

Troubleshooting Docker

Strategically design, troubleshoot, and automate Docker
containers from development to deployment

Vaibhav Kohli
Rajdeep Dua
John Wooten

 BIRMINGHAM - MUMBAI

Troubleshooting Docker

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2017

Production reference: 1280317

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78355-234-4

www.packtpub.com

http://www.packtpub.com

Credits

Authors

Vaibhav Kohli
Rajdeep Dua
John Wooten

Copy Editors

Shaila Kusanale
Safis Editing

Reviewer

Radhakrishna Nayak

Project Coordinator

Ritika Manoj

Commissioning Editor

Vedika Naik

Proofreader

Safis Editing

Acquisition Editor

Tushar Gupta

Indexer

Tejal Daruwale Soni

Content Development Editors

Johann Barretto
Divij Kotian

Production Coordinator

Aparna Bhagat

Technical Editors

Murtaza Tinwala
Sushant Nadkar

Graphics

Jason Monteiro

About the Authors
Vaibhav Kohli at present is working in VMware's R&D Department and earlier taught
computer engineering for a year at the esteemed University of Mumbai. He works for the
office of the CTO, VMware IoT (Internet of Things) project. He has published many
research papers in leading journals, IEEE transactions, and has filed patents at VMware on
container technology. One of his big data projects has won the top prize at the national-level
project showcase event. He has conducted workshops, hackathons, training sessions, and
trade shows in many countries and is a reputed & established speaker at conferences on IoT
and Docker technology. He is an active open source code contributor, repository manager
and has also published many online Docker & Kubernetes tutorials. He has helped many
customers and organizations to understand cloud-native apps, DevOps model and migrate
to micro-service architecture. He has also recently published a book on Docker Networking.

Vaibhav manages and leads various meetup groups across India on the latest cutting-edge
Docker and Kubernetes technologies.

First and foremost, I would like to thank God for providing me the gift of writing. I
dedicate this book to my mom & dad, Kamni Kohli & Ashok K Kohli, who have supported
me in everything I have ever done. A special thanks to all my mentors who helped shape me
into the person that I am…

Rajdeep Dua has over 18 years of experience in the Cloud and Big Data space. He has
worked extensively on Cloud Infrastructure and Machine Learning related projects as well
evangelized these stacks at Salesforce, Google, VMWare. Currently, he leads Developer
Relations team at Salesforce India. He also works with the Machine Learning team at
Salesforce.

He has been nominated by Docker as a Docker Captain for his contributions to the
community. His contributions to the open source community are in the following projects:
Docker, Kubernetes, Android, OpenStack, and Cloud Foundry. He also has teaching
experience in Cloud and Big Data at IIIT Hyderabad, ISB, IIIT Delhi, and College of
Engineering Pune.

Rajdeep did his MBA in IT and Systems from Indian Institute of Management Lucknow,
India, and BTech from Thapar University, Patiala, India. You can reach him on Twitter at
@rajdeepdua.

John Wooten is the founder and CEO of CONSULTED, a global open source cloud
consultancy that designs secure, succinct, and sustainable cloud architectures. As a leading
cloud solutions architect and open technology strategist, John has deep and applicable real-
world experience in designing, testing, deploying, and managing public, private, and
hybrid cloud systems for both enterprise and government. His primary technical
proficiencies include Linux systems administration, OpenStack clouds, and Docker
containers. As an open source activist, John is committedly passionate and works
extensively within a broad range of open source projects and communities. His latest
Internet project is as the founder and maintainer of ÖppenSourced
(www.öppensourced.com), a leading repository and defining resource on open source
projects and applications. Otherwise, he is a self-proclaimed beach bum in search of the
next surfable wave or is hiking and camping in remote locations.

https://www.xn--ppensourced-qfb.com/

About the Reviewer
Radhakrishna Nayak is a free software evangelist and works as a senior software engineer
at Plivo. He has over 5 years of experience. He is a full stack developer and has worked on
various open source technologies, such as Python, Django, AngularJS, ReactJS, HTML5,
CSS3, MySQL, MongoDB, PostgreSQL, Docker, and many more. He loves to explore and try
out new technologies. He is a foodie and loves to explore new restaurants and ice cream
parlors.

I would like to thank my parents, Sudheer Nayak and Vranda Nayak, for all their support
and freedom to follow my passion. Thanks to all my colleagues at Plivo and Gautham Pai,
founder of Jnaapti, for all their support and encouragement. Thanks to Nikhil, Ritika, and
the team at Packt Publishing for trusting my abilities and giving the an opportunity to
review this book.

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

h t t p s ://w w w . p a c k t p u b . c o m /m a p t

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt

Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at h t t p s ://w w w . a m a z o n . c o m /T r o u b l e s h o o t i n g - D o c k e r - J o h n - W o o t e n /d p /1783552344.

If you'd like to join our team of regular reviewers, you can e-mail us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344
https://www.amazon.com/Troubleshooting-Docker-John-Wooten/dp/1783552344

Table of Contents
Preface 1

Chapter 1: Understanding Container Scenarios and an Overview of
Docker 7

Decoding containers 8
OS containers 8
Application containers 9
Diving into Docker 12
Advantages of Docker containers 13
Docker lifecycle 14
Docker design patterns 15

Base image sharing 16
Shared volume 16
Development tools container 17
Test environment containers 18
The build container 18
The installation container 19
The service-in-a-box container 19
Infrastructure containers 19

Unikernels 20
Summary 22

Chapter 2: Docker Installation 23

Installing Docker on Ubuntu 24
Prerequisites 25
Updating package information 25
Adding a new GPG key 25
Troubleshooting 26
Adding a new package source for Docker 26
Updating Ubuntu packages 26
Install linux-image-extra 27
Optional - installing AppArmor 27
Docker installation 28

Installing Docker on Red Hat Linux 28
Checking kernel version 29
Updating the YUM packages 29
Adding the YUM repository 30

[ii]

Installing the Docker package 30
Starting the Docker service 30
Testing the Docker installation 30
Checking the installation parameters 31
Troubleshooting tips 31

Deploy CentOS VM on AWS to run Docker containers 31
Checking kernel version 34
Updating the YUM packages 34
Adding the YUM repository 35
Installing the Docker package 35
Starting the Docker service 35
Testing the Docker installation 35
Checking the installation parameters 36

Installing Docker on CoreOS 36
Installation channels of CoreOS 37
Troubleshooting 39

Installing Docker on Fedora 40
Checking Linux kernel Version 40
Installing with DNF 40
Adding to the YUM repository 41
Installing the Docker package 41

Installing Docker with script 42
Running the Docker installation script 43

Installing Docker on SUSE Linux 44
Launching the SUSE Linux VM on AWS 44
Checking Linux kernel version 46
Adding Containers-Module 46
Installing Docker 46
Starting Docker service 47
Checking the Docker installation 47
Troubleshooting 47

Summary 48

Chapter 3: Building Base and Layered Images 49

Building container images 50
Official images from the Docker Registry 50

User repositories 53
Building our own base images 54

Building images using the scratch repository 57
Building layered images 58

[iii]

Building layered images using Dockerfiles 58
Dockerfile construction 58
Dockerfile commands and syntax 59

Image testing and debugging 69
Docker details for troubleshooting 70
Docker version 70
Docker info 70
A troubleshooting note for Debian/Ubuntu 70
Listing installed Docker images 71
Manually crank your Docker image 71
Examining the filesystem state from cache 72
Image layer IDs as debug containers 73
Additional example 74
Checking failed container processes 74
Other potentially useful resources 75
Using sysdig to debug 76

Single step installation 77
Advanced installation 77
What are chisels? 77

Troubleshooting – an open community awaits you 79
Automated image building 79

Unit tested deployments 79
Automating tested deployments 81

Summary 82

Chapter 4: Devising Microservices and N-Tier Applications 83

Hype or hubris 84
Monolithic architecture 85
N-tier application architecture 86

Building a three-tier web application 88
Microservices architecture 90

The path to modernity 90
Microservices architectural pattern 91
Common characteristics of microservices 92
Advantages of microservices 92
Microservices at scalability 94
Disadvantages of microservices 95
Considerations for devising microservices 96

Mitigating the disadvantages 97
Managing microservices 98

Real-world example 98
Automated tests and deployments 100

[iv]

Automated testing 101
Designing for failure 101
Dockunit for unit tests 102

Automated deployments 103
Decoupling N-tier applications into multiple images 103

Building an N-tier web application 104
Making different tiers of applications work 105

Summary 106

Chapter 5: Moving Around Containerized Applications 107

Redistributing via Docker registry 107
Docker public repository (Docker Hub) 107
Private Docker registry 109

Pushing images to Docker Hub 109
Installing a private local Docker registry 112
Moving images in between hosts 113
Ensuring integrity of images – signed images 115

Docker Trusted Registry (DTR) 120
Docker Universal Control Plane 122
Summary 130

Chapter 6: Making Containers Work 132

Privileged containers 133
Troubleshooting tips 134

Super-privileged container 135
Troubleshooting – Docker containers at scale 137

Puppet 137
Images 139
Containers 139
Networking 140
Docker compose 141
Troubleshooting tips 143

Ansible 143
Automating Docker with Ansible 144
Ansible Container 145
Troubleshooting tips 145

Chef 146
Summary 148

Chapter 7: Managing the Networking Stack of a Docker Container 149

Docker networking 149
docker0 bridge 150

[v]

Troubleshooting Docker bridge configuration 151
Connecting containers to the external world 152
Reaching containers from the outside world 152

Configuring DNS 155
Troubleshooting communication between containers and the external
network 157

Restricting SSH access from one container to another 159
Linking containers 161

libnetwork and the Container Network Model 164
CNM objects 165

Sandbox 165
Endpoint 166
Network 167
Network controller 168
CNM attributes 169
CNM life cycle 170

Docker networking tools based on overlay and underlay networks 171
Flannel 172
Weave 173
Project Calico 173

Configuring an overlay network with the Docker Engine swarm node 175
Comparison of all multi-host Docker networking solutions 180

Configuring OpenvSwitch (OVS) to work with Docker 180
Troubleshooting OVS single host setup 182
Troubleshooting OVS multiple host setups 184

Summary 187

Chapter 8: Managing Docker Containers with Kubernetes 188

Deploying Kubernetes on Bare Metal machine 190
Troubleshooting the Kubernetes Fedora manual setup 193
Deploying Kubernetes using Minikube 193
Deploying Kubernetes on AWS 196
Deploying Kubernetes on vSphere 199
Kubernetes setup troubleshooting 200
Kubernetes pod deployment 201
Deploying Kubernetes in a production environment 204
Debugging Kubernetes issues 207
Summary 209

Chapter 9: Hooking Volume Baggage 210

Avoiding troubleshooting by understanding Docker volumes 211
Default case storing data inside the Docker container 211

[vi]

Data-only container 212
Creating a data-only container 213
Sharing data between the host and the Docker container 213

Host mapped volume backed up by shared storage 215
Flocker 215
In the Flocker client node 219
Convoy Docker volume plugin 220

Docker storage driver performance 224
UFS basics 224

UFS – terminology 225
UFS – issues 225

AuFS 226
Device Mapper 226

How device-mapper is used by Docker 226
BTRFS 227

Summary 232

Chapter 10: Docker Deployment in a Public Cloud - AWS and Azure 233

Architecture of Amazon ECS 234
Troubleshooting – AWS ECS deployment 235
Updating Docker containers in the ECS cluster 244
Microsoft Azure container service architecture 247
Troubleshooting – The Microsoft Azure Container Service 249
Docker Beta for AWS and Azure 258
Summary 263

Index 264

Preface
Docker is an open source, container-based platform that enables anyone to consistently
develop and deploy stable applications anywhere. Docker delivers speed, simplicity, and
security in creating scalable and portable environments for ultramodern applications. With
the advent and prevalence of Docker in the containerization of modern microservices and
N-tier applications, it is both prudent and imperative to effectively troubleshoot automated
workflows for production-level deployments.

What this book covers
Chapter 1, Understanding Container Scenarios and an Overview of Docker, is about the basic
containerization concept with the help of application and OS-based containers. We will
throw some light on the Docker technology, its advantages, and the life cycle of Docker
containers.

Chapter 2, Docker Installation, will go over the steps to install Docker on various Linux
distributions – Ubuntu, CoreOS, CentOS, Red Hat Linux, Fedora, and SUSE Linux.

Chapter 3, Building Base and Layered Images, teaches that a mission-critical task in
production-ready application containerization is image building. We will also discuss
building images manually from scratch. Moving ahead, we will explore building layered
images with a Dockerfile and enlist the Dockerfile commands in detail.

Chapter 4, Devising Microservices and N-Tier Applications, will explore example
environments designed seamlessly from development to test, eliminating the need for
manual and error-prone resource provisioning and configuration. In doing so, we will
touch briefly on how a microservice applications can be tested, automated, deployed, and
managed.

Chapter 5, Moving Around Containerized Application, will take a look at Docker registry. We
will start with the basic concepts of Docker public repository using Docker Hub and the use
case of sharing containers with a larger audience. Docker also provides the option to deploy
a private Docker registry, which we look into, that can be used to push, pull, and share the
Docker containers internally in the organization.

Preface

[2]

Chapter 6, Making Containers Work, will teach you about privileged containers, which
have access to all the host devices, and super-privileged containers, which show that the
containers can run a background service that can be used to run services in Docker
containers to manage the underlying host.

Chapter 7, Managing the Networking Stack of a Docker Container, will explain how Docker
networking is powered with Docker0 bridge and its troubleshooting issues and
configuration. We will also look at troubleshooting the communication issues between
Docker networks and the external network. We look into containers communication across
multiple hosts using different networking options, such as Weave, OVS, Flannel, and
Docker's latest overlay network. We will compare them and look at the troubleshooting
issues involved in their configuration.

Chapter 8, Managing Docker Containers with Kubernetes, explains how to manage Docker
containers with help of Kubernetes. We will cover many deployment scenarios
and troubleshooting issues while deploying Kubernetes on a Bare Metal machine, AWS,
vSphere, or using minikube. We will also look at deploying Kubernetes pods effectively and
debugging Kubernetes issues.

Chapter 9, Hooking Volume Baggage, will dive into data volumes and storage driver concepts
related to Docker. We will discuss troubleshooting the data volumes with the help of the
four approaches and look at their pros and cons. The first case of storing data inside the
Docker container is the most basic case, but it doesn't provide the flexibility to manage and
handle data in the production environment. The second and third cases are about storing
the data using data-only containers or directly on the host. The fourth case is about using a
third-party volume plugin, Flocker or Convoy, which stores the data in a separate block and
even provides reliability with data, even if the container is transferred from one host to
another or if the container dies.

Chapter 10, Docker Deployment in a Public Cloud - AWS and Azure, outlines Docker
deployment on the Microsoft Azure and AWS public clouds.

What you need for this book
You will need Docker 1.12+ installed on Windows, Mac OS,or Linux machines. Public cloud
accounts of AWS, Azure and GCE might be required, which are mentioned in the respective
sections of the chapters.

Preface

[3]

Who this book is for
This book is intended to help seasoned solutions architects, developers, programmers,
system engineers, and administrators troubleshoot common areas of Docker
containerization. If you are looking to build production-ready Docker containers for
automated deployment, you will be able to master and troubleshoot both the basic
functions and the advanced features of Docker. Advanced familiarity with the Linux
command line syntax, unit testing, the Docker registry, GitHub, and leading container
hosting platforms and Cloud Service Providers (CSP) are the prerequisites. In this book you
will also learn about ways and means to avoid troubleshooting in the first place.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "Restart
the cluster using the start_k8s.sh shell script."

A block of code is set as follows:

ENTRYPOINT /usr/sbin/sshd -D
VOLUME ["/home"]
EXPOSE 22
EXPOSE 8080

Any command-line input or output is written as follows:

Docker build -t username/my-imagename -f /path/Dockerfile

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "Specify the Stack name,
KeyPair, and cluster 3."

Warnings or important notes appear in a box like this.

Preface

[4]

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of. To send us general feedback, simply e-
mail feedback@packtpub.com, and mention the book's title in the subject of your
message. If there is a topic that you have expertise in and you are interested in either
writing or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at h t t p ://w w w . p

a c k t p u b . c o m . If you purchased this book elsewhere, you can visit h t t p ://w w w . p a c k t p u b . c

o m /s u p p o r t and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

http://www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

[5]

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at h t t p s ://g i t h u b . c o m /P a c k t P u b l

i s h i n g /T r o u b l e s h o o t i n g - D o c k e r . We also have other code bundles from our rich catalog
of books and videos available at h t t p s ://g i t h u b . c o m /P a c k t P u b l i s h i n g /. Check them out!

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting h t t p ://w w w . p a c k t p u b . c o m /s u b m i t - e r r a t a , selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title.

To view the previously submitted errata, go to h t t p s ://w w w . p a c k t p u b . c o m /b o o k s /c o n t e n

t /s u p p o r t and enter the name of the book in the search field. The required information will
appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/Troubleshooting-Docker
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[6]

Questions
If you have a problem with any aspect of this book, you can contact us
at questions@packtpub.com, and we will do our best to address the problem.

1
Understanding Container

Scenarios and an Overview of
Docker

Docker is one of the most recent successful open source projects which provides the
packaging, shipping, and running of any application as lightweight containers. We can
actually compare Docker containers to shipping containers that provide a standard,
consistent way of shipping any application. Docker is a fairly new project and with the help
of this book it will be easy to troubleshoot some of the common problems which Docker
users face while installing and using Docker containers.

In this chapter, the emphasis will be on the following topics:

Decoding containers
Diving into Docker
The advantages of Docker containers
Docker lifecycle
Docker design patterns
Unikernels

Understanding Container Scenarios and an Overview of Docker

[8]

Decoding containers
Containerization is an alternative to a virtual machine, which involves the encapsulation of
applications and providing it with its own operating environment. The basic foundation for
containers is Linux Containers (LXC) which is a user space interface for Linux kernel
containment features. With the help of powerful API and simple tools, it lets Linux users
create and manage application containers. LXC containers are in-between chroot and a
fully-fledged virtual machine. Another key difference between containerization
and traditional hypervisors is that containers share the Linux kernel used by the operating
system running the host machine, thus multiple containers running in the same machine
use the same Linux kernel. It gives the advantage of being fast with almost zero
performance overhead compared to VMs.

Major use cases of containers are listed in the following sections.

OS containers
OS containers can be easily imagined as a Virtual Machine (VM) but unlike a VM they
share the kernel of the host operating system but provide user space isolation. Similar to a
VM, dedicated resources can be assigned to containers and we can install, configure, and
run different applications, libraries, and so on, just as you would run on any VM. OS
containers are helpful in case of scalability testing where a fleet of containers can be
deployed easily with different flavors of distros, which is much less expensive compared to
the deployment of VMs. Containers are created from templates or images that determine
the structure and contents of the container. It allows you to create a container with the
identical environment, same package version, and configuration across all containers
mostly used in the case of development environment setups.

Understanding Container Scenarios and an Overview of Docker

[9]

There are various container technologies such as LXC, OpenVZ, Docker, and BSD jails
which are suitable for OS containers:

An OS-based container

Application containers
Application containers are designed to run a single service in the package, while OS
containers which were explained previously, can support multiple processes. Application
containers are attracting a lot of attraction after the launch of Docker and Rocket.

Whenever a container is launched, it runs a single process. This process runs an application
process, but in the case of OS containers it runs multiple services on the same OS.
Containers usually have a layered approach as in the case of Docker containers, which helps
with reduced duplication and increased re-use. Containers can be started with a base image
common to all components and then we can go on adding layers in the file system that are
specific to the component. A layered file system helps to rollback changes as we can simply
switch to old layers if required. The run command which is specified in Dockerfile adds a
new layer for the container.

The main purpose of application containers is to package different components of the
application in separate containers. The different components of the application are
packaged separately in containers then they interact with help of APIs and services. The
distributed multi-component system deployment is the basic implementation of
microservice architecture. In the preceding approach, a developer gets the freedom to
package the application as per their requirement and the IT team gets the privilege to
deploy the container on multiple platforms in order to scale the system both horizontally as
well as vertically:

Understanding Container Scenarios and an Overview of Docker

[10]

A hypervisor is a Virtual Machine Monitor (VMM), used to allow
multiple operating systems to run and share the hardware resources from
the host. Each virtual machine is termed as a guest machine.

Docker layers

The following simple example explains the difference between application containers and
OS containers:

Let's consider the example of web three-tier architecture. We have a database tier such as
MySQL or Nginx for load balancing and the application tier is Node.js:

An OS container

Understanding Container Scenarios and an Overview of Docker

[11]

In the case of an OS container, we can pick up by default Ubuntu as the base container and
install services MySQL, nginx, and Node.js using Dockerfile. This type of packaging is good
for a testing or development setup where all the services are packaged together and can be
shipped and shared across developers. But deploying this architecture for production
cannot be done with OS containers as there is no consideration of data scalability and
isolation. Application containers help to meet this use case as we can scale the required
component by deploying more application-specific containers and it also helps to meet load
balancing and recovery use cases. For the previous three-tier architecture, each of the
services will be packaged into separate containers in order to fulfill the architecture
deployment use case:

Application containers scaled up

The main differences between OS and application containers are:

OS Container Application Container

Meant to run multiple services on the same OS container Meant to run a single service

Natively, no layered filesystem Layered filesystem

Example: LXC, OpenVZ, BSD Jails Example: Docker, Rocket

Understanding Container Scenarios and an Overview of Docker

[12]

Diving into Docker
Docker is a container implementation that has gathered enormous interest in recent years. It
neatly bundles various Linux kernel features and services such as namespaces, cgroups,
SELlinux, AppArmor profiles, and so on, with Union file systems such as AUFS and BTRFS
to make modular images. These images provide highly configurable virtualized
environments for applications and follow the write-once-run-anywhere principle. An
application can be as simple as running a process to having highly scalable and distributed
processes working together.

Docker is gaining a lot of traction in the industry because of its performance savvy and
universally replicable architecture, meanwhile providing the following four cornerstones of
modern application development:

Autonomy
Decentralization
Parallelism
Isolation

Furthermore, wide-scale adaptation of Thoughtworks's microservices architecture or Lots
of Small Applications (LOSA) is further bringing potential to Docker technology. As a
result, big companies such as Google, VMware, and Microsoft have already ported Docker
to their infrastructure, and the momentum is continued with the launch of myriad of
Docker start-ups namely Tutum, Flocker, Giantswarm, and so on.

Since Docker containers replicate their behavior anywhere, be it your development
machine, a bare-metal server, virtual machine, or data center, application designers can
focus their attention on development, while operational semantics are left to DevOps. This
makes team workflow modular, efficient, and productive. Docker is not to be confused with
VM, even though they are both virtualization technologies. Where Docker shares an OS,
meanwhile providing a sufficient level of isolation and security to applications running in
containers, it later completely abstracts out OS and gives strong isolation and security
guarantees. But Docker's resource footprint is minuscule in comparison to VM, and hence
preferred for economy and performance. However, it still cannot completely replace VM,
and the usage of container is complementary to VM technology:

Understanding Container Scenarios and an Overview of Docker

[13]

VM and Docker architecture

Advantages of Docker containers
Following are some of the advantages of using Docker containers in microservice
architecture:

Rapid application deployment: With minimal runtime, containers can be
deployed quickly because of the reduced size as only the application is packaged.
Portability: An application with its operating environment (dependencies) can be
bundled together into a single Docker container that is independent from the OS
version or deployment model. The Docker containers can be easily transferred to
another machine that runs Docker container and executed without any
compatibility issues. Windows support is also going to be part of future Docker
releases.
Easily Shareable: Pre-built container images can be easily shared with the help of
public repositories as well as hosted private repositories for internal use.
Lightweight footprint: Even the Docker images are very small and have a
minimal footprint to deploy a new application with the help of containers.
Reusability: Successive versions of Docker containers can be easily built as well
as rolled back to previous versions easily whenever required. It makes them
noticeably lightweight as components from the pre-existing layers can be reused.

Understanding Container Scenarios and an Overview of Docker

[14]

Docker lifecycle
These are some of the basic steps involved in the lifecycle of a Docker container:

Build the Docker image with the help of Dockerfile which contains all the1.
commands required to be packaged. It can run in the following way:

 Docker build

Tag name can be added in following way:

 Docker build -t username/my-imagename .

If Dockerfile exists at a different path then the Docker build command can be
executed by providing -f flag:

 Docker build -t username/my-imagename -f /path/Dockerfile

After the image creation, in order to deploy the container Docker run can be2.
used. The running containers can be checked with the help of the Docker
ps command, which lists the currently active containers. There are two more
commands to be discussed:

Docker pause: This command uses cgroups freezer to suspend all the
processes running in a container. Internally it uses the SIGSTOP signal.
Using this command process can be easily suspended and resumed
whenever required.
Docker start: This command is used to start one or more stopped
containers.

After the usage of container is done, it can either be stopped or killed; the Docker3.
stop: command will gracefully stop the running container by sending the
SIGTERM and then SIGKILL command. In this case, the container can still be
listed by using Docker ps -a command. Docker kill will kill the running
container by sending SIGKILL to the main process running inside the container.

Understanding Container Scenarios and an Overview of Docker

[15]

If there are some changes made to the container while it is running, which are4.
likely to be preserved, a container can be converted back to an image by using the
Docker commit after the container has been stopped:

The Docker lifecycle

Docker design patterns
Listed here are eight Docker design patterns with examples. Dockerfile is the base structure
from which we define a Docker image, it contains all the commands to assemble an image.
Using the Docker build command, we can create an automated build that executes all the
preceding mentioned command-line instructions to create an image:

 $ Docker build
 Sending build context to Docker daemon 6.51 MB
 ...

Design patterns listed here can help in creating Docker images that persist in volumes and
provide various other flexibility so that they can be recreated or replaced easily at any time.

Understanding Container Scenarios and an Overview of Docker

[16]

Base image sharing
For creating a web-based application or blog, we can create a base image which can be
shared and help to deploy the application with ease. This pattern helps out as it tries to
package all the required services on top of one base image, so that this web application blog
image can be reused anywhere:

 FROM debian:wheezy
 RUN apt-get update
 RUN apt-get -y install ruby ruby-dev build-essential git
 # For debugging
 RUN apt-get install -y gdb strace
 # Set up my user
 RUN useradd -u 1000 -ms /bin/bash vkohli
 RUN gem install -n /usr/bin bundler
 RUN gem install -n /usr/bin rake
 WORKDIR /home/vkohli/
 ENV HOME /home/vkohli
 VOLUME ["/home"]
 USER vkohli
 EXPOSE 8080

The preceding Dockerfile shows the standard way of creating an application-based image.

A Docker image is a zipped file which is a snapshot of all the
configuration parameters as well as the changes made in the base image
(kernel of the OS).

It installs some specific tools (Ruby tools rake and bundler) on top of the Debian base
image. It creates a new user, adds it to the container image, and specifies the working
directory by mounting "/home" directory from the host, which is explained in detail in the
next section.

Shared volume
Sharing the volume at host level allows other containers to pick up the shared content that
they require. This helps in faster rebuilding of the Docker image or when adding,
modifying, or removing dependencies. For example, if we are creating the homepage
deployment of the previously mentioned blog, the only directory required to be shared is
the /home/vkohli/src/repos/homepage directory with this web app container through
the Dockerfile in the following way:

Understanding Container Scenarios and an Overview of Docker

[17]

 FROM vkohli/devbase
 WORKDIR /home/vkohli/src/repos/homepage
 ENTRYPOINT bin/homepage web

For creating the development version of the blog we can share the folder
/home/vkohli/src/repos/blog where all the related developer files can reside. And for
creating the dev-version image we can take the base image from the pre-created devbase:

FROM vkohli/devbase
WORKDIR /
USER root
For Graphivz integration
RUN apt-get update
RUN apt-get -y install graphviz xsltproc imagemagick
 USER vkohli
 WORKDIR /home/vkohli/src/repos/blog
 ENTRYPOINT bundle exec rackup -p 8080

Development tools container
For development purposes, we have separate dependencies in development and production
environments which easily get co-mingled at some point. Containers can be helpful in
differentiating the dependencies by packaging them separately. As shown in the following
code, we can derive the development tools container image from the base image and install
development dependencies on top of it even allowing an ssh connection so that we can
work upon the code:

FROM vkohli/devbase
RUN apt-get update
RUN apt-get -y install openssh-server emacs23-nox htop screen

For debugging
RUN apt-get -y install sudo wget curl telnet tcpdump
For 32-bit experiments
RUN apt-get -y install gcc-multilib
Man pages and "most" viewer:
RUN apt-get install -y man most
RUN mkdir /var/run/sshd
ENTRYPOINT /usr/sbin/sshd -D
VOLUME ["/home"]
EXPOSE 22
EXPOSE 8080

Understanding Container Scenarios and an Overview of Docker

[18]

As can be seen in the preceding code, basic tools such as wget, curl, and tcpdump are
installed which are required during development. Even SSHD service is installed which
allows an ssh connection into the development container.

Test environment containers
Testing the code in different environments always eases the process and helps find more
bugs in isolation. We can create a Ruby environment in a separate container to spawn a new
Ruby shell and use it to test the code base:

FROM vkohli/devbase
RUN apt-get update
RUN apt-get -y install ruby1.8 git ruby1.8-dev

In the Dockerfile listed, we are using the base image as devbase and with the help of just
one command docker run can easily create a new environment by using the image created
from this Dockerfile to test the code.

The build container
We have build steps involved in the application that are sometimes expensive. In order to
overcome this we can create a separate build container which can use the dependencies
needed during the build process. The following Dockerfile can be used to run a separate
build process:

FROM sampleapp
RUN apt-get update
RUN apt-get install -y build-essential [assorted dev packages for
libraries]
VOLUME ["/build"]
WORKDIR /build
CMD ["bundler", "install","--path","vendor","--standalone"]

/build directory is the shared directory that can be used to provide the compiled binaries,
also we can mount the /build/source directory in the container to provide updated
dependencies. Thus by using build container we can decouple the build process and the
final packaging part in separate containers. It still encapsulates both the process and
dependencies by breaking the preceding process into separate containers.

Understanding Container Scenarios and an Overview of Docker

[19]

The installation container
The purpose of this container is to package the installation steps in separate containers.
Basically, it is in order to provide the deployment of containers in a production
environment.

A sample Dockerfile to package the installation script inside a Docker image is shown as
follows:

ADD installer /installer
CMD /installer.sh

The installer.sh can contain the specific installation command to deploy containers in a
production environment and also provide the proxy setup with DNS entry in order to have
the cohesive environment deployed.

The service-in-a-box container
In order to deploy the complete application in a container, we can bundle multiple services
to provide the complete deployment container. In this case we bundle web app, API service,
and database together in one container. It helps to ease the pain of interlinking various
separate containers:

services:
 web:
 git_url: git@github.com:vkohli/sampleapp.git
 git_branch: test
 command: rackup -p 3000
 build_command: rake db:migrate
 deploy_command: rake db:migrate
 log_folder: /usr/src/app/log
 ports: ["3000:80:443", "4000"]
 volumes: ["/tmp:/tmp/mnt_folder"]
 health: default
 api:
 image: quay.io/john/node
 command: node test.js
 ports: ["1337:8080"]
 requires: ["web"]
databases:
 - "mysql"
 - "redis"

Understanding Container Scenarios and an Overview of Docker

[20]

Infrastructure containers
As we have talked about container usage in a development environment, there is one big
category missing–the usage of a container for infrastructure services such as proxy setup
which provides a cohesive environment in order to provide the access to an application. In
the following mentioned Dockerfile example, we can see that haproxy is installed and links
to its configuration file are provided:

FROM debian:wheezy
ADD wheezy-backports.list /etc/apt/sources.list.d/
RUN apt-get update
RUN apt-get -y install haproxy
ADD haproxy.cfg /etc/haproxy/haproxy.cfg
CMD ["haproxy", "-db", "-f", "/etc/haproxy/haproxy.cfg"]
EXPOSE 80
EXPOSE 443

The haproxy.cfg file is the configuration file responsible for authenticating a user:

backend test
 acl authok http_auth(adminusers)
 http-request auth realm vkohli if !authok
 server s1 192.168.0.44:8084

Unikernels
Unikernels compile source code into a custom operating system that includes only the
functionality required by the application logic producing a specialized single address space
machine image, eliminating unnecessary code. Unikernels are built using the library
operating system, which has the following benefits compared to a traditional OS:

Fast boot time: Unikernels make provisioning highly dynamic and can boot in
less than a second
Small footprint: Unikernel code base is smaller than the traditional OS
equivalents and pretty much as easy to manage
Improved security: As unnecessary code is not deployed, the attack surface is
drastically reduced
Fine-grained optimization: Unikernels are constructed using compile tool chains
and are optimized for device drivers and application logic to be used

Understanding Container Scenarios and an Overview of Docker

[21]

Unikernels match very well with the microservices architecture as both source code and
generated binaries can be easily version-controlled and are compact enough to be rebuilt.
Whereas on the other side, modifying VMs is not permitted and changes can only be made
to source code, which is time-consuming and hectic. For example, if the application doesn't
require disk access and a display facility. Unikernels can help to remove this unnecessary
device driver and display functionality from the kernel. Thus, the production system
becomes minimalistic only packaging the application code, runtime environment, and OS
facilities which is the basic concept of immutable application deployment where a new
image is constructed if any application change is required in production servers:

The transition from a traditional container to Unikernel-based containers

Containers and Unikernels are a best fit for each other. Recently, the Unikernel system has
become part of Docker and the collaboration of both these technologies will be seen soon in
the next Docker release. As explained in the preceding diagram, the first one shows the
traditional way of packaging one VM supporting multiple Docker containers. The next step
shows a 1:1 map (one container per VM) which allows each application to be self-contained
and gives better resource usage, but creating a separate VM for each container adds an
overhead. In the last step, we can see the collaboration of Unikernels with the current
existing Docker tools and ecosystem, where a container will get the kernel low-library
environment specific to its need.

Understanding Container Scenarios and an Overview of Docker

[22]

Adoption of Unikernels in the Docker toolchain will accelerate the progress of Unikernels
and it will be widely used and understood as a packaging model and runtime framework,
making Unikernels another type of container. After the Unikernels abstraction for Docker
developers, we will be able to choose either to use a traditional Docker container or the
Unikernel container in order to create the production environment.

Summary
In this chapter, we studied the basic containerization concept with the help of application
and OS-based containers. The differences between them explained in this chapter will
clearly help developers to choose the containerization approach which fits perfectly for
their system. We have thrown some light on the Docker technology, its advantages, and the
lifecycle of a Docker container. The eight Docker design patterns explained in this chapter
clearly show the way to implement Docker containers in a production environment. At the
end of the chapter, the Unikernels concept was introduced which is the future of where the
containerization domain is moving. In the next chapter, we will be starting with Docker
installation troubleshooting issues and its deep dive resolutions.

2
Docker Installation

Docker installation is pretty smooth in most of the operating systems, and there are very
few chances of things going wrong. Docker Engine installation is supported mostly on all
the Linux, Cloud, Windows, and Mac OS X environments. If the Linux version is not
supported, then Docker Engine can be installed using binaries. Docker binary installation is
mostly oriented for hackers who want to try out Docker on a variety of OS. It usually
involves checking runtime dependencies, kernel dependencies, and using Docker platform-
specific binaries in order to move ahead with installation.

Docker Toolbox is an installer, which can be used to quickly install and set up a Docker
environment on your Windows or Mac machine. Docker toolbox also installs:

Docker client: It executes commands, such as build and run, and ship containers
by communicating with the Docker daemon
Docker Machine: It is a tool used to install Docker Engine on virtual hosts and
manages them with the help of Docker Machine commands
Docker Compose: It is a tool used to define and run multicontainer Docker
applications
Kitematic: The Docker GUI that runs on Mac OS X and Windows operating
system

The installation for Docker with toolbox as well as on various supported OSes is quite
straightforward, but nevertheless we have listed potential pitfalls and troubleshooting steps
involved.

In this chapter, we explore how to install Docker on various Linux distributions, such as the
following:

Ubuntu
Red Hat Linux

Docker Installation

[24]

CentOS
CoreOS
Fedora
SUSE Linux

All of the above OSes can be deployed on the bare-metal machines, but we have used AWS
to deploy in some of the cases, as it's an ideal situation for a production environment. Also,
it'll be faster to get the environment up and running in AWS. We have explained the steps
for the same in the respective sections in this chapter, which will help you to troubleshoot
and speed up the deployment on AWS.

Installing Docker on Ubuntu
Let's get started with installing Docker on Ubuntu 14.04 LTS 64-bit. We can use AWS AMI
in order to create our setup. The image can be launched on AMI directly with the help of
following link:

http://thecloudmarket.com/image/ami-a21529cc–ubuntu-images-hvm-ssd-ubuntu-
trusty-14-04-amd64-server-20160114-5

The following diagram illustrates the installation steps required to install Docker on
Ubuntu 14.04 LTS:

http://thecloudmarket.com/image/ami-a21529cc--ubuntu-images-hvm-ssd-ubuntu-trusty-14-04-amd64-server-20160114-5
http://thecloudmarket.com/image/ami-a21529cc--ubuntu-images-hvm-ssd-ubuntu-trusty-14-04-amd64-server-20160114-5
http://thecloudmarket.com/image/ami-a21529cc--ubuntu-images-hvm-ssd-ubuntu-trusty-14-04-amd64-server-20160114-5
http://thecloudmarket.com/image/ami-a21529cc--ubuntu-images-hvm-ssd-ubuntu-trusty-14-04-amd64-server-20160114-5

Docker Installation

[25]

Prerequisites
Docker requires a 64-bit installation, regardless of the Ubuntu version. The kernel must be
3.10 at minimum.

Let's check our kernel version, using the following command:

$ uname -r

The output is a kernel version of 3.13.x, which is fine:

3.13.0-74-generic

Updating package information
Perform the following steps to update the APT repository and have necessary certificates
installed:

Docker's APT repository contains Docker 1.7.x or higher. To set APT to use1.
packages from the new repository:

 $ sudo apt-get update

Run the following command to ensure that APT works with the HTTPS method2.
and CA certificates are installed:

 $ sudo apt-get install apt-transport-https ca-certificates

The apt-transport-https package enables us to use deb https://foo distro main
lines in the /etc/apt/sources.list so that package managers, which use the libapt-
pkg library, can access metadata and packages available in sources accessible over HTTPS.

The ca-certificates are container's PEM files of CA certificates, which allow SSL-based
applications to check for the authenticity of SSL connections.

Adding a new GPG key
GNU Privacy Guard (known as GPG or GnuPG) is a free encryption software that's
compliant with the OpenPGP (RFC4880) standard:

$ sudo apt-key adv --keyserver hkp://p80.pool.sks-keyservers.net:80 --recv-
keys 58118E89F3A912897C070ADBF76221572C52609D

Docker Installation

[26]

The output will be similar to the following listing:

Executing: gpg --ignore-time-conflict --no-options --no-default-keyring --
homedir /tmp/tmp.SaGDv5OvNN --no-auto-check-trustdb --trust-model always --
keyring /etc/apt/trusted.gpg --primary-keyring /etc/apt/trusted.gpg --
keyserver hkp://p80.pool.sks-keyservers.net:80 --recv-keys
58118E89F3A912897C070ADBF76221572C52609D
gpg: requesting key 2C52609D from hkp server p80.pool.sks-keyservers.net
gpg: key 2C52609D: public key "Docker Release Tool (releasedocker)
<docker@docker.com>" imported
gpg: Total number processed: 1
gpg: imported: 1 (RSA: 1)

Troubleshooting
If you find the sks-keyservers to be unavailable, you can try the following command:

$ sudo apt-key adv --keyserver hkp://pgp.mit.edu:80 --recv-keys
58118E89F3A912897C070ADBF76221572C52609D

Adding a new package source for Docker
The Docker repository can be added in the following way to the APT repository:

Update /etc/apt/sources.list.d with a new source as Docker repository.1.
Open the /etc/apt/sources.list.d/docker.list file and update it with the2.
following entry:

 deb https://apt.dockerproject.org/repo ubuntu-trusty main

Updating Ubuntu packages
The Ubuntu packages after adding Docker repository can be updated, as shown here:

$ sudo apt-get update

Docker Installation

[27]

Install linux-image-extra
For Ubuntu Trusty, it's recommended to install the linux-image-extra kernel package;
the linux-image-extra package allows the AUFS storage driver to be used:

$ sudo apt-get install linux-image-extra-$(uname -r)

The output will be similar to the following listing:

Reading package lists... Done
Building dependency tree
Reading state information... Done
The following extra packages will be installed:
 crda iw libnl-3-200 libnl-genl-3-200 wireless-regdb
The following NEW packages will be installed:
 crda iw libnl-3-200 libnl-genl-3-200 linux-image-extra-3.13.0-74-generic
 wireless-regdb
0 upgraded, 6 newly installed, 0 to remove and 70 not upgraded.
Need to get 36.9 MB of archives.
After this operation, 152 MB of additional disk space will be used.
Do you want to continue? [Y/n] Y
Get:1 http://ap-northeast-1.ec2.archive.ubuntu.com/ubuntu/ trusty/main
libnl-3-200 amd64 3.2.21-1 [44 ..
Updating /boot/grub/menu.lst ... done
run-parts: executing /etc/kernel/postinst.d/zz-update-grub 3.13.0-74-
generic /boot/vmlinuz-3.13.0-74-generic
Generating grub configuration file ...
Found linux image: /boot/vmlinuz-3.13.0-74-generic
Found initrd image: /boot/initrd.img-3.13.0-74-generic
done
Processing triggers for libc-bin (2.19-0ubuntu6.6) ...

Optional - installing AppArmor
If it is not already installed, install AppArmor using the following command:

$ apt-get install apparmor

The output will be similar to the following listing:

sudo: unable to resolve host ip-172-30-0-227
Reading package lists... Done
Building dependency tree
Reading state information... Done
apparmor is already the newest version.
0 upgraded, 0 newly installed, 0 to remove and 70 not upgraded.

Docker Installation

[28]

Docker installation
Let's get started with installing Docker Engine on Ubuntu using the official APT package:

Update APT package index:1.

 $ sudo apt-get update

Install Docker Engine:2.

 $ sudo apt-get install docker-engine

Start the Docker daemon:3.

 $ sudo service docker start

Verify that Docker is installed correctly:4.

 $ sudo docker run hello-world

This is how the output would look like:5.

 Latest: Pulling from library/hello-world
 03f4658f8b78: Pull complete
 a3ed95caeb02: Pull complete
 Digest: sha256:8be990ef2aeb16dbcb9271ddfe2610fa6658d13f6dfb8b
 c72074cc1ca36966a7
 Status: Downloaded newer image for hello-world:latest
 Hello from Docker.
 This message shows that your installation appears to be working
 correctly.

Installing Docker on Red Hat Linux
Docker is supported on Red Hat Enterprise Linux 7.x. This section provides an overview of
installation of Docker using Docker-managed release packages and installation
mechanisms. Using these packages ensures that you will be able get the latest release of
Docker.

Docker Installation

[29]

Checking kernel version
The Linux kernel version can be checked with the help of the following command:

$ uname -r

The output, in our case, is kernel version 3.10.x, which will work fine:

3.10.0-327.el7.x86 _64

Updating the YUM packages
The YUM repository can be updated, using the following command:

$ sudo yum update

Output listing is given; ensure that it shows Complete! at the end, as follows:

Loaded plugins: amazon-id, rhui-lb, search-disabled-repos
rhui-REGION-client-config-server-7 | 2.9 kB
....
Running transaction check
Running transaction test
Transaction test succeeded
Running transaction
 Installing : linux-firmware-20150904-43.git6ebf5d5.el7.noarch 1/138
 Updating : tzdata-2016c-1.el7.noarch 2/138

Complete!

Docker Installation

[30]

Adding the YUM repository
Let's add the Docker repository to the YUM repository list:

$ sudo tee /etc/yum.repos.d/docker.repo <<-EOF
[dockerrepo]
name=Docker Repository
baseurl=https://yum.dockerproject.org/repo/main/centos/7
enabled=1
gpgcheck=1
gpgkey=https://yum.dockerproject.org/gpg
EOF

Installing the Docker package
The Docker Engine can be installed using YUM repository, as follows:

$ sudo yum install docker-engine

Starting the Docker service
The Docker service can be started with help of the following command:

$ sudo service docker start
Redirecting to /bin/systemctl start docker.service

Testing the Docker installation
Listing all the processes in the Docker Engine with help of the following command can
validate whether the installation of the Docker service is successful or not:

$ sudo docker ps -a

The following is the output for the preceding command:

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

Check the Docker version to make sure that it is the latest:

$ docker --version
Docker version 1.11.0, build 4dc5990

Docker Installation

[31]

Checking the installation parameters
Let's run Docker information to see the default installation parameters:

$ sudo docker info

The output listing is given here; note that the Storage Driver is devicemapper:

Containers: 0
 Running: 0
 Paused: 0
 Stopped: 0
Images: 0
Server Version: 1.11.0
Storage Driver: devicemapper
 Pool Name: docker-202:2-33659684-pool
 Pool Blocksize: 65.54 kB
 Base Device Size: 10.74 GB
 Backing Filesystem: xfs
 Data file: /dev/loop0
 Metadata file: /dev/loop1
...
Cgroup Driver: cgroupfs
Plugins:
 Volume: local
 Network: null host bridge
Kernel Version: 3.10.0-327.el7.x86_64
Operating System: Red Hat Enterprise Linux Server 7.2 (Maipo)
OSType: linux
Architecture: x86_64
CPUs: 1
Total Memory: 991.7 MiB
Name: ip-172-30-0-16.ap-northeast-1.compute.internal
ID: VW2U:FFSB:A2VP:DL5I:QEUF:JY6D:4SSC:LG75:IPKU:HTOK:63HD:7X5H
Docker Root Dir: /var/lib/docker
Debug mode (client): false
Debug mode (server): false
Registry: https://index.docker.io/v1/

Troubleshooting tips
Ensure that you are using the latest version of Red Hat Linux to be able to deploy Docker
1.11. Another important thing to remember is that the kernel version has to be 3.10 or
higher. Rest of the installation was pretty uneventful.

Docker Installation

[32]

Deploy CentOS VM on AWS to run Docker
containers
We are using AWS as an environment to showcase Docker installation from a convenience
perspective. If an OS needs to be tested for support of its Docker version, AWS is the easiest
and quickest way to deploy and test it.

If you are not using AWS as an environment, feel free to skip the steps involving spinning a
VM on AWS.

In this section, we'll take a look at deploying CentOS VM on AWS to get the environment
up and running fast and deploy Docker containers. CentOS is similar to Red Hat's
distribution and uses the same packaging tools like YUM. We will use CentOS 7.x, on which
Docker is officially supported:

First, let's launch a CentOS-based VM on AWS:

Docker Installation

[33]

We are launching with a 1-Click Launch and pre-existing keypair. SSH is enabled by
default:

Once the instance is up, get the public IP address from the AWS EC2 console.

SSH into the instance and follow the following steps for installation:

$ ssh -i "ubuntu-1404-1.pem" centos@54.238.154.134

Docker Installation

[34]

Checking kernel version
The kernel version of the Linux OS can be checked with the following command:

$ uname -r

The output, in our case, is kernel version 3.10.x, which will work fine:

3.10.0-327.10.1.el7.x86_64

Note how similar it is to the Red Hat kernel version 3.10.0-327.el7.x86_64.

Updating the YUM packages
The YUM packages and repository can be updated, as shown here:

$ sudo yum update
Output listing is given, make sure it shows complete at the end

Loaded plugins: fastestmirror
base | 3.6 kB 00:00
extras | 3.4 kB 00:00
updates | 3.4 kB 00:00
(1/4): base/7/x86_64/group_gz | 155 kB 00:00
(2/4): extras/7/x86_64/primary_db | 117 kB 00:00
(3/4): updates/7/x86_64/primary_db | 4.1 MB 00:00
(4/4): base/7/x86_64/primary_db | 5.3 MB 00:00
Determining fastest mirrors
 * base: ftp.riken.jp
 * extras: ftp.riken.jp
 * updates: ftp.riken.jp
Resolving Dependencies
--> Running transaction check
---> Package bind-libs-lite.x86_64 32:9.9.4-29.el7_2.2 will be updated
---> Package bind-libs-lite.x86_64 32:9.9.4-29.el7_2.3 will be an update
---> Package bind-license.noarch 32:9.9.4-29.el7_2.2 will be updated
---> Package bind-license.noarch 32:9.9.4-29.el7_2.3 will be an update
....
 teamd.x86_64 0:1.17-6.el7_2
 tuned.noarch 0:2.5.1-4.el7_2.3
 tzdata.noarch 0:2016c-1.el7
 util-linux.x86_64 0:2.23.2-26.el7_2.2
Complete!

Docker Installation

[35]

Adding the YUM repository
Let's add the Docker repository to the YUM repository:

$ sudo tee /etc/yum.repos.d/docker.repo <<-EOF
[dockerrepo]
name=Docker Repository
baseurl=https://yum.dockerproject.org/repo/main/centos/7
enabled=1
gpgcheck=1
gpgkey=https://yum.dockerproject.org/gpg
EOF

Installing the Docker package
The following command can be used to install Docker Engine using the YUM repository:

$ sudo yum install docker-engine

Starting the Docker service
The Docker service can be started in the following way:

$ sudo service docker start
Redirecting to /bin/systemctl start docker.service

Testing the Docker installation
$ sudo docker ps -a

Output:

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

Check the Docker version to make sure it is the latest:

$ docker --version
Docker version 1.11.0, build 4dc5990

Docker Installation

[36]

Checking the installation parameters
Let's run Docker information to see the default installation parameters:

$ sudo docker info

The output is listed here; note that the Storage Driver is devicemapper:

Server Version: 1.11.0
Storage Driver: devicemapper
 ...
Kernel Version: 3.10.0-327.10.1.el7.x86_64
Operating System: CentOS Linux 7 (Core)
OSType: linux
Architecture: x86_64
CPUs: 1
Total Memory: 991.7 MiB
Name: ip-172-30-0-236
ID: EG2K:G4ZR:YHJ4:APYL:WV3S:EODM:MHKT:UVPE:A2BE:NONM:A7E2:LNED
Docker Root Dir: /var/lib/docker
Registry: https://index.docker.io/v1/

Installing Docker on CoreOS
CoreOS is a lightweight OS built for the cloud. It comes prepackaged with Docker, which is
a few releases behind the latest version. Since it comes prebuilt with Docker there is little
troubleshooting required. We just need to make sure that the right version of CoreOS is
picked.

CoreOS runs on a variety of platforms, including Vagrant, Amazon EC2, QEMU/KVM,
VMware and OpenStack, and custom hardware. CoreOS uses fleet to manage clusters of
containers along with etcd (key value data store).

Docker Installation

[37]

Installation channels of CoreOS
In our case, we will use stable Release Channels:

First, we will install CoreOS on AWS using the CloudFormation templates. You can find
this template at the following link:

 h t t p s ://s 3. a m a z o n a w s . c o m /c o r e o s . c o m /d i s t /a w s /c o r e o s - s t a b l e - p v . t e m p l a t e

This template provides the following parameters:

Instance type
Cluster size
Discovery URL
Advertised IP address
Allow SSH From
Keypair

These mentioned parameters can be set in the default template, as follows:

{
 "Parameters": {
 "InstanceType": {
 "Description": "EC2 PV instance type (m3.medium, etc).",
 "Type": "String",
 "Default": "m3.medium",
 "ConstraintDescription": "Must be a valid EC2 PV instance type."
 },
 "ClusterSize": {
 "Default": "3",
 "MinValue": "3",

https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-pv.template

Docker Installation

[38]

 "MaxValue": "12",
 "Description": "Number of nodes in cluster (3-12).",
 "Type": "Number"
 },
 "DiscoveryURL": {
 "Description": "An unique etcd cluster discovery URL. Grab a new
token from https://discovery.etcd.io/new?size=<your cluster size>",
 "Type": "String"
 },
 "AdvertisedIPAddress": {
 "Description": "Use 'private' if your etcd cluster is within one
region or 'public' if it spans regions or cloud providers.",
 "Default": "private",
 "AllowedValues": [
 "private",
 "public"
],
 "Type": "String"
 },
 "AllowSSHFrom": {
 "Description": "The net block (CIDR) that SSH is available to.",
 "Default": "0.0.0.0/0",
 "Type": "String"
 },
 "KeyPair": {
 "Description": "The name of an EC2 Key Pair to allow SSH access to
the instance.",
 "Type": "String"
 }
 }
}

The following steps will provide the complete walk-through for CoreOS installation on
AWS with help of screenshots:

Select the S3 template to launch:1.

Docker Installation

[39]

Specify the Stack name, KeyPair, and cluster 3:2.

Docker Installation

[40]

Troubleshooting
Here are some troubleshooting tips and guidelines, which should be followed during the
preceding installation:

Stack name should not be duplicate
ClusterSize cannot be lower than 3 and should be a maximum of 12
InstanceType recommended is m3.medium
KeyPair should exist; if it doesn't, the cluster will not launch

SSH into the instance and check the Docker version:

core@ip-10-184-155-153 ~ $ docker --version
Docker version 1.9.1, build 9894698

Installing Docker on Fedora
Docker is supported on Fedora version 22 and 23. The following are the steps to be
performed in order to install Docker on Fedora 23. It can be deployed on bare-metal or as a
VM.

Checking Linux kernel Version
Docker requires 64-bit installation, regardless of the Fedora version. Also, the kernel version
should be at least 3.10. Check the kernel version before going ahead with installation using
the following command:

$ uname -r
4.4.7-300.fc23.x86_64
Switch to root user
[os@osboxes ~]# su -
Password:
[root@vkohli ~]#

Installing with DNF
Update the existing DNF package by using the following command:

$ sudo dnf update

Docker Installation

[41]

Adding to the YUM repository
Let's add the Docker repository to the YUM repository:

$ sudo tee /etc/yum.repos.d/docker.repo <<-'EOF'
> [dockerrepo]
> name=Docker Repository
> baseurl=https://yum.dockerproject.org/repo/main/fedora/$releasever/
> enabled=1
> gpgcheck=1
> gpgkey=https://yum.dockerproject.org/gpg
> EOF
[dockerrepo]
name=Docker Repository
baseurl=https://yum.dockerproject.org/repo/main/fedora/$releasever/
enabled=1
gpgcheck=1
gpgkey=https://yum.dockerproject.org/gpg

Installing the Docker package
The Docker Engine can be installed using the DNF package:

$ sudo dnf install docker-engine

The output will be similar to the following listing (this listing is truncated):

Docker Repository 32 kB/s | 7.8 kB 00:00
Last metadata expiration check: 0:00:01 ago on Thu Apr 21 15:45:25 2016.
Dependencies resolved.
Install 7 Packages
...
Running transaction test
Transaction test succeeded.
Running transaction
 Installing: python-IPy-0.81-13.fc23.noarch
....
Installed:
...
Complete!

Start the Docker service using systemctl:

$ sudo systemctl start docker

Docker Installation

[42]

Verify with a Docker hello-world example in order to check whether Docker is installed
successfully:

[root@osboxes ~]# docker run hello-world

The output will be similar to the following listing:

Unable to find image 'hello-world:last' locally
latest: Pulling from library/hello-world
03f4658f8b78: Pull complete
a3ed95caeb02: Pull complete
Digest:
sha256:8be990ef2aeb16dbcb9271ddfe2610fa6658d13f6dfb8bc72074cc1ca36966a7
Status: Downloaded newer image for hello-world:latest

Hello from Docker.
This message shows that your installation appears to be working correctly.

To generate this message, Docker took the following steps:

The Docker client contacted the Docker daemon.1.
The Docker daemon pulled the hello-world image from the Docker Hub.2.
The Docker daemon created a new container from that image, which runs the3.
executable that produces the output you are currently reading.
The Docker daemon streamed that output to the Docker client, which sent it to4.
your terminal.

To try something more ambitious, you can run an Ubuntu container with the following
command:

$ docker run -it ubuntu bash

Share images, automate workflows, and more with a free Docker Hub account, h t t p s ://h u

b . d o c k e r . c o m .

For more examples and ideas, visit h t t p s ://d o c s . d o c k e r . c o m /u s e r g u i d e /m d 64- s e r v e r -

20160114. 5 (a m i - a 21529c c).

Installing Docker with script
Update your DNF package, as follows:

$ sudo dnf update

https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/

Docker Installation

[43]

Running the Docker installation script
The Docker installation can also be done in a quick and easy way by executing the shell
script and getting it from the official Docker website:

$ curl -fsSL https://get.docker.com/ | sh
+ sh -c 'sleep 3; dnf -y -q install docker-engine'

Start the Docker daemon:

$ sudo systemctl start docker

Docker runhello-world:

$ sudo docker run hello-world

To create a Docker group and add a user, follow the steps mentioned, as follows:

$ sudo groupadd docker
$ sudo usermod -aG docker your_username

Log out and log in with the user to make sure that your user is created successfully:

$ docker run hello-world

In order to uninstall Docker, follow these steps:

sudo dnf -y remove docker-engine.x86_64

The truncated output of the preceding command is listed as follows:

Dependencies resolved.
Transaction Summary
==
Remove 7 Packages
Installed size: 57 M
Running transaction check
Transaction check succeeded.
Running transaction test
Transaction test succeeded.
Running transaction
...
Complete!
[root@osboxes ~]# rm -rf /var/lib/docker

Docker Installation

[44]

Installing Docker on SUSE Linux
In this section, we will install Docker on SUSE Linux Enterprise Server 12 SP1 x86_64 (64-
bit). We will also look at some of the problems we came across during the installation
process.

Launching the SUSE Linux VM on AWS
Choose the appropriate AMI and launch the instance from the EC2 console:

The following parameters are shown in the next step; review and then launch them:

Docker Installation

[45]

We chose an existing keypair to SSH into the instance:

Once the VM is up, log in to the VM from a terminal:

$ ssh -i "ubuntu-1404-1.pem" ec2-user@54.199.222.91

The truncated output is listed here:

The authenticity of host '54.199.222.91 (54.199.222.91)' can't be
established.
...
Management and Config: https://www.suse.com/suse-in-the-cloud-basics
Documentation: http://www.suse.com/documentation/sles12/
Forum: https://forums.suse.com/forumdisplay.php?93-SUSE-Public-Cloud
Have a lot of fun...
ec2-user@ip-172-30-0-104:~>

Since we have launched the VM, let's focus on getting docker installed. The following
diagram outlines the steps for installing docker on SUSE Linux:

Docker Installation

[46]

Checking Linux kernel version
Kernel version should be at least 3.10. Check the kernel version before going ahead with its
installation, using the following command:

$ uname -r

Adding Containers-Module
The following Containers-Module needs to be updated in the local packages before docker
can be installed. You can find more details about the Containers-Module at the following
link:

h t t p s ://w w w . s u s e . c o m /s u p p o r t /u p d a t e /a n n o u n c e m e n t /2015/s u s e - r u - 20151158- 1. h t m l

Execute the following command:

ec2-user@ip-172-30-0-104:~> sudo SUSEConnect -p sle-module-
containers/12/x86_64 -r ''

The output will be similar to this:

Registered sle-module-containers 12 x86_64
To server: https://smt-ec2.susecloud.net
ec2-user@ip-172-30-0-104:~>

Installing Docker
Execute the following command:

ec2-user@ip-172-30-0-104:~> sudo zypper in Docker

The truncated output is listed here:

...
 (2/2) Installing: docker-1.10.3-66.1
...[done]
Additional rpm output:
creating group docker...
Updating /etc/sysconfig/docker...

https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html
https://www.suse.com/support/update/announcement/2015/suse-ru-20151158-1.html

Docker Installation

[47]

Starting Docker service
The Docker service can be started, as shown here:

ec2-user@ip-172-30-0-104:~> sudo systemctl start docker

Checking the Docker installation
Execute Docker run, as follows, to test the installation:

ec2-user@ip-172-30-0-104:~> sudo docker run hello-world

The output will be similar to this:

Unable to find image 'hello-world:latest' locally
latest: Pulling from library/hello-world
4276590986f6: Pull complete
a3ed95caeb02: Pull complete
Digest:
sha256:4f32210e234b4ad5cac92efacc0a3d602b02476c754f13d517e1ada048e5a8ba
Status: Downloaded newer image for hello-world:latest
Hello from Docker.
This message shows that your installation appears to be working correctly.
....
For more examples and ideas, visit:
 https://docs.docker.com/engine/userguide/
ec2-user@ip-172-30-0-104:~>

Troubleshooting
Please note, the Docker installation on SUSE Linux 11 is not a smooth experience, as SUSE
Connect is not available.

Docker Installation

[48]

Summary
In this chapter, we went over steps on how to install Docker on various Linux
distributions–Ubuntu, CoreOS, CentOS, Red Hat Linux , Fedora, and SUSE Linux. We
noticed similarities in the steps and common prerequisites across Linux, while the actual
remote repository from where the Docker module needs to be downloaded and the package
management for the Docker modules, various for each Linux operating system. In the next
chapter, we'll explore the mission-critical task of image building, understanding base and
layered images, and exploring the troubleshooting aspect of it.

3
Building Base and Layered

Images
In this chapter, we will learn about building base and layered images for production-ready
containers. As we saw, Docker containers provide us with ideal environments in which we
can build, test, automate, and deploy. The reproductive nature of these exact environments
affords a higher degree of efficacy and confidence that currently available script-based
deployment systems cannot readily duplicate. The images a developer locally builds, tests,
and debugs can then be pushed directly into staging and production environments as the
test environment is nearly a mirror image under which the application code runs.

Images are the literal foundational component of containers, defining what flavor of Linux
to deploy and what default tools to include and make available to the code running inside
the container. Image building is, therefore, one of the most critical tasks in the application
containerization life cycle; correctly building your images is critical for effective, repeatable,
and secure functionality of containerized applications.

A container image consists of a set of runtime variables for your application container.
Ideally, container images should be as minimal as possible, providing the required
functionalities only, as this helps in efficient handling of the container image, significantly
reducing the time to upload and download the image from the registry and having a
minimal footprint on the host.

Our focus, intent, and direction is in building, debugging, and automating images for your
Docker containers.

Building Base and Layered Images

[50]

We will cover the following topics in this chapter:

Building container images
Building base images from scratch
Official base images from Docker registry
Building layered images from Dockerfiles
Debugging images through testing
Automated image building with testing

Building container images
As this book attempts to troubleshoot Docker, wouldn't it prove beneficial to reduce our
chances for errors that we would have to troubleshoot in the first place? Fortunately for us,
the Docker community (and the open source community at large) provides a healthy
registry of base (or root) images that dramatically reduce errors and provide more
repeatable processes. Searching the Docker Registry, we can find official and automated
build statuses for a broad and growing array of container images. The Docker official
repositories (h t t p s ://d o c s . d o c k e r . c o m /d o c k e r - h u b /o f f i c i a l _ r e p o s /) are carefully
organized collections of images supported by Docker Inc.–automated repositories that
allow you to validate source and content of a particular image also exist.

A major thrust and theme of this chapter will be in basic Docker fundamentals; while they
may seem trivial to the experienced container user, following some best practices and levels
of standardization will serve us well in avoiding trouble spots in addition to enhancing our
abilities to troubleshoot.

Official images from the Docker Registry
Standardization is a major component for repeatable processes. As such, wherever and
whenever possible, one should opt for a standard base image as provided in the Docker
Hub for the variant Linux distributions (for example, CentOS, Debian, Fedora, RHEL,
Ubuntu, and others) or for specific use cases (for example, WordPress applications). Such
base images are derived from their respective Linux platform images, and are built
specifically for use in containers. Further, standardized base images are well maintained
and updated frequently to address security advisories and critical bug fixes.

https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/

Building Base and Layered Images

[51]

These base images are built, validated, and supported by Docker Inc. and are easily
recognized by their single word names (for example, centos). Additionally, user members
of the Docker community also provide and maintain prebuilt images to address certain use
cases. Such user images are denoted with the prefix of the Docker Hub username that
created them, suffixed with the image name (for example, tutum/centos).

To our great advantage, these standard base images remain ready and are publicly available
on the Docker Registry; images can be searched for and retrieved simply using the docker
search and docker pull Terminal commands. These will download any image(s) that are
not already located on the Docker host. The Docker Registry has become increasingly
powerful in providing official base images for which one can use directly, or at least as a
readily available starting point toward addressing the needs of your container building.

Building Base and Layered Images

[52]

While this book assumes your familiarity with Docker Hub/Registry and
GitHub/Bitbucket, we will dedicate initial coverage of these as your first
line of reference for efficient image building for containers. You can visit
the official registry of Docker images at
https://registry.hub.docker.com/.

The Docker Registry can be searched from your Docker Hub account or directly from the
Terminal, as follows:

$ sudo docker search centos

Flags can be applied to your search criteria to filter images for star ratings, automated
builds, and many more. To use the official centos image from the registry, from a
Terminal:

https://registry.hub.docker.com/

Building Base and Layered Images

[53]

$ sudo docker pull centos: This will download the centos image to your
host machine.
$ sudo docker run centos: This will first look for this image localized on
your host and, if not found, it will download the image to host. The run
parameters for the image will have been defined in its Dockerfile.

User repositories
Further, as we have seen, we are not limited merely to the repositories of official Docker
images. Indeed, a wealth of community users (both as individuals and from corporate
enterprises) have prepared images constructed to meet certain needs. As an example, an
ubuntu image is created to run the joomla content management system within a container
running on Apache, MySql, and PHP.

Here, we have a user repository with just such an image (namespace/repository name):

Try it out: Practice an image pull and run from the Docker Registry from
the Terminal.
$ sudo docker pull cloudconsulted/joomla

pulls our base image for a container and $ sudo docker run -d -p
80:80 cloudconsulted/joomla

runs our container image and maps port 80 of the host to port 80 of the
container.
Point your browser to http://localhost and you will have the build
page for a new Joomla website!

Building Base and Layered Images

[54]

Building our own base images
There may be occasion, however, when we need to create custom images to suit our own
development and deployment environment. If your use case dictates using a
nonstandardized base image, you will need to roll your own image. As with any approach,
appropriate planning beforehand is necessary. Before building an image, you should spend
adequate time to fully understand the use case your container is meant to address. There
isn't much need for a container that cannot run the intended application. Other
considerations may include whether the library or binary you are including in the image is
reusable, and many more. Once you feel you are done, review your needs and requirements
once more and filter out parts that are unnecessary; we do not want to bloat our containers
for no good reason.

Using the Docker Registry, you may find automated builds. These builds are pulled from
repositories at GitHub/Bitbucket and can, therefore, be forked and modified to your own
specifications. Your newly forked repository can then in turn be synced to the Docker
Registry with your new image, which can then be pulled and run as needed for your
containers.

Try it out: Pull the ubuntu minimal image from the following repository
and drop it to your Dockerfile directory to create your own image:
$ sudo docker pull cloudconsulted/ubuntu-dockerbase
$ mkdir dockerbuilder
$ cd dockerbuilder

Open an editor (vi/vim or nano) and create a new Dockerfile:
$ sudo nano Dockerfile

We will delve into creating good Dockerfiles later as we talk about layered and automated
image building. For now, we just want to create our own new base image, only symbolically
going through the procedure and location for creating a Dockerfile. For the sake of
simplicity, here we are just calling the base image from which we want to build our new
image:

FROM cloudconsulted/ubuntu-dockerbase:latest

Save and close this Dockerfile. We now build our new image locally:

$ sudo docker build -t mynew-ubuntu

Building Base and Layered Images

[55]

Let's check to ensure our new image is listed:

$ sudo docker images

Note our IMAGE ID for mynew-ubuntu, as we will need it shortly:

Create a new public/private repository under your Docker Hub username. I'm adding the
new repository here under <namespace><reponame> as cloudconsulted/mynew-
ubuntu:

Building Base and Layered Images

[56]

Next, return to the Terminal so that we can tag our new image to push to the new Docker
Hub repository under our <namespace>:

$ sudo docker tag 1d4bf9f2c9c0 cloudconsulted/mynew-ubuntu:latest

Ensure that our new image is correctly tagged for <namespace><repository> in our
images list:

$ sudo docker images

Also, we will find our newly created image labeled for pushing it to our Docker Hub
repository.

Now, let's push the image up to our Docker Hub repository:

$ sudo docker push cloudconsulted/mynew-ubuntu

Then, check the Hub for our new image:

Building Base and Layered Images

[57]

There are essentially two approaches to building your own Docker images:

Manually constructing layers interactively via bash shell to install necessary
applications
Automating through a Dockerfile that builds the images with all necessary
applications

Building images using the scratch repository
Going about building your own container images for Docker is highly dependent on which
Linux distribution you intend to package. With such variance, and with the prevalence and
growing registry of images already available to us via the Docker Registry, we won't spend
much time on such a manual approach.

Here again, we can look in the Docker Registry to provide us with a minimal image to use.
A scratch repository has been created from an empty TAR file that can be utilized simply
via docker pull. As before, make your Dockerfile according to your parameters, and you
have your new image, from scratch.

This process can be even further simplified by making use of available tools, such as
supermin (Fedora systems) or debootstrap (Debian systems). Using such tools, the build
process for an Ubuntu base image, for example, can be as simple as follows:

$ sudo debootstrap raring raring > /dev/null
$ sudo tar -c raring -c . | docker import - raring a29c15f1bf7a
$ sudo docker run raring cat /etc/lsb-release
DISTRIB_ID=Ubuntu
DISTRIB_RELEASE=14.04
DISTRIB_CODENAME=raring
DISTRIB_DESCRIPTION="Ubuntu 14.04"

Building Base and Layered Images

[58]

Building layered images
A core concept and feature of Docker is layered images. One of the most important features
of Docker is image layering and the management of image content. A layered approach for
container images is very efficient, as you can reference the contents in the image, identifying
the layer in a layered image. This is very powerful when building multiple images, using
the Docker Registry to push and pull images.

[Image Copyright © Docker, Inc.]

Building layered images using Dockerfiles
Layered images are primarily built using the Dockerfile. In essence, a Dockerfile is a script
that automatically builds our containers from a source (base or root) image in the order you
need them executed by the Docker daemon, step by step, layer upon layer. These are
successive commands (instructions) and arguments enlisted within the file that execute a
proscribed set of actions on a base image, with each command constituting a new layer, in
order to build a new one. This not only facilitates the organization of our image building
but greatly enhances deployments from beginning to end through its simplification. The
scripts within a Dockerfile can be presented to the Docker daemon in a range of ways to
build new images for our containers.

Dockerfile construction
The first command of a Dockerfile is typically the FROM command. FROM specifies the base
image to be pulled. This base image can be located in the public Docker registry (h t t p s ://w

w w . d o c k e r . c o m /) within a private registry or even a localized Docker image from the host.

https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/

Building Base and Layered Images

[59]

Additional layers in a Docker image are populated as per the directives defined in the
Dockerfile. Dockerfiles have very handy directives. Every new directive defined in the
Dockerfile constitutes a layer in a layered image. With a RUN directive, we can specify a
command to be run, with the result of the command as an additional layer in the image.

It is highly advised to logically group the operations performed in an
image and keep the number of layers to a minimum. For example, while
trying to install the dependencies for your application, one can install all
the dependencies in one RUN directive rather than using N number of
directives per dependency.

We will inspect more closely, the aspects of Dockerfiles for automation in a later section,
Automated image building. For now, we need to make certain that we grasp the concept and
construction of the Dockerfile itself. Let's look specifically at a simple list of commands that
can be employed. As we have seen before, our Dockerfile should be created in a working
directory containing our existing code (and/or other dependencies, scripts, and others).

CAUTION: Avoid use of the root [/] directory as root of your source
repository. The docker build command makes use of the directory
containing your Dockerfile as the build context (including all of its
subdirectories). The build context will be sent to the Docker daemon
before building the image, which means if you use / as the source
repository, the entire contents of your hard drive will get sent to the
daemon (and thus to the machine running the daemon). In most cases, it is
best to put each Dockerfile in an empty directory. Then, only add the files
needed for building the Dockerfile to the directory. To increase the build's
performance, a .dockerignore file can be added to the context directory
to properly exclude files and directories.

Dockerfile commands and syntax
While simplistic, the order and syntax of our Dockerfile commands are extremely
important. Proper attention to details and best practice here will not only help ensure
successful automated deployments, but also serve to help in any troubleshooting efforts.

Let's delineate some basic commands and illustrate them directly with a working
Dockerfile; our joomla image from before is a good example of a basic layered image build
from a Dockerfile.

Building Base and Layered Images

[60]

Our sample joomla base image is located in the public Docker index via
cloudconsulted/joomla.

FROM

A proper Dockerfile begins with defining an image FROM, from which the build process
starts. This instruction specifies the base image to be used. It should be the first instruction
in Dockerfile, and it is a must for building an image via Dockerfile. You can specify the local
image, an image present at the Docker public registry, or image at a private registry.

Common Constructs

FROM <image>
FROM <image>:<tag>
FROM <image>@<digest>

<tag> and<digest> are optional; if you do not specify them, it defaults to latest.

Example Dockerfile from our Joomla Image

Here, we define the base image to be used for the container:

Image for container base
FROM ubuntu

MAINTAINER

This line designates the Author of the built image. This is an optional instruction in
Dockerfile; however, one should specify this instruction with the name and/or e-mail
address of the author. MAINTAINER details can be placed anywhere you prefer in your
Dockerfile, so long as it is always post your FROM command, as they do not constitute any
execution but rather a value of a definition (that is, just some additional information).

Common Constructs

MAINTAINER <name><email>

Example Dockerfile from our Joomla Image

Here, we define the author for this container and image:

Add name of image author
MAINTAINER John Wooten <jwooten@cloudconsulted.com>

mailto:jwooten@cloudconsulted.com

Building Base and Layered Images

[61]

ENV

This instruction sets the environment variable in Dockerfile. An environment variable set
can be used in subsequent instructions.

Common Constructs

ENV <key> <value>

The preceding code sets one environment variable <key> with <value>.

ENV <key1>=<value1> <key2>=<value2>

The preceding instruction sets two environment variables. Use the = sign between key and
value of an environment variable and separate two environment key-values with space to
define multiple environment variables:

ENV key1="env value with space"

Use quotes for value having spaces for environment variable.

The following are the points to remember about ENV instructions:

Use single instruction to define multiple environment variables
Environment variables are available when you create container from image
One can review the environment variable from image using docker inspect
<image>

Values of environment variables can be changed at runtime by passing the --env
<key>=<value> option to the docker run command

Example Dockerfile from our Joomla Image

Here, we set the environment variables for Joomla and the Docker image running without
an interactive Terminal:

Set the environment variables
ENV DEBIAN_FRONTEND noninteractive
ENV JOOMLA_VERSION 3.4.1

RUN

This instruction allows you to run commands and yield a layer. The output of the
RUN instruction will be a layer built for image under process. Command passed to
the RUN instruction runs on the layers built before this instruction; one needs to take care of
the orders.

Building Base and Layered Images

[62]

Common Constructs

RUN <command>

The <command> is executed in a shell –/bin/sh -c shell form.

RUN ["executable", "parameter1", "parameter2"]

In this particular form, you specify the executable and parameters in executable form.
Ensure that you pass the absolute path of the executable in the command. This is useful for
cases where the base image does not have /bin/sh. You can specify an executable, which
could be your only executable in a base image and build the layers on top using it.

This is also useful if you do not want to use the /bin/sh shell. Consider this:

RUN ["/bin/bash", "-c", "echo True!"]
RUN <command1>;<command2>

Actually, this is a special form of example, where you specify multiple commands separated
by ;. The RUN instruction executes such commands together and builds a single layer for all
of the commands specified.

Example Dockerfile from our Joomla Image

Here, we update the package manager and install required dependencies:

Update package manager and install required dependencies
RUN apt-get update && DEBIAN_FRONTEND=noninteractive apt-get install -y \
 mysql-server \
 apache2 \
 php5 \
 php5-imap \
 php5-mcrypt \
 php5-gd \
 php5-curl \
 php5-apcu \
 php5-mysqlnd \
 supervisor

Note that we have purposefully written so that new packages are to be added as their own
apt-get install lines, following the initial install commands.

Building Base and Layered Images

[63]

This is done so that, should we ever need to add or remove a package, we can do so without
requiring to re-install all other packages within our Dockerfile. Obviously, this provides
considerable savings in build time, should the need arise.

Docker Cache: Docker will first check against the host's image cache for
any matching layers from previous builds. If found, the given build step
within the Dockerfile will be skipped to utilize the previous layer, from
cache. As such, it is best practice to enlist each of the Dockerfile's apt-get
-y install commands on their own.

As we've discussed, the RUN command in a Dockerfile will execute any given command
under the context and filesystem of the Docker container, and produce a new image layer
with any resulting file system changes. We first run apt-get update to ensure that the
repositories and the PPAs of the packages are updated. Then, in separate calls, we instruct
the package manager to install MySQL, Apache, PHP, and Supervisor. The -y flag skips
interactive confirmation.

With all of our necessary dependencies installed to run our service, we ought to tidy up a
bit to give us a cleaner Docker image:

Clean up any files used by apt-get
RUN apt-get clean && rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*

ADD

This information is used to copy files and directories from the local filesystem or files from a
remote URL into the image. The source and destination must be specified in
ADD instructions.

Common Constructs

ADD <source_file> <destination_directory>

Here the path of <source_file> is relative to the build context. Also, the path of
<destination_directory> could either be absolute or relative to the WORKDIR:

ADD <file1> <file2> <file3> <destination_directory>

Building Base and Layered Images

[64]

Multiple files, for example, <file1> , <file2>, and <file3>, are copied into
<destination_directory>. Note that paths of these source files should be relative to the
build context, as follows:

ADD <source_directory> <destination_directory>

Contents of the <source_directory> are copied into <destination_directory> along
with the filesystem metadata; the directory itself is not copied:

ADD text_* /text_files

All the files starting with text_ in the build context directory are copied in
the /text_files directory in the container image:

ADD ["filename with space",..., "<dest>"]

Filename with a space can be specified in quotes; one needs to use a JSON array to specify
the ADD instruction in this case.

The following are the points to remember about ADD instructions:

All new files and directories that are copied into the container image have UID
and GID as 0
In cases where the source file is a remote URL, the destination file will have a
permission of 600
All the local files referenced in the source of the ADD instruction should be in the
build context directory or in its subdirectories
If the local source file is a supported tar archive then it is unpacked as a directory
If multiple source files are specified, the destination must be a directory and end
with a trailing slash, /
If a destination does not exist, it will be created along with all the parent
directories in the path, if required

Example Dockerfile from our Joomla Image

Here, we download joomla into the Apache web root:

Download joomla and put it default apache web root
ADD
https://github.com/joomla/joomla-cms/releases/download/$JOOMLA_VERSION/Joom
la_$JOOMLA_VERSION-Stable-Full_Package.tar.gz /tmp/joomla/
RUN tar -zxvf /tmp/joomla/Joomla_$JOOMLA_VERSION-Stable-Full_Package.tar.gz
-C /tmp/joomla/
RUN rm -rf /var/www/html/*

Building Base and Layered Images

[65]

RUN cp -r /tmp/joomla/* /var/www/html/

Put default htaccess in place
RUN mv /var/www/html/htaccess.txt /var/www/html/.htaccess

RUN chown -R www-data:www-data /var/www

Expose HTTP and MySQL
EXPOSE 80 3306

COPY

The COPY command specifies that a file, located at the input path, should be copied from the
same directory as the Dockerfile to the output path inside the container.

CMD

The CMD instruction has three forms–a shell form, as default parameters to ENTRYPOINT and
the preferred executable form. The main purpose of a CMD is to provide defaults for an
executing container. These defaults can either include or omit an executable, the latter of
which must specify an ENTRYPOINT instruction as well. If the user specifies arguments to
Docker run, then they will override the default specified in CMD. If you would like your
container to run the same executable every time, then you should consider using
ENTRYPOINT in combination with CMD.

The following are the points to remember:

Do not to confuse CMD with RUN—RUN will actually execute the command and
commit the result, whereas CMD does not execute commands during a build, but
instead specifies the intended command for the image
A Dockerfile can only execute one CMD; if you enlist more than one, only the last
CMD will be executed

Example Dockerfile from our Joomla Image

Here, we set up Apache for it to start:

Use supervisord to start apache / mysql
COPY supervisord.conf /etc/supervisor/conf.d/supervisord.conf
CMD ["/usr/bin/supervisord", "-n"]

Building Base and Layered Images

[66]

The following is the content of our completed Joomla Dockerfile:

FROM ubuntu
MAINTAINER John Wooten <jwooten@cloudconsulted.com>

ENV DEBIAN_FRONTEND noninteractive
ENV JOOMLA_VERSION 3.4.1

RUN apt-get update && DEBIAN_FRONTEND=noninteractive apt-get install -y \
 mysql-server \
 apache2 \
 php5 \
 php5-imap \
 php5-mcrypt \
 php5-gd \
 php5-curl \
 php5-apcu \
 php5-mysqlnd \
 supervisor

Clean up any files used by apt-get
RUN apt-get clean && rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*

Download joomla and put it default apache web root
ADD
https://github.com/joomla/joomla-cms/releases/download/$JOOMLA_VERSION/Joom
la_$JOOMLA_VERSION-Stable-Full_Package.tar.gz /tmp/joomla/
RUN tar -zxvf /tmp/joomla/Joomla_$JOOMLA_VERSION-Stable-Full_Package.tar.gz
-C /tmp/joomla/
RUN rm -rf /var/www/html/*
RUN cp -r /tmp/joomla/* /var/www/html/

Put default htaccess in place
RUN mv /var/www/html/htaccess.txt /var/www/html/.htaccess

RUN chown -R www-data:www-data /var/www

Expose HTTP and MySQL
EXPOSE 80 3306

Use supervisord to start apache / mysql
COPY supervisord.conf /etc/supervisor/conf.d/supervisord.conf
CMD ["/usr/bin/supervisord", "-n"]

Building Base and Layered Images

[67]

Other common Dockerfile commands are as follows:
ENTRYPOINT

An ENTRYPOINT allows you to configure a container that will run as an executable. From
Docker's documentation, we will use the provided example; the following will start nginx
with its default content, listening on port 80:

docker run -i -t --rm -p 80:80 nginx

Command-line arguments to docker run <image> will be appended after all elements in
an executable form ENTRYPOINT, and will override all elements specified using CMD. This
allows arguments to be passed to the entry point, that is, docker run <image> -d will
pass the -d argument to the entry point. You can override the ENTRYPOINT instruction
using the docker run --entrypoint flag.

LABEL

This instruction specifies the metadata for the image. This image metadata can later be
inspected using the docker inspect <image> command. The idea here is to add
information about the image in image metadata for easy retrieval. In order to get the
metadata from the image, one does not need to create a container from the image (or mount
the image on local filesystem), Docker associates metdata data with every Docker image,
and it has a predefined structure for it; using LABEL, one can add additional associated
metadata describing the image.

The label for the image is a key-value pair. Following are examples of using LABEL in a
Dockerfile:

LABEL <key>=<value> <key>=<value> <key>=<value>

This instruction will add three labels to the image. Also, note that it will create one new
layer as all the labels are added in a single LABEL instruction:

LABEL "key"="value with spaces"

Use quotes in labels if the label value has spaces:

LABEL LongDescription="This label value extends over new \
line."

If the value of the label is long, use backslash to extend the label value to a new line.

LABEL key1=value1
LABEL key2=value2

Building Base and Layered Images

[68]

Multiple labels for an image can be defined by separating them by End Of Line (EOL). Note
that, in this case, there will be two image layers created for two different
LABEL instructions.

Notes about LABEL instructions:

Labels are collated together as described in Dockerfile and those from the base
image specified in the FROM instruction
If key in labels are repeated, later one will override the earlier defined key's
value.
Try specifying all the labels in a single LABEL instruction to produce an efficient
image, thus avoiding unnecessary image layer count
To view the labels for a built image, use the docker inspect
<image> command

WORKDIR

This instruction is used to set the working directory for subsequent RUN, ADD, COPY, CMD,
and ENTRYPOINT instructions in Dockerfile.

Define a work directory in Dockerfile, all subsequent relative paths referenced inside the
container will be relative to the specified work directory.

The following are examples of using the WORKDIR instruction:

WORKDIR /opt/myapp

The preceding instruction specifies /opt/myapp as the working directory for subsequent
instructions, as follows:

WORKDIR /opt/
WORKDIR myapp
RUN pwd

The preceding instruction defines the work directory twice. Note that the second WORKDIR
will be relative to the first WORKDIR. The result of the pwd command will be /opt/myapp:

ENV SOURCEDIR /opt/src
WORKDIR $SOURCEDIR/myapp

Work directory can resolve the environment variables defined earlier. In this example,
the WORKDIR instruction can evaluate the SOURCEDIR environment variable and the
resultant working directory will be /opt/src/myapp.

Building Base and Layered Images

[69]

USER

This sets the user for running any subsequent RUN, CMD, and ENTRYPOINT instructions. This
also sets the user when a container is created and run from the image.

The following instruction sets the user myappuser for the image and container:

USER myappuser

Notes about USER instructions:

One can override the user using --user=name|uid[:<group|gid>] in
the docker run command for container

Image testing and debugging
While we can applaud the benefits of containers, troubleshooting and effectively
monitoring them currently present some complexity. Since by design, containers run in
isolation, their resulting environment can be cloudy. Effective troubleshooting has generally
required shell entry into the container itself, coupled with the complications of installing
additional Linux tools to merely peruse information that is twice as hard to investigate.

Typically, available tools, methods, and approaches for meaningful troubleshooting of our
containers and images has required installing additional packages in every container. This
results in the following:

Requirements for connecting or attaching directly to the container, which is not
always a piddling matter
Limitations on inspection of a single container at a time

Compounding these difficulties, adding unnecessary bloat to our containers with these
tools is something we originally attempted to avoid in our planning; minimalism is one of
the advantages we looked for in using containers in the first place. Let's take a look then at
how we can reasonably glean useful information on our container images with some basic
commands, as well as investigate emergent applications that allow us to monitor and
troubleshoot containers from the outside.

Building Base and Layered Images

[70]

Docker details for troubleshooting
Now that you have your image (regardless of building method) with Docker running, let's
do some testing to make sure that all is copacetic with our build. While these may seem
routine and mundane, it is a good practice to run any or all of the following as a top-
down approach to troubleshooting.

The first two commands here are ridiculously simple and seemingly too generic, but will
provide base-level detail with which to begin any downstream troubleshooting efforts–$
docker version and $ docker info.

Docker version
Let's ensure that we firstly recognize what version of Docker, Go, and Git we are running:

$ sudo docker version

Docker info
Additionally, we should understand our host operating system and kernel version, as well
as storage, execution, and logging drivers. Knowing these things can help us troubleshoot
from our top-down perspective:

$ sudo docker info

A troubleshooting note for Debian/Ubuntu
From a $ sudo docker info command, you may receive one or both of the following
warnings:

WARNING: No memory limit support
WARNING: No swap limit support

You will need to add the following command-line parameters to the kernel in order to
enable memory and swap accounting:

cgroup_enable=memory swapaccount=1

Building Base and Layered Images

[71]

For these Debian or Ubuntu systems, if you use the default GRUB bootloader, those
parameters can be added by editing /etc/default/grub and extending
GRUB_CMDLINE_LINUX. Locate the following line:

GRUB_CMDLINE_LINUX=""

Then, replace it with the following one:

GRUB_CMDLINE_LINUX="cgroup_enable=memory swapaccount=1"

Then, run update-grub and reboot the host machine.

Listing installed Docker images
We also need to ensure that the container instance has actually installed your image locally.
SSH into the docker host and execute the docker images command. You should see your
docker image listed, as follows:

$ sudo docker images

What if my image does not appear? Check the agent logs and make sure that your container
instance is able to contact your docker registry by curling the registry and printing out the
available tags:

curl [need to add in path to registry!]

What $ sudo docker images tells us: Our container image was
successfully installed on the host.

Manually crank your Docker image
Now that we know our image is installed on the host, we need to know whether it is
accessible to the Docker daemon. An easy way to test to make certain your image can be
run on the container instance is by attempting to run your image from the command line.
There is an added benefit here: we will now have the opportunity to additionally inspect
application logs for further troubleshooting.

Let's take a look at the following example:

$ sudo docker run -it [need to add in path to registry/latest bin!]

Building Base and Layered Images

[72]

What $ sudo docker run <imagename> tells us: Our container image is
accessible from the docker daemon and also provides accessible output
logs for further troubleshooting.

What if my image does not run? Check for any running containers. If the intended container
isn't running on the host, there may be issues preventing it from starting:

$ sudo docker ps

When a container fails to start, it does not log anything. Output of logs for container start
processes are located in /var/log/containers on the host. Here, you will find files
following the naming convention of <service>_start_errors.log. Within these logs,
you will find any output generated by our RUN command, and are a recommended starting
point in troubleshooting as to why your container failed to start.

TIP: Logspout (h t t p s ://g i t h u b . c o m /g l i d e r l a b s /l o g s p o u t) is a log
router for Docker containers that runs inside Docker. Logsprout attaches
to all containers on a host, then routes their logs wherever you desire.

While we can also peruse the /var/log/messages output in our attempts to troubleshoot,
there are a few other avenues we can persue, albeit a little more labor intensive.

Examining the filesystem state from cache
As we've discussed, after each successful RUN command in our Dockerfiles, Docker caches
the entire filesytem state. We can exploit this cache to examine the latest state prior to the
failed RUN command.

To accomplish the task:

Access the Dockerfile and comment out the failing RUN command, in addition to
any and subsequent RUN commands
Re-save the Dockerfile
Re-execute $ sudo docker build and $ sudo docker run

https://github.com/gliderlabs/logspout
https://github.com/gliderlabs/logspout
https://github.com/gliderlabs/logspout
https://github.com/gliderlabs/logspout
https://github.com/gliderlabs/logspout
https://github.com/gliderlabs/logspout
https://github.com/gliderlabs/logspout
https://github.com/gliderlabs/logspout
https://github.com/gliderlabs/logspout
https://github.com/gliderlabs/logspout
https://github.com/gliderlabs/logspout
https://github.com/gliderlabs/logspout
https://github.com/gliderlabs/logspout
https://github.com/gliderlabs/logspout
https://github.com/gliderlabs/logspout
https://github.com/gliderlabs/logspout
https://github.com/gliderlabs/logspout
https://github.com/gliderlabs/logspout
https://github.com/gliderlabs/logspout
https://github.com/gliderlabs/logspout
https://github.com/gliderlabs/logspout
https://github.com/gliderlabs/logspout
https://github.com/gliderlabs/logspout
https://github.com/gliderlabs/logspout
https://github.com/gliderlabs/logspout
https://github.com/gliderlabs/logspout
https://github.com/gliderlabs/logspout
https://github.com/gliderlabs/logspout
https://github.com/gliderlabs/logspout
https://github.com/gliderlabs/logspout
https://github.com/gliderlabs/logspout
https://github.com/gliderlabs/logspout
https://github.com/gliderlabs/logspout
https://github.com/gliderlabs/logspout
https://github.com/gliderlabs/logspout
https://github.com/gliderlabs/logspout
https://github.com/gliderlabs/logspout
https://github.com/gliderlabs/logspout
https://github.com/gliderlabs/logspout
https://github.com/gliderlabs/logspout
https://github.com/gliderlabs/logspout
https://github.com/gliderlabs/logspout
https://github.com/gliderlabs/logspout
https://github.com/gliderlabs/logspout
https://github.com/gliderlabs/logspout
https://github.com/gliderlabs/logspout
https://github.com/gliderlabs/logspout
https://github.com/gliderlabs/logspout
https://github.com/gliderlabs/logspout
https://github.com/gliderlabs/logspout
https://github.com/gliderlabs/logspout
https://github.com/gliderlabs/logspout
https://github.com/gliderlabs/logspout
https://github.com/gliderlabs/logspout
https://github.com/gliderlabs/logspout
https://github.com/gliderlabs/logspout
https://github.com/gliderlabs/logspout
https://github.com/gliderlabs/logspout
https://github.com/gliderlabs/logspout
https://github.com/gliderlabs/logspout
https://github.com/gliderlabs/logspout
https://github.com/gliderlabs/logspout
https://github.com/gliderlabs/logspout
https://github.com/gliderlabs/logspout
https://github.com/gliderlabs/logspout
https://github.com/gliderlabs/logspout

Building Base and Layered Images

[73]

Image layer IDs as debug containers
Every time Docker successfully executes a RUN command from a Dockerfile, a new layer in
the image filesystem is committed. Conveniently, you can use those layers IDs as images to
start a new container.

Consider the following Dockerfile as an example:

FROM centos
RUN echo 'trouble' > /tmp/trouble.txt
RUN echo 'shoot' >> /tmp/shoot.txt

If we then build from this Dockerfile:

$ docker build -force-rm -t so26220957 .

We would get output similar to the following:

Sending build context to Docker daemon 3.584 kB
Sending build context to Docker daemon
Step 0 : FROM ubuntu
 ---> b750fe79269d
Step 1 : RUN echo 'trouble' > /tmp/trouble.txt
 ---> Running in d37d756f6e55
 ---> de1d48805de2
Removing intermediate container d37d756f6e55
Step 2 : RUN echo 'bar' >> /tmp/shoot.txt
Removing intermediate container a180fdacd268
Successfully built 40fd00ee38e1

We can then use the preceding image layer IDs to start new containers from
b750fe79269d, de1d48805de2, and 40fd00ee38e1:

$ docker run -rm b750fe79269d cat /tmp/trouble.txt
cat: /tmp/trouble.txt No such file or directory
$ docker run -rm de1d48805de2 cat /tmp/trouble.txt
trouble
$ docker run -rm 40fd00ee38e1 cat /tmp/trouble.txt
trouble
shoot

We employ --rm to remove all the debug containers since there is no
reason to have them around postruns.

Building Base and Layered Images

[74]

What happens if my container build fails? Since no image is created on a failed build, we'd have
no hash of the container with which to ID. Instead, we can note the ID of the preceding
layer and run a container with a shell of that ID:

$ sudo docker run --rm -it <id_last_working_layer> bash -il

Once inside the container, execute the failing command in attempt to reproduce the issue,
fix the command and test, and finally update the Dockerfile with the fixed command.

You may also want to start a shell and explore the filesystem, try out commands, and
others:

$ docker run -rm -it de1d48805de2 bash -il
root@ecd3ab97cad4:/# ls -l /tmp
total 4
-rw-r-r-- 1 root root 4 Jul 3 12:14 trouble.txt
root@ecd3ab97cad4:/# cat /tmp/trouble.txt
trouble
root@ecd3ab97cad4:/#

Additional example
One final example is to comment out of the following Dockerfile, including the offending
line. We are then able to run the container and docker commands manually and look into
the logs in the normal way. In this example Dockerfile:

RUN trouble
RUN shoot
RUN debug

Also, the failure is at shoot, then comment out as follows:

RUN trouble
RUN shoot
RUN debug

Then, build and run:

$ docker build -t trouble .
$ docker run -it trouble bash
container# shoot
...grep logs...

Building Base and Layered Images

[75]

Checking failed container processes
Even if your container successfully runs from the command line, it would prove beneficial
to inspect for any failed container processes, for containers that are no longer running, and
checking our container configuration.

Run the following command to check for failed or no-longer running containers and note
the CONTAINER ID to inspect a given container's configuration:

$ sudo docker ps -a

Note the STATUS of the containers. Should any of your containers, STATUS show exit
codes other than 0, there could be issues with the container's configuration. By way of an
example, a bad command would result in an exit code of 127. With this information, you
can troubleshoot the task definition CMD field to debug.

Although somewhat limited, we can further inspect a container for additional
troubleshooting details:

$ sudo docker inspect <containerId>

Finally, let's also analyze the container's application logs. Error messages for container start
failures are output here:

$ sudo docker logs <containerId>

Other potentially useful resources
$ sudo docker top gives us a list of processes running inside a container.

$ sudo docker htop can be utilized when you need a little more detail than provided by
top in a convenient, cursor-controlled inferface. htop starts faster than top, you can scroll
the list vertically and horizontally to see all processes and complete command lines, and
you do not need to type the process number to kill a process or the priority value to
recieve a process.

Building Base and Layered Images

[76]

By the time this book goes to print, it is likely that the mechanisms for troubleshooting
containers and images will have dramatically improved. Much focus is being given by the
Docker community toward baked-in reporting and monitoring solutions, in addition to
market forces that will certainly bring additional options to bear.

Using sysdig to debug
As with any newer technology, some of the initial complexities inherent with them are
debugged in time, and newer tools and applications are developed to enhance their use. As
we've discussed, containers certainly fit into this category at this time. While we have
witnessed improvements in availability of official, standardized images within the Docker
Registry, we are also now seeing emergent tools that help us to effectively manage, monitor,
and troubleshoot our containers.

Sysdig provides application monitoring for containers [Image Copyright © 2014 Draios, Inc.]

Sysdig (http://www.sysdig.org/) is one such tool. As an au courant application for system-
level exploration and troubleshooting visibility into containerized environments, the beauty
of sysdig is that we are able to access container data from the outside (even though
sysdig can actually also be installed inside a container). From a top level, what sysdig
brings to our container management is this:

Ability to access and review processes (inclusive of internal and external PIDs) in
each container
Ability to drill-down into specific containers
Ability to easily filter sets of containers for process review and analysis

http://www.sysdig.org/
http://www.sysdig.org/

Building Base and Layered Images

[77]

Sysdig provides data on CPU usage, I/O, logs, networking, performance, security, and
system state. To repeat, this is all accomplishable from the outside, without a need to install
anything into our containers.

We will make continued and valuable use of sysdig going forward in this book to monitor
and troubleshoot specific processes related to our containers, but for now we will provide
just a few examples toward troubleshooting our basic container processes and logs.

Let's dig into sysdig by getting it installed on our host to show off what it can do for us
and our containers!

Single step installation
Installation of sysdig can be accomplished in a single step by executing the following
command as root or with sudo:

curl -s https://s3.amazonaws.com/download.draios.com/stable/install-sysdig
| sudo bash

NOTE: sysdig is currently included natively in the latest Debian and
Ubuntu versions; however, it is recommended to update/run installation
for the latest packages.

Advanced installation
According to the sysdig wiki, the advanced installation method may be useful for scripted
deployments or containerized environments. It is also easy; the advanced installation
method is enlisted for RHEL and Debian systems.

What are chisels?
To get started with sysdig, we should understand some of its parlance, specifically chisels.
In sysdig, chisels are little scripts (written in Lua) that analyze the sysdig event stream to
perform useful actions. Events are efficiently brought to user level, enriched with context,
and then scripts can be applied to them. Chisels work well on live systems, but can also be
used with trace files for offline analysis. You can run as many chisels as you'd like, all at the
same time. For example:

topcontainers_error chisel will show us the top containers by number of errors.

Building Base and Layered Images

[78]

For a list of sysdig chisels:

$ sysdig -cl (use the -i flag to get detailed information about a specific chisel)

Single container processes analysis

Using the example of a topprocs_cpu chisel, we can apply a filter:

$ sudo sysdig -pc -c topprocs_cpu container.name=zany_torvalds

These are the example results:

CPU% Process container.name
--
02.49% bash zany_torvalds
37.06% curl zany_torvalds
0.82% sleep zany_torvalds

Unlike using $ sudo docker top (and similar), we can determine exactly which
containers we want to see processes for; for example, the following example shows us
processes from only the wordpress containers:

$ sudo sysdig -pc -c topprocs_cpu container.name contains wordpress

CPU% Process container.name
--
5.38% apache2 wordpress3
4.37% apache2 wordpress2
6.89% apache2 wordpress4
7.96% apache2 wordpress1

Other Useful Sysdig Chisels & Syntax

topprocs_cpu shows top processes by CPU usage
topcontainers_file shows top containers by R+W disk bytes
topcontainers_net shows top containers by network I/O
lscontainers will list the running containers
$ sudo sysdig -pc -cspy_logs analyzes all logs per screen
$ sudo sysdig -pc -cspy_logs container.name=zany_torvalds prints
logs for the container zany_torvalds

Building Base and Layered Images

[79]

Troubleshooting – an open community awaits
you
In general, most issues you may face have likely been experienced by others, somewhere
and sometime before. The Docker and open source communities, IRC channels and various
search engines, can provide resulting information that is highly accessible and likely to
provide you with answers to situations, and conditions, that perplex. Make good use of the
open source community (specifically, the Docker community) in getting the answers you
are looking for. As with any emergent technology, in the beginning, we are all somewhat
learning together!

Automated image building
There are many ways we can go about automating our processes for building container
images; too many to reasonably provide a full disclosure of approaches within a single
book. In later chapters of this book, we will delve more deeply into a range of automation
options and tools. In this particular instance, we are only speaking of automation using our
Dockerfile. We have already discussed in general that Dockerfiles can be used in
automating our image building, so let's take a more dedicated look into Dockerfile
automation specifically.

Unit tested deployments
During the build process, Docker allows us to run any command. Let's take advantage of
this to enable unit tests while building our image. These unit tests can help to identify
problems in our production image before we push them to staging or deployment, and will
at least partially verify the image functions the way we intend and expect. If the unit tests
run successfully, we have a degree of confidence that we have a valid runtime environment
for our service. This also means that should the tests fail, our build will fail, effectively
keeping a nonworking image out of its production.

Using our cloudconsulted/joomla repository image from prior, we will set up a sample
workflow for automated builds, with testing. PHPUnit is what we will use since it is
officially used by the Joomla! project's development teams, as it can conveniently run unit
tests against our entire stack–the Joomla code, Apache, MySQL, and PHP.

Building Base and Layered Images

[80]

Drop in to your Dockerfile directory for cloudconsulted/joomla (in our case,
dockerbuilder) and update it as follows.

Install PHPUnit executing the following commands:

[# install composer to a specific directory
curl -sS https://getcomposer.org/installer | php -- --install-dir=bin
use composer to install phpunit
composer global require "phpunit/phpunit=4.1.*"]

PHPUnit can also be installed executing the following commands:

[# install phpunit
wget https://phar.phpunit.de/phpunit.phar
chmod +x phpunit.phar
mv phpunit.phar /usr/local/bin/phpunit
might also need to put the phpunit executable placed here? test this:
cp /usr/local/bin/phpunit /usr/bin/phpunit]

Now, let's run our unit tests with phpunit:

discover and run any tests within the source code
RUN phpunit

We also need to make sure that we COPY our unit tests to the assets inside our image:

copy unit tests to assets
COPY test /root/test

Lastly, let's do some house cleaning. To ensure that our production code cannot rely
(accidentally or otherwise) on the test code, once the unit tests complete we should delete
those test files:

clean up test files
RUN rm -rf test

Our total updates to the Dockerfile included:

wget https://phar.phpunit.de/phpunit.phar
chmod +x phpunit.phar
mv phpunit.phar /usr/local/bin/phpunit

RUN phpunit
COPY test /root/test
RUN rm -rf test

Building Base and Layered Images

[81]

Now, we have a scripted Dockerfile that, each and every time we build this image, will fully
test our Joomla code, Apache, MySQL, and PHP dependencies as a literal part of the build
process. The results are a tested, reproducible production environment!

Automating tested deployments
With our heightened confidence in producing workable images for deployment, this build
process still requires a developer or DevOps engineer to rebuild the image before every
production push. Instead, we will rely on automated builds from our Docker and GitHub
repositories.

Our GitHub and Docker Hub repositories will serve to automate our builds. By maintaining
our Dockerfiles, dependencies, related scripts, and so on on GitHub, any pushes or commits
to update files on the repository will automatically force an updating push to the synced
Docker Hub repository. Our production images for pull on Docker Hub are automatically
updated with any new build information.

Docker Clouds is one of the latest offerings to complete the app life cycle, it provides a
hosted registry service with build and testing facilities. Docker Cloud expands on the
feature of Tutum and brings a tighter integration with Docker Hub. With the help of a
Docker Cloud system, admins can deploy and scale applications in the cloud with just a few
clicks. Continuous deliver the code integrated and automated with build, test and
deployment workflows. It also provides visibility across the containers of the entire
infrastructure and accesses the programmatic RESTful APIs for a developer-friendly CLI
tool. Thus, Docker Cloud can be used for automating the build process and test
deployments.

The following are the important features of Docker Cloud:

Allows the building of Docker images and also linking cloud repositories to a
source code in order to ease the process of image building
It allows linking your infrastructure and cloud services to provision new nodes
automatically
Once the image has been built, it can be used to deploy services and can be linked
with Docker Cloud's collection of services and microservices
Swarm management in beta mode is available for creating swarm within Docker
Clouds or registering the existing swarms to Docker Clouds using Docker ID

Building Base and Layered Images

[82]

Summary
Docker and Dockerfiles provide repeatable processes across the application development
cycle, providing a distinctive facility for both developers and DevOps
engineers–production-ready deployments, infused with the confidence of tested images and
the ease of automation. This provides a high level of empowerment to those needing it
most, and results in the continuous delivery of tested and production-ready image building
that we can fully automate, extended as far out as, and across, our clouds.

In this chapter, we learned that a mission-critical task in a production-ready application
containerization is image building. The building of base and layered images and avoiding
areas for troubleshooting are the primary topics we covered. In building our base images,
we saw that the Docker Registry provides ample and validated images that we can freely
use for repeatable processes. We also canvassed building images manually, from scratch.
Moving forward, we explored building layered images with a Dockerfile and enlisted the
Dockerfile commands in detail. Finally, an example workflow illustrated automated image
building with baked-in testing of images and containers. Throughout, we highlighted the
ways and means for troubleshooting areas and options.

Building succinct Docker images for your application container is vitally crucial for your
application's functionality and maintainability. Now that we have learned about building
base and layered images and basic ways to troubleshoot them, we will look foward to
building real application images. In our next chapter, we will learn about planning and
building multiple-tier applications with a proper set of images.

4
Devising Microservices and N-

Tier Applications
Let's expand on what we saw and learned in the last chapter about the more advanced
development and deployment of microservices and N-tier applications. This chapter will
address the underlying architectures for these design approaches as well as resolve typical
issues faced while building these types of applications. We will cover the following topics in
the chapter:

Monolithic architectural pattern
N-tier application architecture
Building, testing, and automating N-tier applications
Microservices architectural pattern
Building, testing, and automating microservices
Decoupling multi-tier applications into multiple images
Making different tiers of applications work

Nowadays, modern software built as services are giving rise to a shift in how applications
are designed. Instead of using web frameworks to invoke services and produce web pages,
applications today are built by consuming and producing APIs. Much has changed in the
development and deployment of business applications, some of it dramatically and some of
it either by revision or extension from the past design approaches, depending upon your
viewpoint. Several architectural design approaches exist, and they are distinguishable by
applications built for enterprise versus web versus Cloud.

Devising Microservices and N-Tier Applications

[84]

Development trends, over the last few years in particular, are awash with terms such
as microservices architecture (MSA), applicable to a particular way of application design
and development as suites of independently deployable services. The meteoric rise of the
microservices architectural style is clearly an irrefutable force in today's development for
deployment; there has been a considerable shift away from monolithic architecture and
toward N-tier applications and microservices, but just how much of this is hype and how
much of this can be honed?

Hype or hubris
Before we begin diving deeply into troubleshooting, we ought to provide a basic contextual
overview of modern applications and both the N-tier and microservices architectural styles.
Knowing both the advantages and limitations of these architectural styles will help us plan
for potential troubleshooting areas, and how we can avoid them. Containers are ideally
suited for both of these architectural approaches, and we will discuss each one separately to
give their proper due.

Within all the noise, we sometimes forget that to deploy systems across these domains, one
still has to create services and compose multiple services in working distributed
applications. Here, it is important to understand the modern meaning of the term
application. Applications are now primarily constructed as asynchronous message flows or
synchronous request calls (if not both) that serve in forming collections of components or
services allied by these connections. Participating services are highly distributive across
variant machines and diverse Clouds (private, public, and hybrid).

As for architectural styles, we shan't bother ourselves with too much comparison or engage
in overly detailed discussions on what microservices actually are and whether they are any
different from Service-Oriented Architecture (SOA)–there is certainly plenty of forum and
related debate elsewhere for your choosing. With design principles rooted at least as far
back as Unix, we will proffer no authoritative viewpoints in this book that the current
microservices trend is either conceptually singular or entirely ingenious. Instead, we will
put forward the major considerations for implementing this architectural approach and the
benefits to be gained for modern applications.

Use case still drives and dictates architectural approaches (or, in my opinion, should), and
as such there is value in making some degree of comparative analysis among all
predominant architectural styles: monolithic, N-tier, and microservices.

Devising Microservices and N-Tier Applications

[85]

Monolithic architecture
Monoliths are essentially one deployment unit housing all services and dependencies,
making them easy to develop, easy to test, relatively easy to deploy and, initially, easy to
scale. However, this style does not meet the requisite needs for most modern enterprise
applications (N-tier) and web development at scale, and certainly not (microservices)
applications being deployed to the Cloud. Change cycles are tightly coupled–any changes
made, even to the smallest parts of an application, require wholesale rebuilds and
redeployments for the entire monolith. As the monolith matures, any attempts at scaling
require scaling of the entire application rather than the individual parts, which specifically
require greater resources, becoming altogether nightmarish, if not improbable. At this point,
a monolithic application has become overly complex, weighted with vast lines of code that
is ever-increasingly difficult to decipher, such that business-critical items like bug fixes or
implementing new features become too much of a time drain to ever attempt. As the code
base becomes unintelligible, it is only reasonable to expect any changes made likely to be
done incorrectly. The burgeoning size of the application not only slows development, it
impedes continuous development altogether; to update any part of a monolith, the entire
app must be redeployed.

Monolithic architectural pattern

Devising Microservices and N-Tier Applications

[86]

Other problems with monoliths abound, resources cannot be catered to better meet needs,
for example, CPU or memory requirements. Since all modules are running the same
processes, any bug can potentially bring the entire process to a halt. Lastly, it becomes much
more difficult to adopt newer frameworks or languages, creating a huge barrier to adopt
new technologies–you are likely stuck with whatever technology choices you made at the
beginning of the project. Needless to say, your needs may have changed rather dramatically
since the beginning. Using obsolete, unproductive technology makes keeping and bringing
in new talent more difficult. The application has now become very difficult to scale and is
unreliable, making agile development and delivery of applications impossible. The initial
ease and simplicity of a monolith quickly become its own Achilles heel.

As these monolithic architectures are basically one deployment unit that does
everything–N-tier and microservices architectures have arisen to address the specialized
service needs of modernized applications, primarily Cloud and mobile-based.

N-tier application architecture
In order to understand N-tier applications and their potential for decoupling into
microservices, we will hold its comparison against the monolithic style since both the
development of N-tier applications and proliferation of microservices exist to address many
of the problems found in the outdated conditions we've found resulting from the approach
of monolithic architectures.

The N-tier application architecture, also referred to as distributed applications or multi-
tier, proffers a model in which developers can create flexible and reusable applications. As
the application is segregated into tiers, developers are empowered by the option of
modifying or adding a specific tier or layer instead of requiring a rework of the entire
application as would be necessary under monolithic. A multi-tier application is any
application developed and distributed among more than one layer. It logically separates the
different application-specific and operational layers. The number of layers varies by
business and application requirements, but three-tier is the most commonly used
architecture. Multi-tier applications are used to divide enterprise applications into two or
more components that may be separately developed, tested, and deployed.

Devising Microservices and N-Tier Applications

[87]

N-tier applications are essentially SOA that attempt to address some of the issues with
antiquated monolothic design architecture. As we have seen in the previous chapters,
Docker containers are a perfect match for N-tier application development.

N-tier application architecture

A common N-tier application consists of three layers: a PRESENTATION TIER (providing
basic user interface and application services access), a DOMAIN LOGIC TIER (providing
the mechanism used to access and process data), and a DATA STORAGE TIER (which
holds and manages data that is at rest).

While the concepts of layer and tier are often used interchangeably,
a fairly common point of view is that there is actually a difference. This
view holds that a layer is a logical structuring mechanism for the elements
that make up the software solution, while a tier is a physical structuring
mechanism for the system infrastructure. Unless otherwise specifically
noted in our book, we will use tier and layer interchangeably.

Devising Microservices and N-Tier Applications

[88]

The easiest way to separate the various tiers in an N-tier application is to create discrete
projects for each tier that you want to include in your application. For example, the
presentation tier might be a Windows forms application, whereas the data access logic
might be a class library located in the middle tier. Additionally, the presentation layer
might communicate with the data access logic in the middle tier through a service.
Separating application components into separate tiers increases the maintainability and
scalability of the application. It does this by enabling easier adoption of new technologies
that can be applied to a single tier without the requirement to redesign the whole solution.
In addition, N-tier applications typically store sensitive information in the middle tier,
which maintains isolation from the presentation tier.

Probably the most common example of N-tier app development is websites; an example of
this can be seen in the cloudconsulted/joomla image we used in the last chapter, where
Joomla, Apache, MySQL, and PHP were all layered as tiers into a single container.

It will be easy enough for us to simply recursively use our cloudconsulted/joomla
image (from earlier) here, but let's build a classic three-tiered web application to expose
ourselves to some other application potential as well as introduce another unit test tool for
our development teams.

Building a three-tier web application
Let's develop and deploy a real-world three-tier web application with the help of the
following containers:

NGINX > Ruby on Rails > PostgreSQL:

The NGINX Docker container (Dockerfile), as follows:

AngularJS Container build
FROM nginx:latest

Download packages
RUN apt-get update
RUN apt-get install -y curl \
 git \
 ruby \
 ruby-dev \
 build-essential

Copy angular files
COPY . /usr/share/nginx

Installation

Devising Microservices and N-Tier Applications

[89]

RUN curl -sL https://deb.nodesource.com/setup | bash -
RUN apt-get install -y nodejs \
 rubygems
RUN apt-get clean
WORKDIR /usr/share/nginx
RUN npm install npm -g
RUN npm install -g bower
RUN npm install -g grunt-cli
RUN gem install sass
RUN gem install compass
RUN npm cache clean
RUN npm install
RUN bower -allow-root install -g

Building
RUN grunt build

Open port and start nginx
EXPOSE 80
CMD ["/usr/sbin/nginx", "-g", "daemon off;"]

The Ruby on Rails Docker container (Dockerfile), as shown:

Ruby-on-Rails Container build
FROM rails:onbuild

Create and migrate DB
RUN bundle exec rake db:create
RUN bundle exec rake db:migrate

Start rails server
CMD ["bundle", "exec", "rails", "server", "-b", "0.0.0.0"]

The PostgreSQL Docker container, as illustrated:

PostgreSQL Containers build
cloudconsulted/postgres is a Postgres setup that accepts remote
connections from Docker IP (172.17.0.1/16). We can therefore make use of
this image directory so there is no need to create a new Docker file here.

The preceding Dockerfiles can be used to deploy a three-tier web application and help us
get started with microservices.

Devising Microservices and N-Tier Applications

[90]

Microservices architecture
To begin explaining the microservice architectural style, it will prove beneficial to again
compare to the monolithic, as we did with N-tier. As you may recall, a monolithic
application is constructed as a single unit. Also, recall that monolithic enterprise
applications are often built around three primary tiers: a client-side user interface
(comprising of HTML pages and JavaScript running in a browser on the user's machine), a
database (comprising of many tables inserted into a common, and usually relational,
database management system), and a server-side application (which handles HTTP
requests, executes domain logic, retrieves and updates data from the database, and selects
and populates HTML views to be sent to the browser). This classic version of a monolithic
enterprise application is a single, logical executable. Any changes to the system involve
building and deploying a new version of the server-side application, and changes in the
underlying technology are likely not prudent.

The path to modernity
Microservices represent the convergence of the modern Cloud and modern application
development, structured around the following:

Componentized services
Organization around business capabilities
Products, not projects
Smart endpoints and dumb pipes
Decentralized governance and data management
Infrastructure automation

Here, monolithic typically focuses on enterprise service bus (ESB) used to integrate
monolithic applications, modern application design is API driven. These modern
applications embrace APIs on all sides: on the frontend for connecting to rich clients, the
backend for integrating with internal systems, and on the sides to allow other applications
access to their internal data and processes. Rather than leveraging the more complicated
traditional enterprise mechanisms, many developers are finding that the same lightweight
API services that have proven to be resilient, scalable, and agile for frontend, backend, and
application-to-application scenarios can also be leveraged for application assembly. What is
also compelling is that containers, and especially so within a microservices architectural
approach, alleviate the perennial issue of developers being blocked out of architectural
decisions while still realizing the benefits of repeatability. The use of preapproved container
configurations.

Devising Microservices and N-Tier Applications

[91]

Microservices architectural pattern
Here, we illustrate that instead of a single, monstrous monolithic application, we have split
the application into smaller, interconnected services (that is, microservices) that implement
each functional area of the application. This allows us to deploy directly to address the
needs of specialized use cases or specific devices or users /or/ the microservices approach,
in a nutshell, dictates that instead of having one giant code base that all developers touch,
which often becomes perilous to manage, there are numerous smaller code bases managed
by small and agile teams. The only dependency these code bases have on one another is
their APIs:

Microservices architectural pattern

A common discussion around microservices is debate over whether this is
just SOA. Some validity exists on this point as the microservice style does
share some of the advocacies of SOA. In reality, SOA means a host of
many different things. As such, we submit and will attempt to show that
while shared similarities do exist, SOA remains significantly different
from the microservices architectural style as presented herein.

Devising Microservices and N-Tier Applications

[92]

Common characteristics of microservices
While we will not attempt a formal definition of the microservices architectural style, there
are some common characteristics we can certainly use to identify it. Microservices are
generally designed around business capabilities and priorities and include multiple
component services that can be automated for deployment independently without
compromising the application, intelligence endpoints, and decentralized control of
languages and data.

To provide some basis then, if not common ground, to follow is an outline that can be seen
as the common characteristics for architectures that fit the microservices label. It should be
understood that not all microservice architectures will exhibit all characteristics at all times.
Since we do, however, have expectations that most microservice architectures will exhibit
most of these characteristics, let's list them:

Independent
Stateless
Asynchronous
Single responsibility
Loosely coupled
Interchangeable

Advantages of microservices
The common characteristics of microservices we just listed also serve to itemize
their advantages. Without meaning to belabor the issue over too much redundancy, let's at
least canvass the main advantage points:

Microservices enforce a level of modularity: This is extremely difficult to
accomplish in practice with a monolithic architecture. The microservices
advantage is that individual services are much faster to develop, much easier to
understand, and much easier to maintain.

Devising Microservices and N-Tier Applications

[93]

Microservices enable each service to be developed independently: This is
done by teams specifically focused on that service. The microservices advantage
is empowering developers with the freedom to choose whatever technology is
best suited or makes better sense, so long as that service honors the API contract.
By default, this also means that developers are no longer trapped with potentially
obsolete technologies from a project's beginning, or when starting a new project.
Not only does an option exist to employ the current technology, but with
a relatively small service size it is also now feasible to rewrite older services using
a more relevant and reliable technology.
Microservices enable each service to be deployed continuously: Developers
needn't coordinate the deployment of changes that are localized to their service.
The microservices advantage is in continuous deployment–deployment takes
place as soon as changes are successfully tested.
Microservices enable each service to be scaled independently: You need to
deploy only the instances of each service necessary to satisfy the capacity and
availability constraints. Additionally, we can also succinctly match the hardware
to fulfill a service's resource requirements (for example, compute or memory
optimized hardware for CPU and memory-intensive services). The microservices
advantage is in not only matching capacity and availability, but leveraging user-
specific hardware optimized for a service.

All of these advantages are extremely advantageous, but for the next bit let's elaborate on
the point of scalability. As we've seen with monolithic architectures, while easy to initialize
scaling, it is certainly deficient in executing it over time; bottlenecks abound and,
eventually, it's approach to scaling is vastly untenable. Fortunately, microservices as an
architectural style supremely excels at scaling. A quintessential book, THE ART OF
SCALABILITY (h t t p ://t h e a r t o f s c a l a b i l i t y . c o m /) illustrates a highly useful, three-
dimensional model of scalability in a scale cube (h t t p ://m i c r o s e r v i c e s . i o /a r t i c l e s /s c a l

e c u b e . h t m l).

http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/

Devising Microservices and N-Tier Applications

[94]

Microservices at scalability
In the provided model, along the X-axis scaling (that is, Monolothic) we can see the
common horizontal duplication approach, scaling an application by running multiple,
cloned copies of that application behind a load balancer. This results in improved
application capacity and availability.

Microservices at scalability

Moving along the Z-axis for scaling (that is N-tier/SOA), each server runs identical copies of
code (similar to X-axis). The difference here comes in that each server is responsible solely
for a strict subset of the data (that is, data partitioning or scaling by splitting into similar
things). A given component of the system therefore has responsibility for routing a given
request to an appropriate server.

Sharding is a commonly used routing criteria where an attribute of the
request is used to route the request to a particular server (for example, the
primary key of a row or identity of a customer).

Just as with X-axis scaling, Z-axis scaling serves to improve application capacity and
availability. However, as we learned in this chapter, neither the monolithic or N-tier
approach (X- and Y-axis scaling) will resolve the inherent problems of our ever-increasing
development and application complexities. To effectively deal with these issues, we need to
apply Y-axis scaling (that is, microservices).

Devising Microservices and N-Tier Applications

[95]

This third dimension to scaling (Y-axis) involves functional decomposition, or scaling by
splitting into different things. Occurring at the application tier, Y-axis scaling will split a
monolithic application into separate sets of services wherein each service implements a set
of allied functionalities (for example, customer management, order management, and so
on). Later in this chapter, we will look directly into the decomposition of services.

What we can typically see are applications that utilize all the three axes of the scaling cube
together. Y-axis scaling decomposes the application into microservices; at runtime, X-axis
scaling executes multiple instances of each service behind a load balancer for enhanced
output and availability, and some applications may additionally use Z-axis scaling for
partition of services.

Disadvantages of microservices
Let's do our full due diligence here by also understanding some of the disadvantages of
microservices:

Deploying a microservices-based application is much more complex: In
contrast to monolithic applications, a microservice application typically consists
of a large number of services. Defacto, we have greater complexity in deploying
them.
Management and orchestration of microservices is much more complex: Each
service, within a large number of services, will have multiple runtime instances.
An exponential increase occurs across many more moving parts that require
configuration, deployment, scaling, and monitoring. Any successful
microservices deployment, therefore, requires more granular control of
deployment methods by developers combined with a high level of automation.
Testing a microservices application is much more complex: Writing test classes
for a microservices application does not only require that service to be started,
but also its dependency services.

Once understood, we can strategize and design to mitigate these drawbacks and better plan
for troubleshooting areas.

Devising Microservices and N-Tier Applications

[96]

Considerations for devising microservices
We have reviewed the transgression from single delivery to multi-tier to containerized
microservices, and understand that each has its own functional place for application. Each
architecture carries its own degree of validity; appropriate design strategy and application
of these architectures is necessary for your deployment successes. Having learned the basic
tenets for monolithic, N-tier, and microservices, we are better equipped toward strategically
implementing the best-suited architectures on a per use case basis.

From mono to micro

The microservice architectural pattern is a better choice for complex, evolving applications
despite the drawbacks and implementation challenges. To utilize microservices for modern
Cloud and web application design and deployment, how best do we leverage the
advantages of microservices while mitigating the potential drawbacks?

Whether developing a new application or reinvigorating an old one, these considerations
must be taken into account for microservices:

Building and maintaining highly available distributed systems is complex
More moving parts means more components to keep track of
Loosely coupled services means that steps need to be taken to keep data
consistent
Distributed asynchronous processes create network latency and more API traffic
Testing and monitoring individual services is challenging

Devising Microservices and N-Tier Applications

[97]

Mitigating the disadvantages
This is likely the most simplistic instruction provided in the entire book; however, time and
again we witness the obvious either completely ignored, overlooked, or underpursued. Our
submission here is that, in spite of the relatively few but known disadvantages, there exist
both current and evolving mechanisms to resolve almost all of these issues; expectation is
strong that the container market will evolve a plethora of working solutions to the current
issues.

Once again, let's just start with the most basic elements here as the foundation of successful
microservices applications that require less troubleshooting:

Take total ownership: Without taking full ownership and knowing that ultimate
success is directly up to you and your team, your projects and their resulting
applications will suffer. Commitment, dedication, and persistence pay handsome
results.
Develop a complete understanding: Fully comprehend what the business goals
are and what technologies can be best applied to address them, not to mention
the how and why for which you are using them. Always be learning!
Pursue exhaustive, coordinated planning: Plan strategically, plan along with
other application stakeholders, plan for failure, and then plan some more;
Measure your results and revise the plan, re-evaluating the plan on a continuum.
Always be measuring, and always be planning!
Utilize the current technology: It is imperative in today's technology climate to
make good use of the most stable and functional tools and applications; so, seek
them out.
Evolve with the application: You must be as agile and adaptable as the container
technologies you are using; change must be an accepted part of your exhaustive,
coordinated planning!

Great! We know that we must not only acknowledge, but actively participate in the most
basic elements of our application project process. We also know and understand the
advantages and disadvantages of a microservices architectural approach, and that those
advantages have the potential to far outweigh any negatives. Outside of the preceding five
powerful items, how do we mitigate these drawbacks to use the positives afforded to us
with microservices to our benefit?

Devising Microservices and N-Tier Applications

[98]

Managing microservices
At this point, you may be asking yourself “so, where does Docker fit into this
conversation?” Our first tongue in cheek answer is that it fits in perfectly, indeed!

Docker is excellent for microservices as it isolates containers to one process or service. This
intentional containerization of single services or processes makes it very simple to manage
and update these services. Therefore, it's not surprising that the next wave on top of Docker
has led to the emergence of frameworks for the sole purpose of managing more complex
scenarios, including as follows:

How to manage single services in a cluster?
How to manage multiple instances in a service across hosts?
How to coordinate between multiple services on a deployment and management
level?

As expected within a maturing container market, we are seeing additional complementary
tools emerge to go along with open source projects, such as Kubernetes, MaestroNG, and
Mesos to only name but a few–all arising to address the management, orchestration, and
automation needs for containerized applications with Docker. Kubernetes, as an example, is
a project built especially for microservices and works extremely well with Docker. The key
features of Kubernetes cater directly to the exact traits so imperative within the
microservices architecture–easy deployment of new services via Docker, independent
scaling of services, end-client transparency to failures, and simple, ad-hoc name-based
discovery of service endpoints. Further, Docker's own native projects–Machine, Swarm,
Compose, and Orca, while currently still in beta at the time of this writing, look highly
promising–will likely soon be added to the Docker core kernel.

Since we will later dedicate examples and discussion to Kubernetes, other third-party
applications and an entire chapter to Docker Machine, Swarm, and Compose, let's look
at an example here utilizing services we used earlier (NGINX, Node.js) along with Redis
and Docker Compose.

Real-world example
NGINX > Node.js > Redis > Docker Compose

Directly create and run the Redis image
docker run -d -name redis -p 6379:6379 redis

Node Container
Set the base image to Ubuntu

Devising Microservices and N-Tier Applications

[99]

FROM ubuntu

File Author / Maintainer
MAINTAINER John Wooten @CONSULTED <jwooten@cloudconsulted.com>

Install Node.js and other dependencies
RUN apt-get update && \
 apt-get -y install curl && \
 curl -sL https://deb.nodesource.com/setup | sudo bash - && \
 apt-get -y install python build-essential nodejs

Install nodemon
RUN npm install -g nodemon

Provides cached layer for node_modules
ADD package.json /tmp/package.json
RUN cd /tmp && npm install
RUN mkdir -p /src && cp -a /tmp/node_modules /src/

Define working directory
WORKDIR /src
ADD . /src

Expose portability
EXPOSE 8080

Run app using nodemon
CMD ["nodemon", "/src/index.js"]

Nginx Containers build
Set nginx base image
FROM nginx

File Author / Maintainer
MAINTAINER John Wooten @CONSULTED <jwooten@cloudconsulted.com>

Copy custom configuration file from the current directory
COPY nginx.conf /etc/nginx/nginx.conf

Docker Compose
nginx:
build: ./nginx
links:
 - node1:node1
 - node2:node2
 - node3:node3
ports:
- "80:80"

Devising Microservices and N-Tier Applications

[100]

node1:
build: ./node
links:
 - redis
ports:
 - "8080"
node2:
build: ./node
links:
 - redis
ports:
- "8080"
node3:
build: ./node
links:
 - redis
ports:
- "8080"
redis:
image: redis
ports:
 - "6379"

We will delve more thoroughly into Docker Compose in Chapter 10, Docker Machine,
Compose and Swarm. Additionally, we will also need to implement a service discovery
mechanism (discussed in a later chapter) that enables a service to discover the locations
(hosts and ports) of any other services it needs to communicate with.

Automated tests and deployments
We want as much confidence as possible that our applications are working; that starts with
automated testing to facilitate our automated deployments. Needless to say, our automated
tests are mission-critical. Promotion of working software up the pipeline means we
automate deployment to each new environment.

The testing of microservices right now is still relatively complex; as we've discussed, test
classes for a service will require a launch of that service in addition to any services it
depends upon. We at least need to configure stubs for those services. All this can be done,
but let's look into mitigating its complexity.

Devising Microservices and N-Tier Applications

[101]

Automated testing
Strategically, we need to map out our design flow to include testing to validate our
applications for deployment into production. Here's an example workflow of what we want
to accomplish with our automated testing:

The preceding diagram represents a DevOps pipeline starting with code compilation and
moving to integration test, performance test and, finally, the app getting deployed in a
production environment.

Designing for failure
In order to succeed, we must accept failures as a very real possibility. In fact, we really
ought to be purposefully inserting failures into our application design flow to test how we
can successfully deal with them when they occur. This kind of automated testing in
production initially requires nerves of steel; however, we can derive automation that is self-
healing through repetition and familiarity. Failures are a certainty; therefore, we must plan
and test our automation for mitigating the damages of such a certainty.

Successful application design involves built-in fault tolerances; this is particularly true of
microservices as a consequence of using services as components. Since services can fail at
any time, it's important to be able to detect the failures quickly and, if possible,
automatically restore service. Real-time monitoring of our application is of critical emphasis
across microservice applications, providing an early warning system of either issues
actually occurring or those showing potential for error or problems. This affords an earlier
response among development teams to follow up and investigate; because there is such
choreography and event collaboration in a microservices architecture, our ability to track
emergent behaviors becomes rather vital.

Devising Microservices and N-Tier Applications

[102]

Microservice teams should, therefore, design to include some minimums for monitoring
and logging setups for each individual service: dashboards with up/down status, metadata
on circuit breaker status, current throughput, and latency and a variety of operational and
business relevant metrics.

At the end of our application builds, should our components not compose cleanly, we have
accomplished little more than shifting complexity from inside a component to the
connections between them. This puts things into areas harder to define and more difficult to
control. Ultimately, we should design for the inevitability of failures to be successful.

Dockunit for unit tests
To enhance our unit testing capabilities, we will also install and use Dockunit to deliver our
unit testing. There are plenty of options available to us for our unit tests. In mixing and
matching different tools to accomplish unit testing in the past, I have found that by
deploying Dockunit as a stock and standard application in my development toolkit, I can
meet almost any unit test needs with this utility. So as not to be too repetitive, let's go ahead
and set up for automated testing using Dockunit.

Dockunit requirements are Node.js, npm, and Docker.

If not already installed, install npm (we will assume installation of both Docker and
Node.js):

npm install -g dockunit

Now we can use Dockunit to easily test our Node.js applications. This is done simply via a
Dockunit.json file; to follow is a sample that tests an application in Node.js 0.10.x and
0.12.0 using mocha:

{
 "containers": [
 {
 "prettyName": "Node 0.10.x",
 "image": "google/nodejs:latest",
 "beforeScripts": [
 "npm install -g mocha"
],
 "testCommand": "mocha"
 },
 {
 "prettyName": "Node 0.12",
 "image": "tlovett1/nodejs:0.12",
 "beforeScripts": [
 "npm install -g mocha"

Devising Microservices and N-Tier Applications

[103]

],
 "testCommand": "mocha"
 }
]
}

The preceding code snippet shows how easily an application can be unit tested inside the
docker container.

Automated deployments
One approach to automation is to use an off-the-shelf PaaS (for example, Cloud Foundry or
Tutum, and so on). A PaaS provides developers with an easy way to deploy and manage
their microservices. It insulates them from concerns such as procuring and configuring IT
resources. At the same time, the systems and network professionals who configure the PaaS
can ensure compliance with best practices and company policies.

Another way to automate the deployment of microservices is to develop what is essentially
your own PaaS. One typical starting point is to use a clustering solution, such as Mesos or
Kubernetes, in conjunction with a technology, such as Docker. Later in this book, we will
review how software-based application delivery approaches like NGINX, which easily
handles caching, access control, API metering, and monitoring at the microservice level can
help solve this problem.

Decoupling N-tier applications into multiple
images
Decomposing applications improves deployability and scalability and simplifies the
adoption of new technologies. To achieve this level of abstraction, the application must be
fully decoupled from the infrastructure. Application containers, such as Docker, provide a
way to decouple application components from the infrastructure. At this level, each
application service must be elastic (that is, it can scale up and down independently of other
services) and resilient (that is, it has multiple instances and can survive instance failures).
The application should also be designed so that failures in one service do not cascade to
other services.

Devising Microservices and N-Tier Applications

[104]

We've done entirely too much talking, and not enough doing. Let's get at what we really
need to know–how to build it! We can easily use our cloudconsulted/wordpress image
here to show an example of our decoupling into separate containers: one for WordPress,
PHP, and MySQL. Instead, let's explore other applications to continue to show the range of
capabilities and potential for application deployments that we can make with Docker; for
this example, a simple LEMP stack

Building an N-tier web application
LEMP stack (NGINX > MySQL > PHP)

For simplification, we will split this LEMP stack across two containers: one for MySQL and
the other for NGINX and PHP, each utilizing an Ubuntu base:

LEMP stack decoupled as separate docker container s
FROM ubuntu:14.04
MAINTAINER John Wooten @CONSULTED <jwooten@cloudconsulted.com>
RUN apt-get update
RUN apt-get -y upgrade

seed database password
COPY mysqlpwdseed /root/mysqlpwdseed
RUN debconf-set-selections /root/mysqlpwdseed
RUN apt-get -y install mysql-server
RUN sed -i -e"s/^bind-address\s*=\s*127.0.0.1/bind-address = 0.0.0.0/"
/etc/mysql/my.cnf
RUN /usr/sbin/mysqld & \
 sleep 10s &&\
 echo "GRANT ALL ON *.* TO admin@'%' IDENTIFIED BY 'secret' WITH GRANT
OPTION; FLUSH PRIVILEGES" | mysql -u root --password=secret &&\
 echo "create database test" | mysql -u root --password=secret
persistence:
http://txt.fliglio.com/2013/11/creating-a-mysql-docker-container/
EXPOSE 3306
CMD ["/usr/bin/mysqld_safe"]

Devising Microservices and N-Tier Applications

[105]

A second container will install and house NGINX and PHP:

LEMP stack decoupled as separate docker container s
FROM ubuntu:14.04
MAINTAINER John Wooten @CONSULTED <jwooten@cloudconsulted.com>

install nginx
RUN apt-get update
RUN apt-get -y upgrade
RUN apt-get -y install nginx
RUN echo "daemon off;" >> /etc/nginx/nginx.conf
RUN mv /etc/nginx/sites-available/default /etc/nginx/sites-
available/default.bak
COPY default /etc/nginx/sites-available/default
install PHP
RUN apt-get -y install php5-fpm php5-mysql
RUN sed -i s/\;cgi\.fix_pathinfo\s*\=\s*1/cgi.fix_pathinfo\=0/
/etc/php5/fpm/php.ini
prepare php test scripts
RUN echo "<?php phpinfo(); ?>" > /usr/share/nginx/html/info.php
ADD wall.php /usr/share/nginx/html/wall.php
add volumes for debug and file manipulation
VOLUME ["/var/log/", "/usr/share/nginx/html/"]
EXPOSE 80
CMD service php5-fpm start && nginx

Making different tiers of applications work
From our real-world production examples, we have already seen several different ways in
which we can make different application tiers work together. Since discussion on making
interoperable tiers workable within the application all depend upon the application tiers
being deployed, we can continue on ad-infinitum as to how to do this; one example leading
to another, and so on. Instead, we will delve into this area more thoroughly in Chapter 06,
Making Containers Work.

Devising Microservices and N-Tier Applications

[106]

Summary
Containers are the vehicle for modern microservices architectures; the use of containers
provides not some wild and imaginative advantages when coupled with microservices and
N-tier architectural styles, but workable production-ready solutions. In many ways, the use
of containers to implement a microservices architecture is an evolution not unlike those
observed over the past 20 years in web development. Much of this evolution has been
driven by the need to make better use of compute resources and the need to maintain
increasingly complex web-based applications. For modern application development,
Docker is a veritable and forceful weapon.

As we saw, the use of a microservices architecture with Docker containers addresses both
these needs. We explored example environments designed seamlessly from development to
test, eliminating the need for manual and error-prone resource provisioning and
configuration. In doing so, we touched briefly on how a microservice application can be
tested, automated, deployed, and managed, but the use of containers in distributed systems
goes far beyond microservices. Increasingly, containers are becoming “first class citizens” in
all distributed systems and, in the upcoming chapters, we'll discuss how tools such
as Docker Compose and Kubernetes are essential for managing container-based computing.

5
Moving Around Containerized

Applications
In the last chapter, we covered microservices application architecture deployment with the
help of Docker containers. In this chapter, we will explore Docker registry and how it can be
used in public and private modes. We will also dive deeply into troubleshooting issues
when using public and private Docker registry.

We will look at the following topics:

Redistributing via Docker registry
Public Docker registry
Private Docker registry
Ensuring integrity of images–signed images
Docker Trusted Registry (DTR)
Docker Universal Control Plane

Redistributing via Docker registry
Docker registry is the server-side application that allows the users to store and distribute
Docker images. By default, public Docker registry (Docker Hub) can be used to host
multiple Docker images that provides free to use, zero maintenance, and additional features
such as automated builds and organization accounts. Let's take a look at public and private
Docker registries in detail.

Moving Around Containerized Applications

[108]

Docker public repository (Docker Hub)
As explained earlier, Docker Hub allows individuals as well as organizations to share the
Docker images with its internal teams and customers without the hassle of maintaining a
cloud based public repository. It provides centralized resource image discovery and
management. It also provides team collaboration and workflow automation for the
development pipeline. Some of the additional functions of the Docker Hub, besides Image
repository management are as follows:

Automated build: It helps in the creation of new images whenever code is
changed in the GitHub or Bitbucket repository
WebHooks: It is a new feature that allows to trigger an action after successful
image push to repository
User management: It allows creating workgroups to manage an organization's
user access to image repository

An account can be created using the Docker Hub sign-in page in order to host the Docker
images; each account will be linked to a unique identification user-based Docker ID. Basic
functions, such as Docker image search and pull from the Docker Hub, can be performed
without creating a Docker Hub account. Images existing in the Docker Hub can be explored
using this command:

$ docker search centos

It will show the existing images in Docker Hub on the basis of the keyword matched.

The Docker ID can also be created using the docker login command. The following
command will prompt to create a Docker ID that will be public namespace for the user
public repository. It will prompt to enter a Username, and it will also prompt to enter
Password and Email in order to complete the registration process:

$ sudo docker login

Username: username
Password:
Email: email@blank.com
WARNING:login credentials saved in /home/username/.dockercfg.
Account created. Please use the confirmation link we sent to your e-mail to
activate it.

In order to log out, the following command can be used:

$ docker logout

Moving Around Containerized Applications

[109]

Private Docker registry
Private Docker registry can be deployed inside the local organization; it is open-source
under Apache license and is easy to deploy.

Using private Docker registry, you have the following advantages:

The organization can control and keep a watch on the location where Docker
images are stored
The complete image distribution pipeline will be owned by the organization
Image storage and distribution will be useful for in-house development workflow
and integration with other DevOps components, such as Jenkins

Pushing images to Docker Hub
We can create a customized image that can then be pushed on Docker Hub using tagging.
Let's create a simple image with a small terminal-based application. Create a Dockerfile
with the following content:

FROM debian:wheezy
RUN apt-get update && apt-get install -y cowsay fortune

Go to the directory containing the Dockerfile and execute the following command to build
an image:

$ docker build -t test/cowsay-dockerfile .
Sending build context to Docker daemon 2.048 kB
Sending build context to Docker daemon
Step 0 : FROM debian:wheezy
wheezy: Pulling from debian
048f0abd8cfb: Pull complete
fbe34672ed6a: Pull complete
Digest:
sha256:50d16f4e4ca7ed24aca211446a2ed1b788ab5e3e3302e7fcc11590039c3ab445
Status: Downloaded newer image for debian:wheezy
 ---> fbe34672ed6a
Step 1 : RUN apt-get update && apt-get install -y cowsay fortune
 ---> Running in ece42dc9cffe

Moving Around Containerized Applications

[110]

Alternatively, as shown in the following diagram, we can first create a container and test it
out and then create a tagged Docker Image that can be easily pushed to Docker Hub:

Steps to create a Docker Image from Docker Container and push it to public Docker Hub

We can check whether the image is created using the following command. As you can see,
the test/cowsay-dockerfile image got created:

$ docker images
REPOSITORY TAG IMAGE ID
CREATED VIRTUAL SIZE
test/cowsay-dockerfile latest c1014a025b02 33
seconds ago 126.9 MB
debian wheezy fbe34672ed6a 2
weeks ago 84.92 MB
vkohli/vca-iot-deployment latest 35c98aa8a51f 8
months ago 501.3 MB
vkohli/vca-cli latest d718bbdc304b 9
months ago 536.6 MB

In order to push the image to Docker Hub account, we will have to tag it with the Docker
tag/Docker ID using the image ID in the following way:

$ docker tag c1014a025b02 username/cowsay-dockerfile

Moving Around Containerized Applications

[111]

As the tagged username will match the Docker Hub ID account, we can easily push the
image:

$ sudo docker push username/cowsay-dockerfile
The push refers to a repository [username/cowsay-dockerfile] (len: 1)
d94fdd926b02: Image already exists
accbaf2f09a4: Image successfully pushed
aa354fc0b2b2: Image successfully pushed
3a94f42115fb: Image successfully pushed
7771ee293830: Image successfully pushed
fa81ed084842: Image successfully pushed
e04c66a223c4: Image successfully pushed
7e2c5c55ef2c: Image successfully pushed

Screenshot of Docker Hub

One of the troubleshooting issues that can be prechecked is that the
username tagged on the custom Docker image should meet the username
of the Docker Hub account in order to push the image successfully.
Custom images pushed to a Docker Hub will be made publicly available.
Docker provides one private repository for free, which should be used in
order to push the private images. The Docker client version 1.5 and earlier
will not be able to push the images to Docker Hub account, but will still be
able to pull the images. Only version 1.6 or later are supported. Thus, it is
always advised to keep the Docker version up to date.

Moving Around Containerized Applications

[112]

If the push to Docker Hub fails with a 500 Internal Server Error, the issue is related to
Docker Hub infrastructure and a repush might be helpful. If the issue persists while
pushing the Docker image, Docker logs should be referred at /var/log/docker.log
in in order to debug in detail.

Installing a private local Docker registry
The private Docker registry can be deployed using the image that exists on the Docker Hub.
The port mapped to access the private Docker registry will be 5000:

$ docker run -p 5000:5000 registry

Now, we will the tag the same image created in the preceding tutorial to
localhost:5000/cowsay-dockerfile so that the repository name and the image name
that match can be easily pushed to private Docker registry:

$ docker tag username/cowsay-dockerfile localhost:5000/cowsay-dockerfile

Push the image to private Docker registry:

$ docker push localhost:5000/cowsay-dockerfile

The push refers to a repository (localhost:5000/cowsay-dockerfile) (len: 1):

Sending image list
Pushing repository localhost:5000/cowsay-dockerfile (1 tags)
e118faab2e16: Image successfully pushed
7e2c5c55ef2c: Image successfully pushed
e04c66a223c4: Image successfully pushed
fa81ed084842: Image successfully pushed
7771ee293830: Image successfully pushed
3a94f42115fb: Image successfully pushed
aa354fc0b2b2: Image successfully pushed
accbaf2f09a4: Image successfully pushed
d94fdd926b02: Image successfully pushed
Pushing tag for rev [d94fdd926b02] on
{http://localhost:5000/v1/repositories/ cowsay-dockerfile/tags/latest}

Image ID can be seen by visiting the link in browser or using the curl command that comes
up after pushing the image.

Moving Around Containerized Applications

[113]

Moving images in between hosts
Moving an image from one registry to another requires pushing and pulling the image from
Internet. If the image is required to be moved from one host to another, then it can be
simply achieved with the help of the docker save command, without the overhead of
uploading and downloading the image. Docker provides two different types of methods in
order to save container image to tar ball:

docker export: This saves a container's running or paused state to a tar file
docker save: This saves a non-running container image to a file

Let's compare the docker export and docker save commands with the help of the
following tutorial:

Using export, pull a basic image from Docker Hub:

$ docker pull Ubuntu
latest: Pulling from ubuntu
dd25ab30afb3: Pull complete
a83540abf000: Pull complete
630aff59a5d5: Pull complete
cdc870605343: Pull complete

Let's create a sample file after running the Docker container from the preceding image:

$ docker run -t -i ubuntu /bin/bash
root@3fa633c2e9e6:/# ls
bin boot dev etc home lib lib64 media mnt opt proc root
run sbin srv sys tmp usr var
root@3fa633c2e9e6:/# touch sample
root@3fa633c2e9e6:/# ls
bin boot dev etc home lib lib64 media mnt opt proc root
run sample sbin srv sys tmp usr var

In the other shell, we can see the running Docker container and then it can be exported into
a tar file using the following command:

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED
 STATUS PORTS NAMES
3fa633c2e9e6 ubuntu "/bin/bash" 45 seconds
ago Up 44 seconds prickly_sammet
$ docker export prickly_sammet | gzip > ubuntu.tar.gz

Moving Around Containerized Applications

[114]

The tar file can then be exported to another machine and then imported using the following
command:

$ gunzip -c ubuntu.tar.gz | docker import - ubuntu-sample
4411d1d3001702b2304d5ebf87f122ef80b463fd6287f3de4e631c50efa01369

After we run the container from the Ubuntu-sample image in another machine, we can find
the sample file intact:

$ docker images
REPOSITORY TAG IMAGE ID
CREATED
IRTUAL SIZE
ubuntu-sample latest 4411d1d30017 20
seconds
go 108.8 MB

$ docker run -i -t ubuntu-sample /bin/bash
root@7fa063bcc0f4:/# ls
bin boot dev etc home lib lib64 media mnt opt proc root run
sample
bin srv sys tmp usr var

Using save, in order to transport the image in spite of the running Docker container as
shown in the preceding tutorial, we can use the docker save command that will convert
the image into a tar file:

$ docker save ubuntu | gzip > ubuntu-bundle.tar.gz

The ubuntu-bundle.tar.gz file can now be extracted and used in the other machine
using the docker load command:

$ gunzip -c ubuntu-bundle.tar.gz | docker load

Running the container from the ubuntu-bundle image in the other machine, we will find
out that the sample file does not exist as the docker load command will store the image
with zero complaints:

$ docker run -i -t ubuntu /bin/bash
root@9cdb362f7561:/# ls
bin boot dev etc home lib lib64 media mnt opt proc root
run sbin srv sys tmp usr var
root@9cdb362f7561:/#

Both the preceding examples show the difference between the export and save commands
as well as their use in order to transport the images across local hosts without the use of
Docker registry.

Moving Around Containerized Applications

[115]

Ensuring integrity of images – signed images
From Docker version 1.8, the feature included is Docker container trust that integrates The
Update Framework (TUF) into Docker using Notary, an open source tool which provides
trust over any content or data. It allows the verification of the publisher–Docker Engine
uses the publisher key in order to verify that–and the image that the user is about to run is
exactly what the publisher has created; it has not been tampered with and is up to date.
Thus, it is an opt-in feature that allows verification of the publisher of the image. Docker
central commands–push, pull, build, create and run–will operate on the images that either
have content signatures or explicit content hashes. The images are signed with private keys
by the content publisher before they are pushed to a repository. A trust gets established
with publisher when the user interacts with the image for the first time, then all the
subsequent interactions require only a valid signature from the same publisher. The model
is similar to the first model of SSH that is familiar to us. Docker content trust uses two
keys–offline key and tagging key–which are generated for the first time when the
publisher pushes an image. Each repository has its own tagging key. When users run the
docker pull command for the first time, the trust to repository is established using the
offline key:

Offline key: It is the root of trust for your repository; different repositories use
the same offline key. This key should be kept offline as it has advantages against
certain classes of attacks. Basically, this key is required during creation of a new
repository.
Tagging key: It is generated for each new repository that the publisher owns. It
can be exported and shared with the person who requires the ability to sign
content for the specific repository.

Here's a list of the protection provided by following the trust key structure:

Protection against image forgery: Docker content trust provides protection from
man-in-the middle attacks. In case a registry is compromised, the malicious
attacker cannot tamper with the content and serve it to users as every run
command will fail stating the message unable to verify the content.
Protection against reply attacks: In case of replay attacks, the previous payloads
are used by attackers to trick the system. Docker content trust makes use of the
timestamp key when publishing the image, thus providing protection against
replay attacks and ensuring that a user receives the most up to date content.
Protection against key compromise: The tagging key might get compromised
due to its online nature, and it is needed every time new content is pushed to the
repository. Docker content trust allows publisher to rotate the compromised key
transparently to user and effectively remove it from the system.

Moving Around Containerized Applications

[116]

Docker content trust is enabled through integration of Notary into Docker Engine. Notary
can be downloaded and implemented by anyone who wants to digitally sign and verify
arbitrary collection of content. Basically, it is the utility for securely publishing and
verifying content over distributed insecure networks. In the following sequence diagram,
we can see the flow as to how Notary server is used to verify the metadata files and their
integration with Docker client. Trusted collections will be stored in a Notary server and
once Docker client has a trusted list of named hashes (tags), it can utilize the Docker remote
APIs from client to daemon. Once the pull succeeds, we can trust all the content on
manifests and layers in registry pulls.

Sequence diagram for Docker trusted run

Moving Around Containerized Applications

[117]

Internally, Notary uses TUF, a secure general design for software distribution and updates
that are often vulnerable to attacks. TUF addresses the widespread problem by providing a
comprehensive, flexible-security framework that the developers can integrate with the
software update system. Generally, the software update system is an application running
on a client system that obtains and installs software.

Let's get started with installing Notary; On Ubuntu 16.04, Notary can be directly installed
using this command:

$ sudo apt install notary
Reading package lists... Done
Building dependency tree
Reading state information... Done

The following NEW packages will be installed:
 Notary
upgraded, 1 newly installed, 0 to remove and 83 not upgraded.
Need to get 4,894 kB of archives.
After this operation, 22.9 MB of additional disk space will be used.
...

Otherwise the project can be downloaded from GitHub and can be manually built and
installed; Docker Compose is required to be installed in order to build the project:

$ git clone https://github.com/docker/notary.git
Cloning into 'notary'...
remote: Counting objects: 15827, done.
remote: Compressing objects: 100% (15/15), done.

$ docker-compose build
mysql uses an image, skipping
Building signer
Step 1 : FROM golang:1.6.1-alpine

 $ docker-compose up -d
$ mkdir -p ~/.notary && cp cmd/notary/config.json cmd/notary/root-ca.crt
~/.notary

After the preceding steps, add 127.0.0.1 Notary server to the /etc/hosts or, if a Docker
machine is used, add $(docker-machine ip) to the Notary server.

Moving Around Containerized Applications

[118]

Now, we will push the docker-cowsay image that we created previously. By default,
content trust is disabled; it can be enabled with the help of the
DOCKER_CONTENT_TRUST environment variable, which will be done later in this tutorial.
Currently, the commands that operate with content trust are as shown:

push
build
create
pull
run

We will tag the image with the repository name:

$ docker images
REPOSITORY TAG IMAGE ID
CREATED VIRTUAL SIZE
test/cowsay-dockerfile latest c1014a025b02 33
seconds ago 126.9 MB
debian wheezy fbe34672ed6a 2
weeks ago 84.92 MB
vkohli/vca-iot-deployment latest 35c98aa8a51f 8
months ago 501.3 MB
vkohli/vca-cli latest d718bbdc304b 9
months ago 536.6 MB
$ docker tag test/cowsay-dockerfile username/cowsay-dockerfile
$ docker push username/cowsay-dockerfile:latest
The push refers to a repository [docker.io/username/cowsay-dockerfile]
bbb8723d16e2: Pushing 24.08 MB/42.01 MB

Now, let's check whether notary has data for this image:

$ notary -s https://notary.docker.io -d ~/.docker/trust list
docker.io/vkohli/cowsay-dockerfile:latest
* fatal: no trust data available

As we can see here, there is no trust data that lets us enable the DOCKER_CONTENT_TRUST
flag and then try to push the image:

$ docker push vkohli/cowsay-dockerfile:latest
The push refers to a repository [docker.io/vkohli/cowsay-dockerfile]
bbb8723d16e2: Layer already exists
5f70bf18a086: Layer already exists
a25721716984: Layer already exists
latest: digest:
sha256:0fe0af6e0d34217b40aee42bc21766f9841f4dc7a341d2edd5ba0c5d8e45d81c
size: 2609

Moving Around Containerized Applications

[119]

Signing and pushing trust metadata
You are about to create a new root signing key passphrase. This passphrase
will be used to protect the most sensitive key in your signing system.
Please
choose a long, complex passphrase and be careful to keep the password and
the
key file itself secure and backed up. It is highly recommended that you use
a
password manager to generate the passphrase and keep it safe. There will be
no
way to recover this key. You can find the key in your config directory.
Enter passphrase for new root key with ID f94af29:

As we can see here, for the first time push, it will ask for the passphrase in order to sign the
tagged image.

Now we will be getting the trust data from the Notary for the latest image pushed
previously:

$ notary -s https://notary.docker.io -d ~/.docker/trust list
docker.io/vkohli/cowsay-dockerfile:latest
 NAME
DIGEST SIZE
BYTES) ROLE

 latest
0fe0af6e0d34217b40aee42bc21766f9841f4dc7a341d2edd5ba0c5d8e45d81c
1374 targets

With the help of the preceding example, we clearly get to know the working of Notary as
well as Docker content trust.

Moving Around Containerized Applications

[120]

Docker Trusted Registry (DTR)
DTR provides enterprise grade Docker image storage on-premises as well as in the virtual
private cloud to provide security and meet regulatory compliances. DTR runs on top of
Docker Universal Control Plane (UCP), which can be installed on-premises or on top of the
virtual private cloud, with the help of which we can store the Docker images securely
behind a firewall.

DTR running on UCP node

The two most important features of DTR are as listed:

Image management: It allows the user to store Docker images securely behind
firewall and DTR can be easily made as part of the continuous integration and
delivery process in order to build, run, and ship applications.

Moving Around Containerized Applications

[121]

Screenshot of DTR

Access control and built-in security: DTR provides authentication mechanism in
order to add users as well as integrates with Lightweight Directory Access
Protocol (LDAP) and Active Directory. It supports role-based authentication
(RBAC) as well, which allows you to assign access control policies for each user.

User authentication options in DTR

Moving Around Containerized Applications

[122]

Docker Universal Control Plane
Docker UCP is the enterprise-grade cluster management solution that allows you to manage
the Docker containers from a single platform. It also allows you to manage thousands of
nodes, which can be managed and monitored with a graphical UI.

UCP has two important components:

Controller: It manages the cluster and persists the cluster configurations
Node: Multiple nodes can be added to cluster in order to run the containers

UCP can be installed using the sandbox installation on top of Mac OS X or Windows system
using Docker Toolbox. Installation consists of a UCP controller and one or more hosts
that will be added as nodes in the UCP cluster using Docker Toolbox.

A prerequisite for Docker Toolbox is that it is required to be installed for Mac OS X and
Windows system using the installer available at the official Docker website.

Docker Toolbox Installation

Moving Around Containerized Applications

[123]

Let's get started with the deployment of Docker UCP:

After the installation, launch the Docker Toolbox terminal:1.

Docker Quickstart Terminal

Create a virtual machine named node1 using the docker-machine command2.
and virtualbox that will act as UCP controller:

 $ docker-machine create -d virtualbox --virtualbox-memory
 "2000" --virtualbox-disk-size "5000" node1
 Running pre-create checks...
 Creating machine...
 (node1) Copying /Users/vkohli/.docker/machine/cache/
 boot2docker.iso to /Users/vkohli/.docker/machine/
 machines/node1/boot2docker.iso...
 (node1) Creating VirtualBox VM...
 (node1) Creating SSH key...
 (node1) Starting the VM...
 (node1) Check network to re-create if needed...
 (node1) Waiting for an IP...
 Waiting for machine to be running, this may take a few minutes...
 Detecting operating system of created instance...
 Waiting for SSH to be available...
 Detecting the provisioner...
 Provisioning with boot2docker...
 Copying certs to the local machine directory...
 Copying certs to the remote machine...
 Setting Docker configuration on the remote daemon...
 Checking connection to Docker...
 Docker is up and running!
 To see how to connect your Docker Client to the
 Docker Engine running on this virtual machine, run:
 docker-machine env node1

Moving Around Containerized Applications

[124]

Create a node2 VM as well, which will be configured as a UCP node later:3.

 $ docker-machine create -d virtualbox --virtualbox-memory
 "2000" node2
 Running pre-create checks...

 Creating machine...
 (node2) Copying /Users/vkohli/.docker/machine/cache/boot2docker.iso
 to /Users/vkohli/.docker/machine/machines/node2/
 boot2docker.iso...
 (node2) Creating VirtualBox VM...
 (node2) Creating SSH key...
 (node2) Starting the VM...
 (node2) Check network to re-create if needed...
 (node2) Waiting for an IP...
 Waiting for machine to be running, this may take a few minutes...
 Detecting operating system of created instance...
 Waiting for SSH to be available...
 Detecting the provisioner...
 Provisioning with boot2docker...
 Copying certs to the local machine directory...
 Copying certs to the remote machine...
 Setting Docker configuration on the remote daemon...
 Checking connection to Docker...
 Docker is up and running!
 To see how to connect your Docker Client to the
 Docker Engine running on this virtual machine,
 run: docker-machine env node2

Configure node1 as a UCP controller, which will be responsible for serving the4.
UCP application and running the processes to manage Docker objects'
installation. Before that, set the environment to configure node1 as a UCP
controller:

 $ docker-machine env node1
 export DOCKER_TLS_VERIFY="1"
 export DOCKER_HOST="tcp://192.168.99.100:2376"
 export
DOCKER_CERT_PATH="/Users/vkohli/.docker/machine/machines/node1"
 export DOCKER_MACHINE_NAME="node1"
 # Run this command to configure your shell:
 # eval $(docker-machine env node1)

 $ eval $(docker-machine env node1)

 $ docker-machine ls

Moving Around Containerized Applications

[125]

 NAME ACTIVE DRIVER STATE URL SWARM
 DOCKER ERRORS
 node1 * virtualbox Running
tcp://192.168.99.100:2376
 1.11.1
 node2 - virtualbox Running
tcp://192.168.99.101:2376 v1.11.1

While setting the node1 as a UCP controller, it will ask for the password for the5.
UCP admin account and additional aliases will be asked for, which can be added
or skipped with the enter command:

 $ docker run --rm -it -v /var/run/docker.sock:/var/run
 /docker.sock --name ucp docker/ucp install -i --swarm-port
 3376 --host-address $(docker-machine ip node1)

 Unable to find image 'docker/ucp:latest' locally
 latest: Pulling from docker/ucp
 ...
 Please choose your initial UCP admin password:
 Confirm your initial password:
 INFO[0023] Pulling required images... (this may take a while)
 WARN[0646] None of the hostnames we'll be using in the UCP
 certificates [node1 127.0.0.1 172.17.0.1 192.168.99.100]
 contain a domain component. Your generated certs may fail
 TLS validation unless you only use one of these shortnames
 or IPs to connect. You can use the --san flag to add more aliases

 You may enter additional aliases (SANs) now or press enter to
 proceed with the above list.
 Additional aliases: INFO[0646] Installing UCP with host address
 192.168.99.100 - If this is incorrect, please specify an
 alternative address with the '--host-address' flag
 INFO[0000] Checking that required ports are available and
accessible

 INFO[0002] Generating UCP Cluster Root CA
 INFO[0039] Generating UCP Client Root CA
 INFO[0043] Deploying UCP Containers
 INFO[0052] New configuration established. Signalling the daemon
 to load it...
 INFO[0053] Successfully delivered signal to daemon
 INFO[0053] UCP instance ID:
 KLIE:IHVL:PIDW:ZMVJ:Z4AC:JWEX:RZL5:U56Y:GRMM:FAOI:PPV7:5TZZ
 INFO[0053] UCP Server SSL: SHA-256
 Fingerprint=17:39:13:4A:B0:D9:E8:CC:31:AD:65:5D:

Moving Around Containerized Applications

[126]

 52:1F:ED:72:F0:81:51:CF:07:74:85:F3:4A:66:F1:C0:A1:CC:7E:C6
 INFO[0053] Login as "admin"/(your admin password) to UCP at

 https://192.168.99.100:443

The UCP console can be accessed using the URL provided at the end of6.
installation; log in with admin as the username and the password that you set
previously while installing.

Docker UCP license page

After logging in, the trail license can be added or skipped. The trail license can be7.
downloaded by following the link on the UCP dashboard on the Docker website.
The UCP console with multiple options such as listing application, container, and
nodes:

Moving Around Containerized Applications

[127]

Docker UCP management dashboard

Join UCP node2 to the controller first by setting the environment:8.

 $ docker-machine env node2
 export DOCKER_TLS_VERIFY="1"
 export DOCKER_HOST="tcp://192.168.99.102:2376"
 export
DOCKER_CERT_PATH="/Users/vkohli/.docker/machine/machines/node2"
 export DOCKER_MACHINE_NAME="node2"
 # Run this command to configure your shell:
 # eval $(docker-machine env node2)
 $ eval $(docker-machine env node2)

Add the node to UCP controller using the following command. UCP controller9.
URL, username, and password will be asked for, as illustrated:

 $ docker run --rm -it -v /var/run/docker.sock:/var/run/docker.sock
 --name ucp docker/ucp join -i --host-address
 $(docker-machine ip node2)

 Unable to find image 'docker/ucp:latest' locally
 latest: Pulling from docker/ucp
 ...

 Please enter the URL to your UCP server: https://192.168.99.101:443
 UCP server https://192.168.99.101:443

Moving Around Containerized Applications

[128]

 CA Subject: UCP Client Root CA
 Serial Number: 4c826182c994a42f
 SHA-256 Fingerprint=F3:15:5C:DF:D9:78:61:5B:DF:5F:39:1C:D6:
 CF:93:E4:3E:78:58:AC:43:B9:CE:53:43:76:50:
 00:F8:D7:22:37
 Do you want to trust this server and proceed with the join?
 (y/n): y
 Please enter your UCP Admin username: admin
 Please enter your UCP Admin password:
 INFO[0028] Pulling required images... (this may take a while)
 WARN[0176] None of the hostnames we'll be using in the UCP
 certificates [node2 127.0.0.1 172.17.0.1 192.168.99.102]
 contain a domain component. Your generated certs may fail
 TLS validation unless you only use one of these shortnames
 or IPs to connect. You can use the --san flag to add more aliases

 You may enter additional aliases (SANs) now or press enter
 to proceed with the above list.
 Additional aliases:
 INFO[0000] This engine will join UCP and advertise itself
 with host address 192.168.99.102 - If this is incorrect,
 please specify an alternative address with the '--host-address'
flag
 INFO[0000] Verifying your system is compatible with UCP
 INFO[0007] Starting local swarm containers
 INFO[0007] New configuration established. Signalling the
 daemon to load it...
 INFO[0008] Successfully delivered signal to daemon

The installation of UCP is complete; now DTR can be installed on node2 by10.
pulling the official DTR image from Docker Hub. UCP URL, username,
password, and certificate will also be required in order to complete the DTR
installation:

 $ curl -k https://192.168.99.101:443/ca > ucp-ca.pem

 $ docker run -it --rm docker/dtr install --ucp-url https://
 192.168.99.101:443/ --ucp-node node2 --dtr-load-balancer
 192.168.99.102 --ucp-username admin --ucp-password 123456
 --ucp-ca "$(cat ucp-ca.pem)"

 INFO[0000] Beginning Docker Trusted Registry installation
 INFO[0000] Connecting to network: node2/dtr-br
 INFO[0000] Waiting for phase2 container to be known to the
 Docker daemon
 INFO[0000] Connecting to network: dtr-ol
 ...

Moving Around Containerized Applications

[129]

 INFO[0011] Installation is complete
 INFO[0011] Replica ID is set to: 7a9b6eb67065
 INFO[0011] You can use flag '--existing-replica-id 7a9b6eb67065'
 when joining other replicas to your Docker Trusted Registry Cluster

After the successful installation, DTR can be listed as an application in the UCP11.
UI:

Docker UCP listing all the applications

The DTR UI can be accessed using the http://node2 URL. The new repository12.
can be created by clicking on the New repository button:

Creating a new private registry in DTR

Moving Around Containerized Applications

[130]

The images can be pushed and pulled from the secured DTR created previously13.
and the repository can be made private as well in order to keep the internal
company-wide containers secured.

Creating a new private registry in DTR

DTR can be configured using the Settings option from the menu that allows to14.
set the domain name, TLS certificate, and storage backend for Docker images.

Settings option in DTR

Moving Around Containerized Applications

[131]

Summary
In this chapter, we dived deeply into Docker registry. We started with the basic concepts of
a Docker public repository using Docker Hub and the use-case of sharing containers with a
larger audience. Docker also provides the option to deploy a private Docker registry
that we looked into and that can be used to push, pull, and share the Docker containers
internally in the organization. Then, we looked into tagging and ensuring the integrity of
Docker containers by signing them with the help of a Notary server, which can be
integrated with Docker Engine. A more robust solution is provided with the help of DTR,
which provides enterprise grade Docker image storage on-premises as well as in the virtual
private cloud to provide security and meet regulatory compliances. It runs on top of the
Docker UCP, as shown in the preceding detailed installation steps. I hope this chapter has
helped you troubleshoot and learn the latest trends in Docker registry. In the next chapter,
we will look into making containers work with the help of privileged containers and their
resource sharing.

6
Making Containers Work

In this chapter, we will explore various options of creating Docker containers with added
modes, such as privileged mode and super privileged mode containers. We will also be
exploring various troubleshooting issues for these modes.

We will take a deep dive into various deployment management tools, such as Chef, Puppet,
and Ansible, which provide integration with Docker in order to ease the pain of deploying
thousands of containers for a production environment.

In this chapter, we will cover the following topics:

Privileged containers and super privileged containers
Troubleshooting issues of working with different sets of options available for
creating containers
Making Docker containers work with Puppet, Ansible, and Chef
Using Puppet to create Docker containers and deploy applications
Managing Docker containers with Ansible
Building Docker and Ansible together
Chef for Docker

Making Containers Work

[133]

Automating the Docker container's deployment with the help of the preceding management
tools has the following advantages:

Flexibility: They provide you with the flexibility to reproduce the Docker-based
application, as well as the environment required for the Docker application on
the cloud instance or bare metal of your choice. This helps in managing and
testing, as well as providing dev environment spin up as and when required.
Auditability: These tools also provide auditability, as they provide isolation and
help track any potential vulnerabilities and who deployed what type of container
in which environment.
Ubiquity: They help you manage the full environment around containers, that is,
manage container as well as non-container environments such as storage,
database, and networking models around the container application.

Privileged containers
By default, containers run in unprivileged mode, that is, we cannot run Docker daemon
inside a Docker container. However, the privileged Docker container is given access to all
the devices. Docker privileged mode allows access to all the devices on the host and sets
system configuration in App Armor and SELinux to allow containers the same access as the
process running on the host:

Privileged container highlighted in red

Making Containers Work

[134]

The privileged containers can be started with the following command:

 $ docker run -it --privileged ubuntu /bin/bash
 root@9ab706a6a95c:/# cd /dev/
 root@9ab706a6a95c:/dev# ls
 agpgart hdb6 psaux sg1 tty32 tty7
 atibm hdb7 ptmx shm tty33 tty8
 audio hdb8 pts snapshot tty34 tty9
 beep hdb9 ram0 sr0 tty35 ttyS0

As we can see, after starting the container in privileged mode, we can list all the devices
connected to the host machine.

Troubleshooting tips
Docker allows you to use the non-default profile by supporting the addition, as well as the
removal of, capabilities. It is better to remove the capabilities that are not specifically
required for the container process as this will make it secure.

If you are facing security threats on your host system running containers, it is usually
advised to check if any of the containers are running with privileged mode, which might be
affecting the security of the host system by running a security-threat application.

As seen in the following example, when we run the container without privileged mode, we
are unable to change the kernel parameters, but when we run the container in privileged
mode using the --privileged flag it is able to change the kernel parameters easily, which
can cause a security vulnerability on the host system:

 $ docker run -it centos /bin/bash
 [root@7e1b1fa4fb89 /]# sysctl -w net.ipv4.ip_forward=0
 sysctl: setting key "net.ipv4.ip_forward": Read-only file system
 $ docker run --privileged -it centos /bin/bash
 [root@930aaa93b4e4 /]# sysctl -a | wc -l
 sysctl: reading key "net.ipv6.conf.all.stable_secret"
 sysctl: reading key "net.ipv6.conf.default.stable_secret"
 sysctl: reading key "net.ipv6.conf.eth0.stable_secret"
 sysctl: reading key "net.ipv6.conf.lo.stable_secret"
 638
 [root@930aaa93b4e4 /]# sysctl -w net.ipv4.ip_forward=0
 net.ipv4.ip_forward = 0

Making Containers Work

[135]

So, while auditing, you should ensure that all the containers running on the host system do
not have privileged mode set to true unless required for some specific application running
in the Docker container:

 $ docker ps -q | xargs docker inspect --format '{{ .Id }}:
 Privileged={{
 .HostConfig.Privileged }}'
 930aaa93b4e44c0f647b53b3e934ce162fbd9ef1fd4ec82b826f55357f6fdf3a:
 Privileged=true

Super-privileged container
This concept is introduced in one of the Project Atomic blogs, by Redhat. It provides the
capability to use a special/privileged container as an agent to control the underlying host. If
we ship only the application code, we risk turning the container into a black box. There are
many benefits to the host of packaging up an agent as a Docker container with the right
access. We can bind in devices via -v /dev:/dev, which will help to mount devices inside
the container without needing super-privileged access.

Using nsenter trick, allows you to run commands in another namespace, that is, if Docker
has its own private mount namespace, with nsenter and the right mode we can reach out
to the host and mount things in its namespace.

We can run in privileged mode to mount the whole host system on some path
(/media/host):

$ docker run -it -v /:/media/host --privileged fedora
nsenter --mount=/media/host/proc/1/ns/mnt --mount /dev/xvdf /home/mic

We can then use nsenter inside the container; --mount tells nsenter to look into
/media/host and then select the mount namespace for proc number 1. Then, run the
regular mount command linking the device to the mount point. As seen previously, this
functionality allows us to mount host sockets and devices such as a file, and thus all can be
bind mounted into a container for use:

Making Containers Work

[136]

nsenter running as a super-privileged container monitoring the host

Basically, super-privileged containers thus not only provide security separation, resource,
and process isolation, but also a mechanism for shipping containers. Allowing software to
be shipped as a container image also allows us to manage the host operating system and
manage other container processes as explained previously.

Let us consider an example where, currently, we are loading the required kernel modules as
RPM packages needed by the application that are not included in the host OS, and running
them when the application starts. This module can be shipped with the help of super-
privileged containers, and the benefit will be that this custom kernel module can work very
well with the current kernel in comparison to shipping kernel modules as part of a
privileged container. In this approach, it is not required to run the application as a
privileged container; they can run separately and kernel modules can be loaded as part of a
different image as shown here:

$ sudo docker run --rm --privileged foobar /sbin/modprobe PATHTO/foobar-
kmod
$ sudo docker run -d foobar

Making Containers Work

[137]

Troubleshooting – Docker containers at scale
Working in a production environment means continuous deployments. When the
infrastructure is decentralized and cloud-based, we are frequently managing the
deployment of identical services across identical systems. Automating the entire process of
configuration and management of this system will be a boon. Deployment management
tools are designed for this purpose. They provide recipes, playbooks, and templates to
simplify orchestration and automation, to provide a standard and consistent deployment. In
the following sections, we will be exploring three common configuration-automation tools:
Chef, Puppet, and Ansible, and the ease they provide for deploying Docker containers at
scale.

Puppet
Puppet is an automated engine that performs automated administrative tasks such as
updating configurations, adding users, and installing packages based on user specifications.
Puppet is a well known open source configuration management tool, which runs on various
systems, such as Microsoft Windows, Unix, and Linux. The user describes the configuration
using either Puppet's declarative language or a domain-specific language (Ruby). Puppet is
model-driven and requires limited programming knowledge to use. Puppet provides a
module for managing Docker containers. Puppet and Docker integration can help to
achieve complex use cases with ease. Puppet manages files, packages, and services, while
Docker encapsulates binaries and configuration inside a container, for deployment as an
application.

One of the potential use cases of Puppet is that it can be used to provision the Docker
containers required for a Jenkins build, and this can be done at scale as per the need of
developers, that is, when the build gets triggered. After the build process is complete,
binaries can be delivered to the respective owners and containers can be destroyed after
each build. Puppet plays a very important role in this use case as the code has to be written
once using the Puppet template, and it can be triggered as and when required:

Making Containers Work

[138]

Integration of Puppet and Jenkins to deploy build docker containers

The Puppet module for managing Docker can be installed as per the garethr-docker
GitHub project. The module just requires a single class to be included:

 include 'docker'

It sets up a Docker hosted repository and installs Docker packages and any required kernel
extensions. The Docker daemon will bind to unix socket /var/run/docker.sock; this
configuration can be changed as per the requirement:

 class { 'docker':
 tcp_bind => ['tcp://127.0.0.1:4245','tcp://10.0.0.1:4244'],
 socket_bind => 'unix:///var/run/docker.sock',
 ip_forward => true,
 iptables => true,
 ip_masq => true,
 bridge => br0,
 fixed_cidr => '10.21.1.0/24',
 default_gateway => '10.21.0.1',
 }

As shown in the preceding code, the default configuration the Docker can be changed as
per the configurations provided by this module.

Making Containers Work

[139]

Images
The Docker image can be pulled with the help of the configurations syntax elaborated here.

The alternative to the ubuntu:trusty docker command will be as follows:

 $ docker pull -t="trusty" ubuntu
 docker::image { 'ubuntu':
 image_tag => 'trusty'
 }

Even the configuration allows the link to Dockerfile in order to build the image. A rebuild
of the image can also be triggered by subscribing to external events such as changes in the
Dockerfile. We subscribe to changes in the folder vkohli/Dockerfile, as follows:

 docker::image { 'ubuntu':
 docker_file => '/vkohli/Dockerfile'
 subscribe => File['/vkohli/Dockerfile'],
 }
 file { '/vkohli/Dockerfile':
 ensure => file,
 source => 'puppet:///modules/someModule/Dockerfile',
 }

Containers
After the image has been created, containers can be launched with a number of optional
parameters. We get a similar functionality with the basic docker run command:

 docker::run { 'sampleapplication':
 image => 'base',
 command => '/bin/sh -c "while true; do echo hello world;
sleep 1;
 done"',
 ports => ['4445', '4555'],
 expose => ['4665', '4777'],
 links => ['mysql:db'],
 net => 'my-user-def',
 volumes => ['/var/lib/couchdb', '/var/log'],
 volumes_from => '6446ea52fbc9',
 memory_limit => '20m', # (format: '<number><unit>', where unit =
b, k, m
 or g)
 cpuset => ['0', '4'],
 username => 'sample',
 hostname => 'sample.com',

Making Containers Work

[140]

 dns => ['8.8.8.8', '8.8.4.4'],
 restart_service => true,
 privileged => false,
 pull_on_start => false,
 before_stop => 'echo "The sample application completed"',
 after => ['container_b', 'mysql'],
 depends => ['container_a', 'postgres'],
 extra_parameters => ['--restart=always'],
 }

As shown here, we are also able to pass some more parameters, such as the following:

pull_on_start: Before the image is started it will be freshly pulled each time
before_stop: The command mentioned will get executed before stopping the
container
extra_parameters: Additional array parameters required to pass to the docker
run command, such as --restart=always
after: This option allows expressing containers that are required to be started
first

Other parameters which can be set are ports, expose, env_files, and volumes. A single
value or an array of values can be passed.

Networking
The latest Docker versions have official support for networks: the module now exposes a
type, Docker network, which can be used to manage them:

 docker_network { 'sample-net':
 ensure => present,
 driver => 'overlay',
 subnet => '192.168.1.0/24',
 gateway => '192.168.1.1',
 ip_range => '192.168.1.4/32',
 }

As the preceding code shows, a new overlay network, sample-net, can be created, and the
Docker daemon can be configured to use it.

Making Containers Work

[141]

Docker compose
Compose is a tool for running multiple Docker container applications. Using the compose
file, we can configure an application's services and start them as well. The
docker_compose module type is provided, which allows Puppet to run the compose
application with ease.

A compose file can be added as well, such as scaling rules of running four containers, as
shown in the following code snippet. We can also provide additional parameters required
for networking and other configurations:

 docker_compose { '/vkohli/docker-compose.yml':
 ensure => present,
 scale => {
 'compose_test' => 4,
 },
 options => '--x-networking'
 }

If the Puppet program is not installed on your machine it can be done in the1.
following way:

 $ puppet module install garethr-docker
 The program 'puppet' is currently not installed. On Ubuntu 14.04
the
 puppet program
 can be installed as shown below;
 $ apt-get install puppet-common
 Reading package lists... Done
 Building dependency tree
 Reading state information... Done
 ...
 The following extra packages will be installed:
 Unpacking puppet-common (3.4.3-1ubuntu1.1) ...
 Selecting previously unselected package ruby-rgen.
 Preparing to unpack .../ruby-rgen_0.6.6-1_all.deb ...
 ...

After the Puppet module installation, the garethr-docker module can be2.
installed as shown:

 $ puppet module install garethr-docker
 Notice: Preparing to install into /etc/puppet/modules ...
 Notice: Downloading from https://forge.puppetlabs.com ...
 Notice: Installing -- do not interrupt ...
 /etc/puppet/modules

Making Containers Work

[142]

 |__ garethr-docker (v5.3.0)
 |__ puppetlabs-apt (v2.2.2)
 |__ puppetlabs-stdlib (v4.12.0)
 |__ stahnma-epel (v1.2.2)

We will be creating one sample hello world app, which will be deployed using3.
Puppet:

 $ nano sample.pp
 include 'docker'
 docker::image { 'ubuntu':
 image_tag => 'precise'
 }
 docker::run { 'helloworld':
 image => 'ubuntu',
 command => '/bin/sh -c "while true; do echo hello world; sleep 1;
 done"',
 }

After creating the file, we apply (run) it:4.

 $ puppet apply sample.pp
 Warning: Config file /etc/puppet/hiera.yaml not found, using Hiera
 defaults
 Warning: Scope(Apt::Source[docker]): $include_src is deprecated and
 will be removed in the next major release, please use $include => {
 'src' => false } instead
 ...
 Notice: /Stage[main]/Main/Docker::Run[helloworld]/Service[docker-
 helloworld]/ensure:
 ensure changed 'stopped' to 'running'
 Notice: Finished catalog run in 0.80 seconds
 Post installation it can be listed as running container:
 $ docker ps
 CONTAINER ID IMAGE COMMAND
 CREATED STATUS PORTS NAMES
 bd73536c7f64 ubuntu:trusty "/bin/sh -c 'while tr" 5
 seconds ago Up 5 seconds helloworld

We can attach it to the container and see the output:5.

 $ docker attach bd7
 hello world
 hello world
 hello world
 hello world

Making Containers Work

[143]

As we have shown earlier, containers can be deployed across multiple hosts and the entire
cluster can be created with help of single Puppet configuration file.

Troubleshooting tips
If you are not able to list the Docker image even after the Puppet apply command has run
successfully, check the syntax and whether the correct image name is put up in the sample
file.

Ansible
Ansible is a workflow orchestration tool that provides configuration management,
provisioning, and application deployment with the help of one easy-to-use platform. Some
of the powerful features of Ansible are as follows:

Provisioning: The apps are developed and deployed in different environments. It
can be on bare metal servers, VMs, or Docker containers, locally or on the cloud.
Ansible can help to streamline the provisioning steps with the help of Ansible
tower and playbooks.
Configuration Management: Keeping a common configuration file is one of the
primary use cases of Ansible, and helps manage and deploy in the required
environment.
Application Deployment: Ansible helps to manage the complete lifecycle of an
application, from deployment to production.
Continuous Delivery: Managing a continuous delivery pipeline requires
resources from various teams. It cannot be achieved with the help of simple
platform, hence, Ansible playbooks play a vital role in deploying and managing
the applications throughout their lifecycle.
Security and Compliance: Security can be an integral part from the deployment
stage, by integrating various security policies as part of the automated process,
rather than as an afterthought process or merging it later.
Orchestration: As explained previously, Ansible can define the way to manage
multiple configurations, interact with them, and manage the individual pieces of
the deployment script.

Making Containers Work

[144]

Automating Docker with Ansible
Ansible also provides a way to automate Docker containers; it enables us to channelise and
operationalise the Docker container build and automate a process that is mostly handled
manually as of now. Ansible offers the following module for orchestrating Docker
containers:

Docker_service: The existing Docker compose files can be used to orchestrate
containers on a single Docker daemon or swarm with the help of the Docker
service part of Ansible. The Docker compose file has the same syntax as the
Ansible playbook, as both of them are Yaml files and the syntax is almost the
same. Ansible is also written in Python, and the Docker module uses the exact
docker-py API client that docker compose uses internally.

Here's a simple Docker compose file:

 wordpress:
 image: wordpress
 links:
 - db:mysql
 ports:
 - 8080:80
 db:
 image: mariadb
 environment:
 MYSQL_ROOT_PASSWORD: sample

The Ansible playbook for the preceding Docker compose file looks similar:

 # tasks file for ansible-dockerized-wordpress
 - name: "Launching DB container"
 docker:
 name: db
 image: mariadb
 env:
 MYSQL_ROOT_PASSWORD: esample
 - name: "Launching wordpress container"
 docker:
 name: wordpress
 image: wordpress
 links:
 - db:mysql
 ports:
 - 8081:80

Making Containers Work

[145]

docker_container: This manages the lifecycle of the Docker container by
providing the ability to start, stop, create, and destroy a Docker container.
docker_image: This provides help to manage images of the Docker container
with commands such as build, push, tag, and remove a Docker image.
docker_login: This authenticates with the Docker hub or any Docker registry and
provides pushing as well as pulling Docker images from the registry.

Ansible Container
Ansible Container is a tool used to orchestrate and build Docker images using Ansible
playbooks only. Ansible Container can be installed in the following way by creating
virtualenv using pip installation:

 $ virtualenv ansible-container
 New python executable in /Users/vkohli/ansible-container/bin/python
 Installing setuptools, pip, wheel...done.
 vkohli-m01:~ vkohli$ source ansible-container/bin/activate
 (ansible-container) vkohli-m01:~ vkohli$ pip install ansible-container
 Collecting ansible-container
 Using cached ansible-container-0.1.0.tar.gz
 Collecting docker-compose==1.7.0 (from ansible-container)
 Downloading docker-compose-1.7.0.tar.gz (141kB)
 100% |=============================| 143kB 1.1MB/s
 Collecting docker-py==1.8.0 (from ansible-container)
 ...
 Downloading docker_py-1.8.0-py2.py3-none-any.whl (41kB)
 Collecting cached-property<2,>=1.2.0 (from docker-
compose==1.7.0->ansible-
 container)

Troubleshooting tips
If you have issues installing Ansible Container as shown above, the installation can be done
by downloading the source code from GitHub:

 $ git clone https://github.com/ansible/ansible-container.git
 Cloning into 'ansible-container'...
 remote: Counting objects: 2032, done.
 remote: Total 2032 (delta 0), reused 0 (delta 0), pack-reused 2032
 Receiving objects: 100% (2032/2032), 725.29 KiB | 124.00 KiB/s, done.
 Resolving deltas: 100% (1277/1277), done.
 Checking connectivity... done.
 $ cd ansible-container/

Making Containers Work

[146]

 $ ls
 AUTHORS container docs EXAMPLES.md LICENSE
 README.md setup.py update-authors.py
 codecov.yml CONTRIBUTORS.md example INSTALL.md MANIFEST.in
 requirements.txt test
 $ sudo python setup.py install
 running install
 running bdist_egg
 running egg_info
 creating ansible_container.egg-info
 writing requirements to ansible_container.egg-info/requires.txt

The Ansible Container has the following commands to get started:

ansible_container init: This command creates a directory for Ansible files to get
started:

 $ ansible-container init
 Ansible Container initialized.
 $ cd ansible
 $ ls
 container.yml main.yml requirements.tx

ansible-container build: This creates images from the Ansible playbooks in the
Ansible directory
ansible-container run: This launches the containers defined in the
container.yml file
ansible-container push: This pushes the project's image to the private or public
repository, as per the user's choice
ansible-container shipit: This will export the necessary playbooks and roles to
deploy containers to a supported cloud provider

As shown in the example at GitHub, the Django service can be defined in the
container.yml file in the following way:

 version: "1"
 services:
 django:
 image: centos:7
 expose:
 - "8080"
 working_dir: '/django'

Making Containers Work

[147]

Chef
Chef has some important components, such as cookbook and recipes. A cookbook defines a
scenario and contains everything; the first of them is recipes which is a fundamental
configuration element within an organisation and it is written in Ruby language. It is
mostly collection of resource-defined using patterns. Cookbooks also contain attribute
values, file distribution, and templates. Chef allows the Docker container to be managed in
a versionable, testable, and repeatable way. It provides you with the power to build an
efficient workflow for container-based development and to manage the release pipeline.
Chef delivery allows you to automate and use the scalable workflow to test, develop, and
release the Docker container.

The Docker cookbook is available on GitHub
(https://github.com/chef-cookbooks/docker) and provides custom resources to be used
in the recipes. It provides various options, such as the following:

docker_service: These are the composite resources used for
docker_installation and docker_service manager
docker_image: This deals with pulling Docker images from a repository
docker_container: This handles all the Docker container operations
docker_registry: This handles all the Docker registry operations
docker_volume: This manages all the volume related operations for Docker
containers

The following is a sample Chef Docker recipe, which can be used for reference to deploy the
containers using Chef recipes:

 # Pull latest nginx image
 docker_image 'nginx' do
 tag 'latest'
 action :pull
 notifies :redeploy, 'docker_container[sample_nginx]'
 end
 # Run container by exposing the ports
 docker_container 'sample_nginx' do
 repo 'nginx'
 tag 'latest'
 port '80:80'
 host_name 'www'
 domain_name 'computers.biz'
 env 'FOO=bar'
 volumes ['/some/local/files/:/etc/nginx/conf.d']
 end

https://github.com/chef-cookbooks/docker

Making Containers Work

[148]

Summary
In this chapter, we initially did a deep dive into privileged containers, which can get access
to all the host devices as well as super-privileged containers, it shows the capability of the
containers to manage to run a background service which can be used to run services in
Docker containers to manage the underlying host. Then, we looked into Puppet, a key
orchestration tool, and how it handles container management with help of the garethr-
docker GitHub project. We also looked into Ansible and Chef, which provide similar
capabilities to Puppet to manage Docker containers at scale. In the next chapter, we will be
exploring the Docker networking stack.

7
Managing the Networking Stack

of a Docker Container
In this chapter, we will cover the following topics:

docker0 bridge
Troubleshooting Docker bridge configuration
Configuring DNS
Troubleshooting communication between containers and the external network
ibnetwork and the Container Network Model
Docker networking tools based on overlay and underlay networks
Comparison of Docker networking tools
Configuring OpenvSwitch (OVS) to work with Docker

Docker networking
Each Docker container has its own network stack, and this is due to the Linux kernel
net namespace, where a new net namespace for each container is instantiated and cannot
be seen from outside the container or other containers.

Docker networking is powered by the following network components and services:

Linux bridges: L2/MAC learning switch built into the kernel to use for
forwarding
Open vSwitch: Advanced bridge that is programmable and supports tunneling
Network Address Translators (NAT): These are immediate entities that translate
IP address + Ports (SNAT, DNAT)

Managing the Networking Stack of a Docker Container

[150]

IPtables: Policy engine in the kernel that is used for managing packet
forwarding, firewall, and NAT features
Apparmor/SElinux: Firewall policies for each application can be defined

Various networking components can be used to work with Docker, providing new ways to
access and use Docker-based services. As a result, we see a lot of libraries that follow
different approaches to networking. Some prominent ones are Docker Compose, Weave,
Kubernetes, Pipework, and libnetwork. The following diagram depicts root ideas of Docker
networking:

Docker networking modes

docker0 bridge
docker0 bridge is the heart of default networking. When the Docker service is started, a
Linux bridge is created on the host machine. The interfaces on the containers talk to the
bridge and the bridge proxies to the external world. Multiple containers on the same host
can talk to each other through the Linux bridge.

Managing the Networking Stack of a Docker Container

[151]

docker0 can be configured via the --net flag, and has four modes in general:

--net default: In this mode, the default bridge is used as the bridge for
containers to connect to each other
--net=none: With this flag, the container created is truly isolated and cannot
connect to the network
--net=container:$container2: With this flag, the container created shares its
network namespace with the container named $container2
--net=host: In this mode, the container created shares its network namespace
with the host

Troubleshooting Docker bridge configuration
In this section, we will look at how the container ports are mapped to host ports and how
we can troubleshoot the issue of connecting containers to the external world. This mapping
can be done either implicitly by the Docker Engine or can be specified.

If we create two containers–Container 1 and Container 2–both of them are assigned an IP
address from a private IP address space and also connected to docker0 bridge, as shown in
the following diagram:

Two containers talking via Docker0 bridge

Managing the Networking Stack of a Docker Container

[152]

Both the preceding containers will be able to ping each other as well as reach the external
world. For external access, their ports will be mapped to a host port. As mentioned in the
previous section, containers use network namespaces. When the first container is created, a
new network namespace is created for the container.

A Virtual Ethernet (vEthernet or vEth) link is created between the container and the Linux
bridge. Traffic sent from the eth0 port of the container reaches the bridge through the vEth
interface and gets switched thereafter:

 # show linux bridges
 $ sudo brctl show

The output of the preceding command will be similar to the following one with bridge
name and the vEth interfaces on the containers it is mapped to:

 $ bridge name bridge id STP enabled interfaces
 docker0 8000.56847afe9799 no veth44cb727 veth98c3700

Connecting containers to the external world
The iptables NAT table on the host is used to masquerade all external connections, as
shown here:

 $ sudo iptables -t nat -L -n
 ...
 Chain POSTROUTING (policy ACCEPT) target prot opt
 source destination MASQUERADE all -- 172.17.0.0/16
 !172.17.0.0/16
 ...

Reaching containers from the outside world
The port mapping is again done using the iptables NAT option in the host machine, as the
following diagram shows, where port mapping of Container 1 is done to communicate with
the external world. We will look into it in detail in the later part of the chapter.

Managing the Networking Stack of a Docker Container

[153]

Port mapping of Container 1 to communicate with the external world

Docker server, by default, creates a docker0 bridge inside the Linux kernel that can pass
packets back and forth between other physical or virtual network interfaces so that they
behave as a single ethernet network:

 root@ubuntu:~# ifconfig
 docker0 Link encap:Ethernet HWaddr 56:84:7a:fe:97:99
 inet addr:172.17.42.1 Bcast:0.0.0.0 Mask:255.255.0.0
 inet6 addr: fe80::5484:7aff:fefe:9799/64 Scope:Link
 inet6 addr: fe80::1/64 Scope:Link
 ...
 collisions:0 txqueuelen:0
 RX bytes:516868 (516.8 KB) TX bytes:46460483 (46.4 MB)
 eth0 Link encap:Ethernet HWaddr 00:0c:29:0d:f4:2c
 inet addr:192.168.186.129 Bcast:192.168.186.255
 Mask:255.255.255.0

Once we have one or more containers up and running, we can confirm that Docker has
properly connected them to the docker0 bridge by running the brctl command on the host
machine and looking at the interfaces column of the output. First, install the bridge utilities
using the following command:

$ apt-get install bridge-utils

Managing the Networking Stack of a Docker Container

[154]

Here is a host with two different containers connected:

root@ubuntu:~# brctl show
bridge name bridge id STP enabled interfaces
docker0 8000.56847afe9799 no veth21b2e16
 veth7092a45

Docker uses docker0 bridge settings whenever a container is created. It assigns a new IP
address from the range available on the bridge whenever a new container is created:

 root@ubuntu:~# docker run -t -i --name container1 ubuntu:latest
/bin/bash
 root@e54e9312dc04:/# ifconfig
 eth0 Link encap:Ethernet HWaddr 02:42:ac:11:00:07
 inet addr:172.17.0.7 Bcast:0.0.0.0 Mask:255.255.0.0
 inet6 addr: 2001:db8:1::242:ac11:7/64 Scope:Global
 inet6 addr: fe80::42:acff:fe11:7/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 ...
 root@e54e9312dc04:/# ip route
 default via 172.17.42.1 dev eth0
 172.17.0.0/16 dev eth0 proto kernel scope link src 172.17.0.7

By default, Docker provides a vnet docker0 that has the 172.17.42.1 IP
address. Docker containers have IP addresses in the range of
172.17.0.0/16

To change the default settings in Docker, modify the
/etc/default/docker file.

Change the default bridge from docker0 to br0:

 # sudo service docker stop
 # sudo ip link set dev docker0 down
 # sudo brctl delbr docker0
 # sudo iptables -t nat -F POSTROUTING
 # echo 'DOCKER_OPTS="-b=br0"' >> /etc/default/docker
 # sudo brctl addbr br0
 # sudo ip addr add 192.168.10.1/24 dev br0
 # sudo ip link set dev br0 up
 # sudo service docker start

Managing the Networking Stack of a Docker Container

[155]

The following command displays the new bridge name and the IP address range of the
Docker service:

 root@ubuntu:~# ifconfig
 br0 Link encap:Ethernet HWaddr ae:b2:dc:ed:e6:af
 inet addr:192.168.10.1 Bcast:0.0.0.0 Mask:255.255.255.0
 inet6 addr: fe80::acb2:dcff:feed:e6af/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:7 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:0 (0.0 B) TX bytes:738 (738.0 B)
 eth0 Link encap:Ethernet HWaddr 00:0c:29:0d:f4:2c
 inet addr:192.168.186.129 Bcast:192.168.186.255
Mask:255.255.255.0
 inet6 addr: fe80::20c:29ff:fe0d:f42c/64 Scope:Link
 ...

Configuring DNS
Docker provides hostname and DNS configuration for each container without building a
custom image. It overlays the /etc files inside the container with virtual files where it can
write new information.

This can be seen by running the mount command inside the container. Containers receive
the same /resolv.conf as of the host machine when they are created initially. If a
host's /resolv.conf file is modified, it will be reflected in the container's /resolv.conf
file only when the container is restarted.

In Docker, you can set the dns options in two ways:

Using docker run --dns=<ip-address>
In the Docker daemon file, add DOCKER_OPTS="--dns ip-address"

You can also specify the search domain using --dns-search=<DOMAIN>.

Managing the Networking Stack of a Docker Container

[156]

The following diagram shows the nameserver being configured in container using
the DOCKER_OPTS setting in the Docker daemon file:

DOCKER_OPTS being used to set nameserver setting for Docker container

The main DNS files are as follows:

 /etc/hostname
 /etc/resolv.conf
 /etc/hosts

The following is the command to add the DNS server:

 # docker run --dns=8.8.8.8 --net="bridge" -t -i ubuntu:latest
/bin/bash

Here's the command to add the hostname:

 #docker run --dns=8.8.8.8 --hostname=docker-vm1 -t -i ubuntu:latest
 /bin/bash

Managing the Networking Stack of a Docker Container

[157]

Troubleshooting communication between
containers and the external network
Packets can only pass between containers if the ip_forward parameter is set to 1. Usually,
you will simply leave the Docker server at its default setting of --ip-forward=true and
Docker will set ip_forward to 1 for you when the server starts up. To check the settings,
use the following command:

 # cat /proc/sys/net/ipv4/ip_forward
 0
 # echo 1 > /proc/sys/net/ipv4/ip_forward
 # cat /proc/sys/net/ipv4/ip_forward
 1

By enabling ip-forward, users can make communication between containers and the
external world possible; it will also be needed for inter-container communication if you are
in a multiple bridge setup:

ip-forward = true forwards all the packets to/from the container to the external network

Managing the Networking Stack of a Docker Container

[158]

Docker will not delete or modify any pre-existing rules from Docker filter chain. This allows
users to create rules to restrict access to containers. Docker uses docker0 bridge for packet
flow between all containers in a single host. It adds a rule to the FORWARD chain in iptables
(blank accept policy) for the packets to flow between two containers. The --
icc=false option will DROP all the packets.

When the Docker daemon is configured with both --icc=false and --
iptables=true and the Docker run is invoked with the --link= option, the Docker server
will insert a pair of iptables ACCEPT rules for the new container to connect to the ports
exposed by the other container–the ports that it mentioned in the EXPOSE lines of its
Dockerfile:

ip-forward = false forwards all the packets to/from the container to external network

By default, Docker's forward rule permits all external IPs. To allow only a specific IP or
network to access the containers, insert a negated rule at the top of the Docker filter chain.

For example, you can restrict external access such that only the source IP 10.10.10.10 can
access the containers using the following command:

 #iptables -I DOCKER -i ext_if ! -s 10.10.10.10 -j DROP

Managing the Networking Stack of a Docker Container

[159]

References:
h t t p s ://d o c s . d o c k e r . c o m /v 1. 5/a r t i c l e s /n e t w o r k i n g /
h t t p s ://d o c s . d o c k e r . c o m /e n g i n e /u s e r g u i d e /n e t w o r k i n g /
h t t p ://c o n t a i n e r o p s . o r g /

Restricting SSH access from one container to
another
To restrict SSH access from one container to another, perform the following steps:

Create two containers, c1 and c2:1.

 # docker run -i -t --name c1 ubuntu:latest /bin/bash
 root@7bc2b6cb1025:/# ifconfig
 eth0 Link encap:Ethernet HWaddr 02:42:ac:11:00:05
 inet addr:172.17.0.5 Bcast:0.0.0.0 Mask:255.255.0.0
 inet6 addr: 2001:db8:1::242:ac11:5/64 Scope:Global
 inet6 addr: fe80::42:acff:fe11:5/64 Scope:Link
 ...
 # docker run -i -t --name c2 ubuntu:latest /bin/bash
 root@e58a9bf7120b:/# ifconfig
 eth0 Link encap:Ethernet HWaddr 02:42:ac:11:00:06
 inet addr:172.17.0.6 Bcast:0.0.0.0 Mask:255.255.0.0
 inet6 addr: 2001:db8:1::242:ac11:6/64 Scope:Global
 inet6 addr: fe80::42:acff:fe11:6/64 Scope:Link

We can test connectivity between the containers using the IP address we've just2.
discovered. Let's see this now using the ping tool.
Let's go into the other container, c1, and try to ping c2:3.

 root@7bc2b6cb1025:/# ping 172.17.0.6
 PING 172.17.0.6 (172.17.0.6) 56(84) bytes of data.
 64 bytes from 172.17.0.6: icmp_seq=1 ttl=64 time=0.139 ms
 64 bytes from 172.17.0.6: icmp_seq=2 ttl=64 time=0.110 ms
 ^C
 --- 172.17.0.6 ping statistics ---
 2 packets transmitted, 2 received, 0% packet loss, time 999ms
 rtt min/avg/max/mdev = 0.110/0.124/0.139/0.018 ms
 root@7bc2b6cb1025:/#
 root@e58a9bf7120b:/# ping 172.17.0.5
 PING 172.17.0.5 (172.17.0.5) 56(84) bytes of data.
 64 bytes from 172.17.0.5: icmp_seq=1 ttl=64 time=0.270 ms
 64 bytes from 172.17.0.5: icmp_seq=2 ttl=64 time=0.107 ms

https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/v1.5/articles/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/

Managing the Networking Stack of a Docker Container

[160]

 ^C
 --- 172.17.0.5 ping statistics ---

 2 packets transmitted, 2 received, 0% packet loss, time 1002ms
 rtt min/avg/max/mdev = 0.107/0.188/0.270/0.082 ms
 root@e58a9bf7120b:/#

Install openssh-server on both the containers:4.

 #apt-get install openssh-server

Enable iptables on the host machine. Initially, you will be able to SSH from one5.
container to another.
Stop the Docker service and add DOCKER_OPTS="--icc=false --6.
iptables=true" in the default docker file of the host machine. This option
will enable the iptables firewall and drop all ports between the containers. By
default, iptables are not enabled on the host:

 root@ubuntu:~# iptables -L -n
 Chain INPUT (policy ACCEPT)
 target prot opt source destination
 Chain FORWARD (policy ACCEPT)
 target prot opt source destination
 DOCKER all -- 0.0.0.0/0 0.0.0.0/0
 ACCEPT all -- 0.0.0.0/0 0.0.0.0/0 ctstate RELATED,ESTABLISHED
 ACCEPT all -- 0.0.0.0/0 0.0.0.0/0
 DOCKER all -- 0.0.0.0/0 0.0.0.0/0
 ACCEPT all -- 0.0.0.0/0 0.0.0.0/0 ctstate RELATED,ESTABLISHED
 ACCEPT all -- 0.0.0.0/0 0.0.0.0/0
 ACCEPT all -- 0.0.0.0/0 0.0.0.0/0
 ACCEPT all -- 0.0.0.0/0 0.0.0.0/0

 #service docker stop
 #vi /etc/default/docker

The Docker Upstart and SysVinit configuration file, customize the location of the7.
Docker binary (especially for development testing):

 #DOCKER="/usr/local/bin/docker"

Managing the Networking Stack of a Docker Container

[161]

Use DOCKER_OPTS to modify the daemon startup options:8.

 #DOCKER_OPTS="--dns 8.8.8.8 --dns 8.8.4.4"
 #DOCKER_OPTS="--icc=false --iptables=true"

Restart the Docker service:9.

 # service docker start

Inspect the iptables:10.

 root@ubuntu:~# iptables -L -n
 Chain INPUT (policy ACCEPT)
 target prot opt source destination
 Chain FORWARD (policy ACCEPT)
 target prot opt source destination
 DOCKER all -- 0.0.0.0/0 0.0.0.0/0
 ACCEPT all -- 0.0.0.0/0 0.0.0.0/0 ctstate RELATED, ESTABLISHED
 ACCEPT all -- 0.0.0.0/0 0.0.0.0/0
 DOCKER all -- 0.0.0.0/0 0.0.0.0/0
 ACCEPT all -- 0.0.0.0/0 0.0.0.0/0 ctstate RELATED, ESTABLISHED
 ACCEPT all -- 0.0.0.0/0 0.0.0.0/0
 ACCEPT all -- 0.0.0.0/0 0.0.0.0/0
 DROP all -- 0.0.0.0/0 0.0.0.0/0

The DROP rule has been added to the iptables of the host machine, which drops connection
between the containers. Now you won't be able to SSH between the containers.

Linking containers
We can communicate or connect legacy containers using the --link parameter.

Create the first container that will act as the server–sshserver:1.

 root@ubuntu:~# docker run -i -t -p 2222:22 --name sshserver ubuntu
bash
 root@9770be5acbab:/#
 Execute the iptables command and you can find a Docker chain rule
added.
 #root@ubuntu:~# iptables -L -n
 Chain INPUT (policy ACCEPT)
 target prot opt source destination
 Chain FORWARD (policy ACCEPT)
 target prot opt source destination
 Chain OUTPUT (policy ACCEPT)
 target prot opt source destination

Managing the Networking Stack of a Docker Container

[162]

 Chain DOCKER (0 references)
 target prot opt source destination
 ACCEPT tcp -- 0.0.0.0/0 172.17.0.3 tcp
dpt:22

Create a second container that acts like an SSH client:2.

 root@ubuntu:~# docker run -i -t --name sshclient --link
 sshserver:sshserver
 ubuntu bash
 root@979d46c5c6a5:/#

We can see that there are more rules added to the Docker chain rule:3.

 root@ubuntu:~# iptables -L -n
 Chain INPUT (policy ACCEPT)
 target prot opt source destination
 Chain FORWARD (policy ACCEPT)
 target prot opt source destination
 Chain OUTPUT (policy ACCEPT)
 target prot opt source destination
 Chain DOCKER (0 references)
 target prot opt source destination
 ACCEPT tcp -- 0.0.0.0/0 172.17.0.3 tcp
dpt:22
 ACCEPT tcp -- 172.17.0.4 172.17.0.3 tcp
dpt:22
 ACCEPT tcp -- 172.17.0.3 172.17.0.4 tcp
spt:22
 root@ubuntu:~#

Managing the Networking Stack of a Docker Container

[163]

The following diagram explains the communication between containers using
the --link flag:

Docker–link creates private channels between containers

You can inspect your linked container with docker inspect:4.

 root@ubuntu:~# docker inspect -f "{{ .HostConfig.Links }}"
sshclient
 [/sshserver:/sshclient/sshserver]

Now you can successfully SSH into the SSH server with its IP:5.

 #ssh root@172.17.0.3 -p 22

Using the --link parameter, Docker creates a secure channel between the
containers that doesn't need to expose any ports externally on the containers.

Managing the Networking Stack of a Docker Container

[164]

libnetwork and the Container Network Model
libnetwork is implemented in Go for connecting Docker containers. The aim is to provide a
Container Network Model (CNM) that helps programmers provide the abstraction of
network libraries. The long-term goal of libnetwork is to follow the Docker and Linux
philosophy to deliver modules that work independently. libnetwork has the aim for
providing a composable need for networking in containers. It also aims to modularize the
networking logic in the Docker Engine and libcontainer to a single, reusable library by
doing the following things:

Replacing the networking module of the Docker Engine with libnetwork
Allowing local and remote drivers to provide networking to containers
Providing a dnet tool for managing and testing libnetwork–however, this is still
a work in progress

Reference:
https://github.com/docker/libnetwork/issues/45

libnetwork implements the CNM. It formalizes the steps required to provide networking for
containers while providing an abstraction that can be used to support multiple network
drivers. Its endpoint APIs are primarily used for managing the corresponding object and
bookkeeping them in order to provide the level of abstraction as required by the CNM.

https://github.com/docker/libnetwork/issues/45

Managing the Networking Stack of a Docker Container

[165]

CNM objects
The CNM is built on three main components, as shown in the following diagram:

Network sandbox model of libnetwork

Reference:
h t t p s ://w w w . d o c k e r . c o m

Sandbox
A sandbox contains the configuration of a container's network stack that includes
management of routing tables, the container's interface, and DNS settings. The
implementation of a sandbox can be a Linux network namespace, a FreeBSD jail, or another
similar concept.

A sandbox may contain many endpoints from multiple networks. It also represents a
container's network configuration, such as IP address, MAC address, and DNS entries.

https://www.docker.com
https://www.docker.com
https://www.docker.com
https://www.docker.com
https://www.docker.com
https://www.docker.com
https://www.docker.com
https://www.docker.com
https://www.docker.com
https://www.docker.com
https://www.docker.com
https://www.docker.com
https://www.docker.com
https://www.docker.com
https://www.docker.com
https://www.docker.com
https://www.docker.com
https://www.docker.com
https://www.docker.com
https://www.docker.com
https://www.docker.com
https://www.docker.com
https://www.docker.com
https://www.docker.com
https://www.docker.com
https://www.docker.com
https://www.docker.com
https://www.docker.com
https://www.docker.com
https://www.docker.com
https://www.docker.com
https://www.docker.com
https://www.docker.com
https://www.docker.com
https://www.docker.com
https://www.docker.com
https://www.docker.com

Managing the Networking Stack of a Docker Container

[166]

libnetwork makes use of the OS-specific parameters to populate the network configuration
represented by a sandbox. It provides a framework to implement a sandbox in multiple
OSes.

Netlink is used to manage the routing table in namespace and currently two
implementations of a sandbox exist–namespace_linux.go and configure_linux.go–to
uniquely identify the path on the host filesystem. A sandbox is associated with a single
Docker container.

The following data structure shows the runtime elements of a sandbox:

 type sandbox struct {
 id string
 containerID string
 config containerConfig
 osSbox osl.Sandbox
 controller *controller
 refCnt int
 endpoints epHeap
 epPriority map[string]int
 joinLeaveDone chan struct{}
 dbIndex uint64
 dbExists bool
 isStub bool
 inDelete bool
 sync.Mutex
 }

A new sandbox is instantiated from a network controller (which is explained in detail later):

 func (c *controller) NewSandbox(containerID string, options
...SandboxOption)
 (Sandbox, error) {

 }

Endpoint
An endpoint joins a sandbox to a network and provides connectivity for services exposed
by a container to the other containers deployed in the same network. It can be an internal
port of Open vSwitch or a similar vEth pair.

Managing the Networking Stack of a Docker Container

[167]

An endpoint can belong to only one network and may only belong to one sandbox.
It represents a service and provides various APIs to create and manage the endpoint. It has
a global scope but gets attached to only one network.

An endpoint is specified by the following struct:

 type endpoint struct {
 name string
 id string
 network *network
 iface *endpointInterface
 joinInfo *endpointJoinInfo
 sandboxID string
 exposedPorts []types.TransportPort
 anonymous bool
 generic map[string]interface{}
 joinLeaveDone chan struct{}
 prefAddress net.IP
 prefAddressV6 net.IP
 ipamOptions map[string]string
 dbIndex uint64
 dbExists bool
 sync.Mutex
 }

An endpoint is associated with a unique ID and name. It is attached to a network and a
sandbox ID. It is also associated with a IPv4 and IPv6 address spaces. Each endpoint is
associated with an endpoint interface.

Network
A group of endpoints that are able to communicate with each other directly is called a
network. It provides the required connectivity within the same host or multiple hosts and
whenever a network is created or updated, the corresponding driver is notified. An
example is a VLAN or Linux bridge that has a global scope within a cluster.

A networks are controlled from a network controller, which we will discuss in the next
section. Every network has a name, address space, ID, and network type:

 type network struct {
 ctrlr *controller
 name string
 networkType string
 id string
 ipamType string
 addrSpace string

Managing the Networking Stack of a Docker Container

[168]

 ipamV4Config []*IpamConf
 ipamV6Config []*IpamConf
 ipamV4Info []*IpamInfo
 ipamV6Info []*IpamInfo
 enableIPv6 bool
 postIPv6 bool
 epCnt *endpointCnt
 generic options.Generic
 dbIndex uint64
 svcRecords svcMap
 dbExists bool
 persist bool
 stopWatchCh chan struct{}
 drvOnce *sync.Once
 internal bool
 sync.Mutex
 }

Network controller
A network controller object provides APIs to create and manage a network object. It is an
entry point to the libnetwork by binding a particular driver to a given network, and it
supports multiple active drivers, both inbuilt and remote. A network controller allows users
to bind a particular driver to a given network:

 type controller struct {
 id string
 drivers driverTable
 ipamDrivers ipamTable
 sandboxes sandboxTable
 cfg *config.Config
 stores []datastore.DataStore
 discovery hostdiscovery.HostDiscovery
 extKeyListener net.Listener
 watchCh chan *endpoint
 unWatchCh chan *endpoint
 svcDb map[string]svcMap
 nmap map[string]*netWatch
 defOsSbox osl.Sandbox
 sboxOnce sync.Once
 sync.Mutex
 }

Managing the Networking Stack of a Docker Container

[169]

Each network controller has reference to the following things:

One or more drivers in a data structure driver table
One or more sandboxes in a data structure
A data store
An ipamTable

Network controller handling the network between Docker container and Docker engine

The preceding diagram shows how the network controller sits between the Docker Engine,
containers, and the networks they are attached to.

CNM attributes
The following are the CNM attributes:

Options: These are not end user visible but are the key-value pairs of data to
provide a flexible mechanism to pass driver-specific configuration from user to
driver directly. libnetwork operates on the options only if a key matches a well-
known label and as a result of this a value is picked up that is represented by a
generic object.

Managing the Networking Stack of a Docker Container

[170]

Labels: These are a subset of options that are end user variable represented in the
UI using the --labels option. Their main function is to perform driver-specific
operations, and they are passed from the UI.

CNM life cycle
Consumers of the CNM interact through the CNM objects and its APIs to network the
containers that they manage; drivers register with a network controller.

Built-in drivers are registered inside libnetwork, while remote drivers register with
libnetwork using a plugin mechanism.

Each driver handles a particular network type as explained as follows:

A network controller object is created using the libnetwork.New() API to
manage the allocation of networks and optionally configure a driver with driver-
specific options. The network object is created using the controller's
NewNetwork() API, a name, and a NetworkType is added as a parameter.
The NetworkType parameter helps to choose a driver and binds the created
network to that driver. All operations on network will be handled by the driver
that is created using the preceding API.
The Controller.NewNetwork() API takes in an optional options parameter
that carries driver-specific options and labels, which the driver can use for its
purpose.
Network.CreateEndpoint() is called to create a new endpoint in a given
network. This API also accepts optional options parameters that vary with the
driver.
CreateEndpoint() can choose to reserve IPv4/IPv6 addresses when an
endpoint is created in a network. The driver assigns these addresses using
the InterfaceInfo interface defined in driverapi. The IPv4/IPv6 addresses
are needed to complete the endpoint as service definition along with the ports
that the endpoint exposes. A service endpoint is a network address and the port
number that the application container is listening on.
Endpoint.Join() is used to attach a container to an endpoint. The Join
operation will create a sandbox, if one doesn't exist for that container. The drivers
make use of the sandbox key to identify multiple endpoints attached to the same
container.

Managing the Networking Stack of a Docker Container

[171]

There is a separate API to create an endpoint and another to join the endpoint.

An endpoint represents a service that is independent of the container. When an
endpoint is created, it has resources reserved for a container to get attached to the
endpoint later. It gives a consistent networking behavior.

Endpoint.Leave() is invoked when a container is stopped. The driver can clean
up the states that it allocated during the Join() call. libnetwork deletes the
sandbox when the last referencing endpoint leaves the network.
libnetwork keeps holding on to IP addresses as long as the endpoint is still
present. These will be reused when the container (or any container) joins again. It
ensures that the container's resources are reused when they are stopped and
started again.
Endpoint.Delete() deletes an endpoint from a network. This results in
deleting the endpoint and cleaning up the cached sandbox.Info.
Network.Delete() is used to delete a network. Deleting is allowed if there are
no endpoints attached to the network.

Docker networking tools based on overlay
and underlay networks
An overlay is a virtual network that is built on top of anunderlying network infrastructure
(the underlay). The purpose is to implement a network service that is not available in the
physical network.

Network overlay dramatically increases the number of virtual subnets that can be created
on top of the physical network, which in turn supports multi-tenancy and virtualization
features.

Every container in Docker is assigned with an IP address that is used for communication
with other containers. If a container has to communicate to the external network, you set up
networking in the host system and expose or map the port from the container to the host
machine. With this application running inside, containers will not be able to advertise their
external IP and ports as the information is not available to them.

Managing the Networking Stack of a Docker Container

[172]

The solution is to somehow assign unique IPs to each Docker container across all hosts and
have some networking product that routes traffic between the hosts.

There are different projects and tools to help with Docker networking, as follows:

Flannel
Weave
Project Calico

Flannel
Flannel gives each container an IP that can be used for container-to-container
communication. By packet encapsulation, it creates a virtual overlay network over host
network. By default, flannel provides a /24 subnet to the hosts, from which the Docker
daemon will allocate IPs to the containers.

Communication between containers using Flannel

Flannel runs an agent, flanneld, on each host and is responsible for allocating a subnet
lease out of a preconfigured address space. Flannel uses etcd (h t t p s ://g i t h u b . c o m /c o r e o

s /e t c d) to store the network configuration, allocated subnets, and auxiliary data (such as
the host's IP).

In order to provide encapsulation, Flannel uses the Universal TUN/TAP device and creates
an overlay network using UDP to encapsulate IP packets. The subnet allocation is done
with the help of etcd, which maintains the overlay subnet to host mappings.

https://github.com/coreos/etcd
https://github.com/coreos/etcd
https://github.com/coreos/etcd
https://github.com/coreos/etcd
https://github.com/coreos/etcd
https://github.com/coreos/etcd
https://github.com/coreos/etcd
https://github.com/coreos/etcd
https://github.com/coreos/etcd
https://github.com/coreos/etcd
https://github.com/coreos/etcd
https://github.com/coreos/etcd
https://github.com/coreos/etcd
https://github.com/coreos/etcd
https://github.com/coreos/etcd
https://github.com/coreos/etcd
https://github.com/coreos/etcd
https://github.com/coreos/etcd
https://github.com/coreos/etcd
https://github.com/coreos/etcd
https://github.com/coreos/etcd
https://github.com/coreos/etcd
https://github.com/coreos/etcd
https://github.com/coreos/etcd
https://github.com/coreos/etcd
https://github.com/coreos/etcd
https://github.com/coreos/etcd
https://github.com/coreos/etcd
https://github.com/coreos/etcd
https://github.com/coreos/etcd
https://github.com/coreos/etcd
https://github.com/coreos/etcd
https://github.com/coreos/etcd
https://github.com/coreos/etcd
https://github.com/coreos/etcd
https://github.com/coreos/etcd
https://github.com/coreos/etcd
https://github.com/coreos/etcd
https://github.com/coreos/etcd
https://github.com/coreos/etcd
https://github.com/coreos/etcd
https://github.com/coreos/etcd
https://github.com/coreos/etcd
https://github.com/coreos/etcd
https://github.com/coreos/etcd
https://github.com/coreos/etcd
https://github.com/coreos/etcd
https://github.com/coreos/etcd
https://github.com/coreos/etcd

Managing the Networking Stack of a Docker Container

[173]

Weave
Weave creates a virtual network that connects Docker containers deployed across
hosts/VMs and enables their automatic discovery.

Weave Network

Weave can traverse firewalls and operate in partially connected networks. Traffic can be
optionally encrypted, allowing hosts/VMs to be connected across an untrusted network.

Weave augments Docker's existing (single host) networking capabilities, such as the
docker0 bridge, so that these can continue to be used by the containers.

Project Calico
Project Calico provides a scalable networking solution for connecting containers, VMs, or
bare metal. Calico provides connectivity using the scalable IP networking principle as a
layer 3 approach. Calico can be deployed without overlays or encapsulation. The Calico
service should be deployed as a container on each node. It provides each container with its
own IP address and, also, handles all the necessary IP routing, security policy rules, and
distribution of routes across a cluster of nodes.

Managing the Networking Stack of a Docker Container

[174]

The Calico architecture contains four important components in order to provide better
networking solutions:

Felix, the Calico worker process, is the heart of the Calico networking
that primarily routes and provides the desired connectivity to and from the
workloads on the host. It also provides the interface to the kernel for outgoing
endpoint traff
BIRD, the route ic. BIRD, the route distribution open source BGP, exchanges
routing information between hosts. The kernel endpoints that are picked up by
BIRD are distributed to BGP peers in order to provide inter-host routing. Two
BIRD processes run in the calico-node container, IPv4 (bird) and one for IPv6
(bird6)
confd, a templating process to autogenerate configuration for BIRD, monitors the
etcd store for any changes to BGP configuration, such as log levels and IPAM
information. confd also dynamically generates BIRD configuration files based on
data from etcd and is trigger automatically as updates are applied to the data.
confd triggers BIRD to load new files whenever the configuration file is changed.
calicoctl is the command line used to configure and start the Calico service. It
even allows the data store (etcd) to define and apply security policy. The tool
also provides the simple interface for general management of Calico
configuration irrespective of whether Calico is running on VMs, containers, or
bare metal. The following commands are supported at calicoctl;

 $ calicoctl
 Override the host:port of the ETCD server by setting the
 environment
 variable
 ETCD_AUTHORITY [default: 127.0.0.1:2379]
 Usage: calicoctl <command> [<args>...]
 status Print current status information
 node Configure the main calico/node container and
 establish
 Calico networking
 container Configure containers and their addresses
 profile Configure endpoint profiles
 endpoint Configure the endpoints assigned to existing
 containers
 pool Configure ip-pools
 bgp Configure global bgp
 ipam Configure IP address management
 checksystem Check for incompatibilities on the host
 system
 diags Save diagnostic information
 version Display the version of calicoctl

Managing the Networking Stack of a Docker Container

[175]

 config Configure low-level component configuration
 See 'calicoctl <command> --help' to read about a specific
 subcommand.

As per the official GitHub page of the Calico repository
(https://github.com/projectcalico/calico-containers), the following integration of
Calico exists:

Calico as a Docker network plugin
Calico without Docker networking
Calico with Kubernetes
Calico with Mesos
Calico with Docker Swarm

Calico Architecture

Configuring an overlay network with the
Docker Engine swarm node
With the release of Docker 1.9, the multi-host and overlay network has become one of
its primary feature. It enables private networks that can be established to connect multiple
containers. We will be creating the overlay network on a manager node running in swarm
cluster without an external key-value store. The swarm network will make the network
available to the nodes in the swarm that require it for a service.

https://github.com/projectcalico/calico-containers

Managing the Networking Stack of a Docker Container

[176]

When we deploy the service that uses overlay network, the manager automatically extends
the network to the nodes that are running the service tasks. Multi-host networking requires
a store for service discovery, so now we will create a Docker machine to run this service.

Overlay network across multiple hosts

For the following deployment, we will be using Docker machine application that creates the
Docker daemon on a virtualization or cloud platform. For the virtualization platform, we
will be using VMware fusion as the provider.

The Docker-machine installation is as follows:

 $ curl -L https://github.com/docker/machine/releases/download/
 v0.7.0/docker-machine-`uname -s`-`uname -m` > /usr/local/bin/
 docker-machine && \
 > chmod +x /usr/local/bin/docker-machine
 % Total % Received % Xferd Average Speed Time Time Time
Current
 Dload Upload Total Spent Left
Speed
 100 601 0 601 0 0 266 0 --:--:-- 0:00:02 --:--:-
- 266
 100 38.8M 100 38.8M 0 0 1420k 0 0:00:28 0:00:28 --:--:-

Managing the Networking Stack of a Docker Container

[177]

- 1989k

 $ docker-machine version
 docker-machine version 0.7.0, build a650a40

Mulithost networking requires a store for service discovery, so we will create a Docker
machine to run that service, creating the new Docker daemon:

 $ docker-machine create \
 > -d vmwarefusion \
 > swarm-consul
 Running pre-create checks...
 (swarm-consul) Default Boot2Docker ISO is out-of-date, downloading the
latest
 release...
 (swarm-consul) Latest release for github.com/boot2docker/boot2docker is
 v1.12.1
 (swarm-consul) Downloading
 ...

To see how to connect your Docker client to the Docker Engine running on
this virtual machine, run
docker-machine env swarm-consul.

We'll start the consul container for service discovery:

 $(docker-machine config swarm-consul) run \
 > -d \
 > --restart=always \
 > -p "8500:8500" \
 > -h "consul" \
 > progrium/consul -server -bootstrap
 Unable to find image 'progrium/consul:latest' locally
 latest: Pulling from progrium/consul
 ...
 Digest:
 sha256:8cc8023462905929df9a79ff67ee435a36848ce7a10f18d6d0faba9306b97274
 Status: Downloaded newer image for progrium/consul:latest
 d482c88d6a1ab3792aa4d6a3eb5e304733ff4d622956f40d6c792610ea3ed312

Create two Docker daemons to run the Docker cluster, the first daemon is the swarm node
that will automatically run a Swarm container used to coordinate the cluster:

 $ docker-machine create \
 > -d vmwarefusion \
 > --swarm \

Managing the Networking Stack of a Docker Container

[178]

 > --swarm-master \
 > --swarm-discovery="consul://$(docker-machine ip swarm-
 consul):8500" \
 > --engine-opt="cluster-store=consul://$(docker-machine ip swarm-
 consul):8500" \
 > --engine-opt="cluster-advertise=eth0:2376" \
 > swarm-0
 Running pre-create checks...
 Creating machine...
 (swarm-0) Copying
 /Users/vkohli/.docker/machine/cache/boot2docker.iso to
 /Users/vkohli/.docker/machine/machines/swarm-0/boot2docker.iso...
 (swarm-0) Creating SSH key...
 (swarm-0) Creating VM...
 ...

Docker is up and running!

To see how to connect your Docker client to the Docker Engine running on
this virtual machine, run docker-machine env swarm-0.

The second daemon is the Swarm secondary node that will automatically run a
Swarm container and report the state back to the master node:

 $ docker-machine create \
 > -d vmwarefusion \
 > --swarm \
 > --swarm-discovery="consul://$(docker-machine ip swarm-
 consul):8500" \
 > --engine-opt="cluster-store=consul://$(docker-machine ip swarm-
 consul):8500" \
 > --engine-opt="cluster-advertise=eth0:2376" \
 > swarm-1
 Running pre-create checks...
 Creating machine...
 (swarm-1) Copying
 /Users/vkohli/.docker/machine/cache/boot2docker.iso to
 /Users/vkohli/.docker/machine/machines/swarm-1/boot2docker.iso...
 (swarm-1) Creating SSH key...
 (swarm-1) Creating VM...
 ...

Docker is up and running!

Managing the Networking Stack of a Docker Container

[179]

To see how to connect your Docker client to the Docker Engine running on
this virtual machine, run docker-machine env swarm-1.

Docker executable will communicate with one Docker daemon. Since we are in a cluster,
we'll ensure the communication of the Docker daemon to the cluster by running the
following command:

 $ eval $(docker-machine env --swarm swarm-0)

After this, we'll create a private prod network with an overlay driver:

 $ docker $(docker-machine config swarm-0) network create --driver
 overlay prod

We will be starting the two dummy ubuntu:12.04 containers using the --net
parameter:

 $ docker run -d -it --net prod --name dev-vm-1 ubuntu:12.04
 426f39dbcb87b35c977706c3484bee20ae3296ec83100926160a39190451e57a

In the following code snippet, we can see that this Docker container has two network
interfaces: one connected to the private overlay network and another to the Docker bridge:

 $ docker attach 426
 root@426f39dbcb87:/# ip address
 23: eth0@if24: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1450 qdisc
 noqueue state
 UP
 link/ether 02:42:0a:00:00:02 brd ff:ff:ff:ff:ff:ff
 inet 10.0.0.2/24 scope global eth0
 valid_lft forever preferred_lft forever
 inet6 fe80::42:aff:fe00:2/64 scope link
 valid_lft forever preferred_lft forever
 25: eth1@if26: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc
 noqueue state
 UP
 link/ether 02:42:ac:12:00:02 brd ff:ff:ff:ff:ff:ff
 inet 172.18.0.2/16 scope global eth1
 valid_lft forever preferred_lft forever
 inet6 fe80::42:acff:fe12:2/64 scope link
 valid_lft forever preferred_lft forever

Managing the Networking Stack of a Docker Container

[180]

The other container will also be connected to the prod network interface existing on the
other host:

 $ docker run -d -it --net prod --name dev-vm-7 ubuntu:12.04
 d073f52a7eaacc0e0cb925b65abffd17a588e6178c87183ae5e35b98b36c0c25
 $ docker attach d073
 root@d073f52a7eaa:/# ip address
 26: eth0@if27: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1450 qdisc
 noqueue state
 UP
 link/ether 02:42:0a:00:00:03 brd ff:ff:ff:ff:ff:ff
 inet 10.0.0.3/24 scope global eth0
 valid_lft forever preferred_lft forever
 inet6 fe80::42:aff:fe00:3/64 scope link
 valid_lft forever preferred_lft forever
 28: eth1@if29: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc
 noqueue state
 UP
 link/ether 02:42:ac:12:00:02 brd ff:ff:ff:ff:ff:ff
 inet 172.18.0.2/16 scope global eth1
 valid_lft forever preferred_lft forever
 inet6 fe80::42:acff:fe12:2/64 scope link
 valid_lft forever preferred_lft forever
 root@d073f52a7eaa:/#

This is how a private network can be configured across hosts in the Docker Swarm cluster.

Comparison of all multi-host Docker networking
solutions

Calico Flannel Weave Docker
Overlay N/W

Network Model Layer-3 Solution VxLAN or
UDP

VxLAN or UDP VxLAN

Name Service No No Yes No

Protocol Support TCP,UDP, ICMP &
ICMPv6

All All All

Distributed Storage Yes Yes No Yes

Encryption Channel No TLS NaCI Library No

Managing the Networking Stack of a Docker Container

[181]

Configuring OpenvSwitch (OVS) to work
with Docker
Open vSwitch (OVS) is an open source OpenFlow capable virtual switch that is typically
used with hypervisors to interconnect virtual machines within a host and between different
hosts across networks. Overlay networks need to create a virtual data path using supported
tunneling encapsulations, such as VXLAN or GRE.

The overlay data path is provisioned between tunnel endpoints residing in the Docker host
that gives the appearance of all hosts within a given provider segment being directly
connected to one another.

As a new container comes online, the prefix is updated in the routing protocol announcing
its location via a tunnel endpoint. As the other Docker hosts receive the updates, the
forwarding is installed into OVS for which tunnel endpoint the host resides. When the host
is deprovisioned, a similar process occurs and tunnel endpoint Docker hosts remove the
forwarding entry for the deprovisioned container:

Communication between containers running on multiple hosts through OVS based VXLAN tunnels

Managing the Networking Stack of a Docker Container

[182]

By default, Docker uses the Linux docker0 bridge; however, there are
cases where OVS might be required instead of the Linux bridge. A single
Linux bridge can handle 1,024 ports only; this limits the scalability of
Docker as we can only create 1,024 containers, each with a single network
interface.

Troubleshooting OVS single host setup
Install OVS on a single host, create two containers, and connect them to an OVS bridge:

Install OVS:1.

 $ sudo apt-get install openvswitch-switch

Install the ovs-docker utility:2.

 $ cd /usr/bin
 $ wget https://raw.githubusercontent.com/openvswitch/ovs/master
 /utilities/ovs-docker
 $ chmod a+rwx ovs-docker

Single host OVS

Create an OVS bridge.3.

Managing the Networking Stack of a Docker Container

[183]

Here, we will be adding a new OVS bridge and configuring it so that we can get4.
the containers connected on a different network:

 $ ovs-vsctl add-br ovs-br1
 $ ifconfig ovs-br1 173.16.1.1 netmask 255.255.255.0 up

Add a port from the OVS bridge to the Docker container.5.

Create two ubuntu Docker containers:6.

 $ docker run -i-t --name container1 ubuntu /bin/bash
 $ docker run -i-t --name container2 ubuntu /bin/bash

Connect the container to the OVS bridge:7.

 # ovs-docker add-port ovs-br1 eth1 container1 --
 ipaddress=173.16.1.2/24
 # ovs-docker add-port ovs-br1 eth1 container2 --
 ipaddress=173.16.1.3/24

Test the connection between the two containers connected using the OVS bridge8.
with the ping command. First, find out their IP addresses:

 # docker exec container1 ifconfig
 eth0 Link encap:Ethernet HWaddr 02:42:ac:10:11:02
 inet addr:172.16.17.2 Bcast:0.0.0.0 Mask:255.255.255.0
 inet6 addr: fe80::42:acff:fe10:1102/64 Scope:Link
 ...
 # docker exec container2 ifconfig
 eth0 Link encap:Ethernet HWaddr 02:42:ac:10:11:03
 inet addr:172.16.17.3 Bcast:0.0.0.0 Mask:255.255.255.0
 inet6 addr: fe80::42:acff:fe10:1103/64 Scope:Link
 ...

Since we know the IP Address of container1 and container2 , we can run the9.
following command:

 # docker exec container2 ping 172.16.17.2
 PING 172.16.17.2 (172.16.17.2) 56(84) bytes of data.
 64 bytes from 172.16.17.2: icmp_seq=1 ttl=64 time=0.257 ms
 64 bytes from 172.16.17.2: icmp_seq=2 ttl=64 time=0.048 ms
 64 bytes from 172.16.17.2: icmp_seq=3 ttl=64 time=0.052 ms
 # docker exec container1 ping 172.16.17.2
 PING 172.16.17.2 (172.16.17.2) 56(84) bytes of data.
 64 bytes from 172.16.17.2: icmp_seq=1 ttl=64 time=0.060 ms
 64 bytes from 172.16.17.2: icmp_seq=2 ttl=64 time=0.035 ms
 64 bytes from 172.16.17.2: icmp_seq=3 ttl=64 time=0.031 ms

Managing the Networking Stack of a Docker Container

[184]

Troubleshooting OVS multiple host setups
First, we will connect Docker containers on multiple hosts using OVS:

Let us consider our setup, as shown in the following diagram, that contains two
hosts–Host1 and Host2—running Ubuntu 14.04:

Install Docker and OVS on both the hosts:1.

 # wget -qO- https://get.docker.com/ | sh
 # sudo apt-get install openvswitch-switch

Install the ovs-docker utility:2.

 # cd /usr/bin
 # wget https://raw.githubusercontent.com/openvswitch/ovs
 /master/utilities/ovs-docker
 # chmod a+rwx ovs-docker

Multi Host container communication with OVS

Managing the Networking Stack of a Docker Container

[185]

Docker chooses a random network to run its containers by default. It creates a3.
docker0 bridge and assigns an IP address (172.17.42.1) to it. So, both
the Host1 and Host2 docker0 bridge IP addresses are the same, due to which it is
difficult for containers in both the hosts to communicate. To overcome this, let's
assign static IP addresses to the network, that is, (192.168.10.0/24).

To change the default Docker subnet:

Execute the following commands on Host1:1.

 $ service docker stop
 $ ip link set dev docker0 down
 $ ip addr del 172.17.42.1/16 dev docker0
 $ ip addr add 192.168.10.1/24 dev docker0
 $ ip link set dev docker0 up
 $ ip addr show docker0
 $ service docker start

Add the br0 OVS bridge:2.

 $ ovs-vsctl add-br br0

Create the tunnel to the other host:3.

 $ ovs-vsctl add-port br0 gre0 -- set interface gre0 type=gre
 options:remote_ip=30.30.30.8

Add the br0 bridge to the docker0 bridge:4.

 $ brctl addif docker0 br0

Execute the following commands on Host2:5.

 $ service docker stop
 $ iptables -t nat -F POSTROUTING
 $ ip link set dev docker0 down
 $ ip addr del 172.17.42.1/16 dev docker0
 $ ip addr add 192.168.10.2/24 dev docker0
 $ ip link set dev docker0 up
 $ ip addr show docker0
 $ service docker start

Managing the Networking Stack of a Docker Container

[186]

Add the br0 OVS bridge:6.

 $ ip link set br0 up
 $ ovs-vsctl add-br br0

Create the tunnel to the other host and attach it to the:7.

 # br0 bridge
 $ ovs-vsctl add-port br0 gre0 -- set interface gre0 type=gre
 options:remote_ip=30.30.30.7

Add the br0 bridge to the docker0 bridge:8.

 $ brctl addif docker0 br0

The docker0 bridge is attached to another bridge–br0. This time, it's an OVS
bridge, which means that all traffic between the containers is routed through br0
too. Additionally, we need to connect together the networks from both the hosts
in which the containers are running. A GRE tunnel (h t t p ://e n . w i k i p e d i a . o r g /w

i k i /G e n e r i c _ R o u t i n g _ E n c a p s u l a t i o n) is used for this purpose. This tunnel is
attached to the br0 OVS bridge and, as a result, to docker0 as well. After
executing the preceding commands on both the hosts, you should be able to ping
the docker0 bridge addresses from both the hosts.

On Host1:

 $ ping 192.168.10.2
 PING 192.168.10.2 (192.168.10.2) 56(84) bytes of data.
 64 bytes from 192.168.10.2: icmp_seq=1 ttl=64 time=0.088 ms
 64 bytes from 192.168.10.2: icmp_seq=2 ttl=64 time=0.032 ms
 ^C
 --- 192.168.10.2 ping statistics ---
 2 packets transmitted, 2 received, 0% packet loss, time 999ms
 rtt min/avg/max/mdev = 0.032/0.060/0.088/0.028 ms

On Host2:

 $ ping 192.168.10.1
 PING 192.168.10.1 (192.168.10.1) 56(84) bytes of data.
 64 bytes from 192.168.10.1: icmp_seq=1 ttl=64 time=0.088 ms
 64 bytes from 192.168.10.1: icmp_seq=2 ttl=64 time=0.032 ms
 ^C
 --- 192.168.10.1 ping statistics ---
 2 packets transmitted, 2 received, 0% packet loss, time 999ms
 rtt min/avg/max/mdev = 0.032/0.060/0.088/0.028 ms

http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation

Managing the Networking Stack of a Docker Container

[187]

Create containers on both the hosts.9.

On Host1, use the following command:

 $ docker run -t -i --name container1 ubuntu:latest /bin/bash

On Host2, use the following command:

 $ docker run -t -i --name container2 ubuntu:latest /bin/bash

Now we can ping container2 from container1. In this way, we connect Docker
containers on multiple hosts using OVS.

Summary
In this chapter, we learnt how Docker networking is powered with docker0 bridge, its
troubleshooting issues, and configuration. We also looked at troubleshooting the
communication issues between Docker networks and the external network. Following that,
we did some deep dive into libnetwork and the CNM and its life cycle. Then, we looked
into containers' communication across multiple hosts using different networking options,
such as Weave, OVS, Flannel, and Docker's latest overlay network, with comparison, and
the troubleshooting issues involved in their configuration.

We saw that Weave creates a virtual network, OVS uses GRE tunneling technology, Flannel
provides a separate subnet, and the Docker overlay sets up each host to connect containers
on multiple hosts. After that, we looked into Docker network configuration with OVS and
troubleshooting the single host and multiple host setup.

8
Managing Docker Containers

with Kubernetes
In the previous chapter, we learned about Docker networking and how to troubleshoot
networking issues. In this chapter, we will introduce Kubernetes.

Kubernetes is a container-cluster management tool. Currently, it supports Docker and
Rocket. It is an open-sourced project by Google and it was launched in June 2014 at Google
I/O. It supports deployment on various cloud providers, such as GCE, Azure, AWS,
vSphere, and Bare Metal. The Kubernetes manager is lean, portable, extensible, and self-
healing.

In this chapter, we will cover the following:

An introduction to Kubernetes
Deploying Kubernetes on Bare Metal
Deploying Kubernetes on Minikube
Deploying Kubernetes on AWS and vSphere
Deploying a pod
Deploying Kubernetes in a production environment
Debugging Kubernetes issues

Kubernetes has various important components, as follows:

Node: This is a physical or virtual machine that is part of a Kubernetes cluster,
running the Kubernetes and Docker services, onto which pods can be scheduled.
Master: This maintains the runtime state of Kubernetes' server runtime. It is the
point of entry for all the client calls to configure and manage Kubernetes
components.

Managing Docker Containers with Kubernetes

[189]

Kubectl: This is the command-line tool used to interact with the Kubernetes
cluster to provide master access to Kubernetes APIs. Through it, the user can
deploy, delete, and list pods.
Pod: This is the smallest scheduling unit in Kubernetes. It is a collection of Docker
containers that share volumes and don't have port conflicts. It can be created by
defining a simple JSON file.
Replication controller: This manages the lifecycle of the pod and ensures that the
specified number of pods are running at any given time by creating or killing
pods as required.
Label: Labels are used to identify and organize pods and services based on key-
value pairs:

Kubernetes master/minion flow

Managing Docker Containers with Kubernetes

[190]

Deploying Kubernetes on Bare Metal
machine
Kubernetes can be deployed on the Bare Metal Fedora or Ubuntu machines. Even the
Fedora and Ubuntu virtual machine can be deployed in vSphere, workstation, or
VirtualBox. For the following tutorial, we'll be looking at Kubernetes deployment on a
single Fedora 24 machine, which will be acting as master, as well as node to deploy k8s
pods:

Enable the Kubernetes testing YUM repository:1.

 yum -y install --enablerepo=updates-testing kubernetes

Install etcd and iptables-services:2.

 yum -y install etcd iptables-services

In /etcd/hosts, set the Fedora master and Fedora node:3.

 echo "192.168.121.9 fed-master
 192.168.121.65 fed-node" >> /etc/hosts

Disable the firewall and iptables-services:4.

 systemctl disable iptables-services firewalld
 systemctl stop iptables-services firewalld

Edit the /etcd/kubernetes/config file:5.

 # Comma separated list of nodes in the etcd cluster
 KUBE_MASTER="--master=http://fed-master:8080"
 # logging to stderr means we get it in the systemd journal
 KUBE_LOGTOSTDERR="--logtostderr=true"
 # journal message level, 0 is debug
 KUBE_LOG_LEVEL="--v=0"
 # Should this cluster be allowed to run privileged docker
 containers
 KUBE_ALLOW_PRIV="--allow-privileged=false"

Managing Docker Containers with Kubernetes

[191]

Edit the contents of the /etc/kubernetes/apiserver file:6.

 # The address on the local server to listen to.
 KUBE_API_ADDRESS="--address=0.0.0.0"

 # Comma separated list of nodes in the etcd cluster
 KUBE_ETCD_SERVERS="--etcd-servers=http://127.0.0.1:2379"

 # Address range to use for services
 KUBE_SERVICE_ADDRESSES="--service-cluster-ip-
 range=10.254.0.0/16"

 # Add your own!
 KUBE_API_ARGS=""

The /etc/etcd/etcd.conf file should have the following line uncommented in7.
order to listen on port 2379, as Fedora 24 uses etcd 2.0:

 ETCD_LISTEN_CLIENT_URLS="http://0.0.0.0:2379"

The Kubernetes node setup can be done on separate hosts, but we will be8.
setting them on the current machine in order to have the Kubernetes master
and node configured on the same machine:
Edit the file /etcd/kubernetes/kubelet as follows:9.

 ###
 # Kubernetes kubelet (node) config

 # The address for the info server to serve on (set to 0.0.0.0
 or "" for
 all interfaces)
 KUBELET_ADDRESS="--address=0.0.0.0"

 # You may leave this blank to use the actual hostname
 KUBELET_HOSTNAME="--hostname-override=fed-node"

 # location of the api-server
 KUBELET_API_SERVER="--api-servers=http://fed-master:8080"

 # Add your own!
 #KUBELET_ARGS=""

Managing Docker Containers with Kubernetes

[192]

Create a shell script to start all the Kubernetes master and node services on the10.
same machine:

 $ nano start-k8s.sh
 for SERVICES in etcd kube-apiserver kube-controller-manager
 kube-scheduler
 kube-proxy kubelet docker; do
 systemctl restart $SERVICES
 systemctl enable $SERVICES
 systemctl status $SERVICES
 done

Create a node.json file to configure it on the Kubernetes machine:11.

 {
 "apiVersion": "v1",
 "kind": "Node",
 "metadata": {
 "name": "fed-node",
 "labels":{ "name": "fed-node-label"}
 },
 "spec": {
 "externalID": "fed-node"
 }
 }

Create a node object using the following command:12.

 $ kubectl create -f ./node.json

 $ kubectl get nodes
 NAME LABELS STATUS
 fed-node name=fed-node-label Unknown

After some time, node should be ready to deploy pods:13.

 kubectl get nodes
 NAME LABELS STATUS
 fed-node name=fed-node-label Ready

Managing Docker Containers with Kubernetes

[193]

Troubleshooting the Kubernetes Fedora
manual setup
If the kube-apiserver fails to start, it might be due to service account admission control and
require a service account and a token before allowing pods to be scheduled. It is generated
automatically by the controller. By default, the API server uses a TLS serving key, but as we
are not sending over HTTPS and don't have a TLS server key, we can provide the API
server the same key file in order for the API server to validate generated service-account
tokens.

Use the following to generate the key and add it to the k8s cluster:

 openssl genrsa -out /tmp/serviceaccount.key 2048

To start the API server, add the following option to the end of
the /etc/kubernetes/apiserver file:

 KUBE_API_ARGS="--
 service_account_key_file=/tmp/serviceaccount.key"

/etc/kubernetes/kube-controller-manager add the following option to the end of
the file:

 KUBE_CONTROLLER_MANAGER_ARGS=" -
 service_account_private_key_file
 =/tmp/serviceaccount.key"

Restart the cluster using the start_k8s.sh shell script.

Deploying Kubernetes using Minikube
Minikube is still in development; it is a tool that makes it easy to run Kubernetes locally,
optimized for the underlying OS (MAC/Linux). It runs a single-node Kubernetes cluster
inside a VM. Minikube helps developers to learn Kubernetes and do day-to-day
development and testing with ease.

Managing Docker Containers with Kubernetes

[194]

The following setup will cover Minikube setup on Mac OS X, as very few guides are present
to deploy Kubernetes on Mac:

Download the Minikube binary:1.

 $ curl -Lo minikube
https://storage.googleapis.com/minikube/releases/v0.12.2/minikube-darwin-am
d64
 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
 100 79.7M 100 79.7M 0 0 1857k 0 0:00:43 0:00:43 --:--:-- 1863k

Grant execute permission to the binary:2.

$ chmod +x minikube

Move the Minikube binary to /usr/local/bin so that it gets added to the path3.
and can be executed directly on the terminal:

 $ sudo mv minikube /usr/local/bin

After this, we'll require the kubectl client binary to run commands against the4.
single-node Kubernetes cluster, for Mac OS X:

 $ curl -Lo kubectl
https://storage.googleapis.com/kubernetes-release/release/v1.3.0/bin/darwin
/amd64/kubectl && chmod +x kubectl && sudo mv kubectl /usr/local/bin/

https://storage.googleapis.com/kubernetes-release/release/v1.3.0/bin/darwin
/amd64/kubectl && chmod +x kubectl && sudo mv kubectl /usr/local/bin/
 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
 100 53.2M 100 53.2M 0 0 709k 0 0:01:16 0:01:16 --:--:-- 1723k

The kubectl is now configured to be used with the cluster.

Set up Minikube to deploy a VM locally and configure the Kubernetes cluster:5.

 $ minikube start
 Starting local Kubernetes cluster...
 Downloading Minikube ISO
 36.00 MB / 36.00 MB
[==]
 100.00% 0s

Managing Docker Containers with Kubernetes

[195]

We can set up kubectl to use a Minikube context, and switch later if required:6.

 $ kubectl config use-context minikube
 switched to context "minikube".

We'll be able to list the node of the Kubernetes cluster:7.

 $ kubectl get nodes
 NAME STATUS AGE
 minikube Ready 39m

Create a hello-minikube pod and expose it as a service:8.

 $ kubectl run hello-minikube --
 image=gcr.io/google_containers/echoserver:1.4 --port=8080
 deployment "hello-minikube" created

 $ kubectl expose deployment hello-minikube --type=NodePort

 service "hello-minikube" exposed

We can get the hello-minikube pod status using the following command:9.

 $ kubectl get pod
 NAME READY STATUS RESTARTS AGE
hello-minikube-3015430129-otr7u 1/1 running 0 36s
 vkohli-m01:~ vkohli$ curl $(minikube service hello-minikube --url)
 CLIENT VALUES:
 client_address=172.17.0.1
 command=GET
 real path=/
 query=nil
 request_version=1.1
 request_uri=http://192.168.99.100:8080/
 SERVER VALUES:
 server_version=nginx: 1.10.0 - lua: 10001
 HEADERS RECEIVED:
 accept=*/*
 host=192.168.99.100:30167
 user-agent=curl/7.43.0

Managing Docker Containers with Kubernetes

[196]

We can open the Kubernetes dashboard using the following command and view10.
details of the deployed pod:

 $ minikube dashboard
 Opening kubernetes dashboard in default browser...

Kubernetes UI showcasing hello-minikube pod

Deploying Kubernetes on AWS
Let's get started with Kubernetes cluster deployment on AWS, which can be done by using
the configuration file already existing in the Kubernetes codebase.

Log in to AWS console (h t t p ://a w s . a m a z o n . c o m /c o n s o l e /)1.
Open the IAM console (h t t p s ://c o n s o l e . a w s . a m a z o n . c o m /i a m /h o m e ?#h o m e)2.
Choose the IAM username, select the Security Credentials tab, and click3.
the Create Access Key option.
After the keys are created, download them and keep them in a secure place. The4.
downloaded CSV file will contain the access key ID and the secret access key,
which will be used to configure the AWS CLI.

http://aws.amazon.com/console/
http://aws.amazon.com/console/
http://aws.amazon.com/console/
http://aws.amazon.com/console/
http://aws.amazon.com/console/
http://aws.amazon.com/console/
http://aws.amazon.com/console/
http://aws.amazon.com/console/
http://aws.amazon.com/console/
http://aws.amazon.com/console/
http://aws.amazon.com/console/
http://aws.amazon.com/console/
http://aws.amazon.com/console/
http://aws.amazon.com/console/
http://aws.amazon.com/console/
http://aws.amazon.com/console/
http://aws.amazon.com/console/
http://aws.amazon.com/console/
http://aws.amazon.com/console/
http://aws.amazon.com/console/
http://aws.amazon.com/console/
http://aws.amazon.com/console/
http://aws.amazon.com/console/
http://aws.amazon.com/console/
http://aws.amazon.com/console/
http://aws.amazon.com/console/
http://aws.amazon.com/console/
http://aws.amazon.com/console/
http://aws.amazon.com/console/
http://aws.amazon.com/console/
http://aws.amazon.com/console/
http://aws.amazon.com/console/
http://aws.amazon.com/console/
http://aws.amazon.com/console/
http://aws.amazon.com/console/
http://aws.amazon.com/console/
http://aws.amazon.com/console/
http://aws.amazon.com/console/
http://aws.amazon.com/console/
http://aws.amazon.com/console/
http://aws.amazon.com/console/
http://aws.amazon.com/console/
http://aws.amazon.com/console/
http://aws.amazon.com/console/
http://aws.amazon.com/console/
http://aws.amazon.com/console/
http://aws.amazon.com/console/
http://aws.amazon.com/console/
http://aws.amazon.com/console/
http://aws.amazon.com/console/
http://aws.amazon.com/console/
https://console.aws.amazon.com/iam/home?
https://console.aws.amazon.com/iam/home?
https://console.aws.amazon.com/iam/home?
https://console.aws.amazon.com/iam/home?
https://console.aws.amazon.com/iam/home?
https://console.aws.amazon.com/iam/home?
https://console.aws.amazon.com/iam/home?
https://console.aws.amazon.com/iam/home?
https://console.aws.amazon.com/iam/home?
https://console.aws.amazon.com/iam/home?
https://console.aws.amazon.com/iam/home?
https://console.aws.amazon.com/iam/home?
https://console.aws.amazon.com/iam/home?
https://console.aws.amazon.com/iam/home?
https://console.aws.amazon.com/iam/home?
https://console.aws.amazon.com/iam/home?
https://console.aws.amazon.com/iam/home?
https://console.aws.amazon.com/iam/home?
https://console.aws.amazon.com/iam/home?
https://console.aws.amazon.com/iam/home?
https://console.aws.amazon.com/iam/home?
https://console.aws.amazon.com/iam/home?
https://console.aws.amazon.com/iam/home?
https://console.aws.amazon.com/iam/home?
https://console.aws.amazon.com/iam/home?
https://console.aws.amazon.com/iam/home?
https://console.aws.amazon.com/iam/home?
https://console.aws.amazon.com/iam/home?
https://console.aws.amazon.com/iam/home?
https://console.aws.amazon.com/iam/home?
https://console.aws.amazon.com/iam/home?
https://console.aws.amazon.com/iam/home?
https://console.aws.amazon.com/iam/home?
https://console.aws.amazon.com/iam/home?
https://console.aws.amazon.com/iam/home?
https://console.aws.amazon.com/iam/home?
https://console.aws.amazon.com/iam/home?
https://console.aws.amazon.com/iam/home?
https://console.aws.amazon.com/iam/home?
https://console.aws.amazon.com/iam/home?
https://console.aws.amazon.com/iam/home?
https://console.aws.amazon.com/iam/home?
https://console.aws.amazon.com/iam/home?
https://console.aws.amazon.com/iam/home?
https://console.aws.amazon.com/iam/home?
https://console.aws.amazon.com/iam/home?
https://console.aws.amazon.com/iam/home?
https://console.aws.amazon.com/iam/home?
https://console.aws.amazon.com/iam/home?
https://console.aws.amazon.com/iam/home?
https://console.aws.amazon.com/iam/home?
https://console.aws.amazon.com/iam/home?
https://console.aws.amazon.com/iam/home?
https://console.aws.amazon.com/iam/home?
https://console.aws.amazon.com/iam/home?
https://console.aws.amazon.com/iam/home?
https://console.aws.amazon.com/iam/home?
https://console.aws.amazon.com/iam/home?
https://console.aws.amazon.com/iam/home?
https://console.aws.amazon.com/iam/home?
https://console.aws.amazon.com/iam/home?
https://console.aws.amazon.com/iam/home?
https://console.aws.amazon.com/iam/home?
https://console.aws.amazon.com/iam/home?
https://console.aws.amazon.com/iam/home?
https://console.aws.amazon.com/iam/home?
https://console.aws.amazon.com/iam/home?
https://console.aws.amazon.com/iam/home?
https://console.aws.amazon.com/iam/home?
https://console.aws.amazon.com/iam/home?
https://console.aws.amazon.com/iam/home?
https://console.aws.amazon.com/iam/home?
https://console.aws.amazon.com/iam/home?
https://console.aws.amazon.com/iam/home?
https://console.aws.amazon.com/iam/home?
https://console.aws.amazon.com/iam/home?

Managing Docker Containers with Kubernetes

[197]

Install and configure the AWS command-line interface. In this example, we have5.
installed AWS CLI on Linux using the following command:

 $ sudo pip install awscli

In order to configure the AWS-CLI, use the following command:6.

 $ aws configure
 AWS Access Key ID [None]: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 AWS Secret Access Key [None]: YYYYYYYYYYYYYYYYYYYYYYYYYYYY
 Default region name [None]: us-east-1
 Default output format [None]: text

After the configuration of the AWS CLI, we will create a profile and attach a role7.
to it with full access to S3 and EC2.

 $ aws iam create-instance-profile --instance-profile-name Kube

The role can be attached above the profile, which will have complete EC2 and S38.
access, as shown in the following screenshot. The role can be created separately
using the console or AWS CLI with the JSON file, which will define the
permissions the role can have:

 $ aws iam create-role --role-name Test-Role --assume-role-policy-
 document /root/kubernetes/Test-Role-Trust-Policy.json

Attach policy in AWS during Kubernetes deployment

After the role is created, it can be attached to the policy using the following9.
command:

 $ aws iam add-role-to-instance-profile --role-name Test-Role --
 instance-profile-name Kube

Managing Docker Containers with Kubernetes

[198]

The script uses the default profile; we can change it as follows:10.

 $ export AWS_DEFAULT_PROFILE=Kube

The Kubernetes cluster can be easily deployed using one command, as follows;11.

 $ export KUBERNETES_PROVIDER=aws; wget -q -O - https://get.k8s.io |
bash
 Downloading kubernetes release v1.1.1 to
/home/vkohli/kubernetes.tar.gz
 --2015-11-22 10:39:18-- https://storage.googleapis.com/kubernetes-
 release/release/v1.1.1/kubernetes.tar.gz
 Resolving storage.googleapis.com (storage.googleapis.com)...
 216.58.220.48, 2404:6800:4007:805::2010
 Connecting to storage.googleapis.com
 (storage.googleapis.com)|216.58.220.48|:443... connected.
 HTTP request sent, awaiting response... 200 OK
 Length: 191385739 (183M) [application/x-tar]
 Saving to: 'kubernetes.tar.gz'
 100%[======================================>] 191,385,739 1002KB/s
 in 3m 7s
 2015-11-22 10:42:25 (1002 KB/s) - 'kubernetes.tar.gz' saved
 [191385739/191385739]
 Unpacking kubernetes release v1.1.1
 Creating a kubernetes on aws...
 ... Starting cluster using provider: aws
 ... calling verify-prereqs
 ... calling kube-up
 Starting cluster using os distro: vivid
 Uploading to Amazon S3
 Creating kubernetes-staging-e458a611546dc9dc0f2a2ff2322e724a
 make_bucket: s3://kubernetes-staging-
e458a611546dc9dc0f2a2ff2322e724a/
 +++ Staging server tars to S3 Storage: kubernetes-staging-
 e458a611546dc9dc0f2a2ff2322e724a/devel
 upload: ../../../tmp/kubernetes.6B8Fmm/s3/kubernetes-salt.tar.gz to
 s3://kubernetes-staging-
e458a611546dc9dc0f2a2ff2322e724a/devel/kubernetes-
 salt.tar.gz
 Completed 1 of 19 part(s) with 1 file(s) remaining

The preceding command will call kube-up.sh and, in turn, the utils.sh using12.
the config-default.sh script, which contains the basic configuration of the
k8s cluster with four nodes, as follows:

 ZONE=${KUBE_AWS_ZONE:-us-west-2a}
 MASTER_SIZE=${MASTER_SIZE:-t2.micro}

Managing Docker Containers with Kubernetes

[199]

 MINION_SIZE=${MINION_SIZE:-t2.micro}
 NUM_MINIONS=${NUM_MINIONS:-4}
 AWS_S3_REGION=${AWS_S3_REGION:-us-east-1}

The instances are t2.micro running on Ubuntu. The process takes five to ten13.
minutes, after which the IP address of the master and minions gets listed and can
be used to access the Kubernetes cluster.

Deploying Kubernetes on vSphere
Kubernetes can be installed on vSphere with the help of govc (a vSphere CLI built on top of
govmomi):

Before starting the setup, we'll have to install golang, which can be done in the1.
following way on a Linux machine:

 $ wget https://storage.googleapis.com/golang/go1.7.3.linux-
 amd64.tar.gz
 $ tar -C /usr/local -xzf go1.7.3.linux-amd64.tar.gz
 $ go
 Go is a tool for managing Go source code.
 Usage:
 go command [arguments]

Set the go path:2.

 $ export GOPATH=/usr/local/go
 $ export PATH=$PATH:$GOPATH/bin

Download the pre-built Debian VMDK, which will be used to create the3.
Kubernetes cluster on vSphere:

 $ curl --remote-name-all https://storage.googleapis.com/
 govmomi/vmdk/2016-01-08/kube.vmdk.gz{,.md5}
 % Total % Received % Xferd Average Speed Time Time
Time
 Current
 Dload Upload Total Spent
Left
 Speed
 100 663M 100 663M 0 0 14.4M 0 0:00:45 0:00:45 --:--
:--
 17.4M
 100 47 100 47 0 0 70 0 --:--:-- --:--:-- --:--
:--

Managing Docker Containers with Kubernetes

[200]

 0
 $ md5sum -c kube.vmdk.gz.md5
 kube.vmdk.gz: OK
 $ gzip -d kube.vmdk.gz

Kubernetes setup troubleshooting
We need to set up the proper environment variables to connect remotely to the ESX server
to deploy the Kubernetes cluster. The following environment variables should be set in
order to progress with Kubernetes setup on vSphere:

 export GOVC_URL='https://[USERNAME]:[PASSWORD]@[ESXI-HOSTNAME-IP]/sdk'
 export GOVC_DATASTORE='[DATASTORE-NAME]'
 export GOVC_DATACENTER='[DATACENTER-NAME]'
 #username & password used to login to the deployed kube VM
 export GOVC_RESOURCE_POOL='*/Resources'
 export GOVC_GUEST_LOGIN='kube:kube'
 export GOVC_INSECURE=true

Use ESX and vSphere version v5.5 for this tutorial.

Upload the kube.vmdk to the ESX datastore. The VMDK will be stored in the kube
directory, which will get created by the following command:

 $ govc datastore.import kube.vmdk kube

Set up the Kubernetes provider as vSphere, as well the Kubernetes cluster, which will get
deployed on the ESX. This will contain one Kubernetes master and four Kubernetes minion
derived from the expanded kube.vmdk uploaded in the datastore:

 $ cd kubernetes
 $ KUBERNETES_PROVIDER=vsphere cluster/kube-up.sh

This will display a list of IP addresses for the four VMs. If you are currently developing
Kubernetes, you can use this cluster-deployment mechanism to test out the new code in the
following way:

 $ cd kubernetes
 $ make release
 $ KUBERNETES_PROVIDER=vsphere cluster/kube-up.sh

Managing Docker Containers with Kubernetes

[201]

The cluster can be brought down using the following command:

 $ cluster/kube-down.sh

Kubernetes master/node deployed on vSphere

Kubernetes pod deployment
Now, in the following example, we will be deploying two NGINX replication pods (rc-pod)
and exposing them via a service. To understand Kubernetes networking, please refer to the
following diagram for more details. Here, an application can be exposed via a virtual IP
address, and the request to be proxied, to which replica of pod (load balancer), is taken care
of by the service:

Kubernetes networking with OVS bridge

Managing Docker Containers with Kubernetes

[202]

In the Kubernetes master, create a new folder:1.

 $ mkdir nginx_kube_example
 $ cd nginx_kube_example

Create the YAML file in the editor of your choice, which will be used to deploy2.
the NGINX pod:

 $ vi nginx_pod.yaml
 apiVersion: v1
 kind: ReplicationController
 metadata:
 name: nginx
 spec:
 replicas: 2
 selector:
 app: nginx
 template:
 metadata:
 name: nginx
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx
 ports:
 - containerPort: 80

Create the NGINX pod using kubectl:3.

 $ kubectl create -f nginx_pod.yaml

In the preceding pod creation process, we have created two replicas of the4.
NGINX pod, and its details can be listed as shown here:

 $ kubectl get pods
 NAME READY REASON RESTARTS AGE
 nginx-karne 1/1 Running 0 14s
 nginx-mo5ug 1/1 Running 0 14s
 $ kubectl get rc
 CONTROLLER CONTAINER(S) IMAGE(S) SELECTOR REPLICAS
 nginx nginx nginx app=nginx 2

Managing Docker Containers with Kubernetes

[203]

The container on the deployed minion can be listed as follows:5.

 $ docker ps
 CONTAINER ID IMAGE COMMAND
 CREATED STATUS PORTS NAMES
 1d3f9cedff1d nginx:latest "nginx
-g
 'daemon of 41 seconds ago Up 40 seconds
 k8s_nginx.6171169d_nginx-karne_default_5d5bc813-3166-11e5-8256-
 ecf4bb2bbd90_886ddf56
 0b2b03b05a8d nginx:latest "nginx
-g
 'daemon of 41 seconds ago Up 40 seconds

Deploy the NGINX service using a YAML file in order to expose the NGINX pod6.
on host port 82:

 $ vi nginx_service.yaml
 apiVersion: v1
 kind: Service
 metadata:
 labels:
 name: nginxservice
 name: nginxservice
 spec:
 ports:
 # The port that this service should serve on.
 - port: 82
 # Label keys and values that must match in order to receive
traffic for
 this service.
 selector:
 app: nginx
 type: LoadBalancer

Create the NGINX service using kubectl:7.

 $kubectl create -f nginx_service.yaml
 services/nginxservice

The NGINX service can be listed as follows:8.

 $ kubectl get services
 NAME LABELS SELECTOR
IP(S)
 PORT(S)
 kubernetes component=apiserver,provider=kubernetes <none>

Managing Docker Containers with Kubernetes

[204]

 192.168.3.1 443/TCP
 nginxservice name=nginxservice app=nginx
 192.168.3.43 82/TCP

Now the NGINX server test page via service can be accessed on the following9.
URL: http://192.168.3.43:82

Deploying Kubernetes in a production
environment
In this section, we'll be covering some of the important points and concepts that can be used
to deploy Kubernetes in production.

Exposing Kubernetes services: Once we deploy the Kubernetes pods, we expose
them using services. The Kubernetes service is an abstraction, which defines a set
of pods and a policy to expose them as a microservice. The service gets its own IP
address, but the catch is that this address only exists within the Kubernetes
cluster, which means the service is not exposed to the Internet.
It's possible to expose the service directly on the host machine port, but once we
expose the service on the host machine, we get into port conflicts. It also voids
Kubernetes benefits and makes it harder to scale the deployed service:

Kubernetes service exposed through external load balancer

Managing Docker Containers with Kubernetes

[205]

One solution is to add an external load balancer such as HAProxy or NGINX. This
is configured with a backend for each Kubernetes service and proxies traffic to
individual pods. Similar to AWS deployment, a Kubernetes cluster can be
deployed inside a VPN and an AWS external load balancer can be used to expose
each Kubernetes service:

Support upgrade scenarios in Kubernetes: In the case of an upgrade scenario,
we need to have zero downtime. Kubernetes' external load balancer helps to
achieve this functionality in cases of service deployment through Kubernetes.
We can start a replica cluster running the new version of the service, and the
older cluster version will serve the live requests. As and when the new service is
ready, the load balancer can be configured to switch load to the new version. By
using this approach, we can support a zero-runtime upgrade scenario for
enterprise products:

Upgrade scenarios supported in Kubernetes deployment

Make the Kubernetes-based application deployment automatic: With the help
of a deployer, we can automate the process of testing, as well as deploying the
Docker containers in production. In order to do so, we need to have a build
pipeline and deployer, which pushes the Docker image to a registry such as
Docker Hub after successful build. Then, the deployer will take care of deploying
the test environment and invoke the test scripts. After successful testing, the
deployer can also take care of deploying the service in the Kubernetes production
environment:

Managing Docker Containers with Kubernetes

[206]

Kubernetes application deployment pipeline

Know the resource constraints: Know the resource constraints while starting
Kubernetes cluster, configure the resource requests and CPU/memory limits on
each pod. Most containers crash in the production environment due to lack of
resources or insufficient memory. The containers should be well tested, and the
appropriate resource should be allotted to the pod in the production environment
for successful deployment of the microservice.
Monitor the Kubernetes cluster: The Kubernetes cluster should be continuously
monitored with the help of logging. Logging tools such as Graylog, Logcheck, or
Logwatch should be used with Apache Kafka, a messaging system to collect logs
from the containers and direct them to the logging tools. With the help of Kafka,
it is easy to index the logs, as well as handle huge streams. Kubernetes replica
works flawlessly. If any pod crashes, the Kubernetes service restarts them and
keeps the number of replicas always up and running as per the configuration.
One aspect that users like to know about is the real reason behind the failure.
Kubernetes metrics and application metrics can be published to a time-series
store such as InfluxDB, which can be used to track application errors and
measure load, throughput, and other stats to perform post-analysis of the failure.
Persistent storage in Kubernetes: Kubernetes has the concept of volumes to
work with persistent data. We want persistence storage in a production
deployment of Kubernetes because containers lose their data as they restart. A
volume is backed by a variety of implementations, such as host machines, NFS,
or using the cloud-provider volume service. Kubernetes also provides two APIs
to handle persistent storage:

Managing Docker Containers with Kubernetes

[207]

Persistent volume (PV): This is a resource, provisioned in a cluster, which
behaves as though a node is a cluster resource. Pods request the resource (CPU
and memory) as required from the persistent volumes. It is usually provisioned
by an administrator.
Persistent volume claim (PVC): A PVC consumes PV resources. It is a request for
storage by the user, similar to a pod. A pod can request levels of resources (CPU
and memory) as required.

Debugging Kubernetes issues
In this section, we'll be discussing some of the Kubernetes troubleshooting concerns:

The first step to debug the Kubernetes cluster is to list the number of nodes, using1.
the following command:

 $ kubetl get nodes

Also, verify that all nodes are in the ready state.

Look at the logs in order to figure out issues in the deployed Kubernetes cluster 2.

 master:
 var/log/kube-apiserver.log - API Server, responsible for serving
the API
 /var/log/kube-scheduler.log - Scheduler, responsible for making
scheduling
 decisions
 /var/log/kube-controller-manager.log - Controller that manages
replication
 controllers
 Worker nodes:
 /var/log/kubelet.log - Kubelet, responsible for running containers
on the
 node
 /var/log/kube-proxy.log - Kube Proxy, responsible for service load
 balancing

Managing Docker Containers with Kubernetes

[208]

If the pod stays in the pending state, use the following command:3.

 $ cluster/kubectl.sh describe pod podname

This will list events and might describe the last thing that happened to the pod.

To see all the cluster events, use the following command:4.

 $ cluster/kubectl.sh get events

If the kubectl command line is unable to reach the apiserver process, ensure
Kubernetes_master or Kube_Master_IP is set. Ensure the apiserver process is running
in the master and check its logs:

If you are able to create the replication controller but not see the pods: If the
replication controller didn't create the pods, check if the controller is running and
look at the logs.
If kubectl hangs forever or a pod is in the waiting state:

Check if the hosts are being assigned to the pod, if not then
currently they are being scheduled for some task.
Check if the kubelet is pointing at the right place in etcd for pods
and the apiserver is using the same name or IP of the minion.
Check if the Docker daemon is running if some issue occurs. Also,
check the Docker logs and make sure the firewall is not blocking
the image from being fetched from Docker Hub.

The apiserver process reports:
Error synchronizing container: Get http://:10250/podInfo?podID=foo:
dial tcp :10250: connection refused:

This means the pod has not yet been scheduled
Check the scheduler logs to see if it is running properly
Cannot connect to the container
Try to Telnet to the minion at the service port or the pod's IP
address

Managing Docker Containers with Kubernetes

[209]

Check if the container is created in Docker using the following command:

 $ sudo docker ps -a

If you don't see the container, the issue will be with the pod configuration, image,
Docker, or the kubelet. If you see the container getting created every 10 seconds,
then the issues are with the container creation, or the container's process is
failing.
X.509 certificate has expired or is not yet valid.

Check if the current time matches on the client and server. Use ntpdate for one-time clock
synchronization.

Summary
In this chapter, we learned about managing Docker containers with help of Kubernetes.
Kubernetes have a different perspective among Docker orchestration tools,where each pod
will get a unique IP address and communication between pods can occur with the help of
services. We have covered many deployment scenarios, as well as troubleshooting issues
when deploying Kubernetes on a Bare Metal machine, AWS, vSphere, or using Minikube.
We also looked at deploying Kubernetes pods effectively and debugging Kubernetes issues.
The final section helps with deploying Kubernetes in a production environment with load
balancers, Kubernetes services, monitoring tools, and persistent storage. In the next chapter,
we will cover Docker volumes and how to use them efficiently in a production
environment.

9
Hooking Volume Baggage

This chapter introduces data volumes and storage driver concepts, which are widely used
in Docker to manage persistent or shared data. We'll be also taking a deep dive into various
storage drivers supported by Docker, and the basic commands associated with them for
management. The three main use cases for Docker data volumes are as follows:

To keep data persistent after a container is deleted
To share data between the host and the Docker container
To share data across Docker containers

In order to understand a Docker volume, we need to understand how the Docker filesystem
works. Docker images are stored as a series of read-only layers. When the container is
started, the read-only image adds a read-write layer on top. If the current file needs to be
modified, it is copied from the read-only layer to the read-write layer, where changes are
applied. The version of the file in the read-write layer hides the underlying file but doesn't
destroy it. Thus, when a Docker container is deleted, relaunching the image will start a
fresh container with a fresh read-write layer and all the changes are lost. The combination of
read-write layers on top of the read-only layer is termed the Union File System (UFS). In
order to persist the data and be able to share it with the host and other containers, Docker
has come up with the concept of volumes. Basically, volumes are directories that exist
outside the UFS and behave as normal directories or files on the host filesystem.

Some important features of Docker volumes are as follows:

Volumes can be initialized when the container is created
Data volumes can be reused and shared among other data containers
Data volumes persist the data even if a container is deleted
Changes to the data volume are made directly, bypassing the UFS

Hooking Volume Baggage

[211]

In this chapter, we will cover the following:

Data-only containers
Hosting a mapped volume backed up by shared storage
Docker storage driver performance

Avoiding troubleshooting by understanding
Docker volumes
In this section, we'll be looking at four ways to deal with data and Docker containers, which
will help us to understand and achieve the preceding use cases mentioned with Docker
volumes.

Default case storing data inside the Docker
container
In this case, data is only visible inside the Docker containers and is not from the host
system. The data is lost if the container is shut down or the Docker host dies. This case
mostly works with services that are packaged in Docker containers and are not dependent
on persistent data when they return:

$ docker run -it ubuntu:14.04
root@358b511effb0:/# cd /tmp/
root@358b511effb0:/tmp# cat > hello.txt
hii
root@358b511effb0:/tmp# ls
hello.txt

As seen in the preceding example, the hello.txt file only exists inside the container and
will not be persisted once the container dies:

Hooking Volume Baggage

[212]

Data stored inside Docker Container

Data-only container
Data can be stored outside the Docker UFS in a data-only container. The data will be visible
inside the data-only container mount namespace. As the data is persisted outside the
container, it remains even after the container is deleted. If any other container wants to
connect to this data-only container, simply use the --volumes-from option to grab the
container and apply it to the current container. Let's try out data volume container:

Using a data-only container

Hooking Volume Baggage

[213]

Creating a data-only container
$ docker create -v /tmp --name ubuntuvolume Ubuntu:14.04

In the preceding command, we created an Ubuntu container and attached /tmp. It is a data-
only container based on the Ubuntu image, and exists in the /tmp directory. If the new
Ubuntu container needs to write some data to the /tmp directory of our data-only
container, this can be achieved with help of --volumes-from option. Now, anything we
write to the /tmp directory of the new container will be saved in the /tmp volume of the
Ubuntu data container:

$ docker create -v /tmp --name ubuntuvolume ubuntu:14.04
d694752455f7351e95d1563ed921257654a1867c467a2813ae25e7d99c067234

Use a data-volume container in container-1:

$ docker run -t -i --volumes-from ubuntuvolume ubuntu:14.04 /bin/bash
root@127eba0504cd:/# echo "testing data container" > /tmp/hello
root@127eba0504cd:/# exit
exit

Use a data-volume container in container-2 to get the data shared by container-1:

$ docker run -t -i --volumes-from ubuntuvolume ubuntu:14.04 /bin/bash
root@5dd8152155de:/# cd tmp/
root@5dd8152155de:/tmp# ls
hello
root@5dd8152155de:/tmp# cat hello
testing data container

As we can see, container-2 gets the data written by container-1 in the /tmp space. These
examples demonstrate the basic usage of data-only containers.

Sharing data between
the host and the Docker container
This is a common use case where it is necessary to share files between the host and the
Docker container. In this scenario, we don't need to create a data-only container; we can
simply run a container of any Docker image and simply override one of its directories with
content from the host system directory.

Hooking Volume Baggage

[214]

Let's consider an example where we want to access the logs of Docker NGINX from the host
system. Currently, they are not available outside the host, but this can be achieved simply
by mapping the /var/log/nginx from inside the container to a directory on the host
system. In this scenario, we will run a copy of the NGINX image with a shared volume from
the host system, as shown here:

Sharing data between the host and Docker container

Create a serverlogs directory in the host system:

$ mkdir /home/serverlogs

Run the NGINX container and map /home/serverlogs to the /var/log/nginx directory
inside the Docker container:

$ docker run -d -v /home/serverlogs:/var/log/nginx -p 5000:80 nginx
Unable to find image 'nginx:latest' locally
latest: Pulling from library/nginx
5040bd298390: Pull complete
...

Hooking Volume Baggage

[215]

Access http://localhost:5000 from the host system, post this, logs will be generated,
and they can be accessed on the host system in /home/serverlogs directory, which is
mapped to /var/log/nginx inside the Docker container, as shown here:

$ cd serverlogs/
$ ls
access.log error.log
$ cat access.log
172.17.42.1 - - [20/Jan/2017:14:57:41 +0000] "GET / HTTP/1.1" 200 612 "-"
"Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:50.0) Gecko/20100101
Firefox/50.0" "-"

Host mapped volume backed up by shared
storage
Docker volume plugins allow us to mount a shared storage backend. The main advantage
of this is that the user will never suffer data loss in the case of host failure, as it is backed by
shared storage. In the preceding approaches, if we migrate the container, the volumes
doesn't get migrated. It can be achieved with the help of external Docker volume plugins
such Flocker and Convy, which make the volume portable and help to migrate the
containers across hosts with volumes easily, as well as protecting the data, as it is not
dependent on the host file system.

Flocker
Flocker is widely used to run containerized stateful services and applications that require
persistent storage. Docker provides a very basic view of volume management, but Flocker
enhances it by providing durability, failover, and high availability of the volumes. Flocker
can be deployed manually with Docker Swarm and compose, or can be set up easily on
AWS with the help of the CloudFormation template if the backed up storage has to be used
in production set ups.

Hooking Volume Baggage

[216]

Flocker can be deployed easily on AWS with the help of the following steps:

Log in to your AWS account and create a key pair in Amazon EC2.1.
Select CloudFormation from the home page of AWS.2.
The Flocker cloud formation stack can be launched with the help of the template3.
in the AWS S3 storage using the following link:
https://s3.amazonaws.com/installer.downloads.clusterhq.com/floc
ker-cluster.cloudformation.json

Select create stack; then select the second option and specify the Amazon S34.
template URL:

Hooking Volume Baggage

[217]

On the next screen, specify the Stack name, AmazonAccessKeyID, and5.
AmazonSecretAccessKey for the account:

Provide the key-value pairs to tag this Flocker stack, and provide the IAM Role6.
for this stack if required:

Hooking Volume Baggage

[218]

Review the details and launch the Flocker cloud formation stack:7.

Once, the stack deployment is completed from the outputs tab, get the IP address8.
of the client node and control node. SSH into the client node using the key-value
pair generated during the start of the Flocker stack deployment.

Set the following parameters:

$ export FLOCKER_CERTS_PATH=/etc/flocker
$ export FLOCKER_USER=user1
$ export FLOCKER_CONTROL_SERVICE=<ControlNodeIP> # not ClientNodeIP!
$ export DOCKER_TLS_VERIFY=1
$ export DOCKER_HOST=tcp://<ControlNodeIP>:2376
$ flockerctl status # should list two servers (nodes) running
$ flockerctl ls # should display no datasets yet
$ docker info |grep Nodes # should output "Nodes: 2"

Hooking Volume Baggage

[219]

If the Flocker status and ls commands ran successfully, this means the Docker Swarm
and Flocker have been successfully set up on the AWS.

The Flocker volume can be easily set up and allows you to create a container that will
persist beyond the lifecycle of the container or container host:

$ docker run --volume-driver flocker -v flocker-volume:/cont-dir --
name=testing-container

An external storage block will be created and mounted, to our host and the container
directory will be bounded to it. If the container is deleted or the host crashes, the data
remains secured. The alternate container can be brought up in the second host using the
same command, and we will be able to access our shared storage. The preceding tutorial
was to set up Flocker on the AWS for a production use case, but we can also test Flocker
locally with the help of Docker Swarm setup. Let us consider a use case where you have
two Docker Swarm nodes and a Flocker client node.

In the Flocker client node
Create a docker-compose.yml file and define the containers redis and
clusterhq/flask. Provide the respective configuration Docker image, names, ports, and
data volumes:

$ nano docker-compose.yml

web:
 image: clusterhq/flask
 links:
 - "redis:redis"
 ports:
 - "80:80"
redis:
 image: redis:latest
 ports:
 - "6379:6379"
 volumes: ["/data"]

Create a file named flocker-deploy.yml, where we will define both containers that will
be deployed on the same nodes–node-1; leave node-2 blank as of now of the Swarm
cluster:

$ nano flocker-deploy.yml
"version": 1
"nodes":

Hooking Volume Baggage

[220]

 "node-1": ["web", "redis"]
 "node-2": []

Deploy the containers using the preceding .yml files; we simply need to run the following
command to do so:

$ flocker-deploy control-service flocker-deploy.yml docker-compose.yml

The cluster configuration has been updated. It may take a short while for the changes to
take effect, in particular if Docker images need to be pulled.

Both containers can be observed running in node-1. Once the setup has been done, we can
access the application on http://node-1. It will show the visit count of this webpage:

"Hello... I have been seen 8 times"

Recreate the deployment file in order to move the container to node-2:

$ nano flocker-deply-alt.yml
"version": 1.
"nodes":
 "node-1": ["web"]
 "node-2": ["redis"]

Now, we'll be migrating the container from node-1 to node-2, and we'll see that Flocker
will auto handle the volume management. It will plug the existing volume to the Redis
container when it comes up in node-2:

$ flocker-deploy control-service flocker-deploy-alt.yml docker-compose.yml

The cluster configuration has been updated. It may take a short while for the changes to
take effect, in particular if Docker images need to be pulled.

We can SSH into node-2 and list the running Redis container. Try to access the application
on http://node2; we'll be able to see that the count is still persisted as it were in node-1
and gets incremented by 1 as the application is accessed from node-2:

"Hello... I have been seen 9 times"

This example demonstrates how easily we can migrate the container with its data volume in
a Flocker cluster from one node to another.

Hooking Volume Baggage

[221]

Convoy Docker volume plugin
Convoy is the other Docker volume plugin that is widely used to provide storage backend.
It is written in Go and the main advantage is that it can be deployed in standalone mode.
Convoy will run as a Docker volume extension, and will behave like an intermediate
container. The initial implementation of Convoy utilizes Linux devices and provides the
following four Docker storage function for volumes:

Thin provisioned volumes
Restore volumes across hosts
Take snapshots of volumes
Back up the volumes to external object stores such as Amazon EBS, Virtual File
System (VFS), and Network File System (NFS):

Using Convoy volume plugin

Hooking Volume Baggage

[222]

In the following example, we'll be running a local Convoy device mapper driver and
showcasing the use of the Convoy volume plugin in between two containers for sharing the
data:

Verify the Docker version is above 1.8.1.
Install the Convoy plugin by locally downloading the plugin tar file and2.
extracting it:

 $ wget https://github.com/rancher/convoy/releases/download
 /v0.5.0/convoy.tar.gz
 $ tar xvf convoy.tar.gz
 convoy/
 convoy/convoy-pdata_tools
 convoy/convoy
 convoy/SHA1SUMS
 $ sudo cp convoy/convoy convoy/convoy-pdata_tools /usr/local/bin/
 $ sudo mkdir -p /etc/docker/plugins/
 $ sudo bash -c 'echo "unix:///var/run/convoy/convoy.sock" >
 /etc/docker/plugins/convoy.spec'

We can go ahead and use the file backed loop device which acts as a pseudo3.
device and makes file accessible as a block device in order to demo the Convoy
device mapper driver:

 $ truncate -s 100G data.vol
 $ truncate -s 1G metadata.vol
 $ sudo losetup /dev/loop5 data.vol
 $ sudo losetup /dev/loop6 metadata.vol

Once the data and metadata device is setup start Convoy plugin daemon:4.

 sudo convoy daemon --drivers devicemapper --driver-opts
 dm.datadev=/dev/loop5 --driver-opts dm.metadatadev=/dev/loop6

In the preceding Terminal, the Convoy daemon will start running; open the next5.
Terminal instance and create a busybox Docker container, which uses the
Convoy volume test_volume mounted at /sample directory inside the
container:

 $ sudo docker run -it -v test_volume:/sample --volume-driver=convoy
 busybox
 Unable to find image 'busybox:latest' locally
 latest: Pulling from library/busybox
 4b0bc1c4050b: Pull complete
 Digest: sha256:817a12c32a39bbe394944ba49de563e085f1d3c5266eb8
 e9723256bc4448680e

Hooking Volume Baggage

[223]

 Status: Downloaded newer image for busybox:latest

Create a sample file in the mounted directory:6.

 / # cd sample/
 / # cat > test
 testing
 /sample # exit

Start a different container by using the volume driver as Convoy and mount the7.
same Convoy volume:

 $ sudo docker run -it -v test_volume:/sample --volume-driver=convoy
--
 name=new-container busybox

As we do ls, we'll be able to see the file created in the previous container:8.

 / # cd sample/
 /sample # ls
 lost+found test
 /sample # exit

Thus, the preceding example shows how Convoy can allow the sharing of volumes between
containers residing in the same, or a different, host.

Basically, the volume driver should be used for persistent data such as WordPress
MySQL DB:

$ docker run --name wordpressdb --volume-driver=convoy -v
test_volume:/var/lib/mysql -e MYSQL_ROOT_PASSWORD=password -e
MYSQL_DATABASE=wordpress -d mysql:5.7
1e7908c60ceb3b286c8fe6a183765c1b81d8132ddda24a6ba8f182f55afa2167

$ docker run -e WORDPRESS_DB_PASSWORD=password -d --name wordpress --link
wordpressdb:mysql wordpress
0ef9a9bdad448a6068f33a8d88391b6f30688ec4d3341201b1ddc9c2e641f263

In the preceding example, we have started the MySQL DB using the Convoy volume driver
in order to provide persistence in case the host fails. We then linked the MySQL database in
the WordPress Docker container.

Hooking Volume Baggage

[224]

Docker storage driver performance
In this section, we'll be looking into the performance aspect and comparison of file systems
supported by Docker. Pluggable storage driver architecture and the flexibility to plug in a
volume is the best approach for containerized environments and production use cases.
Docker supports the aufs, btrfs, devicemapper, vfs, zfs, and overlayfs filesystems.

UFS basics
As discussed previously, Docker uses UFS in order to have a read-only, layered approach.

Docker uses UFS to combine several such layers into a single image. This section will take a
deep dive into the basics of UFS and storage drivers supported by Docker.

UFS recursively merges several directories into a single virtual view. The fundamental
desire of UFS is to have a read-only file system and some writable overlay on it. This gives
the illusion that the file system has read-write access, even though it is read-only. UFS uses
copy-on-write to support this feature. Also, UFS operates on directories instead of drives.

The underlying filesystem does not matter. UFS can combine directories from different
underlying file systems. Combining different underlying filesystems is possible because
UFS intercepts the operations bound to those file systems. The following diagram shows
that the UFS lies between the user applications and filesystems. Examples of UFS are Union
FS, Another Union FS (AUFS), and so on:

UFS and underlying file systems for branches

Hooking Volume Baggage

[225]

UFS – terminology
Branches in UFS are filesystems that are merged. Branches can have different access
permissions, such as read-only, read-write, and so on. UFSs are stackable filesystems. The
branches can also be assigned preferences, which determine the order in which operations
will be performed on the filesystems. If a directory with the same file name exists in
multiple branches, the contents of the directory appear to be merged in the UFS, but the
operations on the files in those directories are redirected to respective filesystems.

UFS allows us to create a writable layer over a read-only file system and create new
files/directories. It also allows the updating of existing files. The existing files are updated
by copying the file to the writable layer and then making the changes. A file in a read-only
file system is kept as it is, but the virtual view created by UFS will show an updated file.
This phenomenon of copying a file to a writable layer to update it is called copy-up.

With copy-up in place, removing files becomes complex. When trying to delete a file, we
have to delete all the copies from bottom to top. This can result in errors on read-only
layers, which cannot remove the file. In such situations, the file is removed from writable
layers, but still exists in the read-only layers below.

UFS – issues
The most obvious problem with UFS is support for underlying filesystems. Since UFS
wraps the necessary branches and their filesystems, the filesystem support has to be added
in the UFS source code. The underlying filesystems do not change, but UFS has to add
support for each one of them.

The whiteouts created after removing files also cause a lot of problems. First and foremost is
that they pollute the filesystem namespace. This can be reduced by adding whiteouts in a
single sub-directory, but that needs special handling. Also, because of whiteouts, rmdir
performance degrades. Even if a directory seems empty, it might contain a lot of whiteouts,
because of which rmdir cannot remove the directory.

Copy-up is an excellent feature in UFS, but it also has drawbacks. It reduces the
performance for the first update, as it has to copy the complete file and directory hierarchy
to a writable layer. Also, the time of directory copies needs to be decided. There are two
choices: copy the whole directory hierarchy while updating, or do it when the directory is
opened. Both techniques have their trade-offs.

Hooking Volume Baggage

[226]

AuFS
AuFS is another UFS. AuFS is forked from the UFS file system. This caught the eye of
developers, and is now way ahead of UFS. In fact, UFS is now following some of the design
decisions taken while developing AuFS. Like any UFS, AuFS makes existing filesystem and
overlays a unified view on it.

AuFS supports all the UFS features mentioned in the previous sections. You need to install
the aufs-tools package on Ubuntu to use AuFS commands. More information about
AuFS and its commands can be found on the AuFS man page.

Device Mapper
Device Mapper is a Linux kernel component; it provides a mechanism for mapping
physical block devices onto virtual block devices. These mapped devices can be used as
logical volumes. Device Mapper provides a generic way to create such mappings.

Device Mapper maintains a table, which defines device mappings. The table specifies how
to map each range of logical sectors of the device. The table contains lines for the following
parameters:

start

length

mapping

mapping_parameters

The start value for the first line is always zero. For other lines, start plus the length of the
previous line should be equal to the start value of the current line. Device Mapper sizes
are always specified in 512 byte sectors. There are different types of mapping targets, such
as linear, striped, mirror, snapshot, snapshot-origin, and so on.

How device-mapper is used by Docker
Docker uses the thin provisioning and snapshots features of Device Mapper. These features
allow many virtual devices to be stored on the same data volume. Two separate devices are
used for data and metadata. The data device is utilized for the pool itself and the metadata
device contains information about volumes, snapshots, blocks in the storage pool, and
mapping between the blocks of each snapshot. So, Docker creates a single large block device
on which a thin pool is created. It then creates a base block device. Every image and
container is formed from the snapshot of this base device.

Hooking Volume Baggage

[227]

BTRFS
BTRFS is a Linux filesystem that has the potential to replace the current default Linux
filesystem, EXT3/EXT4. BTRFS (also known as butter FS) is basically a copy-on-write
filesystem. Copy-on-Write (CoW) means it never updates the data. Instead, it creates a new
copy of that part of the data which is stored somewhere else on the disk, keeping the old
part as it is. Anyone with decent filesystem knowledge will understand that CoW requires
more space because it stores the old copies of data as well. Also, it has the problem of
fragmentation. So, how can a CoW filesystem be used as a default Linux filesystem?
Wouldn't that reduce the performance? No need to mention the storage space problem.
Let's dive into BTRFS to understand why it has become so popular.

The primary design goal of BTRFS was to develop a generic filesystem that can perform
well with any use case and workload. Most filesystems perform well for a specific
filesystem benchmark, and performance is not that great for other scenarios. Apart from
this, BTRFS also supports snapshots, cloning, and RAID (Level 0, 1, 5, 6, 10). This is more
than anyone has previously bargained for from a filesystem. One can understand the design
complexity, because Linux filesystems are deployed on all kinds of devices, from computers
and smart phones to small embedded devices. The BTRFS layout is represented with B-
trees, more like a forest of B-trees. These are copy-on-write-friendly B-trees. As CoW
filesystems require a little more disk space, in general, BTRFS has a very sophisticated
mechanism for space reclamation. It has a garbage collector, which makes use of reference
counting to reclaim unused disk space. For data integrity, BTRFS uses check sums.

The storage driver can be selected by passing the --storage-driver option to the
dockerd command line, or setting the DOCKER_OPTS option in the /etc/default/docker
file:

$ dockerd --storage-driver=devicemapper &

Hooking Volume Baggage

[228]

We have considered the preceding three widely used filesystems with Docker in order to do
performance analysis for the following Docker commands using micro benchmark tools;
fio is the tool used to analyze the details of the filesystem, such as random write:

commit: This is used to create a Docker image out of a running container:

Chart depicting the time required to commit a large-size container containing a single large file

Hooking Volume Baggage

[229]

build: This is used to build an image from using a Dockerfile which contains a
set of steps to be followed to create an image from scratch containing a single
large file:

Chart depicting the time required to build the container on different file systems

Hooking Volume Baggage

[230]

rm: This is used to remove a stopped container:

Chart depicting the time required to remove the container holding many thousands of files using the rm command

Hooking Volume Baggage

[231]

rmi: This is used to remove an image:

Chart depicting the time required to remove a large size container containing a single large file using the rmi command

From the preceding tests, we can clearly see that AuFS and BTRFS perform extremely well
for Docker commands, but BTRFS containers performing many small writes leads to poor
use of the BTRFS chunk. This can ultimately lead to out-of-space conditions on the Docker
host and stop working. Using the BTRFS storage driver closely monitors the free space on
the BTRFS filesystem. Also, due to the BTRFS journaling technique, the sequential writes
are affected and can halve performance.

Hooking Volume Baggage

[232]

Device Mapper performs badly, as each time the container updates existing data, the
storage driver performs a CoW operation. The copy is from the image snapshot to the
container's snapshot and can have a noticeable impact on container performance.

AuFS looks like a good choice for PaaS and other similar use-cases where container density
plays an important role. AuFS efficiently shares images between running, enabling a fast
container start time and minimal use of disk space. It also uses system page cache very
efficiently. OverlayFS is a modern filesystem similar to AuFS, but with a simpler design and
potentially faster. But currently, OverlayFS is not mature enough to be used in a production
environment. It may be a successor to AuFS in the near future. No single driver is well
suited for every use case. Users should either select the storage driver as per the use case
and considering the stability required for the application, or go ahead with the default
driver installed by the distribution's Docker package. If the host system is RHEL or a
variation, Device Mapper is the default storage driver. For Ubuntu, AuFS is the default
driver.

Summary
In this chapter, we took a deep dive into data volumes and storage driver concepts related
to Docker. We discussed troubleshooting the data volumes with the help of the four
approaches, as well as their pros and cons. The first case of storing data inside the Docker
container is the most basic case, but doesn't provide the flexibility to manage and handle
data in a production environment. The second and third cases are about storing the data
using data-only containers or directly on the host. These cases help to provide reliability,
but still depend on the availability of host. The fourth case, which is about using a third-
party volume plugin such as Flocker or Convoy, solves all of the preceding issues by storing
the data in a separate block, and provides the reliability with data, even if the container is
transferred from one host to another or if the container dies. In the final section we
discussed Docker storage drivers and the plugin architecture provided by Docker to use
required filesystems such as AuFS, BTRFS, Device Mapper, vfs, zfs and OverlayFS. We
looked in depth at AuFS, BTRFS, and Device Mapper, which are widely used filesystems.
From the various tests we conducted using the basic Docker commands, AuFS and BTRFS
provide a better performance than Device Mapper. Users should select a Docker storage
driver as per their application use case and Docker daemon host system.

In the next chapter, we'll discuss Docker deployment in a public cloud, AWS and Azure,
and troubleshooting issues.

10
Docker Deployment in a Public

Cloud - AWS and Azure
In this chapter, we'll be doing Docker deployment on public clouds AWS and Azure. AWS
rolled out the Elastic Compute Cloud (EC2) container service towards the end of 2014.
When it was launched, the company emphasised the management tasks with container
cluster management with high-level APIs calls based on Amazon services release in the
past. AWS has recently released Docker for AWS Beta, which allows users to quickly set up
and configure a Docker 1.13 swarm mode on AWS as well as on Azure. With the help of
this new service, we get the following features:

It ensures teams to can seamlessly move apps from the developer's laptop to a
Dockerised staging and production environment
It helps to deeply integrate with underlying AWS and Azure infrastructure, takes
advantage of the host environment, and exposes familiar interfaces to
administrators using the public cloud
It deploys the platform and migrates easily across various platforms where
Dockerised apps can be moved simply and efficiently
It makes sure the apps run perfectly with the latest and greatest Docker versions
on the chosen platform, hardware, infrastructure, and OS

In the second half of the chapter, we'll be covering the Azure Container Service, which
makes it simple to create, configure, and manage clusters of virtual machines that provide
the support to run containerised applications. It allows us to deploy and manage
containerised applications with Microsoft Azure. It also supports the various Docker
orchestration tools, such as DC/OS, Docker Swarm, or Kubernetes as per user choice.

Docker Deployment in a Public Cloud - AWS and Azure

[234]

In this chapter, we will cover the following topics:

Architecture of Amazon EC2 Container Service (Amazon ECS)
Troubleshooting AWS ECS deployment
Updating the Docker containers in the ECS cluster
Architecture of the Microsoft Azure Container Service
Troubleshooting the Microsoft Azure Container Service
Docker Beta for AWS and Azure

Architecture of Amazon ECS
The core architecture of Amazon ECS is the cluster manager, a backend service which
handles the task of cluster coordination and state management. On top of the cluster
manager sits the scheduler manager. They are decoupled from each other, allowing
customers to build their own scheduler. The pool of resources includes CPU, memory, and
the networking resources of Amazon EC2 instances partitioned by containers. Amazon ECS
coordinates the cluster through the open source Amazon ECS container agent running on
each EC2 instance, and does the job of starting, stopping, and monitoring containers as
requested by the scheduler. In order to manage a single source of truth: EC2 instances, task
running on them and containers and resources utilized. We need the state to be stored
somewhere, which is done in the cluster manager key/value store. To be robust and
scalable, this key/value store needs to be durable, available, and protect against network
partitions and hardware failures. To achieve the concurrency control for this key/value
store, a transactional journal based data store is maintained to keep record of changes to
every single entry. The Amazon ECS cluster manager has opened a set of APIs to allow
users to access all the clustered state information stored in the key/value store. Through the
list command, customers can retrieve the cluster under management, running tasks, and
EC2 instances. The describe command can help to retrieve details of specific EC2
instances and the resources available with them. Amazon ECS architecture delivers a highly
scalable, available, and low latency container management solution. It is fully managed and
provides operational efficiency, allowing customers to build and deploy applications and
not think about clusters to manage or scale:

Docker Deployment in a Public Cloud - AWS and Azure

[235]

Amazon ECS architecture

Troubleshooting – AWS ECS deployment
An EC2 instance can be deployed manually and Docker can be configured on it, but ECS is
a group of EC2 instances managed by ECS. ECS will take care of deploying Docker
containers across the various hosts in a cluster and integrating with other AWS
infrastructure services.

In this section, we'll be covering some of the basic steps to set up ECS on AWS, which will
help to troubleshoot and bypass basic configuration errors:

Creating an ECS cluster
Creating an ELB load balancer

Docker Deployment in a Public Cloud - AWS and Azure

[236]

Running Docker containers in the ECS cluster
Updating Docker containers in the ECS cluster

Launch the EC2 Container Service listed under Compute from the AWS Console:1.

Click on the Get Started button:2.

Docker Deployment in a Public Cloud - AWS and Azure

[237]

On the next screen, select both options: deploy a sample application, create, and3.
manage a private repository. A private repository is created for the EC2 service
and secured by AWS. It requires an AWS login to push images:

Provide the repository name, and we'll be able to see the repository address4.
where container images need to be pushed being generated:

Docker Deployment in a Public Cloud - AWS and Azure

[238]

The next screen shows some of the basic Docker and AWS CLI commands to5.
push the container images to the private repository, as the following shows:

Install AWS CLI with the help of the pip package manager:

 $ pip install awscl

Use the aws configure command and provide an AWS access key ID and AWS
secret access key to log in:

 $ aws configure
 AWS Access Key ID [None]:
 AWS Secret Access Key [None]:
 Default region name [None]:
 Default output format [None]:

Get the docker login command to authenticate the local Docker client to the
private AWS registry:

 $ aws ecr get-login --region us-east-1
 docker login -u AWS -p
 Key...

Use the link which is generated as the output of the preceding command which
will configure the Docker client to work with the private repository deployed in
AWS:

 $ docker login -u AWS -p Key...
 Flag --email has been deprecated, will be removed in 1.13.
 Login Succeeded

Now we'll tag the nginx basic container image with the AWS private repository
name in order to get it pushed to the private repository:

 $ docker images
 REPOSITORY TAG IMAGE ID CREATED SIZE
 nginx latest 19146d5729dc 6 days ago 181.6 MB

 $ docker tag nginx:latest private-repo.amazonaws.com/sample:latest

 $ docker push private-repo.amazonaws.com/sample:latest
 The push refers to a repository [private-repo.amazonaws.com/sample]
 e03d01018b72: Pushed
 ee3b1534c826: Pushing [==>] 2.674 MB/58.56 MB
 b6ca02dfe5e6: Pushing [>] 1.064 MB/123.1 MB
 ... Image successfully pushed

Docker Deployment in a Public Cloud - AWS and Azure

[239]

After pushing the image to the private Docker repository, we'll be creating a task6.
definition defining the following:

The Docker images to run
The resources (CPU, memory, and other) to be allocated
The volumes to be mounted
The Docker containers to be linked together
The command container that should run when it is started
The environment variables to be set for the container
The IAM roles the task should use for permission
Privileged Docker container or not
The labels to be given to the Docker container
The port mapping and network, and Docker networking mode to be
used for the containers:

Docker Deployment in a Public Cloud - AWS and Azure

[240]

Advanced container configuration gives us the option to declare the CPU units,7.
Entry point, privileged container or not, and so on:

In the next step, we'll be declaring the service useful for a task that runs8.
continuously, such as a web service.

This allows us to run and maintain a specified number (desired count) of task
definitions simultaneously in the ECS cluster. If any of the tasks fails, the Amazon
ECS service scheduler launches another instance and maintains the desired
number of tasks in the service.

Docker Deployment in a Public Cloud - AWS and Azure

[241]

We can optionally run the desired count of tasks in our service behind a load
balancer. Amazon ECS allows us to configure elastic load balancing to distribute
traffic across the tasks defined in the service. The load balancer can be configured
as an application load balancer, which can route requests to one or more ports and
makes decisions at the application layer (HTTP/HTTPS). A classic load balancer
makes decisions at the transport layer (TCP/SSL) or application layer
(HTTP/HTTPS). It requires a fixed relationship between the load balancer port
and container instance port:

Docker Deployment in a Public Cloud - AWS and Azure

[242]

In the next step, configure the cluster, which is a logical grouping of EC29.
instances. By default, we'll be defining t2.micro as an EC2 instance type and the
current number of instances as 1:

Review the configuration and deploy the ECS cluster. After the cluster is created,10.
click on the View Service button to see details about the service:

Docker Deployment in a Public Cloud - AWS and Azure

[243]

Click on the EC2 container load balancer to get the publicly accessible service11.
URL:

In the description of the load balancer, DNS name is the URL to access the service12.
from the Internet:

Docker Deployment in a Public Cloud - AWS and Azure

[244]

The Welcome to nginx page can be seen as we access the load balancer public13.
URL:

Updating Docker containers in the ECS
cluster
We have the Docker container running in the ECS cluster, so now, let's walk through a
scenario where both the container and the service need to be updated. Usually, this happens
in a continuous delivery model, where we have two production environments; the blue
environment is the older version of the service and is currently live, to handle users'
requests. The new release environment is termed the green environment, which is in the
final stage and will be handling future incoming requests from users as we switch from the
older version to the newer one.

The blue-green deployment helps to give a rapid rollback. We can switch the router to the
blue environment if we face any issues in the latest green environment. Now, as the green
environment is live and handling all the requests, the blue environment can be used as a
staging environment for the final testing step of the next deployment. This scenario can
easily be achieved with the help of Task definitions in ECS:

Docker Deployment in a Public Cloud - AWS and Azure

[245]

Blue-green deployment environment

The new revision can be created by selecting the ECS task created and clicking on1.
the Create new Task Definition button:

Docker Deployment in a Public Cloud - AWS and Azure

[246]

In the new definition of the task, we can attach a new container or click on the2.
container definition and update it. Advanced container configuration can also be
used to set up the Environment Variables:

After creating the latest task, click on Actions and then click on Update Service:3.

Docker Deployment in a Public Cloud - AWS and Azure

[247]

The console-sample-app-static:2 will update the console-sample-app-static:14.
and various options, including number of tasks and auto scaling options, are
provided on the next screen:

The auto scaling group will launch, including the AMI, instance type, security group, and
all other details used to launch the ECS instance. Using the scaling policy, we can scale the
cluster instances and services, and safely scale them down as demands subside. The
availability zone aware ECS scheduler manages, distributes, and scales the cluster, thus
making the architecture highly available.

Microsoft Azure container service
architecture
Azure is one of the fastest growing infrastructure services in the market today. It supports
scale-on-demand and the ability to create hybrid environments, and big data with the help
of Azure Cloud Services. The Azure Container Service provides deployment of open source
container clustering and orchestrating solutions. With the help of the Azure Container
Service, we can deploy DC/OS (Marathon), Kubernetes, and Swarm based container
clusters. The Azure portal provides a simple UI and CLI support to achieve this
deployment.

Docker Deployment in a Public Cloud - AWS and Azure

[248]

Microsoft Azure is officially the first public cloud to support mainstream container
orchestration engines. Even the Azure Container Service engine is open sourced on GitHub
(h t t p s ://g i t h u b . c o m /A z u r e /a c s - e n g i n e).

This step enables developers to understand the architecture and run multiple orchestration
engines directly on the vSphere Hypervisor, KVM, or HyperV. The Azure Resource
Manager (ARM) templates provide the basis of the cluster deployed via the ACS APIs. The
ACS engine is built in Go, which enables users to combine different pieces of configuration
and build a final template that can be used for deploying a cluster.

The Azure container engine has the following features:

Orchestrator of your choice, such as DC/OS, Kubernetes, or Swarm
Multiple agent pools (availability set and virtual machine set)
Docker cluster size up to 1,200:
Supporting custom vNET

The Azure Container Service is primarily built with DC/OS as one of the critical
components, and implementation is optimized for easy creation and usage on Microsoft
Azure. ACS architecture has three basic components: Azure Compute to manage the VM
health, Mesos for container health management, and Swarm for Docker API management:

Microsoft Azure container architecture

https://github.com/Azure/acs-engine
https://github.com/Azure/acs-engine
https://github.com/Azure/acs-engine
https://github.com/Azure/acs-engine
https://github.com/Azure/acs-engine
https://github.com/Azure/acs-engine
https://github.com/Azure/acs-engine
https://github.com/Azure/acs-engine
https://github.com/Azure/acs-engine
https://github.com/Azure/acs-engine
https://github.com/Azure/acs-engine
https://github.com/Azure/acs-engine
https://github.com/Azure/acs-engine
https://github.com/Azure/acs-engine
https://github.com/Azure/acs-engine
https://github.com/Azure/acs-engine
https://github.com/Azure/acs-engine
https://github.com/Azure/acs-engine
https://github.com/Azure/acs-engine
https://github.com/Azure/acs-engine
https://github.com/Azure/acs-engine
https://github.com/Azure/acs-engine
https://github.com/Azure/acs-engine
https://github.com/Azure/acs-engine
https://github.com/Azure/acs-engine
https://github.com/Azure/acs-engine
https://github.com/Azure/acs-engine
https://github.com/Azure/acs-engine
https://github.com/Azure/acs-engine
https://github.com/Azure/acs-engine
https://github.com/Azure/acs-engine
https://github.com/Azure/acs-engine
https://github.com/Azure/acs-engine
https://github.com/Azure/acs-engine
https://github.com/Azure/acs-engine
https://github.com/Azure/acs-engine
https://github.com/Azure/acs-engine
https://github.com/Azure/acs-engine
https://github.com/Azure/acs-engine
https://github.com/Azure/acs-engine
https://github.com/Azure/acs-engine
https://github.com/Azure/acs-engine
https://github.com/Azure/acs-engine
https://github.com/Azure/acs-engine
https://github.com/Azure/acs-engine
https://github.com/Azure/acs-engine
https://github.com/Azure/acs-engine
https://github.com/Azure/acs-engine
https://github.com/Azure/acs-engine
https://github.com/Azure/acs-engine
https://github.com/Azure/acs-engine
https://github.com/Azure/acs-engine
https://github.com/Azure/acs-engine
https://github.com/Azure/acs-engine
https://github.com/Azure/acs-engine
https://github.com/Azure/acs-engine
https://github.com/Azure/acs-engine
https://github.com/Azure/acs-engine
https://github.com/Azure/acs-engine
https://github.com/Azure/acs-engine

Docker Deployment in a Public Cloud - AWS and Azure

[249]

Troubleshooting – The Microsoft Azure
Container Service
In this section, we'll be looking at how to deploy a Docker Swarm cluster and provide
orchestrator configuration details in Microsoft Azure:

We need to create an RSA key, which will be requested in the deployment steps.1.
The key will be required to log in to the deployed machines post installation:

 $ ssh-keygen

Once generated, the keys can be found in ~/root/id_rsa

Click on the New button in your Azure account portal:2.

Docker Deployment in a Public Cloud - AWS and Azure

[250]

Search for the Azure Container Service and select it:3.

Docker Deployment in a Public Cloud - AWS and Azure

[251]

After this step, select Resource Manager as the deployment model and click on4.
the Create button:

Docker Deployment in a Public Cloud - AWS and Azure

[252]

Configure the basics settings page, the following details are required: User name,5.
which will be administrator for the virtual machines deployed in the Docker
Swarm cluster; the second field is to provide the SSH public key we created in
the step 1; and create a new resource group by specifying the name in the
Resource Group field:

Docker Deployment in a Public Cloud - AWS and Azure

[253]

Select the Orchestrator configuration as Swarm, DC/OS, or Kubernetes, as6.
required:

Docker Deployment in a Public Cloud - AWS and Azure

[254]

In the next step, provide the orchestrator configuration, Agent count, and Master7.
count for this deployment. Also, the DNS prefix can be provided as
dockerswarm or as required:

Docker Deployment in a Public Cloud - AWS and Azure

[255]

Check the Summary, and once validation is passed click on OK. On the next8.
screen, click on the Purchase button to go ahead with the deployment:

Docker Deployment in a Public Cloud - AWS and Azure

[256]

Once the deployment has started, the status can be seen on the Azure primary9.
Dashboard:

Once the Docker Swarm cluster is created, click on the swarm-master from the10.
Docker Swarm resources shown on the dashboard:

Docker Deployment in a Public Cloud - AWS and Azure

[257]

In the Essentials section of the swarm-master, you'll be able to find the DNS11.
entry, as shown in the following screenshot:

The following is the command to connect via SSH to the swarm-master:

 ssh <DNS_FROM_FIELD> -A -p 2200 -i <PUB_FILE_LOCATION>

Once connected to the master, basic Docker Swarm commands can be executed, and
container deployment can be done on the Swarm cluster deployed on Microsoft Azure.

Docker Deployment in a Public Cloud - AWS and Azure

[258]

Docker Beta for AWS and Azure
With the recent release of this service, Docker has made it simple to deploy the Docker
engine on AWS and Azure through tight integration with both cloud platforms'
infrastructure services. This allows developers to bundle their code and deploy it in
production machines, regardless of the environment. Currently, this service is in Beta
version, but we have covered a basic tutorial of Docker deployment for AWS. This service
also allows you to upgrade Docker versions comfortably within these environments. Even
the Swarm modes are enabled in these services, which provides a self-healing and self-
organizing Swarm mode for the individual Docker engines. They are also distributed across
availability zones.

Docker Beta for AWS and Azure provides the following improvements compared to the
preceding approaches:

Using SSH keys for an IaaS account, for access control
Easy provisioning of infrastructure load balancing, and dynamic updating, as
apps are provisioned in the system
Secured Docker setups can be done with the help of security groups and virtual
networks

Docker for AWS uses the CloudFormation template and creates the following objects:

EC2 instances with auto scaling enabled
IAM profiles
DynamoDB Tables
VPC, subnets, and security groups
ELB

SSH keys of the AWS region are required to deploy and access the deployed instances. The
installation can also be done with the CloudFormation template using the AWS CLI, but in
this tutorial, we'll be covering the AWS console based approach:

Log in to the console, select CloudFormation, and click on Create Stack.1.
Specify the Amazon S3 template URL2.
as https://docker-for-aws.s3.amazonaws.com/aws/beta/aws-v1.13.0-
rc4-beta14.json, as follows:

Docker Deployment in a Public Cloud - AWS and Azure

[259]

On the next screen, specify the stack details, stating the number of Swarm3.
managers and nodes needing to be deployed. The AWS generated SSH key to be
used can also be specified:

Docker Deployment in a Public Cloud - AWS and Azure

[260]

On the next screen, we'll have the option to provide tags as well as IAM4.
permission roles:

Review the details and launch the stack:5.

Docker Deployment in a Public Cloud - AWS and Azure

[261]

The stack will get listed with the status CREATE_IN_PROGRESS. Wait till the6.
stack gets fully deployed:

Post deployment, the stack will have the status CREATE_COMPLETE. Click on7.
it and the deployed environment details will be listed:

The AWS generated SSH keys can be used to SSH into the manager node and administer
the deployed Docker Swarm instance:

$ ssh -i <path-to-ssh-key> docker@<ssh-host>
Welcome to Docker!

The docker info command will provide information about the Swarm cluster. The Swarm
nodes can be listed using the following command:

$ docker info
Containers: 5
 Running: 4
 Paused: 0

Docker Deployment in a Public Cloud - AWS and Azure

[262]

 Stopped: 1
Images: 5
Server Version: 1.13.0-rc4
Storage Driver: overlay2
 Backing Filesystem: extfs

$ docker node ls
ID HOSTNAME STATUS
AVAILABILITY MANAGER STATUS
koewopxooyp5ftf6tn5wypjtd ip-172-31-37-122.ec2.internal Ready Active
qs9swn3uv67v4vhahxrp4q24g ip-172-31-2-43.ec2.internal Ready Active
ubkzv527rlr08fjjgvweu0k6t * ip-172-31-1-137.ec2.internal Ready Active
Leader

The SSH connection can be made directly to the leader node as well, and a basic Docker
container can be deployed:

$ ssh docker@ip-172-31-37-122.ec2.internal

$ docker run hello-world
Unable to find image 'hello-world:latest' locally
latest: Pulling from library/hello-world
c04b14da8d14: Pull complete
Digest:
sha256:0256e8a36e2070f7bf2d0b0763dbabdd67798512411de4cdcf9431a1feb60fd9
Status: Downloaded newer image for hello-world:latest

Hello from Docker!

The service can be created for the preceding deployed container as follows:

$ docker service create --replicas 1 --name helloworld alpine ping
docker.com
xo7byk0wyx5gim9y7etn3o6kz

$ docker service ls
ID NAME MODE REPLICAS IMAGE
xo7byk0wyx5g helloworld replicated 1/1 alpine:latest

$ docker service inspect --pretty helloworld
ID: xo7byk0wyx5gim9y7etn3o6kz
Name: helloworld
Service Mode: Replicated

Docker Deployment in a Public Cloud - AWS and Azure

[263]

The service can be scaled in the Swarm cluster and removed as follows:

$ docker service scale helloworld=5
helloworld scaled to 5

$ docker service ps helloworld
ID NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR PORTS
9qu8q4equobn helloworld.1 alpine:latest ip-172-31-37-122.ec2.internal
Running Running about a minute ago
tus2snjwqmxm helloworld.2 alpine:latest ip-172-31-37-122.ec2.internal
Running Running 6 seconds ago
cxnilnwa09tl helloworld.3 alpine:latest ip-172-31-2-43.ec2.internal
Running Running 6 seconds ago
cegnn648i6b2 helloworld.4 alpine:latest ip-172-31-1-137.ec2.internal
Running Running 6 seconds ago
sisoxrpxxbx5 helloworld.5 alpine:latest ip-172-31-1-137.ec2.internal
Running Running 6 seconds ago

$ docker service rm helloworld
helloworld

Summary
In this chapter, we have covered Docker deployment on public clouds Microsoft Azure and
AWS. Both cloud providers provide a competitive container service for customers. This
chapter helps to explain the detailed architecture of the AWS EC2 and Microsoft Azure
Container Service architecture. It has also covered installation and troubleshooting for all
the deployment steps of the container cluster. This chapter has covered the blue-green
deployment scenario and how it can be supported in AWS EC2, which is mostly necessary
in the case of modern SaaS applications. Finally, we have covered Docker Beta, for AWS
and Azure, which was launched recently and provides easy migration of containers from a
development environment to a production environment as they are same. Container-based
applications can be easily deployed and scaled with Docker Beta, as this service is very well
coupled with the IaaS of the cloud providers.

Index

A
advantages, Docker containers
 easily shareable 13
 lightweight footprint 13
 portability 13
 rapid application development 13
 reusability 13
Amazon EBS 221
Amazon ECS
 architecture 234
Ansible Container
 about 145
 commands 146
 troubleshooting tips 145
Ansible
 about 143
 Docker, automating with 144
 features 143
App Armor 133
application containers
 about 9
 purpose 9
 versus OS containers 10, 11
application tiers
 working 105
AuFS 226
automated deployments 103
automated image
 building 79
 tested deployments, automating 81
 unit tested deployments 79
automated testing 101
automated tests
 designing, for failure 101
AWS console based approach 258, 260, 261
AWS console

 reference 196
AWS ECS deployment
 troubleshooting 235, 236, 237, 238, 240, 241,

242, 243
AWS
 Kubernetes, deploying on 196
Azure container engine
 features 248
Azure Container Service engine
 reference 248

B
Bare Metal machine
 Kubernetes, deploying on 190
base image sharing pattern 16
base images
 building 54
BIRD 174
BTRFS 227
build container 18
butter FS 227

C
cache
 filesystem state, examining from 72
Calico architecture
 components 174
Calico repository
 reference 175
calicoctl 174
CentOS VM deployment on AWS, for running

Docker containers
 about 32, 33
 Docker installation, testing 35
 Docker package, installing 35
 Docker service, starting 35
 installation parameters, checking 36

[265]

 kernel version, checking 34
 YUM packages, updating 34
 YUM repository, adding 35
Chef 147
chisels 77
CNM attributes
 labels 170
 options 169
CNM life cycle 170
CNM objects
 about 165
 endpoint 166
 network 167
 network controller 168
 sandbox 165
commands, Ansible Container
 ansible-container build 146
 ansible-container push 146
 ansible-container run 146
 ansible-container shipit 146
 ansible_container init 146
commands, Dockerfiles
 ADD 63
 CMD 65
 COPY 65
 ENTRYPOINT 67
 ENV 61
 FROM 60
 LABEL 67
 MAINTAINER 60
 RUN 61
 USER 69
 WORKDIR 68
communication, between containers and external

network
 troubleshooting 157
components and services, Docker networking
 Apparmor/SELinux 150
 IPtables 150
 Linux bridges 149
 Network Address Translators (NAT) 149
 Open vSwitch 149
components, Calico architecture
 BIRD 174
 calicoctl 174

 confd 174
 Felix 174
components, Docker Universal Control Plane
 controller 122
 node 122
components, Kubernetes
 Kubectl 189
 label 189
 master 188
 node 188
 pod 189
 replication controller 189
confd 174
container images
 about 49
 building 50
Container Network Model (CNM) 164
containerization 8
Containers-Module
 reference 46
containers
 application containers 9
 decoding 8
 linking 161
 OS containers 8, 9
Convoy 215, 221
Copy-on-Write (CoW) 227
CoreOS 36

D
data-only container
 about 212
 creating 213
data
 sharing, between host and Docker container

213, 214
debootstrap 57
default case storing data, Docker container 211
design patterns, Docker
 about 15
 base image sharing 16
 build container 18
 development tools container 17
 infrastructure containers 20
 installation container 19

[266]

 service-in-a-box container 19
 shared volume 16
 test environment containers 18
development tools container 17
Device Mapper 226
distributed applications 86
DNS
 configuring 155
Docker Beta for AWS
 about 258
 improvements 258
Docker Beta for Azure 258
Docker bridge configuration, troubleshooting
 about 151
 containers, connecting to external world 152
 containers, reaching from outside world 152
Docker client 23
Docker commands
 build 229
 commit 228
 rm 230
 rmi 231
Docker Compose 23, 141
Docker container
 default case storing data 211
Docker containers, at scale
 troubleshooting 137
Docker containers
 advantages 13
 updating, in ECS cluster 244, 245, 246, 247
Docker cookbook
 reference 147
Docker details
 for troubleshooting 70
Docker Engine swarm node
 used, for configuring overlay network 175
Docker Hub
 about 50
 functions 108
 reference 42
Docker images
 cranking, manually 71
Docker info 70
Docker installation, on CoreOS
 about 36

 channels of CoreOS, installing 37, 38, 39
 troubleshooting tips 40
Docker installation, on Fedora
 about 40
 DNF package, updating 42
 Docker installation script, running 43
 Docker package, installing 41, 42
 Docker repository, adding to YUM repository 41
 installation, with DNF 40
 Linux kernel version, checking 40
Docker installation, on Red Hat Linux
 about 28
 Docker package, installing 30
 Docker service, starting 30
 installation parameters, checking 31
 kernel version, checking 29
 testing 30
 troubleshooting tips 31
 YUM packages, updating 29
 YUM repository, adding 30
Docker installation, on SUSE Linux
 about 44, 46
 Containers-Module, adding 46
 Docker service, starting 47
 installation, checking 47
 Linux kernel version, checking 46
 SUSE Linux VM, launching on AWS 44, 45
 troubleshooting 47
Docker installation, on Ubuntu
 about 24, 28
 AppArmor, installing 27
 linux-image-extra, installing 27
 new GPG key, adding 25
 new package source, adding for Docker 26
 package information, updating 25
 prerequisites 25
 troubleshooting 26
 Ubuntu packages, updating 26
Docker lifecycle 14, 15
Docker Machine 23
Docker networking tools
 based on overlay network 171
Docker networking
 about 149
 components 149

[267]

 services 149
Docker official repositories
 reference 50
Docker public repository 108
Docker registry
 about 50, 107
 official images 50
Docker storage driver performance
 about 224
 device-mapper 226
 UFS basics 224
Docker toolbox 23
Docker Trusted Registry (DTR)
 about 120
 features 120
Docker Universal Control Plane
 about 122
 components 122
 deploying 127
Docker volumes 211
docker0 bridge 150
Docker
 about 7, 12
 automating, with Ansible 144
 design patterns 15
 keys, for modern application development 12
Dockerfiles
 commands 60, 61, 63, 65, 69
 constructing 58
 examples 59, 61, 63, 65
 used, for building layered images 58
Dockunit
 about 102
 for unit tests 102

E
ECS cluster
 Docker containers, updating in 244, 245, 246,

247

endpoint 166
enterprise service bus (ESB) 90
etcd
 reference 172

F
failed container processes
 checking 75
features, Ansible
 application deployment 143
 compliance 143
 configuration management 143
 continuous delivery 143
 orchestration 143
 provisioning 143
 security 143
Fedora 40
Felix 174
filesystem state
 examining, from cache 72
Flannel 172
Flocker client mode 219
Flocker
 about 215
 deploying 217, 218
functions, Docker Hub
 automated build 108
 user management 108
 WebHooks 108

G
GNU Privacy Guard (GPG) 25

H
hypervisor 9

I
IAM console
 reference 196
image layer IDs
 as debug containers 73
image layering 58
images, pushing to Docker Hub
 about 109
 images, moving in between hosts 113
 integrity, ensuring of images 115
 private local Docker registry, installing 112
images
 about 49

[268]

 building, scratch repository used 57
 debugging 69
 testing 69
infrastructure containers 20
installation container 19
installed Docker images
 listing 71

K
Kitematic 23
Kubectl 189
Kubernetes Fedora manual setup
 troubleshooting 193
Kubernetes issues
 debugging 207
Kubernetes setup
 troubleshooting 200
Kubernetes
 about 188
 components 188
 deploying, in production environment 204, 205,

206

 deploying, Minikube used 193
 deploying, on AWS 196
 deploying, on Bare Metal machine 190
 deploying, on vSphere 199
 pod deployment 201

L
label 189
layer 59
layered images
 building 58
 building, Dockerfiles used 58
libnetwork 164
Lightweight Directory Access Protocol (LDAP) 121
Linux Containers (LXC) 8
Logspout
 reference 72
Lots of Small Applications (LOSA) 12

M
master 188
microservices architecture
 about 90, 91

 disadvantages, mitigating 97
 path to modernity 90
 real-world example 100
microservices
 advantages 92
 at scalability 94
 characteristics 92
 considerations 96
 disadvantages 95
 managing 98
Microsoft Azure container service architecture 247
Microsoft Azure Container Service
 troubleshooting 249, 251, 252, 254, 256, 257
Minikube
 used, for deploying Kubernetes 193
modules, for orchestrating Docker containers
 docker_container 145
 docker_image 145
 docker_login 145
 docker_service 144
monolithic architecture 85, 86
multi-host Docker networking solutions
 comparing 180
multi-tier application 86
multiple images
 N-tier applications, decoupling into 103
MySQL 10

N
N-tier application architecture
 about 86
 data storage tier 87
 domain logic tier 87
 presentation tier 87
N-tier applications
 decoupling, into multiple images 103
N-tier web application
 building 104
Netlink 166
network 167
network controller 168
Network File System (NFS) 221
network overlay 171
Nginx 10
node 188

[269]

Node.js 10

O
offline key 115
OpenFlow 181
OpenvSwitch (OVS)
 about 181
 configuring, to work with Docker 181
OS containers
 about 8, 9
 versus application containers 10, 11
overlay network
 about 171
 configuring, with Docker Engine swarm node 175
OVS multiple host setups
 troubleshooting 184
OVS single host setup
 troubleshooting 182

P
persistent volume (PV) 207
persistent volume chain (PVC) 207
PHPUnit 79
pod 189
private Docker registry
 about 109
 advantages 109
privileged containers
 about 133
 troubleshooting tips 134
production environment
 Kubernetes, deploying in 204, 205, 206
Project Calico 173
Puppet
 about 137
 use cases 137

R
registry, of Docker images
 reference 51
replication controller 189
role-based authentication (RBAC) 121

S
sandbox 165
scratch repository
 used, for building images 57
SELinux 133
service-in-a-box container 19
Service-Oriented Architecture (SOA) 84
sharding 94
shared volume 16
signed images 115
SSH access
 restricting, from one container to another 159
standardization 50
super-privileged container 135
supermin 57
sysdig
 about 76
 advanced installation 77
 reference 76
 single step installation 77
 used, for debugging images 76

T
tagging key 115
test environment containers 18
The Updated Framework (TUF) 115
three-tier web application
 building 88
tools, to help with Docker networking
 Flannel 172
 Project Calico 173
 Weave 173

U
UFS
 basics 224
 issues 225
 terminology 225
Unikernels
 about 20, 21
 adoption, in Docker toolchain 22
 benefits 20
Universal Control Plane (UCP) 120
Universal TUN/TAP device 172

use cases, Puppet
 containers, launching 139
 Docker image, creating 139
 networking 140
 troubleshooting tips 143
user repositories 53

V
Virtual Ethernet (vEthernet) 152

Virtual File System (VFS) 221
Virtual Machine (VM) 8
Virtual Machine Monitor (VMM) 9
vSphere
 Kubernetes, deploying on 199

W
Weave 173
web three-tier architecture
 example 10, 11

 go to

it-eb.com
for more...

https://it-eb.com/

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewer
	www.PacktPub.com
	Customer Feedback
	Table of Contents
	Preface
	Chapter 1: Understanding Container Scenarios and an Overview of Docker
	Decoding containers
	OS containers
	Application containers
	Diving into Docker
	Advantages of Docker containers
	Docker lifecycle
	Docker design patterns
	Base image sharing
	Shared volume
	Development tools container
	Test environment containers
	The build container
	The installation container
	The service-in-a-box container
	Infrastructure containers

	Unikernels
	Summary

	Chapter 2: Docker Installation
	Installing Docker on Ubuntu
	Prerequisites
	Updating package information
	Adding a new GPG key
	Troubleshooting
	Adding a new package source for Docker
	Updating Ubuntu packages
	Install linux-image-extra
	Optional€- installing AppArmor
	Docker installation

	Installing Docker on Red Hat Linux
	Checking kernel version
	Updating the YUM packages
	Adding the YUM repository
	Installing the Docker package
	Starting the Docker service
	Testing the Docker installation
	Checking the installation parameters
	Troubleshooting tips

	Deploy CentOS VM on AWS to run Docker containers
	Checking kernel version
	Updating the YUM packages
	Adding the YUM repository
	Installing the Docker package
	Starting the Docker service
	Testing the Docker installation
	Checking the installation parameters

	Installing Docker on CoreOS
	Installation channels of CoreOS
	Troubleshooting

	Installing Docker on Fedora
	Checking Linux kernel Version
	Installing with DNF
	Adding to the€YUM repository
	Installing the Docker package

	Installing Docker with script
	Running the Docker installation script

	Installing Docker on SUSE Linux
	Launching the SUSE Linux VM on AWS
	Checking Linux kernel version
	Adding Containers-Module
	Installing Docker
	Starting Docker service
	Checking the Docker installation
	Troubleshooting

	Summary

	Chapter 3: Building Base and Layered Images
	Building container images
	Official images from the Docker Registry
	User repositories

	Building our own base images
	Building images using the scratch repository

	Building layered images
	Building layered images using Dockerfiles
	Dockerfile construction
	Dockerfile€commands and€syntax

	Image testing and€debugging
	Docker details for troubleshooting
	Docker version
	Docker info
	A troubleshooting note for Debian/Ubuntu
	Listing installed Docker images
	Manually crank your Docker image
	Examining the filesystem state from cache
	Image layer IDs as debug containers
	Additional example
	Checking failed container processes
	Other potentially useful resources
	Using sysdig to debug
	Single step installation
	Advanced installation
	What are chisels?

	Troubleshooting – an open community awaits you

	Automated image building
	Unit tested deployments
	Automating tested deployments

	Summary

	Chapter 4: Devising Microservices and N-Tier Applications
	Hype or hubris
	Monolithic architecture
	N-tier application architecture
	Building a three-tier web application

	Microservices architecture
	The path to modernity
	Microservices architectural pattern
	Common characteristics of microservices
	Advantages of microservices
	Microservices at scalability
	Disadvantages of microservices
	Considerations for devising microservices
	Mitigating the disadvantages

	Managing microservices
	Real-world example

	Automated tests and deployments
	Automated testing
	Designing for failure
	Dockunit for unit tests

	Automated deployments

	Decoupling N-tier applications into multiple images
	Building an N-tier web application

	Making different tiers of applications work

	Summary

	Chapter 5: Moving Around Containerized Applications
	Redistributing via Docker registry
	Docker public repository (Docker Hub)
	Private Docker registry

	Pushing images to Docker Hub
	Installing a private local Docker registry
	Moving images in between hosts
	Ensuring integrity of images – signed images

	Docker Trusted Registry (DTR)
	Docker Universal Control Plane
	Summary

	Chapter 6: Making Containers Work
	Privileged containers
	Troubleshooting tips

	Super-privileged container
	Troubleshooting – Docker containers at scale

	Puppet
	Images
	Containers
	Networking
	Docker compose
	Troubleshooting tips

	Ansible
	Automating Docker with Ansible
	Ansible Container
	Troubleshooting tips

	Chef
	Summary

	Chapter 7: Managing the Networking Stack of a Docker Container
	Docker networking
	docker0 bridge
	Troubleshooting Docker bridge configuration
	Connecting containers to the external world
	Reaching containers from the outside world

	Configuring DNS
	Troubleshooting communication between containers and the external network
	Restricting SSH access from one container to another
	Linking containers

	libnetwork and the Container Network Model
	CNM objects
	Sandbox
	Endpoint
	Network
	Network controller
	CNM attributes
	CNM life cycle

	Docker networking tools based on overlay and underlay networks
	Flannel
	Weave
	Project Calico

	Configuring an overlay network with the Docker Engine swarm node
	Comparison of all multi-host Docker networking solutions

	Configuring OpenvSwitch (OVS) to work with Docker
	Troubleshooting OVS single host setup
	Troubleshooting OVS multiple host setups

	Summary

	Chapter 8: Managing Docker Containers with Kubernetes
	Deploying Kubernetes on Bare Metal machine
	Troubleshooting the Kubernetes Fedora manual setup
	Deploying Kubernetes using Minikube
	Deploying Kubernetes on AWS
	Deploying Kubernetes on vSphere
	Kubernetes setup troubleshooting
	Kubernetes pod deployment
	Deploying Kubernetes in a production environment
	Debugging Kubernetes issues
	Summary

	Chapter 9: Hooking Volume Baggage
	Avoiding troubleshooting by understanding Docker volumes
	Default case storing data inside the Docker container
	Data-only container
	Creating a data-only container
	Sharing data€between the€host€and€the€Docker€container

	Host mapped volume backed up by shared storage
	Flocker
	In the Flocker client node
	Convoy Docker volume plugin

	Docker storage driver performance
	UFS basics
	UFS – terminology
	UFS – issues
	AuFS
	Device€Mapper

	How device-mapper is used by Docker
	BTRFS

	Summary

	Chapter 10: Docker Deployment in a Public Cloud - AWS and Azure
	Architecture of Amazon ECS
	Troubleshooting – AWS ECS deployment
	Updating Docker containers in the ECS cluster
	Microsoft Azure container service architecture
	Troubleshooting – The Microsoft Azure Container Service
	Docker Beta for AWS and Azure
	Summary

	Index

