

Erlang Programming

Francesco Cesarini and Simon Thompson

Beijing • Cambridge • Farnham • Köln • Sebastopol • Taipei • Tokyo

Erlang Programming
by Francesco Cesarini and Simon Thompson

Copyright © 2009 Francesco Cesarini and Simon Thompson. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Mike Loukides
Production Editor: Sumita Mukherji
Copyeditor: Audrey Doyle
Proofreader: Sumita Mukherji

Indexer: Lucie Haskins
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Printing History:
June 2009: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Erlang Programming, the image of a brush-tailed rat kangaroo, and related trade
dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

TM

This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN: 978-0-596-51818-9

[M]

1244557300

http://my.safaribooksonline.com/?portal=oreilly

Table of Contents

Foreword . xiii

Preface . xv

1. Introduction . 1
Why Should I Use Erlang? 1
The History of Erlang 3
Erlang’s Characteristics 4

High-Level Constructs 4
Concurrent Processes and Message Passing 5
Scalable, Safe, and Efficient Concurrency 6
Soft Real-Time Properties 6
Robustness 6
Distributed Computation 7
Integration and Openness 8

Erlang and Multicore 9
Case Studies 10

The AXD301 ATM Switch 10
CouchDB 11
Comparing Erlang to C++ 12

How Should I Use Erlang? 14

2. Basic Erlang . 15
Integers 15
The Erlang Shell 16
Floats 17

Mathematical Operators 17
Atoms 19
Booleans 20
Tuples 21
Lists 22

Characters and Strings 22

iii

Atoms and Strings 23
Building and Processing Lists 24
List Functions and Operations 25

Term Comparison 28
Variables 30
Complex Data Structures 32
Pattern Matching 33
Functions 38
Modules 40

Compilation and the Erlang Virtual Machine 40
Module Directives 41

Exercises 43

3. Sequential Erlang . 45
Conditional Evaluations 46

The case Construct 46
Variable Scope 48
The if Construct 49

Guards 50
Built-in Functions 53

Object Access and Examination 53
Type Conversion 54
Process Dictionary 55
Meta Programming 55
Process, Port, Distribution, and System Information 56
Input and Output 57

Recursion 59
Tail-Recursive Functions 63
Tail-Call Recursion Optimization 66
Iterations Versus Recursive Functions 67

Runtime Errors 68
Handling Errors 70

Using try ... catch 70
Using catch 74

Library Modules 77
Documentation 77
Useful Modules 79

The Debugger 80
Exercises 82

4. Concurrent Programming . 89
Creating Processes 90
Message Passing 92

iv | Table of Contents

Receiving Messages 94
Selective and Nonselective Receives 97
An Echo Example 100

Registered Processes 102
Timeouts 104
Benchmarking 106
Process Skeletons 107
Tail Recursion and Memory Leaks 108
A Case Study on Concurrency-Oriented Programming 110
Race Conditions, Deadlocks, and Process Starvation 112
The Process Manager 114
Exercises 115

5. Process Design Patterns . 117
Client/Server Models 118

A Client/Server Example 119
A Process Pattern Example 125
Finite State Machines 126

An FSM Example 127
A Mutex Semaphore 129

Event Managers and Handlers 131
A Generic Event Manager Example 132
Event Handlers 135

Exercises 137

6. Process Error Handling . 139
Process Links and Exit Signals 139

Trapping Exits 142
The monitor BIFs 144
The exit BIFs 145
BIFs and Terminology 146
Propagation Semantics 148

Robust Systems 148
Monitoring Clients 150
A Supervisor Example 152

Exercises 154

7. Records and Macros . 157
Records 158

Introducing Records 158
Working with Records 159
Functions and Pattern Matching over Records 160
Records in the Shell 161

Table of Contents | v

Record Implementation 162
Record BIFs 164

Macros 165
Simple Macros 165
Parameterized Macros 166
Debugging and Macros 166
Include Files 168

Exercises 168

8. Software Upgrade . 173
Upgrading Modules 173
Behind the Scenes 176

Loading Code 179
The Code Server 180
Purging Modules 182

Upgrading Processes 182
The .erlang File 186
Exercise 186

9. More Data Types and High-Level Constructs . 189
Functional Programming for Real 189
Funs and Higher-Order Functions 190

Functions As Arguments 190
Writing Down Functions: fun Expressions 192
Functions As Results 193
Using Already Defined Functions 194
Functions and Variables 195
Predefined, Higher-Order Functions 195
Lazy Evaluation and Lists 197

List Comprehensions 198
A First Example 198
General List Comprehensions 198
Multiple Generators 200
Standard Functions 200

Binaries and Serialization 201
Binaries 202
The Bit Syntax 203
Pattern-Matching Bits 205
Bitstring Comprehensions 206
Bit Syntax Example: Decoding TCP Segments 206
Bitwise Operators 208
Serialization 208

References 210

vi | Table of Contents

Exercises 211

10. ETS and Dets Tables . 213
ETS Tables 213

Implementations and Trade-offs 214
Creating Tables 216
Handling Table Elements 217
Example: Building an Index, Act I 218
Traversing Tables 220
Example: Building an Index, Act II 222
Extracting Table Information: match 223
Extracting Table Information: select 225
Other Operations on Tables 226
Records and ETS Tables 226
Visualizing Tables 228

Dets Tables 229
A Mobile Subscriber Database Example 231

The Database Backend Operations 232
The Database Server 237

Exercises 242

11. Distributed Programming in Erlang . 245
Distributed Systems in Erlang 245
Distributed Computing in Erlang: The Basics 247

Node Names and Visibility 249
Communication and Security 250
Communication and Messages 252
Node Connections 253
Remote Procedure Calls 256
The rpc Module 258
Essential Distributed Programming Modules 258

The epmd Process 260
Distributed Erlang Behind Firewalls 261

Exercises 261

12. OTP Behaviors . 263
Introduction to OTP Behaviors 263
Generic Servers 266

Starting Your Server 266
Passing Messages 268
Stopping the Server 270
The Example in Full 271
Running gen_server 273

Table of Contents | vii

Supervisors 276
Supervisor Specifications 277
Child Specifications 278
Supervisor Example 279
Dynamic Children 280

Applications 281
Directory Structure 282
The Application Resource File 283
Starting and Stopping Applications 284
The Application Monitor 287

Release Handling 287
Other Behaviors and Further Reading 290
Exercises 291

13. Introducing Mnesia . 293
When to Use Mnesia 293
Configuring Mnesia 295

Setting Up the Schema 295
Starting Mnesia 296
Mnesia Tables 296

Transactions 299
Writing 299
Reading and Deleting 300
Indexing 301
Dirty Operations 302

Partitioned Networks 304
Further Reading 305
Exercises 306

14. GUI Programming with wxErlang . 309
wxWidgets 309
wxErlang: An Erlang Binding for wxWidgets 310

Objects and Types 311
Event Handling, Object Identifiers, and Event Types 312
Putting It All Together 313

A First Example: MicroBlog 314
The MiniBlog Example 317
Obtaining and Running wxErlang 321
Exercises 321

15. Socket Programming . 323
User Datagram Protocol 323
Transmission Control Protocol 327

viii | Table of Contents

A TCP Example 328
The inet Module 331
Further Reading 333
Exercises 334

16. Interfacing Erlang with Other Programming Languages . 335
An Overview of Interworking 336
Interworking with Java 337

Nodes and Mailboxes 337
Representing Erlang Types 338
Communication 338
Putting It Together: RPC Revisited 339
Interaction 340
The Small Print 341
Taking It Further 342

C Nodes 342
Going Further 345

Erlang from the Unix Shell: erl_call 346
Port Programs 346

Erlang Port Commands 347
Communicating Data to and from a Port 349

Library Support for Communication 350
Working in Ruby: erlectricity 351

Linked-in Drivers and the FFI 352
Exercises 353

17. Trace BIFs, the dbg Tracer, and Match Specifications . 355
Introduction 355
The Trace BIFs 357

Process Trace Flags 358
Inheritance Flags 360
Garbage Collection and Timestamps 361

Tracing Calls with the trace_pattern BIF 362
The dbg Tracer 365

Getting Started with dbg 366
Tracing and Profiling Functions 369
Tracing Local and Global Function Calls 369
Distributed Environments 371
Redirecting the Output 371

Match Specifications: The fun Syntax 374
Generating Specifications Using fun2ms 375
Difference Between ets and dbg Match Specifications 382

Match Specifications: The Nuts and Bolts 383

Table of Contents | ix

The Head 383
Conditions 384
The Specification Body 387
Saving Match Specifications 390

Further Reading 391
Exercises 392

18. Types and Documentation . 395
Types in Erlang 395

An Example: Records with Typed Fields 395
Erlang Type Notation 396

TypEr: Success Types and Type Inference 399
Dialyzer: A DIscrepancy AnaLYZer for ERlang Programs 401

Documentation with EDoc 402
Documenting usr_db.erl 403
Running EDoc 405
Types in EDoc 407
Going Further with EDoc 408

Exercises 410

19. EUnit and Test-Driven Development . 411
Test-Driven Development 411
EUnit 412

How to Use EUnit 413
Functional Testing, an Example: Tree Serialization 413

The EUnit Infrastructure 416
Assert Macros 416
Test-Generating Functions 416
EUnit Test Representation 417

Testing State-Based Systems 418
Fixtures: Setup and Cleanup 418

Testing Concurrent Programs in Erlang 419
Exercises 420

20. Style and Efficiency . 421
Applications and Modules 421

Libraries 422
Dirty Code 423
Interfaces 423
Return Values 424
Internal Data Structures 425

Processes and Concurrency 426
Stylistic Conventions 430

x | Table of Contents

Coding Strategies 435
Efficiency 437

Sequential Programming 437
Lists 439
Tail Recursion and Non-tail Recursion 440
Concurrency 440

And Finally... 442

Appendix: Using Erlang . 445

Index . 451

Table of Contents | xi

Foreword

Erlang is our solution to three problems regarding the development of highly concur-
rent, distributed “soft real-time systems”:

• To be able to develop the software quickly and efficiently

• To have systems that are tolerant of software errors and hardware failures

• To be able to update the software on the fly, that is, without stopping execution

When we “invented” Erlang, we focused on telecommunication systems, but today
these requirements are applicable to a large number of applications, and Erlang is used
in applications as divergent as distributed databases, financial systems, and chat serv-
ers, among others. Recent interest in Erlang has been fueled by its suitability for use on
multicore processors. While the world is struggling to find methods to facilitate porting
applications to multicore processors, Erlang applications can be ported with virtually
no changes.

Initially, Erlang was slow to spread; maybe it was too daring to introduce functional
programming, lightweight concurrency, asynchronous message passing, and a unique
method to handle failures, all in one go. It is easy to see why a language such as Java,
which is only a small step away from C++, was easier for people to swallow. However,
to achieve the goals I’ve just mentioned, we feel our approach has weathered the test
of time. The use of Erlang is expanding rapidly.

This book is an excellent and practical introduction of Erlang, and is combined with a
number of anecdotes explaining the ideas and background behind the development of
Erlang.

Happy and, I trust, profitable reading.

—Mike Williams
Director of Traffic and Feature Software

Product Development Unit WCDMA, Ericsson AB
one of the inventors of Erlang

xiii

Preface

What made us start writing this book in the first place is the enthusiasm we share for
Erlang. We wanted to help get the word out, giving back a little of what the community
has given to us. Although we both got into Erlang for very different reasons, the end
result was the same: lots of fun hours doing lots of fun stuff at a fraction of the effort
it would have taken with other languages. And best of all, it is not a tool we use for
hobby projects, but one we use on a daily basis in our real jobs!

Francesco: Why Erlang?
The year was 1994. While studying computer science at Uppsala University, one of the
courses I took was on parallel programming. The lecturer held up the first edition of
Concurrent Programming in Erlang (Prentice Hall) and said, “Read it.” He then held
up a handout and added, “These are the exercises, do them,” after which Erlang barely
got a mention; it was quickly overshadowed with the theory of threads, shared memory,
semaphores, and deadlocks.

As the main exercise for this course, we had to implement a simulated world inhabited
by carrots, rabbits, and wolves. Rabbits would roam this world eating carrots that grew
in random patches. When they had eaten enough carrots, the rabbits would get fat and
split in two. Wolves ran around eating up the rabbits; if they managed to catch and eat
enough rabbits, they would also get fat and split. Rabbits and wolves within a certain
distance of each other would broadcast information on food and predators. If a rabbit
found a carrot patch, other rabbits would quickly join him. If a wolf found a rabbit,
the pack would start chasing it.

The final result was amusingly fun to watch. The odd rabbit would run straight into a
group of wolves, while others would run in other directions, sometimes stopping to
grab a carrot en route. Every carrot patch, rabbit, and wolf was represented as an Erlang
process communicating through message passing.

The exercise took me about 40 hours to solve. Although I enjoyed using Erlang and
was positively surprised at the simplicity of its concurrency model and lack of OS
threads for every process, I did not think that much of it right there and then. After all,
it was one of the dozen or so languages I had to learn for my degree. Having used ML

xv

in my functional programming courses and ADA in my real-time programming courses,
for me Erlang was just another language in the crowd. That changed a few months later
when I started studying object-oriented programming.

In the object-oriented (OO) programming course, we were given the same simulated
world lab but had to solve it with Eiffel, an OO language our new lecturer insisted was
ideal for simulations. Although I had already solved the same problem and was able to
reuse a good part of the algorithms, it took me and a fellow student 120 man-hours to
solve.

This was the eye-opener that led me to believe the declarative and concurrent features
in Erlang had to be the direction in which software development was heading. At the
time, I was not sure whether the language that would lead the way in this paradigm
shift was going to be Erlang, but I was certain that whatever language it was, it would
be heavily influenced by Erlang and its ancestors. I picked up the phone and called Joe
Armstrong, one of the inventors of Erlang. A week later, I visited the Ericsson Computer
Science Lab for an interview, and I have never looked back.

Simon: Why Erlang?
I have worked in functional programming since the early 1980s, and have known about
Erlang ever since it was first defined about 20 years ago. What I find most attractive
about Erlang is that it’s a language that was designed from the start to solve real and
difficult problems, and to do it in an elegant and powerful way. That’s why we’ve seen
Erlang used in more and more systems in recent years.

It’s also a small language, which makes writing tools for it much more practical than
for a language such as Java, C++, or even Haskell. This, and the quality of the libraries
we’ve been able to build on in our work, has helped the functional programming group
at Kent to be very productive in implementing the Wrangler refactoring tool for Erlang.

Who Should Read This Book?
We have written this book to introduce you to programming in Erlang. We don’t expect
that you have programmed in Erlang before, nor do we assume that you are familiar
with functional programming in other languages.

We do expect you to have programmed in Java, C, Ruby, or another mainstream lan-
guage, and we’ve made sure that we point out to you where Erlang differs from what
you’re used to.

xvi | Preface

How to Read This Book
We wrote this book in two parts, the first to be read sequentially and the second can
be read concurrently (or sequentially in whatever order you like), as the chapters are
independent of each other.

The first 11 chapters of the book cover the core parts of Erlang:

• Chapter 1 gives a high-level introduction to the language, covering its key features
for building high-availability, robust concurrent systems. In doing this, we also
describe how Erlang came to be the way it is, and point out some of its high-profile
success stories, which explain why you may want to adopt Erlang in one of your
projects.

• The basics of sequential programming in Erlang are the subject of Chapters 2 and
3. In these chapters, we cover the central role of recursion in writing Erlang pro-
grams, as well as how single assignment in Erlang is quite different from the way
variables are handled in other languages, such as C and Java.

• While covering sequential programming, we also introduce the basic data types of
Erlang—numbers, atoms, strings, lists, and tuples—comparing them with similar
types in other languages. Other types are covered later: records in Chapter 7, and
function types and binaries in Chapter 9. Large-scale storage in ETS tables is the
topic of Chapter 10.

• Erlang’s distinctiveness comes to the fore in Chapters 4–6, which together cover
the concurrent aspects of Erlang, embodied in message passing communication
between concurrently executing processes running in separate memory spaces.

• It is possible to “hot-swap” code in a system, supporting software upgrades in run-
ning systems: this is the topic of Chapter 8.

• To conclude this part of the book, we cover distributed programming in Chap-
ter 11. This allows different Erlang runtime systems (or nodes), which might be
running on the same or different machines, to work together and interact as a
distributed system.

In the remaining chapters, we cover a variety of different topics largely independent of
each other. These include the following:

• The Open Telecom Platform (OTP) gives a set of libraries and design principles
supporting the construction of robust, scalable systems in Erlang; this is the subject
of Chapter 12.

• The Erlang distribution contains some standard computing applications: we cover
the Mnesia database in Chapter 13 and the wxErlang GUI programming library in
Chapter 14.

Preface | xvii

• Erlang distribution gives one mechanism for linking Erlang systems to each other.
Chapter 15 shows how Erlang supports programming across the Internet using
sockets, and Chapter 16 covers the various ways in which Erlang can interwork
with systems written in C, Java, and Ruby, as well as many other languages.

• The standard Erlang distribution comes with a number of very useful tools, and
we cover some of these next. Chapter 17 explains in depth how all aspects of Erlang
systems can be traced without degrading their performance, and Chapter 18 covers
tools for checking the correctness of programs, and for constructing documenta-
tion for Erlang systems. Unit testing, and how it is supported by EUnit, is the
subject of Chapter 19.

• The last chapter, Chapter 20, looks at how to write programs that are elegant,
readable, and efficient, and pulls together into one place much of the accumulated
experience of the Erlang community.

The Appendix covers how to get started with Erlang, how to use the Erlang shell,
popular tools for Erlang, and how to find out more about Erlang.

Each chapter is accompanied by a set of exercises, and you can download all the code
in this book from its website:

http://www.erlangprogramming.org

The website also has references to further reading as well as links to the major sites
supporting the Erlang community.

We wrote this book to be compatible with Erlang Release 13 (R13-B). Most of the
features we describe will work with earlier releases; known incompatibilities with more
recent earlier releases are detailed on our website.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, filenames, file extensions, and occasionally, emphasis
and keyword phrases.

Constant width
Indicates computer coding in a broad sense. This includes commands, options,
variables, attributes, keys, requests, functions, methods, types, classes, modules,
properties, parameters, values, objects, events, event handlers, XML and XHTML
tags, macros, and keywords.

Constant width bold
Indicates commands or other text that the user should type literally.

xviii | Preface

http://www.erlangprogramming.org

Constant width italics
Indicates text that should be replaced with user-supplied values or values deter-
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is intended to help you write programs and systems in Erlang. In general,
you may use the code in this book in your programs and documentation.

You do not need to contact the publisher for permission unless you are reproducing a
significant portion of the code. For example, if you are writing a program that uses
several chunks of code from this book you are not required to secure our permission.
Answering a question by citing this book and quoting example code does not require
permission.

Incorporating a significant amount of example code from this book into your product’s
documentation does require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Erlang Programming, by Francesco Ce-
sarini and Simon Thompson. Copyright © 2009 Francesco Cesarini and Simon Thomp-
son, 978-0-596-51818-9.”

If you feel your proposed use of code examples falls outside fair use or the permission
given here, feel free to contact us as permissions@oreilly.com.

Safari® Books Online
When you see a Safari® Books Online icon on the cover of your favorite
technology book, that means the book is available online through the
O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you easily
search thousands of top tech books, cut and paste code samples, download chapters,
and find quick answers when you need the most accurate, current information. Try it
for free at http://my.safaribooksonline.com.

Preface | xix

http://my.safaribooksonline.com/?portal=oreilly

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

On the web page for this book we list errata, examples, and any additional information.
You can access this page at:

http://www.oreilly.com/catalog/9780596518189

or at:

http://www.erlangprogramming.org

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our website at:

http://www.oreilly.com/

Acknowledgments
In writing this book, we need to acknowledge everyone who made it possible. We start
with Jan “Call Me Henry” Nyström, who helped jumpstart this project.

The team at O’Reilly Media provided us with endless support. In particular, our editor,
Mike Loukides, patiently guided us through the process and provided encouragement,
ensuring that the chapters kept on coming. Special thanks also go out to Audrey Doyle
for the copyediting, and to Rachel Monaghan, Marlowe Shaeffer, Lucie Haskins,
Sumita Mukherji, and everyone else on the production team.

We continue with the OTP team, and in particular, Bjorn Gustavsson, Sverker Eriksson,
Dan Gudmundsson, Kenneth Lundin, Håkan Mattsson, Raimo Niskanen, and Patrik
Nyblom, who helped us not only with the undocumented and unreleased features,
ensuring that what is in print is in line with the latest release, but also with accuracy
and correctness.

Other reviewers who deserve a special mention include Thomas Arts, Zvi Avraham,
Franc Bozic, Richard Carlsson, Dale Harvey, Oscar Hellström, Steve Kirsch, Charles
McKnight, Paul Oliver, Pierre Omidyar, Octavio Orozio, Rex Page, Michal Ptaszek,
Corrado Santoro, Steve Vinoski, David Welton, Ulf Wiger, and Mike Williams.

xx | Preface

http://www.oreilly.com/catalog/9780596518189
http://www.erlangprogramming.org
http://www.oreilly.com/

Although we will not go into detail regarding what each of you did, it is important that
you all know that your individual contributions had an influence in making this a better
book. Thank you all!

Francesco needs to thank Alison for all her patience and support. I did not know what
I was getting into when I agreed to write this book, and neither did you. Until the time
to start working on the next book comes, I promise you laptop- and cell phone-free
vacations. A thank you also goes to everyone at Erlang Training and Consulting for all
the encouragement and to Simon for being such a great coauthor. We should all do it
again sometime, as the result was worth it. But now, rest!

Simon wants to say a huge thank you to Jane, Alice, and Rory for their patience and
support over the past few very busy months: without your encouragement, it just
wouldn’t have happened. Thanks, too, to Francesco for inviting me to join the project:
it’s been really enjoyable working together. I hope we get the chance to do it again, just
not too soon....

Preface | xxi

CHAPTER 1

Introduction

Why are we really excited about introducing you to Erlang? What do we feel is really
special about the language? Its lightweight concurrency model with massive process
scalability independent of the underlying operating system is second to none. With its
approach that avoids shared data, Erlang is the perfect fit for multicore processors, in
effect solving many of the synchronization problems and bottlenecks that arise with
many conventional programming languages. Its declarative nature makes Erlang pro-
grams short and compact, and its built-in features make it ideal for fault-tolerant, soft
real-time systems. Erlang also comes with very strong integration capabilities, so Erlang
systems can be seamlessly incorporated into larger systems. This means that gradually
bringing Erlang into a system and displacing less-capable conventional languages is not
at all unusual.

Although Erlang might have been around for some time, the language itself, the virtual
machine, and its libraries have been keeping pace with the rapidly changing require-
ments of the software industry. They are constantly being improved by a competent,
enthusiastic, and dedicated team, aided by computer science researchers from univer-
sities around the world.

This introduction gives a high-level overview of the characteristics and features that
have made Erlang so successful, providing insight into the context in which the lan-
guage was designed, and how this influenced its current shape. Using case studies from
commercial, research, and open source projects, we talk about how Erlang is used for
real, comparing it with other languages and highlighting its strengths. We conclude by
explaining the approaches that have worked best for us when running Erlang projects.

Why Should I Use Erlang?
What makes Erlang the best choice for your project? It depends on what you are looking
to build. If you are looking into writing a number-crunching application, a graphics-
intensive system, or client software running on a mobile handset, then sorry, you
bought the wrong book. But if your target system is a high-level, concurrent, robust,
soft real-time system that will scale in line with demand, make full use of multicore

1

processors, and integrate with components written in other languages, Erlang should
be your choice. As Tim Bray, director of Web Technologies at Sun Microsystems, ex-
pressed in his keynote at OSCON in July 2008:

If somebody came to me and wanted to pay me a lot of money to build a large scale
message handling system that really had to be up all the time, could never afford to go
down for years at a time, I would unhesitatingly choose Erlang to build it in.

Many companies are using Erlang in their production systems:

• Amazon uses Erlang to implement SimpleDB, providing database services as a part
of the Amazon Elastic Compute Cloud (EC2).

• Yahoo! uses it in its social bookmarking service, Delicious, which has more than
5 million users and 150 million bookmarked URLs.

• Facebook uses Erlang to power the backend of its chat service, handling more than
100 million active users.

• T-Mobile uses Erlang in its SMS and authentication systems.

• Motorola is using Erlang in call processing products in the public-safety industry.

• Ericsson uses Erlang in its support nodes, used in GPRS and 3G mobile networks
worldwide.

The most popular open source Erlang applications include the following:

• The 3D subdivision modeler Wings 3D, used to model and texture polygon
meshes.

• The Ejabberd system, which provides an Extensible Messaging and Presence Pro-
tocol (XMPP) based instant messaging (IM) application server.

• The CouchDB “schema-less” document-oriented database, providing scalability
across multicore and multiserver clusters.

• The MochiWeb library that provides support for building lightweight HTTP serv-
ers. It is used to power services such as MochiBot and MochiAds, which serve
dynamically generated content to millions of viewers daily.

• RabbitMQ, an AMQP messaging protocol implementation. AMQP is an emerging
standard for high-performance enterprise messaging.

Although Uppsala University has for many years led the way with research on Erlang
through the High Performance Erlang Project (HiPE), many other universities around
the world are not far behind. They include the University of Kent in the United Kingdom
and Eötvös Loránd University in Hungary, which are both working on refactoring tools.
The Universidad Politécnica de Madrid of Spain together with Chalmers University of
Technology and the IT University (both in Sweden) are working on Erlang property-
based testing tools that are changing the way people verify Erlang programs.

With these companies, open source projects, and universities, we have just scratched
the surface of what has today become a vibrant international community spread across

2 | Chapter 1: Introduction

six continents. Blogs, user groups, mailing lists, and dedicated sites are now helping to
take the community to its next level.

The suitability of Erlang for server-side software has its roots in the history of the lan-
guage, as it was originally developed to solve problems in a subset of this particular
space, namely the telecom sector, and so it’s worth looking back to the invention of
Erlang in the 1980s.

The History of Erlang
In the mid-1980s, Ericsson’s Computer Science Laboratory was given the task of in-
vestigating programming languages suitable for programming the next generation of
telecom products. Joe Armstrong, Robert Virding, and Mike Williams—under the su-
pervision of Bjarne Däcker—spent two years prototyping telecom applications with all
of the available programming languages of the time. Their conclusion was that although
many of the languages had interesting and relevant features, no single language en-
compassed them all. As a result, they decided to invent their own. Erlang was influenced
by functional languages such as ML and Miranda, concurrent languages such as ADA,
Modula, and Chill, as well as the Prolog logic programming language. The software
upgrade properties of Smalltalk played a role, as did the Ericsson proprietary languages
EriPascal and PLEX.

With a Prolog-based Erlang virtual machine (VM), the lab spent four years prototyping
telecom applications with an evolving language that through trial and error became the
Erlang we know today. In 1991, Mike Williams wrote the first C-based virtual machine,
and a year later, the first commercial project with a small team of developers was
launched. The project was a mobility server, allowing DECT cordless phone users to
roam across private office networks. The product was successfully launched in 1994,
providing valuable feedback on improvements and missing features that got integrated
into the 1995 Erlang release.

Only then was the language deemed mature enough to use in major projects with hun-
dreds of developers, including Ericsson’s broadband, GPRS, and ATM switching sol-
utions. In conjunction with these projects, the OTP framework was developed and
released in 1996. OTP provides a framework to structure Erlang systems, offering ro-
bustness and fault tolerance together with a set of tools and libraries.

The history of Erlang is important in understanding its philosophy. Although many
languages were developed before finding their niche, Erlang was developed to solve the
“time-to-market” requirements of distributed, fault-tolerant, massively concurrent,
soft real-time systems. The fact that web services, retail and commercial banking, com-
puter telephony, messaging systems, and enterprise integration, to mention but a few,
happen to share the same requirements as telecom systems explains why Erlang is
gaining headway in these sectors.

The History of Erlang | 3

Ericsson made the decision to release Erlang as open source in December 1998 using
the EPL license, a derivative of the Mozilla Public License. This was done with no budget
or press releases, nor with the help of the corporate marketing department. In January
1999, the erlang.org site had about 36,000 page impressions. Ten years later, this num-
ber had risen to 2.8 million. This rise is a reflection of an ever-growing community
resulting from a combination of successful commercial, research, and open source
projects, viral marketing, blogging, and books, all driven by the need to solve hard
software problems in the domain for which Erlang had originally been created.

Erlang’s Characteristics
Although Erlang on its own is an attractive programming language, its real strength
becomes apparent when you put it together with the virtual machine (VM) and the
OTP middleware and libraries. Each of them contributes to making software develop-
ment in Erlang special. So, what are the features of Erlang that differentiate it from
many of its peers?

High-Level Constructs
Erlang is a declarative language. Declarative languages work on the principle of trying
to describe what should be computed, rather than saying how this value is calculated.
A function definition—particularly one that uses pattern matching to select among
different cases, and to extract components from complex data structures—will read
like a set of equations:

area({square, Side}) -> Side * Side ;
area({circle, Radius}) -> math:pi() * Radius * Radius.

This definition takes a shape—here a square or a circle—and depending on which kind
of shape it receives, it matches the correct function clause and returns the corresponding
area.

In Erlang, you can pattern-match not only on high-level data but also on bit sequen-
ces, allowing a startlingly high-level description of protocol manipulation functions.
Here is the start of a function to decode TCP segments:

decode(<< SourcePort:16, DestinationPort:16,
 SequenceNumber:32,
 AckNumber:32,
 DataOffset:4, _Reserved:4, Flags:8, WindowSize:16,
 Checksum:16, UrgentPointer:16,
 Payload/binary>>) when DataOffset>4 ...

In the preceding code, each numeric length, such as 4 in DataOffset:4, gives the number
of bits to be matched to that variable. By comparison, think of how you would achieve
the same effect in C or Java.

4 | Chapter 1: Introduction

http://erlang.org

Another aspect of Erlang is that functions (or closures) are first-class data. They can be
bound to a variable and can be treated just like any other data item: stored in a list,
returned by a function, or communicated between processes.

List comprehensions, also taken from the functional programming paradigm, combine
list generators and filters, returning a list containing the elements of the list generators
after the filters have been applied. The following example of list comprehensions, which
we explain fully in Chapter 9, is an implementation of the quicksort algorithm in a
couple of lines of code:

qsort([]) -> [];
qsort([X|Xs]) ->
 qsort([Y || Y<-Xs, Y =< X]) ++ [X] ++ qsort([Y || Y<-Xs, Y > X]).

Concurrent Processes and Message Passing
Concurrency in Erlang is fundamental to its success. Rather than providing threads
that share memory, each Erlang process executes in its own memory space and owns
its own heap and stack. Processes can’t interfere with each other inadvertently, as is all
too easy in threading models, leading to deadlocks and other horrors.

Processes communicate with each other via message passing, where the message can be
any Erlang data value at all. Message passing is asynchronous, so once a message is sent,
the process can continue processing. Messages are retrieved from the process mailbox
selectively, so it is not necessary to process messages in the order they are received. This
makes the concurrency more robust, particularly when processes are distributed across
different computers and the order in which messages are received will depend on am-
bient network conditions. Figure 1-1 shows an example, where an “area server” process
calculates areas of shapes for a client, as we did earlier in “High-Level Con-
structs” on page 4.

Figure 1-1. Communication between processes

Erlang’s Characteristics | 5

Scalable, Safe, and Efficient Concurrency
Erlang concurrency is fast and scalable. Its processes are lightweight in that the Erlang
virtual machine does not create an OS thread for every created process. They are cre-
ated, scheduled, and handled in the VM, independent of the underlying operating sys-
tem. As a result, process creation time is of the order of microseconds and independent
of the number of concurrently existing processes. Compare this with Java and C#,
where for every process an underlying OS thread is created: you will get some very
competitive comparisons, with Erlang greatly outperforming both languages.

Erlang processes communicate with each other through message passing. Regardless
of the number of concurrent processes in your system, exchanging messages within the
system takes microseconds. All that is involved in message passing is the copying of
data from the memory space of one process to the memory space of the other, all within
the same virtual machine. This differs from Java and C#, which work with shared
memory, semaphores, and OS threads. Even here, benchmarks show that Erlang man-
ages to outperform these languages for the same reasons it outperforms them in process
creation times.

You might think that comparing Erlang to C# and Java is unfair to these two languages,
as we are comparing apples and oranges. Well, you are right. Our point is that if you
want to build massively concurrent systems, you should be using the tool that is best
for the job, regardless of the underlying concurrency mechanism. As a result, the con-
currency model of an Erlang program would differ from that of languages where process
creation and message passing times are not as small. We describe the Erlang way of
dealing with concurrency in Chapters 4 through 6, and Chapter 12.

Soft Real-Time Properties
Even though Erlang is a high-level language, you can use it for tasks with soft real-time
constraints. Storage management in Erlang is automated, with garbage collection im-
plemented on a per-process basis. This gives system response times on the order of
milliseconds even in the presence of garbage-collected memory. Because of this, Erlang
can handle high loads with no degradation in throughput, even during sustained peaks.

Robustness
How do you build a robust system? Although Erlang might not solve all your problems,
it will greatly facilitate your task at a fraction of the effort of other programming
languages. Thanks to a set of simple but powerful error-handling mechanisms and
exception monitoring constructs, very general library modules have been built, with
robustness designed into their core. By programming for the correct case and letting
these libraries handle the errors, not only are programs shorter and easier to understand,
but they will usually contain fewer bugs.

6 | Chapter 1: Introduction

The libraries are collectively known as the OTP middleware. What exception monitor-
ing and error-handling mechanisms do they contain, and what libraries are built on top
of them?

• Erlang processes can be linked together so that if one crashes, the other will be
informed, and then can either handle the crash or choose to crash itself.

• OTP provides a number of generic behaviors, such as servers, finite state machines,
and event handlers. These worker processes have built-in robustness, since they
handle all the general (and therefore difficult) concurrent parts of these patterns;
all the user needs to do is to program the specific behavior of the particular server,
which is much more straightforward to program than the general behavior.

• These generic behaviors are linked to a supervisor behavior whose only task is to
monitor and handle process termination. OTP puts the idea of links into a frame-
work whereby a process supervises other workers and supervisors, and may itself
be supervised by yet another process, all in a hierarchical structure. Figure 1-2
illustrates a typical supervision tree.

• Using this supervision and linking, Erlang programmers can concentrate on pro-
gramming for the correct case, and can let the process fail in any other circumstan-
ces. This avoidance of defensive programming makes a programmer’s task much
easier, as well as making it more straightforward to understand how a program
behaves.

Although in this book we concentrate on Erlang and its error-handling mechanisms
and exception monitoring properties, we also provide an introduction to the OTP de-
sign patterns in Chapter 12.

Distributed Computation
Erlang has distribution incorporated into the language’s syntax and semantics, allowing
systems to be built with location transparency in mind. The default distribution mode
is based on TCP/IP, allowing a node (or Erlang runtime system) on a heterogeneous
network to connect to any other node running on any operating system. As long as
these nodes are connected through a TCP/IP network and the firewall has been correctly
configured, the result is a fully meshed network of nodes, where all the nodes can
communicate with each other.

As Erlang clusters were designed to execute behind firewalls, security is based on secret
cookies with very few restrictions on access rights. You have the ability to create more
disparate networks of distributed Erlang nodes using gateways, and if necessary, make
them communicate using secure Internet protocols such as SSL.

Erlang programs consist of processes that communicate via message passing. When
you start programming in Erlang, these will all be on one node, but as the syntax of
sending a message within the node is the same as sending it to a remote node, you can

Erlang’s Characteristics | 7

easily distribute your processes across a cluster of computers. With distribution built
into the language, operations such as clustering, load balancing, the addition of hard-
ware and nodes, communication, and reliability come with very little overhead and
correspondingly little code.

Integration and Openness
You want to use the right tool for the right job. Erlang is an open language allowing
you to integrate legacy code or new code where programming languages other than
Erlang are more suitable for the job. As a result, there are mechanisms for interworking
with C, Java, Ruby, and other programming languages, including Python, Perl, and
Lisp.

High-level libraries allow Erlang nodes to communicate with nodes executing Java or
C, making them appear and behave like distributed Erlang nodes. Other external lan-
guages can be tied in more tightly using drivers that are linked into the Erlang runtime
system itself, as a device driver would be, and sockets can also be used for communi-
cation between Erlang nodes and systems written in other languages using popular
protocols such as HTTP, SNMP, and IIOP.

Figure 1-2. An example supervision tree

8 | Chapter 1: Introduction

The fact that distribution is built into Erlang means that integrating it with other sys-
tems is more natural than in other languages. The facilities for handling network data
formats are an important part of the language and its libraries, rather than a bolted-on
afterthought. The tracing and logging facilities also give you a clear picture of how the
integration is working, enabling you to debug and tune systems much more effectively.

Erlang and Functional Programming
The recent success of Erlang is a success for functional programming, too, because it
uses functional programming principles without making a big fuss about it: they are
simply the right foundation on which to build a language with concurrency designed
in from the start.

One of the prevalent myths in the community in the mid-1980s was that functional
programming languages would be the only languages capable of working on the
general-purpose parallel machines that were “just around the corner.” It didn’t turn
out like that 20 years ago, but perhaps that’s exactly what we are seeing now in the way
that Erlang is being used to provide massive concurrency in server farms, cloud com-
puting, and on the multicore processors inside all of our computers, from laptops on up.

Erlang and Multicore
The shift to multicore is inevitable. Parallelizing legacy C and Java code is very hard,
and debugging parallelized C and Java is even harder...but what alternative is there?

The Erlang model for concurrency—separate processes with no shared memory com-
municating via message passing—naturally transfers to multicore processors in a way
that is largely transparent to the programmer, so that you can run your Erlang programs
on more powerful hardware without having to redesign them.

Symmetric multiprocessing (SMP) support in Erlang was first developed experimentally
in the late 1990s, and is now an integral part of the standard release. The ethos of the
Erlang/OTP development team at Ericsson is to make SMP work, measure its per-
formance, find the bottlenecks, and optimize. Since releasing the first SMP-enabled
version of Erlang, this has been their approach. Over recent releases, the virtual machine
model has evolved from a single monolithic run queue—possibly with processes run-
ning on different processors—to a run queue for each processor, ensuring that the run
queue is no longer a bottleneck for the system, as illustrated in Figure 1-3. As more
complex processors emerge, the runtime system will be able to evolve with them.

The goal with Erlang’s SMP is to hide the problems and awareness of SMP from the
programmer. Programmers should develop and structure their code as they have always
done, optimally using concurrency and without having to worry about the underlying
operating system and hardware. As a result, Erlang programs should run perfectly well
on any system, regardless of the number of cores or processors.

Erlang and Multicore | 9

Case Studies
Let’s start looking at how the features we just described have contributed to some of
Erlang’s successes. Ericsson’s first major Erlang product was the AXD301 ATM switch;
more recently, Erlang has been the key to implementing the CouchDB schema-free,
document-oriented database. Finally, we report on a Motorola-based research project
comparing the productivity of Erlang and C++ head on.

The AXD301 ATM Switch
The AXD301, a telephony-class 10–160 Gbps ATM switch, was designed and imple-
mented from scratch in less than three years. At the heart of the AXD301 are more than
1.5 million lines of Erlang code, handling all the complex control logic, and overseeing
operations and maintenance. This integrates with about half a million lines of C/C++
implementing low-level protocol and device drivers, much of it coming from third-party
sources.

This ATM switch has been installed in networks all over the world, but the installation
that shot to prominence was used by British Telecom to build what was at the time the
largest “Voice over ATM” backbone in the world. According to an Ericsson press re-
lease issued at the end of the trial period, “Since cut-over of the first nodes in BT’s
network in January 2002 only one minor fault has occurred, resulting in 99.9999999%
availability.” The director of Ericsson’s Next Generation Systems program, Bernt Nils-
son, confirmed that “the network performance has been so reliable that there is almost
a risk that our field engineers do not learn maintenance skills.”

Figure 1-3. Run queues on a multicore processor

10 | Chapter 1: Introduction

Experiences with the AXD301 suggest that “five nines” availability, downtime for soft-
ware upgrades included, is a more realistic assessment. For nonstop operations, you
need multiple computers, redundant power supplies, multiple network interfaces and
reliable networks, cooling systems that never fail, and cables that system administrators
cannot trip over, not to mention engineers who are well practiced in their maintenance
skills. Considering that this target has been achieved at a fraction of the effort that
would have been needed in a conventional programming language, it is still something
to be very proud of.

How did Erlang contribute to the success of the AXD301? It supports incremental
development, with the absence of side effects, making it easier to add or modify single
components. Support for robustness and concurrency is built into the language and
available from the start.

Erlang was very popular with the programming teams that found they were building
much more compact code, thus dramatically improving their productivity. Experience
from the project, although not scientifically documented, suggests that the Erlang code
was 4 to 10 times shorter than similar systems written in C/C++, Java, and PLEX,*

while the fault rate per thousand lines of code was the same.

Ericsson has gone on to use Erlang on other projects across the company, including a
SIP telephony stack, control software for wireless base stations, telephony gateway
controllers, media gateways, broadband solutions, and in GPRS and 3G data trans-
mission. And these are just a few of the many we are allowed to talk about.

CouchDB
When Damien Katz decided to implement CouchDB, he wanted to be the one devel-
oping “cool stuff.” He wanted to see whether he was good enough to develop something
from scratch, pushing the code base to new levels. CouchDB is an open source database
that provides a schema-less replicated document store, storing objects in JSON format
and accessed through a RESTful interface.

He wrote the first version of CouchDB in C++. His system consisted of three compo-
nents: a storage engine, a view engine, and a query language. The complexity of his
components increased, and when he started hitting concurrency issues, he felt like he
had hit a wall. He stumbled upon Erlang, downloaded it, and quickly came to the
realization that it would solve his problems.

From the world Damien was coming from, Erlang initially sounded very complicated,
and he believed it would be hard to learn. But when he got down to the details, what
instead struck him was the simplicity of the language. Getting something to work with
Erlang took extra effort compared to Java, as there were fewer tools and IDEs available,

* PLEX is a proprietary language developed by Ericsson and used extensively in the AXE-10 switches. Just like
Erlang, many of its features were ahead of its time. It was never released to the public.

Case Studies | 11

but to get something working reliably ended up taking much less talent and time than
any of the other languages he knew.

Erlang gave Damien the features he needed for CouchDB at a fraction of the effort of
using conventional languages. When migrating CouchDB to Erlang, he focused on the
concurrency aspects and integrating it with his existing C++ components. He ended
up replacing the entire C++ code base, as Erlang had all of the qualities he was looking
for in a database application. They included support for intensive I/O, high reliability,
and facilities for dealing with failure gracefully. The first benchmarks on the code, even
before it was profiled, allowed in excess of 20,000 simultaneous connections. This
compared pretty favorably with the 500 he expected to get on the C++ version!

Once it was released, CouchDB started getting lots of attention in the open source
community. Damien made the decision to release the code under the Apache license,
giving him the freedom he needed to continue development. Today, CouchDB is one
of the best known Erlang open source applications currently being used in production
systems worldwide.

What happened to Damien? He got a job with IBM, allowing him to continue devel-
oping CouchDB as an open source project. In Damien’s words, now he is indeed “the
guy who gets paid to work on cool stuff.” You can read out more about CouchDB at
http://www.couchdb.org.

Comparing Erlang to C++
Most experienced Erlang programmers will confirm that the Erlang programs they have
written are substantially shorter than their counterparts in other mainstream program-
ming languages used by the industry. Indeed, this was an urban legend among Ericsson
programmers long before Erlang was released as open source. But until recently, there
was very little scientific evidence to back up these claims. Quicksort (Chapter 9) using
list comprehensions or remote procedure call server examples (Chapter 11), both of
which we cover in this book, were used to argue the case. When comparing program-
ming languages, however, you must benchmark whole systems in the application do-
main for which those languages were designed, not code snippets or simple functions.

Heriot-Watt University in the United Kingdom received an EPSRC† grant to study the
impact of distributed functional programming languages in the telecom sector. When
we first heard about this grant, our reaction was, why not speak with Ericsson and get
it over with? We quickly changed our minds when we realized the research project was
being done in cooperation with Motorola Labs, one of Ericsson’s competitors. Al-
though Heriot-Watt might have taken Ericsson’s word that Erlang was suitable for
programming telecom applications, Motorola wasn’t having any of it.

† The Engineering and Physical Sciences Research Council provides U.K. government support for science
research in universities.

12 | Chapter 1: Introduction

http://www.couchdb.org

The focus of the study consisted of two C++-based systems referred to as the Data
Mobility (DM) component and the Dispatch Call Controller (DCC). These systems
handled digital communication streams for pocket radio systems as used by emergency
services. The DM been written with fault tolerance and reliability in mind. The imple-
mentation was done by good C++ programmers who based their development work
on proprietary Motorola libraries. The DCC was an internal research prototype inten-
ded for evaluating the use of C++ and CORBA to gain scalability.

The Erlang rewrites were implemented by Jan Henry Nyström, an experienced Erlang
programmer with an academic background. Two Erlang rewrites were done of the DM
and only one of the DCC. The first DM implementation interfaced with Motorola’s
libraries, and the second was a pure Erlang implementation. The DCC was a pure
Erlang implementation. Comparisons were made of the performance, robustness, pro-
ductivity, and impact of the programming language constructs.

The interesting conclusions of this research came with the pure Erlang implementa-
tions. In the DM, there was an 85% reduction in code. This was explained by the fact
that 27% of the C++ code consisted of defensive programming, 11% of memory man-
agement, and 23% of high-level communication, all features which in Erlang are part
of the semantics of the language or are implemented in the OTP libraries. The DCC’s
code base was more in line with the folklore and urban legends, namely that it was
about 70% smaller than its C++ counterpart.

The Erlang DM resulted in a 100% performance increase when compared to the C++
version, which crashed when severely overloaded. Although the throughput might
sound surprising at first, it was a result of Erlang and its lightweight concurrency model
being the right tool for the task. The mobility application in question had lots of con-
currency, short messages, and little in terms of heavy processing and number crunching.
The C++ implementation was never implemented to handle the loads it was subjected
to, so as a result, the conclusion was that these load results might not be relevant and
are certainly unfair to the C++ implementation. They do, however, demonstrate an
important property of Erlang-based systems, which are stable under heavy loads and
recover automatically when the load drops.

Although Erlang pioneers argued their case of shorter and more compact code based
on experience, this study has finally provided empirical data to support the claims. A
full report that fully confirms the “Erlang advantage” is available in “High-level distri-
bution for the rapid production of robust telecoms software: comparing C++ and
Erlang.”‡

‡ Nyström, J.H., P.W. Trinder, and D.J. King. Concurrency and Computation: Practice & Experience, 20(8),
2008.

Case Studies | 13

How Should I Use Erlang?
The philosophy used to develop Erlang fits equally well with the development of Erlang-
based systems. Quoting Mike Williams, one of the three inventors of Erlang:

Find the right methods—Design by Prototyping.

It is not good enough to have ideas, you must also be able to implement them and know
they work.

Make mistakes on a small scale, not in a production project.

In line with these quotes, all successful Erlang projects should start with a prototype,
and Erlang has all the support you need to get a prototype up and running quickly.
Working prototypes usually cover a subset of the functionality and allow end-to-end
tests of the system. If, for example, you were building an IM server (a recurring theme
throughout this book), valid functionality to test could include the ability to sign on
and send messages to a remote server without worrying about issues such as redun-
dancy, persistency, and security.

Software development in Erlang is best achieved using an agile approach, incrementally
delivering systems of increasing functionality over a short cycle period. Teams should
be small in size, and, where possible, tests should be automated. The tools available
with Erlang, discussed in the body of this book and in the section “Integration and
Openness” on page 8, give excellent software development support. Testing is aided
by EUnit for unit testing, and Common Test for system testing. Other tools include
cover, providing coverage analysis, and Dialyzer, a static analysis tool that identifies
software discrepancies such as type errors, dead code, and unsafe code.

If you’re going to introduce Erlang to your organization, it can be a good strategy to
start small, bringing in Erlang for a small project (or subsystem) where you can play to
Erlang’s strengths. This works particularly well for Erlang because it has distribution
and integration designed in from the start, as we described in the section “Integration
and Openness” on page 8, and virtually all production Erlang systems interwork with
other languages and systems. Once you have achieved success on a small scale, you can
start to think bigger!

The website for this book and the Appendix contain links about where you can go to
learn more about Erlang itself, the tools that support program development, and the
Erlang community. But now, it’s time to get to work....

14 | Chapter 1: Introduction

http://www.erlangprogramming.org

CHAPTER 2

Basic Erlang

This chapter is where we start covering the basics of Erlang. You may expect we’ll just
be covering things you have seen before in programming languages, but there will be
some surprises, whether your background is in C/CC++, Java, Python, or functional
programming. Erlang has assignment, but not as you know it from other imperative
languages, because you can assign to each variable only once. Erlang has pattern
matching, which not only determines control flow, but also binds variables and pulls
apart complex data structures. Erlang pattern matching is different in subtle ways from
other functional languages. So, you’ll need to read carefully! We conclude the chapter
by showing how to define Erlang functions and place them into modules to create
programs, but we start by surveying the basic data types in Erlang.

Integers
Integers in Erlang are used to denote whole numbers. They can be positive or negative
and expressed in bases other than 10. The notion of a maximum size of integers in
Erlang does not exist, and so arbitrarily large whole numbers can be used in Erlang
programming. When large integers do not fit in a word, they are internally converted
to representation using an arbitrary number of words, more commonly known as
bignums. While bignums give completely accurate calculation on arbitrary-size inte-
gers, this makes their implementation less efficient than fixed-size integers. The only
limit on how large an integer can become depends on the physical constraints of the
machine, namely the available memory. Some examples of integers include:

−234 0 10 100000000

To express integers in a base other than 10, the Base#Value notation is used. The base
is an integer between 2 and 16, and the value is the number in that base; for example,
2#1010 denotes 10 in base 2, and −16#EA denotes –234 in base 16, since the letters A
through F are used to denote the numbers 10 through 15 in base 16:

2#1010 −16#EA

15

To express characters as ASCII values, the $Character notation is used. $Character
returns the ASCII value of Character. $a represents the integer 97 and $A represents the
integer 65. The ASCII value representation of a newline, $\n, is 10:

$a $A $\n

The Erlang Shell
Start an Erlang shell by typing erl at the command prompt in a Unix shell, or in Win-
dows by clicking the Erlang icon in the Start menu. More details about obtaining and
running Erlang are given in the Appendix. When you get the Erlang command prompt
(of the form number>), try typing some integers in their various notations. Do not forget
to terminate your expression with a period or full stop (.), and then press the Enter key:

1> −234.
-234
2> 2#1010.
10
3> $A.
65

If you do not type a full stop at the end of your input, the Erlang shell will not evaluate
what you have typed and will continue to collect input until you type a terminating full
stop and press Enter:

4> 5-
4>
4> 4.
1

The 1>, 2>, and so on are the command prompts, which show that the Erlang shell is
ready to receive an input expression. When you press Enter, and the line you typed in
is terminated by a full stop, the shell will evaluate what you typed, and, if successful,
will display the result. Note how the various integer notations are all translated and
displayed in base 10 notation. If you type an invalid expression, you will get an error,
as in:

4> 5-.
* 1: syntax error before: '.'
5> q().

Ignore errors for the time being, as we will cover them in Chapter 3. To recover from
having made an error, just press the Enter key a few times, add a full stop, and terminate
with a final press of the Enter key. If you want to exit the shell, just type q() followed
by a full stop.

16 | Chapter 2: Basic Erlang

Floats
Floats in Erlang are used to represent real numbers. Some examples of floats include:

17.368 −56.654 1.234E-10.

The E-10 is a conventional floating-point notation stating that the decimal point has
been moved 10 positions to the left: 1.234E-10 is the same as writing 1.234×10−10,
namely 0.0000000001234. The precision of the floats in Erlang is given by the 64-bit
representation in the IEEE 754–1985 standard. Before going on to the next section, try
typing a few floats in the Erlang shell.

Soft real-time aspects of telecom applications rarely rely on floats. So
historically, the implementation of efficient floating-point operations
was a low priority for the Erlang virtual machine (VM). When Björn
Gustavsson, one of the VM’s maintainers, started working on a hobby
project focused on modeling 3D graphics, Wings3D, he was not satis-
fied with the performance. Operations on real numbers suddenly be-
came much more efficient. This was, of course, a great boon for anyone
doing real number computations (e.g., graphics) in Erlang.

Mathematical Operators
Operations on integers and floats include addition, subtraction, multiplication, and
division. As previously shown, + and – can be used as unary operators in front of
expressions of the format Op Expression, such as –12 or +12.5. Operations on integers
alone always result in an integer, except in the case of floating-point division, where
the result is a float. Using div will result in an integer without a remainder, which has
to be computed separately using the rem operator. Table 2-1 lists the arithmetic
operators.

Table 2-1. Arithmetic operators

Type Description Data type

+ Unary + Integer | Float

− Unary − Integer | Float

* Multiplication Integer | Float

/ Floating-point division Integer | Float

div Integer division Integer

rem Integer remainder Integer

+ Addition Integer | Float

− Subtraction Integer | Float

Floats | 17

All mathematical operators are left-associative. In Table 2-1, they are listed in order of
precedence. The unary + and − have the highest precedence; multiplication, division,
and remainder have the next highest precedence; and addition and subtraction have
the lowest precedence.

So, for example, evaluating −2 + 3 / 3 will first divide 3 by 3, giving the float 1.0, and
then will add −2 to it, resulting in the float −1.0. You can see here that it is possible to
add an integer to a float: this is done by first coercing the integer to a float before
performing the addition.

To override precedence, use parentheses: (−2 + 3) * 4 will evaluate to 4, whereas −2
+ 3 * 4 gives the result 10 and −(2 + 3 * 4) evaluates to −14.

Now, let’s use the Erlang shell as a glorified calculator* and test these operators. Note
the results, especially when mixing floats and integers or dealing with floating-point
division. Try out various combinations yourself:

1> +1.
1
2> −1.
-1
3> 11 div 5.
2
4> 11 rem 5.
1
5> (12 + 3) div 5.
3
6> (12+3)/5.
3.00000
7> 2*2*3.14.
12.5600
8> 1 + 2 + 3 + 5 + 8.
19
9> 2*2 + −3*3.
-5
10> 1/2 + (2/3 + (3/4 + (4/5))) - 1.
1.71667

Before going on to the next section, try typing 2.0 rem 3 in the shell:

13> 2.0 rem 3.
** exception error: bad argument in an arithmetic expression
 in operator rem/2
 called as 2.0 rem 3

You are trying to execute an operation on a float and an integer when the Erlang runtime
system is expecting two integers. The error you see is typical of errors returned by the
runtime system. We will cover this and other errors in Chapter 3. If you come from a

* Based on personal experience and confirmed by threads on the Erlang-questions mailing list, this is more
common than you might first believe.

18 | Chapter 2: Basic Erlang

C or a Java background, you might have noticed that there is no need to convert integers
to floats before performing floating-point division.

Atoms
Atoms are constant literals that stand for themselves. Atoms serve much the same pur-
pose as values in enumeration types in other languages; for the beginner, it sometimes
helps to think of them as a huge enumeration type. To compare with other languages,
the role of atoms is played by #define constants in C and C++, by “static final” values
in Java, and by “enums” in Ruby.

The only operations on atoms are comparisons, which are implemented in a very effi-
cient way in Erlang. The reason you use atoms in Erlang, as opposed to integers, is that
they make the code clear yet efficient. Atoms remain in the object code, and as a result,
debugging becomes easier; this is not the case in C or C++ where the definitions are
only introduced by the preprocessor.

Atoms start with a lowercase letter or are delimited by single quotes. Letters, digits,
the “at” symbol (@), the full stop (.), and underscores (_) are valid characters if the
atom starts with a lowercase letter. Any character code is allowed within an atom if the
atom is encapsulated by single quotes. Examples of atoms starting with a lowercase
letter include:

january fooBar alfa21 start_with_lower_case node@ramone true false

When using quotes, examples include:

'January' 'a space' 'Anything inside quotes{}#@ \n\012'
'node@ramone.erlang-consulting.com'

The concept of atoms in Erlang was originally inspired—as were a num-
ber of aspects of the language—by the logic programming language
Prolog. They are, however, also commonly found in functional pro-
gramming languages.

Now try typing some atoms in the shell. If at any point, the shell stops responding, you
have probably opened a single quote and forgotten to close it. Type '. and press Enter
to get back to the shell command line. Experiment with spaces, funny characters, and
capital letters. Pay special attention to how the quotes are (and are not) displayed and
how and where the expressions are terminated with a full stop:

1> abc.
abc
2> 'abc_123_CDE'.
abc_123_CDE
3> 'using spaces'.
'using spaces'
4> 'lowercaseQuote'.

Atoms | 19

lowercaseQuote
5> '\n\n'.
'\n\n'
6> '1
6> 2
6> 3
6> 4'.
'1\n2\n3\n4'
7> 'funny characters in quotes: !"£$%^&*()-='.
'funny characters in quotes: !"£$%^&*()-='
8> '1+2+3'.
'1+2+3'
9> 'missing a full stop.'
9> .
'missing a full stop.'

Booleans
There are no separate types of Boolean values or characters in Erlang. Instead of a
Boolean type, the atoms true and false are used together with Boolean operators. They
play the role of Booleans in being the results of tests, and in particular, comparisons:

1> 1==2.
false
2> 1<2.
true
3> a>z.
false
4> less<more.
true

Atoms are ordered in lexicographical order. We give more details of these comparisons
later in this chapter. Erlang has a wide variety of built-in functions, usually called BIFs
in the Erlang community, which can be used in your programs and in the shell. The
built-in function is_boolean gives a test of whether an Erlang value is a Boolean:

5> is_boolean(9+6).
false
6> is_boolean(true).
true

Complex tests can be formed using the logical operators described in Table 2-2.

Table 2-2. Logical operators

Operator Description

and Returns true only if both arguments are true

andalso Shortcut evaluation of and: returns false if the first argument is false, without evaluating the second

or Returns true if either of the arguments is true

orelse Shortcut evaluation of or: returns true if the first argument is true, without evaluating the second

20 | Chapter 2: Basic Erlang

Operator Description

xor “Exclusive or”: returns true if one of its arguments is true and the other false

not Unary negation operator: returns true if its argument is false, and vice versa

In the following code, the binary operators are infixed, or placed between their two
arguments:

1> not((1<3) and (2==2)).
false
2> not((1<3) or (2==2)).
false
3> not((1<3) xor (2==2)).
true

Tuples
Tuples are a composite data type used to store a collection of items, which are Erlang
data values but which do not have to all be the same type. Tuples are delimited by curly
brackets, {...}, and their elements are separated by commas. Some examples of tuples
include:

{123, bcd} {123, def, abc} {abc, {def, 123}, ghi} {}
{person, 'Joe', 'Armstrong'} {person, 'Mike', 'Williams'}

The tuple {123,bcd} has two elements: the integer 123 and the atom bcd. The tuple
{abc, {def, 123}, ghi} has three elements, as the tuple {def, 123} counts as one
element. The empty tuple {} has no elements. Tuples with one element, such as
{123}, are also allowed, but because you could just use the element on its own “untu-
pled,” it’s not a good idea in general to use them in your code.

In a tuple, when the first element is an atom, it is called a tag. This Erlang convention
is used to represent different types of data, and will usually have a meaning in the
program that uses it. For example, in the tuple {person, 'Joe', 'Armstrong'}, the atom
person is the tag and might denote that the second field in the tuple is always the first
name of the person, while the third is the surname.

The use of a first position tag is to differentiate between tuples used for different pur-
poses in the code. This greatly helps in finding the cause of errors when the wrong tuple
has been mistakenly passed as an argument or returned as a result of a function call.
This is considered a best practice for Erlang.

A number of built-in functions are provided to set and retrieve elements as well as get
the tuple size:

1> tuple_size({abc, {def, 123}, ghi}).
3
2> element(2,{abc, {def, 123}, ghi}).
{def,123}
3> setelement(2,{abc, {def, 123}, ghi},def).

Tuples | 21

{abc,def,ghi}
4> {1,2}<{1,3}.
true
5> {2,3}<{2,3}.
false
6> {1,2}=={2,3}.
false

In command 2 note that the elements of the tuple are indexed from 1 rather than zero.
In the third example, the result is a new tuple, with a different value—def—in the
second position, and the same values as the old tuple in the other positions. These
functions are all generic in that they can be used over any kind of tuple, of any size.

Before starting to look at lists, make sure you experiment and get better acquainted
with tuples and the tuple BIFs in the Erlang shell.

Lists
Lists and tuples are used to store collections of elements; in both cases, the elements
can be of different types, and the collections can be of any size. Lists and tuples are very
different, however, in the way that they can be processed. We begin by describing how
lists are denoted in Erlang, and examine the way that strings are a special kind of list,
before explaining in detail how lists can be processed.

Lists are delimited by square brackets, [...], and their elements are separated by com-
mas. Elements in lists do not have to be of the same data type and, just like tuples, can
be freely mixed. Some examples of lists include:

[january, february, march]
[123, def, abc]
[a,[b,[c,d,e],f], g]
[]
[{person, 'Joe', 'Armstrong'}, {person, 'Robert', 'Virding'},
 {person, 'Mike', 'Williams'}]
[72,101,108,108,111,32,87,111,114,108,100]
[$H,$e,$l,$l,$o,$,$W,$o,$r,$l,$d]
"Hello World"

The list [a,[b,[c,d,e],f], g] is said to have a length of 3. The first element is the atom
a, the second is the list [b,[c,d,e],f], and the third is the atom g. The empty list is
denoted by [], while [{person, 'Joe', 'Armstrong'}, {person, 'Robert',
'Virding'}, {person, 'Mike', 'Williams'}] is a list of tagged tuples.

Characters and Strings
Characters are represented by integers, and strings (of characters) are represented by
lists of integers. The integer representation of a character is given by preceding the
character with the $ symbol:

22 | Chapter 2: Basic Erlang

1> $A.
65
2> $A + 32.
97
3> $a.
97

There is no string data type in Erlang. Strings are denoted by lists of ASCII values and
represented using the double quotes (") notation. So, the string "Hello World" is in fact
the list [72,101,108,108,111,32,87,111,114,108,100]. And if you denote the integers
using the ASCII integer notation $Character, you get [$H,$e,$l,$l,$o,$,$W,$o,$r,$l,
$d]. The empty string "" is equivalent to the empty list []:

4> [65,66,67].
"ABC"
5> [67,$A+32,$A+51].
"Cat"
6> [72,101,108,108,111,32,87,111,114,108,100].
"Hello World"
7> [$H,$e,$l,$l,$o,$,$W,$o,$r,$l,$d].
"Hello World"

Strings and Binaries
Telecom applications do not rely on string operations, and as a result, strings were
never included as a data type in Erlang. Every character in Erlang consumes 8 bytes in
the 32-bit emulator (and 16 in the 64-bit emulator), ensuring that characters and strings
are not stored in a memory-efficient way.

Erlang does include binaries, which we discuss in Chapter 9, and these are recommen-
ded for representing long strings, particularly if they are being transported by an
application rather than being analyzed in any way. Recent releases of Erlang have im-
proved the speed of binary processing, and it looks like this will continue.

This implementation has not stopped Erlang from making inroads in string-intensive
applications, however. We have implemented websites that handle thousands of dy-
namic web pages per second and systems in which the XML API requires the parsing
of thousands of SOAP requests per second. These systems run on small hardware clus-
ters you can buy off eBay for a few hundred dollars.

As the spread of Erlang continues into new problem domains, the current implemen-
tation will probably be more of an issue, but so far very few production systems have
suffered as a result of this implementation choice.

Atoms and Strings
What is the difference between atoms and strings? First, they can be processed in dif-
ferent ways: the only thing you can do with atoms is compare them, whereas you can
process strings in a lot of different ways. The string "Hello World" can be split into its

Lists | 23

list of constituent words—["Hello", "World"], for instance; you can’t do the same for
the atom 'Hello World'.

You could use a string to play the role of an atom, that is, as a constant literal. However,
another difference between atoms and strings is efficiency. Representation of a string
takes up space proportional to the string’s size, whereas atoms are represented in a
system table and take a couple of bytes to reference regardless of their size. If a program
is to compare two strings (or lists), it needs to compare the strings character by character
while traversing both of them. When comparing atoms, however, the runtime system
compares an internal identifier in a single operation.

Building and Processing Lists
As we said earlier, lists and tuples are processed in very different ways. A tuple can be
processed only by extracting particular elements, whereas when working with lists, it
is possible to break a list into a head and a tail, as long as the list is not empty. The head
refers to the first element in the list, and the tail is another list that contains all the
remaining elements; this list can itself be processed further. This is illustrated in Fig-
ure 2-1.

Just as a list can be split in this way, it is possible to build or construct a list from a list
and an element. The new list is constructed like this—[Head|Tail], which is an example
of a cons, short for constructor.

Figure 2-1. The recursive definition of lists

So, if you take the list [1,2,3], the head would be 1 and the tail would be [2,3]. Using
the cons operator, the list can be represented as [1|[2,3]]. Breaking the tail further,
you would get [1|[2|[3]] and [1|[2|[3|[]]]]. A final valid notation for this list is of
the format [1,2|[3|[]]], where you can have more than one element separated by
commas before appending the tail with the cons operator. All of these lists are equiv-
alent to the original list [1,2,3]. If the last tail term is the empty list, you have a proper or
well-formed list.

When learning Erlang, the recursive definition of lists is the first hurdle that people can
stumble on. So, just to be on the safe side, here is one more example where all of the
lists are semantically equivalent:

24 | Chapter 2: Basic Erlang

[one, two, three, four]
[one, two, three, four|[]]
[one, two|[three, four]]
[one, two|[three|[four|[]]]]
[one|[two|[three|[four|[]]]]]

Note that you must have an element on the lefthand side of the cons operator and a
list on the right, both within the square brackets, for the result to be a proper or well-
formed list.

In fact, lists in Erlang do not have to be proper, meaning that the tail does not necessarily
have to be a list. Try typing [[1, 2]|3] in the shell. What is the result? Expressions such
as [1|2] and [1,2|foo] are syntactically valid Erlang data structures, but are of only
limited value.† Nonproper lists can be useful in supporting demand-driven or lazy pro-
gramming, and we talk about that in Chapter 9. Apart from this, it is one of the con-
ventions of Erlang programming that use of nonproper lists should be avoided. That
is because it is normally impossible to determine just by inspecting the code whether
their use was intentional or an error. Writing [2|3] instead of [2|[3]], for example,
results in a valid Erlang expression that compiles without any errors. It will, however,
generate a runtime error when the tail of the list is treated as a list and not as an atom.

List Functions and Operations
Lists are one of the most useful data types in Erlang, and, especially in combination
with tuples, they can be used to represent all sorts of complex data structures. In par-
ticular, lists are often used to represent collections of objects, which can be split into
other collections, combined, and analyzed.

Many operations on lists are defined in the lists library module, and you can see some
examples in the following shell session. These functions are not BIFs, and so are called
by putting the module name in front of the function, separated by a colon (:) as in
lists:split. The effect of the functions should be clear from the examples. You’ll see
how to define functions such as this in the next chapter:

1> lists:max([1,2,3]).
3
2> lists:reverse([1,2,3]).
[3,2,1]
3> lists:sort([2,1,3]).
[1,2,3]
4> lists:split(2,[3,4,10,7,9]).
{[3,4],[10,7,9]}
5> lists:sum([3,4,10,7,9]).
33
6> lists:zip([1,2,3],[5,6,7]).
[{1,5},{2,6},{3,7}]
7> lists:delete(2,[1,2,3,2,4,2]).
[1,3,2,4,2]

† Other than winding up people who are on a mission to find design flaws in Erlang.

Lists | 25

8> lists:last([1,2,3]).
3
9> lists:member(5,[1,24]).
false
10> lists:member(24,[1,24]).
true
11> lists:nth(2,[3,4,10,7,9]).
4
12> lists:length([1,2,3]).
** exception error: undefined function lists:length/1
13> length([1,2,3]).
3

We said these are not BIFs: the exception to this is length, as you can see in commands
12 and 13.

There are also three operators on lists. You already saw the [...|...] operator, but
there are also ++ and --, which join lists and “subtract” one list from another. Here are
some examples:

1> [monday, tuesday, Wednesday].
[monday,tuesday,wednesday]
2>
2> [1|[2|[3|[]]]].
[1,2,3]
3> [a, mixed, "list", {with, 4}, 'data types'].
[a,mixed,"list",{with,4},'data types']
4> [1,2,3] ++ [4,5,6].
[1,2,3,4,5,6]
5> [1,2,2,3,4,4] -- [2,4].
[1,2,3,4]
6> "A long string I have split "
6> "across several lines.".
"A long string I have split across several lines."

The ++ operator takes two lists and joins them together into a new list. So, writing
[1,2] ++ [3,4] will return [1,2,3,4].

The -- operator individually subtracts each element in the list on the righthand side
from the list on the lefthand side. So, [1,1] -- [1] returns [1], whereas [1,2,3,4] --
[1,4] returns [2,3]. If you evaluate [1,2] -- [1,1,3], you get the list [2]. This is be-
cause if elements on the list on the righthand side of the operation do not match, they
are ignored. Both ++ and -- are right-associative, and so an expression of the form
[1,2,3]--[1,3]--[1,2] will be bracketed to the right:

7> [1,2,3]--[1,3]--[1,2].
[1,2]
8> ([1,2,3]--[1,3])--[1,2].
[]

Finally, writing "Hello " "Concurrent " "World" will result in the compiler appending
the three strings together, returning "Hello Concurrent World".

26 | Chapter 2: Basic Erlang

If you want to add an element to the beginning of a list, you can do it in two ways:

• Using cons directly, as in [1|[2,3,4]].

• Using ++ instead, as in [1] ++ [2,3,4].

Both have the same effect, but ++ is less efficient and can lead to programs running
substantially more slowly. So, when you want to add an element to the head of the list,
you should always use cons ([...|...]) because it is more efficient.

The proplists module contains functions for working with property lists. Property
lists are ordinary lists containing entries in the form of either tagged tuples, whose first
elements are keys used for lookup and insertion, or atoms (such as blah), which is
shorthand for the tuple {blah, true}.

To make sure you have grasped what’s in this section, start the shell and test what you
just learned about lists and strings:

• Pay particular attention to the way lists are built using [...|...], which some
readers may struggle with the first time around. It is important that you understand
how this works, as recursion, covered in Chapter 3, builds heavily on it.

• Look at lists that are not proper, because the next time you might come across
them, they will probably be in the form of a bug.

• The append, subtract, and string concatenation operators will make your code
more elegant, so make sure you spend some time getting acquainted with them as
well.

• Remember that if the shell does not return the string you typed in, you probably
forgot to close the double quotes. Type ". and press Enter a few times.

• Also, what happens when you type in a list of ASCII values? How does the shell
display them?

We’ll finish this section with a short discussion of the history of strings in the Erlang
system.

Before the string concatenation construct was added to the language, programmers
would make their strings span many lines. When the code became unreadable, they
would often break the strings into manageable chunks and concatenate them using the
append function in the lists library module.

When the ++ notation was added to the language, programmers went from using the
append function to abusing the ++ operator. The ++ operator and the append function
are expensive operations, as the list on the lefthand side of the expression has to be
traversed. Not only are they expensive operations, but often they are redundant, as all
I/O functions (including socket operations) in Erlang accept nonflat strings such as
["Hello ",["Concurrent "]|"World"].

Lists | 27

Term Comparison
Term comparisons in Erlang take two expressions on either side of the comparison
operator. The result of the expression is one of the Boolean atoms true or false. The
equal (==) and not equal (/=) operators compare the values on either side of the operator
without paying attention to the data types. Typing 1 == one returns false, whereas
one == one returns true.

Comparisons such as 1 == 1.0 will return true and 1 /= 1.0 will return false, as integers
are converted to floats before being compared with them in such a comparison. You
get around this by using the operators exactly equal to and not exactly equal to, as these
operators compare not only the values on either side of the equation, but also their data
types. So, for example, 1 =:= 1.0 and 1 =/= 1 will both return false, and 1 =/= 1.0
returns true.

As well as comparisons for (in)equality, you can compare the ordering between values,
using < (less than), =< (less than or equal to), > (greater than), and >= (greater than or
equal to). Table 2-3 lists the comparison operators.

Table 2-3. Comparison operators

Operator Description

== Equal to

/= Not equal to

=:= Exactly equal to

=/= Exactly not equal to

=< Less than or equal to

< Less than

>= Greater than or equal to

> Greater than

If the expressions being compared are of different types, the following hierarchy is taken
into consideration:

number < atom < reference < fun < port < pid < tuple < list < binary

This means, for instance, that any number will be smaller than any atom and any tuple
will be smaller than any list:

3> 11<ten.
true
4> {123,345}<[].
true

28 | Chapter 2: Basic Erlang

Lists are ordered lexicographically, like the words in a dictionary. The first elements are
compared, and whichever is smaller indicates the smaller list: if they are the same, the
second elements are compared, and so on. When one list is exhausted, that is the
smaller list. So:

5> [boo,hoo]<[adder,zebra,bee].
false
6> [boo,hoo]<[boo,hoo,adder,zebra,bee].
true

On the other hand, when comparing tuples, the number of elements in the constructs
is compared first, followed by comparisons of the individual values themselves:

7> {boo,hoo}<{adder,zebra,bee}.
true
8> {boo,hoo}<{boo,hoo,adder,zebra,bee}.
true

The ability to compare values from different data types allows you to write generic
functions such as sort, where regardless of the heterogeneous contents of a list, the
function will always be able to sort its elements. For the time being, do not worry about
references, funs, ports, and binaries. We will cover these data types in Chapter 9 and
Chapter 15.

Using the exactly equal and not exactly equal operators will provide the compiler and
type tools with more information and result in more efficient code. Unfortunately,
=:= and =/= are not the prettiest of operators and tend to make the code ugly. As a
result, the equal and not equal operators are commonly used in programs, including
many of the libraries that come with the Erlang runtime system.

Start the Erlang shell and try some of the comparison operators. Though not included
in the following examples, try testing with different data types and comparing the re-
sults with the various equality operators. Make sure you also become acquainted with
how the operators work with different data types:

1> 1.0 == 1.
true
2> 1.0 =:= 1.
false
3> {1,2} < [1,2].
true
4> 1 =< 1.2.
true
5> 1 =/= 1.0.
true
6> (1 < 2) < 3.
false
7> (1 > 2) == false.
true

Term Comparison | 29

Variables
Variables are used to store values of simple and composite data types. In Erlang, they
always start with an uppercase letter,‡ followed by upper- and lowercase letters, inte-
gers, and underscores. They may not contain other “special” characters. Examples of
variables include the following:

A_long_variable_name Flag Name2 DbgFlag

Erlang variables differ from variables in most conventional programming languages. In
the scope of a function, including the Erlang shell process, once you’ve bound a variable,
you cannot change its value. This is called single assignment. So, if you need to do a
computation and manipulate the value of a variable, you need to store the results in a
new variable. For example, writing the following:

Double = 2,
Double = Double * Double

would result in a runtime error, because Double is already bound to the integer 2. Trying
to bind it to the integer 4 fails as it is already bound. As mentioned, the way around
this feature is to bind the results in a fresh variable:

Double = 2,
NewDouble = Double * Double

Single assignment of variables might feel awkward at first, but you’ll get used to it very
quickly. It encourages you to write shorter functions and puts in place a discipline that
often results in code with fewer errors. It also makes debugging of errors related to
incorrect values easy, as tracing the source of the error to the place where the value was
bound can lead to only one place.

All calls with variables in Erlang are call by value: all arguments to a function call are
evaluated before the body of the function is evaluated. The concept of call by reference
does not exist, removing one way in which side effects can be caused.§ All variables in
Erlang are considered local to the function in which they are bound. Global variables
do not exist, making it easier to debug Erlang programs and reduce the risk of errors
and bad programming practices.

Another useful feature of Erlang variables is that there is no need to declare them: you
just use them. Programmers coming from a functional programming background are
used to this, whereas those coming from a C or Java background will quickly learn to
appreciate it. The reason for not having to declare variables is that Erlang has a dynamic
type system.‖ Types are determined at runtime, as is the viability of the operation you

‡ Variables can also begin with an underscore; these play a role in pattern matching and are discussed in the
section “Pattern Matching” on page 33.

§ We cover side effects and destructive operations later in the book.

‖ Other languages can avoid variable declarations for other reasons. Haskell, for instance, uses a type
inference algorithm to deduce types of variables.

30 | Chapter 2: Basic Erlang

are trying to execute on the variable. The following code attempting to multiply an
atom by an integer will compile (with compiler warnings), but will result in a runtime
error when you try to execute it:

Var = one,
Double = Var * 2

At first, using variables that start with capital letters might feel counterintuitive, but
you’ll get used to it quickly. After a few years of programming in Erlang, when reading
C code, don’t be surprised if you react over the fact that whoever wrote the code used
atoms instead of variables. It has happened to us!

Before using variables, remember: variables can be bound only once! This might be a
problem in the Erlang shell, as programs are meant to run nonstop for many years and
the same shell is used to interact with them. Two operations can be used as a work-
around to this problem. Using f() forgets all variable bindings, whereas f(Variable)
will unbind a specific Variable. You can use these operations only in the shell. Attempts
to include them in your programs are futile and will result in a compiler error:

1> A = (1+2)*3.
9
2> A + A.
18
3> B = A + 1.
10
4> A = A + 1.
** exception error: no match of right hand side value 10
5> f(A).
ok
6> A.
** 1: variable 'A' is unbound **

In fact, what you see here with assignment to variables is a special case of pattern
matching, which we’ll discuss shortly.

The Erlang Type System
The reason for not having a more elaborate type system is that none of the Erlang
inventors knew how to write one, so it never got done. The advantage of a static type
system is that errors can be predicted at compile time rather than at runtime, therefore
allowing faults to be detected earlier and fixed at a lower cost.

A number of people have tried to build a static type system for Erlang. Unfortunately,
due to design decisions taken when Erlang was invented, no project has been able to
write a comprehensive type system, since with hot code loading, this is intrinsically
difficult. To quote Joe Armstrong in one of the many type system flame wars, “It seems
like it should be ‘easy’—and indeed, a few weeks programming can make a type system
that handles 95% of the language. Several man-years of work [by some of the brightest
minds in computer science] have gone into trying to fix up the other 5%—but this is
really difficult.”

Variables | 31

If the right tools are available, it’s possible to detect many of the faults in a program
without running it. An excellent tool that resulted from research related to an Erlang
type system by Uppsala University is TypEr, which can infer types of Erlang functions.
TypEr, taken together with the Dialyzer tool, which also came out of Uppsala University
and can pick up other faults at compile time, results in a powerful mechanism for
finding faults in Erlang programs. We discuss these tools in Chapter 18.

Complex Data Structures
When we refer to Erlang terms, we mean legal data structures. Erlang terms can be
simple data values, but we often use the expression to describe arbitrarily complex data
structures.

In Erlang, complex data structures are created by nesting composite data types together.
These data structures may contain bound variables or the simple and composite values
themselves. An example of a list containing tuples of type person (tagged with the atom
person) with the first name, surname, and a list of attributes would look like this:

[{person,"Joe","Armstrong",
 [{shoeSize,42},
 {pets,[{cat,zorro},{cat,daisy}]},
 {children,[{thomas,21},{claire,17}]}]
 },
 {person,"Mike","Williams",
 [{shoeSize,41},
 {likes,[boats,wine]}]
 }
]

Or, if we were to write it in a few steps using variables, we would do it like this. Note
how, for readability, we named the variables with their data types:

1> JoeAttributeList = [{shoeSize,42}, {pets,[{cat, zorro},{cat,daisy}]},
1> {children,[{thomas,21},{claire,17}]}].
 [{shoeSize,42},
 {pets,[{cat,zorro},{cat,daisy}]},
 {children,[{thomas,21},{claire,17}]}]
2> JoeTuple = {person,"Joe","Armstrong",JoeAttributeList}.
{person,"Joe","Armstrong",
 [{shoeSize,42},
 {pets,[{cat,zorro},{cat,daisy}]},
 {children,[{thomas,21},{claire,17}]}]}
3> MikeAttributeList = [{shoeSize,41},{likes,[boats,wine]}].
[{shoeSize,41},{likes,[boats,wine]}]
4> MikeTuple = {person,"Mike","Williams",MikeAttributeList}.
{person,"Mike","Williams",
 [{shoeSize,41},{likes,[boats,wine]}]}
5> People = [JoeTuple,MikeTuple].
[{person,"Joe","Armstrong",
 [{shoeSize,42},
 {pets,[{cat,zorro},{cat,daisy}]},

32 | Chapter 2: Basic Erlang

 {children,[{thomas,21},{claire,17}]}]},
 {person,"Mike","Williams",
 [{shoeSize,41},{likes,[boats,wine]}]}]

One of the beauties of Erlang is the fact that there is no explicit need for memory
allocation and deallocation. For C programmers, this means no more sleepless nights
hunting for pointer errors or memory leakages. Memory to store the complex data types
is allocated by the runtime system when needed, and deallocated automatically by the
garbage collector when the structure is no longer referenced.

Memory Management in Erlang
When the first Erlang-based products were being developed in 1993, critics said it was
madness to use a language compiling for a VM with a garbage collector (just like Java!)
for soft real-time systems. The VM automatically handles the task of allocating memory
for the system, and more importantly, it recycles that memory when it is no longer
needed (hence the term “garbage collection”). It is thanks to the design of the garbage
collector, however, that the soft real-time properties of these systems are not affected.

The current implementation of the Erlang VM uses a copying, generational garbage
collector. The garbage collection is done separately for each concurrent process: when
no more memory is available for a particular process to store values, a garbage collection
will be triggered.

A copying garbage collector works by having two separate areas (heaps) for storing data.
When garbage collection takes place, the active memory is copied to the other heap,
and the garbage left behind is overwritten in the other heap.

The garbage collector is also generational, meaning that it has several generations of
the heap (in Erlang’s case, two). A garbage collection can be shallow or deep. A shallow
garbage collection looks only at data in the youngest generation; all data that survives
three shallow garbage collections will be moved to the old generation. A deep garbage
collection will occur only when a shallow collection fails to recycle enough memory or
after a (VM version dependent) number of shallow collections.

Pattern Matching
Pattern matching in Erlang is used to:

• Assign values to variables

• Control the execution flow of programs

• Extract values from compound data types

The combination of these features allows you to write concise, readable yet powerful
programs, particularly when pattern matching is used to handle the arguments of a
function you’re defining. A pattern match is written like this:

Pattern = Expression

Pattern Matching | 33

And as we said earlier, it’s a generalization of what you already saw when we talked
about variables.

The Pattern consists of data structures that can contain both bound and unbound
variables, as well as literal values (such as atoms, integers, or strings). A bound variable
is a variable which already has a value, and an unbound variable is one that has not yet
been bound to a value. Examples of patterns include:

Double
{Double, 34}
{Double, Double}
[true, Double, 23, {34, Treble}]

The Expression consists of data structures, bound variables, mathematical operations,
and function calls. It may not contain unbound values.

What happens when a pattern match is executed? Two results are possible:

• The pattern match can succeed, and this results in the unbound variables becoming
bound (and the value of the expression being returned).

• The pattern match can fail, and no variables become bound as a result.

What determines whether the pattern match succeeds? The Expression on the right-
hand side of the = operator is first evaluated and then its value is compared to the
Pattern:

• The expression and the pattern need to be of the same shape: a tuple of three
elements can match only with a tuple of three elements, a list of the form [X|Xs]
can match only with a nonempty list, and so on.

• The literals in the pattern have to be equal to the values in the corresponding place
in the value of the expression.

• The unbound variables are bound to the corresponding value in the Expression if
the pattern match succeeds.

• The bound variables also must have the same value as the corresponding place in
the value of the expression.

Taking a concrete example, writing Sum = 1+2 where the variable Sum is unbound would
result in the sum of 1 and 2 being calculated and compared to Sum. If Sum is unbound,
pattern matching succeeds and Sum is bound to 3. Just to be clear, this would not bind
1 to Sum and then add 2 to it. If Sum is already bound, pattern matching will succeed if
(and only if) Sum is already bound to 3.

Let’s look at some examples in the shell:

1> List = [1,2,3,4].
[1,2,3,4]

In command 1, the pattern match succeeds, and binds the list [1,2,3,4] to the List
variable:

34 | Chapter 2: Basic Erlang

2> [Head|Tail] = List.
[1,2,3,4]
3> Head.
1
4> Tail.
[2,3,4]

In command 2, the pattern match succeeds, because the List is nonempty, so it has a
head and a tail which are bound to the variables Head and Tail. You can see this in
commands 3 and 4.

5> [Head|Tail] = [1].
** exception error: no match of right hand side value [1]
6> [Head|Tail] = [1,2,3,4].
[1,2,3,4]
7> [Head1|Tail1] = [1].
[1]
8> Tail1.
[]

What goes wrong in command 5? It looks as though this should succeed, but the var-
iables Head and Tail are bound already, so this pattern match becomes a test of whether
the expression is in fact [1,2,3,4]; you can see in command 6 that this would succeed.

If you want to extract the head and tail of the list [1], you need to use variables that
are not yet bound, and commands 7 and 8 show that this is now successful.

9> {Element, Element, X} = {1,1,2}.
{1,1,2}
10> {Element, Element, X} = {1,2,3}.
** exception error: no match of right hand side value {1,2,3}

What happens if a variable is repeated in a pattern, as in command 9? The first occur-
rence is unbound, and results in a binding: here to the value 1. The next occurrence is
bound, and will succeed only if the corresponding value is 1. You can see that this is
the case in command 9, but not in command 10, hence the “no match” error.

11> {Element, Element, _} = {1,1,2}.
{1,1,2}

As well as using variables, it is possible to use a wildcard symbol, _, in a pattern. This
will match with anything, and produces no bindings.

12> {person, Name, Surname} = {person, "Jan-Henry", "Nystrom"}.
{person,"Jan-Henry","Nystrom"}
13> [1,2,3] = [1,2,3,4].
** exception error: no match of right hand side value [1,2,3,4]

Why do we use pattern matching? Take assignment of variables as an example. In
Erlang, the expression Int = 1 is used to compare the contents of the variable Int to
the integer 1. If Int is unbound, it gets bound to whatever the righthand side of the
equation evaluates to, in this case 1. That is how variable assignment actually works.
We are not assigning variables, but in fact pattern-matching them. If we now write Int
= 1 followed by Int = 1+0, the first expression will (assuming Int is unbound) bind the

Pattern Matching | 35

variable Int to the integer 1. The second expression will add 1 to 0 and compare it to
the contents of the variable Int, currently bound to 1. As the result is the same, the
pattern matching will be successful. If we instead wrote Int = Int + 1, the expression
on the righthand side would evaluate to 2. Attempting to compare it to the contents of
Int would fail, as it is bound to 1.

Pattern matching is also used to pick the execution flow in a program. Later in this and
in the following chapters, we will cover case statements, receive statements, and func-
tion clauses. In each of these constructs, pattern matching is used to determine which
of the clauses has to be evaluated. In effect, we are testing a pattern match that either
succeeds or fails. For example, the following pattern match fails:

{A, A, B} = {abc, def, 123}

The first comparison is to ensure that the data type on the righthand side of the ex-
pression is the same as the data type on the left, and that their size is the same. Both
are tuples with three elements, so thus far, the pattern matching is successful. Tests are
now done on the individual elements of the tuple. The first A is unbound and gets bound
to the atom abc. The second A is now also bound to abc, so comparing it to the atom
def will fail because the values differ.

Pattern matching [A,B,C,D] = [1,2,3] fails. Even if both are lists, the list on the lefthand
side has four elements and the one on the right has only three. A common misconcep-
tion is that D can be set to the empty list and the pattern matching succeeds. In this
example, that would not be possible, as the separator between C and D is a comma and
not the cons operator. [A,B, C|D] = [1,2,3] will pattern-match successfully, with the
variables A, B, and C being bound to the integers 1, 2, and 3, and the variable D being
bound to the tail, namely the empty list. If we write [A,B|C] = [1,2,3,4,5,6,7], A and
B will be bound to 1 and 2, and C will be bound to the list containing [3,4,5,6,7].
Finally, [H|T] = [] will also fail, as [H|T] implies that the list has at least one element,
when we are in fact matching against an empty list.

The last use of pattern matching is to extract values from compound data types. For
example:

{A, _, [B|_], {B}} = {abc, 23, [22, 23], {22}}

will successfully extract the first element of the tuple, the atom abc, and bind it to the
variable A. It will also extract the first element of the list stored in the third element of
the tuple and bind it to the variable B.

In the following example

14> Var = {person, "Francesco", "Cesarini"}.
{person, "Francesco", "Cesarini"}
15 {person, Name, Surname} = Var.
{person, "Francesco", "Cesarini"}

36 | Chapter 2: Basic Erlang

we are binding a tuple of type person to the variable Var in the first clause and extracting
the first name and the surname in the second one. This will succeed, with the variable
Name being bound to the string "Francesco" and the variable Surname to "Cesarini".

We mentioned earlier that variables can start with an underscore; these denote “don’t
care” variables, which are placeholders for values the program does not need. “Don’t
care” variables behave just like normal variables—their values can be inspected, used,
and compared. The only difference is that compiler warnings are generated if the value
of the normal variable is never used. Using “don’t care” variables is considered good
programming practice, informing whoever is reading the code that this value is ignored.
To increase readability and maintainability, one often includes the value or type in the
name of a “don’t care” variable. The underscore on its own is also a “don’t care” var-
iable, but its contents cannot be accessed: its values are ignored and never bound.

When pattern matching, note the use of the “don’t care” variables, more specifically
in the following example:

{A, _, [B|_], {B}} = {abc, 23, [22, 23], {22}}

As _ is never bound, it does not matter whether the values you are matching against
are different. But writing:

{A, _int, [B|_int], {B}} = {abc, 23, [22, 23], {22}}

completely changes the semantics of the program. The variable _int will be bound to
the integer 23 and is later compared to the list containing the integer 23. This will cause
the pattern match to fail.

Using variables that start with an underscore makes the code more legi-
ble, but inserts potential bugs in the code when they are mistakenly
reused in other clauses in the same function. Since the introduction of
compiler warnings for singleton variables (variables that appear once in
the function), programmers mechanically add an underscore, but tend
to forget about the single assignment rule and about the fact that these
variables are actually bound to values. So, use them because they in-
crease code legibility and maintainability, but use them with care, en-
suring that you do not introduce bugs.

You can see from what we have said that pattern matching is a powerful mechanism,
with some subtleties in its behavior that allow you to do some amazing things in one
or two lines of code, combining tests, assignment, and control.

At the risk of sounding repetitive, try pattern matching in the shell. You can experiment
with defining lists to be really sure you master the concept, and use pattern matching
to deconstruct the lists you have built. Make pattern-matching clauses fail and inspect
the errors that are returned.# When you do so, experiment with both bound and

Different versions of the Erlang runtime system will format errors differently.

Pattern Matching | 37

unbound variables. As pattern matching holds the key to writing compact and elegant
programs, understanding it before continuing will allow you to make the most of Erlang
as you progress.

Functions
Now that we’ve covered data types, variables, and pattern matching, how do you use
them? In programs, of course. Erlang programs consist of functions that call each other.
Functions are grouped together and defined within modules. The name of the function
is an atom. The head of a function clause consists of the name, followed by a pair of
parentheses containing zero or more formal parameters. In Erlang, the number of pa-
rameters in a function is called its arity. The arrow (->) separates the head of the clause
from its body.

Before we go any further, do not try to type functions directly in the shell. You can if
you want to, but all you will get is a syntax error. Functions have to be defined in
modules and compiled separately. We will cover writing, compiling, and running func-
tions in the next section.

Example 2-1 shows an Erlang function used to calculate the area of a shape.* Erlang
functions are defined as a collection of clauses separated by semicolons and terminated
by a full stop. Each clause has a head specifying the expected argument patterns and a
function body consisting of one or more comma-separated expressions. These are eval-
uated in turn, and the return value of a function is the result of the last expression
executed.

Example 2-1. An Erlang function to calculate the area of a shape

area({square, Side}) ->
 Side * Side ;
area({circle, Radius}) ->
 math:pi() * Radius * Radius;
area({triangle, A, B, C}) ->
 S = (A + B + C)/2,
 math:sqrt(S*(S-A)*(S-B)*(S-C));
area(Other) ->
 {error, invalid_object}.

When a function is called, its clauses are checked sequentially by pattern matching the
arguments passed in the call to the patterns defined in the function heads. If the pattern
match is successful, variables are bound and the body of the clause is executed. If it is
not, the next clause is selected and matched. When defining a function, it is a good
practice to make sure that for every argument there is one clause that succeeds; this is

* In the case of the triangle, the area is calculated using Heron’s formula where math:sqrt/1 is used to give the
square root of a float.

38 | Chapter 2: Basic Erlang

often done by making the final clause a catch-all clause that matches all (remaining)
cases.

In Example 2-1, area is a function call that will calculate the area of a square, a circle,
or a triangle or return the tuple {error, invalid_object}. Let’s take an example call to
the area function:

area({circle, 2})

Pattern matching will fail in the first clause, because even though we have a tuple of
size 2 in the argument and parameter, the atoms square and circle will not match. The
second clause is chosen and the pattern match is successful, resulting in the variable
Radius being bound to the integer 2. The return value of the function will be the result
of the last expression in that clause, math:pi()*2*2, namely 12.57 (rounded). When a
clause is matched, the remaining ones are not executed.

The last clause with the function head area(Other) -> is a catch-all clause. As Other is
unbound, it will match any call to the function area when pattern matching fails in the
first three clauses. It will return an expression signifying an error:
{error, invalid_object}.

A common error is shadowing clauses that will never match. The flatten function
defined in the following example will always return {error, unknown_shape}, because
pattern matching against Other will always succeed, and so Other will be bound to any
argument passed to flatten, including cube and sphere:

flatten(Other) -> {error, unknown_shape};
flatten(cube) -> square;
flatten(sphere) -> circle.

Let’s look at an example of the factorial function:

factorial(0) -> 1;
factorial(N) ->
 N * factorial(N-1).

If we call factorial(3), pattern matching in the first clause will fail, as 3 does not match
0. The runtime system tries the second clause, and as N is unbound, N will successfully
be bound to 3. This clause returns 3 * factorial(2). The runtime system is unable to
return any value until it has executed factorial(2) and is able to multiply its value by
3. Calling factorial(2) results in the second clause matching, and in this call N is bound
to 2 and returns the value 2 * factorial(1), which in turn results in the call
1 * factorial(0). The call factorial(0) matches in the first clause, returning 1 as a
result. This means 1*factorial(0) in level 3 returns 1, in level 2 returns 2*1, and in level
1 returns the result of factorial(3), namely 6:

factorial(3).
Level 1: 3 * factorial(3 - 1) (returns 6)
Level 2: 2 * factorial(2 - 1) (returns 2)
Level 3: 1 * factorial(1 - 1) (returns 1)
Level 4: 1 (returns 1)

Functions | 39

As we mentioned earlier, pattern matching occurs in the function head, and an instance
of the variable N is bound after a successful match. Variables are local to each clause.
There is no need to allocate or deallocate them; the Erlang runtime system handles that
automatically.

Modules
Functions are grouped together in modules. A program will often be spread across
several modules, each containing functions that are logically grouped together. Mod-
ules consist of files with the .erl suffix, where the file and module names have to be the
same. Modules are named using the –module(Name) directive, so in Example 2-2, the
demo module would be stored in a file called demo.erl.

Example 2-2. A module example

-module(demo).
-export([double/1]).

% This is a comment.
% Everything on a line after % is ignored.

double(Value) ->
 times(Value, 2).
times(X,Y) ->
 X*Y.

The export directive contains a list of exported functions of the format
Function/Arity. These functions are global, meaning they can be called from outside
the module. And finally, comments in Erlang start with the percent symbol (%) and span
to the end of the line. Make sure you use them everywhere in your code!

Global calls, also called fully qualified function calls, are made by prefixing the module
name to the function. So, in Example 2-2, calling demo:double(2) would return 4. Local
functions can be called only from within the module. Calling them by prefixing the call
with the module name will result in a runtime error. If you were wondering what
math:sqrt/1 did in Example 2-1, it calls the sqrt (square root) function from the math
module, which comes as part of the Erlang standard distribution.

Functions in Erlang are uniquely identified by their name, their arity, and the module
in which they are defined. Two functions in the same module might have the same
name but a different arity. If so, they are different functions and are considered unre-
lated. There is no need to declare functions before they are called, as long as they are
defined in the module.

Compilation and the Erlang Virtual Machine
To run functions exported from a module, you have to compile your code, which results
in a module.beam file being written in the same directory as the module:

40 | Chapter 2: Basic Erlang

• If you are using a Unix derivative, start the Erlang shell in the same directory as the
source code.

• In Windows environments, one way to start a werl shell in the right directory is to
right-click a .beam file, and in the pop-up window select the Open With option
and choose “werl”. This will from now on allow you to get an Erlang shell in the
right directory just by double-clicking any .beam file in the same location where
you have placed your source code.

With both operating systems, you can otherwise move to the directory by using the
cd(Directory) command in the Erlang shell. Once in the directory, you compile the
code using c(Module) in the Erlang shell, omitting the erl suffix from the module name.
If the code contained no errors, the compilation will succeed.

Large Erlang systems consist of loosely coupled Erlang modules, all compiled on a
standalone basis. Once you have compiled your code, look at the source code directory
and you will find a file with the same name as the module, but with the .beam suffix.
This file contains the byte code that you can call from any other function. The .beam
suffix stands for Björn’s Erlang Abstract Machine, an abstract machine on which the
compiled code runs.

Once compiled, you need to make a fully qualified function call to run your functions.
This is because you are calling the function from outside the module. Calling non-
exported functions will result in a runtime error:

1> cd("/home/francesco/examples").
/home/francesco/examples
ok
2> c(demo).
{ok,demo}
3> demo:double(10).
20
4> demo:times(1,2).
** exception error: undefined function demo:times/2

Module Directives
Every module has a list of attributes of the format –attribute(Value). They are usually
placed at the beginning of the module, and are recognizable by the – sign in front of
the attribute name and the full stop termination. The module attribute is mandatory,
and describes the module name. Another attribute we have come across is the export
attribute, which takes a list of function/arity definitions.

A useful directive when programming is the –compile(export_all) directive, which at
compile time will export all functions defined in the module. Another way of doing this
is to specify an option on compiling the file:

c(Mod,[export_all]).

Modules | 41

This directive should be used only for testing purposes. Do not do like many others
and forget to replace it with an export directive before your code goes into production!
The compile directive takes on other options that are useful only in special conditions.
If you are curious and want to read more about them, check out the manual page for
the compile module.

Another directive is –import(Module, [Function/Arity,...]). It allows you to import
functions from other modules and call them locally. Going back to the function area
example, including –import(math,[sqrt/1]) as a directive in your module would allow
you to rewrite the function clause calculating the area of a triangle call. As a reminder,
do not forget to terminate your directives with a full stop:

-import(math, [sqrt/1]).

area({triangle, A, B, C}) ->
 S = (A + B + C)/2,
 sqrt(S*(S-A)*(S-B)*(S-C));

Using the import directive can make your code hard to follow. Someone trying to un-
derstand it may at first glance believe sqrt/1 is a local function and unsuccessfully
search for it in the module; on the other hand, she can check the directives at the head
of the file to see that it is indeed imported. That being said, it’s a convention in the
Erlang community to use import sparingly, if at all.

You can make up your own module attributes. Common examples include
–author(Name) and -date(Date). User-defined attributes can have only one argument
(unlike some of the built-in attributes).

All attributes and other module information can be retrieved by calling
Mod:module_info/0 or selectively calling the Mod:module_info/1 function. From the shell,
you can use the m(Module) command:

5> demo:module_info().
[{exports,[{double,1},{module_info,0},{module_info,1}]},
 {imports,[]},
 {attributes,[{vsn,[74024422977681734035664295266840124102]}]},
 {compile,[{options,[]},
 {version,"4.5.1"},
 {time,{2008,2,25,18,0,28}},
 {source,"/home/francesco/examples/demo.erl"}]}]
6> m(demo).
Module demo compiled: Date: February 25 2008, Time: 18.01
Compiler options: []
Object file: /home/francesco/examples/demo.beam
Exports:
 double/1
 module_info/0
 module_info/1
ok

42 | Chapter 2: Basic Erlang

If you read through the Erlang libraries, other attributes you will come across will
include -behaviour(Behaviour) (U.K. English spelling), -record(Name, Fields), and
–vsn(Version). Note that we did not have any vsn attribute in the demo module, but
one appeared in the preceding example. When vsn is not defined, the compiler sets it
to the MD5 of the module. Note also that the module_info functions appear in the list
of exported functions, as they are meant to be accessible outside the module. Do not
worry about records, vsn, and behaviour for now, as we cover them in Chapters 7 and
12.

We covered the basics of Erlang in this chapter, and you saw some of its peculiarities:
you can assign values to variables, but only once; you can pattern-match against a
variable and it may turn into a test for equality with that variable. Other features of the
language, such as the module system and the basic types it contains, are more familiar.

We’ll build on this in Chapter 3, where we talk about the details of sequential pro-
gramming, and then in Chapter 4, where we’ll introduce you to concurrency in
Erlang—probably the single most important feature of the language.

Exercises

Exercise 2-1: The Shell
Type in the following Erlang expressions in the shell and study the results. They will
show the principles of pattern matching and single-variable assignment described in
this chapter. What happens when they execute? What values do the expressions return,
and why?

A. Erlang expressions
1 + 1.
[1|[2|[3|[]]]].

B. Assigning through pattern matching
A = 1.
B = 2.
A + B.
A = A + 1.

C. Recursive list definitions
L = [A|[2,3]].
[[3,2]|1].
[H|T] = L.

Exercises | 43

D. Flow of execution through pattern matching
B = 2.
B = 2.
2 = B.
B = C.
C = B.
B = C.

E. Extracting values in composite data types through pattern matching
Person = {person, "Mike", "Williams", [1,2,3,4]}.
{person, Name, Surname, Phone} = Person.
Name.

Exercise 2-2: Modules and Functions
Copy the demo module from the example in this chapter. Compile it and try to run it
from the shell. What happens when you call demo:times(3,5)? What about double(6)
when omitting the module name?

Create a new module called shapes and copy the area function in it. Do not forget to
include all the module and export directives. Compile it and run the area function from
the shell. When you compile it, why do you get a warning that variable Other is unused?
What happens if you rename the variable to _Other?

Exercise 2-3: Simple Pattern Matching
Write a module boolean.erl that takes logical expressions and Boolean values (repre-
sented as the atoms true and false) and returns their Boolean result. The functions
you write should include b_not/1, b_and/2, b_or/2, and b_nand/2. You should not use
the logical constructs and, or, and not, but instead use pattern matching to achieve your
goal.

Test your module from the shell. Some examples of calling the exported functions in
your module include:

bool:b_not(false) ⇒ true
bool:b_and(false, true) ⇒ false
bool:b_and(bool:b_not(bool:b_and(true, false)), true) ⇒ true

The notation foo(X) ⇒ Y means that calling the function foo with parameter X will result
in the value Y being returned. Keep in mind that and, or, and not are reserved words in
Erlang, so you must prefix the function names with b_.

Hint: implement b_nand/2 using b_not/1 and b_and/2.

44 | Chapter 2: Basic Erlang

CHAPTER 3

Sequential Erlang

Erlang’s design was heavily influenced by functional and logic programming languages.
When dealing with sequential programs, those familiar with languages such as Prolog,
ML, or Haskell will recognize the influence they have had on Erlang’s constructs and
development techniques. When working in functional programming languages, you
replace iterative constructs such as while and for loops with recursive programming
techniques.

Recursion is the most useful and powerful of all the techniques in a functional pro-
grammer’s armory. It allows a programmer to traverse a data structure via successive
calls to the same function, with the patterns of function calls mirroring the structure
of the data itself. The resulting programs are more compact and easier to understand
and maintain. Functional programs are, importantly, side-effect-free, unless side effects
are specifically needed for printing or for access to external storage.

You control recursion using various conditional constructs that enhance the expressive
power of pattern matching; in the example of data structure traversal, different patterns
correspond to different traversals: bottom-up, top-down, breadth-first, and so forth.

This chapter also introduces other features directly related to sequential programming.
The absence of a strong type system and the flexibility and dynamic nature of some of
Erlang’s constructs result in runtime errors that, although rare, have to be handled.
Through exception-handling mechanisms, programs can recover and continue
execution.

The Erlang distribution comes with an extensive set of modules which contain libraries,
tools, and utilities, as well as complete applications. New modules are being added in
every release, and existing libraries are often enhanced with new functionality. Some
of the libraries consist of what we in the Erlang world call built-in functions (BIFs),
because they are part of the Erlang runtime system. They do things that are either not
programmable in Erlang itself or would be slow to execute were they to be defined by
the user.

45

Conditional Evaluations
Erlang has three forms of conditional evaluation that are (at least partially) inter-
changeable. The first form you encountered in Chapter 2: the choice of a function clause
to evaluate through pattern matching over the arguments to the function. The second
is the case statement, which works in a similar way to function clause selection. The
third form is the if construct, which you can view as a simplified form of the case
construct. Let’s start with the case construct.

The case Construct
The case construct relies on pattern matching to choose what code to evaluate, in a
strikingly similar manner to the selection of function clauses by pattern matching. In-
stead of matching actual parameters against patterns for the formal parameters to the
function, case evaluates an expression and matches the result against a list of pattern-
matching clauses, separated by semicolons.

The general case expression has the following form:

case conditional-expression of
 Pattern1 -> expression1, expression2, .. ;,
 Pattern2 -> expression1, expression2, .. ;
 ... ;
 Patternn -> expression1, expression2, ..
end

The keywords used are case, of, and end. The conditional-expression is evaluated and
matched against Pattern1, ..., Patternn in turn until the first clause with a pattern that
matches is found. The -> separates the pattern or head of the clause from the body
which consists of a comma-separated list of expressions. Once a pattern has been
matched, the selected clause expressions are evaluated in order and the result of the
case construct is the result of the last expression evaluated.

In the following case construct, the list List is examined using the member function from
the lists library module to determine whether the atom foo is a member of the List,
in which case the atom ok is returned. Otherwise, the tuple {error, unknown_element}
is returned:

case lists:member(foo, List) of
 true -> ok;
 false -> {error, unknown_element}
end

Case expressions always return a value, so nothing is stopping you from binding the
return value to a variable. It is possible, although rare, to type case clauses directly in
the Erlang shell. From now on, the constructs are getting complex enough that it makes
sense for you to try what you learn by typing trial functions in a module, compiling the
modules, and running their functions.

46 | Chapter 3: Sequential Erlang

As with function definitions, the result of case expression evaluation should match one
of the patterns; otherwise, you will get a runtime error. If you have _ or an unbound
variable as the last pattern, it will match any Erlang term and act as a catch-all clause
(discussed in Chapter 2). It is not mandatory to have a catch-all clause; in fact, it is
discouraged if it is used as a form of defensive programming (see the sidebar “Defensive
Programming” for more information on catch-all clauses).

Defensive Programming
Assume your program has to map to an integer an atom representing a day of the week.
A defensive programming approach with a catch-all clause would look like this:

convert(Day) ->
 case Day of
 monday -> 1;
 tuesday -> 2;
 wednesday -> 3;
 thursday -> 4;
 friday -> 5;
 saturday -> 6;
 sunday -> 7;
 Other -> {error, unknown_day}
 end.

We recommend strongly that you don’t take this approach. It is better to make your
program terminate in the convert function with a clause error (meaning no clause was
matched), because then the error is apparent at the point where it occurred.

The alternative is to handle the error by returning an error value, but then every function
that calls convert/1 will have to handle the error, or risk there being an arithmetical
error, due to the result of convert being a tuple rather than an integer.

In the past, defensive programming like this has left us searching in 2-million-line code
bases looking for the function that returned the error tuple that caused a bad match
error in a completely different part of the system.

Function definitions and case expressions have a lot in common. Take the following
simple example of a one-argument function to calculate the length of a list:

listlen([]) -> 0;
listlen([_|Xs]) -> 1 + listlen(Xs).

You can rewrite this directly using a case expression:

listlen(Y) ->
 case Y of
 [] -> 0;
 [_|Xs] -> 1 + listlen(Xs)
 end.

In a multiple-argument function, it is possible to pattern-match simultaneously on all
the arguments:

Conditional Evaluations | 47

index(0,[X|_]) -> X;
index(N,[_|Xs]) when N>0 -> index(N-1,Xs).

A case expression, on the other hand, matches a single expression. Making the argu-
ments into a tuple allows a case to be used to define index, too:

index(X,Y) ->
 index({X,Y}).

index(Z) ->
 case Z of
 {0,[X|_]} -> X;
 {N,[_|Xs]} when N>0 -> index(N-1,Xs)
 end.

Alternatively, the pattern matching could be performed by nested case expressions,
matching separately on the two arguments:

index(X,Y) ->
 case X of
 0 ->
 case Y of
 [Z|_] -> Z
 end;
 N when N>0 ->
 case Y of
 [_|Zs] -> index(N-1,Zs)
 end
 end.

So, pattern matching in function definitions can be more compact than using a case
expression, but remember that a case expression can be used anywhere in a function
definition and not just in the head, so each kind of pattern match has a part to play in
Erlang. A case statement with only one clause is considered bad practice in Erlang. In
our example, we do it to demonstrate a point. You should however avoid it in your
code, and instead use pattern matching on its own.

Variable Scope
The scope of a variable is the region of the program in which that variable can be used.
The same variable name may be used in many places in the program; some uses will
refer to the same variable and others to a different variable, which happens to have the
same name. In the following example:

f(X) -> Y=X+1,Y*X.

the scope of X, which is introduced in the head of the function clause, is the whole of
the clause—that is, Y+X, Y*X—whereas the scope of Y is the remainder of the body after
it is introduced, which here is the single expression Y*X.

In the next example, there are two separate variables with the name Y. The first is defined
in the function f/1 and is used in the final expression of the body of f. The second is

48 | Chapter 3: Sequential Erlang

defined in the head of the second clause for g/1 and its scope is the entire body of this
clause:

f(X) -> Y=X+1,Y*X.
g([0|Xs]) -> g(Xs);
g([Y|Xs]) -> Y+g(Xs);
g([]) -> 0.

As we said, in Erlang the scope of a variable is any position in the same function clause
after it has been bound, either by an explicit match using = or as part of a pattern. This
creates a problem when variables are bound in only some of the clauses of a case or
if construct, and are later used within the same function body. The small code example
that follows demonstrates this: what would be the result of calling unsafe(one) and
unsafe(two)? In fact, there is nothing to worry about because the compiler will not let
you compile modules with “unsafe” variables in them, that is, variables defined in only
one case or if clause and used outside that clause:

unsafe(X) ->
 case X of
 one -> Y = true;
 _ -> Z = two
 end,
 Y.

You can use a variable safely only if it is bound in all the clauses of a case or if construct.
This is considered bad coding practice, as it tends to make the code much harder to
read and understand. Here is an example of a safe use in the preferred style, where there
is a single binding to the variable in question, with a value determined by a case
expression:

safe(X) -> preferred(X) ->
 case X of Y = case X of
 one -> Y = 12; one -> 12;
 _ -> Y = 196 _ -> 196
 end, end,
 X+Y. X+Y.

The if Construct
The if construct looks like a case without the conditional-expression and the of
keyword:

if
 Guard1 -> expression11, expression12, .. ;
 Guard2 -> expression21, expression22, .. ;
 ... ;
 Guardn -> expressionn1, expressionn2, ..
end

The guard expressions Guard1, ..., Guardn are evaluated in turn one after another until
one evaluates to true. If this is Guardi, the body of the following clause is evaluated:

expressioni1, expressioni2,... expressionin

Conditional Evaluations | 49

The result of the complete if expression is the result of this sequence; that is, the result
of evaluating the last expression in the body of the clause that was executed.

The guard expressions are a subset of the Erlang Boolean expressions that can only
contain calls to a restricted set of functions together with comparisons and arithmetic
operations. We describe exactly what the guards may contain in the next section.

If none of the guards evaluates to the atom true, a runtime error is generated. To get a
catch-all clause, you can allow the last clause to have the atom true as the guard; it is
not mandatory to have such a catch-all clause.

In the following example, the variable X is examined to determine whether it is smaller
than, larger than, or equal to 1:

if
 X < 1 -> smaller;
 X > 1 -> greater;
 X == 1 -> equal
 end

This could be written equally well with a catch-all clause, which makes it clear that it
will always return a result:

if
 X < 1 -> smaller;
 X > 1 -> greater;
 true -> equal
end

Erlang novices, especially those coming from an imperative background, tend to over-
use if statements when the same result can be achieved more elegantly using pattern
matching in case statements. The following example demonstrates how you can rewrite
an if statement using a case expression, when the if expression has a sequence of
guards that test the value of a particular expression:

if case X rem 2 of
 X rem 2 == 1 -> odd; 1 -> odd;
 X rem 2 == 0 -> even 0 -> even
end end

To test your understanding of if and case expressions, try evaluating some in the shell
and in simple programs that you can compile and run. Pay special attention to the
return value of these clauses, trying to bind the value to a variable and using it in later
computations. When testing, write a program with an unsafe variable (defined in some
clauses and not others) and try to compile it.

Guards
Guards are additional constraints that can be placed in a function clause—either a
case or a receive clause (we will cover receive expressions in Chapter 4). Guards are
placed before the -> separating the clause head from the body.

50 | Chapter 3: Sequential Erlang

A guard consists of a when keyword followed by a guard expression. The clause will be
selected only if the pattern matches and the guard expression evaluate to the atom true.

Let’s rewrite the factorial example from Chapter 2:

factorial(0) -> 1;
factorial(N) ->
 N * factorial(N-1).

this time using guards:

factorial(N) when N > 0 ->
 N * factorial(N - 1);
factorial(0) -> 1.

We reordered the clauses in the factorial function. In the previous version, we had to
have factorial(0) as the first clause to ensure that the function terminates. Now we
select the recursive clause (i.e., the one that calls the factorial function in its body) only
if the parameter N is larger than 0.

If the pattern matching together with the guards uniquely identifies what clause should
be selected, their order becomes irrelevant, and that is the case here. A last thing to
note concerning the rewrite of the factorial function is that if factorial(-1) is called,
a runtime error is generated, as no clause can be selected, since −1 is less than 0 and
not equal to 0. In the previous version of the factorial function, the function would
never have returned a value, since factorial(-1) calls factorial(-2), and so on. This
would eventually cause the Erlang runtime system to run out of memory and terminate.

The individual guard expressions can be built using the following constructs:

• Bound variables

• Literal Erlang terms denoting data values including numbers, atoms, tuples, lists,
and so forth

• Type tests, such as is_binary, is_atom, is_boolean, is_tuple, and so on

• Term comparisons using ==, =/=, <, >, and so on, as listed in Chapter 2

• Arithmetic expressions built using the arithmetical operators given in Chapter 2

• Boolean expressions as described in Chapter 2

• Guard built-in functions

Guard subexpressions resulting in a runtime error are treated as returning false.

As an example, we can write:

guard(X,Y) when not(((X>Y) or not(is_atom(X))) and (is_atom(Y) or (X==3.4))) ->
 X+Y.

which shows that guards can be complex combinations of tests, but do not allow ref-
erence to any user-defined functions.

The reason for not allowing developers to implement their own guard functions, lim-
iting them to permitted operations, is to ensure that guards are free of side effects. The

Guards | 51

guards are executed for all clauses up to the successful clause, meaning that if you had
an io:format call in a guard that fails, you would still see the printout even if the clause
was not selected for evaluation.

The Erlang language also has legacy versions of the type BIFs that are
simply called by the type name: atom/1, integer/1, and so forth. The
use of these BIFs is discouraged, as they are deprecated and are available
only for backward compatibility reasons. The new guards are is_atom/1,
is_integer/1, and so on.

Erlang allows simple logical combinations of guards to be written in a different way:

• Separating individual guard expressions with a comma (,) gives their conjunction,
so that such a sequence evaluates to true only if all expressions in the sequence
evaluate to true.

• Separating individual expressions (or indeed, comma-separated conjunctions)
with a semicolon (;) gives their disjunction, where the sequence evaluates to true
if any expression evaluates to true.

As an example of “... ; ...,...” notation, we can rewrite the guard function (after a
couple of applications of De Morgan’s Laws) to the following:

guard2(X,Y) when not(X>Y) , is_atom(X) ; not(is_atom(Y)) , X=/=3.4 ->
 X+Y.

Simple combinations with only commas or semicolons are fine; we would not recom-
mend using semicolons and commas together in practice, as it’s too easy to get the logic
wrong.

To conclude this section, copy the following example and run it from the shell. The
function even will take the remainder of an integer when divided by 2; if the result is 0,
it returns the atom true, and if it is 1 the integer is not even, so it returns false.
Try calling the function even with a float or an atom. What happens? The second
function, number, returns the atom float or integer depending on the argument passed
to number/1. If anything other than a number is passed, the function returns false:

-module(examples).
-export([even/1, number/1]).

even(Int) when Int rem 2 == 0 -> true;
even(Int) when Int rem 2 == 1 -> false.

number(Num) when is_integer(Num) -> integer;
number(Num) when is_float(Num) -> float;
number(_Other) -> false.

52 | Chapter 3: Sequential Erlang

Built-in Functions
The following subsections will familiarize you with a few of the more commonly used
built-in functions grouped according to the type of function, with examples illustrating
their use. We will refer to built-in functions as BIFs, a practice almost universal in the
Erlang community. Standard and nonstandard BIFs are listed in the manual page of
the erlang module.

BIFs are usually written in C and integrated into the virtual machine (VM), and can be
used to manipulate, inspect, and retrieve data as well as interact with the operating
system. An example of a data manipulation function is the conversion of an atom to a
string: atom_to_list/1. Other BIFs, such as length/1, which returns the length of a list,
are implemented in the runtime system for efficiency.

Originally, all built-in functions were considered to belong to the module erlang, but
they have made their way to other modules for practicality and efficiency reasons.
Among the modules that contain built-in functions are ets and lists.

Although most built-in functions are seen as being an integral part of Erlang, others are
VM-dependent and do not necessarily exist in other VM implementations or even in
specific OS ports of the existing VM. Standard built-in functions are auto-imported, so
you can call them without the module prefix. Nonstandard BIFs, however, have to be
prefixed with the erlang module prefix, as in erlang:function. Examples of nonstan-
dard built-in functions include erlang:hash(Term, Range), which returns the hash of
the Term in the specified range; and erlang:display(Term), which prints the term to
standard output and is mainly used for debugging purposes.

Object Access and Examination
A large number of BIFs deal with built-in types such as lists and tuples:

hd/1
Returns the first element of a list

tl/1
Returns the remaining elements when the first element has been removed

length/1
Returns the length of a list

tuple_size/1
Returns the number of elements in a tuple

element/2
Returns the nth element of a tuple

setelement/3
Replaces an element in a tuple, returning the new tuple

Built-in Functions | 53

erlang:append_element/2
Adds an element to the tuple, as the final element

These functions are shown in action in the following code:

1> List = [one,two,three,four,five].
[one,two,three,four,five]
2> hd(List).
one
3> tl(List).
[two,three,four,five]
4> length(List).
5
5> hd(tl(List)).
two
6> Tuple = {1,2,3,4,5}.
{1,2,3,4,5}
7> tuple_size(Tuple).
5
8> element(2, Tuple).
2
9> setelement(3, Tuple, three).
{1,2,three,4,5}
10> erlang:append_element(Tuple, 6).
{1,2,3,4,5,6}

Type Conversion
Type conversions have to be BIFs since they change the underlying representation of
the data. This would be impossible to do efficiently within the language, even if it were
possible to do at all. There are numerous type conversion functions, not only to change
numerical types, but also to convert the basic types to and from a printable represen-
tation (i.e., string). When changing a float to an integer, you can choose between
rounding and truncating it:

atom_to_list/1, list_to_atom/1, list_to_existing_atom/1
All convert atoms to strings and back. If the atom was not previously used by
the runtime system in the current session, calling the function
list_to_existing_atom/1 will fail.

list_to_tuple/1, tuple_to_list/1
Both convert between the two data types.

float/1, list_to_float/1
Both create a float, one with an integer parameter and the other from a string.

float_to_list/1, integer_to_list/1
Both return strings.

round/1, trunc/1, list_to_integer/1
All return integers.

54 | Chapter 3: Sequential Erlang

Here they are in action:

1> atom_to_list(monday).
"monday"
2> list_to_existing_atom("tuesday").
** exception error: bad argument
 in function list_to_existing_atom/1
 called as list_to_existing_atom("tuesday")
3> list_to_existing_atom("monday").
monday
4> list_to_tuple(tuple_to_list({one,two,three})).
{one,two,three}
5> float(1).
1.00000
6> round(10.5).
11
7> trunc(10.5).
10

Process Dictionary
There is a set of BIFs that allow functions to store values associated with a key and later
retrieve them in other parts of the program; this set of BIFs is called the process dic-
tionary. The retrieval and manipulation of these values unfortunately introduces global
variables into Erlang.

Using the process dictionary might provide the programmer with a quick win while
developing the program, but the result is code that is very hard to debug and maintain.
As most Erlang functions are side effect free, the parameters passed to the function
included in the crash report usually contain enough information to solve the bug. In-
troducing the process dictionary greatly complicates this task, as the state of the process
dictionary is lost when the program crashes. We will not cover these BIFs in this book,
as we do not want to be seen as encouraging bad practices. If you are desperate to write
ugly, hard-to-debug programs or are putting together a submission to the obfuscated
Erlang competition, you can read about these BIFs in the documentation that comes
with the Erlang distribution. At least you will not be able to say you picked up this bad
habit from us.

Meta Programming
One often refers to the ability of a function to determine what other function to call at
runtime as meta programming, that is, programs that create other programs and run
them. For this use, we have the apply/3 function that takes three arguments, namely a
module name, an exported function name, and a list of arguments. When called, it
executes the named function on the specified arguments and returns its result.

The beauty of apply/3 is that the module, function, and arguments do not have to be
known at compile time. They can be passed to the BIF as variables. So, in the following

Built-in Functions | 55

example, the call to apply/3 returns what examples:even(10) returns: true. This ability
to dynamically determine the function to run is essential when writing generic code:

1> Module = examples.
examples
2> Function = even.
even
3> Arguments = [10].
[10]
4> apply(Module, Function, Arguments).
true

A common pitfall for beginners is to forget to put the arguments (even if there is just
one) into a list when using apply. Suppose we take our definition of listlen from earlier
in the chapter, and we forget to put the argument in a list when using apply:

5> apply(sequential, listlen, [2,3,4]).
** exception error: undefined function sequential:listlen/3

The correct use of apply gives us the following:

6> apply(sequential, listlen, [[2,3,4]]).
3

which is the answer we expect.

If the number of arguments is known at compile time, you can use the following no-
tation (if there are two arguments):

Mod:Fun(Arg1, Arg2)

instead of the more general apply(Mod,Fun,[Arg1,Arg2]). We will look at other ways
that functions can be created dynamically when we look at higher-order functions in
Chapter 9.

Process, Port, Distribution, and System Information
In the chapters dealing with concurrency, we will cover several BIFs directly related to
processes, process inspection, and error handling. The same applies to port handling
and distribution. We will mention these BIFs and others in their relevant chapters
throughout the book. There is a variety of information concerning the system that we
might want to know, and of course, all the access functions for this information have
to be BIFs. The information includes low-level system information, trace stacks, as well
as the current time and date. The list is long, but they are all documented in
the erlang module.

The date/0 function returns the current date as a tuple of {Year, Month, Day}, and the
time/0 function returns the current time as a tuple of {Hour, Minute, Second}. The
now/0 function returns a tuple of {MegaSeconds, Seconds, MicroSeconds} that have
passed since midnight, January 1, 1970. The now/1 BIF will always return a unique value
in a particular Erlang node, even if called more than once in the same microsecond. As
a result, it can be used as a unique identifier.

56 | Chapter 3: Sequential Erlang

Input and Output
The io module provides input and output from an Erlang program. In this section, we
describe the main functions that read from standard input and write to standard output.
Each function can take a file handle (of type io_device()) as an additional (first) argu-
ment: file operations are defined in the file module.

To read a line from standard input, use io:get_line/1, which takes a prompt string (or
atom) as its input:

1> io:get_line("gissa line>").
gissa line>lkdsjfljasdkjflkajsdf.
"lkdsjfljasdkjflkajsdf.\n"

It is also possible to read a specified number of characters:

2> io:get_chars("tell me> ",2).
tell me> er
"er"

The most useful input function is io:read/1, which reads an Erlang term from standard
input:

3> io:read("ok, then>>").
ok, then>>atom.
{ok,atom}
4> io:read("ok, then>>").
ok, then>>{2,tue,{mon,"weds"}}.
{ok,{2,tue,{mon,"weds"}}}
5> io:read("ok, then>>").
ok, then>>2+3.
{error,{1,erl_parse,"bad term"}}

As command 5 reminds us, a term is a fully evaluated value, and not an arbitrary Erlang
expression such as 2+3.

Output in Erlang is provided by io:write/1, which will print an Erlang term, but the
function most commonly used is io:format/2, which provides formatted output.
io:format takes the following:

• A formatting string (or binary) that controls the formatting of the arguments

• A list of values to be printed

The formatting string contains characters that are printed as they are with control se-
quences for formatting.

Control sequences begin with a tilde (~), and the simplest form is a single character,
indicating the following:

~c
An ASCII code to be printed as a character.

~f
A float to be printed with six decimal places.

Built-in Functions | 57

~e
A float to be printed in scientific notation, showing six digits in all.

~w
Writes any term in standard syntax.

~p
Writes data as ~w, but in “pretty printing” mode, breaking lines in appropriate
places, indenting sensibly, and outputting lists as strings where possible.

~W, ~P
Behave as ~w, ~p, but eliding structure at a depth of 3. These take an extra argument
in the data list indicating the maximum depth for printing terms.

~B
Shows an integer to base 10.

Here they are in action:

1> List = [2,3,math:pi()].
[2,3,3.141592653589793]
2> Sum = lists:sum(List).
8.141592653589793
3> io:format("hello, world!~n",[]).
hello, world!
ok
4> io:format("the sum of ~w is ~w.~n", [[2,3,4],ioExs:sum([2,3,4])]).
the sum of [2,3,4] is 9.
ok
5> io:format("the sum of ~w is ~w.~n", [List,Sum]).
the sum of [2,3,3.141592653589793] is 8.141592653589793.
ok
6> io:format("the sum of ~W is ~w.~n", [List,3,Sum]).
the sum of [2,3|...] is 8.141592653589793.
ok
7> io:format("the sum of ~W is ~f.~n", [List,3,Sum]).
the sum of [2,3|...] is 8.141593.
ok

The full control sequence has the form ~F.P.PadC, where F is the field width of the
printed argument, P is its precision, Pad is the padding character, and C is the control
character. The full details of these are available in the documentation for the io module;
for now, the next two examples illustrate the point:

8> io:format("the sum of ~W is ~.2f.~n", [List,3,Sum]).
the sum of [2,3|...] is 8.14.
ok
9> io:format("~40p~n", [{apply, io, format, ["the
 sum of ~W is ~.2f.~n", [[2,3,math:pi()],3,ioExs:sum([2,3,math:pi()])]]}]).
{apply,io,format,
 ["the sum of ~W is ~.2f.~n",
 [[2,3,3.141592653589793],
 3,8.141592653589793]]}
ok

58 | Chapter 3: Sequential Erlang

To see how much ~p prettifies the output, it is worth trying the last command, but with
~w replacing ~40p in the formatting string.

When printing lists of integers, sometimes the output formatted with
~p will be confusing. The pretty printing mode tries to figure out what
you are trying to print, and formats it accordingly. But if your list of
integers happens to be valid ASCII values instead of a list of integers,
you will get a string. If they are integers you need to print out, use ~w
instead:

1> List = [72,101,108,108,111,32,87,111,114].
"Hello Wor"
2> io:format("~p~n",[List]).
"Hello Wor"
ok
3> io:format("~w~n",[List]).
[72,101,108,108,111,32,87,111,114]
ok

Recursion
The best way to tackle programming problems is to use the well-tested strategy of divide
and conquer to break the problem into a number of simpler subproblems. By joining
together the solutions of several simple problems, you solve the bigger one without
even realizing it! Let’s try this approach by taking a list of integers and adding 1 to every
element in the list. Because Erlang is a single assignment language, we have to create a
new list, in which we will store the result.

We will name the function bump/1 and divide the problems into smaller tasks that are
easier to solve, implementing one clause at a time. If the old list is empty, the new one
should also be empty. The following function clause takes care of this case:

bump([]) -> [];

The second possibility is that the list contains at least one element. If so, we split the
list to a head and a tail. We take the head and create a new list whose head is the head
of the old list incremented by 1:

bump([Head | Tail]) -> [Head + 1 | ?].

Now, the question is how do we proceed with the rest of list? We want to construct a
new list where all the elements are one larger than in the old list. But that is exactly
what the bump function is supposed to do! The solution is to call the function we are
defining recursively using the tail of the list:

bump([Head | Tail]) -> [Head + 1 | bump(Tail)].

This provides us with what we are looking for. We recurse on the tail, and ensure that
bump/1 returns a well-formed list that can be the tail of the new list we just created. So,
the solution would be:

Recursion | 59

bump([]) -> [];
bump([Head | Tail]) -> [Head + 1 | bump(Tail)].

Does the function really work? Let’s try working through the call bump([1,2,3]):

bump([1, 2, 3] => [1 + 1 | bump([2, 3])
 1 + 1 => 2
 bump([2, 3]) => [2 + 1 | bump([3])
 2 + 1 => 3
 bump([3]) => [3 + 1 | bump([])
 3 + 1 => 4
 bump([]) => []
 [4 | []] => [4]
 [4] <=
 [3 | [4]] => [3, 4]
 [3, 4] <=
 [2 | [3, 4]] => [2, 3, 4]
[2, 3, 4] <=

In the bump example, we exposed two important issues. The first one is the common
technique of tackling the problem piecemeal, breaking it up into smaller problems.
This resulted in a very common recursive programming pattern in Erlang. How does
this piece of magic work? We are calling the same function, reusing variables. Are they
not already bound? No, they are not. The important thing to remember is that the
variables are unique to every call and considered fresh in every iteration. For each call
to a function, a frame is created on the call stack with information regarding where to
return, together with the parameters to the function and its local variables. This is
important, even if it’s hidden from you in the runtime system, and so we will get back
to it later in the chapter when we talk about tail-recursive functions.

We are now going to look at a more elaborate example, revisiting a similar type of
problem and, indeed, a solution. We want to compute the average of a list of numbers.
So, let’s call the function average. What is the average? It is the sum of the elements
divided by the length of the list. We can thus define average to be as follows:

average(List) -> sum(List) / len(List).

And this has solved the problem! All we need to do is to define the sum and len functions,
and we are done. To compute the sum, we do a similar case analysis to what we did for
bump, breaking the problem into smaller problems.

Let’s start with the sum. If the list is empty, the sum of its elements is obviously zero:

sum([]) -> 0;

If the list contains at least one element, we break the list into a head and a tail, and add
the head (the first element) to the sum of the tail (the rest of the list). And as you may
remember from the bump example, since we are already defining a function to solve this
problem, let’s use it:

sum([Head | Tail]) -> Head + sum(Tail).

60 | Chapter 3: Sequential Erlang

The next step is to write the len/1 function. We are calling the length function len to
avoid clashing with the built-in function. Here we want to add one for each element of
the list, so it is almost identical to the sum/1 code, with two small exceptions: we do
not care about the value of the elements, and we add one instead, giving us the
following:

len([_ | Tail]) -> 1 + len(Tail).

We used the “don’t care” variable (_) to signify that we are not interested in the value
of the head of the list. The case for the empty list, of course, returns zero. Putting it all
together we get the following:*

average(List) -> sum(List) / len(List).

sum([]) -> 0;
sum([Head | Tail]) -> Head + sum(Tail).

len([]) -> 0;
len([_ | Tail]) -> 1 + len(Tail).

In practice, we would have used the length/1 BIF rather than redefining the function
for ourselves, because it’s better to reuse code if you can, and also because it’s more
efficiently implemented as a BIF, but it’s useful to see it defined recursively here.

Let’s take a closer look now at how average works in an example:

average([1, 2, 3]) => sum([1, 2, 3]) / len([1, 2, 3])
 sum([1, 2, 3]) => 1 + sum([2, 3])
 sum([2, 3]) => 2 + sum([3])
 sum([3]) => 3 + sum([])
 sum([]) => 0
 3 + 0 => 3
 3 <=
 2 + 3 => 5
 5 <=
 1 + 5 => 6
 6 <=
 len([1, 2, 3]) => 1 + len([2, 3])
 len([2, 3]) => 1 + len([3])
 len([3]) => 1 + len([])
 len([]) => 0
 1 + 0 => 1
 1 <=
 1 + 1 => 2
 2 <=
 1 + 2 => 3
 3 <=
 6 / 3 => 2.0
2.0 <=

* It would be better if the function were not to cause a “division by zero” error on an empty list; how would
you modify the definition so that average returns zero on an empty list?

Recursion | 61

The most striking point of this example is how similar the sum/1 and len/1 functions
are. It is a pattern that, with variations, is by far the most common in Erlang code. We
will now continue with an example that is a variation of this pattern. We will traverse
a list, filtering out the elements that are not even. We now have three cases to take care
of. In the first, the list is empty, meaning there are no elements to examine. This base
case will return the empty list:

even([]) -> [];

If the first element of the list is even, we want to include it in the list we are constructing,
and to make the rest of the list consist of those elements in the Tail that are even:

even([Head | Tail]) when Head rem 2 == 0 -> [Head | even(Tail)];

Note that we are using a guard to determine whether the head is even by checking
whether the remainder of the division by two is equal to zero. Finally, the third case is
when the first element of the list is odd. If so, we want to drop that element by applying
the recursive call to the tail without appending the first element to the front:

even([_ | Tail]) -> even(Tail).

Note that we have no guard in the last clause ensuring that the head is not even. We
know this already, as the previous clause selects all the even numbers, leaving only the
odd ones. Not needing to check the head of the list, we use a “don’t care” variable:

even([]) -> [];
even([Head | Tail]) when Head rem 2 == 0 -> [Head | even(Tail)];
even([_ | Tail]) -> even(Tail).

Let’s take a closer look at how this evaluates:

even([10, 11, 12]) => [10 | even([11, 12])] (10 rem 2 == 0)
 even([11, 12]) => even([12]) (11 rem 2 == 1)
 even([12]) => [12 | even([])] (12 rem 2 == 0)
 even([]) => []
 [12 | []] => [12]
 [12] <=
 [12] <=
 [10 | [12]] => [10, 12]
[10, 12] <=

In all of these examples, we traversed the entire list, either constructing a new list or
calculating a value. We will conclude these examples with one where the condition for
termination is not necessarily the empty list. A condition that terminates the recursive
calls is referred to as a base case. We will write a member/2 function which, given an
element and a list, traverses the list, returning true if the element is a member of the
list and false if not.

No element is a member of the empty list. So, if the empty list is sent to this function
call, we return false:

member(_, []) -> false;

62 | Chapter 3: Sequential Erlang

At this point, we do not care what element we were looking for, as it isn’t there, so we
use the “don’t care” variable. Our second case is if the list contains at least one element,
and we check whether the first element is the one we are looking for. We break the list
into a head and a tail, and pattern-match the element with the head. If they are equal,
we return true:

member(H, [H | _]) -> true;

We establish that the element and the head are the same by matching them with a
common variable; the rest of the list is no longer of importance. Finally, the list contains
at least one element, but since we have not selected the previous clause, the head ob-
viously does not match what we are looking for, meaning we have to recurse through
the rest of the list looking for the element:

member(H, [_ | T]) -> member(H, T).

Pulling the three clauses together we have the following:

member(_, []) -> false;
member(H, [H | _]) -> true;
member(H, [_ | T]) -> member(H, T).

Using pen and paper, try working step by step through the following examples. Pick
out the base case and understand how the lists are broken up into a head and tail using
the recursive definition of lists:

1> c(recursion).
{ok,recursion}
2> recursion:member(friday, [monday, tuesday, wednesday, thursday, friday]).
true
3> recursion:member(sunday, [monday, tuesday, wednesday, thursday, friday]).
false

Recursion is one of the most fundamental tools not only in Erlang, but also functional
programming. You would benefit from copying the recursive examples we went
through into a module called recursion and testing them with different parameters.

Tail-Recursive Functions
In writing the sum function earlier:

sum([]) -> 0;
sum([Head | Tail]) -> Head + sum(Tail).

we used a direct recursion style. This style means you can read the function definition
as a description of the sum of a list, as in “the result of sum of the list [2,3,4] is equal to
2 added to the sum of [3,4]”. Or you can read it as an equation:

sum([2,3,4] = 2 + sum([3,4])

Another approach to defining sum uses an additional function parameter, called an
accumulating parameter, to hold the value of the sum as it is calculated.

Recursion | 63

If you call your function sum_acc, and the second parameter holds the “sum so far,”
how should you define the function? The first case is when the list is empty—you must
then return the “sum so far”:

sum_acc([],Sum) -> Sum;

If, on the other hand, the list is not empty, you take off the Head and add it to the Sum,
and call sum_acc on the Tail and the new “sum so far”:

sum_acc([Head|Tail], Sum) -> sum_acc(Tail, Head+Sum).

How do you call the function to sum a list? You start off with the list and a “sum so
far” of zero:

sum(List) -> sum_acc(List,0).

To be clear about how this works, let’s write down the evaluation of an example (hiding
the calculation of the arithmetic):

sum([2,3,4])
 => sum_acc([2,3,4],0)
 => sum_acc([3,4],2)
 => sum_acc([4],5)
 => sum_acc([],9)
 => 9

The definition of sum_acc is called tail-recursive because the body of the function is a
call to the function itself. In general, a function f is tail-recursive when the only calls to
f occur as the last expression (i.e., tail) in the bodies of the clauses of f. What is the
difference between the two definitions of sum?

• The direct definition is easier to understand: you can read the definition as a direct
description of the sum of a list.

• The tail-recursive definition is more like a program written in C or Java: you have
to understand how the program will evolve through its execution to see that the
final value of the second variable is in fact the sum of the list. On the other hand,
in some circumstances, a tail-recursive definition can be more efficient memory
wise.

It is one of the principal Myths of Erlang Performance† that tail recursion
is much more efficient than direct recursion in Erlang. Perhaps this was
true in the early days of the language, but optimizations applied between
releases 7 and 12 have meant that it’s no longer true that tail recursion
will give you a more efficient program.

The advice of the developers of the system is “The choice is now mostly
a matter of taste. If you really do need the utmost speed, you must
measure. You can no longer be absolutely sure that a tail-recursive func-
tion will be the fastest in all circumstances.”

† To be found as a part of the Efficiency Guide in the Erlang documentation.

64 | Chapter 3: Sequential Erlang

Why might sum_acc be more efficient than the original sum? The clue is in the evaluation
we gave earlier, where you can see that its evaluation looks like a loop, which simply
changes the values of the two parameters until the base case is hit. In other words, it
might use less memory in its implementation and as a result be more space-efficient.
On the other hand, optimizations in the compiler may well permit efficient implemen-
tation of a nontail-recursive function, too.

Another example is a reimplementation of the bump/1 function. For the new bump/1, we
will add an accumulator that contains the list we are constructing: as we said earlier,
this parameter looks rather like a variable in an imperative language, as its value will
change in each iteration!

We do not want to change the interface to bump/1, so we define a new helper function,
bump_acc/2, which takes two arguments: the list we are “bumping” and the new list we
are constructing.

In the initial call to bump_acc/2, we supply the original list as well as an empty list. This
empty list is the starting value of our accumulator, which in its first iteration will be
empty, as we have not constructed anything:

bump(L) -> bump_acc(L, []).

Now we do the same case analysis as in the earlier examples, but we construct the
functions differently. If the old list is empty, we are done and the newly constructed
list should be the result:

bump_acc([], Acc) -> Acc;

If the old list contains at least one element, we break it up into a head and a tail,
increment the head, and insert it into the list we are building, calling bump_acc/2 with
the new accumulator and the tail of the list:

bump_acc([H | T], Acc) -> bump_acc(T, [H + 1 | Acc]).

Before reading on, try copying the preceding code and test it or step through it with
pen and paper. Do you notice anything wrong? You are traversing the list and adding
elements to the beginning of the new list. But that will mean the first element added to
the list will end up at the back, resulting in a reversed list. You can remedy this by
reversing the list you get as a result from the base case. The resulting code will be:

bump(List) -> bump_acc(List, []).

bump_acc([], Acc) -> reverse(Acc);
bump_acc([Head | Tail], Acc) -> bump_acc(Tail, [Head + 1 | Acc]).

To understand how this version differs from the original, let’s look at an example
evaluation:

bump([1, 2, 3])
 => bump_acc([1, 2, 3], [])
 => bump_acc([2, 3] , [2])
 => bump_acc([3], [3, 2])
 => bump_acc([], [4, 3, 2])

Recursion | 65

 => reverse([4, 3, 2])
 => [2,3,4]

When writing bump_acc/2, you saw that using the accumulator reversed the elements
of the list. You use the same principle and do nothing to the elements to get an
accumulator-based reverse function:

reverse(List) -> reverse_acc(List, []).

reverse_acc([], Acc) -> Acc;
reverse_acc([H | T], Acc) -> reverse_acc(T, [H | Acc]).

Tail-Call Recursion Optimization
Recall that in general, a function f is tail-recursive when the only calls to f occur as the
last expression (i.e., tail) in the bodies of the clauses of f. Now, let’s get to the optimi-
zation this enables.

Looking at the evaluation of bump_acc earlier, it is apparent that it could be implemented
by overwriting the information in the arguments—which is held in the stack frame for
the original function call—and then jumping to the instructions for the tail-call func-
tion: in this case the same function. This is done without allocating a new stack frame.

This same optimization is possible for functions that are indirectly tail-recursive. For
example, the following function merges two lists (of the same length) by interleaving
their values:

merge(Xs,Ys) ->
 lists:reverse(mergeL(Xs,Ys,[])).

mergeL([X|Xs],Ys,Zs) ->
 mergeR(Xs,Ys,[X|Zs]);
mergeL([],[],Zs) ->
 Zs.

mergeR(Xs,[Y|Ys],Zs) ->
 mergeL(Xs,Ys,[Y|Zs]);
mergeR([],[],Zs) ->
 Zs.

This tail-call optimization, and therefore a tail-recursive definition, is most important
for functions that run forever: these will form the bodies of concurrent processes, which
we introduce in the next chapter.

Two accumulators example

We will now show you a more elaborate example of a tail-recursive function to ensure
that you really understand the concept. We will convert the sum/1 and len/1 functions
to be tail-recursive. There is no point in traversing the list twice, once to compute the
sum and a second time to get the length, when you can get away with traversing it only
once. To do so, we’ll add one helper function that does both computations.

66 | Chapter 3: Sequential Erlang

This helper function takes two accumulators, one used to store the sum and the other
to store the average. The call to the helper function, where we initialize the accumula-
tors to zero, is as follows:

average(List) -> average_acc(List, 0, 0).

We now use our divide-and-conquer technique to solve the problem. If the list is empty,
the accumulators contain the sum and length, so we perform the division:

average_acc([], Sum, Length) -> Sum/Length;

Our second case is that if the list contains at least one element, we add the element to
the sum accumulator, increment the length accumulator, and recursively call the helper
function with the accumulators and the tail of the list:

average_acc([H | T], Sum, Length) -> average_acc(T, Sum + H, Length + 1).

The code for the average is faster, uses less space, and—once you get used to accumu-
lators—is more readable than the original version. Before going on to the next section,
use pen and paper to work your way through a few examples of the tail-recursive version
of average. You should also think about how to modify the average function so that it
does not return an error on the empty list:

average(List) -> average_acc(List, 0,0).

average_acc([], Sum, Length) ->
 Sum / Length;
average_acc([H | T], Sum, Length) ->
 average_acc(T, Sum + H, Length + 1).

Iterations Versus Recursive Functions
We said we iterate using recursion, but to clarify what we mean, we will show you how
iteration in C can be rewritten in Erlang, tying these concepts to each other.

We will start with a simple iterative function in C that sums the integers from 1 to the
boundary passed as an argument. The C function has two local integer variables con-
taining the iterator (or index variable) and the sum so far. The summation is performed
using a for loop, a typical iterative construct:

int sum(int boundary) {
 int i, sum = 0;

 for(i = 1; i <= boundary; i++)
 sum += i;
 return sum;
}

The Erlang version uses a helper function with an accumulator, resulting in a similar
pattern. The sum function mimics the C sum function by calling the helper function with
the initial values. The values correspond to the initialization of the sum variable when
it is declared and the for loop initialization of the i variable.

Recursion | 67

The base case of the helper function corresponds to when the for loop exits and the
explicit return of the value of the variable sum is made.

The recursive call corresponds to the body of the for loop, where the loop destructively
increments sum. The Erlang function does the same by a recursive call where the argu-
ment Sum is increased by the value of the Index argument. Finally, the increase of the
iterator variable i is mimicked by the Index argument to the recursive call and is incre-
mented by one:

sum(Boundary) -> sum_acc(1, Boundary, 0).

sum_acc(Index, Boundary, Sum) when Index =< Boundary ->
 sum_acc(Index + 1, Boundary, Sum + Index);
sum_acc(_I, _B, Sum)->
 Sum.

Runtime Errors
For you to become productive in Erlang, you should know the runtime errors that can
occur and how they are reported in the shell. The runtime errors in Erlang are excep-
tions that are thrown by the system. They are presented in the upcoming list, together
with an example of a function that generates them and how that will actually look in
the shell when you call that function.

In the examples, we use a module test which exports the functions factorial/1,
test1/1, and test2/1. In some of the last cases, we can induce the runtime error directly
in the shell. With each runtime error, we also give a brief description of its cause:

function_clause
This is returned when none of the existing function patterns match in the called
function. This error normally occurs when you have either forgotten a case in your
case analysis or inadvertently called the function with the wrong argument:

factorial(N) when N > 0 ->
 N * factorial(N - 1);
factorial(0) -> 1.

1> test:factorial(-1).
** exception error: no function clause matching test:factorial(-1)

case_clause
This is returned when none of the existing patterns in the case construct match.
The most common reason for this is that you have forgotten one or more possible
cases:

test1(N) ->
 case N of
 −1 -> false;
 1 -> true
 end.

68 | Chapter 3: Sequential Erlang

1> test:test1(0).
** exception error: no case clause matching 0
 in function test:test1/1

if_clause
This is returned when none of the existing expressions in the if construct evaluate
to true. As this is really a simplified case construct, the error is typically caused by
a missing pattern:

test2(N) ->
 if
 N < 0 -> false;
 N > 0 -> true
 end.

1> test:test2(0).
** exception error: no true branch found when evaluating an if expression
 in function foo:test2/1

badmatch
Errors occur in situations when pattern matching fails and there are no other al-
ternative clauses to choose from. For the badmatch exception, it is very hard to point
to a single cause, but one recurrent cause is when you inadvertently try to bind a
variable that is already bound, as in the following:

1> N=45.
45
2> {N,M}={23,45}.
** exception error: no match of right hand side value {23,45}

This fails to bind N to 23, as N is already bound to 45.

Another relatively common cause is when you match to retrieve parts of a result
from a function call. For example, it is common when searching for a tuple in a list
of tuples to use the library function lists: keysearch/3, which returns on success
the tuple {value, Tuple}, where Tuple is the sought tuple. Now, this function is
quite often called in the following way:

{value, Tuple} = lists:keysearch(Key, Pos, List)

because we want to immediately use the retrieved tuple. But the function returns
false when no tuple with a matching key can be found, thereby resulting in a
badmatch:

1> Tuple = {1, two, 3}.
{1,two,3}
2> {1, two, 3, Four} = Tuple.
** exception error: no match of right hand side value {1,two,3}

badarg
This is returned when a BIF is called with the wrong arguments. In the following
example, length requires a list, but is called with an atom:

Runtime Errors | 69

1> length(helloWorld).
** exception error: bad argument
 in function length/1
 called as length(helloWorld)

undef
This is returned if the global function being called is not defined or exported. The
cause of this exception is often that you have misspelled the function name, or have
called the function without prepending the module name to the function call:

1> test:hello().
** exception error: undefined function test:hello/0

badarith
This is returned when arithmetical operations are executed with an inappropriate
argument, such as nonintegers or floats or trying to divide by zero:

1> 1+a.
** exception error: bad argument in an arithmetic expression
 in operator +/2
 called as 1 + a

There are a few more error types that we will cover in later chapters of this book as they
become relevant.

Handling Errors
In the preceding section, you saw some of the errors that can occur in an Erlang system,
together with diagnoses of the potential causes.

When executing an expression and a runtime error occurs, you might want to catch
the exception and prevent the thread of execution from terminating. Alternatively, you
might want to let it fail and for some other part of the system deal with recovery: this
latter option, which involves process linking and supervision, will be covered in Chap-
ters 6 and 12. In the meantime, in this section we will discuss how errors can be caught
and handled, using the try ... catch construct.

Using try ... catch
The idea behind the try ... catch construct is to evaluate an expression, and providing
ways of handling the normal result of the expression as well as abnormal termination.
What’s more, the construct allows you to differentiate between different return values
that arise as a result of Erlang’s different exception-handling mechanisms, and to handle
them in different ways.

Before the expression to be evaluated, you insert the reserved word try. You pattern-
match the (normal) result as you would have done in a case statement, but instead of
terminating the clauses with an end, you replace it with a catch followed by clauses to

70 | Chapter 3: Sequential Erlang

handle exceptions. These clauses have an exception type (also called classes) and ex-
ception patterns at their head, and corresponding return expressions.

The try ... catch construct has the following form:

try Exprs of
 Pattern1 [when Guard1] ->
 ExpressionBody1;
 Pattern2 [when Guard2] ->
 ExpressionBody2
catch
 [Class1:]ExceptionPattern1
 [when ExceptionGuardSeq1] ->
 ExceptionBody1;
 [ClassN:]ExceptionPatternN
 [when ExceptionGuardSeqN] ->
 ExceptionBodyN
end

Here is an example of this in action, shown through a series of commands in the Erlang
shell. In the first command, X is bound to 2, so any subsequent attempt to bind X to 3
will fail with a badmatch error:

1> X=2.
2
2> try (X=3) of
2> Val -> {normal, Val}
2> catch
2> _:_ -> 43
2> end.
43

In the second command, all error patterns in all classes (matching _:_) are mapped to
43; this result is returned here, as it is when only patterns in the error class (matching
error:_) are matched in the third command:

3> try (X=3) of
3> Val -> {normal, Val}
3> catch
3> error:_ -> 43
3> end.
43

In the fourth command, we return the error type as a part of the result, and we can see
that it is indeed a badmatch of the expression 3 (with X):

4> try (X=3) of
4> Val -> {normal, Val}
4> catch
4> error:Error -> {error,Error}
4> end.
{error,{badmatch,3}}

Finally, throw allows us to execute a nonnormal return within a try ... catch
statement:

Handling Errors | 71

5> try (throw(non_normal_return)) of
5> Val -> {normal, Val}
5> catch
5> throw:Error -> {throw, Error}
5> end.
{throw,non_normal_return}

You can use the throw/1 BIF within the context of a try ... catch in what is called a
nonlocal return. The return value of the expression passed to throw is returned by the
try ... catch expression, bypassing the call stack.

Imagine you are parsing a very large and deeply nested XML structure. By only handling
positive cases where the structure is correctly parsed, you do not need to check the
return value of each recursive call for an error, and instead can concentrate on returning
the parsed structure. Should you come across a parse error, the function would throw
an exception. This exception is intercepted by try ... catch, which bypasses the whole
recursive call stack to become the return value of the expression.

You should avoid using throw, as nonlocal returns make your code very hard to follow
and debug. The only exceptions to this guideline are examples such as the earlier parser
example, where a throw allows an exit from a deeply nested structure on an error con-
dition. If you really have to use catch and throw, have pity on those who will be main-
taining your code and ensure that they are both called in the same module. Trying to
figure out which catch in which module handles a throw defined elsewhere is not for
those with little patience.

What error classes are there?

error
This is the principal class of errors, and you saw the various types of runtime errors
in the preceding section; error can also be raised by calling the BIF
erlang:error(Term).

throw
This is the class that is generated by an explicit call to throw an exception, which
will be caught by an enclosing try ... catch expression. Use of throw in Erlang is
discouraged, because it makes understanding program behavior substantially more
difficult.

exit
This can be raised by calling the exit/1 BIF, invoked with a reason for termination;
exits can also be produced by an exit signal, which we cover in more detail in
Chapter 6.

To see these in action, let’s take the function return_error, defined here:

-module(exception).
-export([return/1]).

return_error(X) when X < 0 ->
 throw({'EXIT', {badarith,

72 | Chapter 3: Sequential Erlang

 [{exception,return_error,1},
 {erl_eval,do_apply,5},
 {shell,exprs,6},
 {shell,eval_exprs,6},
 {shell,eval_loop,3}]}});
return_error(X) when X == 0 ->
 1/X;
return_error(X) when X > 0->
 {'EXIT', {badarith, [{exception,return_error,1},
 {erl_eval,do_apply,5},
 {shell,exprs,6},
 {shell,eval_exprs,6},
 {shell,eval_loop,3}]}}.

This function will produce three different kinds of behavior depending on whether its
argument is positive, negative, or zero. We define try_return to catch the errors:

try_return(X) when is_integer(X) ->
 try return_error(X) of
 Val -> {normal, Val}
 catch
 exit:Reason -> {exit, Reason};
 throw:Throw -> {throw, Throw};
 error:Error -> {error, Error}
 end.

4> exception:try_return(1).
{normal,{'EXIT',{badarith,[{exception,return_error,1},
 {erl_eval,do_apply,5},
 {shell,exprs,6},
 {shell,eval_exprs,6},
 {shell,eval_loop,3}]}}}
5> exception:try_return(0).
{error,badarith}
6> exception:try_return(-1).
{throw,{'EXIT',{badarith,[{exception,return_error,1},
 {erl_eval,do_apply,5},
 {shell,exprs,6},
 {shell,eval_exprs,6},
 {shell,eval_loop,3}]}}}

You can use wildcards in your try ... catch expressions, and if you are not pattern
matching on the return value, you can omit the of. Type in the following example and
use it to experiment with various pattern matches of exceptions and wildcards. Don’t
forget to export the function, but ignore the warnings generated by the last two clauses
of the catch clause. These clauses are included to demonstrate the syntax and allow
you to experiment, but they will never execute, as all exceptions will be handled in the
previous clauses:

try_wildcard(X) when is_integer(X) ->
 try return_error(X)
 catch
 throw:Throw -> {throw, Throw};
 error:_ -> error;

Handling Errors | 73

 Type:Error -> {Type, Error};
 _ -> other; %% Will never be returned
 : -> other %% Will never be returned
 end.

7> exception:try_wildcard(-1).
{throw,{'EXIT',{badarith,[{exception,return_error,1},
 {erl_eval,do_apply,5},
 {shell,exprs,6},
 {shell,eval_exprs,6},
 {shell,eval_loop,3}]}}}
8> exception:try_wildcard(0).
error
9> exception:try_wildcard(1).
{'EXIT',{badarith,[{exception,return_error,1},
 {erl_eval,do_apply,5},
 {shell,exprs,6},
 {shell,eval_exprs,6},
 {shell,eval_loop,3}]}}

Before moving off this example, don’t think that all you can do with caught errors is
to pass them on in some form. Instead, it’s possible to return values that show no trace
that an error has been raised; this is illustrated in a final version of try_return:

try_return(X) when is_integer(X) ->
 try return_error(X) of
 Val -> {normal, Val}
 catch
 exit:_ -> 34;
 throw:_ -> 99;
 error:_ -> 678
 end.

Try examples of this; you will see that for positive values the 'EXIT' is not trapped (we
return to this in Chapter 6).

Using catch
The original Erlang mechanism for exception handling was the catch. Because of its
somewhat peculiar behavior, Richard Carlson, a member of the High Performance Er-
lang Team at Uppsala University, suggested a review of Erlang’s exception handling,
resulting in the try ... catch expression. He got the buy-in from the OTP team, which
included this construct as a documented and permanent feature of the Erlang R10B
release. We include a discussion of catch here because of the amount of legacy code
that will use this construct. Be warned, however, that it’s not as elegant as try ...
catch.

The catch expression allows you to trap when runtime errors occur. The format of this
is catch expression, where if the expression evaluates correctly it returns the value of
the expression. But if a runtime error occurs, it returns the tuple {'EXIT', Error}, where
Error contains information on the runtime error.

74 | Chapter 3: Sequential Erlang

Let’s try catching exceptions by using the list_to_integer/1 BIF, calling it with a nu-
meric string rather than a number:

1> list_to_integer("one").
** exception error: bad argument
 in function list_to_integer/1
 called as list_to_integer("one")
2> catch list_to_integer("one").
{'EXIT',{badarg,[{erlang,list_to_integer,["one"]},
 {erl_eval,do_apply,5},
 {erl_eval,expr,5},
 {shell,exprs,6},
 {shell,eval_exprs,6},
 {shell,eval_loop,3}]}}

Look at the result of the two calls. In the first call, we generate a runtime error that is
printed out by the shell. If this were to occur in your code, the program would terminate
abnormally. In the second call, we execute the expression within the scope of a catch.
As a result, instead of generating a runtime error, the expression returns a tuple of the
format {'EXIT', {Reason, Stack}}. Reason is an atom describing the error type—here
it’s a badarg—whereas Stack is the function call stack, allowing you to locate where the
BIF was called with the incorrect arguments.

As the following example demonstrates, precedence in Erlang can at times be coun-
terintuitive. If you are binding the return value of an expression encapsulated in a
catch, you need to encapsulate the catch expression in parentheses, giving it a higher
precedence than the assignment. If you don’t, the compiler will return a syntax error:

3> catch 1/0.
{'EXIT',{badarith,[{erlang,'/',[1,0]},
 {erl_eval,do_apply,5},
 {erl_eval,expr,5},
 {shell,exprs,6},
 {shell,eval_exprs,6},
 {shell,eval_loop,3}]}}
4> X = catch 1/0.
* 1: syntax error before: 'catch'
4> X = (catch 1/0).
{'EXIT',{badarith,[{erlang,'/',[1,0]},
 {erl_eval,do_apply,5},
 {erl_eval,expr,5},
 {erl_eval,expr,5},
 {shell,exprs,6},
 {shell,eval_exprs,6},
 {shell,eval_loop,3}]}}
5> X.
{'EXIT',{badarith,[{erlang,'/',[1,0]},
 {erl_eval,do_apply,5},
 {erl_eval,expr,5},
 {erl_eval,expr,5},
 {shell,exprs,6},
 {shell,eval_exprs,6},
 {shell,eval_loop,3}]}}

Handling Errors | 75

The throw/1 BIF will also work with catch. Look at the following example:

-module(math).
-export([add/2]).

add(X,Y) ->
 test_int(X),
 test_int(Y),
 X + Y.

test_int(Int) when is_integer(Int) -> true;
test_int(Int) -> throw({error, {non_integer, Int}})

Let’s interact with this module in the Erlang shell:

1> math:add(1,1).
2
2> math:add(one, 1).
** exception throw: {error,{non_integer,one}}
 in function math:test_int/1
3> catch math:add(one, 1).
{error,{non_integer,one}}

Calling the function add/2 within the scope of a catch results in the tuple {error,
Reason} being returned. Calling the same function outside the scope of the catch results
in an exception throw runtime error.

Another problem with catch is that it does not differentiate semantically between a
runtime error, a throw, an exit, or the return value of a function, and instead treats
them equally. There is no way to determine whether the {'EXIT', Error} returned
when executing a call encapsulated within a catch was the result of a
throw({'EXIT', {Reason, Stack}}), the result of a runtime error, a call to the exit/1
BIF, or merely an expression returning the tuple {'EXIT', Error}.

This is best illustrated by returning to the example of return_error defined earlier:

-module(exception).
-export([return/1]).

return(X) when is_integer(X) ->
 catch return_error(X).

Interacting with this, you can see:

1> exception:return(-1).
{'EXIT',{badarith,[{exception,return_error,1},
 {erl_eval,do_apply,5},
 {shell,exprs,6},
 {shell,eval_exprs,6},
 {shell,eval_loop,3}]}}
2> exception:return(0).
{'EXIT',{badarith,[{exception,return_error,1},
 {erl_eval,do_apply,5},
 {shell,exprs,6},
 {shell,eval_exprs,6},
 {shell,eval_loop,3}]}}

76 | Chapter 3: Sequential Erlang

3> exception:return(1).
{'EXIT',{badarith,[{exception,return_error,1},
 {erl_eval,do_apply,5},
 {shell,exprs,6},
 {shell,eval_exprs,6},
 {shell,eval_loop,3}]}}

You think you’ve seen it all? Try typing the following in the Erlang shell:

catch exit({badarith, [{exception, return_error, 1}, {erl_eval, do_apply, 5},
 {shell, exprs, 6}, {shell, eval_exprs, 6},
 {shell, eval_loop, 3}]})

You’ll get a fourth, syntactically identical but semantically different way of generating
the error in the example.

Erlang programmers were not too bothered by this, and for well more than a decade
they made do by avoiding throw and not returning tuples that contained the 'EXIT'
atom. But although programmers might not have been too bothered, the proposal of
the try ... catch expression solved these problems for new programs—the problem
is working with legacy code written before the Erlang R10B release.

Library Modules
A large number of library modules are distributed with the Erlang runtime system. It
always pays to spend some time reviewing what is available and making a mental note
of the library modules that might contain functionality you might find useful. In be-
tween releases, it makes sense to read the release notes, which contain the major
changes you should be aware of in the libraries, as well as provide pointers to new
modules. If you cannot find a module providing you with a generic solution to your
problem, you should search for it in the open source community, as the chance that
someone has written and released it under a friendly open source license is good. This
section deals with the most commonly used libraries in Erlang systems. But before
looking at these libraries, let’s look at how you access the documentation associated
with them.

Documentation
The Erlang distribution comes with documentation, available in both HTML and Unix
manpage formats. It is often bundled with the Erlang release, but can also be down-
loaded separately or accessed online at http://erlang.org (see Figure 3-1). You can access
the root page of the HTML documentation by opening the file:///<erl_root_dir>/doc/
index.html page, where the doc subdirectory is located in the root directory of the Erlang
installation. In Windows, a shortcut to the documentation is included in the Erlang/
OTP installation directory within the Program Files menu.

If you are using a Unix-based system, erl –man Module is a convenient way of accessing
the manual pages. If that command does not work, the manual pages have not been

Library Modules | 77

http://erlang.org

installed. Finally, most editors with an Erlang mode should have direct hooks into the
manual pages.

You access the documentation using the menu on the lefthand side of the page. At the
top there are links to the following:

Glossary
A list of the terminology in common use in the Erlang community.

Modules
An alphabetical list of the modules in the Erlang distribution, with web documen-
tation for each of them. This includes the erlang and erl modules. Many modules
have appropriately descriptive titles, and so a search of this page in your browser
can lead you to the functionality you are looking for.

Index
A permuted index of Erlang/OTP functions and commands. Browser search is
again useful here, and once you have found something of interest, links are provi-
ded in the index to the module identified.

The remaining links in the left column can be expanded to submenus containing a
wealth of information about various aspects of the system. For example, browsing these

Figure 3-1. The home page of the Erlang online documentation

78 | Chapter 3: Sequential Erlang

will give you information about tools, higher-level descriptions of the architecture of
parts of Erlang/OTP, and getting started with the system.

Useful Modules
To get an idea of what functionality and which modules are available in the Erlang
distribution, open the main HTML documentation page as described earlier. In the top
left, you should find a link to a page listing all existing modules, and the documentation
there describes every function exported by the module, as well as their types and any
related type definitions.

The most important ones you should be aware of are listed here. Spend some time
browsing their manual pages and experiment with them in the shell:

array
The array module contains an abstract data type for functional, extensible arrays.
They can have a fixed size, or grow as needed. The module contains functionality
to set and inspect values as well as to define recursions over them.

calendar
The calendar module provides functions to retrieve local and universal times as
well as providing time conversions for the day of the week, date, and time. Time
intervals can be computed, ranging from dates down to a microsecond granularity.
The calendar module is based on the Gregorian calendar and the now/0 BIF.

dict
The dict module is a simple key value dictionary, which allows you to store, re-
trieve, and delete elements, merge dictionaries, and traverse them.

erlang
All BIFs are considered to be implemented in the erlang module. The manual page
for this module lists all of the Erlang BIFs, differentiating between the generic ones
and the ones that are specific to the VM, and therefore those that are auto-imported
and those that are not.

file
The file module provides an interface to the filesystem, allowing you to read,
manipulate, and delete files.

filename
The filename module allows you to write generic file manipulation and inspection
functions that will work regardless of the file notation used by the underlying op-
erating system.

io
The io library module encapsulates the standard I/O server interface functions,
allowing you to read and write strings to I/O devices, including stdout.

Library Modules | 79

lists
The lists list-manipulation module is without a doubt the most used library mod-
ule in all major Erlang systems. It provides functions for inspecting, manipulating,
and processing lists.

math
All of the standard mathematical functions, including pi/0, sin/1, cos/1, and
tan/1, are implemented in the math library module.

queue
The queue module implements an abstract data type for FIFO queues.

random
The random module, given a seed, provides a pseudorandom number generator.

string
The string module contains an array of string processing functions. It differentiates
itself from the lists module in that it takes into consideration the fact that the
contents of the lists are ASCII characters.

timer
The timer module contains functions that relate to time, including generation of
events and conversion of various time formats to milliseconds, the main unit used
by this module.

The Debugger
The Erlang debugger is a graphical tool providing mechanisms to debug sequential
code and influence program execution. It allows the user to step through programs
while inspecting and manipulating variables. You can set breakpoints that stop the
execution as well as inspect the recursive stack and variable bindings at each level. This
section should serve as only a brief introduction to the debugger, and should be enough
to get you started in using it. There are many features and details we have not covered,
all of which are documented in the Debugger User’s Guide, available in the online
documentation.

You start the debugger by typing debugger:start() and a monitor window appears.
This window displays a list of trace-compiled modules, attached (traced) processes,
and other debug-related settings (see Figure 3-2).

To trace a module, you first need to compile it with the debug_info flag. In your Unix
shell, you do that using the following command:

erlc +debug_info Module.erl

From the Erlang shell, use either of the following two commands:

c(Module, [debug_info]).

compile:file(exception, [debug_info]).

80 | Chapter 3: Sequential Erlang

You then pick the module in the debugger by opening an interpret dialog window in
the module menu. Trace-compiled modules will be listed in this window alongside
nontrace-compiled ones (the latter will be shown in parentheses). Click the module
you want to trace and a * will appear next to it. As soon as a process starts executing
in the traced module, an entry will appear in the monitor window. You can double-
click it, opening what we call an attach window. This window (see Figure 3-3) allows
you to step through the code, view and manipulate variables, as well as inspect the
recursive stack. Another way of opening an attach window is by preselecting one of
the attach options in the monitor window. The options include hitting a breakpoint in
the code, running an interpreted module and exiting, or simply calling an interpreted
module for the first time.

You can insert breakpoints in the code by choosing an appropriate entry in the break
menu or by clicking the line in the monitor or module window. Breakpoints can be set
only in executable expressions, so breakpoints in function heads, patterns, or clause
delimiters have no effect. Breakpoints can have a status of active or inactive. When an
active breakpoint is reached, the breakpoint can, through triggers, be deleted, deacti-
vated, or kept active.

Now that we are now done with sequential programming, it is time to move on to
concurrency. But before doing so, make sure you grasp the key concepts of recursion
and its various patterns, as concurrency builds on tail-recursive functions stop iterating
only when we stop the process. Also spend some time browsing through the available
library modules in the documentation, to be aware of what is available.

The following exercises will get you familiar with recursion and its different uses. Pay
special attention to the different recursive patterns that we covered in this chapter. If
you are having problems finding bugs or following the recursion, try using the
debugger.

Figure 3-2. The monitor window

The Debugger | 81

Exercises

Exercise 3-1: Evaluating Expressions
Write a function sum/1 which, given a positive integer N, will return the sum of all the
integers between 1 and N.

Example:

sum(5) ⇒ 15.

Write a function sum/2 which, given two integers N and M, where N =< M, will return
the sum of the interval between N and M. If N > M, you want your process to terminate
abnormally.

Figure 3-3. The attach window

82 | Chapter 3: Sequential Erlang

Example:

sum(1,3) ⇒ 6.
sum(6,6) ⇒ 6.

Exercise 3-2: Creating Lists
Write a function that returns a list of the format [1,2,..,N-1,N].

Example:

create(3) ⇒ [1,2,3].

Write a function that returns a list of the format [N, N-1,..,2,1].

Example:

reverse_create(3) ⇒ [3,2,1].

Exercise 3-3: Side Effects
Write a function that prints out the integers between 1 and N.

Hint: use io:format("Number:~p~n",[N]).

Write a function that prints out the even integers between 1 and N.

Hint: use guards.

Exercise 3-4: Database Handling Using Lists
Write a module db.erl that creates a database and is able to store, retrieve, and delete
elements in it. The destroy/1 function will delete the database. Considering that Erlang
has garbage collection, you do not need to do anything. Had the db module stored
everything on file, however, you would delete the file. We are including the destroy
function to make the interface consistent. You may not use the lists library module,
and you have to implement all the recursive functions yourself.

Hint: use lists and tuples as your main data structures. When testing your program,
remember that Erlang variables are single-assignment:

Interface:

db:new() ⇒ Db.
db:destroy(Db) ⇒ ok.
db:write(Key, Element, Db) ⇒ NewDb.
db:delete(Key, Db) ⇒ NewDb.
db:read(Key, Db) ⇒{ok, Element} | {error, instance}.
db:match(Element, Db) ⇒ [Key1, ..., KeyN].

Example:

1> c(db).
{ok,db}

Exercises | 83

2> Db = db:new().
[]
3> Db1 = db:write(francesco, london, Db).
[{francesco,london}]
4> Db2 = db:write(lelle, stockholm, Db1).
[{lelle,stockholm},{francesco,london}]
5> db:read(francesco, Db2).
{ok,london}
6> Db3 = db:write(joern, stockholm, Db2).
[{joern,stockholm},{lelle,stockholm},{francesco,london}]
7> db:read(ola, Db3).
{error,instance}
8> db:match(stockholm, Db3).
[joern,lelle]
9> Db4 = db:delete(lelle, Db3).
[{joern,stockholm},{francesco,london}]
10> db:match(stockholm, Db4).
[joern]
11>

Due to single assignment of variables in Erlang, you need to assign the
updated database to a new variable every time. Use f() to forget existing
variable bindings in the shell.

Exercise 3-5: Manipulating Lists
Write a function that, given a list of integers and an integer, will return all integers
smaller than or equal to that integer.

Example:

filter([1,2,3,4,5], 3) ⇒ [1,2,3].

Write a function that, given a list, will reverse the order of the elements.

Example:

reverse([1,2,3]) ⇒ [3,2,1].

Write a function that, given a list of lists, will concatenate them.

Example:

concatenate([[1,2,3], [], [4, five]]) ⇒ [1,2,3,4,five].

Hint: you will have to use a help function and concatenate the lists in several steps.

Write a function that, given a list of nested lists, will return a flat list.

Example:

flatten([[1,[2,[3],[]]], [[[4]]], [5,6]]) ⇒ [1,2,3,4,5,6].

Hint: use concatenate to solve flatten.

84 | Chapter 3: Sequential Erlang

Exercise 3-6: Sorting Lists
Implement the following sort algorithms over lists:

Quicksort
The head of the list is taken as the pivot; the list is then split according to those
elements smaller than the pivot and the rest. These two lists are then recursively
sorted by quicksort, and joined together, with the pivot between them.

Merge sort
The list is split into two lists of (almost) equal length. These are then sorted sepa-
rately and their results merged in order.

Exercise 3-7: Using Library Modules
Implement the database-handling list in Exercise 3-4 using the lists module library
functions. Maintain the same interface to the db module, allowing your two modules
to be interchangeable. How much shorter is your solution?

Exercise 3-8: Evaluating and Compiling Expressions
This exercise asks you to build a collection of functions that manipulate arithmetical
expressions. Start with an expression such as the following:

((2+3)-4) 4 ~((2*3)+(3*4))

which is fully bracketed and where you use a tilde (~) for unary minus.

First, write a parser for these, turning them into Erlang representations, such as the
following:

{minus, {plus, {num, 2}, {num,3}}, {num, 4}}

which represents ((2+3)-4). We call these exps. Now, write a number of functions:

• An evaluator, which takes an exp and returns its value

• A pretty printer, which will turn an exp into a string representation

• A compiler, which transforms an exp into a sequence of code for a stack machine
to evaluate the exp

• A simulator which will implement expressions for the stack machine

• A simplifier, which will simplify an expression so that 0*e is transformed to 0, 1*e to
e, and so on (there are quite a lot of others to think of!)

You can also extend the collection of expressions to add conditionals:

if ((2+3)-4) then 4 else ~((2*3)+(3*4))

where the value returned is the “then” value if the “if” expression evaluates to 0, and
it is the “else” value otherwise.

Exercises | 85

You could also add local definitions, such as the following:

let c = ((2+3)-4) in ~((2*c)+(3*4))

Or you could add variables, which are set and then used in subsequent expressions.

For all of these extensions, you’ll need to think about how to modify all the functions
that you have written.

Exercise 3-9: Indexing
A raw document is a list of lines (i.e., strings), whereas a document is a list of words.
Write a function to read a text file into a raw document and then a document.

You want to write an index for a document. This will give a list of words paired with
their occurrences, so that the word Erlang might have the following entry:

{ "Erlang", [1,1,2,4,5,6,6,98,100,102,102] }

Write a function that will print this in a readable form, such as the following:

"Erlang 1-2,4-6,98,100,102"

so that duplicates are removed and adjacent numbers are put into a range. You might
like to think of doing this via a function that turns the earlier list of occurrences into a
list such as this:

[{1,2},{4,6},{98,98},{100,100},{102,102}]

through a sequence of transformations.

Exercise 3-10: Text Processing
Write a function that will take unstructured text such as this:

Write a function that will print this in a readable form,
so that duplicates are removed and adjacent numbers are put into a
range. You might like to think of doing this via a function which turns
the earlier list of occurrences into a list like
[{1,2},{4,6},{98,98},{100,100},{102,102}]
through a sequence of transformations.

and transforms it into filled text such as this:

Write a function that will print this
in a readable form, so that duplicates
are removed and adjacent numbers are put
into a range. You might like to think of
doing this via a function which turns
the earlier list of occurrences into a
list like
[{1,2},{4,6},{98,98},{100,100},{102,102}]
through a sequence of transformations.

86 | Chapter 3: Sequential Erlang

When you hit a blank line, stop filling. A more fiddly exercise is to justify the resulting
text:

Write a function that will print this
in a readable form, so that duplicates
are removed and adjacent numbers are put
into a range. You might like to think of
doing this via a function which turns
the earlier list of occurrences into a
list like
[{1,2},{4,6},{98,98},{100,100},{102,102}]
through a sequence of transformations.

You don’t need to justify the last line.

Exercises | 87

CHAPTER 4

Concurrent Programming

Concurrency is the ability for different functions to execute in parallel without affecting
each other unless explicitly programmed to do so. Each concurrent activity in Erlang
is called a process. The only way for processes to interact with each other is through
message passing, where data is sent from one process to another. The philosophy behind
Erlang and its concurrency model is best described by Joe Armstrong’s tenets:

• The world is concurrent.

• Things in the world don’t share data.

• Things communicate with messages.

• Things fail.

The concurrency model and its error-handling mechanisms were built into Erlang from
the start. With lightweight processes, it is not unusual to have hundreds of thousands,
even millions, of processes running in parallel, often with a small memory footprint.
The ability of the runtime system to scale concurrency to these levels directly affects
the way programs are developed, differentiating Erlang from other concurrent pro-
gramming languages.

What if you were to use Erlang to write an instant messaging (IM) server, supporting
the transmission of messages between thousands of users in a system such as Google
Talk or Facebook? The Erlang design philosophy is to spawn a new process for every
event so that the program structure directly reflects the concurrency of multiple users
exchanging messages. In an IM system, an event could be a presence update, a message
being sent or received, or a login request. Each process will service the event it handles,
and terminate when the request has been completed.

You could do the same in C or Java, but you would struggle when scaling the system
to hundreds of thousands of concurrent events. An option might be to have a pool of
processes handling specific event types or particular users, but certainly not a new
process for every event. Erlang gets away with this because it does not use native threads
to represent processes. It has its own scheduler in the virtual machine (VM), making
the creation of processes very efficient while at the same time minimizing their memory

89

footprint. This efficiency is maintained regardless of the number of concurrent pro-
cesses in the system. The same argument applies for message passing, where the time
to send a message is negligible and constant, regardless of the number of processes.
This chapter introduces concurrent programming in Erlang, letting you in on one of
the most powerful concurrency models available today.

Creating Processes
So far, we’ve looked at executing sequential code in a single process. To run concurrent
code, you have to create more processes. You do this by spawning a process using
the spawn(Module, Function, Arguments) BIF. This BIF creates a new process that eval-
uates the Function exported from the module Module with the list of Arguments as pa-
rameters. The spawn/3 BIF returns a process identifier, which from now on we will refer
to as a pid.

In Figure 4-1, the process we call Pid1 executes the spawn BIF somewhere in its program.
This call results in the new process with process identifier Pid2 being created. Process
identifier Pid2 is returned as a result of the call to spawn, and will typically be bound to
a variable in an expression of the following format:

Pid2 = spawn(Module, Function, Arguments).

Figure 4-1. Before and after calling spawn

The pid of the new process, Pid2, at this point is known only within the process Pid1,
as it is a local variable that has not been shared with anybody. The spawned process
starts executing the exported function passed as the second argument to the BIF, and
the arity of this function is dictated by the length of the list passed as the third argument
to the BIF.

A common error when you start programming Erlang is to forget that
the third argument to spawn is a list of arguments, so if you want to spawn
the function m:f/1 with the argument a, you need to call:

spawn(m, f, [a])

not:

not spawn(m, f, a).

90 | Chapter 4: Concurrent Programming

Once spawned, a process will continue executing and remain alive until it terminates.
If there is no more code to execute, a process is said to terminate normally. On the other
hand, if a runtime error such as a bad match or a case failure occurs, the process is said
to terminate abnormally.

Spawning a process will never fail, even if you are spawning a nonexported or even a
nonexistent function. As soon as the process is created and spawn/3 returns the pid, the
newly created process will terminate with a runtime error:

1> spawn(no_module, nonexistent_function, []).
<0.32.0>

=ERROR REPORT==== 29-Feb-2008::21:48:29 ===
Error in process <0.32.0> with exit value:
 {undef,[{no_module,nonexistent_function,[]}]}

In the preceding example, note how the error report is formatted. It is different from
the ones you saw previously, as the error does not take place in the shell, but in the
process with pid <0.32.0>. If the error occurs in a spawned process, it is detected by
another part of the Erlang runtime system called the error logger, which by default
prints an error report in the shell using the format shown earlier. Errors detected by the
shell are instead formatted in a more readable form.

The processes() BIF returns a list of all of the processes running in the system. In most
cases, you should have no problems using the BIF, but there have been extreme situa-
tions in large systems where calling processes() from the shell has been known to result
in the runtime system running out of memory!* Don’t forget that in industrial applica-
tions, you might be dealing with millions of processes running concurrently. In the
current implementation of the runtime system, the absolute limit is in the hundreds of
millions. Check the Erlang documentation for the latest figures. The default number is
much lower, but you can easily change it by starting the Erlang shell with the command
erl +P MaxProcceses, where MaxProcesses is an integer.

You can use the shell command i() to find out what the currently executing processes
in the runtime system are doing. It will print the process identifier, the function used
to spawn the process, the function in which the process is currently executing, as well
as other information covered later in this chapter. Look at the example in the following
shell printout. Can you spot the process that is running as the error logger?

2> processes().
[<0.0.0>,<0.2.0>,<0.4.0>,<0.5.0>,<0.7.0>,<0.8.0>,<0.9.0>,
 <0.10.0>,<0.11.0>,<0.12.0>,<0.13.0>,<0.14.0>,<0.15.0>,
 <0.17.0>,<0.18.0>,<0.19.0>,<0.20.0>,<0.21.0>,<0.22.0>,
 <0.23.0>,<0.24.0>,<0.25.0>,<0.26.0>,<0.30.0>]
3> i().
Pid Initial Call Heap Reds Msgs
Registered Current Function Stack
<0.0.0> otp_ring0:start/2 987 2684 0

* Partially because the return values of the operations in the shell are cached.

Creating Processes | 91

init init:loop/1 2
<0.2.0> erlang:apply/2 2584 61740 0
erl_prim_loader erl_prim_loader:loop/3 5
<0.4.0> gen_event:init_it/6 610 219 0
error_logger gen_event:fetch_msg/5 11
<0.5.0> erlang:apply/2 1597 508 0
...

If you are wondering why the processes() BIF returned far more than 20 processes
when you created only one that failed right after being spawned, you are not alone.
Large parts of the Erlang runtime system are implemented in Erlang, the
error_logger and the Erlang shell being two of the many examples. You will come
across other system processes as you work your way through the remaining chapters
of this book.

Message Passing
Processes communicate with each other using message passing. Messages are sent using
the Pid ! Message construct, where Pid is a valid process identifier and Message is a
value from any Erlang data type (see Figure 4-2).

Figure 4-2. Message passing

Each Erlang process has a mailbox in which incoming messages are stored. When a
message is sent, it is copied from the sending process into the recipient’s mailbox for
retrieval. Messages are stored in the mailbox in the order in which they are delivered.
If two messages are sent from one process to another, the messages are guaranteed to
be received in the same order in which they are sent. This guarantee is not extended to
messages sent from different processes, however, and in this case the ordering is VM-
dependent.

Sending a message will never fail; so if you try sending a message to a nonexistent
process, it is thrown away without generating an error. Finally, message passing is
asynchronous: a sending process will not be suspended after sending a message; it will
instead immediately continue executing the next expression in its code.

To test sending messages in the shell, let’s use the self/0 BIF, which returns the pid of
the process in which it is evaluated. The Erlang shell is nothing other than an Erlang

92 | Chapter 4: Concurrent Programming

process in a read-evaluate-print loop, waiting for you to type in an expression. When
you terminate an expression followed by a full stop (.) and press Enter, the shell eval-
uates what you typed in and prints out a result. Since the shell is an Erlang process,
there is nothing stopping us from sending messages to it. To retrieve and display all the
messages sent to the shell process, and therefore currently held in the process mailbox,
you can use the shell command flush/0, which also has the effect of removing (or
flushing) those messages from the mailbox:

1> Pid = self().
<0.30.0>
2> Pid ! hello.
hello
3> flush().
Shell got hello
ok
4> <0.30.0> ! hello.
* 1: syntax error before: '<'
5> Pid2 = pid(0,30,0).
<0.30.0>
6> Pid2 ! hello2.
hello2
7> flush().
Shell got hello2
ok

What is happening in the preceding example? In command 1, the BIF self() returns a
pid, which in the shell is bound to the variable Pid and displayed as <0.30.0>. In com-
mands 2 and 3 you see the message being sent to the Pid, and then flushed from the
mailbox, using the flush() command in the shell.

You cannot type pids directly in a module or in the shell, as in both cases, they result
in a syntax error; this is shown for the shell in command 4. You need either to bind the
process identifiers to a variable when BIFs such as self and spawn return them, or
generate a pid using the pid/3 shell function, as shown in command 5 and used in
command 6. The flush() in command 7 shows that the message indeed went to the
shell process.

Pid ! Message is a valid Erlang expression, and as with all valid expressions in Erlang,
it has to return a value. The value, in this case, is the message sent. So if, for example,
you need to send the same message to many processes, you can write either a sequence
of message sends, such as Pid1!Msg,Pid2!Msg,Pid3!Msg, or a single expression, such as
Pid3!Pid2!Pid1!Message, which is equivalent to writing Pid3!(Pid2!(Pid1!Message)),
where Pid1!Message returns the message to send to Pid2, which in turn returns the
message to be sent to Pid3.

As we already said, sending messages to nonexistent processes will always succeed. To
test this, let’s make the shell process crash with an illegal operation. Crashing is the
same as an abnormal process termination, something that is considered normal in Er-
lang, in the sense that Erlang provides mechanisms to deal with it. We will cover ab-
normal process terminations in more detail in the next chapter, so until then, do not

Message Passing | 93

get alarmed. Making the shell crash will automatically result in a new shell process—
in this example with pid <0.38.0>—being spawned by the runtime system.

With this in mind, we locate the shell pid, make the shell process terminate, and then
send a message to it. Based on the semantics of message passing, this will result in the
message being thrown away:

7> self().
<0.30.0>
8> 1/0.
** exception error: bad argument in an arithmetic expression
 in operator '/'/2
 called as 1 / 0
9> self().
<0.38.0>
10> pid(0,30,0) ! hello.
hello
11> flush().
ok

The reason that message passing and spawn always succeed, even if the recipient process
does not exist or the spawned process crashes on creation, has to do with process de-
pendencies, or rather, their deliberate lack of dependencies. We say that process A
depends on process B when the fact of B terminating can prevent A from functioning
correctly.

Process dependencies are very important and will often influence your design. In mas-
sively concurrent systems, you do not want processes to depend on each other unless
explicitly specified, and in such cases, you want to have as few dependencies as possible.
To give a concrete example of this, imagine an IM server concurrently handling thou-
sands of messages being exchanged by its users. Each message is handled by a process
spawned for that particular function. If, due to a bug, one of these processes terminates,
you would lose that particular message. Ensuring a lack of dependency between this
process and the processes handling all the other messages guarantees that these mes-
sages are safely processed and delivered to their recipients regardless of the bug.

Receiving Messages
Messages are retrieved from the process mailbox using the receive clause. The
receive clause is a construct delimited by the reserved words receive and end, and
contains a number of clauses. These clauses are similar to case clauses, with a pattern
in the head (to the left of the arrow) and a sequence of expressions in the body (to the
right).

On executing the receive statement, the first (and oldest) message in the mailbox is
pattern-matched against each pattern in the receive expression in turn:

94 | Chapter 4: Concurrent Programming

• If a successful match occurs, the message is retrieved from the mailbox, the variables
in the pattern are bound to the matching parts of the message, and the body of the
clause is executed.

• If none of the clauses matches, the subsequent messages in the mailbox are pattern-
matched one by one against all of the clauses until either a message matches a clause
or all of the messages have failed all of the possible pattern matches.

In the following example, if the message {reset, 151} is sent to the process executing
the receive statement, the first clause will pattern-match, resulting in the variable
Board being bound to the integer 151. This will result in the function reset(151) being
called:

receive
 {reset, Board} -> reset(Board);
 _Other -> {error, unknown_msg}
end

Assume now that two new messages—restart and {reset, 151}—are received in that
order by the executing process. As soon as the execution flow of the process reaches
the receive statement, it will try to match the oldest message in the mailbox, restart.
Pattern matching will fail in the first clause, but will match successfully in the second,
binding the variable _Other to the atom restart. You can follow this example in Fig-
ure 4-3.

Figure 4-3. Selective receives

A receive statement will return the last evaluated expression in the body of the matched
clause. In the example, this will be either the return value of the reset/1 call or the tuple
{error, unknown_msg}. Although rarely done, it is possible to write expressions such as
Result = receive Msg -> handle(Msg) end, in which a variable (here, Result) is bound
to the return value of the receive clause. It is considered a better practice to make the
receive clause the body of a separate function, and to bind the return value of the
function to the variable.

Receiving Messages | 95

Take a minute to think about the restart message in the example. Other
than being a good practice, nothing is stopping us from sending the
message in the format {restart}. It is a common misconception that
messages have to be sent in tuples: this is not the case, as messages can
consist of any valid Erlang term.

Using tuples with only one element is unnecessary, as they consume
more memory and are slower to process. It is considered a bad practice
to use them not only as messages, but also as terms in your programs.
The guideline is that if your tuple has only one element, use the element
on its own, without the tuple construct.

When none of the clauses in a case statement match, a runtime error occurs. What
happens in receive statements? The syntax and semantics of receive are very similar
to those of case, the main difference being that the process is suspended in receive
statements until a message is matched, whereas in a case statement a runtime error
occurs.

The Scheduler
It is probably time to see how process scheduling works in Erlang. Go back to the result
of the i() shell commands, and you will notice a column headed Reds, an abbreviation
for reductions. Every command in your program, whether it is a function call, an arith-
metical operation, or a BIF, is assigned a number of reduction steps. The VM uses this
value to measure the level of activity of a process.

When a process is dispatched, it is assigned a number of reductions† it is allowed to
execute, a number which is reduced for every operation executed. As soon as the process
enters a receive clause where none of the messages matches or its reduction count
reaches zero, it is preempted. As long as BIFs are not being executed, this strategy results
in a fair (but not equal) allocation of execution time among the processes.

Turning to the BIFs, all mathematical operations, for example, have the same number
of reductions assigned to them, even if multiplication and division take much longer
than addition or subtraction. BIFs such as lists:reverse and lists:member, known to
vary in execution time based on their inputs, will interrupt their execution (this is called
a trap) and bump up the reduction counter. Generally, new BIFs which are added to
Erlang are implemented with traps by default. Old BIFs are reimplemented where
necessary.

You can increment a process reduction counter using the BIF
erlang:bump_reductions(Num), while erlang:yield() can be used to preempt the proc-
ess altogether. Using yield/0 in the standard symmetric multiprocessing (SMP) emu-
lator will have little, if any, effect. You should not make the behavior of the scheduler
influence how you design and program your systems, as this behavior can change

† The number of reductions will vary between releases. In the R12 release, the number of reductions starts
at 2,000 and is reduced by one for every operation. In R13, the number of initial reductions depends on
the number of scheduler threads.

96 | Chapter 4: Concurrent Programming

without notice in between releases. Knowing how it works, however, might help ex-
plain observations when inspecting and profiling your system.

In general, a receive statement has the following form:

receive
 Pattern1 when Guard1 -> exp11, .., exp1n;
 Pattern2 when Guard2 -> exp21, .., exp2n;
 ...
 Other -> expn1, .., expnn
end

The keywords used to delimit a receive clause are receive and end. Each pattern con-
sists of any valid Erlang term, including bound and unbound variables as well as op-
tional guards. The expressions are valid Erlang terms or legal expressions that evaluate
to terms. The return value of the receive clause will be the return value of the last
evaluated expression in the body executed, in this case, expin.

To ensure that the receive statement always retrieves the first message in the mailbox
you could use an unbound variable (such as Other in the first example) or the “don’t
care” variable if you are not interested in its value.

Lightweight Processes Versus Threads
Erlang processes are lightweight processes whose creation, context switching, and
message passing are managed by the VM. There is no relation between OS threads and
Erlang processes, making concurrency-related operations not only independent of the
underlying operating system, but also very efficient and highly scalable.

Benchmarks comparing Erlang concurrency models to their counterpart in C# or Java
are magnitudes better, especially when increasing the number of simultaneously run-
ning processes in relation to creation and message passing times. With Erlang, we are
dealing with one OS thread per processor (or core), unlike in Java and C#, where each
process is represented by an OS thread. As a result, one might argue that comparing
these concurrency models is like comparing apples and oranges. Indeed we are, but at
the end of the day, if you need to write a massively concurrent system, it does not matter
whether you use apples or oranges; what is important is that you are using the right
tool for the job. In consequence, this comparison deserves to be made.

Selective and Nonselective Receives
Look at Figure 4-4. What can you deduce from the incoming messages in the receive
clause about Pid being already bound? The variable Pid is bound to the value passed
to decode_digit when it is called, so it is already bound to this value in the pattern part
of the receive clause. On receiving a message, a successful match will occur only if the
first element of the tuple of size 2 sent as a message is exactly equal to (remember the
=:= construct?) the value stored in the variable Pid.

Receiving Messages | 97

Figure 4-4. Selective receives with bound variables

We call this a selective receive, where we retrieve only the messages we are explicitly
interested in based on certain criteria, leaving the remaining messages in the mailbox.
Selective receives often select on process identifiers, but sequence references or other
identifiers are also common, as are tagged tuples and guards. Now, contrast the bound
variable Pid in Figure 4-4 with the unbound variable DigitList in Figure 4-5, which
will be bound only once a message has been received.

Figure 4-5. Selective reception of multiple messages

In concurrent systems, it is common for race conditions to occur. A race condition
occurs when the behavior of a system depends on the order in which certain events
occur: these events “race” to influence the behavior. Due to the indeterminate nature
of concurrency it is not possible to determine the order in which messages sent by
different processes will arrive at the receiving process. This is when selective receive
becomes crucial.

98 | Chapter 4: Concurrent Programming

In Figure 4-5, Pid3 will receive the message foo followed by bar regardless of the order
in which they are delivered. Selective receive of multiple messages is useful when
synchronizing processes in a rendezvous, or when data from several sources needs to
be collected before it can be processed. Contrast this with a programming language in
which it is possible to process messages only in the order in which they arrive: the code
for this would have to deal with the possibility of bar preceding foo and of foo preceding
bar; the code becomes more complex, and much more likely to contain potential flaws.

If the order of the messages is unimportant, you can just bind them to a variable. In
Figure 4-6, the first message to arrive at the process Pid3 will be processed, regardless
of the order in which the messages were sent. The variable Msg in the receive statement
will be bound to one of the atoms foo or bar, depending on which is delivered first.

Figure 4-7 demonstrates how processes share data with each other. The process with
PidA will send a tagged tuple with its own process identifier, retrieved through a call to
the BIF self(), to the process with PidB. PidB will receive it, binding PidA’s value to the
variable Pid. A new tagged tuple is sent to PidC, which also pattern-matches the message
in its receive statement and binds the value of PidA to the variable Pid. PidC now uses
the value bound to Pid to send the message foo back to PidA. In this way, processes can
share information about each other, allowing communication between processes that
initially did not have knowledge of each other.

As processes do not share memory, the only way for them to share data is through
message passing. Passing a message results in the data in the message being copied from
the heap of the sending process to the heap of the receiving one, so this does not result
in the two processes sharing a storage location (which each might read or write) but
only in them each having their own copy of the data.

Figure 4-6. Receipt of messages regardless of the sending order

Receiving Messages | 99

An Echo Example
Now that we have covered process creation and message passing, let’s use spawn,
send, and receive, in a small program. Open your editor and copy the contents of
Example 4-1 or download it from the book’s website. When doing so, do not forget to
export the function you are spawning, in this case loop/0. In the example, pay particular
notice to the fact that two different processes will be executing and interacting with
each other using code defined in the same module.

Example 4-1. The echo process

-module(echo).
-export([go/0, loop/0]).

go() ->
 Pid = spawn(echo, loop, []),
 Pid ! {self(), hello},
 receive
 {Pid, Msg} ->
 io:format("~w~n",[Msg])
 end,
 Pid ! stop.

loop() ->
 receive
 {From, Msg} ->
 From ! {self(), Msg},
 loop();
 stop ->
 true
 end.

So, what does this program do? Calling the function go/0 will initiate a process whose
first action is to spawn a child process. This child process starts executing in the
loop/0 function and is immediately suspended in the receive clause, as its mailbox is

Figure 4-7. Sharing Pid data between processes

100 | Chapter 4: Concurrent Programming

http://www.erlangprogramming.org

empty. The parent, still executing in go/0, uses the Pid for the child process, which is
bound as a return value from the spawn BIF, to send the child a message containing a
tuple with the parent’s process identifier (given as a result of calling self()) and the
atom hello.

As soon as the message is sent, the parent is suspended in a receive clause. The child,
which is waiting for an incoming message, successfully pattern-matches the {Pid,
Msg} tuple where Pid is matched to the process identifier belonging to the parent and
Msg is matched to the atom hello. The child process uses the Pid to return the message
{self(), hello} back to the parent, where this call to self() returns the pid of the
child. See Figure 4-8 for a visual depiction of this process.

Figure 4-8. Sequence diagram for Example 4-1

At this point, the parent is suspended in the receive clause, and is waiting for a message.
Note that it will only pattern-match on the tuple {Pid, Msg}, where the variable Pid is
already bound (as a result of the spawn BIF) to the pid of the child process. This is a
good (but not entirely secure) way to ensure that the message you receive is, in fact, a
message you are expecting, and not just any message consisting of a tuple with two
elements sent by another process. The message arrives and is successfully pattern-
matched. The atom hello is bound to the Msg variable, which is passed as an argument
to the io:format/2 call, printing it out in the shell. As soon as the parent has printed
the atom hello in the shell, it sends the atom stop back to the child.

What has the child been doing while the parent was busy receiving the reply and print-
ing it? Remember that processes will terminate if they have no more code to execute,
so to avoid terminating, the child called the loop/0 function recursively, suspending it
in the receive clause. It receives the stop message sent to it by its parent, returns the
atom true as its result, and terminates normally.

Try running the program in the shell and see what happens:

1> c(echo).
{ok,echo}
2> echo:go().
hello
stop

The atom hello is clearly the result of the io:format/2 call, but where does the atom
stop come from? It is the value returned as the result of calling echo:go/0. To further

Receiving Messages | 101

familiarize yourself with concurrency, experiment with the echo example, putting
io:format/2 statements in the loop/0 process and sending different messages to it. You
could also experiment with the go/0 process, allowing it to send and receive more than
one message. When experimenting, you will most likely get the shell to hang in a
receive clause that will not match. If this happens, you will need to kill the shell and
start again.

Registered Processes
It is not always practical to use pids to communicate with processes. To use a pid, a
process needs to be notified of it and store its value. It is common to register processes
that offer specific services with an alias, a name that can be used instead of the pid. You
register a process with the register(Alias, Pid) BIF, where Alias is an atom and Pid
is the process identifier. You do not have to be a parent or a child of the process to call
the register BIF; you just need to know its process identifier.

Once a process has been registered, any process can send a message to it without having
to be aware of its identifier (see Figure 4-9). All the process needs to do is use the Alias !
Message construct. In programs, the alias is usually hardcoded in. Other BIFs which are
directly related to process registration include unregister(Pid); registered(), which
returns a list of registered names; and whereis(Alias), which returns the pid associated
with the Alias.

Figure 4-9. Sending a message to a registered process

Look at Example 4-2, which is a variant of Example 4-1. We have removed the
Pid!stop expression at the end of the go/0 function, and instead of binding the return
value of spawn/3, we pass it as the second argument to the register BIF. The first
argument to register is echo, the atom we use to name the process. This alias is used
to send the message to the newly spawned child.

Example 4-2. The registered echo process

-module(echo).
-export([go/0, loop/0]).

go() ->
 register(echo, spawn(echo, loop, [])),

102 | Chapter 4: Concurrent Programming

 echo ! {self(), hello},
 receive
 {_Pid, Msg} ->
 io:format("~w~n",[Msg])
 end.

loop() ->
 receive
 {From, Msg} ->
 From ! {self(), Msg},
 loop();
 stop ->
 true
 end.

It is not mandatory, but it is considered a good practice to give your process the same
name as the module in which it is defined.

Update your echo module with the changes we just discussed and try out the new BIFs
you have just read about in the shell. Test the new implementation of echo, inspecting
its state with the i() and regs() shell commands. Note how the shell process sends the
stop message to the echo process without knowing its pid, and how whereis/1 returns
undefined if the process does not exist:

1> c(echo).
{ok,echo}
2> echo:go().
hello
ok
3> whereis(echo).
<0.37.0>
4> echo ! stop.
stop
5> whereis(echo).
undefined
6> regs().

** Registered procs on node nonode@nohost **
Name Pid Initial Call Reds Msgs
application_controlle <0.5.0> erlang:apply/2 4426 0
code_server <0.20.0> erlang:apply/2 112203 0
ddll_server <0.10.0> erl_ddll:init/1 32 0
erl_prim_loader <0.2.0> erlang:apply/2 206631 0
error_logger <0.4.0> gen_event:init_it/6 209 0
file_server <0.19.0> erlang:apply/2 12 0
file_server_2 <0.18.0> file_server:init/1 25411 0
global_group <0.17.0> global_group:init/1 71 0
global_name_server <0.12.0> global:init/1 60 0
inet_db <0.15.0> inet_db:init/1 103 0
init <0.0.0> otp_ring0:start/2 5017 0
kernel_safe_sup <0.26.0> supervisor:kernel/1 61 0
kernel_sup <0.9.0> supervisor:kernel/1 1377 0
rex <0.11.0> rpc:init/1 44 0

Registered Processes | 103

user <0.23.0> user:server/2 1459 0

** Registered ports on node nonode@nohost **
Name Id Command
ok

The shell command regs() prints out all the registered processes. It might be an alter-
native to i() when retrieving system information in a system with large quantities of
processes. In the preceding example, the echo process is not among the processes listed,
as we have stopped it. Instead, you are seeing all of the registered system processes.

It is a feature of Erlang memory management that atoms are not garbage
collected. Once you’ve created an atom, it remains in the atom table
regardless of whether it is referenced in the code. This can be a potential
problem if you decide to register transient processes with an alias derived
from converting a string to an atom with the list_to_atom/1 BIF. If you
have millions of users logging on to your system every day and you create
a registered process for the duration of their sessions, don’t be surprised
if you end up running out of memory.

You would be much better off storing the mapping of users to pids in a
session table. It is best to register only processes with a long life span,
and if you really must convert a string to use as an alias, use
list_to_existing_atom/1 to ensure that your system does not suffer
memory leakages.

Sending messages to nonexistent registered processes causes the calling process to ter-
minate with a badarg (see Figure 4-10). This behavior is different from sending a mes-
sage to a process identifier for a nonexistent process, as registered processes are
assumed to provide a service. The absence of a registered process is therefore treated
as a bug. If your program might be sending messages to nonexistent registered processes
and you do not want the calling process to terminate, wrap a try ... catch around the
call.

Figure 4-10. Sending messages to non-registered processes

Timeouts
You saw that if a process enters a receive statement and none of the messages matches,
the process will get suspended. This could be similar to you going to your mailbox at

104 | Chapter 4: Concurrent Programming

home, discovering there is no mail, and being forced to wait there until the mailman
arrives. It might be an option if you are waiting for very urgent mail or have nothing
better to do. In most cases, though, all you want to do is check the mailbox, and if
nothing has arrived, continue with your household chores. Erlang processes can do just
that by using the receive ... after construct:

receive
 Pattern1 when Guard1 -> exp11, .., exp1n;
 Pattern2 when Guard2 -> exp21, .., exp2n;
 ...
 Other -> expn1, .., expnn
after
 Timeout -> exp1, .., expn
end

When a process reaches the receive statement and no messages pattern-match, it will
wait for Timeout milliseconds. If after Timeout milliseconds no message has arrived, the
expressions in the body of the after clause are executed. Timeout is an integer denoting
the time in milliseconds, or the atom infinity. Using infinity as a timeout value is the
same as not including the after construct. It is included, as Timeout can be a variable
set every time the function is called, allowing the receive ... after clause to behave
as desired in each call (see Figure 4-11).

Figure 4-11. Receive timeouts

Assume you have a process registered with the alias db, which is acting as a database
server. Every time you want to look up an item, you send the database a message and
wait for a response. At busy times, however, the request might take too long to be
processed, so you return a timeout error by using the receive ... after construct.
When doing so, however, you will end up receiving the response from the server after
the timeout, risking that your replies get out of sync with the sequence of requests sent
to the database server. The next time you send the database a request, you will match
the oldest message in your receive clause. This message will be the response sent back
after the timeout, and not the response to the request you just sent. When using
receive ... after, you need to cater to these cases by flushing your mailbox and
ensuring it is empty. In doing so, your code might look something like this:

Timeouts | 105

read(Key) ->
 flush(),
 db ! {self(),{read, Key}},
 receive
 {read,R} -> {ok, R};
 {error, Reason} -> {error, Reason}
 after 1000 -> {error, timeout}
 end.

flush() ->
 receive
 {read, _} -> flush();
 {error, _} -> flush()
 after 0 -> ok
end.

Another use for the receive ... after clause is to suspend a process for a period in
milliseconds, or to send messages delayed by a certain amount of time. The definition
of sleep/1 in the following code is taken directly from the timer library module, while
send_after will send a message to the calling process after Time milliseconds:

-module(my_timer).
-export([send_after/2, sleep/1, send/3]).

send_after(Time, Msg) ->
 spawn(my_timer, send, [self(),Time,Msg]).

send(Pid, Time, Msg) ->
 receive
 after
 Time ->
 Pid ! Msg
 end.

sleep(T) ->
 receive
 after
 T -> true
 end.

Benchmarking
In this chapter, we have been talking about the low process creation and message pass-
ing times in Erlang. To demonstrate them, let’s run a benchmark in which the parent
spawns a child and sends a message to it. Upon being spawned, the child creates a new
process and waits for a message from its parent. Upon receiving the message, it
terminates normally. The child's child creates yet another process, resulting in hun-
dreds, thousands, and even millions of processes.

This is a sequential benchmark that will barely take advantage of SMP on a multicore
system, because at any one time, only a couple of processes will be executing in parallel:

106 | Chapter 4: Concurrent Programming

-module(myring).
-export([start/1, start_proc/2]).

start(Num) ->
 start_proc(Num, self()).

start_proc(0, Pid) ->
 Pid ! ok;

start_proc(Num, Pid) ->
 NPid = spawn(?MODULE, start_proc, [Num-1, Pid]),
 NPid ! ok,
 receive ok -> ok end.

Let’s test the preceding example for 100,000, 1 million, and 10 million processes. To
benchmark the program, we use the function call:

timer:tc(Module, Function, Arguments)

which takes a function and its arguments and executes it. It returns a tuple containing
the time in microseconds it took to run the function alongside the return value of the
function. Testing the program shows that it takes 0.48 seconds to spawn 100,000 pro-
cesses, 4.2 seconds to spawn 1 million processes, and about 40 seconds to spawn 10
million processes. Try it out on your computer:

1> c(myring).
{ok,myring}
2> timer:tc(myring, start, [100000]).
{484000,ok}
3> timer:tc(myring, start, [1000000]).
{4289360,ok}
4> timer:tc(myring, start, [10000000]).
{40572800,ok}

Process Skeletons
There is a common pattern to the behavior of processes, regardless of their particular
purpose. Processes have to be spawned and their aliases registered. The first action of
newly spawned processes is to initialize the process loop data. The loop data is often
the result of arguments passed to the spawn BIF and the initialization of the process. It
is stored in a variable we refer to as the process state. The state is passed to a receive-
evaluate function, which receives a message, handles it, updates the state, and passes
it back as an argument to a tail-recursive call. If one of the messages it handles is a
stop message, the receiving process will clean up after itself and terminate. This is a
recurring theme among processes that we usually refer to as a design pattern, and it will
occur regardless of the task the process has been assigned to perform. Figure 4-12 shows
an example skeleton.

Process Skeletons | 107

Figure 4-12. A process skeleton

From reoccurring patterns, let’s now look at differences among processes:

• The arguments passed to the spawn BIF calls will differ from one process to another.

• You have to decide whether you should register a process, and, if you do register
it, what alias should be used.

• In the function that initializes the process state, the actions taken will differ based
on the tasks the process will perform.

• The storing of the process state might be generic, but its contents will vary among
processes.

• When in the receive-evaluate loop, processes will receive different messages and
handle them in different ways.

• And finally, on termination, the cleanup will vary from process to process.

So, even if a skeleton of generic actions exists, these actions are complemented by spe-
cific ones that are directly related to the specific tasks assigned to the process.

Tail Recursion and Memory Leaks
We mentioned earlier that if processes have no more code to execute, they terminate.
Suppose you want to write an echo process that indefinitely continues to send back the
message it has received (or that does this until you explicitly send it a message to stop).
You would keep the Erlang process alive using a tail-recursive call to the function that
contains the receive statement. We often call this function the receive/evaluate loop
of the process. Its task is to receive a message, handle it, and then recursively call itself.

108 | Chapter 4: Concurrent Programming

This is where the importance of tail recursion in concurrent programming becomes
evident. As you do not know how many times the function is going to be called, you
must ensure that it executes in constant memory space without increasing the recursive
call stack every time a message is handled. It is common to have processes handling
thousands of messages per second over sustained periods of not only hours, days, or
months, but also years! Using tail recursion, where the very last thing the receive/eval-
uate function does is to call itself, you ensure that this nonstop operation is possible
without memory leakages.

What happens when a message doesn’t match any of the clauses in a receive statement?
It remains in the process mailbox indefinitely, causing a memory leakage that over time
could also cause the runtime system to run out of memory and crash. Not handling
unknown messages should therefore be treated as a bug. Either these messages should
not have been sent to this process in the first place, or they should be handled, possibly
just by being retrieved from the mailbox and ignored.

The defensive approach of ignoring unknown messages with a “don’t care” variable in
the receive clause, even if convenient, might not always be the best approach. Messages
not being handled should probably not have been sent to the process in the first place.
And if they were sent on purpose, they were probably not matched because of a bug in
one of the receive clauses. Throwing these messages away would only make the bug
harder to detect. If you do throw unknown messages away, make sure you log their
occurrence so that the bugs can be found and corrected.

Concurrency-Related Bottlenecks
Processes are said to act as bottlenecks when, over time, they are sent messages at a
faster rate than they can handle them, resulting in large mailbox queues. How do pro-
cesses with many messages in their inbox behave? The answer is badly.

First, the process itself, through a selective receive, might match only a specific type
of message. If the message is the last one in the mailbox queue, the whole mailbox has
to be traversed before this message is successfully matched. This causes a performance
penalty that is often visible through high CPU consumption.

Second, processes sending messages to a process with a long message queue are pe-
nalized by increasing the number of reductions it costs to send the message. This is an
attempt by the runtime system to allow processes with long message queues to catch
up by slowing down the processes sending the messages in the first place. The latter
bottleneck often manifests itself in a reduction of the overall throughput of the system.

The only way to discover whether there are any bottlenecks is to observe the throughput
and message queue buildup when stress-testing the system. Simple remedies to message
queue problems can be achieved by optimizing the code and fine-tuning the operating
system and VM settings.

Another way to slow down message queue buildups is by suspending the processes
generating the messages until they receive an acknowledgment that the message they
have sent has been received and handled, effectively creating a synchronous call.

Tail Recursion and Memory Leaks | 109

Replacing asynchronous calls with synchronous ones will reduce the maximum
throughput of the system when running under heavy load, but never as much as the
penalty paid when message queues start building up. Where bottlenecks are known to
occur, it is safer to reduce the throughput by introducing synchronous calls, and thus
guaranteeing a constant throughput of requests in the system with no degradation of
service under heavy loads.

A Case Study on Concurrency-Oriented Programming
When on consulting assignments around the world working with developers coming
from a C++ and Java background who have learned Erlang on their own, a common
theme we have come across is the use of processes. This theme is irrespective of the
experience level of the developers, and of what their system does. Instead of creating a
process for every truly concurrent activity in the system, they tend to create one for
every task. Programming concurrent applications in Erlang requires a different strategy
for processes, which in turn means reasoning in a different way to what one may be
accustomed to. The main difference from other concurrent languages is that with Er-
lang, processes are so cheap it is best to use a process for each truly concurrent activity
in your system, not for every task. This case study is from one of Francesco’s first
consulting assignments outside of Ericsson, soon after Erlang had been released as open
source, and it illustrates clearly what we mean by the difference between a task and an
activity.

He worked with a group of engineers who were developing an IM proxy for Jabber.
The system received a packet through a socket, decoded it, and took certain actions
based on its content. Once the actions were completed, it encoded a reply and sent it
to a different socket to be forwarded to the recipient. Only one packet at a time could
come through a socket, but many sockets could simultaneously be receiving and han-
dling packets.

As described in Figure 4-13, the original system did not have a process for every truly
concurrent activity—the processing of a packet from end to end—but instead used a
process for every different task—decoding, encoding, and so forth. Each open socket
in Erlang was associated with a process that was receiving and sending data through
this socket. Once the packet was received, it was forwarded to a process that handled
the decoding. Once decoded, the decoding process forwarded it to the handler that
processed it. The result was sent to an encoding process, which after formatting it,
forwarded the reply to the socket process that held the open connection belonging to
the recipient.

At its best performance, the system could process five simultaneous messages, with the
decoding, handling, and encoding being the bottleneck, regardless of the number of
simultaneously connected sockets. There were two other processes, one used for error

110 | Chapter 4: Concurrent Programming

handling, where all errors were passed, and one managing a database, where data reads,
writes, and deletes were executed.

When reviewing the system, we identified what we believed was a truly concurrent
activity in the system. It was not the action of decoding, handling, and encoding that
was the answer, but the handling of the individual packets themselves. Having a process
for every packet and using that process to decode, handle, and encode the packet meant
that if thousands of packets were received simultaneously, they would all be processed
in parallel. Knowing that a socket can receive only one packet at any one time meant
that we could use this socket process to handle the call. Once the packet was received,
a function call ensured that it was decoded and handled. The result (possibly an error)
was encoded and sent to the socket process managing the connection belonging to the
final recipient. The error handler and database processes were not needed, as the con-
sistency of data through the serialization of destructive database operations could have
been achieved in the handler process, as could the management of errors.

If you look at Figure 4-14, you will notice that on top of the socket processes, a database
process was added to the rewritten program. This was to ensure that data consistency
was maintained, as many processes accessing the same data might corrupt it as a result
of a race condition. All destructive database operations such as write and delete were
serialized through this process. Even if you can execute most of your activities in par-
allel, it is essential to identify activities that need serializing and place them in a process
of their own. By taking care in identifying truly concurrent activites in your Erlang
system, and spawning a process for each, you will ensure that you maximize the
throughput while reducing the risk of bottlenecks.

Figure 4-13. A badly designed concurrent system

A Case Study on Concurrency-Oriented Programming | 111

Race Conditions, Deadlocks, and Process Starvation
Anyone who has programmed concurrent applications before moving to Erlang will
have his favorite horror stories on memory corruption, deadlocks, race conditions, and
process starvation. Some of these conditions arise as a result of shared memory and the
need for semaphores to access them. Others are as a result of priorities. Having a “no
shared data” approach, where the only way for processes to share data is by copying
data from one process to another, removes the need for locks, and as a result, the vast
majority of bugs related to memory corruption deadlocks and race conditions.

Problems in concurrent programs may also arise as a result of synchronous message
passing, especially if the communication is across a network. Erlang solves this through
asynchronous message passing. And finally, the scheduler, the per-process garbage
collection mechanisms, and the massive level of concurrency that can be supported in
Erlang systems ensure that all processes get a relatively fair time slice when executing.
In most systems, you can expect a majority of the processes to be suspended in a
receive statement, waiting for an event to trigger a chain of actions.

That being said, Erlang is not completely problem-free. You can avoid these problems,
however, through careful and well-thought-out design. Let’s start with race condi-
tions. If two processes are executing the following code in parallel, what can go wrong?

start() ->
 case whereis(db_server) of
 undefined ->
 Pid = spawn(db_server, init, []),
 register(db_server, Pid),
 {ok, Pid};
 Pid when is_pid(Pid) ->

Figure 4-14. A process for each concurrent activity

112 | Chapter 4: Concurrent Programming

 {error, already_started}
end.

Assume that the database server process has not been started and two processes si-
multaneously start executing the start/0 function. The first process calls
whereis(db_server), which returns the atom undefined. This pattern-matches the first
clause, and as a result, a new database server is spawned. Its process identifier is bound
to the variable Pid. If, after spawning the database server, the process runs out of re-
ductions and is preempted, this will allow the second process to start executing. The
call whereis(db_server) by the second process also returns undefined, as the first proc-
ess had not gotten as far as registering it. The second process spawns the database server
and might go a little further than the first one, registering it with the name db_server.
At this stage, the second process is preempted and the first process continues where it
left off. It tries to register the database server it created with the name db_server but
fails with a runtime error, as there already is a process with that name. What we would
have expected is the tuple {error, already_started} to be returned, instead of a run-
time error. Race conditions such as this one in Erlang are rare, but they do happen
when you might least expect them. A variant of the preceding example was taken from
one of the early Erlang libraries and reported as a bug in 1996.

A second potential problem to keep in mind involves deadlocks. A good design of a
system based on client/server principles is often enough to guarantee that your appli-
cation will be deadlock-free. The only rule you have to follow is that if process A sends
a message and waits for a response from process B, in effect doing a synchronous call,
process B is not allowed, anywhere in its code, to do a synchronous call to process A,
as the messages might cross and cause the deadlock. Deadlocks are extremely rare in
Erlang as a direct result of the way in which programs are structured. In those rare
occasions where they slip through the design phase, they are caught at a very early stage
of testing.‡

By calling the BIF process_flag(priority, Priority), where Priority can be set to the
atom high, normal, or low, the behavior of the scheduler can be changed, giving pro-
cesses with higher priority a precedence when being dispatched. Not only should you
use this feature sparingly; in fact, you should not use it at all! As large parts of the Erlang
runtime system are written in Erlang running at a normal priority, you will end up with
deadlocks, starvation, and in extreme cases, a scheduler that gives low-priority pro-
cesses more CPU time than its high-priority counterparts. With SMP, this behavior
becomes even more non-deterministic. Endless flame wars and arguments regarding
process and priorities have been fought on the Erlang-questions mailing list, deserving
a whole chapter on the subject. We will limit ourselves to saying that under no cir-
cumstances should you use process priorities. A proper design of your concurrency

‡ In 15 years of working with Erlang on systems with millions of lines of code, Francesco has come across only
one deadlock that made it as far as the integration phase.

Race Conditions, Deadlocks, and Process Starvation | 113

model will ensure that your system is well balanced and deterministic, with no process
starvation, deadlocks, or race conditions. You have been warned!

The Process Manager
The process manager is a debugging tool used to inspect the state of processes in Erlang
systems. Whereas the debugger concentrates on tracing the sequential aspects of your
program, the process manager deals with the concurrent ones. You can start the process
manager by writing pman:start() in the shell. A window will open (see Figure 4-15),
displaying contents similar to what you saw when experimenting with the i() com-
mand. Double-clicking any of the processes will open a trace output window. You can
choose your settings by picking options in the File menu.

For each process with an output window, you can trace all the messages that are sent
and received. You can trace BIF and function calls, as well as concurrency-related
events, such as processes being spawned or terminated. Your can also redirect your
trace output from the window to a file. Finally, you can pick the inheritance level of
your trace events. A very detailed and well-written user guide comes with the Erlang
distribution that we recommend as further reading.

Figure 4-15. The process manager window

At the time of writing, because of its underlying TCL/TK graphics li-
braries that are no longer supported, the process manager can be un-
stable when running on Microsoft Windows operating systems.

114 | Chapter 4: Concurrent Programming

This chapter introduced the basics of concurrency in Erlang, which is based on message
passing between concurrent processes, rather than on shared memory. Message passing
is asynchronous, and the selective receive facility, under which messages can be han-
dled independently of the order in which they are received, allows modular and concise
concurrent programs to be written. In the next chapter, we’ll build on this introduction
and look at design patterns for process-based systems.

Exercises

Exercise 4-1: An Echo Server
Write the server in Figure 4-16 that will wait in a receive loop until a message is sent
to it. Depending on the message, it should either print its contents and loop again, or
terminate. You want to hide the fact that you are dealing with a process, and access its
services through a functional interface, which you can call from the shell.

Figure 4-16. An echo server

This functional interface, exported in the echo.erl module, will spawn the process and
send messages to it. The function interfaces are shown here:

echo:start() ⇒ ok
echo:print(Term) ⇒ ok
echo:stop() ⇒ ok

Hint: use the register/2 built-in function, and test your echo server using the process
manager.

Warning: use an internal message protocol to avoid stopping the process when you,
for example, call the function echo:print(stop).

Exercise 4-2: The Process Ring
Write a program that will create N processes connected in a ring, as shown in Fig-
ure 4-17. Once started, these processes will send M number of messages around the
ring and then terminate gracefully when they receive a quit message. You can start the
ring with the call ring:start(M, N, Message).

There are two basic strategies to tackling this exercise. The first one is to have a central
process that sets up the ring and initiates sending the message. The second strategy

Exercises | 115

consists of the new process spawning the next process in the ring. With this strategy,
you have to find a method to connect the first process to the second process.

Regardless of the strategy you choose, make sure you have solved this exercise with
pen and paper before you start coding. It differs from the ones you have solved before
because you will have many processes executing the same function in the same module
at the same time. Furthermore, processes will be using this function to interact with
each other. When writing your program, make sure your code has many io:format
statements in every loop iteration. This will give you a complete overview of what is
happening (or not happening) and should help you solve the exercise.

Figure 4-17. The process ring

116 | Chapter 4: Concurrent Programming

CHAPTER 5

Process Design Patterns

Processes in Erlang systems can act as gateways to databases, handle protocol stacks,
or manage the logging of trace messages. Although these processes may handle different
requests, there will be similarities in how these requests are handled. We call these
similarities design patterns. In this chapter, we are going to cover the most common
patterns you will come across when working with Erlang processes.

The client/server model is commonly used for processes responsible for a resource such
as a list of rooms, and services that can be applied on these resources, such as booking
a room or viewing its availability. Requests to this server will allow clients (usually
implemented as Erlang processes) to access these resources and services.

Another very common pattern deals with finite state machines, also referred to as FSMs.
Imagine a process handling events in an instant messaging (IM) session. This process,
or finite state machine as we should call it, will be in one of three states. It could be in
an offline state, where the session with the remote IM server is being established. It
could be in an online state, enabling the user to send and receive messages and status
updates. And finally, if the user wants to remain online but not receive any messages
or status updates, it could be in a busy state. State changes are triggered through process
messages we call events. An IM server informing the FSM that the user is logged on
successfully would cause a state transition from the offline state to the online state.
Events received by the FSM do not necessarily have to trigger state transitions. Receiv-
ing an instant message or a status update would keep the FSM in an online state while
a logout event would cause it to go from an online or busy state to the offline state.

The last pattern we will cover is the event handler. Event handler processes will receive
messages of a specific type. These could be trace messages generated in your program
or stock quotes coming from an external feed. Upon receiving these events, you might
want to perform a set of actions such as triggering an SMS (Short Message Service
message) or sending an email if certain conditions are met, or simply logging the time
stamp and stock price in a file.

Many Erlang processes will fall into one of these three categories. In this chapter, we
will look at examples of process design patterns, explaining how they can be used to

117

program client/servers, finite state machines, and event handlers. An experienced Er-
lang programmer will recognize these patterns in the design phase of the project and
use libraries and templates that are part of the OTP framework. For the time being, we
will use Erlang without the OTP framework. We will introduce OTP behaviors in
Chapter 12.

Client/Server Models
Erlang processes can be used to implement client/server solutions, where both clients
and servers are represented as Erlang processes. A server could be a FIFO queue to a
printer, window manager, or file server. The resources it handles could be a database,
calendar, or finite list of items such as rooms, books, or radio frequencies. Clients use
these resources by sending the server requests to print a file, update a window, book a
room, or use a frequency. The server receives the request, handles it, and responds with
an acknowledgment and a return value if the request was successful, or with an error
if the request did not succeed (see Figure 5-1).

Figure 5-1. The client/server model

When implementing client/server behavior, clients and servers are represented as Er-
lang processes. Interaction between them takes place through the sending and receiving
of messages. Message passing is often hidden in functional interfaces, so instead of
calling:

printerserver ! {print, File}

a client would call:

printerserver:print(File)

118 | Chapter 5: Process Design Patterns

This is a form of information hiding, where we do not make the client aware that the
server is a process, that it could be registered, and that it might reside on a remote
computer. Nor do we expose the message protocol being used between the client and
the server, keeping the interface between them safe and simple. All the client needs to
do is call a function and expect a return value.

Hiding this information behind a functional interface has to be done with care. The
message response times will differ if the process is busy or running on a remote machine.
Although this should in most cases not cause any problems, the client needs to be aware
of it and be able to cope with a delay in response time. You also need to factor in that
things can go wrong behind this function call. There might be a network glitch, the
server process might crash, or there might be so many requests that the server response
times become unacceptable.

If a client using the service or resource handled by the server expects a reply to the
request, the call to the server has to be synchronous, as in Figure 5-2. If the client does
not need a reply, the call to the server can be asynchronous. When you encapsulate
synchronous and asynchronous calls in a function call, asynchronous calls commonly
return the atom ok, indicating that the request was sent to the server. Synchronous calls
will return the value expected by the client. These return values usually follow the
format ok, {ok, Result}, or {error, Reason}.

Figure 5-2. Synchronous client/server requests

A Client/Server Example
Enough with the theory! So that you understand what we are talking about, let’s walk
through a client/server example and test it in the shell. This server is responsible for
managing radio frequencies on behalf of its clients, the mobile phones connected to
the network. The phone requests a frequency whenever a call needs to be connected,
and releases it once the call has terminated (see Figure 5-3).

When a mobile phone has to set up a connection to another subscriber, it calls the
frequency:allocate() client function. This call has the effect of generating a synchro-
nous message which is sent to the server. The server handles it and responds with either
a message containing an available frequency or an error if all frequencies are being used.
The result of the allocate/0 call will therefore be either {ok, Frequency} or {error,
no_frequencies}.

Client/Server Models | 119

Through a functional interface, we hide the message-passing mechanism, the format
of these messages, and the fact that the frequency server is implemented as a registered
Erlang process. If we were to move the server to a remote host, we could do so without
having to change the client interface.

When the client has completed its phone call and releases the connection, it needs to
deallocate the frequency so that other clients can reuse it. It does so by calling the client
function frequency:deallocate(Frequency). The call results in a message being sent to
the server. The server can then make the frequency available to other clients and re-
sponds with the atom ok. The atom is sent back to the client and becomes the return
value of the deallocate/1 call. Figure 5-4 shows the message sequence diagram of this
example.

The code for the server is in the frequency module. Here is the first part:

Figure 5-3. A frequency server

Figure 5-4. Frequency server message sequence diagram

120 | Chapter 5: Process Design Patterns

-module(frequency).
-export([start/0, stop/0, allocate/0, deallocate/1]).
-export([init/0]).

%% These are the start functions used to create and
%% initialize the server.

start() ->
 register(frequency, spawn(frequency, init, [])).

init() ->
 Frequencies = {get_frequencies(), []},
 loop(Frequencies).

% Hard Coded
get_frequencies() -> [10,11,12,13,14,15].

The start function spawns a new process that starts executing the init function in the
frequency module. The spawn returns a pid that is passed as the second argument to
the register BIF. The first argument is the atom frequency, which is the alias with
which the process is registered. This follows the convention of registering a process
with the same name as the module in which it is defined.

Remember that when spawning a process, you have to export the init/
0 function as it is used by the spawn/3 BIF. We have put this function in
a separate export clause to distinguish it from the client functions, which
are supposed to be called from other modules. Calling
frequency:init() from anywhere in your code would be considered a
very bad practice, and should not be done.

The newly spawned process starts executing in the init function. It creates a tuple
consisting of the available frequencies, retrieved through the get_frequencies/0 call,
and a list of the allocated frequencies—initially given by the empty list—as the server
has just been started. The tuple, which forms what we call the state or loop data, is
bound to the Frequencies variable and passed as an argument to the receive-evaluate
function, which in this example we’ve called loop/1.

In the init/0 function, we use the variable Frequencies for readability reasons, but
nothing is stopping us from creating the tuple directly in the loop/1 call, as in the call
loop({get_frequencies(), []}).

Here is how the client functions are implemented:

%% The client Functions

stop() -> call(stop).
allocate() -> call(allocate).
deallocate(Freq) -> call({deallocate, Freq}).

%% We hide all message passing and the message
%% protocol in a functional interface.

Client/Server Models | 121

call(Message) ->
 frequency ! {request, self(), Message},
 receive
 {reply, Reply} -> Reply
 end.

Client and supervisor* processes can interact with the frequency server using what we
refer to as client functions. These exported functions include start, stop, allocate, and
deallocate. They call the call/1 function, passing the message to be sent to the server
as an argument. This function will encapsulate the message protocol between the server
and its clients, sending a message of the format {request, Pid, Message}. The atom
request is a tag in the tuple, Pid is the process identifier of the calling process (returned
by calling the self() BIF in the calling process), and Message is the argument originally
passed to the call/1 function.

When the message has been sent to the process, the client is suspended in the
receive clause waiting for a response of the format {reply, Reply}, where the atom
reply is a tag and the variable Reply is the actual response. The server response is
pattern-matched, and the contents of the variable Reply become the return value of the
client functions.

Pay special attention to how message passing and the message protocol have been
abstracted to a format independent of the action relating to the message itself; this is
what we referred to earlier as information hiding, allowing the details of the protocol
and the message structure to be modified without affecting any of the client code.

Now that we have covered the code to start and interact with the frequency server, let’s
take a look at its receive-evaluate loop:

%% The Main Loop

loop(Frequencies) ->
 receive
 {request, Pid, allocate} ->
 {NewFrequencies, Reply} = allocate(Frequencies, Pid),
 reply(Pid, Reply),
 loop(NewFrequencies);
 {request, Pid , {deallocate, Freq}} ->
 NewFrequencies = deallocate(Frequencies, Freq),
 reply(Pid, ok),
 loop(NewFrequencies);
 {request, Pid, stop} ->
 reply(Pid, ok)
 end.

reply(Pid, Reply) ->
 Pid ! {reply, Reply}.

* We will cover supervisors in the next chapter.

122 | Chapter 5: Process Design Patterns

The receive clause will accept three kinds of requests originating from the client func-
tions, namely allocate, deallocate, and stop. These requests follow the same format
defined in the call/1 function, that is, {request, Pid, Message}. The Message is pattern-
matched in the expression and used to determine which clause is executed. This, in
turn, determines the internal functions that are called. These internal functions will
return the new loop data, which in our example consists of the new lists of available
and allocated frequencies, and where needed, a reply to send back to the client. The
client pid, sent as part of the request, is used to identify the calling process and is used
in the reply/2 call.

Assume a client wants to initiate a call. To do so, it would request a frequency by calling
the frequency:allocate() function. This function sends a message of the format
{request, Pid, allocate} to the frequency server, pattern matching in the first clause
of the receive statement. This message will result in the server function
allocate(Frequencies, Pid) being called, where Frequencies is the loop data contain-
ing a tuple of allocated and available frequencies. The allocate function (defined
shortly) will check whether there are any available frequencies:

• If so, it will return the updated loop data, where the newly allocated frequency has
been moved from the available list and stored together with the pid in the list of
allocated ones. The reply sent to the client is of the format {ok, Frequency}.

• If no frequencies are available, the loop data is returned unchanged and the {error,
no_frequency} message is returned as a reply.

The Reply is sent to the reply(Pid, Message) call, which formats it to the internal client/
server message format and sends it back to the client. The function then calls loop/1
recursively, passing the new loop data as an argument.

Deallocation works in a similar way. The client function results in the message
{request, Pid, deallocate} being sent and matched in the second clause of the
receive statement. This makes a call to deallocate(Frequencies, Frequency) and the
deallocate function moves the Frequency from the allocated list to the deallocated one,
returning the updated loop data. The atom ok is sent back to the client, and the
loop/1 function is called recursively with the updated loop data.

If the stop request is received, ok is returned to the calling process and the server ter-
minates, as there is no more code to execute. In the previous two clauses, loop/1 was
called in the final expression of the case clause, but not in this case.

We complete this system by implementing the allocation and deallocation functions:

%% The Internal Help Functions used to allocate and
%% deallocate frequencies.

allocate({[], Allocated}, _Pid) ->
 {{[], Allocated}, {error, no_frequency}};
allocate({[Freq|Free], Allocated}, Pid) ->
 {{Free, [{Freq, Pid}|Allocated]}, {ok, Freq}}.

Client/Server Models | 123

deallocate({Free, Allocated}, Freq) ->
 NewAllocated=lists:keydelete(Freq, 1, Allocated),
 {[Freq|Free], NewAllocated}.

The allocate/2 and deallocate/2 functions are local to the frequency module, and are
what we refer to as internal help functions:

• If there are no available frequencies, allocate/2 will pattern-match in the first
clause, as the first element of the tuple containing the list of available frequencies
is empty. This clause returns the {error, no_frequency} tuple alongside the un-
changed loop data.

• If there is at least one available frequency, the second clause will match successfully.
The frequency is removed from the list of available ones, paired up with the client
pid, and moved to the list of allocated frequencies.

The updated frequency data is returned by the allocate function. Finally, deallocate
will remove the newly freed frequency from the list of allocated ones using the
lists:keydelete/3 library function and concatenate it to the list of available
frequencies.

This frequency allocator example has used all of the key sequential and concurrent
programming concepts we have covered so far. They include pattern matching, recur-
sion, library functions, process spawning, and message passing. Spend some time mak-
ing sure you understand them. You should test the example using the debugger and
the process manager, following the message passing protocols between the client and
server and the sequential aspects of the loop function. You can see an example of the
frequency allocator in action now:

1> c(frequency).
{ok,frequency}
2> frequency:start().
true
3> frequency:allocate().
{ok,10}
4> frequency:allocate().
{ok,11}
5> frequency:allocate().
{ok,12}
6> frequency:allocate().
{ok,13}
7> frequency:allocate().
{ok,14}
8> frequency:allocate().
{ok,15}
9> frequency:allocate().
{error,no_frequency}
10> frequency:deallocate(11).
ok
11> frequency:allocate().
{ok,11}
12> frequency:stop().
ok

124 | Chapter 5: Process Design Patterns

A Process Pattern Example
Now let’s look at similarities between the client-server example we just described and
the process skeleton we introduced in Chapter 4. Picture an application, either a web
browser or a word processor, which handles many simultaneously open windows cen-
trally controlled by a window manager. As we aim to have a process for each truly
concurrent activity, spawning a process for every window is the way to go. These pro-
cesses would probably not be registered, as many windows of the same type could be
running concurrently.

After being spawned, each process would call the initialize function, which draws
and displays the window and its contents. The return value of the initialize function
contains references to the widgets displayed in the window. These references are stored
in the state variable and are used whenever the window needs updating. The state
variable is passed as an argument to a tail-recursive function that implements the
receive-evaluate loop.

In this loop function, the process waits for events originating in or relating to the win-
dow it is managing. It could be a user typing in a form or choosing a menu entry, or an
external process pushing data that needs to be displayed. Every event relating to this
window is translated to an Erlang message and sent to the process. The process, upon
receiving the message, calls the handle function, passing the message and state as ar-
guments. If the event were the result of a few keystrokes typed in a form, the handle
function might want to display them. If the user picked an entry in one of the menus,
the handle function would take appropriate actions in executing that menu choice. Or,
if the event was caused by an external process pushing data, possibly an image from a
webcam or an alert message, the appropriate widget would be updated. The receipt of
these events in Erlang would be seen as a generic pattern in all processes. What would
be considered specific and change from process to process is how these events are
handled.

Finally, what if the process receives a stop message? This message might have originated
from a user picking the Exit menu entry or clicking the Destroy button, or from the
window manager broadcasting a notification that the application is being shut down.
Regardless of the reason, a stop message is sent to the process. Upon receiving it, the
process calls a terminate function, which destroys all of the widgets, ensuring that they
are no longer displayed. After the window has been shut down, the process terminates
because there is no more code to execute.

Look at the following process skeleton. Could you not fit all of the specific code into
the initialize/1, handle_msg/2, and terminate/1 functions?

-module(server).
-export([start/2, stop/1, call/2]).
-export([init/1]).

start(Name, Data) ->
 Pid = spawn(generic_handler, init,[Data])

A Process Pattern Example | 125

 register(Name, Pid), ok.

stop(Name) ->
 Name ! {stop, self()},
 receive {reply, Reply} -> Reply end.

call(Name, Msg) ->
 Name ! {request, self(), Msg},
 receive {reply, Reply} -> Reply end.

reply(To, Msg) ->
 To ! {reply, Msg}.

init(Data) ->
 loop(initialize(Data)).

loop(State) ->
 receive
 {request, From, Msg} ->
 {Reply,NewState} = handle_msg(Msg, State),
 reply(From, Reply),
 loop(NewState);
 {stop, From} ->
 reply(From, terminate(State))
 end.

initialize(...) -> ...
handle_msg(...,...) -> ...
terminate(...) -> ...

Using the generic code in the preceding skeleton, let’s go through the GUI example one
last time:

• The initialize function draws the window and displays it, returning a reference
to the widget that gets bound to the state variable.

• Every time an event arrives in the form of an Erlang message, the event is taken
care of in the handle_msg function. The call takes the message and the state as
arguments and returns an updated State variable. This variable is passed to the
recursive loop call, ensuring that the process is kept alive. Any reply is also sent
back to the process where the request originated.

• If the stop message is received, terminate is called, destroying the window and all
the widgets associated with it. The loop function is not called, allowing the process
to terminate normally.

Finite State Machines
Erlang processes can be used to implement finite state machines. A finite state machine,
or FSM for short, is a model that consists of a finite number of states and events. You
can think of an FSM as a model of the world which will contain abstractions from the
details of the real system. At any one time, the FSM is in a specific state. Depending on

126 | Chapter 5: Process Design Patterns

the incoming event and the current state of the FSM, a set of actions and a transition
to a new state will occur (see Figure 5-5).

Figure 5-5. A finite state machine

In Erlang, each state is represented as a tail-recursive function, and each event is rep-
resented as an incoming message. When a message is received and matched in a
receive clause, a set of actions are executed. These actions are followed by a state
transition achieved by calling the function corresponding to the new state.

An FSM Example
As an example, think of modeling a fixed-line phone as a finite state machine (see
Figure 5-6). The phone can be in the idle state when it is plugged in and waiting either
for an incoming phone call or for a user to take it off the hook. If you receive an incoming
call from your aunt,† the phone will start ringing. Once it has started ringing, the state
will change from idle to ringing and will wait for one of two events. You can pretend
to be asleep, hopefully resulting in your aunt giving up on you and putting the phone
on her end back on the hook. This will result in the FSM going back to the idle state
(and you going back to sleep).

If instead of ignoring it, you take your phone off the hook, it would stop ringing and
the FSM would move to the connected state, leaving you to talk to your heart’s content.
When you are done with the call and hang up, the state reverts to idle.

If the phone is in the idle state and you take it off the hook, a dial tone is started. Once
the dial tone has started, the FSM changes to the dial state and you enter your aunt’s
phone number. Either you can hang up and your FSM goes back to the idle state, or
your aunt picks up and you go to the connected state.

State machines are very common in all sorts of processing applications. In telecom
systems, they are used not only to handle the state of equipment, as in the preceding
example, but also in complex protocol stacks. The fact that Erlang handles them

† Or any other relative of your choice who tends to call you very early on a Saturday morning.

Finite State Machines | 127

graciously is not a surprise. When prototyping with the early versions of Erlang between
1987 and 1991, it was the Plain Old Telephony System (POTS) finite state machines
described in this section that the development team used to test their ideas of what
Erlang should look like.

With a tail-recursive function for every state, actions implemented as function calls,
and events represented as messages, this is what the code for the idle state would look
like:

idle() ->
 receive
 {Number, incoming} ->
 start_ringing(),
 ringing(Number);
 off_hook ->
 start_tone(),
 dial()
 end.

ringing(Number) ->
 receive
 {Number, other_on_hook} ->
 stop_ringing(),
 idle();
 {Number, off_hook} ->

Figure 5-6. Fixed-line phone finite state machine

128 | Chapter 5: Process Design Patterns

 stop_ringing(),
 connected(Number)
 end.

start_ringing() -> ...
start_tone() -> ...
stop_ringing() -> ...

We leave the coding of the functions for the other states as an exercise.

A Mutex Semaphore
Let’s look at another example of a finite state machine, this time implementing a mutex
semaphore. A semaphore is a process that serializes access to a particular resource,
guaranteeing mutual exclusion. Mutex semaphores might not be the first thing that
comes to mind when working with Erlang, as they are commonly used in languages
with shared memory. However, they can be used as a general mechanism for managing
any resource, not just memory.

Assume that only one process at a time is allowed to use the file server, thus guaran-
teeing that no two processes are simultaneously reading or writing to the same file.
Before making any calls to the file server, the process wanting to access the file calls
the mutex:wait() function, putting a lock on the server. When the process has finished
handling the files, it calls the function mutex:signal(), removing the lock (see Fig-
ure 5-7).

Figure 5-7. The mutex semaphore state diagram

If a process called PidB tries to call mutex:wait() when the semaphore is busy with PidA,
PidB is suspended in its receive clause until PidA calls signal/0. The semaphore be-
comes available, and the process whose wait message is first in the message queue,
PidB in our case, will be allowed to access the file server. The message sequence diagram
in Figure 5-8 demonstrates this.

Look at the following code to get a feel for how to use tail-recursive functions to denote
the states, and messages to denote events. And before reading on, try to figure out what
the terminate function should do to clean up when the mutex is terminated.

Finite State Machines | 129

-module(mutex).
-export([start/0, stop/0]).
-export([wait/0, signal/0]).
-export([init/0]).

start() ->
 register(mutex, spawn(?MODULE, init, [])).

stop() ->
 mutex ! stop.

wait() ->
 mutex ! {wait, self()},
 receive ok -> ok end.

signal() ->
 mutex ! {signal, self()}, ok.

init() ->
 free().

free() ->
 receive
 {wait, Pid} ->
 Pid ! ok,
 busy(Pid);
 stop ->
 terminate()
 end.

busy(Pid) ->
 receive
 {signal, Pid} ->
 free()

Figure 5-8. The mutex message sequence diagram

130 | Chapter 5: Process Design Patterns

 end.

terminate() ->
 receive
 {wait, Pid} ->
 exit(Pid, kill),
 terminate()
 after
 0 -> ok
 end.

The stop/0 function sends a stop message that is handled only in the free state. Prior
to terminating the mutex process, all processes that are waiting for or holding the sem-
aphore are allowed to complete their tasks. However, any process that attempts to wait
for the semaphore after stop/0 is called will be killed unconditionally in the
terminate/0 function.

Event Managers and Handlers
Try to picture a process that receives trace events generated in your system. You might
want to do many things with these trace events, but you might not necessarily want to
do all of them at the same time. You probably want to log all the trace events to file. If
you are in front of the console, you might want to print them to standard I/O. You
might be interested in statistics to determine how often certain errors occur, or if the
event requires some action to be taken, you might want to send an SMS or SNMP‡ trap.

At any one time, you will want to execute some, if not all, of these actions, and toggle
between them. But if you walk away from your desk, you might want to turn the logging
to the console off while maintaining the gathering of statistics and logging to file.

An event manager does what we just described. It is a process that receives a specific
type of event and executes a set of actions determined by the type of event. These actions
can be added and removed dynamically throughout the lifetime of the process, and are
not necessarily defined or known when the code implementing the process is first
written. They are collected in modules we call the event handlers.

Large systems usually have an event manager for every type of event. Event types com-
monly include alarms, equipment state changes, errors, and trace events, just to men-
tion a few. When they are received, one or more actions are applied to each event.

The most common form of event manager found in almost all industrial-grade systems
handles alarms (see Figure 5-9). Alarms are raised when a problem occurs and are
cleared when it goes away. They might require automated or manual intervention, but
this is not always the case. An alarm would be raised if the data link between two devices

‡ SNMP stands for Simple Network Management Protocol. It is a standard used for controlling and monitoring
systems over IP-based networks.

Event Managers and Handlers | 131

is lost and be cleared if it recovers. Other examples include a cabinet door being opened,
a fan breaking, or a TCP/IP connection being lost.

The alarm handler will often log these alarms, collect statistics, and filter and forward
them to agents. Agents might receive the events and try to resolve the issues themselves.
If a communication link is down, for example, an agent would automatically try to
reconfigure the system to use the standby link, requesting human intervention only if
the standby link goes down as well.

A Generic Event Manager Example
Here is an example of an event manager that allows you to add and remove handlers
during runtime. The code is completely generic and independent of the individual
handlers. Handlers can be implemented in separate modules and have to export a
number of functions, referred to as callback functions. These functions can be called by
the event manager. We will cover them in a minute. Let’s first look at how we’ve im-
plemented the event manager, starting with its client functions:

start(Name, HandlerList)
Will start a generic event manager, registering it with the alias Name. HandlerList is
a list of tuples of the form {Handler, Data}, where Handler is the name of the handler
callback module and Data is the argument passed to the handler’s init callback
function. HandlerList can be empty at startup, as handlers can be subsequently
added using the add_handler/2 call.

stop(Name)
Will terminate all the handlers and stop the event manager process. It will return
a list of items of the form {Handler, Data}, where Data is the return value of the
terminate callback function of the individual handlers.

add_handler(Name, Handler, Data)
Will add the handler defined in the callback module Handler, passing Data as an
argument to the handler’s init callback function.

Figure 5-9. An alarm manager implemented as an event handler

132 | Chapter 5: Process Design Patterns

delete_handler(Name, Handler)
Will remove the handler defined in the callback module Handler. The handler’s
terminate callback function will be called, and its return value will be the return
value of this call. This call returns the tuple {error, instance} if Handler does not
exist.

get_data(Name, Handler)
Will return the contents of the state variable of the Handler. This call returns the
tuple {error, instance} if Handler does not exist.

send_event(Name, Event)
Will forward the contents of Event to all the handlers.

Here is the code for the generic event manager module:

-module(event_manager).
-export([start/2, stop/1]).
-export([add_handler/3, delete_handler/2, get_data/2, send_event/2]).
-export([init/1]).

start(Name, HandlerList) ->
 register(Name, spawn(event_manager, init, [HandlerList])), ok.

init(HandlerList) ->
 loop(initialize(HandlerList)).

initialize([]) -> [];
initialize([{Handler, InitData}|Rest]) ->
 [{Handler, Handler:init(InitData)}|initialize(Rest)].

Here is an explanation of what the code is doing:

• The start(Name, HandlerList) function spawns the event manager process and
registers it with the alias Name.

• The newly spawned process starts executing in the init/1 function with a Handler
List tuple list of the format {Handler, Data} as an argument.

• We traverse the list in the initialize/1 function calling Handler:init(Data) for
every entry.

• The result of this call is stored in a list of the format {Handler, State}, where
State is the return value of the init function.

• This list is passed as an argument to the event manager’s loop/1 function.

When stopping the event manager process, we send a stop message received in the
loop/1 function. If you are looking for loop/1, you will find it with the generic code at
the end of this module. Receiving the stop message results in terminate/1 traversing
the list of handlers and calling Handler:terminate(Data) for every entry. The return
value of these calls, a list of the format {Handler, Value}, is sent back to the process
that originally called stop/1 and becomes the return value of this function:

Event Managers and Handlers | 133

stop(Name) ->
 Name ! {stop, self()},
 receive {reply, Reply} -> Reply end.

terminate([]) -> [];
terminate([{Handler, Data}|Rest]) ->
 [{Handler, Handler:terminate(Data)}|terminate(Rest)].

Now we’ll look at the client functions used to add, remove, and inspect the event
handlers, as well as forwarding them the events. Through the call/2 function, they
send the request to the event manager process which handles them in handle_msg/2.
Pay particular attention to the send_event/2 call, which traverses the list of handlers,
calling the callback function Handler:handle_event(Event, Data). The return value of
this call replaces the old Data and is used by the handler the next time one of its callbacks
is invoked:

add_handler(Name, Handler, InitData) ->
 call(Name, {add_handler, Handler, InitData}).

delete_handler(Name, Handler) ->
 call(Name, {delete_handler, Handler}).

get_data(Name, Handler) ->
 call(Name, {get_data, Handler}).

send_event(Name, Event) ->
 call(Name, {send_event, Event}).

handle_msg({add_handler, Handler, InitData}, LoopData) ->
 {ok, [{Handler, Handler:init(InitData)}|LoopData]};

handle_msg({delete_handler, Handler}, LoopData) ->
 case lists:keysearch(Handler, 1, LoopData) of
 false ->
 {{error, instance}, LoopData};
 {value, {Handler, Data}} ->
 Reply = {data, Handler:terminate(Data)},
 NewLoopData = lists:keydelete(Handler, 1, LoopData),
 {Reply, NewLoopData}
 end;

handle_msg({get_data, Handler}, LoopData) ->
 case lists:keysearch(Handler, 1, LoopData) of
 false -> {{error, instance}, LoopData};
 {value, {Handler, Data}} -> {{data, Data}, LoopData}
 end;

handle_msg({send_event, Event}, LoopData) ->
 {ok, event(Event, LoopData)}.

event(_Event, []) -> [];
event(Event, [{Handler, Data}|Rest]) ->
 [{Handler, Handler:handle_event(Event, Data)}|event(Event, Rest)].

134 | Chapter 5: Process Design Patterns

The following code, together with the start and stop functions we already covered, is
a direct rip off from the process pattern example. By now, you should have spotted the
recurring theme—processes that handle very different tasks do so in similar ways, fol-
lowing a pattern:

call(Name, Msg) ->
 Name ! {request, self(), Msg},
 receive {reply, Reply} -> Reply end.

reply(To, Msg) ->
 To ! {reply, Msg}.

loop(State) ->
 receive
 {request, From, Msg} ->
 {Reply, NewState} = handle_msg(Msg, State),
 reply(From, Reply),
 loop(NewState);
 {stop, From} ->
 reply(From, terminate(State))
 end.

Event Handlers
In our event manager implementation, our event handlers have to export the following
three callback functions:

init(InitData)
Initializes the handler and returns a value that is used the next time a callback
function belonging to the handler is invoked.

terminate(Data)
Allows the handler to clean up. If we have opened files or sockets in the init/1
callback, they would be closed here. The return value of terminate/1 is passed back
to the functions that originally instigated the removal of the handler. In our event
manager example, they are the delete_handler/2 and stop/1 calls.

handle_event(Event, Data)
Is called when an event is forwarded to the event manager through the
send_event/2 call. Its return value will be used the next time a callback function
for this handler is invoked.

Using these callback functions, let’s write two handlers—one that pretty-prints the
events to the shell, and one that logs the events to file.

The io_handler event handler filters out events of the format {raise_alarm, Id,
Type} and {clear_alarm, Id, Type}. All other events are ignored. In the init/1 function,
we set a counter which is incremented every time an event is handled.

The handle_event/2 callback uses this counter every time an alarm event is received,
displaying it together with information on the alarm:

Event Managers and Handlers | 135

-module(io_handler).
-export([init/1, terminate/1, handle_event/2]).

init(Count) -> Count.

terminate(Count) -> {count, Count}.

handle_event({raise_alarm, Id, Alarm}, Count) ->
 print(alarm, Id, Alarm, Count),
 Count+1;
handle_event({clear_alarm, Id, Alarm}, Count) ->
 print(clear, Id, Alarm, Count),
 Count+1;
handle_event(Event, Count) ->
 Count.

print(Type, Id, Alarm, Count) ->
 Date = fmt(date()), Time = fmt(time()),
 io:format("#~w,~s,~s,~w,~w,~p~n",
 [Count, Date, Time, Type, Id, Alarm]).

fmt({AInt,BInt,CInt}) ->
 AStr = pad(integer_to_list(AInt)),
 BStr = pad(integer_to_list(BInt)),
 CStr = pad(integer_to_list(CInt)),
 [AStr,$:,BStr,$:,CStr].

pad([M1]) -> [$0,M1];
pad(Other) -> Other.

The second handler that we implement logs all the events of the format {EventType,
Id, Description} in a comma-separated file, ignoring everything else that is not a tuple
of size 3.

We open the file in the init/1 function, write to it in handle_event/2, and close it in
the terminate function. As this file will probably be read and manipulated by other
programs, we will provide more detail in the information we write to it and spend less
effort with its formatting. Instead of time() and date(), we use the now() BIF which
gives us a timestamp with a much higher level of accuracy. It returns a tuple containing
the mega seconds, seconds, and microseconds that have elapsed since January 1, 1970.
When the log_handler is deleted from the event manager, the terminate/2 call will close
the file:

-module(log_handler).

-export([init/1, terminate/1, handle_event/2]).

init(File) ->
 {ok, Fd} = file:open(File, write),
 Fd.

terminate(Fd) -> file:close(Fd).

handle_event({Action, Id, Event}, Fd) ->

136 | Chapter 5: Process Design Patterns

 {MegaSec, Sec, MicroSec} = now(),
 Args = io:format(Fd, "~w,~w,~w,~w,~w,~p~n",
 [MegaSec, Sec, MicroSec, Action, Id, Event]),
 Fd;
handle_event(_, Fd) ->
 Fd.

Try out the event manager and the two handlers we’ve implemented in the shell. We
start the event manager with the log_handler, after which we add and delete the
io_handler. In between, we generate a few alarms and test the other client functions
we’ve implemented in the event manager work:

1> event_manager:start(alarm, [{log_handler, "AlarmLog"}]).
ok
2> event_manager:send_event(alarm, {raise_alarm, 10, cabinet_open}).
ok
3> event_manager:add_handler(alarm, io_handler, 1).
ok
4> event_manager:send_event(alarm, {clear_alarm, 10, cabinet_open}).
#1,2009:03:16,08:33:14,clear,10,cabinet_open
ok
5> event_manager:send_event(alarm, {event, 156, link_up}).
ok
6> event_manager:get_data(alarm, io_handler).
{data,2}
7> event_manager:delete_handler(alarm, stats_handler).
{error,instance}
8> event_manager:stop(alarm).
[{io_handler,{count,2}},{log_handler,ok}]

Exercises

Exercise 5-1: A Database Server
Write a database server that stores a database in its loop data. You should register the
server and access its services through a functional interface. Exported functions in the
my_db.erl module should include:

my_db:start() ⇒ ok.
my_db:stop() ⇒ ok.
my_db:write(Key, Element) ⇒ ok.
my_db:delete(Key) ⇒ ok.
my_db:read(Key) ⇒ {ok, Element} | {error, instance}.
my_db:match(Element) ⇒ [Key1, ..., KeyN].

Hint: use the db.erl module as a backend and use the server skeleton from the echo
server from Exercise 4-1 in Chapter 4. Example:

1> my_db:start().
ok
2> my_db:write(foo, bar).
ok
3> my_db:read(baz).

Exercises | 137

{error, instance}
4> my_db:read(foo).
{ok, bar}
5> my_db:match(bar).
[foo]

Exercise 5-2: Changing the Frequency Server
Using the frequency server example in this chapter, change the code to ensure that only
the client who allocated a frequency is allowed to deallocate it. Make sure that deallo-
cating a frequency that has not been allocated does not make the server crash.

Hint: use the self() BIF in the allocate and deallocate functions called by the client.

Extend the frequency server so that it can be stopped only if no frequencies are
allocated.

Finally, test your changes to see whether they still allow individual clients to allocate
more than one frequency at a time. This was previously possible by calling
allocate_frequency/0 more than once. Limit the number of frequencies a client can
allocate to three.

Exercise 5-3: Swapping Handlers
What happens if you want to close and open a new file in the log_handler? You
would have to call event_manager:delete_handler/2 immediately followed by
event_manager:add_handler/2. The risk with this is that in between these two calls, you
might miss an event. Therefore, implement the following function:

event_manager:swap_handlers(Name, OldHandler, NewHandler)

which swaps the handlers atomically, ensuring that no events are lost. To ensure
that the state of the handlers is maintained, pass the return value of
OldHandler:terminate/1 to the NewHandler:init/1 call.

Exercise 5-4: Event Statistics
Write a stats_handler module that takes the first and second elements of the event
tuple {Type, Id, Description} in our example and keep a count of how many times
the combination of {Type, Description} occurs. Users should be able to retrieve these
statistics by using the client function event_manager:get_data/2.

Exercise 5-5: Phone FSM
Complete the coding of the phone FSM example, and then instrument it with logging
using an event handler process. This should record enough information to enable billing
for the use of the phone.

138 | Chapter 5: Process Design Patterns

CHAPTER 6

Process Error Handling

Whatever the programming language, building distributed, fault-tolerant, and scalable
systems with requirements for high availability is not for the faint of heart. Erlang’s
reputation for handling the fault-tolerant and high-availability aspects of these systems
has its foundations in the simple but powerful constructs built into the language’s
concurrency model. These constructs allow processes to monitor each other’s behavior
and to recover from software faults. They give Erlang a competitive advantage over
other programming languages, as they facilitate development of the complex architec-
ture that provides the required fault tolerance through isolating errors and ensuring
nonstop operation. Attempts to develop similar frameworks in other languages have
either failed or hit a major complexity barrier due to the lack of the very constructs
described in this chapter.

Process Links and Exit Signals
You might have heard of the “let it crash and let someone else deal with it” and “crash
early” approaches. That’s the Erlang way! If something goes wrong, let your process
terminate as soon as possible and let another process deal with the problem. The
link/1 BIF will have been used by this other process to allow it to monitor and detect
abnormal terminations and handle them generically.

The link/1 BIF takes a pid as an argument and creates a bidirectional link between the
calling process and the process denoted by the pid. The spawn_link/3 BIF will yield the
same result as calling spawn/3 followed by link/1, except that it will do so atomically
(i.e., in a single step, so either both calls succeed or neither one does). In diagrams of
Erlang processes, you denote processes linked to each other with a line, as shown in
Figure 6-1.

As links are bidirectional, it does not matter whether process A linked to process B or
B to A; the result will be the same. If a linked process terminates abnormally, an exit
signal will be sent to all the processes to which the failing process is linked. The process
receiving the signal will exit, propagating a new exit signal to the processes that it is
linked to (this collection is also know as its link set).

139

The exit signal is a tuple of the format {'EXIT', Pid, Reason}, containing the atom
'EXIT', the Pid of the terminating process, and the Reason for its termination. The
process on the receiving end will terminate with the same reason and propagate a new
exit signal with its own pid to all the processes in its link set, as shown in Figure 6-2.

Figure 6-2. Exit signals

When process A fails, its exit signal propagates to process B. Process B terminates with
the same reason as A, and its exit signal propagates to process C (see Figure 6-3). If you
have a group of mutually dependent processes in a system, it is a good design practice
to link them together to ensure that if one terminates, they will all terminate.

Figure 6-3. Propagation of exit signals

Figure 6-1. Linked processes

140 | Chapter 6: Process Error Handling

Type the following example in an editor, or download it from the book’s website. It is
a simple program that spawns a process that links to its parent. When sent an integer
N by the process in the message {request, Pid, N}, the process adds one to N and returns
the result to the Pid. If it takes more than one second to compute the result, or if the
process crashes, the request/1 function returns the atom timeout. There are no checks
to the arguments passed to request/1, so sending anything but an integer will cause a
runtime error that terminates the process. As the process is linked to its parent, the exit
signal will propagate to the parent and terminate it with the same reason:

-module(add_one).
-export([start/0, request/1, loop/0]).

start() ->
 register(add_one, spawn_link(add_one, loop, [])).

request(Int) ->
 add_one ! {request, self(), Int},
 receive
 {result, Result} -> Result
 after 1000 -> timeout
 end.

loop() ->
 receive
 {request, Pid, Msg} ->
 Pid ! {result, Msg + 1}
 end,
 loop().

Test this program by sending it a noninteger, and see how the shell reacts. In the ex-
ample that follows, we send the atom one, causing the process to crash. As the
add_one process is linked to the shell, the propagation of the exit signal will cause the
shell process to terminate as well. The error report shown in the shell comes from
the add_one process, while the exception exit printout comes from the shell itself. Note
how we get a different pid when calling the self() BIF before and after the crash,
indicating that the shell process has been restarted:

1> self().
<0.29.0>
2> add_one:start().
true
3> add_one:request(1).
2
4> add_one:request(one).

=ERROR REPORT==== 21-Jul-2008::16:29:38 ===
Error in process <0.37.0> with exit value: {badarith,[{add_one,loop,0}]}

** exception exit: badarith
 in function add_one:loop/0
5> self().
<0.40.0>

Process Links and Exit Signals | 141

http://www.erlangprogramming.org

So far, so good, but you are now probably asking yourself how a process can handle
abnormal terminations and recovery strategies if the only thing it can do when it receives
an exit signal is to terminate itself. The answer is by trapping exits.

Trapping Exits
Processes can trap exit signals by setting the process flag trap_exit, and by executing
the function call process_flag(trap_exit, true). The call is usually made in the initi-
alization function, allowing exit signals to be converted to messages of the format
{'EXIT', Pid, Reason}. If a process is trapping exits, these messages are saved in the
process mailbox in exactly the same way as other messages. You can retrieve these
messages using the receive construct, pattern matching on them like any other
message.

If an exit signal is trapped, it does not propagate further. All processes in its link set,
other than the one that terminated, are not affected. You usually denote processes that
are trapping exits with a double circle, as shown in Figure 6-4.

Figure 6-4. Trapping exits

Let’s take a specific example, shown in Figure 6-5. Process B, marked with a double
circle, is trapping exits. If a runtime error occurs in process A, it will terminate and send
out an exit signal of the format {'EXIT', A, Reason}, where A is the pid of the process
that has failed and Reason is the reason for its termination. The atom 'EXIT' is used to
tag the tuple and facilitate pattern matching. This message is stored in process B’s
mailbox without affecting C. Unless B explicitly informs C that A has terminated, C
will never know.

Let’s revisit the add_one example, letting the shell trap exits. The result, instead of a
crash, should be an 'EXIT' message sent to the shell. You can retrieve this signal using
the flush/0 command, as it will not pattern-match against any of the receive clauses
in the request function:

1> process_flag(trap_exit, true).
false
2> add_one:start().
true
3> add_one:request(one).

=ERROR REPORT==== 21-Jul-2008::16:44:32 ===
Error in process <0.37.0> with exit value: {badarith,[{add_one,loop,0}]}

142 | Chapter 6: Process Error Handling

timeout
4> flush().
Shell got {'EXIT',<0.37.0>,{badarith,[{add_one,loop,0}]}}
ok

Figure 6-5. Propagation of exit signals

It is also possible to explicitly catch the exit message sent to the shell. In the following
variant of the earlier program, the request function has an additional pattern match
over {'EXIT',_,_} to trap the exit message from the loop() process:

-module(add_two).
-export([start/0, request/1, loop/0]).

start() ->
 process_flag(trap_exit, true),
 Pid = spawn_link(add_two, loop, []),
 register(add_two, Pid),
 {ok, Pid}.

request(Int) ->
 add_two ! {request, self(), Int},
 receive
 {result, Result} -> Result;
 {'EXIT', _Pid, Reason} -> {error, Reason}
 after 1000 -> timeout
 end.

loop() ->
 receive
 {request, Pid, Msg} ->
 Pid ! {result, Msg + 2}
 end,
 loop().

Process Links and Exit Signals | 143

Note how we call process_flag(trap_exit, true) in the start/0 function. Run the
program and you should observe the following output:

1> c(add_two).
{ok, add_two}
2> add_two:start().
{ok, <0.119.0>}
3> add_two:request(6).
8
4> add_two:request(six).
{error,{badarith,[{add_two,loop,0}]}}

=ERROR REPORT==== 24-Aug-2008::18:59:30 ===
Error in process <0.36.0> with exit value: {badarith,[{add_two,loop,0}]}

The response to command 4 in the shell comes from matching the {'EXIT',_,_} raised
when loop() fails on the atom six.

If you want to stop trapping exits, use process_flag(trap_exit, false). It is considered
a bad practice to toggle the trap_exit flag, as it makes your program hard to debug and
maintain. The trap_exit flag is set to false by default when a process is spawned.

The monitor BIFs
Links are bidirectional. When the need arose to monitor processes unidirectionally,
the erlang:monitor/2 BIF was added to Erlang. When you call the following:

erlang:monitor(process, Proc)

a monitor is created from the calling process to the process denoted by Proc, where
Proc can be either a process identifier or a registered name. When the process with the
pid terminates, the message {'DOWN',Reference,process,Pid,Reason} is sent to the
monitoring process. This message includes a reference to the monitor. References,
which we cover in more detail in Chapter 9, are (essentially) unique values that you
can use to identify entities such as responses to particular requests; you can compare
references for equality and use them in pattern-matching definitions.

If you try to link to a nonexistent process, the calling process terminates with a runtime
error. The monitor BIF behaves differently. If Pid has already terminated (or never ex-
isted) when monitor is called, the 'DOWN' message is immediately sent with the Reason
set to noproc. Repeated calls to erlang:monitor(process,Pid) will return different ref-
erences, creating multiple independent monitors. They will all send their 'DOWN' mes-
sage when Pid terminates.

Monitors are removed by calling erlang:demonitor(Reference). The 'DOWN' message
could have been sent right before the call to demonitor, so the process using the monitor
should not forget to flush its mailbox. To be on the safe side, you can use
erlang:demonitor(Reference, [flush]), which will turn off the monitor while remov-
ing any 'DOWN' message from the Reference provided.

144 | Chapter 6: Process Error Handling

In the following example, we spawn a process that crashes immediately, as the module
it is supposed to execute does not exist. We start monitoring it and immediately receive
the 'DOWN' message. When retrieving the message, we pattern-match on both the
Reference and the Pid, returning the reason for termination. Notice that the reason is
noproc, the error stating that process Pid does not exist: compare this with the runtime
error we get when trying to link to a nonexistent process:

1> Pid = spawn(crash, no_function, []).

=ERROR REPORT==== 21-Jul-2008::15:32:02 ===
Error in process <0.32.0> with exit value: {undef,[{crash,no_function,[]}]}

<0.32.0>
2> Reference = erlang:monitor(process, Pid).
#Ref<0.0.0.31>
3> receive
 {'DOWN',Reference,process,Pid,Reason} -> Reason
 end.
noproc
4> link(Pid).
** exception error: no such process or port
 in function link/1
 called as link(<0.32.0>)

When would you pick monitoring over linking? Links are established permanently, as
in supervision trees, or when you want the propagation path of the exit signal to be
bidirectional. Monitors are ideal for monitoring the client call to a behavior process,
where you do not want to affect the state of the process you are calling and don’t want
it to receive an exit signal if the client terminates as a result of a link to another process.

The exit BIFs
The BIF call exit(Reason) causes the calling process to terminate, with the reason for
termination being the argument passed to the BIF. The terminating process will gen-
erate an exit signal that is sent to all the processes to which it is linked. If exit/1 is called
within the scope of a try...catch construct (see Figure 6-6), it can be caught, as it can
within a catch itself.

Figure 6-6. The exit/1 BIF

Process Links and Exit Signals | 145

If you want to send an exit signal to a particular process, you call the exit BIF using
exit(Pid, Reason), as shown in Figure 6-7. The result is almost the same as the message
sent by a process to its link set on termination, except that the Pid in the
{'EXIT',Pid,Reason} signal is the process identifier of the receiving process itself, rather
than the process that has terminated. If the receiving process is trapping exits, the signal
is converted to an exit message and stored in the process mailbox. If the process is not
trapping exits and the reason is not normal, it will terminate and propagate an exit
signal. Exit signals sent to a process cannot be caught with a catch and will result in
the process terminating. We discuss propagation of errors in more detail in the section
“Propagation Semantics” on page 148.

Figure 6-7. The exit/2 BIF

BIFs and Terminology
Before trying some examples and looking at these constructs in more depth, let’s review
the terminology and the most important BIFs dealing with termination:

• A link is a bidirectional propagation path for exit signals set up between processes.

• An exit signal is a signal transmitted by a process upon termination containing the
reason for the termination.

• Error trapping is the ability of a process to handle exit signals as though they were
messages.

The BIFs that are related to concurrent error handling include:

link(Pid)
Sets a bidirectional link between the calling process and Pid.

unlink(Pid)
Removes a link to Pid.

spawn_link(Mod, Fun, Args)
Atomically spawns and sets a link between the calling process and the spawned
process.

spawn_monitor(Mod, Fun, Args)
Atomically spawns and sets a monitor between the calling process and the spawned
process.

146 | Chapter 6: Process Error Handling

process_flag(trap_exit, Flag)
Sets the current process to convert exit signals to exit messages. The Flag contains
the atoms true (turning on exit trapping) and false (turning it off).

erlang:monitor(process,Pid)
Creates a unidirectional monitor toward Pid. It returns a reference to the calling
process; this reference can be used to identify the terminated process in a pattern
match.

erlang:demonitor(Reference)
Clears the monitor so that monitoring no longer takes place. Don’t forget to flush
messages that might have arrived prior to calling the demonitor BIF.

erlang:demonitor(Reference,[flush])
Is the same as demonitor/1, but removes the {_,Reference,_,_,_} message if it was
sent as a result of a race condition.

exit(Reason)
Causes the calling process to terminate with reason Reason.

exit(Pid,Reason)
Sends an exit signal to Pid.

Even in code written using monitor and link, race conditions can occur. Look at the
following code fragments. The first statement spawns a child, binds the process iden-
tifier to the variable Pid, and allows the process executing the code to link to it:

link(Pid = spawn(Module, Function, Args))

The second statement spawns a child, links to it, and binds the process identifier to the
variable Pid:

Pid = spawn_link(Module, Function, Args)

At first sight, both examples appear to do the same thing, except that spawn_link/3
does it atomically. By atomic operation, we mean an operation that has to be completed
before the process can be suspended. When dealing with concurrency, what is appa-
rently a small detail, such as whether an operation is atomic, can make all the difference
in how your program behaves:

• If you use spawn_link/3, the process is spawned and linked to the parent. This
operation cannot be suspended in between the spawn and the link, as all BIFs are
atomic. The earliest the process can be suspended is after executing the BIF.

• If you instead execute spawn and link as two separate operations, the parent process
calling spawn might get suspended right after spawning the process and binding the
variable Pid, but before calling link/1. The new process starts executing, encoun-
ters a runtime error, and terminates. The parent process is preempted, and the first
thing it does is to link to a nonexistent process. This will result in a runtime error
instead of an exit signal being received.

Process Links and Exit Signals | 147

This problem is similar to the example of race conditions that we looked at in Chap-
ter 4, where the outcome may vary depending on the order of events, itself a conse-
quence of where the processes are suspended and which core they are running on. A
rule of thumb is to always use spawn_link unless you are toggling between linking and
unlinking to the process, or if it is not a child process you are linking to. Before going
on to the next section, ask yourself how to solve the preceding problem using the
monitor BIF.

Propagation Semantics
Now that we have covered the most important terminology and BIFs, let’s look at the
details of the propagation semantics associated with the exit signals as summarized in
Table 6-1. When a process terminates it sends an exit signal to the processes in its link
set. These exit signals can be normal or nonnormal. Normal exit signals are generated
either when the process terminates because there is no more code to execute, or by
calling the exit BIFs with the reason normal.

A process that is not trapping exit signals terminates if it receives a nonnormal exit
signal. Exit signals with reason normal are ignored. A process that is trapping exit signals
converts all incoming exit signals, normal and nonnormal, to conventional messages
that are stored in the mailbox and handled in a receive statement.

If Reason in any of the exit BIFs is kill, the process is terminated unconditionally,
regardless of the trap_exit flag.* An exit signal is propagated to processes in its linked
set with reason killed. This will ensure that processes trapping exits are not terminated
if one of the peers in its link set is killed unconditionally.

Table 6-1. Propagation semantics

Reason Trapping exits trap_exit=true Not trapping exits trap_exit=false

normal Receives {'EXIT', Pid, normal} Nothing happens

kill Terminates with reason killed Terminates with reason killed

Other Receives {'EXIT', Pid, Other} Terminates with reason Other

Robust Systems
In Erlang, you build robust systems by layering. Using processes, you create a tree in
which the leaves consist of the application layer that handles the operational tasks while
the interior nodes monitor the leaves and other nodes below them, as shown in Fig-
ure 6-8. Processes at any level will trap errors occurring at a level immediately below
them. A process whose only task is to supervise children—in our case the nodes of the
tree—is called a supervisor. A leaf process performing operational tasks is called a

* You can catch the call exit(kill). A process will be unconditionally killed only when exit(Pid,kill) is used.

148 | Chapter 6: Process Error Handling

worker. When we refer to child processes, we mean both supervisors and workers be-
longing to a particular supervisor.

In well-designed systems, application programmers will not have to worry about error-
handling code. If a worker crashes, the exit signal is sent to its supervisor, which isolates
it from the higher levels of the system. Based on a set of preconfigured parameters and
the reason for termination, the supervisor will decide whether the worker should be
restarted.

Supervisors aren’t the only processes that might want to monitor other processes,
however. If a process has a dependency on another process that is not necessarily its
child, it will want to link itself to it. Upon abnormal termination, both processes can
take appropriate action.

In large Erlang systems, you should never allow processes that are not part of a super-
vision tree; all processes should be linked either to a supervisor or to another worker.
As Erlang programs will run for years without having to be restarted, millions, if not
billions, of processes will be created throughout the system’s lifetime. You need to have
full control of these processes, and, if necessary, be able to take down supervision trees.
You never know how bugs manifest themselves; the last thing you want is to miss an
abnormal process termination as a result of it not being linked to a supervisor. Another

Figure 6-8. Fault tolerance by layering

Robust Systems | 149

danger is hanging processes, possibly as (but not limited to) a result of errors or time-
outs, causing a memory leakage that might take months to detect.

Imagine an upgrade where you have to kill all processes dealing with a
specific type of call. If these processes are part of a supervision tree, all
you need to do is terminate the top-level supervisor, upgrade the code,
and restart it. We get the shivers just thinking of the task of having to
go into the shell and manually find and terminate all the processes which
are not linked to their parent or supervisor. If you do not know what
processes are running in your system, the only practical way to do it is
to restart the shell, something which goes against the whole principle
of high availability.

If you are serious about your fault tolerance and high availability, make sure all of your
processes are linked to a supervision tree.

Monitoring Clients
Remember the section “A Client/Server Example” on page 119 in Chapter 5? The server
is unreliable! If the client crashes before it sends the frequency release message, the
server will not deallocate the frequency and allow other clients to reuse it.

Let’s rewrite the server, making it reliable by monitoring the clients. When a client is
allocated a frequency, the server links to it. If a client terminates before deallocating a
frequency, the server will receive an exit signal and deallocate it automatically. If the
client does not terminate, and deallocates the frequency using the client function, the
server removes the link. Here is the code from Chapter 5; all of the new code is
highlighted:

-module(frequency).
-export([start/0, stop/0, allocate/0, deallocate/1]).
-export([init/0]).

%% These are the start functions used to create and
%% initialize the server.

start() ->
 register(frequency, spawn(frequency, init, [])).

init() ->
process_flag(trap_exit, true),
 Frequencies = {get_frequencies(), []},
 loop(Frequencies).

% Hard Coded
get_frequencies() -> [10,11,12,13,14,15].

%% The client Functions

150 | Chapter 6: Process Error Handling

stop() -> call(stop).
allocate() -> call(allocate).
deallocate(Freq) -> call({deallocate, Freq}).

%% We hide all message passing and the message
%% protocol in a functional interface.
call(Message) ->
 frequency ! {request, self(), Message},
 receive
 {reply, Reply} -> Reply
 end.

reply(Pid, Message) ->
 Pid ! {reply, Message}.

loop(Frequencies) ->
 receive
 {request, Pid, allocate} ->
 {NewFrequencies, Reply} = allocate(Frequencies, Pid),
 reply(Pid, Reply),
 loop(NewFrequencies);
 {request, Pid , {deallocate, Freq}} ->
 NewFrequencies=deallocate(Frequencies, Freq),
 reply(Pid, ok),
 loop(NewFrequencies);
{'EXIT', Pid, _Reason} ->
 NewFrequencies = exited(Frequencies, Pid),
 loop(NewFrequencies);
 {request, Pid, stop} ->
 reply(Pid, ok)
 end.

allocate({[], Allocated}, _Pid) ->
 {{[], Allocated}, {error, no_frequencies}};
allocate({[Freq|Frequencies], Allocated}, Pid) ->
 link(Pid),
 {{Frequencies,[{Freq,Pid}|Allocated]},{ok,Freq}}.

deallocate({Free, Allocated}, Freq) ->
 {value,{Freq,Pid}} = lists:keysearch(Freq,1,Allocated),
 unlink(Pid),
 NewAllocated=lists:keydelete(Freq,1,Allocated),
 {[Freq|Free], NewAllocated}.

exited({Free, Allocated}, Pid) ->
 case lists:keysearch(Pid,2,Allocated) of
 {value,{Freq,Pid}} ->
 NewAllocated = lists:keydelete(Freq,1,Allocated),
 {[Freq|Free],NewAllocated};
 false ->
 {Free,Allocated}
 end.

Note how in the exited/2 function we ensure that the pair consisting of the client Pid
and the frequency is a member of the list containing the allocated frequencies. This is

Robust Systems | 151

to avoid a potential race condition where the client correctly deallocates the frequency
but terminates before the server is able to handle the deallocate message and unlink
itself from the client. As a result, the server will receive the exit signal from the client,
even if it has already deallocated the frequency.

1> frequency:start().
true
2> frequency:allocate().
{ok,10}
3> exit(self(), kill).
** exception exit: killed
4> frequency:allocate().
{ok,10}

In this example, we used a bidirectional link instead of the unidirectional monitor. This
design decision is based on the fact that if our frequency server terminates abnormally,
we want all of the clients that have been allocated frequencies to terminate as well.

A Supervisor Example
Supervisors are processes whose only task is to start children and monitor them. How
are they implemented in practice? Children can be started either in the initialization
phase of the supervisor, or dynamically, once the supervisor has been started. Super-
visors will trap exits and link to their children when spawning them. If a child process
terminates, the supervisor will receive the exit signal. The supervisor can then use the
Pid of the child in the exit signal to identify the process and restart it.

Supervisors should manage process terminations and restarts in a uniform fashion,
making decisions on what actions to take. These actions might include doing nothing,
restarting the process, restarting the whole subtree, or terminating, making its super-
visor resolve the problem.

Supervisors should behave in a similar manner, irrespective of what the system does.
Together with clients/servers, finite state machines, and event handlers, they are con-
sidered a process design pattern:

• The generic part of the supervisor starts the children, monitors them, and restarts
them in case of a termination.

• The specific part of the supervisor consists of the children, including when and how
they are started and restarted.

In the following example, the supervisor we have implemented takes a child list of
tuples of the form {Module, Function, Arguments}. This list describes the children that
the supervisor has to supervise by giving the functions that have to be called to start
the child processes: an example is given by {add_two, start, []}, introduced at the
beginning of the chapter. In doing this, we assume that the child process is started
using the spawn_link/3 BIFs, and that the function, if successful, returns the tuple {ok,
Pid}; you can verify that this is the case for add_two:start/0.

152 | Chapter 6: Process Error Handling

The supervisor, which is also started with the spawn_link/3 BIF as it needs to be linked
to its parent, starts executing in the init/1 function. It starts trapping exits, and by
calling the start_children/1 function, it spawns all of the children. If the apply/3 call
creating the child was successful and the function returned {ok, Pid}, the entry {Pid,
{Module, Function, Arguments}} is added to the list of spawned children that is passed
to the loop/1 function:

-module(my_supervisor).
-export([start_link/2, stop/1]).
-export([init/1]).

start_link(Name, ChildSpecList) ->
 register(Name, spawn_link(my_supervisor, init, [ChildSpecList])), ok.

init(ChildSpecList) ->
 process_flag(trap_exit, true),
 loop(start_children(ChildSpecList)).

start_children([]) -> [];
start_children([{M, F, A} | ChildSpecList]) ->
 case (catch apply(M,F,A)) of
 {ok, Pid} ->
 [{Pid, {M,F,A}}|start_children(ChildSpecList)];
 _ ->
 start_children(ChildSpecList)
 end.

The loop of the supervisor waits in a receive clause for EXIT and stop messages. If a
child terminates, the supervisor receives the EXIT signal and restarts the terminated
child, replacing its entry in the list of children stored in the ChildList variable:

restart_child(Pid, ChildList) ->
 {value, {Pid, {M,F,A}}} = lists:keysearch(Pid, 1, ChildList),
 {ok, NewPid} = apply(M,F,A),
 [{NewPid, {M,F,A}}|lists:keydelete(Pid,1,ChildList)].

loop(ChildList) ->
 receive
 {'EXIT', Pid, _Reason} ->
 NewChildList = restart_child(Pid, ChildList),
 loop(NewChildList);
 {stop, From} ->
 From ! {reply, terminate(ChildList)}
 end.

We stop the supervisor by calling the synchronous client function stop/0. Upon re-
ceiving the stop message, the supervisor runs through the ChildList, terminating the
children one by one. Having terminated all the children, the atom ok is returned to the
process that initiated the stop call:

stop(Name) ->
 Name ! {stop, self()},
 receive {reply, Reply} -> Reply end.

Robust Systems | 153

terminate([{Pid, _} | ChildList]) ->
 exit(Pid, kill),
 terminate(ChildList);
terminate(_ChildList) -> ok.

In our example, the supervisor and the children are linked to each other. Can you think
of a reason why you should not use the monitor BIF? The reason for this design choice
is similar to the one in our frequency server example. Should the supervisor terminate,
we want it to bring down all of its children, no matter how horrid that may sound!

Let’s run the example in the shell and make sure it works:

1> my_supervisor:start_link(my_supervisor, [{add_two, start, []}]).
ok
2> whereis(add_two).
<0.125.0>
3> exit(whereis(add_two), kill).
true
4> add_two:request(100).
102
5> whereis(add_two).
<0.128.0>

This supervisor example is relatively simple. We extend it in the exercises that follow.

Exercises

Exercise 6-1: The Linked Ping Pong Server
Modify processes A and B from Exercise 4-1 in Chapter 4 by linking the processes to
each other. When the stop function is called, instead of sending the stop message, make
the first process terminate abnormally. This should result in the EXIT signal propagating
to the other process, causing it to terminate as well.

Exercise 6-2: A Reliable Mutex Semaphore
Suppose that the mutex semaphore from the section “Finite State Ma-
chines” on page 126 in Chapter 5 is unreliable. What happens if a process that currently
holds the semaphore terminates prior to releasing it? Or what happens if a process
waiting to execute is terminated due to an exit signal? By trapping exits and linking to
the process that currently holds the semaphore, make your mutex semaphore reliable.

In your first version of this exercise, use try...catch when calling link(Pid). You have
to wrap it in a catch just in case the process denoted by Pid has terminated before you
handle its request.

In a second version of the exercise, use erlang:monitor(type, Item). Compare and
contrast the two solutions. Which one of them do you prefer?

154 | Chapter 6: Process Error Handling

Exercise 6-3: A Supervisor Process
The supervisor we provided in the example is very basic. We want to expand its features
and allow it to handle more generic functionality. In an iterative test-and-develop cycle,
add the following features one at a time:

• If a child terminates both normally and abnormally, the supervisor will receive the
exit signal and restart the child. We want to extend the {Module, Function,
Argument} child tuple to include a Type parameter, which can be set to permanent
or transient. If the child is transient, it is not restarted if it terminated normally.
Restart it only upon abnormal termination.

• What happens if the supervisor tries to spawn a child whose module is not avail-
able? The process will crash, and its EXIT signal is sent to the supervisor that im-
mediately restarts it. Our supervisor does not handle the infinite restart case. To
avoid this case, use a counter that will restart a child a maximum of five times per
minute, removing the child from the child list and printing an error message when
this threshold is reached.

• Your supervisor should be able to start children even once the supervisor has star-
ted. Add a unique identifier in the child list, and implement the function
start_child(Module, Function, Argument), which returns the unique Id and the
child Pid. Don’t forget to implement the stop_child(Id) call, which stops the child.
Why do we choose to identify the child through its Id instead of the Pid when
stopping it?

Base your supervisor on the example in this chapter. You can download the code from
the website for the book as a starting point.

To test your supervisor, start the mutex semaphore and database server processes, as
shown in Figure 6-9.

Figure 6-9. The supervision tree

Exercises | 155

• You will have to change the start function to ensure that the processes link them-
selves to their parent and return {ok,Pid}.

• Kill your processes using exit(whereis(ProcName), kill).

• See whether they have been restarted by calling whereis(ProcName) and ensure that
you are getting different process IDs every time.

• If the process is not registered, kill it by calling exit(Pid, kill). You will get Pid
from the return value of the start_child function. (You can then start many pro-
cesses of the same type.)

• Once killed, check whether the process has been restarted by calling the i() help
function in the shell.

156 | Chapter 6: Process Error Handling

CHAPTER 7

Records and Macros

As soon as your first Erlang product reaches the market and is deployed around the
world, you start working on feature enhancements for the second release. Imagine
15,000 lines of code, which incidentally happens to be the size of the code base of the
first Erlang product Ericsson shipped, the Mobility Server. In your code base, you have
tuples that contain data relating to the existing features and constants that have been
hardcoded. When you add new features, you need to add fields to these tuples. The
problem is that the fields need to be updated not only in the code base where you are
adding these features, but also in the remaining 15,000 lines of code where you aren’t
adding them. Missing one tuple will cause a runtime error. Assuming your constants
also need to be updated, you need to change the hardcoded values everywhere they are
used. And even more costly than implementing these software changes is the fact that
the entire code base needs to be retested to ensure that no new bugs have been intro-
duced or fields and constant updates have been omitted.

One of the most common constructions in computing is to bring together a number of
pieces of data as a single item. Erlang tuples provide the basic mechanism for collecting
data, but they do have some disadvantages, particularly when a larger number of data
items are collected as a single object. In the first part of this chapter, you will learn
about records, which overcome most of these disadvantages and which also make code
evolution easier to achieve. The key to this is the fact that records provide data ab-
straction by which the actual representation of the data is hidden from the programs
that access it.

Macros allow you to write abbreviations that are expanded by the Erlang preprocessor.
Macros can be used to make programs more readable, to extend the language, and to
write debugging code. We conclude the chapter by describing the include directive, by
which header files containing macro and record definitions are used in Erlang projects.

Although neither is essential for writing Erlang programs, both are useful in making
programs easier to read, modify, and debug, facilitating code enhancements and sup-
port of deployed products. It is no coincidence that records and macros, the two con-
structs described in this chapter, were added to the language soon after Ericsson’s

157

Mobility Server went into production and developers started to support it while work-
ing on enhancing its feature set.

Records
To understand the advantages of records, we will first introduce a small example deal-
ing with information about people. Suppose you want to store basic information about
a person, including his name, age, and telephone number. You could do this using
three-element tuples of the form {Name,Age,Phone}:

-module(tuples1).
-export([test/1, test/2]).

birthday({Name,Age,Phone}) ->
 {Name,Age+1,Phone}.

joe() ->
 {"Joe", 21, "999-999"}.

showPerson({Name,Age,Phone}) ->
 io:format("name: ~p age: ~p phone: ~p~n", [Name,Age,Phone]).

test1() ->
 showPerson(joe()).

test2() ->
 showPerson(birthday(joe())).

At every point in the program where the person representation is used, it must be
presented as a complete tuple: {Name,Age,Phone}. Although not apparently a problem
for a three-element tuple, adding new fields means you would have to update the tuple
everywhere, even in the code base where the new fields are not used. Missing an update
will result in a badmatch runtime error when pattern-matching the tuple. Furthermore,
tuples do not scale well when dealing with sizes of 30 or even 10 elements, as the
potential for misunderstanding or error is much greater.

Introducing Records
A record is a data structure with a fixed number of fields that are accessed by name,
similar to a C structure or a Pascal record. This differs from tuples, where fields are
accessed by position. In the case of the person example, you would define a record type
as follows:

-record(person, {name,age,phone}).

This introduces the record type person, where each record instance contains three fields
named name, age, and phone. Field names are defined as atoms. Here is an example of
a record instance of this type:

158 | Chapter 7: Records and Macros

#person{name="Joe",
 age=21,
 phone="999-999"}

In the preceding code, #person is the constructor for person records. It just so happens
in this example that we listed the fields in the same order as in the definition, but this
is not necessary. The following expression gives the same value:

#person{phone="999-999",
 name="Joe",
 age=21}

In both examples, we defined all the fields, but it is possible to give default values for
the fields in the record definition, as in the following:

-record(person, {name,age=0,phone=""}).

Now a person record like this one:

#person{name="Fred"}

will have age zero and an empty phone number; in the absence of a default value being
specified, the “default default” is the atom undefined.

The general definition of a record name with fields named field1 to fieldn will take the
following form:

-record{name, {field1 [= default1],
 field2 [= default2],
 ...
 fieldn [= defaultn] }

where the parts enclosed in square brackets are optional declarations of default field
values. The same field name can be used in more than one record type; indeed, two
records might share the same list of names. The name of the record can be used in only
one definition, however, as this is used to identify the record.

Working with Records
Suppose you are given a record value. How can you access the fields, and how can you
describe a modified record? Given the following example:

Person = #person{name="Fred"}

you access the fields of the record like this: Person#person.name, Person#person.age,
and so on. What will be the values of these? The general form for this field access will
be:

RecordExp#name.fieldName

where the name and fieldName cannot be variables and RecordExp is an expression de-
noting a record. Typically, this will be a variable, but it might also be the result of a
function application or a field access for another record type.

Records | 159

Suppose you want to modify a single field of a record. You can write this directly, as in
the following:

NewPerson = Person#person{age=37}

In such a case, the record syntax is a real advantage. You have mentioned only the field
whose value is modified; those that are unchanged from Person to NewPerson need not
figure in the definition. In fact, the record mechanism allows for any selection of the
fields to be updated, as in:

NewPerson = Person#person{phone="999-999",age=37}

The general case will be:

RecordExp#name{..., fieldNamei=valuei, ... }

where the field updates can occur in any order, but each field name can occur, at most,
only once.

Functions and Pattern Matching over Records
Using pattern matching over records it is possible to extract field values and to affect
the control flow of computation. Suppose you want to define the birthday function,
which increases the age of the person by one. You could define the function using field
selection and update like this:

birthday(P) ->
 P#person{age = P#person.age + 1}.

But it is clearer to use pattern matching:

birthday(#person{age=Age} = P) ->
 P#person{age=Age+1}.

The preceding code makes it clear that the function is applied to a person record, as
well as extracting the age field into the variable Age. It is also possible to match against
field values so that you increase only Joe’s age, keeping everyone else the same age:

joesBirthday(#person{age=Age,name="Joe"} = P) ->
 P#person{age=Age+1};
joesBirthday(P) -> P.

Revisiting the example from the beginning of the section, you can give the definitions
using records:

-module(records1).
-export([birthday/1, joe/0, showPerson/1]).

-record(person, {name,age=0,phone}).

birthday(#person{age=Age} = P) ->
 P#person{age=Age+1}.

joe() ->
 #person{name="Joe",

160 | Chapter 7: Records and Macros

 age=21,
 phone="999-999"}.

showPerson(#person{age=Age,phone=Phone,name=Name}) ->
 io:format("name: ~p age: ~p phone: ~p~n", [Name,Age,Phone]).

Although the notation used here is a little more verbose, this is more than compensated
for by the clarity of the code, which makes clear our intention to work with records of
people, as well as concentrating on the relevant details: it is clear from the definition
of birthday that it operates on the age field and leaves the others unchanged. Finally,
the code is more easily modified if the composition of the record is changed or extended;
the first exercise at the end of this chapter gives you a chance to verify this for yourself.

Record fields can contain any valid Erlang data types. As records are valid data types,
fields can contain other records, resulting in nested records. For example, the content
of the name field in a person record could itself be a record:

-record(name, {first, surname}).

P = #person{name = #name{first = "Robert",
 surname = "Virding"}}
First = (P#person.name)#name.first.

Furthermore, field selection of a nested field can be given by a single expression, as in
the definition of First earlier.

Records in the Shell
Records in Erlang are a compile-time feature, and they don’t have their own types in
the virtual machine (VM). Because of this, the shell deals with them differently than it
does other constructions.

Using the command rr(moduleName) in the shell, all record definitions in the module
moduleName are loaded. You can otherwise define records directly in the shell itself using
the command rd(name, {field1, field2, ... }), which defines the record name with
fields field1, field2, and so on. This can be useful in testing and debugging, or if you
do not have access to the module in which you’ve defined the record. Finally, the com-
mand rl() lists all the record definitions currently visible in the shell. Try them out in
the shell:

1> c("/Users/Francesco/records1", [{outdir, "/Users/Francesco/"}]).
{ok,records1}
2> rr(records1).
[person]
3> Person = #person{name="Mike",age=30}.
#person{name = "Mike",age = 30,phone = undefined}
4> Person#person.age + 1.
31
5> NewPerson = Person#person{phone=5697}.
#person{name = "Mike",age = 30,phone = 5697}
6> rd(name, {first, surname}).

Records | 161

name
7> NewPerson = Person#person{name=#name{first="Mike",surname="Williams"}}.
#person{name = #name{first = "Mike",surname = "Williams"},
 age = 30,phone = undefined}
8> FirstName = (NewPerson#person.name)#name.first.
"Mike"
9> rl().
-record(name,{first,surname}).
-record(person,{name,age = 0,phone}).
ok
10> Person = Person#person{name=#name{first="Chris",surname="Williams"}}.
** exception error: no match of right hand side value
 #person{name = #name{first = "Mike",surname = "Williams"},
 age = 30,phone = undefined}

In the preceding example, we load the person record definition from the records1 mod-
ule, create an instance of it, and extract the age field. In command 6, we create a new
record of type name, with the fields first and surname. We bind the name field of the
record stored in the variable Person to a new record instance we create in one operation.
Finally, in command 8, we extract the first name by looking up the name field in the
record of type person stored in the variable NewPerson, all in one operation.

Look at what happens in command 10. This is a very common error made by beginners
and seasoned programmers, that is, forgetting that Erlang variables are single assign-
ment and that the = operator is nondestructive. In command 10, you might think you
are changing the value of the name field to a new name, but you are in fact pattern-
matching a record you’ve just created on the right side with the contents of the bound
variable Person on the left. The pattern matching fails, as the record name contains the
fields "Mike" and "Williams" on the left and the fields "Chris" and "Williams" on the
right.

Finally, the shell commands rf(RecordName) and rf() forget one or all of the record
definitions currently visible in the shell.

Record Implementation
We are now about to let you in on a poorly kept secret. We would rather not tell you,
but when testing with records from the shell, using debugging tools to troubleshoot
your code, or printing out internal data structures, you are bound to come across this.
The Erlang compiler implements records before programs are run. Records are trans-
lated into tuples, and functions over records translate to functions and BIFs over the
corresponding tuples. You can see this from this shell interaction:

11> records1:joe().
#person{name = "Joe",age = 21,phone = "999-999"}
12> records1:joe() == {person,"Joe",21,"999-999"}.
true
13> Tuple = {name,"Francesco","Cesarini"}.
#name{first = "Francesco",surname = "Cesarini"}

162 | Chapter 7: Records and Macros

14> Tuple#name.first.
"Francesco"

From the preceding code, you can deduce that person is a 4-tuple, the first element
being the atom person “tagging” the tuple and the remaining elements being the tuple
fields in the order in which they are listed in the declaration of the record. The name
record is a 3-tuple, where the first element is the atom name, the second is the first
name field, and the third is the surname field.

Note how the shell by default assumes that a tuple is a record. This will unfortunately
be the same in your programs, so whatever you do, never, ever use the tuple represen-
tations of records in your programs. If you do, the authors of this book will disown you
and deny any involvement in helping you learn Erlang. We mean it!

Why should you never use the tuple representation of records? Using
the representation breaks data abstraction, so any modification to your
record type will not be reflected in the code using the tuples. If you add
a field to the record, the size of the tuple created by the compiler will
change, resulting in a badmatch error when trying to pattern-match the
record to your tuple (where you obviously forgot to add the new ele-
ment). Swapping the field order in the record will not affect your code
if you are using records, as you access the fields by name. If in some
places, however, you use a tuple and forget to swap all occurrences, your
program may fail, or worse, may behave in an unexpected and unin-
tended way. Finally, even though this should be the least of your worries,
the internal record representation might change in future releases of
Erlang, making your code nonbackward-compatible.

To view the code produced as a source code transformation on records, compile your
module and include the 'E' option. This results in a file with the E suffix. As an example,
let’s compile the records1 module using compile:file(records1, ['E']) or the shell
command c(records1, ['E']), producing a file called records1.E. No beam file con-
taining the object code is produced. Note the slightly different syntax to what you have
read so far, and pay particular attention to the record operations and tests which have
been mapped to tuples, as well as the module_info functions which have been added.
We will not go into the details of the various commands, as they are implementation-
dependent and outside the scope of this book. They are, however, still interesting to see:

-file("/Users/Francesco/records1.erl", 1).

birthday({person,_,Age,_} = P) ->
 begin
 Rec0 = Age + 1,
 Rec1 = P,
 case Rec1 of
 {person,_,_,_} ->
 setelement(3, Rec1, Rec0);
 _ ->
 erlang:error({badrecord,person})

Records | 163

 end
 end.

joe() ->
 {person,"Joe",21,"999-999"}.

showPerson({person,Name,Age,Phone}) ->
 io:format("name: ~p age: ~p phone: ~p~n", [Name,Age,Phone
]).

module_info() ->
 erlang:get_module_info(records1).

module_info(X) ->
 erlang:get_module_info(records1, X).

Record BIFs
The BIF record_info will give information about a record type and its representation.
The function call record_info(fields, recType) will return the list of field names in the
recType, and the function call record_info(size, recType) will return the size of the
representing tuple, namely the number of fields plus one. The position of a field in
the representing tuple is given by #recType.fieldName, where both recType and field-
Name are atoms:

15> #person.name.
2
16> record_info(size, person).
4
17> record_info(fields, person).
[name,age,phone]
18> RecType = person.
person
19> record_info(fields, RecType).
* 1: illegal record info
20> RecType#name.
* 1: syntax error before: '.'

Note how command 19 failed. If you type the same code in a module as part of a
function and compile it, the compilation will also fail. The reason is simple. The
record_info/2 BIF and the #RecordType.Field operations must contain literal atoms;
they may not contain variables. This is because they are handled by the compiler and
converted to their respective values before the code is run and the variables are bound.

A BIF that you can use in guards is is_record(Term, RecordTag). The BIF will verify that
Term is a tuple, that its first element is RecordTag, and that the size of the tuple is correct.
This BIF returns the atom true or false.

164 | Chapter 7: Records and Macros

Macros
Macros allow you to write abbreviations of Erlang constructs that the Erlang Prepro-
cessor (EPP) expands at compile time. You can use macros to make programs more
readable and to implement features outside the language itself. With conditional mac-
ros, it becomes possible to write programs that can be customized in different ways,
switching between debugging and production modes or among different architectures.

Simple Macros
The simplest macro can be used to define a constant, as in:

-define(TIMEOUT, 1000).

The macro is used by putting a ? in front of the macro name, as in:

receive
 after ?TIMEOUT -> ok
end

After macro expansion in epp, the preceding code will give the following Erlang
program:

receive
 after 1000 -> ok
end

The general form of a simple macro definition is:

-define(Name,Replacement).

where it is customary—but not required—to CAPITALIZE the Name. In the earlier ex-
ample, the Replacement was the literal 1000; it can, in fact, be any sequence of Erlang
tokens—that is, a sequence of “words” such as variables, atoms, symbols, or punctu-
ation. The result need not be a complete Erlang expression or a top-level form (i.e., a
function definition or compiler directive). It is not possible to build new tokens through
macro expansion. As an example, consider the following:

-define(FUNC,X).
-define(TION,+X).

double(X) -> ?FUNC?TION.

Here, you can see that the replacement for TION is not an expression, but on expansion
a legitimate function (or top-level form) definition is produced. Note that when ap-
pending macros, a space delimiting their results is added to the result by default:

double(X) -> X + X.

Macros | 165

Parameterized Macros
Macros can take parameters which are indicated by variable names. The general form
for parameterized macros is:

-define(Name(Var1,Var2,...,VarN), Replacement).

where, as for normal Erlang variables, the variables Var1, Var2, ..., VarN need to
begin with a capital letter. Here is an example:

-define(Multiple(X,Y),X rem Y == 0).

tstFun(Z,W) when ?Multiple(Z,W) -> true;
tstFun(Z,W) -> false.

The macro definition is used here to make a guard expression more readable; a macro
rather than a function needs to be used, as the syntax for guards precludes function
calls in guards. After macro expansion, the call is “inlined” thus:

tstFun(Z,W) when Z rem W == 0 -> true;
tstFun(Z,W) -> false.

Another example of parameterized macros could be for diagnostic printouts. It is not
uncommon to come across code where two macros have been defined, but one is com-
mented out:

%-define(DBG(Str, Args), ok).
-define(DBG(Str, Args), io:format(Str, Args)).

birthday(#person{age=Age} = P) ->
 ?DBG("in records1:birthday(~p)~n", [P]),
 P#person{age=Age+1}.

When developing the system, you have all of the debug printouts on in the code. When
you want to turn them off, all you need to do is comment the second definition of
DBG and uncomment the first one before recompiling the code.

Debugging and Macros
One of the major uses of macros in Erlang is to allow code to be instrumented in various
ways. The advantage of the macro approach is that in using conditional macros (which
we will describe in this section), it is possible to generate different versions of code,
such as a debugging version and a production version.

The first aspect of this is the ability to get hold of the argument to a macro as a string,
made up of the tokens comprising the argument. You do this by prefixing the variable
with ??, as in ??Call:

-define(VALUE(Call),io:format("~p = ~p~n",[??Call,Call])).
test1() -> ?VALUE(length([1,2,3])).

166 | Chapter 7: Records and Macros

The first use of the Call parameter is as ??Call, which will be expanded to the text of
the parameter as a string; the second call will be expanded to a call to length so that in
the shell, you would see the following:

36> macros1: test1().
"length ([1 , 2 , 3])" = 3

Second, there is a set of predefined macros that are commonly used in debugging code:

?MODULE
This expands to the name of the module in which it is used.

?MODULE_STRING
This expands to a string consisting of the name of the module in which it is used.

?FILE
This expands to the name of the file in which it is used.

?LINE
This expands to the line number of the position at which it is used.

?MACHINE
This expands to the name of the VM that is being used; currently, the only possible
value for this is BEAM.

Finally, it is possible to define conditional macros, which will be expanded in different
ways according to different flags passed to the compiler. Conditional macros are a more
elegant and effective way to get the same effect as the earlier ?DBG example, where given
two macros, the user comments one out. The following directives make this possible:

-undef(Flag).
This will unset the Flag.

-ifdef(Flag).
If Flag is set, the statements that follow are executed.

-ifndef(Flag).
If Flag is not set, the statements that follow are executed.

-else.
This provides an alternative catch-all case: if this case is reached, the statements
that follow are executed.

-endif.
This terminates the conditional construct.

Here is an example of their use:

-ifdef(debug).
 -define(DBG(Str, Args), io:format(Str, Args)).
-else.
 -define(DBG(Str, Args), ok).
-endif.

Macros | 167

In the code this is used as follows:

?DBG("~p:call(~p) called~n",[?MODULE, Request])

To turn on system debugging, you need to set the debug flag. You can do this in the
shell using the following command:

c(Module,[{d,debug}]).

Or, you can do it programmatically, using compile:file/2 with similar flags. You can
unset the flag by using c(Module,[{u,debug}]).

Conditional macro definitions such as these need to be properly nested, and cannot
occur within function definitions.

To debug macro definitions, it is possible to get the compiler to dump a file of the results
of applying epp to a file. You do this in a shell with c(Module,['P']) and in a program
with compile:file/2; these commands dump the result in the file Module.P. The 'P'
flag differs from the 'E' flag in that code transformations necessary for record opera-
tions are not done by 'P'.

Include Files
It is customary to put record and macro definitions into an include file so that they can
be shared across multiple modules throughout a project, and not simply in a single
module. To make the definitions available to more than one module, you place them
in a separate file and include them in a module using the –include directive, usually
placed after the module and export directives:

-include("File.hrl").

In the preceding directive, the quotes "..." around the filename are mandatory. Include
files customarily have the suffix .hrl, but this is not enforced.

The compiler has a list of paths to search for include files, the first of which is the current
directory followed by the directory containing the source code being compiled. You
can include other paths in the path list by compiling your code using the i option:
c(Module, [{i, Dir}]). Several directories can be specified, where the directory speci-
fied last is searched first.

Exercises

Exercise 7-1: Extending Records
Extend the person record type to include a field for the address of the person. Which
of the existing functions over person need to be modified, and which can be left
unchanged?

168 | Chapter 7: Records and Macros

Exercise 7-2: Record Guards
Using the record BIF record(P, person), it is possible to check whether the variable P
contains a person record. Explain how you would use this to modify the function
foobar, defined as follows:

foobar(P) when P#person.name == "Joe" -> ...

so that it will not fail if applied to a nonrecord.

Exercise 7-3: The db.erl Exercise Revisited
Revisit the database example db.erl that you wrote in Exercise 3-4 in Chapter 3. Rewrite
it using records instead of tuples. As a record, you could use the following definition:

-record{data, {key, data}).

You should remember to place this definition in an include file. Test your results using
the database server developed in Exercise 5-1 in Chapter 5.

Exercise 7-4: Records and Shapes
Define a record type to represent circles; define another to represent rectangles. You
should assume the following:

• A circle has a radius.

• A rectangle has a length and a width.

Give functions that work over these types to give the perimeter and area of these geo-
metric figures. Once this is completed, add the code for triangles to your type definitions
and functions, where you can assume that the triangle is described by the lengths of its
three sides.

Exercise 7-5: Binary Tree Records
Define a record type to represent binary trees with numerical values held at internal
nodes and at the leaves. Figure 7-1 shows an example.

Define functions over the record type to do the following:

• Sum the values contained in the tree.

• Find the maximum value contained in the tree (if any).

A tree is ordered if, for all nodes, the values in the left subtree below the node are smaller
than or equal to the value held at the node, and this value is less than or equal to all
the values in the right subtree below the node. Figure 7-2 shows an example:

• Define a function to check whether a binary tree is ordered.

• Define a function to insert a value in an ordered tree so that the order is preserved.

Exercises | 169

Figure 7-1. An example of a binary tree

Figure 7-2. An ordered binary tree

Exercise 7-6: Parameterized Macros
Define a parameterized macro SHOW_EVAL that will simply return the result of an ex-
pression when the show mode is switched off, but which will also print the expression
and its value when the show flag is on. You should ensure that the expression is evaluated
only once whichever case holds.

Exercise 7-7: Counting Calls
How can you use the Erlang macro facility to count the number of calls to a particular
function in a particular module?

170 | Chapter 7: Records and Macros

Exercise 7-8: Enumerated Types
An enumerated type consists of a finite number of elements, such as the days of the
week or months of the year. How can you use macros to help the implementation of
enumerated types in Erlang?

Exercise 7-9: Debugging the db.erl Exercise
Extend the database example in Exercise 7-3 so that it includes optional debugging
code reporting on the actions requested of the database as they are executed.

Exercises | 171

CHAPTER 8

Software Upgrade

You receive a bug report that in one of your instant messaging (IM) servers, the euro
symbol is reaching its final destination in a garbled form. You find the error in the
library module that maps special characters, correct the bug, recompile the code, and
test it. When it’s validated, you transfer the patch to the live servers and load it in the
Erlang runtime system. The next time a euro symbol is received, the patched module
will be used and the euro symbol will be mapped correctly.

You achieve all of this without strange or complex workarounds, without having to
restart your system, and most importantly, without affecting any of the other IM-related
events currently being handled. If all of this sounds simple, well, it is. And not only is
it simple, but it is also really, really cool! Originally inspired by the Smalltalk language,
the software upgrade capability is a feature very rarely found in modern programming.

The ability to load new and updated modules during runtime allows systems to run
without interruption, not only when errors are being fixed but also when new func-
tionality is added. It also reduces the turnaround time of bugs and facilitates testing,
as in most cases, systems do not have to be restarted for patches to be validated and
deployed. The software upgrade mechanism relies on a set of simple but powerful
constructs on which more powerful tools are built. These upgrade tools are used in
pretty much every Erlang-based system where downtime has to be reduced to a
minimum.

Upgrading Modules
You have probably come across the loading of new module versions in the runtime
system when trying the examples and working on the exercises in this book without
realizing what was going on. Think of the incremental approach to software develop-
ment that we use in Erlang; we’ll go through a short case study to show update in
practice next, before we cover the details of how it works and other code-handling
features of Erlang in the rest of the chapter.

173

We start by writing a database module similar to the one described in Exercise 3-4 in
Chapter 3. We will use the key value dictionary store defined in the dict module to
create a bit of variety, and to have the excuse to introduce a new library. Have a look
at its manual page. We want to create a module that exports two functions: create/0,
which returns an empty database; and write/3, which inserts a Key and Element pair
into the database.

The code is described in the db module. Remember the –vsn(1.0) attribute we discussed
in Chapter 2? Even if it is not mandatory, it will help us keep track of which module
version we have loaded in the runtime system at any point:

-module(db).
-export([new/0,write/3,read/2, delete/2,destroy/1]).
-vsn(1.0).

new() -> dict:new().

write(Key, Data, Db) -> dict:store(Key, Data, Db).

read(Key, Db) ->
 case dict:fetch(Key, Db) of
 error -> {error, instance};
 {ok, Data} -> {ok, Data}
 end.

delete(Key, Db) -> dict:erase(Key, Db).

destroy(_Db) -> ok.

Let’s now compile and test the code we wrote by adding two elements to the database
and looking up one that has not been inserted. The data structure returned by the
dict module might appear strange at first. It is visible here because we are testing
the module from the shell and binding the value to a series of variables we pass to the
dict functions. In a normal implementation, the Db variable would be passed around
in the receive-eval loop data, and it would not be visible:

1> c(db).
{ok,db}
2> Db = db:new().
{dict,0,16,16,8,80,48,
 {[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[]},
 {{[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[]}}}
3> Db1 = db:write(francesco, san_francisco, Db).
{dict,1,16,16,8,80,48,
 {[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[]},
 {{[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],
 [[francesco|san_francisco]]}}}
4> Db2 = db:write(alison, london, Db1).
{dict,2,16,16,8,80,48,
 {[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[]},
 {{[],[],[],[],[],[],[],[],[],[],[],[],[],[],
 [[alison|london]],
 [[francesco|san_francisco]]}}}

174 | Chapter 8: Software Upgrade

5> db:read(francesco, Db2).
** exception error: no case clause matching san_francisco
 in function db:read/2
6> dict:fetch(francesco, Db2).
san_francisco

Hold it! Something went wrong. When calling read/2, instead of returning {ok,
san_francisco}, we got a case clause error. Looking at our implementation and the
manual page for the dict module, we quickly realize that we used dict:fetch/2 instead
of dict:find/2. A call directly to dict:fetch/2 confirms that the function returns
Data (not {ok, Data}) if the entry is in the dictionary, and raises an exception otherwise.
The dict:find/2 function, on the other hand, returns the tuple {ok, Data} if it finds
the entry, or the atom error otherwise.

Let’s fix the bug, replacing the read function with the following code, and while doing
so, bump up the version of this module to 1.1:

...
-vsn(1.1).
...
read(Key, Db) ->
 case dict:find(Key, Db) of
 error -> {error, instance};
 {ok, Data} -> {ok, Data}
 end.
...

Before doing anything with the shell, let’s use the module_info/0 function to get the
version of the code, which is 1.0. We’ll save the corrections to the db module, compile
it in the same shell where we ran the previous iteration, and continue testing the module
with the same entries we previously inserted in the database. The call to read/2 now
works, and when we do a call to module_info/1, we get the new module version in the
attribute list:

7> db:module_info().
[{exports,[{new,0},
 {write,3},
 {read,2},
 {destroy,1},
 {delete,2},
 {module_info,0},
 {module_info,1}]},
 {imports,[]},
 {attributes,[{vsn,[1.0]}]},
 {compile,[{options,[{outdir,"/Users/Francesco/"}]},
 {version,"4.5.2"},
 {time,{2008,8,11,3,9,42}},
 {source,"/Users/Francesco/db.erl"}]}]
8> c(db).
{ok,db}
9> db:read(francesco, Db2).
{ok,san_francisco}
10> db:read(martin, Db2).

Upgrading Modules | 175

{error,instance}
11> db:module_info(attributes).
[{vsn,[1.1]}]

In our example, we fixed a bug, but we instead could have added new functionality, or
possibly done both. So, although you might not have realized it, when developing and
testing our code, we were actually using the software upgrade functionality. When
doing so, the data stored by the process (in our example, the data in the Db variables of
the shell) was not affected by the upgrade and was still available after loading the new
module.

Behind the Scenes
So, how does the software upgrade feature work behind the scenes? At any one time,
two versions of a module may be loaded in the runtime system. We call them the old
and the current versions. Before we explain the details of software upgrade, we’ll quickly
go over the ways in which functions in one module can refer to functions in another.

• You might not remember, but function calls of the following format:

Module:Function(Arg1, .., ArgN)

where the module name is prefixed to an exported Function name, are usually re-
ferred to as fully qualified function calls. This is one of the ways in which a function
in one module (A, say) may refer to a function defined in another (let’s call it B).

• The other mechanism by which module A can refer to functions in module B is for
A to import some of the functions of B:

-import(B, [f/1]).

Within A it is then possible to refer directly to f, as well as to B:f.

Within a module, it is possible to refer to another function in the same module either
directly or by a fully qualified name. We’ll come back to this distinction shortly.

Now we’ll explain the software upgrade process, first for intermodule calls, and then
for intramodule calls. Each running process that refers to functions in module A will be
linked to a version of module A. When a new version of module A is loaded, that becomes
the current version, and the previous current version becomes the old version.

If a process p, defined in module A, calls a function from module B, either directly or by
a fully qualified call (see Figure 8-1, 1), and a new version (version 2) of module B is
loaded, the process will remain linked to the same version of B, which has now become
the old version of B (see Figure 8-1, 2). At the next call of a function from B, either
directly or in fully qualified form, the link will be switched to the new version, version
2 (see Figure 8-1, 3). This will apply to all functions from B, and not simply the function
whose call initiated the switch.

176 | Chapter 8: Software Upgrade

The case of a running process whose defining module is upgraded is more complicated,
and in particular, it depends on the way in which functions within the module are
called, either directly or through fully qualified calls:

• If the function call is not fully qualified, the process will continue running the old
version of the module.

• When a new version is loaded, however, global calls to the old module are no longer
possible, whereas local calls can be made only by processes in a recursive loop.

To show this in more detail, let’s look at an example module and the effect of software
upgrade on it:

1 -module(modtest2).
2
3 -export([main/0,loop/0,a/1,do/1]).
4
5 main() ->
6 register(foo,spawn(modtest2,loop,[])).
7
8 loop() ->
9 receive
10 {Sender, N} ->
11 Sender ! a(N)
12 end,
13 loop().
14
15 do(M) ->
16 foo ! {self(),M},
17 receive Y ->
18 Y
19 end.
20
21 a(N) -> N+2.

The main program spawns a named process, foo, which runs the loop() function. The
effect of this loop is to serve values of the function a/1: values are sent to the loop process
by the do/1 function. Here is an example of the program:

Figure 8-1. Upgrading module B

Behind the Scenes | 177

1> c(modtest2).
{ok,modtest2}
2> modtest2:main().
true
3> modtest2:do(99).
101

Suppose you now upgrade the definition of a/1 in line 21 to the following:

a(N) -> N.

and recompile; the effect is as follows:

4> c(modtest2).
{ok,modtest2}
5> modtest2:do(99).
101

So, it is evident that no change has occurred. If, on the other hand, you modify the call
a(N) to a fully qualified call, as in the following:

loop() ->
 receive
 {Sender, N} ->
 Sender ! modtest2:a(N)
 end,
 loop().

the effect of the same software upgrade will be evident after recompilation:

6> c(modtest2).
{ok,modtest2}
7> modtest2:do(99).
99

As a final example, it is possible to upgrade a running loop, when the recursive call is
fully qualified:

loop() ->
 receive
 {Sender, N} ->
 Sender ! a(N)
 end,
 modtest2:loop().

If you insert a print statement:

loop() ->
 receive
 {Sender, N} ->
 Sender ! a(N)
 end,
 io:put_chars("boo!~n"),
 modtest2:loop().

you can see the effect of the change in the following interaction:

1> c(modtest2).
{ok,modtest2}

178 | Chapter 8: Software Upgrade

2> modtest2:main().
true
3> modtest2:do(99).
101
4> c(modtest2).
{ok,modtest2}
5> modtest2:do(99).
101
6> modtest2:do(99).
boo!
101

In our earlier database example, we were always running the latest version of the db
module, because all calls from the shell to the library were fully qualified.

As only two versions of a module may exist in the runtime system at any one time, when
a third version is loaded the oldest version is purged (removed) and the current version
becomes the old version, as shown in Figure 8-2. Any process running the oldest version
of the purged module is terminated. Any process running what has now become the
old version will continue doing so until it executes a fully qualified function call.

Figure 8-2. Linkage to an old version

Loading Code
Code is loaded in the Erlang runtime system in a variety of ways. The first is by calling
a function in a module that has not yet been loaded. The code server, a process which is
part of the Erlang kernel, will search for the compiled (.beam) file of that module, and
if it finds it, it will load it; note that it is not compiled automatically if the beam file is
missing. The process that made the call to that module is now able to call the function.

Another way to load a module is by compiling it. You can use the c(Module) shell com-
mand, the function compile:file(Module), or one of its many derivatives, all docu-
mented in the compile library module. In our example, we loaded the latest version of
the db module in the shell every time it was compiled.

Behind the Scenes | 179

Finally, you can explicitly load a module using the code:load_file(Module) call. This
call is useful because it can appear in programs as well as being used from the shell.
From the shell, however, you can use the equivalent shell command l(Module).

All of these calls result in the oldest version of the module (if any) being purged, the
current version becoming the old one, and the newly loaded one becoming the current
one. Note that the terms old and current refer not to the compilation time or to a higher
revision in the vsn attribute, but to the order in which you loaded the modules in the
runtime system.

There are also a number of ways to see whether a module is already loaded:

• Try typing in part of the module name in the Erlang shell and pressing the Tab key;
if the name autocompletes, the module is loaded.

• Just pressing the Tab key will list all the modules currently loaded.

• Another way to find out whether a module is loaded is to call the function
code:is_loaded(Module), which returns the location of the beam file if the Module
is already loaded; otherwise, it returns the atom false.

The Code Server
We briefly mentioned the code server in the preceding section. Here, we’ll look at it in
more detail. The code server’s primary task is to manage the dynamic loading and
purging of modules. A set of library functions accessible in the code.erl module provide
the programmer with the flexibility needed to manage and configure the server to han-
dle the system’s code base.

Loading modules

The dynamic loading of code in Erlang will be triggered as a result of a call to a module
that is not loaded, or when it is explicitly requested to do so through the
code:load_file/1 call. The code server will search the directories in the code search
path for a compiled version of the module, and when the code server finds it, it will
load it in the virtual machine.

The code search path consists of a list of directories. These directories are sequentially
searched for the compiled version of the module you want to load. Try viewing the
default search paths of the runtime system by using the code:get_path() call. Default
directories will include the current working directory together with all of the paths to
the default library applications which come as part of the Erlang/OTP distribution. You
can find all of these library applications in the $ERLANGROOT/lib directory. To find
out the Erlang root directory of your installation, use the code:root_dir() call.

In your code search path, you might have several versions of the same module. When
you load a new version, the directories are scanned sequentially, resulting in the
first occurrence of the module being picked up. It is thus not uncommon to create a

180 | Chapter 8: Software Upgrade

patches directory that appears first in the code search path. Any patches in this directory
will be picked up first, overriding the original versions of the module they were trying
to patch.

Sticky Directories
Have you ever tried to create a module called lists.erl? If so, when you tried to compile
it, you were almost certainly greeted with an error telling you that the runtime system
can’t load a module that resides in the sticky directory.

If this happens with a module other than lists, you must have picked the name of a
module residing in the kernel, the Standard Library (stdlib), or the Systems Architecture
Support Library (sasl) application directories. These three directories are marked as
sticky directories by default, so any attempt to override a module defined in them fails.

You can create your own sticky directories by calling the function
code:stick_dir(Dir). If you want to override one of the modules in a sticky directory,
use the code:unstick_dir(Dir) call or start Erlang using the –nostick flag.

Manipulating the code search path

You can add directories to the code search path by using code:add_patha(Dir) to add
a directory to the beginning of the list, and code:add_pathz(Dir) to append one to the
end. In the following example, note how the current working directory becomes the
second element. The code module also provides functions to delete, replace, and over-
ride directories:

3> code:add_patha("/tmp").
true
4> code:get_path().
["/tmp",".","/usr/local/lib/erlang/lib/kernel-2.12.3/ebin",
 "/usr/local/lib/erlang/lib/stdlib-1.15.3/ebin",
 "/usr/local/lib/erlang/lib/xmerl-1.1.9/ebin",
 "/usr/local/lib/erlang/lib/wx-0.97.0718/ebin",
 "/usr/local/lib/erlang/lib/webtool-0.8.3.2/ebin",
 "/usr/local/lib/erlang/lib/typer-0.1.3/ebin",
...............]

In the example, we show just some of the library module directories. Try the command
on your machine, and cd into any of the listed directories. When inspecting the con-
tents, you should find all of the beam files relating to that particular application.

The explanation in the preceding text of how the code server looks for modules will
hopefully explain why you had to change the current working directory of the Erlang
shell to the directory that contained your beam files. From the code:get_path/0 exam-
ple, unless you have modified the code search path structure, you can see that the
current working directory (.) is the first directory the code server searches when trying
to load a module. Finally, you can also add directories when starting the Erlang shell

Behind the Scenes | 181

by passing the erl –pa Path or erl –pz Path directive to the erl command to add the
directory at the beginning (a) or end (z) of the path.

Shell Modes: Interactive and Embedded
The Erlang shell is started by default in what we call interactive mode. This means that
at startup, only the modules the runtime system needs are loaded. Other code is dy-
namically loaded when a fully qualified function is made to a function in that module.

In embedded mode, all the modules listed in a binary boot file are loaded at startup.
After startup, calls to modules that have not been loaded result in a runtime error.
Embedded mode enforces strict revision control, as it requires that all modules are
available at startup. Lastly, it does not impact the soft real-time aspects of the system
by stopping, searching, and loading a module during a time-critical operation, as might
be the case for interactive mode. You can choose your mode by starting Erlang with
the erl -mode Mode directive, where Mode is either embedded or interactive.

Purging Modules
The code server can get rid of or purge old versions of a module by calling
code:purge(Module), but if any processes were running that code, they will first be ter-
minated, after which the old version of the code is deleted. The function returns true
if any processes were terminated as a result of the call or false otherwise.

If you do not want to terminate any processes running the old version of the code,
use code:soft_purge(Module). The call will remove the old version of the module only
if there are no processes running the code. If any processes are still running the code,
it will return false and will do nothing else. If it was successful in deleting the old
module, it will return true.

The OTP framework, which we cover in Chapter 12, provides a supervisor mechanism
that is designed to deal with process termination in an organized way; an obvious ap-
plication of this sort of supervision is for processes that terminate after a software
upgrade.

Upgrading Processes
Now that we have looked at software upgrade in more detail, let’s go through a practical
example where the format of loop data needs to be changed in a running loop.

We implement a db_server module that provides a process storing the database in the
dictionary format used by version 1.1 of the db module. Alongside the exported client
functions, pay particular attention to the upgrade/1 function. We will tell you more
about it in just a second.

-module(db_server).
-export([start/0, stop/0, upgrade/1]).

182 | Chapter 8: Software Upgrade

-export([write/2, read/1, delete/1]).
-export([init/0, loop/1]).
-vsn(1.0).

start() ->
 register(db_server, spawn(db_server, init, [])).

stop()->
 db_server ! stop.

upgrade(Data) ->
 db_server ! {upgrade, Data}.

write(Key, Data) ->
 db_server ! {write, Key, Data}.

read(Key) ->
 db_server ! {read, self(), Key},
 receive Reply -> Reply end.

delete(Key) ->
 db_server ! {delete, Key}.

init() ->
 loop(db:new()).

loop(Db) ->
 receive
 {write, Key, Data} ->
 loop(db:write(Key, Data, Db));
 {read, Pid, Key} ->
 Pid ! db:read(Key, Db),
 loop(Db);
 {delete, Key} ->
 loop(db:delete(Key, Db));
 {upgrade, Data} ->
 NewDb = db:convert(Data, Db),
 db_server:loop(NewDb);
 stop ->
 db:destroy(Db)
 end.

The upgrade function takes a variable as an argument and forwards it on to the
db_server process. This variable is passed to the db:convert/2 function, which returns
the database in a possibly updated format. The convert/2 function was not included
in version 1.1 of the db module, as all we did was fix a bug that did not require us to
change the internal format of the data. Read through the db_server code and make sure
you understand it. If anything is unclear, copy it and test it from the shell, and read the
manual pages for the dict library.

Let’s now create a new db module, this time basing it on general balanced trees, using
the gb_trees library module. When implementing it, we include a convert/2 function.
Given the data structure returned by the dict module, this function extracts all of the

Upgrading Processes | 183

elements from the dictionary and inserts them in a binary tree, returning a data structure
that the gb_trees module can now use:

-module(db).
-export([new/0, destroy/1, write/3, delete/2, read/2, convert/2]).
-vsn(1.2).

new() -> gb_trees:empty().

write(Key, Data, Db) -> gb_trees:insert(Key, Data, Db).

read(Key, Db) ->
 case gb_trees:lookup(Key, Db) of
 none -> {error, instance};
 {value, Data} -> {ok, Data}
 end.

destroy(_Db) -> ok.

delete(Key, Db) -> gb_trees:delete(Key, Db).

convert(dict,Dict) ->
 dict(dict:fetch_keys(Dict), Dict, new());
convert(_, Data) ->
 Data.

dict([Key|Tail], Dict, GbTree) ->
 Data = dict:fetch(Key, Dict),
 NewGbTree = gb_trees:insert(Key, Data, GbTree),
 dict(Tail, Dict, NewGbTree);
dict([], _, GbTree) -> GbTree.

We can now perform an upgrade from version 1.1 to version 1.2 of the db module,
changing the internal format of the db_server loop data. To do so, we need a patches
directory at the top of the code search path. We start the Erlang runtime system using
the –pa patches flag (or add the directory dynamically using code:add_patha/1). Next,
we place the compiled 1.2 version of the db module in the patches directory. Finally,
we load the new db module, (soft) purge the old one, and call the upgrade client function.
Example 8-1 shows the interaction in full.

Example 8-1. Software upgrade in action

1> cd("/Users/Francesco/database/").
/Users/Francesco/database
ok
2> make:all([load]).
Recompile: db
Recompile: db_server
up_to_date
3> db:module_info().
[{exports,[{new,0},
 {write,3},
 {read,2},
 {destroy,1},

184 | Chapter 8: Software Upgrade

 {delete,2},
 {module_info,0},
 {module_info,1}]},
 {imports,[]},
 {attributes,[{vsn,[1.1]}]},
 {compile,[{options,[]},
 {version,"4.5.2"},
 {time,{2008,8,11,16,34,48}},
 {source,"/Users/Francesco/database/db.erl"}]}]
4> db_server:start().
true
5> db_server:write(francesco, san_francisco).
{write,francesco,san_francisco}
6> db_server:write(alison, london).
{write,alison,london}
7> db_server:read(alison).
{ok,london}
8> db_server:read(martin).
{error,instance}
9> code:add_patha("/Users/Francesco/patches").
true
10> code:load_file(db).
{module,db}
11> code:soft_purge(db).
true
12> db_server:upgrade(dict).
{upgrade,dict}
13> db:module_info().
[{exports,[{new,0},
 {write,3},
 {read,2},
 {destroy,1},
 {delete,2},
 {convert,2},
 {module_info,0},
 {module_info,1}]},
 {imports,[]},
 {attributes,[{vsn,[1.2]}]},
 {compile,[{options,[{outdir,"/Users/Francesco/patches/"}]},
 {version,"4.5.2"},
 {time,{2008,8,11,16,30,33}},
 {source,"/Users/Francesco/patches/db.erl"}]}]
14> db_server:write(martin, cairo).
{write,martin,cairo}
15> db_server:read(francesco).
{ok,san_francisco}
16> db_server:read(martin).
{ok,cairo}

The server is still up and running, with the same key-element data, but stored in a
different format and using an upgraded version of the db module. It is as simple as that,
and, as you can see, extremely powerful.

Upgrading Processes | 185

Software Upgrade in Practice
In a production environment, you obviously would not upgrade a module from the
shell, especially using commands 9, 10, and 11 from Example 8-1. You would also have
to ensure that they are executed atomically, as a client call such as read or write, exe-
cuted after loading version 1.2 of the db module but before calling the upgrade/1 func-
tion, would result in the dictionary data structures being passed to the gb_trees module.

You would either have to suspend the client functions, or (preferably) place the loading
of the code in the loop where you handle the upgrade command, executing it atomically
as a result. If you do not need to upgrade the internal data structure, however, and you
are just fixing a bug or adding functionality that is not affecting the existing structure,
all you need to do is load the new module.

Other important issues to keep in mind when doing a software upgrade include non-
backward-compatible modules, functions for downgrading in case an upgrade fails,
and synchronizing upgrades in distributed environments. Although the basics of up-
grading your code in runtime are very simple, if your system is complex and upgrades
are major, your routines and procedures might not be as simple. Make sure you test
the upgrade steps thoroughly and cover all potential scenarios. The SASL application,
part of the OTP middleware, has complex tools for handling software upgrades built
on the principles we just covered.

The .erlang File
It is time to introduce the .erlang file. This file is placed in the user’s home directory or
in the Erlang root directory. It should contain valid Erlang expressions, all of which are
read and executed at startup. It is useful for setting paths to the modules and tools of
the development environment you are using. For example:

code:add_patha("/home/cesarini/patches").
code:add_patha("/home/cesarini/erlang/buildtools-1.0/ebin").

You also could use the .erlang file for configuration or startup purposes. We will provide
more examples in Chapter 11.

Exercise

Exercise 8-1: Software Upgrade During Runtime
Take this chapter’s db.erl module, based on general balanced trees, and add an extra
function called code_upgrade/1. This function will take a database of the format used
in the lists version of the database from Chapter 3, Exercise 3-4. It should create an
ETS table and store in it all the elements passed to it. Its return value should be the
table that is created.

186 | Chapter 8: Software Upgrade

Interface:

db:code_upgrade([RecordList]) -> gb_tree().

1. Test the function in the shell, and place the beam and source code files in a sub-
directory called patches. In part 2 of this exercise, continue working in your current
working directory where you have stored the db.erl module that uses lists. Be
careful with the different compiled versions of the two modules so that you do not
mix them up.

2. Add the client function code_upgrade() to the my_db.erl server module. This func-
tion should send a message to the server which will load the new db module, call
the db:code_upgrade/1 function with the old database, and then continue looping
with the new ETS database representation, as shown in Figure 8-3. After the code
upgrade, all the data that was there prior to the operation should still be available,
and the client should be able to insert, delete, and do queries on elements as
though nothing has happened.

3. Test your program by starting it using the lists version of the db module. Insert a
few elements in the database and switch over to the tree version of the db module.
To switch over to the new version, you must first load it into the system. (In larger
systems, there will be tools to handle upgrades. As this database server is of more
modest proportions, you can load it manually.) Once the ETS version of the
db.erl module has been loaded, call my_db:code_upgrade(). Read the elements,
write some new ones, and delete the old ones. Make sure the server is stable.

The following interaction gives an example of this in action:

1> my_db:start().
ok
2> my_db:write(bob, handyman).
ok
3> my_db:write(chris, projectleader).
ok
4> my_db:read(bob).
{ok,handyman}
5> code:add_patha("/home/cesarini/erlang/patches/").
true
6> my_db:code_upgrade().

Figure 8-3. Upgrading the database server

Exercise | 187

ok
7> my_db:read(bob).
{ok,handyman}
8> my_db:delete(bob).
ok
9> my_db:write(bob, manager).
ok
10> code:soft_purge(db).
true

188 | Chapter 8: Software Upgrade

CHAPTER 9

More Data Types and
High-Level Constructs

At this stage of the book, we have covered all the fundamentals: sequential program-
ming, concurrency, fault tolerance, and error recovery. The Erlang language—and in
particular, its many libraries—offer more to help the programmer be as effective as
possible. The various language features covered in this chapter, many of them derived
from functional programming languages, are tools that will improve the productivity
of a working Erlang programmer.

Functional Programming for Real
Erlang is a functional programming language—among other things—but what does that
really mean? Prominent in Erlang are function definitions, but that’s also the case in
Pascal, C, and many other languages. What makes a true functional programming lan-
guage is the fact that functions can be handled just like any other sort of data. Functional
data types in Erlang are called funs. They can be passed as arguments to other functions
and they can be stored in data structures like tuples and records or sent as messages to
other processes. Most of all, they can be the results of other functions so that the func-
tions passed around as data can be created dynamically within the program, and are
not just pointers to statically defined functions. This, in turn, lets you write concise,
abstract, reusable functions that are parameterized over particular behaviors, “wrapped
up” as function arguments. As a result, your code becomes not only more compact,
but also easier to write, understand, and maintain.

List comprehension is another powerful construct whose roots lie in functional pro-
gramming. List comprehension constructs allow you to generate lists, merge them to-
gether, and filter the results based on a set of predicates. The result is a list of elements
derived from the generators for which the predicate evaluated to true. Just like funs,
list comprehensions result in compact, powerful code, enhancing programmer
productivity.

189

A binary is another Erlang data type which, even if not directly related to functional
programming, has in Erlang been influenced by it. A binary is nothing other than a
sequence of ones and zeros; an untyped chunk of content stored in memory. All socket
and port communication is binary-based, as is all file-related I/O. The power of using
binaries in Erlang is the ability to pattern-match on a bit level, efficiently extracting
relevant bits and bytes with a minimal amount of effort and code. This makes Erlang
perfectly suited to handling protocol stacks and IP-related traffic, encoding and de-
coding message frames sent and received as a result of these protocols with a minimal
amount of code.

Finally, the reference data type, elements of which are commonly known as refs, pro-
vides you with unique tags across processes in distributed environments. In particular,
we use reference data values for comparisons, many of which are related to message
passing.

Funs and Higher-Order Functions
To understand what funs are all about, it is best to start with an example. Type the
following assignment clause in an Erlang shell, binding the variable Bump to a fun:

Bump = fun(Int) -> Int + 1 end.

The fun takes a variable as an argument, binds it to the variable Int, and “bumps up”
its numerical value by one. You call the fun by following it with its arguments in pa-
rentheses, just as though you were calling a function. You can use its name if it has
been assigned to a variable:

1> Bump = fun(Int) -> Int + 1 end.
#Fun<erl_eval.6.13229925>
2> Bump(10).
11

Or, you can call it directly:

3> (fun(Int) -> Int + 1 end)(9).
10

A fun is a function, but instead of uniquely identifying it with a module, function name,
and arity, you identify it using the variable it is bound to, or its definition. In the fol-
lowing sections, we will explain why funs are so relevant and useful.

Functions As Arguments
One of the most common operations on lists is to visit every element and transform it
in some way. For instance, the following code compares functions to double all ele-
ments of a numeric list and to reverse every list in a list of lists:

190 | Chapter 9: More Data Types and High-Level Constructs

doubleAll([]) -> revAll([]) ->
 []; [];

doubleAll([X|Xs]) -> revAll([X|Xs]) ->
 [X*2 | doubleAll(Xs)]. [reverse(X) | revAll(Xs)].

Can you see a common pattern between the two functions? All that differs in the two
examples is the transformation affecting the element X, italicized in the example; this
can be captured by a function, giving the map function, whose first argument, F, is the
function to be applied to each element in the list:

map(F,[]) ->
 [];
map(F,[X|Xs]) ->
 [F(X) | map(F,Xs)].

Another common list operation is to filter out elements with a particular property—
for example, even numbers or lists that are palindromes (lists that are the same when
they are reversed):

3> hof1:evens([1,2,3,4]).
[2,4]
4> hof1:palins([[2,2],[1,2,3],[1,2,1]]).
[[2,2],[1,2,1]]

The following code shows these two example functions in action:

evens([]) -> palins([]) ->
 []; [];
evens([X|Xs]) -> palins([X|Xs]) ->
 case X rem 2 == 0 of case palin(X) of
 true -> true ->
 [X| evens(Xs)]; [X| palins(Xs)];
 _ -> _ ->
 evens(Xs) palins(Xs)
 end. end.

In the preceding code, palin/1 is defined by:

palin(X) -> X == reverse(X).

in the module hof1.

The filter function encapsulates this “filtering out” behavior in a single definition,
where the function P embodies the property to be tested: P(X) will return true if X has
the property and false if not:

filter(P,[]) ->
 [];
filter(P,[X|Xs]) ->
 case P(X) of
 true ->
 [X| filter(P,Xs)];
 _ ->
 filter(P,Xs)
 end.

Funs and Higher-Order Functions | 191

Funs such as P(X) that return true or false are called predicates. So far, so good, but
how can you actually use the functions map and filter to give you the behavior you
want? To apply them, you need to be able to write down the funs that you pass as their
arguments.

Writing Down Functions: fun Expressions
Most likely, you’re used to writing down functions when you write function definitions:
you have to give the arguments to the function—perhaps using pattern matching to
distinguish among various cases—and in the last expression executed, you return the
result. A fun expression does the same thing, but without giving the function a name.
Let’s start with a series of examples.

A function to double its argument is given by:

fun(X) -> X*2 end

A function to add two numbers is:

fun(X,Y) -> X+Y end

A function to give the head of a list (and null if it is empty) is given by:

fun([]) -> null;
 ([X|_]) -> X
end

As you can see, these are very similar to function definitions, except the expression is
enclosed in a single fun ... end. Sometimes you see the end followed by a period, or
full stop. That is because the full stop signals the end of a definition, or the end of a
line of input to the shell. It is not part of the function expression itself. Multiple clauses
use syntax similar to case: the keyword fun does not appear before each different
pattern-matching case. Remember, though, that arguments are enclosed in parenthe-
ses, as in (...), even if there is only one variable as the argument.

Using fun expressions you can now use map and filter to define doubleAll and palins:

doubleAll(Xs) ->
 map(fun(X) -> X*2 end , Xs).

palins(Xs) ->
 filter(fun(X) -> X == reverse(X) end , Xs).

In each case, you can see the fun expression exactly “wraps up” the particular behavior
to be mapped or the property to be filtered.

Fun expressions can also encapsulate side effects, so the following:

fun(X) -> io:format("Element: ~p~n",[X]) end

is the function that will print information about its argument on standard output, and
this:

fun(X) -> Pid ! X end

192 | Chapter 9: More Data Types and High-Level Constructs

is the function that sends its argument as a message to Pid. Each of these can themselves
be used as arguments to foreach, which performs an action for each element of a list:

foreach(F,[]) ->
 ok;
foreach(F,[X|Xs]) ->
 F(X),
 foreach(F,Xs).

Here is foreach in action:

5> hof1:foreach(fun(X) -> io:format("Element: ~p~n",[X]) end, [2,3,4]).
Element: 2
Element: 3
Element: 4
ok
6> hof1:foreach(fun(X) -> self() ! X end, [2,3,4]).
ok
7> flush().
Shell got 2
Shell got 3
Shell got 4
ok

Note that foreach is defined not only in the hof1 example, but also in the lists module.
A function that takes a fun as an argument is called a higher-order function. The
lists module has a collection of them, which we will review shortly.

Functions As Results
You have seen how functions can be arguments to other functions, and how to describe
“anonymous” functions using fun expressions. Now, we’ll look at how you can com-
bine them in writing and use functions that have functions as their results. Let’s look
at an example to start:

times(X) ->
 fun (Y) -> X*Y end.

This is a function that takes one argument: X,

times(X) -> ...

and whose result is this expression:

fun (Y) -> X*Y end.

When the preceding function is applied to Y, it multiplies it by X. Let’s see it in action:

8> Times = hof1:times(3).
#Fun<hof1.3.75238199>
9> hof1:times(3)(2).
* 1: syntax error before: '('
10> (hof1:times(3))(2).
6
11> Times(2).
6

Funs and Higher-Order Functions | 193

Evaluating hof1:times(3) gives a result that says, somewhat cryptically, this value is a
function. So, we can try to apply that to 2, using the usual function application in
command 9. In the first attempt, we get a syntax error, but bracketing things properly
in command 10, we see that times(3) applied to 2 gives the result 6, as we would expect.

Using this, we can give yet another definition of doubleAll!

double(Xs) ->
 map(times(2),Xs).

The first argument to map here is times(2), a function which is the result of applying
times to 2.

Another example is given by the following function:

sendTo(Pid) ->
 fun (X) ->
 Pid ! X
 end.

which, given a Pid, returns the function that sends its argument, X, as a message to that
Pid.

At the start of the chapter, we said that functions in Erlang were just
like any other data value. There’s just one exception to this: one thing
you can’t do with a function created dynamically is to spawn it, because
it doesn’t belong to any particular module.

Using Already Defined Functions
Erlang also provides ways to use functions that are already defined as arguments to
other functions, or as values of variables. Within a module M, a local function F with
arity n can be denoted by fun F/n. Outside the module, it will be denoted by
fun M:F/n, as in the following example:

12> hof1:filter(fun hof1:palin/1,[[2,2],[2,3]]).
[[2,2]]
13> Pal = fun hof1:palin/1.
#Fun<hof1.palin.1>
14> hof1:filter(Pal,[[2,2],[2,3]]).
[[2,2]]

where palin/1 is defined by:

palin(X) -> X == reverse(X).

in the module hof1.

194 | Chapter 9: More Data Types and High-Level Constructs

Something such as fun foo/2 is only syntactic sugar* for the notation fun(A1, A2) ->
foo(A1,A2) end. However, the “fully qualified” notation fun M:F/N has a special signif-
icance for software update, as we explained in Chapter 8. When this fun is called, it
will always use the definition in the current version of the module, whereas calls to
other funs will go to the module in which the fun was defined, which could be the old
version of the module.

Remember that when passing funs to other Erlang nodes, if local and global function
calls are made in the fun body, the modules in which those called functions are defined
must be in the code search path of the remote Erlang node.

In Erlang legacy code, you might come across the notation {Module,
Function}, where the tuple denotes a fun. The arity of the fun is deter-
mined at runtime, based on the number of arguments it is called with.
This usage is now deprecated and should no longer be used.

Functions and Variables
All variables that are introduced in fun expressions are considered to be new variables,
so they shadow any variables that already exist with the same name. This means the
shadowed variables are not accessible within the fun expression, but will still be ac-
cessible on exit from the fun. All other variables are accessible within the fun expression.
Let’s look at an example to make this clear:

foo() -> bar() ->
 X = 2, X = 3,
 Bump = fun(X) -> X+1 end. Add = fun(Y) -> X+Y end,
 Bump(10). Add(10)

15> funs:foo() 1> funs:bar()
11 13

In foo, the local variable X in Bump shadows the earlier X, and the result of foo() shows
that within Bump(10), X has the value 10 as passed in by the parameter. In the example
of bar, it is evident that the original definition of X is accessible within the body of Add.

Predefined, Higher-Order Functions
The lists module contains a collection of higher-order functions—that is, functions
that take funs as arguments and apply them to a list. These higher-order functions allow
you to hide the recursive pattern in the function call to the lists module while isolating
all side effects and operations on the list elements in a fun. The following list contains

* The phrase syntactic sugar was invented by Peter Landin, and is used for shorthand notations that make a
language “sweeter to use,” but don’t add to its expressiveness.

Funs and Higher-Order Functions | 195

the most common recursive patterns defined in the higher-order functions of the
lists module:

all(Predicate, List)
Returns true if the Predicate—which is a fun that returns a Boolean value when
it is applied to one of the list elements—returns true for all the elements in the list,
and returns false otherwise.

any(Predicate, List)
Returns true if the Predicate returns true for any element in the list, and returns
false otherwise.

dropwhile(Predicate, List)
Drops the head of the list and recurses on the tail for as long as Predicate returns
true.

filter(Predicate, List)
Removes all elements in the list for which Predicate is false, returning the list of
remaining elements.

foldl(Fun, Accumulator, List)
Takes a two-argument function, Fun. These arguments will be an Element from the
List and an Accumulator value. The fun returns the new Accumulator, which is also
the return value of the call once the list has been traversed. Unlike its sister function,
lists:foldr/3, lists:foldl/3 traverses the list from left to right in a tail-recursive
way:

foldl(F, Accu, [Hd|Tail]) ->
 foldl(F, F(Hd, Accu), Tail);
foldl(F, Accu, []) when is_function(F, 2) -> Accu.

foldr(F, Accu, [Hd|Tail]) ->
 F(Hd, foldr(F, Accu, Tail));
foldr(F, Accu, []) when is_function(F, 2) -> Accu.

map(Fun, List)
Takes a Fun, which it applies to every element in the list. It returns the list containing
the results of the fun applications.

partition(Predicate, List)
Takes a list and divides it into two lists, one containing the elements for which the
Predicate returned true, and the other containing the elements for which the
Predicate returned false.

If you open the manual page for the lists module, you can review the higher-order
functions we just listed alongside those that we have not covered in this chapter. And
most important, before reading on, you can try them out in the shell to be sure you
understand what is going on:

16> Bump = fun(X) -> X+1 end.
#Fun<erl_eval.19.120858100>
17> lists:map(Bump, [1,2,3,4,5]).

196 | Chapter 9: More Data Types and High-Level Constructs

[2,3,4,5,6]
18> Positive = fun(X) -> if X < 0 -> false;
 X >= 0 -> true
 end
 end.
#Fun<erl_eval.19.120858100>
19> lists:filter(Positive, [-2,-1,0,1,2]).
[0,1,2]
20> lists:all(Positive, [0,1,2,3,4]).
true
21> lists:all(Positive, [-1,0,1]).
false
22> Sum = fun(Element, Accumulator) -> Element + Accumulator end.
#Fun<erl_eval.12.113037538>
23> lists:foldl(Sum, 0, [1,2,3,4,5,6,7]).
28

Lazy Evaluation and Lists
From our coverage of the recursive definition of lists in Chapter 2, you might recall that
a proper or well-formed list is either the empty list or a list where the head is an element
and the tail is itself a proper list. The Erlang evaluation mechanism means that when
a list is passed to a function, the list is evaluated fully before the function body is
executed. Other functional languages, notably Haskell, embody demand-driven (or
lazy) evaluation. Under lazy evaluation, arguments are evaluated only when necessary
in the function body; for data structures such as lists, only the parts that are needed
will be evaluated.

It is possible to build a representation of lazy lists in Erlang. To do this, you use lists in
which the tail is a fun returning a new head and a recursive fun. This avoids you having
to generate a large list that is then traversed. Instead, you reduce the memory imprint
and generate subsequent values only when you need them.

As an example, the following list contains the infinite sequence of whole numbers,
starting at zero. The head is the first sequence number and the tail is a construct that
will recursively generate the next sequence number together with the new tail:

next(Seq) ->
 fun() -> [Seq|next(Seq+1)] end.

Running the call in the shell or a recursive function that dispatches the sequence num-
bers would give you something like this:

24> SeqFun0 = sequence:next(0).
#Fun<sequence.0.31154838>
25> [Seq1|SeqFun1] = SeqFun0().
[0|#Fun<sequence.0.31154838>]
26> [Seq2|SeqFun2] = SeqFun1().
[1|#Fun<sequence.0.31154838>]

It is possible to build a library of functions that perform similar roles over lazy lists to
functions such as map/2 and foldl/3. We leave this as an exercise for the reader.

Funs and Higher-Order Functions | 197

List Comprehensions
Typical of operations on lists are mapping—applying a function to every element of a
list—and filtering—selecting those elements of a list that have a particular property.
Often these are used together, and the list comprehension notation gives you a powerful
and compact way to write down lists constructed in this way. We’ll begin with some
simple examples, and then look in more detail at a simple database case study.

A First Example
The list comprehension in the following code has the generator X <- [1,2,3], which
means X runs through the values 1, 2, and 3 in turn. Going into the output for each of
these is X+1, the expression before the symbol ||, 1 leading to 2, and so on. This gives
the result [2,3,4].

1> [X+1 || X <- [1,2,3]].
[2,3,4]

In the next code snippet, there is a filter, X rem 2 == 0, which selects only those Xs that
pass this test. Here, that X is even:

2> [X || X <- [1,2,3], X rem 2 == 0].
[2]

The following code combines the two: the even elements of [1,2,3] are selected, and
1 is added to each of them.

3> [X+1 || X <- [1,2,3], X rem 2 == 0].
[3]

These are the basics of list comprehension. Next, we’ll discuss what a list comprehen-
sion is like in general, before looking at a larger example.

General List Comprehensions
In general, a list comprehension has three component parts:

[Expression || Generators, Guards, Generators, ...]

Generators
A generator has the form Pattern <- List, where Pattern is a pattern that is
matched with elements from the List expression. You can read the symbol <- as
“comes from”; it’s also like the mathematical symbol ∈, meaning “is an element of.”

Guards
Guards are just like guards in function definitions, giving a true or false result.
The variables in the guards are those which appear in generators to the left of the
guard (and any other variables defined at the outer level).

198 | Chapter 9: More Data Types and High-Level Constructs

Expression
The expression specifies what the elements of the result will look like.

Pattern matching performs two tasks, just as it does in a function definition: it allows
a complex element—such as a tuple—to have its component parts matched, and it
selects only those elements which match the pattern, as shown in the following
example:

1> Database = [{francesco, harryPotter}, {simon, jamesBond},
 {marcus, jamesBond}, {francesco, daVinciCode}].
...
2> [Person || {Person,_} <- Database].
[francesco,simon,marcus,francesco]
3> [Book || {Person,Book} <- Database, Person == francesco].
[harryPotter,daVinciCode]
4> [Book || {francesco,Book} <- Database].
[harryPotter,daVinciCode]
5> [Person || {Person,daVinciCode} <- Database].
[francesco]
6> [Book || {Person,Book} <- Database, Person /= marcus].
[harryPotter,jamesBond,daVinciCode]
7> [Person || {Person,Book} <- Database, Person /= marcus].
[francesco,simon,francesco]
8> [{Book, [Person || {Person,B} <- Database, Book==B]} || {_,Book} <- Database].
[{harryPotter,[francesco]},
 {jamesBond,[simon,marcus]},
 {jamesBond,[simon,marcus]},
 {daVinciCode,[francesco]}]
9> [{Book,[Person || {Person,Book} <- Database]} || {_,Book} <- Database].
[{harryPotter,[francesco,simon,marcus,francesco]},
 {jamesBond,[francesco,simon,marcus,francesco]},
 {jamesBond,[francesco,simon,marcus,francesco]},
 {daVinciCode,[francesco,simon,marcus,francesco]}]

In command 4, we have the generator {francesco,Book} <- Database; the pattern will
match only those pairs whose first element is francesco. The result of the list compre-
hension is therefore all the Books borrowed and never returned by francesco. The ex-
amples at commands 5, 6, and 7 show how generators and guards are used to give more
complex results.

In command 8, you can see a list comprehension appear as part of the result expression.
The main generator runs through all the books in the database, and for each of these
it generates the pair [Person || {Person,B} <- Database, Book==B], which is the list
of all people borrowing the Book.

Command 9 is included for contrast and shows that each variable appearing in a gen-
erator is a new variable. So, the Book variable appearing in the inner generator is new,
and won’t pattern-match the value of the outer Book variable as you might expect. This
is evident in the difference in results between commands 8 and 9.

List Comprehensions | 199

Multiple Generators
A list comprehension will, in general, have more than one generator, which you can
intersperse with guards. In the next example, we used lists:seq(N,M), which is the list
of integers from N to M (e.g., lists:seq(1,4) is [1,2,3,4]):

10> [{X,Y} || X <- lists:seq(1,3), Y <- lists:seq(X,3)].
[{1,1},{1,2},{1,3},{2,2},{2,3},{3,3}]
11> [{X,Y} || X <- lists:seq(1,4), X rem 2 == 0, Y <- lists:seq(X,4)].
[{2,2},{2,3},{2,4},{4,4}]
12> [{X,Y} || X <- lists:seq(1,4), X rem 2 == 0, Y <- lists:seq(X,4), X+Y>4].
[{2,3},{2,4},{4,4}]

The generators are nested so that in command 10, a choice is made for X—1, say—and
then Y will run through the list [1,2,3], which is the value of the generator list when
X is 1; next, X is given the value and Y ranges through [2,3], and so on.

In command 11, a guard follows the generator for X, allowing only even values for X.
In command 12, the final guard shows how multiple variables can take part in a guard.

Standard Functions
You can use list comprehensions to define some of the standard list processing func-
tions found in the lists module. Take a look at the implementation of the lists module
itself, and you will find that in some cases it is using list comprehensions:

map(F,Xs) -> [F(X) || X <-Xs].
filter(P,Xs) -> [X || X <-Xs, P(X)].
append(Xss) -> [X || Xs <- Xss, X <- Xs].

A longer example is the function to find all the permutations of a list:

perms([]) ->
 [[]];
perms([X|Xs]) ->
 [insert(X,As,Bs) || Ps <- perms(Xs),
 {As,Bs} <- splits(Ps)].

splits([]) ->
 [{[],[]}];
splits([X|Xs] = Ys) ->
 [{[],Ys} | [{ [X|As] , Bs} || {As,Bs} <- splits(Xs)]].

insert(X,As,Bs) ->
 lists:append([As,[X],Bs]).

The algorithm here builds all the permutations of [X|Xs] by finding all permutations
of Xs, and all the ways in which X can be inserted into that permutation, as given by
the splits function. An alternative algorithm works by generating an element Y of the
list, and all the permutations P of the list with Y removed, returning [Y|P] (coding this
is left as an exercise for the reader).

200 | Chapter 9: More Data Types and High-Level Constructs

We’ll conclude this discussion with a three-line implementation of a quicksort using
list comprehensions. Given a list, we break it up into a head and a tail. We use the head
as a pivot, generating two new lists. The first list contains all elements smaller than or
equal to the pivot, and the second list contains all elements larger than the pivot. We
then recursively call quicksort on the newly generated lists, appending them together
with the pivot in between:

qsort([]) -> [];
qsort([X|Xs]) ->
 qsort([Y || Y<-Xs, Y =< X]) ++ [X] ++ qsort([Y || Y<-Xs, Y > X]).

Funs and List Comprehensions Are Born
In the early days, long before Erlang was released as open source, Joe Armstrong waved
me (Francesco) into his office and enthusiastically started showing me some new fea-
tures that had just been added to the language. He described how you could abstract
recursive patterns—encapsulating all of the side effects into a fun—and use a higher-
order function to traverse the list. He went on to demonstrate the power of list com-
prehensions, using the same quicksort example included in this book. I didn’t think
much about the fact that, when I was leaving his office, he asked me to use funs and
list comprehensions in my programs, but not to tell anyone about them!

A few months later, when the 5.4 release of Erlang made it into production, an email
was sent to the internal Ericsson Erlang mailing list. Someone had accidentally discov-
ered the ++ construct and was wondering whether any other “undocumented features”
had found their way into the release. The product manager for Erlang also started
wondering, as a request to add funs and list comprehensions to the language had been
put on hold as a result of other priorities a few months earlier. He went through the
parser used by the compiler and quickly caught on. His diplomatic response stated that
any undocumented features in Erlang, ++ included, were not officially supported and
were not guaranteed to be part of any future releases.

Based on the reactions on the mailing list, however, it was obvious that I was not the
only person Joe had been speaking to. Major projects had (without telling anyone)
started to use these “undocumented features,” creating a critical mass that ensured that
list comprehensions and funs became a permanent (and documented) part of Erlang.

Binaries and Serialization
Sometimes large amounts of structured data have to be transferred between computers
or stored. How should protocols ensure that data is generated and transmitted as
quickly and efficiently as possible? The answer is to make use of every possible bit of
storage, packing the bits in each word with as much information as possible. Erlang
binaries give a pattern-matching notation for manipulating binary data structures,
making this kind of lower-level programming easier, robust, and more space efficient
than using tuples or lists. In addition to binaries, in the following subsections we will

Binaries and Serialization | 201

also look at efficient ways that high-level, nonflat data structures can be serialized and
deserialized, using trees as an example.

Binaries
A binary is a reference to a chunk of raw, untyped memory. It was originally used by
the Erlang runtime system for loading code over the network, but was quickly applied
in a more generic setting of socket-based communication. Binaries are effective in mov-
ing large amounts of data, with BIFs provided for coding, decoding, and binary ma-
nipulation to this extent:

1> Bin1 = term_to_binary({test,12,true,[1,2,3]}).
<<131,104,4,100,0,4,116,101,115,116,97,12,100,0,4,116,114,
 117,101,107,0,3,1,2,3>>
2> Term1 = binary_to_term(Bin1).
{test,12,true,[1,2,3]}
3> Bin2 = term_to_binary({cat,dog}).
<<131,104,2,100,0,3,99,97,116,100,0,3,100,111,103>>
4> Bin3 = list_to_binary([Bin1, Bin2]).
<<131,104,4,100,0,4,116,101,115,116,97,12,100,0,4,116,114,
 117,101,107,0,3,1,2,3,131,104,2,100,...>>
5> Term2 = binary_to_term(Bin3).
{test,12,true,[1,2,3]}
6> {Bin4,Bin5} = split_binary(Bin3,25).
{<<131,104,4,100,0,4,116,101,115,116,97,12,100,0,4,116,
 114,117,101,107,0,3,1,2,3>>,
 <<131,104,2,100,0,3,99,97,116,100,0,3,100,111,103>>}
7> Term4 = binary_to_term(Bin5).
{cat,dog}
8> is_binary(Term4).
false
9> is_binary(Bin4).
true

In the preceding code, the inverse BIFs term_to_binary/1 and binary_to_term/1 code
and decode terms as binaries, that is, sequences of bytes. The function is_binary/1 is
a guard that tests for binaries. When dealing with octet streams, namely lists of integers,
you can use list_to_binary/1 and binary_to_list/1.

It is best to code a sequence of elements in a single binary as a single list,
using term_to_binary. Coding the elements separately, joining the re-
sults using the function list_to_binary, and then decoding will give
unexpected results. For example, in command 5 in the preceding code,
the application binary_to_term(Bin3) will decode only the first element
in the segment. To decode them all, it is necessary to split them first,
and then to decode them separately (as in commands 6 and 7).

202 | Chapter 9: More Data Types and High-Level Constructs

The BIFs discussed here work at the level of bytes, and can be seen as a little cumber-
some in comparison with the bit syntax which can be used to manipulate bit strings of
any length using a pattern-matching style (including joining and splitting such strings).
We turn to this next.

The Bit Syntax
The bit syntax described in this section allows binaries to be seen as a number of seg-
ments, which are sequences of bits but which need not be bytes (nor be aligned on byte
boundaries). We use the term bitstring to mean an arbitrary-length sequence of bits,
and the term binary to mean a string whose length is divisible by eight so that it can be
seen as a sequence of bytes.

You can construct Bins using the following bit syntax:

Bin = <<E1, E2, ...,En>>

You can pattern-match them like this:

<<E1, E2, ...,En>> = Bin

Here is the bit syntax in action:

1> Bin1 = <<1,2,3>>.
<<1,2,3>>
2> binary_to_list(Bin1).
[1,2,3]
3> <<E,F>> = Bin1.
** exception error: no match of right hand side value <<1,2,3>>
4> <<E,F,G>> = Bin1.
<<1,2,3>>
5> E.
1
6> [B|Bs] = binary_to_list(Bin1).
[1,2,3]
7> Bin2 = list_to_binary(Bs).
<<2,3>>

In the preceding code, the BIFs binary_to_list/1 and list_to_binary/2 provide trans-
lations to and from binaries for ease of list-style manipulation of binaries.

The real strength of binaries lies in the fact that each expression in Bin can be qualified
by a size and/or type qualification:

Expr:Size/Type

These qualifications allow fine control of formats of numbers, both integers and floats,
and mean that a bit program can read like the high-level specification of a protocol
rather than its low-level (and opaque) implementation; we will see this in action for
TCP segment manipulation shortly.

We now look at sizes and types in detail.

Binaries and Serialization | 203

Sizes

The size specified is in bits. The default size of an integer is 8, and of a float 64 (eight
bytes).

Types

The type is a list of type specifiers, separated by hyphens. Type specifiers can be any of
the following:

A type
The valid types are integer, float, binary, byte, bits, and bitstring.

A sign
The valid signs are signed and unsigned (the default). In the signed case, the first
bit determines the sign: 0 is positive, 1 is negative.

An endian value
Endian values are CPU-dependent. Endian values can be big (the default),
little, or native. In the big-endian case, the first byte is the least significant one;
in little endian, the first byte is the most significant. You will have to take endian
values only if you are transferring binaries across different CPU architectures. If
you want your endian value to be determined at runtime, use native.

A unit specification, such as unit:Val
The number of bits used by the entry will be Val*N, where N is the size of the value.
The default unit for bits and bitstring is 1; for binary and bytes it is 8.

The following code snippet shows these types in action:

1> <<5:4, 5:4>>.
<<"U">>
2> <<Int1:2, Int2:6>> = <<128>>.
<<128>>
(foo@Vaio)3> Int1.
2
(foo@Vaio)4> Int2.
0
5> <<5:4/little-signed-integer-unit:4>>.
<<5,0>>
6> <<5:4/big-signed-integer-unit:4>>.
<<0,5>>
7> <<5:2,5:8>>.
<<65,1:2>>

Note how <<5:4,5:4>> returns <<"U">>. The integer 5 represented in four bits is equiv-
alent to 0101. In our binary, we put two of them together, 01010101, which is the
integer 85, denoting the ASCII value of U. Put 85 in a list, and you get back the string
notation containing the capital letter U. Writing <<"Hello">> is the same as writing
<<$H,$e,$l,$l,$o>>, or its ASCII equivalent, <<72,101,108,108,111>>.

204 | Chapter 9: More Data Types and High-Level Constructs

Pattern-Matching Bits
You can use the same syntax in pattern-matching binaries, and in particular, you can
use size and type qualifications in pattern matching. When types are omitted, the de-
fault type is an integer:

1> A = 1.
1
2> Bin = <<A, 17, 42:16>>.
<<1,17,0,42>>
3> <<D:16,E,F/binary>> = Bin.
<<1,17,0,42>>
4> [D,E,F].
[273,0,<<"*">>]

As you can see here, the way a binary sequence is unpacked can be quite different from
the way it is constructed. This is one of the mechanisms by which complex protocol
handling, where you encode and decode frames, is made easy in Erlang:

5> Frame = <<1,3,0,0,1,0,0,0>>.
<<1,3,0,0,1,0,0,0>>
6> <<Type, Size, Bin:Size/binary-unit:8, _/binary>> = Frame.
<<1,3,0,0,1,0,0,0>>
7> Type.
1
8> Size.
3
9> Bin.
<<0,0,1>>

It is possible to match bitstrings of any length, as in the following:

10> <<X:7/bitstring,Y:1/bitstring>> = <<42:8>>.
<<"*">>
11> X.
<<21:7>>
12> Y.
<<0:1>>

There are a number of possible pitfalls in pattern matching binaries:

• The system will not understand the expression B=<<1>>, as it will read it as
B =< <1>>, so it is important to always separate the symbol << from equality with
a space.

• The system will not understand the expression <<X+1:8>>. Parenthesizing the arith-
metical expression <<(X+1):8>> does the trick.

• <<X:7/binary,Y:1/binary>> will never match, as each binary sequence in a pattern
match must have a length that is a multiple of 8.

• It is not possible to use an unassigned variable as the size of a segment, as in the
function definition foo(N, <<X:N, ...>>) -> You need to use a defined value
here. However, it is possible to use a variable to specify segment size if the variable
is already defined.

Binaries and Serialization | 205

Bitstring Comprehensions
The list comprehension notation [... || X <- List, test, ...] is a powerful way
to describe lists that are generated from other lists by “generate and test” methods. The
bitstring comprehension notation performs a similar role for bitstrings. Here’s an
example:

13> << <<bnot(X):1>> || <<X:1>> <= <<42:6>> >>.
<<21:6>>

A bitstring comprehension is delimited by << ... || ... >>, and <= is used (instead of
<-) for generators. Most importantly, all bitstring entities are indicated by being en-
closed within <<...>>. In the preceding example, the variable X is a bit variable, and
will be assigned to the bits 101010 (42 in binary) in turn; each of these is negated in
the output by bnot, giving the string 010101, the binary representation of 21.

The principles of bitstring comprehension are the same as for lists: pattern-matching
syntax is used in the generator (on the left side of the <= symbol) and results can be
described using bit syntax, as explained earlier.

Bit Syntax Example: Decoding TCP Segments
Bit syntax comes into its own when you look at coding and decoding segments for
the Transmission Control Protocol (TCP).†

TCP segments consist of a header (with a defined structure) followed by data. The
header has 10 mandatory fields—one of which consists of eight 1-bit flags—and an
optional field. The size of the header (in 32-bit words) is specified by the (4-bit) Data
Offset field, from which the size of the optional part of the header can be calculated.
This field must be at least 5 (and at maximum, 15).

The following code shows the decode function and two sample packets:

decode(Segment) ->
 case Segment of
 << SourcePort:16, DestinationPort:16,
 SequenceNumber:32,
 AckNumber:32,
 DataOffset:4, _Reserved:4, Flags:8, WindowSize:16,
 Checksum:16, UrgentPointer:16,
 Payload/binary>> when DataOffset>4 ->

 OptSize = (DataOffset - 5)*32,
 << Options:OptSize, Message/binary >> = Payload,
 <<CWR:1, ECE:1, URG:1, ACK:1, PSH:1, RST:1, SYN:1, FIN:1>> = <<Flags:8>>,
 %% Can now process the Message according to the
 %% Options (if any) and the flags CWR, ..., FIN.

† TCP is described in a series of Requests for Comments (RFCs) from the Internet Engineering Task Force. An
overview is provided in RFC 4614, “A Roadmap for Transmission Control Protocol (TCP) Specification
Documents,” at http://tools.ietf.org/html/rfc4614.

206 | Chapter 9: More Data Types and High-Level Constructs

http://tools.ietf.org/html/rfc4614

 binary_to_list(Message);

 _ ->
 {error, bad_segment}
 end.

seg1() ->
 << 0:16, 0:16,
 0:32,
 0:32,
 5:4, 0:4, 0:8, 0:16,
 0:16, 0:16,
 "message">>.

seg2() ->
 << 0:16, 0:16,
 0:32,
 0:32,
 7:4, 0:4, 0:8, 0:16,
 0:16, 0:16,
 0:64,
 "message">>.

What is so gratifying about this definition is that the pattern in the case statement is a
readable (yet formal) definition of what a segment looks like. It begins with two 16-bit
words representing the source and destination ports that are followed by 32-bit fields
for sequence and acknowledgment number.

So far, we have matched on byte boundaries, but next we match the four variables:

DataOffset:4, _Reserved:4, Flags:8, WindowSize:16

This gives the DataOffset, four bits that are reserved (and so matched to a “don’t care”
variable), eight bits of Flags, and so on. After matching some more fields, the remainder
of the binary is matched to Payload/binary. The match is also guarded by a check that
the DataOffset is indeed at least 5.

The body of the clause also uses pattern matching. In the following statement:

<< Options:OptSize, Message/binary >> = Payload,

any Options are taken from the front of the Payload; if there are none, Options will be
matched to the empty binary <<>> and the Payload will be the Message. In either case,
the following pattern match:

<<CWR:1, ECE:1, URG:1, ACK:1, PSH:1, RST:1, SYN:1, FIN:1>> = <<Flags:8>>,

simultaneously extracts the eight 1-bit flags from the Flags byte.

The two segments, seg1/0 and seg2/0, show that segment construction mirrors the
pattern matching in the decode function. This data can be used to test the functionality
of the stub decoder shown here.

Binaries and Serialization | 207

Bitwise Operators
The bit-level operators in Erlang can be applied to integers, returning integers as results.
Table 9-1 lists the bitwise operators.

Table 9-1. Bitwise operators

Operator Description

band Bitwise and

bor Bitwise or

bxor Bitwise exclusive or

bnot Bitwise negation

bsl Bit shift left; the second argument gives the size of the shift

bsr Bit shift right; the second argument gives the size of the shift

In the following example, the operators are applied to 17 = 100012 and 9 = 10012,
among others:

1> 9 band 17.
1
2> 9 bor 17.
25
3> 9 bxor 17.
24
4> bnot 9.
-10
5> bnot (bnot 9).
9
6> 6 bsr 1.
3
7> 6 bsl 4.
96

Serialization
In this section, we will show how you can serialize binary trees in Erlang. You can
represent binary trees with nested tuples: an internal node with {node, ..., ...} and
a leaf with {leaf, ...}, as illustrated by the tree in Figure 9-1. One way to serialize the
data structure is to pretty-print the structure as a fully bracketed string; for the example
in Figure 9-1 this would begin "{node,{node,{leaf,cat ...". You can deserialize a
string such as this by parsing it, but this is neither an efficient form of storage nor an
efficient deserialization mechanism.

When the structure is serialized, you know the size of the representation that is pro-
duced. As a result, you can build this information into the serialization and avoid the
structure having to be parsed. Initially, you can think of turning the structure into a
stream where before each subtree you record the size of the representation of the tree.

208 | Chapter 9: More Data Types and High-Level Constructs

In this example, you would have [11,8,2,cat,5,2,dog,2,emu,2,fish]; here, 11 is the
length of the whole representation, 8 is the length of the list [8,2,cat,5,2,dog,2,emu]
representing the left subtree of the top node, and so on. Using this length information,
it is relatively easy to reconstruct the original tree (we leave this as an exercise for the
reader).

However, there is redundant information in that serial form. If you have a segment
representing the subtrees at a node, it is enough to know the size of (representation of)
the left subtree, as the right subtree is given by whatever remains. So, you can represent
the tree in Figure 9-1 by the segment [8,6,2,cat,2,dog,emu,fish]. The following code
shows the conversion to this representation:

treeToList({leaf,N}) ->
 [2,N];
treeToList({node,T1,T2}) ->
 TTL1 = treeToList(T1),
 [Size1|_] = TTL1,
 TTL2 = treeToList(T2),
 [Size2|List2] = TTL2,
 [Size1+Size2|TTL1++List2].

The next code snippet shows the deserialization:

deserialize([_|Ls]) ->
 listToTree(Ls).

listToTree([2,N]) ->
 {leaf,N};
listToTree([N]) ->
 {leaf,N};
listToTree([M|Rest] = Code) ->
 {Code1,Code2} = lists:split(M-1,Rest),

Figure 9-1. Binary tree for serialization

Binaries and Serialization | 209

 {node,
 listToTree(Code1),
 listToTree(Code2)
 }.

The essential point here is in the final clause of listToTree, where the length M in the
representation is used as the point for splitting the representation before converting
the two halves.

Once you have a list representation, you can convert it into a stream of bytes in a
straightforward way. You also can remove the intermediate lists from the construction
entirely, going directly from tree to bitstream, and vice versa.

References
Remember the frequency server example in Chapter 5? The client sent a request to
allocate a frequency and waited for a response of the format {reply, Reply}. How can
you be sure this message actually originates from the frequency server, and is not just
any other process that decides to send the client a message of this format? The answer
is to use references.

You create references using the BIF make_ref(), and within the lifetime of a node they
are (almost) unique, with values being repeated every 282 calls. They are also unique
to a node, and so two references on two different nodes can never be the same.‡

You can compare references for equality, and you can use them to match calls and
responses within a protocol by labeling a message with a reference, returning that same
reference in the response. To do this in the frequency server example, you can use the
following code:

call(Message) ->
 Ref = make_ref(),
 frequency ! {request, {Ref, self()}, Message},
 receive
 {reply, Ref, Reply} -> Reply
 end.

reply({Ref, Pid}, Message) ->
 Pid ! {reply, Ref, Message}

Note how we bind the variable Ref to the reference. When receiving the reply, we
include the bound variable Ref, accepting only the messages that pattern-match cor-
rectly. This guarantees that the reply originates from the frequency server, as it is the
only process to which the client has passed the reference.

‡ The only way in practice to get two references that are the same would be to save a reference in a file of Erlang
terms, stop the node, and then reload the reference from the file after restarting the node; a reference created
in the newly restarted node might then be equal to the saved value, since for each incarnation of the node,
references are allocated to be integers starting at 0.

210 | Chapter 9: More Data Types and High-Level Constructs

Exercises

Exercise 9-1: Higher-Order Functions
Using funs and higher-order functions, write a function that prints out the integers
between 1 and N.

Hint: use lists:seq(1, N).

Using funs and higher-order functions, write a function that, given a list of integers and
an integer, will return all integers smaller than or equal to that integer.

Using funs and higher-order functions, write a function that prints out the even integers
between 1 and N.

Hint: solve your problem in two steps, or use two clauses in your fun.

Using funs and higher-order functions, write a function that, given a list of lists, will
concatenate them.

Using funs and higher-order functions, write a function that, given a list of integers,
returns the sum of the integers.

Hint: use lists:foldl and try figure out why we prefer to use foldl rather than foldr.

Exercise 9-2: List Comprehensions
Using list comprehensions, create a set of integers between 1 and 10 that are divisible
by three (e.g., [3,6,9]).

Using list comprehensions, remove all non-integers from a polymorphic list. Return
the list of integers squared: [1,hello, 100, boo, “boo”, 9] should return [1, 10000,
81].

Using list comprehensions and given two lists, return a new list that is the intersection
of the two lists (e.g., [1,2,3,4,5] and [4,5,6,7,8] should return [4,5]).

Hint: assume that the lists contain no duplicates.

Using list comprehensions and given two lists, return a new list that is the symmetric
difference of the two lists. Using [1,2,3,4,5] and [4,5,6,7,8] should return
[1,2,3,6,7,8].

Hint: assume that the lists contain no duplicates.

Exercise 9-3: Zip Functions
Define the function zip, which turns a pair of lists into a list of pairs:

zip([1,2],[3,4,5]) = [{1,3},{2,4}]

Exercises | 211

Using this example, define the function zipWith that applies a binary function to two
lists of arguments, in lock step:

add(X,Y) -> X+Y.
zipWith(Add, [1,2], [3,4,5]) = [4,6]

Note that in both cases, the longer of the lists is effectively truncated.

Exercise 9-4: Existing Higher-Order Functions
The Erlang lists module contains a number of higher-order functions, that is, func-
tions that take a function as an argument. Write your own definitions of these functions.

Exercise 9-5: Length Specifications in List Comprehensions
Investigate the role of length specifications when making bitstrings from integers. What
is the result of <<42:6>> and <<42:5>>? Contrast this with pattern matching of the fol-
lowing form:

<<X:4,Y:2>> = <<42:6>>.

Also, investigate pattern matches of the following form:

<<C:4,D:4>> = << 1998:6 >>.
<<C:4,D:2>> = << 1998:8 >>.

Exercise 9-6: Bitstrings
Using bitstring constructors and pattern matching, give a bit-level implementation of
the serialization algorithm in the section “Serialization” on page 208. You will need to
think about how much storage is needed for the various items, including the size in-
formation that forms part of the sequence.

212 | Chapter 9: More Data Types and High-Level Constructs

CHAPTER 10

ETS and Dets Tables

Many practical systems need to store and retrieve large amounts of data within de-
manding time constraints. For instance, a mobile phone application will need to access
and manipulate subscriber details in handling calls as well as in billing and user support.
Search times that are proportional to the amount of data being searched are not ac-
ceptable in soft real-time systems. Lookup times not only have to be constant, but also
have to be very fast!

One of the main composite data types used in programming is a collection of items (or
elements, or objects). Erlang lists provide one way to implement a collection, but with
more than a small number of items in the list, access to elements becomes slow. On
average, we need to check through 50% of the elements in a collection to confirm that
a given element is present, and we need to look at all the elements to verify that a given
value is absent.

To handle fast searches, Erlang provides two mechanisms. This chapter introduces
Erlang Term Storage (ETS) and Disk Erlang Term Storage (Dets), two mechanisms for
memory- and disk-efficient storage and retrieval of large collections of data. Erlang also
provides a full database application, Mnesia, which we cover in Chapter 13.

ETS Tables
ETS tables store tuples, with access to the elements given through a key field in the
tuple. The tables are implemented using hash tables and binary trees, with different
representations providing different kinds of collections.

Sets and Bags
In mathematics, sets and bags are two different kinds of collections. Both contain ele-
ments, but the difference is that although a set contains each element only once, a bag
can contain duplicate elements. Sets and bags are useful in modeling as well as in pro-
gramming. Let’s look at two examples to see the difference.

213

You would use a set to model the collection of people coming to a birthday party, as
all that counts in this example is whether a person is coming. On the other hand, you
would use a bag to model the presents received at the birthday party,* because in this
case, you might receive duplicates of the same item. As a result, you need to store all
of the individual presents, not only to ensure that everyone gets a thank you note, but
also to keep track of what to sell on eBay.

There are four different kinds of ETS tables, as outlined in the following list. In dis-
cussing them and their differences, we’ll use the example of an index, where the tuples
are pairs containing a word (i.e., a string) and a line number, as in {"refactorings",
4}. We’ll take the first field of the tuple (containing the word) as the key for the rest of
this section.

Set
In a set, each key can occur only once. So, using this kind of table for the index
example will mean there can be only one element in the table for each word.

Ordered set
An ordered set has the same property as the set, but it is stored so that the elements
can be traversed following the lexicographical order on the keys. Any entry for
"refactorings" would precede an entry for "replay", for example. The ordering
for different data types is described in Chapter 2.

Bag
A bag allows multiple entries for the same key, permitting entries such as {"refac
torings",4} and {"refactorings",34}. The elements have to be distinct: in the
index example, this means there can be only one entry for a particular word on a
particular line.

Duplicate bag
A duplicate bag allows duplicated elements, as well as duplicated keys, so in
the running example, it would be possible for the table to contain the entry
{"refactorings",4} two or more times.

Referring to the mathematical sidebar “Sets and Bags” on page 213, the Erlang termi-
nology can be seen to reflect how the keys are handled: sets and ordered sets can contain
each key only once, whereas bags and duplicate bags give two different variants of
multiple occurrences of keys.

Implementations and Trade-offs
The implementations of these collections give a constant lookup time for elements,
except in the case of ordered sets, where the access time is logarithmic in the size of the
collection. In both cases, this performance is much better than the linear access times
for a list representation.

* Our birthdays are January 12 and March 26.

214 | Chapter 10: ETS and Dets Tables

Sets, bags, and duplicate bags are stored as hash tables, where the position in the table
storing the tuple is determined by the value of a function (called a hash function) map-
ping the key of the tuple to the memory location where its contents are stored, as
illustrated in Figure 10-1. Assuming our hash table has allocated space for 10 entries,
the hash function will return 10 unique memory locations, one for each entry. When
we need to insert an additional item, the table gets rehashed (or reorganized), creating
space for more entries and returning more unique memory spaces as a result of hashing
on the key. This gives us a constant access time from the key to the corresponding
tuple(s), but a variable one in case we need to write an entry and rehash the table as a
result.† (In general, it is possible that two data keys may hash to the same value.)

Figure 10-1. Hash table

An ordered set, where the order is given by the built-in order on the key field, is stored
as an AVL balanced binary tree. This means the length of any of the branches, which
determines the time complexity of access, is the logarithm of the size of the collection
being stored in the tree. Figure 10-2 shows an example of a balanced binary tree with
numerical key values.

If sets and bags give constant time access, why is it necessary to give an ordered set
representation that has slower access to particular elements? The answer is that ordered
sets allow the collection to be traversed in key order, whereas the other representations
simply allow the collection to be traversed in storage order. In sets, the order depends
on the (hidden) details of the hash function, following the order in which they are stored
in memory. This will certainly not correspond to any natural order on the data.

The choice of which table type to use depends on the particular application. For in-
stance, in writing out a complete index, it is necessary to traverse the index in

† You can find more details about the implementation of ETS tables in “A Study of Erlang ETS Table
Implementations and Performance,” by Scott Lystig Fritchie (Erlang Workshop ’03, ACM Press, 2003; http:
//doi.acm.org/10.1145/940880.940887).

ETS Tables | 215

http://doi.acm.org/10.1145/940880.940887
http://doi.acm.org/10.1145/940880.940887

alphabetical (key) order, whereas in looking up single words in an online index, it is
enough to have access to particular tuples, and an unordered collection is good enough
for that.

The implementation of ETS tables in the Erlang distribution is very flexible, allowing
key fields to be of any type, including complex data structures. Moreover, it is highly
optimized, since it forms the foundation for implementing Erlang’s Mnesia database,
which we introduce in Chapter 13.

Creating Tables
The ets module contains the functions to create, manipulate, and delete ETS tables. A
table is created by a call to ets:new/2: the first parameter gives the name of the table,
and the second consists of a list of options. The function call ets:new(myTable, Opts)
returns the table identifier used to reference the table.

The default setup when an empty list of options is passed to the ets:new/2 function is
to create a set, with the key in position 1, and providing protected access to the values
of the table. Protected access allows all processes to read the table, but only the owner
to write to it. Other options include:

set, ordered_set, bag, duplicate_bag
Including one of these in the options list creates an ETS table of the specified sort.

{keypos, Pos}
This creates a table with the key in position Pos.

public, protected, private
A public table is readable and writable by all processes; a private table is readable
and writable only by the process that owns the table. We described a protected
table earlier.

Figure 10-2. A balanced binary tree

216 | Chapter 10: ETS and Dets Tables

named_table
The name of the table is statically registered, and can then be used to reference the
table in ETS operations.

Other configuration parameters are described in the ets module documentation. You
can learn information about a table using ets:info/1, passing in the table identifier:

1> TabId = ets:new(myTable, []).
15
2> ets:info(TabId).
[{memory,301},
 {owner,<0.31.0>},
 {name,myTable},
 {size,0},
 {node,nonode@nohost},
 {named_table,false},
 {type,set},
 {keypos,1},
 {protection,protected}]

If the table is created with the named_table option set, you can access it using either the
name or the table identifier.

Even though every table is created with a name in the call to
ets:new/2, and the name is apparent when viewing the table informa-
tion, the name cannot be used to access the table unless the
named_table option is enabled.

If this option is not enabled, attempting to access the table in this way
will give rise to the bad argument runtime error.

The storage used by tables is not recycled automatically when the tables are no longer
referenced by the program (i.e., they are not “garbage collected”). Instead, you need
to delete the tables manually by calling ets:delete(TabId). However, a table is linked
to the process that created it, and if the process terminates, the table is deleted
automatically.

As ETS tables are connected to the process that created them, you need
to be extra careful when testing them in the shell. If you cause a runtime
error, the shell process will crash and be restarted. As a result, you will
lose all of your ETS tables and the data associated with them. Should
this happen, use the shell command f() to clear all the variables asso-
ciated with your table references and start again.

Handling Table Elements
You insert elements into a table using ets:insert/2 and access them by their key us-
ing ets:lookup/2:

ETS Tables | 217

3> ets:insert(TabId,{alison,sweden}).
true
4> ets:lookup(TabId,alison).
[{alison,sweden}]

In this example, TabId is a set, and the insertion of a second element with the alison
key causes the first element to be overwritten. A common error when dealing with sets
is to delete an element before inserting an update. The deletion is superfluous, as the
insertion will overwrite the old entry:

5> ets:insert(TabId,{alison,italy}).
true
6> ets:lookup(TabId,alison).
[{alison,italy}]

If you delete the existing table and re-create the table as a bag, you’ll see a different
behavior:

7> ets:delete(TabId).
true
8> TabId2 = ets:new(myTable,[bag]).
16
9> ets:insert(TabId2,{alison,sweden}).
true
10> ets:insert(TabId2,{alison,italy}).
true
11> ets:lookup(TabId2,alison).
[{alison,sweden},{alison,italy}]

The insertion order of elements in bags is preserved. The order of elements in the result
here is the order in which they were added, with the oldest element coming first.

Because this ETS table is a bag rather than a duplicate bag, inserting an element where
the tuple is identical for a second time has no effect:

12> ets:insert(TabId2,{alison,italy}).
true
13> ets:lookup(TabId2,alison).
[{alison,sweden},{alison,italy}]

Example: Building an Index, Act I
As an example of ETS tables in use, let’s look at the design of an index for a text
document; we’ll come back to this in later sections when we discuss how the data in
the table can be accessed or traversed.

Specification: the document is a text file, and the index is required to show all the lines
on which a particular word appears. Words of fewer than four letters are ignored, and
all the words in the document are normalized to noncapitalized form in the index.
Consecutive lines are shown in the form of a range.

The first part of an index for the preceding paragraph would be as follows:

218 | Chapter 10: ETS and Dets Tables

appears 2.
consecutive 3.
document 1,3.
file 1.
form 3-4.
ignored 2.
index 1,3.

The program works in two phases, first collecting the word occurrence data as {Word,
LineNumber} pairs from the text file, and then turning that into an index, as shown in
Figure 10-3.

Figure 10-3. Building an index

What type of ETS table should you use to store the word occurrence information?

• If the index is simply used to look up particular words, you could use an unordered
structure. If the table key is to be the word, duplicate occurrences of a key will be
required, as the entries for different lines will have the same key. On the other hand,
there is no need to build an index to note repeated entries on the same line: in this
case, a bag will be the right choice of data structure.

• If the complete index is to be printed in alphabetical order, the table needs to be
an ordered set. What should the key be in this case?

— If it is the word, only one entry per word is allowed: in this case, the records
stored would need to contain a list of line numbers. We leave this option for
you to try out in the exercises at the end of the chapter.

— The option we chose here is to make the pair the key so that entries in the table
are tuples of the form {{Word, LineNumber}}; that is, one-field tuples whose only
field is itself a pair.

The top-level program for the index shows three separate steps: creating the table, filling
the table with data, and building the index from the table. Keep in mind that when
reading the example, if you come across new library function calls you do not under-
stand, you should look up the module in the online Erlang documentation:

index(File) ->
 ets:new(indexTable, [ordered_set, named_table]),
 processFile(File),
 prettyIndex().

ETS Tables | 219

Once the file is opened, it can be processed one line at a time by processLines, which
also keeps track of the current line number:

processFile(File) ->
 {ok,IoDevice} = file:open(File,[read]),
 processLines(IoDevice,1).

processLines(IoDevice,N) ->
 case io:get_line(IoDevice,"") of
 eof ->
 ok;
 Line ->
 processLine(Line,N),
 processLines(IoDevice,N+1)
 end.

Each line is split into words, using a function from the regexp module and a macro
definition to hide the details of the punctuation on which words are split:

-define(Punctuation,"(\\ |\\,|\\.|\\;|\\:|\\t|\\n|\\(|\\))+").

processLine(Line,N) ->
 case regexp:split(Line,?Punctuation) of
 {ok,Words} ->
 processWords(Words,N) ;
 _ -> []
 end.

The processWords function inserts the words into the Table, after short words have been
eliminated, and the remaining words have been normalized using string:to_lower/1:

processWords(Words,N) ->
 case Words of
 [] -> ok;
 [Word|Rest] ->
 if
 length(Word) > 3 ->
 Normalise = string:to_lower(Word),
 ets:insert(indexTable,{{Normalise , N}});
 true -> ok
 end,
 processWords(Rest,N)
 end.

This completes the first stage of building the index; we’ll come back to the example
after discussing the ways in which you can traverse ETS tables and extract information
from them.

Traversing Tables
You already saw how you can find information relating to a single key using
ets:lookup/2, which will return all the tuples containing that key. In an example such
as the index, you need to look at all the data in the table, step by step, one key at a time.

220 | Chapter 10: ETS and Dets Tables

The first key in the table is given by ets:first/1, and given a key, the next key in the
table is given by ets:next/2. Assume that we have created and populated the ordered
set table in the index example. We would traverse it like this:

3> First = ets:first(indexTable).
{"appears",2}
4> Second = ets:next(indexTable,First).
{"consecutive",3}

When doing so, we can see the order of the elements is the lexicographical order on
the {Word, Number} pairs.

If we were instead to use a bag for the table, with the Word as the key, we would see
entirely different behavior after the table has been created:

3> First = ets:first(indexTable).
"words"
4> Second = ets:next(indexTable,First).
"form"

The order of the keys now is determined by the ordering on the hash values of the
keys, and not by the order on the keys themselves or by the order in which the values
are inserted into the table. Essentially, the ordering is arbitrary; the only thing we can
depend on is being able to reach all the keys by stepping through them using first and
next.

ETS Tables and Concurrent Updates
ETS tables provide very limited support for concurrent updates. What happens if you
are traversing an ETS table of type set or a bag using ets:first/1 and ets:next/2 while
other processes write and delete elements concurrently?

What happens if another process, when writing a new element, causes a rehash of the
table, completely rearranging the order of the entries? In the best of cases, your next/
2 call will result in a runtime error. In the worst of cases, the behavior will be undefined
in the sense that any element or the '$end_of_table' atom might be returned, or a
badarg error might be raised.

If you know other processes will be executing destructive calls to the ETS table while
you are traversing it using ets:first/1 and ets:next/2, use the function
ets:safe_fixtable/2. It guarantees that during the traversal, you will visit an element
only once. If a new element is added after you started your traversal (either by the
process traversing the table or by another process), no guarantee is made that this
element will be accessed. All other elements, however, will be traversed only once. A
process fixes a table by calling ets:safe_fixtable(TableRef, Flag), where Flag is set
to true. The flag is released either by setting the flag back to false, or upon process
termination. If several processes fix a table, it will remain fixed until all processes have
either released it or terminated.

ETS Tables | 221

If you fix a table, do not forget to release it, as deleted objects are not removed from
the table as long as it remains fixed. This will result not only in the memory used by
these deleted objects not being freed, but also in a degradation of the performance of
the operations applied on the table.

The last element of an ordered set is given by ets:last/1. If ets:last/1 is applied to
any other sort of table, the first element is returned. If Last is the final entry in the table,
a call to next will return '$end_of_table'. For the original index example, this would
be the result:

5> Last = ets:last(indexTable).
{"words",3}
6> ets:next(indexTable,Last).
'$end_of_table'

In the next section, we’ll discuss how these operations are used in practice.

Example: Building an Index, Act II
In this section, we’ll show you how to construct the index for a text file by traversing
the ETS table containing the word occurrences. To build the index, you need to write
a function that will traverse the table and perform two operations:

• Collecting the entries for a particular word and pairing the word with a list of line
numbers, as in {"form",[4,3]}

• Pretty-printing each of these tuples as output, with duplicate numbers removed
and consecutive numbers shown as a range

The traversal is set up by prettyIndex/1, which reads the first field, {Word,N}, and builds
the tuple {Word,[N]}, which contains the information collected so far regarding the
Word. This partial index entry and the current field, together with the table identifier,
are passed to the worker function prettyIndexNext/3, which performs the traversal:

prettyIndex() ->
 case ets:first(indexTable) of
 '$end_of_table' ->
 ok;
 First ->
 case First of
 {Word, N} ->
 IndexEntry = {Word, [N]}
 end,
 prettyIndexNext(First,IndexEntry)
 end.

The function prettyIndexNext will read the next record. If no records exist, the current
IndexEntry is output. If there is a next tuple, {NextWord, M}, one of the following things
will happen:

222 | Chapter 10: ETS and Dets Tables

• If the NextWord is the same as the word in the IndexEntry, M needs to be added to
the list of lines containing the Word, and prettyIndexNext is called recursively.

• If the NextWord is different, the IndexEntry needs to be output before the recursive
call with a new partial index entry {NextWord, [M]}.

prettyIndexNext(TabId,Entry,{Word, Lines}=IndexEntry) ->
 Next = ets:next(indexTable,Entry),
 case Next of
 '$end_of_table' ->
 prettyEntry(IndexEntry);
 {NextWord, M} ->
 if
 NextWord == Word ->
 prettyIndexNext(Next,{Word, [M|Lines]});
 true ->
 prettyEntry(IndexEntry),
 prettyIndexNext(Next,{NextWord, [M]})
 end
 end.

The definition of prettyEntry is left as an exercise (see Exercise 10-1 at the end of this
chapter for hints on how to do this).

Extracting Table Information: match
You’ve seen how to extract tuples with a given key field from an ETS table, and how
to traverse a table; this section shows how you can extract elements from a table by
pattern matching. You do this with the ets:match/2 function and the more general
ets:select function; in the latter case, the match specification can be given in primitive
form, or it can be “compiled” from a function definition using the operation
ets:fun2ms/1.

To illustrate match in operation, let’s look at an example table containing 3-tuples:

1> ets:new(countries, [bag,named_table]).
countries
2> ets:insert(countries,{yves,france,cook}).
true
3> ets:insert(countries,{sean,ireland,bartender}).
true
4> ets:insert(countries,{marco,italy,cook}).
true
5> ets:insert(countries,{chris,ireland,tester}).
true

Elements of the table are 3-tuples, and so the patterns matched against the table will
also be 3-tuples. The patterns contain three kinds of elements:

ETS Tables | 223

• '_', which is a wildcard that will match any value in this position

• '$0'and '$1', which are variables that will match any value in this position

• A value, in this case something such as ireland or cook

The result of match is to give a list of results, one for each successful match in the table.
The difference between a variable and a wildcard is that the values matched to a variable
are reported in the results, whereas the wildcard matches are not. The values matched
to the variables are given in a list in ascending order of the variables.

This is best shown through an example:

6> ets:match(countries,{'$1',ireland,'_'}).
[[sean],[chris]]
7> ets:match(countries,{'$1','$0',cook}).
[[france,yves],[italy,marco]]

In command 6 in the preceding code, the pattern requires that the second field is
ireland. There are no restrictions on the other fields, and the value of the first field is
reported for each successful match, of which there are two.

In command 7, the third field is required to be cook. Each successful match reports the
second and first fields, in that order. Can you predict the results of the following
matches? Pay particular attention to the order in which the results are returned:

8> ets:match(countries,{'$2',ireland,'_'}).
???
9> ets:match(countries,{'_',ireland,'_'}).
???
10> ets:match(countries,{'$2',cook,'_'}).
???
11> ets:match(countries,{'$0','$1',cook}).
???
12> ets:match(countries,{'$0','$0',cook}).
???

You can check your answers by typing the ETS table creation commands (commands
1–5 in the earlier code) into the Erlang shell.‡ It is possible to return the entire tuple
matching a pattern using match_object, and to delete the matching objects by means
of match_delete:

13> ets:match_object(countries,{'_',ireland,'_'}).
[{sean,ireland,bartender},{chris,ireland,tester}]
14> NewTab = ets:match_delete(countries,{'_',ireland,'_'}).
true
15> ets:match_object(countries,{'_',ireland,'_'}).
[]

‡ Or you can check them here: [[sean],[chris]]; [[],[]]; []; [[yves,france], [marco,italy]]; [].

224 | Chapter 10: ETS and Dets Tables

You need to use match operations with great care, as they can change
the real-time behavior of a system. This is because all match operations
are implemented as BIFs, and BIFs are executed atomically; a match
operation on a large table can therefore stop other processes from exe-
cuting until the operation has traversed the whole table.

To avoid this problem, it is best to work by table traversal using first
and next, as shown earlier. It might take more time, but it will not dis-
rupt the real-time properties of your system.

Extracting Table Information: select
A match specification is an Erlang term that describes a small program. It is a general-
ization of a pattern, allowing the following:

• Guards to be evaluated over the variables matched

• Return expressions to be more than simply a list of bindings

Here is an example. Working with the countries ETS table earlier:

16> ets:select(countries,
 [{{'$1','$2','$3'},[{'/=','$3',cook}],[['$2','$1']]}]).
[[ireland,sean],[ireland,chris]]

the match specification is a list of 3-tuples, each corresponding roughly to a function
clause. Here, there is just one. In that tuple, there are three parts:

{'$1','$2','$3'}
This is a pattern, the same as that used earlier in the ets:match function.

[{'/=','$3',cook}]
This is a list of guard expressions, written in prefix form. The single guard here
checks the condition that $3 /= cook. The match is successful only if each guard
evaluates to true.

[['$2','$1']]
This is the return expression.

We are introducing match specifications in this chapter not because of their beauty
(you must agree with us that they are pretty ugly constructs), but because of their speed
and tight connection to the internals of the Erlang runtime system.

As the syntax is cumbersome, support in Erlang for describing match specifications
with closures has been implemented. The function ets:fun2ms/1 takes a fun as an ar-
gument, describing the comparison (or pattern matching) we want to execute on the
ETS table, together with the return values we want the select to return. And fortunately
for us, fun2ms returns a match specification we can use as an argument in our select
call, relieving us of the need to understand or write match specifications:

ETS Tables | 225

17> MS = ets:fun2ms(fun({Name,Country,Job}) when Job /= cook ->
 [Country,Name] end).
[{{'$1','$2','$3'},[{'/=','$3',cook}],[['$2','$1']]}]
18> ets:select(countries, MS).
[[ireland,sean],[ireland,chris]]

This allows variables to be named and subexpressions to be written in the usual order
when writing a match expression. Note that the fun has to be a literal function, and it
cannot be passed to fun2ms as a variable. By literal function, we mean a function that is
typed in the ets:fun2ms/1 call and not one that is bound to a variable. The fun itself
needs to have one argument, which will be a tuple. Finally, if this is used in a module,
a header file needs to be included:

-include_lib("stdlib/include/ms_transform.hrl").

The function ets:select/2 will return all matches for the pattern in the table. You can
“batch” the matches by calling ets:select/3, whose third argument is a limit on the
number of matches. ets:select/3 returns the matches plus a continuation, which can
be called for further matches by passing it to ets:select/1.

We provide the full and gory details of match specifications in Chapter 17. Have a look
at it now if you need a detailed explanation or if you are interested in the syntax and
semantics of what fun2ms actually returns.

Other Operations on Tables
There are a number of other operations on tables. Here is a list of the most useful of
them:

ets:tab2file(TableId | TableName, FileName)
tab2file/2 dumps a table into a file, returning ok or {error, Reason}.

ets:file2tab(FileName)
file2tab reads a dumped table back in, returning {ok, Tab} or {error, Reason}.

ets:tab2list(TableId | TableName)
tab2list returns a list containing all the elements of the table.

ets:i()
This will list summary information about all the ETS tables visible from the current
process.

ets:info(TableId | TableName)
The info function, discussed earlier, returns the attributes of the given table.

Full details about these and other functions are in the ets module documentation.

Records and ETS Tables
With us having let you in on the internal implementation of Erlang records, by now
you should have deduced that it is also possible to insert records into ETS tables. There

226 | Chapter 10: ETS and Dets Tables

is a catch, however. Remember that the default key position in ETS tables is the first
element of the tuple. In records, that position is reserved for the record type; unless
you explicitly state the key position, you will not get the intended behavior. You retrieve
the position of the KeyField in a RecordType with the expression #RecordType.Key
Field, adding {keypos, #RecordType.KeyField} to the options list of the ets:new/2 call.

Let’s try to insert records in ETS tables through the shell. We’ll start by defining them,
after which we’ll create the ETS table and insert and look up a few elements. You might
recall from Chapter 7 that when records are used in the shell, they must be either
defined, or their definition has to be loaded from the module or include file where it is
specified.

1> rd(capital, {name, country, pop}).
capital
2> ets:new(countries, [named_table, {keypos, #capital.name}]).
countries
3> ets:insert(countries, #capital{name="Budapest", country="Hungary",
 pop=2400000}).
true
4> ets:insert(countries, #capital{name="Pretoria", country="South Africa",
 pop=2400000}).
true
5> ets:insert(countries, #capital{name="Rome", country="Italy",
 pop=5500000}).
true
6> ets:lookup(countries, "Pretoria").
[#capital{name = "Pretoria",country = "South Africa",
 pop = 2400000}]
7> ets:match(countries, #capital{name='$1',country='$2', _='_'}).
[["Rome","Italy"],
 ["Budapest","Hungary"],
 ["Pretoria","South Africa"]]
8> ets:match_object(countries, #capital{country="Italy", _='_'}).
[#capital{name = "Rome",country = "Italy",
 pop = 5500000}]
9> MS = ets:fun2ms(fun(#capital{pop=P, name=N}) when P < 5000000 -> N end).
[{#capital{name = '$1',country = '_',pop = '$2'},
 [{'<','$2',5000000}],
 ['$1']}]
10> ets:select(countries, MS).
["Budapest","Pretoria"]

Look at how we matched the record at commands 7 and 8. To ensure that changes of
record fields will not impact operations on ETS tables where those fields are not used,
an expression of the format #capital{name = '$1', country = "Italy", _ = '_'} is
passed as a pattern to the match functions. The construct _ = Expression replaces all
unbound record fields with the Expression. In our example, we picked '_', meaning
“all fields that are not explicitly mentioned” are matched to a wildcard, '_'.

ETS Tables | 227

Visualizing Tables
The Erlang system comes with a tool for visualizing the current state of ETS and Mnesia
tables; tables owned by both the current node and connected nodes are shown when
the visualizer is launched by calling tv:start(). On launch, a list of the tables is shown,
as in Figure 10-4.

Figure 10-4. The Table Visualizer main window

Clicking one of the tables launches its visualization, as shown in Figure 10-5.

The visualizer allows the contents of the table to be edited, and it will also poll for
changes in the table initiated by the program. New tables can also be created from the
main visualizer window.

Figure 10-5. Visualizing a table

228 | Chapter 10: ETS and Dets Tables

Dets Tables
Dets tables provide efficient file-based Erlang term storage. They are used together with
ETS tables when fast access needs to be complemented with persistency. Dets tables
have a similar set of functions to ETS tables, including functions for retrieving, match-
ing, and selecting. But as the calls involve disk seek and read operations, they will be
much slower than their counterparts on ETS tables. In the R13 release, the size of a
Dets file cannot exceed 2 GB. If you need more than 2 GB of data, you have to fragment
it into multiple Dets tables.

Dets table types include set, bag, and duplicate_bag. To use them, you have to open
them using dets:open_file(TableName, Options), where the Options argument is a list
of key value tuples, including the following:

{auto_save, Interval}
Sets the interval at which the table is regularly flushed. Flushing the table means
there is no need to repair it if it is not properly closed. Interval is an integer in
milliseconds (the default is 180,000, or three minutes). If you do not want your file
to flush, use the atom infinity.

{file, FileName}
Is used to override the default name of the table as a filename and provide a location
in which to save the Dets file.

{repair, Bool}
States whether the table should be repaired if it was not properly closed. If repair
is needed, setting Bool to true will trigger the repair automatically, whereas
false will return the tuple {error, need_repair}.

{type, TableType}
Can be set, bag, or duplicate_bag. Ordered sets are currently not supported in Dets
tables.

Options used to optimize the table include the following:

{max_no_slots, Number}
Will fragment the table accordingly, optimizing table insertion times. The default
value is 2 million entries; the maximum value is 32 million.

{min_no_slots, Number}
Will enhance performance if an estimate is accurate. The default value is 256
entries.

{ram_file, Bool}
Will enhance performance if you need to populate the table with lots of elements.
It stores the elements in RAM and spools them to file either when you call
dets:sync(Name) or when you close the table. The flag is set to false by default.

Dets Tables | 229

Once you have created the table, you can open it using the call
dets:open_file(FileName), where FileName is a string containing the path and name.
When using open_file/1, you have to use the reference returned by the function; you
will not be able to access the file using its static table name.

Dets tables are closed when the owning process terminates or calls the
dets:close(Name) call. If several processes have opened the same table, the table will
remain open until all of the processes have either terminated or explicitly closed the
table. Not closing a table prior to terminating the Erlang runtime system will result in
it being repaired the next time it is opened. This can be a time-consuming task de-
pending on the size of the table.

In the following example, we create a Dets table, experimenting with insertion, selec-
tion, and closing the table:

1> dets:open_file(food, [{type, bag}, {file, "/Users/Francesco/food"}]).
{ok,food}
2> dets:insert(food, {italy, spaghetti}).
ok
3> dets:insert(food, {sweden, meatballs}).
ok
4> dets:lookup(food, china).
[]
5> dets:insert(food, {italy, pizza}).
ok
6> NotItalian = ets:fun2ms(fun({Loc, Food}) when Loc /= italy -> Food end).
[{{'$1','$2'},[{'/=','$1',italy}],['$2']}]
7> dets:select(food, NotItalian).
[meatballs]
8> dets:close(food).
ok
9> {ok, Ref} = dets:open_file("/Users/Francesco/food").
{ok,#Ref<0.0.0.173>}
10> dets:lookup(Ref, italy).
[{italy,spaghetti},{italy,pizza}]
11> dets:info(Ref).
[{type,bag},
 {keypos,1},
 {size,3},
 {file_size,5920},
 {filename,"/Users/Francesco/food"}]
12> dets:lookup(food, italy).
** exception error: bad argument
 in function dets:lookup/2
 called as dets:lookup(food,italy)
13> dets:info(Ref).
undefined

Pay special attention to dets:open_file/1 in commands 9–12, where table access is by
reference instead of by name. Also note command 13; only after the process that opened
the table has crashed (or terminated) does the table become unavailable.

230 | Chapter 10: ETS and Dets Tables

ETS and Dets tables are used when a sizable key value store is needed.
If your system is in need of transactions, queries, duplication, and per-
sistency, you should be using Mnesia, the database application that
comes as part of the OTP middleware. It uses ETS and Dets tables to-
gether with the Erlang distribution to provide a relational data model
with support for atomic distributed transactions, checkpoints, backups,
fragmentation, and runtime schema configuration changes. For more
information on Mnesia, see Chapter 13 and the reference guide that
comes with the Erlang distribution.

A Mobile Subscriber Database Example
Think of the infrastructure your mobile phone provider needs to manage your account.
Every time you send an SMS, your provider must perform a database lookup to ensure
that you are a subscriber who is up-to-date with your payments. Every time you au-
thenticate your mobile terminal to start a data session, a similar lookup is required to
ensure that you have a data package subscription. Every time you want to use your
phone’s premium-rated text capability to, for instance, vote for your favorite artist in
a televised singing competition, you text the number of the artist you want to vote for
and when the mobile operator receives the message, the underlying system needs to
perform a subscriber lookup to ensure that your account is enabled to send and receive
premium-rated messages. In this example, where the operator will get hundreds of
thousands of SMSs in a very short period, the system needs to handle huge bursts
without a degradation of service. Similarly, picture a campaign in which the operator
sends an SMS to millions of subscribers as quickly as it can; each of these requests
requires a lookup before the SMS can be processed to ensure that the recipient is a
customer, thus avoiding intranetwork connectivity fees, so not only does this subscriber
database need to handle millions of lookups each day, but it also must support massive
sustained request bursts. Needless to say, Erlang is the perfect fit for these types of
applications. Now that we’ve looked at ETS and Dets tables in detail, let’s use them to
build a mobile subscriber database providing an Erlang interface we can use for
lookups.

We obviously need to use an ETS table to guarantee a constant and fast lookup time.
But because a backup of the data is needed as well, we will mirror the ETS table using
a Dets table. Two interfaces will be provided. One is for provisioning the database,
where users can be added, updated, and deleted. In this interface, operations have to
be fast, as we might be dealing with tens of millions of subscribers, but they do not
require soft real-time properties. The second interface will be for the services running
in the mobile network, where they have to look up subscriber information. These
lookups have to run independently of the provisioning interface so that they will not
affect each other, causing bottlenecks during bursts. Assuming the services using the
database described earlier are written in Erlang, providing an Erlang API to the user

A Mobile Subscriber Database Example | 231

database will further speed up the requests, as no translation of the data is required
between systems.

We will store user data in a record of type usr defined in the usr.hrl file:

%%% File : usr.hrl
%%% Description : Include file for user db

-record(usr, {msisdn, %int()
 id, %term()
 status = enabled, %atom(), enabled | disabled
 plan, %atom(), prepay | postpay
 services = []}). %[atom()], service flag list

The msisdn§ field refers to the subscriber phone number associated with the GSM SIM
card. We will store it as an integer in the ETS table, dropping the leading zero. A number
of the format 071234567 is thus represented as 71234567. This representation needs
to be used both when provisioning and when doing database lookups.

The id field is the mobile operator’s internal subscriber ID. The provisioning interface
uses it to manage particular subscribers, and it might differ from the msisdn. As it is not
possible to index on secondary keys when using ETS and Dets tables, a separate table
containing the subscriber id to msisdn mapping is needed. When starting or restarting
the system, the database server can traverse the Dets table, generating the ETS and
index mapping table entries which are stored in memory.

The Database Backend Operations
We will implement our example with small development and test iterations. It is a good
practice to isolate all the database operations that are directly dependent on Dets and
ETS tables in a module of their own, as that will allow you to change and manipulate
the storage medium later, without affecting other parts of the system. The day you
decide to migrate your subscriber data to Mnesia or any other database, you will be
able to do so with very little pain.

Let’s call our database module usr_db.erl. The three tables it will manipulate are:

UsrRam
A named ETS table storing usr records and used for fast access of the subscriber
data

UsrIndex
A named ETS table used to index the subscriber id to the msisdn

UsrDisk
A Dets table mirroring the usrRam table for redundancy and persistency purposes

§ MSISDN stands for Mobile Subscriber Integrated Services Digital Network Number.

232 | Chapter 10: ETS and Dets Tables

Our first development iteration of the server backend will cover the functionality for
opening and closing these tables. As you implement more functions, remember to add
them to the export clause of the usr_db module:

%%% File : usr_db.erl
%%% Description : Database API for subscriber DB

-module(usr_db).
-include("usr.hrl").
-export([create_tables/1, close_tables/0]).

create_tables(FileName) ->
 ets:new(usrRam, [named_table, {keypos, #usr.msisdn}]),
 ets:new(usrIndex, [named_table]),
 dets:open_file(usrDisk, [{file, FileName}, {keypos, #usr.msisdn}]).

close_tables() ->
 ets:delete(usrRam),
 ets:delete(usrIndex),
 dets:close(usrDisk).

Take particular note of the table properties. The usrRam table needs a key position
specified, as it will store usr records. Not doing so will result in the default key position
of one being chosen, which in the tuple representation of records maps to the record
name. The table will have the default type set, making every key unique. It is protec-
ted, allowing all processes to read the usr records, but only the owner process to ma-
nipulate them. The usrIndex table will store a tuple mapping a usr id to an msisdn.

The usrDisk file is a Dets table, with the filename set as an option, allowing us to use
different filenames for test purposes. As it will mirror the usrRam table with usr records,
it also needs its key position specified:

1> c(usr_db).
{ok,usr_db}
2> usr_db:create_tables("UsrTabFile").
{ok,usrDisk}
3> ets:info(usrIndex).
[{memory,308},{owner,<0.29.0>},{name,usrIndex},{size,0},{node,nonode@nohost},
 {named_table,true},{type,set},{keypos,1},{protection,protected}]
4> ets:info(usrRam).
[{memory,308},{owner,<0.29.0>},{name,usrRam},{size,0},{node,nonode@nohost},
 {named_table,true},{type,set},{keypos,2},{protection,protected}]
5> dets:info(usrDisk).
[{type,set},{keypos,2},{size,0},{file_size,5432},{filename,"UsrTabFile"}]
6> usr_db:close_tables().
ok
7> dets:info(usrDisk).
undefined
8> ets:info(usrRam).
undefined
9> ets:info(usrIndex).
undefined

A Mobile Subscriber Database Example | 233

So far, so good; it all seems to work. Let’s now include two functions to insert a new
subscriber in the database, creating an entry in the index and ETS tables together with
a backup in the Dets table. We will call the functions add_usr/1 if the subscriber is being
provisioned for the first time, and update_usr/1 if the subscriber already exists and we
are updating only its status, plan, or services:

add_usr(#usr{msisdn=PhoneNo, id=CustId} = Usr) ->
 ets:insert(usrIndex, {CustId, PhoneNo}),
 update_usr(Usr).

update_usr(Usr) ->
 ets:insert(usrRam, Usr),
 dets:insert(usrDisk, Usr),
 ok.

Study the preceding functions. Notice that when calling update_usr/1, we are over-
writing the existing table entries. In doing so, we are making the assumption that the
customer id does not change and that the user already exists. If these preconditions are
not met, the database will become corrupt, as the usrIndex table will not map the
subscriber id to the msisdn anymore. In Erlang, you should trust your internal in-
terfaces. It is the responsibility of the calling process to guarantee that these precondi-
tions are met. We will tell you how when we write these functions.

Now that we can insert data, we should also be able to look it up, using either the
msisdn or the subscriber id. The functions to do this are called lookup_id/1 and
lookup_msisdn/1. If we use the id, we need a local get_index/1 call, mapping the id to
the msisdn:

lookup_id(CustId) ->
 case get_index(CustId) of
 {ok,PhoneNo} -> lookup_msisdn(PhoneNo);
 {error, instance} -> {error, instance}
 end.

lookup_msisdn(PhoneNo) ->
 case ets:lookup(usrRam, PhoneNo) of
 [Usr] -> {ok, Usr};
 [] -> {error, instance}
 end.

get_index(CustId) ->
 case ets:lookup(usrIndex, CustId) of
 [{CustId,PhoneNo}] -> {ok, PhoneNo};
 [] -> {error, instance}
 end.

Let’s test these functions from the shell. In doing so, we need to create the ETS tables
and reopen the Dets table. As we already created the Dets table in a previous call, the
file with no entries should still be there. As a result, it will be opened instead of being
created.

234 | Chapter 10: ETS and Dets Tables

We also need to load the usr record definition in the shell, as we will be reading and
writing records. Injecting 100,000 subscribers in all three tables, an operation which
might take a few seconds as it will be dealing with heavy I/O when writing the Dets
entries to files, should provide us with sufficient data to ensure that the database is
production worthy for a smaller mobile operator:

1> c(usr_db).
{ok,usr_db}
2> rr("usr.hrl").
[usr]
3> usr_db:create_tables("UsrTabFile").
{ok,usrDisk}
4> usr_db:lookup_id(1).
{error,instance}
4> Seq = lists:seq(1,100000).
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,
 23,24,25,26,27,28,29|...]
5> Add = fun(Id) -> usr_db:add_usr(#usr{msisdn = 700000000 + Id,
 id = Id,
 plan = prepay,
 services = [data, sms, lbs]})
 end.
#Fun<erl_eval.6.13229925>
6> lists:foreach(Add, Seq).
ok
7> ets:info(usrRam).
[{memory,2214643}, {owner,<0.29.0>}, {name,usrRam}, {size,100000},
 {node,nonode@nohost}, {named_table,true}, {type,set}, {keypos,2},
 {protection,protected}]
8> {ok, UsrRec} = usr_db:lookup_msisdn(700000001).
{ok,#usr{msisdn = 700000001,id = 1,status = enabled,
 plan = prepay,
 services = [data,sms,lbs]}}
9> usr_db:update_usr(UsrRec#usr{services = [data, sms], status = disabled}).
ok
10> usr_db:lookup_msisdn(700000001).
{ok,#usr{msisdn = 700000001,id = 1,status = disabled,
 plan = prepay,
 services = [data,sms]}}

Now, let’s kill the shell process. All tables owned by this process will be terminated,
and as a result, the usr entries and indexes stored in memory will be lost. We re-create
the tables using create_tables/1:

11> exit(self(), kill).
** exception exit: killed
12> usr_db:lookup_msisdn(700000001).
** exception error: bad argument
 in function ets:lookup/2
 called as ets:lookup(usrRam,700000001)
 in call from usr_db:lookup_msisdn/1
13> usr_db:create_tables("UsrTabFile").
{ok,usrDisk}
14> usr_db:lookup_msisdn(700000001).

A Mobile Subscriber Database Example | 235

{error,instance}
15> dets:lookup(usrDisk, 700000001).
[#usr{msisdn = 700000001,id = 1,status = disabled,
 plan = prepay,
 services = [data,sms]}]

What’s happening here? Have we missed something? The database is not being restored
in the RAM-based tables, and we’re getting an {error, instance} return value. The
subscriber information is accessible only if we read it directly from the Dets table.
Simple: we’ve opened the Dets usrDisk table, giving us access to all of the entries we
had prior to terminating the shell. We’ve also re-created the usrIndex and usrRam tables,
but in doing so, we never populated them with a RAM copy of the usr records and the
usr id to msisdn mapping. We need a restore backup function that traverses the Dets
table and uses its contents when creating the index and RAM entries. Luckily, the
dets module exports a function called traverse that we can use:

restore_backup() ->
 Insert = fun(#usr{msisdn=PhoneNo, id=Id} = Usr) ->
 ets:insert(usrRam, Usr),
 ets:insert(usrIndex, {Id, PhoneNo}),
 continue
 end,
 dets:traverse(usrDisk, Insert).

As arguments, the traverse function takes the Dets table name and a fun that is applied
to every element. The fun we pass creates an entry in both the usrRam and usrIndex
tables, restoring our subscriber database to its original state:

16> c(usr_db).
{ok,usr_db}
17> usr_db:restore_backup().
[]
18> usr_db:lookup_msisdn(700000001).
{ok,#usr{msisdn = 700000001,id = 1,status = disabled,
 plan = prepay,
 services = [data,sms]}}
19> usr_db:lookup_id(1).
{ok,#usr{msisdn = 700000001,id = 1,status = disabled,
 plan = prepay,
 services = [data,sms]}}

Finally, we need an efficient way to traverse the whole database, clearing all of the
subscribers who have terminated their accounts, not paid their bill, or taken their
number to another network provider. We will recognize them through their status field,
set to disabled.

We will traverse the mobile subscribers using the first/1 and next/2 calls on the RAM
copy of the usrRam table. Do you recall us mentioning that when traversing tables, we
need to lock the tables using the safe_fixtable/2 call, as destructive operations during
the traversal might cause a runtime error, or even worse, an undefined behavior? Us-
ing safe_fixtable/2 guarantees that we will traverse each and every element only once
without being affected by any destructive operations executed after starting the

236 | Chapter 10: ETS and Dets Tables

traversal. It is a good idea to wrap the traversal operation in a catch, as we need
to guarantee the release table in the event of a runtime error. Not doing so will cause
a memory leak if the exception is caught elsewhere. The reason for using a catch,
and not a try catch, is that we are not interested in the return value of the
loop_delete_disabled/1 call, we just want to make sure it does not crash the process:

delete_disabled() ->
 ets:safe_fixtable(usrRam, true),
 catch loop_delete_disabled(ets:first(usrRam)),
 ets:safe_fixtable(usrRam, false),
 ok.

loop_delete_disabled('$end_of_table') ->
 ok;
loop_delete_disabled(PhoneNo) ->
 case ets:lookup(usrRam, PhoneNo) of
 usr{status=disabled, id = CustId}] ->
 delete_usr(PhoneNo, CustId);
 _ ->
 ok
 end,
 loop_delete_disabled(ets:next(usrRam, PhoneNo)).

With delete_disabled/0 in place, we have all of the database backend functionality we
need. We set one subscriber’s status to disabled in command 9 earlier, so traversing
the table and deleting entries with the disabled status should result in 99,999 subscrib-
ers. Let’s test it, and once we’re satisfied that it works, we’ll start defining and imple-
menting the server code itself:

20> c(usr_db).
{ok,usr_db}
21> usr_db:delete_disabled().
ok
22> ets:info(usrRam).
[{memory,2214621}, {owner,<0.182.0>}, {name,usrRam}, {size,99999},
 {node,nonode@nohost}, {named_table,true}, {type,set}, {keypos,2},
 {protection,protected}]

After having added all of the functions, the export clause of the usr_db module should
look like this:

-export([create_tables/1, close_tables/0, add_usr/1, update_usr/1, delete_usr/1,
 lookup_id/1, lookup_msisdn/1, restore_backup/0, delete_disabled/0]).

The Database Server
The database server exports three sets of functions. The first is used for operation and
maintenance purposes to start and stop the server; the second is used to interface the
customer service software to provision the database with users and the services they
are entitled to use; and the third is an interface used by the services to request infor-
mation on the users.

A Mobile Subscriber Database Example | 237

Next, we describe the interface to the database server: in describing the functions we
use the Erlang type notation, covered in more detail in Chapter 18. For example,
delete_usr(CustId) -> ok | {error, timeout} says that delete_usr has one argument
(which is a customer identifier), and it returns either the atom ok or the tuple {error,
timeout}. The vertical bar (|) is used to separate alternatives in the return type.

To begin, we will look at the operation and maintenance functions to start and stop
the server:

start() -> ok
Starts the database server using usrDb as a default Dets filename. It is there for
testing purposes.

start(FileName) -> ok
Is used to override the usrDb filename with any valid string. start/0 and start/1
are synchronous calls and return ok only when the Dets file has been traversed and
its contents written to ETS tables.

stop() -> ok | {error, Reason}
Deletes the ETS tables and closes the Dets file, terminating the database server. It
returns the result of the dets:close/1 call.

The customer service software will use the following functions to provision the users
and the services they are allowed to use. All of the functions that change the database
state are synchronously executed by the database server to guarantee data consistency:

add_usr(PhoneNum, CustId, Plan) -> ok | {error, timeout}
Is used to provision users. PhoneNum and CustId are integers, and Plan is one of the
atoms prepay or postpay.

delete_usr(CustId) -> ok | {error, timeout}
Is used to delete a particular user and all of its associated indexes.

set_service(CustId, Service, Flag) -> ok | {error, instance | timeout}
Is used to add or delete a Service for a particular subscriber. Service is a list of
atoms, including (but not limited to) data, lbs, and sms. The atom data confirms
the user has subscribed to a data plan, sms allows the user to send and receive
premium-rated SMSs, and lbs allows third parties to execute location lookups on
this particular user. Flag denotes the atom true or false, depending on whether
the Service is being added or deleted.

set_status(CustId, Status) -> ok | {error, instance | timeout}
Will set the status to enabled or disabled for a particular CustId.

delete_disabled()-> ok | {error, timeout}
Will traverse the table and delete all users whose status is set to disabled.

lookup_id(CustId) -> {ok, #usr{}} | {error, instance}
Will look up a user based on its CustId and return a record of type usr, as defined
in the usr.hrl include file. This function does not change the user data, and as a
result, it is executed in the scope of the calling process, and not by the server.

238 | Chapter 10: ETS and Dets Tables

Finally, we have the functions used by the service applications. Both of these functions
are executed in the scope of the calling process, as the data needed is available through
the protected ETS tables. No messages are exchanged between the client and the proc-
ess, avoiding a bottleneck during heavy load and decreasing the overall response time.
As most of the services will have access only to the msisdn and not to usr id, the
msisdn is used as a key:

lookup_msisdn(PhoneNo)) -> {ok, #usr{}} | {error, instance}
Will look up a user based on its PhoneNo and return a record of type usr. The main
use for this function is for service applications to use the data in the record to
determine whether the user is eligible for a particular service. For example, a prepay
customer might have to be charged to ensure that he has good credit before being
allowed to send or receive a premium-rated SMS. Or we might want to send an
SMS with latitude and longitude only if a user has the sms and lbs flags set.

service_flag(PhoneNo, Service) -> true | false | {error, instance | disabled}
Will check whether a user exists and has an enabled status. If so, it will traverse the
list of services to determine whether the subscriber is allowed to use this Service
in a particular request. This is a variant of the lookup_msisdn/1 call, where logical
checks are done in the usr module.

Note how we have abstracted the server loop in the code, handling all of the messages
in separate functions where we pattern-match on the first argument of each call. All
client/server communication has also been abstracted through the call/1 and
reply/2 functions. Starting the server is a synchronous operation, and only when the
Dets table has been loaded and mirrored in the usrIndex and usrRam tables do the
start/0 and start/1 calls return. The timeout has been set to 30 seconds. Depending
on the server load and the size of the database, this value might have to be fine-tuned.
Real timeout values are usually determined when stress-testing the system:

%%% File : usr.erl
%%% Description : API and server code for cell user db

-module(usr).
-export([start/0, start/1, stop/0, init/2]).
-export([add_usr/3, delete_usr/1, set_service/3, set_status/2,
 delete_disabled/0, lookup_id/1]).
-export([lookup_msisdn/1, service_flag/2]).

-include("usr.hrl").
-define(TIMEOUT, 30000).

%% Exported Client Functions
%% Operation & Maintenence API

start() ->
 start("usrDb").

start(FileName) ->
 register(?MODULE, spawn(?MODULE, init, [FileName, self()])),

A Mobile Subscriber Database Example | 239

 receive started-> ok after ?TIMEOUT -> {error, starting} end.

stop() ->
 call(stop).

%% Customer Service API

add_usr(PhoneNum, CustId, Plan) when Plan==prepay; Plan==postpay ->
 call({add_usr, PhoneNum, CustId, Plan}).

delete_usr(CustId) ->
 call({delete_usr, CustId}).

set_service(CustId, Service, Flag) when Flag==true; Flag==false ->
 call({set_service, CustId, Service, Flag}).

set_status(CustId, Status) when Status==enabled; Status==disabled->
 call({set_status, CustId, Status}).

delete_disabled() ->
 call(delete_disabled).

lookup_id(CustId) ->
 usr_db:lookup_id(CustId).

%% Service API

lookup_msisdn(PhoneNo) ->
 usr_db:lookup_msisdn(PhoneNo).

service_flag(PhoneNo, Service) ->
 case usr_db:lookup_msisdn(PhoneNo) of
 {ok,#usr{services=Services, status=enabled}} ->
 lists:member(Service, Services);
 {ok, #usr{status=disabled}} ->
 {error, disabled};
 {error, Reason} ->
 {error, Reason}
 end.

%% Messaging Functions

call(Request) ->
 Ref = make_ref(),
 ?MODULE! {request, {self(), Ref}, Request},
 receive
 {reply, Ref, Reply} -> Reply
 after
 ?TIMEOUT -> {error, timeout}
 end.

reply({From, Ref}, Reply) ->
 From ! {reply, Ref, Reply}.

%% Internal Server Functions

240 | Chapter 10: ETS and Dets Tables

init(FileName, Pid) ->
 usr_db:create_tables(FileName),
 usr_db:restore_backup(),
 Pid ! started,
 loop().

loop() ->
 receive
 {request, From, stop} ->
 reply(From, usr_db:close_tables());
 {request, From, Request} ->
 Reply = request(Request),
 reply(From, Reply),
 loop()
 end.

%% Handling Client Requests

request({add_usr, PhoneNo, CustId, Plan}) ->
 usr_db:add_usr(#usr{msisdn=PhoneNo,
 id=CustId,
 plan=Plan});

request({delete_usr, CustId}) ->
 usr_db:delete_usr(CustId);

request({set_service, CustId, Service, Flag}) ->
 case usr_db:lookup_id(CustId) of
 {ok, Usr} ->
 Services = lists:delete(Service, Usr#usr.services),
 NewServices = case Flag of
 true -> [Service|Services];
 false -> Services
 end,
 usr_db:update_usr(Usr#usr{services=NewServices});
 {error, instance} ->
 {error, instance}
 end;

request({set_status, CustId, Status}) ->
 case usr_db:lookup_id(CustId) of
 {ok, Usr} ->
 usr_db:update_usr(Usr#usr{status=Status});
 {error, instance} ->
 {error, instance}
 end;

request(delete_disabled) ->
 usr_db:delete_disabled().

Testing the usr server in the shell could yield something similar to this:

1> c(usr).
{ok,usr}
2> rr("usr.hrl").

A Mobile Subscriber Database Example | 241

[usr]
3> usr:start().
ok
4> usr:add_usr(700000000, 0, prepay).
ok
5> usr:set_service(0, data, true).
ok
6> usr:lookup_id(0).
{ok,#usr{msisdn = 700000000,id = 0,status = enabled,
 plan = prepay,
 services = [data]}}
7> usr:set_status(0, disabled).
ok
8> usr:service_flag(700000000,lbs).
{error,disabled}

When reviewing the database server code base, try to break it with negative test cases
and corrupt data. Using the interface provided in the usr module, are you able to corrupt
the data by changing the customer ID without updating the usrIndex table? See whether
you manage to detect weak spots in the code that might cause a runtime error and result
in the server terminating.

There are a number of ways to build more efficient collections in a pure functional style,
many of which are described in Purely Functional Data Structures by Chris Okasaki
(Cambridge University Press).

Exercises

Exercise 10-1: Pretty-Printing
This exercise asks you to complete the definition of prettyEntry from the index example
earlier in this chapter.

In defining prettyEntry, you might find it useful to define these functions:

accumulate/1
This function should take a list of line numbers, in descending order, and produce
a list containing ranges as well as removing duplicates. For instance:

accumulate([7,6,6,5,3,3,1,1]) = [{1},{3},{5,7}]

prettyList/1
This function will print the output of accumulate so that on the list [{1},{3},
{5,7}] the output is 1,3,5-7..

pad/2
This function, called with number N and string Word, will return the string padded
to the right with spaces to give it length N (assuming Word is not longer than N).

242 | Chapter 10: ETS and Dets Tables

Exercise 10-2: Indexing Revisited
How would you modify the index program so that the ETS table is an ordered set keyed
on the Word field of tuples of the form {Word, LNs}, where LNs is a list of line numbers
on which the word occurs?

Exercise 10-3: ETS Tables for System Logging
An ETS table can be used to log traces from a communication system, over which
analysis and error reporting can be done. Take the example of a simple messaging
system in which each message is expected to receive a single acknowledgment. Mes-
sages can be identified by the time at which they are sent using the BIF now(); assume
that messages are timestamped with their send time so that they can be matched with
their acknowledgment.

Design an ETS table or tables to contain messages and acknowledgments, and using
these tables write a program to do the following:

• Check that each message receives a unique acknowledgment.

• Monitor the average time taken for acknowledgments to be received over a sliding
one-second send window.

Exercises | 243

CHAPTER 11

Distributed Programming in Erlang

To write a fault-tolerant system, you need at least two computers* and you need to
distribute your program across them. Distributed systems lie at the heart of modern
computing. In server-side programming, it is the exception rather than the rule to see
a single computer performing a task of any difficulty; instead, a number of computers
(or processors) will together provide a robust, efficient, and scalable platform upon
which applications can be built.

Erlang distribution is built into the language, and from the user’s point of view, it can
be completely transparent: processes are accessed by a pid, and this may equally well
refer to a process on the local computer or a process on a system on the other side of
the world. In this chapter, we will look at the theory behind distributed systems and
see how it is applied to Erlang-based systems.

Distributed Systems in Erlang
The essence of distributed systems is to provide in a transparent way a service of some
kind through a number of computers, processors, or cores linked together by a network.
A service can be specific, such as the storage provided by a distributed filesystem or
database, or more general, as in a distributed operating system that provides all the
facilities of a general-purpose OS across a network of computers. Distribution can be
seen in tightly coupled parallel processors, but more clearly in the loosely coupled grids
of e-science systems. Erlang provides distributed programming facilities so that Erlang
systems can be run across networked Erlang nodes.

Take an installation of Ejabberd, an Erlang open source Jabber-based instant messaging
(IM) server. Its implementation is distributed across a cluster of two or more Erlang
nodes. These nodes, residing on the same or separate machines, help each other by
sharing the message and event loads. Should one of the nodes terminate because of a
software or hardware error, or simply because of lack of memory, the other nodes take
over the traffic, hiding the fault from the end user. In the worst case, end users might

* At least two, according to Joe Armstrong, but three if you ask Leslie Lamport.

245

believe they experienced a network glitch when the socket reconnects to the new node,
but all they would notice are other users signing out and in.

The Erlang Web framework, an open source application for Erlang-based web appli-
cations, uses distribution for scalability and reliability. A typical cluster consists of
frontend and backend nodes. The frontend nodes contain the web servers (running in
the Erlang node), a cache layer, and a layer handling XML parsing for inbound requests.
It also contains the functionality for handling the dynamic generation of XHTML. Two
or more backend nodes contain the databases and all of the glue and logic needed to
generate the dynamic content. The real load will be on the frontend, as it handles the
socket connections and most of the parsing. To scale the system, all you need to do is
add more hardware and frontend nodes, increasing the backend support only when
necessary. Should any of the nodes fail the load balancers will automatically redirect
the traffic to the nodes that are still alive.

If you want to scale a system in Erlang by distributing functionality across a number of
nodes, one thing you need to consider is how the load might be balanced across the
nodes. It would be possible to allocate tasks to nodes at random or to use a round-robin
approach; either process works well with tasks of a similar size. Otherwise, you need
to estimate the size of the tasks to be distributed. Finally, you could use a master-slave
model where tasks are delegated as required.

Whatever approach you use, it is crucial to monitor the system behavior and to adapt
the distribution strategy—either in real time or via code updates—to respond to the
system’s changing requirements.

Another example of distributed systems is in one of the first flagship Erlang products,
the AXD301 ATM switch. The smallest Erlang cluster consists of two nodes, a call
setup node and an operation and maintenance (O&M) node. If the O&M node fails,
a failover occurs, and the O&M applications are restarted on the call setup node. When
the O&M node comes back up, through automated recovery or manual intervention,
a takeover occurs, and the O&M applications are migrated back to the original node.

Failures in the call setup node are considered critical, as they affect ATM traffic. If a
call setup node terminates, a failover would move the call setup applications to the
O&M node. Data distribution ensures that any calls whose setups were initiated before
the failover are not lost. They are picked up by the new call setup application running
on the O&M node. When the original call setup node is restarted, to ensure that traffic
is not disrupted and no call setup requests are lost, a takeover of the O&M applications
results in the O&M functionality being migrated to the newly restarted node and the
call setup functionality remaining on what was formerly the O&M node.

Concurrency is central to all distributed systems, since computation and communica-
tion can proceed in parallel across the processors and networks comprising the system.
Central to the challenges of distributed systems is robustness in the event of failure.
This is memorably summarized by one of the pioneers in the field, Leslie Lamport:

246 | Chapter 11: Distributed Programming in Erlang

A distributed system is one in which the failure of a computer you didn’t even know
existed can render your own computer unusable.

But if you get it right, there are a number of advantages in building a distributed system:

• It will provide performance that can be scaled with demand. A typical example here
is a web server: if you are planning a new release of a piece of software, or you are
planning to stream video of a football match in real time, distributing the server
across a number of machines will make this possible without failure.

This performance is given by replication of a service—in this case a web server—
which is often found in the architecture of a distributed system.

• Replication also provides fault tolerance: if one of the replicated web servers fails
or becomes unavailable for some reason, HTTP requests can still be served by the
other servers, albeit at a slower rate. This fault tolerance allows the system to be
more robust and reliable.

• Distribution allows transparent access to remote resources, and building on this, it
is possible to federate a collection of different systems to provide an overall user
service. Such a collection of facilities is provided by modern e-commerce systems,
such as the Amazon.com website.

• Finally, distributed system architecture makes a system extensible, with other serv-
ices becoming available through remote access.

Telecom systems need to reflect all of this. But looking at the bigger picture, they are
not the only ones. Trading systems, retail banking systems, air and railway traffic con-
trol systems, and web services are just some of the areas where highly transactional,
mission-critical systems have benefited from Erlang distribution.

Distributed Computing in Erlang: The Basics
An Erlang node is an executing Erlang runtime system that has been given a name.
Multiple nodes can run on a single host, but they can also be running on different host
computers, too, as shown in Figure 11-1, where three nodes are running on the hosts
STC and FCC in their respective subnetworks.

Figure 11-1. Three nodes running on two hosts

Distributed Computing in Erlang: The Basics | 247

http://www.amazon.com

As a first example, we’ll look at two nodes running on the same machine, STC, as shown
in Figure 11-2. To run a node, the erl command needs to be given the sname flag (the
name flag can also be used; we’ll discuss this shortly). For example:

erl -sname foo
Erlang (BEAM) emulator version 5.6.3 [source] [64-bit] [smp:2]
 [async-threads:0] [kernel-poll:false]

Eshell V5.6.3 (abort with ^G)
(foo@STC)1>

Note that the prompt in the Erlang shell displays the name of the node, as well as its
host computer: foo@STC. This is called the (unique) identifier of the node.

A similar command, erl–sname bar, will set up a second node on the STC system.

To understand what happens next, you need to look at the module dist.er1. This
contains the function t:

t(From) -> From ! node().

The function takes as a parameter a pid, From, and in its single action it sends a message
to the process with that pid. The message is the result of calling node(), which returns
the identifier of the node where it is called.

Next, we’ll look at the user input typed at foo@STC. This uses the spawn/4 function,
whose first argument is the node where the spawn should take place. The remaining
arguments are as for spawn/3: the module, function, and initial arguments. The effect
of this is as follows:

Figure 11-2. A first example: two nodes on one host

248 | Chapter 11: Distributed Programming in Erlang

1. The process is spawned at the node bar@STC and starts executing function t with
the pid of the shell running at foo@STC as the argument.

2. The effect of this is to send the value of node(), the identifier of the current node,
which here will be bar@STC, to the pid; t then terminates.

3. This can be tested by flushing the remaining messages at foo@STC, which shows
that it has been sent the identifier bar@STC.

This example shows the transparency of communication. The command to send the
message between the two nodes has exactly the same form as in the nondistributed
case: Pid!Message. Moreover, the messages from one node to another will be delivered
in the same order they are sent. The only difference between this and the nondistributed
case is that a remote node may become unavailable.

Sending a message to a named process is different from the nondistrib-
uted case, in that naming is local to each node. So, to send a message to
the process named frequency at the node foo@STC the form {fre
quency,foo@STC}!Message is used.

Node Names and Visibility
As we said before, a node is an executing Erlang system, and a node is said to be alive
if it can communicate with other nodes; this is another way of saying that the node is
named, and so can take part in communication.

The function erlang:is_alive() will test whether the local runtime system is alive, and
as you can see from the following example, it is possible to change the live status of a
running runtime system using functions from the net_kernel module, as well as finding
out the name of the current node using the node/0 BIF. Try it out:

1> erlang:is_alive().
false
2> net_kernel:start([foo]).
{ok,<0.33.0>}
(foo@STC.local)3> erlang:is_alive().
true
(foo@STC.local)4> node().
'foo@STC.local'
(foo@STC.local)5> net_kernel:stop().
ok
6> erlang:is_alive().
false

Each live node has to be named: these names must be unique on that host, but can be
duplicated across different hosts. The name/host pair, called the identifier of the node,
is used to uniquely identify the node in the network.

Names take two forms. You already saw the first one; the second one is new:

Distributed Computing in Erlang: The Basics | 249

Short names: erl –sname foo ...
The sname will name a host on the local network, and takes the form name@host
(e.g., foo@STC).

Long names: erl –name foo ...
The name gives the full IP address of the host: this could be foo@192.168.1.11, or
(on the local network) foo@STC.local. As you can see in command 4 of the pre-
ceding example, using the net_kernel:start functions to start a distributed node
results in the node being given a long name.

Nodes with long names can communicate only with other nodes with long names;
similarly for nodes with short names.

To use hostnames such as server.kent.ac.uk, rather than raw IP ad-
dresses such as 192.168.1.11, it is necessary to resolve hostnames to IP
addresses. A domain name system (DNS) server does this, but without
access to a DNS server, names can be resolved locally using information
contained in a hosts file. The details of how to do this vary across dif-
ferent platforms. Consult the documentation for your particular oper-
ating system for more information on how it works.

Communication and Security
For two nodes to communicate, not only must both of them be alive, but also they must
share some information contained in an atom called the secret cookie. Each node has
a single cookie value at any time, and nodes sharing the same value can communicate.

Each node can be started with an explicit cookie value, as in the following:

erl -sname foo -setcookie blah

If no value is set on launch, the Erlang runtime system will pick up the value stored in
the file .erlang.cookie. If the file does not exist, it will be created in the home directory
of the user’s account. A randomly generated secret cookie value will be stored in it. As
a result, nodes created on the same user account will share the same cookie value by
default. If you have been experimenting with distributed Erlang without setting a
cookie, look for the .erlang.cookie file. You can edit it to whatever value you want.

To show secret cookies and distribution in action, we have repeated the example from
Figure 11-2 with nodes running on separate host computers on the same network; this
is shown in Figure 11-3.

Note in Figure 11-3 how the two nodes are explicitly started with the same cookie value;
this value will override any values contained in an .erlang.cookie file on either host.

Distributing the Erlang code: A warning

Your first attempt to distribute the Erlang code may fail: why? The following call:

250 | Chapter 11: Distributed Programming in Erlang

(foo@STC)1> spawn('bar@FCC', dist, t, [self()]).

is on the node foo at host STC, but the spawned code is executed on FCC. The module
dist.erl will not be executable on FCC unless it is there, as it will not be transferred
from STC to FCC automatically.

Figure 11-3. Example with nodes on different hosts

Moreover, the call will still fail unless there is a compiled version of the code in the code
search path on the remote Erlang node on host FCC.

Erlang Distribution and Security
When a distributed node on your machine gets connected to a remote node through a
shared cookie, the owner of the remote node gains the same user access rights as the
account on which your local Erlang node is running.

This might be acceptable in a closed telecom system or a banking system running be-
hind a firewall, but if you are running the node on your personal account, anyone
connected to it would be able to read and delete files, execute commands, and hijack
your machine. Although the caller of the following function:

spawn(YourNode, os, cmd, ["rm -rf *"])

might find it funny, you might not enjoy the trail of peace and tranquility the call leaves
behind.†

† Unless your account was in need of some serious housekeeping.

Distributed Computing in Erlang: The Basics | 251

As a result, you should never publish your Erlang node name and cookie to anyone,
unless you’ve adapted the net kernel to cater for security issues or you explicitly trust
the person not to do anything malicious.

Communication and Messages
The most elementary communication is for one node to test whether it can communi-
cate with another, a process informally known as pinging the node (see Figure 11-4).

Figure 11-4. Pinging a node

Figure 11-4 shows two nodes initialized with different cookie values, which will prevent
their communication. The foo node attempts to communicate using net_adm:ping/1:
the pang response shows that this fails. The pinged node also gives an error report to
signal the connection attempt, by way of warning that a potential security problem has
occurred. After changing the cookie for foo to cake, the ping is successful, indicated by
the pong result; such a successful attempt is not signaled at the bar node.

Next, we’ll look at an example in which a call to spawn/4 registers a process on a remote
node, and then communicates with it; this is illustrated in Figure 11-5.

The first command in the foo node spawns the dist:s/0 process. The effect of this is
to register the loop loop/0 under the name server. The effect of this loop is to repeatedly
receive messages of the form {M, Pid} and to return the message M to the Pid. In the
second command at foo, the message hi is sent together with the Pid of the shell running
at foo. This is received by server, and the hi message is returned to foo; you can see
this in the inbox of foo as a result of the flush() of the inbox.

252 | Chapter 11: Distributed Programming in Erlang

Node Connections
Distributed Erlang nodes are able to communicate with each other, provided that they
share the same cookie information, but you haven’t seen how the connections between
the nodes are set up. That is because the Erlang runtime system sets up the connection
automatically to a node when it is first referred to. This might be through the
net_adm:ping/1 call or by sending a message to a registered process on it. Information
about nodes is, by default, shared between connected nodes so that if A knows about
B, and B about C, then A will also find out about C.

Each node has a cookie value at any one time. Security in distributed Erlang is based
on sharing cookie information: what happens when cookie values are changed? The
following interaction shows this in action:

(foo@STC)1> net_adm:ping('bar@STC').
pang
(foo@STC)2> erlang:set_cookie(node(),cake).
true
(foo@STC)3> net_adm:ping('bar@STC').
pong
(foo@STC)4> erlang:set_cookie(node(),fish).
true
(foo@STC)5> net_adm:ping('bar@STC').
pong

The nodes foo and bar initially have different cookies, hence the negative reply to the
first command. In command 2, the cookie of foo is set to that of bar, and so in command
3, the ping is successful, because a connection can be established. In command 4, the

Figure 11-5. Communication with a registered process on another node

Distributed Computing in Erlang: The Basics | 253

cookie is changed back to its original value, but command 5 shows that the two nodes
remain connected despite the fact that the two nodes now have different cookies.

This “inclusive” model of connection may not be what is required, and using the fa-
cilities of the net_kernel module it is possible to control connections by hand. It is also
possible to use the erl command with the flag -connect_all false to avoid nodes from
globally connecting to each other.

The net_kernel process at each node coordinates operations at a distributed Erlang
node. BIFs such as spawn/4 are converted by the net_kernel to messages that are sent
to the net_kernel on the remote node. The net_kernel process also handles authenti-
cation by cookies. Because the net_kernel is simply another Erlang process, it is possible
for a user to modify it to provide a different behavior, such as changing the authenti-
cation scheme or not allowing processes from another node to spawn processes.

Even the most security-unconscious readers will have realized that basing your security
on secret cookies alone is not very reliable. As telecom clusters tend to run behind
firewalls, enhancing security in its distribution model has never been an issue. In the
early days, cookies were in fact sent across the network unencrypted!

Considering the low level of security in distributed Erlang, how can you build a secure
distributed system in Erlang? There are two answers to this question:

• If you are building a distributed system for scalability and robustness, it’s likely
that you are working in a closed and secure network environment. In this case, the
Erlang distribution model directly supports what you require in a transparent and
effective way.

• If you want to build a geographically distributed system, it is best to communicate
between nodes using existing secure mechanisms, such as SSL over TCP/IP. The
Erlang distribution has library support for many protocols, including secure pro-
tocols such as SSL. We’ll cover the fundamentals of how to communicate using
TCP/IP in Erlang in Chapter 15.

You can enhance security by writing your own net_kernel process, giving the process
whatever behavior and level of security you might require.

Hidden nodes

When nodes get connected, they start monitoring each other, creating a fully meshed
network. If you have four Erlang nodes, the fully meshed network would result in six
TCP/IP connections among the nodes. Using the formula N * (N – 1) / 2, we quickly
compute that 10 nodes require 45 connections. Not only would this result in an over-
head of the monitoring messages being sent among the nodes, but also we might not
have wanted to connect all of these nodes to each other in the first place. Going up to
100 or more nodes makes the situation even worse, especially if many of these nodes
have no relation to each other.

254 | Chapter 11: Distributed Programming in Erlang

The solution is to use hidden nodes and explicitly set up the connections where neces-
sary. You start a hidden node by starting Erlang with the following:

erl -sname foo -hidden

Once started, connect to other nodes using the net_kernel:connect(NodeName) call.
Using the nodes/0 BIF will not return any hidden nodes. To view them, you would have
to call nodes/1 with an atom as the argument: calling nodes(hidden) will list the hidden
nodes that you are connected to, and nodes(connected) will give an aggregated list of
all nodes, both hidden and not hidden.

In the following example, we start three nodes, naming them alpha, beta, and gamma,
where gamma is a hidden node. Having started them, we connect to beta@STC and
gamma@STC from alpha@STC. Once the three nodes have been started, the result is as
follows:

(alpha@STC)1> net_kernel:connect('beta@STC').
true
(alpha@STC)2> net_kernel:connect('gamma@STC').
true
(alpha@STC)3> nodes().
['beta@STC']
(alpha@STC)4> nodes(hidden).
['gamma@STC']
(alpha@STC)5> nodes(connected).
['beta@STC', 'gamma@STC']

Once we’ve executed all of the commands in alpha, we can inspect how the node con-
nectivity has spread to beta and gamma. Let’s have a look:

UNIXSHELL> erl -sname beta
Erlang (BEAM) emulator version 5.5
Eshell V5.5 (abort with ^G)
(beta@STC)1> nodes().
['alpha@STC']
(beta@STC)2> nodes(connected).
['beta@STC']

As you can see in the preceding code, the hidden node gamma does not appear. In
gamma itself, no nodes are visible unless you view them with the hidden or connected
flag. When doing so, the only visible node is alpha, as the information on beta was not
spread when the connection was established:

UNIXSHELL> erl -sname gamma -hidden
Erlang (BEAM) emulator version 5.5
Eshell V5.5 (abort with ^G)
(gamma@STC)1> nodes().
[]
(gamma@STC)2> nodes(hidden).
['alpha@STC']

Distributed Computing in Erlang: The Basics | 255

Hidden nodes can be used as gateways connecting smaller distributed
clusters together. It is a technique which allows hundreds of nodes to
be loosely connected in a grid, without the overhead of them having to
monitor each other. Hidden nodes are also commonly used for opera-
tion and maintenance, as well as for trace nodes, where the node does
not carry any traffic, and is not required for the system to operate, but
has to be able to retrieve information and interact with remote nodes.

Remote Procedure Calls
The classic construct in distributed computing is the remote procedure call (RPC) in
which a local call to a procedure is replaced by a call to the same procedure running
on a remote node. RPC is simple to implement in Erlang, and moreover, the Erlang
implementation avoids many of the pitfalls of RPC in other languages.

In the basic Erlang implementation of RPC, the following (local) function call,

Val = fac(N)

is replaced by a message to send and receive, as shown here and illustrated in Fig-
ure 11-6:

remote_call(Message, Node) ->
 {facserver, Node} ! {self(), Message},
 receive
 {ok, Res} ->
 Res
 end.

Figure 11-6. Remote procedure call

In the following code, the facserver process is on the bar@STC node and runs in the
facLoop/0 loop function:

server() ->
 register(facserver,self()),
 facLoop().

facLoop() ->
 receive
 {Pid, N} ->
 Pid ! {ok, fac(N)}

256 | Chapter 11: Distributed Programming in Erlang

 end,
 facLoop().

The main difference between a local and a remote call is the fact that a remote node
may go down. You can deal with this in a number of different ways. For example, you
can add a timeout in the client code:

remote_call(Message, Node) ->
 {facserver, Node} ! {self(), Message},
 receive
 {ok, Res} ->
 Res
 after 1000 ->
 {error, timeout}
 end.

If no reply is received within one second, the tuple {error, timeout} is returned. You
have to be careful when using timeouts, as the message might still be received after the
timeout and stored in the process mailbox. The remote server might be extremely busy
or the network may be highly congested. If you do not flush the message, the next
time remove_call/2 is invoked and a new request to the factorial server is sent, you’ll
end up retrieving the first message in the queue containing the reply from the previous
call.

Alternatively, it is possible to link to the server process, so if that fails, the client process
will also fail. You can do this by launching the server process using spawn_link/4 rather
than spawn/4:

setup() ->
 process_flag(trap_exit, true),
 spawn_link('bar@STC',myrpc,server,[]).

If the remote process terminates, you will receive the usual 'EXIT' signal. If the network
connection between the two nodes goes down, the network kernel sends an 'EXIT'
signal with reason noconnection.

Finally, it is possible to monitor whether a node is alive; the monitor_node(Node,Bool)
BIF will switch this on/off for Node according to the Boolean flag Bool, as in the following
code. When monitoring is active, the message {nodedown, Node} will be sent to the
monitoring process:

remote_call(Message, Node) ->
 monitor_node(Node,true),
 {facserver, Node} ! {self(), Message},
 receive
 {ok, Res} ->
 monitor_node(Node,false),
 Res;
 {nodedown, Node} ->
 {error, node_down}
 end.

Distributed Computing in Erlang: The Basics | 257

Don’t forget to demonitor your node when you are done, because calling
monitor_node(Node, true) will generate a nodedown message for each time the BIF was
called.

The rpc Module
The rpc library module provides implementations of services that are similar to remote
procedure calls, as well as facilities for broadcast and parallel evaluation of RPC calls.
The most commonly used function is:

rpc:call(Node, Module, Function, Arguments)

which executes the function on the remote node. The Module must be in the code search
path on the remote node, and the nodes must either be connected or share the cookie.
The result is the return value of the call, or, upon failure, {badrpc, Reason}.

If your applications are going to be distributed, spend some time reading through the
manual pages of the rpc module and become familiar with it. You will find help func-
tions for synchronous, asynchronous, and blocking calls. There are also calls to broad-
cast calls, both synchronously and asynchronously to a pool of nodes. You never know
when you are going to need these functions, so reviewing them now will avoid your
having to reinvent the wheel at a later date.

I/O Group Leaders
Try calling rpc:call(Node, io, format, ["Hello World~n"]) and you will be surprised.
Hello World is printed out not on the remote node, but on the local one.

This behavior is explained by a concept called the group leader. Every Erlang process
has a group leader that is responsible for handling all of the I/O for that process. This
group leader process is inherited, resulting in the child processes, including those on
remote nodes, sharing the same group leader as their parent. When executing remote
procedure calls, the group leader is passed to the remote node with the call.

Group leaders can be reassigned during runtime. The BIF group_leader() returns the
process identifier of the group leader of the calling pid while the call group_leader(Lead
erPid, Pid) assigns the group leader process LeaderPid to the process denoted by Pid.

Essential Distributed Programming Modules
A number of key modules support distributed programming in Erlang. Some we have
already covered, while others are new:

258 | Chapter 11: Distributed Programming in Erlang

erl
This module contains the erl command that starts an Erlang runtime system. You
can change the runtime system behavior by setting various flags on launch. These
include:

-connect_all false
With this flag, the system will not maintain a global list of connected nodes,
thus preventing global naming.

-hidden
This has the effect of launching a hidden node, which is often used for oper-
ation and maintenance purposes.

-name Name/-sname Name
These flags give the node a long/short name, Name.

-setcookie Cookie
This flag sets the cookie value for the node to Cookie.

erlang
The erlang module collects the Erlang BIFs, many of which are auto-imported and
can thus be called without the erlang: prefix. Here the ones that are not auto-
imported are prefixed with the erlang module:

disconnect_node(Node)
This will disconnect the Node passed as an argument.

erlang:get_cookie()
This returns the current cookie for the local node if it is alive; otherwise, it
returns nocookie.

monitor_node(Node, Flag)
This turns on/off the monitoring of the node Node depending on whether the
Flag is set to true or false. There is also a variant, monitor_node/3, which is
not autoimported.

node()
This returns the name of the local node, Name@Host, or it returns non
ode@nohost if it is not alive.

node(Arg)
This returns the node where Arg is located: Arg can be a pid, a reference, or a
port.

nodes()
This returns a list of visible nodes in the system, excluding the local node.
nodes(Type) will return a list of particular nodes, where Type is the atom
hidden or connected.

Distributed Computing in Erlang: The Basics | 259

erlang:set_cookie(Node, Cookie)
This sets the cookie at Node to be Cookie.

spawn(Node, Module, Function, ArgumentList)
This performs spawn(Module, Function, ArgumentList) on the node Node.
spawn_link/4 is similarly analogous to spawn_link/3.

net_kernel
This module contains the infrastructure for manually starting, stopping, connect-
ing, and monitoring nodes. These functions will be called automatically by the
runtime system, but can also be used in modified ways by the user.

net_adm
This module contains various useful functions, including ping (described earlier)
and functions to examine the local hosts file, among others.

The epmd Process
When running the distributed Erlang examples in this chapter, you might have noticed
an OS thread running a command called epmd. This is a part of the Erlang runtime
system that acts as a port mapper deamon for Erlang distributed nodes. One epmd dae-
mon process is started per machine, regardless of the number of distributed Erlang
nodes running on it. The daemon will listen for incoming connection requests on port
4369, mapping them to the listening port of the node that is being connected to. If not
already running, epmd is automatically launched when you start your first distributed
Erlang node. Starting it manually, however, allows you to pass a set of commands and
configuration parameters.

You will find the epmd command useful when troubleshooting problems relating to
distribution, configuring Erlang distribution to work through firewalls, or trying to
simulate busy networks. The executable is located in the Erlang root directory, together
with the binaries of the virtual machine. Flags which can be passed to it include the
following:

-help
Prints a list of debugging commands. These commands are not always listed in the
manual pages.

-port PortNumber
Changes the listening port. This is useful when dealing with particular ports in
firewalls.

-names
Lists the names of the local nodes. This is useful when running Erlang as a back-
ground process without a shell looking for name conflicts.

-daemon
Starts epmd as a daemon process.

260 | Chapter 11: Distributed Programming in Erlang

-kill
Kills the epmd process. Connected processes remain connected, but new attempts
to connect on that host will fail. Restarting epmd will result in the loss of information
regarding all connected nodes. New nodes will be able to connect to each other,
but old ones will not.

-packet_timeout
Sets the number of seconds a connection can be inactive before epmd times out and
closes the connection. Connections are kept open by a keepalive; if there is no other
traffic, tic messages are sent and acknowledged by a tok.

-delay_accept and –delay_write
Are used in testing environments to simulate busy servers and network congestion.

Distributed Erlang Behind Firewalls
When running distributed Erlang nodes behind firewalls, you need to open the port
on which epmd listens. By default, this is port 4369, but you can change it to whatever
port you please, as long as it is consistent in your node cluster. You also need to open
the ports that the individual nodes use to connect to each other. You can specify the
node range by running the following commands:

application:set_env(kernel, inet_dist_listen_min, 9100)
application:set_env(kernel, inet_dist_listen_max, 9105)

These commands force Erlang to use ports from 9100 to 9105 for distribution. You can
replace these values with whatever range you want.

Exercises

Exercise 11-1: Distributed Associative Store
Design a distributed version of an associative store in which values are associated with
tags. It is possible to store a tag/value pair, and to look up the value(s) associated with
a tag. One example for this is an address book for email, in which email addresses
(values) are associated with nicknames (tags).

Replicate the store across two nodes on the same host, send lookups to one of the nodes
(chosen either at random or alternately), and send updates to both.

Reimplement your system with the store nodes on other hosts (from each other and
from the frontend). What do you have to be careful about when you do this?

How could you reimplement the system to include three or four store nodes?

Design a system to test your answer to this exercise. This should generate random store
and lookup requests.

Exercises | 261

Exercise 11-2: System Monitoring
Design a system to monitor the behavior of your distributed store systems under test
conditions. This system—which could be another node in the overall system—should
log throughput and load-balancing information. How does the system behave when it
becomes overloaded?

262 | Chapter 11: Distributed Programming in Erlang

CHAPTER 12

OTP Behaviors

In previous chapters, we introduced patterns that recur when you program using the
Erlang concurrency model. We discussed functionality common to concurrent systems,
and you saw that processes will handle very different tasks in a similar way. We also
emphasized special cases and potential problems that have to be handled when dealing
with concurrency.

For example, picture a project with 50 developers spread across several geographic
locations. If the project is not properly coordinated and no templates are provided, how
many different client/server implementations might the project end up with? Even more
dangerous, how many of these implementations will handle special borderline cases
and concurrency-related errors correctly, if at all? Without a code review, can you be
sure there is a uniform way across the system to handle server crashes that occur after
clients have sent a request to the server? Or guarantee that the response from a request
is indeed the response, and not just any message that conforms to the internal message
protocol?

OTP behaviors address all of these issues by providing library modules that implement
the most common concurrent design patterns. Behind the scenes, without the pro-
grammer having to be aware of it, the library modules ensure that errors and special
cases are handled in a consistent way. As a result, OTP behaviors provide a set of
standardized building blocks used in designing and building industrial-grade systems.
The subject of OTP behaviors and their related middleware is vast. In this chapter, we
provide the overview you need to get started.

Introduction to OTP Behaviors
OTP behaviors are a formalization of process design patterns. They are implemented
in library modules that are provided with the standard Erlang distribution. These library
modules do all of the generic process work and error handling. The specific code, writ-
ten by the programmer, is placed in a separate module and called through a set of
predefined callback functions.

263

OTP behaviors include worker processes, which do the actual processing, and super-
visors, whose task is to monitor workers and other supervisors. Worker behaviors, often
denoted in diagrams as circles, include servers, event handlers, and finite state ma-
chines. Supervisors, denoted in illustrations as squares, monitor their children, both
workers and other supervisors, creating what is called a supervision tree (see Fig-
ure 12-1).

Supervision trees are packaged into a behavior called an application. OTP applications
not only are the building blocks of Erlang systems, but also are a way to package reus-
able components. Industrial-grade systems consist of a set of loosely coupled, possibly
distributed applications. These applications are part of the standard Erlang distribution
or are specific applications developed by you, the programmer.

Do not confuse OTP applications with the more general concept of an application,
which usually refers to a more complete system that solves a high-level task. Examples
of OTP applications include the Mnesia database, which we cover in Chapter 13; an
SNMP agent; or the mobile subscriber database introduced in Chapter 10, which we
will convert to an application using behaviors later in this chapter. An OTP application
is a reusable component that packages library modules together with supervisor and
worker processes. From now on, when we refer to an application, we will mean an OTP
application.

The behavior module contains all of the generic code. Although it is possible to im-
plement your own behavior module, doing so is rare because the behavior modules

Figure 12-1. Supervision tree in an application

264 | Chapter 12: OTP Behaviors

that come as part of the Erlang/OTP distribution will cater to most of the design pat-
terns you would use in your code. The generic functionality provided in a behavior
module includes operations such as the following:

• Spawning and possibly registering the process

• Sending and receiving client messages as synchronous or asynchronous calls, in-
cluding defining the internal message protocol

• Storing the loop data and managing the process loop

• Stopping the process

Although the behavior module is provided, the programmer has to develop the callback
module (see Figure 12-2). We introduced the concept of callback modules in Chap-
ter 5. A callback module contains all of the specific code required to deliver the desired
functionality. The specific code is invoked through a callback interface that is stand-
ardized for each behavior.

Figure 12-2. Splitting the code into generic and specific modules

The loop data is a variable that will contain the data the behavior needs to store in
between calls. After the call, an updated variant of the loop data is returned. This
updated loop data, often referred to as the new loop data, is passed as an argument in
the next call. Loop data is also commonly referred to as the behavior state.

The functionality to be included in the callback module to deliver the specific behavior
required includes the following:

• Initializing the process loop data, and, if the process is registered, the process name.

• Handling the specific client requests, and, if synchronous, the replies sent back to
the client.

• Handling and updating the process loop data in between the process requests.

• Cleaning up the process loop data upon termination.

There are many advantages to splitting the code into generic behavior libraries and
specific callback modules:

Introduction to OTP Behaviors | 265

• Because many of the special cases and errors that might occur are already handled
in the solid, well-tested behavior library, you can expect fewer bugs in your
product.

• For this reason, and also because so much of the code is already written for you,
you can expect to have a shorter time to market.

• It forces the programmer to write code in a way that avoids errors typically found
in concurrent applications.

• Finally, your whole team will come to share a common programming style. When
reading someone else’s code while armed with a basic comprehension of the ex-
isting behaviors, no effort is required to understand the client/server protocol,
looking for where and how processes are started or terminated, or how the loop
data is handled. All of it is managed by the generic behavior library. Instead of
having to focus on how everything is done, you can focus on what is being done
specifically in this case, as coded in the callback module.

In the sections that follow, we will look at some of the most important behaviors—
including generic servers and supervisors—and how to package them into applications.

Generic Servers
Generic servers that implement client/server behaviors are defined in the gen_server
behavior that comes as part of the standard library application. In this chapter, you will
use the mobile customer database example from Chapter 10 to understand how the
callback principle works. If you do not remember the example, take a quick look at it
before proceeding.

We will rewrite the usr.erl module, migrating it from an Erlang process to a
gen_server behavior. In doing so, we will not touch the usr_db module, keeping the
backend database as it is. When working your way through the example, if you are
interested in the details, have the manual pages for the gen_server module at hand.

Starting Your Server
With the gen_server behavior, instead of using the spawn and spawn_link BIFs, you will
use the gen_server:start/4 and gen_server:start_link/4 functions.

The main difference between spawn and start is the synchronous nature of the call.
Using start instead of spawn makes starting the worker process more deterministic and
prevents unforeseen race conditions, as the call will not return the pid of the worker
until it has been initialized. You call the functions as follows (we show two variants for
each of the two functions):

gen_server:start_link(ServerName, CallBackModule, Arguments, Options)
gen_server:start(ServerName, CallBackModule, Arguments, Options)

266 | Chapter 12: OTP Behaviors

gen_server:start_link(CallBackModule, Arguments, Options)
gen_server:start(CallBackModule, Arguments, Options)

In the preceding calls:

ServerName
Is a tuple of the format {local, Name} or {global, Name}, denoting a local or global
Name for the process if it is to be registered. If you do not want to register the process
and instead reference it using its pid, you omit the argument and use the
start_link/3 or start/3 call instead.

CallbackModule
Is the name of the module in which the specific callback functions are placed.

Arguments
Is a valid Erlang term that is passed to the init/1 callback function. You can choose
what type of term to pass: if you have many arguments to pass, use a list or a tuple;
if you have none, pass an atom or an empty list, ignoring it in the callback function.

Options
Is a list that allows you to set the memory management flags fullsweep_after and
heapsize, as well as tracing and debugging flags. Most behavior implementations
just pass the empty list.

The start functions will spawn a new process that calls the init(Arguments) callback
function in the CallbackModule, with the Arguments supplied. The init function
must initialize the LoopData of the server and has to return a tuple of the format
{ok, LoopData}. LoopData contains the first instance of the loop data that will be passed
between the callback functions. If you want to store some of the arguments you passed
to the init function, you would do so in the LoopData variable.

The obvious difference between the start_link and start functions is that
start_link links to its parent and start doesn’t. This needs a special mention, however,
as it is an OTP behavior’s responsibility to link itself to the supervisor. The start func-
tions are often used when testing behaviors from the shell, as a typing error causing the
shell process to crash would not affect the behavior. All of the start and start_link
variants return {ok, Pid}.

Before going ahead with the example, let’s quickly review what we have discussed so
far. You start a gen_server behavior using the gen_server:start_link call. This results
in a new process that calls the init/1 callback function. This function initializes the
LoopData and returns the tuple {ok, LoopData}.

In our example, we call start_link/4, registering the process with the same name as
the callback module, calling the MODULE macro. We pass one argument, the filename of
the Dets table. The options list is kept empty:

start_link(FileName) ->
 gen_server:start_link({local, ?MODULE}, ?MODULE, FileName, []).

init(FileName) ->

Generic Servers | 267

 usr_db:create_tables(FileName),
 usr_db:restore_backup(),
 {ok, null}.

Although the supervisor process might call the start_link/4 function, the init/1 call-
back is called by a different process: the one that was just spawned. We don’t really
need the LoopData variable in our server, as the ETS and Dets tables are named. None-
theless, a value still has to be included when returning the {ok, LoopData} structure,
so we’ll get around it by returning the atom null. Had the ETS and Dets tables not been
named_tables, we would have passed their references here.

Do only what is necessary and minimize the operations in your init function, as the
call to init is a synchronous call that prevents all of the other serialized processes from
starting until it returns.

Passing Messages
If you want to send a message to your server, you use the following calls:

gen_server:cast(Name, Message)
gen_server:call(Name, Message)

In the preceding calls:

Name
Is either the local registered name of the server or the tuple {global, Name}. It could
also be the process identifier of the server.

Message
Is a valid Erlang term containing a message passed on to the server.

For asynchronous message requests, you use cast/2. If you’re using a pid, the call will
immediately return the atom ok, regardless of whether the gen_server to which you are
sending the message is alive. These semantics are no different from the standard Name !
Message construct, where if the registered process Name does not exist, the calling process
terminates.

Upon receiving the message, gen_server will call the callback function
handle_cast(Message, LoopData) in the callback module. Message is the argument
passed to the cast/2 function, and LoopData is the argument originally returned by
the init/1 callback function. The handle_cast/1 callback function handles the specifics
of the message, and upon finishing, it has to return the tuple {noreply, NewLoopData}.
In future calls to the server, the NewLoopData value most recently returned will be passed
as an argument when a message is sent to the server.

If you want to send a synchronous message to the server, you use the call/2 function.
Upon receiving this message, the process uses the handle_call(Message, From,
LoopData) function in the callback module. It contains specific code for the particular
server, and having completed, it returns the tuple {reply, Reply, NewLoopData}. Only
now does the call/3 function synchronously return the value Reply. If the process you

268 | Chapter 12: OTP Behaviors

are sending a message to does not exist, regardless of whether it is registered, the process
invoking the call function terminates.

Let’s start by taking two functions from our service API; we will provide the whole
program later. They are called by the client process and result in a synchronous message
being sent to the server process registered with the same name as the callback module.
Note how we are validating the data on the client side. If the client sends incorrect
information, it terminates.

set_status(CustId, Status) when Status==enabled; Status==disabled->
 gen_server:call(?MODULE, {set_status, CustId, Status}).

delete_disabled() ->
 gen_server:call(?MODULE, delete_disabled).

Upon receiving the messages, the gen_server process calls the handle_call/3 callback
function dealing with the messages in the same order in which they were sent:

handle_call({set_status, CustId, Status}, _From, LoopData) ->
 Reply = case usr_db:lookup_id(CustId) of
 {ok, Usr} ->
 usr_db:update_usr(Usr#usr{status=Status});
 {error, instance} ->
 {error, instance}
 end,
 {reply, Reply, LoopData};

handle_call(delete_disabled, _From, LoopData) ->
 {reply, usr_db:delete_disabled(), LoopData}.

Note the return value of the callback function. The tuple contains the control atom
reply, telling the gen_server generic code that the second element of the tuple is the
Reply to be sent back to the client. The third element of the tuple is the new LoopData,
which, in a new iteration of the server, is passed as the third argument to the
handle_call/3 function; in both cases here it is unchanged. The argument _From is a
tuple containing a unique message reference and the client process identifier. The tuple
as a whole is used in library functions that we will not be discussing in this chapter. In
the majority of cases, you will not need it.

The gen_server library module has a number of mechanisms and safeguards built in
that function behind the scenes. If your client sends a synchronous message to your
server and you do not get a response within five seconds, the process executing the
call/2 function is terminated. You can override this by using the following code:

gen_server:call(Name, Message, Timeout)

where Timeout is a value in milliseconds or the atom infinity. The timeout mechanism
was originally put in place for deadlock prevention purposes, ensuring that servers that
accidentally call each other are terminated after the default timeout. The crash report
would be logged, and hopefully would result in a patch. Most applications will function
appropriately with a timeout of five seconds, but under very heavy loads, you might

Generic Servers | 269

have to fine-tune the value and possibly even use infinity; this choice is very
application-dependent. All of the critical code in Erlang/OTP uses infinity.

Other safeguards when using the gen_server:call/2 function include the case of send-
ing a message to a nonexisting server or a server that crashes before sending its reply.
In both cases, the calling process will terminate. In raw Erlang, sending a message that
is never pattern-matched in a receive clause is a bug that can cause a memory leak.

What do you think happens if you do a call or a cast to your server, but do not handle
the message in the handle_call/3 and handle_cast/2 calls, respectively? In OTP, when
a call or a cast is called, the message will always be extracted from the process mailbox
and the respective callback functions are invoked. If none of the callback functions
pattern-matches the message passed as the first argument, the process will crash with
a function clause error. As a result, such issues will be caught in the early stages of the
testing phase and dealt with accordingly.

Stopping the Server
How do you stop the server? In your handle_call/3 and handle_cast/2 callback func-
tions, instead of returning {reply, Reply, NewLoopData} or {noreply, NewLoopData},
you can return {stop, Reason, Reply, NewLoopData} or {stop, Reason, NewLoopData},
respectively. Something has to trigger this return value, often a stop message sent to
the server. Upon receiving the stop tuple containing the Reason and LoopData, the ge-
neric code executes the terminate(Reason, LoopData) callback.

The terminate function is the natural place to insert the code needed to clean up the
LoopData of the server and any other persistent data used by the system. In this example,
it would mean closing the ETS and Dets tables. The stop call does not have to occur
within a synchronous call, so let’s use cast when implementing it:

stop() ->
 gen_server:cast(?MODULE, stop).

handle_cast(stop, LoopData) ->
 {stop, normal, LoopData}.

terminate(_Reason, _LoopData) ->
 usr_db:close_tables().

Remember that stop/0 will be called by the client process, while the handle_cast/2 and
handle_call/2 are called by the behavior process. In the handle_cast/2 callback, we
return the reason normal in the stop construct. Any reason other than normal will result
in an error report being generated.

With thousands of generic servers potentially being spawned and terminated every
second, generating error reports for every one of them is not the way to go. You should
return a nonnormal value only if something that should not have happened occurs and
you have no way to recover. A socket being closed or a corrupt message from an external

270 | Chapter 12: OTP Behaviors

port is not a reason to generate a nonnormal termination. On the other hand, corrupt
internal data or a missing configuration file is.

If your server crashes because of a runtime error, terminate/2 will be called. But if your
behavior receives an EXIT signal from its parent, terminate will be called only if you are
trapping exits. Watch out for this special case, as we’ve been caught by it many times,
especially when starting the behavior from the shell using start_link.

Use of the behavior callbacks as library functions and invoking them
from other parts of your program is an extremely bad practice. For ex-
ample, you should never call usr_db:init(FileName) from another mod-
ule to create and populate your database. Calls to behavior callback
functions should originate only from the behavior library modules as a
result of an event occurring in the system, and never directly by the user.

The Example in Full
Here is the usr.erl module from Chapter 10, rewritten as a gen_server behavior:

%%% File : usr.erl
%%% Description : API and gen_server code for cellphone user db

-export([start_link/0, start_link/1, stop/0]).
-export([init/1, terminate/2, handle_call/3, handle_cast/2]).
-export([add_usr/3, delete_usr/1, set_service/3, set_status/2,
 delete_disabled/0, lookup_id/1]).
-export([lookup_msisdn/1, service_flag/2]).
-behavior(gen_server).

-include("usr.hrl").

%% Exported Client Functions
%% Operation & Maintenance API

start_link() ->
 start_link("usrDb").

start_link(FileName) ->
 gen_server:start_link({local, ?MODULE}, ?MODULE, FileName, []).

stop() ->
 gen_server:cast(?MODULE, stop).

%% Customer Services API

add_usr(PhoneNum, CustId, Plan) when Plan==prepay; Plan==postpay ->
 gen_server:call(?MODULE, {add_usr, PhoneNum, CustId, Plan}).

delete_usr(CustId) ->
 gen_server:call(?MODULE, {delete_usr, CustId}).

set_service(CustId, Service, Flag) when Flag==true; Flag==false ->
 gen_server:call(?MODULE, {set_service, CustId, Service, Flag}).

Generic Servers | 271

set_status(CustId, Status) when Status==enabled; Status==disabled->
 gen_server:call(?MODULE, {set_status, CustId, Status}).

delete_disabled() ->
 gen_server:call(?MODULE, delete_disabled).

lookup_id(CustId) ->
 usr_db:lookup_id(CustId).

%% Service API

lookup_msisdn(PhoneNo) ->
 usr_db:lookup_msisdn(PhoneNo).

service_flag(PhoneNo, Service) ->
 case usr_db:lookup_msisdn(PhoneNo) of
 {ok,#usr{services=Services, status=enabled}} ->
 lists:member(Service, Services);
 {ok, #usr{status=disabled}} ->
 {error, disabled};
 {error, Reason} ->
 {error, Reason}
 end.

%% Callback Functions

init(FileName) ->
 usr_db:create_tables(FileName),
 usr_db:restore_backup(),
 {ok, null}.

terminate(_Reason, _LoopData) ->
 usr_db:close_tables().

handle_cast(stop, LoopData) ->
 {stop, normal, LoopData}.

handle_call({add_usr, PhoneNo, CustId, Plan}, _From, LoopData) ->
 Reply = usr_db:add_usr(#usr{msisdn=PhoneNo,
 id=CustId,
 plan=Plan}),
 {reply, Reply, LoopData};

handle_call({delete_usr, CustId}, _From, LoopData) ->
 Reply = usr_db:delete_usr(CustId),
 {reply, Reply, LoopData};

handle_call({set_service, CustId, Service, Flag}, _From, LoopData) ->
 Reply = case usr_db:lookup_id(CustId) of
 {ok, Usr} ->
 Services = lists:delete(Service, Usr#usr.services),
 NewServices = case Flag of
 true -> [Service|Services];
 false -> Services

272 | Chapter 12: OTP Behaviors

 end,
 usr_db:update_usr(Usr#usr{services=NewServices});
 {error, instance} ->
 {error, instance}
 end,
 {reply, Reply, LoopData};

handle_call({set_status, CustId, Status}, _From, LoopData) ->
 Reply = case usr_db:lookup_id(CustId) of
 {ok, Usr} ->
 usr_db:update_usr(Usr#usr{status=Status});
 {error, instance} ->
 {error, instance}
 end,
 {reply, Reply, LoopData};

handle_call(delete_disabled, _From, LoopData) ->
 {reply, usr_db:delete_disabled(), LoopData}.

Running gen_server
When testing the gen_server instance in the shell, you get exactly the same behavior
as when you used the server process that you coded yourself. However, the code is
more solid, as deadlocks, server crashes, timeouts, and other errors related to concur-
rent programming are handled behind the scenes:

1> c(usr).
/Users/Francesco/otp/usr.erl:11: Warning: undefined callback
 function code_change/3 (behaviour 'gen_server')
/Users/Francesco/otp/usr.erl:11: Warning: undefined callback
 function handle_info/2 (behaviour 'gen_server')
{ok,usr_db}
2> c(usr_db).
{ok,usr_db}
3> rr("usr.hrl").
[usr]
4> usr:start_link().
{ok,<0.86.0>}
5> usr:add_usr(700000000, 0, prepay).
ok
6> usr:set_service(0, data, true).
ok
7> usr:lookup_id(0).
{ok,#usr{msisdn = 700000000,id = 0,status = enabled,
 plan = prepay,
 services = [data]}}
8> usr:set_status(0, disabled).
ok
9> usr:service_flag(700000000,lbs).
{error,disabled}
10> usr:stop().
ok

Generic Servers | 273

Did you notice the –behavior(gen_server) directive in the module? This tells the com-
piler that your module is a gen_server callback module, and as a result, it has to expect
a number of callback functions. If all callback functions are not implemented, you will
get the warnings you noticed as a result of the compile operation in the first command
line. Don’t write your code to avoid these warnings. If your server has no asynchronous
calls, you will obviously not need a handle_cast/2. Ignore the warnings.

British or Canadian readers: don’t despair or shake your heads! You
are welcome to use the U.K. English spelling in your directive:
-behaviour(gen_server). The compiler is bilingual and can handle both
U.S. and U.K. English.

What happens if you send a message to the server using raw Erlang message passing of
the form Pid!Msg? It should be possible, as the gen_server is an Erlang process capable
of sending and receiving messages like any other process. Don’t be shy; try it:

11> {ok, Pid} = usr:start_link().
{ok,<0.119.0>}
12> Pid ! hello.
hello

=ERROR REPORT==== 24-Jan-2009::18:08:07 ===
** Generic server usr terminating
** Last message in was hello
** When Server LoopData == null
** Reason for termination ==
** {'function not exported',[{usr,handle_info,[hello,null]},
 {gen_server,handle_msg,5},
 {proc_lib,init_p,5}]}
** exception exit: undef
 in function usr:handle_info/2
 called as usr:handle_info(hello,null)
 in call from gen_server:handle_msg/5
 in call from proc_lib:init_p/5

Oops! Something did not go according to plan. Look at the error and try to figure out
what happened. Use of Pid!Msg does not comply with the internal OTP message pro-
tocol. Upon receiving a message that is not compliant, the gen_server process tries to
call the function usr:handle_info(hello, null), where hello is the message and null
is the loop data.

The callback function handle_info/2* is called whenever the process receives a message
it doesn’t recognize. These could include “node down” messages from nodes you are
monitoring, exit signals from processes you are linked to, or simply messages sent using
the ...!... construct. If you are expecting such messages but are not interested in them,
add the following definition to your callback module, and don’t forget to export it:

* Did you notice it in the compiler warning in the example?

274 | Chapter 12: OTP Behaviors

handle_info(_Msg, LoopData) ->
 {noreply, LoopData}.

If, on the other hand, you do want to do something with the messages, you should
pattern-match them in the first argument of the call. If your server is not expecting
nonOTP-compliant messages, don’t add the handle_info/2 call, which ignores incom-
ing messages, “just in case.” Doing so is considered defensive programming, which will
probably make any fault you are hiding hard to detect.

One of the downsides of OTP is the layering that the various behavior
modules require. This will affect performance. In the attempt to save a
few microseconds from their calls, developers have been known to use
the Pid ! Msg construct instead of a gen_server cast, handling their
messages in the handle_info/2 callback.

Don’t do this! You will make your code impossible to support and
maintain, as well as losing many of the advantages of using OTP in the
first place. If you are obsessed with saving microseconds, try to hold on
and optimize only when you know your program is not fast enough. We
discuss optimizations in Chapter 20 and will cover there what really
affects the performance of your code.

Before we look at the next behavior, here is a summary of the exported gen_server API,
the resulting callback functions, and their expected return values:

Setup
The following calls:

start(Name, Mod, Arguments, Opts)
start_link(Name, Mod, Arguments, Opts),

where Name is an optional argument, spawn a new process. The process will result
in the callback function init(Arguments) being called, which should return one of
the values {ok, LoopData} or {stop, Reason}. If init/1 returns {stop, Reason} the
terminate/2 “cleanup” function will not be called.

Synchronous communication
Use call(Name, Msg) to send a synchronous message to your server. It will result
in the callback function handle_call(Msg, From, LoopData) being called by the
server process. The expected return values include the following:

{reply, Reply, NewLoopData}
{stop, Reason, Reply, NewLoopData}.

Asynchronous communication
If you want to send an asynchronous message, use cast(Name, Msg). It will be
handled in the handle_cast(Msg, LoopData) callback function, returning either
{noreply, NewLoopData} or {stop, Reason, NewLoopData}.

Generic Servers | 275

Non-OTP-compliant messages
Upon receiving non-OTP-compliant messages, gen_server will execute the
handle_info(Msg, LoopData) callback function. The function should return either
{noreply, NewLoopData} or {stop, Reason, NewLoopData}.

Termination
Upon receiving a stop construct from one of the callback functions (except for
init), or upon abnormal process termination when trapping exits, the
terminate(Reason, LoopData) callback is invoked. In terminate/2, you would typ-
ically undo things you did in init/1. Its return value is ignored.

Supervisors
The supervisor behavior’s task is to monitor its children and, based on some precon-
figured rules, take action when they terminate. The children that make up the super-
vision tree include both supervisors and worker processes. Worker processes are OTP
behaviors including gen_server, gen_fsm (supporting finite state machine behavior),
and gen_event (which provides event-handling functionality).

Worker processes have to link themselves to the supervisor behavior and handle specific
system messages that are not exposed to the programmer. This is different from the
way in which one process links to another in raw Erlang, and because of this, we cannot
mix the two mechanisms. For this reason, it is not possible to add Erlang processes to
the supervision tree in the form you know them. So, for the remainder of this section,
we will stick to describing supervision within the OTP framework.

You start a supervisor using the start or start_link function:

supervisor:start_link(ServerName, CallBackModule, Arguments)
supervisor:start(ServerName, CallBackModule, Arguments)
supervisor:start_link(CallBackModule, Arguments)
supervisor:start(CallBackModule, Arguments)

In the preceding calls:

ServerName
Is the name to be registered for the supervisor, and is a tuple of the format {local,
Name} or {global, Name}. If you do not want to register the supervisor, you use the
functions of arity two.

CallbackModule
Is the name of the module in which the init/1 callback function is placed.

Arguments
Is a valid Erlang term that is passed to the init/1 callback function when it is called.

276 | Chapter 12: OTP Behaviors

Note that the supervisor, unlike the gen_server, does not take any options. The start
and start_link functions will spawn a new process that calls the init/1 callback func-
tion. Upon initializing the supervisor, the init function has to return a tuple of the
following format:

{ok, {SupervisorSpecification, ChildSpecificationList}}

The supervisor specification is a tuple containing information on how to handle process
crashes and restarts. The child specification list specifies which children the supervisor
has to start and monitor, together with information on how to terminate and restart
them.

Supervisor Specifications
The supervisor specification is a tuple consisting of three elements describing how the
supervisor should react when a child terminates:

{RestartStrategy, AllowedRestarts, MaxSeconds}

The restart strategy determines how other children are affected if one of their siblings
terminates. It can be one of the following:

one_for_one
Will restart the child that has terminated, without affecting any of the other chil-
dren. You should pick this strategy if all of the processes at this level of the super-
vision tree are not dependent on each other.

one_for_all
Will terminate all of the children and restart them. You should use this if there is
a strong dependency among all of the children regardless of the order in which they
were started.

rest_for_one
Will terminate all of the children that were started after the child that crashed, and
will restart them. This strategy assumes that processes are started in order of de-
pendency, where spawned processes are dependent only on their already started
siblings.

What will happen if your process gets into a cyclic restart? It crashes and is restarted,
only to come across the same corrupted data, and as a result, it crashes again. This can’t
go on forever! This is where AllowedRestarts comes in, by specifying the maximum
number of abnormal terminations the supervisor is allowed to handle in MaxSeconds
seconds. If more abnormal terminations occur than are allowed, it is assumed that the
supervisor has not been able to resolve the problem, and it terminates. The supervisor’s
supervisor receives the exit signal and, based on its configuration, decides how to
proceed.

Supervisors | 277

Finding reasonable values for AllowedRestarts and MaxSeconds is not easy, as they will
be application-dependent. In production, we’ve used anything from ten restarts per
second to one per hour. Your choice will have to depend on what your child processes
do, how many of them you expect the supervisor to monitor, and how you’ve set up
your supervision strategy.

Child Specifications
The second argument in the structure returned by the init/1 function is a list of child
specifications. Child specifications provide the supervisor with the properties of each
of its children, including instructions on how to start it. Each child specification is of
the following form:

{Id, {Module, Function, Arguments}, Restart, Shutdown, Type, ModuleList}

In the preceding code:

Id
Is a unique identifier for a particular child within a supervisor. As a child process
can crash and be restarted, its process identifier might change. The identifier is
used instead.

The supervisor uses the tuple {Module, Function, Arguments} to start the child
process. The supervisor has to eventually call the start_link function for the par-
ticular OTP behavior, and return {ok, Pid}.

Restart
Is one of the atoms transient, temporary, or permanent. Transient processes are
never restarted. Temporary processes are restarted only if they terminate abnor-
mally, and permanent processes are always restarted, regardless of whether the
termination was normal or nonnormal.

Shutdown
Specifies how many milliseconds a behavior that is trapping exits is allowed to
execute in its terminate callback function after receiving the shutdown signal from
its supervisor, either because the supervisor has reached its maximum number of
allowed child restarts or because of a rest_for_one or one_for_all restart strategy.

If the child process has not terminated by this time, the supervisor will kill it un-
conditionally. Shutdown will also take the atom infinity, a value which should
always be chosen if the process is a supervisor, or the atom brutal_kill, if the
process is to be killed unconditionally.

Type
Specifies whether the child process is a worker or a supervisor.

278 | Chapter 12: OTP Behaviors

ModuleList
Is a list of the modules that implement the process. The release handler uses it to
determine which processes it should suspend during a software upgrade. As a rule
of thumb, always include the behavior callback module.

In some cases, child specifications are created dynamically from a config file. In most
cases, however, they are statically coded in the supervisor callback module. The
init/1 function is the only callback function that needs to be exported.

It can be easy to insert syntactical and semantic errors in child specification lists, as
they tend to get fairly complex. The help function check_childspecs/1 in the supervisor
module takes a list of child specifications and returns ok or the tuple {error, Reason}.
An example of a child specification for the mobile subscriber database will follow in
the next section. To ensure that you understand what is happening, map all of the
entries to their respective fields in the child specification structure.

Supervisor Example
In this example, the usr_sup module is a supervisor behavior, supervising one child that
is the usr example of a gen_server from earlier in the chapter.

We’ll start the supervisor using the start_link/0 call. Note that we’ve omitted the
option of passing a filename for the Dets tables, as it was originally included for test
purposes. Pay particular attention to the child and the supervisor specifications re-
turned by the init/1 function:

-module(usr_sup).
-behavior(supervisor).

-export([start_link/0]).
-export([init/1]).

start_link() ->
 supervisor:start_link({local, ?MODULE}, ?MODULE, []).

init(FileName) ->
 UsrChild = {usr,{usr, start_link, []},
 permanent, 2000, worker, [usr, usr_db]},
 {ok,{{one_for_all,1,1}, [UsrChild]}}.

Now you can try it out from the shell. Do not test only positive cases; also try to kill
the child and ensure that it has been restarted. Finally, kill the server more than
MaxRestart times in MaxSeconds (twice in one second in this example), to see whether
the supervisor terminates:

13> c(usr_sup).
{ok,usr_sup}
14> usr_sup:start_link().
{ok,<0.149.0>}
15> whereis(usr).
<0.150.0>

Supervisors | 279

16> exit(whereis(usr), kill).
true
17> whereis(usr).
<0.156.0>
18> usr:lookup_id(0).
{ok,#usr{msisdn = 700000000,id = 0,status = disabled,
 plan = prepay,
 services = [data]}}
19> exit(whereis(usr), kill).
true
20> exit(whereis(usr), kill).
** exception exit: shutdown

When a process terminates, all of the ETS tables that it created are de-
stroyed. If you want ETS tables to survive process restarts without in-
curring the overhead of dealing with Dets tables or the filesystem, a trick
is to let your supervisor create the tables in its init/1 function, rather
than in the processes spawned.

Dynamic Children
So far, we have looked only at static children. What if you need a supervisor that dy-
namically creates a child whose task is to handle a specific event, take care of the task,
and terminate when completed? It could be for every incoming instant message (IM)
or buddy update coming into your IM server. You can’t specify these children in your
init callback function, as they are created dynamically. Instead, you need to use the
calls to functions supervisor:???_child/2:

supervisor:start_child(SupervisorName, ChildSpec)
supervisor:terminate_child(SupervisorName, Id)
supervisor:restart_child(SupervisorName, Id)
supervisor:delete_child(SupervisorName, Id).

In the preceding calls:

SupervisorName
Is either the process identifier of the supervisor or its registered name

ChildSpec
Is a single child specification tuple, as described in the section “Child Specifica-
tions” on page 278

Id
Is the unique child identifier defined in the ChildSpec

Of particular importance in the ChildSpec tuple is the child Id. Even after termination,
the ChildSpec will be stored by the supervisor and referenced through its Id, allowing
processes to stop and restart the child. Only upon deletion will the child specification
be permanently removed.

280 | Chapter 12: OTP Behaviors

If you’ve been skimming through the manual page for the supervisor
behavior, you probably realize that it does not export a stop function.
As supervisors are never meant to be stopped by anyone other than their
parent supervisors, this function was not implemented.

You can easily add your own stop function by including the following
code in your supervisor callback module. However, this will work only
if stop is called by the parent:

stop() -> exit(whereis(?MODULE), shutdown).

If your supervisor is not registered, use its pid.

Applications
The application behavior is used to package Erlang modules into reusable components.
An Erlang system will consist of a set of loosely coupled applications. Some are devel-
oped by the programmer or the open source community, and others will be part of the
OTP distribution. The Erlang runtime system and its tools will treat all applications
equally, regardless of whether they are part of the Erlang distribution.

There are two kinds of applications. The most common form of applications, called
normal applications, will start the supervision tree and all of the relevant static workers.
Library applications such as the Standard Library, which come as part of the Erlang
distribution, contain library modules but do not start the supervision tree. This is not
to say that the code may not contain processes or supervision trees. It just means they
are started as part of a supervision tree belonging to another application.

In this section, we will cover all the functionality needed to encapsulate the mobile
subscriber system into an OTP application, starting its top-level supervisor. When
done, this application will behave like any other normal application. And don’t forget,
when we talk about applications in this chapter, we mean OTP applications.

Applications are loaded, started, and stopped as one unit. A resource file associated
with every application not only describes it, but also specifies its modules, registered
processes, and other configuration data. Applications have to follow a particular di-
rectory structure which dictates where beam, module, resource, and include files have
to be placed. This structure is required for many of the existing tools, built around
behaviors, to function correctly. To find out which applications are running in your
Erlang runtime system, you use application:which_applications():

1> application:which_applications().
[{stdlib,"ERTS CXC 138 10","1.15.2"},
 {kernel,"ERTS CXC 138 10","2.12.2"}]

The Standard Library and the Kernel are part of the basic Erlang applications and to-
gether form the minimal OTP subset when starting the runtime system. The first item
in the application tuple is the application name. The second is a description string, and
the third is the application version number. If you are wondering what the description

Applications | 281

string in the preceding example means, you are not alone. It is the internal Ericsson
product numbering scheme.

We will show you where to configure the description of your applications later in this
chapter.

Directory Structure
In your Erlang shell, type code:get_path(). You did this when we were explaining how
to manipulate the code search path in the code server. What you probably did not
realize at the time was that each code path was pointing to a specially structured di-
rectory of an OTP application.

Let’s pick the Inets application and inspect its contents in more detail. In Mac OS X,
the path for this particular installation of Erlang would be as follows:

/usr/local/lib/erlang/lib/inets-5.0.12/

In other operating systems, just cd to the lib directory from the Erlang root directory,
typically something like /usr/local/lib/erlang/lib or C:/Program Files/erl5.6.2/lib/, and
look for the latest Inets release. Among all the subdirectories in an application, the
following ones comprise an OTP release of the application in question:

src
Contains the source code of all the Erlang modules in the application.

ebin
Contains all of the compiled beam files and the application resource file; in this
example, it’s inets.app.

include
Contains all the Erlang header files (hrl) intended for use outside the application.
By using the following directive:

-include_lib("Application/include/Name.hrl")

where Application is the application directory name without the version number
(in the example it would be inets) and Name.hrl is the name of the include file, the
compiler will automatically pick up the version of the application pointed to by
the code search path.

priv
Is an optional directory that contains necessary scripts, graphics, configuration
files, or other non-Erlang-related resources. You can access it without knowing the
application version by using the code:priv_dir(Application) call.

You will notice that Inets (and other) applications may have a few more directories,
including docs and examples. These have no effect on the system during runtime, and
are there just for convenience. In some applications, you might not find the priv direc-
tory. If you do not use it, omitting it is not a problem, even if it might not be considered

282 | Chapter 12: OTP Behaviors

a good practice by some. In live systems, the only mandatory directory is ebin. This is
because you probably don’t want to include your source code when shipping your
system to clients!

It is common to use scripts to create these directory structures, and to use make files
which, having compiled your code, move the beam files to the ebin directory. How you
set this up depends on the operating systems, build systems, repositories, and many
other non-Erlang-related dependencies in your application. Although it might be fea-
sible to set this up manually for small projects, you will probably want to use templates
and automate the task for larger projects.

The Application Resource File
The application resource file, also known as the app file, contains information on your
application resources and dependencies. Move into the ebin subdirectory of the Inets
application and look for the inets.app file. This is the resource file of the Inets applica-
tion. On closer inspection, you will notice that all other applications also have an
inets.app file. The application resource file consists of a tuple where the first element is
the application tag, the second is the application name, and the third is a list of features.

Let’s go through the features individually. Note that for space considerations, we’ve
omitted some of the modules in the example:

{application,inets,
 [{description,"INETS CXC 138 49"},
 {vsn,"5.0.5"},
 {modules,[inets,inets_sup,inets_app,inets_service,
 %% FTP
 ftp, ftp_progress,ftp_response,ftp_sup,
 %% HTTP client:
 http,httpc_handler,httpc_handler_sup,httpc_manager,
 %% TFTP
 tftp,tftp_binary,tftp_engine,tftp_file,tftp_lib,tftp_sup
]},
 {registered,[inets_sup, httpc_manager]},
 {applications,[kernel,stdlib]},
 {mod,{inets_app,[]}}]}.

In the preceding code, the description is a string that is displayed as a result of calling
the application:which_application/0 function. The vsn attribute is a string denoting
the version of the application. This should be the same as the suffix of the application
directory. In larger build systems, the application version is usually updated automat-
ically through proprietary scripts executed when committing your code.

The modules tag lists all the modules that belong to this application. The purpose of
listing them is twofold. The first is to ensure that all of them are present when building
the system and that there are no name clashes with any other applications. The second
is to be able to load them either at startup or when loading the application. For every
module, there should be a corresponding beam file. To ensure that there are no

Applications | 283

registered name clashes with other applications, we list all of the registered processes
in this field. Clashes in module and registered process names are detected by the release-
handling tools used when creating your boot file. We will look at boot files in the next
section. Just including them in the application resource files will have no effect unless
these tools are used.

Most applications will have to be started after other applications on which they depend.
Your application will not start if the applications in the applications list included in
your app file are not already started. kernel and stdlib are the basic standard applications
on which every other application depends. After that, the particular dependencies will
be based on the nature of the application.

Finally, the mod parameter is a tuple containing the callback module and the arguments
passed to the start/2 callback function.

Not necessary to the Inets application, but certainly important to applications in gen-
eral, are environment variables. The env tag indicates a list of key-value tuples that can
be accessed from within the application using calls to the following functions:

application:get_env(Tag)
application:get_all_env().

To access environment variables belonging to other applications, just add the applica-
tion Name to either function call, as in the following:

application:get_env(Name,Tag)
application:get_all_env(Name).

The application resource file usr.app of our mobile subscriber service database would
contain four modules, two registered processes, and dependencies on the stdlib and
kernel applications. Let’s also add the filename for the Dets table among the environ-
ment variables:

{application, usr,
 [{description, "Mobile Services Database"},
 {vsn, "1.0"},
 {modules, [usr, usr_db, usr_sup, usr_app]},
 {registered, [usr, usr_sup]},
 {applications, [kernel, stdlib]},
 {env, [{dets_name, "usrDb"}]},
 {mod, {usr_app,[]}}]}.

Starting and Stopping Applications
You start and stop applications using the following commands:

application:start(ApplicationName).
application:stop(ApplicationName).

In the preceding code, ApplicationName is an atom denoting the name of your
application.

284 | Chapter 12: OTP Behaviors

The application controller loads the environment variables belonging to the application,
as well as starts the top-level supervisor through a set of callback functions. When
calling start/1, the start(StartType, Arguments) function in the application callback
module is invoked. StartType is usually the atom normal, but if you are dealing with
distributed applications,† you might come across the start types takeover and
failover. Arguments is a value of any valid Erlang data type, which together with the
callback module is defined in the application resource file.

Start has to return the tuple {ok, Pid} or {ok, Pid, Data}. Pid denotes the process
identifier of the top-level supervisor. Data is a valid Erlang data type used to store data
that is needed when terminating the application.

If you stop your application, the top-level supervisor is sent a shutdown message. This
results in the termination of all of its children in reverse startup order, propagating the
exit path through the supervision tree. Once the supervision tree has terminated, the
callback function stop(Data) is called in the application callback module. Data was
originally returned in the {ok, Pid, Data} construct of the start/2 callback function.
If your start/2 function did not return any data, just ignore the argument. Should you
want a callback function to be called before terminating the supervision tree, export
the function prep_stop(Data) in your callback module.

So, armed with all of the preceding information, how would you package your usr
server database into an application, what would the directory structure look like, and
what are the contents of the app file?

Let’s start with the application callback file. We export the start/2 and stop/1
functions:

-module(usr_app).
-behaviour(application).
-export([start/2, stop/1]).

start(_Type, StartArgs) ->
 usr_sup:start_link().
stop(_State) ->
 ok.

As you can see, the application callback module is relatively simple. Although we have
not done it in our example, it is not uncommon to join the supervisor and application
behavior modules into one. You would have the two –behaviour directives next to each
other, and if there is no conflict with the callback functions, the compiler will not issue
any warnings.

This leaves one minor change to be made in the usr.erl module, where we read the
environment variable in the start_link/0 call:

† We do not cover distributed applications in this chapter. For more information on them, you will need to
consult the OTP documentation.

Applications | 285

start_link() ->
 {ok, FileName} = application:get_env(dets_name),
 start_link(FileName).

With all of this in place, all that remains is our application directory structure, placing
the relevant files in there:

usr-1.0/src/usr.erl
 usr_db.erl
 usr_sup.erl
 usr_app.erl
 /ebin/usr.beam
 usr_db.beam
 usr_sup.beam
 usr_app.beam
 usr.app
 /priv/
 /include/usr.hrl

Let’s compile all the modules and take them for a test run. Move the beam files to the
ebin directory, and make sure they are accessible by telling the system about the path
to them. You can do that either with the erl –pa Dir directive when starting Erlang,
or directly in the shell using code:add_path(Dir).

In the following interaction, we start the application and run a few operations on the
customer settings before stopping it. In doing so, we check that the supervisor and
gen_server processes no longer exist:

1> code:add_path("usr-1.0/ebin").
true
2> application:start(usr).
ok
3> application:start(usr).
{error,{already_started,usr}}
4> usr:lookup_id(10).
{error,instance}
5> application:get_env(usr, dets_name).
{ok,"usrDb"}
6> application:stop(usr).

=INFO REPORT==== 27-Jan-2009::22:14:33 ===
 application: usr
 exited: stopped
 type: temporary
ok
6> whereis(usr_sup).
undefined

Note how we retrieved the dets_name environment variable from the environment. In
our usr example, we are calling the function from within the application, and as a result,
we do not need to specify the application name. Look through the manual page of the
application module and experiment with the various options for retrieving application
environment variables to get a better understanding of what is available.

286 | Chapter 12: OTP Behaviors

The Application Monitor
The application monitor is a tool that provides an overview of all running applications.
Upon launching it with the appmon:start() call, you are presented with a list of all the
applications running on all distributed nodes. The various menus allow you to manip-
ulate the node and presentation, and the bar on the left shows the load on the node
under scrutiny (see Figure 12-3).

Figure 12-3. The application monitor window

In Figure 12-3, note how the stdlib application is not shown. Only applications with a
supervision tree appear. Double-clicking the application opens a new window with a
view of its supervision tree (see Figure 12-4). The menus and buttons allow you to
manipulate the various processes. The top processes linking to usr_sup are part of the
application controller. They are the ones that start, monitor, and stop the top-level
supervisor.

Release Handling
From our behaviors, we’ve created a supervision tree. The supervision tree is packaged
in an application that can be loaded, started, and stopped as one entity. Erlang systems
consist of a set of loosely coupled applications specified in a release file. This includes
the basic Erlang installation you have been running. From your Erlang root directory,
enter the releases directory, followed by one of the release subdirectories. In our ex-
ample, it is R12B (see Figure 12-5).

In it, you will find a list of release files, indicated by the .rel suffix, as shown in Fig-
ure 12-5. Pick start_clean.rel and inspect it:

{release, {"OTP APN 181 01","R12B"}, {erts, "5.6.2"},
 [{kernel,"2.12.2"},
 {stdlib,"1.15.2"}]}.

Release Handling | 287

It consists of a tuple where the first element is the release tag and the second element
is a tuple with a release name and release version number. The third element is a tuple
with the version of the Erlang runtime system. The last element in the tuple is a list of
applications and their version numbers, defined in the order in which they should be
started.

Each application in this list points to an application resource file. When you call the
function systools:make_rel(Name, Options), these app files are retrieved and inspected.
Module and registered process name conflicts are checked, and if everything matches,
Name.boot and Name.script files are produced.

Name.boot is a binary file containing instructions on loading the application modules
and starting the top-level supervisors. The Name.script file is a text version of its binary
counterpart. The Options argument is a list in which the most important data includes
{path, [Dir]}, which describes any paths to the application ebin directories not known
by the code server. The paths commonly point to the ebin directories of your applica-
tions. The local directive is another option to make_rel/2, stating that the boot file
should not assume that all the applications will be found under lib in the Erlang root
directory. The latter is useful if you want to separate the Erlang installation and your
applications.

Figure 12-4. The supervision tree viewed in the application monitor

288 | Chapter 12: OTP Behaviors

In a deployed system, you will release only the applications that are relevant to your
system. These applications include both your applications and the subset of the ones
you need from the OTP release. They should all be stored in the lib subdirectory of the
Erlang root, but you can easily override this recommendation by adding paths in the
code search path used by the code server. We are in fact overriding this in our example
by using the local directive in the options list.

When the boot file has been created, you can start your system using the following
command:

erl -boot Name

This ensures that all of the modules specified in the boot file are loaded and that the
applications and their respective supervision trees are started correctly. If anything fails
at startup, the Erlang node will not start.

The release file of our mobile subscriber database, usr.rel, would include kernel and
stdlib, the two mandatory applications of any OTP release, together with version 1.0
of our usr application:

{release, {"Mobile User Database","R1"}, {erts, "5.6.2"},
 [{kernel,"2.12.2"},
 {stdlib,"1.15.2"},
 {usr,"1.0"}]}.

Figure 12-5. The releases directory

Release Handling | 289

Because in the running example we are using the shell where we previously added the
path to usr-1.0/ebin, we create a boot file which runs with the existing code path. Had
we not set the path in the shell, we would have had to add the option {dir, ["usr-1.0/
ebin"]} to the release file:

7> systools:make_script("usr", [local]).
ok
8> ls().
usr-1.0
usr.boot
usr.rel
usr.script
usrDb

We can now start our system using erl –boot usr.

Have a look at the usr.script file that was generated when creating the
boot file. We will not explain it in this book, as most of its commands
should be fairly straightforward. You can edit the files and generate a
new boot file using the systools:script2bootfile/1 call.

Spare a thought for the early pioneers of OTP. In its first release back in
1996, script files had to be generated manually, as the make_script/2
function had not been implemented!

Other Behaviors and Further Reading
What we described in this chapter should cover a majority of the cases you will come
across when using OTP behaviors. However, you can go in more detail when working
with generic servers, supervisors, and applications. Behaviors we have not covered but
which we briefly introduced in this chapter include finite state machines, event han-
dlers, and special processes. All of these behavior library modules have manual pages
that you can reference. In addition, the Erlang documentation has a section on OTP
design principles that provides more details and examples of these behaviors.

Finite state machines are a crucial component of telecom systems. In Chapter 5, we
introduced the idea of modeling a phone as a finite state machine. If the phone is not
being used, it is in state idle. If an incoming call arrives, it goes to state ringing. This
does not have to be a phone; it could instead be an ATM cross-connect or the handling
of data in a protocol stack. The gen_fsm module provides you with a finite state machine
behavior that you can use to solve these problems. States are defined as callback func-
tions that return a tuple containing the next State and the updated loop data. You can
send events to these states synchronously and asynchronously. The finite state machine
callback module should also export the standard callback functions such as init, ter
minate, and handle_info. As gen_fsm is a standard OTP behavior, it can be linked to the
supervision tree.

290 | Chapter 12: OTP Behaviors

Event handlers and managers are another behavior implemented in the gen_event li-
brary module. The idea is to create a centralized point that receives events of a specific
kind. Events can be sent synchronously and asynchronously with a predefined set of
actions being applied when they are received. Possible responses to events include log-
ging them to file, sending off an alarm in the form of an SMS, or collecting statistics.
Each of these actions is defined in a separate callback module with its own LoopData,
preserved in between calls. Handlers can be added, removed, or updated for every
specific event manager. So, in practice, for every event manager, there could be many
callback modules, and different instances of these callback modules could exist in dif-
ferent managers.

Sometimes you might want to add to the supervision tree processes that are not generic
OTP behaviors. This might be for efficiency reasons, where you have implemented the
process using plain Erlang. You might want to attach to a supervision tree legacy code
that was written before OTP was available, or you might have abstracted a design
pattern and implemented your own behavior.

Writing your own behaviors is straightforward. The main differences are in how you
spawn your processes, and the system calls you need to handle. You should create
processes using the proc_lib library, which exports both spawn and start functions.
Using the proc_lib function stores the start data of the process, provides the means to
start the process synchronously, and generates error reports upon abnormal termina-
tion. To be OTP-compliant, processes need to handle system messages and events,
yielding the control of the loop to the sys library module. They also need to be linked
to their parent, and if they are trapping exits, they need to terminate when the parent
terminates. You can find more information on writing your own OTP behaviors in the
sys and proc_lib library modules.

Exercises

Exercise 12-1: Database Server Revisited
Rewrite Exercise 5-1 in Chapter 5 using the gen_server behavior module. Use the
lists backend database module, saving your list in the loop data. You should register
the server and access its services through a functional interface. Exported functions in
the my_db_gen.erl module should include the following:

my_db_gen:start() ⇒ ok.
my_db_gen:stop() ⇒ ok.
my_db_gen:write(Key,Element) ⇒ ok.
my_db_gen:delete(Key) ⇒ ok.
my_db_gen:read(Key) ⇒ {ok,Element}|{error,instance}.
my_db:match(Element) ⇒ [Key1, ..., KeyN].

Exercises | 291

Hint: if you are using Emacs or Eclipse, use the gen_server skeleton template:

1> my_db:start().
ok
2> my_db:write(foo, bar).
ok
3> my_db:read(baz).
{error, instance}
4> my_db:read(foo).
{ok, bar}
5> my_db:match(bar).
[foo]

Exercise 12-2: Supervising the Database Server
Implement a supervisor that starts and monitors the gen_server in Exercise 12-1. Your
supervisor should be able to handle five crashes per hour. Your child should be per-
manent and be given at least 30 seconds to terminate, as it might take some time to
close a large Dets file.

Exercise 12-3: The Database Server As an Application
Encapsulate your supervision tree from Exercise 12-2 in an application, setting up the
correct directory structure, complete with application resource file.

292 | Chapter 12: OTP Behaviors

CHAPTER 13

Introducing Mnesia

Try to picture a cluster of Erlang nodes, distributed over half a dozen computers to
which requests are forwarded. Data has to be accessible and up-to-date across the
cluster and destructive database operations, even if they are rare, have to be executed
in a transaction to avoid inconsistent data as a result of race conditions. You need to
be able to add and remove nodes during runtime and provide persistence to ensure a
speedy recovery from all possible failure scenarios.

The solution is to merge the efficiency and simplicity of ETS and Dets tables with the
Erlang distribution and to add a transaction layer on top. This solution, called Mne-
sia, is a powerful database that comes as part of the standard Erlang distribution. Mne-
sia is the brainchild of Claes “Klacke” Wikström* from the days when he was working
at Ericsson’s Computer Science Lab. Håkan Mattsson eventually took over and brought
Mnesia to the next level, productizing it and adding lots of functionality.

Mnesia can be as easy or as complex as you want it to be. The aim of this chapter is to
introduce you to Mnesia and its capabilities without losing you in too many details.

When to Use Mnesia
Mnesia was originally built for integration in distributed, massively concurrent, soft
real-time systems with high availability requirements (i.e., telecoms). You want to use
Mnesia if your system requires the following:

• Fast key-value lookups of potentially complex data

• Distributed and replicated data across a cluster of nodes with support for location
transparency

• Data persistency with support for fast data access

* Klacke is the same person we need to thank for giving us the ASN.1 compiler, the first-generation garbage
collector, ETS, Dets, the Erlang Distribution, bit syntax, and YAWS. I am sure he will be thrilled to receive
your bug reports.

293

• Runtime reconfiguration of the table location and table features

• Support for transactions, possibly across a distributed cluster of nodes

• Data indexing

• The same level of fault tolerance as for a typical Erlang system

• Tight coupling of your data model to Erlang data types and to Erlang itself

• Relational queries that don’t have soft real-time deadlines

You do not want to use Mnesia if your system requires the following:

• Simple key-value lookup

• A storage medium for large binaries such as pictures or audio files

• A persistent log

• A database that has to store gigabytes of data

• A large data archive that will never stop growing

For simple key-value lookups, you can use ETS tables or the dict library module. For
large binaries, you are probably better off with individual files for each item; for dealing
with audit and trace logs, the disk_log library module should be your first point of call.

If you are looking to store your user data for the next Web 2.0 social networking killer
application that has to scale to hundreds of millions of users overnight, Mnesia might
not be the right choice. For massive numbers of entries that you want to be able to
access readily, you might be better off using CouchDB, MySQL, PostgreSQL, or Ber-
keley DB, all of which have open source Erlang drivers and APIs available. The upper
limit of a Dets table is 2 GB. This means the upper limit of a Mnesia table is 2 GB if the
storage type is disc-only copies. For other storage types the upper limit depends on the
system architecture. In 32-bit systems the upper limit is 4 GB (4 * 109 bytes), and in
64-bit systems it is 16 exabytes (16 * 1018 bytes). If you need to store larger quantities
of data, you will have to fragment your tables and possibly distribute them across many
nodes. Mnesia has built-in support for fragmented tables.

While Mnesia might not be the first choice for all of your Web 2.0 user data, it is the
perfect choice for caching all of the user session data. Once users have logged on, it can
be read from a persistent storage medium and duplicated across a cluster of computers
for redundancy reasons. The login might take a little longer while you retrieve the user
data, but once it’s done, all of the session activities would be extremely fast. When the
user logs out or the session expires, you would delete the entry and update the user
profile in the persistent database.

That being said, Mnesia has been known to handle live data for tens of millions of users.
It is extremely fast and reliable, so using it in the right setting will provide great benefits
from a maintenance and operational point of view. Just picture your application’s da-
tabase, the glue and logic alongside the formatting and parsing of data from external

294 | Chapter 13: Introducing Mnesia

APIs, all running in the same memory space and controlled uniformly by an Erlang
system. Your application becomes not only efficient but also easy to maintain.

Configuring Mnesia
Mnesia is packaged as an OTP application. To use it, you usually create an empty
schema that is stored on disk. But you can also use Mnesia as a RAM-only database
that only keeps its schema in RAM. Having created a schema, you need to start Mnesia
and create the tables. Once they are created, you can read and manipulate your data.
You need to create your schema and tables only once, usually when installing your
system. When you’re done, you can just start your system, together with Mnesia, and
all persistent data will become available.

Setting Up the Schema
A schema is a collection of table definitions that describe your database. It covers which
of your tables are stored on RAM, disk, or both, alongside their configuration charac-
teristics and the format of the data they will contain. These characteristics may differ
from node to node, as you might want your table to have its disk copies on the operation
and maintenance node but have RAM-only copies on the transaction nodes. In Erlang,
the schema is stored in a persistent Mnesia table. When configuring your database, you
create an empty schema table which, over time, you populate with your table
definitions.

To create the schema,† start your distributed Erlang nodes and connect them. If you
do not want to distribute Mnesia, just start a non-distributed Erlang node. Before doing
this it is important to make sure no old schemas exist, as well as ensuring that Mnesia
is not started.

In our example, we will be starting the database on two nodes, switch and om:

(om@Vaio)1> net_adm:ping(switch@Vaio).
pong
(om@Vaio)2> nodes().
[switch@Vaio]
(om@Vaio)3> mnesia:create_schema([node()|nodes()]).
ok
(om@Vaio)4> ls().
Mnesia.om@Vaio Mnesia.switch@Vaio include
lib
ok

The mnesia:create_schema(Nodes) command has to be executed on one of the connec-
ted nodes only. By creating the list [node()|nodes()], we get all the connected Erlang

† Those familiar with databases might be surprised that we called this “schema creation,” since it more closely
resembles creation of the database itself, with the schema—the details regarding which tables the database
contains—being created implicitly by subsequent table operations to create tables.

Configuring Mnesia | 295

nodes, which incidentally are the same nodes on which we want to create the schema
tables. You might recall from Chapter 11, where we covered distributed Erlang, that
the node() BIF returns the local node, whereas nodes() returns all other connected
nodes. The mnesia:create_schema/1 command will propagate to the other nodes
automatically.

When creating the schema, each node will create a directory. In our case, as both dis-
tributed Erlang nodes share the same root directory, their schema directories
Mnesia.om@Vaio and Mnesia.switch@Vaio will appear in the same location, where Vaio
is the hostname of the computer on which we executed the command. Other contents
of the directory will depend on what you’ve previously done with Erlang, but will not
affect your schema.

Had your nodes been on computers that were not connected, only the schema directory
for the node running on that computer would have been created. If you do not plan to
run Mnesia in a distributed environment, the schema directory name will be
Mnesia.nonode@nohost. Just pass [node()] as an argument to the create_schema/1 call.

You can override the location of the root directory by starting Erlang with this directive:

erl -mnesia dir Dir

replacing Dir with the directory where you want to store your schema.

Starting Mnesia
Once your schema has been created, you start the application by calling the following:

application:start(mnesia).

If you are using boot scripts as described in Chapter 12, you should include the Mnesia
application in your release file. In a test environment where you are not using OTP
behaviors, you can also use mnesia:start(). In an industrial project with release han-
dling, separating the applications and starting them individually is considered a best
practice.

If you start Mnesia without a schema, a memory-only database will be created. This
will not survive restarts, however, so the RAM-only tables will have to be created every
time you restart the system. To start Mnesia with a RAM schema, all you need to do is
ensure that there is no schema directory for that particular node, and then you can start
Mnesia.

You can stop Mnesia by calling either application:stop(mnesia) or mnesia:stop().

Mnesia Tables
Mnesia tables contain Erlang records. By default, the name of the record type becomes
the table name. You create a table by using the following function call:

mnesia:create_table(Name, Options)

296 | Chapter 13: Introducing Mnesia

In this function call, Name is the record type and Options is a list of tuples of the format
{Item, Value}. The following Items and Values are most commonly used:

{disc_copies, Nodelist}
Provides the list of nodes where you want disc and RAM replicas of the table.

{disc_only_copies, Nodelist}
Nodelist contains the nodes where you want disc-only copies of this particular
table. This is usually a backup node, as local reads will be slow on these nodes.

{ram_copies, Nodelist}
Specifies which nodes you want to have duplicate RAM copies of this particular
table. The default value of this attribute is [node()], so omitting it will create a local
Mnesia RAM copy.

{type, Type}
States whether the table is a set, ordered_set, or bag. The default value is set.

{attributes, AtomList}
Is a list of atoms denoting the record field names. They are mainly used when
indexing or using query list comprehensions. Please, do not hardcode them; gen-
erate them using the function call record_info(fields, RecordName).

{index, List}
Is a list of attributes (record field names) which can be used as secondary keys when
accessing elements in the table.

The key position is, by default, the first element of the record. Each instance of a record
in a Mnesia table is called an object. The key of this object, together with the table name,
give you the object identifier.

Having created the schema, we want to start Mnesia on all nodes and do the one-off
operation of creating the table. This is usually done when installing and configuring
the Erlang nodes. For redundancy and performance reasons, we want to run the data-
base on two remote nodes called om and switch. On the om node, we want to store the
data in RAM and on disk, and on the switch node, we want to maintain only a RAM
copy. When looking at the example, remember the rr/1 shell command that reads a
file and extracts its record definitions, making them available in the shell:

(om@Vaio)5> rr(usr).
[usr]
(om@Vaio)6> Fields = record_info(fields, usr).
[msisdn,id,status,plan,services]
(om@Vaio)7> application:start(mnesia).
 ok
(om@Vaio)8> mnesia:create_table(usr, [{disc_copies, [node()]},
 {ram_copies, nodes()}, {type, set}, {attributes, Fields}, {index, [id]}]).
{atomic,ok}

Within this Mnesia example, notice how we create only one table, stating that it has
to be indexed and that it must have a RAM copy and file backup. A simplistic explan-
ation of what is happening behind the scenes is evident in our mobile subscriber

Configuring Mnesia | 297

database backend module using ETS and Dets tables, where we created three tables:
one for the disk copy, one for the RAM copy, and one for the index.

There is no need to open Mnesia tables. When starting the Mnesia application, all tables
configured in the schema are created or opened. This is a relatively fast, nonblocking
operation, done in parallel with the startup of other applications.

For large persistent tables, or tables that were incorrectly closed and whose backup files
need repair, other applications might try to access the table even if it has not been
properly loaded. Should this happen, the process crashes with the error no_exists. To
avoid this, you should call:

mnesia:wait_for_tables(TableList, TimeOut)

in the initialization phase of your process or OTP behavior, where TableList is a list of
Mnesia table names (both persistent and volatile) used by that process, and TimeOut is
either the atom infinity or an integer in milliseconds.

When dealing with large tables containing millions of rows, if you are not using
infinity as a timeout, you must ensure that the TimeOut value is at least a few minutes,
if not hours, for extremely large, fragmented, disk-based tables. The call
wait_for_tables/2 is called independently of starting Mnesia by the process which
needs the tables. By pattern matching on the return value, you ensure that the table is
loaded. If a timeout occurs, the return value will result in a bad match error, and that
is logged. The last thing you want is for the wait_for_tables/2 call to return {timeout,
TableList}, ignore this value, and continue assuming that the tables have been properly
loaded.

In our mobile subscriber example, we originally needed a process that created and
owned the ETS and Dets tables and serialized all destructive (write and delete) opera-
tions. That is no longer the case. Mnesia will take care of this for us. We would thus
scrap the usr_db.erl module, and instead place all of our functionality in the usr.erl
module. We would also remove all the process-related calls, such as start, spawn,
init, and stop, or gen_server calls and callbacks if we are using the behavior example.
We would instead add the calls create_tables/0 and ensure_loaded/0 and keep the
entire client API:

-module(usr).
-export([create_tables/0, ensure_loaded/0]).
-export([add_usr/3, delete_usr/1, set_service/3, set_status/2,
 delete_disabled/0, lookup_id/1]).
-export([lookup_msisdn/1, service_flag/2]).

-include("usr.hrl").

%% Mnesia API

create_tables() ->
 mnesia:create_table(usr, [{disc_copies, [node()]}, {ram_copies, nodes()},
 {type, set}, {attributes,record_info(fields, usr)},
 {index, [id]}]).

298 | Chapter 13: Introducing Mnesia

ensure_loaded() ->
 ok = mnesia:wait_for_tables([usr], 60000).

Transactions
As many concurrent processes, possibly located on different nodes, can access and
manipulate objects at the same time, you need to protect the data from race conditions.
You do this by encapsulating the operations in a fun and executing them in a transac-
tion. A transaction guarantees that the database will be taken from one consistent state
to another, that changes are persistent and atomic across all nodes, and that transac-
tions running in parallel will not interfere with each other. In Mnesia, you execute
transactions using:

mnesia:transaction(Fun)

where the fun contains operations such as read, write, and delete. If successful, the
call returns a tuple {atomic, Result}, where Result is the return value of the last ex-
pression executed in the fun. If the transaction fails, {aborted, Reason} is returned.
Always pattern-match on {atomic, Result}, as your transactions should never fail un-
less mnesia:abort(Reason) is called from within the transaction.

Make sure your funs, with the exception of your Mnesia operations, are free of side
effects. When executing your fun in a transaction, Mnesia will put locks on the objects
it has to manipulate. If another process is holding a conflicting lock on an object, the
transaction will first release all of its current locks and then restart. Side effects such as
an io:format/2 call, or sending a message, might result in the printout or the message
being sent hundreds of times.

Writing
To write an object in a table, you use the function mnesia:write(Record), encapsulating
it in a fun and executing it in a transaction. The call returns the atom ok. Mnesia will
put a write lock on all of the copies of this object (including those on remote nodes).
Attempts to put a lock on an already locked object will fail, prompting the transaction
to release all of its locks and start again.

Trying out the functions directly in the shell will give you a better feel for how it all
works:

(om@Vaio)9> Rec = #usr{msisdn=700000003, id=3, status=enabled,
(om@Vaio)9> plan=prepay, services=[data,sms,lbs]}.
#usr{msisdn=700000003, id=3, status=enabled,
 plan=prepay, services=[data,sms,lbs]}
(om@Vaio)10> mnesia:transaction(fun() -> mnesia:write(Rec) end).
{atomic,ok}

Remember how in the ETS and Dets variants of this example, which first appeared in
Chapter 10, you had to create three table entries for every user you inserted in the

Transactions | 299

database? And what if you wanted to distribute this data across multiple nodes? As the
usr Mnesia table contains distributed RAM and disk-based copies as well as an index,
you only need to do one write. Behind the scenes, Mnesia takes care of the rest for you.

To write or update a record in the mobile subscriber example, you would encapsulate
the write operation in the usr.erl module as follows:

add_usr(PhoneNo, CustId, Plan) when Plan==prepay; Plan==postpay ->
 Rec = #usr{msisdn = PhoneNo,
 id = CustId,
 plan = Plan},
 Fun = fun() -> mnesia:write(Rec) end,
 {atomic, Res} = mnesia:transaction(Fun),
 Res.

As add_usr/1 in all of the previous ETS and OTP behavior examples returned ok, you
would make the new function backward-compatible.

Reading and Deleting
To read objects, you use the function mnesia:read(OId), where OId is an object identifier
of the format {TableName, Key}. This function call will return the empty list if the object
does not exist or a list of one or more records if the object exists and the table is a set
or bag. You need to execute the function within the scope of a transaction; failing to
do so will cause a runtime error.

Note from which node we are now reading the record. It does not make a difference.
We just need to make sure Mnesia is started on this node as well, something we did
when creating the table.

To delete an object, you can use the mnesia:delete(OId) call from within a transaction.
The call returns the atom ok, regardless of whether the object exists.

Our schema was distributed across two nodes. Let’s start Mnesia on the second node
and look up the entry we wrote on the om node in the previous example:

(switch@Vaio)1> application:start(mnesia).
ok
(switch@Vaio)2> usr:ensure_loaded().
ok
(switch@Vaio)3> rr(usr).
[usr]
(switch@Vaio)4> mnesia:transaction(fun() -> mnesia:read({usr, 700000003}) end).
{atomic,[#usr{msisdn = 700000003,id = 3,status = enabled,
 plan = prepay,
 services = [data,sms,lbs]}]}
(switch@Vaio)5> mnesia:read({usr, 700000003}).
** exception exit: {aborted,no_transaction}
 in function mnesia:abort/1
(switch@Vaio)6> mnesia:transaction(fun() -> mnesia:abort(no_user) end).
{aborted,no_user}
(switch@Vaio)7> mnesia:transaction(fun() -> mnesia:delete({usr, 700000003}) end).
{atomic,ok}

300 | Chapter 13: Introducing Mnesia

(switch@Vaio)8> mnesia:transaction(fun() -> mnesia:read({usr, 700000003}) end).
{atomic,[]}

As you can see, executing a destructive operation such as write or delete will duplicate
the operation across all nodes. Pay attention to the error in command 5, where we
execute a read outside the scope of a transaction. Also, look at the return value for
command 6, where we abort a transaction.

Indexing
When creating the usr table, one of the options we passed into the call was the tuple
{index, AttributeList}. This will index the table, allowing us to look up and manip-
ulate objects using any of the secondary fields (or keys) listed in the AttributeList. To
use indexes, you have to execute the following call:

index_read(TableName, SecondaryKey, Attribute).

All of the functions used to provision customer data in our example use the
CustomerId attribute. If you want to delete a subscriber record, you would have to check
its existence, as the function delete_usr/1 returns {error, instance} if the field does
not exist. If the record does exist, you find its primary key and use it to delete the field:

delete_usr(CustId) ->
 F = fun() -> case mnesia:index_read(usr, CustId, id) of
 [] -> {error, instance};
 [Usr] -> mnesia:delete({usr, Usr#usr.msisdn})
 end
 end,
 {atomic, Result} = mnesia:transaction(F),
 Result.

In a similar fashion, if you wanted to add or remove a service a subscriber is entitled to
use, you would look up the usr record and, if the entry exists, update the status using
the msisdn:

set_service(CustId, Service, Flag) when Flag==true; Flag==false ->
 F = fun() ->
 case mnesia:index_read(usr, CustId, id) of
 [] -> {error, instance};
 [Usr] ->
 Services = lists:delete(Service, Usr#usr.services),
 NewServices = case Flag of
 true -> [Service|Services];
 false -> Services
 end,
 mnesia:write(Usr#usr{services=NewServices})
 end
 end,
 {atomic, Result} = mnesia:transaction(F),
 Result.

Transactions | 301

The same principle applies to enabling and disabling a particular subscriber:

set_status(CustId, Status) when Status==enabled; Status==disabled->
 F = fun() ->
 case mnesia:index_read(usr, CustId, id) of
 [] -> {error, instance};
 [Usr] -> mnesia:write(Usr#usr{status=Status})
 end
 end,
 {atomic, Result} = mnesia:transaction(F),
 Result.

Note how all of these functions first look up an object, and if it exists, they either delete
or manipulate it. When changing the subscriber status or services, there is no risk of
any other process deleting the entry between the index_read/3 and the write/1 function
calls. This is because both operations are running in a transaction, setting locks on the
objects they are manipulating and ensuring that other transactions attempting to access
them are kept on hold. As a result, any two transactions on the same object cannot
interfere with each other. Keep in mind that the race conditions could occur among
processes in different nodes. Let’s try the functions we’ve just defined in the shell and
see whether they work:

(switch@Vaio)9> usr:add_usr(700000001, 1, prepay).
ok
(switch@Vaio)10> usr:add_usr(700000002, 2, prepay).
ok
(switch@Vaio)11> usr:add_usr(700000003, 3, postpay).
ok
(switch@Vaio)12> usr:delete_usr(3).
ok
(switch@Vaio)13> usr:delete_usr(3).
{error,instance}
(switch@Vaio)14> usr:set_status(1, disabled).
ok
(switch@Vaio)15> usr:set_service(2, premiumsms, true).
ok
(switch@Vaio)16> mnesia:transaction(fun() -> mnesia:index_read(usr, 2, id) end).
{atomic,[#usr{msisdn = 700000002,id = 2,status = enabled,
 plan = prepay,
 services = [premiumsms]}]}

If you create a table and want to add or remove indexes during runtime, you can use
the schema manipulation functions add_table_index(Tab, Attribute) and
del_table_index(Tab, Attribute).

Dirty Operations
Sometimes it is acceptable to execute an operation outside the scope of a transaction
without setting any locks. Such operations are known as dirty operations. In Mnesia,
dirty operations are about 10 times faster than their counterparts that are executed in
transactions, making them a very viable option for soft real-time systems. If you can

302 | Chapter 13: Introducing Mnesia

guarantee the consistency, isolation, durability, and distribution properties of your
tables, dirty operations will significantly enhance the performance of your program.

Some of the most common dirty Mnesia operations are:

dirty_read(Oid)
dirty_write(Object)
dirty_delete(ObjectId)
dirty_index_read(Table, SecondaryKey, Attribute)

All of these operations will return the same values as their counterparts executed within
a transaction. If you need to implement soft real-time systems with requirements on
throughput, transactions quickly become a major bottleneck. In our mobile subscriber
example, the time-critical functions are those that are service-related. If you need to
send 100,000 SMS messages, where every SMS requires a lookup to ensure that the
subscriber not only exists and is enabled, but also is allowed to receive premium-rated
SMSs, speed becomes critical. If the subscriber data is changed before or after the dirty
read, it would not impact the sending of the SMS, since the functions contain only one
nondestructive read operation:

lookup_id(CustId) ->
 case mnesia:dirty_index_read(usr, CustId, id) of
 [Usr] -> {ok, Usr};
 [] -> {error, instance}
 end.

%% Service API

lookup_msisdn(PhoneNo) ->
 case mnesia:dirty_read({usr, PhoneNo}) of
 [Usr] -> {ok, Usr};
 [] -> {error, instance}
 end.

service_flag(PhoneNo, Service) ->
 case lookup_msisdn(PhoneNo) of
 {ok,#usr{services=Services, status=enabled}} ->
 lists:member(Service, Services);
 {ok, #usr{status=disabled}} ->
 {error, disabled};
 {error, Reason} ->
 {error, Reason}
 end.

A common way to use dirty operations while ensuring data consistency is to serialize
all destructive operations in a single process. Although another process might be al-
lowed to execute a dirty read outside the scope of this process, all operations that
involve both writing and deleting elements are serialized by sending the request to the
process that executes them in the order they are received.

In our Mnesia version of the usr example, we got rid of our central process altogether
and used transactions. If we had kept the process, we could have replaced all of the
ETS and Dets read, write, and delete operations with Mnesia dirty operations. If we

Transactions | 303

distributed the table across the OM and Switch nodes, however, we would have had to
redirect all destructive operations to one of the nodes, as we would otherwise have run
the risk of simultaneously updating the same object in two locations.

If you need to use dirty operations in a distributed environment, the trick is to ensure
that updates to a certain key subset are serialized through a process on a single node.
If your keys are in the range of 1 to 1,000, you could potentially update all even keys
on one node and all odd ones on the other, solving the race condition we just described.

Inconsistent Tables
If you want to see how Mnesia tables become inconsistent through the use of dirty
operations, start two distributed Erlang nodes on separate computers and make them
share a Mnesia table. In one node, type mnesia:dirty_write/1 with a key and one or
more fields, but do not press Enter. In the other node, do the same, keeping the same
key but changing the values of the fields. Very quickly, you need to disconnect the
network cable between both computers, press Enter in both shells, and reconnect the
cable. If you are fast enough, you will reconnect the cable before the TCP/IP connection
between the nodes times out.

Read the entry in both nodes, and you will probably discover an inconsistent table, as
values will probably differ. What happens upon executing dirty_write/1 is that you
locally update the local object copy, after which it is sent to the remote node. As the
TCP/IP connection is temporarily down, this entry gets buffered. The buffering will
happen on both nodes, so as soon as you reinsert the cable, you generate a race con-
dition, overwriting the entry in the peer node. Had you been using transactions, this
race condition would not have occurred.

Partitioned Networks
One of the biggest problems when using Mnesia in a distributed environment is the
presence of partitioned networks. Although this problem is not directly related to any
distributed transactional database or to Mnesia in particular, sooner or later you are
bound to come across it. Assume that you have two Erlang nodes with a shared Mnesia
table. If something as minor as a network glitch occurs between the nodes and both
copies of the table are updated independently of each other, then when the network
comes back up again, you have an inconsistent shared table (Mnesia would have been
able to recover if only one node had been updated). Unlike the example with the dirty
operations, Mnesia knows the tables are partitioned and will report this event so that
you can act on it.

304 | Chapter 13: Introducing Mnesia

What do you do? Which of the two table copies do you pick? Can you somehow merge
the two databases together again? Recovery of databases from partitioned networks is
an area of research for which no “silver bullet” solutions have been found. In Mnesia,
you can pick the master node by calling the following function:

mnesia:set_master_nodes(Table, Nodes).

If the network becomes partitioned, Mnesia will automatically take the contents of the
master node, duplicating it to the partitioned nodes and bringing them back in sync.
All updates during the partitioning done in tables not on the master node are discarded.

The most common Mnesia deployments will have tables replicated on two or three
nodes. As soon as you start increasing that number, the risk of partitioned networks
increases exponentially. No matter how extensive your testing is, partitioned databases
will rarely manifest themselves until you’ve gone live and your system is under heavy
stress. When designing distributed databases, always have a recovery plan from parti-
tioned databases up your sleeve.

Further Reading
We are almost done with our module subscriber database. Only one operation is miss-
ing: traversing the list and deleting all disabled subscribers. There are many ways to
traverse and search through data in Mnesia. You can use first and next, query list
comprehensions, and even select and match.

We picked the mnesia:foldl/3 call for no particular reason other than the fact that it
is an interesting function that deserves mention. It behaves just like its counterpart in
the lists module, but instead of traversing a list, it traverses a table:

delete_disabled() ->
 F = fun() ->
 FoldFun = fun(#usr{status=disabled, msisdn = PhoneNo},_) ->
 mnesia:delete({usr, PhoneNo});
 (_,_) ->
 ok
 end,
 mnesia:foldl(FoldFun, ok, usr)
 end,
 {atomic, ok} = mnesia:transaction(F), ok.

Although we may now be done with our mobile subscriber example, we’ve barely
scratched the surface of what Mnesia has to offer. Some of the most commonly used
functionality in industrial systems includes the fragmentation of tables, backups, fall-
backs, Mnesia events, and diskless nodes, to mention but a few. All of them are covered
in more detail in the Mnesia User’s Guide and the Mnesia Reference Manual, both of
which are part of the OTP documentation. What we have covered, however, is more
than enough to allow you to efficiently get started using Mnesia.

Further Reading | 305

Exercises

Exercise 13-1: Setting Up Mnesia
In this step-by-step exercise, you will create a distributed Mnesia database of Muppets.
First, start two nodes:

erl -sname foo
erl -sname bar

In the first node, declare the Muppet data structure:

foo@localhost 1> rd(muppet, {name, callsign, salary}).

Next, create a schema so that you can make the tables persistent:

foo@localhost2> mnesia:create_schema([foo@localhost, bar@localhost]).

Now,you need to start Mnesia on both nodes:

foo@localhost 3> application:start(mnesia).
bar@localhost 1> application:start(mnesia).

The database is running! Create a distributed table:

foo@localhost 4> mnesia:create_table(muppet, [
 {attributes, record_info(fields, muppet)},
 {disc_copies [foo@localhost, bar@localhost}]).

Note how the disc_copies attribute specifies the nodes on which you want to keep a
persistent copy. Check that everything looks all right:

foo@localhost 5> mnesia:info().

Now, look around you and type in your current cast of Muppets:

foo@localhost 6> mnesia:dirty_write(#muppet
{name = "Francesco" callsign="HuluHuluHulu", salary = 0}).

See how many Muppets you have so far:

foo@localhost 7> mnesia:table_info(muppet, size).

List their names with a function we have not covered in this chapter, but which you
should have picked up when reading the Mnesia manual pages:

foo@localhost 8> mnesia:dirty_all_keys(muppet).

Excellent; now go to the other node and look up a Muppet:

bar@localhost 2> mnesia:dirty_read({muppet, "Francesco"}).

Exercise 13-2: Transactions
Write a function that reads a Muppet’s salary and increases it by 10%. Use a transaction
to guarantee that there are no race conditions.

306 | Chapter 13: Introducing Mnesia

Exercise 13-3: Dirty Mnesia Operations
Implement the usr_db.erl module from Chapter 10 with dirty Mnesia operations. The
module should be completely backward compatible with the ETS- and Dets-based sol-
ution. Test it from the shell, and when it works, serialize the operations in a process,
using the usr.erl module. Your create_tables/1 and close_tables/0 calls should start
and stop the Mnesia application, and the restore_backup/0 call should implement a
wait_for_tables/2 call. All other functions should return the same values returned in
the original example.

Exercises | 307

CHAPTER 14

GUI Programming with wxErlang

Programming graphical user interfaces (GUIs) is not one of Erlang’s touted strengths,
but ongoing work has provided Erlang with a cross-platform, state-of-the-art GUI pro-
gramming system: wxErlang, an Erlang binding of the wxWidgets system.

wxWidgets consists of an extensive C++ library that provides components for building
menus, buttons, interactions, text and graphical displays, and much more; wxWidgets
also provides a general framework for building cross-platform applications, including
support for internationalization, and lower-level facilities such as memory manage-
ment. Because of the size and complexity of wxErlang, this chapter cannot provide a
comprehensive overview of it. Instead, this chapter covers the principles underlying the
toolkit and provides a taste of some of its most-used aspects. Our coverage should be
enough to get you started and give you the base from which to explore the library in
more depth.

This chapter introduces wxWidgets and explains the principles underlying its Erlang
binding. After describing the event-handling mechanism in wxErlang, we present a
scaled-down blog example in two stages. This chapter concludes with a number of
pointers for learning more about wxWidgets and wxErlang, and a series of exercises to
improve and extend the running example.

wxWidgets
The wxWidgets open source project was initiated by Julian Smart in the early 1990s,
and it is now supported by a team of approximately 20 developers and a wide circle of
contributors. wxWidgets is a C++ library, but it has bindings to many other languages,
including Haskell, Java, Perl, and Python, giving programmers in these languages di-
rect, high-level access to a state-of-the-art GUI-building toolkit. Recent work led by
Dan Gudmundsson and Mats-Ola Persson has given us wxWidgets for Erlang.

Most systems with a GUI will be deployed on multiple platforms (multiple hardware
and operating system combinations). To avoid having to write multiple implementa-
tions of a system you’re developing, you must use a GUI toolkit that will run on multiple

309

platforms. One option is to use a platform-agnostic toolkit, which will give the appli-
cation the same appearance on multiple platforms. The downside to this approach is
that the application is unlikely to share the native look and feel of applications built for
any one platform (and we’re sure many of you have experienced the frustration of using
an application that fails to comply with the UI guidelines of your favorite platform).

Although the wxWidgets toolkit supports multiple platforms, it is designed to support
the native look and feel of each one, including various flavors of Windows, Linux, and
Mac OS X. This makes the wxWidgets toolkit a perfect fit for use with the platform-
independent Erlang language.

wxWidgets has an object-oriented architecture. Each graphical entity is a C++ object
and belongs to a C++ class. The classes are related through multiple inheritance, with
more complex graphical entities, such as a “text entry dialog,” inheriting from a number
of more fundamental entities. The example in this chapter includes the event handler
and dialog classes as well as the wxWindow and wxObject base classes.

The GUI is event-driven: the GUI objects handle events—both user-initiated and in-
ternal—by associating the events with (member) functions to be called when the events
occur. You can create this association using an event table, binding particular events to
their handler functions and constructing them statically as part of the construction of
a class. Alternatively, you can create a dynamic association, by connecting handler
functions to events on an object-by-object basis and allowing the processing to be
modified during an object’s lifetime.

Objects in C++ can be created on the stack, but in general, the principal GUI entities
will be created on the heap. Any memory allocated to the storage of the GUI entities
needs to be deallocated explicitly once the object is no longer accessible. wxWidgets
provides some mechanisms to assist with this.

You can find more information about wxWidgets in the extensive online documenta-
tion at http://www.wxwidgets.org/, and in Cross-Platform GUI Programming with
wxWidgets (Prentice Hall).

wxErlang: An Erlang Binding for wxWidgets
In binding wxWidgets to Erlang, it is necessary to decide how to render its object-
oriented structure and event-handling mechanism within Erlang so that it fits as closely
as possible with the design principles underlying the language. This section explains
the top-level correspondences, with more specific details coming in subsequent
sections.

The wxErlang documentation contains an overview page together with an EDoc page
for each module, which gives type information on each function as well as linking into
the corresponding pages of the wxWidgets online documentation.

310 | Chapter 14: GUI Programming with wxErlang

http://www.wxwidgets.org/

Objects and Types
In the wxErlang binding, each class is represented by a module and each object by an
object reference. For example, the wxErlang function call in:

File = wxMenu:new(),

constructs a new wxMenu object and assigns a reference to this object to the File variable,
with the same effect as the call to the constructor in the C++ fragment:

wxMenu *File = new wxMenu;

To call methods on the object, as in this C++ example:

File->Append(NEW,wxT("New\tCtrl-N"));

wxErlang provides a three-argument append function, where the first argument to
append is the object reference, File:

wxMenu:append(File,?NEW,"New\tCtrl-N"),

The pattern of wxErlang functions taking an extra “this” or “self” value as the first
argument is used throughout the binding. In a similar way, the constructors for a class
are replaced by new functions of the same arity. Some wxWidgets methods take optional
arguments; in wxErlang, all the optional arguments are passed by means of a single
unordered property list, as supported by the proplists module.

It is worth reiterating that the File variable in the preceding code is fixed: its value is a
reference to an object. On the other hand, the object to which it refers is mutable; this
change is performed by the wxErlang operations—in this case, those in the wxMenu
module.

The preceding “append” example illustrates two additional points:

• In the wxWidgets code, strings are wrapped in the wxT constructor; wx strings are
assumed to be encoded in UTF-32 in native architecture format. This is the default
for ASCII strings in Erlang, but other character sets will need to be handled
explicitly.

• The C++ macro mechanism is used heavily in wx, not least in defining object iden-
tifiers such as NEW. These are also available in wxErlang through the Erlang
preprocessor mechanism with the inclusion of the header file wx.hrl.

Finally, although most wxWidgets classes have corresponding wxErlang representa-
tions, some of the classes representing data types are mapped directly to Erlang data
types. For instance, a wxPoint is represented by a pair, {Xcoord, Ycoord}, and a wxGBPo
sition by a {Row, Column} tuple. The full details of all data type correspondences are
given in the overview section of the wxErlang documentation.

wxErlang: An Erlang Binding for wxWidgets | 311

Event Handling, Object Identifiers, and Event Types
The Erlang wx binding allows events to be handled in two ways. They can be handled
by callback functions as in wxWidgets, or they can be received as Erlang messages, thus
integrating with the Erlang concurrent programming model. We will cover the latter
mechanism here.

To understand the structure of messages, it is first necessary to understand three other
aspects of events in wx:

Identifiers
Identifiers are integers used to uniquely identify parts of a GUI, such as windows,
buttons, menu items, and so forth. wxWidgets contains a collection of standard
identifiers for various common elements, such as wxID_OPEN and wxID_ABOUT (for a
File Open menu item and an About box). These are available as macro definitions
in wxErlang in wx.hrl, and are referenced with ?wxID_ABOUT.

Use of these standards is encouraged. First, the system can identify default behav-
iors to associate with particular identifiers, and second, the objects associated with
certain identifiers can be treated in a platform-sensitive way. We illustrate this in
the blog example later in the chapter.

You can find a full listing of the standard identifiers in the wx.hrl header file in the
wxErlang distribution, as well as in the wxWidgets documentation and book.

Event types
Events in wxErlang come in different shapes and sizes: menu selections, navigation
through trees of commands, and events triggered by the passage of time or by
external user gestures with a mouse or keyboard. These different kinds of events
are represented by a collection of atoms, including command_menu_selected,
enter_window, close_window, and 100+ others, known as the type of the event.

Depending on its type, an event will have different kinds of information associated
with it. For example, close_window will have nothing associated with it (apart from
its type), whereas an enter_window event will also have associated with it the posi-
tion of the mouse when the event occurred (among other things). This associated
information is presented in a record, whose type depends on the type of the event.
In every case, the type field of the record contains the event type.

The full definition of event types and the associated records is available in the
wxEvtHandler.erl module and its associated documentation.

Connection
For a graphical component to receive messages it must connect to the particular
type of event; it is also possible to restrict this to a particular set of objects by
specifying a range of identifiers.

For example, for a frame (whose reference is in the Frame variable) to connect to
the events generated by a command being selected in a menu, you can use the
following expression:

312 | Chapter 14: GUI Programming with wxErlang

wxFrame:connect(Frame, command_menu_selected)

The connect operation is available to any class inheriting from wxEvtHandler. The
implementation of this uses the wxWidgets dynamic event-handler connection
mechanism.

With these definitions in place, we can now explain that messages in wxErlang take
the following form:

#wx{id=Id, obj=Obj, userData=T, event=Rec}

where Id is an identifier for the graphical object receiving the event, Obj is a reference
to the object that established the connection (in the earlier connection example, this
would be the Frame object), and Rec is a record containing information that is dependent
on the particular type of the event. In every case, the type field of Rec contains the type
of the message sent.

Messages are processed in the standard way in Erlang, so the message that an “append”
menu item has been selected would be treated as follows:

receive
 #wx{id=?APPEND, event=#wxCommand{type=command_menu_selected}} ->
 ... handler code for APPEND ...
 ... other messages ...
end

Further details about connections, including the way callbacks can be connected and
the way events are handled by multiple handlers, is available in the overview of the
wxErlang documentation and the wxWidgets online documentation and book.

Putting It All Together
To use wxWidgets, a wxErlang application will need to start and stop a wx-server, like
so:

wx:new().
 ...
wx:destroy().

Two processes that have each created a separate server will not be able to share objects.
Instead, the environment of a running process can be retrieved using wx:get_env/0 and
set in a new process using wx:set_env/1, allowing the processes shared access to their
objects.

When destroy is invoked, all the memory used by the wx application will be reclaimed.
It is possible to explicitly reclaim memory allocated to a Class widget using
wxClass:destroy/1 on the object. This is particularly recommended for some transitory
objects, such as those that represent a dialog, as these would be stack-allocated in the
wxWidgets system, but not in wxErlang.

wxErlang: An Erlang Binding for wxWidgets | 313

A First Example: MicroBlog
The first example we will develop is minimal: a “micro” blogging application. It is
stripped down so that all it can do is display an About box, but it will show you the
principles of building a wxErlang application. In the next section, you’ll see how to add
the blogging functionality.

Our program is given in one file, microblog.erl, which begins like this:*

%% A micro-blog, which sets up a frame with menus, and allows an
%% "about" box to be displayed.

-module(microblog).
-compile(export_all).

-include_lib("wx/include/wx.hrl").

-define(ABOUT,?wxID_ABOUT).
-define(EXIT,?wxID_EXIT)

This shows the inclusion of the wx.hrl header file (located in an installation-specific
position) that contains definitions of the standard identifiers and types. The local macro
definitions of ABOUT and EXIT link these to the standard wx identifiers for these menu
items. This will allow the application to handle them in a platform-specific way.

The top-level function for our example is start/0:

%% Top-level function: create the wx-server, the graphical objects,
%% show the application, process and clean up on termination.

start() ->
 wx:new(),
 Frame = wxFrame:new(wx:null(), ?wxID_ANY, "MicroBlog"),
 setup(Frame),
 wxFrame:show(Frame),
 loop(Frame),
 wx:destroy().

This function first creates an instance of the wx-server, and before termination ensures
that it is destroyed and memory is reclaimed. The principal graphical object is a
wxFrame, created with no parent object (wx:null()), with an arbitrary identifier
(?wxID_ANY) and with the title "MicroBlog".

The setup function sets up the graphical objects within the frame, which is then dis-
played using wxFrame:show before the main processing loop is entered. Here is how the
application is set up:

%% Top-level frame: create a menu bar, two menus, two menu items
%% and a status bar. Connect the frame to handle events.

setup(Frame) ->

* In releases before R13, this needs to be an explicit include of the wx.hrl file.

314 | Chapter 14: GUI Programming with wxErlang

 MenuBar = wxMenuBar:new(),
 File = wxMenu:new(),
 Help = wxMenu:new(),

 wxMenu:append(Help,?ABOUT,"About MicroBlog"),
 wxMenu:append(File,?EXIT,"Quit"),

 wxMenuBar:append(MenuBar,File,"&File"),
 wxMenuBar:append(MenuBar,Help,"&Help"),

 wxFrame:setMenuBar(Frame,MenuBar),

 wxFrame:createStatusBar(Frame),
 wxFrame:setStatusText(Frame,"Welcome to wxErlang"),

 wxFrame:connect(Frame, command_menu_selected),
 wxFrame:connect(Frame, close_window).

The setup function creates a menu bar and two menus, File and Help. The About and
Exit items are added to the menus, and the menus are appended to the menu bar, which
is then set as the menu bar for the frame. A status bar is also added to the frame. Finally,
two types of events are connected to the frame for processing: those signaling the choice
of a menu item (command_menu_selected) and the close_window event.

Figure 14-1 shows the application in Mac OS X. This has the look and feel of a Mac
application, with the menu appearing in the menu bar at the top of the screen, rather
than at the top of the main window. The standard Mac OS X menus—Erlang (the
application menu), File, Window, and Help—appear, and they contain the standard
items seen in all OS X applications; this is without explicitly creating either the Erlang
or the Window menu in MicroBlog.

Moreover, the About MicroBlog item appears in the application menu, consistent with
the OS X GUI guidelines, despite being appended to the Help menu in setup. wx can
do this because the standard identifier ?wxID_ABOUT is used to identify the About menu
item. Contrast this with the Windows XP version, where the About menu item appears
in the Help menu, as shown in Figure 14-2.

Figure 14-3 shows the effect of selecting About MicroBlog in Windows XP.

The final part of the code gives the main loop function:

loop(Frame) ->
 receive
 #wx{id=?ABOUT, event=#wxCommand{}} ->
 Str = "MicroBlog is a minimal WxErlang example.",
 MD = wxMessageDialog:new(Frame,Str,
 [{style, ?wxOK bor ?wxICON_INFORMATION},
 {caption, "About MicroBlog"}]),
 wxDialog:showModal(MD),
 wxDialog:destroy(MD),
 loop(Frame);

 #wx{id=?EXIT, event=#wxCommand{type=command_menu_selected}} ->

A First Example: MicroBlog | 315

 wxWindow:close(Frame,[])
 end.

Figure 14-1. MicroBlog in Mac OS X

Figure 14-2. MicroBlog in Windows XP

This shows the two kinds of messages to be handled together with the processing code.
Selecting the About menu item produces a message dialog, which shows information
about the application in a dialog box, closed with an OK button. The dialog is shown
modally so that other interactions are halted while the box is displayed; dialogs can
also be shown nonmodally. Note also that the dialog MD is explicitly destroyed after it
is displayed, allowing memory to be recycled at that point.

316 | Chapter 14: GUI Programming with wxErlang

Figure 14-3. About MicroBlog in Windows XP

The MiniBlog Example
This example extends the preceding example to give a basic implementation of a “mini
blog”; this forms the basis for a series of suggested extensions that will give you a chance
to program in wxErlang for yourself.

The mini blog is a list of dated entries, each occupying a single line, much like a Face-
book status message or a Twitter Tweet. As well as the About and Exit options, the
GUI provides these operations on the blog:

New
Creates a new, empty mini blog.

Open
Opens the blog saved in the BLOG file.

Save
Saves the current blog in the BLOG file, overwriting its contents if it already exists.

Add entry
Adds an entry at the end of the blog. The entry is automatically dated.

Undo latest
Undoes the latest “add entry”; this can be done recursively.

Figure 14-4 shows a screenshot of the system.

To describe the Erlang code for MiniBlog we’ll explain how the MicroBlog code is modi-
fied. The head of the miniblog.erl module extends microblog.erl with a number of
identifier macro definitions, to give a unique identifier to each menu command:

The MiniBlog Example | 317

-define(APPEND,131).
-define(UNDO,132).
-define(OPEN,133).
-define(SAVE,134).
-define(NEW,135).

Figure 14-4. The mini blog application

The main function, miniblog:start/0, extends the previous function by adding a text
control (wxTextCtrl) that contains the entries; this Text object is then passed to the
setup and loop functions:

start() ->
 wx:new(),
 Frame = wxFrame:new(wx:null(), ?wxID_ANY, "MiniBlog"),
 Text = wxTextCtrl:new(Frame, ?wxID_ANY,
 [{value,"MiniBlog"},
 {style,?wxTE_MULTILINE}]),
 setup(Frame,Text),
 wxFrame:show(Frame),
 loop(Frame,Text),
 wx:destroy().

Note that in the construction of the text control the Frame is passed as the parent ob-
ject, and also that two optional parameters are passed in the final list argument: the
initial value of the control and a parameter that sets the control to a multiline style.

In setting up the GUI, a number of extra menus and menu items are specified, and the
text control is set so that it cannot be edited directly (we’ve omitted the parts that are
unchanged):

setup(Frame,Text) ->
 ...,
 Edit = wxMenu:new(),
 ...,
 wxMenu:append(File,?NEW,"New\tCtrl-N"),
 wxMenu:append(File,?OPEN,"Open saved\tCtrl-O"),
 wxMenu:appendSeparator(File),
 wxMenu:append(File,?SAVE,"Save\tCtrl-S"),

318 | Chapter 14: GUI Programming with wxErlang

 wxMenu:append(Edit,?APPEND,"Add en&try\tCtrl-T"),
 wxMenu:append(Edit,?UNDO,"Undo latest\tCtrl-U"),

 wxMenuBar:append(MenuBar,Edit,"&Edit"),
 ...,

 wxTextCtrl:setEditable(Text,false),

Note that the strings in the menu items contain a mnemonic (the letter preceded by an
ampersand) and a shortcut, preceded by \t in the string. The shortcuts are interpreted
in a platform-sensitive way so that the “undo” shortcut becomes ⌘U in Mac OS X.

The main processing loop adds a number of clauses to the receive statement:

loop(Frame,Text) ->
 receive
 #wx{id=?APPEND, event=#wxCommand{type=command_menu_selected}} ->
 Prompt = "Please enter text here.",
 MD = wxTextEntryDialog:new(Frame,Prompt,
 [{caption, "New blog entry"}]),
 case wxTextEntryDialog:showModal(MD) of
 ?wxID_OK ->
 Str = wxTextEntryDialog:getValue(MD),
 wxTextCtrl:appendText(Text,[10]++dateNow()++Str);
 _ -> ok
 end,
 wxDialog:destroy(MD),
 loop(Frame,Text);

 #wx{id=?UNDO, event=#wxCommand{type=command_menu_selected}} ->
 {StartPos,EndPos} = lastLineRange(Text),
 wxTextCtrl:remove(Text,StartPos-2,EndPos+1),
 loop(Frame,Text);

 #wx{id=?OPEN, event=#wxCommand{type=command_menu_selected}} ->
 wxTextCtrl:loadFile(Text,"BLOG"),
 loop(Frame,Text);

 #wx{id=?SAVE, event=#wxCommand{type=command_menu_selected}} ->
 wxTextCtrl:saveFile(Text,[{file,"BLOG"}]),
 loop(Frame,Text);

 #wx{id=?NEW, event=#wxCommand{type=command_menu_selected}} ->
 {_,EndPos} = lastLineRange(Text),
 StartPos = wxTextCtrl:xYToPosition(Text,0,0),
 wxTextCtrl:replace(Text,StartPos,EndPos,"MiniBlog"),
 loop(Frame,Text)
 end.

These events are handled by invoking the appropriate operations in the wxTextCtrl
module. The system stores the entries literally in the text control, and saves the state
in a text file, BLOG. Figure 14-5 shows the text entry dialog that is used to input a new
blog entry in Mac OS X; note that this comes with standard buttons to accept and to
cancel the insertion. Figure 14-6 shows the same text entry dialog in Windows XP.

The MiniBlog Example | 319

We chose this example to illustrate the basic operation of wxErlang, but you can im-
prove and extend it in a number of ways, some of which we suggest in the exercises at
the end of this chapter.

Figure 14-5. Making a blog entry

Figure 14-6. Making a blog entry in Windows XP

320 | Chapter 14: GUI Programming with wxErlang

Obtaining and Running wxErlang
wxErlang is part of the standard distribution of Erlang/OTP, and contains information
about getting started, either with the prebuilt Mac and Windows binaries or by building
the system from source. The documentation of the wxErlang API in EDoc format is
also in the distribution.†

When running wxErlang, you need to run Erlang with symmetric mul-
tiprocessing enabled via the -smp flag.

The wxErlang distribution contains a number of more substantial examples, including
a version of Sudoku, an XRC demo, and wxErlang implementations of etop and erled.

Further documentation for wxWidgets is available online—linked from the wxErlang
documentation—and in the book Cross-Platform GUI Programming with wxWidgets.

Exercises
wxWidgets is a large and complex GUI toolkit, and this chapter has only scratched the
surface of that complexity. These exercises extend the running example from this
chapter, and will require you to consult the wxErlang and wxWidgets documentation
to learn details of the controls and other widgets to accomplish the tasks set forth.

Exercise 14-1: Selecting the Blog File
The existing system allows the current blog to be saved in a fixed file only. Add controls
to allow a user to select a file in which to save her blog file, and to select the file to be
opened when a blog is loaded.

When a file is loaded, the system should handle the case where a file does not exist.

Exercise 14-2: Saving Blog Items Separately
The state of the existing system is stored simply as the single block of text contained
in the text control. Add to the system a separate backend in which the blog items are
stored—together with the date they were written—so that the model of the data and
the view of it presented to the user are separated.

† If you want to run wxErlang on Erlang releases prior to R13, it is available from the SourceForge website,
http://wxerlang.sourceforge.net.

Exercises | 321

http://wxerlang.sourceforge.net

Exercise 14-3: Multiple Blogs in Separate Tabs
The current system gives access to a single blog at any particular time. Extend the system
so that a number of blogs can be accessed at the same time, through different tabs.

Hint: one mechanism for this is to use a wxNotebook.

Exercise 14-4: Extending the Entries—Rich Text
The blog entries here are simply a single line of text. Explore how entries can be
multiline and can include styling (e.g., using Rich Text Format).

Exercise 14-5: Tagging Entries
Provide a mechanism by which blog entries can be tagged so that those entries matching
particular keywords can be shown.

Exercise 14-6: Multiple Users and Comments
The current system is designed for a single user. Investigate how user identities can be
managed (using passwords), and how the system can be extended to accommodate
comments on blog entries.

Exercise 14-7: Layout and wxErlang Sizers
To give a complex layout to your answers to Exercises 14-4, 14-5, and 14-6, investigate
sizers in wxErlang, which you can use to lay out graphical items without explicitly
setting the size of the various widgets involved.

322 | Chapter 14: GUI Programming with wxErlang

CHAPTER 15

Socket Programming

Although distributed Erlang might be a first step in allowing programs on remote ma-
chines to communicate with each other, we sometimes have to rely on lower-level
mechanisms and standardized protocols. Sockets allow programs written in any lan-
guage to exchange data on different computers by exchanging byte streams transmitted
using the protocols of the Internet Protocol (IP) Suite.

Whereas sockets are used to create a byte-oriented communication stream between
programs possibly running on different machines, ports, which we cover in the next
chapter, will do the same for programs running on the same machine. Byte streams,
which in Erlang can be viewed as either binaries or integer lists, often follow standards
and application-level protocols that allow programs written independently of each
other to interact with each other.

Examples of socket-based communication include communication between web
browsers and servers, instant messaging (IM) clients, email servers and clients, and
peer-to-peer applications. The Erlang distribution itself is based on nodes communi-
cating with each other through sockets.

Erlang can hide the raw packets from the user, providing user-friendly APIs to User
Datagram Protocol (UDP) and Transmission Control Protocol (TCP). These are con-
tained in the two library modules gen_udp, a connectionless, less reliable, packet-based
communication protocol, and gen_tcp, which provides a connection-oriented com-
munication channel. Both of these protocols communicate over IP.

User Datagram Protocol
User Datagram Protocol (UDP) is a connectionless protocol. If a UDP packet is sent,
and a socket happens to be listening on the other end, it will pick up the packet. UDP
provides little error recovery, leaving it up to the application to ensure packet reception
and consistency. UDP packets could take different routes, and as a result could be
received in a different order from which they were sent. They can also be lost en route,
and as the receiving end does not acknowledge their arrival, their loss happens

323

“silently.” Although the protocol might not be reliable, the overhead of using it is small,
making it ideal for transmissions in which you would rather drop a packet than wait
for it to be re-sent. For example, errors and alarms are often broadcast in the hope that
a socket on the other end picks them up.

In Erlang, UDP is implemented in the gen_udp module. Let’s get acquainted with it
through an example. Start two Erlang nodes on the same host and make sure you
execute the commands in the following order:

1. In the first Erlang node, open a UDP socket on port 1234.

2. In the second Erlang node, open a UDP socket on port 1235.

3. Use the socket in the second node to send the binary <<"Hello World">> to the
listening socket 1234 on the local host IP address 127.0.0.1.

4. Use the socket in the second node to send the string "Hello World" to the same IP
address and listening socket.

5. In the first node, the process that opened (and owns) the socket should have re-
ceived both of the "Hello World" messages. Retrieve them using the flush() shell
command.

6. Close both sockets and thus free the port numbers.

In the Erlang shell on the first node, the commands and output would look like this:

1> {ok, Socket} = gen_udp:open(1234).
{ok,#Port<0.576>}
2> flush().
Shell got {udp,#Port<0.576>,{127,0,0,1},1235,"Hello World"}
Shell got {udp,#Port<0.576>,{127,0,0,1},1235,"Hello World"}
ok
3> gen_udp:close(Socket).
ok

You should keep in mind that once you’ve opened the socket, you need to send mes-
sages from the second node to the first. In the Erlang shell on the second node, the
commands would look like this:

1> {ok, Socket} = gen_udp:open(1235).
{ok,#Port<0.203>}
2> gen_udp:send(Socket, {127,0,0,1}, 1234, <<"Hello World">>).
ok
3> gen_udp:send(Socket, {127,0,0,1}, 1234, "Hello World").
ok
4> gen_udp:close(Socket).
ok

Play special attention to the format of the UDP messages sent to the process that owns
the socket, and the fact that it receives both messages as lists, even if the first message
was sent as a binary. We will explain all of this when we look at the functions involved
in more detail.

324 | Chapter 15: Socket Programming

If you are trying the example on separate computers, you should replace the local host
IP address with the address of the computer to which you want to send messages, and
ensure that neither firewall is blocking the relevant ports.

As you can see in Figure 15-1, clients on other hosts send their UDP packets to a listener
socket which forwards them to an Erlang process. At any one time, only one process
is allowed to receive packets from a particular socket. This process is called the con-
trolling process.

Figure 15-1. UDP listener sockets

To open a socket, on both the client and the server side, you use the following function
calls:

gen_udp:open(Port)
gen_udp:open(Port, OptionList)

The Port is an integer denoting the listening port number of the socket. It is used by
clients who need to send messages to the socket. The OptionList contains configuration
options which allow you to override the default values. The most useful parameters
include:

list
Forwards all messages in the packet as a list of integers, regardless of how they are
sent. It is the default value if no option is chosen.

binary
Forwards all messages in the packet as a binary.

{header, Size}
Can be used if packets are being received as binaries. It splits the message into a
list of size Size, the header, and the message (a binary). This option was particularly
useful before the introduction of bit syntax and pattern matching on binaries, as
described in Chapter 9. Repeating the preceding two-node UDP example, but with
the first socket opened using the following,

{ok, Socket} = gen_udp:open(1234,[binary,{header,2}]).

User Datagram Protocol | 325

and sending [0,10|"Hello World"] will result in the first message being received as
follows:

2> flush().
Shell got {udp,#Port<0.439>,{127,0,0,1},1235,[0,10|<<"Hello World">>]}
ok

In the preceding code, the message is split into the (two-integer) header and the
message. {active, true} ensures that all the messages received from the socket are
forwarded to the process that owns the socket as Erlang messages of the form {udp,
Socket, IP, PortNo, Packet}. Socket is the receiving socket, IP and PortNo are the
IP address and sending socket number, and Packet is the message itself. This active
mode is the default value when opening a socket.

{active, false}
Sets the socket to passive mode. Instead of being sent, messages from the socket
have to be retrieved using the gen_udp:recv/2 and gen_udp:recv/3 calls.

{active, once}
Will send the first message it receives to the socket, but subsequent messages have
to be retrieved using the recv functions.

{ip, ip_address()}
Is used when opening a socket on a computer that has several network interfaces
defined. This option specifies which of the interfaces the socket should use.

inet6
Will set up the socket for IPv6. inet will set it up for IPv4, which is also the default
value.

The call to open returns either {ok, Socket} or {error, Reason}, where Socket is the
identifier for the socket opened and Reason is one of several POSIX error codes returned
as an atom. They are listed in the inet manual page of the Erlang runtime system
documentation. The most common errors you will come across are eaddrinuse if the
address is already in use, eaddrnotavail if you are using a port in a range your OS has
reserved, and eacces if you don’t have permission to open the socket.

The gen_udp:close(Socket) call closes the socket and frees the port number allocated
to it. It returns the atom ok.

If you want to send messages, you use the following function:

gen_udp:send(Socket, Address, Port, Packet)

The Socket is the UDP socket on the local machine from which the message is to be
sent. The Address can be entered as a string containing the hostname or IP address, an
atom containing the local hostname, or a tuple containing the integers making up the
IP address. The Port is the port number on the receiving host, and the Packet is the
content of the message, as a sequence of bytes, which can be either a list of integers or
a binary.

326 | Chapter 15: Socket Programming

When the socket is opened in passive mode, the connected process has to explicitly
retrieve the packet from the socket using these function calls:

gen_udp:recv(Socket, Length)
gen_udp:recv(Socket, Length, Timeout)

Length is relevant only to the raw transmission mode in TCP, and so it is ignored in this
case. If a packet has been received within the timeout, {ok, {Ip, PortNo, Packet}} is
returned. If the bytes are not received within Timeout milliseconds {error, timeout}
will be returned. If the receiving process calls gen_udp:recv when not in passive mode,
expect to see the {error, einval} error, which is the POSIX error code denoting an
invalid argument.

The most common use of UDP is in the implementation of Simple Network Manage-
ment Protocol (SNMP). SNMP is a standard often used to monitor devices and systems
across IP-based networks. You can read more about the Erlang SNMP application in
the documentation provided with the runtime system.

Transmission Control Protocol
Transmission Control Protocol, or TCP for short, is a connection-oriented protocol
allowing peers to exchange streams of data. Unlike UDP, with TCP package reception
is guaranteed and packages are received in the same order they are sent. Common uses
of TCP include HTTP requests, peer-to-peer applications, and IM client/server con-
nections. Erlang distribution is built on top of TCP. Just as with UDP, neither the client
nor the server has to be implemented in Erlang.

On an architectural level, the main difference between TCP and UDP is that once you’ve
opened a socket connection using TCP, it is kept open until either side closes it or it
terminates because of an error. When setting up a connection, you would often spawn
a new process for every request, keeping it alive for as long as the request is being
handled.

How does this work in practice? Say you have a listener process whose task is to wait
for incoming TCP requests. As soon as a request comes in, the process that acknowl-
edges the connection request becomes the accept process. There are two mechanisms
for defining the accept process:

• The first option is to spawn a new process which becomes the accept process, while
the listener goes back and listens for a new connection request.

• The second option, as shown in Figure 15-2, is to make the listener process the
accept process, and spawn a new process which becomes the new listener.

If the socket is opened in active mode, the process that owns the socket will receive
messages of the form {tcp, Socket, Packet} where Socket is the receiving socket and
Packet is the message itself.

Transmission Control Protocol | 327

If you are working in passive mode, just like with UDP, you need to use the following:

gen_tcp:recv(Socket, Length)
gen_tcp:recv(Socket, Length, Timeout)

The call will return a tuple of the format {ok, Packet}. In these calls, a nonzero value
of Length denotes the number of bytes the socket will wait for before returning the
message. If the value is 0, everything available is returned. If the sender socket is closed
and fewer than Length bytes have been buffered, they are discarded. The Length option
is relevant only if the packet type is raw.

Using passive mode is a good way to ensure that your system does not
get flooded with requests. It is a common design pattern to spawn a new
process that handles the request for each message received. In extreme
cases under heavy sustained traffic, the virtual machine risks running
out of memory as the system gets flooded by requests (and hence, pro-
cesses). By using sockets in passive mode, the underlying TCP buffer
can be used to throttle the requests and reject messages on the client
side. The best way to know whether you need to throttle on the TCP
level and whether memory is an issue during traffic bursts is through
extensive stress testing of your system.

A TCP Example
Let’s start with a simple example of how you can use TCP sockets. The client, given a
host and a binary, opens a socket connection on port 1234. Using the bit syntax, it
breaks the binary into chunks of 100 bytes and sends them over in separate packets.

Figure 15-2. The listener and accept processes

328 | Chapter 15: Socket Programming

client(Host, Data) ->
 {ok, Socket} = gen_tcp:connect(Host, 1234, [binary, {packet, 0}]),
 send(Socket, Data),
 ok = gen_tcp:close(Socket).

You might recall from the description of binaries in Chapter 9 that the expression
<<Chunk:100/binary, Rest/binary>> will bind the first 100 bytes of the binary to Chunk
and what remains to Rest. When the binary contains fewer than 100 bytes, pattern
matching on the first clause of the send/2 call will fail. Whatever remains of the possibly
empty binary will match the second clause, and so its contents are sent to the server,
after which the Socket connection is closed.

send(Socket, <<Chunk:100/binary, Rest/binary>>) ->
 gen_tcp:send(Socket, Chunk),
 send(Socket, Rest);
send(Socket, Rest) ->
 gen_tcp:send(Socket, Rest).

The server side has a listener process waiting for a client connection. When the request
arrives, the listener process becomes the accept process and is ready to receive binaries
in passive mode. A new listener process is spawned and waits for the next connection
request. The accept process continues receiving data from the client, appending it to a
list until the socket is closed, after which it saves the data to a file.

server() ->
 {ok, ListenSocket} = gen_tcp:listen(1234, [binary, {active, false}]),
 wait_connect(ListenSocket,0).

wait_connect(ListenSocket, Count) ->
 {ok, Socket} = gen_tcp:accept(ListenSocket),
 spawn(?MODULE, wait_connect, [ListenSocket, Count+1]),
 get_request(Socket, [], Count).

get_request(Socket, BinaryList, Count) ->
 case gen_tcp:recv(Socket, 0, 5000) of
 {ok, Binary} ->
 get_request(Socket, [Binary|BinaryList], Count);
 {error, closed} ->
 handle(lists:reverse(BinaryList), Count)
 end.

handle(Binary, Count) ->
 {ok, Fd} = file:open("log_file_"++integer_to_list(Count), write),
 file:write(Fd, Binary),
 file:close(Fd).

Note how the get_request/3 function receives the binary chunks in batches of 100
bytes. Once all chunks have been received and the socket is closed, you need to reverse
the list in which you stored them, as the first chunk you should be writing is now the
last element of the list. You write the chunks to a file, and when done, you close the
socket, releasing the file descriptors.

Transmission Control Protocol | 329

To run the example, all you need to do is start the server using tcp:start() and the
client using the following:

tcp:client({127,0,0,1}, <<"Hello Concurrent World">>).

You can see that many of the commands are similar to the ones we used in the earlier
UDP example. The major difference is the following call:

gen_tcp:listen(PortNumber, Options)

This starts a listener socket, which then waits for incoming connections. The call takes
the same options as the call to gen_udp:open/2 described earlier, as well as the following
TCP-specific ones:

{active, true}
Ensures that all messages received from the socket are forwarded as Erlang mes-
sages to the process that owns the socket. This active mode is the default value
when opening a socket.

{active, false}
Sets the socket to passive mode. Messages received from the socket are buffered,
and the process must retrieve them through the gen_tcp:recv/2 and
gen_tcp:recv/3 calls.

{active, once}
Will set the socket to active mode, but as soon as the first message is received, it
sets it to passive mode so that subsequent messages have to be retrieved using the
recv functions.

{keepalive, true}
Ensures that the connected socket sends keepalive messages when no data is being
transferred. As “close socket” messages can be lost, this option ensures that the
socket is closed if no response to the keepalive is received. By default, the flag is
turned off.

{nodelay, true}
Will result in the socket immediately sending the package, no matter how small.
By default, this option is turned off and data is instead aggregated and sent in larger
chunks.

{packet_size, Integer}
Sets the maximum allowed length of the body. If packets are larger than Size, the
packet is considered invalid.

There are other flags, all of which you can read about in the manual pages of the
gen_tcp and inet modules.

The gen_tcp:listen/2 call returns immediately. It returns a socket identifier, Socket,
which is passed to the following functions:

gen_tcp:accept(Socket)
gen_tcp:accept(Socket, TimeOut)

330 | Chapter 15: Socket Programming

These calls suspend the process until a request to connect is made to that socket on
that IP address. TimeOut is a value in milliseconds resulting in {error, timeout} being
returned if no attempt is made to connect to that port. Connections are requested
through the following call:

gen_tcp:connect(Address, Port, OptionList)

The Address is the IP address of the machine to which you are connecting, and Port is
the port number of the corresponding socket. The OptionList is similar to the one
defined in the gen_tcp:listen/2 call, containing the gen_udp:open/2 options together
with the TCP-specific keepalive, nodelay, and packet_size discussed earlier.

As the socket in the example is running in passive mode, you retrieve the socket mes-
sages using calls to the functions gen_tcp:recv/1 and gen_tcp:recv/2. Had the sockets
been running in active mode, messages would have been sent to the process in the
format {tcp, Socket, Packet} and {tcp_error, Socket, Reason}.

You close the socket using the gen_tcp:close(Socket) call. This can be made on either
the client or the server side. In either case, the {tcp_closed, Socket} message will be
sent to the socket on the other side, effectively closing the socket.

The controlling process is generally the process that established a connection through
calling one of gen_tcp:accept or gen_tcp:connect. To redirect messages elsewhere
and pass the control to another process, the controlling process has to call
gen_tcp:controlling_process(Socket, Pid).

In our previous example, the process calling gen_tcp:accept becomes the controlling
process, and we spawned a new listener process. If instead we were to spawn a new
process that would become the controlling process, with the listener process remaining
the same, the code would look like this:

server() ->
 {ok, ListenSocket} = gen_tcp:listen(1234, [binary, {active, false}]),
 wait_connect(ListenSocket,0).

wait_connect(ListenSocket, Count) ->
 {ok, Socket} = gen_tcp:accept(ListenSocket),
 Pid = spawn(?MODULE, get_request, [Socket, [], Count]),
 gen_tcp:controlling_process(Socket, Pid),
 wait_connect(ListenSocket, Count+1).

In recent Erlang/OTP releases, it is possible to have multiple acceptors against the same
listener socket. This could be expected to give better throughput than spawning a new
acceptor each time. We leave this modification of the example as an exercise for you!

The inet Module
The inet module contains generic functions that will work with sockets regardless of
whether you are using TCP or UDP. They provide generic access to the sockets as well
as useful library functions. Without going into too much detail about what is available,

The inet Module | 331

in this section we will demonstrate the most commonly used functions by showing their
use in the shell. If you need more information, you can look it up in the inet module’s
manual page. The manual page also contains all of the POSIX error definitions the
socket operations will return.

If you need to change your socket options once you’ve started your socket, you would
use the call inet:setopts(Socket, OptionList), where OptionList is a list of tagged tu-
ples containing the options described in this chapter together with other, less frequently
used ones listed in the inet module’s manual page.

To retrieve the configuration parameters of an existing socket, you would use
inet:getopts(Socket, Options) where Options is a list of atoms denoting the option
values you are interested in retrieving. The function returns a tagged list where, if the
underlying operating system or the socket type you are using does not support that
particular option, it will be omitted from the result.

1> {ok, Socket} = gen_udp:open(1234).
{ok,#Port<0.468>}
2> inet:getopts(Socket, [active, exit_on_close, header, nodelay]).
{ok,[{active,true},{exit_on_close,true},{header,0}]}

Sockets will gather statistics about the data they send and receive. Received counters
are prefixed with recv_, and sent counters with send_. They can be retrieved for the
following packets:

avg
The average size of the packets

cnt
The number of packets that have been sent or received

dvi
The packet size deviation of bytes sent or received by the socket

max
The size of the largest package

oct
The number of bytes sent or received by the socket

In this example, our UDP socket receives four packets and sends none. The output is:

3> flush().
Shell got {udp,#Port<0.468>,{127,0,0,1},1235,"Hello World"}
Shell got {udp,#Port<0.468>,{127,0,0,1},1235,"Hello World"}
Shell got {udp,#Port<0.468>,{127,0,0,1},1235,"Hello World"}
Shell got {udp,#Port<0.468>,{127,0,0,1},1235,"Hello World"}
ok
4> inet:getstat(Socket).
{ok,[{recv_oct,44},
 {recv_cnt,4},
 {recv_max,11},
 {recv_avg,11},
 {recv_dvi,0},

332 | Chapter 15: Socket Programming

 {send_oct,0},
 {send_cnt,0},
 {send_max,0},
 {send_avg,0},
 {send_pend,0}]}

Some of the functions you might find useful and should try in the shell follow. Some
of them will return the hostent record, defined in the inet.hrl include file. Remember
that you can load record definitions using the shell command rr("../lib/kernel-2.13/
include/inet.hrl").

inet:peername(Socket).
inet:gethostname().
inet:getaddr(Host, Family).
inet:gethostbyaddr(Address).
inet:gethostbyname(Name).

Finally, a useful command to know, especially if you are having problems trying to
open, send, or receive data from a socket, is inet:i(). It lists all TCP and UDP sockets,
including those that the Erlang runtime system uses as well as those you have created.

In our example, we start a distributed Erlang node. Running the command shows us
two sockets—the TCP listener socket waiting for inbound connections, and a socket
connected to the epmd port mapper daemon:

(bar@Vaio)1> inet:i().
Port Module Recv Sent Owner Local Address Foreign Address State
108 inet_tcp 0 0 <0.62.0> *:54843 *:* ACCEPTING
110 inet_tcp 4 18 <0.60.0> localhost:54844 localhost:4369 CONNECTED
Port Module Recv Sent Owner Local Address Foreign Address State
ok

Further Reading
This chapter covered the low-level mechanisms on which to build more complex pro-
tocols and layers. The Inets application, which comes as part of the OTP distribution,
is a container for IP-based protocol implementations. It includes a web server called
Inets as well as HTTP and FTP clients. It also has a Trivial File Transfer Protocol (TFTP)
client and server. For more information on the Inets application, refer to its user guide
and reference manual.

A part of distributed Erlang is the Secure Sockets Layer (SSL) application, providing
encrypted communication over sockets. Erlang’s SSL application is based on the open
source OpenSSL toolkit. You can read more about this application in the user guides
and manuals that come with the Erlang distribution.

If you are interested in reading more about other Internet Protocol implementations,
two good books are Internet Core Protocols by Eric Hall (O’Reilly) and TCP Illustra-
ted by W. Richard Stevens (Addison-Wesley Professional Computing Series).

Further Reading | 333

http://oreilly.com/catalog/9781565925724/

Exercises

Exercise 15-1: Snooping an HTTP Request
Open a listener socket on your local machine. Start your web browser and send it a
request for a web page. Print the contents of the request and study them. How long
before the socket connection is closed? What happens if you shut down your browser?

Exercise 15-2: A Simple HTTP Proxy
Change your browser proxy settings to point to your local machine on port 1500.* Start
a listener socket on that port, and accept any connection coming to it. From your web
browser, try to download any web page. The request should be forwarded to your
socket connection. Sniff the contents of the request and extract the URL of the web
page your browser is trying to load.

Using the HTTP client from the Inets application, retrieve the contents of the page you
are trying to load and send it unchanged to the open socket connection. Hint: if you
are not behind a proxy or firewall, http:start() and http:request("http://
www.erlang.org") should do the job. Before using them, however, ensure that you read
through the HTTP manual pages that come with the Erlang distribution.

Exercise 15-3: Peer to Peer
Write a module that contains code for a peer-to-peer transport layer. You will need a
process which, when started, either waits for a socket connection to come in on port
1234 or waits for the function peer:connect(IpAddress) to be called. If the latter is
called, it will try to connect to port 1234 on that address. Once the connection has been
established, you should be able to use the function peer:send(String) to send data to
your peer. Log what is sent to file and print it to the shell. The functions you should
export are:

peer:start() -> ok | {error, already_started}
peer:connect(IpAddress) -> ok | {error, Reason}
peer:send(String) -> ok | {error, not_connected}
peer:stop() -> ok | {error, not_started}

The tricky part of this exercise, which will require some careful thought, is the fact that
your process will be speaking to a copy of itself on another machine. By that, we mean
both processes will be running the same code base.

If you are worried about Big Brother watching you, you can encrypt the packets you
send using the crypto module.

* Depending on the rights of the user under which you are running your Erlang node, you might not be able
to open ports that are either reserved or already taken. If that is the case, pick a higher number.

334 | Chapter 15: Socket Programming

CHAPTER 16

Interfacing Erlang with Other
Programming Languages

It is common for modern computer systems of any size to be built using more than one
programming language. Device drivers are typically written in C, and many integrated
development environments (IDEs)—such as Eclipse—and other GUI-heavy systems
are written in Java or C#. Lightweight web apps can be developed in Ruby and PHP,
and Erlang can provide lightweight, fault-tolerant concurrency. If you need to effi-
ciently manipulate or parse strings, Perl or Python is the norm. The library that solves
a particular problem for you may not be written in your favorite language, and you
must choose whether to use the foreign library or bite the bullet and recode the whole
thing in Erlang yourself.*

Interlanguage communication is never simple in natural languages or in programming.
In natural languages, we must understand the different ways in which the languages
work. Do they contain articles? Do they denote gender? Where do the verbs occur in a
sentence? We also must understand how words translate. Does the verb ser in Portu-
guese mean the same as “to be” in English, for instance? (It doesn’t.) It’s the same for
programming languages. Which paradigm do they come from? Are the languages func-
tional, object-oriented, concurrent, or structured? Is an integer in Java the same thing
as an integer in Erlang? (It isn’t!)

Interoperation is not only about interlanguage communication, and Erlang/OTP also
supports communication by means of XML, ODBC, CORBA, ASN, and SNMP. These
assist in Erlang’s growing role as the “distributed glue” joining together single-threaded
legacy programs.

* This is done for the duplicate code detection algorithm in Wrangler, the Erlang refactoring tool. An existing
efficient C library is used to identify candidate “clones” in Erlang software.

335

An Overview of Interworking
Erlang provides a number of mechanisms for interlanguage working: a higher-level
model built on distributed Erlang nodes, a lower-level model allowing communication
with an external program through a port, and a mechanism for linking programs into
the virtual machine (VM) itself, known as linked-in drivers.

The Erlang distributed programming model provides a simple and flexible solution to
the high-level question of how other languages can work with Erlang: run the language
in other nodes on the same or different machines, making it appear like a distributed
Erlang node to which you pass messages back and forth. These nodes provide an en-
vironment where foreign programs can be run, yet also communicate with Erlang no-
des. To make this communication work, it is possible to use ports or alternatively
provide a higher-level model of the Erlang communication primitives in this other lan-
guage. In either case, there’s a question of how to deal with the elementary types, and
different degrees of support for translating between complex data in the two languages
can be provided.

In this chapter, we’ll discuss how to build nodes in Java and in C that can interoperate
with Erlang, and we’ll introduce erl_call, which allows the Unix shell to communicate
with a distributed Erlang node, built on the erl_interface library. This, together with
the JInterface Java package, comes with the standard Erlang distribution. These li-
braries offer stability of code and architecture, at some sacrifice in absolute speed. After
this, we will describe how to communicate via ports, and we’ll give an example of how
to interact with Ruby, using the erlectricity library.

Working with Other Languages
We cover Java, C, and Ruby in this chapter. However, it is possible to link Erlang with
a number of other programming languages, including the following:

• OTP.NET, which provides a link to the .NET platform, through a port of the
JInterface code.

• Py-Interface, which is a Python implementation of an Erlang node, allowing com-
munication between Python and Erlang.

• The Perl Erlang-Port, which allows Perl code to communicate with Erlang through
a port.

• PHP/Erlang, which aims to be a PHP extension with a simple set of functions for
turning a PHP thread into an Erlang C node.

• The Haskell/Erlang-FFI, which enables full bidirectional communication between
programs written in Haskell and Erlang. Messages sent from Haskell to Erlang
look like function calls, and messages from Erlang to Haskell are delivered to MVars.

336 | Chapter 16: Interfacing Erlang with Other Programming Languages

• An Erlang/Gambit interface, which allows Scheme and Erlang programs to
communicate.

• Distel supports the interoperation of Emacs Lisp and Erlang, providing enhance-
ments to the Erlang mode in Emacs.

To gain the greatest efficiency in interoperation, you can define a linked-in driver. The
problem is that an erroneous linked-in driver will cause the entire Erlang runtime sys-
tem to leak memory, hang, or crash, so you should use linked-in drivers with extreme
care.

Interworking with Java
The JInterface Java package provides a high-level model of Erlang-style processes and
communication in Java. You can use this package alone to give Erlang-style concur-
rency in Java, or you can use it as part of a mixed Java/Erlang distributed system,
allowing a Java system to contain Erlang components or vice versa.

A Java package such as JInterface consists of a collection of Java classes, mostly be-
ginning with the prefix Otp. This section will describe the most common of them, pro-
viding examples of passing messages and handling data types when communicating
between Erlang and Java. You can find additional information on JInterface and its
Erlang classes in the “Interface and Communication Applications” section of the Er-
lang/OTP documentation. The running example for this section is a rework of the
remote procedure call (RPC) example in Chapter 11.

Nodes and Mailboxes
We described Erlang nodes in Chapter 11, where we also introduced distributed pro-
gramming in Erlang. An Erlang node is identified by its name, which consists of an
identifier with a hostname (in short or long form); each host can run a number of nodes,
if their names are different.

The OtpNode class gives the JInterface representation of an Erlang node:

OtpNode bar = new OtpNode("bar");

This creates the Java object bar—which we’ll call a node—that represents the Erlang
node bar, running on the host where the statement is executed.

You can create a process on this node by creating a mailbox, which is represented by a
pid or can be registered to a name. To create the process, use:

OtpMbox mbox = bar.createMbox();

Interworking with Java | 337

which gives the process a name on creation. Then, pass in the name as a string on
construction:

OtpMbox mbox = bar.createMbox("facserver");

You can also do this separately from the creation of the mailbox using the following
statement:

mbox.registerName("facserver");

This creates a named process called facserver. The process will act as a “factorial
server,” sending the factorial of the integers that it receives to the processes that have
sent the integers.

Once you’ve named the mailbox, you can access it using its name. If its pid is also
required—perhaps by a remote Erlang node—use the self method on the mailbox:

OtpErlangPid pid = mbox.self();

Representing Erlang Types
The JInterface package contains a variety of classes that represent, in Java, various
Erlang types. Their methods allow the conversion of native Java types to and from these
representation types, supporting the conversion of values between the two languages,
which is essential for them to work together effectively.

You saw an example of this in the preceding Java statement: the class OtpErlangPid
gives the Java representation of an Erlang pid. The mapping between Erlang types of
atoms, binaries, lists, pids, ports, refs, tuples, and terms is to the corresponding Java
class OtpErlangAtom, ..., OtpErlangTuple, OtpErlangObject.

Floating-point types in Erlang are converted to either OtpErlangFloat or OtpErlangDou
ble; integral types are converted to OtpErlangByte, OtpErlangChar, OtpErlangShort,
OtpErlangInt, OtpErlangUInt, or OtpErlangLong, depending on the particular integral
value and sign.

To represent the two special atoms true and false, there is the OtpErlangBoolean class,
and Erlang strings—which are lists of integers in Erlang—are described by OtpErlang
String.

The details of these classes are in the JInterface documentation; we will use the classes
in the next section as well as in the RPC example.

Communication
Erlang processes send and receive messages, and in JInterface, these operations are
provided by the send and receive methods on a mailbox. The interchanged messages
are Erlang terms, and are therefore represented by OtpErlangObjects in Java. The fol-
lowing Erlang send message:

Pid ! {ok, M}

338 | Chapter 16: Interfacing Erlang with Other Programming Languages

in the mbox process is given by:

mbox.send(pid,tuple);

where the pid variable in Java corresponds to the Pid variable in Erlang, and tuple†

represents the Erlang term {ok, M}.

A message is received by:

OtpErlangObject o = mbox.receive();

This statement differs from an Erlang receive in that it performs no pattern matching
on the message. Deconstruction and analysis of the message follow separately; we’ll
show this in the next example.

Putting It Together: RPC Revisited
The following Erlang code sets up a factorial server on the node called bar on the host
STC:

setup() ->
 spawn('bar@STC',myrpc,server,[]).

server() ->
 register(facserver,self()),
 facLoop().

facLoop() ->
 receive
 {Pid, N} ->
 Pid ! {ok, fac(N)}
 end,
 facLoop().

The server receives messages of the form {Pid, N} and sends the result {ok, fac(N)}
back to the Pid. The next code sample accomplishes the same thing in Java:

1 import com.ericsson.otp.erlang.*; // For the JInterface package
2 import java.math.BigInteger; // For factorial calculations
3
4 public class ServerNode {
5
6 public static void main (String[] _args) throws Exception{
7
8 OtpNode bar = new OtpNode("bar");
9 OtpMbox mbox = bar.createMbox("facserver");
10
11 OtpErlangObject o;
12 OtpErlangTuple msg;
13 OtpErlangPid from;

† If you’ve been programming Erlang for a few years and you react at variables such as pid and tuple not being
capitalized, you are not alone. What is important is that in the process, you do not openly question how
methods taking atoms as parameters actually work, ensuring that no one picks up on your blunder.

Interworking with Java | 339

14 BigInteger n;
15 OtpErlangAtom ok = new OtpErlangAtom("ok");
16
17 while(true) try {
18 o = mbox.receive();
19 msg = (OtpErlangTuple)o;
20 from = (OtpErlangPid)(msg.elementAt(0));
21 n = ((OtpErlangLong)(msg.elementAt(1))).bigIntegerValue();
22 OtpErlangObject[] reply = new OtpErlangObject[2];
23 reply[0] = ok;
24 reply[1] = new OtpErlangLong(Factorial.factorial(n));
25 OtpErlangTuple tuple = new OtpErlangTuple(reply);
26 mbox.send(from,tuple);
27
28 }catch(OtpErlangExit e) { break; }
29 }
30 }

In the preceding example, the concurrent aspects are shown in bold in lines 8, 9, 18,
and 26; the remaining code is used to analyze, deconstruct, and reconstruct data values,
as well as providing the control loop.

The main program starts by running a node bar, and a process facserver on that node.
In the main loop, lines 18–26, a message is received and replied to. The message received
is an Erlang term, that is, an OtpErlangObject. This is cast to an OtpErlangTuple in line
19, and from this the pid of the sender (line 20) and the integer being sent (line 21) can
be extracted. In line 21, the Erlang value is extracted as a long integer, but is converted
to a Java BigInteger to allow an accurate calculation of the factorial.

The remainder of the code (lines 22–26) constructs the reply tuple and sends it. Line
22 constructs an array of objects, containing the (representation of the) atom ok (line
23) and the return value factorial(n) (line 24). This is then converted into a tuple
(line 25), before finally being sent back to the client in line 26.

Interaction
To interact with the running Java node, you can use the following code, calling
myrpc:f/1 at the prompt:

-module(myrpc).
 ...
f(N) ->
 {facserver, 'bar@STC'} ! {self(), N},
 receive
 {ok, Res} ->
 io:format("Factorial of ~p is ~p.~n", [N,Res])
 end.

340 | Chapter 16: Interfacing Erlang with Other Programming Languages

This client code is exactly the same as the code that is used to interact with an Erlang
node, and a “Turing test”‡ that sends messages to and from a node should be unable
to tell the difference between a Java node and an Erlang node.

The Small Print
In this section, we will explain how to get programs using JInterface to run correctly
on your computer.

First, to establish and administer connections between the Java and Erlang nodes it is
necessary that epmd (the Erlang Port Mapper Daemon) is running when a node is cre-
ated. You will recall epmd from Chapter 11. You can run it simply by typing epmd
(epmd.exe on Windows), but you can test whether it is already running by typing the
following:

epmd -names

This will list all the names of the running Erlang nodes on the host. This command is
useful for checking whether a node you think should be running actually is running.

The system will create a node with the default cookie if none is supplied when the node
is started. This may be OK, but if you need to create a node with a given cookie, use
the following:

OtpNode bar = new OtpNode("bar", "cookie-value");

If a particular port needs to be used, this is the third argument of a three-argument
constructor.

Referring back to the program in the section “Putting It Together: RPC Revis-
ited” on page 339, line 1 of the program ensures that the JInterface Java code is im-
ported, but since it is included in the OTP distribution and not in the standard Java, it
is necessary to point the Java compiler and runtime to where it is held, which is in the
following:

<otp-root>/jinterface-XXX/priv/OtpErlang.jar

In the preceding code, <otp-root> is the root directory of the distribution, given by
typing code:root_dir() within a running node, and XXX is the version number. On Mac
OS X the full path is:

/usr/local/lib/erlang/lib/jinterface-1.4.2/priv/OtpErlang.jar

This value is supplied thus to the compiler:

javac -classpath ".:/usr/local/lib/erlang/lib/
 jinterface-1.4.2/priv/OtpErlang.jar" ServerNode.java

‡ The Turing test was proposed by mathematician and computing pioneer Alan Turing (1912–1954) as a test
of machine intelligence. The idea, translated to modern technology, is that a tester chats with two “people”
online, one human and one a machine: if the tester cannot reliably decide which is the human and which is
the machine, the machine can be said to display intelligence.

Interworking with Java | 341

and to the Java system:

java -classpath ".:/usr/local/lib/erlang/lib/
 jinterface-1.4.2/priv/OtpErlang.jar" ServerNode

Taking It Further
The JInterface library has more extensive capabilities than you have seen so far:

• It is possible to link to and unlink from Java processes using the link and unlink
methods on OtpMbox.

• The example relies on connections between nodes being made automatically. You
can use the ping method on a node to test whether a remote node exists; if it does,
a connection is made automatically.

• Arbitrary data can be sent between nodes using binary data, manipulated by the
OtpErlangBinary class.

• The OtpConnection class provides a higher-level mechanism for RPC, just as the
rpc module does for Erlang.

• Methods on the OtpConnection class also support control of tracing.

These and other features are described in more detail in the online documentation.

C Nodes
The erl_interface library provides C-side functionality for constructing, manipulat-
ing, and accessing C encodings of Erlang binary terms. Also included are functions for
dealing with memory allocation in term (de)construction and manipulation, accessing
global names, and reporting errors. In a little more detail:

erl_marshal, erl_eterm, erl_format, and erl_malloc
For handling the Erlang term format, including memory management. In particu-
lar, these provide conversion to and from C structs similar to Erlang terms, allowing
higher-level manipulation of data.

erl_connect and ei_connect
For providing a connection with Erlang through a distributed Erlang node.

erl_error
For printing error messages.

erl_global
For providing access to globally registered names.

registry
For providing the facility to store and back up key-value pairs. This provides some
of the functionality of ETS tables and can be backed up or restored from a Mnesia
table on a linked Erlang node.

342 | Chapter 16: Interfacing Erlang with Other Programming Languages

In addition, the Erlang external term format is a representation of an Erlang term as a
sequence of bytes: a binary. You can convert between the two representations in Erlang
using the BIFs term_to_binary/1 and binary_to_term/1. We discuss this in more detail
in “Port Programs” on page 346.

In this section, we’ll revisit the example of the factorial server just given for Java, this
time in C, based on the example in the online Interoperability Tutorial for Erlang:

1 /* fac.c */
2
3 #include <stdio.h>
4 #include <sys/types.h>
5 #include <sys/socket.h>
6 #include <netinet/in.h>
7
8 #include "erl_interface.h"
9 #include "ei.h"
10
11 #define BUFSIZE 100
12
13 int main(int argc, char **argv) {
14 int fd; /* file descriptor of Erlang node */
15
16 int loop = 1; /* Loop flag */
17 int got; /* Result of receive */
18 unsigned char buf[BUFSIZE]; /* Buffer for incoming message */
19 ErlMessage emsg; /* Incoming message */
20
21 ETERM *fromp, *argp, *resp; /* Representations of Erlang terms */
22 int res; /* Result of the fac call */
23
24 /* initialize erl_interface (once only) */
25 erl_init(NULL, 0);
26
27 /* initialize the connection mechanism */
28 if (erl_connect_init(1, "mycookie", 0) == −1)
29 erl_err_quit("erl_connect_init");
30
31 /* connect to a running Erlang node */
32 if ((fd = erl_connect("blah@STC")) < 0)
33 erl_err_quit("erl_connect");
34
35 while (loop) {
36 /* message received */
37 got = erl_receive_msg(fd, buf, BUFSIZE, &emsg);
38
39 if (got == ERL_TICK) {
40 /* ignore */
41 } else if (got == ERL_ERROR) {
42 loop = 0;
43 } else {
44 if (emsg.type == ERL_REG_SEND) {
45 /* unpack message fields */
46 fromp = erl_element(1, emsg.msg);
47 argp = erl_element(2, emsg.msg);

C Nodes | 343

48
49 /* call fac and send result back */
50 resp = erl_format("{ok, ~i}", fac(ERL_INT_VALUE(argp)));
51 erl_send(fd, fromp, resp);
52
53 /* free the term storage used */
54 erl_free_term(emsg.from); erl_free_term(emsg.msg);
55 erl_free_term(fromp); erl_free_term(argp);
56 erl_free_term(resp);
57 } } } }
58
59 int fac(int y) {
60 if (y <= 0)
61 {return 1;}
62 else
63 {return (y*fac(y-1));};
64 }

The general shape of the C code is similar to the Java node earlier, except that the C
code has more lower-level operations, such as the following:

• Library inclusions for C (lines 3–6) and the Erlang interface (lines 8 and 9)

• Allocation of memory for the input buffer (lines 11 and 18)

• Freeing the storage allocated to Erlang terms in the C code (lines 53–56)

The node is set up and connected to an Erlang node in lines 24–33:

• erl_init(NULL, 0) initializes the erl_interface library, and must be called only
once in any program.

• erl_connect_init(1, "mycookie", 0) initializes the connection mechanism, in-
cluding the identification number of the node (1 here) and the cookie that it is to use.

• fd = erl_connect("blah@STC") connects to the Erlang node blah@STC and returns
a file descriptor fd for the connection.

The loop in lines 35–57 will loop forever, reading a message (line 37) using the following
line of code:

got = erl_receive_msg(fd, buf, BUFSIZE, &emsg);

The preceding line of code will receive a message in the buffer buf and decode it into
an Erlang term, emsg. ERL_TICK messages that check whether the node is alive are ignored
(line 40), and the loop terminates on receiving an ERL_ERROR message (line 42). Other-
wise, the functional part of the loop body will do the following:

• Extract the pid of the message sender, fromp, and the payload, argp (lines 46 and
47).

• Convert the argp into a C integer, pass it to the factorial function, and return the
Erlang term {ok, fac(...(argp))} to the fromp process (line 51). The erl_format
call uses a format string to construct Erlang terms in a readable way. To construct
the same term manually, you could write:

344 | Chapter 16: Interfacing Erlang with Other Programming Languages

arr[0] = erl_mk_atom("ok");
arr[1] = erl_mk_integer(fac(ERL_INT_VALUE(argp)));
resp = erl_mk_tuple(arr, 2);

• Finally, the storage used for the Erlang terms and subterms is cleaned up (lines 54–
56).

To compile this C program, you have to make sure the erl_interface.h file and the
liberl_interface.a and libei.a libraries are used. You can do this (on Mac OS X) using
the following command:

gcc -o fac -I/usr/local/lib/erlang/lib/erl_interface-3.5.9/include \
-L/usr/local/lib/erlang/lib/erl_interface-3.5.9/lib fac.c -lerl_interface -lei

In the preceding code, the italicized path gives the path to the latest version of
erl_interface on your system. This compiles the C code as the executable fac in the
current directory.

The Erlang code to connect to the C node is given next. In general, the name of the C
node is cN, where N is the identification number for the node, so we use c1@STC here:

-module(fac).
-export([call/1]).

call(X) ->
 {any, 'c1@STC2'} ! {self(), X},
 receive
 {ok, Result} ->
 Result
 end.

Calling this in the Erlang shell gives the following:

% erl -sname "blah" -setcookie "mycookie"
 at this point the C executable should be called
(blah@STC2)1> c(fac).
{ok,fac}
(blah@STC2)2> fac:call(7).
5040
(blah@STC2)3> fac:call(0).
1

In the example, where the C node is acting as a client, the Erlang node needs to be
launched first so that it is already running when the C node attempts to connect to it.

Going Further
The C node you just saw is running as a client: it can make connections to Erlang nodes.
It can also run as a server mode; this requires first that the program creates a socket—
listening on a particular port number—and then that it publishes the socket by means
of epmd. This program can then accept connections from Erlang nodes.

The erl_interface library provides various other facilities, such as pattern matching
on incoming messages, the registry system for storing key-value pairs, and a global

C Nodes | 345

naming scheme. All of these, plus the server-style node, are covered in the Interopera-
bility Tutorial and in the user’s guide for the erl_interface library.

Erlang from the Unix Shell: erl_call
One of the “hidden gems of OTP” is the erl_call Unix command, built using erl_inter
face to provide communication with a distributed Erlang node. As well as to start and
communicate with a node, you can use this to compile and evaluate Erlang code from
the command line. The ability to read from stdin allows other scripts to use this, such
as those in the CGI bin.

You present arguments and options to the command via a series of flags. The full set
is described in the manpage, or summarized by calling erl_call with no flags. One of
the flags –n, -name, or -sname is required, as these flags are used to specify the name (or
short name) of the node to be called. Often, this is accompanied by –s, which will start
the node if it is not already running.

The –a flag is the analog of apply/3, with arguments in a similar format, whereas –e
evaluates what comes from standard input (up to Ctrl-D). Here is the erl_call com-
mand in action:

% erl_call -s -a 'erlang date' -n blah
{2009, 3, 21}
% erl_call -s -e -n blah
X=3,
Y=4,
X+Y.
Ctrl-D
{ok, 7}
% erl_call -a 'erlang halt' -n blah
%

Port Programs
An Erlang port allows communication between an Erlang node and an external program
through binary messages sent to and from an Erlang process running in the node—
known as the connected process of the port—and the external program, running in a
separate operating system thread (see Figure 16-1). The wxErlang binding to
wxWidgets, described in Chapter 14, uses ports.

One of the simplest applications of a port is the os:cmd/1 function, which can call an
operating system command from inside the Erlang shell:

1> os:cmd("date").
"Sat 21 Mar 2009 18:11:24 GMT\n"

The port is made to behave like an Erlang process that is not trapping exits. Connected
processes can link to it, as well as send and receive Erlang messages and exit signals.
The mechanism underlying the binary communication depends on the operating

346 | Chapter 16: Interfacing Erlang with Other Programming Languages

system: for instance, on Unix-based systems, communication will be through pipes.
On the Erlang side, the template for a port-based interaction is given by the following:

Port = open_port({spawn, Cmd}, ...),
 ...
port_command(Port, Payload),
 ...
receive
 {Port, {data, Data}} ->
 ...

In this fragment, the port is opened by the call to open_port/2, returning the port iden-
tifier, Port. Data is sent to the Port (and on to the external program) through the call
to port_command(Port,...) in the connected process, and data is received from the
Port in a receive clause matching data of the form {Port, {data, Data}}.

We’ve just given you a top-level summary of how ports work. The remainder of this
section looks in more detail at the Erlang commands that control ports, as well as the
way data is coded and decoded for communication to the external program. Finally,
we’ll show how you can write external programs in Ruby and C to communicate with
Erlang through ports.

Erlang Port Commands
To open an Erlang port, you use the open_port/2 command:

open_port({spawn, Cmd}, Options)

This will run the command Cmd as an external program; this external program is
spawned with the given list of Options. Here is a list of the main options available (you
can find a complete list in the documentation for the erlang module):

{packet, N}
This gives the size of the binary packets to be used for this port. N can take the value
1, 2, or 4. Under this option, packets are preceded by their size. If variable-sized
packets are to be sent, you should use the stream option instead.

Figure 16-1. An Erlang port, its connected process, and an external program

Port Programs | 347

binary
All I/O from the port comprises binary data objects rather than bytes.

use_stdio
This uses the (Unix) standard input and output for communication with the
spawned process; to avoid this, the nouse_stdio option is available.

exit_status
This ensures that a message is sent to the port when the external program exits;
details are given in the online documentation.

For example, to run a Ruby program, echoFac.rb, the following commands need to be
executed:

Cmd = "ruby echoFac.rb",
Port = open_port({spawn, Cmd}, [{packet, 4}, use_stdio, exit_status, binary]),

After these commands are executed, the variable Port contains the port identifier for
the spawned Ruby program.

The connected process can communicate with the Port using port_command/2. Execut-
ing the following command in the connected process will send the Data to the Port:

port_command(Port, Data)

The message sent has the form {Port, {data, Data}}.

A port identifier such as Port gives any Erlang process access to the port,
and thus to the external program attached to the port. Any process can
use this, but it is strongly recommended that instead of direct commu-
nication using Port!..., which fails if it is called from any process other
than the port owner, all communication should use port_command/2.

To connect a process with pid Pid to a port Port, the following call must be executed:

port_connect(Port, Pid)

This can be called by any process, but the old port owner will stay linked to the Port;
the owner will need to call unlink(Port) to remove the link.

To close a port—and therefore to terminate communication with the external program
—the connected process needs to execute the command port_close(Port).

To show these examples in action, here is a small Erlang program that calculates the
factorial of 23 by sending the argument to Ruby and having it calculated in the Ruby
program echoFac.rb, based on an echo example in the erlectricity library, discussed
in the section “Working in Ruby: erlectricity” on page 351.

In the following example, the communication primitives are highlighted:

-module(echoFac).
-export([test/0]).

test() ->

348 | Chapter 16: Interfacing Erlang with Other Programming Languages

 Cmd = "ruby echoFac.rb",
 Port = open_port({spawn, Cmd}, [{packet, 4}, use_stdio, exit_status, binary]),
 Payload = term_to_binary({fac, list_to_binary(integer_to_list(23))}),
 port_command(Port, Payload),
 receive
 {Port, {data, Data}} ->
 {result, Text} = binary_to_term(Data),
 Blah = binary_to_list(Text),
 io:format("~p~n", [Blah])
 end.

Running the test/0 function results in the following behavior:

1> echoFac:test().
"23!=25852016738884976640000"
ok
2>

We explain the remaining parts of the program in the next section.

Communicating Data to and from a Port
Communication through a port uses binary data; therefore, program data needs to be
converted to binary in some way or another before communication, and decoded on
receipt. The bit syntax, described in Chapter 9, can be used here, as can a number of
coding and decoding functions provided in the erlang module, including the following:

term_to_binary/1
This converts the argument to a binary data object that encodes its argument ac-
cording to the Erlang binary term format. This can be communicated through the
Port if it is created with the binary option.

binary_to_term/1
This is the inverse of term_to_binary/1.

list_to_binary/1
This will return a binary that is composed of the integers and binaries in the argu-
ment. For example:

> list_to_binary([<<1,2,3>>,1,[2,3, <<4,5>>],4| <<6>>]).
<<1,2,3,1,2,3,4,5,4,6>>

binary_to_list/1
This is the inverse of list_to_binary/1.

Returning to the earlier example:

test() ->
 Cmd = "ruby echoFac.rb",
 Port = open_port({spawn, Cmd}, [{packet, 4}, use_stdio, exit_status, binary]),
 Payload = term_to_binary({fac, list_to_binary(integer_to_list(23))}),
 port_command(Port, Payload),
 receive
 {Port, {data, Data}} ->

Port Programs | 349

 {result, Text} = binary_to_term(Data),
 Blah = binary_to_list(Text),
 io:format("~p~n", [Blah])
 end.

The highlighted lines show the conversion in both directions. In creating the Payload,
the integer 23 is converted to the string "23" by integer_to_list, and then to a binary
<<"23">>, which in turn is paired with the atom fac and the pair is coded as a binary.

In the receive clause, the message from the Port is received in the standard form,
{Port, {data, Data}}. The Data is decoded to a term of the form {result, Text}, and
then the Text can itself be decoded using binary_to_list. This allows the data to be
output to the terminal.

File Descriptors, Ports, and I/O
Imagine an Erlang node that receives HTTP posts with embedded XML that are parsed
through a linked-in driver. If you start receiving thousands of requests per second, you
will quickly reach the limit of simultaneously allowed open file descriptors.

In your start script (or in the environment running the Erlang process), run the com-
mand ulimit –n Max, where Max is the maximum number of simultaneously allowed
open file descriptors. Default values and maximum values are OS-dependent. Remem-
ber that every port consists of two file descriptors, one for reading and another for
writing.

Another optimization is the +A Size flag passed to your erl command when starting
the emulator. It will speed your application by increasing the number of asynchronous
threads in the virtual machine that handle file I/O. Size is an integer between the default
value of 0 and 1,024.

Library Support for Communication
As the example in the preceding section shows, it is pretty tedious to encode and decode
the data yourself. Of course, you have the flexibility to choose efficient communication
protocols between your external program and an Erlang node, but reinventing an en-
coding for each program is not the best way to do things.

If you do not want to go down that route, Erlang comes with libraries to support com-
munication with the outside world, and particularly with C and Java. We covered the
Java library at the beginning of the chapter; we’ll discuss interfacing with Ruby in the
remainder of the chapter.

350 | Chapter 16: Interfacing Erlang with Other Programming Languages

Working in Ruby: erlectricity
erlectricity is a Ruby library—a “gem”—that you can download and use with Ruby.
It is available as source code from http://github.com/mojombo/erlectricity, and you can
install it in Ruby using:

$ gem install mojombo-erlectricity -s http://gems.github.com

You can include the erlectricity library in a Ruby program by using a require state-
ment at the head of the file.

At the heart of the library is the receiver.rb program, which provides the functionality
to allow messages to be received by and sent from a Ruby program. This in turn depends
on the implementation of ports in port.rb and matching in matcher.rb; coding and
decoding data formats are provided in encoder.rb and decoder.rb for a variety of dif-
ferent Erlang types.

The library comes with a test suite, as well as examples, including a daemon that links
Erlang to Campfire, via the Ruby implementation of the Campfire API, Tinder.

An example using erlectricity

The erlectricity library for Ruby provides support for communication with Erlang
processes through ports. Here is the Ruby side of the system, the echoFac.rb program
that communicates with echoFac.erl:

require 'rubygems'
require 'erlectricity'
require 'stringio'

def fac n
 if (n<=0) then 1 else n*(fac (n-1)) end
end

receive do |f|
 f.when(:fac, String) do |text|
 n = text.to_i
 f.send!(:result, "#{n}!=#{(fac n)}")
 f.receive_loop
 end
end

The working part of this program is the receive method: on receipt of a message f this
is matched with {fac, text}, where text is a String. If this match is successful, the text
is converted to an integer (by calling the to_i method on it) and the following message
is sent to the port from which the message came:

{:result ,"#{n}!=#{(fac n)}"}

Library Support for Communication | 351

http://github.com/mojombo/erlectricity

In a Ruby string, the construct #{...} surrounds an expression to be evaluated. For
example, if the variable n has value 6, then "#{n}!=#{(fac n)}" will be the string
"6!=720".

As we said earlier, the result of running echoFac:test() is:

1> echoFac:test().
"23!=25852016738884976640000"
ok

Linked-in Drivers and the FFI
By default, an external program connecting to Erlang will run in a separate operating
system process. This isolates the two parts of the system so that a crash in the external
program will not affect the Erlang program, but it has the disadvantage of making it
harder to meet certain lower-level, real-time requirements. To meet such requirements,
it is possible to run an external program in the same thread as the Erlang system; this
is called a linked-in driver.

Details of how to build linked-in drivers, including the callback functions that need to
be implemented by such drivers, are provided in Chapter 6 of the online Interoperability
Tutorial. Communication with linked-in drivers uses ports and the same BIFs as used
in port programs.

When using linked-in drivers, your program will execute very, very
quickly. But this speed comes at a price, because when things go wrong,
they go very, very wrong. A crash or a memory leak in your linked-in
driver will result in the Erlang VM crashing. This is in contrast to ports,
where the port is closed and an EXIT signal is sent to the connected
process.

Use linked-in drivers with extreme care, keep them simple, and integrate
them only when performance is critical—for example, when integrating
with an external system such as Berkeley DB, or integrating a system
call such as sendfile in the Yaws web server.

The Erlang Enhancement Proposal (EEP) process§ is a mechanism for the Erlang com-
munity to propose enhancements to the language, and for the enhancements to be
incorporated into the standard distribution. EEP7 is a proposal for a foreign function
interface (FFI), which offers the promise of more reliable development of linked-in
drivers. In the meantime, there are toolkits, such as the Erlang Driver Toolkit (EDTK)
and Dryverl, which aim to support the development of linked-in drivers for Erlang.

§ http://www.erlang.org/eeps/

352 | Chapter 16: Interfacing Erlang with Other Programming Languages

http://www.erlang.org/eeps/

Exercises

Exercise 16-1: C Factorial via a Port
Write an implementation of the earlier factorial server example in C using a port, rather
than a distributed Erlang node.

Exercise 16-2: Factorial Server in Another Language
Reimplement the factorial server example using the interface to one of the following
languages: Scheme, Haskell, C#, Python, or PHP.

Exercises | 353

CHAPTER 17

Trace BIFs, the dbg Tracer, and Match
Specifications

Any respectable programming language that has deployments consisting of millions of
lines of code running in thousands of installations worldwide must provide built-in
low-level tracing mechanisms on which to build tools that can be used for live trou-
bleshooting. Languages that don’t provide these tools put a huge burden on developers
and support engineers alike, as they have to either develop this infrastructure from
scratch themselves or troubleshoot their systems in a black-box environment.

In Erlang, Ericsson’s experiences of tracing live telephony switches are reflected in
the trace BIFs, which, from being part of the first version of the language, have evolved
through the years to become the foundation for a set of tools that give full visibility to
the changing state of the system and, as a result, drastically reduce bug resolution times
and troubleshooting efforts.

Introduction
Imagine you receive a bug report from a live system, where you get a badmatch error
when pattern matching the result of the call ets:lookup(msgQ, MsgId). You expect your
program to pattern-match on an atom denoting a message type, but instead it termi-
nates when coming across the tuple {error, unknown_msg}.

You can quickly establish that the database got corrupted and set about trying to find
the ets:insert/2 call that wrote the entry into the ETS table. As messages entering the
system are tested at the system boundary, this message should not have made it as far
as the insert call. You could add a case statement ensuring that the error tuple is never
inserted in the table, but this would be considered defensive programming, as this
message was either tagged incorrectly or should not have made it this far into the system
in the first place. Not only that, but you also do not know which particular
ets:insert/2 call caused the problem. In large systems, you would expect to find quite
a few of them.

355

In a huge and complex system, without any knowledge of the module in which the
entry was corrupted, you would have to find the tuple {error, unknown_msg}, poten-
tially having to search through millions of lines of code. Once you found the tuple,
inserting an io:format/2 statement that prints the error and process information would
not solve the problem, as in live systems, processes come and go and millions of entries
are inserted and deleted from ETS tables each hour. In addition, because this is a live
system with strict revision control, code changes must be tested and approved before
being deployed. This option, even if it’s tempting, would result in a slow turnaround
time. Don’t get wound up on release procedures and slow turnaround times from the
quality assurance team, however, as you can do better!

In Erlang, the first thing a developer or support engineer would consider doing is to
turn on the trace facility for all calls to the ets:insert/2 function. You can trace both
local and global calls—that is, calls to functions in the same module and in other mod-
ules—without having to trace-compile (i.e., recompile) the code. The trace events can
include the function call itself, its arguments, its result, its calling function, and a time-
stamp. When tracing is enabled, you can generate a trace event every time the traced
function is called. This trace event is either printed in the shell or piped to a socket
where a program at the other end receives it, formats it, and stores it in a readable logfile.

But you still have a problem, because in a live system, millions of calls are made to
ets:insert/2 every hour. Millions of trace messages would give you lots of unnecessary
information and would probably affect performance. You are interested in trace events
only if the second argument, the message type, is invalid. So, what do you do? You
implement a match specification that, for every call, will inspect the parameters passed
to it. You write the specification in such a way that you generate a trace event only if
your parameter inspection comes across the tuple {error, unknown_msg} instead of a
valid message type. In this trace event, you ensure that the calling function is displayed,
giving you the function where the ets:insert/2 call originated. You can then start
tracing this calling function and inspecting its arguments, finding the final clue to the
origin of the invalid message, and as a result, locating the bug. What is more, you can
do all of this in a live system where thousands of simultaneous transactions are being
concurrently executed, without affecting the performance and without having to re-
compile the code.

If this sounds too good to be true, keep reading. Inspecting arguments in local and
global calls, turning process traces on and off based on very specific triggers, and having
full visibility over process state changes is possible with no extra effort on behalf of the
developer. In Erlang, you achieve these results by using the dbg tracer tool, a user-
friendly encapsulation of the trace BIFs and match specifications. This is another ex-
ample of simple but powerful and well-thought-out constructs that reduce develop-
ment and support efforts and bug turnaround times.

The first section of this chapter covers the low-level trace BIFs, as well as the message-
based foundation for tracing in Erlang. This is followed by an introduction to the dbg
tracer tool built on the BIFs; although this is probably the tool you will use, the first

356 | Chapter 17: Trace BIFs, the dbg Tracer, and Match Specifications

section will introduce you to the way in which tracing works in Erlang, as well as the
terminology used in tracing.

The Trace BIFs
The built-in function erlang:trace/3 enables and disables the low-level trace mecha-
nisms in the Erlang runtime system. It provides you with a means to monitor concur-
rency, code execution, and memory usage. Tools such as the debugger and the process
manager use this BIF to collect and display trace events. You prefix the BIF with the
name of the erlang module that contains it, as it is not autoimported.

The beauty of the trace BIF is that you can use it without having to trace-compile the
code. You can use it in live systems, resulting in an incredibly powerful troubleshooting
tool that gives full visibility of what is going on.

Trace events are sent as messages of the following format:

{trace, Pid, Tag, Data1 [,Data2]}

where [,Data2] denotes an optional field dependent on the trace message type. Trace
events that are generated include the following:

• Global and local function calls

• Garbage collection and memory usage

• Process-related activities and message passing

At any one time, only one process may receive trace events from another process. This
is known as the tracer process. The tracer process that receives the trace events is the
one that made the call to:

erlang:trace(PidSpec, Bool, TraceFlags).

In this call, PidSpec defines which processes you want to trace. It is either a process
identifier or one of the atoms existing, new, or all:

• The existing atom enables tracing for all existing processes, but will exclude the
tracer process and any process spawned after the call.

• If you pass new, the call will trace all processes spawned after the trace BIF call.

• The all atom will instead trace all processes created before and after the trace call,
excluding the tracer process itself.

Calling erlang:trace(self(), Bool, TraceFlags) generates a bad argument error, as
the tracer process cannot be traced. The reason the process receiving the trace messages
cannot be traced is to avoid infinite cyclic loops. Imagine you are tracing received mes-
sages. Every time your process receives a message, a trace message will be generated,
resulting in yet another trace message. Moreover, this will happen at a rate that no
program would be able to handle.

The Trace BIFs | 357

If you want a process other than the one calling the trace/3 BIF to receive the trace
events, you pass the {tracer, Pid} tuple as an element in the TraceFlags list (which
we’ll described shortly). In this tuple, Pid has to be a process or port identifier.

The second argument to the trace BIF is the atom true or false, specifying whether
you want to enable or disable particular aspects of your tracing. These are described
by a list of trace flags, denoted by atoms* and used to specify which trace events you
want to generate or suppress, according to the Boolean value of the second argument:
true to generate and false to suppress. We describe the trace flags in detail in subse-
quent sections. The return value of the erlang:trace/3 call is an integer denoting the
number of traced processes.

Process Trace Flags
The send flag traces all messages sent by a process, and 'receive' generates events when
messages are added to the mailbox of the traced process. Because receive is a reserved
word in Erlang, you must enclose it in single quotes, thus generating an atom. Setting
the send or 'receive' flag to true generates the following trace events:

{trace, Pid, send, Message, To}
{trace, Pid, send_to_non_existing_process, Message, To}
{trace, Pid, 'receive', Message}

By now, you must be itching to try the trace BIF in the shell. In the following sections,
we will use this program as an example:

-module(ping).
-export([start/0, send/1, loop/0]).

start() -> spawn_link(ping, loop, []).

send(Pid) ->
 Pid ! {self(), ping},
 receive pong -> pong end.

loop() ->
 receive
 {Pid, ping} ->
 spawn(crash, do_not_exist, []),
 Pid ! pong,
 loop()
 end.

The start function spawns a child process that waits in a receive-evaluate loop. Upon
receiving a ping message, sent as a result of the ping:send/1 call, the child process
spawns a new process that immediately terminates abnormally, as the module in which
it should be executing does not exist.

* All trace flags are atoms except the {tracer, Pid} tuple described in the preceding paragraph.

358 | Chapter 17: Trace BIFs, the dbg Tracer, and Match Specifications

This abnormal termination will result in a crash report being printed. (Remember,
spawning a process never fails.† Instead, what fails is the newly spawned process, as
the function it is supposed to execute is undefined.) Finally, the child process responds
to the message by sending a pong message back. It is received in the ping:send/1 call
and is returned as a result of that function.

Running the preceding example in the shell and turning on tracing of all send and
receive events, we get:

1> Pid = ping:start().
<0.55.0>
2> erlang:trace(Pid, true, [send, 'receive']).
1
3> ping:send(Pid).
pong
=ERROR REPORT==== 6-Sep-2008::19:16:00 ===
Error in process <0.40.0> with exit value: {undef,[{crash,do_not_exist,[]}]}

4> flush().
Shell got {trace,<0.55.0>,'receive',{<0.39.0>,ping}}
Shell got {trace,<0.55.0>,send,pong,<0.39.0>}
ok
5> erlang:trace(Pid, false, [send, 'receive']).
1

Note how commands 2 and 5 return the integer 1, namely the number of processes that
are being traced. You can set trace flags on processes at any time, either before they are
created, using the all or new flag, or after they have been created, using the all or
existing flag or the flag’s process identifier. And, as the trace messages are being sent
to the shell process, which is the process that executed the trace/3 call, you can retrieve
them using the flush/0 shell command.

At any particular time, a process can be in one of three states (see Figure 17-1). It could
be running code, it could be suspended waiting for its turn to execute, or it could be in
a receive clause, waiting for a message to arrive. A process is said to be preempted when
its state changes from running to suspended, and scheduled when it is moved from the
suspended queue ready to execute.

By enabling the running flag, you can trace state transfers of the module, function, and
arity as well as the pid of the process from when it started running (in) to when it stops
running (out). The trace events generated always come in pairs, and are of the following
format:

{trace, Pid, in, {M, F, Arity}}
{trace, Pid, out, {M, F, Arity}}

Pman, the process manager, uses the procs flag to trace process-related events, such as
process spawning and termination, process linking, and registration. The trace events
generated by the procs flag include the following:

† Unless you reach the system limit of the maximum number of allowed processes.

The Trace BIFs | 359

{trace, Pid, spawn, Pid2, {M, F, Args}}
{trace, Pid, exit, Reason}
{trace, Pid, link | unlink, Pid2}
{trace, Pid, getting_linked | getting_unlinked, Pid2}
{trace, Pid, register | unregister, Pid2}

Figure 17-1. Process states

Figure 17-2. The set_on_spawn trace flag

Function calls can be traced using the call flag; we discuss this in more detail in the
section “Tracing Calls with the trace_pattern BIF” on page 362.

Inheritance Flags
Use of the set_on_spawn flag specifies that any child process will inherit the flags of its
parent, including the set_on_spawn flag itself (see Figure 17-2). As a result, any process
spawned by the child process will also inherit all of the flags of the child. If instead you
use the set_on_first_spawn flag, you specify that any process that is spawned will in-
herit the flags of its parents except the set_on_first_spawn flag. Any process the child
will spawn will therefore not inherit the flags. In other words, set_on_spawn is transi-
tive, whereas set_on_first_spawn is not.

360 | Chapter 17: Trace BIFs, the dbg Tracer, and Match Specifications

Let’s use the ping example to see the set_on_spawn and procs flags in action. Sending
the ping message to the process spawns a child that terminates immediately. The tracing
process should receive the spawn trace event from the first process and the exit message
with the undef runtime error from the second process:

1> Pid = ping:start().
<0.31.0>
2> erlang:trace(Pid, true, [set_on_spawn, procs]).
1
3> ping:send(Pid).
pong
=ERROR REPORT==== 6-Sep-2008::19:50:33 ===
Error in process <0.40.0> with exit value: {undef,[{crash,do_not_exist,[]}]}

4> flush().
Shell got {trace,<0.31.0>,spawn,<0.34.0>,{crash,do_not_exist,[]}}
Shell got {trace,<0.34.0>,exit,{undef,[{crash,do_not_exist,[]}]}}
ok

The set_on_link and set_on_first_link trace flags are similar to the set_on_spawn flag,
but instead they control the flags that are inherited when linking takes place.

Garbage Collection and Timestamps
Memory usage and the amount of time spent garbage collecting are notoriously tricky
to predict. The Erlang system uses a generational garbage collection mechanism, de-
scribed in Chapter 2. The collector has two generations of data: “current” and “old.”
Current data that survives a garbage collection will become old. The premise behind
this approach is that much of the data stored in the heap is short-lived and will not
survive to the first garbage collection, whereas data that survives its first collection tends
to be much longer-lived. It therefore makes sense to garbage-collect in the current data
more frequently than in the old data.

Using the garbage_collection flag, you can receive trace events relating to garbage
collection initiation and termination. The events produced are of the following format:

{trace, Pid, gc_start, Info}
{trace, Pid, gc_end, Info}

where Info is a list of tagged tuples containing the following:

heap_size
The used part of the current heap

heap_block_size
The size of the memory block used to store the heap and the stack

old_heap_size
The used part of the old heap

old_heap_block_size
The size of the memory block used to store the old heap

The Trace BIFs | 361

stack_size
The actual stack size

recent_size
The size of the data that survived the previous garbage collection

mbuf_size
The message buffer (or mailbox) size

All heap and message buffer sizes provided in the tagged tuples are in words.‡

Now, what should you do if you want to calculate the time spent garbage collecting,
or if you want to have an accurate record of exactly when a specific trace event is
generated? You should use the timestamp flag, which will add a timestamp to all mes-
sages. The format is the same as the one returned by the BIF now(), namely
{MegaSeconds, Seconds, Microseconds} passed since January 1, 1970. All trace mes-
sages will now have the trace_ts tag and will contain an extra field at the end containing
the timestamp:

1> Pid = ping:start().
<0.31.0>
2> erlang:trace(Pid, true, [garbage_collection, timestamp]).
1
3> ping:send(Pid).
Pong
=ERROR REPORT==== 6-Sep-2008::20:30:41 ===
Error in process <0.40.0> with exit value: {undef,[{crash,do_not_exist,[]}]}

4> flush().
Shell got {trace_ts,<0.31.0>, gc_start,
 [{mbuf_size,0},{recent_size,0},{stack_size,2},{old_heap_size,0},
 {heap_size,231}],{998,578633,990000}}
Shell got {trace_ts,<0.31.0>, gc_end,
 [{mbuf_size,0}, {recent_size,228},{stack_size,2},{old_heap_size,0},
 {heap_size,228}],{998,578633,990001}}

The flag cpu_timestamp makes all trace timestamps relative to the CPU time, not the
wall clock. To use this flag, the target machine needs to support high-resolution CPU
measurements and the Pid argument to the trace BIF must be all.

Tracing Calls with the trace_pattern BIF
You use the erlang:trace_pattern/3 BIF to enable tracing of local and global function
calls. You must use this BIF in conjunction with the erlang:trace/3 BIF, called with
the call and return_to flags. Tracing will be enabled on the intersection of the sets
created through the calls to the two trace BIFs (see Figure 17-3). Using trace/3, you
define which processes you want to monitor. Using trace_pattern/3, you define the

‡ If you do not recall what we mean by the heap and the old heap, review the sidebar “Memory Management
in Erlang” on page 33 in Chapter 2. We covered the process stack in Chapter 3.

362 | Chapter 17: Trace BIFs, the dbg Tracer, and Match Specifications

subset of functions you are tracing. An event will be generated only if a traced process
executes a traced function.

The trace messages generated by the intersection of these two BIFs will be of the fol-
lowing form:

{trace, Pid, call, {M, F, Args}}
{trace, Pid, return_to, {M, F, Args}}

where call is generated when the function F in module M with argument Args is called.
The return_to event is generated when the call returns and the execution of the function
is completed. When tracing recursive calls, the return_to event is sent only when the
recursive base case has been reached, and not for every iteration of the function. You
can use the return_to flag only in conjunction with the call flag.

Using the arity flag in conjunction with the call flag, all event tags containing an {M,
F, Args} tuple will instead return function arity information, {M, F, Arity}. This is
useful if you are not interested in the arguments passed to a function and you want to
minimize the size of the messages passed as a result of the call trace.

When calling:

erlang:trace_pattern(MFA, Condition, FlagList)

you define the functions you want to trace in the first argument, where you specify the
module, function, and arity of the calls you want to result in a trace event. The MFA
format is one of the following:

{Module, Function, Arity}
{Module, Function, '_'}
{Module, '_', '_'}
{'_', '_', '_'}

Wildcards are allowed using the '_' atom, so using {Module, '_', '_'} will enable the
tracing of all calls of all arities defined in Module. Wildcards need to follow the preceding
pattern, however; combinations of the type {'_', Function, '_'} are not allowed. The

Figure 17-3. The intersection of the trace and trace_pattern BIFs

Tracing Calls with the trace_pattern BIF | 363

modules we are passing to erlang:trace_pattern/3 have to be loaded before the BIF is
called. Recompiling your code or reloading the module after having set the flags will
clear the trace patterns. You need to rerun the trace command BIFs to reenable the
tracing.

The Condition further controls the tracing. It can take a Boolean value: passing true
will enable tracing of all functions defined in MFA, whereas false will disable it. You can
also pass a match specification, the same ugly but extremely powerful terms describing
a simple program that we discussed in Chapter 10. We will look at them in more detail
in the section “Match Specifications: The fun Syntax” on page 374.

Finally, the FlagList defines the type of traced function, further filtering what has been
defined in MFA. Passing global traces only exported functions, whereas local traces both
exported and nonexported calls.

The visibility of your systems gained through these extremely powerful BIFs greatly
reduces the time spent troubleshooting, making the turnaround time for patches very
short when comparing Erlang to other programming languages. Are you curious and
want to experiment with trace function calls from within the shell? Let’s look at an
example and experiment with the possible range of values you can pass to the BIFs.
When doing so, do not forget to prefix the BIF calls with the erlang module name.
Let’s go back to the ping example, explained in the section “Inheritance
Flags” on page 360:

1> l(ping).
{module,ping}
2> erlang:trace(all, true, [call]).
25
3> erlang:trace_pattern({ping, '_', '_'}, true, [local]).
5
4> Pid = ping:start().
<0.120.0>
5> ping:send(Pid).
pong
=ERROR REPORT==== 4-Apr-2009::19:33:25 ===
Error in process <0.122.0> with exit value: {undef,[{crash,do_not_exist,[]}]}

6> flush().
Shell got {trace,<0.120.0>,call,{ping,loop,[]}}
Shell got {trace,<0.120.0>,call,{ping,loop,[]}}
ok

In this example, we are tracing all function calls made within all processes. We intersect
them with all local function calls in the module ping. Remember, this option contains
local and nonlocal calls. To understand the calls that we see, let’s number the lines in
the ping.erl module:

1 -module(ping).
2 -export([start/0, send/1, loop/0]).
3
4 start() -> spawn_link(ping, loop, []).
5

364 | Chapter 17: Trace BIFs, the dbg Tracer, and Match Specifications

6 send(Pid) ->
7 Pid ! {self(), ping},
8 receive pong -> pong end.
9
10 loop() ->
11 receive
12 {Pid, ping} ->
13 spawn(crash, do_not_exist, []),
14 Pid ! pong,
15 loop()
16 end.

The functions we are tracing will be start/0, send/1, and loop/0; there are other func-
tion calls in the module (e.g., spawn_link/3 on line 4, self/0 on line 7), but these are
calls to functions that are not defined in the ping module.

What is the effect of calling ping:start()? This starts a process with pid Pid that will
execute loop/0, giving us the first call to a function in the traced module, resulting in
the first trace message seen as a result of the flush() in command 6. This call is global,
as it is called from outside the module as a result of the spawn/3 BIF.

When we then call send(Pid), the code on line 7 sends a message to Pid (which, inci-
dentally, contains a call to self/0), and this message is handled in the body of the
loop/0. After receiving the message, it calls spawn/3 and finally loop/0 on line 15. Calling
loop/0 is a local call which gives rise to the second trace message found when the
flush() was executed.

What would you expect the global calls to be, if you do the same trace but replace
local with global in command 3, as shown here?

erlang:trace_pattern({ping, '_', '_'}, true, [global]).

Running the same tests gives you a trace message, namely the one generated as a result
of the spawn/3 BIF. But if you are tracing all global calls in all processes, why did
ping:send/1 not generate a trace event? It is, after all, a global call. The reason is that
the process receiving the trace messages cannot be traced. If you want to generate trace
events for the process calling the trace BIF, you have to redirect these messages to
another process. You do so by passing the {tracer, Pid} option to the trace/3 BIF,
specifying the pid of the process you want to send the messages to.

The dbg Tracer
You probably realize that although the trace BIFs are extremely powerful and handy,
they are also very low-level and are not very user-friendly. After all, they are there to
provide a base on which to build other tools such as the dbg tracer.

The dbg tracer is a text-based debugger providing a user-friendly interface to the
trace and trace_pattern BIFs, but using the tracing principles and mechanisms intro-
duced in the preceding section. You can use the dbg tool as a complement to the process
manager we discussed in the section “The Process Manager” on page 114 in

The dbg Tracer | 365

Chapter 4, especially when you are tracing on text-based terminals and do not have
access to the display or you have to divert the output. The dbg tool has a small impact
on system performance, making it a suitable candidate for tracing large live systems.

Getting Started with dbg
The dbg:h() call provides you with a list of helpful functions; to find out more details
about any of these functions, you can pass their names to dbg:h/1. The last thing you
want to do when under pressure debugging a live system after a support call in the
middle of the night is to have to look at the Erlang manual pages. The help function
always comes in handy:

1> dbg:h().
The following help items are available:
 p, c
 - Set trace flags for processes
 tp, tpl, ctp, ctpl, ctpg, ltp, dtp, wtp, rtp
 - Manipulate trace patterns for functions
 n, cn, ln
 - Add/remove traced nodes.
 tracer, trace_port, trace_client, get_tracer, stop, stop_clear
 - Manipulate tracer process/port
 i
 - Info

call dbg:h(Item) for brief help a brief description
of one of the items above.

ok
2> dbg:h(p).
p(Item) -> {ok, MatchDesc} | {error, term()}
 - Traces messages to and from Item.
p(Item, Flags) -> {ok, MatchDesc} | {error, term()}
 - Traces Item according to Flags.
 Flags can be one of s,r,m,c,p,sos,sol,sofs,
 sofl,all,clear or any flag accepted by erlang:trace/3

ok

The call dbg:p(PidSpec, TraceFlags) allows you to specify which processes you want
to trace and which trace events you want them to generate. PidSpec can be one of the
following:

Pid
A particular process ID.

all
Will trace all processes, spawned before or after the call to the debugger.

366 | Chapter 17: Trace BIFs, the dbg Tracer, and Match Specifications

new
Will trace all processes spawned after the call to the debugger.

existing
Will trace all processes existing before the call to the debugger.

Alias
A registered process alias other than all, new, or existing.

{X,Y,Z}
Denotes the process represented by the process ID <X.Y.Z>. "<X.Y.Z>" can also be
used; it is the result of the pid_to_list/1 BIF.

TraceFlags is a single atom or a list of flags. You can pass any flag accepted by the trace
BIFs alongside the following flag abbreviations and aggregations:

s
Traces sent messages

r
Traces received messages

m
Traces sent and received messages

p
Traces process-related events

c
Traces global and local calls according to the trace patterns set in the dbg:tp/2 call

sos and sofs
Denote the set_on_spawn and set_on_first_spawn flags, which we described in the
section “Inheritance Flags” on page 360

sol and sofl
Denote the set_on_link and set_on_first_link flags, which we described in the
section “Inheritance Flags” on page 360

all
Sets all flags

clear
Clears all set trace flags

You must once again be itching to try out the dbg tracer and generate trace events. In
the following example, we will trace all message-related events from the ping module
that we introduced in “Inheritance Flags” on page 360.

We start our ping process and a separate tracer process. The tracer process will receive
and display all of the trace events, including those generated in the shell. In command
5, we enable the trace events for all messages sent and received by the ping process after
which we call the ping:send/1 function. In the trace printouts that follow, you can see

The dbg Tracer | 367

that upon sending a ping message, the shell process has sent a pong message back in
return:

3> Pid = ping:start().
<0.41.0>
4> dbg:tracer().
{ok,<0.43.0>}
5> dbg:p(Pid, m).
{ok,[{matched,nonode@nohost,1}]}
6> ping:send(Pid).
pong
(<0.41.0>) << {<0.29.0>,ping}
7> (<0.41.0>) <0.29.0> ! pong
7>
=ERROR REPORT==== 6-Sep-2008::21:40:31 ===
Error in process <0.47.0> with exit value: {undef,[{crash,do_not_exist,[]}]}

7> dbg:stop().
ok

You can see from the trace printout right after command 6 that the process within the
parentheses is where the trace event originated. Process <0.41.0> receives the message
{<0.29.0>, ping}, denoted in the trace by the << symbols, and responds by sending the
message pong to process <0.29.0>.

Use this example to experiment with various trace flags, and while doing so, note how
the tracer has to be started and stopped. Are the flags you set in dbg:p/2 automatically
cleared when you stop the tracer using dbg:stop()?

Using the same ping process, let’s now trace all process-related activities using the
set_on_spawn flag. Because of this, the process <0.55.0> inherits all of the flags, and as
a result, it generates the exit trace event:

8> dbg:tracer().
{ok,<0.51.0>}
9> dbg:p(Pid, [p, sos]).
{ok,[{matched,nonode@nohost,1}]}
10> ping:send(Pid).
pong
(<0.41.0>) spawn <0.55.0> as crash:do_not_exist()

=ERROR REPORT==== 6-Sep-2008::21:43:26 ===
Error in process <0.55.0> with exit value: {undef,[{crash,do_not_exist,[]}]}

(<0.55.0>) exit {undef,[{crash,do_not_exist,[]}]}
{ok,[{matched,nonode@nohost,1}]}
11> dbg:stop().
ok

Note that in both of the preceding examples, no trace information is logged regarding
activities of the tracer process itself. And, if you have not figured it out, dbg:stop/0 will
not clear the trace flags. For this purpose, use dbg:stop_clear/0.

368 | Chapter 17: Trace BIFs, the dbg Tracer, and Match Specifications

Tracing and Profiling Functions
The function dbg:c(Mod, Fun, Args, TraceFlags) is ideal for trace and profile functions
executed from the shell. If the TraceFlags argument is omitted, all flags are set. In the
example that follows, we trace all activity related to an io:format/1 call, in this case,
io:format("hello~n").

This tracing shows the inner workings of the input/output mechanism, under which
messages are sent to the group leader. The calling process is suspended when it goes
into a receive statement, and the process is scheduled as soon as a response from the
group leader returns:

1> dbg:c(io, format, ["Hello World~n"]).
Hello World
(<0.53.0>) <0.23.0> ! {io_request,<0.53.0>,<0.23.0>,
 {put_chars,io_lib,format,["Hello World~n",[]]}}
(<0.53.0>) out {io,wait_io_mon_reply,2}
(<0.53.0>) << {io_reply,<0.23.0>,ok}
(<0.53.0>) in {io,wait_io_mon_reply,2}
(<0.53.0>) << timeout
ok

Using dbg:c/3 is ideal if you want to monitor memory usage and time spent garbage
collecting in a particular function, as it isolates the call in a single process. It is not the
best way to trace side effects using the set_on_link and set_on_spawn flags, as all flags
are cleared as soon as the function returns.

Tracing Local and Global Function Calls
So far, so good, but one of the really powerful features of the trace BIFs, and probably
the one used most often is the ability to generate trace events for local and global func-
tion calls. In the dbg module, you use the following to enable the trace for global calls:

dbg:tp({Mod, Fun, Arity}, MatchSpec)

And you use this for local calls:

dbg:tpl({Mod, Fun, Arity}, MatchSpec)

You use these in conjunction with the dbg:p/2 call, where you specify the traced process
together with the c flag. The trace events generated through the intersection of the two
sets are the same as those described in the section “Tracing Calls with the trace_pattern
BIF” on page 362.

Just as for the trace BIFs, you can define Module, Function, and Arity as '_', where
formats of the type {'_', Function,'_'}, in which a wildcard comes before a non-
wildcard, are not allowed. We will cover match specifications with dbg soon, but for
the time being, we will use [].

The dbg Tracer | 369

The return value of tp/2 and tpl/2 has the format {ok, Matches}, where Matches is a
list of tuples reporting the Erlang nodes on which the trace was enabled and the number
of functions for which the trace was turned on at each node.

Call tracing is disabled using dbg:ctp({Mod, Fun, Arity}). Calling this function will
disable function tracing regardless of whether the calls are local or global. This is the
call you will probably be using most of the time. Should you want to disable the trace
on only a particular global call pattern set with dbg:tp/2, however, use dbg:ctpg({Mod,
Fun, Arity}); local traces are disabled using dbg:ctpl({Mod, Fun, Arity}).

All of the calls used to enable and disable function tracing return a tuple of the format
{error, Reason} or {ok, MatchDescription}. MatchDescription is a list of tuples of the
form {matched, Node, Number}, where Number denotes how many function calls were
enabled or disabled on the particular Node. You can clearly see this in the following
example.

Also note how we are now receiving trace events generated in the shell. In the examples
using the trace BIFs in the section “Tracing Calls with the trace_pattern
BIF” on page 362, tracing on the shell could not be enabled because the shell was itself
the process receiving the trace events. The messages are now being sent to a tracer
process which is not the shell, and so trace events for global calls such as start/0 and
send/1 have become visible:

1> dbg:tracer().
{ok,<0.100.0>}
2> dbg:p(all,[c]).
{ok,[{matched,nonode@nohost,25}]}
3> dbg:tp({ping, '_', '_'}, []).
{ok,[{matched,nonode@nohost,5}]}
4> Pid = ping:start().
<0.105.0>
 (<0.97.0>) call ping:start()
(<0.105.0>) call ping:loop()
5> ping:send(Pid).
(<0.97.0>) call ping:send(<0.105.0>)
pong
=ERROR REPORT==== 7-Sep-2008::12:47:07 ===
Error in process <0.107.0> with exit value: {undef,[{crash,do_not_exist,[]}]}

6> dbg:ctpg({ping, '_', '_'}).
{ok,[{matched,nonode@nohost,5}]}

You should spend some time getting acquainted with the tracer and its interface, as
this is one of the most powerful tools available with the Erlang runtime distribution.
When reading the manual page for dbg, you will discover that there are many variants
of the tp, tpl, ctp, ctpl, and ctog functions. Don’t worry about them unless you like
using shortcuts. It is probably hard enough to remember the ones we have discussed
in this chapter, let alone all of their variants. The good news is that the ones we described
are all you need, and they allow you to express all combinations covered in the other
variants. It is a trade-off between having a good memory and remembering all of the

370 | Chapter 17: Trace BIFs, the dbg Tracer, and Match Specifications

variants, or typing in a few extra characters. And as a fallback, all you need to revert
back to is dbg:h().

When you are tracing live systems, you should use the dbg tracer with
extreme care. If you turn on too many trace events in a busy system, you
run the risk of generating so many shell printouts that it becomes im-
possible to type in the command necessary to stop the trace. As a result,
the tracer process becomes unable to keep up with the generated event
messages. They queue up, and very quickly, the Erlang runtime system
runs out of memory. Support engineers (and one of the authors§ of this
book) have caused service outages in national fixed phone and mobile
data networks because of dbg. Use it in a safe test environment as care-
lessly as you want, but when debugging live systems, make sure you
know what you are doing, and exercise extreme care!

Distributed Environments
Tracing can take place in distributed environments, with all of the trace output being
redirected to a single tracer. When you enabled or cleared a trace, you must have noticed
from the examples that the return value of the calls was of the following format:

{ok,[{matched,nonode@nohost,5}]}.

As we were not running distributed nodes, all local traces were on the node
nonode@nohost. When running the traces in a distributed environment, you would in-
stead get a list of all nodes on which the traces were enabled. If the tracer was unable
to connect to a remote node, the result for that particular node would be {matched,Node,
0,RpcError}.

The call dbg:n(Node) adds a distributed Erlang node to the traced list and
dbg:cn(Node) removes it from the list. To list the nodes on which you are running a
trace, you use dbg:ln(). Once nodes have been added, setting trace items, flags, and
function patterns will result in all traced nodes being affected. Process identifiers passed
to dbg:p/2 can be on other nodes. The only thing dbg:p/2 does not handle is globally
registered names.

Redirecting the Output
In all of the dbg tracer examples we have looked at so far, the trace events have been
sent to a tracer process that formatted and printed them out in the shell. This might
not always be the best way to handle debugging information. You might instead want
to collect statistics, measure garbage collection, or forward the output to a socket or a
file.

§ We have left it as an exercise for you to figure out which one of the authors was responsible.

The dbg Tracer | 371

The good news here is that dbg allows you to define your own fun to handle the
trace messages generated by the trace BIFs. If you start the tracer tool using
dbg:tracer(process, {HandlerFun, Data}), all events are passed as arguments to
HandlerFun, a user-defined fun of arity 2. The trace message is the first argument and
the user-defined Data is the second. The fun returns data that is passed back to it in its
next iteration, and so this value can be seen as an accumulator, keeping track of total
resource use, for instance.

In the following example, we will be monitoring the memory usage of the shell process.
Our HandlerFun will store the memory usage data when it starts garbage collecting,
providing information on whether memory is allocated or released. We’ll test our tracer
by running some memory-intensive applications on lists. A positive delta value means
memory has been freed in the (current) heap and the old heap, and a negative value
means memory has been allocated. All sizes are in words. Notice how memory is allo-
cated in the old heap while being freed in the current heap. This will be the longer-lived
data that has survived a garbage collection in the current heap and is being moved to
the old heap.

The following example is long; any typos will result in you having to type everything
from scratch. Be smart; either use an editor to type the example and paste it in the shell,
or download it from the book’s website:

1> HandlerFun =
 fun({trace, Pid, gc_start, Start}, _) ->
 Start;
 ({trace, Pid, gc_end, End}, Start) ->
 {_, {_,OHS}} = lists:keysearch(old_heap_size, 1, Start),
 {_, {_,OHE}} = lists:keysearch(old_heap_size, 1, End),
 io:format("Old heap size delta after gc:~w~n",[OHS-OHE]),
 {_, {_,HS}} = lists:keysearch(heap_size, 1, Start),
 {_, {_,HE}} = lists:keysearch(heap_size, 1, End),
 io:format("Heap size delta after gc:~w~n",[HS-HE])
 end.
#Fun<erl_eval.12.113037538>
2> dbg:tracer(process, {HandlerFun, null}).
{ok,<0.32.0>}
3> dbg:p(self(), [garbage_collection]).
{ok,[{matched,nonode@nohost,1}]}
4> List = lists:seq(1,1000).
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,
 23,24,25,26,27,28,29|...]
Old heap size delta after gc:0
Heap size delta after gc:6020
5> RevList = lists:reverse(List).
[1000,999,998,997,996,995,994,993,992,991,990,989,988,987,
 986,985,984,983,982,981,980,979,978,977,976,975,974,973,972|...]
Old heap size delta after gc:-676
Heap size delta after gc:3367

372 | Chapter 17: Trace BIFs, the dbg Tracer, and Match Specifications

http://www.erlangprogramming.org

Redirecting to sockets and binary files

You have seen how to write your own funs to handle trace messages. Using the same
mechanism, you can forward trace outputs to a socket or a binary file. This gives you
the advantage of reducing the load on the traced node, particularly as a result of any
I/O in the shell. It is this I/O which can get so intensive, making it extremely hard to
correctly type in the command needed to stop the tracer!

How do you redirect the output? In the dbg:tracer/2 call, instead of the process argu-
ment we demonstrated in the previous sections, you pass the port atom. The call:

dbg:tracer(port, PortFun)

starts a tracer that will pass the trace messages to an Erlang port. PortFun is a fun
encapsulating the opened port and returned by the call dbg:trace_port(ip, Port),
where Port is either the port number or the tuple {PortNumber, QueueSize}.
QueueSize limits the size of the undelivered message queue, dropping trace events if
they are not picked up by the remote socket client. This option will open a listener port,
buffer the messages, and send them as soon as a client connects.

To connect the client, call dbg:trace_client(ip, Arg), where Arg is either the
PortNumber (if the tracer is running on the same host) or the tuple {HostName, Port
Number} if it is running on a different machine, the preferred option if tracing is expected
to impose a heavy load. This call will connect to the listener port where the trace is
running and retrieve the trace events.

If you want to send your trace events to a binary file, bind the variable PortFun to the
return value of dbg:trace_port(file, FileOptions). The FileOptions describes the way
in which the trace is to be stored in the filesystem. FileOptions can specify either a
filename, or a wrap files specification, which will limit the amount of file space used.
By default, using {FileName, wrap, FileSuffix} will result in eight wraparound files,
each 128 KB in size. To change the default values, use {Filename, wrap, FileSuffix,
WrapTrigger, WrapCount}, where WrapTrigger is the size in kilobytes or the tuple {time,
Milliseconds}. Suffix is the file suffix and WrapCount is the number of files created
before wrapping around.

You can retrieve the messages with the trace_client/2 call, where the first argument
is the atom file, reading all of the trace events written so far, or follow_file, which
continually reads and processes trace events written after the call. The second argument
is the FileName as passed in the FileOptions argument you passed to the
dbg:trace_port/2 call.

If you want to handle your own trace events, received through either a file or a socket,
you can use the dbg:trace_client(Type, Arg, {HandlerFun, Data}) call. It starts a client
that will apply HandlerFun to each incoming trace event in turn. Type and Arg are the
same as in the earlier descriptions of trace_client/2, whereas the {HandlerFun,
Data} tuple is the same as in tracer/2. The call dbg:stop_trace_client(Pid), where
Pid is the return value of the tracer/2 call, stops the client.

The dbg Tracer | 373

In the following example, we start a local tracer that redirects trace events to IP port
1234 on a different Erlang node running on the same host. A tracer client will pick up
the events and process them. When dealing with systems carrying live traffic, it is a
good practice to redirect your trace events either to a file, which you process on a
different machine, or to a socket, where a client on a remote machine picks up the
message traffic:

1> PortFun = dbg:trace_port(ip, 1234).
#Fun<dbg.12.21848437>
2> dbg:tracer(port, PortFun).
{ok,<0.33.0>}
3> dbg:p(all, [c]).
{ok,[{matched,nonode@nohost,25}]}
4> dbg:tp({ping, '_','_'}, []).
{ok,[{matched,nonode@nohost,5}]}
5> dbg:tpl({ping, '_','_'}, []).
{ok,[{matched,nonode@nohost,5}]}
6> Pid = ping:start().
<0.39.0>
7> ping:send(Pid).
pong
=ERROR REPORT==== 14-Sep-2008::12:25:23 ===
Error in process <0.41.0> with exit value: {undef,[{crash,do_not_exist,[]}]}

The output is received by a tracer client process in a different Erlang shell:

1> Pid = dbg:trace_client(ip, 1234).
<0.40.0>
2> <0.30.0>) call ping:start()
(<0.39.0>) call ping:loop()
(<0.30.0>) call ping:send(<0.39.0>)
(<0.39.0>) call ping:loop()
2> dbg:stop_trace_client(Pid).
ok

Match Specifications: The fun Syntax
We introduced the powerful (but ugly) match specifications in Chapter 10. As you
might recall, a match specification consists of an Erlang term describing a small pro-
gram that expresses a condition to be matched over a set of arguments. Match speci-
fications are limited in functionality, and in the case of the trace BIFs, they mainly deal
with the filtering and manipulation of trace events. If they match successfully, a trace
event is generated and some predefined actions can be executed. Match specifications
are compiled to a format close to the one used by the emulator, making them more
efficient than functions. But apart from being more efficient, the specifications are
complex to write, and at first glance, they look incomprehensible.

Luckily, you can generate match specifications covering a majority of simple but useful
cases using the dbg:fun2ms/1 call. It converts specifications that are described using
fun syntax into match specifications. The results are as efficient as writing the match

374 | Chapter 17: Trace BIFs, the dbg Tracer, and Match Specifications

specifications by hand, but they are much easier to read, write, modify, and debug. We
are using dbg:fun2ms/1 to turn an anonymous fun into a match specification, which is
used when setting trace flags on local and global calls. We start by introducing this
higher-level approach, but for those who need to harness the full power of the trace
BIFs, we follow this by looking at the match specifications themselves.

Generating Specifications Using fun2ms
Remember the bug we described in the beginning of the chapter? The one where we
corrupted the ETS table with the tuple {error, unknown_msg}? We can re-create the
error in the following way: first, we use the dp:fill() call to create and corrupt the ETS
table. The crash in the system that occurred when reading the corrupted table will then
be generated by calling the dp:process_msg() function, which takes the first element in
the ETS table and processes it. In the real world, we would not know either of these
functions, and would have to rely on higher-level tests that would eventually lead to
these calls being made by a worker processes. In this example, we are calling them from
the shell, as that will facilitate demonstrating the step-by-step debugging procedures
that have to be undertaken to solve the bug using match specifications:

1> dp:fill().
true
2> dp:process_msg().
** exception error: no case clause matching [{2,{error,unknown_msg}}]
 in function dp:process_msg/0

The error message tells us immediately that there is a case clause error in the
process_msg/0 call. Following the call flow in the dp:process_msg() function discovered
by the exception error printed in the shell, we immediately notice that the pattern
{_,{error, unknown_msg}} is missing in the case clause:

-module(dp).
-compile(export_all).

process_msg() ->
 case ets:first(msgQ) of
 '$end_of_table' ->
 ok;
 Key ->
 case ets:lookup(msgQ, Key) of
 [{_, {event, Sender, Msg}}] ->
 event(Sender, Msg);
 [{_, {ping, Sender}}] ->
 ping(Sender)
 end,
 ets:delete(msgQ, Key),
 Key
 end.

event(_,_) -> ok.
ping(_) -> ok.

Match Specifications: The fun Syntax | 375

fill() ->
 catch ets:new(msgQ, [named_table, ordered_set]),
 dp:handle_msg(<<2,3,0,2,0>>).

The entry {2, {error, unknown_msg}} should not have been inserted in the table in the
first place, so we can assume that the case clause is correct and that adding the {error,
unknown_msg} clause will not solve the bug. What we need to find out is who inserted
it in the table, and stop it from happening again. The corruption must have originated
in an ets:insert/2 call, but as there are many in the system, we need to pinpoint which
one it is by creating a match specification that generates a trace message only if the
tuple element being inserted is {error, unknown_msg}. This match specification, when
used together with the trace patterns of the modules, functions, and arguments, will
trigger a trace event whenever the call with those arguments is made.

The function dbg:fun2ms/1 takes a literal fun as an argument and returns a match spec-
ification describing the properties in the fun. By “literal fun,” we mean a fun that is
typed in and passed as a parameter, not a fun that is bound to a variable which is then
passed as an argument, or a fun that results from applying a higher-order function. We
could also call this an “explicit” or a “manifest” fun. The fun takes one parameter,
which is either a variable or a list of variables, all of which can be pattern-matched or
used in guards. You can use the variables in the fun body, but the last expression has
to be either a predefined call that is converted to an action, or a term that is ignored.

The Erlang precompiler takes the literal fun and translates it to a match specification.
You can type match specifications directly in the shell, but if you include them in your
modules, you must include the header to the ms_transform.hrl file. It is part of the
standard library application, and is most easily included as follows:

-include_lib("stdlib/include/ms_transform.hrl").

Armed with this knowledge, let’s generate a match specification which when passed to
the dbg:tp/2 function will trigger an event if the second argument to a call is of the form
{_, {error, unknown_msg}}. This would include the call ets:insert(msgQ, {1, {error,
unknown_msg}}):

dbg:fun2ms(fun([_, {_,{error, unknown_msg}}]) -> true end).

Do you see how we are pattern matching in the fun? The atom true returned by the
literal fun is ignored, but we have used the pattern-matching facilities of the fun syntax
to express the required pattern.

Let’s try it out in the shell. Remember, you cannot bind the fun to a variable; it is a
literal fun expression that is handled by the precompiler, and as such, it has to be entered
explicitly as an argument to the call. Note also that the call db:fill/0 puts only one
incorrect entry in the ETS tables, but it could have put in thousands of entries, most of
which could have been correct. As a result of our tests, however, we want to generate
only one trace event that is triggered when the second element of the second argument
is the tuple that corrupts our table:

376 | Chapter 17: Trace BIFs, the dbg Tracer, and Match Specifications

3> dbg:tracer().
{ok,<0.58.0>}
4> Match1 = dbg:fun2ms(fun([_,{_,{error, unknown_msg}}]) -> true end).
[{['_',{'_',{error,unknown_msg}}],[],[true]}]
5> dbg:tp({ets, insert, 2}, Match1).
{ok,[{matched,nonode@nohost,1},{saved,1}]}
6> dbg:p(all,[c]).
{ok,[{matched,nonode@nohost,25}]}
7> dp:fill().
true
(<0.54.0>) call ets:insert(msgQ,{2,{error,unknown_msg}})

We now know the pid of the calling process, but it did not make us any wiser. As
processes are created for every incoming message and are terminated as soon as the
message has been queued, there would be no point in tracing it. What we really need
is the function that calls this insertion (the caller function).

Luckily, we can request this information by telling the match specification to generate
an event that contains information about the caller function. We do this by making our
fun return one of a set of predefined literal functions, all of which are also handled by
the precompiler. In our case, we would use message(caller()):

dbg:fun2ms(fun([_,{_,{error, unknown_msg}}]) -> message(caller()) end).

The literal call message(Data) sends a message with the Data to the tracer process; to
display it in the shell instead, use display(Data). In our example, we passed the literal
function caller() as Data. We will cover other valid data options shortly. Right now,
let’s focus on identifying the caller and see whether it helps us solve the bug:

8> Match2 = dbg:fun2ms(fun([_,{_,{error, unknown_msg}}]) ->
8> message(caller())
8> end).
[{['_',{'_',{error,unknown_msg}}],[],[{message,{caller}}]}]
9> dbg:tp({ets, insert, 2}, Match2).
{ok,[{matched,nonode@nohost,1},{saved,2}]}
10> dp:fill().
true
(<0.34.0>) call ets:insert(msgQ,{2,{error,unknown_msg}}) ({dp,handle_msg,1})

Note how after the ets:insert/2 trace message, the calling function ({dp,handle_msg,
1}) is now also displayed by the tracer. This is as a result of the message(caller()) call
in our literal fun. We now know that ets:insert/2 with the wrong data is being called
by the dp:handle_msg/1 function. We look at the code, follow the call flow, and imme-
diately find that the {error, unknown_msg} tuple is created in the dp:handle/3 function
as a result of the MsgType argument being anything other than the integer 1 or 2:

handle_msg(<<MsgId, MsgType, Sender:16, MsgLen, Msg:MsgLen/binary>>) ->
 Element = handle(MsgType, Sender, Msg),
 ets:insert(msgQ, {MsgId, Element}).

handle(1, Sender, Msg) -> {event, Sender, Msg};
handle(2, Sender, _Msg) -> {ping, Sender};
handle(_Id, _Sender, _Msg) -> {error, unknown_msg}.

Match Specifications: The fun Syntax | 377

We can now run a trace on the handle/3 function, generating events only if the
MsgType is not the integer 1 or 2. We bind MsgType in the fun head and test it in a
guard. Binding of variables is allowed only in the function head: using = in your match
fun will result in an error being returned, and the match specification failing to compile.

We can easily add this condition by adding a guard to our literal fun:

dbg:fun2ms(fun([Id, Sender, Msg]) when Id /=1, Id /=2 -> true end).

Remember that a semicolon between guards means that at least one of the guards is
required to succeed, and a comma means they all must succeed. The guards allowed
in literal funs are the same as in conventional guards. They include:

BIFs used in type tests
is_atom, is_constant, is_float, is_integer, is_list, is_number, is_pid, is_port,
is_reference, is_tuple, is_binary, is_function, is_record

Boolean operators
not, and, or, andalso, orelse

Relational operators
>, >=, <, =<, =:=, ==, =/=, /=

Arithmetic operators
+, -, *, div, rem

Bitwise operators
band, bor, bxor, bnot, bsl, bsr

Other BIFs allowed in guards
abs/1, element/2, hd/1, length/1, node/1,2, round/1, size/1, tl/1, trunc/1, self/0

If a runtime error occurs as a result of a bad argument when pattern matching in the
function head, or because of invalid arguments used in the guard operations, the match
fails. If a runtime error occurs in the match specification body, the match specification
simply returns the atom 'EXIT'. The trace event is generated and any return value is
ignored.

By using the not equals (/=) conditional guard to test for invalid integers in the shell,
we will get the final clue to resolve the bug!

11> Match3 = dbg:fun2ms(fun([Id, Sender, Msg]) when Id /=1, Id /=2 -> true end).
[{['$1','$2','$3'],[{'/=','$1',1},{'/=','$1',2}],[true]}]
12> dbg:tpl({dp, handle, 3}, Match3).
{ok,[{matched,nonode@nohost,1},{saved,3}]}
13> dp:fill().

(<0.44.0>) call dp:handle(3,2,<<>>)
(<0.44.0>) call ets:insert(msgQ,{2,{error,unknown_msg}}) ({dp,handle_msg,1})
true

Looking at the preceding trace events, we now know that dp:handle/3 is called with
message type 3, and the hardware ID of the sender is 2. Looking at the software revision

378 | Chapter 17: Trace BIFs, the dbg Tracer, and Match Specifications

on the hardware denoted by the ID 2, we realize it is not supported by our software,
resulting in the data being corrupted. Problem solved!

Where Did the Bug Come From?
The crash described in this section happened in our test plant. The trace events we
generated and stored in the logfile allowed us to discover which message type was not
handled and to track down the hardware where it originated using a strategy similar to
the one described in the example. We quickly discovered that the software revision of
the originating hardware was a later release than the one supported by our installation.
So much for workarounds; the bug in this example was in the connectivity module that
allowed hardware with nonsupported software revisions to connect to the system.

On top of fixing the connectivity module, we removed the handling of unknown
messages in the dp:handle call, where we had originally returned the {error,
unknown_msg} tuple. This was a case of defensive programming that should not have
been included in the first place. By making the process handling the message terminate
with a case clause error the termination would affect only processes handling messages
originating from hardware that should not have been connected to the system. This
gave us an early warning of the problem and a direct indication of where the bug oc-
curred (with the hardware ID and message type).

You can include the calls in a literal fun and they will be translated to actions during
the parse transform in the precompiler. Some of these actions you already saw in the
examples, but we include all of them here for reference:

return_trace()
Generates an extra event upon completing the traced call, including the return
value of the function. When generating this extra trace event, tail-recursive prop-
erties of the traced function calls are lost.

exception_trace()
Behaves in the same way as return_trace, but if a runtime error occurs, an
exception_from message is generated.

display(Data)
Generates a side effect by printing the Data passed to it. The Data can be either one
of the arguments bound in the fun head or the return value of one of the other
literal functions described in this section.

message(Data)
Generates a trace event with the Data. The Data can be either one of the arguments
bound in the fun or the return value of one of the other literal functions described
in this section.

message(false)
Is a special case of message/1, where no trace event is generated for the call and
return_to trace flags. This is useful if you are interested in side effects, such as those
generated by the display/1 literal.

Match Specifications: The fun Syntax | 379

message(true)
Is another special case of message/1, where the trace on the {Module, Function,
Arity} behaves as though no match specifications are associated with it. Its only
use is to override the message(Data | false) call.

enable_trace(TraceFlag)
Enables a TraceFlag on the process that triggered the match specification. You can
pass only one flag at a time, but nothing is stopping you from having several calls
each with their own trace flag in the fun body. The TraceFlag is as defined in the
trace BIFs; no abbreviations used by the tracer tool are allowed. Executing this call
in a match specification is the equivalent of calling erlang:trace(self(), true,
[TraceFlag]).

enable_trace(Pid, TraceFlag)
Is the same as enable_trace/1, except that it will enable the trace flag on the Pid,
which is either a process identifier or a registered name.

disable_trace(TraceFlag)
Disables a TraceFlag on the particular process that triggered the match specifica-
tion. The same restrictions to TraceFlag apply as in the enable_trace/1 literal call.

Executing this call in a match specification is the equivalent of calling
erlang:trace(self(), false, [TraceFlag]).

disable_trace(Pid, TraceFlag)
Is the same as disable_trace/1, except the TraceFlag will be disabled on the speci-
fied Pid.

trace(Disable, Enable) and trace(Pid, Disable, Enable) allow you to enable and
disable many flags at the same time.

silent(true)
Turns off all call trace messages originating until a match specification with
silent(false) in its body is matched.

set_tcw(Int)
Sets a unique trace control word that you can retrieve using the
erlang:system_info(trace_control_word) BIF call. It is a free-to-use status value
used by some advanced tools (possibly user-defined), allowing these tools to in-
fluence the actions taken based on its value.

You can pass the following calls as arguments to the display/1 and message/1 literal
functions:

caller()
Returns the {Module, Function, Arity} tuple, allowing you to identify the calling
function.

get_tcw()
Returns the trace control word which was previously set using set_tcw/1.

380 | Chapter 17: Trace BIFs, the dbg Tracer, and Match Specifications

object()
Returns a list with all of the arguments passed to the match specification.

bindings()
Returns a list of all bound variables in the match head.

process_dump()
Returns the process stack properly formatted as a string in the form of a binary.
You can pass it as an argument to message/1, where you have implemented your
own tracer process. Passing it to display/1 will not work, as it is unable to print
binaries.

self()
Returns the process identifier of the calling process.

Odds and ends with fun2ms

When generating match specifications using fun2ms, you must follow certain restric-
tions, as the functionality in match specifications is limited. Now that you are armed
with the knowledge of how match specifications work, these restrictions are easier to
understand.

You cannot call Erlang functions in the fun body. Guards and functions allowed in the
match body will be translated as is, so even if they compile correctly, using them might
cause the match specification to return an error. All variables defined as arguments to
the fun are replaced by match specification variables in the order in which they occur.
If you look at some of the match specifications we have generated, a fun head such as
that which occurs in the following:

fun([Id, Sender, Msg])when Id /=1, Id /=2 -> true end).

translates to ['$1','$2','$3']. Every occurrence of these variables is replaced in the
match specification conditions and body, so in the preceding example, the guards
would translate to a condition of the format [{'/=','$1',1},{'/=','$1',2}] and guards
such as is_integer(Id) would be translated to a condition resembling [{is_integer,
'$1'}].

Variables bound outside the scope of the fun and not appearing in the head are impor-
ted, either from the shell or from the function where the match specification is gener-
ated. They are translated to constant expressions of the format {const, Constant},
where Constant is the literal value of the Constant. Generating the match specification
using the following function:

foo(A) -> dbg:fun2ms(fun([B,C]) when B == A -> A end).

and calling foo(10) will generate a specification of the following format:

[{['$1','$2'], [{'==','$1',{const,10}}], [{const,10}]}].

You can bind variables only in the fun head, and even here, you can do so only restric-
tively. For example, a fun of the form fun({A,[B|C]} = D), where D is bound at the top

Match Specifications: The fun Syntax | 381

level to all of the arguments, is allowed, whereas fun({A,[B|C]=D}) is not. In the first
case, if you are interested in printing or returning all of the arguments, you would be
better off using the literal function object(), which is translated to '$_', a term that
expands to all of the arguments. If you are interested only in the variable bindings and
you ignore the “don’t care” variables, use the literal function bindings(), which trans-
lates to '$*' in the lower-level match specification.

Literal term constructions are translated in order to turn them into valid match speci-
fications; tuples are converted to a one-element tuple containing the tuple itself, and
constant expressions are converted to the form {const, Constant}. Records and oper-
ations on records are converted to tuples and element calls. The is_record/2 guard is
converted to {is_record, Var, Arity}, where Var is replaced by a variable of the format
'$0' and Arity is the size of the tuple. List pattern matches are converted to use the
{hd, List} and {tl, List} constructs. As conditional constructs such as case, if, and
catch are not allowed in match specifications, they are not allowed in funs either.

Remember that when dealing with the fun2ms call in a module, the module must always
include the ms_transform.hrl header file. If you don’t include it, the code might compile
without any warnings, but the match specification will not be translated, possibly re-
sulting in a runtime error. Translations to match specifications are done at compile
time, so runtime performance is not affected by using these literal functions.

Difference Between ets and dbg Match Specifications
There are differences between the match specifications used by the ets and the dbg
modules. If the pseudo function triggering the translation is ets:fun2ms/1, the fun’s
head must contain a single variable or a single tuple with its guards acting as filters. The
body of the fun, and as a result, the body of the match specification, constructs terms
and returns values that are the result of the select/2 call. This is done without gener-
ating any side effects or binding variables. Even though you can use ets match speci-
fications from the shell, you will usually find them embedded in program code.

If the pseudo function is dbg:fun2ms/1, on the other hand, the fun’s head must contain
a single variable or a single list. The specification body will contain imperative com-
mands that result in side effects manifesting themselves as printouts, the manipulation
of trace flags, or extra data appended to the trace events. The return value of the gen-
erated specification is ignored. Trace BIF specifications are most commonly used from
the shell, even if nothing is stopping you from integrating them in your programs.

What unites the two is the need for efficient filtering with low overheads that do not
affect the real-time properties of the system. If what you have seen so far does not scare
you, let’s look at these match specifications in more detail. A warning for the faint of
heart: what we will describe in the next section, although powerful, is not pretty.

382 | Chapter 17: Trace BIFs, the dbg Tracer, and Match Specifications

Match Specifications: The Nuts and Bolts
When covering the help function dbg:fun2ms/1, we went into a high-level explanation
of its results, namely match specifications. The specifications are tuples with three
elements of the format [Head, Conditions, Body]:

• The head is used to bind and match variables and terms.

• In the conditions, logical tests are applied on the variables. You can define your
own logical tests or use predefined guards.

• In the body part of the specification, we list a possibly empty set of predefined
actions that have to be taken if the match in the head is successful and the logical
conditions are met.

The objective of this section is to ensure that you understand the match specifications
that result from the dbg:fun2ms/1 and ets:fun2ms/1 calls, and possibly implement some
simpler ones for yourself.

The Head
The head is a list of variables, literals, and composite data types. All variables in the
head are of the form '$int()', where int() is replaced by an integer of the format '0'
or '1', ranging from 0 to 100,000,000. The atom '_' denotes the “don’t care” variable,
and can be used if you are not interested in matching parts of a particular argument. If
you instead want to match on all values and all arities without any variable bindings,
you just use '_', giving a specification of the form ['_', Conditions, Body]. You might
be tempted to write [[], Conditions, Body] instead, but beware, as this will only match
functions of arity 0.

In the following example, we create a specification that matches on functions of arity
2. We bind the first argument to the variable '$1'. The second argument has to be a
tuple where the first element is bound to the variable '$2' and the second element is
the tuple {error, unknown_msg}. The match specification for such a case is as follows:

[{['$1',{'$2',{error,unknown_msg}}],[],[]}]

In the preceding code, the conditions and the body are denoted by empty lists, as no
logical checks and side effects are needed. Look at the example in the section “Gener-
ating Specifications Using fun2ms” on page 375, where we were looking for debug
messages, and see what dbg:fun2ms/1 produced.

In the following example, we use dbg:tp/2 to start a trace on all calls to the
ets:insert/2 function. The match specification that we pass as the second argument
ensures that trace events are triggered only if the second argument is a tuple of size 2,
where the second element is the tuple {error, bad_day}:

1> dbg:tracer().
{ok,<0.32.0>}
2> dbg:p(all,[c]).

Match Specifications: The Nuts and Bolts | 383

{ok,[{matched,nonode@nohost,25}]}
3> dbg:tp({ets,insert,2}, [{['$1',{'$2',{error,bad_day}}],[],[]}]).
{ok,[{matched,nonode@nohost,1},{saved,1}]}
4> ets:new(foo,[named_table]).
foo
5> ets:insert(foo, {1, monday}).
true
6> ets:insert(foo, {1, {error, bad_day}}).
true
(<0.30.0>) call ets:insert(foo,{1,{error,bad_day}})

Instead of '$1' and '$2', we could have used “don’t care” variables, as we are not doing
anything with the values of the arguments in the conditions or body.

It is possible to repeat variables within specifications. In the specification
[{['$1','$1'],[],[]}], we match calls to functions of arity 2 where the arguments are
the same. The specification would trigger a trace event if the call to foo(1,1) was being
traced. The match specification head [{'$1','$2'}, ['$1','$2'|'_ ']] would match
functions of arity 2 where the first argument is a tuple with two elements and the second
argument is a list whose first two elements are identical to those in the tuple. For in-
stance, the call foo({1,2},[1,2,3]), if traced, would trigger an event.

Conditions
The conditions list allows several logical tests on variables to be combined. If they are
positive, the match is successful and the trace event is triggered. All variables must be
bound, but unlike in the head, literal and compound data types must be described using
a special syntax. To represent a tuple, it is necessary to use either {const, Tuple} or
{Tuple}, where Tuple is a literal or the variable representing the tuple. Lists are decon-
structed into a head and tail using {hd, List} and {tl, List}, where List is the rep-
resentation of the list.

Boolean functions include functionality similar to the BIFs you are allowed to use in
guards and in logical, Boolean, relational, and arithmetic operators. As match specifi-
cations are Erlang terms, however, all of these operators have to be represented as
atoms, and operations themselves are grouped together in tuples.

Guards are of the format {Guard, Variable}, where the Guard can be any one of is_atom,
is_constant, is_float, is_integer, is_list, is_number, is_pid, is_port, is_reference,
is_tuple, is_binary, is_function, or is_seq_trace.

For example, to test for a list, you would use a guard of the following form:

{is_list, '$0'}.

The guard to check for a record uses is_record and is of the following format:

{is_record, '$1', RecordType, record_info(size, RecordType)}

In the preceding code, the RecordType has to be a hardcoded literal giving the record
type required.

384 | Chapter 17: Trace BIFs, the dbg Tracer, and Match Specifications

The conditional expression constructs take the following form:

{Construct, Exp1, Exp2, ...}

In the preceding code, the first element of the tuple is the logical construct and the
remaining ones are (possibly nested) conditional expressions or guards. The logical
construct {'not', Expression} evaluates to true if the Expression evaluates to false.
For any other result, it evaluates to false.

The 'and', 'or', 'xor', andalso, and orelse constructs all take a tuple of size 3 or more,
where the first element is the construct and the remaining ones are the logical expres-
sions. Using 'and' or 'or' will evaluate all expressions in the construct, whereas
andalso and orelse will stop evaluating as soon as one expression returns false or
true, respectively. For 'xor' to evaluate to true, one of its expressions must evaluate
to true and the other to false. Here is an example of a conditional expression where
all three expressions have to evaluate to true:

{'and', {'not', '$1'}, '$2', {'or', '$3,'$4'}}.

Comparison operators take tuples with three elements, where the first element is one
of the operators '>', '>=', '<', '=<', '=:=', '==', '=/=', or '/=', and the remaining two
contain expressions whose result is compared. Combining guards, conditional expres-
sions, and comparison operators could give you something similar to the following
format:

{'and', {is_integer, '$0'}, {is_integer, '$1'}, {'>=', '$0', '$1'}}.

The following BIF operations are also allowed in conditional expressions. They behave
like their counterpart BIFs and consist of a tuple of size 2 or 3, depending on how many
arguments the BIF requires. The operations abs, hd, tl, length, node, round, size, trunc,
'bnot', 'bsl', and 'bsr' all take one argument. Using element, '+', '-', '*', 'div',
'rem', 'band', 'bor', and 'bxor' require a tuple with the operator and two arguments.
The BIF operations {self} and {get_tcw} return the process identifier of the calling
process or the trace control word. Even if they are most commonly used in the match
specification body, they are also allowed as arguments to conditional expressions.

Enough with the syntax and semantics, as it is becoming too much to digest in one go.
The best way to tackle it all is to look at some examples and try out some of your own.
Can you figure out what triggers the following match specification? Try to do this before
you read on:

[{['$1', '$2', '$3'],
 [{orelse,
 {'=:=','$1', '$2'},
 {'and',
 {'=:=','$1', {hd, '$3'}},
 {'=:=','$2', {hd, {tl, '$3'}}}
 }
 }],
 []
}]

Match Specifications: The Nuts and Bolts | 385

Let’s break up the preceding code bit by bit. The head tells us the function is of arity
3. The condition is an orelse; the first condition here is '$1' '=: =' '$2', requiring
that the first argument be exactly equal to the second. If this fails, we try the conjunction
(and) of {'=:=','$1', {hd, '$3'}}and {'=:=', '$2', {hd, {tl,'$3'}}}. From this we
can deduce that '$3' has to be a list whose first element {hd, '$3'} is equal to the first
argument '$1' and whose second element (the head of the tail) is equal to '$2', the
second argument. In Erlang terms, the third argument would be a list where '$3' =
['$1','$2|'_']. Traced calls that would trigger a match would include foo(1,2,
[1,2,3]) and foo(true, true, false). As an exercise you could try to define a fun that
will be transformed to this using dbg:fun2ms/1.

As you can see from the example, quite a few operators and constructs are allowed.
They all work in the same way as the corresponding guards, BIFs, and operators. The
rule of thumb is that if they are allowed in guards, they will be allowed in match
conditions.

In case of bad arguments, where the data of the wrong type is bound to the variables
that are passed to these operations, the condition fails. The process executing the match
specification does not crash.

Let’s look at a few more examples. The first one takes two arguments and will match
if '$1' is greater than or equal to 0 and '$2' is less than or equal to 10. Calling the traced
function foo(0,10) or foo(5,5) would successfully trigger the trace event:

[{['$1', '$2'],
 [{'and', {'>=', '$1', 0},
 {'=<', '$2', 10}}],
 []
}]

The next example will match if the first argument to the function of arity 2 is the atom
enable or disable and the second argument is the tuple where the first element is an-
other tuple, {slot, 1, 3}. Note how we have used the {const, Term} construct in the
example to denote the atoms enable and disable, and then encapsulated these tuples
in another tuple.

As conditions and the body of match specifications consist of tuples, we have to either
use the {const, Term} construct, or insert the tuple in a tuple (as in {{slot, 1,3}}) to
differentiate a “real” tuple from a conditional construct and the BIF and comparison
operators:

[{['$1', '$2'],
 [{'and', {'orelse',{'=:=', '$1', {const, enable}},
 {'=:=', '$1', {const, disable}}},
 {'=:=', {element, 1, '$2'}, {{slot, 1, 3}}}
 }],
 []
}]

386 | Chapter 17: Trace BIFs, the dbg Tracer, and Match Specifications

We would use the preceding specification if we were tracing specific operations on
boards in slot 1 placed in subrack 3. Examples of functions that would trigger a trace
event include the function calls board:action(enable, {{slot, 1,3}, disabled}) and
board:action(disable, {{slot, 1,3}, unknown}).

As you will see in the next section, upon triggering the specification, we could turn on
a particular trace flag in the body part of the specification. Before looking at how to do
it, let’s try to clean up the preceding example, adding a second match specification to
the list. In a live environment, both match specifications would yield the same result,
but the example that follows allows only tuples of size 2. Using the equivalent of the
element BIF, we are stating that the second argument has to be a tuple with at least two
elements:

[{[enable, {{slot, 1, 3}, '_'}],
 [],
 []},
 {[disable, {{slot, 1, 3}, '_'}],
 [],
 []}
]

The Specification Body
If the match is successful and the conditions evaluate to true, we can specify a set of
actions, including sending trace events, printing terms, enabling and disabling trace
flags, and returning trace information. The same rules as those given in the previous
section apply here to variables and literals; actions must always be defined in tuples,
even if they take no arguments. The same rules as earlier also apply to '$_' and '$$':
namely, '$_' returns the whole parameter list, and '$$' returns the list of all bound
variables.

In the following example, if the first match specification is successful, the procs flag
will be added to the list of trace flags; if the second match specification is successful, it
will remove that flag from the list:

[{[enable, {{slot, 1, 3}, '_'}],
 [],
 [{enable_trace, procs}]},
 {[disable, {{slot, 1, 3}, '_'}],
 [],
 [{disable_trace, procs}]}
]

The syntax of the specification body to enable and disable calls is of the form
{enable_trace, TraceFlag} and {disable_trace, TraceFlag} where TraceFlag is a sin-
gle flag as defined in the section “The Trace BIFs” on page 357. The enable_trace and
disable_trace actions have the same effect of calling the following BIF:

erlang:trace(self(), Flag, [TraceFlag])

Match Specifications: The Nuts and Bolts | 387

where Flag is replaced by the atom true or false, respectively enabling or disabling the
TraceFlag.

The following actions can be executed in the match specification body:

{message, Args}
Appends the Args to the trace events. The Args could be variables, arguments, or
return values of other actions such as process_dump.

{message, false | true}
Is a special case where messages of the call and return_to trace flags are not sent
if the flag is false. Passing true results in a regular trace message and is the same
as not having a body at all.

{return_trace}
Causes a trace message to be sent upon the return of this function. If the function
is tail-recursive, this property is lost.

{exception_trace}
Behaves in the same way as return_trace, with the exception that if the traced
function exits because of a runtime error, an exception_from trace message is
generated.

{silent, true | false}
Turns trace messages on and off for that process, but not the tracing itself.

{display, Term}
Displays a single Term on stdout, and should be used only for debugging purposes!

{set_tcw, Value}
Sets the trace control word of a node, returning the previous value. Calling
erlang:system_flag(trace_control_word, Value) will have the same effect as exe-
cuting the command in the specification body.

{enable_trace, TraceFlag}
Enables any of the trace flags accepted by the trace BIF. For every TraceFlag that
you want to enable, you need a separate enable_trace call. This would have the
same effect as calling erlang:trace(self(), true, [TraceFlag]).

{disable_trace, TraceFlag}
Disables the TraceFlag. Executing this function in the match specification would
be the equivalent of calling the function erlang:trace(self(), false,
[TraceFlag]).

{trace, DisableList, EnableList}
Will disable the flags defined in the DisableList while atomically enabling the ones
defined in the EnableList. The flags are the same as those that can be used in the
erlang:trace/3 BIF, but you may not include the cpu_timestamp flag. You may,
however, include the {tracer, Pid} specifying which Pid should receive the trace
events. If defined in both lists, flags (including the tracer directive) in the
EnableList take precedence over those in the DisableList.

388 | Chapter 17: Trace BIFs, the dbg Tracer, and Match Specifications

{trace, Pid, DisableList, EnableList}
Is the same as the function with two arguments, but also allows you to define a
process identifier or a registered alias on which the flags should be enabled or
disabled. The aggregation of the flags is atomic.

The following calls are used to return values, most commonly used as an argument to
the message and display actions just described:

{process_dump}
Returns textual information on the process, formatted as a string and stored as a
binary.

{caller}
Returns the calling function in the format {Module, Function, Arity}. The trace
event will return undefined if the function cannot be determined.

{get_tcw}
Returns the trace control word previously set. This call has the same effect as calling
the BIF erlang:system_info(trace_control_word).

{pid}
Returns the pid of the process executing the match specification.

In the following example, we append the process dump to the trace message, pick it
up in the tracer fun we have defined ourselves, convert it from a binary to a string, and
print it out. Note that the process stack of the shell is deeper. We have removed some
of the trailing functions. Also, note how in the head section of the match specification
we pass in '_', denoting a function of any arity:

1> DbgFun = fun({trace, _Pid, _event, _data, Msg}, _Acc) ->
1> io:format("~s~n",[binary_to_list(Msg)])
1> end.
#Fun<erl_eval.12.113037538>
2> dbg:tracer(process, {DbgFun, null}).
{ok,<0.33.0>}
3> dbg:tp({io,format,1}, [{'_',[],[{message,{process_dump}}]}]).
{ok,[{matched,nonode@nohost,1},{saved,1}]}
4> dbg:p(all,[c]).
{ok,[{matched,nonode@nohost,25}]}
5> io:format("Hello~n").
Hello
=proc:<0.30.0>
State: Running
Spawned as: erlang:apply/2
Spawned by: <0.24.0>
Started: Tue Oct 07 13:17:07 2008
Message queue length: 0
Number of heap fragments: 0
Heap fragment data: 0
Link list: []
Reductions: 8879
Stack+heap: 2584
OldHeap: 2584

Match Specifications: The Nuts and Bolts | 389

Heap unused: 1271
OldHeap unused: 2584
Stack dump:
Program counter: 0x01b0e904 (shell:eval_loop/3 + 44)
CP: 0x01b02388 (erl_eval:do_apply/5 + 1304)

0x01473450 Return addr 0x01b0f15c (shell:exprs/6 + 368)
y(0) [{'DbgFun',#Fun<erl_eval.12.113037538>}]
y(1) []
y(2) none

0x01473460 Return addr 0x01b0ec40 (shell:eval_exprs/6 + 80)
y(0) []
y(1) []
y(2) [{'DbgFun',#Fun<erl_eval.12.113037538>}]
y(3) {value,#Fun<shell.7.51306786>}
y(4) {eval,#Fun<shell.24.79061235>}
y(5) 13
y(6) []
y(7) []
y(8) []

In this last example, we are trying to find the caller of the io:format/2 function in the
shell. We see the output formatted as the tuple {erl_eval, do_apply, 5} right after the
call in command 4:

1> dbg:tracer().
{ok,<0.32.0>}
2> dbg:p(all, [call]).
{ok,[{matched,nonode@nohost,25}]}
3> dbg:tp({io, format, 2}, [{'_', [], [{display, {caller}}] }]).
undefined
{ok,[{matched,nonode@nohost,1}, {saved,1}]}
4> io:format("Hello~n",[]).
{erl_eval,do_apply,5}
Hello
(<0.30.0>) call io:format("Hello~n",[])
ok

Saving Match Specifications
Look at the preceding example, more specifically the return value of the dbg:tp/2 call.
It returns {ok,[{matched,nonode@nohost,1},{saved,1}]}. You already know about the
first inner component, {matched, nonode@nohost, 1}; it tells you that on this particular
node, one function was matched. The {saved, 1}, however, tells you the match spec-
ification in the call was saved with this identifier, that is, the number 1. The dbg tracer
assigns integers to all match specifications, allowing you to use this integer instead of
the specification itself.

The help functions for retrieving and manipulating these calls include the following:

dbg:ltp()
Recalls all match specifications used in the session

390 | Chapter 17: Trace BIFs, the dbg Tracer, and Match Specifications

dbg:dtp() and dbg:dtp(Id)
Delete the stored match specifications (with a particular identifier)

dbg:wtp(FileName) and dbg:rtp(Filename)
Write and read match specifications from a file:

5> dbg:tp({io,format,2},[{['_'],[],[{enable_trace, procs}]}]).
{ok,[{matched,nonode@nohost,1},{saved,2}]}
6> dbg:ltp().
1: [{'_',[],[{display,{caller}}]}]
2: [{['_'],[],[{enable_trace,procs}]}]
exception_trace: x
x: [{'_',[],[{exception_trace}]}]
ok

Starting with the R13 release of Erlang/OTP, there is a presaved match specification
with the identifier exception_trace alias x. It is presaved as the match specification
[{'_',[],[{exception_trace}]}] and can be used in calls such as dbg:tp({M, F, A},
x). It deserves a special mention, as it is probably one of the most commonly used
specifications when debugging.

Further Reading
As you might have realized, the functionality for tracing live Erlang programs, although
powerful, can be complex at times. In this chapter, we provided you with a compre-
hensive overview of what is available, which should enable you to handle the vast ma-
jority of cases you come across. But as you will probably be dealing with live systems
running nonstop under high load, you never know what to expect.

There are two functions, set_seq_token/2 and get_seq_token/0, in the dbg:fun2ms/1
fun body call, which we have not covered. They are translated to the sequential trace
actions set_seq_token and get_seq_token in the match specification body. Together
with the API exported by the seq_trace module, they allow users to follow message
propagation paths across processes. If process A sends a message to process B, which
as a result sends messages to processes C and D, this propagated message call chain is
traced. If you are interested in learning more about them, read the manual page for
seq_trace. This topic alone would deserve an additional chapter.

If you want to read more on the trace BIFs, the first point of call should be the erlang
module manual page, where all the BIFs are described. If you are interested in exploring
match specifications, the ERTS User’s Guide dedicates a whole chapter to them, in-
cluding a complete grammar tutorial. If you instead prefer to stay clear from match
specifications and opt for match specification transforms using the fun2ms functions,
the ms_transform manual page is probably your best bet. The match specification func-
tions you pass to fun2ms, however, are documented in the ERTS User’s Guide. And
finally, the dbg manual page covers the dbg tracer tool.

Further Reading | 391

Exercises

Exercise 17-1: Measuring Garbage Collection Times
Using the trace BIFs, write a program that monitors the number of microseconds a
process spends garbage collecting in a specific function. Once the function has com-
pleted its execution, print out the time. To ensure that the readings are not affected by
previously allocated memory, spawn a new process for every reading.

Test your programs with a tail-recursive function and a non-tail-recursive function,
which do the same thing. This will allow you to monitor the impact that garbage col-
lection has on the time of non-tail-recursive functions handling lists of different sizes.

Hint: use timer:now_diff/2 to calculate the time difference.

You could use the following as a tail-recursive function:

average(List) -> sum(List) / len(List).

sum([]) -> 0;
sum([Head | Tail]) -> Head + sum(Tail);

len([]) -> 0;
len({_ | Tail]) -> 1 + len(Tail).

And, you could use this as a non-tail-recursive function:

average(List) -> average_acc(List, 0,0).

average_acc([], Sum, Length) -> Sum / Length;
average_acc([H | T], Sum, Length) -> average_acc(T, Sum + H, Length + 1).

When you execute your code, it might look something like this:

1> List = lists:seq(1,1000).
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,
 23,24,25,26,27,28,29|...]
2> gc_mon:measure(gc_test, average, List).
Gc monitoring terminated
Microseconds:8
ok

Exercise 17-2: Garbage Collection Using dbg
Rewrite the solution to Exercise 17-1 using dbg and your own tracer fun. When doing
so, add counters to measure how much memory is reclaimed during execution of the
process. Pay special attention to the different memory types.

392 | Chapter 17: Trace BIFs, the dbg Tracer, and Match Specifications

Exercise 17-3: Tracing ETS Table Entries
A crash report was logged. Further investigation shows that an ETS table called coun
tries gets corrupted by the entry {'EXIT', Reason}. The tuple is written instead of a
record of type countries. The table is updated thousands of times per day, and it would
thus not be appropriate to trace all table entries as the overhead and amount of data to
be filtered would be too large.

Create a match specification that is triggered every time the tuple {'EXIT', Reason} is
passed as the second argument to the ets:insert/2 function. When you get the match
specification to work, start a separate Erlang node on which your tracer receives and
prints all trace messages.

When it works, rewrite the match specification that triggers on both {'EXIT',
Reason} and {'EXIT', Pid, Reason} using conditional clauses.

Exercise 17-4: Who Is the Culprit?
Determine which of the two authors of this book managed to single-handedly cause a
nationwide outage of a mobile data network through the careless use of the dbg tracer
tool.

Exercises | 393

CHAPTER 18

Types and Documentation

The basic types in Erlang—integers, floating-point numbers, atoms, strings, tuples, and
lists—were introduced in Chapter 2; records were covered in Chapter 7; and further
types—binaries and references—in Chapter 9. When we have declared functions and
other definitions, we have also given an informal description of the types of their inputs
and outputs.

This chapter shows how you can write down the types of functions as a part of their
formal documentation in Erlang, using the EDoc documentation framework, written
by Richard Carlsson. What you write down as the type of a function can be checked
for consistency against the function definition using the TypEr tool, built by the im-
plementers of Dialyzer. TypEr will infer types without any user input, and so it can be
an essential tool for program understanding. TypEr and Dialyzer are the result of the
High Performance Erlang (HiPE) team’s research at Uppsala University. All of these
tools are part of the standard Erlang distribution.

Types in Erlang
Let’s start this chapter with an example and follow it with an overview of the type
notation for Erlang.

An Example: Records with Typed Fields
We discussed record definitions earlier in the book. In the example of the mobile user
database in Chapter 10, you saw a declaration of a record to hold information about a
particular user of the mobile phone system:

-record(usr, {msisdn, %int()
 id, %term()
 status = enabled %atom(), enabled | disabled
 plan, %atom(), prepay | postpay
 services = []}). %[atom()], service flag list

The usr record has five fields, and in the comments that follow, each field type is
indicated.

395

You can take that a step further, however, and make these comments a part of the
program itself. First, you introduce type declarations defining types for the kind of plan,
user status, and service:

-type(plan() :: prepay | postpay).
-type(status() :: enabled | disabled).
-type(service() :: atom()).

The three type declarations define the plan, status, and service types. As with constant
functions, they are followed by a set of parentheses, ():

plan()
Has two elements, the atoms prepay and postpay. You use the | symbol to indicate
alternatives (as you would in regular expressions and grammars). Here, the alter-
natives are the two possible members of the type.

status()
Also has two elements, the atoms enabled and disabled.

service()
Is a synonym for atom(), but makes it clear that when it is used, the intention is for
an atom in this position to represent a service of some kind.

With these definitions in place, you can explicitly give types to the record fields in this
record with typed fields:

-record(usr, {msisdn ::integer(),
 id ::integer(),
 status = enabled ::status(),
 plan ::plan(),
 services = [] ::[service()]
}).

This more clearly indicates what the elements of the usr record type should be and how
they should be used by programs that manipulate them. But most importantly, it pro-
vides tools with information that will help you detect type errors in the code. This short
example provided you with a taste of the Erlang type notation. Now let’s cover it in
more detail.

Erlang Type Notation
A number of Erlang types are predefined, and they include the following:

any()
Includes all Erlang data values (as does its synonym, term()).

atom()
Includes all Erlang atoms.

binary()
Consists of all binary values.

396 | Chapter 18: Types and Documentation

boolean()
Contains the atoms true and false.

byte()
Contains the numbers 0–255.

char()
Is the Unicode subset of the integer() type.

deep_string()
Is a recursive type, equal to [char+deep_string()].

float()
Consists of all floating-point numbers.

function()
Contains all funs

integer()
Consists of all integer values; recall that these are “big integers.”

list(T)
Is the type of a list of type T; it can also be written [T].

nil()
Has one element, the empty list [].

none()
Is a void type with no elements; it is used as the return type of functions that never
return.

number()
Consists of the union of the float() and integer() types.

pid(), port(), reference()
Are all self-explanatory.

string()
Is a synonym for the list of characters, [char()].

tuple()
Contains all tuples.

You can find details of other predefined types in the EDoc and Dialyzer documentation.
In addition to the aforementioned predefined types, you can define your own types
using the following notation:

atom
Any atom can be used as a type; for example, the type ok has the element ok.

| or +
You can use these to form the union of two types, as in true|false.

#rec{}
This is the record type named rec.

Types in Erlang | 397

{T1,T2,...}
This is the type of a tuple whose first element comes from type T1, second element
from type T2, and so on. So, for example, {error,atom()} consists of all pairs where
the first element is the atom error and the second is any atom.

[T]
This is the type of a list whose elements come from the type T.

L..U
This is the range of integers from lower bound L to upper bound U. This is used in
defining byte() and char() and a number of other built-ins, including
pos_integer().

A function type has the following form:

(Argument_types) -> Result_type

where the argument types may also contain the names of the corresponding parameters.

You use a –spec statement to specify a type (or prototype) for a function in a program.To
be clear, -spec is used to specify the type of a function, whereas –type is used to define
a type. Revisiting the usr_db example from Chapter 10, you can say:

-spec(create_tables(FileName::string()) -> {ok, ref()} | {error, atom()}).

create_tables(FileName) ->

-spec(close_tables() -> ok | {error, atom()}).

close_tables() ->

The type of create_tables here indicates that the FileName argument is a string, and
that there are two alternatives for the return type:

• If the operation is successful, this is signaled by returning a tuple with the first
element ok, and the second element a reference to the tables created.

• If it fails, a tuple with the first element error will be returned. Its second element
is an atom, presumably indicating the nature of the error.

The use of FileName here is optional. Writing the following would have the same effect:

-spec(create_tables(string()) -> {ok, ref()} | {error, atom()}).

However, including the parameter name—assuming it is chosen to reflect its purpose—
improves the documentation.*

* The EDoc system described later in the chapter will automatically include parameter names in its generated
type documentation even if they do not appear in the –spec statement.

398 | Chapter 18: Types and Documentation

TypEr: Success Types and Type Inference
The TypEr system, built by Tobias Lindahl and Kostis Sagonas,† is used to check the
validity of –spec annotations, as well as to infer the types of functions in modules with-
out type annotations.

You use TypEr from the command line. You can see the full range of options by typing:

typer --help

Taking the example of the mobile user database from Chapter 10, the following
command:

typer --show usr.erl usr_db.erl

gives the following output (shortened for brevity):

Unknown functions: [{ets,safefixtable,2}]

%% File: "usr.erl"
%% ---------------
-spec start() -> 'ok' | {'error','starting'}.
-spec start(_) -> 'ok' | {'error','starting'}.
-spec stop() -> any().
-spec add_usr(_,_,_) -> any().
-spec delete_usr(_) -> any().
 ...

%% File: "usr_db.erl"
%% ------------------
-spec create_tables(_) -> any().
-spec close_tables() -> any().
-spec add_usr(#usr{}) -> 'ok'.
-spec update_usr([tuple()] | tuple()) -> 'ok'.
-spec delete_usr(_) -> 'ok' | {'error','instance'}.
 ...

In a statically typed language such as Haskell, the type of a function inferred by the type
checker will provide a guarantee that the function will not fail if applied to arguments
of the input type. Erlang is a dynamically typed language, and so the TypEr tool takes
a different approach.

TypEr infers success types, which encapsulate all the ways in which a
function can be applied successfully. In general, this cannot be accurate,
but it will always be an overapproximation, so using the function in any
other way will be guaranteed to fail.

To make this clear, if a function f is given a success typing (S) -> T, and
E is any Erlang expression so that f(E) successfully evaluates to V, then
E must be of type S, and V of type T.

† TypEr is described in the papers from the Erlang Workshops in 2005 (Tallin) and 2007 (Freiburg) (http://doi
.acm.org/10.1145/1088361.1088366 and http://doi.acm.org/10.1145/1292520.1292523).

TypEr: Success Types and Type Inference | 399

http://doi.acm.org/10.1145/1088361.1088366
http://doi.acm.org/10.1145/1088361.1088366
http://doi.acm.org/10.1145/1292520.1292523

In the usr_db.erl example earlier, no useful information could be inferred for
create_tables/1, as its input and output types are any(). Just to be clear, TypEr was
applied to a version of usr_db without type annotations; if you add these, the result of
applying TypEr may be different:

-spec(create_tables(string()) -> {ok, ref()} | {error, atom()}).

create_tables(FileName) ->
 ets:new(subRam, [named_table, {keypos, #usr.msisdn}]),
 ets:new(subIndex, [named_table]),
 dets:open_file(subDisk, [{file, FileName}, {keypos, #usr.msisdn}]).

-spec(close_tables() -> ok | {error, atom()}).

close_tables() ->
 ets:delete(subRam),
 ets:delete(subIndex),
 dets:close(subDisk).

-spec(add_usr(#usr{}) -> ok).

add_usr(#usr{msisdn=PhoneNo, id=CustId} = Usr) ->
 ets:insert(subIndex, {CustId, PhoneNo}),
 update_usr(Usr).

-spec(update_usr(#usr{}) -> ok).

update_usr(Usr) ->
 ets:insert(subRam, Usr),
 dets:insert(subDisk, Usr),
 ok.

-spec(delete_usr(integer()) -> ok|{error,atom()}).

delete_usr(CustId) ->
 case get_index(CustId) of
 {ok,PhoneNo} ->
 delete_usr(PhoneNo, CustId);
 {error, instance} ->
 {error, instance}
 end.

-spec(delete_usr(integer(),integer()) -> ok|{error,atom()}).

delete_usr(PhoneNo, CustId) ->
 dets:delete(subDisk, PhoneNo),
 ets:delete(subRam, PhoneNo),
 ets:delete(subIndex, CustId),
 ok.

 ...

Running TypEr on the annotated file will check the specified types, and will give this
result:

400 | Chapter 18: Types and Documentation

%% File: "usr_db.erl"
%% ------------------
-spec create_tables(string()) -> {'ok',ref()} | {'error',atom()}.
-spec close_tables() -> 'ok' | {'error',atom()}.
-spec add_usr(#usr{}) -> 'ok'.
-spec update_usr(#usr{}) -> 'ok'.
-spec delete_usr(integer()) -> 'ok' | {'error',atom()}.
-spec delete_usr(integer(),integer()) -> 'ok' | {'error',atom()}.
 ...

In doing this, TypEr will check the specified type against the inferred type, and report
any inconsistencies. For example, if you change the –spec for add_usr to the following:

-spec(add_usr(#usr{}) -> integer()).

TypEr will report this:

typer: Error in contract of function usr_db:add_usr/1
 The contract is: (#usr{}) -> integer()
 but the inferred signature is: (#usr{}) -> 'ok'

On the other hand, if you change the spec of create_tables/1, no error will be reported,
since the inferred type for this function is consistent with any one-argument function
type.

Dialyzer: A DIscrepancy AnaLYZer for ERlang Programs
TypEr gives an analysis of types in Erlang programs. Dialyzer extends this to perform
static analysis on Erlang programs to identify software discrepancies, including redun-
dant tests and unreachable code, as well as obvious type errors.

To speed up its operation, Dialyzer can create a Persistent Lookup Table (PLT), using
the --build_plt option. When you include the kernel, standard libraries, and Mnesia,
as shown here:

dialyzer --build_plt -r <erl-lib>/kernel-2.12.5/ebin <erl-lib>/
stdlib-1.15.5/ebin <erl-lib>/mnesia-4.4.7/ebin

it takes some minutes to generate the PLT and produce this report:

Creating PLT /Users/simonthompson/.dialyzer_plt ...
re.erl:41: Call to missing or unexported function unicode:characters_to_binary/2
re.erl:134: Call to missing or unexported function unicode:characters_to_list/2
re.erl:200: Call to missing or unexported function re:compile/2
re.erl:226: Call to missing or unexported function unicode:characters_to_binary/2
re.erl:245: Call to missing or unexported function unicode:characters_to_list/2
re.erl:505: Call to missing or unexported function unicode:characters_to_list/2
re.erl:545: Call to missing or unexported function unicode:characters_to_binary/2
Unknown functions:
 compile:file/2
 compile:forms/2
 compile:noenv_forms/2
 compile:output_generated/1
 crypto:des3_cbc_decrypt/5
 crypto:start/0

TypEr: Success Types and Type Inference | 401

 done in 16m43.44s
done (warnings were emitted)

Subsequently calling Dialyzer on the files for the running example gives this report (in
less than a second):

dialyzer -c usr.erl usr_db.erl
 Checking whether the PLT /Users/simonthompson/.dialyzer_plt is up-to-date... yes
 Proceeding with analysis...
usr.erl:110: The pattern [] can never match the type {'error','instance'}
usr_db.erl:69: Call to missing or unexported function ets:safefixtable/2
 done in 0m0.33s
done (warnings were emitted)

You can find more information about Dialyzer in the online documentation.

Documentation with EDoc
It is sometimes said that functional programs are self-documenting. Sadly, although
functional programming languages may produce programs that are more readable,
complex programs are not self-documenting, let alone obvious to understand. Free text
comments in program modules, if kept up-to-date, are a first step in describing a pro-
gram. However, they have the disadvantage of lacking structure as well as being difficult
to scan, search, and read independently of the program text.

EDoc provides a documentation framework for Erlang that overcomes these disadvan-
tages and generates documentation from information you have inserted in your
modules:

• EDoc provides a structure for comments, including type and spec information as
well as textual comments on functions.

• EDoc is a documentation generator: a standard style of HTML document is gener-
ated from the structured information in each module.

• EDoc provides a framework for adding information covering a whole set of mod-
ules (e.g., in an application or a package), providing an overview of the larger-scale
structure or assumptions for the whole system.

EDoc is part of the standard Erlang distribution, and it has a lot in common with similar
systems such as Haddock (for Haskell), Javadoc, pydoc, and RDoc (for Ruby). In this
section, we will introduce you to many of EDoc’s features by documenting the mobile
user database example from Chapter 10.

It is intended that in later releases of Erlang/OTP, EDoc will share in-
formation with TypEr, and so will use the type information in the
–type and –spec declarations. In the meantime, this typing information
is given in a different format, described in this section.

402 | Chapter 18: Types and Documentation

Documenting usr_db.erl
EDoc generates documentation from tags of the form @tag text, embedded within
comments. Each tag can continue over multiple lines, until the next tag or noncomment
line. You can use different kinds of tags in different ways:

Module tags
Provide module-level documentation. Occurrences must precede the module dec-
laration itself.

Function tags
Are associated with the function that follows them, and give information about
that particular function.

Generic tags
Might include “to do” information or a type definition, but can occur anywhere
within a file.

We will look at these in turn for the usr_db example.

Module tags

In the example, the module tags are as follows:

%% @author Francesco Cesarini <support@erlang-consulting.com>
%% @author Simon Thompson [http://www.cs.kent.ac.uk/~sjt/]
%% @doc Back end for the mobile subscriber database.
%% The module provides an example of using ETS and DETS tables.
%% @reference
 Erlang Programming,
%% Francesco Cesarini and Simon Thompson,
%% O'Reilly, 2009.
%% @copyright 2009 Francesco Cesarini and Simon Thompson

The tags give information about the following:

@author
The author(s) of the module and optional contact information (email or HTML).

@copyright
A copyright statement.

@doc
A description of the module, in well-formed XHTML text. The first sentence of
this text is used as a summary of the module.

@reference
A reference giving further information, which can include XHTML links.

You can use other tags to give information about version number (@version), when the
module was introduced into the system (@since), and whether the documentation
should be visible or not (@hidden or @private).

Documentation with EDoc | 403

Function tags

The principal documentation for a function is given by its type and a description of
what it does:

@spec
Gives the type for a function. The form of the type description was given earlier.
In future versions, it is expected that this will be replaced by use of information in
a –spec declaration.

@doc
Indicates the general documentation for a function, using XHTML markup.

Other available tags include a cross-reference to another object’s documentation
(@see), a description of which types of exceptions can be thrown (@throws), and whether
a function is deprecated (@deprecated); @hidden, @private, and @since, as described
earlier, can also be used.

For a fragment of the usr_db module, the documentation will be as follows:

%% @doc Create the ETS and DETS tables which implement the database. The
%% argument gives the filename which is used to hold the DETS table.
%% If the table can be created, an 'ok' tuple containing a
%% reference to the created table is returned; if not, it returns an 'error'
%% tuple with an atom describing the error.

%% @spec create_tables(string()) -> {ok, reference()} | {error, atom()}

-spec(create_tables(string()) -> {ok, ref()} | {error, atom()}).

create_tables(FileName) ->
 ets:new(subRam, [named_table, {keypos, #usr.msisdn}]),
 ets:new(subIndex, [named_table]),
 dets:open_file(subDisk, [{file, FileName}, {keypos, #usr.msisdn}]).

%% @doc Close the ETS and DETS tables implementing the database.
%% Returns either 'ok' or an 'error'
%% tuple with the reason for the failure to close the DETS table.

%% @spec close_tables() -> ok | {error, atom()}

-spec(close_tables() -> ok | {error, atom()}).

close_tables() ->
 ets:delete(subRam),
 ets:delete(subIndex),
 dets:close(subDisk).

%% @doc Add a user (of the 'usr' record type) to the database.

%% @spec add_usr(#usr{}) -> ok

-spec(add_usr(#usr{}) -> ok).

404 | Chapter 18: Types and Documentation

add_usr(#usr{msisdn=PhoneNo, id=CustId} = Usr) ->
 ets:insert(subIndex, {CustId, PhoneNo}),
 update_usr(Usr).

In the preceding code, we provided the types using @spec; it is expected that in future
releases of Erlang, -spec declarations will be used instead, making @spec tags
superfluous.

Generic tags

Generic tags can appear anywhere in a module:

@type
Will give a definition of a type and is picked up by EDoc to include in the generated
documentation. It is expected that in future releases this will be replaced by the
use of -type declarations.

@todo
Used to indicate “to do” notes; these will not appear in the generated documen-
tation unless the todo option is activated.

Running EDoc
The main EDoc functions are in the edoc module. A call to edoc:application/1 will
generate the documentation for an application, and a call to edoc:files/1 will generate
the documentation for a set of files; these functions use the default EDoc options. Two-
argument versions of the functions allow a set of option choices to be passed in the
second argument.

Module pages

Figure 18-1 shows the page generated for the usr_db module that results from running
edoc:files(["usr_db.erl", "usr.erl"]). This shows the structure of a typical EDoc
page for an Erlang module.

The page begins with links to its major sections, and is followed by the one-sentence
summary of the module and other module tags; the full description of the module
follows.

In the function index, functions are listed in alphabetical order, rather than in their
order in the file. Each function is hyperlinked to its details, and is given a one-sentence
overview: the first sentence of its @doc tag.

Each function has details regarding its type. Note that the information contains not
only the types of the arguments and results, but also the names of the arguments that
are automatically extracted from the source code. For instance, the @spec for cre
ate_tables/1 says the following:

%% @spec create_tables(string()) -> {ok, reference()} | {error, atom()}

Documentation with EDoc | 405

Figure 18-1. EDoc page for (a fragment of) usr_db.erl

406 | Chapter 18: Types and Documentation

Here is the documentation that is produced:

create_tables(FileName::string()) -> {ok, reference()} | {error, atom()}

This gives you the useful extra information that the string argument represents a
filename. Without any @spec information, EDoc will still include the names of the pa-
rameters in the generated information.

Overview page

For each project, an overview page will be generated, providing an index for the mod-
ules in the project. Further information can be provided for this in an overview.edoc
file, which should typically appear in a doc subdirectory where the other documentation
will be placed.

The overview.edoc file has the same content tags as the header for a module, but it is
not necessary to enclose each line in a comment. The results of this for the running
example are shown in Figure 18-2, as generated from a file that begins like this:

@author Francesco Cesarini <support@erlang-consulting.com>
@author Simon Thompson [http://www.cs.kent.ac.uk/~sjt/]
@reference Erlang Programming,
 Francesco Cesarini and Simon Thompson,
 O'Reilly, 2009.

Types in EDoc
The usr_db.erl module contains no type definitions, but usr.hrl contains a number
of these, and they are referenced in usr.erl. Types are documented like this: the defi-
nition is given first, and this can be followed by an optional description:

%% @type plan() = prepay|postpay. The two payment types for mobile subscribers.
%% @type status() = enabled | disabled. The status of a customer can be enabled
%% or disabled.
%% @type service() = atom(). Services are specified by atoms, including
%% (but not limited to) 'data', 'lbs' and 'sms'. 'Data' confirms the user
%% has subscribed to a data plan, 'sms' allows the user to send and receive
%% premium rated smses, while 'lbs' would allow third parties to execute
%% location lookups on this particular user.

This is extracted in the documentation for the usr module, and if a defined type is used
in the @spec for a function, this is hyperlinked to its definition. The information about
types appears in the documentation after the general description and before the func-
tion index. Figure 18-3 shows a fragment of the documentation for usr.erl, with the
data type definitions appearing after the module description.

Documentation with EDoc | 407

Going Further with EDoc
If you want to generate comprehensive documentation for applications and other
projects, EDoc provides a number of facilities for formatting, cross-referencing, and
preprocessing.

EDoc comes with a set of predefined macros, called by enclosing them in braces, thus:
{@name} and {@name argument}. These include @date, @time, @module, and @version as
well as the {@link reference. description} form. This creates a link to the object
identified by the reference; the description gives the text for the anchor of the link.

Figure 18-2. The EDoc overview page for the database

408 | Chapter 18: Types and Documentation

References include name/arity for functions within the module, and Mod:name/arity for
functions in the module Mod. A typename() refers to a type within the same module, and
Mod:typename() in another. So, for example, the following link:

{@link set_status/2. 'set_status/2'}

gives a link to the documentation for the set_status/2 function in the same module.

In this example, the link is also labeled set_status/2: you use another EDoc facility for
verbatim quotation. The quotation of the text '...' puts the enclosed text into verbatim
(code) form, properly escaping any XHTML-significant characters in the text, such as <,

Figure 18-3. A fragment of the web page for usr.erl

Documentation with EDoc | 409

=, and >. y shows an example using the @link construct, where the description part of
the documentation gives an index for the functions divided according to function,
rather than alphabetically.

For author convenience, EDoc supports wiki-style formatting instead of XHTML. Blank
lines are taken to delimit paragraphs (i.e., <p> ... </p> elements). Headings can be
generated automatically from ==Heading==, and similarly from ===, however, = should
not be used. This header markup will automatically generate an anchor (equivalent to
), which can then be referred to by an EDoc macro, {@section
Heading}. For further details on formatting and cross-referencing in EDoc, see the online
documentation.

Exercises
Rather than give formal exercises for this chapter, we encourage you to try TypEr,
Dialyzer, and EDoc on the solutions you wrote for exercises earlier in the book.

410 | Chapter 18: Types and Documentation

CHAPTER 19

EUnit and Test-Driven Development

As you are writing a program, how do you understand how the program will behave?
You might have a model in your mind of what the program will do, but you can be sure
of it only when you exercise or interact with your program in some way. Chapter 18
showed you how you can use –spec to express what you think the input and output
types of a function should be; TypEr can check whether this is consistent with the code
itself.

Types don’t tell you how a program behaves, however, and testing is one of the best
ways to understand how your code will function. We have been doing this informally
throughout the book; each time we have given some definitions, we have immediately
gone to the Erlang shell and tried them out in practice. When you’re developing in
Erlang your coding and test cycles tend to be small. You write a few functions, and you
test them. You add a few more, and you test them again. Repeating all of the tests in
the shell every time becomes both time-consuming and error-prone.

In this chapter, we’ll introduce the EUnit tool, which gives you a framework for unit
testing in Erlang. We’ll show how it is used in practice, as well as discuss how it supports
what is known in software engineering circles as test-driven development.

Test-Driven Development
The waterfall model of software development saw a software system being developed
in a series of steps: first, the requirements of the system would be elucidated; on the
basis of this, the system would be designed, and only once this was complete would
the implementation begin. No wonder so many software projects failed to deliver what
the customer wanted! Needless to say, the waterfall model is as disastrous in Erlang as
it is in any other programming language.

A test-driven approach turns this on its head. Implementation begins on day one, but
with a focus: each feature that is to be implemented is first characterized by a set of
tests. This increment is added to the code and is accepted only if the tests pass. At the
same time, this should not invalidate any earlier test; regression tests must also pass.

411

The implementer benefits from such an approach because she has a clear target at each
stage: pass the tests. The customer is also in the happy position of being able to interact
with or exercise the system continually: each time the evolving system builds, he can
see whether it behaves as it ought to.

Test-driven development (TDD) has been associated with agile programming, but it
would be wrong to identify the two. An informal test-driven approach has characterized
functional programming since the early LISP systems: most functional programming
systems have at their top level a read-evaluate-print loop, which encourages a test- or
example-based approach. Erlang comes out of that tradition, with its roots in functional
programming and Prolog, and the examples of interactions in the Erlang shell show
this informal test-driven approach in practice.

Test-driven development is not confined to the single-person project. There is anec-
dotal evidence from industry that TDD can be effective in larger software projects, too,
principally because it means the development team engages with potential problems
earlier, and in the process develops more comprehensive test suites than it would with
a more traditional approach. In turn, this leads to better software being delivered. It is
needless to say that Erlang and TDD go hand in hand. In the remainder of this chapter,
we will cover the EUnit system, which provides support for a more formal test-driven
approach, and which is included in the standard Erlang distribution.

EUnit
EUnit provides a framework for defining and executing unit tests, which test that a
particular program unit—in Erlang, a function or collection of functions—behaves as
expected. The framework gives a representation of tests of a variety of different kinds,
and a set of macros which simplify the way EUnit tests can be written.

For a function without side effects, a test will typically look at whether the input/output
behavior is as expected. Additionally, it may test whether the function raises an ex-
ception (only) when required.

Functions that have side effects require a more complex infrastructure. Side effects
include operations that might affect persistent data structures such as ETS or Dets
tables, or indeed operating system structures such as files and I/O, as well as operations
that contain message passing among concurrent processes. The infrastructure needed
to test these programs includes the following:

• Testing side-effecting programs typically requires some setup and initial modifica-
tion of the data before checking the behavior of a particular operation. This needs
to be followed by a cleanup of the program state.

• Testing units within a concurrent program typically requires a test rig in which some
mock objects or stubs are written to stand in the place of other components ex-
pected to interact with the unit under test.

412 | Chapter 19: EUnit and Test-Driven Development

EUnit supports testing side-effecting and concurrent programs. Let’s start with the
simplest case of functional testing.

How to Use EUnit
EUnit provides a detailed representation of tests, as well as a layer of macros making
tests easier to write. It also provides a mechanism for gathering all the tests in a module,
executing them all, and providing a report on the results. For a module to use EUnit it
needs to include the eunit library:

-include_lib("eunit/include/eunit.hrl").

In EUnit, a single test is identified by a function named name_test; a test-generating
function will be named name_test_ (i.e., with an _ at the end). We define test-generating
functions in the section “The EUnit Infrastructure” on page 416.

With the EUnit header file included, compilation of the module (mod, say) will result
in a function test/0 being exported, and all the tests within the module are run by
calling mod:test().

It is possible to separate the test functions from the module (mod, say) into the module
mod_tests.erl, which should also include the eunit.hrl header file. The tests are invoked
in exactly the same way, using mod:test().

It may be that you want to use EUnit on your code—for example, to use the ?assert
macro—but you don’t want to generate tests. In this case, you need to insert the fol-
lowing code before the line that includes the eunit.hrl library:

-define(NOTEST, true)

If this macro appears in a header file included by all modules in an application, it gives
a single point controlling whether testing is enabled. Now we will illustrate how tests
are written, using an example you’ve seen before.

Functional Testing, an Example: Tree Serialization
In the section “Serialization” on page 208 in Chapter 9, we looked at how a binary tree
could be serialized as a list, and then reconstructed from the list. We presented an
optimized version of this, but left the original version as an exercise. In this unoptimized
version, the first element of the representation gives its size recursively through the tree?

treeToList({leaf,N}) ->
 [2,N];

treeToList({node,T1,T2}) ->
 TTL1 = treeToList(T1),
 [Size1|_] = TTL1,
 TTL2 = treeToList(T2),
 [Size2|_] = TTL2,
 [Size1+Size2+1|TTL1++TTL2].

EUnit | 413

listToTree([2,N]) ->
 {leaf,N};

listToTree([_|Code]) ->
 case Code of
 [M|_] ->
 {Code1,Code2} = lists:split(M,Code),
 {node,
 listToTree(Code1),
 listToTree(Code2)
 }
 end.

The function treeToList/1 converts the tree to a list, and listToTree/1 should convert
that representation back to the original tree. We can now test the functions with some
example trees:

tree0() ->
 {leaf, ant}.

tree1() ->
 {node,
 {node,
 {leaf,cat},
 {node,
 {leaf,dog},
 {leaf,emu}
 }
 },
 {leaf,fish}
 }.

We require that the two functions applied one after the other return the original value:

leaf_test() ->
 ?assertEqual(tree0() , listToTree(treeToList(tree0()))).
node_test() ->
 ?assertEqual(tree1() , listToTree(treeToList(tree1()))).

where we use the eunit macro assertEqual to test for equality between the value of two
Erlang terms.

We can also test for particular values of the treeToList function:

leaf_value_test() ->
 ?assertEqual([2,ant] , treeToList(tree0())).
node_value_test() ->
 ?assertEqual([11,8,2,cat,5,2,dog,2,emu,2,fish] , treeToList(tree1())).

In testing listToTree, we do something different. This function is partial, and we can
check that it is undefined outside the range of treeToList:

leaf_negative_test() ->
 ?assertError(badarg, listToTree([1,ant])).
node_negative_test() ->
 ?assertError(badarg, listToTree([8,6,2,cat,2,dog,emu,fish])).

414 | Chapter 19: EUnit and Test-Driven Development

These tests use the assertError macro, which captures a raised exception and checks
that it is of the form specified by the first argument (here, a badarg).

With these tests included in the file, running the test/0 function in the shell gives the
brief report that all tests are successful:

2> serial:test().
 All 6 tests successful.
ok

There is nothing more to say when tests are successful. Alas, not all tests are successful.
What does EUnit report when tests fail? In true test-driven development style, as an
illustration, we can regression-test the optimized version of serialization with the same
test set and see what happens:

11> serial2:test().
serial2:leaf_negative_test...*failed*
::error:{assertException_failed,[{module,serial2},
 {line,66},
 {expression,"listToTree ([1 , ant])"},
 {expected,"{ error , badarg , [...] }"},
 {unexpected_success,{leaf,ant}}]}
 in function serial2:'-leaf_negative_test/0-fun-0-'/0

serial2:node_value_test...*failed*
::error:{assertEqual_failed,[{module,serial2},
 {line,72},
 {expression,"treeToList (tree1 ())"},
 {expected,[11,8,2,cat,5,2|...]},
 {value,[8,6,2,cat,2|...]}]}
 in function serial2:'-node_value_test/0-fun-0-'/1

serial2:node_negative_test...*failed*
 ... details similar ...

===
 Failed: 3. Aborted: 0. Skipped: 0. Succeeded: 3.
error

This report shows that three of the six tests have failed, and gives detailed feedback on
the cause of failure. In the case of leaf_negative_test, it is that the particular function
application succeeds unexpectedly, instead of raising a badarg exception. In the second
case, the actual result was different from the actual value, both of which are printed in
the report.

The failed tests either cover values for which the original functions failed, or are sen-
sitive to changes in the new implementation, where the details of the list representation
have changed. The first two tests that check that applying the functions one after the
other returns the original argument, however, confirm that the crucial property still
holds.

EUnit | 415

If you want to put the test functions into a separate serial_tests mod-
ule, you can use an import directive to include the tests without making
any changes from the serial module:

-module(serial_tests).
-include_lib("eunit/include/eunit.hrl").
-import(serial,
 [treeToList/1, listToTree/1
 tree0/0, tree1/0,]).

leaf_test() ->
 ?assertEqual(tree0() ,
 listToTree(treeToList(tree0()))).
... etc ...

The EUnit Infrastructure
In this section, you will learn about the foundations of the EUnit system, with which
you can build tests and test sets.

Assert Macros
The basic building block of EUnit is a single test, given by a ..._test() function. On
the right side of the earlier code examples, we used assertEqual and assertError to
check values and exceptions. Other assert macros include the following:

assert(BoolExpr)
Can be used not only in tests, but anywhere in a program to check the value of a
Boolean expression at that point

assertNot(BoolExpr)
Is equivalent to assert(not(BoolExpr))

assertMatch(GuardedPattern, Expr)
Will evaluate the Expr, and if it fails to match the guarded pattern, an exception is
reported on test()

assertExit(TermPattern, Expr) and assertThrow(TermPattern, Expr)
Will test for a program exit or a throw of an exception, similar to assertError

In the example, we used assertEqual(E, F) instead of assert(E =:= F) because
assertEqual generates more informative messages when the test fails.

Test-Generating Functions
Beyond a single test, you can define test-generating functions that combine a number
of tests into a single function. A test generator returns a representation of a set of tests
to be executed by EUnit.

The simplest way to represent a test is as a fun expression that takes no arguments:

416 | Chapter 19: EUnit and Test-Driven Development

leaf_value_test_() ->
 fun () -> ?assertEqual([2,ant] , treeToList(tree0())) end.

In the preceding code, the differences from the definition of leaf_value_test are high-
lighted. The macro library allows you to write this more succinctly:

leaf_value_test_() ->
 ?_assertEqual([2,ant] , treeToList(tree0())).

In this code, the _assertEqual macro plays the same role as assertEqual, but for test
representations rather than tests.

A test-generating function will, in general, return a set of tests. For instance, the fol-
lowing code encapsulates two tests into a single function:

tree_test_() ->
 [?_assertEqual(tree0() , listToTree(treeToList(tree0()))),
 ?_assertEqual(tree1() , listToTree(treeToList(tree1())))].

When EUnit runs this test, all the tests in the list are performed.

EUnit Test Representation
EUnit represents tests and test sets in a variety of different ways. Here is a list of the
most useful; a full description is in the EUnit documentation. A test representation
TestRep is run by calling eunit:test(TestRep):

Simple test objects
The simplest test object is a nullary fun, that is, a fun that takes no arguments. A
simple test object is also given by a pair of atoms, {Module, Function}, referring to
a function within a module.

Test sets
Test sets are given by lists and deep lists. A module name (atom) is also used to
represent the tests within the module.

Primitives
The primitives do not contain embedded test sets as arguments, but instead are
descriptions of tests that lie within a module, as in {module, Module}; within a
directory, as in {dir, Path::string()}; and within an application, a file, and so
forth. Generators are also embedded as {generator, GenFun::(() -> Tests)}.

Control
It is possible to control how and where tests are to be executed:

{spawn, Tests}
Will run the tests in a separate subprocess, with the test process waiting until
the tests finish

{timeout, Time::number(), Tests}
Will run the tests for Time seconds, terminating any unfinished tests at that time

The EUnit Infrastructure | 417

{inorder, Tests}
Will run the tests in strict order

{inparallel, Tests}
Will run the tests in parallel where possible

Fixtures
Fixtures support the setup and cleanup for a particular set of tests to run; we discuss
them in more detail in the next section.

Testing State-Based Systems
To explain this topic, we will go back to the example of the mobile user database. When
we introduced the example in Chapter 10, we tested it from the Erlang shell (see the
section “A Mobile Subscriber Database Example” on page 231). This section shows
how you can incorporate this style of testing into EUnit. We will also look in more
detail at the way in which tests are represented.

Fixtures: Setup and Cleanup
It is characteristic of state-based systems that you can test particular properties only
after you have set up the right configuration; once you’ve done this, the test can take
place, but after that, you need to clean up the system to prepare for any further tests.

The first test we’ll write will test a lookup on an empty database after the tables are
created with create_tables("UsrTabFile"):

?_assertMatch({error,instance}, lookup_id(1))

After the test is run, we clean up by removing the file UsrTabFile. This is implemented
by writing a fixture: a test description that allows setup and cleanup. The simplest
fixtures have the following form:

{setup, Setup, Tests}
{setup, Setup, Cleanup, Tests}

where, for some type T:

Setup :: (() -> T)
Cleanup :: ((T) -> any())

the Setup function is executed before the Tests, returning a value X of type T. After the
tests, Cleanup(X) is performed; this allows information from the setup—for example,
about pids or tables—to be communicated to the cleanup phase.

For our example, we can write the following:

setup1_test_() ->
 {spawn,
 {setup,
 fun () -> create_tables("UsrTabFile") end, % setup
 fun (_) -> ?cmd("rm UsrTabFile") end, % cleanup

418 | Chapter 19: EUnit and Test-Driven Development

 ?_assertMatch({error,instance}, lookup_id(1))
 }
 }.

Note in the cleanup that we can call an external Unix command to remove the file using
the ?cmd macro, and that the test is executed by a call to eunit:test/1. To test that the
database is functioning correctly, we need a rather more elaborate setup; on termination
of the spawned process, the ETS tables constructed by the program will be destroyed:

setup2_test_() ->
 {spawn,
 {setup,
 fun () ->
 create_tables("UsrTabFile"),
 Seq = lists:seq(1,100000),
 Add = fun(Id) -> add_usr(#usr{msisdn = 700000000 + Id,
 id = Id,
 plan = prepay,
 services = [data, sms, lbs]})
 end,
 lists:foreach(Add, Seq)
 end,
 fun (_) -> ?cmd("rm UsrTabFile") end,
 ?_assertMatch({ok, #usr{status = enabled}} , lookup_msisdn(700000001))
 }
 }.

We can run these two tests by calling Mod:test() or eunit:test(Mod), where Mod is the
name of the module containing the tests.

Testing Concurrent Programs in Erlang
When a program consists of a number of objects evolving concurrently, it is harder to
see how a unit-testing framework such as EUnit can directly help. Although EUnit
provides the scaffolding for an expression to be applied at a particular point during
system evolution, it is harder to monitor the evolution of the system itself. The biggest
challenges in testing concurrent systems are race conditions. You run your test, and
you can easily reproduce your error. You turn on the trace on these processes, and all
of a sudden everything works as expected, as the extra I/O causes your processes to
execute in a different order.

Some EUnit facilities can be useful; it is possible to ?assert a property at any point in
the program, and so to monitor when a pre- or post-condition or system invariant is
broken. EUnit also provides support for debugging, with messages reported to the
Erlang console rather than to standard output. These macros include the following:

debugVal(Expr)
Will print the source code and current value of Expr. The result is always the value
of Expr, and so the macro can be written around any expression in the program
without affecting its functionality.

Testing Concurrent Programs in Erlang | 419

debugTime(Text, Expr)
Will print the Text followed by the (elapsed) execution time of the Expr.

If the NODEBUG macro is set (to true) before the eunit header file is included in the
module, the macros have no effect in that module.

Other systems that support the testing of concurrent programs include Quviq Quick-
Check,* which implements property-based random testing for Erlang; McErlang,† a
model checker for Erlang written in Erlang; and Common Test, a systems-testing
framework based on the OTP Test Server application, and part of the standard Erlang
distribution.

Exercises

Exercise 19-1: Testing Sequential Functions
Revisit the exercises in Chapter 3, and devise EUnit tests for your solutions: do your
solutions pass all the tests? Is that because of faults in the solutions or in the way you
have defined the tests?

Exercise 19-2: Testing Concurrent Systems
Devise tests within EUnit for the echo process introduced in Chapter 4. How do you
have to change the tests when the implementation is modified to register the process?

Exercise 19-3: Software Upgrade
How would you define EUnit tests for a software upgrade in the db_server example
given in Chapter 8?

Exercise 19-4: Testing OTP Behaviors
Incorporate the test examples given in Chapter 12 into the EUnit framework.

Exercise 19-5: Devising Tests for OTP Behaviors
Devise EUnit tests for the solutions to the exercises in Chapter 12.

* http://www.quviq.com/; an earlier version of the tool, and its application in testing telecom software, is
discussed at http://doi.acm.org/10.1145/1159789.1159792.

† https://babel.ls.fi.upm.es/trac/McErlang/; an early version of the tool is described at http://doi.acm.org/10
.1145/1291220.1291171.

420 | Chapter 19: EUnit and Test-Driven Development

http://www.quviq.com/
http://doi.acm.org/10.1145/1159789.1159792
https://babel.ls.fi.upm.es/trac/McErlang/
http://doi.acm.org/10.1145/1291220.1291171
http://doi.acm.org/10.1145/1291220.1291171

CHAPTER 20

Style and Efficiency

Throughout this book, we have covered the do and don’ts of Erlang programming. We
have introduced good practices and efficient constructs while pointing out bad prac-
tices, inefficiencies, and bottlenecks. Some of these guidelines you will probably rec-
ognize as being relevant to computing in general; others will be Erlang-related, and
some will be virtual-machine-dependent. Learning to write efficient and elegant Erlang
code will not happen overnight. In this chapter, we summarize design guidelines and
programming strategies to use when developing Erlang systems. We cover common
mistakes and inefficiencies and look at memory handling and profiling.

Applications and Modules
A collection of tightly interacting modules in Erlang is called an application. Erlang
systems consist of a set of loosely coupled applications. It is good practice to design an
application to provide a single point of entry for calls originating from other applica-
tions. Collecting all externally exported functions into one module provides flexibility
in maintaining the code base, since modifications to all “internal” modules are not
visible to external users. The documentation for this module gives a complete descrip-
tion of the interface to the application. This single point of entry also facilitates tracing
and debugging of the call flow into the application. In large systems, it is good practice
to prefix the modules in a particular application with a short acronym. This ensures
that the choices of module names in different applications will never overlap, which
would cause problems if both applications were used together in any larger system.

Modules are your basic building blocks. When designing your modules, you should
try to export as few functions as possible. As far as the user of a module is concerned,
the complexity of a module is proportional to the number of exported functions, since
the user of a module needs to understand only the exported functions. Having as small
an interface as possible also gives the maintainer of the application greater flexibility,
as it makes it much easier to refactor the internal code.

You should try to reduce intermodule dependencies as much as you can. It is harder
to maintain a module with calls to many modules instead of calls to just a few modules.

421

Reducing interdependencies not only facilitates the maintenance of the modules being
called, but also makes it easier to refactor them as a smaller number of external calls
have to be maintained.

Intermodule dependencies should form an acyclic graph, as shown in Figure 20-1; that
is, there should be no module X, say, that depends on another module that (through a
chain of dependencies) depends on module X.

Within a particular module, place related functions close to each other.* For example,
you should place functions such as start and stop and init and terminate next to each
other, and place all of the message-handling functions in the same part of a module.
Keeping related functions close together makes your code easier to follow and inspect,
especially for cases where you do or open something in one function and undo or close
it in another.

Libraries
You should put commonly used code into libraries. Libraries should be collections of
related functions, possibly those that manipulate values of the same type. Where pos-
sible, ensure that library functions are free of side effects, as doing so will enhance their
reusability. When there are functions with side effects such as message passing, de-
structive database operations, or I/O, you should try to ensure that all the operations
with side effects that are related—for instance, all those manipulating a particular ETS
table—are contained in a single library module.

Figure 20-1. Intermodule dependencies

* Research in Chris Ryder’s Ph.D. thesis, “Software Measurement for Functional Programming,” University
of Kent, 2004, suggests that this is, in fact, what programmers do as a matter of course.

422 | Chapter 20: Style and Efficiency

Dirty Code
Dirty code consists of anything you “should not” do but are forced to do anyhow.
Getting away from writing dirty code can sometimes be hard and other times
impossible.

Dirty code includes the use of the process dictionary, the use of the process_info/2
BIFs or code that makes assumptions about the internal structure of data types, or other
internal constructs. For example, you could use the process_info/2 BIF to view the
length of the message queue or to peek at the first message in the mailbox. You might
want to store a global variable in the process dictionary, or have a dynamic function to
look up a record type and generically use it to forward a request to a callback module.

It is important to isolate tricky or dirty code into separate modules, and do everything
possible to minimize and avoid such code. It is also crucial to document dirty code,
and to say in what way it is dirty so that anyone modifying your code has a clear view
of the assumptions you made when writing this dirty module.

Interfaces
Document all your exported interfaces. Documentation should include parameter val-
ues, possible ranges, and return values. If your function has side effects such as message
passing, database updates, or I/O, you should include information on these. Provide
references to specifications and protocols and document all principal data structures.
Comments should be clear, informative, and not superfluous; you want to describe
what the function does, not how it does it. An example of this is provided by the EDoc
documentation in Chapter 18, a full version of which is available on this book’s website.

Decide why a function is exported. It is a good practice to divide export directives into
categories based on the following function types:

• A user interface function

• An intermodule function (used in the same application, but not exported to others)

• An internal export (used by the same module in BIFs such as apply/3 and spawn/3)

• A standard behavior callback function (init, handle_call, etc.)

It obviously depends on how many functions you are exporting; a rule of thumb is that
if your export clause spans more than one line, it is time to break it up. You might
include client functions such as start/0, stop/0, read/1, and write/2 in one export
directive, and callback functions such as init/1, terminate/2, and handle_call/3 in
another. This allows anyone who is reading the code instead of the documentation to
distinguish between exported interfaces and internal exports or callback functions.

Use the –compile(export_all) directive only when developing your code (and even
then, only if you must). When the development work is done, don’t forget to remove

Applications and Modules | 423

the directive; more often than not, this does not happen.† An alternative to including
this as a module directive is to make it an option on compilation, like so:

compile:file(foo, [compile_all,...]).

Return Values
If a function might not always succeed, tag its return values, because if you don’t a
positive result might be interpreted as a negative one. In the following example, what
happens if you do a key search on key 1 using the list [{0,true}, {1,false},
{2,false}]? How do you distinguish the return value of the key with the atom false
returned as the base case when the entry is not found?

keysearch(Key, [{Key, Value}|_]) -> Value;
keysearch(Key, [_|Tail]) -> keysearch(Key, Tail);
keysearch(_key, []) -> false.

The Erlang approach is to use standard return values of the form ok, {ok, Result}, or
{error, Reason}. In our case, we would distinguish between a successful lookup using
{ok, false} and a failed lookup using the atom false. The correct implementation of
keysearch/2 would thus be:

keysearch(Key, [{Key, Value}|_]) -> {ok, Value};
keysearch(Key, [_|Tail]) -> keysearch(Key, Tail);
keysearch(_key, []) -> false.

An alternative approach to this is to raise an exception in the case of no corresponding
key value being found. With this approach, each use of keysearch will need to be in the
context of a try ... catch construct to handle the exceptional case.

If you know that the function will always be successful, return a single value such as
true or false, or just an integer, atom, or composite data type. This will allow the return
value of this function to be passed as a parameter to another function without having
to check for success or failure.

You should always pick return values that will simplify the caller’s task. Doing so will
make the code more compact and readable. For example, if you know that
get_status/1 will always succeed, why write a tagged return value, from which you
have to extract the return value:

{ok, Status} = get_status(BladeId),
NewStatus = reset(BladeId, Status)

when all you need to do is return the Status? Doing so will allow the function call to
be passed as an argument to the reset/2 call:

NewStatus = reset(BladeId, get_status(BladeId))

† Perhaps even in this book!

424 | Chapter 20: Style and Efficiency

Make no assumptions about what the caller will do with the result of a function. In the
following example, we are assuming that the caller of the function wants to print out
an error message stating that the person for whom we want to raise taxes is not Swedish:

tax_to_death(Person) ->
 case is_swede(Person) of
 true ->
 {ok, raise_taxes(Person)};
 {error, Nationality} ->
 io:format("Person not Swedish:~p~n",[Nationality]),
 error
 end.

Let’s not make that assumption, and instead allow the caller of this function to make
the decision based on the return value of the call:

tax_to_death(Person) ->
 case is_swede(Person) of
 true ->
 {ok, raise_taxes(Person)};
 {error, Nationality} ->
 {error, Nationality}
 end.

Another way to look at this example is that, in general, it is best for a function to do
one thing: in this case, perform the update or print an error message of a particular
form. If you find you have a function doing two things, you can refactor it into two
separate functions, each of which can be reused separately.

Internal Data Structures
Do not allow private data to leak out. All details of private data structures should be
abstracted out of the interface. In abstracting your interfaces, encapsulate information
that the users of the function do not need. Design with flexibility so that any changes
introduced to your internal data representations will not influence the exported func-
tional interface. The following queue module:

-module(q).
-export([add/2, fetch/1]).

add(Item, Q) -> lists:append(Q, [Item]).

fetch([H|T]) -> {ok, H, T};
fetch([]) -> {error, empty}.

could be used as follows:

NewQ = [],
Queue1 = q:add(joe, NewQ),
Queue2 = q:add(klacke, Queue1).

In the preceding code, we are leaking out the fact that the queue data structure is a list
when we bind the variable NewQ to the empty queue. This is not good. The q module

Applications and Modules | 425

should have exported the function empty() -> [], which we use to create the empty
queue we bind to the variable NewQ:

Newq = q:empty(),
Queue1 = q:add(joe, Newq), ...

Now, it would be possible to rewrite the queue implementation, for instance, as a pair
of lists keeping the front and rear separately, without having to rewrite any code using
the queue module. One exception to this is if you want to determine whether two
queues are equal; in this case, you will need to define an equality function over queue
representations, because the same queue can be represented in different ways in this
new implementation.

Processes and Concurrency
Processes are the basic structuring elements of a system in Erlang. A fundamental prin-
ciple of design in Erlang is to create a one-to-one mapping between the parallel pro-
cesses in your Erlang program and the set of parallel activities in the system you are
modeling. This could add up to quite a few simultaneous processes, so where possible,
avoid unnecessary process interaction and unnecessary concurrency. Ensure that you
have a process for every concurrent activity, not for only two or three! If you are coming
from an object-oriented background, this will not equate to a process for every object
or every method applied to an object. Or, if you are dealing with users logged in to a
system, this will probably not equate to a process for every session. Instead, you will
have a process for every event entering the system. This will equate to massive numbers
of transient processes and a very limited number of persistent ones.

You should always implement a process loop and its peripheral functions in one mod-
ule. Avoid placing code for more than one process loop in the same module, as it
becomes very confusing when you try to understand who is executing what. You might
have many process instances executing the same code base, but ensure that the loop in
the module is unique.

Hide all message passing in a functional interface for greater flexibility and information
hiding. Instead of having the following expression in your client code:

resource_server ! {free, Resource}

replace it with this function call:

resource_server:free(Resource)

Place the client functions in the same module as the process. Client functions are func-
tions called by other processes that result in a message being sent to the process defined
in the module. This makes it easy to follow the message flow without having to jump
between modules, let alone having to find out in which module the clause receiving the
messages is located. From your end, it reduces and simplifies the documentation you

426 | Chapter 20: Style and Efficiency

have to produce, as you need to describe only the functional API, and not the message
flow. You will also get more flexible code, as you are hiding the following:

• That the resource server is a process

• That it is registered with the alias resource_server

• The message protocol between the client and the server

• The fact that the call is asynchronous

If you use a functional interface, you have the flexibility to change all of this without
affecting the client code.

Registered processes should, where possible, have the same name as the module in
which they are implemented. This facilitates the troubleshooting of live systems and
improves code readability and maintainability. Registered processes should have a long
life span; you should never toggle between registering and deregistering them. As the
space used by atoms is not garbage-collected, avoid dynamically creating atoms to
register processes, as this might result in a memory leak.

Processes should have well-defined behaviors and roles in the system. You should se-
riously consider using the OTP behaviors described in Chapter 12, including servers,
event handlers, finite state machines, supervisors, and applications.

When working with message passing, all messages should be tagged. It makes the order
of clauses in the receive statement unimportant, and as a result, it facilitates the addi-
tion of new messages without changing the existing behavior, thus reducing the risk of
bugs.

Avoid pattern matching only on unbound variables in receive clauses. In the following
example, what if you want your process to also handle the message {get, Pid,
Variable}?

loop(State) ->
 receive
 {Mod, Fun, Args} ->
 NewState = apply(Mod, Func, Args),
 loop(NewState)
 end.

It is easy to see that you would have to match the message above the {Mod, Fun,
Args} pattern, but what if your receive statement was matching on many more mes-
sages? It would not be that obvious. Or, what would happen if you want to apply a
function in the module get? By tagging messages, you get full flexibility in rearranging
the order of your messages and avoid incorrectly pattern matching messages in the
wrong clause:

loop(State) ->
 receive
 {apply, Mod, Fun, Args} ->
 NewState = apply(Mod, Func, Args),
 loop(NewState);

Processes and Concurrency | 427

 {get, Pid, Variable} ->
 Pid ! get_variable(Variable),
 loop(State)
 end.

When using receive clauses, you should not be receiving unknown messages. If you
do, they should be treated as bugs and you should allow your system to crash, just as
an OTP application will do. If you don’t let the system crash, make sure you log the
unexpected messages. This allows you to ascertain where they are coming from, and
to diagnose how to deal with them. You will probably find that these messages originate
from ports or sockets or from bugs that should be picked up during a unit test.

If you do not handle unknown messages, you will notice that the CPU usage of your
system will start to increase and that the response time will decrease, until the Erlang
runtime system runs out of memory and crashes. The increase in CPU usage and re-
sponse time is explained by the fact that whenever a process receives a message, it has
to traverse the potentially hundreds or thousands of messages in the mailbox before
reaching one that matches. The more messages that are not matched, the more memory
is leaked.

When you are sending and receiving messages, you should hide the internal message
protocol from the client. Always tag the messages using the client function name, as it
facilitates the hop from the client function to the location in your process loop where
you handle the message:

free(Resource) ->
 resource_server ! {free, Resource}.

Use references. In complex systems where similar responses and requests might origi-
nate from different processes, use references to uniquely identify responses from spe-
cific requests:

call(Message) ->
 Ref = make_ref(),
 resource ! {request, {Ref, self()}, Message},
 receive
 {reply, Ref, Reply} -> Reply
 end.

reply({Ref, Pid}, Message) ->
 Pid ! {reply, Ref, Message}.

Be careful with timeouts. If you use them, always flush messages that arrive late. If you
don’t, your next request will result in the response that previously timed out. You can
avoid this problem by using references and assuming that no other processes will send
messages of the format {reply, Ref, Reply}. Just flush messages you do not recognize:

call(Message) ->
 Ref = make_ref(),
 resource ! {request, {Ref, self()}, Message},
 wait_reply(Ref).

428 | Chapter 20: Style and Efficiency

wait_reply(Ref) ->
 receive
 {reply, Ref, Reply} -> Reply;
 {reply, _, Reply} -> wait_reply(Ref)
 end.

If you are using timeouts to deal with the case when a process might have terminated,
it is much better to use a link or a monitor.

Be very restrictive in trapping exits, and when doing so, do not toggle. Make sure you
remember to flush exit signals, and when linking and unlinking processes, be aware of
race conditions. When you link to a process, it might have already crashed. When you
unlink, it might have terminated, and its EXIT signal will be waiting to be retrieved from
the process mailbox.

Separate error recovery and normal code, as combining them will increase the com-
plexity of your code. It will also ensure that crashes and recovery strategies are handled
consistently. Never try to fix an error that should not have occurred and then continue.
If an unexpected error occurs, make your process crash and let a supervisor process
deal with it. It is more likely that in trying to handle errors, you will generate more bugs
than you think you are solving. In the following example, what would you do if the
variable List is not a list?

bump(List) when is_list(List) ->
 lists:map(fun(X) -> X+1 end, List);
bump(_) ->
 {error, no_list}.

Everywhere you call bump/1, you would have to cater for two return values in a case
clause, but still not make the person reading the code any wiser as to why List got
corrupted. Don’t be defensive, and instead write:

bump(List) ->
 lists:map(fun(X) -> X+1 end, List).

If List does not contain a list, a runtime error will occur in lists:map/2 and will result
in your process terminating. Let your supervisor handle the exit signal and let it decide
the recovery strategy consistently with all of the other processes it is supervising. Make
sure the crash is recorded and can be used for post-mortem debugging; log these errors
and crashes in a separate error logger process.

As we should be hiding processes and message passing behind functional interfaces,
ensuring that the dependencies form an acyclic graph also ensures that there are no
deadlocks between these processes. Deadlocks are extremely rare in Erlang, but they
do occur if the concurrency is not well thought out and properly designed. Ensuring
that there are no cycles in your module dependencies is a step in the right direction.

Processes and Concurrency | 429

Stylistic Conventions
Programs are written not just to be executed by a computer, but also to be read and
understood by their authors and other programmers. Writing your programs in a way
that makes them easier to read and understand will help you remember what your
program does when you come back to it six months down the road, or will help another
programmer who has to use or modify your program. It will also make it easier for
someone to spot errors or other problems, or to interpret debugging information. So,
being consistent in the way that you write programs will help everyone. In this section,
we give a set of commonly used conventions for style in writing Erlang programs.

First, avoid writing deeply nested code.‡ In your case, if, receive, and fun clauses, you
should never have more than two levels of nesting in your code. Here is how not to do
it:

reset(BladeId, AdminState, OperState) ->
 case AdminState of
 enabled ->
 case OperState of
 disabled ->
 enable(BladeId);
 enabled ->
 disable(BladeId),
 enable(BladeId)
 end;
 disabled ->
 {error, admin_disabled}
 end.

A common trick to reduce indentation is to create temporary composite data types. If
you have nested if and case statements, join them together in a tuple and pattern-
match them in one clause:

reset(BladeId, AdminState, OperState) ->
 case {AdminState, OperState} of
 {enabled, disabled} ->
 enable(BladeId);
 {enabled, enabled} ->
 disable(BladeId),
 enable(BladeId);
 {disabled, _OperState} ->
 {error, admin_disabled}
 end.

You can reduce indentation by introducing pattern matching in your function heads.
By pattern matching on the AdminState and the OperState in the function clause, not
only do we make the code more readable, but we also reduce the level of nested clauses
to zero and reduce the overall code size:

‡ The Wrangler refactoring tool will indicate this and a number of other bad smells in Erlang code. Wrangler
is available from http://www.cs.kent.ac.uk/projects/protest/.

430 | Chapter 20: Style and Efficiency

http://www.cs.kent.ac.uk/projects/protest/

reset(BladeId, enabled, disabled) ->
 enable(BladeId);
reset(BladeId, enabled, enabled) ->
 disable(BladeId),
 enable(BladeId);
reset(_BladeId, disabled, _OperState) ->
 {error, admin_disabled}.

Avoid using if clauses when case clauses are a better fit. This is especially common
with programmers coming from an imperative background who still do not feel at ease
with pattern matching. Always ask yourself whether you can rewrite your if clause into
a case clause using pattern matching and guards that will avoid pattern matching on
the atoms true and false. If so, is it more readable and compact?

get_status(A,B,C) ->
 if
 A == enabled ->
 if
 B == enabled ->
 if
 C == enabled ->
 enabled;
 true ->
 disabled
 end;
 true ->
 disabled
 end;
 true ->
 disabled
 end.

The preceding example is an extreme occurrence of the misuse of the if statement. By
creating a composite data type with the variables A, B, and C, and replacing the if with
a case statement, we reduce the level of indentation and make the code more readable
and compact:

get_status(A,B,C) ->
 case {A,B,C} of
 {enabled, enabled, enabled } -> enabled;
 {_status1, _status2, _status} -> disabled
 end.

Aim to keep your modules to a manageable size. Short modules facilitate maintenance
and debugging as well as the understanding of your code. A manageable module should
have no more than 400 lines of code, comments excluded. Split long modules in a
logically coherent way and remember that long lines will not solve your problem.

Lines of code should not be too long, or drift across the page. A line of code should
never be more than 80 characters long. Too many times developers have tried to con-
vince us that their long lines were readable by widening their editor window to cover
the whole screen. That will not solve your problem.

Stylistic Conventions | 431

If your code is drifting across the page, spending a few minutes on reformatting will
save the next person from spending hours trying to maintain and debug it. The fol-
lowing code style is a typical example of what happens when someone writes code,
tests it, but never goes back to review it:

name(First, Second) ->
 case person_exists(First, Second) of
 true ->
 Y = atom_to_list(First) ++ [$ |atom_to_list(Second)] ++
 [$ |get_nickname(First,
 Second)],
 io:format("true person:~s~n",[Y]);
 false ->
 ok
 end.

You can easily rewrite this to the following:

name(First, Second) ->
 case person_exists(First, Second) of
 true ->
 Y = atom_to_list(First) ++
 [$ |atom_to_list(Second)] ++
 [$ |get_nickname(First, Second)],
 io:format("true person:~s~n",[Y]);
 false ->
 ok
 end.

After a second iteration and a bit of thinking, the preceding code would convert to the
following:

name(First, Second) ->
 case person_exists(First, Second) of
 true ->
 NickName = get_nickname(First, Second),
 io:format("true person:~w ~w ~s~n",[First, Second, NickName]);
 false ->
 ok
 end.

If your code drifts across the page, solve the problem by:

• Picking shorter variable and function names

• Using temporary variables to divide your statement or expression across several
lines of code

• Reducing the level of indentation in your case, if, and receive statements

• Moving possibly duplicated code into separate functions

Choose meaningful function and variable names. If the names consist of several words,
separate them with either capital letters or an underscore. Some people will pick one
style for variables and the other for functions, without mixing them together. Whatever
the case, when you pick a style, stick to it throughout your code; this is true of all the

432 | Chapter 20: Style and Efficiency

conventions discussed here: consistency makes code readable, whereas chopping and
changing between styles will distract a reader away from understanding what is going
on.

Avoid long names, as they are a prime reason for code drifting across a page. A long
name might look all right in the function head, but imagine calling it in the second level
of a clause together with long variable names. If you are using longer names, it makes
more sense to use them in functions—which will potentially be used across your code
base—rather than for variables whose scope will be limited to a particular function.

Use abbreviations and acronyms to shorten your names, but ensure that they make
sense and are easy to understand. A common pitfall is to use names that are very similar,
and so can easily be confused: Name, Names, and Named all look pretty similar! If you use
prefixes, pick ones that will provide hints regarding the variable types or function return
values. Finding meaningful function and variable names takes practice and patience,
so don’t underestimate the task.

Avoid the underscore on its own, when using “don’t care” variables. Even if you are
not using the variable, its contents might be of interest to whoever is reading the code.
Not using an underscore in front of unused variables will result in compiler warnings.
But be warned that variables of the format _name are regular single-assignment variables,
so once they have been bound, they cannot be reused as “don’t care” variables.

In the following example, if the variable AdminState is bound to the atom disabled,
_State will also be bound to disabled. If OperState is bound to enabled, the second
case clause will fail with a case clause error, as none of the patterns match:

restart(BladeId, AdminState, OperState) ->
 case AdminState of
 enabled ->
 disable(BladeId);
 _State ->
 ok
 end,
 case OperState of
 disabled ->
 ok;
 _State ->
 stop(BladeId)
 end.

Use records as the principal data structure to store compound data types. If records are
used by one module only and are not exported, the definition should be placed at the
beginning of the module to stop others from using it in their modules. Records used
by many modules should be placed in an include file and properly documented.

Use record selectors to access a field and pattern matching to access values in more
than one field:

Stylistic Conventions | 433

Cat = #cat{name = "tobby", owner ="lelle"},
#cat{name = Name, owner = Owner} = Cat,
Name2 = Cat#cat.name.

Never, ever use the internal tuple representation of records, as this defies the flexibility
that records bring to the table:

Cat = #cat{name = "tobby", owner = "lelle"},
{cat, Name, _owner} = Cat

If you write code such as this and then add a field to your record, you will have to
update the code that uses the tuple representation even if the function is not affected
by the field.

Use variables only when you need them. There are two reasons for using a variable.
The first is when you need to use the value they are bound to more than once. The
second is to improve clarity in your code and shorten the length of a line. You might
be tempted to write the following:

Sin = sin(X),
Cos = cos(X),
Tan = Sin / Cos

But passing the return values of the function directly to another function will make
your code much clearer and more compact:

Tan = sin(X) / cos(X)

Always ask yourself whether the variable really makes the code clearer; the more you
program in Erlang, the less you will find yourself using variables.

Be careful when using catch and throw. It is nearly always preferable to use the try ...
catch construct than to use catch and throw. Try to minimize their usage, and ensure
that any throw is caught in the same module as a catch. As you saw in Chapter 3, it
makes sense to use catch only when you can safely ignore the return value of a function.

If you are using catch and throw, always make sure you also handle runtime errors that
might be caught. For instance, the following code appeared in code that was about to
be sent into production:

Value = (catch get_value(Key)),
ets:insert(myTable, {Key, Value})

What would have happened if a runtime error occurred in the get_value/1 call? You
would have caught the runtime error {'EXIT', Reason}, bound it to the variable
Value, and stored it in the ETS table.

Be very careful with the process dictionary; in fact, avoid it like the plague. The BIFs
put and get are destructive operations. They will make your functions nondeterministic
and hard to debug, as determining the contents of the process dictionary after the
process has crashed will be very difficult, if at all possible, to do. Instead of the process
dictionary, introduce new arguments in your functions.

434 | Chapter 20: Style and Efficiency

If you do not know what the process dictionary is,§ move along; there is nothing to see
here, move along.

Use the -import(mod, [fun/arity...]) directive with care. It can make the code hard
to follow and will initially confuse the most experienced of Erlang programmers. A
temptation might be to use it when reducing the length of lines, but this comes at the
expense of comprehension. There are some cases where it makes sense:

• Common functions from the lists module, such as map, foldl, and reverse, are
going to be comprehensible to anyone reading your code.

• If you want to move EUnit tests from the module foo to the module foo_tests
without changing them, you will need to import all the definitions from foo into
foo_tests.

Developing your own Erlang programming style might take years. Make sure you are
consistent with yourself in any single system. This includes your use of indentation and
spaces as well as your choice of variable, function, and module names. In large projects,
style guidelines are often given to you.

Coding Strategies
The user should be able to predict what will happen when using the system. The foun-
dation of this determinism originates in predictable and consistent results being re-
turned by your functions. A consistent system in which modules do similar things is
easier to understand and maintain than a system in which modules do similar things
in quite different ways.

Minimize the number of functions with side effects, collecting them in specific modules.
These modules could handle files or encapsulate database operations. Functions with
side effects will cause permanent changes in system state. Knowledge of these states is
imperative for these functions to be used and debugged, making reusability and main-
tainability of the code difficult. Try to reduce the number of side effects by maximizing
the number of pure functions, separating side effects into atomic functions rather than
combining them with functional transformations.

Some of the most challenging bugs are those caused by race conditions, especially in
the advent of multicore systems in which code is truly running in parallel. Here’s a
common scenario: you run a test and are able to re-create the same bug every time. As
soon as you turn on trace printouts, the overhead causes the process to run more slowly,
changing the order of execution. All of a sudden, your bug is not reproducible anymore.
What can you do to avoid this? Make your code as deterministic as possible.

A deterministic program is one that will always run in the same manner and provide
the same result or manifest the same bug, regardless of the order of execution. What

§ We barely mention it in this book for this reason.

Coding Strategies | 435

makes a solution deterministic? Assume a supervisor has to start five workers in parallel
and that the start order of these processes does not matter. A nondeterministic solution
would spawn all of them and check that they have started correctly. A deterministic
solution would spawn the processes one at a time, ensuring that each one has started
correctly before proceeding to the next one. Although both might provide the same
result, the nondeterministic solution may make start errors hard to reproduce, provid-
ing different results based on the order in which the processes have been spawned.
Although determinism is not guaranteed to eliminate race conditions, it will certainly
reduce the number of them and will make your system more predictable, as well as
making debugging much more straightforward.

Abstract out common design patterns. If you have the same code in two places, isolate
it in a common function.‖ If you have similar patterns of code, try to define the differ-
ence in terms of a variable or a separate function, combining the pattern in a common
call. Where appropriate, replace your recursive functions iterating on lists with a call
to one of the higher-order functions in the lists module. You can encapsulate your
functionality on the list elements in a fun and choose a recursive pattern using one of
the higher-order functions provided in the lists module. To see what is happening to
the elements in the list, all you need to do is inspect the fun. To see what recursive
pattern is being applied, examine which function in the lists module is being called.

When you are designing a library of your own, you will find that many of the functions
follow similar patterns, such as fold or map on lists. You can then write your own higher-
order functions to encapsulate these patterns, allowing you and other users of the
module to abstract their functions. With higher-order functions encapsulating com-
mon computation patterns, many recursive functions with multiple clauses and base
cases become much more compact, readable, and maintainable.

Avoid defensive programming. Trust your input data if it originates from within the
system, testing it only if it enters through an external interface. Once the data has
entered the runtime system, it is the responsibility of the calling function to ensure that
the input data is correct, and not of the function that was called. If your function is
called with erroneous input data, the advice is to make it crash.

An example of defensive programming would be a function converting atoms denoting
months to their respective numbers:

month('January') -> 1;
month('February') -> 2;
...
month('December') -> 12;
month(_other) -> {error, badmonth}.

It might be tempting to add the last clause acting as a catchall. If month/1 is called with
an incorrect atom, it would return the tuple {error, badmonth}. This return value would
either force the user of the function to test for and handle this error value, or would

‖ The Wrangler system can help you to find duplicate code and to factor it into a common function.

436 | Chapter 20: Style and Efficiency

cause a runtime error somewhere in the system, where a function expecting an integer
receives the tuple. Removing the last defensive clause would instead cause a function
clause error, providing the call chain and the misspelled atom in the crash report.

Do not future-proof your code. Don’t try to write code that will be able to deal with
every possible eventuality as the system evolves. It will make your code harder to un-
derstand and maintain, adding unnecessary complexity. And best of all, you will prob-
ably not end up using what you have added anyhow. Be kind to Erlang consultants
supporting and maintaining your code in the years to come. Do not try to predict what
will happen to your code after it has gone into production. Just implement what is
needed.

Here are two final pieces of advice that are not necessarily related to Erlang, but to
programming in general: avoid cut-and-paste programming and do not comment out
dead code, just delete it, as you can always get it back from your repository if you need
to sometime in the future.#

Efficiency
The Erlang virtual machine is constantly being optimized and improved. What might
have been inefficient constructs or necessary workarounds in earlier releases are not
necessarily a problem in the current version. So, beware when reading about efficiency,
workarounds, and optimizations in old performance guides, blog entries, and especially
old posts in newsgroups and mailing list archives. If in doubt, always refer to the release
notes and documentation of the runtime system you are using. And most importantly,
benchmark, stress test, and profile your systems accordingly.

Sequential Programming
The most common misconceptions regarding efficiency concern funs and list compre-
hensions. List comprehensions allow you to generate lists and filter elements, and
funs allow you to bind a functional argument to a variable. Today, the compiler trans-
lates list comprehensions to ordinary recursive functions, and funs were optimized a
long time ago and have gone from being highly inefficient black magic to having per-
formance between that of a regular function call and using an apply/3.

Strings are not implemented efficiently in Erlang. In the 32-bit representation, every
character consists of four bytes, with an additional four bytes pointing to the next
character. In the 64-bit representation, this doubles to eight bytes. On the positive side,
Unicode is not an issue. On the negative side, if you are dealing with large data sets and
memory does become an issue, you will need to convert your strings to binaries and
match using the bit syntax.

Assuming, of course, that you are using version control....

Efficiency | 437

Use the re library module to handle regular expressions if speed and throughput are
important. This library supports PCRE-style regular expressions in Erlang, with a sub-
stantially more efficient implementation than the regexp library module, the use of
which is now deprecated.

At one time, you were encouraged to reorder your function clauses as well as receive
and case clauses, putting the most common patterns at the top. Today, the compiler
will rearrange the clauses for you, and in most cases will use an efficient binary search
to jump to the right clause, regardless of the number of clauses. An exception is if you
have code of the following form:

month('January') -> 1;
month('February') -> 2;
month(String) when is_list(String) -> {error, badmonth};
month('March') -> 3;
...
month('December') -> 12;
month(_other) -> {error, badmonth}.

As the variable String will always match and be bound, with the clause possibly failing
on the guard, the compiler needs to treat this case separately. It will first try to match
'January' or 'February' using a binary search, after which it binds the argument to the
variable String and evaluates the guard. If the guard fails, a new binary search is exe-
cuted on the remaining months. Moving the guarded clause either to the beginning:

month(String) when is_list(String) -> {error, badmonth};
month('January') -> 1;
month('February') -> 2;
...

or as the next-to-last clause, immediately before month(_other) -> ..., will improve
efficiency slightly.

If you are setting and resetting a lot of timers, avoid using the timer module, as it
serializes all requests through a process and can become a bottleneck. Instead, try
using one of the Erlang timer BIFs erlang:send_after/3, erlang:start_timer/2,
erlang:cancel_timer/1, or erlang:read_timer/1.

Where possible, use tuples instead of lists. The size of the tuple is two words plus the
size of each element. Lists will consume one word for every element. As a result, tuples
consume less memory and are faster to access.

Keep in mind that atoms are not garbage-collected. If you generate atoms dynamically
using the list_to_atom/1 BIF on dynamic data, you might eventually run out of memory
or reach the limit of allowed atoms, which is slightly more than 1 million. This BIF, if
converting external data to atoms, makes your system open for denial of service attacks.
Where this is a possibility, you should instead be using list_to_existing_atom/1.

438 | Chapter 20: Style and Efficiency

Lists
Always ask yourself whether you really need to work with flat lists, as the function
lists:flatten/1 is an expensive operation. I/O operations through ports and sockets
accept nonflat lists, including those consisting of binary chunks, so there is no need to
flatten the list.

The same applies to the BIFs iolist_to_binary/1 and list_to_binary/1. If your list is
of depth one, use lists:append/1 instead:

1> Str = [$h,[$e,[$l,$l],$o]].
[104,[101,"ll",111]]
2> io:format("~s~n",[Str]).
hello
ok
3> lists:append([[1,2,3],[4,5,6]]).
[1,2,3,4,5,6]

Left-associated concatenation is inefficient. Concatenating strings using the following:

lines(Str) ->
 "Hello " ++ Str ++ " World".

will result in the strings on the left side of the ++ being traversed multiple times. Instead
of using ++, you can let the compiler do the concatenation for you by writing:

lines(Str) ->
 ["Hello ", Str, " World"].

Do not append elements to the end of a list using ++ through List ++ [Element] or
lists:append(List, [Element]). Every time you append an element, the list on the
lefthand side of the ++ needs to be traversed. Do it once and you might get away with
it. Do it recursively, and then for every recursive iteration, you will start getting serious
performance problems:

double([X|T], Buffer) ->
 double(T, Buffer ++ [X*2]);
double([], Buffer) ->
 Buffer.

It is much more efficient to add the element to the head of the list and when the recursive
call reaches the base case, reverse it. This way, you traverse the list only twice:

double([X|T], Buffer) ->
 double(T, [X*2|Buffer]);
double([], Buffer) ->
 lists:reverse(Buffer).

If you are dealing with functions that accept nonflat lists, add your element to the end
of the nonflat list by using [List, Element], creating a list of the format [[[[[1],2],
3],4],5]. It will save you from having to reverse the list once you’re done.

So, you should use ++ when appending lists that you know do not consist of single
elements where the result has to be flat. Isn’t the following line of code:

Efficiency | 439

List1 ++ List2 ++ List3

more elegant than this?

lists:append([List1, List2, List3])

Try to traverse lists only once. With small lists, you might not notice any difference in
execution time, but as soon as your code gets into production and the line length in-
creases, performance might become an issue. In the following example, we take a list
of integers, extract all of the even numbers, multiply them by a multiple, and add them
all together:

even_multiple(List, Multiple) ->
 Even = lists:filter(fun(X) -> (X rem 2) == 0 end, List),
 Multiple = lists:map(fun(X) -> X * Multiple end, Even),
 lists:sum(Multiple).

We traverse the list three times in this definition of even_multiple. Instead, encapsulate
the filtering, and add the integers in a fun, and use a higher-order function to traverse
the list. This allows you to implement the same operation more efficiently, by traversing
the list only once:

even_multiple(List, Multiple) ->
 Fun = fun (X, Sum) when (X rem 2) == 0 ->
 X + Sum;
 (X, Sum) ->
 Sum
 end,
 Multiple * lists:foldl(Fun, 0, List).

Tail Recursion and Non-tail Recursion
Non-tail-recursive functions are often more elegant than tail-recursive functions, but
when dealing with large data sets, be careful of large bursts of memory usage. These
bursts can occasionally result in your Erlang runtime system running out of memory
and therefore terminating. Building a large data structure can be efficient in
non-tail-recursive form, but other operations on large data structures, necessitating
deeply recursive calls, may be more efficient using tail recursion. This is because it
makes last-call optimization possible, and as a result, it will allow a function to execute
in a constant amount of memory.

In the end, our advice about this is to make sure you measure the performance of your
system to understand its memory usage and behavior.

Concurrency
Operations that require a lot of memory will affect performance, as they will trigger the
garbage collector more often. When dealing with memory-intensive operations, spawn
a separate process, terminating it once you’re done. The garbage collection time will
be reduced as all its memory area will be deallocated at once.

440 | Chapter 20: Style and Efficiency

You can take this one step further and spawn a process using the following:

spawn_opt(Module, Function, Args, OptionList)

where OptionList includes the tuple {min_heap_size, Size}. Size is an integer denoting
the size of the heap (in words) allocated when spawning the process. The default allo-
cated heap size is 233 words, a conservative value set to allow massive concurrency.

When fine-tuning your system, increasing the heap size will reduce the number of
garbage collections, potentially speeding up some operations. Use min_heap_size with
care and make sure to measure your system performance before and after ensuring that
the change you made has had the desired effect. If you are not careful, your system
might end up using more memory than necessary and run more slowly due to the
worsened data locality. You can also set the heap size for all processes when starting
the Erlang runtime system by setting the +h Size flag to erl.

Tune for full garbage collection. If you remember the discussion in Chapter 3, the
memory heap is divided into the new heap and the old heap. Data in the new heap that
survives a sweep by the garbage collector is moved to the old heap. The option
{fullsweep_after, Number} makes it possible to specify the number of garbage collec-
tions which should occur before the old heap is swept, regardless of whether the old
heap is full.

Setting the value to 0 will force a full sweep every time. This is a useful option in em-
bedded systems where memory is limited. If you are using lots of short-lived data,
especially large binaries, see whether setting the value between 10 and 20 will make a
difference. Use the fullsweep_after option only if you know there are problems with
the memory consumption of your process, and ensure that it makes a difference. You
can set the fullsweep_after and min_heap_size flag options globally for all newly
spawned processes using the erlang:system_flag(Flag, Value) BIF.

When a process is suspended in a receive clause waiting for an event, the garbage
collector will not be triggered unless a message is received and more memory is required.
This is regardless of how long the process waits or of the quantity of unused data in
the heaps. To get around this, you can force a garbage collection using the BIF
garbage_collect/0 on the calling process or garbage_collect/1 on a particular one. You
can save even more memory by using erlang:hibernate/3; use of this is supported in
gen_server, gen_fsm, and gen_event.

Use binaries to encode large messages. Messages sent between processes result in the
message being copied from the stack of the sending process to the heap of the receiving
one. Avoid unnecessary concurrency, and, where possible, keep messages small.

If you need to send a large message to many processes, convert it to a binary. Binaries
larger than 64 bytes (the reference counted binaries) are passed around as pointers,
stopping large amounts of data from being copied among processes. So, if you have
many recipients or are forwarding the unchanged message to many processes, the cost

Efficiency | 441

of converting your data type to a binary will be less than copying it from the stack of
the sending process to the heap of every receiving process.

It is also more efficient to use binaries when sending large amounts of data to ports and
sockets. In particular, there is no need to convert your output to lists of integers.

And Finally...
Let others review your code, as they will provide you with feedback and comments on
style and optimizations. Always try to write clean and understandable code;
type-specify your interfaces and model your data structures. Put effort in choosing
algorithms and constructs that scale effectively. You have to think about real-time ef-
ficiency from the start, as it is not something that you can easily resolve later. And
finally, never optimize your code in your first stage of development; instead, always
program with maintainability and readability in mind. When you have completed your
application, profile it and optimize your code only where necessary.

Common mistakes often made by beginners include:

• Functions that span many pages

• Deeply nested if, case, and receive statements

• Badly typed and untagged return values

• Badly chosen function and variable names

• Unnecessary or superfluous processes

• Badly and unindented code

• Use of put and get

• Misuse of catch and throw

• Bad, superfluous, or missing comments

• Usage of tuple representation of records

• Bad and insufficient use of pattern matching

• Trying to make the program fast, with unnecessary optimizations

A programmer will be able to understand a problem in full only when he has solved it
at least once. And when he has found a solution, he will have thought of much better
ways he could have solved the problem. Always try to go back and rewrite your code,
keeping the aforementioned beginner errors in mind. You will quickly discover that
your refactored program will consist of an elegant and efficient code base which, as a
result, becomes easier to test, debug, and maintain.* Expect code reductions of up to
50% when rewriting your first major Erlang programs. As you become more

* If you are writing industrial applications, don’t believe for one second that you will be the last one to touch
your code. Be kind to the others who will take over after you!

442 | Chapter 20: Style and Efficiency

experienced and develop your programming style, this reduction will decrease as you
start getting things optimal the first time around.

The golden rules when working with Erlang should always be as follows:

First make it work.

Then make it beautiful.

And finally, only if you really have to, make it fast while keeping it beautiful.

You will quickly discover that in the majority of cases, your code will be fast enough.
Happy Erlang programming!

And Finally... | 443

APPENDIX

Using Erlang

This appendix begins by helping you to get started with Erlang. We then recommend
a number of tools to help you to develop Erlang-based systems more effectively. Finally,
we tell you where you can find out more about Erlang, particularly from the many web-
based resources for Erlang.

Getting Started with Erlang
This section tells you how to get started with Erlang: first, how you install it, and then
how to run Erlang programs. We conclude by showing you the various commands in
the Erlang shell that help you to be a power user of the shell, using the history mech-
anism and the line editing commands.

Installing the System
The Erlang distribution is available from the Erlang website, http://erlang.org/download
.html or one of the many mirror sites. You can also download Erlang using BitTorrent,
as well as find it bundled in many of the major Linux distributions. The sources are
provided for compilation on Unix operating systems, including Linux and Mac OS X;
for Windows, use the binary installer. When building from source, follow the instruc-
tions that come with the distribution.

Running the Erlang Shell
In Unix, Linux, and Mac OS X, you can run the Erlang shell from the command line
by typing the erl command, setting whatever options you require.

To open an Erlang file in Windows, double-click the file icon; this will ensure that the
system is opened in the correct directory. There are two variants of the system on
Windows, available under “Open With” when you right-click an Erlang source file:

Erl
Opens the file in an Erlang shell from the Command Prompt program

445

http://erlang.org/download.html
http://erlang.org/download.html

Werl
Opens an Erlang shell in a window supporting copy and paste operations more
accessibly than the standard Command Prompt program

To run Erlang with options set—for example, the –smp option required to run
wxErlang—you can run these commands from the Run window, or by typing them as
commands to a command prompt. This option allows you to change into the appro-
priate directory before issuing the command, as in the following:

C:\Documents and Settings\Administrator>cd Desktop\programming\wxex
C:\...\...\wxex>"c:\Program Files\erl5.7\bin\erl.exe" -smp miniblog.erl
Eshell V5.7 (abort with ^G)
1> miniblog:start().

You can also change these features by right-clicking the file icon and selecting Proper-
ties. In the Shortcut tab, you can change your target to include your start options and
change the “Start in directory” to point to where your source code is.

In the Erlang shell on Unix and in Werl on Windows, there is a standard set of editing
operations on the commands typed:

Up and down arrows
Fetch the previous and next command line; this may be part of a command, since
commands can span multiple lines, in general

Ctrl-P and Ctrl-N
Have the same effect as the up and down arrows

Left and right arrows
Move the cursor one character to the left and right

Ctrl-B and Ctrl-F
Have the same effect as the left and right arrows

Ctrl-A
Takes the cursor to the start of the line

Ctrl-E
Takes the cursor to the end of the line

Ctrl-D
Deletes the character under the cursor

As you’ve seen in the body of the text, there is a set of commands in the Erlang shell.
The most commonly used commands include the following:

c(File)
Compiles and loads the File, purging old versions of code

b()
Prints the current variable bindings

f()
“Forgets” all the current variable bindings

446 | Appendix: Using Erlang

f(X)
“Forgets” the binding for the variable X

The history of commands and their results are remembered:

h()
Will print the history list (which has a default length of 20, but can be changed)

e(N)
Will repeat command number N

e(-N)
Will repeat the nth previous command; for example, e(−1) is the previous
command

v(N)
The return value of command N

v(-N)
The return value of the nth previous command; for example, v(−1)+v(−2) will re-
turn the sum of the previous two values

Other shell commands, including those for dealing with record definitions in the shell,
are described in detail in the documentation for the shell module.

Tools for Erlang
If you want to get started writing programs in a new language, the last thing you want
to have to do is to learn a new editor, too. Luckily, many common editors and IDEs
provide support for writing programs. In this section, we’ll discuss these editors and
IDEs, as well as some of the other tools we find useful beyond those we’ve already
described. Some tools come as a part of the Erlang distribution, and there’s a compre-
hensive description of those tools in the documentation that accompanies the
distribution.

Editors
Erlang programs are contained in text files, and so they can be created within any text
editor. However, a number of editors support Erlang-aware operations, and, taking a
leaf from the Java and C++ communities, a growing number of fully fledged IDEs
support Erlang:

• According to a recent survey of Erlang users,* the principal development tool for
the dedicated Erlang programmer is Erlang mode for Emacs, documented in the
tools reference manual from the Erlang online documentation. This gives syntax

* Available at http://www.protest-project.eu/publications/survey.pdf, this was undertaken as part of the ProTest
project.

Tools for Erlang | 447

http://www.protest-project.eu/publications/survey.pdf

coloring for Erlang, as well as context-sensitive formatting that will help you to lay
out your program so that you and others can read it. The mode will also check that
your module names and filenames match, as well as providing skeletons for com-
mon OTP behaviors.

• Distel, or Distributed Emacs Lisp, takes the Emacs support for Erlang to another
level, as it allows Emacs to interact with running Erlang nodes, as we described for
other programming languages in Chapter 16. Distel provides completion of names
of functions and modules; runs Erlang code from within Emacs; offers some limited
refactoring support; and features an interactive debugger. Distel is a live Google
Code project.

• There is also an Erlang plug-in package for Vim, which supports indentation and
syntax highlighting, as well as folding and partial omni-completion. This is avail-
able from the Vim website, http://www.vim.org/scripts/script.php?script_id=1584.

• Eclipse is the tool of choice for many Java and C++ programmers, and Erlang is
now supported in Eclipse through Erlide, an Erlang plug-in for Eclipse, available
on Sourceforge.net. Erlide implements syntax highlighting and indentation, but
also offers evaluation of Erlang expressions within the IDE and automatic compi-
lation on file save. Its structure also defines the scope for Erlang projects, and gives
debugging support. Erlide also provides access to the refactorings in Wrangler
(discussed shortly).

• Other IDEs and editor support include ErlyBird, an Erlang IDE based on NetBeans,
and UltraEdit, which some Windows developers use to highlight syntax in Erlang
programs.

Other Tools
In addition to the tools we described earlier, other tools we find helpful include the
following:

• Although EUnit provides the framework for unit testing, Common Test gives a
framework for complete Erlang-based systems. Common Test is part of the Erlang
standard distribution.

• Traditional testing allows you to check the behavior of a system under particular
inputs; an alternative approach, embodied in QuickCheck, asks the tester to state
properties of the system and then tests the properties for randomly generated input
values. QuickCheck is also able to test properties of concurrent systems using finite
state machines to exercise their behavior, and to shrink any data that fails to satisfy
the property to minimal counterexamples. QuickCheck is a product of Quviq AB.

• Beyond simple testing, static analysis can check for dead code as well as type
anomalies. Dialyzer comes as part of the Erlang standard distribution.

• Refactoring for Erlang is supported by the Wrangler tool, embedded in both Emacs
and Erlide, and available from the University of Kent in the United Kingdom.

448 | Appendix: Using Erlang

http://www.vim.org/scripts/script.php?script_id=1584

RefactorErl also supports some refactorings, as do Distel and the syntax_tools
modules that come with the Erlang standard distribution.

• Although testing tools can check the behavior of a system under only a selection
of inputs, model checking enables the user to check all possible behaviors of the
system under test. McErlang, developed at the Universidad Politécnica de Madrid,
is a model checker for Erlang written in Erlang. Another approach to model check-
ing translates Erlang into μCRL and then model-checks the results.

Where to Learn More
The best place to start when you want to learn more about Erlang is the Erlang home
page, http://www.erlang.org. Here, you can find out about upcoming events, books,
courses, and jobs, as well as access the system documentation.

The system documentation—which you can access at http://www.erlang.org/doc/ and
download to your computer when you download Erlang—can be a bit overwhelming
at first, but it contains a lot of useful information:

• Each Erlang module in the distribution is documented at http://www.erlang.org/
doc/: click the Modules link in the top-lefthand corner of the home page.

• To get other information about a topic or potential function, you can use the index
generated from the documentation, which is accessible from the top-lefthand cor-
ner of the home page.

The tabs down the left side of the main page give links to documentation regarding the
main Erlang applications and tools. Particularly useful are:

• The installation guide (under the Erlang/OTP tab)

• Getting Started, a mini tutorial (under Erlang Programming)

• The Erlang reference manual (under Erlang Programming)

• The FAQs at http://www.erlang.org/faq.html

You can find other Erlang information in the following locations:

• The Erlang community site, Trapexit.org, at http://www.trapexit.org.

• The website for this book, http://www.erlangprogramming.org, which also has links
to all the sites mentioned here, as well as a lot more background information.

• The Erlang mailing lists, accessible from http://erlang.org/faq.html and available in
archived form at Nabble.com and elsewhere.

• The many Erlang-focused blogs. Just search for “Erlang” on http://blogsearch.goo
gle.com; many of the blogs are aggregated at http://planet.trapexit.org and at Planet
Erlang, http://www.planeterlang.org.

• The two annual Erlang events: the Erlang Workshop, sponsored by ACM
SIGPLAN and collocated with the International Conference on Functional

Where to Learn More | 449

http://www.erlang.org
http://www.erlang.org/doc/
http://www.erlang.org/doc/
http://www.erlang.org/doc/
http://www.erlang.org/faq.html
http://www.trapexit.org
http://www.erlangprogramming.org
http://erlang.org/faq.html
http://blogsearch.google.com
http://blogsearch.google.com
http://planet.trapexit.org
http://www.planeterlang.org

Programming (http://www.erlang.org/workshop/), and the Erlang User Conference,
which takes place in Stockholm each year (http://www.erlang.org/euc/).

• The Erlang Factory, which runs commercial Erlang conferences and whose web-
site, http://www.erlang-factory.com/, contains slides and videos from many of the
talks given at the conferences.

450 | Appendix: Using Erlang

http://www.erlang.org/workshop/
http://www.erlang.org/euc/
http://www.erlang-factory.com/

Index

Symbols
" (quotation marks) (see quotation marks)
(hash), 15
$ symbol, 22
$Character notation, 16, 23
() parentheses (see parentheses)
* (multiplication) operator, 17, 378
* (unary multiplication) operator, 17
+ (addition) operator, 17, 378
+ (unary addition) operator, 17
++ operator, 26, 27, 201
, (comma), 52, 378
-- operator, 26
.beam file extension, 41
.erl file extension, 40
.erlang file extension, 186
/ (unary division) operator, 17
/= (not equal to) operator, 28, 378
: (colon), 25, 205
; (semicolon), 52, 378
< (less than) operator, 28, 378
<< >> (double angled brackets), 206
<= (leftwards arrow), 206
<= (less than or equal to) operator, 28, 378
=/= (exactly not equal to) operator, 28, 378
=:= (exactly equal to) operator, 28, 378
== (equal to) operator, 28, 378
> (greater than) operator, 28, 378
>= (greater than or equal to) operator, 28, 378
? (question mark), 165
?FILE macro, 167
?LINE macro, 167
?MACHINE macro, 167
?MODULE macro, 167

?MODULE_STRING macro, 167
@ (at) symbol, 19
[] (square brackets), 22, 23
_ (underscore), 19, 37
{ } (curly brackets), 21
|| (double vertical bar), 206
~ (tilde), 57
– (subtraction) operator, 17, 378
– (unary subtraction) operator, 17

A
abort function, 299
abs/1 function, 378
accept function, 331
accumulating parameter, 63
add/2 function, 76
addition (+) operator, 17, 378
add_handler function, 132
add_path function, 286
add_patha function, 181, 184
add_pathz function, 181
add_table_index function, 302
add_usr function, 300
agile programming, 412
all flag, 359
all function, 196
allocate function, 119, 123
Amazon.com, 2
AMQP, 2
and logical operator, 20, 378
andalso logical operator, 20, 378
any function, 196
append function

++ operator and, 27
wxErlang function, 311

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

451

append_element/2 function, 54
application module

stop function, 296
which_applications function, 281, 283

application monitor tool, 287
application resource file, 283–284
application/1 function, 405
applications, 421

(see also OTP applications)
blogging, 314–320
development considerations, 421–426

apply/3 function, 55, 153
appmon:start function, 287
arguments

fun expressions, 192
functions and, 190–192

arity
arity flag, 363
defined, 38

Armstrong, Joe, xvi, 3, 31, 89, 201, 245
array module, 79
ASCII integer notation (see $Character

notation)
at (@) symbol, 19
atomic operation, 147
atoms

Boolean support, 20, 28
Erlang type notation, 396
garbage collection and, 104
overview, 19
secret cookies, 250
string comparison, 23
troubleshooting syntax, 19

atom_to_list/1 function, 54
AVL balanced binary tree, 215
AXD301 ATM switch, 10, 246

B
b/0 shell command, 446
badarg exception, 69, 75, 104
badarith exception, 70
badmatch exception, 69, 71, 163, 355
bags

defined, 214
Dets tables, 229
duplicate, 214, 215, 229
ETS tables, 214
sets and, 213
storing, 215

balanced binary trees, 183, 215
band operator, 208, 378
Base#Value notation, 15
BEAM file extension, 41
benchmarking, 106
Berkeley DB, 294
BIFs (built-in functions), 355

(see also trace BIFs)
binary support, 202
concurrency considerations, 56
exit BIFs, 146–148
functionality, 45, 53
group leader support, 258
io module, 57–59
meta programming, 55
node support, 249
object access and evaluation, 53
process dictionary, 55
record support, 164
reduction steps, 96
reference data types, 210
runtime errors, 69
spawning processes, 90
type conversion, 54
type test support, 51, 378, 384

bignums, 15
binaries

bit syntax, 203–204, 206
bitstring comprehension, 206, 212
bitwise operators, 208
chapter exercises, 212
defined, 23, 190, 202
Erlang type notation, 396
pattern matching and, 201, 205
serializing, 208, 413–415

binary files, 373
binary operators, 21, 208
binary_to_list/1 function, 202, 349
binary_to_term/1 function, 202, 343, 349
bit sequences, 4
bitstring comprehension, 206, 212
bitwise operators, 378
blogging applications, 314–320
bnot operator, 208, 378
Boolean operators

atom support, 20, 28
Erlang type notation, 397
match specifications and, 378

bor operator, 208, 378

452 | Index

bottlenecks, 109
bound variables

changing values, 30
defined, 34
functions and, 5
selective receives, 97–99

Bray, Tim, 2
bsl operator, 208, 378
bsr operator, 208, 378
bump_reductions function, 96
bxor operator, 208, 378

C
C language, interworking with, 342–346
C++ language

CouchDB case study, 12
Erlang comparison, 12–13

c/1 shell command, 446
c/3 function, 369
calendar module, 79
call by value, 30
call flag (tracing), 360, 362
call/1 function, 122
call/2 function, 270
callback functions, 132, 265
Carlson, Richard, 74, 395
case constructs

development considerations, 431
function definitions and, 47
overview, 46–48
runtime errors, 68

case_clause exception, 68
cast/2 function, 268
Cesarini, Francesco, xv, 110, 201
Chalmers University of Technology, 2
characters

Erlang type notation, 397
representation, 22

check_childspecs/1 function, 279
client function, 122, 330
client/server model

chapter exercises, 138
client functions, 122
generic servers, 266–276
monitoring clients, 150
process design patterns, 117, 118–124
process skeleton example, 125–126

close function
dets module, 230

gen_tcp module, 331
gen_udp module, 326

closures (see functions)
cmd/1 function, 346
code module

add_path function, 286
add_patha function, 181, 184
add_pathz function, 181
get_path function, 180, 181, 282
is_loaded function, 180
load_file function, 180
priv_dir function, 282
purge function, 182
root_dir function, 180
soft_purge function, 182
stick_dir function, 181
unstick_dir function, 181

code server, 180
code.erl module, 180
collections

implementing, 213, 214–216
sets and bags, 213

colon (:), 25, 205
comma (,), 52, 378
Common Test tool, 14
comparison operators, 28, 378, 385
compile directive, 41
compile:file function, 163, 168, 179
concatenating strings, 27
concurrency

BIF support, 56
defined, 9, 89
distributed systems and, 246
efficient, 6, 440
ETS tables and, 221
multicore processing and, 9
overview, 5
scalable, 6

concurrent programming
benchmarking, 106
case study, 110
chapter exercises, 115
creating processes, 90–92
deadlocks, 112–114
development considerations, 426–429
memory leaks, 108
message passing, 92–94
process manager, 114
process skeletons, 107

Index | 453

process starvation, 112–114
race conditions, 112–114
receiving messages, 94–102
registered processes, 102–104
tail recursion, 108
testing, 419, 420
timeouts, 104–106

conditional evaluations
case construct, 46–48
defined, 46
execution flow and, 36
function clause, 38, 46
if construct, 49–50
variable scope, 48

conditional macros, 167
connect function

gen_tcp module, 331
net_kernel module, 255
peer module, 334

controlling_process function, 331
convert/2 function, 183
cos/1 function, 80
CouchDB database, 2, 11, 294
cpu_timestamp flag, 362
create/0 function, 174
create_schema function, 295
create_table function, 296, 298
ctp function, 370
ctpg function, 370
ctpl function, 370
curly brackets { }, 21

D
Däcker, Bjarne, 3
data structures

development considerations, 425
overview, 32
records as, 158

data types
atoms, 19
binary, 23, 190
data structures, 32
defininig, 397
Erlang type notation, 396
floats, 17–19
functional, 189
integers, 15
interworking with Java, 338
lists, 22–27

nesting, 32
records with typed fields, 395
reference, 190, 210, 409
term comparison, 28–29
tuples, 21
type conversions, 54
type system overview, 31
variables, 30

date/0 function, 56
db module

code example, 174, 182
convert/2 function, 183
exercises, 186
fill/0 function, 376

dbg module
c/3 function, 369
chapter exercises, 392
ctp function, 370
ctpg function, 370
ctpl function, 370
dtp function, 391
fun2ms/1 function, 375–382, 383–391
h function, 366
ln function, 371
ltp function, 390
match specifications, 382
n function, 371
p function, 366, 371
rtp function, 391
stop function, 368
stop_clear/0 function, 368
stop_trace_client function, 373
tp/2 function, 367, 369, 376, 391
tpl/2 function, 369
tracer/2 function, 372, 373
trace_client function, 373
trace_port function, 373
wtp function, 391

dbg tracer
distributed environments, 371
functionality, 365
getting started, 366–368
profiling functions, 369
redirecting output, 371–374
tracing function calls, 369–371
tracing functions, 369

db_server module, 182
deadlocks, 112–114, 429
deallocate function, 120, 124

454 | Index

debugging
chapter exercises, 171
dbg tracer, 365–374
EUnit support, 419
macro support, 166–168
tools supported, 80, 114

declarative languages, 4
defensive programming, 7, 47, 436
delete function, 300
delete_handler function, 133
delete_usr/1 function, 301
deleting objects in Mnesia, 300
Delicious social bookmarking service, 2
del_table_index function, 302
demonitor function, 144, 147
design patterns, 263

(see also OTP behaviors)
chapter exercises, 137
client/server model, 117, 118–124
coding strategies, 436
defined, 107, 117
event handler, 117, 131–137
FSM model, 117, 126–131, 290
generic servers, 266–276
process example, 125–126
supervisors, 152, 276–280

destroy/1 function, 313
dets module

close function, 230
info function, 230
insert function, 230
lookup function, 230
open_file/1 function, 230
select function, 230
sync function, 229

Dets tables
bags, 229
creating, 230
duplicate bags, 229
ETS tables and, 229
functionality, 229–230
mobile subscriber database example, 231–

242
options supported, 229
sets, 229

development (see software development)
Dialyzer tool

creating PLT, 401
functionality, 14, 32

dict module
functionality, 79
simple lookups, 294
upgrading modules, 174, 175
upgrading processes, 183

directives, module, 41
directories

adding to search path, 181
OTP applications, 282
sticky, 181

dirty code, 423
dirty_delete function, 303
dirty_index_read function, 303
dirty_read function, 303
dirty_write function, 303, 304
disk_log module, 294
display/1 function, 380
dist:s/0 function, 252
distributed programming

chapter exercises, 261
epmd command, 260
essential modules, 258–260
fault tolerance and, 247
firewalls and, 261
nodes, 247–255
overview, 7, 245–247
RPC support, 256–258

div operator, 17, 378
division operator, 17
DNS servers, 250
documentation

EDoc support, 402–410
modules, 53, 77

dollar sign ($) symbol, 22
don’t care variables, 37
dp module

fill/0 function, 375
handle/3 function, 377
handle_msg/1 function, 377
process_msg/0 function, 375

dropwhile function, 196
Dryverl toolkit, 352
dtp function, 391
duplicate bags

Dets tables, 229
ETS tables, 214
storing, 215

Index | 455

E
e/1 shell command, 447
ebin directory, 283
EDoc documentation framework

documenting usr_db.erl, 403–405
functionality, 402
predefined macros, 408
running, 405–407

edoc module
application/1 function, 405
files/1 function, 405
functionality, 405–407

EDTK (Erlang Driver Toolkit), 352
EEP (Erlang Enhancement Proposal), 352
ei_connect function, 342
Ejabberd system, 2, 245
element/2 function, 53, 378
else conditional macro, 167
empty lists, 23
empty strings, 23
endian values, 204
endif conditional macro, 167
Engineering and Physical Sciences Research

Council (EPSRC), 12
ensure_loaded function, 298
enumeration types (see atoms)
environment variables, 284, 285
Eötvös Loránd University, 2
epmd command, 260, 333, 341
EPP (Erlang Preprocessor), 165
EPSRC (Engineering and Physical Sciences

Research Council), 12
equal to (==) operator, 28, 378
Ericsson

AXD301 ATM switch, 10
Computer Science Laboratory, 3, 293
Mobility Server, 157
SGSN product, 2

ERL file extension, 40
erl module, 78, 259
Erlang

additional information, 449
AXD301 ATM switch case study, 10
C++ comparison, 12–13
characteristics, 4–9
CouchDB case study, 11
getting started, 445–447
history, 3
multicore processing, 9

popular applications, 1–3
tools supported, 447–449
usage suggestions, 14

Erlang Driver Toolkit (EDTK), 352
Erlang Enhancement Proposal (EEP), 352
ERLANG file extension, 186
erlang module

append_element/2 function, 54
bump_reductions function, 96
demonitor function, 144, 147
documentation, 53, 78
functionality, 79, 259
is_alive function, 249
monitor/2 function, 144, 147
port program support, 349
trace/3 function, 357, 362
trace_pattern/3 function, 362–365
yield function, 96

Erlang Preprocessor (EPP), 165
Erlang shell

chapter exercises, 43
inserting records in ETS tables, 227
modes supported, 182
overview, 16, 92
records in, 161
runtime errors, 68
troubleshooting atom syntax, 19

Erlang type notation, 395–398
Erlang Virtual Machine, 41
Erlang Web framework, 246
erlang.cookie file, 250
erlectricity library, 336, 351
erl_call command, 346
erl_connect function, 342, 344
erl_connect_init function, 344
erl_error function, 342
erl_eterm function, 342
erl_format function, 342, 344
erl_global function, 342
erl_init function, 344
erl_interface library, 336, 342–346
erl_malloc function, 342
erl_marshal function, 342
error class, 72–74
error handling

chapter exercises, 154
concurrent programming, 112–114
exit signals, 139–148
process links and, 7, 139–148

456 | Index

robust systems, 148–154
runtime errors, 68, 378
supervisor behaviors and, 7
try...catch construct, 70–77

ets module
creating tables, 216
file2tab function, 226
first/1 function, 221
fun2ms/1 function, 223, 225, 382, 383–

391
handling table elements, 217
i function, 226
info/1 function, 217, 226
insert/2 function, 217, 355, 376
last/1 function, 222
lookup/2 function, 217, 220, 355
match specifications, 382
match/2 function, 223–224
new function, 216
next/2 function, 221
safe_fixtable/2 function, 221, 236
select function, 223, 225
tab2file function, 226
tab2list function, 226

ETS tables
bags, 214
building indexes, 218, 222
chapter exercises, 243, 393
concurrent updates and, 221
creating, 216
Dets tables and, 229
duplicate bags, 214
functionality, 213
handling table elements, 217
implementations and trade-offs, 214–216
match specifications, 225
Mnesia database and, 216
mobile subscriber database example, 231–

242
operations on, 226
ordered sets, 214
pattern matching, 223–224
records and, 226
sets, 214
simple lookups, 294
traversing, 220
visualizing, 228

eunit library
assert macro, 416

assertEqual macro, 414, 416
assertError macro, 415, 416
assertExit macro, 416
assertMatch macro, 416
assertNot macro, 416
assertThrow macro, 416
including, 413
listToTree/1 function, 414
test/1 function, 419
treeToList/1 function, 414

EUnit tool
chapter exercises, 420
debugging support, 419
functional testing example, 413–415
functionality, 14, 412, 413
infrastructure, 416–418
macro support, 413, 416
test representation, 417
test-generating function, 416
testing concurrent programs, 419
testing state-based systems, 418

event handlers
chapter exercises, 138
design patterns, 117, 131–137
implementing, 291
wxErlang support, 312

event managers, 131–134
event tables, 310
event types, 312
exactly equal to (=:=) operator, 28, 378
exactly not equal to (=/=) operator, 28, 378
existing flag, 359
exit function, 72, 145, 147
exit signals

process links and, 139–148
propagation semantics, 148
trapping, 142–144, 148

exited/2 function, 151
export directive, 40, 168
expressions

chapter exercises, 82, 85
Erlang shell and, 93
functional data types, 192
functionality, 199
pattern matching, 33–38
term comparison, 28–29

Extensible Messaging and Presence Protocol
(XMPP), 2

Index | 457

F
f/0 shell command, 84, 446
f/1 shell command, 447
Facebook, 2
fault tolerance

distributed programming and, 245
distributed systems and, 245, 247
layering and, 149

features, Erlang
concurrency, 5, 6
distributed computation, 7
high-level constructs, 4
integration, 8
message passing, 5
robustness, 6
soft real-time properties, 6

FFI (foreign function interface), 352
file function, 163, 168, 179
file module, 79
file2tab function, 226
filename module, 79
files/1 function, 405
fill/0 function, 375, 376
filter function, 191, 192, 196
finite state machines (see FSMs)
firewalls, 261
first/1 function, 221
float/1 function, 54
floating-point division operator, 17
floats

defined, 17
Erlang type notation, 397
mathematical operations, 17

float_to_list/1 function, 54
flush/0 shell command, 93, 324, 359
foldl/3 function

lists module, 196
mnesia module, 305

foreach statement, 193
foreign function interface (FFI), 352
format/1 function, 369
format/2 function, 57, 101, 356
frequency module

allocate function, 119, 123
deallocate function, 120, 124
init function, 121

Fritchie, Scott Lystig, 215
FSMs (finite state machines)

busy state, 117

chapter exercises, 138
offline state, 117
online state, 117
process design patterns, 117, 126–131, 290

fun2ms/1 function
dbg module, 375–382, 383–391
ets module, 223, 225, 382, 383–391

function clause
components, 38
conditional evaluations, 38, 46
guards, 50–52
runtime errors, 68
variable scope, 49

function definitions
case expressions and, 47
fun expressions, 192
overview, 38
pattern matching, 4

functional data types (funs)
already defined functions, 194
defined, 189
Erlang type notation, 397
example, 190
fun expressions, 192
functions and variables, 195
functions as arguments, 190–192
functions as results, 193
lazy evaluation, 197
predefined higher-order functions, 195–

196
transaction support, 299

functional programming, 9, 45, 189
functional testing, 413–415
functions, 45

(see also BIFs; higher-order functions)
already defined, 194
arguments and, 38, 190–192
as results, 193
binding to variables, 5, 30
callback, 132, 265
chapter exercises, 44, 83, 86
client, 122
coding strategies, 435
EDoc documentation, 403, 404
fully qualified function calls, 176
grouping, 40
hash, 215
list comprehensions and, 200
list supported, 25–27

458 | Index

literal, 226, 379–381
meta programming, 55
overview, 38–40
pattern matching, 33–38, 39, 47
records and, 160
recursions versus iterations, 67
reduction steps, 96
return values, 424–425
running, 40
runtime errors, 70
tail-recursive, 63–67, 108, 440
test-generating, 416
variables and, 195

G
garbage collection

atoms and, 104
chapter exercises, 392
memory management and, 33
overview, 6
trace BIFs and, 361
tuning for, 441

garbage_collection flag, 361
gb_trees module, 183
generators

bitstring comprehension, 206
multiple, 200
overview, 198

gen_event module, 291
gen_fsm module, 290
gen_server module

call/2 function, 270
cast/2 function, 268
chapter exercises, 291
functionality, 266
passing messages, 268–270
server example in full, 271–276
start function, 266, 267
starting servers, 266
start_link/4 function, 266, 267
stopping servers, 270

gen_tcp module
accept function, 331
close function, 331
connect function, 331
controlling process function, 331
listen/2 function, 330
open/2 function, 331
recv/1 function, 331

recv/2 function, 328, 330, 331
recv/3 function, 328, 330

gen_udp module
close function, 326
functionality, 324
open/2 function, 330
recv/2 function, 326
recv/3 function, 326

getopts function, 332
get_data function, 133
get_env/0 function, 313
get_line/1 function, 57
get_path function, 180, 181, 282
get_request/3 function, 329
get_seq_token/0 function, 391
go/0 function, 100
greater than (>) operator, 28, 378
greater than or equal to (>=) operator, 28, 378
group leaders, 258
group_leader function, 258
guard expression, 51, 225
guards

BIF support, 378, 384
in list comprehensions, 198
overview, 50–52, 198
semicolon support, 378

Gudmundsson, Dan, 309

H
h function, 366
h/0 shell command, 447
handle function, 125
handle/3 function, 377
handle_call/3 function, 268
handle_cast/1 function, 268
handle_event function, 135
handle_msg function, 126, 377
handling errors (see error handling)
hash (#), 15
hash functions, 215
hash tables, 215
Haskell language, 30, 197
hd/1 function, 53, 378
Heriot-Watt University, 12
High Performance Erlang Project (HiPE), 2
higher-order functions

already defined functions, 194
chapter exercises, 211, 212
defined, 193

Index | 459

functions and variables, 195
functions as arguments, 190
functions as results, 193
lazy evaluation, 197
predefined in lists module, 195–196

HiPE (High Performance Erlang Project), 2

I
i function

ets module, 226
inet module, 333

i shell command, 91, 96, 103
if construct

development considerations, 431
overview, 49–50
runtime errors, 69

ifdef conditional macro, 167
ifndef conditional macro, 167
implementing records, 162–163
import directive, 42
include directive, 168
include files, 168
indexes

building, 218, 222
chapter exercises, 86, 243
documentation, 78
Mnesia database, 301
ordered sets, 219
unordered structure, 219

index_read/3 function, 302
inet module

functionality, 331
getopts function, 332
i function, 333
setopts function, 332

inets.app file, 283
info/1 function, 217, 226
information hiding, 119
inheritance flags

overview, 360
set_on_first_spawn flag, 360, 367
set_on_spawn flag, 360, 367

init function
event handlers, 135, 136
frequency module, 121
OTP behaviors, 267, 268, 276
supervisors, 276, 278

initialize function, 125
insert/2 function, 217, 355, 376

integers
characters and strings, 22
Erlang type notation, 397
overview, 15

integer_to_list/1 function, 54
integration overview, 8
interfaces

defined, 421
development considerations, 423, 426

interlanguage working
C nodes, 342–346
chapter exercises, 353
erl_call command, 346
FFI and, 352
interworking with Java, 337–342
languages supported, 336
library support, 350–352
linked-in drivers, 352
overview, 335–337
port programs, 346–350

io module
format/1 function, 369
format/2 function, 57, 101, 356
functionality, 57–59, 79
get_line/1 function, 57
read/1 function, 57
write/1 function, 57

io_handler event handler, 135
is_alive function, 249
is_atom function, 51, 378
is_binary function, 51, 202, 378
is_boolean function, 20, 51
is_constant function, 378
is_float function, 378
is_function function, 378
is_integer function, 378
is_list function, 378
is_loaded function, 180
is_number function, 378
is_pid function, 378
is_port function, 378
is_record function, 164, 378
is_reference function, 378
is_tuple function, 51, 378
IT University (Sweden), 2
iterative versus recursive functions, 67

J
Java language, 336, 337–342

460 | Index

JInterface Java package
additional capabilities, 342
communication support, 338
distribution, 336
getting programs to run correctly, 341
interworking with, 337–342
nodes and mailboxes, 337
representing Erlang types, 338
RPC support, 339
Turing test, 340

K
Katz, Damien, 11
kernel, 281
keydelete/3 function, 124
keysearch/3 function, 69

L
Lamport, Leslie, 245
last/1 function, 222
layering processes, 148–154
lazy evaluation, 197
length/1 function, 53, 378
less than (<) operator, 28, 378
less than or equal to (<=) operator, 28, 378
libraries

development considerations, 422
support for communication, 350–352

library modules (see modules)
Lindahl, Tobias, 399
link function, 139, 146
linked-in drivers, 352
links, process

chapter exercises, 154
defined, 146
error handling and, 7, 139–148
exit signals and, 139–148

list comprehensions
chapter exercises, 211, 212
component parts, 198
defined, 5, 189
example, 198
multiple generators, 200
pattern matching, 199
quicksort, 201
standard functions, 200

listen/2 function, 330
lists

chapter exercises, 83–85
efficiency consierations, 439
empty, 23
Erlang type notation, 397
functions and operations, 25–27
lazy evaluation and, 197
overview, 22–27
processing, 24
property, 27
recursive definitions, 24

lists module
all function, 196
any function, 196
dropwhile function, 196
filter function, 196
foldl/3 function, 196
functionality, 25, 80
keydelete/3 function, 124
keysearch/3 function, 69
list comprehensions, 200
map function, 196
member function, 96
partition function, 196
predefined higher-order functions, 195–

196
reverse function, 96
split function, 25

listToTree/1 function, 414
list_to_atom/1 function, 54
list_to_binary/1 function, 202, 349
list_to_existing_atom/1 function, 54
list_to_float/1 function, 54
list_to_integer/1 function, 54, 75
list_to_tuple/1 function, 54
literal functions, 226, 379–381
ln function, 371
load_file function, 180
logical operators, 20, 378
lookup/2 function, 217, 220, 355
loop/0 function, 100, 143, 365
loop/1 function, 123
ltp function, 390

M
m (Module) command, 42
macros

chapter exercises, 170
conditional, 167
debugging support, 166–168

Index | 461

EDoc support, 408
EUnit support, 413, 416
functionality, 157, 165
include files, 168
parameterized, 166, 170
simple, 165

mailboxes
interworking with Java, 337
message passing, 92
retrieving messages, 94
selective receives, 98

make_ref function, 210
make_rel function, 288
make_script/2 function, 290
map function, 191, 192, 196
match specifications

conditions, 384–387
defined, 225–226, 374
ets and dbg diferences, 382
fun2ms/1 function, 375–382, 383–391
generating, 375–382
head, 383
saving, 390
specification body, 387–390
tracing via, 356

match/2 function, 223–224
math module, 80
mathematical operators, 17, 18
Mattsson, Håkan, 293
member function, 96
memory management

background, 33
concurrent programming and, 108
garbage collection and, 362
processes and, 5
tail recursion and, 109

message passing
gen_server module, 268–270
overview, 5, 92–94

message/1 function, 380
messages

node communications, 252
receiving, 94–102, 115

meta programming, 55
microblogging application, 314–316
miniblogging application, 317–320
Mnesia database

additional information, 305
as OTP application, 264

background, 293
chapter exercises, 306–307
configuring, 295–298
deleting objects, 300
dirty operations, 302–304
ETS tables and, 216
inconsistent tables, 304
indexing, 301
partitioned networks, 304
setting up schema, 295
starting, 296
table structure, 296–298
transactions, 299–304
visualizing tables, 228
when to use, 293–295

mnesia module
abort function, 299
create_schema function, 295
create_table function, 296, 298
delete function, 300
dirty_delete function, 303
dirty_index_read function, 303
dirty_read function, 303
dirty_write function, 303, 304
foldl/3 function, 305
read function, 300
set_master_nodes function, 305
start function, 296
stop function, 296
transaction function, 299
wait_for_tables function, 298
write/1 function, 299, 302

mobile subscriber database
as OTP application, 264
ETS and Dets tables, 231–242
generic servers, 266–276

MochiWeb library, 2
module directive, 40, 168
modules

chapter exercises, 44, 85
commonly used, 79–80
defined, 40
development considerations, 421–426
directive support, 41
documentation, 77
EDoc documentation, 403, 405
library applications, 281
purging, 182
running functions, 40

462 | Index

upgrading, 173, 176
module_info function, 175
monitor/2 function, 144, 147
monitoring systems

application monitor tool, 287
chapter exercises, 262
client/server model, 150

monitor_node function, 257
Motorola, 2, 12
multicore processing

benchmarking example, 106
concurrency and, 9

multiplication (*) operator, 17, 378
mutex module

signal function, 129
wait function, 129

mutex semaphore, 129, 154
MySQL database, 294

N
n function, 371
nesting

data types, 32
development considerations, 430

net_adm module
functionality, 260
ping/1 function, 252

net_kernel module
connect function, 255
functionality, 260

new function, 216
next/2 function, 221
Nilsson, Bernt, 10
node function, 248, 249, 378
nodes

communication and messages, 252
communication and security, 250
connection considerations, 253–255
defined, 247
distribution and security, 251
hidden, 254
interworking with Java, 337
naming, 249
pinging, 252
secret cookies, 250
visibility of, 249

not equal to (/=) operator, 28, 378
not logical operator, 21, 378
now/0 function, 56, 79, 362

null function, 314
Nyström, Jan Henry, xx, 13

O
object identifiers, 312
open source projects, 2, 4
Open Telecom Platform (see OTP entries)
open/2 function, 330, 331
open_file/1 function, 230
open_port/2 command, 347
operators

binary, 21, 208
bitwise, 208, 378
comparison, 28, 378, 385
list supported, 25–27
logical, 20, 378
match specifications and, 378
mathematical, 17
reduction steps, 96
relational, 28
runtime errors, 70

optimization, tail-call recursion, 66
or logical operator, 20, 378
ordered sets

building indexes, 219
ETS tables, 214
storing, 215

orelse logical operator, 20, 378
os:cmd/1 function, 346
OTP applications

application monitor tool, 287
application resource file, 283–284
defined, 264, 281
directory structure, 282
examples, 264
Mnesia database, 295
starting and stopping, 284–286

OTP behaviors
chapter exercises, 291
generic servers, 266–276
overview, 7, 263–266
release handling, 287–290
supervisors, 276–280
testing, 420

OTP middleware, 7, 263
OtpConnection class, 342
OtpErlangAtom class, 338
OtpErlangBinary class, 342
OtpErlangBoolean class, 338

Index | 463

OtpErlangByte class, 338
OtpErlangChar class, 338
OtpErlangDouble class, 338
OtpErlangFloat class, 338
OtpErlangInt class, 338
OtpErlangLong class, 338
OtpErlangObject class, 338, 340
OtpErlangPid class, 338
OtpErlangShort class, 338
OtpErlangString class, 338
OtpErlangTuple class, 338, 340
OtpErlangUInt class, 338
OtpMbox class, 338, 342
OtpNode class, 337, 341

P
p function, 366, 371
palin/1 function, 191
parameters

accumulating, 63
macro support, 166, 170

parentheses ()
encapsulating expressions, 75
for function parameters, 38
overriding precedence, 18
type declarations and, 396

partition function, 196
partitioned networks, 304
pattern matching

binaries and, 201, 205
bit sequences, 4
chapter exercises, 44
don’t care variables, 37
ETS tables, 223–224
fun expressions, 192
function definitions, 4
functions, 39, 47
list comprehensions, 199
overview, 33–38
records and, 160
wildcard symbols, 35, 224

peer module
connect function, 334
send/1 function, 334

Persistent Lookup Table (PLT), 401
Persson, Mats-Ola, 309
pi/0 function, 4, 39, 80
pid (process identifier)

defined, 90

Erlang type notation, 397
registered processes, 102
spawn function, 90

pid/3 function, 93
pid_to_list/1 function, 367
ping module

example, 364
send/1 function, 358, 367
start function, 365
tracing example, 364

ping/1 function, 252
PLT (Persistent Lookup Table), 401
pman (process manager), 114
port programs

commands supported, 347–349
communicating data via, 349–350
overview, 346

port_close command, 348
port_command/2 function, 348
port_connect command, 348
PostgreSQL database, 294
prep_stop function, 285
prettyIndexNext function, 222
priv_dir function, 282
process dictionary, 55, 423
process identifier (pid)

defined, 90
Erlang type notation, 397
registered processes, 102
spawn function, 90

process links (see links, process)
process manager (pman), 114, 359
process scheduling, 96
process skeleton, 107, 125–126
process starvation, 112–114
process state, 107
process trace flags

all flag, 359
arity flag, 363
call flag, 360, 362
cpu_timestamp flag, 362
existing flag, 359
garbage_collection flag, 361
inheritance flags, 360
procs flag, 359
receive flag, 358
return_to flag, 362
running flag, 359
send flag, 358

464 | Index

set_on_first_link flag, 361, 367
set_on_link flag, 361, 367
timestamp flag, 362
wildcards, 363

processes
atomic operations, 147
behavioral aspects, 107
benchmarking, 106
bottlenecks, 109
client/server model, 117, 118–124
concurrent programming case study, 110
creating, 90–92
defined, 89
dependency considerations, 94
design patterns, 107, 117, 125–126
development considerations, 426–429
Erlang shell and, 92
event handler, 117, 131–137
exit signals, 139–148
FSM model, 117, 126–131
group leaders, 258
handle function, 125
initialize function, 125
layering, 148–154
message passing, 5, 92–94
receiving messages, 94–102
registered, 102–104
spawning, 90
supervisor, 7, 148, 152–154, 155, 264, 276–

280
tail recursion, 108
terminate function, 125
threads versus, 97
timeouts, 104–106
tracer, 357
upgrading, 182
worker, 148, 264, 276

processes function, 91
processWords function, 220
process_flag function, 113, 142–144, 147
process_info/2 function, 423
process_msg function, 375
procs flag, 359
proc_lib module, 291
profiling functions, 369
programming (see software development)
Prolog language, 19
property lists, 27
proplists module, 27, 311

purge function, 182
purging modules, 182

Q
qualification, size/type, 203
question mark (?), 165
queue module, 80
quotation marks

atom syntax, 19
include files and, 168
strings and, 23

R
RabbitMQ protocol, 2
race conditions

concurrent programming, 112–114
defined, 98

random module, 80
rd command, 161
read function, 175, 300
read/1 function, 57
reading objects, 300
receive ... after construct, 105
receive clause

receiving messages, 94–97
requests supported, 123
timeouts, 105

receive flag, 358
receiving messages, 94–102, 115
records

accessing, 159
chapter exercises, 168–169
defined, 158
Erlang shell and, 161
ETS tables and, 226
example, 158
functionality, 157
functions and, 160
implementing, 162–163
include files, 168
pattern matching, 160
tuple comparison, 158
with typed fields, 395

record_info function, 164
recursion

controlling, 45
Erlang type notation, 397
functionality, 45, 59–63

Index | 465

iteration versus, 67
tail-recursive functions, 63–67, 108, 440

recv/1 function, 331
recv/2 function

gen_tcp module, 328, 330, 331
gen_udp module, 326

recv/3 function
gen_tcp module, 328, 330
gen_udp module, 326

reduction steps, 96
reference data type

defined, 190, 210
EDoc support, 409

regexp module, 220
registered processes, 102–104
registry function, 342
regression testing, 411
regs shell command, 103
relational operators, 28
release handling, 287–290
rem operator, 17, 378
remote procedure call (RPC)

interworking with Java, 339
overview, 256–258

remove_call/2 function, 257
request function, 141, 142
results

fun expressions, 192
functions as, 193

return values, 424–425
return_to flag, 362
reverse function, 96
RFC 4614, 206
rl command, 161
robust systems, 6, 148–154
root_dir function, 180
round/1 function, 54, 378
RPC (remote procedure call)

interworking with Java, 339
overview, 256–258

rpc module, 258
rr/1 shell command, 297
rtp function, 391
Ruby language, interworking with, 336, 351
running flag, 359
runtime errors

match specifications and, 378
shell considerations, 68

S
safe_fixtable/2 function, 221, 236
Sagnonas, Kostis, 399
sasl directory, 186
scheduling, process, 96
schemas, 295
script2bootfile function, 290
secret cookies, 250
Secure Sockets Layer (SSL), 333
security

cookie information and, 253
node communications, 250
node distribution and, 251

select function, 223, 225
selective receives, 98–99
self function

exit signals, 141
guard support, 378
message passing, 92
receiving messages, 99

semaphore, 129, 154
semicolon (;), 52, 378
send flag, 358
send/1 function

peer module, 334
ping module, 358, 367
tracing, 365

send_event function, 133
sequential programming

built-in functions, 53–59
chapter exercises, 82–87
conditional evaluations, 46–50
debugging, 80
efficiency considerations, 437
error handling, 70–77
guards, 50–52
library modules, 77–80
recursion, 59–70
testing, 420

seq_trace module, 391
serialization, binary, 208, 413–415
setelement/3 function, 53
setopts function, 332
sets

defined, 214
Dets tables, 229
ETS tables, 214
ordered, 214, 215, 219
storing, 215

466 | Index

set_env/1 function, 313
set_master_nodes function, 305
set_on_first_link flag, 361
set_on_first_spawn flag, 360, 367
set_on_link flag, 361, 367
set_on_spawn flag, 360, 367
set_on__first_link flag, 367
set_seq_token/2 function, 391
shell (see Erlang shell)
Short Message Service (SMS), 117, 231
show function, 314
signal function, 129
SimpleDB database, 2
sin/1 function, 80
single assignment, 30
size qualification, 203
size/1 function, 378
sleep/1 function, 106
Smart, Julian, 309
SMP (symmetric multiprocessing)

background, 9
benchmarking example, 106

SMS (Short Message Service), 117, 231
socket files, 373
socket programming

additional information, 333
chapter exercises, 334
inet module, 331–333
overview, 323
TCP support, 327–331
UDP support, 323–327

software development, 426
(see also concurrent programming;
sequential programming)
application considerations, 421–426
coding strategies, 435–437
common mistakes, 442
concurrency considerations, 426–429
efficiency considerations, 437–442
module considerations, 421–426
process considerations, 426–429
stylistic conventions, 430–435
test-driven, 411–420

software upgrades
backward compatibility, 186
behind the scenes, 176–179
chapter exercises, 186, 420
code server, 180
ERLANG file extension, 186

intermodule calls, 176
intromodule calls, 176
loading code, 179
modules and, 173
purging modules, 182
upgrading processes, 182

soft_purge function, 182
spawn function, 90, 107
spawn_link function

process links and, 139, 146
RPC support, 257
supervisor example, 152

spawn_monitor function, 146
split function, 25
splits function, 200
split_binary function, 202
square brackets [], 22, 23
SSL (Secure Sockets Layer), 333
start function

appmon module, 287
event manager, 132
gen_server module, 266, 267
manipulating applications, 285
mnesia module, 296
ping module, 365
process trace flags, 358
race condition example, 113
supervisor processes, 276
tcp module, 330
tracing, 365
tv module, 228

start_children/1 function, 153
start_link/0 function, 279
start_link/2 function, 276
start_link/4 function, 266, 267
sticky directories, 181
stick_dir function, 181
stop function

application module, 296
dbg module, 368
event manager, 132
manipulating applications, 285
mnesia module, 296

stop_clear/0 function, 368
stop_trace_client function, 373
storage management

automated, 6
ETS tables, 215
Mnesia and, 294

Index | 467

string module
functionality, 80
to_lower/1 function, 220

strings
atom comparison, 23
binaries and, 23
concatenating, 27
empty, 23
Erlang type notation, 397
representation, 22

subtraction (–) operator, 17, 378
success types, 399
supervision trees, 264
supervisors

chapter exercises, 155
child specifications, 278
defined, 148, 264, 276
dynamic children, 280
error handling, 7
examples, 152–154, 279
generic behavior, 276
supervisor specifications, 277

symmetric multiprocessing (SMP)
background, 9
benchmarking example, 106

sync function, 229
sys module, 291
systools module

make_rel function, 288
script2bootfile function, 290

T
T-Mobile, 2
tab2file function, 226
tab2list function, 226
tags, defined, 21
tail-recursive functions, 63–67, 108, 440
tan/1 function, 80
TCP (Transmission Control Protocol)

decoding segments, 206
socket programming, 327–331

tcp module, 330
TDD (test-driven development), 411–420
term comparison, 28–29
terminate function

event handlers, 135, 136
process pattern example, 125
stopping servers, 270

term_to_binary/1 function, 202, 343, 349

test-driven development (TDD), 411–420
test/0 function, 349
test/1 function, 419
testing

chapter exercises, 420
concurrent programs, 419, 420
EUnit support, 411–420
functional, 413–415
OTP behaviors, 420
regression, 411
sequential functions, 420
state-based systems, 418
tools supported, 14

Thompson, Simon, xvi
threads, processes versus, 97
throw/1 function, 72, 76
tilde (~), 57
time module, 80
timeouts, 104–106
timestamp flag, 362
timestamps, 361
tl/1 function, 53, 378
to_lower/1 function, 220
tp/2 function, 367, 369, 376, 391
tpl/2 function, 369
trace BIFs

background, 355
chapter exercises, 392
garbage collection and, 361
inheritance flags, 360
process trace flags, 358–360
timestamps, 361
trace/3 function, 357
trace_pattern/3 function, 362–365

trace events
defined, 356
tracer process and, 357

trace facility, 356
trace flags (see process trace flags)
trace/3 function, 357, 362
tracer process, 357
tracer/2 function, 372, 373
trace_client function, 373
trace_pattern/3 function, 362–365
trace_port function, 373
tracing functions, 369
tracing mechanism

additional information, 391
chapter exercises, 392

468 | Index

dbg tracer, 365–374
fun2ms/1 function, 374–382
match specifications, 383–391
trace BIFs, 357–362
trace_pattern/3 function, 362–365
typical scenarios, 355–357

transaction function, 299
transactions, Mnesia

chapter exercises, 306
defined, 299
deleting objects, 300
dirty operations, 302–304
indexing, 301
reading objects, 300
writing objects, 299

Transmission Control Protocol (TCP)
decoding segments, 206
socket programming, 327–331

trapping exits, 142–144, 148
traps, 96
treeToList/1 function, 414
troubleshooting

atom syntax, 19
concurrent programming, 112–114
epmd command support, 260

trunc/1 function, 54, 378
try...catch construct

development considerations, 434
exit function, 145
functionality, 70–77

tuples
disadvantages, 157
Erlang type notation, 397
ETS tables and, 213
overview, 21
processing, 24
record comparison, 158
supervisor specification, 277

tuple_size/1 function, 53
tuple_to_list/1 function, 54
Turing test, 340
Turing, Alan, 340
tv:start function, 228
type notation, 395–398
type qualification, 203
TypEr tool

additional information, 399
Dialyzer support, 401
functionality, 32

options supported, 399
success types, 399
type inference, 400

U
UDP (User Datagram Protocol), 323–327
ulimit command, 350
unary addition operator, 17
unary subtraction operator, 17
unbound variables, 34
undef conditional macro, 167
undef exception, 70
underscore (_), 19, 37
unit testing, 411–420
Universidad Politécnica de Madrid, 2
University of Kent, 2
unlink function, 146
unstick_dir function, 181
upgrade function, 182–186
upgrades (see software upgrades)
Uppsala University, 2
useful modules, 79–80
User Datagram Protocol (UDP), 323–327
usr module

documentation, 407
records with typed fields, 395

usr.erl module, 407
usr_db module, 266
usr_db.erl module, 403–405, 407
usr_sup module, 279

V
v/1 shell command, 447
variables

bound, 5, 30, 34, 97–99
don’t care, 37
dynamic typing, 30
environment, 284, 285
functionality, 30
functions and, 195
pattern matching, 33–38
scope considerations, 48
unbound, 34

Virding, Robert, 3
visualizing tables, 228

W
wait function, 129

Index | 469

wait_for_tables function, 298
waterfall development model, 411
werl shell, 41
whereis function, 102, 113
which_applications function, 281, 283
Wikström, Claes, 293
wildcards

don’t care variables, 37
pattern matching and, 35, 224
process trace flags, 363

Williams, Mike, 3, 14
Wings 3D modeler, 2
worker processes, 148

defined, 276
OTP behaviors and, 264

write/1 function
io module, 57
mnesia module, 299, 302

write/3 function, 174
writing objects, 299
wtp function, 391
wx class

get_env/0 function, 313
null function, 314
set_env/1 function, 313

wxClass:destroy/1 function, 313
wxErlang

background, 310, 313
chapter exercises, 321
event handlers, 312
event types, 312
MicroBlog example, 314–316
MiniBlog example, 317–320
object identifiers, 312
objects and types, 311
obtaining, 321
running, 321

wxEvtHandler class, 313
wxFrame:show function, 314
wxMenu object, 311
wxObject class, 310
wxTextCtrl module, 319
wxWidgets

additional information, 310
background, 309
chapter exercises, 321
fucnctionality, 310
functionality, 309, 313

wxWindow class, 310

X
XMPP (Extensible Messaging and Presence

Protocol), 2
xor logical operator, 21

Y
Yahoo!, 2
yield function, 96

470 | Index

About the Authors
Francesco Cesarini is the founder of Erlang Training and Consulting (http://www
.erlang-consulting.com). Having used Erlang on a daily basis since 1995, he started his
career as an intern at Ericsson’s computer science lab, the birth place of Erlang. He
spent four years at Ericsson working with flagship Erlang projects, including the R1
release of the OTP middleware. He has taught Erlang/OTP to all parties involved in
the software cycle, including developers, support engineers, testers, and project and
technical managers. In 2003, he also started teaching undergraduate students at the IT
University of Gothenburg.

Soon after Erlang was released as open source, he founded Erlang Training and Con-
sulting. With offices in the U.K., Sweden, Poland (and soon in the U.S.), the company
has become the world leader in Erlang-based consulting, contracting, support, and
training and systems development. Francesco is active in the Erlang community not
only through regular talks, seminars, and tutorials at conferences worldwide, but also
through his involvement in international research projects. He organizes local Erlang
user groups and, with the help of his colleagues, runs the trapexit.org Erlang com-
munity website.

Simon Thompson is a professor of logic and computation in the computing laboratory
of the University of Kent, where he has taught computing at undergraduate and post-
graduate levels for the past 25 years, and where he has been department head for the
last 6. His research work has centered on functional programming: program verifica-
tion, type systems, and, most recently, development of software tools for functional
programming languages. His team has built the HaRe tool for refactoring Haskell pro-
grams and is currently developing Wrangler to do the same for Erlang.

Simon’s research has been funded by various agencies, including EPSRC and the
European Framework programme. His training is as a mathematician: he has an M.A.
in mathematics from Cambridge and a D.Phil. in mathematical logic from Oxford. He
has written three books in his field of interest: Type Theory and Functional Program-
ming; Miranda: The Craft of Functional Programming, and Haskell: The Craft of Func-
tional Programming, Second Edition (all books published by Addison-Wesley).

Colophon
The animal on the cover of Erlang Programming is a brush-tailed rat kangaroo
(Bettongia penicillata). The brush-tailed rat kangaroo is a small mammal found in
western and southern Australia. It is a cross between a rat and a small wallaby, and
although some of its features are reminiscent of a rat, it is not a rodent and is instead
classified as a marsupial. In south Australia, they are found in semi-arid scrublands and
grasslands; in western Australia, they prefer eucalyptus forests containing a vegetative
layer of tussock grass, low woody scrub, and occasional bare patches of ground. They

http://www.erlang-consulting.com
http://www.erlang-consulting.com
http://www.trapexit.org

once inhabited more than 60% of the Australian mainland, but now they inhabit less
than 1%.

Brush-tailed rat kangaroos have an unusual mammalian diet that consists of bulbs,
tubers, seeds, insects, resins, and underground fungi; they do not drink water or eat
green plants. Although fungi are not considered a good food source for mammals in
general, they provide the nutrients necessary for the brush-tailed rat-kangaroo’s health.

The kangaroos’ coats are yellowish-gray in color, their feet are pale brown and have
hairs that bristle, and their long tails have a prominent black crest. Their tails are also
useful: brush-tailed rat kangaroos are able to curl their tails to carry bundles of material
to build their nests. They are relatively slow-moving creatures, but are able to hop away
quickly when disturbed.

Brush-tailed rat kangaroos are extremely nocturnal. During the day they rest in well-
constructed, hidden nests made up of grass and shredded bark. They appear to be
solitary except when ready to mate.

Mating occurs year round, and females give birth to one young after a gestation period
of 21 days. The newborn remains in the mother’s pouch for about 98 days, and then
stays in a nest until a new infant is born. As with many other kangaroos, the brush-
tailed rat kangaroo mates shortly after giving birth and can keep embryos in a state of
dormancy until they are needed.

The cover image is from Cassell’s Natural History. The cover font is Adobe ITC Gara-
mond. The text font is Linotype Birka; the heading font is Adobe Myriad Condensed;
and the code font is LucasFont’s TheSansMonoCondensed.

	Table of Contents
	Foreword
	Preface
	Francesco: Why Erlang?
	Simon: Why Erlang?
	Who Should Read This Book?
	How to Read This Book
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Introduction
	Why Should I Use Erlang?
	The History of Erlang
	Erlang’s Characteristics
	High-Level Constructs
	Concurrent Processes and Message Passing
	Scalable, Safe, and Efficient Concurrency
	Soft Real-Time Properties
	Robustness
	Distributed Computation
	Integration and Openness

	Erlang and Multicore
	Case Studies
	The AXD301 ATM Switch
	CouchDB
	Comparing Erlang to C++

	How Should I Use Erlang?

	Chapter 2. Basic Erlang
	Integers
	The Erlang Shell
	Floats
	Mathematical Operators

	Atoms
	Booleans
	Tuples
	Lists
	Characters and Strings
	Atoms and Strings
	Building and Processing Lists
	List Functions and Operations

	Term Comparison
	Variables
	Complex Data Structures
	Pattern Matching
	Functions
	Modules
	Compilation and the Erlang Virtual Machine
	Module Directives

	Exercises
	Exercise 2-1: The Shell
	A. Erlang expressions
	B. Assigning through pattern matching
	C. Recursive list definitions
	D. Flow of execution through pattern matching
	E. Extracting values in composite data types through pattern matching

	Exercise 2-2: Modules and Functions
	Exercise 2-3: Simple Pattern Matching

	Chapter 3. Sequential Erlang
	Conditional Evaluations
	The case Construct
	Variable Scope
	The if Construct

	Guards
	Built-in Functions
	Object Access and Examination
	Type Conversion
	Process Dictionary
	Meta Programming
	Process, Port, Distribution, and System Information
	Input and Output

	Recursion
	Tail-Recursive Functions
	Tail-Call Recursion Optimization
	Two accumulators example

	Iterations Versus Recursive Functions

	Runtime Errors
	Handling Errors
	Using try ... catch
	Using catch

	Library Modules
	Documentation
	Useful Modules

	The Debugger
	Exercises
	Exercise 3-1: Evaluating Expressions
	Exercise 3-2: Creating Lists
	Exercise 3-3: Side Effects
	Exercise 3-4: Database Handling Using Lists
	Exercise 3-5: Manipulating Lists
	Exercise 3-6: Sorting Lists
	Exercise 3-7: Using Library Modules
	Exercise 3-8: Evaluating and Compiling Expressions
	Exercise 3-9: Indexing
	Exercise 3-10: Text Processing

	Chapter 4. Concurrent Programming
	Creating Processes
	Message Passing
	Receiving Messages
	Selective and Nonselective Receives
	An Echo Example

	Registered Processes
	Timeouts
	Benchmarking
	Process Skeletons
	Tail Recursion and Memory Leaks
	A Case Study on Concurrency-Oriented Programming
	Race Conditions, Deadlocks, and Process Starvation
	The Process Manager
	Exercises
	Exercise 4-1: An Echo Server
	Exercise 4-2: The Process Ring

	Chapter 5. Process Design Patterns
	Client/Server Models
	A Client/Server Example

	A Process Pattern Example
	Finite State Machines
	An FSM Example
	A Mutex Semaphore

	Event Managers and Handlers
	A Generic Event Manager Example
	Event Handlers

	Exercises
	Exercise 5-1: A Database Server
	Exercise 5-2: Changing the Frequency Server
	Exercise 5-3: Swapping Handlers
	Exercise 5-4: Event Statistics
	Exercise 5-5: Phone FSM

	Chapter 6. Process Error Handling
	Process Links and Exit Signals
	Trapping Exits
	The monitor BIFs
	The exit BIFs
	BIFs and Terminology
	Propagation Semantics

	Robust Systems
	Monitoring Clients
	A Supervisor Example

	Exercises
	Exercise 6-1: The Linked Ping Pong Server
	Exercise 6-2: A Reliable Mutex Semaphore
	Exercise 6-3: A Supervisor Process

	Chapter 7. Records and Macros
	Records
	Introducing Records
	Working with Records
	Functions and Pattern Matching over Records
	Records in the Shell
	Record Implementation
	Record BIFs

	Macros
	Simple Macros
	Parameterized Macros
	Debugging and Macros
	Include Files

	Exercises
	Exercise 7-1: Extending Records
	Exercise 7-2: Record Guards
	Exercise 7-3: The db.erl Exercise Revisited
	Exercise 7-4: Records and Shapes
	Exercise 7-5: Binary Tree Records
	Exercise 7-6: Parameterized Macros
	Exercise 7-7: Counting Calls
	Exercise 7-8: Enumerated Types
	Exercise 7-9: Debugging the db.erl Exercise

	Chapter 8. Software Upgrade
	Upgrading Modules
	Behind the Scenes
	Loading Code
	The Code Server
	Loading modules
	Manipulating the code search path

	Purging Modules

	Upgrading Processes
	The .erlang File
	Exercise
	Exercise 8-1: Software Upgrade During Runtime

	Chapter 9. More Data Types and High-Level
 Constructs
	Functional Programming for Real
	Funs and Higher-Order Functions
	Functions As Arguments
	Writing Down Functions: fun Expressions
	Functions As Results
	Using Already Defined Functions
	Functions and Variables
	Predefined, Higher-Order Functions
	Lazy Evaluation and Lists

	List Comprehensions
	A First Example
	General List Comprehensions
	Multiple Generators
	Standard Functions

	Binaries and Serialization
	Binaries
	The Bit Syntax
	Sizes
	Types

	Pattern-Matching Bits
	Bitstring Comprehensions
	Bit Syntax Example: Decoding TCP Segments
	Bitwise Operators
	Serialization

	References
	Exercises
	Exercise 9-1: Higher-Order Functions
	Exercise 9-2: List Comprehensions
	Exercise 9-3: Zip Functions
	Exercise 9-4: Existing Higher-Order Functions
	Exercise 9-5: Length Specifications in List Comprehensions
	Exercise 9-6: Bitstrings

	Chapter 10. ETS and Dets Tables
	ETS Tables
	Implementations and Trade-offs
	Creating Tables
	Handling Table Elements
	Example: Building an Index, Act I
	Traversing Tables
	Example: Building an Index, Act II
	Extracting Table Information: match
	Extracting Table Information: select
	Other Operations on Tables
	Records and ETS Tables
	Visualizing Tables

	Dets Tables
	A Mobile Subscriber Database Example
	The Database Backend Operations
	The Database Server

	Exercises
	Exercise 10-1: Pretty-Printing
	Exercise 10-2: Indexing Revisited
	Exercise 10-3: ETS Tables for System Logging

	Chapter 11. Distributed Programming in Erlang
	Distributed Systems in Erlang
	Distributed Computing in Erlang: The Basics
	Node Names and Visibility
	Communication and Security
	Distributing the Erlang code: A warning

	Communication and Messages
	Node Connections
	Hidden nodes

	Remote Procedure Calls
	The rpc Module
	Essential Distributed Programming Modules

	The epmd Process
	Distributed Erlang Behind Firewalls

	Exercises
	Exercise 11-1: Distributed Associative Store
	Exercise 11-2: System Monitoring

	Chapter 12. OTP Behaviors
	Introduction to OTP Behaviors
	Generic Servers
	Starting Your Server
	Passing Messages
	Stopping the Server
	The Example in Full
	Running gen_server

	Supervisors
	Supervisor Specifications
	Child Specifications
	Supervisor Example
	Dynamic Children

	Applications
	Directory Structure
	The Application Resource File
	Starting and Stopping Applications
	The Application Monitor

	Release Handling
	Other Behaviors and Further Reading
	Exercises
	Exercise 12-1: Database Server Revisited
	Exercise 12-2: Supervising the Database Server
	Exercise 12-3: The Database Server As an Application

	Chapter 13. Introducing Mnesia
	When to Use Mnesia
	Configuring Mnesia
	Setting Up the Schema
	Starting Mnesia
	Mnesia Tables

	Transactions
	Writing
	Reading and Deleting
	Indexing
	Dirty Operations

	Partitioned Networks
	Further Reading
	Exercises
	Exercise 13-1: Setting Up Mnesia
	Exercise 13-2: Transactions
	Exercise 13-3: Dirty Mnesia Operations

	Chapter 14. GUI Programming with wxErlang
	wxWidgets
	wxErlang: An Erlang Binding for wxWidgets
	Objects and Types
	Event Handling, Object Identifiers, and Event Types
	Putting It All Together

	A First Example: MicroBlog
	The MiniBlog Example
	Obtaining and Running wxErlang
	Exercises
	Exercise 14-1: Selecting the Blog File
	Exercise 14-2: Saving Blog Items Separately
	Exercise 14-3: Multiple Blogs in Separate Tabs
	Exercise 14-4: Extending the Entries—Rich Text
	Exercise 14-5: Tagging Entries
	Exercise 14-6: Multiple Users and Comments
	Exercise 14-7: Layout and wxErlang Sizers

	Chapter 15. Socket Programming
	User Datagram Protocol
	Transmission Control Protocol
	A TCP Example

	The inet Module
	Further Reading
	Exercises
	Exercise 15-1: Snooping an HTTP Request
	Exercise 15-2: A Simple HTTP Proxy
	Exercise 15-3: Peer to Peer

	Chapter 16. Interfacing Erlang with Other Programming Languages
	An Overview of Interworking
	Interworking with Java
	Nodes and Mailboxes
	Representing Erlang Types
	Communication
	Putting It Together: RPC Revisited
	Interaction
	The Small Print
	Taking It Further

	C Nodes
	Going Further

	Erlang from the Unix Shell: erl_call
	Port Programs
	Erlang Port Commands
	Communicating Data to and from a Port

	Library Support for Communication
	Working in Ruby: erlectricity
	An example using erlectricity

	Linked-in Drivers and the FFI
	Exercises
	Exercise 16-1: C Factorial via a Port
	Exercise 16-2: Factorial Server in Another Language

	Chapter 17. Trace BIFs, the dbg Tracer, and Match Specifications
	Introduction
	The Trace BIFs
	Process Trace Flags
	Inheritance Flags
	Garbage Collection and Timestamps

	Tracing Calls with the trace_pattern BIF
	The dbg Tracer
	Getting Started with dbg
	Tracing and Profiling Functions
	Tracing Local and Global Function Calls
	Distributed Environments
	Redirecting the Output
	Redirecting to sockets and binary files

	Match Specifications: The fun Syntax
	Generating Specifications Using fun2ms
	Odds and ends with fun2ms

	Difference Between ets and dbg Match Specifications

	Match Specifications: The Nuts and Bolts
	The Head
	Conditions
	The Specification Body
	Saving Match Specifications

	Further Reading
	Exercises
	Exercise 17-1: Measuring Garbage Collection Times
	Exercise 17-2: Garbage Collection Using dbg
	Exercise 17-3: Tracing ETS Table Entries
	Exercise 17-4: Who Is the Culprit?

	Chapter 18. Types and Documentation
	Types in Erlang
	An Example: Records with Typed Fields
	Erlang Type Notation

	TypEr: Success Types and Type Inference
	Dialyzer: A DIscrepancy AnaLYZer for ERlang Programs

	Documentation with EDoc
	Documenting usr_db.erl
	Module tags
	Function tags
	Generic tags

	Running EDoc
	Module pages
	Overview page

	Types in EDoc
	Going Further with EDoc

	Exercises

	Chapter 19. EUnit and Test-Driven Development
	Test-Driven Development
	EUnit
	How to Use EUnit
	Functional Testing, an Example: Tree Serialization

	The EUnit Infrastructure
	Assert Macros
	Test-Generating Functions
	EUnit Test Representation

	Testing State-Based Systems
	Fixtures: Setup and Cleanup

	Testing Concurrent Programs in Erlang
	Exercises
	Exercise 19-1: Testing Sequential Functions
	Exercise 19-2: Testing Concurrent Systems
	Exercise 19-3: Software Upgrade
	Exercise 19-4: Testing OTP Behaviors
	Exercise 19-5: Devising Tests for OTP Behaviors

	Chapter 20. Style and Efficiency
	Applications and Modules
	Libraries
	Dirty Code
	Interfaces
	Return Values
	Internal Data Structures

	Processes and Concurrency
	Stylistic Conventions
	Coding Strategies
	Efficiency
	Sequential Programming
	Lists
	Tail Recursion and Non-tail Recursion
	Concurrency

	And Finally...

	Appendix. Using Erlang
	Getting Started with Erlang
	Installing the System
	Running the Erlang Shell

	Tools for Erlang
	Editors
	Other Tools

	Where to Learn More

	Index

