
Practical Docker
with Python

Build, Release and Distribute your
Python App with Docker
—
Sathyajith Bhat

Practical Docker with
Python

Build, Release and Distribute
your Python App with Docker

Sathyajith Bhat

Practical Docker with Python

ISBN-13 (pbk): 978-1-4842-3783-0		 ISBN-13 (electronic): 978-1-4842-3784-7
https://doi.org/10.1007/978-1-4842-3784-7

Library of Congress Control Number: 2018952361

Copyright © 2018 by Sathyajith Bhat

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Nikhil Karkal
Development Editor: Matthew Moodie
Coordinating Editor: Divya Modi

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book's product page, located at www.apress.com/978-1-4842-3783-0.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Sathyajith Bhat
Bangalore, Karnataka, India

https://doi.org/10.1007/978-1-4842-3784-7

To my parents, Jayakar and Jyothika Bhat,
who have unconditionally supported me

throughout my entire life.

v

About the Author��ix

About the Technical Reviewer��xi

Acknowledgments��xiii

Introduction ��xv

Table of Contents

Chapter 1: �Introduction to Containerization���1

What Is Docker?���1

Docker the Company��1

Docker the Software Technology��2

Understanding Problems that Docker Solves���2

Containerization Through the Years���4

1979�: chroot���4

2000�: FreeBSD Jails���4

2005�: OpenVZ���4

2006�: cgroups���5

2008�: LXC���5

Knowing the Difference Between Containers and Virtual Machines����������������������5

Summary���8

Chapter 2: �Docker 101���9

Installing Docker��9

Installing Docker on Windows��10

Installing on MacOS��12

vi

Installing on Linux��13

Understanding Jargon Around Docker��16

Hands-On Docker���24

Summary��38

Chapter 3: �Building the Python App��39

About the Project���39

Setting Up Telegram Messenger���40

BotFather: Telegram’s Bot Creation Interface���42

Newsbot: The Python App���46

Summary��51

Chapter 4: �Understanding the Dockerfile��53

Dockerfile���53

Build Context��54

Dockerignore��55

Building Using Docker Build���56

Dockerfile Instructions���59

Guidelines and Recommendations for Writing Dockerfiles����������������������������79

Multi-Stage Builds��80

Dockerfile Exercises���81

Summary��89

Chapter 5: �Understanding Docker Volumes���91

Data Persistence��91

Example of Data Loss Within Docker Container���92

Docker Volume Exercises���107

Summary��118

Table of ContentsTable of Contents

vii

Chapter 6: �Understanding Docker Networks�������������������������������������119

Why Do We Need Container Networking?��119

Default Docker Network Drivers���120

Working with Docker Networks��123

Docker Networking Exercises��142

Summary���150

Chapter 7: �Understanding Docker Compose��������������������������������������151

Overview of Docker Compose��151

Installing Docker Compose���153

Docker Compose Basics���154

Docker Compose File Reference��159

Docker Compose CLI Reference���166

Docker Volume Exercises���167

Summary��182

�Index��183

Table of ContentsTable of Contents

ix

About the Author

Sathyajith Bhat is a seasoned DevOps/SRE

professional currently working as a DevOps

engineer on Adobe I/O, which is Adobe’s

developer ecosystem and community. Prior

to this, he was the lead Ops/SRE at Styletag.

com. He transitioned to Ops/SRE after being

a lead analyst at CGI, working primarily on

Oracle Fusion stack (Oracle DB/PL/SQL/

Oracle Forms and other related middleware)

designing, architecting, and implementing complete end-to-end solutions

for a major insurance provider in the Nordics.

In his free time, Sathya is part of the Barcamp Bangalore planning team,

handling DevOps and Social Media for BCB. Sathya is also a co-organizer

of the AWS Users Group Bangalore, organizing monthly meetups and

workshops and occasionally speaking at them. He is also a volunteer

Community Moderator at Super User and Web Apps Stack Exchange,

keeps the servers for the Indian Video Gamer forums up and running, and

was previously a moderator for Chip-India and Tech 2 forums.

You can reach out to Sathya from these links:

Email: sathya@sathyasays.com

Blog: https://sathyasays.com

Twitter: https://twitter.com/sathyabhat

LinkedIn: https://linkedin.com/in/sathyabhat

https://sathyasays.com/
https://twitter.com/sathyabhat
https://linkedin.com/in/sathyabhat

xi

About the Technical Reviewer

Swapnil Kulkarni is a cloud architect and

open source enthusiast with experience in

Blockchain, cloud native solutions, containers,

and enterprise software product architectures.

He has diverse experiences in different private,

hybrid cloud architectures with Amazon Web

Services, Azure, OpenStack, CloudStack, and

IBM Cloud, to name a few. He is an Active

Technology Contributor (ATC) in OpenStack,

spanning across multiple projects. He’s also

core reviewer in the OpenStack Kolla and

OpenStack Requirements Project. He has contributed to different open

source communities, including OpenStack, Docker, and Kubernetes,

and has multiple upcoming open source platforms for containerization.

Swapnil has also presented at multiple OpenStack summits—LinuxCon

and ContainerCon to name a few. Swapnil shares his tech views and

experiments on his blog mentioned here. He is also a technical reviewer

for multiple publication houses in emerging technologies and has a

passion for learning and implementing different concepts. You can reach

out to him via email or connect with him on his social media handles.

Email: toswapnilkulkarni@gmail.com

Blog: https://cloudnativetech.wordpress.com

Twitter: https://twitter.com/coolsvap

LinkedIn: https://www.linkedin.com/in/coolsvap

https://cloudnativetech.wordpress.com
https://twitter.com/coolsvap
https://www.linkedin.com/in/coolsvap

xiii

Acknowledgments

Thank you to my wife, Jyothsna, for being patient and supporting me in my

career and while writing this book.

I would like to thank Nikhil Karkal, Siddhi Chavan, and Divya Modi

from Apress for helping me immensely through all stages of the book.

I would like to thank my technical reviewer, Swapnil Kulkarni, for

providing pertinent feedback.

I would also like to acknowledge the immense support provided by

Saurabh Minni, Ninad Pundalik, Prashanth H. N., Mrityunjay Iyer, and

Abhijith Gopal over the past couple of years.

xv

Introduction

Docker has exploded in popularity and has become the de facto target as a

containerization image format as well as a containerization runtime. With

modern applications getting more and more complicated, the increased

focus on microservices has led to adoption of Docker, as it allows for

applications along with their dependencies to be packaged into a file as

a container that can run on any system. This allows for faster turnaround

times in application deployment and less complexity and it negates the

chances of the “it-works-on-my-server-but-not-on-yours” problem.

Practical Docker with Python covers the fundamentals of

containerization, gets you acquainted with Docker, breaks down

terminology like Dockerfile and Docker Volumes, and takes you on

a guided tour of building a chatbot using Python. You’ll learn how to

package a traditional application as a Docker Image.

�Book Structure
This book is divided into seven chapters—we start the first chapter with

a brief introduction to Docker and containerization. We then take a 101

class of Docker, including installing, configuring, and understanding some

Docker jargon. In Chapter 3, we take a look at our project and look at how

to configure our chatbot.

In Chapters 4 to 6, we dive into the meat of Docker, focusing on

Dockerfiles, Docker Networks, and Docker Volumes. These chapters

include practical exercises on how to incorporate each of these into the

project. Finally, we take a look at Docker Compose and see how we can

run multi-container applications.

1© Sathyajith Bhat 2018
S. Bhat, Practical Docker with Python, https://doi.org/10.1007/978-1-4842-3784-7_1

CHAPTER 1

Introduction to
Containerization
In this chapter, we look at what Docker is, as well as what containerization

is and how it is different from virtualization.

�What Is Docker?
When we answer this question, we need to clarify the word “docker,”

because Docker has become synonymous with containers.

�Docker the Company
Docker Inc. is the company behind Docker. Docker Inc. was founded

as dotCloud Inc. in 2010 by Solomon Hykes. dotCloud engineers built

abstraction and tooling for Linux Containers and used the Linux Kernel

features cgroups and namespaces with the intention of reducing

complexity around using Linux containers. dotCloud made their tooling

open source and changed the focus from the PaaS business to focus on

containerization. Docker Inc. sold dotCloud to cloudControl, which

eventually filed for bankruptcy.

2

�Docker the Software Technology
Docker is the technology that provides for operating system level

virtualization known as containers. It is important to note that this is

not the same as hardware virtualization. We will explore this later in the

chapter. Docker uses the resource isolation features of the Linux kernel

such as cgroups, kernel namespaces, and OverlayFS, all within the same

physical or virtual machine. OverlayFS is a union-capable filesystem that

combines several files and directories into one in order to run multiple

applications that are isolated and contained from one other, all within the

same physical or virtual machine.

�Understanding Problems that Docker Solves
For the longest period, setting up a developer’s workstation was a highly

troublesome task for sysadmins. Even with complete automation of the

installation of developer tools, when you have a mix of different operating

systems, different versions of operating systems, and different versions

of libraries and programming languages, setting up a workspace that is

consistent and provides a uniform experience is nearly impossible. Docker

solves much of this problem by reducing the moving parts. Instead of

targeting operating systems and programming versions, the target is now

the Docker engine and the runtime. The Docker engine provides a uniform

abstraction from the underlying system, making it very easy for developers

to test their code

Things get even more complicated on the production landscape.

Assume that we have a Python web application that is running on

Python 2.7 on Amazon Web Services EC2 instance. In an effort to

modernize the codebase, the application had some major upgrades,

including a change in Python version from 2.7 to version 3.5. Assume that

this version of Python is not available in the packages offered by the Linux

Chapter 1 Introduction to Containerization

3

distribution currently running the existing codebases. Now to deploy this

new application, we have the choice of either of the following:

•	 Replace the existing instance

•	 Set up the Python Interpreter by

•	 Changing the Linux distribution version to one that

includes the newer Python packages

•	 Adding a third-party channel that offers a packaged

version of the newer Python version

•	 Doing an in-place upgrade, keeping the existing

version of the Linux distribution

•	 Compiling Python 3.5 from sources, which brings

in additional dependencies

•	 Or using something like virtualenv, which has its

own set of tradeoffs

Whichever way you look at it, a new version deployment for

application code brings about lots of uncertainty. As an operations

engineer, limiting the changes to the configuration is critical. Factoring

in an operating system change, a Python version change, and a change in

application code results in a lot of uncertainty.

Docker solves this issue by dramatically reducing the surface area of

the uncertainty. Your application is being modernized? No problem. Build

a new container with the new application code and dependencies and

ship it. The existing infrastructure remains the same. If the application

doesn’t behave as expected, then rolling back is as simple as redeploying

the older container—it is not uncommon to have all the generated Docker

images stored in a Docker registry. Having an easy way to roll back without

messing with the current infrastructure dramatically reduces the time

required to respond to failures.

Chapter 1 Introduction to Containerization

4

�Containerization Through the Years
While containerization has picked up in pace and has exploded in

popularity over the past couple of years, the concept of containerization

goes back to the 1970s.

�1979: chroot
The chroot system call was introduced in Version 7 UNIX in 1979. The

premise of chroot was that it changed the apparent root directory for

the current running process and its children. A process initiated within

a chroot cannot access files outside the assigned directory tree. This

environment was known as the chroot jail.

�2000: FreeBSD Jails
Expanding on the chroot concept, FreeBSD added support for a

feature that allowed for partitioning of the FreeBSD system into several

independent, isolated systems called jails. Each jail is a virtual environment

on the host system with its own set of files, processes, and user accounts.

While chroot only restricted processes to a view of the filesystem, FreeBSD

jails restricted activities of the jailed process to the whole system, including

the IP addresses that were bound to it. This made FreeBSD jails the ideal

way to test out new configurations of Internet-connected software, making

it easy to experiment with different configurations while not allowing for

changes from the jail to affect the main system outside.

�2005: OpenVZ
OpenVZ was quite popular in providing operating system virtualization

for low-end Virtual Private Server (VPS) providers. OpenVZ allowed for a

physical server to run multiple isolated operating system instances, known

Chapter 1 Introduction to Containerization

5

as containers. OpenVZ uses a patched Linux kernel, sharing it with all the

containers. Each container acts as a separate entity and has its own virtualized

set of files, users, groups, process trees, and virtual network devices.

�2006: cgroups
Originally known as process containers, cgroups (short for control groups)

was started by Google engineers. cgroups is a Linux kernel feature that

limits and isolates resource usage (such as CPU, memory, disk I/O, and

network) to a collection of processes. cgroups have been redesigned

multiple times, each redesign accounting for its growing number of use

cases and required features.

�2008: LXC
LXC provides operating-system level virtualization by combining Linux

kernel’s cgroups and support for isolated namespaces to provide an

isolated environment for applications. Docker initially used LXC for

providing the isolation features, but then switched to its own library.

�Knowing the Difference Between Containers
and Virtual Machines
Many people assume that since containers isolate the applications, they

are the same as virtual machines. At first glance it looks like it, but the

fundamental difference is that containers share the same kernel as the host.

Docker only isolates a single process (or a group of processes,

depending on how the image is built) and all the containers run on the

same host system. Since the isolation is applied at the kernel level, running

containers does not impose a heavy overhead on the host as compared

to virtual machines. When a container is spun up, the selected process

Chapter 1 Introduction to Containerization

6

or group of processes still runs on the same host, without the need to

virtualize or emulate anything. Figure 1-1 shows the three apps running on

three different containers on a single physical host.

In contrast, when a virtual machine is spun up, the hypervisor

virtualizes an entire system—from the CPU to RAM to storage. To support

this virtualized system, an entire operating system needs to be installed.

For all practical purposes, the virtualized system is an entire computer

running in a computer. Now if you can imagine how much overhead it

takes to run a single operating system, imagine how it’d be if you ran a

nested operating system! Figure 1-2 shows a representation of the three

apps running on three different virtual machines on a single physical host.

Figure 1-1.  Representation of three apps running on three different
containers

Chapter 1 Introduction to Containerization

7

Figures 1-1 and 1-2 give an indication of three different applications

running on a single host. In the case of a VM, not only do we need the

application’s dependent libraries, we also need an operating system to run

the application. In comparison, with containers, the sharing of the host OS’s

kernel with the application means that the overhead of an additional OS is

removed. Not only does this greatly improve the performance, it also lets us

improve the resource utilization and minimize wasted compute power.

Figure 1-2.  Representation of three apps running on three different
virtual machines

Chapter 1 Introduction to Containerization

8

�Summary
In this chapter, you learned a bit about Docker the company, Docker

Containers, and containers compared to virtual machines. You also

learned a bit about the real-world problems that containers are trying

to solve. In the upcoming chapter, you take an introductory tour of

Docker and run a couple of hands-on sessions on building and running

containers.

Chapter 1 Introduction to Containerization

9© Sathyajith Bhat 2018
S. Bhat, Practical Docker with Python, https://doi.org/10.1007/978-1-4842-3784-7_2

CHAPTER 2

Docker 101
Now that you understand what Docker is and why its popularity has

exploded, this chapter covers some basics about the different terminology

associated with Docker. In this chapter, you will learn how to install Docker

and learn Docker terms such as images, containers, Dockerfiles, and

Docker Compose. You will also work with some simple Docker commands

for creating, running, and stopping Docker containers.

�Installing Docker
Docker supports Linux, MacOS, and Windows platforms. It’s

straightforward to install Docker on most platforms and we’ll get to that

in a bit. Docker Inc. provides Community and Enterprise editions of

the Docker platform. The Enterprise edition has the same features as

the Community edition, but it provides additional support and certified

containers, plugins, and infrastructure. For the purpose of this book and

for most general development and production use, the Community edition

is suitable, thus we will be using that in this book.

10

�Installing Docker on Windows
You need to meet certain prerequisites before you can install Docker on

Windows. These include the following:

•	 Hyper-V support

•	 Hardware virtualization support, typically be enabled

from your system BIOS

•	 Only 64-bit editions of Windows 10 (Pro/Education/

Enterprise editions having the Anniversary Update

v1607) are supported at the moment

Notice that this looks like what a virtualization setup would require,

and you learned in the previous chapter that Docker is not virtualization.

So why does Docker for Windows require features required for

virtualization?

The short answer is that Docker relies on numerous features, such as

namespaces and cgroups, and these are not available on Windows. To get

around this limitation, Docker for Windows creates a lightweight Hyper-V

container running a Linux kernel.

At the time of writing, Docker includes experimental support for Native

containers that allow for creation of containers without the need for Hyper-V.

Let’s focus on installing Docker CE for Windows. This section assumes

that all prerequisites have been met and that Hyper-V is enabled. Head

over to https://store.docker.com/editions/community/docker-ce-

desktop-windows to download Docker CE.

Note  Make sure you select the Stable channel and click on the Get
Docker CE button.

You may be prompted to enable Hyper-V and container support as part

of the install, as shown in Figure 2-1.

Chapter 2 Docker 101

https://store.docker.com/editions/community/docker-ce-desktop-windows
https://store.docker.com/editions/community/docker-ce-desktop-windows

11

Click OK and finish the installation. You may be required to restart

your system, as enabling Hyper-V is a Windows system feature. If it’s not

installed, this feature will be installed and that requires a restart to enable

the feature.

Once the install is complete, open a command prompt window (or

PowerShell, if that is your preference) and type the command shown in

Listing 2-1 to check that Docker is installed and is working correctly.

Listing 2-1.  Check That Docker Is Working

docker run --rm hello-world

If the install went fine, you should see the response shown in Listing 2-2.

Listing 2-2.  Response from the Docker Run Command

docker run --rm hello-world

Unable to find image 'hello-world:latest' locally

latest: Pulling from library/hello-world

ca4f61b1923c: Pull complete

Digest: sha256:66ef312bbac49c39a89aa9bcc3cb4f3c9e7de3788c944158

df3ee0176d32b751

Status: Downloaded newer image for hello-world:latest

Figure 2-1.  Enable Hyper-V and the Containers feature

Chapter 2 Docker 101

12

Hello from Docker!

This message shows that your installation appears to be working

correctly.

...

We will take a deeper look later into what the commands mean, so do

not worry about understanding them. If we see the message "Installation

appears to be working correctly", you should be good for now.

�Installing on MacOS
Installing Docker for Mac is much like installing any other application.

Go to https://store.docker.com/editions/community/docker-ce-

desktop-mac, click the Get Docker for CE Mac (stable) link, and double-

click the file to run the installer that is downloaded. Drag the Docker whale

to the Applications folder to install it, as shown in Figure 2-2.

Once Docker is installed, open the Terminal app and run the

command listed in Listing 2-3 to confirm the install was successful.

Figure 2-2.  Installing Docker for Mac

Chapter 2 Docker 101

https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac

13

Listing 2-3.  Check That Docker for Mac Is Working

docker run --rm hello-world

If the install went fine, you should see the response shown in Listing 2-4.

Listing 2-4.  Response from the Docker Run Command

docker run --rm hello-world

Unable to find image 'hello-world:latest' locally

latest: Pulling from library/hello-world

ca4f61b1923c: Pull complete

Digest: sha256:66ef312bbac49c39a89aa9bcc3cb4f3c9e7de3788c944158

df3ee0176d32b751

Status: Downloaded newer image for hello-world:latest

Hello from Docker!

This message shows that your installation appears to be working

correctly.

...

The "Hello from Docker!" message indicates that Docker is installed

and is working correctly.

�Installing on Linux
To install Docker on Linux, visit https://www.docker.com/community-

edition. Select the distro you’re using and follow the commands to install

Docker.

The following section outlines the steps needed to install Docker on

Ubuntu.

	 1.	 Update the apt index:

sudo apt-get update

Chapter 2 Docker 101

https://www.docker.com/community-edition
https://www.docker.com/community-edition

14

	 2.	 Install the necessary packages required to use a

repository over HTTPS:

sudo apt-get install \

 apt-transport-https \

 ca-certificates \

 curl \

 software-properties-common

	 3.	 Install Docker’s official GPG key:

curl -fsSL https://download.docker.com/linux/ubuntu/gpg

| sudo apt-key add -

	 4.	 Add Docker’s stable repository:

sudo add-apt-repository \

 �"deb [arch=amd64] https://download.docker.com/linux/

ubuntu \

 $(lsb_release -cs) \

 stable"

	 5.	 Update the apt package index:

sudo apt-get update

	 6.	 Install Docker:

sudo apt-get install docker-ce

�Additional Steps

Docker communicates via a UNIX socket that is owned by the root user. We

can avoid having to type sudo by following these steps:

Warning T he Docker group rights are still equivalent to the root user.

Chapter 2 Docker 101

15

	 1.	 Create the docker group:

sudo groupadd docker

	 2.	 Add your user to the docker group:

sudo usermod -aG docker $USER

	 3.	 Log out and log back in. Run the command shown

in Listing 2-5 to confirm the Docker has been

installed correctly.

Listing 2-5.  Check That Docker for Linux Is Working

docker run --rm hello-world

If the install went fine, you should see the response shown in Listing 2-6.

Listing 2-6.  Response from the Docker Run Command

docker run --rm hello-world

Unable to find image 'hello-world:latest' locally

latest: Pulling from library/hello-world

ca4f61b1923c: Pull complete

Digest: sha256:66ef312bbac49c39a89aa9bcc3cb4f3c9e7de3788c944158

df3ee0176d32b751

Status: Downloaded newer image for hello-world:latest

Hello from Docker!

This message shows that your installation appears to be working

correctly.

...

Chapter 2 Docker 101

16

�Understanding Jargon Around Docker
Now that we have Docker installed and running, let’s understand the

different terminologies that are associated with Docker.

�Layers

A layer is a modification applied to a Docker image as represented by an

instruction in a Dockerfile. Typically, a layer is created when a base image

is changed—for example, consider a Dockerfile that looks like this:

FROM ubuntu

Run mkdir /tmp/logs

RUN apt-get install vim

RUN apt-get install htop

Now in this case, Docker will consider Ubuntu image as the base image

and add three layers:

•	 One layer for creating /tmp/logs

•	 One other layer that installs vim

•	 A third layer that installs htop

When Docker builds the image, each layer is stacked on the next and

merged into a single layer using the union filesystem. Layers are uniquely

identified using sha256 hashes. This makes it easy to reuse and cache

them. When Docker scans a base image, it scans for the IDs of all the layers

that constitute the image and begins to download the layers. If a layer

exists in the local cache, it skips downloading the cached image.

Chapter 2 Docker 101

17

�Docker Image

Docker image is a read-only template that forms the foundation of your

application. It is very much similar to, say, a shell script that prepares a

system with the desired state. In simpler terms, it’s the equivalent of a

cooking recipe that has step-by-step instructions for making the final dish.

A Docker image starts with a base image—typically the one selected is

that of an operating system are most familiar with, such as Ubuntu. On top

of this image, we can add build our application stack adding the packages

as and when required.

There are many pre-built images for some of the most common

application stacks, such as Ruby on Rails, Django, PHP-FPM with nginx,

and so on. On the advanced scale, to keep the image size as low as possible,

we can also start with slim packages, such as Alpine or even Scratch, which

is Docker’s reserved, minimal starting image for building other images.

Docker images are created using a series of commands, known as

instructions, in the Dockerfile. The presence of a Dockerfile in the root

of a project repository is a good indicator that the program is container-

friendly. We can build our own images from the associated Dockerfile

and the built image is then published to a registry. We will take a deeper

look at Dockerfile in later chapters. For now, consider the Docker image

as the final executable package that contains everything to run an

application. This includes the source code, the required libraries, and any

dependencies.

�Docker Container

A Docker image, when it’s run in a host computer, spawns a process with

its own namespace, known as a Docker container. The main difference

between a Docker image and a container is the presence of a thin read/

write layer known as the container layer. Any changes to the filesystem of a

container, such as writing new files or modifying existing files, are done to

this writable container layer than the lower layers.

Chapter 2 Docker 101

18

An important aspect to grasp is that when a container is running,

the changes are applied to the container layer and when the container is

stopped/killed, the container layer is not saved. Hence, all changes are

lost. This aspect of containers is not understood very well and for this

reason, stateful applications and those requiring persistent data were

initially not recommended as containerized applications. However, with

Docker Volumes, there are ways to get around this limitation. We discuss

Docker Volumes more in Chapter 5, “Understanding Docker Volumes”.

�Bind Mounts and Volumes

We mentioned previously that when a container is running, any changes

to the container are present in the container layer of the filesystem.

When a container is killed, the changes are lost and the data is no longer

accessible. Even when a container is running, getting data out of it is not

very straightforward. In addition, writing into the container’s writable

layer requires a storage driver to manage the filesystem. The storage driver

provides an abstraction on the filesystem available to persist the changes

and this abstraction often reduces performance.

For these reasons, Docker provides different ways to mount data into

a container from the Docker host: volumes, bind mounts, and tmpfs

volumes. While tmpfs volumes are stored in the host system’s memory

only, bind mounts and volumes are stored in the host filesystem.

We explore Docker Volumes in detail in Chapter 5, “Understanding

Docker Volumes”.

�Docker Registry

We mentioned earlier that you can leverage existing images of common

application stacks—have you ever wondered where these are and how you

can use them in building your application? A Docker Registry is a place

where you can store Docker images so that they can be used as the basis

Chapter 2 Docker 101

19

for an application stack. Some common examples of Docker registries

include the following:

•	 Docker Hub

•	 Google Container Registry

•	 Amazon Elastic Container Registry

•	 JFrog Artifactory

Most of these registries also allow for the visibility level of the images that

you have pushed to be set as public/private. Private registries will prevent

your Docker images from being accessible to the public, allowing you to set

up access control so that only authorized users can use your Docker image.

�Dockerfile

A Dockerfile is a set of instructions that tells Docker how to build an image.

A typical Dockerfile is made up of the following:

•	 A FROM instruction that tells Docker what the base

image is

•	 An ENV instruction to pass an environment variable

•	 A RUN instruction to run some shell commands (for

example, install-dependent programs not available in

the base image)

•	 A CMD or an ENTRYPOINT instruction that tells Docker

which executable to run when a container is started

As you can see, the Dockerfile instruction set has clear and simple

syntax, which makes it easy to understand. We take a deeper look at

Dockerfiles later in the book.

Chapter 2 Docker 101

20

�Docker Engine

Docker Engine is the core part of Docker. Docker Engine is a client-server

application that provides the platform, the runtime, and the tooling for

building and managing Docker images, Docker containers, and more.

Docker Engine provides the following:

•	 Docker daemon

•	 Docker CLI

•	 Docker API

Docker Daemon

•	 The Docker daemon is a service that runs in the

background of the host computer and handles the

heavy lifting of most of the Docker commands.

The daemon listens for API requests for creating

and managing Docker objects, such as containers,

networks, and volumes. Docker daemon can also

talk to other daemons for managing and monitoring

Docker containers. Some examples of inter-daemon

communication include communication Datadog for

container metrics monitoring and Aqua for container

security monitoring.

Docker CLI

Docker CLI is the primary way that you will interact with Docker. Docker

CLI exposes a set of commands that you can provide. The Docker CLI

forwards the request to Docker daemon, which then performs the

necessary work.

Chapter 2 Docker 101

21

While the Docker CLI includes a huge variety of commands and

sub-commands, the most common commands that we will work with in

this book are as mentioned:

docker build

docker pull

docker run

docker exec

Tip  Docker maintains an extensive reference of all the Docker
commands on its documentation page at https://docs.docker.
com/engine/reference/commandline/cli/.

At any point in time, prepending help to a command will reveal the

command’s required documentation. For example, if you’re not quite sure

where to start with Docker CLI, you could type the following:

docker help

Usage: docker COMMAND

A self-sufficient runtime for containers

Options:

 --config string �Location of client config files

(default

 ".docker")

 -D, --debug Enable debug mode

 -H, --host list Daemon socket(s) to connect to

 -l, --log-level string Set the logging level

 ("debug"|"info"|"warn"|"error"|"fatal")

 (default "info")

[..]

Chapter 2 Docker 101

https://docs.docker.com/engine/reference/commandline/cli/
https://docs.docker.com/engine/reference/commandline/cli/

22

If you’d like to know more about Docker pull, you would type the

following:

docker help pull

Usage: docker pull [OPTIONS] NAME[:TAG|@DIGEST]

Pull an image or a repository from a registry

Options:

 -a, --all-tags �Download all tagged images in

the repository

 --disable-content-trust �Skip image verification

(default true)

 --platform string �Set platform if server is

multi-platform

 capable

Docker API

Docker also provides an API for interacting with the Docker Engine. This

is particularly useful if there’s a need to create or manage containers from

within applications. Almost every operation supported by the Docker CLI

can be done via the API.

The simplest way to get started by Docker API is to use curl to send an

API request. For Windows Docker hosts, we can reach the TCP endpoint:

curl http://localhost:2375/images/json

[{"Containers":-1,"Created":1511223798,"Id":"sha256:f2a91732

366c0332ccd7afd2a5c4ff2b9af81f549370f7a19acd460f87686bc7","

Labels":null,"ParentId":"","RepoDigests":["hello-world@sha2

56:66ef312bbac49c39a89aa9bcc3cb4f3c9e7de3788c944158df3ee017

6d32b751"],"RepoTags":["hello-world:latest"],"SharedSize"

:-1,"Size":1848,"VirtualSize":1848}]

Chapter 2 Docker 101

23

On Linux and Mac, the same effect can be achieved by using curl to

send requests to the UNIX socket:

curl --unix-socket /var/run/docker.sock -X POST http://images/

json

[{"Containers":-1,"Created":1511223798,"Id":"sha256:f2a91732

366c0332ccd7afd2a5c4ff2b9af81f549370f7a19acd460f87686bc7","

Labels":null,"ParentId":"","RepoDigests":["hello-world@sha2

56:66ef312bbac49c39a89aa9bcc3cb4f3c9e7de3788c944158df3ee017

6d32b751"],"RepoTags":["hello-world:latest"],"SharedSize"

:-1,"Size":1848,"VirtualSize":1848}]

�Docker Compose

Docker Compose is a tool for defining and running multi-container

applications. Much like how Docker allows you to build an image for your

application and run it in your container, Compose use the same images

in combination with a definition file (known as the compose file) to build,

launch, and run multi-container applications, including dependent and

linked containers.

The most common use case for Docker Compose is to run applications

and their dependent services (such as databases and caching providers)

in the same simple, streamlined manner as running a single container

application. We take a deeper look at Docker Compose in Chapter 7,

“Understanding Docker Compose”.

�Docker Machine

Docker Machine is a tool for installing Docker Engines on multiple

virtual hosts and then managing the hosts. Docker Machine allows you to

create Docker hosts on local as well remote systems, including on cloud

platforms like Amazon Web Services, DigitalOcean, and Microsoft Azure.

Chapter 2 Docker 101

24

�Hands-On Docker
Let’s try some of the things you’ve read about so far. Before we start

exploring the various commands, it’s time to ensure that your Docker

install is correct and that it is working as expected.

Tip T o makes things easy to read and understand, we have used a
tool called jq for processing Docker’s JSON output. You can download
and install jq from https://stedolan.github.io/jq/.

Open a terminal window and type the following command:

docker info

You should see a result like the following:

docker info

Containers: 0

 Running: 0

 Paused: 0

 Stopped: 0

Images: 1

Server Version: 17.12.0-ce

Storage Driver: overlay2

 Backing Filesystem: extfs

 Supports d_type: true

 Native Overlay Diff: true

Logging Driver: json-file

Cgroup Driver: cgroupfs

Plugins:

 Volume: local

 Network: bridge host ipvlan macvlan null overlay

Chapter 2 Docker 101

https://stedolan.github.io/jq/

25

 Log: awslogs fluentd gcplogs gelf journald json-file

logentries splunk syslog

Swarm: inactive

Runtimes: runc

Default Runtime: runc

Init Binary: docker-init

containerd version: 89623f28b87a6004d4b785663257362d1658a729

runc version: b2567b37d7b75eb4cf325b77297b140ea686ce8f

init version: 949e6fa

Security Options:

 seccomp

 Profile: default

Kernel Version: 4.9.60-linuxkit-aufs

Operating System: Docker for Windows

OSType: linux

Architecture: x86_64

CPUs: 2

Total Memory: 1.934GiB

Name: linuxkit-00155d006303

ID: Y6MQ:YGY2:VSAR:WUPD:Z4DA:PJ6P:ZRWQ:C724:6RKP:YCCA:3NPJ:TRWO

Docker Root Dir: /var/lib/docker

Debug Mode (client): false

Debug Mode (server): true

 File Descriptors: 19

 Goroutines: 35

 System Time: 2018-02-11T15:56:36.2281139Z

 EventsListeners: 1

Registry: https://index.docker.io/v1/

Labels:

Experimental: true

Insecure Registries:

 127.0.0.0/8

Live Restore Enabled: false

Chapter 2 Docker 101

26

If you do not see this message or something similar, refer to the

previous sections to install and validate your Docker install.

�Working with Docker Images

Let’s look at the available Docker images. To do this, type the following

command:

docker image ls

Here’s a listing of the images available locally.

REPOSITORY TAG IMAGE ID CREATED SIZE

hello-world latest f2a91732366c 2 months ago 1.85kB

If you had pulled more images or run more containers, you’d have seen

a bigger list. Let’s look at the hello-world image now. To do this, type the

following:

docker image inspect hello-world

 [

 {

 "Id": �"sha256:f2a91732366c0332ccd7afd2a5c4ff2b9af81f549

370f7a19acd460f87686bc7",

 "RepoTags": [

 "hello-world:latest"

],

 "RepoDigests": [

 �"hello-world@sha256:66ef312bbac49c39a89aa9bcc3cb4f3

c9e7de3788c944158df3ee0176d32b751"

],

 "Parent": "",

 "Comment": "",

 "Created": "2017-11-21T00:23:18.797567713Z",

Chapter 2 Docker 101

27

 "Container": �"fb0b4536aac3a96065e1bedb2b637a6019feec666

c7699592206956c9d3adf5f",

 "ContainerConfig": {

 "Hostname": "fb0b4536aac3",

 "Domainname": "",

 "User": "",

 "AttachStdin": false,

 "AttachStdout": false,

 "AttachStderr": false,

 "Tty": false,

 "OpenStdin": false,

 "StdinOnce": false,

 "Env": [

 "PATH=�/usr/local/sbin:/usr/local/bin:/usr/

sbin:/usr/bin:/sbin:/bin"

],

 "Cmd": [

 "/bin/sh",

 "-c",

 "#(nop) ",

 "CMD [\"/hello\"]"

],

 "ArgsEscaped": true,

 "Image": �"sha256:2243ee460b69c4c036bc0e42a48eaa59e8

2fc7737f7c9bd2714f669ef1f8370f",

 "Volumes": null,

 "WorkingDir": "",

 "Entrypoint": null,

 "OnBuild": null,

 "Labels": {}

 },

Chapter 2 Docker 101

28

 "DockerVersion": "17.06.2-ce",

 "Author": "",

 "Config": {

 "Hostname": "",

 "Domainname": "",

 "User": "",

 "AttachStdin": false,

 "AttachStdout": false,

 "AttachStderr": false,

 "Tty": false,

 "OpenStdin": false,

 "StdinOnce": false,

 "Env": [

 "PATH=�/usr/local/sbin:/usr/local/bin:/usr/

sbin:/usr/bin:/sbin:/bin"

],

 "Cmd": [

 "/hello"

],

 "ArgsEscaped": true,

 "Image": �"sha256:2243ee460b69c4c036bc0e42a48eaa59e8

2fc7737f7c9bd2714f669ef1f8370f",

 "Volumes": null,

 "WorkingDir": "",

 "Entrypoint": null,

 "OnBuild": null,

 "Labels": null

 },

 "Architecture": "amd64",

 "Os": "linux",

 "Size": 1848,

 "VirtualSize": 1848,

Chapter 2 Docker 101

29

 "GraphDriver": {

 "Data": {

 "MergedDir": �"/var/lib/docker/overlay2/5855bd20

ab2f521c39e1157f98f235b46d7c12c9d8

f69e252f0ee8b04ac73d33/merged",

 "UpperDir": �"/var/lib/docker/overlay2/5855bd20a

b2f521c39e1157f98f235b46d7c12c9d8f6

9e252f0ee8b04ac73d33/diff",

 "WorkDir": �"/var/lib/docker/overlay2/5855bd20ab

2f521c39e1157f98f235b46d7c12c9d8f69e

252f0ee8b04ac73d33/work"

 },

 "Name": "overlay2"

 },

 "RootFS": {

 "Type": "layers",

 "Layers": [

 "sha256:�f999ae22f308fea973e5a25b57699b5daf6b

0f1150ac2a5c2ea9d7fecee50fdf"

]

 },

 "Metadata": {

 "LastTagTime": "0001-01-01T00:00:00Z"

 }

 }

]

The docker inspect command provides a lot of information about

the image. Of importance are the image properties Env, Cmd, and Layers,

which tell us about these environment variables. They tell us which

executable runs when the container is started and the layers associated

with these environment variables.

Chapter 2 Docker 101

30

docker image inspect hello-world | jq .[].Config.Env

[

 �"PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/

sbin:/bin"

]

Here’s the startup command on the container:

docker image inspect hello-world | jq .[].Config.Cmd

[

 "/hello"

]

Here are the layers associated with the image:

docker image inspect hello-world | jq .[].RootFS.Layers

[

 �"sha256:f999ae22f308fea973e5a25b57699b5daf6b0f1150ac2a5c2ea9d

7fecee50fdf"

]

�Working with a Real-World Docker Images

Let’s look at a more complex image now. Nginx is a very popular reverse

proxy server for HTTP/S (among others), as well as a load balancer and a

webserver.

To pull down the nginx image, type the following:

docker pull nginx

Using default tag: latest

latest: Pulling from library/nginx

e7bb522d92ff: Pull complete

6edc05228666: Pull complete

cd866a17e81f: Pull complete

Chapter 2 Docker 101

31

Digest: sha256:285b49d42c703fdf257d1e2422765c4ba9d3e37768d6ea83

d7fe2043dad6e63d

Status: Downloaded newer image for nginx:latest

Notice the first line:

Using default tag: latest

Every Docker image has an associated tag. Tags typically include names

and version labels. While it is not mandatory to associate a version tag with

a Docker image name, these tags make it easier to roll back to previous

versions. Without a tag name, Docker must fetch the image with the latest

tag. You can also provide a tag name to force-fetch a tagged image.

Docker Store lists the different tags associated with the image. If you’re

looking for a specific tag/version, it’s best to check Docker Store. Figure 2-3

shows a typical tag listing of an image.

Figure 2-3.  Docker Store listing of nginx and the available tags

Chapter 2 Docker 101

32

Let’s try to pull the 1.12-alpine-perl version of nginx. This command

is the same as before; you only have to append the tag with a colon to

explicitly mention the tag:

docker pull nginx:1.12-alpine-perl

1.12-alpine-perl: Pulling from library/nginx

550fe1bea624: Pull complete

20a55c7b3b0e: Pull complete

552be5624b14: Pull complete

40fc04944e91: Pull complete

Digest: �sha256:b7970b06de2b70acca1784ab92fb06d60f4f714e901a55b6

b5211c22a446dbd2

Status: Downloaded newer image for nginx:1.12-alpine-perl

The different hex numbers that you see are the associated layers of

the image. By default, Docker pulls the image from Docker Hub. You can

manually specify a different registry, which is useful if the Docker images are

not available on Docker Hub and are instead stored elsewhere, such as an

on-premise hosted artifactory. To do this, you have to prepend the registry

path to the image name. So, if the registry is hosted on docker-private.

registry and is being served on 1337 port, the pull command will now be:

docker pull docker-private.registry:1337/nginx

If the registry needs authentication, you can log in to the registry by

typing docker login:

docker login docker-private.registry:1337

Now that you have the image, try to start a container. To start a

container and run the associated image, you have to type docker run.

docker run -p 80:80 nginx

Chapter 2 Docker 101

33

Let’s try making a curl request to see if the nginx webserver is running:

curl http://localhost:80

<!DOCTYPE html>

<html>

<head>

<title>Welcome to nginx!</title>

<style>

 body {

 width: 35em;

 margin: 0 auto;

 font-family: Tahoma, Verdana, Arial, sans-serif;

 }

</style>

</head>

<body>

<h1>Welcome to nginx!</h1>

<p>If you see this page, the nginx web server is successfully

installed and working. Further configuration is required.</p>

<p>For online documentation and support please refer to

nginx.org.

Commercial support is available at

nginx.com.</p>

<p>Thank you for using nginx.</p>

</body>

</html>

This confirms that our nginx container is indeed up and running. In

this, we see an extra flag called -p. This flag tells Docker to publish the

exposed port from the Docker container to the host.

Chapter 2 Docker 101

34

The first parameter after the flag is the port on the Docker host that

must be published and the second parameter refers to the port within the

container. We can confirm that the image publishes the port using the

docker inspect command:

docker image inspect nginx | jq .[].Config.ExposedPorts

{

 "80/tcp": {}

}

We can change the port on which the service is published on the

Docker host by changing the first parameter after the -p flag:

docker run -p 8080:80 nginx

Now, try running a curl request to port 8080:

curl http://localhost:8080

You should see the same response. To list all the running containers,

you can type docker ps:

docker ps

docker ps

CONTAINER ID IMAGE COMMAND CREATED

STATUS PORTS NAMES

fac5e92fdfac nginx "nginx -g 'daemon of..." 5 seconds ago

Up 3 seconds 0.0.0.0:80->80/tcp elastic_hugle

3ed1222964de nginx "nginx -g 'daemon of..." 16 minutes ago

Up 16 minutes 0.0.0.0:8080->80/tcp clever_thompson

The point to note is the NAMES column. Docker automatically assigns

a random name when a container is started. Since you’d like more

meaningful names, you can provide a name to the container by providing

-n required-name as the parameter.

Chapter 2 Docker 101

35

Tip  Docker names are of the format adjective_surname and are
randomly generated, with the exception that if the adjective selected is
boring and the surname is Wozniak, Docker retries the name generation.

Another point to note is that when we created a second container with

port publishing to port 8080, the other container continues to run. To stop

the container, you have to type docker stop:

docker stop <container-id>

where container-id is available from the list. If the stop was successful,

Docker will echo the container ID back. If the container refuses to stop,

you can issue a kill command to force stop and kill the container:

docker stop <container-id>

Let’s try stopping a container. Type the following:

docker stop fac5e92fdfac

fac5e92fdfac

Now, let’s try killing the other container:

docker kill 3ed1222964de

3ed1222964de

Let’s confirm that the containers are no longer running. For this, type

the following:

docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

Chapter 2 Docker 101

36

So, what about the stopped containers—where are they? By default,

docker ps only shows the active, running containers. To list all the

containers, type the following:

docker ps -a

CONTAINER ID IMAGE COMMAND CREATED

STATUS PORTS NAMES

fac5e92fdfac nginx "nginx -g 'daemon of..." 6 minutes ago

Exited (0) 4 minutes ago elastic_hugle

3ed1222964de nginx "nginx -g 'daemon of..." 22 minutes ago

Exited (137) 3 minutes ago clever_thompson

febda50b0a80 nginx "nginx -g 'daemon of..." 28 minutes ago

Exited (137) 24 minutes ago objective_franklin

dc0c33a79fb7 nginx "nginx -g 'daemon of..." 33 minutes ago

Exited (137) 28 minutes ago vigorous_mccarthy

179f16d37403 nginx "nginx -g 'daemon of..." 34 minutes ago

Exited (137) 34 minutes ago nginx-test

Even though the containers have been stopped and/or killed, these

containers continue to exist in the local filesystem. You can remove the

containers by typing the following:

docker rm <container-id>

docker rm fac5e92fdfac

fac5e92fdfac

Now confirm that the container was indeed removed:

docker ps -a

CONTAINER ID IMAGE COMMAND CREATED

STATUS PORTS NAMES

3ed1222964de nginx "nginx -g 'daemon of..." 28 minutes ago

Exited (137) 9 minutes ago clever_thompson

Chapter 2 Docker 101

37

febda50b0a80 nginx "nginx -g 'daemon of..." 34 minutes ago

Exited (137) 30 minutes ago objective_franklin

dc0c33a79fb7 nginx "nginx -g 'daemon of..." 39 minutes ago

Exited (137) 34 minutes ago vigorous_mccarthy

179f16d37403 nginx "nginx -g 'daemon of..." 40 minutes ago

Exited (137) 40 minutes ago nginx-test

You can see from this table that that container with the ID

fac5e92fdfac is no longer shown and hence has been removed.

Similarly, you can list all the images present in the system by typing the

following:

docker image ls

REPOSITORY TAG IMAGE ID CREATED SIZE

nginx 1.12-alpine-perl b6a456f1d7ae 4 weeks ago 57.7MB

nginx latest 3f8a4339aadd 6 weeks ago 108MB

hello-world latest f2a91732366c 2 months ago 1.85kB

kitematic/ latest 03b4557ad7b9 2 years ago 7.91MB

hello-world

-nginx

Let’s try to remove the nginx image:

docker rmi 3f8a4339aadd

Error response from daemon: conflict: unable to delete

3f8a4339aadd (must be forced) - image is being used by stopped

container dc0c33a79fb7

In this case, Docker refuses to remove the image because there is a

reference to this image from another container. Until we remove all the

containers that use a particular image, we will not be able to remove the

image altogether.

Chapter 2 Docker 101

38

�Summary
In this chapter, you learned about how to install Docker on various

operating systems. We also learned how to validate that Docker is installed

and working correctly and learned about some commonly used terms

associated with Docker. Finally, you run through few practical exercises

using Docker, including how to pull an image, run a container, list the

running containers, and stop and remove a container.

In the next chapter, we take a brief look at Telegram, including how

to create and register a bot with Telegram and understand how to run a

Python-based Telegram Messaging bot that will fetch posts from Reddit.

Chapter 2 Docker 101

39© Sathyajith Bhat 2018
S. Bhat, Practical Docker with Python, https://doi.org/10.1007/978-1-4842-3784-7_3

CHAPTER 3

Building the Python
App
For many people getting into programming, one of their first problems

is not understanding the language syntax, rather the problem starts with

“what can I build?”. Programming is seldom learned by just reading. Many

people will read couple of definitive guides and look at the syntax, while

rarely diving into the actual practical aspects. This is a mistake.

For this reason, this book provides you with a sample Python project.

The project is not very complicated for those getting started with Python,

but at the same time it’s easy to continue working further on the project,

extending and customizing it as required.

�About the Project

Note  This book assumes you have basic knowledge of Python and
have Python 3.0 and above installed.

To help you get acquainted with Docker, the book will teach you how

to take an existing Python app, run it using the Python command line,

introduce different Docker components, and transition the app into a

Dockerized image.

40

The Python app is a simple application with a bot interface using

Telegram Messenger to fetch the latest 10 stories from Reddit. Using

Telegram, we will be able to subscribe to a list of subreddits. The web

application will check the subscribed subreddits for new posts and if it

finds new topics, will publish the topics to the bot interface, which will then

deliver the message to Telegram Messenger, when requested by the user.

Initially, we will not be saving the preferences (i.e., subreddit

subscriptions) and will focus on getting the bot up and running. Once

things are working fine, we will save the preferences to a text file, and

eventually, to a database.

�Setting Up Telegram Messenger
Before we can proceed, we will need a Telegram Messenger account. To

sign up, go to https://telegram.org, download the application for the

platform of your choice, and install it. Once it’s running, you’ll be asked to

provide a cell phone number. Telegram uses this to validate your account.

Enter the cell phone number as shown in Figure 3-1.

Chapter 3 Building the Python App

https://telegram.org/

41

Figure 3-1.  Telegram Messenger signup page

Chapter 3 Building the Python App

42

Once we’ve entered our number, we should be getting a one-time

password to log in. Enter the one-time password and sign in, as shown in

Figure 3-2.

�BotFather: Telegram’s Bot Creation Interface
Telegram uses a bot called “BotFather” as its interface for creating and

updating bots. To get started with BotFather, in the search panel type

BotFather. From the chat window, type /start.

Figure 3-2.  Telegram one-time password

Chapter 3 Building the Python App

43

This will trigger BotFather to provide an introductory set of messages,

as shown in Figure 3-3.

�Creating the Bot with BotFather

We will be using BotFather to generate a new bot. Start by typing /newbot

in Telegram Messenger. This will trigger a series of questions that you

need to answer (most of them are straightforward). Due to Telegram’s

restrictions, the username for a bot must always end with bot. This means

that you might not get your desired username—just keep this in mind. See

Figure 3-4.

Figure 3-3.  BotFather options

Chapter 3 Building the Python App

44

Along with the link to the documentation, you will notice that

Telegram has issued you a token. HTTP is a stateless protocol—the

webserver does not know and does not keep track of who is requesting the

resource, so the client needs to identify itself so the webserver can identify

the client, authorize it, and serve the request. Telegram uses the API token

(henceforth, referred to as <token>, including code samples) as way of

identifying and authorizing bots.

Note  The token is extremely sensitive and if it’s leaked online,
anyone can post messages as your bot. Do not check it in with your
version control or publish it anywhere!

Figure 3-4.  Telegram bot ready for action

Chapter 3 Building the Python App

45

When you’re working with APIs you are not familiar with, it’s always

a good idea to use a tool to test and explore the endpoints instead of

typing the code right away. Some examples of REST API test tools include

Insomnia, Postman, and curl.

Telegram’s Bot API documentation is available at https://core.

telegram.org/bots/api. To make a request, you’ll have to include the

<token> as part of the request. The general URL is:

https://api.telegram.org/bot<token>/METHOD_NAME

Let’s try a sample API request that confirms the token is working as

expected. Telegram Bot API provides a /getMe endpoint for testing the

auth token. Let’s try it out, first without the token:

curl https://api.telegram.org/bot/getMe

{

 "ok": false,

 "error_code": 404,

 "description": "Not Found"

}

We can see that without the bot token, Telegram doesn’t honor our

request. Let’s try it with the token:

curl https://api.telegram.org/bot<token>/getMe

{

 "ok": true,

 "result": {

 "id": 495637361,

 "is_bot": true,

 "first_name": "SubRedditFetcherBot",

 "username": "SubRedditFetcher_Bot"

 }

}

Chapter 3 Building the Python App

https://insomnia.rest/
https://www.getpostman.com/
https://curl.haxx.se/
https://core.telegram.org/bots/api
https://core.telegram.org/bots/api

46

We can see with the proper token, Telegram identified and authorized

our bot. This confirms that our bot token is proper and we can go ahead

with the app.

�Newsbot: The Python App
Newsbot is a Python script that interacts with our bot with the help of

Telegram Bot API. Newsbot does the following things:

•	 Continuously polls the Telegram API for new updates

being posted to the bot.

•	 If the keyword for fetching new updates was detected,

fetches the news from the selected subreddits.

Behind the scenes, Newsbot also handles these scenarios:

•	 If there’s a new message starting with /start or /help,

it shows a simple help text explaining what to do.

•	 If there’s a message starting with /sources followed by

a list of subreddits, it accepts them as the subreddits

from where the Reddit posts must be fetched.

Newsbot depends on a couple of Python libraries:

•	 Praw or Python Reddit API Wrapper, for fetching posts

from subreddits.

•	 Requests, one of the most popular Python libraries

for providing a simpler, cleaner API for making HTTP

requests.

�Installing Dependencies of Newsbot

To get started with this bot, let’s install the dependencies. To do this, type this:

pip3 install -r requirements.txt

Chapter 3 Building the Python App

https://core.telegram.org/bots/api

47

Note  pip (the acronym for Pip installs packages) is a package
manager for installing Python libraries. Pip is included with Python
2.7.9 and later, and Python 3.4 and later. pip3 indicates that we are
installing libraries for Python 3. If pip is not installed, install it before
proceeding. 

The -r flag tells pip to install the required packages from
requirements.txt.

pip will check, download, and install the dependencies. If all goes well, it

should show the following output:

Collecting praw==3.6.0 (from -r requirements.txt (line 1))

 Downloading praw-3.6.0-py2.py3-none-any.whl (74kB)

Collecting requests==2.18.4 (from -r requirements.txt (line 2))

[...]

Installing collected packages: requests, update-checker,

decorator, six, praw

Successfully installed decorator-4.0.11 praw-3.6.0

requests-2.18.4 six-1.10.0 update-checker-0.16

If there were some packages already installed, then pip will not

reinstall the package and will inform us that the dependency is installed

with a "Requirement already satisfied" message.

�Running Newsbot

Let’s start the bot. The bot requires the <token> to be passed an

environment variable to the script named NBT_ACCESS_TOKEN, so prepend

this and run as follows:

NBT_ACCESS_TOKEN=<token> python newsbot.py

If all’s well, you should be seeing periodic OK messages like shown here.

This means that Newsbot is running and is actively listening for updates.

Chapter 3 Building the Python App

48

python newsbot.py

INFO: get_updates - received response: {'ok': True, 'result': []}

INFO: get_updates - received response: {'ok': True, 'result': []}

INFO: get_updates - received response: {'ok': True, 'result': []}

INFO: get_updates - received response: {'ok': True, 'result': []}

INFO: get_updates - received response: {'ok': True, 'result': []}

INFO: get_updates - received response: {'ok': True, 'result': []}

�Sending Messages to Newsbot

Let’s try sending a message to our bot to see if it responds. From the

BotFather window, click on the link to the bot (alternatively, you can also

search with the bot username). Click on the start button. This will trigger a

/start command, which will be intercepted by the bot.

Notice that the log window shows the incoming request and the

outgoing message being sent:

INFO: get_updates - received response: {'ok': True, 'result': []}

INFO: get_updates - received response: {'ok': True, 'result': []}

INFO: get_updates - received response: {'ok': True, 'result': []}

INFO: get_updates - received response: {'ok': True, 'result':

[{'update_id': 720594461, 'message': {'message_id': 5, 'from':

{'id': 7342383, 'is_bot': False, 'first_name': 'Sathya', 'last_

name': 'Bhat', 'username': 'sathyabhat', 'language_code': 'en-

US'}, 'chat': {'id': 7342383, 'first_name': 'Sathya', 'last_

name': 'Bhat', 'username': 'sathyabhat', 'type': 'private'},

'date': 1516558659, 'text': '/start', 'entities': [{'offset':

0, 'length': 6, 'type': 'bot_command'}]}}]}

INFO: handle_incoming_messages - Chat text received: /start

INFO: post_message - posting

 �Hi! This is a News Bot which fetches news

from subreddits. Use "/source" to select a

subreddit source.

Chapter 3 Building the Python App

49

 �Example "/source programming, games" fetches news from r/

programming, r/games.

 �Use "/fetch" for the bot to go ahead and fetch the news.

At the moment, bot will fetch total of 10 posts from all

subreddits

 to 7342383

INFO: get_updates - received response: {'ok': True, 'result':

[]}

Figure 3-5 shows what you will see in the Telegram Messenger window.

Let’s try setting a source subreddit. From the Telegram Messenger

window, type the following:

/source python

You should get a positive acknowledgement from the bot saying the

source was selected, as shown in Figure 3-6.

Figure 3-5.  The response from bot to our start message

Figure 3-6.  Sources assigned

Chapter 3 Building the Python App

50

Let’s have the bot fetch us some news. To do this, type the following:

/fetch

The bot should send an acknowledgement message about fetching the

posts and then publish the posts from Reddit. See Figure 3-7.

Figure 3-7.  Posts are published

Chapter 3 Building the Python App

51

The bot works by fetching the top posts as expected. In the next series

of chapters, you learn how to move the application to Docker.

�Summary
In this chapter, you learned about the Python project, which is a chatbot.

You also learned how to install and configure Telegram Messenger using

Telegram’s BotFather to create the bot, how to install the dependencies for

the bot, and finally, how to run the bot and ensure that it works correctly.

In the next chapter, we dive deep into Docker, learn more about the

Dockerfile, and Dockerize our Newsbot by writing a Dockerfile for it.

Chapter 3 Building the Python App

53© Sathyajith Bhat 2018
S. Bhat, Practical Docker with Python, https://doi.org/10.1007/978-1-4842-3784-7_4

CHAPTER 4

Understanding
the Dockerfile
Now that you have a better understanding of Docker and its associated

terminology, let’s convert the project into a Dockerized application. In this

chapter, you take a look at a Dockerfile, including its syntax, and learn how

to write a sample Dockerfile.

By understanding the Dockerfile, you are working toward the first step

in writing a Dockerfile for the project.

�Dockerfile
For a traditionally deployed application, building and packaging an

application was often quite tedious. With the aim to automate the building

and packaging of the application, people turned to different utilities,

such as GNU Make, maven, gradle, etc., to build the application package.

Similarly, in the Docker world, a Dockerfile is an automated way to build

your Docker images.

The Dockerfile contains special instructions, which tell the Docker

Engine about the steps required to build an image. To invoke a build using

Docker, you issue the Docker build command.

54

A typical Dockerfile looks like this:

FROM ubuntu:latest

LABEL author="sathyabhat"

LABEL description="An example Dockerfile"

RUN apt-get install python

COPY hello-world.py

CMD python hello-world.py

Looking at the Dockerfile, it’s easy to comprehend what we’re telling

the Docker Engine to build. However, don’t let the simplicity fool you—the

Dockerfile lets you build complex conditions when generating your Docker

image. When a Docker build command is issued, it builds the Docker

images from the Dockerfile within context.

�Build Context
A build context is a file or set of files available at a specific path or URL. To

understand this better, we might have some supporting files that we need

during a Docker image build—for instance, an application specific config

file that was been generated earlier and needs to be part of the container.

The build context can be local or remote—we can even set the build

context to the URL of a Git repository, which can come in handy if the

source files are not located on the same host as the Docker daemon or

if we’d like to test out feature branches. We simply set the context to the

branch. The build command looks like this:

docker build https://github.com/sathyabhat/sample-repo.

git#mybranch

Similarly, to build images based on your Git tags, the build command

would look like this:

docker build https://github.com/sathyabhat/sample-repo.

git#mytag

Chapter 4 Understanding the Dockerfile

55

Working on a feature via a pull request? Want to try out that pull request?

Not a problem; you can even set the context to a pull request as follows:

docker build https://github.com/sathyabhat/sample-repo.

git#pull/1337/head

The build command sets the context to the path or URL provided,

uploading the files to the Docker daemon and allowing it to build the

image. You are not limited to the build context of the URL or path. If you

pass an URL to a remote tarball, the tarball at the URL is downloaded onto

the Docker daemon and the build command is issued with that as the

build context.

Caution I f you provide the Dockerfile on the root (/) directory and
set that as the context, this will transfer your hard disk contents to
the Docker daemon.

�Dockerignore
You should now understand that the build context transfers the contents of

the current directory to the Docker daemon during the build. Consider the

case where the context directory has a lot of files/directories that are not

relevant to the build process. Uploading these files can cause a significant

increase in traffic. Dockerignore, much like gitignore, allows you to define

files which are exempt from being transferred during the build process.

The ignore list is provided by a file known as .dockerignore and

when the Docker CLI finds this file, it modifies the context to exclude

the files/patterns provided in the file. Anything starting with a hash (#)

is considered a comment and ignored. Here’s a sample .dockerignore

file that excludes a temp directory, a .git directory, and the .DS_Store

directory:

Chapter 4 Understanding the Dockerfile

56

.dockerignore Listing

/temp

.DS_Store

.git

�Building Using Docker Build
We’ll return to the sample Dockerfile a bit later. Let’s try a simple

Dockerfile first. Copy the following contents to a file and save it as a

Dockerfile:

Dockerfile Listing

FROM ubuntu:latest

CMD echo Hello World!

Now build this image:

docker build .

You should see a response like this:

Sending build context to Docker daemon 2.048kB

Step 1/2 : FROM ubuntu:latest

latest: Pulling from library/ubuntu

22dc81ace0ea: Pull complete

1a8b3c87dba3: Pull complete

91390a1c435a: Pull complete

07844b14977e: Pull complete

b78396653dae: Pull complete

Digest: �sha256:e348fbbea0e0a0e73ab0370de151e7800684445c509d4619

5aef73e090a49bd6

Status: Downloaded newer image for ubuntu:latest

 ---> f975c5035748

Step 2/2 : CMD echo Hello World!

Chapter 4 Understanding the Dockerfile

57

 ---> Running in 26723ca45a12

Removing intermediate container 26723ca45a12

 ---> 7ae54947f6a4

Successfully built 7ae54947f6a4

We can see that the Docker build works in steps, each step corresponding

to one instruction of the Dockerfile. Try the build process again.

Dockerfile Listing

docker build .

Sending build context to Docker daemon 2.048kB

Step 1/2 : FROM ubuntu:latest

 ---> f975c5035748

Step 2/2 : CMD echo Hello World!

 ---> Using cache

 ---> 7ae54947f6a4

Successfully built 7ae54947f6a4

In this case, the build process is much faster since Docker has already

cached the layers and doesn’t have to pull them again. To run this image,

use the docker run command followed by the image ID 7ae54947f6a4:

docker run 7ae54947f6a4

Hello World!

The Docker runtime was able to start a container and run the

command defined by the CMD instruction. Hence, we get the output. Now,

starting a container from an image by typing the image ID gets tedious fast.

You can make this easier by tagging the image with an easy-to-remember

name. You can do this by using the docker tag command, as follows:

docker tag image_id tag_name

docker tag 7ae54947f6a4 sathya:hello-world

Chapter 4 Understanding the Dockerfile

58

You can also do this as part of the build process itself:

docker build -t sathya:hello-world .

Sending build context to Docker daemon 2.048kB

Step 1/2 : FROM ubuntu:latest

 ---> f975c5035748

Step 2/2 : CMD echo Hello World!

 ---> Using cache

 ---> 7ae54947f6a4

Successfully built 7ae54947f6a4

Successfully tagged sathya:hello-world

The last line tells you that the image was tagged successfully. You can

verify this by searching for docker images as follows:

docker images sathya:hello-world

REPOSITORY TAG IMAGE ID

CREATED SIZE

sathya hello-world 7ae54947f6a4

24 minutes ago 112MB

Docker also validates that the Dockerfile’s instructions are valid and in

the proper syntax. Consider the earlier Dockerfile, shown here.

Dockerfile Listing

FROM ubuntu:latest

LABEL author="sathyabhat"

LABEL description="An example Dockerfile"

RUN apt-get install python

COPY hello-world.py

CMD python hello-world.py

Chapter 4 Understanding the Dockerfile

59

If you try to build this Dockerfile, Docker will complain with an error:

docker build -t sathyabhat:python-hello-world .

Sending build context to Docker daemon 2.048kB

Error response from daemon: Dockerfile parse error line 5: COPY

requires at least two arguments, but only one was provided.

Destination could not be determined.

We’ll get back to fixing this problem a little later in the chapter. For

now, let’s look at some of the commonly used Dockerfile instructions.

�Dockerfile Instructions
When looking at a Dockerfile, you’re mostly likely to run into the following

instructions:

•	 FROM

•	 ADD

•	 COPY

•	 RUN

•	 CMD

•	 ENTRYPOINT

•	 ENV

•	 VOLUME

•	 LABEL

•	 EXPOSE

Let’s see what they do.

Chapter 4 Understanding the Dockerfile

60

�FROM

As you learned earlier, every image needs to start from a base image. The

FROM instruction tells the Docker Engine which base image to use for

subsequent instructions. Every valid Dockerfile must start with a FROM

instruction. The syntax is as follows:

FROM <image> [AS <name>]

OR

FROM <image>[:<tag>] [AS <name>]

OR

FROM <image>[@<digest>] [AS <name>]

Where <image> is the name of a valid Docker image from any public/

private repository. If the tag is skipped, Docker will fetch the image tagged

as the latest. This is verified by this simple step. Create a Dockerfile with

contents as shown here:

Dockerfile Listing

FROM ubuntu

CMD echo Hello World!

Build the image

docker build .

Sending build context to Docker daemon 2.048kB

Step 1/2 : FROM ubuntu:latest

 ---> f975c5035748

Step 2/2 : CMD echo Hello World!

 ---> 7ae54947f6a4

Successfully built 7ae54947f6a4

Now modify the Dockerfile to include the latest tag, as shown.

Chapter 4 Understanding the Dockerfile

61

Dockerfile Listing

FROM ubuntu:latest

CMD echo Hello World!

Build the image:

docker build .

Sending build context to Docker daemon 2.048kB

Step 1/2 : FROM ubuntu:latest

 ---> f975c5035748

Step 2/2 : CMD echo Hello World!

 ---> 7ae54947f6a4

Successfully built 7ae54947f6a4

You can see in the first step that the image hash remains the same,

confirming that skipping the image tag will result in Docker fetching the

image with the latest tag.

Note  We recommend always providing a tag to avoid unexpected
changes that might not have been tested when a latest tagged image
was built.

�WORKDIR

WORKDIR instruction sets the current working directory for RUN, CMD,

ENTRYPOINT, COPY, and ADD instructions. The syntax is as follows:

WORKDIR /path/to/directory

WORKDIR can be set multiple times in a Dockerfile and, if a relative

directory succeeds a previous WORKDIR instruction, it will be relative to the

previously set working directory. The following example demonstrates this.

Chapter 4 Understanding the Dockerfile

62

Dockerfile Listing

FROM ubuntu:latest

WORKDIR /usr

CMD pwd

This Dockerfile fetches the latest tagged image from Ubuntu as the

base image, sets the current working directory to /usr, and prints the

current working directory when the image is run.

Let’s try building and running this and then examining the output:

docker build -t sathyabhat:workdir .

Sending build context to Docker daemon 2.048kB

Step 1/3 : FROM ubuntu:latest

 ---> f975c5035748

Step 2/3 : WORKDIR /usr

 ---> Using cache

 ---> 8b0b5742b476

Step 3/3 : CMD pwd

 ---> Using cache

 ---> 4a827ca4a571

Successfully built 4a827ca4a571

Successfully tagged sathyabhat:workdir

docker run sathyabhat:workdir

/usr

The result of pwd makes it clear that the current working directory is set

as /usr by way of the WORKDIR instruction.

Now we’ll modify the Dockerfile to add couple of WORKDIR instructions.

Chapter 4 Understanding the Dockerfile

63

Dockerfile Listing

FROM ubuntu:latest

WORKDIR /usr

WORKDIR src

WORKDIR app

CMD pwd

Now build and run the new image:

docker build -t sathyabhat:workdir .

Sending build context to Docker daemon 2.048kB

Step 1/5 : FROM ubuntu:latest

 ---> f975c5035748

Step 2/5 : WORKDIR /usr

 ---> Using cache

 ---> 8b0b5742b476

Step 3/5 : WORKDIR src

Removing intermediate container 5b1b88e4da20

 ---> 5ac5d4dafe05

Step 4/5 : WORKDIR app

Removing intermediate container b9679196e934

 ---> b94f50750702

Step 5/5 : CMD pwd

 ---> Running in f78c97738bed

Removing intermediate container f78c97738bed

 ---> 90ebd71d1794

Successfully built 90ebd71d1794

Successfully tagged sathyabhat:workdir

Note that the image ID has changed, so that’s a new image being built

with the same tag:

docker run sathyabhat:workdir

/usr/src/app

Chapter 4 Understanding the Dockerfile

64

As expected, the WORKDIR instructions of the relative directory has

appended to the initial absolute directory set. By default, the WORKDIR is

set as / so any WORKDIR instructions featuring a relative directory will be

appended to /. Here’s an example demonstrating this. Let’s modify the

Dockerfile as follows.

Dockerfile Listing

FROM ubuntu:latest

WORKDIR var

WORKDIR log/nginx

CMD pwd

Build the image:

docker build -t sathyabhat:workdir .

Sending build context to Docker daemon 2.048kB

Step 1/4 : FROM ubuntu:latest

 ---> f975c5035748

Step 2/4 : WORKDIR var

Removing intermediate container 793a97be060e

 ---> ae4b53721bab

Step 3/4 : WORKDIR log/nginx

Removing intermediate container b557dfe11cf3

 ---> 04fb3808cb35

Step 4/4 : CMD pwd

 ---> Running in 6ce9f7854160

Removing intermediate container 6ce9f7854160

 ---> bfd10d1dfd4a

Successfully built bfd10d1dfd4a

Successfully tagged sathyabhat:workdir

And let’s run it:

docker run sathyabhat:workdir

/var/log/nginx

Chapter 4 Understanding the Dockerfile

65

Notice that we did not set any absolute working directory in the

Dockerfile. The relative directories were appended to the default.

�ADD and COPY

At first glance, the ADD and COPY instructions seem to do the same—they

allow you to transfer files from the host to the container’s filesystem. COPY

supports basic copying of files to the container, while ADD has support for

features like tarball auto extraction and remote URL support.

Syntax for both is quite similar:

ADD <source> <destination>

COPY <source> <destination>

For Dockerfiles used to build Linux containers, both of these

instructions let you change the owner/group of the files being added to the

container. This is done with the --chown flag, as follows:

ADD --chown=<user>:<group> <source> <destination>

COPY --chown=<user>:<group> <source> <destination>

For example, if you want to move the requirements.txt file from the

current working directory to the /usr/share/app directory, the instruction

would be as follows:

ADD requirements.txt /usr/share/app

COPY requirements.txt /usr/share/app

Both ADD and COPY support wildcards while specifying patterns. For

example, having the following instructions in your Dockerfile will copy all

files with the .py extension to the /apps/ directory of the image.

ADD *.py /apps/

COPY *.py /apps/

Chapter 4 Understanding the Dockerfile

66

Docker recommends using COPY over ADD, especially when it’s a local

file that’s being copied. There are a few gotchas to be considered when

using COPY versus ADD and the behavior of COPY/ADD instructions:

•	 If the <destination> does not exist in the image, it will

be created.

•	 All new files/directories are created with UID and

GID as 0, i.e., as the root user. To change this, use the

--chown flag.

•	 If the files/directories contain special characters, they

will need to be escaped.

•	 The <destination> can be an absolute or relative

path. In case of relative paths, the relativeness will be

inferred from the path set by the WORKDIR instruction.

•	 If the <destination> doesn’t end with a trailing slash,

it will be considered a file and the contents of the

<source> will be written into <destination>.

•	 If the <source> is specified as a wildcard pattern, the

<destination> must be a directory and must end with

a trailing slash; otherwise, the build process will fail.

•	 The <source> must be within the build context—it

cannot be a file/directory outside of the build context

because the first step of a Docker build process involves

sending the context directory to the Docker daemon.

•	 In case of the ADD instruction:

•	 If the <source> is a URL and the <destination> is

not a directory and doesn’t end with a trailing slash,

the file is downloaded from the URL and copied

into <destination>.

Chapter 4 Understanding the Dockerfile

67

•	 If the <source> is a URL and the <destination>

is a directory and ends with a trailing slash,

the filename is inferred from the URL

and the file is downloaded and copied to

<destination>/<filename>.

•	 If the <source> is a local tarball of a known

compression format, the tarball is unpacked as

a directory. Remote tarballs, however, are not

uncompressed.

�RUN

The RUN instruction will execute any commands in a new layer on top of

the current image and create a new layer that is available for the next steps

in the Dockerfile.

RUN has two forms:

RUN <command> (known as the shell form)

RUN ["executable", "parameter 1", " parameter 2"] (known as the

exec form)

In shell form, the command is run in a shell with the command

as a parameter. This form provides for a shell where shell variables,

subcommands, and commanding piping and chaining is possible.

Consider a scenario where you’d like to embed the kernel release

version into the home directory of the Docker image. With the shell form,

it’s easy enough:

RUN echo `uname -rv` > $HOME/kernel-info

This wouldn’t be possible with the exec form. RUN is a build-time

command and, as such, is run when a Docker image is built, rather than

when it’s run. The resultant layer is then cached. It’s important to note that

Docker uses the command string of a RUN instruction to build the cache,

rather than the actual contents of the RUN instruction.

Chapter 4 Understanding the Dockerfile

68

Consider the following Dockerfile.

Dockerfile Listing

FROM ubuntu:16.04

RUN apt-get update

When the image is built, Docker will cache all the layers of this command.

However, consider when we build another Dockerfile, shown here.

Dockerfile Listing

FROM ubuntu:18.04

RUN apt-get update

In this case, Docker reuses the cache of the previous image and, as a

result, the image build can contain outdated packages. The cache for the

RUN instructions can be invalidated by using the --no-cache flag. Every RUN

instruction creates a new layer. This can be a good or a bad thing—it’s good

because the resulting cache means that future builds can reuse the cache layer.

It can be bad because the cached layer might not be compatible with

future builds and increases the size of the Docker image. Docker recommends

chaining multiple RUN commands into a single command. For example,

installing or using multiple RUN commands to install the required packages:

RUN apt-get update

RUN apt-get install foo

RUN apt-get install bar

RUN apt-get install baz

It’s better to wrap them in a single RUN command:

RUN apt-get update && apt-get install -y \

 foo \

 bar \

 baz

This reduces the number of layers and makes for a leaner Docker image.

Chapter 4 Understanding the Dockerfile

69

�CMD and ENTRYPOINT

CMD and ENTRYPOINT instructions define which command is executed when

running a container. The syntax for both are as follows:

CMD ["executable","param1","param2"] (exec form)

CMD ["param1","param2"] (as default parameters to ENTRYPOINT)

CMD command param1 param2 (shell form)

ENTRYPOINT ["executable", "param1", "param2"] (exec form)

ENTRYPOINT command param1 param2 (shell form)

The CMD instruction provides the defaults for an executing container.

We can skip providing the executable for a CMD instruction, in which case

the executable should be provided via the ENTRYPOINT instruction.

Consider the following Dockerfile.

Dockerfile Listing

FROM ubuntu:latest

RUN apt-get update && \

 apt-get install -y curl && \

 rm -rf /var/lib/apt/lists/*

CMD curl

In this Docker image, we select Ubuntu as the base image, install curl

on it, and choose curl as the CMD instruction. This means that when the

container is created and run, it will run curl without any parameters. Let’s

see the result when we run the container:

docker run sathyabhat:curl

curl: try 'curl --help' or 'curl --manual' for more information

This is because curl expects a parameter to be passed. We can

override the CMD instruction by passing arguments to the docker run

command. As an example, let’s try to curl wttr.in, which fetches the

current weather.

Chapter 4 Understanding the Dockerfile

70

docker run sathyabhat:curl wttr.in

docker: Error response from daemon: OCI runtime create failed:

container_linux.go:296: starting container process caused

"exec: \"wttr.in\": executable file not found in $PATH":

unknown.

Uh oh, an error. As mentioned, the parameters after docker run are

used to override the CMD instruction. However, we have passed only wttr.

in as the argument, not the executable itself. So, for the override to work

properly, we need to pass in the executable, i.e. curl, as well:

docker run sathyabhat:curl curl -s wttr.in

Weather report: Gurgaon, India

 Haze

 _ - _ - _ - 24-25 °C

 _ - _ - _ ↖ 13 km/h

 _ - _ - _ - 3 km

 0.0 mm

Passing an executable every time to override a parameter can be quite

tedious. This is where the combination of ENTRYPOINT and CMD shines—we

can set ENTRYPOINT to the executable while the parameter can be passed

from the command line and will be overridden. Modify the Dockerfile as

shown:

FROM ubuntu:latest

RUN apt-get update && \

 apt-get install -y curl && \

 rm -rf /var/lib/apt/lists/*

ENTRYPOINT ["curl", "-s"]

Chapter 4 Understanding the Dockerfile

71

Now we can curl any URL by just passing the URL as a parameter,

instead of having to add the executable as well:

docker run sathyabhat:curl wttr.in

Weather report: Gurgaon, India

 Haze

 _ - _ - _ - 24-25 °C

 _ - _ - _ ↖ 13 km/h

 _ - _ - _ - 3 km

 0.0 mm

Of course, curl is just an example here—you can replace curl with

any other program that accepts parameters (such as load testing utilities,

benchmarking utilities, etc.) and the combination of CMD and ENTRYPOINT

makes it easy to distribute the image.

We must note that the ENTRYPOINT must be provided in exec form.

Writing it in shell form means that the parameters are not passed properly

and will not work as expected. Table 4-1 is from Docker’s Reference Guide

and explains which commands are executed for various ENTRYPOINT/CMD

combinations.

Chapter 4 Understanding the Dockerfile

https://docs.docker.com/engine/reference/builder/#understand-how-cmd-and-entrypoint-interact

72

Table 4-1.  Commands for ENTRYPOINT/CMD Combinations

No ENTRYPOINT ENTRYPOINT exec_
entry p1_entry

ENTRYPOINT ["exec_
entry", "p1_entry"]

No CMD error, not

allowed

/bin/sh -c exec_

entry p1_entry

exec_entry p1_

entry

CMD

["exec_

cmd", "p1_

cmd"]

exec_cmd p1_

cmd

/bin/sh -c exec_

entry p1_entry

exec_entry p1_

entry exec_cmd

p1_cmd

CMD ["p1_

cmd", "p2_

cmd"]

p1_cmd p2_cmd /bin/sh -c exec_

entry p1_entry

exec_entry

p1_entry p1_cmd

p2_cmd

CMD exec_

cmd p1_cmd

/bin/sh -c

exec_cmd p1_

cmd

/bin/sh -c exec_

entry p1_entry

exec_entry p1_

entry /bin/sh -c

exec_cmd p1_cmd

Gotchas About Shell and Exec Form

As mentioned earlier, you can specify RUN, CMD, and ENTRYPOINT in shell

form and exec form. What should be used will entirely depend on what the

requirements are. But as a general guide:

•	 In shell form, the command is run in a shell with the

command as a parameter. This form provides for a shell

where shell variables, subcommands, commanding

piping, and chaining is possible.

•	 In exec form, the command does not invoke a

command shell. This means that normal shell

processing (such as $VARIABLE substitution, piping,

etc.) will not work.

Chapter 4 Understanding the Dockerfile

73

•	 A program started in shell form will run as

subcommand of /bin/sh -c. This means the

executable will not be running as PID and will not

receive UNIX signals.

As a consequence, a Ctrl+C to send a SIGTERM will not be forwarded to

the container and the application might not exit correctly.

�ENV

The ENV instruction sets the environment variables to the image. The ENV

instruction has two forms:

ENV <key> <value>

ENV <key>=<value> ...

In the first form, the entire string after the <key> will be considered the

value, including whitespace characters. Only one variable can be set per

line in this form.

In the second form, multiple variables can be set at one time, with the

equals character assigning value to the key.

The environment variables set are persisted through the container

runtime. They can be viewed using docker inspect.

Consider the following Dockerfile.

Dockerfile Listing

FROM ubuntu:latest

ENV LOGS_DIR="/var/log"

ENV APPS_DIR /apps/

Let’s build the Docker image:

docker build -t sathyabhat:env-example .

Sending build context to Docker daemon 2.048kB

Step 1/3 : FROM ubuntu:latest

Chapter 4 Understanding the Dockerfile

74

 ---> f975c5035748

Step 2/3 : ENV LOGS_DIR="/var/log"

 ---> Running in 2e564f4d1905

Removing intermediate container 2e564f4d1905

 ---> c5a8627690d1

Step 3/3 : ENV APPS_DIR /apps/

 ---> Running in 3978aeb419d6

Removing intermediate container 3978aeb419d6

 ---> 8d2a35d35b86

Successfully built 8d2a35d35b86

You can inspect the environment variables by using the following:

docker inspect sathyabhat:env-example | jq .[0].Config.Env

[

 �"PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/

sbin:/bin",

 "LOGS_DIR=/var/log",

 "APPS_DIR=/apps/"

]

The environment variables defined for a container can be changed

when running a container by the -e flag. In this example, let’s change the

LOGS_DIR value to /logs for a container. This is achieved by:

docker run -it -e LOGS_DIR="/logs" sathyabhat:env-example

We can confirm the changed value as follows:

printenv | grep LOGS

LOGS_DIR=/logs

Chapter 4 Understanding the Dockerfile

75

�VOLUME

The VOLUME instruction tells Docker to create a directory on the host and

mount it to a path specified in the instruction.

For instance, an instruction like this:

VOLUME /var/logs/nginx

Tells Docker to create a directory on the Docker host (typically within the

Docker root path) and point to the named directory, within the container to

the host directory. We look at volumes in a later chapter in the book.

�EXPOSE

The EXPOSE instruction tells Docker that the container listens for the

specified network ports at runtime. The syntax follows:

EXPOSE <port> [<port>/<protocol>...]

For example, if you want to expose port 80, the EXPOSE instruction will be:

EXPOSE 80

If you want to expose port 53 on TCP and UDP, the Dockerfile

instruction would be:

EXPOSE 53/tcp

EXPOSE 53/udp

We can also mention the port number and whether the port listens on

TCP/UDP or both. If it’s not specified, Docker assumes the protocol to be TCP.

Note A n EXPOSE instruction doesn’t publish the port. For the port to
be published to the host, you need to use the -p flag when you do a
docker run to publish and map the ports.

Chapter 4 Understanding the Dockerfile

76

Here’s a sample Dockerfile that uses the nginx Docker image and

exposes port 80 on the container.

Dockerfile Listing

FROM nginx:alpine

EXPOSE 80

Build the container:

docker build -t sathyabhat:web .

Sending build context to Docker daemon 2.048kB

Step 1/2 : FROM nginx:alpine

alpine: Pulling from library/nginx

ff3a5c916c92: Pull complete

e42d0afb8d8c: Pull complete

27afbd0eb904: Pull complete

5a306d33279c: Pull complete

Digest: �sha256:8cbbbf68ef2d22852dfcccbe371aaa2d34b3bccb49c34cc0

c2b18434a01e8cb3

Status: Downloaded newer image for nginx:alpine

 ---> 91ce6206f9d8

Step 2/2 : EXPOSE 80

 ---> Running in ca68af23085a

Removing intermediate container ca68af23085a

 ---> 99d0d61cbd38

Successfully built 99d0d61cbd38

Successfully tagged sathyabhat:web

To run this container, you have to provide the host port to which it is to

be mapped. Let’s map port 8080 on the host to port 80 of the container. To

do that, type this command:

docker run -d -p 8080:80 sathyabhat:web

Chapter 4 Understanding the Dockerfile

77

The -d flag makes the nginx container run in the background; the -p

flag does the port mapping. Let’s confirm that the container is running:

curl http://localhost:8080

<!DOCTYPE html>

<html>

<head>

<title>Welcome to nginx!</title>

<style>

 body {

 width: 35em;

 margin: 0 auto;

 font-family: Tahoma, Verdana, Arial, sans-serif;

 }

</style>

</head>

<body>

<h1>Welcome to nginx!</h1>

<p>If you see this page, the nginx web server is successfully

installed and

working. Further configuration is required.</p>

<p>For online documentation and support please refer to

nginx.org.

Commercial support is available at

nginx.com.</p>

<p>Thank you for using nginx.</p>

</body>

</html>

Chapter 4 Understanding the Dockerfile

78

�LABEL

The LABEL instruction adds metadata to an image as a key/value pair.

LABEL <key>=<value> <key>=<value> <key>=<value> ...

An image can have multiple labels, which is typically used to add

metadata to assist in searching and organizing images and other Docker

objects.

Docker recommends the following guidelines:

•	 For Keys

•	 Authors of third-party tools should prefix each key

with reverse DNS notation of a domain owned by

them. For example, com.sathyasays.my-image.

•	 The com.docker.*, io.docker.*, and org.

dockerproject.* are reserved by Docker for

internal use.

•	 Label keys should begin and end with lowercase

letters and should contain only lowercase

alphanumeric characters, as well as the period (.)

and hyphen (-) characters. Consecutive hyphens or

periods are not allowed.

•	 The period (.) separates namespace fields.

•	 For Values

•	 Label values can contain any data type that can be

represented as string, including JSON, XML, YAML,

and CSV.

Chapter 4 Understanding the Dockerfile

79

�Guidelines and Recommendations for Writing
Dockerfiles
Following are some of the guidelines and best practices for writing

Dockerfiles as recommended by Docker.

•	 Containers should be ephemeral

Docker recommends that the image generated by

Dockerfile should be as ephemeral as possible. By

this, we should be able stop, destroy, and restart

the container at any point with minimal setup and

configuration to the container.

•	 Keep the build context minimal

We discussed build context earlier in this chapter.

It’s important to keep the build context as minimal

as possible to reduce the build times and image size.

This can be done by using the .dockerignore file

effectively.

•	 Use multi-stage builds

Multi-stage builds help drastically reduce the size

of the image without having to write complicated

scripts to transfer/keep the required artifacts. Multi-

stage builds are described in the next section.

•	 Skip unwanted packages

Having unwanted or nice-to-have packages

increases the size of the image, introduces

unwanted dependent packages, and increases the

surface area for attacks.

Chapter 4 Understanding the Dockerfile

80

•	 Minimize the number of layers

While not as big of a concern as they used to be, it’s

still important to reduce the number of layers in

the image. As of Docker 1.10 and above, only RUN,

COPY, and ADD instructions create layers. With these

in mind, having minimal instruction or combining

many lines of the respective instructions will reduce

the number of layers, ultimately reducing the size of

the image.

�Multi-Stage Builds
As of version 17.05 and above, Docker added support for multi-stage

builds, allowing for complex image builds to be performed without

the Docker image being unnecessarily bloated. Multi-stage builds are

especially useful for building images of applications that require some

additional build-time dependencies but are not needed during runtime.

Most common examples are applications written using programming

languages such as Go or Java, where prior to multi-stage builds, it was

common to have two different Dockerfiles, one for build and the other for

release. The orchestration of the artifacts from the build time image to the

runtime image could be done via shell scripts.

With multi-stage builds, a single Dockerfile can be leveraged for build

and deploy images—the build images can contain the build tools required

for generating the binary or the artifact and in the second stage, the artifact

can be copied to the runtime image, thereby reducing considerably the size

of the runtime image. For a typical multi-stage build, a build stage has several

layers—each layer for installing tools required to build the application,

generating the dependencies, and generating the application. In the final

layer, the application built from the build stages would be copied over to the

final layer and only that layer is considered for building the image—the build

layers are discarded, drastically reducing the size of the final image.

Chapter 4 Understanding the Dockerfile

81

While this book doesn’t focus on multi-stage builds in detail, we do

include an exercise on how to create a multi-stage build. We demonstrate

the difference that using a slim image with a multi-stage build makes to the

final image.

Note  More details about multi-stage builds are available on
Docker’s website at https://docs.docker.com/develop/
develop-images/multistage-build/.

�Dockerfile Exercises
You have learned a fair bit about Dockerfiles, so it’s time to try some

exercises to better understand them.

BUILDING A SIMPLE HELLO WORLD DOCKER IMAGE

At the start of the chapter, we introduced a simple Dockerfile that did not

build due to syntax errors. Here, you’ll fix the Dockerfile and add some of the

instructions that you learned about in this chapter.

Tip T he source code and Dockerfile associated with this are
available as docker-hello-world.zip.

The original Dockerfile is shown here.

Dockerfile Listing

FROM ubuntu:latest

LABEL author="sathyabhat"

LABEL description="An example Dockerfile"

RUN apt-get install python

Chapter 4 Understanding the Dockerfile

https://docs.docker.com/develop/develop-images/multistage-build/
https://docs.docker.com/develop/develop-images/multistage-build/

82

COPY hello-world.py

CMD python hello-world.py

Trying to build this will result in an error since hello-world.py is missing.

Let’s fix the build error. To do this, you will add a hello-world.py file, which

reads an environment variable, NAME, and prints "Hello, $NAME!. If the

environment variable is not defined, then it will print "Hello, World!"

The contents of hello-world.py are as follows:

#!/usr/bin/env python3

from os import getenv

if getenv('NAME') is None:

 name = 'World!'

else:

 name = getenv('NAME')

print("Hello {}".format(name))

The corrected Dockerfile follows.

Corrected Dockerfile Listing

FROM python:3-alpine

LABEL author="sathyabhat"

LABEL description="Dockerfile for Python script which prints

Hello, Name"

COPY hello-world.py /app/

ENV NAME=Sathya

CMD python3 /app/hello-world.py

Build the Dockerfile:

docker build -t sathyabhat:hello-python .

Sending build context to Docker daemon 3.072kB

Step 1/6 : FROM python:3-alpine

Chapter 4 Understanding the Dockerfile

83

 ---> 4fcaf5fb5f2b

Step 2/6 : LABEL author="sathyabhat"

 ---> 29e08fa6b4c2

Step 3/6 : �LABEL description="Dockerfile for Python script which

prints Hello, Name"

 ---> Running in bbabe9d8322a

Removing intermediate container bbabe9d8322a

 ---> abf1d06444ca

Step 4/6 : COPY hello-world.py /app/

 ---> 19454b206b46

Step 5/6 : ENV NAME=Sathya

 ---> Running in 83b5ff92f771

Removing intermediate container 83b5ff92f771

 ---> 839197bb6542

Step 6/6 : CMD python3 /app/hello-world.py

 ---> Running in 6dbdd98d868b

Removing intermediate container 6dbdd98d868b

 ---> 2410783edf5d

Successfully built 2410783edf5d

Successfully tagged sathyabhat:hello-python

Confirm the image name and the size:

docker images sathyabhat:hello-python

REPOSITORY TAG IMAGE ID CREATED SIZE

sathyabhat hello-python 2410783edf5d Less than 90MB

 a second ago

Run the Docker image:

docker run sathyabhat:hello-python

Hello, Sathya!

Chapter 4 Understanding the Dockerfile

84

Try overriding the environment variable at runtime. You can do this by

providing the -e parameter to the docker run command:

docker run -e NAME=John sathyabhat:hello-python

Hello, John!

Congrats! You have successfully written your first Dockerfile and built your first

Docker image.

A LOOK AT SLIM DOCKER RELEASE IMAGE (USING MULTI-STAGE BUILDS)

In this exercise, you will build two Docker images, the first one using a

standard build process using python:3 as the base image.

Tip T he source code and Dockerfiles associated with both builds
are available as docker-multi-stage.zip.

Building the Docker Image Using a Standard Build

Create a requirements.txt file with the following content:

praw

Now create a Dockerfile with the following content.

Dockerfile Listing

FROM python:3

COPY requirements.txt .

RUN pip install -r requirements.txt

Now build the Docker image:

docker build -t sathyabhat:base-build .

Sending build context to Docker daemon 3.072kB

Chapter 4 Understanding the Dockerfile

85

Step 1/3 : FROM python:3

3: Pulling from library/python

f2b6b4884fc8: Pull complete

4fb899b4df21: Pull complete

74eaa8be7221: Pull complete

2d6e98fe4040: Pull complete

414666f7554d: Pull complete

135a494fed80: Pull complete

6ca3f38fdd4d: Pull complete

4de6fcaa1241: Pull complete

Digest: �sha256:e5a05b8979f5cd1d43433a75663ed9a9d04227a3473c89abf

e60b027ca334256

Status: Downloaded newer image for python:3

 ---> 07d72c0beb99

Step 2/3 : COPY requirements.txt .

 ---> 237dd8b9b17c

Step 3/3 : RUN pip install -r requirements.txt

 ---> Running in c69bebd9dc91

Collecting praw (from -r requirements.txt (line 1))

 Downloading praw-5.4.0-py2.py3-none-any.whl (94kB)

Collecting update-checker>=0.16 (from praw->-r requirements.txt

(line 1))

 Downloading update_checker-0.16-py2.py3-none-any.whl

Collecting prawcore<0.15,>=0.14.0 (from praw->-r requirements.

txt (line 1))

 Downloading prawcore-0.14.0-py2.py3-none-any.whl

Collecting requests>=2.3.0 (from update-checker>=0.16->praw->-r

requirements.txt (line 1))

 Downloading requests-2.18.4-py2.py3-none-any.whl (88kB)

Collecting urllib3<1.23,>=1.21.1 (from requests>=2.3.0->update-

checker>=0.16->praw->-r requirements.txt (line 1))

 Downloading urllib3-1.22-py2.py3-none-any.whl (132kB)

Collecting idna<2.7,>=2.5 (from requests>=2.3.0->update-

checker>=0.16->praw->-r requirements.txt (line 1))

Chapter 4 Understanding the Dockerfile

86

 Downloading idna-2.6-py2.py3-none-any.whl (56kB)

Collecting chardet<3.1.0,>=3.0.2 (from requests>=2.3.0->update-

checker>=0.16->praw->-r requirements.txt (line 1))

 Downloading chardet-3.0.4-py2.py3-none-any.whl (133kB)

Collecting certifi>=2017.4.17 (from requests>=2.3.0->update-

checker>=0.16->praw->-r requirements.txt (line 1))

 Downloading certifi-2018.1.18-py2.py3-none-any.whl (151kB)

Installing collected packages: urllib3, idna, chardet, certifi,

requests, update-checker, prawcore, praw

Successfully installed certifi-2018.1.18 chardet-3.0.4 idna-2.6

praw-5.4.0 prawcore-0.14.0 requests-2.18.4 update-checker-0.16

urllib3-1.22

Removing intermediate container c69bebd9dc91

 ---> ed26b55221f4

Successfully built ed26b55221f4

Successfully tagged sathyabhat:base-build

The image was built successfully. Let’s see the size of the image:

docker images sathyabhat:base-build

REPOSITORY TAG IMAGE ID CREATED SIZE

sathyabhat base-build ed26b55221f4 32 minutes ago 698MB

The Docker image sits at a fairly hefty 698MB even though you didn’t add any

of the application code, just a dependency. Let’s rewrite it to a multi-stage build.

Building the Docker Image Using Multi-Stage Build

Dockerfile Listing

FROM python:3 as python-base

COPY requirements.txt .

RUN pip install -r requirements.txt

FROM python:3-alpine

COPY --from=python-base /root/.cache /root/.cache

Chapter 4 Understanding the Dockerfile

87

COPY --from=python-base requirements.txt .

RUN pip install -r requirements.txt && rm -rf /root/.cache

The Dockerfile is different in that there are multiple FROM statements,

signifying the different stages. In the first stage, we build the required

packages using the python:3 image, which has the necessary build tools.

In the second stage, we copy the files installed from the first stage, reinstall

them (notice this time, pip fetches the cached files and doesn’t build them

again), and then delete the cached install files.

docker images sathyabhat:multistage-build

REPOSITORY TAG IMAGE ID CREATED SIZE

sathyabhat multistage 4e2ad2b6e221 Less than 99MB

 -build a second ago

If we look at the size of the second image, the difference is significant.

WRITING DOCKERFILE FOR THE PROJECT

Now you’ll try writing the Dockerfile for this project. Before you start writing a

Dockerfile, here are some guidelines on Dockerizing an application.

Tip T he source code and Dockerfile associated with this are
available as docker-subreddit-fetcher.zip.

Let’s review what you need for this project:

•	 A Docker image based on Python 3

•	 The project dependencies listed in requirements.txt

•	 An environment variable named NBT_ACCESS_TOKEN

Chapter 4 Understanding the Dockerfile

88

Now that you have what you need, let’s write the Dockerfile for the project.

The steps are as follows:

	1.	S tart with a proper base image.

	2.	 Make a list of files required for the application.

	3.	 Make a list of environment variables required for the

application.

	4.	 Copy the application files to the image using a COPY instruction.

	5.	S pecify the environment variable with the ENV instruction.

Combining these steps, you will arrive at the following Dockerfile.

Dockerfile Listing

FROM python:3-alpine

COPY * /apps/subredditfetcher/

WORKDIR /apps/subredditfetcher/

RUN ["pip", "install", "-r", "requirements.txt"]

ENV NBT_ACCESS_TOKEN="<token>"

CMD ["python", "newsbot.py"]

Take care to replace <token> with the token generated from the earlier

chapter. Let’s build the image:

docker build -t sathyabhat:subreddit_fetcher .

Sending build context to Docker daemon 17.41kB

Step 1/6 : FROM python:3-alpine

 ---> 4fcaf5fb5f2b

Step 2/6 : COPY * /apps/subredditfetcher/

 ---> 3fe719598159

Step 3/6 : WORKDIR /apps/subredditfetcher/

 ---> ab997e6e51b5

Step 4/6 : RUN ["pip", "install", "-r", "requirements.txt"]

 ---> 7d7ced5dcc8c

Chapter 4 Understanding the Dockerfile

89

Step 5/6 : �ENV NBT_ACCESS_TOKEN="495637361:AAHIhiDTX1UeX17KJy0-

FsMZEqEtCFYfcP8"

 ---> c6db29f52053

Step 6/6 : CMD ["python", "newsbot.py"]

 ---> 8aa4ff615bac

Successfully built 8aa4ff615bac

Successfully tagged sathyabhat:subreddit_fetcher

And run the container:

docker run --name subreddit_fetcher_bot sathyabhat:subreddit_

fetcher

You should be seeing logs from the bot to ensure it’s running:

INFO: get_updates - received response: {'ok': True, 'result': []}

INFO: get_updates - received response: {'ok': True, 'result': []}

INFO: get_updates - received response: {'ok': True, 'result': []}

INFO: get_updates - received response: {'ok': True, 'result': []}

INFO: get_updates - received response: {'ok': True, 'result': []}

INFO: get_updates - received response: {'ok': True, 'result': []}

Congrats! You have successfully Dockerized the project.

�Summary
In this chapter, you learned about Dockerfiles, the significance of the

build context, and about dockerignore. You also took a deep dive into

some commonly used Dockerfile instructions, a brief glimpse of multi-

stage builds, and learned about some guidelines on writing Dockerfiles.

You completed the chapter with some exercises on writing Dockerfiles,

including how to write Dockerfiles for multi-stage builds. You also

proceeded to Dockerize the Newsbot project. In the next chapter, we

look at how you can persist data generated by containers using Docker

Volumes.

Chapter 4 Understanding the Dockerfile

91© Sathyajith Bhat 2018
S. Bhat, Practical Docker with Python, https://doi.org/10.1007/978-1-4842-3784-7_5

CHAPTER 5

Understanding Docker
Volumes
In the previous chapters, we learned about Docker and its associated

terminologies and took a deeper look into how we can build Docker

images using the Dockerfile.

In this chapter, we look at data persistency strategies for Docker

containers and learn why we need special strategies for data persistence.

�Data Persistence
Traditionally, most compute solutions come with associated ways to

persist and save the data. In case of virtual machines, a virtual disk is

emulated and the data saved to this virtual disk is saved as a file on the host

computer. In the case of cloud providers such as Amazon Web Services

(AWS), they provide us with a root volume for persisting data and block

storage (Elastic Block Store—EBS) for persisting data.

When it comes to containers, the story is different. Containers

were meant and designed for stateless workloads and the design of the

container layers shows that. In Chapter 2, we understood that a Docker

image is a read-only template consisting of various layers and when the

image is run as a container, the container contains a small write-only layer

of the data. This means that:

92

•	 The data is locked tightly to the host and makes

running applications that share data across multiple

containers and applications difficult.

•	 The data doesn’t persist when the container is

terminated and extracting the data out of the container

is difficult.

•	 Writing to the container’s write layer requires a storage

driver to manage the filesystem. Storage drivers do not

provide an acceptable level of performance in terms of

read/write speeds. Large amounts of data written to the

container’s write layer can lead of the container and the

Docker daemon running out of memory.

�Example of Data Loss Within Docker Container
To demonstrate the features of the write layer, let’s use a container from an

Ubuntu base image. We will create a file in the Docker container, stop the

container, and note the behavior of the container.

	 1.	 Start by creating an nginx container:

docker run -d --name nginx-test nginx

	 2.	 Open a terminal within the container:

docker exec -t nginx-test bash

	 3.	 Create a copy of nginx’s default.conf to a new

config:

cd /etc/nginx/conf.d

cp default.conf nginx-test.conf

Chapter 5 Understanding Docker Volumes

93

	 4.	 We won’t be modifying the contents of nginx-

test.conf since it’s immaterial. Now we’ll stop the

container. From the Docker host terminal, type:

docker stop nginx-test

	 5.	 Start the container again:

docker start nginx-test

	 6.	 Open a terminal within the container:

docker exec -it nginx-test bash

	 7.	 Now, see if the changes are still around:

cd /etc/nginx/conf.d

ls

default.conf nginx-test.conf

	 8.	 Since the container was only stopped, the data

persists. Let’s stop, remove the container, and then

bring up a new one and observe what happens.

docker stop nginx-test

docker rm nginx-test

	 9.	 Start a new container:

docker run -d --name nginx-test nginx

	 10.	 Now that a new container is up and running, let’s

connect to the container’s terminal:

docker exec -it nginx-test bash

Chapter 5 Understanding Docker Volumes

94

	 11.	 Examine contents of the conf.d directory of nginx:

cd /etc/nginx/conf.d

ls

default.conf

Since the container was removed, the write-only layer associated with

the container was also removed and the files are no longer accessible. For

a containerized stateful application, such as an application that requires a

database, the data from the previous container will no longer be accessible

when an existing container is removed or a new container is added.

To mitigate this issue, Docker offers various strategies to persist the data.

•	 tmpfs mounts

•	 Bind mounts

•	 Volumes

�tmpfs Mounts

As the name suggests, a tmpfs creates a mount in tmpfs, which is a

temporary file storage facility. The directories mounted in tmpfs appear as

a mounted filesystem but are stored in memory, not to persistent storage

such as a disk drive.

tmpfs mounts are limited to Docker containers on Linux. A tmpfs

mount is temporary and the data is stored in Docker’s hosts memory. Once

the container is stopped, the tmpfs mount is removed and the files written

to tmpfs mount are lost.

To create a tmpfs mount, you can use the --mount or --tmpfs flag

when running a container, as shown here:

docker run -it --name tmpfs-test --mount type=tmpfs, target=/

tmpfs-mount ubuntu bash

docker run -it --name tmpfs-test --tmpfs /tmpfs-mount ubuntu bash

Chapter 5 Understanding Docker Volumes

95

Let’s examine the container:

 docker inspect tmpfs-test | jq .[0].Mounts

[

 {

 "Type": "tmpfs",

 "Source": "",

 "Destination": "/tmpfs-mount",

 "Mode": "",

 "RW": true,

 "Propagation": ""

 }

]

This output tells us that the mount is of tmpfs type, and that the

destination of the mount is /tmpfs-mount. Since the tmpfs mount doesn’t

let us mount the host directory, the source is empty.

tmpfs mounts are best for containers that generate data that doesn’t need

to be persisted and doesn’t have to be written to the container’s writable layer.

�Bind Mounts

In bind mounts, the file/directory on the host machine is mounted into

the container. By contrast, when using a Docker volume, a new directory

is created within Docker’s storage directory on the Docker host and the

contents of the directory are managed by Docker.

Tip  While searching for Docker bind mounts/volume articles on the
Internet, you are most likely to find articles that refer to use of volumes
with the -v flag. With Docker version 17.06, Docker encourages
everyone to use the --mount syntax. To make it easier for you, the
examples use both the flags. Also note that the Mounts key while
issuing docker inspect is only avaiable with the --mount syntax.

Chapter 5 Understanding Docker Volumes

96

Let’s see how we can use bind mounts. We’ll try to mount our Docker

host’s home directory to a directory called host-home within the container.

To do this, type the following command:

docker run -it --name mount-test --mount type=bind,source="$HOME",

target=/host-home ubuntu bash

docker run -it --name mount-test -v $HOME:/host-home ubuntu bash

Inspecting the created container tells us the different characteristics

about the mount.

docker inspect mount-test | jq .[0].Mounts

[

 {

 "Type": "bind",

 "Source": "/Users/sathyabhat",

 "Destination": "/host-home",

 "Mode": "",

 "RW": true,

 "Propagation": "rprivate"

 }

]

This output tells us that the mount is of bind type, with the source, i.e.

the directory of the Docker host being mounted, is /Users/sathyabhat

(the home directory), and the destination of the mount is /host-home. The

"Propagation" property refers to bind propagation—a property indicating

whether or not the mounts created for a bind mount are reflected onto

replicas of that mount. Bind propagation is applicable only to Linux hosts,

because bind mounts typically don’t need to be modified. The RW flag

indicates that the mounted directory can be written to. Let’s examine the

contents of the host-home to see that the mounts are indeed proper. In the

terminal of the container, type the following:

cd /host-home

ls

Chapter 5 Understanding Docker Volumes

97

The output of the command should be a listing of our Docker host

home directory.

Let’s try to create a file in the host-home directory. For this, type the

following command:

cd /host-home

echo "This is a file created from container having kernel

`uname -r`" > host-home-file.txt

This command creates a file called host-home-file.txt, which

contains the text. This is a file created from the container having kernel

4.9.87-linuxkit-aufs (note that the actual kernel version might be

different than what is listed here) in the /host-home directory of the

container. And since this is a bind mount of the home directory of the

Docker host, the file should also be created in the home directory of the

Docker host. Let’s see if this is indeed the case. Open a new terminal

window in your Docker host and type the following command:

cd ~

ls -lah host-home-file.txt

We should be seeing this output, indicating the presence of the file:

-rw-r--r-- 1 sathyabhat sathyabhat 73B Apr 01 11:16 host-

home-file.txt

Let’s check the context of the file:

cat host-home-file.txt

This is a file created from container having kernel

4.9.87-linuxkit-aufs

This confirms that the file created in the container is indeed available

outside the container. Since we are concerned with data persistence after

the container stops, is removed, and started again, let’s see what happens.

Chapter 5 Understanding Docker Volumes

98

Stop the container by entering the following command in the Docker

host terminal.

docker stop mount-test

docker rm mount-test

Confirm that the file on the Docker host is still present:

cat ~/host-home-file.txt

This is a file created from container having kernel

4.9.87-linuxkit-aufs

Bind mounts are of immense help and are most often used during

the development phase of an application. By having bind mounts, we can

prepare the application for production by using the same container as

production while mounting the source directory as a bind mount, allowing

for developers to have rapid code-test-iterate cycles without having to

rebuild the Docker image.

Caution R emember with bind mounts, the data flow goes both
ways on the Docker host as well as the container. Any destructive
actions (such as deleting a directory) will negatively impact the
Docker host as well.

This is even more important if the mounted directory is a broad

one—such as the home directory or even the root directory. A script gone

rogue or a mistaken rm-rf can bring down the Docker host completely. To

mitigate this, we can create a bind mount with the read-only option so that

the directory is mounted read-only. To do this, we can provide a read-only

parameter to the docker run command. The commands are as follows:

docker run -it --name mount-test --mount type=bind,source="$HOME",

target=/host-home,readonly ubuntu bash

docker run -it --name mount-test -v $HOME:/host-home:ro ubuntu bash

Chapter 5 Understanding Docker Volumes

99

Let’s inspect the container that was created:

docker inspect mount-test | jq .[0].Mounts

[

 {

 "Type": "bind",

 "Source": "/Users/sabhat",

 "Destination": "/host-home",

 "Mode": "ro",

 "RW": false,

 "Propagation": "rprivate"

 }

]

We can see that the "RW" flag is now false and the mode is set as

"read-only". Let’s try writing to the file as earlier:

echo "This is a file created from container having kernel

`uname -r`" > host-home-file.txt

bash: host-home-file.txt: Read-only file system

The write fails and bash tells us that it was because the filesystem is

mounted read-only. Any destructive operations are also met with the same

error:

rm host-home-file.txt

rm: cannot remove 'host-home-file.txt': Read-only file system

�Volumes

Docker volumes are the current recommended method of persisting data

stored in containers. Volumes are completely managed by Docker and

have many advantages over bind mounts:

•	 Volumes are easier to back up or transfer than bind mounts

Chapter 5 Understanding Docker Volumes

100

•	 Volumes work on both Linux and Windows containers

•	 Volumes can be shared among multiple containers

without problems

Docker Volume Subcommands

Docker exposes the Volume API as a series of subcommands. The

commands are as follows:

•	 docker volume create

•	 docker volume inspect

•	 docker volume ls

•	 docker volume prune

•	 docker volume rm

Create Volume

The create volume command is used to create named volumes. The

most common use case is to generate a named volume. The usage for the

command is:

docker volume create --name=<name of the volume> --label=<any

extra metadata>

Tip D ocker object labels were discussed in Chapter 4.

Example:

docker volume create --name=nginx-volume

This creates a named volume called nginx-volume.

Chapter 5 Understanding Docker Volumes

101

Inspect

The inspect command displays detailed information about a volume. The

usage for this command is:

docker volume inspect <name of the volume>

Taking the example of the nginx-volume name, we can find more

details by typing the following:

docker volume inspect nginx-volume

This would bring up a result as shown here:

docker volume inspect nginx-volume

[

 {

 "CreatedAt": "2018-04-17T13:51:02Z",

 "Driver": "local",

 "Labels": {},

 �"Mountpoint": �"/var/lib/docker/volumes/nginx-volume/_

data",

 "Name": "nginx-volume",

 "Options": {},

 "Scope": "local"

 }

]

This command is useful if you want to copy/move/take a backup of

a volume. The mountpoint property lists the location on the Docker host

where the file containing the data of the volume is saved.

Chapter 5 Understanding Docker Volumes

102

List Volumes

The list volume command shows all the volumes present on the host.

The usage is shown here:

docker volume ls

Prune Volumes

The prune volume command removes all unused local volumes. The usage

is shown here:

docker volume prune <--force>

Docker considers volumes not used by at least one container as unused.

Since unused volumes can end up consuming a considerable amount of

disk space, it’s not a bad idea to run the prune command at regular intervals,

especially on local development machines. When you use the --force flag

option, it will not ask for confirmation when the command is run.

Remove Volumes

The remove volume command removes volumes whose names are

provided as parameters. The usage is shown here:

docker volume rm <name>

In case of the volume created here, the command would be:

docker volume rm nginx-volume

Docker will not remove a volume that is in use and will return an error.

For instance, we might try to delete the volume nginx-volume, which is

attached to the container.

Note E ven if the container stops, Docker will consider the volume
to be in use.

Chapter 5 Understanding Docker Volumes

103

docker volume rm nginx-volume

Error response from daemon: unable to remove volume:

remove nginx-volume: volume is in use -

[6074757a5afafd74aec6d18a5b4948013639ddfef39507dac5d08

50d56edbd82]

The long piece of identifier is the ID of the container associated with

the volume. If the volume is associated with multiple containers, all the

container IDs will be listed. More details about the associated container

can be found by using docker inspect command:

docker inspect 6074757a5afafd74aec6d18a5b4948013639ddfe

f39507dac5d0850d56edbd82

Using Volumes When Starting a Container

The syntax for using a volume when starting a container is nearly the same

as using a bind host. Let’s run the following command:

docker run -it --name volume-test --mount target=/data-volume

ubuntu bash

docker run -it --name volume-test -v:/data-volume

When compared to bind mount command, using the --mount flag, we

skip the type and source option. When using the -v flag, we skip the host

directory to bind to (since the source/host directory is maintained by Docker).

Let’s examine the created container:

docker inspect volume-test | jq .[0].Mounts

[

 {

 "Type": "volume",

 "Name": �"5fe950de3ac2b428873cb0af6281f3fb3817af933fbad3

2070b1a3101be4927f",

Chapter 5 Understanding Docker Volumes

104

 �"Source": �"/var/lib/docker/volumes/5fe950de3ac2b428873c

b0af6281f3fb3817af933fbad32070b1a3101be4927f/_

data",

 "Destination": "/data-volume",

 "Driver": "local",

 "Mode": "z",

 "RW": true,

 "Propagation": ""

 }

]

Looking at the mounts section, we can conclude that Docker

has created a new volume with an auto-generated name of

"5fe950de3ac2b428873cb0af6281f3fb3817af933fbad3207

0b1a3101be4927f" with the data file for this saved in Docker’s data

directory, "/var/lib/docker/volumes/5fe950de3ac2b428873cb0af

6281f3fb3817af933fbad32070b1a3101be4927f/_data", and mounted to

the /data-volume directory of the container.

Working with autogenerated volume names gets tedious fast, so we can

generate a volume ahead of time and provide this name to Docker when

running a container. We can do this by using the docker volume command

to create the volume:

docker volume create volume-test

We can also use docker volume inspect to examine the volume’s

properties:

docker volume inspect volume-test

[

 {

 "CreatedAt": "2018-04-15T12:58:32Z",

 "Driver": "local",

 "Labels": {},

 "Mountpoint": "/var/lib/docker/volumes/volume-test/_data",

Chapter 5 Understanding Docker Volumes

105

 "Name": "volume-test",

 "Options": {},

 "Scope": "local"

 }

]

We can now refer to this volume when creating/running a container.

Note the extra source= flag with the --mount flag and the parameter after

-v flag. These indicate the volume name to which the container has to be

attached.

docker run -it --name volume-test --mount source=volume-

test,target=/data-volume ubuntu bash

docker run -it --name volume-test -v:volume-test:/data-volume

Let’s try to create the same file as earlier. From the terminal within the

container, type the following:

echo "This is a file created from container having kernel

`uname -r`" > docker_kernel_info.txt

We’ll stop and remove the container:

docker stop volume-test

docker rm volume-test

In the absence of volumes, when the container was removed, its

writable layer would have gotten removed as well. Let’s see what happens

when we launch a new container with the volume attached. Remember

that this is not a bind mount, so we are not forwarding explicitly any of the

Docker host directories.

docker run -it --name volume-test --mount source=volume-

test,target=/data-volume ubuntu bash

docker run -it --name volume-test -v:volume-test:/data-volume

Chapter 5 Understanding Docker Volumes

106

Now we examine the contents of the /data-volume directory of the

container:

cd /data-volume/

ls

docker-kernel-info.txt

Now we examine the contents of docker-kernel-info.txt:

cat docker_kernel_info.txt

This is a file created from container having kernel

4.9.87-linuxkit-aufs.

However, with volumes, we are directing Docker to store the data in

a volume file that is managed by Docker itself. When we launch a new

container, providing the volume name along with the run command

attaches the volume to the container, making previously saved data

available to the newly launched container.

VOLUME Instruction in Dockerfile

The VOLUME instruction marks the path mentioned succeeding the

instruction as an externally stored data volume, managed by Docker. The

syntax is as follows:

VOLUME ["/data-volume"]

The paths mentioned after the instruction can be a JSON array or an

array of paths separated by spaces.

Note T he VOLUME instruction in a Dockerfile doesn’t support
named volumes and, as a result, when the container is run, the
volume name will be an autogenerated name.

Chapter 5 Understanding Docker Volumes

107

�Docker Volume Exercises
You’ve learned a fair bit about volumes, so let’s get some hands-on

experience creating and attaching volumes to containers.

BUILDING AND RUNNING AN NGINX CONTAINER WITH VOLUMES AND
BIND MOUNTS

In this exercise, we build an nginx Docker image with a Docker volume

attached, which contains a custom nginx configuration. Toward the second

part of the exercise, we will attach a bind mount and a volume containing a

static web page and a custom nginx configuration. The intent of the exercise

is help the readers understand how to leverage volumes and bind mounts to

make local development easy.

Tip T he source code and Dockerfile associated with this is available
as docker-volume-bind-mount.zip. Ensure you extract the
contents of the ZIP file and run the commands in the directory to
which they were extracted.

We can start with the Dockerfile, as shown here.

Dockerfile Listing

FROM nginx:alpine

COPY default.conf /etc/nginx/conf.d

VOLUME ["/var/lib"]

EXPOSE 80

This Dockerfile takes a base nginx image, overwrites the default.conf nginx

configuration file with our custom default.conf nginx configuration file, and

declares /var/lib as a volume. We can build this by using this command:

Chapter 5 Understanding Docker Volumes

108

docker build -t sathyabhat:nginx-volume.

Sending build context to Docker daemon 3.616MB

Step 1/4 : FROM nginx:alpine

 ---> 91ce6206f9d8

Step 2/4 : COPY default.conf /etc/nginx/conf.d

 ---> Using cache

 ---> d131f1bbdeae

Step 3/4 : VOLUME ["/var/lib"]

 ---> Running in fa7d936e3456

Removing intermediate container fa7d936e3456

 ---> 0c94600d506d

Step 4/4 : EXPOSE 80

 ---> Running in 3e42c1c3558a

Removing intermediate container 3e42c1c3558a

 ---> 3ea0e5dafe64

Successfully built 3ea0e5dafe64

Successfully tagged sathyabhat:nginx-volume

Before we run this image, let’s look at our custom nginx default.conf

contents:

server {

 listen 80;

 server_name localhost;

 location / {

 root /srv/www/starter;

 index index.html index.htm;

 }

 access_log /var/log/nginx/access.log;

 access_log /var/log/nginx/error.log;

 error_page 500 502 503 504 /50x.html;

 location = /50x.html {

Chapter 5 Understanding Docker Volumes

109

 root /usr/share/nginx/html;

 }

}

The nginx config is a simple config. It tells nginx to serve a default file

called index.htm in /srv/www/starter.

Let’s run the Docker container. Since nginx is listening to port 80, we need to

tell Docker to publish the ports using the -p flag:

docker run -d --name nginx-volume -p 8080:80

sathyabhat:nginx-volume

Note that we are publishing from the Docker host’s port 8080 to port 80

of the container. Let’s try to load the web page by navigating to

http://localhost:8080. See Figure 5-1.

Figure 5-1.  The 404 error indicates when a source directory is not
mounted

Chapter 5 Understanding Docker Volumes

110

However, when we load the website, we see a HTTP 404 - Page Not

Found. This is because in the nginx config file, we directed nginx to server

index.html. However, we have not copied the index.html file to the

container, neither have we mounted the location of the index.html to the

container as a bind mount. As a result, nginx cannot find the index.html file.

We can correct this by copying the website files to the container as we did

in the previous chapter. In this chapter, we will leverage the bind mount

feature we learned about earlier and mount the entire directory containing the

sources. All that is needed is to use pass the bind mount flag that we learned

about earlier.

The Dockerfile remains the same. The Docker run command is shown here:

docker run -d --name nginx-volume-bind -v "$(pwd)"/:/srv/www -p

8080:80 sathyabhat:nginx-volume

Confirm that the container is running:

CONTAINER ID IMAGE COMMAND

CREATED STATUS PORTS NAMES

54c857ca065b sathyabhat:nginx-volume "nginx -g 'daemon of..."

6 minutes ago Up 6 minutes 0.0.0.0:8080->80/tcp hopeful_meitner

Confirm that the volumes and mounts are correct:

[

 {

 "Type": "bind",

 "Source": "/home/sathyabhat/docker-volume-bind-mount",

 "Destination": "/srv/www",

 "Mode": "",

 "RW": true,

 "Propagation": "rprivate"

 },

Chapter 5 Understanding Docker Volumes

111

 {

 "Type": "volume",

 �"Name": �"190709bbaca54fd0dd8e18dac533e41094522281d65ca

55718d2eb309e37ff20",

 �"Source": �"/var/lib/docker/volumes/190709bbaca54fd0dd8e18

dac533e41094522281d65ca55718d2eb309e37ff20/_data",

 "Destination": "/var/lib",

 "Driver": "local",

 "Mode": "",

 "RW": true,

 "Propagation": ""

 }

]

Now navigate to the same URL again. If the mounts section looks fine, then

you should see the page shown in Figure 5-2.

Success!

Figure 5-2.  nginx serving the web page successfully

Chapter 5 Understanding Docker Volumes

112

ADDING VOLUMES TO OUR PROJECT

In the previous chapters’ exercises, we wrote a Dockerfile for our project.

However, as you might have noticed, killing the container would reset the state

and we need to customize our bot all over again.

For this exercise, we will be working on a slightly modified codebase that

has support for saving the preferences to a SQLite DB. We would use Docker

Volumes to persist the database across containers.

Let’s modify the existing Dockerfile.

Tip T he source code and Dockerfile associated with this are
available as docker-subreddit-fetcher-volume.zip.

Dockerfile Listing

FROM python:3-alpine

COPY * /apps/subredditfetcher/

WORKDIR /apps/subredditfetcher/

VOLUME ["/apps/subredditfetcher"]

RUN ["pip", "install", "-r", "requirements.txt"]

RUN ["python", "one_time.py"]

ENV NBT_ACCESS_TOKEN=<token>

CMD ["python", "newsbot.py"]

Take care to replace <token> with the token generated from the earlier

chapter. Let’s build the image. Note the extra RUN step, which runs one_

time.py. This script creates the necessary database and tables required

for our application. Another notable change is the addition of the VOLUME

instruction. As we learned earlier, this is to tell Docker to mark the directory

specified to be managed as a volume, even if we did not specify the required

volume name in the docker run command. Let’s build the image.

Chapter 5 Understanding Docker Volumes

113

docker build --no-cache -t sathyabhat:subreddit_fetcher_volume.

Sending build context to Docker daemon 54.27kB

Step 1/7 : FROM python:3-alpine

 ---> 4fcaf5fb5f2b

Step 2/7 : COPY * /apps/subredditfetcher/

 ---> 5e14e2d2bcfe

Step 3/7 : WORKDIR /apps/subredditfetcher/

Removing intermediate container e1c430858221

 ---> 5e3ba7458662

Step 4/7 : RUN ["pip", "install", "-r", "requirements.txt"]

 ---> Running in 8b8cf1497005

Collecting praw (from -r requirements.txt (line 1))

 Downloading [...]

Building wheels for collected packages: peewee

 Running setup.py bdist_wheel for peewee: started

 �Running setup.py bdist_wheel for peewee: finished with status

'done'

 Stored in directory: /root/.cache/pip/wheels/66/73/41/

cdf4aaa004d0449c3b2d56c0e58ff43760ef71b80b38fcee2f

Successfully built peewee

Installing collected packages: chardet, idna, urllib3, certifi,

requests, prawcore, update-checker, praw, peewee

Successfully installed certifi-2018.4.16 chardet-3.0.4 idna-2.6

peewee-2.10.2 praw-5.4.0 prawcore-0.14.0 requests-2.18.4 update-

checker-0.16 urllib3-1.22

Removing intermediate container 8b8cf1497005

 ---> 44d125f83421

Step 5/7 : RUN ["python", "one_time.py"]

 ---> Running in b61182b29479

Removing intermediate container b61182b29479

 ---> 52d93f651f5a

Chapter 5 Understanding Docker Volumes

114

Step 6/7 : �ENV NBT_ACCESS_TOKEN="495637361:AAHIhiDTX1UeX17KJy0-

FsMZEqEtCFYfcP8"

 ---> Running in fb1d9e67680e

Removing intermediate container fb1d9e67680e

 ---> 7ae9191753f9

Step 7/7 : CMD ["python", "newsbot.py"]

 ---> Running in c23845327155

Removing intermediate container c23845327155

 ---> d3baeb1e7191

Successfully built d3baeb1e7191

Successfully tagged sathyabhat:subreddit_fetcher_volume

Let’s run our project. Note that we will provide the volume name via the

-v flag.

docker run --name subreddit_fetcher_volume -v subreddit_

fetcher:/apps/subredditfetcher sathyabhat:subreddit_fetcher_

volume

This run command creates a new container known as subreddit_

fetcher_volume with an attached volume known as subreddit_fetcher

mounted on to the /apps/subredditfetcher directory from the

sathyabhat:subreddit_fetcher_volume image.

We should be seeing the logs like so:

INFO: _new_conn - Starting new HTTPS connection (1): api.

telegram.org

INFO: _new_conn - Starting new HTTPS connection (1): api.

telegram.org

INFO: get_updates - received response: {u'ok': True, u'result':

[]}

INFO: _new_conn - Starting new HTTPS connection (1): api.

telegram.org

Chapter 5 Understanding Docker Volumes

115

INFO: get_updates - received response: {u'ok': True, u'result':

[]}

INFO: _new_conn - Starting new HTTPS connection (1): api.

telegram.org

INFO: get_updates - received response: {u'ok': True, u'result':

[]}

Let’s try setting a subreddit from which the bot should fetch the data, say

python. To do this, from telegram, find the bot and type /source Python.

The logs from the application should confirm the receipt of the command:

INFO: - handle_incoming_messages - Chat text received:/source

python

INFO: - handle_incoming_messages - Sources set for nnn

to python

INFO: - handle_incoming_messages - nnn

INFO: - post_message - posting Sources set as python! to nnn

The Telegram Messenger window should look like Figure 5-3.

Let’s fetch some content. To do this, type /fetch into the bot window. The

application should respond with a loading message and another chat with the

contents, as shown in Figure 5-4.

Figure 5-3.  Acknowledgement of subreddit source

Chapter 5 Understanding Docker Volumes

116

We will test for data persistency by stopping the bot, removing the container,

and creating a new container. To do this, first stop the bot by pressing Ctrl.

Next, remove the container by typing the following:

docker container rm subreddit_fetcher_volume

Create a new container by typing the same command we used previously to

launch the container:

docker run --name subreddit_fetcher_volume -v subreddit_fetcher:/

apps/subredditfetcher sathyabhat:subreddit_fetcher_volume

Figure 5-4.  The bot fetching contents from subreddit

Chapter 5 Understanding Docker Volumes

117

Now, in Telegram chat window, type /fetch again. Since the subreddit

source has been saved to the database, we should see the content from the

previously configured subreddit.

If you see the content again, the Docker volume setup is working correctly

(see Figure 5-5). Congrats! You have successfully set up data persistence for

this project.

Figure 5-5.  The bot fetching contents from subreddit after removing
and starting a new container

Chapter 5 Understanding Docker Volumes

118

�Summary
In this chapter, you learned about why data persistence is a problem in

containers and the different strategies Docker offers for managing data

persistence in containers. You also did a deep dive into configuring

volumes and how they differ from bind mounts. Finally, you went through

some hands-on exercises on how to work with bind mounts and volumes,

and you added volumes support for the Newsbot project. In the next

chapter, you learn more about Docker networking and learn how and why

the containers cannot connect to each other.

Chapter 5 Understanding Docker Volumes

119© Sathyajith Bhat 2018
S. Bhat, Practical Docker with Python, https://doi.org/10.1007/978-1-4842-3784-7_6

CHAPTER 6

Understanding Docker
Networks
In the previous chapters, we learned about Docker and its associated

terminologies, took a deeper look into how we can build Docker images

using the Dockerfile, and learned about how we can persist data generated

by containers.

In this chapter, we look at networking in Docker and how containers

can talk to each other with the help of Docker’s networking features.

�Why Do We Need Container Networking?
Traditionally, most compute solutions are thought of as single-purpose

solutions. It is not often we come across a single host (or a Virtual

Machine) hosting multiple workloads, especially production workloads.

With containers, the scenario changes. With lightweight containers and the

presence of advanced orchestration platforms such as Kubernetes or DC/

OS, it is very common to have multiple containers of different workloads

running on the same host with different instances of the application

distributed across multiple hosts. In such cases, container networking

helps in allowing (or limiting) cross container talk. To facilitate Docker, it

also comes with different modes of networks.

120

Tip  Docker’s networking subsystem is implemented by pluggable
drivers. Docker comes with four drivers out of the box, with more
and more drivers being available from Docker Store. It is available at
https://store.docker.com/search?category=network&q=
&type=plugin.

It is important to note that all of Docker’s networking modes are

achieved via Software Defined Networking (SDN). Specifically, on Linux

systems, Docker modifies iptables rules to provide the required level of

access/isolation.

�Default Docker Network Drivers
With a standard install of Docker, the following network drivers are available:

•	 bridge

•	 host

•	 overlay

•	 macvlan

•	 none

�Bridge Network

A bridge network is a user-defined network that allows for all containers

connected on the same network to communicate. The benefit is that the

containers on the same bridge network are able to connect, discover,

and talk to each other, while those not on the same bridge cannot

communicate directly with each other. Bridge networks are useful when

we have containers running on the same host that need to talk to each

other. If the containers that need to communicate are on different Docker

hosts, the overlay network would be needed.

Chapter 6 Understanding Docker Networks

https://store.docker.com/search?category=network&q=&type=plugin
https://store.docker.com/search?category=network&q=&type=plugin

121

When Docker is installed and started, a default bridge network is

created and newly started containers connect to it. However, it is always

better if you create a bridge network yourself. The reasons for this are

outlined here:

•	 Better isolation across containers. As you have

learned, containers on the same bridge network

are discoverable and can talk to each other. They

automatically expose all ports to each other and

no ports are exposed to the outside world. Having

a separate user-defined bridged network for each

application provides better isolation between

containers of different applications.

•	 Easy name resolution across containers. For services

joining the same bridged network, containers can

connect to each other by name. For containers on the

default bridged network, the only way for containers to

connect to each other is via IP addresses or by using the

--link flag, which has been deprecated.

•	 Easy attachment/detachment of containers on user-

defined networks. For containers on the default

network, the only way to detach them is to stop the

running container and recreate it on the new network.

�Host Network

As the name suggests, with a host network, a container is attached to the

Docker host. This means that any traffic coming to the host is routed to the

container. Since all of containers’ ports are directly attached to the host, in

this mode, the concept of publishing ports doesn’t make sense. Host mode

is perfect if we have only one container running on the Docker host.

Chapter 6 Understanding Docker Networks

122

�Overlay Network

The overlay network creates a network spanning multiple docker hosts. It’s

called an overlay because it overlays the existing host network, allowing

containers connected to the overlay network to communicate across

multiple posts. Overlay networks are an advanced topic and are primarily

used when a cluster of Docker hosts is set up in Swarm mode. Overlay

networks also let you encrypt the application data traffic across the overlay

network.

�Macvlan Networks

Macvlan networks are a fairly recent introduction to the Docker

networking stack. Macvlan networks leverage the Linux kernel’s ability

to assign multiple logical addresses based on MAC to a single physical

interface. This means that you can assign a MAC address to a container’s

virtual network interface, making it appear as if the container has a

physical network interface connected to the network. This introduces

unique opportunities, especially for legacy applications that expect a

physical interface to be present and connected to the physical network.

Macvlan networks have an additional dependency on the Network

Interface Card (NIC) to support what is known as promiscuous mode. This

is a special mode that allows for a NIC to receive all traffic and direct it to

a controller, instead of receiving only the traffic that the NIC expects to

receive.

�None Networking

As the name suggests, none networking is where the container isn’t

connected to any network interface and does not receive any network

traffic. In this networking mode, only the loopback interface is created,

allowing the container to talk to itself, but not to the outside world or with

the other containers.

Chapter 6 Understanding Docker Networks

123

�Working with Docker Networks
Now that you understand conceptually what the different network modes

are, it’s time to try some hands-on exercises. For simplicity’s sake, we

will not be looking at overlay and Macvlan networks. Much like the other

subsystems, Docker comes with a subcommand for handling Docker

networks. To get started, try the following command:

docker network

You should see an explanation of which options are available:

docker network

Usage: docker network COMMAND

Manage networks

Options:

Commands:

 connect Connect a container to a network

 create Create a network

 disconnect Disconnect a container from a network

 inspect Display detailed information on one or more

networks

 ls List networks

 prune Remove all unused networks

 rm Remove one or more networks

Let’s look at which networks are available. To do this, type the

following:

docker network ls

Chapter 6 Understanding Docker Networks

124

At the minimum, you should see these:

docker network ls

NETWORK ID NAME DRIVER SCOPE

c540708fd14e bridge bridge local

45af7af75e0c host host local

d30afbec4d6b none null local

Each of these corresponds to the three types of networks—the bridge,

the host, and the none type. You can examine the details of the network by

typing the following:

docker network inspect <network id or name>

For instance:

docker network inspect bridge

[

 {

 "Name": "bridge",

 �"Id": �"c540708fd14e77106ebe2582685da1cb1a0f6f0cd097

fee6d3d9a6266334f20b",

 "Created": "2018-04-17T13:10:43.002552762Z",

 "Scope": "local",

 "Driver": "bridge",

 "EnableIPv6": false,

 "IPAM": {

 "Driver": "default",

 "Options": null,

 "Config": [

 {

 "Subnet": "172.17.0.0/16",

 "Gateway": "172.17.0.1"

 }

Chapter 6 Understanding Docker Networks

125

]

 },

 "Internal": false,

 "Attachable": false,

 "Ingress": false,

 "ConfigFrom": {

 "Network": ""

 },

 "ConfigOnly": false,

 "Containers": {},

 "Options": {

 "com.docker.network.bridge.default_bridge": "true",

 "com.docker.network.bridge.enable_icc": "true",

 �"com.docker.network.bridge.enable_ip_masquerade":

"true",

 �"com.docker.network.bridge.host_binding_ipv4":

"0.0.0.0",

 "com.docker.network.bridge.name": "docker0",

 "com.docker.network.driver.mtu": "1500"

 },

 "Labels": {}

 }

]

Among other things, you can see that:

•	 This bridge is the default.

•	 IPv6 is disabled for this bridge.

•	 The subnet is a 172.17.0.0/16, meaning that up to

65,536 containers can be attached to this network

(this is derived from the CIDR block of /16).

Chapter 6 Understanding Docker Networks

126

•	 The bridge has IP masquerading enabled, which

means that the outside world will not be able to see

the container’s private IP and it will appear that the

requests are coming from the Docker host.

•	 The host binding is 0.0.0.0, which means that the

bridge is bound to all interfaces on the host.

By contrast, if you inspect the none network:

docker network inspect none

[

 {

 "Name": "none",

 �"Id": �"d30afbec4d6bafde5e0c1f8ca8f7dd6294bd8d7766a

9184909188f1a00444fb5",

 "Created": "2017-05-10T10:37:04.125762206Z",

 "Scope": "local",

 "Driver": "null",

 "EnableIPv6": false,

 "IPAM": {

 "Driver": "default",

 "Options": null,

 "Config": []

 },

 "Internal": false,

 "Attachable": false,

 "Ingress": false,

 "ConfigFrom": {

 "Network": ""

 },

 "ConfigOnly": false,

 "Containers": {},

 "Options": {},

Chapter 6 Understanding Docker Networks

127

 "Labels": {}

 }

]

The driver null indicates that no networking will be handled for this.

�Bridge Networks

Before we work on creating a bridge network, let’s create a MySQL and

Adminer container on the default bridge network.

To create the MySQL container, use this command:

docker run -d --name mysql -p 3306:3306 -e MYSQL_ROOT_

PASSWORD=dontusethisinprod mysql

Since you are starting in detached mode (as specified by the -d flag),

follow the logs until you are certain the container is up.

docker logs -f mysql

The result should be along the lines of the following:

Initializing database

[...]

Database initialized

[...]

MySQL init process in progress...

[...]

MySQL init process done. Ready for start-up.

[...]

[Note] mysqld: ready for connections.

Version: '5.7.18' socket: '/var/run/mysqld/mysqld.sock' port:

3306 MySQL Community Server (GPL)

[...]

Chapter 6 Understanding Docker Networks

128

If you see the last set of lines, the MySQL database container is ready.

Let’s create the Adminer container:

docker run -d --name adminer -p 8080:8080 adminer

Following the logs of Adminer:

docker logs -f adminer

PHP 7.2.4 Development Server started

That means Adminer is ready. Let’s look at the two containers.

Specifically, the networking aspects of them.

docker inspect mysql | jq .[0].NetworkSettings.Networks

{

 "bridge": {

 "IPAMConfig": null,

 "Links": null,

 "Aliases": null,

 �"NetworkID": �"96d1b157fb39968514ffef88a07a9204242c9923

61236853066ba9f390bbf22c",

 �"EndpointID": �"3b7566eb0e04a6510be1848e06f51a8329ad6db1eb06

011932790c39764978bc",

 "Gateway": "172.17.0.1",

 "IPAddress": "172.17.0.3",

 "IPPrefixLen": 16,

 "IPv6Gateway": "",

 "GlobalIPv6Address": "",

 "GlobalIPv6PrefixLen": 0,

 "MacAddress": "02:42:ac:11:00:03",

 "DriverOpts": null

 }

}

Chapter 6 Understanding Docker Networks

129

You now know that the MySQL container has been assigned an IP

address of 172.17.0.2 on the default bridge network. Now examine the

Adminer container:

docker inspect adminer | jq .[0].NetworkSettings.Networks

{

 "bridge": {

 "IPAMConfig": null,

 "Links": null,

 "Aliases": null,

 �"NetworkID": �"96d1b157fb39968514ffef88a07a9204242c9923612

36853066ba9f390bbf22c",

 �"EndpointID": �"bf862e4decc41838c22d251597750f203ed6

de2bcb7d69bd69d4a1af7ddd17b3",

 "Gateway": "172.17.0.1",

 "IPAddress": "172.17.0.2",

 "IPPrefixLen": 16,

 "IPv6Gateway": "",

 "GlobalIPv6Address": "",

 "GlobalIPv6PrefixLen": 0,

 "MacAddress": "02:42:ac:11:00:02",

 "DriverOpts": null

 }

}

The Adminer container is associated with IP address of 172.17.0.3

within the bridge network. However, since both containers are bound to

the host IP of 0.0.0.0 and translated to all interfaces of the Docker host, you

should be able to connect to either by its port.

However, as you learned, the default bridge network does not perform

DNS resolution by the service name, and neither does it let us connect

via the container’s service name—only via IPs. To demonstrate this, try to

connect to the database via Adminer. Navigate to http://locolhost:8080.

Chapter 6 Understanding Docker Networks

130

Enter the server as mysql and try to log in. You’ll notice that the login

will fail, as shown in Figure 6-1.

Figure 6-1.  Connection to named host fails

Chapter 6 Understanding Docker Networks

131

Try to log in again. This time in the server box, enter the IP address of

the MySQL container, as shown in Figure 6-2.

Figure 6-2.  Trying to log in with IP address of the container

Chapter 6 Understanding Docker Networks

132

When you try to log in now, it should be successful, as shown in

Figure 6-3.

While entering the IP is an acceptable workaround when there is only

one dependent container, many current-day applications have multiple

dependencies, whereby this approach breaks down.

Creating Named Bridge Networks

Let’s create a database network and try to connect MySQL and the

Adminer container to the network. We can create a bridge network by

typing the following command:

docker network create database <network name>

Figure 6-3.  Logging in with the IP address is successful

Chapter 6 Understanding Docker Networks

133

Docker gives you more options in terms of specifying the subnet etc.,

but for the most part, the defaults are good. Note that the bridge network

allows you to create only a single subnet.

Now create a network called database:

docker network create database

Let’s inspect the created network:

docker network inspect database

[

 {

 "Name": "database",

 �"Id": �"df8124f5f2e662959239592086bea0282e507a60

4554523b648e1f9e23cbf18e",

 "Created": "2018-04-27T10:29:52.0619506Z",

 "Scope": "local",

 "Driver": "bridge",

 "EnableIPv6": false,

 "IPAM": {

 "Driver": "default",

 "Options": {},

 "Config": [

 {

 "Subnet": "172.25.0.0/16",

 "Gateway": "172.25.0.1"

 }

]

 },

 "Internal": false,

 "Attachable": false,

 "Ingress": false,

 "ConfigFrom": {

Chapter 6 Understanding Docker Networks

134

 "Network": ""

 },

 "ConfigOnly": false,

 "Containers": {},

 "Options": {},

 "Labels": {}

 }

]

Note that the created network has a subnet of 172.25.0.0/16. Let’s stop

and remove the existing containers:

docker stop adminer

docker rm adminer

docker stop mysql

docker rm mysql

Now launch the MySQL container, this time connected to the database

network. The command will be as follows:

docker run -d --network database --name mysql -p 3306:3306 -e

MYSQL_ROOT_PASSWORD=dontusethisinprod mysql

Note the additional --network flag, which tells Docker what network

it should attach the container to. Wait for bit for the container to initialize.

We can also check the logs and ensure that the container is ready:

docker logs -f mysql

The result should be along the lines of the following:

Initializing database

[...]

Database initialized

[...]

Chapter 6 Understanding Docker Networks

135

MySQL init process in progress...

[...]

MySQL init process done. Ready for start up.

[...]

[Note] mysqld: ready for connections.

Version: '5.7.18' socket: '/var/run/mysqld/mysqld.sock'

port: 3306 MySQL Community Server (GPL)

[...]

Now examine the container:

docker inspect mysql | jq .[0].NetworkSettings.Networks

{

 "database": {

 "IPAMConfig": null,

 "Links": null,

 "Aliases": [

 "e9508a98faf8"

],

 �"NetworkID": �"df8124f5f2e662959239592086bea0282e507

a604554523b648e1f9e23cbf18e",

 �"EndpointID": �"66db8ac356bad4b0c966a65987d1bda3a05d37

435039c8c6a3f464c528f4e350",

 "Gateway": "172.25.0.1",

 "IPAddress": "172.25.0.2",

 "IPPrefixLen": 16,

 "IPv6Gateway": "",

 "GlobalIPv6Address": "",

 "GlobalIPv6PrefixLen": 0,

 "MacAddress": "02:42:ac:19:00:02",

 "DriverOpts": null

 }

}

Chapter 6 Understanding Docker Networks

136

Notice that the container is part of the database network. We can

confirm this by inspecting the database network as well.

docker network inspect database | jq .[0].Containers

 �"e9508a98faf8e4f1c55e04e1a4412ee79a1ac1e78e965

52ce4ee889d196eac23": {

 "Name": "mysql",

 �"EndpointID":

"66db8ac356bad4b0c966a65987d1bda3a05d37435039c8

c6a3f464c528f4e350",

 "MacAddress": "02:42:ac:19:00:02",

 "IPv4Address": "172.25.0.2/16",

 "IPv6Address": ""

 }

Note that the containers key in the database network now has the

MySQL container. Let’s launch the Adminer container as well. Type the

following command:

docker run -d --name adminer -p 8080:8080 adminer

Notice that we omitted the --network command. This means Adminer

will be connected to the default bridge network.

docker inspect adminer | jq .[0].NetworkSettings.Networks

{

 "bridge": {

 "IPAMConfig": null,

 "Links": null,

 "Aliases": null,

 �"NetworkID": �"c540708fd14e77106ebe2582685da1cb1a0f6f0cd097

fee6d3d9a6266334f20b",

 �"EndpointID": �"a4d1df412e61a4baeb63a821f71ea0cd5899ace54362

34ef0bab688a5636dea7",

Chapter 6 Understanding Docker Networks

137

 "Gateway": "172.17.0.1",

 "IPAddress": "172.17.0.2",

 "IPPrefixLen": 16,

 "IPv6Gateway": "",

 "GlobalIPv6Address": "",

 "GlobalIPv6PrefixLen": 0,

 "MacAddress": "02:42:ac:11:00:02",

 "DriverOpts": null

 }

Connecting Containers to Named Bridge Networks

Docker lets us connect a container to another network on the fly very

easily. To do this, type the following command:

dockr network connect <network name> <container name>

Since you need to connect the Adminer container to the database

network, the command looks as so:

docker network connect database adminer

Let’s inspect the Adminer container now:

docker inspect adminer | jq .[0].NetworkSettings.Networks

{

 "bridge": {

 "IPAMConfig": null,

 "Links": null,

 "Aliases": null,

 �"NetworkID": �"c540708fd14e77106ebe2582685da1cb1a0f6f0cd0

97fee6d3d9a6266334f20b",

 �"EndpointID": �"a4d1df412e61a4baeb63a821f71ea0cd5899ace54

36234ef0bab688a5636dea7",

 "Gateway": "172.17.0.1",

Chapter 6 Understanding Docker Networks

138

 "IPAddress": "172.17.0.2",

 "IPPrefixLen": 16,

 "IPv6Gateway": "",

 "GlobalIPv6Address": "",

 "GlobalIPv6PrefixLen": 0,

 "MacAddress": "02:42:ac:11:00:02",

 "DriverOpts": null

 },

 "database": {

 "IPAMConfig": {},

 "Links": null,

 "Aliases": [

 "9602c2384418"

],

 �"NetworkID": �"df8124f5f2e662959239592086bea0282e507a60

4554523b648e1f9e23cbf18e",

 �"EndpointID": �"3e9591d59b31fe941ad39f8928898c2ad97230a7

e1f07afff0b8df061ea1bfdb",

 "Gateway": "172.25.0.1",

 "IPAddress": "172.25.0.3",

 "IPPrefixLen": 16,

 "IPv6Gateway": "",

 "GlobalIPv6Address": "",

 "GlobalIPv6PrefixLen": 0,

 "MacAddress": "02:42:ac:19:00:03",

 "DriverOpts": null

 }

}

Chapter 6 Understanding Docker Networks

139

Notice that the Networks key has two networks—the default bridge

network and the database network that we just connected to. Since the

container doesn’t need to be connected to the default bridge network, let’s

disconnect it. To do this, use this command:

docker network disconnect <network name> <container name>

In this case, the command is as follows:

docker network disconnect bridge adminer

Examine the Adminer container:

docker inspect adminer | jq .[0].NetworkSettings.Networks

{

 "database": {

 "IPAMConfig": {},

 "Links": null,

 "Aliases": [

 "9602c2384418"

],

 �"NetworkID": �"df8124f5f2e662959239592086bea0282e507a6

04554523b648e1f9e23cbf18e",

 �"EndpointID": �"3e9591d59b31fe941ad39f8928898c2ad97230a7e

1f07afff0b8df061ea1bfdb",

 "Gateway": "172.25.0.1",

 "IPAddress": "172.25.0.3",

 "IPPrefixLen": 16,

 "IPv6Gateway": "",

 "GlobalIPv6Address": "",

 "GlobalIPv6PrefixLen": 0,

 "MacAddress": "02:42:ac:19:00:03",

 "DriverOpts": null

 }

}

Chapter 6 Understanding Docker Networks

140

The bridge network is no longer attached to the Adminer network.

Launch Adminer by navigating to http://localhost:8080.

In the Server field, type the name of the container that you want to

connect to, i.e. the database container named mysql. See Figure 6-4.

Enter the details and click on Login. The login screen is shown in

Figure 6-5.

Figure 6-4.  Connecting to a container via named host

Chapter 6 Understanding Docker Networks

141

Thus, user-defined bridged networks make connecting services very

easy without having to search for the IP addresses. Docker makes it easy by

letting us connect to the services by using the name of the container as the

host. Docker handles the behind-the-scenes translation of the container

name to IP address.

�Host Networks

As you learned earlier, in host network, Docker doesn’t create a virtual

network for the container. Rather, the Docker host’s network interface is

bound to the container.

Host networks are excellent when we have only one container running

on the host and we don’t need any bridge networks to be created and don’t

need network isolation. Let’s create an nginx container running in host

mode to see how we can run it.

Figure 6-5.  Named host resolves to IP and connects successfully

Chapter 6 Understanding Docker Networks

142

Earlier you saw that there already exists a network called host. It’s not

the name that governs whether or not the network is a host network, it’s the

driver. We noticed that the host network has a host driver, and hence any

container connected to the host network will run in host network mode.

To start the container, you just have to pass the parameter --network

host. Try the following command to start an nginx container and publish

port 80 of the container to the host’s 8080 port.

docker run -d --network host -p 8080:80 nginx:alpine

WARNING: Published ports are discarded when using host network

mode

Notice that Docker warns you that the port publishing isn’t being

used. Since the container’s ports are directly bound to the Docker post, the

concept of a published port doesn’t arise. The actual command should be

as follows:

docker run -d --network host -p 8080:80 nginx:alpine

�Docker Networking Exercises
You’ve have learned a fair bit about Docker networks, so it’s time to get

some hands-on experience creating and attaching a network to your

project.

CONNECTING THE MYSQL CONTAINER TO THE PROJECT CONTAINER

In the previous chapter exercises, you wrote a Dockerfile for this project and

built the container. You then used Docker Volumes to persist the database

across containers. In this exercise, you will modify the project so that the data,

instead of saving to a SQLite database, persists to a MySQL database.

You will then create a custom bridge network to connect the project container

and the MySQL container.

Chapter 6 Understanding Docker Networks

143

Let’s modify the existing Dockerfile.

Tip T he source code and Dockerfile associated with this is available
as docker-subreddit-fetcher-network.zip.

Dockerfile Listing

FROM python:3-alpine

COPY * /apps/subredditfetcher/

WORKDIR /apps/subredditfetcher/

VOLUME ["/apps/subredditfetcher"]

RUN ["pip", "install", "-r", "requirements.txt"]

ENV NBT_ACCESS_TOKEN=<token>

CMD ["python", "newsbot.py"]

Take care to replace <token> with the token generated from the earlier

chapter. Let’s build the image. Note the extra RUN step, which runs one_

time.py. This script creates the necessary database and tables required

for our application. Another notable change is the addition of the VOLUME

instruction. As you learned earlier, this is to tell Docker to mark the directory

specified to be managed as a volume, even if you did not specify the required

volume name in the docker run command. Let’s build the image.

docker build --no-cache -t sathyabhat:subreddit_fetcher_network .

Sending build context to Docker daemon 55.3kB

Step 1/7 : FROM python:3-alpine

 ---> 4fcaf5fb5f2b

Step 2/7 : COPY * /apps/subredditfetcher/

 ---> 87315ae6c5b5

Step 3/7 : WORKDIR /apps/subredditfetcher/

Chapter 6 Understanding Docker Networks

144

Removing intermediate container af83d09dac2c
 ---> 647963890330

Step 4/7 : VOLUME ["/apps/subredditfetcher"]

 ---> Running in fc801fb00429

Removing intermediate container fc801fb00429

 ---> d734a17f968b

Step 5/7 : RUN ["pip", "install", "-r", "requirements.txt"]

 ---> Running in a5db3fab049d

Collecting praw (from -r requirements.txt (line 1))

[....]

Successfully built peewee

Installing collected packages: chardet, urllib3, idna, certifi,

requests, prawcore, update-checker, praw, peewee, PyMySQL

Successfully installed PyMySQL-0.8.0 certifi-2018.4.16

chardet-3.0.4 idna-2.6 peewee-2.10.2 praw-5.4.0 prawcore-0.14.0

requests-2.18.4 update-checker-0.16 urllib3-1.22

Removing intermediate container a5db3fab049d

 ---> e5715fb6dda7

Step 6/7 : ENV NBT_ACCESS_TOKEN="<token"

 ---> Running in 219e16ddea10

Removing intermediate container 219e16ddea10

 ---> ae8bd5570edd

Step 7/7 : CMD ["python", "newsbot.py"]

 ---> Running in c195a952708f

Removing intermediate container c195a952708f

 ---> 93cd7531c6b0

Successfully built 93cd7531c6b0

Successfully tagged sathyabhat:subreddit_fetcher_network

Chapter 6 Understanding Docker Networks

145

Let’s create a new network called subreddit_fetcher to which the

containers will be connected. To do this, type the following:

docker network create subreddit_fetcher

Now create the required volumes for the app and the database:

docker volume create subreddit_fetcher_app

docker volume create subreddit_fetcher_db

Let’s bring up a new MySQL container and connect it to this network. Since

we’d like the data to persist, we will also mount the MySQL database to a

volume called subreddit_fetecher_db. To do this, type the following

command:

docker run -d --name mysql --network subreddit_fetcher

-v subreddIt_fetcher_db:/var/lib/myql -e MYSQL_ROOT_

PASSWORD=dontusethisinprod mysql

Let’s follow the logs and check that the MySQL database is up and running:

docker logs -f subreddit_fetcher_db

Initializing database

[...]

Database initialized

[...]

MySQL init process in progress

[...]

MySQL init process done. Ready for start up.

[...]

2018-04-27T12:41:15.295013Z 0 [Note] mysqld: ready for

connections.

Version: '5.7.18' socket: '/var/run/mysqld/mysqld.sock' port:

3306 MySQL Community Server (GPL)

The last couple of lines indicate that the MySQL database is up and running.

Chapter 6 Understanding Docker Networks

146

Now let’s bring up our project container while connecting it to the

subreddit_fetcher network that we created. To do this, type the following:

docker run --name subreddit_fetcher_app --network subreddit_

fetcher -v subreddit_fetcher_app:/apps/subreddit_fetcher

sathyabhat:subreddit_fetcher_network

You should see the logs like so:

INFO: <module> - Starting up

INFO: <module> - Waiting for 60 seconds for db to come up

INFO: <module> - Checking on dbs

INFO: �get_updates - received response: {'ok': True,

'result': []}

INFO: �get_updates - received response: {'ok': True,

'result': []}

Since you created a new volume, the sources that were set in the previous

chapter are not available.

Let’s set the subreddit again from which the bot should fetch the data, say

docker. To do this, from Telegram, find the bot and type /source docker.

The logs from the application should confirm the receipt of the command:

INFO: �handle_incoming_messages - Chat text received: /source

docker

INFO: �handle_incoming_messages - Sources set for 7342383

to docker

INFO: handle_incoming_messages - 7342383

INFO: �post_message - posting Sources set as docker! to 7342383

Chapter 6 Understanding Docker Networks

147

INFO: �get_updates - received response: {'ok': True,

'result': []}

INFO: �get_updates - received response: {'ok': True,

'result': []}

INFO: �get_updates - received response: {'ok': True,

'result': []}

INFO: �get_updates - received response: {'ok': True,

'result': []}

The Telegram window should look like the one shown in Figure 6-6.

Let’s fetch some content. To do this, type /fetch in the bot window. The

application should respond with a loading message and another chat with the

contents, as shown in Figure 6-7.

Figure 6-6.  Acknowledgement of the subreddit source

Chapter 6 Understanding Docker Networks

148

Figure 6-7.  The bot fetching contents from subreddit

Chapter 6 Understanding Docker Networks

149

Let’s confirm that the bot is indeed saving the sources to the database.

We will bring up another container, Adminer, which is a web UI for MySQL

database, and connect it to the subreddit_fetcher network. To do this,

open a new Terminal window and type the following commands:

docker run --network=subreddit_fetcher -p 8080:8080 adminer

You should see the logs like so:

PHP 7.2.4 Development Server started

Open Adminer by navigating to http://localhost:8080. See Figure 6-8.

Enter the server as mysql, enter the credentials, and then click on Login. You

should see the database called newsbot, which corresponds to the MySQL

database that you created.

Figure 6-8.  Logging into the linked MySQL container

Chapter 6 Understanding Docker Networks

150

Congrats! You have successfully created a network and connected two

separate containers to it!

�Summary
In this chapter, you learned about the basics of container networking and

the different modes of Docker networking. You also learned how to create

and work with custom Docker bridged networks and got insights into

Docker host networks. Finally, you performed some hands-on exercises

on creating a separate database container (using MySQL) and learned

how to connect the database container to the Newsbot project. In the next

chapter, we will cover Docker Compose and discuss how easy Docker

Compose makes it to run multiple, dependent containers.

Figure 6-9.  Successfully connecting to the project database

Chapter 6 Understanding Docker Networks

151© Sathyajith Bhat 2018
S. Bhat, Practical Docker with Python, https://doi.org/10.1007/978-1-4842-3784-7_7

CHAPTER 7

Understanding Docker
Compose
In the previous chapters, you learned about Docker and its associated

terminology, took a deeper look into how to build Docker images using the

Dockerfile, learned how to persist data generated by containers, and linked

various running containers with the help of Docker’s network features.

In this chapter, we look at Docker Compose, which is a tool for running

multi-container applications, bringing up various linked, dependent

containers, and more—all with help of just one config file and a command.

�Overview of Docker Compose
As software gets more complicated and as we move toward the

microservices architecture, the number of components that need to be

deployed increases considerably as well. While microservices might

help in keeping the overall system fluid by encouraging loosely coupled

services, from an operations point of view, things get more complicated.

This is especially challenging when you have dependent applications—for

instance, for a web application to start working correctly, it would need its

database to be working before the web tier can start responding to requests.

152

Docker makes it easy to tie each microservice to a container, and

Docker Compose makes orchestration of all of these containers very

easy. Without Docker Compose, our container orchestration steps would

involve building the various images, creating the required networks, and

then running the application by a series of Docker run commands in the

necessary order. As and when the number of containers increases and as

the deployment targets increase, running these steps manually becomes

infeasible and we need to go toward automation.

From a local development point of view, bringing up multiple,

linked services manually gets very tedious and painful. Docker Compose

simplifies this a lot. By just providing a YAML file describing the containers

required and the relation between the containers, Docker Compose lets us

bring up all the containers with a single command.

It’s not just about bringing up the containers; Docker Compose lets

you do the following as well:

•	 Build, stop, and start the containers associated with the

application

•	 Tail the logs of the running containers, saving us the

trouble of having to open multiple terminal sessions for

each container

•	 View the status of each container

Docker Compose helps you enable continuous integration. By

providing multiple, disposable, reproducible environments, Docker

compose lets you run integration tests in isolation, allowing for a clean-

room approach to the automated test cases. This enables you to run the

tests, validate the results, and then tear down the environment cleanly.

Chapter 7 Understanding Docker Compose

153

�Installing Docker Compose
•	 On Mac and Windows, Docker Compose is installed as

part of the standard Docker install and doesn’t require

any additional steps to get started.

•	 On Linux systems, you can download Docker Compose

binary from its GitHub Release page. Alternatively, you

can run the following curl command to download the

correct binary.

sudo curl -L https://github.com/docker/compose/releases/

download/1.21.0/docker-compose-$(uname -s)-$(uname -m) -o /usr/

local/bin/docker-compose

Note E nsure the version number in this command matches the
latest version of Docker Compose on the GitHub Releases page.
Otherwise, you will end up with an outdated version.

•	 Once the binary has been downloaded, change the

permissions so that it can be executed using the

following command:

sudo chmod +x /usr/local/bin/docker-compose

If the file was downloaded manually, take care to coptey the

downloaded file to the /usr/local/bin directory before running the

command. To confirm that the install was successful and is working

correctly, run the following command:

docker-compose version

Chapter 7 Understanding Docker Compose

https://github.com/docker/compose/releases

154

The result should be versions of Docker Compose, something similar

to the following:

docker-compose version 1.20.1, build 5d8c71b

docker-py version: 3.1.4

CPython version: 3.6.4

OpenSSL version: OpenSSL 1.0.2n 7 Dec 2017

�Docker Compose Basics
Unlike the Dockerfile, which is a set of instructions to the Docker engine about

how to build the Docker image, the Compose file is a YAML configuration

file that defines the services, networks, and volumes that are required for the

application to be started. Docker expects the compose file to be present in

the same path into which the docker-compose command is invoked having

a file name of docker-compose.yaml (or docker-compose.yml). This can be

overridden by using the -f flag followed by the path to the compose filename.

�Compose File Versioning

Although the compose file is a YAML file, Docker uses the version key at

the start of the file to determine which features of the Docker Engine are

supported. Currently, there are three versions of the Compose file format:

•	 Version 1: Version 1 is considered a legacy format. If a

Docker Compose file doesn’t have a version key at the

start of the YAML file, Docker considers it to be version

1 format.

•	 Version 2.x: Version 2.x identified by the version: 2.x key

at the start of the YAML file.

•	 Version 3.x: Version 3.x identified by the version: 2.x key

at the start of the YAML file.

The differences between the three major versions are described next.

Chapter 7 Understanding Docker Compose

155

Version 1

Docker Compose files that do not have a version key at the root of the

YAML file are considered to be Version 1 compose files. Version 1 will

be deprecated and removed in a future version of Docker Compose

and, as such, we do not recommend writing Version 1 files. Besides the

deprecation, Version 1 has the following major drawbacks:

•	 Version 1 files cannot declare named services, volumes,

or build arguments

•	 Container discovery is enabled only by using the links flag

Version 2

Docker Compose Version 2 files has a version key with value 2 or 2.x.

Version 2 introduces a few changes that make version 2 incompatible with

previous versions of Compose files. These include:

•	 All services must be present under the services key.

•	 All containers are located on an application-specific

default network and the containers can be discovered

by the hostname specified by the service name.

•	 Links is made redundant.

•	 The depends_on flag is introduced, allowing us to

specify dependent containers and the order in which

the containers are brought up.

Version 3

Docker Compose Version 3 is the current major version of Compose

having a version key with value 3 or 3.x. Version 3 removes several

deprecated options, including volume_driver, volumes_from, and many

more. Version 3 also adds a deploy key, which is used for deployment and

running of services on Docker Swarm.

Chapter 7 Understanding Docker Compose

156

A sample reference Compose file looks like the following:

version: '3'

services:

 database:

 image: mysql

 environment:

 MYSQL_ROOT_PASSWORD: dontusethisinprod

 webserver:

 image: nginx:alpine

 ports:

 - 8080:80

 depends_on:

 - cache

 - database

 cache:

 image: redis

Similar to the Dockerfile, the Compose file is very readable and makes

it easy to follow along. This Compose file is for a typical web application,

which includes a web server, a database server, and a caching server. The

Compose file declares that when Docker Compose runs, it will bring up

three services—the webserver, the database server, and the caching server.

The web server depends on the database and the cache service, which

means that unless the database and the cache service are brought up,

the web service will not be brought up. The cache and the database keys

indicate that for cache, Docker must bring up the Redis image and the

MySQL image for the database.

To bring up all the containers, issue the following command:

docker-compose up

Chapter 7 Understanding Docker Compose

157

Once the command is issued, Docker will bring up all the services in

the foreground and we can see the logs as shown here:

docker-compose up

Creating network "dockercomposebasic_default" with the default

driver

Creating dockercomposebasic_database_1 ... done

Creating dockercomposebasic_cache_1 ... done

Creating dockercomposebasic_webserver_1 ... done

Attaching to dockercomposebasic_cache_1, dockercomposebasic_

database_1, dockercomposebasic_webserver_1

[...]

cache_1 | # Server started, Redis version 3.2.9

cache_1 | * �The server is now ready to accept connections

on port 6379

database_1 | Initializing database

database_1 | Database initialized

database_1 | Initializing certificates

[...]

database_1 | [Note] mysqld: ready for connections.

database_1 | �Version: '5.7.18' socket: '/var/run/mysqld/

mysqld.sock' port: 3306 MySQL Community Server

(GPL)

Note that Docker will aggregate the STDOUT of each container and

will be streaming them when they run in the foreground. Note that even

though our Compose file has the definition of the database first, the

webserver second, and the cache as the last, Docker still brings up the

caching container as the first and the web server as the last container. This

is because we defined the depends_on key for the webserver as following:

 depends_on:

 - cache

 - database

Chapter 7 Understanding Docker Compose

158

This tells Docker to bring up the cache and the database containers

first before bringing up the webserver. Stopping the containers is as simple

as issuing the following command:

docker-compose stop

Stopping dockercomposebasic_webserver_1 ... done

Stopping dockercomposebasic_database_1 ... done

Stopping dockercomposebasic_cache_1 ... done

To resume the containers, we can issue the following command:

docker-compose start

Starting database ... done

Starting cache ... done

Starting webserver ... done

To view the logs of the containers, we can issue the following command:

docker-compose logs

Attaching to dockercomposebasic_webserver_1,

dockercomposebasic_database_1, dockercomposebasic_cache_1

database_1 | Initializing database

By default, docker-compose logs will only show a snapshot of the logs.

If you want the logs to be streamed continuously, you can append the -f or

--follow flag to tell Docker to keep streaming the logs. Alternatively, if you

want to see the last n logs from each container, you can type:

docker-compose logs --tail=n

where n is the required number of lines.

To completely tear down the containers, we can issue the following:

docker-compose down

Chapter 7 Understanding Docker Compose

159

This will stop all containers and will also remove the associated

containers, networks, and volumes created when docker-compose up was

issued.

docker-compose down

Stopping dockercomposebasic_webserver_1 ... done

Stopping dockercomposebasic_database_1 ... done

Stopping dockercomposebasic_cache_1 ... done

Removing dockercomposebasic_webserver_1 ... done

Removing dockercomposebasic_database_1 ... done

Removing dockercomposebasic_cache_1 ... done

Removing network dockercomposebasic_default

�Docker Compose File Reference
We mentioned earlier that the Compose file is a YAML file for

configuration that Docker uses to read and set up the compose job. Let’s

look at what the different keys in the Docker Compose File do.

�Services

Services is the first root key of the Compose YAML and is the configuration

of the container that needs to be created.

build

The build key contains the configuration options that are applied at build

time. The build key can be a path to the build context or a detailed object

consisting of the context and optional Dockerfile location.

services:

 app:

 build: ./app

Chapter 7 Understanding Docker Compose

160

services:

 app:

 build:

 context: ./app

 Dockerfile: dockerfile-app

context

The context key sets the context of the build. If the context is a relative

path, then the path is considered relative to the compose file location.

build:

 context: ./app

 Dockerfile: dockerfile-app

�image

If the image tag is supplied along with the build option, Docker will build the

image and name and tag the image with the supplied image name and tag.

services:

 app:

 build: ./app

 image: sathyabhat:app

environment/env_file

The environment key sets the environment variables for the application,

while env_file provides the path to the environment file, which is read for

setting the environment variables. Both environment as well as env_file can

accept a single file or multiple files as an array. The YAML entry is as follows:

version: '3'

services:

 app:

Chapter 7 Understanding Docker Compose

161

 image: mysql

 environment:

 PATH: /home

 API_KEY: thisisnotavalidkey

version: '3'

services:

 app:

 image: mysql

 env_file: .env

version: '3'

services:

 app:

 image: mysql

 env_file:

 - common.env

 - app.env

 - secrets.env

depends_on

This key is used to set the dependency requirements across various

services. Consider this config:

version: '3'

services:

 database:

 image: mysql

 webserver:

 image: nginx:alpine

 depends_on:

 - cache

 - database

Chapter 7 Understanding Docker Compose

162

 cache:

 image: redis

When docker-compose up is issued, Docker will bring up the services

as per the defined dependency order. In this case, Docker will bring up

cache and database services before bringing up the webserver service.

Caution  With the depends_on key, Docker will only bring up the
services in the defined order. Docker will not wait for each of the
services to be ready and then bring up the successive service.

image

This key specifies the name of the image to be used when a container is

brought up. If the image doesn’t exist locally, Docker will attempt to pull

it if the build key is not present. If the build key is present in the Compose

file, Docker will attempt to build and tag the image.

version: '3'

services:

 database:

 image: mysql

�ports

This key specifies the ports that will be exposed to the port. While

providing this key, we can specify either port—the Docker host port to

which the container port will be exposed or just the container port, in

which case a random, ephemeral port number on the host is selected.

version: '3'

services:

 database:

Chapter 7 Understanding Docker Compose

163

 image: nginx

 ports:

 - "8080:80"

version: '3'

services:

 database:

 image: nginx

 ports:

 - "80"

�volumes

Volumes is available as a top-level key as well as suboption available to a

service. When volumes is referred to as a top-level key, it lets us provide

the named volumes that will be used for services at the bottom. The

configuration for this looks like the following:

version: '3'

services:

 database:

 image: mysql

 environment:

 MYSQL_ROOT_PASSWORD: dontusethisinprod

 volumes:

 - "dbdata:/var/lib/mysql"

 webserver:

 image: nginx:alpine

 depends_on:

 - cache

 - database

 cache:

 image: redis

Chapter 7 Understanding Docker Compose

164

volumes:

 dbdata:

In the absence of the top-level volumes key, Docker will throw an error

when creating the container. Consider the following configuration, where

the volumes key has been skipped:

version: '3'

services:

 database:

 image: mysql

 environment:

 MYSQL_ROOT_PASSWORD: dontusethisinprod

 volumes:

 - "dbdata:/var/lib/mysql"

 webserver:

 image: nginx:alpine

 depends_on:

 - cache

 - database

 cache:

 image: redis

Trying to bring up the containers:

docker-compose up

ERROR: Named volume "db:/var/lib/mysql:rw" is used in service

"database" but no declaration was found in the volumes section.

It is possible to use bind mounts as well—instead of referring to

the named volume, all we have to do is provide the path. Consider the

following configuration:

version: '3'

services:

Chapter 7 Understanding Docker Compose

165

 database:

 image: mysql

 environment:

 MYSQL_ROOT_PASSWORD: dontusethisinprod

 volumes:

 - "./dbdir:/var/lib/mysql"

 webserver:

 image: nginx:alpine

 depends_on:

 - cache

 - database

 cache:

 image: redis

The volume key has value of "./dbdir:/var/lib/mysql", which means

Docker will mount the /var/lib/mysql directory of the container to the

dbdir directory. Relative paths are considered in relation to the directory

of the Compose file.

�Restart

The restart key provides the restart policy for the container. By default,

the restart policy is set to "no", which means Docker will not restart the

container, no matter what. The following restart policies are available:

•	 no: Container will never restart

•	 always: Container will always restart after exit

•	 on-failure: Container will restart if it exits due to an

error

•	 unless-stopped: Container will always restart unless

exited explicitly or if the Docker daemon is stopped

Chapter 7 Understanding Docker Compose

166

�Docker Compose CLI Reference
The docker-compose command comes with its own set of subcommands;

let’s try to understand them.

�build

The build command reads the Compose file, scans for build keys, and

then proceeds to build the image and tag the image. The images are tagged

as project_service. If the Compose file doesn’t have a build key then

Docker will skip building any images. The usage is shown here:

docker-compose build <options> <service...>

If the service name is provided, Docker will proceed to build the image

for just that service; otherwise, it will build images for all the services.

Some of the commonly used options are as follows:

--compress: Compresses the build context

--no-cache Ignore the build cache when building the image

�down

The down command stops the containers and will proceed to remove the

containers, volumes, and networks. The usage is shown here:

docker-compose down

�exec

The Compose exec command is equivalent to the Docker exec command.

It lets you run ad hoc commands on any of the containers. The usage is

shown here:

docker-compose exec <service> <command>

Chapter 7 Understanding Docker Compose

167

�logs

The logs command displays the log output from all the services. The usage

is shown here:

docker-compose logs <options> <service>

By default, logs will only show the last logs for all services. You can

show logs for just one service by providing the service name. The -f option

follows the log output.

�stop

The stop command stops the containers. The usage is shown here:

docker-compose stop

�Docker Volume Exercises
You learned about Docker Compose and the Compose file, so let’s get

some hands-on experience building multi-container applications.

BUILDING AND RUNNING A MYSQL DATABASE CONTAINER WITH A WEB UI
FOR MANAGING THE DATABASE

In this exercise, you will build a multi-container application consisting of

a container for the MySQL database and another container for Adminer, a

popular Web UI for MySQL. Since we already have prebuilt images for MySQL

and Adminer, we won’t have to build them.

Chapter 7 Understanding Docker Compose

168

Tip T he docker-compose.yml file associated with this is
available as docker-compose-adminer.zip. Be sure to extract
the contents of the ZIP file and run the commands in the directory to
which they were extracted.

We can start with the Docker Compose file, as shown here.

The docker-compose.yaml Listing

version: '3'

services:

 mysql:

 image: mysql

 environment:

 MYSQL_ROOT_PASSWORD: dontusethisinprod

 ports:

 - "3306:3306"

 volumes:

 - "dbdata:/var/lib/mysql"

 adminer:

 image: adminer

 ports:

 - "8080:8080"

volumes:

 dbdata:

This Compose file uses everything that we have learned in this book in one

concise file. At the start of the Compose file, we define that we will be using

version 3 of the Compose API. Under services, we define two services—

one for the database that pulls in a Docker image called mysql. When the

container is created, an environment variable called MYSQL_ROOT_PASSWORD

sets the root password for the database and port 3306 from the container is

published to the host. The data of the MySQL database is stored in a volume

Chapter 7 Understanding Docker Compose

169

known as dbdata, which is mounted onto the directory /var/lib/mysql

of the container. This is where MySQL stores the data. In other words, any

data saved to the database in the container is handled by the volume named

dbdata.

The other service, called Adminer, pulls in a Docker image called Adminer and

publishes port 8080 from the container to the host.

Let’s validate the Compose file by typing the following:

docker-compose config

If everything is okay, Docker will print the Compose file as it as parsed. It

should look like this:

services:

 adminer:

 image: adminer

 ports:

 - 8080:8080/tcp

 mysql:

 environment:

 MYSQL_ROOT_PASSWORD: dontusethisinprod

 image: mysql

 ports:

 - 3306:3306/tcp

 volumes:

 - dbdata:/var/lib/mysql:rw

version: '3.0'

volumes:

 dbdata: {}

Chapter 7 Understanding Docker Compose

170

Let’s run the service by typing the following:

docker-compose up

We should be seeing a log like the one below

Creating network "dockercomposeadminer_default" with the default

driver

Creating volume "dockercomposeadminer_dbdata" with default

driver

Creating dockercomposeadminer_mysql_1 ... done

Creating dockercomposeadminer_adminer_1 ... done

Attaching to dockercomposeadminer_adminer_1,

dockercomposeadminer_mysql_1

adminer_1 | PHP 7.2.4 Development Server started

mysql_1 | Initializing database

[...]

mysql_1 | Database initialized

mysql_1 | Initializing certificates

[...]

mysql_1 | MySQL init process in progress...

[...]

mysql_1 | MySQL init process done. Ready for start up.

[...]

mysql_1 | [Note] mysqld: ready for connections.

mysql_1 | �Version: '5.7.18' socket: '/var/run/mysqld/mysqld.

sock' port: 3306 MySQL Community Server (GPL)

This tells us that the Adminer UI and MySQL database is ready. Now try logging

in by navigating to http://localhost:8080, as shown in Figure 7-1.

Chapter 7 Understanding Docker Compose

171

We should be seeing the screen shown in Figure 7-1. You’ll notice that the

server has been populated with db. Since Docker Compose creates its own

network for the application, the hostname for each container is the service

name. In our case, the MySQL database service name is mysql and the

database will be accessible via the hostname mysql. Enter the username as

root and the password as the one entered in the MYSQL_ROOT_PASSWORD

environment variable. See Figure 7-2.

Figure 7-1.  The Adminer login page

Chapter 7 Understanding Docker Compose

172

If the details are correct, you will see the page shown in Figure 7-3.

Figure 7-2.  Adminer Login details

Figure 7-3.  Database details available once logged in

Chapter 7 Understanding Docker Compose

173

CONVERTING THE PROJECT TO DOCKER COMPOSE

In the previous chapter’s exercises, you wrote a Dockerfile for your project.

Later, you added volumes and the data was persisted to SQLite. In this

exercise, you change the project to use MySQL instead of SQLite.

For this exercise, you will be working on a slightly modified codebase, which

has support for saving the preferences to a SQLite DB. We would use Docker

Volumes to persist the database across containers.

Let’s modify the existing Docker Compose file

Tip T he source code, the Dockerfile, and the Docker Compose
file associated with this are available as subreddit-fetcher-
compose.zip.

The docker-compose.yaml Listing

version: '3'

services:

 app:

 build: .

 depends_on:

 - mysql

 restart: "on-failure"

 volumes:

 - "appdata:/apps/subredditfetcher"

 mysql:

 image: mysql

 volumes:

 - "dbdata:/var/lib/mysql"

 environment:

 - MYSQL_ROOT_PASSWORD=dontusethisinprod

Chapter 7 Understanding Docker Compose

174

volumes:

 dbdata:

 appdata:

Expanding on our MySQL Docker Compose discussed earlier, we add our

application details to the service section. Since our application requires that

MySQL needs to be started before the application, we add the depends_on

key. Additionally, we mount the appdata volume declared as a top-level key

under volumes and mount it to the /apps/subredditfetcher directory in

the container.

We also add a restart policy to restart the container upon failure. Finally, we

add the top-level keys for the volumes declared as dbdata and appdata, for

persisting MySQL and the application data.

Let’s verify that the Compose file is correct and valid:

docker-compose config

services:

 adminer:

 image: adminer

 ports:

 - 8080:8080/tcp

 app:

 build:

 context: �/home/sathyabhat/code/subreddit_fetcher_compose

 depends_on:

 - mysql

 restart: on-failure

 volumes:

 - appdata:/apps/subredditfetcher:rw

 mysql:

 environment:

Chapter 7 Understanding Docker Compose

175

 MYSQL_ROOT_PASSWORD: dontusethisinprod

 image: mysql

 volumes:

 - dbdata:/var/lib/mysql:rw

version: '3.0'

volumes:

 appdata: {}

 dbdata: {}

Let’s run the Compose application:

docker-compose up --build

The --build flag forces Docker to rebuild the images even if nothing has

changed, and it can be skipped. We should see a result like so:

docker-compose up --build

Creating network "subredditfetchercompose_default" with the

default driver

Creating volume "subredditfetchercompose_dbdata" with default

driver

Creating volume "subredditfetchercompose_appdata" with default

driver

Building app

Step 1/7 : FROM python:3-alpine

 ---> 4fcaf5fb5f2b

Step 2/7 : COPY * /apps/subredditfetcher/

 ---> a1ae719d8b90

Step 3/7 : WORKDIR /apps/subredditfetcher/

Removing intermediate container f6c4e85952ff

 ---> 7702ecd8eec6

Step 4/7 : VOLUME ["/apps/subredditfetcher"]

 ---> Running in 69fedd2fffe5

Removing intermediate container 69fedd2fffe5

Chapter 7 Understanding Docker Compose

176

 ---> 4ff33274be32

Step 5/7 : RUN ["pip", "install", "-r", "requirements.txt"]

 ---> Running in 1060110739f6

[...]

Installing collected packages: idna, chardet, urllib3, certifi,

requests, update-checker, prawcore, praw, peewee, PyMySQL

Successfully installed PyMySQL-0.8.0 certifi-2018.4.16

chardet-3.0.4 idna-2.6 peewee-2.10.2 praw-5.4.0 prawcore-0.14.0

requests-2.18.4 update-checker-0.16 urllib3-1.22

You are using pip version 9.0.3, however version 10.0.1 is

available.

You should consider upgrading via the 'pip install --upgrade

pip' command.

Removing intermediate container 1060110739f6

 ---> 307613a1e95e

Step 6/7 : �ENV NBT_ACCESS_TOKEN="495637361:AAHIhiDTX1UeX17KJy0-

FsMZEqEtCFYfcP8"

 ---> Running in 0ffaed2488b4

Removing intermediate container 0ffaed2488b4

 ---> 9faabd11d518

Step 7/7 : CMD ["python", "newsbot.py"]

 ---> Running in c350455c6121

Removing intermediate container c350455c6121

 ---> e876df59baf0

Successfully built e876df59baf0

Successfully tagged subredditfetchercompose_app:latest

Creating subredditfetchercompose_mysql_1 ... done

Creating subredditfetchercompose_app_1 ... done

Attaching to subredditfetchercompose_mysql_1,

subredditfetchercompose_app_1

Chapter 7 Understanding Docker Compose

177

mysql_1 | Initializing database

[...]

app_1 | INFO: <module> - Starting up

app_1 | INFO: <module> - Waiting for 60 seconds for db to

come up

[...]

mysql_1 | Database initialized

mysql_1 | Initializing certificates

[...]

mysql_1 | Certificates initialized

mysql_1 | MySQL init process in progress...

[...]

mysql_1 | [Note] mysqld: ready for connections.

mysql_1 | �Version: '5.7.18' socket: '/var/run/mysqld/mysqld.

sock' port: 0 MySQL Community Server (GPL)

[...]

mysql_1 | MySQL init process done. Ready for start up.

[...]

mysql_1 | [Note] mysqld: ready for connections.

mysql_1 | �Version: '5.7.18' socket: '/var/run/mysqld/mysqld.

sock' port: 3306 MySQL Community Server (GPL)

[...]

app_1 | INFO: <module> - Checking on dbs

app_1 | �INFO: get_updates - received response: {'ok': True,

'result': []}

app_1 | �INFO: get_updates - received response: {'ok': True,

'result': []}

The last line indicates that the bot is working. Let’s try setting a source and

fetching the data by typing /sources docker and then /fetch into the

telegram bot. If all goes well, you should see a result similar to the one shown

in Figure 7-4.

Chapter 7 Understanding Docker Compose

178

We can go one step further by modifying our Compose file to include the

Adminer service so that we have a Web UI to check that the contents are being

saved to the database. For this, modify the existing Docker Compose file to

include the Adminer service, as shown here:

version: '3'

services:

 app:

 build: .

 depends_on:

 - mysql

Figure 7-4.  Our project, the subreddit fetcher bot in action

Chapter 7 Understanding Docker Compose

179

 restart: "on-failure"

 volumes:

 - "appdata:/apps/subredditfetcher"

 mysql:

 image: mysql

 volumes:

 - "dbdata:/var/lib/mysql"

 environment:

 - MYSQL_ROOT_PASSWORD=dontusethisinprod

 adminer:

 image: adminer

 ports:

 - "8080:8080"

volumes:

 dbdata:

 appdata:

Let’s confirm that the Compose file is valid:

docker-compose config

services:

 adminer:

 image: adminer

 ports:

 - 8080:8080/tcp

 app:

 build:

 context: �/home/sathyabhat/code/subreddit_fetcher_compose

 depends_on:

 - mysql

 restart: on-failure

 volumes:

Chapter 7 Understanding Docker Compose

180

 - appdata:/apps/subredditfetcher:rw

 mysql:

 environment:

 MYSQL_ROOT_PASSWORD: dontusethisinprod

 image: mysql

 volumes:

 - dbdata:/var/lib/mysql:rw

version: '3.0'

volumes:

 appdata: {}

 dbdata: {}

Let’s tear down the existing Compose and bring up a new Compose

application. Since the data is persisted to volumes, we shouldn’t be worried

about data loss.

docker-compose down

Stopping subredditfetchercompose_app_1 ... done

Stopping subredditfetchercompose_mysql_1 ... done

Removing subredditfetchercompose_app_1 ... done

Removing subredditfetchercompose_mysql_1 ... done

Removing network subredditfetchercompose_default

Bring up the service again:

docker-compose up

Creating network "subredditfetchercompose_default" with the

default driver

Creating subredditfetchercompose_adminer_1 ... done

Creating subredditfetchercompose_mysql_1 ... done

Creating subredditfetchercompose_app_1 ... done

Attaching to subredditfetchercompose_mysql_1,

subredditfetchercompose_adminer_1, subredditfetchercompose_app_1

[...]

Chapter 7 Understanding Docker Compose

181

adminer_1 | PHP 7.2.4 Development Server started

[...]

mysql_1 | [Note] mysqld: ready for connections.

mysql_1 | �Version: '5.7.18' socket: '/var/run/mysqld/mysqld.

sock' port: 3306 MySQL Community Server (GPL)

[...]

app_1 | INFO: <module> - Starting up

app_1 | �INFO: <module> - Waiting for 60 seconds for db to

come up

app_1 | INFO: <module> - Checking on dbs

app_1 | �INFO: get_updates - received response: {'ok': True,

'result': []}

app_1 | �INFO: get_updates - received response: {'ok': True,

'result': []}

Now navigate to Adminer by heading to http://localhost:8080 and

checking for the data; see Figure 7-5.

Figure 7-5.  The project, running with data saved to the database

Chapter 7 Understanding Docker Compose

182

Success! The application is running and the data is saved to the database

despite you removing and recreating the containers.

�Summary
In this chapter, you learned about Docker Compose, including how to

install it and why it is used. You also did a deep dive into the Docker

Compose file and the CLI. Finally, you ran through some exercises on

building multi-containers applications with Docker Compose and learned

how to extend the Newsbot project to a multi-container application using

Docker Compose, adding a linked database and a Web UI to edit the

database.

Chapter 7 Understanding Docker Compose

183© Sathyajith Bhat 2018
S. Bhat, Practical Docker with Python, https://doi.org/10.1007/978-1-4842-3784-7

Index

A
ADD and COPY instructions, 65

B
Bind mounts, 95
BotFather

creation, 43
REST API test tools, 45
telegram’s Bot creation

interface, 42
Bridge network

Adminer container, 128–129
command, 124
connecting containers, 137
container via named host, 140
detached mode, 127
IP address, 131
IP and connects, 141
log in details, 132
login will fail, 130
MySQL container, 127
name creation, 132
outline process, 121
result, 127
user-defined network, 120

C
cgroups, 5
chroot, 4
CMD and ENTRYPOINT

instructions, 69
Compose

Adminer login page, 171
basics, 154
CLI reference

build command, 166
down, 166
exec, 166
logs, 167
stop, 167

convertion, 173
database details, 172
file reference

ports, 162
restart, 165
services, 159
volumes, 163

file versioning
format, 154
Version 1, 155
Version 2, 155
Version 3, 155

https://doi.org/10.1007/978-1-4842-3784-7

184

installation, 153
MySQL database

container, 167
overview, 151
subreddit fetcher bot, 178

Containerization
cgroups, 5
chroot, 4
containers/virtual machines, 5
Docker Inc., 1
FreeBSD jails, 4
LXC, 5
OpenVZ, 4
OverlayFS, 2
problem understanding, 2–3

D
Data persistence

data loss
bind mounts, 95
features, 92
strategies, 94
tmpfs mounts, 94
volumes, 99

meaning, 91
Dependencies, 46
Docker 101

bind mounts and volumes, 18
compose file, 23
container, 17
Docker Engine, 20–23
Dockerfile, 19

hands-on Docker (see Hands-on
Docker)

image, 17
installation, 9
layers, 16
Linux, 13
machine, 23
MacOS, 12
registries, 19
Windows installation, 10

Docker Engine
API, 22–23
CLI, 20–22
daemon, 20

Docker Store, 31
Dockerfile, 19

build command, 53, 56
build context, 54
Dockerignore, 55
guidelines and

recommendations, 79–80
hello world docker image, 81
instructions, 59

ADD and COPY
instructions, 65

CMD and ENTRYPOINT, 69
ENV, 73
EXPOSE, 75
FROM, 60
LABEL, 78
RUN, 67
VOLUME, 75
WORKDIR, 61

multi-stage builds, 80–81, 86

Compose (cont.)

Index

185

project review, 87
requirements.txt file, 84
standard build, 84

E
Elastic Block Store (EBS), 91
ENTRYPOINT, 71
ENV instruction, 73
EXPOSE instruction, 75

F
File reference

ports, 162
restart, 165
services

build, 159
context, 160
depends_on, 161
environment/env_file

key, 160
image key, 162
image tag, 160

volumes, 163
File versioning

Version 1, 155
Version 2, 155
Version 3, 155

FreeBSD jails, 4
FROM instruction, 60

G
Gotchas, 72

H, I, J, K
Hands-On Docker

commands, 24
images, 26
real-world images, 30

Host networks
instruction, 121
nginx container, 141

Hyper-V, 11

L
LABEL instruction, 78
Linux, 13

M
MacOS, 12
Macvlan networks, 122
Multi-stage builds, 80–81

N
Networking

bridge (see Bridge network)
command, 123
host

instruction, 121
nginx container, 141

Macvlan, 122
mysql container, 142
none, 122, 126
overlay, 122
single host/virtual

machine, 119

Index

186

Network Interface
Card (NIC), 122

Newsbot
dependencies, 46
interaction, 46
libraries, 46
posts, 50
response, 49
running, 47
scenarios, 46
sending messages, 48
sources, 49

nginx container, 107

O
OpenVZ, 4
OverlayFS, 2
Overlay network, 122

P, Q
Promiscuous, 122
Python app, 39

BotFather, 42
Newsbot (see Newsbot)
Reddit, 40
Telegram

Messenger, 40

R
RUN instruction, 67

S
Shell and Exec Form, 72
Software Defined Networking

(SDN), 120

T, U
Telegram Messenger

one-time password, 42
signup page, 40–41

tmpfs mounts, 94

V
Virtual machines, 7
VOLUME instruction, 75
Volumes

advantages, 99
container, 103
Dockerfile, 106
nginx container, 107
project adding, 112
subcommands

command, 100
creation, 100
inspect, 101
list volume, 102
prune volume, 102
remove volume, 102

W, X, Y, Z
WORKDIR instructions, 61

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Introduction to Containerization
	What Is Docker?
	Docker the Company
	Docker the Software Technology
	Understanding Problems that Docker Solves

	Containerization Through the Years
	1979: chroot
	2000: FreeBSD Jails
	2005: OpenVZ
	2006: cgroups
	2008: LXC

	Knowing the Difference Between Containers and Virtual Machines
	Summary

	Chapter 2: Docker 101
	Installing Docker
	Installing Docker on Windows
	Installing on MacOS
	Installing on Linux
	Additional Steps

	Understanding Jargon Around Docker
	Layers
	Docker Image
	Docker Container
	Bind Mounts and Volumes
	Docker Registry
	Dockerfile
	Docker Engine
	Docker Daemon
	Docker CLI
	Docker API

	Docker Compose
	Docker Machine

	Hands-On Docker
	Working with Docker Images
	Working with a Real-World Docker Images

	Summary

	Chapter 3: Building the Python App
	About the Project
	Setting Up Telegram Messenger
	BotFather: Telegram’s Bot Creation Interface
	Creating the Bot with BotFather

	Newsbot: The Python App
	Installing Dependencies of Newsbot
	Running Newsbot
	Sending Messages to Newsbot

	Summary

	Chapter 4: Understanding the Dockerfile
	Dockerfile
	Build Context
	Dockerignore
	Building Using Docker Build
	Dockerfile Instructions
	FROM
	WORKDIR
	ADD and COPY
	RUN
	CMD and ENTRYPOINT
	Gotchas About Shell and Exec Form

	ENV
	VOLUME
	EXPOSE
	LABEL

	Guidelines and Recommendations for Writing Dockerfiles
	Multi-Stage Builds
	Dockerfile Exercises
	Summary

	Chapter 5: Understanding Docker Volumes
	Data Persistence
	Example of Data Loss Within Docker Container
	tmpfs Mounts
	Bind Mounts
	Volumes
	Docker Volume Subcommands
	Create Volume
	Inspect
	List Volumes
	Prune Volumes
	Remove Volumes

	Using Volumes When Starting a Container
	VOLUME Instruction in Dockerfile

	Docker Volume Exercises
	Summary

	Chapter 6: Understanding Docker Networks
	Why Do We Need Container Networking?
	Default Docker Network Drivers
	Bridge Network
	Host Network
	Overlay Network
	Macvlan Networks
	None Networking

	Working with Docker Networks
	Bridge Networks
	Creating Named Bridge Networks
	Connecting Containers to Named Bridge Networks

	Host Networks

	Docker Networking Exercises
	Summary

	Chapter 7: Understanding Docker Compose
	Overview of Docker Compose
	Installing Docker Compose
	Docker Compose Basics
	Compose File Versioning
	Version 1
	Version 2
	Version 3

	Docker Compose File Reference
	Services
	build
	context

	image
	environment/env_file
	depends_on
	image

	ports
	volumes
	Restart

	Docker Compose CLI Reference
	build
	down
	exec
	logs
	stop

	Docker Volume Exercises
	Summary

	Index

