-67.

Listing 8-67.  Ping the Postgres Container from the jupyter/scipy-notebook Container

$ docker exec -it hungry_cray bash
jovyan@cce1148863a2:~$ ping -c 3 this_postgres
PING this_redis (172.25.0.3): 56 data bytes
64 bytes from 172.25.0.3: icmp_seq=0 ttl=64 time=0.248 ms
64 bytes from 172.25.0.3: icmp_seq=1 ttl=64 time=0.082 ms
64 bytes from 172.25.0.3: icmp_seq=2 ttl=64 time=0.081 ms
--- this_redis ping statistics ---
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max/stddev = 0.081/0.137/0.248/0.078 ms

■■ Note  Containers that are solely linked by the default bridge network will not be able to
resolve each other’s container name.

Chapter 8 ■ The Data Stores

174

Using PostgreSQL with Jupyter
You will use the same established pattern to connect to PostgreSQL from within a Jupyter
notebook. You will first perform a !pip install of the psycopg2 library You will use to
connect to the PostgreSQL database (Listing 8-68).

Listing 8-68.  Install psycopg2 via a Shell Call from a Jupyter Notebook

In [1]: !pip install psycopg2
 Collecting psycopg2
 Downloading psycopg2-2.7.1-cp35-cp35m-manylinux1_x86_64.whl (2.7MB)
 100% |████████████████████████████████| 2.7MB 333kB/s eta 0:00:01
 Installing collected packages: psycopg2
 Successfully installed psycopg2-2.7.1

Jupyter, PostgreSQL, Pandas, and psycopg2
Pandas, as nearly every other technology referenced in this tome, is an open source
library. pandas is the Python data analysis library. It plays well with the entire numerical
Python stack from numpy to scikit-learn. It is intuitive and easy to use and has a
place on the tool belt of every data scientist. Heck, it has even been known to make
the R programmer more comfortable in Python land. Here, you will use pandas where
appropriate to supplement psycopg2’s connection to PostgreSQL.

Minimal Verification
You will start out by performing a minimal verification of your connection. You will

	 1.	 Import a few libraries for your work (Listing 8-69).

	 2.	 Instantiate a connection and a cursor attached to that
connection (Listing 8-70).

	 3.	 Use the cursor to execute a query (Listing 8-71).

	 4.	 Display the results of the query in a pandas.DataFrame
(Listing 8-72).

	 5.	 Close the connection (Listing 8-73).

■■ Note  You import an additional module in Listing 8-69, psycopg2.extras. You will
use this module in Listing 8-70 to specify that you wish to use a special cursor type, the
psycopg2.extras.RealDictCursor. Using this cursor type will allow you to easily pass the
results of your query to a pandas.DataFrame, passing column names seamlessly from the
database to the data frame.

Chapter 8 ■ The Data Stores

175

Listing 8-69.  Import Necessary Libraries

In [2]: import pandas as pd
 import psycopg2 as pg2
 import psycopg2.extras as pgex

Listing 8-70.  Instantiate Connection and Cursor

In [3]: con = pg2.connect(host='this_postgres', user='postgres',
database='postgres')
 cur = con.cursor(cursor_factory=pgex.RealDictCursor)

Listing 8-71.  Execute Query

In [4]: cur.execute("SELECT * FROM test;")

Listing 8-72.  Fetch All Results from the Query and Display in a pandas.DataFrame

In [5]: pd.DataFrame(cur.fetchall())
Out[5]: _id name
 0 1 Joshua

Listing 8-73.  Close the Connection

In [6]: con.close()

Loading Data into PostgreSQL
Loading data into PostgreSQL can be challenging. In later chapters, you will explore
the use of Dockerfiles to load data and hold that this is the best practice. For the quick
insertion of data, such as is necessary for exploring some minimal Jupyter-Postgres
interaction in the remainder of this chapter, you will use simple SQL statements from
Jupyter and manage your transactions manually via BEGIN and COMMIT.

In Listing 8-74, you create a new table called from_jupyter_test with four data
types: INTEGER, TEXT, DOUBLE PRECISION[], BYTEA. While readers are no doubt familiar
with the first two data types, at this time I call special attention to the second two. The
trailing brackets on the DOUBLE PRECISION[] type signifies that this is an array of DOUBLE
PRECISION (floating-point) values. BYTEA is a binary type and you will use it to hold numpy
arrays much as you did earlier with Redis.

Listing 8-74.  Create a Table in PostgreSQL from Juptyer

In [7]: con = pg2.connect(host='this_postgres', user='postgres',
database='postgres')
 cur = con.cursor(cursor_factory=pgex.RealDictCursor)
 cur.execute("""
 BEGIN;
 CREATE TABLE from_jupyter_test (
 _id INTEGER,

Chapter 8 ■ The Data Stores

176

 name TEXT,
 list DOUBLE PRECISION[],
 vector BYTEA
);
 COMMIT;
 """)

In Listing 8-75, you insert two rows into the database. Note the special handling of a
list type on insertion. Note also that you have only inserted three values. By default these
will align with the first three columns in the table.

Listing 8-75.  Insert Two Rows into PostgreSQL

In [8]: cur.execute("""
 BEGIN;
 INSERT INTO from_jupyter_test VALUES (1, 'spam', '{1,2,3,4,5}');
 INSERT INTO from_jupyter_test VALUES (2, 'eggs', '{1,4,9,16,25}');
 COMMIT;
 """)

Finally, you query the from_jupyter_test table and display the results in a
pandas.DataFrame (Listing 8-76), before closing the connection (Listing 8-77).

Listing 8-76.  Select All Rows from_jupyter_test and Display in a pandas.DataFrame

In [9]: cur.execute("""
 SELECT * FROM from_jupyter_test;""")
 pd.DataFrame(cur.fetchall())
Out[9]: _id list name vector
 0 1 [1.0, 2.0, 3.0, 4.0, 5.0] spam None
 1 2 [1.0, 4.0, 9.0, 16.0, 25.0] eggs None

Listing 8-77.  Close the Connection

In [10]: con.close()

PostgreSQL Binary Type and Numpy
Like Redis, PostgreSQL has a native binary type, BYTEA, making it ideal for computational
work with numpy. Converting to and from this type is a reasonably straightforward
process. Here, you

	 1.	 Query all lists in your PostgreSQL database (Listing 8-78) and
display them as native Python objects.

	 2.	 Convert these lists to numpy.array objects (Listing 8-79).

	 3.	 Convert the numpy.array objects to PostgreSQL binary objects
using psycopg2.Binary (Listing 8-80).

Chapter 8 ■ The Data Stores

177

	 4.	 Perform two SQL updates on your database, setting the
vector value in the table to be the respective binary object
(Listing 8-81).

	 5.	 Query all values and display in a pandas.DataFrame (Listing 8-82).

	 6.	 Query the vector values, fetch them one at a time, and convert
them back to numpy.array objects (Listing 8-83).

Listing 8-78.  Query List Values and Display Results

In [11]: cur.execute("""
 SELECT list FROM from_jupyter_test;""")
 results = cur.fetchall()
 results
Out[11]: [{'list': [1.0, 2.0, 3.0, 4.0, 5.0]}, {'list': [1.0, 4.0, 9.0, 16.0, 25.0]}]

Listing 8-79.  Convert Lists to numpy.array Objects

In [12]: import numpy as np
 ary_1 = np.array(results[0]['list'])
 ary_2 = np.array(results[1]['list'])

Listing 8-80.  Convert numpy.array Objects to Binary Objects

In [13]: bin_ary_1 = pg2.Binary(ary_1)
 bin_ary_2 = pg2.Binary(ary_2)

Listing 8-81.  Perform SQL Updates

In [14]: update_sql = """
 BEGIN;
 UPDATE from_jupyter_test
 SET vector = {}
 WHERE _id={};
 COMMIT;
 """.format(pg2.Binary(bin_ary_1), 1)
 cur.execute(update_sql)

In [15]: update_sql = """
 BEGIN;
 UPDATE from_jupyter_test
 SET vector = {}
 WHERE _id={};
 COMMIT;
 """.format(pg2.Binary(bin_ary_2), 2)
 cur.execute(update_sql)

Chapter 8 ■ The Data Stores

178

Listing 8-82.  Query and Display All Values

In [16]: cur.execute("""
 SELECT * FROM from_jupyter_test;""")
 pd.DataFrame(cur.fetchall())
Out[16]: _id list name vector
 0 1 [1.0, 2.0, 3.0, 4.0, 5.0] spam [b'\x00', b'\x00', ...
 1 2 [1.0, 4.0, 9.0, 16.0, 25.0] eggs [b'\x00', b'\x00', ...

Listing 8-83.  Convert Vector Value to numpy.array

In [17]: cur.execute("""
 SELECT vector FROM from_jupyter_test;""")
 result = cur.fetchone()
 result
Out[17]: {'vector': <memory at 0x7f8fd643b708>}

In [18]: np.frombuffer(result['vector'])
Out[18]: array([1., 2., 3., 4., 5.])

In [19]: result = cur.fetchone()

In [20]: np.frombuffer(result['vector'])
Out[20]: array([1., 4., 9., 16., 25.])

Summary
This is one of the longest chapters in the book and represents a significant departure
from the material to this point. I introduced three data stores (Redis, MongoDB, and
PostgreSQL) and discussed how to use them with Docker, especially with regard to data
persistence and networking. I discussed ways in which numpy vectors can be serialized
for storage in both Redis and PostgreSQL. I introduced Docker Volumes and Docker
Networks.

This is a chapter that bears repeated readings and that I hope will serve as a
reference for future projects. I hope that you complete the chapter with an understanding
of when each of the three data stores might be used, and I hope you’re confident that you
will be able to configure any one of them using this chapter as reference.

We are drawing near to the end of the text. In the last two chapters, we will make
extensive use of these data stores, looking at how we can use Docker Compose to build
larger applications and finally revisiting the idea of interactive programming and what it
might look like to build software under this paradigm.

179© Joshua Cook 2017
J. Cook, Docker for Data Science, DOI 10.1007/978-1-4842-3012-1_9

CHAPTER 9

Docker Compose

Thus far, I have focused the discussion on single containers or individually managed pairs
of containers running on the same system. In this chapter, you’ll extend your ability to
develop applications comprised of multiple containers using the Docker Compose tool.

The provisioning of systems refers to installation of necessary libraries, the configuration
of resource allocation and network connections, and the management of persistent and
state-specific data. In the past, the provisioning and maintenance of a system might have
been done manually by a system administrator or operations engineer. In recent years, the
DevOps community has thrived around a concept for building software applications called
“infrastructure as code” (IaC). IaC is the practice of using software developed for the specific
purpose of provisioning systems, as opposed to doing this manually.

You have already seen how the Docker toolset can be used to provision systems.
Using a Dockerfile, it is possible to use code to provision the system libraries and Python
libraries required by a specific container. In this chapter, you will explore how to use the
Docker Compose tool to configure resource allocation, connections between multiple
containers, environment variables, and other state-specific data, in addition to persistent
data. Having mastered these concepts, you will begin to think about the multi-container
systems you design as single, containerized applications. Furthermore, using Docker
Compose you will be able to start, stop, and scale your applications using a simple
command line interface.

As you proceed, I will discuss what all of this means to the data scientist. Specifically,
I will emphasize three powerful advantages to working in this way, namely the ability to

	 1.	 Develop locally and deploy anywhere

	 2.	 Quickly and easily share complex applications with
stakeholders

	 3.	 Personally manage infrastructure without needing to rely on
IT resources

Install docker-compose
If you’re running Docker for Linux, docker-compose can be installed using the
instructions provided here: https://github.com/docker/compose/releases. This
will include those of you who have been following along using the recommended best
practice of installing on a disposable cloud-based system. Those using Docker for

../../https@github.com/docker/compose/releases

Chapter 9 ■ Docker Compose

180

Linux will want to follow these instructions. If you’re using Docker for Mac, Docker
for Windows, or Docker Toolbox, you may skip this next section, as docker-compose is
installed by default upon Docker installation.

As of the writing of this text, the process is as outlined. The first set of commands
(Listing 9-1) retrieves the latest compiled binary from GitHub1 and then moves the binary
to an appropriate location on your system. The second command (Listing 9-2) allows the
binary to be executed by the local system.

Listing 9-1.  Download the docker-compose Binary

$ sudo curl -L https://github.com/docker/compose/releases/download/1.15.0/
docker-compose-`uname -s`-`uname -m` > docker-compose
sudo mv docker-compose /usr/local/bin/docker-compose
 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 600 0 600 0 0 2327 0 --:--:-- --:--:-- --:--:-- 2334
100 8066k 100 8066k 0 0 1122k 0 0:00:07 0:00:07 --:--:-- 1556k

Listing 9-2.  Grant Execute Permissions to the docker-compose Binary

$ sudo chmod +x /usr/local/bin/docker-compose

In Listing 9-3, you test your docker-compose installation.

Listing 9-3.  Test docker-compose

$ docker-compose --version
docker-compose version 1.12.0, build b31ff33

What Is docker-compose?
Docker Compose is a tool for managing a multi-container application with Docker.
An application is defined by Compose using a single docker-compose.yml file.
The developer maintains a directory of source code defining an application. This
directory may include a library of Python or C files; zero or more Dockerfiles defining
containers; raw data files such as CSVs, feather,2 or JSON files; and other provisioning
scripts such as a requirements.txt file for a Python project. The docker-compose.yml
file sits at the top level of this directory. The application is built, run, stopped, and
removed using a single docker-compose command. The docker-compose tool refers to
the file as it communicates with the Docker engine, as if the entire application were a
single Docker container.

1https://github.com/docker/compose
2https://blog.rstudio.org/2016/03/29/feather/

../../https@github.com/docker/compose
../../https@blog.rstudio.org/2016/03/29/feather/default.htm

Chapter 9 ■ Docker Compose

181

Docker Compose Versions
The Docker Compose file syntax is currently on Version 3. For new projects, Docker
recommends using the most recent version. That said, all versions are backward-
compatible and many docker-compose.yml files found on the Internet use earlier
versions. A version is specified as the first value in a docker-compose.yml file, as shown
in Listing 9-4. If no version is specified, Version 1 will be used.

Listing 9-4.  A docker-compose.yml File Showing a Version Specification

version: '3'
services:
 db:
 image: postgres
 volumes:
 - data:/var/lib/postgresql/data
 volumes:
 data:
 driver: mydriver

Build a Simple Docker Compose Application
You will build your first Docker Compose application to be a Jupyter Notebook Server
running in conjunction with a Redis server (Figure 9-1).

Figure 9-1.  A simple Docker Compose application

Chapter 9 ■ Docker Compose

182

You will first create a directory to hold your project (Listing 9-5).

Listing 9-5.  Create a Directory to Hold the Project

$ mkdir ch_9_jupyter_redis
$ cd ch_9_jupyter_redis

Next (Listing 9-6), you will use the command line text editor vim3 to create a docker-
compose.yml file (Listing 9-7) to define this application.

Listing 9-6.  Create docker-compose.yml

$ vim docker-compose.yml

Listing 9-7.  jupyter_redis docker-compose.yml File

version: '3'
services:
 this_jupyter:
 image: jupyter/scipy-notebook
 ports:
 - 8888:8888
 volumes:
 - .:/home/jovyan
 this_redis:
 image: redis:alpine

You use the Compose file to define two services, this_jupyter and this_redis.
The this_jupyter service

•	 Uses the jupyter/scipy-notebook from the Docker Hub registry,
as specified by the image: keyword.

•	 Attaches the local directory (.) to the (hopefully familiar) jupyter
WORKDIR, /home/jovyan,4 as specified by the volumes:
keyword.

•	 Forwards the exposed port 8888 to the port 8888 on the host
machine, as specified by the ports: keyword.

•	 Links the container to the Redis container, as specified by the
links: argument.

The redis service uses the redis image with tag alpine5 from the Docker Hub
registry.

3www.vim.org
4https://github.com/jupyter/docker-stacks/blob/master/base-notebook/Dockerfile#L80
5https://alpinelinux.org

../../www.vim.org/default.htm
../../https@github.com/jupyter/docker-stacks/blob/master/base-notebook/Dockerfile#L80
../../https@alpinelinux.org/default.htm

Chapter 9 ■ Docker Compose

183

■■ Note  The definition of every container defined in a docker-compose.yml file must
begin with either the image: argument or the build: argument. I will discuss the build:
argument in the next section of this chapter.

Run Your Application with Compose
You used the docker-compose.yml file to define your application. Now (Listing 9-8), you
use the docker-compose command line tool to start the application. You will use the -d
argument to specify that you wish to launch the application in detached mode.

Listing 9-8.  Start the Compose Application jupyter_redis

$ docker-compose up
Creating network "ch9jupyterredis_default" with the default driver
Creating ch9jupyterredis_this_redis_1
Creating ch9jupyterredis_this_jupyter_1

The docker-compose up command first instructs the Docker Engine to either

	 1.	 Check the local image cache for the specified image if the
container definition begins with the image: keyword.

	 2.	 Build the image from a referenced Dockerfile if the container
definition begins with the build: keyword.

Here, you have passed an image: keyword for both containers. In this case, both
images with which you are working are currently in your image cache. Were they not in
the cache, the Docker engine would pull them from Docker Hub.

Next, the docker-compose up command instructs the Docker engine to create a
network over which the application’s containers can communicate. Here, a network
called ch9jupyterredis_default was created. Listing 9-14 shows how to use this
network.

Finally, the docker-compose up command instructs the Docker engine to create the
containers defined in the docker-compose.yml file. This is equivalent to running the two
commands in Listing 9-9, with one exception: the connection created by docker-compose
is superior to the link created by a --link flag, as you will see in a moment.

■■ Warning  Don’t execute Listing 9-9. It is included here to show what you would run
were you to instantiate these two containers manually.

Chapter 9 ■ Docker Compose

184

Listing 9-9.  Manually Instantiate Two Containers as Defined in docker-compose.yml

$ docker run --name ch9jupyterredis_this_redis_1 redis
$ docker run -v `pwd`:/home/jovyan -p 8888:8888 --name ch9jupyterredis_this_
jupyter_1 --link ch9jupyterredis_this_redis_1 jupyter/scipy-notebook

This method is a mouthful and I hope that readers can see the superficial benefits of
using docker-compose immediately in terms of making the definition of command line
options much more straightforward.

In Listing 9-10, you use docker-compose ps to display process information for the
containers associated with the current docker-compose.yml file.

Listing 9-10.  Display Containers for Current docker-compose.yml

$ docker-compose ps
Name Command
--
ch9jupyterredis_this_jupyter_1 tini -- start-notebook.sh
ch9jupyterredis_this_redis_1 docker-entrypoint.sh redis ...

State Ports
--
Up 0.0.0.0:8888->8888/tcp
Up 6379/tcp

This command will not show information for other containers as docker ps will. In
Listing 9-11, you change directories to go up a level. When you have done that, you have
no docker-compose.yml file that can be referenced by the docker-compose command.
When you request docker-compose ps information in a directory with no docker-
compose.yml file, you receive an error. Following receiving the error, you return to your
project directory.

Listing 9-11.  Request docker-compose ps Information in a Directory with No
docker-compose.yml

$ cd ..
$ ls
ch_9_jupyter_redis
$ docker-compose ps
ERROR:
 Can't find a suitable configuration file in this directory or any
 parent. Are you in the right directory?

 Supported filenames: docker-compose.yml, docker-compose.yaml
$ cd ch_9_jupyter_redis

You can operate on the containers you have created as you would any other Docker
container. In Listing 9-12, you use docker exec to connect to your Jupyter container. From
there you check env and pipe (|) this to a grep for the term redis, so that you can examine
the environment variables associated with the Jupyter container’s link to the Redis container.

Chapter 9 ■ Docker Compose

185

Listing 9-12.  Examine jupyter Environment Variables for redis

$ docker exec ch9jupyterredis_this_jupyter_1 bash
jovyan@63f28e183a88:~$ env | grep redis

Note that nothing is displayed. In Listing 9-13, you verify that this is true by
displaying the full environment.

Listing 9-13.  Examine jupyter Environment Variables

jovyan@db36cb53ea93:~$ env
HOSTNAME=db36cb53ea93
NB_USER=jovyan
SHELL=/bin/bash
TERM=xterm
LC_ALL=en_US.UTF-8
LS_COLORS= ...
PWD=/home/jovyan
LANG=en_US.UTF-8
SHLVL=1
HOME=/home/jovyan
LANGUAGE=en_US.UTF-8
XDG_CACHE_HOME=/home/jovyan/.cache/
DEBIAN_FRONTEND=noninteractive
CONDA_DIR=/opt/conda
NB_UID=1000
_=/usr/bin/env

In Chapter 8, Listing 8-12, you did much the same thing. You created a link to a
running Redis container, although in that case you did so using the --link flag passed
to the docker run argument. You then connected to the running Jupyter container via
a bash shell and grepped the environment variables for THIS_REDIS. If you recall, you
found several variables that could be used in place of referring to the Redis container by
its local IP address. As can be seen, this is not the case when you created an application
comprised of Jupyter and Redis via docker-compose. You are going to need to connect to
Redis in a different way. Fortunately, as you will see in a moment, it is much, much easier.

While you’re here, grab the security token for your Jupyter container so that you will
be able to access Jupyter through your browser (Listing 9-14).

Listing 9-14.  Obtain the jupyter Security Token via bash Shell Connected to the Container

jovyan@63f28e183a88:~$ jupyter notebook list
Currently running servers:
http://localhost:8888/?token=bca81e140ba43b4a3b20591812a6af32289fc66131e8e
5e0 :: /home/jovyan

../../dx.doi.org/10.1007/978-1-4842-3012-1_8
../../dx.doi.org/10.1007/978-1-4842-3012-1_8#Par42

Chapter 9 ■ Docker Compose

186

As before, you will use this to access Jupyter in your browser, substituting localhost
for the appropriate IP address, if necessary. In Figure 9-2, you navigate to your Jupyter
site on a remote AWS t2.micro. You can see that the -v flag has made the lone file in your
local directory, the docker-compose.yml file, available to the Jupyter Notebook server.

Figure 9-2.  Jupyter running on a t2.micro.

Listing 9-15 shows a trivial connection to the Redis container from a Jupyter
Notebook. Here, you make use of the link created by docker-compose. The link quite
simply is the name of the service defined in the docker-compose.yml file, namely,
this_redis.

Listing 9-15.  Connect to redis from jupyter

In [1]: !pip install redis
 Collecting redis
 Downloading redis-2.10.5-py2.py3-none-any.whl (60kB)
 100% |████████████████████████████████| 61kB 2.7MB/s ta 0:00:011
 Installing collected packages: redis
 Successfully installed redis-2.10.5
 You are using pip version 8.1.2, however version 9.0.1 is available.
 �You should consider upgrading via the 'pip install --upgrade pip'

command.
In [2]: import redis
In [3]: REDIS = redis.Redis(host='this_redis')
In [4]: REDIS.incr('my_incrementor')
Out[4]: 1
In [5]: REDIS.get('my_incrementor')
Out[5]: b'1'

Finally, in Listing 9-16, you tear your simple application down using the docker-
compose down command.

Listing 9-16.  Tear Down Application via docker-compose down

$ docker-compose down
Stopping ch9jupyterredis_this_jupyter_1 ... done
Stopping ch9jupyterredis_this_redis_1 ... done
Removing ch9jupyterredis_this_jupyter_1 ... done
Removing ch9jupyterredis_this_redis_1 ... done
Removing network ch9jupyterredis_default

Chapter 9 ■ Docker Compose

187

Note that not only does docker-compose down stop your containers, it removes
them, before removing the customer network defined to connect your containers.

Jupyter and Mongo with Persistence
In Chapter 8, you configured a two-container system consisting of a Jupyter container
and a MongoDB container running on two separate host systems on AWS. Here, you
create the functionally equivalent system using Docker Compose. One advantage of
using Docker Compose to build the system is that you will be able to run both services
from the same host system without putting significant effort into managing your network
configuration. You saw previously when configuring your simple Compose application
that you were able to access Redis simply by using the name you had given to the
service in your docker-compose.yml file. You will take advantage of this simple method
for configuring networks and use two new Docker Compose techniques available: the
configuration of data volumes and the definition of environment variables. Figure 9-3
shows a diagram of the system you will be configuring.

Figure 9-3.  A Docker Compose application with two service and a data volume

Once more, you begin by creating a directory to hold your project (Listing 9-17).
Recall that docker-compose uses the docker-compose.yml file to communicate with
the Docker engine, and as such it is a best practice to create a new directory for each
project and give it its own docker-compose.yml file. In Listing 9-18, you create the new
docker-compose.yml file (Listing 9-19).

../../dx.doi.org/10.1007/978-1-4842-3012-1_8

Chapter 9 ■ Docker Compose

188

Listing 9-17.  Create a Directory to Hold the Project

$ mkdir ch_9_jupyter_mongo
$ cd ch_9_jupyter_mongo

Listing 9-18.  Create the docker-compose.yml file

$ vim docker-compose.yml

Listing 9-19.  ch_9_jupyter_mongo/docker-compose.yml file

version: '3'
services:
 this_jupyter:
 build: docker/jupyter
 ports:
 - "8888:8888"
 volumes:
 - .:/home/jovyan
 env_file:
 - config/jupyter.env
this_mongo:
 image: mongo
 volumes:
 - mongo_data:/data/db
volumes:
 mongo_data:

While you once more use the Compose file to define two services, this_jupyter
and this_mongo, you have done quite a bit more with this file as compared to your
previous application. To begin with, the this_jupyter service is defined not by an image:
keyword, but rather using the build: keyword. Listing 9-22 shows the Dockerfile you
will be using for your build. Additionally, you add the env_file: keyword. Listing 9-24
shows the environment file you will be using. In your definition of this_mongo, you add
a volumes: keyword that makes reference to a mongo_data volume defined later in the
Compose file.

Specifying the Build Context
Here, you have specified the build keyword by providing a string that is a path to
your desired build context. In Chapter 5, you noted that the build context refers to the
collection of files that will be used to build the specific image. In other words, a build
context is a directory that contains the Dockerfile to be used as well as any other files
required by the build. Here, you specify a build context of docker/jupyter. In Listing 9-20,
you create this directory relative to the location of your docker-compose.yml file. Note
that the -p flag passed to the mkdir command allows you to create the nested directory
structure. In this nested directory structure, you are using a best practice that will be
discussed in Chapter 10.

../../dx.doi.org/10.1007/978-1-4842-3012-1_5
../../dx.doi.org/10.1007/978-1-4842-3012-1_10

Chapter 9 ■ Docker Compose

189

Listing 9-20.  Create this_jupyter Build Context

$ mkdir -p docker/jupyter
$ tree
.
├── docker
│ └── jupyter
└── docker-compose.yml

Next (Listing 9-21), you are going to need to create the Dockerfile (Listing 9-22) that
will define your new image. In defining your Dockerfile you are using the best practices
defined in Chapter 7.

Listing 9-21.  Create docker/jupyter/Dockerfile

$ vim docker/jupyter/Dockerfile

Listing 9-22.  docker/jupyter/Dockerfile

FROM jupyter/scipy-notebook
USER root
RUN conda install --yes --name root spacy pymongo
RUN ["bash", "-c", "source activate root && pip install twitter"]
RUN python -m spacy download en
USER jovyan

■■ Note  Since you don’t intend on running any code using the Python 2 kernel, it is not
necessary to install the libraries in the python2 environment. Instead, you only install to the
root environment which, as you recall from Chapter 6, is the Python 3 environment.

Specify the Environment File
In Chapter 8, you obtained a set of OAuth credentials that could be used to stream
tweets directly from Twitter’s Streaming API. It is a best practice in terms of security
to store these credentials in a separate file. Here, you will store those credentials in an
environment file called jupyter.env. You have told Docker Compose to use this file using
the env_file: keyword. In Listing 9-23, you create the config directory to hold this file
and then create the new file shown in Listing 9-24. As before, replace the dummy strings
in the environment file with your actual API credentials.

Listing 9-23.  Create the config Directory and config/jupyter.env

$ mkdir config
$ vim config/jupyter.env

../../dx.doi.org/10.1007/978-1-4842-3012-1_7
../../dx.doi.org/10.1007/978-1-4842-3012-1_6
../../dx.doi.org/10.1007/978-1-4842-3012-1_8

Chapter 9 ■ Docker Compose

190

Listing 9-24.  config/jupyter.env

CONSUMER_KEY=dummy_consumer_key
CONSUMER_SECRET=dummy_consumer_secrete
ACCESS_TOKEN=dummy_access_token
ACCESS_SECRET=dummy_access_secret

■■ Warning T he config/jupyter.env file should be treated as a bash script. This means
that the variable definition requires no spaces on either side of the equal sign. In bash,
var=1 is a variable assignment,6 while var = 1 is a Boolean comparison that will first try to
execute var1.7

In Listing 9-25, you use the tree tool to share the final status of your application
directory.

Listing 9-25.  Use tree to Show the Application Directory

$ tree
.
├── config
│ └── jupyter.env
├── docker
│ └── jupyter
│ └── Dockerfile
└── docker-compose.yml

Data Persistence
In Chapter 8, you used Docker data volumes to persist data beyond the lifespan
of a container. You did this using the docker volume tool, which in the context of
infrastructure as code, you should think of as a manual method. Using a docker-
compose.yml file, it is possible to define a volume in much the same way that a service
is defined (that is, to specify the creation of a volume using code). Furthermore, you
can define how the volume will be used by the application (that is, you can specify an
attachment to a specific service). In Listing 9-19, you define a single volume called mongo_
data and then link that volume to your mongo service.

6http://tldp.org/LDP/abs/html/varassignment.html
7http://tldp.org/LDP/abs/html/gotchas.html#WSBAD

../../dx.doi.org/10.1007/978-1-4842-3012-1_8
../../tldp.org/LDP/abs/html/varassignment.html
../../tldp.org/LDP/abs/html/gotchas.html#WSBAD

Chapter 9 ■ Docker Compose

191

Build Your Application with Compose
Before running your application, you will need to build it. This is because at least one
of your defined services uses the build: keyword as opposed to be image: keyword in
order to define the image that will be used to instantiate its container. In Listing 9-26,
you perform this build. It is worth noting that this command will only affect those
services that are defined using the build: keyword. You can see that the build process
skips this_mongo because it uses an image.

Listing 9-26.  Build the Application Using docker-compose build

$ docker-compose build
this_mongo uses an image, skipping
Building this_jupyter
Step 1/6 : FROM jupyter/scipy-notebook
 ---> 3dc12029099d
Step 2/6 : USER root
 ---> Using cache
 ---> d0fe6db71e0b
Step 3/6 : RUN conda install --yes --name root spacy pymongo
 ---> Running in 26e516e316c3
...
Step 4/6 : RUN bash -c source activate root && pip install twitter
 ---> Running in 5a07f7033056
...
Step 5/6 : RUN python -m spacy download en
 ---> Running in 319588ae94c6
...
Step 6/6 : USER jovyan
 ---> Running in 5c0f78fd96f2
 ---> d928c6dcf4fd
Removing intermediate container 5c0f78fd96f2
Successfully built d928c6dcf4fd
Successfully tagged ch9jupytermongo_this_jupyter:latest

■■ Warning  When docker-compose up is run, the Docker client checks the local image
cache to see if the images associated with each defined service are present in the cache.
For a service defined using the build: keyword, if the image is not in the cache, then the
image will be built. This is to say that docker-compose build will be implicitly called. This
will only happen if the image is not in the local image cache.

Chapter 9 ■ Docker Compose

192

The implications of this are that if changes have been made to a Dockerfile or other
application files, the docker-compose up command has no mechanism for picking up on
the changes and triggering a build. To the uninitiated, it may seem as though a build is
implicitly called by docker-compose up, but truthfully this only happens if the image is
not in the cache. It is for this reason that it is a recommended best practice to always run
docker-compose build before running docker-compose up.

Finally, having completed your build, you run your application, again using the
docker-compose up command (Listing 9-27).

Listing 9-27.  Start the Compose Application jupyter_mongo

$ docker-compose up -d
Starting ch9jupytermongo_this_mongo_1
Starting ch9jupytermongo_this_jupyter_1
ubuntu@LOCAL:~/ch_9_jupyter_mongo

In Listing 9-28, you again use the docker-compose ps tool to display process
information for the containers associated with your current application.

Listing 9-28.  Display Containers for Current docker-compose.yml

$ docker-compose ps
Name Command

ch9jupytermongo_this_jupyter_1 tini -- start-notebook.sh
ch9jupytermongo_this_mongo_1 docker-entrypoint.sh mongod

State Ports

Up 0.0.0.0:8888->8888/tcp

Up 27017/tcp

Next (Listing 9-29), you obtain the security token for your Jupyter container so that
you will be able to access Jupyter through your browser.

Listing 9-29.  Obtain jupyter Security Token via a Shell Call to the Container

$ docker exec ch9jupytermongo_this_jupyter_1 jupyter notebook list
Currently running servers:
http://localhost:8888/?token=0029b465c514ce18856a5a2751a95466504fac1
8b43531ce :: /home/jovyan

Finally, in Figure 9-4, you navigate to a browser and, using the IP associated with
your host system, you access Jupyter.

Chapter 9 ■ Docker Compose

193

In order to test your system, you will once more stream tweets using a location-based
filter. As in Chapter 8, you will insert each tweet you collect into MongoDB. To add a level
of complexity, prior to inserting the tweet into MongoDB, you will use the spaCy library
to encode that tweet text as a numpy vector. In order to store the vector in MongoDB, you
will need to serialize the vector as a binary bytestream. You did this with Redis in Chapter
8 and here you do the same with MongoDB.

You first configure your Twitter authentication. You import the environ object from
the os module and the OAuth class from the twitter module. The environ object8 is a
mapping9 object representing the operating system’s string environment. It is captured
at the time of import. Here, you will use it to reference to the environment variables
containing your credentials as defined in the docker-compose.yml and config/jupyter.
env files; see Listing 9-30.

Listing 9-30.  Import Modules Necessary to Configure Twitter Authentication

In [1]: from os import environ
 from twitter import OAuth

In Listing 9-31, you instantiate an OAuth object using the stored credentials. Note that
each value is accessed using its key similar to a dictionary.

Listing 9-31.  Instantiate the OAuth Object

In [2]: oauth = OAuth(environ['ACCESS_TOKEN'],
 environ['ACCESS_SECRET'],
 environ['CONSUMER_KEY'],
 environ['CONSUMER_SECRET'])

In Listing 9-32, you import the TwitterStream class and instantiate an object of that
class using your defined authentication.

Figure 9-4.  Jupyter running on a t2.micro

8https://docs.python.org/3/library/os.html#os.environ
9https://docs.python.org/3/glossary.html#term-mapping

../../dx.doi.org/10.1007/978-1-4842-3012-1_8
../../dx.doi.org/10.1007/978-1-4842-3012-1_8
../../https@docs.python.org/3/library/os.html#os.environ
../../https@docs.python.org/3/glossary.html#term-mapping

Chapter 9 ■ Docker Compose

194

Listing 9-32.  Instantiate TwitterStream

In [3]: from twitter import TwitterStream

 los_angeles_bbox = "-118.55, 33.97, -118.44, 34.05"
 twitterator = (TwitterStream(auth=oauth)
 .statuses
 .filter(locations=los_angeles_bbox))

Finally, in Listing 9-33, you pull a single tweet from the stream and then display its keys.

Listing 9-33.  Pull a Single Tweet and Display Its keys

In [4]: this_tweet = next(twitterator)
 this_tweet.keys()

You now have a tweet in memory and can insert it into MongoDB. Prior to insertion
you will use the spaCy library to encode the tweet as a vector. You will add the encoded
vector to the dictionary containing your tweet as a binary bytestream. First (Listing 9-34),
you import spacy and load the en model. In doing so, on your t2.micro, you receive a
memory error.

Listing 9-34.  Import spacy and Load the en Language Model

In [5]: import spacy

 nlp = spacy.load('en')
 --
 MemoryError Traceback (most recent call last)
 <ipython-input-8-e0448d429293> in <module>()
 1 import spacy
 2
 ----> 3 nlp = spacy.load('en')

Well, at first such an error might be annoying or even daunting, but being able
to efficiently deal with issues like this is a primary reason why you are learning this
technology in the first place. In Listing 9-35, you use the docker stats tool to diagnose
your error. Note that docker-compose does not have its own docker stats tool so you
simply use the standard tool you have been using previously.

Listing 9-35.  Use docker stats to Diagnose a Memory Error

CONTAINER CPU % MEM USAGE / LIMIT MEM %
698ba3322462 0.02% 539.2MiB / 990.7MiB 54.43%
a37b17785360 0.37% 49.77MiB / 990.7MiB 5.02%

NET I/O BLOCK I/O PIDS
1.26MB / 1.88MB 89.1GB / 1.42MB 15

21.8kB / 28.9kB 184GB / 15.5MB 22

Chapter 9 ■ Docker Compose

195

It is of note that there are two containers running on your system and that docker
stats does not give them human-readable names. You can intuit from the memory usage
that 698ba3322462 is the Jupyter container. You can kill the docker stats tool with Ctrl+C
and use docker ps to verify this, as in Listing 9-36.

Listing 9-36.  Use docker ps to Diagnose a Memory Error

CONTAINER ID IMAGE ... NAMES
698ba3322462 ch9jupytermongo_this_jupyter ... ch9jupytermongo_this_jupyter_1
a37b17785360 mongo ... ch9jupytermongo_this_mongo_1

Sure enough, it is the Jupyter container that is using more than half of the system
memory … and in a failed state! It did not even finish loading the model. According
the spaCy docs on their particular models,10 it appears that loading the English model
requires 1GB of RAM. Considering that this is the entirety of the RAM on your t2.micro,
you will not be able to load the spaCy English model on a t2.micro.

Let’s set the solution of this problem aside for a moment. First, you simply insert
the tweet into MongoDB (Listing 9-37) as you did in Chapter 8. You do so by importing
the pymongo module and instantiating a client to the database, before using that client
to insert this_tweet. In Listing 9-38, you count the number of tweets in your tweet_
collection to verify its insertion.

Listing 9-37.  Insert a Single Tweet into MongoDB

In [6]: import pymongo

 mongo_cli = pymongo.MongoClient('this_mongo')
 result = (mongo_cli
 .twitter_database
 .tweet_collection
 .insert_one(this_tweet))

Listing 9-38.  Count Tweets in tweet_collection

In [6]: (mongo_cli
 .twitter_database
 .tweets_collection.count())
Out[6]: 1

Scaling an AWS Application via Instance Type
In Chapter 1, you explored memory usage for various sized datasets, models, and model
fitting procedures. The purpose of this was to examine memory constraints on an AWS
t2.micro, the recommended system for working through this text. At the time, this
examination was thoroughly academic. Here, you have hit an actual system constraint.

10https://spacy.io/docs/usage/models

../../dx.doi.org/10.1007/978-1-4842-3012-1_8
../../dx.doi.org/10.1007/978-1-4842-3012-1_1
../../https@spacy.io/docs/usage/models

Chapter 9 ■ Docker Compose

196

You wish to load a language model available through the spaCy library that simply can’t
fit on your t2.micro. Using Docker, Docker-Compose, and AWS, you will create an
efficient method for solving this problem. To do this, you

	 1.	 Shut down your Docker Compose application but keep your
data volume.

	 2.	 Shut down your AWS instance.

	 3.	 Change the instance type of your AWS instance to a type that
can meet your requirements, a t2.medium

	 4.	 Restart the AWS Instance, taking note of the new IP address
generated.

	 5.	 Restart the Docker Compose application.

	 6.	 Perform your computation.

In Listing 9-39, you prepare to make the changes to your AWS instance by shutting
down your application. Because you issue only a basic docker-compose down command,
your Docker volume will persist through the entire process and you will not lose your
MongoDB of tweets. It contains only one tweet, but this is sufficient for demonstration
purposes.

Listing 9-39.  Shut Down the Docker Compose Application

$ docker-compose down Stopping ch9jupytermongo_this_jupyter_1 ... done
Stopping ch9jupytermongo_this_mongo_1 ... done
Removing ch9jupytermongo_this_jupyter_1 ... done
Removing ch9jupytermongo_this_mongo_1 ... done
Removing network ch9jupytermongo_default

In Figure 9-5, you navigate to the EC2 control panel and shut down your running
instance. To do this, you select “Stop” from the “Instance State” menu item on the Actions
Menu. This is the first step in changing the instance type. The instance must be stopped
in order to make the changes.

Chapter 9 ■ Docker Compose

197

You have been working on a t2.micro. Figure 9-6 shows the on-demand instance
pricing and technical specs for instances launched in the US West (Oregon) region. As is
shown, AWS t2.micro has 1GB of RAM, insufficient to load the spaCy library you wish
to use. To play it safe, change your instance type to a t2.medium, which has 4GB of RAM.
This should be more than enough to load the 1GB spaCy model. In Figure 9-7, you change
your AWS instance type. Select “Change Instance Type” from the “Instance Settings”
menu item on the Actions menu.

Figure 9-5.  Stop the AWS instance

Figure 9-6.  On-demand instance pricing and specs for US West (Oregon)

Chapter 9 ■ Docker Compose

198

Having changed the instance type, in Figure 9-8, you start the instance again using
“Start” from the “Instance State” menu item in the Actions menu.

Figure 9-7.  Change instance type

Figure 9-8.  Start the AWS instance

■■ Warning S topping your AWS instance will release the IP address you have been using.
When the instance is started again, you will need to obtain the new IP address assigned to
your system.

Chapter 9 ■ Docker Compose

199

In Figure 9-9, you identify the new IP address assigned to your instance.

Figure 9-9.  The new IP address

Restart Docker Compose Application
You have successfully modified the virtual hardware associated with your EC2 instance.
You now restart your Docker Compose application. Because of your use of a Docker volume
to persist your data, you should have no data loss during the process. In Listing 9-40, you
reconnect to your AWS instance and navigate to the application directory.

Listing 9-40.  Reconnect to the AWS Instance and Navigate to the Application Directory

(local) $ ssh ubuntu@ 54.244.99.222
 (AWS) $ cd ch_9_jupyter_mongo/

In Listing 9-41, you start the application in detached mode.

Listing 9-41.  Start the Docker Compose Application in Detached Mode

$ docker-compose up -d

In Listing 9-42, you obtain the new security token for your Jupyter Notebook Server.

Listing 9-42.  Obtain Jupyter Notebook Server Security Token

$ docker exec ch9jupytermongo_this_jupyter_1 jupyter notebook list
Currently running servers:
http://localhost:8888/?token=981014c28f5c8f694fd0321f418fddce6904f46857ace0
bc :: /home/jovyan

Complete the Computation
Having modified your system’s virtual hardware, you return to the task at hand. In Listing 9-43,
you walk through the steps of your work.

Chapter 9 ■ Docker Compose

200

Listing 9-43.  Rerun Preliminary Work

In [1]: from os import environ
 from twitter import OAuth

 oauth = OAuth(environ['ACCESS_TOKEN'],
 environ['ACCESS_SECRET'],
 environ['CONSUMER_KEY'],
 environ['CONSUMER_SECRET'])

In [2]: from twitter import TwitterStream

 los_angeles_bbox = "-118.55, 33.97, -118.44, 34.05"
 twitterator = (TwitterStream(auth=oauth)
 .statuses
 .filter(locations=los_angeles_bbox))

In [3]: tw = next(twitterator)

In [4]: tw.keys()
Out[4]: dict_keys(['text', 'source', 'in_reply_to_status_id_str',
'favorited',
 �'is_quote_status', 'in_reply_to_status_id', 'lang', 'filter_level',

'geo',
 �'favorite_count', 'created_at', 'entities', 'coordinates',

'in_reply_to_user_id_str',
 �'retweeted', 'truncated', 'retweet_count', 'id', 'contributors',

'in_reply_to_user_id',
 �'user', 'place', 'in_reply_to_screen_name', 'id_str',

'timestamp_ms'])

In [5]: import pymongo

 mongo_server = pymongo.MongoClient('this_mongo')

In [6]: mongo_server.twitter.tweets.count()
Out[6]: 1

In [7]: result = (mongo_server
 .twitter
 .tweets
 .insert_one(tw))

In [8]: mongo_server.twitter.tweets.count()
Out[8]: 2

Note that in Listing 9-43, Out[6], you receive an output of 1 for the count of tweets
stored in your MongoDB. This verifies that the tweet you inserted into your MongoDB
prior to changing your instance type has persisted through the change.

Chapter 9 ■ Docker Compose

201

Encode Tweets as Document Vectors
In Chapter 8, you looked at serializing numpy vectors for insertion into both Redis and
PostgreSQL. Here, you add an additional step to the process, before inserting a serialized
numpy vector into MongoDB. Previously, these vectors were merely demonstration vectors
and had no meaning. Now, you use the spacy.nlp English model to encode the tweets
you have collected as numpy vectors representing the tweets, that is, as document vectors.
In Listing 9-44, you load the spacy.nlp English model. This time the load is successful.

■■ Note  I am purposefully avoiding an in-depth discussion of the spaCy library because
it’s beyond the scope of this text. Readers interested in its use are referred to the library’s
documentation at http://spacy.io.

Listing 9-44.  Import spacy and Load the English Model

In [9]: import spacy

 nlp = spacy.load('en')

In Listing 9-45, you perform a search of all tweet documents. The search returns not
the results themselves, but a cursor you can use to iterate through the documents one by
one. This will be useful, as you will never have more than one document in memory at a
time. You use the .next() class function to retrieve the first tweet.

Listing 9-45.  Create a Cursor for a Search of All Tweets and Retrieve a Single Tweet

In [10]: cursor = mongo_server.twitter.tweets.find()
 stored_tweet = cursor.next()

In Listing 9-46, you display the text of the tweet.

Listing 9-46.  Display Text of a Single Tweet

In [11]: stored_tweet['text']
Out[11]: 'Amazing day exploring the Sunken City. #California is
unbelievable....
 https://t.co/INl0o1znc7'

In Listing 9-47, you use the spacy.nlp English model to create a document object
using the text from the tweet. This document object contains the associated document
vector as the attribute .vector. In Listing 9-48, you display the dimension of this vector
using the .shape attribute.

Listing 9-47.  Create Document Vector from Tweet Text

In [12]: doc = nlp(stored_tweet['text'])

../../dx.doi.org/10.1007/978-1-4842-3012-1_8
../../spacy.io/default.htm

Chapter 9 ■ Docker Compose

202

Listing 9-48.  Display Shape of Document Vector

In [13]: doc.vector.shape
Out[13]: (300,)

In Listing 9-49, you update your tweet document in MongoDB. The .update_one()
function takes two dictionary arguments. The first argument is a dictionary used to
search for the document you wish to update. Here, you specify that you wish to update a
document with an _id matching your stored_tweet. The second argument specifies the
value(s) you wish to update. In this case, you wish to set the key 'document_vector' to
the serialized value of your document vector. Note that you use the .tostring() function
to serialize your document vector for storage.

Listing 9-49.  Update MongoDB tweet Document with Serialized Document Vector

In [14]: mongo_server.twitter.tweets.update_one(
 {'_id': stored_tweet['_id']},
 {'$set': {'document_vector': doc.vector.tostring()}})
Out[14]: <pymongo.results.UpdateResult at 0x7f2796c6d750>

You then repeat the process for the second tweet. In Listing 9-50, you retrieve the
second tweet and display its text. In Listing 9-51, you create the document vector. In
Listing 9-52, you update the tweet document in MongoDB.

Listing 9-50.  Retrieve Next Tweet and Display Text

In [15]: stored_tweet = cursor.next()
 stored_tweet['text']
Out[15]: "Idk what's so soothing about their fingers changing"

Listing 9-51.  Create Document Vector from Tweet Text

In [16]: doc = nlp(stored_tweet['text'])

Listing 9-52.  Update MongoDB tweet Document with Serialized Document Vector

In [17]: mongo_server.twitter.tweets.update_one(
 {'_id': stored_tweet['_id']},
 {'$set': {'document_vector': doc.vector.tostring()}})
Out[17]: <pymongo.results.UpdateResult at 0x7f2796c48fc0>

Switch AWS Instance Type to t2.micro
Having encoded the two tweets, you have completed the resource-intensive component
of your task and no longer need the spacy.nlp English model. This means that you can
switch your AWS instance type back to a t2.micro. This is done in the exact same fashion
as switching to a t2.medium. Because you have written your results to MongoDB and used
a Docker volume to persist data in MongoDB, your work will persist during the change.
To make the change, you

Chapter 9 ■ Docker Compose

203

	 1.	 Stop the Docker Compose application.

	 2.	 Shut down your AWS instance.

	 3.	 Change the instance type of your AWS instance back to a
t2.micro.

	 4.	 Restart the AWS instance, taking note of the new IP address
generated.

	 5.	 Restart the Docker Compose Application.

Retrieve Tweets from MongoDB and Compare
Using your t2.micro you can perform some comparisons of your tweet vectors. To do
this, you create a new Jupyter Notebook. In Listing 9-53, you connect to MongoDB.

Listing 9-53.  Connnect to MongoDB

In [1]: import pymongo
 mongo_server = pymongo.MongoClient('this_mongo')

In Listing 9-54, you search all tweets in MongoDB using .find(). This time, you do
not work with a cursor; rather you cast the returned cursor to a list. Without going too
far into the Python of what you are doing, the effect is to create a list of tweets pulled
from MongoDB. Because you have used the keyword argument projection to request
document_vector, the list will contain only the _id and document_vector for each tweet.

Listing 9-54.  Retrieve a List of Document Vectors from MongoDB

In [2]: tweet_vectors = list(mongo_server.twitter.tweets.
find(projection=['document_vector']))

In Listing 9-55, you deserialize the bytestream document vectors into numpy
vectors so that you can use them for a calculation. You do this, as you did in Chapter 8,
using the .fromstring() function.

Listing 9-55.  Create a List of numpy Document Vectors

In [3]: import numpy as np
 tweet_vectors_np = [tw['document_vector'] for tw in tweet_vectors]
 tweet_vectors_np = [np.fromstring(tw) for tw in tweet_vectors_np]

In Listing 9-56, you perform a cosine similarity calculation between your two
tweet document vectors. The results show that these two tweets are very similar, at least
according to their spacy.nlp English model encoding.

../../dx.doi.org/10.1007/978-1-4842-3012-1_8

Chapter 9 ■ Docker Compose

204

Listing 9-56.  Calculate Cosine Similarity of the Two Tweets

In [4]: from sklearn.metrics.pairwise import cosine_similarity
 cosine_similarity(tweet_vectors_np[0].reshape(1, -1),
 tweet_vectors_np[1].reshape(1, -1))
Out[4]: array([[0.99992551]])

Docker Compose Networks
In Chapter 8, you launched and configured a PostgreSQL database on the same system as
your Jupyter Notebook Server using a manually configured Docker Network. Although the
process is non-trivial, working through that section can provide meaningful insights into
how Docker configures networks internal to Docker to be used by containers to connect
to each other. With Docker Compose there is an easier way.

■■ Note  Networking in Docker Compose is significantly different for docker-compose.
yml files using Version 2 or higher. I continue to recommend the use of Version 3 and state
this for completeness. This is to say that I will continue to operate as if you are working
with Version 3 but you should be aware of the significant upgrades to networking in Docker
Compose between Version 1 and Version 2.

At runtime, Docker Compose automatically sets up a single network for the application.
Service containers defined in the docker-compose.yml file join this network by default, and
are immediately available to other containers in the application and are discoverable by the
name used to define the service. Consider the application defined in the sample docker-
compose.yml file in Listing 9-57, presumed to be in a directory named ch_9_sample.

Listing 9-57.  Sample docker-compose.yml File

version: "3"
services:
 this_jupyter:
 image: jupyter/scipy-notebook
 ports:
 - "8888:8888"
 this_redis:
 image: redis:alpine
 this_posstgres:
 image: postgres:alpine

When you run docker-compose up, docker-compose instructs the Docker Engine to

	 1.	 Create a network named ch9sample_default.

	 2.	 Create a container named ch9sample_this_jupyter with port
8888 in the container exposed over port 8888 on the host.

../../dx.doi.org/10.1007/978-1-4842-3012-1_8

Chapter 9 ■ Docker Compose

205

	 3.	 Instruct ch9sample_this_jupyter to join ch9sample_default
using the name this_jupyter.

	 4.	 Create a container named ch9sample_this_redis.

	 5.	 Instruct ch9sample_this_redis to join ch9sample_default
using the name this_redis.

	 6.	 Create a container named ch9sample_this_postgres.

	 7.	 Instruct ch9sample_this_ postgres to join ch9sample_
default using the name this_postgres.

Now each container in the application can access every other container using the
container’s name on the network, such as this_jupyter, this_redis, or this_postgres
(Figure 9-10).

Figure 9-10.  A sample default Docker Compose network configuration

Jupyter and Postgres with Persistence
For your final application in this chapter, you will build a Jupyter Notebook and
PostgreSQL application (Figure 9-11). You will configure PostgreSQL to work with a data
volume for persistence. You will also set up Postgres to use a build rather than an image.

Chapter 9 ■ Docker Compose

206

In Chapter 8, I mentioned that PostgreSQL has a natural aptitude for working with
CSV files. Additionally, the public image for PostgreSQL has several build hooks to aid in
initializing the database at runtime. Per the postgres documentation on Docker Hub11:

After the entrypoint calls initdb to create the default postgres user and
database, it will run any *.sql files and source any *.sh scripts found in
that directory to do further initialization before starting the service.

What this means is that you can add SQL files and shell scripts as part of the image
build process that will execute automatically at runtime and set up your database for you.

Again, you begin by creating a directory to hold your project (Listing 9-58).
In Listing 9-59, you create the new docker-compose.yml file (Listing 9-60).

Listing 9-58.  Create a Directory to Hold the Project

$ mkdir ch_9_jupyter_postgres
$ cd ch_9_jupyter_postgres

Listing 9-59.  Create docker-compose.yml File

$ vim docker-compose.yml

Figure 9-11.  A Docker Compose application with two services and a data volume

11https://hub.docker.com/_/postgres/

../../dx.doi.org/10.1007/978-1-4842-3012-1_8
../../https@hub.docker.com/_/postgres/default.htm

Chapter 9 ■ Docker Compose

207

Listing 9-60.  ch_9_jupyter_postgres/docker-compose.yml file

version: '3'
services:
 this_jupyter:
 build: docker/jupyter
 ports:
 - "8888:8888"
 volumes:
 - .:/home/jovyan
 this_postgres:
 build: docker/postgres
 volumes:
 - postgres_data:/var/lib/postgresql/data
volumes:
 postgres_data:

Specifying the Build Context
Readers will note that both services you define here use the build: keyword rather than
the image: keyword. This means that your project will require two build contexts, one for
each image. In Listing 9-61, you create two build contexts and then display your current
project using tree.

Listing 9-61.  Create Two Build Contexts

$ mkdir -p docker/jupyter
$ mkdir -p docker/postgres
$ tree
.
├── docker
│ ├── jupyter
│ └── postgres
└── docker-compose.yml

Next, in Listing 9-62, you create the first Dockerfile (Listing 9-63) for your this_
jupyter service. You use this Dockerfile only to install the psycopg2 module you will be
using to access PostgreSQL.

Listing 9-62.  Create docker/jupyter/Dockerfile

$ vim docker/jupyter/Dockerfile

Listing 9-63.  docker/jupyter/Dockerfile

FROM jupyter/scipy-notebook
USER root
RUN conda install --yes --name root psycopg2
USER jovyan

Chapter 9 ■ Docker Compose

208

In Listing 9-64, you create the second Dockerfile (Listing 9-65) for your this_postgres
service. In this Dockerfile, you use the postgres:alpine image as a base image and copy
two files from the build context to the image, get_data.sh (Listing 9-66) and initdb.sql
(Listing 9-67). As noted above, because you add these files to /docker-entrypoint-
initdb.d/, at runtime the shell script will be executed by bash and the SQL file by
PostgreSQL. You will use this to create a table in your database and populate it with data.

Listing 9-64.  Create docker/postgres/Dockerfile

$ vim docker/postgres/Dockerfile

Listing 9-65.  docker/postgres/Dockerfile

FROM postgres:alpine
COPY get_data.sh /docker-entrypoint-initdb.d/get_data.sh
COPY initdb.sql /docker-entrypoint-initdb.d/initdb.sql

■■ Note  You obtain the CSV file you use to populate the database from the UCI Machine
Repository.12 There is an issue with this data in that some values are missing and have been
replace with a ‘?’ character. In order to deal with this, I have used the stream editor tool
sed13 to replace all instances of the ‘?’ character with nothing (i.e. remove the ‘?’ character
from the file altogether).

Listing 9-66.  docker/postgres/get_data.sh

#!/bin/bash
wget -P /tmp/ http://archive.ics.uci.edu/ml/machine-learning-databases/
breast-cancer-wisconsin/breast-cancer-wisconsin.data
sed 's/?//' /tmp/breast-cancer-wisconsin.data > /tmp/bcdata-clean.csv

Listing 9-67.  docker/postgres/initdb.sql

CREATE TABLE bc_data (
 sample_id INTEGER UNIQUE PRIMARY KEY,
 clump_thickness INTEGER,
 uniformity_of_cell_size INTEGER,
 uniformity_of_cell_shape INTEGER,
 marginal_adhesion INTEGER,
 single_epithelial_cell_size INTEGER,
 bare_nuclei INTEGER,
 bland_chromatin INTEGER,

12http://archive.ics.uci.edu/ml/datasets.html
13www.gnu.org/software/sed/manual/sed.html

../../archive.ics.uci.edu/ml/datasets.html
../../www.gnu.org/software/sed/manual/sed.html

Chapter 9 ■ Docker Compose

209

 normal_nucleoli INTEGER,
 mitoses INTEGER,
 class INTEGER
);
COPY bc_data FROM /tmp/bcdata-clean.csv DELIMITER ',' CSV;

In Listing 9-68, you use the tree tool to show the final state of your project.

Listing 9-68.  Use tree to Show Application Directory

$ tree
.
├── docker
│ ├── jupyter
│ │ └── Dockerfile
│ └── postgres
│ ├── Dockerfile
│ ├── get_data.sh
│ └── initdb.sql
└── docker-compose.yml

Build and Run Your Application with Compose
In preparation for running your application, you use docker-compose build to build the
two images used to define your services (Listing 9-69).

Listing 9-69.  Build Application Using docker-compose build

$ docker-compose build
Building this_jupyter
Step 1/4 : FROM jupyter/scipy-notebook
...
Step 2/4 : USER root
...
Step 3/4 : RUN conda install --yes --name root psycopg2
...
Step 4/4 : USER jovyan
...
Successfully built b98e9ab6ee7e
Successfully tagged ch9jupyterpostgres_this_jupyter:latest
Building this_postgres
Step 1/3 : FROM postgres:alpine
...
Step 2/3 : COPY get_data.sh /docker-entrypoint-initdb.d/get_data.sh
...
Step 3/3 : COPY initdb.sql /docker-entrypoint-initdb.d/initdb.sql
...
Successfully built 97b956a4da7a
Successfully tagged ch9jupyterpostgres_this_postgres:latest

Chapter 9 ■ Docker Compose

210

Finally, in Listing 9-70, you run your application using docker-compose up. Note that
both a default network and your volume for data persistence are created prior to creating
and starting your service containers.

Listing 9-70.  Start the Compose Application jupyter_postgres

$ docker-compose up -d
Creating network "ch9jupyterpostgres_default" with the default driver
Creating volume "ch9jupyterpostgres_postgres_data" with default driver
Creating ch9jupyterpostgres_this_jupyter_1
Creating ch9jupyterpostgres_this_postgres_1
Starting ch9jupyterpostgres_this_jupyter_1
Starting ch9jupyterpostgres_this_postgres_1

In Listing 9-71, you display process information for your application.

Listing 9-71.  Display Containers for Current docker-compose.yml

$ docker-compose ps
Name Command

ch9jupyterpostgres_this_jupyter_1 tini -- start-notebook.sh
ch9jupyterpostgres_this_postgres_1 docker-entrypoint.sh postgres

State Ports

Up 0.0.0.0:8888->8888/tcp
Up 5432/tcp

In Listing 9-72, you use docker-compose logs to display the logs associated with the
this_postgres service.

Listing 9-72.  Display Logs for this_postgres

$ docker-compose logs this_postgres
Attaching to ch9jupyterpostgres_this_postgres_1
this_postgres_1 | The files belonging to this database system will be owned
by user "postgres".
...
this_postgres_1 | /usr/local/bin/docker-entrypoint.sh: running /docker-
entrypoint-initdb.d/get_data.sh
this_postgres_1 | Connecting to archive.ics.uci.edu (128.195.10.249:80)
this_postgres_1 | breast-cancer-wiscon 100%
|*******************************| 19889 0:00:00 ETA
...
this_postgres_1 | /usr/local/bin/docker-entrypoint.sh:
running /docker-entrypoint-initdb.d/initdb.sql
this_postgres_1 | CREATE TABLE
this_postgres_1 | COPY 699
...

Chapter 9 ■ Docker Compose

211

What you wish to see here is the successful collection and insertion of the data. You
can also connect to the running service via docker exec (Listing 9-73) to verify that the
correct number of rows were inserted. Here you use the word count tool named wc14 to
count the number of lines in the file you downloaded.

Listing 9-73.  Connect to this_postgres via docker exec

$ docker exec -it ch9jupyterpostgres_this_postgres_1 bash
bash-4.3# wc -l /tmp/breast-cancer-wisconsin.data
699 /tmp/breast-cancer-wisconsin.data

Last, you connect to Jupyter to test some code. In Listing 9-74, you perform a simple
count of the number of rows in your bc_data table.

Listing 9-74.  Count the Number of Rows in the bc_data Table

In [1]: import psycopg2 as pg2
In [2]: con = pg2.connect(host='this_postgres', user='postgres',
database='postgres')
 cur = con.cursor()
 cur.execute("SELECT COUNT(*) FROM bc_data;")
 cur.fetchall()
Out[2]: [(699,)]

Note that you have made use of the network created for you by specifying your host
as 'this_postgres'.

Summary
In this chapter, I introduced the Docker Compose tool. You then used all of the
techniques and tools discussed so far to build multi-service data applications using this
tool. You built a trivial Jupyter-Redis application. You built a more complicated Jupyter-
MongoDB application and explored the configuration of data persistence using Docker
Compose. While using your Jupyter-MongoDB application you learned how to switch
the underlying virtual hardware of your application if running as an AWS instance.
Finally, you built a Jupyter-PostgreSQL application. In building the Jupyter-PostgreSQL
application, you saw how to use build hooks defined in the postgres Docker image to
load data into a database at runtime.

Having completed this chapter, I hope you will be able to design your own
simple multi-service applications using Jupyter and any or all of the data stores I have
introduced. In the next chapter, I will revisit the interactive programming paradigm and
introduce the idea of building software with this paradigm at its core. You will use Docker
Compose to build this software.

14https://linux.die.net/man/1/wc

../../https@linux.die.net/man/1/wc

213© Joshua Cook 2017
J. Cook, Docker for Data Science, DOI 10.1007/978-1-4842-3012-1_10

CHAPTER 10

Interactive Software
Development

Developing software as a data scientist is different from traditional software engineering
and far less understood. For the traditional software developer, For any language,
framworks built around reuse, extensibility, and stability exist. The most famous of these
might be the Rails framework for the Ruby language. Rails is written from the ground
up around its adopted paradigm, the Model-View-Controller design pattern, a pattern
heavily favored in the implementation of user-facing software. Listing 10-1 shows the
creation of and the default file structure for a new Rails application. Note that the new
application has clear directories created for it based upon the usage pattern.

Listing 10-1.  A Default Rails Application

$ rails new myapp
 create
 ...
$ tree -L 1 myapp/app
myapp/app/
├── assets
├── channels
├── controllers
├── helpers
├── jobs

├── mailers
├── models
└── views

Data science-specific software development has no such design pattern around
which a similar framework might be built. In Chapter 3, I introduced the idea of
interactive computing as an alternative to conventional programming. In this chapter,
I propose that the idea of interactive computing itself be adopted as the cornerstone
idea for a potential framework. You’ll develop a project framework with infrastructure
defined by a docker-compose.yml, built around Jupyter as your interactive computing

../../dx.doi.org/10.1007/978-1-4842-3012-1_3

Chapter 10 ■ Interactive Software Development

214

driver. The goals of this framework are aligned with those of an interactive computing
project. This framework should facilitate ease in

•	 Iteration

•	 Scaling and distribution of hardware

•	 Sharing and documentation of work

A Quick Guide to Organizing Computational
Biology Projects
For inspiration for this framework, let’s look at the work of William Noble of the University
of Washington.1 Noble’s work describes “one good strategy for carrying out computational
experiments,” focusing on “relatively mundane issues such as organizing files directories
and documenting progress.”

Noble focuses on a few key principles to structuring a project:

•	 File and directory organization

•	 Documenting work

•	 Executing work

•	 Version control

Figure 10-1 shows Noble’s diagram for file and directory organization for a sample
project called msms.

Figure 10-1.  Noble’s sample project, msms

1Noble, William Stafford; “A Quick Guide to Organizing Computational Biology Projects,” PLOS
Computational Biology, July 31, 2009, http://journals.plos.org/ploscompbiol/
article?id=10.1371/journal.pcbi.1000424.

http://journals.plos.org/ploscompbiol/article?id= 10.1371/journal.pcbi.1000424
http://journals.plos.org/ploscompbiol/article?id= 10.1371/journal.pcbi.1000424

Chapter 10 ■ Interactive Software Development

215

A Project Framework for Interactive Development
You’ll draw directly upon this work to develop your framework. You’ll use Jupyter
Notebooks, numbered in sequence, as a method for both documenting and executing
your work. These notebooks become a detailed record of activity as well as the means by
which you drive this activity. Furthermore, you’ll present a directory hierarchy designed
around the use of the Jupyter Notebook as the driver of your work. Figure 10-2 shows a
directory hierarchy built for interactive development.

Figure 10-2.  Directory hierachy built for interactive development

You’ll build the directory hierarchy of your project using the following directories:

•	 data

•	 Contains raw data files

•	 docker

•	 Contains a subdirectory for each image to be defined using
a build

•	 Each subdirectory will become the build context for the
respective image

•	 ipynb

•	 Contains all Jupyter Notebook files

•	 Replaces bin, doc, and results directories

•	 Notebooks are drivers, scripts, documentation, and
presentation

•	 Notebooks are named with date and activity to sort
them in place

•	 lib

•	 Contains project-specific code modules, defined in the
course of project development

Chapter 10 ■ Interactive Software Development

216

Project Root Design Pattern
In Chapter 3, I proposed that

Jupyter doesn’t replace vim, Sublime Text, or PyCharm. Jupyter replaces
if __name__ == "__main__":.

The if __name__ == "__main__": design pattern provides a launch hook for
running a Python program. The project framework I propose here is not built around
running code in such a way, and as such does not require such a launch hook. Rather, you
are building this framework around the Jupyter Notebook as a driver. What you require is
a pattern for importing modules into your notebooks.

Maintaining a clean project directory structure requires you to keep your
notebooks and your Python modules in separate directories. Furthermore, I hold that
it is less aesthetic to nest one inside of the other. This causes a problem at import time.
Given a directory structure as shown in Listing 10-2, you can’t import a module
(e.g. some_module.py shown in Listing 10-3) from lib/ directly into a Jupyter Notebook
module in ipynb/.

Listing 10-2.  Sample Project Structure

$ tree
.
├── ipynb
 │ └── some_notebook.ipynb
└── lib
 ├── __init__.py
 ├── some_module.py

Listing 10-3.  A Demo Python Module, some_module.py

#!/bin/python

def say_hello ():
 print("Hello!")

Let’s solve this problem by using what I will refer to as the project root design
pattern (Listing 10-4).

Listing 10-4.  The Project Root Design Pattern

In [1]: from os import chdir
 chdir('/home/jovyan')

../../dx.doi.org/10.1007/978-1-4842-3012-1_3

Chapter 10 ■ Interactive Software Development

217

The project root design pattern changes the current working directory of the
Python kernel to be the root of the project. This is guaranteed by the configuration of the
mounted volume in your docker-compose.yml file (Listing 10-8), where you mount the
current directory (.) to the working directory of the jupyter image, home/jovyan. Thus,
in running chdir('/home/jovyan') in a Jupyter Notebook (running on a jupyter image),
you can guarantee that you will be at the project root. Furthermore, since you are using
an absolute path in your chdir statement, you can run this command idempotently.
Running this as the first command in any Jupyter Notebook means that you can import
from your lib directory at will (Listing 10-5).

Listing 10-5.  Import from lib.some_module.

In [2]: from lib.some_module import say_hello
 say_hello()

 Hello!

Initialize Project
In Chapter 9, you used a docker-compose.yml file to design an application consisting of
a Jupyter Notebook Server and a PostgreSQL database. You used the docker-compose
build tool and the design of the postgres image to gather your data and seed your
database. Here, you do the same again, collecting your data from the UCI Machine
Learning Repository. In this chapter, however, you formalize the process of gathering the
data, documenting the process using a Jupyter Notebook.

In Listing 10-6, you initialize the project. You create a global directory for your
project, ch10_adult. You create three subdirectories within this project, docker/, ipynb/,
and lib/. You create a new __init__.py2 file using the touch command. This has the
effect of making the lib/ directory into a Python module. Finally, you initialize the
project repository as a git repository using git init.

Listing 10-6.  Initialize the ch10_adult Project

$ mkdir ch10_adult
$ cd ch10_adult/
$ mkdir docker ipynb lib
$ touch lib/__init__.py
$ git init
Initialized empty Git repository in /home/ubuntu/ch10_adult/.git/

In Listing 10-7, you create the docker-compose.yml file (Listing 10-8), which will
define the infrastructure of your project. Note that you start simple. At this phase, you
only have a single service, a Jupyter Notebook Server.

2http://mikegrouchy.com/blog/2012/05/be-pythonic-__init__py.html

../../dx.doi.org/10.1007/978-1-4842-3012-1_9
../../mikegrouchy.com/blog/2012/05/be-pythonic-__init__py.html

Chapter 10 ■ Interactive Software Development

218

Listing 10-7.  Create the docker-compose.yml File

$ vi docker-compose.yml

Listing 10-8.  docker-compose.yml

version: '3'
services:
 this_jupyter:
 image: jupyter/scipy-notebook
 ports:
 - "8888:8888"
 volumes:
 - .:/home/jovyan

Having defined your infrastructure, you bring the application online (Listing 10-9).
Since you have used the image: keyword rather than the build: keyword to define the
image used for your service, it is not necessary to perform a build prior to the launching of
your application. After launch, you use the docker-compose ps tool to examine the running
containers associated with your application (Listing 10-10). In order to access Jupyter through
your browser, you will need to obtain a current authentication token (Listing 10-11).

Listing 10-9.  Launch Initial System

$ docker-compose up -d
Starting ch10adult_this_jupyter_1

Listing 10-10.  Examine Running Containers

$ docker-compose ps
Name Command State Ports
--
ch10adult_this_jupyter_1 tini -- start-notebook.sh Up 0.0.0.0:8888->8888/tcp

Listing 10-11.  Obtain Authentication Token

$ docker exec ch10adult_this_jupyter_1 jupyter notebook list
Currently running servers:
http://localhost:8888/?token=d6dc404c5e3c25ffd993579aeb06eeb2a801c4cbc75f
727e :: /home/jovyan

Examine Database Requirements
At this point, your application consists of a single service, a Jupyter Notebook server. The next
phase in project development is to bring a database online. Here, you launch a notebook and
use pandas3 to examine a sample of the data in order to develop a schema to handle your data.
From there you will prepare your postgres build context in order to seed your database.

3http://pandas.pydata.org

../../pandas.pydata.org/default.htm

Chapter 10 ■ Interactive Software Development

219

You begin by navigating to the Jupyter Notebook server in your browser. Note that
the home directory of the Notebook server is comprised of the files of the root directory of
your project.

In Figure 10-3, you navigate to the ipynb directory where you will create a new
Python 3 Notebook (Figure 10-4).

Figure 10-3.  Navigate to the ipynb directory

Figure 10-4.  Create a new Python 3 notebook

Noble cites the need for “a chronologically organized lab notebook.” I propose that
in this project framework this need is met by the Jupyter Notebook. To chronologically
organize your work, you simply name your notebook files with a year-month-date
format followed by a high-level description of the task to be performed. So name this
first notebook 20170611-Examine_Database_Requirements.ipynb. In Listing 10-12, you
begin the notebook with the project root design pattern, after which you import pandas
(Listing 10-13).

Listing 10-12.  The Project Root Design Pattern

In [1]: from os import chdir
 chdir('/home/jovyan')

Listing 10-13.  Import Necessary Libraries

In [2]: import random
 import pandas as pd

Chapter 10 ■ Interactive Software Development

220

In Figure 10-5, you use Jupyter’s capacity for annotation via markdown to include
information on the dataset. The dataset is the adult dataset obtained from the UCI
Machine Learning Repository.4 You obtain the markdown you include from the dataset
description included with the dataset.5

Figure 10-5.  Use markdown to include information on the dataset from UCI’s Machine
Learning Repository

Listing 10-14 demonstrates the effect of the project root design pattern using a
Jupyter shell call to ls. In Listing 10-15, you make another Jupyter shell call to mkdir to
create a top-level directory data, after which you make a third Jupyter shell call to use the
wget tool to obtain the dataset (Listing 10-16).

Listing 10-14.  List Current Directory

In [3]: ls -l

 total 16
 drwxrwxr-x 2 jovyan 1000 4096 Jun 11 23:53 docker
 -rw-rw-r-- 1 jovyan 1000 145 Jun 11 23:55 docker-compose.yml
 drwxrwxr-x 3 jovyan 1000 4096 Jun 12 03:12 ipynb
 drwxrwxr-x 2 jovyan 1000 4096 Jun 11 23:53 lib

4http://archive.ics.uci.edu/ml/datasets/Adult
5http://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.names

../../archive.ics.uci.edu/ml/datasets/Adult
../../archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.names

Chapter 10 ■ Interactive Software Development

221

Listing 10-15.  Create Data Directory

In [4]: !mkdir data

Listing 10-16.  Get the Dataset

In [5]: !wget -P data/ \
 �http://archive.ics.uci.edu/ml/machine-learning-databases/adult/

adult.data

 --2017-06-12 03:28:31-- http://archive.ics.uci.edu/ml/machine-learning-
 databases/adult/adult.data
 Resolving archive.ics.uci.edu (archive.ics.uci.edu)... 128.195.10.249
 �Connecting to archive.ics.uci.edu (archive.ics.uci.edu)

|128.195.10.249|:80... connected.
 HTTP request sent, awaiting response... 200 OK
 Length: 3974305 (3.8M) [text/plain]
 Saving to: 'data/adult.data'

 data/adult.data 100%[===============>] 3.79M 7.93MB/s in 0.5s

 2017-06-12 03:28:31 (7.93 MB/s) - 'data/adult.data' saved [3974305/3974305]

In Listing 10-17, you use the wc tool to count the number of lines in the file.
In Listing 10-18, you use the head tool to see if the file has a header row. Note that the two
rows shown are both data rows and therefore the file does not contain a header row.

Listing 10-17.  Count the Number of Lines in the File

In [6]: !wc -l data/adult.data

 32562 data/adult.data

Listing 10-18.  Check to See If the File Has a Header

In [7]: !head -n 2 data/adult.data

 �39, State-gov, 77516, Bachelors, 13, Never-married, Adm-clerical,
Not-in-family, White,

 Male, 2174, 0, 40, United-States, <=50K
 �50, Self-emp-not-inc, 83311, Bachelors, 13, Married-civ-spouse,

Exec-managerial,
 Husband, White, Male, 0, 0, 13, United-States, <=50K

In Listing 10-19, you load a 10% sample of the dataset using the pandas.read_csv
function. To do this, you first define two variables, number_of_rows and sample_size.
The first is the number of rows present in your dataset, the second the number of rows
you would like to include in your sample. You next create a list, rows_to_skip, by using
the random.sample function. random.sample takes two arguments: a list from which you

Chapter 10 ■ Interactive Software Development

222

wish to sample and a sample size. Here, you create a range of number from 0 to number_
of_rows and request a sample set of size number_of_rows - sample_size. The returned
sample list is sorted and becomes your rows to skip. This list is passed to pandas.read_
csv at runtime. The effect is that pandas.read_csv will load a set of size sample_size.

The output of pandas.read_csv is a pandas.DataFrame object. You save this pandas.
DataFrame as adult_df. You assign a list of column names (obtained from the dataset
description at the UCI Machine Learning Repository) to the object attribute adult_
df.columns.

Listing 10-19.  Load the File Using pandas

In [8]: number_of_rows = 32562
 sample_size = 3300

 �rows_to_skip = random.sample(range(number_of_rows), number_of_rows -
sample_size)

 rows_to_skip.sort()

 adult_df = pd.read_csv('data/adult.data', header=None, skiprows=rows_to_skip)
 adult_df.columns = [
 'age',
 'workclass',
 'fnlwgt',
 'education',
 'education_num',
 'marital_status',
 'occupation',
 'relationship',
 'race',
 'gender',
 'capital_gain',
 'capital_loss',
 'hours_per_week',
 'native_country',
 'income_label'
]

In Figure 10-6, you display a sample of the loaded DataFrame using adult_df.sample(3).

Figure 10-6.  A sample of the loaded DataFrame

Chapter 10 ■ Interactive Software Development

223

At this point, you begin to construct a schema for loading your dataset into a
PostgreSQL database. In Figure 10-7, you use Jupyter markdown to annotate the
datatypes of the different feature columns as providing by UCI, and then examine the
adult_df.dtypes to display the data types of each column in the pandas.DataFrame.
If the data is properly formatted in the CSV file, then pandas will assign the proper
data types to each column. If the pandas.DataFrame data types match the data types
in the meta-information providing by UCI, then you should be able to count on the
integrity of the data at load time, and be able to use the suggested data types to define
your schema. Note that the pandas.DataFrame data types do match the data types in
the meta-information and therefore you can use the meta-information as the basis for
your schema without the need for special data handling.

Figure 10-7.  Comparing meta-information from UCI’s Machine Learning Repository to
the DataFrame data types

Having completed your preliminary work, you save the file and stop the notebook
by selecting “Close and Halt” from the File Menu (Figure 10-8). You will use what you
discovered here to build your database.

Chapter 10 ■ Interactive Software Development

224

Managing the Project via Git
Before moving on to the next phase of the project, you commit all of your recent changes
using git. In Listing 10-20, you check the status of your project (that is, what changes
are present in your code) using the git status tool. Because you have not made any
commits since you initialized the project, there will be changes associated with your
initial docker-compose.yml file definition, in addition to the work you just did preparing
to write your schema.

Listing 10-20.  Check Project Status

$ git status
On branch master

Initial commit

Untracked files:
 (use "git add <file>..." to include in what will be committed)

 data/
 docker-compose.yml
 ipynb/

You will track each segment of work that you have done separately. First, in Listing 10-21,
you add and commit the creation of your initial docker-compose.yml file. Then, in
Listing 10-22, you do the same for your schema preparation work. Because this work is
everything left unstaged you can use the -A flag to signify that you wish to add “all”.

Figure 10-8.  Close and halt the notebook

Chapter 10 ■ Interactive Software Development

225

Listing 10-21.  Add and Commit Initial docker-compose.yml File

$ git add docker-compose.yml
$ git commit -m 'initial docker-compose.yml file'
[master (root-commit) 3029c78] initial docker-compose.yml file
 1 file changed, 8 insertions(+)
 create mode 100644 docker-compose.yml

Listing 10-22.  Add and Commit Schema Preparation Work

$ git add -A
$ git commit -m 'schema preparation work'
[master 13de8e1] schema preparation work
 3 files changed, 33336 insertions(+)
 create mode 100644 data/adult.data
 create mode 100644 ipynb/.ipynb_checkpoints/20170611-Examine_Database_
Requirements-checkpoint.ipynb
 create mode 100644 ipynb/20170611-Examine_Database_Requirements.ipynb
create mode 100644 docker-compose.yml

Note that this most recent commit also added an .ipynb_checkpoints directory.
This is undesirable. In Listing 10-23, you create a .gitignore (Listing 10-24) file and add
a few files you do not wish to track via git. In Listing 10-25, you reset the git HEAD to
remove the most recent commit. Finally, in Listing 10-26, you perform the whole process
once more.

Listing 10-23.  Create the .gitignore file.

$ vi .gitignore

Listing 10-24.  .gitignore

**/.ipynb_checkpoints
**/*.pyc

Listing 10-25.  Reset git HEAD to the Penultimate Commit and Display Status

$ git reset HEAD~1
$ git status
On branch master
Untracked files:
 (use "git add <file>..." to include in what will be committed)

 .gitignore
 data/
 ipynb/

nothing added to commit but untracked files present (use "git add" to track)

Chapter 10 ■ Interactive Software Development

226

Listing 10-26.  Add and Commit Schema Preparation Work

$ git add -A
$ git commit -m 'schema preparation work'
[master ad896e2] schema preparation work
 3 files changed, 32951 insertions(+)
 create mode 100644 .gitignore
 create mode 100644 data/adult.data
 create mode 100644 ipynb/20170611-Examine_Database_Requirements.ipynb

■■ Warning  Be cautious when adding data files to a git commit. If syncing a local git
repository with a cloud-based version-control system such as GitHub, the files must be
less than 100MB to be uploaded to GitHub. Removing a file from a git commit, particularly
when it was not the most recent commit, can be challenging and its presence will cause the
sync to fail even if it has been removed from the most recent commit. The bash tool split6
is recommended for breaking CSV files into smaller files that are less than 100MB if a cloud
backup is desired.

Adding a Database to Your Application
You initially launched your application with a basic Jupyter service for some preliminary
analysis of your dataset. Having done this, let’s use what you learned to seed a PostgreSQL
database with this dataset using an appropriate schema. Figure 10-9 shows a diagram of
the next iteration of your system.

6https://ss64.com/bash/split.html

../../https@ss64.com/bash/split.html

Chapter 10 ■ Interactive Software Development

227

To do this, you will add a few things to your docker-compose.yml file (Listing 10-27):

•	 Define the Jupyter Notebook service with a built image rather
than an existing image in order to include your database interface
library, psycopg2.

•	 Define a PostgreSQL service making use of the build hooks you
saw in Chapter 9.

•	 Create a data volume to be used by the PostgreSQL service.

Listing 10-27.  Next Version of Your docker-compose.yml

version: '3'
services:
 this_jupyter:
 build: docker/jupyter
 ports:
 - "8888:8888"
 volumes:
 - .:/home/jovyan
 this_postgres:
 build: docker/postgres
 volumes:
 - postgres_data:/var/lib/postgresql/data
volumes:
 postgres_data:

Figure 10-9.  Second iteration of your application

../../dx.doi.org/10.1007/978-1-4842-3012-1_9

Chapter 10 ■ Interactive Software Development

228

Here, you make use of several patterns you have seen before, but in particular you
must take care to mount the new data volume to the correct location within the this_
postgres container.

Next, you create directories for your two new build contexts (Listing 10-28) and
create (Listing 10-29) a Dockerfile (Listing 10-30) to define your this_jupyter
service. At this time, you make only a single change: adding psycopg2 to your Python 3
environment.

Listing 10-28.  Create New Build Contexts

$ mkdir docker/jupyter docker/postgres

Listing 10-29.  Create docker/jupyter/Dockerfile

$ vim docker/jupyter/Dockerfile

Listing 10-30.  docker/jupyter/Dockerfile

FROM jupyter/scipy-notebook
USER root
RUN conda install --yes --name root psycopg2
USER jovyan

Then, you define the build context for your this_postgres service. As in Chapter 9,
the build context for your PostgreSQL is much more involved and includes several files:
a Dockerfile (Listing 10-31 and 32); a bash script, get_data.sh (Listing 10-34), to obtain
and clean your data; and a sql file, initdb.sql (Listing 10-36), to initialize your database.

■■ Note  The CSV file for your data obtained from the UCI Machine Learning Repository
includes a blank line at the end of the file. PostgreSQL is intolerant of any aberrant behavior
and rejects the data copy in your docker/postgres/initdb.sql file (Listing 10-35) without
special handling of this blank line. As in Chapter 9, I used the sed tool to handle this issue in
the get_data.sh file (Listing 10-33). Here, I use the pattern /^\s*$/d. This has the effect
of matching any lines comprised only of white space, including blank lines (^\s*$), and
deleting them using the d command.

Listing 10-31.  Create docker/postgres/Dockerfile

$ vim docker/postgres/Dockerfile

Listing 10-32.  docker/postgres/Dockerfile

FROM postgres:alpine
COPY get_data.sh /docker-entrypoint-initdb.d/get_data.sh
COPY initdb.sql /docker-entrypoint-initdb.d/initdb.sql

../../dx.doi.org/10.1007/978-1-4842-3012-1_9
../../dx.doi.org/10.1007/978-1-4842-3012-1_9

Chapter 10 ■ Interactive Software Development

229

Listing 10-33.  Create docker/postgres/get_data.sh

$ vim docker/postgres/get_data.sh

Listing 10-34.  docker/postgres/get_data.sh

#!/bin/bash
wget -P /tmp/ http://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.data
sed '/^\s*$/d' /tmp/adult.data > /tmp/adult-clean.csv

Listing 10-35.  Create docker/postgres/Dockerfile

$ vim docker/postgres/initdb.sql

Listing 10-36.  docker/postgres/initdb.sql

CREATE TABLE adult (
 age INTEGER,
 workclass TEXT,
 fnlwgt INTEGER,
 education TEXT,
 education_num INTEGER,
 marital_status TEXT,
 occupation TEXT,
 relationship TEXT,
 race TEXT,
 gender TEXT,
 capital_gain INTEGER,
 capital_loss INTEGER,
 hours_per_week INTEGER,
 native_country TEXT,
 income_label TEXT
);
COPY adult FROM '/tmp/adult.data' DELIMITER ',' CSV;

In Listing 10-37, you display your project using tree.

Listing 10-37.  Display project

$ tree
.
├── data
 │ └── adult.data
├── docker
 │ ├── jupyter
 │ │ └── Dockerfile
 │ └── postgres
 │ ├── Dockerfile
 │ ├── get_data.sh

Chapter 10 ■ Interactive Software Development

230

 │ └── initdb.sql
├── docker-compose.yml
├── ipynb
 │ └── 20170611-Examine_Database_Requirements.ipynb
└── lib

In Listing 10-38, you launch your updated application. Note that you have added the
--build flag to your docker-compose up command to ensure that the new build contexts
are built before use. You then examine your running containers using docker-compose ps
(Listing 10-39).

Listing 10-38.  Launch the Application

$ docker-compose up -d --build
Creating network "ch10adult_default" with the default driver
Creating volume "ch10adult_postgres_data" with default driver
Building this_jupyter
...
Building this_postgres
...
Successfully built de96ba591ad9
Successfully tagged ch10adult_this_postgres:latest
Creating ch10adult_this_jupyter_1
Creating ch10adult_this_postgres_1

Configuring the seeding of a PostgreSQL database can be finicky. The difficulty of
this task can be compounded when it is being done through a layer of abstraction, as you
are doing here. Your initdb.sql file is being executed by the this_postgres container at
runtime. This can make diagnosis and troubleshooting of any issues a challenege. I offer
the following methods for verifying the success of database initialization:

•	 Confirm via docker-compose ps that the database is running.
A syntax error in the initdb.sql file will cause the database to
fail and exit at runtime. If this has happened, docker-compose
ps will show a state of Exit for the ch10adult_this_postgres_1
container (Listing 10-39).

•	 Examine the logs for the this_postgres service (Listing 10-40).
If your initialization was successful, the logs should contain a
record of the execution of your initialization scripts and sql files.
Note that in Listing 10-40, you can see that 32561 records have
been successfully copied into the database.

•	 Connect to the running container via a docker exec call to the
psql tool (Listing 10-41).

Chapter 10 ■ Interactive Software Development

231

Listing 10-39.  Examine Running Containers

$ docker-compose ps
 Name Command State Ports
--
ch10adult_this_jupyter_1 tini--start-notebook.sh Up 0.0.0.0:8888->8888/tcp
ch10adult_this_postgres_1 docker-entrypoint.sh postgres Up 5432/tcp

Listing 10-40.  Examine this_postgres Logs

...
this_postgres_1 | /usr/local/bin/docker-entrypoint.sh: running /docker-
entrypoint-initdb.d/get_data.sh
this_postgres_1 | Connecting to archive.ics.uci.edu (128.195.10.249:80)
this_postgres_1 | adult.data 9%
|** | 363k 0:00:09 ETA
this_postgres_1 | adult.data 100%
|*******************************| 3881k 0:00:00 ETA
this_postgres_1 |
this_postgres_1 |
this_postgres_1 | /usr/local/bin/docker-entrypoint.sh: running /docker-
entrypoint-initdb.d/initdb.sql
this_postgres_1 | CREATE TABLE
this_postgres_1 | COPY 32561
...

Listing 10-41.  Connect to this_postgres via psql

$ docker exec -it ch10adult_this_postgres_1 psql postgres postgres
psql (9.6.3)
Type "help" for help.

postgres=# SELECT COUNT(*) FROM adult;
 count

 32561
(1 row)

After verifying that the this_postgres service is properly configured, you commit
these infrastructure changes to your git log (Listing 10-42). In Listing 10-43, you add all
files and commit the changes.

Listing 10-42.  Check Project Status

$ git status
On branch master
Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git checkout -- <file>..." to discard changes in working directory)

Chapter 10 ■ Interactive Software Development

232

 modified: docker-compose.yml

Untracked files:
 (use "git add <file>..." to include in what will be committed)

 docker/

Listing 10-43.  Add and Commit Changes

$ git add -A
$ git commit -m 'add postgres service with database seed'
[master 5a35f01] add postgres service with database seed
 5 files changed, 37 insertions(+), 1 deletion(-)
 create mode 100644 docker/jupyter/Dockerfile
 create mode 100644 docker/postgres/Dockerfile
 create mode 100644 docker/postgres/get_data.sh
 create mode 100644 docker/postgres/initdb.sql

Since you have stopped and relaunched your Jupyter Notebook server, you will need
to obtain a new authentication token in order to access the server in the browser once
more (Listing 10-44).

Listing 10-44.  Obtain the Authentication Token

$ docker exec ch10adult_this_jupyter_1 jupyter notebook list
Currently running servers:
http://localhost:8888/?token=6ab886ef19e02fe8ac351d0c28d03a50ab13be69a69b4
6d7 :: /home/jovyan

Interactive Development
A major goal of this project to framework is to facilitate a new style of software development
called interactive development. The interactive development of modules is as follows.

	 1.	 Use Jupyter to write code interactively in a notebook.

	 2.	 When a block of code gets too large or needs to be repeated,
abstract this code into a function in Jupyter.

	 3.	 Test the performance of this new function in Jupyter.

	 4.	 Move this function to a module in your library of code.

	 5.	 Import the code for use as needed.

Let’s demonstrate the process here with a simple method you will use often, a basic
connection from Jupyter to your database. In this case, you will abstract the function
into your library of code to adhere to the best practice of not repeating code. You begin
by navigating to ipynb/ and creating a new file. You rename the file with today’s date
and what you will be doing (e.g. 20170613-Initial_Database_Connection.ipynb). In
Listing 10-45, you begin the notebook with the project root design pattern, after which
you import psycopg2(Listing 10-46).

Chapter 10 ■ Interactive Software Development

233

Listing 10-45.  The Project Root Design Pattern

In [1]: from os import chdir
 chdir('/home/jovyan')

Listing 10-46.  Import Necessary Libraries

In [2]: import psycopg2 as pg2

In Listing 10-47, you connect to your database as you have done previously,
instantiating a connection and a cursor from that connection. You make use of the
network created for you by Docker Compose and refer to the PostgreSQL by its name on
the network, this_postges (that is, the same name you have given to the PostgreSQL
service). In Listing 10-48, you use the cursor to execute a query to the database, print the
results of the query, and then close the connection.

Listing 10-47.  Connect to postgres and Create a Cursor

In [3]: con = pg2.connect(host='this_postgres', user='postgres',
database='postgres')
 cur = con.cursor()

Listing 10-48.  Query the Database and Close the Connection

In [4]: cur.execute("SELECT COUNT(*) FROM adult;")
 print(cur.fetchall())
 con.close()

 [(32561,)]

The code in Listing 10-47 is code that you will be using often. Although it is just
two lines of code, it is worth abstracting into a function because you will be using it with
frequency. In Figure 10-10, you write this function in a Jupyter cell, and then use a tab
completion to display the function’s docstring.

Figure 10-10.  Define a function and display its docstring

Chapter 10 ■ Interactive Software Development

234

You next verify that your connect_to_postgres function works as you expect in
Listing 10-49.

Listing 10-49.  Test connect_to_postgres

In [6]: con, cur = connect_to_postgres()
 cur.execute("SELECT COUNT(*) FROM adult;")
 print(cur.fetchall())
 con.close()

 [(32561,)]

Having verified that your function for accessing this_postgres works, you can
add the function to an external Python module for import. Since you are done with this
notebook, you should save and then close and halt the notebook.

Create a Python Module Using Jupyter
You will use the Jupyter Server’s capacity for creating and editing text files to build a
lib.postgres module. In Figure 10-11, you navigate to lib/ using the Notebook server,
and then within lib/ you create a new text file. In Figure 10-12, you rename this file
postgres.py. Next, you populate the new text file with the code in Listing 10-50.

Figure 10-11.  Create a new text file

Figure 10-12.  Rename the next file to postgres.py

Chapter 10 ■ Interactive Software Development

235

Listing 10-50.  lib.postgres Module

"""Helper module for interfacing with PostgreSQL."""
import psycopg2 as pg2

def connect_to_postgres():
 """Preconfigured to connect to PostgreSQL. Returns connection and cursor.

 con, cur = connect_to_postgres()
 """
 con = pg2.connect(host='this_postgres', user='postgres', database='postgres')
 return con, con.cursor()

Next, you create a new notebook to test the function you have written. It may be
a bit pedantic to create a new notebook for each task. You do so here to highlight the
desired workflow of the interactive development method. You create a new notebook
titled 20170613-Verify_Database_Connection.ipynb. In Listing 10-51, you begin the
notebook with the project root design pattern. In Listing 10-52, you import lib.postgres
and verify that connect_to_postgres functions as you expect.

Listing 10-51.  The Project Root Design Pattern

In [1]: from os import chdir
 chdir('/home/jovyan')

Listing 10-52.  Test psql.connect_to_postgres

In [2]: import lib.postgres as psql
 con, cur = psql.connect_to_postgres()
 cur.execute("SELECT COUNT(*) FROM bc_data;")
 print(cur.fetchall())
 con.close()

 [(32561,)]

Finally, you track your work using git. In Listing 10-53, you check the status of your
project. In Listing 10-54, you add and commit all of your recent work.

Listing 10-53.  Check Status of Project

$ git status
On branch master
Untracked files:
 (use "git add <file>..." to include in what will be committed)

 ipynb/20170613-Initial_Database_Connection.ipynb
 ipynb/20170613-Verify_Database_Connection.ipynb
 lib/

Chapter 10 ■ Interactive Software Development

236

Listing 10-54.  Add All Files and Commit

$ git add -A
ubuntu@LOCAL:~/ch10_adult (master)
$ git commit -m 'initial database connection'
[master d2461f6] initial database connection
 4 files changed, 185 insertions(+)
 create mode 100644 ipynb/20170613-Initial_Database_Connection.ipynb
 create mode 100644 ipynb/20170613-Verify_Database_Connection.ipynb
 create mode 100644 lib/__init__.py
 create mode 100644 lib/postgres.py

In Listing 10-55, you display the current state of your project.

Listing 10-55.  Current Project Status

$ tree
.
├── data
 │ └── adult.data
├── docker
 │ ├── jupyter
 │ │ └── Dockerfile
 │ └── postgres
 │ ├── Dockerfile
 │ ├── get_data.sh
 │ └── initdb.sql
├── docker-compose.yml
├── ipynb
 │ ├── 20170611-Examine_Database_Requirements.ipynb
 │ ├── 20170613-Initial_Database_Connection.ipynb
 │ └── 20170613-Verify_Database_Connection.ipynb
└── lib
 ├── __init__.py
 ├── postgres.py
 └── __pycache__
 ├── __init__.cpython-35.pyc
 └── postgres.cpython-35.pyc

Add Delayed Processing to Your Application
You will now iterate on your application to its final state. You will add to your existing
application a Redis service as well as two additional services defined as variations
on the Jupyter image. In Chapter 9, I discussed how you might use Redis for caching
intermediate results. Here you will explore another use for Redis as the backbone of a
delayed job processing system. In addition to Redis, the delayed job processing system
will use a Worker service, used for executing delayed jobs, and a Monitor service for
monitoring the status of delayed jobs through a web browser. Figure 10-13 shows a
diagram of your final application.

../../dx.doi.org/10.1007/978-1-4842-3012-1_9

Chapter 10 ■ Interactive Software Development

237

To do this, you will add a few things to your docker-compose.yml file (Listing 10-56):

•	 Define a Redis service using the image: keyword.

•	 Create a data volume to be used by the Redis service.

•	 Define a Worker service using the same build context as the
Jupyter service.

•	 Define a Monitor service using the same build context as the
Jupyter service.

While both the Worker service and the Monitor service will be defined using the
docker/jupyter build context, you will extend these images at runtime using the
entrypoint: keyword. This keyword specifies the command with which the image should
launch (in other words, the core process that will define the behavior of the container).

The Worker service will use the rqworker tool in order to interface with Redis to
obtain and then execute queued jobs. You use the exec form of the entrypoint: keyword
and take advantage of yaml lists to specify the instantiating process. The entrypoint
consists of

•	 tini

•	 The PID 1 tool mentioned in Chapter 5, used by Jupyter for
instantiating all containers

Figure 10-13.  Final application diagram

../../dx.doi.org/10.1007/978-1-4842-3012-1_5

Chapter 10 ■ Interactive Software Development

238

•	 --

•	 A best practice in instantiating a container with tini7

•	 rqworker

•	 The process you will use to run your Worker service

•	 -u

•	 The URL flag

•	 redis://this_redis:6379

•	 The URL on which Redis will be available

•	 Uses the Redis Service’s name on the network created
by Docker Compose

The Monitor service will use the rq-dashboard tool in order to provide a web-
based dashboard for monitoring the status of queued jobs. You use the exec form of
the entrypoint: keyword and take advantage of yaml lists to specify the instantiating
process. The entrypoint consists of

•	 tini

•	 --

•	 rq-dashboard

•	 The process you will use to run your Monitor service

•	 -H

•	 The host flag

•	 this_redis

•	 The Redis service’s name on the network created by Docker
Compose

•	 -p

•	 The port flag

•	 5000

•	 The port on which your Monitor service will be available

As before, you do not explicitly specify links between containers, letting Docker
Compose establish the links for you. You make sure to connect the redis_data volume to
the correct location within the this_redis container.

7https://github.com/krallin/tini

../../https@github.com/krallin/tini

Chapter 10 ■ Interactive Software Development

239

Listing 10-56.  Next Version of Your docker-compose.yml

version: '3'
services:
 this_jupyter:
 build: docker/jupyter
 ports:
 - "8888:8888"
 volumes:
 - .:/home/jovyan
 this_postgres:
 build: docker/postgres
 volumes:
 - postgres_data:/var/lib/postgresql/data
 this_redis:
 image: redis
 volumes:
 - redis_data:/data
 this_worker:
 build: docker/jupyter
 volumes:
 - .:/home/jovyan
 entrypoint:
 - "tini"
 - "--"
 - "rqworker"
 - "-u"
 - "redis://this_redis:6379"
 this_monitor:
 build: docker/jupyter
 volumes:
 - .:/home/jovyan
 ports:
 - "5000:5000"
 entrypoint:
 - "tini"
 - "--"
 - "rq-dashboard"
 - "-H"
 - "this_redis"
 - "-p"
 - "5000"
volumes:
 postgres_data:
 redis_data:

Next (Listing 10-57), you update the Jupyter Dockerfile (Listing 10-58) to include
the necessary libraries to drive the Worker and Monitor services.

Chapter 10 ■ Interactive Software Development

240

Listing 10-57.  Update the docker/jupyter/Dockerfile

$ vim docker/jupyter/Dockerfile

Listing 10-58.  docker/jupyter/Dockerfile

FROM jupyter/scipy-notebook
USER root
RUN conda install --yes --name root psycopg2
RUN conda install --yes --name root redis rq
RUN ["bash", "-c", "source activate root && pip install rq-dashboard"]
USER jovyan

In Listing 10-59, you display your project using tree.

Listing 10-59.  Display Project

$ tree
.
├── data
 │ └── adult.data
├── docker
 │ ├── jupyter
 │ │ └── Dockerfile
 │ └── postgres
 │ ├── Dockerfile
 │ ├── get_data.sh
 │ └── initdb.sql
├── docker-compose.yml
├── ipynb
 │ ├── 20170611-Examine_Database_Requirements.ipynb
 │ ├── 20170613-Initial_Database_Connection.ipynb
 │ └── 20170613-Verify_Database_Connection.ipynb
└── lib
 ├── __init__.py
 ├── postgres.py
 └── __pycache__
 ├── __init__.cpython-35.pyc
 └── postgres.cpython-35.pyc

In Listing 10-60, you launch your updated application. Note that you have continued
to use the --build flag with your docker-compose up command to ensure that the new
build contexts are built before use. You then examine your running containers using
docker-compose ps (Listing 10-61).

Chapter 10 ■ Interactive Software Development

241

Listing 10-60.  Launch Application

$ docker-compose up -d --build
Creating network "ch10adult_default" with the default driver
Creating volume "ch10adult_postgres_data" with default driver
Creating volume "ch10adult_redis_data" with default driver
...
Creating ch10adult_this_worker_1
Creating ch10adult_this_redis_1
Creating ch10adult_this_postgres_1
Creating ch10adult_this_jupyter_1
Creating ch10adult_this_monitor_1

Listing 10-61.  Examine Running Containers

$ docker-compose ps
 Name Command State Ports
--
ch10adult_this_jupyter_1 tini--start-notebook.sh Up 0.0.0.0:8888->8888/tcp
ch10adult_this_monitor_1 tini--rq-dashboard -H th ... Up 0.0.0.0:5000->5000/tcp...
ch10adult_this_postgres_1 docker-entrypoint.sh postgres Up 	 5432/tcp
ch10adult_this_redis_1 docker-entrypoint.sh redis ... Up 6379/tcp
ch10adult_this_worker_1 tini--rqworker -u redis: ... Up 8888/tcp Creating

Configuring the delayed job system can also be a challenge, just as in configuring the
PostgreSQL database. Troubleshooting can be done using very similar methods.

•	 Confirm via docker-compose ps that the services are running.

•	 Examine the logs for the services (Listings 10-62 and 10-63).

•	 Connect to the running container via a docker exec call to the
bash tool.

Listing 10-62.  Examine this_monitor Logs

$ docker-compose logs this_monitor
Attaching to ch10adult_this_monitor_1
this_monitor_1 | RQ Dashboard version 0.3.8
this_monitor_1 | * Running on http://0.0.0.0:5000/ (Press CTRL+C to quit)

Listing 10-63.  Examine this_worker Logs

$ docker-compose logs this_worker
Attaching to ch10adult_this_worker_1
this_worker_1 | �20:28:59 RQ worker 'rq:worker:6a695d66b402.5' started,

version 0.6.0
this_worker_1 | 20:28:59 Cleaning registries for queue: default
this_worker_1 | 20:28:59
this_worker_1 | 20:28:59 *** Listening on default......

Chapter 10 ■ Interactive Software Development

242

After verifying that the new services are properly configured, you commit these
infrastructure changes to your git log (Listing 10-64). In Listing 10-65, you add all files
and commit the changes.

Listing 10-64.  Check Project Status

$ git status
On branch master
Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git checkout -- <file>..." to discard changes in working directory)

 modified: docker-compose.yml
 modified: docker/jupyter/Dockerfile

no changes added to commit (use "git add" and/or "git commit -a")

Listing 10-65.  Add and Commit Changes

$ git add -A
ubuntu@LOCAL:~/ch10_adult (master)
$ git commit -m 'add delayed job system'
[master 9564efd] add delayed job system
 2 files changed, 31 insertions(+), 1 deletion(-)

Since you have stopped and relaunched your Jupyter Notebook server, you will need
to obtain a new authentication token in order to access the server in the browser once
more (Listing 10-66).

Listing 10-66.  Obtain Authentication Token

$ docker exec ch10adult_this_jupyter_1 jupyter notebook list
Currently running servers:
http://localhost:8888/?token=46e478574fe9cf238c6e2e6bc9b9daccb7efa7154dfd
9d08 :: /home/jovyan

Extending the Postgres Module
Let’s once more demonstrate the interactive development paradigm described in this
chapter as you extend the postgres module you previously created. This time you will
first develop a function for encoding your target. This function will be executed row by
row by one or more workers. You will

•	 Use Jupyter to write code interactively in a notebook.

•	 Abstract this code into a function in Jupyter.

•	 Test the performance of this new function in Jupyter.

•	 Move this function to a module in your library of code.

•	 Pass the function to a worker via the job queue.

Chapter 10 ■ Interactive Software Development

243

You begin by navigating to ipynb/ and creating a new file. You rename the file with
today’s date and what you will be doing (e.g. 20170619-Develop_encoding_target_
function.ipynb). In Listing 10-67, you begin the notebook with the project root design
pattern, after which you import connect_to_(Listing 10-68).

Listing 10-67.  The Project Root Design Pattern

In [1]: from os import chdir
 chdir('/home/jovyan')

Listing 10-68.  Import Database Connection

In [2]: from lib.postgres import connect_to_postgres

In Figure 10-14, you use a markdown cell to include the attribute type meta-information
for your dataset, as you did in 20170611-Examine_Database_Requirements.ipynb.

Figure 10-14.  Display the attribute type meta-information

In Listing 10-69, you create new columns in your database. As in Chapter 8, you
manage your transactions manually via BEGIN and COMMIT statements. Note that you close
the connection after each transaction.

Listing 10-69.  Create New Columns

In [3]: con, cur = connect_to_postgres()
 cur.execute("""
 BEGIN;
 ALTER TABLE adult ADD COLUMN _id SERIAL PRIMARY KEY;
 ALTER TABLE adult ADD COLUMN target BOOLEAN;
 COMMIT;
 """)
 con.close()

../../dx.doi.org/10.1007/978-1-4842-3012-1_8

Chapter 10 ■ Interactive Software Development

244

It is a best practice to monitor changes to the database. In Listing 10-70, you use a
psql via docker exec to examine the adult table.

Listing 10-70.  Examine the adult Table via a docker exec psql Call

$ docker exec -it ch10adult_this_postgres_1 psql postgres postgres
psql (9.6.3)
Type "help" for help.

postgres=# \d adult
 Table "public.adult"
 Column | Type | Modifiers
----------------+---------+--

 age | integer |
 workclass | text |
 fnlwgt | integer |
 education | text |
 education_num | integer |
 marital_status | text |
 occupation | text |
 relationship | text |
 race | text |
 gender | text |
 capital_gain | integer |
 capital_loss | integer |
 hours_per_week | integer |
 native_country | text |
 income_label | text |
 _id | integer | not null default nextval('adult__id_seq'::regclass)
 target | boolean |
Indexes:
 "adult_pkey" PRIMARY KEY, btree (_id)

In Listing 10-71, you retrieve unique values for your target column, income_label.

Listing 10-71.  Retrieve Unique Values for Target Column named income_label

In [4]: con, cur = connect_to_postgres()
 cur.execute("""SELECT DISTINCT(income_label) FROM adult;""")
 print(cur.fetchall())
 con.close()

 [(' >50K',), (' <=50K',)]

Chapter 10 ■ Interactive Software Development

245

While income_label is categorical in nature, it only has two values and can thus be
encoded as a Boolean value. In Listing 10-72, you write a short Jupyter script to do just this.
You first query the database to retrieve the _id and income_label for a single row where the
target column is NULL. You create a Boolean-valued variable greater_than_50k. Finally,
you update the table for the given _id and close the connection to the database.

Listing 10-72.  Encode a Single Instance’s Target as a Boolean

In [5]: con, cur = connect_to_postgres()
 cur.execute("""SELECT _id, income_label FROM adult WHERE target IS NULL;""")
 this_id, income_label = cur.fetchone()

 greater_than_50k = (income_label == ' >50K')

 cur.execute("""
 BEGIN;
 UPDATE adult
 SET target = {}
 WHERE _id = {};
 COMMIT;
 """.format(greater_than_50k, this_id))

 con.close()

In Listing 10-73, you verify that the update was successful.

Listing 10-73.  Verify Update

In [6]: con, cur = connect_to_postgres()
 cur.execute("""
 SELECT _id, income_label, target
 FROM adult WHERE _id = {};
 """.format(this_id))
 print(this_id, cur.fetchone())
 con.close()

 10 (10, ' >50K', True)

Having verified that your script works, you set about abstracting the script into a
function (Listing 10-74).

Listing 10-74.  encode_target Function

In [7]: def encode_target(_id):
 �"""Encode the target for a single row as a boolean value. Takes

a row _id."""
 con, cur = connect_to_postgres()

Chapter 10 ■ Interactive Software Development

246

 �cur.execute("""SELECT _id, income_label FROM adult where _id =
{}""".format(_id))

 this_id, income_label = cur.fetchone()
 assert this_id == _id

 greater_than_50k = (income_label == ' >50K')

 cur.execute("""
 BEGIN;
 UPDATE adult
 SET target = {}
 WHERE _id = {};
 COMMIT;
 """.format(greater_than_50k, _id))

 con.close()

In Listings 10-75 and 10-76, you test the new function and verify its success.

Listing 10-75.  Select a New Row with Null Target and Encode

In [8]: con, cur = connect_to_postgres()
 cur.execute("""SELECT _id FROM adult WHERE target IS NULL;""")
 this_id, = cur.fetchone()
 encode_target(this_id)
 con.close()

Listing 10-76.  Verify Encoding

In [6]: con, cur = connect_to_postgres()
 cur.execute("""
 SELECT _id, income_label, target
 FROM adult WHERE _id = {};
 """.format(this_id))
 print(this_id, cur.fetchone())
 con.close()

 11 (11, ' >50K', True)

Updating Your Python Module
In Figure 10-15, you navigate to lib/ using the notebook server, then within lib/ you
select your postgres.py in order to update the module using the Jupyter Notebook
server’s text interface. Next, you add the code in Listing 10-74 to the file, as shown in
Figure 10-16. Note that a check mark will appear next to the text file name when all
current changes have been saved, as in Figure 10-17.

Chapter 10 ■ Interactive Software Development

247

Figure 10-15.  Open postgres.py for editing

Figure 10-16.  Latest version of postgres.py

Figure 10-17.  All changes saved for postgres.py

Next, you will create a new notebook to use the encode_target function via
your delayed job system to encode all of the rows in the adult table. You create a
new notebook titled 20170619-Encode_target.ipynb. In Listing 10-77, you begin the
notebook with the project root design pattern. In Listing 10-78, you import the functions
you need from lib.postgres.

Chapter 10 ■ Interactive Software Development

248

Listing 10-77.  The Project Root Design Pattern

In [1]: from os import chdir
 chdir('/home/jovyan')

Listing 10-78.  Import Functions from lib.postgres

In [2]: from lib.postgres import connect_to_postgres, encode_target

In Listing 10-79, you see a new design pattern, the instantiation of a Queue from
the rq library. The Queue is instantiated with a connection to a specific Redis server.
As before, you use the name of your Redis service on the network created by Docker
Compose, this_redis.

Listing 10-79.  Create Connection to Redis and New Queue

In [3]: from redis import Redis
 from rq import Queue
 REDIS = Redis(host='this_redis')
 Q = Queue(connection=REDIS)

In Listing 10-80, you put all of the pieces together. You create a new connection
to PostgreSQL. You use a for-loop to pull the row _id for 100 rows from the adult table
where the target has not yet been encoded. For each row, you add the encode_target
function with an associated _id to the job queue using the .enqueue() function. Note
that the argument to be passed (that is, the _id, to encode_target at runtime) is passed as
a second argument to .enqueue().

Listing 10-80.  Add 100 Target Encoding Requests to Queue

In [4]: con, cur = connect_to_postgres()
 for _ in range(100):
 cur.execute("""SELECT _id FROM adult WHERE target IS NULL;""")
 this_id, = cur.fetchone()
 Q.enqueue(encode_target, this_id)
 con.close()

During at least one execution of this cell (you will need to run this particular cell
over 300 times in order to encode the entire table unless modifications are made),
I recommend using the browser-based monitor, as well as “tailing” the Docker
Compose logs, to watch the Worker churn through these functions. The browser-based
monitor will be available on the same IP address as your Jupyter Notebook server, but
will be available on port 5000 (Figure 10-18). Listing 10-81 shows the “tailing” of the
Docker Compose logs using the --follow flag. Each job process will pass through this
log as it is executed.

Chapter 10 ■ Interactive Software Development

249

Listing 10-81.  Tailing the Docker Compose Logs

$ docker-compose logs --follow this_worker
...
this_worker_1 | 01:43:04 *** Listening on default...
this_worker_1 | �01:43:04 default: lib.postgres.encode_target(24)

(914a8229-a876-438f-98d4-d6cd39a469b2)
this_worker_1 | 01:43:04 default: Job OK (914a8229-a876-438f-98d4-d6cd39a469b2)
this_worker_1 | 01:43:04 Result is kept for 500 seconds
this_worker_1 | 01:43:04
this_worker_1 | 01:43:04 *** Listening on default...
this_worker_1 | �01:43:04 default: lib.postgres.encode_target(24)

(215ed343-0ca5-4f75-86e6-d8237e4a5983)
this_worker_1 | 01:43:04 default: Job OK (215ed343-0ca5-4f75-86e6-d8237e4a5983)
this_worker_1 | 01:43:04 Result is kept for 500 seconds
this_worker_1 | 01:43:04
this_worker_1 | 01:43:04 *** Listening on default...
this_worker_1 | �01:43:04 default: lib.postgres.encode_target(24)

(1dfe0282-cf90-49de-a904-8a2ced103c50)
this_worker_1 | 01:43:04 default: Job OK (1dfe0282-cf90-49de-a904-8a2ced103c50)
this_worker_1 | 01:43:04 Result is kept for 500 seconds
...

Finally, you track your work using git. In Listing 10-82, you check the status of your
project. In Listing 10-83, you add and commit all of your recent work.

Figure 10-18.  Browser-based Queue and Worker monitor

Chapter 10 ■ Interactive Software Development

250

Listing 10-82.  Check the Status of the Project

$ git status
On branch master
Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git checkout -- <file>..." to discard changes in working directory)

 modified: lib/postgres.py

Untracked files:
 (use "git add <file>..." to include in what will be committed)

 ipynb/20170619-Develop_encoding_target_function.ipynb
 ipynb/20170619-Encode_target.ipynb

no changes added to commit (use "git add" and/or "git commit -a")
lib/

Listing 10-83.  Add All Files and Commit

$ git add -A
$ git commit -m 'function and queueing for target encoding'
[master 93f3033] function and queueing for target encoding
 3 files changed, 319 insertions(+)
 create mode 100644 ipynb/20170619-Develop_encoding_target_function.ipynb
 create mode 100644 ipynb/20170619-Encode_target.ipynb

In Listing 10-84, you display the current state of your project.

Listing 10-84.  Current Project Status

$ tree
.
├── data
 │ └── adult.data
├── docker
 │ ├── jupyter
 │ │ └── Dockerfile
 │ └── postgres
 │ ├── Dockerfile
 │ ├── get_data.sh
 │ └── initdb.sql
├── docker-compose.yml
├── ipynb
 │ ├── 20170611-Examine_Database_Requirements.ipynb
 │ ├── 20170613-Initial_Database_Connection.ipynb

Chapter 10 ■ Interactive Software Development

251

 │ ├── 20170613-Verify_Database_Connection.ipynb
 │ ├── 20170619-Develop_encoding_target_function.ipynb
 │ └── 20170619-Encode_target.ipynb
└── lib
 ├── __init__.py
 ├── postgres.py
 └── __pycache__
 ├── __init__.cpython-35.pyc
 └── postgres.cpython-35.pyc

Summary
This chapter marks the conclusion of the book. In this chapter, you revisited the idea of
interactive programming and saw the sketch of what a framework for interactive software
development might look like. You defined the project root design pattern and software
design pattern used to place Jupyter at the center of a well-structured interactive software
application. You outlined steps for creating code modules via an interactive development
process. Finally, you used Docker Compose and Redis to build a delayed job processing
system into your application. Having finished this chapter, I hope that you are excited and
prepared to begin building your own interactive applications.

253© Joshua Cook 2017
J. Cook, Docker for Data Science, DOI 10.1007/978-1-4842-3012-1

�       � A
Amazon Web Services (AWS), 2

account creation, 2
EC2 instance

creation, 9
Docker, 13
IP address, 12
key pair, 12
launch button, 11
security group, 11
stable Ubuntu server, 9
t2.micro type, 9–10

inbound rules, 8
key pair

configuration, 3
control panel, 5
EC2 dashboard, 5
import, 6
SSH key, 6

process, 2
security group pane, 7

Anaconda, 88

�       � B
Bessel function, 51
Big data, 1

�       � C
Cloud-based version-control

system, 226
Containerization, 30

application, 32
virtualize processes, 30–31

�       � D
Daemonized Hello World, 78
Data infrastructure

DecisionTreeClassifier, 24
jupyter/scipy-notebook

image, 15–16
KNeighborsClassifier, 24
limitations, 14
LogisticRegression, 24
memory exception

creation, 20
default values, 19
make_classification import, 18
MemoryError, 21
memory footprint, 21
notebook, 17
Python kernel, 20
running notebook, 18

models, 22
monitor memory usage, 17
T2.micro, 26

Data store technologies, 137
Docker data volumes and

persistence, 141
connecting containers via legacy

links, 143–145
create and view, 142
iterative process, 148
launching Redis, 142–143
pass dictionary via JSON

dump, 148–149
pass numpy array as

bytestrings, 150
Redis example, 147
Redis with Jupyter, 145–146

Index

■ INDEX

254

MongoDB, 151
data volume, create and view,

153–154
insert tweets, 164
installation, verifying, 155
with Jupyter, 155–156
Mongo and Twitter, 158
new AWS t2.micro, 152
new AWS t2.micro for Docker, 153
as persistent service, 154–155
pull the mono image, 153
pymongo, 157–158
structure, 156
tweets by geolocation, 162–163
Twitter credentials, 159–161

PostgreSQL, 164
binary type and numpy, 176–178
connecting containers by name,

171–173
Docker container networking,

167–169
installation, verifying, 166–167
with Jupyter, 174
Jupyter, pandas and psycopg2, 174
Jupyter-PostgreSQL connection,

170–171
loading data, 175–176
minimal verification, 174–175
new data volume, creating, 165
as persistent service, 166
postgres image, pull, 165

Redis, 139
pull the image, 139–140

serialization, 137
binary encoding in Python, 139
formats and methods, 138

Docker, 1
client, 33
compose, 35
concepts, 32
containerization, 29
container networking, 167–169
data volumes and persistence, 141

connecting containers via legacy
links, 143–145

create and view, 142
iterative process, 148
launching Redis, 142–143

pass dictionary via JSON dump,
148–149

pass numpy array as
bytestrings, 150

Redis example, 147
Redis with Jupyter, 145–146

ecosystem, 32–33
engine, 34

containers/processes, 76
file server via Docker container, 46
Hello, Docker!, 42
heterogenous infrastructure, 29
host, 34
image and container, 34
Linux, 36
Mac, 40
networking, 45
new AWS t2.micro for, 153
non-root user, 39
registries hold images, 35
repository, 38–39
SimpleHTTPServer, 45
toolbox, 41
Ubuntu system, 36
Windows, 40

Docker Compose
application, 181
AWS application, 195–198
ch9jupyterredis_default, 183
complete the computation,

199–202
creation, directory, 182
docker-compose down, 186
docker-compose.yml, 182
docker engine, 183
Docker Hub registry, 182
install, 179–180
jupyter and postgres, 205–211
jupyter environment variables, 185
Jupyter Notebook server, 186
jupyter_redis, 183
multi-container systems, 179
networks, 204–205
Python project, 180
redis, 186
requirements.txt file, 180
restarting, 199
system administrator/operations

engineer, 179

Data store technologies (cont.)

■ INDEX

255

this_jupyter service, 182
t2.micro, 186, 202–204
toolset, 179
versions, 181

Dockerfiles
Anaconda, 88
ARG and MAINTAINER, 89
commit changes, 86, 92
creation, 81
Docker build cache, 87
environment variable

ENTRYPOINT, 97
ENV, 97
run the build, 97

FROM, 89–90
gsl image, 84
idempotent, 91
ipython image

build, 99
conda, 98
definition, 98
designing, 98
GitHub, 100
new container, 100
runtime command, 99
source directory, 98

joshuacook/gsl image build, 87
local repository, 90, 94

commit changes, 97
run the build, 96
tini, 95–96

microservices, 81
miniconda3 image, 92

design, 88
local repository, 98
source directory, 89

miniconda installation, 95
repo

building images, 83
GitHub, 83
local development, 82
syntax, 83

run build option, 93–94
RUN instruction, 92
run the build, 95
single-concern containers, 82
stateless containers, 81

Domain-specific language
(DSL), 35

�       � E, F
Elastic Compute Cloud (EC2), 2
Engine, 71

alpine Docker image, 72
ecosystem

bootstrap time, 77
containerized, 76

Hello, World, 74
implicit vs. explicit pulls, 73
workstation, 71

Ephemeral container extension, 130
ephemeral packages, 130
ipython magic shell process

command, 131
library installation, 132–133
package via pip, 133
root environment, 132
semi-persistent changes, 134
Twitter installation, 133

�       � G
GitHub, 83
GNU Scientific Library (GSL)

apt-get update && apt-get install, 86
build image, 85
creation, 84
definition, 84
FROM gcc, 85
LABEL maintainer=@joshuacook, 86
source directory, 84

�       � H
Hub

alternative public registries, 103
containers, 115
ID and namespaces, 104
image pushing, 111
joshuacook/numpy repository, 111
jupyter/base-notebook image, 117
local cache, 114
local directory and context

subdirectory, 108
numpy-notebook, 108
pull image, 113
push command, 112
repositories, 104

■ INDEX

256

repository creation, 110
search existing repositories, 105
server-side application, 103
tagged image, 106, 118

�       � I
ID and namespaces, 104
Infrastructure as code (IaC), 179
Interactive application, 49

bessel.py, 57
Jupyter (see Jupyter)
launch ipython, 55
persistence, 56

Interactive software development, 213
computational biology projects,

organizing, 214
database requirements, 218–223

managing project via git, 224–225
database to application, adding,

226–232
data science-specific, 213
default rails application, 213
delayed processing to application,

236–242
framework, 214
function’s docstring, 233
initialize the project, 217–218
modules, 232
postgres module, 242–246

Python module, 246–251
PostgreSQL, 233
project framework, 215
project root design pattern,

216–217, 233
Python module, Jupyter, 234–236
this_postgres works, 234

�       � J, K
joyvan, 130
Jupyter, 49

Bessel function, 51
calculation, 51
container

build context, 188–189
creation, 188
data persistence, 190
docker ps, 195
docker stats, 194

environment file, 189–190
OAuth object, 193
service and data volume, 187
t2.micro, 193
Twitter authentication, 193
TwitterStream, 194

C programming language, 49
execute compiled binary, 54
jupyter.env, 189
minimal computational project, 50
mongo_data, 190
notebook, 57

data persistence, 65
demo stack, 58
detached mode, 63
file system, 61, 68
foreground mode, 60
jupyter/demo image, 59
port connections, 63
port mappings, 65
Python code, 61
quadratic curve, 66
random time-series data, 62
server, 57
via localhost, 65
volume attachment, 69

opinionated Docker stacks, 57
Python module, 234–236
source code, 53

Jupyter Notebook server, 137, 217, 218

�       � L
Language model, spacy and en, 194
Libraries installation, 130
Linux, 36
Linux Containers (LXC) project, 30

�       � M
Mac, 40
MongoDB, 137, 151

container
count tweets, 195
docker-compose build, 191
docker-compose.yml, 192
jupyter_mongo, 192
single tweet, 195

data volume, create and
view, 153–154

insert tweets, 164

Hub (cont.)

■ INDEX

257

installation, verifying, 155
with Jupyter, 155–156
mongo and Twitter, 158
new AWS t2.micro, 152
new AWS t2.micro for Docker, 153
as persistent service, 154–155
pull the mono image, 153
pymongo, 157–158
structure, 156
tweets by geolocation, 162–163
Twitter credentials, 159–161

�       � N
Notebook images

conda environment, 125, 127
default environment, 124
high-level overview, 121
jupyter/base-notebook, 122
jupyter/scipy-notebook

image, 128
kernel selection, 126
Python versions, 125
security, 122
semantic_analysis image, 127
stack dependency graph, 121

�       � O
Opinionated Jupyter stacks, 119

Linux/Mac/Windows, 120
notebook server, 120
port mapping, 120
-P (publish all) flag, 119
scipy-notebook server, 119
toolbox, 120

�       � P, Q
PostgreSQL, 137, 164

binary type and numpy, 176–178
connnecting containers by

name, 171–173
database, 217
Docker container networking,

167–169
installation, verifying, 166–167
with Jupyter, 174
Jupyter, pandas and psycopg2, 174
Jupyter-PostgreSQL connection,

170–171

loading data, 175–176
minimal verification, 174–175
new data volume, creating, 165
as persistent service, 166
postgres image, pull, 165

Python modules, 216
demo, 216
lib/ directory, 217
pickle module, 139
program, 216
updating, 246–250
using Jupyter, 234–236

�       � R
Read-eval-print loop (REPL), 55
Redis, 137, 139

example, 147
with Jupyter, 145–146
as persistent service, 142–143
pull the image, 139–140

�       � S
Secure shell (ssh), 2
Serialization, 137

binary encoding in
Python, 139

formats and methods, 138

�       � T
Tagged images, 106

build command, 107
official repositories, 108
Python image, 107
subtle changes, 106

�       � U
Ubuntu system, 36

�       � V
Virtualization method, 30
Virtualized hardware, 30
Virtual machine (VM), 30

�       � W, X, Y, Z
Windows, 40

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Introduction
	“Big Data”
	Recommended Practice for Learning
	Set up a New AWS Account
	Configure a Key Pair
	Create a New Key Pair on AWS
	Create a New Security Group
	Create a New EC2 Instance
	Configure the New EC2 Instance for Using Docker

	Infrastructure Limitations on Data
	Pull the jupyter/scipy-notebook image
	Run the jupyter/scipy-notebook Image
	Monitor Memory Usage
	What Size Data Set Will Cause a Memory Exception?
	What Size Dataset Is Too Large to Be Used to Fit Different Kinds of Simple Models?
	Measuring Scope of Data Capable of Fitting on T2.Micro

	Summary

	Chapter 2: Docker
	Docker Is Not a Virtual Machine
	Containerization
	A Containerized Application
	The Docker Container Ecosystem
	The Docker Client
	The Host
	The Docker Engine
	The Docker Image and the Docker Container
	The Docker Registry
	Docker Compose

	Get Docker
	Docker for Linux
	Installing Docker on an Ubuntu System
	Configure Docker Repository
	Install from Docker Repository
	Manage Docker as a Non-Root User

	Docker for Mac
	Docker for Windows
	Docker Toolbox

	Hello, Docker!
	Basic Networking in Docker

	Summary

	Chapter 3: Interactive Programming
	Jupyter as Persistent Interactive Computing
	How Not to Program Interactively
	Setting Up a Minimal Computational Project
	Writing the Source Code for the Evaluation of a Bessel Function
	Performing Your Calculation Using Docker
	Compile Your Source Code
	Execute Compiled Binary

	How to Program Interactively
	Launch IPython Using Docker
	Persistence
	Jupyter Notebooks
	Opinionated Docker Stacks
	Security in the Jupyter Notebook Server
	Jupyter Demo Stack
	Launch the jupyter/demo image
	The Jupyter File System

	Port Connections
	Port Mappings

	Data Persistence in Docker
	Attach a Volume

	Summary

	Chapter 4: The Docker Engine
	Examining the Docker Workstation
	Hello, World in a Container
	Run Echo as a Service
	Isolating the Bootstrap Time

	A Daemonized Hello World
	Summary

	Chapter 5: The Dockerfile
	Best Practices
	Stateless Containers
	Single-Concern Containers

	Project: A Repo of Docker Images
	Prepare for Local Development
	Configure GitHub
	Building Images Using Dockerfiles
	Dockerfile Syntax
	Designing the gsl Image
	Create the gsl Source Directory
	Define the gsl Image
	Build the gsl Image
	FROM gcc
	LABEL maintainer=@joshuacook
	RUN apt-get update && apt-get install

	Commit Changes to GitHub

	The Docker Build Cache
	Anaconda
	Design the miniconda3 Image
	Create the miniconda3 Source Directory
	Begin the Image with FROM, ARG, and MAINTAINER
	Commit Changes to the Local Repository
	Idempotently Run the Build
	Commit Changes to the Local Repository
	Provision the miniconda3 Image
	Run the Build
	Commit Changes to the Local Repository
	Install Miniconda
	Run the Build
	Commit the Changes to the Local Repository

	tini
	Run the Build
	Commit the Changes to the Local Repository
	Configure the Environment Variable with ENV

	ENTRYPOINT
	Run the Build
	Commit the Changes to the Local Repository

	Design the ipython Image
	Create the ipython Source Directory
	Define the ipython Image
	Install ipython with conda
	Define the Default Runtime Command
	Build the ipython Image
	Commit the Changes to GitHub

	Run the ipython Image as a New Container

	Summary

	Chapter 6: Docker Hub
	Docker Hub
	Alternatives to Docker Hub

	Docker ID and Namespaces
	Image Repositories
	Search for Existing Repositories
	Tagged Images
	Tags on the Python Image
	Official Repositories

	Pushing to Docker Hub
	Create a New Repository
	Push an Image
	Pull the Image from Docker Hub
	Tagged Image on Docker Hub

	Summary

	Chapter 7: The Opinionated Jupyter Stacks
	High-Level Overview
	jupyter/base-notebook
	Notebook Security
	The Default Environment
	Managing Python Versions
	Naively Extending a Jupyter Image using a Dockerfile

	Extending the Jupyter Image Using conda Environments

	Using joyvan to Install Libraries
	Ephemeral Container Extension
	Maintaining Semi-Persistent Changes to Images

	Summary

	Chapter 8: The Data Stores
	Serialization
	Serialization Formats and Methods
	Binary Encoding in Python

	Redis
	Pull the redis Image

	Docker Data Volumes and Persistence
	Create and View a New Data Volume
	Launch Redis as a Persistent Service
	Connecting Containers via Legacy Links
	Using Redis with Jupyter
	A Simple Redis Example
	Track an Iterative Process Across Notebooks
	Pass a Dictionary via a JSON Dump
	Pass a Numpy Array as a Bytestring

	MongoDB
	Set Up a New AWS t2.micro
	Configure the New AWS t2.micro for Docker
	Pull the mongo Image
	Create and View a New Data Volume
	Launch MongoDB as a Persistent Service
	Verify MongoDB Installation
	Using MongoDB with Jupyter
	MongoDB Structure
	pymongo
	Mongo and Twitter
	Obtain Twitter Credentials
	Collect Tweets by Geolocation
	Insert Tweets Into Mongo

	PostgreSQL
	Pull the postgres Image
	Create New Data Volume
	Launch PostgreSQL as a Persistent Service
	Verify PostgreSQL Installation
	Docker Container Networking
	Minimally Verify the Jupyter-PostgreSQL Connection
	Connnecting Containers by Name
	Using PostgreSQL with Jupyter
	Jupyter, PostgreSQL, Pandas, and psycopg2
	Minimal Verification
	Loading Data into PostgreSQL
	PostgreSQL Binary Type and Numpy

	Summary

	Chapter 9: Docker Compose
	Install docker-compose
	What Is docker-compose?
	Docker Compose Versions

	Build a Simple Docker Compose Application
	Run Your Application with Compose

	Jupyter and Mongo with Persistence
	Specifying the Build Context
	Specify the Environment File
	Data Persistence
	Build Your Application with Compose

	Scaling an AWS Application via Instance Type
	Restart Docker Compose Application
	Complete the Computation
	Encode Tweets as Document Vectors

	Switch AWS Instance Type to t2.micro
	Retrieve Tweets from MongoDB and Compare

	Docker Compose Networks
	Jupyter and Postgres with Persistence
	Specifying the Build Context
	Build and Run Your Application with Compose

	Summary

	Chapter 10: Interactive Software Development
	A Quick Guide to Organizing Computational Biology Projects
	A Project Framework for Interactive Development
	Project Root Design Pattern
	Initialize Project
	Examine Database Requirements
	Managing the Project via Git

	Adding a Database to Your Application
	Interactive Development
	Create a Python Module Using Jupyter

	Add Delayed Processing to Your Application
	Extending the Postgres Module
	Updating Your Python Module

	Summary

	Index

