

Docker and Kubernetes for
Java Developers

Scale, deploy, and monitor multi-container applications

Jaroslaw Krochmalski

BIRMINGHAM - MUMBAI

Docker and Kubernetes for Java Developers

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author(s), nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2017

Production reference: 1240817

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78646-839-0

www.packtpub.com

http://www.packtpub.com

Credits

Author
Jaroslaw Krochmalski

Copy Editor
Safis Editing

Reviewer
Pierre Mavro

Project Coordinator
Kinjal Bari

Commissioning Editor
Vijin Boricha

Proofreader
Safis Editing

Acquisition Editor
Prachi Bisht

Indexer
Mariammal Chettiyar

Content Development Editor
Trusha Shriyan

Graphics
Kirk D'Penha

Technical Editor
Varsha Shivhare

Production Coordinator
Shantanu Zagade

About the Author
Jaroslaw Krochmalski is a passionate software designer and developer who specializes in
the financial domain. He has over 12 years of experience in software development. He is a
clean-code and software craftsmanship enthusiast. He is a certified scrum master and a fan
of Agile. His professional interests include new technologies in web application
development, design patterns, enterprise architectures, and integration patterns.

He has been designing and developing software professionally since 2000 and has been
using Java as his primary programming language since 2002. In the past, he has worked for
companies such as Kredyt Bank (KBC) and Bank BPS on many large-scale projects, such as
international money orders, express payments, and collection systems. He currently works
as a consultant at Danish company 7N as an infrastructure architect for the Nykredit bank.
You can reach him via Twitter at @jkroch or by email at jarek@finsys.pl.

About the Reviewer
Pierre Mavro lives in a suburb of Paris. He's an open source software lover and has been
working with Linux for more than 10 years now. Currently, he is working as a lead SRE at
Criteo, where he manages distributed systems and NoSQL technologies. During the last few
years, he has been designing high-availability infrastructures, public and private cloud
infrastructures, and worked for a high-frequency trading company. He also wrote a book
on MariaDB named MariaDB High Performance. He’s also one of the co-founders of
Nousmotards, an application for riders.

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com. Did
you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details. At www.PacktPub.com, you can also read a
collection of free technical articles, sign up for a range of free newsletters and receive
exclusive discounts and offers on Packt books and eBooks.

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt

Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at https://www.amazon.com/dp/1786468395.

If you'd like to join our team of regular reviewers, you can e-mail us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

https://www.amazon.com/dp/1786468395

Table of Contents
Preface 1

Chapter 1: Introduction to Docker 7

The idea behind Docker 8
Virtualization and containerization compared 8

Benefits from using Docker 10
Docker concepts - images and containers 11

Images 11
Layers 12
Containers 15
Docker registry, repository, and index 18

Additional tools 21
Installing Docker 22

Installing on macOS 22
Installing on Linux 33
Installing on Windows 37

Summary 46

Chapter 2: Networking and Persistent Storage 47

Networking 48
Docker network types 48

Bridge 48
Host 49
None 50

Networking commands 50
Creating and inspecting a network 51
Connecting a container to the network 53
Exposing ports and mapping ports 54
Persistent storage 60
Volume-related commands 61
Creating a volume 62
Removing a volume 67
Volume drivers 68
Summary 69

Chapter 3: Working with Microservices 71

An introduction to microservices 71

[]

Monolithic versus microservices 72
The monolithic architecture 73
The microservices architecture 76

Maintaining data consistency 79
The Docker role 81
Kubernetes' role 83
When to use the microservice architecture 84
Summary 86

Chapter 4: Creating Java Microservices 87

Introduction to REST 88
HTTP methods 89

REST in Java 91
Java EE7 - JAX-RS with Jersey 91

JAX-RS annotations 92
Spring Boot 97

Coding the Spring Boot microservice 100
Maven build file 101

Application entry point 103
Domain model and a repository 104
REST controller 109
Documenting the API 111

Running the application 115
Making calls 117

Spring RestTemplate 117
HTTPie 118
Postman 118
Paw for Mac 120

Spring Initializr 120
Summary 123

Chapter 5: Creating Images with Java Applications 125

Dockerfile 125
Dockerfile instructions 126

FROM 127
MAINTAINER 129
WORKDIR 129
ADD 129
COPY 131
RUN 132
CMD 134

[]

The ENTRYPOINT 139
EXPOSE 143
VOLUME 144
LABEL 145
ENV 146
USER 147
ARG 148
ONBUILD 148
STOPSIGNAL 150
HEALTHCHECK 150
Creating an image using Maven 151
Building the image 158
Creating and removing volumes 159

Summary 160

Chapter 6: Running Containers with Java Applications 161

Starting and stopping containers 161
Starting 161
Stopping 163
Listing the running containers 163
Removing the containers 164

Container running modes 165
Foreground 165
Detached 165
Attaching to running containers 166

Monitoring containers 167
Viewing logs 167
Inspecting a container 170
Statistics 172
Container events 173

Restart policies 175
no 175
always 176
on-failure 176
unless-stopped 177
Updating a restart policy on a running container 178

Runtime constraints on resources 179
Memory 179
Processors 181
Updating constraints on a running container 183

[]

Running with Maven 184
Plugin configuration 185
Starting and stopping containers 186

Summary 189

Chapter 7: Introduction to Kubernetes 191

Why do we need Kubernetes? 191
Basic Kubernetes concepts 193

Pods 194
ReplicaSets 197
Deployment 198
Services 200
kube-dns 201
Namespace 201
Nodes 202

Kubelet 203
Proxy 203
Docker 203

The Master node 204
etcd 204
The API server 205
The scheduler 205

Available tools 205
kubectl 206
Dashboard 206
Minikube 206

Summary 207

Chapter 8: Using Kubernetes with Java 209

Installing Minikube 210
Installing on Mac 210
Installing on Windows 210
Installing on Linux 211
Starting up the local Kubernetes cluster 211

Installing kubectl 213
Installing on Mac 213
Installing on Windows 213
Installing on Linux 213

Deploying on the Kubernetes cluster 215
Creating a service 215
Creating a deployment 218
Interacting with containers and viewing logs 224

[]

Scaling manually 227
Autoscaling 228
Viewing cluster events 229
Using the Kubernetes dashboard 229

Minikube addons 235
Cleaning up 236
Summary 237

Chapter 9: Working with the Kubernetes API 239

API versioning 240
Alpha 240
Beta 241
Stable 241

Authentication 242
HTTP basic auth 243
Static token file 244
Client certificates 245
OpenID 245

Authorization 246
Attribute-based access control 247
Role-based access control (RBAC) 248
WebHook 250
AlwaysDeny 251
AlwaysAllow 251

Admission control 252
Using the API 252

API operations 252
Example calls 253

Creating a service using the API 254
Creating a deployment using the API 255
Deleting a service and deployment 259

Swagger docs 260
Summary 261

Chapter 10: Deploying Java on Kubernetes in the Cloud 263

Benefits of using the cloud, Docker, and Kubernetes 264
Installing the tools 265

Python and PIP 265
AWS command-line tools 266
Kops 268
jq 269

[]

Configuring Amazon AWS 269
Creating an administrative user 269

Creating a user for kops 273
Creating the cluster 276

DNS settings 277
Root domain on AWS hosted domain 277
The subdomain of the domain hosted on AWS 277
Route 53 for a domain purchased with another registrar 279
Subdomain for cluster in AWS Route 53, the domain elsewhere 280

Checking the zones' availability 280
Creating the storage 281
Creating a cluster 282
Starting up clusters 286
Updating a cluster 288
Installing the dashboard 289

Summary 290

Chapter 11: More Resources 291

Docker 291
Awesome Docker 291
Blogs 292
Interactive tutorials 292

Kubernetes 293
Awesome Kubernetes 293
Tutorials 293
Blogs 293
Extensions 294
Tools 294

Rancher 294
Helm and charts 294
Kompose 295
Kubetop 295
Kube-applier 295

Index 297

Preface
Imagine creating and testing Java EE applications on Apache Tomcat or Wildfly in minutes,
along with deploying and managing Java applications swiftly. Sounds too good to be true?
You have a reason to cheer, because such scenarios are possible by leveraging Docker and
Kubernetes.

This book will start by introducing Docker and delve deep into its networking and
persistent storage concepts. You will be then introduced to the concept of microservices and
learn how to deploy and run Java microservices as Docker containers. Moving on, the book
will focus on Kubernetes and its features. You will start by running the local cluster using
Minikube. The next step will be to deploy your Java service in the real cloud, on Kubernetes
running on top of Amazon AWS. At the end of the book, you will get hands-on experience
of some more advanced topics to further extend your knowledge of Docker and Kubernetes.

What this book covers
Chapter 1, Introduction to Docker, introduces the reasoning behind Docker and presents the
differences between Docker and traditional virtualization. The chapter also explains basic
Docker concepts, such as images, containers, and Dockerfiles.

Chapter 2, Networking and Persistent Storage, explains how networking and persistent
storage work in Docker containers.

Chapter 3, Working with Microservices, presents an overview of what microservices are and
explains their advantages in comparison to monolithic architectures.

Chapter 4, Creating Java Microservices, explores a recipe for quickly constructing Java
microservice, by utilizing either Java EE7 or the Spring Boot.

Chapter 5, Creating Images with Java Applications, teaches how to package the Java
microservices into Docker images, either manually or from the Maven build file.

Chapter 6, Running Containers with Java Applications, shows how to run a containerized Java
application using Docker.

Chapter 7, Introduction to Kubernetes, introduces the core concepts of Kubernetes, such as
Pods, nodes, services, and deployments.

Preface

[2]

Chapter 8, Using Kubernetes with Java, shows how to deploy Java microservices, packaged
as a Docker image, on the local Kubernetes cluster.

Chapter 9, Working with Kubernetes API, shows how the Kubernetes API can be used to
automate the creation of Kubernetes objects such as services or deployments. This chapter
gives examples of how to use the API to get information about the cluster's state.

Chapter 10, Deploying Java on Kubernetes in the Cloud, shows the reader how to configure
Amazon AWS EC2 instances to make them suitable to run a Kubernetes cluster. This
chapter also gives precise instructions on how to create a Kubernetes cluster on the Amazon
AWS cloud.

Chapter 11, More Resources, explores how Java and Kubernetes point the reader to
additional resources available on the internet that are of high quality, to further extend
knowledge about Docker and Kubernetes.

What you need for this book
For this book, you will need any decent PC or Mac, capable of running a modern version of
Linux, Windows 10 64-bit, or macOS.

Who this book is for
This book is for Java developers, who would like to get into the world of containerization.
The reader will learn how Docker and Kubernetes can help with deployment and
management of Java applications on clusters, either on their own infrastructure or in the
cloud.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.
Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "The
Dockerfile is used to create the image when you run the docker build command." A block
of code is set as follows:

{
"apiVersion": "v1",
"kind": "Pod",
"metadata":{

Preface

[3]

"name": ”rest_service”,
"labels": {
"name": "rest_service"
}
},
"spec": {
"containers": [{
"name": "rest_service",
"image": "rest_service",
"ports": [{"containerPort": 8080}],
}]
}
}

Any command-line input or output is written as follows:

docker rm $(docker ps -a -q -f status=exited)

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "Clicking the Skip For Now
will take you to the the images list without logging into the Docker Hub."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of. To send us general feedback, simply
email feedback@packtpub.com, and mention the book's title in the subject of your
message. If there is a topic that you have expertise in and you are interested in either
writing or contributing to a book, see our author guide at www.packtpub.com/authors.

http://www.packtpub.com/authors

Preface

[4]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files emailed directly to you.
You can download the code files by following these steps:

Log in or register to our website using your email address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at
https://github.com/PacktPublishing/Docker-and-Kubernetes-for-Java-Developers.
We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from http://www.packtpub.com/sites/default/
files/downloads/DockerandKubernetesforJavaDevelopers_ColorImages.pdf.

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/PacktPublishing/Docker-and-Kubernetes-for-Java-Developers
https://github.com/PacktPublishing/
http://www.packtpub.com/sites/default/files/downloads/DockerandKubernetesforJavaDevelopers_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/DockerandKubernetesforJavaDevelopers_ColorImages.pdf

Preface

[5]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting http://www.packtpub.com/submit-errata, selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title. To view the previously submitted errata, go to
https://www.packtpub.com/books/content/support and enter the name of the book in the
search field. The required information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the internet, please provide us with
the location address or website name immediately so that we can pursue a remedy. Please
contact us at copyright@packtpub.com with a link to the suspected pirated material. We
appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us
at questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

1
Introduction to Docker

The first thing we will do in this chapter will be to explain the reasoning behind Docker and
its architecture. We will cover Docker concepts such as images, layers, and containers. Next,
we will install Docker and learn how to pull a sample, basic Java application image from the
remote registry and run it on the local machine.

Docker was created as the internal tool in the platform as a service company, dotCloud. In
March 2013, it was released to the public as open source. Its source code is freely available
to everyone on GitHub at: https://github.com/docker/docker. Not only do the core
Docker Inc. team work on the development of Docker, there are also a lot of big names
sponsoring their time and effort to enhance and contribute to Docker such as Google,
Microsoft, IBM, Red Hat, Cisco systems, and many others. Kubernetes is a tool developed
by Google for deploying containers across clusters of computers based on best practices
learned by them on Borg (Google's homemade container system). It compliments Docker
when it comes to orchestration, automating deployment, managing, and scaling containers;
it manages workloads for Docker nodes by keeping container deployments balanced across
a cluster. Kubernetes also provides ways for containers to communicate with each other,
without the need for opening network ports. Kubernetes is also an open source project,
living on the GitHub at https://github.com/kubernetes/kubernetes. Everyone can
contribute. Let's begin our journey with Docker first. The following will be covered in:

We will start with the basic idea behind this wonderful tool and show the
benefits gained from using it, in comparison to traditional virtualization
We will install Docker on three major platforms: macOS, Linux, and Windows

https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes

Introduction to Docker

[8]

The idea behind Docker
The idea behind Docker is to pack an application with all the dependencies it needs into a
single, standardized unit for the deployment. Those dependencies can be binaries, libraries,
JAR files, configuration files, scripts, and so on. Docker wraps up all of it into a complete
filesystem that contains everything your Java application needs to run the virtual machine
itself, the application server such as Wildfly or Tomcat, the application code, and runtime
libraries, and basically everything you would install and deploy on the server to make your
application run. Packaging all of this into a complete image guarantees that it is portable; it
will always run in the same way, no matter what environment it is deployed in. With
Docker, you can run Java applications without having to install a Java runtime on the host
machine. All the problems related to incompatible JDK or JRE, wrong version of the
application server, and so on are gone. Upgrades are also easy and effortless; you just run
the new version of your container on the host.

If you need to do some cleanup, you can just destroy the Docker image and it's as though
nothing ever happened. Think about Docker, not as a programming language or a
framework, but rather as a tool that helps in solving the common problems such as
installing, distributing, and managing the software. It allows developers and DevOps to
build, ship, and run their code anywhere. Anywhere means also on more than one machine,
and this is where Kubernetes comes in handy; we will shortly get back to it.

Having all of your application code and runtime dependencies packaged as a single and
complete unit of software may seem the same as a virtualization engine, but it's far from
that, as we will explain now. To fully get to know what Docker really is, first we need to
understand the difference between traditional virtualization and containerization. Let's
compare those two technologies now.

Virtualization and containerization compared
A traditional virtual machine represents the hardware-level virtualization. In essence, it's a
complete, virtualized physical machine with BIOS and an operating system installed. It runs
on top of the host operating system. Your Java application runs in the virtualized
environment as it would normally do on your own machine. There are a lot of advantages
from using virtual machines for your applications. Each virtual machine can have a totally
different operating system; those can be different Linux flavors, Solaris, or Windows, for
example. Virtual machines are also very secure by definition; they are totally isolated,
complete operating systems in a box.

Introduction to Docker

[9]

However, nothing comes without a price. Virtual machines contain all the features that an
operating system needs to have to be operational: core system libraries, device drivers, and
so on. Sometimes they can be resource hungry and heavyweight. Virtual machines require
full installation, which sometimes can be cumbersome and not so easy to set up. Last, but
not least, you will need more compute power and resources to execute your application in
the virtual machine the hypervisor needs to first import the virtual machine and then power
it up and this takes time. However, I believe, when it comes to running Java applications,
having the complete virtualized environment is not something that we would want very
often. Docker comes to the rescue with the concept of containerization. Java applications
(but of course, it's not limited to Java) run on Docker in an isolated environment called a
container. A container is not a virtual machine in the popular sense. It behaves as a kind of
operating system virtualization, but there's no emulation at all. The main difference is that
while each traditional virtual machine image runs on an independent guest operating
system, the Docker containers run within the same kernel running on the host machine. A
container is self-sufficient and isolated not only from the underlying OS, but from other
containers as well. It has its own separated filesystem and environment variables.
Naturally, containers can communicate with each other (as an application and a database
container for example) and also can share the files on disk. Here comes the main difference
when comparing to traditional virtualization because the containers run within the same
kernel they utilize fewer system resources. All the operating system core software is
removed from the Docker image. The base container can be, and usually is, very
lightweight. There is no overhead related to a classic virtualization hypervisor and a guest
operating system. This way you can achieve almost bare metal, core performance for your
Java applications. Also, the startup time of a containerized Java application is usually very
low due to the minimal overhead of the container. You can also roll-out hundreds of
application containers in seconds to reduce the time needed for provisioning your software.
We will do this using Kubernetes in one of the coming chapters. Although Docker is quite
different from the traditional virtualization engines. Be aware that containers cannot
substitute virtual machines for all use cases; a thoughtful evaluation is still required to
determine what is best for your application. Both solutions have their advantages. On the
one hand, we have the fully isolated secure virtual machine with average performance. On
the other hand, we have the containers that are missing some of the key features, but are
equipped with high performance that can be provisioned very fast. Let's see what other
benefits you will get when using Docker containerization.

Introduction to Docker

[10]

Benefits from using Docker
As we have said before, the major visible benefit of using Docker will be very fast
performance and short provisioning time. You can create or destroy containers quickly and
easily. Containers share resources such as the operating system's kernel and the needed
libraries efficiently with other Docker containers. Because of that, multiple versions of an
application running in containers will be very lightweight. The result is faster deployment,
easier migration, and startup times.

Docker can be especially useful when deploying Java microservices. We will get back to
microservices in detail in one of the coming chapters. A microservices application is
composed of a series of discrete services, communicating with others via an API.
Microservices break an app into a large number of small processes. They are the opposite of
the monolithic applications, which run all operations as a single process or a set of large
processes.

Using Docker containers enables you to deploy ready-to-run software, which is portable
and extremely easy to distribute. Your containerized application simply runs within its
container; there's no need for installation. The lack of an installation process has a huge
advantage; it eliminates problems such as software and library conflicts or even driver
compatibility issues. Docker containers are portable; they can be run from anywhere: your
local machine, a remote server, and private or public cloud. All major cloud computing
providers, such as Amazon Web Services (AWS) and Google's compute platform support
Docker now. A container running on, let's say, an Amazon EC2 instance, can easily be
transferred to some other environment, achieving exactly the same consistency and
functionality. The additional level of abstraction Docker provides on the top of your
infrastructure layer is an indispensable feature. Developers can create the software without
worrying about the platform it will later be run on. Docker has the same promise as Java;
write once, run anywhere; except instead of code, you configure your server exactly the
way you want it (by picking the operating system, tuning the configuration files, installing
dependencies) and you can be certain that your server template will run exactly the same
on any host that runs Docker.

Because of Docker's reproducible build environment, it's particularly well suited for testing,
especially in your continuous integration or continuous delivery flow. You can quickly boot
up identical environments to run the tests. And because the container images are all
identical each time, you can distribute the workload and run tests in parallel without a
problem. Developers can run the same image on their machine that will be run in
production later, which again has a huge advantage in testing.

Introduction to Docker

[11]

The use of Docker containers speeds up continuous integration. There are no more endless
build-test-deploy cycles; Docker containers ensure that applications run identically in
development, test, and production environments. The code grows over time and becomes
more and more troublesome. That's why the idea of an immutable infrastructure becomes
more and more popular nowadays and the concept of containerization has become so
popular. By putting your Java applications into containers, you can simplify the process of
deployment and scaling. By having a lightweight Docker host that needs almost no
configuration management, you manage your applications simply by deploying and
redeploying containers to the host. And again, because the containers are very lightweight,
it takes only seconds.

We have been talking a lot about images and containers, without getting much into the
details. Let's do it now and see what Docker images and containers are.

Docker concepts - images and containers
When dealing with Kubernetes, we will be working with Docker containers; it is an open
source container cluster manager. To run our own Java application, we will need to create
an image first. Let's begin with the concept of Docker images.

Images
Think of an image as a read-only template which is a base foundation to create a container
from. It's same as a recipe containing the definition of everything your application needs to
operate. It can be Linux with an application server (such as Tomcat or Wildfly, for example)
and your Java application itself. Every image starts from a base image; for
example, Ubuntu; a Linux image. Although you can begin with a simple image and build
your application stack on top of it, you can also pick an already prepared image from the
hundreds available on the Internet. There are a lot of images especially useful for Java
developers: openjdk, tomcat, wildfly, and many others. We will use them later as a
foundation for our own images. It's a lot easier to have, let's say, Wildfly installed and
configured properly as a starting point for your own image. You can then just focus on your
Java application. If you're a novice in building images, downloading a specialized base
image is a great way to get a serious speed boost in comparison to developing one by
yourself.

Introduction to Docker

[12]

Images are created using a series of commands, called instructions. Instructions are placed
in the Dockerfile. The Dockerfile is just a plain text file, containing an ordered collection of
root filesystem changes (the same as running a command that starts an application server,
adding a file or directory, creating environmental variables, and so on.) and the
corresponding execution parameters for use within a container runtime later on. Docker
will read the Dockerfile when you start the process of building an image and execute the
instructions one by one. The result will be the final image. Each instruction creates a new
layer in the image. That image layer then becomes the parent for the layer created by the
next instruction. Docker images are highly portable across hosts and operating systems; an
image can be run in a Docker container on any host that runs Docker. Docker is natively
supported in Linux, but has to be run in a VM on Windows and macOS. It's important to
know that Docker uses images to run your code, not the Dockerfile. The Dockerfile is used
to create the image when you run the docker build command. Also, if you publish your
image to the Docker Hub, you publish a resulting image with its layers, not a source
Dockerfile itself.

We have said before that every instruction in a Dockerfile creates a new layer. Layers are
the internal nature of an image; Docker images are composed from them. Let's explain now
what they are and what their characteristics are.

Layers
Each image consists of a series of layers which are stacked, one on top of the another. In
fact, every layer is an intermediate image. By using the union filesystem, Docker combines
all these layers into a single image entity. The union filesystem allows transparent
overlaying files and directories of separate filesystems, giving a single, consistent filesystem
as a result, as you can see the following diagram:

Introduction to Docker

[13]

Contents and structure of directories which have the same path within these separate
filesystems will be seen together in a single merged directory, within the new, virtual-like
filesystem. In other words, the filesystem structure of the top layer will merge with the
structure of the layer beneath. Files and directories which have the same path as in the
previous layer will cover those beneath. Removing the upper layer will again reveal and
expose the previous directory content. As we have mentioned earlier, layers are placed in a
stack, one on the top of another. To maintain the order of layers, Docker utilizes the concept
of layer IDs and pointers. Each layer contains the ID and a pointer to its parent layer. A
layer without a pointer referencing the parent is the first layer in the stack, a base. You can
see the relation in the following diagram:

Introduction to Docker

[14]

Layers have some interesting features. First, they are reusable and cacheable. The pointer to
a parent layer you can see in the previous diagram is important. As Docker is processing
your Dockerfile it's looking at two things: the Dockerfile instruction being executed and the
parent image. Docker will scan all of the children of the parent layer and look for one whose
command matches the current instruction. If a match is found, Docker skips to the next
Dockerfile instruction and repeats the process. If a matching layer is not found in the cache,
a new one is created. For the instructions that add files to your image (we will get to know
them later in detail), Docker creates a checksum for each file contents. During the building
process, this checksum is compared against the checksum of the existing images to check if
the layer can be reused from the cache. If two different images have a common part, let's
say a Linux shell or Java runtime for example, Docker, which tracks all of the pulled layers,
will reuse the shell layer in both of the images. It's a safe operation; as you already
know, layers are read-only. When downloading another image, the layer will be reused and
only the difference will be pulled from the Docker Hub. This saves time, bandwidth, and
disk space of course, but it has another great advantage. If you modify your Docker image,
for example by modifying your containerized Java application, only the application layer
gets modified. After you've successfully built an image from your Dockerfile, you will
notice that subsequent builds of the same Dockerfile finish a lot faster. Once Docker caches
an image layer for an instruction, it doesn't need to be rebuilt. Later on, instead of
distributing the whole image, you push just the updated part. It makes the process simpler
and faster. This is especially useful if you use Docker in your continuous deployment flow:
pushing a Git branch will trigger building an image and then publishing the application for
users. Due to the layer-reuse feature, the whole process is a lot faster.

The concept of reusable layers is also a reason why Docker is so lightweight in comparison
to full virtual machines, which don't share anything. It is thanks to layers that when you
pull an image, you eventually don't have to download all of its filesystem. If you already
have another image that has some of the layers of the image you pull, only the missing
layers are actually downloaded. There is a word of warning though, related to another
feature of layers: apart from being reusable, layers are also additive. If you create a large file
in the container, then make a commit (we will get to that in a while), then delete the file,
and do another commit; this file will still be present in the layer history. Imagine this
scenario: you pull the base Ubuntu image, and install the Wildfly application server. Then
you change your mind, uninstall the Wildfly and install Tomcat instead. All those files
removed from the Wildfly installation will still be present in the image, although they have
been deleted. Image size will grow in no time. Understanding of Docker's layered
filesystem can make a big difference in the size of your images. Size can become a problem
when you publish your images to a registry; it takes more requests and is longer to transfer.

Introduction to Docker

[15]

Large images become an issue when thousands of containers need to be deployed across a
cluster, for example. You should always be aware of the additivity of layers and try to
optimize the image at every step of your Dockerfile, the same as using the command
chaining, for example. We will be using the command chaining technique later on, when
creating our Java application images.

Because layers are additive, they provide a full history of how a specific image was built.
This gives you another great feature: the possibility to make a rollback to a certain point in
the image's history. Since every image contains all of its building steps, we can easily go
back to a previous step if we want to. This can be done by tagging a certain layer. We will
cover image tagging later in our book.

Layers and images are closely related to each other. As we have said before, Docker images
are stored as a series of read-only layers. This means that once the container image has been
created, it does not change. But having all the filesystem read-only would not make a lot of
sense. What about modifying an image? Or adding your software to a base web server
image? Well, when we start a container, Docker actually takes the read-only image (with all
its read-only layers) and adds a writable layer on top of the layers stack. Let's focus on the
containers now.

Containers
A running instance of an image is called a container. Docker launches them using the
Docker images as read-only templates. If you start an image, you have a running container
of this image. Naturally, you can have many running containers of the same image. In fact,
we will do it very often a little bit later, using Kubernetes.

To run a container, we use the docker run command:

docker run [OPTIONS] IMAGE [COMMAND] [ARG...]

There are a lot of run command options and switches that can be used; we will get to know
them later on. Some of the options include the network configuration, for example (we will
explain Docker's networking concepts in Chapter 2, Networking and Persistent Storage).
Others, the same as the -it (from interactive), tell the Docker engine to behave differently;
in this case, to make the container interactive and to attach a terminal to its output and
input. Let's just focus on the idea of the container to better understand the whole picture.
We are going to use the docker run command in a short while to test our setup.

Introduction to Docker

[16]

So, what happens under the hood when we run the docker run command? Docker will
check if the image that you would like to run is available on your local machine. If not, it
will be pulled down from the remote repository. The Docker engine takes the image and
adds a writable layer on top of the image's layers stack. Next, it initializes the image's name,
ID, and resource limits, such as CPU and memory. In this phase, Docker will also set up a
container's IP address by finding and attaching an available IP address from a pool. The last
step of the execution will be the actual command, passed as the last parameter of the
docker run command. If the it option has been used, Docker will capture and provide
the container output, it will be displayed in the console. You can now do things you would
normally do when preparing an operating system to run your applications. This can be
installing packages (via apt-get, for example), pulling source code with Git, building your
Java application using Maven, and so on. All of these actions will modify the filesystem in
the top, writable layer. If you then execute the commit command, a new image containing
all of your changes will be created, kind of frozen, and ready to be run later. To stop a
container, use the docker stop command:

docker stop

A container when stopped will retain all settings and filesystem changes (in the top layer
that is writeable). All processes running in the container will be stopped and you will lose
everything in memory. This is what differentiates a stopped container from a Docker image.

To list all containers you have on your system, either running or stopped, execute the
docker ps command:

docker ps -a

As a result, the Docker client will list a table containing container IDs (a unique identifier
you can use to refer to the container in other commands), creation date, the command used
to start a container, status, exposed ports, and a name, either assigned by you or the funny
name Docker has picked for you. To remove a container, you can just use the docker rm
command. If you want to remove a couple of them at once, you can use the list of containers
(given by the docker ps command) and a filter:

docker rm $(docker ps -a -q -f status=exited)

Introduction to Docker

[17]

We have said that a Docker image is always read-only and immutable. If it did not have the
possibility to change the image, it would not be very useful. So how's the image
modification possible except by, of course, altering a Dockerfile and doing a rebuild? When
the container is started, the writable layer on top of the layers stack is for our disposal. We
can actually make changes to a running container; this can be adding or modifying files, the
same as installing a software package, configuring the operating system, and so on. If you
modify a file in the running container, the file will be taken out of the underlying (parent)
read-only layer and placed in the top, writable layer. Our changes are only possible in the
top layer. The union filesystem will then cover the underlying file. The original, underlying
file will not be modified; it still exists safely in the underlying, read-only layer. By issuing
the docker commit command, you create a new read-only image from a running
container (and all it changes in the writable layer):

docker commit <container-id> <image-name>

The docker commit command saves changes you have made to the container in the
writable layer. To avoid data corruption or inconsistency, Docker will pause a container you
are committing changes into. The result of the docker commit command is a brand new,
read-only image, which you can create new containers from:

In response to a successful commit, Docker will output the full ID of a newly generated
image. If you remove the container without issuing a commit first and then relaunch the
same image again, Docker will start a fresh container without any of the changes made in
the previously running container. In either case, with or without a commit, your changes to
the filesystem will never affect the base image. Creating images by altering the top writable
layer in the container is useful when debugging and experimenting, but it's usually better to
use a Dockerfile to manage your images in a documented and maintainable way.

Introduction to Docker

[18]

We have now learned about the build (Dockerfile and the image) and runtime (container)
pieces of our containerization world. We are still missing the last element, the distribution
component. The distribution component of Docker consists of the Docker registry, index,
and repository. Let's focus on them now to have a complete picture.

Docker registry, repository, and index
The first component in Docker's distribution system is the registry. Docker utilizes a
hierarchical system for storing images, shown in the following screenshot:

Images which you build can be stored in a remote registry for others to use. The Docker
registry is a service (an application, in fact) that is storing your Docker images. The Docker
Hub is an example of the publicly available registry; it's free and serves a huge, constantly
growing collection of existing images. The repository, on the other hand, is a collection
(namespace) of related images, usually providing different versions of the same application
or service. It's a collection of different Docker images with the same name and different
tags.

Introduction to Docker

[19]

If your app is named hello-world-java and your username (or namespace) for
the Registry is dockerJavaDeveloper then your image will be placed in the
dockerJavaDeveloper/hello-world-java repository. You can tag an image and store
multiple versions of that image with different IDs in a single named repository and access
different tagged versions of an image with a special syntax such as
username/image_name:tag. The Docker repository is quite similar to a Git repository.
For example, Git, a Docker repository is identified by a URI and can either be public or
private. The URI looks the same as the following:

{registryAddress}/{namespace}/{repositoryName}:{tag}

The Docker Hub is the default registry and Docker will pull images from the Docker Hub if
you do not specify a registry address. To search an image in the registry, execute the
docker search command; for example:

$ docker search hello-java-world

Without specifying the remote registry, Docker will conduct a search on the Docker Hub
and output the list of images matching your search criteria:

Introduction to Docker

[20]

The difference between the registry and repository can be confusing at the beginning, so
let's describe what will happen if you execute the following command:

$ docker pull ubuntu:16.04

The command downloads the image tagged 16.04 within the ubuntu repository from the
Docker Hub registry. The official ubuntu repository doesn't use a username, so the
namespace part is omitted in this example.

Although the Docker Hub is public, you get one private repository for free with your
Docker Hub user account. Last, but not least, the component you should be aware of is an
index. An index manages searching and tagging and also user accounts and permissions. In
fact, the registry delegates authentication to the index. When executing remote commands,
such as push or pull, the index first will look at the name of the image and then check to
see if it has a corresponding repository. If so, the index verifies if you are allowed to access
or modify the image. If you are, the operation is approved and the registry takes or sends
the image.

Let's summarize what we have learned so far:

The Dockerfile is the recipe to build an image. It's a text file containing ordered
instructions. Each Dockerfile has a base image you build upon
An image is a specific state of a filesystem: a read-only, frozen immutable
snapshot of a live container
An image is composed of layers representing changes in the filesystem at various
points in time; layers are a bit same as the commit history of a Git repository.
Docker uses the layers cache
Containers are runtime instances of an image. They can be running or stopped.
You can have multiple containers of the same image running
You can make changes to the filesystem on a container and commit them to make
them persisted. Commit always creates a new image
Only the filesystem changes can be committed, memory changes will be lost
A registry holds a collection of named repositories, which themselves are a
collection of images tracked by their IDs. The registry is same as a Git repository:
you can push and pull images

You should now have an understanding of the nature of images with their layers and
containers. But Docker is not just a Dockerfile processor and the runtime engine. Let's look
at what else is available.

Introduction to Docker

[21]

Additional tools
It's a complete package with a wide selection of tools and APIs that are helpful during the
developer's and DevOp's daily work. There's a Kinematic, for example, a desktop developer
environment for using Docker on Windows and macOS X.

From a Java developer's perspective, there are tools available, which are especially useful in
a programmer's daily job, such as the IntelliJ IDEA Docker integration plugin (we will be
using this add-on heavily in the coming chapters). Eclipse fans can use the Docker tooling
for Eclipse, which is available starting with Eclipse Mars. NetBeans also supports Docker
commands. No matter which development environment you pick, these add-ons let you
download and build Docker images, create and start containers, and carry out other related
tasks straight from your favorite IDE.

Docker is so popular these days, no wonder hundreds of third-party tools have been
developed to make Docker even more useful. The most prominent of them is Kubernetes,
which we are going to focus on in this book. But apart from Kubernetes, there are many
others. They will support you with Docker-related operations, such as continuous
integration/continuous delivery, deployment and infrastructure, or optimizing images. Tens
of hosting services now support running and managing Docker containers.

As Docker captures more attention, more and more Docker-related tools pop-up almost
every month. You can find a very well-crafted list of Docker-related tools and services on
the GitHub awesome Docker list, available at https://github.com/veggiemonk/awesome-
docker.

But there are not only tools available. Additionally, Docker provides a set of APIs that can
be very handy. One of them is the Remote API for the management of the images and
containers. Using this API, you will be able to distribute your images to the runtime Docker
engine. There's also the Stats API that will expose live resource usage information (such as
CPU, memory, network I/O, and block I/O) for your containers. This API endpoint can be
used create tools that show how your containers behave; for example, on a production
system.

As we now know the idea behind Docker, the differences between virtualization and
containerization, and the benefits of using Docker, let's get to the action. We are going to
install Docker first.

https://github.com/veggiemonk/awesome-docker
https://github.com/veggiemonk/awesome-docker
https://github.com/veggiemonk/awesome-docker
https://github.com/veggiemonk/awesome-docker
https://github.com/veggiemonk/awesome-docker
https://github.com/veggiemonk/awesome-docker
https://github.com/veggiemonk/awesome-docker
https://github.com/veggiemonk/awesome-docker
https://github.com/veggiemonk/awesome-docker
https://github.com/veggiemonk/awesome-docker
https://github.com/veggiemonk/awesome-docker
https://github.com/veggiemonk/awesome-docker
https://github.com/veggiemonk/awesome-docker
https://github.com/veggiemonk/awesome-docker
https://github.com/veggiemonk/awesome-docker
https://github.com/veggiemonk/awesome-docker
https://github.com/veggiemonk/awesome-docker
https://github.com/veggiemonk/awesome-docker
https://github.com/veggiemonk/awesome-docker
https://github.com/veggiemonk/awesome-docker
https://github.com/veggiemonk/awesome-docker
https://github.com/veggiemonk/awesome-docker
https://github.com/veggiemonk/awesome-docker
https://github.com/veggiemonk/awesome-docker
https://github.com/veggiemonk/awesome-docker
https://github.com/veggiemonk/awesome-docker
https://github.com/veggiemonk/awesome-docker
https://github.com/veggiemonk/awesome-docker
https://github.com/veggiemonk/awesome-docker
https://github.com/veggiemonk/awesome-docker
https://github.com/veggiemonk/awesome-docker
https://github.com/veggiemonk/awesome-docker
https://github.com/veggiemonk/awesome-docker
https://github.com/veggiemonk/awesome-docker
https://github.com/veggiemonk/awesome-docker
https://github.com/veggiemonk/awesome-docker
https://github.com/veggiemonk/awesome-docker
https://github.com/veggiemonk/awesome-docker
https://github.com/veggiemonk/awesome-docker

Introduction to Docker

[22]

Installing Docker
In this section, we will find out how to install Docker on Windows, macOS, and Linux
operating systems. Next, we will run a sample hello-world image to verify the setup and
check if everything works fine after the installation process.

Docker installation is quite straightforward, but there are some things you will need to
focus on to make it run smoothly. We will point them out to make the installation process
painless. You should know that Linux is the natural environment for Docker. If you run the
container, it will run on a Linux kernel. If you run your container on Docker running on
Linux, it will use the kernel of your own machine. This is not the case in macOS and
Windows; that's the reason why the Linux kernel needs to be virtualized if you want to run
a Docker container on these operating systems. The Docker engine, when running on
macOS or MS Windows, will use the lightweight Linux distribution, made specifically to
run Docker containers. It runs completely from RAM, using only several megabytes, and
boots in a couple of seconds. After the installation of the main Docker package on macOS
and Windows, the OS built-in virtualization engine will be used by default. Therefore, there
are some special requirements for your machine. For the newest, native Docker setup,
which is deeply integrated into native virtualization engines present in your operating
system, you will need to have 64-bit Windows 10 professional or enterprise. For macOS, the
newest Docker for Mac is a native Mac application developed from scratch, with a native
user interface, integrated with OS X native virtualization, hypervisor framework,
networking, and filesystem. The mandatory requirement will be Yosemite 10.10.3 or newer.
Let's begin with installing on macOS.

Installing on macOS
To get the native Docker version for your Mac, head to the http://www.docker.com and
then the Get Docker macOS section. Docker for Mac is a standard, native dmg package you
can mount. You will find just a single application inside the package:

http://www.docker.com
http://www.docker.com
http://www.docker.com
http://www.docker.com
http://www.docker.com
http://www.docker.com
http://www.docker.com
http://www.docker.com
http://www.docker.com
http://www.docker.com
http://www.docker.com
http://www.docker.com
http://www.docker.com
http://www.docker.com
http://www.docker.com
http://www.docker.com
http://www.docker.com
http://www.docker.com

Introduction to Docker

[23]

Now just move the Docker.app into your Applications folder, and you are all set.
Couldn't be easier. If you run Docker, it will sit as a small whale icon in your macOS menu.
The icon will animate during the Docker startup process and stabilize after it finishes:

If you now click the icon, it will give you a handy menu with the Docker status
and some additional options:

Introduction to Docker

[24]

Docker for Mac has an auto-update capability, which is great for keeping your
installation up to date. The first Preferences... pane gives you the possibility to
automatically check for updates; it's marked by default:

If you are a brave soul, you can also switch to the beta channel for getting
updates. This way you can always have the latest and greatest Docker features,
with the risk of decreased stability, as is always the case with beta software. Also
take note that switching to the beta channel will uninstall your current stable
version of Docker and destroy all of your settings and containers. Docker will
warn you about this, to make sure you really want to do it:

Introduction to Docker

[25]

The File Sharing pane of the Preferences... will give you an option to mark
macOS directories on your machine to be bind mounted into Docker containers
you are going to run later. We will explain mounting directories in detail later on
in the book. For the time being, let's just have the default set of selected
directories:

Introduction to Docker

[26]

The Advanced pane has some options to adjust the resources of your computer
that will be available for Docker, it will be the number of processors and memory
amount. The default settings are usually a good start if you begin with Docker on
macOS:

Introduction to Docker

[27]

The Proxies pane gives you the possibility to setup a proxy, if you need it on your
machine. You can opt for using system or manual settings, as you can see in the
following screenshot:

Introduction to Docker

[28]

On the next page, you can edit some Docker daemon settings. This will include
adding registries and registry mirrors. Docker will use them when pulling the
image. The Advanced tab contains a text field, in which you can enter the JSON
text containing the daemon config:

Introduction to Docker

[29]

In the Daemon pane, you can also turn off Docker Experimental features. For
some time now, Experimental features have been enabled by default. From time
to time, a new version of Docker comes with new Experimental features. At the
time of writing this book, they will include, for example, Checkpoint & Restore
(a feature that allows you to freeze a running container by checkpointing it),
Docker graph driver plugins (to use an external/out-of-process graph driver for
use with the Docker engine as an alternative to using the built-in storage drivers),
and some others. It's always interesting to see what new features are included in
the new version of Docker. Clicking the link in the Daemon page will take you to
the GitHub page which lists and explains all the new experimental features.
The last Preferences... pane is the Reset. If you find that your Docker won't start
or behaves badly, you can try to reset the Docker installation to the factory
defaults:

You should be warned though, that resetting Docker to the factory state will also remove all
downloaded images and containers you may have on your machine. If you have images
that have not been pushed anywhere yet, having a backup first is always a good idea.

Introduction to Docker

[30]

The Open Kitematic in the Docker menu is a handy shortcut to open the Kitematic
application we have mentioned earlier. It's a desktop utility for using Docker on Windows
and Mac OS X. If you do not have Kitematic installed already, Docker will give you a link
with the installation package:

If you run Kitematic, it will present you the Docker Hub login screen first. You
can now Sign up to the Docker Hub and then log in providing your username
and password:

Introduction to Docker

[31]

Clicking on Skip For Now will take you to the images list without logging into the Docker
Hub. Let's test our installation by pulling and running an image. Let's search for hello-
java-world, as seen on the following screenshot:

Introduction to Docker

[32]

After pulling the image from the registry, start it. Kitematic will present the running
Container logs, which will be the famous hello world message, coming from a
containerized Java application:

That's it for running the container in Kitematic. Let's try to do the same from the shell.
Execute the following in the terminal:

$ docker run milkyway/java-hello-world

As a result, you will see the same greeting, coming from a containerized Java application,
this time in the macOS terminal:

Introduction to Docker

[33]

That's it, we have a native Docker up and running on our macOS. Let's install it on Linux, as
well.

Installing on Linux
There are a lot of various Linux distributions out there and the installation process can be a
little bit different for each Linux distribution. I'm going to install Docker on the latest, 16.04
Ubuntu desktop:

First, we need to allow the apt package manager to use a repository over the1.
HTTPS protocol. Execute from the shell:

$ sudo apt-get install -y --no-install-recommends apt-
transport-https ca-certificates curl software-properties-common

The next thing we are going to do is add Docker's apt repository gpg key to our2.
apt sources list:

$ curl -fsSL https://download.docker.com/linux/ubuntu/gpg |
sudo apt-key add –

Introduction to Docker

[34]

A simple OK will be the response if succeeded. Use the following command to set3.
up the stable repository:

$ sudo add-apt-repository "deb [arch=amd64]
https://download.docker.com/linux/ubuntu $(lsb_release -cs)
stable"

Next, we need to update the apt packages index:4.

$ sudo apt-get update

Now we need to make sure the apt installer will use the official Docker5.
repository instead of the default Ubuntu repository (which may contain the older
version of Docker):

$ apt-cache policy docker-ce

Use this command to install the latest version of Docker:6.

$ sudo apt-get install -y docker-ce

The apt package manager will download a lot of packages; those will be the7.
needed dependencies and the docker-engine itself:

Introduction to Docker

[35]

That's it, you should be all set. Let's verify if Docker works on our Linux box:8.

$sudo docker run milkyway/java-hello-world

As you can see, the Docker engine will pull the milkyway/java-hello-world9.
image with all its layers from the Docker Hub and respond with a greeting:

But do we need to run Docker commands with sudo? The reason for that is the Docker
daemon always runs as the root user, and since Docker version 0.5.2, the Docker daemon
binds to a Unix socket instead of a TCP port. By default, that Unix socket is owned by the
user root, and so, by default, you can access it with sudo. Let's fix it to be able to run the
Docker command as a normal user:

First, add the Docker group if it doesn't already exist:1.

$ sudo groupadd docker

Introduction to Docker

[36]

Then, add your own user to the Docker group. Change the username to match2.
your preferred user:

$ sudo gpasswd -a jarek docker

Restart the Docker daemon:3.

$ sudo service docker restart

Now let's log out and log in again, and execute the docker run command one4.
more time, without sudo this time. As you can see, you are now able to work
with Docker as a normal, non-root user:

That's it. Our Linux Docker installation is ready to play with. Let's do an5.
installation on the Windows box now.

Introduction to Docker

[37]

Installing on Windows
The native Docker package can be run on 64-bit Windows 10 Professional or Enterprise. It
uses the Windows 10 virtualization engine to virtualize the Linux kernel. This is the reason
that the installation package does no longer contain the VirtualBox setup, as with the
previous versions of Docker for Windows. The native application comes in a typical .msi
installation package. If you run it, it will greet you with a friendly message, saying that it is
going to live in your task bar tray, under the small whale icon, from now on:

Introduction to Docker

[38]

The Docker's icon in the tray informs you about the Docker engine state. It also contains a
small but useful context menu:

Let's explore the preferences settings and see what's available. The first tab, General, allows
you to set Docker to run automatically when you log in. If you use Docker daily that may be
the recommended setting. You can also mark to check for updates automatically and send
usage statistics. Sending usage statistics will help the Docker team improve the tool in
future versions; unless you have some mission critical, secure work to be done, I
recommend turning this option on. This is a great way to contribute to future versions of
this magnificent tool:

Introduction to Docker

[39]

The second tab, Shared Drives, allows you to select the local Windows drives which will be
available to the Docker containers you will be running:

Introduction to Docker

[40]

We are going to cover Docker volumes in Chapter 2, Networking and Persistent Storage.
Selecting a drive here means that you can map a directory from your local system and read
that as a Windows host machine to your Docker container. The next preferences page,
Advanced, allows us to make some restrictions on the Docker engine running on our
Windows PC and also select the location of the virtual machine image with the Linux
kernel:

Introduction to Docker

[41]

The default values are usually good out of the box and unless you experience problems
during the development process, I would recommend leaving them as they are. The
Network lets you configure the way Docker works with the network, the same as subnet
address and mask or DNS server. We are going to cover Docker networking in Chapter 2,
Networking and Persistent Storage:

Introduction to Docker

[42]

If you're behind a proxy in your network and would like Docker to access the Internet, you
can set up the proxy settings in the Proxies tab:

Introduction to Docker

[43]

The dialog is similar to what you find in other applications where you can define proxy
settings. It can accept no proxy, system proxy settings, or manual settings (with a different
proxy for HTPP and HTTPS communication). The next pane can be useful to configure the
Docker daemon:

The Basic switch means that Docker uses the basic configuration. You can switch it to
Advanced and provide a customized setting in a form of JSON structure. The Experimental
features are the same as we have already mentioned during the Docker setup on macOS,
this will be Checkpoint & Restore or enabling Docker graph driver plugins, for example.
You can also specify a list of remote registries. Docker will be pulling images from insecure
registries using just plain HTTP instead of HTTPS.

Introduction to Docker

[44]

Using the Reset options on the last pane lets you restart or reset Docker to its factory
settings:

Be aware though, that resetting Docker to its initial settings will also remove all images and
containers currently present on your machine.

The Open Kitematic... option, which is also present in the Docker tray icon context menu, is
a quick shortcut to launch Kitematic. If you do it for the first time and don't have Kitematic
installed, Docker will ask if you would like to download it first:

Introduction to Docker

[45]

That's it for installing Docker for Windows. It's a pretty painless process. As a last step of
the installation process, let's check if Docker can be run from the command prompt, because
it's probably the way you will be launching it in the future. Execute the following command
in the command prompt or in the PowerShell:

docker run milkyway/java-hello-world

Introduction to Docker

[46]

As you can see on the previous screenshot, we have a Hello World message coming from
the Java application started as a Docker container.

Summary
That's it. Our Docker for Windows installation is fully functional. In this chapter, we have
learned about the idea behind Docker and the main differences between traditional
virtualization and containerization. We know a lot about Docker core concepts such as
images, layers, containers, and registries. We should have Docker installed already on our
local machine; it's now time to move on and learn about more advanced Docker features,
such as networking and persistent storage.

2
Networking and Persistent

Storage
We learned a lot about Docker concepts in the previous chapter. We know that the
container is a runtime of an image. It will contain your Java application altogether with all
needed dependencies, such as JRE or an application server. But, there are rare cases when
the Java application is self-sufficient. It always needs to communicate with other servers (as
a database), or expose itself to others (as a web application running on the application
server which needs to accept requests coming from the user or from the other applications).
It's time to describe ways to open the Docker container to the outside world, networking,
and persistent storage. In this chapter, you are going to learn how to configure networking,
and expose and map network ports. By doing that, you will enable your Java application to
communicate with other containers. Imagine the following scenario: you can have one
container running a Tomcat application server with your Java application, communicating
with another container running a database, PostgreSQL for example. While the Kubernetes
approach to networking is somewhat different in comparison to what Docker provides by
default, let's focus on Docker itself briefly now. We are going to cover Kubernetes' specific
networking later on. The container communication with the outside world is not only about
networking; in this chapter, we will also focus on data volumes as a way to persist the data
between container run and stop cycles.

This chapter covers the following topics:

Docker network types
Networking commands
Creating a network
Mapping and exposing ports
Volume-related commands
Creating and removing volumes

Networking and Persistent Storage

[48]

Let's begin with Docker networking.

Networking
To make your container able to communicate with the outside world, whether another
server or another Docker container, Docker provides different ways of configuring
networking. Let's begin with the network types which are available for our containers.

Docker network types
There are three different network types Docker delivers out of the box. To list them, execute
the docker network ls command:

$ docker network ls

Docker will output the list of available networks containing the unique network identifier,
its name, and a driver which powers it behind the scenes:

To have an overview of the differences between various network types, let's describe them
now one by one.

Bridge
This is the default network type in Docker. When the Docker service daemon starts, it
configures a virtual bridge, named docker0. If you do not specify a network with the
docker run -net=<NETWORK> option, the Docker daemon will connect the container to
the bridge network by default. Also, if you create a new container, it will be connected to
the bridge network. For each container that Docker creates, it allocates a virtual Ethernet
device which will be attached to the bridge. The virtual Ethernet device is mapped to
appear as eth0 in the container, using Linux namespaces, as you can see in the following
diagram:

Networking and Persistent Storage

[49]

The in-container eth0 interface is given an IP address from the bridge's address range.
In other words, Docker will find a free IP address from the range available on the bridge
and will configure the container's eth0 interface with that IP address. From now on, if the
new container wants to, for example, connect to the Internet, it will use the bridge; the
host's own IP address. The bridge will automatically forward packets between any other
network interfaces that are attached to it and also allow containers to communicate with the
host machine, as well as with the containers on the same host. The bridge network will
probably be the most frequently used one.

Host
This type of network just puts the container in the host's network stack. That is, all of the
network interfaces defined on the host will be accessible to the container, as you can see in
the following diagram:

Networking and Persistent Storage

[50]

If you start your container using the -net=host option, then the container will use the host
network. It will be as fast as normal networking: there is no bridge, no translation, nothing.
That's why it can be useful when you need to get the best network performance. Containers
running in the host's network stack will achieve faster network performance compared to
those running on bridge networking, there is no need to traverse the docker0 bridge and
iptables port mappings. In host mode, the container shares the networking namespace of
the host (your local machine, for example), directly exposing it to the outside world. By
using the -net=host command switch, your container will be accessible through the host's
IP address. However, you need to be aware that this can be dangerous. If you have an
application running as root and it has some vulnerabilities, there will be a risk of a security
breach, as someone can get remote control of the host network via the Docker container.
Using the host network type also means that you will need to use port mapping to reach
services inside the container. We are going to cover port mapping later, in this chapter.

None
To cut a long story short, the none network does not configure networking at all. There is no
driver being used by this network type. It's useful when you don't need your container to
have network access; the -net=none switch to docker run command completely disables
networking.

Docker provides a short list of commands to deal with networking. You can run them from
the shell (Linux or macOS) or the command prompt and PowerShell in Windows. Let's get
to know them now.

Networking commands
The parent command for managing networks in Docker is docker network. You can list
the whole command set using the docker network help command, as you can see in the
following screenshot:

Networking and Persistent Storage

[51]

To have a detailed syntax and description of each option available for a specific command,
use the -help switch for each of the commands. For example, to get the description of
parameters available for docker network create, execute the docker network create
-help.

Let's briefly describe each command available:

$ docker network ls: This is the command we have been using previously, it
simply lists networks available for your containers. It will output the network
identifier, its name, the driver being used, and a scope of the network
$ docker network create: Creates new network. The full syntax of the
command is, docker network create [OPTIONS] NETWORK. We will use the
command in a short while
$ docker network rm: The dockercnetworkcrm command simply removes
the network
$ docker network connect: Connects the container to the specific network
$ docker network disconnect: As the name suggests, it will disconnect the
container from the network
$ docker network inspect: The docker network inspect command displays
detailed information about the network. It's very useful, if you have network
issues. We are going to create and inspect our network now

The docker network inspect command displays detailed information about the network.
It's very useful if you have network issues. We are going to create and inspect our network
now.

Networking and Persistent Storage

[52]

Creating and inspecting a network
Let's create a network. We are going to call our network myNetwork. Execute the following
command from the shell or command line:

$ docker network create myNetwork

This is the simplest form of the command, and yet it will probably be used the most often. It
takes a default driver (we haven't used any option to specify a driver, we will just use the
default one, which is bridge). As the output, Docker will print out the identifier of the
newly created network:

You will later use this identifier to refer to this network when connecting containers to it or
inspecting the network's properties. The last parameter of the command is the network's
name, which is a lot more convenient and easier to remember than the ID. The network
name in our case is myNetwork. The docker network create command takes more
parameters, as shown in the following table:

Option Description

-d, -driver="bridge" Driver to manage the network

-aux-address=map[] Auxiliary IPv4 or IPv6 addresses used by network driver

-gateway=[] IPv4 or IPv6 gateway for the master subnet

-ip-range=[] Allocate container IP from a sub-range

-ipam-driver=default IP address management driver

-o, -opt=map[] Set driver's specific options

-subnet=[] Subnet in CIDR format that represents a network segment

One of the most important parameters is the -d (--driver) option, with the default value
bridge. Drivers let you specify the network type. As you remember, Docker has a couple of
drivers available by default: host, bridge, and none.

Networking and Persistent Storage

[53]

After creating a network, we can inspect its properties using the docker network
inspect command. Execute the following from the shell or command line:

$ docker network inspect myNetwork

In response, you will get a lot of detailed information about your network. As you can see
in the screenshot, our newly created network uses the bridge driver, even if we haven't
explicitly asked for it:

As you can see, the container list is empty, and the reason why is that we haven't connected
any container to this network yet. Let's do it now.

Connecting a container to the network
Now we have our myNetwork ready, we can run the Docker container and attach it to the
network. To launch containers, we are going to user the docker run --net=<NETWORK>
option, where the <NETWORK> is the name of one of the default networks or the one you
have created yourself. Let's run Apache Tomcat for example, which is an open source
implementation of the Java Servlet and JavaServer pages technologies:

docker run -it --net=myNetwork tomcat

Networking and Persistent Storage

[54]

It will take a while. The Docker engine will pull all of the Tomcat's image layers from the
Docker Hub and then run the Tomcat container. There's another option to attach the
network to the container, you can inform Docker that you would like the container to
connect to the same network as other containers use. This way, instead of specifying a
network explicitly, you just instruct Docker that you want two containers run on the same
network. To do this, use the container: prefix, as in the following example:

docker run -it --net=bridge myTomcat
docker run -it --net=container:myTomcat myPostgreSQL

In the previous example, we run the myTomcat image using the bridge network. The next
command will run the myPostgreSQL image, using the same network as myTomcat uses.
This is a very common scenario; your application will run on the same network as the
database and this will allow them to communicate. Of course, the containers you launch
into the same network must be run on the same Docker host. Each container in the network
can directly communicate with other containers in the network. Though, the network itself
isolates the containers from external networks, as seen in the following diagram:

If you run your containers in a bridge, isolated network, we need to instruct Docker on how
to map the ports of our containers to the host's ports. We are going to do this now.

Exposing ports and mapping ports
A common scenario is usually when you want your containerized application to accept
incoming connections, either from other containers or from outside of Docker. It can be an
application server listening on port 80 or a database accepting incoming requests.

Networking and Persistent Storage

[55]

An image can expose ports. Exposing ports means that your containerized application will
listen on an exposed port. As an example, the Tomcat application server will listen on the
port 8080 by default. All containers running on the same host and on the same network can
communicate with Tomcat on this port. Exposing a port can be done in two ways. It can be
either in the Dockerfile with the EXPOSE instruction (we will do this in the chapter about
creating images later) or in the docker run command using the --expose option. Take
this official Tomcat image Dockerfile fragment (note that it has been shortened for clarity of
the example):

FROM openjdk:8-jre-alpine
ENV CATALINA_HOME /usr/local/tomcat
ENV PATH $CATALINA_HOME/bin:$PATH
RUN mkdir -p "$CATALINA_HOME"
WORKDIR $CATALINA_HOME
EXPOSE 8080
CMD ["catalina.sh", "run"]

As you can see, there's an EXPOSE 8080 instruction near the end of the Dockerfile. It means
that we could expect that the container, when run, will listen on port number 8080. Let's
run the latest Tomcat image again. This time, we will also give our container a name,
myTomcat. Start the application server using the following command:

docker run -it --name myTomcat --net=myNetwork tomcat

For the purpose of checking if containers on the same network can communicate, we will
use another image, busybox. BusyBox is software that provides several stripped-down
Unix tools in a single executable file. Let's run the following command in the separate shell
or command prompt window:

docker run -it --net container:myTomcat busybox

As you can see, we have instructed Docker that we want our busybox container to use the
same network as Tomcat uses. As an alternative, we could of course go with specifying a
network name explicitly, using the --net myNetwork option.

Let's check if they indeed can communicate. Execute the following in the shell window with
busybox running:

$ wget localhost:8080

Networking and Persistent Storage

[56]

The previous instruction will execute the HTTP GET request on port 8080, on which Tomcat
is listening in another container. After the successful download of Tomcat's index.html,
we have proof that both containers can communicate:

So far so good, containers running on the same host and the same network can
communicate with each other. But what about communicating with our container from the
outside? Mapping ports comes in handy. We can map a port, exposed by the Docker
container, into the port of the host machine, which will be a localhost in our case. The
general idea is that we want the port on the host to be mapped to a specific port in the
running container, the same as port number 8080 of the Tomcat container.

To bind a port (or group of ports) from a host to the container, we use the -p flag of the
docker run command, as in the following example:

$ docker run -it --name myTomcat2 --net=myNetwork -p 8080:8080 tomcat

The previous command runs another Tomcat instance, also connected to the myNetwork
network. This time, however, we map the container's port 8080 to the host's port of the
same number. The syntax of the -p switch is quite straightforward: you just enter the host
port number, a colon, and then a port number in the container you would like to be
mapped:

$ docker run -p <hostPort>:<containerPort> <image ID or name>

The Docker image can expose a whole range of ports to other containers using either the
EXPOSE instruction in a Dockerfile (the same as EXPOSE 7000-8000, for example) or the
docker run command, for example:

$ docker run --expose=7000-8000 <container ID or name>

You can then map a whole range of ports from the host to the container by using the
docker run command:

$ docker run -p 7000-8000:7000-8000 <container ID or name>

Networking and Persistent Storage

[57]

Let's verify if we can access the Tomcat container from outside of Docker. To do this, let's
run Tomcat with mapped ports:

$ docker run -it --name myTomcat2 --net=myNetwork -p 8080:8080 tomcat

Then, we can simply enter the following address in our favorite web browser:
http://localhost:8080.

As a result, we can see Tomcat's default welcome page, served straight from the Docker
container running, as you can see in the following screenshot:

Good, we can communicate with our container from the outside of Docker. By the way, we
now have two isolated Tomcats running on the host, without any port conflicts, resource
conflicts, and so on. This is the power of containerization.

Networking and Persistent Storage

[58]

You may ask, what is the difference between exposing and mapping ports, that is, between
--expose switch and -p switches? Well, the --expose will expose a port at runtime but
will not create any mapping to the host. Exposed ports will be available only to another
container running on the same network, on the same Docker host. The -p option, on the
other hand, is the same as publish: it will create a port mapping rule, mapping a port on
the container with the port on the host system. The mapped port will be available from
outside Docker. Note that if you do -p, but there is no EXPOSE in the Dockerfile, Docker
will do an implicit EXPOSE. This is because, if a port is open to the public, it is automatically
also open to other Docker containers.

There is no way to create a port mapping in the Dockerfile. Mapping a port or ports is, just a
runtime option. The reason for that is because port mapping configuration depends on the
host. The Dockerfile needs to be host-independent and portable.

You can bind a port using -p in the runtime only.

There is yet one more option, which allows you to map all ports exposed in an image (that
is; in the Dockerfile) at once, automatically during the container startup. The -P switch
(capital P this time) will map a dynamically allocated random host port to all container
ports that have been exposed in the Dockerfile by the EXPOSE instruction.

The -p option gives you more control than -P when mapping ports.
Docker will not automatically pick any random port; it's up to you what
ports on the host should be mapped to the container ports.

If you run the following command, Docker will map a random port on the host to Tomcat's
exposed port number 8080:

$ docker run -it --name myTomcat3 --net=myNetwork -P tomcat

To check exactly which host port has been mapped, you can use the docker ps command.
This is probably the quickest way of determining the current port mapping. The docker ps
command is used to see the list of running containers. Execute the following from a
separate shell console:

$ docker ps

Networking and Persistent Storage

[59]

In the output, Docker will list all running containers, showing which ports have been
mapped in the PORTS column:

As you can see in the previous screenshot, our myTomcat3 container will have the 8080
port mapped to port number 32772 on the host. Again, executing the HTTP GET method on
the http://localhost:32772 address will give us myTomcat3's welcome page. An
alternative to the docker ps command is the docker port command, used with the
container ID or with a name as a parameter (this will give you information about what ports
have been mapped). In our case, this will be:

$ docker port myTomcat3

As a result, Docker will output the mapping, saying that port number 80 from the container
has been mapped to port number 8080 on the host machine:

Information about all the port mappings is also available in the result of the docker inspect
command. Execute the following command, for example:

$ docker inspect myTomcat2

In the output of the docker inspect command, you will find the Ports section
containing the information about mappings:

Networking and Persistent Storage

[60]

Let's briefly summarize the options related to exposing and mapping ports in a table:

Instruction Meaning

EXPOSE Signals that there is service available on the specified
port. Used in the Dockerfile and makes exposed ports
open for other containers.

--expose The same as EXPOSE but used in the runtime, during the
container startup.

-p hostPort:containerPort Specify a port mapping rule, mapping the port on the
container with the port on the host machine. Makes a
port open from the outside of Docker.

-P Map dynamically allocated random port (or ports) of the
host to all ports exposed using EXPOSE or --expose.

Mapping ports is a wonderful feature. It gives you flexible configuration possibilities to
open your containers to the external world. In fact, it's indispensable if you want your
containerized web server, database, or messaging server to be able to talk to others. If a
default set of network drivers is not enough, you can always try to find a specific driver on
the Internet or develop one yourself. Docker Engine network plugins extend Docker to
support a wide range of networking technologies, such as IPVLAN, MACVLAN, or
something completely different and exotic. Networking possibilities are almost endless in
Docker. Let's focus now on another very important aspect of Docker container extensibility
volumes.

Persistent storage
As you remember from Chapter 1, Introduction to Docker, the Docker container filesystem is
kind of temporary by default. If you start up a Docker image (that is, run the container),
you'll end up with a read-write layer on top of the layers stack. You can create, modify, and
delete files as you wish; if you commit the changes back into the image, they will become
persisted. This is a great feature if you want to create a complete setup of your application
in the image, altogether with all its environment. But, this is not very convenient when it
comes to storing and retrieving data. The best option would be to separate the container life
cycle and your application from the data. Ideally, you would probably want to keep these
separate, so that the data generated (or being used) by your application is not destroyed or
tied to the container life cycle and can thus be reused.

Networking and Persistent Storage

[61]

The perfect example would be a web application server: the Docker image contains web
server software, the same as Tomcat for example, with your Java application deployed,
configured, and ready to use. But, the data the server will be using should be separated
from the image. This is done via volumes, which we will focus on in this part of the chapter.
Volumes are not part of the union filesystem, and so the write operations are instant and as
fast as possible, there is no need to commit any changes.

Volumes live outside of the union filesystem and exist as normal
directories and files on the host filesystem.

There are three main use cases for Docker data volumes:

To share data between the host filesystem and the Docker container
To keep data when a container is removed
To share data with other Docker containers

Let's begin with a list of volume-related commands at our disposal.

Volume-related commands
The basis of volume-related commands is docker volume. The commands are as follows:

$docker volume create: Creates a volume
$ docker volume inspect: Displays detailed information on one or more
volumes
$docker volume ls: Lists volumes
$ docker volume rm: removes one or more volumes
$ docker volume prune: removes all unused volumes, which is all volumes
that are no longer mapped into any container

Networking and Persistent Storage

[62]

Similar to network-related commands, you can get the detailed description and all the
possible options for each command if you execute it with the -help switch, for example:
docker volume create -help. Let's begin with creating a volume.

Creating a volume
As you remember from Chapter 1, Introduction to Docker, there's a settings screen in Docker
for Windows or Docker for Mac, that allows us to specify which drives Docker can have
access to. For a start, let's mark drive D in our Docker for Windows to make it available for
Docker containers:

For the purpose of our volume examples, I've created a docker_volumes/volume1
directory on my D drive and created an empty data.txt file inside:

Networking and Persistent Storage

[63]

There are two ways to create volumes. The first one is to specify the -v option when
running an image. Let's run the busybox image we already know and, at the same time,
create a volume for our data:

$ docker run -v d:/docker_volumes/volume1:/volume -it busybox

In the previous command, we have created a volume using the -v switch and instructed
Docker that the host directory d:/docker_volumes/volume1 should be mapped into the
/volume directory in the running container. If we now list the contents of the /volume
directory in the running busybox container, we can see our empty data1.txt file, as you
can see in the following screenshot:

The parameters in the -v options are the directory on the host (your own operating system
in this case, it is d:/docker_volumes/volume1 in our example), a colon, and a path at
which it will be available for the container, /volume1 in our example. The volume created
is a kind of mapped directory. It will be available for the container and also available from
the host operating system. Any files already existing in the mapped directory (host's
d:/docker_volumes/volume1) will be available inside the container; they will not be
deleted during the mapping.

Networking and Persistent Storage

[64]

The -v option can be used not only for directories but for a single file as well. This can be
very useful if you want to have configuration files available in your container. The best
example for this is the example from the official Docker documentation:

$ docker run -it -v ~/.bash_history:/root/.bash_history ubuntu

Executing the previous command will give you the same bash history between your local
machine and a running Ubuntu container. And best of all, if you exit the container, the bash
history on your own local machine will contain the bash commands you have been
executing inside the container. Mapping files can be useful also for you, as a developer,
when debugging or trying out your application configuration, for example.

Mapping a single file from a host allows exposing a configuration of your
application.

Apart from creating a volume when starting a container, there is a command to create a
volume prior to starting a container. We will use it now.

The simplest form of creating a nameless volume will be just:

$ docker volume create

As the output, Docker will give you the volume identifier, which you can later use to refer
to this volume. It's better to give a volume a meaningful name. To create a standalone,
named volume, execute the following command:

$ docker volume create --name myVolume

To list the volumes we now have available, execute the docker volume ls command:

$ docker volume ls

The output will be simply the list of volumes we have created so far:

Networking and Persistent Storage

[65]

Volumes created this way will not be mapped explicitly with a path on the host. If the
container's base image contains data at the specified mount point (as a result of Dockerfile
processing), this data will be copied into the new volume upon volume initialization. This is
different in comparison to specifying a host directory explicitly. The idea behind it is that
when creating your image, you should not care about the location of the volume on the host
system, making the image portable between different hosts. Let's run another container and
map the named volume into it:

$ docker run -it -v myVolume:/volume --name myBusybox3 busybox

Note that this time, we do not specify a path on the host. Instead, we instruct Docker to use
the named volume we created in the previous step. The named volume will be available at
the /volume path in the container. Let's create a text file on the volume:

If we run another container now, specifying the same named volume, we will be able to
access the same data we have available in our myBusybox3 container which was created
previously:

$ docker run -it -v myVolume:/volume --name myBusybox4 busybox

Our two containers share the single volume now, as you can see in the following
screenshot:

Docker named volumes are an easy way of sharing volumes between containers. They are
also a great alternative to data-only containers that used to be a common practice in the old
days of Docker. This is no longer the case—named volumes are way better. It's worth
noting that you are not limited to just one volume per container, as that would be a serious
limitation.

Networking and Persistent Storage

[66]

You can use the -v multiple times to mount multiple data volumes.

Another option to share the volume between containers is the -volumes-from switch. If
one of your containers has volumes mounted already, by using this option we can instruct
Docker to use the volume mapped in some other container, instead of providing the name
of the volume. Consider this example:

$ docker run -it -volumes-from myBusybox4 --name myBusybox5 busybox

After running the myBusybox5 container this way, again, if you enter the /volume
directory in the myBusybox5 container running, you will see the same data.txt file.

The docker volume ls command can take some filter parameters, which can be quite
useful. For example, you can list volumes that are not being used by any container:

docker volume ls -f dangling=true

Volumes that are no longer used by any container can be easily removed by using the
docker volumes prune command:

docker volume prune

To list volumes being created with a specific driver (we are going to cover drivers in a short
while), you can filter a list using the driver filter, as in the following example:

docker volume ls -f driver=local

Last but not least, another way of creating a volume is the VOLUME CREATE instruction in a
Dockerfile. We will be using it later in the book when creating an image from a Dockerfile.
Creating volumes using the VOLUME CREATE instruction has one but very important
difference in comparison to using the -v option during the container startup: you cannot
specify a host directory when using VOLUME CREATE. It's an analogy to exposing and
mapping ports. You cannot map a port in a Dockerfile. Dockerfiles are meant to be portable,
shareable, and host-independent. The host directory is 100% host-dependent and will
break on any other machine, which is a little bit off from the Docker's idea. Because of this,
it is only possible to use portable instructions within a Dockerfile.

If you need to specify a host directory when creating a volume, you need
to specify it at runtime.

Networking and Persistent Storage

[67]

Removing a volume
The same as with creating volumes, there are two ways of removing a volume in Docker.
Firstly, you can remove a volume by referencing a container's name and executing the
docker rm -v command:

$ docker rm -v <containerName or ID>

Docker will not warn you, when removing a container without providing the -v option, to
delete its volumes. As a result, you will have dangling volumes—volumes that are no
longer referenced by a container. As you remember, they are easy to get rid of using the
docker volume prune command.

Another option to remove the volume is by using the docker volume rm command:

$ docker volume rm <volumeName or ID>

If the volume happens to be in use by the container, Docker Engine will not allow you to
delete it and will give you a warning message:

As you can see, creating, sharing, and removing volumes in Docker is not that tricky. It's
very flexible and allows the creating a setup you will need for your applications. But there's
more to this flexibility. When creating a volume, you can specify a --driver option (or -d
for short), which may be useful if you need to map some external, not so standard storage.
The volumes we have created so far were using the local filesystem driver (the files were
being stored on the local drive of the host system); you can see the driver name when
inspecting a volume using the volume inspect command. There are other options
though—let's look at them now.

Networking and Persistent Storage

[68]

Volume drivers
The same as with network driver plugins, volume plugins extend the capabilities of the
Docker engine and enable integration with other types of storage. There are a ton of ready
to use plugins available for free on the Internet; you can find a list on Docker's GitHub
page. Some of them include:

Docker volume driver for Azure file storage: This is a Docker volume driver
which uses Azure file storage to mount file shares on the cloud to Docker
containers as volumes. It uses the network file sharing (SMB/CIFS protocols)
capabilities of Azure file storage. You can create Docker containers that can
migrate from one host to another seamlessly or share volumes among multiple
containers running on different hosts.
IPFS: Open source volume plugin that allows the use of an IPFS filesystem as a
volume. IPFS is a very interesting and promising storage system; it makes it
possible to distribute high volumes of data with high efficiency. It provides
deduplication, high performance, and clustered persistence, providing secure
P2P content delivery, fast performance, and decentralized archiving. IPFS
provides resilient access to data, independent of low latency or connectivity to
the backbone.
Keywhiz: You can use this driver to make your container talk to a remote
Keywhiz server. Keywhiz is a system for managing and distributing secret data,
the same as TLS certificates/keys, GPG keys, API tokens, and database
credentials. Instead of putting this data in config files or copying files (which is
similarly to be leaked or difficult to track), Keywhiz makes managing it easier
and more secure: Keywhiz servers in a cluster centrally store secrets encrypted in
a database. Clients use mutually authenticated TLS (mTLS) to retrieve secrets
they have access to.

As you can see from the previous examples, they are quite interesting, sometimes even
exotic. Because of the extendable nature of Docker and its plugin architecture, you can
create very flexible setups. But, third-party drivers do not always introduce completely new
storage types; sometimes, they just extend the existing drivers. An example of that can be
the Local Persist Plugin, a volume plugin that extends the default local driver's functionality
by allowing you to specify a mount point anywhere on the host, which enables the files to
always persist, even if the volume is removed via the docker volume rm command.

If you need a volume plugin that is not yet available, you can just write your own. The
process is very well documented on Docker's GitHub page, together with extensible
examples.

Networking and Persistent Storage

[69]

We've now covered how to open our containers to the external world. We can use
networking and mounted volumes to be able to share data between containers and other
hosts. Let's summarize what we have learned so far in this chapter:

We can use the network plugins to further extend the networking data exchange
Volumes persist the data, even through container restarts
Changes to files on the volume are made directly, but they will not be included
when you update an image
Data volumes persist even if the container itself is deleted
Volumes allow of sharing data between the host filesystem and the Docker
container, or between other Docker containers
We can use the volume drivers to further extend the file exchange possibilities

Containers from the same Docker host see each other automatically on the
default bridge network.

Summary
In this chapter, we have learned about Docker networking and storage volume features. We
know how to differentiate between various network types, how to create a network, and
expose and map network ports.

We've been through volume-related commands and can now create or remove a volume.
In Chapter 3, Working with Microservices, we are going to focus on the software that we are
going to deploy using Docker and Kubernetes, and later, Java microservices.

3
Working with Microservices

After reading the previous two chapters, you should now have an understanding of the
Docker architecture and its concepts. Before we go further on our Java, Docker, and
Kubernetes journey, let's get to know the concept of microservices.

By reading this chapter, you will find out why a transition to microservices and cloud
development is necessary and why monolithic architecture is not an option anymore. The
microservices architecture is also where Docker and Kubernetes will be especially useful.

This chapter will cover the following topics:

An introduction to microservices and comparison to a monolithic architecture
How Docker and Kubernetes fits into the microservices world
When to use microservices architecture

Before we actually create the Java microservice and deploy it using Docker and Kubernetes,
let's start with an explanation of the microservices idea and compare it to the monolithic
architecture.

An introduction to microservices
By definition, microservices, also known as the Microservice Architecture (MSA), is an
architectural style and design pattern which says that an application should consist of a
collection of loosely-coupled services. This architecture decomposes business domain
models into smaller, consistent pieces implemented by services. In other words, each of the
services will have its own responsibilities, independent of others, each one of them will
provide a specific functionality.

Working with Microservices

[72]

These services should be isolated and autonomous. Yet, they of course need to
communicate to provide some piece of business functionality. They usually communicate
using REST exposures or by publishing and subscribing events in the publish/subscribe
way.

The best way of explaining the reasoning behind the idea of microservices is to compare
them with an old, traditional approach for building large applications, the monolithic
design.

Take a look at the following diagram presenting the monolithic application and distributed
application consisting of microservices:

As you can see on the previous diagram, the monolithic application differs totally from an
application created using the microservices architecture. Let's compare the two approaches
and point out their advantages and flaws.

Monolithic versus microservices
We begin the comparison by starting with the description of the monolithic architecture to
present its characteristics.

Working with Microservices

[73]

The monolithic architecture
In the past, we used to create applications as complete, massive, and uniform pieces of
code. Let's take a web MVC application for example. A simplified architecture of such an
application is presented in the following diagram:

As you can see, the diagram presents the typical web application, a fragment of a banking
system in this case. It's the Model View Controller (MVC) application, consisting of
models, views, and controllers to serve up HTML content back to the client's browser. It
could probably also accept and send the JSON content via the REST endpoints. This kind of
an application is built as a single unit. As you can see, we have a couple of layers here.
Enterprise Applications are built in three parts usually: a client-side user interface
(consisting of HTML pages and JavaScript running in a browser), a server-side part
handling the HTTP requests (probably constructed using some spring-like controllers), then
we have a service layer, which could probably be implemented using EJBs or Spring
services. The service layer executes the domain specific business logic, and
retrieves/updates data in the database, eventually. This is a very typical web application
which every one of us has probably created once in a while. The whole application is a
monolith, a single logical executable. To make any changes to the system, we must build
and deploy an updated version of the whole server-side application; this kind of application
is packaged into single WAR or EAR archive, altogether with all the static content such as
HTML and JavaScript files. When deployed, all the application code runs in the same
machine. Scaling this kind of application usually requires deploying multiple copies of the
exact same application code to multiple machines in a cluster, behind some load balancer
perhaps.

Working with Microservices

[74]

This design wasn't too bad, we had our applications up and running, after all. But the
world, especially when using Agile methodologies, changes fast. Businesses have started
asking to release software faster than ever. ASAP has become a very common word in the
IT development language dictionary. The specification fluctuates, so the code changes often
and grows over time. If the team working on the application is large (and it probably will be
in case of complex, huge applications) everyone must be very careful not to destroy each
other's work. With every added feature, our applications become more and more complex.
The compile and build times become longer, sooner or later it will become tricky to test the
whole thing using unit or integration tests. Also, the point of entry for new members
coming to the team can be daunting, they will need to checkout the whole project from the
source code repository. Then they need to build it in their IDE (which is not always that
easy in case of huge applications), and analyze and understand the component structure to
get their job done. Additionally, people working on the user interface part will need to
communicate with developers working on the middle-tier, with people modelling the
database, DBAs, and so on. The team structure will often begin to mimic the application
architecture over time. There's a risk that a developer working on the specific layer will tend
to put as much logic into the layer he controls as he can. As a result, the code can become
unmaintainable over time. We all have been there and done that, haven't we?

Also, the scaling of monolithic systems is not as easy as putting a WAR or EAR in another
application server and then booting it. Because all the application code runs in the same
process on the server, it's often almost impossible to scale individual portions of the
application. Take this example: we have an application which integrates with the VOIP
external service. We don't have many users of our application, but then there is a lot of
events coming from the VOIP service we need to process. To handle the increasing load, we
need to scale our application and, in the case of a monolithic system, we need to scale the
whole system. That's because the application is a single, big, working unit. If just one of the
application's services is CPU or resource hungry, the whole server must be provisioned
with enough memory and CPU to handle the load. This can be expensive. Every server
needs a fast CPU and enough RAM to be able to run the most demanding component of our
application.

Working with Microservices

[75]

All monolithic applications have these characteristics:

They are rather large, often involving a lot of people working on them. This can
be a problem when loading your project into the IDE, despite having powerful
machines and a great development environment, such as IntelliJ IDEA, for
example. But it's not only about the hundreds, thousands, or millions of lines of
code. It's about the complexity of the solution, such as communication problems
between team members. Problems with communication could lead to multiple
solutions for the same problem in different parts of the application. And this will
make it even bigger, it can easily evolve into a big ball of mud where no one can
understand the whole system any longer. Moreover, people can be afraid of
introducing substantial changes to the system, because something at an opposite
end could suddenly stop working. Too bad if this is reported by the users, on a
production system.
They have a long release cycle, we all know the process of release management,
permissions, regression testing, and so on. It's almost impossible to create a
continuous delivery flow having a huge, monolith application.
They are difficult to scale; it typically takes a considerable amount of work to put
in a new application instance in the cluster by the operations team. Scaling the
specific feature is impossible, the only option you have is to multiply the
instances of the whole system in the cluster. This makes scaling up and down a
big challenge.
In case of deployment failure, the whole system is unavailable.
You are locked into the specific programming language or technology stack. Of
course, with Java, parts of the system can be developed in one or more languages
that run on JVM, such as Scala, Kotlin, or Groovy, but if you need to integrate
with a .net library, here begins the trouble. This also means that you will not
always be able to use the right tool for the job. Imagine a scenario in which you
would like to store a lot of complex documents in the database. They often have
different structures. MongoDB as a document database should be suitable, right?
Yes, but our system is running on Oracle.
It's not well suited well for agile development processes, where we need to
implement changes all the time, release to production almost at once, and be
ready for the next iteration.

Working with Microservices

[76]

As you can see, monolithic applications are only good for small scale teams and small
projects. If you need something that has a larger scale and involves many teams, it's better
to look at the alternative. But what to do with the existing monolithic system you may enjoy
dealing with? You may realize that it can be handy to outsource some parts of the system
outside, into small services. This will speed up the development process and increase
testability. It will also make you application easier to scale. While the monolithic application
still retains the core functionality, many pieces can be outsourced into small side services
supporting the core module. This approach is presented in the following diagram:

In this, let's say intermediary solution, the main business logic will stay in your application
monolith. Things such as integrations, background jobs, or other small subsystems that can
be triggered by messages, for example, can be moved to their own services. You can even
put those services into the cloud, to limit the necessity for managing infrastructure around
them even further. This approach allows you to gradually move your existing monolith
application into a fully service-oriented architecture. Let's look at the microservices
approach.

The microservices architecture
The microservices architecture is designed to address the issues we've mentioned with
monolithic applications. The main difference is that the services defined in the monolithic
application are decomposed into individual services. Best of all, they are deployed
separately from one another on separate hosts. Take a look at the following diagram:

Working with Microservices

[77]

When creating an application using the microservices architecture, each microservice is
responsible for a single, specific business function and contains only the implementation
that is required to perform exactly that specific business logic. It's same as a divide and
conquer way of creating a system. This may seem similar to the SOA-oriented architecture.
In fact, traditional SOA and microservices architecture share some common features. Both
organize fragments of the application into services and both define clear boundaries at
which a service can be decoupled from the other. SOA, however, has its roots in the need to
integrate monolithic applications with another one. This has been done, usually, using an
API that was usually SOAP-based, using heavy XML messaging. In SOA, this integration
was relying heavily on some kind of middleware in between, usually Enterprise Service
Bus (ESB). Microservices architecture can also utilize the message bus, with significant
differences. In microservices architecture there is no logic in the messaging layer at all, it is
purely used as a transport for messages from one service to another. This is a total contrast
to ESB, which needed a lot of logic for message routing, schema validation, message
translation, and so on. As a result, microservices architecture is less cumbersome than
traditional SOA.

When it comes to scaling, there's a huge difference when comparing microservices to
monolithic applications. The key advantage of microservices is that a single service can be
scaled individually, depending on the resource requirements. That's because they are self-
sufficient and independent. As a microservice is usually deployed on smaller (in terms of
resources) host; the host needs to contain only resources that are required for a service to
function properly. As the resource requirement grows, scaling is easy both ways,
horizontally and vertically. To scale horizontally, you just deploy as many instances as you
need to handle load on a specific component.

Working with Microservices

[78]

We will get back to this concept in the coming chapters, when we will be getting to know
Kubernetes. Scaling vertically is also a lot easier and cheaper in comparison to the
monolithic systems, you upgrade only a host on which your microservice is being
deployed. Also, introducing new versions of the service is easy, you don't need to stop the
whole system just to upgrade a piece of functionality. In fact, you can do it on the fly. When
deployed, microservices improve the fault tolerance for the entire application. For example,
if there is a memory leak in one service or some other problem, only this service will be
affected and can then be fixed and upgraded without interfering with the rest of the system.
This is not the case with monolithic architecture, where one faulty component can bring
down the entire application.

From a developer's perspective, having your application split into separate pieces deployed
individually gives a huge advantage. A developer skilled in server-side JavaScript can
develop its piece node.js, while the rest of the system will be developed in Java. It's all
related to the API exposed by each microservice; apart from this API, each microservice
doesn't need to know anything about the rest of the services. This makes the development
process a lot easier. Separate microservices can be developed and tested independently.
Basically, the microservices approach dictates that instead of having one giant code base
that all developers are working on, which often becomes tricky to manage, there are several
smaller code bases managed by small and agile teams. The only dependency services have
on one another is their exposed APIs. There's a difference in storing data as well. As we
have said before, each microservice should be responsible for storing its own data, because
again, it should be independent. This leads to another feature of the microservices
architecture, a possibility to have a polyglot persistence. Microservices should own their
data.

While microservices communicate and exchange data with other microservices using REST
endpoints or events, they can store their own data in the form that is best suitable for the
job. If the data is relational, the service will be using a traditional, relational database such
as MySQL or PostgreSQL. If a document database is better suited for the job, a microservice
can use MongoDB for example, or Neo4j if it's graph as data. That leads to another
conclusion, by implementing the microservices architecture we can now only choose the
programming language or framework that will be best suited for the job, this applies to the
data storage as well. Of course, having its own data can lead to a challenge in the
microservices architecture, data consistency. We are going to cover this subject in a while in
this chapter.

Working with Microservices

[79]

Let's summarize the benefits of using the microservices architecture from the development
process perspective:

Services can be written using a variety of languages, frameworks, and their
versions
Each microservice is relatively small, easier to understand by the developer
(which results in less bugs), easy to develop, and testable
The deployment and start up time is fast, which makes developers more
productive
Each service can consist of multiple service instances for increased throughput
and availability
Each service can be deployed independently of other services, easier to deploy
new versions of services frequently
It is easier to organize the development process; each team owns and is
responsible for one or more service and can develop, release, or scale their service
independently of all of the other teams
You can choose whatever programming language or framework you think is best
for the job. There is no long-term commitment to a technology stack. If needed,
the service can be rewritten in the new technology stack, and if there are no API
changes, this will be transparent for the rest of the system
It is better for continuous delivery as small units are easier to manage, test, and
deploy. As long as each team maintains backwards and forward API
compatibility, it can work in release cycles that are decoupled from other teams.
There are some scenarios where these release cycles are coupled, but this is not
the common case

Maintaining data consistency
Services must be loosely coupled so that they can be developed, deployed, and scaled
independently. They of course, need to communicate, but they are independent of each
other. They, have well defined interfaces and encapsulate implementation details. But what
about data? In the real world and in non-trivial applications (and microservice applications
will probably be non-trivial), business transactions must often span multiple services. If
you, for example, create a banking application, before you execute the customer's money
transfer order, you need to ensure that it will not exceed his account balance. The single
database that comes with a monolith application gives us a lot of convenience: atomic
transactions, a single place to look for data, and so on.

Working with Microservices

[80]

On the other hand, in the microservices world, different services need to be independent.
This also means that they can have different data storage requirements. For some services, it
will be a relational database, others might need a document database such as MongoDB,
which is good at storing complex, unstructured data.

So, when building microservices and thus splitting up our database into multiple smaller
databases, how do we manage these challenges? We have also said that services should
own their data. That is, every microservice should depend only on its own database. The
service's database is effectively part of the implementation of that service. This leads to
quite an interesting challenge when designing the microservices architecture. As Martin
Fowler says in his Microservice trade-offs column: Maintaining strong consistency is
extremely difficult for a distributed system, which means everyone has to manage eventual
consistency. How do we deal with this? Well, it's all about boundaries.

Microservices should have clearly defined responsibilities and boundaries.

Microservices need to be grouped according to their business domain. Also, in practice, you
will need to design your microservices in such a way that they cannot directly connect to a
database owned by another service. The loose coupling means microservices should expose
clear API interfaces that model the data and access patterns related to this data. They must
stick to those interfaces, when changes are necessary, you will probably introduce a
versioning mechanism and create another version of the microservice. You could use a
publish/subscribe pattern to dispatch events from one microservice to be processed by
others, as you can see in the following diagram:

Working with Microservices

[81]

The publish/subscribe mechanism you would want to use should provide retry and rollback
features for the event processing. In a publish/subscribe scenario, the service that modifies
or generates the data allows other services to subscribe to events. The subscribed services
receive the event saying that the data has been modified. It's often the case that the event
contains the data that has been modified. Of course, the event publish/subscribe pattern can
be used not only in relation to data changes, it can be used as a generic communication
mechanism between services. This is a simple and effective approach but it has a downside,
there is a possibility to lose an event.

When creating distributed applications, you may want to consider that there will be data
inconsistency for some amount of time. When an application changes data items on one
machine, that change needs to be propagated to the other replicas. Since the change
propagation is not instant, there's a time interval during which some of the copies will have
the most recent change, but others won't. However, the change will be propagated to all the
copies, eventually. That's why this is called eventual consistency. Your services would need
to assume that the data will be in an inconsistent state for a while and need to deal with the
situation by using the data as is, postponing the operation, or even ignoring certain pieces
of data.

As you can see, there are a lot of challenges, but also a lot of advantages behind using
microservices architecture. You should be warned, though, there are more challenges we
need to address. As services are independent of each other, they can be implemented in
different programming languages. This means the deployment process of each may vary: it
will be totally different for a Java web application and for a node.js application. This can
make the deployment to a server complex. This is precisely the point where Docker comes
to the rescue.

The Docker role
As you remember from the previous chapters, Docker utilizes the concept of
containerization. You simply put your application (in this context, the application will be a
microservice) no matter what language and technology it uses, into a single, deployable and
runnable piece of software, called the image. We are going to cover the process of
packaging a Java application into the image in detail in the Chapter 4, Creating Java
Microservices. The Docker image will contain everything our service needs to work, it can be
a Java Virtual Machine with all required libraries and an application server, or it can also be
a node.js application packaged together with the node.js runtime with all the needed
node.js modules, such as express.js or whatever the node.js service needs to run. A
microservice might consist of two containers,   one running the service code and another
running a database to keep the service's own data.

Working with Microservices

[82]

Docker isolates containers to one process or service. In effect, all the pieces of our
application will just be a bunch of black boxes, packaged and ready to use Docker images.
Containers operate as fully isolated sandboxes, with only the minimal kernel of the
operating system present for each container. Docker uses the Linux kernel and makes use of
kernel interfaces such as cnames and namespaces, which allow multiple containers to share
the same kernel while running in complete isolation from one another.

Because the system resources of the underlying system are shared, you can run your
services at optimal performance, the footprint is substantially smaller in comparison to
traditional virtual machines. Because containers are portable, as we have said in Chapter 2,
Networking and Persistent Storage, they can run everywhere the Docker engine can run. This
makes the process of deployment of microservices easy. To deploy a new version of a
service running on a given host, the running container can simply be stopped and a new
container started that is based on a Docker image using the latest version of the service
code. We are going to cover the process of creating new versions of the image later in this
book. Of course, all the other containers running on the host will not be affected by this
change.

As microservices need to communicate using the REST protocol, our Docker containers (or,
to be more precise, your Java microservices packaged and running from within the Docker
container) also need to communicate using the network. As you remember from Chapter 2,
Networking and Persistent Storage, about networking, it's very easy to expose and map a
network port for the Docker container. It seems that Docker containerization is ideal for the
purposes of microservice architecture. You can package the microservice into a portable box
and expose the needed network ports, enabling it to communicate to the outside world.
When needed, you can run as many of those boxes as you want.

Let's summarize the Docker features that are useful when dealing with microservices:

It is easy to scale up and scale down a service, you just change the running
container instances count
The container hides the details of the technology behind each of the services. All
containers with our services are started and stopped in exactly the same way, no
matter what technology stack they use
Each service instance is isolated
You can limit the runtime constraints on the CPU and memory consumed by a
container
Containers are fast to build and start. As you remember from Chapter 1,
Introduction to Docker, there's minimal overhead in comparison to traditional
virtualization

Working with Microservices

[83]

Docker image layers are cached, this gives you another speed boost when
creating a new version of the service

Doesn't it fit perfectly for the definition of the microservices architecture? Sure it does, but
there's one problem. Because our microservices are spread out across multiple hosts, it can
be difficult to track which hosts are running certain services and also monitor which of
them need more resources or, in the worst case, are dead and not functioning properly.
Also, we need to group services that belong to the specific application or feature. This is the
missing element in our puzzle: container management and orchestration. A lot of
frameworks emerged for the sole purpose of handling more complex scenarios: managing
single services in a cluster or multiple instances in a service across hosts, or how to
coordinate between multiple services on a deployment and management level. One of these
tools is Kubernetes.

Kubernetes' role
While Docker provides the lifecycle management of containers, Kubernetes takes it to the
next level by providing orchestration and managing clusters of containers. As you know,
your application created using the microservice architecture will contain a couple of
separated, independent services. How do we orchestrate and manage them? Kubernetes is
an open-source tool that's perfect for this scenario. It defines a set of building blocks which
provide mechanisms for deploying, maintaining, and scaling applications. The basic
scheduling unit in Kubernetes is called a pod. Containers in a pod run on the same host,
share the same IP address, and find each other via localhost. They can also communicate
with each other using standard inter-process communications, such as shared memory or
semaphores. A pod adds another level of abstraction to containerized components. A pod
consists of one or more containers that are guaranteed to be co-located on the host machine
and can share resources. It's same as a logical collection of containers that belong to an
application.

For traditional services, such as a REST endpoint together with the corresponding database
(our complete microservice, in fact), Kubernetes provides a concept of service. A service
defines a logical group of pods and also enforces rules for accessing such logical groups
from the outside world. Kubernetes uses the concept of Labels for pods and other resources
(services, deployments, and so on). These are simple the key-value pairs that can be
attached to resources at creation time and then added and modified at any time. We will be
using labels later on, to organize and to select subsets of resources (pods, for example) to
manage them as one entity.

Working with Microservices

[84]

Kubernetes can place your container or a group of containers in the specific host
automatically. To find a suitable host (the one with the smallest workload), it will analyze
the current workload of the hosts and different colocation and availability constraints. Of
course, you will be able to specify the host manually, but having this automatic feature can
make the best of the processing power and resources available. Kubernetes can monitor the
resource usage (CPU and RAM) at the container, pod, and cluster level. The resource usage
and performance analysis agent runs on each node, auto-discovers containers on the node,
and collects CPU, memory, filesystem, and network usage statistics.

Kubernetes also manages the lifecycle of your container instances. If there are too many of
them, some of them will be stopped. If the workload increases, new containers will be
started automatically. This feature is called container auto-scaling. It will automatically
change the number of running containers, based on memory, CPU utilization, or other
metrics you define for your services, as the number of queries per second, for example.

As you remember from Chapter 2, Networking and Persistent Storage, Docker operates
volumes to persist your application data. Kubernetes also supports two kinds of volume:
regular which has the same lifecycle as the pod, and persistent with a lifecycle independent
of any pod. Volume types are implemented the same way as in Docker in the form of
plugins. This extensible design enables you to have almost any type of volume you need. It
currently contains storage plugins such as Google Cloud Platform volume, AWS elastic
block storage volume, and others.

Kubernetes can monitor the health of your services, it can do it by executing a specified
HTTP method (the same as GET for example) for the specified URL and analyzing the HTTP
status code given back in response. Also, a TCP probe can check if a specified port is open
which can also be used to monitor the health of your service. Last, but not least, you can
specify the command that can be executed in the container, and some actions that could be
taken based on the command's response. If the specified probe method signals that
something is wrong with the container, it can be automatically restarted. When you need to
update your software, Kubernetes supports rolling updates. This feature allows you to
update a deployed, containerized application with minimal downtime. The rolling update
feature lets you specify the number of old replicas that may be down while they are being
updated. Upgrading containerized software with Docker is especially easy, as you already
know, it will just be a new image version for the container. I guess you are now getting the
complete picture. Deployments can be updated, rolled out, or rolled back. Load balancing,
service discovery, all the features you would probably need when orchestrating and
managing your herd of microservices running from within Docker containers are available
in Kubernetes. Initially made by Google for big scale, Kubernetes is nowadays widely used
by organizations of various sizes to run containers in production.

Working with Microservices

[85]

When to use the microservice architecture
The microservice architecture is a new way to think about structuring applications At the
beginning, when you begin creating a system and it's relatively small, there will probably
be no need to use the microservices approach. Of course, it's nothing wrong with the basic
web application. When doing basic web applications for the people in your office, going
with the microservice architecture may be overkill. On the other hand, if you plan to
develop a new, super internet service that will be used by millions of mobile clients, I
would consider going with microservices from the start. Joking aside, you get the picture,
always try to pick the best tool for the job. In the end, the goal is to provide business value.

However, you should keep in mind the whole picture of your system after some time. If
your application is growing larger in features and functionality than you expected, or you
know that from the beginning, you may want to start breaking features off into
microservices. You should try to do the functional decomposition and point out the
fragments of your systems that have clear boundaries and which would need scaling, and
separate deployments in the future. If there's a lot of people working on a project, having
them developing the separate, independent pieces of an application will give the
development process a huge boost. There can be a mix of technology stacks used each
service can be implemented in a different programming language or framework and store
its own data in the most suitable data storage. It's all about API and the way services
communicate with each other. Having this architecture will result in a faster time to market
the build, test, and deployment time is highly reduced in comparison to a monolith
architecture. If you need to scale only the service that needs to handle higher workload.
Having Docker and Kubernetes available, there is no reason not to go into the microservice
architecture; it will pay off in the future, for sure.

The microservice architecture is not just a new trendy buzzword, it's generally accepted as a
better way to build applications today. The birth of the microservice idea has been driven
by the need to make better use of compute resources and the need to maintain more and
more complex web-based applications.

Java is an excellent choice when building microservices. You can create a microservice as a
single executable JAR, self-contained Spring Boot application, or fully featured web
application deployed on an application server such as Wildfly or Tomcat. Depending on
your use case and the responsibilities and features of your microservices, any of the
previous will do. Docker Repository contains a lot of useful images you can use freely as a
base for your microservice. Many images present in The Docker Hub are created by private
individuals, some extending official images and customizing them to their needs, but others
are entire platform configurations customized from base images. The base image can be as
simple as pure JDK or it can be a fully configured Wildfly ready to run. This gives a serious
development performance boost.

Working with Microservices

[86]

Summary
In this chapter, we have compared monolithic and microservices architectures. I hope you
see the advantages of using the latter. We have also learned how Docker and Kubernetes
fits into the whole picture when deploying containerized applications, making this process
a lot more easy and pleasant. Java is a proven ecosystem for implementing microservices.
The software you are going to create will consist of small, highly testable, and efficient
modules. In fact, in Chapter 4, Creating Java Microservices, we are going to get our hands
dirty and create such a microservice.

4
Creating Java Microservices

We've seen a lot of theory behind microservice architecture in Chapter 3, Working with
Microservices. It's time to do some hands-on practice; we are going to implement our own
microservice. This will be a simple REST service, accepting HTTP methods such as GET and
POST to retrieve and update entities. There are a couple of choices when developing
microservices in Java. In this chapter, we are going to get an overview about two main
approaches, probably the most popular will be JEE7, and Spring Boot. We will briefly see
how we can code a microservice using JEE JAX-RS. We will also create a microservice
running on Spring Boot. In fact, in Chapter 5, Creating Images with Java Applications, we are
going to run our Spring Boot microservice from within a Docker container. As we have said
in Chapter 3, Working with Microservices, microservices usually communicate with the
outside world using REST. Our REST microservice will be as simple as possible; we just
need to have something to deploy using Docker and Kubernetes. We will not focus on
advanced microservice features such as authentication, security, filters, and so on, as this is
outside the scope of this book. The purpose of our examples is to give you an idea of how to
develop REST services and then deploy them using Docker and Kubernetes. This chapter
will cover the following topics:

Introduction to REST
Creating a REST service in Java using Java EE7 annotations
Creating a REST service using Spring Boot
Running the service and then calling it with different HTTP clients

At the end of the chapter, we will become familiar with some useful tools- we will use some
code generation tools such as Spring Initialzr to quickly bootstrap a Spring Boot service
project. Before we start coding our own microservice, let's explain briefly what REST is.

Creating Java Microservices

[88]

Introduction to REST
The REST acronym stands for Representational State Transfer. It's an architectural style and
a design for network-based software. It describes how one system can communicate a state
with another. This fits perfectly well into the microservice world. As you will remember
from Chapter 3, Working with Microservices, the software applications based on the
microservices architecture is a bunch of separated, independent services talking to each
other.

There are some concepts in REST that we need to understand, before we go further:

resource: This is the main concept in the REST architecture. Any information
can be a resource. A bank account, a person, an image, a book. A representation
of a resource must be stateless
representation: A specific way a resource can be represented. For example, a
bank account resource can be represented using JSON, XML, or HTML. Different
clients might request different representations of the resource, one can accept
JSON, while others will be expecting XML
server: A service provider. It exposes services which can be consumed by clients
client: A service consumer. This could be another microservice, application, or
just a user's web browser running an Angular application, for example

As the definition says, REST is being used to transport those resource representations over
the network. The representation itself is being created via some media type. Media types
can be different. Some examples of media types include JSON, XML, or RDF. The JSON
media type is widely accepted and probably the most often used. In our examples, we will
also use JSON to communicate with our service. Of course, REST is not the only option for
microservices communication; there are others, such as Google's very good gRPC, for
example, which brings a lot of advantages such as HTTP/2 and protobuff. In the REST
architecture, resources are manipulated by components. In fact, these components are our
microservices. Components request and manipulate resources via a standard uniform
interface. REST is not tied to any specific protocol; however, REST calls are most often being
made using the most popular HTTP or HTTPS protocol. In the case of HTTP, this uniform
interface consists of standard HTTP methods such as GET, PUT, POST, and DELETE.

REST is not tied to any specific protocol.

Creating Java Microservices

[89]

Before we start implementing our service that will respond to HTTP calls, it's worth
knowing about the HTTP methods we are going to use. We are going to focus on them a
little bit closer now.

HTTP methods
The REST-based architecture uses standard HTTP methods: PUT, GET, POST, and DELETE.
The following list gives an explanation of these operations:

GET gives a read access to the resource. Calling GET should not create any side-
effects. It means that the GET operation is idempotent. The resource is never
changed via a GET request; for example, the request has no side effects. It means
it's idempotent
PUT creates a new resource. Similar to GET, it should also be idempotent
DELETE removes the resource or resources. The DELETE operation should not
give different results when called repeatedly
POST will update an existing resource or create a new one

A RESTful web service is simply a web service that is based on the REST resource concept
and usage of HTTP methods. It should define the base URI for the exposed methods, the
MIME-types supported, such as XML, text, or JSON, and the set of operations (POST, GET,
PUT, and DELETE) which the service handles. HTTP is simple and very natural for REST,
according to RESTful principles. These principles are a set of constraints that ensure that
clients (service consumers, other services or browsers, for example) can communicate with
servers in a flexible way. Let's look at them now.

In REST principles client-server communication, all applications built in the RESTful style
must also be client-server in principle. There should be a server (service provider) and a
client (service consumer). Having this enables loose coupling and independent evolution of
server and client. This fits very well to the concept of a microservice. As you will remember
from Chapter 3, Working with Microservices, they must be independent:

Stateless: Each client request to the server requires that its state be fully
represented. The server must be able to completely understand the client
request without using any server context or server session state. In other words,
all states must be managed on the client side. Each REST service should be
stateless. Subsequent requests should not depend on some data from a previous
request being temporarily stored. Messages should be self-descriptive.

Creating Java Microservices

[90]

Cacheable: Response data could be marked as cacheable or non-cacheable. Any
data marked as cacheable may be reused as the response to the same subsequent
request. Each response should indicate if it is cacheable.
Uniform interface: All components must interact through a single uniform
interface. Because all component interactions occur via this interface, interaction
with different services is very simple.
Layered system: A consumer of the service should not assume direct connection
to the service provider. In other words, at any time the client cannot tell if it is
connected to the end server or to an intermediate. The intermediate layer helps to
enforce the security policies and improve the system scalability by enabling load-
balancing. Since requests can be cached, the client might be getting the cached
response from a middle layer.
Manipulation of resources through representations: A resource can have
multiple representations. It should be possible to modify the resource through a
message with any of these representations.
Hypermedia As The Engine Of Application State (HATEOAS): A consumer of a
RESTful application should know about only one fixed service URL. All
subsequent resources should be discoverable from the links included in the
resource representations.

The previous concepts represent defining characteristics of REST and differentiate the REST
architecture from other architectures such as web services. It is useful to note that a REST
service is a web service, but a web service is not necessarily a REST service. The REST
microservice should represent the state of an entity. Let our entity be a book, for example
(altogether with its properties such as ID, title, and an author), represented as XML, JSON,
or plain text. The most basic way of thinking about REST is as a way of formatting the URLs
of your service. For example, having our book resource, we could imagine having the
following operations defined in the service:

/books would allow access of all the books
/books/:id would be an operation for viewing an individual book, retrieved
based on its unique ID
sending a POST request to /books would be how you would actually create a
new book and store it in a database
sending a PUT request to /books/:id would be how you would update the
attributes of a given book, again identified by its unique ID
sending a DELETE request to /books/:id would be how you would delete a
specific book, again identified by its unique ID

Creating Java Microservices

[91]

It's worth trying to understand that REST is not HTTP. It often uses HTTP because in its
most general form, REST is about mapping the concept of a verb against an arbitrary
collection of nouns and fits well with HTTP methods. HTTP contains a useful set of generic
verbs (GET, POST, PUT, PATCH, and so on). In REST, we do not transfer an actual object but a
representation of it in a specific form, such as XML, text, or JSON. REST as an architectural
style means it is just a concept. How it's implemented, is up to you. Java is suited well for
developing REST services. Let's see how can we do it.

REST in Java
When developing a REST service in Java, we have at least a couple of options for the
framework we could use. The most popular will be pure JEE7 with JAX-RS or Spring
Framework with its Spring Boot. You can use either of them or mix them together. Let's
look at those two now in more detail, starting with JAX-RS.

Java EE7 - JAX-RS with Jersey
JAX-RS was born as a result of Java Specification Request (JSR) 311. As the official
definition says, the JAX-RS is the Java API for RESTful web services. It's a specification that
provides support in creating web services according to the REST architectural pattern. JAX-
RS uses Java annotations, introduced in Java SE 5, to simplify the development and
deployment of web service clients and endpoints. From version 1.1 on, JAX-RS is an official
part of Java EE. A notable feature of being an official part of Java EE is that no configuration
is necessary to start using JAX-RS.

Java EE 7 with JAX-RS 2.0 brings several useful features, which further simplify the
development of microservices. One of the most important new features of JAX-RS 2.0 is the
support for hypermedia following the HATEOAS principle of REST. Jersey, a library from
Oracle, is probably the most widely known library, which implements this specification.

Jersey is the reference implementation for the JSR 311 specification.

Creating Java Microservices

[92]

The Jersey implementation provides a library to implement RESTful web services in a Java
servlet container. On the server-side, Jersey provides a servlet implementation which scans
predefined classes to identify RESTful resources. Jersey makes it a lot easier to write
RESTful services. It abstracts away a lot of the low level coding you will need to do yourself
otherwise. Using Jersey, you do it in a declarative way. The servlet, registered in your
web.xml file, analyzes the incoming HTTP request and selects the correct class and method
to respond to this request. It finds the proper method to execute by looking at the class and
method level annotations. Annotated classes can reside in different packages, but you can
instruct a Jersey servlet via the web.xml to scan certain packages for annotated classes.

JAX-RS supports the creation of XML and JSON via the Java Architecture for XML Binding
(JAXB). The Jersey implementation also provides a client library to communicate with a
RESTful web service.

As we have said before, we develop JAX-RS applications using Java annotations. It's easy
and pleasant to work with. Let's describe those annotations now.

JAX-RS annotations
The most important annotations in JAX-RS are listed in the following table:

Annotation Meaning

@PATH Sets the path to base URL + /your_path. The base URL is based on
your application name, the servlet, and the URL pattern from the
web.xml configuration file.

@POST Indicates that the following method will answer to an HTTP POST
request.

@GET Indicates that the following method will answer to an HTTP GET
request.

@PUT Indicates that the following method will answer to an HTTP PUT
request.

@DELETE Indicates that the following method will answer to an HTTP DELETE
request.

@Produces Defines which MIME type is delivered by a method annotated with
@GET. It can be "text/plain", "application/xml", or
"application/json" for example.

@Consumes Defines which MIME type is consumed by this method.

Creating Java Microservices

[93]

@PathParam Used to extract (inject) values from the URL into a method
parameter. This way you inject, for example, the ID of a resource
into the method to get the correct object.

@QueryParam Used to extract (inject) the URI query parameter coming with the
request. The Uniform Resource Identifier (URI) is a string of
characters used to identify a name or a resource on the Internet.

@DefaultValue Specifies a default value. Useful for optional parameters.

@CookieParam Annotation that allows you to inject cookies sent by a client request
into your JAX-RS resource methods.

@Provider The @Provider annotation is used for anything that is of interest to
the JAX-RS runtime, such as MessageBodyReader and
MessageBodyWriter. For HTTP requests, MessageBodyReader is
used to map an HTTP request entity body to method parameters. On
the response side, a return value is mapped to an HTTP response
entity body by using MessageBodyWriter. If the application needs
to supply additional metadata, such as HTTP headers or a different
status code, a method can return a response that wraps the entity
and that can be built using Response.ResponseBuilder.

@ApplicationPath The @ApplicationPath annotation is used to define the URL
mapping for the application. The path specified by
@ApplicationPath is the base URI for all resource URIs specified
by @Path annotations in the resource class. You may only apply
@ApplicationPath to a subclass of
javax.ws.rs.core.Application.

The annotation names might not be clear or self-explanatory at first glance. Let's look at the
sample REST endpoint implementation, and it will become a lot clearer. The application
itself is marked with the @ApplicationPath annotation. By default, during start-up of the
JEE compliant server, JAX-RS will scan all the resources in a Java application archive to find
the exposed endpoints. We can override the getClasses() method to manually register
the resource classes in the application with the JAX-RS runtime. You can see it in the
following example:

package pl.finsys.jaxrs_example
@ApplicationPath("/myApp")
public class MyApplication extends Application {
 @Override
 public Set<Class<?>> getClasses() {
 final Set<Class<?>> classes = new HashSet<>();

Creating Java Microservices

[94]

 classes.add(MyBeansExposure.class);
 return classes;
 }
}

In the previous example, we just register a REST application, giving it the /myApp base URI
path. There is only one REST method handler (endpoint), the MyBeansExposure class,
which we register within the REST application. The simplified REST endpoint,
implemented in the separate Java class can look same as this:

package pl.finsys.jaxrs_example
import javax.annotation.PostConstruct;
import javax.enterprise.context.ApplicationScoped;
import javax.ws.rs.DELETE;
import javax.ws.rs.GET;
import javax.ws.rs.POST;
import javax.ws.rs.Path;
import javax.ws.rs.PathParam;
import javax.ws.rs.container.ResourceContext;
import javax.ws.rs.core.Context;
import javax.ws.rs.core.Response;

@ApplicationScoped
@Path("beans")
public class MyBeansExposure {
 @Context ResourceContext rc;
 private Map<String, Bean> myBeans;

 @GET
 @Produces("application/json")
 public Collection<Bean> allBeans() {
 return Response.status(200).entity(myBeans.values()).build();
 }

 @GET
 @Produces("application/json")
 @Path("{id}")
 public Bean singleBean(@PathParam("id") String id) {
 return Response.status(200).entity(myBeans.get(id)).build();
 }

 @POST
 @Consumes("application/json")
 public Response add(Bean bean) {
 if (bean != null) {
 myBeans.put(bean.getName(), bean);
 }
 final URI id = URI.create(bean.getName());

Creating Java Microservices

[95]

 return Response.created(id).build();
 }

 @DELETE
 @Path("{id}")
 public void remove(@PathParam("id") String id) {
 myBeans.remove(id);
 }
}

As you can see in the previous example, we have class-level @Path annotation. Every
method marked with @GET, @PUT, @DELETE, or @POST annotations will respond to a call to
the URI starting with the base @Path. Additionally, we can use the @Path annotation on a
method level; it will, kind of, extend the URI path that the specific method responds to. In
our example, the HTTP GET executed with a URI path myApp/beans will call the
allBeans() method, returning the collection of beans in JSON format. The GET method
executed using the myApp/beans/12 URI path will call the singleBean() method, and
the {id} parameter will be transferred to the method because of the @PathParam
annotation. Calling the HTTP DELETE method on the myApp|beans|12 URI will execute
the remove() method with an id parameter value 12. To give you almost infinite
flexibility, the @Path annotation supports regular expressions. Consider the following
example:

package pl.finsys.jaxrs_example
import javax.ws.rs.GET;
import javax.ws.rs.Path;
import javax.ws.rs.PathParam;
import javax.ws.rs.core.Response;

@Stateless
@Path("/books")
public class BookResource {
 @GET
 @Path("{title : [a-zA-Z][a-zA-Z_0-9]}")
 public Response getBookByTitle(@PathParam("title") String title) {
 return Response.status(200).entity("getBookByTitle is called, title :
" + title).build();
 }

 @GET
 @Path("{isbn : \\d+}")
 public Response getBookByISBN(@PathParam("isbn") String isbn) {
 return Response.status(200).entity("getBookByISBN is called, isbn : "
+ isbn).build();
 }
}

Creating Java Microservices

[96]

In the previous example, we have two @GET mappings, each with the same /books/ path
mapped. The first one, with the /{title : [a-zA-Z][a-zA-Z_0-9]} parameter, will
react only to letters and numbers. The second one, with the /{isbn : \\d+} parameter,
will be executed only if you provide a number when calling the URI. As you can see, we
have mapped two identical paths, but each one will react to a different type of incoming
path parameter.

Apart from using @PathParam, we can also use @QueryParams to supply parameters using
the request parameters. Take a look at the following example:

package pl.finsys.jaxrs_example
import java.util.List;
import javax.ws.rs.GET;
import javax.ws.rs.Path;
import javax.ws.rs.core.Context;
import javax.ws.rs.core.Response;
import javax.ws.rs.core.UriInfo;

@Stateless
@Path("/users")
public class UserResource {
 @EJB private UserService userService;
 @GET
 @Path("/query")
 @Produces("application/json")
 public Response getUsers(
 @QueryParam("from") int from,
 @QueryParam("to") int to,
 @QueryParam("orderBy") List<String> orderBy)) {
 List<User> users = userService.getUsers(from, to, orderBy);
 return Response.status(200).entity(users).build();
 }
}

In the previous example, when calling HTTP GET on the
/users/query?from=1&to=100&orderBy=name JAX-RS will pass the URI parameters
into the getUsers() method parameter and call the injected userService to get the data
(for example, from a database).

To package the JAX-RS application, we will need a Maven pom.xml file, of course. In its
simplest form, it can look the same as the following:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

Creating Java Microservices

[97]

http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>pl.finsys</groupId>
 <artifactId>jee7-rest</artifactId>
 <packaging>war</packaging>
 <version>1.0-SNAPSHOT</version>

 <dependencies>
 <dependency>
 <groupId>javax</groupId>
 <artifactId>javaee-api</artifactId>
 <version>7.0</version>
 <scope>provided</scope>
 </dependency>
 </dependencies>
 <build>
 <finalName>jee7-rest</finalName>
 </build>

 <properties>
 <maven.compiler.source>1.8</maven.compiler.source>
 <maven.compiler.target>1.8</maven.compiler.target>
 <failOnMissingWebXml>false</failOnMissingWebXml>
 </properties>
</project>

Creating JEE7 REST services is quite straightforward, isn't it? By building the project and
deploying it to a JEE compliant application server, we have a couple of endpoints ready and
waiting to be called over HTTP. But there's an even more simple and faster approach. In the
era of microservices, we would want to create individual components faster with a minimal
overhead, after all. Here comes Spring Boot. Let's look at it now.

Spring Boot
Spring itself is a very popular Java-based framework for building web and enterprise
applications. It's not only the Spring Core, which focuses on dependency injection. Spring
Framework provides a lot of features that can make a developer's life easier out of the box
and allows you to deliver needed features faster. The list is long; here are just a few
examples:

Spring data: Simplifies data access from relational and NoSQL data stores
Spring batch: Provides a powerful batch processing framework

Creating Java Microservices

[98]

Spring security: Provides numerous ways to secure applications
Spring social: Supports integration with social networking sites such as Twitter,
Facebook, GitHub, and so on
Spring integration: An implementation of enterprise integration patterns to
facilitate integration with other enterprise applications using lightweight
messaging and declarative adapters

But why did Spring become so popular? There are several reasons for that:

It uses the dependency injection approach, which encourages writing testable,
loosely coupled code
It's easy to include database transaction management capabilities
The integration with other popular Java frameworks such as JPA/Hibernate, for
example
It includes a state of the art MVC framework for building web applications faster,
separating the view from the business logic

Configuring beans in the Spring framework can be done in multiple ways such as the XML
definition file, Java annotations, and code configuration. This can be a tedious process. Also,
we often do a lot of boilerplate configuration all the time, for different applications. Spring
Boot was born to address the complexity of configuration. We can use Spring Boot for our
own purposes, and develop small, independent services that can just be run. It can be a
single runnable fat JAR file, with all the Java dependencies needed to run your application.
There's no need for an application server or the complicated deployment descriptor
configuration. In fact, behind the scenes, Spring Boot will boot up an embedded server for
you. Of course, you are not forced to use the embedded application server. You can always
build a WAR file to deploy it on your own Tomcat or Wildfly, for example. It's worth
knowing, that even though most things will happen automatically when running a Spring
Boot application, it's not a code generation framework.

Does all of this remind you about the simplicity and portability of Docker containers? Sure
it does, but on the application level. As we discussed in Chapter 3, Working with
Microservices, we are moving towards architectures with smaller, independently deployable
microservices. This means we will need to be able to quickly get off the ground and get
running with new components. We get a lot of features out of the box when using Spring
Boot. These features are delivered in the form of Maven artifacts, which you can just include
in your Maven pom.xml file.

Creating Java Microservices

[99]

The following table shows some of the important starter projects provided by Spring Boot
we will be using:

Project Description

spring-boot-starter Base starter for Spring Boot applications. Provides
support for auto-configuration and logging.

spring-boot-starter-web Starter project for building Spring MVC based
web applications or RESTful applications. This
uses Tomcat as the default embedded servlet
container.

spring-boot-starter-data-jpa Provides support for Spring Data JPA. Default
implementation is Hibernate.

spring-boot-starter-validation Provides support for Java Bean Validation API.
Default implementation is Hibernate Validator.

spring-boot-starter-test Provides support for various unit testing
frameworks, such as JUnit, Mockito, and
Hamcrest matchers

There are a lot more projects, which can be useful for you. We are not going to use them,
but let's look at what else is available:

spring-boot-starter-web-services Starter project for developing XML based web
services

spring-boot-starter-activemq Supports message based communication using
JMS on ActiveMQ

spring-boot-starter-integration Supports Spring Integration, framework that
provides implementations for Enterprise
Integration Patterns

spring-boot-starter-jdbc Provides support for using Spring JDBC.
Configures a Tomcat JDBC connection pool by
default.

spring-boot-starter-hateoas HATEOAS stands for Hypermedia as the
Engine of Application State. RESTful services
that use HATEOAS return links to additional
resources that are related to the current context
in addition to data.

Creating Java Microservices

[100]

spring-boot-starter-jersey JAX-RS is the Java EE standard for developing
REST APIs. Jersey is the default
implementation. This starter project provides
support for building JAX-RS based REST APIs.

spring-boot-starter-websocket HTTP is stateless. Web sockets allow
maintaining connection between server and
browser. This starter project provides support
for Spring WebSockets.

spring-boot-starter-aop Provides support for Aspect oriented
programming. Also provides support for
AspectJ for advanced Aspect oriented
programming.

spring-boot-starter-amqp With default as RabbitMQ, this starter project
provides message passing with AMQP.

spring-boot-starter-security This starter project enables auto-configuration
for Spring Security.

spring-boot-starter-batch Provides support for developing batch
applications using Spring Batch.

spring-boot-starter-cache Basic support for caching using Spring
Framework.

spring-boot-starter-data-rest Support for exposing REST services using
Spring Data REST.

Let's use some of these goodies to code our own Spring Boot microservice.

Coding the Spring Boot microservice
We know that we have some starters available, so let's make use of them to save some time.
The service that we are going to create will be the simple REST microservice for storing and
retrieving entities from a database: books, in our case. We are not going to implement
authentication and security features, just to make it as clean and simple as possible. Books
will be stored in an in-memory relational H2 database. We are going to build and run our
bookstore with Maven, so let's begin with the pom.xml build file.

Creating Java Microservices

[101]

Maven build file
As you will see, the parent project for our own service is spring-boot-starter-parent. Spring
this is the parent project providing dependency and plugin management for Spring Boot-
based applications. This gives us a lot of features to start with. We also include two starters:

spring-boot-starter-web: This is because we are going to create our request
mappings (similar to @GET or @POST mappings with the @Path annotation we did
previously using JEE7 JAX-RS
spring-boot-starter-data-jpa: Because we are going to save our books in
the in-memory H2 database

Starters are simplified dependency descriptors customized for different purposes. For
example, spring-boot-starter-web is the starter for building web and RESTful,
applications using Spring MVC. It uses Tomcat as the default embedded container. We also
include the Spring Boot Maven plugin, which allows us to run the applications in place
without building a JAR or a WAR, or preparing a JAR or WAR file for future deployment.
Our complete pom.xml should look the same as this:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>pl.finsys</groupId>
 <artifactId>rest-example</artifactId>
 <version>0.1.0</version>

 <parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-
 parent</artifactId>
 <version>1.5.2.RELEASE</version>
 </parent>

 <dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-
 web</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>

Creating Java Microservices

[102]

 <artifactId>spring-boot-starter-data-
 jpa</artifactId>
 </dependency>
 <dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-validator</artifactId>
 </dependency>
 <dependency>
 <groupId>org.hsqldb</groupId>
 <artifactId>hsqldb</artifactId>
 <scope>runtime</scope>
 </dependency>

 <!--test dependencies-->
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-test</artifactId>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>com.jayway.jsonpath</groupId>
 <artifactId>json-path</artifactId>
 <scope>test</scope>
 </dependency>
 </dependencies>

 <properties>
 <java.version>1.8</java.version>
 </properties>

 <build>
 <plugins>
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 </plugin>
 </plugins>
 </build>

 <repositories>
 <repository>
 <id>spring-releases</id>
 <url>https://repo.spring.io/libs-release</url>
 </repository>
 </repositories>
 <pluginRepositories>
 <pluginRepository>
 <id>spring-releases</id>

Creating Java Microservices

[103]

 <url>https://repo.spring.io/libs-release</url>
 </pluginRepository>
 </pluginRepositories>
</project>

First, in the pom.xml file, we define the parent Maven artifact. As our application is the
Spring Boot application, we inherit our pom.xml from the spring-boot-starter-parent
artifact. This gives us all the Spring Boot goodies out of the box, such as the startup
mechanism, dependency injection, and so on. By adding spring-boot-starter-data-
jpa as a dependency, we will be able to use all the database-related features, such as JDBC
transaction management, JPA annotations for the entity classes, and so on. Having the
pom.xml ready, let's continue and define the entry point for our microservice.

Application entry point
Our application entry point will be named BookStoreApplication and will be
BookstoreApplication.java:

package pl.finsys.example;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class BookstoreApplication {

 public static void main(final String[] args) {
 SpringApplication.run(BookstoreApplication.class, args);
 }
}

That's it. The whole nine lines of code, not counting blank lines. It could not be more
concise. The @SpringBootApplication is a kind of shortcut annotation, which is very
convenient. It replaces all of the following annotations:

@Configuration: A class marked with this annotation becomes a source of bean
definitions for the application context
@EnableAutoConfiguration: This annotation makes Spring Boot add beans
based on classpath settings, other beans, and various property settings

Creating Java Microservices

[104]

@EnableWebMvc: Normally you would add this one for a Spring MVC
application, but Spring Boot adds it automatically when it sees spring-webmvc
on the classpath. This marks the application as a web application, which in turn
will activate key behaviors such as setting up a DispatcherServlet
@ComponentScan: Tells Spring to look for other components, configurations, and
services, allowing it to find the controllers

So far so good. We need some models for our service. We are going to save some entities in
the database; this is where the spring-boot-starter-data-jpa starter will come in
handy. We will be able to use JPA (implemented with Hibernate) and
javax.transaction-api without even declaring it explicitly. We need an entity model
for our bookstore.

Domain model and a repository
A domain model in our service will be a Book class, defined in the Book.java file:

package pl.finsys.example.domain;

import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.Id;
import javax.validation.constraints.NotNull;
import javax.validation.constraints.Size;

@Entity
public class Book {

 @Id
 @NotNull
 @Column(name = "id", nullable = false, updatable = false)
 private Long id;

 @NotNull
 @Size(max = 64)
 @Column(name = "author", nullable = false)
 private String author;

 @NotNull
 @Size(max = 64)
 @Column(name = "title", nullable = false)
 private String title;

 public Book() {

Creating Java Microservices

[105]

 }

 public Book(final Long id, final String author, final String title) {
 this.id = id;
 this.title = title;
 this.author = author;
 }

 public Long getId() {
 return id;
 }

 public String getAuthor() {
 return author;
 }

 public String getTitle() {
 return title;
 }

 public void setTitle(String title) {
 this.title = title;
 }
 @Override
 public String toString() {
 return "Book{" +
 "id=" + id +
 ", author='" + author + '\'' +
 ", title='" + title + '\'' +
 '}';
 }
}

As you can see on the previous listing, the Book class is a simple POJO with some
annotations, properties, and getters and setters. The @Entity annotations come from the
javax.persistence package and marks the POJO as a database entity, to enable JPA to
store or retrieve it from the H2 database. @Column annotations specify the names of
database columns where the corresponding book properties will be stored. The @NotNull
and @Size annotations will make sure that our entity has proper values filled in, before it
goes into the database.

Creating Java Microservices

[106]

We have our entity defined; it's now time to have a mechanism to read and store it in the
database. We will use Spring's JpaRepository for this purpose. The name of our
repository will be BookRepository in the BookRepository.java file:

package pl.finsys.example.repository;

import pl.finsys.example.domain.Book;
import org.springframework.data.jpa.repository.JpaRepository;

public interface BookRepository extends JpaRepository<Book, Long> {
}

The Spring Data JPA provides a repository programming model that starts with an interface
per managed domain object. Defining this interface serves two purposes. First, by extending
the JPARepository interfaces, we get a bunch of generic CRUD methods into our type that
allows saving our entities, deleting them, and so on. For example, the following methods
are available (declared in the JPARepository interfaces we are extending):

List<T> findAll();

List<T> findAll(Sort sort);

List<T> findAll(Iterable<ID> ids);

<S extends T> List<S> save(Iterable<S> entities);

T getOne(ID id);

<S extends T> S save(S entity);

<S extends T> Iterable<S> save(Iterable<S> entities);

T findOne(ID id);

boolean exists(ID id);

Iterable<T> findAll();

Iterable<T> findAll(Iterable<ID> ids);

long count();

void delete(ID id);

void delete(T entity);

void delete(Iterable<? extends T> entities);

void deleteAll();

Creating Java Microservices

[107]

No SQL coding, no JPA-QL queries, nothing. Simply by extending the Spring
JPARepository interface, all those methods are at our disposal. Of course, we are not
limited to those. We can declare our own methods in our interface,
as findByTitle(String title), for example. It will be picked up by Spring at runtime
and will find us a book by its title. I highly recommend reading the Spring Data project
documentation and experimenting further; it's very convenient to use. Using the entity
repository straight from the controller is usually not very good practice, so it's time to have
a book service. It will be a BookService interface, defined in the BookService.java:

package pl.finsys.example.service;

import pl.finsys.example.domain.Book;
import javax.validation.Valid;
import javax.validation.constraints.NotNull;
import java.util.List;

public interface BookService {
 Book saveBook(@NotNull @Valid final Book book);
 List<Book> getList();
 Book getBook(Long bookId);
 void deleteBook(final Long bookId);
}

The implementation, in the BookServiceImpl.java, can look the same as following:

package pl.finsys.example.service;

import org.springframework.beans.factory.annotation.Autowired;
import pl.finsys.example.domain.Book;
import pl.finsys.example.repository.BookRepository;
import pl.finsys.example.service.exception.BookAlreadyExistsException;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.stereotype.Service;
import org.springframework.transaction.annotation.Transactional;
import org.springframework.validation.annotation.Validated;

import javax.validation.Valid;
import javax.validation.constraints.NotNull;
import java.util.List;

@Service
@Validated
public class BookServiceImpl implements BookService {

 private static final Logger LOGGER =
LoggerFactory.getLogger(BookServiceImpl.class);

Creating Java Microservices

[108]

 private final BookRepository repository;

 @Autowired
 public BookServiceImpl(final BookRepository repository) {
 this.repository = repository;
 }

 @Override
 @Transactional
 public Book saveBook(@NotNull @Valid final Book book) {
 LOGGER.debug("Creating {}", book);
 Book existing = repository.findOne(book.getId());
 if (existing != null) {
 throw new BookAlreadyExistsException(
 String.format("There already exists a book with id=%s",
book.getId()));
 }
 return repository.save(book);
 }

 @Override
 @Transactional(readOnly = true)
 public List<Book> getList() {
 LOGGER.debug("Retrieving the list of all users");
 return repository.findAll();
 }

 @Override
 public Book getBook(Long bookId) {
 return repository.findOne(bookId);
 }

 @Override
 @Transactional
 public void deleteBook(final Long bookId) {
 LOGGER.debug("deleting {}", bookId);
 repository.delete(bookId);
 }

}

The previous listing presents the BookService implementation. Note that we have injected
the BookRepository in the constructor. All the implementation methods, such as
saveBook(), getBook(), deleteBook(), and getList() will use the injected
BookRepository to operate on the book entities in the database. It's time for the last class,
the actual controller that will wire all the previous classes together.

Creating Java Microservices

[109]

REST controller
The REST controller defines URI paths that the service is going to respond to. It declares
paths and corresponding HTTP methods that each controller method should react to. We
define all of these using annotations. This approach is very similar to JAX-RS with Jersey.
Our service has just one, single book resource, so we will have just a single controller for
starters. It will be BookController class, defined in the BookController.java:

package pl.finsys.example.controller;

import org.springframework.beans.factory.annotation.Autowired;
import pl.finsys.example.domain.Book;
import pl.finsys.example.service.BookService;
import pl.finsys.example.service.exception.BookAlreadyExistsException;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.http.HttpStatus;
import org.springframework.web.bind.annotation.*;

import javax.validation.Valid;
import java.util.List;

@RestController
public class BookController {

 private static final Logger LOGGER =
LoggerFactory.getLogger(BookController.class);
private final BookService bookService;

 @Autowired
 public BookController(final BookService bookService) {
 this.bookService = bookService;
 }

@RequestMapping(value = "/books", method = RequestMethod.POST,
consumes={"application/json"})
 public Book saveBook(@RequestBody @Valid final Book book) {
 LOGGER.debug("Received request to create the {}", book);
 return bookService.saveBook(book);
 }

@RequestMapping(value = "/books", method = RequestMethod.GET,
produces={"application/json"})
 public List<Book> listBooks() {
 LOGGER.debug("Received request to list all books");
 return bookService.getList();
 }

Creating Java Microservices

[110]

@RequestMapping(value = "/books/{id}", method = RequestMethod.GET,
produces={"application/json"})
 public Book singleBook(@PathVariable Long id) {
 LOGGER.debug("Received request to list a specific book");
 return bookService.getBook(id);
 }

@RequestMapping(value = "/books/{id}", method = RequestMethod.DELETE)
 public void deleteBook(@PathVariable Long id) {
 LOGGER.debug("Received request to delete a specific book");
 bookService.deleteBook(id);
 }
 @ExceptionHandler
 @ResponseStatus(HttpStatus.CONFLICT)
 public String
handleUserAlreadyExistsException(BookAlreadyExistsException e) {
 return e.getMessage();
 }
}

As you can see in the previous example, the class is annotated with the @RestController
annotation. This is what makes it a controller, actually. In fact, it's a convenient annotation
that is itself annotated with @Controller and @ResponseBody annotations. @Controller
indicates that an annotated class is a controller (a web controller), also allowing for
implementation classes to be autodetected through Spring's classpath scanning. Every
method in a controller that should respond to a call to a specific URI is mapped with the
@RequestMapping annotation. @RequestMapping takes parameters, the most important
ones are:

value : It will specify the URI path
method : Specifyies the HTTP method to handle
headers : The headers of the mapped request, in a format myHeader=myValue.
A request will be handled by the method using the headers parameter, only if the
incoming request header is found to have the given value
consumes : Specifies the media types the mapped request can consume, such
as "text/plain" or "application/json". This can be a list of media types, for
example: {"text/plain", "application/json"}
produces : Specifies the media types the mapped request can produce, such
as "text/plain" or "application/json". This again can be a list of media
types, for example: {"text/plain", "application/json"}

Creating Java Microservices

[111]

Similar to JAX-RS @PathParam and @QueryParam to specify the controller method's
input parameters, now we have @PathVariable and @RequestParam in Spring. If you
need to have your method parameter come in the request body (as a whole JSON object that
you want to save, the same as in our saveBook() method), you will need to map the
parameter using the @RequestBody annotation. As for the output, the @ResponseBody
annotation can tell our controller that the method return value should be bound to the web
response body.

In a real-world service, you will probably have a lot of controllers with a lot of paths
mapped. When exposing such a service to the world, it's usually a good practice to
document the API of the service. This API documentation is the service contract. Doing this
manually could be a tedious process. Also, if you make changes, it's good to have the API
documentation in sync. There is a tool that can make it a lot easier, Swagger.

Documenting the API
Before a client can consume a service, it would need a service contract. A service contract
defines all the details about a service; for example, how the service can be called, the URI of
the service, and what the request and response formats are. Your clients will need to know
how to interact with your API. Swagger is gaining a lot of ground with support from major
vendors in the last couple of years. Swagger's specification presents all the details of your
service resources and operations in a JSON format. The format of the specification is known
as the OpenAPI specification (Swagger RESTful API documentation specification). It's
human and machine readable, easy for parsing, transferring, and using in integration. The
SpringFox library can be used to generate Swagger documentation from the RESTful
services code. What's more, there is a wonderful tool called Swagger UI, which when
integrated into the application, provides human readable documentation. In this section, we
will generate Swagger documentation for our services. The SpringFox library, available on
GitHub at http://springfox.github.io/springfox/ and in the Maven central, is a tool to
automatically build JSON API documentation for APIs built with Spring. Even better, the
library provides the Swagger UI tool. The tool will be deployed together with your service
and can be used, browse the generated API documentation in a very convenient way. Let's
introduce Swagger to our service. We begin with adding the needed dependencies to our
service pom.xml file:

<dependency>
 <groupId>io.springfox</groupId>
 <artifactId>springfox-swagger2</artifactId>
 <version>2.6.1</version>
</dependency>

<dependency>

http://springfox.github.io/springfox/

Creating Java Microservices

[112]

 <groupId>io.springfox</groupId>
 <artifactId>springfox-swagger-ui</artifactId>
 <version>2.5.0</version>
</dependency>

Having the library available in a classpath of our application, we need to turn it on. The
next step will be then be adding the configuration class to enable and generate the Swagger
documentation. We do it by creating a class annotated with the Spring @Configuration
annotation, the same as in the following example:

package pl.finsys.example.configuration;

import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import springfox.documentation.builders.PathSelectors;
import springfox.documentation.builders.RequestHandlerSelectors;
import springfox.documentation.spi.DocumentationType;
import springfox.documentation.spring.web.plugins.Docket;
import springfox.documentation.swagger2.annotations.EnableSwagger2;

@Configuration
@EnableSwagger2
public class SwaggerConfig {
 @Bean
 public Docket api() {
 return new Docket(DocumentationType.SWAGGER_2)
 .select()
 .apis(RequestHandlerSelectors.any())
 .paths(PathSelectors.any()).build();
 }
}

A couple of words of explanation here. @Configuration means that the annotated class is
defining a Spring configuration, @EnableSwagger2 turns off the Swagger support. The
Docket is a builder class to configure the generation of Swagger documentation, configured
with DocumentationType.SWAGGER_2 to generate Swagger 2 compatible API
documentation. The select() method called on the Docket bean instance returns an
ApiSelectorBuilder, which provides the apis() and paths() methods to filter the
controllers and methods being documented using string predicates. In our example, we
want all controllers and all mapped paths to be documented; that's why we use
.apis(RequestHandlerSelectors.any()).paths(PathSelectors.any())

Creating Java Microservices

[113]

You could also use the regex parameter passed to paths() to provide an additional filter
to generate documentation only for the path matching the regex expression.

That's it; it's the simplest form of generating a documentation for your API. If you now run
the service (we are going to do this in a short while), two endpoints will be available:

http://localhost:8080/v2/api-docs

http://localhost:8080/swagger-ui.html

The first one contains the Swagger 2 compatible documentation, in a JSON format, as you
can see in the following screenshot:

Creating Java Microservices

[114]

To browse the API documentation in a lot more useful form, point your browser to the
second URL. You will be presented with the Swagger UI tool interface:

Creating Java Microservices

[115]

The Swagger UI is a collection of HTML, JavaScript, and CSS assets that dynamically
generate beautiful documentation from a Swagger-compliant API. It lists your service
operations, and its request and response formats. Best of all, you can test your service using
this tool, by executing specific requests. In fact, it's a great tool to quickly test your service.
Our documentation is not very descriptive. Of course, we have a listing of our exposed
endpoints with their input and output description. It would be nice if we could enhance the
documentation with some more specific details. We CAN do it, there are Java annotations
we can use in the service's code to enhance the generated documentation. The annotations
come from the Swagger-annotation package, which will be available if you use the
springfox-swagger2 library in your project. For example, consider the following code
snippet:

@ApiOperation(value = "Retrieve a list of books.",
responseContainer = "List")
@RequestMapping(value = "/books", method = RequestMethod.GET, produces =
{"application/json"})
public List<Book> listBooks() {
LOGGER.debug("Received request to list all books");
return bookService.getList();
}

In the previous code, we use the @ApiOperation annotation to provide a more detailed
description of what the operation does. There's a lot more: @ApiImplicitParam for
describing parameters, @Authorization to provide a name of the authorization scheme to
be used on this resource/operation, @License to provide information about the license, and
so on. All of those annotations will be picked up by springfox-swagger2 and used to
enhance the generated documentation. I highly recommend looking at the swagger-
annotations JavaDoc; you will be able to document your API in a detailed, professional
way.

I guess our little service is ready; it's time to bring it to life.

Running the application
Because we have defined the Spring Boot plugin in our pom.xml build file, we can now
start the application using Maven. All you need to have is Maven present on the system
path, but you probably have this already as a Java developer. To run the application,
execute the following from the command shell (terminal on MacOS or cmd.exe on
Windows):

$ mvn spring-boot:run

Creating Java Microservices

[116]

After a while, the Spring splash log will show up in the console and your microservice will
be ready to accept HTTP requests. Soon, in Chapter 5, Creating Images with Java Applications,
our goal will be to see the same coming from the Docker container:

If you want to, you can also run the application straight from the IDE, be it IntelliJ IDEA,
Eclipse, or Netbeans. Our BookstoreApplication class has a main() method; you will
just need to create a runtime configuration in your IDE and run it. This is different from the
JEE7 JAX-RS service. It that case, you would need to deploy the service in a JEE compliant
application server to be able to run it. Having the main() method defined is very
convenient when debugging your service. Just start a debugging session with
BookstoreApplication as the entry point. There is no need to create a remote debugging
session. Having our service running, it's time to make some calls to its exposed endpoints.

Creating Java Microservices

[117]

Making calls
Making a call to the operation exposed from the service can be done using any tool or
library that can execute the HTTP requests. The first obvious choice would be just a web
browser. But a web browser is convenient only for executing GET requests (as for getting a
list of books from our bookstore service). If you need to execute other methods such as POST
or PUT or provide additional request parameters, header values, and so on, you will need to
use some alternatives. The first choice could be cURL, a command-line tool for transferring
data using various protocols. Let's look at other options we have.

Spring RestTemplate
If you need to call a service from another service, you will need a HTTP client. Spring
provides the very useful RestTemplate class. It gives you a synchronous client-side HTTP
access, simplifies communication with HTTP servers, and enforces RESTful principles. It
handles HTTP connections, leaving application code to provide URLs (with possible
template variables) and extracts results. By default, RestTemplate relies on standard JDK
facilities to establish HTTP connections. You can switch to a different HTTP library of your
choice, such as Apache HttpComponents, Netty, and OkHttp through its
setRequestFactory() method. Calling the REST resource to get a book with ID = 1 can
be as simple as follows:

package pl.finsys.example.client;

import org.springframework.http.ResponseEntity;
import org.springframework.web.client.RestTemplate;
import pl.finsys.example.domain.Book;

public class ExampleClient {
 public static void main(String[] args) {
 try {
 RestTemplate restTemplate = new RestTemplate();
 ResponseEntity<Book> response =
restTemplate.getForEntity("http://localhost:8080/books/1", Book.class);
 System.out.println(response.getBody());
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

Creating Java Microservices

[118]

Of course, this is just a simplified client example, to present you the idea. You can use
RestTemplate to create more sophisticated client calls to the REST resources.

HTTPie
A great command-line alternative to cURL is HTTPie, available at https://httpie.org. It's
a command-line HTTP client. Luckily, the ie in the name doesn't come from Internet
Explorer. If you prefer to work from the shell or command line, HTTPie is a just a single
command which adds the following features to cUrl: sensible defaults, expressive and
intuitive command syntax, colorized and formatted terminal output, built-in JSON support,
persistent sessions, forms and file uploads, proxies and authentication support, and support
for arbitrary request data and headers. It's written in Python and works on Linux, macOSX,
and Windows.

Postman
Postman is a tool of choice for many developers. It's available as the Chrome plugin or a
standalone utility at https://www.getpostman.com. Postman is very convenient for use. It's
a powerful GUI platform to make your API development faster and easier, from building
API requests through testing, documentation, and sharing. You can save your HTTP
requests for later use and organize them in collections. If you work in multiple
environments, for example your localhost, when developing the service and a production
environment later on, Postman introduces the concept of environments. Environments give
you the ability to customize your requests using variables. This way you can easily switch
between different setups without changing your requests. Each environment is represented
as a set of key-value pairs. This makes working with multiple environments easy. It also has
a very handy UI for editing your HTTP requests:

https://httpie.org
https://www.getpostman.com

Creating Java Microservices

[119]

You can define request headers, cookies, and body. If your service supports authentication,
Postman contains a lot of authentication helpers: it can be basic Auth, digest Auth, and
OAuth. The response body can be viewed in one of three views: pretty, raw, and preview.
The pretty mode formats JSON or XML responses so that they are easier to look at and
headers are displayed as key/value pairs in the header tab. It's a really powerful and
pleasant to use tool. If you work on macOS, there's something even better.

Creating Java Microservices

[120]

Paw for Mac
Paw is a full-featured HTTP client that lets you test the APIs you build or consume. It has a
beautiful native OS X interface to compose requests, inspect server responses, and generate
client code out of the box. As you can see in the following screenshot, it also contains a
powerful editor to compose your requests:

It also supports a lot of authentication schemas including OAuth 1 and 2, Basic Auth, Digest
Auth, Hawk, AWS Signature Version 4, and Amazon S3. Similar to Postman, Paw also
allows you to organize your requests in folders. You can also define and switch different
environments quickly. The interesting feature is that Paw can generate client code to
execute your requests. It can generate code for cURL, HTTPie, Objective-C, Python,
JavaScript, Ruby, PHP, Java, Go, and many others. And guess what? Paw can also import
the Swagger documentation we have been talking about. You can use this feature to test the
service you were given the documentation for.

If you need to quickly start with your new service, there are a couple of tools that may come
in handy. One of them is Initializr.

Creating Java Microservices

[121]

Spring Initializr
Spring Initializr is a web-based tool available at https://start.spring.io. It's a quick start
generator for Spring projects. Spring Initializr can be used as follows:

From the web browser at https://start.spring.io
In your IDE (IntelliJ IDEA Ultimate or NetBeans, using plugins)
From the command line with the Spring Boot CLI or simply with cURL or
HTTPie

Using the web application is very convenient; all you need to do is provide details about
your application Maven archetype, such as group, artifact name, description, and so on:

https://start.spring.io
https://start.spring.io

Creating Java Microservices

[122]

In the Dependencies section, you can enter the keywords of the features you would like to
have included, such as JPA, web, and so on. You can also switch the UI to an advanced
view, to have all the features listed and ready to be selected:

Creating Java Microservices

[123]

As the output, Spring Initializr will create a ZIP archive with the base Maven project you
want to start with. The project created by Spring Initializr is a Maven project and follows
the standard Maven directory layout. This really saves a lot of time when creating new
Spring projects. You no longer need to search for specific Maven archetypes and look for
their versions. Initializr will generate the pom.xml for you, automatically. The presence of
the dependencies in the pom.xml is important because Spring Boot will make decisions on
what to create automatically when certain things are found on the classpath. For example, if
the dependency for the H2 database is present and exists on the classpath when the
application is run, Spring Boot will automatically create a data connection and an
embedded H2 database.

Summary
As you can see, developing Java microservices is not as tricky as it may sound. You can
choose between JEE7 JAX-RS or Spring Boot, wire some classes, and a basic service is ready.
You are not limited to using Spring MVC for creating your REST endpoints. If you are more
familiar with the Java EE JAX-RS specification, you can easily integrate JAX-RS into Spring
applications, especially Spring Boot applications. You can then take what is best for you
from both.

Of course, in the real world you would probably want to include some more advanced
features such as authentication and security. Having Spring Initializr available can give you
a serious speed boost when developing your own service. In Chapter 5, Creating Images
with Java Applications, we are going to package our bookstore service into a Docker image
and run it using Docker Engine.

5
Creating Images with Java

Applications
Now that we have a simple, but functional Java microservice based on Spring Bootstrap, we
can go further. Before we deploy it using Kubernetes, let's package it as a Docker image. In
this chapter, we will create a Docker image containing our application, and we will
dockerize a Spring Boot application to run it in an isolated environment, a container.

Topics covered in this chapter will be:

Creating a Dockerfile
Dockerfile instructions
Building the image
Creating and removing images

Let's begin with the definition of a Dockerfile, which will be the definition of our
container.

Dockerfile
As you will remember from Chapter 1, Introduction to Docker, the Dockerfile is kind of a
recipe to build an image. It's a plain text file containing instructions which are executed by
Docker in the order they are placed. Each Dockerfile has a base image that the Docker
engine will use to build upon. A resulting image will be a specific state of a file system: a
read-only, frozen immutable snapshot of a live container, composed of layers representing
changes in the filesystem at various points in time.

Creating Images with Java Applications

[126]

The image creation flow in Docker is pretty straightforward and consists basically of two
steps:

First, you prepare a text file named Dockerfile, which contains a series of1.
instructions on how to build the image. The set of instructions you can use in the
Dockerfile is not very broad, but sufficient to fully instruct Docker how to
create an image.
Next, you execute the docker build command to create a Docker image based2.
on the Dockerfile that you have just created. The docker build command
runs within the context. The build's context is the files at a specified location,
which can be a PATH or a URL. The PATH is a directory on your local filesystem
and the URL is a Git repository location. A context is processed recursively. PATH
will include any subdirectories. The URL will include the repository and its
submodules.

If you create an image containing a Java application, you can also skip the second step and
utilize one of the Docker Maven plugins available. After we learn how to build images
using the docker build command, we will also create our image using Maven. When
building using Maven, the context to the docker build command (or a build process, in
this case) will be provided automatically by Maven itself. Actually, there is no need for the
Dockerfile at all, it will be created automatically during the build process. We will get to
this in a short while.

The standard name for a Dockerfile is just Dockerfile. It's just a plain text file.
Depending on the IDE you use, there are plugins to provide Dockerfile syntax highlighting
and autocompletion, which makes editing them a breeze. Dockerfile instructions use simple
and clear syntax which makes them quite easy to understand, create, and use. They are
designed to be self-explanatory, especially because they allow commenting just as properly
written application source code. Let's get to know the Dockerfile instructions now.

Dockerfile instructions
We will begin with the instruction that every Dockerfile must have at the top, the FROM
instruction.

Creating Images with Java Applications

[127]

FROM
This is the first instruction in the Dockerfile. It sets the base image for every subsequent
instruction coming next in the file. The syntax for the FROM instruction is straightforward.
It's just:

FROM 
 </images>
 </configuration>
</plugin>

The <dockerHost> specifies the IP address and the port of the running Docker engine, so
of course, to make it build you will need to have Docker running first. In the previous case,
if you run the mvn clean package docker:build command from the shell, the Fabric8
Docker plugin will build the image using the Dockerfile you provide. But there is another
way of building the image, using no Dockerfile at all, at least not defined explicitly. To do
this, we need to change the plugin configuration a bit. Take a look at the modified
configuration:

<configuration>
 <images>
 
 </images>
</configuration>

Creating Images with Java Applications

[154]

As you can see, we no longer deliver a Dockerfile. Instead, we just provide the
Dockerfile instructions as plugin configuration elements. It's very convenient because we
no longer need to hardcode an executable jar name, version, and so on. It will be taken from
the Maven build scope. For example, the name of the jar will be provided for the <cmd>
element. It will result in the generation of a valid CMD instruction in the Dockerfile
automatically. If we now build the project using the mvn clean package docker:build
command, Docker will build an image with our application. Let's list the configuration
elements available for us, alphabetically:

Element Description

assembly The <assembly> element defines how to build artifacts and other files
that can enter the Docker image. You can use targetDir element to
provide a directory under which the files and artifacts contained in the
assembly will be copied into the image. The default value for this is
/maven. In our example, we will use <descriptorRef> to provide one
of the predefined assembly descriptors. The <descriptorRef> is kind of
a handy shortcut, which can take the following values:
• artifact-with-dependencies: Attaches a project's artifact and all its
dependencies. Also, when a classpath file exists in the target directory, this
will be added to.
• artifact: Attaches only the project's artifact but no dependencies.
• project: Attaches the whole Maven project but without the target/
directory.
• rootWar: Copies the artifact as ROOT.war to the exposed directory. For
example, Tomcat can then deploy the war under root context.

buildArgs Allows for providing a map specifying the value of Docker buildArgs,
which should be used when building the image with an external
Dockerfile which uses build arguments. The key-value syntax is the same
as when defining Maven properties (or labels or env).

buildOptions A map specifying the build options to provide to the Docker daemon
when building the image.

cleanup This is useful to clean up untagged images after each build (including
any containers created from them). The default value is try which tries
to remove the old image, but doesn't fail the build if this is not possible
because, for example, the image is still used by a running container.

cmd This is equivalent to the CMD instruction we already know about, for
providing a command to execute by default.

Creating Images with Java Applications

[155]

compression Can take none (which is the default), gzip, or bzip2 values. It allows us
to specify the compression mode and how the build archive is
transmitted to the Docker daemon (docker:build).

entryPoint Equivalent to ENTRYPOINT in a Dockerfile.

env Equivalent to ENV in a Dockerfile.

from Equivalent to FROM in a Dockerfile, for specifying a base image.

healthCheck Equivalent to HEALTHCHECK in a Dockerfile.

labels For defining labels, the same as LABEL in a Dockerfile.

maintainer Equivalent to MAINTAINER in a Dockerfile.

nocache Used to disable Docker's build layer cache. This can be overwritten by
setting a system property docker.nocache, when running a Maven
command.

optimize If set to true then it will compress all the runCmds into a single RUN
directive. Highly recommended to minimize the number of image layers
created.

ports The equivalent of EXPOSE in a Dockerfile. This is a list of <port>
elements, one for each port to expose. The format can be either pure
numerical as "8080" or with the protocol attached, as "8080/tcp".

runCmds Equivalent to RUN, commands to be run during the build process. It
contains <run> elements which will be passed to the shell.

tags Can contain a list of <tag> elements to provide additional tags which an
image is to be tagged with after the build.

user Equivalent to USER in a Dockerfile, it specifies the user to which the
Dockerfile should switch.

volumes Contains a list of VOLUME equivalents, a list of <volume> elements to
create a container volume.

workdir Equivalent to WORKDIR from a Dockerfile, a directory to change into
when starting the container.

Creating Images with Java Applications

[156]

As you can see, the plugin configuration is very flexible, it contains a complete set of
equivalents for Dockerfile instructions. Let's see how our pom.xml can look with the proper
configuration.

The complete pom.xml.

If you have been following our project from the beginning, the complete Maven POM is the
same as the following:

 <?xml version="1.0" encoding="UTF-8"?>
 <project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>pl.finsys</groupId>
 <artifactId>rest-example</artifactId>
 <version>0.1.0</version>
 <parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-
 parent</artifactId>
 <version>1.5.2.RELEASE</version>
 </parent>
 <dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-
 jpa</artifactId>
 </dependency>
 <dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-validator</artifactId>
 </dependency>
 <dependency>
 <groupId>org.hsqldb</groupId>
 <artifactId>hsqldb</artifactId>
 <scope>runtime</scope>
 </dependency>
 <dependency>
 <groupId>io.springfox</groupId>
 <artifactId>springfox-swagger2</artifactId>
 <version>2.6.1</version>

Creating Images with Java Applications

[157]

 </dependency>
 <dependency>
 <groupId>io.springfox</groupId>
 <artifactId>springfox-swagger-ui</artifactId>
 <version>2.5.0</version>
 </dependency>
 <!--test dependencies-->
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-
 test</artifactId>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-
 test</artifactId>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>com.jayway.jsonpath</groupId>
 <artifactId>json-path</artifactId>
 <scope>test</scope>
 </dependency>
 </dependencies>
 <properties>
 <java.version>1.8</java.version>
 </properties>
 <build>
 <plugins>
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-
 plugin</artifactId>
 </plugin>
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-
 plugin</artifactId>
 </plugin>
 <plugin>
 <groupId>io.fabric8</groupId>
 <artifactId>docker-maven-plugin</artifactId>
 <version>0.20.1</version>
 <configuration>
 <images>
 
 </images>
 </configuration>
 </plugin>
 </plugins>
 </build>
 <repositories>
 <repository>
 <id>spring-releases</id>
 <url>https://repo.spring.io/libs-release</url>
 </repository>
 </repositories>
 <pluginRepositories>
 <pluginRepository>
 <id>spring-releases</id>
 <url>https://repo.spring.io/libs-release</url>
 </pluginRepository>
 </pluginRepositories>
 </project>

Building the image
To build the Docker image with our Spring Boot artifact, run this command:

$ mvn clean package docker:build

Creating Images with Java Applications

[159]

The clean tells Maven to delete the target directory. Maven will always compile your
classes with the package command. It is very important to run the package command with
the docker:build command. You'll encounter errors if you try to run these in two separate
steps. While the Docker image is building, you will see the following output in the console:

The ID of a new image will be presented in the console output. If you wonder how the
automatically generated Dockerfile looks the same as, you will find it in the
target/docker/rest-example/0.1.0/build directory in your project. The first time
you build this Docker image, it will take longer since all the layers are being downloaded.
But every build will be a lot faster thanks to layer caching.

Creating and removing volumes
The Fabric8 Maven Docker plugin couldn't be a complete solution without the possibility of
managing volumes. Indeed, it provides two ways to handle volumes: docker:volume-
create and docker:volume-remove. As you probably remember from Chapter 2,
Networking and Persistent Storage, Docker uses a plugin-like architecture when handling
volumes and their drivers. The fabric8 plugin can be configured to pass a specific volume
driver and its parameters to the Docker daemon. Consider the following fragment of the
plugin configuration:

<plugin>
 <configuration>
 [...]
 <volumes>
 <volume>
 <name>myVolume</name>
 <driver>local</driver>
 <opts>
 <type>tmpfs</type>
 <device>tmpfs</device>

Creating Images with Java Applications

[160]

 <o>size=100m,uid=1000</o>
 </opts>
 <labels>
 <volatileData>true</volatileData>
 </labels>
 </volume>
 </volumes>
 </configuration>
</plugin>

In the previous example, we create a named volume using the local filesystem driver. It can
be mounted during the startup of the container, as specified in the <run> section of the
pom.xml file.

Summary
In this chapter, we looked at how to get started with Docker containers and packaging Java
applications. We can do it manually by hand using the docker build command and a
Dockerfile or we can use Maven to automate things. For Java developers, Docker helps
isolate our apps in a clean environment. Isolation is important because it reduces the
complexity of the software environment we're using. The Fabric8 Maven Docker plugin is a
great tool which we can use to automate our image builds using Maven, especially when
dealing with Java applications. No more writing Dockerfiles by hand, we just configure the
plugin using the extensive set of options and we are done. Additionally, having this
working with Maven allows us to easily incorporate Docker builds into our existing
development flows, as continuous delivery using Jenkins, for example. In Chapter 6,
Running Containers with Java Applications, we will go into more detail about running our
Java applications from within a container. Of course, we will use Maven for this, as well.

6
Running Containers with Java

Applications
In Chapter 5, Creating Images with Java Applications, we learned about the structure of a
Dockerfile and how to build our images. At this point, you should be able to create your
own Docker image and start using it. Actually, we did run the containers several times, but
without getting much into details. We built the image manually, using a Dockerfile, and
then issuing a docker build command. We have also been using Maven to automate the
build process. The image we have created contains our simple REST Java service. We've
already been running it for the purpose of checking if it really works. This time, however,
we are going into some more detail about running the containers from our images. This
chapter will include the following concepts:

Starting and stopping containers
Container running modes
Monitoring containers
Container restart policies
Runtime constraints on resources
Running containers using Maven

Starting and stopping containers
Let's go back a little and begin with the basics: how to run and stop the Docker container
manually, from the shell or the command line.

Running Containers with Java Applications

[162]

Starting
As you have seen in the previous chapters, to spin-up the container from the image, we use
the docker run command. The running container will have its own file system,
networking stack, and isolated process tree separate from the host. As you will remember
from Chapter 5, Creating Images with Java Applications, every single docker run command
creates a new container and executes a command specified in the Dockerfile, CMD, or
ENTRYPOINT.

The syntax of the docker run command is as follows:

$ docker run [OPTIONS] IMAGE[:TAG|@DIGEST] [COMMAND] [ARG...]

The command takes the image name, with the optional TAG or DIGEST. If you skip the TAG
and DIGEST command parameters, Docker will run the container based on the image
tagged latest. The docker run command also takes a set of possible options you may
find useful, such as the runtime mode, detached or foreground, network settings, or
runtime restrictions on CPU and memory. We are going to cover these later in this chapter.
Of course, you can execute the docker run command without almost any arguments
except the image name. It will run and take the default options defined in the image.
Specifying options gives you the chance to override the options specified by the author of
the image and also runtime defaults of the Docker engine.

The COMMAND parameter is not mandatory, the author of the image may have already
provided a default COMMAND using the CMD instruction in the Dockerfile. The CMD occurs
only once in a Dockerfile and it's usually the last instruction. When starting the container
from an image, we can override the CMD instruction, simply by providing our own
command or parameters as the COMMAND parameter for the docker run. Anything that
appears after the image name in the docker run command will be passed to the container
and treated as CMD arguments. If the image also specifies an ENTRYPOINT then the CMD or
COMMAND gets appended as an argument to the ENTRYPOINT. But guess what, we can
override the ENTRYPOINT as well, using the --entrypoint option for the docker run
command.

Running Containers with Java Applications

[163]

Stopping
To stop one or more running Docker containers we use the docker stop command. The
syntax is simple:

$ docker stop [OPTIONS] CONTAINER [CONTAINER...]

You can specify one or more container to stop. The only option for docker stop is -t (--
time) which allows us to specify a time to wait before stopping a container. 10 seconds is
the default value, which is supposed to be enough for the container to gracefully stop. To
stop the container in a more brutal way, you can execute the following command:

$ docker kill CONTAINER [CONTAINER...]

What's the difference between docker stop and docker kill ? They will both stop a
running container. There's an important difference though:

docker stop: The main process inside the container will first receive a SIGTERM,
and after a grace period, a SIGKILL
docker kill: The main process inside the container will be sent SIGKILL (by
default) or any signal specified with option --signal

In other words, docker stop attempts to trigger a graceful shutdown by sending the
standard POSIX signal SIGTERM, whereas docker kill just brutally kills the process and,
therefore, shuts down the container.

Listing the running containers
To list the running containers, simply execute the docker ps command:

$ docker ps

To include all containers present on your Docker host, include the -a option:

$ docker ps -a

You can also filter the list using -f option to specify a filter. The filter needs to be provided
as a key=value format. Currently available filters include:

id: Filters by the container's id
label: Filters by label
name: Filters by the container's name

Running Containers with Java Applications

[164]

exited: Filters by the container's exit code
status: Filters by status, which can be created, restarting, running, removing,
paused, exited or dead
volume: When specified with volume name or mount point will include
containers that mount specified volumes
network: When specified with network id or name, will include containers
connected to the specified network

Consider the following example, which will take all containers present on the Docker host
and filter them out by running status:

$ docker ps -a -f status=running

Removing the containers
To remove the container from the host, we use the docker rm command. The syntax is as
follows:

$ docker rm [OPTIONS] CONTAINER [CONTAINER...]

You can specify a single container or more containers at once. If you are running short-term
foreground processes over and over many times, these file systems can grow rapidly in size.
There's a solution for that: instead of cleaning manually by hand, tell Docker to
automatically clean up the container and remove the file system when the container exits.
You do this by adding the --rm flag, so that the container data is removed automatically
after the process has finished.

--rm flag will make Docker remove container after it has been shut down.

For example, use the run command as in the following example:

$ docker run --rm -it Ubuntu /bin/bash

The preceding command tells Docker to remove the container if it's shut down.

When starting a Docker container, you can decide if you want to run the container in the
default mode, in the foreground, or in the background, in the so called detached mode. Let's
explain what the difference is.

Running Containers with Java Applications

[165]

Container running modes
Docker has two container running modes, foreground and detached. Let's begin with the
default one, the foreground mode.

Foreground
In the foreground mode, the console you are using to execute docker run will be attached
to standard input, output, and error streams. This is the default; Docker will attach STDIN,
STDOUT and STDERR streams to your shell console. If you need to, you can change this
behavior and use the -a switch for the docker run command. As a parameter for the -a
switch, you use the name of the stream you want to attach to the console. For example:

$ docker run -a stdin -a stdout -i -t centos /bin/bash

The preceding command will attach both stdin and stdout streams to your console.

The useful docker run options are the -i or --interactive (for keeping STDIN stream
open, even if not attached) and -t or -tty (for attaching a pseudo-tty) switches,
commonly used together as -it which you will need to use to allocate a pseudo-tty
console for the process running in the container. Actually, we used this option in Chapter
5, Creating Images with Java Applications, when we were running our REST service:

$ docker run -it rest-example

Simply speaking, the -it is used combined to attach the command line to the container
after it has started. This way you can see what's going on in the running container in your
shell console and interact with the container, if needed.

Detached
You can start a Docker container in detached mode with a -d option. It's the opposite of the
foreground mode. The container starts up and runs in background, the same as a daemon
or a service. Let's try to run our rest-example in the background, executing the following
command:

$ docker run -d -p 8080:8080 rest-example

Running Containers with Java Applications

[166]

After the container starts, you will be given a control and can use a shell or command line
for executing other commands. Docker will just output the container ID, as you can see on
the following screenshot:

You can use the container ID to reference the container in other docker commands, for
example, if you need to stop the container or attach to it. Our service, while sitting in the
background, still works: the Spring Boot application listens on port 8080 for HTTP GET or
POST requests. Take note that containers started in detached mode stop when the root
process used to run the container exits. Understanding this is important, even if you have
some process running in the background (started from the instruction in the Dockerfile),
Docker will stop the container if the command that started the container finishes. In our
case, Spring Boot application is running and listening, and, at the same time, prevents
Docker from shutting down the container. To bring the container back from the background
into the foreground of your console, you will need to attach to it.

Attaching to running containers
To retain control over a detached container, use docker attach command. The syntax for
docker attach is quite simple:

$ docker attach [OPTIONS] <container ID or name>

In our case this would be the ID we were given, when the container was started:

$ docker attach
5687bd611f84b53716424fd826984f551251bc95f3db49715fc7211a6bb23840

Running Containers with Java Applications

[167]

At this time, if there is something that gets printed out, such as another log line from our
running REST service, you will see it on the console. As you can see, the docker attach
command can come in handy if you need to see what is written to the stdout stream in real
time. It will basically reattach your console to the process running in the container. In other
words, it will stream the stdout into your screen and map the stdin to your keyboard,
allowing you to enter the commands and see their output. Note that pressing the CTRL + C
keyboard sequence while being attached to the container would kill the running process of
the container, not detach from the console. To detach from the process use the default
CTRL+P and CTRL+Q keyboard sequence. If the CTRL + P and CTRL + Q sequence clashes
with your existing keyboard shortcuts, you can provide your own detach sequence by
setting the --detach-keys option for the docker attach command. If you would like to
be able to detach using CTRL + C, you may tell Docker not to send sig-term to the process
running in the container by using the sig-proxy parameter set to false:

$ docker attach --sig-proxy=false [container-name or ID]

If the container is running in the background, it would be nice to be able to monitor its
behavior. Docker provides a set of features for doing that. Let's see how we can monitor
running containers.

Monitoring containers
There are some ways of monitoring running Docker containers. It can be viewing the log
files, looking at the container events and statistics, and also inspecting container properties.
Let's begin with the powerful logging features Docker has. Access to the log entries is
crucial, especially if you have your container running in the detached runtime mode. Let's
see what Docker can offer when it comes to a logging mechanism.

Viewing logs
Most applications output their log entries to the standard stdout stream. If the container is
being run in the foreground mode, you will just see it in the console. However, when
running a container in detached mode, you will see nothing but the container ID on the
console. However, the Docker engine collects all the stdout output from a running
container in a history file on the host. You can display it by using the docker logs
command. The syntax of the command is as follows:

$ docker logs -f <container name or ID>

Running Containers with Java Applications

[168]

The docker logs command will output just a few last lines of the log into the console. As
the container still works in the background (in detached mode), you will be given the
prompt back immediately, as you can see on the following screenshot, presenting a
fragment of the logfile from our REST service:

The -f flag acts as the same flag in Linux tail command, it will continuously display new
log entries on the console. When you are done, hit CTRL + C to stop displaying log files on
the console. Note that this is different from hitting CTRL + C when attached to the container,
where CTRL + C would kill the process running within the container. This time, it will just
stop displaying the log file and it's safe.

The log file is permanent and available even after the container stops, as long as its file
system is still present on disk (until it is removed with the docker rm command). By
default, the log entries are stored in a JSON file located in the /var/lib/docker directory.
You can see the complete path of the log file using the docker inspect command and
using a template to extract the LogPath (we are going to cover inspect and templates in a
while).

We have said that, by default, the log entries will go to the JSON file. But this can be easily
changed, because Docker utilizes the concept of logging drivers. By using different drivers,
you can pick other storage for your containers log. The default driver is the json-file
driver, which just writes out the entries into the JSON file. Each driver can take additional
parameters. The JSON driver accepts, for example:

--log-opt max-size=[0-9+][k|m|g]
--log-opt max-file=[0-9+]

Running Containers with Java Applications

[169]

As you may have guessed, it's similar to a rolling file in our Java applications. The max-
size specifies the maximum file size that can be created; after reaching the specified size,
Docker will create a new file. You can use the size suffixes k, m, or g, where k will be for
kilobytes, m for megabytes and g for gigabytes. Splitting a log into separate files makes it
easier to transfer, archive, and so on. Also, searching through the log file is a lot more
convenient if the file is smaller.

The docker log command only displays log entries from the latest log
file.

There are some other log drivers available. The list includes:

none: It will just switch off logging completely
syslog: It's a syslog logging driver for Docker. It will write log messages to the
system syslog
journald: Will log messages to journald. systemd-journald is a daemon
responsible for event logging, with append-only binary files serving as its logfiles
 splunk: Provides the writing of log messages to Splunk using Event Http
Collector. Splunk can be used as an enterprise-grade log analyzer. You can read
more about it at https://www.splunk.com
gelf: Will write log entries into a GELF endpoint such as Graylog or Logstash.
Graylog, available at https:/ /www. graylog. org, is an open source log
management, supporting search, analysis, and alerting across all of your log files.
Logstash, which you can find at https:/ / www.elastic. co/ products/ logstash, is
a pipeline for processing any data (including log data) from any source
fluentd: Writes log messages to fluentd. Fluentd is an open source data
collector for a unified logging layer. The main feature of Fluentd is that it
separates data sources from backend systems by providing a unified logging
layer in between. It's small, fast and has hundreds of plugins that make a very
flexible solution out of it. You can read more about fluentd on its website at
https://www.fluentd.org

gcplogs: Will send the log entries to Google Cloud logging
awslogs: This driver will write log messages to the Amazon CloudWatch logs.

https://www.splunk.com
https://www.graylog.org
https://www.graylog.org
https://www.graylog.org
https://www.graylog.org
https://www.graylog.org
https://www.graylog.org
https://www.graylog.org
https://www.graylog.org
https://www.graylog.org
https://www.elastic.co/products/logstash
https://www.elastic.co/products/logstash
https://www.elastic.co/products/logstash
https://www.elastic.co/products/logstash
https://www.elastic.co/products/logstash
https://www.elastic.co/products/logstash
https://www.elastic.co/products/logstash
https://www.elastic.co/products/logstash
https://www.elastic.co/products/logstash
https://www.elastic.co/products/logstash
https://www.elastic.co/products/logstash
https://www.elastic.co/products/logstash
https://www.elastic.co/products/logstash
https://www.fluentd.org

Running Containers with Java Applications

[170]

As you can see, again, the Docker's pluggable architecture gives you almost infinite
flexibility when running the container. To switch to the other log driver, use the --log-
driver option for the docker run command. To store log entries in the syslog for
example, execute the following:

$ docker run --log-driver=syslog rest-example

Note that the docker logs command works only for the json-
file and journald drivers. To access logs written to another log engine, you will need to
use the tool matching the driver you have chosen. It will often be more convenient to use
the specialized tool for browsing log entries; actually, this is often the reason you choose
another logging driver. For example, searching and browsing the logs in Logstash or
Splunk is way faster than digging though the text files full of JSON entries.

Looking at the log entries is the convenient way of monitoring how our application behaves
on the host. Sometimes, it could be also nice to see the properties of the running containers,
as the mapped network port or volume being mapped and so on. To display the container
properties, we use the docker inspect command, which is extremely useful.

Inspecting a container
The docker ps command we have been using to list the running containers gives us a lot
of information about containers, such as their IDs, uptime, mapped ports, and so on. To
display more details about the running container, we can user docker inspect. The
syntax of the command is as follows:

$ docker inspect [OPTIONS] CONTAINER|IMAGE|TASK [CONTAINER|IMAGE|TASK...]

By default, the docker inspect command will output information about the container or
image in a JSON array format. Because there are many properties, it may not be very
readable. If we know what we are looking for, we can provide a template for processing the
output, using the -f (or --format) option. The template uses the template format coming
from the Go language (Docker itself is written in Go, by the way). The simplest and the
most often used template for the docker inspect command is just a short template to
extract exactly the information you need, for example:

$ docker inspect -f '{{.State.ExitCode}}' jboss/wildfly

Running Containers with Java Applications

[171]

As the inspect command accepts the Go template to form the output of the container or
image metadata, this feature gives you almost infinite possibilities for processing and
transforming the results. The Go templating engine is quite powerful, so, instead of piping
the output through grep, which is quick but messy, you can use the template engine to
further process the result.

The argument to --format is a just a template that we want to apply to the metadata of the
container. In this template, we can use conditional statements, loops, and other Go language
features. For example, the following will find the names of all containers with a non-zero
exit code:

$ docker inspect -f '{{if ne 0.0 .State.ExitCode }}{{.Name}}
{{.State.ExitCode}}{{ end }}' $(docker ps -aq)

Note that we provide $(docker ps -aq) instead of the container ID or name. As a result,
all of the running containers' IDs will be piped to the docker inspect command, which
can be quite a handy shortcut. The curly brackets {{}} mean Go template directives,
anything outside of them will be printed out literally. The dot (.) in Go templates means
context. Most of the time the current context will be whole data structure for the metadata,
but it can be rebound when needed, including using the with action. For example, these
two inspect commands will print out exactly the same result:

$ docker inspect -f '{{.State.ExitCode}}' wildfly
$ docker inspect -f '{{with .State}} {{.ExitCode}} {{end}}' wildfly

If you are inside the bound context, the dollar sign ($) will always get you the root context.
We can execute this command:

$ docker inspect -f '{{with .State}} {{$.Name}} exited with {{.ExitCode}}
exit code \ {{end}}' wildfly

It will then output:

/wildfly exited with 0 exit code.

The template engine supports logical functions, such as and, or and not; they will return a
boolean result. Also, the comparison functions are supported, such as eq (equals), ne (not
equals), lt (less than), le (less than or equal to), gt (greater than), and ge (greater than or
equal to). Comparison functions can compare strings, floats or integers. Together with the
conditional functions such as if, all of these can be very useful when creating some more
sophisticated output from the inspect command:

$ docker inspect -f '{{if eq .State.ExitCode 0.0}} \
Normal Exit \
{{else if eq .State.ExitCode 1.0}} \

Running Containers with Java Applications

[172]

Not a Normal Exit \
{{else}} \
Still Not a Normal Exit \
{{end}}' wildfly

Sometimes the huge output of the docker inspect command can be quite confusing.
Since the output comes in JSON format, the jq tool can be used to get an overview of the
output and pick out interesting parts.

The jq tool is available for free at https://stedolan.github.io/jq/. It's a lightweight and
flexible command-line JSON processor, such as sed command for the JSON data. For
example, let's extract the container IP address from the metadata:

$ docker inspect <containerID> | jq -r '.[0].NetworkSettings.IPAddress'

As you can see, the docker inspect command provides useful information about Docker
containers. Combined with the Go template features and optionally with the jq tool, it
gives you a powerful tool to get the information about your containers and can be used
further in scripting. But there's another source of valuable information apart from the
metadata. It's runtime statistics, which we are going to focus on now.

Statistics
To see the CPU, memory, disk i/o and network i/o statistics for containers, use the docker
stats command. The syntax for the command is as follows:

docker stats [OPTIONS] [CONTAINER...]

You can limit the statistics measure to one or more specific containers by specifying a list of
container IDs or names separated by a space. By default, if no containers are specified, the
command will display statistics for all running containers, as you can see on the following
screenshot:

https://stedolan.github.io/jq/

Running Containers with Java Applications

[173]

The docker stats command accepts options, which can include:

--no-stream: This will disable streaming stats and only pull the first result
-a (--all): This will show statistics for all (not only running) containers

The statistics can be used to see if our containers behave well when running. The
information can be useful to check if we need some constraints on the resources to be
applied to containers, we are going to cover the runtime constraints in a while in this
chapter.

Viewing logs, container metadata and runtime statistics, give you almost infinite
possibilities when monitoring your running containers. Apart from this, we can see what's
happening on your docker host globally. When the docker engine on the host receives a
command, it will emit an event we can observe. Let's look at this mechanism now.

Container events
To observe the events coming to the docker engine in real time, we use the docker events
command. If the container has been started, stopped, paused, and so on, the event will be
published. This can be very useful if you would like to know what has happened during the
container runtime. It's a powerful monitoring feature. Docker containers report a huge list
of events, which you can list with the docker events command. The list includes:

attach, commit, copy, create, destroy, detach, die, exec_create,
exec_detach, exec_start, export, health_status, kill, oom, pause, rename,
resize, restart, start, stop, top, unpause, update

The docker events command can take the -f switch, which will filter the output if you
are looking for something specific. If no filter is provided, all events will be reported.
Currently the list of possible filters includes:

container (container=<name or id>)
event (event=<event action>)
image (image=<tag or id>)
plugin (experimental) (plugin=<name or id>)
label (label=<key> or label=<key>=<value>)
type (type=<container or image or volume or network or daemon>)

Running Containers with Java Applications

[174]

volume (volume=<name or id>)
network (network=<name or id>)
daemon (daemon=<name or id>)

Take a look at the following example. The docker events command has been run in one
console window, while the docker run rest-example has been issued in the separate
console. As you can see in the following screenshot, docker events will report create,
attach, connect and start events for our rest-example container:

As a result, you will get a timestamp and the name of the event, together with the ID of the
container that has caused an event. The docker events command can take additional
options, such as --since and --until, which can be used to specify a timeframe that you
want to get the events from. Monitoring container events is a great tool to see what's going
on the docker host. However, there's more. You can also influence, how your containers
behave in case of a crash, for example. We use container restart policies for that.

Running Containers with Java Applications

[175]

Restart policies
By using the --restart option with the docker run command you can specify a restart
policy. This tells Docker how to react when a container shuts down. The container then can
be restarted to minimize downtime, for example if running on a production server.
However, before we explain the Docker restart policy, let's focus for a while on exit codes.
The exit code is crucial information, it tells why the container failed to run or why it exited.
Sometimes it's related to the contained command you will give to the docker run as a
parameter. When the docker run command ends with a non-zero code, the exit codes
follow the chroot standard, as you can see here:

exit code 125: The docker run command fails by itself
exit code126: The supplied command cannot be invoked
exit code 127: The supplied command cannot be found
Other, non-zero, application dependent exit code

As you may remember, in previous chapters we have been using the docker ps command
to list running containers. To list the non-running containers as well, we can add the -a
switch for the docker ps command. The exit code can be found in the output of the
docker ps -a command in a Status column when a container completes. It's possible to
automatically restart crashed containers by specifying a restart policy when starting the
container. Specifying the desired restart policy is done by the -restart switch for the docker
run command, as in the example:

$ docker run --restart=always rest-example

Currently Docker has four restart policies. Let's get to know them now one by one, starting
with the simplest: no.

no
The no policy is the default restart policy and simply will not restart a container under any
case. Actually, you do not have to specify this policy, because this is the default behavior.
Unless you have some configurable setup to run Docker containers, then the no policy can
be used as an off switch.

Running Containers with Java Applications

[176]

always
If we wanted the container to be restarted no matter what exit code the command has, we
can use the always restart policy. Basically, it does what it says; Docker will restart the
container in every case. The restart policy will always restart the container. This is true,
even if the container has been stopped before the reboot. Whenever the Docker service is
restarted, containers using the always policy will also be restarted, it doesn't matter whether
they were executing or not.

With the always restart policy, the Docker daemon will try to restart the
container indefinitely.

on-failure
This is a kind of special restart policy and probably the most often used. By using the on-
failure restart policy, you instruct Docker to restart your container whenever it exits with
a non-zero exit status and not restart otherwise. That's the reason we have begun explaining
restart policies with the exit codes. You can optionally provide a number of times for
Docker to attempt to restart the container. The syntax of this restart policy is also a little bit
different, because using this policy, you can also specify a maximum number of tries that
Docker will make to automatically restart the container.

Consider this example:

$ docker run --restart=on-failure:5 rest-example

The preceding command will run the container with our REST service and will try to restart
it five times in the case of failure before giving up. The main benefit of the on-failures
restart policy is that, when an application exits with a successful exit code (that means there
were no errors in the application; it just finished executing), the container will not be
restarted. The number of restart tries for a container can be obtained via the docker
inspect command we already know. For example, to get the number of restarts for a
container with a specific ID or name:

$ docker inspect -f "{{ .RestartCount }}" <ContainerID>

Running Containers with Java Applications

[177]

You can also discover the last time the container was started again:

$ docker inspect -f "{{ .State.StartedAt }}" <ContainerID>

You should know that Docker uses a delay between restarting the container, to prevent
flood-like protection. This is an increasing delay; it starts with the value of 100 milliseconds,
then Docker will double the previous delay. In effect, the daemon will wait for 100 ms, then
200 ms, 400, 800 and so on, until either the on-failure limit is reached, or when you stop
the container using docker stop, or execute the force removal by executing the docker
rm -f command.

If a container is successfully restarted, the delay is reset to the default
value of 100 milliseconds.

unless-stopped
Again, similar to always, if we want the container to be restarted regardless of the exit
code, we can use unless-stopped. The unless-stopped restart policy acts the same as
always with one exception, it will restart the container regardless of the exit status, but do
not start it on daemon startup if the container has been put to a stopped state before. This
means that with the unless-stopped restart policy, if the container was running before
the reboot, the container would be restarted once the system restarted. When an application
within a Docker container exits, that container will be also halted. If an application that is
running within a container crashes, the container stops and that container will remain
stopped until someone or something restarts it.

Before you apply the restart policy to your container, it's good to think first what kind of
work the container will be used to do. That also depends on the kind of software that will
be running on the container. A database, for example, should probably have the always or
unless-stopped policy applied. If your container has some restart policy applied, it will
be shown as Restarting or Up status when you list your container using the docker ps
command.

Running Containers with Java Applications

[178]

Updating a restart policy on a running container
Sometimes, there's a need to update the Docker runtime parameters after the container has
already started, on the fly. An example would be if you want to prevent containers from
consuming too many resources on the Docker host. To set the policy during runtime, we
can use the docker update command. Apart from other runtime parameters (such as
memory or CPU constraints for example, which we are going to discuss later in this
chapter), the docker update command gives you the option to update the restart policy
on a running container. The syntax is quite straightforward, you just need to provide the
new restart policy that you would like the container to have and the container's ID or name:

$ docker update --restart=always <CONTAINER_ID or NAME>

A new restart policy will take effect immediately after you run the docker update
command on a container. On the other hand, if you execute the update command on a
container that is stopped, the policy will be used when you start the container later on. The
possible options are exactly the same as those you can specify when starting the container:

no (which is default)
always

on-failure

unless-stopped

If you have more than one container running on the Docker host, and
want to specify a new restart policy on all of them at once, just provide all
of their IDs or names, separated by a space.

You can also see which restart policy was applied using the docker events command,
which you already know from the previous section. The docker events which can be
used to observe the history of runtime events that the container has reported, will also
report the docker update event, providing you with details about what has changed. If
the container has been applied the restart policy, the event will be published. If you want to
check the restart policy of a running container use docker inspect with the container ID
or name with the --format argument set for the path of the value:

$ docker inspect --format '{{ .HostConfig.RestartPolicy.Name }}'
<ContainerID>

The ability to set a restart policy on a container by container basis is great for those cases
where your images are self-contained and you don't need to do more complex orchestration
tasks. The restart policy is not the only parameter you can change on running containers.

Running Containers with Java Applications

[179]

Runtime constraints on resources
It may be useful to restrict the Docker container usage of resources when running. Docker
gives you a many possibilities to set constraints on the memory, CPU usage or disk access
usage. Let's begin with setting the memory constraints.

Memory
It's worth knowing that, by default, that is, if you use the default settings without any
constraints, the running container can use all of the host memory. To change this behavior
we can use the --memory (or -m for short) switch for the docker run command. It takes
the usual suffixes k, m, or g for kilobytes, megabytes and gigabytes, respectively.

The syntax of the docker run command with memory constraints set will be as follows:

$ docker run -it -m 512m ubuntu

The preceding command will execute the Ubuntu image with the maximum memory that
can be used by the container of half of a gigabyte.

If you do not set the limit on memory that the container can allocate, this
can lead to random issues where a single container can easily make the
whole host system unstable and/or unusable. So it's a wise decision to
always use the memory constraints on the container.

Apart from user memory limit, there are also memory reservation and kernel memory
constraints. Let's explain what a memory reservation limit is. Under normal working
conditions, a running container can, and probably will, use as much of the memory as
needed, up to the limit you have set using the --memory (-m) switch for the docker run
command. When memory reservation is applied, Docker will detect a low memory
situation and will try to force the container to restrict its consumption up to a reservation
limit. If you do not set the memory reservation limit, it will be exactly the same as the hard
memory limit set with the -m switch.

Memory reservation is not a hard limit feature. There's no guarantee the limit won't be
exceeded. The memory reservation feature will attempt to ensure that memory will be
allocated, based on the reservation setting.

Running Containers with Java Applications

[180]

Consider the following example:

$ docker run -it -m 1G --memory-reservation 500M ubuntu /bin/bash

The preceding command sets the hard memory limit to 1g, and then sets the memory
reservation to half a gig. With those constraints set, when the container consumes memory
more than 500M and less than 1G, Docker will attempt to shrink container memory less than
500M.

In the next example we are going to set the memory reservation without setting the hard
memory limit:

$ docker run -it --memory-reservation 1G ubuntu /bin/bash

In the preceding example, when the container starts, it can use as much memory as its
processes need. The --memory-reservation switch setting will prevent the container
from consuming too much memory for a long time, because every memory reclaim will
shrink the container's memory usage to the size specified in the reservation.

The kernel memory is something entirely different from the user memory, the main
difference is that kernel memory can't be swapped out to disk. It includes stack pages, slab
pages, sockets memory pressure and TCP memory pressure. You use the --kernel-memory
switch to set up the kernel memory limit to constrain these kinds of memory. As with
setting the user memory limit, just provide a number with a suffix such as k, b, and g, for
kilobyte, megabyte or gigabyte respectively, although setting it in kilobytes may be a really
rare case.

For example, every process eats some stack pages. By restricting kernel memory, you can
prevent new processes from being started when the kernel memory usage is too high. In
addition, because the host cannot swap the kernel memory to disk, the container can block
the whole host service by consuming too much kernel memory.

Setting the kernel memory limit is straightforward. We can set the --kernel-memory
alone, without limiting the total memory with -m, as in the following example:

$ docker run -it --kernel-memory 100M ubuntu /bin/bash

Running Containers with Java Applications

[181]

In the preceding example, the process in the container can take memory as it needs, but it
can only consume 100M of kernel memory. We can also setup the hard memory limit, as in
the following command:

$ docker run -it -m 1G --kernel-memory 100M ubuntu /bin/bash

In the preceding command, we set memory and kernel memory altogether, so the processes
in the container can use 1G memory in total, and this 1G will include 100M of the kernel
memory.

One more constraint related to the memory which can be useful when running containers,
is the swappines constraint. We apply the constraint by using the --memory-
swappiness switch to the docker run command. It can be helpful when you want to
avoid performance drops related to memory swapping. The parameter for the --memory-
swappiness switch is the percentage of anonymous memory pages that can be swapped
out, so it takes values from 0 to 100. Setting the value to zero, will, depending on your
kernel version, disable swapping or use the minimal swap. In contrast, a value of 100 sets
all anonymous pages as candidates for swapping out. For example:

$ docker run -it --memory-swappiness=0 ubuntu /bin/bash

In the preceding command, we turn the swapping completely for our ubuntu container.

Apart from setting the memory usage constraint, you can also instruct Docker how the
processor power should be assigned to containers it's going to run.

Processors
By using the -c (or --cpu-shares as an equivalent) for the docker run command switch,
it's possible to specify a value of shares of the CPU that a container can allocate. By default,
every new container has 1024 shares of CPU and all containers get the same part of CPU
cycles. This percentage can be altered by shifting the container's CPU share weighting
relative to the weighting of all other running containers. But take note, that you cannot set
the precise processor speed that a container can use. This is a relative weight and has
nothing to do with the real processor speed. In fact, there is no way to say precisely that a
container should have the right to use only 2 GHz of the host's processor.

CPU share is just a number, it's not related at all to the CPU speed.

Running Containers with Java Applications

[182]

If we start two containers and both will use 100% CPU, the processor time will be divided
equally between the two containers. The reason for that is two containers will have the
same number of processor shares. But if you constrain one container's processor shares to
512, it will receive just a half of the CPU time. This does not mean that it can use only half of
the CPU; the proportion will only apply when CPU-intensive processes are running. If the
other container (with 1024 shares) is idle, our container will be allowed to use 100% of the
processor time. The real amount of CPU time will differ depending on the number of
containers running on the system. It's easier to understand on a tangible example.

Consider three containers, one (let's call it Container1) has --cpu-shares set for 1024
and two others (Container2 and Container3) have a --cpu-shares setting of 512.
When processes in all three containers attempt to use all of the CPU power, Container1
will receive 50% of the total CPU time, because it has half of the CPU usage allowed in
comparison to the sum of other running containers (Container2 and Container3). If we
add a fourth container (Container4) with a --cpu-share of 1024, our first Container1
will only get 33% of the CPU, because it now has one third of the total CPU power assigned,
relatively. Container2 will receive 16.5%, Container3 also 16.5% and the last one,
Container4, again, will be allowed to use 33% of the CPU.

While the -c or --cpu_shares flag for the docker run command modifies the container's
CPU share weighting relative to the weighting of all other running containers, it does not
restrict the container's use of CPU from the host machine. But there's another flag to limit
the CPU usage for the container: --cpu-quota. Its default value is 100000 which means an
allowance of 100% of the CPU usage. We can use the --cpu-quota to limit CPU usage, for
example:

$ docker run -it --cpu-quota=50000 ubuntu /bin/bash

In the preceding command, the limit for the container will be 50% of a CPU resource. The -
-cpu-quota is usually used in conjunction with the --cpu-period flag for the docker
run. This is the setting for the CPU CFS (Completely Fair Scheduler) period. The default
period value is 100000 which is 100 milliseconds. Take a look at the example:

$ docker run -it --cpu-quota=25000 --cpu-period=50000 ubuntu /bin/bash

It means that the container can get 50% of the CPU usage every 50 ms.

Limiting CPU shares and usage is not the only processor-related constraint we can set on
the container. We can also assign the container's processes to a particular processor or
processor core. The --cpuset switch of the docker run command comes in handy when
we want to do this. Consider the following example:

$ docker run -it --cpuset 4 ubuntu

Running Containers with Java Applications

[183]

The preceding command will run the ubuntu image and allow the container to use all four
processor cores. To start the container and only allow usage of one processor core, you can
change the --cpuset value to 1:

$ docker run -it --cpuset 1 ubuntu

You can of course mix the option --cpuset with --cpu_shares to tweak
you container's CPU constraints.

Updating constraints on a running container
As with the restart policies, the constraints can also be updated when the container is
already running. This may be helpful, if you see your containers eating too much of the
Docker host system resources and would like to limit this usage. Again, we use the docker
update command to do this.

As with restart policies, the syntax for the docker update command will be the same as
when starting the container, you specify the desired constraints as an argument for the
docker update command and then give the container ID (taken from the docker ps
command output for example) or its name. Again, if you would like to change the
constraints on more than one container at once, just provide their IDs or names separated
by a space. Let's look at some examples of how to update constraints at runtime:

$ docker update --cpu-shares 512 abbdef1231677

The preceding command will limit the CPU shares to the value of 512. Of course, you can
apply CPU and memory constraints at the same time, to more than one container:

docker update --cpu-shares 512 -m 500M abbdef1231677 dabdff1231678

The preceding command will update CPU shares and memory limits to two containers,
identified by abbdef1231677 and dabdff1231678.

Of course, when updating the runtime constraints, you can also apply the desired restart
policy in one single command, as in the following example:

$ docker update --restart=always -m 300M aabef1234716

Running Containers with Java Applications

[184]

As you can see, the ability to set constraints gives you a lot of flexibility when running
Docker containers. But it's worth noting, that applying constraints is not always possible.
The reason for that is the constraint setting features depend heavily of the internals of the
Docker host, especially its kernel. For example, it's not always possible to set up the kernel
memory limit or memory swappiness for example, sometimes all you will get is Your
kernel does not support kernel memory limit or kernel does not support

memory swappiness capabilities messages. Sometimes those limitations can be
configurable, sometimes not. For example if you get WARNING: Your kernel does not
support cgroup swap limit on Ubuntu, you can tweak your Grub bootloader with
the cgroup_enable=memory swapaccount=1 setting in the Grub configuration file, this
will be /etc/default/grub in Ubuntu, for example. It's important to read logs printed out
by Docker, to make sure your constraints are in place.

Always take note of the warnings Docker outputs during the container
startup or after updating your constraints on the fly, it may happen that
your constraints will not take action!

We already know how to run and observe containers using the commands available from
the command line. It's not very convenient, however, if you need to spin-up your containers
during the development flow, for example for integration testing. The Fabric8 Docker
Maven plugin we've been using in Chapter 5, Creating Images with Java Applications, to build
images, comes in handy if we need to run containers, as well. Let's do it now.

Running with Maven
The plugin provides two Maven goals related to starting and stopping containers. This will
be docker:start and docker:stop. Containers are created and started with the
docker:start and stopped and destroyed with the docker:stop. If you need to run the
container during the integration tests, the typical use case will be to include those goals in
Maven build phases: the docker:start will be bound to the pre-integration-test and
docker:stop to the post-integration-test phase.

Running Containers with Java Applications

[185]

Plugin configuration
The plugin uses the configuration from the <run> sub-element of the <configuration> in
the pom.xml file. The list of the most important configuration elements is as follows:

cmd Command which should be executed at the end of the container's startup. If not given,
the image's default command is used.

entrypoint Entry point for the container.

log Log configuration for whether and how log messages from the running containers should
be printed. This can also configure the log driver to use.

memory Memory limit in bytes

namingStrategy Naming strategy for how the container name is created:
• none: Uses randomly assigned names from Docker (default)
• alias : Uses the alias specified in the image configuration. An error is thrown, if a container
already exists with this name.

network The <network> element can be used to configure the network mode of the container. It
knows the following sub elements:
• <mode>: The network mode, which can be one of the following values:
 ⚬ bridge: Bridged mode with the default Docker bridge (default)
 ⚬ host: Share the Docker host network interfaces
 ⚬ container: Connect to the network of the specified container
The name of the container is taken from the <name> element :
• custom: Use a custom network, which must be created before using Docker network create
• none : No network will be setup

ports The<ports>configuration contains a list of port mappings. Each mapping has multiple
parts, each separate by a colon. This is equivalent to the port mapping when using the
docker run command with option -p.
An example entry can look same as this:
<ports>
<port>8080:8080</port>
</ports>

restartPolicy Provides a restart policy we've been discussing earlier in this chapter. An example entry
can look same as following:
<restartPolicy>
<name> on-failure</name>
<retry>5</retry>
</restartPolicy>

volumes Volume configuration for binding to host directories and from other containers. The
example configuration could look same as following:
<volumes>
<bind>
<volume>/logs</volume><volume>/opt/host_export:/opt/container_import</volume>
</bind>
</volumes>

Running Containers with Java Applications

[186]

The complete <configuration> element of our Java REST service can look same as
following. This is a very basic example, we are only configuring the runtime port mapping
here:

<configuration>
<images>

</images>
</configuration>

Having configured our container, let's try to run it, using Maven.

Starting and stopping containers
To start-up the container, execute the following:

$ mvn clean package docker:start

Maven will build our REST service from source, build the image and start up the container
in the background. As the output, we will be given the ID of the container, as you can see
on the following screenshot:

Running Containers with Java Applications

[187]

The container is now running in the background. To test if it's running, we could issue a
docker ps to list all the running containers, or just call the service by executing some HTTP
methods such as GET or POST on the mapped 8080 port. The port has been exposed in
the<build> configuration element and exposed in the <run> configuration element. This is
convenient, isn't it? But what if we would like to see the container's output instead of
running it in the background? That's also easy; let's stop it first by issuing the following
command:

$ mvn docker:stop

After 10 seconds (as you'll remember, it's a default timeout before stopping the container),
Maven will output a statement that the container has been stopped:

[INFO] DOCKER> [rest-example:0.1.0] "rest-example": Stop and removed
container 51660084f0d8 after 0 ms

Let's run the container again, this time using the Maven docker:run goal instead of
docker:start. Execute the following:

$ mvn clean package docker:run

Running Containers with Java Applications

[188]

This time, Maven Docker plugin will run the container and we will see the Spring Boot
banner on the console, as you can see on the following screenshot:

I guess you can identify the difference between docker:start and docker:run now.
Correct, docker:run is the equivalent of option -i for the docker run command. The
docker:run will also automatically switch on the showLogs option, so that you can see
what is happening within the container. As an alternative, you can provide
docker.follow as system property so that the docker:start will never return but block
until CTRL + C is pressed, exactly the same as when you execute the docker:run Maven
goal.

As you can see, the Fabric8 Docker Maven plugin gives you the same control as you would
have when running and stopping containers from the shell or the command line. But here
comes the advantage of the Maven build process itself: you can automate things. The
Docker containers can be now used during the build, the integration testing, and the
continuous delivery flow you may have; you name it.

Running Containers with Java Applications

[189]

Summary
In this chapter we have learned how to manage the container's life, start it using different
run modes (foreground and detached), stop or remove it. We also know how to create
constraints to make our containers run exactly how we want them to, by limiting the CPU
and RAM usage using runtime constraints. Having our containers running, we are now able
to inspect the container's behavior in numerous ways, it will be reading log output, looking
at events or browsing the statistics. If you are using Maven, and as the Java developer you
probably are, you can now configure the Docker Maven plugin to start or stop containers
for you automatically.

We know a lot about Docker already, we can build and run images. It's time to go further.
We are going automate deployment, scaling, and management of containerized applications
using Kubernetes. And this is the moment where the real fun begins.

7
Introduction to Kubernetes

After reading Chapter 6, Running Containers with Java Applications, you now have a lot of
knowledge about using Docker to package your Java applications. It's now time to move
even further and focus on what we are missing--the container management and
orchestration. There are some suitable tools on the market, such as Nomad, Docker Swarm,
Apache Mesos, or AZK, for example. In this chapter, we will focus on probably the most
popular one, Kubernetes. Kubernetes (sometimes referred to as k8s) is an open source
orchestration system for Docker containers, created by Google in 2015. The first unified
container management system developed at Google was the system, internally called, Borg;
Kubernetes is its descendant. The list of topics covered in this chapter will be:

Why and when we need container management
An introduction to Kubernetes
Basic Kubernetes concepts

Let's begin with answering the question, why do we even need Kubernetes? We will look at
the reasoning behind container management and orchestration.

Why do we need Kubernetes?
As you already know, Docker containers provide great flexibility for running Java services
packaged into small, independent pieces of software. Docker containers make components
of your application portable--you can move individual services across different
environments without needing to worry about the dependencies or the underlying
operating system. As long as the operating system is able to run the Docker engine, your
Java containers can run on this system.

Introduction to Kubernetes

[192]

Also, as you remember from Chapter 1, Introduction to Docker, the Docker concept of
isolating containers is far from the traditional virtualization. The difference is that Docker
containers utilize the resources of the host operating system--they are light, fast, and easy to
spin up. It's all very nice, but there are some risks. Your application consists of multiple,
independent microservices. The number of services can, and probably will, grow in time.
Also, if your application starts to experience a higher load, it would be nice to increase the
number of containers with the same service, just to distribute the load. It doesn't mean you
only need to use your own server infrastructure--your containers can go to the cloud. Today
we have a lot of cloud providers, such as Google or Amazon. By having the possibility to
run your containers in the cloud, it gives you a lot of advantages. First, you don't need to
manage your own servers. Second, in most clouds, you pay only for the real usage. If there's
a peak in the load, the cost of the cloud service will increase, of course, as you will be using
more computing power. But if there is no load, you will pay nothing. This is easy to say, but
monitoring your server usage, especially with an application or applications running with a
huge number of components, can be tricky. You will need to look at the bill from the cloud
company carefully and make sure that you don't have a container sitting in the cloud
spinning and doing nothing. If the specific service is not that important for your application
and does not need to respond fast, you can move it to the cheapest machine. On the other
hand, if another service experiences higher loads and it's critical, you will want to move it to
a more powerful machine or spin up more instances of it. Best of all, by using Kubernetes, it
can be automated. By having the right tool for managing Docker containers, this can be
done on the fly. Your application can adapt itself in a very agile way--the end users will
probably not even be aware of where an application they're using resides. Container
management and monitoring software can greatly reduce the hardware costs by better
utilizing the hardware you are paying for. Kubernetes handles scheduling onto nodes in a
compute cluster and actively manages workloads to ensure that their state matches the
user's declared intentions. Using the concepts of labels and Pods (which we are going to
cover later in this chapter), Kubernetes groups the containers which make up an application
into logical units for easy management and discovery.

Having your application in the form of a set of containers running in a managed
environment also changes the perspective on software development. You can work on a
new version of the service and when it's ready, you can do a rolling update on the fly. This
also means focusing on the application over the machines it runs on and this, as a result,
allows developer teams to operate in a much more flexible, smaller, and modular manner. It
allows the software development to be truly agile, which is what we always wanted.
Microservices are small and independent, and the build and deployment times are
dramatically lower. Also, the risk of doing releases is smaller so you can release smaller
changes more often, minimizing the possibility of a huge failure which may happen if you
release everything in one go.

Introduction to Kubernetes

[193]

Before we begin with basic Kubernetes concepts, let's summarize what Kubernetes gives us
in a list:

Deploying applications quickly and predictably
Scaling on the fly
Releasing new features seamlessly
Fail-proofing
Limiting hardware usage only to required resources
Agile application development
Portability between operating systems, hosts, and cloud providers

This is a list of features that cannot be easily beaten. To understand how this is being
achieved, we need to understand the core Kubernetes concepts. So far, we know only one
single concept coming from Docker--the container--which is a portable, independent unit of
software. The container can contain anything we want, be it a database or a Java REST
microservice. Let's get to know the remaining pieces.

Basic Kubernetes concepts
A cluster is a group of nodes; they can be physical servers or virtual machines that have the
Kubernetes platform installed. The basic Kubernetes architecture is presented in the
following diagram:

Introduction to Kubernetes

[194]

As you can see, the Kubernetes cluster consists of a Master node and a number of worker
nodes with some components inside. While it may look scary and complicated at first
glance, it will be easier to understand if we describe the concepts one by one, starting with
the Pod.

Pods
The Pod consists of one or more Docker containers. This is the basic unit of the Kubernetes
platform and an elementary piece of execution that Kubernetes works with. A diagram of
the Pod is presented as following:

Containers running in the same Pod share the same common network namespace, disk, and
security context. In fact, the communication over localhost is recommended between
containers running on the same Pod. Each container can also communicate with any other
Pod or service within the cluster.

As you remember from Chapter 2, Networking and Persistent Storage, you can mount
volumes within Docker containers. Kubernetes also supports the concept of a volume.
Volumes that are attached to the Pod may be mounted inside of one or more containers
running on this Pod. Kubernetes supports a lot of different volume types as a native
support for mounting GitHub repositories, network disks, local hard drives, and so on.

Introduction to Kubernetes

[195]

If your application needs a distributed storage and needs to handle large amounts of data,
you are not limited only to local hard drives. Kubernetes also supports Volume Providers.
Currently, the list of available Persistent Volume Providers includes:

GCE: Which is a Google Cloud platform
AWS: Amazon Web Services
GlusterFS: A scalable network filesystem. Using GlusterFS, which is free and an
open source software, you can use your existing storage hardware to create large,
distributed storage solutions
OpenStack Cinder: A block storage service for users of the OpenStack Nova
compute platform
CephRBD: A Reliable Autonomic Distributed Object Store (RADOS), which
provides your applications with object, block, and file system storage in a single
unified storage cluster
QuoByte
Kube-Aliyun

Network namespace and volumes are not the only properties of the Pod. As you can see on
the Pod's diagram, a Pod can have labels and annotations attached. Labels are very
important in Kubernetes. They are key/value pairs that are attached to objects, in this case to
Pods. The idea behind labels is that they can be used to identify objects--labels are
meaningful and relevant to users. An example of the label may be:

app=my-rest-service
layer=backend

Later on, we will be using label selectors to select objects (such as Pods) having the specified
label. Via a label selector, which is the core grouping primitive in Kubernetes, the client or
user can identify an object or a set of objects. A selector, similar to a label, is also a key-value
expression to identify resources using matching labels. For example, the selector expression
app = my-rest-service would select all Pods with the label app = my-rest-service.
Annotations, on the other hand, are a kind of metadata you can attach to Pods. They are not
intended to be identifying attributes; they are such properties that can be read by tools of
libraries. There are no rules as to what an annotation should contain--it's up to you. The
annotation can contain information such as the build or release version, a timestamp, Git
branch name, Git pull request number, or just anything, as a mobile number.

Labels are intended for identifying information about Kubernetes objects such as Pods.
Annotations are just metadata attached to an object.

Introduction to Kubernetes

[196]

We've said before that a Pod is a basic unit of execution in Kubernetes. It can contain
multiple containers. A real-life example of having a Pod with more than one Docker
container could be our Java REST microservice Pod. For example purposes in previous
chapters, our microservice has been storing its database data in memory. In real life, the
data should probably go to the real database. Our Pod would probably have a container
with Java JRE and the Spring Boot application itself, together with the second container
with a PostgreSQL database, which the microservice uses to store its data. Two of those
containers makes a Pod--a single, decoupled unit of execution that contains everything our
REST service needs to operate.

The Pod's definition is a JSON or YAML file called a Pod manifest. Take a look at a simple
example with one container:

apiVersion: v1
kind: Pod
metadata:
 name: rest_service
spec:
 containers:
 name: rest_service
 image: rest_service
 ports:
 - containerPort: 8080

The same pod manifest in a JSON file will look the same as the following:

{
 "apiVersion": "v1",
 "kind": "Pod",
 "metadata":{
 "name": ”rest_service”,
 "labels": {
 "name": "rest_service"
 }
 },
 "spec": {
 "containers": [{
 "name": "rest_service",
 "image": "rest_service",
 "ports": [{"containerPort": 8080}],
 }]
 }
}

Introduction to Kubernetes

[197]

The container's image is a Docker image name. The containerPort exposes that port from
the REST service container so we can connect to the service at the Pod's IP. By default, as
you remember from Chapter 1, Introduction to Docker, the entry point defined in the image
is what will run.

It's very important to be aware that a Pod's life is fragile. Because the Pods are treated as
stateless, independent units, if one of them is unhealthy or is just being replaced with a
newer version, the Kubernetes Master doesn't have mercy on it--it just kills it and disposes
of it.

In fact, Pods have a strictly defined lifecycle. The following list describes the phases of a
Pod's life:

pending: This phase means that the Pod has been accepted by the Kubernetes
system, but one or more of the Docker container images has not been created.
Pods can be in this phase for a while--if the image needs to be downloaded from
the internet, for example.
running: The Pod has been put onto a node and all of the Pod's Docker
containers have been created.
succeeded: All Docker containers in the Pod have been terminated with a
success status.
failed: All Docker containers in the Pod have been terminated, but at least one
container has terminated with a failure status or was terminated by the system.
unknown: This typically indicates a problem with communication to the host of
the Pod; for some reason, the state of the Pod could not be retrieved.

When a Pod is being brought down, it's not only because it has failed. More often, if our
application needs to handle an increased load, we need to have more Pods running. On the
other hand, if the load decreases or there is no load at all, there's no point in having a lot of
Pods running--we can dispose of them. Of course, we could start and stop Pods manually,
but it's always better to automate. This brings us to the concept of ReplicaSets.

ReplicaSets
ReplicaSets is the concept used in scaling your application by using replication. What is
Kubernetes replication useful for? Typically, you would want to replicate your containers
(which are, in fact, your application) for several reasons, including:

Introduction to Kubernetes

[198]

Scaling: When load increases and becomes too heavy for the number of existing
instances, Kubernetes enables you to easily scale up your application, creating
additional instances as needed.
Load balancing: We can easily distribute traffic to different instances to prevent
overloading of a single instance or node. Load balancing comes out of the box
because of Kubernetes' architecture and it's very convenient.
Reliability and fault tolerance: By having multiple versions of an application,
you prevent problems if one or more fail. This is particularly true if the system
replaces any containers that fail.

Replication is appropriate for numerous use cases, including microservice-based
applications where multiple, independent small services provide very specific functionality,
or cloud native applications that are based on the theory that any component can fail at any
time. Replication is a perfect solution for implementing them, as multiple instances
naturally fit into the architecture.

A ReplicaSet ensures that a specified number of Pod clones, known as replicas, are running
at any given time. It there are too many, they will be shut down. If there is a need for more,
for example some of them died because of an error or crash, or maybe there's a higher load,
some more Pods will be brought to life. ReplicaSets are used by Deployments. Let's see
what Deployments are.

Deployment
The Deployment is responsible for creating and updating instances of your application.
Once the Deployment has been created, the Kubernetes Master schedules the application
instances onto individual nodes in the cluster. A Deployment is a higher level of
abstraction; it manages ReplicaSets when doing Pod orchestration, creation, deletion, and
updates. A Deployment provides declarative updates for Pods and ReplicaSets. The
Deployment allows for easy updating of a Replica Set as well as the ability to roll back to a
previous deployment.

You just specify the number of replicas you need and the container to run within each Pod
and the Deployment controller will spin them up. The example Deployment manifest
definition in the YAML file looks the same as the following:

apiVersion: 1.0
kind: Deployment
metadata:
 name: rest_service-deployment
spec:
 replicas: 3

Introduction to Kubernetes

[199]

 template:
 metadata:
 labels:
 app: rest_service
 spec:
 containers:
 - name: rest_service
 image: rest_service
 ports:
 - containerPort: 8080

In the previous example, the Deployment Controller will create a ReplicaSet containing
three Pods running our Java REST service.

The Deployment is a kind of control structure that takes care of the spinning up or down of
Pods. A Deployment takes care of the state of a Pod or group of pods by creating or
shutting down replicas. Deployments also manage updates to Pods. Deployments are a
higher abstraction, which create ReplicaSets resources. ReplicaSets watch over the Pods and
make sure the correct number of replicas are always running. When you want to update a
Pod, you will need to modify the Deployment manifest. This modification will create a new
ReplicaSet, which will be scaled up while the previous ReplicaSet will be scaled down,
providing no down-time deployment of your application.

The main purpose of Deployments is to do rolling updates and rollbacks. A rolling update
is the process of updating an application to a newer version, in a serial, one-by-one fashion.
By updating one instance at a time, you are able to keep the application up and running. If
you were to just update all instances at the same time, your application would likely
experience downtime. In addition, performing a rolling update allows you to catch errors
during the process so that you can roll back before it affects all of your users.

Deployment also allows us to do an easy rollback. To do the rollback, we simply set the
revision that we want to roll back to. Kubernetes will scale up the corresponding ReplicaSet
and scale down the current one, and this will result in a rollback to a specified revision of
our service. In fact, we will be using Deployments heavily in Chapter 8, Using Kubernetes
with Java, to roll out an update of our service to the cluster.

Replication is a large part of Kubernetes' features. As you can see, the life of a Pod is
delicate and ephemeral. Because Pods and their clones come and go all the time, we need
something permanent and tangible, something that will stay forever so our application's
users (or other Pods as well) can discover and call. This brings us to the concept of
Kubernetes services. Let's focus on them now.

Introduction to Kubernetes

[200]

Services
Kubernetes services group one or more Pods into an internal or external process that needs
to be long-running and externally accessible, as our Java REST API endpoint or a database
host, for example. This is where the labels we gave to our Pods become very important; a
service finds Pods to group by looking for a specific label. We use label selectors to select
Pods with particular labels and apply services or ReplicaSets to them. Other applications
can find our service through Kubernetes service discovery.

A service is Kubernetes' abstraction to provide a network connection to one or more Pods.
While (as you remember from the chapter about Docker networking), by default, Docker
uses host-private networking, containers can communicate with other containers only if
they are on the same host machine. In Kubernetes, cluster Pods can communicate with other
Pods, regardless of which host they land on. This is possible because of the services. Each
service is given its own IP address and port which remains constant for the lifetime of the
service. Services have an integrated load-balancer that will distribute network traffic to all
Pods. While a Pod's life can be fragile as they are being spun up or down depending on
your application needs, the service is a more constant concept. Each Pod gets its own IP
address, but when it dies and another one is being brought to life, the IP address can be
different. This could potentially become a problem--if a set of Pods provides functionality to
other Pods inside the Kubernetes cluster, one can lose track of the other one's IP address.
Services, by having a lifetime-assigned IP address, solves this issue. The Service abstraction
enables decoupling. Let's say we have our Java REST service running on top of the Spring
Boot application. We need a way to route HTTP requests, such as GET or POST, from the
internet to our Docker containers. We will do it by setting up a Kubernetes service that uses
a load balancer to route requests coming from a public IP address to one of the containers.
We will group the containers with the REST service into a Pod and name it, let's say, Our
little REST service. Then we will define a Kubernetes service that will serve port 8080 to
any of the containers in the Our little REST service Pod. Kubernetes will then use a load
balancer to divide the traffic between the specified containers. Let's summarize the
Kubernetes service features:

Services are persistent and permanent
They provide discovery
They offer load balancing
They expose a stable network IP address
They find Pods to group by usage of labels

Introduction to Kubernetes

[201]

We have said that there is a service discovery mechanism built-in. Kubernetes supports two
primary modes of finding a service: environment variables and DNS. Service discovery is
the process of figuring out how to connect to a service. Kubernetes contains a built-in DNS
server for that purpose: the kube-dns.

kube-dns
Kubernetes offers a DNS cluster add-on, started automatically each time the cluster is
started up. The DNS service runs as a cluster service itself--its SkyDNS--a distributed
service for announcement and discovery of services built on top of etcd (you will get to
know what etcd is later in this chapter). It utilizes DNS queries to discover available
services. It supports forward lookups (A records), service lookups (SRV records), and
reverse IP address lookups (PTR records). Actually, the service is the only type of object to
which Kubernetes assigns DNS names; Kubernetes generates an internal DNS entry that
resolves to a service's IP address. Services are assigned a DNS A record for a name in the
form service-name.namespace-name.svc.cluster.local. This resolves to the cluster
IP of the service. For example, for a service named my-rest-service, the DNS add-on will
make sure that the service will be available for other Pods (and other services) in the cluster
via the my-rest-service.default.svc.cluster.local hostname. The DNS-based
service discovery provides a flexible and generic way to connect to services across the
cluster.

Note that when using the hostNetwork=true option, Kubernetes will use
the host's DNS servers and will not use the cluster's DNS server.

There's one more concept that will appear from time to time during our Kubernetes
journey--a namespace. Let's find out what it's for.

Namespace
A namespace functions as a grouping mechanism inside of Kubernetes. Pods, volumes,
ReplicaSets, and services can easily cooperate within a namespace, but the namespace
provides an isolation from the other parts of the cluster. What would be the possible use
case for such isolation? Well, namespaces let you manage different environments within the
same cluster. For example, you can have different test and staging environments in the
same cluster of machines.

Introduction to Kubernetes

[202]

This could potentially save some resources in your infrastructure, but it can be dangerous;
without namespaces, it would be risky to roll out a new version of your software to test the
environment, having the pre-release version running on the same cluster. By having
namespaces available, you can act on different environments in the same cluster without
worrying about affecting other environments.

Because Kubernetes uses the default namespace, using namespaces is optional, but
recommended.

We have all the Kubernetes abstractions explained--we know that there are Pods,
ReplicaSets, Deployments, and services. Now it's time to move to the physical, execution
layer of Kubernetes' architecture. All those little, fragile Pods need to live somewhere. They
live in nodes, which we are going to learn about now.

Nodes
A node is a work horse in Kubernetes' architecture. It may be a virtual or physical machine,
depending on your infrastructure. A worker node runs the tasks as instructed by the Master
node, which we will explain very soon. Nodes (in the earlier Kubernetes life, they were
called Minions) can run one or more Pods. They provide an application-specific virtual host
in a containerized environment.

When a worker node dies, the Pods running on the node die as well.

The following diagram shows the contents of a node:

Introduction to Kubernetes

[203]

As you can see in the previous diagram, a node in Kubernetes has some processes running
inside, and each is very important. Let's explain their purposes, one by one.

Kubelet
Kubelet is probably the most important controller in Kubernetes. It's a process that
responds to the commands coming from the Master node (we are going to explain what the
Master node is in a second). Each node has this process listening. The Master calls it to
manage Pods and their containers. The Kubelet runs Pods (which, as you already know, are
collections of containers that share an IP and volumes). The Kubelet (https:/ /kubernetes.
io/v1.0/docs/admin/ kubelet/) is responsible for what's running on an individual machine
and it has one job: given a set of containers to run, to make sure they are all running. To
rephrase, a Kubelet is the name of the agent and a node is what we call the machine the
agent runs on. It's worth knowing that each Kubelet also has an internal HTTP server which
listens for HTTP requests and responds to a simple API call to submit a new manifest.

Proxy
A proxy is a network proxy that creates a virtual IP address which clients can access. The
network calls will be transparently proxied to the Pods in a Kubernetes service. A service,
as you already know, provides a way to group Pods into kind of a single business process,
which can be reached under a common access policy. By having a proxy run on a node, we
can call the service IP address. Technically, a node's proxy is a kube-proxy (https:/ /
kubernetes.io/docs/ admin/ kube- proxy/) process which programs iptables rules to trap
access to the service IP address. The Kubernetes network proxy runs on each node. Without
it, we would not be able to access the service.

kube-proxy knows only UDP and TCP, does not understand HTTP,
provides load balancing, and is just used to reach services.

Docker
Finally, each node needs something to run. It will be a Docker container runtime, which is
responsible for pulling the images and running containers.

https://kubernetes.io/v1.0/docs/admin/kubelet/
https://kubernetes.io/v1.0/docs/admin/kubelet/
https://kubernetes.io/v1.0/docs/admin/kubelet/
https://kubernetes.io/v1.0/docs/admin/kubelet/
https://kubernetes.io/v1.0/docs/admin/kubelet/
https://kubernetes.io/v1.0/docs/admin/kubelet/
https://kubernetes.io/v1.0/docs/admin/kubelet/
https://kubernetes.io/v1.0/docs/admin/kubelet/
https://kubernetes.io/v1.0/docs/admin/kubelet/
https://kubernetes.io/v1.0/docs/admin/kubelet/
https://kubernetes.io/v1.0/docs/admin/kubelet/
https://kubernetes.io/v1.0/docs/admin/kubelet/
https://kubernetes.io/v1.0/docs/admin/kubelet/
https://kubernetes.io/v1.0/docs/admin/kubelet/
https://kubernetes.io/v1.0/docs/admin/kubelet/
https://kubernetes.io/v1.0/docs/admin/kubelet/
https://kubernetes.io/v1.0/docs/admin/kubelet/
https://kubernetes.io/docs/admin/kube-proxy/
https://kubernetes.io/docs/admin/kube-proxy/
https://kubernetes.io/docs/admin/kube-proxy/
https://kubernetes.io/docs/admin/kube-proxy/
https://kubernetes.io/docs/admin/kube-proxy/
https://kubernetes.io/docs/admin/kube-proxy/
https://kubernetes.io/docs/admin/kube-proxy/
https://kubernetes.io/docs/admin/kube-proxy/
https://kubernetes.io/docs/admin/kube-proxy/
https://kubernetes.io/docs/admin/kube-proxy/
https://kubernetes.io/docs/admin/kube-proxy/
https://kubernetes.io/docs/admin/kube-proxy/
https://kubernetes.io/docs/admin/kube-proxy/
https://kubernetes.io/docs/admin/kube-proxy/
https://kubernetes.io/docs/admin/kube-proxy/

Introduction to Kubernetes

[204]

All those nodes, as any other group of workers in the real world, need a manager. In
Kubernetes, the role of the node manager is being performed by one special node: the
Master node.

The Master node
The Master node does not run any containers--it just handles and manages the cluster. The
Master is the central control point that provides a unified view of the cluster. There is a
single Master node that controls multiple worker nodes, which actually run our containers.
The Master automatically handles the scheduling of the Pods across the worker nodes in the
cluster -by taking into account the available resources on each node. The structure of the
Master node is presented in the following diagram:

Let's dissect the Master node piece by piece, starting with etcd.

etcd
Kubernetes stores all of its cluster state in etcd, a distributed data store with a strong
consistency model. etcd is a distributed, reliable key-value store for the most critical data
of a distributed system, with a focus on being:

Simple: Well-defined, user-facing API
Secure: Automatic TLS with optional client cert authentication
Fast: Benchmarked for 10,000 writes/sec
Reliable: Properly distributed using Raft

This state includes what nodes exist in the cluster, what Pods should be running, which
nodes they are running on, and a whole lot more. The whole cluster state is stored in an
instance of etcd. This provides a way to store configuration data reliably. Another crucial
component running on the Master node is the API server.

https://github.com/coreos/etcd

Introduction to Kubernetes

[205]

The API server
One of the main components residing on the Master node is the API server. It's so important
that sometimes, you may find out that the Master node is being referred to as the API server
in general. Technically, it's a process named kube-apiserver which accepts and responds
to HTTP REST requests using JSON. It's main purpose is to validate and configure data for
the API objects which are Pods, services, ReplicaSets, and others. The API server provides
the frontend to the cluster's shared state through which all other components interact. The
API server is the central management entity and is the only Kubernetes component that
connects to etcd. All the other components must go through the API server to work with the
cluster state. We will cover the Kubernetes API in detail in Chapter 9, Working With
Kubernetes API.

The Master node does not run any containers--it just handles and manages
the whole cluster. The nodes that actually run the containers are the
worker nodes.

The scheduler
As we have said before, if you create a Deployment, the Master will schedule the
distribution of application instances onto individual nodes in the cluster. Once the
application instances are up and running, the Deployment Controller will be continuously
monitoring those instances. This is kind of a self-healing mechanism--if a node goes down
or is deleted, the Deployment Controller replaces it.

Now that we know what the Kubernetes specific components are that form it's architecture,
let's look what tools are available for us.

Available tools
There are a couple of tools we will be using throughout the rest of the book. Let's start with
the most important one: kubectl.

Introduction to Kubernetes

[206]

kubectl
kubectl is a command-line interface for running commands against Kubernetes clusters. In
fact, this is the command used most often when working with Kubernetes. In Chapter 8,
Using Kubernetes with Java, we will go through the command's syntax and possible usages.
Using kubectl, you will be interacting with your cluster. Of course, having the API
exposed by the Master node and the API server, we could do it using an HTTP client of our
choice, but using kubectl is a lot faster and more convenient. kubectl provides a lot of
functionalities, such as listing resources, showing detailed information about the resources,
prints log, managing cluster, and executing commands on a container in a Pod.

Dashboard
Kubernetes Dashboard is a nice, clean web-based UI for Kubernetes clusters. Using the
Dashboard, you can manage and troubleshoot the cluster itself as well as the applications
running in it. You could say it's the Kubernetes user interface. For those who prefer to use
the graphical UI, the Dashboard can be a handy tool for deploying containerized
applications and getting an overview of applications running on your cluster, as well as for
creating or modifying individual resources such as Deployments, Pods, and services. For
example, you can scale a Deployment, initiate a rolling update, restart a Pod, or deploy new
applications using a deploy wizard. We will also use the Dashboard in Chapter 8, Using
Kubernetes with Java.

Minikube
Running a cluster seems to be a complicated process that needs a lot of setup. This is not
necessarily the truth. Actually, it's quite easy to have the Kubernetes cluster up and running
on the local machine, for learning, testing, and development purposes. The minikube tool,
available at GitHub at https:/ /github. com/kubernetes/ minikube, allows you to set up the
local cluster on your own machine. It's available for all major platforms, which includes
Linux, macOS, and Windows. The cluster started will of course be a single node cluster, but
it's more than enough to start doing real-life Kubernetes examples. In fact, in Chapter 8,
Using Kubernetes with Java, before we start deploying our REST service into the cluster, we
are going to run Kubernetes locally.

Apart from those mentioned previously, you may find a lot of other tools and utilities that
work very well with Kubernetes on the internet.

https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube

Introduction to Kubernetes

[207]

Summary
This chapter introduced a lot of new concepts. Let's briefly summarize what we have
learned about the Kubernetes architecture.

Kubernetes (k8s) is an open source platform for automating container operations such as
deployment, scheduling, and scalability across a cluster of nodes. Using Kubernetes, you
can:

Automate the deployment and replication of containers
Scale up and down containers on the fly
Organize containers in groups and provide load balancing between them
Easily roll out new versions of application containers
Provide fault tolerance mechanisms to your application--if a container dies it gets
replaced
Kubernetes consists of:

A Cluster: A group of nodes.
Nodes: Physical or virtual machines that act as workers. Each node
runs the kubelet, proxy, and a Docker engine process.
The Master node: Provides a unified view into the cluster. It
delivers the Kubernetes API server. The API server provides a
REST endpoint that can be used to interact with the cluster. The
Master also includes the controllers used to create and replicate
Pods.
Pods: Scheduled to nodes. Each Pod runs a single container or a
group of containers and volumes. Containers in the same Pod share
the same network namespace and volumes and can communicate
with each other using localhost. Their life is fragile; they will be
born and die all the time.
Labels: Pods have labels, with key/value pairs attached. Labels are
used to precisely select Pods.
Services: An abstraction that defines a set of Pods and a policy to
access them. Services find their group of Pods by using label
selectors. Because the IP of the single Pod can change, the service
provides a permanent IP address for its client to use.

Introduction to Kubernetes

[208]

That was a piece of theory that may be a bit overwhelming. Don't worry, in Chapter 8,
Using Kubernetes with Java, we are going to run the local Kubernetes cluster. Our plan will
consist of creating a local Kubernetes cluster using minikube. We will then deploy and
manage Docker containers with our Java REST microservice. By doing some practical,
hands-on actions, the Kubernetes architecture will be a lot more clear. Running a local
Kubernetes is not the only thing we are going to do. Later on, in Chapter 10, Deploying Java
on Kubernetes in the Cloud, we will put our application in the real cloud--a place where
Kubernetes really shines.

8
Using Kubernetes with Java

In Chapter 7, Introduction to Kubernetes, we learned about the Kubernetes architecture and
concepts. We know about nodes, Pods, and services. In this chapter, we will do some
practical hands-on and deploy our Java REST service to a local Kubernetes cluster. For
learning purposes, we will use the Minikube tool to create a cluster on the local machine.
It's easier to learn Kubernetes on a local machine instead of going to the cloud in the first
place. Because Minikube runs locally, instead of through a cloud provider, certain provider-
specific features such as load balancers and persistent volumes, will not work out of the
box. However, you can use NodePort, HostPath, persistent volumes and several addons
such as DNS, or dashboard to test your apps locally before pushing to a real, production-
grade cluster. In Chapter 10, Deploying Java on Kubernetes in the Cloud, we will run
Kubernetes using Amazon Web Services (AWS) and hosted Kubernetes in Google
container engine.

To follow along, we will need the following tools ready:

Docker : To build the Docker images we want to deploy
minikube: A local Kubernetes environment
kubectl: The Kubernetes command line interface

This chapter will cover the following topics:

Installing Minikube on macOS, Windows, and Linux
Starting up the local Kubernetes cluster using Minikube
Deploying a Java application on a local cluster
Interacting with containers: scaling, autoscaling, and viewing cluster events
Using the Kubernetes dashboard

Using Kubernetes with Java

[210]

I assume you have Docker up and running so far, so let's focus on the minikube utility. We
have already mentioned minikube in the Chapter 7, Introduction to Kubernetes; now, we
will go into some more details, starting with the installation process.

Installing Minikube
The Minikube tool source code with all the documentation is available at GitHub at
https://github.com/kubernetes/minikube.

Installing on Mac
The following sequences of commands will download the minikube binary, set the
executable flag and copy it to the /usr/local/bin folder, which will make it available in
the macOS shell:

$ curl -Lo minikube
https://storage.googleapis.com/minikube/releases/v0.12.2/minikube-darwin-am
d64
$ chmod +x minikube
$ sudo mv minikube /usr/local/bin/

Alternatively, if you use Homebrew package manager (available freely at https:/ / brew.
sh), which is, by the way, very handy and recommended, you can just install minikube by
typing:

$ brew cask install minikube

Installing on Windows
Minikube for Windows is also simply a single executable file. You can always find the
newest version on the Minikube's site, at https://github.com/kubernetes/minikube. You
just need to download the latest executable, rename it minikube.exe, and place it in your
system path to have it available from the command line.

https://github.com/kubernetes/minikube
https://brew.sh
https://brew.sh
https://brew.sh
https://brew.sh
https://brew.sh
https://brew.sh
https://github.com/kubernetes/minikube

Using Kubernetes with Java

[211]

Installing on Linux
The installation process on Linux is identical to the macOS one. The only difference is the
executable name. The following command will download the latest Minikube release, set
the executable bit, and move it to the /usr/local/bin directory:

$ curl -Lo minikube
https://storage.googleapis.com/minikube/releases/latest/minikube-linux-amd6
4 && chmod +x minikube && sudo mv minikube /usr/local/bin/

That's all, a single Minikube and Docker is all we need to start the local cluster. It's time to
bring it to life:

Starting up the local Kubernetes cluster
We're using the local Kubernetes cluster provided by minikube. Start your cluster with:

$ minikube start

Minikube works on its own virtual machine. Depending on your host OS, you can choose
between several virtualization drivers. Currently supported are virtualbox,
vmwarefusion, xhyve, hyperv, and kvm (Kernel-based virtual machine). The default VM
driver is virtual box. You can override this option. This is the example macOS startup
command line which uses xhyve:

$ minikube start --vm-driver=xhyve

When starting Minikube for the first time, you will see it downloading the Minikube ISO, so
the process will take a little longer. This is, however, a one-time action. The Minikube
configuration will be saved in the .minikube folder in your home directory, for example
~/.minikube on Linux or macOS. On the first run, Minikube will also configure the
kubectl command line tool (we will get back to it in a short while) to use the local
minikube cluster. This setting is called a kubectl context. It determines which cluster
kubectl is interacting with. All available contexts are present in the ~/.kube/config file.

As the cluster is running now and we have the dashboard addon enabled by default, you
can take a look at the (still empty) Kubernetes dashboard with the following command:

$ minikube dashboard

Using Kubernetes with Java

[212]

It will open your default browser with the URL of the cluster's dashboard:

As you can see, the dashboard is empty now. If you browse to the Namespaces menu, you
will notice that Minikube creates some namespaces, with the one available for our purposes
named simply the default. The parts of the Minikube installation, such as DNS or the
Dashboard, which are also running on the cluster itself, with separate namespaces such as
kube-public and kube-system.

Feel free to browse the menus and sections; so far, no harm can be done, it's a local
development cluster running nothing at the moment. We will get back to the dashboard in
the last section of this chapter, to see how can we use it to deploy our services from the nice
UI, if you prefer to do so, instead to using the shell of command line.

Of course, having the cluster running empty is quite useless, so we need a tool to manage it.
While we can almost all everything using the dashboard, it's a lot more convenient to have a
command line tool for that. kubectl controls the Kubernetes cluster. We will use the
kubectl command line tool heavily to deploy, schedule, and scale our applications and
microservices. The tool comes as a self-contained binary for Mac, Linux, and Windows. In
the next section you will find installation instructions for different platforms.

Using Kubernetes with Java

[213]

Installing kubectl
kubectl is available for all major platforms. Let's start with macOS installation.

Installing on Mac
The following sequences of command will download the kubectl binary, set the
executable flag and copy it to /usr/local/bin folder which will make it available in the
macOS shell:

$ curl -O https://storage.googleapis.com/kubernetes-release/release/v1.5.2
/bin/darwin/amd64/kubectl
$ chmod +x kubectl
$ sudo cp kubectl /usr/local/bin

Homebrew provides the most convenient way to install kubectl and keep it up to date. To
install, use this command:

$ brew install kubectl

To update, use the following command:

$ brew upgrade kubectl

Installing on Windows
You can find the list of Windows kubectl releases on GitHub at
https://github.com/eirslett/kubectl-windows/releases. Similar to Minikube, kubectl
is just a single .exe file. At the time of writing this book it's
https://github.com/eirslett/kubectl-windows/releases/download/v1.6.3/kubectl.ex

e. You will need to download the exe file and place in on your system path, to have it
available in the command line.

Installing on Linux
The installation process is, again, very similar to the macOS. The following commands will
fetch the kubectl binary, give it an executable flag, and then move it to the
/usr/local/bin to make it available in the shell:

$ curl -O https://storage.googleapis.com/kubernetes-release/release/v1.5.2
/bin/linux/amd64/kubectl

https://github.com/eirslett/kubectl-windows/releases
https://github.com/eirslett/kubectl-windows/releases/download/v1.6.3/kubectl.exe
https://github.com/eirslett/kubectl-windows/releases/download/v1.6.3/kubectl.exe

Using Kubernetes with Java

[214]

$ chmod +x kubectl
$ sudo cp kubectl /usr/local/bin/kubectl

To verify if your local cluster is up and running and kubectl is properly configured,
execute the following command:

$ kubectl cluster-info

In the output, you will be given basic information about the cluster, which includes its IP
address, and running Minikube addons (we will get back to addons later in this chapter):

To list the nodes we have running in our cluster, execute the get nodes command:

$ kubectl get nodes

Of course, this is just a single node cluster, so there is no surprise in the output of the
previous command:

Our cluster is up and running; it's time to deploy our service on it.

Using Kubernetes with Java

[215]

Deploying on the Kubernetes cluster
We begin the process of deploying our software on the Kubernetes cluster by defining a
service. As you remember from Chapter 7, Introduction to Kubernetes, services abstract a set
of Pods as a single IP and port, allow simple TCP/UDP load, and allow the list of Pods to
change dynamically. Let's start with service creation.

Creating a service
By default, each Pod is only accessible by its internal IP address within the Kubernetes
cluster. To make the container accessible from outside the Kubernetes virtual network, we
need to expose the Pod as a Kubernetes Service. To create a service, we are going to use the
simple .yaml file, with a service manifest. YAML is a human-readable data serialization
language, which is commonly used for configuration files. A sample service manifest for
our Java rest-example could look the same as the following:

apiVersion: v1
kind: Service
metadata:
 name: rest-example
 labels:
 app: rest-example
 tier: backend
spec:
 type: NodePort
 ports:
 - port: 8080
 selector:
 app: rest-example
 tier: backend

Note that the manifest of a service doesn't refer to a Docker image. This is because, as you
remember from Chapter 7, Introduction to Kubernetes, a service in Kubernetes is just an
abstraction which provides a network connection to one or more Pods. Each service is given
its own IP address and port, which remains constant for the lifetime of the service. Each Pod
needs to have a specific label, to be discovered by the service, services find Pods to group
using and labels selectors. In our previous example, the selector will pick up all Pods
having a label app with the value of rest-example and a label named tier with a value of
backend:

selector:
 app: rest-example
 tier: backend

Using Kubernetes with Java

[216]

As you remember from Chapter 7, Introduction to Kubernetes, every node in a Kubernetes
cluster runs a kube-proxy process. The kube-proxy plays a crucial role in Kubernetes
services. Its purpose is to expose a virtual IP for them. Since Kubernetes 1.2, the iptables
proxy is the default. You have two options that you can use for setting up the proxy:
userspace and iptables. Those settings refer to what actually handles the connection
forwarding. In both cases, local iptables rules are installed to intercept outbound TCP
connections that have a destination IP address associated with a service. There's an
important difference between those two modes:

Proxy-mode: userspace: In the userspace mode, the iptables rule forwards to
a local port where kube-proxy is listening for connections. The kube-proxy,
running in userspace, terminates the connection, establishes a new connection to
a backend for the service, and then forwards requests to the backend and
responses back to the local process. An advantage of the userspace mode is that
because the connections are created from an application, if the connection is
refused, the application can retry to a different backend.
Proxy-mode: iptables: in this mode, the iptables rules are installed to directly
forward packets that are destined for a service to a backend for the service. This is
more efficient than moving the packets from the kernel to kube-proxy and then
back to the kernel so it results in higher throughput and better tail latency.
However, unlike the userspace mode, using iptables mode makes it impossible to
automatically retry another Pod if the one it initially selects does not respond, so
it depends on having working readiness probes.

As you can see, in both cases there will be a kube-proxy binary running on the node. In
userspace mode, it inserts itself as the proxy; in iptables mode, it will configure iptables
rather than to proxy connections itself.

The service type can have the following values:

NodePort: By specifying a service type of NodePort, we declare to expose the
service outside the cluster. The Kubernetes master will allocate a port from a flag-
configured range (default: 30000-32767), and each node of the cluster will
proxy that port (the same port number on every node) into your service
Load balancer: This would create a load balancer on cloud providers which
support external load balancers (for example, on Amazon AWS cloud). This
feature is not available when using Minikube
Cluster IP: This would expose the service only within the cluster. This is the
default value which will be used if you don't provide another

Using Kubernetes with Java

[217]

Having our service.yml file ready, we can create our first Kubernetes service, by
executing the following kubectl command:

$ kubectl create -f service.yml

To see if our service is created properly, we can execute the kubectl get services
command:

We can also list other services (including the services provided by the minikube cluster
itself, if you are curious) by adding the --all-namespaces switch:

$ kubectl get services --all-namespaces

To see the details of a specific service, we use the describe command. Execute the
following to see the details of our rest-example Java service:

$ kubectl describe service rest-example

In the output, we are presented with the most useful service properties, especially the
endpoints (our internal container IP and port, just one in this case, because we have one Pod
running in the service), service internal port, and proxied NodePort:

Using Kubernetes with Java

[218]

Having all of the settings in a .yaml file is very convenient. Sometimes, though, there is a
need to create a service in a more dynamic way; for example in some automation flows. In
this case, instead of creating a .yaml file first, we can create a service manually, by
providing all the parameters and options to the kubectl command itself. Before doing this,
however, you will need have the deployment created first, because creating a service
manually is just exposing a deployment using the kubectl command. After all, a service is
an exposed deployment which, in fact, is just a set of Pods. The example of such exposure,
which will result with service creation, looks the same as this:

$ kubectl expose deployment rest-example--type="NodePort"

Creating a deployment
Before creating a deployment, we need to have our Docker image ready and published to a
registry, the same as the Docker Hub for example. Of course, it can also be a private
repository hosted in your organization. As you remember from the Chapter 7, Introduction
to Kubernetes, each Docker container in a Pod has its own image. By default, the kubectl
process in a Pod will try to pull each image from the specified registry. You can change this
behavior by specifying a value for the imagePullPolicy property in a deployment
descriptor. It can have the following values:

IfNotPresent: With this setting, the image will be pulled from the registry only
if not present on the local host
Never: With this one, kubelet will use only local images

Setting imagePullPolicy with a value IfNotPresent when creating a deployment is
useful; otherwise, Minikube will try to download the image before looking for an image on
the local host.

Kubernetes uses the same syntax for images as Docker itself, including private registries
and tags.

Using Kubernetes with Java

[219]

It is important that you provide a tag in the image name. Otherwise, Kubernetes will use
the latest tag when looking for your image in a repository, the same as Docker does.

Using locally built images gets a little bit tricky when working with a local Kubernetes
cluster. Minikube runs in a separate VM, hence it will not see the images you've built locally
using Docker on your machine. There's a workaround for that. You can execute the
following command:

$ eval $(minikube docker-env)

The previous command will actually utilize the Docker daemon running on minikube, and
build your image on the Minikube's Docker. This way, the locally built image will be
available to the Minikube without pulling from the external registry. This is not very
convenient, it is certainly easier to push the Docker image to a remote registry. Let's push
our rest-example image into the DockerHub registry.

First, we need to log in:1.

$ docker login

Then, we are going to tag our image using the docker tag command (not that2.
you will need to provide your own DockerHub username instead of
$DOCKER_HUB_USER):

$ docker tag 54529c0ebed7 $DOCKER_HUB_USER/rest-example

The final step will be to push our image to Docker Hub using the docker push3.
command:

$ docker push $DOCKER_HUB_USER/rest-example

Using Kubernetes with Java

[220]

Now that we have an image available in the registry, we need a deployment4.
manifest. It's again a .yaml file, which can look the same as this:

 apiVersion: extensions/v1beta1
kind: Deployment
metadata:
 name: rest-example
spec:
 replicas: 1
 template:
 metadata:
 labels:
 app: rest-example
 tier: backend
 spec:
 containers:
 - name: rest-example
 image: jotka/rest-example
 imagePullPolicy: IfNotPresent
 resources:
 requests:
 cpu: 100m
 memory: 100Mi
 env:
 - name: GET_HOSTS_FROM
 value: dns
 ports:
 - containerPort: 8080

To create this deployment on the cluster using kubectl, you will need to execute the
following command, which is exactly the same as when creating a service, with a difference
in the filename:

$ kubectl create -f deployment.yml

Using Kubernetes with Java

[221]

You can look at the deployment properties with:

$ kubectl describe deployment rest-service

As you can see, one Pod has been created along with a ReplicaSet and the default rolling
update strategy. You can also look at the Pods with:

$ kubectl get pods

Using Kubernetes with Java

[222]

The output of get pods command will give you the names of Pods running in the
deployment. This is will be important later, because if you want to interact with a specific
Pod, you will need to know its name:

As an alternative to the deployment descriptor in .yaml file, you can create deployments
from the command line using kubectl run command with options, as you can see in the
following example:

$ kubectl run rest-example --image=jotka/rest-example --replicas=1 --
port=8080 --labels="app:rest-example;tier:backend" --expose

Let's summarize the kubectl commands related to creating resources and getting
information about them, with some examples, in a table:

Example command Meaning

kubectl create -f ./service.yaml Create resource(s)

kubectl create -f ./service.yaml -f
./deployment.yaml

Create from multiple files

kubectl create -f ./dir Create resource(s) in all manifest
files in the specified directory

kubectl create -f https://sampleUrl Create resource(s) from URL

kubectl run nginx --image=nginx Start a single instance of nginx

Kubectl get pods Get the documentation for pod

kubectl get pods --selector=app=rest-
example

List all the Pods that match the
specified label selector

kubectl explain pods Show details of all Pods

kubectl get services List all created services

kubectl explain service Show details of specified service

Using Kubernetes with Java

[223]

kubectl explain services Show details of all created
services

kubectl get deployments List all created deployments

kubectl get deployment Show details of specified service

kubectl explain deployment Show details of specified
deployment

kubectl explain deployments Show details of all created
deployments

kubectl get nodes List all cluster nodes

kubectl explain node Show details of specified node

Calling the service

As we have seen on the kubectl describe service rest-example command output, our
rest-example service can be accessed within the cluster via port 8080 and the domain
name rest-example. In our case, the complete URL of the endpoint would be
http://rest-example:8080. However, to be able to execute the service from the outside
world, we have used the NodePort mapping, and we know that it was given the port
31141. All we need to call the service is the IP of the cluster. We can get it using the
following command:

$ minikube ip

There's a shortcut for getting to know the externally accessible service URL and a port
number. We can use a minikube service command to tell us the exact service address:

$ minikube service rest-example --url

The output of the previous command will be the service URL with a mapped port number.
If you skip the --url switch, minikube will just open the service's URL using your default
web browser. This is sometimes handy.

Using Kubernetes with Java

[224]

Having the complete URL of the endpoint, we can access the service, using any of the HTTP
clients, such as curl, for example:

When the service is running, application logs can often help you understand what is
happening inside your cluster. The logs are particularly useful for debugging problems and
monitoring cluster activity. Let's see how we can access our container logs.

Interacting with containers and viewing logs
Most modern applications have some kind of logging mechanism. Our Java REST service,
for example, uses slf4j to output logs from the REST controller. The easiest and most simple
logging method for containerized applications is just to write to the standard output and
standard error streams. Kubernetes supports this out of the box.

Assuming we've sent requests to our new web service using the browser or curl, we should
now be able to see some logs. Prior to that, we need to have a Pods name, created
automatically during deployment. To get the Pod's name, use the kubectl get pods
command. After that, you can show logs of the specified Pod:

$ kubectl logs rest-example-3660361385-gkzb8

As you can see in the following screenshot, we will get access to a well-known Spring Boot
banner coming from a service running in a Pod:

Using Kubernetes with Java

[225]

Viewing the log is not the only thing we can do with a specific Pod. Similar to Docker (a
Pod is running Docker, actually), we can interact with a container by using the kubectl
exec command. For example, to get a shell to the running container:

$ kubectl exec -it rest-example-3660361385-gkzb8 -- /bin/bash

The previous command will attach your shell console into the shell in the running
container, where you can interact with it, such as listing the processes, for example, as you
can see in the following screenshot:

Using Kubernetes with Java

[226]

The syntax of a kubectl exec command is very similar to the exec command in Docker,
with one little difference, as you remember from the Chapter 7, Introduction to Kubernetes, a
Pod can run more than one container. In such case, we can use --container or -c
command switch to specify a container in the kubectl exec command. For example, let's
suppose we have a Pod named rest-example-3660361385-gkzb8. This Pod has two
containers named service and database. The following command would open a shell to the
service container:

$ kubectl exec -it rest-example-3660361385-gkzb8 --container service --
/bin/bash

Having the possibility to view logs and interact with the containers gives you a lot of
flexibility to pinpoint potential problems you may have with running Pods. Let's
summarize the kubectl commands related to viewing logs and interacting with the Pods
in a table:

Example command Meaning

kubectl logs myPod Dump pod logs (stdout)

kubectl logs myPod -c myContainer Dump pod container logs (stdout, multi-
container case)

kubectl logs -f myPod Stream pod logs (stdout)

kubectl logs -f myPod -c
myContainer

Stream pod container logs (stdout, multi-
container case)

kubectl run -i --tty busybox --
image=busybox -- sh

run pod as interactive shell

kubectl attach myPod -i Attach to running container

kubectl port-forward myPod
8080:8090

Forward port 8080 of Pod to your to 8090
on your local machine

kubectl exec myPod -- ls / run command in existing pod (one
container case)

kubectl exec myPod -c myContainer -
- ls /

run command in existing pod (multi-
container case)

kubectl top pod POD_NAME --
containers

Show metrics for a given pod and its
containers

Using Kubernetes with Java

[227]

As you already know, Pods and containers are fragile. They can crash or be killed. You can
use kubectl logs to retrieve logs from a previous instantiation of a container with the --
previous flag, in case the container has crashed. Let's say our service is running fine, but
for the reasons described in the Chapter 7, Introduction to Kubernetes, such as higher load,
for example, you decide to increase the number of containers running. Kubernetes gives
you the possibility to increase the number of Pod instances running in each service. This can
be done manually or automatically. Let's focus on the manual scaling first.

Scaling manually
When the deployment has been created, the new ReplicaSet has also been created,
automatically. As you will remember from Chapter 7, Introduction to Kubernetes, a
ReplicaSet ensures that a specified number of Pod clones, known as replicas, are running
at any given time. It there are too many, some of them will be shut down. If there is a need
for more, for example if some of them died because of an error or crash, new Pods will be
created. Note that if you try to scale the ReplicaSet directly, then it will (for a very short
time) have a new count of your desired number of Pods, for example three. But if the
deployment controller sees that you have modified the replica set to three, since it knows
that it is supposed to be one (defined in the deployment manifest), it will reset it back to
one. By manually modifying the replica set that was created for you, you are, kind of,
dealing against the system controller.

You need to scale your deployment instead of the replica set directly.

Of course, our Java rest-example service keeps its data in memory so it's not stateless, so
it may be not the best example for scaling; if another instance is brought to life, it will have
its own data. However, it is a Kubernetes service, so we can use it to demonstrate scaling
anyway. To scale up our rest-example deployment from one up to three Pods, execute
the following kubectl scale command:

$ kubectl scale deployment rest-example --replicas=3

After a short while, in order to check, execute the following commands, you will see that
now three Pods are running in the deployment:

$ kubectl get deployments
$ kubectl get pods

Using Kubernetes with Java

[228]

In the following table, you can see some more examples of kubectl commands related to
manual scaling:

Example command Meaning

kubectl scale deployment rest-example -
-replicas=3

Scale a deployment named rest-
example to 3 Pods

kubectl scale --replicas=3 -f
deployment.yaml

Scale a resource specified in
deployment.yaml file to 3

kubectl scale deployment rest-example -
-current-replicas=2 --replicas=3

If the deployment named rest-
example current size is 2, scale it to 3
Pods

kubectl scale --replicas=5
deployment/foo deployment/bar

Scale multiple deployments at one
time

Scaling can be done automatically by Kubernetes, if, for example, the service load increases.

Autoscaling
With horizontal Pod auto scaling, Kubernetes automatically scales the number of Pods in a
deployment or ReplicaSet based on observed CPU utilization. The Kubernetes controller
periodically adjusts the number of Pod replicas in a deployment to match the observed
average CPU utilization to the target you specified.

The Horizontal Auto Scaler is just another type of resource in Kubernetes, so we can create
it as any other resource, using the kubectl commands:

kubectl get hpa: List autoscalers
kubectl describe hpa: Get detailed description
kubectl delete hpa: Delete an autoscaler

Additionally, there is a special kubectl autoscale command for easy creation of a
Horizontal Pod Autoscaler. An example could be:

$ kubectl autoscale deployment rest-example --cpu-percent=50 --min=1 --
max=10

Using Kubernetes with Java

[229]

The previous command will create an autoscaler for our rest-example deployment, with
the target CPU utilization set to 50% and the number of replicas between 1 and 10.

All cluster events are being registered, including those which come from scaling, either
manually or automatically. Viewing cluster events can be helpful when monitoring what
exactly is being performed on our cluster.

Viewing cluster events
To view cluster events, type the following command:

$ kubectl get events

It will present a huge table, with all the events registered on the cluster:

The table will include the changes in the status of nodes, pulling Docker images, events of
starting and stopping containers, and so on. It can be very handy to see the picture of the
whole cluster.

Using the Kubernetes dashboard
Kubernetes dashboard is a general purpose, web-based UI for Kubernetes clusters. It allows
users to manage applications running in the cluster and troubleshoot them, as well as
manage the cluster itself. We can also edit the manifest files of deployment, services, or
Pods. The changes will be picked up immediately by Kubernetes, so it gives us the
capability to scale down or up the deployment, for example.

Using Kubernetes with Java

[230]

If you open the dashboard with the minikube dashboard command, it will open your
default browser with a dashboard URL. From here, you can list all the resources on the
cluster, such as deployments, services, Pods, and so on. Our dashboard is no longer empty,
as you can see in the following screenshot; we have one deployment called rest-example:

If you click on its name, you will be taken to the deployment details page, which will show
the same information you could get with the kubectl describe deployment command,
with a nice UI:

Using Kubernetes with Java

[231]

The dashboard is not only read-only utility. Each resource has a handy menu which you
can use to delete it or to edit its manifest:

If you pick the view/edit YAML menu option, you will be able to edit the manifest with a
handy editor:

Using Kubernetes with Java

[232]

Note that if you change a value, for example the number of replicas, and click Update,
the change will be sent to the Kubernetes and executed. This way you can also, for example,
scale your deployment.

As deployment has created a ReplicaSet automatically, the ReplicaSet will also be visible in
the dashboard:

The same applies to services. If you browse to the Services menu, it will present a list of all
services created on a cluster:

Using Kubernetes with Java

[233]

Clicking on the name of service will take you to the details page:

Using Kubernetes with Java

[234]

On the details screen, all important information is listed. This includes label selector, that
will be used to find Pods, port type, cluster IP, internal endpoints, and of course the list of
Pods running inside the service. By clicking Pod's name, you can see details of a running
Pod, including its log output, as you can see in the following screenshot:

The dashboard is a very handy tool to interact with your existing deployments, services,
and Pods. But there's more. If you click on the Create button in the top right corner of the
dashboard's toolbar, you will be presented with a Deploy a Containerized App screen.
From here, you can actually create a new deployment:

Using Kubernetes with Java

[235]

You have an opportunity to use the .yaml file, as we did before using the command line,
but also you can specify details of the deployment manually, providing an application
name, and container image to use and optionally create a service for the deployment. Quite
handy, isn't it? The dashboard is just one of the Minikube add-ons available. Let's look at
what else we have at our disposal.

Minikube addons
Minikube comes with several add-ons, such as Kubernetes dashboard, Kubernetes DNS,
and so on. We can list the available addons by executing the following command:

$ minikube addons list

Using Kubernetes with Java

[236]

The output of the previous command will list the available addons with their current status,
for example:

To enable or disable the addon, we use minikube addons disable or minikube addons
enable, respectively, for example:

$ minikube addons disable dashboard
$ minikube addons enable heapster

If the add-on is enabled, we can the corresponding web user interface by executing the
addon open command, for example:

$ minikube addons open heapster

Cleaning up
If you finish playing with your deployment and services or would like to start from the
beginning, you can do some cluster cleaning by removing the deployment or services:

$ kubectl delete deployment rest-example
$ kubectl delete service rest-example

This code can also be combined in one command, for example:

$ kubectl delete service,deployment rest-example

Using Kubernetes with Java

[237]

The kubectl delete supports label selectors and namespaces. Let's see some other
examples of the command in a table:

Example command Meaning

kubectl delete pod,service baz foo Delete pods and services with same names
baz and foo

kubectl delete pods,services -l
name=myLabel

Delete pods and services with label
name=myLabel

kubectl -n my-ns delete po,svc --
all

Delete all pods and services in namespace
my-ns

To stop the minikube cluster, issue simply:

$ minikube stop

If you would like to delete the current minikube cluster, you can issue the following
command to do it:

$ minikube delete

Summary
As you can see, the Minikube is an easy way to try out Kubernetes and use it for local
development. Running the local cluster is not as scary as it may have seemed at the
beginning. Best of all, the local minikube cluster is a valid Kubernetes cluster. If you get to
know Kubernetes by playing with it locally, you will be able to deploy your applications in
the real cloud without any issues. Let's summarize the steps that we need to perform to
make our Java application run on the Kubernetes cluster.

First, we need to write some code for our microservice. This can be based on whatever you
want, it can be a microservice running on Tomcat, JBoss, or Spring Bootstrap. It doesn't
matter, you just choose the technology you want your software to run with:

Next, put the code into Docker image. You can do it by hand by creating a
Dockerfile or you can use Docker Maven plugin to automate this
Create Kubernetes metadata, such as deployment manifest and service manifest
Apply the metadata by rolling out the deployment and creating the service
Scale your applications to your needs
Manage your cluster either from the command line or from the dashboard

Using Kubernetes with Java

[238]

In Chapter 9, Working with Kubernetes API, we will take a look at the Kubernetes API. This
is a great way of interacting with Kubernetes cluster. Because of API, the possibilities are
almost endless, you can create your own development flows, such as continuous delivery
using Jenkins, for example. Having the API, you are not limited only to existing tools to
deploy your software to Kubernetes. Things can get more interesting.

9
Working with the Kubernetes

API
 In Chapter 7, Introduction to Kubernetes, and Chapter 8, Using Kubernetes with Java, we
learned about the Kubernetes concepts and used them in practice by installing local
Kubernetes clusters with minikube. We know all the pieces of Kubernetes architecture,
such as pods, nodes, deployment, and services, for example. We have also mentioned one of
the main components residing on the Master node, which is the API server. As you
remember from Chapter 7, Introduction to Kubernetes, the API server is technically a process
named kube-apiserver that accepts and responds to HTTP REST requests using JSON.
The API server's main purpose is to validate and process data of cluster resources, such as
Pods, services, or deployments. The API Server is the central management entity. It's also
the only Kubernetes component that directly connects to etcd, a distributed key-value data
store where Kubernetes stores all its cluster state.

In previous chapters, we've been using a kubectl command-line tool to manage our
cluster. Kubectl is a useful utility, whenever we want to execute commands against our
cluster, either for creating, editing, or removing resources. In fact kubectl also
communicates with the API server; you may have noticed that almost every action in
Kubernetes that changes something is basically editing a resource. If you want to scale up or
down your application, this will be done by modifying the deployment resource.
Kubernetes will pick up the change on the fly and apply it to the resource. Also, read-only
operations such as listing Pods or deployments, will execute the corresponding GET request.

Working with the Kubernetes API

[240]

In fact, you can see what REST calls are being made by the kubectl command if you run it
with a higher level of verbosity, with the --v=6 or --v=9 option, we will get back to it later
in this chapter. We can access the API using kubectl, client libraries, or by making REST
requests. When can the REST API be useful? Well, you can create a REST call in every
programming or scripting language. This creates a whole new level of flexibility, you can
manage Kubernetes from your own Java application, from your continuous delivery flow in
Jenkins, or from the build tool you are using, let it be Maven for example. Possibilities are
almost endless. In this chapter, we will get to know the API overview, its structure, and
example requests. We will be doing this using the REST calls with the command-line curl
utility. This chapter will cover the following topics:

Explanation about the API versioning
Authentication (determining who is who)
Authorization (determining who can do what)
Using the API by making some example calls
OpenAPI Swagger documentation

Let's gets started with an API overview.

API versioning
Kubernetes grows continuously. Its features change and this results in the API changing as
well. To deal with those changes and to not break compatibility with existing clients over an
extended period of time, Kubernetes supports multiple API versions, each with a different
API path, such as /api/v1 or /apis/extensions/v1beta1. There are three API levels in
the Kubernetes API specification: alpha, beta, and stable. Let's get to know the difference.

Alpha
The alpha version level is disabled by default, as with the other software, an alpha version
should be considered as buggy and not production ready. Also, you should note that any
featured introduced in the alpha version might not always be available later, in the stable
version. Also, the changes in the API may be incompatible in the next release. You should
not use the alpha version, unless you are very eager to test new features or do some
experiments.

Working with the Kubernetes API

[241]

Beta
The beta level totally different from the alpha level of the API, code is tested (it still may
have some bugs, as it is still not the stable release). Also, in contrast to the alpha level,
features in beta will not be dropped in the future releases. If there is a breaking, not
backward compatible change in the API, Kubernetes team will provide a guide on how to
migrate. Using beta on a production environment is not the best idea, but you can safely
use beta on a non-business critical cluster. You are also encouraged to provide feedback
from using beta, this will make Kubernetes better for everyone of us using it. A version
name in the beta level will contain the word beta, such as v1beta1 for example.

Stable
The stable level of the API is a tested, production-ready software. The version name in the
stable API will be vX where X is an integer number, such as v1 for example.

Kubernetes API utilizes a concept of API groups. API groups have been introduced to make
it easier to extend the Kubernetes API in the future. The API group is specified in a REST
path and in the apiVersion field of a call's JSON payload. Currently, there are several API
groups in use: core, batch, and extensions. The group name is a part of the REST path of an
API call: /apis/$GROUP_NAME/$VERSION. The core group is an exception, it does not show
up in the REST path, for example: /api/v1. You can find the full list of supported API
groups in the Kubernetes API reference.

By using the API, you can do almost anything with your cluster, as you would normally do
using the kubectl command. This can be dangerous; that's why Kubernetes supports
authentication (determining who you are) and authorization (what you can do). The basic
flow of calling the API service is presented in the following diagram:

Let's begin with the authentication.

Working with the Kubernetes API

[242]

Authentication
By default, the Kubernetes API server serves HTTP requests on two ports:

Localhost, unsecured port: By default, the IP address is localhost and a port
number is 8080. There is no TLS communication, all requests on this port
bypasses authentication and authorization plugins. This is intended for testing
and bootstrap, and for other components of the master node. This is also used to
other Kubernetes components such as scheduler or controller-manager to execute
API calls. You can change the port number with the --insecure-port switch,
and the default IP by using the --insecure-bind-address command-line
switch.
Secure port: The default port number is 6443 (it can be changed with the `--
secure-port switch), usually it's 443 on Cloud providers. It uses TLS
communication. A certificate can be set with a --tls-cert-file switch. A
private SSL key can be provided with a --tls-private-key-file switch. All
requests coming through this port will be handled by authentication and
authorization modules and admission control modules. You should use the
secure port whenever possible. By having your API clients verify the TLS
certificate presented by the api-server, they can verify that the connection is
both encrypted and not susceptible to man-in-the-middle attacks. You should
also be running the api-server where the insecure port is only accessible to
localhost, so that connections that come across the network use HTTP's.
With minikube, to access the API server directly, you'll need to use the custom
SSL certs that have been generated by minikube. The client certificate and key are
typically stored
in ~/.minikube/apiserver.crt and ~/.minikube/apiserver.key. You'll
have to load them into your HTTP'S client when you make HTTP requests. If
you're using curl use the--cert and the --key options to use the cert and key
file.

The access to the API server can be simplified through the proxy, which
we will start later in this chapter.

If you want to send requests to the Kubernetes API from a different domain, you will need
to enable cors on api-server. You do that by adding a --cors-allowed-
origins=["http://*"] argument to kube-apiserver configuration, typically in the
/etc/default/kube-apiserver file and restart kube-apiserver.

Working with the Kubernetes API

[243]

Note that Kubernetes cluster does not manage users by itself. Instead, users are assumed to
be managed by an outside, independent service. There is no resource in Kubernetes cluster
that represents normal user accounts. That's why users cannot be added to a cluster through
an API call.

Kubernetes does not manage user accounts by itself.

The Kubernetes API supports multiple forms of authentication: HTTP basic auth, bearer
token, and client certificates. They are called authentication strategies. When launching the
api-server, you can enable or disable each of these authentication strategies with
command-line flags. Let's look what's possible, starting with the simplest, basic auth
strategy.

HTTP basic auth
To use this authentication strategy, you will need to start the api-server with the --
basic-auth-file=<path_to_auth_file> switch. It should be a csv file with the
following entry for each user:

password, user name, userid

You can also specify an optional fourth column containing group names, separated by a
comma. If there is more than one group for the user, the whole column contents must be
enclosed in double quotes, for example:

password, user, userid,"group1,group2,group3"

If the api-server utilizes the basic auth strategy, it will expect all REST calls to be made
with the Authorization header containing username and password encoded in BASE64
(similar to ordinary basic auth protected web calls), for example:

BASE64ENCODED(USER:PASSWORD)

To generate the authorization header value, you can use the following command in the
shell, it will generate the value for user having password secret:

echo -n "user:secret" | base64

Working with the Kubernetes API

[244]

Note that any changes to the basic auth file will require a restart of the api-server to pick
up the changes.

HTTP basic auth is typically used as default when running Kubernetes in the cloud. For
example, once you launch your container cluster on Google Container Engine, you will
have a master running the api-server on a VM in your GCP project. If you run a gcloud
preview container clusters list, you will see the endpoint at which the api-server
listens for requests as well as the credentials needed to access it. You will find more on
running Kubernetes in the cloud in Chapter 10, Deploying Java on Kubernetes in the Cloud.

Static token file
To make api-server use this scheme, it needs to be started with the --token-auth-
file=<PATH_TO_TOKEN_FILE> switch. Similar to the HTTP basic auth strategy, the
provided file is a csv file with a record for every user. The record needs to be in the
following format:

token, user, userid, group

Again, the group name is optional and if there is more than one group for the user, you will
need to separate them with a comma and enclose them in double quotes. The token is just a
base64 encoded string. An example command to generate a token on Linux can be as
follows:

$ echo `dd if=/dev/urandom bs=128 count=1 2>/dev/null | base64 | tr -d
"=+/" | dd bs=32 count=1 2>/dev/null`

The output will be a token, which you then enter into the token file, for example:

3XQ8W6IAourkXOLH2yfpbGFXftbH0vn,default,default

When using this strategy, api-server will be expecting an Authorization header with a
value of Bearer <TOKEN>. In our example, this will looks the same as the following:

Authorization: Bearer 3XQ8W6IAourkXOLH2yfpbGFXftbH0vn

Tokens last indefinitely, and the token list cannot be changed without restarting API server.

Working with the Kubernetes API

[245]

Client certificates
In order to use this scheme, the api-server needs to be started with the following switch:

--client-ca-file=<PATH_TO_CA_CERTIFICATE_FILE>

The CA_CERTIFICATE_FILE must contain one or more certificates authorities that can be
used to validate client certificates presented to the api-server. The /CN (common name)
of the client certificate is used as the username. Client certificates can also indicate a user's
group memberships using the organization fields. To include multiple group memberships
for a user you will need to include multiple organization fields in the certificate. For
example, using the openssl command-line tool to generate a certificate signing request:

$ openssl req -new -key user.pem -out user-csr.pem \
-subj "/CN=user/O=group1/O=group2"

This would create a certificate signing request for the username user, belonging to two
groups, group1 and group2.

OpenID
OpenID connect 1.0 is a simple identity layer on top of the OAuth 2.0 protocol. You can
read more about OpenID connect on the internet at https://openid.net/connect. It
allows clients to verify the identity of the end-user based on the authentication performed
by an authorization server, as well as to obtain basic profile information about the end-user
in an interoperable and REST-like manner. All cloud providers, including Azure, Amazon,
and Google support OpenID. The main difference with OAuth2 is the additional field
returned with the access token called an id_token. This token is a JSON Web Token
(JWT) with well-known fields (user's email for example), signed by the server. To identify
the user, the authenticator uses the id_token from the OAuth2token response as a bearer
token. To use the OpenID authentication, you will need to log in to your identity provider,
which will provide you with an id_token (and also standard OAuth 2.0 access_token
and a refresh_token).

Since all of the data needed to do the authentication is contained within the id_token,
Kubernetes does not need to make an additional call to the identity provider. This is very
important from the scalability purposes, every request is stateless.

To provide a token value to the kubectl command, you will need to use the --token flag.
Alternatively, you can add it directly to your kubeconfig file.

Working with the Kubernetes API

[246]

This is the simplified flow of things that will happen if you execute a HTTP call to your api-
server:

kubectl will send your id_token in an authorization header to the API
server
The API server will validate the JWT signature by checking against the certificate
named in the configuration
The API server will check to make sure the id_token hasn't expired
The API server will make sure the user is authorized, and returns a response to
kubectl if so

By default, anyone who has access credentials to the api-server has full access to the
cluster. You can also configure more fine grained authorization policies, let's look at
authorization now.

Authorization
The next step after the successful authentication is to check what operations are allowed for
the authenticated user. Kubernetes supports four types of authorization policy schemes as
of today. To utilize the specific authorization schema, use the --authorization-mode
switch when starting api-server. The syntax is:

$ kube-apiserver --authorization-mode <mode>

The <mode> parameter contains an ordered list of authorization plugins that Kubernetes is
supposed to authenticate users with. When multiple authentication plugins are enabled, the
first one that will successfully authenticate the request will make Kubernetes skip executing
all remaining plugins.

The default authorization mode is AlwaysAllow, which allows all requests.

The following authorization schemes are supported:

Attribute-based control
Role-based control
Webhook
AlwaysDeny

AlwaysAllow

Let's describe them, one by one, briefly.

Working with the Kubernetes API

[247]

Attribute-based access control
Attribute-Based Access Control (ABAC) policy will be used if you start the api-server
with the --authorization-mode=ABAC option. This policy uses local files in which you
can, in a flexible way, define permission every user should have. There is an additional
option to provide a policy file: --authorization-policy-file, so the complete syntax to
use this policy will be:

$ kube-apiserver --authorization-mode=ABAC \
--authorization-policy-file=<PATH_TO_ POLICY_FILE>

Note that any changes to policy file will require a restart of the api-server.

As you remember from Chapter 7, Introduction to Kubernetes, Kubernetes clusters use the
concept of namespaces to group related resources, such as Pods, deployments, or services.
The authorization schemas in the api-server's make use of these namespaces. The
ABAC policy file syntax is rather clear and readable. Each entry is a JSON object describing
the authorization rule. Consider the following entry in the policy file, which gives user
john complete access to the namespace myApp:

{
 "apiVersion": "abac.authorization.kubernetes.io/v1beta1",
 "kind": "Policy",
 "spec": {
 "user":"john",
 "namespace": "myApp",
 "resource": "*",
 "apiGroup": "*",
 "nonResourcePath": "*"
 }
}

The next example will give user admin complete access to all the namespaces:

{
 "apiVersion": "abac.authorization.kubernetes.io/v1beta1",
 "kind": "Policy",
 "spec":{
 "user":"admin",
 "namespace": "*",
 "resource": "*",
 "apiGroup": "*",
 "nonResourcePath": "*"
 }
}

Working with the Kubernetes API

[248]

And finally, an example that gives all users read-only access to the entire cluster:

{
 "apiVersion": "abac.authorization.kubernetes.io/v1beta1",
 "kind": "Policy",
 "spec": {
 "user":"*",
 "namespace": "*",
 "resource": "*",
 "apiGroup": "*",
 "nonResourcePath": "*",
 "readonly":true
 }
}

Role-based access control (RBAC)
The Role-Based Access Control (RBAC), policy implementation is deeply integrated into
Kubernetes. In fact, Kubernetes uses it internally for the system components, to grant the
permissions necessary for them to function. RBAC is 100% API driven, roles and bindings
are API resources that an administrator can write and create on the cluster such as other
resources such as Pods, deployments, or services. Enabling RBAC mode is as easy as passing
a flag to kube-apiserver:

--authorization-mode=RBAC

This mode allows you to create and store policies using the Kubernetes API. In the RBAC
API, a set of permission is represented by the concept of role. There is a distinction between
namespace roles, represented by a Role resource, and a whole cluster role, represented by a
ClusterRole resource. A ClusterRole can define the same all permissions a Role can
define, but also some cluster-related permission, such as managing cluster nodes or
modifying resources across all available namespaces. Note that once RBAC is enabled, every
aspect of the API is disallowed access.

Permissions are additive; there are no deny rules.

Working with the Kubernetes API

[249]

This is an example of role that gives the whole set of available permissions to all operations
on all resources:

apiVersion: rbac.authorization.k8s.io/v1beta1
metadata:
 name: cluster-writer
rules:
 - apiGroups: ["*"]
 resources: ["*"]
 verbs: ["*"]
 nonResourceURLs: ["*"]

The Role is a resource, as you remember from Chapter 8, Using Kubernetes with Java, to
create resource using the file, you execute the kubectl create command, for example:

$ kubectl create -f cluster-writer.yml

A Role and ClusterRole defines the set of permissions, but does not assign them to users
or groups directly. There is another resource for that in Kubernetes API, which is
RoleBinding or ClusterRoleBinding. They bind Role or ClusterRole to the specific
subject, which can be user, group, or service user. To bind the Role or ClusterRole, you
will need to execute the kubectl create rolebinding command. Take a look at the
following examples. To grant the adminClusterRole to a user named john in the
namespace myApp:

$ kubectl create rolebinding john-admin-binding \
--clusterrole=admin --user=john --namespace=myApp

The next one will grant the cluster-admin ClusterRole to a user named admin across
the entire cluster:

$ kubectl create clusterrolebinding admin-cluster-admin-binding \
--clusterrole=cluster-admin --user=admin

The equivalent YAML file to use with kubectl create -f will be as follows:

apiVersion: rbac.authorization.k8s.io/v1beta1
kind: ClusterRoleBinding
metadata:
 name: admin-cluster-admin-binding
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name cluster-admin
subjects:
- kind: User
 name: admin

Working with the Kubernetes API

[250]

WebHook
When the api-server is started with the --authorization-mode=Webhook option, it
will make calls to external HTTP server to authorize the user. This gives you the capability to
create your own authorization servers. In other words, a WebHook is an HTTP callback
mode that allows you to manage authorization using a remote REST server, either
developed on your own, or a third-party authorization server.

When doing the authorization check, the api-server will execute a HTTP POST request,
with a JSON payload containing a serialized
api.authorization.v1beta1.SubjectAccessReview object. This object describes the
user making request to the api-server, the action which this user would like to execute,
and the details about the resource being the subject of this action. An example request
payload could look like the following example:

{
 "apiVersion": "authorization.k8s.io/v1beta1",
 "kind": "SubjectAccessReview",
 "spec": {
 "resourceAttributes": {
 "namespace": "rest-example",
 "verb": "get",
 "resource": "pods"
 },
 "user": "john",
 "group": [
 "group1",
 "group2"
]
 }
}

The remote authorization server should provide a response, saying if this user is authorized
to execute the specified action on a specified resource. The response should contain the
SubjectAccessReviewStatus field, specifying if the api-server should either allow or
disallow access. A permissive JSON response would looks the same as the this:

{
 "apiVersion": "authorization.k8s.io/v1beta1",
 "kind": "SubjectAccessReview",
 "status": {
 "allowed": true
 }
}

Working with the Kubernetes API

[251]

The negative response will appear as in the following example:

{
 "apiVersion": "authorization.k8s.io/v1beta1",
 "kind": "SubjectAccessReview",
 "status": {
 "allowed": false,
 "reason": "user does not have read access to the namespace"
 }
}

Having the possibility to delegate the authorization to another service makes the
authorization process very flexible, imagine your own software that authorizes a user to do
certain things in your cluster depending on the roles they have in the corporate LDAP
directory for example.

AlwaysDeny
This policy denies all requests. If will be used if you start the api-server with a --
authorization-mode=AlwaysDeny switch. This can be useful if you are doing some
testing or would like to block incoming requests without actually stopping the api-
server.

AlwaysAllow
If you start the api-server with --authorization-mode=AlwaysAllow, all requests will
be accepted, without using any authorization schema. Use this flag only if you do not
require authorization for your API requests.

As you can see, the authentication and authorization possibilities in Kubernetes are very
flexible. On the diagram at the beginning of this chapter we have seen the third phase of the
API call flow: the admission control. What role does the admission control play? Let's find
out.

Working with the Kubernetes API

[252]

Admission control
An admission control plug-in intercepts requests to the Kubernetes API server after the
request is authenticated and authorized, but prior to making any changes to the API
resource. These plug-ins run in sequence, before a request is accepted into the cluster. The
Kubernetes API server supports a flag, admission-control that takes a comma-delimited,
ordered list of admission control plugins.

Now that we have an overview of how the API call looks the same, let's actually make some
use of it.

Using the API
The API reference is a detailed document, available on the internet https:/ /kubernetes.
io/docs/api-reference/ v1. 6/ ; of course the API version will change in the
future, v1.6 was the current one at the time of writing.

Before we make some actual calls to the api-server, it's worth knowing that kubectl also
communicates with Kubernetes cluster using the API. As we mentioned earlier, you can see
what REST calls are being made by the kubectl command. Looking at what's being sent to
the server during the usage of kubectl is a great way to become familiar with Kubernetes
API.

To see REST requests being executed by kubectl, run it with a higher
level of verbosity, for example with a --v=6 or --v=9 option.

Before we start making actual REST calls, let's briefly see what API operations are possible.

API operations
Kubernetes API defines the CRUD (create, update, read, and delete) set of operations:

Create: Create operations will create the resource in the cluster. The JSON
payload that you will need to provide with your REST call is the resource
manifest. It's the equivalent of the YAML file we've been constructing in the
Chapter 8, Using Kubernetes with Java. This time, it will be in the JSON format.

https://kubernetes.io/docs/api-reference/v1.6/
https://kubernetes.io/docs/api-reference/v1.6/
https://kubernetes.io/docs/api-reference/v1.6/
https://kubernetes.io/docs/api-reference/v1.6/
https://kubernetes.io/docs/api-reference/v1.6/
https://kubernetes.io/docs/api-reference/v1.6/
https://kubernetes.io/docs/api-reference/v1.6/
https://kubernetes.io/docs/api-reference/v1.6/
https://kubernetes.io/docs/api-reference/v1.6/
https://kubernetes.io/docs/api-reference/v1.6/
https://kubernetes.io/docs/api-reference/v1.6/
https://kubernetes.io/docs/api-reference/v1.6/
https://kubernetes.io/docs/api-reference/v1.6/
https://kubernetes.io/docs/api-reference/v1.6/
https://kubernetes.io/docs/api-reference/v1.6/
https://kubernetes.io/docs/api-reference/v1.6/
https://kubernetes.io/docs/api-reference/v1.6/
https://kubernetes.io/docs/api-reference/v1.6/
https://kubernetes.io/docs/api-reference/v1.6/
https://kubernetes.io/docs/api-reference/v1.6/
https://kubernetes.io/docs/api-reference/v1.6/

Working with the Kubernetes API

[253]

Update: The update operation can be either Replace or Patch. A Replace will
simply replace the whole resource object (a Pod, for example) with the provided
spec. A Patch, on the other hand, will apply a change only to a specific field.
Read: A read operation can be either Get, List, or Watch. By executing Get, you
will be given a specific resource object by its name. Executing List will retrieve
all resource objects of a specific type within a namespace. You can use the selector
query. A special form of the List operation is List All Namespaces, as the
name says this will retrieve resources across all namespaces. A Watch operation
will stream results for an object or a of list objects as they are updated.
Delete: Will simply delete a resource.

Kubernetes api-server also exposes some additional, resource-specific operations. This
includes Rollback, which rollbacks a Pod template to a previous version or read /write
scale, which reads or updates the number of replicas for the given resource.

Example calls
In the following examples, we will be using a command-line HTTP client, curl. You are not
limited to curl, you can freely use the HTTP client you find convenient. Using the HTTP
client with the user interface is often very handy, they usually present the HTTP response in
a structured form and sometimes also do some request validation, if it's well formed. My
recommended GUI clients will be Postman (for Windows, Linux, or Mac), or PAW for Mac.

Before making any calls, let's first start a proxy to the Kubernetes API server. The kubectl
needs to be configured first, to be able to communicate with your cluster. In our local
Kubernetes installation with minikube, the kubectl command will be automatically
configured. To start a proxy to the api-server, execute the following command:

$ kubectl proxy --port=8080

While the proxy session is running, any request sent to localhost:8000 will be forwarded
to the Kubernetes API server. To check if our api-server is running, let's ask for the API
version it supports:

$ curl http://localhost:8080/api/

Working with the Kubernetes API

[254]

If the api-server is running and waiting for incoming requests, it should give you an
output similar to this one:

It seems to be running fine; let's continue and make some use of the exposed API, starting,
the same as previously, by creating a service.

Creating a service using the API
First, let's create a service manifest file. Note that if you have your services, deployments,
and Pods created in Chapter 8, Using Kubernetes with Java, by using the kubectl, you will
need to delete them using kubectl or the Kubernetes dashboard. We are going to use the
same names for the service and a deployment. When using curl with larger payloads, it's
more convenient to have the payload in the external file and not type it in the command-
line. The JSON file that we will use as the payload is very similar to the one we have been
using when creating a Pod with kubectl, but in JSON format this time. Let's create a file
named service.json:

{
 "apiVersion": "v1",
 "kind": "Service",
 "metadata": {
 "name": "rest-example",
 "labels": {
 "app": "rest-example",
 "tier": "backend"
 }
 },

Working with the Kubernetes API

[255]

 "spec": {
 "type": "NodePort",
 "ports": [
 {
 "port": 8080
 }
],
 "selector": {
 "app": "rest-example",
 "tier": "backend"
 }
 }
}

Note that the contents of the JSON file are basically identical to the one we've been using
when we were creating resources using YAML files. Yes, you can clearly see how the
kubectl command is implemented, it just creates a JSON payload from the file input, there
is no magic behind the scenes, at all.

You can convert between YAML to JSON and vice-versa using one of the
YAML/JSON converters available online. The Kubernetes api-
server will accept such JSON as Kubectl accepts the YAML file.

Having our JSON file ready, the next step is to create the service resource in our cluster by
invoking the following command:

$ curl -s http://localhost:8080/api/v1/namespaces/default/services \
-XPOST -H 'Content-Type: application/json' -d@service.json

Having our service defined, let's create a deployment.

Creating a deployment using the API
Creating a deployment is very similar to creating a service, it's creating another type of
Kubernetes resource, after all. All we need is a proper JSON payload file that we will be
sending to the api-server using the POST HTTP method. Our rest-example deployment
manifest in JSON can look as follows:

{
 "apiVersion": "extensions/v1beta1",
 "kind": "Deployment",
 "metadata": {
 "name": "rest-example"
 },

Working with the Kubernetes API

[256]

 "spec": {
 "replicas": 1,
 "template": {
 "metadata": {
 "labels": {
 "app": "rest-example",
 "tier": "backend"
 }
 },
 "spec": {
 "containers": [
 {
 "name": "rest-example",
 "image": "jotka/rest-example",
 "imagePullPolicy": "IfNotPresent",
 "resources": {
 "requests": {
 "cpu": "100m",
 "memory": "100Mi"
 }
 },
 "env": [
 {
 "name": "GET_HOSTS_FROM",
 "value": "dns"
 }
],
 "ports": [
 {
 "containerPort": 8080
 }
]
 }
]
 }
 }
 }
}

Working with the Kubernetes API

[257]

Let's save the file using the deployment.json filename. Again, all we need to do now is to
post this file to the api-server. This process is very similar to the creation of the service, it
will be just a POST to the different endpoint with a different payload. To create a
deployment from the shell using curl, execute the following command:

$ curl -s \
http://localhost:8080/apis/extensions/v1beta1/namespaces/default/deployment
s -XPOST -H 'Content-Type: application/json' \
-d@deployment.json

In the preceding example, you should note that deployment related API commands are in
another API group: extensions. That's why the endpoint will have a different REST path.

After executing those two REST HTTP requests, we should have our service and
deployment created in the cluster. Of course, because of the deployment manifest contains
the number of replicas with the value 1, one Pod will be created as well. Let's check if it's
true, by executing the following commands:

$ kubectl get services
$ kubectl get deployments
$ kubectl get pods

As you can see in the following screenshot, all of the resources exist on our cluster. This
time, however, they were created by two simple HTTP POST requests to the Kubernetes
api-servers, without using kubectl:

Working with the Kubernetes API

[258]

We have said before that we can observe what HTTP requests are being executed by the
kubectl tool. Let's verify that. We will execute the last command to get the list of Pods, but
with additional verbosity level, the same as this:

$ kubectl get pods -v6

The output should be similar to the following:

There's a bunch of log lines about getting information from the cluster cache, but the last
line is especially interesting, it contains the actual HTTP request being made by kubectl:

GET https://192.168.99.100:8443/api/v1/namespaces/default/pods

If you now run the curl GET command using this URL, all the authentication and
authorization mechanisms would come into play. But having the api-server proxy
running, we can skip authorization and authentication by executing the call on the proxied
port (note that curl executes the GET method by default):

$ curl http://localhost:8080/api/v1/namespaces/default/pods

Working with the Kubernetes API

[259]

As the output, you will be given the JSON response containing detailed information about
Pods in your cluster. The API is working, as you can see in the following screenshot:

Deleting a service and deployment
If you decide it's time to do some clean up, you may delete the service and the deployment
by executing the HTTP DELETE request, for example:

$ curl http://localhost:8000/ \
apis/extensions/v1beta1/namespaces/default/deployments/rest-example \
-XDELETE
$ curl http://localhost:8080/ \ api/v1/namespaces/default/services/rest-
example -XDELETE

Finding out the proper API operation REST paths (endpoints) can be very inconvenient just
by looking at the web documentation or by spying what URLs are being called by kubectl.
There's a better way of doing this; OpenAPI specification of the Kubernetes api-server.
Let's look at how we can get this specification.

Working with the Kubernetes API

[260]

Swagger docs
The Kubernetes api-server provides the list of available API commands by utilizing the
OpenAPI specification. The OpenAPI Specification defines a standard, language-agnostic
interface to REST APIs that allows both humans and computers to discover and understand
the capabilities of the service without access to source code, documentation, or through
network traffic inspection. It's very convenient to browse the API commands catalogue
using the SwaggerUI tool that comes with Kubernetes api-server. You can also execute
the HTTP commands using SwaggerUI.

Note that the SwaggerUI is not enabled by default if you are running the local cluster using
Minikube. You will need to enable it during the cluster startup, using the following
command:

$ minikube start --extra-config=apiserver.Features.EnableSwaggerUI=true

Having the api-server proxy still running using port 8080, visit the following host in
your web browser to see the SwaggerUI screen:

http://localhost:8080/swagger-ui/

You will be presented with a list of available API commands, grouped into API groups:

Working with the Kubernetes API

[261]

Expanding each API section will give you all the available endpoints with the description of
each operation. The SwaggerUI is a great tool to explore an API in a clear and readable
form.

Summary
As you can see, the API exposed by Kubernetes is a very powerful tool in your arsenal. Any
task that can be performed through the dashboard or kubectl client is exposed as an API.
You can do almost anything with your cluster simply by utilizing HTTP calls. Kubernetes
takes an API-first approach that makes it programmable and extensible. As we have seen it
is easy to get started with the API. Our service and deployment creating examples, may be
simple but should give you an idea how to experiment with the api-server. Using the
API you can create and retrieve cluster resources not only from the command-line using
kubectl, but also from your own application, build scripts, or continuous delivery
pipelines. Only your imagination and the sky is the limit, and speaking of the sky, it's time
to move there and see how Kubernetes can be used in the cloud.

10
Deploying Java on Kubernetes

in the Cloud
In previous chapters, we have managed to run the Kubernetes cluster locally. Using
minikube is a great way to learn Kubernetes and experiment on your own machine. The
minikube powered cluster behaves exactly the same as the normal cluster that runs on the
server. However, if you decide to run your clustered software in a production, the cloud is
one of the best solutions. In this chapter, we will briefly cover the advantages of using cloud
environments in the context of microservices running on Docker. Next, we are going to
deploy our Kubernetes cluster on the Amazon AWS. Configuring AWS and running
Kubernetes on it is not the easiest and most straightforward process from the start but,
following this chapter will give you an overview of the process, you will be able to run your
own cloud cluster quickly and deploy your own or third-party Docker images on it.

The list of topics covered includes:

The benefits of using cloud, Docker, and Kubernetes
Installing the needed tools
Configuring AWS
Deploying the cluster

Let's begin with the advantages of using a cloud-deployed Kubernetes cluster.

Deploying Java on Kubernetes in the Cloud

[264]

Benefits of using the cloud, Docker, and
Kubernetes
Having an application deployed on a Kubernetes cluster has its advantages. It's fail
resilient, scalable, and has efficient architecture. What's the difference between having your
own infrastructure and using the cloud? Well, it comes down to couple of factors. First, it
can be a significant cost reduction. For small services or applications, which could be shut
down when not in use, the price of deploying applications in the cloud can be lower, due to
lower hardware costs, there will be more effective usage of physical resources. You will not
have to pay for the nodes that do not use the computing power or network bandwidth.

Having your own servers requires you to pay for the hardware, energy, and operating
system software. Docker and Kubernetes are free of charge, even for commercial purposes;
so, if you run it in the cloud, the cloud provider fee will be the only cost. Cloud providers
update their software stack often; you can benefit from this by having the latest and greatest
versions of the operating system software.

When it comes to the computing power or network bandwidth, large cloud providers such
as, Amazon or Google cannot be easily beaten. Their cloud infrastructure is huge. Since they
provide services to many different clients, they buy large, high-performance systems that
offer performance levels much higher than a small company can afford to run internally.
Also, as you will see in the next sections of this chapter, cloud providers can spin up new
servers or services in minutes or even seconds. As a result, if there's a need, new instances
will be brought to life in a way that is almost transparent for the users of your software. If
your application needs to handle a lot of requests, sometimes having it deployed in the
cloud can be the only option.

As for fault-tolerance, because cloud providers have their infrastructure spread out over the
whole world (such as AWS zones, as you will see later in this chapter), your software can be
fail-proof. No single accident such as power outage, fire, or an earthquake, can stop your
application from running. Adding Kubernetes to the equation can scale the deployment up
or down and will increase the fault tolerance of your application, even reducing the chance
of complete failure to zero.

Let's move our software to the cloud. To do this, we need to create a toolset first, by
installing the required software.

Deploying Java on Kubernetes in the Cloud

[265]

Installing the tools
To be able to manage Kubernetes cluster on Amazon EC2, we will need to install some
command-line tools first. Of course, using the Amazon EC2 web interface is also possible.
Spinning up a cluster is quite a complicated process; you will need to have a user with
proper access and permissions, storage for a cluster state, EC2 instances to run your
Kubernetes master and worker nodes, and so on. Doing everything manually is possible,
but can be time consuming and error prone. Luckily, we have tools that can automate most
of the things for us, this will be the AWS command-line client (awscli) and kops,
Kubernetes operations, production Grade K8s installation, upgrades, and management.
There are some requirements though. Kops runs on Linux and macOS, it's written in Go,
like Docker. The awscli is written in Python, so let's focus on Python installation first.

Python and PIP
To run the AWS command-line tools (awscli), we will need python3 present on our
machine.

It may be present already, you can verify that using the command:

$ python3 --version

If the output is command not found, the fastest way of installing it will be using the
package manager you have on your system, such as apt on Debian/Ubuntu, yum on Fedora,
or Homebrew on macOS. If you work on macOS and do not have Homebrew installed, I
highly recommend doing so; it's a wonderful tool that gives you the possibility to easily
install thousands of packages together with all the needed dependencies. Homebrew is
available freely at https:/ /brew. sh/ . To install it, execute the following:

$ ruby -e "$(curl -fsSL
https://raw.githubusercontent.com/Homebrew/install/master/install)"

From now on, you should have the brew command available in your macOS terminal.

To install Python on Linux using the apt package manager (on Debian or Ubuntu), execute
the following commands:

$ sudo apt-get update
$ sudo apt-get install python3.6

https://brew.sh/
https://brew.sh/
https://brew.sh/
https://brew.sh/
https://brew.sh/
https://brew.sh/
https://brew.sh/
https://brew.sh/

Deploying Java on Kubernetes in the Cloud

[266]

On macOS, this will be the following command:

$ brew install python3

The process of installing Python depends on the speed of your machine and internet
connection, but it should not take long. Once Python is installed, we will need another tool,
which is pip. pip is the recommended tool for installing Python packages. It's written in
Python itself. You can install it using the package manager of your choice, executing the
following, for example, on Ubuntu or Debian:

$ sudo apt-get install python3-pip

An alternative way of installing pip is using the installation script. In this case, the process
is exactly the same for Linux and macOS. First, we need to download the installation script
using the following command:

$ curl -O https://bootstrap.pypa.io/get-pip.py

After a while, we need to run the installation script by executing the following:

$ python3 get-pip.py -user

After a while, pip should be available for you in the terminal shell. To verify if it's working,
execute the following command:

$ pip -V
or
$ pip --version

Now that we have Python and pip installed and working properly, it's time to move on to
more interesting things, installing Amazon AWS command-line utilities.

AWS command-line tools
The Amazon AWS command-line tool (awscli) interface is a unified tool for managing
your AWS services. The awscli is built on top of the AWS SDK for Python, which provides
commands for interacting with AWS services. With minimal configuration (actually,
providing login id and a secret is enough, we will do it in a while), you can start using all of
the functionality provided by the AWS Management Console web interface. Moreover, the
awscli is not only about EC2, which we will be using to deploy our cluster on, but also
other services such as S3 (a storage service) for example.

Deploying Java on Kubernetes in the Cloud

[267]

To install awscli, execute the following pip command:

$ pip3 install --user --upgrade awscli

After a while, pip will download and install the necessary files in the python3 folder
structure on your drive. It will be ~/Library/Python/3.6/bin in case of macOS and
Python 3.6. It's very convenient to add this folder to your PATH environment variable, to
make it available from anywhere in the shell. This is straightforward; you will need to edit
the PATH variable in one of those files, depending on the shell you use:

Bash: .bash_profile, .profile, or .bash_login
Zsh: .zshrc
Tcsh: .tcshrc, .cshrc or .login

An example PATH entry could look the same as this, on macOS:

export PATH=~/Library/Python/3.6/bin/:$PATH

After logging back in or launching a new terminal, you can verify if the aws command is
available, by executing the following command:

$ aws -version

As you can see in the output, this will give you a detailed aws command-line tools version
also with the Python version it's running on:

The awscli is ready to use, but we have one more tool to add to our tool setup. It will be
Kubernetes kops.

Deploying Java on Kubernetes in the Cloud

[268]

Kops
Kubernetes operations or kops, for short, is the production grade Kubernetes installation,
upgrades, and management tool. It's a command-line utility that helps you create, destroy,
upgrade, and maintain highly available Kubernetes clusters on AWS. AWS is officially
supported by the tool. You can find the kops releases on GitHub:
https://github.com/kubernetes/kops/releases

To install on either macOS or Linux, you will just need to download the binary, change the
permission to executable and you are done. To download, execute, for example:

$ wget \
https://github.com/kubernetes/kops/releases/download/1.6.1/kops-darwin-amd6
4
$ chmod +x kops-darwin-amd64
$ mv kops-darwin-amd64 /usr/local/bin/kops

Alternatively, if you are using Linux, execute the following command:

$ wget \
https://github.com/kubernetes/kops/releases/download/1.6.2/kops-linux-amd64
$ chmod +x kops-linux-amd64
$ mv kops-linux-amd64 /usr/local/bin/kops

Alternatively, again, using the package manager will be the easiest way to get the latest
kops binary, for example using brew on macOS:

$ brew update && brew install kops

Note that you must have kubectl (https:/ /kubernetes. io/ docs/ tasks/ tools/ install-
kubectl/) installed in order for kops to work. If you use the package manager, the
dependency to kubectl will be probably defined in the kops package, so the kubernetes-
cli will be installed first.

The last tool is the jq. Although not mandatory, it's very useful when dealing with
JSON data. All the AWS, Kubernetes, and kops commands will post and receive JSON
objects, so having a tool for parsing JSON comes in handy, I highly recommend installing
jq.

https://github.com/kubernetes/kops/releases
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/

Deploying Java on Kubernetes in the Cloud

[269]

jq
jq is a command-line JSON processor. It works like sed for JSON data; you can use it to
filter, parse, and transform structured data with the same ease that sed, awk, or grep let
you do with raw text. Jq is available on GitHub at https:/ / stedolan. github. io/jq/ . The
installation is very simple; it's just a single binary, available for Windows, macOS, and
Linux. Just download it and copy it into the folder available on your system PATH to be able
to run it from the shell or command-line.

Assuming we have all the tools installed before we start using kops, we will need to
configure our AWS account first. This will be creating an administrative user and then,
using the aws command-line tool, creating the user for running kops.

Configuring Amazon AWS
The configuration of AWS before setting up a Kubernetes cluster goes down to creating a
user, basically. All the rest will be done more or less automatically by the kops command.
Before we can use kops from the command-line, it's good to have a user dedicated to kops.
But first, we will need to create an administrator user. We will do it from the Web
Management Console.

Creating an administrative user
Depending on the AWS region you have chosen, the AWS Management Console is
available at a subdomain of console.aws.amazon.com, this will be https:/ /eu-central-
1.console.aws.amazon. com, for example. After logging in, go to the IAM page of the
Security, Identity, and Compliance section, then switch to the Users page, then click on the
Add user button.

https://stedolan.github.io/jq/
https://stedolan.github.io/jq/
https://stedolan.github.io/jq/
https://stedolan.github.io/jq/
https://stedolan.github.io/jq/
https://stedolan.github.io/jq/
https://stedolan.github.io/jq/
https://stedolan.github.io/jq/
https://stedolan.github.io/jq/
https://stedolan.github.io/jq/
https://stedolan.github.io/jq/
https://stedolan.github.io/jq/
https://eu-central-1.console.aws.amazon.com
https://eu-central-1.console.aws.amazon.com
https://eu-central-1.console.aws.amazon.com
https://eu-central-1.console.aws.amazon.com
https://eu-central-1.console.aws.amazon.com
https://eu-central-1.console.aws.amazon.com
https://eu-central-1.console.aws.amazon.com
https://eu-central-1.console.aws.amazon.com
https://eu-central-1.console.aws.amazon.com
https://eu-central-1.console.aws.amazon.com
https://eu-central-1.console.aws.amazon.com
https://eu-central-1.console.aws.amazon.com
https://eu-central-1.console.aws.amazon.com
https://eu-central-1.console.aws.amazon.com
https://eu-central-1.console.aws.amazon.com
https://eu-central-1.console.aws.amazon.com

Deploying Java on Kubernetes in the Cloud

[270]

You will be presented with the user creation screen:

Deploying Java on Kubernetes in the Cloud

[271]

We will need this user for using awscli, so the only option we need to mark is the
Programmatic Access. After clicking on Next: Permissions, let's give our admin user full
administrative rights by adding him to the admin group:

Deploying Java on Kubernetes in the Cloud

[272]

On the last page of the user creation wizard, you will be able to see the Access key ID and
Secret access key ID. Do not close the page, we will need both in a short while to
authenticate using awscli:

That's it. We have created an admin user with all the administrative rights and have the
access keys. It's all we need to manage our AWS instances using awscli. Running kops
using the admin user is probably not the best idea, so let's create a separate user for that.
This time, however, we will do it from the command-line. It will be a lot easier in
comparison to UI clicking on the Web Console. First, let's authenticate using the admin
user's Access key ID and Secret access key ID, presented on the last page of the user
creation wizard.

Deploying Java on Kubernetes in the Cloud

[273]

Creating a user for kops
The kops user will need to have the following permissions in AWS to function properly:

AmazonEC2FullAccess

AmazonS3FullAccess

AmazonRoute53FullAccess

IAMFullAccess

AmazonVPCFullAccess

First, we are going to create a group named kops and give the needed permissions to the
group. Execute the following list of commands to create a group and assign permissions:

$ aws iam create-group --group-name kops

$ aws iam attach-group-policy --policy-arn $
arn:aws:iam::aws:policy/AmazonEC2FullAccess --group-name kops

$ aws iam attach-group-policy --policy-arn
arn:aws:iam::aws:policy/AmazonS3FullAccess --group-name kops

$ aws iam attach-group-policy --policy-arn
arn:aws:iam::aws:policy/AmazonRoute53FullAccess --group-name kops

$ aws iam attach-group-policy --policy-arn
arn:aws:iam::aws:policy/IAMFullAccess --group-name kops

$ aws iam attach-group-policy --policy-arn
arn:aws:iam::aws:policy/AmazonVPCFullAccess --group-name kops

The create-group command will give you some JSON response, but there will be no
response when attaching a permission (group policy) to the group if all goes well:

Deploying Java on Kubernetes in the Cloud

[274]

Next, let's create the kops IAM user and add the user to the kops group, using the
following commands:

$ aws iam create-user --user-name kops
$ aws iam add-user-to-group --user-name kops --group-name kops

If you are curious you can now login into the web AWS console. You will see that our kops
user has all the permissions we need:

To list all the registered users, execute the following command:

$ aws iam list-users

As you can see in the following screenshot, we should now have two users: admin and
kops:

Deploying Java on Kubernetes in the Cloud

[275]

The last thing we need to do regarding our new kops user is to generate the access keys. We
will need them to authenticate using the aws configure command. Execute the following
to generate the access keys for the kops user:

$ aws iam create-access-key --user-name kops

As you can see in the following screenshot, AWS will answer with the JSON response
containing AccessKeyId and SecretAccessKey; we will need both when authenticating
using the aws configure command:

Deploying Java on Kubernetes in the Cloud

[276]

All we need to do now is to authenticate using the aws configure command, providing
the AccessKeyId and SecretAccessKey we got in the response. Execute the following:

$ aws configure

Because the aws configure command doesn't export these variables for kops to use, we
need to export them now:

$ export AWS_ACCESS_KEY_ID=<access key>
$ export AWS_SECRET_ACCESS_KEY=<secret key>

That's it, we have authenticated with our new user named kops, which has all the
permissions needed to spin up a Kubernetes cluster. From now on, every kops command
we execute will use the AWS kops user. It's time to get back to the point and create our
cluster, eventually.

Creating the cluster
We are going to create a simple cluster with one master node and two worker nodes. To do
it using kops, we will need:

A user profile declared in ~/.aws/credentials (this is done automatically if
you authenticate using aws configure).
An S3 bucket to store kops cluster state. In order to store the representation of
our cluster and its state, we need to create a dedicated S3 bucket for kops to use.
This bucket will become the source of truth for our cluster configuration.
DNS configured. This means we will need a Route 53 hosted zone in the same
AWS account. Amazon Route 53 is a highly available and scalable cloud Domain
Name System (DNS) web service. Kops will use it to create records needed by
the cluster. If you are using newer kops (1.6.2 or later), then DNS configuration is
optional. Instead, a gossip-based cluster can be easily created. For the purposes of
the example's simplicity, we will use the gossip-based cluster. To make it work,
the cluster name must end with k8s.local. Let's look at other options we have
regarding DNS setup, though.

Deploying Java on Kubernetes in the Cloud

[277]

DNS settings
Four scenarios are possible for our cluster's domain, basically: the root domain, which is
hosted on AWS, the subdomain of the domain hosted on AWS, using Amazons Route 53 for
a domain hosted elsewhere, and finally, a subdomain for your cluster set up in Route 53
while having the root domain elsewhere. Let's briefly look at those setups now.

Root domain on AWS hosted domain
If you have your domain bought and hosted on AWS, you will probably have the Route 53
configured for you automatically already. If you would like to use this root level domain for
your cluster, you need do nothing to be able to use that domain name with your cluster.

The subdomain of the domain hosted on AWS
If you have your domain bought and hosted on AWS, but would like to use the subdomain
for the cluster, you will need to create a new hosted zone in Route 53 and then delegate the
new route to this new zone. This is basically about copying the NS servers of your
subdomain up to the parent domain in Route 53. Let's assume our domain is mydomain.com;
we need to get some information first. Note that the jq command-line tool comes in handy
now, when executing aws commands. First, we need the ID of our main parent zone:

$ aws route53 list-hosted-zones | jq '.HostedZones[] \
| select(.Name=="mydomain.com.") | .Id'

To create a new subdomain, execute the following:

$ aws route53 create-hosted-zone --name myservice.mydomain.com \
--caller-reference $ID | jq .DelegationSet.NameServers

Note that the previous command will list the name servers of the new domain. If you
created the subdomain before, and would like to list the name servers (to copy the NS
servers list to the parent zone, we will need to know them first), execute the following
command to get the subdomain zone ID:

$ aws route53 list-hosted-zones | jq '.HostedZones[] | \ select(.Name=="
myservice.mydomain.com.") | .Id'

http://www.mydomain.com/

Deploying Java on Kubernetes in the Cloud

[278]

Having the ID of the subdomain zone, we can list its name servers, by executing the
following command:

$ aws route53 get-hosted-zone --id <your-subdomain-zoneID> \
| jq .DelegationSet.NameServers

So far, we have our parent's zone ID, subdomain zone's ID and a list of subdomain's name
servers. We are ready to copy them into the parent. The most convenient way will be to
prepare the JSON file, as it's quite a long input. The file will look the same as the following:

{
 "Changes": [
 {
 "Action": "CREATE",
 "ResourceRecordSet": {
 "Name": "myservice.mydomain.com",
 "Type": "NS",
 "TTL": 300,
 "ResourceRecords": [
 {
 "Value": "ns-1.awsdns-1.com"
 },
 {
 "Value": "ns-2.awsdns-2.org"
 },
 {
 "Value": "ns-3.awsdns-3.com"
 },
 {
 "Value": "ns-4.awsdns-4.net"
 }
]
 }
 }
]
}

You will need to save this as a file, let's say my-service-subdomain.json, and execute
the last command. It will copy the name servers list into the parent zone:

$ aws route53 change-resource-record-sets
--change-batch file://my-service-subdomain.json \
--hosted-zone-id <your-parent-zone-id>

Deploying Java on Kubernetes in the Cloud

[279]

After a while, all network traffic to *.myservice.mydomain.com will be routed to the
correct subdomain hosted zone in AWS Route 53.

Route 53 for a domain purchased with another registrar
If you bought your domain elsewhere, and would like to dedicate the entire domain to your
AWS hosted cluster, things can get a little complicated, as this setup requires you to make
crucial changes in another domain registrar.

If the registrar for your domain is also the DNS service provider for the
domain (which is, actually, very often the case), it's recommended to
transfer your DNS service to Amazon Route 53 before you continue with
the process to transfer the domain registration.

The reason for that is that when you transfer the registration, the previous registrar might
disable the DNS service for the domain, as soon as they receive a transfer request from
Route 53. As a result, any service you have on this domain, such as a web application or an
email, might become unavailable. To transfer the domain registration to Route 53 from
another registrar, you will need to use the Route 53 console, available at https:/ /console.
aws.amazon.com/route53/ . In the navigation pane, choose Registered Domains and then
Transfer Domain, and enter the name of the domain which you would like to transfer and
click on Check. If the domain is unavailable for transfer, the console will list the probable
reasons and a recommended way to handle them. If everything is ok and the domain is
available for transfer, you will have an option to add it to the cart. You will need to enter
some details then, such as your contact information, the authorization code for transfer (you
should get it from the previous registrar) and the name server settings. I highly recommend
selecting the Route 63 managed DNS server, as it's quite easy to configure and reliable. The
Route 63 will take care of communication with your previous registrar, but you may receive
some emails requiring you to confirm some things. The transfer process can take a longer
time, but when it's done, you may proceed with configuring the domain for your AWS
based cluster in the same way as in the previous two cases.

https://console.aws.amazon.com/route53/
https://console.aws.amazon.com/route53/
https://console.aws.amazon.com/route53/
https://console.aws.amazon.com/route53/
https://console.aws.amazon.com/route53/
https://console.aws.amazon.com/route53/
https://console.aws.amazon.com/route53/
https://console.aws.amazon.com/route53/
https://console.aws.amazon.com/route53/
https://console.aws.amazon.com/route53/
https://console.aws.amazon.com/route53/
https://console.aws.amazon.com/route53/
https://console.aws.amazon.com/route53/

Deploying Java on Kubernetes in the Cloud

[280]

Subdomain for cluster in AWS Route 53, the domain
elsewhere
If you have your domain registered at a registrar other than Amazon and would like to use
the subdomain of that domain to point to your cluster, you will need to modify your name
servers entries in your registrar. This would require a new hosted zone subdomain to be
created in Route 53 and then migration of this subdomain's name server records to your
registrar.

Similar to the subdomain on the AWS-hosted domain, let's create a subdomain first, by
executing the following command:

$ aws route53 create-hosted-zone \
--name myservice.mydomain.com \
--caller-reference $ID | jq .DelegationSet.NameServers

The output of the previous command will list the name servers for the subdomain. You will
need to log in to your registrar's settings page and create a new subdomain, providing the
four name server records received from the previous command. You can find detailed
instructions on how to edit the name servers for your domain in your specific registrar help
guides.

The previous guides should make your cluster available under a specific domain or
subdomain. For the rest of our chapter, however, we will be running the gossip-based
cluster.

Before we create anything on AWS, we must see what zones are available for use. You
should know that Amazon EC2 is hosted in multiple locations world-wide. These locations
are composed of regions and availability zones. Each region is a separate geographic area.
Each region has multiple, isolated locations known as availability zones. You can pick the
location you want, but first, you will need to check the zones availability. Let's do that now.

Checking the zones' availability
To list the zones available for the specific region, execute the following command:

$ aws ec2 describe-availability-zones --region eu-central-1

Deploying Java on Kubernetes in the Cloud

[281]

As you can see on the following screenshot, AWS will give you the list of zones in the
response:

Creating the storage
Our cluster needs to store its state somewhere. Kops uses Amazon S3 buckets for that
purpose. An S3 bucket is a logical unit of storage in the Amazon Web Services (AWS)
object storage service, Simple Storage Solution (S3). Buckets are used to store objects,
which consist of data and metadata that describes the data. To create a bucket, execute the
following aws command:

$ aws s3api create-bucket \
--bucket my-cluster-store \
--region eu-central-1 \
--create-bucket-configuration LocationConstraint=eu-central-1

Deploying Java on Kubernetes in the Cloud

[282]

As you will see on the following screenshot, AWS will give you back the concise
information about the location of the store:

Having the store created, we will need to make it available for kops when creating a cluster.
To do this, we need to export the bucket's name into the KOPS_STATE_STORE environment
variable to:

$ export KOPS_STATE_STORE=s3://my-cluster-store

We are now ready to create a cluster.

As you remember, we are going to use a gossip-based cluster instead of
configured DNS, so the name must end with k8s.local.

Creating a cluster
Let's first export our cluster name to the environment variable. This will be useful, because
we are going to refer to the cluster's name often. Execute the following command to export
the cluster name:

$ export NAME=my-rest-cluster.k8s.local

The kops create cluster is the command we are going to use to create our cluster. Note
that this will not affect our Amazon EC2 instances yet. The outcome of the command will be
just a local cluster template which we can review and edit before rolling out real, physical
changes on the AWS.

Deploying Java on Kubernetes in the Cloud

[283]

The syntax of the command is very simple:

$ kops create cluster [options]

The command takes a lot of options; you can always find the up-to-date description on
GitHub
at https://github.com/kubernetes/kops/blob/master/docs/cli/kops_create_cluster.m
d. Let's focus on the most important ones:

Option Description

--master-count [number] Sets the number of master nodes. The default is one
master node per master-zone.

--master-size [string] Sets instance size for masters, for example:
--master-size=t2.medium.

--master-volume-size
[number]

Sets instance volume size for master nodes in
gigabytes.

--master-zones
[zone1,zone2]

Specifies AWS zones in which to run masters (this
must be an odd number).

--zones [zone1,zone2] Zones in which to run the cluster, for example: --
zones eu-central-1a,eu-central-1b.

--node-count [number] Sets the number of nodes.

--node-size [string] Sets instance size for nodes, for example:
--node-size=t2.medium.

--node-volume-size int32 Sets instance volume size (in GB) for nodes.

If you would like to make your cluster private (it's public by default) you will need to
consider using these options additionally:

Option Description

--associate-public-ip
[true|false]

Specifies if you want your cluster to have a public IP
assigned or not.

--topology
[public|private]

Specifies the internal networking topology for the
cluster, it can be public or private.

https://github.com/kubernetes/kops/blob/master/docs/cli/kops_create_cluster.md
https://github.com/kubernetes/kops/blob/master/docs/cli/kops_create_cluster.md

Deploying Java on Kubernetes in the Cloud

[284]

--bastion The --bastion flag enables a bastion instance group.
The option is valid only with the private topology. It
will generate a dedicated SSH jump host for SSH
access to cluster instances. A jump host provides a
point of entry into a private network of your cluster. It
can be started and stopped to enable or disable
inbound SSH communication from the internet.

Let's create our cluster now, using the following command:

$ kops create cluster --v=0 \
--cloud=aws --node-count 2 \
--master-size=t2.medium \
--master-zones=eu-central-1a \
--zones eu-central-1a,eu-central-1b \
--name=${NAME} \
--node-size=t2.medium

In the response, kops will list all the details of the configuration that has been created and
suggest some next steps you can take with your new cluster configuration:

Deploying Java on Kubernetes in the Cloud

[285]

After running the command, kops will configure your kubectl Kubernetes client to point
to your new cluster; this will be my-rest-cluster.k8s.local in our example.

As we have said before, at this stage, only the cluster's template is created, not the cluster
itself. You can still change any option by editing your cluster:

$ kops edit cluster my-rest-cluster.k8s.local

This will bring up the default editor you have defined in your shell, where you can see the
cluster template that has been generated. It will contain a lot more settings, not only those
you have specified when running the cluster create command:

If you are satisfied with your cluster template, it's time to spin it up to create real cloud-
based resources, such as networks and EC2 instances. Once the infrastructure is ready, kops
will install Kubernetes on the EC2 instances. Let's do it.

Deploying Java on Kubernetes in the Cloud

[286]

Starting up clusters
To start the cluster and spin up all the necessary EC2 instances, you will need to execute the
update command. It's recommended in the kops manual that you should do it first in the
preview mode without the --yes switch. This will not spin up any EC2 instances:

$ kops update cluster ${NAME}

If all is looking correct, execute the update command with the --yes switch:

$ kops update cluster ${NAME} --yes

Your cluster is starting and should be ready in a few minutes. If you now log in into the
WAS Management Console, you will see your EC2 instances starting up, as you can see in
the following screenshot:

Deploying Java on Kubernetes in the Cloud

[287]

You can also check the whole cluster state, issuing the following command:

$ kops validate cluster

The output will contain information about the number and status of the cluster's nodes,
including the master node:

Deploying Java on Kubernetes in the Cloud

[288]

Of course, as the kubectl is now configured to act on our AWS cluster, we can list nodes
using kubectl get nodes command, exactly the same as we did in the Chapter 9,
Working with Kubernetes API, with minikube base cluster. Execute the following command:

$ list nodes: kubectl get nodes --show-labels

You will be given the information about the name and status of your cluster's nodes:

Updating a cluster
Kops behaves similarly to kubectl; you can edit the configuration files in the editor before
actually doing any changes on the cluster. The kops update command will apply
configuration changes, but will not modify the running infrastructure. To update the
running cluster, you will need to execute the rolling-update command. The following
will start the update or recreation process of the cluster's infrastructure:

$ kops rolling-update cluster –yes

Our fresh cluster is running, but it's empty. Let's deploy something.

Deploying Java on Kubernetes in the Cloud

[289]

Installing the dashboard
Having the cluster running, it would be nice to have a dashboard deployed, to see the status
of your services, deployments, pods and so on. The dashboard is included in the minikube
cluster by default, but on our brand new Amazon cluster we will need to install it manually.
This is a straightforward process. As we have kubectl configured to act on the remote
cluster, we can execute the following kubectl create command with the kubernetes-
dashboard.yaml template as an input:

$ kubectl create -f \
https://rawgit.com/kubernetes/dashboard/master/src/deploy
kubernetes-dashboard.yaml

The next thing would be to proxy the network traffic, using the following kubectl proxy
command we already know:

$ kubectl proxy

That's it! After a while the dashboard will be deployed and we will be able to access it using
the localhost address:

http://localhost:8001/, as you can see in the following screenshot, is the same
dashboard we have already seen in the Chapter 9, Working with Kubernetes API:

Deploying Java on Kubernetes in the Cloud

[290]

From now on, you can use the kubectl and the dashboard to manage your cluster as we
did before in the Chapter 9, Working with Kubernetes API. All the kubectl create
commands will work the same as with the local cluster. This time, however, your software
will go to the cloud.

If you decide to remove the cluster, execute the following command:

$ kops delete cluster -name=${NAME} --yes

Note that if you just created the cluster template, without executing kops update
cluster ${NAME} --yes first, you can also delete the cluster, as you can see in the
following screenshot:

If the cluster is already created on Amazon, the process of deleting it will take longer, as all
EC2 instances for master and worker nodes needs to be shutdown first.

Summary
In this chapter, we have set up a cluster in the real cloud, Amazon AWS. Kops is one of the
best tools that we have available right now to manage Kubernetes on AWS. Using it, you
can easily create and manage clusters on AWS. It can be a test or a production-grade
cluster; kops will make the creation and management of it a breeze.

11
More Resources

We are at the end of our Docker and Kubernetes journey. After reading this book, you
should already know how Kubernetes compliments Docker. You may think of them as of
different layers of your software stack; Docker sits below, serving single containers, while
Kubernetes orchestrates and manages them in a cluster. Docker becomes more and more
popular and a lot of people use it during the development or production deployments. Just
to name a few big ones, it is used by PayPal, General Electric, Groupon, Spotify, and Uber.
It's mature enough to be run on production and I hope you will use it too to deploy and run
your Java applications with success.

To further extend your knowledge about Docker and Kubernetes, there's plenty of
information. The trick is to find the valuable information. In this chapter, I will present the
most useful if you want to further extend your Docker and Kubernetes knowledge.

Docker
The first one on our list will be the awesome Docker list.

Awesome Docker
Awesome Docker available on GitHub at http:/ /veggiemonk. github. io/ awesome- docker/
. The author updates the list often, so you can clone the Git repository locally and do
periodical updates to see what's new. Awesome Docker contains sections such as an
introduction to Docker, tools (with the groups such as developer tools, testing, or utilities).
The Videos section can be especially useful when learning Docker, you can find tutorials
and trainings here. Apart from this list, it's really hard to find some more that could be
useful.

http://veggiemonk.github.io/awesome-docker/
http://veggiemonk.github.io/awesome-docker/
http://veggiemonk.github.io/awesome-docker/
http://veggiemonk.github.io/awesome-docker/
http://veggiemonk.github.io/awesome-docker/
http://veggiemonk.github.io/awesome-docker/
http://veggiemonk.github.io/awesome-docker/
http://veggiemonk.github.io/awesome-docker/
http://veggiemonk.github.io/awesome-docker/
http://veggiemonk.github.io/awesome-docker/
http://veggiemonk.github.io/awesome-docker/
http://veggiemonk.github.io/awesome-docker/
http://veggiemonk.github.io/awesome-docker/

More Resources

[292]

Blogs
The first blog I would recommend to continue learning about Docker will be Arun Gupta's
blog, available at http:/ /blog. arungupta. me. Arun, who first started blogging about
Docker in July 2014, is the VP of developer advocacy at Couchbase, a Java champion, a JUG
leader, and a Docker captain. He writes about many things on his blog; you can filter the
content to only related to Docker using the #docker tag, using the link: http:/ / blog.
arungupta.me/tag/ docker/ .

You will find a lot of useful stuff here, related to Java development and Docker. He also
authored a great Docker tutorial, available on GitHub:
https://github.com/arun-gupta/docker-tutorial.

Next comes the official Docker blog, available at https://blog.docker.com. You will not
find many tutorials on how to use Docker, but there will be announcements about new
releases and their features, more advanced Docker usage tips, and community news such as
Docker events.

The Red Hat developer program, under the category containers, available at
https://developers.redhat.com/blog/category/containers/ also contains a lot of useful
articles around Docker and container technology in general.

Interactive tutorials
There are many Docker tutorials available on the web, but I find one of them especially
interesting. It's Katakoda's interactive Docker learning course, available at
https://www.katacoda.com/courses/docker. You will find the complete feature set of
Docker here, starting with deployment of a single container and going through subjects
such as adding labels, inspecting containers, and optimizing your image builds. It's
interactive; all you need is a modern browser, you do not even need to install Docker on
your local machine. It's very complete and fun to learn with. The other one is
http://training.play-with-docker.com. It comes with three sections: beginner, which
covers the basics such as running single containers, intermediate, covering networking for
example, and advanced, covering Docker security. Some of the course tasks are interactive,
you can execute them straight in your browser.

http://blog.arungupta.me
http://blog.arungupta.me
http://blog.arungupta.me
http://blog.arungupta.me
http://blog.arungupta.me
http://blog.arungupta.me
http://blog.arungupta.me
http://blog.arungupta.me
http://blog.arungupta.me
http://blog.arungupta.me/tag/docker/
http://blog.arungupta.me/tag/docker/
http://blog.arungupta.me/tag/docker/
http://blog.arungupta.me/tag/docker/
http://blog.arungupta.me/tag/docker/
http://blog.arungupta.me/tag/docker/
http://blog.arungupta.me/tag/docker/
http://blog.arungupta.me/tag/docker/
http://blog.arungupta.me/tag/docker/
http://blog.arungupta.me/tag/docker/
http://blog.arungupta.me/tag/docker/
http://blog.arungupta.me/tag/docker/
http://blog.arungupta.me/tag/docker/
https://github.com/arun-gupta/docker-tutorial
https://blog.docker.com
https://developers.redhat.com/blog/category/containers/
https://www.katacoda.com/courses/docker
http://training.play-with-docker.com/

More Resources

[293]

Kubernetes
When Docker started to gain more popularity the need for containers management platform
started to gain attention. Thus, more resources regarding Kubernetes started to pop up on
the internet.

Awesome Kubernetes
Similar to its Docker counterpart, the awesome Kubernetes list, available at GitHub https:/
/github.com/ramitsurana/ awesome- kubernetes contains a lot of useful resources
regarding Kubernetes. You will find a lot here; staring from the introduction to Kubernetes,
through the list of useful tools and developer platforms, up to the enterprise Kubernetes
products. There's even a link to the tutorial on how to install Kubernetes cluster using
Raspberry Pi devices!

Tutorials
The official Kubernetes site contains a lot of interesting tutorials, starting from the basics
and going through the whole Kubernetes feature lists. The list of tutorials is available at
https://kubernetes. io/ docs/ tutorials/ . If you haven't followed our Minikube install
guide, I highly recommend doing so, using Kubernetes official Bootcamp, it's an interactive
web based tutorial and its goal is to deploy a local development Kubernetes cluster using
Minikube. It's available at https:/ / kubernetes. io/ docs/ tutorials/ kubernetes- basics/
cluster-interactive/ .

Blogs
The official Kubernetes blog is available at http:/ /blog. kubernetes. io/ . You will find
announcements about new releases, useful technical articles, and interesting case studies
here.

The Red Hat enterprise Linux blog also contains a lot of interesting articles regarding
Kubernetes. They are tagged with the Kubernetes tag, so you can easily filter them out by
using the link http:/ / rhelblog. redhat. com/tag/ kubernetes/ .

https://github.com/ramitsurana/awesome-kubernetes
https://github.com/ramitsurana/awesome-kubernetes
https://github.com/ramitsurana/awesome-kubernetes
https://github.com/ramitsurana/awesome-kubernetes
https://github.com/ramitsurana/awesome-kubernetes
https://github.com/ramitsurana/awesome-kubernetes
https://github.com/ramitsurana/awesome-kubernetes
https://github.com/ramitsurana/awesome-kubernetes
https://github.com/ramitsurana/awesome-kubernetes
https://github.com/ramitsurana/awesome-kubernetes
https://github.com/ramitsurana/awesome-kubernetes
https://github.com/ramitsurana/awesome-kubernetes
https://kubernetes.io/docs/tutorials/
https://kubernetes.io/docs/tutorials/
https://kubernetes.io/docs/tutorials/
https://kubernetes.io/docs/tutorials/
https://kubernetes.io/docs/tutorials/
https://kubernetes.io/docs/tutorials/
https://kubernetes.io/docs/tutorials/
https://kubernetes.io/docs/tutorials/
https://kubernetes.io/docs/tutorials/
https://kubernetes.io/docs/tutorials/
https://kubernetes.io/docs/tutorials/
https://kubernetes.io/docs/tutorials/
https://kubernetes.io/docs/tutorials/kubernetes-basics/cluster-interactive/
https://kubernetes.io/docs/tutorials/kubernetes-basics/cluster-interactive/
https://kubernetes.io/docs/tutorials/kubernetes-basics/cluster-interactive/
https://kubernetes.io/docs/tutorials/kubernetes-basics/cluster-interactive/
https://kubernetes.io/docs/tutorials/kubernetes-basics/cluster-interactive/
https://kubernetes.io/docs/tutorials/kubernetes-basics/cluster-interactive/
https://kubernetes.io/docs/tutorials/kubernetes-basics/cluster-interactive/
https://kubernetes.io/docs/tutorials/kubernetes-basics/cluster-interactive/
https://kubernetes.io/docs/tutorials/kubernetes-basics/cluster-interactive/
https://kubernetes.io/docs/tutorials/kubernetes-basics/cluster-interactive/
https://kubernetes.io/docs/tutorials/kubernetes-basics/cluster-interactive/
https://kubernetes.io/docs/tutorials/kubernetes-basics/cluster-interactive/
https://kubernetes.io/docs/tutorials/kubernetes-basics/cluster-interactive/
https://kubernetes.io/docs/tutorials/kubernetes-basics/cluster-interactive/
https://kubernetes.io/docs/tutorials/kubernetes-basics/cluster-interactive/
https://kubernetes.io/docs/tutorials/kubernetes-basics/cluster-interactive/
https://kubernetes.io/docs/tutorials/kubernetes-basics/cluster-interactive/
https://kubernetes.io/docs/tutorials/kubernetes-basics/cluster-interactive/
https://kubernetes.io/docs/tutorials/kubernetes-basics/cluster-interactive/
http://blog.kubernetes.io/
http://blog.kubernetes.io/
http://blog.kubernetes.io/
http://blog.kubernetes.io/
http://blog.kubernetes.io/
http://blog.kubernetes.io/
http://blog.kubernetes.io/
http://blog.kubernetes.io/
http://blog.kubernetes.io/
http://blog.kubernetes.io/
http://rhelblog.redhat.com/tag/kubernetes/
http://rhelblog.redhat.com/tag/kubernetes/
http://rhelblog.redhat.com/tag/kubernetes/
http://rhelblog.redhat.com/tag/kubernetes/
http://rhelblog.redhat.com/tag/kubernetes/
http://rhelblog.redhat.com/tag/kubernetes/
http://rhelblog.redhat.com/tag/kubernetes/
http://rhelblog.redhat.com/tag/kubernetes/
http://rhelblog.redhat.com/tag/kubernetes/
http://rhelblog.redhat.com/tag/kubernetes/
http://rhelblog.redhat.com/tag/kubernetes/
http://rhelblog.redhat.com/tag/kubernetes/
http://rhelblog.redhat.com/tag/kubernetes/
http://rhelblog.redhat.com/tag/kubernetes/

More Resources

[294]

Extensions
As you know, Kubernetes supports extensions. There is a nice resource tracking a number
of Kubernetes, available at https://github.com/coreos/awesome-kubernetes-extensions.
If you need, for example, to integrate some cert manager into your architecture, you will
probably find a proper extension there.

Tools
Apart from useful articles and tutorials, there are also a couple of useful tools or platforms
that make using Kubernetes more enjoyable. Let's briefly present them now.

Rancher
Rancher, available at http://rancher.com, is a platform that deserves a separate section in
our book. It's open source software that makes it easy to deploy and manage Docker
containers and Kubernetes in production on any infrastructure. You can easily deploy and
run containers in production on any infrastructure with the most complete container
management platform.

Helm and charts
Kubernetes Helm (available on GitHub at https://github.com/kubernetes/helm)
introduces the concept of charts, which are packages of pre-configured Kubernetes
resources, curated application definitions for Kubernetes. Helm is a tool for managing
charts; it streamlines installing and managing Kubernetes applications. Think of it as an
apt/yum/homebrew package manager for Kubernetes. You can use it to find and use
popular software packaged as Kubernetes charts, share your own applications as
Kubernetes charts, and create reproducible builds of your Kubernetes applications. There's
a separate repository for charts, of course, on GitHub:
https://github.com/kubernetes/charts. Currently, the chart binary repository is
available on Google Cloud at https:/ / console. cloud. google. com/ storage/ browser/
kubernetes-charts/ and contains a lot of useful prepackaged tools such as Ghost (node.js
blogging platform), Jenkins, Joomla, MongoDb, MySQL, Redis, Minecraft, and just to name
a few.

https://github.com/coreos/awesome-kubernetes-extensions
http://rancher.com
https://github.com/kubernetes/helm
https://github.com/kubernetes/charts
https://console.cloud.google.com/storage/browser/kubernetes-charts/
https://console.cloud.google.com/storage/browser/kubernetes-charts/
https://console.cloud.google.com/storage/browser/kubernetes-charts/
https://console.cloud.google.com/storage/browser/kubernetes-charts/
https://console.cloud.google.com/storage/browser/kubernetes-charts/
https://console.cloud.google.com/storage/browser/kubernetes-charts/
https://console.cloud.google.com/storage/browser/kubernetes-charts/
https://console.cloud.google.com/storage/browser/kubernetes-charts/
https://console.cloud.google.com/storage/browser/kubernetes-charts/
https://console.cloud.google.com/storage/browser/kubernetes-charts/
https://console.cloud.google.com/storage/browser/kubernetes-charts/
https://console.cloud.google.com/storage/browser/kubernetes-charts/
https://console.cloud.google.com/storage/browser/kubernetes-charts/
https://console.cloud.google.com/storage/browser/kubernetes-charts/
https://console.cloud.google.com/storage/browser/kubernetes-charts/
https://console.cloud.google.com/storage/browser/kubernetes-charts/
https://console.cloud.google.com/storage/browser/kubernetes-charts/
https://console.cloud.google.com/storage/browser/kubernetes-charts/
https://console.cloud.google.com/storage/browser/kubernetes-charts/

More Resources

[295]

Kompose
Kompose (https://github.com/kubernetes/kompose) is a tool to help move Compose
configuration files into Kubernetes. Kompose is a tool for defining and running multi-
container Docker applications. If you are a Kompose user, you can use it to move your
multi-containers configuration straight into Kubernetes setup by translating a Docker
Compose file into Kubernetes objects. Note that the transformation of the Docker Compose
format to Kubernetes resources manifest may not be exactly precise, but it helps
tremendously when first deploying an application on Kubernetes.

Kubetop
Kubetop, again available on GitHub https://github.com/LeastAuthority/kubetop, is the
same as the top command for Kubernetes cluster. It's extremely useful; it lists all your
cluster's running nodes, all pods on them and all containers in those pods. The tool gives
you information about the CPU and memory utilization for each node, similar to the
Unix/Linux top command. If you need to know quickly what's consuming the most
resources on your cluster, the quick command-line tool is a very handy option.

Kube-applier
Available on GitHub at https://github.com/box/kube-applier, kube-applier enables
automated deployment and declarative configuration for your Kubernetes cluster. It runs as
a Kubernetes service, takes a set of declarative configuration files hosted in a Git repository,
and applies them for a Kubernetes cluster.

The kube-applier runs itself as a Pod in your cluster and continuously watches the Git
repository to ensure that the cluster objects are up to date with their associated spec files
(JSON or YAML) in the repository. The tool also contains a status page and provides
metrics for monitoring. I find it extremely useful in the daily development, where your
deployment, services, or pod definition change often.

https://github.com/kubernetes/kompose
https://github.com/LeastAuthority/kubetop
https://github.com/box/kube-applier

More Resources

[296]

As you can see, there are a lot of useful resources for Docker and Kubernetes around the
web. After reading this book, you will probably want to skip most of the beginnings and go
straight to more advanced topics. The best thing about all of those resources is that they are
free of charge, so basically nothing stops you from exploring the wonderful world of
managed containers. Try and learn, and if the time comes, go ahead and use Docker and
Kubernetes to deploy your production ready Java software, either on your own
infrastructure or on the cloud. It will be amazing to see how your Java application scales
itself and becomes fail proof. Docker and Kubernetes enable it and you now have the
knowledge to use it. Docker, together with Kubernetes, has radically changed the face of the
technology landscape and I hope it will also change your development and release flow for
the better.

Index

A
ADD instruction 129
administrative user
 creating 269
 user, creating for kops 273
admission control 252
always restart policy 176
AlwaysAllow 251
AlwaysDeny 251
Amazon Web Services (AWS) 10, 209, 281
annotations, JAX-RS
 @ApplicationPath 93
 @Consumes 92
 @CookieParam 93
 @DefaultValue 93
 @DELETE 92
 @GET 92
 @PATH 92
 @PathParam 93
 @POST 92
 @Produces 92
 @Provider 93
 @PUT 92
 @QueryParam 93
API versioning
 about 240
 alpha 240
 beta 241
 stable 241
API
 command-line HTTP client, using 253
 deployment, deleting 259
 operations 252
 service, deleting 259
 used, for creating deployment 255
 used, for service creating 254

 using 252
application
 executing 115
Attribute-Based Access Control (ABAC) 247
authentication
 about 242
 client certificates 245
 HTTP basic auth 243
 localhost unsecured ports 242
 OpenID 245
 secure port 242
 static token file 244
authorization
 about 246
 AlwaysAllow 251
 AlwaysDeny 251
 Attribute-based access control 247
 Role-based access control (RBAC) 248
 WebHook 250
Awesome Docker
 about 291
 URL 291
Awesome Kubernetes
 about 293
 URL 293
AWS command-line tool (awscli) 266

B
bridge network 48

C
cloud
 benefits 264
cluster
 creating 276, 282
 dashboard, installing 289
 DNS settings 277

[298]

 starting up 286
 storage, creating 281
 updating 288
 zones' availability, checking 280
CMD instruction 134
configuration elements, Maven plugin
 cmd 185
 entrypoint 185
 log 185
 memory 185
 namingStrategy 185
 network 185
 ports 185
 restartPolicy 185
 volumes 185
container running modes
 detached mode 165
 foreground mode 165
containerization
 versus virtualization 8
containers
 about 11, 15, 17, 18
 attaching to 166
 connecting, to network 53
 constraints, updating 183
 events, monitoring 173
 executing, with Maven plugin 184
 inspecting 170
 listing 163
 logs, viewing 167
 monitoring 167
 removing 164
 restart policy, updating 178
 starting 161, 162
 starting, with Maven plugin 186
 statistics, measuring 172
 stopping 161, 163
 stopping, with Maven plugin 186
COPY instruction 131

D
data consistency
 maintaining 79, 81
Deployment, Kubernetes 198
detached mode 165

Docker Hub
 URL 128
Docker images
 about 11
 containers 15, 17, 18
 Docker registry 18, 20
 index 18, 20
 layers 12, 14, 15
 repository 18, 20
Docker registry 18, 20
Docker Store
 URL 128
Docker volume driver 68
Docker
 about 291
 additional tools 21
 additional tools, URL 21
 Awesome Docker 291
 benefits 10, 264
 blogs 292
 features 82
 installing 22
 installing, on Linux 33, 35, 36
 installing, on macOS 22, 24, 25, 27, 29, 30, 32
 installing, on Windows 37, 38, 40, 42, 44, 45
 interactive tutorials 292
 purpose 8
 role, with microservices 81
 URL 22
Dockerfile
 creating 125
 instructions 126
Domain Name System (DNS)
 about 276
 root domain, on AWS hosted domain 277
 Route 53, using for domain purchasedd with

registrar 279
 settings 277
 subdomain, used for cluster in AWS Router 53

280

 subdomain, using for cluster 277

E
Enterprise Service Bus (ESB) 77
ENV instruction 146

[299]

EXPOSE instruction 139, 143

F
foreground mode 165
FROM instructions 127

H
HEALTHCHECK instruction 150
Helm
 about 294
 references 294
host network 49
HTTP methods
 DELETE 89
 GET 89
 POST 89
 PUt 89
HTTPie
 about 118
 URL 118

I
image
 building 158
 creating, with Maven 151
index 18, 20
instructions 12
instructions, Dockerfile
 about 126
 ADD 129
 ARG 148
 CMD 134
 COPY 131
 ENTRYPOINT 139
 ENV 146
 EXPOSE 143
 FROM 127
 HEALTHCHECK 150
 LABEL 145
 MAINTAINER 129
 ONBUILD 148
 RUN 132
 STOPSIGNAL 150
 USER 147
 VOLUME 144

 WORKDIR 129
IPFS 68

J
Java Architecture for XML Binding (JAXB) 92
Java EE7 91
Java Specification Request (JSR) 91
Java
 REST, developing 91
JAX-RS
 annotations 92, 96
 Spring Boot 97
 with Jersey 91
jq
 about 269
 URL 172, 269
JSON Web Token (JWT) 245

K
Kernel-based virtual machine 211
Keywhiz 68
Kompose
 about 295
 URL 295
kops
 about 268
 URL 268
 user, creating 273
Kube-applier
 about 295
 URL 295
kube-dns 201
kubectl
 installing 213
 installing, on Linux 213
 installing, on Mac 213
 installing, on Windows 213
 references 213
 URL 268
Kubelet
 about 203
 URL 203
Kubernetes cluster
 autoscaling 228
 cleaning up 236

[300]

 cluster events, viewing 229
 containers, interacting with 224
 dashboard, using 229, 235
 deploying on 215
 deployment, creating 218, 224
 scaling manually 227
 service, creating 215
 viewing logs, interacting 224
Kubernetes
 about 293
 Awesome Kubernetes 293
 basic concepts 193
 benefits 264
 blogs 293
 charts 294
 Deployment 198
 extensions 294
 helm 294
 Kompose 295
 Kube-applier 295
 kube-dns 201
 Kubetop 295
 Master node 204
 namespace 201
 need for 191
 nodes 202
 pods 194, 197
 rancher 294
 references 293
 ReplicaSets 197
 role, with microservices 83, 84
 services 200
 tools 205, 294
 tutorials 293
 URL 7
Kubetop
 about 295
 URL 295

L
LABEL instruction 145
Linux
 Docker, installing 33, 35, 36
 kubectl, installing 213
 Minikube, installing 211

M
Mac
 kubectl, installing 213
 Minikube, installing 210
macOS
 Docker, installing 22, 24, 25, 27, 29, 30, 32
MAINTAINER instruction 129
Master node
 about 204
 API server 205
 etcd 204
 scheduler 205
Maven build file, Spring Boot microservice
 about 101
 API, documenting 111
 application entry point, defining 103
 domain model 104
 repository 104
 REST controller 109
Maven plugin
 configuration element 185
 containers, executing 184
 containers, starting 186
 containers, stopping 186
 references 151
Maven
 image, creating 151
Microservice Architecture (MSA)
 about 71
 benefits 79
 considerations 85
microservices
 about 71
 architecture 77
 Microservice Architecture (MSA) 76, 79
 versus monolithic applications 72
Minikube addons 235
Minikube cluster
 cleaning up 237
Minikube
 about 206
 installing 210
 installing, on Mac 210
 installing, on Windows 210

[301]

 Linux, installing 211
 URL 206, 210
Model View Controller (MVC) application 73
monolithic applications
 about 74
 architecture 73
 characteristics 75, 76
mutually authenticated TLS (mTLS) 68

N
namespace 201
network types
 bridge 48
 host 49
 listing 48
 none 50
network
 container, connecting 53
 creating 52, 53
 inspecting 52, 53
networking
 commands 50
 configuring 48
no restart policy 175
nodes, Kubernetes
 about 202
 docker 203
 Kubelet 203
 proxy 203
none network 50

O
on-failure restart policy 176
ONBUILD instruction
 about 148
 URL 149

P
Paw
 for Mac 120
persistent storage 60
Persistent Volume Providers
 AWS 195
 CephRBD 195
 GCE 195

 GlusterFS 195
 Kube-Aliyun 195
 OpenStack Cinder 195
 QuoByte 195
pods 194
ports
 exposing 54, 56, 58, 60
 mapping 54, 56, 58, 60
Postman
 about 118
 URL 118
processor constraints 181
proxy
 about 203
 iptables 216
 URL 203
 userspace mode 216

R
rancher
 about 294
 URL 294
Reliable Autonomic Distributed Object Store

(RADOS) 195
ReplicaSets
 about 197
 fault tolerance 198
 load balancing 198
 reliability 198
 scaling 198
repository 18, 20
Representational State Transfer (REST)
 about 88, 89
 HTTP methods 89, 90, 91
 in Java 91
 Java EE7 91
restart policy
 always policy 176
 no policy 175
 on-failure policy 176
 specifying 175
 unless-stopped policy 177
 updating, on containers 178
Role-Based Access Control (RBAC) 248
RUN instruction 132

runtime constraints
 memory constraints 179
 processors constraints 181
 setting up, on resources 179

S
service calls
 creating 117
 creating, with HTTPie 118
 creating, with Paw for Mac 120
 creating, with Postman 118
 creating, with Spring RestTemplate 117
services, Kubernetes 200
Simple Storage Solution (S3) 281
Spring Boot
 about 97
 maven build file 101
 microservice, coding 100
Spring Initializr
 about 121
 URL 121
SpringFox library
 about 111
 URL 111
STOPSIGNAL instruction 150
Swagger docs 260

T
tools, installing
 about 265
 AWS command-line tools 266
 jq 269

 kops 268
 PIP 265
 Python 265
tools, Kubernetes
 dashboard 206
 kubectl 206
 minikube 206

U
Uniform Resource Identifier (URI) 93
unless-stopped restart policy 177

V
virtualization
 versus containerization 8
volume drivers
 about 68, 69
 Docker volume driver 68
 IPFS 68
 Keywhiz 68
VOLUME instruction 144
volume
 commands 61
 creating 62, 63, 64, 65, 66, 159
 removing 67, 159

W
WebHook 250
Windows
 Docker, installing 37, 38, 40, 42, 44, 45
 kubectl, installing 213
 Minikube, installing 210
WORKDIR instruction 129

 go to

it-eb.com
for more...

https://it-eb.com/

	Cover
	Title Page
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Customer Feedback
	Table of Contents
	Preface
	Chapter 1: Introduction to Docker
	The idea behind Docker
	Virtualization and containerization compared
	Benefits from using Docker

	Docker concepts - images and containers
	Images
	Layers
	Containers
	Docker registry, repository, and index

	Additional tools
	Installing Docker
	Installing on macOS
	Installing on Linux
	Installing on Windows

	Summary

	Chapter 2: Networking and Persistent Storage
	Networking
	Docker network types
	Bridge
	Host
	None

	Networking commands
	Creating and inspecting a network
	Connecting a container to the network
	Exposing ports and mapping ports
	Persistent storage
	Volume-related commands
	Creating a volume
	Removing a volume
	Volume drivers
	Summary

	Chapter 3: Working with Microservices
	An introduction to microservices
	Monolithic versus microservices
	The monolithic architecture
	The microservices architecture

	Maintaining data consistency
	The Docker role
	Kubernetes' role
	When to use the microservice architecture
	Summary

	Chapter 4: Creating Java Microservices
	Introduction to REST
	HTTP methods

	REST in Java
	Java EE7 - JAX-RS with Jersey
	JAX-RS annotations

	Spring Boot

	Coding the Spring Boot microservice
	Maven build file
	Application entry point
	Domain model and a repository
	REST controller
	Documenting the API

	Running the application
	Making calls
	Spring RestTemplate
	HTTPie
	Postman
	Paw for Mac

	Spring Initializr
	Summary

	Chapter 5: Creating Images with Java Applications
	Dockerfile
	Dockerfile instructions
	FROM
	MAINTAINER
	WORKDIR
	ADD
	COPY
	RUN
	CMD
	The ENTRYPOINT
	EXPOSE
	VOLUME
	LABEL
	ENV
	USER
	ARG
	ONBUILD
	STOPSIGNAL
	HEALTHCHECK
	Creating an image using Maven
	Building the image
	Creating and removing volumes

	Summary

	Chapter 6: Running Containers with Java Applications
	Starting and stopping containers
	Starting
	Stopping
	Listing the running containers
	Removing the containers

	Container running modes
	Foreground
	Detached
	Attaching to running containers

	Monitoring containers
	Viewing logs
	Inspecting a container
	Statistics
	Container events

	Restart policies
	no
	always
	on-failure
	unless-stopped
	Updating a restart policy on a running container

	Runtime constraints on resources
	Memory
	Processors
	Updating constraints on a running container

	Running with Maven
	Plugin configuration
	Starting and stopping containers

	Summary

	Chapter 7: Introduction to Kubernetes
	Why do we need Kubernetes?
	Basic Kubernetes concepts
	Pods
	ReplicaSets
	Deployment
	Services
	kube-dns
	Namespace
	Nodes
	Kubelet
	Proxy
	Docker

	The Master node
	etcd
	The API server
	The scheduler

	Available tools
	kubectl
	Dashboard
	Minikube

	Summary

	Chapter 8: Using Kubernetes with Java
	Installing Minikube
	Installing on Mac
	Installing on Windows
	Installing on Linux
	Starting up the local Kubernetes cluster

	Installing kubectl
	Installing on Mac
	Installing on Windows
	Installing on Linux

	Deploying on the Kubernetes cluster
	Creating a service
	Creating a deployment
	Interacting with containers and viewing logs
	Scaling manually
	Autoscaling
	Viewing cluster events
	Using the Kubernetes dashboard

	Minikube addons
	Cleaning up
	Summary

	Chapter 9: Working with the Kubernetes API
	API versioning
	Alpha
	Beta
	Stable

	Authentication
	HTTP basic auth
	Static token file
	Client certificates
	OpenID

	Authorization
	Attribute-based access control
	Role-based access control (RBAC)
	WebHook
	AlwaysDeny
	AlwaysAllow

	Admission control
	Using the API
	API operations
	Example calls
	Creating a service using the API
	Creating a deployment using the API
	Deleting a service and deployment

	Swagger docs
	Summary

	Chapter 10: Deploying Java on Kubernetes in the Cloud
	Benefits of using the cloud, Docker, and Kubernetes
	Installing the tools
	Python and PIP
	AWS command-line tools
	Kops
	jq

	Configuring Amazon AWS
	Creating an administrative user
	Creating a user for kops

	Creating the cluster
	DNS settings
	Root domain on AWS hosted domain
	The subdomain of the domain hosted on AWS
	Route 53 for a domain purchased with another registrar
	Subdomain for cluster in AWS Route 53, the domain elsewhere

	Checking the zones' availability
	Creating the storage
	Creating a cluster
	Starting up clusters
	Updating a cluster
	Installing the dashboard

	Summary

	Chapter 11: More Resources
	Docker
	Awesome Docker
	Blogs
	Interactive tutorials

	Kubernetes
	Awesome Kubernetes
	Tutorials
	Blogs
	Extensions
	Tools
	Rancher
	Helm and charts
	Kompose
	Kubetop
	Kube-applier

	Index

