
deepikan
Text Box
Day's Work

Python Web Scraping
Cookbook

Over 90 proven recipes to get you scraping with Python,
microservices, Docker, and AWS

Michael Heydt

BIRMINGHAM - MUMBAI

Python Web Scraping Cookbook
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author(s), nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged
to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Veena Pagare
Acquisition Editor: Tushar Gupta
Content Development Editor: Tejas Limkar
Technical Editor: Danish Shaikh
Copy Editor: Safis Editing
Project Coordinator: Manthan Patel
Proofreader: Safis Editing
Indexer: Rekha Nair
Graphics: Tania Dutta
Production Coordinator: Shraddha Falebhai

First published: February 2018

Production reference: 1070218

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78728-521-7

www.packtpub.com

http://www.packtpub.com

Contributors

About the author
Michael Heydt is an independent consultant specializing in social, mobile, analytics, and
cloud technologies, with an emphasis on cloud native 12-factor applications. Michael has
been a software developer and trainer for over 30 years and is the author of books such as
D3.js By Example, Learning Pandas, Mastering Pandas for Finance, and Instant
Lucene.NET. You can find more information about him on LinkedIn at michaelheydt.

I would like to greatly thank my family for putting up with me disappearing for months on
end and sacrificing my sparse free time to indulge in creation of content and books like this
one. They are my true inspiration and enablers.

About the reviewers
Mei Lu is the founder and CEO of Jobfully, providing career coaching for software
developers and engineering leaders. She is also a Career/Executive Coach for
Carnegie Mellon University Alumni Association, specializing in the software / high-tech
industry.
Previously, Mei was a software engineer and an engineering manager at Qpass,
M.I.T., and MicroStrategy. She received her MS in Computer Science from the
University of Pennsylvania and her MS in Engineering from Carnegie Mellon
University.

Lazar Telebak is a freelance web developer specializing in web scraping, crawling, and
indexing web pages using Python libraries/frameworks.
He has worked mostly on projects of automation, website scraping, crawling, and exporting
data in various formats (CSV, JSON, XML, and TXT) and databases such as (MongoDB,
SQLAlchemy, and Postgres). Lazar also has experience of fronted technologies and
languages such as HTML, CSS, JavaScript, and jQuery.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just
like you, to help them share their insight with the global tech community. You can make a
general application, apply for a specific hot topic that we are recruiting an author for, or
submit your own idea.

http://authors.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.PacktPub.com
http://www.packtpub.com

Table of Contents
Preface 1

Chapter 1: Getting Started with Scraping 7

Introduction 7
Setting up a Python development environment 8

Getting ready 8
How to do it... 8

Scraping Python.org with Requests and Beautiful Soup 13
Getting ready... 13
How to do it... 14
How it works... 17

Scraping Python.org in urllib3 and Beautiful Soup 19
Getting ready... 19
How to do it... 19
How it works 20
There's more... 20

Scraping Python.org with Scrapy 21
Getting ready... 21
How to do it... 22
How it works 23

Scraping Python.org with Selenium and PhantomJS 25
Getting ready 25
How to do it... 26
How it works 28
There's more... 28

Chapter 2: Data Acquisition and Extraction 29

Introduction 29
How to parse websites and navigate the DOM using BeautifulSoup 30

Getting ready 30
How to do it... 32
How it works 35
There's more... 35

Searching the DOM with Beautiful Soup's find methods 35
Getting ready 35

Table of Contents

[ii]

How to do it... 36
Querying the DOM with XPath and lxml 38

Getting ready 39
How to do it... 39
How it works 45
There's more... 45

Querying data with XPath and CSS selectors 46
Getting ready 46
How to do it... 47
How it works 47
There's more... 48

Using Scrapy selectors 48
Getting ready 48
How to do it... 48
How it works 50
There's more... 50

Loading data in unicode / UTF-8 50
Getting ready 51
How to do it... 52
How it works 53
There's more... 53

Chapter 3: Processing Data 54

Introduction 54
Working with CSV and JSON data 55

Getting ready 55
How to do it 57
How it works 63
There's more... 63

Storing data using AWS S3 64
Getting ready 64
How to do it 65
How it works 68
There's more... 69

Storing data using MySQL 69
Getting ready 69
How to do it 70
How it works 74
There's more... 74

Table of Contents

[iii]

Storing data using PostgreSQL 75
Getting ready 75
How to do it 76
How it works 79
There's more... 79

Storing data in Elasticsearch 80
Getting ready 80
How to do it 80
How it works 83
There's more... 83

How to build robust ETL pipelines with AWS SQS 84
Getting ready 84
How to do it - posting messages to an AWS queue 85
How it works 86
How to do it - reading and processing messages 87
How it works 89
There's more... 89

Chapter 4: Working with Images, Audio, and other Assets 90

Introduction 91
Downloading media content from the web 91

Getting ready 91
How to do it 92
How it works 92
There's more... 93

 Parsing a URL with urllib to get the filename 93
Getting ready 93
How to do it 93
How it works 94
There's more... 94

Determining the type of content for a URL 95
Getting ready 95
How to do it 95
How it works 95
There's more... 96

Determining the file extension from a content type 97
Getting ready 97
How to do it 97
How it works 97

Table of Contents

[iv]

There's more... 98
Downloading and saving images to the local file system 98

How to do it 99
How it works 99
There's more... 100

Downloading and saving images to S3 100
Getting ready 100
How to do it 100
How it works 101
There's more... 102

 Generating thumbnails for images 102
Getting ready 103
How to do it 103
How it works 104

Taking a screenshot of a website 105
Getting ready 105
How to do it 105
How it works 107

Taking a screenshot of a website with an external service 108
Getting ready 109
How to do it 110
How it works 112
There's more... 114

Performing OCR on an image with pytesseract 114
Getting ready 114
How to do it 115
How it works 116
There's more... 116

Creating a Video Thumbnail 116
Getting ready 116
How to do it 116
How it works 118
There's more.. 119

Ripping an MP4 video to an MP3 119
Getting ready 119
How to do it 120
There's more... 120

Chapter 5: Scraping - Code of Conduct 121

Table of Contents

[v]

Introduction 121
Scraping legality and scraping politely 121

Getting ready 122
How to do it 123

Respecting robots.txt 123
Getting ready 125
How to do it 125
How it works 126
There's more... 127

Crawling using the sitemap 127
Getting ready 129
How to do it 130
How it works 131
There's more... 133

Crawling with delays 135
Getting ready 135
How to do it 135
How it works 137
There's more... 137

Using identifiable user agents 138
How to do it 138
How it works 138
There's more... 139

Setting the number of concurrent requests per domain 139
How it works 139

Using auto throttling 140
How to do it 140
How it works 140
There's more... 141

Using an HTTP cache for development 141
How to do it 141
How it works 141
There's more... 142

Chapter 6: Scraping Challenges and Solutions 143

Introduction 144
Retrying failed page downloads 144

How to do it 144
How it works 145

Table of Contents

[vi]

Supporting page redirects 145
How to do it 145
How it works 146

Waiting for content to be available in Selenium 147
How to do it 148
How it works 149

Limiting crawling to a single domain 150
How to do it 150
How it works 151

Processing infinitely scrolling pages 151
Getting ready 152
How to do it 154
How it works 155
There's more... 156

Controlling the depth of a crawl 157
How to do it 157
How it works 158

Controlling the length of a crawl 160
How to do it 160
How it works 160

Handling paginated websites 161
Getting ready 161
How to do it 162
How it works 162
There's more... 164

Handling forms and forms-based authorization 164
Getting ready 164
How to do it 165
How it works 167
There's more... 167

Handling basic authorization 168
How to do it 168
How it works 168
There's more... 168

Preventing bans by scraping via proxies 169
Getting ready 169
How to do it 169
How it works 170

Randomizing user agents 170

Table of Contents

[vii]

How to do it 171
Caching responses 172

How to do it 172
There's more... 173

Chapter 7: Text Wrangling and Analysis 175

Introduction 176
Installing NLTK 176

How to do it 176
Performing sentence splitting 177

How to do it 178
There's more... 179

Performing tokenization 179
How to do it 180

Performing stemming 181
How to do it 181

Performing lemmatization 182
How to do it 183

Determining and removing stop words 184
How to do it 184
There's more... 186

Calculating the frequency distributions of words 186
How to do it 187
There's more... 188

Identifying and removing rare words 188
How to do it 188

Identifying and removing rare words 190
How to do it 190

Removing punctuation marks 191
How to do it 191
There's more... 192

Piecing together n-grams 192
How to do it 193
There's more... 196

Scraping a job listing from StackOverflow 196
Getting ready 197
How to do it 199
There's more... 200

Reading and cleaning the description in the job listing 201

Table of Contents

[viii]

Getting ready 201
How to do it... 201

Chapter 8: Searching, Mining and Visualizing Data 206

Introduction 206
Geocoding an IP address 207

Getting ready 207
How to do it 209

How to collect IP addresses of Wikipedia edits 210
Getting ready 211
How to do it 212
How it works 213
There's more... 214

Visualizing contributor location frequency on Wikipedia 214
How to do it 215

Creating a word cloud from a StackOverflow job listing 217
Getting ready 218
How to do it 218

Crawling links on Wikipedia 219
Getting ready 219
How to do it 220
How it works 221
Theres more... 224

Visualizing page relationships on Wikipedia 224
Getting ready 224
How to do it 225
How it works 226
There's more... 227

Calculating degrees of separation 229
How to do it 229
How it works 229
There's more... 230

Chapter 9: Creating a Simple Data API 231

Introduction 231
Creating a REST API with Flask-RESTful 232

Getting ready 232
How to do it 232
How it works 233
There's more... 234

Table of Contents

[ix]

Integrating the REST API with scraping code 235
Getting ready 235
How to do it 237

Adding an API to find the skills for a job listing 238
Getting ready 238
How to do it 239

Storing data in Elasticsearch as the result of a scraping request 240
Getting ready 240
How to do it 241
How it works 244
There's more... 244

Checking Elasticsearch for a listing before scraping 246
How to do it 246
There's more... 247

Chapter 10: Creating Scraper Microservices with Docker 248

Introduction 248
Installing Docker 249

Getting ready 249
How to do it 250

Installing a RabbitMQ container from Docker Hub 251
Getting ready 252
How to do it 252

Running a Docker container (RabbitMQ) 254
Getting ready 254
How to do it 255
There's more... 257

Creating and running an Elasticsearch container 257
How to do it 257

Stopping/restarting a container and removing the image 259
How to do it 259
There's more... 262

Creating a generic microservice with Nameko 262
Getting ready 262
How to do it 263
How it works 265
There's more... 266

Creating a scraping microservice 266
How to do it 266

Table of Contents

[x]

There's more... 268
Creating a scraper container 268

Getting ready 268
How to do it 270
How it works 272

Creating an API container 274
Getting ready 274
How to do it 274
There's more... 277

Composing and running the scraper locally with docker-compose 277
Getting ready 277
How to do it 278
There's more... 283

Chapter 11: Making the Scraper as a Service Real 284

Introduction 285
Creating and configuring an Elastic Cloud trial account 285

How to do it 286
Accessing the Elastic Cloud cluster with curl 289

How to do it 289
Connecting to the Elastic Cloud cluster with Python 290

Getting ready 290
How to do it 290
There's more... 292

Performing an Elasticsearch query with the Python API 294
Getting ready 295
How to do it 295
There's more... 298

Using Elasticsearch to query for jobs with specific skills 298
Getting ready 298
How to do it 298

Modifying the API to search for jobs by skill 302
How to do it 303
How it works 304
There's more... 305

Storing configuration in the environment 305
How to do it 306

Creating an AWS IAM user and a key pair for ECS 307
Getting ready 307

Table of Contents

[xi]

How to do it 307
Configuring Docker to authenticate with ECR 309

Getting ready 309
How to do it 309

Pushing containers into ECR 311
Getting ready 311
How to do it 313

Creating an ECS cluster 317
How to do it 317

Creating a task to run our containers 320
Getting ready 320
How to do it 320
How it works 323

Starting and accessing the containers in AWS 326
Getting ready 326
How to do it 327
There's more... 330

Other Books You May Enjoy 332

Index 335

Preface
The internet contains a wealth of data. This data is both provided through structured APIs
as well as by content delivered directly through websites. While the data in APIs is highly
structured, information found in web pages is often unstructured and requires collection,
extraction, and processing to be of value. And collecting data is just the start of the journey,
as that data must also be stored, mined, and then exposed to others in a value-added form.

With this book, you will learn many of the core tasks needed in collecting various forms of
information from websites. We will cover how to collect it, how to perform several common
data operations (including storage in local and remote databases), how to perform common
media-based tasks such as converting images an videos to thumbnails, how to clean
unstructured data with NTLK, how to examine several data mining and visualization tools,
and finally core skills in building a microservices-based scraper and API that can, and will,
be run on the cloud.

Through a recipe-based approach, we will learn independent techniques to solve specific
tasks involved in not only scraping but also data manipulation and management, data
mining, visualization, microservices, containers, and cloud operations. These recipes will
build skills in a progressive and holistic manner, not only teaching how to perform the
fundamentals of scraping but also taking you from the results of scraping to a service
offered to others through the cloud. We will be building an actual web-scraper-as-a-service
using common tools in the Python, container, and cloud ecosystems.

Who this book is for
This book is for those who want to learn to extract data from websites using the process of
scraping and also how to work with various data management tools and cloud services. The
coding will require basic skills in the Python programming language.

The book is also for those who wish to learn about a larger ecosystem of tools for retrieving,
storing, and searching data, as well as using modern tools and Pythonic libraries to create
data APIs and cloud services. You may also be using Docker and Amazon Web Services to
package and deploy a scraper on the cloud.

Preface

[2]

What this book covers
Chapter 1, Getting Started with Scraping, introduces several concepts and tools for web
scraping. We will examine how to install and do basic tasks with tools such as requests,
urllib, BeautifulSoup, Scrapy, PhantomJS and Selenium.

Chapter 2, Data Acquisition and Extraction, is based on an understanding of the structure of
HTML and how to find and extract embedded data. We will cover many of the concepts in
the DOM and how to find and extract data using BeautifulSoup, XPath, LXML, and CSS
selectors. We also briefly examine working with Unicode / UTF8.

Chapter 3, Processing Data, teaches you to load and manipulate data in many formats, and
then how to store that data in various data stores (S3, MySQL, PostgreSQL, and
ElasticSearch). Data in web pages is represented in various formats, the most common
being HTML, JSON, CSV, and XML We will also examine the use of message queue
systems, primarily AWS SQS, to help build robust data processing pipelines.

Chapter 4, Working with Images, Audio and other Assets, examines the means of retrieving
multimedia items, storing them locally, and also performing several tasks such as OCR,
generating thumbnails, making web page screenshots, audio extraction from videos, and
finding all video URLs in a YouTube playlist.

Chapter 5, Scraping – Code of Conduct, covers several concepts involved in the legality of
scraping, and practices for performing polite scraping. We will examine tools for processing
robots.txt and sitemaps to respect the web host's desire for acceptable behavior. We will
also examine the control of several facets of crawling, such as using delays, containing the
depth and length of crawls, using user agents, and implementing caching to prevent
repeated requests.

Chapter 6, Scraping Challenges and Solutions, covers many of the challenges that writing a
robust scraper is rife with, and how to handle many scenarios. These scenarios are
pagination, redirects, login forms, keeping the crawler within the same domain, retrying
requests upon failure, and handling captchas.

Chapter 7, Text Wrangling and Analysis, examines various tools such as using NLTK for
natural language processing and how to remove common noise words and punctuation. We
often need to process the textual content of a web page to find information on the page that
is part of the text and neither structured/embedded data nor multimedia. This requires
knowledge of using various concepts and tools to clean and understand text.

Preface

[3]

Chapter 8, Searching, Mining, and Visualizing Data, covers several means of searching for
data on the Web, storing and organizing data, and deriving results from the identified
relationships. We will see how to understand the geographic locations of contributors to
Wikipedia, finding relationships between actors on IMDB, and finding jobs on Stack
Overflow that match specific technologies.

Chapter 9, Creating a Simple Data API, teaches us how to create a scraper as a service. We
will create a REST API for a scraper using Flask. We will run the scraper as a service behind
this API and be able to submit requests to scrape specific pages, in order to dynamically
query data from a scrape as well as a local ElasticSearch instance.

Chapter 10, Creating Scraper Microservices with Docker, continues the growth of our scraper
as a service by packaging the service and API in a Docker swarm and distributing requests
across scrapers via a message queuing system (AWS SQS). We will also cover scaling of
scraper instances up and down using Docker swarm tools.

Chapter 11, Making the Scraper as a Service Real, concludes by fleshing out the services crated
in the previous chapter to add a scraper that pulls together various concepts covered earlier.
This scraper can assist in analyzing job posts on StackOverflow to find and compare
employers using specified technologies. The service will collect posts and allow a query to
find and compare those companies.

To get the most out of this book
The primary tool required for the recipes in this book is a Python 3 interpreter. The recipes
have been written using the free version of the Anaconda Python distribution, specifically
version 3.6.1. Other Python version 3 distributions should work well but have not been
tested.

The code in the recipes will often require the use of various Python libraries. These are all
available for installation using pip and accessible using pip install. Wherever required,
these installations will be elaborated in the recipes.

Several recipes require an Amazon AWS account. AWS accounts are available for the first
year for free-tier access. The recipes will not require anything more than free-tier services. A
new account can be created at https:/ /portal. aws.amazon. com/ billing/ signup.

https://portal.aws.amazon.com/billing/signup
https://portal.aws.amazon.com/billing/signup
https://portal.aws.amazon.com/billing/signup
https://portal.aws.amazon.com/billing/signup
https://portal.aws.amazon.com/billing/signup
https://portal.aws.amazon.com/billing/signup
https://portal.aws.amazon.com/billing/signup
https://portal.aws.amazon.com/billing/signup
https://portal.aws.amazon.com/billing/signup
https://portal.aws.amazon.com/billing/signup
https://portal.aws.amazon.com/billing/signup
https://portal.aws.amazon.com/billing/signup
https://portal.aws.amazon.com/billing/signup
https://portal.aws.amazon.com/billing/signup
https://portal.aws.amazon.com/billing/signup

Preface

[4]

Several recipes will utilize Elasticsearch. There is a free, open source version available on
GitHub at https://github. com/ elastic/ elasticsearch, with installation instructions on
that page. Elastic.co also offers a fully capable version (also with Kibana and Logstash)
hosted on the cloud with a 14-day free trial available at http:/ / info. elastic. co (which we
will utilize). There is a version for docker-compose with all x-pack features available at
https://github.com/ elastic/ stack- docker, all of which can be started with a simple
docker-compose up command.

Finally, several of the recipes use MySQL and PostgreSQL as database examples and
several common clients for those databases. For those recipes, these will need to be installed
locally. MySQL Community Server is available at https:/ /dev. mysql. com/ downloads/
mysql/, and PostgreSQL can be found at https:/ /www. postgresql. org/ .

We will also look at creating and using docker containers for several of the recipes. Docker
CE is free and is available at https:/ /www. docker. com/ community- edition.

Download the example code files
You can download the example code files for this book from your account at
www.packtpub.com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packtpub.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ / github. com/
PacktPublishing/Python- Web- Scraping- Cookbook. We also have other code bundles from
our rich catalog of books and videos available at https:/ /github. com/ PacktPublishing/ .
Check them out!

https://github.com/elastic/elasticsearch
https://github.com/elastic/elasticsearch
https://github.com/elastic/elasticsearch
https://github.com/elastic/elasticsearch
https://github.com/elastic/elasticsearch
https://github.com/elastic/elasticsearch
https://github.com/elastic/elasticsearch
https://github.com/elastic/elasticsearch
https://github.com/elastic/elasticsearch
https://github.com/elastic/elasticsearch
https://github.com/elastic/elasticsearch
http://info.elastic.co
http://info.elastic.co
http://info.elastic.co
http://info.elastic.co
http://info.elastic.co
http://info.elastic.co
http://info.elastic.co
http://info.elastic.co
http://info.elastic.co
https://github.com/elastic/stack-docker
https://github.com/elastic/stack-docker
https://github.com/elastic/stack-docker
https://github.com/elastic/stack-docker
https://github.com/elastic/stack-docker
https://github.com/elastic/stack-docker
https://github.com/elastic/stack-docker
https://github.com/elastic/stack-docker
https://github.com/elastic/stack-docker
https://github.com/elastic/stack-docker
https://github.com/elastic/stack-docker
https://github.com/elastic/stack-docker
https://github.com/elastic/stack-docker
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/
https://www.postgresql.org/
https://www.postgresql.org/
https://www.postgresql.org/
https://www.postgresql.org/
https://www.postgresql.org/
https://www.postgresql.org/
https://www.postgresql.org/
https://www.postgresql.org/
https://www.postgresql.org/
https://www.postgresql.org/
https://www.docker.com/community-edition
https://www.docker.com/community-edition
https://www.docker.com/community-edition
https://www.docker.com/community-edition
https://www.docker.com/community-edition
https://www.docker.com/community-edition
https://www.docker.com/community-edition
https://www.docker.com/community-edition
https://www.docker.com/community-edition
https://www.docker.com/community-edition
https://www.docker.com/community-edition
https://www.docker.com/community-edition
https://www.docker.com/community-edition
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Python-Web-Scraping-Cookbook
https://github.com/PacktPublishing/Python-Web-Scraping-Cookbook
https://github.com/PacktPublishing/Python-Web-Scraping-Cookbook
https://github.com/PacktPublishing/Python-Web-Scraping-Cookbook
https://github.com/PacktPublishing/Python-Web-Scraping-Cookbook
https://github.com/PacktPublishing/Python-Web-Scraping-Cookbook
https://github.com/PacktPublishing/Python-Web-Scraping-Cookbook
https://github.com/PacktPublishing/Python-Web-Scraping-Cookbook
https://github.com/PacktPublishing/Python-Web-Scraping-Cookbook
https://github.com/PacktPublishing/Python-Web-Scraping-Cookbook
https://github.com/PacktPublishing/Python-Web-Scraping-Cookbook
https://github.com/PacktPublishing/Python-Web-Scraping-Cookbook
https://github.com/PacktPublishing/Python-Web-Scraping-Cookbook
https://github.com/PacktPublishing/Python-Web-Scraping-Cookbook
https://github.com/PacktPublishing/Python-Web-Scraping-Cookbook
https://github.com/PacktPublishing/Python-Web-Scraping-Cookbook
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

[5]

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "This will loop through up to 20 characters and drop them into the sw index with
a document type of people"

A block of code is set as follows:

from elasticsearch import Elasticsearch
import requests
import json

if __name__ == '__main__':
 es = Elasticsearch(
 [

Any command-line input or output is written as follows:

$ curl
https://elastic:tduhdExunhEWPjSuH73O6yLS@7dc72d3327076cc4daf5528103
c46a27.us-west-2.aws.found.io:9243

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select System info from the Administration panel."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Preface

[6]

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/
https://www.packtpub.com/

1
Getting Started with Scraping

In this chapter, we will cover the following topics:

Setting up a Python development environment
Scraping Python.org with Requests and Beautiful Soup
Scraping Python.org with urllib3 and Beautiful Soup
Scraping Python.org with Scrapy
Scraping Python.org with Selenium and PhantomJs

Introduction
The amount of data available on the web is consistently growing both in quantity and in
form. Businesses require this data to make decisions, particularly with the explosive
growth of machine learning tools which require large amounts of data for training. Much
of this data is available via Application Programming Interfaces, but at the same time a lot
of valuable data is still only available through the process of web scraping.

This chapter will focus on several fundamentals of setting up a scraping environment and
performing basic requests for data with several of the tools of the trade. Python is the
programing language of choice for this book, as well as amongst many who build systems
to perform scraping. It is an easy to use programming language which has a very rich
ecosystem of tools for many tasks. If you program in other languages, you will find it easy
to pick up and you may never go back!

Getting Started with Scraping Chapter 1

[8]

Setting up a Python development
environment
If you have not used Python before, it is important to have a working development
environment. The recipes in this book will be all in Python and be a mix of interactive
examples, but primarily implemented as scripts to be interpreted by the Python
interpreter. This recipe will show you how to set up an isolated development environment
with virtualenv and manage project dependencies with pip . We also get the code for the
book and install it into the Python virtual environment.

Getting ready
We will exclusively be using Python 3.x, and specifically in my case 3.6.1. While Mac and
Linux normally have Python version 2 installed, and Windows systems do not. So it is
likely that in any case that Python 3 will need to be installed. You can find references for
Python installers at www.python.org.

You can check Python's version with python --version

pip comes installed with Python 3.x, so we will omit instructions on its
installation. Additionally, all command line examples in this book are run
on a Mac. For Linux users the commands should be identical. On
Windows, there are alternate commands (like dir instead of ls), but these
alternatives will not be covered.

How to do it...
We will be installing a number of packages with pip. These packages are installed into a
Python environment. There often can be version conflicts with other packages, so a good
practice for following along with the recipes in the book will be to create a new virtual
Python environment where the packages we will use will be ensured to work properly.

Getting Started with Scraping Chapter 1

[9]

Virtual Python environments are managed with the virtualenv tool. This can be installed
with the following command:

~ $ pip install virtualenv
Collecting virtualenv
 Using cached virtualenv-15.1.0-py2.py3-none-any.whl
Installing collected packages: virtualenv
Successfully installed virtualenv-15.1.0

Now we can use virtualenv. But before that let's briefly look at pip. This command
installs Python packages from PyPI, a package repository with literally 10's of thousands of
packages. We just saw using the install subcommand to pip, which ensures a package is
installed. We can also see all currently installed packages with pip list:

~ $ pip list
alabaster (0.7.9)
amqp (1.4.9)
anaconda-client (1.6.0)
anaconda-navigator (1.5.3)
anaconda-project (0.4.1)
aniso8601 (1.3.0)

I've truncated to the first few lines as there are quite a few. For me there are 222 packages
installed.

Packages can also be uninstalled using pip uninstall followed by the package name. I'll
leave it to you to give it a try.

Now back to virtualenv. Using virtualenv is very simple. Let's use it to create an
environment and install the code from github. Let's walk through the steps:

Create a directory to represent the project and enter the directory.1.

~ $ mkdir pywscb
~ $ cd pywscb

Initialize a virtual environment folder named env:2.

pywscb $ virtualenv env
Using base prefix '/Users/michaelheydt/anaconda'
New python executable in /Users/michaelheydt/pywscb/env/bin/python
copying /Users/michaelheydt/anaconda/bin/python =>
/Users/michaelheydt/pywscb/env/bin/python
copying /Users/michaelheydt/anaconda/bin/../lib/libpython3.6m.dylib
=> /Users/michaelheydt/pywscb/env/lib/libpython3.6m.dylib
Installing setuptools, pip, wheel...done.

Getting Started with Scraping Chapter 1

[10]

This creates an env folder. Let's take a look at what was installed.3.

pywscb $ ls -la env
total 8
drwxr-xr-x 6 michaelheydt staff 204 Jan 18 15:38 .
drwxr-xr-x 3 michaelheydt staff 102 Jan 18 15:35 ..
drwxr-xr-x 16 michaelheydt staff 544 Jan 18 15:38 bin
drwxr-xr-x 3 michaelheydt staff 102 Jan 18 15:35 include
drwxr-xr-x 4 michaelheydt staff 136 Jan 18 15:38 lib
-rw-r--r-- 1 michaelheydt staff 60 Jan 18 15:38 pip-
selfcheck.json

New we activate the virtual environment. This command uses the content in the4.
env folder to configure Python. After this all python activities are relative to this
virtual environment.

pywscb $ source env/bin/activate
(env) pywscb $

We can check that python is indeed using this virtual environment with the5.
following command:

(env) pywscb $ which python
/Users/michaelheydt/pywscb/env/bin/python

With our virtual environment created, let's clone the books sample code and take a look at
its structure.

(env) pywscb $ git clone
https://github.com/PacktBooks/PythonWebScrapingCookbook.git
 Cloning into 'PythonWebScrapingCookbook'...
 remote: Counting objects: 420, done.
 remote: Compressing objects: 100% (316/316), done.
 remote: Total 420 (delta 164), reused 344 (delta 88), pack-reused 0
 Receiving objects: 100% (420/420), 1.15 MiB | 250.00 KiB/s, done.
 Resolving deltas: 100% (164/164), done.
 Checking connectivity... done.

This created a PythonWebScrapingCookbook directory.

(env) pywscb $ ls -l
 total 0
 drwxr-xr-x 9 michaelheydt staff 306 Jan 18 16:21 PythonWebScrapingCookbook
 drwxr-xr-x 6 michaelheydt staff 204 Jan 18 15:38 env

Getting Started with Scraping Chapter 1

[11]

Let's change into it and examine the content.

(env) PythonWebScrapingCookbook $ ls -l
 total 0
 drwxr-xr-x 15 michaelheydt staff 510 Jan 18 16:21 py
 drwxr-xr-x 14 michaelheydt staff 476 Jan 18 16:21 www

There are two directories. Most the the Python code is is the py directory. www contains
some web content that we will use from time-to-time using a local web server. Let's look at
the contents of the py directory:

(env) py $ ls -l
 total 0
 drwxr-xr-x 9 michaelheydt staff 306 Jan 18 16:21 01
 drwxr-xr-x 25 michaelheydt staff 850 Jan 18 16:21 03
 drwxr-xr-x 21 michaelheydt staff 714 Jan 18 16:21 04
 drwxr-xr-x 10 michaelheydt staff 340 Jan 18 16:21 05
 drwxr-xr-x 14 michaelheydt staff 476 Jan 18 16:21 06
 drwxr-xr-x 25 michaelheydt staff 850 Jan 18 16:21 07
 drwxr-xr-x 14 michaelheydt staff 476 Jan 18 16:21 08
 drwxr-xr-x 7 michaelheydt staff 238 Jan 18 16:21 09
 drwxr-xr-x 7 michaelheydt staff 238 Jan 18 16:21 10
 drwxr-xr-x 9 michaelheydt staff 306 Jan 18 16:21 11
 drwxr-xr-x 8 michaelheydt staff 272 Jan 18 16:21 modules

Code for each chapter is in the numbered folder matching the chapter (there is no code for
chapter 2 as it is all interactive Python).

Note that there is a modules folder. Some of the recipes throughout the book use code in
those modules. Make sure that your Python path points to this folder. On Mac and Linux
you can sets this in your .bash_profile file (and environments variables dialog on
Windows):

export
PYTHONPATH="/users/michaelheydt/dropbox/packt/books/pywebscrcookbook/code/p
y/modules"
export PYTHONPATH

The contents in each folder generally follows a numbering scheme matching the sequence of
the recipe in the chapter. The following is the contents of the chapter 6 folder:

(env) py $ ls -la 06
 total 96
 drwxr-xr-x 14 michaelheydt staff 476 Jan 18 16:21 .
 drwxr-xr-x 14 michaelheydt staff 476 Jan 18 16:26 ..
 -rw-r--r-- 1 michaelheydt staff 902 Jan 18 16:21 01_scrapy_retry.py
 -rw-r--r-- 1 michaelheydt staff 656 Jan 18 16:21 02_scrapy_redirects.py

Getting Started with Scraping Chapter 1

[12]

 -rw-r--r-- 1 michaelheydt staff 1129 Jan 18 16:21 03_scrapy_pagination.py
 -rw-r--r-- 1 michaelheydt staff 488 Jan 18 16:21 04_press_and_wait.py
 -rw-r--r-- 1 michaelheydt staff 580 Jan 18 16:21 05_allowed_domains.py
 -rw-r--r-- 1 michaelheydt staff 826 Jan 18 16:21 06_scrapy_continuous.py
 -rw-r--r-- 1 michaelheydt staff 704 Jan 18 16:21
07_scrape_continuous_twitter.py
 -rw-r--r-- 1 michaelheydt staff 1409 Jan 18 16:21 08_limit_depth.py
 -rw-r--r-- 1 michaelheydt staff 526 Jan 18 16:21 09_limit_length.py
 -rw-r--r-- 1 michaelheydt staff 1537 Jan 18 16:21 10_forms_auth.py
 -rw-r--r-- 1 michaelheydt staff 597 Jan 18 16:21 11_file_cache.py
 -rw-r--r-- 1 michaelheydt staff 1279 Jan 18 16:21
12_parse_differently_based_on_rules.py

In the recipes I'll state that we'll be using the script in <chapter directory>/<recipe
filename>.

Congratulations, you've now got a Python environment configured with
the books code!

Now just the be complete, if you want to get out of the Python virtual environment, you can
exit using the following command:

(env) py $ deactivate
 py $

And checking which python we can see it has switched back:

py $ which python
 /Users/michaelheydt/anaconda/bin/python

I won't be using the virtual environment for the rest of the book. When
you see command prompts they will be either of the form "<directory> $"
or simply "$".

Now let's move onto doing some scraping.

Getting Started with Scraping Chapter 1

[13]

Scraping Python.org with Requests and
Beautiful Soup
In this recipe we will install Requests and Beautiful Soup and scrape some content from
www.python.org. We'll install both of the libraries and get some basic familiarity with
them. We'll come back to them both in subsequent chapters and dive deeper into each.

Getting ready...
In this recipe, we will scrape the upcoming Python events from https:/ /www. python. org/
events/pythonevents. The following is an an example of The Python.org Events Page
(it changes frequently, so your experience will differ):

https://www.python.org/events/pythonevents
https://www.python.org/events/pythonevents
https://www.python.org/events/pythonevents
https://www.python.org/events/pythonevents
https://www.python.org/events/pythonevents
https://www.python.org/events/pythonevents
https://www.python.org/events/pythonevents
https://www.python.org/events/pythonevents
https://www.python.org/events/pythonevents
https://www.python.org/events/pythonevents
https://www.python.org/events/pythonevents
https://www.python.org/events/pythonevents

Getting Started with Scraping Chapter 1

[14]

We will need to ensure that Requests and Beautiful Soup are installed. We can do that with
the following:

pywscb $ pip install requests
Downloading/unpacking requests
 Downloading requests-2.18.4-py2.py3-none-any.whl (88kB): 88kB downloaded
Downloading/unpacking certifi>=2017.4.17 (from requests)
 Downloading certifi-2018.1.18-py2.py3-none-any.whl (151kB): 151kB
downloaded
Downloading/unpacking idna>=2.5,<2.7 (from requests)
 Downloading idna-2.6-py2.py3-none-any.whl (56kB): 56kB downloaded
Downloading/unpacking chardet>=3.0.2,<3.1.0 (from requests)
 Downloading chardet-3.0.4-py2.py3-none-any.whl (133kB): 133kB downloaded
Downloading/unpacking urllib3>=1.21.1,<1.23 (from requests)
 Downloading urllib3-1.22-py2.py3-none-any.whl (132kB): 132kB downloaded
Installing collected packages: requests, certifi, idna, chardet, urllib3
Successfully installed requests certifi idna chardet urllib3
Cleaning up...
pywscb $ pip install bs4
Downloading/unpacking bs4
 Downloading bs4-0.0.1.tar.gz
 Running setup.py (path:/Users/michaelheydt/pywscb/env/build/bs4/setup.py)
egg_info for package bs4

How to do it...
Now let's go and learn to scrape a couple events. For this recipe we will start by using
interactive python.

 Start it with the ipython command:1.

$ ipython
Python 3.6.1 |Anaconda custom (x86_64)| (default, Mar 22 2017,
19:25:17)
Type "copyright", "credits" or "license" for more information.
IPython 5.1.0 -- An enhanced Interactive Python.
? -> Introduction and overview of IPython's features.
%quickref -> Quick reference.
help -> Python's own help system.
object? -> Details about 'object', use 'object??' for extra
details.
In [1]:

Getting Started with Scraping Chapter 1

[15]

Next we import Requests2.

In [1]: import requests

We now use requests to make a GET HTTP request for the following url: https:/3.
/www.python. org/ events/ python- events/ by making a GET request:

In [2]: url = 'https://www.python.org/events/python-events/'
In [3]: req = requests.get(url)

That downloaded the page content but it is stored in our requests object req. We4.
can retrieve the content using the .text property. This prints the first 200
characters.

req.text[:200]
Out[4]: '<!doctype html>\n<!--[if lt IE 7]> <html class="no-js ie6
lt-ie7 lt-ie8 lt-ie9"> <![endif]-->\n<!--[if IE 7]> <html
class="no-js ie7 lt-ie8 lt-ie9"> <![endif]-->\n<!--[if IE 8]> <h'

We now have the raw HTML of the page. We can now use beautiful soup to parse the
HTML and retrieve the event data.

First import Beautiful Soup1.

In [5]: from bs4 import BeautifulSoup

Now we create a BeautifulSoup object and pass it the HTML.2.

In [6]: soup = BeautifulSoup(req.text, 'lxml')

Now we tell Beautiful Soup to find the main tag for the recent events, and3.
then to get all the tags below it.

In [7]: events = soup.find('ul', {'class': 'list-recent-
events'}).findAll('li')

And finally we can loop through each of the elements, extracting the event4.
details, and print each to the console:

In [13]: for event in events:
 ...: event_details = dict()
 ...: event_details['name'] = event_details['name'] =
event.find('h3').find("a").text
 ...: event_details['location'] = event.find('span', {'class',
'event-location'}).text
 ...: event_details['time'] = event.find('time').text

https://www.python.org/events/python-events/
https://www.python.org/events/python-events/
https://www.python.org/events/python-events/
https://www.python.org/events/python-events/
https://www.python.org/events/python-events/
https://www.python.org/events/python-events/
https://www.python.org/events/python-events/
https://www.python.org/events/python-events/
https://www.python.org/events/python-events/
https://www.python.org/events/python-events/
https://www.python.org/events/python-events/
https://www.python.org/events/python-events/
https://www.python.org/events/python-events/
https://www.python.org/events/python-events/
https://www.python.org/events/python-events/

Getting Started with Scraping Chapter 1

[16]

 ...: print(event_details)
 ...:
{'name': 'PyCascades 2018', 'location': 'Granville Island Stage,
1585 Johnston St, Vancouver, BC V6H 3R9, Canada', 'time': '22 Jan.
– 24 Jan. 2018'}
{'name': 'PyCon Cameroon 2018', 'location': 'Limbe, Cameroon',
'time': '24 Jan. – 29 Jan. 2018'}
{'name': 'FOSDEM 2018', 'location': 'ULB Campus du Solbosch, Av. F.
D. Roosevelt 50, 1050 Bruxelles, Belgium', 'time': '03 Feb. – 05
Feb. 2018'}
{'name': 'PyCon Pune 2018', 'location': 'Pune, India', 'time': '08
Feb. – 12 Feb. 2018'}
{'name': 'PyCon Colombia 2018', 'location': 'Medellin, Colombia',
'time': '09 Feb. – 12 Feb. 2018'}
{'name': 'PyTennessee 2018', 'location': 'Nashville, TN, USA',
'time': '10 Feb. – 12 Feb. 2018'}

This entire example is available in the 01/01_events_with_requests.py script file. The
following is its content and it pulls together all of what we just did step by step:

import requests
from bs4 import BeautifulSoup

def get_upcoming_events(url):
 req = requests.get(url)

 soup = BeautifulSoup(req.text, 'lxml')

 events = soup.find('ul', {'class': 'list-recent-events'}).findAll('li')

 for event in events:
 event_details = dict()
 event_details['name'] = event.find('h3').find("a").text
 event_details['location'] = event.find('span', {'class', 'event-
location'}).text
 event_details['time'] = event.find('time').text
 print(event_details)

get_upcoming_events('https://www.python.org/events/python-events/')

Getting Started with Scraping Chapter 1

[17]

You can run this using the following command from the terminal:

$ python 01_events_with_requests.py
{'name': 'PyCascades 2018', 'location': 'Granville Island Stage, 1585
Johnston St, Vancouver, BC V6H 3R9, Canada', 'time': '22 Jan. – 24 Jan.
2018'}
{'name': 'PyCon Cameroon 2018', 'location': 'Limbe, Cameroon', 'time': '24
Jan. – 29 Jan. 2018'}
{'name': 'FOSDEM 2018', 'location': 'ULB Campus du Solbosch, Av. F. D.
Roosevelt 50, 1050 Bruxelles, Belgium', 'time': '03 Feb. – 05 Feb. 2018'}
{'name': 'PyCon Pune 2018', 'location': 'Pune, India', 'time': '08 Feb. – 12
Feb. 2018'}
{'name': 'PyCon Colombia 2018', 'location': 'Medellin, Colombia', 'time':
'09 Feb. – 12 Feb. 2018'}
{'name': 'PyTennessee 2018', 'location': 'Nashville, TN, USA', 'time': '10
Feb. – 12 Feb. 2018'}

How it works...
We will dive into details of both Requests and Beautiful Soup in the next chapter, but for
now let's just summarize a few key points about how this works. The following important
points about Requests:

Requests is used to execute HTTP requests. We used it to make a GET verb
request of the URL for the events page.
The Requests object holds the results of the request. This is not only the page
content, but also many other items about the result such as HTTP status codes
and headers.
Requests is used only to get the page, it does not do an parsing.

We use Beautiful Soup to do the parsing of the HTML and also the finding of content within
the HTML.

Getting Started with Scraping Chapter 1

[18]

To understand how this worked, the content of the page has the following HTML to start
the Upcoming Events section:

We used the power of Beautiful Soup to:

Find the element representing the section, which is found by looking for a
 with the a class attribute that has a value of list-recent-events.
From that object, we find all the elements.

Each of these tags represent a different event. We iterate over each of those making a
dictionary from the event data found in child HTML tags:

The name is extracted from the <a> tag that is a child of the <h3> tag
The location is the text content of the with a class of event-location
And the time is extracted from the datetime attribute of the <time> tag.

Getting Started with Scraping Chapter 1

[19]

Scraping Python.org in urllib3 and Beautiful
Soup
In this recipe we swap out the use of requests for another library urllib3. This is another
common library for retrieving data from URLs and for other functions involving URLs such
as parsing of the parts of the actual URL and handling various encodings.

Getting ready...
This recipe requires urllib3 installed. So install it with pip:

$ pip install urllib3
Collecting urllib3
 Using cached urllib3-1.22-py2.py3-none-any.whl
Installing collected packages: urllib3
Successfully installed urllib3-1.22

How to do it...
The recipe is implemented in 01/02_events_with_urllib3.py. The code is the
following:

import urllib3
from bs4 import BeautifulSoup

def get_upcoming_events(url):
 req = urllib3.PoolManager()
 res = req.request('GET', url)

 soup = BeautifulSoup(res.data, 'html.parser')

 events = soup.find('ul', {'class': 'list-recent-events'}).findAll('li')

 for event in events:
 event_details = dict()
 event_details['name'] = event.find('h3').find("a").text
 event_details['location'] = event.find('span', {'class', 'event-
location'}).text
 event_details['time'] = event.find('time').text
 print(event_details)

get_upcoming_events('https://www.python.org/events/python-events/')

Getting Started with Scraping Chapter 1

[20]

The run it with the python interpreter. You will get identical output to the previous recipe.

How it works
The only difference in this recipe is how we fetch the resource:

req = urllib3.PoolManager()
res = req.request('GET', url)

Unlike Requests, urllib3 doesn't apply header encoding automatically. The reason why
the code snippet works in the preceding example is because BS4 handles encoding
beautifully. But you should keep in mind that encoding is an important part of scraping. If
you decide to use your own framework or use other libraries, make sure encoding is well
handled.

There's more...
Requests and urllib3 are very similar in terms of capabilities. it is generally recommended to
use Requests when it comes to making HTTP requests. The following code example
illustrates a few advanced features:

import requests

builds on top of urllib3's connection pooling
session reuses the same TCP connection if
requests are made to the same host
see https://en.wikipedia.org/wiki/HTTP_persistent_connection for details
session = requests.Session()

You may pass in custom cookie
r = session.get('http://httpbin.org/get', cookies={'my-cookie': 'browser'})
print(r.text)
'{"cookies": {"my-cookie": "test cookie"}}'

Streaming is another nifty feature
From
http://docs.python-requests.org/en/master/user/advanced/#streaming-requests
copyright belongs to reques.org
r = requests.get('http://httpbin.org/stream/20', stream=True)

Getting Started with Scraping Chapter 1

[21]

for line in r.iter_lines():
 # filter out keep-alive new lines
 if line:
 decoded_line = line.decode('utf-8')
 print(json.loads(decoded_line))

Scraping Python.org with Scrapy
Scrapy is a very popular open source Python scraping framework for extracting data. It was
originally designed for only scraping, but it is has also evolved into a powerful web
crawling solution.

In our previous recipes, we used Requests and urllib2 to fetch data and Beautiful Soup to
extract data. Scrapy offers all of these functionalities with many other built-in modules and
extensions. It is also our tool of choice when it comes to scraping with Python.

Scrapy offers a number of powerful features that are worth mentioning:

Built-in extensions to make HTTP requests and handle compression,
authentication, caching, manipulate user-agents, and HTTP headers
Built-in support for selecting and extracting data with selector languages such as
CSS and XPath, as well as support for utilizing regular expressions for selection
of content and links
Encoding support to deal with languages and non-standard encoding
declarations
Flexible APIs to reuse and write custom middleware and pipelines, which
provide a clean and easy way to implement tasks such as automatically
downloading assets (for example, images or media) and storing data in storage
such as file systems, S3, databases, and others

Getting ready...
There are several means of creating a scraper with Scrapy. One is a programmatic pattern
where we create the crawler and spider in our code. It is also possible to configure a Scrapy
project from templates or generators and then run the scraper from the command line using
the scrapy command. This book will follow the programmatic pattern as it contains the
code in a single file more effectively. This will help when we are putting together specific,
targeted, recipes with Scrapy.

Getting Started with Scraping Chapter 1

[22]

This isn't necessarily a better way of running a Scrapy scraper than using the command line
execution, just one that is a design decision for this book. Ultimately this book is not about
Scrapy (there are other books on just Scrapy), but more of an exposition on various things
you may need to do when scraping, and in the ultimate creation of a functional scraper as a
service in the cloud.

How to do it...
The script for this recipe is 01/03_events_with_scrapy.py. The following is the code:

import scrapy
from scrapy.crawler import CrawlerProcess

class PythonEventsSpider(scrapy.Spider):
 name = 'pythoneventsspider'

 start_urls = ['https://www.python.org/events/python-events/',]
 found_events = []

 def parse(self, response):
 for event in response.xpath('//ul[contains(@class, "list-recent-
events")]/li'):
 event_details = dict()
 event_details['name'] = event.xpath('h3[@class="event-
title"]/a/text()').extract_first()
 event_details['location'] = event.xpath('p/span[@class="event-
location"]/text()').extract_first()
 event_details['time'] =
event.xpath('p/time/text()').extract_first()
 self.found_events.append(event_details)

if __name__ == "__main__":
 process = CrawlerProcess({ 'LOG_LEVEL': 'ERROR'})
 process.crawl(PythonEventsSpider)
 spider = next(iter(process.crawlers)).spider
 process.start()

 for event in spider.found_events: print(event)

Getting Started with Scraping Chapter 1

[23]

The following runs the script and shows the output:

~ $ python 03_events_with_scrapy.py
{'name': 'PyCascades 2018', 'location': 'Granville Island Stage, 1585
Johnston St, Vancouver, BC V6H 3R9, Canada', 'time': '22 Jan. – 24 Jan. '}
{'name': 'PyCon Cameroon 2018', 'location': 'Limbe, Cameroon', 'time': '24
Jan. – 29 Jan. '}
{'name': 'FOSDEM 2018', 'location': 'ULB Campus du Solbosch, Av. F. D.
Roosevelt 50, 1050 Bruxelles, Belgium', 'time': '03 Feb. – 05 Feb. '}
{'name': 'PyCon Pune 2018', 'location': 'Pune, India', 'time': '08 Feb. – 12
Feb. '}
{'name': 'PyCon Colombia 2018', 'location': 'Medellin, Colombia', 'time':
'09 Feb. – 12 Feb. '}
{'name': 'PyTennessee 2018', 'location': 'Nashville, TN, USA', 'time': '10
Feb. – 12 Feb. '}
{'name': 'PyCon Pakistan', 'location': 'Lahore, Pakistan', 'time': '16 Dec.
– 17 Dec. '}
{'name': 'PyCon Indonesia 2017', 'location': 'Surabaya, Indonesia', 'time':
'09 Dec. – 10 Dec. '}

The same result but with another tool. Let's go take a quick review of how this works.

How it works
We will get into some details about Scrapy in later chapters, but let's just go through this
code quick to get a feel how it is accomplishing this scrape. Everything in Scrapy revolves
around creating a spider. Spiders crawl through pages on the Internet based upon rules
that we provide. This spider only processes one single page, so it's not really much of a
spider. But it shows the pattern we will use through later Scrapy examples.

The spider is created with a class definition that derives from one of the Scrapy spider
classes. Ours derives from the scrapy.Spider class.

class PythonEventsSpider(scrapy.Spider):
 name = 'pythoneventsspider'

 start_urls = ['https://www.python.org/events/python-events/',]

Every spider is given a name, and also one or more start_urls which tell it where to start
the crawling.

This spider has a field to store all the events that we find:

 found_events = []

Getting Started with Scraping Chapter 1

[24]

The spider then has a method names parse which will be called for every page the spider
collects.

def parse(self, response):
 for event in response.xpath('//ul[contains(@class, "list-recent-
events")]/li'):
 event_details = dict()
 event_details['name'] = event.xpath('h3[@class="event-
title"]/a/text()').extract_first()
 event_details['location'] = event.xpath('p/span[@class="event-
location"]/text()').extract_first()
 event_details['time'] =
event.xpath('p/time/text()').extract_first()
 self.found_events.append(event_details)

The implementation of this method uses and XPath selection to get the events from the page
(XPath is the built in means of navigating HTML in Scrapy). It them builds the
event_details dictionary object similarly to the other examples, and then adds it to the
found_events list.

The remaining code does the programmatic execution of the Scrapy crawler.

 process = CrawlerProcess({ 'LOG_LEVEL': 'ERROR'})
 process.crawl(PythonEventsSpider)
 spider = next(iter(process.crawlers)).spider
 process.start()

It starts with the creation of a CrawlerProcess which does the actual crawling and a lot of
other tasks. We pass it a LOG_LEVEL of ERROR to prevent the voluminous Scrapy output.
Change this to DEBUG and re-run it to see the difference.

Next we tell the crawler process to use our Spider implementation. We get the actual spider
object from that crawler so that we can get the items when the crawl is complete. And then
we kick of the whole thing by calling process.start().

When the crawl is completed we can then iterate and print out the items that were found.

 for event in spider.found_events: print(event)

This example really didn't touch any of the power of Scrapy. We will look
more into some of the more advanced features later in the book.

Getting Started with Scraping Chapter 1

[25]

Scraping Python.org with Selenium and
PhantomJS
This recipe will introduce Selenium and PhantomJS, two frameworks that are very different
from the frameworks in the previous recipes. In fact, Selenium and PhantomJS are often
used in functional/acceptance testing. We want to demonstrate these tools as they offer
unique benefits from the scraping perspective. Several that we will look at later in the book
are the ability to fill out forms, press buttons, and wait for dynamic JavaScript to be
downloaded and executed.

Selenium itself is a programming language neutral framework. It offers a number of
programming language bindings, such as Python, Java, C#, and PHP (amongst others). The
framework also provides many components that focus on testing. Three commonly used
components are:

IDE for recording and replaying tests
Webdriver, which actually launches a web browser (such as Firefox, Chrome, or
Internet Explorer) by sending commands and sending the results to the selected
browser
A grid server executes tests with a web browser on a remote server. It can run
multiple test cases in parallel.

Getting ready
First we need to install Selenium. We do this with our trusty pip:

~ $ pip install selenium
Collecting selenium
 Downloading selenium-3.8.1-py2.py3-none-any.whl (942kB)
 100% |████████████████████████████████| 952kB 236kB/s
Installing collected packages: selenium
Successfully installed selenium-3.8.1

This installs the Selenium Client Driver for Python (the language bindings). You can find
more information on it at https:/ /github. com/ SeleniumHQ/ selenium/ blob/ master/ py/
docs/source/index. rst if you want to in the future.

For this recipe we also need to have the driver for Firefox in the directory (it's named
geckodriver). This file is operating system specific. I've included the file for Mac in the
folder. To get other versions, visit https:/ /github. com/ mozilla/ geckodriver/ releases.

https://github.com/SeleniumHQ/selenium/blob/master/py/docs/source/index.rst
https://github.com/SeleniumHQ/selenium/blob/master/py/docs/source/index.rst
https://github.com/SeleniumHQ/selenium/blob/master/py/docs/source/index.rst
https://github.com/SeleniumHQ/selenium/blob/master/py/docs/source/index.rst
https://github.com/SeleniumHQ/selenium/blob/master/py/docs/source/index.rst
https://github.com/SeleniumHQ/selenium/blob/master/py/docs/source/index.rst
https://github.com/SeleniumHQ/selenium/blob/master/py/docs/source/index.rst
https://github.com/SeleniumHQ/selenium/blob/master/py/docs/source/index.rst
https://github.com/SeleniumHQ/selenium/blob/master/py/docs/source/index.rst
https://github.com/SeleniumHQ/selenium/blob/master/py/docs/source/index.rst
https://github.com/SeleniumHQ/selenium/blob/master/py/docs/source/index.rst
https://github.com/SeleniumHQ/selenium/blob/master/py/docs/source/index.rst
https://github.com/SeleniumHQ/selenium/blob/master/py/docs/source/index.rst
https://github.com/SeleniumHQ/selenium/blob/master/py/docs/source/index.rst
https://github.com/SeleniumHQ/selenium/blob/master/py/docs/source/index.rst
https://github.com/SeleniumHQ/selenium/blob/master/py/docs/source/index.rst
https://github.com/SeleniumHQ/selenium/blob/master/py/docs/source/index.rst
https://github.com/SeleniumHQ/selenium/blob/master/py/docs/source/index.rst
https://github.com/SeleniumHQ/selenium/blob/master/py/docs/source/index.rst
https://github.com/SeleniumHQ/selenium/blob/master/py/docs/source/index.rst
https://github.com/SeleniumHQ/selenium/blob/master/py/docs/source/index.rst
https://github.com/SeleniumHQ/selenium/blob/master/py/docs/source/index.rst
https://github.com/SeleniumHQ/selenium/blob/master/py/docs/source/index.rst
https://github.com/SeleniumHQ/selenium/blob/master/py/docs/source/index.rst
https://github.com/mozilla/geckodriver/releases
https://github.com/mozilla/geckodriver/releases
https://github.com/mozilla/geckodriver/releases
https://github.com/mozilla/geckodriver/releases
https://github.com/mozilla/geckodriver/releases
https://github.com/mozilla/geckodriver/releases
https://github.com/mozilla/geckodriver/releases
https://github.com/mozilla/geckodriver/releases
https://github.com/mozilla/geckodriver/releases
https://github.com/mozilla/geckodriver/releases
https://github.com/mozilla/geckodriver/releases
https://github.com/mozilla/geckodriver/releases
https://github.com/mozilla/geckodriver/releases

Getting Started with Scraping Chapter 1

[26]

Still, when running this sample you may get the following error:

FileNotFoundError: [Errno 2] No such file or directory: 'geckodriver'

If you do, put the geckodriver file somewhere on your systems PATH, or add the 01 folder
to your path. Oh, and you will need to have Firefox installed.

Finally, it is required to have PhantomJS installed. You can download and find installation
instructions at: http:/ /phantomjs. org/

How to do it...
The script for this recipe is 01/04_events_with_selenium.py.

The following is the code:1.

from selenium import webdriver

def get_upcoming_events(url):
 driver = webdriver.Firefox()
 driver.get(url)

 events = driver.find_elements_by_xpath('//ul[contains(@class, "list-
recent-events")]/li')

 for event in events:
 event_details = dict()
 event_details['name'] =
event.find_element_by_xpath('h3[@class="event-title"]/a').text
 event_details['location'] =
event.find_element_by_xpath('p/span[@class="event-location"]').text
 event_details['time'] = event.find_element_by_xpath('p/time').text
 print(event_details)

 driver.close()

get_upcoming_events('https://www.python.org/events/python-events/')

http://phantomjs.org/
http://phantomjs.org/
http://phantomjs.org/
http://phantomjs.org/
http://phantomjs.org/
http://phantomjs.org/
http://phantomjs.org/
http://phantomjs.org/

Getting Started with Scraping Chapter 1

[27]

And run the script with Python. You will see familiar output:2.

~ $ python 04_events_with_selenium.py
{'name': 'PyCascades 2018', 'location': 'Granville Island Stage, 1585
Johnston St, Vancouver, BC V6H 3R9, Canada', 'time': '22 Jan. – 24 Jan.'}
{'name': 'PyCon Cameroon 2018', 'location': 'Limbe, Cameroon', 'time': '24
Jan. – 29 Jan.'}
{'name': 'FOSDEM 2018', 'location': 'ULB Campus du Solbosch, Av. F. D.
Roosevelt 50, 1050 Bruxelles, Belgium', 'time': '03 Feb. – 05 Feb.'}
{'name': 'PyCon Pune 2018', 'location': 'Pune, India', 'time': '08 Feb. – 12
Feb.'}
{'name': 'PyCon Colombia 2018', 'location': 'Medellin, Colombia', 'time':
'09 Feb. – 12 Feb.'}
{'name': 'PyTennessee 2018', 'location': 'Nashville, TN, USA', 'time': '10
Feb. – 12 Feb.'}

During this process, Firefox will pop up and open the page. We have reused the previous
recipe and adopted Selenium.

The Window Popped up by Firefox

Getting Started with Scraping Chapter 1

[28]

How it works
The primary difference in this recipe is the following code:

driver = webdriver.Firefox()
driver.get(url)

This gets the Firefox driver and uses it to get the content of the specified URL. This works
by starting Firefox and automating it to go the the page, and then Firefox returns the page
content to our app. This is why Firefox popped up. The other difference is that to find
things we need to call find_element_by_xpath to search the resulting HTML.

There's more...
PhantomJS, in many ways, is very similar to Selenium. It has fast and native support for
various web standards, with features such as DOM handling, CSS selector, JSON, Canvas,
and SVG. It is often used in web testing, page automation, screen capturing, and network
monitoring.

There is one key difference between Selenium and PhantomJS: PhantomJS is headless and
uses WebKit. As we saw, Selenium opens and automates a browser. This is not very good
if we are in a continuous integration or testing environment where the browser is not
installed, and where we also don't want thousands of browser windows or tabs being
opened. Being headless, makes this faster and more efficient.

The example for PhantomJS is in the 01/05_events_with_phantomjs.py file. There is a
single one line change:

driver = webdriver.PhantomJS('phantomjs')

And running the script results in similar output to the Selenium / Firefox example, but
without a browser popping up and also it takes less time to complete.

2
Data Acquisition and Extraction

In this chapter, we will cover:

How to parse websites and navigate the DOM using BeautifulSoup
Searching the DOM with Beautiful Soup's find methods
Querying the DOM with XPath and lxml
Querying data with XPath and CSS Selectors
Using Scrapy selectors
Loading data in Unicode / UTF-8 format

Introduction
The key aspects for effective scraping are understanding how content and data are stored
on web servers, identifying the data you want to retrieve, and understanding how the tools
support this extraction. In this chapter, we will discuss website structures and the DOM,
introduce techniques to parse, and query websites with lxml, XPath, and CSS. We will also
look at how to work with websites developed in other languages and different encoding
types such as Unicode.

Ultimately, understanding how to find and extract data within an HTML document comes
down to understanding the structure of the HTML page, its representation in the DOM, the
process of querying the DOM for specific elements, and how to specify which elements you
want to retrieve based upon how the data is represented.

Data Acquisition and Extraction Chapter 2

[30]

How to parse websites and navigate the
DOM using BeautifulSoup
When the browser displays a web page it builds a model of the content of the page in a
representation known as the document object model (DOM). The DOM is a hierarchical
representation of the page's entire content, as well as structural information, style
information, scripts, and links to other content.

It is critical to understand this structure to be able to effectively scrape data from web pages.
We will look at an example web page, its DOM, and examine how to navigate the DOM
with Beautiful Soup.

Getting ready
We will use a small web site that is included in the www folder of the sample code. To follow
along, start a web server from within the www folder. This can be done with Python 3 as
follows:

www $ python3 -m http.server 8080
Serving HTTP on 0.0.0.0 port 8080 (http://0.0.0.0:8080/) ...

The DOM of a web page can be examined in Chrome by right-clicking the page and
selecting Inspect. This opens the Chrome Developer Tools. Open a browser page to
http://localhost:8080/planets.html. Within chrome you can right click and select
'inspect' to open developer tools (other browsers have similar tools).

Data Acquisition and Extraction Chapter 2

[31]

Selecting Inspect on the Page

This opens the developer tools and the inspector. The DOM can be examined in the
Elements tab.

The following shows the selection of the first row in the table:

Inspecting the First Row

Data Acquisition and Extraction Chapter 2

[32]

Each row of planets is within a <tr> element. There are several characteristics of this
element and its neighboring elements that we will examine because they are designed to
model common web pages.

Firstly, this element has three attributes: id, planet, and name. Attributes are often
important in scraping as they are commonly used to identify and locate data embedded in
the HTML.

Secondly, the <tr> element has children, and in this case, five <td> elements. We will often
need to look into the children of a specific element to find the actual data that is desired.

This element also has a parent element, <tbody>. There are also sibling elements, and the a
set of <tr> child elements. From any planet, we can go up to the parent and find the other
planets. And as we will see, we can use various constructs in the various tools, such as the
find family of functions in Beautiful Soup, and also XPath queries, to easily navigate these
relationships.

How to do it...
This recipe, and most of the others in this chapter, will be presented with iPython in an
interactive manner. But all of the code for each is available in a script file. The code for this
recipe is in 02/01_parsing_html_wtih_bs.py. You can type the following in, or cut and
paste from the script file.

Now let's walk through parsing HTML with Beautiful Soup. We start by loading this page
into a BeautifulSoup object using the following code, which creates a BeautifulSoup
object, loads the content of the page using with requests.get, and loads it into a variable
named soup.

In [1]: import requests
 ...: from bs4 import BeautifulSoup
 ...: html =
requests.get("http://localhost:8080/planets.html").text
 ...: soup = BeautifulSoup(html, "lxml")
 ...:

The HTML in the soup object can be retrieved by converting it to a string (most
BeautifulSoup objects have this characteristic). This following shows the first 1000
characters of the HTML in the document:

In [2]: str(soup)[:1000]
Out[2]: '<html>\n<head>\n</head>\n<body>\n<div
id="planets">\n<h1>Planetary data</h1>\n<div id="content">Here are

Data Acquisition and Extraction Chapter 2

[33]

some interesting facts about the planets in our solar
system</div>\n<p></p>\n<table border="1" id="planetsTable">\n<tr
id="planetHeader">\n<th>\n</th>\n<th>\r\n Name\r\n </th>\n<th>\r\n
Mass (10^24kg)\r\n </th>\n<th>\r\n Diameter (km)\r\n
</th>\n<th>\r\n How it got its Name\r\n </th>\n<th>\r\n More
Info\r\n </th>\n</tr>\n<tr class="planet" id="planet1"
name="Mercury">\n<td>\n\n</td>\n<td>\r\n Mercury\r\n
</td>\n<td>\r\n 0.330\r\n </td>\n<td>\r\n 4879\r\n </td>\n<td>Named
Mercurius by the Romans because it appears to move so
swiftly.</td>\n<td>\nWikipedia
\n</td>\n</tr>\n<tr class="p'

We can navigate the elements in the DOM using properties of soup. soup represents the
overall document and we can drill into the document by chaining the tag names. The
following navigates to the <table> containing the data:

In [3]: str(soup.html.body.div.table)[:200]
Out[3]: '<table border="1" id="planetsTable">\n<tr
id="planetHeader">\n<th>\n</th>\n<th>\r\n Name\r\n </th>\n<th>\r\n Mass
(10^24kg)\r\n </th>\n<th>\r\n '

The following retrieves the the first child <tr> of the table:

In [6]: soup.html.body.div.table.tr
Out[6]: <tr id="planetHeader">
<th>
</th>
<th>
 Name
 </th>
<th>
 Mass (10^24kg)
 </th>
<th>
 Diameter (km)
 </th>
<th>
 How it got its Name
 </th>
<th>
 More Info
 </th>
</tr>

Data Acquisition and Extraction Chapter 2

[34]

Note this type of notation retrieves only the first child of that type. Finding more requires
iterations of all the children, which we will do next, or using the find methods (the next
recipe).

Each node has both children and descendants. Descendants are all the nodes underneath a
given node (event at further levels than the immediate children), while children are those
that are a first level descendant. The following retrieves the children of the table, which is
actually a list_iterator object:

In [4]: soup.html.body.div.table.children
Out[4]: <list_iterator at 0x10eb11cc0>

We can examine each child element in the iterator using a for loop or a Python generator.
The following uses a generator to get all the children of the and return the first few
characters of their constituent HTML as a list:

In [5]: [str(c)[:45] for c in soup.html.body.div.table.children]
Out[5]:
['\n',
 '<tr id="planetHeader">\n<th>\n</th>\n<th>\r\n ',
 '\n',
 '<tr class="planet" id="planet1" name="Mercury',
 '\n',
 '<tr class="planet" id="planet2" name="Venus">',
 '\n',
 '<tr class="planet" id="planet3" name="Earth">',
 '\n',
 '<tr class="planet" id="planet4" name="Mars">\n',
 '\n',
 '<tr class="planet" id="planet5" name="Jupiter',
 '\n',
 '<tr class="planet" id="planet6" name="Saturn"',
 '\n',
 '<tr class="planet" id="planet7" name="Uranus"',
 '\n',
 '<tr class="planet" id="planet8" name="Neptune',
 '\n',
 '<tr class="planet" id="planet9" name="Pluto">',
 '\n']

Last but not least, the parent of a node can be found using the .parent property:

In [7]: str(soup.html.body.div.table.tr.parent)[:200]
Out[7]: '<table border="1" id="planetsTable">\n<tr
id="planetHeader">\n<th>\n</th>\n<th>\r\n Name\r\n </th>\n<th>\r\n
Mass (10^24kg)\r\n </th>\n<th>\r\n '

Data Acquisition and Extraction Chapter 2

[35]

How it works
Beautiful Soup converts the HTML from the page into its own internal representation. This
model has an identical representation to the DOM that would be created by a browser. But
Beautiful Soup also provides many powerful capabilities for navigating the elements in the
DOM, such as what we have seen when using the tag names as properties. These are great
for finding things when we know a fixed path through the HTML with the tag names.

There's more...
This manner of navigating the DOM is relatively inflexible and is highly dependent upon
the structure. It is possible that this structure can change over time as web pages are
updated by their creator(s). The pages could even look identical, but have a completely
different structure that breaks your scraping code.

So how can we deal with this? As we will see, there are several ways of searching for
elements that are much better than defining explicit paths. In general, we can do this using
XPath and by using the find methods of beautiful soup. We will examine both in recipes
later in this chapter.

Searching the DOM with Beautiful Soup's
find methods
We can perform simple searches of the DOM using Beautiful Soup's find methods. These
methods give us a much more flexible and powerful construct for finding elements that are
not dependent upon the hierarchy of those elements. In this recipe we will examine several
common uses of these functions to locate various elements in the DOM.

Getting ready
ff you want to cut and paste the following into ipython, you can find the samples
in 02/02_bs4_find.py.

Data Acquisition and Extraction Chapter 2

[36]

How to do it...
We will start with a fresh iPython session and start by loading the planets page:

In [1]: import requests
 ...: from bs4 import BeautifulSoup
 ...: html = requests.get("http://localhost:8080/planets.html").text
 ...: soup = BeautifulSoup(html, "lxml")
 ...:

In the previous recipe, to access all of the <tr> in the table, we used a chained property
syntax to get the table, and then needed to get the children and iterator over them. This
does have a problem as the children could be elements other than <tr>. A more preferred
method of getting just the <tr> child elements is to use findAll.

Lets start by first finding the <table>:

In [4]: table = soup.find("table")
 ...: str(table)[:100]
 ...:
Out[4]: '<table border="1" id="planetsTable">\n<tr
id="planetHeader">\n<th>\n</th>\n<th>\r\n Nam'

This tells the soup object to find the first <table> element in the document. From this
element we can find all of the <tr> elements that are descendants of the table with
findAll:

In [8]: [str(tr)[:50] for tr in table.findAll("tr")]
Out[8]:
['<tr id="planetHeader">\n<th>\n</th>\n<th>\r\n ',
 '<tr class="planet" id="planet1" name="Mercury">\n<t',
 '<tr class="planet" id="planet2" name="Venus">\n<td>',
 '<tr class="planet" id="planet3" name="Earth">\n<td>',
 '<tr class="planet" id="planet4" name="Mars">\n<td>\n',
 '<tr class="planet" id="planet5" name="Jupiter">\n<t',
 '<tr class="planet" id="planet6" name="Saturn">\n<td',
 '<tr class="planet" id="planet7" name="Uranus">\n<td',
 '<tr class="planet" id="planet8" name="Neptune">\n<t',
 '<tr class="planet" id="planet9" name="Pluto">\n<td>']

Note that these are the descendants and not immediate children. Change
the query to "td" to see the difference. The are no direct children that are
<td>, but each row has multiple <td> elements. In all, there would be 54
<td> elements found.

Data Acquisition and Extraction Chapter 2

[37]

There is a small issue here if we want only rows that contain data for planets. The table
header is also included. We can fix this by utilizing the id attribute of the target rows. The
following finds the row where the value of id is "planet3".

In [14]: table.find("tr", {"id": "planet3"})
 ...:
Out[14]:
<tr class="planet" id="planet3" name="Earth">
<td>

</td>
<td>
 Earth
 </td>
<td>
 5.97
 </td>
<td>
 12756
 </td>
<td>
 The name Earth comes from the Indo-European base
'er,'which produced the Germanic noun 'ertho,' and ultimately German
'erde,'
 Dutch 'aarde,' Scandinavian 'jord,' and English
'earth.' Related forms include Greek 'eraze,' meaning
 'on the ground,' and Welsh 'erw,' meaning 'a piece of
land.'
 </td>
<td>
Wikipedia
</td>
</tr>

Awesome! We used the fact that this page uses this attribute to represent table rows with
actual data.

Now let's go one step further and collect the masses for each planet and put the name and
mass in a dictionary:

In [18]: items = dict()
 ...: planet_rows = table.findAll("tr", {"class": "planet"})
 ...: for i in planet_rows:
 ...: tds = i.findAll("td")
 ...: items[tds[1].text.strip()] = tds[2].text.strip()
 ...:

Data Acquisition and Extraction Chapter 2

[38]

In [19]: items
Out[19]:
{'Earth': '5.97',
 'Jupiter': '1898',
 'Mars': '0.642',
 'Mercury': '0.330',
 'Neptune': '102',
 'Pluto': '0.0146',
 'Saturn': '568',
 'Uranus': '86.8',
 'Venus': '4.87'}

And just like that we have made a nice data structure from the content embedded within
the page.

Querying the DOM with XPath and lxml
XPath is a query language for selecting nodes from an XML document and is a must-learn
query language for anyone performing web scraping. XPath offers a number of benefits to
its user over other model-based tools:

Can easily navigate through the DOM tree
More sophisticated and powerful than other selectors like CSS selectors and
regular expressions
It has a great set (200+) of built-in functions and is extensible with custom
functions
It is widely supported by parsing libraries and scraping platforms

XPath contains seven data models (we have seen some of them previously):

root node (top level parent node)
element nodes (<a>..)
attribute nodes (href="example.html")
text nodes ("this is a text")
comment nodes (<!-- a comment -->)
namespace nodes
processing instruction nodes

Data Acquisition and Extraction Chapter 2

[39]

XPath expressions can return different data types:

strings
booleans
numbers
node-sets (probably the most common case)

An (XPath) axis defines a node-set relative to the current node. A total of 13 axes are
defined in XPath to enable easy searching for different node parts, from the current context
node, or the root node.

lxml is a Python wrapper on top of the libxml2 XML parsing library, which is written in C.
The implementation in C helps make it faster than Beautiful Soup, but also harder to install
on some computers. The latest installation instructions are available at: http:/ /lxml. de/
installation.html.

lxml supports XPath, which makes it considerably easy to manage complex XML and
HTML documents. We will examine several techniques of using lxml and XPath together,
and how to use lxml and XPath to navigate the DOM and access data.

Getting ready
The code for these snippets is in 02/03_lxml_and_xpath.py in case you want to save
some typing. We will start by importing html from lxml, as well as requests, and then
load the page.

In [1]: from lxml import html
 ...: import requests
 ...: page_html = requests.get("http://localhost:8080/planets.html").text

By this point, lxml should be installed as a dependency of other installs. If
you get errors, install it with pip install lxml.

How to do it...
The first thing that we do is to load the HTML into an lxml "etree". This is lxml's
representation of the DOM.

in [2]: tree = html.fromstring(page_html)

http://lxml.de/installation.html
http://lxml.de/installation.html
http://lxml.de/installation.html
http://lxml.de/installation.html
http://lxml.de/installation.html
http://lxml.de/installation.html
http://lxml.de/installation.html
http://lxml.de/installation.html
http://lxml.de/installation.html
http://lxml.de/installation.html

Data Acquisition and Extraction Chapter 2

[40]

The tree variable is now an lxml representation of the DOM which models the HTML
content. Let's now examine how to use it and XPath to select various elements from the
document.

Out first XPath example will be to find all the the <tr> elements below the <table>
element.

In [3]: [tr for tr in tree.xpath("/html/body/div/table/tr")]
Out[3]:
[<Element tr at 0x10cfd1408>,
 <Element tr at 0x10cfd12c8>,
 <Element tr at 0x10cfd1728>,
 <Element tr at 0x10cfd16d8>,
 <Element tr at 0x10cfd1458>,
 <Element tr at 0x10cfd1868>,
 <Element tr at 0x10cfd1318>,
 <Element tr at 0x10cfd14a8>,
 <Element tr at 0x10cfd10e8>,
 <Element tr at 0x10cfd1778>,
 <Element tr at 0x10cfd1638>]

This XPath navigates by tag name from the root of the document down to the <tr>
element. This example looks similar to the property notation from Beautiful Soup, but
ultimately it is significantly more expressive. And notice one difference in the result. All
the the <tr> elements were returned and not just the first. As a matter of fact, the tags at
each level of this path with return multiple items if they are available. If there was multiple
<div> elements just below <body>, then the search for table/tr would be executed on all
of those <div>.

The actual result was an lxml element object. The following gets the HTML associated
with the elements but using etree.tostring() (albeit they have encoding applied):

In [4]: from lxml import etree
 ...: [etree.tostring(tr)[:50] for tr in
tree.xpath("/html/body/div/table/tr")]
Out[4]:
[b'<tr id="planetHeader">
\n <th>&#',
 b'<tr id="planet1" class="planet" name="Mercury">',
 b'<tr id="planet2" class="planet" name="Venus">
',
 b'<tr id="planet3" class="planet" name="Earth">
',
 b'<tr id="planet4" class="planet" name="Mars">
\n',
 b'<tr id="planet5" class="planet" name="Jupiter">',

Data Acquisition and Extraction Chapter 2

[41]

 b'<tr id="planet6" class="planet" name="Saturn">',
 b'<tr id="planet7" class="planet" name="Uranus">',
 b'<tr id="planet8" class="planet" name="Neptune">',
 b'<tr id="planet9" class="planet" name="Pluto">
',
 b'<tr id="footerRow">
\n <td>
']

Now let's look at using XPath to select only the <tr> elements that are planets.

In [5]: [etree.tostring(tr)[:50] for tr in
tree.xpath("/html/body/div/table/tr[@class='planet']")]
Out[5]:
[b'<tr id="planet1" class="planet" name="Mercury">',
 b'<tr id="planet2" class="planet" name="Venus">
',
 b'<tr id="planet3" class="planet" name="Earth">
',
 b'<tr id="planet4" class="planet" name="Mars">
\n',
 b'<tr id="planet5" class="planet" name="Jupiter">',
 b'<tr id="planet6" class="planet" name="Saturn">',
 b'<tr id="planet7" class="planet" name="Uranus">',
 b'<tr id="planet8" class="planet" name="Neptune">',
 b'<tr id="planet9" class="planet" name="Pluto">
']

The use of the [] next to a tag states that we want to do a selection based on some criteria
upon the current element. The @ states that we want to examine an attribute of the tag, and
in this cast we want to select tags where the attribute is equal to "planet".

There is also another point to be made out of the query that had 11 <tr> rows. As stated
earlier, the XPath runs the navigation on all the nodes found at each level. There are two
tables in this document, both children of a different <div> that are both a child or the
<body> element. The row with id="planetHeader" came from our desired target table,
the other, with id="footerRow", came from the second table.

Previously we solved this by selecting <tr> with class="row", but there are also other
ways worth a brief mention. The first is that we can also use [] to specify a specific element
at each section of the XPath like they are arrays. Take the following:

In [6]: [etree.tostring(tr)[:50] for tr in
tree.xpath("/html/body/div[1]/table/tr")]
Out[6]:
[b'<tr id="planetHeader">

Data Acquisition and Extraction Chapter 2

[42]

\n <th>&#',
 b'<tr id="planet1" class="planet" name="Mercury">',
 b'<tr id="planet2" class="planet" name="Venus">
',
 b'<tr id="planet3" class="planet" name="Earth">
',
 b'<tr id="planet4" class="planet" name="Mars">
\n',
 b'<tr id="planet5" class="planet" name="Jupiter">',
 b'<tr id="planet6" class="planet" name="Saturn">',
 b'<tr id="planet7" class="planet" name="Uranus">',
 b'<tr id="planet8" class="planet" name="Neptune">',
 b'<tr id="planet9" class="planet" name="Pluto">
']

Arrays in XPath start at 1 instead of 0 (a common source of error). This selected the first
<div>. A change to [2] selects the second <div> and hence only the second <table>.

In [7]: [etree.tostring(tr)[:50] for tr in
tree.xpath("/html/body/div[2]/table/tr")]
Out[7]: [b'<tr id="footerRow">
\n <td>
']

The first <div> in this document also has an id attribute:

 <div id="planets">

This can be used to select this <div>:

In [8]: [etree.tostring(tr)[:50] for tr in
tree.xpath("/html/body/div[@id='planets']/table/tr")]
Out[8]:
[b'<tr id="planetHeader">
\n <th>&#',
 b'<tr id="planet1" class="planet" name="Mercury">',
 b'<tr id="planet2" class="planet" name="Venus">
',
 b'<tr id="planet3" class="planet" name="Earth">
',
 b'<tr id="planet4" class="planet" name="Mars">
\n',
 b'<tr id="planet5" class="planet" name="Jupiter">',
 b'<tr id="planet6" class="planet" name="Saturn">',
 b'<tr id="planet7" class="planet" name="Uranus">',
 b'<tr id="planet8" class="planet" name="Neptune">',
 b'<tr id="planet9" class="planet" name="Pluto">
']

Data Acquisition and Extraction Chapter 2

[43]

Earlier we selected the planet rows based upon the value of the class attribute. We can also
exclude rows:

In [9]: [etree.tostring(tr)[:50] for tr in
tree.xpath("/html/body/div[@id='planets']/table/tr[@id!='planetHeader']")]
Out[9]:
[b'<tr id="planet1" class="planet" name="Mercury">',
 b'<tr id="planet2" class="planet" name="Venus">
',
 b'<tr id="planet3" class="planet" name="Earth">
',
 b'<tr id="planet4" class="planet" name="Mars">
\n',
 b'<tr id="planet5" class="planet" name="Jupiter">',
 b'<tr id="planet6" class="planet" name="Saturn">',
 b'<tr id="planet7" class="planet" name="Uranus">',
 b'<tr id="planet8" class="planet" name="Neptune">',
 b'<tr id="planet9" class="planet" name="Pluto">
']

Suppose that the planet rows did not have attributes (nor the header row), then we could
do this by position, skipping the first row:

In [10]: [etree.tostring(tr)[:50] for tr in
tree.xpath("/html/body/div[@id='planets']/table/tr[position() > 1]")]
Out[10]:
[b'<tr id="planet1" class="planet" name="Mercury">',
 b'<tr id="planet2" class="planet" name="Venus">
',
 b'<tr id="planet3" class="planet" name="Earth">
',
 b'<tr id="planet4" class="planet" name="Mars">
\n',
 b'<tr id="planet5" class="planet" name="Jupiter">',
 b'<tr id="planet6" class="planet" name="Saturn">',
 b'<tr id="planet7" class="planet" name="Uranus">',
 b'<tr id="planet8" class="planet" name="Neptune">',
 b'<tr id="planet9" class="planet" name="Pluto">
']

Data Acquisition and Extraction Chapter 2

[44]

It is possible to navigate to the parent of a node using parent::*:

In [11]: [etree.tostring(tr)[:50] for tr in
tree.xpath("/html/body/div/table/tr/parent::*")]
Out[11]:
[b'<table id="planetsTable" border="1">
\n ',
 b'<table id="footerTable">
\n <tr id="']

This returned two parents as, remember, this XPath returns the rows from two tables, so the
parents of all those rows are found. The * is a wild card that represents any parent tags with
any name. In this case, the two parents are both tables, but in general the result can be any
number of HTML element types. The following has the same result, but if the two parents
where different HTML tags then it would only return the <table> elements.

In [12]: [etree.tostring(tr)[:50] for tr in
tree.xpath("/html/body/div/table/tr/parent::table")]
Out[12]:
[b'<table id="planetsTable" border="1">
\n ',
 b'<table id="footerTable">
\n <tr id="']

It is also possible to specify a specific parent by position or attribute. The following selects
the parent with id="footerTable":

In [13]: [etree.tostring(tr)[:50] for tr in
tree.xpath("/html/body/div/table/tr/parent::table[@id='footerTable']")]
Out[13]: [b'<table id="footerTable">
\n <tr id="']

A shortcut for parent is .. (and . also represents the current node):

In [14]: [etree.tostring(tr)[:50] for tr in
tree.xpath("/html/body/div/table/tr/..")]
Out[14]:
[b'<table id="planetsTable" border="1">
\n ',
 b'<table id="footerTable">
\n <tr id="']

Data Acquisition and Extraction Chapter 2

[45]

And the last example finds the mass of Earth:

In [15]: mass =
tree.xpath("/html/body/div[1]/table/tr[@name='Earth']/td[3]/text()[1]")
[0].strip()
 ...: mass
Out[15]: '5.97'

The trailing portion of this XPath,/td[3]/text()[1], selects the third <td> element in the
row, then the text of that element (which is an array of all the text in the element), and the
first of those which is the mass.

How it works
XPath is a element of the XSLT (eXtensible Stylesheet Language Transformation) standard
and provides the ability to select nodes in an XML document. HTML is a variant of XML,
and hence XPath can work on on HTML document (although HTML can be improperly
formed and mess up XPath parsing in those cases).

XPath itself is designed to model the structure of XML nodes, attributes, and properties. The
syntax provides means of finding items in the XML that match the expression. This can
include matching or logical comparison of any of the nodes, attributes, values, or text in the
XML document.

XPath expressions can be combined to form very complex paths within the
document. It is also possible to navigate the document based upon relative
positions, which helps greatly in finding data based upon relative
positions instead of absolute positions within the DOM.

Understanding XPath is essential for knowing how to parse HTML and perform web
scraping. And as we will see, it underlies, and provides an implementation for, many of the
higher level libraries such as lxml.

There's more...
XPath is actually an amazing tool for working with XML and HTML documents. It is quite
rich in its capabilities, and we have barely touched the surface of its capabilities for
demonstrating a few examples that are common to scraping data in HTML documents.

Data Acquisition and Extraction Chapter 2

[46]

To learn much more, please visit the following links:

https:// www. w3schools. com/ xml/xml_ xpath. asp

https:// www. w3. org/ TR/ xpath/

Querying data with XPath and CSS selectors
CSS selectors are patterns used for selecting elements and are often used to define the
elements that styles should be applied to. They can also be used with lxml to select nodes in
the DOM. CSS selectors are commonly used as they are more compact than XPath and
generally can be more reusable in code. Examples of common selectors which may be used
are as follows:

What you are looking for Example

All tags *

A specific tag (that is, tr) .planet

A class name (that is, "planet") tr.planet

A tag with an ID "planet3" tr#planet3

A child tr of a table table tr

A descendant tr of a table table tr

A tag with an attribute (that is, tr with id="planet4") a[id=Mars]

Getting ready
Let's start examining CSS selectors using the same start up code we used in the last recipe.
These code snippets are also in the 02/04_css_selectors.py.

In [1]: from lxml import html
 ...: import requests
 ...: page_html = requests.get("http://localhost:8080/planets.html").text
 ...: tree = html.fromstring(page_html)
 ...:

https://www.w3schools.com/xml/xml_xpath.asp
https://www.w3schools.com/xml/xml_xpath.asp
https://www.w3schools.com/xml/xml_xpath.asp
https://www.w3schools.com/xml/xml_xpath.asp
https://www.w3schools.com/xml/xml_xpath.asp
https://www.w3schools.com/xml/xml_xpath.asp
https://www.w3schools.com/xml/xml_xpath.asp
https://www.w3schools.com/xml/xml_xpath.asp
https://www.w3schools.com/xml/xml_xpath.asp
https://www.w3schools.com/xml/xml_xpath.asp
https://www.w3schools.com/xml/xml_xpath.asp
https://www.w3schools.com/xml/xml_xpath.asp
https://www.w3schools.com/xml/xml_xpath.asp
https://www.w3schools.com/xml/xml_xpath.asp
https://www.w3schools.com/xml/xml_xpath.asp
https://www.w3schools.com/xml/xml_xpath.asp
https://www.w3schools.com/xml/xml_xpath.asp
https://www.w3.org/TR/xpath/
https://www.w3.org/TR/xpath/
https://www.w3.org/TR/xpath/
https://www.w3.org/TR/xpath/
https://www.w3.org/TR/xpath/
https://www.w3.org/TR/xpath/
https://www.w3.org/TR/xpath/
https://www.w3.org/TR/xpath/
https://www.w3.org/TR/xpath/
https://www.w3.org/TR/xpath/
https://www.w3.org/TR/xpath/
https://www.w3.org/TR/xpath/
https://www.w3.org/TR/xpath/
https://www.w3.org/TR/xpath/

Data Acquisition and Extraction Chapter 2

[47]

How to do it...
Now let's start playing with XPath and CSS selectors. The following selects all
<tr> elements with a class equal to "planet":

In [2]: [(v, v.xpath("@name")) for v in tree.cssselect('tr.planet')]
Out[2]:
[(<Element tr at 0x10d3a2278>, ['Mercury']),
 (<Element tr at 0x10c16ed18>, ['Venus']),
 (<Element tr at 0x10e445688>, ['Earth']),
 (<Element tr at 0x10e477228>, ['Mars']),
 (<Element tr at 0x10e477408>, ['Jupiter']),
 (<Element tr at 0x10e477458>, ['Saturn']),
 (<Element tr at 0x10e4774a8>, ['Uranus']),
 (<Element tr at 0x10e4774f8>, ['Neptune']),
 (<Element tr at 0x10e477548>, ['Pluto'])]

Data for the Earth can be found in several ways. The following gets the row based on id:

In [3]: tr = tree.cssselect("tr#planet3")
 ...: tr[0], tr[0].xpath("./td[2]/text()")[0].strip()
 ...:
Out[3]: (<Element tr at 0x10e445688>, 'Earth')

The following uses an attribute with a specific value:

In [4]: tr = tree.cssselect("tr[name='Pluto']")
 ...: tr[0], tr[0].xpath("td[2]/text()")[0].strip()
 ...:
Out[5]: (<Element tr at 0x10e477548>, 'Pluto')

Note that unlike XPath, the @ symbol need not be used to specify an attribute.

How it works
lxml converts the CSS selector you provide to XPath, and then performs that XPath
expression against the underlying document. In essence, CSS selectors in lxml provide a
shorthand to XPath, which makes finding nodes that fit certain patterns simpler than with
XPath.

Data Acquisition and Extraction Chapter 2

[48]

There's more...
Because CSS selectors utilize XPath under the covers, there is overhead to its use as
compared to using XPath directly. This difference is, however, almost a non-issue, and
hence in certain scenarios it is easier to just use cssselect.

A full description of CSS selectors can be found at: https:/ /www. w3.org/ TR/ 2011/ REC-
css3-selectors-20110929/

Using Scrapy selectors
Scrapy is a Python web spider framework that is used to extract data from websites. It
provides many powerful features for navigating entire websites, such as the ability to
follow links. One feature it provides is the ability to find data within a document using the
DOM, and using the now, quite familiar, XPath.

In this recipe we will load the list of current questions on StackOverflow, and then parse
this using a scrapy selector. Using that selector, we will extract the text of each question.

Getting ready
The code for this recipe is in 02/05_scrapy_selectors.py.

How to do it...
We start by importing Selector from scrapy, and also requests so that we can retrieve
the page:

In [1]: from scrapy.selector import Selector
 ...: import requests
 ...:

Next we load the page. For this example we are going to retrieve the most recent questions
on StackOverflow and extract their titles. We can make this query with the the following:

In [2]: response = requests.get("http://stackoverflow.com/questions")

https://www.w3.org/TR/2011/REC-css3-selectors-20110929/
https://www.w3.org/TR/2011/REC-css3-selectors-20110929/
https://www.w3.org/TR/2011/REC-css3-selectors-20110929/
https://www.w3.org/TR/2011/REC-css3-selectors-20110929/
https://www.w3.org/TR/2011/REC-css3-selectors-20110929/
https://www.w3.org/TR/2011/REC-css3-selectors-20110929/
https://www.w3.org/TR/2011/REC-css3-selectors-20110929/
https://www.w3.org/TR/2011/REC-css3-selectors-20110929/
https://www.w3.org/TR/2011/REC-css3-selectors-20110929/
https://www.w3.org/TR/2011/REC-css3-selectors-20110929/
https://www.w3.org/TR/2011/REC-css3-selectors-20110929/
https://www.w3.org/TR/2011/REC-css3-selectors-20110929/
https://www.w3.org/TR/2011/REC-css3-selectors-20110929/
https://www.w3.org/TR/2011/REC-css3-selectors-20110929/
https://www.w3.org/TR/2011/REC-css3-selectors-20110929/
https://www.w3.org/TR/2011/REC-css3-selectors-20110929/
https://www.w3.org/TR/2011/REC-css3-selectors-20110929/
https://www.w3.org/TR/2011/REC-css3-selectors-20110929/
https://www.w3.org/TR/2011/REC-css3-selectors-20110929/
https://www.w3.org/TR/2011/REC-css3-selectors-20110929/
https://www.w3.org/TR/2011/REC-css3-selectors-20110929/

Data Acquisition and Extraction Chapter 2

[49]

Now create a Selector and pass it the response object:

In [3]: selector = Selector(response)
 ...: selector
 ...:
Out[3]: <Selector xpath=None data='<html>\r\n\r\n <head>\r\n\r\n
<title>N'>

Examining the content of this page we can see that questions have the following structure to
their HTML:

The HTML of a StackOverflow Question

With the selector we can find these using XPath:

In [4]: summaries = selector.xpath('//div[@class="summary"]/h3')
 ...: summaries[0:5]
 ...:
Out[4]:
[<Selector xpath='//div[@class="summary"]/h3' data='<h3>,
 <Selector xpath='//div[@class="summary"]/h3' data='<h3>,
 <Selector xpath='//div[@class="summary"]/h3' data='<h3>,
 <Selector xpath='//div[@class="summary"]/h3' data='<h3>,
 <Selector xpath='//div[@class="summary"]/h3' data='<h3>]

Data Acquisition and Extraction Chapter 2

[50]

And now we drill a little further into each to get the title of the question.

In [5]: [x.extract() for x in summaries.xpath('a[@class="question-
hyperlink"]/text()')][:10]
Out[5]:
['How to convert stdout binary file to a data URL?',
 'Move first letter from sentence to the end',
 'Java launch program and interact with it programmatically',
 'How do I build vala from scratch',
 'Running Sql Script',
 'Mysql - Auto create, update, delete table 2 from table 1',
 'how to map meeting data corresponding calendar time in java',
 'Range of L*a* b* in Matlab',
 'set maximum and minimum number input box in js,html',
 'I created generic array and tried to store the value but it is
showing ArrayStoreException']

How it works
Underneath the covers, Scrapy builds its selectors on top of lxml. It offers a smaller and
slightly simpler API, which is similar in performance to lxml.

There's more...
To learn more about Scrapy Selectors see: https:/ / doc.scrapy. org/ en/latest/ topics/
selectors.html.

Loading data in unicode / UTF-8
A document's encoding tells an application how the characters in the document are
represented as bytes in the file. Essentially, the encoding specifies how many bits there are
per character. In a standard ASCII document, all characters are 8 bits. HTML files are often
encoded as 8 bits per character, but with the globalization of the internet, this is not always
the case. Many HTML documents are encoded as 16-bit characters, or use a combination of
8- and 16-bit characters.

A particularly common form HTML document encoding is referred to as UTF-8. This is the
encoding form that we will examine.

https://doc.scrapy.org/en/latest/topics/selectors.html
https://doc.scrapy.org/en/latest/topics/selectors.html
https://doc.scrapy.org/en/latest/topics/selectors.html
https://doc.scrapy.org/en/latest/topics/selectors.html
https://doc.scrapy.org/en/latest/topics/selectors.html
https://doc.scrapy.org/en/latest/topics/selectors.html
https://doc.scrapy.org/en/latest/topics/selectors.html
https://doc.scrapy.org/en/latest/topics/selectors.html
https://doc.scrapy.org/en/latest/topics/selectors.html
https://doc.scrapy.org/en/latest/topics/selectors.html
https://doc.scrapy.org/en/latest/topics/selectors.html
https://doc.scrapy.org/en/latest/topics/selectors.html
https://doc.scrapy.org/en/latest/topics/selectors.html
https://doc.scrapy.org/en/latest/topics/selectors.html
https://doc.scrapy.org/en/latest/topics/selectors.html
https://doc.scrapy.org/en/latest/topics/selectors.html
https://doc.scrapy.org/en/latest/topics/selectors.html
https://doc.scrapy.org/en/latest/topics/selectors.html

Data Acquisition and Extraction Chapter 2

[51]

Getting ready
We will read a file named unicode.html from our local web server, located at
http://localhost:8080/unicode.html. This file is UTF-8 encoded and contains
several sets of characters in different parts of the encoding space. For example, the page
looks as follows in your browser:

The Page in the Browser

Using an editor that supports UTF-8, we can see how the Cyrillic characters are rendered in
the editor:

The HTML in an Editor

Data Acquisition and Extraction Chapter 2

[52]

Code for the sample is in 02/06_unicode.py.

How to do it...
We will look at using urlopen and requests to handle HTML in UTF-8. These two
libraries handle this differently, so let's examine this. Let's start importing urllib, loading
the page, and examining some of the content.

In [8]: from urllib.request import urlopen
 ...: page = urlopen("http://localhost:8080/unicode.html")
 ...: content = page.read()
 ...: content[840:1280]
 ...:
Out[8]: b'>Cyrillic U+0400 \xe2\x80\x93
U+04FF (1024\xe2\x80\x931279)</p>\n <table
class="unicode">\n <tbody>\n <tr valign="top">\n <td
width="50"> </td>\n <td class="b" width="50">\xd0\x89</td>\n
<td class="b" width="50">\xd0\xa9</td>\n <td class="b"
width="50">\xd1\x89</td>\n <td class="b" width="50">\xd3\x83</td>\n
</tr>\n </tbody>\n </table>\n\n '

Note how the Cyrillic characters were read in as multi-byte codes using \
notation, such as \xd0\x89.

To rectify this, we can convert the content to UTF-8 format using the Python str statement:

In [9]: str(content, "utf-8")[837:1270]
Out[9]: 'Cyrillic U+0400 – U+04FF
(1024–1279)</p>\n <table class="unicode">\n <tbody>\n <tr
valign="top">\n <td width="50"> </td>\n <td class="b"
width="50">Љ</td>\n <td class="b" width="50">Щ</td>\n <td
class="b" width="50">щ</td>\n <td class="b" width="50">Ӄ</td>\n
</tr>\n </tbody>\n </table>\n\n '

Note that the output now has the characters encoded properly.

Data Acquisition and Extraction Chapter 2

[53]

We can exclude this extra step by using requests.

In [9]: import requests
 ...: response =
requests.get("http://localhost:8080/unicode.html").text
 ...: response.text[837:1270]
 ...:
'Cyrillic U+0400 – U+04FF
(1024–1279)</p>\n <table class="unicode">\n <tbody>\n <tr
valign="top">\n <td width="50"> </td>\n <td class="b"
width="50">Љ</td>\n <td class="b" width="50">Щ</td>\n <td
class="b" width="50">щ</td>\n <td class="b" width="50">Ӄ</td>\n
</tr>\n </tbody>\n </table>\n\n '

How it works
In the case of using urlopen, the conversion was explicitly performed by using the str
statement and specifying that the content should be converted to UTF-8. For requests, the
library was able to determine from the content within the HTML that it was in UTF-8
format by seeing the following tag in the document:

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

There's more...
There are a number of resources available on the internet for learning about Unicode and
UTF-8 encoding techniques. Perhaps the best is the following Wikipedia article, which has
an excellent summary and a great table describing the encoding technique: https:/ /en.
wikipedia.org/wiki/ UTF- 8

https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8

3
Processing Data

In this chapter, we will cover:

Working with CSV and JSON data
Storing data using AWS S3
Storing data using MySQL
Storing data using PostgreSQL
Storing store data using Elasticsearch
How to build robust ETL pipelines with AWS SQS

Introduction
In this chapter, we will introduce the use of data in JSON, CSV, and XML formats. This will
include the means of parsing and converting this data to other formats, including storing
that data in relational databases, search engines such as Elasticsearch, and cloud storage
including AWS S3. We will also discuss the creation of distributed and large-scale scraping
tasks through the use of messaging systems including AWS Simple Queue Service (SQS).
The goal is to provide both an understanding of the various forms of data you may retrieve
and need to parse, and an instruction the the various backends where you can store the data
you have scraped. Finally, we get a first introduction to one and Amazon Web Service
(AWS) offerings. By the end of the book we will be getting quite heavy into AWS and this
gives a gentle introduction.

Processing Data Chapter 3

[55]

Working with CSV and JSON data
Extracting data from HTML pages is done using the techniques in the previous chapter,
primarily using XPath through various tools and also with Beautiful Soup. While we will
focus primarily on HTML, HTML is a variant of XML (eXtensible Markup Language). XML
one was the most popular for of expressing data on the web, but other have become
popular, and even exceeded XML in popularity.

Two common formats that you will see are JSON (JavaScript Object Notation) and CSV
(Comma Separated Values). CSV is easy to create and a common form for many
spreadsheet applications, so many web sites provide data in that for, or you will need to
convert scraped data to that format for further storage or collaboration. JSON really has
become the preferred format, due to its easy within programming languages such as
JavaScript (and Python), and many database now support it as a native data format.

In this recipe let's examine converting scraped data to CSV and JSON, as well as writing the
data to files and also reading those data files from remote servers. The tools we will
examine are the Python CSV and JSON libraries. We will also examine using pandas for
these techniques.

Also implicit in these examples is the conversion of XML data to CSV and
JSON, so we won't have a dedicated section for those examples.

Getting ready
We will be using the planets data page and converting that data into CSV and JSON files.
Let's start by loading the planets data from the page into a list of python dictionary objects.
The following code (found in (03/get_planet_data.py) provides a function that
performs this task, which will be reused throughout the chapter:

import requests
from bs4 import BeautifulSoup

def get_planet_data():
 html = requests.get("http://localhost:8080/planets.html").text
 soup = BeautifulSoup(html, "lxml")

 planet_trs = soup.html.body.div.table.findAll("tr", {"class": "planet"})

 def to_dict(tr):

Processing Data Chapter 3

[56]

 tds = tr.findAll("td")
 planet_data = dict()
 planet_data['Name'] = tds[1].text.strip()
 planet_data['Mass'] = tds[2].text.strip()
 planet_data['Radius'] = tds[3].text.strip()
 planet_data['Description'] = tds[4].text.strip()
 planet_data['MoreInfo'] = tds[5].findAll("a")[0]["href"].strip()
 return planet_data

 planets = [to_dict(tr) for tr in planet_trs]

 return planets

if __name__ == "__main__":
 print(get_planet_data())

Running the script gives the following output (briefly truncated):

03 $python get_planet_data.py
[{'Name': 'Mercury', 'Mass': '0.330', 'Radius': '4879', 'Description':
'Named Mercurius by the Romans because it appears to move so swiftly.',
'MoreInfo': 'https://en.wikipedia.org/wiki/Mercury_(planet)'}, {'Name':
'Venus', 'Mass': '4.87', 'Radius': '12104', 'Description': 'Roman name for
the goddess of love. This planet was considered to be the brightest and
most beautiful planet or star in the\r\n heavens. Other civilizations have
named it for their god or goddess of love/war.', 'MoreInfo':
'https://en.wikipedia.org/wiki/Venus'}, {'Name': 'Earth', 'Mass': '5.97',
'Radius': '12756', 'Description': "The name Earth comes from the Indo-
European base 'er,'which produced the Germanic noun 'ertho,' and ultimately
German 'erde,'\r\n Dutch 'aarde,' Scandinavian 'jord,' and English 'earth.'
Related forms include Greek 'eraze,' meaning\r\n 'on the ground,' and Welsh
'erw,' meaning 'a piece of land.'", 'MoreInfo':
'https://en.wikipedia.org/wiki/Earth'}, {'Name': 'Mars', 'Mass': '0.642',
'Radius': '6792', 'Description': 'Named by the Romans for their god of war
because of its red, bloodlike color. Other civilizations also named this
planet\r\n from this attribute; for example, the Egyptians named it "Her
Desher," meaning "the red one."', 'MoreInfo':
...

It may be required to install csv, json and pandas. You can do that with the following three
commands:

pip install csv
pip install json
pip install pandas

Processing Data Chapter 3

[57]

How to do it
We will start by converting the planets data into a CSV file.

This will be performed using csv. The following code writes the planets data to1.
a CSV file (the code is in03/create_csv.py):

import csv
from get_planet_data import get_planet_data

planets = get_planet_data()

with open('../../www/planets.csv', 'w+', newline='') as csvFile:
 writer = csv.writer(csvFile)
 writer.writerow(['Name', 'Mass', 'Radius', 'Description',
'MoreInfo'])
for planet in planets:
 writer.writerow([planet['Name'],
planet['Mass'],planet['Radius'], planet['Description'],
planet['MoreInfo']])

The output file is put into the www folder of our project. Examining it we see the2.
following content::

Name,Mass,Radius,Description,MoreInfo
Mercury,0.330,4879,Named Mercurius by the Romans because it appears
to move so swiftly.,https://en.wikipedia.org/wiki/Mercury_(planet)
Venus,4.87,12104,Roman name for the goddess of love. This planet
was considered to be the brightest and most beautiful planet or
star in the heavens. Other civilizations have named it for their
god or goddess of love/war.,https://en.wikipedia.org/wiki/Venus
Earth,5.97,12756,"The name Earth comes from the Indo-European base
'er,'which produced the Germanic noun 'ertho,' and ultimately
German 'erde,' Dutch 'aarde,' Scandinavian 'jord,' and English
'earth.' Related forms include Greek 'eraze,' meaning 'on the
ground,' and Welsh 'erw,' meaning 'a piece of
land.'",https://en.wikipedia.org/wiki/Earth
Mars,0.642,6792,"Named by the Romans for their god of war because
of its red, bloodlike color. Other civilizations also named this
planet from this attribute; for example, the Egyptians named it
""Her Desher,"" meaning ""the red
one.""",https://en.wikipedia.org/wiki/Mars
Jupiter,1898,142984,The largest and most massive of the planets was
named Zeus by the Greeks and Jupiter by the Romans; he was the most
important deity in both
pantheons.,https://en.wikipedia.org/wiki/Jupiter
Saturn,568,120536,"Roman name for the Greek Cronos, father of

Processing Data Chapter 3

[58]

Zeus/Jupiter. Other civilizations have given different names to
Saturn, which is the farthest planet from Earth that can be
observed by the naked human eye. Most of its satellites were named
for Titans who, according to Greek mythology, were brothers and
sisters of Saturn.",https://en.wikipedia.org/wiki/Saturn
Uranus,86.8,51118,"Several astronomers, including Flamsteed and Le
Monnier, had observed Uranus earlier but had recorded it as a fixed
star. Herschel tried unsuccessfully to name his discovery
""Georgian Sidus"" after George III; the planet was named by Johann
Bode in 1781 after the ancient Greek deity of the sky Uranus, the
father of Kronos (Saturn) and grandfather of Zeus
(Jupiter).",https://en.wikipedia.org/wiki/Uranus
Neptune,102,49528,"Neptune was ""predicted"" by John Couch Adams
and Urbain Le Verrier who, independently, were able to account for
the irregularities in the motion of Uranus by correctly predicting
the orbital elements of a trans- Uranian body. Using the predicted
parameters of Le Verrier (Adams never published his predictions),
Johann Galle observed the planet in 1846. Galle wanted to name the
planet for Le Verrier, but that was not acceptable to the
international astronomical community. Instead, this planet is named
for the Roman god of the
sea.",https://en.wikipedia.org/wiki/Neptune
Pluto,0.0146,2370,"Pluto was discovered at Lowell Observatory in
Flagstaff, AZ during a systematic search for a trans-Neptune planet
predicted by Percival Lowell and William H. Pickering. Named after
the Roman god of the underworld who was able to render himself
invisible.",https://en.wikipedia.org/wiki/Pluto

We wrote this file into the www directory so that we can download it with
our web server.

Processing Data Chapter 3

[59]

This data can now be used in applications that support CSV content, such as3.
Excel:

The File Opened in Excel

CSV data can also be read from a web server using the csv library and by first4.
retrieving the content with requests . The following code is in
the 03/read_csv_from_web.py):

import requests
import csv

planets_data =
requests.get("http://localhost:8080/planets.csv").text
planets = planets_data.split('\n')
reader = csv.reader(planets, delimiter=',', quotechar='"')
lines = [line for line in reader][:-1]
for line in lines: print(line)

The following is a portion of the output

['Name', 'Mass', 'Radius', 'Description', 'MoreInfo']
['Mercury', '0.330', '4879', 'Named Mercurius by the Romans because
it appears to move so swiftly.',
'https://en.wikipedia.org/wiki/Mercury_(planet)']
['Venus', '4.87', '12104', 'Roman name for the goddess of love.
This planet was considered to be the brightest and most beautiful
planet or star in the heavens. Other civilizations have named it
for their god or goddess of love/war.',
'https://en.wikipedia.org/wiki/Venus']

Processing Data Chapter 3

[60]

['Earth', '5.97', '12756', "The name Earth comes from the Indo-
European base 'er,'which produced the Germanic noun 'ertho,' and
ultimately German 'erde,' Dutch 'aarde,' Scandinavian 'jord,' and
English 'earth.' Related forms include Greek 'eraze,' meaning 'on
the ground,' and Welsh 'erw,' meaning 'a piece of land.'",
'https://en.wikipedia.org/wiki/Earth']

One thing to point our is that the CSV writer left a trailing blank like
would add an empty list item if not handled. This was handled by slicing
the rows: This following statement returned all lines except the last one:

lines = [line for line in reader][:-1]

This can also be done quite easily using pandas. The following constructs a5.
DataFrame from the scraped data. The code is in 03/create_df_planets.py:

import pandas as pd
planets_df =
pd.read_csv("http://localhost:8080/planets_pandas.csv",
index_col='Name')
print(planets_df)

Running this gives the following output:

 Description Mass
Radius
Name
Mercury Named Mercurius by the Romans because it appea... 0.330
4879
Venus Roman name for the goddess of love. This plane... 4.87
12104
Earth The name Earth comes from the Indo-European ba... 5.97
12756
Mars Named by the Romans for their god of war becau... 0.642
6792
Jupiter The largest and most massive of the planets wa... 1898
142984
Saturn Roman name for the Greek Cronos, father of Zeu... 568
120536
Uranus Several astronomers, including Flamsteed and L... 86.8
51118
Neptune Neptune was "predicted" by John Couch Adams an... 102
49528
Pluto Pluto was discovered at Lowell Observatory in ... 0.0146
2370

Processing Data Chapter 3

[61]

And the DataFrame can be saved to a CSV file with a simple call to .to_csv()6.
(code is in 03/save_csv_pandas.py):

import pandas as pd
from get_planet_data import get_planet_data

construct a data from from the list
planets = get_planet_data()
planets_df = pd.DataFrame(planets).set_index('Name')
planets_df.to_csv("../../www/planets_pandas.csv")

A CSV file can be read in from a URL very easily with pd.read_csv() - no need7.
for other libraries. You can use the code in03/read_csv_via_pandas.py):

import pandas as pd
planets_df =
pd.read_csv("http://localhost:8080/planets_pandas.csv",
index_col='Name')
print(planets_df)

Converting data to JSON is also quite easy. Manipulation of JSON with Python8.
can be done with the Python json library. This library can be used to convert
Python objects to and from JSON. The following converts the list of planets into
JSON and prints it to the console:prints the planets data as JSON (code in
03/convert_to_json.py):

import json
from get_planet_data import get_planet_data
planets=get_planet_data()
print(json.dumps(planets, indent=4))

Executing this script produces the following output (some of the output is
omitted):

[
 {
 "Name": "Mercury",
 "Mass": "0.330",
 "Radius": "4879",
 "Description": "Named Mercurius by the Romans because it
appears to move so swiftly.",
 "MoreInfo":
"https://en.wikipedia.org/wiki/Mercury_(planet)"
 },
 {
 "Name": "Venus",

Processing Data Chapter 3

[62]

 "Mass": "4.87",
 "Radius": "12104",
 "Description": "Roman name for the goddess of love. This
planet was considered to be the brightest and most beautiful planet
or star in the heavens. Other civilizations have named it for their
god or goddess of love/war.",
 "MoreInfo": "https://en.wikipedia.org/wiki/Venus"
 },

And this can also be used to easily save JSON to a file (03/save_as_json.py):9.

import json
from get_planet_data import get_planet_data
planets=get_planet_data()
with open('../../www/planets.json', 'w+') as jsonFile:
 json.dump(planets, jsonFile, indent=4)

Checking the output using !head -n 13 ../../www/planets.json shows:10.

[
 {
 "Name": "Mercury",
 "Mass": "0.330",
 "Radius": "4879",
 "Description": "Named Mercurius by the Romans because it
appears to move so swiftly.",
 "MoreInfo":
"https://en.wikipedia.org/wiki/Mercury_(planet)"
 },
 {
 "Name": "Venus",
 "Mass": "4.87",
 "Radius": "12104",
 "Description": "Roman name for the goddess of love. This
planet was considered to be the brightest and most beautiful planet
or star in the heavens. Other civilizations have named it for their
god or goddess of love/war.",

JSON can be read from a web server with requests and converted to a Python11.
object (03/read_http_json_requests.py):

import requests
import json

planets_request =
requests.get("http://localhost:8080/planets.json")
print(json.loads(planets_request.text))

Processing Data Chapter 3

[63]

pandas also provides JSON capabilities to save to CSV12.
(03/save_json_pandas.py):

import pandas as pd
from get_planet_data import get_planet_data

planets = get_planet_data()
planets_df = pd.DataFrame(planets).set_index('Name')
planets_df.reset_index().to_json("../../www/planets_pandas.json",
orient='records')

Unfortunately, there is not currently a way to pretty-print the JSON that is output
from .to_json(). Also note the use of orient='records' and the use of
rest_index(). This is necessary for reproducing an identical JSON structure to
the JSON written using the JSON library example.

JSON can be read into a DataFrame using .read_json(), as well as from HTTP13.
and files (03/read_json_http_pandas.py):

import pandas as pd
planets_df =
pd.read_json("http://localhost:8080/planets_pandas.json").set_index
('Name')
print(planets_df)

How it works
The csv and json libraries are a standard part of Python, and provide a straightforward
means of reading and writing data in both formats.

pandas does not come as standard in some Python distributions and you will likely need to
install it. The pandas functions for both CSV and JSON are also a much higher level in
operation, with many powerful data operations available, and also with support for
accessing data from remote servers.

There's more...
The choice of csv, json, or pandas libraries is yours to make but I tend to like pandas and we
will examine its use in scraping more throughout the book, although we won't get too deep
into its usage.

Processing Data Chapter 3

[64]

For an in-depth understanding of pandas, check out pandas.pydata.org, or pick up my
other book From Packt, Learning pandas, 2ed.

For more info on the csv library, see https:/ / docs. python. org/ 3/library/ csv. html

For more on the json library, see https:/ /docs. python. org/ 3/library/ json. html

Storing data using AWS S3
There are many cases where we just want to save content that we scrape into a local copy
for archive purposes, backup, or later bulk analysis. We also might want to save media from
those sites for later use. I've built scrapers for advertisement compliance companies, where
we would track and download advertisement based media on web sites to ensure proper
usage, and also to store for later analysis, compliance and transcoding.

The storage required for these types of systems can be immense, but with the advent of
cloud storage services such as AWS S3 (Simple Storage Service), this becomes much easier
and more cost effective than managing a large SAN (Storage Area Network) in your own IT
department. Plus, S3 can also automatically move data from hot to cold storage, and then to
long-term storage, such as a glacier, which can save you much more money.

We won't get into all of those details, but simply look at storing our planets.html file into
an S3 bucket. Once you can do this, you can save any content you want to year hearts
desire.

Getting ready
To perform the following example, you will need an AWS account and have access to secret
keys for use in your Python code. They will be unique to your account. We will use the
boto3 library for S3 access. You can install this using pip install boto3. Also, you will
need to have environment variables set to authenticate. These will look like the following:

AWS_ACCESS_KEY_ID=AKIAIDCQ5PH3UMWKZEWA
AWS_SECRET_ACCESS_KEY=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

https://docs.python.org/3/library/csv.html
https://docs.python.org/3/library/csv.html
https://docs.python.org/3/library/csv.html
https://docs.python.org/3/library/csv.html
https://docs.python.org/3/library/csv.html
https://docs.python.org/3/library/csv.html
https://docs.python.org/3/library/csv.html
https://docs.python.org/3/library/csv.html
https://docs.python.org/3/library/csv.html
https://docs.python.org/3/library/csv.html
https://docs.python.org/3/library/csv.html
https://docs.python.org/3/library/csv.html
https://docs.python.org/3/library/csv.html
https://docs.python.org/3/library/csv.html
https://docs.python.org/3/library/csv.html
https://docs.python.org/3/library/csv.html
https://docs.python.org/3/library/csv.html
https://docs.python.org/3/library/json.html
https://docs.python.org/3/library/json.html
https://docs.python.org/3/library/json.html
https://docs.python.org/3/library/json.html
https://docs.python.org/3/library/json.html
https://docs.python.org/3/library/json.html
https://docs.python.org/3/library/json.html
https://docs.python.org/3/library/json.html
https://docs.python.org/3/library/json.html
https://docs.python.org/3/library/json.html
https://docs.python.org/3/library/json.html
https://docs.python.org/3/library/json.html
https://docs.python.org/3/library/json.html
https://docs.python.org/3/library/json.html
https://docs.python.org/3/library/json.html
https://docs.python.org/3/library/json.html
https://docs.python.org/3/library/json.html

Processing Data Chapter 3

[65]

These are available in the AWS portal under IAM (Identity Access Management) portion of
the portal.

It's a good practice to put these keys in environment variables. Having
them in code can lead to their theft. During the writing of this book, I had
this hard coded and accidentally checked them in to GitHub. The next
morning I woke up to critical messages from AWS that I had thousands of
servers running! There are GitHub scrapers looking for these keys and
they will get found and use for nefarious purposes. By the time I had
them all turned off, my bill was up to $6000, all accrued overnight.
Thankfully, AWS waived these fees!

How to do it
We won't parse the data in the planets.html file, but simply retrieve it from the local web
server using requests:

The following code, (found in 03/S3.py), reads the planets web page and stores1.
it in S3:

import requests
import boto3

data = requests.get("http://localhost:8080/planets.html").text

create S3 client, use environment variables for keys
s3 = boto3.client('s3')

the bucket
bucket_name = "planets-content"

create bucket, set
s3.create_bucket(Bucket=bucket_name, ACL='public-read')
s3.put_object(Bucket=bucket_name, Key='planet.html',
 Body=data, ACL="public-read")

This app will give you output similar to the following, which is S3 info telling2.
you various facts about the new item.

{'ETag': '"3ada9dcd8933470221936534abbf7f3e"',
 'ResponseMetadata': {'HTTPHeaders': {'content-length': '0',
 'date': 'Sun, 27 Aug 2017 19:25:54 GMT',
 'etag': '"3ada9dcd8933470221936534abbf7f3e"',
 'server': 'AmazonS3',

Processing Data Chapter 3

[66]

 'x-amz-id-2':
'57BkfScql637op1dIXqJ7TeTmMyjVPk07cAMNVqE7C8jKsb7nRO+0GSbkkLWUBWh81
k+q2nMQnE=',
 'x-amz-request-id': 'D8446EDC6CBA4416'},
 'HTTPStatusCode': 200,
 'HostId':
'57BkfScql637op1dIXqJ7TeTmMyjVPk07cAMNVqE7C8jKsb7nRO+0GSbkkLWUBWh81
k+q2nMQnE=',
 'RequestId': 'D8446EDC6CBA4416',
 'RetryAttempts': 0}}

This output shows us that the object was successfully created in the bucket. At3.
this point, you can navigate to the S3 console and see your bucket:

The Bucket in S3

Processing Data Chapter 3

[67]

Inside the bucket you will see the planet.html file:4.

The File in the Bucket

Processing Data Chapter 3

[68]

By clicking on the file you can see the property and URL to the file within S3:5.

The Properties of the File in S3

How it works
The boto3 library wraps the AWS S3 API in a Pythonic syntax. The .client() call
authenticates with AWS and gives us an object to use to communicate with S3. Make sure
you have your keys in environment variables, as otherwise this will not work.

Processing Data Chapter 3

[69]

The bucket name must be globally unique. At the time of writing, this bucket is available,
but you will likely need to change the name. The .create_bucket() call creates the
bucket and sets its ACL. put_object() uses the boto3 upload manager to upload the
scraped data into the object in the bucket.

There's more...
There a lot of details to learn for working with S3. You can find API documentation at:
http://docs.aws. amazon. com/ AmazonS3/ latest/ API/ Welcome. html. Boto3 documents can
be found at: https:/ /boto3. readthedocs. io/ en/latest/ .

While we only saved a web page, this model can be used to store any type of file based data
in S3.

Storing data using MySQL
MySQL is a freely available, open source Relational Database Management System
(RDBMS). In this example, we will read the planets data from the website and store it into a
MySQL database.

Getting ready
You will need to have access to a MySQL database. You can install one locally installed, in
the cloud, within a container. I am using a locally installed MySQL server and have the
root password set to mypassword. You will also need to install the MySQL python library.
You can do this with pip install mysql-connector-python.

The first thing to do is to connect to the database using the mysql command at1.
the terminal:

mysql -uroot -pmypassword
mysql: [Warning] Using a password on the command line interface can
be insecure.
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 4
Server version: 5.7.19 MySQL Community Server (GPL)

Copyright (c) 2000, 2017, Oracle and/or its affiliates. All rights
reserved.

http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
https://boto3.readthedocs.io/en/latest/
https://boto3.readthedocs.io/en/latest/
https://boto3.readthedocs.io/en/latest/
https://boto3.readthedocs.io/en/latest/
https://boto3.readthedocs.io/en/latest/
https://boto3.readthedocs.io/en/latest/
https://boto3.readthedocs.io/en/latest/
https://boto3.readthedocs.io/en/latest/
https://boto3.readthedocs.io/en/latest/
https://boto3.readthedocs.io/en/latest/
https://boto3.readthedocs.io/en/latest/
https://boto3.readthedocs.io/en/latest/
https://boto3.readthedocs.io/en/latest/
https://boto3.readthedocs.io/en/latest/

Processing Data Chapter 3

[70]

Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective
owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input
statement.

mysql>

Now we can create a database that will be used to store our scraped information:2.

mysql> create database scraping;
Query OK, 1 row affected (0.00 sec)

Now use the new database:3.

mysql> use scraping;
Database changed

And create a Planets table in the database to store our data:4.

mysql> CREATE TABLE `scraping`.`planets` (
 `id` INT NOT NULL AUTO_INCREMENT,
 `name` VARCHAR(45) NOT NULL,
 `mass` FLOAT NOT NULL,
 `radius` FLOAT NOT NULL,
 `description` VARCHAR(5000) NULL,
 PRIMARY KEY (`id`));
Query OK, 0 rows affected (0.02 sec)

Now we are ready to scrape data and put it into the MySQL database.

How to do it
The following code (found in 03/store_in_mysql.py) will read the planets1.
data and write it to MySQL:

import mysql.connector
import get_planet_data
from mysql.connector import errorcode
from get_planet_data import get_planet_data

try:
 # open the database connection
 cnx = mysql.connector.connect(user='root',

Processing Data Chapter 3

[71]

password='mypassword',
 host="127.0.0.1",
database="scraping")

 insert_sql = ("INSERT INTO Planets (Name, Mass, Radius,
Description) " +
 "VALUES (%(Name)s, %(Mass)s, %(Radius)s,
%(Description)s)")

 # get the planet data
 planet_data = get_planet_data()

 # loop through all planets executing INSERT for each with the
cursor
 cursor = cnx.cursor()
 for planet in planet_data:
 print("Storing data for %s" % (planet["Name"]))
 cursor.execute(insert_sql, planet)

 # commit the new records
 cnx.commit()

 # close the cursor and connection
 cursor.close()
 cnx.close()

except mysql.connector.Error as err:
 if err.errno == errorcode.ER_ACCESS_DENIED_ERROR:
 print("Something is wrong with your user name or password")
 elif err.errno == errorcode.ER_BAD_DB_ERROR:
 print("Database does not exist")
 else:
 print(err)
else:
 cnx.close()

This results in the following output:2.

Storing data for Mercury
Storing data for Venus
Storing data for Earth
Storing data for Mars
Storing data for Jupiter
Storing data for Saturn
Storing data for Uranus
Storing data for Neptune
Storing data for Pluto

Processing Data Chapter 3

[72]

Using MySQL Workbench we can see the the records were written to the3.
database (you could use the mysql command line also):

Records displayed using MySQL Workbench

The following code can be used to retrieve the data (03/read_from_mysql.py):4.

import mysql.connector
from mysql.connector import errorcode

try:
 cnx = mysql.connector.connect(user='root', password='mypassword',
 host="127.0.0.1", database="scraping")
 cursor = cnx.cursor(dictionary=False)

 cursor.execute("SELECT * FROM scraping.Planets")
 for row in cursor:
 print(row)

 # close the cursor and connection
 cursor.close()
 cnx.close()

Processing Data Chapter 3

[73]

except mysql.connector.Error as err:
 if err.errno == errorcode.ER_ACCESS_DENIED_ERROR:
 print("Something is wrong with your user name or password")
 elif err.errno == errorcode.ER_BAD_DB_ERROR:
 print("Database does not exist")
 else:
 print(err)
finally:
 cnx.close()

This results in the following output:5.

(1, 'Mercury', 0.33, 4879.0, 'Named Mercurius by the Romans because
it appears to move so swiftly.',
'https://en.wikipedia.org/wiki/Mercury_(planet)')
(2, 'Venus', 4.87, 12104.0, 'Roman name for the goddess of love.
This planet was considered to be the brightest and most beautiful
planet or star in the heavens. Other civilizations have named it
for their god or goddess of love/war.',
'https://en.wikipedia.org/wiki/Venus')
(3, 'Earth', 5.97, 12756.0, "The name Earth comes from the Indo-
European base 'er,'which produced the Germanic noun 'ertho,' and
ultimately German 'erde,' Dutch 'aarde,' Scandinavian 'jord,' and
English 'earth.' Related forms include Greek 'eraze,' meaning 'on
the ground,' and Welsh 'erw,' meaning 'a piece of land.'",
'https://en.wikipedia.org/wiki/Earth')
(4, 'Mars', 0.642, 6792.0, 'Named by the Romans for their god of
war because of its red, bloodlike color. Other civilizations also
named this planet from this attribute; for example, the Egyptians
named it "Her Desher," meaning "the red one."',
'https://en.wikipedia.org/wiki/Mars')
(5, 'Jupiter', 1898.0, 142984.0, 'The largest and most massive of
the planets was named Zeus by the Greeks and Jupiter by the Romans;
he was the most important deity in both pantheons.',
'https://en.wikipedia.org/wiki/Jupiter')
(6, 'Saturn', 568.0, 120536.0, 'Roman name for the Greek Cronos,
father of Zeus/Jupiter. Other civilizations have given different
names to Saturn, which is the farthest planet from Earth that can
be observed by the naked human eye. Most of its satellites were
named for Titans who, according to Greek mythology, were brothers
and sisters of Saturn.', 'https://en.wikipedia.org/wiki/Saturn')
(7, 'Uranus', 86.8, 51118.0, 'Several astronomers, including
Flamsteed and Le Monnier, had observed Uranus earlier but had
recorded it as a fixed star. Herschel tried unsuccessfully to name
his discovery "Georgian Sidus" after George III; the planet was
named by Johann Bode in 1781 after the ancient Greek deity of the
sky Uranus, the father of Kronos (Saturn) and grandfather of Zeus

Processing Data Chapter 3

[74]

(Jupiter).', 'https://en.wikipedia.org/wiki/Uranus')
(8, 'Neptune', 102.0, 49528.0, 'Neptune was "predicted" by John
Couch Adams and Urbain Le Verrier who, independently, were able to
account for the irregularities in the motion of Uranus by correctly
predicting the orbital elements of a trans- Uranian body. Using the
predicted parameters of Le Verrier (Adams never published his
predictions), Johann Galle observed the planet in 1846. Galle
wanted to name the planet for Le Verrier, but that was not
acceptable to the international astronomical community. Instead,
this planet is named for the Roman god of the sea.',
'https://en.wikipedia.org/wiki/Neptune')
(9, 'Pluto', 0.0146, 2370.0, 'Pluto was discovered at Lowell
Observatory in Flagstaff, AZ during a systematic search for a
trans-Neptune planet predicted by Percival Lowell and William H.
Pickering. Named after the Roman god of the underworld who was able
to render himself invisible.',
'https://en.wikipedia.org/wiki/Pluto')

How it works
Accessing a MySQL database using the mysql.connector involves the use of two classes
from the library: connect and cursor. The connect class opens and manages a connection
with the database server. From that connection object, we can create a cursor object. This
cursor is used for reading and writing data using SQL statements.

In the first example, we used the cursor to insert nine records into the database. Those
records are not written to the database until the commit() method of the connection is
called. This executes the writes of all the rows to the database.

Reading data uses a similar model except that we execute an SQL query (SELECT) using the
cursor and iterate across the rows that were retrieved. Since we are reading and not writing,
there is no need to call commit() on the connection.

There's more...
You can learn more about MySQL and install it from:
https://dev.mysql.com/doc/refman/5.7/en/installing.html. Information on
MySQL Workbench is available at: https://dev.mysql.com/doc/workbench/en/.

Processing Data Chapter 3

[75]

Storing data using PostgreSQL
In this recipe we store our planet data in PostgreSQL. PostgreSQL is an open source
relational database management system (RDBMS). It is developed by a worldwide team of
volunteers, is not controlled by any corporation or other private entity, and the source code
is available free of charge. It has a lot of unique features such as hierarchical data models.

Getting ready
First make sure you have access to a PostgreSQL data instance. Again, you can install one
locally, run one in a container, or get an instance in the cloud.

As with MySQL, we need to first create a database. The process is almost identical to that of
MySQL but with slightly different commands and parameters.

From the terminal execute the psql command at the terminal. This takes you into1.
the psql command processor:

psql -U postgres
psql (9.6.4)
Type "help" for help.
postgres=#

Now create the scraping database:2.

postgres=# create database scraping;
CREATE DATABASE
postgres=#

Then switch to the new database:3.

postgres=# \connect scraping
You are now connected to database "scraping" as user "postgres".
scraping=#

Now we can create the Planets table. We first need to create a sequence table:4.

scraping=# CREATE SEQUENCE public."Planets_id_seq"
scraping-# INCREMENT 1
scraping-# START 1
scraping-# MINVALUE 1
scraping-# MAXVALUE 9223372036854775807
scraping-# CACHE 1;
CREATE SEQUENCE

Processing Data Chapter 3

[76]

scraping=# ALTER SEQUENCE public."Planets_id_seq"
scraping-# OWNER TO postgres;
ALTER SEQUENCE
scraping=#

And now we can create the table:5.

scraping=# CREATE TABLE public."Planets"
scraping-# (
scraping(# id integer NOT NULL DEFAULT
nextval('"Planets_id_seq"'::regclass),
scraping(# name text COLLATE pg_catalog."default" NOT NULL,
scraping(# mass double precision NOT NULL,
scraping(# radius double precision NOT NULL,
scraping(# description text COLLATE pg_catalog."default" NOT NULL,
scraping(# moreinfo text COLLATE pg_catalog."default" NOT NULL,
scraping(# CONSTRAINT "Planets_pkey" PRIMARY KEY (name)
scraping(#)
scraping-# WITH (
scraping(# OIDS = FALSE
scraping(#)
scraping-# TABLESPACE pg_default;
CREATE TABLE
scraping=#
scraping=# ALTER TABLE public."Planets"
scraping-# OWNER to postgres;
ALTER TABLE
scraping=# \q

To access PostgreSQL from Python we will use the psycopg2 library, so make sure it is
installed in your Python environment using pip install psycopg2.

We are now ready to write Python to store the planets data in PostgreSQL.

How to do it
We proceed with the recipe as follows:

The following code will read the planets data and write it to the database (code in1.
03/save_in_postgres.py):

import psycopg2
from get_planet_data import get_planet_data

try:

Processing Data Chapter 3

[77]

 # connect to PostgreSQL
 conn = psycopg2.connect("dbname='scraping' host='localhost'
user='postgres' password='mypassword'")

 # the SQL INSERT statement we will use
 insert_sql = ('INSERT INTO public."Planets"(name, mass, radius,
description, moreinfo) ' +
 'VALUES (%(Name)s, %(Mass)s, %(Radius)s, %(Description)s,
%(MoreInfo)s);')

 # open a cursor to access data
 cur = conn.cursor()

 # get the planets data and loop through each
 planet_data = get_planet_data()
 for planet in planet_data:
 # write each record
 cur.execute(insert_sql, planet)

 # commit the new records to the database
 conn.commit()
 cur.close()
 conn.close()

 print("Successfully wrote data to the database")

except Exception as ex:
 print(ex)

If successful you will see the following:2.

Successfully wrote data to the database

Using GUI tools such as pgAdmin you can examine the data within the database:3.

Processing Data Chapter 3

[78]

Records Displayed in pgAdmin

The data can be queried with the following Python code (found in4.
03/read_from_postgresql.py):

import psycopg2

try:
 conn = psycopg2.connect("dbname='scraping' host='localhost'
user='postgres' password='mypassword'")

 cur = conn.cursor()
 cur.execute('SELECT * from public."Planets"')
 rows = cur.fetchall()
 print(rows)

 cur.close()
 conn.close()

except Exception as ex:
 print(ex)

Processing Data Chapter 3

[79]

And results in the following output (truncated a little bit:5.

[(1, 'Mercury', 0.33, 4879.0, 'Named Mercurius by the Romans
because it appears to move so swiftly.',
'https://en.wikipedia.org/wiki/Mercury_(planet)'), (2, 'Venus',
4.87, 12104.0, 'Roman name for the goddess of love. This planet was
considered to be the brightest and most beautiful planet or star in
the heavens. Other civilizations have named it for their god or
goddess of love/war.', 'https://en.wikipedia.org/wiki/Venus'), (3,
'Earth', 5.97, 12756.0, "The name Earth comes from the Indo-
European base 'er,'which produced the Germanic noun 'ertho,' and
ultimately German 'erde,' Dutch 'aarde,' Scandinavian 'jord,' and
English 'earth.' Related forms include Greek 'eraze,' meaning 'on
the ground,' and Welsh 'erw,' meaning 'a piece of land.'",
'https://en.wikipedia.org/wiki/Earth'), (4, 'Mars', 0.642, 6792.0,
'Named by the Romans for their god of war because of its red,
bloodlike color. Other civilizations also named this planet from
this attribute; for example, the Egyptians named it

How it works
Accessing a PostgreSQL database using the psycopg2 library as we did involves the use of
two classes from the library: connect and cursor. The connect class opens and manages
a connection with the database server. From that connection object, we can create a cursor
object. This cursor is used for reading and writing data using SQL statements.

In the first example, we used the cursor to insert nine records into the database. Those
records are not written to the database until the commit() method of the connection is
called. This executes the writes of all the rows to the database.

Reading data uses a similar model, except that we execute an SQL query (SELECT) using the
cursor and iterate across the rows that were retrieved. Since we are reading and not
writing, there is no need to call commit() on the connection.

There's more...
Information on PostgreSQL is available at https://www.postgresql.org/. pgAdmin
can be obtained at: https://www.pgadmin.org/ Reference materials for psycopg are at:
http://initd.org/psycopg/docs/usage.html

Processing Data Chapter 3

[80]

Storing data in Elasticsearch
Elasticsearch is a search engine based on Lucene. It provides a distributed, multitenant-
capable, full-text search engine with an HTTP web interface and schema-free JSON
documents. It is a non-relational database (often stated as NoSQL), focusing on the storage
of documents instead of records. These documents can be many formats, one of which is
useful to us: JSON. This makes using Elasticsearch very simple as we do not need to
convert our data to/from JSON. We will use Elasticsearch much more later in the book

For now, let's go and store our planets data in Elasticsearch.

Getting ready
We will access a locally installed Elasticsearch server. To do this from Python, we will use
the Elasticsearch-py library. It is most likely that you will need to install this using pip:
pip install elasticsearch.

Unlike PostgreSQL and MySQL, we do not need to create tables in Elasticsearch ahead of
time. Elasticsearch does not care about structured data schemas (although it does have
indexes), so we don't have to go through this procedure.

How to do it
Writing data to Elasticsearch is really simple. The following Python code performs this task
with our planets data (03/write_to_elasticsearch.py):

from elasticsearch import Elasticsearch
from get_planet_data import get_planet_data

create an elastic search object
es = Elasticsearch()

get the data
planet_data = get_planet_data()

for planet in planet_data:
 # insert each planet into elasticsearch server
 res = es.index(index='planets', doc_type='planets_info', body=planet)
 print (res)

Processing Data Chapter 3

[81]

Executing this results in the following output:

{'_index': 'planets', '_type': 'planets_info', '_id':
'AV4qIF3_T0Z2t9T850q6', '_version': 1, 'result': 'created', '_shards':
{'total': 2, 'successful': 1, 'failed': 0}, 'created': True}{'_index':
'planets', '_type': 'planets_info', '_id': 'AV4qIF5QT0Z2t9T850q7',
'_version': 1, 'result': 'created', '_shards': {'total': 2, 'successful':
1, 'failed': 0}, 'created': True}
{'_index': 'planets', '_type': 'planets_info', '_id':
'AV4qIF5XT0Z2t9T850q8', '_version': 1, 'result': 'created', '_shards':
{'total': 2, 'successful': 1, 'failed': 0}, 'created': True}
{'_index': 'planets', '_type': 'planets_info', '_id':
'AV4qIF5fT0Z2t9T850q9', '_version': 1, 'result': 'created', '_shards':
{'total': 2, 'successful': 1, 'failed': 0}, 'created': True}
{'_index': 'planets', '_type': 'planets_info', '_id': 'AV4qIF5mT0Z2t9T850q-
', '_version': 1, 'result': 'created', '_shards': {'total': 2,
'successful': 1, 'failed': 0}, 'created': True}
{'_index': 'planets', '_type': 'planets_info', '_id':
'AV4qIF5rT0Z2t9T850q_', '_version': 1, 'result': 'created', '_shards':
{'total': 2, 'successful': 1, 'failed': 0}, 'created': True}
{'_index': 'planets', '_type': 'planets_info', '_id':
'AV4qIF50T0Z2t9T850rA', '_version': 1, 'result': 'created', '_shards':
{'total': 2, 'successful': 1, 'failed': 0}, 'created': True}
{'_index': 'planets', '_type': 'planets_info', '_id':
'AV4qIF56T0Z2t9T850rB', '_version': 1, 'result': 'created', '_shards':
{'total': 2, 'successful': 1, 'failed': 0}, 'created': True}
{'_index': 'planets', '_type': 'planets_info', '_id':
'AV4qIF6AT0Z2t9T850rC', '_version': 1, 'result': 'created', '_shards':
{'total': 2, 'successful': 1, 'failed': 0}, 'created': True}

The output shows the result of each insertion, giving us information such as the _id
assigned to the document by elasticsearch.

Processing Data Chapter 3

[82]

If you have logstash and kibana installed too, you can see the data inside of Kibana:

Kibana Showing and Index

And we can query the data with the following Python code. This code retrieves all of the
documents in the 'planets' index and prints the name, mass, and radius of each
planet (03/read_from_elasticsearch.py):

from elasticsearch import Elasticsearch

create an elastic search object
es = Elasticsearch()

res = es.search(index="planets", body={"query": {"match_all": {}}})

Processing Data Chapter 3

[83]

print("Got %d Hits:" % res['hits']['total'])
for hit in res['hits']['hits']:
 print("%(Name)s %(Mass)s: %(Radius)s" % hit["_source"])Got 9 Hits:

This results in the following output:

Mercury 0.330: 4879
Mars 0.642: 6792
Venus 4.87: 12104
Saturn 568: 120536
Pluto 0.0146: 2370
Earth 5.97: 12756
Uranus 86.8: 51118
Jupiter 1898: 142984
Neptune 102: 49528

How it works
Elasticsearch is both a NoSQL database and a search engine. You give documents to
Elasticsearch and it parses the data in the documents and creates search indexes for that
data automatically.

During the insertion process, we used the elasticsearch libraries' .index() method and
specified an index, named "planets", a document type, planets_info, and the finally the
body of the document, which is our planet Python object. The elasticsearch library that
object to JSON and sends it off to Elasticsearch for storage and indexing.

The index parameter is used to inform Elasticsearch how to create an index, which it will
use for indexing and which we can use to specify a set of documents to search for when we
query. When we performed the query, we specified the same index "planets" and executed a
query to match all of the documents.

There's more...
You can find out much more about elasticsearch at:
https://www.elastic.co/products/elasticsearch. Information on the python API
can be found at: http://pyelasticsearch.readthedocs.io/en/latest/api/

We will also come back to Elasticsearch in later chapters of the book.

Processing Data Chapter 3

[84]

How to build robust ETL pipelines with AWS
SQS
Scraping a large quantity of sites and data can be a complicated and slow process. But it is
one that can take great advantage of parallel processing, either locally with multiple
processor threads, or distributing scraping requests to report scrapers using a message
queue system. There may also be the need for multiple steps in a process similar to an
Extract, Transform, and Load pipeline (ETL). These pipelines can also be easily built using a
message queuing architecture in conjunction with the scraping.

Using a message queuing architecture gives our pipeline two advantages:

Robustness
Scalability

The processing becomes robust, as if processing of an individual message fails, then the
message can be re-queued for processing again. So if the scraper fails, we can restart it and
not lose the request for scraping the page, or the message queue system will deliver the
request to another scraper.

It provides scalability, as multiple scrapers on the same, or different, systems can listen on
the queue. Multiple messages can then be processed at the same time on different cores or,
more importantly, different systems. In a cloud-based scraper, you can scale up the number
of scraper instances on demand to handle greater load.

Common message queueing systems that can be used include: Kafka, RabbitMQ, and
Amazon SQS. Our example will utilize Amazon SQS, although both Kafka and RabbitMQ
are quite excellent to use (we will see RabbitMQ in use later in the book). We use SQS to
stay with a model of using AWS cloud-based services as we did earlier in the chapter with
S3.

Getting ready
As an example, we will build a vary simple ETL process that will read the main planets
page and store the planets data in MySQL. It will also pass a single message for each more
info link in the page to a queue, where 0 or more processes can receive those requests and
perform further processing on those links.

To access SQS from Python, we will revisit using the boto3 library.

Processing Data Chapter 3

[85]

How to do it - posting messages to an AWS
queue
The 03/create_messages.py file contains code to read the planets data and to post the
URL in the MoreInfo property to an SQS queue:

from urllib.request import urlopen
from bs4 import BeautifulSoup

import boto3
import botocore

declare our keys (normally, don't hard code this)
access_key="AKIAIXFTCYO7FEL55TCQ"
access_secret_key="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"

create sqs client
sqs = boto3.client('sqs', "us-west-2",
 aws_access_key_id = access_key,
 aws_secret_access_key = access_secret_key)

create / open the SQS queue
queue = sqs.create_queue(QueueName="PlanetMoreInfo")
print (queue)

read and parse the planets HTML
html = urlopen("http://127.0.0.1:8080/pages/planets.html")
bsobj = BeautifulSoup(html, "lxml")

planets = []
planet_rows = bsobj.html.body.div.table.findAll("tr", {"class": "planet"})

for i in planet_rows:
 tds = i.findAll("td")
 # get the URL
 more_info_url = tds[5].findAll("a")[0]["href"].strip()
 # send the URL to the queue
 sqs.send_message(QueueUrl=queue["QueueUrl"],
 MessageBody=more_info_url)
 print("Sent %s to %s" % (more_info_url, queue["QueueUrl"]))

Processing Data Chapter 3

[86]

Run the code in a terminal and you will see output similar to the following:

{'QueueUrl':
'https://us-west-2.queue.amazonaws.com/414704166289/PlanetMoreInfo',
'ResponseMetadata': {'RequestId': '2aad7964-292a-5bf6-b838-2b7a5007af22',
'HTTPStatusCode': 200, 'HTTPHeaders': {'server': 'Server', 'date': 'Mon, 28
Aug 2017 20:02:53 GMT', 'content-type': 'text/xml', 'content-length':
'336', 'connection': 'keep-alive', 'x-amzn-requestid': '2aad7964-292a-5bf6-
b838-2b7a5007af22'}, 'RetryAttempts': 0}}
Sent https://en.wikipedia.org/wiki/Mercury_(planet) to
https://us-west-2.queue.amazonaws.com/414704166289/PlanetMoreInfo
Sent https://en.wikipedia.org/wiki/Venus to
https://us-west-2.queue.amazonaws.com/414704166289/PlanetMoreInfo
Sent https://en.wikipedia.org/wiki/Earth to
https://us-west-2.queue.amazonaws.com/414704166289/PlanetMoreInfo
Sent https://en.wikipedia.org/wiki/Mars to
https://us-west-2.queue.amazonaws.com/414704166289/PlanetMoreInfo
Sent https://en.wikipedia.org/wiki/Jupiter to
https://us-west-2.queue.amazonaws.com/414704166289/PlanetMoreInfo
Sent https://en.wikipedia.org/wiki/Saturn to
https://us-west-2.queue.amazonaws.com/414704166289/PlanetMoreInfo
Sent https://en.wikipedia.org/wiki/Uranus to
https://us-west-2.queue.amazonaws.com/414704166289/PlanetMoreInfo
Sent https://en.wikipedia.org/wiki/Neptune to
https://us-west-2.queue.amazonaws.com/414704166289/PlanetMoreInfo
Sent https://en.wikipedia.org/wiki/Pluto to
https://us-west-2.queue.amazonaws.com/414704166289/PlanetMoreInfo

Now go into the AWS SQS console. You should see the queue has been created and that it
holds 9 messages:

The Queue in SQS

Processing Data Chapter 3

[87]

How it works
The code connects to the given account and the us-west-2 region of AWS. A queue is then
created if one does not exist. Then, for each planet in the source content, the program sends
a message which consists of the more info URL for the planet.

At this point, there is no one listening to the queue, so the messages will sit there until
eventually read or they expire. The default life for each message is 4 days.

How to do it - reading and processing messages
To process the messages, run the 03/process_messages.py program:

import boto3
import botocore
import requests
from bs4 import BeautifulSoup

print("Starting")

declare our keys (normally, don't hard code this)
access_key = "AKIAIXFTCYO7FEL55TCQ"
access_secret_key = "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"

create sqs client
sqs = boto3.client('sqs', "us-west-2",
 aws_access_key_id = access_key,
 aws_secret_access_key = access_secret_key)

print("Created client")

create / open the SQS queue
queue = sqs.create_queue(QueueName="PlanetMoreInfo")
queue_url = queue["QueueUrl"]
print ("Opened queue: %s" % queue_url)

while True:
 print ("Attempting to receive messages")
 response = sqs.receive_message(QueueUrl=queue_url,
 MaxNumberOfMessages=1,
 WaitTimeSeconds=1)
 if not 'Messages' in response:
 print ("No messages")
 continue

Processing Data Chapter 3

[88]

 message = response['Messages'][0]
 receipt_handle = message['ReceiptHandle']
 url = message['Body']

 # parse the page
 html = requests.get(url)
 bsobj = BeautifulSoup(html.text, "lxml")

 # now find the planet name and albedo info
 planet=bsobj.findAll("h1", {"id": "firstHeading"})[0].text
 albedo_node = bsobj.findAll("a", {"href": "/wiki/Geometric_albedo"})[0]
 root_albedo = albedo_node.parent
 albedo = root_albedo.text.strip()

 # delete the message from the queue
 sqs.delete_message(
 QueueUrl=queue_url,
 ReceiptHandle=receipt_handle
)

 # print the planets name and albedo info
 print("%s: %s" % (planet, albedo))

Run the script using python process_messages.py. You will see output similar to the
following:

Starting
Created client
Opened queue:
https://us-west-2.queue.amazonaws.com/414704166289/PlanetMoreInfo
Attempting to receive messages
Jupiter: 0.343 (Bond)
0.52 (geom.)[3]
Attempting to receive messages
Mercury (planet): 0.142 (geom.)[10]
Attempting to receive messages
Uranus: 0.300 (Bond)
0.51 (geom.)[5]
Attempting to receive messages
Neptune: 0.290 (bond)
0.41 (geom.)[4]
Attempting to receive messages
Pluto: 0.49 to 0.66 (geometric, varies by 35%)[1][7]
Attempting to receive messages
Venus: 0.689 (geometric)[2]
Attempting to receive messages
Earth: 0.367 geometric[3]

Processing Data Chapter 3

[89]

Attempting to receive messages
Mars: 0.170 (geometric)[8]
0.25 (Bond)[7]
Attempting to receive messages
Saturn: 0.499 (geometric)[4]
Attempting to receive messages
No messages

How it works
The program connects to SQS and opens the queue. Opening the queue for reading is also
done using sqs.create_queue, which will simply return the queue if it already exists.

Then, it enters a loop calling sqs.receive_message, specifying the URL of the queue, the
number of messages to receive in each read, and the maximum amount of time to wait in
seconds if there are no messages available.

If a message is read, the URL in the message is retrieved and scraping techniques are used
to read the page at the URL and extract the planet's name and information about its albedo.

Note that we retrieve the receipt handle of the message. This is needed to delete the
message from the queue. If we do not delete the message, it will be made available in the
queue after a period of time. So if our scraper crashed and didn't perform this
acknowledgement, the messages will be made available again by SQS for another scraper to
process (or the same one when it is back up).

There's more...
You can find more information about S3 at: https://aws.amazon.com/s3/. Specifics on
the details of the API are available at: https://aws.amazon.com/documentation/s3/.

4
Working with Images, Audio,

and other Assets
In this chapter, we will cover:

Downloading media content on the web
Parsing a URL with urllib to get the filename
Determining type of content for a URL
Determining a file extension from a content type
Downloading and saving images to the local file system
Downloading and saving images to S3
Generating thumbnails for images
Taking website screenshots with Selenium
Taking a website screenshot with an external service
Performing OCR on images with pytessaract
Creating a Video Thumbnail
Ripping an MP4 video to an MP3

Working with Images, Audio, and other Assets Chapter 4

[91]

Introduction
A common practice in scraping is the download, storage, and further processing of media
content (non-web pages or data files). This media can include images, audio, and video. To
store the content locally (or in a service like S3) and do it correctly, we need to know what
the type of media is, and it's not enough to trust the file extension in the URL. We will learn
how to download and correctly represent the media type based on information from the
web server.

Another common task is the generation of thumbnails of images, videos, or even a page of a
website. We will examine several techniques of how to generate thumbnails and make
website page screenshots. Many times these are used on a new website as thumbnail links
to the scraped media that is now stored locally.

Finally, it is often the need to be able to transcode media, such as converting non-MP4
videos to MP4, or changing the bit-rate or resolution of a video. Another scenario is to
extract only the audio from a video file. We won't look at video transcoding, but we will rip
MP3 audio out of an MP4 file using ffmpeg. It's a simple step from there to also transcode
video with ffmpeg.

Downloading media content from the web
Downloading media content from the web is a simple process: use Requests or another
library and download it just like you would HTML content.

Getting ready
There is a class named URLUtility in the urls.py mdoule in the util folder of the
solution. This class handles several of the scenarios in this chapter with downloading and
parsing URLs. We will be using this class in this recipe and a few others. Make sure the
modules folder is in your Python path. Also, the example for this recipe is in the
04/01_download_image.py file.

Working with Images, Audio, and other Assets Chapter 4

[92]

How to do it
Here is how we proceed with the recipe:

The URLUtility class can download content from a URL. The code in the1.
recipe's file is the following:

import const
from util.urls import URLUtility

util = URLUtility(const.ApodEclipseImage())
print(len(util.data))

When running this you will see the following output:2.

Reading URL: https://apod.nasa.gov/apod/image/1709/BT5643s.jpg
Read 171014 bytes
171014

The example reads 171014 bytes of data.

How it works
The URL is defined as a constant const.ApodEclipseImage() in the const module:

def ApodEclipseImage():
 return "https://apod.nasa.gov/apod/image/1709/BT5643s.jpg"

The constructor of the URLUtility class has the following implementation:

def __init__(self, url, readNow=True):
 """ Construct the object, parse the URL, and download now if
specified"""
 self._url = url
 self._response = None
 self._parsed = urlparse(url)
 if readNow:
 self.read()

The constructor stores the URL, parses it, and downloads the file with the read() method.
 The following is the code of the read() method:

def read(self):
 self._response = urllib.request.urlopen(self._url)
 self._data = self._response.read()

Working with Images, Audio, and other Assets Chapter 4

[93]

This function uses urlopen to get a response object, and then reads the stream and stores it
as a property of the object. That data can then be retrieved using the data property:

@property
def data(self):
 self.ensure_response()
 return self._data

The code then simply reports on the length of that data, with the value of 171014.

There's more...
This class will be used for other tasks such as determining content types, filename, and
extensions for those files. We will examine parsing of URLs for filenames next.

 Parsing a URL with urllib to get the filename
When downloading content from a URL, we often want to save it in a file. Often it is good
enough to save the file in a file with a name found in the URL. But the URL consists of a
number of fragments, so how can we find the actual filename from the URL, especially
where there are often many parameters after the file name?

Getting ready
We will again be using the URLUtility class for this task. The code file for the recipe
is 04/02_parse_url.py.

How to do it
Execute the recipe's file with your python interpreter. It will run the following code:

util = URLUtility(const.ApodEclipseImage())
print(util.filename_without_ext)

Working with Images, Audio, and other Assets Chapter 4

[94]

This results in the following output:

Reading URL: https://apod.nasa.gov/apod/image/1709/BT5643s.jpg
Read 171014 bytes
The filename is: BT5643s

How it works
In the constructor for URLUtility, there is a call to urlib.parse.urlparse. The
following demonstrates using the function interactively:

>>> parsed = urlparse(const.ApodEclipseImage())
>>> parsed
ParseResult(scheme='https', netloc='apod.nasa.gov',
path='/apod/image/1709/BT5643s.jpg', params='', query='', fragment='')

The ParseResult object contains the various components of the URL. The path element
contains the path and the filename. The call to the .filename_without_ext property
returns just the filename without the extension:

@property
def filename_without_ext(self):
 filename = os.path.splitext(os.path.basename(self._parsed.path))[0]
 return filename

The call to os.path.basename returns only the filename portion of the path (including the
extension). os.path.splittext() then separates the filename and the extension, and the
function returns the first element of that tuple/list (the filename).

There's more...
It may seem odd that this does not also return the extension as part of the filename. This is
because we cannot assume that the content that we received actually matches the implied
type from the extension. It is more accurate to determine this using headers returned by the
web server. That's our next recipe.

Working with Images, Audio, and other Assets Chapter 4

[95]

Determining the type of content for a URL
When performing a GET requests for content from a web server, the web server will return a
number of headers, one of which identities the type of the content from the perspective of
the web server. In this recipe we learn to use that to determine what the web server
considers the type of the content.

Getting ready
We again use the URLUtility class. The code for the recipe is
in 04/03_determine_content_type_from_response.py.

How to do it
We proceed as follows:

Execute the script for the recipe. It contains the following code:1.

util = URLUtility(const.ApodEclipseImage())
print("The content type is: " + util.contenttype)

With the following result:2.

Reading URL: https://apod.nasa.gov/apod/image/1709/BT5643s.jpg
Read 171014 bytes
The content type is: image/jpeg

How it works
The .contentype property is implemented as follows:

@property
def contenttype(self):
 self.ensure_response()
 return self._response.headers['content-type']

Working with Images, Audio, and other Assets Chapter 4

[96]

The .headers property of the _response object is a dictionary-like class of headers. The
content-type key will retrieve the content-type specified by the server. This call to the
ensure_response() method simply ensures that the .read() function has been executed.

There's more...
The headers in a response contain a wealth of information. If we look more closely at the
headers property of the response, we can see the following headers are returned:

>>> response = urllib.request.urlopen(const.ApodEclipseImage())
>>> for header in response.headers: print(header)
Date
Server
Last-Modified
ETag
Accept-Ranges
Content-Length
Connection
Content-Type
Strict-Transport-Security

And we can see the values for each of these headers.

>>> for header in response.headers: print(header + " ==> " +
response.headers[header])
Date ==> Tue, 26 Sep 2017 19:31:41 GMT
Server ==> WebServer/1.0
Last-Modified ==> Thu, 31 Aug 2017 20:26:32 GMT
ETag ==> "547bb44-29c06-5581275ce2b86"
Accept-Ranges ==> bytes
Content-Length ==> 171014
Connection ==> close
Content-Type ==> image/jpeg
Strict-Transport-Security ==> max-age=31536000; includeSubDomains

Many of these we will not examine in this book, but for the unfamiliar it is good to know
that they exist.

Working with Images, Audio, and other Assets Chapter 4

[97]

Determining the file extension from a
content type
It is good practice to use the content-type header to determine the type of content, and to
determine the extension to use for storing the content as a file.

Getting ready
We again use the URLUtility object that we created. The recipe's script
is 04/04_determine_file_extension_from_contenttype.py):.

How to do it
Proceed by running the recipe's script.

An extension for the media type can be found using the .extension property:

util = URLUtility(const.ApodEclipseImage())
print("Filename from content-type: " + util.extension_from_contenttype)
print("Filename from url: " + util.extension_from_url)

This results in the following output:

Reading URL: https://apod.nasa.gov/apod/image/1709/BT5643s.jpg
Read 171014 bytes
Filename from content-type: .jpg
Filename from url: .jpg

This reports both the extension determined from the file type, and also from the URL.
 These can be different, but in this case they are the same.

How it works
The following is the implementation of the .extension_from_contenttype property:

@property
def extension_from_contenttype(self):
 self.ensure_response()

 map = const.ContentTypeToExtensions()

Working with Images, Audio, and other Assets Chapter 4

[98]

 if self.contenttype in map:
 return map[self.contenttype]
 return None

The first line ensures that we have read the response from the URL. The function then uses
a python dictionary, defined in the const module, which contains a dictionary of content-
types to extension:

def ContentTypeToExtensions():
 return {
 "image/jpeg": ".jpg",
 "image/jpg": ".jpg",
 "image/png": ".png"
 }

If the content type is in the dictionary, then the corresponding value will be returned.
 Otherwise, None is returned.

Note the corresponding property, .extension_from_url:

@property
def extension_from_url(self):
 ext = os.path.splitext(os.path.basename(self._parsed.path))[1]
 return ext

This uses the same technique as the .filename property to parse the URL, but instead
returns the [1] element, which represents the extension instead of the base filename.

There's more...
As stated, it's best to use the content-type header to determine an extension for storing
the file locally. There are other techniques than what is provided here, but this is the
easiest.

Downloading and saving images to the local
file system
Sometimes when scraping we just download and parse data, such as HTML, to extract some
data, and then throw out what we read. Other times, we want to keep the downloaded
content by storing it as a file.

Working with Images, Audio, and other Assets Chapter 4

[99]

How to do it
The code example for this recipe is in the 04/05_save_image_as_file.py file. The
portion of the file of importance is:

download the image
item = URLUtility(const.ApodEclipseImage())

create a file writer to write the data
FileBlobWriter(expanduser("~")).write(item.filename, item.data)

Run the script with your Python interpreter and you will get the following output:

Reading URL: https://apod.nasa.gov/apod/image/1709/BT5643s.jpg
Read 171014 bytes
Attempting to write 171014 bytes to BT5643s.jpg:
The write was successful

How it works
The sample simply writes the data to a file using standard Python file access functions. It
does it in an object oriented manner by using a standard interface for writing data and with
a file based implementation in the FileBlobWriter class:

""" Implements the IBlobWriter interface to write the blob to a file """

from interface import implements
from core.i_blob_writer import IBlobWriter

class FileBlobWriter(implements(IBlobWriter)):
 def __init__(self, location):
 self._location = location

 def write(self, filename, contents):
 full_filename = self._location + "/" + filename
 print ("Attempting to write {0} bytes to
{1}:".format(len(contents), filename))

 with open(full_filename, 'wb') as outfile:
 outfile.write(contents)

 print("The write was successful")

Working with Images, Audio, and other Assets Chapter 4

[100]

The class is passed a string representing the directory where the file should be placed. The
data is actually written during a later call to the .write() method. This method merges
the filename and directory (_location), and then opens/creates the file and writes the
bytes. The with statement ensures that the file is closed.

There's more...
This write could have simply been handled using a function that wraps the code. This
object will be reused throughout this chapter. We could use the duck-typing of python, or
just a function, but the clarity of interfaces is easier. Speaking of that, the following is the
definition of this interface:

""" Defines the interface for writing a blob of data to storage """

from interface import Interface

class IBlobWriter(Interface):
 def write(self, filename, contents):
 pass

We will also see another implementation of this interface that lets us store files in S3.
Through this type of implementation, through interface inheritance, we can easily substitute
implementations.

Downloading and saving images to S3
We have seen how to write content into S3 in Chapter 3, Processing Data. Here we will
extend that process into an interface implementation of IBlobWriter to write to S3.

Getting ready
The code example for this recipe is in the 04/06_save_image_in_s3.py file. Also ensure
that you have set your AWS keys as environment variables so that Boto can authenticate the
script.

Working with Images, Audio, and other Assets Chapter 4

[101]

How to do it
We proceed as follows:

Run the recipe's script. It will execute the following:1.

download the image
item = URLUtility(const.ApodEclipseImage())

store it in S3
S3BlobWriter(bucket_name="scraping-apod").write(item.filename,
item.data)

Checking in S3, we can see that the bucket was created and the image placed2.
within the bucket:

The Image in S3

How it works
The following is the implementation of the S3BlobWriter:

class S3BlobWriter(implements(IBlobWriter)):
 def __init__(self, bucket_name, boto_client=None):

Working with Images, Audio, and other Assets Chapter 4

[102]

 self._bucket_name = bucket_name

 if self._bucket_name is None:
 self.bucket_name = "/"

 # caller can specify a boto client (can reuse and save auth times)
 self._boto_client = boto_client
 # or create a boto client if user did not, use secrets from
environment variables
 if self._boto_client is None:
 self._boto_client = boto3.client('s3')

 def write(self, filename, contents):
 # create bucket, and put the object
 self._boto_client.create_bucket(Bucket=self._bucket_name,
ACL='public-read')
 self._boto_client.put_object(Bucket=self._bucket_name,
 Key=filename,
 Body=contents,
 ACL="public-read")

We have seen this code in before in the recipe on writing to S3. This class wraps that up
neatly into a reusable interface implementation. When creating an instance, specify the
bucket name. Then every call to .write() will save in the same bucket.

There's more...
S3 provides a capability on buckets known as enabling a website. Essentially, if you set this
option, the content in your bucket will be served via HTTP. We could write many images
to this directory and then have them served directly from S3 without implementing a web
server!

 Generating thumbnails for images
Many times when downloading an image, you do not want to save the full image, but only
a thumbnail. Or you may also save both the full-size image and a thumbnail. Thumbnails
can be easily created in python using the Pillow library. Pillow is a fork of the Python
Image Library, and contains many useful functions for manipulating images. You can find
more information on Pillow at https:/ / python- pillow. org. In this recipe, we use Pillow
to create an image thumbnail.

https://python-pillow.org
https://python-pillow.org
https://python-pillow.org
https://python-pillow.org
https://python-pillow.org
https://python-pillow.org
https://python-pillow.org
https://python-pillow.org
https://python-pillow.org

Working with Images, Audio, and other Assets Chapter 4

[103]

Getting ready
The script for this recipe is 04/07_create_image_thumbnail.py. It uses the Pillow
library, so make sure you have installed Pillow into your environment with pip or other
package management tools:

pip install pillow

How to do it
Here is how proceed with the recipe:

Run the script for the recipe. It will execute the following code:

from os.path import expanduser
import const
from core.file_blob_writer import FileBlobWriter
from core.image_thumbnail_generator import ImageThumbnailGenerator
from util.urls import URLUtility

download the image and get the bytes
img_data = URLUtility(const.ApodEclipseImage()).data

we will store this in our home folder
fw = FileBlobWriter(expanduser("~"))

Create a thumbnail generator and scale the image
tg = ImageThumbnailGenerator(img_data).scale(200, 200)

write the image to a file
fw.write("eclipse_thumbnail.png", tg.bytes)

The result from this will be a file named eclipse_thumbnail.png written into your home
directory.

Working with Images, Audio, and other Assets Chapter 4

[104]

The Thumbnail we Created

Pillow keeps the ratio of width and height consistent.

How it works
The ImageThumbnailGenerator class wraps calls to Pillow to provide a very simple API
for creating a thumbnail for an image:

import io
from PIL import Image

class ImageThumbnailGenerator():
 def __init__(self, bytes):
 # Create a pillow image with the data provided
 self._image = Image.open(io.BytesIO(bytes))

 def scale(self, width, height):
 # call the thumbnail method to create the thumbnail
 self._image.thumbnail((width, height))
 return self

 @property
 def bytes(self):
 # returns the bytes of the pillow image

 # save the image to an in memory objects
 bytesio = io.BytesIO()
 self._image.save(bytesio, format="png")

Working with Images, Audio, and other Assets Chapter 4

[105]

 # set the position on the stream to 0 and return the underlying
data
 bytesio.seek(0)
 return bytesio.getvalue()

The constructor is passed the data for the image and creates a Pillow image object from that
data. The thumbnail is created by calling .thumbnail() with a tuple representing the
desired size of the thumbnail. This resizes the existing image, and Pillow preserves the
aspect ratio. It will determine the longer side of the image and scale that to the value in the
tuple representing that axis. This image is taller than it is wide, so the thumbnail is made
200 pixels high, and the width is scaled accordingly (in this case, to 160 pixels).

Taking a screenshot of a website
A common scraping task is to create a screenshot of a website. In Python we can create a
thumbnail using selenium and webdriver.

Getting ready
The script for this recipe is 04/08_create_website_screenshot.py. Also, make sure
you have selenium in your path and have installed the Python library.

How to do it
Run the script for the recipe. The code in the script is the following:

from core.website_screenshot_generator import WebsiteScreenshotGenerator
from core.file_blob_writer import FileBlobWriter
from os.path import expanduser

get the screenshot
image_bytes = WebsiteScreenshotGenerator().capture("http://espn.go.com",
500, 500).image_bytes

save it to a file
FileBlobWriter(expanduser("~")).write("website_screenshot.png",
image_bytes)

A WebsiteScreenshotGenerator object is created, and then its capture method is called,
passing the URL of the website to capture, and a desired width in pixels for the image.

Working with Images, Audio, and other Assets Chapter 4

[106]

 This creates a Pillow image that can be accessed using the .image property, and the bytes
for the image can be directly accessed using .image_bytes. This script gets those bytes
and writes them to the website_screenshot.png file in you home directory.

You will see the following output from this script:

Connected to pydev debugger (build 162.1967.10)
Capturing website screenshot of: http://espn.go.com
Got a screenshot with the following dimensions: (500, 7416)
Cropped the image to: 500 500
Attempting to write 217054 bytes to website_screenshot.png:
The write was successful

And our resulting image is the following (the image will vary in its content):

The Screenshot of the Web Page

Working with Images, Audio, and other Assets Chapter 4

[107]

How it works
The following is the code of the WebsiteScreenshotGenerator class:

class WebsiteScreenshotGenerator():
 def __init__(self):
 self._screenshot = None

 def capture(self, url, width, height, crop=True):
 print ("Capturing website screenshot of: " + url)
 driver = webdriver.PhantomJS()

 if width and height:
 driver.set_window_size(width, height)

 # go and get the content at the url
 driver.get(url)

 # get the screenshot and make it into a Pillow Image
 self._screenshot =
Image.open(io.BytesIO(driver.get_screenshot_as_png()))
 print("Got a screenshot with the following dimensions:
{0}".format(self._screenshot.size))

 if crop:
 # crop the image
 self._screenshot = self._screenshot.crop((0,0, width, height))
 print("Cropped the image to: {0} {1}".format(width, height))

 return self

 @property
 def image(self):
 return self._screenshot

 @property
 def image_bytes(self):
 bytesio = io.BytesIO()
 self._screenshot.save(bytesio, "PNG")
 bytesio.seek(0)
 return bytesio.getvalue()

Working with Images, Audio, and other Assets Chapter 4

[108]

The call to driver.get_screenshot_as_png() does the heavy lifting. It renders the
page to a PNG format image and returns the bytes of the image. This data is then converted
into a Pillow Image object.

Note in the output that the height of the image returned from webdriver is 7416 pixels, and
not 500 as we specified. The PhantomJS renderer will attempt to handle infinitely scrolling
web sites, and generally won't constrain the screenshot to the height given to the window.

To actually make the screenshot the specified height, set the crop parameter to True (the
default). Then this code will use the crop method of the Pillow Image to set the desired
height. If you run this code with crop=False, then the result would be an image 7416
pixels in height.

Taking a screenshot of a website with an
external service
The previous recipe used selenium, webdriver, and PhantomJS to create the screenshot.
 This obviously requires having those packages installed. If you don't want to install those
and still want to make website screenshots, then you can use one of a number of web
services that can take screenshots. In this recipe, we will use the service at
www.screenshotapi.io to create a screenshot.

http://www.screenshotapi.io

Working with Images, Audio, and other Assets Chapter 4

[109]

Getting ready
First, head over to www.screenshotapi.io and sign up for a free account:

Screenshot of the free account sign up

Working with Images, Audio, and other Assets Chapter 4

[110]

Once your account is created, proceed to get an API key. This will be needed to
authenticate against their service:

The API Key

How to do it
The script for this example is 04/09_screenshotapi.py. Give this a run and it will make
a screenshot. The code is the following, and is very similar to the previous recipe in
structure:

from core.website_screenshot_with_screenshotapi import
WebsiteScreenshotGenerator
from core.file_blob_writer import FileBlobWriter
from os.path import expanduser

get the screenshot
image_bytes = WebsiteScreenshotGenerator("bd17a1e1-db43-4686-9f9b-
b72b67a5535e")\
 .capture("http://espn.go.com", 500, 500).image_bytes

save it to a file
FileBlobWriter(expanduser("~")).write("website_screenshot.png",
image_bytes)

The functional difference to the previous recipe is that we used a different
WebsiteScreenshotGenerator implementation. This one comes from
the core.website_screenshot_with_screenshotapi module.

Working with Images, Audio, and other Assets Chapter 4

[111]

When run, the following will output to the console:

Sending request: http://espn.go.com
{"status":"ready","key":"2e9a40b86c95f50ad3f70613798828a8","apiCreditsCost"
:1}
The image key is: 2e9a40b86c95f50ad3f70613798828a8
Trying to retrieve: https://api.screenshotapi.io/retrieve
Downloading image:
https://screenshotapi.s3.amazonaws.com/captures/2e9a40b86c95f50ad3f70613798
828a8.png
Saving screenshot to:
downloaded_screenshot.png2e9a40b86c95f50ad3f70613798828a8
Cropped the image to: 500 500
Attempting to write 209197 bytes to website_screenshot.png:
The write was successful

And gives us the following image:

The Website Screenshot from screenshotapi.io

Working with Images, Audio, and other Assets Chapter 4

[112]

How it works
The following is the code of this WebsiteScreenshotGenerator:

class WebsiteScreenshotGenerator:
 def __init__(self, apikey):
 self._screenshot = None
 self._apikey = apikey

 def capture(self, url, width, height, crop=True):
 key = self.beginCapture(url, "{0}x{1}".format(width, height),
"true", "firefox", "true")

 print("The image key is: " + key)

 timeout = 30
 tCounter = 0
 tCountIncr = 3

 while True:
 result = self.tryRetrieve(key)
 if result["success"]:
 print("Saving screenshot to: downloaded_screenshot.png" +
key)

 bytes=result["bytes"]
 self._screenshot = Image.open(io.BytesIO(bytes))

 if crop:
 # crop the image
 self._screenshot = self._screenshot.crop((0, 0, width,
height))
 print("Cropped the image to: {0} {1}".format(width,
height))
 break

 tCounter += tCountIncr
 print("Screenshot not yet ready.. waiting for: " +
str(tCountIncr) + " seconds.")
 time.sleep(tCountIncr)
 if tCounter > timeout:
 print("Timed out while downloading: " + key)
 break
 return self

 def beginCapture(self, url, viewport, fullpage, webdriver, javascript):
 serverUrl = "https://api.screenshotapi.io/capture"

Working with Images, Audio, and other Assets Chapter 4

[113]

 print('Sending request: ' + url)
 headers = {'apikey': self._apikey}
 params = {'url': urllib.parse.unquote(url).encode('utf8'),
'viewport': viewport, 'fullpage': fullpage,
 'webdriver': webdriver, 'javascript': javascript}
 result = requests.post(serverUrl, data=params, headers=headers)
 print(result.text)
 json_results = json.loads(result.text)
 return json_results['key']

 def tryRetrieve(self, key):
 url = 'https://api.screenshotapi.io/retrieve'
 headers = {'apikey': self._apikey}
 params = {'key': key}
 print('Trying to retrieve: ' + url)
 result = requests.get(url, params=params, headers=headers)

 json_results = json.loads(result.text)
 if json_results["status"] == "ready":
 print('Downloading image: ' + json_results["imageUrl"])
 image_result = requests.get(json_results["imageUrl"])
 return {'success': True, 'bytes': image_result.content}
 else:
 return {'success': False}

 @property
 def image(self):
 return self._screenshot

 @property
 def image_bytes(self):
 bytesio = io.BytesIO()
 self._screenshot.save(bytesio, "PNG")
 bytesio.seek(0)
 return bytesio.getvalue()

The screenshotapi.io API is a REST API. There are two different endpoints:

https:// api. screenshotapi. io/capture

https:// api. screenshotapi. io/retrieve

https://api.screenshotapi.io/capture
https://api.screenshotapi.io/capture
https://api.screenshotapi.io/capture
https://api.screenshotapi.io/capture
https://api.screenshotapi.io/capture
https://api.screenshotapi.io/capture
https://api.screenshotapi.io/capture
https://api.screenshotapi.io/capture
https://api.screenshotapi.io/capture
https://api.screenshotapi.io/capture
https://api.screenshotapi.io/capture
https://api.screenshotapi.io/retrieve
https://api.screenshotapi.io/retrieve
https://api.screenshotapi.io/retrieve
https://api.screenshotapi.io/retrieve
https://api.screenshotapi.io/retrieve
https://api.screenshotapi.io/retrieve
https://api.screenshotapi.io/retrieve
https://api.screenshotapi.io/retrieve
https://api.screenshotapi.io/retrieve
https://api.screenshotapi.io/retrieve
https://api.screenshotapi.io/retrieve

Working with Images, Audio, and other Assets Chapter 4

[114]

The first endpoint is called and passes the URL and other parameters to their service. Upon
successful execution, this API returns a key that can be used on the other endpoint to
retrieve the image. The screenshot is performed asyncronously, and we need to continually
call the retrieve API using the key returned from the capture endpoint. This endpoint
will return a status value of ready when the screenshot is complete. The code simply loops
until this is set, an error occurs, or the code times out.

When the snapshot is available, the API returns a URL to the image in the retrieve
response. The code then retrieves this image and constructs a Pillow Image object from the
received data.

There's more...
The screenshotapi.io API has many useful parameters. Several of these allow you to
adjust which browser engine to use (Firefox, Chrome, or PhantomJS), device emulation, and
whether or not to execute JavaScript in the web page. For more details on these options and
the API, go to http:/ /docs. screenshotapi. io/rest- api/ .

Performing OCR on an image with
pytesseract
It is possible to extract text from within images using the pytesseract library. In this recipe,
we will use pytesseract to extract text from an image. Tesseract is an open source OCR
library sponsored by Google. The source is available here: https:/ /github. com/
tesseract-ocr/tesseract, and you can also find more information on the library there.
0;pytesseract is a thin python wrapper that provides a pythonic API to the executable.

Getting ready
Make sure you have pytesseract installed:

pip install pytesseract

http://docs.screenshotapi.io/rest-api/
http://docs.screenshotapi.io/rest-api/
http://docs.screenshotapi.io/rest-api/
http://docs.screenshotapi.io/rest-api/
http://docs.screenshotapi.io/rest-api/
http://docs.screenshotapi.io/rest-api/
http://docs.screenshotapi.io/rest-api/
http://docs.screenshotapi.io/rest-api/
http://docs.screenshotapi.io/rest-api/
http://docs.screenshotapi.io/rest-api/
http://docs.screenshotapi.io/rest-api/
http://docs.screenshotapi.io/rest-api/
http://docs.screenshotapi.io/rest-api/
http://docs.screenshotapi.io/rest-api/
https://github.com/tesseract-ocr/tesseract
https://github.com/tesseract-ocr/tesseract
https://github.com/tesseract-ocr/tesseract
https://github.com/tesseract-ocr/tesseract
https://github.com/tesseract-ocr/tesseract
https://github.com/tesseract-ocr/tesseract
https://github.com/tesseract-ocr/tesseract
https://github.com/tesseract-ocr/tesseract
https://github.com/tesseract-ocr/tesseract
https://github.com/tesseract-ocr/tesseract
https://github.com/tesseract-ocr/tesseract
https://github.com/tesseract-ocr/tesseract

Working with Images, Audio, and other Assets Chapter 4

[115]

You will also need to install tesseract-ocr. On Windows, there is an executable installer,
which you can get here:
https://github.com/tesseract-ocr/tesseract/wiki/4.0-with-LSTM#400-alpha

-for-windows. On a Linux system, you can use apt-get:

sudo apt-get tesseract-ocr

The easiest means of installation on a Mac is using brew:

brew install tesseract

The code for this recipe is in 04/10_perform_ocr.py.

How to do it
Execute the script for the recipe. The script is very straightforward:

import pytesseract as pt
from PIL import Image

img = Image.open("textinimage.png")
text = pt.image_to_string(img)
print(text)

The image that will be processed is the following:

The Image we will OCR

And the script gives the following output:

This is an image containing text.
And some numbers 123456789

And also special characters: !@#$%"&*(_+

Working with Images, Audio, and other Assets Chapter 4

[116]

How it works
The image is first loaded as a Pillow Image object. We can directly pass this object to the
pytesseract image_to_string() function. That function runs tesseract on the image and
returns the text that it found.

There's more...
One of the primary purposes for using OCR in a scraping application is in the solving of
text-based captchas. We won't get into captcha solutions as they can be cumbersome and
are also documented in other Packt titles.

Creating a Video Thumbnail
You might want to create a thumbnail for a video that you downloaded from a website.
These could be used on a page that shows a number of video thumbnails and lets you click
on them to watch the specific video.

Getting ready
This sample will use a tool known as ffmpeg. ffmpeg is available at www.ffmpeg.org.
Download and install as per the instructions for your operating system.

How to do it
The example script is in 04/11_create_video_thumbnail.py. It consists of the
following code:

import subprocess
video_file = 'BigBuckBunny.mp4'
thumbnail_file = 'thumbnail.jpg'
subprocess.call(['ffmpeg', '-i', video_file, '-ss', '00:01:03.000', '-
vframes', '1', thumbnail_file, "-y"])

Working with Images, Audio, and other Assets Chapter 4

[117]

When run you will see output from ffmpeg:

 built with Apple LLVM version 8.1.0 (clang-802.0.42)
 configuration: --prefix=/usr/local/Cellar/ffmpeg/3.3.4 --enable-shared --
enable-pthreads --enable-gpl --enable-version3 --enable-hardcoded-tables --
enable-avresample --cc=clang --host-cflags= --host-ldflags= --enable-
libmp3lame --enable-libx264 --enable-libxvid --enable-opencl --enable-
videotoolbox --disable-lzma --enable-vda
 libavutil 55. 58.100 / 55. 58.100
 libavcodec 57. 89.100 / 57. 89.100
 libavformat 57. 71.100 / 57. 71.100
 libavdevice 57. 6.100 / 57. 6.100
 libavfilter 6. 82.100 / 6. 82.100
 libavresample 3. 5. 0 / 3. 5. 0
 libswscale 4. 6.100 / 4. 6.100
 libswresample 2. 7.100 / 2. 7.100
 libpostproc 54. 5.100 / 54. 5.100
Input #0, mov,mp4,m4a,3gp,3g2,mj2, from 'BigBuckBunny.mp4':
 Metadata:
 major_brand : isom
 minor_version : 512
 compatible_brands: mp41
 creation_time : 1970-01-01T00:00:00.000000Z
 title : Big Buck Bunny
 artist : Blender Foundation
 composer : Blender Foundation
 date : 2008
 encoder : Lavf52.14.0
 Duration: 00:09:56.46, start: 0.000000, bitrate: 867 kb/s
 Stream #0:0(und): Video: h264 (Constrained Baseline) (avc1 / 0x31637661),
yuv420p, 320x180 [SAR 1:1 DAR 16:9], 702 kb/s, 24 fps, 24 tbr, 24 tbn, 48
tbc (default)
 Metadata:
 creation_time : 1970-01-01T00:00:00.000000Z
 handler_name : VideoHandler
 Stream #0:1(und): Audio: aac (LC) (mp4a / 0x6134706D), 48000 Hz, stereo,
fltp, 159 kb/s (default)
 Metadata:
 creation_time : 1970-01-01T00:00:00.000000Z
 handler_name : SoundHandler
Stream mapping:
 Stream #0:0 -> #0:0 (h264 (native) -> mjpeg (native))
Press [q] to stop, [?] for help
[swscaler @ 0x7fb50b103000] deprecated pixel format used, make sure you did
set range correctly
Output #0, image2, to 'thumbnail.jpg':
 Metadata:
 major_brand : isom

Working with Images, Audio, and other Assets Chapter 4

[118]

 minor_version : 512
 compatible_brands: mp41
 date : 2008
 title : Big Buck Bunny
 artist : Blender Foundation
 composer : Blender Foundation
 encoder : Lavf57.71.100
 Stream #0:0(und): Video: mjpeg, yuvj420p(pc), 320x180 [SAR 1:1 DAR 16:9],
q=2-31, 200 kb/s, 24 fps, 24 tbn, 24 tbc (default)
 Metadata:
 creation_time : 1970-01-01T00:00:00.000000Z
 handler_name : VideoHandler
 encoder : Lavc57.89.100 mjpeg
 Side data:
 cpb: bitrate max/min/avg: 0/0/200000 buffer size: 0 vbv_delay: -1
frame= 1 fps=0.0 q=4.0 Lsize=N/A time=00:00:00.04 bitrate=N/A speed=0.151x
video:8kB audio:0kB subtitle:0kB other streams:0kB global headers:0kB
muxing overhead: unknown

And the output JPG file will be the following JPG image:

The Thumbnail Created from the Video

How it works
The .ffmpeg file is actually an executable. The code executes the following ffmpeg
command as a sub process:

ffmpeg -i BigBuckBunny.mp4 -ss 00:01:03.000 -frames:v 1 thumbnail.jpg -y

Working with Images, Audio, and other Assets Chapter 4

[119]

The input file is BigBuckBunny.mp4. The -ss option informs where we want to examine
the video. -frames:v states that we want to extract one frame. Finally we tell ffmpeg to
write that frame to thumbnail.jpg (and -y confirms overwriting an existing file).

There's more..
ffmpeg is an incredibly versatile and power tool. A scraper I once created would crawl and
find media (actually, commercials played on websites), and store them in a digital archive.
The scraper would then send a message through a message queue that would be picked up
by a farm of servers whose only job was to run ffmpeg to convert the video into many
different formats, bit rates, and also create thumbnails. From that point, more messages
would be sent to auditor to use a front end application to check the content for compliance
to advertising contract terms. Get to know ffmeg, it is a great tool.

Ripping an MP4 video to an MP3
Now let's examine how to rip the audio from an MP4 video into an MP3 file. The reasons
you may want to do this include wanting to take the audio of the video with you (perhaps
it's a music video), or you are building a scraper / media collection system that also requires
the audio separate from the video.

This task can be accomplished using the moviepy library. moviepy is a neat library that
lets you do all kinds of fun processing on your videos. One of those capabilities is to extract
the audio as an MP3.

Getting ready
Make sure that you have moviepy installed in your environment:

pip install moviepy

We also need to have ffmpeg installed, which we used in the previous recipe, so you should
be good to go with this requirement.

Working with Images, Audio, and other Assets Chapter 4

[120]

How to do it
The code to demonstrate ripping to MP3 is in 04/12_rip_mp3_from_mp4.py. moviepy
makes this process incredibly easy.

The following rips the MP4 downloaded in the previous recipe:1.

import moviepy.editor as mp
clip = mp.VideoFileClip("BigBuckBunny.mp4")
clip.audio.write_audiofile("movie_audio.mp3")

When running this, you will see output, such as the following, as the file is2.
ripped. This only took a few seconds:

[MoviePy] Writing audio in movie_audio.mp3
100%|██████████| 17820/17820 [00:16<00:00, 1081.67it/s]
[MoviePy] Done.

When complete, you will have an MP3 file:3.

ls -l *.mp3
-rw-r--r--@ 1 michaelheydt staff 12931074 Sep 27 21:44 movie_audio.mp3

There's more...
For more info on moviepy, check out the project site
at http://zulko.github.io/moviepy/.

http://zulko.github.io/moviepy/

5
Scraping - Code of Conduct

In this chapter, we will cover:

Scraping legality and scraping politely
Respecting robots.txt
Crawling using the sitemap
Crawling with delays
Using identifiable user agents
Setting the number of concurrent requests per domain
Using auto throttling
Caching responses

Introduction
While you can technically scrape any website, it is important to know whether scraping is
legal or not. We will discuss scraping legal concerns, explore general rules of thumb, and
see best practices to scrape politely and minimize potential damage to the target websites.

Scraping legality and scraping politely
There's no real code in this recipe. It's simply an exposition of some of the concepts related
to the legal issues involved in scraping. I'm not a lawyer, so don't take anything I write here
as legal advice. I'll just point out a few things you need to be concerned with when using a
scraper.

Scraping - Code of Conduct Chapter 5

[122]

Getting ready
The legality of scraping breaks down into two issues:

Ownership of content
Denial of service

Fundamentally, anything posted on the web is open for reading. Every time you load a
page, any page, your browser downloads that content from the web server and visually
presents it to you. So in a sense, you and your browser are already scraping anything you
look at on the web. And by the nature of the web, because someone is posting content
publicly on the web, they are inherently asking you to take that information, but often only
for specific purposes.

The big issue comes with creating automated tools that directly look for and make copies of
things on the internet, with a thing being either data, images, videos, or music - essentially
things that are created by others and represent something that has value to the creator, or
owners. These items may create issues when explicitly making a copy of the item for your
own personal use, and are much more likely to create issues when making a copy and using
that copy for your or others' gain.

Videos, books, music, and images are some of the obvious items of concern over the legality
of making copies either for personal or commercial use. In general, if you scrape content
such as this from open sites, such as those that do not require authorized access or require
payment for access to the content, then you are fine. There are also fair use rules that allow
the reuse of content in certain situations, such as small amounts of document sharing in a
classroom scenario, where knowledge that is published for people to learn is shared and
there is no real economic impact.

Scraping of data from websites is often a much fuzzier problem. By data I mean information
that is provided as a service. A good example, from my experience, is energy prices that are
published to a provider's website. These are often provided as a convenience to customers,
but not for you to scrape freely and use the data for your own commercial analytics service.
That data can often be used without concern if you are just collecting it for a non-public
database or you are only using for your own use, then it is likely fine. But if you use that
database to drive your own website and share that content under your own name, then you
might want to watch out.

The point is, check out the disclaimers / terms of service on the site for what you can do
with that information. It should be documented, but if it is not, then that does not mean that
you are in the clear to go crazy. Always be careful and use common sense, as you are taking
other peoples content for you own purposes.

Scraping - Code of Conduct Chapter 5

[123]

The other concern, which I lump into a concept known as denial of service, relates to the
actual process of collecting information and how often you do it. The process of manually
reading content on a site differs significantly to writing automated bots that relentlessly
badger web servers for content. Taken to an extreme, this access frequency could be so
significant that it denies other legitimate users access to the content, hence denying them
service. It can also increase costs for the hosters of the content by increasing their cost for
bandwidth, or even electrical costs for running the servers.

A well managed website will identify these types of repeated and frequent access and shut
them down using tools such as web application firewalls with rules to block your access
based on IP address, headers, and cookies. In other cases, these may be identified and your
ISP contacted to get you to stop doing these tasks. Remember, you are never truly
anonymous, and smart hosters can figure out who you are, exactly what you accessed, and
when you accessed it.

How to do it
So how do you go about being a good scraper? There are several factors to this that we will
cover in this chapter:

You can start with respecting the robots.txt file
Don't crawl every link you find on a site, just those given in a site map
Throttle your requests, so as do as Han Solo said to Chewbacca: Fly Casual; or,
don't look like you are repeatedly taking content by Crawling Casual
Identify yourself so that you are known to the site

Respecting robots.txt
Many sites want to be crawled. It is inherent in the nature of the beast: Web hosters put
content on their sites to be seen by humans. But it is also important that other computers see
the content. A great example is search engine optimization (SEO). SEO is a process where
you actually design your site to be crawled by spiders such as Google, so you are actually
encouraging scraping. But at the same time, a publisher may only want specific parts of
their site crawled, and to tell crawlers to keep their spiders off of certain portions of the site,
either it is not for sharing, or not important enough to be crawled and wast the web server
resources.

Scraping - Code of Conduct Chapter 5

[124]

The rules of what you are and are not allowed to crawl are usually contained in a file that is
on most sites known as robots.txt. The robots.txt is a human readable but parsable
file, which can be used to identify the places you are allowed, and not allowed, to scrape.

The format of the robots.txt file is unfortunately not standard and anyone can make their
own modifications, but there is very strong consensus on the format. A robots.txt file is
normally found at the root URL of the site. To demonstrate arobots.txt file, the following
code contains excerpts of the one provided by Amazon at http:/ /amazon. com/ robots. txt.
I've edited it down to just show the important concepts:

User-agent: *
Disallow: /exec/obidos/account-access-login
Disallow: /exec/obidos/change-style
Disallow: /exec/obidos/flex-sign-in
Disallow: /exec/obidos/handle-buy-box
Disallow: /exec/obidos/tg/cm/member/
Disallow: /gp/aw/help/id=sss
Disallow: /gp/cart
Disallow: /gp/flex

...

Allow: /wishlist/universal*
Allow: /wishlist/vendor-button*
Allow: /wishlist/get-button*

...

User-agent: Googlebot
Disallow: /rss/people/*/reviews
Disallow: /gp/pdp/rss/*/reviews
Disallow: /gp/cdp/member-reviews/
Disallow: /gp/aw/cr/

...
Allow: /wishlist/universal*
Allow: /wishlist/vendor-button*
Allow: /wishlist/get-button*

It can be seen that there are three main elements in the file:

A user agent declaration for which the following lines, until the end of file or next
user agent statement, are to be applied
A set of URLs that are allowed to be crawled
A set of URLs are prohibited from being crawled

http://amazon.com/robots.txt
http://amazon.com/robots.txt
http://amazon.com/robots.txt
http://amazon.com/robots.txt
http://amazon.com/robots.txt
http://amazon.com/robots.txt
http://amazon.com/robots.txt
http://amazon.com/robots.txt
http://amazon.com/robots.txt
http://amazon.com/robots.txt
http://amazon.com/robots.txt

Scraping - Code of Conduct Chapter 5

[125]

The syntax is actually quite simple, and Python libraries exist to help us implement the
rules contained within robots.txt. We will be using the reppy library to facilitate
honoring robots.txt.

Getting ready
Let's examine how to demonstrate using robots.txt with the reppy library. For more
information on reppy, see its GitHub page at https:/ /github. com/seomoz/ reppy.

reppy can be installed like this:

pip install reppy

However, I found that on my Mac I got an error during installation, and it required the
following command:

CFLAGS=-stdlib=libc++ pip install reppy

General information/searching on Google for a robots.txt Python parsing library will
generally guide you toward using the robotparser library. This library is available for
Python 2.x. For Python 3, it has been moved into the urllib library. However, I have
found that this library reports incorrect values in specific scenarios. I'll point that out in our
example.

How to do it
To run the recipe, execute the code in 05/01_sitemap.py. The script will examine
whether several URLs are allowed to be crawled on amazon.com. When running it, you
will see the following output:

True: http://www.amazon.com/
False: http://www.amazon.com/gp/dmusic/
True: http://www.amazon.com/gp/dmusic/promotions/PrimeMusic/
False: http://www.amazon.com/gp/registry/wishlist/

https://github.com/seomoz/reppy
https://github.com/seomoz/reppy
https://github.com/seomoz/reppy
https://github.com/seomoz/reppy
https://github.com/seomoz/reppy
https://github.com/seomoz/reppy
https://github.com/seomoz/reppy
https://github.com/seomoz/reppy
https://github.com/seomoz/reppy
https://github.com/seomoz/reppy
https://github.com/seomoz/reppy

Scraping - Code of Conduct Chapter 5

[126]

How it works
The script begins by importing reppy.robots:1.

from reppy.robots import Robots

The code then uses Robots to fetch the robots.txt for amazon.com.2.

url = "http://www.amazon.com"
robots = Robots.fetch(url + "/robots.txt")

Using the content that was fetched, the script checks several URLs for3.
accessibility:

paths = [
 '/',
 '/gp/dmusic/',
 '/gp/dmusic/promotions/PrimeMusic/',
 '/gp/registry/wishlist/'
]

for path in paths:
 print("{0}: {1}".format(robots.allowed(path, '*'), url + path))

The results of this code is the following:

True: http://www.amazon.com/
False: http://www.amazon.com/gp/dmusic/
True: http://www.amazon.com/gp/dmusic/promotions/PrimeMusic/
False: http://www.amazon.com/gp/registry/wishlist/

The call to robots.allowed is given the URL and the user agent. It returns True or False
based upon whether the URL is allowed to be crawled. In this case, the results where True,
False, True and False for the specified URLs. Let's examine how.

The / URL has no entry in robots.txt, so it is allowed by default. But in the file under the
* user agent group are the following two lines:

Disallow: /gp/dmusic/
Allow: /gp/dmusic/promotions/PrimeMusic

Scraping - Code of Conduct Chapter 5

[127]

/gp/dmusic is not allowed, so False is returned. /gp/dmusic/promotions/PrimeMusic is
explicitly allowed. If the Allowed: entry was not specified, then the Disallow: /gp/dmusic/
line would also disallow any further paths down from /gp/dmusic/. This essentially says
that any URLs starting with /gp/dmusic/ are disallowed, except that you are allowed to
crawl /gp/dmusic/promotions/PrimeMusic.

Here is where there is a difference when using the robotparser library.
robotparser reports that /gp/dmusic/promotions/PrimeMusic is
disallowed. The library does not handle this type of scenario correctly, as
it stops scanning robots.txt at the first match, and does not continue
further into the file to look for any overrides of this kind.

There's more...
First, for detailed information on robots.txt, see https:/ /developers. google. com/
search/reference/ robots_ txt.

Note that not all sites have a robots.txt, and its absence does not imply
you have free rights to crawl all the content.

Also, a robots.txt file may contain information on where to find the sitemap(s) for the
website. We examine these sitemaps in the next recipe.

Scrapy can also read robots.txt and find sitemaps for you.

Crawling using the sitemap
A sitemap is a protocol that allows a webmaster to inform search engines about URLs on a
website that are available for crawling. A webmaster would want to use this as they
actually want their information to be crawled by a search engine. The webmaster wants to
make that content available for you to find, at least through search engines. But you can also
use this information to your advantage.

https://developers.google.com/search/reference/robots_txt
https://developers.google.com/search/reference/robots_txt
https://developers.google.com/search/reference/robots_txt
https://developers.google.com/search/reference/robots_txt
https://developers.google.com/search/reference/robots_txt
https://developers.google.com/search/reference/robots_txt
https://developers.google.com/search/reference/robots_txt
https://developers.google.com/search/reference/robots_txt
https://developers.google.com/search/reference/robots_txt
https://developers.google.com/search/reference/robots_txt
https://developers.google.com/search/reference/robots_txt
https://developers.google.com/search/reference/robots_txt
https://developers.google.com/search/reference/robots_txt
https://developers.google.com/search/reference/robots_txt
https://developers.google.com/search/reference/robots_txt
https://developers.google.com/search/reference/robots_txt

Scraping - Code of Conduct Chapter 5

[128]

A sitemap lists the URLs on a site, and allows a webmasters to specify additional
information about each URL:

When it was last updated
How often the content changes
How important the URL is in relation to others

Sitemaps are useful on websites where:

Some areas of the website are not available through the browsable interface; that
is, you cannot reach those pages
Ajax, Silverlight, or Flash content is used but not normally processed by search
engines
The site is very large and there is a chance for the web crawlers to overlook some
of the new or recently updated content
When websites have a huge number of pages that are isolated or not well linked
together
When a website has few external links

A sitemap file has the following structure:

<?xml version="1.0" encoding="utf-8"?>
<urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.sitemaps.org/schemas/sitemap/0.9
http://www.sitemaps.org/schemas/sitemap/0.9/sitemap.xsd">
 <url>
 <loc>http://example.com/</loc>
 <lastmod>2006-11-18</lastmod>
 <changefreq>daily</changefreq>
 <priority>0.8</priority>
 </url>
</urlset>

Each URL in the site will be represented with a <url></url> tag, with all those tags
wrapped in an outer <urlset></urlset> tag. There will always a <loc></loc> tag
specifying the URL. The other three tags are optional.

Scraping - Code of Conduct Chapter 5

[129]

Sitemaps files can be incredibly large, so they are often broken into multiple files and then
referenced by a single sitemap index file. This file has the following format:

<?xml version="1.0" encoding="UTF-8"?>
<sitemapindex xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">
 <sitemap>
 <loc>http://www.example.com/sitemap1.xml.gz</loc>
 <lastmod>2014-10-01T18:23:17+00:00</lastmod>
 </sitemap>
</sitemapindex>

In most cases, the sitemap.xml file is found at the root of the domain. As an example, for
nasa.gov it is https://www.nasa.gov/sitemap.xml. But note that this is not a standard,
and different sites may have the map, or maps, at different locations.

A sitemap for a particular website may also be located within the site's robots.txt file. As
an example, the robots.txt file for microsoft.com ends with the following:

Sitemap: https://www.microsoft.com/en-us/explore/msft_sitemap_index.xml
Sitemap: https://www.microsoft.com/learning/sitemap.xml
Sitemap: https://www.microsoft.com/en-us/licensing/sitemap.xml
Sitemap: https://www.microsoft.com/en-us/legal/sitemap.xml
Sitemap: https://www.microsoft.com/filedata/sitemaps/RW5xN8
Sitemap: https://www.microsoft.com/store/collections.xml
Sitemap: https://www.microsoft.com/store/productdetailpages.index.xml

Therefore, to get microsoft.com's sitemaps, we would first need to read the robots.txt file
and extract that information.

Let's now look at parsing a sitemap.

Getting ready
Everything you need is in the 05/02_sitemap.py script, along with the sitemap.py file
in then same folder. The sitemap.py file implements a basic sitemap parser that we will
use in the main script. For the purposes of this example, we will get the sitemap data for
nasa.gov.

https://www.nasa.gov/sitemap.xml

Scraping - Code of Conduct Chapter 5

[130]

How to do it
First execute the 05/02_sitemap.py file. Make sure that the associated sitemap.py file is
in the same directory or your path. When running, after a few seconds you will get output
similar to the following:

Found 35511 urls
{'lastmod': '2017-10-11T18:23Z', 'loc':
'http://www.nasa.gov/centers/marshall/history/this-week-in-nasa-history-apo
llo-7-launches-oct-11-1968.html', 'tag': 'url'}
{'lastmod': '2017-10-11T18:22Z', 'loc':
'http://www.nasa.gov/feature/researchers-develop-new-tool-to-evaluate-iceph
obic-materials', 'tag': 'url'}
{'lastmod': '2017-10-11T17:38Z', 'loc':
'http://www.nasa.gov/centers/ames/entry-systems-vehicle-development/roster.
html', 'tag': 'url'}
{'lastmod': '2017-10-11T17:38Z', 'loc':
'http://www.nasa.gov/centers/ames/entry-systems-vehicle-development/about.h
tml', 'tag': 'url'}
{'lastmod': '2017-10-11T17:22Z', 'loc':
'http://www.nasa.gov/centers/ames/earthscience/programs/MMS/instruments',
'tag': 'url'}
{'lastmod': '2017-10-11T18:15Z', 'loc':
'http://www.nasa.gov/centers/ames/earthscience/programs/MMS/onepager',
'tag': 'url'}
{'lastmod': '2017-10-11T17:10Z', 'loc':
'http://www.nasa.gov/centers/ames/earthscience/programs/MMS', 'tag': 'url'}
{'lastmod': '2017-10-11T17:53Z', 'loc':
'http://www.nasa.gov/feature/goddard/2017/nasa-s-james-webb-space-telescope
-and-the-big-bang-a-short-qa-with-nobel-laureate-dr-john', 'tag': 'url'}
{'lastmod': '2017-10-11T17:38Z', 'loc':
'http://www.nasa.gov/centers/ames/entry-systems-vehicle-development/index.h
tml', 'tag': 'url'}
{'lastmod': '2017-10-11T15:21Z', 'loc':
'http://www.nasa.gov/feature/mark-s-geyer-acting-deputy-associate-administr
ator-for-technical-human-explorations-and-operations', 'tag': 'url'}

The program found 35,511 URLs throughout all of the nasa.gov sitemaps! The code only
printed the first 10 as this would have been quite a bit of output. Using this info to initialize
a crawl of all of these URLs will definitely take quite a long time!

But this is also the beauty of the sitemap. Many, if not all, of these results have a lastmod
tag that tells you when the content at the end of that associated URL was last modified. If
you are implementing a polite crawler of nasa.gov, you would want to keep these URLs
and their timestamp in a database, and then before crawling that URL check to see if the
content has actually changed, and don't crawl if it hasn't.

Scraping - Code of Conduct Chapter 5

[131]

Now let's see how this actually worked.

How it works
The recipe works as follows:

The script starts by calling get_sitemap():1.

map = sitemap.get_sitemap("https://www.nasa.gov/sitemap.xml")

This is given a URL to the sitemap.xml file (or any other file - non-gzipped). The2.
implementation simply gets the content at the URL and returns it:

def get_sitemap(url):
 get_url = requests.get(url)

 if get_url.status_code == 200:
 return get_url.text
 else:
 print ('Unable to fetch sitemap: %s.' % url)

The bulk of the work is done by passing that content to parse_sitemap(). In3.
the case of nasa.gov, this sitemap contains the following content, a sitemap index
file:

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl"
href="//www.nasa.gov/sitemap.xsl"?>
<sitemapindex xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">
<sitemap><loc>http://www.nasa.gov/sitemap-1.xml</loc><lastmod>2017-
10-11T19:30Z</lastmod></sitemap>
<sitemap><loc>http://www.nasa.gov/sitemap-2.xml</loc><lastmod>2017-
10-11T19:30Z</lastmod></sitemap>
<sitemap><loc>http://www.nasa.gov/sitemap-3.xml</loc><lastmod>2017-
10-11T19:30Z</lastmod></sitemap>
<sitemap><loc>http://www.nasa.gov/sitemap-4.xml</loc><lastmod>2017-
10-11T19:30Z</lastmod></sitemap>
</sitemapindex>

process_sitemap() starts with a call to process_sitemap():4.

def parse_sitemap(s):
 sitemap = process_sitemap(s)

Scraping - Code of Conduct Chapter 5

[132]

This function starts by calling process_sitemap(), which returns a list of5.
Python dictionary objects with loc, lastmod, changeFreq, and priority key
value pairs:

def process_sitemap(s):
 soup = BeautifulSoup(s, "lxml")
 result = []

 for loc in soup.findAll('loc'):
 item = {}
 item['loc'] = loc.text
 item['tag'] = loc.parent.name
 if loc.parent.lastmod is not None:
 item['lastmod'] = loc.parent.lastmod.text
 if loc.parent.changeFreq is not None:
 item['changeFreq'] = loc.parent.changeFreq.text
 if loc.parent.priority is not None:
 item['priority'] = loc.parent.priority.text
 result.append(item)

 return result

This is performed by parsing the sitemap using BeautifulSoup and lxml.6.
The loc property is always set, and lastmod, changeFreq and priority are set
if there is an an associated XML tag. The .tag property itself just notes whether
this content was retrieved from a <sitemap> tag or a <url> tag (<loc> tags can
be on either).
parse_sitemap() then continues with processing those results one by one:

while sitemap:
 candidate = sitemap.pop()

 if is_sub_sitemap(candidate):
 sub_sitemap = get_sitemap(candidate['loc'])
 for i in process_sitemap(sub_sitemap):
 sitemap.append(i)
 else:
 result.append(candidate)

Scraping - Code of Conduct Chapter 5

[133]

Each item is examined. If it is from a sitemap index file (the URL ends in .xml and7.
the .tag is the sitemap), then we need to read that .xml file and parse its content,
whose results are placed into our list of items to process. In this example, four
sitemap files are identified, and each of these are read, processed, parsed, and
their URLs added to the result.
To demonstrate some of this content, the following are the first few lines of
sitemap-1.xml:

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl"
href="//www.nasa.gov/sitemap.xsl"?>
<urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">
<url><loc>http://www.nasa.gov/</loc><changefreq>daily</changefreq><
priority>1.0</priority></url>
<url><loc>http://www.nasa.gov/connect/apps.html</loc><lastmod>2017-
08-14T22:15Z</lastmod><changefreq>yearly</changefreq></url>
<url><loc>http://www.nasa.gov/socialmedia</loc><lastmod>2017-09-29T
21:47Z</lastmod><changefreq>monthly</changefreq></url>
<url><loc>http://www.nasa.gov/multimedia/imagegallery/iotd.html</lo
c><lastmod>2017-08-21T22:00Z</lastmod><changefreq>yearly</changefre
q></url>
<url><loc>http://www.nasa.gov/archive/archive/about/career/index.ht
ml</loc><lastmod>2017-08-04T02:31Z</lastmod><changefreq>yearly</cha
ngefreq></url>

Overall, this one sitemap has 11,006 lines, so roughly 11,000 URLs! And in total, as was
reported, there are 35,511 URLs across all three sitemaps.

There's more...
Sitemap files may also be zipped, and end in a .gz extension. This is because it likely
contains many URLs and the compression will save a lot of space. While the code we used
does not process gzip sitemap files, it is easy to add this using functions in the gzip library.

Scrapy also provides a facility for starting crawls using the sitemap. One of these is a
specialization of the Spider class, SitemapSpider. This class has the smarts to parse the
sitemap for you, and then start following the URLs. To demonstrate, the script
05/03_sitemap_scrapy.py will start the crawl at the nasa.gov top-level sitemap index:

import scrapy
from scrapy.crawler import CrawlerProcess

class Spider(scrapy.spiders.SitemapSpider):
 name = 'spider'

Scraping - Code of Conduct Chapter 5

[134]

 sitemap_urls = ['https://www.nasa.gov/sitemap.xml']

 def parse(self, response):
 print("Parsing: ", response)

if __name__ == "__main__":
 process = CrawlerProcess({
 'DOWNLOAD_DELAY': 0,
 'LOG_LEVEL': 'DEBUG'
 })
 process.crawl(Spider)
 process.start()

When running this, there will be a ton of output, as the spider is going to start crawling all
30000+ URLs. Early in the output, you will see output such as the following:

2017-10-11 20:34:27 [scrapy.core.engine] DEBUG: Crawled (200) <GET
https://www.nasa.gov/sitemap.xml> (referer: None)
2017-10-11 20:34:27 [scrapy.downloadermiddlewares.redirect] DEBUG:
Redirecting (301) to <GET https://www.nasa.gov/sitemap-4.xml> from <GET
http://www.nasa.gov/sitemap-4.xml>
2017-10-11 20:34:27 [scrapy.downloadermiddlewares.redirect] DEBUG:
Redirecting (301) to <GET https://www.nasa.gov/sitemap-2.xml> from <GET
http://www.nasa.gov/sitemap-2.xml>
2017-10-11 20:34:27 [scrapy.downloadermiddlewares.redirect] DEBUG:
Redirecting (301) to <GET https://www.nasa.gov/sitemap-3.xml> from <GET
http://www.nasa.gov/sitemap-3.xml>
2017-10-11 20:34:27 [scrapy.downloadermiddlewares.redirect] DEBUG:
Redirecting (301) to <GET https://www.nasa.gov/sitemap-1.xml> from <GET
http://www.nasa.gov/sitemap-1.xml>
2017-10-11 20:34:27 [scrapy.core.engine] DEBUG: Crawled (200) <GET
https://www.nasa.gov/sitemap-4.xml> (referer: None)

Scrapy has found all of the sitemaps and read in their content. Soon afterwards, you will
start to see a number of redirections and notifications that certain pages are being parsed:

2017-10-11 20:34:30 [scrapy.downloadermiddlewares.redirect] DEBUG:
Redirecting (302) to <GET
https://www.nasa.gov/image-feature/jpl/pia21629/neptune-from-saturn/> from
<GET https://www.nasa.gov/image-feature/jpl/pia21629/neptune-from-saturn>
2017-10-11 20:34:30 [scrapy.downloadermiddlewares.redirect] DEBUG:
Redirecting (302) to <GET
https://www.nasa.gov/centers/ames/earthscience/members/nasaearthexchange/Ra
makrishna_Nemani/> from <GET
https://www.nasa.gov/centers/ames/earthscience/members/nasaearthexchang

Scraping - Code of Conduct Chapter 5

[135]

e/Ramakrishna_Nemani>
Parsing: <200
https://www.nasa.gov/exploration/systems/sls/multimedia/sls-hardware-being-
moved-on-kamag-transporter.html>
Parsing: <200 https://www.nasa.gov/exploration/systems/sls/M17-057.html>

Crawling with delays
Fast scraping is considered a bad practice. Continuously pounding a website for pages can
burn up CPU and bandwidth, and a robust site will identify you doing this and block your
IP. And if you are unlucky, you might get a nasty letter for violating terms of service!

The technique of delaying requests in your crawler depends upon how your crawler is
implemented. If you are using Scrapy, then you can set a parameter that informs the
crawler how long to wait between requests. In a simple crawler just sequentially processing
URLs in a list, you can insert a thread.sleep statement.

Things can get more complicated if you have implemented a distributed cluster of crawlers
that spread the load of page requests, such as using a message queue with competing
consumers. That can have a number of different solutions, which are beyond the scope
provided in this context.

Getting ready
We will examine using Scrapy with delays. The sample is in
o5/04_scrape_with_delay.py.

How to do it
Scrapy by default imposes a delay of 0 seconds between page requests. That is, it does not
wait between requests by default.

This can be controlled using the DOWNLOAD_DELAY setting. To demonstrate, let's1.
run the script from the command line:

05 $ scrapy runspider 04_scrape_with_delay.py -s LOG_LEVEL=WARNING
Parsing: <200 https://blog.scrapinghub.com>
Parsing: <200 https://blog.scrapinghub.com/page/2/>
Parsing: <200 https://blog.scrapinghub.com/page/3/>
Parsing: <200 https://blog.scrapinghub.com/page/4/>

Scraping - Code of Conduct Chapter 5

[136]

Parsing: <200 https://blog.scrapinghub.com/page/5/>
Parsing: <200 https://blog.scrapinghub.com/page/6/>
Parsing: <200 https://blog.scrapinghub.com/page/7/>
Parsing: <200 https://blog.scrapinghub.com/page/8/>
Parsing: <200 https://blog.scrapinghub.com/page/9/>
Parsing: <200 https://blog.scrapinghub.com/page/10/>
Parsing: <200 https://blog.scrapinghub.com/page/11/>
Total run time: 0:00:07.006148
Michaels-iMac-2:05 michaelheydt$

This crawls all of the pages at blog.scrapinghub.com, and reports the total time to perform
the crawl. LOG_LEVEL=WARNING removes most logging output and just gives out the output
from print statements. This used the default wait between pages of 0 and resulted in a crawl
roughly seven seconds in length.

The wait between pages can be set using the DOWNLOAD_DELAY setting. The2.
following delays for five seconds between page requests:

05 $ scrapy runspider 04_scrape_with_delay.py -s DOWNLOAD_DELAY=5 -
s LOG_LEVEL=WARNING
Parsing: <200 https://blog.scrapinghub.com>
Parsing: <200 https://blog.scrapinghub.com/page/2/>
Parsing: <200 https://blog.scrapinghub.com/page/3/>
Parsing: <200 https://blog.scrapinghub.com/page/4/>
Parsing: <200 https://blog.scrapinghub.com/page/5/>
Parsing: <200 https://blog.scrapinghub.com/page/6/>
Parsing: <200 https://blog.scrapinghub.com/page/7/>
Parsing: <200 https://blog.scrapinghub.com/page/8/>
Parsing: <200 https://blog.scrapinghub.com/page/9/>
Parsing: <200 https://blog.scrapinghub.com/page/10/>
Parsing: <200 https://blog.scrapinghub.com/page/11/>
Total run time: 0:01:01.099267

By default, this does not actually wait 5 seconds. It will wait DOWNLOAD_DELAY seconds, but
by a random factor between 0.5 and 1.5 times DOWNLOAD_DELAY. Why do this? This makes
your crawler look "less robotic." You can turn this off by using
the RANDOMIZED_DOWNLOAD_DELAY=False setting.

Scraping - Code of Conduct Chapter 5

[137]

How it works
This crawler is implemented as a Scrapy spider. The class definition begins with declaring
the spider name and the start URL:

class Spider(scrapy.Spider):
 name = 'spider'
 start_urls = ['https://blog.scrapinghub.com']

The parse method looks for CSS 'div.prev-post > a', and follows those links.

The scraper also defines a close method, which is called by Scrapy when the crawl is
complete:

def close(spider, reason):
 start_time = spider.crawler.stats.get_value('start_time')
 finish_time = spider.crawler.stats.get_value('finish_time')
 print("Total run time: ", finish_time-start_time)

This accesses the spiders crawler stats object, retrieves the start and finish time for the
spider, and reports the difference to the user.

There's more...
The script also defines code for when executing the script directly with Python:

if __name__ == "__main__":
 process = CrawlerProcess({
 'DOWNLOAD_DELAY': 5,
 'RANDOMIZED_DOWNLOAD_DELAY': False,
 'LOG_LEVEL': 'DEBUG'
 })
 process.crawl(Spider)
 process.start()

This begins by creating a CrawlerProcess object. This object can be passed a dictionary
representing the settings and values to configure the crawl with. This defaults to a five-
second delay, without randomization, and an output level of DEBUG.

Scraping - Code of Conduct Chapter 5

[138]

Using identifiable user agents
What happens if you violate the terms of service and get flagged by the website owner?
How can you help the site owners in contacting you, so that they can nicely ask you to back
off to what they consider a reasonable level of scraping?

What you can do to facilitate this is add info about yourself in the User-Agent header of the
requests. We have seen an example of this in robots.txt files, such as from amazon.com.
In their robots.txt is an explicit statement of a user agent for Google: GoogleBot.

During scraping, you can embed your own information within the User-Agent header of
the HTTP requests. To be polite, you can enter something such as 'MyCompany-MyCrawler
(mybot@mycompany.com)'. The remote server, if tagging you in violation, will definitely be
capturing this information, and if provided like this, it gives them a convenient means of
contacting your instead of just shutting you down.

How to do it
Setting the user agent differs depending upon what tools you use. Ultimately, it is just
ensuring that the User-Agent header is set to a string that you specify. When using a
browser, this is normally set by the browser to identity the browser and the operating
system. But you can put anything you want into this header. When using requests, it is very
straightforward:

url = 'https://api.github.com/some/endpoint'
headers = {'user-agent': 'MyCompany-MyCrawler (mybot@mycompany.com)'}
r = requests.get(url, headers=headers)

When using Scrapy, it is as simple as configuring a setting:

process = CrawlerProcess({
 'USER_AGENT': 'MyCompany-MyCrawler (mybot@mycompany.com)'
})
process.crawl(Spider)
process.start()

How it works
Outgoing HTTP requests have a number of different headers. These ensure that the User-
Agent header is set to this value for all requests made of the target web server.

Scraping - Code of Conduct Chapter 5

[139]

There's more...
While it is possible to set any content you want in the User-Agent header, some web servers
will inspect the User-Agent header and make decisions on how to respond based upon the
content. A common example of this is using the header to identify mobile devices to
provide a mobile presentation.

But some sites also only allow access to content to specific User-Agent values. Setting your
own value could have the effect of having the web server not respond or return other
errors, such as unauthorized. So when you use this technique, make sure to check it will
work.

Setting the number of concurrent requests
per domain
It is generally inefficient to crawl a site one URL at a time. Therefore, there is normally a
number of simultaneous page requests made to the target site at any given time. Normally,
the remote web server can quite effectively handle multiple simultaneous requests, and on
your end you are just waiting for data to come back in for each, so concurrency generally
works well for your scraper.

But this is also a pattern that smart websites can identify and flag as suspicious activity.
And there are practical limits on both your crawler's end and the website. The more
concurrent requests that are made, the more memory, CPU, network connections, and
network bandwidth is required on both sides. These have costs involved, and there are
practical limits on these values too.

So it is generally a good practice to set a limit on the number of requests that you will
simultaneously make to any web server.

How it works
There are number of techniques that can be used to control concurrency levels, and the
process can often be quite complicated with controlling multiple requests and threads of
execution. We won't discuss here how this is done at the thread level and only mention the
construct built into Scrapy.

Scraping - Code of Conduct Chapter 5

[140]

Scrapy is inherently concurrent in its requests. By default, Scrapy will dispatch at most
eight simultaneous requests to any given domain. You can change this using the
CONCURRENT_REQUESTS_PER_DOMAIN setting. The following sets the value to 1 concurrent
request:

process = CrawlerProcess({
 'CONCURRENT_REQUESTS_PER_DOMAIN': 1
})
process.crawl(Spider)
process.start()

Using auto throttling
Fairly closely tied to controlling the maximum level of concurrency is the concept of
throttling. Websites vary in their ability to handle requests, both across multiple websites
and on a single website at different times. During periods of slower response times, it
makes sense to lighten up of the number of requests during that time. This can be a tedious
process to monitor and adjust by hand.

Fortunately for us, scrapy also provides an ability to do this via an extension named
AutoThrottle.

How to do it
AutoThrottle can easily be configured using the AUTOTHROTTLE_TARGET_CONCURRENCY
setting:

process = CrawlerProcess({
 'AUTOTHROTTLE_TARGET_CONCURRENCY': 3
})
process.crawl(Spider)
process.start()

How it works
scrapy tracks the latency on each request. Using that information, it can adjust the delay
between requests to a specific domain so that there are no more than
AUTOTHROTTLE_TARGET_CONCURRENCY requests simultaneously active for that domain,
and that the requests are evenly distributed in any given time span.

Scraping - Code of Conduct Chapter 5

[141]

There's more...
There are lot of options for controlling throttling. You can get an overview of them
at https://doc.scrapy.org/en/latest/topics/autothrottle.html?&_ga=2.54316072.140
4351387.1507758575-507079265.1505263737#settings.

Using an HTTP cache for development
The development of a web crawler is a process of exploration, and one that will iterate
through various refinements to retrieve the requested information. During the development
process, you will often be hitting remote servers, and the same URLs on those servers, over
and over. This is not polite. Fortunately, scrapy also comes to the rescue by providing
caching middleware that is specifically designed to help in this situation.

How to do it
Scrapy will cache requests using a middleware module named HttpCacheMiddleware.
Enabling it is as simple as configuring the HTTPCACHE_ENABLED setting to True:

process = CrawlerProcess({
 'AUTOTHROTTLE_TARGET_CONCURRENCY': 3
})
process.crawl(Spider)
process.start()

How it works
The implementation of HTTP caching is simple, yet complex at the same time. The
HttpCacheMiddleware provided by Scrapy has a plethora of configuration options based
upon your needs. Ultimately, it comes down to storing each URL and its content in a store
along with an associated duration for cache expiration. If a second request is made for a
URL within the expiration interval, then the local copy will be retrieved instead of making a
remote request. If the time has expired, then the contents are fetched from the web server,
stored in the cache, and a new expiration time set.

https://doc.scrapy.org/en/latest/topics/autothrottle.html?&_ga=2.54316072.1404351387.1507758575-507079265.1505263737#settings
https://doc.scrapy.org/en/latest/topics/autothrottle.html?&_ga=2.54316072.1404351387.1507758575-507079265.1505263737#settings
https://doc.scrapy.org/en/latest/topics/autothrottle.html?&_ga=2.54316072.1404351387.1507758575-507079265.1505263737#settings

Scraping - Code of Conduct Chapter 5

[142]

There's more...
There are many options for configuration scrapy caching, including means of storing
content (file system, DBM, or LevelDB), cache policies, and how Http Cache-Control
directives from the server are handled. To explore these options, check out the following
URL: https://doc. scrapy. org/ en/ latest/ topics/ downloader- middleware. html? _ga= 2.
50242598.1404351387. 1507758575- 507079265. 1505263737#dummy- policy- default.

https://doc.scrapy.org/en/latest/topics/downloader-middleware.html?_ga=2.50242598.1404351387.1507758575-507079265.1505263737#dummy-policy-default.
https://doc.scrapy.org/en/latest/topics/downloader-middleware.html?_ga=2.50242598.1404351387.1507758575-507079265.1505263737#dummy-policy-default.
https://doc.scrapy.org/en/latest/topics/downloader-middleware.html?_ga=2.50242598.1404351387.1507758575-507079265.1505263737#dummy-policy-default.
https://doc.scrapy.org/en/latest/topics/downloader-middleware.html?_ga=2.50242598.1404351387.1507758575-507079265.1505263737#dummy-policy-default.
https://doc.scrapy.org/en/latest/topics/downloader-middleware.html?_ga=2.50242598.1404351387.1507758575-507079265.1505263737#dummy-policy-default.
https://doc.scrapy.org/en/latest/topics/downloader-middleware.html?_ga=2.50242598.1404351387.1507758575-507079265.1505263737#dummy-policy-default.
https://doc.scrapy.org/en/latest/topics/downloader-middleware.html?_ga=2.50242598.1404351387.1507758575-507079265.1505263737#dummy-policy-default.
https://doc.scrapy.org/en/latest/topics/downloader-middleware.html?_ga=2.50242598.1404351387.1507758575-507079265.1505263737#dummy-policy-default.
https://doc.scrapy.org/en/latest/topics/downloader-middleware.html?_ga=2.50242598.1404351387.1507758575-507079265.1505263737#dummy-policy-default.
https://doc.scrapy.org/en/latest/topics/downloader-middleware.html?_ga=2.50242598.1404351387.1507758575-507079265.1505263737#dummy-policy-default.
https://doc.scrapy.org/en/latest/topics/downloader-middleware.html?_ga=2.50242598.1404351387.1507758575-507079265.1505263737#dummy-policy-default.
https://doc.scrapy.org/en/latest/topics/downloader-middleware.html?_ga=2.50242598.1404351387.1507758575-507079265.1505263737#dummy-policy-default.
https://doc.scrapy.org/en/latest/topics/downloader-middleware.html?_ga=2.50242598.1404351387.1507758575-507079265.1505263737#dummy-policy-default.
https://doc.scrapy.org/en/latest/topics/downloader-middleware.html?_ga=2.50242598.1404351387.1507758575-507079265.1505263737#dummy-policy-default.
https://doc.scrapy.org/en/latest/topics/downloader-middleware.html?_ga=2.50242598.1404351387.1507758575-507079265.1505263737#dummy-policy-default.
https://doc.scrapy.org/en/latest/topics/downloader-middleware.html?_ga=2.50242598.1404351387.1507758575-507079265.1505263737#dummy-policy-default.
https://doc.scrapy.org/en/latest/topics/downloader-middleware.html?_ga=2.50242598.1404351387.1507758575-507079265.1505263737#dummy-policy-default.
https://doc.scrapy.org/en/latest/topics/downloader-middleware.html?_ga=2.50242598.1404351387.1507758575-507079265.1505263737#dummy-policy-default.
https://doc.scrapy.org/en/latest/topics/downloader-middleware.html?_ga=2.50242598.1404351387.1507758575-507079265.1505263737#dummy-policy-default.
https://doc.scrapy.org/en/latest/topics/downloader-middleware.html?_ga=2.50242598.1404351387.1507758575-507079265.1505263737#dummy-policy-default.
https://doc.scrapy.org/en/latest/topics/downloader-middleware.html?_ga=2.50242598.1404351387.1507758575-507079265.1505263737#dummy-policy-default.
https://doc.scrapy.org/en/latest/topics/downloader-middleware.html?_ga=2.50242598.1404351387.1507758575-507079265.1505263737#dummy-policy-default.
https://doc.scrapy.org/en/latest/topics/downloader-middleware.html?_ga=2.50242598.1404351387.1507758575-507079265.1505263737#dummy-policy-default.
https://doc.scrapy.org/en/latest/topics/downloader-middleware.html?_ga=2.50242598.1404351387.1507758575-507079265.1505263737#dummy-policy-default.
https://doc.scrapy.org/en/latest/topics/downloader-middleware.html?_ga=2.50242598.1404351387.1507758575-507079265.1505263737#dummy-policy-default.
https://doc.scrapy.org/en/latest/topics/downloader-middleware.html?_ga=2.50242598.1404351387.1507758575-507079265.1505263737#dummy-policy-default.
https://doc.scrapy.org/en/latest/topics/downloader-middleware.html?_ga=2.50242598.1404351387.1507758575-507079265.1505263737#dummy-policy-default.
https://doc.scrapy.org/en/latest/topics/downloader-middleware.html?_ga=2.50242598.1404351387.1507758575-507079265.1505263737#dummy-policy-default.
https://doc.scrapy.org/en/latest/topics/downloader-middleware.html?_ga=2.50242598.1404351387.1507758575-507079265.1505263737#dummy-policy-default.
https://doc.scrapy.org/en/latest/topics/downloader-middleware.html?_ga=2.50242598.1404351387.1507758575-507079265.1505263737#dummy-policy-default.
https://doc.scrapy.org/en/latest/topics/downloader-middleware.html?_ga=2.50242598.1404351387.1507758575-507079265.1505263737#dummy-policy-default.
https://doc.scrapy.org/en/latest/topics/downloader-middleware.html?_ga=2.50242598.1404351387.1507758575-507079265.1505263737#dummy-policy-default.
https://doc.scrapy.org/en/latest/topics/downloader-middleware.html?_ga=2.50242598.1404351387.1507758575-507079265.1505263737#dummy-policy-default.
https://doc.scrapy.org/en/latest/topics/downloader-middleware.html?_ga=2.50242598.1404351387.1507758575-507079265.1505263737#dummy-policy-default.
https://doc.scrapy.org/en/latest/topics/downloader-middleware.html?_ga=2.50242598.1404351387.1507758575-507079265.1505263737#dummy-policy-default.
https://doc.scrapy.org/en/latest/topics/downloader-middleware.html?_ga=2.50242598.1404351387.1507758575-507079265.1505263737#dummy-policy-default.
https://doc.scrapy.org/en/latest/topics/downloader-middleware.html?_ga=2.50242598.1404351387.1507758575-507079265.1505263737#dummy-policy-default.
https://doc.scrapy.org/en/latest/topics/downloader-middleware.html?_ga=2.50242598.1404351387.1507758575-507079265.1505263737#dummy-policy-default.
https://doc.scrapy.org/en/latest/topics/downloader-middleware.html?_ga=2.50242598.1404351387.1507758575-507079265.1505263737#dummy-policy-default.
https://doc.scrapy.org/en/latest/topics/downloader-middleware.html?_ga=2.50242598.1404351387.1507758575-507079265.1505263737#dummy-policy-default.
https://doc.scrapy.org/en/latest/topics/downloader-middleware.html?_ga=2.50242598.1404351387.1507758575-507079265.1505263737#dummy-policy-default.

6
Scraping Challenges and

Solutions
In this chapter, we will cover:

Retrying failed page downloads
Supporting page redirects
Waiting for content to be available in Selenium
Limiting crawling to a single domain
Processing infinitely scrolling pages
Controlling the depth of a crawl
Controlling the length of a crawl
Handling paginated websites
Handling forms and form-based authorization
Handling basic authorization
Preventing bans by scraping via proxies
Randomizing user agents
Caching responses

Scraping Challenges and Solutions Chapter 6

[144]

Introduction
Developing a reliable scraper is never easy, there are so many what ifs that we need to take
into account. What if the website goes down? What if the response returns unexpected
data? What if your IP is throttled or blocked? What if authentication is required? While we
can never predict and cover all what ifs, we will discuss some common traps, challenges,
and workarounds.

Note that several of the recipes require access to a website that I have provided as a Docker
container. They require more logic than the simple, static site we used in earlier chapters.
Therefore, you will need to pull and run a Docker container using the following Docker
commands:

docker pull mheydt/pywebscrapecookbook
docker run -p 5001:5001 pywebscrapecookbook

Retrying failed page downloads
Failed page requests can be easily handled by Scrapy using retry middleware. When
installed, Scrapy will attempt retries when receiving the following HTTP error codes:

[500, 502, 503, 504, 408]

The process can be further configured using the following parameters:

RETRY_ENABLED (True/False - default is True)
RETRY_TIMES (# of times to retry on any errors - default is 2)
RETRY_HTTP_CODES (a list of HTTP error codes which should be retried - default
is [500, 502, 503, 504, 408])

How to do it
The 06/01_scrapy_retry.py script demonstrates how to configure Scrapy for retries. The
script file contains the following configuration for Scrapy:

process = CrawlerProcess({
 'LOG_LEVEL': 'DEBUG',
 'DOWNLOADER_MIDDLEWARES':
 {
 "scrapy.downloadermiddlewares.retry.RetryMiddleware": 500

Scraping Challenges and Solutions Chapter 6

[145]

 },
 'RETRY_ENABLED': True,
 'RETRY_TIMES': 3
})
process.crawl(Spider)
process.start()

How it works
Scrapy will pick up the configuration for retries as specified when the spider is run. When
encountering errors, Scrapy will retry up to three times before giving up.

Supporting page redirects
Page redirects in Scrapy are handled using redirect middleware, which is enabled by
default. The process can be further configured using the following parameters:

REDIRECT_ENABLED: (True/False - default is True)
REDIRECT_MAX_TIMES: (The maximum number of redirections to follow for any
single request - default is 20)

How to do it
The script in 06/02_scrapy_redirects.py demonstrates how to configure Scrapy to
handle redirects. This configures a maximum of two redirects for any page. Running the
script reads the NASA sitemap and crawls that content. This contains a large number of
redirects, many of which are redirects from HTTP to HTTPS versions of URLs. There will be
a lot of output, but here are a few lines demonstrating the output:

Parsing: <200 https://www.nasa.gov/content/earth-expeditions-above/>
['http://www.nasa.gov/content/earth-expeditions-above',
'https://www.nasa.gov/content/earth-expeditions-above']

This particular URL was processed after one redirection, from an HTTP to an HTTPS
version of the URL. The list defines all of the URLs that were involved in the redirection.

Scraping Challenges and Solutions Chapter 6

[146]

You will also be able to see where redirection exceeded the specified level (2) in the output
pages. The following is one example:

2017-10-22 17:55:00 [scrapy.downloadermiddlewares.redirect] DEBUG:
Discarding <GET http://www.nasa.gov/topics/journeytomars/news/index.html>:
max redirections reached

How it works
The spider is defined as the following:

class Spider(scrapy.spiders.SitemapSpider):
 name = 'spider'
 sitemap_urls = ['https://www.nasa.gov/sitemap.xml']

 def parse(self, response):
 print("Parsing: ", response)
 print (response.request.meta.get('redirect_urls'))

This is identical to our previous NASA sitemap based crawler, with the addition of one line
printing the redirect_urls. In any call to parse, this metadata will contain all redirects
that occurred to get to this page.

The crawling process is configured with the following code:

process = CrawlerProcess({
 'LOG_LEVEL': 'DEBUG',
 'DOWNLOADER_MIDDLEWARES':
 {
 "scrapy.downloadermiddlewares.redirect.RedirectMiddleware": 500
 },
 'REDIRECT_ENABLED': True,
 'REDIRECT_MAX_TIMES': 2
})

Redirect is enabled by default, but this sets the maximum number of redirects to 2 instead
of the default of 20.

Scraping Challenges and Solutions Chapter 6

[147]

Waiting for content to be available in
Selenium
A common problem with dynamic web pages is that even after the whole page has loaded,
and hence the get() method in Selenium has returned, there still may be content that we
need to access later as there are outstanding Ajax requests from the page that are still
pending completion. An example of this is needing to click a button, but the button not
being enabled until all data has been loaded asyncronously to the page after loading.

Take the following page as an example: http:/ /the- internet. herokuapp. com/ dynamic_
loading/2. This page finishes loading very quickly and presents us with a Start button:

The Start button presented on screen

When pressing the button, we are presented with a progress bar for five seconds:

The status bar while waiting

http://the-internet.herokuapp.com/dynamic_loading/2
http://the-internet.herokuapp.com/dynamic_loading/2
http://the-internet.herokuapp.com/dynamic_loading/2
http://the-internet.herokuapp.com/dynamic_loading/2
http://the-internet.herokuapp.com/dynamic_loading/2
http://the-internet.herokuapp.com/dynamic_loading/2
http://the-internet.herokuapp.com/dynamic_loading/2
http://the-internet.herokuapp.com/dynamic_loading/2
http://the-internet.herokuapp.com/dynamic_loading/2
http://the-internet.herokuapp.com/dynamic_loading/2
http://the-internet.herokuapp.com/dynamic_loading/2
http://the-internet.herokuapp.com/dynamic_loading/2
http://the-internet.herokuapp.com/dynamic_loading/2
http://the-internet.herokuapp.com/dynamic_loading/2
http://the-internet.herokuapp.com/dynamic_loading/2
http://the-internet.herokuapp.com/dynamic_loading/2

Scraping Challenges and Solutions Chapter 6

[148]

And when this is completed, we are presented with Hello World!

After the page is completely rendered

Now suppose we want to scrape this page to get the content that is exposed only after the
button is pressed and after the wait? How do we do this?

How to do it
We can do this using Selenium. We will use two features of Selenium. The first is the ability
to click on page elements. The second is the ability to wait until an element with a specific
ID is available on the page.

First, we get the button and click it. The button's HTML is the following:1.

<div id='start'>
 <button>Start</button>
</div>

When the button is pressed and the load completes, the following HTML is2.
added to the document:

<div id='finish'>
 <h4>Hello World!"</h4>
</div>

Scraping Challenges and Solutions Chapter 6

[149]

We will use the Selenium driver to find the Start button, click it, and then wait3.
until a div with an ID of 'finish' is available. Then we get that element and
return the text in the enclosed <h4> tag.

You can try this by running 06/03_press_and_wait.py. It's output will be the following:

clicked
Hello World!

Now let's see how it worked.

How it works
Let us break down the explanation:

We start by importing the required items from Selenium:1.

from selenium import webdriver
from selenium.webdriver.support import ui

Now we load the driver and the page:2.

driver = webdriver.PhantomJS()
driver.get("http://the-internet.herokuapp.com/dynamic_loading/2")

With the page loaded, we can retrieve the button:3.

button =
driver.find_element_by_xpath("//*/div[@id='start']/button")

And then we can click the button:4.

button.click()
print("clicked")

Scraping Challenges and Solutions Chapter 6

[150]

Next we create a WebDriverWait object:5.

wait = ui.WebDriverWait(driver, 10)

With this object, we can request Selenium's UI wait for certain events. This also6.
sets a maximum wait of 10 seconds. Now using this, we can wait until we meet a
criterion; that an element is identifiable using the following XPath:

wait.until(lambda driver:
driver.find_element_by_xpath("//*/div[@id='finish']"))

When this completes, we can retrieve the h4 element and get its enclosing text:7.

finish_element=driver.find_element_by_xpath("//*/div[@id='finish']/
h4")
print(finish_element.text)

Limiting crawling to a single domain
We can inform Scrapy to limit the crawl to only pages within a specified set of domains.
This is an important task, as links can point to anywhere on the web, and we often want to
control where crawls end up going. Scrapy makes this very easy to do. All that needs to be
done is setting the allowed_domains field of your scraper class.

How to do it
The code for this example is 06/04_allowed_domains.py. You can run the script with
your Python interpreter. It will execute and generate a ton of output, but if you keep an eye
on it, you will see that it only processes pages on nasa.gov.

Scraping Challenges and Solutions Chapter 6

[151]

How it works
The code is the same as previous NASA site crawlers except that we include
allowed_domains=['nasa.gov']:

class Spider(scrapy.spiders.SitemapSpider):
 name = 'spider'
 sitemap_urls = ['https://www.nasa.gov/sitemap.xml']
 allowed_domains=['nasa.gov']

 def parse(self, response):
 print("Parsing: ", response)

The NASA site is fairly consistent with staying within its root domain, but there are
occasional links to other sites such as content on boeing.com. This code will prevent moving
to those external sites.

Processing infinitely scrolling pages
Many websites have replaced "previous/next" pagination buttons with an infinite scrolling
mechanism. These websites use this technique to load more data when the user has reached
the bottom of the page. Because of this, strategies for crawling by following the "next page"
link fall apart.

While this would seem to be a case for using browser automation to simulate the scrolling,
it's actually quite easy to figure out the web pages' Ajax requests and use those for crawling
instead of the actual page. Let's look at spidyquotes.herokuapp.com/scroll as an
example.

Scraping Challenges and Solutions Chapter 6

[152]

Getting ready
Open http://spidyquotes. herokuapp. com/scroll in your browser. This page will load
additional content when you scroll to the bottom of the page:

Screenshot of the quotes to scrape

http://spidyquotes.herokuapp.com/scroll
http://spidyquotes.herokuapp.com/scroll
http://spidyquotes.herokuapp.com/scroll
http://spidyquotes.herokuapp.com/scroll
http://spidyquotes.herokuapp.com/scroll
http://spidyquotes.herokuapp.com/scroll
http://spidyquotes.herokuapp.com/scroll
http://spidyquotes.herokuapp.com/scroll
http://spidyquotes.herokuapp.com/scroll
http://spidyquotes.herokuapp.com/scroll
http://spidyquotes.herokuapp.com/scroll

Scraping Challenges and Solutions Chapter 6

[153]

Once the page is open, go into your developer tools and select the network panel. Then,
scroll to the bottom of the page. You will see new content in the network panel:

Screenshot of the developer tools options

When we click on one of the links, we can see the following JSON:

{
"has_next": true,
"page": 2,
"quotes": [{
"author": {
"goodreads_link": "/author/show/82952.Marilyn_Monroe",
"name": "Marilyn Monroe",
"slug": "Marilyn-Monroe"

Scraping Challenges and Solutions Chapter 6

[154]

},
"tags": ["friends", "heartbreak", "inspirational", "life", "love",
"sisters"],
"text": "\u201cThis life is what you make it...."
}, {
"author": {
"goodreads_link": "/author/show/1077326.J_K_Rowling",
"name": "J.K. Rowling",
"slug": "J-K-Rowling"
},
"tags": ["courage", "friends"],
"text": "\u201cIt takes a great deal of bravery to stand up to our enemies,
but just as much to stand up to our friends.\u201d"
},

This is great because all we need to do is continually generate requests to
/api/quotes?page=x, increasing x until the has_next tag exists in the reply document. If
there are no more pages, then this tag will not be in the document.

How to do it
The 06/05_scrapy_continuous.py file contains a Scrapy agent, which crawls this set of
pages. Run it with your Python interpreter and you will see output similar to the following
(the following is multiple excerpts from the output):

<200 http://spidyquotes.herokuapp.com/api/quotes?page=2>
2017-10-29 16:17:37 [scrapy.core.scraper] DEBUG: Scraped from <200
http://spidyquotes.herokuapp.com/api/quotes?page=2>
{'text': "“This life is what you make it. No matter what, you're going to
mess up sometimes, it's a universal truth. But the good part is you get to
decide how you're going to mess it up. Girls will be your friends - they'll
act like it anyway. But just remember, some come, some go. The ones that
stay with you through everything - they're your true best friends. Don't
let go of them. Also remember, sisters make the best friends in the world.
As for lovers, well, they'll come and go too. And baby, I hate to say it,
most of them - actually pretty much all of them are going to break your
heart, but you can't give up because if you give up, you'll never find your
soulmate. You'll never find that half who makes you whole and that goes for
everything. Just because you fail once, doesn't mean you're gonna fail at
everything. Keep trying, hold on, and always, always, always believe in
yourself, because if you don't, then who will, sweetie? So keep your head
high, keep your chin up, and most importantly, keep smiling, because life's
a beautiful thing and there's so much to smile about.”", 'author': 'Marilyn
Monroe', 'tags': ['friends', 'heartbreak', 'inspirational', 'life', 'love',
'sisters']}

Scraping Challenges and Solutions Chapter 6

[155]

2017-10-29 16:17:37 [scrapy.core.scraper] DEBUG: Scraped from <200
http://spidyquotes.herokuapp.com/api/quotes?page=2>
{'text': '“It takes a great deal of bravery to stand up to our enemies, but
just as much to stand up to our friends.”', 'author': 'J.K. Rowling',
'tags': ['courage', 'friends']}
2017-10-29 16:17:37 [scrapy.core.scraper] DEBUG: Scraped from <200
http://spidyquotes.herokuapp.com/api/quotes?page=2>
{'text': "“If you can't explain it to a six year old, you don't understand
it yourself.”", 'author': 'Albert Einstein', 'tags': ['simplicity',
'understand']}

When this gets to page 10 it will stop as it will see that there is no next page flag set in the
content.

How it works
Let's walk through the spider to see how this works. The spider starts with the following
definition of the start URL:

class Spider(scrapy.Spider):
 name = 'spidyquotes'
 quotes_base_url = 'http://spidyquotes.herokuapp.com/api/quotes'
 start_urls = [quotes_base_url]
 download_delay = 1.5

The parse method then prints the response and also parses the JSON into the data variable:

 def parse(self, response):
 print(response)
 data = json.loads(response.body)

Then it loops through all the items in the quotes element of the JSON objects. For each item,
it yields a new Scrapy item back to the Scrapy engine:

 for item in data.get('quotes', []):
 yield {
 'text': item.get('text'),
 'author': item.get('author', {}).get('name'),
 'tags': item.get('tags'),
 }

Scraping Challenges and Solutions Chapter 6

[156]

It then checks to see if the data JSON variable has a 'has_next' property, and if so it gets
the next page and yields a new request back to Scrapy to parse the next page:

if data['has_next']:
 next_page = data['page'] + 1
 yield scrapy.Request(self.quotes_base_url + "?page=%s" % next_page)

There's more...
It is also possible to process infinite, scrolling pages using Selenium. The following code is
in 06/06_scrape_continuous_twitter.py:

from selenium import webdriver
import time

driver = webdriver.PhantomJS()

print("Starting")
driver.get("https://twitter.com")
scroll_pause_time = 1.5

Get scroll height
last_height = driver.execute_script("return document.body.scrollHeight")
while True:
 print(last_height)
 # Scroll down to bottom
 driver.execute_script("window.scrollTo(0,
document.body.scrollHeight);")

 # Wait to load page
 time.sleep(scroll_pause_time)

 # Calculate new scroll height and compare with last scroll height
 new_height = driver.execute_script("return document.body.scrollHeight")
 print(new_height, last_height)

 if new_height == last_height:
 break
 last_height = new_height

Scraping Challenges and Solutions Chapter 6

[157]

The output would be similar to the following:

Starting
4882
8139 4882
8139
11630 8139
11630
15055 11630
15055
15055 15055
Process finished with exit code 0

This code starts by loading the page from Twitter. The call to .get() will return when the
page is fully loaded. The scrollHeight is then retrieved, and the program scrolls to that
height and waits for a moment for the new content to load. The scrollHeight of the
browser is retrieved again, and if different than last_height, it will loop and continue
processing. If the same as last_height, no new content has loaded and you can then
continue on and retrieve the HTML for the completed page.

Controlling the depth of a crawl
The depth of a crawl can be controlled using Scrapy DepthMiddleware middleware. The
depth middleware limits the number of follows that Scrapy will take from any given link.
This option can be useful for controlling how deep you go into a particular crawl. This is
also used to keep a crawl from going on too long, and useful if you know that the content
you are crawling for is located within a certain number of degrees of separation from the
pages at the start of your crawl.

How to do it
The depth control middleware is installed in the middleware pipeline by default. An
example of depth limiting is contained in the 06/06_limit_depth.py script. This script
crawls the static site provided with the source code on port 8080, and allows you to
configure the depth limit. This site consists of three levels: 0, 1, and 2, and has three pages at
each level. The files are named CrawlDepth<level><pagenumber>.html. Page 1 on each
level links to the other two pages on the same level, as well as to the first page on the next
level. Links to higher levels end at level 2. This structure is great for examining how depth
processing is handled in Scrapy.

Scraping Challenges and Solutions Chapter 6

[158]

How it works
The limiting of depth can be performed by setting the DEPTH_LIMIT parameter:

process = CrawlerProcess({
 'LOG_LEVEL': 'CRITICAL',
 'DEPTH_LIMIT': 2,
 'DEPT_STATS': True
})

A depth limit of 1 means we will only crawl one level, which means it will process the URLs
specified in start_urls, and then any URLs found within those pages. With
DEPTH_LIMIT we get the following output:

Parsing: <200 http://localhost:8080/CrawlDepth0-1.html>
Requesting crawl of: http://localhost:8080/CrawlDepth0-2.html
Requesting crawl of: http://localhost:8080/Depth1/CrawlDepth1-1.html
Parsing: <200 http://localhost:8080/Depth1/CrawlDepth1-1.html>
Requesting crawl of: http://localhost:8080/Depth1/CrawlDepth1-2.html
Requesting crawl of: http://localhost:8080/Depth1/depth1/CrawlDepth1-2.html
Requesting crawl of: http://localhost:8080/Depth1/depth2/CrawlDepth2-1.html
Parsing: <200 http://localhost:8080/CrawlDepth0-2.html>
Requesting crawl of: http://localhost:8080/CrawlDepth0-3.html
<scrapy.statscollectors.MemoryStatsCollector object at 0x109f754e0>
Crawled: ['http://localhost:8080/CrawlDepth0-1.html',
'http://localhost:8080/Depth1/CrawlDepth1-1.html',
'http://localhost:8080/CrawlDepth0-2.html']
Requested: ['http://localhost:8080/CrawlDepth0-2.html',
'http://localhost:8080/Depth1/CrawlDepth1-1.html',
'http://localhost:8080/Depth1/CrawlDepth1-2.html',
'http://localhost:8080/Depth1/depth1/CrawlDepth1-2.html',
'http://localhost:8080/Depth1/depth2/CrawlDepth2-1.html',
'http://localhost:8080/CrawlDepth0-3.html']

The crawl starts with CrawlDepth0-1.html. That page has two lines, one to
CrawlDepth0-2.html and one to CrawlDepth1-1.html. They are then requested to be
parsed. Considering that the start page is at depth 0, those pages are at depth 1, the limit of
our depth. Therefore, we will see those two pages being parsed. However, note that all the
links from those two pages, although requesting to be parsed, are then ignored by Scrapy as
they are at depth 2, which exceeds the specified limit.

Scraping Challenges and Solutions Chapter 6

[159]

Now change the depth limit to 2:

process = CrawlerProcess({
 'LOG_LEVEL': 'CRITICAL',
 'DEPTH_LIMIT': 2,
 'DEPT_STATS': True
})

The output then becomes as follows:

Parsing: <200 http://localhost:8080/CrawlDepth0-1.html>
Requesting crawl of: http://localhost:8080/CrawlDepth0-2.html
Requesting crawl of: http://localhost:8080/Depth1/CrawlDepth1-1.html
Parsing: <200 http://localhost:8080/Depth1/CrawlDepth1-1.html>
Requesting crawl of: http://localhost:8080/Depth1/CrawlDepth1-2.html
Requesting crawl of: http://localhost:8080/Depth1/depth1/CrawlDepth1-2.html
Requesting crawl of: http://localhost:8080/Depth1/depth2/CrawlDepth2-1.html
Parsing: <200 http://localhost:8080/CrawlDepth0-2.html>
Requesting crawl of: http://localhost:8080/CrawlDepth0-3.html
Parsing: <200 http://localhost:8080/Depth1/depth2/CrawlDepth2-1.html>
Parsing: <200 http://localhost:8080/CrawlDepth0-3.html>
Parsing: <200 http://localhost:8080/Depth1/CrawlDepth1-2.html>
Requesting crawl of: http://localhost:8080/Depth1/CrawlDepth1-3.html
<scrapy.statscollectors.MemoryStatsCollector object at 0x10d3d44e0>
Crawled: ['http://localhost:8080/CrawlDepth0-1.html',
'http://localhost:8080/Depth1/CrawlDepth1-1.html',
'http://localhost:8080/CrawlDepth0-2.html',
'http://localhost:8080/Depth1/depth2/CrawlDepth2-1.html',
'http://localhost:8080/CrawlDepth0-3.html',
'http://localhost:8080/Depth1/CrawlDepth1-2.html']
Requested: ['http://localhost:8080/CrawlDepth0-2.html',
'http://localhost:8080/Depth1/CrawlDepth1-1.html',
'http://localhost:8080/Depth1/CrawlDepth1-2.html',
'http://localhost:8080/Depth1/depth1/CrawlDepth1-2.html',
'http://localhost:8080/Depth1/depth2/CrawlDepth2-1.html',
'http://localhost:8080/CrawlDepth0-3.html',
'http://localhost:8080/Depth1/CrawlDepth1-3.html']

Note that the three pages previously ignored with DEPTH_LIMIT set to 1 are now parsed.
And now, links found at that depth, such as for the page CrawlDepth1-3.html, are now
ignored as their depth exceeds 2.

Scraping Challenges and Solutions Chapter 6

[160]

Controlling the length of a crawl
The length of a crawl, in terms of number of pages that can be parsed, can be controlled
with the CLOSESPIDER_PAGECOUNT setting.

How to do it
We will be using the script in 06/07_limit_length.py. The script and scraper are the
same as the NASA sitemap crawler with the addition of the following configuration to limit
the number of pages parsed to 5:

if __name__ == "__main__":
 process = CrawlerProcess({
 'LOG_LEVEL': 'INFO',
 'CLOSESPIDER_PAGECOUNT': 5
 })
 process.crawl(Spider)
 process.start()

When this is run, the following output will be generated (interspersed in the logging
output):

<200
https://www.nasa.gov/exploration/systems/sls/multimedia/sls-hardware-being-
moved-on-kamag-transporter.html>
<200 https://www.nasa.gov/exploration/systems/sls/M17-057.html>
<200
https://www.nasa.gov/press-release/nasa-awards-contract-for-center-protecti
ve-services-for-glenn-research-center/>
<200 https://www.nasa.gov/centers/marshall/news/news/icymi1708025/>
<200
https://www.nasa.gov/content/oracles-completed-suit-case-flight-series-to-a
scension-island/>
<200
https://www.nasa.gov/feature/goddard/2017/asteroid-sample-return-mission-su
ccessfully-adjusts-course/>
<200 https://www.nasa.gov/image-feature/jpl/pia21754/juling-crater/>

How it works
Note that we set the page limit to 5, but the example actually parsed 7 pages. The value
for CLOSESPIDER_PAGECOUNT should be considered a value that Scrapy will do as a
minimum, but which may be exceeded by a small amount.

Scraping Challenges and Solutions Chapter 6

[161]

Handling paginated websites
Pagination breaks large sets of content into a number of pages. Normally, these pages have
a previous/next page link for the user to click. These links can generally be found with
XPath or other means and then followed to get to the next page (or previous). Let's examine
how to traverse across pages with Scrapy. We'll look at a hypothetical example of crawling
the results of an automated internet search. The techniques directly apply to many
commercial sites with search capabilities, and are easily modified for those situations.

Getting ready
We will demonstrate handling pagination with an example that crawls a set of pages from
the website in the provided container. This website models five pages with previous and
next links on each page, along with some embedded data within each page that we will
extract.

The first page of the set can be seen
at http://localhost:5001/pagination/page1.html. The following image shows this
page open, and we are inspecting the Next button:

Inspecting the Next button

Scraping Challenges and Solutions Chapter 6

[162]

There are two parts of the page that are of interest. The first is the link for the Next button.
It's a fairly common practice that this link has a class that identifies the link as being for the
next page. We can use that info to find this link. In this case, we can find it using the
following XPath:

//*/a[@class='next']

The second item of interest is actually retrieving the data we want from the page. On these
pages, this is identified by a <div> tag with a class="data" attribute. These pages only
have one data item, but in this example of crawling the pages resulting in a search, we will
pull multiple items.

Now let's go and actually run a scraper for these pages.

How to do it
There is a script named 06/08_scrapy_pagination.py. Run this script with Python and
there will be a lot of output from Scrapy, most of which will be the standard Scrapy
debugging output. However, within that output you will see that we extracted the data
items on all five pages:

Page 1 Data
Page 2 Data
Page 3 Data
Page 4 Data
Page 5 Data

How it works
The code begins with the definition of CrawlSpider and the start URL:

class PaginatedSearchResultsSpider(CrawlSpider):
 name = "paginationscraper"
 start_urls = [
"http://localhost:5001/pagination/page1.html"
]

Scraping Challenges and Solutions Chapter 6

[163]

Then the rules field is defined, which informs Scrapy how to parse each page to look for
links. This code uses the XPath discussed earlier to find the Next link in the page. Scrapy
will use this rule on every page to find the next page to process, and will queue that request
for processing after the current page. For each page that is found, the callback parameter
informs Scrapy which method to call for processing, in this case parse_result_page:

rules = (
Extract links for next pages
 Rule(LinkExtractor(allow=(),
restrict_xpaths=("//*/a[@class='next']")),
callback='parse_result_page', follow=True),
)

A single list variable named all_items is declared to hold all the items we find:

all_items = []

Then the parse_start_url method is defined. Scrapy will call this to parse the initial URL
in the crawl. The function simply defers that processing to parse_result_page:

def parse_start_url(self, response):
 return self.parse_result_page(response)

The parse_result_page method then uses XPath to find the text inside of the <h1> tag
within the <div class="data"> tag. It then appends that text to the all_items list:

def parse_result_page(self, response):
 data_items = response.xpath("//*/div[@class='data']/h1/text()")
for data_item in data_items:
 self.all_items.append(data_item.root)

Upon the crawl being completed, the closed() method is called and writes out the content
of the all_items field:

def closed(self, reason):
 for i in self.all_items:
 print(i)

The crawler is run using Python as a script using the following:

if __name__ == "__main__":
 process = CrawlerProcess({
 'LOG_LEVEL': 'DEBUG',
 'CLOSESPIDER_PAGECOUNT': 10
 })
 process.crawl(ImdbSearchResultsSpider)
 process.start()

Scraping Challenges and Solutions Chapter 6

[164]

Note the use of the CLOSESPIDER_PAGECOUNT property being set to 10. This exceeds the
number of pages on this site, but in many (or most) cases there will likely be thousands of
pages in a search result. It's a good practice to stop after an appropriate number of pages.
This is good behavior a crawler, as the relevance of items to your search drops dramatically
after a few pages, so crawling beyond the first few pages has greatly diminishing returns
and it's generally best to stop after a few pages.

There's more...
As mentioned at the start of the recipe, this is easy to modify for various automatic searches
on various content sites. This practice can push the limits of acceptable use, so it has been
generalized here. But for more actual examples, visit my blog at: www.smac.io.

Handling forms and forms-based
authorization
We are often required to log into a site before we can crawl its content. This is usually done
through a form where we enter a user name and password, press Enter, and then granted
access to previously hidden content. This type of form authentication is often called cookie
authorization, as when we authorize, the server creates a cookie that it can use to verify that
you have signed in. Scrapy respects these cookies, so all we need to do is somehow
automate the form during our crawl.

Getting ready
We will crawl a page in the containers web site at the following URL:
http://localhost:5001/home/secured. On this page, and links from that page, there
is content we would like to scrape. However, this page is blocked by a login. When opening
the page in a browser, we are presented with the following login form, where we can enter
darkhelmet as the user name and vespa as the password:

Scraping Challenges and Solutions Chapter 6

[165]

Username and password credentials are entered

Upon pressing Enter we are authenticated and taken to our originally desired page.

There's not a great deal of content there, but the message is enough to verify that we have
logged in, and our scraper knows that too.

How to do it
We proceed with the recipe as follows:

If you examine the HTML for the sign-in page, you will have noticed the1.
following form code:

<form action="/Account/Login" method="post"><div>
 <label for="Username">Username</label>
 <input type="text" id="Username" name="Username" value="" />
 <span class="field-validation-valid" data-valmsg-for="Username"
data-valmsg-replace="true"></div>
<div>
 <label for="Password">Password</label>
 <input type="password" id="Password" name="Password" />
 <span class="field-validation-valid" data-valmsg-for="Password"
data-valmsg-replace="true">
 </div>

Scraping Challenges and Solutions Chapter 6

[166]

 <input type="hidden" name="returnUrl" />
<input name="submit" type="submit" value="Login"/>
 <input name="__RequestVerificationToken" type="hidden"
value="CfDJ8CqzjGWzUMJKkKCmxuBIgZf3UkeXZnVKBwRV_Wu4qUkprH8b_2jno5-1
SGSNjFqlFgLie84xI2ZBkhHDzwgUXpz6bbBwER0v_-
fP5iTITiZi2VfyXzLD_beXUp5cgjCS5AtkIayWThJSI36InzBqj2A" /></form>

To get the form processors in Scrapy to work, we will need the IDs of the2.
username and password fields in this form. They are Username and Password
respectively. Now we can create a spider using this information. This spider is in
the script file, 06/09_forms_auth.py. The spider definition starts with the
following:

class Spider(scrapy.Spider):
 name = 'spider'
 start_urls = ['http://localhost:5001/home/secured']
 login_user = 'darkhelmet'
 login_pass = 'vespa'

We define two fields in the class, login_user and login_pass, to hold the3.
username we want to use. The crawl will also start at the specified URL.
The parse method is then changed to examine if the page contains a login form.4.
This is done by using XPath to see if there is an input form of type password and
with an id of Password:

def parse(self, response):
 print("Parsing: ", response)

 count_of_password_fields =
int(float(response.xpath("count(//*/input[@type='password' and
@id='Password'])").extract()[0]))
 if count_of_password_fields > 0:
 print("Got a password page")

If that field is found, we then return a FormRequest to Scrapy, generated using5.
its from_response method:

return scrapy.FormRequest.from_response(
 response,
 formdata={'Username': self.login_user, 'Password':
self.login_pass},
 callback=self.after_login)

Scraping Challenges and Solutions Chapter 6

[167]

This function is passed the response, and then a dictionary specifying the IDs of6.
fields that need data inserted along with those values. A callback is then defined
to be executed after this FormRequest is executed by Scrapy, and to which is
passed the content of the resulting form:

def after_login(self, response):
 if "This page is secured" in str(response.body):
 print("You have logged in ok!")

This callback simply looks for the words This page is secured, which are7.
only returned if the login is successful. When running this successfully, we will
see the following output from our scraper's print statements:

Parsing: <200
http://localhost:5001/account/login?ReturnUrl=%2Fhome%2Fsecured>
Got a password page
You have logged in ok!

How it works
When you create a FormRequest, your are instructing Scrapy to construct a form POST
request on behalf of your process, using the data in the specified dictionary as the form
parameters in the POST request. It constructs this request and sends it to the server. Upon
receipt of the answer in that POST, it calls the specified callback function.

There's more...
This technique is also useful in form entries of many other kinds, not just login forms. This
can be used to automate, then execute, any type of HTML form request, such as making
orders, or those used for executing search operations.

Scraping Challenges and Solutions Chapter 6

[168]

Handling basic authorization
Some websites use a form of authorization known as basic authorization. This was popular
before other means of authorization, such as cookie auth or OAuth. It is also common on
corporate intranets and some web APIs. In basic authorization, a header is added to the
HTTP request. This header, Authorization, is passed the Basic string and then a base64
encoding of the values <username>:<password>. So in the case of darkhelmet, this
header would look as follows:

Authorization: Basic ZGFya2hlbG1ldDp2ZXNwYQ==, with
ZGFya2hlbG1ldDp2ZXNwYQ== being darkhelmet:vespa base 64 encoded.

Note that this is no more secure than sending it in plain-text, (although when performed
over HTTPS it is secure.) However, for the most part, is has been subsumed for more robust
authorization forms, and even cookie authorization allows for more complex features such
as claims:

How to do it
Supporting basic auth in Scrapy is straightforward. To get this to work for a spider and a
given site the spider is crawling, simply define the http_user, http_pass, and name fields
in your scraper. The following demonstrates:

class SomeIntranetSiteSpider(CrawlSpider):
 http_user = 'someuser'
 http_pass = 'somepass'
 name = 'intranet.example.com'
 # .. rest of the spider code omitted ...

How it works
When the spider crawls any pages on the given site specified by the name, it will use the
values of http_user and http_pass to construct the appropriate header.

There's more...
Note, this task is performed by the HttpAuthMiddleware module of Scrapy. More info on
basic authorization is also available
at: https://developer.mozilla.org/en-US/docs/Web/HTTP/Authentication.

https://developer.mozilla.org/en-US/docs/Web/HTTP/Authentication

Scraping Challenges and Solutions Chapter 6

[169]

Preventing bans by scraping via proxies
Sometimes you may get blocked by a site that your are scraping because you are identified
as a scraper, and sometimes this happens because the webmaster sees the scrape requests
coming from a uniform IP, at which point they simply block access to that IP.

To help prevent this problem, it is possible to use proxy randomization middleware within
Scrapy. There exists a library, scrapy-proxies, which implements a proxy randomization
feature.

Getting ready
You can get scrapy-proxies from GitHub at https:/ /github. com/aivarsk/ scrapy-
proxies or by installing it using pip install scrapy_proxies.

How to do it
Use of scrapy-proxies is done by configuration. It starts by
configuring DOWNLOADER_MIDDLEWARES, and making sure they have RetryMiddleware,
RandomProxy, and HttpProxyMiddleware installed. The following would be a typical
configuration:

Retry many times since proxies often fail
RETRY_TIMES = 10
Retry on most error codes since proxies fail for different reasons
RETRY_HTTP_CODES = [500, 503, 504, 400, 403, 404, 408]

DOWNLOADER_MIDDLEWARES = {
 'scrapy.downloadermiddlewares.retry.RetryMiddleware': 90,
 'scrapy_proxies.RandomProxy': 100,
 'scrapy.downloadermiddlewares.httpproxy.HttpProxyMiddleware': 110,
}

The the PROXY_LIST setting is configured to point to a file containing a list of proxies:

PROXY_LIST = '/path/to/proxy/list.txt'

https://github.com/aivarsk/scrapy-proxies
https://github.com/aivarsk/scrapy-proxies
https://github.com/aivarsk/scrapy-proxies
https://github.com/aivarsk/scrapy-proxies
https://github.com/aivarsk/scrapy-proxies
https://github.com/aivarsk/scrapy-proxies
https://github.com/aivarsk/scrapy-proxies
https://github.com/aivarsk/scrapy-proxies
https://github.com/aivarsk/scrapy-proxies
https://github.com/aivarsk/scrapy-proxies
https://github.com/aivarsk/scrapy-proxies
https://github.com/aivarsk/scrapy-proxies

Scraping Challenges and Solutions Chapter 6

[170]

Then, we need to let Scrapy know the PROXY_MODE:

Proxy mode
0 = Every requests have different proxy
1 = Take only one proxy from the list and assign it to every requests
2 = Put a custom proxy to use in the settings
PROXY_MODE = 0

If PROXY_MODE is 2, then you must specify a CUSTOM_PROXY:

CUSTOM_PROXY = "http://host1:port"

How it works
This configuration essentially tells Scrapy that if a request for a page fails with any of the
RETRY_HTTP_CODES, and for up to RETRY_TIMES per URL, then use a proxy from within
the file specified by PROXY_LIST, and by using the pattern defined by PROXY_MODE. With
this, you can have Scrapy fail back to any number of proxy servers to retry the request from
a different IP address and/or port.

Randomizing user agents
Which user agent you use can have an effect on the success of your scraper. Some websites
will flat out refuse to serve content to specific user agents. This can be because the user
agent is identified as a scraper that is banned, or the user agent is for an unsupported
browser (namely Internet Explorer 6).

Another reason for control over the scraper is that content may be rendered differently by
the web server depending on the specified user agent. This is currently common for mobile
sites, but it can also be used for desktops, to do things such as delivering simpler content for
older browsers.

Therefore, it can be useful to set the user agent to other values than the defaults. Scrapy
defaults to a user agent named scrapybot. This can be configured by using the BOT_NAME
parameter. If you use Scrapy projects, Scrapy will set the agent to the name of your project.

For more complicated schemes, there are two popular extensions that can be used: scrapy-
fake-agent and scrapy-random-useragent.

Scraping Challenges and Solutions Chapter 6

[171]

How to do it
We proceed with the recipe as follows:

scrapy-fake-useragent is available on GitHub at https:/ /github. com/1.
alecxe/scrapy- fake- useragent, and scrapy-random-useragent is available
at https:/ /github. com/ cnu/ scrapy- random- useragent. You can include them
using pip install scrapy-fake-agent and/or pip install scrapy-
random-useragent.
scrapy-random-useragent will select a random user agent for each of your2.
requests from a file. It is configured in two settings:

DOWNLOADER_MIDDLEWARES = {
'scrapy.contrib.downloadermiddleware.useragent.UserAgentMiddleware'
: None,
 'random_useragent.RandomUserAgentMiddleware': 400
}

This disables the existing UserAgentMiddleware, and replaces it with the3.
implementation provided in RandomUserAgentMiddleware. Then, you
configure a reference to a file containing a list of user agent names:

USER_AGENT_LIST = "/path/to/useragents.txt"

Once configured, each request will use a random user agent from the file.4.
scrapy-fake-useragent uses a different model. It retrieves user agents from5.
an online database tracking the most common user agents in use. Configuring
Scrapy for its use is done with the following settings:

DOWNLOADER_MIDDLEWARES = {
 'scrapy.downloadermiddlewares.useragent.UserAgentMiddleware':
None,
 'scrapy_fake_useragent.middleware.RandomUserAgentMiddleware':
400,
}

It also has the ability to set the type of user agent used, to values such as mobile6.
or desktop, to force selection of user agents in those two categories. This is
performed using the RANDOM_UA_TYPE setting, which defaults to random.

https://github.com/alecxe/scrapy-fake-useragent
https://github.com/alecxe/scrapy-fake-useragent
https://github.com/alecxe/scrapy-fake-useragent
https://github.com/alecxe/scrapy-fake-useragent
https://github.com/alecxe/scrapy-fake-useragent
https://github.com/alecxe/scrapy-fake-useragent
https://github.com/alecxe/scrapy-fake-useragent
https://github.com/alecxe/scrapy-fake-useragent
https://github.com/alecxe/scrapy-fake-useragent
https://github.com/alecxe/scrapy-fake-useragent
https://github.com/alecxe/scrapy-fake-useragent
https://github.com/alecxe/scrapy-fake-useragent
https://github.com/alecxe/scrapy-fake-useragent
https://github.com/alecxe/scrapy-fake-useragent
https://github.com/cnu/scrapy-random-useragent
https://github.com/cnu/scrapy-random-useragent
https://github.com/cnu/scrapy-random-useragent
https://github.com/cnu/scrapy-random-useragent
https://github.com/cnu/scrapy-random-useragent
https://github.com/cnu/scrapy-random-useragent
https://github.com/cnu/scrapy-random-useragent
https://github.com/cnu/scrapy-random-useragent
https://github.com/cnu/scrapy-random-useragent
https://github.com/cnu/scrapy-random-useragent
https://github.com/cnu/scrapy-random-useragent
https://github.com/cnu/scrapy-random-useragent
https://github.com/cnu/scrapy-random-useragent
https://github.com/cnu/scrapy-random-useragent
https://github.com/cnu/scrapy-random-useragent

Scraping Challenges and Solutions Chapter 6

[172]

If using scrapy-fake-useragent with any proxy middleware, then you may7.
want to randomize per proxy. This can be done by setting
RANDOM_UA_PER_PROXY to True. Also, you will want to set the priority of
RandomUserAgentMiddleware to be greater than scrapy-proxies, so that the
proxy is set before being handled.

Caching responses
Scrapy comes with the ability to cache HTTP requests. This can greatly reduce crawling
times if pages have already been visited. By enabling the cache, Scrapy will store every
request and response.

How to do it
There is a working example in the 06/10_file_cache.py script. In Scrapy, caching
middleware is disabled by default. To enable this cache,
set HTTPCACHE_ENABLED to True and HTTPCACHE_DIR to a directory on the file system
(using a relative path will create the directory in the project's data folder). To demonstrate,
this script runs a crawl of the NASA site, and caches the content. It is configured using the
following:

if __name__ == "__main__":
 process = CrawlerProcess({
 'LOG_LEVEL': 'CRITICAL',
 'CLOSESPIDER_PAGECOUNT': 50,
 'HTTPCACHE_ENABLED': True,
 'HTTPCACHE_DIR': "."
 })
 process.crawl(Spider)
 process.start()

We ask Scrapy to cache using files and to create a sub-directory in the current folder. We
also instruct it to limit the crawl to roughly 500 pages. When running this, the crawl will
take roughly a minute (depending on your internet speed), and there will be roughly 500
lines of output.

Scraping Challenges and Solutions Chapter 6

[173]

After the first execution, you can see that there is now a .scrapy folder in your directory
that contains the cache data. The structure will look like the following:

Running the script again will only take a few seconds, and will produce the same
output/reporting of pages parsed, except that this time the content will come from the cache
instead of HTTP requests.

There's more...
There are many configurations and options for caching in Scrapy. By default, the cache
expiration, specified by HTTPCACHE_EXPIRATION_SECS, is set to 0. 0 means the cache items
never expire, so once written, Scrapy will never request that item via HTTP again.
Realistically, you will want to set this to some value that does expire.

File storage for the cache is only one of the options for caching. Items can also be cached in
DMB and LevelDB by setting the HTTPCACHE_STORAGE setting
to scrapy.extensions.httpcache.DbmCacheStorage or
scrapy.extensions.httpcache.LeveldbCacheStorage, respectively. You could also
write your own code, to store page content in another type of database or cloud storage if
you feel so inclined.

Scraping Challenges and Solutions Chapter 6

[174]

Finally, we come to cache policy. Scrapy comes with two policies built in: Dummy (the
default), and RFC2616. This can be set by changing the HTTPCACHE_POLICY setting
to scrapy.extensions.httpcache.DummyPolicy or
scrapy.extensions.httpcache.RFC2616Policy.

The RFC2616 policy enables HTTP cache-control awareness with operations including the
following:

Do not attempt to store responses/requests with no-store cache-control directive
set
Do not serve responses from cache if no-cache cache-control directive is set even
for fresh responses
Compute freshness lifetime from max-age cache-control directive
Compute freshness lifetime from Expires response header
Compute freshness lifetime from Last-Modified response header (heuristic used
by Firefox)
Compute current age from Age response header
Compute current age from Date header
Revalidate stale responses based on Last-Modified response header
Revalidate stale responses based on ETag response header
Set Date header for any received response missing it
Support max-stale cache-control directive in requests

7
Text Wrangling and Analysis

In this chapter, we will cover:

Installing NLTK
Performing sentence splitting
Performing tokenization
Performing stemming
Performing lemmatization
Identifying and removing stop words
Calculating the frequency distribution of words
Identifying and removing rare words
Identifying and removing short words
Removing punctuation marks
Piecing together n-grams
Scraping a job listing from StackOverflow
Reading and cleaning the description in the job listCreating a word cloud from a
StackOverflow job listing

Text Wrangling and Analysis Chapter 7

[176]

Introduction
Mining the data is often the most interesting part of the job, and text is one of the most
common data sources. We will be using the NLTK toolkit to introduce common natural
language processing concepts and statistical models. Not only do we want to find
quantitative data, such as numbers within data that we have scraped, we also want to be
able to analyze various characteristics of textual information. This analysis of textual
information is often lumped into a category known as natural language processing (NLP).
There exists a library for Python, NLTK, that provides rich capabilities. We will investigate
several of it's capabilities.

Installing NLTK
In this recipe we learn to install NTLK, the natural language toolkit for Python.

How to do it
We proceed with the recipe as follows:

The core of NLTK can be installed using pip:1.

pip install nltk

Some processes, such as those we will use, require an additional download of2.
various data sets that they use to perform various analyses. They can be
downloaded by executing the following:

import nltk
nltk.download()
showing info
https://raw.githubusercontent.com/nltk/nltk_data/gh-pages/index.xml

Text Wrangling and Analysis Chapter 7

[177]

On a Mac, this actually pops up the following window:3.

The NTLK GUI

Select install all and press the Download button. The tools will begin to download a
number of data sets. This can take a while, so grab a coffee or beer and check back every
now and then. When completed, you are ready to progress to the next recipe.

Performing sentence splitting
Many NLP processes require splitting a large amount of text into sentences. This may seem
to be a simple task, but for computers it can be problematic. A simple sentence splitter can
look just for periods (.), or use other algorithms such as predictive classifiers. We will
examine two means of sentence splitting with NLTK.

Text Wrangling and Analysis Chapter 7

[178]

How to do it
We will use a sentence stored in thee 07/sentence1.txt file. It has the following content,
which was pulled from a random job listing on StackOverflow:

We are seeking developers with demonstrable experience in: ASP.NET, C#, SQL Server,
and AngularJS. We are a fast-paced, highly iterative team that has to adapt quickly as our
factory grows. We need people who are comfortable tackling new problems, innovating
solutions, and interacting with every facet of the company on a daily basis. Creative,
motivated, able to take responsibility and support the applications you create. Help us get
rockets out the door faster!

The first example of sentence splitting is in the 07/01_sentence_splitting1.py file.
This uses the built-in sentence splitter in NLTK, which uses an internal boundary detection
algorithm:

First we import the sentence tokenizer from NLTK:1.

from nltk.tokenize import sent_tokenize

Then load the file:2.

with open('sentence1.txt', 'r') as myfile:
 data=myfile.read().replace('\n', '')

Then the sentence is split using sent_tokenize, and the sentences are reported:3.

sentences = sent_tokenize(data)

for s in sentences:
 print(s)

This results in the following output:

We are seeking developers with demonstrable experience in: ASP.NET, C#, SQL
Server, and AngularJS.
We are a fast-paced, highly iterative team that has to adapt quickly as our
factory grows.
We need people who are comfortable tackling new problems, innovating
solutions, and interacting with every facet of the company on a daily
basis.
Creative, motivated, able to take responsibility and support the
applications you create.
Help us get rockets out the door faster!

Text Wrangling and Analysis Chapter 7

[179]

If you want to create your own tokenizer and train it yourself, then you can use4.
the PunktSentenceTokenizer class. sent_tokenize is actually a derived
class of this class that implements sentence splitting in English by default. But
there are 17 different language models you can pick from:

Michaels-iMac-2:~ michaelheydt$ ls ~/nltk_data/tokenizers/punkt
PY3 finnish.pickle portuguese.pickle
README french.pickle slovene.pickle
czech.pickle german.pickle spanish.pickle
danish.pickle greek.pickle swedish.pickle
dutch.pickle italian.pickle turkish.pickle
english.pickle norwegian.pickle
estonian.pickle polish.pickle

You can select the desired language by using the language parameter. As an5.
example, the following would split based on using German:

sentences = sent_tokenize(data, language="german")

There's more...
To learn more about this algorithm, you can read the source paper available at http:/ /
citeseerx.ist.psu. edu/ viewdoc/ download? doi= 10.1. 1.85. 5017 rep=rep1 type= pdf.

Performing tokenization
Tokenization is the process of converting text into tokens. These tokens can be paragraphs,
sentences, and common individual words, and are commonly based at the word level.
NLTK comes with a number of tokenizers that will be demonstrated in this recipe.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.5017&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.5017&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.5017&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.5017&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.5017&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.5017&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.5017&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.5017&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.5017&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.5017&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.5017&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.5017&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.5017&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.5017&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.5017&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.5017&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.5017&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.5017&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.5017&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.5017&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.5017&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.5017&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.5017&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.5017&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.5017&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.5017&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.5017&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.5017&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.5017&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.5017&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.5017&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.5017&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.5017&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.5017&rep=rep1&type=pdf

Text Wrangling and Analysis Chapter 7

[180]

How to do it
The code for this example is in the 07/02_tokenize.py file. This extends the sentence
splitter to demonstrate five different tokenization techniques. The first sentence in the file
will be the only one tokenized so that we keep the amount of output to a reasonable
amount:

The first step is to simply use the built-in Python string .split() method. This1.
results in the following:

print(first_sentence.split())
['We', 'are', 'seeking', 'developers', 'with', 'demonstrable',
'experience', 'in:', 'ASP.NET,', 'C#,', 'SQL', 'Server,', 'and',
'AngularJS.']

The sentence is split on space boundaries. Note that punctuation such as ":" and "," are
included in the resulting tokens.

The following demonstrates using the tokenizers built into NLTK. First, we need2.
to import them:

from nltk.tokenize import word_tokenize, regexp_tokenize,
wordpunct_tokenize, blankline_tokenize

The following demonstrates using the word_tokenizer:

print(word_tokenize(first_sentence))
['We', 'are', 'seeking', 'developers', 'with', 'demonstrable',
'experience', 'in', ':', 'ASP.NET', ',', 'C', '#', ',', 'SQL',
'Server', ',', 'and', 'AngularJS', '.']

The result now has also split the punctuation into their own tokens.

The following uses the regex tokenizer, which allows you to apply any regex expression as
a tokenizer. It uses a '\w+' regex and has the following result:

print(regexp_tokenize(first_sentence, pattern='\w+'))
['We', 'are', 'seeking', 'developers', 'with', 'demonstrable',
'experience', 'in', 'ASP', 'NET', 'C', 'SQL', 'Server', 'and', 'AngularJS']

The wordpunct_tokenizer has the following results:

print(wordpunct_tokenize(first_sentence))
['We', 'are', 'seeking', 'developers', 'with', 'demonstrable',
'experience', 'in', ':', 'ASP', '.', 'NET', ',', 'C', '#,', 'SQL',
'Server', ',', 'and', 'AngularJS', '.']

Text Wrangling and Analysis Chapter 7

[181]

And blankline_tokenize produces the following:

print(blankline_tokenize(first_sentence))
['We are seeking developers with demonstrable experience in: ASP.NET, C#,
SQL Server, and AngularJS.']

As can be seen, this is not quite a simple problem as might be thought. Depending upon
the type of text being tokenized, you can come out with quite different results.

Performing stemming
Stemming is the process of cutting down a token to its stem. Technically, it is the process or
reducing inflected (and sometimes derived) words to their word stem - the base root form
of the word. As an example, the words fishing, fished, and fisher stem from the root word
fish. This helps to reduce the set of words being processed into a smaller base set that is
more easily processed.

The most common algorithm for stemming was created by Martin Porter, and NLTK
provides an implementation of this algorithm in the PorterStemmer. NLTK also provides
an implementation of a Snowball stemmer, which was also created by Porter, and designed
to handle languages other than English. There is one more implementation provided by
NLTK referred to as a Lancaster stemmer. The Lancaster stemmer is considered the most
aggressive stemmer of the three.

How to do it
NLTK provides an implementation of the Porter stemming algorithm in its PorterStemmer
class. An instance of this can easily be created by the following code:

>>> from nltk.stem import PorterStemmer
>>> pst = PorterStemmer()
>>> pst.stem('fishing')
'fish'

Text Wrangling and Analysis Chapter 7

[182]

The script in the 07/03_stemming.py file applies the Porter and Lancaster stemmers to the
first sentence of our input file. The primary section of the code performing the stemming is
the following:

pst = PorterStemmer()
lst = LancasterStemmer()

print("Stemming results:")

for token in regexp_tokenize(sentences[0], pattern='\w+'):
 print(token, pst.stem(token), lst.stem(token))

And this results in the following output:

Stemming results:
We We we
are are ar
seeking seek seek
developers develop develop
with with with
demonstrable demonstr demonst
experience experi expery
in in in
ASP asp asp
NET net net
C C c
SQL sql sql
Server server serv
and and and
AngularJS angularj angulars

Looking at the results, it can be seen that the Lancaster stemmer is indeed more aggressive
than the Porter stemmer, as several of the words have been cut down further with the latter
stemmer.

Performing lemmatization
Lemmatization is a more methodical process of converting words to their base. Where
stemming generally just chops off the ends of words, lemmatization takes into account the
morphological analysis of words, evaluating the context and part of speech to determine the
inflected form, and makes a decision between different rules to determine the root.

Text Wrangling and Analysis Chapter 7

[183]

How to do it
Lemmatization can be utilized in NTLK using the WordNetLemmatizer. This class uses the
WordNet service, an online semantic database to make its decisions. The code in the
07/04_lemmatization.py file extends the previous stemming example to also calculate
the lemmatization of each word. The code of importance is the following:

from nltk.stem import PorterStemmer
from nltk.stem.lancaster import LancasterStemmer
from nltk.stem import WordNetLemmatizer

pst = PorterStemmer()
lst = LancasterStemmer()
wnl = WordNetLemmatizer()

print("Stemming / lemmatization results")
for token in regexp_tokenize(sentences[0], pattern='\w+'):
 print(token, pst.stem(token), lst.stem(token), wnl.lemmatize(token))

And it results in the following output:

Stemming / lemmatization results
We We we We
are are ar are
seeking seek seek seeking
developers develop develop developer
with with with with
demonstrable demonstr demonst demonstrable
experience experi expery experience
in in in in
ASP asp asp ASP
NET net net NET
C C c C
SQL sql sql SQL
Server server serv Server
and and and and
AngularJS angularj angulars AngularJS

There is a small amount of variance in the results using the lemmatization process. The
point of this is that, depending upon your data, one of these may be more suitable for your
needs than the other, so give all of them a try if needed.

Text Wrangling and Analysis Chapter 7

[184]

Determining and removing stop words
Stop words are common words that, in a natural language processing situation, do not
provide much contextual meaning. These words are often the most common words in a
language. These tend to, at least in English, be articles and pronouns, such as I, me, the, is,
which, who, at, among others. Processing of meaning in documents can often be facilitated
by removal of these words before processing, and hence many tools support this ability.
NLTK is one of these, and comes with support for stop word removal for roughly 22
languages.

How to do it
Proceed with the recipe as follows (code is available in 07/06_freq_dist.py):

The following demonstrates stop word removal using NLTK. First, start with1.
importing stop words:

>>> from nltk.corpus import stopwords

Then select the stop words for your desired language. The following selects2.
English:

>>> stoplist = stopwords.words('english')

The English stop list has 153 words:3.

>>> len(stoplist)
153

That's not too many that we can't show them all here:4.

>>> stoplist
 ['i', 'me', 'my', 'myself', 'we', 'our', 'ours', 'ourselves',
'you', 'your', 'yours', 'yourself', 'yourselves', 'he', 'him',
'his', 'himself', 'she', 'her', 'hers', 'herself', 'it', 'its',
'itself', 'they', 'them', 'their', 'theirs', 'themselves', 'what',
'which', 'who', 'whom', 'this', 'that', 'these', 'those', 'am',
'is', 'are', 'was', 'were', 'be', 'been', 'being', 'have', 'has',
'had', 'having', 'do', 'does', 'did', 'doing', 'a', 'an', 'the',
'and', 'but', 'if', 'or', 'because', 'as', 'until', 'while', 'of',
'at', 'by', 'for', 'with', 'about', 'against', 'between', 'into',
'through', 'during', 'before', 'after', 'above', 'below', 'to',
'from', 'up', 'down', 'in', 'out', 'on', 'off', 'over', 'under',
'again', 'further', 'then', 'once', 'here', 'there', 'when',

Text Wrangling and Analysis Chapter 7

[185]

'where', 'why', 'how', 'all', 'any', 'both', 'each', 'few', 'more',
'most', 'other', 'some', 'such', 'no', 'nor', 'not', 'only', 'own',
'same', 'so', 'than', 'too', 'very', 's', 't', 'can', 'will',
'just', 'don', 'should', 'now', 'd', 'll', 'm', 'o', 're', 've',
'y', 'ain', 'aren', 'couldn', 'didn', 'doesn', 'hadn', 'hasn',
'haven', 'isn', 'ma', 'mightn', 'mustn', 'needn', 'shan',
'shouldn', 'wasn', 'weren', 'won', 'wouldn']

The removal of stop words from a list of words can be performed easily with a5.
simple python statement. This is demonstrated in the 07/05_stopwords.py
file. The script starts with the required imports and readies the sentence we want
to process:

from nltk.tokenize import sent_tokenize
from nltk.tokenize import regexp_tokenize
from nltk.corpus import stopwords

with open('sentence1.txt', 'r') as myfile:
 data = myfile.read().replace('\n', '')

sentences = sent_tokenize(data)
first_sentence = sentences[0]

print("Original sentence:")
print(first_sentence)

This yields the following output, which we are familiar with:6.

Original sentence:
We are seeking developers with demonstrable experience in: ASP.NET,
C#, SQL Server, and AngularJS.

Next we tokenize that sentence:7.

tokenized = regexp_tokenize(first_sentence, '\w+')
print("Tokenized:", tokenized)

Text Wrangling and Analysis Chapter 7

[186]

With the following output:8.

Tokenized: ['We', 'are', 'seeking', 'developers', 'with',
'demonstrable', 'experience', 'in', 'ASP', 'NET', 'C', 'SQL',
'Server', 'and', 'AngularJS']

Then we can remove tokens that are in the stop list with the following statements:9.

stoplist = stopwords.words('english')
cleaned = [word for word in tokenized if word not in stoplist]
print("Cleaned:", cleaned)

Using the following output:

Cleaned: ['We', 'seeking', 'developers', 'demonstrable', 'experience',
'ASP', 'NET', 'C', 'SQL', 'Server', 'AngularJS']

There's more...
Stop word removal has its purposes. It is helpful, as we will see in a later recipe where we
create a word cloud (stop words don't give much information in a word cloud), but can also
be detrimental. Many other NLP processes that deduce meaning based upon sentence
structure can be greatly hampered by their removal.

Calculating the frequency distributions of
words
A frequency distribution counts the number of occurrences of distinct data values. These
are of value as we can use them to determine which words or phrases within a document
are most common, and from that infer those that have greater or lesser value.

Frequency distributions can be calculated using several different techniques. We will
examine them using the facilities built into NLTK.

Text Wrangling and Analysis Chapter 7

[187]

How to do it
NLTK provides a class, ntlk.probabilities.FreqDist, that allow us to very easily
calculate the frequency distribution of values in a list. Let's examine using this class (code is
in 07/freq_dist.py):

To create a frequency distribution using NLTK, start by importing the feature1.
from NTLK (and also tokenizers and stop words):

from nltk.probabilities import FreqDist
from nltk.tokenize import regexp_tokenize
from nltk.corpus import stopwords

Then we can use the FreqDist function to create a frequency distribution given a2.
list of words. We will examine this by reading in the contents of wotw.txt (The
War of the Worlds - courtesy of Gutenberg), tokenizing, and removing stop
words:

with open('wotw.txt', 'r') as file:
 data = file.read()
tokens = [word.lower() for word in regexp_tokenize(data, '\w+')]
stoplist = stopwords.words('english')
without_stops = [word for word in tokens if word not in stoplist]

We can then calculate the frequency distribution of the remaining words:3.

freq_dist = FreqDist(without_stops)

freq_dist is a dictionary of words to the counts of those words. The following4.
prints all of them (only a few lines of output shown as there are thousands of
unique words):

print('Number of words: %s' % len(freq_dist))
for key in freq_dist.keys():
 print(key, freq_dist[key])
Number of words: 6613
shall 8
dwell 1
worlds 2
inhabited 1
lords 1
world 26
things 64

Text Wrangling and Analysis Chapter 7

[188]

We can use the frequency distribution to identify the most common words. The5.
following reports the 10 most common words:

print(freq_dist.most_common(10))
[('one', 201), ('upon', 172), ('said', 166), ('martians', 164),
('people', 159), ('came', 151), ('towards', 129), ('saw', 129),
('man', 126), ('time', 122)]

I was hoping that martians was in the top 5. It's number 4.

There's more...
We can also use this to identify the least common words, by slicing the result of
.most_common() with a negative value. As an example, the following finds the 10 least
common words:

print(freq_dist.most_common()[-10:])
[('bitten', 1), ('gibber', 1), ('fiercer', 1), ('paler', 1), ('uglier', 1),
('distortions', 1), ('haunting', 1), ('mockery', 1), ('beds', 1), ('seers',
1)]

There are quite a few words with only one occurrence, so this only gets a subset of those
values. The number of words with only one occurrence can be determined by the following
(truncated due to there being 3,224 words):

dist_1 = [item[0] for item in freq_dist.items() if item[1] == 1]
print(len(dist_1), dist_1)

3224 ['dwell', 'inhabited', 'lords', 'kepler', 'quoted', 'eve', 'mortal',
'scrutinised', 'studied', 'scrutinise', 'multiply', 'complacency', 'globe',
'infusoria', ...

Identifying and removing rare words
We can remove words with low occurences by leveraging the ability to find words with low
frequency counts, that fall outside of a certain deviation of the norm, or just from a list of
words considered to be rare within the given domain. But the technique we will use works
the same for either.

Text Wrangling and Analysis Chapter 7

[189]

How to do it
Rare words can be removed by building a list of those rare words and then removing them
from the set of tokens being processed. The list of rare words can be determined by using
the frequency distribution provided by NTLK. Then you decide what threshold should be
used as a rare word threshold:

The script in the 07/07_rare_words.py file extends that of the frequency1.
distribution recipe to identify words with two or fewer occurrences and then
removes those words from the tokens:

with open('wotw.txt', 'r') as file:
 data = file.read()

tokens = [word.lower() for word in regexp_tokenize(data, '\w+')]
stoplist = stopwords.words('english')
without_stops = [word for word in tokens if word not in stoplist]

freq_dist = FreqDist(without_stops)

print('Number of words: %s' % len(freq_dist))

all words with one occurrence
dist = [item[0] for item in freq_dist.items() if item[1] <= 2]
print(len(dist))
not_rare = [word for word in without_stops if word not in dist]

freq_dist2 = FreqDist(not_rare)
print(len(freq_dist2))

The output results in:

Number of words: 6613
4361
2252

Through these two steps, removing stop words and then words with 2 or fewer
occurrences, we have moved the total number of words from 6,613 to 2,252, which is
roughly one third.

Text Wrangling and Analysis Chapter 7

[190]

Identifying and removing rare words
Removal of short words can also be useful in removing noise words from the content. The
following examines removing words of a certain length or shorter. It also demonstrates the
opposite by selecting the words not considered short (having a length of more than the
specified short word length).

How to do it
We can leverage the frequency distribution from NLTK to efficiently calculate the short
words. We could just scan all of the words in the source, but it is simply more efficient to
scan the lengths of all of the keys in the resulting distribution as it will be a significantly
smaller set of data:

The script in the 07/08_short_words.py file exemplifies this process. It starts1.
by loading the content of wotw.txt and then calculating the word frequency
distribution (after short word removal). Then it identifies the words of thee
characters or less:

short_word_len = 3
short_words = [word for word in freq_dist.keys() if len(word) <=
short_word_len]
print('Distinct # of words of len <= %s: %s' % (short_word_len,
len(short_words)))

This results in:

Distinct # of words of len <= 3: 184

The words not considered short can be found by changing the logic operator in2.
the list comprehension:

unshort_words = [word for word in freq_dist.keys() if len(word) >
short_word_len]
print('Distinct # of word > len %s: %s' % (short_word_len,
len(unshort_words)))

And results in:

Distinct # of word > len 3: 6429

Text Wrangling and Analysis Chapter 7

[191]

Removing punctuation marks
Depending upon the tokenizer used, and the input to those tokenizers, it may be desired to
remove punctuation from the resulting list of tokens. The regexp_tokenize function with
'\w+' as the expression removes punctuation well, but word_tokenize does not do it very
well and will return many punctuation marks as their own tokens.

How to do it
Removing punctuation marks from our tokens is done similarly to the removal of other
words within our tokens by using a list comprehension and only selecting those items that
are not punctuation marks. The script 07/09_remove_punctuation.py file demonstrates
this. Let's walk through the process:

We'll start with the following, which will word_tokenize a string from a job1.
listing:

>>> content = "Strong programming experience in C#, ASP.NET/MVC,
JavaScript/jQuery and SQL Server"
>>> tokenized = word_tokenize(content)
>>> stop_list = stopwords.words('english')
>>> cleaned = [word for word in tokenized if word not in stop_list]
>>> print(cleaned)
['Strong', 'programming', 'experience', 'C', '#', ',',
'ASP.NET/MVC', ',', 'JavaScript/jQuery', 'SQL', 'Server']

Now we can remove the punctuation with the following:2.

>>> punctuation_marks = [':', ',', '.', "``", "''", '(', ')', '-',
'!', '#']
>>> tokens_cleaned = [word for word in cleaned if word not in
punctuation_marks]
>>> print(tokens_cleaned)
['Strong', 'programming', 'experience', 'C', 'ASP.NET/MVC',
'JavaScript/jQuery', 'SQL', 'Server']

Text Wrangling and Analysis Chapter 7

[192]

This process can be encapsulated in a function. The following is in the3.
07/punctuation.py file, and will remove punctuation:

def remove_punctuation(tokens):
 punctuation = [':', ',', '.', "``", "''", '(', ')', '-', '!',
'#']
 return [token for token in tokens if token not in punctuation]

There's more...
Removal of punctuation and symbols can be a difficult problem. While they don't add
value to many searches, punctuation can also be required to be kept as part of a token. Take
the case of searching a job site and trying to find C# programming positions, such as in the
example in this recipe. The tokenization of C# gets split into two tokens:

>>> word_tokenize("C#")
['C', '#']

We actually have two problems here. By having C and # separated, we lost knowledge of
C# being in the source content. And then if we removed the # from the tokens, then we lose
that information as we also cannot reconstruct C# from adjacent tokens.

Piecing together n-grams
Much has been written about NLTK being used to identify n-grams within text. An n-gram
is a set of words, n words in length, that are common within a document/corpus (occurring
2 or more times). A 2-gram is any two words commonly repeated, a 3-gram is a three word
phrase, and so on. We will not look into determining the n-grams in a document. We will
focus on reconstructing known n-grams from our token streams, as we will consider those
n-grams to be more important to a search result than the 2 or 3 independent words found in
any order.

In the domain of parsing job listings, important 2-grams can be things such as Computer
Science, SQL Server, Data Science, and Big Data. Additionally, we could consider C# a 2-
gram of 'C' and '#', and hence why we might not want to use the regex parser or '#' as
punctuation when processing a job listing.

We need to have a strategy to recognize these known combinations from out token stream.
Let's look at how to do this.

Text Wrangling and Analysis Chapter 7

[193]

How to do it
First, this example does not intend to make an exhaustive examination or one that is
optimally performant. Just one that is simple to understand and can be easily applied and
extended to our example of parsing job listings:

We will examine this process using the following sentences from a1.
StackOverflow job listing for SpaceX:

We are seeking developers with demonstrable experience in: ASP.NET, C#, SQL Server,
and AngularJS. We are a fast-paced, highly iterative team that has to adapt quickly as our
factory grows.

There are a number of high value 2-grams in these two sentences (and I think job2.
listings are a great place to look for 2-grams). Just looking at it, I can pick out the
following as being important:

ASP.NET
C#
SQL Server
fast-paced
highly iterative
adapt quickly
demonstrable experience

Now, while these may not be 2-grams in the technical definition, when we parse3.
them, they will all be separated into independent tokens. This can be shown in
the 07/10-ngrams.py file, and in the following example:

from nltk.tokenize import word_tokenize
from nltk.corpus import stopwords

with open('job-snippet.txt', 'r') as file:
 data = file.read()

tokens = [word.lower() for word in word_tokenize(data)]
stoplist = stopwords.words('english')
without_stops = [word for word in tokens if word not in stoplist]
print(without_stops)

Text Wrangling and Analysis Chapter 7

[194]

This produces the following output:

['seeking', 'developers', 'demonstrable', 'experience', ':', 'asp.net',
',', 'c', '#', ',', 'sql', 'server', ',', 'angularjs', '.', 'fast-paced',
',', 'highly', 'iterative', 'team', 'adapt', 'quickly', 'factory', 'grows',
'.']

We want to remove punctuation from this set, but we would like to do it after constructing
some 2-grams, specifically so that we can piece "C#" back into a single token.

The script in the 07/10-reconstruct-2grams.py file demonstrates a function4.
to facilitate this. First, we need to describe the 2-grams that we want to
reconstruct. In this file, they are defined as the following:

grams = {
 "c": [{"#": ""}],
 "sql": [{"server": " "}],
 "fast": [{"paced": "-"}],
 "highly": [{"iterative": " "}],
 "adapt": [{"quickly": " "}],
 "demonstrable": [{"experience", " "}]
}

grams is a dictionary, where the keys specify the "Left" side of the 2-gram. Each key has a
list of dictionaries, where each dictionary key can be the right side of the 2-gram, and the
value is a string that will be placed between the left and right.

With this definition, we are able to see "C" and "#" in our tokens be5.
reconstructed to "C#". "SQL" and "Server" will be "SQL Server".
"fast" and "paced" will result in "faced-paced".
So we just need a function to make this all work. This function is defined in the
07/buildgrams.py file:

def build_2grams(tokens, patterns):
 results = []
 left_token = None
 for i, t in enumerate(tokens):
 if left_token is None:
 left_token = t
 continue

 right_token = t

 if left_token.lower() in patterns:
 right = patterns[left_token.lower()]
 if right_token.lower() in right:

Text Wrangling and Analysis Chapter 7

[195]

 results.append(left_token +
right[right_token.lower()] + right_token)
 left_token = None
 else:
 results.append(left_token)
 else:
 results.append(left_token)
 left_token = right_token

 if left_token is not None:
 results.append(left_token)
 return results

This function, given a set of tokens and a dictionary in the format described6.
earlier, will return a revised set of tokens with any matching 2-grams put into a
single token. The following demonstrates some simple cases of its use:

grams = {
 'c': {'#': ''}
}
print(build_2grams(['C'], grams))
print(build_2grams(['#'], grams))
print(build_2grams(['C', '#'], grams))
print(build_2grams(['c', '#'], grams))

This results in the following output:

['C']
['#']
['C#']
['c#']

Now let's apply it to our input. The complete script for this is in the 07/10-7.
reconstruct-2grams.py file (and adds a few 2-grams):

grams = {
 "c": {"#": ""},
 "sql": {"server": " "},
 "fast": {"paced": "-"},
 "highly": {"iterative": " "},
 "adapt": {"quickly": " "},
 "demonstrable": {"experience": " "},
 "full": {"stack": " "},
 "enterprise": {"software": " "},
 "bachelor": {"s": "'"},
 "computer": {"science": " "},
 "data": {"science": " "},

Text Wrangling and Analysis Chapter 7

[196]

 "current": {"trends": " "},
 "real": {"world": " "},
 "paid": {"relocation": " "},
 "web": {"server": " "},
 "relational": {"database": " "},
 "no": {"sql": " "}
}

with open('job-snippet.txt', 'r') as file:
 data = file.read()

tokens = word_tokenize(data)
stoplist = stopwords.words('english')
without_stops = [word for word in tokens if word not in stoplist]
result = remove_punctuation(build_2grams(without_stops, grams))
print(result)

The results are the following:

['We', 'seeking', 'developers', 'demonstrable experience', 'ASP.NET', 'C#',
'SQL Server', 'AngularJS', 'We', 'fast-paced', 'highly iterative', 'team',
'adapt quickly', 'factory', 'grows']

Perfect!

There's more...
We are providing a dictionary to the build_2grams() function that defines rules for
identifying 2-grams. In this example, we predefined these 2-grams. It is possible to use
NLTK to find 2-grams (and n-grams in general), but with this small sample of one job
positing, it's likely that none will be found.

Scraping a job listing from StackOverflow
Now let's pull a bit of this together to scrape information from a StackOverflow job listing.
We are going to look at just one listing at this time so that we can learn the structure of these
pages and pull information from them. In later chapters, we will look at aggregating results
from multiple listings. Let's now just learn how to do this.

Text Wrangling and Analysis Chapter 7

[197]

Getting ready
StackOverflow actually makes it quite easy to scrape data from their pages. We are going to
use content from a posting
at https://stackoverflow.com/jobs/122517/spacex-enterprise-software-engineer-fu
ll-stack-spacex?so=p&sec=True&pg=1&offset=22&cl=Amazon%3b+. This likely will not be
available at the time you read it, so I've included the HTML of this page in the 07/spacex-
job-listing.html file, which we will use for the examples in this chapter.

StackOverflow job listings pages are very structured. It's probably because they're created
by programmers and for programmers. The page (at the time of writing) looks like the
following:

A StackOverflow job listing

https://stackoverflow.com/jobs/122517/spacex-enterprise-software-engineer-full-stack-spacex?so=p&sec=True&pg=1&offset=22&cl=Amazon%3b+
https://stackoverflow.com/jobs/122517/spacex-enterprise-software-engineer-full-stack-spacex?so=p&sec=True&pg=1&offset=22&cl=Amazon%3b+

Text Wrangling and Analysis Chapter 7

[198]

All of this information is codified within the HTML of the page. You can see for yourself by
analyzing the page content. But what StackOverflow does that is so great is that it puts
much of its page data in an embedded JSON object. This is placed within a <script
type="application/ld+json"> HTML tag, so it's really easy to find. The following
shows a truncated section of this tag (the description is truncated, but all the tags are
shown):

The JSON embedded in a job listing

Text Wrangling and Analysis Chapter 7

[199]

This makes it very easy to get the content, as we can simply retrieve the page, find this tag,
and then convert this JSON into a Python object with the json library. In addition to the
actual job description, is also included much of the "metadata" of the job posting, such as
skills, industries, benefits, and location information. We don't need to search the HTML for
the information - just find this tag and load the JSON. Note that if we want to find items,
such as Job Responsibilities, we still need to parse the description. Also note that the
description contains full HTML, so when parsing that, we would need to still deal with
HTML tags.

How to do it
Let's go and get the job description from this page. We will simply retrieve the contents in
this recipe. We will clean it up in the next recipe.

The full code for this example is in the 07/12_scrape_job_stackoverflow.py file. Let's
walk through it:

First we read the file:1.

with open("spacex-job-listing.txt", "r") as file:
 content = file.read()

Then we load the content into a BeautifulSoup object, and retrieve the <script2.
type="application/ld+json"> tag:

bs = BeautifulSoup(content, "lxml")
script_tag = bs.find("script", {"type": "application/ld+json"})

Now that we have that tag, we can load its contents into a Python dictionary3.
using the json library:

job_listing_contents = json.loads(script_tag.contents[0])
print(job_listing_contents)

Text Wrangling and Analysis Chapter 7

[200]

The output of this looks like the following (this is truncated for brevity):

{'@context': 'http://schema.org', '@type': 'JobPosting', 'title': 'SpaceX
Enterprise Software Engineer, Full Stack', 'skills': ['c#', 'sql',
'javascript', 'asp.net', 'angularjs'], 'description': '<h2>About this
job</h2>\r\n<p>Location options: Paid
relocation
Job type:
Permanent
Experience level: Mid-
Level, Senior
Role: Full Stack
Developer
Industry: Aerospace,
Information Technology, Web Development
Company
size: 1k-5k people
Company type:
Private
</p>

<h2>Technologies</h2>
<p>c#, sql, javascript, asp.net, angularjs</p>

<h2>Job
description</h2> <p>Full Stack Enterprise Software
Engineer</p>\r\n<p>The EIS (Enterprise Information Systems) team
writes the software that builds rockets and powers SpaceX. We are
responsible for

This is great because we can now do some simple tasks with this without4.
involving HTML parsing. As an example, we can retrieve the skills required for
the job with just the following code:

print the skills
for skill in job_listing_contents["skills"]:
 print(skill)

It produces the following output:

c#
sql
javascript
asp.net
angularjs

There's more...
The description is still stored in HTML within the description property of this JSON object.
We will examine the parsing of that data in the next recipe.

Text Wrangling and Analysis Chapter 7

[201]

Reading and cleaning the description in the
job listing
The description of the job listing is still in HTML. We will want to extract the valuable
content out of this data, so we will need to parse this HTML and perform tokenization, stop
word removal, common word removal, do some tech 2-gram processing, and in general all
of those different processes. Let's look at doing these.

Getting ready
I have collapsed the code for determining tech-based 2-grams into the 07/tech2grams.py
file. We will use the tech_2grams function within the file.

How to do it...
The code for this example is in the 07/13_clean_jd.py file. It continues on where the
07/12_scrape_job_stackoverflow.py file ends:

We start by creating a BeautifulSoup object from the description key of the1.
description we loaded. We will also print this to see what it looks like:

desc_bs = BeautifulSoup(job_listing_contents["description"],
"lxml")
print(desc_bs)

<p>Location options: Paid
relocation
Job type:
Permanent
Experience level:
Mid-Level, Senior
Role:
Full Stack Developer
Industry:
Aerospace, Information Technology, Web
Development
Company size: 1k-5k
people
Company type:
Private
</p>

<h2>Technologies<
/h2> <p>c#, sql, javascript, asp.net, angularjs</p>

<h2>Job description</h2> <p>Full Stack Enterprise
Software Engineer</p>
<p>The EIS (Enterprise Information Systems) team writes the
software that builds rockets and powers SpaceX. We are responsible
for all of the software on the factory floor, the warehouses, the
financial systems, the restaurant, and even the public home page.

Text Wrangling and Analysis Chapter 7

[202]

Elon has called us the "nervous system" of SpaceX because we
connect all of the other teams at SpaceX to ensure that the entire
rocket building process runs smoothly.</p>
<p>Responsibilities:</p>

We are seeking developers with demonstrable experience in:
ASP.NET, C#, SQL Server, and AngularJS. We are a fast-paced, highly
iterative team that has to adapt quickly as our factory grows. We
need people who are comfortable tackling new problems, innovating
solutions, and interacting with every facet of the company on a
daily basis. Creative, motivated, able to take responsibility and
support the applications you create. Help us get rockets out the
door faster!

<p>Basic Qualifications:</p>

Bachelor's degree in computer science, engineering, physics,
mathematics, or similar technical discipline.
3+ years of experience developing across a full-stack: Web
server, relational database, and client-side
(HTML/Javascript/CSS).

<p>Preferred Skills and Experience:</p>

Database - Understanding of SQL. Ability to write performant
SQL. Ability to diagnose queries, and work with DBAs.
Server - Knowledge of how web servers operate on a low-level.
Web protocols. Designing APIs. How to scale web sites. Increase
performance and diagnose problems.
UI - Demonstrated ability creating rich web interfaces using a
modern client side framework. Good judgment in UX/UI design.
Understands the finer points of HTML, CSS, and Javascript - know
which tools to use when and why.
System architecture - Knowledge of how to structure a database,
web site, and rich client side application from scratch.
Quality - Demonstrated usage of different testing patterns,
continuous integration processes, build deployment systems.
Continuous monitoring.
Current - Up to date with current trends, patterns, goings on
in the world of web development as it changes rapidly. Strong
knowledge of computer science fundamentals and applying them in the
real-world.

</body></html>

Text Wrangling and Analysis Chapter 7

[203]

We want to go through this and remove all of the HTML and only be left with the2.
text of the description. That will be what we then tokenize. Fortunately,
throwing out all the HTML tags is easy with BeautifulSoup:

just_text = desc_bs.find_all(text=True)
print(just_text)

['About this job', '\n', 'Location options: ', 'Paid relocation',
'Job type: ', 'Permanent', 'Experience level: ', 'Mid-Level,
Senior', 'Role: ', 'Full Stack Developer', 'Industry: ',
'Aerospace, Information Technology, Web Development', 'Company
size: ', '1k-5k people', 'Company type: ', 'Private',
'Technologies', ' ', 'c#, sql, javascript, asp.net, angularjs', '
', 'Job description', ' ', 'Full Stack Enterprise\xa0Software
Engineer', '\n', 'The EIS (Enterprise Information Systems) team
writes the software that builds rockets and powers SpaceX. We are
responsible for all of the software on the factory floor, the
warehouses, the financial systems, the restaurant, and even the
public home page. Elon has called us the "nervous system" of SpaceX
because we connect all of the other teams at SpaceX to ensure that
the entire rocket building process runs smoothly.', '\n',
'Responsibilities:', '\n', '\n', 'We are seeking developers with
demonstrable experience in: ASP.NET, C#, SQL Server, and AngularJS.
We are a fast-paced, highly iterative team that has to adapt
quickly as our factory grows. We need people who are comfortable
tackling new problems, innovating solutions, and interacting with
every facet of the company on a daily basis. Creative, motivated,
able to take responsibility and support the applications you
create. Help us get rockets out the door faster!', '\n', '\n',
'Basic Qualifications:', '\n', '\n', "Bachelor's degree in computer
science, engineering, physics, mathematics, or similar technical
discipline.", '\n', '3+ years of experience developing across a
full-stack:\xa0 Web server, relational database, and client-side
(HTML/Javascript/CSS).', '\n', '\n', 'Preferred Skills and
Experience:', '\n', '\n', 'Database - Understanding of SQL. Ability
to write performant SQL. Ability to diagnose queries, and work with
DBAs.', '\n', 'Server - Knowledge of how web servers operate on a
low-level. Web protocols. Designing APIs. How to scale web sites.
Increase performance and diagnose problems.', '\n', 'UI -
Demonstrated ability creating rich web interfaces using a modern
client side framework. Good judgment in UX/UI design.\xa0
Understands the finer points of HTML, CSS, and Javascript - know
which tools to use when and why.', '\n', 'System architecture -
Knowledge of how to structure a database, web site, and rich client
side application from scratch.', '\n', 'Quality - Demonstrated
usage of different testing patterns, continuous integration
processes, build deployment systems. Continuous monitoring.', '\n',

Text Wrangling and Analysis Chapter 7

[204]

'Current - Up to date with current trends, patterns, goings on in
the world of web development as it changes rapidly. Strong
knowledge of computer science fundamentals and applying them in the
real-world.', '\n', ' ']

Just super! We now have this, and it is already broken down into what can be considered
sentences!

Let's join these all together, word tokenize them, get rid of stop words, and also3.
apply common tech job 2-grams:

joined = ' '.join(just_text)
tokens = word_tokenize(joined)

stop_list = stopwords.words('english')
with_no_stops = [word for word in tokens if word not in stop_list]
cleaned = remove_punctuation(two_grammed)
print(cleaned)

And this has the following output:

['job', 'Location', 'options', 'Paid relocation', 'Job', 'type',
'Permanent', 'Experience', 'level', 'Mid-Level', 'Senior', 'Role', 'Full-
Stack', 'Developer', 'Industry', 'Aerospace', 'Information Technology',
'Web Development', 'Company', 'size', '1k-5k', 'people', 'Company', 'type',
'Private', 'Technologies', 'c#', 'sql', 'javascript', 'asp.net',
'angularjs', 'Job', 'description', 'Full-Stack', 'Enterprise Software',
'Engineer', 'EIS', 'Enterprise', 'Information', 'Systems', 'team',
'writes', 'software', 'builds', 'rockets', 'powers', 'SpaceX',
'responsible', 'software', 'factory', 'floor', 'warehouses', 'financial',
'systems', 'restaurant', 'even', 'public', 'home', 'page', 'Elon',
'called', 'us', 'nervous', 'system', 'SpaceX', 'connect', 'teams',
'SpaceX', 'ensure', 'entire', 'rocket', 'building', 'process', 'runs',
'smoothly', 'Responsibilities', 'seeking', 'developers', 'demonstrable
experience', 'ASP.NET', 'C#', 'SQL Server', 'AngularJS', 'fast-paced',
'highly iterative', 'team', 'adapt quickly', 'factory', 'grows', 'need',
'people', 'comfortable', 'tackling', 'new', 'problems', 'innovating',
'solutions', 'interacting', 'every', 'facet', 'company', 'daily', 'basis',
'Creative', 'motivated', 'able', 'take', 'responsibility', 'support',
'applications', 'create', 'Help', 'us', 'get', 'rockets', 'door', 'faster',
'Basic', 'Qualifications', 'Bachelor', "'s", 'degree', 'computer science',
'engineering', 'physics', 'mathematics', 'similar', 'technical',
'discipline', '3+', 'years', 'experience', 'developing', 'across', 'full-
stack', 'Web server', 'relational database', 'client-side',
'HTML/Javascript/CSS', 'Preferred', 'Skills', 'Experience', 'Database',
'Understanding', 'SQL', 'Ability', 'write', 'performant', 'SQL', 'Ability',
'diagnose', 'queries', 'work', 'DBAs', 'Server', 'Knowledge', 'web',

Text Wrangling and Analysis Chapter 7

[205]

'servers', 'operate', 'low-level', 'Web', 'protocols', 'Designing', 'APIs',
'scale', 'web', 'sites', 'Increase', 'performance', 'diagnose', 'problems',
'UI', 'Demonstrated', 'ability', 'creating', 'rich', 'web', 'interfaces',
'using', 'modern', 'client-side', 'framework', 'Good', 'judgment', 'UX/UI',
'design', 'Understands', 'finer', 'points', 'HTML', 'CSS', 'Javascript',
'know', 'tools', 'use', 'System', 'architecture', 'Knowledge', 'structure',
'database', 'web', 'site', 'rich', 'client-side', 'application', 'scratch',
'Quality', 'Demonstrated', 'usage', 'different', 'testing', 'patterns',
'continuous integration', 'processes', 'build', 'deployment', 'systems',
'Continuous monitoring', 'Current', 'date', 'current trends', 'patterns',
'goings', 'world', 'web development', 'changes', 'rapidly', 'Strong',
'knowledge', 'computer science', 'fundamentals', 'applying', 'real-world']

I think that's a very nice and refined set of keywords pulled out of that job listing.

8
Searching, Mining and

Visualizing Data
In this chapter, we will cover:

Geocoding an IP address
Collecting IP addresses of Wikipedia edits
Visualizing contributor location frequency on Wikipedia
Creating a word cloud from a StackOverflow job listing
Crawling links on Wikipedia
Visualizing page relationships on Wikipedia
Calculating degrees of separation between Wikipedia pages

Introduction
In this chapter we will examine how to search web content, derive analytical results, and
also visualize those results. We will learn how to locate posters of content an visualize the
distribution of their locations. Then we will examine how to scrape, model, and visualize
the relationships between pages on Wikipedia.

Searching, Mining and Visualizing Data Chapter 8

[207]

Geocoding an IP address
Geocoding is the process of converting an address into geographic coordinates. These
addresses can be actual street addresses, which can be geocoded with various tools such as
the Google maps geocoding API (https:/ /developers. google. com/ maps/ documentation/
geocoding/intro). IP addresses can be, and often are, geocoded by various applications to
determine where computers, and their users, are located. A very common and valuable use
is analyzing web server logs to determine the source of users of your website.

This is possible because an IP address does not only represent an address of the computer
in terms of being able to communicate with that computer, but often can also be converted
into an approximate physical location by looking it up in IP address / location databases.
There are many of these databases available, all of which are maintained by various
registrars (such as ICANN). There are also other tools that can report geographic locations
for public IP addresses.

There are a number of free services for IP geolocation. We will examine one that is quite
easy to use, freegeoip.net.

Getting ready
Freegeoip.net is a free geocoding service. If you go to http:/ /www. freegeoip. net in your
browser, you will be presented with a page similar to the following:

https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
http://www.freegeoip.net
http://www.freegeoip.net
http://www.freegeoip.net
http://www.freegeoip.net
http://www.freegeoip.net
http://www.freegeoip.net
http://www.freegeoip.net
http://www.freegeoip.net
http://www.freegeoip.net

Searching, Mining and Visualizing Data Chapter 8

[208]

The freegeoip.net home page

The default page reports your public IP address, and also gives you the geolocation of the
IP address according to their database. This isn't accurate to the actual address of my house,
and is actually quite a few miles off, but the general location in the world is fairly accurate.
We can do important things with data that is at this resolution and even lower. Often just
knowing the country origin for web requests is enough for many purposes.

Freegeoip lets you make 15000 calls per hour. Each page load counts as
one call, and as we will see, each API call also counts as one.

Searching, Mining and Visualizing Data Chapter 8

[209]

How to do it
We could scrape this page to get this information but fortunately, freegeoip.net gives us a
convenient REST API to use. Scrolling further down the page, we can see the API
documentation:

The freegeoio.net API documentation

We can simply use the requests library to make a GET request using the properly formatted
URL. As an example, just entering the following URL in the browser returns a JSON
representation of the geocoded data for the given IP address:

Sample JSON for an IP address

Searching, Mining and Visualizing Data Chapter 8

[210]

A Python script to demonstrate this is available in 08/01_geocode_address.py. The is
simple and consists of the following:

import json
import requests

raw_json = requests.get("http://www.freegeoip.net/json/63.153.113.92").text
parsed = json.loads(raw_json)
print(json.dumps(parsed, indent=4, sort_keys=True))

This has the following output:

{
 "city": "Deer Lodge",
 "country_code": "US",
 "country_name": "United States",
 "ip": "63.153.113.92",
 "latitude": 46.3797,
 "longitude": -112.7202,
 "metro_code": 754,
 "region_code": "MT",
 "region_name": "Montana",
 "time_zone": "America/Denver",
 "zip_code": "59722"
}

Note that your output for this IP address may vary, and surely will with
different IP addresses.

How to collect IP addresses of Wikipedia
edits
Processing aggregate results of geocoded IP addresses can provide valuable insights. This is
very common for server logs and can also be used in many other situations. Many websites
include the IP address of contributors of content. Wikipedia provides a history of changes
on all of their pages. Edits created by someone that is not a registered user of Wikipedia
have their IP address published in the history. We will examine how to create a scraper that
will navigate the history of a given Wikipedia topic and collect the IP addresses of
unregistered edits.

Searching, Mining and Visualizing Data Chapter 8

[211]

Getting ready
We will examine the edits made to the Web scraping page in Wikipedia. This page is
available at: https:/ / en. wikipedia. org/ wiki/ Web_ scraping. The following shows a small
part of this page:

The view history tab

Note View history in the upper-right. Clicking on that link gives you access to the history
for the edits:

Inspecting an IP address

https://en.wikipedia.org/wiki/Web_scraping
https://en.wikipedia.org/wiki/Web_scraping
https://en.wikipedia.org/wiki/Web_scraping
https://en.wikipedia.org/wiki/Web_scraping
https://en.wikipedia.org/wiki/Web_scraping
https://en.wikipedia.org/wiki/Web_scraping
https://en.wikipedia.org/wiki/Web_scraping
https://en.wikipedia.org/wiki/Web_scraping
https://en.wikipedia.org/wiki/Web_scraping
https://en.wikipedia.org/wiki/Web_scraping
https://en.wikipedia.org/wiki/Web_scraping
https://en.wikipedia.org/wiki/Web_scraping
https://en.wikipedia.org/wiki/Web_scraping
https://en.wikipedia.org/wiki/Web_scraping
https://en.wikipedia.org/wiki/Web_scraping

Searching, Mining and Visualizing Data Chapter 8

[212]

I've scrolled this down a little bit to highlight an anonymous edit. Note that we can identify
these anonymous edit entries using the mw-userling mw-anonuserlink class in the
source.

Notice also that you can specify the number of edits per page to be listed, which can be
specified by adding a parameter to the URL. The following URL will give us the 500 most
recent edits:

https://en.wikipedia. org/ w/ index. php? title= Web_ scraping offset= limit= 500action=
history

So instead of crawling a number of different pages, walking through them 50 at a time, we'll
just do one page of 500.

How to do it
We proceed with the recipe as follows:

The code to perform the scraping is in the script1.
file, 08/02_geocode_wikipedia_edits.py. Running the script produces the
following output (truncated to the first few geo IPs):

Reading page:
https://en.wikipedia.org/w/index.php?title=Web_scraping&offset=&lim
it=500&action=history
Got 106 ip addresses
{'ip': '2601:647:4a04:86d0:1cdf:8f8a:5ca5:76a0', 'country_code':
'US', 'country_name': 'United States', 'region_code': 'CA',
'region_name': 'California', 'city': 'Sunnyvale', 'zip_code':
'94085', 'time_zone': 'America/Los_Angeles', 'latitude': 37.3887,
'longitude': -122.0188, 'metro_code': 807}
{'ip': '194.171.56.13', 'country_code': 'NL', 'country_name':
'Netherlands', 'region_code': '', 'region_name': '', 'city': '',
'zip_code': '', 'time_zone': 'Europe/Amsterdam', 'latitude':
52.3824, 'longitude': 4.8995, 'metro_code': 0}
{'ip': '109.70.55.226', 'country_code': 'DK', 'country_name':
'Denmark', 'region_code': '85', 'region_name': 'Zealand', 'city':
'Roskilde', 'zip_code': '4000', 'time_zone': 'Europe/Copenhagen',
'latitude': 55.6415, 'longitude': 12.0803, 'metro_code': 0}
{'ip': '101.177.247.131', 'country_code': 'AU', 'country_name':
'Australia', 'region_code': 'TAS', 'region_name': 'Tasmania',
'city': 'Lenah Valley', 'zip_code': '7008', 'time_zone':
'Australia/Hobart', 'latitude': -42.8715, 'longitude': 147.2751,
'metro_code': 0}

https://en.wikipedia.org/w/index.php?title=Web_scraping&offset=&limit=500&action=history
https://en.wikipedia.org/w/index.php?title=Web_scraping&offset=&limit=500&action=history
https://en.wikipedia.org/w/index.php?title=Web_scraping&offset=&limit=500&action=history
https://en.wikipedia.org/w/index.php?title=Web_scraping&offset=&limit=500&action=history
https://en.wikipedia.org/w/index.php?title=Web_scraping&offset=&limit=500&action=history
https://en.wikipedia.org/w/index.php?title=Web_scraping&offset=&limit=500&action=history
https://en.wikipedia.org/w/index.php?title=Web_scraping&offset=&limit=500&action=history
https://en.wikipedia.org/w/index.php?title=Web_scraping&offset=&limit=500&action=history
https://en.wikipedia.org/w/index.php?title=Web_scraping&offset=&limit=500&action=history
https://en.wikipedia.org/w/index.php?title=Web_scraping&offset=&limit=500&action=history
https://en.wikipedia.org/w/index.php?title=Web_scraping&offset=&limit=500&action=history
https://en.wikipedia.org/w/index.php?title=Web_scraping&offset=&limit=500&action=history
https://en.wikipedia.org/w/index.php?title=Web_scraping&offset=&limit=500&action=history
https://en.wikipedia.org/w/index.php?title=Web_scraping&offset=&limit=500&action=history
https://en.wikipedia.org/w/index.php?title=Web_scraping&offset=&limit=500&action=history
https://en.wikipedia.org/w/index.php?title=Web_scraping&offset=&limit=500&action=history
https://en.wikipedia.org/w/index.php?title=Web_scraping&offset=&limit=500&action=history
https://en.wikipedia.org/w/index.php?title=Web_scraping&offset=&limit=500&action=history
https://en.wikipedia.org/w/index.php?title=Web_scraping&offset=&limit=500&action=history
https://en.wikipedia.org/w/index.php?title=Web_scraping&offset=&limit=500&action=history
https://en.wikipedia.org/w/index.php?title=Web_scraping&offset=&limit=500&action=history
https://en.wikipedia.org/w/index.php?title=Web_scraping&offset=&limit=500&action=history
https://en.wikipedia.org/w/index.php?title=Web_scraping&offset=&limit=500&action=history
https://en.wikipedia.org/w/index.php?title=Web_scraping&offset=&limit=500&action=history
https://en.wikipedia.org/w/index.php?title=Web_scraping&offset=&limit=500&action=history
https://en.wikipedia.org/w/index.php?title=Web_scraping&offset=&limit=500&action=history
https://en.wikipedia.org/w/index.php?title=Web_scraping&offset=&limit=500&action=history
https://en.wikipedia.org/w/index.php?title=Web_scraping&offset=&limit=500&action=history
https://en.wikipedia.org/w/index.php?title=Web_scraping&offset=&limit=500&action=history
https://en.wikipedia.org/w/index.php?title=Web_scraping&offset=&limit=500&action=history
https://en.wikipedia.org/w/index.php?title=Web_scraping&offset=&limit=500&action=history

Searching, Mining and Visualizing Data Chapter 8

[213]

The script also writes the geo IPs to the geo_ips.json file. The next recipe will use this file
instead of making all the page requests again.

How it works
The explanation is as follows. The script begins by executing the following code:

if __name__ == "__main__":
 geo_ips = collect_geo_ips('Web_scraping', 500)
 for geo_ip in geo_ips:
 print(geo_ip)
 with open('geo_ips.json', 'w') as outfile:
 json.dump(geo_ips, outfile)

A call is made to collect_geo_ips which will request the page with the specified topic
and up to 500 edits. These geo IPs are then printed to the console, and also written to the
geo_ips.json file.

The code for collect_geo_ips is the following:

def collect_geo_ips(article_title, limit):
 ip_addresses = get_history_ips(article_title, limit)
 print("Got %s ip addresses" % len(ip_addresses))
 geo_ips = get_geo_ips(ip_addresses)
 return geo_ips

This function first makes a call to get_history_ips, reports the quantity found, and then
makes repeated requests to get_geo_ips for each IP address.

The code for get_history_ips is the following:

def get_history_ips(article_title, limit):
 history_page_url =
"https://en.wikipedia.org/w/index.php?title=%s&offset=&limit=%s&action=hist
ory" % (article_title, limit)
 print("Reading page: " + history_page_url)
 html = requests.get(history_page_url).text
 soup = BeautifulSoup(html, "lxml")

 anon_ip_anchors = soup.findAll("a", {"class": "mw-anonuserlink"})
 addresses = set()
 for ip in anon_ip_anchors:
 addresses.add(ip.get_text())
 return addresses

Searching, Mining and Visualizing Data Chapter 8

[214]

This formulates the URL for the history page, retrieves the page, and then pulls out all
distinct IP addresses with the mw-anonuserlink class.

get_geo_ips then takes this set of IP addresses and calls freegeoip.net on each for the
data.

def get_geo_ips(ip_addresses):
 geo_ips = []
 for ip in ip_addresses:
 raw_json = requests.get("http://www.freegeoip.net/json/%s" %
ip).text
 parsed = json.loads(raw_json)
 geo_ips.append(parsed)
 return geo_ips

There's more...
While this data is useful, in our next recipe we will read in the data written to
geo_ips.json (using pandas) and visualize the distribution of the users by country using
a bar chart.

Visualizing contributor location frequency
on Wikipedia
We can use the collected data to determine the frequency of edits of Wikipedia articles from
countries around the world. This can be done by grouping the captured data by country
and counting the number of edits related to each country. Then we will sort the data and
create a bar chart to see the results.

Searching, Mining and Visualizing Data Chapter 8

[215]

How to do it
This is a very simple task to perform with pandas. The code of the example is in
08/03_visualize_wikipedia_edits.py.

The code begins by importing pandas and matplotlib.pyplot:1.

>>> import pandas as pd
>>> import matplotlib.pyplot as plt

The data file we created in the previous recipe is already in a format that can be2.
read directly by pandas. This is one of the benefits of using JSON as a data
format; pandas has built-in support for reading and writing data from JSON. The
following reads in the data using the pd.read_json() function and displays the
first five rows on the console:

>>> df = pd.read_json("geo_ips.json")
>>> df[:5])

city country_code country_name ip latitude \
0 Hanoi VN Vietnam 118.70.248.17 21.0333
1 Roskilde DK Denmark 109.70.55.226 55.6415
2 Hyderabad IN India 203.217.144.211 17.3753
3 Prague CZ Czechia 84.42.187.252 50.0833
4 US United States 99.124.83.153 37.7510

longitude metro_code region_code region_name time_zone \
0 105.8500 0 HN Thanh Pho Ha Noi Asia/Ho_Chi_Minh
1 12.0803 0 85 Zealand Europe/Copenhagen
2 78.4744 0 TG Telangana Asia/Kolkata
3 14.4667 0 10 Hlavni mesto Praha Europe/Prague
4 -97.8220 0
zip_code
0
1 4000
2
3 130 00
4

Searching, Mining and Visualizing Data Chapter 8

[216]

For our immediate purpose we only require the country_code column, which3.
we can extract with the following (and shows the first five rows in that result):

>>> countries_only = df.country_code
>>> countries_only[:5]

0 VN
1 DK
2 IN
3 CZ
4 US
Name: country_code, dtype:object

Now we can group the rows in this series using .groupby('country_code'),4.
and on the result, call .count() will return the number of items in each of
those groups. The code also sorts the results from the largest to lowest values by
calling .sort_values():

>>> counts =
df.groupby('country_code').country_code.count().sort_values(ascendi
ng=False)
>>> counts[:5]

country_code
US 28
IN 12
BR 7
NL 7
RO 6
Name: country_code, dtype: int64

We can see from just these results that the US definitely leads in edits, with India being the
second most popular.

This data can easily be visualized as a bar graph:

counts.plot(kind='bar')
plt.show()

Searching, Mining and Visualizing Data Chapter 8

[217]

This results in the following bar graph showing overall distribution for all of the countries:

Histogram of the edit frequencies

Creating a word cloud from a StackOverflow
job listing
Now lets look at creating a word cloud. Word clouds are an image that demonstrate the
frequency of key words within a set of text. The larger the word in the image, the more
apparent significance it has in the body of text.

Searching, Mining and Visualizing Data Chapter 8

[218]

Getting ready
We will use the Word Cloud library to create our word cloud. The source for the library is
available at https:/ / github. com/ amueller/ word_ cloud. This library can be installed into
your Python environment using pip install wordcloud.

How to do it
The script to create the word cloud is in the 08/04_so_word_cloud.py file. This recipe
continues on from the stack overflow recipes from chapter 7 to provide a visualization of
the data.

Start by importing the word cloud and the frequency distribution function from1.
NLTK:

from wordcloud import WordCloud
from nltk.probability import FreqDist

The word cloud is then generated from the probability distribution of the words2.
we collected from the job listing:

freq_dist = FreqDist(cleaned)
wordcloud = WordCloud(width=1200,
height=800).generate_from_frequencies(freq_dist)

Now we just need to display the word cloud:

import matplotlib.pyplot as plt
plt.imshow(wordcloud, interpolation='bilinear')
plt.axis("off")
plt.show()

https://github.com/amueller/word_cloud
https://github.com/amueller/word_cloud
https://github.com/amueller/word_cloud
https://github.com/amueller/word_cloud
https://github.com/amueller/word_cloud
https://github.com/amueller/word_cloud
https://github.com/amueller/word_cloud
https://github.com/amueller/word_cloud
https://github.com/amueller/word_cloud
https://github.com/amueller/word_cloud
https://github.com/amueller/word_cloud
https://github.com/amueller/word_cloud
https://github.com/amueller/word_cloud

Searching, Mining and Visualizing Data Chapter 8

[219]

And the resulting word cloud is the following:

The word cloud for the job listing

The positioning and size have some built-in randomness, so the result you get may differ.

Crawling links on Wikipedia
In this recipe we will write a small program to utilize the crawl the links on a Wikipedia
page through several levels of depth. During this crawl we will gather the relationships
between the pages and those referenced from each page. During this we will build a
relationship amongst these pages the we will ultimately visualize in the next recipe.

Searching, Mining and Visualizing Data Chapter 8

[220]

Getting ready
The code for this example is in the 08/05_wikipedia_scrapy.py. It references code in a
module in the modules/wikipedia folder of the code samples, so make sure that is in your
Python path.

How to do it
You can the sample Python script. It will crawl a single Wikipedia page using Scrapy. The
page it will crawl is the Python page at https:/ / en.wikipedia. org/ wiki/ Python_
(programming_language), and collect relevant links on that page.

When run you will see the similar output to the following:

/Users/michaelheydt/anaconda/bin/python3.6
/Users/michaelheydt/Dropbox/Packt/Books/PyWebScrCookbook/code/py/08/05_wiki
pedia_scrapy.py
parsing: https://en.wikipedia.org/wiki/Python_(programming_language)
parsing: https://en.wikipedia.org/wiki/C_(programming_language)
parsing: https://en.wikipedia.org/wiki/Object-oriented_programming
parsing: https://en.wikipedia.org/wiki/Ruby_(programming_language)
parsing: https://en.wikipedia.org/wiki/Go_(programming_language)
parsing: https://en.wikipedia.org/wiki/Java_(programming_language)
--
0 Python_(programming_language) C_(programming_language)
0 Python_(programming_language) Java_(programming_language)
0 Python_(programming_language) Go_(programming_language)
0 Python_(programming_language) Ruby_(programming_language)
0 Python_(programming_language) Object-oriented_programming

The first part of output is from the Scrapy crawler and shows the pages that are passed to
the parse method. These are pages that start with our initial page and through the first five
most common links from that page.

The second part of this output is a representation of the page that is crawled and the links
found on that page that are considered for future processing. The first number is the level
of the crawl the crawl that the relationship was found, followed by the parent page and the
link found on that page. For every page / link found, there is a separate entry. Since this is
a one depth crawl, we just show pages found from the initial page.

https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Python_(programming_language)

Searching, Mining and Visualizing Data Chapter 8

[221]

How it works
Lets start with the code in them main script file, 08/05_wikipedia_scrapy.py. This
starts with creating a WikipediaSpider object and running the crawl:

process = CrawlerProcess({
 'LOG_LEVEL': 'ERROR',
 'DEPTH_LIMIT': 1
})

process.crawl(WikipediaSpider)
spider = next(iter(process.crawlers)).spider
process.start()

This tells Scrapy that we want to run it for one level of depth, and we get an instance of the
crawler as we want to inspect its properties which are the result of the crawl. The results
are then printed with the following:

print("-"*60)

for pm in spider.linked_pages:
 print(pm.depth, pm.title, pm.child_title)

Each result from the crawler is stored in the linked_pages property. Each of those objects
is represented by several properties including the title of the page (the last portion of the
wikipedia URL) and the title of each page found within the content of the HTML of that
page.

Now let's walk through how the crawler functions. The code for the spider is in
modules/wikipedia/spiders.py. The crawler starts off by defining a sub-class of a
Scrapy Spider:

class WikipediaSpider(Spider):
 name = "wikipedia"
 start_urls = [
"https://en.wikipedia.org/wiki/Python_(programming_language)"]

We are starting on the Python page in Wikipedia. Next are the definition of a few class
level variable to define how the crawl operates and for the results to be retrieved:

page_map = {}
linked_pages = []
max_items_per_page = 5
max_crawl_depth = 1

Searching, Mining and Visualizing Data Chapter 8

[222]

Each page of this crawl will the processed by the parse method of the spider. Let's walk
through it. It starts with the following:

def parse(self, response):
 print("parsing: " + response.url)

 links = response.xpath("//*/a[starts-with(@href, '/wiki/')]/@href")
 link_counter = {}

In each Wikipedia page we look for links what start with /wiki. There are other links in
the page but these are the ones this this crawl will consider important.

This crawler implements an algorithm where all found links on the page are counted for
similarity. There are quite a few repeat links. Some of these are spurious. Others represent
a true importance of linking multiple times to other pages.

The max_items_per_page defines how many links on the current page we will further
investigate. There will be quite a few links on each page, and this algorithm counts all the
similar links and puts them into buckets. It then follows the max_items_per_page most
popular links.

This process is managed though the use of the links_counter variable. This is a
dictionary of mappings between the current page and all links found on the page. For each
link we decide to follow We count the number of times it is referenced on the page. This
variable is a map between that URL and and instance of the following object that counts the
number of references:

class LinkReferenceCount:
 def __init__(self, link):
 self.link = link
 self.count = 0

The code then walks through all the identified links:

for l in links:
 link = l.root
 if ":" not in link and "International" not in link and link !=
self.start_urls[0]:
 if link not in link_counter:
 link_counter[link] = LinkReferenceCount(link)
 link_counter[link].count += 1

Searching, Mining and Visualizing Data Chapter 8

[223]

This examines every link and only considers them for further crawling based upon the
stated rules (no ':' in the link, nor 'International' as it is quite popular so we exclude it, and
finally we don't include the start URL). If the link passes this, then a new
LinkReferenceCounter object is created (if this link as not been seen before), or its
reference count is incremented.

Since there are likely repeat links on each page, we want to consider only the
max_items_per_page most common links. The code does this by the following:

references = list(link_counter.values())
s = sorted(references, key=lambda x: x.count, reverse=True)
top = s[:self.max_items_per_page]

Out of the link_counter dictionary we pull all of the LinkReferenceCounter objects
and sort them by the count, and then select the top max_items_per_page items.

The next step is for each of these qualifying items we recored them in the linked_pages
field of the class. Each object in this list of the the type PageToPageMap. This class has the
following definition:

class PageToPageMap:
 def __init__(self, link, child_link, depth): #, parent):
 self.link = link
 self.child_link = child_link
 self.title = self.get_page_title(self.link)
 self.child_title = self.get_page_title(self.child_link)
 self.depth = depth

 def get_page_title(self, link):
 parts = link.split("/")
 last = parts[len(parts)-1]
 label = urllib.parse.unquote(last)
 return label

Fundamentally this object represents a source page URL to a linked page URL, and it also
tracks the current level of the crawl. The title properties are the URL decoded forms of the
last part of the Wikipedia URL, and represent a more human-friendly version of the URL.

Finally, the code yields to Scrapy new pages to crawl to.

for item in top:
 new_request = Request("https://en.wikipedia.org" + item.link,
 callback=self.parse, meta={ "parent": pm })
 yield new_request

Searching, Mining and Visualizing Data Chapter 8

[224]

Theres more...
This crawler / algorithm also keeps track of the current level of depth in the crawl. If a new
link is considered to be beyond the maximum depth of the crawl. While this can be
controlled to a point by Scrapy, this code still needs to not include links beyond the
maximum depth.

This is controlled by using the depth field of the PageToPageMap object. For each page of
the crawl, we check to see if the response has meta-data, a property which represents the
"parent" PageToPageMap object for an given page. We find this with the following code:

depth = 0
if "parent" in response.meta:
 parent = response.meta["parent"]
 depth = parent.depth + 1

This code in the page parser looks to see if there is a parent object. Only the first page of the
crawl does not have a parent page. If there is an instance, the depth of this crawl is
considered one higher. When the new PageToPageMap object is created, this value is
passed to it and stored.

The code passes this object to the next level of the crawl by using the meta property of the
request object:

meta={ "parent": pm }

In this way we can pass data from one level of a crawl in a Scrapy spider to the next.

Visualizing page relationships on Wikipedia
In this recipe we take the data we collected in the previous recipe and create a force-
directed network visualization of the page relationships using the NetworkX Python
library.

Getting ready
NetworkX is software for modeling, visualizing, and analyzing complex network
relationships. You can find more information about it at: https://networkx.github.io. It
can be installed in your Python environment using pip install networkx.

https://networkx.github.io/

Searching, Mining and Visualizing Data Chapter 8

[225]

How to do it
The script for this example is in the 08/06_visualizze_wikipedia_links.py file. When
run it produces a graph of the links found on the initial Python page in Wikipedia:

Graph of the links

Now we can see the relationships between the pages!

Searching, Mining and Visualizing Data Chapter 8

[226]

How it works
The crawl starts with defining a one level of depth crawl:

crawl_depth = 1
process = CrawlerProcess({
 'LOG_LEVEL': 'ERROR',
 'DEPTH_LIMIT': crawl_depth
})
process.crawl(WikipediaSpider)
spider = next(iter(process.crawlers)).spider
spider.max_items_per_page = 5
spider.max_crawl_depth = crawl_depth
process.start()

for pm in spider.linked_pages:
 print(pm.depth, pm.link, pm.child_link)
print("-"*80)

This information is similar to the previous recipe, and new we need to convert it into a
model that NetworkX can use for a graph. This starts with creating a NetworkX graph
model:

g = nx.Graph()

A NetworkX graph consists of nodes and edges. From the data collected we must crate a
set of unique nodes (the pages) and the edges (the fact that a page references another page).
This performed with the following:

nodes = {}
edges = {}

for pm in spider.linked_pages:
 if pm.title not in nodes:
 nodes[pm.title] = pm
 g.add_node(pm.title)

 if pm.child_title not in nodes:
 g.add_node(pm.child_title)

 link_key = pm.title + " ==> " + pm.child_title
 if link_key not in edges:
 edges[link_key] = link_key
 g.add_edge(pm.title, pm.child_title)

Searching, Mining and Visualizing Data Chapter 8

[227]

This iterates through all the results from out crawl and identifies all the unique nodes (the
distinct pages), and then all of the links between any pages and other pages. For each node
and edge, we register those with NetworkX.

Next we create the plot with Matplotlib and tell NetworkX how to create the visuals in the
plot:

plt.figure(figsize=(10,8))

node_positions = nx.spring_layout(g)

nx.draw_networkx_nodes(g, node_positions, g.nodes, node_color='green',
node_size=50)
nx.draw_networkx_edges(g, node_positions)

labels = { node: node for node in g.nodes() }
nx.draw_networkx_labels(g, node_positions, labels, font_size=9.5)

plt.show()

The important parts of this are first the use of NetworkX to form a spring layout on the
nodes. That calculates the actual positions of the nodes but does not render them or the
edges. That is the purpose of the next two lines which give NetworkX the instructions on
how to render both the nodes and edges. and finally, we need to put labels on the nodes.

There's more...
This crawl only did a single depth crawl. The crawl can be increased with the following
change to the code:

crawl_depth = 2
process = CrawlerProcess({
 'LOG_LEVEL': 'ERROR',
 'DEPTH_LIMIT': crawl_depth
})
process.crawl(WikipediaSpider)
spider = next(iter(process.crawlers)).spider
spider.max_items_per_page = 5
spider.max_crawl_depth = crawl_depth
process.start()

Searching, Mining and Visualizing Data Chapter 8

[228]

Fundamentally the only change is to increase the depth one level. This then results in the
following graph (there is randomization in any spring graph so the actual results have a
different layout):

Spider graph of the links

This begins to be interesting as we now start to see inter-relationships and cyclic
relationships between pages.

I dare you to further increase the depth and number of links per page.

Searching, Mining and Visualizing Data Chapter 8

[229]

Calculating degrees of separation
Now let's calculate the degrees of separation between any two pages. This answers the
question of how many pages we need to go through from a source page to find another
page. This could be a non-trivial graph traversal problem as there can be multiple paths
between the two pages. Fortunately for us, NetworkX, using the exact same graph model,
has built in function to solve this with the exact same model from the previous recipe.

How to do it
The script for this example is in the 08/07_degrees_of_separation.py. The code is
identical to the previous recipe, with a 2-depth crawl, except that it omits the graph and
asks NetworkX to solve the degrees of separation between
Python_(programming_language) and Dennis_Ritchie:

Degrees of separation: 1
 Python_(programming_language)
 C_(programming_language)
 Dennis_Ritchie

This tells us that to go from Python_(programming_language) to Dennis_Ritchie we
have to go through one other page: C_(programming_language). Hence, one degree of
separation. If we went directly to C_(programming_language), it would be 0 degrees of
separation.

How it works
The solution of this problem is solved by an algorithm known as A*. The A* algorithm
determines the shortest path between two nodes in a graph. Note that this path can be
multiple paths of different lengths and that the correct result is the shortest path. A good
thing for us is that NetworkX has a built in function to do this for us. It is done with one
simple statement:

path = nx.astar_path(g, "Python_(programming_language)", "Dennis_Ritchie")

Searching, Mining and Visualizing Data Chapter 8

[230]

From this we report on the actual path:

degrees_of_separation = int((len(path) - 1) / 2)
print("Degrees of separation: {}".format(degrees_of_separation))
for i in range(0, len(path)):
 print(" " * i, path[i])

There's more...
For more information on the A* algorithm check out this page at https:/ /en. wikipedia.
org/A*_search_algorithm.

https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/A*_search_algorithm
https://en.wikipedia.org/A*_search_algorithm
https://en.wikipedia.org/A*_search_algorithm
https://en.wikipedia.org/A*_search_algorithm
https://en.wikipedia.org/A*_search_algorithm
https://en.wikipedia.org/A*_search_algorithm
https://en.wikipedia.org/A*_search_algorithm
https://en.wikipedia.org/A*_search_algorithm
https://en.wikipedia.org/A*_search_algorithm
https://en.wikipedia.org/A*_search_algorithm
https://en.wikipedia.org/A*_search_algorithm
https://en.wikipedia.org/A*_search_algorithm
https://en.wikipedia.org/A*_search_algorithm
https://en.wikipedia.org/A*_search_algorithm

9
Creating a Simple Data API

In this chapter, we will cover:

Creating a REST API with Flask-RESTful
Integrating the REST API with scraping code
Adding an API to find the skills for a job listing
Storing data in Elasticsearch as the result of a scraping request
Checking Elasticsearch for a listing before scraping

Introduction
We have now reached an exciting inflection point in our learning about scraping. From this
point on, we will learn about making scrapers as a service using several APIs, microservice,
and container tools, all of which will allow the running of the scraper either locally or in the
cloud, and to give access to the scraper through standardized REST APIs.60;

We will start this new journey in this chapter with the creation of a simple REST API using
Flask-RESTful which we will eventually use to make requests to the service to scrape pages
on demand. We will connect this API to a scraper function implemented in a Python
module that reuses the concepts for scraping StackOverflow jobs, as discussed in Chapter
7, Text Wrangling and Analysis.

The final few recipes will focus on using Elasticsearch as a cache for these results, storing
documents we retrieve from the scraper, and then looking for them first within the cache.
We will examine more elaborate uses of ElasticCache, such as performing searches for jobs
with a given set of skills, later in Chapter 11, Making the Scraper as a Service Real.

Creating a Simple Data API Chapter 9

[232]

Creating a REST API with Flask-RESTful
We start with the creation of a simple REST API using Flask-RESTful. This initial API will
consist of a single method that lets the caller pass an integer value and which returns a
JSON blob. In this recipe, the parameters and their values, as well as the return value, are
not important at this time as we want to first simply get an API up and running using Flask-
RESTful.

Getting ready
Flask is a web microframework that makes creating simple web application functionality
incredibly easy. Flask-RESTful is an extension to Flask which does the same for making
REST APIs just as simple. You can get Flask and read more about it at flask.pocoo.org.
Flask-RESTful can be read about
at https://flask-restful.readthedocs.io/en/latest/. Flask can be installed into
your Python environment using pip install flask. and Flask-RESTful can also be
installed with pip install flask-restful.

The remainder of the recipes in the book will be in a subfolder of the
chapter's directory. This is because most of these recipes either require
multiple files to operate, or use the same filename (ie: apy.py).

How to do it
The initial API is implemented in 09/01/api.py. The API itself and the logic of the API is
implemented in this single file: api.py. The API can be run in two manners, the first of
which is by simply executing the file as a Python script.

The API can then be launched with the following:

python api.py

Creating a Simple Data API Chapter 9

[233]

When run, you will initially see output similar to the following:

Starting the job listing API
 * Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)
 * Restarting with stat
Starting the job listing API
 * Debugger is active!
 * Debugger pin code: 362-310-034

This program exposes a REST API on 127.0.0.1:5000, and we can make requests for job
listings using a GET request to the path /joblisting/<joblistingid>. We can try this
with curl:

curl localhost:5000/joblisting/1

The result of this command will be the following:

{
 "YouRequestedJobWithId": "1"
}

And just like that, we have a REST API up and running. Now let's see how it is
implemented.

How it works
There really isn't a lot of code, which is the beauty of Flask-RESTful. The code begins with
importing of flask and flask_restful.

from flask import Flask
from flask_restful import Resource, Api

These are followed with code to set up the initial configuration of Flask-RESTful:

app = Flask(__name__)
api = Api(app)

Next comes a definition of a class which represents the implementation of our API:

class JobListing(Resource):
 def get(self, job_listing_id):
 print("Request for job listing with id: " + job_listing_id)
 return {'YouRequestedJobWithId': job_listing_id}

Creating a Simple Data API Chapter 9

[234]

What we will have Flask-RESTful do is map HTTP requests to methods in this class.
Specifically, by convention GET requests will be mapped to member functions named get.
There will be a mapping of the values passed as part of the URL to the jobListingId
parameter of the function. This function then returns a Python dictionary, which Flask-
RESTful converts to JSON for us.

The next line of code tells Flask-RESTful how to map portions of the URL to our class:

api.add_resource(JobListing, '/', '/joblisting/<string:job_listing_id>')

This defines that URLs with paths beginning with /joblisting will be mapped to our
JobListing class, and that the next portion of the URL represents a string to be passed to
the jobListingId parameter of the get method. The GET HTTP verb is implied as no
other verb has been defined in this mapping.

Finally, we have code that specifies that when the file is run as a script that we simply
execute app.run() (passing in this case a parameter to give us debug output).

if __name__ == '__main__':
 print("Starting the job listing API")
 app.run(debug=True)

Flask-RESTful then finds our class and sets of the mappings, starts listening on
127.0.0.1:5000 (the default), and forwarding requests to our class and method.

There's more...
The default for Flask-RESTful is to run on port 5000. This can be changed using alternate
forms of app.run(). We will be fine with leaving it at 5000 for our recipes. Ultimately, you
would run this service in something like a container and front it with a reverse proxy such
as NGINX and perform a public port mapping to the internal service port.

Creating a Simple Data API Chapter 9

[235]

Integrating the REST API with scraping code
In this recipe, we will integrate code that we wrote for scraping and getting a clean job
listing from StackOverflow with our API. This will result in a reusable API that can be used
to perform on-demand scrapes without the client needing any knowledge of the scraping
process. Essentially, we will have created a scraper as a service, a concept we will spend
much time with in the remaining recipes of the book.

Getting ready
The first part of this process is to create a module out of our preexisting code that was
written in Chapter 7, Text Wrangling and Analysis so that we can reuse it. We will reuse this
code in several recipes throughout the remainder of the book. Let's briefly examine the
structure and contents of this module before going and integrating it with the API.

The code for the module is in the sojobs (for StackOverflow Jobs) module in the project's
modules folder.

The sojobs folder

For the most part, these files are copied from those used in Chapter 7, Text Wrangling and
Analysis. The primary file for reuse is scraping.py, which contains several functions that
facilitate scraping. The function that we will use in this recipe is get_job_listing_info:

def get_job_listing(job_listing_id):
 print("Got a request for a job listing with id: " + job_listing_id)

 req = requests.get("https://stackoverflow.com/jobs/" + job_listing_id)
 content = req.text

Creating a Simple Data API Chapter 9

[236]

 bs = BeautifulSoup(content, "lxml")
 script_tag = bs.find("script", {"type": "application/ld+json"})

 job_listing_contents = json.loads(script_tag.contents[0])
 desc_bs = BeautifulSoup(job_listing_contents["description"], "lxml")
 just_text = desc_bs.find_all(text=True)

 joined = ' '.join(just_text)
 tokens = word_tokenize(joined)

 stop_list = stopwords.words('english')
 with_no_stops = [word for word in tokens if word.lower() not in
stop_list]
 two_grammed = tech_2grams(with_no_stops)
 cleaned = remove_punctuation(two_grammed)

 result = {
 "ID": job_listing_id,
 "JSON": job_listing_contents,
 "TextOnly": just_text,
 "CleanedWords": cleaned
 }

 return json.dumps(result)

Heading back to the code in Chapter 7, Text Wrangling and Analysis, you can see that this
code is reused code that we created in those recipes. A difference is that instead of reading a
single local .html file, this function is passed the identifier for a job listing, then constructs
the URL for that job listing, reads the content with requests, performs several analyses, and
then returns the results.

Note that the function returns a Python dictionary that consists of the requested job ID, the
original HTML, the text of the listing, and the list of cleaned words. This API is returning to
the caller an aggregate of these results, with the ID so it is easy to know the requested job,
as well as all of the other results that we did to perform various clean ups. Hence, we have
created a value-added service for job listings instead of just getting the raw HTML.

Make sure that you either have your PYTHONPATH environment
variable pointing to the modules directory, or that you have set up your
Python IDE to find modules in this directory. Otherwise, you will get
errors that this module cannot be found.

Creating a Simple Data API Chapter 9

[237]

How to do it
We proceed with the recipe as follows:

The code of the API for this recipe is in 09/02/api.py. This extends the code in1.
the previous recipe to make a call to this function in the sojobs module. The
code for the service is the following:

from flask import Flask
from flask_restful import Resource, Api
from sojobs.scraping import get_job_listing_info

app = Flask(__name__)
api = Api(app)

class JobListing(Resource):
 def get(self, job_listing_id):
 print("Request for job listing with id: " + job_listing_id)
 listing = get_job_listing_info(job_listing_id)
 print("Got the following listing as a response: " +
listing)
 return listing

api.add_resource(JobListing, '/',
'/joblisting/<string:job_listing_id>')

if __name__ == '__main__':
 print("Starting the job listing API")
 app.run(debug=True)

Note that the main difference is the import of the function from the
module, and the call to the function and return of the data from the result.

The service is run by executing the script with Python api.py. We can then test2.
the API using curl. The following requests the SpaceX job listing we have
previously examined.

curl localhost:5000/joblisting/122517

Creating a Simple Data API Chapter 9

[238]

This results in quite a bit of output. The following is some of the beginning of the3.
response:

"{\"ID\": \"122517\", \"JSON\": {\"@context\":
\"http://schema.org\", \"@type\": \"JobPosting\", \"title\":
\"SpaceX Enterprise Software Engineer, Full Stack\", \"skills\":
[\"c#\", \"sql\", \"javascript\", \"asp.net\", \"angularjs\"],
\"description\": \"<h2>About this job</h2>\\r\\n<p>Location
options: Paid relocation
Job
type: Permanent
Experience level:
Mid-Level, Senior
Role:
Full Stack Developer
Industry:
Aerospace, Information Technology, Web
Development
Company size: 1k-5k
people
Company type:
Private
</p>

<h2>Technologies<
/h2> <p>c#, sql, javascr

Adding an API to find the skills for a job
listing
In this recipe, we add an additional operation to our API which will allow us to request the
skills associated with a job listing. This demonstrates a means of being able to retrieve only
a subset of the data instead of the entire content of the listing. While we will only do this
for the skills, the concept can be easily extended to any other subsets of the data, such as the
location of the job, title, or almost any other content that makes sense for the user of your
API.

Getting ready
The first thing that we will do is add a scraping function to the sojobs module. This
function will be named get_job_listing_skills. The following is the code for this
function:

def get_job_listing_skills(job_listing_id):
 print("Got a request for a job listing skills with id: " +
job_listing_id)

 req = requests.get("https://stackoverflow.com/jobs/" + job_listing_id)
 content = req.text

Creating a Simple Data API Chapter 9

[239]

 bs = BeautifulSoup(content, "lxml")
 script_tag = bs.find("script", {"type": "application/ld+json"})

 job_listing_contents = json.loads(script_tag.contents[0])
 skills = job_listing_contents['skills']

 return json.dumps(skills)

This function retrieves the job listing, extracts the JSON provided by StackOverflow, and
then only returns the skills property of the JSON.

Now, let's see how to add a method to the REST API to call it.

How to do it
We proceed with the recipe as follows:

The code of the API for this recipe is in 09/03/api.py. This script adds an1.
additional class, JobListingSkills, with the following implementation:

class JobListingSkills(Resource):
 def get(self, job_listing_id):
 print("Request for job listing's skills with id: " +
job_listing_id)
 skills = get_job_listing_skills(job_listing_id)
 print("Got the following skills as a response: " + skills)
 return skills

This implementation is similar to that of the previous recipe, except that it
calls the new function for getting skills.

We still need to add a statement to inform Flask-RESTful how to map URLs to2.
this classes' get method. Since we are actually looking at retrieving a sub-
property of the larger job listing, we will extend our URL scheme to include an
additional segment representing the sub-property of the overall job listing
resource.

api.add_resource(JobListingSkills, '/',
'/joblisting/<string:job_listing_id>/skills')

Creating a Simple Data API Chapter 9

[240]

Now we can retrieve just the skills using the following curl:3.

curl localhost:5000/joblisting/122517/skills

Which gives us the following result:

"[\"c#\", \"sql\", \"javascript\", \"asp.net\", \"angularjs\"]"

Storing data in Elasticsearch as the result of
a scraping request
In this recipe, we extend our API to save the data we received from the scraper into
Elasticsearch. We will use this later (in the next recipe) to be able to optimize requests by
using the content in Elasticsearch as a cache so that we do not repeat the scraping process
for jobs listings already scraped. Therefore, we can play nice with StackOverflows servers.

Getting ready
Make sure you have Elasticsearch running locally, as the code will access Elasticsearch at
localhost:9200. There a good quick-start available at https:/ / www.elastic. co/ guide/
en/elasticsearch/reference/ current/ _ installation. html, or you can check out the
docker Elasticsearch recipe in Chapter 10, Creating Scraper Microservices with Docker if you'd
like to run it in Docker.

Once installed, you can check proper installation with the following curl:

curl 127.0.0.1:9200?pretty

If installed properly, you will get output similar to the following:

{
 "name": "KHhxNlz",
 "cluster_name": "elasticsearch",
 "cluster_uuid": "fA1qyp78TB623C8IKXgT4g",
 "version": {
 "number": "6.1.1",
 "build_hash": "bd92e7f",
 "build_date": "2017-12-17T20:23:25.338Z",
 "build_snapshot": false,
 "lucene_version": "7.1.0",
 "minimum_wire_compatibility_version": "5.6.0",

https://www.elastic.co/guide/en/elasticsearch/reference/current/_installation.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/_installation.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/_installation.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/_installation.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/_installation.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/_installation.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/_installation.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/_installation.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/_installation.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/_installation.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/_installation.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/_installation.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/_installation.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/_installation.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/_installation.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/_installation.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/_installation.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/_installation.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/_installation.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/_installation.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/_installation.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/_installation.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/_installation.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/_installation.html

Creating a Simple Data API Chapter 9

[241]

 "minimum_index_compatibility_version": "5.0.0"
 },
 "tagline": "You Know, for Search"
}

You will also need to have elasticsearch-py installed. This is available at https:/ /www.
elastic.co/guide/ en/ elasticsearch/ client/ python- api/ current/ index. html, but can
be quickly installed using pip install elasticsearch.

How to do it
We will make a few small changes to our API code. The code from the previous recipe has
been copied into 09/04/api.py, with the few modifications made.

First, we add an import for elasticsearch-py:1.

from elasticsearch import Elasticsearch

Now we make a quick modification to the get method of the JobListing class2.
(I've done the same in JobListingSkills, but it's omitted here for brevity):

class JobListing(Resource):
 def get(self, job_listing_id):
 print("Request for job listing with id: " + job_listing_id)
 listing = get_job_listing_info(job_listing_id)

 es = Elasticsearch()
 es.index(index='joblistings', doc_type='job-listing',
id=job_listing_id, body=listing)

 print("Got the following listing as a response: " +
listing)
 return listing

The two new lines create an Elasticsearch object, and then insert the resulting3.
document into ElasticSearch. Before the first time of calling the API, we can see
that there is no content, nor a 'joblistings' index, by using the following curl:

curl localhost:9200/joblistings

https://www.elastic.co/guide/en/elasticsearch/client/python-api/current/index.html
https://www.elastic.co/guide/en/elasticsearch/client/python-api/current/index.html
https://www.elastic.co/guide/en/elasticsearch/client/python-api/current/index.html
https://www.elastic.co/guide/en/elasticsearch/client/python-api/current/index.html
https://www.elastic.co/guide/en/elasticsearch/client/python-api/current/index.html
https://www.elastic.co/guide/en/elasticsearch/client/python-api/current/index.html
https://www.elastic.co/guide/en/elasticsearch/client/python-api/current/index.html
https://www.elastic.co/guide/en/elasticsearch/client/python-api/current/index.html
https://www.elastic.co/guide/en/elasticsearch/client/python-api/current/index.html
https://www.elastic.co/guide/en/elasticsearch/client/python-api/current/index.html
https://www.elastic.co/guide/en/elasticsearch/client/python-api/current/index.html
https://www.elastic.co/guide/en/elasticsearch/client/python-api/current/index.html
https://www.elastic.co/guide/en/elasticsearch/client/python-api/current/index.html
https://www.elastic.co/guide/en/elasticsearch/client/python-api/current/index.html
https://www.elastic.co/guide/en/elasticsearch/client/python-api/current/index.html
https://www.elastic.co/guide/en/elasticsearch/client/python-api/current/index.html
https://www.elastic.co/guide/en/elasticsearch/client/python-api/current/index.html
https://www.elastic.co/guide/en/elasticsearch/client/python-api/current/index.html
https://www.elastic.co/guide/en/elasticsearch/client/python-api/current/index.html
https://www.elastic.co/guide/en/elasticsearch/client/python-api/current/index.html
https://www.elastic.co/guide/en/elasticsearch/client/python-api/current/index.html
https://www.elastic.co/guide/en/elasticsearch/client/python-api/current/index.html
https://www.elastic.co/guide/en/elasticsearch/client/python-api/current/index.html
https://www.elastic.co/guide/en/elasticsearch/client/python-api/current/index.html
https://www.elastic.co/guide/en/elasticsearch/client/python-api/current/index.html
https://www.elastic.co/guide/en/elasticsearch/client/python-api/current/index.html

Creating a Simple Data API Chapter 9

[242]

Given we just installed Elasticsearch, this will result in the following error.4.

{"error":{"root_cause":[{"type":"index_not_found_exception","reason
":"no such
index","resource.type":"index_or_alias","resource.id":"joblistings"
,"index_uuid":"_na_","index":"joblistings"}],"type":"index_not_foun
d_exception","reason":"no such
index","resource.type":"index_or_alias","resource.id":"joblistings"
,"index_uuid":"_na_","index":"joblistings"},"status":404}

Now start up the API by using python api.py. Then issue the curl to get the5.
job listing (curl localhost:5000/joblisting/122517). This will result in
output similar to the previous recipes. The difference now is that this document
will be stored in Elasticsearch.
Now reissue the previous curl for the index:6.

curl localhost:9200/joblistings

And now you will get the following result (only the first few lines shown):7.

{
 "joblistings": {
 "aliases": {},
 "mappings": {
 "job-listing": {
 "properties": {
 "CleanedWords" {
 "type": "text",
 "fields": {
 "keyword": {
 "type": "keyword",
 "ignore_above": 256
 }
 }
 },
 "ID": {
 "type": "text",
 "fields": {
 "keyword": {
 "type": "keyword",
 "ignore_above": 256
 }
 }
 },

Creating a Simple Data API Chapter 9

[243]

There has been an index created, named joblistings, and this result demonstrates the
index structure that Elasticsearch has identified by examining the document.

While Elasticsearch is schema-less, it does examine the documents
submitted and build indexes based upon what it finds.

The specific document that we just stored can be retrieved by using the following8.
curl:

curl localhost:9200/joblistings/job-listing/122517

Which will give us the following result (again, just the beginning of the content9.
shown):

{
 "_index": "joblistings",
 "_type": "job-listing",
 "_id": "122517",
 "_version": 1,
 "found": true,
 "_source": {
 "ID": "122517",
 "JSON": {
 "@context": "http://schema.org",
 "@type": "JobPosting",
 "title": "SpaceX Enterprise Software Engineer, Full Stack",
 "skills": [
 "c#",
 "sql",
 "javascript",
 "asp.net",
 "angularjs"
],
 "description": "<h2>About this job</h2>\r\n<p>Location
options: Paid relocation
Job
type: Permanent
Experience level:
Mid-Level,

And just like that, with two lines of code, we have the document stored in our Elasticsearch
database. Now let's briefly examine how this worked.

Creating a Simple Data API Chapter 9

[244]

How it works
The storing of the document was performed using the following line:

es.index(index='joblistings', doc_type='job-listing', id=job_listing_id,
body=listing)

Let's examine what each of these parameters does relative to storing this document.

The index parameter specifies which Elasticsearch index we want to store the document
within. That is named joblistings. This also becomes the first portion of the URL used to
retrieve the documents.

Each Elasticsearch index can also have multiple document 'types', which are logical
collections of documents that can represent different types of documents within the index.
We used 'job-listing', and that value also forms the second part of our URL for
retrieving a specific document.

Elasticsearch does not require that an indentifier be specified for each document, but if we
provide one we can look up specific documents without having to do a search. We will use
the job listing ID for the document ID.

The final parameter, body, specifies the actual content of the document. This code simply
passed the result received from the scraper.

There's more...
Let's look briefly at a few more facets of what Elasticsearch has done for us by looking at the
results of this document retrieval.

First, we can see the index, document type, and ID in the first few lines of the result:

{
 "_index": "joblistings",
 "_type": "job-listing",
 "_id": "122517",

This makes a retrieval of a document very efficient when using these three values as we did
in this query.

There is also a version stored for each document, which in this case is 1.

 "_version": 1,

Creating a Simple Data API Chapter 9

[245]

If we do this same query with the code remaining as it is, then this document will be stored
again with the same index, doc type, and ID, and hence will have the version incremented.
Trust me, do the curl on the API again, and you will see this increment to 2.

Now examine the content of the first few properties of the "JSON" property. We assigned
this property of the result from the API to be the JSON of the job description returned by
StackOverflow embedded within the HTML.

 "JSON": {
 "@context": "http://schema.org",
 "@type": "JobPosting",
 "title": "SpaceX Enterprise Software Engineer, Full Stack",
 "skills": [
 "c#",
 "sql",
 "javascript",
 "asp.net",
 "angularjs"
],

This is some of the beauty of a web site like StackOverflow giving us structured data, and
with using a tools like Elasticsearch as we get nicely structured data. We can, and will,
leverage this for great effect with very small amounts of code. We can easily perform
queries using Elasticsearch to identify job listing based upon specific skills (we'll do this in
an upcoming recipe), industry, job benefits, and other attributes.

The result of our API also returned a property 'CleanedWords', which was the result of
several of our NLP processes extracting high-value words and terms. The following is an
excerpt of the values that ended up in Elasticsearch:

 "CleanedWords": [
 "job",
 "Location",
 "options",
 "Paid relocation",
 "Job",
 "type",
 "Permanent",
 "Experience",
 "level",

And again, we will be able to use these to perform rich queries that can help us find specific
matches based upon these specific words.

Creating a Simple Data API Chapter 9

[246]

Checking Elasticsearch for a listing before
scraping
Now lets leverage Elasticsearch as a cache by checking to see if we already have stored a job
listing and hence do not need to hit StackOverflow again. We extend the API for
performing a scrape of a job listing to first search Elasticsearch, and if the result is found
there we return that data. Hence, we optimize the process by making Elasticsearch a job
listings cache.

How to do it
We proceed with the recipe as follows:

The code for this recipe is within 09/05/api.py. The JobListing class now has the
following implementation:

class JobListing(Resource):
 def get(self, job_listing_id):
 print("Request for job listing with id: " + job_listing_id)

 es = Elasticsearch()
 if (es.exists(index='joblistings', doc_type='job-listing',
id=job_listing_id)):
 print('Found the document in ElasticSearch')
 doc = es.get(index='joblistings', doc_type='job-listing',
id=job_listing_id)
 return doc['_source']

 listing = get_job_listing_info(job_listing_id)
 es.index(index='joblistings', doc_type='job-listing',
id=job_listing_id, body=listing)

 print("Got the following listing as a response: " + listing)
 return listing

Before calling the scraper code, the API checks to see if the document already exists in
Elasticsearch. This is performed by the appropriately named 'exists' method, which we
pass the index, doc type and ID we are trying to get.

Creating a Simple Data API Chapter 9

[247]

If that returns true, then the document is retrieved using the get method of the
Elasticsearch object, which is also given the same parameters. This returns a Python
dictionary representing the Elasticsearch document, not the actual data that we stored. That
actual data/document is referenced by accessing the '_source' key of the dictionary.

There's more...
The JobListingSkills API implementation follows a slightly different pattern. The
following is its code:

class JobListingSkills(Resource):
 def get(self, job_listing_id):
 print("Request for job listing's skills with id: " +
job_listing_id)

 es = Elasticsearch()
 if (es.exists(index='joblistings', doc_type='job-listing',
id=job_listing_id)):
 print('Found the document in ElasticSearch')
 doc = es.get(index='joblistings', doc_type='job-listing',
id=job_listing_id)
 return doc['_source']['JSON']['skills']

 skills = get_job_listing_skills(job_listing_id)

 print("Got the following skills as a response: " + skills)
 return skills

This implementation only uses ElasticSearch to the extent of checking if the document
already is in ElasticSearch. It does not try to save a newly retrieved document from the
scraper. That is because the result of the get_job_listing scraper is only a list of the
skills and not the entire document. So, this implementation can use the cache, but it adds
no new data. This is one of the design decisions of having different a method for scraping
which returns only a subset of the actual document that is scraped.

A potential solution to this is to have this API method call get_job_listing_info
instead, then save the document, and finally only return the specific subset (in this case the
skills). Again, this is ultimately a design consideration around what types of methods your
users of the sojobs module need. For purposes of these initial recipes, it was considered
better to have two different functions at that level to return the different sets of data.

10
Creating Scraper Microservices

with Docker
In this chapter, we will cover:

Installing Docker
Installing a RabbitMQ container from Docker Hub
Running a Docker container (RabbitMQ)
Stopping and removing a container and image
Creating an API container
Creating a generic microservice with Nameko
Creating a scraping microservice
Creating a scraper container
Creating a backend (ElasticCache) container
Composing and running the scraper containers with Docker Compose

Introduction
In this chapter, we will learn to containerize our scraper, getting it ready for the real world
by starting to package it for real, modern, cloud-enabled operations. This will involve
packaging the different elements of the scraper (API, scraper, backend storage) as Docker
containers that can be run locally or in the cloud. We will also examine implementing the
scraper as a microservice that can be independently scaled.

Creating Scraper Microservices with Docker Chapter 10

[249]

Much of the focus will be upon using Docker to create our containerized scraper. Docker
provides us a convenient and easy means of packaging the various components of the
scraper as a service (the API, the scraper itself, and other backends such as Elasticsearch and
RabbitMQ). By containerizing these components using Docker, we can easily run the
containers locally, orchestrate the different containers making up the services, and also
conveniently publish to Docker Hub. We can then deploy them easily to cloud providers to
create our scraper in the cloud.

One of the great things about Docker (and containers in general) is that we can both easily
install pre-packaged containers without all the fuss of having to get an installer for an
application and deal with all of the configuration hassle. We can then also package our own
software that we wrote into a container, and run that container without having to deal with
all those details. Additionally, we can also publish to a private or public repository to share
our software.

What is really great about Docker is that the containers are, for the most part, platform-
independent. Any Linux-based container can be run on any operating system, including
Windows (which uses VirtualBox underneath to virtualize Linux and is mostly transparent
to the Windows user). So one benefit is that any Linux-based Docker container can be run
on any Docker supported operating system. No more need to create multiple OS versions of
your application!

So let's go and learn a little Docker and put our scraper components into containers.

Installing Docker
In this recipe, we look at how to install Docker and verify that it is running.

Getting ready
Docker is supported on Linux, macOS, and Windows, so it has the major platforms
covered. The installation process for Docker is different depending on the operating system
that you are using, and even differs among the different Linux distributions.

The Docker website has good documentation on the installation processes, so this recipe
will quickly walk through the important points of the installation on macOS. Once the
install is complete, the user experience for Docker, at least from the CLI, is identical.

Creating Scraper Microservices with Docker Chapter 10

[250]

For reference, the main page for installation instructions for Docker is
found at: https:/ /docs. docker. com/ engine/ installation/

How to do it
We will be proceeding with the recipe as follows:

We will be using a variant of Docker known as Docker Community Edition, and1.
walk through the installation on macOS. On the download page for macOS you
will see the following section. Click on the download for the Stable channel,
unless you are feeling brave and want to use the Edge channel.

The docker download page

https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/

Creating Scraper Microservices with Docker Chapter 10

[251]

This will download a Docker.dmg file. Open the DMG and you will be presented2.
with the following window:

The Docker for Mac installer window

Drag Moby the whale into your applications folder. Then open Docker.app. You3.
will be asked to authenticate the installation, so enter your password and the
installation will complete. When that is done, you will see Moby in your status
bar:

The Moby toolbar icon

There are number of configuration settings, statuses, and pieces of information4.
available by clicking on Moby. We will mostly use the command-line tools. To
verify things are working from the command line, open a terminal and enter the
command, docker info. Docker will give you some information on its
configuration and status.

Installing a RabbitMQ container from Docker
Hub
Pre-built containers can be obtained from a number of container repositories. Docker is
preconfigured with connectivity to Docker Hub, where many software vendors, and also
enthusiasts, publish containers with one or more configurations.

Creating Scraper Microservices with Docker Chapter 10

[252]

In this recipe, we will install RabbitMQ, which will be used by another tool we use in
another recipe, Nameko, to function as the messaging bus for our scraping microservice.

Getting ready
Normally, the installation of RabbitMQ is a fairly simple process, but it does require several
installers: one for Erlang, and then one for RabbitMQ itself. If management tools, such as
the web-based administrative GUI are desired, that is yet one more step (albeit a fairly small
one). By using Docker, we can simply get the container with all of this preconfigured. Let's
go do that.

How to do it
We proceed with the recipe as follows:

Containers can be obtained using the docker pull command. This command1.
will check and see if a container is installed locally, and if not, go and fetch it for
us. Try the command from the command line, including the --help flag. You
will get the following, informing you that you need at least one more parameter:
the name and possibly tag for the container:

$ docker pull --help

Usage: docker pull [OPTIONS] NAME[:TAG|@DIGEST]

Pull an image or a repository from a registry

Options:
 -a, --all-tags Download all tagged images in the repository
 --disable-content-trust Skip image verification (default
true)
 --help Print usage

We are going to pull the rabbitmq:3-management container. The portion before2.
the colon is the container name, and the second part is a tag. Tags often represent
a version of the container, or a specific configuration. In this case, we will want to
get the RabbitMQ container with tag 3-management. This tag means we want the
container version with version 3 of RabbitMQ and with the management tools
installed.

Creating Scraper Microservices with Docker Chapter 10

[253]

Before we do this, you might be thinking where this comes from. It comes
from Docker Hub (hub.docker.com), from the RabbitMQ repository. The
page for this repository is at https:/ /hub. docker. com/ _/rabbitmq/ , and will
look like the following:

Page for RabbitMQ repository

Note the section showing tags, and that it has the 3-management tag. If
you scroll down, you will also see a lot more information about the
container and tags, and what they comprise.

Now let's pull this container. Issue the following command from the terminal:3.

$docker pull rabbitmq:3-management

https://hub.docker.com/_/rabbitmq/
https://hub.docker.com/_/rabbitmq/
https://hub.docker.com/_/rabbitmq/
https://hub.docker.com/_/rabbitmq/
https://hub.docker.com/_/rabbitmq/
https://hub.docker.com/_/rabbitmq/
https://hub.docker.com/_/rabbitmq/
https://hub.docker.com/_/rabbitmq/
https://hub.docker.com/_/rabbitmq/
https://hub.docker.com/_/rabbitmq/
https://hub.docker.com/_/rabbitmq/
https://hub.docker.com/_/rabbitmq/
https://hub.docker.com/_/rabbitmq/
https://hub.docker.com/_/rabbitmq/
https://hub.docker.com/_/rabbitmq/
https://hub.docker.com/_/rabbitmq/

Creating Scraper Microservices with Docker Chapter 10

[254]

Docker will go out to Docker Hub and start the download. You'll see this in4.
action with output similar to the following, which will likely run for a few
minutes depending on your download speed:

3-management: Pulling from library/rabbitmq
e7bb522d92ff: Pull complete
ad90649c4d84: Pull complete
5a318b914d6c: Pull complete
cedd60f70052: Pull complete
f4ec28761801: Pull complete
b8fa44aa9074: Pull complete
e3b16d5314a0: Pull complete
7d93dd9659c8: Pull complete
356c2fc6e036: Pull complete
3f52408394ed: Pull complete
7c89a0fb0219: Pull complete
1e37a15bd7aa: Pull complete
9313c22c63d5: Pull complete
c21bcdaa555d: Pull complete
Digest:
sha256:c7466443efc28846bb0829d0f212c1c32e2b03409996cee38be4402726c5
6a26
Status: Downloaded newer image for rabbitmq:3-management

Congratulations! If this is your first time using Docker, you have downloaded your first
container image. You can verify it is downloaded and installed using the docker images
command.

$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
rabbitmq 3-management 6cb6e2f951a8 10 days ago 151MB

Running a Docker container (RabbitMQ)
In this recipe we learn how to run a docker image, thereby making a container.

Getting ready
We will start the RabbitMQ container image that we downloaded in the previous recipe.
This process is representative of how many containers are run, so it makes a good example.

Creating Scraper Microservices with Docker Chapter 10

[255]

How to do it
We proceed with the recipe as follows:

What we have downloaded so far is an image that can be run to create an actual1.
container. A container is an actual instantiation of an image with specific
parameters needed to configure the software in the container. We run the
container by running an image using docker run and passing the image
name/tag, and any other parameters required to run the image (these are specific
to the image and normally can be found on the Docker Hub page for the image).
The specific command we need to run RabbitMQ using this image is the
following:

$ docker run -d -p 15672:15672 -p 5672:5672 rabbitmq:3-management
094a138383764f487e5ad0dab45ff64c08fe8019e5b0da79cfb1c36abec69cc8

docker run tells Docker to run an image in a container. The image we want to2.
run is at the end of the statement: rabbitmq:3-management. The -d option tells
Docker to run the container detached, meaning the output of the container is not
routed to the terminal. This allows us to retain control of the terminal. The -p
option maps a host port to a container port. RabbitMQ uses port 5672 for actual
commands, and port 15672 for the web UI. This maps an identical port on your
actual operating system to the ports used by the software running in the
container.

The big hexidecimal value output is an identifier of the container. The first
portion, 094a13838376, is the container ID created by Docker (this will be
different for every container that is started).

We can check which containers are running using docker ps, which gives us the3.
process status of each container:

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
094a13838376 rabbitmq:3-management "docker-entrypoint..." 5 minutes
ago Up 5 minutes 4369/tcp, 5671/tcp, 0.0.0.0:5672->5672/tcp,
15671/tcp, 25672/tcp, 0.0.0.0:15672->15672/tcp dreamy_easley

Creating Scraper Microservices with Docker Chapter 10

[256]

We can see the container ID and other information such as which image it
is based on, how long it has been up, which ports the container exposes,
the port mappings we defined, and a friendly name made up by Docker
for us to refer to the container.

The real way to check whether this is running is to open the browser and4.
navigate to localhost:15672, the RabbitMQ management UI URL:

The RabbitMQ Admin UI login page

The default username and password for this container is guest:guest. Enter those5.
values and you will see the management UI:

The management UI

Creating Scraper Microservices with Docker Chapter 10

[257]

There's more...
This is actually as far as we will progress with RabbitMQ. In a later recipe, we will use the
Nameko Python microservice framework, which will transparently use RabbitMQ without
our knowledge. We first needed to make sure it was installed and running.

Creating and running an Elasticsearch
container
While we are looking at pulling container images and starting containers, let's go and run
an Elasticsearch container.

How to do it
Like most things Docker, there are a lot of different versions of Elasticsearch containers
available. We will use the official Elasticsearch image available in Elastic's own Docker
repository:

To install the image, enter the following:1.

$docker pull docker.elastic.co/elasticsearch/elasticsearch:6.1.1

Note that we are using another way of specifying the image to pull. Since
this is on Elastic's Docker repository, we include the qualified name that
includes the URL to the container image instead of just the image name.
The :6.1.1 is the tag and specifies a specific version of that image.

You will see some output while this is processing, showing the download2.
process. When it is complete, you will have a few lines letting you know it is
done:

Digest:
sha256:9e6c7d3c370a17736c67b2ac503751702e35a1336724741d00ed9b3d0043
4fcb
Status: Downloaded newer image for
docker.elastic.co/elasticsearch/elasticsearch:6.1.1

Creating Scraper Microservices with Docker Chapter 10

[258]

Now let's check that the images are available for Docker:3.

$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
rabbitmq 3-management 6cb6e2f951a8 12 days ago 151MB
docker.elastic.co/elasticsearch/elasticsearch 6.1.1 06f0d8328d66 2
weeks ago 539MB

Now we can run Elasticsearch with the following Docker command:4.

docker run -e ELASTIC_PASSWORD=MagicWord -p 9200:9200 -p 9300:9300
docker.elastic.co/elasticsearch/elasticsearch:6.1.1

The environment variable, ELASTIC_PASSWORD passes in a password, and the5.
two ports map the host ports to the Elasticsearch ports exposed in the container.
Next, check that the container is running in Docker:6.

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
308a02f0e1a5 docker.elastic.co/elasticsearch/elasticsearch:6.1.1
"/usr/local/bin/do..." 7 seconds ago Up 6 seconds
0.0.0.0:9200->9200/tcp, 0.0.0.0:9300->9300/tcp romantic_kowalevski
094a13838376 rabbitmq:3-management "docker-entrypoint..." 47 hours
ago Up 47 hours 4369/tcp, 5671/tcp, 0.0.0.0:5672->5672/tcp,
15671/tcp, 25672/tcp, 0.0.0.0:15672->15672/tcp dreamy_easley

And finally, perform the following curl. If Elasticsearch is running you will get7.
the You Know, for Search message:

$ curl localhost:9200
{
 "name" : "8LaZfMY",
 "cluster_name" : "docker-cluster",
 "cluster_uuid" : "CFgPERC8TMm5KaBAvuumvg",
 "version" : {
 "number" : "6.1.1",
 "build_hash" : "bd92e7f",
 "build_date" : "2017-12-17T20:23:25.338Z",
 "build_snapshot" : false,
 "lucene_version" : "7.1.0",
 "minimum_wire_compatibility_version" : "5.6.0",
 "minimum_index_compatibility_version" : "5.0.0"
 },
 "tagline" : "You Know, for Search"
}

Creating Scraper Microservices with Docker Chapter 10

[259]

Stopping/restarting a container and
removing the image
Let's look at how to stop and remove a container, and then also its image.

How to do it
We proceed with the recipe as follows:

First query Docker for running containers:1.

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
308a02f0e1a5 docker.elastic.co/elasticsearch/elasticsearch:6.1.1
"/usr/local/bin/do..." 7 seconds ago Up 6 seconds
0.0.0.0:9200->9200/tcp, 0.0.0.0:9300->9300/tcp romantic_kowalevski
094a13838376 rabbitmq:3-management "docker-entrypoint..." 47 hours
ago Up 47 hours 4369/tcp, 5671/tcp, 0.0.0.0:5672->5672/tcp,
15671/tcp, 25672/tcp, 0.0.0.0:15672->15672/tcp dreamy_easley

Let's stop the Elasticsearch container. To stop a container, we use docker stop2.
<container-id>. Elasticsearch has a container ID of 308a02f0e1a5. The
following stops the container

$ docker stop 30
30

To acknowledge the container is stopped, Docker will echo the container ID you told it to
stop

Note that I didn't have to enter the full container ID and only entered 30.
You only have to enter the first digits of the container ID until what you
have entered is unique among all containers. It's a nice shortcut!.

Checking the running container status, Docker only reports the other container:3.

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
094a13838376 rabbitmq:3-management "docker-entrypoint..." 2 days
ago Up 2 days 4369/tcp, 5671/tcp, 0.0.0.0:5672->5672/tcp,
15671/tcp, 25672/tcp, 0.0.0.0:15672->15672/tcp dreamy_easley

Creating Scraper Microservices with Docker Chapter 10

[260]

The container is not running, but it is also not deleted. Let's look at using docker4.
ps -a command:

$ docker ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
308a02f0e1a5 docker.elastic.co/elasticsearch/elasticsearch:6.1.1
"/usr/local/bin/do..." 11 minutes ago Exited (143) 5 minutes ago
romantic_kowalevski
548fc19e8b8d docker.elastic.co/elasticsearch/elasticsearch:6.1.1
"/usr/local/bin/do..." 12 minutes ago Exited (130) 12 minutes ago
competent_keller
15c83ca72108 docker.elastic.co/elasticsearch/elasticsearch:6.1.1
"/usr/local/bin/do..." 15 minutes ago Exited (130) 14 minutes ago
peaceful_jennings
3191f204c661 docker.elastic.co/elasticsearch/elasticsearch:6.1.1
"/usr/local/bin/do..." 18 minutes ago Exited (130) 16 minutes ago
thirsty_hermann
b44f1da7613f docker.elastic.co/elasticsearch/elasticsearch:6.1.1
"/usr/local/bin/do..." 25 minutes ago Exited (130) 19 minutes ago

This lists all containers currently on the system. I actually truncated my
listing by quite a bit as I have a lot of these!

We can restart our Elasticsearch container using docker restart:5.

$ docker restart 30
30

If you check docker ps you will see the container is operational again.6.

This is important as this container is storing the Elasticsearch data within
the file system of the container. By stopping and restarting, this data is not
lost. So, you can stop to reclaim the resources (CPU and memory) used by
the container, and then restart without loss at a later time.

Creating Scraper Microservices with Docker Chapter 10

[261]

Running or stopped, a container takes up disk space. A container can be removed7.
to reclaim disk space. This can be done using docker container rm
<container-id>, however a container can only be removed if it is not
running. Let's try and remove the running container:

$ docker container rm 30
Error response from daemon: You cannot remove a running container
308a02f0e1a52fe8051d1d98fa19f8ac01ff52ec66737029caa07a8358740bce.
Stop the container before attempting removal or force remove

We got a warning about the container running. We can force it with a flag, but it's8.
best to stop it first. Stopping ensures the application inside shuts down cleanly:

$ docker stop 30
30
$ docker rm 30
30

Now if you go back to docker ps -a, the Elasticsearch container is no longer in9.
the list and disk space for the container is reclaimed.

Note that we have now lost any data that was stored in that container! It's
beyond the scope of this book, but most containers can be told to store
data on the host's file system, and therefore we don't lost data.

The disk space for the container has been removed, but the image for the10.
container is still on the disk. That's good if we want to make another container.
But if you also want to free that space, you can use docker images rm
<image-id>. Going back to the Docker images result, we can see the image had
an ID of 06f0d8328d66. The following deletes that image and we get that space
back (in this case 539MB):

$ docker image rm 06
Untagged: docker.elastic.co/elasticsearch/elasticsearch:6.1.1
Untagged:
docker.elastic.co/elasticsearch/elasticsearch@sha256:9e6c7d3c370a17
736c67b2ac503751702e35a1336724741d00ed9b3d00434fcb
Deleted:
sha256:06f0d8328d66a0f620075ee689ddb2f7535c31fb643de6c785deac8ba6db
6a4c
Deleted:
sha256:133d33f65d5a512c5fa8dc9eb8d34693a69bdb1a696006628395b07d5af0
8109

Creating Scraper Microservices with Docker Chapter 10

[262]

Deleted:
sha256:ae2e02ab7e50b5275428840fd68fced2f63c70ca998a493d200416026c68
4a69
Deleted:
sha256:7b6abb7badf2f74f1ee787fe0545025abcffe0bf2020a4e9f30e437a715c
6d6a

And now the image is gone and we have that space reclaimed also.

Note that if there are any containers that have been run off that image that
still exist, then this will fail and those containers can be either running or
stopped. Just doing a docker ps -a may not show the offending
container, so you may have to use docker ps -a to find the stopped
containers and delete them first.

There's more...
At this point you know enough about Docker to become very dangerous! So let's move on
to examining how we can create our own containers with our own applications installed.
First, let's go and look at making the crawler into a microservice that can be run in a
container.

Creating a generic microservice with
Nameko
In the next few recipes, we are going to create a scraper that can be run as a microservice
within a Docker container. But before jumping right into the fire, let's first look at creating a
basic microservice using a Python framework known as Nameko.

Getting ready
We will use a Python framework known as Nameko (pronounced [nah-meh-koh] to
implement microservices. As with Flask-RESTful, a microservice implemented with
Nameko is simply a class. We will instruct Nameko how to run the class as a service, and
Nameko will wire up a messaging bus implementation to allow clients to communicate
with the actual microservice.

Creating Scraper Microservices with Docker Chapter 10

[263]

Nameko, by default, uses RabbitMQ as a messaging bus. RabbitMQ is a high-performance
messaging bus that is great for performing the type of messaging service used between
microservices. It's a similar model to what we saw earlier with SQS, but designed more for
services located in the same data center instead of across that cloud. That's actually a great
use for RabbitMQ, as we tend to cluster/scale microservices in the same environment these
days, particularly within a containerized cluster such as Docker or Kubernetes.

Therefore, we will need to have a local instance of RabbitMQ running. Make sure that you
have a RabbitMQ container running as show in the earlier recipe.

Also make sure you have Nameko installed:

pip install Nameko

How to do it
We proceed with the recipe as follows:

The sample microservice is implemented in 10/01/hello_microservice.py. 1.
This is a very simple service that can be passed a name for which the
microservice replies Hello, <name>!.
To run the microservice, we need to simply execute the following command from2.
the terminal (while in the directory for the script):

$nameko run hello_microservice

Nameko opens the Python file matching the specified microservices name and3.
starts up the microservice. When starting, we will see a few lines of output:

starting services: hello_microservice
Connected to amqp://guest:**@127.0.0.1:5672//

This states that Nameko has found our microservice, and that it has connected to4.
an AMQP server (RabbitMQ) on port 5672 (RabbitMQ's default port). The
microservice is now up and running and awaiting requests.

If you go into the RabbitMQ API and go into the queues tab, you will see
that Nameko has automatically created a queue for the microservice.

Creating Scraper Microservices with Docker Chapter 10

[264]

Now we have to do something to make a request of the microservice. We will5.
look at two ways of doing this. First, Nameko comes with an interactive shell that
lets us interactively make requests to Nameko microservices. You can start the
shell with the following command in a separate terminal window to the one
running the microservice:

nameko shell

You will see an interactive Python session start, with output similar to the6.
following:

Nameko Python 3.6.1 |Anaconda custom (x86_64)| (default, Mar 22
2017, 19:25:17)
[GCC 4.2.1 Compatible Apple LLVM 6.0 (clang-600.0.57)] shell on
darwin
Broker: pyamqp://guest:guest@localhost
In [1]:

In this shell, we can simply refer to Nameko as 'n'. To talk to our service we issue7.
the following statement:

n.rpc.hello_microservice.hello(name='Mike')

This tells Nameko that we want to make an rpc call to the hello method of8.
hello_microservice. When pressing Enter you will get the following result
back:

Out[1]: 'Hello, Mike!'

If you check in the terminal window running the service you should see an9.
additional line of output:

Received a request from: Mike

It is also possible to call the microservice from within Python code. There is an10.
implementation of this available in 10/01/say_hi.py. Executing this script with
Python has the following output:

$python say_hi.py
Hello, Micro-service Client!

So let's go and see how these are implemented.

Creating Scraper Microservices with Docker Chapter 10

[265]

How it works
Let's first look at the implementation of the microservice in hello_microservice.py.
There really isn't a lot of code, so here it all is:

from nameko.rpc import rpc

class HelloMicroService:
 name = "hello_microservice"

 @rpc
 def hello(self, name):
 print('Received a request from: ' + name)
 return "Hello, {}!".format(name)

There are two thing to point out about this class. The first is the declaration of name =
"hello_microservice". This is a declaration of the actual name of the microservice. This
member variable is used instead of the class name.

The second is the use of the @rpc attribute on the hello method. This is a Nameko attribute
that specifies that this method should be exposed as an rpc style method by the
microservice. Hence, the caller is suspended until the reply is received from the
microservice. There are other implementations, but for our purposes this is the only one we
will use.

When run with the nameko run command, that module will interrogate the file for methods
with Nameko attributes and wire them up to the underlying bus.

The implementation in say_hi.py constructs a dynamic proxy that can call the service. The
code for that is the following:

from nameko.standalone.rpc import ClusterRpcProxy

CONFIG = {'AMQP_URI': "amqp://guest:guest@localhost"}

with ClusterRpcProxy(CONFIG) as rpc:
 result = rpc.hello_microservice.hello("Micro-service Client")
 print(result)

The dynamic proxy is implemented by the ClusterRpcProxy class. When creating the
class, we pass it a configuration object, which in this case specifies the address of the AMQP
server that the service is located on, and we refer to this instance as the variable rpc.
Nameko then dynamically identifies the next portion, .hello_microservice, as the name
of the microservice (as specified earlier with the name field on the microservice class).

Creating Scraper Microservices with Docker Chapter 10

[266]

The next section, .hello then represents the method to call. Combined together, Nameko
makes a call to the hello method of hello_microservice, passing it the specified string,
and since this is an RPC proxy, waits until the reply is received.

Remote procedure calls, RPC for short, block until the result comes back
from the other system. In contrast with a publish model, where the
message is sent off and the sending app continues along.

There's more...
There is quite a lot of good stuff in Nameko that we have not even seen. One very useful
factor is that Nameko runs listeners for multiple instances of your microservice. The default
at the time of writing is 10. Under the covers, Nameko sends requests from the clients of the
microservice to a RabbitMQ queue, of which there will be 10 simultaneous request
processors listening to that queue. If there are too many requests to be handled at once,
RabbitMQ will hold the message until Nameko recycles an existing microservice instance to
process the queued message. To increase the scalability of the microservice, we can simply
increase the number of workers through the configuration of the microservice, or run a
separate Nameko microservice container in another Docker container or on another
computer system.

Creating a scraping microservice
Now let's take our scraper and make it into a Nameko microservice. This scraper
microservice will be able to be run independently of the implementation of the API. This
will allow the scraper to be operated, maintained, and scaled independently of the API's
implementation.

How to do it
We proceed with the recipe as follows:

The code for the microservice is straightforward. The code for it is in1.
10/02/call_scraper_microservice.py and is shown here:

from nameko.rpc import rpc
import sojobs.scraping

Creating Scraper Microservices with Docker Chapter 10

[267]

class ScrapeStackOverflowJobListingsMicroService:
 name = "stack_overflow_job_listings_scraping_microservice"

 @rpc
 def get_job_listing_info(self, job_listing_id):
 listing =
sojobs.scraping.get_job_listing_info(job_listing_id)
 print(listing)
 return listing

if __name__ == "__main__":
 print(ScrapeStackOverflowJobListingsMicroService("122517"))

We have created a class to implement the microservice and given it a single2.
method, get_job_listing_info. This method simply wraps the
implementation in the sojobs.scraping module, but gives it an @rpc attribute
so that Nameko exposes that method on the microservice bus. This can be run by
opening a terminal and running the service with Nameko:

$ nameko run scraper_microservice
 starting services:
stack_overflow_job_listings_scraping_microservice
 Connected to amqp://guest:**@127.0.0.1:5672//

Now we can run the scraper with the code in the3.
10/02/call_scraper_microservice.py script. The code in the files is the
following:

from nameko.standalone.rpc import ClusterRpcProxy

CONFIG = {'AMQP_URI': "amqp://guest:guest@localhost"}

with ClusterRpcProxy(CONFIG) as rpc:
 result =
rpc.stack_overflow_job_listings_scraping_microservice.get_job_listi
ng_info("122517")
 print(result)

Creating Scraper Microservices with Docker Chapter 10

[268]

It's basically the same as the code for the client in the previous recipe, but4.
changing the microservice and method names, and of course passing the specific
job listing ID. When run, you will see the following output (truncated):

{"ID": "122517", "JSON": {"@context": "http://schema.org", "@type":
"JobPosting", "title": "SpaceX Enterprise Software Engineer, Full
Stack", "skills": ["c#", "sql", "javascript", "asp.net",
"angularjs"],

...

And just like that, we have created a microservice to get job listings from5.
StackOverflow!

There's more...
This microservice is only callable using the ClusterRpcProxy class and is not open to
being called by anyone on the internet or even locally using REST. We'll solve this issue in
an upcoming recipe, where we create a REST API in a container that will talk to this
microservice, which will be running in another container.

Creating a scraper container
Now we create a container for our scraper microservice. We will learn about Dockerfiles
and how to instruct Docker on how to build a container. We will also examine giving our
Docker container hostnames so that they can find each other through Docker's integrated
DNS system. Last but not least, we will learn how to configure our Nameko microservice to
talk to RabbitMQ in another container instead of just on localhost.

Getting ready
The first thing we want to do is make sure that RabbitMQ is running in a container and
assigned to a custom Docker network, where various containers connected to that network
will talk to each other. Among many other features, it also provides software defined
network (SDN) capabilities to provide various types of integration between containers,
hosts, and other systems.

Creating Scraper Microservices with Docker Chapter 10

[269]

Docker comes with several predefined networks built. You can see the networks currently
installed by using the docker network ls command:

$ docker network ls
NETWORK ID NAME DRIVER SCOPE
bc3bed092eff bridge bridge local
26022f784cc1 docker_gwbridge bridge local
448d8ce7f441 dockercompose2942991694582470787_default bridge local
4e549ce87572 dockerelkxpack_elk bridge local
ad399a431801 host host local
rbultxlnlhfb ingress overlay swarm
389586bebcf2 none null local
806ff3ec2421 stackdockermaster_stack bridge local

To get our containers to communicate with each other, let's create a new bridge network
named scraper-net.

$ docker network create --driver bridge scraper-net
e4ea1c48395a60f44ec580c2bde7959641c4e1942cea5db7065189a1249cd4f1

Now when we start a container, we attach it to scraper-net using the --network
parameter:

$docker run -d --name rabbitmq --network scrape-rnet -p 15672:15672 -p
5672:5672 rabbitmq:3-management

This container is now connected to both the scraper-net network and to the host network.
Because it is also connected to host, it is still possible to connect to it from the host system.

Note also that we used --name rabbitmq as an option. This gives this container the name,
rabbitmq , but Docker will also resolve DNS queries from other containers attached to
scraper-net so that they can find this container!

Now let's go and put the scraper in a container.

Creating Scraper Microservices with Docker Chapter 10

[270]

How to do it
We proceed with the recipe as follows:

The way that we create a container is by creating a dockerfile and then using1.
that to tell Docker to create a container. I've included a Dockerfile in the
10/03 folder. The contents are the following (we will examine what this means in
the How it works section):

FROM python:3
WORKDIR /usr/src/app

RUN pip install nameko BeautifulSoup4 nltk lxml
RUN python -m nltk.downloader punkt -d /usr/share/nltk_data all

COPY 10/02/scraper_microservice.py .
COPY modules/sojobs sojobs

CMD ["nameko", "run", "--broker", "amqp://guest:guest@rabbitmq",
"scraper_microservice"]

To create an image/container from this Dockerfile, from a terminal, and within2.
the 10/03 folder, run the following command:

$docker build ../.. -f Dockerfile -t scraping-microservice

This tells Docker that we want to build a container based upon the instructions in3.
the given Dockerfile (specified with -f). The image that is created is specified by
-t scraping-microservice. The ../.. after build specifies the context of the
build. When building, we will copy files into the container. This context specifies
the home directory that copies are relative to. When you run this command, you
will see output similar to the following:

Sending build context to Docker daemon 2.128MB
Step 1/8 : FROM python:3
 ---> c1e459c00dc3
Step 2/8 : WORKDIR /usr/src/app
 ---> Using cache
 ---> bf047017017b
Step 3/8 : RUN pip install nameko BeautifulSoup4 nltk lxml
 ---> Using cache
 ---> a30ce09e2f66
Step 4/8 : RUN python -m nltk.downloader punkt -d
/usr/share/nltk_data all
 ---> Using cache

Creating Scraper Microservices with Docker Chapter 10

[271]

 ---> 108b063908f5
Step 5/8 : COPY 10/07/. .
 ---> Using cache
 ---> 800a205d5283
Step 6/8 : COPY modules/sojobs sojobs
 ---> Using cache
 ---> 241add5458a5
Step 7/8 : EXPOSE 5672
 ---> Using cache
 ---> a9be801d87af
Step 8/8 : CMD nameko run --broker amqp://guest:guest@rabbitmq
scraper_microservice
 ---> Using cache
 ---> 0e1409911ac9
Successfully built 0e1409911ac9
Successfully tagged scraping-microservice:latest

This will likely take a while as the build process needs to download all of the4.
NLTK files into the container. To check that the image is created we can run the
following command:

$ docker images | head -n 2
REPOSITORY TAG IMAGE ID CREATED SIZE
scraping-microservice latest 0e1409911ac9 3 hours ago 4.16GB

Note that this container is 4.16GB in size. This image is based on the Python:35.
container, which can be seen to be 692MB in size:

$ docker images | grep python
 python 3 c1e459c00dc3 2 weeks ago 692MB

Most of the size of this container is because of the inclusion of the NTLK
data files.

We can now run this image as a container using the following command:6.

03 $ docker run --network scraper-net scraping-microservice
starting services:
stack_overflow_job_listings_scraping_microservice
Connected to amqp://guest:**@rabbitmq:5672//

The scraper that we put together is now running in this container, and this output shows
that it has connected to an AMQP server located on a system named rabbitmq.

Creating Scraper Microservices with Docker Chapter 10

[272]

Now let's test that this is working. In another terminal window run the Nameko7.
shell:

03 $ nameko shell
Nameko Python 3.6.1 |Anaconda custom (x86_64)| (default, Mar 22
2017, 19:25:17)
[GCC 4.2.1 Compatible Apple LLVM 6.0 (clang-600.0.57)] shell on
darwin
Broker: pyamqp://guest:guest@localhost
In [1]:

Now, enter the following in the prompt to call the microservice:8.

n.rpc.stack_overflow_job_listings_scraping_microservice.get_job_lis
ting_info("122517")

You will see quite a bit of output as a result of the scrape (the following is9.
truncated):

Out[1]: '{"ID": "122517", "JSON": {"@context": "http://schema.org",
"@type": "JobPosting", "title": "SpaceX Enterprise Software
Engineer, Full Stack", "skills": ["c#", "sql", "javascript",
"asp.net"

Congratulations! We now have successfully called our scraper microservice. Now, let's
discuss how this works, and how the Dockerfile constructed the Docker image for the
microservice.

How it works
Let's first discuss the Dockerfile by walking through what it told Docker to do during the
build process. The first line:

FROM python:3

This informs Docker that we want to build our container image based on the Python:3
image found on Docker Hub. This is a prebuilt Linux image with Python 3 installed. The
next line informs Docker that we want all of our file operations to be relative to
the /usr/src/app folder.

WORKDIR /usr/src/app

Creating Scraper Microservices with Docker Chapter 10

[273]

At this point in building the image we have a base Python 3 install in place. We need to
then install the various libraries that our scraper uses, so the following tells Docker to run
pip to install them:

RUN pip install nameko BeautifulSoup4 nltk lxml

We also need to install the NLTK data files:

RUN python -m nltk.downloader punkt -d /usr/share/nltk_data all

Next, we copy in the implementation of our scraper. The following copies the
scraper_microservice.py file from the previous recipe's folder into the container image.

COPY 10/02/scraper_microservice.py .

This also depends on the sojobs module, so we copy that also:

COPY modules/sojobs sojobs

The final line informs Docker of the command to run when the container is started:

CMD ["nameko", "run", "--broker", "amqp://guest:guest@rabbitmq",
"scraper_microservice"]

This tells Nameko to run the microservices in scraper_microservice.py, and to also talk
to the RabbitMQ message broker located on a system with the name, rabbitmq. Since we
attached our scraper container to the scraper-net network, and also did the same for the
RabbitMQ container, Docker connects these two up for us!

Finally, we ran the Nameko shell from the Docker host system. When it started, it reported
that it would communicate with the AMQP server (RabbitMQ)
at pyamqp://guest:guest@localhost. When we executed the command in the shell, the
Nameko shell sent that message to localhost.

So how does it talk to the RabbitMQ instance in that container? When we started the
RabbitMQ container, we told it to connect to the scraper-net network. It is still also
connected to the host network, so we can still talk to the RabbitMQ broker as long as we
mapped the 5672 port when we started it.

Our microservice in the other container is listening for messages in the RabbitMQ container,
and then responds to that container, which is then picked up by the Nameko shell. Isn't that
cool?

Creating Scraper Microservices with Docker Chapter 10

[274]

Creating an API container
At this point, we can only talk to our microservice using AMQP, or by using the Nameko
shell or a Nameko ClusterRPCProxy class. So let's put our Flask-RESTful API into another
container, run that alongside the other containers, and make REST calls. This will also
require that we run an Elasticsearch container, as that API code also communicates with
Elasticsearch.

Getting ready
First let's start up Elasticsearch in a container that is attached to the scraper-net network.
We can kick that off with the following command:

$ docker run -e ELASTIC_PASSWORD=MagicWord --name=elastic --network
scraper-net -p 9200:9200 -p 9300:9300
docker.elastic.co/elasticsearch/elasticsearch:6.1.1

Elasticsearch is now up and running on our scarper-net network. It can be reached by
apps in other containers using the name elastic. Now let's move onto creating the container
for the API.

How to do it
We proceed with the recipe as follows:

In the 10/04 folder is an api.py file that implements a modified Flask-RESTful1.
API from earlier, but with several modifications. Let's examine the code of the
API:

from flask import Flask
from flask_restful import Resource, Api
from elasticsearch import Elasticsearch
from nameko.standalone.rpc import ClusterRpcProxy

app = Flask(__name__)
api = Api(app)

CONFIG = {'AMQP_URI': "amqp://guest:guest@rabbitmq"}

class JobListing(Resource):
 def get(self, job_listing_id):
 print("Request for job listing with id: " + job_listing_id)

Creating Scraper Microservices with Docker Chapter 10

[275]

 es = Elasticsearch(hosts=["elastic"])
 if (es.exists(index='joblistings', doc_type='job-listing',
id=job_listing_id)):
 print('Found the document in Elasticsearch')
 doc = es.get(index='joblistings', doc_type='job-
listing', id=job_listing_id)
 return doc['_source']

 print('Not found in Elasticsearch, trying a scrape')
 with ClusterRpcProxy(CONFIG) as rpc:
 listing =
rpc.stack_overflow_job_listings_scraping_microservice.get_job_listi
ng_info(job_listing_id)
 print("Microservice returned with a result - storing in
Elasticsearch")
 es.index(index='joblistings', doc_type='job-listing',
id=job_listing_id, body=listing)
 return listing

api.add_resource(JobListing, '/',
'/joblisting/<string:job_listing_id>')

if __name__ == '__main__':
 print("Starting the job listing API ...")
 app.run(host='0.0.0.0', port=8080, debug=True)

The first change is that there is only one method on the API. We'll focus on the2.
JobListing method for now. Within that method, we now make the following
call to create the Elasticsearch object:

es = Elasticsearch(hosts=["elastic"])

The default constructor assumes that the Elasticsearch server is on localhost. This3.
change now points to the host with the name elastic on our scraper-net network.
The second change is the removal of the calls to the functions in the sojobs4.
module. Instead, we use a Nameko ClusterRpcProxy object to make the call to
the scraper microservice running within our scraper container. This object is
passed a configuration that points the RPC proxy to the rabbitmq container.
The final change is to the startup of the Flask application:5.

 app.run(host='0.0.0.0', port=8080, debug=True)

Creating Scraper Microservices with Docker Chapter 10

[276]

The default connects to localhost, or 127.0.0.1. Within a container, this doesn't6.
bind to our scraper-net network or even on the host network. Using 0.0.0.0
binds the service to all network interfaces, and hence we can communicate with it
via port mapping on the container. The port has also been moved to 8080, a more
common port for REST APIs than 5000.
With the API modified to run within a container, and to talk to the scraper7.
microservice, we can now construct the container. In the 10/04 folder is a
Dockerfile to configure the container. Its content is the following:

FROM python:3
WORKDIR /usr/src/app

RUN pip install Flask-RESTful Elasticsearch Nameko

COPY 10/04/api.py .

CMD ["python", "api.py"]

This is simpler than the Dockerfile for the previous container. This
container doesn't have all the weight of NTLK. Finally, the startup simply
executes the api.py files.

The container is built using the following:8.

$docker build ../.. -f Dockerfile -t scraper-rest-api

And then we can run the container using the following:9.

$docker run -d -p 8080:8080 --network scraper-net scraper-rest-api

Let's now check that all of our containers are running:10.

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
55e438b4afcd scraper-rest-api "python -u api.py" 46 seconds ago Up
45 seconds 0.0.0.0:8080->8080/tcp vibrant_sammet
bb8aac5b7518 docker.elastic.co/elasticsearch/elasticsearch:6.1.1
"/usr/local/bin/do..." 3 hours ago Up 3 hours
0.0.0.0:9200->9200/tcp, 0.0.0.0:9300->9300/tcp elastic
ac4f51c1abdc scraping-microservice "nameko run --brok..." 3 hours
ago Up 3 hours thirsty_ritchie
18c2f01f58c7 rabbitmq:3-management "docker-entrypoint..." 3 hours
ago Up 3 hours 4369/tcp, 5671/tcp, 0.0.0.0:5672->5672/tcp,
15671/tcp, 25672/tcp, 0.0.0.0:15672->15672/tcp rabbitmq

Creating Scraper Microservices with Docker Chapter 10

[277]

Now, from the terminal on the host we can issue a curl to the REST endpoint11.
(output truncated):

$ curl localhost:8080/joblisting/122517
"{\"ID\": \"122517\", \"JSON\": {\"@context\":
\"http://schema.org\", \"@type\": \"JobPosting\", \"title\":
\"SpaceX Enterprise Software Engineer, Full Stack\", \"skills\":
[\"c#\", \"sql\", \"javas

And there we have it. We have containerized the API and the functionality, and also run
RabbitMQ and Elasticsearch in containers.

There's more...
This type of containerization is a great boon to the design and deployment of operations but
still, we needed to create a number of Dockerfiles, containers, and a network to connect
them, and run them all independently. Fortunately, we can simplify this with docker-
compose. We'll see this in the next recipe.

Composing and running the scraper locally
with docker-compose
Compose is a tool for defining and running multi-container Docker applications. With
Compose, you use a YAML file to configure your application’s services. Then, with a single
command and a simple configuration file, you create and start all the services from your
configuration.

Getting ready
The first thing that needs to be done to use Compose is to make sure it is installed. Compose
is automatically installed with Docker for macOS. On other platforms, it may or not be
installed. You can find the instructions at the following URL: https:/ /docs. docker. com/
compose/install/ #prerequisites.

Also, make sure all of the existing containers that we created earlier are not running, as we
will create new ones.

https://docs.docker.com/compose/install/#prerequisites
https://docs.docker.com/compose/install/#prerequisites
https://docs.docker.com/compose/install/#prerequisites
https://docs.docker.com/compose/install/#prerequisites
https://docs.docker.com/compose/install/#prerequisites
https://docs.docker.com/compose/install/#prerequisites
https://docs.docker.com/compose/install/#prerequisites
https://docs.docker.com/compose/install/#prerequisites
https://docs.docker.com/compose/install/#prerequisites
https://docs.docker.com/compose/install/#prerequisites
https://docs.docker.com/compose/install/#prerequisites
https://docs.docker.com/compose/install/#prerequisites
https://docs.docker.com/compose/install/#prerequisites
https://docs.docker.com/compose/install/#prerequisites

Creating Scraper Microservices with Docker Chapter 10

[278]

How to do it
We proceed with the recipe as follows:

Docker Compose uses a docker-compose.yml file that tells Docker how to1.
compose containers as services. In the 10/05 folder there is a docker-
compose.yml file to start up all the parts of our scraper as a service. The
following is the file's contents:

version: '3'
services:
 api:
 image: scraper-rest-api
 ports:
 - "8080:8080"
 networks:
 - scraper-compose-net

 scraper:
 image: scraping-microservice
 depends_on:
 - rabbitmq
 networks:
 - scraper-compose-net

 elastic:
 image: docker.elastic.co/elasticsearch/elasticsearch:6.1.1
 ports:
 - "9200:9200"
 - "9300:9300"
 networks:
 - scraper-compose-net

 rabbitmq:
 image: rabbitmq:3-management
 ports:
 - "15672:15672"
 networks:
 - scraper-compose-net

networks:
 scraper-compose-net:
 driver: bridge

Creating Scraper Microservices with Docker Chapter 10

[279]

With Docker Compose we move away from thinking in terms of containers
and toward working with services. In this file, we described four services
(api, scraper, elastic, and rabbitmq) and how they are created. The image tag
for each tells Compose which Docker image to use for that service. If we need
to map ports, then we can use the ports tag. The network tag specifies a
network to connect the service to, in this case the network is also declared in
the file to be a bridged network. One last thing to point out is the use of the
depends_on tag for the scraper service. This service requires the rabbitmq
service to be running beforehand, and this tells docker compose to make sure
that this happens in the specified sequence.

Now to bring everything up, open a terminal and from that folder run the2.
following command:

 $ docker-compose up

There will be pause while Compose reads the configuration and figures out what3.
to do, and then there will be quite a bit of output as every container's output will
be streamed into this one console. At the beginning of the output you will see
something similar to the following:

Starting 10_api_1 ...
 Recreating elastic ...
 Starting rabbitmq ...
 Starting rabbitmq
 Recreating elastic
 Starting rabbitmq ... done
 Starting 10_scraper_1 ...
 Recreating elastic ... done
 Attaching to rabbitmq, 10_api_1, 10_scraper_1, 10_elastic_1

In another terminal, you can issue a docker ps to see the containers that have4.
started:

$ docker ps
 CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
 2ed0d456ffa0 docker.elastic.co/elasticsearch/elasticsearch:6.1.1
"/usr/local/bin/do..." 3 minutes ago Up 2 minutes
0.0.0.0:9200->9200/tcp, 0.0.0.0:9300->9300/tcp 10_elastic_1
 8395989fac8d scraping-microservice "nameko run --brok..." 26
minutes ago Up 3 minutes 10_scraper_1
 4e9fe8479db5 rabbitmq:3-management "docker-entrypoint..." 26
minutes ago Up 3 minutes 4369/tcp, 5671-5672/tcp, 15671/tcp,
25672/tcp, 0.0.0.0:15672->15672/tcp rabbitmq
 0b0df48a7201 scraper-rest-api "python -u api.py" 26 minutes ago Up

Creating Scraper Microservices with Docker Chapter 10

[280]

3 minutes 0.0.0.0:8080->8080/tcp 10_api_1

Note the names of the service containers. They are wrapped with two
different identifiers. The prefix is simply the folder that the composition is
run from, in this case 10 (for a '10_' prefix). You can change this using the -
p option to docker-compose up to specify something different. The trailing
number is the instance number of the container for that service. In this
scenario, we only started one container per service, so these are all _1 at
this point. In a little while, we will see this change when we do scaling.

You might ask then: if my service is named rabbitmq, and Docker creates a container with
the name 10_rabbitmq_1, how does the microservice, which uses rabbitmq as a
hostname, still connect to the RabbitMQ instance? Docker Compose has you covered in this
situation, as it knows that rabbitmq needs to be translated to 10_rabbitmq_1. Nice!

As part of bringing this environment up, Compose has also created the specified5.
network:

$ docker network ls | head -n 2
 NETWORK ID NAME DRIVER SCOPE
 0e27be3e30f2 10_scraper-compose-net bridge local

If we didn't specify a network, then Compose would have made a default
network and wired everything to that. In this case that would work fine.
But in more complicated scenarios this default may not be correct.

Now, at this point everything is up and running. Let's check things are working6.
well by making a call to the REST scraping API:

$ curl localhost:8080/joblisting/122517
 "{\"ID\": \"122517\", \"JSON\": {\"@context\":
\"http://schema.org\", \"@type\": \"JobPosting\", \"title\":
\"SpaceX Enterprise Software Engineer, Full Stack\", \"
...

And let's also check that Elasticsearch is running by examining the index for the7.
job listings now that we have requested one:

$ curl localhost:9200/joblisting
{"error":{"root_cause":[{"type":"index_not_found_exception","reason
":"no such
index","resource.type":"index_or_alias","resource.id":"joblisting",
"index_uuid":"_na_","index":"j
...

Creating Scraper Microservices with Docker Chapter 10

[281]

We can also use docker-compose to scale the services. If we want to add more8.
microservice containers to increase the amount of requests that can be handled,
we can tell Compose to increase the number of scraper service containers. The
following increases the number of scraper containers to 3:

docker-compose up --scale scraper=3

Compose will go and think about this request for a bit and then emit the9.
following, stating that it is starting up two more scraper service containers (and
this will be followed with a lot of output from those containers initializing):

10_api_1 is up-to-date
10_elastic_1 is up-to-date
10_rabbitmq_1 is up-to-date
Starting 10_scraper_1 ... done
Creating 10_scraper_2 ...
Creating 10_scraper_3 ...
Creating 10_scraper_2 ... done
Creating 10_scraper_3 ... done
Attaching to 10_api_1, 10_elastic_1, 10_rabbitmq_1, 10_scraper_1,
10_scraper_3, 10_scraper_2

A docker ps will now show three scraper containers running:10.

Michaels-iMac-2:09 michaelheydt$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
b9c2da0c9008 scraping-microservice "nameko run --brok..." About a
minute ago Up About a minute 10_scraper_2
643221f85364 scraping-microservice "nameko run --brok..." About a
minute ago Up About a minute 10_scraper_3
73dc31fb3d92 scraping-microservice "nameko run --brok..." 6 minutes
ago Up 6 minutes 10_scraper_1
5dd0db072483 scraper-rest-api "python api.py" 7 minutes ago Up 7
minutes 0.0.0.0:8080->8080/tcp 10_api_1
d8e25b6ce69a rabbitmq:3-management "docker-entrypoint..." 7 minutes
ago Up 7 minutes 4369/tcp, 5671-5672/tcp, 15671/tcp, 25672/tcp,
0.0.0.0:15672->15672/tcp 10_rabbitmq_1
f305f81ae2a3 docker.elastic.co/elasticsearch/elasticsearch:6.1.1
"/usr/local/bin/do..." 7 minutes ago Up 7 minutes
0.0.0.0:9200->9200/tcp, 0.0.0.0:9300->9300/tcp 10_elastic_1

Creating Scraper Microservices with Docker Chapter 10

[282]

Now we can see that we have three containers named 10_scraper_1,11.
10_scraper_2, and 10_scraper_3. Cool! And if you go into the RabbitMQ
admin UI, you can see that there are three connections:

The Nameko queues in RabbitMQ

Note that each has a different IP address. On a bridged network like the
one we have created, Compose allocates the IP addresses on the 172.23.0
network, starting at .2.

Operationally, all incoming scraping requests from the API will be routed to the rabbitmq
container, and the actual RabbitMQ service would then spread the messages across all of
the active connections and hence across all three containers, helping us to scale out
processing.

Service instances can also be scaled down by issuing a scale value with a smaller number of
containers, which Compose will respond to by removing containers until the value is
achieved.

Creating Scraper Microservices with Docker Chapter 10

[283]

And when we are all done, we can tell Docker Compose to bring everything down:

$ docker-compose down
Stopping 10_scraper_1 ... done
Stopping 10_rabbitmq_1 ... done
Stopping 10_api_1 ... done
Stopping 10_elastic_1 ... done
Removing 10_scraper_1 ... done
Removing 10_rabbitmq_1 ... done
Removing 10_api_1 ... done
Removing 10_elastic_1 ... done
Removing network 10_scraper-compose-net

Executing a docker ps will now show that all of the containers have been removed.

There's more...
We have barely touched many of the capabilities of Docker and Docker Compose, and we
have not even yet got into looking at using services such as Docker swarm. While docker
Compose is convenient, it only runs the containers on a single host, which ultimately has
scalability limitations. Docker swarm will perform similar things to Docker Compose, but
work that magic across multiple systems within a cluster, allowing much greater scalability.
But hopefully this has given you a feel for the value of Docker and Docker Compose, and
how they can be of value when creating a flexible scraping service.

11
Making the Scraper as a

Service Real
In this chapter, we will cover:

Creating and configuring an Elastic Cloud trial account
Accessing the Elastic Cloud cluster with curl
Connecting to the Elastic Cloud cluster with Python
Performing an Elasticsearch query with the Python API
Using Elasticsearch to query for jobs with specific skills
Modifying the API to search for jobs by skill
Storing configuration in the environment
Creating an AWS IAM user and a key pair for ECS
Configuring Docker to authenticate with ECR
Pushing containers into ECR
Creating an ECS cluster
Creating a task to run our containers
Starting and accessing the containers in AWS

Making the Scraper as a Service Real Chapter 11

[285]

Introduction
In this chapter, we will first add a feature to search job listings using Elasticsearch and
extend the API for this capability. Then will move Elasticsearch functions to Elastic Cloud, a
first step in cloud-enabling our cloud based scraper. Then, we will move our Docker
containers to Amazon Elastic Container Repository (ECR), and finally run our containers
(and scraper) in Amazon Elastic Container Service (ECS).

Creating and configuring an Elastic Cloud
trial account
In this recipe we will create and configure an Elastic Cloud trial account so that we can use
Elasticsearch as a hosted service. Elastic Cloud is a cloud service offered by the creators of
Elasticsearch, and provides a completely managed implementation of Elasticsearch.

While we have examined putting Elasticsearch in a Docker container,
actually running a container with Elasticsearch within AWS is very
difficult due to a number of memory requirements and other system
configurations that are complicated to get working within ECS. Therefore,
for a cloud solution, we will use Elastic Cloud.

Making the Scraper as a Service Real Chapter 11

[286]

How to do it
We'll proceed with the recipe as follows:

Open your browser and navigate to https:/ /www. elastic. co/cloud/ as- a-1.
service/ signup. You will see a page similar to the following:

The Elastic Cloud signup page

https://www.elastic.co/cloud/as-a-service/signup
https://www.elastic.co/cloud/as-a-service/signup
https://www.elastic.co/cloud/as-a-service/signup
https://www.elastic.co/cloud/as-a-service/signup
https://www.elastic.co/cloud/as-a-service/signup
https://www.elastic.co/cloud/as-a-service/signup
https://www.elastic.co/cloud/as-a-service/signup
https://www.elastic.co/cloud/as-a-service/signup
https://www.elastic.co/cloud/as-a-service/signup
https://www.elastic.co/cloud/as-a-service/signup
https://www.elastic.co/cloud/as-a-service/signup
https://www.elastic.co/cloud/as-a-service/signup
https://www.elastic.co/cloud/as-a-service/signup
https://www.elastic.co/cloud/as-a-service/signup
https://www.elastic.co/cloud/as-a-service/signup
https://www.elastic.co/cloud/as-a-service/signup
https://www.elastic.co/cloud/as-a-service/signup
https://www.elastic.co/cloud/as-a-service/signup

Making the Scraper as a Service Real Chapter 11

[287]

Enter your email and press the Start Free Trial button. When the email arrives,2.
verify yourself. You will be taken to a page to create your cluster:

Cluster creation page

Making the Scraper as a Service Real Chapter 11

[288]

I'll be using AWS (not Google) in the Oregon (us-west-2) region in other3.
examples, so I'll pick both of those for this cluster. You can pick a cloud and
region that works for you. You can leave the other options as it is, and just press
create. You will then be presented with your username and password. Jot those
down. The following screenshot gives an idea of how it displays the username
and password:

The credentials info for the Elastic Cloud account

We won't use the Cloud ID in any recipes.

Next, you will be presented with your endpoints. The Elasticsearch URL is4.
what's important to us:

And that's it - you are ready to go (at least for 14 days)!5.

Making the Scraper as a Service Real Chapter 11

[289]

Accessing the Elastic Cloud cluster with curl
Elasticsearch is fundamentally accessed via a REST API. Elastic Cloud is no different and is
actually an identical API. We just need to be able to know how to construct the URL
properly to connect. Let's look at that.

How to do it
We proceed with the recipe as follows:

When you signed up for Elastic Cloud, you were given various endpoints and1.
variables, such as username and password. The URL was similar to the
following:

https://<account-id>.us-west-2.aws.found.io:9243

Depending on the cloud and region, the rest of the domain name, as well
as the port, may differ.

We'll use a slight variant of the following URL to communicate and authenticate2.
with Elastic Cloud:

https://<username>:<password>@<account-id>.us-west-2.aws.found.io:9
243

Currently, mine is (it will be disabled by the time you read this):3.

https://elastic:tduhdExunhEWPjSuH73O6yLS@d7c72d3327076cc4daf5528103
c46a27.us-west-2.aws.found.io:9243

Basic authentication and connectivity can be checked with curl:4.

$ curl
https://elastic:tduhdExunhEWPjSuH73O6yLS@7dc72d3327076cc4daf5528103
c46a27.us-west-2.aws.found.io:9243
{
 "name": "instance-0000000001",
 "cluster_name": "7dc72d3327076cc4daf5528103c46a27",
 "cluster_uuid": "g9UMPEo-QRaZdIlgmOA7hg",
 "version": {
 "number": "6.1.1",
 "build_hash": "bd92e7f",

Making the Scraper as a Service Real Chapter 11

[290]

 "build_date": "2017-12-17T20:23:25.338Z",
 "build_snapshot": false,
 "lucene_version": "7.1.0",
 "minimum_wire_compatibility_version": "5.6.0",
 "minimum_index_compatibility_version": "5.0.0"
 },
 "tagline": "You Know, for Search"
}
Michaels-iMac-2:pems michaelheydt$

And we are up and talking!

Connecting to the Elastic Cloud cluster with
Python
Now let's look at how to connect to Elastic Cloud using the Elasticsearch Python library.

Getting ready
The code for this recipe is in the 11/01/elasticcloud_starwars.py script. This script
will scrape Star Wars character data from the swapi.co API/website and put it into the
Elastic Cloud.

How to do it
We proceed with the recipe as follows:

Execute the file as a Python script:1.

$ python elasticcloud_starwars.py

This will loop through up to 20 characters and drop them into the sw index with a2.
document type of people. The code is straightforward (replace the URL with
yours):

from elasticsearch import Elasticsearch
import requests
import json

if __name__ == '__main__':

Making the Scraper as a Service Real Chapter 11

[291]

 es = Elasticsearch(
 [
"https://elastic:tduhdExunhEWPjSuH73O6yLS@d7c72d3327076cc4daf552810
3c46a27.us-west-2.aws.found.io:9243"
])

i = 1
while i<20:
 r = requests.get('http://swapi.co/api/people/' + str(i))
 if r.status_code is not 200:
 print("Got a " + str(r.status_code) + " so stopping")
 break
 j = json.loads(r.content)
 print(i, j)
 #es.index(index='sw', doc_type='people', id=i,
body=json.loads(r.content))
 i = i + 1

The connection is made using the URL with the username and password added3.
to it. The data is pulled from swapi.co using a GET request and then with a call
to .index() on the Elasticsearch object. You'll see output similar to the
following:

1 Luke Skywalker
2 C-3PO
3 R2-D2
4 Darth Vader
5 Leia Organa
6 Owen Lars
7 Beru Whitesun lars
8 R5-D4
9 Biggs Darklighter
10 Obi-Wan Kenobi
11 Anakin Skywalker
12 Wilhuff Tarkin
13 Chewbacca
14 Han Solo
15 Greedo
16 Jabba Desilijic Tiure
Got a 404 so stopping

Making the Scraper as a Service Real Chapter 11

[292]

There's more...
When you signed up for Elastic Cloud, you were also given a URL to Kibana. Kibana is a
powerful graphical frontend to Elasticsearch:

Open the URL in your browser. You'll see see a login page:1.

The Kibana login page

Enter your username and password and you'll be taken to the main dashboard:2.

Creating an index pattern

Making the Scraper as a Service Real Chapter 11

[293]

We're being asked to create an index pattern for the one index that was created by
our app: sw. In the index pattern textbox, enter sw* and then press Next step.

We'll be asked to select a time filter field name. Select I don't want to use the3.
Time Filter and press the Create Index Pattern button. A few moments later, you
will see a confirmation of the index that was created:

The index that was created

Making the Scraper as a Service Real Chapter 11

[294]

Now click the Discover menu item, and you'll be taken to the interactive data4.
explorer, where you will see the data we just entered:

The data added to our index

Here you can navigate through the data and see just how effectively Elasticsearch stored
and organized this data.

Performing an Elasticsearch query with the
Python API
Now let's look at how we can search Elasticsearch using the Elasticsearch Python library.
We will perform a simple search on the Star Wars index.

Making the Scraper as a Service Real Chapter 11

[295]

Getting ready
Make sure to modify the connection URL in the samples to your URL.

How to do it
The code for the search is in the 11/02/search_starwars_by_haircolor.py script, and
can be run by simply executing the script. This is a fairly simple search to find the
characters whose hair color is blond:

The main portion of the code is:1.

es = Elasticsearch(
 [
"https://elastic:tduhdExunhEWPjSuH73O6yLS@7dc72d3327076cc4daf552810
3c46a27.us-west-2.aws.found.io:9243"
])

search_definition = {
 "query":{
 "match": {
 "hair_color": "blond"
 }
 }
}

result = es.search(index="sw", doc_type="people",
body=search_definition)
print(json.dumps(result, indent=4))

A search is performed by constructing a dictionary that expresses an2.
Elasticsearch DSL query. In this case, our query asks for all documents where the
"hair_color" property is "blond". This object is then passed as the body
parameter of the .search method. The result of this method is a diction
describing what was found (or not). In this case:

{
 "took": 2,
 "timed_out": false,
 "_shards": {
 "total": 5,
 "successful": 5,
 "skipped": 0,
 "failed": 0

Making the Scraper as a Service Real Chapter 11

[296]

 },
 "hits": {
 "total": 2,
 "max_score": 1.3112576,
 "hits": [
 {
 "_index": "sw",
 "_type": "people",
 "_id": "1",
 "_score": 1.3112576,
 "_source": {
 "name": "Luke Skywalker",
 "height": "172",
 "mass": "77",
 "hair_color": "blond",
 "skin_color": "fair",
 "eye_color": "blue",
 "birth_year": "19BBY",
 "gender": "male",
 "homeworld": "https://swapi.co/api/planets/1/",
 "films": [
 "https://swapi.co/api/films/2/",
 "https://swapi.co/api/films/6/",
 "https://swapi.co/api/films/3/",
 "https://swapi.co/api/films/1/",
 "https://swapi.co/api/films/7/"
],
 "species": [
 "https://swapi.co/api/species/1/"
],
 "vehicles": [
 "https://swapi.co/api/vehicles/14/",
 "https://swapi.co/api/vehicles/30/"
],
 "starships": [
 "https://swapi.co/api/starships/12/",
 "https://swapi.co/api/starships/22/"
],
 "created": "2014-12-09T13:50:51.644000Z",
 "edited": "2014-12-20T21:17:56.891000Z",
 "url": "https://swapi.co/api/people/1/"
 }
 },
 {
 "_index": "sw",
 "_type": "people",
 "_id": "11",
 "_score": 0.80259144,

Making the Scraper as a Service Real Chapter 11

[297]

 "_source": {
 "name": "Anakin Skywalker",
 "height": "188",
 "mass": "84",
 "hair_color": "blond",
 "skin_color": "fair",
 "eye_color": "blue",
 "birth_year": "41.9BBY",
 "gender": "male",
 "homeworld": "https://swapi.co/api/planets/1/",
 "films": [
 "https://swapi.co/api/films/5/",
 "https://swapi.co/api/films/4/",
 "https://swapi.co/api/films/6/"
],
 "species": [
 "https://swapi.co/api/species/1/"
],
 "vehicles": [
 "https://swapi.co/api/vehicles/44/",
 "https://swapi.co/api/vehicles/46/"
],
 "starships": [
 "https://swapi.co/api/starships/59/",
 "https://swapi.co/api/starships/65/",
 "https://swapi.co/api/starships/39/"
],
 "created": "2014-12-10T16:20:44.310000Z",
 "edited": "2014-12-20T21:17:50.327000Z",
 "url": "https://swapi.co/api/people/11/"
 }
 }
]
 }
}

The results give us some metadata about the search execution and then the results in the
hits property. Each hit returns the actual document as well as the index name, document
type, document ID, and a score. The score is a lucene calculation of the relevance of the
document to the search query. While this query uses an exact match of a property to a
value, you can see that these two documents still have different scores. I'm not sure why in
this case, but searching can also be less exact and based on various built-in heuristics to find
items "like" a certain sentence, that is, such as when you enter text into a Google search box.

Making the Scraper as a Service Real Chapter 11

[298]

There's more...
The Elasticsearch search DSL, and the search engine itself, is very powerful and expressive.
We'll only look at this example and one more in the next recipe, so we don't go into it in
much detail. To find out more about the DSL, you can start with the official documentation
at https://www.elastic. co/ guide/ en/ elasticsearch/ reference/ current/ query- dsl.
html.

Using Elasticsearch to query for jobs with
specific skills
In this recipe, we move back to using the crawler that we created to scrape and store job
listings from StackOverflow in Elasticsearch. We then extend this capability to query
Elasticsearch to find job listings that contain one or more specified skills.

Getting ready
The example we will use is coded to use a local Elastic Cloud engine and not a local
Elasticsearch engine. You can change that if you want. For now, we will perform this
process within a single python script that is run locally and not inside a container or behind
an API.

How to do it
We proceed with the recipe as follows:

The code for the recipe is in the 11/03/search_jobs_by_skills.py file:1.

from sojobs.scraping import get_job_listing_info
from elasticsearch import Elasticsearch
import json

if __name__ == "__main__":

 es = Elasticsearch()

 job_ids = ["122517", "163854", "138222", "164641"]

 for job_id in job_ids:

https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl.html

Making the Scraper as a Service Real Chapter 11

[299]

 if not es.exists(index='joblistings', doc_type='job-
listing', id=job_id):
 listing = get_job_listing_info(job_id)
 es.index(index='joblistings', doc_type='job-listing',
id=job_id, body=listing)

 search_definition = {
 "query": {
 "match": {
 "JSON.skills": {
 "query": "c#"
 }
 }
 }
 }

 result = es.search(index="joblistings", doc_type="job-listing",
body=search_definition)
 print(json.dumps(result, indent=4))

The first part of this code defines four job listings to be put into Elasticsearch,
if they already are not available. It iterates through this job's ID, and if not
already available, retrieves them and puts them in Elasticsearch.

The remainder of this defines a query to be executed against Elasticsearch,
and follows the same pattern for executing the search. The only difference is
in the definition of the search criteria. Ultimately, we want to match a list of
job skills to those in the job listings.

This query simply matches a single skill to those in the skills field in our job
listings documents. The sample specifies that we want to match to the
JSON.skills property in the target documents. The skills in those documents
are just beneath the root of the document, so in this syntax we preface it with
JSON.

This property in Elasticsearch is an array, and the query value we have will
match the document if any of the values in that property array are "c#".

Running this search with just those four documents in Elasticsearch results in the2.
following (the output here just shows the results and not the complete contents of
the four documents returned):

{
 "took": 4,
 "timed_out": false,

Making the Scraper as a Service Real Chapter 11

[300]

 "_shards": {
 "total": 5,
 "successful": 5,
 "skipped": 0,
 "failed": 0
 },
 "hits": {
 "total": 2,
 "max_score": 1.031828,
 "hits": [

Each of the jobs placed in Elasticsearch has C# for a skill (I randomly picked
these documents, so this is a little bit of a coincidence).

The results of these searches return the entire contents of each of the documents3.
that are identified. If we don't want the entire document returned for each hit,
we can change the query to make this happen. Let's modify the query to only
return the ID in the hits. Change the search_definition variable to the
following:

search_definition = {
 "query": {
 "match": {
 "JSON.skills": {
 "query": "c# sql"
 }
 }
 },
 "_source": ["ID"]
}

Including the "_source" property tells Elasticsearch to return the specified4.
document properties in the result. Executing this query results in the following
output:

{
 "took": 4,
 "timed_out": false,
 "_shards": {
 "total": 5,
 "successful": 5,
 "skipped": 0,
 "failed": 0
 },
 "hits": {
 "total": 2,

Making the Scraper as a Service Real Chapter 11

[301]

 "max_score": 1.031828,
 "hits": [
 {
 "_index": "joblistings",
 "_type": "job-listing",
 "_id": "164641",
 "_score": 1.031828,
 "_source": {
 "ID": "164641"
 }
 },
 {
 "_index": "joblistings",
 "_type": "job-listing",
 "_id": "122517",
 "_score": 0.9092852,
 "_source": {
 "ID": "122517"
 }
 }
]
 }
}

Each of the hits now only returns the ID property of the document. This
will help control the size of the result if there are a lot of hits.

Let's get to the ultimate goal of this recipe, identifying documents that have5.
multiple skills. This is actually a very simple change to search_defintion:

search_definition={
 "query": {
 "match": {
 "JSON.skills": {
 "query": "c# sql",
 "operator": "AND"
 }
 }
 },
 "_source": [
 "ID"
]
}

Making the Scraper as a Service Real Chapter 11

[302]

This states that we only want documents where the skills contain both "c#" and "sql".
The result from running the script is then the following:

{
 "took": 4,
 "timed_out": false,
 "_shards": {
 "total": 5,
 "successful": 5,
 "skipped": 0,
 "failed": 0
 },
 "hits": {
 "total": 2,
 "max_score": 1.031828,
 "hits": [
 {
 "_index": "joblistings",
 "_type": "job-listing",
 "_id": "164641",
 "_score": 1.031828,
 "_source": {
 "ID": "164641"
 }
 },
 {
 "_index": "joblistings",
 "_type": "job-listing",
 "_id": "122517",
 "_score": 0.9092852,
 "_source": {
 "ID": "122517"
 }
 }
]
 }
}

The result set is now cut down to two hits, and if you check, these are the only two with
those values in the skills.

Modifying the API to search for jobs by skill
In this recipe, we will modify our existing API to add a method to enable searching for jobs
with a set of skills.

Making the Scraper as a Service Real Chapter 11

[303]

How to do it
We will be extending the API code. We will make two fundamental changes to the
implementation of the API. The first is that we will add an additional Flask-RESTful API
implementation for the search capability, and the second is that we will make addresses for
both Elasticsearch and our own microservice configurable by environment variables.

The API implementation is in 11/04_scraper_api.py. By default, the implementation
attempts to connect to Elasticsearch on the local system. If you are using Elastic Cloud,
make sure to change the URL (and make sure you have documents in the index):

The API can be started by simply executing the script:1.

$ python scraper_api.py
Starting the job listing API ...
 * Running on http://0.0.0.0:8080/ (Press CTRL+C to quit)
 * Restarting with stat
Starting the job listing API ...
 * Debugger is active!
 * Debugger pin code: 449-370-213

To make a search request, we make a POST to the /joblistings/search2.
endpoint, passing data in the form of "skills=<skills separated with a
space>". The following performs a search for jobs with C# and SQL:

$ curl localhost:8080/joblistings/search -d "skills=c# sql"
{
 "took": 4,
 "timed_out": false,
 "_shards": {
 "total": 5,
 "successful": 5,
 "skipped": 0,
 "failed": 0
 },
 "hits": {
 "total": 2,
 "max_score": 1.031828,
 "hits": [
 {
 "_index": "joblistings",
 "_type": "job-listing",
 "_id": "164641",
 "_score": 1.031828,
 "_source": {
 "ID": "164641"

Making the Scraper as a Service Real Chapter 11

[304]

 }
 },
 {
 "_index": "joblistings",
 "_type": "job-listing",
 "_id": "122517",
 "_score": 0.9092852,
 "_source": {
 "ID": "122517"
 }
 }
]
 }
}

And we get the results that we saw in the previous recipe. We've now made our search
capabilities accessible over the internet with REST!

How it works
This works by adding another Flask-RESTful class implementation:

class JobSearch(Resource):
 def post(self):
 skills = request.form['skills']
 print("Request for jobs with the following skills: " + skills)

 host = 'localhost'
 if os.environ.get('ES_HOST'):
 host = os.environ.get('ES_HOST')
 print("ElasticSearch host: " + host)

 es = Elasticsearch(hosts=[host])
 search_definition = {
 "query": {
 "match": {
 "JSON.skills": {
 "query": skills,
 "operator": "AND"
 }
 }
 },
 "_source": ["ID"]
 }

 try:

Making the Scraper as a Service Real Chapter 11

[305]

 result = es.search(index="joblistings", doc_type="job-listing",
body=search_definition)
 print(result)
 return result

 except:
 return sys.exc_info()[0]

api.add_resource(JobSearch, '/', '/joblistings/search')

This class implements a post method as a resource mapped to /joblistings/search.
The reason for the POST operation is that we are passing a string consisting of multiple
words. While this could be URL-encoded in a GET operation, a POST allows us to pass this
in as a keyed value. And while we only have the one key, skills, future expansion to other
keys to support other search parameters can be simply added.

There's more...
The decision to perform the search from within the API implementation is one that should
be considered as a system evolves. It is my opinion, and just mine (but I think others would
agree), that like how the API calls a microservice for the actual scraping, it should also call a
microservice that handles the search (and that microservice would then interface with
Elasticsearch). This would also be the case for storing the document returned from the
scraping microservice, as well as accessing Elasticsearch to check for a cached document.
But for our purposes here, we'll try and keep it simple.

Storing configuration in the environment
This recipe points out a change made in the code of the API in the previous recipe to
support one of the factors of a 12-Factor application. A 12-Factor app is defined as an app
that is designed to be run as a software as a service. We have been moving our scraper in
this direction for a while now, breaking it into components that can be run independently,
as scripts, or in containers, and as we will see soon, in the cloud. You can learn all about 12-
Factor apps at https:/ /12factor. net/ .

https://12factor.net/
https://12factor.net/
https://12factor.net/
https://12factor.net/
https://12factor.net/
https://12factor.net/
https://12factor.net/
https://12factor.net/

Making the Scraper as a Service Real Chapter 11

[306]

Factor-3 states that we should pass in configuration to our application through environment
variables. While we definitely don't want to hardcode things, such as URLs, to external
services, it also isn't best practice to use configuration files. When deploying to various
environments, such as containers or the cloud, a config file will often get fixed in an image
and not be able to be changed on-demand as the application is dynamically deployed to
different environments.

The best way to fix this is to always look in environment variables for configuration settings
that can change based on how the application is run. Most tools for running 12-Factor apps
allow the setting of environment variables based on how and where the environment
decides the app should be run.

How to do it
In our job listings implementation, we used the following code to determine the host for
Elasticsearch:

host = 'localhost'
if os.environ.get('ES_HOST'):
 host = os.environ.get('ES_HOST')
print("ElasticSearch host: " + host)

es = Elasticsearch(hosts=[host])

It's a straightforward and simple thing to do, but it's very important for making our app
incredibly portable to different environments. This defaults to using localhost, but lets us
define a different host with the ES_HOST environment variable.

The implementation of the skills search also makes a similar change to allow us to change a
default of localhost for our scraping microservice:

CONFIG = {'AMQP_URI': "amqp://guest:guest@localhost"}
if os.environ.get('JOBS_AMQP_URL'):
 CONFIG['AMQP_URI'] = os.environ.get('JOBS_AMQP_URL')
print("AMQP_URI: " + CONFIG["AMQP_URI"])

with ClusterRpcProxy(CONFIG) as rpc:

Making the Scraper as a Service Real Chapter 11

[307]

We will see Factor-3 in use in the upcoming recipes, as we move this code to AWS's Elastic
Container Service.

Creating an AWS IAM user and a key pair for
ECS
In this recipe, we will create an Identity and Access Management (IAM) user account to
allow us to access the AWS Elastic Container Service (ECS). We need this as we are going
to package our scraper and API up in Docker containers (we've done this already), but now
we are going to move these containers into and run them from AWS ECS, making our
scraper a true cloud service.

Getting ready
This assumes that you have already created an AWS account, which we used earlier in the
book when we looked at SQS and S3. You don't need a different account, but we need to
create a non-root user that has permissions to use ECS.

How to do it
Instructions for creating an IAM user with ECS permissions and a key pair can be found at
https://docs.aws. amazon. com/ AmazonECS/ latest/ developerguide/ get- set- up-for-
amazon-ecs.html.

There are a lot of instructions on this page, such as setting up a VPC and security groups.
Just focus now on creating the user, assigning permissions, and creating the key pair.

One thing I want to highlight are the permissions for the IAM account you create. There are
detailed instructions on doing this at https:/ /docs. aws. amazon. com/AmazonECS/ latest/
developerguide/instance_ IAM_ role. html. I've seen this not done properly. Just make
sure that when you examine the permissions for the user you just created that the following
permissions are assigned:

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/get-set-up-for-amazon-ecs.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/get-set-up-for-amazon-ecs.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/get-set-up-for-amazon-ecs.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/get-set-up-for-amazon-ecs.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/get-set-up-for-amazon-ecs.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/get-set-up-for-amazon-ecs.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/get-set-up-for-amazon-ecs.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/get-set-up-for-amazon-ecs.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/get-set-up-for-amazon-ecs.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/get-set-up-for-amazon-ecs.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/get-set-up-for-amazon-ecs.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/get-set-up-for-amazon-ecs.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/get-set-up-for-amazon-ecs.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/get-set-up-for-amazon-ecs.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/get-set-up-for-amazon-ecs.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/get-set-up-for-amazon-ecs.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/get-set-up-for-amazon-ecs.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/get-set-up-for-amazon-ecs.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/get-set-up-for-amazon-ecs.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/get-set-up-for-amazon-ecs.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/get-set-up-for-amazon-ecs.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/get-set-up-for-amazon-ecs.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/get-set-up-for-amazon-ecs.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/get-set-up-for-amazon-ecs.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/get-set-up-for-amazon-ecs.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/get-set-up-for-amazon-ecs.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/get-set-up-for-amazon-ecs.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/get-set-up-for-amazon-ecs.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/get-set-up-for-amazon-ecs.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/get-set-up-for-amazon-ecs.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/instance_IAM_role.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/instance_IAM_role.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/instance_IAM_role.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/instance_IAM_role.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/instance_IAM_role.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/instance_IAM_role.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/instance_IAM_role.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/instance_IAM_role.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/instance_IAM_role.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/instance_IAM_role.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/instance_IAM_role.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/instance_IAM_role.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/instance_IAM_role.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/instance_IAM_role.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/instance_IAM_role.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/instance_IAM_role.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/instance_IAM_role.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/instance_IAM_role.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/instance_IAM_role.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/instance_IAM_role.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/instance_IAM_role.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/instance_IAM_role.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/instance_IAM_role.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/instance_IAM_role.html

Making the Scraper as a Service Real Chapter 11

[308]

AWS IAM credentials

I attached these directly to the account I use for ECS instead of through the group. If this
isn't assigned, you will get cryptic authentication errors when pushing containers to ECR.

One more thing: we will need the access key ID and the associated secret key. This will be
presented to you during the creation of the user. If you didn't record it, you can create
another one in the security credentials tab of the user's account page:

Making the Scraper as a Service Real Chapter 11

[309]

Note that you can't get the secret for an already existing access key ID. You will have to
make another.

Configuring Docker to authenticate with ECR
In this recipe, we will configure docker to be able to push our containers to the Elastic
Container Repository (ECR).

Getting ready
A key element of Docker is docker container repositories. We have previously used Docker
Hub to pull containers. But we can also push our containers to Docker Hub, or any Docker-
compatible container repository, such as ECR. But this is not without its troubles. The
docker CLI does not naturally know how to authenticate with ECR, so we have to jump
through a few hoops to get it to work.

Make sure that the AWS command line tools are installed. These are required to get Docker
authenticated to work with ECR. Good instructions are found at https:/ /docs. aws.
amazon.com/cli/latest/ userguide/ installing. html. Once the install is verified, you will
need to configure the CLI to use the account created in the previous recipe. This can be
done using the aws configure command, which will prompt you for four items:

$ aws configure
AWS Access Key ID [None]: AKIA---------QKCVQAA
AWS Secret Access Key [None]: KEuSaLgn4dpyXe-------------VmEKdhV
Default region name [None]: us-west-2
Default output format [None]: json

Swap the keys to be the ones you retrieved earlier, and set your default region and data
type.

How to do it
We proceed with the recipe as follows:

Execute the following command. This returns a command to authenticate Docker1.
with ECR:

$ aws ecr get-login --no-include-email --region us-west-2
docker login -u AWS -p

https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html

Making the Scraper as a Service Real Chapter 11

[310]

eyJwYXlsb2FkIjoiN3BZVWY4Q2JoZkFwYUNKOUp6c1BkRy80VmRYN0Y2LzQ0Y2pVNFJ
KZTA5alBrUEdSMHlNUk9TMytsTFVURGtxb3Q5VTZqV0xxNmRCVHJnL1FIb2lGbEF0dV
ZhNFpEOUkxb1FxUTNwcUluaVhqS1FCZmU2WTRLNlQrbjE4VHdiOEpqbmtwWjJJek8xR
lR2Y2Y5S3NGRlQrbDZhcktUNXZJbjNkb1czVGQ2TXZPUlg5cE5Ea2w4S29vamt6SE10
Ym8rOW5mLzBvVkRRSDlaY3hqRG45d0FzNVA5Z1BPVUU5OVFrTEZGeENPUHJRZmlTeHF
qaEVPcGo3ZVAxL3pCNnFTdjVXUEozaUNtV0I0b1lFNEcyVzA4M2hKQmpESUFTV1VMZ1
B0MFI2YUlHSHJxTlRvTGZOR1R5clJ2VUZKcnFWZGptMkZlR0ppK3I5emFrdGFKeDJBN
VRCUzBzZDZaOG1yeW1Nd0dBVi81NDZDeU1XYVliby9reWtaNUNuZE8zVXFHdHFKSnJm
QVRKakhlVU1jTXQ1RjE0Tk83OWR0ckNnYmZmUHdtS1hXOVh6MklWUG5VUlJsekRaUjR
MMVFKT2NjNlE0NWFaNkR2enlDRWw1SzVwOEcvK3lSMXFPYzdKUWpxaUErdDZyaCtDNX
JCWHlJQndKRm5mcUJhaVhBMVhNMFNocmlNd0FUTXFjZ0NtZTEyUGhOMmM2c0pNTU5hZ
0JMNEhXSkwyNXZpQzMyOVI2MytBUWhPNkVaajVMdG9iMVRreFFjbjNGamVNdThPM0pp
ZnM5WGxPSVJsOHlsUUh0LzFlQ2ZYelQ1cVFOU2g1NjFiVWZtOXNhNFRRWlhZUlNLVVF
rd3JFK09EUXh3NUVnTXFTbS9FRm1PbHkxdEpncXNzVFljeUE4Y1VYczFnOFBHL2VwVG
tVTG1ReFYwa0p5MzdxUmlIdHU1OWdjMDRmZWFSVGdSekhQcXl0WExzdFpXcTVCeVRZT
nhMeVVpZW0yN3JkQWhmaStpUHpMTXV1NGZJa3JjdmlBZFF3dGwrdEVORTNZSVBhUnZJ
MFN0Q1djN2J2blI2Njg3OEhQZHJKdXlYaTN0czhDYlBXNExOamVCRm8waUt0SktCckJ
jN0tUZzJEY1d4NlN4b1Vkc2ErdnN4V0N5NWFzeWdMUlBHYVdoNzFwOVhFZWpPZTczNE
80Z0l5RklBU0pHR3o1SVRzYVkwbFB6ajNEYW9QMVhOT3dhcDYwcC9Gb0pQMG1ITjNsb
202eW1EaDA0WEoxWnZ0K0lkMFJ4bE9lVUt3bzRFZFVMaHJ2enBMOUR4SGI5WFFCMEdN
WjFJRlI0MitSb3NMaDVQa0g1RHh1bDJZU0pQMXc0UnVoNUpzUm5rcmF3dHZzSG5PSGd
2YVZTeWl5bFR0cFlQY1haVk51NE5iWnkxSzQwOG5XTVhiMFBNQzJ5OHJuNlpVTDA9Ii
wiZGF0YWtleSI6IkFRRUJBSGo2bGM0WElKdy83bG4wSGMwMERNZWs2R0V4SENiWTRSS
XBUTUNJNThJblV3QUFBSDR3ZkFZSktvWklodmNOQVFjR29HOHdiUUlCQURCb0Jna3Fo
a2lHOXcwQkJ3RXdIZ1lKWUlaSUFXVURCQUV1TUJFRURQdTFQVXQwRDFkN3c3Rys3Z0l
CRUlBN21Xay9EZnNOM3R5MS9iRFdRYlZtZjdOOURST2xhQWFFbTBFQVFndy9JYlBjTz
hLc0RlNDBCLzhOVnR0YmlFK1FXSDBCaTZmemtCbzNxTkE9IiwidmVyc2lvbiI6IjIiL
CJ0eXBlIjoiREFUQV9LRVkiLCJleHBpcmF0aW9uIjoxNTE1NjA2NzM0fQ==
https://270157190882.dkr.ecr.us-west-2.amazonaws.com

This output is a command that you need to execute to get your docker CLI to authenticate
with ECR! This secret is only valid for a few hours (twelve I believe). You can copy all this
from the where it starts with docker login through the end of the URL at the end of the
secret.

On a Mac (and Linux), I generally shorten this to the following:2.

$(aws ecr get-login --no-include-email --region us-west-2)
WARNING! Using --password via the CLI is insecure. Use --password-
stdin.
Login Succeeded

Much easier. At this point, we can use the docker command to push containers to ECR.

Making the Scraper as a Service Real Chapter 11

[311]

This is an area where I've seen a couple of problems. I've found the URL
at the end of the secret can still be the root user and not the user you
created for ECR (this login HAS to be for that user). If that is the case, later
commands will get weird authentication issues. The fix is to delete all the
AWS CLI configuration files and reconfigure. This fix doesn't always
work. Sometimes, I've had to use a fresh system/VM, go through the AWS
CLI install/ config, and then generate this secret to get it to work.

Pushing containers into ECR
In this recipe we will rebuild our API and microservice containers and push them to ECR.
We will also push a RabbitMQ container to ECR.

Getting ready
Bear with this, as this can get tricky. In addition to our container images, we also need to
push our RabbitMQ container to ECR. ECS doesn't talk to Docker Hub and and can't pull
that image. it would be immensely convenient, but at the same time it's probably also a
security issue.

Pushing these containers to ECR from a home internet connection can take
a long time. I create a Linux image in EC2 in the same region as my ECR,
pulled down the code from github, build the containers on that EC2
system, and then push to ECR. The push takes a matter of minutes, if not
seconds.

First, let's rebuild our API and microservice containers on our local system. I've included
the Python files, two docker files, and a configuration file for the microservice in the 11/05
recipe folder.

Let's start with the build of the API container:

$ docker build ../.. -f Dockerfile-api -t scraper-rest-api:latest

Making the Scraper as a Service Real Chapter 11

[312]

This docker file is similar to the previous API Docker file with the modification to copy files
from the 11/05 folder.

FROM python:3
WORKDIR /usr/src/app

RUN pip install Flask-RESTful Elasticsearch Nameko
COPY 11/11/scraper_api.py .

CMD ["python", "scraper_api.py"]

Then build the container for the scraper microservice:

$ docker build ../.. -f Dockerfile-microservice -t scraper-
microservice:latest

This Dockerfile is slightly different from the one for the microservice. Its contents are the
following:

FROM python:3
WORKDIR /usr/src/app

RUN pip install nameko BeautifulSoup4 nltk lxml
RUN python -m nltk.downloader punkt -d /usr/share/nltk_data all

COPY 11/05/scraper_microservice.py .
COPY modules/sojobs sojobs

CMD ["python", "-u", "scraper_microservice.py"]

Now we are ready to work with configuring ECR to store our containers for use by ECS.

We now run the microservice using python and not with the "nameko
run" command. This is due to an issue with sequencing the launch of
containers in ECS. The "nameko run" command does not perform well if
the RabbitMQ server is not already running, which is not guaranteed in
ECS. So, we start this with python. Because of this, the implementation
has a startup that essentially copies the code for "nameko run" and wraps
it with a while loop and exception handlers as it retries connections until
the container is stopped.

Making the Scraper as a Service Real Chapter 11

[313]

How to do it
We proceed with the recipe as follows:

When signed in to the account that we created for ECS, we get access to the1.
Elastic Container Repository. This service can hold our containers for use by
ECS. There are a number of AWS CLI commands that you can use to work with
ECR. Let's start with the following that lists the existing repositories:

$ aws ecr describe-repositories
{
 "repositories": []
}

Right now we don't have any repositories, so let's create some. We will create2.
three repositories, one for each of the different containers: scraper-rest-api,
scraper-microservice, and one for a RabbitMQ container, which we will call
rabbitmq. Each repository maps to one container by its name, but can have
multiple tags (up to 1,000 different versions/tags for each). Let's create the three
repositories:

$ aws ecr create-repository --repository-name scraper-rest-api
{
 "repository": {
 "repositoryArn": "arn:aws:ecr:us-
west-2:414704166289:repository/scraper-rest-api",
 "repositoryUri": "414704166289.dkr.ecr.us-
west-2.amazonaws.com/scraper-rest-api",
 "repositoryName": "scraper-rest-api",
 "registryId": "414704166289",
 "createdAt": 1515632756.0
 }
}

05 $ aws ecr create-repository --repository-name scraper-
microservice
{
 "repository": {
 "repositoryArn": "arn:aws:ecr:us-
west-2:414704166289:repository/scraper-microservice",
 "registryId": "414704166289",
 "repositoryName": "scraper-microservice",
 "repositoryUri": "414704166289.dkr.ecr.us-
west-2.amazonaws.com/scraper-microservice",
 "createdAt": 1515632772.0
 }

Making the Scraper as a Service Real Chapter 11

[314]

}

05 $ aws ecr create-repository --repository-name rabbitmq
{
 "repository": {
 "repositoryArn": "arn:aws:ecr:us-
west-2:414704166289:repository/rabbitmq",
 "repositoryName": "rabbitmq",
 "registryId": "414704166289",
 "createdAt": 1515632780.0,
 "repositoryUri": "414704166289.dkr.ecr.us-
west-2.amazonaws.com/rabbitmq"
 }
}

Note the data returned. We will need the repository URL for each in the
following step(s).

We need to tag our local container images so their docker knows that when we3.
push them, they should go to a specific repository in our ECR. At this point, you
should have the following images in docker:

$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
scraper-rest-api latest b82653e11635 29 seconds ago 717MB
scraper-microservice latest efe19d7b5279 11 minutes ago
4.16GB
rabbitmq 3-management 6cb6e2f951a8 2 weeks ago 151MB
python 3 c1e459c00dc3 3 weeks ago 692MB

Tag using the <image-id> <ECR-repository-uri> docker tag. Let's tag all4.
three (we don't need to do the python image):

$ docker tag b8 414704166289.dkr.ecr.us-
west-2.amazonaws.com/scraper-rest-api

$ docker tag ef 414704166289.dkr.ecr.us-
west-2.amazonaws.com/scraper-microservice

$ docker tag 6c 414704166289.dkr.ecr.us-
west-2.amazonaws.com/rabbitmq

Making the Scraper as a Service Real Chapter 11

[315]

The list of docker images now shows the tagged images along with the originals:5.

$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
414704166289.dkr.ecr.us-west-2.amazonaws.com/scraper-rest-api
latest b82653e11635 4 minutes ago 717MB
scraper-rest-api latest b82653e11635 4 minutes ago 717MB
414704166289.dkr.ecr.us-west-2.amazonaws.com/scraper-microservice
latest efe19d7b5279 15 minutes ago 4.16GB
scraper-microservice latest efe19d7b5279 15 minutes ago 4.16GB
414704166289.dkr.ecr.us-west-2.amazonaws.com/rabbitmq latest
6cb6e2f951a8 2 weeks ago 151MB
rabbitmq 3-management 6cb6e2f951a8 2 weeks ago 151MB
python 3 c1e459c00dc3 3 weeks ago 692MB

Now we finally push the images into ECR:6.

$ docker push 414704166289.dkr.ecr.us-west-2.amazonaws.com/scraper-
rest-api
The push refers to repository [414704166289.dkr.ecr.us-
west-2.amazonaws.com/scraper-rest-api]
7117db0da9a9: Pushed
8eb1be67ed26: Pushed
5fcc76c4c6c0: Pushed
6dce5c484bde: Pushed
057c34df1f1a: Pushed
3d358bf2f209: Pushed
0870b36b7599: Pushed
8fe6d5dcea45: Pushed
06b8d020c11b: Pushed
b9914afd042f: Pushed
4bcdffd70da2: Pushed
latest: digest:
sha256:2fa2ccc0f4141a1473386d3592b751527eaccb37f035aa08ed0c4b6d7abc
9139 size: 2634

$ docker push 414704166289.dkr.ecr.us-west-2.amazonaws.com/scraper-
microservice
The push refers to repository [414704166289.dkr.ecr.us-
west-2.amazonaws.com/scraper-microservice]
3765fccaf6a6: Pushed
4bde7a8212e1: Pushed
d0aa245987b4: Pushed
5657283a8f79: Pushed
4f33694fe63a: Pushed
5fcc76c4c6c0: Pushed
6dce5c484bde: Pushed

Making the Scraper as a Service Real Chapter 11

[316]

057c34df1f1a: Pushed
3d358bf2f209: Pushed
0870b36b7599: Pushed
8fe6d5dcea45: Pushed
06b8d020c11b: Pushed
b9914afd042f: Pushed
4bcdffd70da2: Pushed
latest: digest:
sha256:02c1089689fff7175603c86d6ef8dc21ff6aaffadf45735ef754f606f2cf
6182 size: 3262

$ docker push 414704166289.dkr.ecr.us-west-2.amazonaws.com/rabbitmq
The push refers to repository [414704166289.dkr.ecr.us-
west-2.amazonaws.com/rabbitmq]
e38187f05202: Pushed
ea37471972cd: Pushed
2f1d47e88a53: Pushed
e8c84964de08: Pushed
d0537ac3fb13: Pushed
9f345d60d035: Pushed
b45610229549: Pushed
773afacc96cc: Pushed
5eb8d21fccbb: Pushed
10699a5bd960: Pushed
27be686b9e1f: Pushed
96bfbdb03e1c: Pushed
1709335ba200: Pushed
2ec5c0a4cb57: Pushed
latest: digest:
sha256:74308ef1dabc1a0b9615f756d80f5faf388f4fb038660ae42f437be45866
b65e size: 3245

Now check that the images made it to the repository The following shows this7.
for scraper-rest-api:

$ aws ecr list-images --repository-name scraper-rest-api
{
 "imageIds": [
 {
 "imageTag": "latest",
 "imageDigest":
"sha256:2fa2ccc0f4141a1473386d3592b751527eaccb37f035aa08ed0c4b6d7ab
c9139"
 }
]
}

Making the Scraper as a Service Real Chapter 11

[317]

With our containers now stored in ECR, we can go on and create a cluster to run our
containers.

Creating an ECS cluster
Elastic Container Service (ECS) is an AWS service that runs your Docker containers in the
cloud. There is a lot of power (and detail) in using ECS. We will look at a simple
deployment that runs our containers on a single EC2 virtual machine. Our goal is to get our
scraper to the cloud. Extensive detail on using ECS to scale out the scraper is for another
time (and book).

How to do it
We start by creating an ECR cluster using the AWS CLI. The we will create one EC2 virtual
machine in the cluster to run our containers.

I've included a shell file, in the 11/06 folder, names create-cluster-
complete.sh, which runs through all of these commands in one run.

There are number of steps to getting this configured but they are all fairly simple. Let's
walk through them:

The following creates an ECR cluster named scraper-cluster:1.

$ aws ecs create-cluster --cluster-name scraper-cluster
{
 "cluster": {
 "clusterName": "scraper-cluster",
 "registeredContainerInstancesCount": 0,
 "clusterArn": "arn:aws:ecs:us-
west-2:414704166289:cluster/scraper-cluster",
 "status": "ACTIVE",
 "activeServicesCount": 0,
 "pendingTasksCount": 0,
 "runningTasksCount": 0
 }
}

Making the Scraper as a Service Real Chapter 11

[318]

Wow, that was easy! Well, there's a bit of detail to take care of yet. At this
point, we don't have any EC2 instances to run the containers. We also need
to set up key pairs, security groups, IAM policies, phew! It seems like a lot,
but we'll get through it quickly and easily.

Create a key pair. Every EC2 instance needs one to launch, and it is needed to2.
remote into the instance (if you want to). The following creates a key pair, puts it
in a local file, and then confirms with AWS that it was created:

$ aws ec2 create-key-pair --key-name ScraperClusterKP --query
'KeyMaterial' --output text > ScraperClusterKP.pem

$ aws ec2 describe-key-pairs --key-name ScraperClusterKP
{
 "KeyPairs": [
 {
 "KeyFingerprint":
"4a:8a:22:fa:53:a7:87:df:c5:17:d9:4f:b1:df:4e:22:48:90:27:2d",
 "KeyName": "ScraperClusterKP"
 }
]
}

Now we create security groups. A security group allows us to open ports to the3.
cluster instance from the Internet, and hence allows us to access the apps running
in our containers. We will create a security group with ports 22 (ssh) and 80
(http), and the two ports for RabbitMQ (5672 and 15672) opened. We need 80
open to talk to the REST API (we'll map 80 to the 8080 containers in the next
recipe). We don't need 15672 and 5672 open, but they help with debugging the
process by allowing you to connect into RabbitMQ from outside AWS. The
following four commands create the security group and the rules in that group:

$ aws ec2 create-security-group --group-name ScraperClusterSG --
description "Scraper Cluster SG”
{
 "GroupId": "sg-5e724022"
}

$ aws ec2 authorize-security-group-ingress --group-name
ScraperClusterSG --protocol tcp --port 22 --cidr 0.0.0.0/0

$ aws ec2 authorize-security-group-ingress --group-name
ScraperClusterSG --protocol tcp --port 80 --cidr 0.0.0.0/0

$ aws ec2 authorize-security-group-ingress --group-name

Making the Scraper as a Service Real Chapter 11

[319]

ScraperClusterSG --protocol tcp --port 5672 --cidr 0.0.0.0/0

$ aws ec2 authorize-security-group-ingress --group-name
ScraperClusterSG --protocol tcp --port 15672 --cidr 0.0.0.0/0

You can confirm the contents of the security group using the aws ec2
describe-security-groups --group-names ScraperClusterSG command. This
will output a JSON representation of the group.

To launch an EC2 instance into an ECS cluster, it needs to have an IAM policy put4.
in place to allow it to connect. It also needs to have various abilities with ECR,
such as pulling containers. These are defined in the two files included in the
recipe directory, ecsPolicy.json and rolePolicy.json. The following
commands will register these policies with IAM (output is omitted):

$ aws iam create-role --role-name ecsRole --assume-role-policy-
document file://ecsPolicy.json

$ aws iam put-role-policy --role-name ecsRole --policy-name
ecsRolePolicy --policy-document file://rolePolicy.json

$ aws iam create-instance-profile --instance-profile-name ecsRole

$ aws iam add-role-to-instance-profile --instance-profile-name
ecsRole --role-name ecsRole

We need to do one more thing before we launch the instance. We need to
have a file to pass user data to the instance that tells the instance which
cluster to connect to. If we don't do this, it will connect to a cluster named
default instead of scraper-cluster. This file is userData.txt in the
recipe directory. There is no real action here as I provided the file.

New we launch an instance in our cluster. We need to use an ECS-optimized5.
AMI or create an AMI with the ECS container agent. We will use a prebuilt AMI
with this agent. The following kicks off the instance:

$ aws ec2 run-instances --image-id ami-c9c87cb1 --count 1 --
instance-type m4.large --key-name ScraperClusterKP --iam-instance-
profile "Name= ecsRole" --security-groups ScraperClusterSG --user-
data file://userdata.txt

This will spit out a bit of JSON describing your instance.

Making the Scraper as a Service Real Chapter 11

[320]

After a few minutes, you can check that this instance is running in the container:6.

$ aws ecs list-container-instances --cluster scraper-cluster
{
 "containerInstanceArns": [
 "arn:aws:ecs:us-west-2:414704166289:container-
instance/263d9416-305f-46ff-a344-9e7076ca352a"
]
}

Awesome! Now we need to define tasks to run on the container instances.

This is an m4.large instance. It's a bit larger than the t2.micro that fits
within the free-tier. So, make sure you don't leave this running if you
want to keep things cheap.

Creating a task to run our containers
In this recipe, we will create an ECS task. A task tells the ECR cluster manager which
containers to run. A task is a description of which containers in ECR to run and the
parameters required for each. The task description will feel a lot like that which we have
done with Docker Compose.

Getting ready
The task definition can be built with the GUI or started by submitting a task definition
JSON file. We will use the latter technique and examine the structure of the file, td.json,
which describes how to run our containers together. This file is in the 11/07 recipe folder.

How to do it
The following command registers the task with ECS:

$ aws ecs register-task-definition --cli-input-json file://td.json
{
 "taskDefinition": {
 "volumes": [
],
 "family": "scraper",

Making the Scraper as a Service Real Chapter 11

[321]

 "memory": "4096",
 "placementConstraints": [
]
],
 "cpu": "1024",
 "containerDefinitions": [
 {
 "name": "rabbitmq",
 "cpu": 0,
 "volumesFrom": [
],
 "mountPoints": [
],
 "portMappings": [
 {
 "hostPort": 15672,
 "protocol": "tcp",
 "containerPort": 15672
 },
 {
 "hostPort": 5672,
 "protocol": "tcp",
 "containerPort": 5672
 }
],
 "environment": [
],
 "image": "414704166289.dkr.ecr.us-west-2.amazonaws.com/rabbitmq",
 "memory": 256,
 "essential": true
 },
 {
 "name": "scraper-microservice",
 "cpu": 0,
 "essential": true,
 "volumesFrom": [
],
 "mountPoints": [
],
 "portMappings": [
],
 "environment": [
 {
 "name": "AMQP_URI",
 "value": "pyamqp://guest:guest@rabbitmq"
 }
],
 "image": "414704166289.dkr.ecr.us-west-2.amazonaws.com/scraper-

Making the Scraper as a Service Real Chapter 11

[322]

microservice",
 "memory": 256,
 "links": [
 "rabbitmq"
]
 },
 {
 "name": "api",
 "cpu": 0,
 "essential": true,
 "volumesFrom": [
],
 "mountPoints": [
],
 "portMappings": [
 {
 "hostPort": 80,
 "protocol": "tcp",
 "containerPort": 8080
 }
],
 "environment": [
 {
 "name": "AMQP_URI",
 "value": "pyamqp://guest:guest@rabbitmq"
 },
 {
 "name": "ES_HOST",
 "value":
"https://elastic:tduhdExunhEWPjSuH73O6yLS@7dc72d3327076cc4daf5528103c46a27.
us-west-2.aws.found.io:9243"
 }
],
 "image": "414704166289.dkr.ecr.us-west-2.amazonaws.com/scraper-rest-
api",
 "memory": 128,
 "links": [
 "rabbitmq"
]
 }
],
 "requiresCompatibilities": [
 "EC2"
],
 "status": "ACTIVE",
 "taskDefinitionArn": "arn:aws:ecs:us-west-2:414704166289:task-
definition/scraper:7",
 "requiresAttributes": [

Making the Scraper as a Service Real Chapter 11

[323]

 {
 "name": "com.amazonaws.ecs.capability.ecr-auth"
 }
],
 "revision": 7,
 "compatibilities": [
 "EC2"
]
}

The output is the definition as filled out by ECS and acknowledges receipt of the task
definition.

How it works
The task definition consists of two primary sections. The first gives some general
information about the tasks as a whole, such as how much memory and CPU is allowed for
the containers as a whole. It then consists of a section that defines the three containers we
will run.

The file begins with a few lines that define the overall settings:

{
 "family": "scraper-as-a-service",
 "requiresCompatibilities": [
 "EC2"
],
 "cpu": "1024",
 "memory": "4096",
 "volumes": [],

The actual name of the task is defined by the "family" property. We state the our
containers require EC2 (tasks can be run without EC2 - ours needs it). Then we state that we
want to constrain the entire task to the specified amount of CPU and memory, and we are
not attaching any volumes.

Now let's look at the section where the containers are defined. It starts with the following:

"containerDefinitions": [

Making the Scraper as a Service Real Chapter 11

[324]

Now let's examine each container definition. The following is the definition for the
rabbitmq container:

{
 "name": "rabbitmq",
 "image": "414704166289.dkr.ecr.us-west-2.amazonaws.com/rabbitmq",
 "cpu": 0,
 "memory": 256,
 "portMappings": [
 {
 "containerPort": 15672,
 "hostPort": 15672,
 "protocol": "tcp"
 },
 {
 "containerPort": 5672,
 "hostPort": 5672,
 "protocol": "tcp"
 }
],
 "essential": true
},

The first line defines the name of the container, and this name also participates in DNS
resolution of the name of this container by the API and scraper containers. The image tag
defines the ECR repository URI to pull for the container.

Make sure to change the image URL for this and the other two containers
to that of your repositories.

Next are a definition of maximum CPU (0 is unlimited) and memory to be allowed for this
container. The port mapping defines the mappings between the container host (the EC2
instance we created in the cluster) and the container. We map the two RabbitMQ ports.

The essential tag states that this container must remain running. If it fails,
the entire task will be stopped.

Making the Scraper as a Service Real Chapter 11

[325]

The next container defined is the scraper microservice:

{
 "name": "scraper-microservice",
 "image": "414704166289.dkr.ecr.us-west-2.amazonaws.com/scraper-
microservice",
 "cpu": 0,
 "memory": 256,
 "essential": true,
 "environment": [
 {
 "name": "AMQP_URI",
 "value": "pyamqp://guest:guest@rabbitmq"
 }
],
 "links": [
 "rabbitmq"
]
},

This differs in that it has an environment variable and links defined. The environment
variable is the URL for the rabbitmq container. ECS will ensure that the environment
variable is set to this value within this container (implementing Factor-3). While this is the
same URL as when we ran this locally on docker compose, it could be a different URL if the
rabbitmq container was named differently or on another cluster.

The links settings needs a little explanation. Links are a deprecated feature of Docker but
still used in ECS. They are required in ECS to have the container resolve DNS names for
other containers in the same cluster network. This tells ECS that when this container tries to
resolve the rabbitmq hostname (as defined in the environment variable), it should return
the IP address assigned to that container.

The remainder of the file defines the API container:

{
 "name": "api",
 "image": "414704166289.dkr.ecr.us-west-2.amazonaws.com/scraper-rest-api",
 "cpu": 0,
 "memory": 128,
 "essential": true,
 "portMappings": [
 {
 "containerPort": 8080,
 "hostPort": 80,
 "protocol": "tcp"
 }

Making the Scraper as a Service Real Chapter 11

[326]

],
 "environment": [
 {
 "name": "AMQP_URI",
 "value": "pyamqp://guest:guest@rabbitmq"
 },
 {
 "name": "ES_HOST",
 "value":
"https://elastic:tduhdExunhEWPjSuH73O6yLS@7dc72d3327076cc4daf5528103c46a27.
us-west-2.aws.found.io:9243"
 }
],
 "links": [
 "rabbitmq"
]
}
]
}

In this definition, we define the port mapping to allow HTTP into the container, and set the
environment variables for the API to use to talk to Elastic Cloud and the rabbitmq server
(which passed the requests to the scraper-microservice container). This also defines a
link to rabbitmq as that needs to also be resolved.

Starting and accessing the containers in
AWS
In this recipe, we will start our scraper as a service by telling ECS to run our task definition.
Then we will check hat it is running by issuing a curl to get contents of a job listing.

Getting ready
We need to do one quick thing before running the task. Tasks in ECS go through revisions.
Each time you register a task definition with the same name ("family"), ECS defines a new
revision number. You can run any of the revisions.

Making the Scraper as a Service Real Chapter 11

[327]

To run the most recent one, we need to list the task definitions for that family and find the
most recent revision number. The following lists all of the task definitions in the cluster. At
this point we only have one:

$ aws ecs list-task-definitions
{
 "taskDefinitionArns": [
 "arn:aws:ecs:us-west-2:414704166289:task-definition/scraper-as-a-
service:17"
]
}

Notice my revision number is at 17. While this is my only currently registered version of
this task, I have registered (and unregistered) 16 previous revisions.

How to do it
We proceed with the recipe as follows:

Now we can run our task. We do this with the following command:1.

$ aws ecs run-task --cluster scraper-cluster --task-definition
scraper-as-a-service:17 --count 1
{
 "tasks": [
 {
 "taskArn": "arn:aws:ecs:us-
west-2:414704166289:task/00d7b868-1b99-4b54-9f2a-0d5d0ae75197",
 "version": 1,
 "group": "family:scraper-as-a-service",
 "containerInstanceArn": "arn:aws:ecs:us-
west-2:414704166289:container-instance/5959fd63-7fd6-4f0e-92aa-
ea136dabd762",
 "taskDefinitionArn": "arn:aws:ecs:us-
west-2:414704166289:task-definition/scraper-as-a-service:17",
 "containers": [
 {
 "name": "rabbitmq",
 "containerArn": "arn:aws:ecs:us-
west-2:414704166289:container/4b14d4d5-422c-4ffa-
a64c-476a983ec43b",
 "lastStatus": "PENDING",
 "taskArn": "arn:aws:ecs:us-
west-2:414704166289:task/00d7b868-1b99-4b54-9f2a-0d5d0ae75197",
 "networkInterfaces": [

Making the Scraper as a Service Real Chapter 11

[328]

]
 },
 {
 "name": "scraper-microservice",
 "containerArn": "arn:aws:ecs:us-
west-2:414704166289:container/511b39d2-5104-4962-
a859-86fdd46568a9",
 "lastStatus": "PENDING",
 "taskArn": "arn:aws:ecs:us-
west-2:414704166289:task/00d7b868-1b99-4b54-9f2a-0d5d0ae75197",
 "networkInterfaces": [
]
 },
 {
 "name": "api",
 "containerArn": "arn:aws:ecs:us-
west-2:414704166289:container/0e660af7-e2e8-4707-b04b-
b8df18bc335b",
 "lastStatus": "PENDING",
 "taskArn": "arn:aws:ecs:us-
west-2:414704166289:task/00d7b868-1b99-4b54-9f2a-0d5d0ae75197",
 "networkInterfaces": [
]
 }
],
 "launchType": "EC2",
 "overrides": {
 "containerOverrides": [
 {
 "name": "rabbitmq"
 },
 {
 "name": "scraper-microservice"
 },
 {
 "name": "api"
 }
]
 },
 "lastStatus": "PENDING",
 "createdAt": 1515739041.287,
 "clusterArn": "arn:aws:ecs:us-
west-2:414704166289:cluster/scraper-cluster",
 "memory": "4096",
 "cpu": "1024",
 "desiredStatus": "RUNNING",
 "attachments": [
]

Making the Scraper as a Service Real Chapter 11

[329]

 }
],
 "failures": [
]
}

The output gives us a current status of the task. The very first time this is run, it
will take a little time to get going, as the containers are being copied over to the
EC2 instance. The main culprit of that delayu is the scraper-microservice
container with all of the NLTK data.

You can check the status of the task with the following command:2.

$ aws ecs describe-tasks --cluster scraper-cluster --task
00d7b868-1b99-4b54-9f2a-0d5d0ae75197

You will need to change the task GUID to match guid in the "taskArn" property
of the output from running the task. When all the containers are running, we are
ready to test the API.

To call our service, we will need to find the IP address or DNS name for our3.
cluster instance. you can get this from the output when we created the cluster,
through the portal, or with the following commands. First, describe the cluster
instances:

$ aws ecs list-container-instances --cluster scraper-cluster
{
 "containerInstanceArns": [
 "arn:aws:ecs:us-west-2:414704166289:container-
instance/5959fd63-7fd6-4f0e-92aa-ea136dabd762"
]
}

With the GUID for our EC2 instance, we can query its info and pull the EC24.
instance ID with the following:

$ aws ecs describe-container-instances --cluster scraper-cluster --
container-instances 5959fd63-7fd6-4f0e-92aa-ea136dabd762 | grep
"ec2InstanceId"
 "ec2InstanceId": "i-08614daf41a9ab8a2",

Making the Scraper as a Service Real Chapter 11

[330]

With that instance ID, we can get the DNS name:5.

$ aws ec2 describe-instances --instance-ids i-08614daf41a9ab8a2 |
grep "PublicDnsName"
 "PublicDnsName": "ec2-52-27-26-220.us-
west-2.compute.amazonaws.com",
 "PublicDnsName":
"ec2-52-27-26-220.us-west-2.compute.amazonaws.com"
 "PublicDnsName":
"ec2-52-27-26-220.us-west-2.compute.amazonaws.com"

And with that DNS name, we can make a curl to get a job listing:6.

$ curl ec2-52-27-26-220.us-
west-2.compute.amazonaws.com/joblisting/122517 | head -n 6

And we get the following familiar result!

{
 "ID": "122517",
 "JSON": {
 "@context": "http://schema.org",
 "@type": "JobPosting",
 "title": "SpaceX Enterprise Software Engineer, Full Stack",

Our scraper is now running in the cloud!

There's more...
Our scraper is running on an m4.large instance, so we would like to shut it down to we
don't exceed our free-tier usage. This is a two-step process. First, the EC2 instances in the
cluster need to be terminated, and the cluster deleted. Note that deleting the cluster DOES
NOT terminate the EC2 instances.

We can terminate the EC2 instance using the following (and the instance ID we just got
from interrogating the cluster):

$ aws ec2 terminate-instances --instance-ids i-08614daf41a9ab8a2
{
 "TerminatingInstances": [
 {
 "CurrentState": {
 "Name": "shutting-down",
 "Code": 32
 },

Making the Scraper as a Service Real Chapter 11

[331]

 "PreviousState": {
 "Name": "running",
 "Code": 16
 },
 "InstanceId": "i-08614daf41a9ab8a2"
 }
]
}

And the cluster can be deleted with:

$ aws ecs delete-cluster --cluster scraper-cluster
{
 "cluster": {
 "activeServicesCount": 0,
 "pendingTasksCount": 0,
 "clusterArn": "arn:aws:ecs:us-west-2:414704166289:cluster/scraper-
cluster",
 "runningTasksCount": 0,
 "clusterName": "scraper-cluster",
 "registeredContainerInstancesCount": 0,
 "status": "INACTIVE"
 }
}

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Learning Data Mining with Python - Second Edition
Robert Layton

ISBN: 9781787126787

Apply data mining concepts to real-world problems
Predict the outcome of sports matches based on past results
Determine the author of a document based on their writing style
Use APIs to download datasets from social media and other online services
Find and extract good features from difficult datasets
Create models that solve real-world problems
Design and develop data mining applications using a variety of datasets
Perform object detection in images using Deep Neural Networks
Find meaningful insights from your data through intuitive visualizations
Compute on big data, including real-time data from the internet

https://www.packtpub.com/big-data-and-business-intelligence/learning-data-mining-python-second-edition

Other Books You May Enjoy

[333]

Python Social Media Analytics
Siddhartha Chatterjee, Michal Krystyanczuk

ISBN: 9781787121485

Understand the basics of social media mining
Use PyMongo to clean, store, and access data in MongoDB
Understand user reactions and emotion detection on Facebook
Perform Twitter sentiment analysis and entity recognition using Python
Analyze video and campaign performance on YouTube
Mine popular trends on GitHub and predict the next big technology
Extract conversational topics on public internet forums
Analyze user interests on Pinterest
Perform large-scale social media analytics on the cloud

https://www.packtpub.com/big-data-and-business-intelligence/python-social-media-analytics

Other Books You May Enjoy

[334]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

1
12-Factor application
 about 305
 reference 305

A
API container
 creating 274, 277
API
 modifying, for job search 302
auto throttling
 reference 141
 using 140
AWS containers
 accessing 326, 330
 starting 326, 330
AWS queue
 messages, posting to 85
AWS S3
 reference 69
 used, for data storage 64, 69
AWS SQS
 used, for building robust ETL pipelines 84
axis 39

B
bans
 prevention, by scraping via proxies 169
basic authorization
 handling 168
Beautiful Soup
 Python.org, scraping 13, 17, 19

C
caching responses 172, 173
concurrent requests per domain count
 setting 139
container
 image, removing 259
 pushing, into ECR 311
 stopping/restarting 259
contributor location frequency
 visualizing, on Wikipedia 214
crawl depth
 controlling 157
crawl length
 controlling 160
CSS selectors
 reference 48
 used, for querying data 46
CSV
 reference 64
 working with 55, 61
curl
 used, for accessing Elastic Cloud cluster 289

D
degrees of separation
 calculating 229
Docker container (RabbitMQ)
 running 254
Docker Hub
 RabbitMQ container, installing 251
docker-compose
 reference 277
 used, for local composing of scraper 277, 283
Docker
 configuring, for authentication with ECR 309
 installing 249, 251

[336]

 reference 249
document object model (DOM)
 navigating, BeautifulSoup used 30, 35
 searching with Beautiful Soup's find methods 35
DSL
 reference 298

E
ECR
 containers, pushing 311
ECS cluster
 creating 317
ECS task
 creating 320, 325
ECS
 AWS IAM user and key pair, creating 307
Elastic Cloud cluster
 accessing, with curl 289
 connecting, with Python 290, 294
Elastic Cloud trial account
 configuring 285
 creating 285
Elasticsearch container
 executing 257
Elasticsearch query
 performing, with Python 298
 performing, with Python API 294
Elasticsearch
 data, storing 240, 245
 reference 240
 stored job listing, checking 246
 used, for data storage 80, 83
 used, for querying for jobs with specific skills

298, 302
elements
 used, for querying data 46
environment
 configuration, storing 306

F
failed page downloads
 strategies, retrying 144
file extension
 determining, from content type 97

find method, Beautiful Soup
 used, for searching DOM 35
Flask-RESTful
 used, for creating REST API 232
forms authorization
 handling 164, 167
forms-based authorization
 handling 164, 167
freegeoip.net
 reference 207
frequency distributions, words
 calculating 186

G
generic microservice
 creating, with Nameko 262, 266
Google maps geocoding API
 reference 207

H
HTTP cache for development
 using 141

I
IAM user
 reference 307
identifiable user agents
 using 138, 139
images
 OCR, perfpytesseract 114
 thumbnails, generating 102
infinitely scrolling pages
 processing 151, 156
IP address
 geocoding 207

J
job listing
 description, cleaning 201
 description, reading 201
 scraping, from StackOverflow 196, 200
 skill search, by adding API 238
JSON data
 working with 55, 61

[337]

JSON
 reference 64

L
legality
 scraping 121
lemmatization
 performing 182
links
 crawling, in Wikipedia 220
lxml
 reference 39
 used, for querying DOM 38, 45

M
media content
 downloading, from web 91
media
 downloading, to local file system 98
 saving, to local file system 98
messages
 processing 88
 reading 87
MP4 video
 ripping, to MP3 119
MySQL
 used, for data storage 69, 74

N
n-grams
 attaching 192
Nameko
 used, for creating generic microservice 262, 266
NLTK
 installing 176

P
page redirects 145
page relationships
 visualizing, on Wikipedia 224, 228
paginated websites
 handling 161, 164
PhantomJS
 used, for scraping Python.org 25, 28

Pillow
 reference 102
PostgreSQL
 used, for data storage 75, 79
punctuation marks
 removing 191
pytesseract
 reference 114
 used, for performing OCR on image 114
Python API
 Elasticsearch query, performing with 294
 Elasticsearch, performing with 298
Python development environment
 setting up 8, 9, 12
Python events
 reference 13
Python.org
 scraping, in urllib3 19
 scraping, with Beautiful Soup 13, 18, 19
 scraping, with PhantomJS 25
 scraping, with Requests 13, 18
 scraping, with Scrapy 21, 24
 scraping, with Selenium 25, 28
Python
 connecting, with Elastic Cloud cluster 290, 294
 page link 220

R
RabbitMQ container
 installing, from Docker Hub 252
rare words
 identifying 188, 190
 removing 188, 190
Requests
 Python.org, scraping 13, 17
REST API
 integrating, with scraper code 235
robots.txt
 reference 124, 127
 using, with reppy library 123, 127
robust ETL pipelines
 building, with AWS SQS 84

[338]

S
S3
 images, downloading 100
 images, saving 100
scraper code
 REST API , integrating with 235
scraper container
 creating 268, 273
scraper
 using, considerations 121
scraping microservice
 creating 266
Scrapy selectors
 reference 50
 using 48
Scrapy
 about 21
 examining, with delays 135, 137
 used, for scraping Python.org 21, 24
screenshot API
 reference 108
screenshot, website
 capturing 105
 capturing, with external service 108
Selenium
 content, awaiting 147
 used, for scraping Python.org 25, 28
sentence splitting
 performing 177, 179
single domain
 crawling, limiting 150
sitemap
 about 127
 used, for crawling 128, 133
StackOverflow job listing
 scraping 196
 word cloud, creating 217
StackOverflow
 job listing , scraping 199
stemming
 performing 181
stop words
 determining 184
 removing 184

T
thumbnails
 generating, for images 102
tokenization
 performing 179

U
unicode / UTF-8
 data, loading 50, 53
URL
 content type, determining 95
 parsing, with urllib 93
urllib3
 Python.org, scraping 19
urllib
 used, for parsing URL 93
user agents
 randomization 170

V
video thumbnail
 creating 116, 119

W
Web scraping page
 reference 211
web
 media content, downloading 91
 screenshot, capturing 105
 screenshot, capturing with external service 108
websites
 parsing 30, 35
Wikipedia edits
 addresses, collecting 210, 214
Wikipedia
 contributor location frequency, visualizing 214
 links, crawling 219, 224
 page relationships, visualizing 224, 228
word cloud
 creating, from StackOverflow job listing 217

X
XPath
 reference 45

 used, for querying CSS selectors 46
 used, for querying DOM 38, 44
XSLT (eXtensible Stylesheet Language

Transformation) 45

 go to

it-eb.com
for more...

https://it-eb.com/

	Cover
	Copyright and Credits
	Contributors
	Packt Upsell
	Table of Contents
	Preface
	Chapter 1: Getting Started with Scraping
	Introduction
	Setting up a Python development environment€
	Getting ready
	How to do it...

	Scraping Python.org with Requests and Beautiful Soup
	Getting ready...
	How to do it...
	How it works...

	Scraping Python.org in€urllib3 and Beautiful Soup
	Getting ready...
	How to do it...
	How it works
	There's more...

	Scraping Python.org with Scrapy
	Getting ready...
	How to do it...
	How it works

	Scraping Python.org with Selenium and PhantomJS
	Getting ready
	How to do it...
	How it works
	There's more...

	Chapter 2: Data Acquisition and Extraction
	Introduction
	How to parse websites and navigate the DOM using BeautifulSoup
	Getting ready
	How to do it...
	How it works
	There's more...

	Searching the DOM with Beautiful Soup's find methods
	Getting ready
	How to do it...

	Querying the DOM with XPath and lxml
	Getting ready
	How to do it...
	How it works
	There's more...

	Querying data with XPath and CSS selectors
	Getting ready
	How to do it...
	How it works
	There's more...

	Using Scrapy selectors
	Getting ready
	How to do it...
	How it works
	There's more...

	Loading data in unicode / UTF-8
	Getting ready
	How to do it...
	How it works
	There's more...

	Chapter 3: Processing Data
	Introduction
	Working with CSV and JSON data
	Getting ready
	How to do it
	How it works
	There's more...

	Storing data using AWS S3
	Getting ready
	How to do it
	How it works
	There's more...

	Storing data using MySQL
	Getting ready
	How to do it
	How it works
	There's more...

	Storing data using PostgreSQL
	Getting ready
	How to do it
	How it works
	There's more...

	Storing data in Elasticsearch
	Getting ready
	How to do it
	How it works
	There's more...

	How to build robust ETL pipelines with AWS SQS
	Getting ready
	How to do it - posting messages to an AWS queue
	How it works
	How to do it - reading and processing messages
	How it works
	There's more...

	Chapter 4: Working with Images, Audio, and other Assets
	Introduction
	Downloading media content from the web
	Getting ready
	How to do it
	How it works
	There's more...

	€Parsing a URL with urllib to get the filename
	Getting ready
	How to do it
	How it works
	There's more...

	Determining the type of content for a URL€
	Getting ready
	How to do it
	How it works
	There's more...

	Determining the file extension from a content type
	Getting ready
	How to do it
	How it works
	There's more...

	Downloading and saving images to the local file system
	How to do it
	How it works
	There's more...

	Downloading and saving images to S3
	Getting ready
	How to do it
	How it works
	There's more...

	€Generating thumbnails for images
	Getting ready
	How to do it
	How it works

	Taking a screenshot of a website
	Getting ready
	How to do it
	How it works

	Taking a screenshot of a website with an external service
	Getting ready
	How to do it
	How it works
	There's more...

	Performing OCR on an image with pytesseract
	Getting ready
	How to do it
	How it works
	There's more...

	Creating a Video Thumbnail
	Getting ready
	How to do it
	How it works
	There's more..

	Ripping an MP4 video to an MP3
	Getting ready
	How to do it
	There's more...

	Chapter 5: Scraping - Code of Conduct
	Introduction
	Scraping legality and scraping politely
	Getting ready
	How to do it

	Respecting robots.txt
	Getting ready
	How to do it
	How it works
	There's more...

	Crawling using the sitemap
	Getting ready
	How to do it
	How it works
	There's more...

	Crawling with delays
	Getting ready
	How to do it
	How it works
	There's more...

	Using identifiable user agents€
	How to do it
	How it works
	There's more...

	Setting the number of concurrent requests per domain
	How it works

	Using auto throttling
	How to do it
	How it works
	There's more...

	Using an HTTP cache for development
	How to do it
	How it works
	There's more...

	Chapter 6: Scraping Challenges and Solutions
	Introduction
	Retrying failed page downloads
	How to do it
	How it works

	Supporting page redirects
	How to do it
	How it works

	Waiting for content to be available in Selenium
	How to do it
	How it works

	Limiting crawling to a single domain
	How to do it
	How it works

	Processing infinitely scrolling pages
	Getting ready
	How to do it
	How it works
	There's more...

	Controlling the depth of a crawl
	How to do it
	How it works

	Controlling the length of a crawl
	How to do it
	How it works

	Handling paginated websites
	Getting ready
	How to do it
	How it works
	There's more...

	Handling forms and forms-based authorization
	Getting ready
	How to do it
	How it works
	There's more...

	Handling€basic authorization
	How to do it
	How it works
	There's more...

	Preventing bans by scraping via proxies
	Getting ready
	How to do it
	How it works

	Randomizing user agents
	How to do it

	Caching responses
	How to do it
	There's more...

	Chapter 7: Text Wrangling and Analysis
	Introduction
	Installing NLTK
	How to do it

	Performing sentence splitting
	How to do it
	There's more...

	Performing tokenization
	How to do it

	Performing stemming
	How to do it

	Performing lemmatization
	How to do it

	Determining and removing stop words
	How to do it
	There's more...

	Calculating the frequency distributions of words
	How to do it
	There's more...

	Identifying and removing rare words
	How to do it

	Identifying and removing rare words
	How to do it

	Removing punctuation marks
	How to do it
	There's more...

	Piecing together n-grams
	How to do it
	There's more...

	Scraping a job listing from StackOverflow€
	Getting ready
	How to do it
	There's more...

	Reading and cleaning the description in the job listing
	Getting ready
	How to do it...

	Chapter 8: Searching, Mining and Visualizing Data
	Introduction
	Geocoding an IP address
	Getting ready
	How to do it

	How to collect IP addresses of Wikipedia edits
	Getting ready
	How to do it
	How it works
	There's more...

	Visualizing contributor location frequency on Wikipedia
	How to do it

	Creating a word cloud from a StackOverflow job listing
	Getting ready
	How to do it

	Crawling links on Wikipedia
	Getting ready
	How to do it
	How it works
	Theres more...

	Visualizing page relationships on Wikipedia
	Getting ready
	How to do it
	How it works
	There's more...

	Calculating degrees of separation
	How to do it
	How it works
	There's more...

	Chapter 9: Creating a Simple Data API
	Introduction
	Creating a REST API with Flask-RESTful
	Getting ready
	How to do it
	How it works
	There's more...

	Integrating the REST API with scraping code
	Getting ready
	How to do it

	Adding an API to find the skills for a job listing
	Getting ready
	How to do it

	Storing data in Elasticsearch as the result of a scraping request
	Getting ready
	How to do it
	How it works
	There's more...

	Checking Elasticsearch for a listing before scraping
	How to do it
	There's more...

	Chapter 10: Creating Scraper Microservices with Docker
	Introduction
	Installing Docker
	Getting ready
	How to do it

	Installing€a RabbitMQ container from Docker Hub
	Getting ready
	How to do it

	Running a Docker container (RabbitMQ)
	Getting ready
	How to do it
	There's more...

	Creating and running an Elasticsearch container
	How to do it

	Stopping/restarting a container and removing the image
	How to do it
	There's more...

	Creating a generic microservice with Nameko
	Getting ready
	How to do it
	How it works
	There's more...

	Creating€a scraping microservice
	How to do it
	There's more...

	Creating a€scraper container
	Getting ready
	How to do it
	How it works

	Creating€an API container
	Getting ready
	How to do it
	There's more...

	Composing and running the scraper locally with docker-compose
	Getting ready
	How to do it
	There's more...

	Chapter 11: Making the Scraper as a Service Real
	Introduction
	Creating and configuring an Elastic Cloud trial account
	How to do it

	Accessing the Elastic Cloud cluster with curl
	How to do it

	Connecting to the Elastic Cloud cluster with Python
	Getting ready
	How to do it
	There's more...

	Performing an Elasticsearch query with the Python API€
	Getting ready
	How to do it
	There's more...

	Using Elasticsearch to query for jobs with specific skills
	Getting ready
	How to do it

	Modifying the API to search for jobs by skill
	How to do it
	How it works
	There's more...

	Storing configuration in the environment€
	How to do it

	Creating an AWS IAM user and a key pair for ECS
	Getting ready
	How to do it

	Configuring Docker to authenticate with ECR
	Getting ready
	How to do it

	Pushing containers into ECR
	Getting ready
	How to do it

	Creating an ECS cluster
	How to do it

	Creating a task to run our containers
	Getting ready
	How to do it
	How it works

	Starting and accessing the containers in AWS
	Getting ready
	How to do it
	There's more...

	Other Books You May Enjoy
	Index

