
Essential Docker
for ASP.NET
Core MVC

—
Adam Freeman

Essential Docker for
ASP.NET Core MVC

Adam Freeman

Essential Docker for ASP.NET Core MVC

Adam Freeman
London, UK

ISBN-13 (pbk): 978-1-4842-2777-0		 ISBN-13 (electronic): 978-1-4842-2778-7
DOI 10.1007/978-1-4842-2778-7

Library of Congress Control Number: 2017938878

Copyright © 2017 by Adam Freeman

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or
hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Gwenan Spearing
Development Editor: Laura Berendson
Technical Reviewer: Fabio Claudio Ferracchiati
Coordinating Editor: Mark Powers
Copy Editor: Kim Wimpsett
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover image designed by Freepik

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales web
page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484227770. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
http://www.apress.com/rights-permissions
http://www.apress.com/rights-permissions
http://www.apress.com/bulk-sales
http://www.apress.com/9781484227770
http://www.apress.com/source-code

Dedicated to my lovely wife, Jacqui Griffyth.
(And also to Peanut).

v

Contents at a Glance

About the Author�� xiii

About the Technical Reviewer��xv

■■Chapter 1: Understanding Docker�� 1

■■Chapter 2: Essential Docker Quick Reference�� 7

■■Chapter 3: Getting Ready�� 17

■■Chapter 4: Docker Images and Containers��� 39

■■Chapter 5: Docker Volumes and Networks��� 69

■■Chapter 6: Docker Compose��� 97

■■Chapter 7: Docker Swarms��� 119

■■Chapter 8: Containerized Development�� 145

Index�� 169

Contents

About the Author�� xiii

About the Technical Reviewer��xv

■■Chapter 1: Understanding Docker�� 1

What Do You Need to Know?��� 1

What Is the Structure of This Book?�� 1

Is This an Exhaustive Docker Reference?��� 1

Are There Lots of Examples?��� 2

Which Operating Systems Are Supported?��� 2

Why Should You Care About Docker?�� 2

What Is the Consistency Problem?�� 2

What Is the Responsiveness Problem?�� 4

Aren’t Docker Containers Just Virtual Machines?��� 4

Do Docker Containers Have Limitations?�� 5

Do You Have to Use Docker to Use Containers?�� 6

How Do You Set Up Your Development Environment?��� 6

Contacting the Author�� 6

Summary��� 6

■■Chapter 2: Essential Docker Quick Reference�� 7

Docker Images Quick Reference��� 7

Docker Containers Quick Reference�� 9

Docker Volumes Quick Reference��� 10

Docker Software-Defined Networks Quick Reference�� 11

vii

﻿■ Contents

viii

Docker Compose Quick Reference�� 12

Docker Swarm Quick Reference��� 14

Summary��� 16

■■Chapter 3: Getting Ready�� 17

Installing the Required Software Packages�� 17

Installing the .NET Core Software Development Kit��� 18

Installing Node.js��� 20

Installing the NPM Package��� 22

Installing Git��� 22

Installing Docker�� 23

Installing an IDE��� 28

Testing the Development Environment�� 30

Creating the Example MVC Application��� 31

Creating the Project��� 32

Configuring the Client-Side Packages��� 32

Creating the Data Model and Repository��� 33

Preparing the Controller and View��� 35

Configuring ASP.NET and Creating the Entry Point�� 36

Running the MVC Application�� 37

Summary��� 38

■■Chapter 4: Docker Images and Containers��� 39

Preparing for This Chapter�� 40

Working with Images�� 41

Downloading Images��� 41

Deleting Images��� 42

Creating a Docker File for a Custom Image��� 43

Preparing the Application for the Image�� 45

Creating a Custom Image�� 45

﻿■ Contents

ix

Working with Containers��� 46

Creating Containers��� 46

Listing Containers�� 47

Starting Containers�� 47

Stopping Containers�� 49

Getting Container Output��� 50

Creating and Starting Containers with a Single Command��� 50

Modifying Containers�� 51

Changing a Container�� 52

Examining Changes to a Container�� 54

Executing Commands in Containers�� 55

Creating Images from Modified Containers��� 57

Publishing Images��� 58

Tagging the Images for Publication��� 58

Authenticating with the Hub�� 59

Publishing the Images��� 59

Creating Windows Containers��� 61

Switching to Windows Containers��� 61

Creating a .NET Core Windows Image��� 62

Executing Commands in Windows Containers�� 65

Summary��� 67

■■Chapter 5: Docker Volumes and Networks��� 69

Preparing for This Chapter�� 70

Working with Volumes��� 70

Demonstrating the Problem��� 71

Managing Data with a Docker Volume��� 72

Determining Whether an Image Uses Volumes�� 74

﻿■ Contents

x

Adding a Database to the Example Application��� 74

Pulling and Inspecting the Database Image�� 75

Creating the Volume and Container��� 76

Preparing the Example Application�� 77

Creating the Repository Class��� 78

Configuring the Application��� 80

Creating the Database Migration��� 81

Changing the View��� 82

Creating the MVC Application Image��� 83

Testing the Application�� 83

Working with Software-Defined Networks�� 85

Scaling the MVC Application�� 87

Creating Custom Software-Defined Networks��� 88

Creating Custom Networks�� 89

Summary��� 95

■■Chapter 6: Docker Compose��� 97

Preparing for This Chapter�� 98

Changing the View Message��� 98

Installing Docker Compose on Linux��� 99

Creating the Compose File�� 99

Composing the Database�� 101

Testing the Application Setup and Teardown��� 103

Database Preparation and MVC Composition�� 104

Modifying the MVC Application�� 104

Describing the Database Initialization and MVC Services��� 107

Composing the Load Balancer�� 110

Running the Application�� 112

Processing the Compose File�� 112

Preparing the Database��� 113

Starting the MVC Application��� 113

﻿■ Contents

xi

Scaling the MVC Service��� 114

Stopping the Application��� 116

Summary��� 117

■■Chapter 7: Docker Swarms��� 119

Preparing for This Chapter�� 121

Preparing the Swarm�� 121

Creating the Swarm��� 122

Labeling Swarm Nodes�� 123

Manually Deploying Services on a Swarm�� 123

Creating the Software-Defined Networks�� 124

Creating the Database Service�� 124

Creating the MVC Application Service��� 129

Creating the Load Balancer��� 133

Removing the Service from the Swarm��� 135

Deploying to a Swarm Using a Compose File�� 135

Performing the Deployment��� 136

Preparing the Database��� 137

Creating the Deployment Load Balancer��� 138

Managing the Swarm�� 138

Scaling Services�� 138

Taking Nodes Out of Service�� 139

Updating a Service�� 140

Shutting Down Services�� 142

Creating Global Services��� 142

Summary��� 144

■■Chapter 8: Containerized Development�� 145

Preparing for This Chapter�� 146

Using Development Mode to Prepare the Database�� 146

Understanding Containerized ASP.NET Core Development�� 147

﻿■ Contents

xii

Setting Up Containerized Development��� 148

Adding the DotNet Watcher Package��� 148

Creating the Development Image and Compose File��� 149

Preparing for a Development Session��� 153

Starting a Development Session��� 154

Setting Up Container Debugging��� 156

Creating the Debugging Docker File�� 157

Creating the Debugging Service�� 158

Starting the Debugging Service��� 160

Debugging with Visual Studio 2017��� 161

Debugging with Visual Studio Code��� 163

Summary��� 167

Index�� 169

xiii

About the Author

Adam Freeman is an experienced IT professional who has held senior
positions in a range of companies, most recently serving as chief
technology officer and chief operating officer of a global bank. Now retired,
he spends his time writing and long-distance running.

About the Technical Reviewer

Fabio Claudio Ferracchiati is a senior consultant and a senior analyst/developer using Microsoft
technologies. He works for BluArancio (www.bluarancio.com). He is a Microsoft Certified Solution
Developer for .NET, a Microsoft Certified Application Developer for .NET, a Microsoft Certified Professional,
and a prolific author and technical reviewer. Over the past ten years, he’s written articles for Italian and
international magazines and coauthored more than ten books on a variety of computer topics.

xv

http://www.bluarancio.com/

1© Adam Freeman 2017
A. Freeman, Essential Docker for ASP.NET Core MVC, DOI 10.1007/978-1-4842-2778-7_1

CHAPTER 1

Understanding Docker

Docker is a set of tools for creating and running application in containers, which isolates the application
from all the other software running on a server. Even though the server may be running dozens—or even
hundreds—of containers, each application is shielded from all the other instances and operates as though it
is the only application running.

This book explains how you can use Docker for ASP.NET Core MVC applications and how containers
make it easier to develop, deploy, and manage those applications in production environments.

What Do You Need to Know?
To get the most from this book, you should be familiar with .NET Core and ASP.NET Core MVC
development, including how to create, compile, and run projects in Visual Studio or Visual Studio Code. You
should also have a basic familiarity with Windows, Linux, or macOS and be able to run commands using a
command prompt.

What Is the Structure of This Book?
This book is split into eight chapters. Chapter 2 provides a quick reference for all the Docker commands and
features described in this book so you can easily find what you need in the future without having to search
through the rest of the book. Chapter 3 contains instructions for getting ready, including installing Docker,
Visual Studio, or Visual Studio Code and the supporting tools that are required. Chapter 3 also includes
instructions for creating a simple ASP.NET Core MVC project that is used as an example throughout the rest
of the book.

Chapters 4–7 explain how to use Docker with ASP.NET Core MVC projects. Chapter 4 introduces
images, which are the templates used to create containers, and shows you how to create your own images
and use them to produce containers. Chapter 5 covers the Docker features for storing data and connecting
the applications in different containers together. Chapter 6 describes the Docker support for describing
complex applications that require different types of containers, and Chapter 7 demonstrates the Docker
support for clustering servers together to run larger numbers of containers. The final chapter, Chapter 8,
comes full circle and explains how the features from the rest of the book can be applied to the development
environment instead of production.

Is This an Exhaustive Docker Reference?
No. This book covers the essential Docker features for working with ASP.NET Core MVC applications. I have
left out Docker features that have no bearing on MVC applications or that are unlikely to be used by the
majority of projects.

http://dx.doi.org/10.1007/978-1-4842-2778-7_2
http://dx.doi.org/10.1007/978-1-4842-2778-7_3
http://dx.doi.org/10.1007/978-1-4842-2778-7_3
http://dx.doi.org/10.1007/978-1-4842-2778-7_4
http://dx.doi.org/10.1007/978-1-4842-2778-7_7
http://dx.doi.org/10.1007/978-1-4842-2778-7_4
http://dx.doi.org/10.1007/978-1-4842-2778-7_5
http://dx.doi.org/10.1007/978-1-4842-2778-7_6
http://dx.doi.org/10.1007/978-1-4842-2778-7_7
http://dx.doi.org/10.1007/978-1-4842-2778-7_8

Chapter 1 ■ Understanding Docker

2

Are There Lots of Examples?
There are loads of examples, and every chapter shows you how Docker works by demonstrating, not
describing, the features. At the end of this book, you will have a solid understanding of what Docker does,
how it does it, and why it is useful when developing and deploying ASP.NET Core MVC applications.

You can download the examples for all the chapters in this book from apress.com. The download is
available without charge and includes the example ASP.NET Core MVC project and the configuration files
so that you don’t have to create them yourself. You don’t have to download the code, but cutting and pasting
the code into your own projects is the easiest way of experimenting with the examples.

THIS BOOK AND THE DOCKER RELEASE SCHEDULE

Docker is actively developed, and new releases appear often. For the most part, new releases fix bugs
and add new features, but Docker is a fast-moving target, and sometimes there are breaking changes.

It doesn’t seem fair or reasonable to ask you to buy a new edition of this book every few months,
especially since the majority of Docker features are unlikely to change. Instead, I will post updates
following the major releases to the GitHub repository for this book, for which there is a link on
apress.com.

This is an experiment for me (and for Apress), and I don’t yet know what form those updates may
take—not least because I don’t know what the future Docker will contain—but the goal is to extend the
life of this book by supplementing the examples it contains.

I am not making any promises about what the updates will be like, what form they will take, or how
long I produce them before folding them into a new edition of this book. Please keep an open mind and
check the repository for this book when new Docker versions are released. If you have ideas about how
the updates could be improved as the experiment unfolds, then e-mail me at adam@adam-freeman.com
and let me know.

Which Operating Systems Are Supported?
All of the examples in this book have been tested with all three operating systems: Windows, macOS, and
Linux. The exception is Chapter 7 because the Docker clustering features that it describes are supported by
Docker on Linux server only.

Why Should You Care About Docker?
Docker helps to solve two important problems that affect any complex project but that are especially
prevalent in ASP.NET Core projects: the consistency problem and the responsiveness problem.

What Is the Consistency Problem?
Most ASP.NET Core MVC applications are made up of multiple components. There will be at least one server
running the MVC application and usually a database to persistently store data.

http://dx.doi.org/10.1007/978-1-4842-2778-7_7

Chapter 1 ■ Understanding Docker

3

Complex applications may require additional components: more application servers to share the work,
load balancers to distribute HTTP requests among the application servers, and data caches to improve
performance. As the number of components increases, additional servers are needed, as are networks to link
everything together, name servers to aid discovery, and storage arrays to provide data resilience.

Few projects can afford to provide each developer with a complete replica of the production systems.
As a consequence, developers create an approximation of the production systems, typically running all the
components required by an application on a single development workstation and ignoring key infrastructure
such as networks and load balancers.

Working with an approximation of the production system can lead to several different difficulties, all of
which arise because the platform that the developer is using is not consistent with the production systems
into which the application is deployed.

The first difficulty is that differences in the environment can cause the application to behave
unexpectedly when it is deployed. A project developed on Windows but deployed onto Linux servers, for
example, is susceptible to differences in file systems, storage locations, and countless other features.

The second difficulty is that the approximations developers use to represent the production
environment can drift apart. Dependencies on different versions of development tools, NuGet packages,
and even versions of the .NET Core and ASP.NET Core runtimes can occur, leading to code that makes
assumptions that are not valid in production or on other developers’ workstations, which have their own
approximation of production.

The third difficulty is performing the actual deployment. The differences between development
and production systems require two configurations, one of which is difficult to test until the moment
of deployment. I have lost track of the amount of time that I have spent over the years trying to deploy
applications only to find that a single character is missing from a configuration setting or that there is a hard-
coded assumption that the database can be accessed via localhost.

The fourth difficulty is that it can be difficult to ensure that all the servers for an application are
configured consistently. A misconfigured server may cause only periodic problems, especially if a user’s
HTTP requests are distributed to a large group of servers, and identifying the problem and isolating the
cause can be a difficult task, made fraught by having to perform diagnostics on a live production system.

How Does Docker Solve the Consistency Problem?
When you put an ASP.NET Core MVC application in a container—a process known as containerization—you
create an image, which is a template for containers that includes the complete environment in which the
application will exist. Everything that will be used to run the application is part of the image: the .NET Core
runtime, the ASP.NET Core packages, third-party tools, configuration files, and the custom classes and Razor
views that provide the application functionality.

Docker uses the image to create a container, and any container created from the same image will
contain an identical instance of the ASP.NET Core MVC application.

If you adopt Docker for the development phase of your project, the developers will all use a single
image to create and test the application. The development image is still an approximation of the production
system, but it is a more faithful replica and will differ only by including development tools such as a compiler
and a debugger. In all other regards, the development image will have the same contents as the image used
to deploy the application, with the same file system, network topology, NuGet packages, and .NET runtime.

A production image is created when the application is ready to be deployed. This image is similar to
the one used by the developers but omits the development tools and contains compiled versions of the C#
classes. The production image is used to create all of the containers in production, which ensures that all
the instances are configured consistently. And, since the development and production images contain the
same content, there is no need to change configuration files in production because the database connection
strings that worked in development, for example, will work in production without modification.

Chapter 1 ■ Understanding Docker

4

What Is the Responsiveness Problem?
Traditional methods for deploying ASP.NET Core MVC applications make it hard to respond to changes
in workload. The approach of deploying an application to Internet Information Services (IIS) running
on Windows Server means that adding capacity is a substantial task, requiring additional hardware and
configuration changes to add servers to the environment.

The overhead required to increase capacity makes it difficult to scale up an application to short-
term surges in demand, and the process of decommissioning capacity makes it difficult to scale down
an application once peak demand has passed. The result is that ASP.NET applications have historically
struggled to provision just the right amount of capacity to deal with their workload, either suffering from too
little capacity at peak times (which affects user experience) or too much capacity outside of the peaks (which
drives up the cost of running the application and ties up capacity that could be used for other services).

How Does Docker Solve the Responsiveness Problem?
Containers are lightweight wrappers around an application, providing just enough resources for the
application to run while ensuring isolation from other containers. Depending on the application, a single
server can run many containers, and Docker provides integrated clustering, known as a swarm, that allows
containers to be deployed without any special awareness of the cluster or configuration changes. The
combination of the low resource demands and the integrated clustering means that scaling a containerized
ASP.NET Core MVC application is just a matter of adding or removing containers. And, since containers
isolate applications, any unused capacity can be repurposed to running containers from another
application, allowing workloads to be rebalanced dynamically.

Aren’t Docker Containers Just Virtual Machines?
At first glance, containers seem a lot like virtual machines, and there are similarities in the way that
containers and virtual machines are used, even if they work in different ways. Both can be used to scale
applications by adding or removing instances, and both can be used to create standardized environments
for running applications.

But containers are not virtual machines. A virtual machine provides a completely isolated software
stack, including the operating system. A single server, for example, can be used to run a mix of virtual
machines, each of which can be a different operating system, allowing applications that require Linux and
Windows to run side by side in different virtual machines.

Docker only isolates a single application, and all of the containers on a server run on the server’s
operating system. This means that all the applications run in Linux containers on a Linux server and in
Windows containers on a Windows server.

Because Docker containers only isolate applications, they require fewer resources than a virtual
machine, which means that a single server can run more containers than it can virtual machines. This
doesn’t automatically mean that a server running containers can handle more work overall, but it does
mean that there are fewer resources spent handling lower-level operating system tasks, which are duplicated
in each virtual machine. Figure 1-1 shows the difference between ASP.NET Core MVC applications running
in Docker containers and virtual machines.

Chapter 1 ■ Understanding Docker

5

The figure shows the classic comparison between using Docker and virtual machines, but the key
difference for ASP.NET Core MVC projects is that Docker provides features that make it easy to create
duplicate containers that run alongside one another without any additional configuration, automatically
sharing in the application workload by accepting HTTP requests as part of a cluster of containers. This, more
than any other difference, is what makes Docker useful because it solves the consistency and responsiveness
problems in an elegant way, which is difficult to achieve using traditional virtual machines.

■■ Note  The comparison in Figure 1-1 shows the difference between containers and virtual machines in a
production environment, where containers are run on the host server’s operating system. Linux and Windows
Server can be used in production. To allow Linux Docker images to be created using macOS and Windows,
Docker installs a Linux virtual machine that is used to run containers. The installation and configuration of this
virtual machine is done automatically during the installation process in Chapter 3.

Do Docker Containers Have Limitations?
Docker containers are not suited to every project. Containers work best for MVC applications that are
stateless, such that a series of HTTP requests from a single client can be handled by more than one instance
of the application, running in different containers. This doesn’t mean the MVC application cannot have any
state data, but it does mean that the state data needs to be stored so it can be accessed from any container,
such as by using a database. (I describe how to create an MVC application that accesses a containerized
database in Chapter 4.)

Part of the benefit conferred by using Docker is the ability to create and destroy containers as needed,
which means that MVC applications that have complex initialization routines, that require manual
intervention, or that can run only a single instance are not suitable for containerization.

Docker relies on the containerization support included in server operating systems. The Linux support
for containers is mature and reliable and is supported by all of the major distributions. At the time of writing,
however, containers are a new addition to Windows Server and are not as mature or as well-supported
as their Linux counterparts. Windows containers are available only on Windows Server 2016 and can be
developed only using Windows 10 with pre-release versions of Docker. Not all the public cloud platforms
provide support for Windows containers, which can restrict your deployment choices.

Figure 1-1.  Containers versus virtual machines

http://dx.doi.org/10.1007/978-1-4842-2778-7_3
http://dx.doi.org/10.1007/978-1-4842-2778-7_4

Chapter 1 ■ Understanding Docker

6

The good news is that .NET Core and ASP.NET Core work well on Linux, which means you can take
advantage of Docker on Linux servers, including those provided by public clouds such as Amazon Web
Services and Microsoft Azure. Your options are limited if your MVC application depends on the traditional
(non-Core) .NET Framework running on Windows. I explain how to create Windows containers using
Docker in Chapter 4, but for the moment at least, careful consideration should be given to moving the
project to .NET Core and ASP.NET Core so that it can run in Linux containers, othersiemore conventional
deployment methods, such as virtual machines or hosted IIS servers, should be used.

Do You Have to Use Docker to Use Containers?
No. Docker is just one set of tools that work with the container features provided by Linux and Windows.
Support for containers has been part of Linux for a long time and has matured into a stable and reliable
feature. Microsoft has also embraced containers and has included support for them in Windows Server 2016,
although it is not as widely used or as well supported as its Linux counterpart.

Docker has become popular because it makes container functionality easy to use, providing tools that
create and manage the images from which containers are created and that cluster those containers together
to easily scale applications.

Docker may not suit every need, and since the container support is built into the operating system,
there are alternatives to Docker that might be better suited to a specific project. A standardization effort
called the Open Container Initiative (https://www.opencontainers.org) aims to standardize the use of
containers, which should also make it easier to mix tools and runtimes from other providers. Docker is
participating in the standards process, so you should be able to build on the features described in this book
even if you use tools or features from other providers.

At the time of writing, the main competitor to Docker is rkt, which is produced by a company
called CoreOS and which you can learn about at https://coreos.com/rkt. CoreOS is best known for its
lightweight CoreOS Container Linux distribution, which is an excellent server for running containers,
including those from Docker. I use CoreOS in Chapter 7 when I demonstrate how to create clusters of servers
running containers. CoreOS can also be used on most of the public cloud services that support Docker
containers, including Amazon Web Services and Microsoft Azure. See https://coreos.com/why for details
of CoreOS Container Linux.

How Do You Set Up Your Development Environment?
Chapter 3 provides detailed setup instructions for Windows, Linux, and macOS.

Contacting the Author
If you have problems making the examples in this book work or if you find a problem in the book, then you
can e-mail me at adam@adam-freeman.com and I will try my best to help.

Summary
In this chapter, I described the purpose and content of this book, explained how you can download
the project used for each chapter of the book, and explained how Docker solves the consistency and
responsiveness problems that face ASP.NET Core MVC applications. In the next chapter, I provide a quick
reference to using Docker before showing you how to set up your environment for working with Docker and
ASP.NET Core in Chapter 3.

http://dx.doi.org/10.1007/978-1-4842-2778-7_4
https://www.opencontainers.org/
https://coreos.com/rkt
http://dx.doi.org/10.1007/978-1-4842-2778-7_7
https://coreos.com/why
http://dx.doi.org/10.1007/978-1-4842-2778-7_3
http://dx.doi.org/10.1007/978-1-4842-2778-7_3

7© Adam Freeman 2017
A. Freeman, Essential Docker for ASP.NET Core MVC, DOI 10.1007/978-1-4842-2778-7_2

CHAPTER 2

Essential Docker Quick Reference

It can be difficult to remember how to perform common tasks when you start working with Docker on
your own ASP.NET Core MVC project. This chapter provides a quick reference for the essential Docker
features, along with references to the chapters in this book that explain how the features work and
demonstrate their use.

Docker Images Quick Reference
Images are the templates from which containers are created. You build on top of a base image to provide
a starting point for your projects, obtaining the base image from a repository such as Docker Hub and
customizing it using a Docker file. Images and Docker files are described in Chapter 4.

The Docker image used to deploy ASP.NET Core applications does not contain the .NET Core compiler,
which means you must use the dotnet publish command to create a directory that contains the compiled
code and all of the support files required to run the application. Open a new command prompt and run the
following command in your project folder:

dotnet publish --framework netcoreapp1.1 --configuration Release --output dist

This command publishes the application into a folder called dist, which can be incorporated in the
image using the COPY command in a Docker file. The Docker file is processed to create the image using the
docker build command.

docker build . -t apress/exampleapp -f Dockerfile

The first argument is a period, indicating the current working directory, which sets the context directory
on which the commands in the Docker file are performed. The -t argument specifies the name of the image,
and the -f argument specifies the Docker file. Table 2-1 lists the essential commands for working with
images.

http://dx.doi.org/10.1007/978-1-4842-2778-7_4

Chapter 2 ■ Essential Docker Quick Reference

8

Table 2-2 lists the essential Docker images that are used for ASP.NET Core MVC projects and the
examples in this book.

Images are created using Docker files, which contain a series of commands that describe the container
that the image will be used to create. Table 2-3 describes the essential Docker file commands used in this
book.

Table 2-1.  Essential Commands for Working with Images

Command Description

docker build This command processes a Docker file and creates an image.

docker images This command lists the images that are available on the local system. The -q argument
returns a list of unique IDs that can be used with the docker rmi command to remove
all images.

docker pull This command downloads an image from a repository.

docker push This command publishes an image to a repository. You may have to authenticate with
the repository using the docker login command.

docker tag This command is used to associate a name with an image.

docker rmi This command removes images from the local system. The -f argument can be used to
remove images for which containers exist.

Table 2-2.  The Essential Docker Images for ASP.NET Core MVC Projects

Image Description

microsoft/aspnetcore:1.1.1 This Linux image contains version 1.1.1 of the .NET Core runtime
and the ASP.NET Core packages. This image is used to deploy
applications.

microsoft/dotnet:1.1.1-runtime-
nanoserver

This Windows image contains version 1.1.1 of the .NET Core
runtime. This image is used to deploy applications to Windows
Server.

microsoft/aspnetcore-build:1.1.1 This Linux image contains version 1.1.1 of the.NET Core Software
Development Kit. It is used to create development environments in
containers.

mysql:8.0.0 This Linux image contains version 8 of the MySQL database server.

haproxy:1.7.0 This image contains the HAProxy server, which can be used as a
load balancer.

dockercloud/haproxy:1.2.1 This image contains the HAProxy server, configured to respond
automatically to containers starting and stopping.

Chapter 2 ■ Essential Docker Quick Reference

9

Docker Containers Quick Reference
Containers are created from an image and used to execute an application in isolation. A single image can be
used to create multiple containers that run alongside each other, which is how applications are scaled up to
cope with large workloads. You can create containers using custom images or prebuilt images from a public
repository such as Docker Hub. Containers are described in Chapter 4 and used throughout the book.

Containers are created using the docker create command, like this:

docker create -p 3000:80 --name exampleApp3000 apress/exampleapp

Once a container has been created, it can be started using the docker start command.

docker start exampleApp3000

You can create and start a container in a single step using the docker run command.

docker run -p 3000:80 --name exampleApp4000 apress/exampleapp

Table 2-3.  The Essential Docker File Commands

Command Description

FROM This command specifies the base image. For ASP.NET Core MVC projects, this command
is generally used to select the microsoft/aspnetcore:1.1.1 (for deployment) or
microsoft/aspnetcore-build:1.1.1 (for development) images.

WORKDIR This command changes the working directory for subsequent commands in the Docker file.

COPY This command adds files so they will become part of the file system of containers that
are created from the image.

RUN This command executes a command as the Docker file is processed. It is commonly used
to download additional files to include in the image or to run commands that configure
the existing files.

EXPOSE This command exposes a port so that containers created from the image can receive
network requests.

ENV This command defines environment variables that are used to configure containers
created from the image.

VOLUME This command denotes that a Docker volume should be used to provide the contents of
a specific directory.

ENTRYPOINT This command specifies the application that will be run in containers created from the
image.

http://dx.doi.org/10.1007/978-1-4842-2778-7_4

Chapter 2 ■ Essential Docker Quick Reference

10

The arguments for these commands are used to configure the container, which allows containers
created from the same image to be configured differently. Table 2-4 describes the essential arguments for
these commands.

Table 2-5 lists the essential commands for working with containers.

Docker Volumes Quick Reference
Volumes allow data files to be stored outside of a container, which means they are not deleted when the
container is deleted or updated. Volumes are described in Chapter 5.

Volumes are defined using the VOLUME command in Docker files, like this:

...
VOLUME /var/lib/mysql
...

Table 2-4.  Essential Arguments for the docker create and docker run Commands

Argument Description

-e, --env This argument sets an environment variable.

--name This argument assigns a name to the container.

--network This argument connects a container to a software-defined network.

-p, --publish This argument maps a host operating system port to one inside the container.

--rm This argument tells Docker to remove the container when it stops.

-v, --volume This argument is used to configure a volume that will provide the contents for a
directory in the container’s file system.

Table 2-5.  Essential Commands for Working with Containers

Command Description

docker create This command creates a new container.

docker start This command starts a container.

docker run This command creates and starts a container in a single step.

docker stop This command stops a container.

docker rm This command removes a container.

docker ps This command lists the containers on the local system. The -a argument includes
stopped containers. The -q argument returns a list of unique IDs, which can be used
to operate on multiple containers with the docker start, docker stop, and docker
rm commands.

docker logs This command inspects the output generated by a container.

docker exec This command executes a command in a container or starts an interactive session.

http://dx.doi.org/10.1007/978-1-4842-2778-7_5

Chapter 2 ■ Essential Docker Quick Reference

11

This tells Docker that the files in the /var/lib/mysql folder should be stored in a volume. This is useful
only when a named volume is created and applied when configuring the container. Volumes are created
using the docker volume create command, like this:

docker volume create --name productdata

The --name argument is used to specify a name for the volume, which is then used with the -v argument
to the docker create or docker run command like this:

docker run --name mysql -v productdata:/var/lib/mysql -e MYSQL_ROOT_PASSWORD=mysecret -e
bind-address=0.0.0.0 mysql:8.0.0

This command, taken from Chapter 5, tells Docker that the productdata volume will be used to provide
the contents of the /var/lib/mysql directory in the container’s file system. Removing the container won’t
remove the volume, which means that any files that are created in the /var/lib/mysql directory won’t be
deleted, allowing the result of user actions to be stored persistently.

Table 2-6 lists the essential commands for working with volumes.

Docker Software-Defined Networks Quick Reference
Software-defined networks are used to connect containers together, using networks that are created and
managed using Docker. Software-defined networks are described in Chapter 5.

Software-defined networks are created using the docker network create command, like this:

docker network create backend

This command creates a software-defined network called backend. Containers can be connected to the
network using the --network argument to the docker create or docker start command, like this:

docker run -d --name mysql -v productdata:/var/lib/mysql --network=backend -e
MYSQL_ROOT_PASSWORD=mysecret -e bind-address=0.0.0.0 mysql:8.0.0

Containers can also be connected to software-defined networks using the docker network connect
command, like this:

docker network connect frontend productapp1

This command connects the container called productapp1 to the software-defined network called
frontend.

Table 2-6.  Essential Commands for Working with Volumes

Command Description

docker volume create This command creates a new volume.

docker volume ls This command lists the volumes that have been created. The -q argument
returns a list of unique IDs, which can be used to delete multiple volumes
using the docker volume rm command.

docker volume rm This command removes one or more volumes.

http://dx.doi.org/10.1007/978-1-4842-2778-7_5
http://dx.doi.org/10.1007/978-1-4842-2778-7_5

Chapter 2 ■ Essential Docker Quick Reference

12

Table 2-7 lists the essential commands for working with software-defined networks.

Docker Compose Quick Reference
Docker Compose is used to describe complex applications that require multiple containers, volumes,
and software-defined networks. The description of the application is written in a compose file, using the
YAML format. Docker Compose and compose files are described in Chapter 6, which includes this example
compose file:

version: "3"

volumes:
 productdata:

networks:
 frontend:
 backend:

services:

 mysql:
 image: "mysql:8.0.0"
 volumes:
 - productdata:/var/lib/mysql
 networks:
 - backend
 environment:
 - MYSQL_ROOT_PASSWORD=mysecret
 - bind-address=0.0.0.0

 dbinit:
 build:
 context: .
 dockerfile: Dockerfile
 networks:
 - backend

Table 2-7.  Essential Commands for Working with Software-Defined Networks

Command Description

docker network create This command creates a new software-defined network.

docker network connect This command connects a container to a software-defined network.

docker network ls This command lists the software-defined networks that have been created,
including the ones that Docker uses automatically. The -q argument returns
a list of unique IDs, which can be used to delete multiple networks using the
docker network rm command.

docker network rm This command removes a software-defined network. There are some built-in
networks that Docker creates and that cannot be removed.

http://dx.doi.org/10.1007/978-1-4842-2778-7_6

Chapter 2 ■ Essential Docker Quick Reference

13

 environment:
 - INITDB=true
 - DBHOST=mysql
 depends_on:
 - mysql

 mvc:
 build:
 context: .
 dockerfile: Dockerfile
 networks:
 - backend
 - frontend
 environment:
 - DBHOST=mysql
 depends_on:
 - mysql

This compose file describes an application that contains three services (services are the descriptions
from which containers are created), two software-defined networks, and a volume. For quick reference,
Table 2-8 describes the configuration keywords from this example compose file.

Table 2-8.  Essential Configuration Keywords Used in Compose Files

Keyword Description

version This keyword specifies the version of the compose file schema. At the time of writing the
latest version is version 3.

volume This keyword is used to list the volumes that are used by the containers defined in the
compose file.

networks This keyword is used to list the volumes that are used by the containers defined in the
compose file. The same keyword is used to list the networks that individual containers
will be connected to.

services This keyword is used to denote the section of the compose file that describes containers.

image This keyword is used to specify the image that should be used to create a container.

build This keyword is used to denote the section that specifies how the image for a container
will be created.

context This keyword specifies the context directory that will be used when building the image
for a container.

dockerfile This keyword specifies the Docker file that will be used when building the image for a
container.

environment This keyword is used to define an environment variable that will be applied to a
container.

depends_on This keyword is used to specify dependencies between services. Docker doesn’t have
insight into when applications in containers are ready, so additional steps must be taken
to control the startup sequence of an application (as described in Chapter 6).

http://dx.doi.org/10.1007/978-1-4842-2778-7_6

Chapter 2 ■ Essential Docker Quick Reference

14

Docker files are processed using the docker-compose build command like this:

docker-compose -f docker-compose.yml build

The containers, networks, and volumes in a compose file are created and starting using the
docker-compose up command.

docker-compose up

Table 2-9 lists the essential commands for working with compose files.

Docker Swarm Quick Reference
A Docker swarm is a cluster of servers that run containers. There are worker nodes that run the containers
and manager nodes that determine which containers run on individual nodes and ensure that the right
number of containers are running for each service. Swarms automatically try to recover when containers or
nodes fail. Docker swarms are described in Chapter 7.

A swarm is created by running the following command on a manager node:

docker swarm init

The output from this command includes instructions for setting up the worker nodes, which are
configured using the docker swarm join command.

Table 2-9.  Essential Commands for Docker Compose

Command Description

docker-compose build This command processes the contents of the compose file and creates the
images required for the services it contains.

docker-compose up This command creates the containers, networks, and volumes defined in the
compose file and starts the containers.

docker-compose stop This command stops the containers created from the services in the
compose file. The containers, networks, and volumes are left in place so they
can be started again.

docker-compose down This command stops the containers created from the services in the
compose file and removes them, along with the networks and volumes.

docker-compose scale This command changes the number of containers that are running for a
service.

docker-compose ps This command lists the containers that have been created for the services
defined in the compose file.

http://dx.doi.org/10.1007/978-1-4842-2778-7_7

Chapter 2 ■ Essential Docker Quick Reference

15

Services can be created manually or described using a compose file. Here is an example of a compose
file that includes instructions for deployment into a swarm, taken from Chapter 7:

version: "3"

volumes:
 productdata:

networks:
 backend:

services:

 mysql:
 image: "mysql:8.0.0"
 volumes:
 - productdata:/var/lib/mysql
 networks:
 - backend
 environment:
 - MYSQL_ROOT_PASSWORD=mysecret
 - bind-address=0.0.0.0
 deploy:
 replicas: 1
 placement:
 constraints:
 - node.hostname == dbhost

 mvc:
 image: "apress/exampleapp:swarm-1.0"
 networks:
 - backend
 environment:
 - DBHOST=mysql
 ports:
 - 3000:80
 deploy:
 replicas: 5
 placement:
 constraints:
 - node.labels.type == mvc

The deploy keyword denotes the configuration section for deploying the services into the swarm.
Table 2-10 describes the keywords used in the compose file.

Table 2-10.  The Docker Compose Keywords for Swarms

Keyword Description

replicas This setting specifies how many instances of a container are required for a service.

placement This configuration section configures the placement of the containers for the service.

constraints This setting specifies the constraints for locating the containers in the swarm.

http://dx.doi.org/10.1007/978-1-4842-2778-7_7

Chapter 2 ■ Essential Docker Quick Reference

16

Applications that are described using a compose file are deployed using the docker stack deploy
command, like this:

docker stack deploy --compose-file docker-compose-swarm.yml exampleapp

The final argument to this command is used as a prefix applied to the names of the containers,
networks, and volumes that are created in the swarm.

Table 2-11 lists the essential commands for working with Docker swarms.

Summary
This chapter provided a quick reference for the Docker features described in the rest of the book. In the next
chapter, I show you how to get set up for working with Docker and create the example project that will be
used throughout the rest of the book.

Table 2-11.  Essential Commands for Docker Swarms

Command Description

docker swarm init This command runs on manager nodes to create a swarm.

docker swarm join This command runs on worker nodes to join a swarm.

docker node ls This command displays a list of the nodes in the swarm.

docker node update This command changes the configuration of a node in the swarm.

docker service create This command manually starts a new service on the swarm.

docker service update This command changes the configuration of a service running on the
swarm.

docker service scale This command changes the number of containers that are running for a
specific service.

docker service ls This command lists the services that are running on the swarm.

docker service ps This command lists the containers that are running for a specific service.

docker service rm This command removes a service from the swarm.

docker stack deploy This command deploys an application described in a compose file to the
swarm.

docker stack rm This command removes the services described in a compose file from the
swarm.

17© Adam Freeman 2017
A. Freeman, Essential Docker for ASP.NET Core MVC, DOI 10.1007/978-1-4842-2778-7_3

CHAPTER 3

Getting Ready

In this chapter, I explain how to set up the packages required by ASP.NET Core MVC and Docker and create
the example MVC project that is used in the rest of the book. There are instructions for Windows, Linux, and
macOS, which are the three operating systems that are supported by both .NET Core and Docker.

Installing the Required Software Packages
The following sections go through the process of installing the packages that are required for ASP.NET Core
MVC development and working with Docker. For quick reference, Table 3-1 lists the packages and explains
their purpose.

Table 3-1.  The Software Packages Used in This Book

Name Description

.NET SDK The .NET Core Software Development Kit includes the .NET runtime for executing
.NET applications and the development tools required to prepare an application for
containerization.

Node.js Node.js is used in this book to run the tools that create the ASP.NET Core MVC project
and to download and run Node Package Manager (NPM) packages.

NPM Package The example application relies on an NPM package to manage its client-side libraries.

Git Git is a revision control system. It is used indirectly in this book by bower, which is the
NPM package that is used to manage client-side packages.

Docker The Docker package includes the tools and runtime required to create and manage
containers. The Windows and macOS versions of Docker include the Docker Compose
tool, but it must be installed separately on Linux, as described in Chapter 6.

Visual Studio Visual Studio is the Windows-only IDE that provides the full-featured development
experience for .NET.

Visual Studio
Code

Visual Studio Code is a lightweight IDE that can be used on Windows, macOS, and
Linux. It doesn’t provide the full range of features of the Windows-only Visual Studio
product but is well-suited to ASP.NET Core MVC development.

http://dx.doi.org/10.1007/978-1-4842-2778-7_6

Chapter 3 ■ Getting Ready

18

Installing the .NET Core Software Development Kit
The .NET Core Software Development Kit (SDK) includes the runtime and development tools needed to
start the development project and to prepare a .NET Core application for use in a container.

Installing the .NET Core SDK on Windows
To install the .NET Core SDK on Windows, download the installer from https://go.microsoft.com/
fwlink/?linkid=843448. This URL is for the 64-bit .NET Core SDK version 1.1.1, which is the version that
I use throughout this book and that you should install to ensure you get the expected results from the
examples. (Microsoft also publishes a runtime-only installer, but this does not contain the tools that are
required for this book.)

Run the installer, and once the install process is complete, open a new PowerShell command prompt
and run the command shown in Listing 3-1 to check that .NET Core is working.

Listing 3-1.  Testing .NET Core

dotnet --version

The output from this command will display the version of the .NET Core runtime that is installed. If you
have installed only the version specified earlier, this will be 1.0.1. (Don’t worry that the version number
reported by this command doesn’t correspond to the version you download; this is expected.)

USING LONG- AND SHORT-FORM COMMAND ARGUMENTS

Most of the examples in this book use the command line, both for .NET and for Docker. There are two
types of arguments for commands: long form and short form. The default form, long form, uses two
hyphens, like this:

dotnet --help

This is the long form of the help argument. Some commands also have a short-form argument, which
uses a single hyphen, like this:

dotnet -h

Short-form and long-form arguments have the same effect. In this case, they print out a help message.
Not all long-form arguments have a short-form equivalent, but you can switch between them freely
when they are available.

Installing .NET Core SDK on Linux
The .NET Core SDK can be installed on popular Linux distributions. The easiest way to install .NET Core is
to visit https://www.microsoft.com/net/core, select your distribution from the list, and copy and paste
the commands into a command prompt to ensure you don’t mistype any configuration arguments. For
completeness, this section shows the installation process for Ubuntu 16.04, which I use throughout this book
and which is the current Long Term Support (LTS) release at the time of writing.

https://go.microsoft.com/fwlink/?linkid=843448
https://go.microsoft.com/fwlink/?linkid=843448
https://www.microsoft.com/net/core

Chapter 3 ■ Getting Ready

19

To install .NET Core SDK on Ubuntu 16.04, open a command prompt and enter the commands in
Listing 3-2 to configure package management so that Microsoft packages can be installed.

Listing 3-2.  Preparing Package Management for .NET Core

sudo sh -c 'echo "deb [arch=amd64] https://apt-mo.trafficmanager.net/repos/dotnet-
release/ xenial main" > /etc/apt/sources.list.d/dotnetdev.list'
sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv-keys 417A0893
sudo apt-get update

Run the command shown in Listing 3-3 to download and install the .NET Core SDK package. It is
important that you use the version number shown in the listing so that you get the expected results from the
examples in this book.

Listing 3-3.  Installing the .NET Core Package

sudo apt-get install dotnet-dev-1.0.1

Once the package has been downloaded and installed, run the command shown in Listing 3-4 to check
that .NET Core is installed and working.

Listing 3-4.  Testing the .NET Core Package

dotnet --version

The output from this command will display the version of the .NET Core runtime that is installed. If you
have installed only the version specified earlier, this will be 1.0.1. (Don’t worry that the version number
reported by this command doesn’t correspond to the version you download; this is expected.)

Installing .NET Core on macOS
Before installing .NET Core SDK, open a new command prompt and run the command in Listing 3-5 to
install the HomeBrew package manager.

Listing 3-5.  Installing the Package Manager

/usr/bin/ruby -e \
 "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"

Once installation is complete, run the commands shown in Listing 3-6 to install the OpenSSL library,
which is a prerequisite for some .NET Core features.

Listing 3-6.  Installing the OpenSSL Package

brew install openssl
mkdir -p /usr/local/lib
ln -s /usr/local/opt/openssl/lib/libcrypto.1.0.0.dylib /usr/local/lib/
ln -s /usr/local/opt/openssl/lib/libssl.1.0.0.dylib /usr/local/lib/

To install .NET Core on macOS, download the SDK installer from https://go.microsoft.com/
fwlink/?linkid=843444. This URL is for the.NET Core SDK version 1.1.1, which is the version that I use
throughout this book and that you should install to ensure you get the expected results from the examples.

https://go.microsoft.com/fwlink/?linkid=843444
https://go.microsoft.com/fwlink/?linkid=843444

Chapter 3 ■ Getting Ready

20

Run the installer, and once the process is complete, open a Terminal window and run the command
shown in Listing 3-7 at the prompt to check that .NET Core is working.

Listing 3-7.  Testing .NET Core

dotnet --version

The output from this command will display the version of the .NET Core runtime that is installed. If you
have installed only the version specified earlier, this will be 1.0.1. (Don’t worry that the version number
reported by this command doesn’t correspond to the version you download; this is expected.)

Installing Node.js
The tools that I use to create the example ASP.NET Core MVC project in this book rely on Node.js (also
known as Node), which is a runtime for server-side JavaScript applications and which has become a popular
platform for development tools. It is important that you download the same version of Node.js that I use
throughout this book. Although Node.js is relatively stable, there are still breaking API changes from time to
time that may stop the examples from working.

The version I have used is the 6.9.2 release. You may prefer more recent releases for your own projects,
but you should stick with the 6.9.2 release for the rest of this book. A complete set of 6.9.2 releases, with
installers for Windows and macOS, is available at https://nodejs.org/dist/v6.9.2. Table 3-2 shows the
installer files required for Windows and macOS (Linux installations are handled differently).

Installing Node.js on Windows
To install Node.js on Windows, download and run the installer listed in Table 3-2. During the installation
process, ensure that the npm package manager and Add to PATH options are selected, as shown in
Figure 3-1.

Table 3-2.  The Node.js Distribution for Windows and macOS

Operating System Node.js Distribution File

Windows 10 https://nodejs.org/dist/v6.9.2/node-v6.9.2-x64.msi

macOS https://nodejs.org/dist/v6.9.2/node-v6.9.2.pkg

https://nodejs.org/dist/v6.9.2
https://nodejs.org/dist/v6.9.2/node-v6.9.2-x64.msi
https://nodejs.org/dist/v6.9.2/node-v6.9.2.pkg

Chapter 3 ■ Getting Ready

21

The NPM package manager is used to download and install Node packages. Adding Node.js to the PATH
ensures that you can use the Node.js runtime at the command prompt just by typing node. Once you have
completed the installation, open a new command prompt and run the command shown in Listing 3-8.

Listing 3-8.  Checking That Node.js Is Installed Correctly

node -v

You should see the following version number displayed: v6.9.2. If the installation has been successful,
then proceed to the “Installing the NPM Packages” section.

Installing Node.js on Linux
For Linux, the easiest way to install Node.js is through a package manager, using the procedures described at
https://nodejs.org/en/download/package-manager. For Ubuntu, I ran the commands shown in Listing 3-9
to download and install Node.js.

Listing 3-9.  Installing Node.js on Ubuntu

curl -sL https://deb.nodesource.com/setup_6.x | sudo -E bash -
sudo apt-get install nodejs

Once you have installed Node.js, run the command shown in Listing 3-10 to check that the installation
has been successful and that you have the right version.

Listing 3-10.  Checking That Node.js Is Installed Correctly

node -v

Figure 3-1.  Installing Node.js on Windows

https://nodejs.org/en/download/package-manager

Chapter 3 ■ Getting Ready

22

You should see that version 6.x.x is installed. Version 6.9.2 is the latest at the time of writing, but there
may be updates pushed into the package manager feed for version 6.x by the time you read this.

Installing Node.js on macOS
To install Node.js on macOS, download and run the installer listed in Table 3-2. Open a new Terminal and
run the command shown in Listing 3-11 at the command prompt once the installer has completed.

Listing 3-11.  Checking That Node.js Is Installed Correctly

node -v

You will see the following version number displayed: v6.9.2. If the installation has been successful,
then proceed to the “Installing the NPM Packages” section.

Installing the NPM Package
The example application used throughout this book relies on the Bower package, which is re-installed
using the Node Package Manager (NPM). NPM is included in the Node installation. Run the command
shown in Listing 3-12 to install the package that will be used to manage client-side packages in the example
application. For macOS and Linux, you need to run this command using sudo or as an administrator.

Listing 3-12.  Installing the NPM Packages

npm install -g bower@1.8.0

There may be a later version of this package available by the time you read this book, but it is important
that you use the version specified to ensure that you get the expected results from the examples. Table 3-3
describes the package installed by the command in Listing 3-12.

Installing Git
The Git revision control tool is required to download the client-side packages used by the example ASP.NET
Core MVC application created later in this chapter. Visual Studio Code includes integrated Git support, but a
separate installation is still required.

Installing Git on Windows or macOS
Download and run the installer from https://git-scm.com/downloads. (On macOS, you may have to
change your security settings to open the installer, which has not been signed by the developers.) When the
installation is complete, open a new command prompt and run the command in Listing 3-13 to check that
Git is installed and working properly.

Table 3-3.  The NPM Package

Name Description

bower Bower is a package manager that handles client-side packages,
such as the Bootstrap CSS framework used by the example
application in this book.

https://git-scm.com/downloads

Chapter 3 ■ Getting Ready

23

Listing 3-13.  Checking the Git Install

git --version

This command prints out the version of the Git package that has been installed. At the time of writing,
the latest version of Git for Windows is 2.12.0, and the latest version of Git for macOS is 2.10.1.

Installing Git on Linux
Git is already installed on most Linux distributions. If you want to install the latest version, then consult the
installation instructions for your distribution at https://git-scm.com/download/linux. For Ubuntu, I used
the following command:

sudo apt-get install git

Once you have completed the installation, open a new command prompt and run the command in
Listing 3-14 to check that Git is installed and available.

Listing 3-14.  Checking the Git Install

git --version

This command prints out the version of the Git package that has been installed. At the time of writing,
the latest version of Git for Linux is 2.7.4.

Installing Docker
Docker supports Windows, macOS, and a range of Linux distributions. The installation process for all
platforms is reasonably straightforward, as described in the following sections. Docker is available in
Community and Enterprise editions, the difference being the support and certifications offered for the
Enterprise edition. Both editions provide the same set of core features, and I use the free Docker Community
edition throughout this book.

Installing Docker for Windows
Docker can be used on Windows, taking advantage of the integrated Hyper-V support so that Linux
containers can be used.

■■ Note  At the time of writing, only 64-bit versions of Windows 10 Pro, Enterprise, and Education are
supported, with the latest updates installed.

https://git-scm.com/download/linux

Chapter 3 ■ Getting Ready

24

Go to https://store.docker.com/editions/community/docker-ce-desktop-windows, click the
Get Docker CE for Windows (stable) link, and run the installer that is downloaded. Docker will start
automatically when the installation is complete. You may be prompted to enable Hyper-V, as shown in
Figure 3-2. Hyper-V allows Linux containers to be used on Windows and must be enabled.

Once the installation has completed, open a new PowerShell command prompt and run the command
shown in Listing 3-15 to check that the installation has been successful.

Listing 3-15.  Checking That Docker Is Working

docker run --rm hello-world

Docker will download the files it needs to run a simple Hello World application. Docker will write out
messages like these, indicating that everything is working as expected (the command produces more output
than is shown here, but this is the important part):

...
Unable to find image 'hello-world:latest' locally
latest: Pulling from library/hello-world

c04b14da8d14: Pull complete
Digest: sha256:0256e8a36e2070f7bf2d0b0763dbabdd67798512411de4cdcf9431a1feb60fd9
Status: Downloaded newer image for hello-world:latest

Hello from Docker!
This message shows that your installation appears to be working correctly.
...

Figure 3-2.  Enabling Hyper-V

https://store.docker.com/editions/community/docker-ce-desktop-windows

Chapter 3 ■ Getting Ready

25

INSTALLING DOCKER ON WINDOWS SERVER 2016

If you are creating containers for Windows-only applications, which I demonstrate in Chapter 4, you can
run them on Windows Server 2016. This will be of limited appeal for most developers because Linux
containers are more widely supported and easier to use, even for ASP.NET Core applications. To install
Docker on Windows Server 2016, run the following commands in an Administrative PowerShell:

Install-Module -Name DockerMsftProvider -Force

Install-Package -Name docker -ProviderName DockerMsftProvider -Force

These commands install the latest version of Docker. Once the installation has completed, reboot the
server and then run the following command to ensure that Docker is installed correctly and working:

docker run --rm hello-world:nanoserver

Docker will download the files it needs to run a simple Hello World application, which it will run
automatically. Docker will write out messages like these, indicating that everything is working as
expected (the command produces more output than is shown here, but this is the important part):

...
Unable to find image 'hello-world:nanoserver' locally
nanoserver: Pulling from library/hello-world

5496abde368a: Pull complete
482ab31872a2: Pull complete
4256836bcaf8: Pull complete
5bc5abeff404: Pull complete
Digest: sha256:3f5a4d0983b0cf36db8b767a25b0db6e4ae3e5abec8831dc03fe773c58ee404a
Status: Downloaded newer image for hello-world:nanoserver

Hello from Docker!
This message shows that your installation appears to be working correctly.
...

Bear in mind that Windows Server 2016 cannot run Linux containers and cannot be used to follow
the majority of the examples in this book (or run most of the packages that have been published via
Docker).

Installing Docker for Linux
To install Docker on Linux, visit https://www.docker.com/community-edition, select the distribution that
you are using from the list, and follow the installation instructions, copying and pasting the commands to
avoid typos.

http://dx.doi.org/10.1007/978-1-4842-2778-7_4
https://www.docker.com/community-edition

Chapter 3 ■ Getting Ready

26

This section shows the installation process for Ubuntu 16.04, which is the distribution I have used
throughout this book. Open a new command prompt and enter the commands in Listing 3-16 to configure
the package manager and install the prerequisite packages that Docker relies on.

Listing 3-16.  Preparing the Package Manager and Installing Prerequisite Packages

sudo apt-get -y install apt-transport-https ca-certificates curl
curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -
sudo add-apt-repository \
 "deb [arch=amd64] https://download.docker.com/linux/ubuntu \
 $(lsb_release -cs) stable"
sudo apt-get update

To install Docker, run the command shown in Listing 3-17.

Listing 3-17.  Installing Docker

sudo apt-get -y install docker-ce

Once Docker is installed, run the commands shown in Listing 3-18 so that you can use Docker without
sudo.

Listing 3-18.  Configuring Docker So That Root Access Is Not Required

sudo groupadd docker
sudo usermod -aG docker $USER

Log out of your current session and log back in again for the commands in Listing 3-18 to take effect.
Once you have logged back in, run the command shown in Listing 3-19 to check that the installation has
been successful.

Listing 3-19.  Checking That Docker Is Working

docker run --rm hello-world

Docker will download the files it needs to run a simple Hello World application. Docker will write out
messages like these, indicating that everything is working as expected (the command produces more output
than is shown here, but this is the important part):

...
Unable to find image 'hello-world:latest' locally
latest: Pulling from library/hello-world

c04b14da8d14: Pull complete
Digest: sha256:0256e8a36e2070f7bf2d0b0763dbabdd67798512411de4cdcf9431a1feb60fd9
Status: Downloaded newer image for hello-world:latest

Hello from Docker!
This message shows that your installation appears to be working correctly.
...

Chapter 3 ■ Getting Ready

27

Installing Docker on macOS
Go to https://store.docker.com/editions/community/docker-ce-desktop-mac, click the Get Docker for
CE Mac (stable) link, and run the installer that is downloaded. Drag the whale to the Applications folder, as
shown in Figure 3-3.

Open Launchpad and click the Docker icon to perform the setup process. At the end of the process,
open a new Terminal and run the command shown in Listing 3-20 to check that the installation has been
successful.

Listing 3-20.  Checking That Docker Is Working

docker run --rm hello-world

Docker will download the files it needs to run a simple Hello World application. Docker will write out
messages like these, indicating that everything is working as expected (the command produces more output
than is shown here, but this is the important part):

...
Unable to find image 'hello-world:latest' locally
latest: Pulling from library/hello-world

c04b14da8d14: Pull complete
Digest: sha256:0256e8a36e2070f7bf2d0b0763dbabdd67798512411de4cdcf9431a1feb60fd9
Status: Downloaded newer image for hello-world:latest

Hello from Docker!
This message shows that your installation appears to be working correctly.
...

Figure 3-3.  Installing Docker

https://store.docker.com/editions/community/docker-ce-desktop-mac

Chapter 3 ■ Getting Ready

28

Installing an IDE
Although any IDE can be used to develop ASP.NET Core projects, the most common choices are Visual
Studio for Windows and Visual Studio Code for macOS and Linux (although you can also use Visual Studio
Code on Windows if you wish). Make the choice that suits you best and follow the setup instructions in the
sections that follow.

Installing Visual Studio 2017
Download the installer from https://www.visualstudio.com/vs. There are different editions of Visual
Studio 2017 available, but the free Community edition is sufficient for the examples in this book. Run the
installer and ensure that the .NET Core Cross-Platform Development workload is selected, as shown in
Figure 3-4.

Click the Install button to begin the process of downloading and installing the Visual Studio features.

Figure 3-4.  Selecting the Visual Studio packages

https://www.visualstudio.com/vs

Chapter 3 ■ Getting Ready

29

Adding a YAML Extension to Visual Studio

Some important Docker features are configured using files written in the YAML format. I explain what you
need to know to work with these files in Chapter 6, but one aspect of the YAML format that can be frustrating
is that tab characters are not allowed. Working with YAML files is made much easier by installing an
extension for Visual Studio.

Start Visual Studio and select Extensions and Updates from the Tools menu. Navigate to the Online
section, enter yaml into the search bar, and click the Download button for the Syntax Highlighting Pack
extension, as shown in Figure 3-5. Close Visual Studio and the extension will be installed.

Installing Visual Studio Code
Visual Studio Code is a lightweight editor that doesn’t have all the features of the full Visual Studio product
but works across platforms and is perfectly capable of handling ASP.NET Core MVC projects.

Installing Visual Studio Code for Windows and Linux

To install Visual Studio code, visit http://code.visualstudio.com and click the download link for your
platform. Run the installer and then start Visual Studio Code, which will present a standard integrated
development environment.

Installing Visual Studio Code for macOS

To install Visual Studio code, visit http://code.visualstudio.com and click the Download for Mac link,
which will download a zip file. Double-click the downloaded file to decompress it, drag the Visual Studio
Code file to the Applications folder, and then use Launch Pad to start Visual Studio Code.

Figure 3-5.  Installing the YAML editing extension

http://dx.doi.org/10.1007/978-1-4842-2778-7_6
http://code.visualstudio.com/
http://code.visualstudio.com/

Chapter 3 ■ Getting Ready

30

Adding Extensions to Visual Studio Code
There are two packages to install to follow the examples in this book using Visual Studio Code. To install
these packages, click the Extensions button in the sidebar and locate and install the packages described in
Table 3-4. The Docker Support package is optional, but it can help avoid typos in your Docker configuration
files and makes it easier to work with YAML files, which are described in Chapter 6. Restart Visual Studio
Code once the extensions are installed.

Testing the Development Environment
This section contains a simple test to determine whether the development environment is capable of
creating a .NET Core 1.1.1 project, which is the version of .NET Core used throughout this book.

Select a convenient location and create a folder called EnvTest. Open a new command prompt,
navigate to the EnvTest folder, and run the command shown in Listing 3-21 to start a new .NET Core project.

Listing 3-21.  Creating a New .NET Core Project

dotnet new console

Two files will be created in the EnvTest folder: EnvTest.csproj and Program.cs. If you are using
Visual Studio, select Open ➤ Project/Solution from the File menu, navigate to the EnvTest folder, select the
EnvTest.csproj file, and click the Open button.

If you are using Visual Studio Code, select Open Folder from the File menu (or Open if you are using
macOS), select the EnvTest folder, and click the OK or Select Folder button.

Check the contents of the EnvTest.csproj file to make sure they match Listing 3-22. (If you are using
Visual Studio, right-click the EnvTest project item in the Solution Explorer and select Edit EnvTest.csproj
from the pop-up menu.)

Listing 3-22.  The Contents of the EnvTest.csproj File in the EnvTest Folder

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>netcoreapp1.1</TargetFramework>
 </PropertyGroup>

</Project>

Table 3-4.  Required Visual Studio Code Packages

Package Name Description

C# This extension provides support for editing and compiling C# files.

Docker This extension from Microsoft provides support for working with Docker
configuration files (and for running Docker commands within Visual
Studio Code, although I don’t use those features in this book).

http://dx.doi.org/10.1007/978-1-4842-2778-7_6

Chapter 3 ■ Getting Ready

31

Next, open the Program.cs file and make the change shown in Listing 3-23.

Listing 3-23.  The Contents of the Program.cs File in the EnvTest Folder

using System;

namespace ConsoleApplication {
 public class Program {
 public static void Main(string[] args) {
 Console.WriteLine("Essential Docker");
 }
 }
}

The code in this file writes out a simple message to the console. Save the changes to the files and run the
following command in the EnvTest folder to install the NuGet packages for the project:

dotnet restore

Next, run the following command in the EnvTest folder to build the code and run the test application:

dotnet run

This command will compile and run the project. If everything goes well, then you should see output
similar to the following, as the code is compiled and the application is run:

Essential Docker

■■ Caution  Do not proceed until you can build and run the test application. The first thing to try is to install
the SDK for .NET Core version 1.1.1 using the instructions in the “Installing .NET Core Software Development
Kit” section of this chapter. If that doesn’t work, then try removing all other versions of .NET Core so that only
version 1.1.1 is installed. If all else fails and you can’t determine the cause of the problem, you can email me at
adam@adam-freeman.com and I will try to help you get back on track.

Creating the Example MVC Application
The best way to understand how Docker containers work is to get hands-on experience. This means I need
a simple ASP.NET Core MVC project that can be used to demonstrate how you would use Docker containers
for your own applications.

■■ Tip  You can download the example project from the source repository for this book. See the apress.com
page for this book for the URL.

Chapter 3 ■ Getting Ready

32

You may be used to relying on the built-in support provided by Visual Studio or Visual Studio Code for
creating and managing ASP.NET Core projects, but I rely directly on the command-line tools in this book.
As you will learn, working with Docker means understanding how projects work outside of the IDE, which
requires familiarity with the .NET command line.

Creating the Project
Select a convenient location and create a folder called ExampleApp. Open a new command prompt, navigate
to the ExampleApp folder, and run the command in Listing 3-24 to create a new project with basic ASP.NET
Core MVC content.

Listing 3-24.  Creating the ASP.NET Core Project

dotnet new mvc --language C# --auth None --framework netcoreapp1.1

Once the project has been created, run the command shown in Listing 3-25 in the ExampleApp folder to
install the NuGet packages it requires.

Listing 3-25.  Installing NuGet Packages

dotnet restore

Opening the Project Using Visual Studio
Select File ➤ Open ➤ Project/Solution from the Visual Studio File menu and navigate to the ExampleApp
folder created in the previous section. Select the ExampleApp.csproj file, click the Open button, and Visual
Studio will open the project for editing.

Select File ➤ Save All and Visual Studio will prompt you to save a solution file, with the .sln extension.
Save this file in the ExampleApp folder and you can use it to open the project in future development sessions.

Opening the Project Using Visual Studio Code
Select Open Folder from the File menu (or Open if you are using macOS), select the ExampleApp folder, and
click the OK or Select Folder button. Visual Studio Code will open the folder and display all of the files it contains
in the Explorer window. No project or solution files are required when working with Visual Studio Code.

Configuring the Client-Side Packages
Client-side packages in an ASP.NET Core MVC project are conventionally managed using the bower tool,
which you installed earlier in this chapter. To specify the client-side packages that will be used, edit the
bower.json file in the ExampleApp folder and replace the contents with those shown in Listing 3-26.

Listing 3-26.  The Contents of the bower.json File in the ExampleApp Folder

{
 "name": "exampleapp",
 "private": true,
 "dependencies": {
 "bootstrap": "4.0.0-alpha.5"
 }
}

Chapter 3 ■ Getting Ready

33

The only client-side package that I use in the example application is the Bootstrap CSS framework. To
download the package, run the following command in the ExampleApp folder:

bower install

Bower will download the Bootstrap package and store it in the www/lib/bootstrap folder, along with
the packages that Bootstrap depends on.

USING THE BOOTSTRAP PRE-RELEASE

Throughout this book, I use a prerelease version of the Bootstrap CSS framework. As I write this, the
Bootstrap team is in the process of developing Bootstrap version 4 and has made several early releases.
These releases have been labeled as “alpha,” but the quality is high, and they are stable enough for use
in the examples in this book.

Given the choice of writing this book using the soon-to-be-obsolete Bootstrap 3 and a prerelease version of
Bootstrap 4, I decided to use the new version even though some of the class names that are used to style
HTML elements are likely to change before the final release. This means you must use the same version of
Bootstrap shown in the bowser.json file in Listing 3-30 to get the expected results from the examples.

Creating the Data Model and Repository
I am going to create a simple data model and a repository with some test data. The test data will be a
placeholder until Chapter 5, when I introduce a real database that is accessed through Entity Framework
Core, the ASP.NET object/relational mapping framework.

Create a folder called ExampleApp/Models and add to it a file called Product.cs, with the content shown
in Listing 3-27.

Listing 3-27.  The Contents of the Product.cs File in the ExampleApp/Models Folder

namespace ExampleApp.Models {

 public class Product {

 public Product() {}

 public Product(string name = null,
 string category = null,
 decimal price = 0) {
 Name = name;
 Category = category;
 Price = price;
 }
 public int ProductID { get; set; }
 public string Name { get; set; }
 public string Category { get; set; }
 public decimal Price { get; set; }
 }
}

http://dx.doi.org/10.1007/978-1-4842-2778-7_5

Chapter 3 ■ Getting Ready

34

This is the Product model class that I use in the SportsStore application in my Pro ASP.NET MVC Core
book. It is easy to work with and won’t take us too far away from the world of containers.

I like to follow the repository pattern in my MVC applications. I am going to create a dummy repository
with static test data to get started and replace it with an implementation that accesses a real database in
Chapter 5. To make the transition from static to real data as seamless as possible, I am going to expose the
data model through a repository interface, whose implementation will be provided using the ASP.NET Core
Dependency Injection feature at runtime.

To define the interface, create a file called IRepository.cs in the ExampleApp/Models folder and add
the code shown in Listing 3-28.

Listing 3-28.  The Contents of the IRepository.cs File in the ExampleApp/Models Folder

using System.Linq;

namespace ExampleApp.Models {

 public interface IRepository {

 IQueryable<Product> Products { get; }
 }
}

This interface provides access to a collection of Product objects through a property called Products. A
real project would require a repository with support to create and modify objects, but read-only access will
be enough functionality for the examples in this book, where the focus is on Docker.

To provide the placeholder test data, add a file called DummyRepository.cs to the ExampleApp/Models
folder and add the code shown in Listing 3-29.

Listing 3-29.  The Contents of the DummyRepository.cs File in the ExampleApp.Models Folder

using System.Linq;

namespace ExampleApp.Models {

 public class DummyRepository : IRepository {
 private static Product[] DummyData = new Product[] {
 new Product { Name = "Prod1", Category = "Cat1", Price = 100 },
 new Product { Name = "Prod2", Category = "Cat1", Price = 100 },
 new Product { Name = "Prod3", Category = "Cat2", Price = 100 },
 new Product { Name = "Prod4", Category = "Cat2", Price = 100 },
 };

 public IQueryable<Product> Products => DummyData.AsQueryable();

 }
}

The DummyRepository class implements the IRepository class, and its Products property returns a
collection of Product objects created with static placeholder data. This isn’t data you would display to a user,
but it is enough to get started with until a real database is added in Chapter 5.

http://dx.doi.org/10.1007/978-1-4842-2778-7_5
http://dx.doi.org/10.1007/978-1-4842-2778-7_5

Chapter 3 ■ Getting Ready

35

Preparing the Controller and View
An MVC application needs at least one controller and a view to display. Edit the HomeController.cs file in
the ExampleApp/Controllers folder and replace the contents with those shown in Listing 3-30.

Listing 3-30.  The Contents of the HomeController.cs File in the ExampleApp/Controllers Folder

using Microsoft.AspNetCore.Mvc;
using ExampleApp.Models;
using Microsoft.Extensions.Configuration;

namespace ExampleApp.Controllers {
 public class HomeController : Controller {
 private IRepository repository;
 private string message;

 public HomeController(IRepository repo, IConfiguration config) {
 repository = repo;
 message = config["MESSAGE"] ?? "Essential Docker";
 }

 public IActionResult Index() {
 ViewBag.Message = message;
 return View(repository.Products);
 }
 }
}

This controller has a constructor that declares a dependency on the IRepository interface, which will
be resolved using the ASP.NET dependency injection feature at runtime. There is one action method, called
Index, that will be targeted by the default MVC route and that provides its view with the Product objects
retrieved from the repository.

The constructor declares a dependency on the IConfiguration interface, which will provide access
to the application’s configuration. This allows for a configuration setting called MESSAGE to be read, which
is passed to the Index action method’s view through the view bag and which I use in later chapters to
differentiate the results returned by different instances of the MVC application when I show you how to scale
up a containerized application.

To provide the view, edit the Index.cshtml file in the ExampleApp/Views/Home folder and replace its
contents with those shown in Listing 3-31.

Listing 3-31.  The Contents of the Index.cshtml File in the ExampleApp/Views/Home Folder

@model IEnumerable<ExampleApp.Models.Product>
@{
 Layout = null;
}
<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>ExampleApp</title>
 <link rel="stylesheet" href="~/lib/bootstrap/dist/css/bootstrap.min.css" />
</head>

Chapter 3 ■ Getting Ready

36

<body>
 <div class="m-1 p-1">
 <h4 class="bg-primary text-xs-center p-1 text-white">@ViewBag.Message</h4>
 <table class="table table-sm table-striped">
 <thead>
 <tr><th>ID</th><th>Name</th><th>Category</th><th>Price</th></tr>
 </thead>
 <tbody>
 @foreach (var p in Model) {
 <tr>
 <td>@p.ProductID</td>
 <td>@p.Name</td>
 <td>@p.Category</td>
 <td>$@p.Price.ToString("F2")</td>
 </tr>

 }
 </tbody>
 </table>
 </div>
</body>
</html>

The view displays a banner with the message received via the view bag and a table containing the
details of the Product objects provided as the view model by the action method.

Configuring ASP.NET and Creating the Entry Point
To configure the application, open the Startup.cs file and replace the contents with the code shown in
Listing 3-32, which configures the basic functionality required for an MVC application.

Listing 3-32.  The Contents of the Startup.cs File in the ExampleApp Folder

using ExampleApp.Models;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Logging;
using Microsoft.Extensions.Configuration;

namespace ExampleApp {
 public class Startup {
 private IConfiguration Configuration;

 public Startup(IHostingEnvironment env) {
 Configuration = new ConfigurationBuilder()
 .SetBasePath(env.ContentRootPath)
 .AddEnvironmentVariables()
 .Build();
 }

Chapter 3 ■ Getting Ready

37

 public void ConfigureServices(IServiceCollection services) {
 services.AddSingleton<IConfiguration>(Configuration);
 services.AddTransient<IRepository, DummyRepository>();
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app,
 IHostingEnvironment env, ILoggerFactory loggerFactory) {
 loggerFactory.AddConsole();
 app.UseDeveloperExceptionPage();
 app.UseStatusCodePages();
 app.UseStaticFiles();
 app.UseMvcWithDefaultRoute();
 }
 }
}

Running the MVC Application
If you are using Visual Studio, you can run the project by selecting Start Without Debugging from the Debug
menu. A new browser tab or window will open and show the application.

Alternatively, run the following command in the ExampleApp folder to build and run the project from
the command line:

dotnet run

Once the project has started, open a new browser window or tab and navigate to
http://localhost:5000, which is the default port used by the built-in server. The browser will show the
content illustrated in Figure 3-6, displaying the data from the dummy repository.

Figure 3-6.  Running the example application

Chapter 3 ■ Getting Ready

38

Once you have tested the application, type Control+C to exit the .NET Core runtime and return control
to the command prompt.

Summary
In this chapter, I explained how to install the tools and packages that are required to work on ASP.NET Core
MVC packages with Docker and created the example MVC application that will be used in the examples. In
the next chapter, I describe the fundamental Docker building blocks: images and containers.

39© Adam Freeman 2017
A. Freeman, Essential Docker for ASP.NET Core MVC, DOI 10.1007/978-1-4842-2778-7_4

CHAPTER 4

Docker Images and Containers

The building blocks for working with Docker are images and containers. An image is a template for an
application and the files required to run it. A container is created from an image and is used to execute the
application in isolation so that one application doesn’t interfere with another. In this chapter, I explain how
to create and use images and containers and demonstrate how to use Docker to containerize an ASP.NET
Core MVC application for use on Linux and Windows servers. Table 4-1 puts this chapter in context.

Table 4-1.  Putting Docker Images and Containers in Context

Question Answer

What are they? Images are templates that contain the files that an application
needs. Images can be built on top of one another, which makes the
process of preparing an image for an application relatively simple.

Containers are instances of an application created from an image. A
single image can be used to create multiple containers, all of which
are isolated from one another.

Why are they useful? Images and containers are the key Docker building blocks. Images
can be published to the Docker Hub so they can be used more
widely, either within your organization or publicly.

How are they used? Images are created using instructions contained in a Docker file
using the docker build command. Containers are created from
an image using docker create and are started and stopped using
docker start and docker stop.

Are there any pitfalls or limitations? For complex applications, the process of writing a Docker file, using
it to create an image, and then testing a container generated from
that image can be a time-consuming process.

Are there any alternatives? No. Images and containers are core Docker features.

Chapter 4 ■ Docker Images and Containers

40

Table 4-2 summarizes the chapter.

Preparing for This Chapter
This chapter depends on the ExampleApp MVC project and the tools and packages from Chapter 3. If you
don’t want to work through the process of creating the example application, you can get the project as part of
the free source code download that accompanies this book. See the apress.com page for this book.

Table 4-2.  Chapter Summary

Problem Solution Listing

List the images that are available on the
local system

Use the docker images command 1

Download an image from a repository Use the docker pull command 2, 3

Delete images Use the docker rmi command 4, 5, 29

Create a custom image Create a Docker file and use it with the
docker build command

6, 8, 34

Prepare an ASP.NET Core MVC
application for containerization

Use the dotnet publish command 7, 35

Create a container Use the docker create command 9, 10

List the containers on the local system Use the docker ps command 11

Start a container Use the docker start command 12, 13, 20

Stop a container Use the docker stop command 14, 15, 19

See the output from a container Use the docker logs command 16, 17

Create and start a container in a single
step

Use the docker run command 18, 36

Copy a file into a container Use the docker cp command 21, 22

See the changes in a container’s file
system

Use the docker diff command 23

Run a command in a container Use the docker exec command 24–26, 38–40

Create an image from a modified
container

Use the docker commit command 27

Assign a tag to an image Use the docker tag command 28, 32

Manage authentication with a repository Use the docker login and docker logout
commands

30, 33

Publish an image to a repository Use the docker push command 31, 32

View the configuration of a container Use the docker inspect command 37

http://dx.doi.org/10.1007/978-1-4842-2778-7_3

Chapter 4 ■ Docker Images and Containers

41

Working with Images
Images are templates that are used to create containers and that contain a file system with all the files
the application in the container requires. When you tested Docker in Chapter 3, the command you used
instructed Docker to use an image called hello-world, which has been published to the public repository of
images, known as the Docker Hub.

The hello-world image contains all the files required by an application that prints out a simple
greeting, providing a self-contained way to distribute the files so they can be used to run the application. Run
the command shown in Listing 4-1 to list the images installed on your system.

Listing 4-1.  Listing the Available Images

docker images

The response to the command is a list of the images that are available locally, like this:

REPOSITORY TAG IMAGE ID CREATED SIZE
hello-world latest c54a2cc56cbb 4 months ago 1.848 kB

There is only one image shown in this output, which is the hello-world image. When Docker
downloads images to create containers, it stores them locally to speed up future tasks.

Downloading Images
The docker pull command is used to download an image from the repository so that it is available locally.
This isn’t something you usually need to do explicitly because other Docker commands that manage images
and containers will automatically pull the images they need. Run the command shown in Listing 4-2 to pull
an image from the Docker Hub.

Listing 4-2.  Pulling an Image from the Docker Hub

docker pull alpine

It can take a while for Docker to download the image, which contains an embedded version of Linux
called Alpine. This image doesn’t have any bearing on .NET development, but it is relatively small, which
means that it can be downloaded quickly.

When the new image has been downloaded, run the docker images command and you will see that the
list has been updated.

REPOSITORY TAG IMAGE ID CREATED SIZE
alpine latest baa5d63471ea 8 weeks ago 4.803 MB
hello-world latest c54a2cc56cbb 5 months ago 1.848 kB

Repository images can be tagged, allowing different versions of an image to coexist and ensuring
that you get the right version of an image when you pull it. A tag is specified by appending a colon
(the : character) to the image name, followed by the tag. Run the command in Listing 4-3 to pull a
variation of the alpine image.

Listing 4-3.  Pulling an Image Variation

docker pull alpine:3.4

http://dx.doi.org/10.1007/978-1-4842-2778-7_3

Chapter 4 ■ Docker Images and Containers

42

This command pulls the version of the alpine image that has been tagged as 3.4, indicating that the
image contains version 3.4. When the image has been downloaded, the docker images command will show
the variations in the list.

REPOSITORY TAG IMAGE ID CREATED SIZE
alpine 3.4 baa5d63471ea 8 weeks ago 4.803 MB
alpine latest baa5d63471ea 8 weeks ago 4.803 MB
hello-world latest c54a2cc56cbb 5 months ago 1.848 kB

The images have the same IMAGE ID because they contain identical content, meaning that the alpine
maintainers have tagged the same image with two different tags. Docker is smart enough to know that it has
the content that it requires already and won’t download a duplicate image. (You may not see the same IDs if
a more recent version of Alpine has been released by the time you read this chapter.)

Omitting the image tag is equivalent to requesting the variation tagged latest, so docker pull alpine
and docker pull alpine:latest are equivalent commands. Since I didn’t specify a tag when I pulled the
earlier alpine image or the hello-world image used in Chapter 3, the latest versions were retrieved.

■■ Tip  You can see which tags are available for an image by going to the Docker Hub (https://hub.docker.com)
and searching for an image.

Deleting Images
The docker rmi command is used to remove one or more images from your machine. Images are deleted by
specifying their unique ID.

Run the command shown in Listing 4-4 to delete the alpine:3.4 image, using the ID shown by docker
images. (You might not have the same ID, which may have changed since I wrote this chapter. Check the
output from the docker images command to see which ID you need to use for this command.)

Listing 4-4.  Deleting an Image by ID

docker rmi -f baa5d63471ea

Run the docker images command again and you will see that both alpine images have been removed,
since both images had the specified ID. The -f argument is used to remove images even when they are being
used by containers (which I describe later in the chapter).

Copying and pasting individual image IDs is a tedious and error-prone process. If you want to delete all
the images you have installed, then you can use the command in Listing 4-5.

Listing 4-5.  Deleting All Images

docker rmi -f $(docker images -q)

The -q argument specifies the oddly named quiet mode, which returns only the IMAGE ID values from
the docker images command, which are processed by the docker rmi command, removing all the images
in the list.

http://dx.doi.org/10.1007/978-1-4842-2778-7_3
https://hub.docker.com/

Chapter 4 ■ Docker Images and Containers

43

Creating a Docker File for a Custom Image
The Docker Hub contains a wide range of images for prepackaged applications, but for ASP.NET Core
development, the real power of Docker comes from being able to create custom images for MVC
applications.

Custom images are described in a Docker file, conventionally named Dockerfile, which contains a
series of instructions that Docker follows like a recipe.

To demonstrate how custom images work, I am going to create one for the example application from
Chapter 3. Open the Dockerfile that was added to the project and replace the contents with those shown in
Listing 4-6.

Listing 4-6.  The Contents of the Dockerfile File in the ExampleApp Folder

FROM microsoft/aspnetcore:1.1.1

COPY dist /app

WORKDIR /app

EXPOSE 80/tcp

ENTRYPOINT ["dotnet", "ExampleApp.dll"]

These five commands are all that’s required to create a Docker image for the example application. Each
of the commands is described in detail in the sections that follow.

Setting the Base Image
One of the most powerful features of Docker images is that they can be based on existing images, meaning
that they include all the files that the base image contains. The FROM command is the first command in a
Docker file, and it specifies the base image that will be used.

In this case, the base image is called microsoft/aspnetcore, and I have specified that the version
tagged 1.1.1 should be used, which contains .NET Core and ASP.NET Core version 1.1.1.

...
FROM microsoft/aspnetcore:1.1.1
...

This image is produced by Microsoft, and it contains the .NET Core runtime and the ASP.NET Core
packages, compiled into native code to improve application startup. This image doesn’t contain the .NET
SDK, which means the MVC application must be prepared before it is used in the image, as demonstrated in
the “Preparing the Application for the Image” section.

■■ Tip  I show you how to create a containerized development environment in Chapter 8, which uses a base
image that does include the .NET SDK.

http://dx.doi.org/10.1007/978-1-4842-2778-7_3
http://dx.doi.org/10.1007/978-1-4842-2778-7_8

Chapter 4 ■ Docker Images and Containers

44

Copying the Application Files
When you containerize an ASP.NET Core application, all the compiled class files, NuGet packages,
configuration files, and the Razor views are added to the image. The COPY command copies files or folders
into the container.

...
COPY dist /app
...

This command copies the files from a folder called dist into a folder called /app in the container. The
dist folder doesn’t exist at the moment, but I’ll create it when I prepare the MVC project for use with the
container.

Setting the Working Directory
The WORKDIR command sets the working directory for the container, which is useful if you need to run
commands or use files without having to specify the full path each time. The command in the Docker file
sets the path to the /app folder that the COPY command created and that contains the application files.

Exposing the HTTP Port
Processes inside a container can open network ports without any special measures, but Docker won’t allow
the outside world to access them unless the Docker file contains an EXPOSE command that specifies the port
number, like this:

...
EXPOSE 80/tcp
...

This command tells Docker that it can make port 80 available for TCP traffic from outside the container.
For the example application, this is required so that the ASP.NET Core Kestrel server can receive HTTP
requests.

■■ Tip  Working with ports in containers is a two-step process. See the “Working with Containers” section for
details of how to complete the configuration so that the server can receive requests.

Running the Application
The final step in the Docker file is the ENTRYPOINT command, which tells Docker what to do when the
container starts.

...
ENTRYPOINT ["dotnet", "ExampleApp.dll"]
...

Chapter 4 ■ Docker Images and Containers

45

This command tells Docker to run the dotnet command-line tool to execute the ExampleApp.dll file,
which I will create in the next section. The path to the ExampleApp.dll file doesn’t have to be specified
because it is assumed to be within the directory specified by the WORKDIR command, which will contain all
the application’s files.

Preparing the Application for the Image
There are some entries in the Docker file that may not make immediate sense, especially if you are used to
working with ASP.NET Core MVC projects through Visual Studio or Visual Studio Code.

The base image specified by the Docker file in Listing 4-6 doesn’t include the .NET Core SDK, which
means that the compiler isn’t available and the MVC project files cannot be compiled automatically when
the application is started, which is what usually happens in development.

Instead, the application has to be compiled before it is incorporated into the image. Run the commands
in Listing 4-7 from the ExampleApp folder to prepare the example application.

Listing 4-7.  Preparing the Example Application in the ExampleApp Folder

dotnet restore
dotnet publish --framework netcoreapp1.1 --configuration Release --output dist

The dotnet restore command is a precautionary step to make sure that the project has all the NuGet
packages it needs.

The important command is dotnet publish, which compiles the application and then transforms it
into a stand-alone set of files that includes everything the application requires. The --output argument
specifies that the compiled project should be written to a folder called dist, which corresponds to the COPY
command from the Docker file. The --framework argument specifies that .NET Core version 1.1.1 should be
used, and the --configuration argument specifies that the Release mode should be used.

Look at the contents of the dist folder when the dotnet publish command has completed and
you will see that one of the files is called ExampleApp.dll. This file contains the custom code from the
example project and provides the entry point for running the application, corresponding to the ENTRYPOINT
command in the Docker file.

Creating a Custom Image
To process the Docker file and generate the image for the example application, run the command shown in
Listing 4-8 in the ExampleApp folder.

Listing 4-8.  Creating a Custom Image in the ExampleApp Folder

docker build . -t apress/exampleapp -f Dockerfile

The docker build command creates a new image. The period that follows the build keyword provides
the context, which is the location that is used for commands such as COPY in the Docker file. The -t argument
tags the new image as apress/exampleapp, and the -f argument specifies the Docker file that contains
the instructions for creating the image. (The convention for naming images is to use your name or your
organization’s name, followed by the application name.)

Chapter 4 ■ Docker Images and Containers

46

Docker will download the base images it needs and then follow the instructions in the Docker file to
generate the new image. When the build process has completed, you can see the new image by running the
docker images command, which will produce output like this:

REPOSITORY TAG IMAGE ID CREATED SIZE
apress/exampleapp latest e2e0945a741d 4 seconds ago 280 MB
microsoft/aspnetcore 1.1.1 da08e329253c 23 hours ago 268 MB

The apress/exampleapp image is the custom image containing the MVC application. The microsoft/
aspnetcore image is shown because Docker had to pull that image from the Docker Hub when it followed
the FROM command in the Docker file.

Working with Containers
Containers bring images to life. Each container is an instance of an application created from an image, and
a host system can run multiple containers, each of which is isolated from the others. In the sections that
follow, I explain how to create, use, and manage containers.

Creating Containers
Containers can be created from any image, including custom images you have created.

Run the command shown in Listing 4-9 to create a new container using the custom image from the
previous section as the template.

Listing 4-9.  Creating a Container

docker create -p 3000:80 --name exampleApp3000 apress/exampleapp

The docker create command is used to create a new image.
The -p argument to the docker create command tells Docker how to map port 80 inside the container

to the host operating system. In this case, I have specified that port 80 inside the container should be
mapped to port 3000 in the host operating system. This corresponds to the EXPOSE command in the Docker
file in Listing 4-6.

The --name argument assigns a name to the container, which makes it easier to work with once it
has been created. The name in this case is exampleApp3000, indicating that this container will respond to
requests sent to port 3000 in the host operating system.

The final argument tells Docker which image to use as the template for the new container. This
command specifies the apress/exampleapp image, which is the name used with the docker build
command in Listing 4-8.

Creating Additional Containers from an Image
You can create more than one container from an image, but you must ensure that there are no conflicts for
configuration options such as names and port mappings. Run the command shown in Listing 4-10 to create
a second container using the custom image with a different name and port mapping.

Chapter 4 ■ Docker Images and Containers

47

Listing 4-10.  Creating Another Container

docker create -p 4000:80 --name exampleApp4000 apress/exampleapp

This command creates a container called exampleApp4000 using the apress/exampleapp image
but maps port 80 to port 4000 in the host. This container will be able to coexist with the exampleApp3000
container because they use different network ports and names, even though they contain the same
application.

Listing Containers
The docker ps command is used to list the containers that exist on a system. By default, the docker ps
command omits containers that are not running, so the -a argument must be used if you want to see all the
containers that are available, as shown in Listing 4-11.

Listing 4-11.  Listing All Containers

docker ps -a

This command produces the following output, showing the two containers created in the previous
section (I have shown only the most important columns to fit the output on the page):

CONTAINER ID IMAGE STATUS PORTS NAMES
765b418bc16f apress/exampleapp Created exampleApp4000
136b2a3e2246 apress/exampleapp Created exampleApp3000

Each container is assigned a unique ID, which is shown in the CONTAINER ID column and can be used
to refer to the container in Docker commands. A more natural way to refer to containers is using their name,
which is shown in the NAMES column. The IMAGE column shows the image used to create the container.

The STATUS column shows Created for both containers, indicating that the containers have been
successfully created and are ready to be started. The PORTS column is empty because neither of the
containers has any active network ports at the moment, but that will change when the containers are active.

Starting Containers
The previous section used the docker create command to create two containers from the same image.
These containers are identical on the inside and contain identical files. Only the configuration outside the
containers is different, allowing the containers to coexist by using different names and mapping different
network ports to port 80 inside the container.

At the moment, however, the containers are not doing anything. The applications they contain are not
running, and the network ports they have been configured to use are not active.

The docker start command is used to start one or more containers, which are referred to by their
unique ID or by their name. Run the command shown in Listing 4-12 to start the container that is called
exampleApp3000.

Listing 4-12.  Starting a Container

docker start exampleApp3000

Chapter 4 ■ Docker Images and Containers

48

Docker will use the ENTRYPOINT command from the Docker file to start the application in the container.
In this case, that means the .NET Core runtime is started, followed by the ASP.NET Core Kestrel server, which
will listen for incoming HTTP requests on port 80 inside the container.

As the container is started, Docker will also set up the port mapping so that network traffic received on
port 3000 on the host operating system will be directed to port 80 inside the container, allowing Kestrel to
receive HTTP requests from outside the container.

To test the container, open a new browser window and request the URL http://localhost:3000, which
will send an HTTP request to port 3000 on the host operating system. Docker will direct the request to port
80 inside the container, which allows it to be received by Kestrel, which will start ASP.NET Core MVC and
run the example application.

After a couple of seconds, you will see the response from the example MVC application, as shown in
Figure 4-1. Reload the browser window to send another request to the same URL and you will see that it is
much faster now that the application is up and running.

Run the command shown in Listing 4-13 to start all the containers on a system.

Listing 4-13.  Starting All Containers

docker start $(docker ps -aq)

The command combines docker start with the output of the docker ps command. The -a argument
includes containers that are not running, and the -q argument returns just the container IDs.

Since one of the containers is already running, the command has the effect of starting the container that
is mapped to port 4000, which you can test by requesting the URL http://localhost:4000 in the browser
window, which will show the same content as Figure 4-1 because both containers are running the same
application.

You can see the container’s change in status by running the docker ps -a command, which will
produce output like this:

CONTAINER ID IMAGE STATUS PORTS NAMES
765b418bc16f apress/exampleapp Up 4 seconds 0.0.0.0:4000->80/tcp exampleApp4000
136b2a3e2246 apress/exampleapp Up 9 minutes 0.0.0.0:3000->80/tcp exampleApp3000

Figure 4-1.  Running the example application

Chapter 4 ■ Docker Images and Containers

49

The STATUS column reports that both containers are Up and how long they have been running for. The
PORTS column shows the ports that each container has mapped from the host operating system. In this case,
you can see that one container maps port 3000 to port 80 and the other maps port 4000 also to port 80.

These containers can coexist because the applications within the containers are isolated from each
other and have no knowledge of the port mapping system. The Kestrel server that is handling HTTP requests
inside the container starts listening to port 80, unware that it is running in a container and unware that the
requests are coming through a port mapping on the host operating system. The ability to create multiple
containers from the same image and run them side by side by varying their configuration is a key feature of
Docker and is illustrated by Figure 4-2. I return to this topic in Chapter 6, when I demonstrate how to scale
up an application, and in Chapter 7, when I show you how to deploy and application into a server cluster.

Stopping Containers
Containers are stopped using the docker stop command, which can stop one or more containers by name
or by ID. Run the command in Listing 4-14 to stop the container that is handling requests on port 3000.

Listing 4-14.  Stopping a Container Using Its Name

docker stop exampleApp3000

Run the command shown in Listing 4-15 to stop all the running containers, using the list of containers
generated by the docker ps command.

Listing 4-15.  Stopping All Containers

docker stop $(docker ps -q)

The only argument required for the docker ps command is -q. The -a argument is not used because
only the IDs of running containers are needed for the stop command, and this is what the ps command
returns by default.

■■ Tip  There is also a docker kill command, which sends a SIGKILL signal to the container. I tend not to
use this command since docker stop will automatically send this signal if the container hasn’t stopped after
ten seconds, a period that can be changed using the -t argument.

Figure 4-2.  The path from image to container to service

http://dx.doi.org/10.1007/978-1-4842-2778-7_6
http://dx.doi.org/10.1007/978-1-4842-2778-7_7

Chapter 4 ■ Docker Images and Containers

50

Getting Container Output
By default, Docker doesn’t display the output from the application when you start a container using the
docker start command. But it does keep a record that can be inspected using the docker logs command,
as shown in Listing 4-16.

Listing 4-16.  Getting Container Logs

docker logs exampleApp3000

The ASP.NET Core runtime writes out a message each time it receives an HTTP request, and the docker
logs command displays those messages, which look like this:

...
Hosting environment: Production
Content root path: /app
Now listening on: http://+:80
Application started. Press Ctrl+C to shut down.
info: Microsoft.AspNetCore.Hosting.Internal.WebHost[1]
 Request starting HTTP/1.1 GET http://localhost:3000/
info: Microsoft.AspNetCore.Mvc.Internal.ControllerActionInvoker[1]
 Executing action method ExampleApp.Controllers.HomeController.Index
 (ExampleApp) with arguments ((null)) - ModelState is Valid
...

The docker logs command shows you the most recent output from the container, even after the
container has been stopped. For running containers, you can use the -f argument to monitor the output so
that you will see any new messages that are produced. Run the commands in Listing 4-17 to start a container
and monitor its output.

Listing 4-17.  Following a Container’s Logs

docker start exampleApp3000
docker logs -f exampleApp3000

Request http://localhost:3000 in the browser to generate some output messages. When you are
done, type Control+C to stop the displaying the output. The container is unaffected by the docker logs
command and continues running in the background.

Creating and Starting Containers with a Single Command
The docker run command is used to create a container from an image and start it in a single step,
combining the effects of the docker create and docker start commands. Run the command in
Listing 4-18 to create and start a container from the custom image, with a port mapping that forwards
network traffic from port 5000 in the host operating system to port 80 inside the container.

Listing 4-18.  Creating and Running a Container with a Single Command

docker run -p 5000:80 --name exampleApp5000 apress/exampleapp

Chapter 4 ■ Docker Images and Containers

51

This command takes the same arguments as the docker create command from Listing 4-10: it tells
Docker to create the container from the apress/exampleapp image, sets up the port mapping, and assigns
the container the name exampleApp5000.

The difference is that the container is started once it has been created. The docker run command keeps
the command prompt attached to the container output so that the messages generated by the Kestrel server
are displayed in the command prompt.

To test the new container, open a browser tab and request the URL http://localhost:5000. The HTTP
request that it sends to port 5000 will be received by Docker and forwarded to port 80 inside the container,
producing the same response from the MVC application you saw in earlier examples.

If you are using Linux or macOS, you can stop the container by typing Control+C. If you are using
Windows, Control+C detaches the command prompt from the container but leaves it running in the
background, and you will have to run the command in Listing 4-19 to stop the container.

Listing 4-19.  Stopping a Container

docker stop exampleApp5000

REMOVING CONTAINERS AUTOMATICALLY

The docker run command can be used with the --rm argument, which tells Docker to remove the
container when it stops. Run this command to create a container that maps port 6500 in the host
container to port 80 in the new container:

docker run -p 6500:80 --rm --name exampleApp6500 apress/exampleapp

You can test the container by requesting http://localhost:6500 in the browser and by running
docker ps. Once you have checked that the container is working, stop the container using Control+C
(for Linux or macOS) or using this command (Windows).

docker stop exampleApp6500

Docker will remove the container as soon as it stops, which you can confirm by running docker ps -a
to see all the containers that exist on the system.

Modifying Containers
Images are immutable, but containers are not. Each container has its own writable file system. If you create
two containers from the same image, they will be identical at first and contain the same files. But, as the
applications in the containers run, the data and log files they create can cause the containers to become
different, with content that reflects the user requests they process.

You can also modify a container deliberately, using the Docker tools, and then use those changes to
create a new image that, in turn, can be used to create containers. This can be useful if you need to perform
some kind of manual configuration to allow an application to work properly in a container. In the sections
that follow, I show you different ways to make changes and then use those changes to generate a new image.

Chapter 4 ■ Docker Images and Containers

52

Changing a Container
To understand how containers can be changed, run the command in Listing 4-20 to ensure that the MVC
containers with mappings to ports 3000 and 4000 are running.

Listing 4-20.  Starting the MVC Application Containers

docker start exampleApp3000 exampleApp4000

These containers were created from the same image and contain an identical Razor view, which is
used to generate a response for the MVC application’s default URL. Confirm that the applications in
both containers generate the same response by opening browser tabs and requesting the URLs
http://localhost:3000 and http://localhost:4000, as shown in Figure 4-3.

Each container has its own writeable file system, which can be modified independently of the other
containers created from the same image. To create a change that has a visible effect, use your IDE to change
the message displayed in the banner in the Razor view in the ExampleApp/Views/Home folder, as shown in
Listing 4-21.

Listing 4-21.  Modifying the View in the Index.cshtml File in the ExampleApp/Views/Home Folder

@model IEnumerable<ExampleApp.Models.Product>
@{
 Layout = null;
}
<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>ExampleApp</title>
 <link rel="stylesheet" href="~/lib/bootstrap/dist/css/bootstrap.min.css" />
</head>

Figure 4-3.  Responses from the containerized MVC applications

Chapter 4 ■ Docker Images and Containers

53

<body>
 <div class="m-1 p-1">
 <h4 class="bg-success text-xs-center p-1 text-white">This is new content</h4>
 <table class="table table-sm table-striped">
 <thead>
 <tr><th>ID</th><th>Name</th><th>Category</th><th>Price</th></tr>
 </thead>
 <tbody>
 @foreach (var p in Model) {
 <tr>
 <td>@p.ProductID</td>
 <td>@p.Name</td>
 <td>@p.Category</td>
 <td>$@p.Price.ToString("F2")</td>
 </tr>
 }
 </tbody>
 </table>
 </div>
</body>
</html>

The changes apply a different Bootstrap background class and change the content in the h4 element. At
the moment, the changed Razor view exists in the ExampleApp folder of the host operating system and has no
effect on the containers.

Run the command shown in Listing 4-22 from the ExampleApp folder to copy the view into one of the
containers.

Listing 4-22.  Modifying a Container

docker cp ./Views/Home/Index.cshtml exampleApp3000:/app/Views/Home/

The docker cp command is used to copy files in and out of containers. This command copies the
modified Index.cshtml file from the project folder in the host operating system into the /app/Views folder
in the exampleApp3000 folder, which is the folder from which the MVC application inside the container gets
its views.

Chapter 4 ■ Docker Images and Containers

54

To see the effect of the change, use your browser to request the URL http://localhost:3000. The MVC
application in the container that receives the HTTP request will detect the changed file, compile it into a
C# class, and use it to generate a response, as shown in Figure 4-4.

The figure also shows the response you will see when you request the URL http://localhost:4000.
This illustrates that each container has its own storage and that changes to one container do not affect
the other. The changes to a container’s file system are persistent, which means you can stop and start the
modified container and the change made by the command in Listing 4-22 will still be used.

■■ Caution  Modifying files in containers should be done with caution and never done to a container in
production. See Chapter 8 if you want to change the files in an application because you are actively developing
the project, where I explain how to create a containerized development environment.

Examining Changes to a Container
Run the command shown in Listing 4-23 to see the changes to the container’s file system.

Listing 4-23.  Examining Container Changes

docker diff exampleApp3000

The docker diff command shows the differences between the files in the container and the image that
was used to create it and produces output like this (you may see slightly different results):

C /app
C /app/Views
C /app/Views/Home
C /app/Views/Home/Index.cshtml
C /root
A /root/.aspnet
A /root/.aspnet/DataProtection-Keys

Figure 4-4.  Modifying a file in a container

http://dx.doi.org/10.1007/978-1-4842-2778-7_8

Chapter 4 ■ Docker Images and Containers

55

C /tmp
A /tmp/clr-debug-pipe-1-1154405-in
A /tmp/clr-debug-pipe-1-1154405-out

Each entry in the results is annotated with a letter that indicates the type of change, as described in
Table 4-3.

In addition to the change I made to the Index.cshtml file, you can see that some files have been created
by the ASP.NET Core runtime. Some of files are related to debugging, which I show you how to perform in a
container in Chapter 8.

Executing Commands in Containers
An alternative to copying files in and out of containers is to interact with the container directly, executing
commands inside the container. This is a technique that should be used with caution, but it can be useful to
run configuration tasks or to diagnose problems with a container once it is running.

Run the command in Listing 4-24 to list the content of the Razor view file in one of the containers.

Listing 4-24.  Executing a Command

docker exec exampleApp3000 cat /app/Views/Home/Index.cshtml

The docker exec command is used to execute commands inside the container. The name of the
container is followed by the command and any arguments that it requires. You can use only the commands
that are available within the container. The command in Listing 4-24 tells the container to use the Linux cat
command to list the contents of the Razor view file, which will produce the following response:

@model IEnumerable<ExampleApp.Models.Product>
@{
 Layout = null;
}
<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>ExampleApp</title>
 <link rel="stylesheet" href="~/lib/bootstrap/dist/css/bootstrap.min.css" />
</head>

Table 4-3.  The Change Annotations from the docker diff Command

Annotation Description

A This annotation indicates that a file or folder has been added to the container

C This annotation indicates that a file or folder has been modified. For folders, a change
indicates that a file has been added or removed inside that folder.

D This annotation indicates that a file or folder has been removed from the container.

http://dx.doi.org/10.1007/978-1-4842-2778-7_8

Chapter 4 ■ Docker Images and Containers

56

<body>
 <div class="m-1 p-1">
 <h4 class="bg-success text-xs-center p-1 text-white">This is new content</h4>
 <table class="table table-sm table-striped">
 <thead>
 <tr><th>ID</th><th>Name</th><th>Category</th><th>Price</th></tr>
 </thead>
 <tbody>
 @foreach (var p in Model) {
 <tr>
 <td>@p.ProductID</td>
 <td>@p.Name</td>
 <td>@p.Category</td>
 <td>$@p.Price.ToString("F2")</td>
 </tr>

 }
 </tbody>
 </table>
 </div>
</body>
</html>

■■ Tip  Use the docker start command to make sure that a container is running before you use docker exec.

An extension of the ability to execute commands is to run an interactive shell, which can be more
convenient if the work you need to do on a container involves chaining together several steps or would be
easier with features such as file completion for navigating around the file system.

The base Linux image that is used for ASP.NET Core containers includes the Bash shell, which you can
start by running the command shown in Listing 4-25.

Listing 4-25.  Starting a Shell in a Container

docker exec -it exampleApp3000 /bin/bash

The -it argument to the docker exec command tells Docker that this is an interactive command
that requires terminal support. Once the interactive shell has started, run the commands in Listing 4-26 to
modify the contents of the Razor view in the MVC application.

Listing 4-26.  Modifying the Razor View in the Bash Shell

cd /app/Views/Home
sed -i "s/new content/interactive content/g" Index.cshtml
exit

The first command changes the working directory to the folder that contains the view. The second
command uses sed to replace the phrase new content with interactive content inside the view file. The
final command, exit, quits the shell and leaves the container to run in the background.

Chapter 4 ■ Docker Images and Containers

57

You can see the effect of the change by using the browser to navigate to http://localhost:3000, which
will produce the result shown in Figure 4-5.

INSTALLING AN EDITOR IN A LINUX CONTAINER

The most common task that requires interacting with a container is to use an editor to modify
configuration files that are not created until the application has been started at least once. The base
image for Linux containers for ASP.NET Core applications doesn’t contain an editor, but you can add one
using the following commands:

apt-get update
apt-get install vim

These commands download and install the venerable vi editor. If you have not used vi, then you can
read about its commands at www.vim.org. That said, if you find yourself using a text editor, then ask
yourself if you can solve the problem by changing the Docker file that creates the image from which the
container has been created.

Creating Images from Modified Containers
Once you have modified a container, you can use the docker commit command to create a new image that
incorporates the changes. Run the command in Listing 4-27 to create a new image that contains the changes
made to the Razor view in Listing 4-26.

Listing 4-27.  Committing Container Changes

docker commit exampleApp3000 apress/exampleapp:changed

Figure 4-5.  Using the interactive shell in a Linux container

http://www.vim.org/

Chapter 4 ■ Docker Images and Containers

58

This command creates a new variation of the apress/exampleapp image tagged as change. If you run
the docker images command, you will see the new image has been added to the list.

REPOSITORY TAG IMAGE ID
apress/exampleapp changed 00b418fa6548
apress/exampleapp latest 827c2d48beca
microsoft/aspnetcore 1.1.1 da08e329253c

This image can be used to create new containers that contain the modified Razor view (and any other
changes that were made to the original container).

Publishing Images
Once you have created and tested the images for an application, you can publish them so that they can be
pulled to servers and used to create containers. Docker runs a public repository for images called the Docker
Hub, which has been the source of the base images for the examples in this chapter. At the time of writing,
you can create a free account that allows you to publish unlimited public repositories and one private
repository. There are also paid-for accounts that allow more private repositories to be created. (There is also
the Docker Store for paid-for software, but that isn’t open to the public for publishing.)

■■ Note  For this section, you will need to visit http://hub.docker.com and create an account (the free
account is sufficient).

Tagging the Images for Publication
The tags I have been using for the example images in this chapter start with apress, such as
apress/exampleApp3000. When you publish an image to the Docker Hub, the first part of the tag must be
the user name you used to create your account.

■■ Note  See https://docs.docker.com/registry/deploying for instructions for creating a private
repository, which you can use to locally distribute images within your organization. This can be useful if you
have images that contain sensitive information or if you have to conform to a policy that prohibits using
third-party services.

For this section, I created a Docker Hub account with the user name of adamfreeman so that I can
re-create the process that you will need to follow to set up the tags required for your own account. To
publish your own images, replace adamfreeman in the commands that follow with your user name. Run
the commands shown in Listing 4-28 to apply new tags to custom images so they have the right account
information.

Listing 4-28.  Adding Image Tags in Preparation for Publishing

docker tag apress/exampleapp:changed adamfreeman/exampleapp:changed
docker tag apress/exampleapp:latest adamfreeman/exampleapp:unchanged

http://hub.docker.com/
https://docs.docker.com/registry/deploying

Chapter 4 ■ Docker Images and Containers

59

The new tags create two variations of the image, changed and unchanged. These tags don’t replace
the original ones, which you can see using the docker images command, which will produce a result like
this one:

REPOSITORY TAG IMAGE ID CREATED
apress/exampleapp changed b1af7e78f418 10 minutes ago
adamfreeman/exampleapp changed b1af7e78f418 10 minutes ago
apress/exampleapp latest 452007c3b3dd 31 minutes ago
adamfreeman/exampleapp unchanged 452007c3b3dd 31 minutes ago
microsoft/aspnetcore 1.1.1 da08e329253c 5 days ago

I like to remove the original tags to keep the list of images clean. Run the command shown in
Listing 4-29 to remove the original tags, leaving just the new tags in place.

Listing 4-29.  Removing Old Image Tags

docker rmi apress/exampleapp:changed apress/exampleapp:latest

Run the docker images command again and you will see that only the images with my account name
are left.

REPOSITORY TAG IMAGE ID CREATED
adamfreeman/exampleapp changed b1af7e78f418 14 minutes ago
adamfreeman/exampleapp unchanged 452007c3b3dd 35 minutes ago
microsoft/aspnetcore 1.1.1 da08e329253c 5 days ago

Authenticating with the Hub
The Docker Hub requires authentication before you can publish images to your account. Run the command
shown in Listing 4-30 to authenticate yourself with the Docker Hub using the user name and password you
used to create the account.

Listing 4-30.  Authenticating with the Docker Hub

docker login -u <yourUsername> -p <yourPassword>

The docker login command uses the user name and password provided by the -u and -p arguments
to perform authentication with the Hub. Once you have used the docker login command, subsequent
commands sent to the Hub will include your authentication credentials.

Publishing the Images
Run the commands shown in Listing 4-31 to push your images to the Docker Hub.

Listing 4-31.  Publishing Images to the Docker Hub

docker push adamfreeman/exampleapp:changed
docker push adamfreeman/exampleapp:unchanged

The first image can take a while to upload as the files it contains are transferred to the repository. The
second image should be much quicker, since only the changes between the containers are needed.

Chapter 4 ■ Docker Images and Containers

60

If you omit the variation in the tag, then the images will be published as :latest. The Docker Hub does
not enforce any kind of version control and doesn’t automatically assign the most recent push request as the
:latest image. For this reason, it is sensible to make an explicit push request that sets the image you want
used by default. Run the commands shown in Listing 4-32 to tag and push a new image.

Listing 4-32.  Tagging and Pushing the Default Variation for an Image

docker tag adamfreeman/exampleapp:unchanged adamfreeman/exampleapp:latest
docker push adamfreeman/exampleapp:latest

Finally, prevent anyone else using your account from publishing images by running the command
shown in Listing 4-33 to log out of the Docker Hub. Further push requests will not work until the docker
login command is used again.

Listing 4-33.  Logging Out of the Docker Hub

docker logout

The images are now available in the Docker Hub. Log into hub.docker.com, locate your repository, and
click the Tags section to see the images that have been published, as shown in Figure 4-6. You can use the
Docker Hub web site to control access to your images and to provide additional information about them.

Figure 4-6.  Publishing images to the Docker Hub

Chapter 4 ■ Docker Images and Containers

61

Creating Windows Containers
The images and containers created in the previous sections all rely on Linux as the execution platform. If you
are using Linux as your development machine, the containers in the example have been running directly on
your operating system using the Linux containers feature.

For Windows or macOS, Docker installs a Linux virtual machine that is used to execute containers. This
blurs the lines between containers and virtual machines, but it does mean that a wider range of operating
systems can be used to develop and test containers and that Windows and macOS users have access to the
large library of images for containerized Linux applications that are available through Docker Hub.

But Linux isn’t the only operating system that supports containers. Recent versions of Windows 10
and Windows Server 2016 also include container support that can be used to isolate and run Windows
applications running on the Windows operating system.

From the perspective of ASP.NET Core MVC, support for Windows containers can be useful if you want
to deploy your applications using Internet Information Services (IIS) or if your application depends on
components that cannot run on Linux.

In the sections that follow, I explain how to create and test a Windows container. Creating a Windows
container for an ASP.NET Core MVC application requires a similar process to the Linux equivalent but
requires some important configuration changes.

■■ Note  Windows containers can be created only using the Windows operating system and can be deployed
only to Windows Server 2016. Linux containers are more widely supported, and there are more base images
to work with. You should use Linux containers unless you have a specific need to containerize a Windows-only
application.

Switching to Windows Containers
You must tell Docker that you want to switch from using Linux containers (the default) to using Windows
containers. Right-click the Docker icon in the Windows task bar and select Switch To Windows Containers,
as shown in Figure 4-7. (You don’t have to perform this step when using Windows Server 2016, which
supports only Windows containers.)

Figure 4-7.  Switching to Windows containers

Chapter 4 ■ Docker Images and Containers

62

As part of the switch, you may be prompted to enable the Windows Containers feature, which will
require a reboot.

If you have problems using Docker after you have switched between container types, then a reboot will
usually solve the problem.

CREATING A WINDOWS SERVER VIRTUAL MACHINE

As I write this, the support for Windows containers on Windows 10 is at an early stage and has some
problems, especially if you are using Hyper-V for conventional virtual machines alongside Docker. I
found I got the best results by creating a regular Hyper-V virtual machine running Windows Server 2016
and using it to create and run my Docker Windows containers.

This technique requires switching on nested virtualization on the Windows 2016 virtual machine. Run
the following command using PowerShell in the host operating system:

Set-VMProcessor -VMName <VMName> -ExposeVirtualizationExtensions $true

Replace <VMName> with the name assigned to the Windows Server 2016 virtual machine in Hyper-V. This
command allows Docker to run in the Windows Server virtual machine and doesn’t require switching
between container types. See Chapter 3 for details of installing Docker in Windows Server 2016.

Creating a .NET Core Windows Image
Creating the image for a Windows container requires a different Docker file configuration. Create a file called
Dockerfile.windows in the ExampleApp folder and add the commands shown in Listing 4-34.

Listing 4-34.  The Contents of the Dockerfile.windows File in the ExampleApp Folder

FROM microsoft/dotnet:1.1.1-runtime-nanoserver

COPY dist /app

WORKDIR /app

EXPOSE 80/tcp

ENV ASPNETCORE_URLS http://+:80

ENTRYPOINT ["dotnet", "ExampleApp.dll"]

There are two differences between this Docker file and the one used for Linux containers. The first is
that the FROM command specifies a different base image.

...
FROM microsoft/dotnet:1.1.1-runtime-nanoserver
...

http://dx.doi.org/10.1007/978-1-4842-2778-7_3

Chapter 4 ■ Docker Images and Containers

63

The microsoft/dotnet image is the official image for .NET Core and is available in variations that
provide different versions of .NET, a choice between the runtime or the SDK, and both Linux and Windows
options. The 1.1.1-runtime-nanoserver variation specified in the listing contains the version 1.1.1 of the
.NET Core runtime and is based on Windows. (Windows Nano Server is a minimal installation of Windows
that is suitable for use in containers.)

■■ Tip  You can see the full set of variations and versions of the microsoft/dotnet image at the Docker Hub.

The second change is the addition of this ENV command:

...
ENV ASPNETCORE_URLS http://+:80
...

The ENV command sets an environment variable in the container. In this case, the command sets the
value of the ASPNETCORE_URLS environment variable, which sets the port that the Kestrel server listens on to
80. The base image I used for the Linux containers includes this environment variable. Setting the port isn’t a
requirement but ensures that I can create and use Windows containers using the same Docker commands I
used for the Linux containers earlier in the chapter.

Creating the Image and the Container
The process for creating an image and container for Windows is the same as for Linux. Run the commands
in Listing 4-35 in the ExampleApp folder to publish the application and use the new Docker file to create an
image.

Listing 4-35.  Creating an Image for a Windows Container

dotnet restore
dotnet publish --framework netcoreapp1.1 --configuration Release --output dist
docker build . -t apress/exampleapp:windows -f Dockerfile.windows

To differentiate between the Linux and Windows containers for the example applications, I used the -t
argument to the docker build command to specify a tag for the image that contains a variation so that the
name of the image is apress/exampleapp:windows.

■■ Tip  If you see an unknown blob error when you run the command in Listing 4-35, then use the task bar
icon to check that Docker has switched to Windows containers. If you had to reboot to enable containers, then
Docker may have reset to Linux containers when it started.

Run the command shown in Listing 4-36 to create and start a new container using the Windows image.

Listing 4-36.  Creating and Starting the Windows Container

docker run -p 7000:80 --name exampleAppWin apress/exampleapp:windows

Chapter 4 ■ Docker Images and Containers

64

Type Control+C to detach the command prompt and leave the container running. (The messages
written out indicate that Control+C will terminate the application, but this is a message from Kestrel, the
ASP.NET Core server, which doesn’t receive the keystrokes. When working with Docker, it can be easy to
confuse the container with the application that is running inside of it.)

Testing the Windows Container
At the time of writing, there is a problem with Windows containers that means they cannot be tested by
requesting the mapped port through localhost, as I did for the Linux containers. This is a result of the way
that the networking for containers is set up by Docker.

If you have another machine (or virtual machine available), then you can test the Windows container
using the host operating system’s IP address and the mapped port, which is 7000 in this example.

If you have only your development machine, then you can test using the IP address assigned to the
container. Run the command in Listing 4-37 to get detailed information about the Windows container.

Listing 4-37.  Inspecting a Container

docker inspect exampleAppWin

The output will include a Networks/nat section that contains an IP address, like this:

...
"Networks": {
 "nat": {
 "IPAMConfig": null,
 "Links": null,
 "Aliases": null,
 "NetworkID": "d41dba49b91fcd7fdfc5f7f520976db353",
 "EndpointID": "ca60ef2b19f591a0cf03b27407142cea7",
 "Gateway": "",
 "IPAddress": " 172.29.172.154",
 "IPPrefixLen": 16,
 "IPv6Gateway": "",
 "GlobalIPv6Address": "",
 "GlobalIPv6PrefixLen": 0,
 "MacAddress": "00:15:5d:68:1f:22"
 }
 }
...

Use this address to send an HTTP request to the container, using the port used by the application (and
not the port mapped to the host operating system outside the container).

You may see a different IP address in the output from the docker inspect command, but for me, the
URL that will test the container is http://172.29.172.154:80, producing the result shown in Figure 4-8.

■■ Note  The microsoft/dotnet image doesn’t contain the natively compiled packages that are included in
the microsoft/aspnetcore image that I used for the Linux image earlier in the chapter. This doesn’t stop the
container from running, but it does mean it takes slightly longer to process the first request.

Chapter 4 ■ Docker Images and Containers

65

Executing Commands in Windows Containers
If you are using a Windows container, then you can invoke commands inside the container with PowerShell.
Open a second PowerShell and run the command shown in Listing 4-38 to execute a command inside the
Windows container.

Listing 4-38.  Executing a Command in a Windows Container

docker exec exampleAppWin PowerShell cat /app/Views/Home/Index.cshtml

This command returns the contents of the Razor view, as follows:

@model IEnumerable<ExampleApp.Models.Product>
@{
 Layout = null;
}
<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>ExampleApp</title>
 <link rel="stylesheet" href="~/lib/bootstrap/dist/css/bootstrap.min.css" />
</head>

Figure 4-8.  Testing the Windows container

Chapter 4 ■ Docker Images and Containers

66

<body>
 <div class="m-1 p-1">
 <h4 class="bg-success text-xs-center p-1 text-white">This is new content</h4>
 <table class="table table-sm table-striped">
 <thead>
 <tr><th>ID</th><th>Name</th><th>Category</th><th>Price</th></tr>
 </thead>
 <tbody>
 @foreach (var p in Model) {
 <tr>
 <td>@p.ProductID</td>
 <td>@p.Name</td>
 <td>@p.Category</td>
 <td>$@p.Price.ToString("F2")</td>
 </tr>

 }
 </tbody>
 </table>
 </div>
</body>
</html>

Interacting with Windows Containers
You can also interact with a container using PowerShell directly. Run the command shown in Listing 4-39 to
interactively execute PowerShell inside the Windows container.

Listing 4-39.  Starting a Shell in a Windows Container

docker exec -it exampleAppWin PowerShell

Once the shell has started, use the commands in Listing 4-40 to modify the contents of the Razor view.

Listing 4-40.  Modifying the Razor View in PowerShell

cd C:\app\Views\Home
(Get-Content .\Index.cshtml).replace("This is new content", "Essential (Windows) Docker") |
Set-Content Index.cshtml
exit

The first command changes the working directory, and the second command replaces the phrase
This is new content with Essential (Windows) Docker. The final command exits the shell. If you use the
browser to send a request to the browser (as explained in the “Creating Windows Containers” section), you
will see the effect of the change, as illustrated by Figure 4-9.

Chapter 4 ■ Docker Images and Containers

67

Summary
In this chapter, I demonstrated how to create and manage Docker images and containers. I showed you
how to create Windows and Linux containers, how to modify containers and use the changes to create new
images, and how to publish images to the Docker Hub. In the next chapter, I explain how Docker deals with
application data and how multiple containers can be connected together using software-defined networks.

Figure 4-9.  Using the interactive shell in a Windows container

69© Adam Freeman 2017
A. Freeman, Essential Docker for ASP.NET Core MVC, DOI 10.1007/978-1-4842-2778-7_5

CHAPTER 5

Docker Volumes and Networks

In this chapter, I describe two Docker features that are designed to deal with more complex applications and,
specifically, applications that are made up of multiple containers.

The first feature, called volumes, separates the data files that are generated by an application or a
database from the rest of the container’s storage, which makes it easier to replace or upgrade a container.
The second feature, known as software-defined networks, allows containers to communicate, which makes
it easier to scale an application to handle larger workloads. Table 5-1 puts volumes and software-defined
networks in context.

Table 5-1.  Putting Docker Volumes and Software-Defined Networks in Context

Question Answer

What are they? Volumes allow important data to exist outside of the container, which
means you can replace a container without losing the data that it created.

Software-defined networks are Internet Protocol networks created by
Docker that allow the applications in containers to communicate.

Why are they useful? Volumes make it possible to delete a container without also deleting the
data it contains, which allows containers to be changed or upgraded
without losing user data.

Software-defined networks make it possible to create more complex
applications that span multiple containers, making it easier to introduce
common components like databases.

How are they used? These features are managed through the docker volume and docker
network commands. Volumes and software-defined networks must be
prepared before the containers that use them are created.

Are there any pitfalls or
limitations?

Working out which volumes are required by base images can be a difficult
process.

Software-defined networks only connect containers on a single server
unless a Docker cluster is used (as described in Chapter 7).

Are there any alternatives? There are no alternatives to these features, but you require them for every
project. Volumes are not required if a containerized application doesn’t
generate data that you need to save when the container is removed.
Software-defined networks are not required if your containers do not need
to communicate.

http://dx.doi.org/10.1007/978-1-4842-2778-7_7

Chapter 5 ■ Docker Volumes and Networks

70

Table 5-2 summarizes the chapter.

Preparing for This Chapter
This chapter depends on the ExampleApp MVC project created in Chapter 3. If you don’t want to work
through the process of creating the example, you can get the project as part of the free source code download
for which there is a link on the apress.com page for this book.

If you are a Windows user and you followed the examples in the previous chapter to create Windows
containers, then you must return to working with Linux containers. Right-click the Docker icon in the task
bar and select Switch to Linux Containers from the pop-up menu.

To ensure that there is no conflict with earlier examples, run the command shown in Listing 5-1 to
remove the containers created in the previous chapter.

Listing 5-1.  Removing the Containers

docker rm -f $(docker ps -aq)

Working with Volumes
There are two kinds of file associated with an application: the files required to run the application and the
data files that application generates as it runs, which are typically produced as a result of user actions. In the
world of Docker, these two types of files are handled differently.

The files required to run the application are part of the Docker container for an application. When
Docker processes the instructions in a Docker file, it builds up the image that forms the template for
containers. For an ASP.NET Core MVC application, this means that containers include the .NET Core
runtime, the ASP.NET Core packages, the custom C# classes, the Bootstrap CSS stylesheet, the Razor view,
and all of the configuration files. Without these files, a containerized MVC application would not be able
to run.

Table 5-2.  Chapter Summary

Problem Solution Listing

Ensure that data files are preserved when
a container is deleted

Create a volume and use it to provide the
contents of a directory in the container’s file
system

1–11, 13–17

Determine whether a container uses a
volume

Use the docker inspect command 12

Add a database to an ASP.NET Core MVC
application

Create and apply a volume to the database
container and configure Entity Framework Core
to connect to the database in the container

18–29

Connect containers together Create a software-defined network and connect
containers to it

30–34

Connect a container to a software-defined
network

Use the --network argument when creating the
container or use the docker network connect
command

35–39

Distribute work between containers
connected to a software-defined network

Use a load balancer that directs requests to
containers using the Docker DNS feature

40–41

http://dx.doi.org/10.1007/978-1-4842-2778-7_3

Chapter 5 ■ Docker Volumes and Networks

71

Data files are not included in containers. One of the key benefits of using containers is that they are easy
to create and destroy. When a container is destroyed, the files in its file system are deleted as well, which
would be disastrous for data files because they would be lost forever.

Docker provides a feature called volumes to manage application data, and in the following sections, I
explain how volumes work, demonstrate the tools that are available for working with them, and show you a
common type of application that uses volumes: a database.

Demonstrating the Problem
Volumes can be confusing, and the best place to start is to demonstrate what happens when they are not
used. Create a file called Dockerfile.volumes in the ExampleApp folder and add the commands shown in
Listing 5-2.

Listing 5-2.  The Contents of the Dockerfile.volumes File in the ExampleApp Folder

FROM alpine:3.4

WORKDIR /data

ENTRYPOINT (test -e message.txt && echo "File Exists" \
 || (echo "Creating File..." \
 && echo Hello, Docker $(date '+%X') > message.txt)) && cat message.txt

This Docker file uses the minimal Alpine Linux distribution as its base. To simulate an application that
generates data, the ENTRYPOINT command creates a data file called the /data/message.txt file that contains
a message and a timestamp.

The data file isn’t created until the container is started and won’t be part of the image that is created
from the Docker file, similar to the content of a database in a real application.

Run the commands in Listing 5-3 from the ExampleApp folder to build an image from the Docker file and
use that image to create and start a new container.

Listing 5-3.  Creating an Image and a Container

docker build . -t apress/vtest -f Dockerfile.volumes
docker run --name vtest apress/vtest

The container will produce the following output when Docker starts it, although you will see a different
timestamp:

...
Creating File...
Hello, Docker 20:21:50
...

The container exits once it has written out the message, which shows that the /data/message.txt data
file has been created and that it has been timestamped at 20:21:50.

Because I have not set up a volume for the data file, it has become part of the container’s file system.
The file system is persistent, which you can see by running the command in Listing 5-4 to start the same
container again.

Listing 5-4.  Restarting the Container

docker start -a vtest

Chapter 5 ■ Docker Volumes and Networks

72

This time you will see output like this:

...
File Exists
Hello, Docker 20:21:50
...

The output indicates that the /data/message.txt file already exists and has the same timestamp.
The problems with data files occur when a container is deleted. As you will learn in later chapters,

Docker containers are created and destroyed often, either to reflect a change in the workload or to deploy a
new version of the application. Run the command shown in Listing 5-5 to remove the container.

Listing 5-5.  Deleting a Container

docker rm -f vtest

Docker will delete the container, and the /data/message.txt file is lost. To confirm that this is the case,
run the command shown in Listing 5-6 to create and run another container from the same image.

Listing 5-6.  Replacing the Container

docker run --name vtest apress/vtest

The output from the container shows that a new data file has been created.

...
Creating File...
Hello, Docker 20:53:26
...

To state the obvious, deleting data files in a real application has serious consequences and should be
avoided.

Managing Data with a Docker Volume
Docker volumes solve the data file problem by keeping data files outside the container while still making
them accessible to the application that runs inside it. There are three steps to using a volume, which I
describe in the sections that follow.

Step 1: Updating the Docker File
The first step to applying a volume is to add a command to the Docker file, as shown in Listing 5-7.

Listing 5-7.  Declaring a Volume in the Dockerfile.volumes File in the ExampleApp Folder

FROM alpine:3.4

VOLUME /data

WORKDIR /data

Chapter 5 ■ Docker Volumes and Networks

73

ENTRYPOINT (test -e message.txt && echo "File Exists" \
 || (echo "Creating File..." \
 && echo Hello, Docker $(date '+%X') > message.txt)) && cat message.txt

The VOLUME command tells Docker that any files stored in /data should be stored in a volume, putting
them outside the regular container file system. The important point to note is that the application running
in the container won’t know that the files in the /data directory are special: they will be read and written just
like any other file in the container’s file system.

Save the changes to the Docker file and run the command shown in Listing 5-8 in the ExampleApp folder
to re-create the image.

Listing 5-8.  Updating the Image to Use a Volume

docker build . -t apress/vtest -f Dockerfile.volumes

Step 2: Creating the Volume
The second step is to create the volume that will hold the data files. Run the command shown in Listing 5-9
to create the volume that will be used to store the data files for the example application.

Listing 5-9.  Creating a Volume

docker volume create --name testdata

The docker volume create command is used to create a new volume and assign it a name, which
is testdata in this case. The volume is a self-contained file system that will provide the contents for one
directory in the container’s file system. Since the volume isn’t part of the container, the files it contains are
not deleted when the container is destroyed.

Step 3: Creating the Container
The third and final step is to tell Docker which volume should be used by the container. Run the command
shown in Listing 5-10 in the ExampleApp folder to create a container that uses the testdata volume created
in Listing 5-9 to provide the contents for the /data directory configured in Listing 5-7.

Listing 5-10.  Associating a Volume with a Container

docker run --name vtest2 -v testdata:/data apress/vtest

The -v argument tells Docker that any data the container creates in the /data directory should be
stored in the testdata volume. The volume appears like a regular directory to the application, which creates
the data file like it did before. The output from the command in Listing 5-10 will indicate that a data file has
been created, like this:

...
Creating File...
Hello, Docker 21:48:20
...

Nothing has changed as far as the application is concerned. The simple script I set up in the Docker file’s
ENTRYPOINT command checks to see whether there is a message.txt file in the /data directory. Volumes are
empty when they are first created, which means the application didn’t find the file and created it.

Chapter 5 ■ Docker Volumes and Networks

74

The effect of using the volume is apparent only when the container is destroyed and replaced. Run the
commands shown in Listing 5-11 to remove the existing container and create and run its replacement.

Listing 5-11.  Testing the Volume

docker rm -f vtest2
docker run --name vtest2 -v testdata:/data apress/vtest

Once again, the -v argument is used with the docker run command to tell Docker to use the testdata
volume to provide the contents for the /data directory. This time, when the ENTRYPOINT script looks for the
/data/message.txt file, it discovers the one created by the previous container, which has survived because
the volume was unaffected when the container was destroyed. You will see the output that shows that the file
didn’t have to be created, similar to this:

...
File Exists
Hello, Docker 21:48:20
...

Determining Whether an Image Uses Volumes
There are two ways to check to see whether a Docker image relies on volumes. The first—and most
obvious—is to look at the Docker file that was used to create the image. Many publicly available images on
Docker include a link to a GitHub repository, where you can easily inspect the Docker file and see whether it
contains any VOLUME commands. Remember to consider the base image as well when reading Docker files.

The other approach is to examine an image directly, which is useful if you don’t have access to the
Docker file. Run the command in Listing 5-12 to examine the image used in the previous section.

Listing 5-12.  Examining a Docker Image

docker inspect apress/vtest

The response from the docker inspect command is a JSON description of the image, which includes
information about the volumes that are used. For the example image, the response from the docker inspect
command will include the following:

...
"Volumes": {
 "/data": {}
},
...

The Volumes section of the description lists the volumes that the images uses and that can be configured
using the -v argument to the docker run or docker create commands.

Adding a Database to the Example Application
Most ASP.NET Core MVC applications rely on a database, which means there are database files that should
be stored in a volume so they are not deleted when the database container is destroyed.

Chapter 5 ■ Docker Volumes and Networks

75

However, since the contents of a volume are not included in images, even when the docker commit
command is used, some special measures are required to ensure that the application’s data model schema is
created and any seed data applied when the database is first started.

In the sections that follow, I explain how to add a database to the example application, including the
steps required to use a volume to contain the data files.

There are lots of database servers available, but the most common choice for containerized ASP.NET
Core applications tends to be MySQL, which runs well in Linux containers and has good-quality support in
Entity Framework Core (EF Core), which is the object/relational mapping framework used in most ASP.NET
Core applications.

To make sure that previous examples don’t interfere with the containers in this chapter, run the
command shown in Listing 5-13 to remove all the Docker containers.

Listing 5-13.  Removing the Existing Docker Containers

docker rm -f $(docker ps -aq)

SELECTING A DATABASE SERVER

The most common database server choice for ASP.NET Core MVC when Docker isn’t being used is
Microsoft SQL Server. At the time of writing, the use of SQL Server in Docker is at an early stage. SQL
Server runs well in Windows, but Docker support for Windows Containers is still new and has some
rough edges. Microsoft has released a preview of SQL Server running on Linux, which will be ideally
suited for Docker Linux containers when it stabilizes, but, at least as I write this, the Linux version is not
ready for production use. When Microsoft releases the final version, I will post an updated example to
this book’s source code repository, for which you can find a link on the apress.com page for this book.

Pulling and Inspecting the Database Image
When adding a new component to a containerized application, it is important to start by inspecting the
image to see how it uses volumes so that you know how to configure the containers that you create. If you
skip this step, everything will be fine until you remove a container and find that the data files it contains are
removed as well.

Run the commands shown in Listing 5-14 to pull the image for MySQL from the Docker Hub and
inspect it.

Listing 5-14.  Pulling and Inspecting the MySQL Docker Hub Image

docker pull mysql:8.0.0
docker inspect mysql:8.0.0

Examine the output from the docker inspect command and locate the Volumes section, which will
look like this:

...
"Volumes": {
 "/var/lib/mysql": {}
},
...

Chapter 5 ■ Docker Volumes and Networks

76

This tells you that the mysql:8.0.0 image uses a volume for its /var/lib/mysql directory, which is
where MySQL stores its data files.

■■ Tip  Don’t be tempted to create a Docker image that contains your ASP.NET Core MVC application and
the database so they can run in a single container. The convention for Docker is to use a separate container
for each component in an application, which makes it easier to upgrade or replace parts of the application
and allows a more flexible approach to scaling up the application once it is deployed. You won’t benefit from
Docker’s most useful features if you create a monolithic container that includes all your application components.

Creating the Volume and Container
To prepare for the database container, run the command shown in Listing 5-15 to create the Docker volume
called productdata that will be used to store the database data files.

Listing 5-15.  Creating a Volume for the Database Container

docker volume create --name productdata

Run the command shown in Listing 5-16 to create and start a new MySQL container that uses the
volume to provide the container with the contents of the /var/lib/mysql directory. (Enter the command on
a single line.)

Listing 5-16.  Creating and Starting a MySQL Container

docker run -d --name mysql -v productdata:/var/lib/mysql
 -e MYSQL_ROOT_PASSWORD=mysecret -e bind-address=0.0.0.0 mysql:8.0.0

As explained in Chapter 4, the docker run command creates a container and starts it in a single step.
Table 5-3 shows the arguments used to configure the MySQL container.

Table 5-3.  The Arguments Used to Configure the MySQL Container

Name Description

-d This argument tells Docker to run the container in the background without
attaching to it to display the output.

--name This argument is used to assign the name mysql to the container, which
makes it easier to refer to in other Docker commands.

-e MYSQL_ROOT_PASSWORD This argument sets an environment variable. In this case, the MySQL
container uses the MYSQL_ROOT_PASSWORD environment variable to set the
password required to connect to the database. I have set the password to
mysecret for the example application, but you should use a more secure
password for real projects.

-e bind-address This argument sets an environment variable. This environment variable
ensures that MySQL accepts requests on all network interfaces.

-v productdata:/var/
lib/mysql

This argument tells Docker to use a volume called productdata to provide
the contents of the container’s /var/lib/mysql directory.

http://dx.doi.org/10.1007/978-1-4842-2778-7_4

Chapter 5 ■ Docker Volumes and Networks

77

Run the command shown in Listing 5-17 to monitor the database startup.

Listing 5-17.  Monitoring the Database Startup

docker logs -f mysql

It will take a while for MySql to initialize, during which time it will write out log messages. Many of these
messages will be warnings that can be ignored. The messages will stop once the database is ready, and one
of the last messages shown will be like the following, which indicates that the database is ready to accept
network connections:

...
08:42:00.729460Z 0 [Note] mysqld: ready for connections.
...

Subsequent initializations will be much faster because they will be able to use the files that have been
created in the productdata volume. Once the database is running, type Control+C to stop monitoring the
output and leave the database running in its container in the background.

Preparing the Example Application
Data for an ASP.NET Core MVC application is typically provided by the Entity Framework Core (known as
EF Core), which is the ASP.NET object/relational mapping framework. Edit the ExampleApp.csproj file to
add the packages shown in Listing 5-18.

Listing 5-18.  Adding Packages in the ExampleApp.csproj File in the ExampleApp Folder

<Project Sdk="Microsoft.NET.Sdk.Web">

 <PropertyGroup>
 <TargetFramework>netcoreapp1.1</TargetFramework>
 </PropertyGroup>

 <ItemGroup>
 <PackageReference Include="Microsoft.AspNetCore" Version="1.1.1" />
 <PackageReference Include="Microsoft.AspNetCore.Mvc" Version="1.1.2" />
 <PackageReference Include="Microsoft.AspNetCore.StaticFiles" Version="1.1.1" />
 <PackageReference Include="Microsoft.Extensions.Logging.Debug" Version="1.1.1" />
 <PackageReference Include="Microsoft.VisualStudio.Web.BrowserLink"
 Version="1.1.0" />

 <PackageReference Include="Microsoft.EntityFrameworkCore" Version="1.1.1" />
 <PackageReference Include="Microsoft.EntityFrameworkCore.Tools"
 Version="1.1.0" />
 <PackageReference Include="Pomelo.EntityFrameworkCore.MySql" Version="1.1.0" />
 <DotNetCliToolReference Include="Microsoft.EntityFrameworkCore.Tools.DotNet"
 Version="1.0.0" />
 </ItemGroup>
</Project>

Chapter 5 ■ Docker Volumes and Networks

78

The new packages add the EF Core packages from Microsoft and the Pomelo.EntityFrameworkCore.
MySql package, which contains a database provider for MySql. There is an official database provider
available from the MySql project, but I find that the Pomelo provider used in this chapter gets updated more
rapidly and is easier to work with.

Save the changes to the ExampleApp.csproj file and run the command shown in Listing 5-19 in the
ExampleApp folder to download the new packages.

Listing 5-19.  Updating the Example Project Packages

dotnet restore

Creating the Repository Class
At the moment, the example application has dummy data that is provided by a placeholder implementation
of the repository interface, which I put in place in Chapter 3 just to get the application started.

Replacing the dummy data with data accessed through EF Core requires a database context class. Add a
file called ProductDbContext.cs to the ExampleApp/Models folder and add the code shown in Listing 5-20.

Listing 5-20.  The Contents of the ProductDbContext.cs File in the ExampleApp/Models Folder

using Microsoft.EntityFrameworkCore;

namespace ExampleApp.Models {

 public class ProductDbContext : DbContext {

 public ProductDbContext(DbContextOptions<ProductDbContext> options)
 : base(options) {
 }

 public DbSet<Product> Products { get; set; }
 }
}

The ProductDbContext class will provide access to the Product objects in the database through
its Products property. To provide access to the data elsewhere in the application, add a file called
ProductRepository.cs to the ExampleApp/Models folder and add the code shown in Listing 5-21.

Listing 5-21.  The Contents of the ProductRepository.cs File in the ExampleApp/Models Folder

using System.Linq;

namespace ExampleApp.Models {

 public class ProductRepository : IRepository {
 private ProductDbContext context;

 public ProductRepository(ProductDbContext ctx) {
 context = ctx;
 }

 public IQueryable<Product> Products => context.Products;
 }
}

http://dx.doi.org/10.1007/978-1-4842-2778-7_3

Chapter 5 ■ Docker Volumes and Networks

79

This is a simple repository that exposes the Product objects in the database through a Products
property. In a real project, the repository would also provide methods to create and modify objects, but I
have omitted these to keep the focus on Docker.

To define seed data that will be added to the application when the database is empty, create a file called
SeedData.cs in the ExampleApp/Models folder and add the code shown in Listing 5-22.

Listing 5-22.  The Contents of the SeedData.cs File in the ExampleApp/Models Folder

using Microsoft.AspNetCore.Builder;
using Microsoft.EntityFrameworkCore;
using Microsoft.Extensions.DependencyInjection;
using System.Linq;

namespace ExampleApp.Models {

 public static class SeedData {

 public static void EnsurePopulated(IApplicationBuilder app) {
 EnsurePopulated(
 app.ApplicationServices.GetRequiredService<ProductDbContext>());
 }

 public static void EnsurePopulated(ProductDbContext context) {
 System.Console.WriteLine("Applying Migrations...");
 context.Database.Migrate();

 if (!context.Products.Any()) {

 System.Console.WriteLine("Creating Seed Data...");
 context.Products.AddRange(
 new Product("Kayak", "Watersports", 275),
 new Product("Lifejacket", "Watersports", 48.95m),
 new Product("Soccer Ball", "Soccer", 19.50m),
 new Product("Corner Flags", "Soccer", 34.95m),
 new Product("Stadium", "Soccer", 79500),
 new Product("Thinking Cap", "Chess", 16),
 new Product("Unsteady Chair", "Chess", 29.95m),
 new Product("Human Chess Board", "Chess", 75),
 new Product("Bling-Bling King", "Chess", 1200)
);
 context.SaveChanges();
 } else {
 System.Console.WriteLine("Seed Data Not Required...");
 }
 }
 }
}

The static EnsurePopulated method creates a database context object and uses it to add Product
objects to the database. The most important statement in the SeedData class is this one:

...
context.Database.Migrate();
...

Chapter 5 ■ Docker Volumes and Networks

80

EF Core manages the schema of the database using a feature called migrations, which are usually
applied to the database through a command-line tool. This doesn’t work when using Docker because it
is difficult to perform manual configuration steps when deploying an application. Instead, the Database.
Migrate method is called during application startup to apply any pending migrations to the database. This
ensures that the database schema is created without needing any command-line intervention, but, as you
will learn, different techniques are required for production applications, as described in later chapters.

Configuring the Application
To configure the application and enable the EF Core services, make the modifications shown in Listing 5-23
to the Startup class.

Listing 5-23.  Configuring the Application in the Startup.cs File in the ExampleApp Folder

using ExampleApp.Models;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Logging;
using Microsoft.Extensions.Configuration;
using Microsoft.EntityFrameworkCore;

namespace ExampleApp {
 public class Startup {

 private IConfigurationRoot Configuration;

 public Startup(IHostingEnvironment env) {
 Configuration = new ConfigurationBuilder()
 .SetBasePath(env.ContentRootPath)
 .AddEnvironmentVariables()
 .Build();
 }

 public void ConfigureServices(IServiceCollection services) {

 var host = Configuration["DBHOST"] ?? "localhost";
 var port = Configuration["DBPORT"] ?? "3306";
 var password = Configuration["DBPASSWORD"] ?? "mysecret";

 services.AddDbContext<ProductDbContext>(options =>
 options.UseMySql($"server={host};userid=root;pwd={password};"
 + $"port={port};database=products"));

 services.AddSingleton<IConfiguration>(Configuration);
 services.AddTransient<IRepository, ProductRepository>();
 services.AddMvc();
 }

Chapter 5 ■ Docker Volumes and Networks

81

 public void Configure(IApplicationBuilder app,
 IHostingEnvironment env, ILoggerFactory loggerFactory) {

 loggerFactory.AddConsole();
 app.UseDeveloperExceptionPage();
 app.UseStatusCodePages();
 app.UseStaticFiles();
 app.UseMvcWithDefaultRoute();

 SeedData.EnsurePopulated(app);
 }
 }
}

In conventional MVC projects, the connection string for the database is defined in a JSON configuration
file, but when working with containers, it is simpler to use environment variables because they can be easily
specified when a container is started so that you don’t have to rebuild the image and re-create the containers
each time there is a configuration change. In this example, the host name, TCP port, and password are
configured by reading the value of environment variables called DBHOST, DBPORT, and DBPASSWORD. There are
default values for these configuration settings that will be used if the environment variables are not defined.

Creating the Database Migration
The next step is to create the initial Entity Framework Core migration that will define the schema for the
application. This uses the EF Core Code First feature, which generates database schemas automatically from
the data model classes in an ASP.NET Core application. Run the command shown in Listing 5-24 from the
ExampleApp folder to create the migration.

Listing 5-24.  Creating the Initial Database Migration

dotnet ef migrations add Initial

If you are using Visual Studio, you can open the Package Manager Console (available in the Tools ➤
NuGet Package Manager menu) and run the PowerShell command shown in Listing 5-25 instead.

Listing 5-25.  Creating the Database Migrations Using the Visual Studio Package Manager Console

Add-Migration Initial

Regardless of which command you use, Entity Framework Core will create an Example/Migrations
folder that contains C# classes that will be used create the database schema. (If you see an error telling you
that the term Add-Migration is not recognized, then restart Visual Studio and load the example project
again. Once the project has loaded, you should be able to run the Add-Migration command from the
Package Manager Console.)

Chapter 5 ■ Docker Volumes and Networks

82

■■ Note  You might be used to running the dotnet ef database update or Update-Database command
at this point, but these are not helpful when working with Docker. Instead, the MVC application has been
configured to apply the migration when it starts, as shown in Listing 5-23 or by using the techniques described
in later chapters.

Changing the View
Earlier examples modified the banner message in the Razor view to indicate when content has been altered.
Return the view to a simpler message that displays just the value provided by the controller, as shown in
Listing 5-26.

Listing 5-26.  Resetting the Contents of the Index.cshtml File in the ExampleApp/Views/Home Folder

@model IEnumerable<ExampleApp.Models.Product>
@{
 Layout = null;
}
<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>ExampleApp</title>
 <link rel="stylesheet" href="~/lib/bootstrap/dist/css/bootstrap.min.css" />
</head>
<body>
 <div class="m-1 p-1">
 <h4 class="bg-success text-xs-center p-1 text-white">@ViewBag.Message</h4>
 <table class="table table-sm table-striped">
 <thead>
 <tr><th>ID</th><th>Name</th><th>Category</th><th>Price</th></tr>
 </thead>
 <tbody>
 @foreach (var p in Model) {
 <tr>
 <td>@p.ProductID</td>
 <td>@p.Name</td>
 <td>@p.Category</td>
 <td>$@p.Price.ToString("F2")</td>
 </tr>

 }
 </tbody>
 </table>
 </div>
</body>
</html>

Chapter 5 ■ Docker Volumes and Networks

83

Creating the MVC Application Image
The final preparatory step is to update the image for the MVC application so that it includes the code
changes to support the database, the Entity Framework Core packages, and the initial migration that will
create the database schema and apply the seed data. Run the commands shown in Listing 5-27 in the
ExampleApp folder to publish the application and create a new Docker image.

Listing 5-27.  Updating the MVC Application Image

dotnet publish --framework netcoreapp1.1 --configuration Release --output dist
docker build . -t apress/exampleapp -f Dockerfile

The dotnet publish command prepares the MVC application for containerization and writes all of the
files that it requires into the dist folder, as explained in Chapter 4. The docker build command uses the
Dockerfile to generate a new image, which is assigned the apress/exampleapp tag.

Testing the Application
All that remains is to test the new image by creating a container for the ASP.NET Core MVC application and
ensuring that it can communicate with the MySQL database, which is already running in its own container,
created in Listing 5-16. This testing requires a little work, but it provides some useful insights into how
Docker works.

When you start a container, Docker connects it to an internal virtual network and assigns it an Internet
Protocol (IP) address so that it can communicate with the host server and with other containers on the same
network. This is the entry point for a key Docker feature that I describe in the next section of this chapter
(known as software-defined networks).

To have the MVC container talk to the database, I need to know the IP address that Docker assigned to
the MySQL container. Run the command shown in Listing 5-28 to examine the configuration of the Docker
virtual network.

Listing 5-28.  Examining the Docker Virtual Network

docker network inspect bridge

The response from this command will show you how Docker has configured the virtual network and
will include a Containers section that shows the containers that are connected to the network and the IP
addresses that are assigned to them.

There should be only one container, and its Name field will be mysql. Make a note of the IPv4Address
field, as follows:

...
"Containers": {
 "72753560ccb4d876bdeaad36e0b39354a08e90ad30ac1a78b20aad3e52b7a101": {
 "Name": "mysql",
 "EndpointID": "04f18afbf953a030ddfbbadf4a8f86c1dbf6c6a6736449326",
 "MacAddress": "02:42:ac:11:00:02",
 "IPv4Address": "172.17.0.2/16",
 "IPv6Address": ""
 }
},
...

http://dx.doi.org/10.1007/978-1-4842-2778-7_4

Chapter 5 ■ Docker Volumes and Networks

84

This is the IP address that Docker has assigned to the container. For me, the address is 172.17.0.2, but
you may see a different address. This is the IP address that the MVC application must use in its database
connection to communicate with MySQL. This address can be provided to the application through the
DBHOST environment variable, which is read by the additions to the MVC application’s Startup class that I
made in Listing 5-22.

Run the commands shown in Listing 5-29 to create and start an MVC container in the background and
then to monitor its output. Make sure you use the IP address that has been assigned to the MySQL container
on your system, shown in the output you received from the command in Listing 5-29.

Listing 5-29.  Creating and Starting a New MVC Application Container

docker run -d --name productapp -p 3000:80 -e DBHOST=172.17.0.2 apress/exampleapp
docker logs -f productapp

As the MVC application starts up, you will see messages that show that Entity Framework Core has
applied its migrations to the database, which ensures that the schema is created and that the seed data is
added.

...
Applying Migrations...
info: Microsoft.EntityFrameworkCore.Migrations.Internal.Migrator[12]
 Applying migration '20161215112411_Initial'.
Creating Seed Data...

...SQL statements omitted for brevity...

Hosting environment: Production
Content root path: /app
Now listening on: http://+:80
Application started. Press Ctrl+C to shut down.
...

The docker run command in Listing 5-29 maps port 3000 on the host operating system to port 80 in
the container, which is the port that Kestrel is using to receive HTTP requests for the ASP.NET Core runtime.
To test the application, open a new browser tab and request the URL http://localhost:3000. The browser
will send an HTTP request that Docker will receive and direct to port 80 in the MVC container, producing the
response shown in Figure 5-1.

Chapter 5 ■ Docker Volumes and Networks

85

The data displayed in the response from the MVC application was obtained from the MySQL server
using Entity Framework Core. The Docker network allowed the EF Core to open a network connection to the
MySQL container and use it to send a SQL query. Both components exist in their own containers and make
network requests as they would normally, unware that the other container exists on the same server and that
the network that connects them is virtual and has been created and managed by Docker.

Once you have tested that the MVC application works, type Control+C to stop monitoring the output
and leave the container running in the background. You can check that the container is still running with the
docker ps command.

Working with Software-Defined Networks
The virtual network that allowed the containers to communicate in the previous section is an example of a
software-defined network (SDN). As the name suggests, SDNs are networks that are created and managed
using software. SDNs behave like traditional networks and use regular IP addresses ports, but there are no
physical network interfaces, and the infrastructure for the networks, such as name services and routing, are
provided by Docker.

SDNs allow containers to communicate. Simple SDNs are restricted to a single server. The default
network that I used in the previous section, known as the default bridge network, is a good example. This
network is one of a set that Docker creates when it starts. Run the command shown in Listing 5-30 to see the
default networks that Docker provides.

Figure 5-1.  Testing the example application

Chapter 5 ■ Docker Volumes and Networks

86

Listing 5-30.  Listing the Docker Networks

docker network ls

This command lists all the current SDNs and produces the following output:

NETWORK ID NAME DRIVER SCOPE
3826803e0a8c bridge bridge local
0e643a56cce6 host host local
9058e96d6113 none null local

The host network is the host server’s network, and the none network is a network that has no
connectivity and that can be used to isolate containers completely. The network whose name is bridge is the
one that is of most interest because Docker adds all containers to this network when it creates them. Run the
command shown in Listing 5-31 to inspect the default bridge network.

Listing 5-31.  Inspecting the Default Bridge Network

docker network inspect bridge

Now that there are two containers running, you will see an additional entry in the Containers section,
showing the network configuration that Docker has applied to the MVC container, like this (although you
may see different addresses):

...
"Containers": {
 "1be5d5609e232335d539b29c49192c51333aaea1fd822249342827456aefc02e": {
 "Name": "productapp",
 "EndpointID": "3ff7acdaf3cce9e77cfc7156a04d6fa7bf4b5ced3fd13",
 "MacAddress": "02:42:ac:11:00:03",
 "IPv4Address": "172.17.0.3/16",
 "IPv6Address": ""
 },
 "9dd1568078b63104abc145840df8502ec2e171f94157596236f00458ffbf0f02": {
 "Name": "mysql",
 "EndpointID": "72b3df290f3fb955e1923b04909b7f27fa3854d8df583",
 "MacAddress": "02:42:ac:11:00:02",
 "IPv4Address": "172.17.0.2/16",
 "IPv6Address": ""
 }
},
...

The best way to understand the effect of the Docker SDN is to understand the composition of the
application that was created in the previous section and to consider the connectivity of the MVC and MySQL
containers, as illustrated in Figure 5-2.

Chapter 5 ■ Docker Volumes and Networks

87

The browser sends its HTTP request to a port on the host operating system that Docker maps to a port
in the MVC application’s container. The MVC application asks Entity Framework Core to provide it with data,
which it does by using the default bridge network to communicate with the MySQL application running in
a separate container. The command in Listing 5-16 that created the MySQL container didn’t include a port
mapping, which means that the MySQL container isn’t accessible via a port on the host operating system.

■■ Note  The software-defined networks created in this chapter exist only on a single host server, which
means that all the containers connected to the network must be running on that server. Docker also supports
software-defined networks that span all the nodes in a cluster of servers, which I demonstrate in Chapter 7.

Scaling the MVC Application
Software-defined networks behave like physical networks, and containers behave like servers connected to
them. This means that scaling up the MVC application so that there are multiple ASP.NET Core servers is as
simple as creating and starting additional containers. Run the command in Listing 5-32 to add a new MVC
container. (Enter the command as a single line.)

Listing 5-32.  Creating an Additional MVC Application Container

docker run -d --name productapp2 -p 3500:80 -e DBHOST=172.17.0.2
 -e MESSAGE="2nd Server" apress/exampleapp

When creating additional containers for an application, it is important to ensure the new containers
have different names (productapp2 in this case) and different port mappings (port 3500, instead of port
3000, is mapped to port 80 for this container). To further differentiate the new container, the -e argument
has been used to set the MESSAGE environment variable, which will be displayed in the MVC application’s
output. The -d argument tells Docker to start the container in the background.

The result is that there are containers for the MVC application that will handle requests on ports 3000
and 3500 of the host server. To test the containers, open browser tabs and request http://localhost:3000
and http://localhost:3500, which will produce the results shown in Figure 5-3. Notice that the banner in
the response from the new container says “2nd Server,” differentiating it from the original container.

Figure 5-2.  Using the default bridge network

http://dx.doi.org/10.1007/978-1-4842-2778-7_7

Chapter 5 ■ Docker Volumes and Networks

88

Figure 5-4 shows the composition of the application following the addition of a second MVC application
container.

Docker assigns each container its own IP address, and the containers can communicate freely with one
another.

Creating Custom Software-Defined Networks
Using the default bridge network demonstrates the basic networking features of Docker, but it has two main
limitations. The first limitation is the awkward process of inspecting the network to get the IP address of the
MySQL container to configure the MVC containers.

The second limitation is that all the containers are connected to the same network, while large-scale
applications are generally designed with multiple networks that separate out the different functional areas so
they can be monitored and managed independently. Fortunately, both of these limitations can be addressed
by creating custom SDNs instead of using the default bridge network.

Figure 5-3.  Creating additional application containers

Figure 5-4.  The effect of adding an additional container

Chapter 5 ■ Docker Volumes and Networks

89

To prepare for this section, run the command shown in Listing 5-33 to stop and remove the database
and MVC containers.

Listing 5-33.  Removing the Containers

docker rm -f $(docker ps -aq)

Creating Custom Networks
Custom software-defined networks are created using the docker network create command, followed by
the name for the new network. Run the commands shown in Listing 5-34 to create two new software-defined
networks called frontend and backend.

Listing 5-34.  Creating Custom Software-Defined Networks

docker network create frontend
docker network create backend

The frontend network will be used to receive HTTP requests by the MVC containers. The backend
network will be used for SQL queries between the MVC containers and the MySQL container. Run the
docker network ls command and you will see that the output includes the new networks, like this:

NETWORK ID NAME DRIVER SCOPE
778d9eb6777a backend bridge local
fa1bc701b306 bridge bridge local
2f0bb28d5716 frontend bridge local
0e643a56cce6 host host local
9058e96d6113 none null local

Connecting Containers to Custom Networks
Once you have created custom networks, you can connect containers to them using the --network
argument, which can be used with the docker create and docker run commands. Run the command
shown in Listing 5-35 to create a new database container that is connected to the backend network. (Enter
the command as a single line.)

Listing 5-35.  Creating a Container Connected to a Network

docker run -d --name mysql -v productdata:/var/lib/mysql --network=backend
 -e MYSQL_ROOT_PASSWORD=mysecret -e bind-address=0.0.0.0 mysql:8.0.0

There is one new argument in this command, which is described in Table 5-4.

Table 5-4.  Additional Argument Used to Create the MySQL Container

Name Description

--network This argument is used to assign a container to a network. In this case, the container is
assigned to the network called backend.

Chapter 5 ■ Docker Volumes and Networks

90

Notice that there are no port mappings in this command, which means the database cannot be reached
through the host operating system. Instead, it will only be able to receive connections through the backend
software-defined network.

Understanding the Docker DNS Service
Docker configures containers so their Domain Name System (DNS) requests resolve the names assigned to
containers to the IP addresses they have been given on custom software-defined networks. (This feature is
not available on the default bridge network.)

The DNS configuration means that container names can be used as host names, avoiding the need to
locate the IP address assigned to a container. Run the command shown in Listing 5-36 to perform a simple
test of the Docker DNS feature.

Listing 5-36.  Testing the Docker DNS Feature

docker run -it --rm --network backend alpine:3.4 ping -c 3 mysql

This command creates and runs an image using the Alpine Linux distribution and executes the ping
command to a host called mysql, which Docker will automatically resolve to the IP address that has been
assigned to the mysql container on the backend software-defined network. The command will produce the
following results:

...
PING mysql (172.19.0.2): 56 data bytes
64 bytes from 172.19.0.2: seq=0 ttl=64 time=0.070 ms
64 bytes from 172.19.0.2: seq=1 ttl=64 time=0.124 ms
64 bytes from 172.19.0.2: seq=2 ttl=64 time=0.128 ms

--- mysql ping statistics ---
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max = 0.070/0.107/0.128 Microsoft
...

Once the ping command is complete, the container will exit and be removed automatically.

Creating the MVC Containers
The embedded DNS feature and the fact that port mappings are not required makes it simpler to create
multiple MVC application containers because only the container names must be unique. Run the
commands shown in Listing 5-37 to create three containers for the MVC application. Each command should
be entered on a single line.

Listing 5-37.  Creating the MVC Application Containers

docker create --name productapp1 -e DBHOST=mysql -e MESSAGE="1st Server"
 --network backend apress/exampleapp
docker create --name productapp2 -e DBHOST=mysql -e MESSAGE="2nd Server"
 --network backend apress/exampleapp
docker create --name productapp3 -e DBHOST=mysql -e MESSAGE="3rd Server"
 --network backend apress/exampleapp

Chapter 5 ■ Docker Volumes and Networks

91

The docker run and docker create commands can connect a container only to a single network. The
commands in Listing 5-37 specified the backend network, but this is only one of the connections needed
for the MVC containers. Run the commands in Listing 5-38 to connect the MVC containers to the frontend
network as well.

Listing 5-38.  Connecting the Application Containers to Another Network

docker network connect frontend productapp1
docker network connect frontend productapp2
docker network connect frontend productapp3

The docker network connect command connects existing containers to software-defined networks.
The commands in the listing connect the three MVC containers to the frontend network.

Now that the MVC application containers have been connected to both Docker networks, run the
command in Listing 5-39 to start them.

Listing 5-39.  Starting the Application Containers

docker start productapp1 productapp2 productapp3

Adding a Load Balancer
The MVC containers were created without port mappings, which means they are accessible only through the
Docker software-defined networks and cannot be reached through the host operating system.

The missing piece of the puzzle is a load balancer, which will receive HTTP requests on a single port
mapped to the host operating system and distribute them to the MVC application containers over the
frontend Docker network.

There are lots of options when it comes to load balancers, and the choice is usually tied to the
infrastructure platform to which the application is deployed. For example, if you are deploying your
application into a corporate network, you are likely to find that there are load balancers already installed and
running. Equally, most cloud platforms will offer a load balancer service, although its use is often optional.

For this example, I have selected HAProxy, which is an excellent HTTP load balancer that has been
adopted by Docker for use in its cloud environment and provided through an image that I use in Chapter 6.

■■ Tip  HAProxy can be used in a Linux container but doesn’t provide support for Windows. If you are using
Windows containers and require a load balancer, then consider Nginx (http://nginx.org).

To configure HAProxy, add a file called haproxy.cfg to the ExampleApp folder with the content shown in
Listing 5-40.

Listing 5-40.  The Contents of the haproxy.cfg File in the ExampleApp Folder

defaults
 timeout connect 5000
 timeout client 50000
 timeout server 50000

frontend localnodes
 bind *:80
 mode http
 default_backend mvc

http://dx.doi.org/10.1007/978-1-4842-2778-7_6
http://nginx.org/

Chapter 5 ■ Docker Volumes and Networks

92

backend mvc
 mode http
 balance roundrobin
 server mvc1 productapp1:80
 server mvc2 productapp2:80
 server mvc3 productapp3:80

This configuration tells HAProxy to receive connections on port 80, which will be exposed through
a mapping on the host operating system, and distribute them to the three MVC containers, which are
identified using their container names, to take advantage of the Docker DNS feature. HTTP requests will be
distributed to each MVC container in turn, which makes it easier to test the load balancer and show that all
the MVC containers are being used.

If you are using Visual Studio, you must make sure the character encoding and line endings in the
haproxy.cfg file meet the expectations of the HAProxy application. Select File ➤ Save As and click the
down arrow on the Save button to select the Save With Encoding option. Select the options shown in
Figure 5-5 and save the file. If you don’t change the configuration, the HAProxy process won’t be able to read
its configuration file and will report an error.

MATCHING LOAD BALANCING AND SESSION STORAGE STRATEGIES

This configuration uses the HAProxy round-robin load balancing strategy, which sends a request to each
of the servers in turn. If your application uses session data, you must ensure that your load balancing
strategy suits your session storage model. If each application container maintains its own isolated
storage, then you must configure the load balancer so that subsequent requests from a client return to
the same server. This can mean that HTTP requests are not evenly distributed but ensures that sessions
work as expected. If you store your session data so that it is accessible from any of the application
containers, then round-robin load balancing will be fine. See your load balancer configuration settings
for the options available. If you are using HAProxy, then the configuration options can be found at
www.haproxy.org.

Figure 5-5.  Configuring the save options for the load balancer configuration file

http://www.haproxy.org/

Chapter 5 ■ Docker Volumes and Networks

93

To make the configuration file for the load balancer available, I am going to use a Docker volumes
feature that allows files and folders from the host operating system to provide the contents of a directory in
a container’s file system, rather than requiring a dedicated Docker volume. For Windows and macOS, some
configuration is required (no such configuration is required for Linux).

For Windows users, right-click the Docker icon in the task bar and select Settings from the pop-up
menu. Click Shared Drives and check the box for the drive that contains the ExampleApp folder, as shown in
Figure 5-6.

Click Apply, provide the administrator’s account password if prompted, and close the Settings window.
For macOS users, click the Docker menu bar icon and select Preference from the pop-up menu. Click

File Sharing and ensure that the folder that contains the ExampleApp folder is on the list of shared directories,
as shown in Figure 5-7.

Figure 5-6.  Enabling drive sharing on Windows

Chapter 5 ■ Docker Volumes and Networks

94

For all operating systems, run the command in Listing 5-41 from the ExampleApp directory to create and
start new container that runs HAProxy, connected to the front-end Docker network and configured to listen
for HTTP requests on port 80 of the host operating system. Take care to enter the command on a single line.

Listing 5-41.  Creating and Starting the Load Balancer Container

docker run -d --name loadbalancer --network frontend
 -v "$(pwd)/haproxy.cfg:/usr/local/etc/haproxy/haproxy.cfg"
 -p 3000:80 haproxy:1.7.0

Enter the command on a single line. The -v argument in this command tells Docker to mount the
haproxy.cfg file that is in the ExampleApp folder in the container so that it appears in the /usr/local/etc/
haproxy directory. This is a useful feature for creating containers that require configuration files. (It is also
useful for containerized development environments, which I describe in Chapter 8.)

The --network argument connects the load balancer container to the frontend network so that it can
communicate with the MVC containers. The -p argument maps port 3000 on the host operating system to
port 80 in the container so that the load balancer can receive requests from the outside world.

■■ Tip  If you see an error when the container starts, then you most likely forgot to change the character
encoding for the haproxy.cfg file, as shown in Figure 5-4. Change the settings, save the configuration file, and
then run docker rm -f loadbalancer to remove the container before repeating the command in Listing 5-41.

Once the load balancer has started, open a browser tab and request the URL http://localhost:3000.
Reload the page and you will see that the load balancer distributes the request between the MVC application

Figure 5-7.  Enabling drive sharing on macOS

http://dx.doi.org/10.1007/978-1-4842-2778-7_8

Chapter 5 ■ Docker Volumes and Networks

95

containers, which is reflected in the banner shown in the response, as illustrated by Figure 5-8. (The first
request to each MVC container may take a second as the application starts up, but if you keep reloading,
subsequent requests should be handled immediately.)

The final result is an application that contains five containers, two software-defined networks, and a
single port mapping. The composition of the application is shown in Figure 5-9 and is similar to the way that
applications are conventionally composed, albeit all the components are running on a single host server and
are isolated by containers.

The database container is connected only to the backend network. The MVC application containers are
connected to both the frontend and backend networks; they receive HTTP requests through the frontend
network and make SQL queries over the backend network. The load balancer container is connected only to
the frontend network and has a port mapping onto the host operating system; it receives HTTP requests via
the port mapping and distributes them to the MVC application containers.

Summary
In this chapter, I described the Docker volume and software-defined networking features, which allow more
complex applications to be composed by combining containers. I explained how volumes are used to keep
data files outside of a container’s storage and how this changes the way that Entity Framework Core is used to
create database schemas. I also introduced software-defined networks and showed you how they can be used
to create a familiar structure for an application, even though all the components exist in Docker containers
rather than on dedicated server hardware. In the next chapter, I show you how to describe more complex
applications without having to create and manage the containers, volumes, and networks individually.

Figure 5-9.  The composition of an application with multiple software-defined networks

Figure 5-8.  Load balancing between multiple application containers

97© Adam Freeman 2017
A. Freeman, Essential Docker for ASP.NET Core MVC, DOI 10.1007/978-1-4842-2778-7_6

CHAPTER 6

Docker Compose

In the previous chapter, I showed you how a complex application can be created by combining containers,
volumes, and software-defined networks. The problem with this approach is that each step has to be
performed manually, which can be an error-prone process. Not only does each command have to be entered
correctly, but the steps have to be performed in the order covered in Chapter 5 because the container relies
on being able to send network requests to the container created before it. If you skip a step or perform a step
out of order, then you may not end up with a working application.

In this chapter, I show you how to use Docker Compose, which is used to describe complex
applications in a consistent and predictable manner. A compose file contains details of all the volumes,
networks, and containers that make up an application and the relationships between them. I explain how
Docker Compose is used and demonstrate how to describe the example application using a compose
file so that all the components it needs can be created and started in a single step. Table 6-1 puts Docker
Compose into context.

Table 6-1.  Putting Docker Compose in Context

Question Answer

What is it? Docker Compose is a tool that is used to describe complex applications and
manage the containers, networks, and volumes they require.

Why is it useful? Docker Compose simplifies the process of setting up and running applications
so that you don’t have to type in complex commands, which can lead to
configuration errors.

How is it used? The description of the application and its requirements is defined in a compose
file, which is processed using the docker-compose command. The number
of containers in an application is changed using the docker-compose scale
command.

Are there any pitfalls
or limitations?

Docker doesn’t provide any way to wait for the application in one container to be
ready to receive requests from another container. As a consequence, you must
manage the dependencies between the containers in an application directly.

Are there any
alternatives?

You do not have to use Docker Compose. You can create and manage your
containers manually or use an alternative such as Crowdr (https://github.com/
polonskiy/crowdr).

http://dx.doi.org/10.1007/978-1-4842-2778-7_5
https://github.com/polonskiy/crowdr
https://github.com/polonskiy/crowdr

Chapter 6 ■ Docker Compose

98

Table 6-2 summarizes the chapter.

Preparing for This Chapter
This chapter depends on the ExampleApp MVC project created in Chapter 3 and modified in the chapters
since. If you don’t want to work through the process of creating the example, you can get the project as part
of the free source code download that accompanies this book. See the apress.com page for this book.

To ensure that there is no conflict with examples from previous chapters, run the commands shown
in Listing 6-1 to remove the containers, networks, and volumes that were created in the previous chapter.
Ignore any errors or warnings these commands produce.

Listing 6-1.  Removing the Containers, Networks, and Volumes

docker rm -f $(docker ps -aq)
docker network rm $(docker network ls -q)
docker volume rm $(docker volume ls -q)

Changing the View Message
In this chapter, I demonstrate how to scale up an MVC application by creating multiple containers
automatically. To help show which container is handling a specific HTTP request, Listing 6-2 shows a change
to the Home controller, altering the message passed by the action method to its view.

Listing 6-2.  Changing the Banner in the HomeController.cs File in the ExampleApp/Controllers Folder

using Microsoft.AspNetCore.Mvc;
using ExampleApp.Models;
using Microsoft.Extensions.Configuration;

Table 6-2.  Chapter Summary

Problem Solution Listing

Describe a complex application Use a Docker Compose file 1–5, 7, 17, 18

Process the contents of a compose
file

Use the docker-compose build command 6, 8, 20

Create and start the components
in a compose file

Use the docker-compose up command 9, 21, 22

Remove the components in a
compose file

Use the docker-compose down command 10, 27

Wait until an application is ready
to receive connections

Use the wait-for-it package (for Linux containers)
or create a PowerShell script (for Windows containers)

11–16, 19

Change the number of containers
running for a service

Use the docker-compose scale command 23, 25

List the running services Use the docker-compose ps command 24

Stop the containers that have been
started using a compose file

Use the docker-compose stop command 26

http://dx.doi.org/10.1007/978-1-4842-2778-7_3

Chapter 6 ■ Docker Compose

99

namespace ExampleApp.Controllers {
 public class HomeController : Controller {
 private IRepository repository;
 private string message;

 public HomeController(IRepository repo, IConfiguration config) {
 repository = repo;
 message = $"Essential Docker ({config["HOSTNAME"]})";
 }

 public IActionResult Index() {
 ViewBag.Message = message;
 return View(repository.Products);
 }
 }
}

Docker creates a HOSTNAME environment variable inside containers, which is set to the unique ID of
the container. The change to the controller ensures that the response from the application indicates which
container handles the request. This is not something you should do in real projects, but it is a useful way to
demonstrate how key Docker Compose features work.

Installing Docker Compose on Linux
Docker Compose is included in the Docker installers for Windows and macOS but must be installed
separately in Linux. If you are a Linux user, run the commands shown in Listing 6-3 to download and install
Docker Compose.

Listing 6-3.  Installing Docker Compose for Linux

sudo curl -L "https://github.com/docker/compose/releases/download/1.11.2/docker-compose-
$(uname -s)-$(uname -m)" -o /usr/local/bin/docker-compose
sudo chmod +x /usr/local/bin/docker-compose

Once the installation is complete, run command shown in Listing 6-4 to check that Docker Compose
works as expected.

Listing 6-4.  Checking Docker Compose

docker-compose --version

If the installation has been successful, you will see this response: docker-compose version 1.11.2,
build dfed245.

Creating the Compose File
Docker Compose allows complex applications to be described in a configuration file, known as a compose
file, that ensures that all the components are set up correctly when the application is deployed.

Chapter 6 ■ Docker Compose

100

The starting point is to create the compose. Create a file called docker-compose.yml, which is the
conventional name for the compose file, in the ExampleApp folder and add the configuration statements
shown in Listing 6-5.

Listing 6-5.  The Contents of the docker-compose.yml File in the ExampleApp Folder

version: "3"

volumes:
 productdata:

networks:
 frontend:
 backend:

The yml file extension denotes that the compose file is expressed in the YAML format, which is
introduced in the “Getting Started with YAML” sidebar. Table 6-3 describes the configuration properties in
Listing 6-5.

The version section tells Docker which version of the compose file schema is being used. As I write
this, the latest version is 3, which includes support for the latest Docker features. Docker is a rapidly
evolving platform, so you may find that there is a later version available by the time you read this,
although the examples in this chapter should still work as long as you don’t change the version setting in
the compose file.

GETTING STARTED WITH YAML

YAML is a format used to create configuration files that are human-readable, although it can be
confusing when you first start using it. Editing YAML is a lot simpler with the extensions for Visual Studio
and Visual Studio Code described in Chapter 3.

The most important aspect of YAML to bear in mind is that indentation with spaces is used to signify the
structure of the file and that tabs are forbidden. This runs counter to most file formats that programmers
use, where indentation can be adjusted or ignored and tabs can be used freely. In Listing 6-5, for
example, the version and networks keywords must have no indentation because they are top-level
configuration sections, and the frontend and backend entries are indented by two spaces to indicate
they are part of the networks section.

Table 6-3.  The Initial Docker Compose Configuration Properties

Name Description

version This setting specifies the version of the Docker Compose schema that the file uses. At the
time of writing, the latest version is 3.

volumes This setting is used to configure the volumes that will be used by the containers defined in the
compose file. This example defines a volume called productdata.

networks This setting is used to configure the software-defined networks that will be used by the
containers defined in the compose file. This example defines networks called frontend and
backend.

http://dx.doi.org/10.1007/978-1-4842-2778-7_3

Chapter 6 ■ Docker Compose

101

The simplest way to avoid problems with YAML for the examples in this chapter is to use the file from
the source code download linked from the apress.com page for this book. But as you start using YAML
in your own projects, there are three sources of information that will provide you with the details you
require to create compose files.

The first source is the Docker compose file reference, https://docs.docker.com/compose/compose-file,
which describes each entry that a compose file contains and provides useful YAML examples.

The second source of information is the schema for the compose file, https://github.com/docker/
compose/blob/master/compose/config/config_schema_v3.0.json, which explains how an entry is
expressed in YAML. YAML represents data using three primitive structures: key/value maps or objects,
lists, and scalars (which are strings or numbers). The compose file schema tells you which of the
primitives is used and provides details of any additional requirements.

The final source of information is the YAML standard, http://yaml.org/spec/1.2/spec.html, which
will help you make sense of the YAML structure. You won’t often need to refer to the standard, but it
can throw some light on what is important in a YAML document, which can be helpful when Docker
Compose reports errors parsing your files.

Compose files are processed using a command-line tool called docker-compose (note the hyphen),
which builds and manages the application.

There is little useful configuration in the example compose file at the moment, but run the command
shown in Listing 6-6 in the ExampleApp folder to build the application anyway, just to make sure everything
is working.

Listing 6-6.  Building the Application

docker-compose -f docker-compose.yml build

The -f argument is used to specify the name of the compose file, although Docker will default to using
docker-compose.yml or docker-compose.yaml if a file isn’t specified. The build argument tells Docker
to process the file and build the Docker images it contains. There are no images defined in the file at the
moment, so you will see the following output:

...
WARNING: Some networks were defined but are not used by any service: frontend, backend
...

This warning indicates that the compose file tells Docker to create some software-defined networks, but
they are not used anywhere else in the application and so they were not created.

If you see an error, go back and check that you have used tabs to re-create the structure as shown
in Listing 6-5 and that you have remembered to add a colon after the networks, frontend, and backend
configuration entries.

Composing the Database
The process for describing the application using Docker Compose follows the same path as creating
the containers manually, and the next step is to configure the database container. Listing 6-7 shows the
additions to the compose file that sets up the container for MySQL.

https://docs.docker.com/compose/compose-file
https://github.com/docker/compose/blob/master/compose/config/config_schema_v3.0.json
https://github.com/docker/compose/blob/master/compose/config/config_schema_v3.0.json
http://yaml.org/spec/1.2/spec.html

Chapter 6 ■ Docker Compose

102

Listing 6-7.  Defining the Database Container in the docker-compose.yml File in the ExampleApp Folder

version: "3"

volumes:
 productdata:

networks:
 frontend:
 backend:

services:

 mysql:
 image: "mysql:8.0.0"
 volumes:
 - productdata:/var/lib/mysql
 networks:
 - backend
 environment:
 - MYSQL_ROOT_PASSWORD=mysecret
 - bind-address=0.0.0.0

The services keyword is used to denote the section of the compose file that contains the descriptions
that will be used to create containers. The term service is used because the description can be used to
create more than one container. Each service is given its own section, as you will see as the compose file is
expanded throughout the rest of the chapter.

The service described in Listing 6-7 is called mysql, and it describes how database containers should be
created using the configuration properties described in Table 6-4.

Table 6-4.  The Configuration Properties for the MySQL Service

Name Description

services This property denotes the start of the services section of the compose file, which
describes the services that will be used to create containers.

mysql This property denotes the start of a service description called mysql.

image This property specifies the Docker image that will be used to create containers. In this
example, the official MySQL image will be used.

volumes This property specifies the volumes that will be used by containers and the directories
they will be used for. In this example, the productdata volume will be used to provide the
contents of the /var/lib/mysql directory.

networks This property specifies the networks that containers will be connected to. In this example,
containers will be connected to the backend network. (The networks keyword used in a
service has a different meaning than the top-level network keyword described in
Table 6-3.)

environment This property is used to define the environment variables that will be used when a
container is created. In this example, MYSQL_ROOT_PASSWORD and bind-address variables
are defined.

Chapter 6 ■ Docker Compose

103

Run the command shown in Listing 6-8 in the ExampleApp folder to check that the changes you have
made to the file can be processed.

Listing 6-8.  Building the Application

docker-compose build

I am able to omit the name of the file because I am using the compose file name that Docker looks for
by default. This command will produce output like this:

...
WARNING: Some networks were defined but are not used by any service: frontend
mysql uses an image, skipping
...

The warning about the unused networks has changed because the database container will be
connected to the backend network. The other part of the output indicates that no action is needed for the
mysql service at the moment because it is based on an existing image, which will be used to create and
configure a container when the compose file is used to start the application.

Testing the Application Setup and Teardown
There is just enough configuration in the compose file to run a simple test. Run the command shown
in Listing 6-9 in the ExampleApp folder to tell Docker Compose to process the compose file and start the
application.

Listing 6-9.  Running the Composed Application

docker-compose up

The docker-compose up command tells Docker to process the contents of the compose file and set up
the volumes, networks, and containers that it specifies. Docker will pull any images that are required from
the Docker Hub so they can be used to create a container.

Details of the setup process are shown in the command prompt, along with the output from the
containers that are created. There is only one container at the moment, but others are added in the sections
that follow. The first part of the output shows the configuration process that Docker Compose goes through.

...
WARNING: Some networks were defined but are not used by any service: frontend
Creating network "exampleapp_backend" with the default driver
Creating volume "exampleapp_productdata" with default driver
Creating exampleapp_mysql_1
Attaching to exampleapp_mysql_1
...

The name of the network, the volume, and the container that Docker creates are prefixed with
example_. The network is called exampleapp_backend, the volume is called exampleapp_productdata, and
the container is called example_mysql_1. (The _1 part of the MySQL container name refers to how Docker
scales up applications described using compose files, which I describe in the “Scaling the MVC Service”
section.)

Chapter 6 ■ Docker Compose

104

The prefix is taken from the name of the directory that contains the compose file, and it ensures that
different compose files can use the same names for networks, volumes, and containers without them
conflicting when the application is started. (You can change the prefix used with the -p argument for the
docker-compose up command, which I demonstrate in Chapter 8.)

Once the database has finished its initialization process, type Control+C to terminate the docker-
compose command and stop the containers described in the compose file.

You can explore the effect of the compose file using the standard Docker commands. Run the docker
ps -a command to see the containers that have been created. Run the docker network ls command to see
the software-defined network (only one of the two networks specified in the compose file has been created
because no container currently connects to the front_end network). Run the docker volume ls command
to see the volumes that have been created.

Run the command shown in Listing 6-10 in the ExampleApp folder to remove the containers and networks
that are described in the compose file (but not the volume, which persists unless you use the -v argument).

Listing 6-10.  Removing the Networks and Containers

docker-compose down

Database Preparation and MVC Composition
In the previous chapter, I relied on the ASP.NET Core MVC application to ensure that the schema in the MySQL
database was up-to-date by automatically applying the Entity Framework Core migrations during startup.

This approach is fine in development and for simple projects, but automatically applying database
migrations can lead to data loss in production systems and should be done with caution. Entity Framework
Core migrations are groups of SQL commands that alter the database schema to reflect changes in the MVC
application’s data model classes. If you remove a property from a model class, for example, the migration
that reflects that change will drop a corresponding column from a table in the database. Automating any
process that affects a production database is risky. I recommend you apply database migrations explicitly
only as part of a controlled upgrade and not implicitly as part of the regular application startup.

That doesn’t mean that database migrations have to be hand-typed into the command prompt as part
of an upgrade. The approach that I take in this chapter uses the same ASP.NET Core project to create two
different containers. One container will perform the database initialization and apply the Entity Framework
Core migrations, while the other will run the ASP.NET Core MVC application.

Modifying the MVC Application
Rather than create a new .NET project to initialize the database, I am going to reconfigure the existing
application so that it has two modes: database initialization and normal ASP.NET Core MVC service.

Modify the database context class, as shown in Listing 6-11, so that it can be instantiated using a
parameterless constructor, allowing it to be used outside of the ASP.NET Core startup sequence.

Listing 6-11.  Preparing for Initialization in the ProductDbContext.cs File in the ExampleApp/Models Folder

using Microsoft.EntityFrameworkCore;
using System;

namespace ExampleApp.Models {

 public class ProductDbContext : DbContext {

 public ProductDbContext() { }

http://dx.doi.org/10.1007/978-1-4842-2778-7_8

Chapter 6 ■ Docker Compose

105

 public ProductDbContext(DbContextOptions<ProductDbContext> options)
 : base(options) {
 }

 protected override void OnConfiguring(DbContextOptionsBuilder options) {

 var envs = Environment.GetEnvironmentVariables();

 var host = envs["DBHOST"] ?? "localhost";
 var port = envs["DBPORT"] ?? "3306";
 var password = envs["DBPASSWORD"] ?? "mysecret";

 options.UseMySql($"server={host};userid=root;pwd={password};"
 + $"port={port};database=products");
 }

 public DbSet<Product> Products { get; set; }
 }
}

The OnConfiguring method will be called when a new database context is created and provides Entity
Framework Core with the connection string that it needs to connect to the database. The configuration
for the connection string is obtained from the application’s environment variables, accessed through the
System.Envionment class.

Make the changes shown in Listing 6-12 to the Program class, which is responsible for the startup of the
application.

Listing 6-12.  Preparing for Database Initialization in the Program.cs File in the ExampleApp Folder

using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Hosting;
using Microsoft.Extensions.Configuration;

namespace ExampleApp {
 public class Program {
 public static void Main(string[] args) {
 var config = new ConfigurationBuilder()
 .AddCommandLine(args)
 .AddEnvironmentVariables()
 .Build();

 if ((config["INITDB"] ?? "false") == "true") {
 System.Console.WriteLine("Preparing Database...");
 Models.SeedData.EnsurePopulated(new Models.ProductDbContext());
 System.Console.WriteLine("Database Preparation Complete");
 } else {
 System.Console.WriteLine("Starting ASP.NET...");
 var host = new WebHostBuilder()

Chapter 6 ■ Docker Compose

106

 .UseConfiguration(config)
 .UseKestrel()
 .UseContentRoot(Directory.GetCurrentDirectory())
 .UseIISIntegration()
 .UseStartup<Startup>()
 .Build();

 host.Run();
 }
 }
 }
}

If the configuration setting called INITDB is set to true, then the database will be initialized when the
.NET runtime invokes the Main method. If the configuration setting is not true or is not defined, then the
ASP.NET Core MVC application will be started instead. The value for the INITDB setting will be read from
the command line and from the environment variables, which will allow the database to be easily upgraded
from a command prompt and within a container.

Reading configuration data from the command line requires the addition of a NuGet package. Edit the
ExampleApp.csproj file to make the addition shown in Listing 6-13.

Listing 6-13.  Adding a Package in the ExampleApp.csproj File in the ExampleApp Folder

<Project Sdk="Microsoft.NET.Sdk.Web">

 <PropertyGroup>
 <TargetFramework>netcoreapp1.1</TargetFramework>
 </PropertyGroup>

 <ItemGroup>
 <PackageReference Include="Microsoft.AspNetCore" Version="1.1.1" />
 <PackageReference Include="Microsoft.AspNetCore.Mvc" Version="1.1.2" />
 <PackageReference Include="Microsoft.AspNetCore.StaticFiles" Version="1.1.1" />
 <PackageReference Include="Microsoft.Extensions.Logging.Debug" Version="1.1.1" />
 <PackageReference Include="Microsoft.VisualStudio.Web.BrowserLink" Version="1.1.0" />
 <PackageReference Include="Microsoft.EntityFrameworkCore" Version="1.1.1" />
 <PackageReference Include="Microsoft.EntityFrameworkCore.Tools" Version="1.1.0" />
 <PackageReference Include="Pomelo.EntityFrameworkCore.MySql" Version="1.1.0" />
 �<DotNetCliToolReference Include="Microsoft.EntityFrameworkCore.Tools.DotNet"

Version="1.0.0" />
 �<PackageReference Include="Microsoft.Extensions.Configuration.CommandLine"

Version="1.1.1" />
 </ItemGroup>
</Project>

Finally, comment out the statement in the Startup class that was previously responsible for initializing
the database, as shown in Listing 6-14.

Chapter 6 ■ Docker Compose

107

Listing 6-14.  Disabling the Initialization Call in the Startup.cs File in the ExampleApp Folder

...
public void Configure(IApplicationBuilder app,
 IHostingEnvironment env, ILoggerFactory loggerFactory) {

 loggerFactory.AddConsole();
 loggerFactory.AddDebug();
 app.UseDeveloperExceptionPage();
 app.UseStatusCodePages();
 app.UseStaticFiles();
 app.UseMvcWithDefaultRoute();

 //SeedData.EnsurePopulated(app);
}
...

Describing the Database Initialization and MVC Services
When the application was set up step by step in Chapter 5, each component was allowed to go through
its startup routine before the components that depended on it were started. This meant, for example,
that MySQL was given the time to go through its lengthy first-start procedure before the MVC application
was started, ensuring that the MySQL database was ready to start receiving SQL queries before the MVC
application started making them.

Docker doesn’t support this gradual model of initializing an application when a compose file is used.
Docker has no insight into whether MySQL is ready to accept network connections and just starts one
container after another, with the potential outcome that the MVC application will fail because it tries to
make a request to a database that isn’t ready.

To ensure that queries are not sent until the database is ready, I am going to use a package called wait-
for-it, which waits until a TCP port is accepting connections. Run the command shown in Listing 6-15 in
the ExampleApp folder to download the wait-for-it package using NPM so that it is installed in a folder
called a folder called node_modules.

Listing 6-15.  Downloading the wait-for-it Package

npm install wait-for-it.sh@1.0.0

Once the download is complete, apply the changes shown in Listing 6-16 to update the Docker file for
the MVC application. These changes use the wait-for-it package to defer the startup of the .NET Core
application until the database is ready to receive connections.

Listing 6-16.  Waiting for the Database in the Dockerfile File in the ExampleApp Folder

FROM microsoft/aspnetcore:1.1.1

COPY dist /app

COPY node_modules/wait-for-it.sh/bin/wait-for-it /app/wait-for-it.sh

RUN chmod +x /app/wait-for-it.sh

WORKDIR /app

EXPOSE 80/tcp

http://dx.doi.org/10.1007/978-1-4842-2778-7_5

Chapter 6 ■ Docker Compose

108

ENV WAITHOST=mysql WAITPORT=3306

ENTRYPOINT ./wait-for-it.sh $WAITHOST:$WAITPORT --timeout=0 \
 && exec dotnet ExampleApp.dll

The host name and TCP port that will be checked by the wait-for-it package are specified using
environment variables called WAITHOST and WAITPORT. Listing 6-17 adds services to the compose file that
uses the new application configuration and the waiting feature to prepare the database and run the MVC
application.

Listing 6-17.  Describing the Database Initialization and MVC Application in the docker-compose.yml File

version: "3"

volumes:
 productdata:

networks:
 frontend:
 backend:

services:

 mysql:
 image: "mysql:8.0.0"
 volumes:
 - productdata:/var/lib/mysql
 networks:
 - backend
 environment:
 - MYSQL_ROOT_PASSWORD=mysecret
 - bind-address=0.0.0.0

 dbinit:
 build:
 context: .
 dockerfile: Dockerfile
 networks:
 - backend
 environment:
 - INITDB=true
 - DBHOST=mysql
 depends_on:
 - mysql

 mvc:
 build:
 context: .
 dockerfile: Dockerfile
 networks:
 - backend
 - frontend

Chapter 6 ■ Docker Compose

109

 environment:
 - DBHOST=mysql
 depends_on:
 - mysql

The new services are called dbinit and mvc. I have taken a different approach for these services,
providing Docker with the information it needs to build the images for the services, rather than specifying an
image that it can pull from a repository, which is what I did for MySQL. Table 6-5 describes the configuration
options used for these services.

Table 6-5.  The Configuration Properties for the Database Initialization and MVC Services

Name Description

build This property denotes the start of the build section, which tells Docker how to
create the image required for this service’s containers.

build/context This property defines the context directory that will be used to create the image.
For this example, the content is the current directory, which will be the ExampleApp
folder when the image is produced.

build/dockerfile This property specifies the Docker file that will be used to create the image.

networks This property specifies the software-defined networks that the containers will
be connected to. The database initialization container will be connected to the
backend network because it needs to communicate with the database. The MVC
application containers will be connected to both networks. (The networks keyword
used in a service has a different meaning than the top-level network keyword
described in Table 6-3.)

environment This property specifies the environment variables for the containers. For this example,
they are used to select the initialization/MVC modes and to provide the name of the
database container, which is used in the Entity Framework Core connection string.

depends_on This property tells Docker the order in which containers must be created. In this
example, the containers for the dbinit and mvc containers will be started after the
mysql container.

Don’t be misled by the depends_on configuration option, which tells Docker the order in which
containers should be started. Docker will start the containers in the specified sequence but still won’t wait
until the applications they contain are initialized, which is why the wait-for-it package is required.

WAITING IN WINDOWS CONTAINERS

The wait-for-it package can be used only in Linux containers. To achieve a similar effect in Windows
containers, create a file called wait.ps1 in the ExampleApp folder with the following content:

Write-Host "Waiting for:" $env:WAITHOST $env:WAITPORT
do {
 Start-Sleep 1
} until(Test-NetConnection $env:WAITHOST -Port $env:WAITPORT `
 | Where-Object { $_.TcpTestSucceeded });
Write-Host "End of waiting."

Chapter 6 ■ Docker Compose

110

This is a simple PowerShell script that waits for a TCP port to become available. Use the ADD command
to include the script in a Docker file so that it can be used with the ENTRYPOINT command, like this:

FROM microsoft/dotnet:1.1.1-runtime-nanoserver

COPY dist /app

COPY wait.ps1 /app/wait.ps1

WORKDIR /app

EXPOSE 80/tcp

ENV ASPNETCORE_URLS http://+:80

ENV WAITHOST=mysql WAITPORT=3306

ENTRYPOINT powershell ./wait.ps1; dotnet ExampleApp.dll

The result is the same as using the wait-for-it package, although you may see some warnings
displayed in the container output telling you that PowerShell modules cannot be found. These warnings
can be ignored.

Composing the Load Balancer
The final service required in the application is the load balancer. I am going to use HAProxy again, which is the
package that was used in Chapter 5, but using an image that is published by Docker. Listing 6-18 shows the
changes to the docker-compose.yml file to describe the load balancer.

Listing 6-18.  Describing the Load Balancer in the docker-compose.yml File in the ExampleApp Folder

version: "3"

volumes:
 productdata:

networks:
 frontend:
 backend:

services:

 mysql:
 image: "mysql:8.0.0"

http://dx.doi.org/10.1007/978-1-4842-2778-7_5

Chapter 6 ■ Docker Compose

111

 volumes:
 - productdata:/var/lib/mysql
 networks:
 - backend
 environment:
 - MYSQL_ROOT_PASSWORD=mysecret
 - bind-address=0.0.0.0

 dbinit:
 build:
 context: .
 dockerfile: Dockerfile
 networks:
 - backend
 environment:
 - INITDB=true
 - DBHOST=mysql
 depends_on:
 - mysql

 mvc:
 build:
 context: .
 dockerfile: Dockerfile
 networks:
 - backend
 - frontend
 environment:
 - DBHOST=mysql
 depends_on:
 - mysql

 loadbalancer:
 image: dockercloud/haproxy:1.2.1
 ports:
 - 3000:80
 links:
 - mvc
 volumes:
 - /var/run/docker.sock:/var/run/docker.sock
 networks:
 - frontend

This version of HAProxy is set up to receive events from Docker as containers are created, started,
stopped, and destroyed in order to generate configuration files for HAProxy to dynamically reflect changes
in the application. Table 6-6 describes the configuration settings that are used to describe the load balancer
service.

Chapter 6 ■ Docker Compose

112

Running the Application
The compose file now contains descriptions of all the components required for the example application:
a volume for the database files, two software-defined networks, a database container, a container that will
prepare the database for its first use, a container for the MVC application, and a load balancer that will
receive and distribute HTTP requests. In the sections that follow, I show you how to use these descriptions to
run the application.

Processing the Compose File
Run the commands shown in Listing 6-19 in the ExampleApp folder to prepare the .NET Core project,
ensuring that the required NuGet packages are installed and that the latest version of the project is published
as a self-contained set of files in the dist folder.

Listing 6-19.  Preparing the Application for Composition

dotnet restore
dotnet publish --framework netcoreapp1.1 --configuration Release --output dist

Run the command shown in Listing 6-20 in the ExampleApp folder to process the contents of the
compose file.

Listing 6-20.  Processing the Compose File

docker-compose build

Table 6-6.  The Configuration Properties for the Load Balancer Service

Name Description

image This property specifies the image that will be used for the load balancer container. In this
example, the image is one provided by Docker.

ports This property specifies the host port mappings that will be applied to the containers. In this
example, requests sent to port 3000 on the host operating system will be directed to port 80
inside the container, which is the default port on which HAProxy listens for HTTP requests.

links This property is used to provide HAProxy with the name of the service whose containers
will receive HTTP requests, which is mvc in this example. The load balancer will respond
automatically when a new container is created for the mvc service and start forwarding HTTP
requests for it to process.

volumes This property is used to specify the volumes used by the container. In this example, the
volumes property is used to allow the load balancer access to the Docker runtime on the
host operating system so that it can receive notifications when new containers are created in
order to monitor for changes in the service specified by the links property.

networks This property is used to specify the software-defined networks that the containers will be
connected to. In this example, the load balancer will be connected to the frontend network,
which will allow it to forward HTTP requests to the MVC application. (The networks keyword
used in a service has a different meaning from the top-level network keyword described in
Table 6-3.)

Chapter 6 ■ Docker Compose

113

When you run the docker-compose build command, Docker will generate new images for the dbinit
and mvc services, as described in the compose file and that you can see if you run the docker images
command. Docker is smart enough to know that these two services require the same content and generates
one image with two tags, which you can see because they have the same ID.

Preparing the Database
Run the command shown in Listing 6-21 in the ExampleApp folder to start and prepare the database.

Listing 6-21.  Starting and Preparing the Database

docker-compose up dbinit

The docker-compose up command can be used to selectively start services. This command specifies the
dbinit service, and because of the depends_on setting in the compose file in Listing 6-18, Docker will also
start the mysql service. When a service is specified as an argument to the docker-compose up command,
only the output from that service is shown, which means you will see output from the database initialization
container and not MySQL, like this:

...
Creating network "exampleapp_frontend" with the default driver
Creating network "exampleapp_backend" with the default driver
Creating exampleapp_mysql_1
Creating exampleapp_dbinit_1
Attaching to exampleapp_dbinit_1
dbinit_1 | wait-for-it.sh: waiting for mysql:3306 without a timeout
dbinit_1 | wait-for-it.sh: mysql:3306 is available after 10 seconds
dbinit_1 | Preparing Database...
dbinit_1 | Applying Migrations...
dbinit_1 | Created Seed Data...
dbinit_1 | Database Preparation Complete
exampleapp_dbinit_1 exited with code 0
...

The wait-for-it script in the dbinit container will wait until the database is ready to accept
connections, at which point the Entity Framework Core migration is applied and the seed data is created.
The dbinit container will exit once the preparation is complete.

Starting the MVC Application
Now that the database has been prepared, it is time to start the MVC application. Run the command shown
in Listing 6-22 in the ExampleApp folder to start the MVC application.

Listing 6-22.  Starting the MVC Application

docker-compose up mvc loadbalancer

This command tells Docker to start the mvc and loadbalancer services. To do that, Docker follows
the chain of depends_on settings to determine the other services that must be started. In this case, the mvc
service depends on the mysql service, for which there is already a container. Docker will automatically pull
any images it requires, create the software-defined networks if they are not already present, and, finally,
create and start the containers for each service.

Chapter 6 ■ Docker Compose

114

Once the new containers have started, open a new browser tab and request the URL
http://localhost:3000, which corresponds to the port mapping defined for the load balancer in Listing 6-18.
The load balancer will forward the request over the frontend network to the MVC container, which queries the
database over the backend network and uses the data it receives to generate the response shown in Figure 6-1.
The response from the MVC application includes the ID of its container.

Scaling the MVC Service
Compose files describe services for which containers are created. So far, there has been a one-to-one
mapping between the descriptions contained in the compose file and the containers that have been created.
Docker Compose has an important feature, which is that it will create and manage multiple containers from
the same description, meaning that a service can be made up of more than one container, which can share
the workload for the application.

When you ran the docker-compose up command in Listing 6-21, Docker created and started three
containers: one database container from the mysql service, one MVC container from mvc service, and a load
balancer container from the loadbalancer service. It can be hard to see in all of the output from MySQL, but
Docker writes messages to the command prompt as it creates each component required for the application,
like this:

...
exampleapp_mysql_1 is up-to-date
Creating exampleapp_mvc_1
Creating exampleapp_loadbalancer_1
Attaching to exampleapp_mvc_1, exampleapp_loadbalancer_1
...

Figure 6-1.  Testing the example application

Chapter 6 ■ Docker Compose

115

The exampleapp_mysql_1 container was left over from the initialization process, and Docker knows
that it doesn’t need to be re-created. The exampleapp_mvc_1 and exampleapp_loadbalancer_1 containers
had to be created because no containers for those services existed before the docker-compose up command
was run. By the time the docker-compose up command completed, there was one container for each of the
services specified and for the services named in the depends_on properties.

Docker assigns names to the container with the _1 suffix so that multiple instances of a container can
be created without causing a name conflict. Use a second command prompt to run the command shown in
Listing 6-23 in the ExampleApp folder.

Listing 6-23.  Scaling Up the MVC Application Containers

docker-compose scale mvc=4

The docker-compose scale command is used to change the number of containers for a service. In this
case, the command tells Docker that there should be four instances of the container described by the mvc
service in the compose file. The output of the command is the messages that Docker displays as it creates the
new containers.

...
Creating and starting exampleapp_mvc_2 ... done
Creating and starting exampleapp_mvc_3 ... done
Creating and starting exampleapp_mvc_4 ... done
...

You will also see the output from the MVC application displayed in the original command prompt as the
containers are started and the ASP.NET Core runtime starts up.

Run the command shown in Listing 6-24 in the ExampleApp folder to confirm the state of the
application.

Listing 6-24.  Inspecting the Application

docker-compose ps

The docker-compose ps command shows the running containers that have been created from the
compose file and will produce output like this:

Name Command State Ports

exampleapp_dbinit_1 /bin/sh -c ./wait-for-it.s ... Exit 0
exampleapp_loadbalancer_1 dockercloud-haproxy Up 1936/tcp,
 443/tcp,
 0.0.0.0:3000->80/tcp
exampleapp_mvc_1 /bin/sh -c ./wait-for-it.s ... Up 80/tcp
exampleapp_mvc_2 /bin/sh -c ./wait-for-it.s ... Up 80/tcp
exampleapp_mvc_3 /bin/sh -c ./wait-for-it.s ... Up 80/tcp
exampleapp_mvc_4 /bin/sh -c ./wait-for-it.s ... Up 80/tcp
exampleapp_mysql_1 docker-entrypoint.sh mysqld Up 3306/tcp

You can see that the dbinit container has exited, which was intentional after checking and preparing
the database. There are six running containers: the database, four MVC containers, and the load balancer.

Chapter 6 ■ Docker Compose

116

The image used for the load balancer service configures HAProxy to respond to changes in the number
of containers in the service specified by the link configuration property in the compose file. This property
was set to mvc in Listing 6-18, which means the load balancer automatically starts directing HTTP requests to
mvc containers when they are created, without the need for any configuration changes.

Open a new browser tab and request http://localhost:3000. Reload the browser to send additional
HTTP requests to the load balancer, which will be distributed between the MVC containers. The output in
the command prompt used to start the mvc service will indicate which container has handled the request,
and you will see different host names displayed in the responses, as shown in Figure 6-2.

■■ Tip  Not all containers are suitable for scaling up. The MySQL container cannot be scaled up, for example,
because the mysql service specifies a Docker volume for the data files and MySQL doesn’t support two
database processes sharing the same files. Containers that rely on port mappings to the host operating system,
like the load balancer, can’t be scaled up either because only the first container will be able to use the port.

Run the command shown in Listing 6-25 in the ExampleApp folder to scale down the number of MVC
application containers to one.

Listing 6-25.  Scaling Down the MVC Containers

docker-compose scale mvc=1

All the HTTP requests received by the load balancer will be directed to the remaining MVC container.

Stopping the Application
Run the command shown in Listing 6-26 in the ExampleApp folder to stop all the containers.

Listing 6-26.  Stopping the Application Containers

docker-compose stop

Figure 6-2.  Dynamically configuring the load balancer

Chapter 6 ■ Docker Compose

117

Finally, run the command shown in Listing 6-27 in the ExampleApp folder to remove the containers,
networks, and volumes. (Be careful when using the -v flag in production systems.)

Listing 6-27.  Removing the Application Components

docker-compose down -v

Summary
In this chapter, I explained how a compose file can be used to describe a complex application, including the
containers it requires, the volumes they depend on, and the software-defined networks that connect them.
I demonstrated how a complex application can be brought to life using the docker-compose command and
how the number of containers in an application can be scaled up and down as needed. In the next chapter, I
explain how to use a Docker swarm, which allows a containerized application to be deployed across multiple
servers that have been clustered together.

119© Adam Freeman 2017
A. Freeman, Essential Docker for ASP.NET Core MVC, DOI 10.1007/978-1-4842-2778-7_7

CHAPTER 7

Docker Swarms

In the previous chapter, I demonstrated how to manage a complex application on a single server using
Docker Compose. In this chapter, I explain how to scale up applications so they run on multiple servers,
using a Docker swarm.

A Docker swarm is a cluster of servers that run the Docker engine. Each server in a swarm is known as
a node, of which there are two types. Manager nodes are used to orchestrate services, which are the desired
state for containerized applications, such as the example ASP.NET Core MVC application or MySQL. A
service describes how many containers should be created and which nodes in the cluster should run them.
This is known as the service’s desired state.

Manager nodes perform their orchestration by managing the other type of node: worker nodes. A
worker is responsible for running the containers delivering the functionality specified by the service. When
a container or a worker node fails, the manager node will automatically detect the change and try to return
to the desired state by starting additional containers on other nodes. To make this process simpler, a Docker
swarm supports software-defined networks that can span the nodes in a cluster and routes requests between
the containers connected to the network. Table 7-1 puts Docker swarms in context.

SWARMS REQUIRE LINUX

The clustering of nodes in a swarm is achieved using features that are specific to Linux. At the time of
writing, only Linux servers can be clustered together to create a swarm. Neither Windows nor macOS
supports the cluster features and cannot be used for the examples in this chapter, although Microsoft
has plans to introduce the required features for Windows.

If you don’t have your own Linux servers, you can create Linux virtual machines to see how swarms
work, either locally or on public clouds such as Microsoft Azure or Amazon Web Services. Many public
cloud services also have direct support for swarms, such as the Azure Container Service.

Alternatively, you can use Docker Cloud, which is a service provided by Docker that orchestrates the
deployment and management of Docker services on public cloud services, including Azure and AWS.
The Docker Cloud service is a paid-for service and requires an account on at least one of the cloud
providers. There are free tiers available, but they place limits on the number of nodes you can include in
your swarm.

Chapter 7 ■ Docker Swarms

120

Table 7-2 summarizes this chapter.

Table 7-1.  Putting Swarms in Context

Question Answer

What is it? A Docker swarm is a cluster of servers that run the containers in an application in a
coordinated manner.

Why is it useful? A swarm allows an application to scale beyond a single server, making an
application more tolerant to the failure of individual containers.

How is it used? A swarm consists of manager and worker nodes. The manager nodes are
responsible for managing the containers in the application, deciding which workers
will run them, and ensuring that they are running.

Are there any pitfalls
or limitations?

It is important to exclude components that receive external network connections
(such as load balancers) from the swarm; otherwise, they will be subject to the
ingress load balancing feature, which is described in this chapter.

Are there any
alternatives?

There are several alternatives to Docker swarms. The most successful are Kubernetes
(https://kubernetes.io), which was originally developed by Google, and Mesos
(http://mesos.apache.org), which is an Apache Software Foundation Project.

Both Kubernetes and Mesos provide support for working with Docker containers.
Kubernetes, in particular, is well-established and well-supported.

Docker swarms are relatively new but have the advantage of being integrated into
the Docker runtime and have the backing of Microsoft, which is important for ASP.
NET Core MVC projects.

Table 7-2.  Chapter Summary

Problem Solution Listing

Create a swarm Run docker swarm init on the manager node
and then run the command shown in the output
on each of the workers

1–3

Differentiate worker nodes Assign the node a label 4

Create a network in the swarm Use the docker network create command
with the -d argument set to overlay

5

Deploy a service to a swarm Use the docker service create command 6, 11–14

Examine a service Use the docker service ps or docker service
ls command

7, 15, 16, 22, 38

Modify a service Use the docker service update command 8–10, 23, 30, 33

Remove a service Use the docker service rm command 19

Deploy services using a compose file Use the deploy keyword to describe the service
in the compose file and then use the docker
stack deploy command

20, 21, 37

(continued)

https://kubernetes.io/
http://mesos.apache.org/

Chapter 7 ■ Docker Swarms

121

Preparing for This Chapter
This chapter depends on the ExampleApp MVC project created in Chapter 3 and modified in the chapters
since. If you don’t want to work through the process of creating the example, you can get the project as part
of the free source code download that accompanies this book. See the apress.com page for this book.

To ensure that there is no conflict with examples from previous chapters, run the commands shown in
Listing 7-1 to remove the Docker containers, networks, and volumes. Ignore any errors or warnings these
commands produce.

Listing 7-1.  Removing the Containers, Networks, and Volumes

docker rm -f $(docker ps -aq)
docker network rm $(docker network ls -q)
docker volume rm $(docker volume ls -q)

Preparing the Swarm
In this chapter, I create a swarm that contains five nodes or servers. Working with a swarm means referring
to the servers in the cluster by name, and to make the examples easier to follow, the servers are described in
Table 7-3. The configuration that I have chosen for my swarm is typical for a small cluster. As the number of
worker nodes increases, a swarm should include additional manager nodes.

■■ Note  The manager node in my swarm runs Ubuntu. The worker nodes all run CoreOS Container Linux,
which is a lightweight Linux distribution specifically intended for running application containers and that
includes Docker as part of its standard build. CoreOS is supported by the main cloud platforms, including
Microsoft Azure, Amazon Web Services, and Google Cloud, and it makes a good target operating system for
working with Docker swarms. See http://coreos.com for details.

Problem Solution Listing

Change the number of containers in
a service

Use the docker service scale command 26, 27, 34

Change the status of a node in the
cluster

Use the docker node update command 28, 29

Remove the services described in a
compose file

Use the docker stack rm command 35

Deploy one container in a service on
each node in a swarm

Set mode to global in the compose file 36

Table 7-2.  (continued)

http://dx.doi.org/10.1007/978-1-4842-2778-7_3
http://coreos.com/

Chapter 7 ■ Docker Swarms

122

Creating the Swarm
A swarm is created on the manager node, which generates a key that can then be used by the workers to join
the swarm. Run the command shown in Listing 7-2 on the manager node to create a swarm.

Listing 7-2.  Creating a Swarm

docker swarm init

The output gives you the instructions for associating the other nodes with the swarm, with the
command you must run on each node in the swarm marked in bold.

Swarm initialized: current node (u9np4ffl3aqao9c3c2bnuzgqm) is now a manager.

To add a worker to this swarm, run the following command:

docker swarm join \
 --token SWMTKN-1-61tskndg374fkvoa7fl0c8d57w2zvku9hzvqpfmojqhw51dlj9-
c1cwiu06s4bfjcj0ekf9lh8uv \
 172.16.0.5:2377

To add a manager to this swarm, run 'docker swarm join-token manager' and follow the
instructions.

You will see a different token and a different network value or format of network address based on the
configuration of your manager node. Run the command indicated in the output on each worker in your
swarm. As the command runs successfully, you will see the following message displayed on each worker:

...
This node joined a swarm as a worker
...

This is the only command that is run on the worker nodes. Once a node is part of a swarm, it is
controlled using the manager node. All the remaining examples in this chapter are carried out on the
manager node.

Table 7-3.  The Hosts in the Example Swarm

Name Description

manager This is the manager node, which will be responsible for orchestrating the services in the
swarm. It is also where I copied the ExampleApp folder that contains the example application
and the configuration files and is where almost all the commands in this chapter are run. This
server will also run the load balancer that will receive HTTP requests and distribute them to
the containers running the MVC application.

dbhost This is a worker node that will be dedicated to running the MySQL container.

worker1 This is a worker node that will run MVC application containers.

worker2 This is a worker node that will run MVC application containers.

worker3 This is a worker node that will run MVC application containers.

Chapter 7 ■ Docker Swarms

123

When you have added all the nodes to the swarm, run the command in Listing 7-3 on the manager to
examine the swarm.

Listing 7-3.  Examining the Nodes in the Swarm

docker node ls

The output from this command will show all the nodes in the swarm (the asterisk indicates the node
you are working on).

ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS
136uyxxgnldhurrgtj2o9cr0h * manager Ready Active Leader
e7wwq0oghzx16g9jkz9642nws dbhost Ready Active
gmpyip1ms88kiu5inlwytz2qd worker2 Ready Active
o479m45qwi6vlq8pmgas21e96 worker3 Ready Active
yl9ajlaku5du3hpmsbaf33dyh worker1 Ready Active

■■ Tip  If you want to leave a swarm, then run the docker swarm leave command on the node. For manager
nodes, use the docker swarm leave --force command.

Labeling Swarm Nodes
Nodes in a swarm can be assigned labels that can be used to control the types of container they run. For
this example, I am going to use labels to differentiate between the node that will be responsible for running
the database and the nodes that will be responsible for the MVC application. Run the commands shown in
Listing 7-4 on the manager node to assign labels to the worker nodes in the swarm, assigning them the type
label and setting its value to mvc. Labels are arbitrary and can be assigned in any way that helps make sense
of your swarm and the application running on it: the type label I have used here and the value mvc have no
special meaning to Docker.

Listing 7-4.  Assigning Labels to the Nodes in the Swarm

docker node update --label-add type=mvc worker1
docker node update --label-add type=mvc worker2
docker node update --label-add type=mvc worker3

Manually Deploying Services on a Swarm
The simplest way to use a swarm is to describe the application in a compose file, as demonstrated in the
“Deploying to a Swarm Using a Compose File” section. But to understand what happens behind the scenes,
it helps to go through the process of deploying an application manually, even though this is a process that
requires careful attention to detail to type complex commands correctly. (For this reason, it is something
that you should do only to understand how swarms work and not in production.)

Chapter 7 ■ Docker Swarms

124

Creating the Software-Defined Networks
Docker supports software-defined networks that connect the nodes in a swarm, allowing containers to
seamlessly communicate across the swarm. To create the network for the example application, run the
command shown in Listing 7-5 on the manager node.

Listing 7-5.  Creating the Software-Defined Networks

docker network create -d overlay swarm_backend

The -d argument specifies the type of software-defined network, which is set to overlay when
creating a network that will span the servers in the swarm. I have prefixed the network name with swarm_ to
differentiate it from earlier examples; this is a not a requirement for real projects.

■■ Tip  There is only one network in this example because the communication between the load balancer and
the MVC application will occur outside the swarm, as explained in the “Creating the Load Balancer” section.

The effect of the command in Listing 7-5 is to create a software-defined network that connects together
all the nodes in the swarm, as illustrated by Figure 7-1.

Creating the Database Service
Deploying and configuring a database in a swarm can be awkward because the nature of databases is
somewhat opposed to the nature of swarms. The services that can take most advantage of the swarm
features are the ones that can easily be replicated by starting new containers and that can be easily moved
between nodes in the cluster.

Databases don’t fit well into this model: there tends to be a small number of database services in
an application (often just one instance), they rely on data files that cannot be easily transported to other
nodes in the cluster, and there can be substantial initialization and shutdown processes that preserve data
integrity.

Figure 7-1.  Creating a swarm network

Chapter 7 ■ Docker Swarms

125

For these reasons, you may prefer to set up your database server outside of the swarm and configure
your MVC application containers to make queries over the physical network that connects your servers.
Since this is a book about Docker, I am going to demonstrate how to deploy the database within the
swarm cluster, even though there will be only one container in the service and it will be deployed to a
specific node. This will let me demonstrate some useful Docker features, even though it is not a suitable
approach for all projects.

Run the command shown in Listing 7-6 on the manager node to create the MySQL service. (Enter the
command on a single line.)

Listing 7-6.  Creating the Database Service

docker service create --name mysql
 --mount type=volume,source=productdata,destination=/var/lib/mysql
 --constraint "node.hostname == dbhost" --replicas 1 --network swarm_backend
 -e MYSQL_ROOT_PASSWORD=mysecret -e bind-address=0.0.0.0 mysql:8.0.0

Services are created using the docker service create command, with the arguments telling Docker
how the service should be deployed. For MySQL, I want to create a single container with a persistent data
volume on the dbhost swarm node, using the arguments described in Table 7-4.

Volumes are handled differently in swarms, and care must be taken. The --mount argument used in
Listing 7-6 will create a new volume called productdata and use it for the container specified in the service.
But the volume is specific to the swarm node where the service starts the container and will not migrate if
the container is stopped and moved to another node in the swarm.

The constraint in the command in Listing 7-6 means that the manager can achieve the desired state
for the mysql service only by creating a container on the dbhost node. Only one replica has been specified,
which means that a single database container is started on dbhost, connected to the swarm_backend
network, as shown in Figure 7-2.

Table 7-4.  The Arguments Used to Create the MySQL Service

Name Description

--name This argument sets the name for the service, which is mysql in this example.

--mount This argument is used to specify the volumes that will be used by the containers created
by the service. In this example, a volume called productdata will be used to provide
content for the /var/lib/sql directory.

--constraint This argument is used to restrict the nodes in the swarm where containers for the
services can run, as described in the “Using Swarm Constraints” sidebar. In this
example, containers for this service can run only on the node whose host name is
dbhost.

--replicas This argument is used to specify the desired number of containers that should be
run for this service. In this example, one container is specified, which is typical for
databases.

--network This argument is used to specify the software-defined networks to which containers
created for this service will be attached. In this example, the containers will be
connected to the swarm_backend network.

-e This argument is used to specify environment variables that will be used to configure
containers created for this service. The example uses the same MySQL variables
introduced in Chapter 5.

http://dx.doi.org/10.1007/978-1-4842-2778-7_5

Chapter 7 ■ Docker Swarms

126

It can take a while for the database service to start, as the image is downloaded from the Docker Hub to
the worker node. Keep track of the progress of the service by running the command shown in Listing 7-7 on
the manager node.

Listing 7-7.  Monitoring a Docker Service

docker service ps mysql

The docker service ps command lists the containers that are running in the swarm for a service. As
the service is being prepared, you will see output like this:

...
ID NAME IMAGE NODE DESIRED STATE CURRENT STATE
wzly7bxjxaqg mysql.1 mysql:8.0.0 dbhost Running Preparing
...

The DESIRED STATE column shows the state that Docker is working toward for the container, while the
CURRENT STATE column shows how it is progressing. Once the container has started, the output of the docker
service ps command will show that the container is in the target state, like this:

...
ID NAME IMAGE NODE DESIRED STATE CURRENT STATE
wzly7bxjxaqg mysql.1 mysql:8.0.0 dbhost Running Running
...

Figure 7-2.  Starting the database service

Chapter 7 ■ Docker Swarms

127

USING SWARM CONSTRAINTS

Most real projects will be deployed into clusters where some nodes have a specific role, such as
running the database, typically because they have more capable or specialized hardware.

When you deploy a service into a swarm, you can control which nodes will be assigned containers by
specifying constraints. The manager will only assign containers to nodes that meet the constraints
specified for the service.

There are several different ways that a service can be constrained. The first is they can be deployed to a
specific node, identified using its host name. This is the approach I took with the database in Listing 7-6:

...
--constraint "node.hostname == dbhost"
...

If you want to deploy a service so that it runs only on nodes of a specific type, then you can use a
constraint like this:

...
--constraint "node.role == manager"
...

You can also restrict deployment to nodes that have been assigned a specific label. I assigned labels
to three of the worker nodes in Listing 7-4, and I use this label when deploying the service for the MVC
application in Listing 7-14, using a constraint like this:

...
--constraint "node.labels.type==mvc"
...

Labels are the most flexible way to constrain a service because you can assign any label you need to
any label in the swarm.

Preparing the Database
When I described the application using a Docker Compose file in Chapter 6, I was able to include a
container that was dedicated to initializing the database, after which it would exit. It is possible to arrange
this kind of setup in a swarm, but there is a more interesting feature available that provides useful insight
into how swarms function. To prepare the database, I am going to temporarily map the database’s port 3306
so that it can be accessed through the host operating system and use this to perform the initialization. Bear
with me; this is more interesting than it may sound.

Run the command shown in Listing 7-8 on the manager node to update the database service.
(The command is run on the manager node, even though the container is running on a worker. Remember
that the manager node is always used to configure the services running on a cluster.)

http://dx.doi.org/10.1007/978-1-4842-2778-7_6

Chapter 7 ■ Docker Swarms

128

Listing 7-8.  Updating the Database Service

docker service update --publish-add 3306:3306 mysql

The docker service update command is used to change the configuration of services after they have
been created. You can change almost any aspect of the service including defining new mapped ports with
the --publish-add argument. This command makes port 3306 available outside of the swarm for the mysql
service. Docker applies the change across the swarm, ensuring consistency across all the containers that are
part of the service.

When you expose a port from a service, Docker maps it to the host operating systems on all the nodes in
the swarm, using a feature called ingress load balancing. This means that any request to port 3306 received
on any node in the swarm will be received by Docker and sent to one of the containers in the service whose
port was mapped.

For the mysql service, there is only a single container, which is running on the dbhost node, and so any
request sent to port 3306 on the manager, worker1, worker2, worker3, and dbhost nodes will be received by
MySQL on port 3306 inside the container running on the dbhost node. When there are multiple containers
in a service, Docker will load balance the requests so that they are distributed between the containers.

The ingress load balancing feature simplifies the process of preparing the database. Run the commands
shown in Listing 7-9 in the ExampleApp folder on the manager node.

Listing 7-9.  Preparing the Database in the Swarm

dotnet restore
dotnet run --INITDB=true

When the .NET application runs, the INITDB argument selects the database initialization mode, rather
than starting ASP.NET Core. Since all the nodes in the swarm map port 3306 to the database service, it
doesn’t matter which host name is used to configure the database. The application defaults to localhost
when no other host name is supplied, which means that the connection from Entity Framework Core is
made to port 3306 on the manager node, and the swarm ensures that it is channeled to port 3306 on the
dbhost node so that it can be received by MySQL, as illustrated by Figure 7-3.

Figure 7-3.  Using ingress load balancing to prepare the database

Chapter 7 ■ Docker Swarms

129

It doesn’t matter which host in the cluster the database preparation application connects to because
any request to port 3306 on any node will be channeled to the container running on dbhost, ensuring that
the database is correctly prepared for the application. Put another way, a connection sent to port 3306 on the
manager node is effectively the same as a connection to port 3306 on the dbhost node.

The application will produce the following results, showing that the database migrations have been
applied to create the schema and that the seed data has been added:

...
Preparing Database...
Applying Migrations...
Creating Seed Data...
Database Preparation Complete
...

■■ Tip  If you see an error when you use the dotnet run command, then wait a couple of minutes to give
Docker time to update the service so that port 3306 is available and try again. If you see an error telling you
that the Products table already exists, then you may have already initialized the database: Entity Framework
Core migrations have to be applied only once. If you want to repeat the initialization, delete the productdata
volume on the dbhost worker node, restart the mysql service, expose port 3306, and run the commands in
Listing 7-9 again.

Once you have prepared the database, run the command shown in Listing 7-10 on the manager node to
disable ingress load balancing for port 3306 so that the database returns to being accessible only through the
swarm_backend software-defined network.

Listing 7-10.  Disabling the Port Mapping

docker service update --publish-rm 3306:3306 mysql

Creating the MVC Application Service
The MVC application is better suited to deployment in a swarm than the database: the application is self-
contained, it doesn’t matter which nodes run the application, and multiple instances of the MVC application
can be created without conflicting with one another.

The manager node in a swarm doesn’t distribute the images required for a service to the worker nodes,
which means that the image used to create a service must be published to a repository, such as the Docker
Hub, so that the nodes in the swarm can get the data they require to create containers.

Run the commands shown in Listing 7-11 in the manager node’s ExampleApp folder to prepare the
application for deployment.

Listing 7-11.  Preparing the MVC Application for Deployment as a Service

dotnet publish --framework netcoreapp1.1 --configuration Release --output dist
docker build . -t apress/exampleapp:swarm-1.0 -f Dockerfile

You will need to change the name of the image created by the docker build command to replace
apress with your Docker Hub account. So, if your account name is bobsmith, then your image tag should be
bobsmith/exampleapp:swarm-1.0.

Chapter 7 ■ Docker Swarms

130

The dotnet publish command ensures that recent changes made to the MVC application will be
included in the Docker image that is created by the docker build command.

The tag for the MVC application image includes a variation, which is swarm-1.0. (You don’t have to
include swarm in the tags for your images. I have done this so that the image for this example can coexist with
those from earlier chapters.)

■■ Tip  It is always a good idea to use specific versions of images when creating services rather than relying
on the :latest version, which may change unexpectedly during the life of the application. Later in the chapter, I
explain how to upgrade an application that is used in a service, which also requires an image tag with a version.

Run the commands shown in Listing 7-12 in the ExampleApp folder of the manager node to authenticate
with the Docker Hub using the credentials you created in Chapter 4.

Listing 7-12.  Authenticating with Docker Hub

docker login -u <yourUsername> -p <yourPassword>

Run the command shown in Listing 7-13 on the manager node to push the image to the repository.
Don’t forget to change the name of the image for the docker push command to replace apress with your
Docker Hub account.

Listing 7-13.  Pushing the MVC Image to the Repository

docker push apress/exampleapp:swarm-1.0

Once the image has been pushed to the repository, run the command shown in Listing 7-14 on the
manager node to create the service for the MVC application. Enter the command on a single line.

Listing 7-14.  Creating the MVC Application Service

docker service create --name mvcapp --constraint "node.labels.type==mvc"
 --replicas 5 --network swarm_backend -p 3000:80
 -e DBHOST=mysql apress/exampleapp:swarm-1.0

This command tells Docker to create a service for the MVC application that consists of five containers,
which can be run only on nodes that have been assigned the type label with a value of mvc. Access to the
containers in the service will be through the port published using the -p argument, which configures the
ingress load balancing feature described in the previous section.

Notice that the DBHOST environment variable, which specifies the name of the database server for
the Entity Framework Core connection string, is set to mysql. Within a swarm, Docker creates host names
that provide access to the ingress load balancing feature for each service that is created. This means Entity
Framework Core can open a connection to mysql and rely on Docker to channel that connection to one of
the containers that provides the mysql service. There is only one container in the mysql service, but Docker
will load balance between containers if there is more than one available.

The complete set of arguments used to create the MVC application service is described in Table 7-5.

http://dx.doi.org/10.1007/978-1-4842-2778-7_4

Chapter 7 ■ Docker Swarms

131

It will take Docker a moment to set up the containers. You can check the progress by running the
command shown in Listing 7-15 on the manager node.

Listing 7-15.  Checking Service Status

docker service ls

The results from the docker service ls command show a summary of the services that have been
created on the swarm and the status of each of them. When Docker has created all the containers required
for the MVC application service, the REPLICAS column in the docker service ls output will show 5/5,
indicating that Docker has created all five containers and has reached the desired state for the service, as
follows:

ID NAME MODE REPLICAS IMAGE
4kf7xsym2vc5 mvcapp replicated 5/5 apress/exampleapp:swarm-1.0
j2v5gdqzu1di mysql replicated 1/1 mysql:8.0.0

Docker is responsible for allocating the containers required for the service to worker nodes. Run the
command shown in Listing 7-16 on the manager to see which nodes in the containers within the service
have been deployed to.

Listing 7-16.  Examining the Containers in a Service

docker service ps mvcapp

Table 7-5.  The Arguments Used to Create the MVC Service

Name Description

--name This argument is used to set the name for the service, which is mvcapp in this example.

--constraint This argument is used to restrict the nodes where containers for this service will run, as
described in the “Using Swarm Constraints” sidebar. For this example, the containers
will run only on the nodes assigned the mvc label in Listing 7-4.

--replicas This argument specifies the desired number of containers that will run for this service.
For this example, five containers are specified.

--network This argument specifies the software-defined networks that the containers for this
service will be connected to. For this example, the containers will be connected to the
swarm_backend service.

-p This argument exposes a port inside the containers created for this service to ingress
load balancing features. Requests sent to the specified port will be directed to one of the
service containers. In this example, requests sent to port 3000 on any node in the cluster
will be directed to port 80 inside one of the mvc containers.

-e This argument sets an environment variable when containers are created for the
service. In this example, the DBHOST variable is set in order to provide the host name
that Entity Framework Core needs to connect to the database. The host name is set to
the name of the database service, which takes advantage of the ingress load balancing
feature.

Chapter 7 ■ Docker Swarms

132

The docker service ps command produces a list of all the containers running in a service. Here is the
output from my setup, formatted to fit on the page and with only the most useful columns shown:

ID NAME NODE DESIRED STATE CURRENT STATE
7jd1yop74mxfy mvcapp.1 worker1 Running Running
cse2cyutpvxh9 mvcapp.2 worker2 Running Running
5r9y800jugey8 mvcapp.3 worker1 Running Running
cktdzf0ypzcpt mvcapp.4 worker3 Running Running
5esdl2d3jd1ee mvcapp.5 worker2 Running Running

In this example, there are five containers running on three workers, which means that some worker
nodes are running multiple containers, as illustrated in Figure 7-4.

If you reboot a worker node, disconnect it from the network, or just stop a container on a worker, the
swarm manager will return the service to its desired state by creating additional containers on the other
nodes.

Testing the MVC Application Service
The configuration of the MVC application service included a port mapping so that HTTP requests received
on port 3000 of any node in the swarm will be sent to port 80 inside one of the MVC containers. Since there
are multiple MVC containers, the ingress load balancing feature will distribute the requests between them.

You can see how the requests are distributed by opening a new browser window and requesting the
URL for port 3000 on any of the swarm nodes, including the manager node. The URL in my setup is
http://manager:3000. Keep reloading the page and you will see that the container name included in the
response will change, as shown in Figure 7-5. Docker doesn’t make any promises about how requests are
distributed, and you may have to reload the page a few times before you see a different container name.
If you don’t see any change in the name, then wait a few minutes and reload the page, try starting a second
browser, or make a request from a different IP address.

Figure 7-4.  Deploying the ASP.NET Core MVC application service

Chapter 7 ■ Docker Swarms

133

Creating the Load Balancer
Although you could rely on the ingress load balancing feature to handle HTTP requests from users, the
convention is to deploy a load balancer so that there is a single point of entry to the application from the
outside world.

It is important not to deploy the load balancer as a service in the swarm since that would mean the
Docker ingress load balancing system would receive the HTTP requests from the outside world and then
distribute them over the software-defined network to one or more containers, which would use ingress load
balancing to target one of the MVC containers.

Instead, I am going to run the HAProxy application I used in earlier examples in a separate container
on the manager node. This container will use a regular port mapping to the host operating system to receive
HTTP requests and forward them to the MVC application containers through the swarm mesh network.
Listing 7-17 shows the change required to the haproxy.cfg file to configure the load balancer.

Listing 7-17.  Configuring the Load Balancer in the haproxy.cfg File

defaults
 timeout connect 5000
 timeout client 50000
 timeout server 50000

frontend localnodes
 bind *:80
 mode http
 default_backend mvc

backend mvc
 mode http
 balance roundrobin
 server mvc1 manager:3000

There are lots of ways to configure the load balancer, but the approach I use is to forward requests to
the ingress load-balanced port on the local machine so that HAProxy doesn’t have to be configured with
the details of the worker nodes. Run the command shown in Listing 7-18 on the manager node to create a
new load balancer container that uses the configuration file from Listing 7-17. (Enter the command on a
single line.)

Figure 7-5.  Testing the MVC service through the mesh routing feature

Chapter 7 ■ Docker Swarms

134

Listing 7-18.  Creating and Starting the Load Balancer Container

docker run -d --name loadbalancer
 -v "$(pwd)/haproxy.cfg:/usr/local/etc/haproxy/haproxy.cfg"
 -p 80:80 haproxy:1.7.0

Adding the load balancer completes the application by creating a container outside of the swarm that
uses the ingress load balancing feature to distribute between the MVC containers, as illustrated in Figure 7-6.

You can test the application by using the browser to request port 80 on the manager node, which means
using the URL http://manager in my setup. The HTTP request is fed to the HAProxy load balancer through
the port 80 mapping on the manager node, which then directs the request to port 3000, relying on the ingress
load balancing feature to distribute the request to the MVC application containers.

Reloading the web page will show that different MVC application containers are being used to handle
the requests, although you may have to wait for a moment before reloading (or use a different browser) to
see the change illustrated in Figure 7-7.

Figure 7-6.  Completing the application

Figure 7-7.  Making requests through a load balancer

Chapter 7 ■ Docker Swarms

135

■■ Tip  If you don’t get the expected results, use the docker logs loadbalancer command to inspect the
output from the load balancer container for errors. Resolve the problem, use docker rm -f loadbalancer to
remove the container, and run the command in Listing 7-18 again.

Removing the Service from the Swarm
To remove the service from the cluster, run the commands shown in Listing 7-19 on the manager node.

Listing 7-19.  Removing Docker Services

docker service rm mvcapp
docker service rm mysql
docker rm -f loadbalancer
docker network rm swarm_backend

Deploying to a Swarm Using a Compose File
Although you can deploy an application to a swarm using the commands described in the previous section,
it is easier to include the information in a compose file and let Docker take care of the deployment. Add a file
called docker-compose-swarm.yml in the ExampleApp folder of the manager node and add the configuration
shown in Listing 7-20.

Listing 7-20.  The Contents of docker-compose-swarm.yml in the ExampleApp Folder

version: "3"

volumes:
 productdata_swarm:

networks:
 backend:

services:

 mysql:
 image: "mysql:8.0.0"
 volumes:
 - productdata_swarm:/var/lib/mysql
 networks:
 - backend
 environment:
 - MYSQL_ROOT_PASSWORD=mysecret
 - bind-address=0.0.0.0
 deploy:
 replicas: 1
 placement:
 constraints:
 - node.hostname == dbhost

Chapter 7 ■ Docker Swarms

136

 mvc:
 image: "apress/exampleapp:swarm-1.0"
 networks:
 - backend
 environment:
 - DBHOST=mysql
 ports:
 - 3000:80
 deploy:
 replicas: 5
 placement:
 constraints:
 - node.labels.type == mvc

A compose file that targets a swarm describes the desired state for a service using the deploy
configuration section, which is described in Table 7-6.

Some Docker Compose features are not supported when deploying services to a swarm, such as the
build configuration section (services must use images) and the depend_on setting. The compose file should
contain only those services that you want to deploy to the cluster. The file in Listing 7-20, for example, omits
details of the database initialization and load balancer containers, which will be created on the manager
node, outside of the swarm.

Performing the Deployment
Run the command shown in Listing 7-21 in the ExampleApp folder on the manager node to deploy the
services described in the new compose file.

Listing 7-21.  Deploying Services from a Compose File

docker stack deploy --compose-file docker-compose-swarm.yml exampleapp

Table 7-6.  The Deployment Configuration Options in the Compose File

Name Description

deploy This configuration section is used to configure the desired state for the service when it is
deployed on the cluster.

replicas This setting is used to specify how many instances of a container are required for a
service. In this example, there will be one container for the database and five containers
for the ASP.NET Core MVC application.

placement This configuration section is used to configure the placement of the containers for the
service.

constraints This setting specifies constrains for locating the containers in the swarm. In this
example, the database container will run only on the dbhost node, and the MVC
application containers will run on the nodes that were labeled in Listing 7-4.

Chapter 7 ■ Docker Swarms

137

A stack is the term that Docker uses to describe a collection of services that make up an application.
The docker stack deploy command creates a stack using the information in the compose file, using the
arguments described in Table 7-7.

As Docker processes the compose file, it will create the components that application requires,
producing output like this:

...
Creating network exampleapp_backend
Creating service exampleapp_mvc
Creating service exampleapp_mysql
...

The software-defined network and the containers for the database and the MVC application will be
started. The docker service commands described earlier in the chapter can be used to inspect the services
that have been created. Run the commands shown in Listing 7-22 on the manager node.

Listing 7-22.  Inspecting the Services

docker service ls
docker service ps exampleapp_mvc

The docker service ls command lists the services that have been deployed to the swarm. The second
command details the containers that have been created for the exampleapp_mvc service. The name of the
service combines the final argument given to the docker stack deploy command in Listing 7-21 and the
name of the service defined in the compose file in Listing 7-20.

Preparing the Database
The process for preparing the database hasn’t changed. Run the command in Listing 7-23 to expose port
3306 via the ingress load balancer so that the database can be reached outside of the software-defined
network defined in the compose file.

Listing 7-23.  Exposing the Database Port

docker service update --publish-add 3306:3306 exampleapp_mysql

Table 7-7.  The Arguments Used for the Docker Stack Deploy Command

Name Description

--compose-file The --compose-file argument specifies the compose file that contains the details of
the services in the stack. An alternative description file, called a bundle, can also be
used.

exampleapp The final argument to the docker stack deploy command is the name that will be
assigned to the stack and that is used to prefix the names of the containers, volumes,
and software-defined networks that are created for the stack.

Chapter 7 ■ Docker Swarms

138

Give Docker a minute to perform the update and then run the command shown in Listing 7-24 in the
ExampleApp folder of the manager node to apply the Entity Framework Core migration and create the seed
data. (If you get a database connection error, then wait a little longer and try again.)

Listing 7-24.  Initializing the Database

dotnet run --INITDB=true

Creating the Deployment Load Balancer
The final step is to create the load balancer, which is outside of the swarm for the reasons described earlier
in the chapter. Run the command shown in Listing 7-25 in the ExampleApp folder of the manager node to
create the load balancer container. This container isn’t part of the cluster but relies on the ingress load
balancing feature to distribute HTTP requests to the MVC application containers. (Enter the command on
a single line.)

Listing 7-25.  Creating the Load Balancer

docker run -d --name stack_loadbalancer
 -v "$(pwd)/haproxy.cfg:/usr/local/etc/haproxy/haproxy.cfg" -p 80:80 haproxy:1.7.0

Once the load balancer has started, you can test the application by opening a new browser window and
requesting port 80 on the manager node. For me, this means the URL is http://manager. The configuration
of the application is just the same as when each component was created manually, but using the compose
file simplifies the commands used for deployment.

Managing the Swarm
To a certain extent, a swarm is self-managing because when a container or a node crashes, the manager will
try to create additional containers to return to the desired state of the services. Even so, there are times when
you will want to change the way that a swarm behaves, which you can do using the features described in the
sections that follow.

Scaling Services
One of the most common changes to a service is to alter the number of containers to better suit the
application’s workload. Run the command shown in Listing 7-26 on the manager node to alter the number
of containers in the MVC application service.

Listing 7-26.  Changing the Number of Containers

docker service scale exampleapp_mvc=3

The docker service scale command is used to change the desired state of the service. This command
tells Docker to reduce the number of containers in the mvc service to 3. It will take a moment for the change
to take effect, but once Docker has adjusted the service, the new configuration can be seen by running the
docker service ls command, which will produce a response like this:

ID NAME MODE REPLICAS IMAGE
41sdv2rpppyr exampleapp_mysql replicated 1/1 mysql:8.0.0
mchxy13rn37z exampleapp_mvc replicated 3/3 apress/exampleapp:swarm-1.0

Chapter 7 ■ Docker Swarms

139

Run the command shown in Listing 7-27 on the manager node to return the service to its original
number of containers.

Listing 7-27.  Returning to the Original Scale

docker service scale exampleapp_mvc=5

Taking Nodes Out of Service
There will be times when you need to take a node out of the swarm, perhaps to perform an upgrade or some
other kind of maintenance. You could just disconnect the node and let the manager detect the change and
rebalance the service, but a more orderly approach is to drain a node in the swarm. Draining a node takes it
out of service and causes the manager to redistribute its containers to other nodes, at which point it can be
shut down without interrupting service delivery. Run the command shown in Listing 7-28 on the manager
node to drain the worker2 node.

Listing 7-28.  Draining a Node

docker node update --availability drain worker2

In addition to labeling nodes, as shown in Listing 7-4, the docker node update command can be
used with the --availability argument to change the status of nodes in a swarm. There are three types of
availability, as described in Table 7-8.

The drain mode takes a node out of service, which can be useful for performing maintenance or,
as in this case, testing the ability of a swarm to redistribute its workload. Run the docker service ps
exampleapp_mvc command, and you will see how the status of the service has changed.

ID NAME NODE DESIRED STATE CURRENT STATE
7jd1yop74mxfy exampleapp_mvcapp.1 worker1 Running Running
2ejbexg6yezd9 exampleapp_mvcapp.2 worker1 Running Running
cse2cyutpvxh9 _ exampleapp_mvcapp.2 worker2 Shutdown Shutdown
5r9y800jugey8 exampleapp_mvcapp.3 worker1 Running Running
cktdzf0ypzcpt exampleapp_mvcapp.4 worker3 Running Running
6j8h32cikboe2 exampleapp_mvcapp.5 worker3 Running Running
5esdl2d3jd1ee _ exampleapp_mvcapp.5 worker2 Shutdown Shutdown

Table 7-8.  The Swarm Node Availability Types

Name Description

active This is the default availability. The manager is free to assign new containers to the node, and
any existing containers continue running indefinitely.

pause In this mode, the existing containers on the node will continue to run, but the manager
won’t assign any new containers.

drain In this mode, existing containers will be stopped, and the manager will not assign any new
containers.

Chapter 7 ■ Docker Swarms

140

The manager node responded to the change in the swarm configuration by instructing the worker1 and
worker3 nodes to start additional containers. The containers on the drained node are not removed, which
means they can be used again once the server is returned to the active state. Run the command shown in
Listing 7-29 on the manager node to reactivate the node.

Listing 7-29.  Activating a Node

docker node update --availability active worker2

The manager will not automatically redistribute the containers in a service when you reactivate a node
as long as it has been able to achieve the desired state using the remaining nodes in the swarm. Run the
command shown in Listing 7-30 on the manager node to force a redistribution of the containers.

Listing 7-30.  Forcing Redistribution of Containers

docker service update --force exampleapp_mvc

Updating a Service
You can update services to deploy new releases of your applications into the swarm. To create a visible
change, alter the banner in the Razor view used by the MVC application, as shown in Listing 7-31.

Listing 7-31.  Making a Visible Change in the Index.cshtml File in the ExampleApp/Views/Home Folder

@model IEnumerable<ExampleApp.Models.Product>
@{
 Layout = null;
}
<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>ExampleApp</title>
 <link rel="stylesheet" href="~/lib/bootstrap/dist/css/bootstrap.min.css" />
</head>
<body>
 <div class="m-1 p-1">
 <h4 class="bg-success text-xs-center p-1 text-white">
 Swarm: @ViewBag.Message
 </h4>
 <table class="table table-sm table-striped">
 <thead>
 <tr><th>ID</th><th>Name</th><th>Category</th><th>Price</th></tr>
 </thead>
 <tbody>
 @foreach (var p in Model) {
 <tr>
 <td>@p.ProductID</td>
 <td>@p.Name</td>
 <td>@p.Category</td>

Chapter 7 ■ Docker Swarms

141

 <td>$@p.Price.ToString("F2")</td>
 </tr>

 }
 </tbody>
 </table>
 </div>
</body>
</html>

Save the change to the view and run the commands shown in Listing 7-32 in the ExampleApp folder of
the manager node to publish the application, update the MVC application image, and push it to the Docker
Hub. You may need to authenticate yourself with the Docker Hub before you push the new image. Don’t
forget to change the name of the image to replace apress with your Docker Hub account.

Listing 7-32.  Publishing the MVC Application and Updating the Image

dotnet publish --framework netcoreapp1.1 --configuration Release --output dist
docker build . -t apress/exampleapp:swarm-1.1 -f Dockerfile
docker push apress/exampleapp:swarm-1.1

I have tagged the image to indicate that this is a later version that the image originally used to create
the service. Run the command shown in Listing 7-33 on the manager node to upgrade the containers in the
MVC application service so they use the new image.

Listing 7-33.  Updating a Service

docker service update --image apress/exampleapp:swarm-1.1 exampleapp_mvc

The --image argument for the docker service update command is used to change the image for a
service. The update is performed by stopping each container in turn, applying the update, and then starting
it again before moving to the next container. It will take a moment for Docker to update all the containers.
You can keep track of the progress by running the docker service ps exampleapp_mvc command, whose
output includes the image that each container in the service is using.

■■ Tip  If you have a lot of containers to update, you can speed up the process by using the --update-
parallelism argument to the docker service update command, specifying the number of containers that
should be taken out of service and updated at the same time. Bear in mind, however, that increasing the
number of concurrent updates reduces the number of containers that are available to handle user requests.

Once the changes have been rolled out, use a browser to send an HTTP request to the load balancer,
which is listening to port 80 on the manager node. You will see the response shown in Figure 7-8, which
shows that the updated MVC application has been used to handle the request.

Chapter 7 ■ Docker Swarms

142

Shutting Down Services
When using a swarm, you stop a service by telling Docker to reduce the number of replicas to zero. Run the
command shown in Listing 7-34 on the manager node to scale down the MVC application service so there
are no containers running.

Listing 7-34.  Scaling Down Docker Services

docker service scale exampleapp_mvc=0

The Docker workers will stop and remove the containers for the example_mvcapp service. It can take
a while for all the containers to stop, and you can monitor the process using the docker service ls
command. Scaling down a service doesn’t remove the containers, which Docker keeps in order to speed up
the process of scaling up again in the future.

To remove all the components described by the compose file, run the command shown in Listing 7-35
from the ExampleApp folder of the manager node.

Listing 7-35.  Removing a Docker Stack

docker stack rm exampleapp

Creating Global Services
The services that I created earlier were replicated, meaning that I specified the number of containers that
were required for each service and left the manager node to figure out how to deploy the containers in the
swarm.

You can also create global services, in which the service is made up of one container running on each
node in the swarm. This can be more predictable than a replicated service because you always know how
many containers there are and where they are running, but it provides less flexibility because the number of
containers can be increased only by adding additional nodes to the swarm.

Figure 7-8.  Upgrading a service

Chapter 7 ■ Docker Swarms

143

■■ Caution  Don’t make the mistake of assuming that global services will let you work around the limitations
of stateful applications, such that you can use the load balancer to send all the requests from a single client to
the same container. Containers in a global service are still part of the swarm, which means that HTTP requests
sent to the ports exposed by the containers are handled using ingress load balancing.

To create a global service, set the --mode argument to global when using the docker service create
command or use the mode setting in the compose file, as shown in Listing 7-36.

Listing 7-36.  Creating a Global Service in the docker-compose-swarm.yml File in the ExampleApp Folder

version: "3"

volumes:
 productdata_swarm:

networks:
 backend:

services:

 mysql:
 image: "mysql:8.0.0"
 volumes:
 - productdata_swarm:/var/lib/mysql
 networks:
 - backend
 environment:
 - MYSQL_ROOT_PASSWORD=mysecret
 - bind-address=0.0.0.0
 deploy:
 replicas: 1
 placement:
 constraints:
 - node.hostname == dbhost

 mvc:
 image: "apress/exampleapp:swarm-1.0"
 networks:
 - backend
 environment:
 - DBHOST=mysql
 ports:
 - 3000:80
 deploy:
 mode: global
 placement:
 constraints:
 - node.labels.type == mvc

Chapter 7 ■ Docker Swarms

144

The replicas setting has no effect on a global service: there will be exactly one MVC container
running on every node in the swarm that meets the constraints. Run the command in Listing 7-37 from the
ExampleApp folder on the manager node to deploy the services described in the compose file.

Listing 7-37.  Deploying the Application

docker stack deploy --compose-file docker-compose-swarm.yml exampleapp

You can see the list of containers by running the command shown in Listing 7-38 on the manager node.

Listing 7-38.  Inspecting the Global Service

docker service ps exampleapp_mvc

The output shows that the containers are running on all three of the nodes that meet the constraint.

ID NAME IMAGE NODE STATE
rwq13zt1pm0p exampleapp_mvc.p4ar apress/exampleapp:swarm-1.0 worker3 Running
ojfwoez0nyvy exampleapp_mvc.wn4u apress/exampleapp:swarm-1.0 worker2 Running
qllo5a0hzy4o exampleapp_mvc.wked apress/exampleapp:swarm-1.0 worker1 Running

Run the docker service ls command on the manager node to inspect the services and you will see
that the mvcapp service is marked as global, like this:

ID NAME MODE REPLICAS IMAGE
7vds0gsxjxv9 exampleapp_mysql replicated 1/1 mysql:8.0.0
wd8ouiyu537q exampleapp_mvc global 3/3 apress/exampleapp:swarm-1.0

Summary
In this chapter, I showed you how to cluster together Linux servers running Docker to form a swarm.
I demonstrated how to deploy the example application into the swarm, how swarms load balance
requests between the containers they contain, and how to manage the swarm once the application has
been deployed. In the next chapter, I explain how to use Docker to create a containerized development
environment.

145© Adam Freeman 2017
A. Freeman, Essential Docker for ASP.NET Core MVC, DOI 10.1007/978-1-4842-2778-7_8

CHAPTER 8

Containerized Development

Many of the problems that Docker solves in production also occur during development, especially for large
teams working on projects that have multiple components. It can be hard to make sure that every developer
has the right version of the tool chain, the runtime libraries, third-party packages, database servers, and
schemas and that they are all set up consistently. Add in differences in operating systems and patch levels
and it becomes an impossible task.

Using containers for the development environment brings consistency and uniformity to the
development process, while still allowing individual developers the freedom to customize their development
tools to suit their personal styles. In fact, one of the attractions of a containerized environment is that it
standardizes only what is important, without trying to force every developer to work in the same way.

It may seem odd to look at containerized development at the end of a book, but it is only when you
understand how the different features fit together that the use of Docker during development can be
explained. In this chapter, I show you how to set up a containerized development environment and how to
debug an application that is running in a container. Table 8-1 puts containerized development in context.

Table 8-1.  Putting Containerized Development in Context

Question Answer

What is it? Containerized development moves part of the development
environment into a Docker container.

Why is it useful? Containerized development compiles and executes a project using
the .NET Core tools running inside a container, which means they
will be consistent with the production environment and consistent
between developers.

How is it used? A base image that contains the .NET Core Software Development
Kit is used to create an image. A container is created from that
image, using a Docker volume to provide access to the project files,
which are stored on the host operating system so that they can be
put under regular revision control.

Are there any pitfalls or limitations? Some additional configuration is required to prepare a project for
containerization.

Are there any alternatives? You do not have to containerize development for a project to use
Docker to deploy it.

Chapter 8 ■ Containerized Development

146

Table 8-2 summarizes the chapter.

Preparing for This Chapter
This chapter depends on the ExampleApp MVC project created in Chapter 3 and modified in the chapters
since. If you don’t want to work through the process of creating the example, you can get the project as part
of the free source code download that accompanies this book. See apress.com for details.

To ensure that there is no conflict with examples from previous chapters, run the commands shown in
Listing 8-1 to remove the Docker containers, networks, and volumes. Ignore any errors or warnings these
commands produce.

Listing 8-1.  Removing the Docker Components

docker rm -f $(docker ps -aq)
docker network rm $(docker network ls -q)
docker volume rm $(docker volume ls -q)

Run the commands shown in Listing 8-2 if you are a Linux user and you used your development
machine as the manager of a swarm in Chapter 7.

Listing 8-2.  Removing the Services and Leaving the Swarm

docker stack rm exampleapp
docker swarm leave --force

Using Development Mode to Prepare the Database
Previous chapters used a range of techniques to prepare the database for the application, dealing with the
need to apply Entity Framework Core migrations and generate seed data.

The situation is simpler in development because there is no production data that can be lost. To that
end, modify the Startup class, as shown in Listing 8-3, so that the database is prepared automatically when
the application starts in the Development environment.

Table 8-2.  Chapter Summary

Problem Solution Listing

Build a project in a container Configure the project to build and run automatically, using
a volume to access the project files

1–11

Prepare a project for debugging
in a container

Create and run a container that includes the remote
debugger

12–17

Debug in a container using
Visual Studio 2017

Create an XML configuration file and use it to start the
debugger from the command window

18–20

Debug in a container using
Visual Studio Code

Configure the debugger using the launch.json file 21, 22

http://dx.doi.org/10.1007/978-1-4842-2778-7_3
http://dx.doi.org/10.1007/978-1-4842-2778-7_7

Chapter 8 ■ Containerized Development

147

Listing 8-3.  Enabling Database Updates in the Startup.cs File in the ExampleApp Folder

...
public void Configure(IApplicationBuilder app,
 IHostingEnvironment env, ILoggerFactory loggerFactory) {

 loggerFactory.AddConsole();
 app.UseDeveloperExceptionPage();
 app.UseStatusCodePages();
 app.UseStaticFiles();
 app.UseMvcWithDefaultRoute();

 if (env.IsDevelopment()) {
 SeedData.EnsurePopulated(app);
 }
}
...

Understanding Containerized ASP.NET Core Development
The roles of application and data are reversed when compared to the deployment containers created in
earlier chapters. It is the tool chain—the compiler, the runtime, the debugger—that becomes the application
and lives inside the container. The data files are the ASP.NET Core MVC project files, which exist outside of
the container in a Docker volume. The Docker volume used for development containers uses a folder from
the host operating system to provide the contents of a directory inside the container. This is similar to the
way that the load balancer configuration file was set up in earlier chapters but uses an entire folder rather
than a single file. Figure 8-1 shows how the pieces fit together in a containerized development environment.

Figure 8-1.  Containerized development

Chapter 8 ■ Containerized Development

148

Using a volume to mount a host folder means that ASP.NET Core MVC project files can be edited
using Visual Studio or Visual Studio Code as normal and then compiled inside the development container
using the .NET Core compiler. The development container also includes the .NET Core runtime, which
can execute the application and expose it for testing through a port mapping to the host operating system.
The project files can be managed outside of the container, using regular source code control tools like Git
or Subversion, while the tools and execution environment are standardized through the container, whose
Docker file can also be placed under version control.

Setting Up Containerized Development
Containerized development is still a relatively new idea and can be a little awkward, especially when it
comes to debugging. The quality of tooling for containerized development will improve as containers
become more widely used, but for the moment some careful configuration is required to create the
development environment and get it working. In the sections that follow, I start by setting up a container for
developing and testing an ASP.NET MVC Core application, and then, with a little extra work, I demonstrate
how use the Visual Studio and Visual Studio Code debuggers.

Adding the DotNet Watcher Package
The first challenge in setting up a development container is making sure that it reflects the changes that you
make to the code files. ASP.NET Core MVC responds immediately when one of its Razor views changes but
doesn’t detect changes in the C# classes.

The Microsoft.DotNet.Watcher.Tools package is used to monitor a project from inside the container
and restart the .NET Core runtime when a file change is detected, ensuring that changes made by the
developer are reflected inside the container.

Add the package shown in Listing 8-4 to the ExampleApp.csproj file.

Listing 8-4.  Adding a Package in the ExampleApp.csproj File in the ExampleApp Folder

<Project Sdk="Microsoft.NET.Sdk.Web">

 <PropertyGroup>
 <TargetFramework>netcoreapp1.1</TargetFramework>
 </PropertyGroup>

 <ItemGroup>
 <PackageReference Include="Microsoft.AspNetCore" Version="1.1.1" />
 <PackageReference Include="Microsoft.AspNetCore.Mvc" Version="1.1.2" />
 <PackageReference Include="Microsoft.AspNetCore.StaticFiles" Version="1.1.1" />
 <PackageReference Include="Microsoft.Extensions.Logging.Debug" Version="1.1.1" />
 <PackageReference Include="Microsoft.VisualStudio.Web.BrowserLink"
 Version="1.1.0" />
 <PackageReference Include="Microsoft.EntityFrameworkCore" Version="1.1.1" />
 <PackageReference Include="Microsoft.EntityFrameworkCore.Tools"
 Version="1.1.0" />

Chapter 8 ■ Containerized Development

149

 <PackageReference Include="Pomelo.EntityFrameworkCore.MySql" Version="1.1.0" />
 <DotNetCliToolReference Include="Microsoft.EntityFrameworkCore.Tools.DotNet"
 Version="1.0.0" />
 <PackageReference Include="Microsoft.Extensions.Configuration.CommandLine"
 Version="1.1.1" />
 <DotNetCliToolReference Include="Microsoft.DotNet.Watcher.Tools"
 Version="1.0.0" />
 </ItemGroup>
</Project>

The change adds the version of the DotNet Watcher package that works with version 1.1.1 of .NET Core
and ASP.NET Core and that is required for the examples in this book.

CONTAINERIZING A NEW PROJECT

The examples in this chapter show you how to create a containerized development environment
for a project that is already in progress, but you can also create a container right at the start of the
development process.

To do this, you need to create a project on the host operating system so that there is a csproj file
that lists the NuGet packages you need. Once you have the csproj file, you can create and start the
container and start adding the C# and Razor files that your project requires.

If you are using Visual Studio, you can use the New Project Wizard to create the project. If you are using
Visual Studio Code (or you just prefer working with the command line), then use the following command
to create a new project, where the name of the folder in which the command is run is used as the name
for the project.

dotnet new mvc --language C# --auth None --framework netcoreapp1.1

Once the project has been created, open a new command prompt and navigate to the project. Add the
DotNet Watcher package as shown in Listing 8-4 and any other packages that you require. You can then
follow the process from Listing 8-5 onward.

Once you have a development container up and running, use you IDE to create the data model,
controllers, and views that your application requires.

Creating the Development Image and Compose File
It is possible to create a development container using only the Docker command-line tools, but doing so
requires careful attention to ensure that the configuration settings required by the development tools are
correct. A more reliable approach, and one that helps ensure that all developers are working with the same
environment, is to create a Docker file that is used in conjunction with a compose file that includes the
volumes, software-defined networks, and any other containers that the application depends on.

Chapter 8 ■ Containerized Development

150

Create a file called Dockerfile.dev in the ExampleApp folder and add the command settings shown in
Listing 8-5. This Docker file will be used to create the image for development containers.

Listing 8-5.  The Contents of the Dockerfile.dev File in the ExampleApp Folder

FROM microsoft/aspnetcore-build:1.1.1

COPY node_modules/wait-for-it.sh/bin/wait-for-it /tools/wait-for-it.sh

RUN chmod +x /tools/wait-for-it.sh

ENV DBHOST=dev_mysql WAITHOST=dev_mysql WAITPORT=3306

ENV DOTNET_USE_POLLING_FILE_WATCHER=true

EXPOSE 80/tcp

VOLUME /app

WORKDIR /app

ENTRYPOINT dotnet restore \
 && /tools/wait-for-it.sh $WAITHOST:$WAITPORT --timeout=0 \
 && dotnet watch run --environment=Development

The base image for this Docker file is microsoft/aspnetcore-build:1.1.1, which is provided by
Microsoft and contains the .NET Core SDK rather than just the runtime contained in the images used in
previous chapters. This means the compiler is available, which allows the code to be compiled inside the
container.

The contents of the /app folder will be provided using a Docker volume when the container
is created and will act as a bridge between the code editing done using the IDE and the .NET Core
compiler and runtime inside the container. This is an important difference from the Docker files in
earlier chapters, which copied the project files into the /app directory in the container’s file system with
a COPY command.

■■ Tip  The DotNet Watcher package requires that the DOTNET_USE_POLLING_FILE_WATCHER environment to
be set to true when it is used in a container; otherwise, it won’t be able to detect file changes.

Table 8-3 describes all the commands used in the development Docker file.

Chapter 8 ■ Containerized Development

151

The next step is to create a Docker Compose file that describes the overall environment required by
the application. Create a file called docker-compose-dev.yml in the ExampleApp folder and add the content
shown in Listing 8-6.

Listing 8-6.  The Contents of the docker-compose-dev.yml File in the ExampleApp Folder

version: "3"

volumes:
 productdata:

networks:
 backend:

services:

 mysql:
 image: "mysql:8.0.0"
 volumes:
 - productdata:/var/lib/mysql

Table 8-3.  The Commands in the Development Docker File

Name Description

FROM This command specifies the base image, which includes the .NET Core SDK so that the code
in the project can be compiled inside the container.

COPY This command copies the wait-for-it script into the container’s file system. Previous
examples have copied the file into the /app directory, but /tools is used in this example
because any file copied into /app will not be available once the volume that contains the
project files is mounted when the container is started.

RUN This command executes the Linux chmod command so that the wait-for-it script can be
executed when the container is started.

ENV This command sets environment variables in the container. The DBHOST variable sets the
name of the database for the Entity Framework Core connection string. The WAITHOST and
WAITPORT variables are used by the wait-for-it package to make sure that the database
is ready before the .NET Core runtime is started. The DOTNET_USE_POLLING_FILE_WATCHER
must be set to true when the Dotnet Watcher package is used in a container.

EXPOSE This command exposes a port so the application inside the container can receive network
requests. In this example, port 80 is exposed so that HTTP requests can be received by the
ASP.NET Core Kestrel server.

VOLUME This command is used to specify that a volume will be used to provide the contents of a
specified directory.

WORKDIR This command sets the working directory for the container. In this example, the working
directory is set to /app, which will contain the ASP.NET Core MVC project files.

ENTRYPOINT This command tells Docker what to execute when the container is started. In this example,
the wait-for-it script is used to wait for the MySQL database to be ready to receive
connections, and then the DotNet Watcher package is used to start the .NET project in the
Development environment.

Chapter 8 ■ Containerized Development

152

 networks:
 - backend
 environment:
 - MYSQL_ROOT_PASSWORD=mysecret
 - bind-address=0.0.0.0

 mvc:
 build:
 context: .
 dockerfile: Dockerfile.dev
 volumes:
 - .:/app
 - /app/obj
 - /app/bin
 - ~/.nuget:/root/.nuget
 - /root/.nuget/packages/.tools
 ports:
 - 3000:80
 networks:
 - backend
 environment:
 - DBHOST=mysql
 - WAITHOST=mysql
 depends_on:
 - mysql

The compose file is similar to the one used for production, with some changes to make development
easier. HTTP requests will be received directly by the MVC application through a port mapped to the host
operating system, without the use of a load balancer. You can add another software-defined network and a
container for the load balancer if you want to re-create the environment from earlier chapters, but for most
projects, working directly with the MVC container will be sufficient during development.

The most significant changes in Listing 8-6 are in the volumes section of the mvc service. In earlier
chapters, the application was prepared for deployment using the dotnet publish command and then
copied into the container’s file system using a COPY command in the Docker file. This process isn’t suited to
development, where you want to see the effect of a code change without having to regenerate the Docker
image and create a new container. The first volume entry in the Docker file solves this problem by sharing the
local directory with the container and making its contents available for use in the /app folder, where they will
be compiled and executed using the development tools in the .NET Core SDK.

...
volumes:
 - .:/app
 - /app/obj
 - /app/bin
 - ~/.nuget:/root/.nuget
 - /root/.nuget/packages/.tools
...

This means the container must be started in the ExampleApp folder so that the first volume provides the
development container with the files it requires.

Chapter 8 ■ Containerized Development

153

However, there are platform-specific files added to the bin and obj folders for the NuGet tooling
packages, so the second and third volume entries tell Docker to create new volumes for those directories.
Without these entries, the application would work either on the host or in the container but not both.

The second volume setting shares the .nuget/packages folder that is found in the current user’s home
directory.

...
volumes:
 - .:/app
 - /app/obj
 - /app/bin
 - ~/.nuget:/root/.nuget
 - /root/.nuget/packages/.tools
...

This is the location that is used to store NuGet packages when they are installed using the dotnet
restore command, and sharing this folder with the container means that the container can use the
packages you have installed on the host operating system so that you don’t have to use dotnet restore each
time you create a new development container. The final volumes entry creates a new volume for one of the
folders into which NuGet will put the platform-specific files for the NuGet tools packages.

For quick reference, Table 8-4 describes the development-specific settings in the compose file.

Preparing for a Development Session
Ensure that all the NuGet packages required by the application are available on the host operating system by
running the command shown in Listing 8-7 in the ExampleApp folder.

Listing 8-7.  Updating the NuGet Packages

dotnet restore

Using a Docker volume to share the host operating system’s NuGet packages with the development
container is a useful technique, but you must ensure that they are up-to-date before you start a development
container. The advantage of this approach, however, is that you don’t have to restore the NuGet packages
inside the container.

Once the package update has completed, run the command shown in Listing 8-8 in the ExampleApp
folder to process the development compose file and build the image that will be used to create the container
that will run the .NET Core development tools and the MVC application.

Table 8-4.  The Development-Specific Configuration Settings in the Compose File

Name Description

ports This setting maps port 3000 on the host operating system to port 80 within the MVC container.
This will allow HTTP requests to be sent directly to the MVC container without needing to use
a load balancer.

volumes This setting is used to provide the development container with access to the project files and
allow it to make use of the NuGet packages that have been installed on the host operating
system.

Chapter 8 ■ Containerized Development

154

Listing 8-8.  Processing the Development Compose File

docker-compose -f docker-compose-dev.yml -p dev build

■■ Note  If you are a Windows or macOS user, you must enable drive sharing, as described in Chapter 5, so
that Docker can share the project directory with the container.

The -f argument is used to specify the compose file, without which the production file would be used.
The -p argument is used to override the prefix used for the names of the images, containers, and

networks that will be created using the compose file. I have specified a prefix of dev, which ensures that I can
run the development services without interfering with the production services I created in earlier chapters
(which are prefixed with exampleapp_).

■■ Caution  The commands in the rest of the chapter rely on the dev prefix. If you use a different prefix when
you run the docker-compose build command, then you will need to follow through that change everywhere
you see a Docker component referred to by a name that starts dev_.

Starting a Development Session
To begin development, run the command shown in Listing 8-9 in the ExampleApp folder to scale up the
mvc service.

Listing 8-9.  Creating the Development Service

docker-compose -f docker-compose-dev.yml -p dev up mvc

Docker will process the compose file and follow the depends_on setting to determine that a container
for MySQL is required, along with a software-defined network to connect them and a volume to store the
database files. All four components will be created, and you will see the following output as Docker does its
work and MySQL goes through its first-use initialization process:

...
Creating network "dev_backend" with the default driver
Creating volume "dev_productdata" with default driver
Creating dev_mysql_1
Creating dev_mvc_1
Attaching to dev_mvc_1
mvc_1 | wait-for-it.sh: waiting for mysql:3306 without a timeout
mvc_1 | wait-for-it.sh: mysql:3306 is available after 0 seconds
mvc_1 | watch : Started
mvc_1 | Starting ASP.NET...
mvc_1 | Hosting environment: Development
mvc_1 | Content root path: /app
mvc_1 | Now listening on: http://+:80
mvc_1 | Application started. Press Ctrl+C to shut down.
mvc_1 | Application is shutting down...

http://dx.doi.org/10.1007/978-1-4842-2778-7_5

Chapter 8 ■ Containerized Development

155

mvc_1 | watch : Exited
mvc_1 | watch : File changed: /app/Controllers/HomeController.cs
mvc_1 | watch : Started
mvc_1 | Starting ASP.NET...
mvc_1 | Hosting environment: Development
mvc_1 | Content root path: /app
mvc_1 | Now listening on: http://+:80
mvc_1 | Application started. Press Ctrl+C to shut down.
...

The advantage of specifying the name of a service when using the docker-compose up command is that
the command prompt will only attach to the containers for the specified service. In this case, that means you
will see the messages produced by the MVC container and not the verbose startup from the MySQL container.

Test that the application is running correctly by opening a new browser window and requesting
http://localhost:3000, which corresponds to the port mapping configured for the MVC container in the
compose file.

Once the application is running, use your IDE to open the example project on the host operating
system, just as you have been doing in earlier chapters, and make the change shown in Listing 8-10 to alter
the format of the message passed by the Index action method in the Home controller to its view.

Listing 8-10.  Changing the Message in the HomeController.cs File in the ExampleApp/Controllers Folder

using Microsoft.AspNetCore.Mvc;
using ExampleApp.Models;
using Microsoft.Extensions.Configuration;

namespace ExampleApp.Controllers {
 public class HomeController : Controller {
 private IRepository repository;
 private string message;

 public HomeController(IRepository repo, IConfiguration config) {
 repository = repo;
 message = $"Host ({config["HOSTNAME"]})";
 }

 public IActionResult Index() {
 ViewBag.Message = message;
 return View(repository.Products);
 }
 }
}

The changed file is contained within the host operating system folder that has been shared with the
MVC container and that is used to provide the contents of the /app directory. The DotNet Watcher package
detects the file change and restarts the .NET Core runtime. When the .NET Core runtime starts, it will
also detect the changed file and recompile the project, after which the Program class is executed and ASP.
NET Core is started. Reload the browser and you will see the changed response shown in Figure 8-2. (The
message will be prefixed with Swarm if you are a Linux user and you followed the examples in Chapter 7.)

http://dx.doi.org/10.1007/978-1-4842-2778-7_7

Chapter 8 ■ Containerized Development

156

■■ Tip  If you make a change that generates a compiler error, then the details of the problem will be displayed
in the output from the development container. The DotNet Watcher package is smart enough to wait until the
project compiles without error before starting the ASP.NET Core MVC application again.

When your development session ends, you can type Control+C at the command prompt to stop
the MVC container, leaving the MySQL container running in the background. If you want to stop all the
containers, run the command shown in Listing 8-11 in the ExampleApp folder. The containers are left in place
and can be restarted using the command from Listing 8-9.

Listing 8-11.  Stopping All Containers

docker-compose -f docker-compose-dev.yml -p dev stop

Setting Up Container Debugging
Visual Studio and Visual Studio Code can be configured to debug an application running in the container,
although the process is a little awkward. The awkwardness arises because the debugger has to run inside the
container but must be controlled from outside through the IDE, as shown in Figure 8-3.

Figure 8-2.  Making a change to the example application

Chapter 8 ■ Containerized Development

157

In the sections that follow, I describe the process of setting up the debugger in a container and
configuring both IDEs to use it.

Creating the Debugging Docker File
The debugger isn’t included in the base image used for the development container and must be added in
the Docker file. Create a file called Dockerfile.debug in the ExampleApp folder and add the configuration
settings shown in Listing 8-12.

Listing 8-12.  The Contents of the Dockerfile.debug File in the ExampleApp Folder

FROM microsoft/aspnetcore-build:1.1.1

RUN apt-get update && apt-get install -y unzip

WORKDIR /clrdbg

RUN curl -SL \
 https://raw.githubusercontent.com/Microsoft/MIEngine/getclrdbg-release/scripts/GetClrDbg.sh \
 --output GetClrDbg.sh \
 && chmod 700 GetClrDbg.sh \
 && ./GetClrDbg.sh -v latest -l . \
 && rm GetClrDbg.sh

Figure 8-3.  Debugging in containerized development

Chapter 8 ■ Containerized Development

158

EXPOSE 80/tcp

VOLUME /app

WORKDIR /app

ENTRYPOINT echo "Restoring packages..." && dotnet restore \
 && echo "Building project..." && dotnet build \
 && echo "Ready for debugging." && sleep infinity

The process for installing the debugger involves three steps. First, the apt-get tool is used to install
the unzip tool, which will be used to decompress the debugger installer. Next, the curl command is used to
download an installation script. Finally, the install script is run and downloads and sets up the debugger in
the /clrdbg directory.

■■ Caution  It is important that you create the Docker file exactly as it is shown in the listing; otherwise, the
debugger won’t work. If you encounter problems, then use the Docker file included in the source code download
for this chapter, which is linked from the apress.com page for this book.

Notice that the ENTRYPOINT command doesn’t start the .NET Core runtime or the debugger. The process
for debugging in a container is to use the docker exec command to connect to the container once it is
running, start the debugger, and then use it to start the application. This means the ENTRYPOINT only needs
to prevent the container from stopping, which is done using the sleep infinity command.

Creating the Debugging Service
The next step is to update the development compose file so that it includes a description of the service that
will be used for debugging, as shown in Listing 8-13.

Listing 8-13.  Describing the Debugging Service in the docker-compose-dev.yml File

version: "3"

volumes:
 productdata:

networks:
 backend:

services:

 mysql:
 image: "mysql:8.0.0"
 volumes:
 - productdata:/var/lib/mysql
 networks:
 - backend
 environment:
 - MYSQL_ROOT_PASSWORD=mysecret
 - bind-address=0.0.0.0

Chapter 8 ■ Containerized Development

159

 mvc:
 build:
 context: .
 dockerfile: Dockerfile.dev
 volumes:
 - .:/app
 - /app/obj
 - /app/bin
 - ~/.nuget:/root/.nuget
 - /root/.nuget/packages/.tools
 ports:
 - 3000:80
 networks:
 - backend
 environment:
 - DBHOST=mysql
 - WAITHOST=mysql
 depends_on:
 - mysql

 debug:
 build:
 context: .
 dockerfile: Dockerfile.debug
 volumes:
 - .:/app
 - /app/obj
 - /app/bin
 - ~/.nuget:/root/.nuget
 - /root/.nuget/packages/.tools
 ports:
 - 3000:80
 networks:
 - backend
 environment:
 - DBHOST=mysql
 depends_on:
 - mysql

The debug service is similar to the mvc service but uses the debug Docker file and omits the WAITHOST
environment variable used by the wait-for-it package. Save the changes to the compose file and run
the command shown in Listing 8-14 in the ExampleApp folder to create the images that will be used for the
development services. The RUN commands in the debug Docker file will take a few moments to execute as
the installation script and the debugger are downloaded and processed.

Listing 8-14.  Building the Development Services

docker-compose -f docker-compose-dev.yml -p dev build

Chapter 8 ■ Containerized Development

160

Starting the Debugging Service
The development and debug containers require access to the same files and use the same port mapping,
which means they cannot run at the same time. Run the command shown in Listing 8-15 in the ExampleApp
folder to ensure that the regular development container is not running.

Listing 8-15.  Stopping the Development Container

docker-compose -f docker-compose-dev.yml -p dev stop mvc

Once you are sure that the development container has stopped, run the command shown in Listing 8-16
 in the ExampleApp folder to start the debugging container.

Listing 8-16.  Starting the Debugging Service

docker-compose -f docker-compose-dev.yml -p dev up debug

The container will start and write out the following message, indicating that it is ready for the debugger
to be started:

...
debug_1 | Ready for debugging.
...

To test the configuration of the container, open another command prompt and run the command
shown in Listing 8-17, which tells Docker to start the debugger in the container.

Listing 8-17.  Testing the Debugger

docker exec -i dev_debug_1 /clrdbg/clrdbg --interpreter=mi

The debugger process will start and display the following startup message before waiting for a
command:

...
=message,text="---\n
You may only use the Microsoft .NET Core Debugger (clrdbg) with Visual Studio\nCode, Visual
Studio or Visual Studio for Mac software to help you develop and\ntest your applications.
\n--\n",
send-to="output-window"
(gdb)
...

The configuration of the IDEs in the following sections allows them to execute the docker exec
command to start the debugger and start issuing commands to it, beginning with executing the example
ASP.NET Core MVC application. Type Control+C at the command prompt to stop the debugger, leaving the
container running and ready for use in the sections that follow.

Chapter 8 ■ Containerized Development

161

Debugging with Visual Studio 2017
Visual Studio 2017 includes integrated support for the debugger that is used in containers, but the support
is rudimentary and requires rigid adherence to specific Docker files and compose file names and contents,
which makes it difficult to use. The approach I use is to take advantage of the debugger support without
having to give up control of the Docker configuration.

Create a file called debug_config.xml in the ExampleApp folder, ensuring the contents match those in
Listing 8-18.

Listing 8-18.  The Contents of the debug_config.xml File in the ExampleApp Folder

<?xml version="1.0" encoding="utf-8" ?>
<PipeLaunchOptions
 PipePath="docker"
 PipeArguments="exec -i dev_debug_1 /clrdbg/clrdbg --interpreter=mi"
 TargetArchitecture="x64" MIMode="clrdbg"
 ExePath="dotnet" WorkingDirectory="/app"
 ExeArguments="/app/bin/Debug/netcoreapp1.1/ExampleApp.dll">
</PipeLaunchOptions>

This XML file provides the configuration information that will allow Visual Studio to run the command
that starts the debugger in the container and send commands to it. The configuration is expressed using the
attributes of the PipeLaunchOptions element, which are described in Table 8-5.

Table 8-5.  The Configuration for the Debugger

Name Description

PipePath This is the name of the program that will be run to provide the IDE with a
connection to the debugger. For containerized development, this is Docker.

PipeArguments These are the arguments that are passed to Docker to create the connection to
the debugger.

TargetArchitecture This is the architecture for the platform, which must be set to x64.

MIMode This setting specifies the machine interface mode, which must be set to clrdbg
for containerized development.

ExePath This is the name of the command that will be run to start the application that
will be debugged. For containerized projects, this is dotnet, referring to the .NET
Core runtime.

ExeArguments This is the argument that will be passed to dotnet to start the project and that
should be set to the DLL that is produced by the compilation process.

WorkingDirectory This specifies the working directory for running the application under the
debugger.

Open the Visual Studio command window by selecting Other Windows ➤ Command Window from the
View menu. The command window allows you to run commands directly in Visual Studio and is required to
start the debugger.

Chapter 8 ■ Containerized Development

162

Make sure the debugging container is running using the command in Listing 8-16, then enter the
command shown in Listing 8-19 into the Visual Studio command window, and finally press Return to start
the debugger.

Listing 8-19.  Starting the Debugger

Debug.MIDebugLaunch /Executable:dotnet /OptionsFile:"C:\ExampleApp\debug_config.xml"

When entering the command, set the /OptionsFile argument to the full path to the debug_config.xml
file. For me, this file is in the C:\ExampleApp folder, but you must set this value to reflect the location of the
file on your system.

Testing the Debugger
The debugger will start and load the files that it needs to execute the ASP.NET Core MVC application. Once
the startup process is complete, the standard Visual Studio debugger controls and features are enabled.

To test the debugger, open the HomeController.cs file, right-click the first statement in the Index action
method, and select Breakpoint ➤ Insert Breakpoint from the pop-up menu. Open a browser tab and request
http://localhost:3000 to send an HTTP request to the application through the container’s port mapping.
When the handling of the request reaches the breakpoint, the debugger will halt execution of the application
and pass control to Visual Studio, as shown in Figure 8-4. You can use the menu items in the Debug menu to
control the execution of the application and to inspect the current state.

Select Debug ➤ Continue to resume execution of the application or Debug ➤ Stop Debugging to bring
the debugging session to an end. When you have finished debugging, you can stop the container by typing
Control+C in the command prompt you used to start it or by opening another command prompt, navigating
to the ExampleApp folder, and running the command shown in Listing 8-20.

Figure 8-4.  Debugging an application in a container using Visual Studio

Chapter 8 ■ Containerized Development

163

Listing 8-20.  Stopping the Debugging Container

docker-compose -f docker-compose-dev.yml -p dev stop debug

Debugging with Visual Studio Code
Open the ExampleApp folder using Visual Studio Code and select Debug from the View menu to open the
debugging controls. If you are prompted to add assets to build and debug the project, then click the Yes
button.

Click the settings icon, as shown in Figure 8-5, and select .NET Core from the list of options.

■■ Note  The example in this section requires the C# extension for Visual Studio Code described in Chapter 3.

Visual Studio Code will create a file called launch.json in a new folder called .vscode, and the file will
be opened for editing. Edit the file to make the changes and additions shown in Listing 8-21, which configure
Visual Studio Code so that it can run the debugger in the container.

Listing 8-21.  Configuring Debugging in the launch.json File in the ExampleApp/.vscode Folder

{
 "version": "0.2.0",
 "configurations": [
 {
 "name": ".NET Core Launch (web)",
 "type": "coreclr",
 "request": "launch",
 "preLaunchTask": "build",

Figure 8-5.  Beginning the debugging configuration

http://dx.doi.org/10.1007/978-1-4842-2778-7_3

Chapter 8 ■ Containerized Development

164

 "program": "/app/bin/Debug/netcoreapp1.1/ExampleApp.dll",
 "args": [],
 "cwd": "/app",
 "stopAtEntry": false,
 "internalConsoleOptions": "openOnSessionStart",
 "launchBrowser": {
 "enabled": false,
 "args": "${auto-detect-url}",
 "windows": {
 "command": "cmd.exe",
 "args": "/C start ${auto-detect-url}"
 },
 "osx": {
 "command": "open"
 },
 "linux": {
 "command": "xdg-open"
 }
 },
 "env": {
 "ASPNETCORE_ENVIRONMENT": "Development"
 },
 "sourceFileMap": {
 "/app": "${workspaceRoot}",
 "/Views": "${workspaceRoot}/Views"
 },
 "pipeTransport": {
 "pipeProgram": "/bin/bash",
 "pipeCwd": "${workspaceRoot}",
 "pipeArgs": ["-c",
 "docker exec -i dev_debug_1 /clrdbg/clrdbg --interpreter=mi"],
 "windows": {
 "pipeProgram":
 "${env.windir}\\System32\\WindowsPowerShell\\v1.0\\powershell.exe",
 "pipeCwd": "${workspaceRoot}",
 "pipeArgs":
 ["docker exec -i dev_debug_1 /clrdbg/clrdbg --interpreter=mi"]
 }
 }
 },
 {
 "name": ".NET Core Attach",
 "type": "coreclr",
 "request": "attach",
 "processId": "${command.pickProcess}"
 }
]
}

Chapter 8 ■ Containerized Development

165

■■ Caution  It is important that you edit the launch.json file so that it precisely matches the listing. If you
have problems running the debugger, then try using the project for this chapter that is included with the source
code download, which is linked from the apress.com page for this book.

Table 8-6 lists the configuration settings that have been changed or added in the launch.json file and
explains what they do.

Save the changes to the launch.json file and make sure that the debugging container is running using
the command in Listing 8-16. Ensure that .NET Core Launch (web) is selected in the Visual Studio Code
Debug drop-down list, and click the green start arrow at the top of the Debug window, as shown in
Figure 8-6. If you are prompted to select a task runner, then choose .NET Core from the list and then click the
green start arrow to start debugging.

Table 8-6.  The Debugging Configuration Settings for Visual Studio Code

Name Description

program This setting specifies the path to the DLL that the debugger will use to start
the project. The value shown is the default.

cwd This setting specifies the directory that contains the project files in the container.

launchBrowser:enabled This setting disables the feature that opens a new browser window
automatically when debugging is started.

pipeTransport This setting denotes the category for configuring the debugger so that it can
work with the container.

pipeProgram This setting specifies the shell that will be used to run Docker.

pipeArgs This setting specifies the Docker command that will connect to the container
and start the debugger.

windows This section contains the configuration settings for Windows. The individual
settings have the same meaning as in the main section, but the values will be
used when the debugger is started on Windows machines.

Figure 8-6.  Starting the Visual Studio Code debugger

Chapter 8 ■ Containerized Development

166

Testing the Debugger
The debugger will start and load the files that it needs to execute the ASP.NET Core MVC application.
Once the startup process is complete, the standard Visual Studio Code debugger controls and features are
enabled, just as though you were running the normal built-in debugger.

Select Explorer from the View menu to return to the list of files in the project, open the HomeController.cs
file in the Controllers folder, and click at the left edge of the window next to either of the lines of code in the
Index method to create a breakpoint, as illustrated by Figure 8-7.

Open a new browser window and request the http://localhost:3000 URL, which will target the
MVC application running in the debugging container. When the request handling reaches the breakpoint,
the debugger will halt execution of the application and pass control to Visual Studio Code. At this point,
you can use the normal Visual Studio Code debugging controls to step through the application or inspect
the current state.

Click the green button in the debugging control palette, as shown in Figure 8-8, to resume execution of
the application.

When you have finished debugging, you can stop the container by typing Control+C in the command
prompt you used to start it or by opening another command prompt, navigating to the ExampleApp folder,
and running the command shown in Listing 8-22.

Listing 8-22.  Stopping the Debugging Container

docker-compose -f docker-compose-dev.yml -p dev stop debug

Figure 8-7.  Creating a breakpoint

Figure 8-8.  Resuming application execution

Chapter 8 ■ Containerized Development

167

Summary
In this chapter, I explained how the Docker features described in earlier chapters can be used to create a
containerized development environment, which ensures that all the developers on a project are able to
work consistently while still able to use their preferred IDE configuration. I showed you how to set up the
development container so that it automatically compiles and runs the application when there is a code
change and how to debug a containerized application.

And that is all I have to teach you about the essentials of using Docker for ASP.NET Core MVC
applications. I started by creating a simple Docker image and then took you on a tour of the different Docker
features including containers, volumes, software defined-networks, composition, swarms, and, finally,
containerized development.

I wish you every success in your Docker/ASP.NET Core MVC projects, and I can only hope that you have
enjoyed reading this book as much as I enjoyed writing it.

169© Adam Freeman 2017
A. Freeman, Essential Docker for ASP.NET Core MVC, DOI 10.1007/978-1-4842-2778-7

�       � A, B, C
Compose, 12, 97

compose file
building, 101, 112
creating, 100
starting, 113
YAML, 100

installing on Linux, 99
scaling applications, 114
starting the application, 103
stopping the application, 116
waiting for services, 107

Consistency problem, 2
Containerized development. See Development
Containers, 9, 46

compared to virtual machines, 4
creating, 46
creating images, 57
executing commands, 55
limitations, 5
listing, 47
logging, 50
modifying, 51
output, 50
scaling up an application, 87
starting, 47
stopping, 49
Windows, 61, 63

Docker file, 62
enabling, 61
executing commands, 65
images, 63

�       � D
Database, 75

adding to example application, 75
creating the container, 76
migration, 81
repository, 78

Debugging. See Development

Development, 145
compose file, 150
debugging, 156

Docker file, 157
Visual Studio, 161
Visual Studio Code, 163

NuGet packages, 152
starting a session, 154
tools, 17

creating the example project, 31
Git, 22
installing Docker, 23
.NET Core, 18
Node.js, 20
required packages, 17
testing the development

environment, 30
Visual Studio, 28
Visual Studio Code, 29

watching for file changes, 148
Docker

compose (see Compose)
files, 43

base images, 43
copying files, 44
network ports, 44
running the application, 44
working directories, 44

Hub, 59
installation, 23
volumes, 10
swarms (see Swarms)

Dockerfilecommands, 8

�       � E, F, G, H
Example application

configuration, 36
controller, 35
creating, 31
data model, 33

view, 35

Index

■ INDEX

170

�       � I, J, K
Images, 7, 41

building images, 45
creating custom images, 43
creating from containers, 57
deleting images, 42
downloading images, 41
listing images, 41
publishing, 58

authentication, 59
pushing images, 59

tagging, 58
Installing Docker, 23

�       � L
Load balancing, 91

�       � M
MySQL, 75

creating container, 76

�       � N, O, P
Networks, 12, 85

bridge network, 83
connecting containers

to networks, 91
creating custom

networks, 88
DNS feature, 90
inspecting, 86
listing, 85
load balancing, 91

�       � Q
Quick Reference

building an image, 7
compose file, 12

commands, 14
creating containers, 9

arguments, 10
Dockerfile commands, 8
images, 7

commands, 8
publishing project, 7

network commands, 12

swarms, 14
commands, 16
keywords, 15

useful Docker images, 8
volumes, 10

commands, 11

�       � R
Responsiveness problem, 4

�       � S, T
Scaling containers, 87
Software-defined networks. See Networks
Swarms, 14, 119

constraints, 127
deployment, 123

compose file, 135
stack command, 136

draining nodes, 139
global services, 142
labeling nodes, 123
listing containers, 131
listing nodes, 123
networks, 124
node types, 121
preparation, 121

adding workers, 122
initializing the manager, 122

scaling, 138
service status, 131
stopping services, 142
updates, 140

�       � U
Useful Docker images, 8

�       � V, W, X
Virtual machines, containers and, 4
Visual Studio 2017, 28
Visual Studio Code, 29
Volumes, 10, 71–72

creating, 73
using with container, 73

�       � Y, Z
YAML files, 100

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Chapter 1: Understanding Docker
	What Do You Need to Know?
	What Is the Structure of This Book?

	Is This an Exhaustive Docker Reference?
	Are There Lots of Examples?
	Which Operating Systems Are Supported?
	Why Should You Care About Docker?
	What Is the Consistency Problem?
	How Does Docker Solve the Consistency Problem?

	What Is the Responsiveness Problem?
	How Does Docker Solve the Responsiveness Problem?

	Aren’t Docker Containers Just Virtual Machines?
	Do Docker Containers Have Limitations?
	Do You Have to Use Docker to Use Containers?
	How Do You Set Up Your Development Environment?
	Contacting the Author
	Summary

	Chapter 2: Essential Docker Quick Reference
	Docker Images Quick Reference
	Docker Containers Quick Reference
	Docker Volumes Quick Reference
	Docker Software-Defined Networks Quick Reference
	Docker Compose Quick Reference
	Docker Swarm Quick Reference
	Summary

	Chapter 3: Getting Ready
	Installing the Required Software Packages
	Installing the .NET Core Software Development Kit
	Installing the .NET Core SDK on Windows
	Installing .NET Core SDK on Linux
	Installing .NET Core on macOS

	Installing Node.js
	Installing Node.js on Windows
	Installing Node.js on Linux
	Installing Node.js on macOS

	Installing the NPM Package
	Installing Git
	Installing Git on Windows or macOS
	Installing Git on Linux

	Installing Docker
	Installing Docker for Windows
	Installing Docker for Linux
	Installing Docker on macOS

	Installing an IDE
	Installing Visual Studio 2017
	Adding a YAML Extension to Visual Studio

	Installing Visual Studio Code
	Installing Visual Studio Code for Windows and Linux
	Installing Visual Studio Code for macOS

	Adding Extensions to Visual Studio Code

	Testing the Development Environment
	Creating the Example MVC Application
	Creating the Project
	Opening the Project Using Visual Studio
	Opening the Project Using Visual Studio Code

	Configuring the Client-Side Packages
	Creating the Data Model and Repository
	Preparing the Controller and View
	Configuring ASP.NET and Creating the Entry Point
	Running the MVC Application

	Summary

	Chapter 4: Docker Images and Containers
	Preparing for This Chapter
	Working with Images
	Downloading Images
	Deleting Images
	Creating a Docker File for a Custom Image
	Setting the Base Image
	Copying the Application Files
	Setting the Working Directory
	Exposing the HTTP Port
	Running the Application

	Preparing the Application for the Image
	Creating a Custom Image

	Working with Containers
	Creating Containers
	Creating Additional Containers from an Image

	Listing Containers
	Starting Containers
	Stopping Containers
	Getting Container Output
	Creating and Starting Containers with a Single Command

	Modifying Containers
	Changing a Container
	Examining Changes to a Container
	Executing Commands in Containers
	Creating Images from Modified Containers

	Publishing Images
	Tagging the Images for Publication
	Authenticating with the Hub
	Publishing the Images

	Creating Windows Containers
	Switching to Windows Containers
	Creating a .NET Core Windows Image
	Creating the Image and the Container
	Testing the Windows Container

	Executing Commands in Windows Containers
	Interacting with Windows Containers

	Summary

	Chapter 5: Docker Volumes and Networks
	Preparing for This Chapter
	Working with Volumes
	Demonstrating the Problem
	Managing Data with a Docker Volume
	Step 1: Updating the Docker File
	Step 2: Creating the Volume
	Step 3: Creating the Container

	Determining Whether an Image Uses Volumes

	Adding a Database to the Example Application
	Pulling and Inspecting the Database Image
	Creating the Volume and Container
	Preparing the Example Application
	Creating the Repository Class
	Configuring the Application
	Creating the Database Migration
	Changing the View
	Creating the MVC Application Image
	Testing the Application

	Working with Software-Defined Networks
	Scaling the MVC Application
	Creating Custom Software-Defined Networks
	Creating Custom Networks
	Connecting Containers to Custom Networks
	Understanding the Docker DNS Service
	Creating the MVC Containers
	Adding a Load Balancer

	Summary

	Chapter 6: Docker Compose
	Preparing for This Chapter
	Changing the View Message
	Installing Docker Compose on Linux

	Creating the Compose File
	Composing the Database
	Testing the Application Setup and Teardown

	Database Preparation and MVC Composition
	Modifying the MVC Application
	Describing the Database Initialization and MVC Services

	Composing the Load Balancer
	Running the Application
	Processing the Compose File
	Preparing the Database
	Starting the MVC Application

	Scaling the MVC Service
	Stopping the Application
	Summary

	Chapter 7: Docker Swarms
	Preparing for This Chapter
	Preparing the Swarm
	Creating the Swarm
	Labeling Swarm Nodes

	Manually Deploying Services on a Swarm
	Creating the Software-Defined Networks
	Creating the Database Service
	Preparing the Database

	Creating the MVC Application Service
	Testing the MVC Application Service

	Creating the Load Balancer
	Removing the Service from the Swarm

	Deploying to a Swarm Using a Compose File
	Performing the Deployment
	Preparing the Database
	Creating the Deployment Load Balancer

	Managing the Swarm
	Scaling Services
	Taking Nodes Out of Service
	Updating a Service
	Shutting Down Services

	Creating Global Services
	Summary

	Chapter 8: Containerized Development
	Preparing for This Chapter
	Using Development Mode to Prepare the Database

	Understanding Containerized ASP.NET Core Development
	Setting Up Containerized Development
	Adding the DotNet Watcher Package
	Creating the Development Image and Compose File
	Preparing for a Development Session
	Starting a Development Session

	Setting Up Container Debugging
	Creating the Debugging Docker File
	Creating the Debugging Service
	Starting the Debugging Service
	Debugging with Visual Studio 2017
	Testing the Debugger

	Debugging with Visual Studio Code
	Testing the Debugger

	Summary

	Index

