
Ian Miell
Aidan Hobson Sayers
FOREWORD BY Ben Firshman

M A N N I N G

IN PRACTICE

Docker in Practice

Docker in Practice

IAN MIELL
AIDAN HOBSON SAYERS

M A N N I N G
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2016 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15 percent recycled and processed without the use of elemental
chlorine.

Manning Publications Co. Development editor: Cynthia Kane
20 Baldwin Road Technical development editors: Alain Couniot
PO Box 761 and Robert Wenner
Shelter Island, NY 11964 Copyeditor: Andy Carroll

Proofreader: Melody Dolab
Technical proofreader: José San Leandro

Typesetter: Gordan Salinovic
Cover designer: Marija Tudor

ISBN 9781617292729
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – EBM – 21 20 19 18 17 16

v

brief contents
PART 1 DOCKER FUNDAMENTALS ..1

1 ■ Discovering Docker 3

2 ■ Understanding Docker—inside the engine room 19

PART 2 DOCKER AND DEVELOPMENT ...41

3 ■ Using Docker as a lightweight virtual machine 43

4 ■ Day-to-day Docker 65

5 ■ Configuration management—getting your house in
order 103

PART 3 DOCKER AND DEVOPS...143

6 ■ Continuous integration: speeding up your development
pipeline 145

7 ■ Continuous delivery: a perfect fit for Docker
principles 169

8 ■ Network simulation: realistic environment testing without
the pain 186

BRIEF CONTENTSvi

PART 4 DOCKER IN PRODUCTION ...213

9 ■ Container orchestration: managing multiple Docker
containers 215

10 ■ Docker and security 262

11 ■ Plain sailing—Docker in production and operational
considerations 291

12 ■ Docker in production—dealing with challenges 308

vii

contents
foreword xv
preface xvii
acknowledgments xix
about this book xx
about the cover illustration xxiii

PART 1 DOCKER FUNDAMENTALS..1

1 Discovering Docker 3
1.1 The what and why of Docker 5

What is Docker? 5 ■ What is Docker good for? 7 ■ Key
concepts 8

1.2 Building a Docker application 10
Ways to create a new Docker image 11 ■ Writing a Dockerfile 12
Building a Docker image 13 ■ Running a Docker container 14
Docker layering 16

1.3 Summary 18

2 Understanding Docker—inside the engine room 19
2.1 Docker’s architecture 20

CONTENTSviii

2.2 The Docker daemon 21
TECHNIQUE 1 Open your Docker daemon to the world 22
TECHNIQUE 2 Running containers as daemons 23
TECHNIQUE 3 Moving Docker to a different partition 26

2.3 The Docker client 27
TECHNIQUE 4 Use socat to monitor Docker API traffic 27
TECHNIQUE 5 Using ports to connect to containers 29
TECHNIQUE 6 Linking containers for port isolation 31
TECHNIQUE 7 Using Docker in your browser 33

2.4 Docker registries 34
TECHNIQUE 8 Setting up a local Docker registry 35

2.5 The Docker Hub 36
TECHNIQUE 9 Finding and running a Docker image 37

2.6 Summary 39

PART 2 DOCKER AND DEVELOPMENT.................................41

3 Using Docker as a lightweight virtual machine 43
3.1 From VM to container 44

TECHNIQUE 10 Converting your VM to a container 44
TECHNIQUE 11 A host-like container 47
TECHNIQUE 12 Splitting a system into microservice containers 49

3.2 Managing services on your containers 52
TECHNIQUE 13 Managing the startup of your container’s

services 53

3.3 Saving and restoring your work 55
TECHNIQUE 14 The “save game” approach to development 55
TECHNIQUE 15 Docker tagging 57
TECHNIQUE 16 Sharing images on the Docker Hub 59
TECHNIQUE 17 Referring to a specific image in builds 61

3.4 Environments as processes 62
TECHNIQUE 18 The “save game” approach to development 62

3.5 Summary 64

4 Day-to-day Docker 65
4.1 Volumes—a persistent problem 66

TECHNIQUE 19 Docker volumes—problems of persistence 66
TECHNIQUE 20 Distributed volumes with BitTorrent Sync 67

CONTENTS ix

TECHNIQUE 21 Retain your container’s bash history 69
TECHNIQUE 22 Data containers 71
TECHNIQUE 23 Remote volume mounting using sshfs 74
TECHNIQUE 24 Sharing data over NFS 76
TECHNIQUE 25 Dev tools container 78

4.2 Running containers 79
TECHNIQUE 26 Running GUIs within Docker 79
TECHNIQUE 27 Inspecting containers 81
TECHNIQUE 28 Cleanly killing containers 83
TECHNIQUE 29 Using Docker Machine to provision Docker

hosts 84

4.3 Building images 87
TECHNIQUE 30 Injecting files into your image using ADD 88
TECHNIQUE 31 Rebuilding without the cache 90
TECHNIQUE 32 Busting the cache 92

4.4 Staying ship-shape 93
TECHNIQUE 33 Running Docker without sudo 93
TECHNIQUE 34 Housekeeping containers 94
TECHNIQUE 35 Housekeeping volumes 95
TECHNIQUE 36 Detaching containers without stopping them 97
TECHNIQUE 37 Using DockerUI to manage your Docker

daemon 98
TECHNIQUE 38 Generate a dependency graph of your Docker

images 99
TECHNIQUE 39 Direct action—execute commands on your

container 101

4.5 Summary 102

5 Configuration management—getting your house in order 103
5.1 Configuration management and Dockerfiles 104

TECHNIQUE 40 Create reliable bespoke tools with
ENTRYPOINT 104

TECHNIQUE 41 Avoid package drift by specifying versions in your
build 106

TECHNIQUE 42 Replacing text with perl -p -i -e 107
TECHNIQUE 43 Flattening images 109
TECHNIQUE 44 Managing foreign packages with alien 111
TECHNIQUE 45 Reverse-engineer a Dockerfile from an

image 113

5.2 Traditional configuration management tools with
Docker 116
TECHNIQUE 46 Traditional: using make with Docker 116

CONTENTSx

TECHNIQUE 47 Building images with Chef Solo 118
TECHNIQUE 48 Source-to-image builds 122

5.3 Small is beautiful 128
TECHNIQUE 49 Dockerfile tricks for keeping your build small 128
TECHNIQUE 50 Tricks for making an image smaller 131
TECHNIQUE 51 Tiny Docker images with BusyBox and Alpine 133
TECHNIQUE 52 The Go model of minimal containers 134
TECHNIQUE 53 Using inotifywait to slim containers 137
TECHNIQUE 54 Big can be beautiful 139

5.4 Summary 141

PART 3 DOCKER AND DEVOPS143

6 Continuous integration: speeding up your development
pipeline 145

6.1 Docker Hub automated builds 146
TECHNIQUE 55 Using the Docker Hub workflow 146

6.2 More efficient builds 149
TECHNIQUE 56 Speed up I/O-intensive builds with eatmydata 149
TECHNIQUE 57 Set up a package cache for faster builds 151
TECHNIQUE 58 Running Selenium tests inside Docker 154

6.3 Containerizing your CI process 158
TECHNIQUE 59 Containing a complex development

environment 158
TECHNIQUE 60 Running the Jenkins master within a Docker

container 162
TECHNIQUE 61 Scale your CI with Jenkins’ Swarm plugin 164

6.4 Summary 168

7 Continuous delivery: a perfect fit for Docker principles 169
7.1 Interacting with other teams during the CD pipeline 170

TECHNIQUE 62 The Docker contract—reducing friction 170

7.2 Facilitating deployment of Docker images 173
TECHNIQUE 63 Manually mirroring registry images 173
TECHNIQUE 64 Delivering images over constrained

connections 174
TECHNIQUE 65 Sharing Docker objects as TAR files 176

7.3 Configuring your images for environments 177
TECHNIQUE 66 Informing your containers with etcd 178

CONTENTS xi

7.4 Upgrading running containers 180
TECHNIQUE 67 Using confd to enable zero-downtime

switchover 181

7.5 Summary 185

8 Network simulation: realistic environment testing without the
pain 186

8.1 Container communication—beyond manual linking 187
TECHNIQUE 68 A simple Docker Compose cluster 187
TECHNIQUE 69 A SQLite server using Docker Compose 190
TECHNIQUE 70 Finding containers via DNS with Resolvable 194

8.2 Using Docker to simulate real-world networking 197
TECHNIQUE 71 Simulating troublesome networks with

Comcast 197
TECHNIQUE 72 Simulating troublesome networks with

Blockade 200

8.3 Docker and virtual networks 204
TECHNIQUE 73 Setting up a substrate network with Weave 204
TECHNIQUE 74 Docker networking and service features 208

8.4 Summary 211

PART 4 DOCKER IN PRODUCTION...................................213

9 Container orchestration: managing multiple Docker
containers 215

9.1 Simple single-host Docker 217
TECHNIQUE 75 Managing your host's containers with systemd 217
TECHNIQUE 76 Orchestrating your host's containers with

systemd 220

9.2 Multi-host Docker 223
TECHNIQUE 77 Manual multi-host Docker with Helios 223
TECHNIQUE 78 A seamless Docker cluster with Swarm 229
TECHNIQUE 79 Using a Kubernetes cluster 234
TECHNIQUE 80 Building a framework on Mesos 239
TECHNIQUE 81 Micromanaging Mesos with Marathon 247

9.3 Service discovery: what have we here? 250
TECHNIQUE 82 Using Consul to discover services 251
TECHNIQUE 83 Automatic service registration with Registrator 259

9.4 Summary 261

CONTENTSxii

10 Docker and security 262
10.1 Docker access and what it means 262

Do you care? 263

10.2 Security measures in Docker 264
TECHNIQUE 84 Constraining capabilities 264
TECHNIQUE 85 HTTP auth on your Docker instance 268
TECHNIQUE 86 Securing your Docker API 271

10.3 Security from outside Docker 275
TECHNIQUE 87 OpenShift—an application platform as a

service 275
TECHNIQUE 88 Using security options 284

10.4 Summary 290

11 Plain sailing—Docker in production and operational
considerations 291
11.1 Monitoring 292

TECHNIQUE 89 Logging your containers to the host’s syslog 292
TECHNIQUE 90 Sending Docker logs to your host’s output

system 295
TECHNIQUE 91 Monitoring containers with cAdvisor 297

11.2 Resource control 298
TECHNIQUE 92 Restricting the cores a container can

execute on 298
TECHNIQUE 93 Giving important containers more CPU 299
TECHNIQUE 94 Limiting the memory usage of a container 300

11.3 Sysadmin use cases for Docker 302
TECHNIQUE 95 Using Docker to run cron jobs 302
TECHNIQUE 96 The “save game” approach to backups 305

11.4 Summary 307

12 Docker in production—dealing with challenges 308
12.1 Performance—you can’t ignore the tin 308

TECHNIQUE 97 Accessing host resources from the container 309
TECHNIQUE 98 Device Mapper storage driver and default container

size 313

12.2 When containers leak—debugging Docker 315
TECHNIQUE 99 Debugging a container’s network with

nsenter 315

CONTENTS xiii

TECHNIQUE 100 Using tcpflow to debug in flight without
reconfiguring 318

TECHNIQUE 101 Debugging containers that fail on specific
hosts 319

12.3 Summary 323

appendix A Installing and using Docker 325
appendix B Docker configuration 329
appendix C Vagrant 332

index 335

xv

foreword
I might be biased, but Docker is a pretty big deal.

 It wasn’t long ago that applications were large and monolithic, sitting alone inside
lumps of steel and silicon. They would stew away for a few years, resisting change, not
wanting to move. This was a problem for organizations that wanted to move fast, so it’s
no surprise that virtual machines caught on. Applications were no longer tied to these
pieces of hardware, allowing everything to move more quickly and be more flexible.

 Unfortunately, virtual machines are very complicated. They simulate an entire
computer inside of another computer, and this virtual computer is still very complex
and needs managing. And because virtual machines are smaller and easier to create,
there are far more of them around that need managing.

 How do we manage all of that complexity? With configuration management, of
course—another extremely complex system for managing complexity.

 Docker takes a different approach. If you put your software inside a container, it
separates the complexity of your application from the infrastructure underneath,
making the infrastructure simpler and the application easier to ship around. On top
of this organizational efficiency, the leap in technical speed and efficiency compared
to virtual machines is dramatic. Containers boot in milliseconds, not minutes. Mem-
ory is shared, not allocated. This makes your application much cheaper to run, but
also means that you can architect your application in the way that you want to, not in
the way that fits the constraints of slow, inflexible infrastructure.

FOREWORDxvi

 When I first saw Solomon Hykes, creator of Docker, talking about Docker and its
analogy to the shipping container, I knew he was on to something big. The complex
state of the worldwide shipping industry before standardization is an apt analogy for the
complex state of managing software before containers. Solomon’s insight was so con-
vincing that I started a company building tools around Docker, which was eventually
acquired by Docker, Inc. and turned into what we now know as Docker Compose.

 I first met Ian at some of the Docker meetups we organized in London. Back then,
we insistently said, “Docker is not ready for production; please don’t use it!” but Ian
was the sort of person who would disregard this sensible advice and go ahead and run
it in production anyway. Back then, he was working for the betting services company
OpenBet alongside Aidan, and the amount of money they must have been processing
with the code we had at that time makes me feel a bit light-headed.

 Ian and Aidan both saw that the value they got from using Docker outweighed the
inconveniences of working with it in its beta state. They jumped on the technology
early, and therefore have a unique perspective on how best to apply it. The tooling
they built at OpenBet has pointed out stuff that was missing in Docker, and our infor-
mal chats have had a real influence on the design and direction we’ve taken it.

 Docker has moved along quite a bit since Ian and Aidan first started using it, and
thousands of organizations are now using it to solve real problems: shipping software
faster, managing its daunting complexity, improving the efficiency of infrastructure,
fixing “works on my machine” problems, and so on. This is causing a huge shift in how
we build, deploy, and manage software, and a whole new landscape of tools and ideas
is forming around it. The bright future of containerization is exciting, but is also
intimidatingly different from what we are used to.

 For you, it might be hard to see how to get from here to there, but this book con-
tains a deluge of practical advice about how to apply Docker to problems you’re hav-
ing right now. Follow this advice, and your organization will keep on moving quickly.
And—perhaps more importantly—building and deploying your applications will
become a lot more enjoyable.

 BEN FIRSHMAN

 DIRECTOR OF PRODUCT MANAGEMENT, DOCKER, INC.
 COCREATOR OF DOCKER COMPOSE

xvii

preface
In September 2013, while browsing Hacker News, I stumbled across an article in Wired
about a new technology called “Docker.”1 As I read it, I became increasingly excited as
I realized Docker’s revolutionary potential.

 The company I’d worked at for over a decade was struggling to deliver software
quickly enough. Provisioning environments was a costly, time-consuming, manual,
and inelegant affair. Continuous integration was barely existent, and setting up devel-
opment environments was an exercise in patience. As my job title included the words
“DevOps Manager,” I was peculiarly motivated to solve these problems!

 I recruited a couple of motivated coworkers (one of them now my coauthor) via a
company mailing list, and together our skunkworks team labored to turn a beta tool
into a business advantage, reducing the high costs of VMs and enabling new ways of
thinking about building and deploying software. We even built and open sourced an
automation tool (ShutIt) to suit our organization’s delivery needs.

 Docker gave us a packaged and maintained tool that solved many problems that
would have been effectively insuperable had we taken it upon ourselves to solve them.
This was open source at its best, empowering us to take on a challenge using our spare
time, overcoming technical debt, and learning lessons daily. Lessons not only about
Docker, but about continuous integration, continuous delivery, packaging, automa-
tion, and how people respond to speedy and disruptive technological change.

1 http://www.wired.com/2013/09/docker/

http://www.wired.com/2013/09/docker/

PREFACExviii

 For us, Docker is a remarkably broad tool. Wherever you run software using Linux,
Docker can impact it. This makes writing a book on the subject challenging, because
the landscape is as broad as software itself. The task is made more onerous by the
extraordinary rate at which the Docker ecosystem is producing solutions to meet the
needs that emerge from such a fundamental change in software production. Over
time, the shape of problems and solutions became familiar to us, and in this book
we’ve endeavored to pass on this experience. This will enable you to figure out solu-
tions to your particular technical and business constraints.

 When giving talks at meetups, we’re struck by how quickly Docker has become
effective within organizations willing to embrace it. This book mirrors how we used
Docker, going from our desktops, through the DevOps pipeline, and all the way to
production. As a consequence, this book is sometimes unorthodox, but as engineers
we believe that purity must sometimes give way to practicality, especially when it comes
to saving money! Everything in this book is based on real lessons from the field, and
we hope you benefit from our hard-won experience.

 IAN MIELL

xix

acknowledgments
This book couldn’t have been written without the support, sacrifice, and patience of
those closest to us. Special mention is due to Stephen Hazleton, whose tireless efforts
with us to make Docker useful for our customers informed much of the book’s contents.

 Several Docker contributors and staff were kind enough to review the book at dif-
ferent stages and provided much useful feedback, including the following people who
read the book in manuscript form: Benoit Benedetti, Burkhard Nestmann, Chad
Davis, David Moravec, Ernesto Cárdenas Cangahuala, Fernando Rodrigues, José San
Leandro, Kirk Brattkus, Pethuru Raj, Scott Bates, Steven Lembark, Stuart Woodward,
Ticean Bennett, Valmiky Arquissandas, and Wil Moore III.

 Finally, this book also owes a great deal to the Manning editorial team, who went
out of their way to push us into making the book not just good enough, but the best it
could be. We hope the pride they took in their work rubbed off on us.

Ian Miell To Sarah, Isaac, and Rachel for putting up with the late-night coding, a
father glued to a laptop screen, and the eternal “Docker this, Docker that, Docker
blah, blah,” and to my parents for encouraging me from an early age to question the
status quo. And buying me that Spectrum.

Aidan Hobson Sayers To Mona for the support and encouragement, my parents for
their wisdom and motivating words, and my coauthor for that fateful “Has anyone
tried this Docker thing?” e-mail.

xx

about this book
Docker is arguably the fastest-growing software project ever. Open sourced in March 2013,
by 2016 it had gained nearly 30,000 GitHub stars and over 7,500 forks. It has accepted sig-
nificant numbers of pull requests from the likes of Red Hat, IBM, Microsoft, Google, Cisco
and VMware.

 Docker has hit this critical mass by responding to a critical need for many software
organizations: the ability to build software in an open and flexible way and then
deploy it reliably and consistently in different contexts. You don’t need to learn a new
programming language, buy expensive hardware, or do much in the way of installa-
tion or configuration to build, ship, and run applications portably.

 Docker in Practice takes you through real-world examples of Docker usage using
techniques we’ve employed in various contexts. Where possible, we’ve tried to eluci-
date these techniques without requiring knowledge of other technologies before read-
ing. We’ve assumed the reader has an understanding of basic development techniques
and concepts such as the ability to develop some structured code, as well as some
awareness of software development and deployment processes. In addition, we’ve
assumed a knowledge of core source control ideas and a basic understanding of net-
work fundamentals such as TCP/IP, HTTP, and ports. Anything less mainstream is
explained as we go.

 Starting with a rundown of Docker fundamentals in part one, in part two we focus
on using Docker in development on a single machine. In part three, we move on to
Docker usage within a DevOps pipeline, covering continuous integration, continuous

ABOUT THIS BOOK xxi

delivery, and testing. The last part covers Docker in production, focusing on your
options relating to orchestration.

 Docker is such a broad, flexible, and dynamic tool that keeping up with its fast-
evolving landscape is not for the faint-hearted. We’ve endeavored to give you an
understanding of critical concepts through real-world applications and examples,
with the aim of giving you the power to critically evaluate future tools and technolo-
gies within the Docker ecosystem with confidence. We’ve tried to make the book an
enjoyable tour of the many ways we’ve seen Docker make our lives easier and even
fun. Immersing ourselves in Docker has introduced us to many interesting software
techniques spanning the entire software life cycle in a stimulating way, and we hope
that this is an experience shared by the reader.

Roadmap

This book consists of 12 chapters divided into four parts.
 Part 1 lays the groundwork for the rest of the book, introducing Docker and get-

ting you to run some basic Docker commands. In chapter 2 some time is spent getting
you familiar with Docker’s client-server architecture and how to debug it, which can
be useful for identifying issues with unconventional Docker setups.

 Part 2 focuses on familiarization with Docker and getting the most out of Docker
on your own machine. An analogy with a concept you may be familiar with, virtual
machines, is used as the basis for chapter 3 to provide an introduction to Docker
use. Chapter 4 then details a number of Docker techniques we’ve found ourselves
using every day. The final chapter in this part explores the topic of building images
in more depth.

 Part 3 begins by looking at uses of Docker in a DevOps context, from using it for
automation of software builds and tests to moving your built software to different
places. This part concludes with a chapter on the Docker virtual network, introduces
Docker Compose, and covers some more-advanced networking topics, like network
simulation and Docker network plugins.

 Part 4 covers a number of topics for using Docker effectively in a production envi-
ronment. It begins with chapter 9, where we survey some of the most popular tools for
orchestrating containers and note what scenarios they tend to be used in. Chapter 10
addresses the important topic of security, explaining how to lock down processes run-
ning inside a container and how to restrict access to an externally exposed Docker
daemon. The final two chapters go into detail on some key practical information for
running Docker in production. Chapter 11 demonstrates how to apply classic sys-
admin knowledge in the context of containers, from logging to resource limits, while
chapter 12 looks at some problems you may encounter and provides steps for debug-
ging and resolution.

 The appendixes contain details on installing, using, and configuring Docker in dif-
ferent ways, including inside a virtual machine and on Windows.

ABOUT THIS BOOKxxii

Code

The source code for all tools, applications, and Docker images created by the authors
for use in this book is available for download from the publisher’s website at www
.manning.com/books/docker-in-practice and also on GitHub under the docker-in-
practice organization: https://github.com/docker-in-practice/. Images on the Docker
Hub under the dockerinpractice user (https://hub.docker.com/u/dockerinpractice/)
are typically automated builds from one of the GitHub repositories. Where we’ve felt the
reader may be interested in further study of some source code behind a technique, a link
to the relevant repository has been inserted in the technique discussion.

 A significant number of the code listings in the book illustrate a terminal session
for the reader to follow, along with corresponding output from commands. There are
a couple of things to note about these sessions.

 Long terminal commands may use the shell line continuation character (\) to split
a command over multiple lines. Although this will work in your shell if you type it out,
you may also omit it and type the whole command on one line.

 Where a section of output doesn’t provide extra useful information to a reader, it
may be omitted and an ellipsis ([...]) inserted in its place.

Author Online

Purchase of Docker in Practice includes free access to a private web forum run by
Manning Publications where you can make comments about the book, ask technical
questions, and receive help from the lead author and from other users. To access the
forum and subscribe to it, point your web browser to www.manning.com/books/
docker-in-practice. This page provides information on how to get on the forum once
you are registered, what kind of help is available, and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialog between individual readers and between readers and the authors can take
place. It is not a commitment to any specific amount of participation on the part of
the authors, whose contribution to the forum remains voluntary (and unpaid). We
suggest you try asking their some challenging questions lest them interest stray! The
Author Online forum and the archives of previous discussions will be accessible from
the publisher’s website as long as the book is in print.

https://github.com/docker-in-practice/
https://hub.docker.com/u/dockerinpractice/
http://www.manning.com/books/docker-in-practice
http://www.manning.com/books/docker-in-practice
https://www.manning.com/books/docker-in-practice
https://www.manning.com/books/docker-in-practice

xxiii

about the cover illustration
The figure on the cover of Docker in Practice is captioned “Man from Selce, Croatia.”
The illustration is taken from a reproduction of an album of Croatian traditional cos-
tumes from the mid-nineteenth century by Nikola Arsenovic, published by the Ethno-
graphic Museum in Split, Croatia, in 2003. The illustrations were obtained from a
helpful librarian at the Ethnographic Museum in Split, itself situated in the Roman
core of the medieval center of the town: the ruins of Emperor Diocletian’s retirement
palace from around AD 304. The book includes finely colored illustrations of figures
from different regions of Croatia, accompanied by descriptions of the costumes and
of everyday life.

 Dress codes and lifestyles have changed over the last 200 years, and the diversity by
region, so rich at the time, has faded away. It’s now hard to tell apart the inhabitants of
different continents, let alone of different hamlets or towns separated by only a few
miles. Perhaps we have traded cultural diversity for a more varied personal life—
certainly for a more varied and fast-paced technological life.

 Manning celebrates the inventiveness and initiative of the computer business with
book covers based on the rich diversity of regional life of two centuries ago, brought
back to life by illustrations from old books and collections like this one.

Part 1

Docker fundamentals

Part 1 of this book consists of chapters 1 and 2, which get you started using
Docker and cover its fundamentals. Chapter 1 explains the origin of Docker
along with its core concepts such as images, containers, and layering. Finally, you
get your hands dirty by creating your first image with a Dockerfile. Chapter 2
introduces some useful techniques to give you a deeper understanding of
Docker’s architecture. Taking each major component in turn, we cover the rela-
tionship between the Docker daemon and its client, the Docker registry, and the
Docker Hub. By the end of part 1 you’ll be comfortable with core Docker con-
cepts and will be able to demonstrate some useful techniques, laying a firm foun-
dation of understanding for the remainder of the book.

3

Discovering Docker

Docker is a platform that allows you to “build, ship, and run any app, anywhere.” It
has come a long way in an incredibly short time and is now considered a standard
way of solving one of the costliest aspects of software: deployment.

 Before Docker came along, the development pipeline typically consisted of
combinations of various technologies for managing the movement of software,
such as virtual machines, configuration management tools, different package man-
agement systems, and complex webs of library dependencies. All these tools
needed to be managed and maintained by specialist engineers, and most had their
own unique ways of being configured.

This chapter covers
■ What Docker is
■ The uses of Docker and how it can save you

time and money
■ The differences between containers and images
■ Docker’s layering feature
■ Building and running a to-do application using

Docker

4 CHAPTER 1 Discovering Docker

 Docker has changed all of this, allowing different engineers involved in this pro-
cess to effectively speak one language, making working together a breeze. Everything
goes through a common pipeline to a single output that can be used on any target—
there’s no need to continue maintaining a bewildering array of tool configurations, as
shown in figure 1.1.

 At the same time, there’s no need to throw away your existing software stack if it
works for you—you can package it up in a Docker container as-is for others to con-
sume. As a bonus, you can see how these containers were built, so if you need to dig
into the details, you can.

 This book is aimed at intermediate developers with some knowledge of Docker. If
you’re OK with the basics, feel free to skip to the later chapters. The goal of this book
is to expose the real-world challenges that Docker brings and show how they can be
overcome. But first we’re going to provide a quick refresher on Docker itself. If you
want a more thorough treatment of Docker’s basics, take a look at Docker in Action by
Jeff Nickoloff (Manning Publications, 2016).

 In chapter 2 you’ll be introduced to Docker’s architecture more deeply with the
aid of some techniques that demonstrate its power. In this chapter you’re going to
learn what Docker is, see why it’s important, and start using it.

Configuration

Life before Docker

Code Configuration

Life with Docker

Code

Vagrant ChefJenkins Docker build

Development LiveTest Development Release
to live

Testing

Inputs to the system requiring manual maintenance—fewer
inputs here mean less of a maintenance burden.

Stages of software development requiring
an environment to run in

Tools that use the inputs to create environments
for software development

Figure 1.1 How Docker has eased the tool maintenance burden

5The what and why of Docker

1.1 The what and why of Docker
Before we get our hands dirty, we’re going to discuss Docker a little so that you under-
stand its context, where the name “Docker” came from, and why we’re using it at all!

1.1.1 What is Docker?

To understand what Docker is, it’s easier to start with a metaphor than a technical expla-
nation, and the Docker metaphor is a powerful one. A docker was a labourer who
moved commercial goods into and out of ships when they docked at ports. There were
boxes and items of differing sizes and shapes, and experienced dockers were prized for
their ability to fit goods into ships by hand in cost-effective ways (see figure 1.2). Hiring
people to move stuff around wasn’t cheap, but there was no alternative.

Ship on which the
items were loaded

Teams of dockers
required to load
differently shaped
items onto ship

Ship can be designed to carry, load, and unload
predictably shaped items more efficiently.

Single container with different items in it. It
doesn't matter to the carrier what's inside the
container. The carrier can be loaded up elsewhere,
reducing the bottleneck of loading at port.

Only one docker needed to
operate machines designed
to move containers

Figure 1.2 Shipping before and after standardized containers

6 CHAPTER 1 Discovering Docker

This should sound familiar to anyone working in software. Much time and intellectual
energy is spent getting metaphorically odd-shaped software into different sized meta-
phorical ships full of other odd-shaped software, so they can be sold to users or busi-
nesses elsewhere.

 Figure 1.3 shows how time and money can be saved with the Docker concept.
 Before Docker, deploying software to different environments required significant

effort. Even if you weren’t hand-running scripts to provision software on different
machines (and plenty of people still do exactly that), you’d still have to wrestle with con-
figuration management tools that manage state on what are increasingly fast-moving
environments starved of resources. Even when these efforts were encapsulated in VMs,
a lot of time was spent managing the deployment of these VMs, waiting for them to boot,
and managing the overhead of resource use they created.

 With Docker, the configuration effort is separated from the resource management,
and the deployment effort is trivial: run docker run, and the environment’s image is
pulled down and ready to run, consuming fewer resources and contained so that it
doesn’t interfere with other environments.

 You don’t need to worry about whether your container is going to be shipped to a
RedHat machine, an Ubuntu machine, or a CentOS VM image; as long as it has
Docker on it, it’ll be good to go.

Three times the
effort to manage
deployment

A single effort
to manage
deployment

Dev laptop Live serverTest server

Life before Docker

Install, configure,
and maintain complex

application

Install, configure,
and maintain complex

application

Install, configure,
and maintain complex

application

Docker image

Dev laptop

Test server

Live server

Life with Docker

Install, configure,
and maintain complex

application

docker run

docker run

docker run

Figure 1.3 Software delivery before and after Docker

7The what and why of Docker

1.1.2 What is Docker good for?

Some crucial practical questions arise: why would you use Docker, and for what? The short
answer to the “why” is that for a modicum of effort, Docker can save your business a lot
of money quickly. Some of these ways (and by no means all) are discussed in the following
subsections. We’ve seen all of these benefits first-hand in real working contexts.

REPLACES VIRTUAL MACHINES (VMS)

Docker can be used to replace VMs in many situations. If you only care about the
application, not the operating system, Docker can replace the VM, and you can leave
worrying about the OS to someone else. Not only is Docker quicker than a VM to spin
up, it’s more lightweight to move around, and due to its layered filesystem, it’s much
easier and quicker to share changes with others. It’s also firmly rooted in the com-
mand line and is eminently scriptable.

PROTOTYPING SOFTWARE

If you want to quickly experiment with software without either disrupting your exist-
ing setup or going through the hassle of provisioning a VM, Docker can give you a
sandbox environment in milliseconds. The liberating effect of this is difficult to grasp
until you experience it for yourself.

PACKAGING SOFTWARE

Because a Docker image has effectively no dependencies for a Linux user, it’s a great
way to package software. You can build your image and be sure that it can run on any
modern Linux machine—think Java, without the need for a JVM.

ENABLING A MICROSERVICES ARCHITECTURE

Docker facilitates the decomposition of a complex system to a series of composable
parts, which allows you to reason about your services in a more discrete way. This can
allow you to restructure your software to make its parts more manageable and plugga-
ble without affecting the whole.

MODELLING NETWORKS

Because you can spin up hundreds (even thousands) of isolated containers on one
machine, modelling a network is a breeze. This can be great for testing real-world sce-
narios without breaking the bank.

ENABLING FULL-STACK PRODUCTIVITY WHEN OFFLINE

Because you can bundle all the parts of your system into Docker containers, you can
orchestrate these to run on your laptop and work on the move, even when offline.

REDUCING DEBUGGING OVERHEAD

Complex negotiations between different teams about software delivered is commonplace
within the industry. We’ve personally experienced countless discussions about broken
libraries; problematic dependencies; updates applied wrongly, or in the wrong order, or
even not performed at all; unreproducible bugs, and so on. It’s likely you have too. Docker
allows you to state clearly (even in script form) the steps for debugging a problem on a sys-
tem with known properties, making bug and environment reproduction a much simpler
affair, and one normally separated from the host environment provided.

8 CHAPTER 1 Discovering Docker

DOCUMENTING SOFTWARE DEPENDENCIES AND TOUCHPOINTS

By building your images in a structured way, ready to be moved to different environ-
ments, Docker forces you to document your software dependencies explicitly from a
base starting point. Even if you decide not to use Docker everywhere, this need to doc-
ument can help you install your software in other places.

ENABLING CONTINUOUS DELIVERY

Continuous delivery (CD) is a paradigm for software delivery based on a pipeline that
rebuilds the system on every change and then delivers to production (or “live”)
through an automated (or partly automated) process.

 Because you can control the build environment’s state more exactly, Docker builds
are more reproducible and replicable than traditional software building methods.
This makes implementing CD much easier. Standard CD techniques such as Blue/
Green deployment (where “live” and “last” deployments are maintained on live) and
Phoenix Deployment (where whole systems are rebuilt on each release) are made triv-
ial by implementing a reproducible Docker-centric build process.

 Now you know a bit about how Docker can help you. Before we dive into a real
example, let’s go over a couple of core concepts.

1.1.3 Key concepts

In this section we’re going to cover some key Docker concepts, which are illustrated in
figure 1.4.

Layers: A layer is a
collection of changes
to files. The differences
between v1 and v2 of
MyApplication are
stored in this layer.

Images: An image is a
collection of filesystem
layers and some metadata.
Taken together, they can be
spun up as Docker
containers.

Containers: A container is a
running instance of an image.
You can have multiple containers
running from the same image.

Docker host machine

Debian layer:
/bin

/boot
…

/tmp
/var

MyApplication
code layer

MyApplication
v2 layer

MyApplication
container (v1) 1

Stored
on disk

Running
processes

MyApplication
container (v1) 2

MyApplication
container (v1) 3

MyApplication
container (v2) 1

Figure 1.4 Core Docker concepts

9The what and why of Docker

It’s most useful to get the concepts of images, containers, and layers clear in your
mind before you start running Docker commands. In short, containers are running sys-
tems defined by images. These images are made up of one or more layers (or sets of
diffs) plus some metadata for Docker.

 Let’s look at some of the core Docker commands. We’ll turn images into contain-
ers, change them, and add layers to new images that we’ll commit. Don’t worry if all of
this sounds confusing. By the end of the chapter it will all be much clearer!

KEY DOCKER COMMANDS

Docker’s central function is to build, ship, and run software in any location that has
Docker.

 To the end user, Docker is a command-line program that you run. Like git (or
any source control tool), this program has subcommands that perform different
operations.

 The principal Docker subcommands you’ll use on your host are listed in table 1.1.

IMAGES AND CONTAINERS

If you’re unfamiliar with Docker, this may be the first time you’ve come across the
words “container” and “image” in this context. They’re probably the most important
concepts in Docker, so it’s worth spending a bit of time to make sure the difference
is clear.

 In figure 1.5 you’ll see an illustration of these concepts, with three containers
started up from one base image.

 One way to look at images and containers is to see them as analogous to programs
and processes. In the same way a process can be seen as an application being exe-
cuted, a Docker container can be viewed as a Docker image in execution.

 If you’re familiar with object-oriented principles, another way to look at images
and containers is to view images as classes and containers as objects. In the same way
that objects are concrete instantiations of classes, containers are instantiations of
images. You can create multiple containers from a single image, and they are all iso-
lated from one another in the same way objects are. Whatever you change in the
object, it won’t affect the class definition—they’re fundamentally different things.

Table 1.1 Docker subcommands

Command Purpose

docker build Build a Docker image.

docker run Run a Docker image as a container.

docker commit Commit a Docker container as an image.

docker tag Tag a Docker image.

10 CHAPTER 1 Discovering Docker

1.2 Building a Docker application
We’re going to get our hands dirty now by building a simple “to-do” application (todo-
app) image with Docker. In the process, you’ll see some key Docker features like
Dockerfiles, image re-use, port exposure, and build automation. Here’s what you’ll
learn in the next 10 minutes:

■ How to create a Docker image using a Dockerfile
■ How to tag a Docker image for easy reference
■ How to run your new Docker image

A to-do app is one that helps you keep track of things you want to get done. The app
we’ll build will store and display short strings of information that can be marked as
done, presented in a simple web interface.

Containers run one process
on startup. When this process
completes, the container stops.
This startup process can
spawn others.

Containers are created from images, inherit
their filesystems, and use their metadata to
determine their startup configuration.
Containers are separate but can be
configured to communicate with
each other.

Changes to files are stored
within the container in a
copy-on-write mechanism.
The base image cannot be
affected by a container.

A Docker image consists of files and metadata.
This is the base image for the containers below.

Docker image: Ubuntu

Files:
 /bin/bash
 /bin/bunzip2
 /bin/bzcat
 […]
 /var/spool/rsyslog
 /var/tmp

Metadata:
 Port mappings
 Environment variables

Ubuntu container 1

Process: nodejs

Diffs from Ubuntu image:
MODIFIED: /opt/app/nodejs.log

Ubuntu container 2

Process: mysql

Diffs from Ubuntu image:
DELETE: /etc/nologin

Ubuntu container 3

Process: apache

Diffs from Ubuntu image:
ADDED: //var/log/apache/apache.log

Image files take up
most of the space.
Because of the isolation
each container provides,
they must have their
own copy of any required
tools, including language
environments or libraries.

The metadata has
information on
environment variables,
port mappings, volumes,
and other details we'll
discuss later.

Figure 1.5 Docker images and containers

11Building a Docker application

Figure 1.6 shows what we’ll achieve by doing this.
 The details of the application are unimportant. We’re going to demonstrate that

from the single short Dockerfile we’re about to give you, you can reliably build, run,
stop, and start an application in the same way on both your host and ours without
needing to worry about application installations or dependencies. This is a key part of
what Docker gives us—reliably reproduced and easily managed and shared develop-
ment environments. This means no more complex or ambiguous installation instruc-
tions to follow and potentially get lost in.

THE TO-DO APPLICATION This to-do application will be used a few times through-
out the book, and it’s quite a useful one to play with and demonstrate, so it’s
worth familiarizing yourself with it.

1.2.1 Ways to create a new Docker image

There are four standard ways to create Docker images. Table 1.2 itemizes these
methods.

Table 1.2 Options for creating Docker images

Method Description See technique

Docker commands / “By
hand”

Fire up a container with docker run and input the
commands to create your image on the command
line. Create a new image with docker commit.

See technique 14.

Dockerfile Build from a known base image, and specify build
with a limited set of simple commands.

Discussed shortly.

ToDoApp
Docker image

ToDoApp
Dockerfile

Build

My
server

ToDoApp
Docker image

Build

Your
server

Git
repository

Figure 1.6 Building a Dock-
er application

12 CHAPTER 1 Discovering Docker

The first “by hand” option is fine if you’re doing proofs of concept to see whether
your installation process works. At the same time, you should be keeping notes about
the steps you’re taking so that you can return to the same point if you need to.

 At some point you’re going to want to define the steps for creating your image.
This is the second option (and the one we’ll use here).

 For more complex builds, you may want to go for the third option, particularly
when the Dockerfile features aren’t sophisticated enough for your image’s needs.

 The final option builds from a null image by overlaying the set of files required to
run the image. This is useful if you want to import a set of self-contained files created
elsewhere, but it’s rarely seen in mainstream use.

 We’ll look at the Dockerfile method now; the other methods will be covered later
in the book.

1.2.2 Writing a Dockerfile

A Dockerfile is a text file with a series of commands in it. Here’s the Dockerfile we’re
going to use for this example:

FROM node
MAINTAINER ian.miell@gmail.com
RUN git clone -q https://github.com/docker-in-practice/todo.git
WORKDIR todo
RUN npm install > /dev/null
EXPOSE 8000
CMD ["npm","start"]

You begin the Dockerfile by defining the base image with the FROM command B. This
example uses a Node.js image so you have access to the Node.js binaries. The official
Node.js image is called node.

 Next, you declare the maintainer with the MAINTAINER command C. In this case,
we’re using one of our email addresses, but you can replace this with your own

Dockerfile and configuration
management (CM) tool

Same as Dockerfile, but hand over control of the
build to a more sophisticated CM tool.

See technique 47.

Scratch image and import a
set of files

From an empty image, import a TAR file with the
required files.

See technique 10.

Table 1.2 Options for creating Docker images (continued)

Method Description See technique

Define the
base image.

B
Declare the
maintainer.

C
Clone the
todoapp

code.

D

Move to the
new cloned

directory. E

Run the node package
manager’s install
command (npm).F

Specify that containers from the built
image should listen on this port.G

Specify which command
will be run on startup. H

13Building a Docker application

reference because it’s your Dockerfile now. This line isn’t required to make a
working Docker image, but it’s good practice to include one. At this point, the build
has inherited the state of the node container, and you’re ready to work on top of it.

 Next, you clone the todoapp code with a RUN command D. This uses the specified
command to retrieve the code for the application, running git within the container.
Git is installed inside the base node image in this case, but you can’t take this kind of
thing for granted.

 Now you move to the new cloned directory with a WORKDIR command E. Not only
does this change directory within the build context, but the last WORKDIR command
determines which directory you’re in by default when you start up your container
from your built image.

 Next, you run the node package manager’s install command (npm) F. This will set
up the dependencies for your application. You aren’t interested in the output here, so
you redirect it to /dev/null.

 Because port 8000 is used by the application, you use the EXPOSE command to tell
Docker that containers from the built image should listen on this port G.

 Finally, you use the CMD command to tell Docker which command will be run on
startup of the container H.

 This simple example illustrates several key features of Docker and Dockerfiles. A
Dockerfile is a simple sequence of a limited set of com-
mands run in strict order. They affect the files and meta-
data of the resulting image. Here the RUN command
affects the filesystem by checking out and installing appli-
cations, and the EXPOSE, CMD, and WORKDIR commands
affect the metadata of the image.

1.2.3 Building a Docker image

You’ve defined your Dockerfile’s build steps. Now
you’re going to build the Docker image from it by typ-
ing the command in figure 1.7.

 The output you’ll see will be similar to this:

Sending build context to Docker daemon 178.7 kB
Sending build context to Docker daemon
Step 0 : FROM node
---> fc81e574af43

Step 1 : MAINTAINER ian.miell@gmail.com
---> Running in 21af1aad6950
---> 8f32669fe435

Removing intermediate container 21af1aad6950
Step 2 : RUN git clone https://github.com/ianmiell/todo.git
---> Running in 0a030ee746ea

Cloning into 'todo'...

Docker uploads
the files and

directories under
the path supplied

to the docker
build command.

Each build step is
numbered sequentially
from 0 and output with
the command.

Each command
results in a new

image being
created, and the

image ID is output.

To save space, each
intermediate container is
removed before continuing.

docker build .

The docker
command

Path to the
Dockerfile file

The docker build
subcommand

Figure 1.7 Docker build
command

14 CHAPTER 1 Discovering Docker

---> 783c68b2e3fc
Removing intermediate container 0a030ee746ea
Step 3 : WORKDIR todo
---> Running in 2e59f5df7152
---> 8686b344b124

Removing intermediate container 2e59f5df7152
Step 4 : RUN npm install
---> Running in bdf07a308fca

npm info it worked if it ends with ok
[...]
npm info ok
---> 6cf8f3633306

Removing intermediate container bdf07a308fca
Step 5 : RUN chmod -R 777 /todo
---> Running in c03f27789768
---> 2c0ededd3a5e

Removing intermediate container c03f27789768
Step 6 : EXPOSE 8000
---> Running in 46685ea97b8f
---> f1c29feca036

Removing intermediate container 46685ea97b8f
Step 7 : CMD npm start
---> Running in 7b4c1a9ed6af
---> 439b172f994e

Removing intermediate container 7b4c1a9ed6af
Successfully built 439b172f994e

You now have a Docker image with an image
ID (“66c76cea05bb” in the preceding exam-
ple, but your ID will be different). It can be
cumbersome to keep referring to this ID, so
you can tag it for easier reference.

 Type the preceding command, replacing
the 66c76cea05bb with whatever image ID
was generated for you.

 You can now build your own copy of a
Docker image from a Dockerfile, reproducing
an environment defined by someone else!

1.2.4 Running a Docker container

You’ve built and tagged your Docker image. Now you can run it as a container:

docker run -p 8000:8000 --name example1 todoapp
npm install
npm info it worked if it ends with ok
npm info using npm@2.14.4
npm info using node@v4.1.1
npm info prestart todomvc-swarm@0.0.1

> todomvc-swarm@0.0.1 prestart /todo
> make all

Debug of the build is
output here (and edited
out of this listing).

Final image ID for this
build, ready to tag

The docker run
subcommand starts the
container, -p maps the
container’s port 8000 to
the port 8000 on the host
machine, --name gives the
container a unique name,
and the last argument is
the image.B

The output
of the

container’s
starting

process is
sent to the

terminal.

docker tag 66c76cea05bb todoapp

The docker
command

The image
ID to tag

The docker tag
subcommand

Tag name to
give image

Figure 1.8 Docker tag command

15Building a Docker application

npm install
npm info it worked if it ends with ok
npm info using npm@2.14.4
npm info using node@v4.1.1
npm WARN package.json todomvc-swarm@0.0.1 No repository field.
npm WARN package.json todomvc-swarm@0.0.1 license should be a

➥ valid SPDX license expression
npm info preinstall todomvc-swarm@0.0.1
npm info package.json statics@0.1.0 license should be a valid

➥ SPDX license expression
npm info package.json react-tools@0.11.2 No license field.
npm info package.json react@0.11.2 No license field.
npm info package.json node-jsx@0.11.0 license should be a valid

➥ SPDX license expression
npm info package.json ws@0.4.32 No license field.
npm info build /todo
npm info linkStuff todomvc-swarm@0.0.1
npm info install todomvc-swarm@0.0.1
npm info postinstall todomvc-swarm@0.0.1
npm info prepublish todomvc-swarm@0.0.1
npm info ok
if [! -e dist/]; then mkdir dist; fi
cp node_modules/react/dist/react.min.js dist/react.min.js

LocalTodoApp.js:9: // TODO: default english version
LocalTodoApp.js:84: fwdList =

➥ this.host.get('/TodoList#'+listId); // TODO fn+id sig
TodoApp.js:117: // TODO scroll into view
TodoApp.js:176: if (i>=list.length()) { i=list.length()-1; }

➥ // TODO .length
local.html:30: <!-- TODO 2-split, 3-split -->
model/TodoList.js:29:

➥ // TODO one op - repeated spec? long spec?
view/Footer.jsx:61: // TODO: show the entry's metadata
view/Footer.jsx:80: todoList.addObject(new TodoItem());

➥ // TODO create default
view/Header.jsx:25:

➥ // TODO list some meaningful header (apart from the id)

npm info start todomvc-swarm@0.0.1

> todomvc-swarm@0.0.1 start /todo
> node TodoAppServer.js

Swarm server started port 8000
^C
$ docker ps -a
CONTAINER ID IMAGE COMMAND CREATED

➥ STATUS PORTS NAMES
b9db5ada0461 todoapp:latest "npm start" 2 minutes ago

➥ Exited (130) 2 minutes ago example1
$ docker start example1

Hit Ctrl-C
here to

terminate
the process

and the
container.

C

Run this command to see
containers that have been
started and removed, along with
an ID and status (like a process).

D

Restart the container,
this time in the
background.E

16 CHAPTER 1 Discovering Docker

example1
$ docker ps -a
CONTAINER ID IMAGE COMMAND CREATED

➥ STATUS PORTS NAMES
b9db5ada0461 todoapp:latest "npm start" 8 minutes ago

➥ Up 10 seconds 0.0.0.0:8000->8000/tcp example1
$ docker diff example1
C /todo
A /todo/.swarm
A /todo/.swarm/TodoItem
A /todo/.swarm/TodoItem/1tlOc02+A~4UZcz
A /todo/.swarm/_log
A /todo/dist
A /todo/dist/LocalTodoApp.app.js
A /todo/dist/TodoApp.app.js
A /todo/dist/react.min.js

The docker run subcommand starts up the container B. The -p flag maps the con-
tainer’s port 8000 to the port 8000 on the host machine, so you should now be able to
navigate with your browser to http://localhost:8000 to view the application. The --name
flag gives the container a unique name you can refer to later for convenience. The last
argument is the image name.

 Once the container was started, we hit CTRL-C to terminate the process and the
container C. You can run the ps command to see the containers that have been
started but not removed D. Note that each container has its own container ID and sta-
tus, analogous to a process. Its status is Exited, but you can restart it E. After you do,
notice how the status has changed to Up and the port mapping from container to host
machine is now displayed F.

 The docker diff subcommand shows you which files have been affected since the
image was instantiated as a container G. In this case, the todo directory has been
changed H and the other listed files have been added I. No files have been deleted,
which is the other possibility.

 As you can see, the fact that Docker “contains” your environment means that you
can treat it as an entity on which actions can be predictably performed. This gives
Docker its breadth of power—you can affect the software lifecycle from development
to production and maintenance. These changes are what this book will cover, showing
you in practical terms what can be done with Docker.

 Next you’re going to learn about layering, another key concept in Docker.

1.2.5 Docker layering

Docker layering helps you manage a big problem that arises when you use containers
at scale. Imagine what would happen if you started up hundreds—or even thou-
sands—of the to-do app, and each of those required a copy of the files to be stored
somewhere.

 As you can imagine, disk space would run out pretty quickly! By default, Docker
internally uses a copy-on-write mechanism to reduce the amount of disk space required

Run the ps
command

again to
see the

changed
status.

F

The docker diff
subcommand

shows you what
files have been
affected since

the image was
instantiated as

a container. G

The /todo directory
has been changed.H

The /todo/.swarm directory
has been added.I

17Building a Docker application

(see figure 1.9). Whenever a running container needs to write to a file, it records the
change by copying the item to a new area of disk. When a Docker commit is performed,
this new area of disk is frozen and recorded as a layer with its own identifier.

 This partly explains how Docker containers can start up so quickly—they have
nothing to copy because all the data has already been stored as the image.

COPY-ON-WRITE Copy-on-write is a standard optimization strategy used in com-
puting. When you create a new object (of any type) from a template, rather than
copying the entire set of data required, you only copy data over when it’s
changed. Depending on the use case, this can save considerable resources.

Figure 1.10 illustrates that the to-do app you’ve built has three layers you’re interested in.

A non-layered application
with nine copies made on disk
for nine running instances.

Each block represents a running
container’s file differences from
the original ToDoApp’s image.
Uses much less disk space.

Copy-on-startup

ToDoApp ToDoApp ToDoApp

ToDoApp ToDoApp ToDoApp

ToDoApp ToDoApp ToDoApp

Copy-on-write layers

ToDoApp

Figure 1.9 Copy-on-
startup vs copy-on-write

The base Ubuntu
layer contains standard
base packages for the
distribution.

Node binaries and files
are added in this layer.

Your to-do app’s
files on top

Three layers together
make the to-do image.

Image IDs are unique
references for images.

Name: todoapp
Image ID: bd0921d1
Size: 600k

Name: node
Image ID: efc12dea
Size: 1.5M

Name: Ubuntu
Image ID: abcf13de
Size: 89M

Figure 1.10 The to-do app’s filesystem layering in Docker

18 CHAPTER 1 Discovering Docker

Because the layers are static, you only need build on top of the image you wish to take
as a reference, should you need anything to change in a higher layer. In the to-do app,
you built from the publicly available node image and layered changes on top.

 All three layers can be shared across multiple running containers, much as a
shared library can be shared in memory across multiple running processes. This is a
vital feature for operations, allowing the running of numerous containers based on
different images on host machines without running out of disk space.

 Imagine that you’re running the to-do app as a live service for paying customers.
You can scale up your offering to a large number of users. If you’re developing, you
can spin up many different environments on your local machine at once. If you’re
moving through tests, you can run many more tests simultaneously, and far more
quickly than before. All these things are made possible by layering.

 By building and running an application with Docker, you’ve begun to see the
power that Docker can bring to your workflow. Reproducing and sharing specific envi-
ronments and being able to land these in various places gives you both flexibility and
control over development.

1.3 Summary
Depending on your previous experience with Docker, this chapter might have been a
steep learning curve. We’ve covered a lot of ground in a short time.

 You should now

■ Understand what a Docker image is
■ Know what Docker layering is, and why it’s useful
■ Be able to commit a new Docker image from a base image
■ Know what a Dockerfile is

We’ve used this knowledge to

■ Create a useful application
■ Reproduce state in an application with minimal effort

Next we’re going to introduce techniques that will help you understand how Docker
works and, from there, discuss some of the broader technical debate around Docker’s
usage. These first two introductory chapters form the basis for the remainder of the
book, which will take you from development to production, showing you how Docker
can be used to improve your workflow.

19

 Understanding Docker—
inside the engine room

Grasping Docker’s architecture is key to understanding Docker more fully. In this
chapter you’ll get an overview of Docker’s major components on your machine
and on the network, and you’ll learn some techniques that will develop this
understanding.

 In the process, you’ll learn some nifty tricks that will help you use Docker (and
Linux) more effectively. Many of the later and more advanced techniques will be
based on what you see here, so pay special attention to what follows.

This chapter covers
■ Docker’s architecture
■ Tracing the internals of Docker on your host
■ Using the Docker Hub to find and download images
■ Setting up your own Docker registry
■ Getting containers to communicate with each other

20 CHAPTER 2 Understanding Docker—inside the engine room

2.1 Docker’s architecture
Figure 2.1 lays out Docker’s architecture, and that will be the centrepiece of this chap-
ter. We’re going to start with a high-level look and then focus on each part with tech-
niques designed to cement your understanding.

 Docker on your host machine is (at the time of writing) split into two parts—a dae-
mon with a RESTful API and a client that talks to the daemon. Figure 2.1 shows your
host machine running the Docker client and daemon.

RESTFUL A RESTful API is one that uses standard HTTP request types such as
GET, POST, DELETE, and others to perform functions that usually correspond to
those intended by HTTP’s designers.

You invoke the Docker client to get information from or give instructions to the dae-
mon; the daemon is a server that receives requests and returns responses from the cli-
ent using the HTTP protocol. In turn, it will make requests to other services to send
and receive images, also using the HTTP protocol. The server will accept requests
from the command-line client or anyone else authorized to connect. The daemon is

Your host machine, on which you’ve
installed Docker. The host machine
will typically sit on a private network.

You invoke the Docker
client program to get
information from or
give instructions to
the Docker daemon.

The Docker Hub
is a public registry
run by Docker, Inc.

Other public
registries can
also exist on
the internet.

The Docker daemon
receives requests and
returns responses from
the Docker client using
the HTTP protocol.

The private Docker
registry stores
Docker images.

Private network

Your host machine

Internet

Docker client

Docker daemon

HTTP

Private Docker
registry

Docker Hub

Another public
Docker registry

HTTP HTTP

HTTP

Figure 2.1 Overview of Docker architecture

21The Docker daemon

also responsible for taking care of your images and containers behind the scenes,
whereas the client acts as the intermediary between you and the RESTful API.

 The private Docker registry is a service that stores Docker images. These can be
requested from any Docker daemon that has the relevant access. This registry is on an
internal network and isn’t publicly accessible, so it’s considered private.

 Your host machine will typically sit on a private network. The Docker daemon will
call out to the internet to retrieve images, if requested.

 The Docker Hub is a public registry run by Docker, Inc. Other public registries can
also exist on the internet, and your Docker daemon can interact with them.

 In the first chapter we said that Docker containers can be shipped to anywhere you
can run Docker—this isn’t strictly true. In fact, only if the daemon can be installed on a
machine will containers run on the machine. This is most obviously shown by the fact
that the Docker client will run on Windows, but the daemon won’t (yet).

 The key point to take from this image is that when you run Docker on your
machine, you may be interacting with other processes on your machine, or even ser-
vices running on your network or the internet.

 Now that you have a picture of how
Docker is laid out, we’ll introduce vari-
ous techniques relating to the different
parts of the figure.

2.2 The Docker daemon
The Docker daemon (see figure 2.2) is
the hub of your interactions with Docker,
and as such is the best place to start gain-
ing an understanding of all the relevant
pieces. It controls access to Docker on
your machine, manages the state of your
containers and images, and brokers
interactions with the outside world.

DAEMONS AND SERVERS A daemon is a process that runs in the background
rather than under the direct control of the user. A server is a process that
takes requests from a client and performs the actions required to fulfil the
requests. Daemons are frequently also servers that accept requests from cli-
ents to perform actions for them. The docker command is a client, and the
Docker daemon acts as the server doing the processing on your Docker con-
tainers and images.

Let’s look at a couple of techniques that illustrate that Docker effectively runs as a dae-
mon, and that your interactions with it using the docker command are limited to sim-
ple requests to perform actions, much like interactions with a web server. The first
technique allows others to connect to your Docker daemon and perform the same

The Docker daemon
receives requests and
returns responses from
the Docker client using
the HTTP protocol.

Docker client

Docker daemon

HTTP

Private network

Your host machine

Figure 2.2 The Docker daemon

22 CHAPTER 2 Understanding Docker—inside the engine room

actions you might on your host machine, and the second illustrates that Docker con-
tainers are managed by the daemon, not your shell session.

TECHNIQUE 1 Open your Docker daemon to the world

Although by default your Docker daemon is accessible only on your host, there can be
good reason to allow others to access it. You might have a problem that you want
someone to debug remotely, or you may want to allow another part of your DevOps
workflow to kick off a process on a host machine.

INSECURE! Although this can be a powerful and useful technique, it’s consid-
ered insecure. An open Docker daemon can be exploited by someone who
stumbles on it and gets escalated privileges.

■ Problem
You want to open your Docker server up for others to access.

■ Solution
Start the Docker daemon with an open TCP address.

■ Discussion
Figure 2.3 gives an overview of this technique’s workings.

Jenkins
server

Docker
daemon

/var/run/docker.sock

Docker
client

Docker
daemon

tcp://0.0.0.0:2375

Colleague’s
host

Docker
client

The default Docker configuration,
where access is restricted via the
/var/run/docker.sock domain socket.
Processes external to the host can't
gain access to Docker.

Using this technique's open access
to the Docker daemon, access is
gained through TCP socket 2375,
available to all that can connect to
your host (which is very insecure!).

Third parties can access the
Docker daemon. The Jenkins server
and colleague's host connect to the
host's IP address on port 2375 and
can read and write requests and
responses using that channel.

Figure 2.3 Docker accessibility: normal and opened up

23TECHNIQUE 2 Running containers as daemons

Before you open up the Docker daemon, you must first shut the running one down.
How you do this will vary depending on your operating system. If you’re not sure how
to do this, you can first try this command:

$ sudo service docker stop

If you get a message that looks like this,

The service command supports only basic LSB actions (start, stop, restart,
try-restart, reload, force-reload, status). For other actions, please try
to use systemctl.

then you have a systemctl-based startup system. Try this command:

$ systemctl stop docker

If this works, you shouldn’t see any output from this command:

ps -ef | grep -E 'docker (-d|daemon)\b' | grep -v grep

Once the Docker daemon has been stopped, you can restart it manually and open it
up to outside users with the following command:

docker daemon -H tcp://0.0.0.0:2375

This command starts docker as a daemon (docker daemon), defines the host server
with the -H flag, uses the TCP protocol, opens up to all IP addresses (with 0.0.0.0),
and opens on the standard Docker server port (2375). If Docker complains about
daemon not being a valid subcommand, try using the older -d argument instead.

 You can connect from outside with the following command:

$ docker -H tcp://<your host's ip>:2375

Note that you’ll also need to do this from inside your local machine because Docker is
no longer listening in the default location.

 If you want to make this change permanent on your host, you’ll need to configure
your startup system. See appendix B for information on how to do this.

USE IP RESTRICTIONS If you open your daemon up, be sure to open up to a
specific IP range only, and not to 0.0.0.0, which is highly insecure!

TECHNIQUE 2 Running containers as daemons

As you get familiar with Docker (and if you’re anything like us), you’ll start to think of
other use cases for Docker, and one of the first of these is to run Docker containers as
running services.

 Running Docker containers as services with predictable behaviour through soft-
ware isolation is one of the principal use cases for Docker. This technique will allow
you to manage services in a way that works for your operation.

24 CHAPTER 2 Understanding Docker—inside the engine room

■ Problem
You want to run a Docker container in the background as a service.

■ Solution
Use the -d flag to the docker run command, and use related container-management
flags to define the service characteristics.

■ Discussion
Docker containers—like most processes—will run by default in the foreground. The
most obvious way to run a Docker container in the background is to use the standard
& control operator. Although this works, you can run into problems if you log out of
your terminal session, necessitating that you use the nohup flag, which creates a file in
your local directory with output that you have to manage… You get the idea: it’s far
neater to use the Docker daemon’s functionality for this.

 To do this, you use the -d flag.

$ docker run -d -i -p 1234:1234 --name daemon ubuntu nc -l 1234

The -d flag, when used with docker run, runs the container as a daemon. The -i flag
gives this container the ability to interact with your Telnet session. With -p you publish
the 1234 port from the container to the host. The --name flag lets you give the con-
tainer a name so you can refer to it later. Finally, you run a simple listening echo
server on port 1234 with netcat (nc).

 If you now connect to it and send messages with Telnet, you can see that the con-
tainer has received the message by using the docker logs command, as shown in the
following listing.

$ telnet localhost 1234
Trying ::1...
Connected to localhost.
Escape character is '^]'.
hello daemon
^]

telnet> q
Connection closed.
$ docker logs daemon
hello daemon
$ docker rm daemon
daemon
$

You can see that running a container as a daemon is simple enough, but operationally
some questions remain to be answered:

Listing 2.1 Connecting to the container netcat server with Telnet

Connect to the container’s
netcat server with the
telnet command.

Input a line of
text to send to

the netcat server.
Press Ctrl-] followed by the
Return key to quit the
Telnet session.

Type q and then
the Return key to

quit the Telnet
program.

Run the docker logs
command to see the
container’s output.

Clean up the container
with the rm command.

25TECHNIQUE 2 Running containers as daemons

■ What happens to the service if it fails?
■ What happens to the service when it terminates?
■ What happens if the service keeps failing over and over?

Fortunately Docker provides flags for each of these questions!

FLAGS NOT REQUIRED Although restart flags are used most often with the dae-
mon flag (-d), technically it’s not a requirement to run these flags with -d.

THE RESTART FLAG

The docker run --restart flag allows you to apply a set of rules to be followed (a
so-called “restart policy”) when the container terminates (see table 2.1).

The no policy is simple: when the container exits, it is not restarted. This is the default.
 The always policy is also simple, but it’s worth discussing briefly:

$ docker run -d --restart=always ubuntu echo done

This command runs the container as a daemon (-d) and always restarts the container
on termination (--restart=always). It issues a simple echo command that completes
quickly, exiting the container.

 If you run the preceding command and then run a docker ps command, you’ll see
output similar to this:

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED

➥ STATUS PORTS NAMES
69828b118ec3 ubuntu:14.04 "echo done" 4 seconds ago

➥ Restarting (0) Less than a second ago sick_brattain

The docker ps command lists all the running containers and information about
them, including the following:

■ When the container was created (CREATED).
■ The current status of the container—usually this will be Restarting, as it will

only run for a short time (STATUS).
■ The exit code of the container’s previous run (also under STATUS). 0 means the

run was successful.
■ The container name. By default Docker names containers by concatenating two

random words. Sometimes this produces odd results!

Table 2.1 Restart policies

Policy Description

no Do not restart when container exits

always Always restart when container exits

on-failure[:max-retry] Restart only on failure

26 CHAPTER 2 Understanding Docker—inside the engine room

Note that the STATUS column also informed us that the container exited less than a
second ago and is restarting. This is because the echo done command exits immedi-
ately, and Docker must continually restart the container.

 It’s important to note that Docker reuses the container ID. It doesn’t change on
restart and there will only ever be one entry in the ps table for this Docker invocation.

 Finally, the on-failure policy restarts only when the container returns a non-zero
(which normally means failing) exit code from its main process:

$ docker run -d --restart=on-failure:10 ubuntu /bin/false

This command runs the container as a daemon (-d) and sets a limit on the number of
restart attempts (--restart=on-failure:10), exiting if this is exceeded. It runs a sim-
ple command (/bin/false) that completes quickly and will definitely fail.

 If you run the preceding command and wait a minute, and then run docker ps -a,
you’ll see output similar to this:

$ docker ps -a
CONTAINER ID IMAGE COMMAND CREATED

➥ STATUS PORTS NAMES
b0f40c410fe3 ubuntu:14.04 "/bin/false" 2 minutes ago

➥ Exited (1) 25 seconds ago loving_rosalind

TECHNIQUE 3 Moving Docker to a different partition

Docker stores all the data relating to your containers and images under a folder. As it
can store a potentially large number of different images, this folder can get big fast!

 If your host machine has different partitions (as is common in enterprise Linux
workstations), you may encounter space limitations more quickly. In these cases, you
may want to move the directory from which Docker operates.

■ Problem
You want to move where Docker stores its data.

■ Solution
Stop and start the Docker daemon, specifying the new location with the -g flag.

■ Discussion
First you’ll need to stop your Docker daemon (see appendix B for a discussion of this).

 Imagine you want to run Docker from /home/dockeruser/mydocker. When you run

docker daemon -g /home/dockeruser/mydocker

a new set of folders and files will be created in this directory. These folders are inter-
nal to Docker, so play with them at your peril (as we’ve discovered!).

 You should be aware that this will appear to wipe the containers and images from
your previous Docker daemon. But don’t despair. If you kill the Docker process you
just ran and restart your Docker service, your Docker client will be pointed back at its
original location and your containers and images will be returned to you.

 If you want to make this move permanent, you’ll need to configure your host sys-
tem’s startup process accordingly.

27TECHNIQUE 4 Use socat to monitor Docker API traffic

2.3 The Docker client
The Docker client (see figure 2.4)is the sim-
plest component in the Docker architec-
ture. It’s what you run when you type
commands like docker run or docker pull
on your machine. Its job is to communicate
with the Docker daemon via HTTP requests.

 In this section you’re going to see how you
can snoop on messages between the Docker
client and server. You’ll also see a couple of
basic techniques to do with port mapping that
represent baby steps towards the orchestra-
tion section later in the book and a way of using your browser as a Docker client.

TECHNIQUE 4 Use socat to monitor Docker API traffic

Occasionally the docker command may not work as you expect. Most often, some
aspect of the command-line arguments hasn’t been understood, but occasionally
there are more serious setup problems, such as the Docker binary being out of date.
In order to diagnose the problem, it can be useful to view the flow of data to and from
the Docker daemon you are communicating with.

DOCKER IS NOT UNSTABLE Don’t panic! The presence of this technique
doesn’t indicate that Docker needs to be debugged often, or is in any way
unstable! This technique is here as a tool for understanding Docker’s archi-
tecture, and also to introduce you to socat, a powerful tool. If, like us, you
use Docker in a lot of different locations, there will be differences in the
Docker versions you use. As with any software, different versions will have dif-
ferent features and flags, which can catch you out.

■ Problem
You want to debug a problem with a Docker command.

■ Solution
Use a traffic snooper to inspect the API calls and craft your own.

■ Discussion
In this technique you’ll insert a proxy Unix domain socket between your request and
the server’s socket and see what passes through it (as shown in figure 2.5). Note that
you’ll need root or sudo privileges to make this work.

 To create this proxy, you’ll use socat.

SOCAT socat is a powerful command that allows you to relay data between
two data channels of almost any type. If you’re familiar with netcat, you can
think of it as netcat on steroids.

$ sudo socat -v UNIX-LISTEN:/tmp/dockerapi.sock \
UNIX-CONNECT:/var/run/docker.sock &

You invoke the Docker
client program to get
information from or
give instructions to
the Docker daemon.

Docker client

Docker daemon

HTTP

Private network

Your host machine

Figure 2.4 The Docker client

28 CHAPTER 2 Understanding Docker—inside the engine room

In this command, -v makes the output readable, with indications of the flow of data.
The UNIX-LISTEN part tells socat to listen on a Unix socket, and UNIX-CONNECT tells
socat to connect to Docker’s Unix socket. ‘&’ specifies that the command runs in the
background.

 The new route that your requests to the daemon will travel can be seen in figure 2.6.
All traffic traveling in each direction will be seen by socat and logged to your terminal,
in addition to any output that the Docker client provides.

Docker
client

Docker
server

Unix domain
socket

HTTP request/response HTTP request/response

When you issue docker commands on
the command line, an HTTP request is
made to the Docker server on your local
machine. The Docker server carries out
the command and returns an HTTP
response, which is interpreted
by your docker command.

The Docker server is a standard
application server written in Go
that returns an HTTP response.

Communication happens via a Unix domain socket.
It functions here as a file you can write to and read
from, as you could with a TCP socket. You can use HTTP
to communicate with another process without assigning
a port, and use the filesystem directory structure.

Figure 2.5 Docker’s client-server architecture on your host

Docker
client

API request/response
output to terminal

Unix domain
socket
(proxy)

HTTP request/response HTTP request/response

Text

Docker
server

Unix domain
socket

(Docker)

HTTP request/response

Figure 2.6 Docker client and server with socat inserted as a proxy

29TECHNIQUE 5 Using ports to connect to containers

The output of a simple docker command will now look similar to this:

$ docker -H unix:///tmp/dockerapi.sock ps -a
> 2015/01/12 04:34:38.790706 length=105 from=0 to=104
GET /v1.16/containers/json?all=1 HTTP/1.1\r
Host: /tmp/dockerapi.sock\r
User-Agent: Docker-Client/1.4.1\r
\r
< 2015/01/12 04:34:38.792516 length=544 from=0 to=543
HTTP/1.1 200 OK\r
Content-Type: application/json\r
Date: Mon, 12 Jan 2015 09:34:38 GMT\r
Content-Length: 435\r
\r
[{"Command":"/bin/bash","Created":1420731043,"Id":

➥ "4eec1b50dc6db7901d3b3c5a8d607f2576829fd6902c7f658735c3bc0a09a39c",
➥ "Image":"debian:jessie","Names":["/lonely_mclean"],"Ports":[],
➥ "Status":"Exited (0) 3 days ago"}
,{"Command":"/bin/bash","Created":1420729129,"Id":

➥ "029851aeccc887ecf9152de97f524d30659b3fa4b0dcc3c3fe09467cd0164da5",
➥ "Image":"debian:jessie","Names":["/suspicious_torvalds"],"Ports":[],
➥ "Status":"Exited (130) 3 days ago"}
]CONTAINER ID IMAGE COMMAND CREATED

➥ STATUS PORTS NAMES
4eec1b50dc6d debian:jessie "/bin/bash" 3 days ago

➥ Exited (0) 3 days ago lonely_mclean
029851aeccc8 debian:jessie "/bin/bash" 3 days ago

➥ Exited (130) 3 days ago suspicious_torvalds

BEWARE If you ran socat as root in the previous example, you’ll need to use
sudo to run the ‘docker -H’ command. This is because the dockerapi.sock file
is owned by root.

Using socat is a powerful way to debug not only Docker, but any other network ser-
vices you might come across in the course of your work.

TECHNIQUE 5 Using ports to connect to containers

Docker containers have been designed from the outset to run services. In the majority
of cases, these will be HTTP services of one kind or another. A significant proportion
of these will be web services accessible through the browser.

 This leads to a problem. If you have multiple Docker containers running on port 80
in their internal environment, they can’t all be accessible on port 80 on your host
machine. The next technique shows how you can manage this common scenario by
exposing and mapping a port from your container.

The command you issue to see
the request and response The HTTP request begins

here, with the right angle
bracket on the left.

The HTTP response begins
here, with the left angle
bracket on the left.

The JSON content of the response
from the Docker server

The output as normally seen by the
user, interpreted by the Docker
client from the preceding JSON

30 CHAPTER 2 Understanding Docker—inside the engine room

■ Problem
You want to make multiple Docker container services available on a port from your
host machine.

■ Solution
Use Docker’s -p flag to map a container’s port to your host machine.

■ Discussion
In this example we’re going to use the tutum-wordpress image. Let’s say you want to
run two of these on your host machine to serve different blogs.

 Because a number of people have wanted to do this before, someone has prepared
an image that anyone can acquire and start up. To obtain images from external loca-
tions, you’ll use the docker pull command. By default, images will be downloaded
from the Docker Hub:

$ docker pull tutum/wordpress

To run the first blog, use the following command:

$ docker run -d -p 10001:80 --name blog1 tutum/wordpress

This docker run command runs the container as a daemon (-d) with the publish flag
(-p). It identifies the host port (10001) to map to the container port (80) and gives
the container a name to identify it (--name blog1 tutum/wordpress).

 You’d do the same for the second blog:

$ docker run -d -p 10002:80 --name blog2 tutum/wordpress

If you now run this command,

$ docker ps -a | grep blog

you’ll see the two blog containers listed, with their port mappings, looking something
like this:

9afb95ad3617 tutum/wordpress:latest "/run.sh"

➥ 9 seconds ago Up 9 seconds
3306/tcp, 0.0.0.0:10001->80/tcp blog1 31ddc8a7a2fd tutum/wordpress:latest

➥ "/run.sh" 17 seconds ago Up 16 seconds 3306/tcp, 0.0.0.0:10002->80/tcp blog2

You’ll now be able to access your containers by navigating to http://localhost:10001
and http://localhost:10002.

 To remove the containers when you’re finished (assuming you don’t want to keep
them), run this command:

$ docker rm -f blog1 blog2

You should now be able to run multiple identical images and services on your host by
managing the port allocations yourself, if necessary.

31TECHNIQUE 6 Linking containers for port isolation

REMEMBERING THE ORDER OF ARGUMENTS FOR THE -P FLAG It can be easy to for-
get which port is the host’s and which port is the container’s when using the
-p flag. We think of it as being like reading a sentence from left to right. The
user connects to the host (-p) and that host port is passed to the container
port (host_port:container_port). It’s also the same format as SSH’s port-
forwarding commands, if you’re familiar with them.

TECHNIQUE 6 Linking containers for port isolation

The last technique showed how to open up your containers to the host network by
exposing ports. You won’t always want to expose your services to the host machine or
the outside world, but you will want to connect containers to one another.

 This next technique shows how you can achieve this by using Docker’s link flag,
ensuring outsiders can’t access your internal services.

■ Problem
You want to allow communication between containers for internal purposes.

■ Solution
Use Docker’s linking functionality to allow the containers to communicate with each other.

■ Discussion
Continuing in our quest to set up WordPress, we’re going to separate the mysql data-
base tier from the wordpress container, and link these to each other without port con-
figuration. Figure 2.7 gives an overview of the final state.

An example of linking and port exposure.
The wordpress container serves requests
on port 80 and calls out using TCP to
a host called “mysql.” These links are
formed by the docker run command.

Network calls to mysql are directed to the
container named mysql-wp within Docker.

Port 80 is exposed to port 10003 on the host.

mysql-wp

wordpress

Calls
to mysql

Port 80

HTTP
requests

Port 10003

Figure 2.7 WordPress setup with linked containers

32 CHAPTER 2 Understanding Docker—inside the engine room

WHY IS THIS USEFUL? Why bother with linking if you can already expose ports
to the host and use that? Linking allows you to encapsulate and define the
relationships between containers without exposing services to the host’s net-
work (and potentially, to the outside world). You might want to do this for
security reasons, for example.

Run your containers like so, in the following order, pausing for about a minute between
the first and second commands:

$ docker run --name wp-mysql \
-e MYSQL_ROOT_PASSWORD=yoursecretpassword -d mysql

$ docker run --name wordpress \
--link wp-mysql:mysql -p 10003:80 -d wordpress

First you give the mysql container the name wp-mysql so you can refer to it later B.
You also must supply an environment variable so the mysql container can initialize the
database (-e MYSQL_ROOT_PASSWORD=yoursecretpassword). You run both containers
as daemons (-d) and use the Docker Hub reference for the official mysql image.

 In the second command C you give the wordpress image the name wordpress, in
case you want to refer to it later. You also link the wp-mysql container to the wordpress
container (--link wp-mysql:mysql). References to a mysql server within the wordpress
container will be sent to the container named wp-mysql. You also use a local port map-
ping (-p 10003:80), as discussed in technique 5, and add the Docker Hub reference for
the official wordpress image (wordpress). Be aware that links won’t wait for services in
linked containers to start; hence the instruction to pause between commands. A more
precise way of doing this is to look for mysqid: ready for connections in the output of
docker logs wp-mysql before running the wordpress container.

 If you now navigate to http://localhost:10003, you’ll see the introductory word-
press screen and you can set up your wordpress instance.

 The meat of this example is the --link flag in the second command. This flag sets
up the container’s host file so that the wordpress container can refer to a mysql server,
and this will be routed to whatever container has the name “wp-mysql.” This has the
significant benefit that different mysql containers can be swapped in without requir-
ing any change at all to the wordpress container, making configuration management
of these different services much easier.

STARTUP ORDER MATTERS The containers must be started up in the correct order
so that the mapping can take place on container names that are already in existence.
Dynamic resolution of links is not (at the time of writing) a feature of Docker.

In order for containers to be linked in this way, their ports must be specified as
exposed when building the images. This is achieved using the EXPOSE command
within the image build’s Dockerfile.

 You have now seen a simple example of Docker orchestration, and you’ve taken a
step toward a microservices architecture. In this case, you could perform work on the
mysql container while leaving the wordpress container untouched, or vice versa. This

B

C

33TECHNIQUE 7 Using Docker in your browser

fine-grained control over running services is one of the key operational benefits of a
microservices architecture.

TECHNIQUE 7 Using Docker in your browser

It can be difficult to sell new technologies, so simple and effective demonstrations are
invaluable. Making the demo hands-on is even better, which is why we’ve found that
creating a web page with the ability to interact with a container in your browser is a
great technique for giving newcomers their first taste of Docker in an easily accessible
way. The significant “wow factor” doesn’t hurt either!

■ Problem
You want to be able to demonstrate the power of Docker without requiring users to
install it themselves or run commands they don’t understand.

■ Solution
Start the Docker daemon with an open port and CORS enabled. Then serve the
docker-terminal repository in your web server of choice.

■ Discussion
The most common use of a REST API is to expose it on a server and use JavaScript on a
web page to make calls to it. Because Docker happens to perform all interaction via a
REST API, you should be able to control Docker in the same way. Although it may ini-
tially seem surprising, this control extends all the way to being able to interact with a
container via a terminal in your browser.

 We’ve already discussed how to start the daemon on port 2375 in technique 1, so
we won’t go into any detail on that. Additionally, CORS is too much to go into here if
you’re unfamiliar with it (you might want to refer to CORS in Action by Monsur Hossain
[Manning Publications, 2014])—the short of it is that it’s a mechanism that carefully
bypasses the usual restriction of JavaScript that limits you to only accessing the current
domain. In this case, it allows the daemon to listen on a different port from where you
serve your Docker Terminal page. To enable it, you need to start the Docker daemon
with the option --api-enable-cors alongside the option to make it listen on a port.

 Now that the prerequisites are sorted, let’s get this running. First, you need to get
the code:

git clone https://github.com/aidanhs/Docker-Terminal.git
cd Docker-Terminal

Then you need to serve the files:

python2 -m SimpleHTTPServer 8000

The preceding command uses a module built into Python to serve static files from a
directory. Feel free to use any equivalent you prefer.

 Now you can visit http://localhost:8000 in your browser and start a container.
 Figure 2.8 shows how the Docker terminal connects up. The page is hosted on

your local computer and connects to the Docker daemon on your local computer to
perform any operations.

34 CHAPTER 2 Understanding Docker—inside the engine room

It’s worth being aware of the following points if you want to give this link to other people:

■ The other person must not be using a proxy of any kind. This is the most com-
mon source of errors we’ve seen—Docker terminal uses Websockets, which
don’t currently work through proxies.

■ Giving a link to localhost obviously won’t work—you’ll need to give out the
external IP address.

■ Docker Terminal needs to know where to find the Docker API—it should do
this automatically based on the address you’re visiting in the browser, but it’s
something to be aware of.

WHY NOT USE DOCKER FOR THIS? If you’re more experienced with Docker, you
might wonder why we haven’t used Docker in this technique. The reason is
that we’re still introducing Docker and didn’t want to add to the complexity
for readers new to Docker. Dockerizing this technique is left as an exercise
for the reader.

2.4 Docker registries
Once you’ve created your images, you may want to share them with other users. This is
where the concept of the Docker registry comes in.

1. You open your browser and navigate
 to the Docker Terminal page.

2. You refresh the
 images list, select
 one, and press start.

3. The Docker Terminal
 page identifies which
 image has been selected
 and where to find the
 Docker daemon.

4. The Docker Terminal page
 acts as an intermediary and
 requests the Docker daemon
 to start a container
 and run bash.

5. The Docker daemon starts
 the container and gives the
 Docker Terminal page a
 connection to the container.

6. Using the connection to the
 container, the Docker Terminal
 page creates a virtual terminal
 and shows it in the browser.

7. You can now type into
 the virtual terminal to
 interact directly with
 the container.

Docker Terminal
page

Your computer

Docker daemon

Browser

Figure 2.8 How the Docker terminal works

35TECHNIQUE 8 Setting up a local Docker registry

The three registries in figure 2.9 differ in their accessibility. One is on a private network,
one is open on a public network, and another is public but accessible only to those reg-
istered with Docker. They all perform the same function with the same API, and this is
how the Docker daemon knows how to communicate with them interchangeably.

 A Docker registry allows multiple users to push and pull images from a central
store using a RESTful API.

 The registry code is, like Docker itself, open source. Many companies (such as
ours) set up private registries to store and share their proprietary images internally.
This is what we’ll discuss here before looking more closely at Docker Inc.’s registry.

TECHNIQUE 8 Setting up a local Docker registry

You’ve seen that Docker, Inc. has a service where people can share their images pub-
licly (and you can pay if you want to do it privately). But there are a number of reasons
you may want to share images without going via the Hub—some businesses like to
keep as much in-house as possible, or maybe your images are large and transferring
them over the internet will be too slow, or perhaps you want to keep your images pri-
vate while you experiment and don’t want to commit to paying. Whatever the reason,
there is happily a simple solution.

■ Problem
You want a way to host your images locally.

Private network Internet

The Docker Hub
is a public registry
run by Docker, Inc.

Other public
registries can
also exist on
the internet.

Your host machine

Docker client

Docker daemon

HTTP

Private Docker
registry

Docker Hub

Another public
Docker registry

HTTP HTTP

HTTP

The private Docker
registry stores
Docker images.

Figure 2.9 A Docker registry

36 CHAPTER 2 Understanding Docker—inside the engine room

■ Solution
Set up a registry server on your local network.

■ Discussion
To get the registry running, issue the following command on a machine with plenty of
disk space:

$ docker run -d -p 5000:5000 -v $HOME/registry:/var/lib/registry registry:2

This command makes the registry available on port 5000 of the Docker host
(-p 5000:5000) and uses the registry folder in your home directory at /var/lib/
registry in the container, which is where the registry in the container will store files
by default. It also specifies that the registry in the container will store files at
/registry (STORAGE_PATH=/registry).

 On all of the machines that you want to access this registry, add the following to
your daemon options (where HOSTNAME is the hostname or IP address of your new reg-
istry server): --insecure-registry HOSTNAME.

 You can now docker push HOSTNAME:5000/image:tag.
 As you can see, the most basic level of configuration for a local registry, with all data

stored in the $HOME/registry directory, is simple. If you wanted to scale up or make it
more robust, the repository on Github (https://github.com/docker/distribution/blob/
v2.2.1/docs/storagedrivers.md) outlines some options, like storing data in Amazon S3.

 You may be wondering about the --insecure-registry option. In order to help
users remain secure, Docker will only allow you to pull from registries with a signed
HTTPS certificate. We’ve overridden this because we’re fairly comfortable trusting our
local network. It goes without saying, though, that you should be much more cautious
about doing this over the internet!

REGISTRY ROADMAP As with a lot of things in the Docker ecosystem, the regis-
try is undergoing some changes. Although the registry image will remain
available and stable, it will eventually be replaced with a new tool called dis-
tribution (see https://github.com/docker/distribution).

2.5 The Docker Hub
The Docker Hub (see figure 2.10) is a registry maintained by Docker, Inc. It has tens
of thousands of images on it ready to download and run. Any Docker user can set up a
free account and public Docker images there. In addition to user-supplied images,
there are official images maintained for reference purposes.

 Your images are protected by user authentication, and there’s a starring system for
popularity, similar to Github’s.

 These official images can be representations of Linux distributions like Ubuntu or
CentOS, or preinstalled software packages like Node.js, or whole software stacks like
WordPress.

https://github.com/docker/distribution/blob/v2.2.1/docs/storagedrivers.md
https://github.com/docker/distribution/blob/v2.2.1/docs/storagedrivers.md
https://github.com/docker/distribution

37TECHNIQUE 9 Finding and running a Docker image

TECHNIQUE 9 Finding and running a Docker image

Docker registries enable a social coding culture similar to GitHub. If you’re interested
in trying out a new software application, or looking for a new one that serves a particular
purpose, then Docker images can be an easy way to experiment without interfering with
your host machine, provisioning a VM, or having to worry about installation steps.

■ Problem
You want to find an application or tool as a Docker image and try it out.

■ Solution
Use the docker search command to find the image to pull, and then run it.

■ Discussion
Let’s say you’re interested in playing with Node.js. In the following code we searched
for images matching “node” with the docker search command:

$ docker search node
NAME DESCRIPTION

➥ STARS OFFICIAL AUTOMATED
node Node.js is a JavaScript-based platform for...

➥ 432 [OK]

Private network Internet

The Docker Hub
is a public registry
run by Docker, Inc.

Your host machine

Docker client

Docker daemon

HTTP

Private Docker
registry

Docker Hub

Another public
Docker registry

HTTP HTTP

HTTP

Figure 2.10 The Docker Hub

The output of docker search is
ordered by the number of stars.

38 CHAPTER 2 Understanding Docker—inside the engine room

dockerfile/nodejs Trusted automated Node.js (http://nodejs.o...

➥ 57 [OK]
dockerfile/nodejs-bower-grunt Trusted automated Node.js (http://nodejs.o...

➥ 17 [OK]
nodesource/node

➥ 9 [OK]
selenium/node-firefox

➥ 5 [OK]
selenium/node-chrome

➥ 5 [OK]
selenium/node-base

➥ 3 [OK]
strongloop/node StrongLoop, Node.js, and tools.

➥ 3 [OK]
selenium/node-chrome-debug

➥ 3 [OK]
dockerfile/nodejs-runtime Trusted automated Node.js runtime Build ..

➥ 3 [OK]
jprjr/stackbrew-node A stackbrew/ubuntu-based image for Docker,...

➥ 2 [OK]
selenium/node-firefox-debug

➥ 2 [OK]
maccam912/tahoe-node Follow "The Easy Way" in the description t...

➥ 1 [OK]
homme/node-mapserv The latest checkouts of Mapserver and its ...

➥ 1 [OK]
maxexcloo/nodejs Docker framework container with Node.js an...

➥ 1 [OK]
brownman/node-0.10

➥ 0 [OK]
kivra/node Image with build dependencies for frontend...

➥ 0 [OK]
thenativeweb/node

➥ 0 [OK]
thomaswelton/node

➥ 0 [OK]
siomiz/node-opencv _/node + node-opencv

➥ 0 [OK]
bradegler/node

➥ 0 [OK]
tcnksm/centos-node Dockerfile for CentOS packaging node

➥ 0 [OK]
azukiapp/node

➥ 0 [OK]
onesysadmin/node-imagetools

➥ 0 [OK]
fishead/node

➥ 0 [OK]

Once you’ve chosen an image, you can download it by performing a docker pull
command on the name:

The description is the uploader’s
explanation of the purpose of the image.

Official images are those
trusted by the Docker Hub.

Automated images are those built using
Docker Hub’s automated build feature.

39Summary

$ docker pull node
node:latest: The image you are pulling has been verified
81c86d8c1e0c: Downloading
81c86d8c1e0c: Pull complete
3a20d8faf171: Pull complete
c7a7a01d634e: Pull complete
2a13c2a76de1: Pull complete
4cc808131c54: Pull complete
bf2afba3f5e4: Pull complete
0cba665db8d0: Pull complete
322af6f234b2: Pull complete
9787c55efe92: Pull complete
511136ea3c5a: Already exists
bce696e097dc: Already exists
58052b122b60: Already exists
Status: Downloaded newer image for node:latest

Then you can run it interactively using the -t and -i flags. The -t flag creates a tty
device (a terminal) for you, and the -i flag specifies that this Docker session is
interactive:

$ docker run -t -i node /bin/bash
root@c267ae999646:/# node
> process.version
'v0.12.0'
>

THE -TI FLAG IDIOM You can save keystrokes by replacing -t -i with -ti in the
preceding call to docker run. You’ll see this throughout the book from here
on.

Often there will be specific advice from the image maintainers about how the image
should be run. Searching for the image on the http://hub.docker.com website will
take you to the page for the image. The Description tab may give you more
information.

DO YOU TRUST THE IMAGE? If you download an image and run it, you are run-
ning code that you may not be able to fully verify. Although there is relative
safety in using trusted images, nothing can guarantee 100% security when
downloading and running software over the internet.

Armed with this knowledge and experience, you can now tap the enormous resources
available on the Docker Hub. With literally tens of thousands of images to try out,
there is much to learn. Enjoy!

2.6 Summary
In this chapter you’ve learned how Docker hangs together, and you’ve used this
understanding to manipulate the various components.

 These were the principal areas covered:

Pull the image named
node from the Docker
Hub.

This message is seen if
Docker has pulled a new
image (as opposed to
identifying that there’s no
newer image than the one
you already have). Your
output may be different.

http://hub.docker.com

40 CHAPTER 2 Understanding Docker—inside the engine room

■ Opening up your Docker daemon to outsiders over TCP or a web browser
■ Running containers as service daemons
■ Linking containers together via the Docker daemon
■ Snooping the Docker daemon API
■ Setting up your own registry
■ Using the Docker Hub to find and download images

These first two chapters have covered the basics (though hopefully you’ve learned
something new, even if you’re familiar with Docker). We’ll now move on to part 2,
where we’ll look at the role of Docker in the world of software development.

Part 2

Docker and development

In part 1, you learned Docker’s core concepts and architecture by example.
Part 2 will take from you from this base to demonstrate ways Docker can be used
in development.

 Chapter 3 covers using Docker as a lightweight virtual machine. This is a con-
troversial area. While there are critical differences between virtual machines and
Docker containers, development can be sped up considerably in many cases by
using Docker. It is also an effective means of getting familiar with Docker before
we move into more advanced Docker usage. Chapter 4 explains over twenty tech-
niques to make day-to-day development with Docker more effective and efficient.
In addition to building and running containers, you’ll learn about persisting data
with volumes and keeping your Docker host in order. Chapter 5 covers the impor-
tant area of configuration management. You'll use Dockerfiles and traditional
configuration management tools to get control of your Docker builds. We also
cover the creation and curation of minimal Docker images to reduce image bloat.
By the end of this part you’ll have a wealth of useful techniques for single-use
Docker and be ready to take Docker into a DevOps context.

43

Using Docker as a
 lightweight virtual machine

Virtual machines (VMs) have become ubiquitous in software development and
deployment since the turn of the century. The abstraction of machines to software
has made the movement and control of software and services in the internet age
easier and cheaper.

VIRTUAL MACHINES A virtual machine is an application that emulates a com-
puter, usually to run an operating system and applications. It can be placed
on any (compatible) physical resources that are available. The end user
experiences the software as though it were on a physical machine, but those
managing the hardware can focus on larger-scale resource allocation.

This chapter covers
■ Converting a virtual machine to a Docker image
■ Managing the startup of your container’s services
■ Saving your work as you go
■ Managing Docker images on your machine
■ Sharing images on the Docker Hub
■ Playing—and winning—at 2048 with Docker

44 CHAPTER 3 Using Docker as a lightweight virtual machine

Docker isn’t a VM technology. It doesn’t simulate a machine’s hardware and it doesn’t
include an operating system. A Docker container is not by default constrained to spe-
cific hardware limits. If Docker virtualizes anything, it virtualizes the environment in
which services run, not the machine. Moreover, Docker can’t easily run Windows soft-
ware (or even that written for other UNIX-derived operating systems).

 From some standpoints, though, Docker can be used much as a VM. For develop-
ers and testers in the internet age, the fact that there’s no init process or direct hard-
ware interaction is not usually of great significance. And there are significant
commonalities, such as its isolation from the surrounding hardware and its amenabil-
ity to more fine-grained approaches to software delivery.

 This chapter will take you through the scenarios in which you could use Docker as
you might previously have used a VM. Using Docker will not give you any obvious func-
tional advantages over a VM, but the speed and convenience Docker brings to the
movement and tracking of environments can be a game-changer for your develop-
ment pipeline.

3.1 From VM to container
In an ideal world, moving from VMs to containers would be a simple matter of run-
ning your configuration management scripts against a Docker image from a distribu-
tion similar to the VM’s. For those of us who are not in that happy state of affairs, this
section shows how you can convert a VM to a container.

TECHNIQUE 10 Converting your VM to a container

The Docker Hub doesn’t have all possible base images, so for some niche Linux distri-
butions and use cases, people need to create their own. The same principle applies if
you have an existing state in a VM you want to put inside Docker to iterate on top of or
to benefit from the Docker ecosystem.

 Ideally you’d want to build an equivalent of your VM from scratch using standard
Docker techniques, such as Dockerfiles combined with standard configuration man-
agement tools (see chapter 5). The reality, though, is that many VMs are not carefully
configuration-managed. This might happen because a VM has grown organically as
people have used it, and the investment needed to recreate it in a more structured
way isn’t worth it.

PROBLEM
You have a VM you want to convert to a Docker image.

SOLUTION
Create a TAR file of your VM filesystem, using either qemu-nbd, tar over ssh, or another
method, and use the ADD command in a Dockerfile on your TAR to create your image.

DISCUSSION
First we’re going to divide VMs into two broad groups: local (VM disk image lives on and
VM execution happens on your computer) and remote (VM disk image storage and VM
execution happen somewhere else).

45TECHNIQUE 10 Converting your VM to a container

 The principle for both groups of VMs (and anything else you want to create a
Docker image from) is the same—you get a TAR of the filesystem and ADD the TAR file
to / of the scratch image.

THE ADD COMMAND The ADD Dockerfile command (unlike its sibling com-
mand COPY) unpacks TAR files (as well as gzipped files and other similar file
types) when placed in an image like this.

THE SCRATCH IMAGE The scratch image is a zero-byte pseudo-image you can
build on top of. Typically it’s used in cases like this where you want to copy
(or add) a complete filesystem using a Dockerfile.

We’ll now look at a case where you have a local Virtualbox VM.
 Before we get started, you need to do the following:

■ Install the qemu-nbd tool (available as part of the qemu-utils package on
Ubuntu).

■ Identify the path to your VM disk image.
■ Shut down your VM.

If your VM disk image is in the .vdi or .vmdk format, this technique should work well.
Other formats may experience mixed success.

 The following code demonstrates how to turn your VM file into a virtual disk,
which allows you to then copy all the files from it:

$ VMDISK="$HOME/VirtualBox VMs/myvm/myvm.vdi"
$ sudo modprobe nbd
$ sudo qemu-nbd -c /dev/nbd0 -r $VMDISK
$ ls /dev/nbd0p*
/dev/nbd0p1 /dev/nbd0p2
$ sudo mount /dev/nbd0p2 /mnt
$ sudo tar cf img.tar -C /mnt .
$ sudo umount /mnt && sudo qemu-nbd -d /dev/nbd0

CHOOSING A PARTITION To choose which partition to mount, run sudo cfdisk
/dev/nbd0 to see what’s available. Note that if you see LVM anywhere, your
disk has a non-trivial partitioning scheme and you’ll need to do some addi-
tional research into how to mount LVM partitions.

If your VM is kept remotely, you have a choice: either shut down the VM and ask your
operations team to perform a dump of the partition you want, or create a TAR of your
VM while it’s still running.

Sets up a variable pointing
to your VM disk image Initializes a kernel

module required
by qemu-nbd

Connects the VM
disk to a virtual

device node
Lists the partition
numbers available to
mount on this disk

Mounts the
selected partition

at /mnt with
qemu-nbd

Creates a TAR file
called img.tar
from /mnt

Unmounts and cleans up
after qemu-nbd

46 CHAPTER 3 Using Docker as a lightweight virtual machine

 If you get a partition dump, you can mount this fairly easily and then turn it into a
TAR file as follows:

$ sudo mount -o loop partition.dump /mnt
$ sudo tar cf $(pwd)/img.tar -C /mnt .
$ sudo umount /mnt

Alternatively, you can create a TAR file from a running system. This is quite simple
after logging into the system:

$ cd /
$ sudo tar cf /img.tar --exclude=/img.tar --one-file-system /

You now have a TAR of the filesystem image that you can transfer to a different
machine with scp.

RISK OF STATE CORRUPTION! Creating a TAR from a running system may seem
like the easiest option (no shutdowns, installing software, or making requests to
other teams) but it has a severe downside—you could copy a file in an inconsis-
tent state and hit strange problems when trying to use your new Docker image.
If you must go this route, stop as many applications and services as possible.

Once you’ve got the TAR of your filesystem, you can add it to your image. This is the
easiest step of the process and consists of a two-line Dockerfile:

FROM scratch
ADD img.tar /

You can now run docker build . and you have your image!

IMPORT FROM TAR Docker provides an alternative to ADD in the form of the
docker import command, which you can use with cat img.tar | docker
import - new_image_name. However, building on top of the image with addi-
tional instructions will require you to create a Dockerfile anyway, so it may be
simpler to go the ADD route so you can easily see the history of your image.

Because you now have an image in Docker, you can start experimenting with it. In this
case, you might start by creating a new Dockerfile based on your new image to experi-
ment with stripping out files and packages.

 Once you’ve done this and are happy with your results, you can use docker export
on a running container to export a new, slimmer TAR that you can use as the basis for
a newer image, and repeat the process until you get an image you’re happy with.

 The flowchart in figure 3.1 demonstrates this process.

47TECHNIQUE 11 A host-like container

TECHNIQUE 11 A host-like container

We’ll now move on to one of the more contentious areas of discussion within the
Docker community—running a host-like image, with multiple processes running from
the get-go.

 This is considered bad form in parts of the Docker community. Containers are not
virtual machines—there are significant differences—and pretending there aren’t can
cause confusion and issues down the line.

 For good or ill, this technique will show you how to run a host-like image and dis-
cuss some of the issues around doing this.

A GRADUAL ONBOARDING Running a host-like image can be a good way to per-
suade Docker refuseniks that Docker is useful. As they use it more, they’ll
understand the paradigm better and the microservices approach will make
more sense to them. At the company we introduced Docker into, we found
that this monolithic approach was a great way to move people from develop-
ing on dev servers and laptops to a more contained and manageable environ-
ment. From there, moving Docker into testing, continuous integration,
escrow, and devOps workflows was trivial.

Route taken

Got TAR

Make image Strip image

Export image

Image can be
stripped more

Image cannot be stripped
more or is small enough

Use image to
save money! Figure 3.1 The container-

slimming process

48 CHAPTER 3 Using Docker as a lightweight virtual machine

PROBLEM
You want a normal host-like environment for your container with multiple processes
and services set up.

SOLUTION
Use an image designed to simulate a host, and provision it with the applications you
need.

DISCUSSION
For this discussion we’re going to use the phusion/baseimage Docker image, an
image designed to run multiple processes.

 The first steps are to start the image and jump into it with docker exec:

user@docker-host$ docker run -d phusion/baseimage
3c3f8e3fb05d795edf9d791969b21f7f73e99eb1926a6e3d5ed9e1e52d0b446e
user@docker-host$ docker exec -i -t 3c3f8e3fb05d795 /bin/bash
root@3c3f8e3fb05d:/#

In this code, docker run will start the image in the background B, starting the default
command for the image and returning the ID of the newly created container C.

 You then pass this container ID to docker exec D, which is a command that starts
a new process inside an already running container. The -i flag allows you to interact
with the new process, and -t indicates that you want to set up a TTY to allow you to
start a terminal (/bin/bash) inside the container E.

 If you wait a minute and then look at the processes table, your output will look
something like the following.

root@aba74d81c088:/# ps -ef
UID PID PPID C STIME TTY TIME CMD
root 1 0 0 13:33 ? 00:00:00 /usr/bin/python3 -u /sbin/my_init

Listing 3.1 Processes running in a host-like container

Differences between VMs and Docker containers
These are a few of the differences between VMs and Docker containers:

■ Docker is application-oriented, whereas VMs are operating-system-oriented.
■ Docker containers share an operating system with other Docker containers. In

contrast, VMs each have their own operating system managed by a hypervisor.
■ Docker containers are designed to run one principal process, not manage multi-

ple sets of processes.

B
C

D

E

Run a ps command to list all the
running processes. A simple init process

designed to run all
the other services

49TECHNIQUE 12 Splitting a system into microservice containers

root 7 0 0 13:33 ? 00:00:00 /bin/bash
root 111 1 0 13:33 ? 00:00:00 /usr/bin/runsvdir -P /etc/service
root 112 111 0 13:33 ? 00:00:00 runsv cron
root 113 111 0 13:33 ? 00:00:00 runsv sshd
root 114 111 0 13:33 ? 00:00:00 runsv syslog-ng
root 115 112 0 13:33 ? 00:00:00 /usr/sbin/cron -f
root 116 114 0 13:33 ? 00:00:00 syslog-ng -F -p

➥ /var/run/syslog-ng.pid --no-caps
root 117 113 0 13:33 ? 00:00:00 /usr/sbin/sshd -D
root 125 7 0 13:38 ? 00:00:00 ps -ef

You can see that the container starts up much like a host, initializing services such as
cron and sshd that make it appear similar to a standard Linux host. This can be useful
for initial demos for engineers new to Docker.

 Whether this constitutes a violation of the microservices principle of “one service
per container” is a matter of debate within the Docker community. Proponents of the
host-like image approach argue that this doesn’t violate that principle, as the con-
tainer can still fulfil a single discrete function for the system within which it runs.

TECHNIQUE 12 Splitting a system into microservice containers

We’ve explored how to use a container as a monolithic entity (like a classical server)
and explained that it can be a great way to quickly move a system architecture onto
Docker. In the Docker world, however, it’s generally considered best practice to split
up your system as much as possible until you have one “service” running per con-
tainer, and have all containers connected by links. Because this is the recommended
Docker way, you’ll find that most of the containers you get from the Docker Hub fol-
low this approach, and understanding how to build images in this way is important for
interacting with the rest of the Docker ecosystem.

 The primary reason for using one service per container is easier separation of con-
cerns through the single-responsibility principle. If you have one container doing one
job, then it’s easier to put that container through the software development lifecycle
of dev, test, and production while worrying less about its interactions with other com-
ponents. This makes for more agile deliveries and more scalable software projects. It
does create management overhead, though, so it’s good to consider whether it’s worth
it for your use case.

 Putting aside the discussion of which approach is better for you right now, the best-
practice approach has one clear advantage—experimentation and rebuilds are much
faster when using Dockerfiles, as you’ll see.

PROBLEM
You want to break your application up into distinct and more manageable services.

The bash process started by docker
exec and acting as the shell

runsvdir runs the services
defined in the passed-in

/etc/service directory.

The three standard services
(cron, sshd, and syslog) are
started here with the runsv
command.

The ps command
currently being run

50 CHAPTER 3 Using Docker as a lightweight virtual machine

SOLUTION
Use Docker to break your application stack up into container-based services.

DISCUSSION
Within the Docker community, there’s some debate about how strictly the “service per
container” rule should be followed, with part of this stemming from a disagreement
over the definitions—is it a single process, or a collection of processes that combine to
fulfil a need? It often boils down to a statement that given the ability to redesign a sys-
tem from scratch, microservices is the route most would chose. But sometimes practi-
cality beats idealism—when evaluating Docker for our organization, we found
ourselves in the position of having to go the monolithic route in order get Docker
working as quickly and easily as possible.

 Let’s take a look at one of the concrete disadvantages of using monoliths inside
Docker. First we need to show how you’d build a monolith with a database, applica-
tion, and web server, as shown in the next listing.

SIMPLIFIED DOCKERFILES These examples are for elucidation purposes and
have been simplified accordingly. Trying to run them directly won’t necessar-
ily work.

FROM ubuntu:14.04
RUN apt-get update && apt-get install postgresql nodejs npm nginx
WORKDIR /opt
COPY . /opt/ # {*}
RUN service postgresql start && \

cat db/schema.sql | psql && \
service postgresql stop

RUN cd app && npm install
RUN cp conf/mysite /etc/nginx/sites-available/ && \

cd /etc/nginx/sites-enabled && \
ln -s ../sites-available/mysite

WHEN TO USE COMMAND CHAINING IN YOUR RUN STATEMENTS Using && in your
RUN statements effectively ensures that several commands get run as one com-
mand. This is useful because it can keep your images small. Each Dockerfile
command creates a single new layer on top of the previous one. If you run a
package update command like apt-get update with an install command in
this way, you ensure that whenever the packages are installed they’ll be from
an updated package cache.

The preceding example is a conceptually simple Dockerfile that installs everything we
need inside the container and then sets up the database, application, and web server.
Unfortunately, there’s a problem if you want to quickly rebuild your container—any
change to any file under your repository will rebuild everything starting from the {*}
onwards because the cache can’t be reused. If you have some slow steps (database cre-
ation or npm install), you could be waiting for a while for the container to rebuild.

Listing 3.2 Setting up a simple PostgreSQL, NodeJS, and Nginx application

51TECHNIQUE 12 Splitting a system into microservice containers

The solution to this is to split up the COPY . /opt/ instruction into the individual
aspects of the application (database, app, and web setup):

FROM ubuntu:14.04
RUN apt-get update && apt-get install postgresql nodejs npm nginx
WORKDIR /opt
COPY db /opt/db -+
RUN service postgresql start && \ |-

cat db/schema.sql | psql && \ |
service postgresql stop -+

COPY app /opt/app -+
RUN cd app && npm install |-
RUN cd app && ./minify_static.sh -+
COPY conf /opt/conf -+
RUN cp conf/mysite /etc/nginx/sites-available/ && \ +

cd /etc/nginx/sites-enabled && \ |-
ln -s ../sites-available/mysite -+

In the preceding code, the COPY command is split into two separate instructions. This
means the database won’t be rebuilt every time code changes, as the cache can be
reused for the unchanged files delivered before the code.

 Unfortunately, because the caching functionality is fairly simple, the container still
has to be completely rebuilt every time a change is made to the schema scripts—the
only way to resolve this is to move away from sequential setup steps and create multi-
ple Dockerfiles, as shown in the following three listings.

FROM ubuntu:14.04
RUN apt-get update && apt-get install postgresql
WORKDIR /opt
COPY db /opt/db
RUN service postgresql start && \

cat db/schema.sql | psql && \
service postgresql stop

FROM ubuntu:14.04
RUN apt-get update && apt-get install nodejs npm
WORKDIR /opt
COPY app /opt/app
RUN cd app && npm install
RUN cd app && ./minify_static.sh

FROM ubuntu:14.04
RUN apt-get update && apt-get install nginx
WORKDIR /opt
COPY conf /opt/conf

Listing 3.3 Database Dockerfile

Listing 3.4 App Dockerfile

Listing 3.5 Web server Dockerfile

db setup

app setup

web setup

52 CHAPTER 3 Using Docker as a lightweight virtual machine

RUN cp conf/mysite /etc/nginx/sites-available/ && \
cd /etc/nginx/sites-enabled && \
ln -s ../sites-available/mysite

Whenever one of the db, app, or conf folders changes, only one container will need to
be rebuilt. This is particularly useful when you have many more than three containers
or there are time-intensive setup steps—with some care you can add the bare minimum
of files necessary for each step and get more useful Dockerfile caching as a result. In the
app Dockerfile (listing 3.4) the operation of npm install is defined by a single file,
package.json, so we can alter our Dockerfile to take advantage of dockerfile layer cach-
ing and only rebuild the slow npm install step when necessary, as follows.

FROM ubuntu:14.04
RUN apt-get update && apt-get install nodejs npm
WORKDIR /opt
COPY app/package.json /opt/app/package.json
RUN cd app && npm install
COPY app /opt/app
RUN cd app && ./minify_static.sh

Unfortunately, there’s no such thing as a free lunch—you’ve traded a single simple
Dockerfile for multiple Dockerfiles with duplication. You can address this partially by
adding another Dockerfile to act as your base image, but some duplication is not
uncommon. Additionally, there is now some complexity in starting your image—in
addition to EXPOSE steps making appropriate ports available for linking, and altering
of Postgres configuration, you need to be sure to link the containers every time they
start up. Fortunately there’s tooling for this called docker-compose (formerly fig), which
we’ll cover in technique 68.

3.2 Managing services on your containers
As is made clear throughout the Docker literature, a Docker container is not a VM.
One of the key differences between a Docker container and a VM is that a container is
designed to run one process. When that process finishes, the container exits. This is
different from a Linux VM (or any Linux OS) in that it doesn’t have an init process.

 The init process runs on a Linux OS with a process ID of 1 and a parent process ID
of 0. This init process might be called “init” or “systemd”. Whatever it’s called, its job is
to manage the housekeeping for all other processes running on that operating system.

 If you start to experiment with Docker, you may find that you want to start multiple
processes. You might want to run cron jobs to tidy up your local application log files,
for example, or set up an internal memcached server within the container. If you take
this path, you may end up writing shell scripts to manage the startup of these subpro-
cesses. In effect, you’ll be emulating the work of the init process. Don’t do that! The
many problems arising from process management have been encountered by others
before and have been solved in prepackaged systems.

Listing 3.6 Reordered Dockerfile to perform npm install earlier

53TECHNIQUE 13 Managing the startup of your container’s services

TECHNIQUE 13 Managing the startup of your container’s services

Running multiple services inside your container may be a convenience when trying
out Docker as a VM replacement, or it may be a necessity for running vital services
after the initial conversion of a VM to a container.

 Whatever your reason, it’s important to avoid reinventing the wheel when trying to
manage processes inside a container.

PROBLEM
You want to manage multiple processes within a container.

SOLUTION
Use the Supervisor application (http://supervisord.org/) to manage process startup
for you.

DISCUSSION
We’re going to show you how to provision a container with Tomcat and an Apache
web server, and have it start up and run in a managed way with Supervisor.

 First, create your Dockerfile in a new and empty directory, as the next listing shows.

FROM ubuntu:14.04
RUN apt-get update && apt-get install -y python-pip apache2 tomcat7
ENV DEBIAN_FRONTEND noninteractive
RUN pip install supervisor
RUN mkdir -p /var/lock/apache2
RUN mkdir -p /var/run/apache2
RUN mkdir -p /var/log/tomcat
RUN echo_supervisord_conf > /etc/supervisord.conf
ADD ./supervisord_add.conf /tmp/supervisord_add.conf
RUN cat /tmp/supervisord_add.conf >> /etc/

➥ supervisord.conf
RUN rm /tmp/supervisord_add.conf
CMD ["supervisord","-c","/etc/supervisord.conf"]

You’ll also need configuration for Supervisor to instruct it what applications it needs
to start up, as shown in the next listing.

[supervisord]
nodaemon=true

Listing 3.7 Example Supervisor Dockerfile

Listing 3.8 supervisord_add.conf

Starts from
ubuntu:14.04

Sets an environment
variable to indicate this

session is non-interactive

Installs python-
pip (to install

Supervisor),
apache2, and

tomcat7

Installs
Supervisor

with pip

Creates housekeeping
directories needed to
run the applications

Creates a default
supervisord

configuration file
with the

echo_supervisord
_conf utility

Copies the Apache and
Tomcat supervisord
configuration settings into
the image, ready to add to
the default configuration

Appends the Apache and
Tomcat supervisord
configuration settings to the
supervisord configuration file

Removes the file you
uploaded, as it’s no
longer needed

You only need to run Supervisor
now on container startup.

Declares the global
configuration section

for supervisord

Doesn’t daemonize the Supervisor
process, as it’s the foreground
process for the container.

http://supervisord.org/

54 CHAPTER 3 Using Docker as a lightweight virtual machine

apache
[program:apache2]
command=/bin/bash -c "source /etc/apache2/envvars &&

➥ exec /usr/sbin/apache2 -DFOREGROUND"

tomcat
[program:tomcat]
command=service start tomcat
redirect_stderr=true
stdout_logfile=/var/log/tomcat/supervisor.log
stderr_logfile=/var/log/tomcat/supervisor.error_log

Building your image uses the standard single-command Docker process, as you’re
using a Dockerfile:

docker build -t supervised .

You can now run your image!

$ docker run -p 9000:80 --name supervised supervised
2015-02-

06 10:42:20,336 CRIT Supervisor running as root (no user in config file)
2015-02-06 10:42:20,344 INFO RPC interface 'supervisor' initialized
2015-02-06 10:42:20,344 CRIT Server 'unix_http_server' running

➥ without any HTTP authentication checking
2015-02-06 10:42:20,344 INFO supervisord started with pid 1
2015-02-06 10:42:21,346 INFO spawned: 'tomcat' with pid 12
2015-02-06 10:42:21,348 INFO spawned: 'apache2' with pid 13
2015-02-06 10:42:21,368 INFO reaped unknown pid 29
2015-02-06 10:42:21,403 INFO reaped unknown pid 30
2015-02-06 10:42:22,404 INFO success: tomcat entered RUNNING state,

➥ process has stayed up for > than 1 seconds (startsecs)
2015-02-06 10:42:22,404 INFO success: apache2 entered RUNNING state,

➥ process has stayed up for > than 1 seconds (startsecs)

If you navigate to http://localhost:9000, you should see the default page of the
Apache server you started up.

 To clean up the container, run the following command:

docker rm -f supervised

If you’re interested in alternatives to Supervisor, there is also runit, used by the Phu-
sion baseimage covered in technique 11.

Section
declaration for
a new program

Commands to
start up the
programs
declared in
the section

Configuration
pertaining to logging

Maps the container’s port 80 to
the host’s port 9000, gives the
container a name, and specifies
the image name you’re running,

as tagged with the build
command previously

Starts up the
Supervisor process

Starts up the managed
processes

Managed processes have been deemed by
Supervisor to have successfully started

55TECHNIQUE 14 The “save game” approach to development

3.3 Saving and restoring your work
Some people say that code isn’t written until it’s committed to source control—it
doesn’t always hurt to have the same attitude about containers. It’s possible to save
state with VMs by using snapshots, but Docker takes a much more active approach in
encouraging the saving and reusing of your existing work.

 We’ll cover the “save game” approach to development, the niceties of tagging,
using the Docker Hub, and referring to specific images in your builds. Because these
operations are considered so fundamental, Docker makes them relatively simple and
quick.

 Nonetheless, this can still be a confusing topic for Docker newbies, so in this sec-
tion we’ll take you through the steps to a fuller understanding of this subject.

TECHNIQUE 14 The “save game” approach to development

If you’ve ever developed any kind of software, you’ve likely exclaimed, “I’m sure it was
working before!” at least once. Perhaps your language was not as sober as this. The
inability to restore a system to a known good (or maybe only “better”) state as you’re
hurriedly hacking away at code to hit a deadline or fix a bug is the cause of many bro-
ken keyboards.

 Source control has helped significantly with this, but there are two problems in
this particular case:

■ The source may not reflect the state of your “working” environment’s filesystem.
■ You may not be willing to commit the code yet.

The first problem is more significant than the second. Although modern source con-
trol tools like Git can easily create local throwaway branches, capturing the state of
your entire development filesystem is not the purpose of source control.

 Docker provides a cheap and quick way to store the state of your container’s devel-
opment filesystem through its commit functionality, and that’s what we’re going to
explore here.

PROBLEM
You want to save the state of your development environment.

SOLUTION
Use docker commit to save state.

DISCUSSION
Let’s imagine you want to make a change to your to-do application from chapter 1.
The CEO of ToDoCorp is not happy and wants the title of the browser to show “ToDo-
Corp’s ToDo App” instead of “Swarm+React - TodoMVC.”

 You’re not sure how to achieve this, so you probably want fire up your application
and experiment by changing files to see what happens:

$ docker run -d -p 8000:8000 --name todobug1 dockerinpractice/todoapp
3c3d5d3ffd70d17e7e47e90801af7d12d6fc0b8b14a8b33131fc708423ee4372
$ docker exec -i -t todobug1 /bin/bash

B

C

56 CHAPTER 3 Using Docker as a lightweight virtual machine

The docker run command B starts the to-do application in a container in the back-
ground (-d), maps the container’s port 8000 to port 8000 on the host (-p 8000:8000),
names it todobug1 (--name todobug1) for easy reference, and returns the container ID.
The command started in the container will be the default command specified at build
time of the dockerinpractice/todoapp image, which we have built for you and made
available on the Docker Hub.

 The second command C will start /bin/bash in the running container. The name
todobug1 is used, but you can also use the container ID. -i makes this exec run inter-
active, and -t makes sure that the exec will work as a terminal would.

 Now you’re in the container, so the first step in experimenting is to install an edi-
tor. We prefer vim, so we used these commands:

apt-get update
apt-get install vim

After a little effort you realize that the file you need to change is local.html. You there-
fore change line 5 as follows:

<title>ToDoCorp's ToDo App</title>

Then word comes through that the CEO might want the title to be in lowercase, as
she’s heard that it looks more modern. You want to be ready either way, so you commit
what you have at the moment. In another terminal you run the following command:

$ docker commit todobug1
ca76b45144f2cb31fda6a31e55f784c93df8c9d4c96bbeacd73cad9cd55d2970

You have now committed your container to an image that you can run from later.

STATE IS NOT CAPTURED! Committing a container only stores the state of the
filesystem at the time of commit, not the processes. Docker containers are not
VMs, remember. If your environment’s state depends on the state of running
processes that aren’t recoverable through standard files, this technique won’t
store the state as you need it. In this case, you’ll probably want to look at mak-
ing your development processes recoverable.

Next you change local.html to the other possible required value:

<title>todocorp's todo app</title>

Commit again:

$ docker commit todobug1
071f6a36c23a19801285b82eafc99333c76f63ea0aa0b44902c6bae482a6e036

Turn the container
you created earlier
into an image.

The new
image ID of the
container you’ve
committed

57TECHNIQUE 15 Docker tagging

You now have two image IDs (ca76b45144f2cb31fda6a31e55f784c93df8c9d4c96bbeac-
d73cad9cd55d2970 and 071f6a36c23a19801285b82eafc99333c76f63ea0aa0b44902c6-
bae482a6e036 in our case, but yours will be different) that represent the two options.
When the CEO comes in to evaluate which one she wants, you can run up either image
and let her decide which one to commit.

 You do this by opening up new terminals and running the following commands:

$ docker run -p 8001:8000 \
ca76b45144f2cb31fda6a31e55f784c93df8c9d4c96bbeacd73cad9cd55d2970

$ docker run -p 8002:8000 \
071f6a36c23a19801285b82eafc99333c76f63ea0aa0b44902c6bae482a6e036

In this way you can present the uppercase option as available on http://local-
host:8001 and the lowercase option on http://localhost:8002.

 You’re no doubt wondering whether there’s a better way to reference images than
with long random strings of characters. The next technique will look at giving these
containers names you can more easily reference.

 We find this to be a useful technique when we’ve negotiated a tricky sequence of
commands to set up an application. Committing the container, once successful,
records our bash session history, meaning that a set of steps for regaining the state of
our system is available. This can save a lot of time! It’s also useful when you’re
experimenting with a new feature and are unsure whether you’re finished, or when
you’ve recreated a bug and want to be as sure as possible that you can return to the
broken state.

EXTERNAL DEPENDENCIES NOT CAPTURED! Any dependencies external to the
container (such as databases, Docker volumes, or other services called) are
not stored on commit. This technique doesn’t have any external dependen-
cies so we don’t need to worry about this.

TECHNIQUE 15 Docker tagging

You’ve now saved the state of your container by committing, and you have a random
string as the ID of your image. It’s obviously difficult to remember and manage the
large numbers of these image IDs. It would be helpful to use Docker’s tagging func-
tionality to give readable names (and tags) to your images and remind you what they
were created for.

 Mastering this technique will allow you to see what your images are for at a glance,
making image management on your machine far simpler.

Maps the container’s port 8000
to the host’s port 8001 and

specifies the lowercase image ID

Maps the container’s port 8000 to
the host’s port 8002 and specifies

the uppercase image ID

58 CHAPTER 3 Using Docker as a lightweight virtual machine

PROBLEM
You want to conveniently reference and store a Docker commit.

SOLUTION
Use docker tag to name your commit.

DISCUSSION
In its basic form, tagging is simple:

$ docker tag \
071f6a36c23a19801285b82eafc99333c76f63ea0aa0b44902c6bae482a6e036 \
imagename

This gives your image a name that you can refer to, like so:

docker run imagename

This is much easier than remembering random strings of letters and numbers!
 If you want to share your images with others, there’s more to tagging than this,

though. Unfortunately, the terminology around tags can be rather confusing. Terms
such as image, name, and repository are used interchangeably. Table 3.1 provides some
definitions.

Perhaps the most confusing terms in this table are image and repository. We’ve been
using the term image loosely to mean a collection of layers that we spawn a container
from, but technically an image is a single layer that refers to its parent layer recur-
sively. A repository is hosted, meaning that it’s stored somewhere (either on your
Docker daemon or on a registry). In addition, a repository is a collection of tagged
images that make up the filesystem for a container.

 An analogy with Git can be helpful here. When cloning a Git repository, you check
out the state of the files at the point you requested. This is analogous to an image. The
repository is the entire history of the files at each commit, going back to the initial
commit. You therefore check out the repository at the head’s layer. The other layers
(or commits) are all there in the repository you’ve cloned.

Table 3.1 Docker tagging terms

Term Meaning

Image A read-only layer.

Name The name of your image, such as “todoapp.”

Tag As a verb, it refers to giving an image a name. As a noun, it’s a modifier for your image name.

Repository A hosted collection of tagged images that together create the filesystem for a container.

The docker tag
command

The image ID you want
to give a name toThe name you want to

give your image

59TECHNIQUE 16 Sharing images on the Docker Hub

 In practice, the terms image and repository are used more or less interchangeably, so
don’t worry too much about this. But be aware that these terms exist and are used
similarly.

 What you’ve seen so far is how to give an image ID a name. Confusingly, this name
isn’t the image’s tag, although people often refer to it as that. We distinguish between
the action to tag (verb) and the tag you can give to the image name (noun). This tag
(noun) allows you to name a specific version of the image. You might add a tag to
manage references to different versions of the same image. You could tag with a ver-
sion name or the date of commit, for example.

 A good example of a repository with multiple tags is the Ubuntu image. If you pull
the Ubuntu image and then run docker images, you’ll get output similar to the fol-
lowing listing.

$ docker images
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
ubuntu trusty 8eaa4ff06b53 4 weeks ago 192.7 MB
ubuntu 14.04 8eaa4ff06b53 4 weeks ago 192.7 MB
ubuntu 14.04.1 8eaa4ff06b53 4 weeks ago 192.7 MB
ubuntu latest 8eaa4ff06b53 4 weeks ago 192.7 MB

The Repository column lists the hosted collection of layers called “ubuntu.” Often
this is referred to as the image. The Tag column here lists four different names
(trusty, 14.04, 14.04.1, and latest). The Image ID column lists identical image IDs.
This is because these differently tagged images are identical.

 This shows that you can have a repository with multiple tags from the same image
ID. In theory, though, these tags could later point to different image IDs. If “trusty”
gets a security update, for example, the image ID may be changed with a new commit
by the maintainers and tagged with “trusty,” “14.04.2,” and “latest.”

 The default is to give your image a tag of “latest” if no tag is specified.

MEANING OF THE “LATEST” TAG The “latest” tag has no special significance in
Docker—it’s a default for tagging and pulling. It doesn’t necessarily mean
that this was the last tag set for this image. The “latest” tag of your image may
be an old version of the image, as versions built later may have been tagged
with a specific tag like “v1.2.3.”

TECHNIQUE 16 Sharing images on the Docker Hub

Tagging images with descriptive names would be even more helpful if you could share
these names (and images) with other people. To satisfy this need, Docker comes with
the ability to easily move images to other places, and Docker, Inc. created the Docker
Hub as a free service to encourage this sharing.

Listing 3.9 An image with multiple tags

60 CHAPTER 3 Using Docker as a lightweight virtual machine

DOCKER HUB ACCOUNT NEEDED To follow this technique, you’ll need a Docker
Hub account that you have logged into previously by running docker login
on your host machine. If you haven’t set one up, you can do so at http://
hub.docker.com. Just follow the instructions to register.

PROBLEM
You want to share a Docker image publicly.

SOLUTION
Use the Docker Hub registry to share your image.

DISCUSSION
As with tagging, the terminology around registries can be confusing. Table 3.2 should
help you understand how the terms are used.

As you’ve seen previously, it’s possible to tag an image as many times as you like. This
is useful for copying over an image so that you have control of it.

 Let’s say your username on the Docker Hub is “adev.” The following three com-
mands show how to copy the debian:wheezy image from the Docker Hub to be under
your own account.

docker pull debian:wheezy
docker tag debian:wheezy adev/debian:mywheezy1
docker push adev/debian:mywheezy1

You now have a reference to the Debian wheezy image you downloaded that you can
maintain, refer to, and build on.

 If you have a private repository to push to, the process is identical except that you
must specify the address of the registry before the tag. Let’s say you have a repository
that’s served from http://mycorp.private.dockerregistry. The following listing will tag
and push the image.

Table 3.2 Docker registry terms

Term Meaning

Username Your Docker registry username.

Registry Registries hold images. A registry is a store you can upload images
to or download them from. Registries can be public or private.

Registry host The host on which the Docker registry runs.

Docker Hub The default public registry hosted at https://hub.docker.com.

Index The same as a registry host. It appears to be a deprecated term.

Listing 3.10 Copying a public image and pushing to adev’s Docker Hub account

Pull the Debian
image from the

Docker Hub.
Tag the wheezy image with
your own username (adev)
and tag (mywheezy1).

Push the newly
created tag.

http://hub.docker.com
http://hub.docker.com
https://hub.docker.com

61TECHNIQUE 17 Referring to a specific image in builds

docker pull debian
docker tag debian:wheezy \
mycorp.private.dockerregistry/adev/debian:mywheezy1
docker push mycorp.private.dockerregistry/adev/debian:mywheezy1

The preceding commands won’t push the image to the public Docker Hub but will
push it to the private repository, so that anyone with access to resources on that service
can pull it.

 You now have the ability to share your images with others. This is a great way to
share work, ideas, or even issues you are facing with other engineers.

TECHNIQUE 17 Referring to a specific image in builds

Most of the time you’ll be referring to generic image names in your builds, such as
“node” or “ubuntu” and will proceed without problem.

 If you refer to an image name, then it’s possible that the image can change while
the tag remains the same. As paradoxical as it sounds, this is indeed the case! The
repository name is only a reference, and it may be altered to point at a different
underlying image. Specifying a tag with the colon notation (such as ubuntu:trusty)
doesn’t remove this risk, either, as security updates can use the same tag to automati-
cally rebuild vulnerable images.

 Most of the time you’ll want this—the maintainers of the image may have found an
improvement, and patching security holes is generally a good thing. Occasionally,
though, this can cause you pain. And this is not merely a theoretical risk: this has hap-
pened to us on a number of occasions, breaking continuous delivery builds in a way
that’s difficult to debug. In the early days of Docker, packages would be added to and
removed from the most popular images regularly (including, on one memorable
occasion, the disappearance of the passwd command!), making builds that previously
worked suddenly break.

PROBLEM
You want to be sure that your build is from a specific and unchanging image.

SOLUTION
Build from a specific image ID.

DISCUSSION
For the times when you want to be absolutely certain that you’re building against a
given set of files, you can specify a specific image ID in your Dockerfile.

 Here’s an example (which will likely not work for you):

Listing 3.11 Copying a public image and pushing to adev’s private registry

Pull the Debian
image from the

Docker Hub.

Tag the wheezy image with your registry
(mycorp.private.dockerregistry),
username (adev), and tag (mywheezy1).

Push the newly created tag to the
private registry. Note that the

private registry server’s address is
required both when tagging and

pushing, so that Docker can be sure
it’s pushing to the right place.

62 CHAPTER 3 Using Docker as a lightweight virtual machine

FROM 8eaa4ff06b53
RUN echo "Built from image id:" > /etc/buildinfo
RUN echo "8eaa4ff06b53" >> /etc/buildinfo
RUN echo "an ubuntu 14.4.01 image" >> /etc/buildinfo
CMD ["echo","/etc/buildinfo"]

To build from a specific image (or layer) ID like this, the image ID must be stored
locally on your Docker daemon. The Docker registry will not perform any kind of
lookup to find the image ID in layers of images available to you on the Docker Hub, or
in any other registry you may be configured to use.

 Note that the image you refer to need not be tagged—it could be any layer you
have locally. You can begin your build from any layer you wish. This might be useful
for certain surgical or experimental procedures you want to perform for Dockerfile
build analysis.

 If you want to persist the image remotely, then it’s best to tag and push the image
to a repository that’s under your control in a remote registry.

DOCKER IMAGES CAN STOP WORKING! It’s worth pointing out that almost the
opposite problem can occur when a Docker image that was previously work-
ing suddenly does not. Usually this is because something on the network has
changed. One memorable example of this was when our builds failed to apt-
get update one morning. We assumed it was a problem with our local deb
cache and tried debugging without success until a friendly sysadmin pointed
out that the particular version of Ubuntu we were building from was no lon-
ger supported. This meant that the network calls to apt-get update were
returning an HTTP error.

3.4 Environments as processes
One way of viewing Docker is to see it as turning environments into processes. Again,
VMs can be treated in the same way, but Docker makes this much more convenient
and efficient.

 To illustrate this, we’ll show you how the speedy spin-up, storage, and recreation of
container state can allow you to do something otherwise (almost) impossible—to win
at 2048!

TECHNIQUE 18 The “save game” approach to development

This technique is designed to provide you with a little light relief while showing you
how Docker can be used to revert state easily. If you’re not familiar with 2048, it’s an
addictive game where you push numbers around a board. The original version is avail-
able online at http://gabrielecirulli.github.io/2048 if you want to get acquainted with
it first.

Build from a
specific image
(or layer) ID.

Run a command within this
image to record the image
you built from within a file

in the new image.

The built image will by default
output the information you

recorded in the /etc/buildinfo file.

http://gabrielecirulli.github.io/2048

63TECHNIQUE 18 The “save game” approach to development

PROBLEM
You want to save container state regularly in order to revert to a known state if necessary.

SOLUTION
Use docker commit to “save game” whenever you are unsure whether you will survive.

DISCUSSION
We’ve created a monolithic image on which you can play 2048 within a Docker con-
tainer that contains a VNC server and Firefox.

 To use this image you’ll need to install a VNC client. Popular implementations
include TigerVNC and VNC Viewer. If you don’t have one, then a quick search for “vnc
client” on the package manager on your host should yield useful results.

 To start up the container, run the following commands.

$ docker run -d -p 5901:5901 -p 6080:6080 --name win2048 \
imiell/win2048

$ vncviewer localhost:1

First you run a container from the imiell/win2048 image, which we’ve prepared for
you B. You start this in the background and specify that it should open two ports
(5901 and 6080) to the host. These ports will be used by the VNC server started
automatically inside the container. You also give the container a name for easy use
later: win2048.

 You can now run your VNC viewer (the executable may differ depending on what
you have installed) and instruct it to connect to your local computer C. Because the
appropriate ports have been exposed from the container, connecting to localhost will
actually connect to the container. The :1 after localhost is appropriate if you have
no X displays on your host other than a standard desktop—if you do, you may need to
choose a different number and look at the documentation for your VNC viewer to
manually specify the VNC port as 5901.

 Once you’re connected to the VNC server you’ll be prompted for a password. The
password for VNC on this image is vncpass.

 You’ll see a window with a Firefox tab and a 2048 table preloaded. Click on it to
give it focus, and play until you’re ready to save the game.

 To save the game, you tag the named container after committing it:

$ docker commit win2048
4ba15c8d337a0a4648884c691919b29891cbbe26cb709c0fde74db832a942083
$ docker tag 4ba15c8d337 my2048tag:$(date +%s)

An image ID C was generated by committing the win2048 container B, and now you
want to give it a unique name (because you may be creating a number of these
images). To do this, we’ll use the output of date +%s as the part of the image name,
which outputs the number of seconds since the first day of 1970, providing a unique

Listing 3.12 Start the 2048 container

B

C

B

C

64 CHAPTER 3 Using Docker as a lightweight virtual machine

(for our purposes), constantly increasing value. The $(command) syntax just substi-
tutes the output of command at that position. If you prefer, you can run the date +%s
manually and paste the output as part of the image name instead.

 You can then continue playing until you lose. Now comes the magic! You can
return to your save point with the following commands.

$ docker rm -f win2048
$ docker run -d -p 5901:5901 -p 6080:6080 --name win2048 my2048tag:$mytag

$mytag is a tag selected from the docker images command. Repeat the tag, rm, and
run steps until you complete 2048.

3.5 Summary
In this chapter you’ve seen how Docker can take the place of VMs for many use cases.
Although Docker is not a VM technology and there are important distinctions
between VMs and containers, the convenience of Docker can speed up your develop-
ment process.

 This chapter has built on the first two by showing how Docker’s architecture lays
the foundations for the greater convenience that it can bring to your work.

 We covered these principal points:

■ It’s relatively easy to convert a VM to a Docker image to make the initial move to
Docker.

■ You can supervise services on your containers to mimic their previous VM-like
operation.

■ Committing is the correct way to save your work as you go.
■ You can name your images and share them with the world on the Docker Hub

for free.

Developing within a new paradigm will always introduce you to some routine tasks
and daily trials, In the next chapter we’ll examine some of the more important of
these.

Listing 3.13 Return to the saved game

65

Day-to-day Docker

As you develop software with Docker you will discover you have various needs that
arise. You may grapple with running GUIs from a container, run into confusion
around the Dockerfile build cache, want to manipulate your containers directly
while in use, wonder about the lineage of your images, want to reference data from
an external source, and so on.

 This chapter takes you through techniques that show you how to handle these
and other concerns that may arise. Think of it as your Docker toolbox!

This chapter covers
■ Using and managing Docker volumes for

persistent shared data
■ Learning your first Docker patterns: the data

and dev tools containers
■ Using GUI applications within Docker
■ Manipulating the Docker build cache for fast and

reliable builds
■ Visualizing your Docker image lineage in a graph
■ Running commands directly on your containers

from the host

66 CHAPTER 4 Day-to-day Docker

4.1 Volumes—a persistent problem
Containers are a powerful concept, but sometimes not everything you want to access is
ready to be encapsulated. You may have a reference Oracle database stored on a large
cluster that you want to connect to for testing. Or maybe you have a large legacy server
already set up with binaries that can’t easily be reproduced.

 When you begin working with Docker, most of the things you’ll want to access will
likely be data and programs external to your container. We’ll take you from the straight-
forward mounting of files from your host to more sophisticated container patterns: the
data container and the dev tools container. We’ll also demonstrate a pragmatic favorite
of ours for remote mounting across a network that requires only an SSH connection to
work, and a means of sharing data with other users via the BitTorrent protocol.

 Volumes are a core part of Docker, and the issue of external data reference is yet
another fast-changing area of the Docker ecosystem.

TECHNIQUE 19 Docker volumes—problems of persistence

Much of the power of containers comes from the fact that they encapsulate as much
of the state of the environment’s filesystem as is useful.

 Sometimes, though, you don’t want to put files into a container. You might have
some large files that you want to share across containers or manage separately. The
classic example is the large, centralized database that you want your container to
access, but you also want other (perhaps more traditional) clients to access alongside
your new-fangled containers.

 The solution is volumes, Docker’s mechanism for managing files outside the lifecy-
cle of the container. Although this goes against the philosophy of containers being
“deployed anywhere” (you won’t be able to deploy your database-dependent con-
tainer where there’s no compatible database available to mount, for example), it’s a
useful feature for real-world Docker use.

PROBLEM
You want to access files on the host from within a container.

SOLUTION
Use Docker’s volume flag to access host files from within the container.

DISCUSSION
Figure 4.1 illustrates the use of a volume flag to interact with the host’s filesystem.

 The following command shows the host’s /var/db/tables directory being
mounted on /var/data1, and it could be run to start the container in figure 4.1:

$ docker run -v /var/db/tables:/var/data1 -it debian bash

The -v flag (--volume in longhand) indicates that a volume external to the container
is required. The subsequent argument gives the volume specification in the form of
two directories separated by a colon, instructing Docker to map the external /var/
db/tables directory to the container’s /var/data1 directory. Both the external and
container directories will be created if they don’t exist.

67TECHNIQUE 20 Distributed volumes with BitTorrent Sync

Beware of mapping over existing directories. The container’s directory will be
mapped even if it already exists in the image. This means that the directory you’re
mapping to within the container will effectively disappear. Fun things happen if you
try to map a key directory! Try mounting an empty directory over /bin, for example.

 Also note that volumes are assumed not to persist in Dockerfiles. If you add a vol-
ume and then make changes to that folder within a Dockerfile, the changes won’t be
persisted to the resulting image.

SELINUX ISSUES? You may run into difficulties if your host runs SELinux. If
SELinux policy is enforced, the container may not be able to write to the
/var/db/tables directory. You’ll see a “permission denied” error. If you need
to work around this, you’ll need to talk to your sysadmin (if you have one) or
switch off SELinux (for development purposes only). See technique 101 for
more on SELinux.

TECHNIQUE 20 Distributed volumes with BitTorrent Sync

When experimenting with Docker in a team, you may want to be able to share large
quantities of data among team members, but you may not be allocated the resources
for a shared server with sufficient capacity. The lazy solution to this is copying the lat-
est files from other team members when you need them—this quickly gets out of
hand for a larger team.

 The solution is to use a decentralized tool for sharing files—no dedicated resource
required.

MySQL
process

Host

The container running on
the host maps /var/db/tables
from the host's filesystem to
/var/data1 in the container.

A MySQL process
affects data on the
same directory.

The /var/db/tables
directory sits on the
host filesystem.

Container

/var/data1

/var/db/tables

Figure 4.1 A volume inside a container

68 CHAPTER 4 Day-to-day Docker

PROBLEM
You want to share volumes across hosts over the internet.

SOLUTION
Use a BitTorrent Sync image to share a volume.

DISCUSSION
Figure 4.2 illustrates the setup we’re aiming for.

The end result is a volume (/data) conveniently synchronized over the internet with-
out requiring any complicated setup.

 On your primary server, run the following commands to set up the containers on
the first host:

[host1]$ docker run -d -p 8888:8888 -p 55555:55555 \
--name btsync ctlc/btsync
$ docker logs btsync
Starting btsync with secret: \
ALSVEUABQQ5ILRS2OQJKAOKCU5SIIP6A3
By using this application, you agree to our Privacy Policy and Terms.
http://www.bittorrent.com/legal/privacy
http://www.bittorrent.com/legal/terms-of-use

The BTSync server is a
Docker container that
owns the /data volume
we’re going to share.

Containers mount
the volumes from
the BTSync client.

The BTSync client owns the local
/data volume and synchronizes it
with the first host’s BTSync server.

On another host in a separate network, the BTSync
client uses the key generated by the BTSync server
to access the shared data via the BitTorrent protocol.

A container is set up
on the same host that
mounts the volumes
from the BTSync server.

BTSync server

Shared by
secret key

Container

BTSync client Container

Container

Host 1 Host 2

Figure 4.2 Using BitTorrent Sync

Runs the published ctlc/btsync image
as a daemon container, calls btsync,

and opens the required ports
Gets the

output of the
btsync

container so
you can make a
note of the key

Make a note of this key—it
will be different for your run.

69TECHNIQUE 21 Retain your container’s bash history

total physical memory 536870912 max disk cache 2097152
Using IP address 172.17.4.121

[host1]$ docker run -i -t --volumes-from btsync \
ubuntu /bin/bash
$ touch /data/shared_from_server_one
$ ls /data
shared_from_server_one

On the second server, open up a terminal and run these commands to synchronize
the volume:

[host2]$ docker run -d --name btsync-client -p 8888:8888 \
-p 55555:55555 \
ctlc/btsync ALSVEUABQQ5ILRS2OQJKAOKCU5SIIP6A3
[host2]$ docker run -i -t --volumes-from btsync-client \
ubuntu bash
$ ls /data
shared_from_server_one
$ touch /data/shared_from_server_two
$ ls /data
shared_from_server_one shared_from_server_two

Back on host1’s running container, you should see that the file has been synchronized
between the hosts exactly as the first file was:

[host1]$ ls /data
shared_from_server_one shared_from_server_two

The synchronization of files comes with no timing guarantees, so you may have to wait
for the data to sync. This is particularly the case for larger files.

NO GUARANTEES OF GOOD BEHAVIOR As the data may be sent over the internet and
is processed by a protocol over which you have no control, you shouldn’t rely on
this if you have any meaningful security, scalability, or performance constraints.

TECHNIQUE 21 Retain your container’s bash history

Experimenting inside a container with the knowledge that you can wipe everything
out when you’re done can be a liberating experience. But there are some conve-
niences that you lose when doing this. One that we’ve hit many times is an inability to
recall a sequence of commands we’ve run inside a container.

PROBLEM
You want to share your container’s bash history with your host’s history.

SOLUTION
Alias your docker run command to share your bash history with the host’s history.

Starts up an
interactive container
with the volumes from
the btsync server

Adds a file
to the /data

volume

Starts a btsync client container as a
daemon with the key generated by

the daemon run on host1Starts an
interactive

container that
mounts the

volumes from
your client

daemon
The file created on
host1 has been
transferred to host2.

Creates a
second file

on host2

70 CHAPTER 4 Day-to-day Docker

DISCUSSION
To understand this problem, we’re going to show you a simple scenario where not
having this is plain annoying.

 Imagine you are experimenting in Docker containers, and in the midst of your
work you do something interesting and reusable. Here we’ll use a simple echo com-
mand, but it could be a long and complex concatenation of programs that results in a
useful output:

$ docker run -ti --rm ubuntu /bin/bash
$ echo my amazing command
$ exit

After some time, you want to recall the incredible echo command you ran earlier.
Unfortunately, you can’t recall it, and you no longer have the terminal session on your
screen to scroll to. Out of habit you try looking through your bash history on the host:

$ history | grep amazing

Nothing comes back, because the bash history is kept within the now-removed con-
tainer and not the host you were returned to.

 To share your bash history with the host, you can use a volume mount when run-
ning your Docker images. Here’s an example:

$ docker run -e HIST_FILE=/root/.bash_history \
-v=$HOME/.bash_history:/root/.bash_history \
-ti ubuntu /bin/bash

SEPARATE CONTAINER BASH HISTORY FILE You may want to separate the con-
tainer’s bash history from your host’s. One way to do this is to change the
value for the first part of the preceding -v argument.

This is quite a handful to type every time, so to make this more user-friendly you can
set up an alias by putting this into your ~/.bashrc file:

$ alias dockbash='docker run -e HIST_FILE=/root/.bash_history \
-v=$HOME/.bash_history:/root/.bash_history

This is still not seamless, as you have to remember to type dockbash if you want to per-
form a docker run command. For a more seamless experience, you can add these to
your ~/.bashrc file:

function basher() {
if [[$1 = 'run']]
then

shift

Sets the environment variable
picked up by bash. This
ensures the bash history file
used is the one you mount.

Maps the container’s
root’s bash history
file to the host’s

Create a bash function called basher
that will handle the docker command.

…remove that argument from the list
of arguments you’ve passed in.

Determine whether
the first argument to

basher/docker is
‘run’. If it is…

71TECHNIQUE 22 Data containers

/usr/bin/docker run \
-e HIST_FILE=/root/.bash_history \
-v $HOME/.bash_history:/root/.bash_history "$@"

else
/usr/bin/docker "$@"

fi
}
alias docker=basher

Now when you next open a bash shell and run any docker run command, the commands
that are run within that container will be added to your host’s bash history. Make sure
the path to Docker is correct. It might be located in /bin/docker, for example.

REMEMBER TO LOG OUT OF THE HOST BASH SESSION You’ll need to log out of
your host’s original bash session for the history file to be updated. This is due
to a subtlety of bash and how it updates the bash history it keeps in memory.
If in doubt, exit all bash sessions you’re aware of, and then start one up to
ensure your history is as up-to-date as possible.

TECHNIQUE 22 Data containers

If you use volumes a lot on a host, managing the container’s startup can get tricky. You
may also want the data to be managed by Docker exclusively, and not be generally
accessible on the host. One way to manage these things more cleanly is to use the
data-only container design pattern.

PROBLEM
You want to use an external volume within a container but you only want Docker to
access the files.

SOLUTION
Start up a data container and use the --volumes-from flag when running other
containers.

DISCUSSION
Figure 4.3 shows the structure of the data container pattern and explains how it works.
The key thing to note is that in the second host, the containers don’t need to know where
the data is located on disk. All they need to know is the name of the data container and
they’re good to go. This can make the operation of containers more portable.

 Another benefit of this approach over the straightforward mapping of host direc-
tories is that access to these files is managed by Docker, which means that it’s less likely
that a non-Docker process will affect the contents.

Run the docker run command you ran earlier,
invoking the absolute path to the Docker runtime
to avoid confusion with the following docker alias.

Find out by running the which docker command
on your host before implementing this solution.

Pass the arguments
after “run” to the

Docker runtime.
Run the docker
command with

the original
arguments intact.

Alias the docker command when invoked on the
command line to the basher function you’ve
created. This ensures that the call to docker is
caught before bash finds the docker binary on
the path.

72 CHAPTER 4 Day-to-day Docker

Host 1

This host is running three containers, each pointed at the
host’s /var/db/tables directory with the –volume/-v flag.
No data container exists here.

Each container has mounted the directory separately, so if
the location of the folder changes or the mount needs to
be moved, each container has to be reconfigured.

This host is running four containers. The three containers
from the previous host are run with the –volumes-from
flags all pointing at the data container.

Container A Container B Container C

/var/db/tables

-v /var/db/tables:/db -v /var/db/tables:/db -v /var/db/tables:/db

Host 2

This single data container mounts the host’s
volume, creating a single point of responsibility
for data mounts on the host.

Container A Container B Container C

Data container (dc)
/var/db/tables

--volumes-from dc --volumes-from dc --volumes-from dc

Figure 4.3 The data container pattern

73TECHNIQUE 22 Data containers

DATA-ONLY CONTAINER DOESN’T NEED TO RUN! A common source of confusion
is whether the data-only container needs to run. It doesn’t! It merely needs to
exist, to have been run on the host and not deleted.

Let’s go through a simple example so you can get a feel for how to use this technique.
 First you run your data container:

$ docker run -v /shared-data --name dc busybox \
touch /shared-data/somefile

The -v argument doesn’t map the volume to a host directory, so it creates the direc-
tory within the scope of this container’s responsibility. This directory is populated with
a single file with touch, and the container immediately exists—a data container need
not be running to be used. We’ve used the small but functional busybox image to
reduce the amount of extra baggage our data container needs.

 Then you run up another container to access the file you just created:

docker run -t -i --volumes-from dc busybox /bin/sh
/ # ls /shared-data
somefile

The --volumes-from flag allows you to reference the files from the data container by
mounting them in the current container—you just need to pass it the ID of a container
with volumes defined. The busybox image doesn’t have bash, so you need to start up a sim-
pler shell to verify that the /shared-data folder from the dc container is available to you.

 You can start up any number of containers all reading from and writing to the
specified data container’s volumes.

VOLUMES PERSIST! It’s important to understand that using this pattern can
result in heavy disk usage that can be relatively difficult to debug. Because
Docker manages the volume within the data-only container, and does not
delete the volume when the last container referencing it has exited, any data
on a volume will persist. This is to prevent undesired data loss. For advice on
managing this, see technique 35.

Using this pattern isn’t required to use volumes—you may find this approach harder to
manage than a straightforward mount of a host directory. If, however, you like to cleanly
delegate responsibility for managing data to a single point managed within Docker and
uncontaminated by other host processes, then data containers may be useful for you.

FIGHTING OVER FILE PATHS If your application is logging from multiple
containers to the same data container, it’s important to ensure that each
container log file writes to a unique file path. If you don’t ensure this, different
containers might overwrite or truncate the file, resulting in lost data, or might
write interleaved data, which is less easy to analyze. Similarly, if you invoke
--volumes-from from a data container, you allow that container to potentially
overlay directories over yours, so be careful of name clashes here also.

74 CHAPTER 4 Day-to-day Docker

TECHNIQUE 23 Remote volume mounting using sshfs

We’ve discussed mounting local files, but soon the question of how to mount remote
filesystems arises. Perhaps you want to share a reference database on a remote server
and treat it as if it were local, for example.

 Although it’s theoretically possible to set up NFS on your host system and the
server and then access the filesystem by mounting that directory, there’s a quicker and
simpler way for most users that requires no setup on the server side (as long as there is
SSH access).

ROOT PRIVILEGES REQUIRED You’ll need root privileges for this technique to
work, and you’ll need FUSE (Linux’s “Filesystem in Userspace” kernel mod-
ule) installed. You can determine whether you have the latter by running ls
/dev/fuse in a terminal to see whether the file exists.

PROBLEM
You want to mount a remote filesystem without requiring any server-side configuration.

SOLUTION
Use SSHFS to mount the remote filesystem.

DISCUSSION
This technique works by using a FUSE kernel module with SSH to give you a standard
interface to a filesystem, while in the background doing all communications via SSH.
SSHFS also provides various behind-the-scenes features (such as remote file read-
ahead) to facilitate the illusion that the files are local. The upshot is that once a user is
logged into the remote server, they’ll see the files as if they were local. Figure 4.4
helps explain this.

CHANGES WON’T PERSIST ON THE CONTAINER Although this technique doesn’t
use the Docker volumes functionality, and the files are visible through the
filesystem, this technique doesn’t give you any container-level persistence.
Any changes made take place on the remote server’s filesystem only.

You can get started by running the following commands, adjusted for your environment.
 The first step is to start up a container with --privileged on your host machine:

$ docker run -t -i --privileged debian /bin/bash

Then, when it’s started up, run apt-get update && apt-get install sshfs from
within the container to install SSHFS.

 When SSHFS is successfully installed, log on to the remote host as follows:

$ LOCALPATH=/path/to/local/directory
$ mkdir $LOCALPATH
$ sshfs user@host:/path/to/remote/directory $LOCALPATH

Choose a directory to mount
the remote location into. Create the local

directory to
mount into.

Replace the values
here with your

remote host
username, remote
host address, and

remote path.

75TECHNIQUE 23 Remote volume mounting using sshfs

You’ll now see the contents of the path on the remote server in the folder you’ve just
created.

MOUNT PRE-EXISTING DIRECTORIES WITH THE NONEMPTY OPTION It’s simplest to
mount to a directory that you’ve newly created, but it’s also possible to mount
a pre-existing directory with files already present if you use the -o nonempty
option. See the SSHFS man page for more information.

To cleanly unmount the files, use the fusermount command as follows, replacing the
path as appropriate:

fusermount -u /path/to/local/directory

SSHFS
process

bash

Can
access

Local host

Exposes

The bash process running separately
from the SSHFS process can access the
files locally without any awareness of
the SSHFS mount. It appears as a
local file to bash.

The local directory
/var/remote_db is
effectively a mount of
the /var/db directory
on the remote host.

Your host machine
runs a Linux kernel
with a FUSE kernel
module loaded.

The SSHFS process running
within the Docker container
logs on to the remote server
and exposes a local directory
that maps to the server
directory via the FUSE
kernel module.

The FUSE kernel module allows
a filesystem to be exposed and
managed by a process running
outside the kernel.

The SSHFS client and the server
communicate via the remote
server’s SSH server process.
This access allows the client
to read data from the
remote directory.

The /var/db directory on the
remote server is accessed
by the SSH server.

The remote server
is a standard one
running an SSH
server.

Local mount:
/var/remote_db

Remote host

SSH
server

/var/db

FUSE kernel module

Figure 4.4 Mounting a remote filesystem with SSHFS

76 CHAPTER 4 Day-to-day Docker

This is a great way to quickly get remote mounts working from within containers (and
on standard Linux machines) with minimal effort.

TECHNIQUE 24 Sharing data over NFS

In a larger company it’s highly likely that there are NFS shared directories already in
use—NFS is a well-proven option for serving files out of a central location. For Docker
to get traction, it’s usually fairly important to be able to get access to these shared files.

 Docker doesn’t support NFS out of the box, and installing an NFS client on every
container so you can mount the remote folders isn’t considered a best practice.
Instead, the suggested approach is to have one container act as a translator from NFS
to a more Docker-friendly concept: volumes.

PROBLEM
You want seamless access to a remote filesystem over NFS.

SOLUTION
Use an infrastructure data container to broker access.

DISCUSSION
This technique builds on technique 22. Figure 4.5 shows the idea in the abstract.

 The NFS server exposes the internal directory as the /export folder, which is bind-
mounted on the host. The Docker host then mounts this folder using the NFS proto-
col to its /mnt folder. Then a so-called infrastructure container is created, which
binds the mount folder.

 This may seem a little over-engineered at first glance, but the benefit is that it pro-
vides a level of indirection as far as the Docker containers are concerned: all they
need to do is mount the volumes from a pre-agreed infrastructure container, and who-
ever is responsible for the infrastructure can worry about the internal plumbing, avail-
ability, network, and so on.

NFS server Docker host

Infrastructure container
mounts the NFS-mounted
/mnt directory as a volume

Docker
nfs_client
container

Docker
application
container

Docker
application
container

Docker
application
container

/export /mnt

/opt/test/db

Bind mounts

NFS
mounts

Figure 4.5 An infrastructure container that brokers NFS access

77TECHNIQUE 24 Sharing data over NFS

A thorough treatment of NFS is beyond the scope of this book. In this technique we’re
going to go through the steps of setting up such a share on a single host by having the
NFS server’s components on the same host as the Docker containers. This has been
tested on Ubuntu 14.04.

 Imagine you want to share the contents of your host’s /opt/test/db folder, which
contains the file mybigdb.db.

 As root, install the NFS server and create an export directory with open permissions:

apt-get install nfs-kernel-server
mkdir /export
chmod 777 /export

Now bind mount the db directory to your export directory:

mount --bind /opt/test/db /export

You should now be able to see the contents of the /opt/test/db directory in /export:

PERSISTING THE BIND MOUNT If you want this to persist following a reboot, add
this line to your /etc/fstab file: /opt/test/db /export none bind 0 0

Now add this line to your /etc/exports file:

/export 127.0.0.1(ro,fsid=0,insecure,no_subtree_check,async)

For this proof of concept example, we’re mounting locally on 127.0.0.1, which
defeats the object a little. In a real-world scenario, you’d lock this down to a class of IP
addresses such as 192.168.1.0/24. If you like playing with fire, you can open it up to
the world with * instead of 127.0.0.1!

 For safety, we’re mounting read-only (ro) here, but you can mount read-write by
replacing ro with rw. Remember that if you do this, you’ll need to add a
no_root_squash flag after the async flag there, but think about security before going
outside this sandpit.

 Mount the directory over NFS to the /mnt directory, export the filesystems you
specified previously in /etc/exports, and then restart the NFS service to pick up the
changes:

mount -t nfs 127.0.0.1:/export /mnt
exportfs -a
service nfs-kernel-server restart

Now you’re ready to run your infrastructure container:

docker run -ti --name nfs_client --privileged -v /mnt:/mnt

➥ busybox /bin/true

And now you can run—without privileges, or knowledge of the underlying implemen-
tation—the directory you want to access:

78 CHAPTER 4 Day-to-day Docker

docker run -ti --volumes-from nfs_client debian /bin/bash
root@079d70f79d84:/# ls /mnt
myb
root@079d70f79d84:/# cd /mnt
root@079d70f79d84:/mnt# touch asd
touch: cannot touch `asd': Read-only file system

USE A NAMING CONVENTION FOR OPERATIONAL EFFICIENCY If you have a lot of
these containers to manage, you can make this easier to manage by having a
naming convention such as --name nfs_client_opt_database_live for
a container that exposes the /opt/database/live path.

This pattern of a shared resource mounted with privileged access centrally for use by
others in multiple containers is a powerful one that can make development workflows
much simpler.

NOT A SUBSTITUTE FOR SECURITY Remember that this technique only provides
security through obscurity (which is no security at all). As you’ll see later, any-
one that can run the Docker executable effectively has root privileges on the
host.

TECHNIQUE 25 Dev tools container

If you’re an engineer who often finds yourself on others’ machines struggling without
the programs or configuration you have on your beautiful unique-as-a-snowflake
development environment, this may be for you. Similarly, if you want to share your
pimped-up dev environment with others, Docker can make this easy.

PROBLEM
You want to access your development environment on others’ machines.

SOLUTION
Create a container with your setup on it and place it on a registry.

DISCUSSION
As a demonstration we’re going to use one of our dev tools images. You can download
it by running docker pull dockerinpractice/docker-dev-tools-image. The repo is
available on https://github.com/docker-in-practice/docker-dev-tools-image if you
want to inspect the Dockerfile.

 Running up the container is simple—a straightforward docker run -t -i docker-
inpractice/docker-dev-tools-image will give you a shell in our dev environment.
You can root around our dotfiles and maybe send us some advice about the setup.

 The real power of this technique can be seen when combined with others. Here
you can see a dev tools container used to display a GUI on the host’s network and IPC
stacks and to mount the host’s code:

docker run -t -i \
-v /var/run/docker.sock:/var/run/docker.sock \
-v /tmp/.X11-unix:/tmp/.X11-unix \

Mounts the Docker
socket to give

access to the host’s
Docker daemon

Mounts the X server
Unix domain socket to
allow you to start up
GUI-based applications
(see technique 26)

https://github.com/docker-in-practice/docker-dev-tools-image

79TECHNIQUE 26 Running GUIs within Docker

-e DISPLAY=$DISPLAY \
--net=host --ipc=host \
-v /opt/workspace:/home/dockerinpractice \
dockerinpractice/docker-dev-tools-image

The preceding command gives you an environment with access to the host’s
resources:

■ Network
■ Docker daemon (to run normal Docker commands as though on the host)
■ Inter-process communication (IPC) files
■ X server to start GUI-based apps, if needed

HOST SECURITY As always when mounting host directories, be careful not to
mount any vital directories, as you could do damage. Mounting any host
directory under root is generally best avoided.

4.2 Running containers
Although much of this book is about running containers, there are some practical
techniques related to running containers on your host that may not be immediately
obvious. We’ll look at how you can get GUI applications working, escape a container
once started without killing it, inspect the state of containers and their source images,
and shut down containers.

TECHNIQUE 26 Running GUIs within Docker

You’ve already seen a GUI served from within a Docker container using a VNC server
in technique 14. That’s one way to view applications within your Docker container,
and it’s self-contained, requiring only a VNC client to use.

 Fortunately there’s a more lightweight and well-integrated way to run GUIs on your
desktop, but it requires more setup on your part. It mounts the directory on the host
that manages communications with the X server so that it’s accessible to the container.

PROBLEM
You want to run GUIs in a container as though they were normal desktop apps.

SOLUTION
Create an image with your user credentials and the program, and bind mount your X
server to it.

DISCUSSION
Figure 4.6 shows how the final setup will work.

 The container is linked to the host via the mount of the host’s /tmp/.X11 direc-
tory, and this is how the container can perform actions on the host’s desktop.

Sets an environment variable
instructing the container to

use the host display.
These arguments bypass the
container’s network bridge and
allow you access to the host’s
interprocess communication
files (see technique 97).

Mounts the
work area to

the container’s
home directory

80 CHAPTER 4 Day-to-day Docker

First make a new directory somewhere convenient, and determine your user and
group IDs with the id command, as shown in the following listing.

$ mkdir dockergui
$ cd dockergui
$ id
uid=1000(dockerinpractice) \
gid=1000(dockerinpractice) \
groups=1000(dockerinpractice),10(wheel),989(vboxusers),990(docker)

Now create a file called Dockerfile as follows.

FROM ubuntu:14.04

RUN apt-get update
RUN apt-get install -y firefox

RUN groupadd -g GID USERNAME
RUN useradd -d /home/USERNAME -s /bin/bash \
-m USERNAME -u UID -g GID

Listing 4.1 Set up directory and find out your user details

Firefox
program X server

GUI container

Your host

The Firefox window
displayed by the X server

The volume mounted from within
the container bound to the host’s
running X server directory

The X server
directory on
the host

The running X
server process
on the host

The GUI container
you’ll create

The host on which your
container is run, with
a running X server

/tmp/.X11 /tmp/.X11

Firefox window

Figure 4.6 Communicating with the host’s X server

Gets information
about your user
that you’ll need

for the Dockerfile

Note your user ID (uid).
In this case, it’s 1000. Note your group ID

(gid). In this case,
it’s 1000.

Install Firefox as the GUI
app. You can change this
to whatever application(s)
you may want.

Add your host’s
group to the

image, replacing
GID with your
group ID and

USERNAME with
your username.

Add your user account
to the image, replacing
USERNAME with your
username, UID with your
user ID, and GID with
your group ID.

81TECHNIQUE 27 Inspecting containers

USER USERNAME
ENV HOME /home/USERNAME
CMD /usr/bin/firefox

Now you can build from that Dockerfile and tag the result as “gui”, as shown in the
next listing.

$ docker build -t gui .

Run it as shown in the following listing.

docker run -v /tmp/.X11-unix:/tmp/.X11-unix \
-e DISPLAY=$DISPLAY gui
-h $HOSTNAME -v $HOME/.Xauthority:/home/$USER/.Xauthority

You’ll see a Firefox window pop up!
 You can use this technique to avoid mixing up your desktop work with your devel-

opment work. With Firefox, for example, you might want to see how your application
behaves with no web cache, bookmarks, or search history in a repeatable way for test-
ing purposes. If you see error messages about being unable to open a display when try-
ing to start the image and run Firefox, see technique 58 for more ways to allow
containers to start graphical applications to be displayed on the host.

TECHNIQUE 27 Inspecting containers

Although the Docker commands give you access to information about images and
containers, sometimes you want to know more about the internal metadata of these
Docker objects.

PROBLEM
You want to find out a container’s IP address.

SOLUTION
Use docker inspect to retrieve and filter the container’s metadata.

DISCUSSION
The docker inspect command gives you access to Docker’s internal metadata in JSON
format. This produces a lot of output, so only a brief snippet of an image’s metadata is
shown in the next listing.

Listing 4.2 Build the gui image

Listing 4.3 Run the gui image

The image should run as
the user you’ve created.
Replace USERNAME with

your username.Set the HOME
variable correctly.

Replace USERNAME
with your username.

Run Firefox
on startup
by default.

Bind mount the X server
directory to the container …

…set the DISPLAY variable in the container to
be the same as that used in the host, so the
program knows which X server to talk to…

...and give the
container the
appropriate
credentials.

82 CHAPTER 4 Day-to-day Docker

$ docker inspect ubuntu | head
[{

"Architecture": "amd64",
"Author": "",
"Comment": "",
"Config": {

"AttachStderr": false,
"AttachStdin": false,
"AttachStdout": false,
"Cmd": [

"/bin/bash"
$

You can inspect images and containers by name or ID. Obviously their metadata will
differ—for example, a container will have runtime fields such as “State” that the
image will lack (an image has no state).

 In this case, you want to find out a container’s IP address on your host. To do this, you
can use the docker inspect command with the format flag (see the following listing).

docker inspect \
--format '{{.NetworkSettings.IPAddress}}' \
0808ef13d450

This technique can be useful for automation, as the interface is likely to be more sta-
ble than other Docker commands. The following command gives you the IP addresses
of all running containers and pings them.

$ docker ps -q | \
xargs docker inspect --format='{{.NetworkSettings.IPAddress}}' | \
xargs -l1 ping -c1
PING 172.17.0.5 (172.17.0.5) 56(84) bytes of data.
64 bytes from 172.17.0.5: icmp_seq=1 ttl=64 time=0.095 ms

--- 172.17.0.5 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 0.095/0.095/0.095/0.000 ms

Note that because ping only accepts one IP address, we had to pass an additional argu-
ment to xargs telling it to run the command for each individual line.

Listing 4.4 Raw inspect output on an image

Listing 4.5 Determining a container’s IP address

Listing 4.6 Get IPs of running containers and ping each in turn

The docker
inspect

command

The format flag. This uses
Go templates (not covered
here) to format the
output. Here, the
IPAddress field is taken
from the NetworkSettings
field in the inspect output.

The ID of the Docker item
you want to inspect

Gets the
container IDs
of all running

containers
Runs the

inspect
command
against all

container IDs
to get their

IP addresses

Takes each IP
address and

runs ping
against each

in turn

83TECHNIQUE 28 Cleanly killing containers

SET UP A RUNNING CONTAINER TO TEST If you have no running containers, run
this command to get one going: docker run -d ubuntu sleep 1000.

TECHNIQUE 28 Cleanly killing containers

If the state of a container is important to you when it terminates, you may want to
understand the distinction between docker kill and docker stop. This distinction
can also be important if you need your applications to close gracefully in order to save
data.

PROBLEM
You want to cleanly terminate a container.

SOLUTION
Use docker stop rather than docker kill.

DISCUSSION
The crucial point to understand is that docker kill doesn’t behave the same way as
the standard command-line kill program.

 The program kill works by sending a TERM (a.k.a. signal value 15) signal to the
process specified, unless directed otherwise. This signal indicates to the program that
it should terminate, but doesn’t force the program. Most programs will perform some
kind of cleanup when this signal is handled, but the program can do what it likes—
including ignoring the signal.

 A KILL signal (a.k.a. signal value 9), by contrast, forces the specified program to
terminate.

 Confusingly, docker kill uses a KILL signal on the running process, giving the
processes within it no chance to handle the termination. This means that stray files,
such as files containing running process IDs, may be left in the filesystem. Depending
on the application’s ability to manage state, this may or may not cause problems for
you if you start up the container again.

 Even more confusingly, the docker stop command acts like the kill command,
sending a TERM signal (see table 4.1).

In summary, don’t use docker kill as you’d use kill, and you’re probably best off
getting into the habit of using docker stop.

Table 4.1 Stopping and killing

Command Default signal Default signal value

kill TERM 15

docker kill KILL 9

docker stop TERM 15

84 CHAPTER 4 Day-to-day Docker

TECHNIQUE 29 Using Docker Machine to provision Docker hosts

Setting up Docker on your local machine was probably not too difficult—there’s a
script you can use for convenience, or alternatively it’s just a matter of a few com-
mands to add the appropriate sources for your package manager. But this can get
tedious when you’re trying to manage Docker installs on other hosts.

PROBLEM
You want to spin up containers on a separate Docker host from your machine.

SOLUTION
Use Docker Machine.

DISCUSSION
This technique will be useful if you need to run Docker containers on multiple exter-
nal hosts. You may want this for a number of reasons: to test networking between
Docker containers by provisioning a VM to run within your own physical host; to pro-
vision containers on a more powerful machine through a VPS provider; to risk trash-
ing a host with some kind of crazy experiment; to have the choice of running on
multiple cloud providers. Whatever the reason, Docker Machine is probably the
answer for you. It’s also the gateway to more sophisticated orchestration tools like
Docker Swarm.

WHAT DOCKER MACHINE IS

Docker Machine is mainly a convenience program. It wraps a lot of potentially tortu-
ous instructions around provisioning external hosts and turns them into a few easy-to-
use commands. If you’re familiar with Vagrant, it has a similar feel: provisioning and
managing other machine environments is made simpler with a consistent interface. If
you cast your mind back to our architecture overview in chapter 2, one way of viewing
it is to imagine that it’s facilitating the management of different Docker daemons
from one client (see figure 4.7).

Docker
client

MS AzureOpenStack

Rackspace

Virtualbox
VM

Google Compute
Engine

VMWare
VSphere

AWS Digital Ocean

Figure 4.7 Docker Machine
as a client of external hosts

85TECHNIQUE 29 Using Docker Machine to provision Docker hosts

The list of Docker host providers in figure 4.7 isn’t exhaustive, and it’s likely to grow.
At the time of writing, the following drivers are available, which allow you to provision
to the given host provider:

The options that must be specified to provision a machine will vary greatly depend-
ing on the functionality provided by the driver. At one end, provisioning an Oracle
VirtualBox VM on your machine has only 3 flags available to the create, compared
with OpenStack’s 17.

WHAT DOCKER MACHINE IS NOT

It’s worth clarifying that Docker Machine is not any kind of clustering solution for
Docker. Other tools, such as Docker Swarm, fulfill that function, and we’ll look at
them later.

INSTALLATION

Installation is a straightforward binary. Download links and installation instructions
for different architectures are available here: https://github.com/docker/machine/
releases.

MOVE THE BINARY? You may want to move the binary to a standard location,
like /usr/bin, and ensure it’s renamed or symlinked to docker-machine
before continuing, as the downloaded file may have a longer name suffixed
with the binary’s architecture.

USING DOCKER MACHINE

To demonstrate Docker Machine’s use, you can start by creating a VM with a Docker
daemon on it that you can work with.

VIRTUALBOX VM MANAGER ASSUMED You’ll need to have Oracle’s VirtualBox
installed for this to work. It is widely available in most package managers.

$ docker-machine create --driver virtualbox host1
INFO[0000] Creating CA: /home/imiell/.docker/machine/certs/ca.pem
INFO[0000] Creating client certificate: /home/imiell/.docker/machine/certs/

➥ cert.pem

■ Amazon Web Services ■ Microsoft Azure ■ Oracle VirtualBox

■ Digital Ocean ■ Microsoft Hyper-V ■ VMware Fusion

■ Google Compute Engine ■ Openstack ■ VMware vCloud Air

■ IBM Softlayer ■ Rackspace ■ VMware vSphere

Use docker-machine’s create
subcommand to create a new
host and specify its type with the
--driver flag. The host has been
named host1.

https://github.com/docker/machine/releases
https://github.com/docker/machine/releases

86 CHAPTER 4 Day-to-day Docker

INFO[0002] Downloading boot2docker.iso to /home/imiell/.docker/machine/cache/

➥ boot2docker.iso...
INFO[0011] Creating VirtualBox VM...
INFO[0023] Starting VirtualBox VM...
INFO[0025] Waiting for VM to start...
INFO[0043] "host1" has been created and is now the active machine.
INFO[0043] To point your Docker client at it, run this in your shell:

➥ $(docker-machine env host1)

Vagrant users will feel right at home here. By running this, you’ve created a machine
that you can now manage Docker on. If you follow the instructions given in the out-
put, you can SSH directly to the new VM:

$ eval $(docker-machine env host1)
$ env | grep DOCKER
DOCKER_HOST=tcp://192.168.99.101:2376
DOCKER_TLS_VERIFY=yes
DOCKER_CERT_PATH=/home/imiell/.docker/machine/machines/host1
DOCKER_MACHINE_NAME=host1
$ docker ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
$ docker-machine ssh host1

.
==

===
/""""""""""""""""___/ ===

~~~ {~~ ~~~~ ~~~ ~~~~ ~~ ~ / ===- ~~~
\______ o __/

\ \ __/
\____\______/

_ _ ____ _ _
| |__ ___ ___ | |_|___ \ __| | ___ ___| | _____ _ __
| '_ \ / _ \ / _ \| __| __) / _` |/ _ \ / __| |/ / _ \ '__| | | | | |
| |_) | (_) | (_) | |_ / __/ (_| | (_) | (__| < __/ |
|_.__/ \___/ \___/ \__|_____\__,_|\___/ \___|_|\_\___|_|
Boot2Docker version 1.5.0, build master : a66bce5 -

Tue Feb 10 23:31:27 UTC 2015
Docker version 1.5.0, build a8a31ef
docker@host1:~$

MANAGING HOSTS

Managing multiple Docker hosts from one client machine can make it difficult to
track what’s going on. Docker machine comes with various management commands
to make this simpler, as shown in table 4.2.

Your machine is now created.

Run this command to set the DOCKER_HOST 
environment variable, which sets the default 
host that Docker commands will be run on.

The $() takes the output of the docker-machine env
command and applies it to your environment. docker-
machine env outputs a set of commands that you can

use to set the default host for Docker commands.

The environment variable names 
are all prefixed with DOCKER_.

The DOCKER_HOST variable is 
the endpoint of the Docker 
daemon on the VM.

These variables handle the 
security side of connections 
to the new host.

The docker command
is now pointed at the

VM host you have
created, not at your
previously used host

machine. You have
created no containers

on the new VM, so
there is no output.

The ssh 
subcommand will 
take you directly to 
the new VM itself. 



87TECHNIQUE 29 Using Docker Machine to provision Docker hosts

The following example lists two machines. The active machine is listed with an asterisk,
and it has a state associated with it, analogous to the state of containers or processes:

$ docker-machine ls
NAME ACTIVE DRIVER STATE URL SWARM
host1 virtualbox Running tcp://192.168.99.102:2376
host2 * virtualbox Running tcp://192.168.99.103:2376

In fact, you can look at this as turning machines into processes much like Docker itself
can be seen as turning environments into processes.

SWITCHING BACK You may be wondering how to switch back to your original
host machine Docker instance. At the time of writing we haven’t found a sim-
ple way to do this. You can either docker-machine rm all the machines, or if
that’s not an option, you can manually unset the environment variables previ-
ously set with unset DOCKER_HOST DOCKER_TLS_VERIFY DOCKER_CERT_PATH. 

4.3 Building images
Although the simplicity of Dockerfiles makes them a powerful time-saving tool, there
are some subtleties that can cause confusion. We’ll take you over a few time-saving fea-
tures and their details, starting with the ADD instruction, and then covering the Docker
build cache, how it can let you down, and how you can manipulate it to your advantage.

 Remember to refer to the official Docker documentation for a complete reference
on Dockerfile instructions.
TECHNIQUE 29 Using Docker Machine to provision Docker hosts

Table 4.2 List of docker machine commands

Subcommand Action

create Creates a new machine

ls Lists the Docker host machines

stop Stops the machine

start Starts a machine 

restart Stops and starts a machine

rm Destroys a machine

kill Kills a machine off

inspect Returns a JSON representation of the machine’s metadata

config Returns the configuration required to connect to the machine

ip Returns the IP address of the machine

url Returns a URL for the Docker daemon on the machine

upgrade Upgrades to the latest Docker version on the host



88 CHAPTER 4 Day-to-day Docker

TECHNIQUE 30 Injecting files into your image using ADD

Although it’s possible to add files within a Dockerfile using the RUN command and
basic shell primitives, this can quickly become unmanageable. The ADD command was
added to the list of Dockerfile commands to address the need to put large numbers of
files into an image without fuss.

PROBLEM
You want to download and unpack a tarball into your image in a concise way.

SOLUTION
Tar and compress your files, and use the ADD directive in your Dockerfile.

DISCUSSION
Create a fresh environment for this Docker build with mkdir add_example && cd
add_example. Then retrieve a tarball and give it a name you can reference later:

$ curl \
https://www.flamingspork.com/projects/libeatmydata/libeatmydata-105.tar.gz > \
my.tar.gz

In this case we’ve used the example of a tar file from another technique, but it could
be any tarball you like:

FROM debian
RUN mkdir -p /opt/libeatmydata
ADD my.tar.gz /opt/libeatmydata/
RUN ls -lRt /opt/libeatmydata

Build this Dockerfile with docker build --no-cache . and the output should look like
this:

$ docker build --no-cache .
Sending build context to Docker daemon 422.9 kB
Sending build context to Docker daemon
Step 0 : FROM debian
---> c90d655b99b2

Step 1 : RUN mkdir -p /opt/libeatmydata
---> Running in fe04bac7df74
---> c0ab8c88bb46

Removing intermediate container fe04bac7df74
Step 2 : ADD my.tar.gz /opt/libeatmydata/
---> 06dcd7a88eb7

Removing intermediate container 3f093a1f9e33
Step 3 : RUN ls -lRt /opt/libeatmydata
---> Running in e3283848ad65

/opt/libeatmydata:
total 4
drwxr-xr-x 7 1000 1000 4096 Oct 29 23:02 libeatmydata-105

/opt/libeatmydata/libeatmydata-105:
total 880



89TECHNIQUE 30 Injecting files into your image using ADD

drwxr-xr-x 2 1000 1000 4096 Oct 29 23:02 config
drwxr-xr-x 3 1000 1000 4096 Oct 29 23:02 debian
drwxr-xr-x 2 1000 1000 4096 Oct 29 23:02 docs
drwxr-xr-x 3 1000 1000 4096 Oct 29 23:02 libeatmydata
drwxr-xr-x 2 1000 1000 4096 Oct 29 23:02 m4
-rw-r--r-- 1 1000 1000 9803 Oct 29 23:01 config.h.in
[...edited...]
-rw-r--r-- 1 1000 1000 1824 Jun 18 2012 pandora_have_better_malloc.m4
-rw-r--r-- 1 1000 1000 742 Jun 18 2012 pandora_header_assert.m4
-rw-r--r-- 1 1000 1000 431 Jun 18 2012 pandora_version.m4
---> 2ee9b4c8059f

Removing intermediate container e3283848ad65
Successfully built 2ee9b4c8059f

You can see from this output that the tarball has been unpacked into the target direc-
tory by the Docker daemon (the extended output of all the files has been edited).
Docker will unpack tarfiles of most of the standard types (.gz, .bz2, .xz, .tar).

 It’s worth observing that although you can download tarballs from URLs, they’ll
only be unpacked automatically if they’re stored in the local filesystem. This can lead
to confusion.

 If you repeat the preceding process with the following Dockerfile, you’ll notice
that the file is downloaded but not unpacked:

FROM debian
RUN mkdir -p /opt/libeatmydata
ADD \
https://www.flamingspork.com/projects/libeatmydata/libeatmydata-105.tar.gz \
/opt/libeatmydata/
RUN ls -lRt /opt/libeatmydata

Here is the resulting build output:

Sending build context to Docker daemon 422.9 kB
Sending build context to Docker daemon
Step 0 : FROM debian
---> c90d655b99b2

Step 1 : RUN mkdir -p /opt/libeatmydata
---> Running in 6ac454c52962
---> bdd948e413c1

Removing intermediate container 6ac454c52962
Step 2 : ADD \
https://www.flamingspork.com/projects/libeatmydata/libeatmydata-105.tar.gz \
/opt/libeatmydata/
Downloading [==================================================>] \
419.4 kB/419.4 kB
---> 9d8758e90b64

Removing intermediate container 02545663f13f
Step 3 : RUN ls -lRt /opt/libeatmydata
---> Running in a947eaa04b8e

/opt/libeatmydata:
total 412
-rw------- 1 root root 419427 Jan 1 1970 \

The file is retrieved from 
the internet using a URL.

The destination directory is indicated by the 
directory name and a trailing slash. Without 
the trailing slash, the argument is treated as 
a filename for the downloaded file.



90 CHAPTER 4 Day-to-day Docker

libeatmydata-105.tar.gz
---> f18886c2418a

Removing intermediate container a947eaa04b8e
Successfully built f18886c2418a

Note that without the trailing slash in the ADD line in the previous Dockerfile, the file
would be downloaded and saved with that filename. The trailing slash indicates that
the file should be downloaded and placed in the directory specified. 

 All new files and directories are owned by root (or whoever has group or user IDs
of zero within the container).

DON’T WANT TO UNPACK? If you want to add a compressed file from the local
filesystem without it being unpacked, use the COPY command, which looks
exactly like the ADD command but doesn’t unpack any files. 

TECHNIQUE 31 Rebuilding without the cache

Building with Dockerfiles takes advantage of a useful caching feature: steps that have
already been built are only rebuilt if the commands have changed. The next listing
shows the output of a rebuild of the to-do app from chapter 1.

$ docker build .
Sending build context to Docker daemon 2.56 kB
Sending build context to Docker daemon
Step 0 : FROM node
---> 91cbcf796c2c

Step 1 : MAINTAINER ian.miell@gmail.com
---> Using cache
---> 8f5a8a3d9240

Step 2 : RUN git clone -q https://github.com/docker-in-practice/todo.git
---> Using cache
---> 48db97331aa2

Step 3 : WORKDIR todo
---> Using cache
---> c5c85db751d6

Step 4 : RUN npm install > /dev/null
---> Using cache
---> be943c45c55b

Listing 4.7 Rebuilding with the cache

The libeatmydata-105.tar.gz file has 
been downloaded and placed in the    
/opt/libeatmydata directory without 
being unpacked.

Whitespace in filenames?
If your filenames have whitespace in them, you’ll need to use the quoted form of ADD
(or COPY):

ADD "space file.txt" "/tmp/space file.txt"

Indicates you’re 
using the cache Specifies the cached 

image/layer ID



91TECHNIQUE 31 Rebuilding without the cache

Step 5 : EXPOSE 8000
---> Using cache
---> 805b18d28a65

Step 6 : CMD npm start
---> Using cache
---> 19525d4ec794

Successfully built 19525d4ec794

As useful and time-saving as this is, it’s not always the behavior you want.
 Taking the preceding Dockerfile as an example, imagine you’d changed your

source code and pushed to the Git repository. The new code wouldn’t be checked out,
because the git clone command has not changed. As far as the Docker build is con-
cerned, it’s the same, so the cached image can be reused. 

 In these cases, you’ll want to rebuild your image without using the cache.

PROBLEM
You want to rebuild your Dockerfile without using the cache.

SOLUTION
Build your image with the --no-cache flag.

DISCUSSION
To force a rebuild without using the image cache, run your docker build with the
--no-cache flag. The following listing runs the previous build with --no-cache.

$ docker build --no-cache .
Sending build context to Docker daemon 2.56 kB
Sending build context to Docker daemon
Step 0 : FROM node
---> 91cbcf796c2c

Step 1 : MAINTAINER ian.miell@gmail.com
---> Running in ca243b77f6a1
---> 602f1294d7f1

Removing intermediate container ca243b77f6a1
Step 2 : RUN git clone -q https://github.com/docker-in-practice/todo.git
---> Running in f2c0ac021247
---> 04ee24faaf18

Removing intermediate container f2c0ac021247
Step 3 : WORKDIR todo
---> Running in c2d9cd32c182
---> 4e0029de9074

Removing intermediate container c2d9cd32c182
Step 4 : RUN npm install > /dev/null
---> Running in 79122dbf9e52

npm WARN package.json todomvc-swarm@0.0.1 No repository field.
---> 9b6531f2036a

Removing intermediate container 79122dbf9e52
Step 5 : EXPOSE 8000
---> Running in d1d58e1c4b15
---> f7c1b9151108

Removing intermediate container d1d58e1c4b15

Listing 4.8 Forcing a rebuild without using the cache

The final image is “rebuilt,” 
but in reality nothing has 
changed.

Rebuilds the Docker image 
ignoring cached layers with 
the --no-cache flag

No mention of 
caching this time

Intervening images have a
different ID than in the

previous listing.



92 CHAPTER 4 Day-to-day Docker

Step 6 : CMD npm start
---> Running in 697713ebb185
---> 74f9ad384859

Removing intermediate container 697713ebb185
Successfully built 74f9ad384859

The output shows no mention of caching, and each intervening layer ID is different
from the output in listing 4.7.

 Similar problems can occur in other situations. We were flummoxed early on using
Dockerfiles when a network blip meant that a command didn’t retrieve something
properly from the network, but the command didn’t error. We kept calling docker
build, but the resulting bug wouldn’t go away! This was because a “bad” image had
found its way into the cache and we didn’t understand the way Docker caching
worked. Eventually we figured it out. 

TECHNIQUE 32 Busting the cache

Using the --no-cache flag is often enough to get around any problems with the
cache. But sometimes you’ll want a more fine-grained solution. If you have a build
that takes a long time, for example, you may want to use the cache up to a certain
point, then invalidate it to rerun a command and create a new image.

PROBLEM
You want to invalidate the Docker build cache from a specific point in the Dockerfile
build.

SOLUTION
Add a benign comment after the command to invalidate the cache.

DISCUSSION
Starting with the Dockerfile in https://github.com/docker-in-practice/todo, we’ve
done a build and then added a comment in the Dockerfile on the line with CMD. You
can see the output of doing docker build again here: 

$ docker build .
Sending build context to Docker daemon 2.56 kB
Sending build context to Docker daemon
Step 0 : FROM node
---> 91cbcf796c2c

Step 1 : MAINTAINER ian.miell@gmail.com
---> Using cache
---> 8f5a8a3d9240

Step 2 : RUN git clone -q https://github.com/docker-in-practice/todo.git
---> Using cache
---> 48db97331aa2

Step 3 : WORKDIR todo
---> Using cache
---> c5c85db751d6

Step 4 : RUN npm install
---> Using cache
---> be943c45c55b

Step 5 : EXPOSE 8000

A new image 
is built.

A “normal” 
docker build

https://github.com/docker-in-practice/todo


93TECHNIQUE 33 Running Docker without sudo

---> Using cache
---> 805b18d28a65

Step 6 : CMD ["npm","start"] #bust the cache
---> Running in fc6c4cd487ce
---> d66d9572115e

Removing intermediate container fc6c4cd487ce
Successfully built d66d9572115e

The reason this trick works is because Docker treats the non-whitespace change to the
line as though it were a new command, so the cached layer is not reused.

 You may be wondering (as we did when we first looked at Docker) whether you can
move Docker layers from image to image, merging them at will as though they were
change sets in Git. This isn’t possible at present within Docker. A layer is defined as a
change set from a given image only. Because of this, once the cache has been broken,
it can’t be reapplied for commands re-used later in the build.

 For this reason, you’re advised to put commands that are less likely to change
nearer the top of the Dockerfile if possible. 

4.4 Staying ship-shape
If you’re anything like us (and if you’re following this book studiously), your growing
Docker addiction will mean that you start up numerous containers on, and download
a variety of images to, your chosen host.

 As time goes on, this Docker will take up more and more resources, and some
housekeeping of containers and volumes will be required—we’ll show you the how
and why of this. We’ll also introduce some visual tools for keeping your Docker envi-
ronment clean and tidy, in case you want an escape from the command line.

TECHNIQUE 33 Running Docker without sudo

The Docker daemon runs in the background of your machine as the root user, giving
it a significant amount of power, which it exposes to you, the user. Needing to use
sudo is a result of this, but it can be inconvenient and make some third-party Docker
tools impossible to use. 

PROBLEM
You want to be able to run the docker command without having to use sudo.

SOLUTION
Add yourself to the docker group.

DISCUSSION
Docker manages permissions around the Docker Unix domain socket through a user
group. For security reasons, distributions don’t make you part of that group by
default.

 By adding yourself to this group, you’ll enable the use of the docker command as
yourself:

$ sudo addgroup -a username docker

Cache is
used up
to here.

Cache has been invalidated 
but the command is 
effectively unchanged.

A new image has 
been created.



94 CHAPTER 4 Day-to-day Docker

Restart Docker and fully log out and in again, or reboot your machine if that’s easier.
Now you don’t need to remember to type sudo or set up an alias to run Docker as
yourself. 

TECHNIQUE 34 Housekeeping containers

A frequent gripe of new Docker users is that in a short space of time you can end up
with many containers on your system in various states, and there are no standard tools
for managing this on the command line.

PROBLEM
You want to prune the containers on your system.

SOLUTION
Set up aliases to run the commands that tidy up old containers.

DISCUSSION
The simplest approach here is to delete all containers. Obviously, this is something of
a nuclear option that should only be used if you’re certain it’s what you want.

 The following command will remove all containers on your host machine:

$ docker ps -a -q | \
xargs --no-run-if-empty docker rm -f

To briefly explain xargs, it takes each line of the input and passes them all as argu-
ments to the subsequent command. We’ve passed an additional argument, --no-run-
if-empty, which avoids running the command at all if there’s no output from the pre-
vious command, in order to avoid an error. 

 If you have containers running that you may want to keep, but you want to remove
all those that have exited, you can filter the items returned by the docker ps
command: 

docker ps -a -q --filter status=exited | \
xargs --no-run-if-empty docker rm

As an example of a more advanced use case, the following command will list all con-
tainers with a non-zero error code. You may need this if you have many containers on
your system and want to automate the examination and removal of any containers
that exited unexpectedly:

Get a list of all container IDs, 
both running and stopped, 
and pass them to…

…the docker rm -f command, which 
will remove any containers passed, 
even if they’re running.

The --filter flag tells the docker ps 
command which containers you 
want returned. In this case you’re 
restricting it to containers that 
have exited. Other options are 
running and restarting.

This time you don’t force the removal of 
containers because they shouldn’t be 
running, based on the filter you’ve given.



95TECHNIQUE 35 Housekeeping volumes

comm -3 \
<(docker ps -a -q --filter=status=exited | sort) \
<(docker ps -a -q --filter=exited=0 | sort) | \
xargs --no-run-if-empty docker inspect > error_containers

PROCESS SUBSTITUTION IN BASH If you’ve not seen it before, the <(command)
syntax is called process substitution. It allows you to treat the output of a com-
mand as a file and pass it to another command, which can be useful where
piping output isn’t possible.

The preceding example is rather complicated, but it shows the power you can get
from combining different utilities together. It outputs all stopped container IDs, and
then picks just those that have a non-zero exit code (those that exited in an unex-
pected way). If you’re struggling to follow this, running each command separately and
understanding them that way first can be helpful in learning the building blocks.

 Such a command could be useful for gathering container information on produc-
tion. You may want to adapt it to run a cron to clear out containers that exited in
expected ways.

TECHNIQUE 35 Housekeeping volumes

Although volumes are a powerful feature of Docker, they come with a significant oper-
ational downside.

Runs the comm command to
compare the contents of two files.
The -3 argument suppresses lines

that appear in both files (those
with a zero exit code) and

outputs any others.

Finds exited container IDs,
sorts them, and passes
them as a file to comm

Finds containers
with an exit code

of zero, sorts
them, and passes
them as a file to

comm

Runs docker inspect against containers with a
non-zero exit code (as piped in by comm), and

saves the output to the error_containers file

Make these one-liners available as commands
You can add commands as aliases so that they’re more easily run whenever you log
in to your host. To do this, add lines like the following to the end of your ~/.bashrc file:

alias dockernuke='docker ps -a -q | \
xargs --no-run-if-empty docker rm -f'

Then, when you next log in, running dockernuke from the command line will delete
any Docker containers found on your system. 

We’ve found that this saves a surprising amount of time. But be careful! It’s all too
easy to remove production containers this way, as we can attest. And even if you are
careful enough not to remove running containers, you still might remove non-running
but still useful data-only containers. 



96 CHAPTER 4 Day-to-day Docker

Because volumes can be shared between different containers, they can’t be deleted
when a container that mounted them is deleted. Imagine the scenario outlined in fig-
ure 4.8.

 “Easy!” you might think, “Delete the volume when the last-referencing container is
removed!” Indeed, Docker could have taken that option, and this approach is the one
that garbage-collected programming languages take when they remove objects from
memory: when no other object references it, it can be deleted.

 But Docker judged that this could leave people open to losing valuable data acci-
dentally, and preferred to make it a user decision as to whether a volume should be
deleted on removal of the container. An unfortunate side effect of this is that, by default,
volumes remain on your Docker daemon’s host disk until they’re removed manually.

 If these volumes are full of data, your disk can fill up, so it’s useful to be aware of
ways to manage these orphaned volumes.

PROBLEM
You are using too much disk space because orphaned Docker mounts exist in your
host.

SOLUTION
Use the -v flag when calling docker rm, or use a script to destroy them if you forget.

DISCUSSION
In the scenario in figure 4.8, you can ensure that /var/db is deleted if you always call
docker rm with the -v flag. The -v flag removes any associated volumes if no other
container still has it mounted. Fortunately Docker is smart enough to know whether
any other container has the volume mounted, so there are no nasty surprises.

 The simplest approach is to get into the habit of typing -v whenever you remove a
container. That way you retain control of whether containers are removed.

 The problem with this approach is that you might not want to always delete volumes.
If you’re writing a lot of data to these volumes, it’s quite likely that you won’t want to lose

Container 1 mounts
/var/db

Container 1 mounts
/var/db

Container 1 mounts
/var/db

Container 2 mounts
volumes from /var/db

Container 2 mounts
volumes from /var/db

Container 2 mounts
volumes from /var/db

A normal setup where container 1 has
been started with a -v /var/db argument,
and container 2 has mounted the volumes
from container 1. Container 2 can access
container 1’s /var/db/ volume.

Container 1 is removed. /var/db in
container 2 persists, managed by
the Docker daemon.

Container 2 is removed. /var/db
remains on the filesystem.

Figure 4.8 What happens to /var/db when containers are removed?



97TECHNIQUE 36 Detaching containers without stopping them

the data. Additionally, if you get into such a habit, it’s likely to become automatic, and
you’ll only realize you’ve deleted something important when it’s too late.

 In these scenarios you’ll need to use a script, which is—naturally— Dockerized for
your convenience. Note that you’ll need root permissions to run this:

$ docker run \
-v /var/run/docker.sock:/var/run/docker.sock \
-v /var/lib/docker:/var/lib/docker \
--privileged dockerinpractice/docker-cleanup-volumes

The preceding command will remove any volumes no longer accessed by any existing
containers. The output will look like this:

$ docker run -v /var/run/docker.sock:/var/run/docker.sock \
-v /var/lib/docker:/var/lib/docker --privileged 951acdb777bf

Delete unused volume directories from /var/lib/docker/volumes
Deleting 659cfdc5d394ec7ad5942862ba5feb1d24c9f67ca314462207835ef5bf657131
In use 6ae01c5524267c8f01f1d1e83933b494fdb5c709d9468122b470bfcdd5a5b03d
Deleting 73260d192a0a4d0ebc3606d9daf7137ab220e41cbbfe919ef1dded01a2f37b29

Delete unused volume directories from /var/lib/docker/vfs/dir
Deleting 659cfdc5d394ec7ad5942862ba5feb1d24c9f67ca314462207835ef5bf657131
In use 6ae01c5524267c8f01f1d1e83933b494fdb5c709d9468122b470bfcdd5a5b03d
Deleting 73260d192a0a4d0ebc3606d9daf7137ab220e41cbbfe919ef1dded01a2f37b29

If you’re nervous about running this command and potentially deleting things you
don’t want to delete, you can call it with --dry-run at the end to prevent it from delet-
ing anything.

RECOVERING DATA If you want to recover data from an undeleted volume
that’s no longer referenced by any containers, you’ll need to take a look
inside the folders in /var/lib/docker/volumes as the root user. 

TECHNIQUE 36 Detaching containers without stopping them

When working with Docker, you’ll often find yourself in a position where you have an
interactive shell, but exiting from the shell would terminate the container, as it’s the
container’s principal process. Fortunately there’s a way to detach from a container
(and, if you want, you can use docker attach to connect to the container again).

PROBLEM
You want to detach from a container interaction without stopping it.

Mount the Docker server socket
so you can call Docker from

within the container.
Mount the Docker 
directories so you 
can delete the 
orphaned volumes.

Escalate privileges so 
that you can delete the 
orphaned volumes.



98 CHAPTER 4 Day-to-day Docker

SOLUTION
Press Ctrl-P and then Ctrl-Q to detach.

DISCUSSION
Docker has helpfully implemented a key sequence that’s unlikely to be needed by any
other application and is also unlikely to be pressed by accident.

 Let’s say you started up a container with docker run -t -i -p 9005:80 ubuntu
/bin/bash and then apt-get installed an nginx webserver. You want to test that it’s
accessible from your host with a quick curl command to localhost:9005.

 Press Ctrl-P and then Ctrl-Q. Note that it’s not all three keys pressed at once!

CONTAINERS RUNNING WITH --RM If you’re running with --rm, you’ll need to
hit Ctrl-C to get your terminal back once the key sequence has been pressed.
The container will still be running. 

TECHNIQUE 37 Using DockerUI to manage your Docker daemon

When demonstrating Docker, it can be difficult to demonstrate how containers and
images differ—lines on a terminal aren’t visual. In addition, the Docker command-
line tools can be unfriendly if you want to kill and remove specific containers out of
many. This problem has been solved with the creation of a point-and-click tool for
managing the images and containers on your host.

PROBLEM
You want to manage containers and images on your host without using the CLI.

SOLUTION
Use DockerUI.

DISCUSSION
DockerUI is a tool created by one of the core committers to Docker—you can read
about it and find the source at https://github.com/crosbymichael/dockerui, but
because there are no prerequisites you can jump straight to running it:

$ docker run -d -p 9000:9000 --privileged \
-v /var/run/docker.sock:/var/run/docker.sock dockerui/dockerui

This will start the dockerui container in the background. If you now visit http://local-
host:9000, you’ll see the dashboard giving you at-a-glance information for Docker on
your computer.

 Container management functionality is probably one of the most useful pieces of
functionality here—go to the Containers page and you’ll see your running containers
listed (including the dockerui container), with an option to display all containers.
From here you can perform bulk operations on containers (such as killing them) or
click on a container name to dive into more detail about the container and perform
individual operations relevant to that container. For example, you’ll be shown the
option to remove a running container.

https://github.com/crosbymichael/dockerui


99TECHNIQUE 38 Generate a dependency graph of your Docker images

 The Images page looks fairly similar to the Containers page and also allows you to
select multiple images and perform bulk operations on them. Clicking on the image
ID offers some interesting options, such as creating a container from the image and
tagging the image.

 Remember that DockerUI may lag behind official Docker functionality—if you
want to use the latest and greatest functionality, you may be forced to resort to the
command line. 

TECHNIQUE 38 Generate a dependency graph of your Docker images

The file-layering system in Docker is an immensely powerful idea that can save space
and make building software much quicker. But once you start using a lot of images, it
can be difficult to understand how your images are related. The docker images -a
command will return a list of all the layers on your system, but this isn’t a user-friendly
way to comprehend these relationships—it’s much easier to visualize the relationships
between your images by creating a tree of them as an image using Graphviz.

 This is also a demonstration of Docker’s power to make complicated tasks simpler.
Installing all the components to produce the image on a host machine would previ-
ously have involved a long series of error-prone steps, but with Docker it can be turned
into a single portable command that’s far less likely to fail.

PROBLEM
You want to visualize a tree of the images stored on your host.

SOLUTION
Use an image that we’ve created with this functionality as a one-liner to output a PNG
or get a web view.

DISCUSSION
Generating the graph involves using an image we’ve provided containing scripts that
use Graphviz to generate the PNG image file. All you need to do in your run command
is mount the Docker server socket and you’re good to go, as the next listing shows.

$ docker run --rm \
-v /var/run/docker.sock:/var/run/docker.sock \
dockerinpractice/docker-image-graph > docker_images.png

Figure 4.9 shows a PNG of an image tree from one of our machines.
 You can see from this figure that the node and golang:1.3 images share a common

root, and that the golang:runtime only shares the global root with the golang:1.3
image. Similarly, the mesosphere image is built from the same root as the ubuntu-
upstart image.

Listing 4.9 Generating an image of your layer tree

Remove the container when
the image is produced.

Mount the Docker server’s
Unix domain socket so you

can access the Docker
server from within the

container. If you’ve changed
the default for the Docker

daemon, this will not work.

Specify an image and
produce a PNG as an

artifact.



100 CHAPTER 4 Day-to-day Docker

Figure 4.9 An image tree



101TECHNIQUE 39 Direct action—execute commands on your container

You may be wondering what the global root node on the tree is. This is the scratch
image, which is exactly 0 bytes in size. 

TECHNIQUE 39 Direct action—execute commands on your container

In the early days of Docker, many users added SSH servers to their images so that they
could access them with a shell from outside. This was frowned upon by Docker, as it
treated the container as a VM (and we know that containers are not VMs) and added a
process overhead to a system that shouldn’t need it. Many objected that once started,
there was no easy way to get into a container. As a result, Docker introduced the exec
command, which was a much neater solution to the problem of affecting and inspect-
ing the internals of containers once started. It’s this command that we’ll discuss here.

PROBLEM
You want to perform commands on a running container.

SOLUTION
Use the docker exec command.

DISCUSSION
In the next listing we’re going to start a container in the background (with -d) and
tell it to sleep forever (do nothing). We’ll name this command ‘sleeper’.

docker run -d --name sleeper debian sleep infinity

Now that you’ve started a container, you can perform various actions on it using
Docker’s exec command. The command can be viewed as having three basic modes,
listed in table 4.3.

First we’ll cover the basic mode. The following listing runs an echo command inside
our ‘sleeper’ container.

$ docker exec sleeper echo "hello host from container"
hello host from container

Listing 4.10 Run a container to run docker exec commands on

Table 4.3 Docker exec modes

Mode Description

Basic Runs the command in the container synchronously on the command line

Daemon Runs the command in the background on the container

Interactive Runs the command and allows the user to interact with it

Listing 4.11 Run an echo command from the container



102 CHAPTER 4 Day-to-day Docker

Note that the structure of this command is very similar to the docker run command,
but instead of the ID of an image, we give the ID of a running container. The echo
command refers to the echo binary within the container, not outside.

 The daemon mode runs the command in the background; you won’t see the output
in your terminal. This might be useful for regular housekeeping tasks, where you want
to fire the command and forget, such as cleaning up log files as in the following listing.

$ docker exec -d sleeper \
find / -ctime 7 -name '*log' -exec rm {} \;
$

Finally, we have the interactive mode. This allows you to run whatever commands you
like from within the container. To enable this, you’ll usually want to specify the shell to
run interactively, which in the following code is bash:

$ docker exec -i -t sleeper /bin/bash
root@d46dc042480f:/#

The -i and -t arguments do the same thing you’re familiar with from docker run—
they make the command interactive and set up a TTY device so shells will function cor-
rectly. After running this, you’ll have a prompt running inside the container. 

4.5 Summary
In this chapter we’ve truly gone from theory to practice. You’ve seen the beginnings of
the possibilities that Docker brings to your daily workflow. By now you’ll have an
understanding not only of Docker’s architecture, but also of the areas where issues
arise from daily use, and how to address them. It’s a short step from here to the more
powerful use of Docker to create artifacts that others can consume.

 You learned several things in this chapter:

■ You should reach for volumes if you need to get at external data from inside a
container.

■ SSHFS is a simple way to access data on other machines with no extra setup.
■ Running GUI applications in Docker requires only a small amount of prepara-

tion of your image.
■ Caching in the build process is a double-edged sword.
■ You can use data containers to abstract away the location of your data.
■ The docker exec command is the correct way to get inside a running con-

tainer—resist installing SSH.

Now we’ll move on from the haphazard and experimental work you might do every
day to the serious business of Docker configuration management.

Listing 4.12 Delete log files older than a week on a container

The -d flag runs the command as
a daemon in the background.

Removes all files that 
are unchanged in the 
last seven days and 
that end with “log”

Returns
immediately,
regardless of

how long it will
take to complete



103

Configuration management—
getting your house in order

Configuration management is the art of managing your environments so that
they’re stable and predictable. Tools such as Chef and Puppet have attempted to
alleviate the sysadmin burden of managing multiple machines. To an extent,
Docker also reduces this burden by making the software environment isolated and
portable. Even so, configuration management techniques are required to produce
Docker images, and it’s an important area to be aware of.

 As you get more experience with Docker, these techniques will give you more
tools for building images for whatever configuration needs you’re trying to satisfy.

This chapter covers
■ Managing the building of images using Dockerfiles
■ Building images using traditional configuration 

management tools
■ Managing the secret information required to build 

images
■ Reducing the size of your images for faster, lighter, 

and safer delivery



104 CHAPTER 5 Configuration management—getting your house in order

5.1 Configuration management and Dockerfiles
Dockerfiles are considered to be the standard way of building Docker images. Docker-
files are often confusing in terms of what they mean for configuration management.
You may have many questions (particularly if you have experience in other configura-
tion management tools), such as

■ What happens if the base image changes?
■ What happens if the packages I’m installing change and I rebuild?
■ Does this replace Chef/Puppet/Ansible?

In fact, Dockerfiles are quite simple: starting from a given image, a Dockerfile speci-
fies a series of shell commands and meta-instructions to Docker, which will produce
the desired final image.

 Dockerfiles provide a common, simple, and universal language for provisioning
Docker images. Within them, you can use anything you like to reach the desired end
state. You could call out to Puppet, copy in another script, or copy in an entire filesystem!

 First we’ll consider how to deal with some minor challenges that Dockerfiles bring
with them before moving on to the meatier issues we just outlined.

TECHNIQUE 40 Create reliable bespoke tools with ENTRYPOINT

Docker’s potential for allowing you to run commands anywhere means that complex
bespoke instructions or scripts run on the command line can be preconfigured and
wrapped up into a packaged tool.

 The easily misunderstood ENTRYPOINT instruction is a vital part of this. You’re going
to see how it enables you to create Docker images as tools that are well-encapsulated,
clearly defined, and flexible enough to be useful.

PROBLEM
You want to define the command the container will run, but leave the command’s
arguments up to the user.

SOLUTION
Use the Dockerfile ENTRYPOINT instruction.

DISCUSSION
As a demonstration, we’ll imagine a simple scenario in a corporation where a regular
admin task is to clean up old log files. Often this is prone to error, and people acciden-
tally delete the wrong things, so we’re going to use a Docker image to reduce the risk
of problems arising.

 The following script (which you should name clean_log when you save it) deletes
logs over a certain number of days old, where the number is passed in as a command-
line option:

#!/bin/bash
echo "Cleaning logs over $1 days old"
find /log_dir -ctime "$1" -name '*log' -exec rm {} \;



105TECHNIQUE 40 Create reliable bespoke tools with ENTRYPOINT

Note that the log cleaning takes place on the /log_dir folder. This folder will only
exist when you mount it at runtime. You may have also noticed that there’s no check
for whether an argument has been passed in to the script. The reason for this will be
revealed as we go through the technique.

 Now let’s create a Dockerfile in the same directory to create an image, with the
script running as the defined command, or entrypoint:

FROM ubuntu:14.04
ADD clean_log /usr/bin/clean_log
RUN chmod +x /usr/bin/clean_log
ENTRYPOINT ["/usr/bin/clean_log"]
CMD ["7"]

BEST PRACTICE—ALWAYS USE ARRAY MODE You’ll observe that we generally
prefer the array form for CMD and ENTRYPOINT (for example, CMD ["/usr/bin/
command"]) over the shell form (CMD /usr/bin/command). This is because the
shell form automatically prepends a /bin/bash -c command to the command
you supply, which can result in unexpected behaviour. Sometimes, however,
the shell form is more useful (see technique 47).

The difference between ENTRYPOINT and CMD often confuses people. The key point to
understand is that an entrypoint will always be run when the image is started, even if a
command is supplied to the docker run invocation. If you try to supply a command, it
will add that as an argument to the entrypoint, replacing the default defined in the
CMD instruction. You can only override the entrypoint if you explicitly pass in an
--entrypoint flag to the docker run command. 

 This means that running the image with a /bin/bash command will not give you a
shell; rather it will supply /bin/bash as an argument to the clean_log script. 

 The fact that a default argument is defined by the CMD instruction means that the
argument supplied need not be checked. 

 Here’s how you might build and invoke this tool:

docker build -t log-cleaner .
docker run -v /var/log/myapplogs:/log_dir log-cleaner 365

After building the image, the image is invoked by mounting /var/log/myapplogs into
the directory the script will use and passing 365 to remove log files over a year old,
rather than a week.

 If someone tries to use the image incorrectly by not specifying a day, they’ll be
given an error message:

Add the previous corporate
clean_log script to the image.

Define the 
entrypoint for this 
image as being the 
clean_log script. 

Define the default argument 
for the entrypoint command 
(7 days).



106 CHAPTER 5 Configuration management—getting your house in order

$ docker run -ti log-cleaner /bin/bash
Cleaning logs over /bin/bash days old
find: invalid argument `-name' to `-ctime'

This example is quite trivial, but you can imagine that a corporation could apply it to
centrally manage scripts used across its estate such that they could be maintained and
distributed safely with a private registry.

IMAGE AVAILABLE This image is available to view and use as dockerinpractice/
log-cleaner on the Docker Hub. 

TECHNIQUE 41 Avoid package drift by specifying versions in your build

Dockerfiles have simple syntax and limited functionality, they can help greatly to clar-
ify your build’s requirements, and they can aid the stability of image production, but
they can’t guarantee repeatable builds. We’re going to explore one of the numerous
approaches to solving this problem and reducing the risk of nasty surprises when the
underlying package management dependencies change.

 This technique is helpful for avoiding those “it worked yesterday” moments, and it
may be familiar if you’ve used classic configuration management tools. Building
Docker images is fundamentally quite different from maintaining a server, but some
hard-learned lessons are still applicable.

DEBIAN-BASED IMAGES ONLY This technique will only work for Debian-based
images, such as Ubuntu.

PROBLEM
You want to ensure that your deb packages are the versions you expect.

SOLUTION
Run a script to capture the versions of all dependent packages on a verified installed
system and capture the dependent versions. Install the specific versions in your
Dockerfile.

DISCUSSION
A basic check for versions can be performed with an apt-cache call on a system you’ve
verified as OK:

$ apt-cache show nginx | grep ^Version:
Version: 1.4.6-1ubuntu3

You can then specify the version in your Dockerfile like this:

RUN apt-get -y install nginx=1.4.6-1ubuntu3

This may be enough for your needs. What this doesn’t do is guarantee that all depen-
dencies from this version of nginx have the same versions that you originally verified.
You can get information about all of those dependencies by adding a --recurse flag
to the argument:

apt-cache --recurse depends nginx



107TECHNIQUE 42 Replacing text with perl -p -i -e

The output of this command is intimidatingly large, so getting a list of version require-
ments is tricky. Fortunately, we maintain a Docker image (what else?) to make this eas-
ier for you. It outputs the RUN line you need to put into your Dockerfile to ensure that
the versions of all the dependencies are correct:

$ docker run -ti dockerinpractice/get-versions vim
RUN apt-get install -y \
vim=2:7.4.052-1ubuntu3 vim-common=2:7.4.052-1ubuntu3 \
vim-runtime=2:7.4.052-1ubuntu3 libacl1:amd64=2.2.52-1 \
libc6:amd64=2.19-0ubuntu6.5 libc6:amd64=2.19-0ubuntu6.5 \
libgpm2:amd64=1.20.4-6.1 libpython2.7:amd64=2.7.6-8 \
libselinux1:amd64=2.2.2-1ubuntu0.1 libselinux1:amd64=2.2.2-1ubuntu0.1 \
libtinfo5:amd64=5.9+20140118-1ubuntu1 libattr1:amd64=1:2.4.47-1ubuntu1 \
libgcc1:amd64=1:4.9.1-0ubuntu1 libgcc1:amd64=1:4.9.1-0ubuntu1 \
libpython2.7-stdlib:amd64=2.7.6-8 zlib1g:amd64=1:1.2.8.dfsg-1ubuntu1 \
libpcre3:amd64=1:8.31-2ubuntu2 gcc-4.9-base:amd64=4.9.1-0ubuntu1 \
gcc-4.9-base:amd64=4.9.1-0ubuntu1 libpython2.7-minimal:amd64=2.7.6-8 \
mime-support=3.54ubuntu1.1 mime-support=3.54ubuntu1.1 \
libbz2-1.0:amd64=1.0.6-5 libdb5.3:amd64=5.3.28-3ubuntu3 \
libexpat1:amd64=2.1.0-4ubuntu1 libffi6:amd64=3.1~rc1+r3.0.13-12 \
libncursesw5:amd64=5.9+20140118-1ubuntu1 libreadline6:amd64=6.3-4ubuntu2 \
libsqlite3-0:amd64=3.8.2-1ubuntu2 libssl1.0.0:amd64=1.0.1f-1ubuntu2.8 \
libssl1.0.0:amd64=1.0.1f-1ubuntu2.8 readline-common=6.3-4ubuntu2 \
debconf=1.5.51ubuntu2 dpkg=1.17.5ubuntu5.3 dpkg=1.17.5ubuntu5.3 \
libnewt0.52:amd64=0.52.15-2ubuntu5 libslang2:amd64=2.2.4-15ubuntu1 \
vim=2:7.4.052-1ubuntu3

At some point your build will fail because the version is no longer available. When this
happens, you’ll be able to see which package has changed and review the change to
determine whether it’s OK for your particular image’s needs.

 This example assumes that you’re using ubuntu:14.04. If you’re using a different
flavour of Debian, then fork the repo and change the Dockerfile’s FROM instruction
and build it. The repo is available here: https://github.com/docker-in-practice/
get-versions.git.

 Although this technique can help you with the stability of your build, it does noth-
ing in terms of security, as you’re still downloading packages from a repository you
have no direct control over. 

TECHNIQUE 42 Replacing text with perl -p -i -e

It’s not uncommon when building images with Dockerfiles to need to replace specific
items of text across multiple files. Numerous solutions for this exist, but we’ll intro-
duce a somewhat unusual favorite that’s particularly handy in Dockerfiles.

PROBLEM
You want to alter specific lines in files during a build.

SOLUTION
Use perl -p -i -e.

https://github.com/docker-in-practice/get-versions.git
https://github.com/docker-in-practice/get-versions.git


108 CHAPTER 5 Configuration management—getting your house in order

DISCUSSION
We like this command for a few reasons:

■ Unlike sed -i (a command with a similar syntax and effect), this works on mul-
tiple files out of the box, even if it encounters a problem with one of the files.
This means you can run it across a directory with a '*' glob without fear that it
will suddenly break when a directory is added in a later revision of the package.

■ As with sed, you can replace the forward slashes in the search and replace com-
mands with other characters.

■ It’s easy to remember (we refer to it as the “perl pie” command).

KNOWLEDGE OF REGULAR EXPRESSIONS ASSUMED This technique assumes an
understanding of regular expressions. If you’re not familiar with regular
expressions, there are plenty of websites available to help you.

Here’s a typical example of this command’s use:

perl -p -i -e 's/127\.0\.0\.1/0.0.0.0/g' *

In this command, the -p flag asks perl to assume a loop while it processes all the lines
seen. The -i flag asks perl to update the matched lines in place, and the -e flag asks perl
to treat the supplied string as a perl program. The s is an instruction to perl to search
and replace strings as they’re matched in the input. Here 127.0.0.1 is replaced
with 0.0.0.0. The g modifier ensures that all matches are updated, not just the first on
any given line. Finally, the asterisk (*) applies the update to all files in this directory. 

 The preceding command performs a fairly common action for Docker containers.
It replaces the standard localhost IP address (127.0.0.1) with one that indicates “any”
IPv4 address (0.0.0.0) when used as an address to listen on. Many applications
restrict access to the localhost IP by only listening on that address, and frequently
you’ll want to change this in their config files to the “any” address because you’ll be
accessing the application from your host, which appears to the container to be an
external machine.

APPLICATION IN CONTAINER NOT ACCESSIBLE? If an application within a Docker
container appears not to be accessible to you from the host machine despite
the port being open, it can be worth trying to update the addresses to listen
on to 0.0.0.0 in the application config file and restarting. It may be that the
application is rejecting you because you’re not coming from its localhost.
Using --net=host (covered later in technique 97) when running your image
can help confirm this hypothesis. 

Another nice feature of perl -p -i -e (and sed) is that you can use other characters
to replace the forward slashes if escaping the slashes gets awkward. Here’s a real-world
example from one of the authors’ scripts that adds some directives to the default
Apache site file:



109TECHNIQUE 43 Flattening images

 This awkward command,

perl -p -i -e 's/\/usr\/share\/www/\/var\/www\/html/g' /etc/apache2/*

becomes this:

perl -p -i -e 's@/usr/share/www@/var/www/html/@g' /etc/apache2/*

In the rare cases that you want to match or replace both the / and @ characters, you
can try other characters such as | or #. 

TECHNIQUE 43 Flattening images

A consequence of the design of Dockerfiles and their production of Docker images is
that the final image contains the data state at each step in the Dockerfile. In the
course of building your images, secrets may need to be copied in to ensure the build
can work. These secrets may be SSH keys, certificates, or password files. Deleting these
secrets before committing your image doesn’t provide you with any real protection, as
they’ll be present in higher layers of the final image, and a malicious user could easily
extract them from the image.

 One way of handling this problem is to flatten the resulting image.

PROBLEM
You want to remove secret information from the layer history of your image.

SOLUTION
Create a container with the image, export it and import it, and then tag it with the
original image ID.

DISCUSSION
To demonstrate a scenario where this could be useful, let’s create a simple Dockerfile
in a new directory that contains a Big Secret. Run mkdir secrets && cd secrets and
then create a Dockerfile in that folder with the following contents:

FROM debian
RUN echo "My Big Secret" >> /tmp/secret_key
RUN cat /tmp/secret_key
RUN rm /tmp/secret_key

Now run docker build -t mysecret . to build and tag that Dockerfile.
 Once it’s built, you can examine the layers of the resulting Docker image with the

docker history command: 

$ docker history mysecret
IMAGE CREATED CREATED BY

➥ SIZE
55f3c131a35d 25 seconds ago /bin/sh -c rm /tmp/secret_key

Place a file with 
some secret 
information within 
your build.

Do something with the secret file. This Dockerfile 
only cats the file, but yours might SSH to another 
server or encrypt that secret within the image.

Remove the
secret file.

Runs the docker history command against 
the name of the image you created



110 CHAPTER 5 Configuration management—getting your house in order

➥ 0 B
5b376ff3d7cd 26 seconds ago /bin/sh -c cat /tmp/secret_key

➥ 0 B
5e39caf7560f 27 seconds ago /bin/sh -c echo "My Big Secret" >> /tmp/secre

➥ 14 B
c90d655b99b2 2 weeks ago /bin/sh -c #(nop) CMD [/bin/bash]

➥ 0 B
30d39e59ffe2 2 weeks ago /bin/sh -c #(nop) ADD file:3f1a40df75bc5673ce

➥ 85.01 MB
511136ea3c5a 20 months ago

➥ 0 B

Now imagine that you’ve downloaded this image from a public registry. You could
inspect the layer history and then run the following command to reveal the secret
information:

$ docker run 5b376ff3d7cd cat /tmp/secret_key
My Big Secret

Here we’ve run a specific layer and instructed it to cat the secret key we removed at a
higher layer. As you can see, the file is accessible.

 Now you have a “dangerous” container with a secret inside that you’ve seen can be
hacked to reveal its secrets. To make this image safe, you’ll need to flatten it. This
means you’ll keep the same data in the image, but remove the intermediate layering
information. To achieve this you need to export the image as a trivially run container
and then re-import and tag the resulting image:

$ docker run -d mysecret /bin/true
28cde380f0195b24b33e19e132e81a4f58d2f055a42fa8406e755b2ef283630f
$ docker export 28cde380f | docker import - mysecret
$ docker history mysecret
IMAGE CREATED CREATED BY SIZE
fdbeae08751b 13 seconds ago 85.01 MB

The - argument to the docker import command indicates you wish to read the TAR
file from the command’s standard input. The final argument to docker import indi-
cates how the imported image should be tagged. In this case you’re overwriting the
previous tag.

The layer where 
you removed the 
secret key The layer where

you added the
secret key

The layer that added the Debian 
filesystem. Note that this layer is 
the largest one in the history.

The scratch (empty) layer

Runs a trivial command to 
allow the container to exit 
quickly, because you don’t 
need it to be running

Runs docker export, taking a container ID as an argument and
outputting a TAR file of the filesystem contents. This is piped to docker
import, which takes a TAR file and creates an image from the contents.

The docker
history output

now shows only
one layer with the

final set of files.



111TECHNIQUE 44 Managing foreign packages with alien

 Because there’s now only one layer in the image, there’s no record of the layers
that contained the secrets. No secrets can now be extracted from the image. 

TECHNIQUE 44 Managing foreign packages with alien

Although most Dockerfile examples in this book (and on the internet) use a Debian-
based image, the reality of software development means that many people won’t be
dealing with them exclusively.

 Fortunately tools exist to help you with this.

PROBLEM
You want to install a package from a foreign distribution.

SOLUTION
Use an alien-based Docker image to convert the package.

DISCUSSION
Alien is a command-line utility designed to convert package files between various for-
mats, listed in table 5.1. On more than one occasion, we’ve been required to make
packages from foreign package management systems work, such as .deb files in cen-
tos, and .rpm files in non-Red-Hat-based systems.

SOLARIS AND STAMPEDE PACKAGES NOT COVERED For the purposes of this tech-
nique, Solaris and Stampede packages aren’t fully covered. Solaris requires
software peculiar to Solaris, and Stampede is an abandoned project.

Researching this book, we discovered it could be a little fiddly to install Alien on
non-Debian-based distributions. This being a Docker book, we’ve naturally decided to
provide a conversion tool in the format of a Docker image. As a bonus, this tool uses
the ENTRYPOINT command from technique 40 to make using the tools simpler. 

 As an example, let’s take the eatmydata package, which will be used in technique 56:

$ mkdir tmp && cd tmp
$ wget \
http://mirrors.kernel.org/ubuntu/pool/main/libe/libeatmydata/

➥ eatmydata_26-2_i386.deb

Table 5.1 Package formats supported by Alien

Extension Description

.deb Debian package

.rpm Red Hat package management

.tgz Slackware gzipped TAR file

.pkg Solaris pkg package

.slp Stampede package

Create an empty 
directory to work 
in.

Retrieve the
package files you
want to convert.



112 CHAPTER 5 Configuration management—getting your house in order

$ docker run -v $(pwd):/io dockerinpractice/alienate
Examining eatmydata_26-2_i386.deb from /io
eatmydata_26-2_i386.deb appears to be a Debian package
eatmydata-26-3.i386.rpm generated
eatmydata-26.slp generated
eatmydata-26.tgz generated
===================================================================
/io now contains:
eatmydata-26-3.i386.rpm
eatmydata-26.slp
eatmydata-26.tgz
eatmydata_26-2_i386.deb
===================================================================
$ ls -1
eatmydata_26-2_i386.deb
eatmydata-26-3.i386.rpm
eatmydata-26.slp
eatmydata-26.tgz

Alternatively, you can pass the URL directly to the docker run command:

$ mkdir tmp && cd tmp
$ docker run -v $(pwd):/io dockerinpractice/alienate \
http://mirrors.kernel.org/ubuntu/pool/main/libe/

➥ libeatmydata/eatmydata_26-2_i386.deb
wgetting http://mirrors.kernel.org/ubuntu/pool/main/libe/

➥ libeatmydata/eatmydata_26-2_i386.deb
--2015-02-26 10:57:28-- http://mirrors.kernel.org/ubuntu/pool/main/libe/

➥ libeatmydata/eatmydata_26-2_i386.deb
Resolving mirrors.kernel.org (mirrors.kernel.org)...

➥ 198.145.20.143, 149.20.37.36, 2001:4f8:4:6f:0:1994:3:14, ...
Connecting to mirrors.kernel.org (mirrors.kernel.org)

➥ |198.145.20.143|:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 7782 (7.6K) [application/octet-stream]
Saving to: 'eatmydata_26-2_i386.deb'

0K ....... 100% 2.58M=0.003s

2015-02-26 10:57:28 (2.58 MB/s) - 'eatmydata_26-2_i386.deb' saved [7782/7782]

Examining eatmydata_26-2_i386.deb from /io
eatmydata_26-2_i386.deb appears to be a Debian package
eatmydata-26-3.i386.rpm generated
eatmydata-26.slp generated
eatmydata-26.tgz generated
=============================================================================
/io now contains:
eatmydata-26-3.i386.rpm
eatmydata-26.slp
eatmydata-26.tgz
eatmydata_26-2_i386.deb
=============================================================================
$ ls -1

Run the dockerinpractice/alienate image,
mounting the current directory to the container’s
/io path. The container will examine that directory

and try to convert any valid files it finds.

The container
informs you of its
actions as it runs
its Alien wrapper

script.

The files have been 
converted to RPM, 
Slackware tgz, and 
Stampede files.



113TECHNIQUE 45 Reverse-engineer a Dockerfile from an image

eatmydata_26-2_i386.deb
eatmydata-26-3.i386.rpm
eatmydata-26.slp
atmydata-26.tgz

If you want to run Alien in a container yourself, you can start up the container with
this:

docker run -ti --entrypoint /bin/bash dockerinpractice/alienate

NOT GUARANTEED TO WORK Alien is a “best effort” tool, and it’s not guaran-
teed to work with the packages you give it. 

TECHNIQUE 45 Reverse-engineer a Dockerfile from an image

You may find yourself in a situation where someone has created an image with a
Dockerfile that you have access to, but the original Dockerfile has been lost. We’ve
found ourselves in this position on more than one occasion. Being able to recover
information about the build steps can sidestep a lengthy process of rediscovering
them for yourself.

PROBLEM
You have an image and you want to reverse-engineer the original Dockerfile.

SOLUTION
Use the docker history command and inspect layers to try to determine what
changed. 

DISCUSSION
Although it’s impossible to completely reverse-engineer a Docker image in every case,
you have a good chance of working out how it was put together if it was substantially
created with a Dockerfile (hopefully enough of a chance to reconstruct the image suf-
ficiently for your purposes).

 In this technique we’re going to use the following Dockerfile as an example. It
contains as many different types of instructions as we could fit in the shortest number
of steps. You’re going to build this Dockerfile, then run a simple shell command to
give you an idea of how the technique works, and we’ll finally look at a neater Docker-
ized solution.

LABEL INSTRUCTION MAY NOT WORK The LABEL instruction is relatively new to
Docker at the time of writing, so it may not have made it to your installation yet.

FROM busybox
MAINTAINER ian.miell@gmail.com
ENV myenvname myenvvalue
LABEL mylabelname mylabelvalue
WORKDIR /opt
RUN mkdir -p copied
COPY Dockerfile copied/Dockerfile
RUN mkdir -p added



114 CHAPTER 5 Configuration management—getting your house in order

ADD Dockerfile added/Dockerfile
RUN touch /tmp/afile
ADD Dockerfile /
EXPOSE 80
VOLUME /data
ONBUILD touch /tmp/built
ENTRYPOINT /bin/bash
CMD -r

First, you need to build this example image, giving the resulting image the name
reverseme:

$ docker build -t reverseme .

SHELL SOLUTION

This shell-based implementation is mostly here for instruction, and is less complete
than the upcoming Dockerized solution. This solution uses docker inspect to extract
the metadata for the command, for example.

JQ REQUIRED To run this solution, you may need to install the jq program.
This allows you to query and manipulate JSON data.

docker history reverseme | \
awk '{print $1}' | \
grep -v IMAGE | \
tac | \
sed "s/\(.*\)/docker inspect \1 | \
jq -r \'.[0].ContainerConfig.Cmd[2] | tostring\'/" | \
sh | \
sed 's/^#(nop) //'

The output will look like this:

MAINTAINER Jérôme Petazzoni <jerome@docker.com>
ADD file:8cf517d90fe79547c474641cc1e6425850e04abbd8856718f7e4a184ea878538 in /
CMD ["/bin/sh"]
MAINTAINER ian.miell@gmail.com
ENV myenvname=myenvvalue
WORKDIR /opt
mkdir -p copied
COPY file:d0fb99565b15f8dfec37ea1cf3f9c4440b95b1766d179c11458e31b5d08a2ced in

➥ copied/Dockerfile
mkdir -p added
ADD file:d0fb99565b15f8dfec37ea1cf3f9c4440b95b1766d179c11458e31b5d08a2ced in

Retrieves the layers
that made up the
image you specify

Retrieves the image ID 
of each layer from the 
docker history output Excludes the title row 

(the one with “IMAGE” 
in it) because it’s not 
relevant

Reverses the
image listed

back into the
Dockerfile order

(“tac” is “cat”
backwards)

Takes the image ID and constructs a command
that can be run to retrieve the command from
the Docker layer metadata. Pipes the output of

docker inspect to a jq command that extracts
the command used to create the layer, as

recorded in the Docker metadata.

Runs the
 docker inspect
commands that

the sed command
outputs Strips out instructions

that can’t change the
filesystem—those with

a prefix of #(nop)



115TECHNIQUE 45 Reverse-engineer a Dockerfile from an image

➥ added/Dockerfile
touch /tmp/afile
ADD file:d0fb99565b15f8dfec37ea1cf3f9c4440b95b1766d179c11458e31b5d08a2ced in /
COPY dir:9cc240dcc0e31ce1b68951d230ee03fc6d3b834e2ae459f4ad7b7d023845e834 in /
COPY file:97bc58d5eaefdf65278cf82674906836613be10af02e4c02c81f6c8c7eb44868 in /
EXPOSE 80/tcp
VOLUME [/data]
ONBUILD touch /tmp/built
ENTRYPOINT [/bin/sh -c /bin/bash]
CMD [/bin/sh -c -r]

This output looks similar to our original Dockerfile with a few differences. The FROM
command has been replaced with the three commands that made up the layers to cre-
ate the BusyBox image. The ADD and COPY commands reference a checksum and the
location the file or files were unpacked to. This is because the original build context
isn’t preserved in the metadata. Finally, the CMD and ENTRYPOINT instructions are
changed to a canonical square bracket form. 

WHAT IS A BUILD CONTEXT? A Docker build context is the set of files at and under
the location of the directory passed in with the docker build command. This
context is where Docker looks for files to ADD or COPY into Dockerfiles. 

Because the lack of build context makes the ADD and COPY instructions invalid, this Docker-
file can’t be run in as is. Unfortunately, if you have these in your reverse-engineered
Dockerfile, you’ll have to try to work out what file or files were added from the context
information. For example, in the preceding output, if you run up the reverseme image as
a container and then look at copied/Dockerfile, you should be able to extract the file and
add it to your new build context.

A DOCKERIZED SOLUTION

Although the preceding solution is a useful and instructive way to get information
about the image you’re interested in (and relatively easy to modify for your own
needs), there’s a cleaner way to achieve the same thing—a way that’s more likely to be
maintained. As a bonus, this solution also gives you (if it can) a FROM command similar
to the one in your original Dockerfile: 

$ docker run -v /var/run/docker.sock:/var/run/docker.sock \
dockerinpractice/dockerfile-from-image reverseme

FROM busybox:buildroot-2014.02
MAINTAINER ian.miell@gmail.com
ENV myenvname=myenvvalue
WORKDIR /opt
RUN mkdir -p copied
COPY file:43a582585c738bb8fd3f03f29b18caaf3b0829d3ceb13956b3071c5f0befcbfc \
in copied/Dockerfile
RUN mkdir -p added
ADD file:43a582585c738bb8fd3f03f29b18caaf3b0829d3ceb13956b3071c5f0befcbfc \
in added/Dockerfile
RUN touch /tmp/afile
ADD \



116 CHAPTER 5 Configuration management—getting your house in order

file:43a582585c738bb8fd3f03f29b18caaf3b0829d3ceb13956b3071c5f0befcbfc in /
EXPOSE 80/tcp
VOLUME [/data]
ONBUILD touch /tmp/built
ENTRYPOINT [/bin/sh -c /bin/bash]
CMD [/bin/sh -c -r]

This technique has got us out of a couple of tight spots at work!

ONLY APPLIES TO DOCKERFILE-CREATED IMAGES If the image was properly cre-
ated with a Dockerfile, this technique should work as described. If it was
hand-crafted and then committed, the differences between the images won’t
be available in the image metadata. 

5.2 Traditional configuration management tools with Docker
Now we’ll move on to how Dockerfiles can work alongside more traditional configura-
tion management tools.

 We’ll look here at traditional configuration management with make, show you how
you can use your existing Chef scripts to provision your images with Chef Solo, and
look at a shell script framework built to help non-Docker experts build images.

TECHNIQUE 46 Traditional: using make with Docker

At some point you might find that having a bunch of Dockerfiles is limiting your build
process. For example, it’s impossible to produce any output files if you limit yourself
to running docker build, and there’s no way to have variables in Dockerfiles. 

 This requirement for additional tooling can be achieved by a number of tools
(including plain shell scripts). In this technique we’ll look at how you can twist the
venerable make tool to work with Docker.

PROBLEM
You want to add additional tasks around docker build execution. 

SOLUTION
Wrap your image creation inside make.

DISCUSSION
In case you haven’t used it before, make is a tool that takes one or more input files and
produces an output file, but it can also be used as a task runner. Here’s a simple exam-
ple (note that all indents must be tabs):

.PHONY: default createfile catfile

default: createfile

createfile: x.y.z

By default, make assumes that all targets
are filenames that will be created by the

task. The .PHONY indicates which task
names this is not true for.

By convention, the first target in a Makefile 
is default. When run without an explicit 
target, make will choose the first in the file. 
You can see that default will execute 
createfile as its only dependency.

createfile is a phony task that 
depends on the x.y.z task.



117TECHNIQUE 46 Traditional: using make with Docker

catfile:
cat x.y.z

x.y.z:
echo "About to create the file x.y.z"
echo abc > x.y.z

SPACING IS IMPORTANT All indents in a Makefile must be tabs, and each com-
mand in a target is run in a different shell (so environment variables will not
be carried across).

Once you have the preceding content in a file called Makefile, you can invoke any tar-
get with a command like make createfile. 

 Now we can look at some useful patterns in a Makefile—the rest of the targets we’ll
talk about will be phony, as it’s difficult (although possible) to use file change tracking
to trigger Docker builds automatically. Dockerfiles use a cache of layers, so builds tend
to be fast.

 The first step is to run a Dockerfile. Because a Makefile consists of shell com-
mands, this is easy:

base:
docker build -t corp/base .

Normal variations of this work as you’d expect (such as piping the file to docker build
to remove the context, or using -f to use a differently named Dockerfile) and you can
use the dependencies feature of make to automatically build base images (used in FROM)
where necessary. For example, if you checked out a number of repositories into a sub-
directory called repos (also easily doable with make), you could add a target like this:

app1: base
cd repos/app1 && docker build -t corp/app1 .

The downside of this is that every time your base image needs rebuilding, Docker will
upload a build context that includes all of your repos. You can fix this by explicitly
passing a build context TAR file to Docker:

base:
tar -cvf - file1 file2 Dockerfile | docker build -t corp/base .

This explicit statement of dependencies will provide a significant speed increase if
your directory contains a large number of files that are irrelevant to the build. You can
slightly modify this target if you want to keep all your build dependencies in a differ-
ent directory:

base:
tar --transform 's/^deps\///' -cf - deps/* Dockerfile | \

docker build -t corp/base .

catfile is a phony task that 
runs a single command.

x.y.z is a file task that runs 
two commands and creates 
the target x.y.z file.



118 CHAPTER 5 Configuration management—getting your house in order

Here you add everything in the deps directory to the build context, and use the
--transform option to tar (available in recent tar versions on Linux) to strip any
leading “deps/” from filenames. In this particular case, a better approach would have
been to put the deps and Dockerfile in a directory of their own to permit a normal
docker build, but it’s useful to be aware of this advanced usage as it can come in
handy in the most unlikely places. Always think carefully before using it, though, as it
adds complexity to your build process.

 Simple variable substitution is a relatively simple matter, but (as with --transform
previously) think carefully before you use it—Dockerfiles deliberately don’t support
variables in order to keep builds easily reproducible. Here we’re going to use variables
passed to make and substitute using sed, but you can pass and substitute however you like:

VAR1 ?= defaultvalue
base:

cp Dockerfile.in Dockerfile
sed -i 's/{VAR1}/$(VAR1)/' Dockerfile
docker build -t corp/base .

The Dockerfile will be regenerated every time the base target is run, and you can add
more variable substitutions by adding more sed -i lines. To override the default value
of VAR1, you run make VAR1=newvalue base. If your variables include slashes you may
need to choose a different sed seperator, like sed -i 's#{VAR1}#$(VAR1)#' Dockerfile.

 Finally, if you’ve been using Docker as a build tool, you need to know how to get
files back out of Docker. We’ll present a couple of different possibilities, depending
on your use case:

singlefile: base
docker run --rm corp/base cat /path/to/myfile > outfile

multifile: base
docker run --rm -v $(pwd)/outdir:/out corp/base sh \

-c "cp -r /path/to/dir/* /out/"

Here, singlefile runs cat on a file and pipes the output to a new file. This approach
has the advantage of automatically setting the correct owner of the file, but it becomes
cumbersome for more than one file. The multifile approach mounts a volume in
the container and copies all files from a directory to the volume. You can follow this
up with a chown command to set the correct owner on the files, but bear in mind that
you’ll probably need to invoke it with sudo. 

 The Docker project itself uses the volume-mounting approach when building
Docker from source. 

TECHNIQUE 47 Building images with Chef Solo

One of the things that confuses newcomers to Docker is whether Dockerfiles are the
only supported configuration management tool, and whether existing configuration
management tools should ported to Dockerfiles. Neither of these is true.



119TECHNIQUE 47 Building images with Chef Solo

 Although Dockerfiles are designed to be a simple and portable means of provision-
ing images, they are also flexible enough to allow any other configuration manage-
ment tool to take over. In short, if you can run it in a terminal, you can run it in a
Dockerfile.

 As a demonstration of this, we’ll show you how to get up and running with Chef,
arguably the most established configuration management tool, in a Dockerfile.
Using a tool like Chef can reduce the amount of work required for you to configure
images.

PROBLEM
You want to reduce configuration effort by using Chef.

SOLUTION
Install Chef in your container and run recipes to provision it.

DISCUSSION
In this example we’re going to provision a simple “Hello World!” Apache website
using Chef. This will give you a taste of what Chef can do for your configuration.

 For this example we’re using Chef Solo, which requires no external Chef server
setup. If you’re already familiar with Chef, this example can easily be adapted for your
pre-existing scripts.

 We’re going to walk through the creation of this Chef example, but if you want to
download the working code, it’s available as a Git repository. To download it, run this
command:

git clone https://github.com/docker-in-practice/docker-chef-solo-example.git

We’ll begin with the simple aim of setting up a webserver with Apache that outputs
“Hello World!” (what else?) when you hit it. The site is going to be served from
mysite.com, and a mysiteuser user will be set up on the image. 

 To begin, create a directory and set it up with the files you’ll need for Chef
configuration:

$ mkdir chef_example
$ cd chef_example
$ touch attributes.json
$ touch config.rb
$ touch Dockerfile
$ mkdir -p cookbooks/mysite/recipes
$ touch cookbooks/mysite/recipes/default.rb
$ mkdir -p cookbooks/mysite/templates/default
$ touch cookbooks/mysite/templates/default/message.erb

The Chef attributes file, which defines the 
variables for this image (or node, in Chef 
parlance), will contain the recipes in the run-
list for this image, and other information.

The Chef config
file, which sets

some base
variables for the

Chef configuration

The Dockerfile
that will build

the image

Create the default recipe folder, 
which stores the Chef instructions 
for building the image.

Create the templates for the
dynamically configured content.



120 CHAPTER 5 Configuration management—getting your house in order

First we’ll fill out attributes.json in the following listing.

{
"run_list": [

"recipe[apache2::default]",
"recipe[mysite::default]"

]
}

This file sets out the recipes that you’re going to run. The apache2 recipes will be
retrieved from a public repository; the mysite recipes will be written here.

 Next, populate your config.rb with some basic information, as shown in the next
listing.

base_dir "/chef/"
file_cache_path base_dir + "cache/"
cookbook_path base_dir + "cookbooks/"
verify_api_cert true

This file sets up basic information about the location, and adds the configuration set-
ting verify_api_cert to suppress an irrelevant error. 

 Now we get to the meat of the work: the image’s Chef recipe. Each stanza termi-
nated by an end in the code block defines a Chef resource (see the following listing).

user "mysiteuser" do
comment "mysite user"
home "/home/mysiteuser"
shell "/bin/bash"
supports :manage_home => true

end

directory "/var/www/html/mysite" do
owner "mysiteuser"
group "mysiteuser"
mode 0755
action :create

end

template "/var/www/html/mysite/index.html" do
source "message.erb"
variables(

:message => "Hello World!"
)
user "mysiteuser"
group "mysiteuser"
mode 0755

Listing 5.1 attributes.json

Listing 5.2 config.rb

Listing 5.3 cookbooks/mysite/recipes/default.rb

Creates a user

Creates a 
directory for the 
web content

Defines a file that will be placed 
in the web folder. This file will be 
created from a template defined 
in the “source” attribute.



121TECHNIQUE 47 Building images with Chef Solo

end

web_app "mysite" do
server_name "mysite.com"
server_aliases ["www.mysite.com","mysite.com"]
docroot "/var/www/html/mysite"
cookbook 'apache2'

end

The content of the website is contained within the template file. It contains one line,
which Chef will read, substituting in the “Hello World!” message from config.rb and
then writing the substituted file out to the template target (/var/www/html/mysite/
index.html). This uses a templating language that we’re not going to cover here.

<%= @message %>

Finally, you put everything together with the Dockerfile, which sets up the Chef pre-
requisites and runs Chef to configure the image, as shown in the following listing.

FROM ubuntu:14.04

RUN apt-get update && apt-get install -y git curl

RUN curl -L \
https://opscode-omnibus-packages.s3.amazonaws.com/

➥ ubuntu/12.04/x86_64/chefdk_0.3.5-1_amd64.deb \
-o chef.deb
RUN dpkg -i chef.deb && rm chef.deb

COPY . /chef

WORKDIR /chef/cookbooks
RUN knife cookbook site download apache2
RUN knife cookbook site download iptables
RUN knife cookbook site download logrotate

RUN /bin/bash -c 'for f in $(ls *gz); do tar -zxf $f; rm $f; done'

RUN chef-solo -c /chef/config.rb -j /chef/attributes.json

CMD /usr/sbin/service apache2 start && sleep infinity

Listing 5.4 cookbooks/mysite/templates/default/message.erb

Listing 5.5 Dockerfile

Defines a web app 
for apache2 In a real scenario you’d have 

to change these references 
from “mysite” to your 
website’s name. If you’re 
accessing or testing from your 
host, this doesn’t matter.

Download and install Chef. If 
this download doesn’t work for 
you, check the latest code in the 
docker-chef-solo-example 
mentioned earlier in this 
discussion, as a later version of 
Chef may now be required.

Copy the contents of the 
working folder into the 
/chef folder on the image.

Move to the cookbooks folder and 
download the apache2 cookbook 
and its dependencies as tarballs 
using Chef’s knife utility.

Extract the downloaded
tarballs and remove them.

Run the chef 
command to configure 
your image. Supply it 
with the attributes 
and config files you 
already created.

Define the default command for the image. The sleep
infinity command ensures that the container doesn’t exit

as soon as the service command has finished its work.



122 CHAPTER 5 Configuration management—getting your house in order

You’re now ready to build and run the image:

docker build -t chef-example .
docker run -ti -p 8080:80 chef-example

If you now navigate to http://localhost:8080, you should see your “Hello World!” message.

TIMEOUTS ON DOCKER HUB If your Chef build takes a long time and you’re
using the Docker Hub workflow, the build can time out. If this happens, you
can perform the build on a machine you control, pay for a supported service,
or break the build steps into smaller chunks so that each individual step in
the Dockerfile takes less time to return.

Although this is a trivial example, the benefits of using this approach should be clear.
With relatively straightforward configuration files, the details of getting the image into
a desired state are taken care of by the configuration management tool. This doesn’t
mean that you can forget about the details of configuration; changing the values will
require you to understand the semantics to ensure you don’t break anything. But this
approach can save you much time and effort, particularly in projects where you don’t
need to get into the details too much. 

TECHNIQUE 48 Source-to-image builds

We’ve looked at a few options for building Docker images, but the only one designed
from scratch to take advantage of Docker’s features is the Dockerfile. However, there
are alternatives that can make life much easier for a developer uninterested in
Docker, or that can provide more power to the build process.

PROBLEM
You want to give users a means of creating a Docker image without them needing to
understand Docker.

SOLUTION
Use Red Hat’s Source to Image (S2I, or STI) framework for building Docker images.

DISCUSSION
Source to Image is a means of creating Docker images by depositing source code into
a separately defined Docker image that’s responsible for building the image.

 You may be wondering why such a build method was conceived. The principal rea-
son is that it allows application developers to make changes to their code without being
concerned with the details of Dockerfiles, or even Docker images. If the image is deliv-
ered to an aPaaS (application platform as a service), the individual engineer need not
know about Docker at all to contribute to the project. This is useful in an enterprise
environment where there are large numbers of people who have specific areas of exper-
tise and are not directly concerned with the build process of their project.

S2I IS ALSO KNOWN AS STI The Source to Image method of building is known
by two names in both its source code and documentation: the older STI, and
the newer S2I. They’re the same thing.



123TECHNIQUE 48 Source-to-image builds

Figure 5.1 shows the S2I workflow in its core outline.
 Once the process is set up, the engineer need only be concerned about the

changes they want to make to their source code in order to progress it to different
environments. Everything else is driven by the sti tool that enables the process.

OTHER BENEFITS

The advantages of this approach break down into a number of areas:

■ Flexibility—This process can easily be plugged into any existing software delivery
process, and it can use almost any Docker image as its base layer.

■ Speed—This method of building can be faster than Dockerfile builds, as any
number of complex operations can be added to the build process without creat-
ing a new layer at each step. S2I also gives you the capability to reuse artifacts
between builds to save time.

■ Separation of concerns—Because source code and Docker image are cleanly and
strongly separated, developers can be concerned with code while infrastructure
can be concerned with Docker images and delivery. As the base underlying image
is separated from the code, upgrades and patches are more easily delivered.

■ Security—This process can restrict the operations performed in the build to a
specific user, unlike Dockerfiles, which allow arbitrary commands to be run as
root.

■ Ecosystem—The structure of this framework allows for a shared ecosystem of
image and code separation patterns for easier large-scale operations.

Engineer

Application source must conform to build
image expectations (e.g., a Java builder
image might require a Maven POM)

S21 build invocation takes a builder
image and the source, and outputs
a final image

Image built can
be used by engineer
or consumed by a
Docker-compatible
platform

Prebuilt builder image
contains build tools and
environment ready for
an S21 build

Application
source

S21 build
process

Application
image

Builder
image

Figure 5.1 The Source to Image workflow



124 CHAPTER 5 Configuration management—getting your house in order

This technique will show you how to build one such pattern, albeit a simple and some-
what limited one. Our application pattern will consist of

■ Source code that contains one shell script
■ A builder that creates an image that takes that shell script, makes it runnable,

and runs it

CREATING YOUR OWN S2I IMAGE

There are several steps to creating your own S2I image:

1 Starting up an S2I development environment
2 Creating your Git project
3 Creating the builder image
4 Building the application image

Once you’ve created the image, making changes and rebuilding is easy. 

START UP AN S2I DEVELOPMENT ENVIRONMENT

To help ensure a consistent experience, you can use a maintained environment to
develop your S2I build image and project:

$ docker run -ti \
-v /var/run/docker.sock:/var/run/docker.sock \
dockerinpractice/shutit-s2i

PROBLEMS? SELINUX ENABLED? If you’re running in an selinux-enabled envi-
ronment, you may have problems running Docker within a container. See
technique 88. 

CREATE YOUR GIT PROJECT

You could use a Git project built elsewhere and placed on GitHub, but to keep this
example simple and self-contained, we’re going to create a project locally in our S2I
development environment. As mentioned earlier, the source code consists of one
shell script that outputs “Hello World” to the terminal: 

mkdir /root/myproject
cd /root/myproject
git init
git config --global user.email "you@example.com"
git config --global user.name "Your Name"
cat > app.sh <<< "echo 'Hello World'"
git add .
git commit -am 'Initial commit'

CREATE THE BUILDER IMAGE

To create the builder image, we’re going get sti to create a skeleton for us to modify:

sti create sti-simple-shell /opt/sti-simple-shell
cd /opt/sti-simple-shell

Ensure the host’s Docker 
daemon is available within the 
container (see technique 25).

Use a maintained S2I 
build environment.



125TECHNIQUE 48 Source-to-image builds

This S2I command creates several files. To get our workflow working, we’re going to
focus on editing these files:

■ Makefile
■ Dockerfile
■ .sti/bin/assemble
■ .sti/bin/run

Taking the Dockerfile first, change its contents to match the following:

FROM openshift/base-centos7
RUN chown -R default:default /opt/openshift
COPY ./.sti/bin /usr/local/sti
RUN chmod +x /usr/local/sti/*
USER default

Next you create the assemble script, which is responsible for taking the source code and
compiling it so it’s ready to run. The following is a simplified, but feature-complete, ver-
sion of this bash script for you to use:

#!/bin/bash -e
if [ "$1" = "-h" ]; then        

exec /usr/local/sti/usage   
fi                              
if [ "$(ls /tmp/artifacts/ 2>/dev/null)" ]; then  

echo "---> Restoring build artifacts"           
mv /tmp/artifacts/* ./                          

fi                                                
echo "---> Installing application source"              
cp -Rf /tmp/src/. ./                                   
echo "---> Building application from source"   
chmod +x /opt/openshift/src/app.sh             

The run script of your S2I build is responsible for running your application. It’s the
script that the image will run by default:

#!/bin/bash -e
exec /opt/openshift/src/app.sh

Use the standard OpenShift 
base-centos7 image. This 
has the default user already 
created within it.

Change
ownership of the
default OpenShift
code location to
the default user.

Copy the S2I scripts 
into the default location 
for an S2I build.

Ensure the S2I
scripts are
executable.

Make the buider image use
the precreated default

user by default.

Run as a bash script 
and exit on any failure.

If the usage flag is passed 
in, print the usage.

If possible, restore any 
artifacts saved from 
previous builds.

Install the application source 
into the default directory.

Build the application from source. In
this case, the build is the simple step
of making the app.sh file executable.



126 CHAPTER 5 Configuration management—getting your house in order

Now that your builder is ready, you run make to build your S2I builder image. It will
create a Docker image called sti-simple-shell, which will provide the environment for
your application image to be built—the one that includes the software project you
made earlier. The output of your make call should look similar to this:

$ make
imiell@osboxes:/space/git/sti-simple-shell$ make
docker build --no-cache -t sti-simple-shell .
Sending build context to Docker daemon 153.1 kB
Sending build context to Docker daemon
Step 0 : FROM openshift/base-centos7
---> f20de2f94385

Step 1 : RUN chown -R default:default /opt/openshift
---> Running in f25904e8f204
---> 3fb9a927c2f1

Removing intermediate container f25904e8f204
Step 2 : COPY ./.sti/bin /usr/local/sti
---> c8a73262914e

Removing intermediate container 93ab040d323e
Step 3 : RUN chmod +x /usr/local/sti/*
---> Running in d71fab9bbae8
---> 39e81901d87c

Removing intermediate container d71fab9bbae8
Step 4 : USER default
---> Running in 5d305966309f
---> ca3f5e3edc32

Removing intermediate container 5d305966309f
Successfully built ca3f5e3edc32

If you run docker images, you should now see an image called sti-simple-shell stored
locally on your host. 

BUILD THE APPLICATION IMAGE

Looking back at figure 5.1, you now have the three things you need for an S2I build:

■ Source code
■ A builder image that provides an environment for building and running the

source code
■ The sti program

These three things are located in one place in this walkthrough, but the only one that
needs to be local to your run is the sti program. The builder image can be fetched
from a registry, and the source code can be fetched from a Git repository such as
GitHub.

 As you have all three parts in place, you can trigger the build process with the sti
program:



127TECHNIQUE 48 Source-to-image builds

$ sti build --force-pull=false --loglevel=1 \
file:///root/myproject sti-simple-shell final-image-1
I0608 13:02:00.727125 00119 sti.go:112] Building final-image-1                   
I0608 13:02:00.843933 00119 sti.go:182] Using assemble from image:///usr/local/sti
I0608 13:02:00.843961 00119 sti.go:182] Using run from image:///usr/local/sti
I0608 13:02:00.843976 00119 sti.go:182] Using save-artifacts from image:///

➥ usr/local/sti                    
I0608 13:02:00.843989 00119 sti.go:120] Clean build will be performed             
I0608 13:02:00.844003 00119 sti.go:130] Building final-image-1             
I0608 13:02:00.844026 00119 sti.go:330] No .sti/environment provided              

➥ (no evironment file found in application sources)                              
I0608 13:02:01.178553 00119 sti.go:388] ---> Installing application source
I0608 13:02:01.179582 00119 sti.go:388] ---> Building application from source           
I0608 13:02:01.294598 00119 sti.go:216] No .sti/environment provided

➥ (no evironment file found in application sources)
I0608 13:02:01.353449 00119 sti.go:246] Successfully built final-image-1 )

In this example, the Git repository is stored locally (hence the file:// prefix), but you
could also refer to it with a URL to a repository served online with https://gitserver
.example.com/yourusername/yourproject or git@gitserver.example.com:yourusername/
yourproject.

 You can now run your built image with the source code applied to it:

$ docker run final-image-1
Hello World

CHANGE AND REBUILD

It’s easier to see the purpose of this build method now that you have a working exam-
ple. Imagine you’re a new developer ready to contribute to the project. You can make
changes to the Git repository and run a simple command to rebuild the image with-
out knowing anything about Docker:

$ cd /root/myproject
$ cat > app.sh <<< "echo 'Hello S2I!'"
$ git commit -am 'new message'
$ sti build --force-pull=false file:///root/myproject sti-simple-shell \

final-image-2

Runs the build with S2I’s build subcommand,
disabling the default force-pulling of the image

(the image is only available locally) and
increasing logging to a useful level (you can
increment the number for more verbosity)

Directs the build to the source code 
Git repository and passes both the 
S2I builder image reference for this 
source code and the desired tag for 
the application image produced

General debug
information about the

details of the build

General debug information about the
application of the source within the build image

Details of application 
image build



128 CHAPTER 5 Configuration management—getting your house in order

Running this image shows the new message you set in the preceding code:

$ docker run final-image-2
Hello S21!

This technique demonstrated a simple example, but it’s easy to imagine how this
framework could be adapted to your particular requirements. What you end up with is
a means for developers to push changes out to other consumers of their software with-
out caring about the details of Docker image production.

 Other techniques can be used in combination with this one to facilitate DevOps
processes. For example, by using Git post-commit hooks you can automate the S2I
build call on check-in. 

5.3 Small is beautiful
If you’re creating lots of images and sending them hither and thither, the issue of
image size will be more likely to arise. Although Docker’s use of image layering can
help with this, you may have such a panoply of images on your estate that this isn’t
practical to manage.

 In these cases, it can be helpful to have some best practices in your organization
relating to reducing images to as small a size as possible. In this section we’ll show you
some of these, and even how a standard utility image can be reduced from 96 MB to
only 6.5 MB—a much smaller size of object to fling around your network.

TECHNIQUE 49 Dockerfile tricks for keeping your build small

Because Dockerfiles are the recommended way to build images, it’s natural that the
community would focus on them when coming up with ideas to reduce image size.
The result is a number of suggestions for taking advantage of Dockerfile features and
working around some limitations.

PROBLEM
You want to reduce the size of your Dockerfile image.

SOLUTION
Reduce the layer overhead of the Docker build.

DISCUSSION
We’re going to start with a fairly typical Dockerfile to build OSQuery, a tool to report
on system performance using a SQL interface, as shown in the next listing. 

FROM ubuntu:14.04
RUN apt-get update && apt-get upgrade -y
RUN apt-get install -y git
RUN apt-get install -y wget
RUN git clone https://github.com/facebook/osquery.git

Listing 5.6 OSQuery Dockerfile

Initialize Ubuntu 
container and upgrade 
to latest packages.

Install required packages.
Check out the 
OSQuery Git 
repository.



129TECHNIQUE 49 Dockerfile tricks for keeping your build small

WORKDIR /osquery
RUN git checkout 1.0.3
RUN ./tools/provision.sh
RUN make
RUN make package
RUN dpkg -i \
./build/linux/osquery-0.0.1-trusty.amd64.deb
CMD ["/usr/bin/osqueryi"]

Building this image gave us an image with a reported size of 2.377 GB—a fairly hefty
image to cart around!

USE A SMALLER BASE IMAGE

The simplest way to reduce the size of your final image is to build from a smaller base.
For this example, we’ll change the FROM line to base our build on the stackbrew
:ubuntu:14.04 image rather than the official ubuntu:14.04 one.

 Keep in mind that a smaller base image means that you may be missing software
previously installed in the larger image. These packages might include sudo, wget,
and so on. In this technique we don’t consider this.

 Performing this step reduced the size of our image by about 10% to 2.186 GB. 

CLEAN UP AFTER YOURSELF

You can reduce the size of the image further by removing packages and information
from the image. Adding these lines to listing 5.6 before the CMD instruction will reduce
the files on the container significantly, as the next listing shows. 

RUN SUDO_FORCE_REMOVE=yes apt-get purge -y git wget sudo
RUN rm -rf /var/lib/apt/lists/*
RUN apt-get autoremove -y
RUN apt-get clean
RUN cd
RUN rm -rf /osquery

Our image size is now bigger than the last version, at 2.19 GB! Due to Docker’s layering,
each RUN command creates a new copy-on-write layer in the final image, increasing the
image’s size, even though we’re removing files. That leads us to our next improvement.

WHAT IS COPY-ON-WRITE? Copy-on-write is a technique for minimizing resource
usage when dealing with files. Processes that only want to read a file will look
at the file from the topmost layer it’s present in—processes in different
containers could be looking at the same underlying file, as long as their images
share a layer. This significantly reduces the amount of disk space that’s required
on most systems. When a container wishes to modify a file, that file must be
copied into the container layer before it can be changed (otherwise other
containers might see the changes), hence copy-on-write. 

Listing 5.7 OSQuery Dockerfile purge fragment

Build version 1.0.3 
of OSQuery as a 
deb package.

Install the 
created deb 
package.

Default the container to 
start the OSQuery tool.



130 CHAPTER 5 Configuration management—getting your house in order

COLLATE SETS OF COMMANDS TO ONE LINE

Although you can flatten the image manually (see technique 43), you can achieve the
same result within your Dockerfile by placing all the commands within one RUN
instruction, as shown in the following listing. 

FROM stackbrew/ubuntu:14.04
RUN apt-get update && apt-get upgrade -y && \

apt-get install -y git wget sudo && \
git clone https://github.com/facebook/osquery.git && \
cd /osquery && \
git checkout 1.0.3 && \
./tools/provision.sh && \
make && \
make package && \
dpkg -i ./build/linux/osquery-0.0.1-trusty.amd64.deb && \
SUDO_FORCE_REMOVE=yes apt-get purge -y git wget sudo && \
rm -rf /var/lib/apt/lists/* && \
apt-get autoremove -y && \
apt-get clean && \
cd / && \
rm -rf /osquery

CMD ["/usr/bin/osqueryi"]

Success! The reported size of the built image is now 1.05 GB. We’ve more than halved
the size of original image. 

WRITE A SCRIPT TO DO THE INSTALL

Having done all this, you might consider the resulting Dockerfile a bit unreadable. A
friendlier way to achieve the same result with only a tiny overhead is to turn the RUN
command into a script that you copy in and run, as shown in the following two listings.

FROM stackbrew/ubuntu:14.04
COPY install.sh /install.sh
RUN /bin/bash /install.sh && rm /install.sh
CMD ["/usr/bin/osqueryi"]

#!/bin/bash
set -o errexit
apt-get update
apt-get upgrade -y
apt-get install -y git wget sudo
git clone https://github.com/facebook/osquery.git
cd /osquery
git checkout 1.0.3

Listing 5.8 OSQuery Dockerfile with a single RUN instruction

Listing 5.9 OSQuery Dockerfile installed from a shell script

Listing 5.10 install.sh

The entire install is 
reduced to a single 
RUN instruction.

Configure the bash script to throw an 
error if any of the commands within it 
return a non-zero exit code.



131TECHNIQUE 50 Tricks for making an image smaller

./tools/provision.sh
make
make package
dpkg -i ./build/linux/osquery-0.0.1-trusty.amd64.deb
SUDO_FORCE_REMOVE=yes apt-get purge -y git wget sudo
rm -rf /var/lib/apt/lists/*
apt-get autoremove -y
apt-get clean
cd /
rm -rf /osquery

The reported size of the built image is unchanged at 1.05 GB.

TRADING ONE PROBLEM FOR ANOTHER By making these changes, you lose
many beneficial features that Dockerfiles bring to the table. For example, the
time-saving benefits of the build cache are rendered null and void by the
reduction of work to a single instruction. As ever, there’s a trade-off between
image size, build flexibility, and build time.

Using these few simple tricks you can reduce the size of your resulting image signifi-
cantly. This isn’t the end of the story, though, as you can put images on much stricter
diets with the more radical techniques that follow. 

TECHNIQUE 50 Tricks for making an image smaller

Let’s say you’ve been given an image by a third party, and you want to make the image
smaller. The simplest approach is to start with an image that works and remove the
unnecessary files.

 Classic configuration management tools tend not to remove things unless explic-
itly instructed to do so—instead they start from a non-working state and add new con-
figurations and files. This leads to snowflake systems crafted for a particular purpose,
which may look very different from what you’d get if you ran your configuration man-
agement tool against a fresh server, especially if the configuration has evolved over
time. Courtesy of layering and lightweight images in Docker, you can perform the
reverse of this process and experiment with removing things.

PROBLEM
You want to make your images smaller.

SOLUTION
Remove unnecessary packages and doc files.

DISCUSSION
This technique will follow these steps to reduce the size of an image:

1 Run the image.
2 Enter the container.
3 Remove unnecessary files.
4 Commit the container as a new image (see technique 14).
5 Flatten the image (see technique 43).



132 CHAPTER 5 Configuration management—getting your house in order

The last two steps have been covered earlier in the book, so we’re only going to cover
the first three here.

 To illustrate how to use this, we’re going to take the image created in technique 40
and try and make that image smaller.

 First, run up the image as a container:

docker run -ti --name smaller --entrypoint /bin/bash \
dockerinpractice/log-cleaner

Because this is a Debian-based image, you can start by seeing which packages you
might not need and removing them. Run dpkg -l | awk '{print $2}' and you will get
a list of installed packages on the system.

 You can then go through those packages running apt-get purge -y package
_name on them. If there’s a scary message warning you that “You are about to do some-
thing potentially harmful,” then hit Return to continue.

 Once you’ve removed all the packages that can safely be removed, you can run
these commands to clean up the apt cache:

apt-get autoremove
apt-get clean

This is a relatively safe way to reduce space usage in your images.
 Further significant savings can be made by removing docs. For example, running

rm -rf /usr/share/doc/* /usr/share/man/* /usr/share/info/* will often remove
sizeable files you’ll probably never need. And you can take this to the next level by
manually running rm on binaries and libraries you don’t need.

 Another area for rich pickings is the /var folder, which should contain temporary
data, or data not essential to the running of programs.

 This command will get rid of all files with the suffix .log:

find /var | grep '\.log$' | xargs rm -v

Using this somewhat manual process, you can get the original dockerinpractice/
log-cleaner image down to a few dozen MB quite easily, and even make it smaller if you
have the motivation. Remember that due to Docker’s layering, you’ll need to export
and import the image as explained in technique 43.

RELATED TECHNIQUE Technique 53 will show you a much more effective (but
risky) way to significantly reduce the size of your images.

Due to Docker’s layering, the image size can only get bigger as you act on it. To fina-
lise your reduced image, use the image flattening technique outlined in technique 43.

MAINTAINED EXAMPLE An example of the commands described here is main-
tained at https://github.com/docker-in-practice/log-cleaner-purged, and
can be Docker pulled from dockerinpractice/log-cleaner-purged. 

https://github.com/docker-in-practice/log-cleaner-purged


133TECHNIQUE 51 Tiny Docker images with BusyBox and Alpine

TECHNIQUE 51 Tiny Docker images with BusyBox and Alpine

Small, usable OSs that can be embedded onto a low-power or cheap computer have
existed since Linux began. Fortunately, the efforts of these projects have been repur-
posed to produce small Docker images for use where image size is important.

PROBLEM
You want a small, functional image.

SOLUTION
Use a minimal Linux build, such as BusyBox or Alpine.

DISCUSSION
This is another area where the state of the art is fast changing. The two popular
choices are BusyBox and Alpine, and each has different characteristics.

 If lean but useful is your aim, then BusyBox may fit the bill. If you start up a Busy-
Box image with the following command, something surprising happens:

$ docker run -ti busybox /bin/bash
exec: "/bin/bash": stat /bin/bash: no such file or directory2015/02/23

➥ 09:55:38 Error response from daemon: Cannot start container

➥ 73f45e34145647cd1996ae29d8028e7b06d514d0d32dec9a68ce9428446faa19: exec:

➥ "/bin/bash": stat /bin/bash: no such file or directory

BusyBox is so lean it has no bash! Instead it uses ash, which is a posix-compliant
shell—effectively a limited version of more advanced shells such as bash and ksh:

$ docker run -ti busybox /bin/ash
/ #

As the result of many decisions like this, the BusyBox image weighs in at under 2.5 MB!

NON-GNU VERSIONS OF STANDARD UTILITIES BusyBox can contain some other
nasty surprises. The tar version, for example, will have difficulty untarring
TAR files created with GNU tar.

This is great if you want to write a small script that only requires simple tools, but if
you want to run anything else you’ll have to install it yourself. BusyBox comes with no
package management.

 Other maintainers have added package management functionality to BusyBox. For
example, progrium/busybox might not be the smallest BusyBox container (it’s cur-
rently a little under 5 MB), but it has opkg, which means you can easily install other
common packages while keeping the image size to an absolute minimum. If you’re
missing bash, for example, you can install it like this:

$ docker run -ti progrium/busybox /bin/ash
/ # opkg-install bash > /dev/null
/ # bash
bash-4.3#



134 CHAPTER 5 Configuration management—getting your house in order

When committed, this results in a 6 MB image.
 A less-established but interesting Docker image (which may replace progrium/

busybox) is gliderlabs/alpine. It’s similar to BusyBox but has a more extensive range
of packages that you can browse at http://forum.alpinelinux.org/packages.

 The packages are designed to be lean on install. To take a concrete example, the
next listing shows a Dockerfile that results in an image that’s one-third of a gigabyte.

FROM ubuntu:14.04
RUN apt-get update -q \
&& DEBIAN_FRONTEND=noninteractive apt-get install -qy mysql-client \
&& apt-get clean && rm -rf /var/lib/apt
ENTRYPOINT ["mysql"]

AVOID INTERACTIONS WITH DEBIAN_FRONTEND=NONINTERACTIVE The DEBIAN_
FRONTEND=noninteractive before the apt-get install ensures that the install
doesn’t prompt for any input during the install. As you can’t easily engi-
neer responses to questions when running commands, this is often useful
in Dockerfiles.

By contrast, this results in an image that’s a little over 16 MB:

FROM gliderlabs/alpine:3.1
RUN apk-install mysql-client
ENTRYPOINT ["mysql"]

TECHNIQUE 52 The Go model of minimal containers

Although it can be illuminating to winnow down your working containers by remov-
ing redundant files, there’s another option—compiling minimal binaries without
dependencies.

 Doing this radically simplifies the task of configuration management—if there’s
only one file to deploy and no packages required, a significant amount of configura-
tion management tooling becomes redundant.

PROBLEM
You want to build binary Docker images with no external dependencies.

SOLUTION
Build a statically linked binary.

DISCUSSION
To demonstrate how this can be useful, we’ll first create a small “Hello world” image
with a small C program. Then we’ll go on to show you how to do something equivalent
for a more useful application.

A MINIMAL HELLO WORLD BINARY

First, create a new directory and create a Dockerfile, as shown in the following listing.
 

Listing 5.11 Ubuntu plus mysql-client

http://forum.alpinelinux.org/packages
http://forum.alpinelinux.org/packages
http://forum.alpinelinux.org/packages


135TECHNIQUE 52 The Go model of minimal containers

FROM gcc
RUN echo 'int main() { puts("Hello world!"); }' > hi.c
RUN gcc -static hi.c -w -o hi

The preceding Dockerfile compiles a simple “Hello world” program without depen-
dencies. You can now build it and extract that binary from the container, as shown in
the next listing.

$ docker build -t hello_build .
$ docker run --name hello hello_build /bin/true
$ docker cp hello:/hi new_folder
$ docker rm hello        
hello
$ docker rmi hello_build
Deleted: 6afcbf3a650d9d3a67c8d67c05a383e7602baecc9986854ef3e5b9c0069ae9f2

You now have a statically built binary in a fresh directory. Move to it with this command:

$ cd new_folder

Now create another Dockerfile, as shown in the next listing.

FROM scratch
ADD hi /hi
CMD ["/hi"]

Build and run it as shown in the following listing.

$ docker build -t hello_world .
Sending build context to Docker daemon 931.3 kB
Sending build context to Docker daemon
Step 0 : FROM scratch
--->

Step 1 : ADD hi /hi

Listing 5.12 Hello Dockerfile

Listing 5.13 Extract the binary from the image

Listing 5.14 Minimal Hello Dockerfile

Listing 5.15 Create the minimal container

The gcc image is an 
image designed for 
compiling.

A simple one-line C
program is created.Compile the program with the -static

flag, and suppress warnings with -w.

Build the image containing the
statically linked “hi” binary.

Run the image with a trivial 
command in order to copy out 
the binary.

Copy the “hi” binary into a 
new folder using the docker 
cp command.

Cleanup: you don’t 
need these anymore.

Use the zero-byte 
scratch image

Add the “hi” binary 
to the image

Default the image to
run the “hi” binary



136 CHAPTER 5 Configuration management—getting your house in order

---> 2fe834f724f8
Removing intermediate container 01f73ea277fb
Step 2 : ENTRYPOINT /hi
---> Running in 045e32673c7f
---> 5f8802ae5443

Removing intermediate container 045e32673c7f
Successfully built 5f8802ae5443
$ docker run hello_world
Hello world!
$ docker images | grep hello_world
hello_world latest 5f8802ae5443 24 seconds ago 928.3 kB

The image builds, runs, and weighs in at under 1 MB!

A MINIMAL GO WEB SERVER IMAGE

This is a relatively trivial example, but you can apply the same principle to programs
built in Go. An interesting feature of the Go language is that it’s relatively easy to build
such static binaries.

 To demonstrate this ability, we created a simple web server in Go whose code is
available at https://github.com/docker-in-practice/go-web-server.

 The Dockerfile for building this simple web server is shown in the following listing.

FROM golang:1.4.2
RUN CGO_ENABLED=0 go get \
-a -ldflags '-s' -installsuffix cgo \
github.com/docker-in-practice/go-web-server
CMD ["cat","/go/bin/go-web-server"]

If you save this Dockerfile into an empty directory and build it, you’ll now have an
image containing the program. Because you specified the default command of the
image to output the executable content, you now just need to run the image and send
the output to a file on your host, as the following listing shows.

$ docker build -t go-web-server .
$ mkdir -p go-web-server && cd go-web-server
$ docker run go-web-server > go-web-server
$ chmod +x go-web-server

Listing 5.16 Dockerfile to statically compile a Go web server

Listing 5.17 Get the Go web server from the image

This build is known to work against
this version number of the golang

image; if the build fails, it may be that
this version is no longer available.

The go get command retrieves the 
source code from the URL provided and 
compiles it locally. The CGO_ENABLED 
environment variable is set to 0 to 
prevent cross-compilation.

A number of
miscellaneous

flags to the Go
compiler ensure

static compilation
and reduce size.

The Go web 
server source 
code repository

Default the resuting image
to output the executable.

Builds and tags the image Makes and moves into 
a fresh directory to 
deposit the binary

Runs the image
and redirects the
binary output to

a file

Makes the binary 
executable

https://github.com/docker-in-practice/go-web-server


137TECHNIQUE 53 Using inotifywait to slim containers

Now, as with the “hi” binary, you have a binary with no library dependencies or need
to access the filesystem. We’re therefore going to create a Dockerfile from the zero-
byte scratch image and add the binary to it, as before:

FROM scratch
ADD go-web-server /go-web-server
ENTRYPOINT ["/go-web-server"]

Now build it and run the image. The resulting image is a little over 4 MB in size:

$ docker build -t go-web-server .
$ docker images | grep go-web-server
go-web-server latest de1187ee87f3 3 seconds ago 4.156 MB
$ docker run -p 8080:8080 go-web-server -port 8080

You can access it on http://localhost:8080. If the port is already in use, you can
replace the 8080s in the preceding code with a port of your choice. 

DOCKER REDUNDANT?

If you can bundle applications into one binary, why bother with Docker at all? You can
move the binary around, run multiple copies, and so on.

 You can do so if you want, but you’d lose the following:

■ All the container management tools in the Docker ecosystem
■ The metadata within the Docker images that document significant application

information, such as ports, volumes, and labels
■ The isolation that gives Docker its operational power 

TECHNIQUE 53 Using inotifywait to slim containers

We’re now going to take slimming our containers to the next level by using a nifty tool
that tells us what files are being referenced when we run a container.

 This could be called the nuclear option, as it can be quite risky to implement on
production. But it can be an instructive means of learning about your system, even if
you don’t follow through with using it for real—a crucial part of configuration man-
agement is understanding what your application requires to operate correctly.

PROBLEM
You want to reduce your container to the smallest possible set of files and permissions.

SOLUTION
Use inotify-tools to identify which files are needed, and then remove all others.

DISCUSSION
At a high level, you need to know what files are being accessed when you run a com-
mand in a container. If you remove all the other files on the container filesystem,
you’ll theoretically still have everything you need.

Adds the static binary 
to the image

Makes the binary the 
default program run 
by the image



138 CHAPTER 5 Configuration management—getting your house in order

 In this walkthrough, you’re going to use the log-cleaner-purged image from tech-
nique 50. You’ll install inotify-tools, and then run inotifywait to get a report on
which files were accessed. You’ll then run a simulation of the image’s entrypoint (the
log_clean script). Then, using the file report generated, you’ll remove any file that
hasn’t been accessed:

[host]$ docker run -ti --entrypoint /bin/bash \
--name reduce dockerinpractice/log-cleaner-purged
$ apt-get update && apt-get install -y inotify-tools
$ inotifywait -r -d -o /tmp/inotifywaitout.txt \
/bin /etc /lib /sbin /var
inotifywait[115]: Setting up watches. Beware: since -r was given, this

➥ may take a while!
inotifywait[115]: Watches established.
$ inotifywait -r -d -o /tmp/inotifywaitout.txt /usr/bin /usr/games \
/usr/include /usr/lib /usr/local /usr/sbin /usr/share /usr/src
inotifywait[118]: Setting up watches. Beware: since -r was given, this

➥ may take a while!
inotifywait[118]: Watches established.
$ sleep 5
$ cp /usr/bin/clean_log /tmp/clean_log
$ rm /tmp/clean_log
$ bash
$ echo "Cleaning logs over 0 days old"
$ find /log_dir -ctime "0" -name '*log' -exec rm {} \;
$ awk '{print $1$3}' /tmp/inotifywaitout.txt | sort -u > \
/tmp/inotify.txt
$ comm -2 -3 \
<(find /bin /etc /lib /sbin /var /usr -type f | sort) \
<(cat /tmp/inotify.txt) > /tmp/candidates.txt
$ cat /tmp/candidates.txt | xargs rm
$ exit
$ exit

At this point you’ve

■ Placed a watch on files to see what files are being accessed
■ Run all the commands to simulate the running of the script
■ Run commands to ensure you access the script you’ll definitely need, and the

rm utility

Override the default
entrypoint for this image.

Give the container a name 
you can refer to later.

Install the inotify-
tools package.

Run inotifywait in recursive (-r) 
and daemon (-d) mode to get a 
list of accessed files in the outfile 
(specified with the -o flag).

Specify the folders you’re 
interested in watching. Note that 
you don’t watch /tmp because 
the /tmp/inotifywaitout.txt 
would cause an infinite loop if it 
were itself watched.

Call inotifywait 
again on subfolders 
of the /usr folder. 
There are too many 
files in the /usr 
folder for inotifywait 
to handle, so you 
need to specify each 
one separately.

Sleep to give inotifywait a 
decent amount of time to 
start up.

Remember to access the one 
script file you’ll need to use. 
Also, ensure that you access 
the rm command.

Start a bash shell, as 
the script does, and 
run the commands the 
script would.

Use the awk utility to generate a 
list of filenames from the output 
of the inotifywait log, and turn it 
into a unique and sorted list.

Use the comm utility to output 
a list of files on the filesystem 
that were not accessed.

Remove all files
not accessed.

Exit the bash shell you started
and then the container itself.



139TECHNIQUE 54 Big can be beautiful

■ Gained a list of all files not accessed during the run
■ Removed all the non-accessed files

Now you can flatten this container (see technique 43) to create a new image and test
that it still works:

$ ID=$(docker export reduce | docker import -)
$ docker tag $ID smaller
$ docker images | grep smaller
smaller latest 2af3bde3836a 18 minutes ago 6.378 MB
$ mkdir -p /tmp/tmp
$ touch /tmp/tmp/a.log
$ docker run -v /tmp/tmp:/log_dir smaller \
/usr/bin/clean_log 0
Cleaning logs over 0 days old
$ ls /tmp/tmp/a.log
ls: cannot access /tmp/tmp/a.log: No such file or directory

We reduced the size of this image from 96 MB to around 6.5 MB, and it still appears to
work. Quite a saving!

RISKY! This technique, like overclocking your CPU, is not an optimization for
the unwary. This particular example works well because it’s an application
that’s quite limited in scope, but your mission-critical business application is
likely to be more complex and dynamic in how it accesses files. You could eas-
ily remove a file that wasn’t accessed on your run, but that is needed at some
other point.

If you’re a little nervous of potentially breaking your image by removing files you’ll
need later, you can use the /tmp/candidates.txt file to get a list of the biggest files that
were untouched, like this:

cat /tmp/candidates.txt | xargs wc -c | sort -n | tail

You can then remove the larger files that you’re sure won’t be needed by your applica-
tion. There can be big wins here, too!

TECHNIQUE 54 Big can be beautiful

Although this section is about keeping images small, it’s worth remembering that
small is not necessarily better. As we’ll discuss, a relatively large monolithic image can
be more efficient than a small one.

PROBLEM
You want to reduce disk space usage and network bandwidth due to Docker images.

Flatten the image and put
the ID into the variable ID.

Tag the newly
flattened image

as smaller.

The image is
now less than

10% of its
previous size.

Create a new folder and file 
to simulate a log directory 
for testing.

Run the newly
created image over

the test directory
and check that the

file created has
been removed.



140 CHAPTER 5 Configuration management—getting your house in order

SOLUTION
Create a universal, large, monolithic base image for your organization.

DISCUSSION
It’s paradoxical, but a large monolithic image could save you disk space and network
bandwidth.

 Recall that Docker uses a copy-on-write mechanism when its containers are run-
ning. This means that you could have hundreds of Ubuntu containers running, but
only a small amount of additional disk space is used for each container started.

 If you have lots of different, smaller images on your Docker server, as in figure 5.2,
more disk space may be used than if you have one larger monolithic image with every-
thing you need in it.

Example server with heterogeneous
images used as project images

The various images duplicate
effectively identical core
applications, wasting space
and network bandwidth as
they’re moved around
and stored.

Example server with small bespoke images for special
cases and a monolithic corporate image. The total
space and bandwidth used is significantly lower.

BusyBox
(2.5 MB)

BusyBox
(2.5 MB)

Small layer delta for
project-specific need

Corporate image
(500 MB)

Small layer delta for
project-specific need

Small layer delta for
project-specific need

Node
(700 MB)

Ubuntu: 14.04
(200 MB)

Ubuntu: 12.04
(200 MB)

Debian
(80 MB)

Figure 5.2 Many small base images vs. fewer large base images



141Summary

You may be reminded of the principle of a shared library. A shared library can be
loaded by multiple applications at once, reducing the amount of disk and memory
needed to run the required programs. In the same way, a shared base image for your
organization can save space, as it only needs to be downloaded once and should con-
tain everything you need. Programs and libraries previously required in multiple
images are now only required once.

 In addition, there can be other benefits of having a monolithic, centrally managed
image shared across teams. The maintenance of this image can be centralized,
improvements can be shared, and issues with the build need only be solved once.

 If you’re going to adopt this technique, here are some things to watch out for:

■ The base image should be reliable first. If it doesn’t behave consistently, the
users will avoid using it.

■ Changes to the base image must be tracked somewhere that’s visible so that
users can debug problems themselves.

■ Regression tests are essential to reduce confusion when updating the vanilla
image.

■ Be careful about what you add to the base—once it’s in the base image, it’s hard
to remove, and the image can bloat fast.

We used this technique to great effect in our 600-strong development company. A
monthly build of core applications was bundled into a large image and published on
the internal Docker registry. Teams would build on the so-called “vanilla” corporate
image by default, and create bespoke layers if necessary on top of that. 

5.4 Summary
This chapter has shown how you can manage the configuration of your Docker
images, a key aspect of any Docker workflow. We looked at how you can use your exist-
ing processes within the official Docker recommended route, and at some best prac-
tices for building your images.

 We’ve discussed how

■ You can extend the flexibility of Dockerfiles if you’re feeling limited.
■ It’s possible to remove secrets from the lower layers of images by flattening

them.
■ Dockerfiles are not mutually exclusive with more traditional configuration

management tools like Chef.
■ You should aim to make your images as small as is reasonably possible.

Now that you’ve got your Docker images in some kind of order, it’s time to think
about how these images can be shared with others, laying the groundwork for tech-
niques that facilitate continuous delivery and integration.

 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Part 3

Docker and DevOps

Now you’re ready to take Docker beyond your development environment
and start using it in other phases of software delivery. Build and testing automa-
tion are cornerstones of the DevOps movement. We’ll demonstrate Docker’s
power through automation of the software delivery lifecycle, deployments, and
realistic environment testing. Chapter 6 will show various techniques to deliver
and improve continuous integration, making your software deliveries both more
reliable and scalable. Continuous delivery is the focus of Chapter 7. We explain
what continuous delivery is, and look at ways in which Docker can be used to
improve this aspect of your development pipeline. Chapter 8 covers how to har-
ness Docker’s networking model to full effect, creating multi-container services,
simulation of realistic networks, and creation of networks on demand. This part
takes you from development all the way to the point where you can think about
running Docker in production.

 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 



145

Continuous integration:
 speeding up your

 development pipeline

In this chapter we’re going to look at various techniques that will use Docker to
enable and improve your CI efforts.

 By now you should understand how Docker is well suited to being used for auto-
mation. Its lightweight nature and the power it gives you to port environments
from one place to another can make it a key enabler of continuous integration
(CI). We’ve found the techniques in this chapter to be invaluable in making a CI
process feasible within a business.

This chapter covers
■ Using the Docker Hub workflow as a CI tool
■ Speeding up your IO-heavy builds
■ Using Selenium for automated testing
■ Running Jenkins within Docker
■ Using Docker as a Jenkins slave
■ Scaling your available compute with your dev team



146 CHAPTER 6 Continuous integration: speeding up your development pipeline

 Making your build environment stable and reproducible, using testing tools
requiring significant setup, and expanding your build capacity are all problems you
may face, and Docker can help.

CONTINUOUS INTEGRATION In case you don’t know, continuous integration is a
software lifecycle strategy used to speed up the development pipeline. By
automatically rerunning tests every time a significant change is made to the
codebase, you get faster and more stable deliveries because there’s a base
level of stability in the software being delivered.

6.1 Docker Hub automated builds
The Docker Hub automated build feature was mentioned in technique 9, though we
didn’t go into any detail on it. In short, if you point to a Git repository containing a
Dockerfile, the Docker Hub will handle the process of building the image and making
it available to download. An image rebuild will be triggered on any changes in the Git
repository, making this quite useful as part of a CI process.

TECHNIQUE 55 Using the Docker Hub workflow

This technique introduces you to the Docker Hub workflow, which enables you to trig-
ger rebuilds of your images.

DOCKER.COM ACCOUNT REQUIRED For this section you’ll need an account on
docker.com linked to either a GitHub or a Bitbucket account. If you don’t
already have these set up and linked, instructions are available from the
homepages of github.com and bitbucket.org.

PROBLEM
You want to automatically test and push changes to your image when the code changes.

SOLUTION
Set up a Docker Hub repository and link it to your code.

DISCUSSION
Although the Docker Hub build isn’t complicated, there are a number of steps
required, so we’ve broken them up into bite-sized chunks in table 6.1, which serves as
an overview of the process.

Table 6.1 Setting up a linked Docker Hub repository

Number Step

1 Create your repository on GitHub or Bitbucket

2 Clone the new Git repository

3 Add code to your Git repository

4 Commit the source

5 Push the Git repository



147TECHNIQUE 55 Using the Docker Hub workflow

GIT AND DOCKER REPOSITORIES Both Git and Docker use the term repository to
refer to a project. This can confuse people. A Git repository and a Docker
repository are not the same thing, even though here we’re linking the two
types of repositories.

1. CREATE YOUR REPOSITORY ON GITHUB OR BITBUCKET

Create a new repository on GitHub or Bitbucket. You can give it any name you want. 

2. CLONE THE NEW GIT REPOSITORY

Clone your new Git repository to your host machine. The command for this will be
available from the Git project’s homepage.

 Change directory into this repository. 

3. ADD CODE TO YOUR GIT REPOSITORY

Now you need to add code to the project.
 You can add any Dockerfile you like, but the following listing shows an example

known to work. It consists of two files representing a simple dev tools environment. It
installs some preferred utilities and outputs the bash version you have.

FROM ubuntu:14.04
ENV DEBIAN_FRONTEND noninteractive
RUN apt-get update
RUN apt-get install -y curl             
RUN apt-get install -y nmap             
RUN apt-get install -y socat            
RUN apt-get install -y openssh-client   
RUN apt-get install -y openssl          
RUN apt-get install -y iotop            
RUN apt-get install -y strace           
RUN apt-get install -y tcpdump          
RUN apt-get install -y lsof             
RUN apt-get install -y inotify-tools    
RUN apt-get install -y sysstat          
RUN apt-get install -y build-essential  
RUN echo "source /root/bash_extra" >> /root/.bashrc
ADD bash_extra /root/bash_extra
CMD ["/bin/bash"]

6 Create a new repository on the Docker Hub

7 Link the Docker Hub repository to the Git repository

8 Wait for the Docker Hub build to complete

9 Commit and push a change to the source

10 Wait for the second Docker Hub build to complete

Listing 6.1 Dockerfile—simple dev tools container

Table 6.1 Setting up a linked Docker Hub repository (continued)

Number Step

Install useful 
packages.

Add a line to 
the root’s 
bashrc to source 
bash_extra.

Add
bash_extra

from the
source to the

container.



148 CHAPTER 6 Continuous integration: speeding up your development pipeline

Now you need to add the bash_extra file you referenced and give it the content shown
in the next listing.

bash --version

4. COMMIT THE SOURCE

To commit your source code source, use this command:

git commit -am "Initial commit"

5. PUSH THE GIT REPOSITORY

Now you can push the source to the Git server with this command:

git push origin master

6. CREATE A NEW REPOSITORY ON THE DOCKER HUB

Next you need to create a repository for this project on the Docker Hub. Go to
https://hub.docker.com and ensure you’re logged in. Then click on Add Reposi-
tory and choose Automated Build. 

7. LINK THE DOCKER HUB REPOSITORY TO THE GIT REPOSITORY

You’ll see a screen with a choice of Git services. Pick the source code service you use
(GitHub or Bitbucket) and select your new repository from the provided list. (If this
step doesn’t work for you, you may need to set up the link between your Docker Hub
account and the Git service.)

 You’ll see a page with options for the build configuration. You can leave the
defaults and click Create Repository at the bottom. 

8. WAIT FOR THE DOCKER HUB BUILD TO COMPLETE

You’ll see a page with a message explaining that the link worked. Click on the Build
Details link.

 Next, you’ll see a page that shows the details of the builds. Under Builds History
there will be an entry for this first build. If you don’t see anything listed, you may need
to press the button to trigger the build manually. The Status field next to the build ID
will show Pending, Finished, Building, or Error. If all is well, you’ll see one of the first
three. If you see Error, then something has gone wrong and you’ll need to click on the
build ID to see what the error was.

BUILDING CAN TAKE TIME It can take a while for the build to start, so seeing
Pending for some time while waiting is perfectly normal.

Click Refresh periodically until you see that the build has completed. Once it’s com-
plete, you can pull the image with the docker pull command listed on the top of the
same page. 

Listing 6.2 bash_extra—extra bash commands

https://hub.docker.com


149TECHNIQUE 56 Speed up I/O-intensive builds with eatmydata

9. COMMIT AND PUSH A CHANGE TO THE SOURCE

Now you decide that you want more information about your environment when you
log in, so you want to output the details of the distribution you’re running in. To
achieve this, add these lines to your bash_extra file so that it now looks like this:

bash --version
cat /etc/issue

Then commit and push as in steps 4 and 5. 

10. WAIT FOR THE (SECOND) DOCKER HUB BUILD TO COMPLETE

If you return to the build page, a new line should show up under the Builds History
section, and you can follow this build as in step 8.

EMAIL RECEIVED ON ERROR ONLY You’ll be emailed if there’s an error with
your build (no email if all is OK), so once you’re used to this workflow, you
only need to check up on it if you receive an email.

You can now use the Docker Hub workflow! You’ll quickly get used to this framework
and find it invaluable for keeping your builds up to date and reducing the cognitive
load of rebuilding Dockerfiles by hand. 

6.2 More efficient builds
CI implies a more frequent rebuilding of your software and tests. Although Docker
makes delivering CI easier, the next problem you may bump into is the resulting
increased load on your compute resources.

 We’ll look at ways to alleviate this pressure in terms of disk I/O, network band-
width, and automated testing.

TECHNIQUE 56 Speed up I/O-intensive builds with eatmydata

Because Docker is a great fit for automated building, you’ll likely perform a lot of
disk-I/O-intensive builds as time goes on. Jenkins jobs, database rebuild scripts, and
large code checkouts will all hit your disks hard. In these cases, you’ll be grateful for
any speed increases you can get, both to save time and to minimize the many over-
heads that result from resource contention.

 This technique has been shown to give up to a 1/3 speed increase, and our experi-
ence backs this up. This is not to be sniffed at!

PROBLEM
You want to speed up your I/O-intensive builds.

SOLUTION
Install eatmydata on your image.

DISCUSSION
eatmydata is a program that takes your system calls to write data and makes them
super-fast by bypassing work required to persist those changes. This entails some lack
of safety, so it’s not recommended for normal use, but it’s quite useful for environ-
ments not designed to persist, such as in testing.



150 CHAPTER 6 Continuous integration: speeding up your development pipeline

INSTALLATION

To install eatmydata, you have a number of options.
 If you’re running a deb-based distribution, you can apt-get install it. 
 If you’re running an rpm-based distribution, you’ll be able to rpm --install it by

searching for it on the web and downloading it. Websites such as rpmfind.net are a
good place to start.

 As a last resort, and if you have a compiler installed, you can download and com-
pile it directly as shown in the next listing.

$ url=https://www.flamingspork.com/projects/libeatmydata/

➥ libeatmydata-105.tar.gz
$ wget -qO- $url | tar -zxf -
$ ./configure --prefix=/usr
$ make
$ sudo make install

USING EATMYDATA

Once libeatmydata is installed on your image (either from a package or from source),
run the eatmydata wrapper script before any command to take advantage of it:

docker run -d mybuildautomation eatmydata /run_tests.sh

Figure 6.1 shows at a high level how eatmydata saves you processing time.

Listing 6.3 Compile and install eatmydata

Flamingspork.com is the 
website of the maintainer.

If this version
doesn’t

download,
check on the

website to see
whether it’s

been updated
to a number

later than 105.

Change the prefix directory if 
you want the eatmydata 
executable to be installed 
somewhere other than /usr/bin.

Build the 
eatmydata 
executable.

Install the software; this
step requires root privileges.

Normally there are two ways to ensure
a file written by an application is stored
on the disk. One: tell the OS that a write
has to be made; it will cache the data until
it's ready to write to disk. Two: force the
write to disk using various system call
combinations; the command won't return
until the file is stored. Applications that
care about data integrity tend to use
the forcing system calls.

Buffers
(libc, OS)

fsync and related
system calls

fsync and related system
calls do nothing

Disk
Application
writes file

eatmydata ensures that forcing system
calls do nothing. Applications that use
these calls will then run more quickly,
as they don't have to stop and wait for
the write to disk. If there's a crash,
data may be in an inconsistent state
and unrecoverable.

Buffers
(libc, OS)Disk

Application
writes file

Figure 6.1 Application writes to disk without and with eatmydata



151TECHNIQUE 57 Set up a package cache for faster builds

USE WITH CAUTION! eatmydata skips the steps to guarantee that data is safely
written to disk, so there’s a risk that data will not yet be on disk when the pro-
gram thinks it is. For test runs, this usually doesn’t matter, because the data is
disposable, but don’t use eatmydata to speed up any kind of environment
where the data matters!

TECHNIQUE 57 Set up a package cache for faster builds

As Docker lends itself to frequent rebuilding of services for development, testing, and
production, you can quickly get to a point where you’re repeatedly hitting the net-
work a lot. One major cause is downloading package files from the internet. This can
be a slow (and costly) overhead, even on a single machine. This technique shows you
how to set up a local cache for your package downloads, covering apt and yum.

PROBLEM
You want to speed up your builds by reducing network I/O.

SOLUTION
Install a Squid proxy for your package manager.

DISCUSSION
Figure 6.2 illustrates how this technique works in the abstract.

A Squid proxy running on the
host. (The proxy could be run
within a Docker container with
a mounted volume, or on
another server entirely.)

A software package is normally
retrieved over the internet.

Container 1 makes a request
for a particular package through
the Squid proxy. At the first
request, the proxy will request
the package from the source
server and store it locally.

If the other two containers later
make the same request, the Squid
proxy serves them the cached
version. The network request
to the package source server
is made only once.

Package
source server

Container 1 Container 3Container 2

Host

Squid
proxy

Figure 6.2 Using a Squid proxy to cache packages



152 CHAPTER 6 Continuous integration: speeding up your development pipeline

Because the calls for packages go to the local Squid proxy first, and are only requested
over the internet the first time, there should only be one request over the internet for
each package. If you have hundreds of containers all pulling down the same large
packages from the internet, this can save you a lot of time and money.

NETWORK SETUP! You may have network configuration issues when setting
this up on your host. Advice is given in the following sections to determine
whether this is the case, but if you’re unsure how to proceed, you may need to
seek help from a friendly network admin.

DEBIAN

For Debian (otherwise known as apt or .deb) packages, the setup is simpler because
there is a prepackaged version.

 On your Debian-based host run this command:

sudo apt-get install squid-deb-proxy

Ensure that the service is started by telneting to port 8000:

$ telnet localhost 8000
Trying ::1...
Connected to localhost.
Escape character is '^]'.

Press Ctrl-] followed by Ctrl-d to quit if you see the preceding output. If you don’t see
this output, then Squid has either not installed properly, or it has installed on a non-
standard port.

 To set up your container to use this proxy, we’ve provided the following example
Dockerfile. Bear in mind that the IP address of the host from the point of view of the
container may change from run to run. You may want to convert this Dockerfile to a
script to be run from within the container before installing new software:

FROM debian
RUN apt-get update -y && apt-get install net-tools
RUN echo "Acquire::http::Proxy \"http://$( \
route -n | awk '/^0.0.0.0/ {print $2}' \
):8000\";" \
> /etc/apt/apt.conf.d/30proxy
RUN echo "Acquire::http::Proxy::ppa.launchpad.net DIRECT;" >> \

/etc/apt/apt.conf.d/30proxy
CMD ["/bin/bash"]

YUM

On the host, ensure Squid is installed by installing the “squid” package with your pack-
age manager. 

Ensure the route 
tool is installed.

In order to determine 
the host’s IP address 
from the point of view 
of the container, run 
the route command 
and use awk to extract 
the relevant IP address 
from the output (see 
technique 59).

Port 8000
 is used to
connect to
the Squid

proxy on the
host machine.

The echoed lines with the appropriate IP
address and configuration are added to

apt’s proxy configuration file.



153TECHNIQUE 57 Set up a package cache for faster builds

 Then you need to change the Squid configuration to create a larger cache space.
Open up the /etc/squid/squid.conf file and replace the commented line beginning
with #cache_dir ufs /var/spool/squid with this: cache_dir ufs /var/spool/
squid 10000 16 256. This creates a space of 10,000 MB, which should be sufficient.

 Ensure the service is started by telneting to port 3128:

$ telnet localhost 3128
Trying ::1...
Connected to localhost.
Escape character is '^]'.

Press Ctrl-] followed by Ctrl-d to quit if you see the preceding output. If you don’t see
this output, then Squid has either not installed properly, or has installed on a nonstan-
dard port.

 To set up your container to use this proxy, we’ve provided the following example
Dockerfile. Bear in mind that the IP address of the host from the point of view of the
container may change from run to run. You may want to convert this Dockerfile to a
script to be run from within the container before installing new software:

FROM centos:centos7
RUN yum update -y && yum install -y net-tools
RUN echo "proxy=http://$(route -n | \
awk '/^0.0.0.0/ {print $2}'):3128" >> /etc/yum.conf
RUN sed -i 's/^mirrorlist/#mirrorlist/' \
/etc/yum.repos.d/CentOS-Base.repo                   
RUN sed -i 's/^#baseurl/baseurl/' \                   
/etc/yum.repos.d/CentOS-Base.repo             
RUN rm -f /etc/yum/pluginconf.d/fastestmirror.conf
RUN yum update -y
CMD ["/bin/bash"]

If you set up two containers this way and install the same large package on both, one
after the other, you should notice that the second installation downloads its prerequi-
sites much quicker than the first.

DOCKERIZE THE SQUID PROXY You may have observed that you can run the
Squid proxy on a container rather than on the host. That option wasn’t
shown here to keep the explanation simple (in some cases, more steps are
required to make Squid work within a container). You can read more about
this, along with how to make containers automatically use the proxy, at
https://github.com/jpetazzo/squid-in-a-can. 

Ensure the
route tool

is installed.

In order to determine the host’s IP address
from the point of view of the container, run
the route command and use awk to extract

the relevant IP address from the output. Port 3128 is used 
to connect to the 
Squid proxy on the 
host machine.

To avoid cache misses 
where possible, remove 
the mirror lists and use 
the base URLs only. This 
ensures you only hit 
one set of URLs to fetch 
packages, and you’re 
therefore more likely to 
hit the cached file.

Remove the
fastestmirror
plugin as it’s

no longer
required.

Ensure the mirrors are checked.
When running yum update, the

mirrors listed in the config files may
have out-of-date information so the

first update will be slow.

https://github.com/jpetazzo/squid-in-a-can


154 CHAPTER 6 Continuous integration: speeding up your development pipeline

TECHNIQUE 58 Running Selenium tests inside Docker

One Docker use case we haven’t yet examined in much detail is running graphical
applications. In chapter 3, VNC was used to connect to containers during the “save
game” approach to development (technique 14), but this can be clunky—windows are
contained inside the VNC viewer window, and desktop interaction can be a little lim-
ited. We’ll explore an alternative to this by demonstrating how to write graphical tests
using Selenium and also show you how this image can be used to run the tests as part
of your CI workflow.

PROBLEM
You want to be able to run graphical programs in your CI process while having the
option to display those same graphical programs on your own screen.

SOLUTION
Share your X11 server socket to view the programs on your own screen, and use xvfb
in your CI process.

DISCUSSION
No matter what other things you need to do to start your container, you must have the
Unix socket that X11 uses to display your windows mounted as a volume inside the
container, and you need to indicate which display your windows should be shown on.
You can double-check whether these two things are set to their defaults by running
the following commands:

~ $ ls /tmp/.X11-unix/
X0
~ $ echo $DISPLAY
:0

The first command checks that the X11 server Unix socket is running in the location
assumed for the rest of the technique. The second command checks the environment
variable applications used to find the X11 socket. If your output for these commands
doesn’t match the output here, you may need to alter some arguments to the com-
mands in this technique.

 Now that you’ve checked your machine setup, you want to get applications run-
ning inside a container to be seamlessly displayed outside the container. The main
problem you need to overcome is the security that your computer puts in place to pre-
vent other people from connecting to your machine, taking over your display, and
potentially recording your keystrokes. In technique 26 you briefly saw how to do this,
but we didn’t talk about how it worked or look at any alternatives.

 X11 has multiple ways of authenticating a container to use your X socket. First we’ll
look at the .Xauthority file—it should be present in your home directory. It contains
hostnames along with the “secret cookie” each host must use to connect. By giving
your Docker container the same hostname as your machine, you can use your existing
X authority file:



155TECHNIQUE 58 Running Selenium tests inside Docker

$ ls $HOME/.Xauthority
/home/myuser/.Xauthority
$ docker run -e DISPLAY=$DISPLAY -v /tmp/.X11-unix:/tmp/.X11-unix \

--hostname=$HOSTNAME -v $HOME/.Xauthority:/root/.Xauthority \
-it ubuntu:14.04 bash

The second method of allowing Docker to access the socket is a much blunter instru-
ment and it has security issues, as it disables all the protection X gives you. If nobody
has access to your computer, this may be an acceptable solution, but you should always
try to use the X authority file first. You can secure yourself again after you try the fol-
lowing steps by running xhost - (though this will lock out your Docker container): 

$ xhost +
access control disabled, clients can connect from any host
$ docker run -e DISPLAY=$DISPLAY -v /tmp/.X11-unix:/tmp/.X11-unix \

-it ubuntu:14.04 bash

The first line disables all access control to X, and the second runs the container. Note
that you don’t have to set the hostname or mount anything apart from the X socket.

 Once you’ve started up your container, it’s time to check that it works. You can do
this by running the following commands:

root@ef351febcee4:/# apt-get update && apt-get install -y x11-apps
[...]
root@ef351febcee4:/# xeyes

This will start up a classic application that tests whether X is working—xeyes. You
should see the eyes follow your cursor as you move it around the screen. Note that
(unlike VNC) the application is integrated into your desktop—if you were to start
xeyes multiple times, you’d see multiple windows.

 It’s time to get started with Selenium. If you’ve never used it before, it’s a tool with
the ability to automate browser actions and is commonly used to test website code—it
needs a graphical display for the browser to run in. Although it’s most commonly used
with Java, we’re going to use Python to allow more interactivity:

root@ef351febcee4:/# apt-get install -y python2.7 python-pip firefox
[...]
root@ef351febcee4:/# pip install selenium
Downloading/unpacking selenium==2.47.3
[...]
Successfully installed selenium==2.47.3
Cleaning up...
root@ef351febcee4:/# python
Python 2.7.6 (default, Mar 22 2014, 22:59:56)
[GCC 4.8.2] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> from selenium import webdriver
>>> b = webdriver.Firefox()



156 CHAPTER 6 Continuous integration: speeding up your development pipeline

As you may have noticed, Firefox has launched and appeared on your screen! All the
preceding code does is install Python, Firefox, and a Python package manager. It then
uses the Python package manager to install the Selenium Python package.

 You can now experiment with Selenium. An example session running against
GitHub follows—you’ll need a basic understanding of CSS selectors to understand
what’s going on here. Note that websites frequently change, so this particular snippet
may need modifying to work correctly:

>>> b.get('http://github.com')
>>> searchselector = '.js-site-search-form input[type="text"]'
>>> searchbox = b.find_element_by_css_selector(searchselector)
>>> searchbox.send_keys('docker-in-practice\n')
>>> usersxpath = '//nav//a[contains(text(), "Users")]'
>>> userslink = b.find_element_by_xpath(usersxpath)
>>> userslink.click()
>>> dlinkselector = '.user-list-info a'
>>> dlink = b.find_elements_by_css_selector(dlinkselector)[0]
>>> dlink.click()
>>> mlinkselector = '.org-header a.meta-link'
>>> mlink = b.find_element_by_css_selector(mlinkselector)
>>> mlink.click()

The details here aren’t important. Just note that we’re writing commands in Python in
our container and seeing them take effect in the Firefox window running inside the
container, but visible on the desktop.

 This is great for debugging tests you write, but how would you integrate them into
a CI pipeline with the same Docker image? A CI server typically doesn’t have a graphi-
cal display, so you need to make this work without mounting your own X server socket,
but Firefox still needs an X server to run on. There’s a useful tool created for situa-
tions like this called xvfb, which pretends to have an X server running for applications
to use, but doesn’t require a monitor.

 To see how this works, let’s install xvfb, commit the container, tag it as selenium,
and create a test script:

>>> exit()
root@ef351febcee4:/# apt-get install -y xvfb
[...]
root@ef351febcee4:/# exit
$ docker commit ef351febcee4 selenium
d1cbfbc76790cae5f4ae95805a8ca4fc4cd1353c72d7a90b90ccfb79de4f2f9b
$ cat > myscript.py << EOF
from selenium import webdriver
b = webdriver.Firefox()
print 'Visiting github'
b.get('http://github.com')
print 'Performing search'
searchselector = '.js-site-search-form input[type="text"]'
searchbox = b.find_element_by_css_selector(searchselector)
searchbox.send_keys('docker-in-practice\n')



157TECHNIQUE 58 Running Selenium tests inside Docker

print 'Switching to user search'
usersxpath = '//nav//a[contains(text(), "Users")]'
userslink = b.find_element_by_xpath(usersxpath)
userslink.click()
print 'Opening docker in practice user page'
dlinkselector = '.user-list-info a'
dlink = b.find_elements_by_css_selector(dlinkselector)[99]
dlink.click()
print 'Visiting docker in practice site'
mlinkselector = '.org-header a.meta-link'
mlink = b.find_element_by_css_selector(mlinkselector)
mlink.click()
print 'Done!'
EOF

Note the subtle difference in the assignment of the dlink variable. By attempting to
get the hundredth result containing the text “Docker in Practice,” you’ll trigger an
error, which will cause the Docker container to exit with a non-zero status and trigger
failures in the CI pipeline.

 Time to try it out:

$ docker run --rm -v $(pwd):/mnt selenium sh -c \
"xvfb-run -s '-screen 0 1024x768x24 -extension RANDR'\
python /mnt/myscript.py"
Visiting github
Performing search
Switching to user search
Opening docker in practice user page
Traceback (most recent call last):

File "myscript.py", line 15, in <module>
dlink = b.find_elements_by_css_selector(dlinkselector)[99]
IndexError: list index out of range

$ echo $?
1

You’ve run a self-removing container that executes the Python test script running
under a virtual X server. As expected, it failed and returned a non-zero exit code.

CMD VS. ENTRYPOINT The sh -c "command string here" is an unfortunate
result of how Docker treats CMD values by default. If you were to put this in a
Dockerfile, you’d be able to remove the sh -c and make xvfb-run the
entrypoint, allowing you to run whatever test scripts you’d like. 

As has been demonstrated, Docker is a flexible tool and can be put to some initially
surprising uses (graphical apps in this case). Some people run all of their graphical
apps inside Docker, including games! We wouldn’t go that far, but we’ve found that re-
examining assumptions about Docker can lead to some surprising use cases. 



158 CHAPTER 6 Continuous integration: speeding up your development pipeline

6.3 Containerizing your CI process
Once you have a consistent development process across teams, it’s important to also
have a consistent build process. Randomly failing builds defeat the point of Docker.

 As a result, it makes sense to containerize your entire CI process. This not only makes
sure your builds are repeatable, it allows you to move your CI process anywhere with-
out fear of leaving some vital piece of configuration behind (likely discovered with
much frustration later).

 In these techniques, we’ll use Jenkins (as this is the most widely used CI tool), but
the same techniques should apply to other CI tools. We don’t assume a great deal of
familiarity with Jenkins here, but we won’t cover setting up standard tests and builds.
That information is not essential to the techniques here.

TECHNIQUE 59 Containing a complex development environment

Docker’s portability and lightweight nature make it an obvious choice for a CI slave (a
machine the CI master connects to in order to carry out builds). A Docker CI slave is a
step change from a VM slave (and is even more of a leap from bare-metal build
machines). It allows you to perform builds on a multitude of environments with a single
host, to quickly tear down and bring up clean environments to ensure uncontaminated
builds, and to use all your familiar Docker tooling to manage your build environments.

 Being able to treat the CI slave as just another Docker container is particularly
interesting. Have mysterious build failures on one of your Docker CI slaves? Pull the
image and try the build yourself.

PROBLEM
You want to scale and modify your Jenkins slave.

SOLUTION
Encapsulate the configuration of your slave in a Docker image, and deploy.

DISCUSSION
Many organizations set up a heavyweight Jenkins slave (often on the same host as the
server), maintained by a central IT function, that serves a useful purpose for a time. As
time goes on, and teams grow their codebases and diverge, requirements grow for
more and more software to be installed, updated, or altered so that the jobs will run.

 Figure 6.3 shows a simplified version of this scenario. Imagine hundreds of soft-
ware packages and multiple new requests all giving an overworked infrastructure team
headaches.

ILLUSTRATIVE, NON-PORTABLE EXAMPLE This technique has been constructed
to show you the essentials of running a Jenkins slave in a container. This
makes the result less portable but the lesson easier to grasp. Once you under-
stand all the techniques in this chapter, you’ll be able to make a more porta-
ble setup.



159TECHNIQUE 59 Containing a complex development environment

Stalemate has been known to ensue, because sysadmins may be reluctant to update
their configuration management scripts for one group of people as they fear breaking
another’s build, and teams get increasingly frustrated over the slowness of change.

 Docker (naturally) offers a solution by allowing multiple teams to use a base image
for their own personal Jenkins slave, while using the same hardware as before. You can
create an image with the required shared tooling on it, and allow teams to alter it to
meet their own needs.

 Some contributors have uploaded their own reference slaves on the Docker Hub;
you can find them by searching for “jenkins slave” on the Docker Hub. The following
listing is a minimal Jenkins slave Dockerfile.

FROM ubuntu
ENV DEBIAN_FRONTEND noninteractive
RUN groupadd -g 1000 jenkins_slave
RUN useradd -d /home/jenkins_slave -s /bin/bash \
-m jenkins_slave -u 1000 -g jenkins_slave
RUN echo jenkins_slave:jpass | chpasswd
RUN apt-get update && \
apt-get install -y openssh-server openjdk-7-jre wget
RUN mkdir -p /var/run/sshd       
CMD ip route | grep "default via" \      
| awk '{print $3}' && /usr/sbin/sshd -D

Listing 6.4 Bare-bones Jenkins slave Dockerfile

Host maintained by infrastructure

Python 2 Python 3

Kernel 3.16.0

Java 1.7 Postgres 7Java 1.8

Team A Team B Team C

Jenkins server
and slave

Figure 6.3 An overloaded 
Jenkins server

Create the
Jenkins slave

user and group. Set the Jenkins 
user password to 
jpass. In a more 
sophisticated 
setup, you’d likely 
want to use other 
authentication 
methods.

Install the
required software

to function as a
Jenkins slave.

On startup, output the IP address of the
host machine from the point of view of
the container, and start the SSH server.



160 CHAPTER 6 Continuous integration: speeding up your development pipeline

Build the slave image, tagging it as jenkins_slave:

$ docker build -t jenkins_slave .

Run it with this command:

$ docker run --name jenkins_slave -ti -p 2222:22 jenkins_slave
172.17.42.1

If you navigate to the Jenkins server, you’ll be greeted with the page in figure 6.4.

Jenkins server needs to be running
If you don’t have a Jenkins server already running on your host, ensure you have the
Jenkins server running as in the previous technique. If you’re in a hurry, run this command:

$ docker run --name jenkins_server -p 8080:8080 -p 50000:50000 \
dockerinpractice/jenkins:server

This will make the Jenkins server available at http://localhost:8080 if you’ve run it
on your local machine.

Figure 6.4 Jenkins’ welcome page



161TECHNIQUE 59 Containing a complex development environment

You can add a slave by clicking on Build Executor Status > New Node and adding the
node name as a dumb slave, as shown in figure 6.5. Call it mydockerslave. 

 Click OK and configure it with these settings, as shown in figure 6.6:

■ Set Remote Root Directory to /home/jenkins_slave.
■ Click Advanced to expose the port field, and set it to 2222.
■ Click Add to add credentials, and set the username to jenkins_slave and the

password to jpass.
■ Make sure the Launch Slave Agents on Unix Machines Via SSH option is

selected.
■ Set the host to the route IP seen from within the container (output with the

docker run earlier).
■ Give it a Label of dockerslave.
■ Click Save.

Now click on Launch Slave Agent (assuming this doesn’t happen automatically) and
you should see that the slave agent is now marked as online.

 Go back to the home page by clicking on Jenkins in the top left, and click on New
Item. Create a Freestyle Project called test, and under the Build section click on Add
Build Step > Execute Shell, with the command echo done. Scroll up and select Restrict
Where Project Can Be Run and enter the Label Expression dockerslave. You should
see that Slaves In Label is set as 1. 

Figure 6.5 Naming a new node



162 CHAPTER 6 Continuous integration: speeding up your development pipeline

The job is now linked to the Docker slave. Click Build Now, then click the build that
appears below on the left, and then click Console Output, and you should see output
like this in the main window:

Started by user anonymous
Building remotely on testslave (dockerslave) in workspace
/home/jenkins_slave/workspace/ls
[ls] $ /bin/sh -xe /tmp/hudson4490746748063684780.sh
+ echo done
done
Finished: SUCCESS

Well done! You’ve successfully created your own Jenkins slave.
 Now if you want to create your own bespoke slave, all you need to do is alter the

slave image’s Dockerfile to your taste, and run that instead of the example one.

AVAILABLE ON GITHUB The code for this technique and related ones is avail-
able on GitHub at https://github.com/docker-in-practice/jenkins. 

TECHNIQUE 60 Running the Jenkins master within a Docker container

Putting the Jenkins master inside a container doesn’t have as many benefits as doing the
same for a slave, but it does give you the normal Docker win of immutable images.

Figure 6.6 Configuring the new node

https://github.com/docker-in-practice/jenkins


163TECHNIQUE 60 Running the Jenkins master within a Docker container

We’ve found that being able to commit known-good master configurations and plugins
eases the burden of experimentation significantly.

PROBLEM
You want a portable Jenkins server.

SOLUTION
Use a Jenkins Docker image.

DISCUSSION
Running Jenkins within a Docker container gives you some advantages over a straight-
forward host install. Cries of “Don’t touch my Jenkins server configuration!” or, even
worse, “Who touched my Jenkins server?” aren’t unheard of in our office, and being
able to clone the state of a Jenkins server with a docker export of the running con-
tainer to experiment with upgrades and changes helps silence these complaints. Simi-
larly, backups and porting become easier. 

 In this technique we’ll take the official Jenkins Docker image and make a few
changes to facilitate some later techniques that require the ability to access the
Docker socket, like doing a Docker build from Jenkins.

DIRECT FROM THE SOURCE The Jenkins-related examples from this book are
available on GitHub: git clone https://github.com/docker-in-practice/
jenkins.git.

A COMMON BASELINE This Jenkins image and its run command will be
used as the server in Jenkins-related techniques in this book.

BUILDING THE SERVER

We’ll first prepare a list of plugins we want for the server and place it in a file called
jenkins_plugins.txt:

swarm:1.22

This very short list consists of the Jenkins Swarm plugin (no relation to Docker
Swarm), which we’ll use in a later technique.

 The following listing shows the Dockerfile for building the Jenkins server.

FROM jenkins
COPY jenkins_plugins.txt /tmp/jenkins_plugins.txt
RUN /usr/local/bin/plugins.sh /tmp/jenkins_plugins.txt
USER root
RUN rm /tmp/jenkins_plugins.txt
RUN groupadd -g 142 docker
RUN addgroup -a jenkins docker
USER jenkins

Listing 6.5 Jenkins server build

Use the official Jenkins
image as a base.

Copy a list of
plugins to install.

Run the
plugins into
the server.

Switch to the root 
user and remove 
the plugins file.

Add the Docker group to the container with
 the same group ID as your host machine (the number may differ for you).

Switch back to
the Jenkins user
in the container.

https://github.com/docker-in-practice/jenkins.git
https://github.com/docker-in-practice/jenkins.git


164 CHAPTER 6 Continuous integration: speeding up your development pipeline

No CMD or ENTRYPOINT instruction is given because we want to inherit the startup com-
mand defined in the official Jenkins image.

 The group ID for Docker may be different on your host machine. To see what the
ID is for you, run this command to see the local group ID:

$ grep -w ^docker /etc/group
docker:x:142:imiell

Replace the value if it differs from 142.

MATCHING GROUP IDS ACROSS ENVIRONMENTS The group ID must match on
the Jenkins server environment and your slave environment if you plan to run
Docker from within the Jenkins Docker container. If you do, there will be a
potential portability issue if you choose to move the server (you’d encounter
the same issue on a native server install). Environment variables won’t help
here by themselves, as the group needs to be set up at build time rather than
being dynamically configured.

To build the image in this scenario, run this command:

docker build -t jenkins_server .

RUNNING THE SERVER

Now you can run the server under Docker with this command:

docker run --name jenkins_server -p 8080:8080 \
-p 50000:50000 \
-v /var/run/docker.sock:/var/run/docker.sock \
-v /tmp:/var/jenkins_home \
-d \
jenkins_server

If you access http://localhost:8080, you’ll see the Jenkins server ready to go with your
plugins already installed. To check this, go to Manage Jenkins > Manage Plugins >
Installed and look for Swarm to verify that it’s installed.

AVAILABLE ON GITHUB The code for this technique and related ones is avail-
able on GitHub at https://github.com/docker-in-practice/jenkins. 

TECHNIQUE 61 Scale your CI with Jenkins’ Swarm plugin

Being able to reproduce environments is a big win, but your build capacity is still con-
strained by the number of dedicated build machines you have available. If you want to
do experiments on different environments with the newfound flexibility of Docker

This opens up the 
Jenkins server port to 
the host’s port 8080.

If you want to attach build slave 
servers, port 50000 needs to be 
open on the container.

Mount the
Docker socket

so you can
interact with

the Docker
daemon from

within the
container.

Mount the Jenkins application data to the 
host machine /tmp so that you don’t get file 
permission errors. If you’re using this in 
anger, look at running it mounting a folder 
that’s writeable by any user.

Run the server
as a daemon.

https://github.com/docker-in-practice/jenkins


165TECHNIQUE 61 Scale your CI with Jenkins’ Swarm plugin

slaves, this may become frustrating. Capacity can also become a problem for more
mundane reasons—the growth of your team!

PROBLEM
You want your CI compute to scale up with your development work rate.

SOLUTION
Use Jenkins’ Swarm plugin and a Docker swarm slave to dynamically provision Jenkins
slaves.

DISCUSSION
Many small- to medium-sized businesses have a model for CI where there are one or
more Jenkins servers devoted to supplying the resources required to run Jenkins jobs.
This is illustrated in figure 6.7.

 This works fine for a time, but as the CI processes become more embedded, the
capacity limits are often reached. Most Jenkins workloads are triggered off check-ins
to source control, so as more developers check in, the workload increases. The num-
ber of complaints to the ops team then explodes as busy developers impatiently wait
for their build results.

 One neat solution is to have as many Jenkins slaves as there are people checking in
code, as illustrated in figure 6.8.

 The Dockerfile shown in listing 6.6 creates an image with the Jenkins Swarm client
plugin installed, allowing a Jenkins master with the appropriate Jenkins Swarm server

Job 1 Job 4Job 3Job 2

Jenkins server

Dev
laptop

Check-in 2

Dev
laptop

Dev
laptop

Check-in 1

A high-spec Jenkins
server on which jobs
are run when needed

Developers checking
in code triggering CI
build jobs (check-in
    triggers job   )N N

Dev laptops used
to push code

Check-in 3
Check-in 4

Figure 6.7 Before: Jenkins server—OK with one dev, but doesn’t scale



166 CHAPTER 6 Continuous integration: speeding up your development pipeline

plugin to connect and run jobs. It begins in the same way as the normal Jenkins slave
Dockerfile in the last technique.

FROM ubuntu
ENV DEBIAN_FRONTEND noninteractive
RUN groupadd -g 1000 jenkins_slave
RUN useradd -d /home/jenkins_slave -s /bin/bash \
-m jenkins_slave -u 1000 -g jenkins_slave
RUN echo jenkins_slave:jpass | chpasswd
RUN apt-get update && apt-get install -y openjdk-7-jre wget unzip
RUN wget -O /home/jenkins_slave/swarm-client-1.22-jar-with-dependencies.jar \
http://maven.jenkins-ci.org/content/repositories/releases/org/jenkins-ci/

➥ plugins/swarm-client/1.22/swarm-client-1.22-jar-with-dependencies.jar
COPY startup.sh /usr/bin/startup.sh
RUN chmod +x /usr/bin/startup.sh
ENTRYPOINT ["/usr/bin/startup.sh"]

Listing 6.6 Dockerfile

Jenkins server

Dev
laptop

Check-in 2

Dev
laptop

Check-in 3
Check-in 4

Dev
laptop

Check-in 1

A Jenkins server with
the Jenkins Swarm
plugin installed

Developers checking
in code triggering CI
build jobs (check-in
    triggers job   )N N

Dev laptops used
to push code and
run Jenkins jobs
as dynamic slaves

Jobs are sent to the
Jenkins Swarm clients
registered with the
Jenkins server.

Job 1,
Job 4 Job 3 Job 2

Figure 6.8 After: compute scales with team

Retrieve the Jenkins
Swarm plugin.

Copy the startup script 
to the container.

Mark the startup 
script as executable.

Make the startup script
the default command run.



167TECHNIQUE 61 Scale your CI with Jenkins’ Swarm plugin

The following listing is the startup script copied into the preceding Dockerfile.

#!/bin/bash
HOST_IP=$(ip route | grep ^default | awk '{print $3}')
DOCKER_IP=${DOCKER_IP:-$HOST_IP}
JENKINS_PORT=${JENKINS_PORT:-8080}
JENKINS_LABELS=${JENKINS_LABELS:-swarm}
JENKINS_HOME=${JENKINS_HOME:-$HOME}
echo "Starting up swarm client with args:"
echo "$@"
echo "and env:"
echo "$(env)"
set -x
java -jar \
/home/jenkins_slave/swarm-client-1.22-jar-with-dependencies.jar \

-fsroot "$JENKINS_HOME" \
-labels "$JENKINS_LABELS" \
-master http://$DOCKER_IP:$JENKINS_PORT $@

sleep infinity

Most of the preceding script sets up and outputs the environment for the Java call at
the end. The Java call runs the Swarm client, which turns the machine on which it’s
run into a dynamic Jenkins slave rooted in the directory specified in the -fsroot flag,
running jobs labeled with the -labels flag and pointed at the Jenkins server specified
with the -master flag. The lines with echo just provide some debugging information
about the arguments and environment setup. 

 Building and running the container is a simple matter of running what should be
the now-familiar pattern:

$ docker build -t jenkins_swarm_slave .
$ docker run -d --name \
jenkins_swarm_slave jenkins_swarm_slave

Now that you have a slave set up on this machine, you can run Jenkins jobs on them.
Set up a Jenkins job as normal, but add swarm as a label expression in the Restrict
Where This Project Can Be Run section (see technique 59).

SET UP A SYSTEM SERVICE TO SPREAD THIS AROUND You can automate this pro-
cess by setting it up as a supervised system service on all of your estate’s PCs
(see technique 75).

Listing 6.7 startup.sh

Determine the 
IP address of 
the host.

Use the host ID as the Docker IP, unless 
DOCKER_IP was set in the environment 
of the call to this script.

Set the Jenkins port 
to 8080 by default.

Set the
Jenkins label
for this slave

to swarm.

Set the Jenkins
home directory

to the
jenkins_slave
user’s home
 by default.

Log the commands run 
from here as part of the 
output of the script. Run the Jenkins 

Swarm client.

Set the root
directory to
the Jenkins

home
directory.

Set the label to identify 
the client for jobs.

Set the Jenkins server 
to point the slave at.

Ensure the script (and therefore
the container) runs forever.



168 CHAPTER 6 Continuous integration: speeding up your development pipeline

PERFORMANCE IMPACT ON SLAVE MACHINES Jenkins jobs can be onerous pro-
cesses, and it’s quite possible that their running will negatively affect the lap-
top. If the job is a heavy one, you can set the labels on jobs and Swarm clients
appropriately. For example, you might set a label on a job as 4CPU8G and
match it to Swarm containers run on 4 CPU machines with 8 GB of memory.

This technique gives some indication of the Docker concept. A predictable and porta-
ble environment can be placed on multiple hosts, reducing the load on an expensive
server and reducing the configuration required to a minimum.

 Although this is not a technique that can be rolled out without considering perfor-
mance, we think there’s a lot of scope here to turn contributing developer computer
resources into a form of game, increasing efficiencies with a development organiza-
tion without needing expensive new hardware.

AVAILABLE ON GITHUB The code for this technique and related ones is avail-
able on GitHub at https://github.com/docker-in-practice/jenkins. 

6.4 Summary
In this chapter we’ve shown how Docker can be used to enable and facilitate CI within
your organization. You’ve seen how many of the barriers to CI, such as the availability
of raw compute and sharing resources with others, can be overcome with Docker’s
help.

 In this chapter you learned that

■ Builds can be sped up significantly by using eatmydata and package caches.
■ You can run GUI tests (like Selenium) inside Docker.
■ A Docker CI slave lets you keep complete control over your environment.
■ You can farm out build processes to your whole team using Docker and Jenkins’

Swarm plugin.

In the next chapter we’ll move away from CI to deployment and cover techniques
related to continuous delivery, another key component of the DevOps picture.

 

https://github.com/docker-in-practice/jenkins


169

Continuous delivery:
 a perfect fit for

 Docker principles

Once you’re confident that all of your builds are being quality-checked with a con-
sistent CI process, the logical next step is to start looking at deploying every good
build to your users. This goal is known as continuous delivery (CD).

This chapter covers
■ The Docker contract between dev and ops
■ Taking manual control of build availability across 

environments
■ Moving builds between environments over low-

bandwidth connections
■ Centrally configuring all containers in an 

environment
■ Achieving zero-downtime deployment with Docker



170 CHAPTER 7 Continuous delivery: a perfect fit for Docker principles

Image progresses only
as far as tests pass

CI Image Stage

Pre-prod

Prod

Test pass

Test fail

Figure 7.1 A typical CD pipeline

 In this chapter we’ll refer to your CD
pipeline—the process your build goes
through after it comes out of your CI
pipeline. The separation can sometimes
be blurred, but think of the CD pipeline
as starting when you have a final image
that has passed your initial tests during
the build process. Figure 7.1 demon-
strates how the image might progress
through a CD pipeline until it (hope-
fully) reaches production.

 It’s worth repeating that last point—
the image that comes out of CI should be
final and unmodified throughout your
CD process! Docker makes this easy to enforce with immutable images and encapsula-
tion of state, so using Docker takes you one step down the CD road already.

7.1 Interacting with other teams during the CD pipeline
First we’re going to take a little step back and look at how Docker changes the rela-
tionship between development and operations.

 Some of the biggest challenges of software development aren’t technical—splitting
people up into teams based on their roles and expertise is a common practice, yet this
can result in communication barriers and insularity. Having a successful CD pipeline
requires involvement from the teams at all stages of the process, from development to
testing to production, and having a single reference point for all teams can help ease
this interaction by providing structure.

TECHNIQUE 62 The Docker contract—reducing friction

One of Docker’s aims is to allow easy expression of inputs and outputs as they relate to
a container that contains a single application. This can provide clarity when working
with other people—communication is a vital part of collaboration, and understanding
how Docker can ease things by providing a single reference point can help you win
over Docker unbelievers.

PROBLEM
You want cooperating teams’ deliverables to be clean and unambiguous, reducing fric-
tion in your delivery pipeline.

SOLUTION
Use the Docker contract to facilitate clean deliverables between teams.

DISCUSSION
As companies scale, they frequently find that the flat, lean organization they once
had, in which key individuals “knew the whole system,” gives way to a more structured
organization within which different teams have different responsibilities and compe-
tencies. We’ve seen this first-hand in the organizations we’ve worked at.



171TECHNIQUE 62 The Docker contract—reducing friction

If technical investment isn’t made, friction can arise as growing teams deliver to each
other. Complaints of increasing complexity, “throwing the release over the wall,” and
buggy upgrades all become familiar. Cries of “Well, it works on our machine!” will
increasingly be heard, to the frustration of all concerned. Figure 7.2 gives a simplified
but representative view of this scenario.

 The workflow in figure 7.2 has a number of problems that may well look familiar to
you. They all boil down to the difficulties of managing state. The test team might test
something on a machine that differs from what the operations team has set up. In the-
ory, changes to all environments should be carefully documented, rolled back when
problems are seen, and kept consistent. Unfortunately, the reality of commercial pres-
sure and human behavior routinely conspire against this goal, and environmental
drift is seen.

 Existing solutions to this problem include VMs and RPMs. VMs can be used to
reduce the surface area of environmental risk by delivering complete machine repre-
sentations to other teams. The downside is that VMs are relatively monolithic entities
that are difficult for teams to manipulate efficiently. At the other end, RPMs offer a
standard way of packaging applications that helps define dependencies when rolling
out software. This doesn’t eliminate configuration management issues, and rolling

The test server VM was built
some time ago and is in a
non-reproducible state.

A development team
delivers a release to
a test server. 

The ops team receives a
release RPM from the dev
team once it has passed
testing. They deploy
it to live.

The live server VM has
RPMs released to it by the
ops team. It was built some
time ago and is now in a
non-reproducible state.

The test team validates
releases made to the
test server VM.

Dev team Test server VM
Deliver release Consumes

Deliver RPM

Test team 

Live server VMOps team 
Deliver release

Figure 7.2 Before: a typical software workflow



172 CHAPTER 7 Continuous delivery: a perfect fit for Docker principles

out RPMs created by fellow teams is far more error-prone than using RPMs that have
been battle-tested across the internet.

THE DOCKER CONTRACT

What Docker can do is give you a clean line of separation between teams, where the
Docker image is both the borderline and the unit of exchange. We call this the Docker
contract, and it’s illustrated in figure 7.3.

 With Docker, the reference point for all teams becomes much cleaner. Rather than
dealing with sprawling monolithic virtual (or real) machines in unreproducible states,
all teams are talking about the same code, whether it’s on test, live, or development.
In addition, there’s a clean separation of data from code, which makes it easier to rea-
son about whether problems are caused by variations in data or code.

 Because Docker uses the remarkably stable Linux API as its environment, teams
that deliver software have far more freedom to build software and services in whatever
fashion they like, safe in the knowledge that it will run predictably in various environ-
ments. This doesn’t mean that you can ignore the context in which it runs, but it does
reduce the risk of environmental differences causing issues.

 Various operational efficiencies result from having this single reference touch-
point. Bug reproduction becomes much easier, as all teams are able to describe and
reproduce issues from a known starting point. Upgrades become the responsibility of
the team delivering the change. In short, state is managed by those making the
change. All these benefits greatly reduce the communications overhead and allow
teams to get on with their jobs. This reduced communications overhead can also help
encourage moves towards a microservices architecture.

 This is no merely theoretical benefit: we’ve seen this improvement first-hand in a
company of over 500 developers, and it’s a frequent topic of discussion at Docker
technical meetups. 

All three teams now refer to
a single reference point: the
versioned Docker image.

Dev team Docker image Test team 

Ops team 

Figure 7.3 After: 
the Docker contract



173TECHNIQUE 63 Manually mirroring registry images

7.2 Facilitating deployment of Docker images
The first problem when trying to implement CD is moving the outputs of your build
process to the appropriate location. If you’re able to use a single registry for all stages
of your CD pipeline, it may seem like this problem has been solved. But it doesn’t
cover a key aspect of CD.

 One of the key ideas behind CD is build promotion. Build promotion means each
stage of a pipeline (user acceptance tests, integration tests, and performance tests)
can only trigger the next stage if the previous one has been successful. With multiple
registries you can ensure that only promoted builds are used by only making them avail-
able in the next registry when a build stage passes.

 We’ll look at a few ways of moving your images between registries, and even at a
way of sharing Docker objects without a registry.

TECHNIQUE 63 Manually mirroring registry images

The simplest image-mirroring scenario is when you have a machine with a high-
bandwidth connection to both registries. This permits the use of normal Docker
functionality to perform the image copy.

PROBLEM
You want to copy an image between two registries.

SOLUTION
Pull the image, retag it, and push.

DISCUSSION
If you have an image at test-registry.company.com and you want to move it to stage-registry
.company.com, the process is simple:

$ IMAGE=mygroup/myimage:mytag
$ OLDREG=test-registry.company.com
$ NEWREG=stage-registry.company.com
$ docker pull $OLDREG/$MYIMAGE
[...]
$ docker tag -f $OLDREG/$MYIMAGE $NEWREG/$MYIMAGE
$ docker push $NEWREG/$MYIMAGE
$ docker rmi $OLDREG/$MYIMAGE
$ docker rmi $(docker images -q --filter dangling=true)

There are three important points to note about this process:

1 The new image has been force-tagged. This means that any older image with
the same name on the machine (left there for layer-caching purposes) will lose
the image name, so the new image can be tagged with the desired name.

2 All dangling images have been removed. Although layer caching is extremely
useful for speeding up deployment, leaving unused image layers around can
quickly use up disk space. In general, old layers are less likely to be used as time
passes and they become more out-of-date.

3 You may need to log into your new registry with docker login.



174 CHAPTER 7 Continuous delivery: a perfect fit for Docker principles

The image is now available in the new registry for use in subsequent stages of your CD
pipeline. 

TECHNIQUE 64 Delivering images over constrained connections

Even with layering, pushing and pulling Docker images can be a bandwidth-hungry
process. In a world of free large-bandwidth connections, this wouldn’t be a problem,
but sometimes reality forces us to deal with low-bandwidth connections or costly band-
width metering between data centers. In this situation you need to find a more effi-
cient way of transferring differences, or the CD ideal of being able to run your
pipeline multiple times a day will remain out of reach.

 The ideal solution is a tool that will reduce the average size of an image so it’s even
smaller than classic compression methods can manage.

PROBLEM
You want to copy an image between two machines with a low-bandwidth connection
between them.

SOLUTION
Export the image, use bup to split it, transfer the bup chunks, and import the recom-
bined image on the other end.

DISCUSSION
We must first introduce a new tool, bup. It was created as a backup tool with extremely
efficient deduplication—deduplication being the ability to recognize where data is
used repeatedly and only store it once. Deduplication also happens to be extremely
useful in other scenarios, like transferring multiple images with very similar contents.
For this technique we’ve created an image called dbup (short for “docker bup”),
which makes it easier to use bup to deduplicate images. You can find the code behind
it at https://github.com/docker-in-practice/dbup.

 As a demonstration, let’s see how much bandwidth we could save when upgrading
from the ubuntu:14.04.1 image to ubuntu:14.04.2. Bear in mind that in practice you’d
have a number of layers on top of each of these, which Docker would want to com-
pletely retransfer after a lower layer change. By contrast, this technique will recognize
the significant similarities and give you much greater savings.

 The first step is to pull both of those images so we can see how much is transferred
over the network:

$ docker pull ubuntu:14.04.1 && docker pull ubuntu:14.04.2
[...]
$ docker history ubuntu:14.04.1
IMAGE CREATED CREATED BY SIZE
5ba9dab47459 3 months ago /bin/sh -c #(nop) CMD [/bin/bash] 0 B
51a9c7c1f8bb 3 months ago /bin/sh -c sed -i 's/^#\s*\(deb.*universe\)$/ 1.895 kB
5f92234dcf1e 3 months ago /bin/sh -c echo '#!/bin/sh' > /usr/sbin/polic 194.5 kB
27d47432a69b 3 months ago /bin/sh -c #(nop) ADD file:62400a49cced0d7521 188.1 MB
511136ea3c5a 23 months ago 0 B
$ docker history ubuntu:14.04.2
IMAGE CREATED CREATED BY SIZE

https://github.com/docker-in-practice/dbup


175TECHNIQUE 64 Delivering images over constrained connections

07f8e8c5e660 2 weeks ago /bin/sh -c #(nop) CMD ["/bin/bash"] 0 B
37bea4ee0c81 2 weeks ago /bin/sh -c sed -i 's/^#\s*\(deb.*universe\)$/ 1.895 kB
a82efea989f9 2 weeks ago /bin/sh -c echo '#!/bin/sh' > /usr/sbin/polic 194.5 kB
e9e06b06e14c 2 weeks ago /bin/sh -c #(nop) ADD file:f4d7b4b3402b5c53f2 188.1 MB
$ docker save ubuntu:14.04.1 | gzip | wc -c
65970990
$ docker save ubuntu:14.04.2 | gzip | wc -c
65978132

This demonstrates that the Ubuntu images share no layers, so we can use the whole
image size as the amount that would be transferred when pushing the new image. Also
note that the Docker registry uses gzip compression to transfer layers, so we’ve included
that in our measurement (instead of taking the size from docker history). About 65 MB
is being transferred in both the initial deployment and the subsequent deployment. 

 In order to get started, you’ll need two things—a directory to store the “pool” of
data bup uses as internal storage, and the dockerinpractice/dbup image. You can
then go ahead and add your image to the bup data pool:

$ mkdir bup_pool
$ alias dbup="docker run --rm \

-v $(pwd)/bup_pool:/pool -v /var/run/docker.sock:/var/run/docker.sock \
dockerinpractice/dbup"

$ dbup save ubuntu:14.04.1
Saving image!
Done!
$ du -sh bup_pool
74M bup_pool
$ dbup save ubuntu:14.04.2
Saving image!
Done!
$ du -sh bup_pool
90M bup_pool

Adding the second image to the bup data pool has only increased the size by about 15
MB. Assuming you synced the folder to another machine (possibly with rsync) after
adding ubuntu:14.04.1, syncing the folder again will only transfer 15 MB (as opposed
to the 65 MB before).

 You then need to load the image at the other end:

$ dbup load ubuntu:14.04.1
Loading image!
Done!

The process for transferring between registries would look something like this:

1 docker pull on host1
2 dbup save on host1
3 rsync from host1 to host2
4 dbup load on host2
5 docker push on host2



176 CHAPTER 7 Continuous delivery: a perfect fit for Docker principles

This technique opens up a number of possibilities that may not have been possible
previously. For example, you can now rearrange and consolidate layers without having
to worry about how long it will take to transfer all of the new layers over the low-
bandwidth connection.

 Even when following best practices and adding your application code as the last
stage, bup may be able to help—it will recognize that most of the code is unchanged
and only add the difference to the data pool.

 Although you may not see an immediate need for this process, keep it in mind in
case your bandwidth bills start growing!

TECHNIQUE 65 Sharing Docker objects as TAR files

TAR files are a classic method of moving files around on Linux. Docker allows you to
create these and ship them around manually when there’s no registry available and no
possibility of setting one up. Here we’re going to show you the ins and outs of these
commands.

PROBLEM
You want to share images and containers with others, with no available registry.

SOLUTION
Use docker export or docker save to create TAR file artifacts, and then consume
them with docker import or docker load over SSH.

DISCUSSION
The distinctions between the commands can be difficult to grasp if you’re using them
casually, so let’s take a moment to quickly go over what they do. Table 7.1 outlines the
inputs and outputs of the commands.

The first two commands work with flat filesystems. The command docker export
outputs a TAR file of the files that make up the state of the container. As always
with Docker, the state of running processes is not stored—only the files. The
command docker import creates a Docker image—with no history or metadata—
from a tarball. 

 These commands aren’t symmetrical—you can’t create a container from an exist-
ing container using only import and export. This asymmetry can be useful because it
allows you to docker export an image to a tarfile, and then docker import it to “lose”

Table 7.1 Export and import vs. save and load

Command Creates? Of what? From what?

export TAR file Container filesystem Container

import Docker image Flat filesystem Tarball

save TAR file Docker image (with history) Image

load Docker image Docker image (with history) Tarball



177TECHNIQUE 65 Sharing Docker objects as TAR files

all the layer history and metadata. This is the image-flattening approach described in
technique 43.

 If you’re exporting or saving to a TAR file, then the file is sent to stdout by default,
so make sure you save it to a file like this:

docker pull debian:7:3
[...]
docker save debian:7.3 > debian7_3.tar

This TAR file can then be flung around the network safely, and others can use them to
import images intact. They can be emailed or scp’d if you have access:

$ scp debian7_3.tar example.com:/tmp/debian7_3.tar

You can take this one step further and deliver images to other users’ Docker daemons
directly—assuming you have the permission:

docker save debian:7.3 | \
ssh example.com \
docker import -

If you want to retain the history of the image, you can use load instead of import and
the history will be retained on the other side’s Docker daemon:

docker save debian:7.3 | ssh example.com docker load

DOCKER LOAD/IMPORT INCONSISTENCY Unlike docker import, docker load
doesn’t require a dash at the end to indicate that the TAR file is being deliv-
ered through standard input. 

7.3 Configuring your images for environments
As mentioned in the introduction to this chapter, one of the keystones of CD is the
concept of “doing the same thing everywhere.” Without Docker, this would mean
building a deployment artifact once and using the same one everywhere. In a Docker-
ized world, this means using the same image everywhere.

 But environments are not all the same—there may be different URLs for external
services, for example. For “normal” applications you’d be able to use environment
variables to solve this problem (with the caveat that they’re not easy to apply to numer-
ous machines). The same solution can work for Docker (explicitly passing the vari-
ables in), but there’s a better way of doing it with Docker that comes with some
additional benefits.
TECHNIQUE 65 Sharing Docker objects as TAR files

The docker save command extracts the Debian
version 7.3 and pipes it to the ssh command. The ssh command runs a 

command on a remote 
machine, example.com.

The docker import command takes the TAR file it’s given 
and creates an image with no history. The dash indicates 
that the tar file is being delivered over standard input.



178 CHAPTER 7 Continuous delivery: a perfect fit for Docker principles

TECHNIQUE 66 Informing your containers with etcd

Docker images are designed so they can be deployed anywhere, but you’ll often want
to be able to add some extra information after deployment to affect the behaviour of
the application while it’s running. In addition, machines running Docker may need to
remain unaltered, so you may need an external source of information (making envi-
ronment variables less suitable).

PROBLEM
You need an external source of configuration when running containers.

SOLUTION
Create an etcd cluster to hold your configuration, and use an etcd proxy to access it.

DISCUSSION
etcd is a distributed key-value store—it holds pieces of information and can be part of
a multinode cluster for resiliency.

KEEPING SUCCINCT CONFIGURATION Each value held by etcd should be kept
small—under 512 KB is a good rule of thumb; past this point you should con-
sider doing benchmarking to verify that etcd is still performing as you’d
expect. This limit is not unique to etcd. You should bear it in mind for other
key-value stores like Zookeeper and Consul.

Because etcd cluster nodes need to talk to each other, the first step is to identify your
external IP address. If you were going to run the nodes on different machines, you’d
need the external IP for each of them:

$ ip addr | grep 'inet ' | grep -v 'lo$\|docker0$'
inet 10.194.12.221/20 brd 10.194.15.255 scope global eth0

Here we’ve looked for all IPv4 interfaces and excluded loopback and Docker. This
leaves us with the one IP we need (the first on the line).

 We can now get started with our cluster. Be careful with the following arguments—
the ports being exposed and advertised change on each line, as do the names of the
cluster nodes and containers:

$ IMG=quay.io/coreos/etcd:v2.0.10
$ docker pull $IMG
[...]
$ HTTPIP=http://10.194.12.221
$ CLUSTER="etcd0=$HTTPIP:2380,etcd1=$HTTPIP:2480,etcd2=$HTTPIP:2580"
$ ARGS=
$ ARGS="$ARGS -listen-client-urls http://0.0.0.0:2379"
$ ARGS="$ARGS -listen-peer-urls http://0.0.0.0:2380"
$ ARGS="$ARGS -initial-cluster-state new"

The external IP address
of your machine

Use the external IP address of the machine
in the cluster definition, giving the nodes a

way to communicate with others. Because all
nodes will be on the same host, the cluster
ports (for connecting to other nodes) must

be different.
The

 port for
handling
requests

from
clients

The port to listen on for talking to other
nodes in the cluster, corresponding to

the ports specified in $CLUSTER



179TECHNIQUE 66 Informing your containers with etcd

$ ARGS="$ARGS -initial-cluster $CLUSTER"
$ docker run -d -p 2379:2379 -p 2380:2380 --name etcd0 $IMG \

$ARGS -name etcd0 -advertise-client-urls $HTTPIP:2379 \
-initial-advertise-peer-urls $HTTPIP:2380

912390c041f8e9e71cf4cc1e51fba2a02d3cd4857d9ccd90149e21d9a5d3685b
$ docker run -d -p 2479:2379 -p 2480:2380 --name etcd1 $IMG \

$ARGS -name etcd1 -advertise-client-urls $HTTPIP:2479 \
-initial-advertise-peer-urls $HTTPIP:2480

446b7584a4ec747e960fe2555a9aaa2b3e2c7870097b5babe65d65cffa175dec
$ docker run -d -p 2579:2379 -p 2580:2380 --name etcd2 $IMG \

$ARGS -name etcd2 -advertise-client-urls $HTTPIP:2579 \
-initial-advertise-peer-urls $HTTPIP:2580

3089063b6b2ba0868e0f903a3d5b22e617a240cec22ad080dd1b497ddf4736be
$ curl -L $HTTPIP:2579/version
etcd 2.0.10

You’ve now started up the cluster and have a response from one node. In the preced-
ing commands, anything referring to peer is controlling how the etcd nodes find and
talk to each other, and anything referring to client defines how other applications
can connect to etcd. 

 Let’s see the distributed nature of etcd in action:

$ curl -L $HTTPIP:2579/v2/keys/mykey -XPUT -d value="test key"
{"action":"set","node": {"key":"/mykey","value":"test key",

➥ "modifiedIndex":7,"createdIndex":7}}
$ sleep 5
$ docker kill etcd2
etcd2
$ curl -L $HTTPIP:2579/v2/keys/mykey
curl: (7) couldn't connect to host
$ curl -L $HTTPIP:2379/v2/keys/mykey
{"action":"get","node": {"key":"/mykey","value":"test key",

➥ "modifiedIndex":7,"createdIndex":7}}

In the preceding code, you add a key to your etcd2 node and then kill it. But etcd has
automatically replicated the information to the other nodes and is able to provide you
with the information anyway. Although the preceding code paused for five seconds,
etcd will typically replicate in under a second (even across different machines). Feel
free to docker start etcd2 now to make it available again. 

 You can see that the data is still available, but it’s a little unfriendly to have to man-
ually choose another node to connect to. Fortunately etcd has a solution for this—you
can start a node in “proxy” mode, which means it doesn’t replicate any data; rather it
forwards the requests to the other nodes:

$ docker run -d -p 8080:8080 --restart always --name etcd-proxy $IMG \
-proxy on -listen-client-urls http://0.0.0.0:8080 \
-initial-cluster $CLUSTER

037c3c3dba04826a76c1d4506c922267885edbfa690e3de6188ac6b6380717ef
$ curl -L $HTTPIP:8080/v2/keys/mykey2 -XPUT -d value="t"
{"action":"set","node": {"key":"/mykey2","value":"t",

➥ "modifiedIndex":12,"createdIndex":12}}



180 CHAPTER 7 Continuous delivery: a perfect fit for Docker principles

$ docker kill etcd1 etcd2
$ curl -L $HTTPIP:8080/v2/keys/mykey2
{"action":"get","node": {"key":"/mykey2","value":"t",

➥ "modifiedIndex":12,"createdIndex":12}}

This now gives you some freedom to experiment with how etcd behaves when over
half the nodes are offline:

$ curl -L $HTTPIP:8080/v2/keys/mykey3 -XPUT -d value="t"
{"message":"proxy: unable to get response from 3 endpoint(s)"}
$ docker start etcd2
etcd2
$ curl -L $HTTPIP:8080/v2/keys/mykey3 -XPUT -d value="t"
{"action":"set","node": {"key":"/mykey3","value":"t",

➥ "modifiedIndex":16,"createdIndex":16}}

etcd permits reading but prevents writing when half or more of the nodes are not
available.

 You can now see that it would be possible to start an etcd proxy on each node in a
cluster to act as an “ambassador container” for retrieving centralized configuration:

$ docker run -it --rm --link etcd-proxy:etcd ubuntu:14.04.2 bash
root@8df11eaae71e:/# apt-get install -y wget
root@8df11eaae71e:/# wget -q -O- http://etcd:8080/v2/keys/mykey3
{"action":"get","node": {"key":"/mykey3","value":"t",

➥ "modifiedIndex":16,"createdIndex":16}}

WHAT IS AN AMBASSADOR? An ambassador is a so-called “Docker pattern”
that has some currency among Docker users. An ambassador container is
placed between your application container and some external service and
handles the request. It’s similar to a proxy, but it has some intelligence baked
into it to handle the specific requirements of the situation—much like a real-
life ambassador.

Once you have an etcd running in all environments, creating a machine in an
environment is just a matter of starting it up with a link to an etcd-proxy container—
all CD builds to the machine will then use the correct configuration for the
environment. The next technique shows how to use etcd-provided configuration to
drive zero-downtime upgrades. 

7.4 Upgrading running containers
In order to achieve the ideal of multiple deployments to production every day, it’s
important to reduce downtime during the final step of the deployment process—turn-
ing off the old applications and starting up the new ones. There’s no point deploying
four times a day if the switchover is an hour-long process each time!

 Because containers provide an isolated environment, a number of problems are
already mitigated. For example, you don’t need to worry about two versions of an
application using the same working directory and conflicting with each other, or



181TECHNIQUE 67 Using confd to enable zero-downtime switchover

about rereading some configuration files and picking up new values without restarting
with the new code.

 Unfortunately there are some downsides to this—it’s no longer simple to change
files in-place, so “soft-restarts” (required to pick up configuration file changes)
become harder to achieve. As a result, we’ve found it a best practice to always perform
the same upgrade process regardless of whether you’re changing a few configuration
files or thousands of lines of code.

 Let’s look at an upgrade process that will achieve the gold standard of zero-downtime
deployment for web-facing applications.

TECHNIQUE 67 Using confd to enable zero-downtime switchover

Because containers can exist side by side on a host, the simple switchover approach of
removing a container and starting a new one can be performed in as little as a few sec-
onds (and it permits a similarly fast rollback).

 For most applications, this may well be fast enough, but applications with a long
startup time or high availability requirements need an alternative approach. Sometimes
this an unavoidably complex process requiring special handling with the application
itself, but web-facing applications have an option you may wish to consider first.

PROBLEM
You need to be able to upgrade web-facing applications with zero downtime.

SOLUTION
Use confd with nginx on your host to perform a two-stage switchover.

DISCUSSION
Nginx is an extremely popular web server with a crucial built-in ability—reloading
configuration files without dropping connections to the server. By combining this
with confd, a tool that can retrieve information from a central datastore (like etcd)
and alter configuration files accordingly, you can update etcd with the latest settings
and watch everything else be handled for you.

APACHE/HAPROXY OPTION The Apache HTTP server and HAProxy both also
offer zero-downtime reloading and can be used instead of nginx if you have
existing configuration expertise.

The first step is to start an application that will serve as an old application that you’ll
eventually update. Python comes with Ubuntu and has a built-in web server, so we’ll
use it as an example:

$ ip addr | grep 'inet ' | grep -v 'lo$\|docker0$'
inet 10.194.12.221/20 brd 10.194.15.255 scope global eth0

$ HTTPIP=http://10.194.12.221
$ docker run -d --name py1 -p 80 ubuntu:14.04.2 \

sh -c 'cd / && python3 -m http.server 80'
e6b769ec3efa563a959ce771164de8337140d910de67e1df54d4960fdff74544
$ docker inspect -f '{{.NetworkSettings.Ports}}' py1
map[80/tcp:[map[HostIp:0.0.0.0 HostPort:49156]]]
$ curl -s localhost:49156 | tail



182 CHAPTER 7 Continuous delivery: a perfect fit for Docker principles

<li><a href="sbin/">sbin/</a></li>
<li><a href="srv/">srv/</a></li>
<li><a href="sys/">sys/</a></li>
<li><a href="tmp/">tmp/</a></li>
<li><a href="usr/">usr/</a></li>
<li><a href="var/">var/</a></li>
</ul>
<hr>
</body>
</html>

The HTTP server has started successfully, and we used the filter option of the inspect
command to pull out information about what port on the host is mapped to point
inside the container.

 Now make sure you have etcd running—this technique assumes you’re still in the
same working environment as the previous technique. This time you’re going to use
etcdctl (short for “etcd controller”) to interact with etcd (rather than curling etcd
directly) for simplicity:

$ IMG=dockerinpractice/etcdctl
$ docker pull dockerinpractice/etcdctl
[...]
$ alias etcdctl="docker run --rm $IMG -C \"$HTTPIP:8080\""
$ etcdctl set /test value
value
$ etcdctl ls
/test

This has downloaded an etcdctl Docker image that we prepared, and it has set up an
alias to always connect the etcd cluster set up previously. Now start up nginx:

$ IMG=dockerinpractice/confd-nginx
$ docker pull $IMG
[...]
$ docker run -d --name nginx -p 8000:80 $IMG $HTTPIP:8080
5a0b176586ef9e3514c5826f17d7f78ba8090537794cef06160ea7310728f7dc

This is an image we prepared earlier, which uses confd to retrieve information from
etcd and automatically update configuration files. The parameter that we pass tells the
container where it can connect to the etcd cluster. Unfortunately we haven’t told it
where it can find our apps yet, so the logs are filled with errors!

 Let’s add the appropriate information to etcd:

$ docker logs nginx
Using http://10.194.12.221:8080 as backend
2015-05-18T13:09:56Z fc6082e55a77 confd[14]:

➥ ERROR 100: Key not found (/app) [14]
2015-05-18T13:10:06Z fc6082e55a77 confd[14]:

➥ ERROR 100: Key not found (/app) [14]
$ echo $HTTPIP



183TECHNIQUE 67 Using confd to enable zero-downtime switchover

http://10.194.12.221
$ etcdctl set /app/upstream/py1 10.194.12.221:49156
10.194.12.221:49156
$ sleep 10
$ docker logs nginx
Using http://10.194.12.221:8080 as backend
2015-05-18T13:09:56Z fc6082e55a77 confd[14]:

➥ ERROR 100: Key not found (/app) [14]
2015-05-18T13:10:06Z fc6082e55a77 confd[14]:

➥ ERROR 100: Key not found (/app) [14]
2015-05-18T13:10:16Z fc6082e55a77 confd[14]:

➥ ERROR 100: Key not found (/app) [14]
2015-05-18T13:10:26Z fc6082e55a77 confd[14]:

➥ INFO Target config /etc/nginx/conf.d/app.conf out of sync
2015-05-18T13:10:26Z fc6082e55a77 confd[14]:

➥ INFO Target config /etc/nginx/conf.d/app.conf has been updated
$ curl -s localhost:8000 | tail
<li><a href="sbin/">sbin/</a></li>
<li><a href="srv/">srv/</a></li>
<li><a href="sys/">sys/</a></li>
<li><a href="tmp/">tmp/</a></li>
<li><a href="usr/">usr/</a></li>
<li><a href="var/">var/</a></li>
</ul>
<hr>
</body>
</html>

The update to etcd has been read by confd and applied to the nginx configuration
file, allowing you to visit your simple file server. The sleep command is included
because confd has been configured to check for updates every 10 seconds. Behind the
scenes, a confd daemon running in the confd-nginx container polls for changes in the
etcd cluster, using a template within the container to regenerate the nginx configura-
tion only when changes are detected.

 Let’s say we’ve decided we want to serve /etc rather than /. We’ll now start up our
second application and add it to etcd. Because we then will have two backends, we’ll
end up getting responses from each of them:

$ docker run -d --name py2 -p 80 ubuntu:14.04.2 \
sh -c 'cd /etc && python3 -m http.server 80'

9b5355b9b188427abaf367a51a88c1afa2186e6179ab46830715a20eacc33660
$ docker inspect -f '{{.NetworkSettings.Ports}}' py2
map[80/tcp:[map[HostIp:0.0.0.0 HostPort:49161]]]
$ curl $HTTPIP:49161 | tail | head -n 5
<li><a href="udev/">udev/</a></li>
<li><a href="update-motd.d/">update-motd.d/</a></li>
<li><a href="upstart-xsessions">upstart-xsessions</a></li>
<li><a href="vim/">vim/</a></li>
<li><a href="vtrgb">vtrgb@</a></li>
$ etcdctl set /app/upstream/py2 $HTTPIP:49161
10.194.12.221:49161
$ etcdctl ls /app/upstream



184 CHAPTER 7 Continuous delivery: a perfect fit for Docker principles

/app/upstream/py1
/app/upstream/py2
$ curl -s localhost:8000 | tail | head -n 5
<li><a href="sbin/">sbin/</a></li>
<li><a href="srv/">srv/</a></li>
<li><a href="sys/">sys/</a></li>
<li><a href="tmp/">tmp/</a></li>
<li><a href="usr/">usr/</a></li>
$ curl -s localhost:8000 | tail | head -n 5
<li><a href="udev/">udev/</a></li>
<li><a href="update-motd.d/">update-motd.d/</a></li>
<li><a href="upstart-xsessions">upstart-xsessions</a></li>
<li><a href="vim/">vim/</a></li>
<li><a href="vtrgb">vtrgb@</a></li>

In the preceding process we checked that the new container came up correctly before
adding it to etcd (see figure 7.4). Because of this, we could have performed the process

etcd

1. New backend
   added

3. Update
    configs

5. Configs
    read

4. nginx reload
    triggered

6. Requests begin being
    forwarded to py2
    (not via links)

2. Update
    check

confd

nginx

py2 containerpy1 container

nginx container

Configs

Figure 7.4 Adding the py2 container to etcd



185Summary

in one step by overwriting the /app/upstream/py1 key in etcd. This is also useful if you
need only one backend to be accessible at a time.

 With the two-stage switchover, the final stage is to remove the old backend and
container:

$ etcdctl rm /app/upstream/py1

$ etcdctl ls /app/upstream
/app/upstream/py2
$ docker rm -f py1
py1

And the new application is up and running! At no point has the application been
inaccessible to users, and there has been no need to manually connect to web server
machines to reload nginx.

 The uses of confd extend to more than configuring web servers: if you have a file
containing text that needs updating based on external values, confd is there to step in.
Bear in mind from the previous technique that etcd is not designed for storing large val-
ues. And there’s no reason you must use etcd with confd. There are a number of inte-
grations available for the most popular key-value stores, so you might not need to add
another moving part if you’ve already got something that works for you.

 Later on in technique 83, when we look at using Docker in production, you’ll see a
method that avoids having to manually alter etcd at all if you want to update the back-
end servers for a service. 

7.5 Summary
Using Docker puts you on the road to a streamlined CD pipeline, but in this chapter
we also explored some ways you can use extra tools to complement Docker and work
around some Docker limitations.

 In this chapter you saw that

■ Moving images between registries can be a good way to control how far builds
progress through your CD pipeline.

■ bup is good at squeezing image transfers even more than layers can.
■ etcd can act as a central configuration store for an environment.
■ Zero-downtime deployment can be achieved by combining etcd, confd, and

nginx.

The next chapter will explore speeding up your CD pipeline even more by simulating
networks for testing rather than requiring a full environment.



186

Network simulation:
 realistic environment

 testing without the pain

As part of your DevOps workflow, you’ll likely need to use the network in some way.
Whether you’re trying to find out where the local memcache container is, connect-
ing to the outside world, or plumbing together Docker containers running on dif-
ferent hosts, you’re likely to want to reach out to the wider network sooner or later.

 In this chapter we’ll show you how to simulate and manage networks by using
Docker’s virtual network tooling. This chapter is a small first step toward orchestra-
tion and service discovery—subjects we’ll take a deeper dive into in chapter 9.

This chapter covers
■ Coming to grips with Docker Compose
■ Running a DNS server to perform basic container 

service discovery
■ Testing your applications on troublesome networks
■ Creating a substrate network for seamless 

communications across Docker hosts



187TECHNIQUE 68 A simple Docker Compose cluster

8.1 Container communication—beyond manual linking
In technique 6 you saw how to connect containers with links and we mentioned the
advantages provided by a clear statement of container dependencies. Unfortunately,
links have a number of disadvantages. They have to be manually specified when start-
ing each container, containers have to be started in the correct order (so no loops in
container linking), and there’s no way to replace a link (if a container dies, every
dependent container must be restarted to recreate the links).

 Fortunately, tools exist to address these pain points.

TECHNIQUE 68 A simple Docker Compose cluster

Docker Compose started life as fig, a now-deprecated independent effort to ease the
pain of starting multiple containers with appropriate arguments for linking, volumes,
and ports. Docker, Inc. liked this so much that they acquired it, gave it a makeover,
and released it with a new name.

 This technique introduces you to Docker Compose using a simple example of
Docker container orchestration.

PROBLEM
You want to coordinate linked containers on your host machine.

SOLUTION
Use Docker Compose.

DISCUSSION
Docker Compose is a tool for defining and running complex Docker applications.
The central idea is that rather than wiring up complex container startup commands
with complex shell scripts or makefiles, you declare the application’s startup configu-
ration and then bring the application up with a single, simple command.

 At the time of writing, Docker Compose isn’t recommended for use in production.

INSTALLATION We assume you have Docker Compose installed. Instructions
for installing are fast-changing at the time of writing, so refer to Docker’s
instructions (http://docs.docker.com/compose/install) for the latest advice.
You may need to use sudo to run docker-compose.

In this technique we’re going to keep things as simple as possible with an echo server
and client. The client sends the familiar “Hello world!” message every five seconds to
the echo server, and then receives the message back.

SOURCE CODE AVAILABLE The source code for this technique is available at
https://github.com/docker-in-practice/docker-compose-echo.

The following commands create a directory for us to work in while creating our server
image:

$ mkdir server
$ cd server

http://docs.docker.com/compose/install
https://github.com/docker-in-practice/docker-compose-echo


188 CHAPTER 8 Network simulation: realistic environment testing without the pain

Create the server Dockerfile with the code shown in the following listing.

FROM debian
RUN apt-get update && apt-get install -y nmap
CMD ncat -l 2000 -k --exec /bin/cat

The -l 2000 arguments instruct ncat to listen on port 2000 and -k tells it to accept
multiple client connections simultaneously and to continue running after clients close
their connections, so more clients can connect. The final arguments, --exec /bin/
cat, will make ncat run/bin/cat for any incoming connections and forward any data
coming over the connection to the running program. 

 Next, build the Dockerfile with this command:

$ docker build -t server .

Now you can set up the client image that sends messages to the server. Create a new
directory and place the client.py file and Dockerfile in there: 

$ cd ..
$ mkdir client
$ cd client

We’ll use a simple Python program as the echo server client in the next listing.

import socket, time, sys
while True:

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect(('talkto',2000))
s.send('Hello, world\n')
data = s.recv(1024)
print 'Received:', data
sys.stdout.flush()
s.close()
time.sleep(5)

The Dockerfile for the client is straightforward. It installs Python, adds the client.py
file, and then defaults it to run on startup, as shown in the following listing.

  

Listing 8.1 Dockerfile—Simple echo server

Listing 8.2 client.py—a simple echo client

Install the nmap package, 
which provides the ncat 
program used here.Run the ncat program by default

when starting the image.

Import the Python packages needed.

Create a socket object.

Use the socket to
connect to the ‘talkto’

server on port 2000.

Send a string with a
newline character

to the socket. Create a buffer of 1024 
bytes to receive data, 
and place the data into 
the data variable when 
a message is received.

Print the received
data to standard out.

Flush the standard out
buffer so you can see

messages as they come in.

Close the 
socket object.

Wait five seconds
and repeat.



189TECHNIQUE 68 A simple Docker Compose cluster

FROM debian
RUN apt-get update && apt-get install -y python
ADD client.py /client.py
CMD ["/usr/bin/python","/client.py"]

Build the client with this command:

docker build -t client .

To demonstrate the value of docker-compose, we’ll first run these containers by hand:

docker run --name echo-server -d server
docker run --rm --name client --link echo-server:talkto client

When you’re finished, Ctrl-C out of the client, and remove the containers:

docker rm -f client echo-server

Many things can go wrong even in this trivial example: starting the client first will
result in the failure of the application to start; forgetting to remove the containers
will result in problems when you try to restart; and naming containers incorrectly
will result in failure. These kinds of orchestration problems will only increase as your
containers and their architecture get more sophisticated.

 Compose helps with this by encapsulating the orchestration of these containers’
startup and configuration within a simple text file, managing the nuts and bolts of the
startup and shutdown commands for you.

 Compose takes a YAML file. You create this in a new directory:

cd ..
mkdir docker-compose
cd docker-compose

The YAML file’s contents are as shown in the next listing.

echo-server:
image: server
expose:
- "2000"

client:
image: client
links:
- echo-server:talkto

Listing 8.3 Dockerfile—a simple echo client

Listing 8.4 docker-compose.yml—Docker Compose echo server and client YAML file

Each section must
define the image
used: the client

and server images,
in this case.

Expose the echo-server’s
port 2000 to other

services.

The reference names of the running 
services are their identifiers: echo-
server and client, in this case.

Define a link to the echo-server. References to 
talkto within the client will be sent to the echo 
server. The mapping is done by setting up the 
/etc/hosts file dynamically in the running 
container.



190 CHAPTER 8 Network simulation: realistic environment testing without the pain

The syntax of docker-compose.yml is fairly easy to grasp: each service is named on the left,
and its configuration is stated in an indented section underneath. Each item of configu-
ration has a colon after its name, and attributes of these items are stated either on the same
line or on the following lines, beginning with dashes at the same level of indentation.

 The key item of configuration to understand here is the links within the client
definition. These are created in the same way as the docker run command sets up
links. In fact, most of the Docker command-line arguments have direct analogues in
the docker-compose.yml syntax. 

 We used the image: statement in this example to define the image used for each
service, but you can also get docker-compose to rebuild the required image dynami-
cally by defining the path to the Dockerfile in a build: statement. Docker Compose
will perform the build for you.

WHAT IS A YAML FILE? A YAML file is a text configuration file with a straight-
forward syntax. You can read more about it at http://yaml.org.

Now that all the infrastructure is set up, running the application is easy:

$ docker-compose up
Creating dockercompose_server_1...
Creating dockercompose_client_1...
Attaching to dockercompose_server_1, dockercompose_client_1
client_1 | Received: Hello, world
client_1 |
client_1 | Received: Hello, world
client_1 |

CAN’T CONNECT ERRORS? If you get an error when starting docker-compose
that looks like “Couldn’t connect to Docker daemon at http+unix://var/run/
docker.sock—is it running?” the issue may be that you need to run it with sudo.

When you’ve seen enough, hit Ctrl-C a few times to exit the application. You can bring
it up again at will with the same command without worrying about removing contain-
ers. Note that it will output “Recreating” rather than “Creating” if you rerun it.

 Now that you’ve come to grips with Docker Compose, we’ll move on to a more
complex and real-world scenario for docker-compose: using socat, volumes, and links
to add server-like functionality to a SQLite instance running on the host machine. 

TECHNIQUE 69 A SQLite server using Docker Compose

SQLite doesn’t come with any concept of a TCP server by default. By building on previ-
ous techniques, this technique provides you with a means of achieving TCP server
functionality using Docker Compose.

 Specifically, it builds on these previously covered tools and concepts:

■ Volumes
■ Proxying with socat
■ Container linking
■ Docker Compose

http://yaml.org


191TECHNIQUE 69 A SQLite server using Docker Compose

SQLITE VERSION 3 REQUIRED This technique requires SQLite version 3 to be
installed on your host. We also suggest that you install rlwrap to make line edit-
ing friendlier when interacting with your SQLite server (though this is optional).
These packages are freely available from standard package managers.

The code for this technique is available for download here: https://github.com/
docker-in-practice/docker-compose-sqlite.

 If you run into trouble with this technique, you may need to upgrade your version
of Docker. Anything from version 1.7.0 up should work fine.

PROBLEM
You want to efficiently develop a complex application referencing external data on
your host using Docker.

SOLUTION
Use Docker Compose.

DISCUSSION
Figure 8.1 gives an overview of this technique’s architecture. At a high level there are
two running Docker containers, one responsible for executing SQLite clients, and the
other for proxying separate TCP connections to these clients. Note that the container
executing SQLite isn’t exposed to the host; the proxy container achieves that. This
kind of separation of responsibility into discrete units is a common feature of micro-
services architectures.

The Docker proxy
container exposes
a TCP port.

The Docker daemon manages a
private link between the client
and server.

The host SQLite database
file is mounted on the
server container.

Normal SQLite clients
run on the host via
telnet connections.

Multiple clients can
connect over a single
TCP port.

/tmp/sqlitedbs/live

Host machine

SQLite
client 1

SQLite
client 2

Docker server container
sqlite /opt/sqlite/live

Docker multiplexing
proxy container

Figure 8.1 How the SQLite server works

https://github.com/docker-in-practice/docker-compose-sqlite
https://github.com/docker-in-practice/docker-compose-sqlite


192 CHAPTER 8 Network simulation: realistic environment testing without the pain

We’re going to use the same image for all our nodes. Set up the Dockerfile in the next
listing.

FROM ubuntu:14.04
RUN apt-get update && apt-get -y install rlwrap sqlite3 socat
EXPOSE 12345

The following listing shows docker-compose.yml, which defines how the containers
should be started up.

server:
command: socat TCP-L:12345,fork,reuseaddr

➥ EXEC:'sqlite3 /opt/sqlite/db',pty
build: .
volumes:
- /tmp/sqlitedbs/test:/opt/sqlite/db

proxy:
command: socat TCP-L:12346,fork,reuseaddr TCP:sqliteserver:12345
build: .
links:
- server:sqliteserver
ports:
- 12346:12346

The socat process in the server container will listen on port 12345 and permit multi-
ple connections, as specified by the TCP-L:12345,fork,reuseaddr argument. The
part following EXEC: tells socat to run SQLite on the /opt/sqlite/db file for every
connection, assigning a pseudo-terminal to the process. The socat process in the cli-
ent container has the same listening behavior as the server container (except on a dif-
ferent port), but instead of running something in response to an incoming
connection, it will establish a TCP connection to the SQLite server.

 Although this functionality could be achieved in one container, the server/proxy
container setup allows the architecture of this system to grow more easily, as each con-
tainer is responsible for one job: the server is responsible for opening SQLite connec-
tions, and the proxy is responsible for exposing the service to the host machine.

 The following listing (simplified from the original in the repository, https://
github.com/docker-in-practice/docker-compose-sqlite) creates two minimal SQLite
databases, test and live, on your host machine.

Listing 8.5 All-in-one SQLite server, client, and proxy Dockerfile

Listing 8.6 SQLite server and proxy docker-compose.yml

Install required
applications.Expose port 12345 so that the nodes can

communicate via the Docker daemon.

The server and
 proxy containers are 
defined in this stanza. Create a socat 

proxy to link the 
output of a SQLite 
call to a TCP port.

Build the image on
startup from the
Dockerfile in the
same directory.

Mount the test
SQLite db file to

/opt/sqlite/db
within the
container.

Create a socat proxy to pass data
from port 12346 to the server

container’s 12345 port.

Define a link between the proxy and server, 
mapping sqliteserver references in the 
container to the server container.

Publish port
12346 to the

host.

https://github.com/docker-in-practice/docker-compose-sqlite
https://github.com/docker-in-practice/docker-compose-sqlite


193TECHNIQUE 69 A SQLite server using Docker Compose

#!/bin/bash
echo "Creating directory"
SQLITEDIR=/tmp/sqlitedbs
rm -rf $SQLITEDIR
if [ -a $SQLITEDIR ]
then

echo "Failed to remove $SQLITEDIR"
exit 1

fi
mkdir -p $SQLITEDIR
cd $SQLITEDIR
echo "Creating DBs"
echo 'create table t1(c1 text);' | sqlite3 test
echo 'create table t1(c1 text);' | sqlite3 live
echo "Inserting data"
echo 'insert into t1 values ("test");' | sqlite3 test
echo 'insert into t1 values ("live");' | sqlite3 live
cd - > /dev/null 2>&1
echo "All done OK"

To run this example, set up the databases and call docker-compose up, as shown in
the following listing.

$ chmod +x setup_dbs.sh
$ ./setup_dbs.sh
$ sudo docker-compose up
Creating dockercomposesqlite_server_1...
Creating dockercomposesqlite_proxy_1...
Attaching to dockercomposesqlite_server_1, dockercomposesqlite_proxy_1

Then, in one or more other terminals, you can run Telnet to create multiple sessions
against one SQLite DB, as the next listing shows.

$ rlwrap telnet localhost 12346
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
SQLite version 3.7.17
Enter ".help" for instructions
sqlite> select * from t1;
select * from t1;
test
sqlite>

Listing 8.7 setup_dbs.sh

Listing 8.8 Run up the Docker Compose cluster

Listing 8.9 Connecting to the SQLite server

Remove any 
directory from 
a previous run.

Throw an error if
the directory still

exists.

Create the test DB
with one table.Create the live

DB with one
table.

Insert one row 
with the string 
“test” into the 
table.

Insert one row
with the string
“live” into the

table.

Return to the 
previous directory.

Make a connection to the 
proxy using Telnet, wrapped 
in rlwrap to gain the editing 
and history functionality of a 
command line.

Output of the Telnet 
connection 

The connection 
to SQLite is 
made here.

Run a SQL command
against the sqlite prompt.



194 CHAPTER 8 Network simulation: realistic environment testing without the pain

Now if you want to switch the server to live, you can change the configuration by
changing the volumes line in docker-compose.yml from this

- /tmp/sqlitedbs/test:/opt/sqlite/db

to this:

- /tmp/sqlitedbs/live:/opt/sqlite/db

Then rerun this command:

$ sudo docker-compose up

NOT PRODUCTION-READY Although we did some basic tests with this multiplex-
ing of SQLite clients, we make no guarantees about the data integrity or per-
formance of this server under any kind of load.

This technique demonstrates how Docker Compose can take something relatively tricky
and complicated and make it robust and straightforward. Here we’ve taken SQLite and
given it extra server-like functionality by wiring up containers to proxy SQLite invoca-
tions to the data on the host. Managing the container complexity is made significantly
easier with Docker Compose’s YAML configuration, which turns the tricky matter of
orchestrating containers correctly from a manual, error-prone process to a safer, auto-
mated one that can be put under source control. This is the beginning of our journey
into orchestration, which you’ll be hearing much more about in chapter 9.

TECHNIQUE 70 Finding containers via DNS with Resolvable

When you start containers, they are by default allocated their own IP addresses and
can communicate with each other if they know the IPs of their peers— linking, both
manually and as provided by Docker Compose, are a way of distributing IPs in /etc/
hosts and environment variables.

 However, this method of distribution is limited—there’s no way to update environ-
ment variables in a running container, and trying to dynamically update /etc/hosts
could be problematic. Docker avoids both of these problems by refusing to allow you
to add links to a running container.

 There’s a good solution to the problem of distributing IP addresses, and you prob-
ably use it every day—DNS servers!

PROBLEM
You want containers to be able to discover each other without using links.

SOLUTION
Use Resolvable as a DNS server.

DISCUSSION
Resolvable (https://github.com/gliderlabs/resolvable/) is a tool that reads informa-
tion about currently running containers on a host and serves a name-to IP-address
mapping in a standard way—it’s a DNS server.

https://github.com/gliderlabs/resolvable/


195TECHNIQUE 70 Finding containers via DNS with Resolvable

BUILT INTO DOCKER Some versions of Docker (newer than 1.7.1 and older than
1.9.0) provide the ability for containers to ping other containers by name with-
out needing any external tools. But there is possibly still value in Resolvable if
you want to be able to look up containers from the host, as described at the end
of the technique.

There are some settings you need to identify before you can begin: the address of the
docker0 interface and the DNS servers currently used when you start up containers:

$ ip addr | grep 'inet.*docker0'
inet 172.17.42.1/16 scope global docker0

$ docker run --rm ubuntu:14.04.2 cat /etc/resolv.conf | grep nameserver
nameserver 8.8.8.8
nameserver 8.8.4.4

Both of the preceding values are the Docker defaults—if you’ve tweaked some settings
on the Docker daemon or have some unusual configuration on your laptop, you may
find they differ slightly.

 You can now start up your Resolvable container with the appropriate values you
just looked up:

$ DNSARGS="--dns 8.8.8.8 --dns 8.8.4.4"
$ PORTARGS="-p 172.17.42.1:53:53/udp"
$ VOLARGS="-v /var/run/docker.sock:/tmp/docker.sock"
$ docker run -d --name res -h resolvable $DNSARGS $PORTARGS $VOLARGS \
gliderlabs/resolvable:master
5ebbe218b297da6390b8f05c0217613e47f46fe46c04be919e415a5a1763fb11

Three crucial pieces of information were provided in the startup of the container:

■ Resolvable needs to know who to ask if an address being requested can’t be
mapped to a container—the answer is upstream DNS servers. Resolvable will
pick these up from /etc/resolv.conf in the container; the --dns arguments will
populate /etc/resolv.conf. Although it’s not strictly required here (the values
specified are the defaults) you’ll see how this is useful later on. 

■ The interface that should be listened on for DNS requests. Using the IP address
of the Docker bridge has the advantages of not exposing the server to the out-
side world (as 0.0.0.0 would) and of being available at an unchanging IP
address (unlike using container IP addresses).

■ Resolvable needs the Docker socket to be able to find container names.

For every container you have running, Resolvable makes two names available:
<container_name>.docker and <container_hostname>. You can test this with the dig
command, available in the dnsutils package on Ubuntu or bind-utils on CentOS
by looking for the Resolvable container itself:

$ dig +short @172.17.42.1 res.docker
172.17.0.22
$ dig +short @172.17.42.1 resolvable
172.17.0.22



196 CHAPTER 8 Network simulation: realistic environment testing without the pain

This is interesting, but it’s not entirely helpful—similar information can be obtained
with docker inspect. The value comes when you start a container configured to use
the new DNS server:

$ docker run -it --dns 172.17.42.1 ubuntu:14.04.2 bash
root@216a71584c9c:/# ping -q -c1 res.docker
PING res.docker (172.17.0.22) 56(84) bytes of data.

--- res.docker ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 0.065/0.065/0.065/0.000 ms
root@216a71584c9c:/# ping -q -c1 www.google.com
PING www.google.com (216.58.210.36) 56(84) bytes of data.

--- www.google.com ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 7.991/7.991/7.991/0.000 ms

Here we’ve verified that using the DNS server provided by Resolvable gives us access
both to other containers and the outside world. But it’s a bit tiresome to have to spec-
ify a --dns argument every time you start up a container. Happily there are some
options you can pass to the Docker daemon to save the day. Edit your daemon argu-
ments (using the appropriate method for your operating system) to add this:

--bip=172.17.42.1/16 --dns=172.17.42.1

SETTING DOCKER DAEMON ARGUMENTS See appendix B for help on specifying
Docker daemon arguments.

These values are based on the command you ran near the beginning of this technique
to find out the details of the Docker bridge. You should alter them appropriately to
match your results. The role of the --dns argument to the daemon is fairly straight-
forward—it alters the default DNS servers used by containers. Meanwhile, --bip fixes
the configuration of the Docker bridge so it won’t potentially change on a daemon
restart (which would break DNS in all of the containers).

 The DNS arguments passed when starting up Resolvable are crucial here—if you
don’t add them, Resolvable will use the default DNS servers for upstream lookups,
which points back to itself! If this happens, huge logs will be generated and the client
lookups will time out.

 Once you’ve restarted your Docker daemon and started Resolvable, try starting a
container:

$ docker run --rm ubuntu:14.04.2 ping -q -c1 resolvable
PING resolvable (172.17.0.1) 56(84) bytes of data.

--- resolvable ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 0.095/0.095/0.095/0.000 ms



197TECHNIQUE 71 Simulating troublesome networks with Comcast

There are a couple of final features Resolvable comes with that we won’t go into any
detail on, but we’ll mention them for completeness. If you mount /etc/resolv.conf to
/tmp/resolv.conf, you’ll find the DNS server address is added to your host DNS serv-
ers, allowing you to ping containers by name from outside any containers. Users of sys-
temd can get a similar integration by mounting /run/systemd to /tmp/systemd, and
/var/run/dbus/system_bus_socket to the same path in the container.

 Being able to easily find and connect to other containers is a hot topic when it
comes to multiple hosts. We’ll cover service discovery in more detail later in the book. 

8.2 Using Docker to simulate real-world networking
Most people who use the internet treat it as a black box that somehow retrieves infor-
mation from other places around the world and puts it on their screens. Sometimes
they experience slowness or connection drops, and it’s not uncommon to observe
cursing of the ISP as a result.

 When you build images containing applications that need to be connected, you
likely have a much firmer grasp of which components need to connect to where, and
how the overall setup looks. But one thing remains constant: you can still experience
slowness and connection drops. Even large companies, with data centers they own and
operate, have observed unreliable networking and the issues it causes with applications.

 We’ll look at a couple of ways you can experiment with flaky networks to help
determine what problems you may be facing in the real world.

TECHNIQUE 71 Simulating troublesome networks with Comcast

As much as we might wish for perfect network conditions when we distribute applica-
tions across many machines, the reality is much uglier—tales of packet loss, connec-
tion drops, and network partitions abound, particularly on commodity cloud
providers.

 It’s prudent to test your stack before it encounters these situations in the real world
to see how it behaves—an application designed for high availability shouldn’t grind to
a halt if an external service starts experiencing significant additional latency.

PROBLEM
You want to be able to apply varying network conditions to individual containers.

SOLUTION
Use comcast (the networking tool, not the ISP).

DISCUSSION
Comcast (https://github.com/tylertreat/Comcast) is a humorously named tool for
altering network interfaces on your Linux machine in order to apply unusual (or, if
you’re unfortunate, typical!) conditions to them.

 Whenever Docker creates a container, it also creates virtual network interfaces—
this is how all your containers have different IPs and can ping each other. Because
these are standard network interfaces, you can use Comcast on them, as long as you
can find the network interface name. This is easier said than done.

https://github.com/tylertreat/Comcast


198 CHAPTER 8 Network simulation: realistic environment testing without the pain

 Here’s a Docker image containing Comcast, all its prerequisites, and some tweaks:

$ IMG=dockerinpractice/comcast
$ docker pull $IMG
latest: Pulling from dockerinpractice/comcast
[...]
Status: Downloaded newer image for dockerinpractice/comcast:latest
$ alias comcast="docker run --rm --pid=host --privileged \
-v /var/run/docker.sock:/var/run/docker.sock $IMG"
$ comcast -help
Usage of comcast:

-cont="": Container ID or name to get virtual interface of
-default-bw=-1: Default bandwidth limit in kbit/s (fast-lane)
-device="": Interface (device) to use (defaults to eth0 where applicable)
-dry-run=false: Specifies whether or not to commit the rule changes
-latency=-1: Latency to add in ms
-mode="start": Start or stop packet controls
-packet-loss="0": Packet loss percentage (eg: 0.1%%)
-target-addr="": Target addresses, \

(eg: 10.0.0.1 or 10.0.0.0/24 or 10.0.0.1,192.168.0.0/24)
-target-bw=-1: Target bandwidth limit in kbit/s (slow-lane)
-target-port="": Target port(s) (eg: 80 or 1:65535 or 22,80,443,1000:1010)
-target-proto="tcp,udp,icmp": \

Target protocol TCP/UDP (eg: tcp or tcp,udp or icmp)

The tweaks we added provide the -cont option, which allows you to refer to a con-
tainer rather than having to find the name of a virtual interface. Note that we’ve had
to add some special flags to the docker run command in order to give the container
more permissions—this is so Comcast is freely able to examine and apply changes to
network interfaces.

 In order to see the difference Comcast can make, we’ll first find out what a normal
network connection looks like. Open a new terminal and run the following com-
mands to set your expectations for baseline network performance:

$ docker run -it --name c1 ubuntu:14.04.2 bash
root@0749a2e74a68:/# apt-get update && apt-get install -y wget
[...]
root@0749a2e74a68:/# ping -q -c 5 www.docker.com
PING www.docker.com (104.239.220.248) 56(84) bytes of data.

--- www.docker.com ping statistics ---
5 packets transmitted, 5 received, 0% packet loss,

➥ time 4005ms
rtt min/avg/max/mdev = 98.546/101.272/106.424/2.880 ms
root@0749a2e74a68:/# time wget -o /dev/null https://www.docker.com

real 0m0.680s
user 0m0.012s
sys 0m0.006s
root@0749a2e74a68:/#

The connection 
between this machine 
and www.docker.com 
seems to be reliable, 
with no packets lost.

The average
round trip time is
about 100 ms for
www.docker.com.

The total time taken to
 download the HTML homepage

of www.docker.com is about 0.7s.



199TECHNIQUE 71 Simulating troublesome networks with Comcast

Once you’ve done this, leave the container running and you can apply some network
conditions to it:

$ comcast -cont c1 -default-bw 50 -latency 100 -packet-loss 20%
2015/07/29 02:28:13 Found interface vetha7b90a7 for container 'c1'
sudo tc qdisc show | grep "netem"
sudo tc qdisc add dev vetha7b90a7 handle 10: root htb
sudo tc class add dev vetha7b90a7 parent 10: classid 10:1 htb rate 50kbit
sudo tc class add dev vetha7b90a7 parent 10:1 classid 10:10 htb rate 50kbit
sudo tc qdisc add dev vetha7b90a7 parent 10:10 handle 100:

➥ netem delay 100ms loss 20.00%
sudo iptables -A POSTROUTING -t mangle -j CLASSIFY --set-class 10:10 -p tcp
sudo iptables -A POSTROUTING -t mangle -j CLASSIFY --set-class 10:10 -p udp
sudo iptables -A POSTROUTING -t mangle -j CLASSIFY --set-class 10:10 -p icmp
2015/07/29 02:28:13 Packet rules setup...
2015/07/29 02:28:13 Run `sudo tc -s qdisc` to double check
2015/07/29 02:28:13 Run `comcast --mode stop` to reset

The preceding command applies three different conditions: 50 KBps bandwidth cap
for all destinations (to bring back memories of dial-up), an added latency of 100 ms
(on top of any inherent delay), and a packet percentage of 20%.

 Comcast first identifies the appropriate virtual network interface for the container
and then invokes a number of standard Linux command-line networking utilities to
apply the traffic rules, listing what it’s doing as it goes along. Let’s see how our con-
tainer reacts to this:

root@0749a2e74a68:/# ping -q -c 5 www.docker.com
PING www.docker.com (104.239.220.248) 56(84) bytes of data.

--- www.docker.com ping statistics ---
5 packets transmitted, 2 received, 60% packet loss, time 4001ms
rtt min/avg/max/mdev = 200.453/200.581/200.709/0.128 ms
root@0749a2e74a68:/# time wget -o /dev/null https://www.docker.com

real 0m9.673s
user 0m0.011s
sys 0m0.011s

Success! An additional 100 ms of latency is reported by ping, and the timing from
wget shows a slightly greater than 10x slowdown, approximately as expected (the
bandwidth cap, latency addition, and packet loss will all impact on this time). But
there’s something odd about the packet loss—it seems to be three times greater than
expected. It’s important to bear in mind that the ping is sending a few packets and
that packet loss is not a precise “one in five” counter—if you increase the ping count
to 50, you’ll find that the resulting loss is much closer to what’s expected.

 Note that the rules we’ve applied apply to all network connections via this network
interface. This includes connections to the host and other containers.



200 CHAPTER 8 Network simulation: realistic environment testing without the pain

 Let’s now instruct Comcast to remove the rules. Comcast is sadly not yet able to
add and remove individual conditions, so altering anything on a network interface
means completely removing and re-adding rules on the interface. You also need to
remove the rules if you want to get your normal container network operation back.
Don’t worry about removing them if you exit the container, though—they’ll be auto-
matically deleted when Docker deletes the virtual network interface:

$ comcast -cont c1 -mode stop
2015/07/29 02:31:34 Found interface vetha7b90a7 for container 'c1'
[...]
2015/07/29 02:31:34 Packet rules stopped...
2015/07/29 02:31:34 Run `sudo tc -s qdisc` to double check
2015/07/29 02:31:34 Run `comcast --mode start` to start

If you want to get your hands dirty, you can dig into Linux traffic control tools, possi-
bly using Comcast to generate example sets of commands to use. A full treatment of
the possibilities is outside the scope of the technique, but remember, if you can put it
in a container, and it hits the network, you can toy with it. 

TECHNIQUE 72 Simulating troublesome networks with Blockade

Comcast is an excellent tool with a number of applications, but there’s an important
use case it doesn’t solve—how do you apply network conditions to containers en
masse? Manually running Comcast against tens of containers would be painful, hun-
dreds would be unthinkable! This is a particularly relevant problem for containers,
because they’re so cheap to spin up—if you’re trying to run a large network simula-
tion on a single machine with hundreds of VMs rather than containers, you may find
you have bigger problems, like a lack of memory!

 On the subject of simulating a network with many machines, there’s a particular
kind of network failure that becomes interesting at this scale—a network partition.
This is when a group of networked machines splits into two or more parts, such that
all machines in the same part can talk to each other, but different parts can’t commu-
nicate. Research indicates that this happens more than you might think, particularly
on consumer-grade clouds!

 Going down the classic Docker microservices route brings these problems into
sharp relief, and having the tools to do experiments is crucial for understanding how
your service will deal with it.

PROBLEM
You want to orchestrate setting network conditions for large numbers of containers,
including creating network partitions.

SOLUTION
Use Blockade.

DISCUSSION
Blockade (https://github.com/dcm-oss/blockade.git) is an open source piece of soft-
ware from a division of Dell, created for “testing network failures and partitions.”
Looks like exactly what we need.

https://github.com/dcm-oss/blockade.git


201TECHNIQUE 72 Simulating troublesome networks with Blockade

BEWARE A BROKEN REPOSITORY As of the time of writing, the official Blockade
repository doesn’t work with any version of Docker after 1.6.2 without some
tweaking. For the purposes of this technique, we made some modifications
that we hope to contribute back. Bear this in mind if you want to dig into
Blockade yourself.

Blockade works by reading a configuration file (blockade.yml) in your current direc-
tory that defines how to start containers and what conditions to apply to them. The
full configuration details are available in the Blockade documentation, so we’ll only
cover the essentials.

 First you need to create a blockade.yml:

containers:
server:
image: ubuntu:14.04.2
command: /bin/sleep infinity
expose: [10000]

client1:
image: ubuntu:14.04.2
command: sh -c "ping $SERVER_PORT_10000_TCP_ADDR"
links: ["server"]

client2:
image: ubuntu:14.04.2
command: sh -c "ping $SERVER_PORT_10000_TCP_ADDR"
links: ["server"]

network:
flaky: 50%
slow: 100ms

The containers in the preceding configuration are set up to represent a server being
connected to by two clients. In practice, this could be something like a database server
with client applications, and there’s no inherent reason you have to limit the number
of components you want to model. Chances are, if you can represent it in a com-
pose.yml file (see technique 68), you can probably model it in Blockade.

 In the configuration for server, we’ve specified a port to be exposed but we don’t
serve anything there or connect to it—this is to enable Docker’s linking functionality
and to expose the relevant environment variables in the client containers so they know
what IP address to ping. If you use an alternative IP discovery technique, like the DNS
technique covered in this chapter (see technique 70), the links may be unnecessary.

 Don’t worry about the network section for now; we’ll come back to it shortly.
 As usual, the first step in using Blockade is to pull the image:

$ IMG=dockerinpractice/blockade
$ docker pull $IMG
latest: Pulling from dockerinpractice/blockade
[...]



202 CHAPTER 8 Network simulation: realistic environment testing without the pain

Status: Downloaded newer image for dockerinpractice/blockade:latest
$ alias blockade="docker run --rm --pid=host --privileged \
-v \$PWD:/blockade -v /var/run/docker.sock:/var/run/docker.sock $IMG"

You’ll notice that the arguments we passed to docker run are identical to the argu-
ments in the previous technique, with one exception—Blockade mounts the current
directory into the container to access blockade.yml and store state in a hidden folder.

PAIN WITH NETWORKED FILESYSTEMS If you’re running on a networked file-
system, you may encounter strange permission issues when you start Blockade
for the first time—this is likely because Docker is trying to create the hidden
state folder as root, but the networked filesystem isn’t cooperating. The solu-
tion is to use a local disk.

Finally we come to the moment of truth—running Blockade. Make sure you’re in the
directory you’ve saved blockade.yml into:

$ blockade up
NODE CONTAINER ID STATUS IP NETWORK PARTITION
client1 8c4d956cf9cf UP 172.17.0.53 NORMAL
client2 fcd9af2b0eef UP 172.17.0.54 NORMAL
server b8f9f179a10d UP 172.17.0.52 NORMAL

DEBUGGING TIPS On startup, Blockade may sometimes give cryptic errors
about files in /proc not existing. The first thing to check is whether a con-
tainer has immediately exited on startup, preventing Blockade from checking
its network status. Additionally, try to resist any temptation to use the Block-
ade -c option to specify a custom path to the config file—only subdirectories
of the current directory are available inside the container. 

All of the containers defined in our config file have been started and we’ve been given
a bunch of helpful information about the started containers. Let’s now apply some
basic network conditions. Tail the logs of client1 in a new terminal (with docker logs
-f 8c4d956cf9cf) so you can see what happens as you change things:

$ blockade flaky --all
$ sleep 5
$ blockade slow client1
$ blockade status
NODE CONTAINER ID STATUS IP NETWORK PARTITION
client1 8c4d956cf9cf UP 172.17.0.53 SLOW
client2 fcd9af2b0eef UP 172.17.0.54 FLAKY
server b8f9f179a10d UP 172.17.0.52 FLAKY
$ blockade fast --all

Make the
network

 flaky (drop
packets) for

all containers.

Delay the next command to give
the previous one time to take

effect and log some output. Make the network 
slow (add a delay 
to packets) for 
container client1.

Check the
status the
containers

are in.

Revert all the containers 
to normal operation.



203TECHNIQUE 72 Simulating troublesome networks with Blockade

The flaky and slow commands use the values defined in the network section of the
previous configuration file above—there’s no way to specify a limit on the command
line. If you want, it’s possible to edit blockade.yml while containers are running and
then selectively apply the new limits to containers. Be aware that a container can
either be on a slow or flaky network, not both. These limitations aside, the conve-
nience of running this against hundreds of containers is fairly significant.

 If you look back at your logs from client1, you should now be able to see when
the different commands took effect:

64 bytes from 172.17.0.52: icmp_seq=638 ttl=64 time=0.054 ms
64 bytes from 172.17.0.52: icmp_seq=639 ttl=64 time=0.098 ms
64 bytes from 172.17.0.52: icmp_seq=640 ttl=64 time=0.112 ms
64 bytes from 172.17.0.52: icmp_seq=645 ttl=64 time=0.112 ms
64 bytes from 172.17.0.52: icmp_seq=652 ttl=64 time=0.113 ms
64 bytes from 172.17.0.52: icmp_seq=654 ttl=64 time=0.115 ms
64 bytes from 172.17.0.52: icmp_seq=660 ttl=64 time=100 ms
64 bytes from 172.17.0.52: icmp_seq=661 ttl=64 time=100 ms
64 bytes from 172.17.0.52: icmp_seq=662 ttl=64 time=100 ms
64 bytes from 172.17.0.52: icmp_seq=663 ttl=64 time=100 ms

All this is useful, but it’s nothing we couldn’t have done already with some (likely pain-
ful) scripting on top of Comcast, so let’s take a look at the killer feature of Blockade—
network partitions:

$ blockade partition server client1,client2
$ blockade status
NODE CONTAINER ID STATUS IP NETWORK PARTITION
client1 8c4d956cf9cf UP 172.17.0.53 NORMAL 2
client2 fcd9af2b0eef UP 172.17.0.54 NORMAL 2
server b8f9f179a10d UP 172.17.0.52 NORMAL 1

This has put our three nodes in two boxes—the server in one and clients in the
other—with no way of communicating between them. You’ll see that the log for
client1 has stopped doing anything because all of the ping packets are being lost!
The clients can still talk to each other, though, and you can verify this by sending a few
ping packets between them:

$ docker exec 8c4d956cf9cf ping -qc 3 172.17.0.54
PING 172.17.0.54 (172.17.0.54) 56(84) bytes of data.

--- 172.17.0.54 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 1999ms
rtt min/avg/max/mdev = 0.065/0.084/0.095/0.015 ms

No packet loss, low delay…looks like a good connection. Partitions and other network
conditions operate independently, so you can play with packet loss while your apps are

icmp_seq is sequential (no
packets being dropped) and
time is low (a small delay).

icmp_seq has taken a big 
jump—the flaky command 
has taken effect.

time has taken a 
big jump—the 
slow command 
has taken effect.



204 CHAPTER 8 Network simulation: realistic environment testing without the pain

partitioned. There’s no limit to the number of partitions you can define, so you can
play with complex scenarios to your heart’s content.

 One final suggestion if you need more power than Blockade and Comcast can indi-
vidually provide is to combine the two. Blockade is excellent at creating partitions and
doing the heavy lifting of starting up containers; adding Comcast to the mix gives you
fine-grained control over the network connections of each and every container!

8.3 Docker and virtual networks
Docker’s core functionality is all about isolation. Previous chapters have shown some
of the benefits of process and filesytem isolation, and in this chapter you’ve seen net-
work isolation.

 You could think of there being two aspects to network isolation:

■ Individual sandbox—Each container has its own IP and set of ports to listen on
without stepping on the toes of other containers (or the host).

■ Group sandbox—This is a logical extension of the individual sandbox— all of the
isolated containers are grouped together in a private network, allowing you to
play around without interfering with the network your machine lives on (and
incurring the wrath of your company network administrator!).

The previous two techniques provide some practical examples of these two aspects of
network isolation—Comcast manipulated individual sandboxes to apply rules to each
container, whereas partitioning in Blockade relied on the ability to have complete
oversight of the private container network to split it into pieces.

 Behind the scenes, it looks a bit like figure 8.2.
 The exact details of how the bridge works aren’t important. Suffice it to say that

the bridge creates a flat network between containers (it allows direct communication
with no intermediate steps) and it forwards requests to the outside world to your
external connection.

 The flexibility permitted by this virtual network spurred efforts from third parties
to extend the networking system in various ways to permit more complex use cases.
Docker, Inc. is using these efforts to inform the ongoing (at the time of writing) work
to permit network extensions to plug directly into Docker rather then working
around it.

TECHNIQUE 73 Setting up a substrate network with Weave

A substrate network is a software-level network layer built on top of another network.
In effect, you end up with a network that appears to be local, but under the hood it’s
communicating across other networks. This means that performance-wise, the net-
work will behave less reliably than a local network, but from a usability point of view it
can be a great convenience: you can communicate with nodes in completely different
locations as though they are in the same room.

 Achieving this is particularly interesting for Docker containers—containers can be
seamlessly connected across hosts in the same way as connecting hosts across



205TECHNIQUE 73 Setting up a substrate network with Weave

networks. Doing this removes any urgent need to plan how many containers you can
fit on a single host.

PROBLEM
You want to seamlessly communicate between containers across hosts.

SOLUTION
Use a substrate network.

DISCUSSION
We’re going to demonstrate the principle of a substrate network with Weave (http://
weave.works/), a tool designed for this purpose. Figure 8.3 shows an overview of a typ-
ical Weave network.

C4 is a container started
with –net=host. It’s not given
a virtual connection and has
the same view of the system
networking as any process
outside containers.

When a container is created, Docker
also creates a virtual interface pair
(two virtual interfaces that can initially
only send packets to each other). One
of these is inserted into the new
container as eth0. The other is added
to the bridge (with prefix “veth”).

The docker0 bridge (created when Docker is started)
provides a place for container connections to route
through. If it's taken down, containers will be unable
to access the network.

Your external connection may
be named eth0 or wlan0 for local
wired or wireless connections, or
it may have a more exotic name
on the cloud.

Host processes

docker.com

google.com

github.com

C4

eth0
(A.B.C.D)

(external IP)

lo
(127.0.0.1)
(loopback)

docker0
(172.17.42.1)

(bridge)

eth0
(172.17.0.2)

C2
veth...

lo

eth0
(172.17.0.1)

C1
veth...

lo

eth0
(172.17.0.3)

C3
veth...

lo

Figure 8.2 Internal Docker networking on a host machine

http://weave.works/
http://weave.works/


206 CHAPTER 8 Network simulation: realistic environment testing without the pain

In figure 8.3, host 1 has no access to host 3, but they can talk to each other over the
Weave network as though they were locally connected. The Weave network isn’t open
to the public—only to those containers started up under Weave. This makes the devel-
opment, testing, and deployment of code across different environments relatively
straightforward, because the network topology can be made the same in each case. 

INSTALLING WEAVE

Weave is a single binary. You can find installation instructions at https://github.com/
zettio/weave.

 These instructions worked for us. Weave needs to be installed on every host that
you want to be part of your Weave network:

$ sudo wget -O /usr/local/bin/weave \
https://github.com/zettio/weave/releases/download/latest_release/weave
$ sudo chmod +x /usr/local/bin/weave

CONFLICTING WEAVE BINARY If you experience problems with this technique,
there may already be a Weave binary on your machine that’s part of another
software package. 

Host 1 is a back-end host
only accessible to the Weave
network on port 6783, serving
data from a database.

Host 2 is another
back-end server running
the application server tier.

Hosts are connected
over a private substrate
network layer.

Host 3 is the
public-facing
web tier.

Clients can access
the web tier through
ports 80 and 443.

Host 2

Weave service

Docker
container

Docker
container

Host 3

Weave service

Host 1

Weave service

DB

Docker
container

Docker
container

Internet
client

Figure 8.3 A typical Weave network

https://github.com/zettio/weave
https://github.com/zettio/weave


207TECHNIQUE 73 Setting up a substrate network with Weave

SETTING UP WEAVE

To follow this example, you’ll need two hosts. We’ll call them host1 and host2. Make
sure they can talk to each other by using ping. You’ll need both hosts’ IP addresses.

HOW DO YOU GET YOUR IP ADDRESS? A quick way to get a host’s IP address is by
accessing http://ip-addr.es with a browser, or by running curl http://ip-
addr.es.

NETWORK FIREWALLS If you experience problems with this technique, it’s
likely that the network is firewalled in some way. If you’re not sure, talk to
your network administrator. Specifically, you’ll need to have port 6783 open
for both TCP and UDP.

On the first host, you can run the first Weave router:

host1$ curl http://ip-addr.es
1.2.3.4
host1$ sudo weave launch
host1$ C=$(sudo weave run 10.0.1.1/24 -t -i ubuntu)

WHAT IS CIDR? CIDR stands for Classless Inter-Domain Routing. It’s a method of
allocating IP addresses and routing IP network packets. CIDR notation consists
of an IP address with a forward slash and a number following that. The trailing
number indicates the number of leading bits in the routing prefix. The remain-
ing bits become the route’s address space. The smaller the trailing number,
therefore, the bigger the address space. For example, a 192.168.2.0/24 network
would have an 8-bit address space of 256 addresses, whereas a 16.0.0.0/8 net-
work would have an address space of 16,777,216 addresses. 

You can perform similar steps on host2, but telling Weave about the location of host1
and assigning it a different IP address:

host2$ curl http://ip-addr.es
1.2.3.5
host2# sudo weave launch 1.2.3.4
host2# C=$(sudo weave run 10.0.1.2/24 -t -i ubuntu)

The only difference on host2, apart from the choice of IP address for the application
container, is that you tell your Weave that it should peer with the Weave on host1
(specified with the IP address or hostname, and optional :port, by which host2 can
reach it). 

Determine host1’s 
IP address. Launch the Weave 

service on host1 as root. 
This needs to be done 
once on each host.

Start the Weave router in a 
container. We gave it an IP 
address and network, in CIDR 
notation. The IP address and 
network given here define 
what your private Weave 
network will look like.

Determine host2’s
IP address. Launch the Weave service on 

host2 as root. This time you add 
the first host’s public IP address 
so it can attach to the other host.

Start the Weave router 
in a container. We gave it 
a different IP address than 
host1 on the same network.

http://ip-addr.es
http://ip-addr.es
http://ip-addr.es


208 CHAPTER 8 Network simulation: realistic environment testing without the pain

TESTING YOUR CONNECTION

Now that you’ve got everything set up, you can test whether your containers can talk
to each other:

host1# docker attach $C
root@28841bd02eff:/# ping -c 1 -q 10.0.1.2
PING 10.0.1.2 (10.0.1.2): 48 data bytes
--- 10.0.1.2 ping statistics ---
1 packets transmitted, 1 packets received, 0% packet loss
round-trip min/avg/max/stddev = 1.048/1.048/1.048/0.000 ms

If you get a successful ping, you’ve proven connectivity within your self-assigned private
network. You can now assign (as a convention within your own organization) 10.0.1.1
as your application server and 10.0.1.2 as your web server.

ICMP BLOCKED? It’s possible that this won’t work due to ICMP protocol (used
by ping) messages being blocked by a firewall. If this doesn’t work, try telnet-
ting to port 6783 on the other host to test whether connections can be made. 

TECHNIQUE 74 Docker networking and service features

Weave is an excellent tool, but it requires a tool outside of Docker and therefore may
not integrate well with other tools in the ecosystem.

 Because of the popularity of tools like Weave, Docker, Inc. took feedback from a
number of companies interested in networking solutions within Docker and came up
with a plan to try and serve the most pressing needs, while not locking people into a
one-size-fits-all solution. This work is ongoing, but it’s getting closer to release!

PROBLEM
You want a solution supported by Docker, Inc. for creating virtual networks.

SOLUTION
Use the experimental networking and service features.

DISCUSSION
By the time you read this, Docker may have released the (currently) experimental net-
work features in a stable release. You can check by running the following command:

$ docker network --help

Usage: docker network [OPTIONS] COMMAND [OPTIONS] [arg...]

Commands:
create Create a network
rm Remove a network
ls List all networks
info Display information of a network

Run 'docker network COMMAND --help' for more information on a command.

--help=false Print usage

Attach to the container
ID returned earlier in

this interactive session. Ping the other 
server’s assigned 
IP address.

A successful 
ping response



209TECHNIQUE 74 Docker networking and service features

If it says something like 'network' is not a docker command, you’ll need to install an
experimental version of Docker. To install experimental features, refer to the Docker
Experimental Features page on GitHub: https://github.com/docker/docker/tree/
master/experimental.

EXPERIMENTAL FEATURES CHANGE UNDERFOOT We have endeavoured to keep
this technique as up-to-date as possible, but experimental features tend to
change. The instructions in this technique may need to be altered slightly by
the time you come to follow them.

The high-level aim of this functionality is to abstract away the creation of virtual net-
works by permitting the use of network plugins within Docker. These are either
built-in or provided by third parties and provide you with a virtual network. Behind
the scenes, the plugin should do all the necessary work to wire up the network, let-
ting you get on with using it. In theory, tools like Weave should be able to become
network plugins, along with more exotic use cases. In practice, the design of this fea-
ture is likely to be an iterative process.

 You can see the list of networks Docker always has available:

$ docker network ls
NETWORK ID NAME TYPE
04365ecf2eaa none null
c82bde52597d host host
7e8c8a0eab7d bridge bridge

You’ll recognize these as the options you can pass to Docker run’s --net option when
starting a container. Let’s add a new bridge network (a flat network for containers to
freely communicate in):

$ docker network create --driver=bridge mynet
3265097deff3847cb1f7b8e8bc924bae1c439d8bf6247458400e620b35447292
$ docker network ls | grep mynet
3265097deff3 mynet bridge
$ ip addr | grep mynet
34: mynet: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc noqueue

➥ state DOWN
inet 172.18.42.1/16 scope global mynet

$ ip addr | grep docker
4: docker0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc noqueue

➥ state DOWN
inet 172.17.42.1/16 scope global docker0

This has created a new network interface that will use a different IP address range
than the normal Docker bridge.

 Let’s now start up two containers that will advertise a service into the network. The
concept of a service is tightly integrated in the networking features at present, and a
container must have a service name to participate in a particular network:

 

https://github.com/docker/docker/tree/master/experimental
https://github.com/docker/docker/tree/master/experimental


210 CHAPTER 8 Network simulation: realistic environment testing without the pain

 

$ docker run -it -d --name c1 ubuntu:14.04.2 bash
87c67f4fb376f559976e4a975e3661148d622ae635fae4695747170c00513165
$ docker service publish c1service.mynet
ed190f2cc0887ac87e1024ebb425f653989582942ab25a341e3d3e2a980475f5
$ docker service attach c1 c1service.mynet
$ docker run -it -d --name c2 \
--publish-service=c2service.mynet ubuntu:14.04.2 bash
0ee74a3e3444f27df9c2aa973a156f2827bcdd0852c6fd4ecfd5b152846dea5b
$ docker service ls --network mynet
SERVICE ID NAME NETWORK CONTAINER
ed190f2cc088 c1service mynet 87c67f4fb376
21aef543af70 c2service mynet 0ee74a3e3444

The preceding commands demonstrate two different ways of registering a service— cre-
ating a container and then attaching the service, and creating and attaching in one step.

 There’s a difference between these two. The first will join the default network on
startup (usually the Docker bridge, but this is customizable with an argument to the
Docker daemon), and then will add a new interface so it can access mynet as well. The
second will just join mynet—any containers on the normal Docker bridge will be
unable to access it.

 Let’s do some connectivity checks:

$ docker exec c1 ip addr | grep 'inet.*eth'
inet 172.17.0.6/16 scope global eth0
inet 172.18.0.5/16 scope global eth1

$ docker exec c2 ip addr | grep 'inet.*eth'
inet 172.18.0.6/16 scope global eth0

$ docker exec c1 ping -qc1 c2service
ping: unknown host c2service
$ docker exec c1 ping -qc1 172.18.0.6
PING 172.18.0.6 (172.18.0.6) 56(84) bytes of data.

--- 172.18.0.6 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 0.069/0.069/0.069/0.000 ms
$ docker exec c2 ping -qc1 c1service
PING c1service (172.18.0.5) 56(84) bytes of data.

--- c1service ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 0.084/0.084/0.084/0.000 ms

There’s a lot going on here! We’ve found that although the actual IP addresses of the
containers are definitely available to each other, container c1 can’t find the service for

Start a container 
with name c1.

Create an unassociated service 
name inside the network mynet, 
called c1service.

Associate
container

 c1 with
 the service

c1service.

Create a
container

named c2 with
a service name

c2service inside
the network

mynet.

Show that both 
containers now 
have services 
advertised in 
mynet.

If the CONTAINER field is empty, 
remember to run “docker service attach 
c1 c1service.mynet” to attach the service.

List the interfaces 
and IP addresses 
for c1.

List the interface
and IP address

for c2. Attempt to ping the 
service for container 2 
from container 1.

Attempt to ping 
the IP address for 
container 2 from 
container 1.

Attempt to ping
the service for

container 1 from
container 2.



211Summary

c2. This is because of the way services work—/etc/hosts gets updated inside contain-
ers when services are added and removed, but this doesn’t happen for c1 because it
was initially started on the default docker0 bridge. This unexpected behaviour may or
may not change in the future.

 For simplicity, we recommend sticking to --publish-service where possible,
though you may find a setup of two networks connected by a single container useful
for emulating a real-world bastion host setup.

 One thing we haven’t covered here (since work is still ongoing) is the built-in over-
lay network plugin—depending on your use case, this may be worth some research as
a possible replacement for Weave. 

8.4 Summary
The networking possibilities provided by Docker can initially be overlooked when
evaluating other aspects, so we’ve investigated using networking features both to com-
plement other Docker features and to provide value in their own right.

 We’ve covered

■ How to use Docker Compose
■ An alternative to using linking
■ Putting containers through their paces in bad networking environments
■ Stringing containers together across hosts

This marks the end of using Docker in a development pipeline—it’s time to see how
we can use it for real in production, starting with an exploration of how to actually
manage all your containers.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Part 4

Docker in production

At last we’re ready to contemplate running Docker in production. In part
4 we address the key operational considerations when running Docker on live
environments. Chapter 9 covers the burgeoning area of orchestration. As soon
as you run any number of containers in the same environment, you’ll need to
think about how they’re managed in a consistent and reliable way, so we’ll look
at some of the most popular tools currently available. Security is the focus of
chapter 10. Through practical techniques you’ll get a real understanding of the
security challenges Docker brings and how you might want to address them.
Backups, logging and resource management are considered in chapter 11,
where we show you how these traditional sysadmin tasks can be managed with in
a Docker context. Finally, in chapter 12 we look at what to do when things go
wrong, covering some common areas where Docker can get into trouble, as well
as how to debug containers in production.

 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 



215

Container orchestration:
managing multiple
 Docker containers

The technology Docker is built on has existed for a while in different forms, but
Docker is the solution that’s managed to grab the interest of the technology indus-
try. This puts Docker in an enviable position—the mindshare did the initial job of
kickstarting an ecosystem of tools, which became a self-perpetuating cycle of peo-
ple being drawn into the ecosystem and contributing back to it.

 This is particularly evident when it comes to orchestration. After seeing a list of
company names with offerings in this space, you’d be forgiven for thinking that every-
one has their own opinion on how to do things and has developed their own tool.

This chapter covers
■ Managing Docker containers on a single host
■ Deploying containers to multiple hosts
■ Retrieving information about where containers 

have been deployed



216 CHAPTER 9 Container orchestration: managing multiple Docker containers

 Although the ecosystem is a huge strength of Docker (which is why we’ve been
drawing from it so much in this book), the sheer quantity of possible orchestration
tools can be overwhelming to novices and veterans alike. This chapter will take you on
a tour through some of the most notable tools available and give you a feel for the
high-level offerings so you’re better informed when it comes to evaluating what you
want a framework to do for you.

 There are many ways of arranging family trees of the orchestration tools. Figure 9.1
shows some of the tools we’re familiar with.

 At the root of the tree is docker run, the most common way to start a container.
Everything inspired by Docker is an offshoot of this. On the left side are the tools that
treat groups of containers as a single entity. The middle shows the tools focused on
managing containers under the umbrella of systemd and service files. Finally, the right
side treats individual containers as just that. As you move down the branches, the tools
end up doing more for you, be it working across multiple hosts or taking the tedium
of manual container deployment away from you.

 You’ll note two seemingly isolated areas on the diagram—Mesos and the Consul/
etcd/Zookeeper group. Mesos is an interesting case—it existed before Docker and
the support it has for Docker is an added feature rather than core functionality. It
works very well, though, and should be evaluated carefully, if only to see what features
from it you might want in other tools. By contrast, Consul, etcd, and Zookeeper aren’t
orchestration tools at all. Instead, they provide the important complement to orches-
tration: service discovery.

docker run

systemd

Fleet

Consul Mesos

Zookeeperetcd

Helios

docker -H ... run

Swarm

Compose

Kubernetes

Figure 9.1 Orchestration tools in the Docker ecosystem



217TECHNIQUE 75 Managing your host's containers with systemd

As you read this chapter, it might be helpful to take a step back as you come to each
orchestration tool and try and come up with a scenario it would be useful in. This will
help clarify whether a particular tool is relevant for you. We’ll give you some examples
along the way to get you started.

 We’ll start slow by turning our gaze inwards to a single computer.

9.1 Simple single-host Docker
Managing the containers on your local machine can be a painful experience. The fea-
tures provided by Docker for managing long-running containers are relatively primi-
tive, and starting up containers with links and shared volumes can be a frustratingly
manual process.

 In chapter 8 we looked at using Docker Compose to make managing links easier, so
we’ll deal with the other pain point now and see how the management of long-running
containers on a single machine can be made more robust.

TECHNIQUE 75 Managing your host's containers with systemd

In this technique we’ll take you through setting up a simple Docker service with sys-
temd. If you’re already familiar with systemd, this chapter will be relatively easy to fol-
low, but we assume no prior knowledge of the tool.

 Using systemd to control Docker can be useful for a mature company with an oper-
ations team that prefers to stick to proven technologies that they already understand
and have the tooling for.

PROBLEM
You want to manage the running of Docker container services on your host.

SOLUTION
Use systemd to manage your container services.

DISCUSSION
systemd is a system-management daemon that replaced SysV init scripts in Fedora some
time ago. It manages services on your system—everything from mount points to pro-
cesses to one-shot scripts—as individual units. It’s growing in popularity as it spreads to
other distributions and operating systems, though some systems (Gentoo being an exam-
ple at time of writing) may have problems installing and enabling it. It’s worth looking
around for experiences other people have had with systemd on a setup similar to yours.

 In this technique we’ll demonstrate how the startup of your containers can be
managed by systemd by running the to-do app from chapter 1. 

INSTALLING SYSTEMD

If you don’t have systemd on your host system (you can check by running systemctl
status and seeing whether you get a coherent response), you can install it directly on
your host OS using your standard package manager. If you’re not comfortable inter-
fering with your host system in this way, the recommended way to play with it is to use
Vagrant to provision a systemd-ready VM, as shown in the following listing. We’ll cover
it briefly here, but see appendix C for more advice on installing Vagrant.



218 CHAPTER 9 Container orchestration: managing multiple Docker containers

$ mkdir centos7_docker
$ cd centos7_docker
$ vagrant init jdiprizio/centos-docker-io
$ vagrant
$ vagrant ssh

JDIPRIZIO/CENTOS-DOCKER-IO NO LONGER AVAILABLE? At the time of writing,
jdiprizio/centos-docker-io is a suitable and available VM image. If it’s no lon-
ger available when you’re reading this, you can replace that string in the pre-
ceding listing with another image name. You can search for one on Atlas’s
“Discover Vagrant Boxes” page: https://atlas.hashicorp.com/boxes/search
(box is the terminology Vagrant uses to refer to a VM image). To find this
image, we searched for “docker centos”. You may need to look up help for the
command-line vagrant box add command to figure out how to download
your new VM before attempting to start it. 

SETTING UP A SIMPLE DOCKER APPLICATION UNDER SYSTEMD

Now that you have a machine with systemd and Docker on it, we’re going to use it to
run the to-do application from chapter 1. 

 systemd works by reading configuration files in the simple INI file format.

INI FILES INI files are simple text files with a basic structure composed of sec-
tions, properties, and values.

First you create a service file as root in /etc/systemd/system/todo.service, as shown in
the next listing. In this file you tell systemd to run the Docker container with the name
todo on port 8000 on this host.

[Unit]
Description=Simple ToDo Application
After=docker.service
Requires=docker.service

[Service]
Restart=always
ExecStartPre=/bin/bash \
-c '/usr/bin/docker rm -f todo || /bin/true'
ExecStartPre=/usr/bin/docker pull dockerinpractice/todo

Listing 9.1 A Vagrant setup

Listing 9.2 /etc/systemd/system/todo.service

Create and enter 
a new folder.

Initialize the folder for use 
as a Vagrant environment, 
specifying the Vagrant image.Bring up

the VM.
SSH into the VM.

The unit section defines 
generic information about 
the systemd object. Start this unit 

after the Docker 
service is started.

The Docker
service needs
to be running

for this unit to
successfully

run. The service section defines the 
configuration information specific 
to systemd service unit types.

If the service terminates, 
always restart it.

ExecStartPre defines
a command that will

be run before the
unit is started. To

ensure the container
is removed before

you start it, you
remove it with
prejudice here.

Make sure the image is
downloaded before you

run the container.

https://atlas.hashicorp.com/boxes/search


219TECHNIQUE 75 Managing your host's containers with systemd

ExecStart=/usr/bin/docker run --name todo \
-p 8000:8000 dockerinpractice/todo
ExecStop=/usr/bin/docker rm -f todo

[Install]
WantedBy=multi-user.target

This configuration file should make it clear that systemd offers a simple declarative
schema for managing processes, leaving the details of dependency management up to
the systemd service. This doesn’t mean that you can ignore the details, but it does put
a lot of tools at your disposal for managing Docker (and other) processes.

DOCKER RESTART POLICIES AND PROCESS MANAGERS Docker doesn’t set any con-
tainer restart policies by default, but be aware that any you set will conflict with most
process managers. Don’t set restart policies if you’re using a process manager.

Enabling a new unit is just a matter of invoking the systemctl enable command. If
you want this unit to start automatically when the system boots, you can also create a
symlink in the multi-user.target.wants systemd directory. Once done, you can start
the unit with systemctl start: 

$ systemctl enable /etc/systemd/system/todo.service
$ ln -s '/etc/systemd/system/todo.service' \
'/etc/systemd/system/multi-user.target.wants/todo.service'
$ systemctl start todo.service

Then just wait for it to start. If there’s a problem, you’ll be informed.
 To check that all is OK, use the systemctl status command. It will print out some

general information about the unit, such as how long it’s been running and the pro-
cess ID, followed by a number of log lines from the process. In this case, seeing Swarm
server started port 8000 is a good sign:

[root@centos system]# systemctl status todo.service
todo.service - Simple ToDo Application

Loaded: loaded (/etc/systemd/system/todo.service; enabled)
Active: active (running) since Wed 2015-03-04 19:57:19 UTC; 2min 13s ago

Process: 21266 ExecStartPre=/usr/bin/docker pull dockerinpractice/todo
  ➥ (code=exited, status=0/SUCCESS)

Process: 21255 ExecStartPre=/bin/bash -c /usr/bin/docker rm -f todo ||
  ➥ /bin/true (code=exited, status=0/SUCCESS)

Process: 21246 ExecStartPre=/bin/bash -c /usr/bin/docker kill todo ||
  ➥ /bin/true (code=exited, status=0/SUCCESS)
Main PID: 21275 (docker)

CGroup: /system.slice/todo.service
??21275 /usr/bin/docker run --name todo

           ➥ -p 8000:8000 dockerinpractice/todo

ExecStart defines the 
command to be run when 
the service is started.

ExecStop defines the 
command to be run when 
the service is stopped.

The
installation

section
contains

information
for systemd

when enabling
the unit. Inform systemd that you want this 

unit to be started when it enters 
the multi-user target stage.



220 CHAPTER 9 Container orchestration: managing multiple Docker containers

Mar 04 19:57:24 centos docker[21275]: TodoApp.js:117:

➥ // TODO scroll into view
Mar 04 19:57:24 centos docker[21275]: TodoApp.js:176:

➥ if (i>=list.length()) { i=list.length()-1; } // TODO .length
Mar 04 19:57:24 centos docker[21275]: local.html:30:

➥ <!-- TODO 2-split, 3-split -->
Mar 04 19:57:24 centos docker[21275]: model/TodoList.js:29:

➥ // TODO one op - repeated spec? long spec?
Mar 04 19:57:24 centos docker[21275]: view/Footer.jsx:61:

➥ // TODO: show the entry's metadata
Mar 04 19:57:24 centos docker[21275]: view/Footer.jsx:80:

➥ todoList.addObject(new TodoItem()); // TODO create default
Mar 04 19:57:24 centos docker[21275]: view/Header.jsx:25:

➥ // TODO list some meaningful header (apart from the id)
Mar 04 19:57:24 centos docker[21275]: > todomvc-swarm@0.0.1 start /todo
Mar 04 19:57:24 centos docker[21275]: > node TodoAppServer.js
Mar 04 19:57:25 centos docker[21275]: Swarm server started port 8000

The principles in this technique can be applied to more than just systemd—most pro-
cess managers, including other init systems, can be configured in a similar way.

 In the next technique, we’ll take this further by implementing in systemd the
SQLite server we created in technique 69. 

TECHNIQUE 76 Orchestrating your host's containers with systemd

Unlike docker-compose (at the time of writing), systemd is a mature technology ready
for production. In this technique we’ll show you how to achieve local orchestration
functionality that’s similar to docker-compose using systemd.

 If you run into trouble with this technique, you may need to upgrade your version
of Docker. Anything from 1.7.0 up should work fine.

PROBLEM
You want to manage more complex container orchestration on one host in production.

SOLUTION
Use systemd with dependent services to manage your containers.

DISCUSSION
To demonstrate the use of systemd for a more complex scenario, we’re going to
re-implement the SQLite TCP server example from technique 69 in systemd.

 Figure 9.2 illustrates the dependencies for our planned systemd service unit
configuration.

 This is a similar schema to what you saw with the Docker Compose example in
technique 69. A key difference here is that rather than the SQLite service being
treated as a single monolithic entity, each container here is a discrete entity. In this
scenario, the SQLite proxy can be stopped independently of the SQLite server.

 Listing 9.3 shows the code for the sqliteserver service. As before, it depends on the
Docker service, but it has a couple of differences from the to-do example in the previ-
ous technique.



221TECHNIQUE 76 Orchestrating your host's containers with systemd

[Unit]
Description=SQLite Docker Server
After=docker.service
Requires=docker.service

[Service]
Restart=always
ExecStartPre=-/bin/touch /tmp/sqlitedbs/test
ExecStartPre=-/bin/touch /tmp/sqlitedbs/live
ExecStartPre=/bin/bash \
-c '/usr/bin/docker kill sqliteserver || /bin/true'
ExecStartPre=/bin/bash \                             
-c '/usr/bin/docker rm -f sqliteserver || /bin/true'
ExecStartPre=/usr/bin/docker \
pull dockerinpractice/docker-compose-sqlite
ExecStart=/usr/bin/docker run --name sqliteserver \
-v /tmp/sqlitedbs/test:/opt/sqlite/db \
dockerinpractice/docker-compose-sqlite /bin/bash -c \
'socat TCP-L:12345,fork,reuseaddr \
EXEC:"sqlite3 /opt/sqlite/db",pty'
ExecStop=/usr/bin/docker rm -f sqliteserver

[Install]
WantedBy=multi-user.target

Listing 9.3 /etc/systemd/system/sqliteserver.service

Docker
service unit

Sqliteserver
service unit

SQLite proxy
service unit

Todo
service unit

The SQLite service unit
depends on the Docker
service unit to run.

The todo service unit
depends only on the
Docker service unit.

The SQLite proxy service
depends on the SQLite
service unit to run.

All the services ultimately
depend on the Docker service
unit. If it’s not running, none
of the other services can run.

Figure 9.2 systemd unit dependency graph

The unit section 
defines generic 
information about 
the systemd object.

Start this unit after the 
Docker service is started.

The Docker
service needs
to be running

for this unit to
successfully

run.

These lines ensure 
that the SQLite 
database files exist 
before the service 
starts up. The dash 
before the touch 
command indicates to 
systemd that startup 
should fail if the 
command returns an 
error code.

ExecStartPre
defines a command

that will be run
before the unit is

started. To ensure
the container is
removed before
you start it, you

remove it with
prejudice here.

Make sure the 
image is 
downloaded 
before you run 
the container.

ExecStart defines the
command to be run
when the service is
started. Note that

we’ve wrapped the
socat command in a

/bin/bash -c call to
avoid confusion, as

the ExecStart line is
run by systemd.

ExecStop defines 
the command to 
be run when the 
service is 
stopped.



222 CHAPTER 9 Container orchestration: managing multiple Docker containers

ABSOLUTE PATHS REQUIRED Paths must be absolute in systemd!

Now comes the listing for the sqliteproxy service. The key difference here is that the
proxy service depends on the server process you just defined, which in turn depends
on the Docker service.

[Unit]
Description=SQLite Docker Proxy
After=sqliteserver.service
Requires=sqliteserver.service

[Service]
Restart=always
ExecStartPre=/bin/bash -c '/usr/bin/docker kill sqliteproxy || /bin/true'
ExecStartPre=/bin/bash -c '/usr/bin/docker rm -f sqliteproxy || /bin/true'
ExecStartPre=/usr/bin/docker pull dockerinpractice/docker-compose-sqlite
ExecStart=/usr/bin/docker run --name sqliteproxy \
-p 12346:12346 --link sqliteserver:sqliteserver \
dockerinpractice/docker-compose-sqlite /bin/bash \
-c 'socat TCP-L:12346,fork,reuseaddr TCP:sqliteserver:12345'
ExecStop=/usr/bin/docker rm -f sqliteproxy

[Install]
WantedBy=multi-user.target

With these two configuration files, we’ve laid the groundwork for installing and run-
ning our SQLite service under systemd’s control. Now we can enable these services...

$ sudo systemctl enable /etc/systemd/system/sqliteserver.service
ln -s '/etc/systemd/system/sqliteserver.service' \
'/etc/systemd/system/multi-user.target.wants/sqliteserver.service'
$ sudo systemctl enable /etc/systemd/system/sqliteproxy.service
ln -s '/etc/systemd/system/sqliteproxy.service' \
'/etc/systemd/system/multi-user.target.wants/sqliteproxy.service'

...and start them up:

$ sudo systemctl start sqliteproxy
$ telnet localhost 12346
[vagrant@centos ~]$ telnet localhost 12346
Trying ::1...
Connected to localhost.
Escape character is '^]'.
SQLite version 3.8.2 2013-12-06 14:53:30
Enter ".help" for instructions
Enter SQL statements terminated with a ";"
sqlite> select * from t1;
select * from t1;
test

Listing 9.4 /etc/systemd/system/sqliteproxy.service

The proxy unit must run after the 
sqliteserver service defined previously.

The proxy requires that the server instance 
be running before you start it up.

The command 
used to run the 
container



223TECHNIQUE 77 Manual multi-host Docker with Helios

Note that because the sqliteproxy service depends on the sqliteserver service to run,
you only need to start the sqliteproxy service—dependencies are started automatically. 

9.2 Multi-host Docker
Now that you’re comfortable with some fairly complicated arrangements of Docker
containers on a machine, it’s time to think bigger—let’s move into the world of multi-
ple hosts to enable us to use Docker on a larger scale.

 The best process for moving Docker containers to target machines and starting
them up is a matter of much debate in the Docker world. A number of well-known
companies have created their own ways of doing things and have released them to the
world. A user can benefit massively from this, if they can decide what tools to use.

 This is a fast moving topic—we’ve seen the birth and death of multiple orchestra-
tion tools for Docker and recommend caution when considering whether to move
over to using a brand new tool. As a result, we’ve tried to select tools with significant
stability or momentum (or both).

TECHNIQUE 77 Manual multi-host Docker with Helios

It can be intimidating to hand over all control of provisioning a group of machines to
an application, so it doesn’t hurt to ease yourself in with a more manual approach.

 Helios is ideal for companies that have mostly static infrastructures and are inter-
ested in using Docker for their critical services but (understandably) want human
oversight in the process.

PROBLEM
You want to be able to provision multiple Docker hosts with containers but retain
manual control over what runs where.

SOLUTION
Use the Helios tool from Spotify. 

DISCUSSION
Helios is the tool Spotify currently uses to manage their servers in production, and it
has the pleasing property of being both easy to get started with and stable (as you’d
hope). Helios allows you to manage the deployment of Docker containers across mul-
tiple hosts. It gives you a single command-line interface that you can use to specify
what you want to run and where to run it, as well as the ability to take a look at the cur-
rent state of play. 

 Because we’re just introducing Helios, we’re going to run everything on a single
node inside Docker for simplicity—don’t worry, anything relevant to running on mul-
tiple hosts will be clearly highlighted. The high-level architecture of Helios is outlined
in figure 9.3.

 As you can see, there’s only one additional service required when running Helios:
Zookeeper. Helios uses Zookeeper to track the state of all of your hosts and as a com-
munication channel between the masters and agents.

 



224 CHAPTER 9 Container orchestration: managing multiple Docker containers

WHAT IS ZOOKEEPER? Zookeeper is a lightweight distributed database optimized
for storing configuration information written in Java. It’s part of the Apache suite
of open source software products. It’s similar in functionality to etcd (which you
learned about in chapter 7, and you’ll see again in this chapter).

All you need to know for this technique is that Zookeeper stores data so that it can be
distributed across multiple nodes (for both scalability and reliability) by running mul-
tiple Zookeeper instances. This may sound similar to our description of etcd in chap-
ter 7—these two tools have significant overlap.

 To start the single Zookeeper instance we’ll use in this technique, run the following:

$ docker run --name zookeeper -d jplock/zookeeper:3.4.6
cd0964d2ba18baac58b29081b227f15e05f11644adfa785c6e9fc5dd15b85910
$ docker inspect -f '{{.NetworkSettings.IPAddress}}' zookeeper
172.17.0.9

Users running
Helios

Helios masters

Host

Cluster of
Zookeeper nodes

. . .

. . .

Helios agents . . .

Docker daemon
per host

Containers started/maintained

. . .

Runs on a host

Figure 9.3 A birds-eye view of a Helios installation



225TECHNIQUE 77 Manual multi-host Docker with Helios

PORTS ON HOSTS AND OTHER NODES When starting a Zookeeper instance on its
own node, you’ll want to expose ports to make it accessible to other hosts, and
use volumes to persist data. Take a look at the Dockerfile on the Docker Hub
for details about which ports and folders you should use (https://
hub.docker.com/r/jplock/zookeeper/~/dockerfile/). It’s also likely you’ll
want to run Zookeeper on multiple nodes, but configuring a Zookeeper clus-
ter is beyond the scope of this technique.

You can inspect the data Zookeeper has stored by using the zkCli.sh tool, either inter-
actively or by piping input to it. The initial startup is quite chatty, but it’ll drop you
into an interactive prompt where you can run commands against the file-tree-like
structure Zookeeper stores data in:

$ docker exec -it zookeeper bin/zkCli.sh
Connecting to localhost:2181
2015-03-07 02:56:05,076 [myid:] - INFO [main:Environment@100] - Client

➥ environment:zookeeper.version=3.4.6-1569965, built on 02/20/2014 09:09 GMT
2015-03-07 02:56:05,079 [myid:] - INFO [main:Environment@100] - Client

➥ environment:host.name=917d0f8ac077
2015-03-07 02:56:05,079 [myid:] - INFO [main:Environment@100] - Client

➥ environment:java.version=1.7.0_65
2015-03-07 02:56:05,081 [myid:] - INFO [main:Environment@100] - Client

➥ environment:java.vendor=Oracle Corporation
[...]
2015-03-07 03:00:59,043 [myid:] - INFO [main-SendThread(localhost:2181):

➥ ClientCnxn$SendThread@1235] - Session establishment complete on server

➥ localhost/0:0:0:0:0:0:0:1:2181, sessionid = 0x14bf223e159000d, negotiated

➥ timeout = 30000

WATCHER::

WatchedEvent state:SyncConnected type:None path:null
[zk: localhost:2181(CONNECTED) 0] ls /
[zookeeper]

Nothing’s running against Zookeeper yet, so the only thing currently being stored is
some internal Zookeeper information. Leave this prompt open and we’ll revisit it as
we progress. 

 Helios itself is split into three parts:

■ The master—This is used as an interface for making changes in Zookeeper.
■ The agent—This runs on every Docker host, starts and stops containers based on

Zookeeper, and reports state back.
■ The command-line tools—These are used to make requests to the master.

Figure 9.4 shows how our final system is strung together when we perform an opera-
tion against it (the arrows indicate data flow).

 
 

https://hub.docker.com/r/jplock/zookeeper/~/dockerfile/
https://hub.docker.com/r/jplock/zookeeper/~/dockerfile/


226 CHAPTER 9 Container orchestration: managing multiple Docker containers

Now that Zookeeper is running, it’s time to start Helios. We need to run the master
while specifying the IP address of the Zookeeper node we started earlier:

$ IMG=dockerinpractice/docker-helios
$ docker run -d --name hmaster $IMG helios-master --zk 172.17.0.9
896bc963d899154436938e260b1d4e6fdb0a81e4a082df50043290569e5921ff
$ docker logs --tail=3 hmaster
03:20:14.460 helios[1]: INFO [MasterService STARTING] ContextHandler:

➥ Started i.d.j.MutableServletContextHandler@7b48d370{/,null,AVAILABLE}
03:20:14.465 helios[1]: INFO [MasterService STARTING] ServerConnector:

➥ Started application@2192bcac{HTTP/1.1}{0.0.0.0:5801}
03:20:14.466 helios[1]: INFO [MasterService STARTING] ServerConnector:

➥ Started admin@28a0d16c{HTTP/1.1}{0.0.0.0:5802}
$ docker inspect -f '{{.NetworkSettings.IPAddress}}' hmaster
172.17.0.11

Now let’s see what’s new in Zookeeper:

[zk: localhost:2181(CONNECTED) 1] ls /
[history, config, status, zookeeper]
[zk: localhost:2181(CONNECTED) 2] ls /status/masters
[896bc963d899]
[zk: localhost:2181(CONNECTED) 3] ls /status/hosts
[]

Helios master

Terminal

1. Command sends
    deploy request
    to master

3. Agent picks up
    info for deploy
    from Zookeeper

4. Agent acts on info by
    requesting that a new
    container be created

2. Master stores
    deploy information
    in Zookeeper

5. Container
    is created

Your host

Zookeeper

Helios agent

Docker

$ helios deploy …

Figure 9.4 Starting a container on a single-host Helios installation



227TECHNIQUE 77 Manual multi-host Docker with Helios

It looks like the Helios master has created a bunch of new pieces of configuration,
including registering itself as a master. Unfortunately we don’t have any hosts yet.
Let’s solve this by starting up an agent that will use the current host’s Docker socket to
start containers on:

$ docker run -v /var/run/docker.sock:/var/run/docker.sock -d --name hagent \
dockerinpractice/docker-helios helios-agent --zk 172.17.0.9
5a4abcb271070d0171ca809ff2beafac5798e86131b72aeb201fe27df64b2698
$ docker logs --tail=3 hagent
03:30:53.344 helios[1]: INFO [AgentService STARTING] ContextHandler:

➥ Started i.d.j.MutableServletContextHandler@774c71b1{/,null,AVAILABLE}
03:30:53.375 helios[1]: INFO [AgentService STARTING] ServerConnector:

➥ Started application@7d9e6c27{HTTP/1.1}{0.0.0.0:5803}
03:30:53.376 helios[1]: INFO [AgentService STARTING] ServerConnector:

➥ Started admin@2bceb4df{HTTP/1.1}{0.0.0.0:5804}
$ docker inspect -f '{{.NetworkSettings.IPAddress}}' hagent
172.17.0.12

Again let’s check back in Zookeeper:

[zk: localhost:2181(CONNECTED) 4] ls /status/hosts
[5a4abcb27107]
[zk: localhost:2181(CONNECTED) 5] ls /status/hosts/5a4abcb27107
[agentinfo, jobs, environment, hostinfo, up]
[zk: localhost:2181(CONNECTED) 6] get /status/hosts/5a4abcb27107/agentinfo
{"inputArguments":["-Dcom.sun.management.jmxremote.port=9203", [...]
[...]

You can see here that /status/hosts now contains one item. Descending into the Zoo-
keeper directory for the host reveals the internal information Helios stores about the host.

HOSTNAMES REQUIRED IN MULTI-HOST SETUPS When running on multiple
hosts, you’ll want to pass--name $(hostname -f) as an argument to both the
Helios master and agent. You’ll also need to expose ports 5801 and 5802 for
the master and 5803 and 5804 for the agent. 

Let’s make it a bit easier to interact with Helios:

$ alias helios="docker run -i --rm dockerinpractice/docker-helios \
helios -z http://172.17.0.11:5801"

The alias above means that invoking helios will start a throwaway container to per-
form the action you want, pointing at the correct helios cluster to begin with. Note
that the cli needs to be pointed at the Helios master rather than Zookeeper.

 Everything is now set up. We’re able to easily interact with our Helios cluster, so it’s
time to try an example:

$ helios create -p nc=8080:8080 netcat:v1 ubuntu:14.04.2 -- \
sh -c 'echo hello | nc -l 8080'
Creating job: {"command":["sh","-c","echo hello | nc -l 8080"],



228 CHAPTER 9 Container orchestration: managing multiple Docker containers

➥ "creatingUser":null,"env":{},"expires":null,"gracePeriod":null,
➥ "healthCheck":null,"id":
➥ "netcat:v1:2067d43fc2c6f004ea27d7bb7412aff502e3cdac",
➥ "image":"ubuntu:14.04.2","ports":{"nc":{"externalPort":8080,
➥ "internalPort":8080,"protocol":"tcp"}},"registration":{},
➥ "registrationDomain":"","resources":null,"token":"","volumes":{}}
Done.
netcat:v1:2067d43fc2c6f004ea27d7bb7412aff502e3cdac
$ helios jobs
JOB ID NAME VERSION HOSTS COMMAND ENVIRONMENT
netcat:v1:2067d43 netcat v1 0 sh -c "echo hello | nc -l 8080"

Helios is built around the concept of jobs—everything to be executed must be expressed
as a job before it can be sent to a host to be executed. At a minimum, you need an image
with the basics Helios needs to know to start the container: a command to execute and
any port, volume, or environment options. You may also want a number of other
advanced options, including health checks, expiry dates, and service registration.

 The previous command creates a job that will listen on port 8080, print hello to
the first thing that connects to the port, and then terminate.

 You can use helios hosts to list hosts available for job deployment, then perform
the deployment with helios deploy. The helios status command will then show you
that the job has successfully started:

$ helios hosts
HOST STATUS DEPLOYED RUNNING CPUS MEM LOAD AVG MEM USAGE

➥ OS HELIOS DOCKER
5a4abcb27107.Up 19 minutes 0 0 4 7 gb 0.61 0.84

➥ Linux 3.13.0-46-generic 0.8.213 1.3.1 (1.15)
$ helios deploy netcat:v1 5a4abcb27107
Deploying Deployment{jobId=netcat:v1:

➥ 2067d43fc2c6f004ea27d7bb7412aff502e3cdac, goal=START, deployerUser=null}

➥ on [5a4abcb27107]
5a4abcb27107: done
$ helios status
JOB ID HOST GOAL STATE CONTAINER ID PORTS
netcat:v1:2067d43 5a4abcb27107.START RUNNING b1225bc nc=8080:8080

Of course, we now want to verify that the service works:

$ curl localhost:8080
hello
$ helios status
JOB ID HOST GOAL STATE CONTAINER ID PORTS
netcat:v1:2067d43 5a4abcb27107.START PULLING_IMAGE b1225bc nc=8080:8080

The result of curl clearly tells us that the service is working, but helios status is now
showing something interesting. When defining the job, we noted that after serving
hello the job would terminate, but the preceding output shows a PULLING_IMAGE sta-
tus. This is down to how Helios manages jobs—once you’ve deployed to a host, Helios
will do its best to keep the job running. The status you can see here is Helios going



229TECHNIQUE 78 A seamless Docker cluster with Swarm

through the complete job startup process, which happens to involve ensuring the
image is pulled.

 Finally, we need to clean up after ourselves:

$ helios undeploy -a --yes netcat:v1
Undeploying netcat:v1:2067d43fc2c6f004ea27d7bb7412aff502e3cdac from

➥ [5a4abcb27107]
5a4abcb27107: done
$ helios remove --yes netcat:v1
Removing job netcat:v1:2067d43fc2c6f004ea27d7bb7412aff502e3cdac
netcat:v1:2067d43fc2c6f004ea27d7bb7412aff502e3cdac: done

We asked for the job to be removed from all nodes (terminating it if necessary and
stopping any more automatic restarts), and then we deleted the job itself, meaning it
can’t be deployed to any more nodes.

 Helios is a simple and reliable way of deploying your containers to multiple hosts.
Unlike a number of techniques we’ll come to later on, there’s no “magic” going on
behind the scenes to determine appropriate locations—Helios starts containers
exactly where you want them with minimal fuss. 

TECHNIQUE 78 A seamless Docker cluster with Swarm

It’s great having complete control over your cluster, but sometimes the micromanage-
ment isn’t necessary. In fact, if you have a number of applications with no complex
requirements, you can take full advantage of the Docker promise of being able to run
anywhere—there’s no reason you shouldn’t be able to throw containers at a cluster
and let the cluster decide where to run them.

 Swarm could be useful for a research lab if the lab was able to split up a computa-
tionally intensive problem into bite-size chunks. This would allow them to very easily
run their problem on a cluster of machines.

PROBLEM
You have a number of hosts with Docker installed, and you want to be able to start
containers without needing to micromanage where they’ll run.

SOLUTION
Use Docker Swarm to treat a cluster of hosts as a single Docker daemon, and run
Docker commands as normal.

DISCUSSION
A Docker Swarm consists of three parts: agents, a discovery service, and a master. Fig-
ure 9.5 shows how these three parts would interact with each other on a Docker
Swarm with three nodes—hosts with agents installed on them.

 The agents are programs running on each host you want to be part of your cluster;
they report connection information to the discovery service and turn the host into a
node in the Docker Swarm. Each host with an agent needs to have the Docker daemon
exposed on an external port—we covered how to do this in technique 1 with the -H
option to the Docker daemon, and we’ll assume we’re using the default port of 2375. 



230 CHAPTER 9 Container orchestration: managing multiple Docker containers

ONE MASTER ONLY By default there can only be one master running against a
Swarm. If you want to make your Swarm resilient in the event of a master fail-
ure, you’ll need to look at Docker’s documentation for high availability at
https://docs.docker.com/swarm/multi-manager-setup/.

The Docker Swarm
master host runs the
various services that
enable Swarm’s
functionality.

The discovery service
keeps track of which
nodes are available
to the Docker Swarm.

The Docker Swarm
client is a standard
Docker client. It need
not run on the Swarm
master host, as long as
it has access to
the master.

The Swarm master is
the engine of the Swarm,
issuing commands to the
nodes in the cluster.

An agent runs on each node,
exposing a port to allow the
Swarm master to control the
node’s containers.

Each node is a standard
host running Docker. Here,
two hosts are running Docker
containers; the third has no
container.

Swarm master host

Discovery service

Docker
Swarm client

Swarm
master

Docker node 2

Container 3

Docker node 3

Docker node 1

Agent port
2375

Agent port
2375

Agent port
2375

Container 1 Container 2

Figure 9.5 A Docker Swarm with three nodes

https://docs.docker.com/swarm/multi-manager-setup/


231TECHNIQUE 78 A seamless Docker cluster with Swarm

When the master is started, it will contact the discovery service to find the list of nodes
in the cluster. From that point on, you can run commands against the cluster by
directly connecting to the master, which will forward requests to an agent.

MINIMUM REQUIREMENTS FOR DOCKER CLIENTS All versions of Docker used by
both agents and clients in a cluster must be at least 1.4.0. You should try to
keep all versions exactly the same, but the cluster should work as long as your
clients are not newer than your agents.

The first step in setting up any Swarm cluster is to decide on the discovery service you
want to use. There are a few options for this, ranging from a list of IP addresses in a
file to Zookeeper (remember Helios?). For this technique, we’re going to use a discov-
ery service built into the Docker Hub that uses tokens.

DISCOVERY SERVICE BACK ENDS Everything in this technique can be done
with services you host yourself—the ability to register your nodes with the
Docker Hub discovery service is provided as a convenience to get you going
quickly. But if you aren’t comfortable with putting the IP addresses of your
nodes in a potentially public place (though someone would have to guess
your cluster ID), you should read the documentation on alternative back
ends: http://docs.docker.com/swarm/discovery/.

The Docker Hub discovery service requires you to obtain a token to identify your clus-
ter. Because this is a service provided by Docker, Inc., Swarm has built-in functionality
to make this easier. The Swarm binary is (naturally) available as a Docker image, so
you can get going with the following commands:

h1 $ docker pull swarm
h1 $ docker run swarm create
126400c309dbd1405cd7218ed3f1a25e
h1 $ CLUSTER_ID=126400c309dbd1405cd7218ed3f1a25e

The long string after the swarm create command is the token you’re going to use to
identify your cluster. It’s important—jot it down! For the rest of this technique we’ll
use the CLUSTER_ID variable to refer to it.

 You can now inspect your newly created Swarm:

h1 $ docker run swarm list token://$CLUSTER_ID
h1 $ curl https://discovery-stage.hub.docker.com/v1/clusters/$CLUSTER_ID
[]

As you can see, there’s not much going on at the moment. The swarm list command
returns nothing, and (to go behind the scenes a little) querying the Docker Hub dis-
covery service directly for the hosts in the cluster returns an empty list.

http://docs.docker.com/swarm/discovery/


232 CHAPTER 9 Container orchestration: managing multiple Docker containers

DOCKER DAEMON WITH TLS ENABLED Some cloud services provide access to a
Docker daemon with TLS enabled, or you can enable it yourself. You
should refer to the Swarm documentation for the latest information on
generating certificates and using them for a Swarm connection: https://
docs.docker.com/v1.5/swarm/#tls.

You can start up your first agent on your current machine as follows:

h1 $ ip addr show eth0 | grep 'inet '
inet 10.194.12.221/20 brd 10.194.15.255 scope global eth0

h1 $ docker run -d swarm join --addr=10.194.12.221:2375 token://$CLUSTER_ID
9bf2db849bac7b33201d6d258187bd14132b74909c72912e5f135b3a4a7f4e51
h1 $ docker run swarm list token://$CLUSTER_ID
10.194.12.221:2375
h1 $ curl https://discovery-stage.hub.docker.com/v1/clusters/$CLUSTER_ID
["10.194.12.221:2375"]

The first step is to identify the IP address that the master will use to connect to the
agent via whatever method you’re most comfortable with. The IP address is used when
starting the agent and will be reported to the discovery service, which means that the
swarm list command will be updated with the new agent information. 

 There’s no way to do anything with the node yet—we need a master to be running.
Because we’re going to run the master on the same machine as an agent, with the
standard Docker port already exposed, we need to use an arbitrary different port for
the master:

h1 $ docker run -d -p 4000:2375 swarm manage token://$CLUSTER_ID
04227ba0c472000bafac8499e2b67b5f0629a80615bb8c2691c6ceda242a1dd0
h1 $ docker -H tcp://localhost:4000 info
Containers: 10
Strategy: spread
Filters: affinity, health, constraint, port, dependency
Nodes: 1
h1: 10.194.12.221:2375
? Containers: 2
? Reserved CPUs: 0 / 4
? Reserved Memory: 0 B / 7.907 GiB

We’ve started up the master and run docker info against it to retrieve some details
about our cluster. The two containers listed as running are the master and agent.

 Now let’s start an agent on a completely different node:

h2 $ docker run -d swarm join --addr=10.194.8.7:2375 token://$CLUSTER_ID
h2 $ docker -H tcp://10.194.12.221:4000 info
Containers: 3
Strategy: spread
Filters: affinity, health, constraint, port, dependency

https://docs.docker.com/v1.5/swarm/#tls
https://docs.docker.com/v1.5/swarm/#tls


233TECHNIQUE 78 A seamless Docker cluster with Swarm

Nodes: 2
h2: 10.194.8.7:2375
? Containers: 1
? Reserved CPUs: 0 / 4
? Reserved Memory: 0 B / 3.93 GiB

h1: 10.194.12.221:2375
? Containers: 2
? Reserved CPUs: 0 / 4
? Reserved Memory: 0 B / 7.907 GiB

Another node has been added to our cluster. Note that we’re taking advantage of the
ability to access the master from another machine here.

SWARM STRATEGIES AND FILTERS In the output of docker info, you may have
noted the lines starting with Strategy and Filters. These hint at some more
advanced things you can do with Swarm, which won’t be covered here. Filters
allow you to define conditions that must be met for a node to be considered
for running a container. The choice of strategy then defines how Swarm will
select from the possible nodes to start the container up. You can read more
about strategies and filters in the Docker Swarm documentation at https://
docs.docker.com/swarm/scheduler/.

Finally, let’s start a container:

h2 $ docker -H tcp://10.194.12.221:4000 run -d ubuntu:14.04.2 sleep 60
0747c14774c70bad00bd7e2bcbf583d756ffe6d61459ca920887894b33734d3a
h2 $ docker -H tcp://localhost:4000 ps
CONTAINER ID IMAGE COMMAND CREATED STATUS

➥ PORTS NAMES
0747c14774c7 ubuntu:14.04 sleep 60 19 seconds ago Up Less than a second

➥ h1/serene_poitras
h2 $ docker -H tcp://10.194.12.221:4000 info | grep Containers
Containers: 4

? Containers: 1
? Containers: 3

There are a few things to note here. The most important is that the Swarm has auto-
matically selected a machine to start the container on. You can see which node has
been selected in the container name (h1 here) and the container count has increased
correspondingly. As you can see, Swarm automatically hides any Swarm-related con-
tainers, though you can list them with the -a argument to ps. 

 As an optional final step, you may want to delete your cluster from the discovery
service: 

h1 $ curl -X DELETE https://discovery.hub.docker.com/v1/clusters/$CLUSTER_ID
OK

https://docs.docker.com/swarm/scheduler/
https://docs.docker.com/swarm/scheduler/


234 CHAPTER 9 Container orchestration: managing multiple Docker containers

TECHNIQUE 79 Using a Kubernetes cluster

You’ve now seen two extremes in approaches to orchestration—the conservative
approach of Helios and the much more free-form approach of Docker Swarm. But
some users and companies will expect a little more sophistication from their tooling.
This need for customizable orchestration can be fulfilled by many options, but there
are a few that are used and discussed more than the others. In one case, that’s
undoubtedly partially due to the name behind it, but one would hope that Google
knows how to build orchestration software.

 Kubernetes is for companies that prefer to have clear guidance and best practices
on how to arrange applications and state relationships between them. It allows you to
use specially designed tools to manage a dynamic infrastructure based on a specified
structure.

PROBLEM
You want to manage Docker services across hosts.

SOLUTION
Use Kubernetes.

DISCUSSION
Before we get going with Kubernetes, let’s take a quick look at Kubernetes’ high-level
architecture in figure 9.6.

 Kubernetes has a master-minion architecture. Master nodes are responsible for
receiving orders about what should be run on the cluster and orchestrating its
resources. Each minion has Docker installed on it, along with a kubelet service, which
manages the pods (sets of containers) running on each node. Information about the
cluster is maintained in etcd, a distributed key-value data store (see technique 66),
and this is the cluster’s source of truth.

WHAT IS A POD? We’ll go over it again later in this technique, so don’t worry
about it too much now, but a pod is a grouping of related containers. The
concept exists to facilitate the management and maintenance of Docker
containers.

The end goal of Kubernetes is to make running your containers at scale a simple mat-
ter of declaring what you want and letting Kubernetes ensure the cluster meets your
needs. In this technique you’ll see how to scale a simple service to a given size by run-
ning one command.

HOW KUBERNETES CAME INTO BEING Kubernetes was originally developed by
Google as a means for managing containers at scale. Google has been run-
ning containers for over a decade at scale, and it decided to develop this con-
tainer orchestration system when Docker became popular. Kubernetes builds
on the lessons learned from Google’s extensive experience. Kubernetes is
also known as K8s.



235TECHNIQUE 79 Using a Kubernetes cluster

A full treatment of Kubernetes’ installation, setup, and features is a big and fast-
changing topic that’s beyond the scope of this book (and no doubt will become a
book in itself, before too long). Here we’re going to focus on Kubernetes’ core con-
cepts and set up a simple service so you can get a feel for it.

INSTALLING KUBERNETES

You can either install Kubernetes directly on your host, which will give you a single-
minion cluster, or use Vagrant to install a multi-minion cluster managed with VMs.

 To install a single-minion cluster on your host, run the following:

export KUBERNETES_PROVIDER=vagrant
curl -sS https://get.k8s.io | bash

GETTING THE LATEST INSTRUCTIONS These instructions were correct at the time
of printing. For the latest instructions for getting started with Kubernetes, see
the documentation on GitHub at http://mng.bz/62ZH.

Master

Minion

Docker

Pod

Container

Pod

Container

Pod

Container

Minion

Docker

Pod

Container

Pod

Container

Pod

Container

Minion

Docker

Pod

Container

Pod

Container

Pod

Container

Figure 9.6 Kubernetes high-level view

http://mng.bz/62ZH


236 CHAPTER 9 Container orchestration: managing multiple Docker containers

If you want to install a multi-minion cluster, you have another choice. Either follow
the instructions on the Kubernetes GitHub repository (as outlined in the preceding
note) for Vagrant, or you can try an automated script we maintain that sets up a two-
minion cluster (https://github.com/docker-in-practice/shutit-kubernetes-vagrant).

 If you have Kubernetes installed, you can follow along from here. The following
output will be based on a multi-node cluster. We’re going to start by creating a single
container and using Kubernetes to scale it up. 

SCALING A SINGLE CONTAINER

The command used to manage Kubernetes is kubectl. In this case, you’re going to use
the run-container subcommand to run a given image as a container within a pod:

$ kubectl run-container todo --image=dockerinpractice/todo
$ kubectl get pods | egrep "(POD|todo)"
POD IP CONTAINER(S) IMAGE(S) HOST

➥ LABELS STATUS CREATED MESSAGE
todo-hmj8e 10.245.1.3/

➥ run-container=todo Pending About a minute

Kubernetes picks a pod name by taking the name from the run-container command
(todo in the preceding example), adding a dash, and adding a random string. This
ensures it doesn’t clash with other pod names.

 After waiting a few minutes for the todo image to download, you’ll eventually see
that its status has changed to Running:

$ kubectl get pods | egrep "(POD|todo)"
POD IP CONTAINER(S) IMAGE(S)

➥ HOST  LABELS STATUS CREATED MESSAGE
todo-hmj8e 10.246.1.3

➥ 10.245.1.3/10.245.1.3 run-container=todo Running 4 minutes
todo dockerinpractice/todo

Running About a minute

This time the IP, CONTAINER(S), and IMAGE(S) columns are populated. The IP col-
umn gives the address of the pod (in this case 10.246.1.3), and the container column
has one row per container in the pod (in this case we have only one, todo). You can
test that the container (todo) is indeed up and running and serving requests by hit-
ting the IP address and port directly:

$ wget -qO- 10.246.1.3:8000
<html manifest="/todo.appcache">
[...]

todo is the name for the resulting pod, and
the desired image to start is specified with
the --image flag; here we’re using the todo

image from chapter 1.The get pods
subcommand to
kubectl lists all

pods. We’re only
interested in the
todo ones, so we

grep for those
and the header.

todo-hmj8e 
is the pod 
name.Labels are name-value pairs associated with the pod, such as the

run-container label shown here. The status of the pod is
Pending, which means Kubernetes is preparing to run it, most

likely because it’s downloading the image from the Docker Hub.

https://github.com/docker-in-practice/shutit-kubernetes-vagrant


237TECHNIQUE 79 Using a Kubernetes cluster

At this point we haven’t seen much difference from running a Docker container
directly. To get your first taste of Kubernetes, you can scale up this service by running
a resize command:

$ kubectl resize --replicas=3 replicationController todo
resized

This command tells Kubernetes that we want the todo replication controller to ensure
that there are three instances of the todo app running across the cluster.

WHAT IS A REPLICATION CONTROLLER? A replication controller is a Kuber-
netes service that ensures that the right number of pods is running across
the cluster.

You can check that the additional instances of the todo app have been started with the
kubectl get pods command:

$ kubectl get pods | egrep "(POD|todo)"
POD IP CONTAINER(S) IMAGE(S)

➥ HOST LABELS STATUS CREATED MESSAGE
todo-2ip3n 10.246.2.2

➥ 10.245.1.4/10.245.1.4 run-container=todo Running 10 minutes
todo dockerinpractice/todo

➥ Running 8 minutes
todo-4os5b 10.246.1.3

➥ 10.245.1.3/10.245.1.3 run-container=todo Running 2 minutes
todo dockerinpractice/todo

➥ Running 48 seconds
todo-cuggp 10.246.2.3

➥ 10.245.1.4/10.245.1.4 run-container=todo Running 2 minutes
todo dockerinpractice/todo

➥ Running 2 minutes

Kubernetes has taken the resize instruction and the todo replication controller and
ensured that the right number of pods is started up. Notice that it placed two on one
host (10.245.1.4) and one on another (10.245.1.3). This is because Kubernetes’
default scheduler has an algorithm that spreads pods across nodes by default.

WHAT IS A SCHEDULER? A scheduler is a piece of software that decides where
and when items of work should be run. The Linux kernel has a scheduler, for
example, that decides what task should be run next. Schedulers range from
the stupidly simple to the incredibly complex.

You’ve started to see how Kubernetes can make managing containers easier across
multiple hosts. Next we’ll dive into the core Kubernetes concept of pods. 

USING PODS

A pod is a collection of containers that are designed to work together in some way and
that share resources.



238 CHAPTER 9 Container orchestration: managing multiple Docker containers

 Each pod gets its own IP address and shares the same volumes and network port
range. Because a pod’s containers share a localhost, the containers can rely on the dif-
ferent services being available and visible wherever they’re deployed.

 Figure 9.7 illustrates this with two containers that share a volume. In the figure,
container 1 might be a web server that reads data files from the shared volume, which
is in turn updated by container 2. Both containers are therefore stateless; state is
stored in the shared volume.

 This design of separated responsibil-
ities facilitates a microservices approach
by allowing you to manage each part of
your service separately; you can upgrade
one image without needing to be con-
cerned with the others.

 The pod specification in listing 9.5
defines a complex pod with one con-
tainer that writes random data (simple-
writer) to a file every five seconds, and
another container that reads from the
same file. The file is shared via a volume
(pod-disk).

{
"id": "complexpod",
"kind": "Pod",
"apiVersion": "v1beta1",
"desiredState": {

"manifest": {
"version": "v1beta1",
"id": "complexpod",
"containers": [{

"name": "simplereader",
"image": "dockerinpractice/simplereader",
"volumeMounts": [{

"mountPath": "/data",
"name": "pod-disk"

}]
},{

"name": "simplewriter",
"image": "dockerinpractice/simplewriter",
"volumeMounts": [{

"mountPath": "/data",
"name": "pod-disk"

}]

Listing 9.5 complexpod.json

The id attribute
gives the entity a

name.

The kind attribute 
specifies the type of 
object this is.

The apiVersion 
attribute specifies to 
Kubernetes the version 
the JSON is targeting.

The meat of
the pod’s

specification
 is in the

desiredState
and manifest

attributes.

Details of the
containers in the
pod are stored in

this JSON array.

Each container has a 
name for reference, 
and the Docker image 
is specified in the 
image attribute.

Volume mount
points are specified
for each container.

The mount path is the path to the volume 
mounted on the filesystem of the container. 
This could be set to a different location for 
each container.

The volume mount name
refers to the name in the

pod manifest’s volumes
definition.

Kubernetes pod

Container 1 Container 2

Shared
volumes

Figure 9.7 A two-container pod



239TECHNIQUE 80 Building a framework on Mesos

}],
"volumes": [{

"name": "pod-disk",
"emptydir": {}

}]
}

}
}

To load this pod specification, create a file with the preceding listing and run the
following:

$ kubectl create -f complexpod.json
pods/complexpod

After waiting a minute for the images to download, you’ll see the log output of the
container by running kubectl log and specifying first the pod and then the container
you’re interested in: 

$ kubectl log complexpod simplereader
2015-08-04T21:03:36.535014550Z '? U
[2015-08-04T21:03:41.537370907Z] h(^3eSk4y
[2015-08-04T21:03:41.537370907Z] CM(@
[2015-08-04T21:03:46.542871125Z] qm>5
[2015-08-04T21:03:46.542871125Z] {Vv_
[2015-08-04T21:03:51.552111956Z] KH+74 f
[2015-08-04T21:03:56.556372427Z] j?p+!\

WHAT NEXT?

We’ve only scratched the surface of Kubernetes’ capabilities and potential here, but
this should give you a sense of what can be done with it and how it can make orches-
trating Docker containers simpler. You’ll see Kubernetes again when we show you
OpenShift, an application platform as a service that uses Kubernetes as its orchestra-
tion engine (see technique 87). 

TECHNIQUE 80 Building a framework on Mesos

When discussing the multitude of orchestration possibilities, you’ll probably find one
in particular mentioned as an alternative to Kubernetes: Mesos. Typically this is fol-
lowed by opaque statements like “Mesos is a framework for a framework” and “Kuber-
netes can be run on top of Mesos”!

 The most apt analogy we’ve come across is to think of Mesos as providing the ker-
nel for your data center. You can’t do anything useful with it alone—the value comes
when combining it with an init system and applications.

 For a low-tech explanation, imagine you have a monkey sitting in front of a panel
that controls of all of your machines and has the power to start and stop applications
at will. Naturally, you’ll need to give the monkey a very clear list of instructions about
what to do in particular situations, when to start an application up, and so on. You
could do it all yourself, but that’s time-consuming and monkeys are cheap.

 Mesos is the monkey!

The volumes attribute 
defines the volumes 
created for this pod.The name of the volume is

referred to in the previous
volumeMounts entries.

A temporary 
directory that shares 
a pod’s lifetime



240 CHAPTER 9 Container orchestration: managing multiple Docker containers

 Mesos is ideal for a company with a highly dynamic and complex infrastructure,
likely with experience at rolling their own production orchestration solutions. If you
don’t meet these conditions, you may be better served by an off-the-shelf solution
rather than spending time tailoring Mesos.

PROBLEM
You have a number of rules for controlling the startup of applications and jobs, and
you want to enforce them without manually starting them on remote machines and
keeping track of their status.

SOLUTION
Use Apache Mesos with a custom framework.

DISCUSSION
Mesos is a mature piece of software for providing an abstraction of resource manage-
ment on multiple machines. It’s been battle-tested in production by companies you’ve
heard of, and, as a result, it’s stable and reliable.

DOCKER 1.6.2+ REQUIRED You need Docker 1.6.2 or later for this technique
for Mesos to be able to use the correct Docker API version.

Figure 9.8 shows a generic production Mesos setup.

Mesos masters

Passive
Host

Zookeeper cluster
(leader election)

. . .

Runs on a host

. . .

. . .

Active
Schedulers

Slaves

Executors

Tasks

Passive

Figure 9.8 A generic production Mesos setup



241TECHNIQUE 80 Building a framework on Mesos

With reference to this image, you can see what the basic Mesos lifecycle for starting a
task looks like:

B A slave runs on a node, tracking resource availability and keeping the master
informed.

C The master receives information from one or more slaves about available
resources and makes resource offers to schedulers.

D A scheduler receives resource offers from the master, decides where it wants to
run tasks, and communicates this back to the master.

E The master passes on the task information to the appropriate slaves.

F Each slave passes the task information to an existing executor on the node or
starts a new one.

G The executor reads the task information and starts the task on the node.

H The task runs.

The Mesos project provides the master and slave, as well as a built-in shell executor.
It’s your job to provide a framework (or application), which consists of a scheduler (the
“list of instructions” from our monkey analogy) and, optionally, a custom executor.

 Many third-party projects provide frameworks you can drop into Mesos (and we’ll
look at one in more detail in the next technique), but to get a better understanding of
how you can fully harness the power of Mesos with Docker, we’re going to build our
own framework consisting only of a scheduler. If you have highly complex logic for
starting applications, this may be your final chosen route.

JUST THE ESSENTIALS OF MESOS WITH DOCKER You don’t have to use Docker
with Mesos, but since that’s what the book is about, we will. There’s a lot of
detail we won’t go into because Mesos is so flexible. We’re also going to be
running Mesos on a single computer, but we’ll try to keep it as realistic as pos-
sible and point out what you need to do to go live.

We’ve not yet explained where Docker fits into the Mesos lifecycle—the final piece to
this puzzle is that Mesos provides support for containerizers, allowing you to isolate your
executors or tasks (or both). Docker isn’t the only tool that can be used here, but it’s
so popular that Mesos has some Docker-specific features to get you started.

 Our example will only containerize the tasks we run because we’re using the
default executor. If you had a custom executor only running a language environment,
where each task involves dynamically loading and executing some code, you might
want to consider containerizing the executor instead. As an example use case, you
might have a JVM running as an executor that loads and executes pieces of code on
the fly, avoiding JVM startup overhead for potentially very small tasks.

 Figure 9.9 shows what will be going on behind the scenes in our example when a
new Dockerized task is created.



242 CHAPTER 9 Container orchestration: managing multiple Docker containers

Without any further ado, let’s get started! First we need to start up a master in the next
listing.

$ docker run -d --name mesmaster redjack/mesos:0.21.0 mesos-master \
--work_dir=/opt
24e277601260dcc6df35dc20a32a81f0336ae49531c46c2c8db84fe99ac1da35
$ docker inspect -f '{{.NetworkSettings.IPAddress}}' mesmaster
172.17.0.2
$ docker logs -f mesmaster
I0312 01:43:59.182916 1 main.cpp:167] Build: 2014-11-22 05:29:57 by root
I0312 01:43:59.183073 1 main.cpp:169] Version: 0.21.0
I0312 01:43:59.183084 1 main.cpp:172] Git tag: 0.21.0
[...]

The master startup is a little verbose, but you should find it stops logging quickly.
Keep this terminal open so you can see what happens when you start the other
containers.

Listing 9.6 Starting a master

Mesos master

Your host

6. Executor started
    in slave container

7. Executor requests Docker
    daemon to run specified image

8. Container is created

Executor (just a
shell command)

5. Master sends task
    and executor info
    to selected slave

2. Slave sends resource
    info to master

3. Time passes

4. Scheduler starts, connects to
    master, retrieves resource info,
    decides which offers to accept,
    sends task and executor info
    to master

1. Master and slave
    start up

Mesos slave

Scheduler

Docker

Figure 9.9 A single-host Mesos setup starting a container



243TECHNIQUE 80 Building a framework on Mesos

MULTIPLE-MASTER MESOS SETUP Usually a Mesos setup will have multiple Mesos
masters (one active and several backups), along with a Zookeeper cluster. Setting
this up is documented on the “Mesos High-Availability Mode” page on the Mesos
site (http://mesos.apache.org/documentation/latest/high-availability). You’d
also need to expose port 5050 for external communications and use the work_dir
folder as a volume to save persistent information.

We also need a slave. Unfortunately this is a little fiddly. One of the defining character-
istics of Mesos is the ability to enforce resource limits on tasks, which requires the slave
to have the ability to freely inspect and manage processes. As a result, the command to
run the slave needs a number of outer system details to be exposed inside the container,
as shown in the next listing.

$ docker run -d --name messlave --pid=host \
-v /var/run/docker.sock:/var/run/docker.sock -v /sys:/sys \
redjack/mesos:0.21.0 mesos-slave \
--master=172.17.0.2:5050 --executor_registration_timeout=5mins \
--isolation=cgroups/cpu,cgroups/mem --containerizers=docker,mesos \
--resources="ports(*):[8000-8100]"

1b88c414527f63e24241691a96e3e3251fbb24996f3bfba3ebba91d7a541a9f5
$ docker inspect -f '{{.NetworkSettings.IPAddress}}' messlave
172.17.0.3
$ docker logs -f messlave
I0312 01:46:43.341621 32398 main.cpp:142] Build: 2014-11-22 05:29:57 by root
I0312 01:46:43.341789 32398 main.cpp:144] Version: 0.21.0
I0312 01:46:43.341795 32398 main.cpp:147] Git tag: 0.21.0
[...]
I0312 01:46:43.554498 32429 slave.cpp:627] No credentials provided.

➥ Attempting to register without authentication
I0312 01:46:43.554633 32429 slave.cpp:638] Detecting new master
I0312 01:46:44.419646 32424 slave.cpp:756] Registered with master

➥ master@172.17.0.2:5050; given slave ID 20150312-014359-33558956-5050-1-S0
[...]

At this point you should also have seen some activity in the Mesos master terminal,
starting with a couple of lines like these:

I0312 01:46:44.332494 9 master.cpp:3068] Registering slave at

➥ slave(1)@172.17.0.3:5051 (8c6c63023050) with id

➥ 20150312-014359-33558956-5050-1-S0
I0312 01:46:44.333772 8 registrar.cpp:445] Applied 1 operations in

➥ 134310ns; attempting to update the 'registry'

The output of these two logs shows that your slave has started and is connected to the
master. If you don’t see these, stop and double-check your master IP address. It can be
frustrating later on to try and debug why a framework isn’t starting any tasks, when
there are no connected slaves to start them on.

Listing 9.7 Starting a slave

http://mesos.apache.org/documentation/latest/high-availability


244 CHAPTER 9 Container orchestration: managing multiple Docker containers

 Anyway, there’s a lot going on in the command in listing 9.7. The arguments after
run and before redjack/mesos:0.21.0 are all Docker arguments, and they mainly
consist of giving the slave container lots of information about the outside world. The
arguments after mesos-slave are more interesting. master tells your slave where to
find your master (or your Zookeeper cluster). The next three arguments,
executor_registration_timeout, isolation, and containerizers, are all tweaks to
Mesos settings that should always be applied when working with Docker. Last, but cer-
tainly not least, you need to let the Mesos slave know what ports are acceptable to
hand out as resources. By default, Mesos offers 31000–32000, but we want something a
bit lower and more memorable.

 Now the easy steps are out of the way, and we come to the final stage of setting up
Mesos—creating a scheduler.

 Happily, we have an example framework ready for you to use. Let’s try it out, see
what it does, and then explore how it works. Keep your two docker logs -f commands
open on your master and slave containers so you can see the communication as it
happens.

 The following commands will get the source repository for the example framework
from GitHub and start it up.

$ git clone https://github.com/docker-in-practice/mesos-nc.git
$ docker run -it --rm -v $(pwd)/mesos-nc:/opt redjack/mesos:0.21.0 bash
# apt-get update && apt-get install -y python
# cd /opt
# export PYTHONUSERBASE=/usr/local
# python myframework.py 172.17.0.2:5050
I0312 02:11:07.642227 182 sched.cpp:137] Version: 0.21.0
I0312 02:11:07.645598 176 sched.cpp:234] New master detected at

➥ master@172.17.0.2:5050
I0312 02:11:07.645800 176 sched.cpp:242] No credentials provided.

➥ Attempting to register without authentication
I0312 02:11:07.648449 176 sched.cpp:408] Framework registered with

➥ 20150312-014359-33558956-5050-1-0000
Registered with framework ID 20150312-014359-33558956-5050-1-0000
Received offer 20150312-014359-33558956-5050-1-O0. cpus: 4.0, mem: 6686.0,

➥ ports: 8000-8100
Creating task 0
Task 0 is in state TASK_RUNNING
[...]
Received offer 20150312-014359-33558956-5050-1-O5. cpus: 3.5, mem: 6586.0,

➥ ports: 8005-8100
Creating task 5
Task 5 is in state TASK_RUNNING
Received offer 20150312-014359-33558956-5050-1-O6. cpus: 3.4, mem: 6566.0,

➥ ports: 8006-8100
Declining offer

Listing 9.8 Downloading and starting the example framework



245TECHNIQUE 80 Building a framework on Mesos

You’ll note that we’ve mounted the Git repository inside the Mesos image. This is
because it contains all the Mesos libraries we need. Unfortunately, it can be a little
painful to install them otherwise.

 Our mesos-nc framework is designed to run echo 'hello <task id>' | nc -l
<port> on all available hosts, on all available ports between 8000 and 8005. Because of
how netcat works, these “servers” will terminate as soon as you access them, be it by
curl, Telnet, nc, or your browser. You can verify this by running curl localhost:8003
in a new terminal. It will return the expected response, and your Mesos logs will show
the spawning of a task to replace the terminated one. You can also keep track of which
tasks are running with docker ps. 

 It’s worth pointing out here the evidence of Mesos keeping track of allocated
resources and marking them as available when a task terminates. In particular, when
you accessed localhost:8003 (feel free to try it again), take a close look at the
Received offer line—it shows two port ranges (as they’re not connected), including
the freshly freed one:

Received offer 20150312-014359-33558956-5050-1-O45. cpus: 3.5, mem: 6586.0,

➥ ports: 8006-8100,8003-8003

MESOS SLAVE NAMING CLASHES The Mesos slave names all the containers it
starts with the prefix mesos-, and it assumes anything like that can be freely
managed by the slave. Be careful with your container naming, or you might
end up with the Mesos slave killing itself.

The framework code (myframework.py) is well commented in case you’re feeling
adventurous. We’ll go through some of the high-level design:

class TestScheduler(mesos.interface.Scheduler):
[...]

def registered(self, driver, frameworkId, masterInfo):
[...]

def statusUpdate(self, driver, update):
[...]

def resourceOffers(self, driver, offers):
[...]

All Mesos schedulers subclass the base Mesos scheduler class and they implement a
number of methods that Mesos will call at appropriate points to let your framework
react to events. Although we’ve implemented three in the preceding snippet, two of
those are optional and have been implemented to add extra logging for demonstra-
tion purposes. The only method you must implement is resourceOffers—there’s not
much point in a framework that doesn’t know when it can launch tasks. You’re free to
add any additional methods for your own purposes, such as init and _makeTask, as
long as they don’t conflict with any of the methods Mesos expects to use, so make sure
you read the documentation (http://mesos.apache.org/documentation/latest/
app-framework-development-guide/). 

http://mesos.apache.org/documentation/latest/app-framework-development-guide/
http://mesos.apache.org/documentation/latest/app-framework-development-guide/


246 CHAPTER 9 Container orchestration: managing multiple Docker containers

BUILDING YOUR OWN FRAMEWORK? If you end up writing your own framework,
you’ll want to look at some documentation of methods and structures. Unfor-
tunately, at time of writing, the only generated documentation is for Java
methods. Readers looking for a starting point for digging into the structures
may wish to begin with the include/mesos/mesos.proto file in the Mesos
source code. Good luck!

Let’s look in a bit more detail at the main method of interest: resourceOffers. This is
where the decision happens to launch tasks or decline an offer. Figure 9.10 shows the
execution flow after resourceOffers in our framework is called by Mesos (usually
because some resources have become available for use by the framework).

 resourceOffers is given a list of offers, where each offer corresponds to a single
Mesos slave. The offer contains details about the resources available to a task
launched on the slave, and a typical implementation will use this information to iden-
tify the most appropriate places to launch the tasks it wants to run. Launching a task
sends a message to the Mesos master, which then continues with the lifecycle outlined
in figure 9.8.

Offers

resourceOffers()

Sum resources

Are resources sufficient?

Yes No

Accept offer Decline offer

Message to Mesos master

Next offer

. .
 .

Offer

. .
 .

ID

Slave ID

Resources

Resources

. .
 .

CPU: 0.5

MEM: 128

PORTS: 8000–8003

Figure 9.10 Execution flow of framework during a call to resourceOffers



247TECHNIQUE 81 Micromanaging Mesos with Marathon

It’s important to note the flexibility here—your task-launching decisions can depend
on any criteria you choose, from health checks of external services to the phase of the
moon! This flexibility can be a burden, so pre-made frameworks exist to take some of
this low-level detail away and simplify Mesos usage. One of these frameworks is cov-
ered in the next technique.

 You may want to consult Roger Ignazio’s Mesos in Action (Manning Publica-
tions, 2016) for more details on what you can do with Mesos—we’ve only scratched
the surface here, and you’ve seen how easily Docker slots in. 

TECHNIQUE 81 Micromanaging Mesos with Marathon

By now you’ll have realized that there’s a lot you need to think about with Mesos, even
for an extremely simple framework. Being able to rely on applications being deployed
correctly is extremely important—the impact of a bug in a framework could range
from the inability to deploy new applications to a full service outage.

 The stakes get higher as you scale up, and unless your team is used to writing reli-
able dynamic deployment code, you might want to consider a more battle-tested
approach—Mesos itself is very stable, but an in-house bespoke framework may not be
as reliable as you’d want.

 Marathon is suitable for a company without in-house deployment tooling experi-
ence, but that needs a well-supported and easy-to-use solution for deploying contain-
ers in a somewhat dynamic environment.

PROBLEM
You need a reliable way to harness the power of Mesos without getting bogged down
in writing your own framework.

SOLUTION
Use Marathon.

DISCUSSION
Marathon is an Apache Mesos framework built by Mesosphere for managing long-
running applications. The marketing materials describe it as the init or upstart
daemon for your data center (where Mesos is the kernel). This is not an unreason-
able analogy.

 Marathon makes it easy to get started by allowing you to start a single container
with a Mesos master, Mesos slave, and Marathon itself inside. This is useful for demos,
but it isn’t suitable for production Marathon deployments. To get a realistic Marathon
setup, you’ll need a Mesos master and slave (from the previous technique) as well as a
Zookeeper instance (from technique 77). Make sure you have all this running and
we’ll get started by running the Marathon container:

$ docker inspect -f '{{.NetworkSettings.IPAddress}}' mesmaster
172.17.0.2
$ docker inspect -f '{{.NetworkSettings.IPAddress}}' messlave
172.17.0.3
$ docker inspect -f '{{.NetworkSettings.IPAddress}}' zookeeper
172.17.0.4



248 CHAPTER 9 Container orchestration: managing multiple Docker containers

$ docker pull mesosphere/marathon:v0.8.2
[...]
$ docker run -d -h $(hostname) --name marathon -p 8080:8080 \
mesosphere/marathon:v0.8.2 --master 172.17.0.2:5050 --local_port_min 8000 \
--local_port_max 8100 --zk zk://172.17.0.4:2181/marathon
accd6de46cfab65572539ccffa5c2303009be7ec7dbfb49e3ab8f447453f2b93
$ docker logs -f marathon
MESOS_NATIVE_JAVA_LIBRARY is not set. Searching in /usr/lib /usr/local/lib.
MESOS_NATIVE_LIBRARY, MESOS_NATIVE_JAVA_LIBRARY set to

➥ '/usr/lib/libmesos.so'
[2015-06-23 19:42:14,836] INFO Starting Marathon 0.8.2

➥ (mesosphere.marathon.Main$:87)
[2015-06-23 19:42:16,270] INFO Connecting to Zookeeper...

➥ (mesosphere.marathon.Main$:37)
[...]
[2015-06-30 18:20:07,971] INFO started processing 1 offers,

➥ launching at most 1 tasks per offer and 1000 tasks in total

➥ (mesosphere.marathon.tasks.IterativeOfferMatcher$:124)
[2015-06-30 18:20:07,972] INFO Launched 0 tasks on 0 offers,

➥ declining 1 (mesosphere.marathon.tasks.IterativeOfferMatcher$:216)

Like Mesos itself, Marathon is fairly chatty, but (also like Mesos) it stops fairly quickly.
At this point, it will enter the loop you’re familiar with from writing your own frame-
work—considering resource offers and deciding what to do with them. Because we
haven’t launched anything yet, you should see no activity, hence the declining 1 in
the preceding log.

 Marathon comes with a nice-looking web interface, which is why we exposed port 8080
on the host—visit http://localhost:8080 in your browser to pull it up.

 We’re going to dive straight into Marathon, so let’s create a new application. To
clarify a bit of terminology—an “app” in the Marathon world is a group of one or
more tasks with exactly the same definition.

 Click the New App button at the top right to bring up a dialog box you can use to
define the app you want to start up. We’ll continue in the vein of the framework we
created ourselves by setting the ID to marathon-nc, leaving CPU, memory, and disk
space at their defaults (to match the resource limits imposed on our mesos-nc frame-
work), and setting the command to echo "hello $MESOS_TASK_ID" | nc -l $PORT0
(using environment variables available to the task—note, that’s the number zero). Set
the Ports field to 8000 as an indication of where we want to listen. For now we’re going
to skip over the other fields. Click Create.

 Your newly defined application will now be listed on the web interface. The status
will briefly show as Deploying before showing as Running. Your app is now started!

 If you click on the /marathon-nc entry in the Apps list, you’ll see the unique ID
of your app. You can get the full configuration from the REST API, as shown in the
following code, and also verify that it’s running by curling the Mesos slave container
on the appropriate port. Make sure you save the full configuration as returned by
the REST API, because it’ll come in handy later—it’s been saved to app.json in the
following example:



249TECHNIQUE 81 Micromanaging Mesos with Marathon

$ curl http://localhost:8080/v2/apps/marathon-nc/versions
{"versions":["2015-06-30T19:52:44.649Z"]}
$ curl -s \
http://localhost:8080/v2/apps/marathon-nc/versions/2015-06-30T19:52:44.649Z \
> app.json
$ cat app.json
{"id":"/marathon-nc",

➥ "cmd":"echo \"hello $MESOS_TASK_ID\" | nc -l $PORT0",[...]
$ curl http://172.17.0.3:8000
hello marathon-nc.f56f140e-19e9-11e5-a44d-0242ac110012

Note the text following hello in the output from curl`ing the app—it should match
the unique ID in the interface. Be quick with checking, though— running that `curl
command will make the app terminate, Marathon will relaunch it, and the unique ID
in the web interface will change. Once you’ve verified all this, go ahead and click the
Destroy App button to remove marathon-nc.

 This works OK, but you may have noticed that we’ve not achieved what we set out
to do with Marathon—orchestrate Docker containers. Although our application is
within a container, it’s been launched in the Mesos slave container rather than in a
container of its own. Reading the Marathon documentation reveals that creating tasks
inside Docker containers requires a little more configuration (as it did when writing
our own framework).

 Happily, the Mesos slave we started previously has both the required settings, so we
need to alter some Marathon options—in particular, app options. By taking the Mara-
thon API response from before (saved in app.json), we can focus on just adding the
Marathon settings that enable Docker usage. To perform the manipulation here, we’ll
use the handy jq tool, though it’s equally easy to do it via a text editor: 

$ JQ=https://github.com/stedolan/jq/releases/download/jq-1.3/jq-linux-x86_64
$ curl -Os $JQ && mv jq-linux-x86_64 jq && chmod +x jq
$ cat >container.json <<EOF
{

"container": {
"type": "DOCKER",
"docker": {

"image": "ubuntu:14.04.2",
"network": "BRIDGE",
"portMappings": [{"hostPort": 8000, "containerPort": 8000}]

}
}

}
$ # merge the app and container details
$ cat app.json container.json | ./jq -s add > newapp.json

We can now send the new app definition to the API and see Marathon launch it:

$ curl -X POST -H 'Content-Type: application/json; charset=utf-8' \
--data-binary @newapp.json http://localhost:8080/v2/apps
{"id":"/marathon-nc",



250 CHAPTER 9 Container orchestration: managing multiple Docker containers

➥ "cmd":"echo \"hello $MESOS_TASK_ID\" | nc -l $PORT0",[...]
$ sleep 10
$ docker ps --since=marathon
CONTAINER ID IMAGE COMMAND CREATED

➥ STATUS PORTS NAMES
284ced88246c ubuntu:14.04 "\"/bin/sh -c 'echo About a minute ago

➥ Up About a minute 0.0.0.0:8000->8000/tcp mesos-

➥ 1da85151-59c0-4469-9c50-2bfc34f1a987
$ curl localhost:8000
hello mesos-nc.675b2dc9-1f88-11e5-bc4d-0242ac11000e
$ docker ps --since=marathon
CONTAINER ID IMAGE COMMAND CREATED

➥ STATUS PORTS NAMES
851279a9292f ubuntu:14.04 "\"/bin/sh -c 'echo 44 seconds ago

➥ Up 43 seconds 0.0.0.0:8000->8000/tcp mesos-

➥ 37d84e5e-3908-405b-aa04-9524b59ba4f6
284ced88246c ubuntu:14.04 "\"/bin/sh -c 'echo 24 minutes ago

➥ Exited (0) 45 seconds ago

➥ mesos-1da85151-59c0-4469-9c50-2bfc34f1a987

As with our custom framework, Mesos has launched a Docker container for us with
the application running. Running curl terminates the application and container, and
a new one is automatically launched.

 There are some significant differences between these frameworks. For example, in
the custom framework, we had extremely fine-grained control over accepting
resource offers, to the point where we could pick and choose individual ports to listen
on. In order to do a similar thing in Marathon, you’d need to impose the setting on
each individual slave.

 By contrast, Marathon comes with a lot of built-in features that would be error-
prone to build yourself, including health checking, an event notification system, and a
REST API. These aren’t trivial things to implement, and using Marathon lets you oper-
ate with the assurance that you aren’t the first one trying it. If nothing else, it’s a lot
easier to get support for Marathon than for a bespoke framework, and we’ve found
that the documentation for Marathon is more approachable than that for Mesos.

 We’ve covered the basics of setting up and using Marathon, but there are many
more things to see and do. One of the more interesting suggestions we’ve seen is to
use Marathon to start up other Mesos frameworks, potentially including your own
bespoke one! We encourage you to explore—Mesos is a high-quality tool for orches-
tration, and Marathon provides a usable layer on top of it. 

9.3 Service discovery: what have we here?
This chapter’s introduction referred to service discovery as the flip side of orchestra-
tion—being able to deploy your applications to hundreds of different machines is
fine, but if you can’t then find out which applications are located where, you won’t be
able to actually use them.



251TECHNIQUE 82 Using Consul to discover services

 While not nearly as saturated an area as orchestration, the service-discovery field
still has a number of competitors. It doesn’t help that they all offer slightly different
feature sets.

 There are two pieces of functionality that are typically desirable when it comes to
service discovery: a generic key-value store and a way of retrieving service endpoints
via some convenient interface (likely DNS). etcd and Zookeeper are examples of the
former, whereas SkyDNS (a tool we won’t go into) is an example of the latter. In fact,
SkyDNS uses etcd to store the information it needs. 

TECHNIQUE 82 Using Consul to discover services

etcd is a highly popular tool, but it does have one particular competitor that gets men-
tioned alongside it a lot: Consul. This is a little strange, because there are other tools
more similar to etcd (Zookeeper has a similar feature set to etcd but is implemented
in a different language), whereas Consul differentiates itself with some interesting
additional features, like service discovery and health checks.

 In fact, if you squint, Consul might look a bit like etcd, SkyDNS, and Nagios all in
one. 

PROBLEM
You need to be able to distribute information to, discover services within, and monitor
a collection of containers.

SOLUTION
Start a container with Consul on each Docker host to provide a service directory and
configuration communication system.

DISCUSSION
Consul tries to be a generic tool for doing some important tasks required when you
need to coordinate a number of independent services. These tasks can be performed
by other tools, but configuring them in one place can be useful. From a high level,
Consul provides the following:

■ Service configuration—A key-value store for storing and sharing small values, like
etcd and Zookeeper

■ Service discovery—An API for registering services and a DNS endpoint for discov-
ering them, like SkyDNS

■ Service monitoring—An API for registering health checks, like Nagios

You can use all, some, or one of these features, as there’s no tie-in. If you have existing
monitoring infrastructure, there’s no need to replace that with Consul.

 This technique will cover the service-discovery and service-monitoring aspects of
Consul, but not key-value storage. The strong similarities between etcd and Consul in
this aspect make the two final techniques in chapter 7 transferable with some perusal
of the Consul documentation.

 Figure 9.11 shows a typical Consul setup.



252 CHAPTER 9 Container orchestration: managing multiple Docker containers

The data stored in Consul is the responsibility of server agents. These are responsible
for forming a consensus on the information stored—this concept is present in most dis-
tributed data-storage systems. In short, if you lose under half of your server agents,
you’re guaranteed to be able to recover your data (see an example of this with etcd in
technique 66). Because these servers are so important and have greater resource
requirements, keeping them on dedicated machines is a typical choice.

KEEPING DATA AROUND Although the commands in this technique will leave
the Consul data directory (/data) inside the container, it’s generally a good
idea to specify this directory as a volume for at least the servers, so you can
keep backups.

It’s recommended that all machines under your control that may want to interact with
Consul should run a client agent. These agents forward requests on to the servers and
run health checks:

 The first step in getting Consul running is to start a server agent:

c1 $ IMG=dockerinpractice/consul-server
c1 $ docker pull $IMG
[...]
c1 $ ip addr | grep 'inet ' | grep -v 'lo$\|docker0$\|vbox.*$'

inet 192.168.1.87/24 brd 192.168.1.255 scope global wlan0

Server agent
machines

Client agent
machines

Client
agent

Containers retrieving
info from Consul

Client agent performing
health checks

Containers
exposing ports

Figure 9.11 A typical Consul setup



253TECHNIQUE 82 Using Consul to discover services

c1 $ EXTIP1=192.168.1.87
c1 $ echo '{"ports": {"dns": 53}}' > dns.json
c1 $ docker run -d --name consul --net host \
-v $(pwd)/dns.json:/config/dns.json $IMG -bind $EXTIP1 -client $EXTIP1 \
-recursor 8.8.8.8 -recursor 8.8.4.4 -bootstrap-expect 1
88d5cb48b8b1ef9ada754f97f024a9ba691279e1a863fa95fa196539555310c1
c1 $ docker logs consul
[...]

Client Addr: 192.168.1.87 (HTTP: 8500, HTTPS: -1, DNS: 53, RPC: 8400)
Cluster Addr: 192.168.1.87 (LAN: 8301, WAN: 8302)

[...]
==> Log data will now stream in as it occurs:

2015/08/14 12:35:41 [INFO] serf: EventMemberJoin: mylaptop 192.168.1.87
[...]

2015/08/14 12:35:43 [INFO] consul: member 'mylaptop' joined, marking

➥ health alive
2015/08/14 12:35:43 [INFO] agent: Synced service 'consul'

Because we want to use Consul as a DNS server, we’ve inserted a file into the folder
Consul reads the configuration from to request it listen on port 53 (the registered
port for the DNS protocol). We’ve then used a command sequence you may recognize
from earlier techniques to try to find the external-facing IP address of the machine for
both communicating with other agents and listening for client requests.

DNS PORT CONFLICTS The IP address 0.0.0.0 is typically used to indicate
that an application should listen on all available interfaces on the machine.
We’ve deliberately not done this because some Linux distributions have a
DNS caching daemon listening on 127.0.0.1, which disallows listening
on 0.0.0.0:53.

There are three items of note in the previous docker run command:

■ We’ve used --net host. Although this can be seen as a faux pas in the Docker
world, the alternative is to expose up to eight ports on the command line—it’s a
matter of personal preference, but we feel it’s justified here. It also helps bypass
a potential issue with UDP communication. If you were to go the manual route,
there’d be no need to set the DNS port—you could expose the default Consul
DNS port (8600) as port 53 on the host.

■ The two recursor arguments tell Consul what DNS servers to look at if a
requested address is unknown by consul itself.

■ The -bootstrap-expect 1 argument means the Consul cluster will start operat-
ing with only one agent, which is not robust. A typical setup would set this to
three (or more) to make sure the cluster doesn’t start until the required num-
ber of servers has joined. To start the additional server agents, add a -join
argument, as we’ll discuss when we start a client. 

Now let’s go to a second machine, start a client agent, and add it to our cluster.



254 CHAPTER 9 Container orchestration: managing multiple Docker containers

STEPPING ON TOES Because Consul expects to be able to listen on a particular
set of ports when communicating with other agents, it’s tricky to set up multi-
ple agents on a single machine while still demonstrating how it would work in
the real world. We’ll use a different host now—if you decide to use an IP alias,
ensure you pass a -node newAgent, because by default the hostname will be
used, which will conflict. 

c2 $ IMG=dockerinpractice/consul-agent
c2 $ docker pull $IMG
[...]
c2 $ EXTIP1=192.168.1.87
c2 $ ip addr | grep docker0 | grep inet

inet 172.17.42.1/16 scope global docker0
c2 $ BRIDGEIP=172.17.42.1
c2 $ ip addr | grep 'inet ' | grep -v 'lo$\|docker0$'

inet 192.168.1.80/24 brd 192.168.1.255 scope global wlan0
c2 $ EXTIP2=192.168.1.80
c2 $ echo '{"ports": {"dns": 53}}' > dns.json
c2 $ docker run -d --name consul-client --net host \
-v $(pwd)/dns.json:/config/dns.json $IMG -client $BRIDGEIP -bind $EXTIP2 \
-join $EXTIP1 -recursor 8.8.8.8 -recursor 8.8.4.4
5454029b139cd28e8500922d1167286f7e4fb4b7220985ac932f8fd5b1cdef25
c2 $ docker logs consul-client
[...]

2015/08/14 19:40:20 [INFO] serf: EventMemberJoin: mylaptop2 192.168.1.80
[...]

2015/08/14 13:24:37 [INFO] consul: adding server mylaptop

➥ (Addr: 192.168.1.87:8300) (DC: dc1)

REFUTING MESSAGES The images we’ve used are based on gliderlabs/consul-
server:0.5 and gliderlabs/consul-agent:0.5, and they come with a newer ver-
sion of Consul to avoid possible problems with UDP communication, indi-
cated by the constant logging of lines like “Refuting a suspect message.”
When version 0.6 of the images are released, you can switch back to the
images from gliderlabs.

All client services (HTTP, DNS, and so on) have been configured to listen on the
Docker bridge IP address. This gives containers a known location from which they can
retrieve information from Consul, and it only exposes Consul internally on the
machine, forcing other machines to directly access the server agents rather than tak-
ing a slower route via a client agent to a server agent. To ensure the bridge IP address
is consistent across all your hosts, you can look at the --bip argument to the Docker
daemon—this may be familiar from setting up Resolvable in technique 70. 

 As before, we’ve found the external IP address and bound cluster communication
to it. The -join argument tells Consul where to initially look to find the cluster. Don’t
worry about micromanaging the cluster formation—when two agents initially meet
each other, they’ll gossip, transferring information about finding the other agents in



255TECHNIQUE 82 Using Consul to discover services

the cluster. The final -recursor arguments tell Consul what upstream DNS servers to
use for DNS requests that aren’t trying to look up registered services. 

 Let’s verify that the agent has connected to the server with the HTTP API on the cli-
ent machine. The API call we’ll use will return a list of members the client agent cur-
rently thinks are in the cluster (in large, quickly changing clusters, this may not always
match the members of the cluster—there’s another, slower API call for that):

c2 $ curl -sSL $BRIDGEIP:8500/v1/agent/members | tr ',' '\n' | grep Name
[{"Name":"mylaptop2"
{"Name":"mylaptop"

Now that the Consul infrastructure is set up, it’s time to see how you can register and
discover services. The typical process for registration is to get your app to make an API
call against the local client agent after initializing, prompting the client agent to dis-
tribute the information to the server agents. For demonstration purposes, we’ll per-
form the registration step manually:

c2 $ docker run -d --name files -p 8000:80 ubuntu:14.04.2 \
python3 -m http.server 80
96ee81148154a75bc5c8a83e3b3d11b73d738417974eed4e019b26027787e9d1
c2 $ docker inspect -f '{{.NetworkSettings.IPAddress}}' files
172.17.0.16
c2 $ /bin/echo -e 'GET / HTTP/1.0\r\n\r\n' | nc -i1 172.17.0.16 80 \
| head -n 1
HTTP/1.0 200 OK
c2 $ curl -X PUT --data-binary '{"Name": "files", "Port": 8000}' \
$BRIDGEIP:8500/v1/agent/service/register
c2 $ docker logs consul-client | tail -n 1

2015/08/15 03:44:30 [INFO] agent: Synced service 'files'

Here we’ve set up a simple HTTP server in a container, exposing it on port 8000 on
the host, and checked that it works. Then we used curl and the Consul HTTP API to
register a service definition. The only thing absolutely necessary here is the name of
the service—the port, along with the other fields listed in the Consul documentation,
are all optional. The ID field is worth a mention—it defaults to the name of the service
but must be unique across all services. If you want multiple instances of a service,
you’ll need to specify it.

 The log line from Consul has told us that the service is synced, so we should be
able to retrieve the information about it from the service DNS interface. This informa-
tion comes from the server agents, so it acts as validation that the service has been
accepted into the Consul catalog. You can use the dig command to query service DNS
information and check that it’s present:



256 CHAPTER 9 Container orchestration: managing multiple Docker containers

c2 $ EXTIP1=192.168.1.87
c2 $ dig @$EXTIP1 files.service.consul +short
192.168.1.80
c2 $ BRIDGEIP=172.17.42.1
c2 $ dig @$BRIDGEIP files.service.consul +short
192.168.1.80
c2 $ dig @$BRIDGEIP files.service.consul srv +short
1 1 8000 mylaptop2.node.dc1.consul.
c2 $ docker run -it --dns $BRIDGEIP ubuntu:14.04.2 bash
root@934e9c26bc7e:/# ping -c1 -q www.google.com
PING www.google.com (216.58.210.4) 56(84) bytes of data.

--- www.google.com ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 25.358/25.358/25.358/0.000 ms
root@934e9c26bc7e:/# ping -c1 -q files.service.consul
PING files.service.consul (192.168.1.80) 56(84) bytes of data.

--- files.service.consul ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 0.062/0.062/0.062/0.000 ms

The similarities between Resolvable and the Consul DNS service are striking. The key
difference is that Consul lets you find containers across multiple nodes. However, as
mentioned at the beginning of this technique, Consul has another interesting feature
we’ll take a look at: health checks. 

 Health checking is a big topic, so we’ll leave the minutiae for the comprehensive
Consul documentation and look at one of the options for monitoring—a script
check. This runs a command and sets the health based on the return value, with 0 for
success, 1 for warning, and any other value for critical. You can register a health
check when initially defining the service, or in a separate API call, as we’ll do here. 

c2 $ cat >check <<'EOF'
#!/bin/sh
set -o errexit
set -o pipefail

Look up the IP address of the files service 
from the server agent DNS. This DNS 
service is available to arbitrary machines 
not in your Consul cluster, allowing them 
to benefit from service discovery as well.

Look up the IP
address of the

files service
from the client

agent DNS. If
using $BRIDGEIP

fails, you may
wish to try with

$EXTIP1.

Request the SRV record of the
files service from the client

agent DNS. SRV records are a
way of communicating service
information by DNS, including

protocol, port, and other
entries. Two items worth

noting are that you can see the
port number in the response,

and you’ve been given the
canonical hostname of the

machine providing the service
rather than the IP address.

Start a container
configured to use

the local client
agent as the only

DNS server. If
you’ve

familiarized
yourself with the

technique on
Resolvable we

mentioned earlier
(technique 70),

you’ll recall that
you can set this

as a default for all
containers.

Remember to
override the

defaults for the
Consul agent, or
you may end up
with unexpected

behavior.

Verify that 
lookup of 
external 
addresses 
still works.

Verify that service lookup works
automatically inside the container.

Create check script verifying that the HTTP 
status code from the service is 200 OK. The 
service port is looked up from the service ID 
passed to the script as an argument.



257TECHNIQUE 82 Using Consul to discover services

SVC_ID="$1"
SVC_PORT=\
"$(wget -qO - 172.17.42.1:8500/v1/agent/services | jq ".$SVC_ID.Port")"
wget -qsO - "localhost:$SVC_PORT"
echo "Success!"
EOF
c2 $ cat check | docker exec -i consul-client sh -c \
'cat > /check && chmod +x /check'
c2 $ cat >health.json <<'EOF'
{

"Name": "filescheck",
"ServiceID": "files",
"Script": "/check files",
"Interval": "10s"

}
EOF
c2 $ curl -X PUT --data-binary @health.json \
172.17.42.1:8500/v1/agent/check/register
c2 $ sleep 300
c2 $ curl -sSL 172.17.42.1:8500/v1/health/service/files | \
python -m json.tool | head -n 13
[

{
"Checks": [

{
"CheckID": "filescheck",
"Name": "filescheck",
"Node": "mylaptop2",
"Notes": "",
"Output": "/check: line 6: jq: not \

found\nConnecting to 172.17.42.1:8500 (172.17.42.1:8500)\n",
"ServiceID": "files",
"ServiceName": "files",
"Status": "critical"

},
c2 $ dig @$BRIDGEIP files.service.consul srv +short
c2 $

AVOIDING CHECK STATUS CHURN Because output from health checks can
change on every execution (if it includes timestamps, for example) Consul
only synchronizes check output with the server on a status change, or every
five minutes (though this interval is configurable). Because statuses start as
critical, there’s no initial status change in this case, so you’ll need to wait out
the interval to get output.

We added a health check for the files service to be run every 10 seconds, but checking
it shows the service as having a critical status. Because of this, Consul has automatically
taken the failing endpoint out of the entries returned by DNS, leaving us with no serv-
ers. This is particularly helpful for automatically removing servers from a multiple-
backend service in production.

 The root cause of the error we’ve hit is an important one to be aware of when run-
ning Consul inside a container. All checks are also run inside the container, so as the

Copy the check script 
into the Consul agent 
container.

Create a health check definition to send to 
the Consul HTTP API. The service ID has to 
be specified in both the ServiceID field and 
the script command line.

Submit the health 
check JSON to the 
Consul agent.

Wait for the check 
output to be 
communicated to 
the server agents.

Retrieve health check 
information for the check 
you’ve registered.

Attempt to look up 
the files service, 
with no results.



258 CHAPTER 9 Container orchestration: managing multiple Docker containers

check script had to be copied into the container, you also need to make sure any com-
mands you need are installed in the container. In this particular case, we’re missing
the jq command (a helpful utility for extracting information from JSON), which we
can install manually, though the correct approach for production would be to add lay-
ers to the image: 

c2 $ docker exec consul-client sh -c 'apk update && apk add jq'
fetch http://dl-4.alpinelinux.org/alpine/v3.2/main/x86_64/APKINDEX.tar.gz
v3.2.3 [http://dl-4.alpinelinux.org/alpine/v3.2/main]
OK: 5289 distinct packages available
(1/1) Installing jq (1.4-r0)
Executing busybox-1.23.2-r0.trigger
OK: 14 MiB in 28 packages
c2 $ docker exec consul-client sh -c \
'wget -qO - 172.17.42.1:8500/v1/agent/services | jq ".files.Port"'
8000
c2 $ sleep 15
c2 $ curl -sSL 172.17.42.1:8500/v1/health/service/files | \
python -m json.tool | head -n 13
[

{
"Checks": [

{
"CheckID": "filescheck",
"Name": "filescheck",
"Node": "mylaptop2",
"Notes": "",
"Output": "Success!\n",
"ServiceID": "files",
"ServiceName": "files",
"Status": "passing"

},

We’ve now installed jq onto the image using the Alpine Linux package manager (see
technique 51), verified that it works by manually executing the line that was previously
failing in the script, and then waited for the check to rerun. It’s now successful!

 By covering script health checks in the previous examples, you now have a vital
building block for constructing monitoring around your application—if you can
express a health check as a series of commands you’d run in a terminal, you can get
Consul to automatically run it. If you find yourself wanting to check the status code
returned by an HTTP endpoint, you’re in luck—this is such a common task that one of
the three types of health checking in Consul is dedicated to it. The final type of health
check, Time to Live, requires a deeper integration with your application. The status
must be periodically set to healthy, or the check will automatically be set to failing.
Combining these three types of health checks gives you the power to build compre-
hensive monitoring on top of your system.

 To round off this technique, we’ll look at the optional Consul web interface that
comes with the server agent image. It provides a helpful insight into the current state
of your cluster. You can visit this by going to port 8500 on the external IP address of a



259TECHNIQUE 83 Automatic service registration with Registrator

server agent. In this case you’d want to visit $EXTIP1:8500. Remember that even if
you’re on a server agent host, localhost or 127.0.0.1 will not work. 

 We’ve covered a lot in this technique—Consul is a big topic! Fortunately, just as the
knowledge you gained about utilizing key-value stores with etcd is transferable to
other key-value stores (like Consul), this service-discovery knowledge is transferable to
other tools offering DNS interfaces (SkyDNS being one you may come across). The
subtleties we covered related to using the host network stack and using external IP
addresses are also transferable. Most containerized distributed tools requiring discov-
ery across multiple nodes have similar problems. 

TECHNIQUE 83 Automatic service registration with Registrator

The obvious downside of Consul (and any service discovery tool) so far is the over-
head of having to manage the creation and deletion of service entries. If you integrate
this into your applications, you’ll have multiple implementations and multiple places
it could go wrong.

 Integration also doesn’t work for applications you don’t have complete control
over, so you’ll end up having to write wrapper scripts when starting up your database
and the like.

PROBLEM
You don’t want to manually manage service entries and health checks in Consul.

SOLUTION
Use Registrator.

DISCUSSION
This technique will build on top of the previous one and will assume you have a two-
part Consul cluster available, as described previously. We’ll also assume there are no
services in it, so you may want to recreate your containers to start from scratch.

 Registrator (http://gliderlabs.com/registrator/latest/) takes away much of the
complexity of managing Consul services—it watches for containers to start and stop,
registering services based on exposed ports and container environment variables. The
easiest way to see this in action is to jump in.

 Everything we do will be on the machine with the client agent. As discussed previ-
ously, no containers except the server agent should be running on the other machine.

 The following commands are all you need to start up Registrator:

$ IMG=gliderlabs/registrator:v6
$ docker pull $IMG
[...]
$ ip addr | grep 'inet ' | grep -v 'lo$\|docker0$'

inet 192.168.1.80/24 brd 192.168.1.255 scope global wlan0
$ EXTIP=192.168.1.80
$ ip addr | grep docker0 | grep inet

inet 172.17.42.1/16 scope global docker0
$ BRIDGEIP=172.17.42.1
$ docker run -d --name registrator -h $(hostname)-reg \
-v /var/run/docker.sock:/tmp/docker.sock $IMG -ip $EXTIP -resync \

http://gliderlabs.com/registrator/latest/


260 CHAPTER 9 Container orchestration: managing multiple Docker containers

60 consul://$BRIDGEIP:8500 # if this fails, $EXTIP is an alternative
b3c8a04b9dfaf588e46a255ddf4e35f14a9d51199fc6f39d47340df31b019b90
$ docker logs registrator
2015/08/14 20:05:57 Starting registrator v6 ...
2015/08/14 20:05:57 Forcing host IP to 192.168.1.80
2015/08/14 20:05:58 consul: current leader 192.168.1.87:8300
2015/08/14 20:05:58 Using consul adapter: consul://172.17.42.1:8500
2015/08/14 20:05:58 Listening for Docker events ...
2015/08/14 20:05:58 Syncing services on 2 containers
2015/08/14 20:05:58 ignored: b3c8a04b9dfa no published ports
2015/08/14 20:05:58 ignored: a633e58c66b3 no published ports

The first couple of commands here—for pulling the image and finding the external
IP address—should look familiar. This IP address is given to Registrator so it knows
what IP address to advertise for the services. The Docker socket is mounted to allow
Registrator to be automatically notified of container starts and stops as they happen.
We’ve also told Registrator how it can connect to a Consul agent and that we want all
containers to be refreshed every 60 seconds. Registrator should automatically be noti-
fied of container changes, so this final setting is helpful in mitigating the impact of
Registrator possibly missing updates.

 Now that Registrator is running, it’s extremely easy to register a first service:

$ curl -sSL 172.17.42.1:8500/v1/catalog/services | python -m json.tool
{

"consul": []
}
$ docker run -d -e "SERVICE_NAME=files" -p 8000:80 ubuntu:14.04.2 python3 \
-m http.server 80
3126a8668d7a058333d613f7995954f1919b314705589a9cd8b4e367d4092c9b
$ docker inspect 3126a8668d7a | grep 'Name.*/'

"Name": "/evil_hopper",
$ curl -sSL 172.17.42.1:8500/v1/catalog/services | python -m json.tool
{

"consul": [],
"files": []

}
$ curl -sSL 172.17.42.1:8500/v1/catalog/service/files | python -m json.tool
[

{
"Address": "192.168.1.80",
"Node": "mylaptop2",
"ServiceAddress": "192.168.1.80",
"ServiceID": "mylaptop2-reg:evil_hopper:80",
"ServiceName": "files",
"ServicePort": 8000,
"ServiceTags": null

}
]

The only effort we’ve had to put in when registering the service is passing an envi-
ronment variable to tell Registrator what service name to use. By default, Registrator



261Summary

uses a name based on the container name component after the slash and before the
tag: mycorp.com/myteam/myimage:0.5 would have the name myimage. Whether
this is useful or you want to specify something manually will depend on your nam-
ing conventions.

 The rest of the values are pretty much as you’d hope. Registrator has discovered
the port being listened on, added it to Consul, and set a service ID that tries to give a
hint about where you can find the container (which is why the hostname was set in the
Registrator container).

 Registrator will pick up a number of other details from environments if they’re
present, including tags, service names per port (if multiple), and using health checks
(if using Consul as the data storage). All three types of Consul health checks can be
enabled by specifying the check details in the environment in JSON——you can read
more about this in the Consul section of the “Registrator Backends” documentation at
http://gliderlabs.com/registrator/latest/user/backends/#consul.

 Registrator is excellent at giving you a handle on a swiftly changing environment
with a high churn of containers, making sure you don’t need to worry about your ser-
vice creation checks being created. 

9.4 Summary
This chapter is probably the most unopinionated in the book. We’ve tried to give you
a glimpse into the world of orchestration with Docker so you can go out and make a
decision for yourself—there’s definitely no one-size-fits-all solution here.

 Even with this survey of the tools available, actually committing to one can be daunt-
ing. Our advice is to keep it as simple as possible for as long as possible, and to keep the
tradeoffs in mind if you’re considering moving down the branches in figure 9.1 at the
beginning of the chapter. For example, you may not need dynamic provisioning and ser-
vice discovery right now if your traffic growth indicates two servers will be sufficient for
the next year.

 The topics we looked at included

■ Using a mature solution from outside the Docker world to control container
execution on a single machine

■ Simple multi-host orchestration solutions
■ The two heavyweights in the Docker orchestration field
■ Automatically inserting your applications into your service discovery backend of

choice

The next chapter will turn to more sober matters—keeping Docker secure.

http://gliderlabs.com/registrator/latest/user/backends/#consul


262

Docker and security

As Docker makes clear in its documentation, access to the Docker API implies
access to root privileges, which is why Docker must often be run with sudo, or the
user must be added to a user group (which might be called docker or dockerroot)
that allows access to the Docker API.

 In this chapter we’re going to look at the issue of security in Docker.

10.1 Docker access and what it means
You may be wondering what sort of damage a user can do if they can run Docker. As
a simple example, this command (don’t run it!) would delete all the binaries in /sbin
on your host machine (if you took out the bogus --donotrunme flag):

docker run --donotrunme -v /sbin:/sbin busybox rm -rf /sbin

This chapter covers
■ The level of security Docker offers out of the box
■ What Docker has done to help make it more secure
■ What other parties are doing about it
■ What other steps can be taken to ameliorate 

security concerns
■ How to manage users in a multi-tenant environment



263Docker access and what it means

It’s worth pointing out that this is true even if you’re a non-root user. This command
will show you the contents of the secure shadow password file from the host system:

docker run -v /etc/shadow:/etc/shadow busybox cat /etc/shadow

Docker’s insecurity is often misunderstood, partly due to a misunderstanding of the
benefits of namespaces in the kernel. Linux namespaces provide isolation from other
parts of the system, but the level of isolation you have in Docker is at your discretion
(as seen in the preceding docker run examples). Furthermore, not all parts of the
Linux OS have the ability to be namespaced. Devices and kernel modules are two
examples of core Linux features that aren’t namespaced. 

LINUX NAMESPACES Linux namespaces were developed to allow processes to
have a different view of the system than other processes have. For example,
process namespacing means that containers can only see processes associated
with that container—other processes running on the same host are effectively
invisible to them. Network namespacing means that containers appear to have
their own network stack available to them. Namespaces have been part of the
Linux kernel for a number of years.

Also, because you have the ability to interact with the kernel as root from within the
container through syscalls, any kernel vulnerability could be exploited by root within
the Docker container. Of course, VMs also have the same class of attack service
through access to the hypervisor, albeit a smaller one. Hypervisors have security vul-
nerabilities reported against them also.

 Another way to understand it is to think of running a Docker container as being
no different (from a security perspective) from being able to install any package via a
package manager.

 In other words, your requirement for security when running Docker containers
should be the same as for installing packages. If you have Docker, you can install soft-
ware as root. This is part of the reason why some argue that Docker is best understood
as a software packaging system.

USER NAMESPACING Work is underway to remove this risk through user
namespacing, which maps root in the container to a non-privileged user on
the host.

10.1.1 Do you care?

Given that access to the Docker API is equivalent to root access, the next question is
“Do you care?” Although this might seem an odd line to take, security is all about
trust, and if you trust your users to install software in the environment in which they
operate, there should be no barrier to them running Docker containers there. Secu-
rity difficulties primarily arise when considering multi-tenant environments. Because
the root user inside your container is in key respects the same as root outside your
container, having lots of different users being root on your system is a potentially wor-
rying place to be.



264 CHAPTER 10 Docker and security

MULTI-TENANCY A multitenant environment is one in which many different
users share the same resources. For example, two teams might share the same
server with two different VMs. Multi-tenancy offers cost savings through shar-
ing hardware rather than provisioning hardware for specific applications. But
it can bring other challenges related to service reliability and security isola-
tion that can offset the cost savings.

Some organizations take the approach of running Docker on a dedicated VM for each
user. The VM can be used for security, operational, or resource isolation. Within the VM
trust boundary, users run Docker containers for the performance and operational bene-
fits they bring. This is the approach taken by Google Compute Engine, which places a
VM between the user’s container and their underlying infrastructure for an added level
of security and some operational benefits. Google has more than a little compute
resources at their disposal, so they don’t mind the overhead of doing this. 

10.2 Security measures in Docker
Various measures have already been taken by the Docker maintainers to reduce the
security risks of running containers. For example,

■ Certain core mount points (such as /proc and /sys) are now mounted as read-only.
■ Default Linux capabilities have been reduced.
■ Support for third-party security systems like SELinux and AppArmor now exists.

In this section, we’ll look more deeply at these and at some of the measures you can
take to reduce the risks of running containers on your system.

TECHNIQUE 84 Constraining capabilities

As we’ve already mentioned, the root user on the container is the same user as root on
the host. But not all root users are created equal. Linux provides you with the ability
to assign more fine-grained privileges to the root user within a process. These fine-
grained privileges are called capabilities, and they allow you to limit the damage a user
can do even if they’re root. This technique shows you how to manipulate these capa-
bilities when running Docker containers.

PROBLEM
You want to reduce the ability of containers to perform damaging actions on your host
machine.

SOLUTION
Use the --drop-cap flag to reduce the privileges a container has access to. 

DISCUSSION
If you don’t fully trust the content of containers running on your system, you can
reduce the risk of issues arising by dropping the capabilities available to the container.

THE UNIX TRUST MODEL

To understand what this means and does, a little bit of background is required. When
the Unix system was designed, the trust model wasn’t sophisticated. You had admins



265TECHNIQUE 84 Constraining capabilities

who were trusted (root users) and users who weren’t. Root users could do anything,
whereas standard users could only affect their own files. Because the system was typi-
cally used in a university lab and was small, this model made sense.

 As the Unix model grew and the internet arrived, this model made less and less
sense. Programs like web servers needed root permissions to serve content on port 80,
but were also acting effectively as proxies for running commands on the host. Stan-
dard patterns were established to handle this, such as binding to port 80 and drop-
ping the effective user ID to a non-root user. Users performing all sorts of roles, from
sysadmins to database administrators through to application support engineers and
developers, could all potentially need fine-grained access to different resources on a
system. Unix groups alleviated this to some degree, but modeling these privilege
requirements—as any systems admin will tell you—is a non-trivial problem. 

LINUX CAPABILITIES

In an attempt to support a more fine-grained approach to privileged user manage-
ment, the Linux kernel engineers developed capabilities. This was an attempt to break
down the monolithic root privilege into slices of functionality that could be granted
discretely. You can read about them in more detail by running man 7 capabilities
(assuming you have the man page installed). 

 Docker has helpfully switched off certain capabilities by default. This means that
even if you have root in the container, there are things you won’t be able to do. For
example, the CAP_NET_ADMIN capability, which allows you to affect the network stack of
the host, is disabled by default.

 Table 10.1 lists Linux capabilities, gives a brief description of what they allow, and
indicates whether they’re permitted by default in Docker containers. Remember that
each capability relates to the root user’s ability to affect other users’ objects on the sys-
tem—a root user within a container could still chown root’s files on the host if the files
were made available as a volume in the container, for example.

Table 10.1 Linux capabilities in Docker containers

Capability Description Switched on?

CHOWN Make ownership changes to any files. Y

DAC_OVERRIDE Override read, write, and execution checks. Y

FSETID Don’t clear suid and guid bits when modifying files. Y

FOWNER Override ownership checks when saving files. Y

KILL Bypass permission checks on signals. Y

MKNOD Make special files with mknod. Y

NET_RAW Use raw and packet sockets, and bind to ports for 
transparent proxying.

Y

SETGID Make changes to group ownership of processes. Y



266 CHAPTER 10 Docker and security

SETUID Make changes to user ownership of processes. Y

SETFCAP Set file capabilities. Y

SETPCAP If file capabilities aren’t supported, then apply capability 
limits to and from other processes.

Y

NET_BIND_SERVICE Bind sockets to ports under 1024. Y

SYS_CHROOT Use chroot. Y

AUDIT_WRITE Write to kernel logs. Y

AUDIT_CONTROL Enable/disable kernel logging. N

BLOCK_SUSPEND Employ features that block the ability of the system to 
suspend.

N

DAC_READ_SEARCH Bypass file permission checks on reading files and 
directories.

N

IPC_LOCK Lock memory. N

IPC_OWNER Bypass permissions on interprocess communication 
objects.

N

LEASE Establish leases (watches on attempts to open or truncate) 
on ordinary files.

N

LINUX_IMMUTABLE Set the FS_APPEND_FL and FS_IMMUTABLE_FL i-node 
flags.

N

MAC_ADMIN Override mandatory access control (related to the Smack 
Linux Security Module (SLM)).

N

MAC_OVERRIDE Mandatory access control changes (related to SLM). N

NET_ADMIN Various network-related operations, including IP firewall 
changes and interface configuration.

N

NET_BROADCAST Unused. N

SYS_ADMIN A range of administrative functions. See man 
capabilities for more information.

N

SYS_BOOT Rebooting. N

SYS_MODULE Load/unload kernel modules. N

SYS_NICE Manipulate nice priority of processes. N

SYS_PACCT Turn on or off process accounting. N

SYS_PTRACE Trace processes’ system calls and other process manipula-
tion capabilities.

N

Table 10.1 Linux capabilities in Docker containers (continued)

Capability Description Switched on?



267TECHNIQUE 84 Constraining capabilities

ASSUMES LIBCONTAINER ENGINE If you aren’t using Docker’s default container
engine (libcontainer), these capabilities may be different on your installation.
If you have a sysadmin and want to be sure, ask them.

Unfortunately the kernel maintainers only allocated 32 capabilities within the system,
so capabilities have grown in scope as more and more fine-grained root privileges
have been carved out of the kernel. Most notably, the vaguely named CAP_SYS_ADMIN
capability covers actions as varied as changing the host’s domain name to exceeding
the system-wide limit on the number of open files. 

 One extreme approach is to remove all the capabilities that are switched on in
Docker by default from the container, and see what stops working. Here we start up a
bash shell with the capabilities that are enabled by default removed:

$ docker run -ti --cap-drop=CHOWN --cap-drop=DAC_OVERRIDE \
--cap-drop=FSETID --cap-drop=FOWNER --cap-drop=KILL --cap-drop=MKNOD \
--cap-drop=NET_RAW --cap-drop=SETGID --cap-drop=SETUID \
--cap-drop=SETFCAP --cap-drop=SETPCAP --cap-drop=NET_BIND_SERVICE \
--cap-drop=SYS_CHROOT --cap-drop=AUDIT_WRITE debian /bin/bash

If you run your application from this shell, you can see where it fails to work as
desired, and re-add the required capabilities. For example, you may need the capabil-
ity to change file ownership, so you’ll need to lose the dropping of the FOWNER capabil-
ity in the preceding code to run your application:

$ docker run -ti --cap-drop=CHOWN --cap-drop=DAC_OVERRIDE \
--cap-drop=FSETID --cap-drop=KILL --cap-drop=MKNOD \
--cap-drop=NET_RAW --cap-drop=SETGID --cap-drop=SETUID \
--cap-drop=SETFCAP --cap-drop=SETPCAP --cap-drop=NET_BIND_SERVICE \
--cap-drop=SYS_CHROOT --cap-drop=AUDIT_WRITE debian /bin/bash

DROP/ENABLE ALL CAPABILITIES If you want to enable or disable all capabili-
ties, you can use all instead of a specific capability, such as docker run -ti
--cap-drop=all ubuntu bash. 

If you run a few basic commands in the bash shell, you’ll see that it’s quite usable. Your
mileage may vary when running more complex applications, though.

SYS_RAWIO Perform I/O on various core parts of the system, such as 
memory and SCSI device commands.

N

SYS_RESOURCE Control and override various resource limits. N

SYS_TIME Set the system clock. N

SYS_TTY_CONFIG Privileged operations on virtual terminals. N

Table 10.1 Linux capabilities in Docker containers (continued)

Capability Description Switched on?



268 CHAPTER 10 Docker and security

ROOT IS STILL ROOT! It’s worth making clear that many of these capabilities
relate to the root capabilities to affect other users’ objects on the system, not
root’s own objects. A root user could still chown root’s files on the host if they
were host in the container and had access to the host’s files through a volume
mount, for example. Therefore, it’s still worth ensuring that applications
drop to a non-root user as soon as possible to protect the system, even if all
these capabilities are switched off.

This ability to fine-tune the capabilities of your container means that using the
--privileged flag to docker run should be unnecessary. Processes that require capa-
bilities will be auditable and under the control of the administrator of the host. 

TECHNIQUE 85 HTTP auth on your Docker instance

In technique 1 you saw how to open up access to your daemon to the network, and in
technique 4 you saw how to snoop the Docker API using socat.

 This technique combines those two: you’ll be able to access your daemon remotely
and view the responses. Access is restricted to those with a username/password combi-
nation, so it’s slightly safer. As a bonus, you don’t have to restart your Docker daemon
to achieve it—start up a container daemon!
PROBLEM
You’d like basic authentication with network access available on your Docker daemon.
SOLUTION
Set up HTTP authentication.
DISCUSSION
In this technique we’re going to show you how to share your Docker daemon with oth-
ers in a temporary way. Figure 10.1 lays out the architecture.

DOCKER’S DEFAULT SETTING ASSUMED This discussion assumes your Docker daemon
is using Docker’s default Unix socket method of access in /var/run/docker.sock.

The code in this technique is available at https://github.com/docker-in-practice/
docker-authenticate. The following listing shows the contents of the Dockerfile in this
repository, used to create the image for this technique.

FROM debian
RUN apt-get update && apt-get install -y \
nginx apache2-utils
RUN htpasswd -c /etc/nginx/.htpasswd username
RUN htpasswd -b /etc/nginx/.htpasswd username password
RUN sed -i 's/user .*;/user root;/' \
/etc/nginx/nginx.conf
ADD etc/nginx/sites-enabled/docker \
/etc/nginx/sites-enabled/docker
CMD service nginx start && sleep infinity

Listing 10.1 Dockerfile used to create dockerinpractice/docker-authenticate image

Ensure the required 
software is updated 
and installed.

Create a password
file for the user

called username.

B

Set the password
for the user

called username
to password. C

nginx will need to run as root to access 
the Docker Unix socket, so we replaced 
the user line with the root user details.

Copy in Docker’s 
nginx site file 
(listing 10.2).

By default, start the nginx
service and wait indefinitely.

https://github.com/docker-in-practice/docker-authenticate
https://github.com/docker-in-practice/docker-authenticate


269TECHNIQUE 85 HTTP auth on your Docker instance

The password file set up in B and C contains the credentials to be checked before
allowing (or rejecting) access to the Docker socket. If you’re building this image your-
self, you’ll probably want to alter username and password in those two steps to custom-
ize the credentials with access to the Docker socket. 

KEEP THIS IMAGE PRIVATE Be careful not to share this image, as it will contain
the password you’ve set!

The nginx site file for Docker is shown in the following listing.
 
 

The nginx Docker container
runs the nginx proxy process
listening on port 2375.

The Docker daemon
socket communicates
with both the Docker
daemon process and
the nginx server.

The web client connects
to the opened nginx
Docker proxy.

/var/run/docker.sock

Docker
daemon

nginx Docker
container

HTTP port 2375

Docker daemon host

curl

External host

Figure 10.1 The architecture of a Docker daemon with basic authentication



270 CHAPTER 10 Docker and security

upstream docker {
server unix:/var/run/docker.sock;

}

server {
listen 2375 default_server;
location / {

proxy_pass http://docker;
auth_basic_user_file /etc/nginx/.htpasswd;
auth_basic "Access restricted";

}
}

Now run the image as a daemon container, mapping the required resources from the
host machine:

$ docker run -d --name docker-authenticate -p 2375:2375 \
-v /var/run:/var/run dockerinpractice/docker-authenticate

This will run the container in the background with the name docker-authenticate
so you can refer to it later. Port 2375 of the container is exposed on the host, and the
container is given access to the Docker daemon by mounting the default directory
containing the Docker socket as a volume. If you’re using a custom-built image with
your own username and password, you’ll need to replace the image name here with
your own.

 The web service will now be up and running. If you curl the service with the user-
name and password you set, you should see an API response:

$ curl http://username:password@localhost:2375/info
{"Containers":115,"Debug":0,

➥ "DockerRootDir":"/var/lib/docker","Driver":"aufs",
➥ "DriverStatus":[["Root Dir","/var/lib/docker/aufs"],

➥ ["Backing Filesystem","extfs"],["Dirs","1033"]],

➥ "ExecutionDriver":"native-0.2",
➥ "ID":"QSCJ:NLPA:CRS7:WCOI:K23J:6Y2V:G35M:BF55:OA2W:MV3E:RG47:DG23",
➥ "IPv4Forwarding":1,"Images":792,
➥ "IndexServerAddress":"https://index.docker.io/v1/",
➥ "InitPath":"/usr/bin/docker","InitSha1":"",
➥ "KernelVersion":"3.13.0-45-generic",
➥ "Labels":null,"MemTotal":5939630080,"MemoryLimit":1,
➥ "NCPU":4,"NEventsListener":0,"NFd":31,"NGoroutines":30,
➥ "Name":"rothko","OperatingSystem":"Ubuntu 14.04.2 LTS",

➥ "RegistryConfig":{"IndexConfigs":{"docker.io":
➥ {"Mirrors":null,"Name":"docker.io",
➥ "Official":true,"Secure":true}},
➥ "InsecureRegistryCIDRs":["127.0.0.0/8"]},"SwapLimit":0}

Listing 10.2 /etc/nginx/sites-enabled/docker

Define the “docker” 
location in nginx as pointing 
to Docker’s domain socket.

Listen on port
2375 (the standard

Docker port).

Proxy these requests to and 
from the “docker” location 
defined earlier.

Define the password
file to use.

Restrict access
by password.

Put the username:password in the URL to curl, and
the address after the @ sign. This request is to the

/info endpoint of the Docker daemon’s API. The JSON response 
from the Docker 
daemon



271TECHNIQUE 86 Securing your Docker API

When you’re done, remove the container with this command:

$ docker rm -f docker-authenticate

Access is now revoked!

USING THE DOCKER COMMAND?

Readers may be wondering whether other users will be able to connect with the
docker command—for example, with something like this:

docker -H tcp://username:password@localhost:2375 ps

At the time of writing, authentication functionality is not built into Docker itself. But
we have created an image that will handle the authentication and allow Docker to
connect to a daemon. Simply use the image as follows:

$ docker run -d --name docker-authenticate-client \
-p 127.0.0.1:12375:12375 \
dockerinpractice/docker-authenticate-client \
192.168.1.74:2375 username:password

Note that localhost or 127.0.0.1 will not work for specifying the other end of the
authenticated connection—if you want to try it out on one host, you must use ip addr
to identify an external IP address of your machine.

 You can now use the authenticated connection with the following command:

docker -H localhost:12375 ps

Be aware that interactive Docker commands (run and exec with the -i argument)
won’t work over this connection due to some implementation limitations. 

DON'T RELY ON THIS FOR SECURITY This gives you a basic level of authentication,
but it doesn’t give you a serious level of security (in particular, someone able to
listen to your network traffic could intercept your username and password).
Setting up a server secured with TLS is rather more involved and is covered in
the next technique. 

TECHNIQUE 86 Securing your Docker API

In this technique we’ll show how you can open up your Docker server to others over a
TCP port while at the same time ensuring that only trusted clients can connect. This is
achieved by creating a secret key that only trusted hosts will be given. As long as that
trusted key remains a secret between the server and client machines, the Docker
server should remain secure.

Run the client container in the 
background and give it a name

Expose a port
to connect a

Docker
daemon to,
but only for
connections

from the local
machine

The image we’ve made 
to allow authenticated 
connections with Docker

The two arguments to 
the image (a 
specification of where 
the other end of the 
authenticated 
connection should be, 
and the username and 
password) should be 
replaced as appropriate 
for your setup.



272 CHAPTER 10 Docker and security

PROBLEM
You want your Docker API to be served securely over a port.

SOLUTION
Create a self-signed certificate and run the Docker daemon with the --tls-verify
flag.

DISCUSSION
This method of security depends on so-called key files being created on the server.
These files are created using special tools that ensure they are difficult to duplicate if
you don’t have the server key. Figure 10.2 gives an overview of this how this works.

WHAT ARE SERVER AND CLIENT KEYS? The server key is a file that holds a secret
number known only to the server, and which is required to read messages
encrypted with the secret key files given out by the owner of the server (the
so-called client keys). Once the keys have been created and distributed, they
can be used to make the connection between client and server secure.

SETTING UP THE DOCKER SERVER CERTIFICATE

First you create the certificates and keys. Generating keys requires the OpenSSL pack-
age. Check whether it’s installed by running openssl in a terminal. If it’s not installed,
you’ll need to install it before generating the certificates and keys with the following
code:

$ sudo su
$ read -s PASSWORD
$ read SERVER
$ mkdir -p /etc/docker
$ cd /etc/docker
$ openssl genrsa -aes256 -passout pass:$PASSWORD \
-out ca-key.pem 2048
$ openssl req -new -x509 -days 365 -key ca-key.pem -passin pass:$PASSWORD \
-sha256 -out ca.pem -subj "/C=NL/ST=./L=./O=./CN=$SERVER"

Create files:
 - ca.key.pem
 - server-key.pem
 - ca.pem
 - server-cert.pem
 - cert.pem
 - key.pem

Docker client request
without keys FAILS

Distribute key files:
 - ca.pem
 - cert.pem
 - key.pem

Docker client request
with secure keys is OK

Docker server host

Host has keys:
 - ca.pem
 - cert.pem
 - key.pem

Docker client host

Figure 10.2 Key setup and distribution

Ensure you are root.
Type in your 
certificate password 
and the server name 
you’ll use to connect 
to the Docker server.

Create the docker 
configuration 
directory if it 
doesn’t exist, and 
move into it.

Generate certificate 
authority (CA) .pem file 
with 2048-bit security.

Sign the CA key with your
password and address for a

period of one year.



273TECHNIQUE 86 Securing your Docker API

$ openssl genrsa -out server-key.pem 2048
$ openssl req -subj "/CN=$SERVER" -new -key server-key.pem \
-out server.csr
$ openssl x509 -req -days 365 -in server.csr -CA ca.pem -CAkey ca-key.pem
-passin "pass:$PASSWORD" -CAcreateserial \
-out server-cert.pem
$ openssl genrsa -out key.pem 2048
$ openssl req -subj '/CN=client' -new -key key.pem\
-out client.csr
$ sh -c 'echo "extendedKeyUsage = clientAuth" > extfile.cnf'
$ openssl x509 -req -days 365 -in client.csr -CA ca.pem -CAkey ca-key.pem \
-passin "pass:$PASSWORD" -CAcreateserial -out cert.pem \
-extfile extfile.cnf
$ chmod 0400 ca-key.pem key.pem server-key.pem
$ chmod 0444 ca.pem server-cert.pem cert.pem
$ rm client.csr server.csr

HELPER FUNCTIONS A script called CA.pl may be installed on your system that
makes this process simpler. Here we’ve exposed the raw openssl commands
because they’re more instructive. 

SETTING UP THE DOCKER SERVER

Next you need to set the Docker opts in your Docker daemon config file to specify
which keys are used to encrypt the communications (see appendix B for advice on
how to configure and restart your Docker daemon):

DOCKER_OPTS="$DOCKER_OPTS --tlsverify"
DOCKER_OPTS="$DOCKER_OPTS \
--tlscacert=/etc/docker/ca.pem"
DOCKER_OPTS="$DOCKER_OPTS \
--tlscert=/etc/docker/server-cert.pem"
DOCKER_OPTS="$DOCKER_OPTS \
--tlskey=/etc/docker/server-key.pem"
DOCKER_OPTS="$DOCKER_OPTS -H tcp://0.0.0.0:2376"
DOCKER_OPTS="$DOCKER_OPTS \
-H unix:///var/run/docker.sock"

DISTRIBUTING CLIENT KEYS

Next you need to send the keys to the client host so it can connect to the server and
exchange information. You don’t want to reveal your secret keys to anyone else, so this
needs to be passed to the client securely. A relatively safe way to do this is to SCP

Generate a server key
with 2048-bit security.

Process the
server key

with the
name of

your host.

Sign the key with your password 
for a period of one year.

Generate a client key 
with 2048-bit security.

Process the key 
as a client key.

Sign the key with 
your password for a 
period of one year.

Change the permissions to read-
only by root for the server files.

Change the permissions
of the client files to

read-only by everyone.
Remove leftover files.

Tell the Docker daemon 
that you want to use 
TLS security to secure 
connections to it.Specify the CA

file for the
Docker server.

Specify the certificate 
for the server.Specify the

private key used
by the server. Open the Docker 

daemon to external 
clients over TCP on 
port 2376.Open the Docker

daemon locally via
a Unix socket in
the normal way.



274 CHAPTER 10 Docker and security

(secure copy) them direct from the server to the client. The SCP utility uses essentially
the same technique to secure the transmission of data that we’re demonstrating here,
only with different keys that will have already been set up.

 On the client host, create the Docker configuration folder in /etc as you did earlier:

user@client:~$ sudo su
root@client:~$ mkdir -p /etc/docker

Then SCP the files from the server to the client. Make sure you replace client in the
following commands with the hostname of your client machine. Also make sure that
all the files are readable by the user that will run the docker command on the client. 

user@server:~$ sudo su
root@server:~$ scp /etc/docker/ca.pem client:/etc/docker
root@server:~$ scp /etc/docker/cert.pem client:/etc/docker
root@server:~$ scp /etc/docker/key.pem client:/etc/docker

TESTING

To test your setup, first try making a request to the Docker server without any creden-
tials. You should be rejected:

root@client~: docker -H myserver.localdomain:2376 info
FATA[0000] Get http://myserver.localdomain:2376/v1.17/info: malformed HTTP

➥ response "\x15\x03\x01\x00\x02\x02". Are you trying to connect to a

➥ TLS-enabled daemon without TLS?

Then connect with the credentials, which should return useful output:

root@client~: docker --tlsverify --tlscacert=/etc/docker/ca.pem \
--tlscert=/etc/docker/cert.pem --tlskey=/etc/docker/key.pem \
-H myserver.localdomain:2376 info
243 info
Containers: 3
Images: 86
Storage Driver: aufs
Root Dir: /var/lib/docker/aufs
Backing Filesystem: extfs
Dirs: 92

Execution Driver: native-0.2
Kernel Version: 3.16.0-34-generic
Operating System: Ubuntu 14.04.2 LTS
CPUs: 4
Total Memory: 11.44 GiB
Name: rothko
ID: 4YQA:KK65:FXON:YVLT:BVVH:Y3KC:UATJ:I4GK:S3E2:UTA6:R43U:DX5T
WARNING: No swap limit support

This technique gives you the best of both worlds—a Docker daemon open to others
to use, and one that’s only accessible to trusted users. Make sure you keep those keys
safe!



275TECHNIQUE 87 OpenShift—an application platform as a service

10.3 Security from outside Docker
Security on your host doesn’t stop with the docker command. In this section you’re
going to see two other approaches to securing your Docker containers, this time from
outside Docker.

 The first approach demonstrates the application platform as a service (aPaaS)
approach, which ensures Docker runs within a straightjacket set up and controlled by
the administrator. As an example, we’ll run an OpenShift Origin server (an aPaaS that
deploys Docker containers in a managed way) using Docker commands. You’ll see
that the end user’s powers can be limited and managed by the administrator, and
access to the Docker runtime can be removed.

 The second approach goes beyond this level of security to further limit the free-
doms available within running containers using SELinux, a security technology that
gives you fine-grained control over who can do what.

WHAT IS SELINUX? SELinux is a tool built and open-sourced by the United
States’ National Security Agency (NSA) that fulfils their need for strong access
control. It has been a security standard for some time now, and it’s very pow-
erful. Unfortunately, many people simply switch it off when they encounter
problems with it, rather than take the time to understand it. We hope the
technique shown here will help make that approach less tempting.

TECHNIQUE 87 OpenShift—an application platform as a service

OpenShift is a product managed by Red Hat that allows an organization to run an
application platform as a service (aPaas) and offer application development teams a
platform on which to run code without needing to be concerned about hardware
details. Version 3 of the product was a ground-up rewrite in Go, with Docker as the
container technology and Kubernetes and etcd for orchestration. On top of this, Red
Hat has added enterprise features that enable it to be more easily deployed in a corpo-
rate and security-focused environment.

 Although OpenShift has many features we could cover, here we’ll use it as a means
of managing security by taking away the user’s ability to run Docker directly, but
retaining the benefits of using Docker.

 OpenShift is available both as an enterprise-supported product and as an open
source project called Origin, maintained at https://github.com/openshift/origin.

PROBLEM
You want to manage the security risk of untrusted users invoking docker run. 

SOLUTION
Use an application platform as a service (aPaaS) tool like OpenShift. 

DISCUSSION
An aPaaS has many benefits, but the one we’ll focus on here is its ability to manage
user permissions and run Docker containers on the user’s behalf, providing a secure
audit point for users running Docker containers. 

https://github.com/openshift/origin


276 CHAPTER 10 Docker and security

 Why is this important? The users using this aPaaS have no direct access to the docker
command, so they can’t do any damage without subverting the security that OpenShift
provides. For example, containers are deployed by non-root users by default, and over-
coming this requires permission to be granted by an administrator. If you can’t trust your
users, using an aPaaS is a effective way of giving them access to Docker.

WHAT IS AN APAAS? An aPaaS provides users with the ability to spin up appli-
cations on demand for development, testing, or production. Docker is a natural
fit for these services, as it provides a reliable and isolated application delivery
format, allowing an operations team to take care of the details of deployment.

In short, OpenShift builds on Kubernetes (see technique 79) but adds features to
deliver a full-fledged aPaaS. These additional features include

■ User management
■ Permissioning
■ Quotas
■ Security contexts
■ Routing

INSTALLING OPENSHIFT

A complete overview of OpenShift installation is beyond the scope of this book.
 If you’d like an automated install using Vagrant that we maintain, see https://

github.com/docker-in-practice/shutit-openshift-origin. If you need help installing
Vagrant, see appendix C.

 Other options, such as a Docker-only installation (single-node only), or a full man-
ual build are available and documented on the OpenShift Origin codebase at https://
github.com/openshift/origin.git.

WHAT IS OPENSHIFT ORIGIN? OpenShift Origin is the “upstream” version of
OpenShift. Upstream means that it’s the codebase from which RedHat takes
changes for OpenShift, its supported offering. Origin is open source and can
be used and contributed to by anyone, but RedHat’s curated version of it is
sold and supported as “OpenShift.” An upstream version is usually more cut-
ting edge but less stable. 

AN OPENSHIFT APPLICATION

In this technique we’re going to show a simple example of creating, building, run-
ning, and accessing an application using the OpenShift web interface. The applica-
tion will be a basic NodeJS application that serves a simple web page.

 The application will use Docker, Kubernetes, and S2I under the hood. Docker is
used to encapsulate the build and deployment environments. The Source to Image
(S2I) build method from technique 48 is used to build the Docker container, and
Kubernetes is used to run the application on the OpenShift cluster. 

LOGGING IN

To get started, run ./run.sh from the shutit-openshift-origin folder, and then navi-
gate to https://localhost:8443, bypassing all the security warnings. You’ll see the login

https://github.com/docker-in-practice/shutit-openshift-origin
https://github.com/docker-in-practice/shutit-openshift-origin
https://github.com/openshift/origin.git
https://github.com/openshift/origin.git


277TECHNIQUE 87 OpenShift—an application platform as a service

page shown in figure 10.3. Note that if you’re using the Vagrant install, you’ll need to
start up a web browser in your VM. (See Appendix C for help on getting a GUI with
your VM.)

 Log in as hal-1 with any password. 

BUILDING A NODEJS APP

You’re now logged into OpenShift as a developer (see figure 10.4).

Figure 10.3 The OpenShift login page

Figure 10.4 The OpenShift projects page



278 CHAPTER 10 Docker and security

Create a project by clicking Create. Fill out the form, as shown in figure 10.5. Then
click Create again.

 Once the project is set up, click on Create again and input the suggested GitHub
repo (https://github.com/openshift/nodejs-ex), as shown in figure 10.6.

Figure 10.5 The OpenShift project creation page

Figure 10.6 The OpenShift project source page

https://github.com/openshift/nodejs-ex


279TECHNIQUE 87 OpenShift—an application platform as a service

Click Next, and you’ll be given a choice of builder images, as shown in figure 10.7.
The build image defines the context in which the code will be built. Choose the
NodeJS builder image. 

 Now fill out the form, as shown in figure 10.8. Click Create on NodeJS at the bot-
tom of the page as you scroll down the form. 

Figure 10.7 The OpenShift builder image selection page

Figure 10.8 The OpenShift NodeJS template form



280 CHAPTER 10 Docker and security

After a few minutes, you should see a screen like the one in figure 10.9.
 In a few moments, if you scroll down, you’ll see that the build has started, as shown

in figure 10.10.

Figure 10.9 The OpenShift build started page

Figure 10.10 The OpenShift build information window



281TECHNIQUE 87 OpenShift—an application platform as a service

BUILD NOT STARTING? In early versions of OpenShift, the build would some-
times not begin automatically. If this is the case, click the Start Build button
after a few minutes.

After some time you’ll see that the app is running, as in figure 10.11.
 By clicking Browse and Pods, you can see that the pod has been deployed, as in fig-

ure 10.12.

WHAT IS A POD? See technique 79 for an explanation of what a pod is.

How do you access your pod? If you look at the Services tab (see figure 10.13), you’ll
see an IP address and port number to access.

Figure 10.11 Application running page



282 CHAPTER 10 Docker and security

Figure 10.12 List of OpenShift pods

Figure 10.13 The OpenShift NodeJS application service details



283TECHNIQUE 87 OpenShift—an application platform as a service

Point your browser at that address, and voila, you’ll have your NodeJS app, as in fig-
ure 10.14. 

RECAP

Let’s recap what we’ve achieved here, and why it’s important for security.
 From the point of view of the user, they logged into a web application and deployed

an application using Docker-based technologies without going near a Dockerfile or the
docker run command. 

 The administrator of OpenShift can

■ Control user access
■ Limit resource usage by project
■ Provision resources centrally
■ Ensure code is run with non-privileged status by default

This is far more secure than giving users direct access to docker run!

Figure 10.14 The NodeJS application landing page



284 CHAPTER 10 Docker and security

WHAT NEXT?

If you want to build on this application and see how an aPaaS facilitates an iterative
approach, you can fork the Git repository, change the code in that forked repository,
and then create a new application. We’ve done that here: https://github.com/
docker-in-practice/nodejs-ex.

 To read more about OpenShift, go to http://www.openshift.org.

TECHNIQUE 88 Using security options

You’ve already seen in previous techniques how, by default, you’re given root in the
Docker container, and that this user is the same root as the root user on the host. To
alleviate this, we’ve shown you how this user can have their capabilities as root
reduced, so that even if they escape the container, there are still actions the kernel
won’t allow them to perform.

 But you can go further than this. By using Docker’s security options flag you can
protect resources on the host from being affected by actions performed within a con-
tainer. This constrains the container to only affect resources it has been given permis-
sion to by the host.

PROBLEM
You want to secure your host against the actions of containers.

SOLUTION
Use a kernel-supported mandatory access control tool.

DISCUSSION
Here we’re going to use SELinux as our mandatory access control (MAC) tool.
SELinux is more or less the industry standard and is most likely to be used by
organizations that particularly care about security. It was originally developed by the
NSA to protect their systems and was subsequently open-sourced. It’s used in Red Hat-
based systems as a standard.

 SELinux is a big subject, so we can’t cover it in depth in this book. We’re going to
show you how to write and enforce a simple policy so that you can get a feel for how it
works. You can take things further and experiment if you need to.

WHAT IS A MAC TOOL? Mandatory access control (MAC) tools in Linux
enforce security rules beyond the standard ones you may be used to. Put
briefly, they ensure that not only are the normal rules of read-write-execute
on files and processes enforced, but more fine-grained rules can be applied to
processes at the kernel level. For example, a MySQL process may only be
allowed to write files under specific directories, such as /var/lib/mysql. The
equivalent standard for Debian-based systems is AppArmor.

This technique assumes you have an SELinux-enabled host. This means you must first
install SELinux (assuming it’s not already installed). If you’re running Fedora or some
other Red Hat-based system, you are likely to have it already.

 To determine whether you have SELinux enabled, run the command sestatus:

https://github.com/docker-in-practice/nodejs-ex
https://github.com/docker-in-practice/nodejs-ex
http://www.openshift.org


285TECHNIQUE 88 Using security options

# sestatus
SELinux status: enabled
SELinuxfs mount: /sys/fs/selinux
SELinux root directory: /etc/selinux
Loaded policy name: targeted
Current mode: permissive
Mode from config file: permissive
Policy MLS status: enabled
Policy deny_unknown status: allowed
Max kernel policy version: 28

The first line of the output will tell you whether SELinux is enabled. If the command is
not available, then you don’t have SELinux installed on your host.

 You’ll also need to have the relevant SELinux policy-creation tools available. On a
yum-capable machine, for example, you’ll need to run yum -y install selinux-
policy-devel.

SELINUX ON A VAGRANT MACHINE

If you don’t have SELinux and want it to be built for you, you can use a ShutIt script to
build a VM inside your host machine, with Docker and SELinux preinstalled. What it
does is explained at a high level in figure 10.15.

WHAT IS SHUTIT? ShutIt is a generic shell automation tool that we created to
overcome some limitations of Dockerfiles. If you want to read more about it,
see the GitHub page: http://ianmiell.github.io/shutit.

Figure 10.15 lists the steps required to get a policy set up. The script will do the following:

1 Set up VirtualBox
2 Start an appropriate Vagrant image
3 Log into the VM

4 Ensure the state of SELinux is correct
5 Install the latest version of Docker
6 Install the SELinux policy development tools
7 Give you a shell

Ensure
VirtualBox
installed

Set up and
start, or restart,
Vagrant image

Run ShutIt
script to set

up host

Linux host machine

Start Vagrant CentOS Docker image to: 
 - Ensure SELinux state correct
 - Install latest Docker
 - Compile SELinux policy
 - Start container with policy

Figure 10.15 Script to pro-
vision an SELinux VM

http://ianmiell.github.io/shutit


286 CHAPTER 10 Docker and security

Here are the commands to set up and run it (tested on Debian and Red Hat-based
distributions):

sudo su -
apt-get install -y git python-pip docker.io || \
yum install -y git python-pip docker.io
pip install shutit
git clone https://github.com/ianmiell/docker-selinux.git
cd docker-selinux
shutit build --delivery bash \
-s io.dockerinpractice.docker_selinux.docker_selinux \

compile_policy no

After running this script, you should eventually see output like this:

Pause point:
Have a shell:
You can now type in commands and alter the state of the target.
Hit return to see the prompt
Hit CTRL and ] at the same time to continue with build

Hit CTRL and u to save the state

You now have a shell running inside a VM with SELinux on it. If you type sestatus,
you’ll see that SELinux is enabled in permissive mode (as shown in listing 10.3). To
return to your host’s shell, press Ctrl-]. 

COMPILING AN SELINUX POLICY

Whether you used the ShutIt script or not, we assume you now have a host with SELi-
nux enabled. Type sestatus to get a status summary (as shown in the next listing). 

# sestatus
SELinux status: enabled
SELinuxfs mount: /sys/fs/selinux
SELinux root directory: /etc/selinux
Loaded policy name: targeted
Current mode: permissive
Mode from config file: permissive
Policy MLS status: enabled
Policy deny_unknown status: allowed
Max kernel policy version: 28

Listing 10.3 SELinux status summary

Ensure you are root 
before starting the run.

Ensure the
required

packages are
installed on

the host. Install ShutIt.

Clone the SELinux
ShutIt script and

enter its directory.

Run the ShutIt script. “--delivery bash”
means commands are executed in bash rather

than via SSH or in a Docker container.

Configure the
script to not

compile an
SELinux policy,
as we’ll do this

by hand.



287TECHNIQUE 88 Using security options

In this case we’re in permissive mode, which means that SELinux is recording viola-
tions of security in logs, but isn’t enforcing them. This is good for safely testing new
policies without rendering your system unusable. To move your SELinux status to per-
missive, type setenforce Permissive as root. If you can’t do this on your host for
security reasons, don’t worry; there’s an option to set the policy as permissive outlined
in listing 10.4. 

SET --SELINUX-ENABLED ON THE DAEMON If you’re installing SELinux and
Docker yourself on a host, ensure that the Docker daemon has --selinux-
enabled set as a flag. You can check this with ps -ef | grep 'docker -d.*--
selinux-enabled, which should return a matching process on the output. 

Create a folder for your policy and move to it. Then create a policy file with the follow-
ing content as root, named docker_apache.te. This policy file contains a policy we’ll
try to apply. 

mkdir -p /root/httpd_selinux_policy &&

➥ cd /root/httpd_selinux_policy
cat > docker_apache.te << END
policy_module(docker_apache,1.0)
virt_sandbox_domain_template(docker_apache)
allow docker_apache_t self: capability { chown dac_override kill setgid

➥ setuid net_bind_service sys_chroot sys_nice sys_tty_config } ;
allow docker_apache_t self:tcp_socket

➥ create_stream_socket_perms;
allow docker_apache_t self:udp_socket

➥ create_socket_perms;
corenet_tcp_bind_all_nodes(docker_apache_t)
corenet_tcp_bind_http_port(docker_apache_t)
corenet_udp_bind_all_nodes(docker_apache_t)
corenet_udp_bind_http_port(docker_apache_t)
sysnet_dns_name_resolve(docker_apache_t)
#permissive docker_apache_t
END

Listing 10.4 Creating an SELinux policy

Create a folder
to store the

policy files, and
move into it.

Create the
policy file that

will be compiled
as a “here”
document.

Create the SELinux policy
module docker_apache with
the policy_module directive.

Use the provided template to 
create the docker_apache_t 
SELinux type, which can be run 
as a Docker container. This 
template gives the 
docker_apache SELinux 
domain the fewest privileges 
required to run. We’ll now add 
to these privileges to make a 
useful container environment.

The Apache
 web server

 requires these
capabilities to

run, so add them
here with the

allow directive.

These allow and corenet 
rules give permission 
for the container to 
listen to Apache ports 
on the network.

Allow DNS
server

resolution
with the

sysnet
directive.

Optionally make the docker_apache_t 
type permissive so this policy is not 
enforced even if the host is enforcing 
SELinux. Use this if you can’t set the 
SELinux mode of the host.

Terminate the “here” 
document, which 
writes it out to disk.



288 CHAPTER 10 Docker and security

SELINUX POLICY DOCUMENTATION For more information on the preceding per-
missions, and to explore others, you can install the selinux-policy-doc package,
and then use a browser to browse the documentation on file:///usr/share/
doc/selinux-policy-doc/html/index.html. The docs are also available online at
http://mcs.une.edu.au/doc/selinux-policy/html/templates.html.

Now you’re going to compile your policy and see your application fail to start against
this policy in enforcing mode. Then you’ll restart it in permissive mode to check the
violations and correct it later:

$ make -f /usr/share/selinux/devel/Makefile \
docker_apache.te
Compiling targeted docker_apache module
/usr/bin/checkmodule: loading policy configuration from

➥ tmp/docker_apache.tmp
/usr/bin/checkmodule: policy configuration loaded
/usr/bin/checkmodule: writing binary representation (version 17)

➥ to tmp/docker_apache.mod
Creating targeted docker_apache.pp policy package
rm tmp/docker_apache.mod tmp/docker_apache.mod.fc
$ semodule -i docker_apache.pp
$ setenforce Enforcing
$ docker run -ti --name selinuxdock

➥ --security-opt label:type:docker_apache_t httpd
Unable to find image 'httpd:latest' locally
latest: Pulling from library/httpd
2a341c7141bd: Pull complete
[...]
Status: Downloaded newer image for httpd:latest
permission denied
Error response from daemon: Cannot start container

➥ 650c446b20da6867e6e13bdd6ab53f3ba3c3c565abb56c4490b487b9e8868985:
➥ [8] System error: permission denied
$ docker rm -f selinuxdock
selinuxdock
$ setenforce Permissive
$ docker run -d --name selinuxdock

➥ --security-opt label:type:docker_apache_t httpd

CHECK FOR VIOLATIONS

Up to this point you’ve created an SELinux module and applied it to your host.
Because the enforcement mode of SELinux is set to permissive on this host, actions
that would be disallowed in enforcing mode are allowed with a log line in the audit
log. You can check these messages by running the following command:

 
 

Compile the 
docker_apache.te file to 
a binary SELinux module 
with a .pp suffix.

Install the
module.

Set the
SELinux mode
to enforcing.

Run the httpd image 
as a daemon, applying 
the security label type 
of docker_apache_t 
you defined in the 
SELinux module. This 
command should fail 
because it violates the 
SELinux security 
configuration.

Remove the
newly created

container. Set the SELinux mode to 
“permissive” to allow the 
application to start up.

Run the httpd image as a daemon, applying
the security label type of docker_apache_t

you defined in the SELinux module. This
command should run successfully.

http://mcs.une.edu.au/doc/selinux-policy/html/templates.html


289TECHNIQUE 88 Using security options

 

$ grep -w denied /var/log/audit/audit.log
type=AVC msg=audit(1433073250.049:392): avc:

➥ denied { transition } for

➥ pid=2379 comm="docker"

➥ path="/usr/local/bin/httpd-foreground" dev="dm-1" ino=530204

➥ scontext=system_u:system_r:init_t:s0
➥ tcontext=system_u:system_r:docker_apache_t:s0:c740,c787
➥ tclass=process
type=AVC msg=audit(1433073250.049:392): avc: denied { write } for

➥ pid=2379 comm="httpd-foregroun" path="pipe:[19550]" dev="pipefs"

➥ ino=19550 scontext=system_u:system_r:docker_apache_t:s0:c740,c787

➥ tcontext=system_u:system_r:init_t:s0 tclass=fifo_file
type=AVC msg=audit(1433073250.236:394): avc: denied { append } for

➥ pid=2379 comm="httpd" dev="pipefs" ino=19551

➥ scontext=system_u:system_r:docker_apache_t:s0:c740,c787
➥ tcontext=system_u:system_r:init_t:s0 tclass=fifo_file
type=AVC msg=audit(1433073250.236:394): avc: denied { open } for

➥ pid=2379 comm="httpd" path="pipe:[19551]" dev="pipefs" ino=19551

➥ scontext=system_u:system_r:docker_apache_t:s0:c740,c787
➥ tcontext=system_u:system_r:init_t:s0 tclass=fifo_file
[...]

Phew! There’s a lot of jargon there, and we don’t have time to teach you everything
you might need to know about SELinux. If you want to find out more, a good place to
start is with Red Hat’s SELinux documentation: http://mng.bz/QyFh.

 For now, you need to check that the violations are nothing untoward. What might
look untoward? If an application tries to open a port you didn’t expect or a file you
didn’t expect it to, then you might think twice about doing what we’re going show you
next: patch these violations with a new SELinux module.

 In this case, we’re happy that the httpd can write pipes. We’ve worked out that this
is what SELinux was preventing from doing because the “denied” actions mentioned
are append, write, and open for pipefs files on the VM. 

PATCHING SELINUX VIOLATIONS

Once you’ve decided that the violations you’ve seen are acceptable, there are tools
that can automatically generate the policy file you need to apply, so you don’t need to
go through the pain and risk of writing one yourself. The following example uses the
audit2allow tool to achieve this:

 

mkdir -p /root/selinux_policy_httpd_auto
cd /root/selinux_policy_httpd_auto
audit2allow -a -w  
audit2allow -a -M newmodname create policy
semodule -i newmodname.pp

The type of message in the audit log 
is always AVC for SELinux violations, 
and timestamps are given as the 
number of seconds since the epoch 
(which is defined as 1 Jan. 1970).

The type of action denied is shown in 
the curly brackets

The process ID
and name of

the command
that triggered

the violation

The path, device,
and inode of the

target fileThe SELinux
context of the

target

The class of
the target

object

Create a fresh folder to store 
the new SELinux module.

Use the
audit2allow tool to

display the policy
that would be

generated from
reading the audit
logs. Review this

again to make sure
it looks sensible.

Create your module with 
the -M flag and a name for 
the module you’ve chosen.

Install the module from 
the newly created .pp file.

http://mng.bz/QyFh


290 CHAPTER 10 Docker and security

It’s important to understand that this new SELinux module we’ve created “includes”
(or “requires”) and alters the one we created before by referencing and adding per-
missions to the docker_apache_t type. Combining the two into a complete and dis-
crete policy in a single .te file is left as an exercise for the reader. 

TESTING YOUR NEW MODULE

Now that you have your new module installed, you can try re-enabling SELinux and
restarting the container.

COULDN’T SET ENFORCE MODE TO PERMISSIVE? If you couldn’t set your host to
permissive earlier (and you added the hashed-out line to your original docker
_apache.te file), then recompile and reinstall the original docker_apache.te
file (with the permissive line hashed-out) before continuing.

docker rm -f selinuxdock
setenforce Enforcing
docker run -d --name selinuxdock \
--security-opt label:type:docker_apache_t httpd
docker logs selinuxdock
grep -w denied /var/log/audit/audit.log

There should be no new errors in the audit log. Your application has started within
the context of this SELinux regime.

 SELinux has a reputation for being complex and hard to manage, with the most fre-
quently heard complaint being that it’s more often switched off than debugged. That’s
hardly secure at all. Although the finer points of SELinux do require serious effort to
master, we hope this technique has shown you how to create something that a security
expert can review—and ideally sign off on—if Docker isn’t acceptable out of the box. 

10.4 Summary
In this chapter we’ve approached the problem of security in Docker from various
angles. We’ve covered the basic concerns with respect to security in Docker and shown
ways of approaching them. What you’ll need or want depends on the nature of your
organization and how much you trust your users.

 This chapter covered

■ Reducing the danger of containers running as root with SELinux
■ Authenticating the users of your Docker API over HTTP
■ Encrypting your Docker API using certificates
■ Limiting the power of root within your containers
■ Using an application platform as a service (aPaaS) to control access to the

Docker runtime

You should now be fully aware of the security concerns Docker raises, and how they
can be alleviated.

 Next we’re going to take Docker into production, and look at some of the areas
you should consider when running Docker as part of your live operation.



291

                Plain sailing—Docker
in production and

 operational considerations

In this chapter we’re going to cover some of the subjects that come up when run-
ning in production. Running Docker in production is a big subject, and produc-
tion use of Docker is still an evolving area. Many major tools are in the early stages
of development and were changing as we wrote this book. For example, while we
were writing this chapter, Kubernetes went to version 1.0 and a revamped Registry
was released by Docker.

 In this chapter we focus on showing you some of the key things you should con-
sider when going from volatile environments to stable ones.

This chapter covers
■ Options for logging container output
■ How to monitor your running containers
■ Managing your containers’ resource usage
■ Using Docker’s capabilities to help manage 

traditional sysadmin tasks



292 CHAPTER 11 Plain sailing—Docker in production and operational considerations

11.1 Monitoring
When you run Docker in production, one of the first things you’ll want to consider is
how to track and measure what your containers are up to. In this section you’re going
to learn how you can get an operational view of both your live containers’ logging
activity and their performance.

 This is still a developing aspect of the Docker ecosystem, but some tools and
techniques are emerging as more mainstream than others. We’ll look at redirecting
application logs to the host’s syslog, at redirecting the output of the docker logs
command to a single place, and at Google’s container-oriented performance moni-
toring tool, cAdvisor. 

TECHNIQUE 89 Logging your containers to the host’s syslog

Linux distributions typically run a syslog daemon. This daemon is the server part of the
system-logging functionality—applications send messages to this daemon, along with
metadata like the importance of the message, and the daemon will decide where to
save the message (if at all). This functionality is used by a range of applications, from
network connection managers to the kernel itself dumping information if it encoun-
ters an error.

 Because it’s so reliable and widely used, it’s reasonable for applications you write
yourself to log to syslog. Unfortunately, this will stop working once you containerize
your application (because there’s no syslog daemon in containers, by default). If you
do decide to start a syslog daemon in all of your containers, you’ll need to go to each
individual container to retrieve the logs.

PROBLEM
You want to capture syslogs centrally on your Docker host.

SOLUTION
Create a central syslog daemon container on your host, and bind-mount syslog to a
central location.

DISCUSSION
The basic idea of this technique is to run a service container that runs a syslog dae-
mon, and share the logging touchpoint (/dev/log) via the host’s filesystem. The log
itself can be retrieved by querying the syslog Docker container, and it’s stored in a vol-
ume. Figure 11.1 illustrates this.

 Figure 11.1 illustrates how /tmp/syslogdev on the host’s filesystem is used as a
touchpoint for all syslogging taking place on containers on the host. The logging con-
tainers mount and write their syslog to that location, and the syslogger container col-
lates all those inputs.

WHAT IS THE SYSLOG DAEMON? The syslog daemon is a process that runs on a
server, collecting and managing messages sent to a central file, which is nor-
mally a Unix domain socket. It generally uses /dev/log as a file to receive log
messages on, and logs out to /var/log/syslog.



293TECHNIQUE 89 Logging your containers to the host’s syslog

The syslogger container can be created with this straightforward Dockerfile:

FROM ubuntu:14.04
RUN apt-get update && apt-get install rsyslog
VOLUME /dev
VOLUME /var/log
CMD rsyslogd -n

Next you build the container, tagging it with the syslogger tag, and run it:

docker build -t syslogger .
docker run --name syslogger -d -v /tmp/syslogdev:/dev syslogger

You bind-mounted the container’s /dev folder to the host’s /tmp/syslogdev folder so
you can mount a /dev/log socket into each container as a volume, as you’ll see
shortly. The container will continue running in the background, reading any mes-
sages from the /dev/log file and handling them.

 On the host, you’ll now see that the /dev folder of the syslog container has been
mounted to the host’s /tmp/syslogdev folder:

$ ls -1 /tmp/syslogdev/
fd
full
fuse

The /tmp/syslogdev directory
is mounted from the syslogger
container from its /dev folder.
The log file that sits in that folder
will be the touchpoint that the
logging containers will write to.

The syslogger container runs
the syslog daemon, reading
from the /tmp/syslogdev/log
file that the other containers
write to.

The logging containers
write to the /dev/log syslog
file via the bind-mounted
host file in /tmp/syslogdev/log,
which maps to /dev/log on the
syslogger container.

syslogger container

Logging containers
/tmp/syslogdev

Figure 11.1 Overview of centralized syslogging of Docker containers

Install the rsyslog package, which
makes the rsyslogd daemon program

available. The “r” stands for “reliable.”Create the /dev
volume to share

with other
containers.

Create the /var/log 
volume to allow the 
syslog file to persist.

Run the rsyslogd
process on startup.



294 CHAPTER 11 Plain sailing—Docker in production and operational considerations

kcore
log
null
ptmx
random
stderr
stdin
stdout
tty
urandom
zero

For this demonstration, you’re going to start up 100 daemon containers that log their
own starting order from 0 to 100 to the syslog, using the logger command. Then
you’ll be able to see those messages by running a docker exec on the host to look at
the syslogger container’s syslog file. 

 First, start up the containers:

for d in {1..100}
do

docker run -d -v /tmp/syslogdev/log:/dev/log ubuntu logger hello_$d
done

The preceding volume mount links the container’s syslog endpoint (/dev/log) to
the host’s /tmp/syslogdev/log file, which in turn is mapped to the syslogger con-
tainer’s /dev/log file. With this wiring, all syslog outputs are sent to the same file.

 When that’s complete, you’ll see something similar to this (edited) output:

$ docker exec -ti syslogger tail -f /var/log/syslog
May 25 11:51:25 f4fb5d829699 logger: hello
May 25 11:55:15 f4fb5d829699 logger: hello_1
May 25 11:55:15 f4fb5d829699 logger: hello_2
May 25 11:55:16 f4fb5d829699 logger: hello_3
[...]
May 25 11:57:38 f4fb5d829699 logger: hello_97
May 25 11:57:38 f4fb5d829699 logger: hello_98
May 25 11:57:39 f4fb5d829699 logger: hello_99

You can use a modified exec command to archive these syslogs if you wish. For exam-
ple, you could run the following command to get all logs for hour 11 on May 25th
archived to a compressed file:

$ docker exec syslogger bash -c "cat /var/log/syslog | grep '^May 25 11'" | \
xz - > /var/log/archive/May25_11.log.xz

APPLICATIONS MUST LOG TO SYSLOG For the messages to show up in the cen-
tral syslog container, your programs need to log to syslog. We ensure this here
by running the logger command, but your applications should do the same
for this to work. Most modern logging methods have a means to write to the
locally visible syslog.



295TECHNIQUE 90 Sending Docker logs to your host’s output system

You may be wondering how you can distinguish between different containers’ log mes-
sages with this technique. You have a couple of options. You can change the applica-
tion’s logging to output the hostname of the container, or you can see the next
technique to have Docker do this heavy lifting for you.

SYSLOG DRIVERS ARE DIFFERENT! This technique looks similar to the next one,
which uses a Docker syslog driver, but is different. This technique keeps the
output of containers’ running processes as the output of the docker logs
command, whereas the next one takes over the logs command, rendering
this technique redundant. 

TECHNIQUE 90 Sending Docker logs to your host’s output system

As you’ve seen, Docker offers a basic logging system that captures the output of your
container’s start command. If you’re a system administrator running many services off
one host, it can be operationally tiresome to manually track and capture logs using
the docker logs command on each container in turn. 

 In this technique, we’re going to cover Docker’s log driver feature. This lets you
use the standard logging systems to track many services on a single (or even across
multiple) hosts.

PROBLEM
You want to capture docker logs output centrally on your Docker host. 

SOLUTION
Set up a log driver to capture docker logs output elsewhere. 

DISCUSSION
By default, Docker logs are captured within the Docker daemon, and you can access
these with the docker logs command. As you’re probably aware, this shows you the
output of the container’s main process. 

 At the time of writing, Docker gives you several choices for redirecting this output,
including

■ syslog
■ journald
■ json-file

The default is json-file, but others can be chosen with the --log-driver command.
The syslog and journald options send the log output to their respective daemons of
the same name. You can find the official documentation on all available log drivers at
https://docs.docker.com/engine/reference/logging/.

VERSION DEPENDENCY This technique requires Docker version 1.6.1 or
higher.

The syslog daemon is a process that runs on a server, collecting and managing mes-
sages sent to a central file (normally a Unix domain socket). It generally uses /dev/
log as a file to receive log messages on, and logs out to /var/log/syslog.



296 CHAPTER 11 Plain sailing—Docker in production and operational considerations

 Journald is a system service that collects and stores logging data. It creates and
maintains a structured index of logs received from a variety of sources. The logs can
be queried with the journalctl command. 

LOGGING TO SYSLOG

To direct your output to the syslog, use the --log-driver flag: 

$ docker run --log-driver=syslog ubuntu echo 'outputting to syslog'
outputting to syslog

This will record the output in the syslog file. If you have permission to access the file,
you can examine the logs using standard Unix tools: 

$ grep 'outputting to syslog' /var/log/syslog
Jun 23 20:37:50 myhost docker/6239418882b6[2559]: outputting to syslog

LOGGING TO JOURNALD

Outputting to a journal daemon looks similar:

$ docker run --log-driver=journald ubuntu echo 'outputting to journald'
outputting to syslog
$ journalctl | grep 'outputting to journald'

JOURNAL DAEMON RUNNING? Ensure you have a journal daemon running on
your host before running the preceding command. 

APPLYING ACROSS ALL CONTAINERS

It can be laborious to apply this argument to all containers on your host, so you can
change your Docker daemon to log by default to these supported mechanisms.

 Change the daemon /etc/default/docker, or /etc/sysconfig/docker, or whichever
Docker config file your distribution has set up, such that the DOCKER_OPTS="" line is
activated and includes the log-driver flag. For example, if the line was

DOCKER_OPTS="--dns 8.8.8.8 --dns 8.8.4.4"

then change it to

DOCKER_OPTS="--dns 8.8.8.8 --dns 8.8.4.4 --log-driver syslog"

CONFIG CHANGES IN DOCKER See appendix B for details on how to change the
Docker daemon’s configuration on your host.

If you restart your Docker daemon, containers should then log to the relevant service.
 Another common choice (not covered here) worth mentioning in this context is

that you can use containers to implement an ELK (Elasticsearch, Logstash, Kibana)
logging infrastructure.



297TECHNIQUE 91 Monitoring containers with cAdvisor

BREAKING THE DOCKER LOGS COMMAND Changing this daemon setting to any-
thing other than json-file or journald will mean that the standard docker
logs command will no longer work by default. Users of this Docker daemon
may not appreciate this change, especially because the /var/log/syslog file
(used by the syslog driver) is typically not accessible to non-root users. 

TECHNIQUE 91 Monitoring containers with cAdvisor

Once you have a serious number of containers running in production, you’ll want to
be able to monitor their resource usage and performance exactly as you do when you
have multiple processes running on a host.

 The sphere of monitoring (both generally, and with respect to Docker) is a wide
field with many candidates. cAdvisor has been chosen here as it’s a popular choice.
Open sourced by Google, it has quickly gained in popularity. If you already use a tradi-
tional host monitoring tool such as Zabbix or Sysdig, then it’s worth seeing whether it
already offers the functionality you need—many tools are adding container-aware
functionality as we write.

PROBLEM
You want to monitor the performance of your containers.

SOLUTION
Use cAdvisor.

DISCUSSION
cAdvisor is a tool developed by Google for monitoring containers. It’s open sourced
on GitHub at https://github.com/google/cadvisor.

 cAdvisor runs as a daemon that collects performance data on running containers.
Among other things, it tracks

■ Resource isolation parameters
■ Historical resource usage
■ Network statistics

cAdvisor can be installed natively on the host or run as a Docker container:

$ docker run \
--volume /:/rootfs:ro \
--volume /var/run:/var/run:rw \
--volume /sys:/sys:ro \
--volume /var/lib/docker/:/var/lib/docker:ro \
-p 8080:8080 -d --name cadvisor \
--restart on-failure:10 google/cadvisor

Give cAdvisor read-only access to
the root filesystem so it can track

information about the host.

Mount the /var/run folder with 
read-write access. At most, one 
instance of cAdvisor is expected 
to run per host.

Give cAdvisor read-
only access to the
host’s /sys folder,

which contains
information about the

kernel subsystems
and devices attached

to the host.

Give cAdvisor read-
only access to
Docker’s host

directory.

cAdvisor’s web interface 
is served on port 8080 
of the container, and we 
publish it to the host on 
the same port. The 
standard Docker 
arguments to run the 
container in the 
background and give the 
container a name are 
also used.

Restart the container on failure, 
up to a maximum of 10 times. The 
image is stored on the Docker 
Hub within Google’s account.

https://github.com/google/cadvisor


298 CHAPTER 11 Plain sailing—Docker in production and operational considerations

Once you’ve started the image, you can visit: http://localhost:8080 with your browser
to start examining the data output. There’s information about the host, but by click-
ing on the Docker Containers link at the top of the homepage, you’ll be able to exam-
ine graphs of CPU, memory, and other historical data by clicking on the running
containers listed under the Subcontainers heading.

 The data is collected and retained in memory while the container runs. There is
documentation for persisting the data to an InfluxDB instance on the GitHub page.
The GitHub repository also has details about the REST API and a sample client written
in Go.

WHAT IS INFLUXDB? InfluxDB is an open source database designed to handle
the tracking of time-series data. It’s therefore ideal for recording and analyz-
ing monitoring information that’s provided in real time. 

11.2 Resource control
One of the central concerns of running services in production is the fair and func-
tional allocation of resources. Under the hood, Docker uses the core operating system
concept of cgroups to manage containers’ resource usage. By default, a simple and
equal-share algorithm is used when containers contend for resources, but sometimes
this isn’t enough. You might want to reserve or limit resources for a container, or class
of containers, for operational or service reasons.

 In this section you’ll learn how to tune containers’ usage of CPU and memory.

TECHNIQUE 92 Restricting the cores a container can execute on

By default, Docker allows containers to execute on any cores on your machine. Con-
tainers with a single process and thread will obviously only be able to max out one
core, but multithreaded programs in a container (or multiple single-threaded pro-
grams) will be able to use all your CPU cores. You might want to change this behavior
if you have a container that’s more important than others—it’s not ideal for customer-
facing applications to have to fight for the CPU every time your internal daily reports
run! You could also use this technique to prevent runaway containers from locking
you out of SSH to a server.

PROBLEM
You want a container to have a minimum CPU allocation, have a hard limit on CPU
consumption, or otherwise want to restrict the cores a container can run on.

SOLUTION
Reserve a core for use by a container by using the --cpuset-cpus option.

DISCUSSION
To properly explore the --cpuset-cpus option, you’ll need to follow this technique on
a computer with multiple cores. This may not be the case if you’re using a cloud machine.

FLAG RENAMED --CPUSET Older versions of Docker used the flag --cpuset,
which is now deprecated. If you can’t get --cpuset-cpus to work, try using
--cpuset instead.



299TECHNIQUE 93 Giving important containers more CPU

To look at the effects of the --cpuset-cpus option, we’re going to use the htop com-
mand, which gives a useful graphical view of the core usage of your computer. Make
sure this is installed before continuing—it’s typically available as the htop package
from your system package manager. Alternatively, you can install it inside an Ubuntu
container started with the --pid=host option to expose process information from the
host to the container.  

 If you now run htop, you’ll probably see that none of your cores are busy. To simu-
late some load inside a couple of containers, run the following command in two dif-
ferent terminals:

docker run ubuntu:14.04 sh -c 'cat /dev/zero >/dev/null'

Looking back at htop, you should see that two of your cores now show 100% use. To
restrict this to one core, docker kill the previous containers and then run the follow-
ing command in two terminals:

docker run --cpuset-cpus=0 ubuntu:14.04 sh -c 'cat /dev/zero >/dev/null'

Now htop will show that only your first core is being used by these containers. 
 The --cpuset-cpus option permits multiple core specification as a comma-

separated list (0,1,2), a range (0-2), or a combination of the two (0-1,3). Reserving
a CPU for the host is therefore a matter of choosing a range for your containers that
excludes a core.

 You can use this functionality in numerous ways. For example, you can reserve spe-
cific CPUs for the host processes by consistently allocating the remaining CPUs to run-
ning containers. Or you could restrict specific containers to run on their own
dedicated CPUs so they don’t interfere with the compute used by other containers. 

TECHNIQUE 93 Giving important containers more CPU

Containers on a host will normally share CPU usage equally when they compete for it.
You’ve seen how to make absolute guarantees or restrictions, but these can be a little
inflexible. If you want a process to be able to use more CPU than others, it’s a waste to
constantly reserve an entire core for it, and doing so can be limiting if you have a
small number of cores.

 Docker facilitates multi-tenancy for users who want to bring their applications to a
shared server. This can result in the noisy neighbor problem well-known to those experi-
enced with VMs, where one user eats up resources and affects another user’s VM that
happens to be running on the same hardware.

 As a concrete example, while writing this book we had to use this functionality to
reduce the resource use of a particularly hungry Postgres application that ate CPU
cycles, robbing a web server on the machine of the ability to serve end users.

PROBLEM
You want to be able to give more important containers a bigger share of CPU or mark
some containers as less important.



300 CHAPTER 11 Plain sailing—Docker in production and operational considerations

SOLUTION
Use the -c/--cpu-shares argument to the docker run command to define the rela-
tive share of CPU usage.

DISCUSSION
When a container is started up, it’s given a number (1024 by default) of CPU shares.
When only one process is running, it will have access to 100% of the CPU if necessary,
no matter how many CPU shares it has access to. It’s only when competing with other
containers for CPU that the number is used.

 Imagine we have three containers (A, B, and C) all trying to use all available CPU
resources:

■ If they’ve all been given equal CPU shares, they will each be allocated one third
of the CPU.

■ If A and B are given 512 and C is given 1024, C will get half of the CPU, and A
and B will get a quarter each.

■ If A is given 10, B is given 100, and C is given 1000, A will get under 1% of the
available CPU resources and will only be able to do anything resource-hungry if
A and B are idle.

All of this assumes that your containers can use all cores on your machine (or that you
only have one core). Docker will spread the load from containers across all cores
where possible. If you have two containers running single-threaded applications on a
two-core machine, there’s obviously no way to apply relative weighting while maxi-
mally using the available resources. Each container will be given a core to execute on,
regardless of their weight.

 If you want to try this out, run the following:

docker run --cpuset-cpus=0 -c 10000 ubuntu:14.04 \
sh -c 'cat /dev/zero > /dev/null' &
docker run --cpuset-cpus=0 -c 1 -it ubuntu:14.04 bash

Now see how doing anything in the bash prompt is sluggish. Note that these numbers
are relative—you can multiply them all by 10 (for example) and they would mean
exactly the same thing. However, the default granted is still 1024, so once you start
changing these numbers, it’s worth considering what will happen to processes that
start without a CPU share specified in the command and that run on the same CPU set.

CHOOSING YOUR SETTINGS Finding the right CPU share levels for your use case
is something of an art. It’s worth looking at the output of programs such as top
and vmstat to determine what’s using CPU time. When using top, it’s particu-
larly useful to hit the “1” key to display what each CPU core is doing separately. 

TECHNIQUE 94 Limiting the memory usage of a container

When you run a container, Docker will allow it to allocate as much memory from the
host as possible. Usually this is desirable (and a big advantage over virtual machines,



301TECHNIQUE 94 Limiting the memory usage of a container

which have an inflexible way of allocating memory). But sometimes applications can
go out of control, allocate too much memory, and bring a machine grinding to a halt
as it starts swapping. It’s annoying, and it’s happened to us many times in the past. We
want a way of limiting a container’s memory consumption to prevent this.

PROBLEM
You want to be able to limit the memory consumption of a container.

SOLUTION
Use the -m/--memory parameter to docker run.

DISCUSSION
If you’re running Ubuntu, chances are that you don’t have the memory-limiting capa-
bility enabled by default. To check, run docker info. If one of the lines in the output
is a warning about No swap limit support, there’s unfortunately some setup work you
need to do. Be aware that making these changes can have performance implications
on your machine for all applications—see the Ubuntu installation documentation
for more information (http://docs.docker.com/engine/installation/ubuntulinux/
#adjust-memory-and-swap-accounting).

 In short, you need to indicate to the kernel at boot that you want these limits to be
available. To do this, you’ll need to alter /etc/default/grub as follows. If
GRUB_CMDLINE_LINUX already has values in it, add the new ones at the end:

-GRUB_CMDLINE_LINUX=""
+GRUB_CMDLINE_LINUX="cgroup_enable=memory swapaccount=1"

You now need to run sudo update-grub and restart your computer. Running docker
info should no longer give you the warning, and you’re now ready to proceed with
the main attraction.

 First, let’s crudely demonstrate that the memory limit does work by using a limit
of 4 MB, the lowest possible:

$ docker run -it -m 4m ubuntu:14.04 bash
root@cffc126297e2:/# \
python3 -c 'open("/dev/zero").read(10*1024*1024)'
Killed
root@e9f13cacd42f:/# \
A=$(dd if=/dev/zero bs=1M count=10 | base64)
$
$ echo $?
137

There’s a gotcha with this kind of constraint. To demonstrate this, we’ll use the
jess/stress image, which contains stress, a tool designed for testing the limits of a
system.

Run the container with
a limit of 4 MB memory.

Try to load 
about 10 MB 
into memory.

The process
consumed
too much

memory and
so was killed.

Try to load 10 MB 
of memory 
directly into bash.

Bash was
killed, so the

container
exited.

Check the exit code

The exit code is non-zero, indicating 
the container exited with an error.

http://docs.docker.com/engine/installation/ubuntulinux/#adjust-memory-and-swap-accounting
http://docs.docker.com/engine/installation/ubuntulinux/#adjust-memory-and-swap-accounting


302 CHAPTER 11 Plain sailing—Docker in production and operational considerations

EASY STRESS TESTING jess/stress is a helpful image for testing any resource
limits you impose on your container. Try out the previous techniques with
this image if you want to experiment more.

If you run the following command, you might be surprised to see that it doesn’t exit
immediately:

docker run -m 100m jess/stress --vm 1 --vm-bytes 150M --vm-hang 0

You’ve asked Docker to limit the container to 100 MB, and you’ve instructed stress to
take up 150 MB. You can verify that stress is operating as expected by running this
command:

docker top <container_id> -eo pid,size,args

The size column is in KB and shows that your container is indeed taking about 150 MB
of memory…raising the question of why it hasn’t been killed! It turns out that Docker
double-reserves memory—half for physical memory and half to swap. If you try the
following command, the container will terminate immediately:

docker run -m 100m jess/stress --vm 1 --vm-bytes 250M --vm-hang 0

This double reservation is just a default and can be controlled with the --memory-
swap argument, which specifies the total virtual memory size (memory + swap). For
example, to completely eliminate swap usage, you should set --memory and --memory-
swap to be the same size. You can see more examples in the Docker run reference at
https://docs.docker.com/engine/reference/run/#user-memory-constraints. 

11.3 Sysadmin use cases for Docker
In this section we’re going to take a look at some of the surprising uses to which
Docker can be put. Although it may seem strange at first glance, Docker can be used
to make your cron job management easier and can be used as a form of backup tool.

WHAT’S A CRON JOB? A cron job is a timed, regular command that’s run by a
daemon included as a service with almost all Linux systems. Each user can
specify their own schedule of commands to be run. It’s heavily used by sysad-
mins to run periodic tasks, such as cleaning up log files or running backups.

This is by no means an exhaustive list of potential uses, but it should give you a taste of
Docker’s flexibility and some insight into how its features can be used in unexpected
ways.

TECHNIQUE 95 Using Docker to run cron jobs

If you’ve ever had to manage cron jobs across multiple hosts, you may have come
across the operational headache of having to deploy the same software to multiple
places and ensuring the crontab itself has the correct invocation of the program you
want to run.

https://docs.docker.com/engine/reference/run/#user-memory-constraints


303TECHNIQUE 95 Using Docker to run cron jobs

 Although there are other solutions to this problem (such as using Chef, Puppet, Ansi-
ble, or some other configuration management tool to manage the deployment of software
across hosts), one option can be to use a Docker registry to store the correct invocation.

 This is not always the best solution to the problem outlined, but it’s a striking illus-
tration of the benefits of having an isolated and portable store of your applications’
runtime configuration, and one that comes for free if you already use Docker.

PROBLEM
You want your cron jobs to be centrally managed and auto-updated.

SOLUTION
Pull and run your cron job scripts as Docker containers.

DISCUSSION
If you have a large estate of machines that need to run jobs regularly, you typically will
use crontabs and configure them by hand (yes, that still happens), or you’ll use a con-
figuration management tool such as Puppet or Chef. Updating their recipes will
ensure that when a machine’s config management controller next runs, the changes
are applied to the crontab, ready for the run following that.

WHAT IS A CRONTAB? A crontab file is a special file maintained by a user that spec-
ifies the times scripts should be run. Typically these will be maintenance tasks,
like compressing and archiving log files, but they could be business-critical
applications, such as a credit card payment settler.

In this technique, we’ll show you how to replace this scheme with Docker images deliv-
ered from a registry with Docker pull.

 In the normal case shown in figure 11.2, the maintainer updates the configuration
management tool, which is then delivered to the servers when the agent is run. Mean-
while, the cron jobs are running with the old and new code while the systems update.

Server 1

Server 3

User changes
CM script

Server 2

Server 4

CM
server

Figure 11.2 Each server up-
dates cron scripts during CM 
agent scheduled run.



304 CHAPTER 11 Plain sailing—Docker in production and operational considerations

In the Docker scenario illustrated in figure 11.3, the servers pull the latest version of
the code before the cron jobs run.

 At this point you may be wondering why it’s worth bothering with this, if you
already have a solution that works. Here are some advantages of using Docker as the
delivery mechanism:

■ Whenever a job is run, the job will update itself to the latest version from the
central location.

■ Your crontab files become much simpler, because the script and the code are
encapsulated in a Docker image.

■ For larger or more complex changes, only the deltas of the Docker image need
be pulled, speeding up delivery and updates.

■ You don’t have to maintain the code or binaries on the machine itself.
■ You can combine Docker with other techniques, such as logging output to the sys-

log, to simplify and centralize the management of these administration services.

For this example we’re going to use the log_cleaner image we created in technique 40.
You’ll no doubt recall that this image encapsulated a script that cleaned up log files on
a server and took a parameter for the number of days of log files to clean up. A crontab
that uses Docker as a delivery mechanism would look something like this:

0 0 * * * \
docker pull dockerinpractice/log_cleaner && \
docker run \
-v /var/log/myapplogs:/log_dir dockerinpractice/log_cleaner 1

Server 1

Server 3

User changes
Docker image

Docker
registry

Server 2

Server 4

Figure 11.3 Each server pulls lat-
est image on every cron job run.

Run this at 
midnight every day. First pull the 

latest version 
of the image.

Run the log
cleaner over

a day’s worth
of log files.



305TECHNIQUE 96 The “save game” approach to backups

NOT FAMILIAR WITH CRON? If you’re not familiar with cron, you may want to
know that to edit your crontab you can run crontab -e. Each line specifies a
command to be run at a time specified by the five items at the start of the line.
Find out more by looking at the crontab man page.

If there’s a failure, the standard cron mechanism of sending an email should kick into
effect. If you don’t rely on this, then add a command with an or operator. In the fol-
lowing example, we assume your bespoke alerting command is my_alert_command:

0 0 * * * (docker pull dockerinpractice/log_cleaner && \
docker run -d -v /var/log/myapplogs:/log_dir \
dockerinpractice/log_cleaner 1) \
|| my_alert_command 'log_cleaner failed'

WHAT IS AN OR OPERATOR? An or operator (in this case, the double pipe: ||)
ensures that one of the commands on either side will be run. If the first com-
mand fails (in this case, either of the two commands within the parentheses
after the cron specification 0 0 * * * joined by the and operator, &&), then the
second will be run. 

The || operator ensures that if any part of the log-cleaning job run failed, the alert
command gets run. 

TECHNIQUE 96 The “save game” approach to backups

If you’ve ever run a transactional system, you’ll know that when things go wrong, the
ability to infer the state of the system at the time of the problem is essential for a root-
cause analysis.

 Usually this is done through a combination of means:

■ Analysis of application logs
■ Database forensics (determining the state of data at a given point in time)
■ Build history analysis (working out what code and config was running on the

service at a given point in time)
■ Live system analysis (for example, did anyone log onto the box and change

something?)

For such critical systems, it can pay to take the simple but effective approach of back-
ing up the Docker service containers. Although your database is likely to be separate
from your Docker infrastructure, the state of config, code, and logs can be stored in a
registry with a couple of simple commands.

PROBLEM
You want to keep backups of Docker containers.

SOLUTION
Commit the containers while running, and push as a dedicated repository.



306 CHAPTER 11 Plain sailing—Docker in production and operational considerations

DISCUSSION
Following Docker best practices and taking advantage of some Docker features can
help you avoid the need to store container backups. As one example, using a logging
driver as described in technique 90 instead of logging to the container filesystem
means logs don’t need to be retrieved from the container backups.

 But sometimes reality dictates that you can’t do everything the way you’d like, and
you really need to see what a container looked like. The following commands show
the entire process of committing and pushing a backup container:

DATE=$(date +%Y%m%d_%H%M%S)
TAG="your_log_registry:5000/live_pmt_svr_backup:$(hostname -s)_${DATE}"
docker commit -m="${DATE}" -a="Backup Admin" live_pmt_svr $TAG
docker push $TAG

TAKES CONTAINER OUT OF SERVICE This technique will pause the container
while it runs, effectively taking it out of service. Your service should either tol-
erate outages, or you should have other nodes running at the time that can
service requests in a load-balanced fashion.

If this is done in a staggered rotation across all your hosts, you’ll have an effective
backup system and a means to restore the state for support engineers with as little
ambiguity as possible.

 Figure 11.4 illustrates a simplified view of such a setup.

Generate a timestamp to
the granularity of a second.

Generate a tag that points to your
registry URL with a tag that

includes the hostname and date.

Commit the container with the date as a
message and Backup Admin as the author.Push the container

to a registry.

Host 1
Registry server

Base transaction
server image

Base transaction
server image

Hosts 1 log and
changes layer

Hosts 2 logs and
changes layer

Logs and changes layer

Pulled and run

Pulled and run

Layer pushed
13:00

Layer pushed
12:00

Host 2

Base transaction
server image

Logs and changes layer

Figure 11.4 Two-host backup of a service



307Summary

The backups only push the differences between the base image and the state of the con-
tainer at the time it’s backed up, and the backups are staggered to ensure that the ser-
vice stays up on at least one host. The registry server only stores one copy of the base
image and the diffs at each commit point, saving disk space.

COMBINING WITH PHOENIX DEPLOYMENT

You can take this technique one step further by combining this technique with a Phoe-
nix deployment model. Phoenix deployment is a model for deployment that empha-
sizes replacing as much of the system as possible rather than upgrading a deployment
in-place. It’s a central principle of many Docker tools.

 In this case, rather than committing the container and letting it continue on after-
wards, you can do the following:

1 Pull a fresh copy of the latest image from your registry
2 Stop the running container
3 Start up a new container
4 Commit, tag, and push the old container to the registry

Combining these approaches gives you even more certainty that the live system has
not drifted from the source image. One of the authors uses this approach to manage a
live system on his home server. 

11.4 Summary
In this chapter you’ve seen some of the topics that come up when running Docker in
production. As with much of Docker, this is a fast-changing field, not least because
organizations are still discovering the use cases and pain points of using Docker in
production as they move workloads there.

 The main areas we covered were

■ Capturing logging from your containers to your host’s syslog daemon
■ Capturing your Docker log output to a host-level service
■ Monitoring the performance of your containers with cAdvisor 
■ Constraining container resource usage on CPU, core, and memory
■ Surprising uses for Docker, such as a cron delivery tool and a backup system

Now that we’ve covered what Docker can and should be in production, we’ll look at
debugging Docker when things go wrong.



308

      Docker in production—
dealing with challenges

In this chapter we’ll discuss what you can do when Docker’s abstractions aren’t
working for you. These topics necessarily involve getting under the hood of Docker
to understand how such solutions can be needed, and in the process we aim to pro-
vide you with a deeper awareness of what can go wrong when using Docker and
how to go about fixing it.

12.1 Performance—you can’t ignore the tin
Although Docker seeks to abstract the application from the host it’s running on,
one can never completely ignore the host. In order to provide its abstractions,

This chapter covers
■ Bypassing Docker’s namespace functionality 

and using the host’s resources directly
■ Making more room by resizing your storage
■ Debugging a container’s network directly, using 

your host’s tooling
■ Tracing system calls to determine why a 

container isn’t working on your host



309TECHNIQUE 97 Accessing host resources from the container

Docker must add layers of indirection. These layers can have implications for your
running system, and they sometimes need to be understood in order for operational
challenges to be fixed or worked around.

 In this section we’ll look at how you can bypass some of these abstractions, ending
up with a Docker container that has little of Docker left in it. We’ll also show that
although Docker appears to abstract away the details of the storage you use, this can
sometimes come back to bite you.

TECHNIQUE 97 Accessing host resources from the container

We covered volumes, the most commonly used Docker abstraction bypass, in technique
19. They’re convenient for sharing files from the host and keeping larger files out of
image layers. They can also be significantly faster for filesystem access than the con-
tainer filesystem, as some storage backends impose significant overheads for certain
workloads—this isn’t important for all applications, but it’s important in some cases.

 Another performance hit comes about as a result of the network interfaces Docker
sets up to give each container its own network. As with filesystem performance, network
performance is definitely not a bottleneck for everyone, but it’s something you may wish
to benchmark for yourself (although the fine details of network tuning are very much
outside the scope of this book). Alternatively, you may have other reasons to want to
bypass Docker networking entirely—a server that opens random ports to listen on may
not be well served by listening on port ranges with Docker, especially because exposing
a range of ports will allocate them on the host whether they’re in use or not.

 Regardless of your reason, sometimes Docker abstractions get in the way, and
Docker does offer the ability to opt out if you need to.

PROBLEM
You want to allow access to the host’s resources from the container. 

SOLUTION
Use the host options and volumes flags to docker run. 

DISCUSSION
Docker offers several ways to bypass the kernel namespace functionality that Docker
uses.

WHAT IS A NAMESPACE? Kernel namespaces are a service the kernel offers to
programs, allowing them to get views of global resources in such a way that
they appear to have their own separate instances of that resource. For exam-
ple, a program can request a network namespace that will give you what
appears to be a complete network stack. Docker uses and manages these
namespaces to create its containers.

Table 12.1 summarizes how Docker uses namespaces, and how you can effectively
switch them off.

FLAGS NOT AVAILABLE? If any of these flags aren’t available, it will likely be
due to your version of Docker being out of date.



310 CHAPTER 12 Docker in production—dealing with challenges

If your application is a heavy user of shared memory, for example, and you want to
have your containers share this space with the host, you can use the --ipc=host flag
to achieve this. This use is relatively advanced, so we’ll focus on the other more com-
mon ones.

 Docker doesn’t at present use the Linux kernel’s user namespace functionality,
although efforts are ongoing in that area.

NETWORK AND HOSTNAME

To use the host’s network, you run your container with the --net flag set to host, like this:

user@yourhostname:/$ docker run -ti --net=host ubuntu /bin/bash
root@yourhostname:/#

You’ll notice that this immediately differs from a network-namespaced container in
that the hostname within the container is the same as the host’s. On a practical level,
this can cause confusion, as it’s not so obvious that you’re in a container.

 In a network-isolated container, a quick netstat will show that there are no con-
nections on startup: 

host$ docker run -ti ubuntu
root@b1c4877a00cd:/# netstat
Active Internet connections (w/o servers)
Proto Recv-Q Send-Q Local Address Foreign Address State
Active UNIX domain sockets (w/o servers)
Proto RefCnt Flags Type State I-Node Path
root@b1c4877a00cd:/#

A similar run using the host’s network shows the usual network-busy host of a similarly
busy technical author:

$ docker run -ti --net=host ubuntu
root@host:/# netstat -nap | head
Active Internet connections (servers and established)

Table 12.1 Namespaces and Docker

Kernel namespace Description Used in Docker? “Switch off” option

Network The network subsystem Yes --net=host

IPC Inter-process communication: 
shared memory, semaphores, 
and so on

Yes --ipc=host

UTS Hostname and NIS domain Yes --uts=host

PID Process IDs Yes --pid=host

Mount Mount points Yes --volume, --device

User User and group IDs No N/A



311TECHNIQUE 97 Accessing host resources from the container

Proto Recv-Q Send-Q Local Address Foreign Address State PID/
Program name

tcp 0 0 127.0.0.1:47116 0.0.0.0:* LISTEN -
tcp 0 0 127.0.1.1:53 0.0.0.0:* LISTEN -
tcp 0 0 127.0.0.1:631 0.0.0.0:* LISTEN -
tcp 0 0 0.0.0.0:3000 0.0.0.0:* LISTEN -
tcp 0 0 127.0.0.1:54366 0.0.0.0:* LISTEN -
tcp 0 0 127.0.0.1:32888 127.0.0.1:47116 ESTABLISHED -
tcp 0 0 127.0.0.1:32889 127.0.0.1:47116 ESTABLISHED -
tcp 0 0 127.0.0.1:47116 127.0.0.1:32888 ESTABLISHED -
root@host:/#

WHAT IS NETSTAT? netstat is a command that allows you to see information
about networking on your local network stack. It’s used most commonly to
determine the state of network sockets. 

The net=host flag is the most often used for a couple of reasons. First, it can make
connecting containers much easier. But you lose the benefits of port mapping for
your containers. If you have two containers that listen on port 80, for example, you
can’t run them on the same host in this way. The second reason is that network perfor-
mance is significantly improved over Docker’s when using this flag.

 Figure 12.1 shows at a high level the layers of overhead a network packet must go
through in Docker versus a native network.
Whereas the native network need only go
through the TCP/IP stack of the host to the
network interface card (NIC), Docker has
to additionally maintain a virtual Ethernet
pair (a.k.a. a veth pair, a virtual representa-
tion of a physical connection via an Ether-
net cable), a network bridge between this
veth pair and the host network, and a layer
of network address translation (NAT). This
overhead can cause the Docker network to
be half the speed of a native host network
in normal use cases. 

PID

The PID namespace flag is similar to the others:

imiell@host:/$ docker run ubuntu ps -p 1
PID TTY TIME CMD

1 ? 00:00:00 ps
imiell@host:/$ docker run --pid=host ubuntu ps -p 1

PID TTY TIME CMD
1 ? 00:00:27 systemd

Run the ps command in a 
containerized environment, 
showing only the process 
that has a PID of 1.

The ps we’re running
is the only process in
this container and is

given the PID 1.

Run the same ps command with the 
PID namespace removed, giving us 
a view of the host’s processes.

This time the PID of 1 is the systemd 
command, which is the startup process of 
the host’s operating system. This may differ 
for you, depending on your distribution.

TCP/IP

NIC

Native

TCP/IP

Veth pair

Bridge

NAT

NIC

Docker NAT

Figure 12.1 Docker networking vs native



312 CHAPTER 12 Docker in production—dealing with challenges

The preceding example demonstrates that the systemd process of the host has process
ID 1 in the container that has a view of the host PIDs, whereas without that view the
only process seen is the ps command itself. 

MOUNT

If you want access to the host’s devices, you can use the --device flag if you want to
use a specific device, or you can mount the entire host’s filesystem with the --volume
flag:

docker run -ti --volume /:/host ubuntu /bin/bash

This command mounts the host’s / directory to the container’s /host directory. You
may be wondering why you can’t mount the host’s / directory to the container’s
/ directory. This is explicitly disallowed by the docker command. 

 You may also be wondering whether you can use these flags to create a container
that’s virtually indistinguishable from the host. That leads us to the next section…

A HOST-LIKE CONTAINER

You can use these flags to create a container that has an almost transparent view of the
host:

host:/$ docker run -ti --net=host --pid=host --ipc=host \
--volume /:/host \
busybox chroot /host

It’s ironic that Docker has been characterized as “chroot on steroids,” and here we’re
using something characterized as a framework to run chroot in a way that subverts
one of the principal purposes of chroot, which is to protect a host filesystem. It’s usu-
ally at this point that we try not to think about it too hard.

 In any case, it’s hard to imagine a real-world use of that command (instructive as it
is). If you think of one, please drop us a line.

 That said, you might want to use it as a basis for more useful commands like this:

$ docker run -ti --workdir /host \
--volume /:/host:ro ubuntu /bin/bash

--workdir /host sets the working directory on container startup to be the root of the
host’s filesystem, as mounted with the --volume argument. The :ro part of the vol-
ume specification means the host filesystem will be mounted as read-only.

 With this command, you can give yourself a read-only view of the filesystem while
having an environment where you can install tools (with the standard Ubuntu pack-
age manager) to inspect it. For example, you could use an image that runs a nifty tool

Run a container 
with the three 
host arguments 
(net, pid, ipc).

Mount the root filesystem of the host to a directory /host on 
the container. Docker disallows the mounting of volumes to 
the / folder, so you must specify the /host subfolder volume.

Start up a BusyBox container. All you need is the 
chroot command, and this is a small image that 
contains that. chroot is executed to make the 
mounted filesystem appear as the root to you.



313TECHNIQUE 98 Device Mapper storage driver and default container size

that reports security problems on your host’s filesystem, without having to install it on
your host.

INSECURE! As the preceding discussion implies, using these flags opens you
up to more security risks. In security terms, using them should be considered
equivalent to running with the --privileged flag.

In this technique you’ve learned how to bypass Docker’s abstractions within the con-
tainer. The next technique looks at how you can bypass a restriction of Docker’s
underlying disk storage. 

TECHNIQUE 98 Device Mapper storage driver and default container size

Docker comes with a number of supported storage drivers. These offer a few different
approaches to handling layers, each with their own advantages and disadvantages. You
can find more Docker documentation on each of these at https://docs.docker.com/
engine/userguide/storagedriver/.

 The default storage driver on CentOS and Red Hat is devicemapper, chosen by
Red Hat as a more supportable alternative to AUFS (the default on Ubuntu) because it
had fewer bugs and more flexible features at the time.

DEVICE MAPPER TERMINOLOGY Device Mapper refers to a Linux technology that
abstracts away physical device access by providing virtual devices that map
onto the physical devices in some user-defined way. In this technique we’re
talking about devicemapper, the name of the Docker storage driver built on top
of Device Mapper. 

The devicemapper driver’s default behavior is to allocate a single file, which is treated
as a “device” to read and write from. Unfortunately, this file has a fixed maximum
capacity that’s not automatically increased when it runs out of space.

PROBLEM
You’ve run out of space on a Docker container when using the Device Mapper storage
driver. 

SOLUTION
Change the maximum size of Docker containers.

DISCUSSION
To demonstrate the problem, you can try running the following Dockerfile:

FROM ubuntu:14.04
RUN truncate --size 11G /root/file

If you haven’t changed any of the default configuration of your Docker daemon in
relation to storage drivers, you should see output like the following:

$ docker build .
Sending build context to Docker daemon 24.58 kB
Sending build context to Docker daemon
Step 0 : FROM ubuntu:14.04

https://docs.docker.com/engine/userguide/storagedriver/
https://docs.docker.com/engine/userguide/storagedriver/


314 CHAPTER 12 Docker in production—dealing with challenges

Pulling repository ubuntu
d2a0ecffe6fa: Download complete
83e4dde6b9cf: Download complete
b670fb0c7ecd: Download complete
29460ac93442: Download complete
Status: Downloaded newer image for ubuntu:14.04
---> d2a0ecffe6fa

Step 1 : RUN truncate --size 11G /root/file
---> Running in 77134fcbd040

INFO[0200] ApplyLayer exit status 1 stdout: stderr: write /root/file:
no space left on device

This build eventually failed because the attempt to create the 11 GB file failed with a
“no space left” error message. Note that when this was run, there were over 200 GB of
disk space on our machine, so it wasn’t a machine-wide limit that was hit. 

HOW CAN YOU TELL WHETHER YOU’RE USING DEVICEMAPPER? If you run docker
info, it will tell you which storage driver you’re using in the output. If yours
says devicemapper in the output, then you’re using devicemapper, and this
technique may be relevant to you.

By default, the space limit for devicemapper containers was 10 GB. To change this, you
need to wipe your Docker folder, reconfigure your Docker daemon, and then restart
it. For details on how to reconfigure your Docker daemon on your distribution, see
appendix B.

SPACE LIMIT HAS BEEN CHANGED Around the time of going to press, the
devicemapper limit was upped to 100 GB, so your limit may be higher by the
time you read this.

To make the configuration change, you need to add or replace the dm.basesize item
in your Docker options so that it’s larger than the 11 GB file you’re trying to create:

--storage-opt dm.basesize=20G

A typical file might look like this:

DOCKER_OPTIONS="-s devicemapper --storage-opt dm.basesize=20G"

Once you’ve restarted your Docker daemon, you can rerun the docker build com-
mand you ran earlier:

# docker build --no-cache -t big .
Sending build context to Docker daemon 24.58 kB
Sending build context to Docker daemon
Step 0 : FROM ubuntu:14.04
---> d2a0ecffe6fa

Step 1 : RUN truncate --size 11G /root/file
---> Running in f947affe7900
---> 39766546a1a5

Removing intermediate container f947affe7900
Successfully built 39766546a1a5



315TECHNIQUE 99 Debugging a container’s network with nsenter

You’ll see that the 11 GB file can be created without issue.
 This is a runtime constraint of the devicemapper storage driver, whether you’re

building an image with a Dockerfile or running a container. 

12.2 When containers leak—debugging Docker
In this section we’ll cover some techniques that will help you understand and fix issues
with applications running in Docker containers. We’ll cover how to “jump into” a con-
tainer’s network while using tools from your host to debug issues, and look at a more
“in-action” solution by monitoring network interfaces directly. 

 Finally, we’ll demonstrate how the Docker abstraction can break down, leading to
containers working on one host and not another, and how to debug this on live
systems.

TECHNIQUE 99 Debugging a container’s network with nsenter

In an ideal world, you’d be able to use socat (see technique 4) in an ambassador con-
tainer to diagnose issues. You’d start the extra container and make sure connections
go to this new container, which acts as a proxy. The proxy allows you to diagnose and
monitor the connections, and then forwards them on to the right place. Unfortu-
nately it’s not always convenient (or possible) to set up a container like this only for
debugging purposes.

AMBASSADOR CONTAINER PATTERN See technique 66 for a description of the
ambassador pattern.

You’ve already read about docker exec in technique 14. This technique discusses
nsenter, a tool that looks similar but allows you to use tools from your machine inside
the container, rather than being limited to what the container has installed.

PROBLEM
You want to debug a network problem in a container, but the tools aren’t in the
container.

SOLUTION
Use nsenter to jump into the container’s network but retain your host’s tooling. 

DISCUSSION
If you don’t already have nsenter available on your Docker host, you can build it with
the following command:

$ docker run -v /usr/local/bin:/target jpetazzo/nsenter

This will install nsenter in /usr/local/bin, and you’ll be able to use it immediately.
Nsenter might also be available in your distro (in the util-linux package). 

 You may have noticed by now that the generally useful BusyBox image doesn’t
come with bash by default. As a starter demo, we’re going to show how you can enter a
container with your host’s bash program: 



316 CHAPTER 12 Docker in production—dealing with challenges

$ docker run -ti busybox /bin/bash
FATA[0000] Error response from daemon: Cannot start container

➥ a81e7e6b2c030c29565ef7adb94de20ad516a6697deeeb617604e652e979fda6:
➥ exec: "/bin/bash": stat /bin/bash: no such file or directory
$ CID=$(docker run -d busybox sleep 9999)
$ PID=$(docker inspect --format {{.State.Pid}} $CID)
$ sudo nsenter --target $PID \
--uts --ipc --net /bin/bash
root@781c1fed2b18:~#

It should be pointed out that you don’t get direct access to the container’s filesystem.
But you do get all the tools your host has.

 Something that we’ve needed before is a way to find out which veth interface
device on the host corresponds to which container. For example, sometimes it’s desir-
able to quickly knock a container off the network without having to settle down with
any of the tools from chapter 8 to simulate network breakage. But an unprivileged
container can’t bring a network interface down, so you need to do it from the host by
finding out the veth interface name:

$ docker run -d --name offlinetest ubuntu:14.04.2 sleep infinity
fad037a77a2fc337b7b12bc484babb2145774fde7718d1b5b53fb7e9dc0ad7b3
$ docker exec offlinetest ping -q -c1 8.8.8.8
PING 8.8.8.8 (8.8.8.8) 56(84) bytes of data.

--- 8.8.8.8 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 2.966/2.966/2.966/0.000 ms
$ docker exec offlinetest ifconfig eth0 down
SIOCSIFFLAGS: Operation not permitted
$ PID=$(docker inspect --format {{.State.Pid}} offlinetest)
$ nsenter --target $PID --net ethtool -S eth0
NIC statistics:

peer_ifindex: 53
$ ip addr | grep '^53'
53: veth2e7d114: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue

➥ master docker0 state UP
$ sudo ifconfig veth2e7d114 down
$ docker exec offlinetest ping -q -c1 8.8.8.8
PING 8.8.8.8 (8.8.8.8) 56(84) bytes of data.

--- 8.8.8.8 ping statistics ---
1 packets transmitted, 0 received, 100% packet loss, time 0ms

Start up a BusyBox
container and save

the container ID
(CID).

Inspect the 
container, 
extracting the 
process ID (PID) 
(see technique 27).

Run nsenter,
specifying the

container to enter
with the --target
flag. The “sudo”

may not be
required.

Specify the namespaces of the container to enter with the
remaining flags (see technique 97 for more on namespaces). The

critical point here is that you don’t use the --mount flag, which
would use the container’s filesystem, in which bash wouldn’t be

available. /bin/bash is specified as the executable to start.

Verify that attempting to ping from 
inside a new container succeeds.

We’re unable to bring an interface 
in the container down. Note that 
your interface may not be eth0, so 
if this doesn’t work, you may wish 
to use iconfig to find out your 
principal interface name.

Enter into the network space of 
the container, using the ethtool 
command from the host to look 
up the peer interface index—the 
other end of the virtual interface.

Look through the list
of interfaces on the

host to find the
appropriate veth
interface for the

container.

Bring down the 
virtual interface.

Verify that attempting to ping from
inside the container fails.



317TECHNIQUE 99 Debugging a container’s network with nsenter

One final example of a program you might want to use from within a container is tcp-
dump, a tool that records all TCP packets on a network interface. To use it, you need
to run nsenter with the --net command, allowing you to “see” the container’s net-
work from the host and therefore monitor the packets with tcpdump.

 For example, the tcpdump command in the following code records all packets to
the /tmp/google.tcpdump file (we assume you’re still in the nsenter session you
started above). Some network traffic is then triggered by retrieving a web page:

root@781c1fed2b18:/# tcpdump -XXs 0 -w /tmp/google.tcpdump &
root@781c1fed2b18:/# wget google.com
--2015-08-07 15:12:04-- http://google.com/
Resolving google.com (google.com)... 216.58.208.46, 2a00:1450:4009:80d::200e
Connecting to google.com (google.com)|216.58.208.46|:80... connected.
HTTP request sent, awaiting response... 302 Found
Location: http://www.google.co.uk/?gfe_rd=cr&ei=tLzEVcCXN7Lj8wepgarQAQ

➥ [following]
--2015-08-07 15:12:04--

➥ http://www.google.co.uk/?gfe_rd=cr&ei=tLzEVcCXN7Lj8wepgarQAQ
Resolving www.google.co.uk (www.google.co.uk)... 216.58.208.67,

➥ 2a00:1450:4009:80a::2003
Connecting to www.google.co.uk (www.google.co.uk)|216.58.208.67|:80...

➥ connected.
HTTP request sent, awaiting response... 200 OK
Length: unspecified [text/html]
Saving to: ‘index.html’

index.html [ <=> ] 18.28K --.-KB/s in 0.008s

2015-08-07 15:12:05 (2.18 MB/s) - ‘index.html’ saved [18720]

root@781c1fed2b18:# 15:12:04.839152 IP 172.17.0.26.52092 >

➥ google-public-dns-a.google.com.domain: 7950+ A? google.com. (28)
15:12:04.844754 IP 172.17.0.26.52092 >

➥ google-public-dns-a.google.com.domain: 18121+ AAAA? google.com. (28)
15:12:04.860430 IP google-public-dns-a.google.com.domain >

➥ 172.17.0.26.52092: 7950 1/0/0 A 216.58.208.46 (44)
15:12:04.869571 IP google-public-dns-a.google.com.domain >

➥ 172.17.0.26.52092: 18121 1/0/0 AAAA 2a00:1450:4009:80d::200e (56)
15:12:04.870246 IP 172.17.0.26.47834 > lhr08s07-in-f14.1e100.net.http:

➥ Flags [S], seq 2242275586, win 29200, options [mss 1460,sackOK,TS val

➥ 49337583 ecr 0,nop,wscale 7], length 0

“TEMPORARY FAILURE IN NAME RESOLUTION” ERRORS Depending on your net-
work setup, you may need to temporarily change your resolv.conf file to allow
the DNS lookup to work. If you get a “Temporary failure in name resolution”
error, try adding the line nameserver 8.8.8.8 to the top of your /etc/
resolv.conf file. Don’t forget to revert it when you’re finished.

As an aside, this demonstrates another compelling use case for Docker—it’s much eas-
ier to debug network issues in the isolated network environment Docker provides. Try-
ing to remember the correct arguments for tcpdump to appropriately filter out



318 CHAPTER 12 Docker in production—dealing with challenges

irrelevant packets in the middle of the night is an error-prone process. Using the pre-
ceding method, you can forget about that and capture everything within the con-
tainer, without tcpdump being installed (or having to install it) on the image. 

TECHNIQUE 100  Using tcpflow to debug in flight without reconfiguring

tcpdump is the de facto standard in network investigation, and it’s likely the first tool
most people reach for if asked to dive into debugging a network issue.

 But tcpdump is typically used for displaying packet summaries and examining
packet headers and protocol information—it’s not quite as full-featured for displaying
the application-level data flow between two programs. This can be quite important
when investigating issues with two applications communicating.

PROBLEM
You need to monitor the communication data of a containerized application.

SOLUTION
Use tcpflow to capture traffic crossing an interface. 

DISCUSSION
tcpflow is similar to tcpdump (accepting the same pattern-matching expressions) but
it’s designed to give you a better insight into application data flows. tcpflow may be
available from your system package manager, but, if not, we’ve prepared a Docker
image you can use, which should be virtually identical in functionality to an equivalent
package manager install:

$ IMG=dockerinpractice/tcpflow
$ docker pull $IMG
$ alias tcpflow="docker run --rm --net host $IMG"

There are two ways you can use tcpflow with Docker: point it at the docker0 interface
and use a packet-filtering expression to retrieve only the packets you want, or use the
trick from the previous technique to find the veth interface for the container you’re
interested in, and capture on that.

 Expression filtering is more powerful, letting you drill down to the traffic you’re
interested in, so we’ll show a simple example to get you started:

$ docker run -d --name tcpflowtest alpine:3.2 sleep 30d
fa95f9763ab56e24b3a8f0d9f86204704b770ffb0fd55d4fd37c59dc1601ed11
$ docker inspect -f '{{ .NetworkSettings.IPAddress }}' tcpflowtest
172.17.0.1
$ tcpflow -c -J -i docker0 'host 172.17.0.1 and port 80'
tcpflow: listening on docker0

In the preceding example, you ask tcpflow to print a colorized stream of any traffic
going to or from your container with a source or destination port of 80 (generally
used for HTTP traffic). You can now try this by retrieving a web page in the container
in a new terminal:



319TECHNIQUE 101 Debugging containers that fail on specific hosts

$ docker exec tcpflowtest wget -O /dev/null http://www.example.com/
Connecting to www.example.com (93.184.216.34:80)
null 100% |*******************************| 1270 0:00:00 ETA

You’ll see colorized output in the tcpflow terminal! The cumulative output of the
command so far will look something like this:

$ tcpflow -J -c -i docker0 'host 172.17.0.1 and (src or dst port 80)'
tcpflow: listening on docker0
172.017.000.001.36042-093.184.216.034.00080:

➥ GET / HTTP/1.1
Host: www.example.com
User-Agent: Wget
Connection: close

093.184.216.034.00080-172.017.000.001.36042:

➥ HTTP/1.0 200 OK
Accept-Ranges: bytes
Cache-Control: max-age=604800
Content-Type: text/html
Date: Mon, 17 Aug 2015 12:22:21 GMT
[...]

<!doctype html>
<html>
<head>

<title>Example Domain</title>
[...]

tcpflow is an excellent addition to your toolbox, given how unobtrusive it is. You can
start it against long-running containers to get a bit of insight into what they’re trans-
ferring right now, or use it alongside tcpdump to get a more complete picture of the
kind of requests your application makes and what information is transferred. 

TECHNIQUE 101  Debugging containers that fail on specific hosts

The previous two techniques have shown how you can start investigating issues caused
by the interaction between your containers and other locations (whether those other
locations are more containers or third parties on the internet).

 If you’ve isolated a problem to one host, and you’re sure that external interaction
isn’t the cause, the next step should be to try reducing the number of moving parts
(removing volumes and ports) and to check the details of the host itself (free disk
space, number of open file descriptors, and so on). It’s probably also worth checking
that each host is on the latest version of Docker.

 In some cases, none of the above will help—you’ve got an image you can run with
no arguments (such as docker run imagename), which should be perfectly contained,
yet it runs differently on different hosts.

Blue coloring starts

Red coloring starts



320 CHAPTER 12 Docker in production—dealing with challenges

PROBLEM
You want to determine why a particular action within a container isn’t working on a
particular host.

SOLUTION
Strace the process to see what system calls it’s making, and compare that to a working
system.

DISCUSSION
Although Docker’s stated aim is to allow apps to “run any app anywhere,” the means
by which it tries to achieve this are not always foolproof.

 Docker treats the Linux kernel API as its host (the environment in which it can
run). When they first learn how Docker works, many people ask how Docker handles
changes to the Linux API. As far as we’re aware, it doesn’t yet. Fortunately the Linux
API is backwards-compatible, but it’s not difficult to imagine a scenario in the future
where a new Linux API call is created and used by a Dockerized application, and is
then deployed to a kernel recent enough to run Docker but old enough to not sup-
port that particular API call.

DOES THIS HAPPEN? You may think that the Linux kernel API changing is
something of a theoretical problem, but we came across this scenario while
writing this book. A project we were working on used the memfd_create
Linux system call, which only exists on kernels versioned 3.17 and above.
Because some hosts we were working on had older kernels, our containers
failed on some systems and worked on others. 

That scenario is not the only way in which the Docker abstraction can fail. Containers
can fail on particular kernels because assumptions may be made by the application
about files on the host. Although rare, it does happen, and it’s important to be alert to
that risk.

SELINUX

An example of where the Docker abstraction can break down is with anything that
interacts with SELinux. As discussed in chapter 10, SELinux is a layer of security imple-
mented in the kernel that works outside the normal user permissions.

 Docker uses this layer to allow container security to be tightened up by managing
what actions can be performed from within a container. For example, if you’re root
within a container, you are the same user as root on the host. Although it’s hard to
break out of the container so you obtain root on the host, it’s not impossible; exploits
have been found, and others may exist that the community is unaware of. What SELi-
nux can do is provide another layer of protection so that even if a root user breaks out
of the container to the host, there are limits set on what actions they can perform on
the host.

 So far so good, but the problem for Docker is that SELinux is implemented on the
host, and not within the container. This means that programs running in containers
that query the status of SELinux and find it enabled might make certain assumptions



321TECHNIQUE 101 Debugging containers that fail on specific hosts

about the environment in which they run, and fail in unexpected ways if these expec-
tations aren’t met.

 In the following example, we’re running a CentOS7 Vagrant machine with Docker
installed, and within that an Ubuntu 12.04 container. If we run a fairly straightforward
command to add a user, the exit code is 12, indicating an error, and indeed the user
has not been created:

[root@centos vagrant]# docker run -ti ubuntu:12.04
Unable to find image 'ubuntu:12.04' locally
Pulling repository ubuntu
78cef618c77e: Download complete
b5da78899d3a: Download complete
87183ecb6716: Download complete
82ed8e312318: Download complete
root@afade8b94d32:/# useradd -m -d /home/dockerinpractice dockerinpractice
root@afade8b94d32:/# echo $?
12

The same command run on an ubuntu:14.04 container works just fine. If you want to
try to reproduce this result, you’ll need a CentOS 7 machine (or similar). But for
learning purposes, following the rest of the technique with any command and con-
tainer will be sufficient.

WHAT DOES $? DO? In bash, $? gives you the exit code of the last-run com-
mand. The meaning of the exit code varies from command to command, but
typically an exit code of 0 means the call was successful, and a non-zero code
indicates an error or exceptional condition of some kind. 

DEBUGGING LINUX API CALLS

Because we know that the likely difference between the containers is due to differ-
ences between the kernel APIs running on the hosts, strace can help you determine
the differences between calls to the kernel API.

WHAT IS STRACE? Strace is a tool that allows you to snoop on the calls made
to the Linux API by a process (a.k.a. system calls). It’s an extremely useful
debugging and educational tool.

First, you need to install strace on your container using the appropriate package man-
ager, and then run the command that differs, with the strace command prepended.
Here’s some example output for the failed useradd call:

# strace -f \
useradd -m -d /home/dockerinpractice dockerinpractice
execve("/usr/sbin/useradd", ["useradd", "-m", "-d",

➥ "/home/dockerinpractice", "dockerinpractice"], [/* 9 vars */]) = 0

Run strace on the command with the -f
flag, which ensures that any process

spawned by your command and any of its
descendants are followed by strace.

Append the command
you want to debug to
the strace invocation.

Each line of the strace 
output starts with the 
Linux API call. The execve 
call here executes the 
command you gave 
strace. The 0 at the end 
is the return value from 
the call (successful).



322 CHAPTER 12 Docker in production—dealing with challenges

[...]
open("/proc/self/task/39/attr/current",

➥ O_RDONLY) = 9
read(9, "system_u:system_r:svirt_lxc_net_"...,
4095) = 46
close(9) = 0
[...]

open("/etc/selinux/config", O_RDONLY) =                                     

➥ -1 ENOENT (No such file or directory)
open("/etc/selinux/targeted/contexts/files/                           

➥ file_contexts.subs_dist", O_RDONLY) = -1 ENOENT (No such file or directory)   
open("/etc/selinux/targeted/contexts/files/                      
file_contexts.subs", O_RDONLY) = -1 ENOENT (No such file or directory)
open("/etc/selinux/targeted/contexts/files/                      

➥ file_contexts", O_RDONLY) = -1 ENOENT (No such file or directory)             
[...]
exit_group(12) = ?

The preceding output may seem confusing at first, but after a few times it becomes rel-
atively easy to read. Each line represents a call to the Linux kernel to perform some
action in what’s known as kernel space (as opposed to user space, meaning actions per-
formed by programs without handing over responsibility to the kernel).

USE MAN 2 TO FIND OUT MORE ABOUT THE SYSTEM CALL If you want to learn more
about a specific system call, you can run man 2 <callname> to find out more.
You may need to install the man pages with apt-get install manpages-dev or
a similar command for your packaging system. Alternatively, Googling man 2
<callname> will likely get you what you need. 

This is an example of where Docker’s abstractions break down. In this case, the action
fails because the program expects SELinux files to be present, because SELinux
appears to be enabled on the container, but the details of enforcement are kept on
the host.

 Although such situations are rare, the ability to debug and understand how your
program is interacting by using strace is an invaluable technique, not only with
Docker but for more general development.

The open system call opens a file for reading. 
The return value (9) is the file handle number 
used in subsequent calls to work on the file. In 
this case, the SELinux information is retrieved 
from the /proc filesystem, which holds 
information about running processes.

The read system call works on the previously 
opened file (with the file descriptor 9) and 
returns the number of bytes read (46).

The close system call closes the file
referenced with the file descriptor number.

The program attempts to open the
SELinux files it expects to be there but
in each case fails. Strace helpfully tells
you what the return value means: No

such file or directory.

The process exits with the value 12,
which for useradd means that the

directory couldn’t be created.



323Summary

READ THE MAN PAGES! It’s incredibly useful to read over the man 2 pages for
all the system calls if you’re serious about being a developer. At first they
might seem full of jargon you don’t understand, but as you read around the
various subjects, you’ll learn a great deal about fundamental Linux concepts.
At some point, you’ll start to see how most languages derive from this root,
and some of their quirks and oddities will make more sense. Be patient,
though, as you won’t understand it all immediately. 

12.3 Summary
In this chapter we’ve covered what you can do when Docker doesn’t work quite as you
expected. While it’s rare to find leaky abstractions when using Docker, such leaks can
occur, and it’s important to be prepared with an understanding of what can go wrong.

 This chapter showed you how to

■ Use docker’s flags to use the host’s resources directly for greater efficiency
■ Resize your DeviceMapper disk to use your disk’s space to its fullest
■ Use nsenter to jump into the container’s network
■ Run strace to determine why a Docker container doesn’t work on a specific host

This concludes the book! We hope we’ve opened your eyes to some of the uses of
Docker and given you some ideas for integrating it in your company or personal proj-
ects. If you’d like to get in touch with us or give us some feedback, please create a
thread in the Manning Docker in Practice forum (https://forums.manning.com/
forums/docker-in-practice) or raise an issue against one of the “docker-in-practice”
GitHub repositories.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://forums.manning.com/forums/docker-in-practice
https://forums.manning.com/forums/docker-in-practice


 
 
 
 
 
 
 
 
 
 



325

appendix A
Installing and using Docker

The techniques in this book sometimes require you to make files and clone reposi-
tories from GitHub. To avoid interference, we suggest you create a new empty
folder for each technique when you need some working space.

 Linux users have it relatively easy when it comes to installing and using Docker,
though the fine details can vary significantly between different Linux distributions.
Rather than enumerating the different possibilities here, we suggest you check the
latest Docker documentation at https://docs.docker.com/installation/.

 Although this book assumes that you’re using a Linux distribution (containers
are currently Linux-based, so this keeps things simple), many users interested in
Docker work on either Windows or OS X (Mac) based machines. For these users it’s
worth pointing out that the techniques in this book will still work, as long as you
use one of the following approaches to set up the Docker daemon.

CHANGES COMING FOR WINDOWS SERVER Microsoft is committed to support-
ing the Docker container paradigm and management interface. Changes
are coming to Windows Server to allow for the creation of Windows-based
containers. This may be covered in future versions of this book, but it’s not
available at the time of writing.

A.1 The virtual machine approach
One approach to using Docker on Windows or Mac is to install a full Linux virtual
machine. Once that’s achieved, you can use the virtual machine exactly as you
would any native Linux machine.

 The most common way to achieve this is to install VirtualBox. See http://
virtualbox.org for more information and installation guides. 

http://virtualbox.org
http://virtualbox.org
https://docs.docker.com/installation/


326 APPENDIX A Installing and using Docker

A.2 Docker client connected to an external Docker server
If you already have a Docker daemon set up as a server, you can natively install a client
that talks to it on your Windows or OS X machine. Be aware that exposed ports will be
exposed on the external Docker server, not your local machine—you may need to
alter IP addresses in order to access the exposed services.

 See technique 1 for the essentials of this more advanced approach, and see tech-
nique 86 for details on making it secure. 

A.3 Native Docker client and virtual machine
A common approach is to install a minimal virtual machine that runs Linux and
Docker, and a Docker client that talks to Docker on that virtual machine. The stan-
dard way to do this is to use a Boot2Docker virtual machine, which uses a “Tiny Core
Linux” distribution to provide an environment in which the Docker daemon can run
as a server. 

 The Docker Toolbox can quickly get you started with Boot2Docker and is officially
supported on Mac and Windows: https://www.docker.com/toolbox.

A.3.1 Docker on Windows

Windows is a very different operating system from Mac and Linux, so we’ll go into a
bit more detail here to highlight some common problems and solutions. You should
follow the official installation documentation for the Docker Toolbox at https://
docs.docker.com/engine/installation/windows/, and we’ll emphasize some impor-
tant parts here.

 During the installation process, you should make sure to check the boxes for
Docker Compose for Windows (used in technique 68, among others) and Git for Win-
dows. The latter will allow you to git clone repositories mentioned throughout the
book as well to use the bash shell and some Linux utilities like grep, sed, and curl. It
even comes with ssh and perl. The scripting used throughout this book assumes that
you’re using bash (or a similar shell) and have these utilities available, so opting out of
installing them and using the built-in Windows shell or Windows PowerShell instead
will cause problems if you’re following along. Feel free to also install the Kitematic
GUI for Docker—it makes using images a matter of point and click, and you may find
it interesting to experiment with, but we won’t cover it in the book. 

 You should also select Add Docker Binaries to PATH during the installation pro-
cess—this ensures that you can always run the docker command from your terminal.

 If you’ve not already got Oracle VirtualBox installed, the Docker Toolbox will
install it for you—all of your containers will run inside a VM as Linux containers can’t
run natively on Windows. Unlike the virtual machine approach discussed in section
A.1, the VM created by the Docker Toolbox is very lightweight, as it only runs Docker,
but you may still need to modify the memory of the VM in the VirtualBox interface set-
tings if you’re running resource-heavy programs.

https://www.docker.com/toolbox
https://docs.docker.com/engine/installation/windows/
https://docs.docker.com/engine/installation/windows/


327Native Docker client and virtual machine

 To check that all is working correctly, open the Docker Quickstart Terminal from
your programs list. It will start the virtual machine containing Docker if it’s not already
running and set up the environment so you can begin using Docker immediately. If
you run docker run hello-world, Docker will automatically pull the hello-world
image from the Docker Hub and run it. The output of this image gives a brief descrip-
tion of the steps that have just been taken regarding communication between the
Docker client and daemon. Don’t worry if it doesn’t make much sense; there’s more
detail about what goes on behind the scenes in chapter 2.

 Be aware that there will be some unavoidable oddities on Windows:

■ Volumes need a double slash at the beginning, as discussed here: https://
github.com/docker/docker/issues/12751.

■ Because containers are running in a VM, if you want to access an exposed port
from the host, you’ll need to use docker-machine ip default in a shell to find the
IP of the VM in order to visit it (this is covered in the Docker installation instruc-
tions for Windows: https://docs.docker.com/engine/installation/windows/).

■ Some less popular tools may be more difficult to obtain than the “use your
package manager” instructions we give in the techniques (for example, socat is
best obtained by using Cygwin), and other tools (such as those that are signifi-
cantly tied to Linux like strace and the ip command for using ip addr) may
not be available directly on Windows at all.

WHAT IS CYGWIN? Cygwin, available at https://www.cygwin.com/, is a collec-
tion of tools from Linux made available on Windows. If you want a Linux-like
environment to experiment with or want to obtain a Linux tool for use natively
on Windows, Cygwin should be at the top of your list. It comes with a package
manager so you can browse available software and see what’s available.

A brief list of useful Windows replacements for some commands and components fol-
lows, but it’s worth bearing in mind that some of these will be noticeably imperfect
replacements. This book focuses on using Docker to run Linux containers, and it
makes sense that a full Linux installation (be it a fat VM, a box in the cloud, or an
installation on your local machine) will be more capable of teasing out the full poten-
tial of Docker:

■ ip addr—We typically use this command in this book to find the IP of our
machine on the local network. The Windows equivalent is ipconfig.

■ strace—Take a look at the discussion of “A host-like container” in technique 97
for details on how to bypass Docker containerization and get host-like access
inside the virtual machine running Docker. You’ll want to start a shell rather than
run chroot and use a Linux distribution with a package manager, like Ubuntu,
rather than BusyBox. From there you can install and run commands as if you’re
running on the host. This tip applies to many commands, and almost lets you treat
your Docker VM as a fat VM.

https://github.com/docker/docker/issues/12751
https://github.com/docker/docker/issues/12751
https://docs.docker.com/engine/installation/windows/
https://www.cygwin.com/


328 APPENDIX A Installing and using Docker

■ Exposing ports to your host machine—Install Cygwin and install socat from the
package list. You’ll need to start the Cygwin shell from your application list to get
access to these utilities. To forward ports with socat to provide access from out-
side your host, you can use socat TCP-LISTEN:$PORT,reuseaddr,fork

TCP:$DOCKERIP:$PORT, where $PORT is the port you want to forward and $DOCK-
ERIP is the output of docker-machine ip default in your Docker terminal. 

GRAPHICAL APPLICATIONS ON WINDOWS

Running Linux graphical applications on Windows can be challenging—not only do
you have to make all the code work on Windows, you also need to decide how to dis-
play it. The windowing system used on Linux (known as the X Window System or X11)
isn’t built into Windows. Fortunately, X allows you to display an application window
over a network, so you can use an implementation of X on Windows to display applica-
tions running in a Docker container.

 There are a few different implementations of X on Windows, so we’re just going to cover
the installation you can obtain with Cygwin. You should follow the official documentation
at http://x.cygwin.com/docs/ug/setup.html#setup-cygwin-x-installing. When selecting
packages to install, you must ensure xorg-server, xinit, and xhost are selected.

 Once the installation has completed, open a Cygwin terminal and run XWin :0
-listen tcp -multiwindow. This will start an X server on your Windows machine
with the ability to listen to connections from the network (-listen tcp) and display
each application in its own window (-multiwindow), rather than a single window act-
ing as a virtual screen to display applications on. Once it’s started, you should see an
“X” icon in your system tray area.

AUTHORIZATION PROBLEMS Although this X server can listen to the network, it
currently only trusts the local machine. In all cases we’ve seen, this allows
access from your Docker VM, but if you have issues with authorization you
may want to try running the insecure xhost + command to permit access from
all machines. If you do this, be sure your firewall is configured to reject any
connection attempts from the network!

It’s time to try out your X server! Find out the IP address of your local machine with
ipconfig. You want to look for an IP address on a VirtualBox Host-Only Network
adapter—this is the IP address your Docker VM sees your host as. If you have multiple
adapters like this, you may need to try the IP for each in turn. Starting your first graphical
application should be as simple as running docker run -e DISPLAY=$MY_IP:0 --rm
fr3nd/xeyes in a Docker Quickstart Terminal, where $MY_IP is the IP address of the
adapter described previously. 

A.4 Getting help
If you run a non-Linux operating system and want to get further help or advice, the
Docker documentation (https://docs.docker.com/installation/) has the latest offi-
cially recommended advice for Windows and Mac users. 

http://x.cygwin.com/docs/ug/setup.html#setup-cygwin-x-installing
https://docs.docker.com/installation/


329

appendix B
Docker configuration

At various points in this book you’re advised to change your Docker configuration
to make changes permanent on starting up your Docker host machines. This
appendix will advise you on the best practices for achieving this. The operating sys-
tem distribution you use will be significant in this context.

 The location of the config files for most mainstream distributions is listed in
table B.1.

Note that some distributions keep the configuration to a single file, whereas others
use a directory and multiple files. For example, on Red Hat Enterprise License,
there’s a file called /etc/sysconfig/docker/docker-storage, which by convention
contains the configuration relating to storage options for the Docker daemon.

 If your distribution doesn’t have any files that match the names in table B.1, it’s
worth checking for an /etc/docker folder, as there may be relevant files in there.

 Within these files, arguments to the Docker daemon’s startup command are
managed. For example, when edited, a line such as the following allows you to set
the starting arguments for the Docker daemon on your host:

DOCKER_OPTS=""

Table B.1 Docker configuration file locations

Distribution Configuration

Ubuntu / Debian / Gentoo /etc/default/docker

OpenSuse / CentOS / Red Hat /etc/sysconfg/docker



330 APPENDIX B Docker configuration

For example, if you want to change the location of Docker’s root directory from the
default (which is /var/lib/docker), you might change the preceding line as follows:

DOCKER_OPTS="-g /mnt/bigdisk/docker"

If your distribution uses systemd config files (as opposed to /etc), then you can also
search for the ExecStart line in the docker file under the systemd folder, and change
that if you want. This file might be located at /usr/lib/systemd/system/service/
docker, for example. Here’s an example file:

[Unit]
Description=Docker Application Container Engine
Documentation=http://docs.docker.io
After=network.target

[Service]
Type=notify
EnvironmentFile=-/etc/sysconfig/docker
ExecStart=/usr/bin/docker -d --selinux-enabled
Restart=on-failure
LimitNOFILE=1048576
LimitNPROC=1048576

[Install]
WantedBy=multi-user.target

The EnvironmentFile line refers the startup script to the file with the DOCKER_OPTS
entry we discussed earlier. If you change the systemctl file directly, you’ll need to run
systemctl daemon-reload to ensure that the change is picked up by the systemd
daemon.

B.1 Restarting Docker
Altering the configuration for the Docker daemon isn’t sufficient—in order to apply
the changes, the daemon must be restarted. Be aware that this will stop any running
containers and cancel any in-progress image downloads.

B.1.1 Restarting with systemctl

Most modern Linux distributions use systemd to manage the startup of services on the
machine. If you run systemctl on the command line and get pages of output, then
your host is running systemd. If you get a “command not found” message, then try the
approach in section B.1.2.

 If you want to make changes to your configuration, you can stop and start Docker
as follows:

$ systemctl stop docker
$ systemctl start docker



331Restarting Docker

Or you can just restart:

$ systemctl restart docker

Check the progress by running these commands:

$ journalctl -u docker
$ journalctl -u docker -f

The first line here outputs available logs for the docker daemon process. The second
follows the logs for any new entries. 

B.1.2 Restarting with service

If your system is running a System V-based set of init scripts, try running service
--status-all. If that returns a list of services, you can use service to restart Docker
with your new configuration: 

$ service docker stop
$ service docker start



332

appendix C
Vagrant

At various points in this book we use virtual machines to demonstrate a technique
for Docker that requires a full machine representation, or even multi-virtual-
machine orchestration.

 Vagrant offers a simple way to start, provision, and manage virtual machines
from the command line, and it’s available on multiple platforms.

C.1 Setting up
Go to https://www.vagrantup.com and follow the instructions there to get set up. 

C.2 GUIs
When running vagrant up to start up a virtual machine, Vagrant reads the local file
called Vagrantfile to determine the settings.

 A useful setting that you can create or change within the section for your pro-
vider is the gui one:

v.gui = true

For example, if your provider is VirtualBox, a typical config section might look like
this:

config.vm.provider "virtualbox" do |v, override|
override.vm.box = vagrant_openshift_config['virtualbox']

          ➥ ['box_name'] unless dev_cluster
override.vm.box_url = vagrant_openshift_config['virtualbox']

          ➥ ['box_url'] unless dev_cluster
override.ssh.insert_key = vagrant_openshift_config['insert_key']

v.memory = vagrant_openshift_config['memory'].to_i
v.cpus = vagrant_openshift_config['cpus'].to_i

https://www.vagrantup.com


333Memory

v.customize ["modifyvm", :id,

          ➥ "--cpus", vagrant_openshift_config['cpus'].to_s]
v.gui = false

end if vagrant_openshift_config['virtualbox']

You could change the v.gui line’s false setting to true (or add it if it wasn’t already
there) before running vagrant up to get a GUI for the running VM.

WHAT IS A PROVIDER? A provider within Vagrant is the name of the program that
provides the VM environment. For most users, this will be virtualbox, but it
might also be libvirt, openstack, or vmware_fusion (among others). 

C.3 Memory
Vagrant uses VMs to create its environments, and these can be very memory-hungry. If
you’re running a three-node cluster with each VM taking up 2 GB of memory, your
machine will require 6 GB of available memory. If your machine is struggling to run,
this lack of memory is most likely why—the only solutions are to stop any non-essential
VMs or buy more memory. Being able to avoid this is one of the reasons Docker is
more powerful than a VM. You don’t need to preallocate resources to containers—
they’ll just consume what they need. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



335

index

Symbols

& control operator 24
$ command 64

Numerics

2048-bit security 272–273

A

-a argument 233
abstractions, bypassing 308–315

accessing host resources from 
container 309–313
host-like container 312–313
mounting entire host’s 

filesystem 312
network and 

hostname 310–311
PID 311–312

Device Mapper storage driver 
default container size
313–315

overview 308
ADD command 44–46, 

88–90, 115
Alien, managing foreign 

packages with 111–113
Alpine, image size and 133–134
always policy 25
ambassador container 315
and operator 305
aPaaS (application platform as a 

service) 275–276

API (application program 
interface)

securing 271–274
distributing client 

keys 273–274
setting up server 273
setting up server 

certificate 272–273
testing 274

using socat to monitor 
traffic 27–29

--api-enable-cors option 33
“apiVersion” attribute 238
app folder 52
/app/upstream/py1 key 184
application platform as a service. 

See aPaas
application program interface. 

See API
apt-cache 106
apt-get install command

134, 147
apt-get install manpages-dev 

command 322
apt-get update 50
- argument 110
AUDIT_CONTROL 

capability 266
AUDIT_WRITE capability 266
authentication 271
automated build feature, Docker 

Hub 143–146
adding code to Git 

repository 144–145
cloning new Git 

repository 144

commiting and pushing 
change to source 146

committing source 145
creating new repository 145
creating repository on Github 

or Bitbucket 144
linking Docker Hub reposi-

tory to Git repository 145
overview 143
pushing Git repository 145
waiting for (second) build to 

complete 146
waiting for completion of 145

B

backups, “save game” approach 
to 305–307

bash history, retaining 
containers 69–71

basic docker exec modes 101
/bin/bash 56
/bin/false 26
--bip arguments 254
Bitbucket, creating repository 

on 144
BitTorrent Sync, distributed 

volumes with 67–69
BLOCK_SUSPEND 

capability 266
Blockade, simulating trouble-

some networks with
200–204

blockade.yml 201–202



INDEX336

Boot2Docker virtual 
machine 326

-bootstrap-expect 1 
argument 253

bridge network 209
$BRIDGEIP 256
browsers, using Docker in 33–34
build promotion 173
build: statement 190
builder image, creating 124–126
building Docker image 13–14
BusyBox container

312, 315–316
BusyBox, image size and

133–134
“by hand” method 11–12

C

-c option 202
#cache_dir ufs /var/spool/

squid 150
cAdvisor tool, monitoring 

containers using 297–298
CAP_NET_ADMIN 

capability 265
CAP_SYS_ADMIN 

capability 267
capabilities, constraining

264–268
Linux capabilities 265–268
Unix trust model 264–265

CD (continuous delivery)
configuring images for 

environments 177–180
facilitating deployment of 

Docker images 173–177
delivering images over 

constrained 
connections 174–176

manually mirroring registry 
images 173–174

sharing Docker objects as 
TAR files 176–177

interacting with teams 
during 170–172

upgrading running 
containers 180–185

CentOS 313
certificate authority .pem 

file 272
Chef tool, building images 

with 118–122
CHOWN capability 265

CI (continuous integration)
containerizing process

155–165
containing complex 

development 
environment 155–159

running Jenkins master 
within Docker 
container 159–161

scaling with Jenkins’ Swarm 
plugin 161–165

Docker Hub automated 
builds 143–146
adding code to Git 

repository 144–145
cloning new Git 

repository 144
commiting and pushing 

change to source 146
committing source 145
creating new repository 145
creating repository on 

Github or 
Bitbucket 144

linking Docker Hub reposi-
tory to Git 
repository 145

pushing Git repository 145
waiting for (second) build 

to complete 146
waiting for completion 

of 145
more efficient builds 146–154

running Selenium tests 
inside Docker 151–154

setting up package cache 
for faster builds
148–150

speeding up I/O-intensive 
builds with 
eatmydata 146–148

CID (container ID) 316
CIDR notation 207
clean_log script 105
client keys, distributing 273–274
client.py file 188
“close” system call 322
$CLUSTER 178
CLUSTER_ID variable 231
CMD command 13, 105, 115
comcast tool, simulating trouble-

some networks with
197–200

commands
collating set of to one 

line 130
executing on containers

101–102
conf folder 52
confd, using to enable zero-

downtime switchover
181–185

config docker-machine 
command 87

configuration management
Dockerfiles and 104–116

avoiding package drift by 
specifying versions in 
build 106–107

creating bespoke tools with 
ENTRYPOINT
104–106

flattening images 109–111
managing foreign packages 

with Alien 111–113
replacing text with perl 

-p -i -e 107–109
reverse-engineering Dock-

erfile from image
113–116

small image size 128–141
BusyBox and Alpine 

and 133–134
Dockerfile and keeping 

build small 128–131
Go model of minimal 

containers 134–137
methods for reducing 

image size 131–132
using inotifywait to slim 

containers 137–139
traditional tools for 116–128

building images with Chef 
tool 118–122

make tool 116–118
source-to-image 

builds 122–128
configuring Docker 329–331
Consul/etcd/Zookeeper 

group 216
-cont option 198
CONTAINER field 210
container ID. See CID
<container_hostname>.docker

195
<container_name>.docker 195
CONTAINER(S) column 236



INDEX 337

containers
cleaning up 94–95
containerizing process

running Jenkins master 
within Docker 
container 159–161

Swarm plugin, scaling 
with 161–165

converting virtual machine to 
container 44–52
host-like container 47–49
splitting system into micro-

service containers
49–52

detaching without 
stopping 97–98

executing commands on
101–102

linking 187–197
finding containers via DNS 

with Resolvable
194–197

simple Docker Compose 
cluster 187–190

SQLite server using Docker 
Compose 190–194

linking for port isolation
31–33

overview 9
running 79–87

cleanly killing 
containers 83

inspecting containers
81–83

running GUIs within 
Docker 79–81

using Docker Machine to 
provision Docker 
hosts 84–87

running Docker daemon 
as 23–26

that fail on specific hosts, 
debugging 319–323

upgrading running 
containers 180–185

using ports to connect to
29–31

See also multiple containers
continuous delivery. See CD
continuous integration. See CI
COPY command 51, 90, 115
copy-on-write 129
CPU, giving important contain-

ers more 299–300

--cpuset-cpus option
298–299, 310

create docker-machine 
command 87

cron jobs, using Docker to 
run 302–305

crontab -e 305
Cygwin tool collection 327

D

(-d) daemon 23, 25–26, 30, 
32, 138

-d flag 24, 56
DAC_OVERRIDE capability 265
DAC_READ_SEARCH 

capability 266
daemon docker exec modes 101
data containers 71–73
db folder 52
.deb extension 111
Debian 60, 149
debugging 315–323

Linux API calls 321–323
of container’s network with 

nsenter 315–318
of containers that fail on 

specific hosts 319–323
using tcpflow to debug in 

flight without 
reconfiguring 318–319

“denied” actions 289
dependency graph, of Docker 

images 99–101
“desiredState” attribute 238
dev tools container 78–79
--device flag 312
Device Mapper storage 

driver 313–315
--device option 310
“devicemapper” 313–314
dig command 195, 255
distributed volumes, with 

BitTorrent Sync 67–69
distribution tool 36
--dns arguments 195–196
DNS, finding containers 

via 194–197
dnsutils package 195
dockbash 70
Docker

architecture of 20–21
images and containers 9
key commands 9
overview 5–6

uses of 7–8
documenting software 

dependencies and 
touchpoints 8

enabling continuous 
delivery 8

enabling full-stack produc-
tivity when offline 7

enabling microservices 
architecture 7

modelling networks 7
packaging software 7
prototyping software 7
reducing debugging 

overhead 7
replacing virtual 

machines 7
‘docker -H’ command 29
Docker application, 

building 10–18
building Docker image 13–14
creating Docker image 11–12
layering 16–18
running Docker 

container 14–16
writing Dockerfile 12–13

docker build --no-cache 88
docker build command 9, 46, 

91–92, 115–116, 118, 314
“docker centos” 218
Docker client 27–34

linking containers for port 
isolation 31–33

using Docker in browser
33–34

using ports to connect to 
containers 29–31

using socat to monitor Docker 
API traffic 27–29

docker command 21, 27, 29, 93, 
271, 274, 276, 312

docker commit command 9, 11, 
55, 63

Docker Compose
overview 187–190
SQLite server using 190–194

Docker container 14–16
Docker contract 170–172
Docker daemon 21–26

allowing access to 22–23
managing using 

DockerUI 98–99
moving Docker to different 

partition 26



INDEX338

Docker daemon (continued)
overview 21
running containers as 23–26

docker diff subcommand 16
docker exec command 48–49, 

101, 294, 315
docker export command

160, 176
docker history command

109, 113, 175
Docker Hub

automated build feature
143–146
adding code to Git 

repository 144–145
cloning new Git 

repository 144
commiting and pushing 

change to source 146
committing source 145
creating new repository 145
creating repository on 

Github or 
Bitbucket 144

linking Docker Hub 
repository to Git 
repository 145

pushing Git repository 145
waiting for (second) build 

to complete 146
waiting for completion 

of 145
finding and running Docker 

image 37–39
sharing images on 59–61

docker images -a command 99
docker images command 126
docker import command

46, 110, 176–177
docker info command

232, 301, 314
docker inspect command

81–82, 114, 196
docker kill command 83, 299
docker load command 176–177
“docker” location 270
docker login 60, 173
docker logs -f commands 244
docker logs command 24, 292, 

295, 297
Docker Machine 84–87

installation 85
managing hosts 86–87
overview 84
using 85

“Docker pattern” 180
docker ps -a command 26
docker ps command 25, 94, 245
docker pull command 27, 30, 

38, 78, 145, 175
docker push command 175
Docker registries, setting up

35–36
docker rm command 96
docker run -ti --cap-drop=all 

ubuntu bash 267
docker run command 24–25, 

69–71, 102, 105, 263, 268, 
275, 283, 300–301

docker run hello-world 
command 327

docker run subcommand 16
Docker run’s ’--net option 209
docker save command 176
docker search command 37
docker start etcd2 179
docker stop command 83
docker tag command 9, 58
Docker tagging 57–59
Docker Toolbox 326
docker_apache module 287
docker_apache_t label 288
docker_apache_t SELinux 

type 287
docker_apache_t type 290
docker_apache_te type 290
docker_apache.te file 288
docker_apache.te root 287
DOCKER_IP 164
docker-authenticate 

container 270
docker-compose.yml

189–190, 194
docker-machine 85
docker-machine ip default 327
docker0 interface 318
Dockerfile method 11
Dockerfiles

configuration management 
and 104–116
avoiding package drift by 

specifying versions in 
build 106–107

creating bespoke tools with 
ENTRYPOINT 104–
106

flattening images 109–111
managing foreign packages 

with Alien 111–113

replacing text with perl 
-p -i -e 107–109

reverse-engineering Dock-
erfile from image
113–116

reverse-engineering from 
image 113–116

small image size and 128–131
cleaning up 129
collating set of commands 

to one line 130
using smaller base 

image 129
writing script to do 

install 130–131
writing 12–13

dockerinpractice/todoapp 
image 56

dockernuke 95
dockerslave Label 

Expression 158
DockerUI, using to manage 

Docker daemon 98–99
--donotrunme flag 262
drop packets 202
--drop-cap flag 264
--dry-run 97

E

eatmydata 146–148
installing 147
overview 146
using 147–148

echo command 25, 70, 101
echo done command 26, 158
ecosystem 123
ELK (Elasticsearch, Logstash, 

Kibana) 296
entrypoint command 105
--entrypoint flag 105
ENTRYPOINT instruction

104–106, 111, 115, 161
environments, as processes

62–64
etcd, informing containers 

with 178–180
etcd2 node 179
etcdctl 182
--exec /bin/cat 188
exec command 56, 271, 294
ExecStart 221
ExecStartPre 218–219, 221
executor_registration_timeout 

agrument 244



INDEX 339

Exited status 16
export command 176
EXPOSE command 13, 32, 52
external IP address 178
$EXTIP1 256

F

-f flag 321
files, outputting 116
--filter flag 94
flaky command 203
flamingspork.com 147
flattening images 109–111
Flexibility process 123
foreign packages, managing with 

Alien 111–113
format flag 82
FOWNER capability 265, 267
FROM command 12, 115
FROM instruction 107
FSETID capability 265
-fsroot flag 164
fusermount command 75

G

-g flag 26
g modifier 108
GET HTTP request type 20
git 13
git clone command 91
git clone repositories 326
Git project, creating 124
Github, repositories on

adding code to 144–145
cloning new 144
creating 144
linking Docker Hub 

repository to 145
pushing 145

Go model of minimal 
containers 134–137

minimal Go web server 
image 136–137

minimal Hello World 
binary 134–136

graphical applications, on 
Windows 328

Group sandbox 204
GRUB_CMDLINE_LINUX 301
GUIs, running within 

Docker 79–81

H

-H flag 23
-H option 229
h1 container 233
hal-1 username 277
health checks 256
Helios 223–229
helios deploy command 228
helios hosts command 228
helios status command 228
help using Docker 328
$HOME/registry directory 36
host resources

accessing from 
container 309–313

accessing host resources from 
container
host-like container 312–313
mounting entire host’s 

filesystem 312
network and 

hostname 310–311
PID namespace flag

311–312
host-like container 47–49
HOSTNAME 36
htop command 299
htop package 299
HTTP auth on Docker 

instance 268–271

I

-i argument 102, 271
-i flag 24, 39, 48, 56, 108
“id” attribute 238
id command 80
Ignazio, Roger 247
“image” attribute 238
image docker tagging term 58
--image flag 236
IMAGE(S) column 236
images

building 13–14, 87–93
busting the cache 92–93
injecting files into image 

using ADD 88–90
rebuilding without 

cache 90–92
configuring for 

environments 177–180
facilitating deployment 

of 173–177

delivering images over 
constrained 
connections 174–176

manually mirroring registry 
images 173–174

sharing Docker objects as 
TAR files 176–177

finding and running 37–39
flattening 109–111
overview 9
referring to specific image in 

builds 61–62
sharing on Docker Hub

59–61
See also source-to-image builds

imiell/win2048 image 63
import command 176–177
“in-action” solution 315
Index docker registry term 60
Individual sandbox 204
InfluxDB 298
init method 245, 247
inotifywait, using to slim 

containers 137–139
--insecure-registry option 36
inspect command 182
inspect docker-machine 

command 87
installing

Docker
Docker client connected to 

external Docker 
server 326

getting help 328
native Docker client and vir-

tual machine 326–328
virtual machine 

approach 325
eatmydata 147
OpenShift 276
systemd 217–218
Weave tool 206

interactive docker exec 
modes 101

ip addr command 271, 327
IP addresses, pinging 82
ip docker-machine 

command 87
IPC Kernel namespace 310
IPC_LOCK capability 266
IPC_OWNER capability 266
--ipc=host flag 310
--ipc=host option 310
isolation agrument 244



INDEX340

J

Jenkins Swarm plugin 162
jenkins_plugins.txt 160
jenkins_slave tag 157–158
jobs 228
-join argument 253–254
journalct1 command 296
journald 296–297
jpass password 158
jq command 249, 258
JSON array 238
json-file 297

K

kernel space 322
key files 272
KILL capability 265
kill command 83
kill docker-machine 

command 87
KILL signal 83
“kind” attribute 238
Kitematic GUI for Docker 326
kubect1 get pods command 237
Kubernetes 234–239

installing 235–236
overview 234–235, 239
pods 237–239
scaling single container

236–237

L

LABEL instruction 113
-labels flag 164
layering 9, 16–18
LEASE capability 266
libcontainer 267
--link flag 32
linking containers 187–197

finding containers via DNS 
with Resolvable 194–197

simple Docker Compose 
cluster 187–190

SQLite server using Docker 
Compose 190–194

Linux API calls, debugging
321–323

Linux capabilities 265–268

LINUX_IMMUTABLE 
capability 266

“live” string 193
load command 176–177
localhost 34, 63, 259, 271
“.log” command 132
log_cleaner image 304
--log-driver command 295
--log-driver flag 296
logger command 294
logging

containers to host’s 
syslog 292–295

Docker logs output to host’s 
logging system 295–297
applying across all 

containers 296–297
logging to journald 296
logging to syslog 296

logs command 295
ls docker-machine command 87

M

-M flag 289
-m/--memory parameter 301
MAC (mandatory access 

control) tool 284
MAC_ADMIN capability 266
MAC_OVERRIDE 

capability 266
MAINTAINER command 12
make createfile command 117
make tool 116–118, 126
_makeTask method 245
man 7 capabilities 265
“manifest” attribute 238
Marathon, micromanaging 

Mesos with 247–250
-master flag 164
memfd_create Linux system 

call 320
--memory argument 302
--memory-swap argument 302
memory, limiting usage of by 

containers 300–302
Mesos

building framework on
239–247

micromanaging with 
Marathon 247–250

overview 216
Mesos in Action (Ignazio) 247

mesos-nc framework 245, 248
mesos-slave agrument 244
microservice containers, 

splitting system into 49–52
mirroring registry images

173–174
MKNOD capability 265
monitoring 292–298

logging containers to host’s 
syslog 292–295

logging Docker logs output 
to host’s logging 
system 295–297
applying across all 

containers 296–297
logging to journald 296
logging to syslog 296

of containers using 
cAdvisor 297–298

--mount flag 316
Mount Kernel namespace 310
mounting entire host’s 

filesystem 312
multi-host Docker 217–250

and single-host Docker
217–223

building framework on 
Mesos 239–247

manual, with Helios 223–229
micromanaging Mesos with 

Marathon 247–250
seamless Docker cluster with 

Swarm 229–233
using Kubernetes 

cluster 234–239
installing Kubernetes

235–236
scaling single 

container 236–237
using pods 237–239

multi-user.target.wants systemd 
directory 219

multifile approach 118
multiple containers

multi-host Docker 223–250
building framework on 

Mesos 239–247
manual, with Helios

223–229
micromanaging Mesos with 

Marathon 247–250
seamless Docker cluster 

with Swarm 229–233
using Kubernetes 

cluster 234–239



INDEX 341

multiple containers (continued)
service discovery 250–261

automatic service registra-
tion with 
Registrator 259–261

using Consul to discover 
services 251–259

single-host Docker 217–223
my_alert_command 305
mydockerslave 158
mysiteuser user 119

N

Nagios 251
name docker tagging term 58
--name flag 24
--name todobug1 56
NAT (network address 

translation) 311
National Security Agency. See 

NSA
nc (netcat) 24
ncat program 188
--net command 317
--net flag 310
--net option, Docker run 209
NET_ADMIN capability 266
NET_BIND_SERVICE 

capability 266
NET_BROADCAST 

capability 266
NET_RAW capability 265
--net=host option 108, 253, 

309, 311
netstat command 310–311
network address translation. See 

NAT
Network File System. See NFS
network interface card. See NIC
Network Kernel namespace 310
network simulation

container linking 187–197
finding containers via DNS 

with Resolvable
194–197

simple Docker Compose 
cluster 187–190

SQLite server using Docker 
Compose 190–194

simulating troublesome 
networks
with Blockade 200–204
with comcast 197–200

virtual networks 204–211
Docker networking and ser-

vice features 208–211
setting up substrate network 

with Weave 206–208
NFS (Network File System)

76–78
NIC (network interface 

card) 311
no policy 25
--no-cache flag 91–92
--no-run-if-empty 94
-node newAgent 254
Node.js image 12
NodeJS app 277–283
nohup flag 24
noisy neighbor problem 299
npm install 52
NSA (National Security 

Agency) 275
nsenter, debugging container’s 

network with 315–318

O

-o nonempty option 75
on-failure policy 25–26
“open” system call 322
OpenShift 275–284

building NodeJS app 277–283
installing 276
logging in 276–277
overview 275

openssl 272
or operator 305
Oracle VirtualBox 326
outputting files 116

P

-p flag 24, 30–31, 108
package drift, avoiding by 

specifying versions in 
build 106–107

package.json file 52
partitions, moving Docker to 

different partition 26
password file 269
.pem file, certificate 

authority 272
perl -p -i -e command, replacing 

text with 107–109
persistence problems 66–67
Phoenix deployment model 307

PID namespace flag 311–312
--pid=host option 299, 310
ping packets 203
pinging IP addresses 82
.pkg extension 111
pod-disk volume 238
policy_module directive 287
ports, using to connect to 

containers 29–31
.pp file 289
--privileged flag 74, 268, 313
process namespacing 263
processes, environments as

62–64
provider, within Vagrant 333
ps command 16, 311–312
ps table 26
--publish-service 211
PULLING_IMAGE status 228

Q

qemu-nbd method 44
qemu-nbd tool 45
qemu-utils package 45

R

(-r) recursive 138
“read” system call 322
read-only. See ro
read-write. See rw
--recurse flag 106
recursor arguments 253, 255
registry docker registry term 60
registry host docker registry 

term 60
registry image 36
remote volume mounting, using 

sshfs 74–76
repository docker tagging 

term 58
resize command 237
Resolvable tool, finding contain-

ers via DNS with 194–197
resource control 298–302

giving important containers 
more CPU 299–300

limiting memory usage of 
containers 300–302

restricting cores a container 
can execute on 298–299

resourceOffers method
245–246



INDEX342

REST API 33, 298
restart docker-machine 

command 87
restart flag 25–26
restarting Docker 330–331

with service 331
with systemctl 330–331

RESTful API 35
Restrict Where This Project Can 

Be Run section 164
rm command 64
rm docker-machine 

command 87
ro (read-only) 77
rpm --install 147
.rpm extension 111
rsyslog package 293
RUN command 13, 50, 88, 130
run command 64, 160, 244, 271
run-container command 236
running containers, 

upgrading 180–185
running Docker container

14–16
rw (read-write) 77

S

save command 176
“save game” approach

to backups 305–307
to development 55–57

scp, transferring with 46
scratch image 45, 101
security 264–274

constraining capabilities
264–268
Linux capabilities 265–268
Unix trust model 264–265

HTTP auth on Docker 
instance 268–271

securing API 271–274
distributing client 

keys 273–274
setting up server 273
setting up server 

certificate 272–273
testing 274

using OpenShift 275–284
building NodeJS app

277–283
installing OpenShift 276
logging in 276–277
OpenShift application 276

using security options
284–290
checking for 

violations 288–289
compiling SELinux 

policy 286–288
patching SELinux 

violations 289–290
SELinux on Vagrant 

machine 285–286
testing new module 290

vulnerabilty of Docker
262–264

security process 123
sed -i command 108, 118
Selenium tests, running inside 

Docker 151–154
SELinux

compiling SELinux 
policy 286–288

on Vagrant machine 285–286
overview 320–321
patching violations 289–290

--selinux-enabled flag 287
selinux-policy-doc package 288
Separation of concerns 123
server certificate 272–273
server key 272
server, setting up 273
service

monitoring 251
restarting Docker with 331

Service configuration 251
service discovery 250–261

automatic service registration 
with Registrator 259–261

using Consul to discover 
services 251–259

sestatus command 284, 286
setenforce Permissive 287
SETFCAP capability 266
SETGID capability 265
SETPCAP capability 266
SETUID capability 266
sharing

data over NFS 76–78
images on Docker Hub 59–61

simplewriter container 238
single-host Docker, startup of 

host’s containers with 
systemd 217–223

singlefile 118
SkyDNS tool 251
sleep command 183

slow command 203
.slp extension 111
small image size 128–141

BusyBox and Alpine and
133–134

Dockerfile and 128–131
cleaning up 129
collating set of commands 

to one line 130
using smaller base 

image 129
writing script to do 

install 130–131
Go model of minimal 

containers 134–137
minimal Go web server 

image 136–137
minimal Hello World 

binary 134–136
methods for reducing image 

size 131–132
using inotifywait to slim 

containers 137–139
snowflake system 131
socat command 192, 221
socat, using to monitor Docker 

API traffic 27–29
“soft-restarts” 181
source-to-image builds 122–128

building application 
image 126–127

changing and 
rebuilding 127–128

creating builder image
124–126

creating Git project 124
creating own S2I image 124
overview 122–123
starting up S2I development 

environment 124
speed method 123
Spotify 223
SQLite server, using Docker 

Compose 190–194
sqliteproxy service 222–223
“squid” package 149
ssh command 177
ssh method 44
sshfs, remote volume mounting 

using 74–76
start docker-machine 

command 87
STATUS column 25–26



INDEX 343

stdout 177
sti program 124, 126–127
stop docker-machine 

command 87
storage drivers 313
strace command 321, 327
sudo update-grub 301
sudo, running Docker 

without 93–94
swarm create command 231
swarm list command 231–232
Swarm plugin 162, 229–233
SYS_ADMIN capability 266
SYS_BOOT capability 266
SYS_CHROOT capability 266
SYS_MODULE capability 266
SYS_NICE capability 266
SYS_PACCT capability 266
SYS_PTRACE capability 266
SYS_RAWIO capability 267
SYS_RESOURCE capability 267
SYS_TIME capability 267
SYS_TTY_CONFIG 

capability 267
sysadmin use-cases 302–307

“save game” approach to 
backups 305–307

using Docker to run cron 
jobs 302–305

syslog, logging to 296
system-management 

daemon 217
systemct1 enable command 219
systemctl start command 219
systemctl status command

217, 219
systemctl, restarting Docker 

with 330–331
systemd 217–223

installing 217–218
setting up Docker application 

under 218–220
SysV init scripts 217

T

-t flag 39, 48, 56
tag command 64
tag docker tagging term 58
‘talkto’ server 188–189
TAR files

overview 44
sharing Docker objects 

as 176–177

tar method 44, 118
--target flag 316
TCP port 192
tcpdump command 317–318
tcpflow, using to debug in flight 

without reconfiguring
318–319

teams, interacting with during 
continuous delivery
170–172

Telnet 193
TERM signal 83
testing API security 274
.tgz extension 111
-ti flag 39
Tiny Core Linux 

distribution 326
--tls-verify flag 272
to-do application 10, 18, 

217–218
todobug1 56
touch 73
-transform option 118

U

Ubuntu images 175
Unix socket method 268
Unix trust model 264–265
UNIX-CONNECT 28
UNIX-LISTEN 28
upgrade docker-machine 

command 87
upgrading, running 

containers 180–185
upstart daemon 247
url docker-machine 

command 87
User Kernel namespace 310
username docker registry 

term 60
username, altering 269
UTS Kernel namespace 310
--uts=host option 310

V

-v flag 28, 66, 96
Vagrant

GUIs 332–333
memory 333
SELinux on Vagrant 

machine 285–286
setting up 332

vagrant box add command 218
verify_api_cert 120
virtual machine

approach to installing and 
using Docker 325

converting virtual machine to 
container 44–52
host-like container 47–49
splitting system into micros-

ervice containers
49–52

environments as 
processes 62–64

managing services on 
containers 52–54

saving and restoring work
55–62
“save game” approach to 

development 55–57
Docker tagging 57–59
referring to specific image 

in builds 61–62
sharing images on Docker 

Hub 59–61
virtual networks 204–211

Docker networking and 
service features 208–211

overview 204–205
setting up substrate network 

with Weave
installing Weave 206
setting up Weave 207
testing connection 208

--volume flag 312
--volume option 310
“volumeMounts” 239
volumes 66–79

cleaning up 95–97
data containers 71–73
dev tools container 78–79
distributed volumes with 

BitTorrent Sync 67–69
persistence problems 66–67
remote volume mounting 

using sshfs 74–76
retaining container’s bash 

history 69–71
sharing data over NFS 76–78

“volumes” attribute 238–239
--volumes-from flag 71, 73
vulnerabilty of Docker 262–264

See also security



INDEX344

W

Weave tool 205–206
installing 206
overview 205
setting up 207
testing connection 208

wheezy image, Debian 149
win2048 container 63
Windows

Docker on 326–328
graphical applications on 328

wordpress 32

--workdir /host 312
WORKDIR command 13
wp-mysql container 32
write 289
writing, Dockerfile 12–13

X

X11 (X Window System) 328
xargs 82
.Xauthority file 151
xhost - command 152

xhost + command 328
xvfb-run 154

Y

YAML file 189
Yum 149–150

Z

zkCli.sh tool 225
Zookeeper 223–227



A
n open source container system, Docker makes deploying 
applications painless and fl exible. Docker is powerful and 
simple to use, and it makes life easier for developers and 

administrators alike providing shorter build times, fewer 
production bugs, and eff ortless application roll-out. 

Docker in Practice is a hands-on guide that covers 101 specifi c 
techniques you can use to get the most out of Docker. Follow-
ing a cookbook-style Problem/Solution/Discussion format, 
this practical handbook gives you instantly useful solutions for 
important problems like eff ortless server maintenance and con-
fi guration, deploying microservices, creating safe environments 
for experimentation, and much more. As you move through this 
book, you’ll advance from basics to Docker best practices like 
using it with your Continuous Integration process, automating 
complex container creation with Chef, and orchestration with 
Kubernetes.

What’s Inside
Speeding up your DevOps pipeline
Cheaply replacing VMs
Streamlining your cloud workfl ow
Using the Docker Hub 
Navigating the Docker ecosystem 

For anyone interested in real-world Docker.

Ian Miell and Aidan Hobson Sayers have contributed to Docker and 
have extensive experience building and maintaining commercial 
Docker-based infrastructures in large-scale environments. 

To download their free eBook in PDF, ePub, and Kindle formats, owners 
of this book should visit manning.com/books/docker-in-practice

$44.99 / Can $51.99  [INCLUDING eBOOK]

PROGRAMMING/SYSTEM ADMINISTRATION

M A N N I N G

“A deluge of practical 
advice about applying 

Docker to problems you 
have right now.”—From the Foreword by 

Ben Firshman, Docker, Inc.

“Filled with 4-star 
recipes!” 

—Chad Davis, SolidFire

“You’ll love Docker aft er 
reading this book.”—José San Leandro, OSOCO

“Packed with Docker tricks 
of the developer trade.”—Kirk Brattkus

Net Eff ect Technologies

Miell    Hobson Sayers
Docker  IN PRACTICE SEE  INSERT


	Docker in Practice
	brief contents
	contents
	foreword
	preface
	acknowledgments
	about this book
	Roadmap
	Code
	Author Online

	about the cover illustration
	Part 1: Docker fundamentals
	Chapter 1: Discovering Docker
	1.1 The what and why of Docker
	1.1.1 What is Docker?
	1.1.2 What is Docker good for?
	1.1.3 Key concepts

	1.2 Building a Docker application
	1.2.1 Ways to create a new Docker image
	1.2.2 Writing a Dockerfile
	1.2.3 Building a Docker image
	1.2.4 Running a Docker container
	1.2.5 Docker layering

	1.3 Summary

	Chapter 2: Understanding Docker— inside the engine room
	2.1 Docker’s architecture
	2.2 The Docker daemon
	Technique 1 : Open your Docker daemon to the world
	Technique 2 : Running containers as daemons
	Technique 3 : Moving Docker to a different partition

	2.3 The Docker client
	Technique 4 : Use socat to monitor Docker API traffic
	Technique 5 : Using ports to connect to containers
	Technique 6 : Linking containers for port isolation
	Technique 7 : Using Docker in your browser

	2.4 Docker registries
	Technique 8 : Setting up a local Docker registry
	Technique 9 : Finding and running a Docker image

	2.5 The Docker Hub
	2.6 Summary


	Part 2: Docker and development
	Chapter 3: Using Docker as a lightweight virtual machine
	3.1 From VM to container
	Technique 10 : Converting your VM to a container
	Technique 11 : A host-like container
	Technique 12 : Splitting a system into microservice containers

	3.2 Managing services on your containers
	Technique 13 : Managing the startup of your container’s services

	3.3 Saving and restoring your work
	Technique 14 : The “save game” approach to development
	Technique 15 : Docker tagging
	Technique 16 : Sharing images on the Docker Hub
	Technique 17 : Referring to a specific image in builds

	3.4 Environments as processes
	Technique 18 : The “save game” approach to development

	3.5 Summary

	Chapter 4: Day-to-day Docker
	4.1 Volumes—a persistent problem
	Technique 19 : Docker volumes—problems of persistence
	Technique 20 : Distributed volumes with BitTorrent Sync
	Technique 21 : Retain your container’s bash history
	Technique 22 : Data containers
	Technique 23 : Remote volume mounting using sshfs
	Technique 24 : Sharing data over NFS
	Technique 25 : Dev tools container

	4.2 Running containers
	Technique 26 : Running GUIs within Docker
	Technique 27 : Inspecting containers
	Technique 28 : Cleanly killing containers
	Technique 29 : Using Docker Machine to provision Docker hosts

	4.3 Building images
	Technique 30 : Injecting files into your image using ADD
	Technique 31 : Rebuilding without the cache
	Technique 32 : Busting the cache

	4.4 Staying ship-shape
	Technique 33 : Running Docker without sudo
	Technique 34 : Housekeeping containers
	Technique 35 : Housekeeping volumes
	Technique 36 : Detaching containers without stopping them
	Technique 37 : Using DockerUI to manage your Docker daemon
	Technique 38 : Generate a dependency graph of your Docker images
	Technique 39 : Direct action—execute commands on your container

	4.5 Summary

	Chapter 5: Configuration management— getting your house in order
	5.1 Configuration management and Dockerfiles
	Technique 40 : Create reliable bespoke tools with ENTRYPOINT
	Technique 41 : Avoid package drift by specifying versions in your build
	Technique 42 : Replacing text with perl -p -i -e
	Technique 43 : Flattening images
	Technique 44 : Managing foreign packages with alien
	Technique 45 : Reverse-engineer a Dockerfile from an image

	5.2 Traditional configuration management tools with Docker
	Technique 46 : Traditional: using make with Docker
	Technique 47 : Building images with Chef Solo
	Technique 48 : Source-to-image builds

	5.3 Small is beautiful
	Technique 49 : Dockerfile tricks for keeping your build small
	Technique 50 : Tricks for making an image smaller
	Technique 51 : Tiny Docker images with BusyBox and Alpine
	Technique 52 : The Go model of minimal containers
	Technique 53 : Using inotifywait to slim containers
	Technique 54 : Big can be beautiful

	5.4 Summary


	Part 3: Docker and DevOps
	Chapter 6: Continuous integration: speeding up your development pipeline
	6.1 Docker Hub automated builds
	Technique 55 : Using the Docker Hub workflow

	6.2 More efficient builds
	Technique 56 : Speed up I/O-intensive builds with eatmydata
	Technique 57 : Set up a package cache for faster builds
	Technique 58 : Running Selenium tests inside Docker

	6.3 Containerizing your CI process
	Technique 59 : Containing a complex development environment
	Technique 60 : Running the Jenkins master within a Docker container
	Technique 61 : Scale your CI with Jenkins’ Swarm plugin

	6.4 Summary

	Chapter 7: Continuous delivery: a perfect fit for Docker principles
	7.1 Interacting with other teams during the CD pipeline
	Technique 62 : The Docker contract—reducing friction

	7.2 Facilitating deployment of Docker images
	Technique 63 : Manually mirroring registry images
	Technique 64 : Delivering images over constrained connections
	Technique 65 : Sharing Docker objects as TAR files

	7.3 Configuring your images for environments
	Technique 66 : Informing your containers with etcd

	7.4 Upgrading running containers
	Technique 67 : Using confd to enable zero-downtime switchover

	7.5 Summary

	Chapter 8: Network simulation: realistic environment testing without the pain
	8.1 Container communication—beyond manual linking
	Technique 68 : A simple Docker Compose cluster
	Technique 69 : A SQLite server using Docker Compose
	Technique 70 : Finding containers via DNS with Resolvable

	8.2 Using Docker to simulate real-world networking
	Technique 71 : Simulating troublesome networks with Comcast
	Technique 72 : Simulating troublesome networks with Blockade

	8.3 Docker and virtual networks
	Technique 73 : Setting up a substrate network with Weave
	Technique 74 : Docker networking and service features

	8.4 Summary


	Part 4: Docker in production
	Chapter 9: Container orchestration: managing multiple Docker containers
	9.1 Simple single-host Docker
	Technique 75 : Managing your host's containers with systemd
	Technique 76 : Orchestrating your host's containers with systemd

	9.2 Multi-host Docker
	Technique 77 : Manual multi-host Docker with Helios
	Technique 78 : A seamless Docker cluster with Swarm
	Technique 79 : Using a Kubernetes cluster
	Technique 80 : Building a framework on Mesos
	Technique 81 : Micromanaging Mesos with Marathon

	9.3 Service discovery: what have we here?
	Technique 82 : Using Consul to discover services
	Technique 83 : Automatic service registration with Registrator

	9.4 Summary

	Chapter 10: Docker and security
	10.1 Docker access and what it means
	10.1.1 Do you care?

	10.2 Security measures in Docker
	Technique 84 : Constraining capabilities
	Technique 85 : HTTP auth on your Docker instance
	Technique 86 : Securing your Docker API

	10.3 Security from outside Docker
	Technique 87 : OpenShift—an application platform as a service
	Technique 88 : Using security options

	10.4 Summary

	Chapter 11: Plain sailing—Docker in production and operational considerations
	11.1 Monitoring
	Technique 89 : Logging your containers to the host’s syslog
	Technique 90 : Sending Docker logs to your host’s output system
	Technique 91 : Monitoring containers with cAdvisor

	11.2 Resource control
	Technique 92 : Restricting the cores a container can execute on
	Technique 93 : Giving important containers more CPU
	Technique 94 : Limiting the memory usage of a container

	11.3 Sysadmin use cases for Docker
	Technique 95 : Using Docker to run cron jobs
	Technique 96 : The “save game” approach to backups

	11.4 Summary

	Chapter 12: Docker in production— dealing with challenges
	12.1 Performance—you can’t ignore the tin
	Technique 97 : Accessing host resources from the container
	Technique 98 : Device Mapper storage driver and default container size

	12.2 When containers leak—debugging Docker
	Technique 99 : Debugging a container’s network with nsenter
	Technique 100 : Using tcpflow to debug in flight without reconfiguring
	Technique 101 : Debugging containers that fail on specific hosts

	12.3 Summary


	appendix A: Installing and using Docker
	A.1 The virtual machine approach
	A.2 Docker client connected to an external Docker server
	A.3 Native Docker client and virtual machine
	A.3.1 Docker on Windows

	A.4 Getting help

	appendix B: Docker configuration
	B.1 Restarting Docker
	B.1.1 Restarting with systemctl
	B.1.2 Restarting with service


	appendix C: Vagrant
	C.1 Setting up
	C.2 GUIs
	C.3 Memory

	index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z


