
Erlang and Elixir
for Imperative
Programmers

—
Wolfgang Loder

 Erlang and Elixir for
Imperative Programmers

 Wolfgang Loder

Erlang and Elixir for Imperative Programmers

Wolfgang Loder
Vienna
Austria

ISBN-13 (pbk): 978-1-4842-2393-2 ISBN-13 (electronic): 978-1-4842-2394-9
DOI 10.1007/978-1-4842-2394-9

Library of Congress Control Number: 2016960209

Copyright © 2016 by Wolfgang Loder

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or
hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Steve Anglin
Technical Reviewers: Massimo Nardone and Aleks Drozdov
Editorial Board: Steve Anglin, Pramila Balan, Laura Berendson, Aaron Black, Louise Corrigan,

Jonathan Gennick, Robert Hutchinson, Celestin Suresh John, Nikhil Karkal, James Markham,
Susan McDermott, Matthew Moodie, Natalie Pao, Gwenan Spearing

Coordinating Editor: Mark Powers
Copy Editor: Mary Behr
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233
Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
 orders-ny@springer-sbm.com , or visit www.springeronline.com . Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com , or visit www.apress.com .

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales .

Any source code or other supplementary materials referenced by the author in this text are available to
readers at www.apress.com . For detailed information about how to locate your book’s source code, go to
 www.apress.com/source-code/ . Readers can also access source code at SpringerLink in the Supplementary
Material section for each chapter .

Printed on acid-free paper

orders-ny@springer-sbm.com
www.springeronline.com
rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/

iii

Contents at a Glance

About the Author ... xi

About the Technical Reviewers ... xiii

Foreword ...xv

Introduction ...xvii

 ■Part I: Before we start .. 1

 ■Chapter 1: Imperative vs. Functional Programming .. 3

 ■Chapter 2: From Erlang to Elixir .. 9

 ■Chapter 3: Setting Your Mind ... 11

 ■Part II: The Service ... 13

 ■Chapter 4: Service Overview and Design .. 15

 ■Chapter 5: Service Features .. 19

 ■Part III: The Setup ... 21

 ■Chapter 6: Environment and Deployment .. 23

 ■Chapter 7: Development Setup .. 33

 ■Chapter 8: Production Setup ... 77

 ■Part IV: Implementing the Service .. 87

 ■Chapter 9: Overview .. 89

 ■Chapter 10: Public Interface .. 111

■ CONTENTS AT A GLANCE

iv

 ■Chapter 11: Asset Processing ... 145

 ■Chapter 12: Deployment .. 165

 ■Part V: Patterns and Concepts .. 169

 ■Chapter 13: Overview Patterns and Concepts ... 171

 ■Chapter 14: Functional Concepts ... 173

 ■Chapter 15: Type Creation Concepts .. 203

 ■Chapter 16: Code Structuring Concepts .. 219

 ■Appendix A: Modeling .. 233

 ■Appendix B: Resources .. 239

 ■Appendix C: Features/Framework/Concepts Matrix .. 241

 ■Appendix D: Quick Guide to Erlang and Elixir .. 243

Index ... 253

v

Contents

About the Author ... xi

About the Technical Reviewers ... xiii

Foreword ...xv

Introduction ...xvii

 ■Part I: Before we start .. 1

 ■Chapter 1: Imperative vs. Functional Programming .. 3

Imperative Programming .. 3

Objects .. 4

Memory .. 5

Functional Programming .. 6

Hybrid Programming Languages .. 7

How Do Erlang and Elixir Fit into the Schema? .. 7

 ■Chapter 2: From Erlang to Elixir .. 9

 ■Chapter 3: Setting Your Mind ... 11

 ■Part II: The Service ... 13

 ■Chapter 4: Service Overview and Design .. 15

Security .. 16

Live Media .. 16

Insurance.. 16

Solicitor .. 16

■ CONTENTS

vi

Registries and Archives .. 16

Online Shop .. 16

Mobile Apps .. 16

 ■Chapter 5: Service Features .. 19

 ■Part III: The Setup ... 21

 ■Chapter 6: Environment and Deployment .. 23

Installation .. 23

Testing the Setup ... 23

Erlang ... 24

Elixir ... 24

Docker Containers .. 26

Deployment .. 30

 ■Chapter 7: Development Setup .. 33

Basic Tools for Continuous Integration ... 34

Rebar3 .. 34

Custom Templates .. 36

Confi guration and Shell ... 38

Mix.. 41

Commands ... 41

Custom Tasks ... 48

Rebar 3 and Mix .. 50

Common Test and EUnit for Erlang ... 51

EUnit ... 51

Common Test .. 55

ExUnit ... 57

Meck ... 63

Debugger .. 67

Dialyzer ... 71

■ CONTENTS

vii

 ■Chapter 8: Production Setup ... 77

Release Management ... 78

Monitoring .. 81

 ■Part IV: Implementing the Service .. 87

 ■Chapter 9: Overview .. 89

A Deeper Look at Erlang and Elixir ... 89

Module Defi nition ... 93

Function Exports ... 94

Running on One Machine .. 94

Running on Two Machines .. 97

Project Structure .. 101

Mixing Erlang and Elixir Modules ... 102

Libraries ... 103

Database Access: Ecto, Erlmongo, and Others ... 104

Riak KV ... 104

JSON... 104

Logging: Lager .. 106

Timex .. 108

UUID.. 109

 ■Chapter 10: Public Interface .. 111

Low Level ... 113

OTP Servers .. 116

Generic Server .. 116

Generic FSM and Generic State Machine ... 118

Generic Event Handler .. 120

Supervisor .. 123

Application .. 124

GenStage .. 126

■ CONTENTS

viii

Erlang and Cowboy... 130

Route Options ... 134

Query Strings .. 134

Body Data ... 135

HTTP Verbs ... 136

Elixir and Phoenix ... 136

 ■Chapter 11: Asset Processing ... 145

Database Access .. 145

MongoDB GridFS... 145

PostgreSQL ... 150

Workfl ow .. 153

Model Defi nition ... 155

Orchestration .. 157

State Machine ... 158

Image Processing ... 162

PDF Creation ... 164

 ■Chapter 12: Deployment .. 165

Security .. 165

Distribution and Deployment .. 166

 ■Part V: Patterns and Concepts .. 169

 ■Chapter 13: Overview Patterns and Concepts ... 171

 ■Chapter 14: Functional Concepts ... 173

Pattern Matching .. 173

Immutability ... 177

Code Quality and Debugging .. 179

Data Consistency and State .. 179

Cache and Sharing ... 179

Hash Keys ... 180

Functional Correctness ... 180

■ CONTENTS

ix

Bi-Directional Data Structures .. 180

Workarounds .. 180

Resistance .. 180

Concurrency.. 181

Maps... 182

Lists and Tuples .. 186

Recursion ... 191

Higher Order Functions .. 195

Continuation-Passing ... 198

Closures ... 199

Lazy Evaluation .. 200

Referential Transparency .. 201

 ■Chapter 15: Type Creation Concepts .. 203

DSL and Metaprogramming ... 203

Mixin ... 207

Polymorphism .. 209

Behaviors (Behaviours) .. 213

Dynamic Types ... 215

Atoms ... 217

 ■Chapter 16: Code Structuring Concepts .. 219

Separation of Concerns .. 219

SOA ... 220

Actor Model .. 221

Specifi c to Generic ... 225

Fault Tolerance ... 226

Processes ... 227

Concurrency ... 229

Flow-Based Programming .. 229

Where To Go From Here? .. 231

■ CONTENTS

x

 ■Appendix A: Modeling .. 233

 ■Appendix B: Resources .. 239

Books ... 239

Articles and Papers .. 239

Online Learning .. 239

Blogs .. 240

Fora .. 240

 ■Appendix C: Features/Framework/Concepts Matrix .. 241

 ■Appendix D: Quick Guide to Erlang and Elixir .. 243

Code Comments ... 243

Variables ... 243

Atoms ... 244

Data Types .. 244

Operators .. 245

Conditionals .. 246

Pattern Matching .. 247

Guards .. 247

Functions .. 248

Data: Lists, Records, Maps, and Structs ... 248

Pipeline ... 250

Erlang Shell .. 250

Elixir Shell ... 251

Index ... 253

xi

 About the Author

 Wolfgang Loder has been programming software since the 1980s. He has
successfully rejected all calls for management roles and has remained
hands-on up to today.

 His journey went from Assembler and C to C++ and Java to C# and
F# and JavaScript, from Waterfall to Agile, from Imperative to Declarative,
and other paradigm changes too many to list and remember.

 Most of his career Wolfgang was a contract Enterprise Developer
and the introduction of “new” languages, frameworks, and concepts is
very slow in this field. Once he decided to develop his own products he
was free of such constraints and ventured into all sorts of paradigms, be
it NoSQL or Functional, and evaluated all the latest ideas, crazy or not. In
other words, he has fun developing software.

 Wolfgang was born in Vienna and lives in Austria, UK, and Kenya.

xiii

 About the Technical Reviewers

 Massimo Nardone has more than 22 years of experience in security,
web/mobile development, and cloud and IT architecture. His true IT
passions are security and Android.

 He has been programming and teaching how to program with Android,
Perl, PHP, Java, VB, Python, C/C++, and MySQL for more than 20 years.

 He holds a Master of Science degree in Computing Science from the
University of Salerno, Italy.

 He has worked as a Project Manager, Software Engineer, Research
Engineer, Chief Security Architect, Information Security Manager, PCI/
SCADA Auditor, and Senior Lead IT Security/Cloud/SCADA Architect for
many years.

 Technical skills include: security, Android, cloud, Java, MySQL,
Drupal, Cobol, Perl, web and mobile development, MongoDB, D3,
Joomla, Couchbase, C/C++, WebGL, Python, Pro Rails, Django CMS,
Jekyll, Scratch, etc.

 He currently works as Chief Information Security Office (CISO) for Cargotec Oyj.
 He worked as visiting lecturer and supervisor for exercises at the Networking Laboratory of the Helsinki

University of Technology (Aalto University). He holds four international patents (PKI, SIP, SAML, and
Proxy areas). Massimo has reviewed more than 40 IT books for different publishing company and he is the
coauthor of Pro Android Games (Apress, 2015).

 Aleks Drozdov is an architect, a team lead, and software engineer with
more than 20 years of experience in analysis, design, and implementation
of complex information systems using Lean Architecture and Agile
methodologies.

 He has extensive practical knowledge in service-oriented
technologies; distributed and parallel systems; relational, non-relational,
and graph databases; data search and analytics.

 Aleks likes to learn new technologies and isn't afraid of starting a
new project in a new field. Currently he is working on large scale, high
performance system for machine learning and artificial intelligence.

 In his free time, he likes to read, take a long walks, play guitar, and
spend time with his grandson.

xv

 Foreword

 Don’t confuse essence with tools.
 Declarative is a process (“magical spirit”), controlled by procedures.
 Controlling complexity of large systems is Computer Science.

 The quotes are from a lecture held by one of the authors of the book Structure and Interpretation of
Computer Programs , Hal Abelson, at MIT in 1986 1 . At the time of the recording of the video I was sitting in
Vienna in the Technical University to hear computer science courses as well. Unfortunately I did not hear
similar interesting quotes, just barebones definitions. Let’s interpret those quotes, keeping in mind which
year they were made in.

 Don’t confuse essence with tools.

 This remark was made while talking about the relationship of Computer Science to Computer. The
computer is the tool, similar to a shovel used to dig a hole in the ground. Talking about digging is not talking
about the shovel, but about the process of digging. The same with computers: they are just a tool. Of course,
in 1986, a computer was a mainframe. The upcoming PCs were seen as a toy, and some people are still of
this opinion. Nevertheless, mainframes then and mobile phones now are the same: a tool for our computing
processes.

 Similar is the relationship between programming languages and the program. The languages are the
tools and the program is the essence.

 Declarative is a process (“magical spirit”), controlled by procedures.

 The magic in this quote refers to the inability to influence the process that is running on a computer.
Today we may say that there are options to influence the process, but going down to the level of machine
language there are not. More important is the idea that procedures or functions control the declarative
process.

 It mixes the concepts of declarative and imperative. Describe the process by combining procedures that
themselves are a sequence of step-by-step instructions.

 Controlling complexity of large systems is Computer Science.

 1 http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-001-structure-and-
interpretation-of-computer-programs-spring- 2005/video-lectures/ .

http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-001-structure-and-interpretation-of-computer-programs-spring-2005/video-lectures/
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-001-structure-and-interpretation-of-computer-programs-spring-2005/video-lectures/

■ FOREWORD

xvi

 The definition of a large system is somehow arbitrary. What was large 30 years ago may be small today.
What has not changed is the complexity of systems. Computer science tries to control this complexity with
varying success. This starts with the development process itself and ends with handling huge amounts of
data. Some may say that computer science did not make much progress; others will have enough examples
to oppose this. I think that computer science is moving forward. Well enough, but the application and
integration of the findings are not happening fast enough, either due to rapid progresses in hardware in the
last decades or due to paradigm changes fueled by commercial pressures.

 This book is about old and new, about concepts and implementation, and about paradigms.
 Writing this book started with an idea to write about a journey and then the writing of the book itself

became a journey. I hope you, the reader, will have as much pleasure as I had writing it.

xvii

 Introd uction

 In December of 1988, Erlang was ready for use. Joe Armstrong, one of the creators, writes in A History
 of Erlang 2 : “By the end of 1988, most of the ideas in Erlang had stabilized.” The language design and
implementation started in 1986, and only two years later Erlang was stable enough to be used in production.

 Let’s put Erlang’s first release in the historical context of the year 1988 3 :
 Other languages at this time were Fortran 77, Cobol-85, Common Lisp was not yet a standard, and

Haskell was not even defined. Stroustrup’s The C++ Programming Language , released in 1985, was the
reference for C++ with no official standard yet defined. The specification for C++ 2.0 was released in 1989.
Microsoft published its C-Compiler in version 5, no C++ in sight. Zortech C++ 1.0, released in 1988, was the
first native compiler on PCs, which means others were transpiling C++ to C and then compiling it, but the
Zortech compiler was writing directly to machine code. The creator of that compiler, Walter Bright, later
invented the language D. Java was not even a thought at this time.

 Graphical interfaces as we know them today were not common; OS/2 1.1 got a GUI in October 1988 and
Windows 2.1 was released in May of the same year.

 So why, more than 26 years later, am I writing a book about Erlang? How is it that a new language, Elixir,
was created just a few years ago to sit on top of the Erlang system? Why is Erlang relevant today?

 Incidentally, the history of Erlang parallels my own software development career. In 1985, I started
studying computer science after having worked with statistical packages to analyze social science problems.
The languages we learned in the first two years were Pascal and Modula, 68000 assembler and Occam 2.
This selection was not very helpful to get a job, but especially Occam 2 was interesting. It still exists, although
without having a real impact, but the idea back then was to parallelize computing by using Transputers 4 and
Occam was the language defined for that purpose. It put the finger on a problem we as an industry did not
want to think about for 20 years: the physical limits of the CPU design.

 We all disregarded the warning signs and hoped that the industry leaders would find a solution. In the
meantime, the younger generation of developers did not have to deal with constraints that were prevalent in
the 80s and beginning 90s: computation speed and memory management.

 Now, in 2016, we are looking at the limits of physical CPU design and in fact the software has become
the bottleneck. We have powerful CPUs with lots of memory and several cores that can compute in parallel,
but the software development paradigms we use to create most enterprise applications are not taking
advantage of this offer.

 More than two years ago, I decided to create a product that needed to be fault tolerant and reliable,
scalable, and fast. As a long-time user of the C-family languages (C/C++, C#, Java) the selection range was
well defined for me. After using those languages and their corresponding standard libraries and frameworks
for lots of projects, I knew about the problems, workarounds, and deficiencies. As a contract developer, one
can’t really decide which languages or frameworks are used, but for my own project I could.

 My first thought was to use Node.js, but at the time of my final decision scalability and fault tolerance
were issues and I really did not like the callback hell, although it is possible to ease that with Futures libraries
and similar workarounds.

 2 http://dl.acm.org/citation.cfm?id=1238850&dl=ACM&coll=DL&CFID=495241682&CFTOKEN=12700222
 3 http://en.wikipedia.org/wiki/History_of_programming_languages
 4 http://en.wikipedia.org/wiki/Transputer

http://dl.acm.org/citation.cfm?id=1238850&dl=ACM&coll=DL&CFID=495241682&CFTOKEN=12700222
http://dl.acm.org/citation.cfm?id=1238850&dl=ACM&coll=DL&CFID=495241682&CFTOKEN=12700222
http://en.wikipedia.org/wiki/History_of_programming_languages
http://en.wikipedia.org/wiki/Transputer
http://dl.acm.org/citation.cfm?id=1238850&dl=ACM&coll=DL&CFID=495241682&CFTOKEN=12700222
http://en.wikipedia.org/wiki/History_of_programming_languages
http://en.wikipedia.org/wiki/Transputer

■ INTRODUCTION

xviii

 Then I remembered Erlang/OTP. I had played with it several times in the last two decades, but could not
use it in any project. Now I saw that my upcoming product was a perfect use case. Also, Elixir as a language
on top of the Erlang system was coming on nicely. So I decided to use Erlang/OTP and Elixir.

 Coming from an imperative and object-oriented background I had to rethink my approach a little bit
and this book is about this experience.

 In Part 1 I define the paradigms, talk about the history of Erlang and Elixir, and help you reset your
mind away from imperative programming to functional and declarative programming.

 Part 2 describes the original project and its features.
 In Part 3 you will set up your environment for development and production. While in development,

you will focus on testing and continuous integration; in production, you must think about monitoring and
scaling. For easier deployment you will have a look at Docker containers.

 The implementation of the project will happen in Part 4 . In it the languages and the framework will be
introduced in the context of implemented features.

 Part 5 describes the language and framework features you have used in the implementation in a more
generic form. In this part, you work out the concept differences to and similarities with imperative and
object-oriented languages.

 All code for this book can be found on GitHub 5 . This repository also contains the basic Dockerfile to
create Docker containers.

 The GitHub repository contains directories named Erlang and Elixir with an example project in each.
These examples are used in various chapters to explain different aspects of the development process and
language features.

 The service as described in Part 4 can be found on GitHub 6 .
 Appendix A gives some notes about modeling Erlang/Elixir applications.
 Appendix B lists some resources for diving deeper into languages, libraries, and frameworks.
 Appendix C shows a diagram with paths between service features, language and framework features,

and corresponding patterns and concepts.
 Appendix D gives a quick reference of the languages Erlang and Elixir. This appendix is not meant to

learn the language; it’s a help sheet for looking up the syntax of certain language constructs.
 Please note: In Erlang and Elixir books you will often find a special syntax referring to functions. For

example, the Elixir function

 def example_function(arg1, arg2) do
 {nothing}
 end

 would be referred to as example_function/2 to indicate the signature; the name is example_function and
it has two arguments. I will not do this in this book and will refer to the above function simply as example_
function .

 5 https://github.com/kujua/erlang-elixir-imperative-bookcompanion
 6 https://github.com/kujua/creative-common-dar

https://github.com/kujua/erlang-elixir-imperative-bookcompanion
https://github.com/kujua/creative-common-dar
https://github.com/kujua/erlang-elixir-imperative-bookcompanion
https://github.com/kujua/creative-common-dar

 PART I

 Before We Start

3© Wolfgang Loder 2016
W. Loder, Erlang and Elixir for Imperative Programmers, DOI 10.1007/978-1-4842-2394-9_1

 CHAPTER 1

 Imperative vs. Functional
Programming

 The title of this chapter could also read Imperative vs. Declarative vs. Structured vs. Object Oriented vs.
 Functional vs. (fill in the paradigm of your choice).

 There are long and theoretical discussions about the definitions of each programming paradigm.
The questions asked include the following:

• Is functional programming always declarative?

• Are functional languages pure or impure?

• Is SQL or HTML perfectly declarative?

 It is important to keep those questions in the back of our minds, but it is also important to know that
there are different answers depending on which paradigm is the basic point of view of the person who
answers. This chapter gives simple definitions as a practical guide without going too deep into the finer
details of the topic. The goal is to understand the differences and to put Erlang and Elixir into perspective.

 Imperative and functional are the roots of two very distinct programming approaches. If we define it in
an oversimplified way, the former tells the computer exactly what to do, step by step. The latter says: here are
the high level functions, go calculate the result.

 Imperative Programming
 The essence of imperative programming is to provide statements to tell somebody how to do something.
This is deliberately vague, because this paradigm is not restricted to computer programming.

 Think of a cooking recipe : it specifies exactly what to do, given all that the ingredients are available.
Figure 1-1 shows the equivalent programming constructs of the cooking recipe: statements, input
arguments, and output data.

Electronic supplementary material The online version of this chapter (doi: 10.1007/978-1-4842-2394-9_1)
contains supplementary material, which is available to authorized users.

http://dx.doi.org/10.1007/978-1-4842-2394-9_1

CHAPTER 1 ■ IMPERATIVE VS. FUNCTIONAL PROGRAMMING

4

 The ingredients , like eggs and salt, are the input arguments. Steps (1) to (11) describe how to cook
the scrambled eggs. Since there is no “syntax” of a cooking recipe language, the description is more or
less precise and the accuracy depends on the expertise of the writer. There’s no process to check if the
“statements” are correct or complete.

 The output is the scrambled egg on a plate, ready for eating.
 Initially, imperative programming was done in machine code, written in assembler or macro assembler

languages , which were just thin wrappers around machine code. This way of programming was influenced by the
physical design of von Neumann computers that expect to be told exactly what to do. I personally liked assembler
programming and I still think that this is programming as it should be. Yes, it is tedious, with frequent restarts
of the machine in case of an error, but on the other side one has to think exactly about memory, CPU registers,
and code coordination. I would suggest that this is pure imperative programming. And it is the most error-prone
programming as well! In the end, all compilers of any language, including functional languages, have to produce
machine code or intermediary code that calls runtime libraries in machine code.

 Problems with productivity, testing, and maintenance led to higher programming languages and to a
more structured approach. Initially, simple structures and later procedures and modules were introduced.
The object-oriented programming (OOP) approach lets programmers build smaller units that encapsulate
properties and methods.

 Objects
 If machine code is influenced by physical machines, objects are influenced by a physical world that is seen
as a concept. An Animal is a type that can be hungry or has a fur color and can make noise or eat . All this can
be easily expressed with properties (also called attributes) and methods (which are procedures) of the type
 Animal . It is not a big step to create a type hierarchy from there. Lion and Dog are both of type Animal ; we
just need to override methods to implement derived types and perhaps add other properties. See Figure 1-2 .

 Figure 1-1. Imperative cooking recipe

CHAPTER 1 ■ IMPERATIVE VS. FUNCTIONAL PROGRAMMING

5

 Eventually we will get a hierarchy model of the objects we see in the physical world and express them as
types with inheritance, polymorphism, and encapsulation.

 Memory
 Throughout the development of imperative programming, memory access and memory management have
been of great interest.

 Having full access to memory is very powerful. In the C language, a programmer can get the address
of memory as a pointer, which basically (internal implementation aside) has a value of type integer and
indicates an address of a memory location. Being a number, the pointer can be manipulated as a number as
well. Any programmer who has written programs in C knows about buffer manipulation. A sort algorithm
is implemented by manipulating pointers instead of copying values. With this power, almost inevitably
errors are made. Buffer overflows and exploits based on the same principles are probably the most common
reasons for security problems, despite programming languages getting better at managing memory and
checking boundaries. In most modern imperative programming languages, it is not possible to access
memory with direct pointers without making it explicit with keywords like unsafe and compilers or standard
library implementations checking for buffer overflows. Also, memory does not need to be allocated or freed
in the program; a garbage collection program is part of runtime systems and does this automatically using
sophisticated algorithms.

 What has not changed in all the years is that values in memory can be changed from anywhere in a
program and are mutable unless changes are prevented by the language. For example, in C#, the type String
is immutable. More modern imperative languages make changes more difficult, but it is possible to change
public properties of an object or change the whole object during a function call. This is especially difficult
in multi-threaded situations, where memory locations that can be accessed from different threads need to
be locked to prevent another thread from accessing the same memory location. It is very easy to produce
deadlocks in such situations or introduce very subtle bugs with incorrect values because of race conditions.

 Easy access to mutable values in memory also enables side effects by manipulating values that are
accessible from various functions. Global variables are an obvious example, but it could also be a property in
an object.

 All this said, the imperative programming paradigm, especially in its object-oriented variation, has
produced software that is reliable and does what requirements have specified. The industry has adjusted
to the pitfalls by creating tools, runtimes, libraries, and better programming languages. For example, the

 Figure 1-2. OO diagram of Animal

CHAPTER 1 ■ IMPERATIVE VS. FUNCTIONAL PROGRAMMING

6

new language Rust tries to tackle the memory problem by attaching an ownership model to each memory
location that is referenced by a variable. It still allows a mutable variable, but since it needs to be explicitly
set to mutable , the compiler can prevent unintended changes.

 My personal experience in enterprise backend development shows that problems can be avoided with
careful design. Critics coming from “pure” functional languages like Haskell often describe the imperative
paradigm as if C was still used everywhere. In fact, even with C++ side effects, direct change of state can be
prevented. It is the developer’s responsibility and it is difficult, yes, but it is possible.

 Functional Programming
 How would a cooking recipe example look with the functional paradigm? The closest I can think of is the
bread machine I use; see Figure 1-3 .

 All the ingredients go into the machine and then I have to choose a function, press a button, and
everything will be done for me. This is declarative and always produces the same bread as long as I get the
measurements of the ingredients right.

 Functional programming is based on the lambda calculus and can be explained from a mathematical
point of view. It is the right approach for everybody who loves mathematics; for the rest of us, I would rather
stick to simpler explanations.

 Two features of the functional paradigm are the exact opposite of imperative programming: functional
programming avoids side effects and mutable data.

 The arguments of a function are all evaluated before the processing of the function starts and the only
output is defined in the function. Immutability of data makes it impossible to change the value of data
outside of the function.

 Another interesting aspect of immutable data is that loop structures, like for or while as we see them in
imperative languages, are not possible. A by-definition mutable index variable could not be changed and
the loop would not work. Functional programming uses recursion for the same purpose. For programmers
coming from imperative languages, this is quite unusual. Recursion is largely avoided in imperative
programming because of possible stack overflows, and its use is rather discouraged. Functional languages
get around this problem with tail recursion, which manipulates the stack so it does not grow. It is worth
mentioning that tail recursion can be implemented in imperative languages as well. You will investigate this
feature in more detail in Chapter 14 .

 Figure 1-3. Functional cooking recipe

http://dx.doi.org/10.1007/978-1-4842-2394-9_14

CHAPTER 1 ■ IMPERATIVE VS. FUNCTIONAL PROGRAMMING

7

 In the example of the bread machine, I was talking about the declarative nature of the approach. It
needs to be pointed out that a declarative style certainly goes hand in hand with the functional paradigm,
but there is no permanent relation. There are plenty of discussions about it and, depending on the definition
of declarative , the answers may be different.

 Functional programming also does not deal with objects . As the name implies, the main focus is on
functions, and these functions manipulate data. If a lion or a dog feeds on a piece of meat, it’s not important.
The end state is the same: the animal is still hungry or not. It is then a matter of another discussion how state
is treated, either kept in a state structure or passed around from function to function.

 Hybrid Programming Languages
 In theory, both imperative and functional approaches should yield the same result, if they were applied to
the same problem.

 Example 1-1 shows a simple program in Erlang and C#. A range of numbers from 1 to 10 is the input,
and then the function multiplies each number with 10. The output is a list from 10 to 100 in steps of 10.

 Example 1-1.

 1 [I*10 || I <- lists :seq(1,10)].

 The Erlang code, shown in Example 1-2, uses a concept called list comprehension , which you will
further explore in Chapter 14 .

 Example 1-2.

 1 List< int > l = new List< int >();
 2 foreach (var i in Enumerable.Range(1, 10)) {
 3 l.Add(i*10);
 4 }

 The C# code clearly shows the imperative style. You tell the computer to go through the input list and
add the result to the output list. The code is more verbose and very specific.

 Both statement blocks have the same output, an array that is shown in pseudo-code in Example 1-3.

 Example 1-3.

 1 [10,20,30,40,50,60,70,80,90,100].

 Many modern programming languages are hybrid languages and mix imperative and functional
programming styles. F#, Scala, C#, and Ruby can be classified as both object oriented and functional; even
Java 8 has added lambda expressions. The borders are not always clear, and developers who program in one
of the more mainstream imperative languages have used the functional paradigm, often without knowing or
noticing it.

 How Do Erlang and Elixir Fit into the Schema?
 Elixir and Erlang are certainly functional languages, although some functional programming communities
will say they are “impure” functional languages. You will find features that constitute a functional
programming style in Erlang and Elixir in every code listing of this book. The next chapter explains more of
the ideas behind both languages.

http://dx.doi.org/10.1007/978-1-4842-2394-9_14

9© Wolfgang Loder 2016
W. Loder, Erlang and Elixir for Imperative Programmers, DOI 10.1007/978-1-4842-2394-9_2

 CHAPTER 2

 From Erlang to Elixir

 The language Erlang was inspired by Prolog’s logical programming and concrete architectural requirements
at Eriksson. Joe Armstrong has written a paper called History of Erlang , which describes in detail the
evolution of the language from the perspectives of the creators and the company that sponsored the creation
of the language.

 This chapter describes the broad picture. If you want to get deeper into the history of Erlang , read
Armstrong’s fascinating paper, which also shows some of the syntax of the early language 1 .

 From the start, Erlang was built on three principles: fault tolerance, concurrency, and distribution.
These principles were defined by the projected use case for this language in the telecommunication
industry. A telephone switch can’t simply die when bad data is processed, and it has to process data as fast
as possible. When the switch needs to be updated, it can’t restart and drop the existing data, which in this
case are telephone calls. The hot code swapping feature in Erlang allows us to update code by keeping data
and letting the data optionally be processed by other nodes in the distributed system.

 Hot code swapping is also the cause for a language feature that haunts Erlang to this day: dynamic
types. If types change, the code can’t be easily swapped because the new code won’t be able to handle the
old types. But dynamic types have a habit of hiding type inconsistencies during compile time and springing
up during runtime with the possibility of crashing the application or at least to pushing the application into a
bad state.

 Another critical assessment during the long life of Erlang is memory management. Erlang defines
lightweight processes, which have nothing to do with operating system processes. Each process has its
own heap, but large data will blow up the heaps and thus reduce the number of potential processes on one
machine. The same problem applies to messages. Erlang implements a message system between processes
to avoid shared memory, and large messages slow down the system because the data needs to be copied
from one heap to another.

 Knowing about possible problems is the first step to avoiding them. Erlang/OTP has reacted to them
with new features. Throughout this book, you will see how developers who use Erlang/OTP can use
architectural and design ways to avoid problems.

 Elixir is an answer to Erlang’s syntax and lack of modern tooling. The creator, Jose Valim, was involved
with Ruby on Rails as core contributor and wanted to bring some of the Rails experience to the Erlang
system. With the tooling, he and the community around Elixir certainly succeeded. The package manager
 Hex and the build tool Mix provide a unified experience for various developing tasks like scaffolding,
running tests, compiling, and deploying.

 Since Elixir uses the Erlang system, code and tools can be mixed. All code ends up in the byte code that
is used by the Erlang virtual machine and runtime called BEAM (Bodgan’s Erlang Abstract Machine) . This
means that the new language Elixir can use the experience of the last 25 years, especially when using OTP
(Open Telecom Platform) . This is the framework tightly coupled to the language itself and it implementing

 1 http://dl.acm.org/citation.cfm?id=1238850&dl=ACM&coll=DL&CFID=495241682&CFTOKEN=12700222

http://dl.acm.org/citation.cfm?id=1238850&dl=ACM&coll=DL&CFID=495241682&CFTOKEN=12700222
http://dl.acm.org/citation.cfm?id=1238850&dl=ACM&coll=DL&CFID=495241682&CFTOKEN=12700222

CHAPTER 2 ■ FROM ERLANG TO ELIXIR

10

best practices that emerged in using the system in the last decades for system and enterprise-critical
applications.

 Elixir is still evolving: the 1.0 release was in September 2014 and it rapidly moved to 1.3 in 2016. Some
Erlang developers are critical about features that mean to simplify usage, but are doing some magic in the
background to satisfy the Erlang system. For example, syntactical sugar allows it to rebind variables, which
means it looks as if a variable is not immutable, which is one of the fundamentals of Erlang. In reality, new
variables are created for the rebound variables during compilation as the immutability rules demand,
transparent to the developer.

 Elixir brings new features to the system as well. Protocols are similar to interfaces or abstract classes,
and pipe operators bind function calls together in one pipeline in a fluent way. One of the biggest changes
to Erlang is that macros are at the core of the language. They manipulate the AST (Abstract Syntax Tree) at
compile time and make it easy to integrate new language features. Some constructs in the core language are
actually implemented as macros.

 In this book, I mix Erlang and Elixir, but I use as much as possible the tooling of the Elixir system, which
is, at the moment, simply more modern and flexible than the Erlang tools. These tools are currently worked
on and many wish that the two communities would converge their tools eventually.

 This is only a quick glimpse into Erlang/OTP and Elixir. In later chapters of this book, I will dive much
deeper into the language features.

11© Wolfgang Loder 2016
W. Loder, Erlang and Elixir for Imperative Programmers, DOI 10.1007/978-1-4842-2394-9_3

 CHAPTER 3

 Setting Your Mind

 Coming from a background of imperative languages, it is important to meet Erlang/OTP and Elixir with a
mind that is not preset.

 The following rules are my recommendations for setting your mind before you get into the actual
implementation of a project:

 1. Don’t try to translate from an OO (object-oriented) model to a functional model
and don’t try to express OO constructs in Erlang or Elixir.

 2. Think in a declarative way; do not write how it should happen, but what should
happen.

 3. Assignments are not actual assignments, but comparisons between the left
side and the right side of an expression. In Erlang, this process is called pattern
matching. In addition, the first assignment in the code is an initialization of a
variable similar to final in Java or readonly in C#.

 4. From the last rule follows that variables, despite their name, are immutable once
they are initialized.

 5. All types are dynamic. This does not mean that there are no built-in types; there
are, but you don’t specify the type at compile time.

 6. Leave the concepts of classes and interfaces behind. There are similarities and
similar constructs, but it confuses more than it helps.

 7. When you hear processes , forget what you fear about working with threads or
operating processes. They are something completely different and there is no
shared memory to hurt you.

 8. There are no objects in an OO sense. There are processes and we send messages
between them. And yes, this does not only sound like the Actor model, it is an
implementation of it.

 9. The language knows exceptions with the usual try-catch blocks. Now that you
know this, you won’t hear it again in this book. I adhere to Erlang’s Let it fail
premise. It sounds scary, but it works.

 10. Libraries and frameworks are important, especially OTP. Erlang and Elixir as
languages are only part of the whole.

 You will see that all of the new concepts and patterns are not complicated. They are just different to the
ones you, as a mostly imperative programmer, have encountered so far.

 So keep these few rules in mind, and have more fun and less headaches.

 PART II

 The Service

15© Wolfgang Loder 2016
W. Loder, Erlang and Elixir for Imperative Programmers, DOI 10.1007/978-1-4842-2394-9_4

 CHAPTER 4

 Service Overview and Design

 The original commercial service that is based some of the examples is named Digital Asset Repository (DAR)
and helps to manage digital assets like images, videos, scanned documents, online forms, spreadsheets, and
similar. In fact, everything that is in digital form can be saved to the repository.

 This service would not help much if these digital documents are only stored, so additional features
are added: security, workflow, document transformations, and more. The requirements diagram looks like
Figure 4-1 .

 Figure 4-1. Digital Asset Repository requirements

CHAPTER 4 ■ SERVICE OVERVIEW AND DESIGN

16

 These requirements describe the basis for real-world use cases described in the following sections.

 Security
 Images and videos from security cameras are sent to the repository. A workflow decides if and when these
assets are archived. During the retrieval of images, a transformation provides smaller images and the full
resolution image is only accessed on demand.

 Live Media
 Reporters take snapshots with their mobile cameras and send them to the headquarters. Workflow steps
ensure that the images are appropriate for broadcast and sets the access rights appropriately. The images are
then used in a live broadcast.

 Insurance
 Paper and online forms need to be processed. Paper forms are scanned and saved in the repository with
custom metadata, which can optionally be filled by OCR processing (optical character recognition). Online
forms are transferred directly into the repository. A workflow can be used to give access to assets to different
workers.

 Solicitor
 Different paper documents, images, and digital documents are all saved in the repository. Metadata is used
to connect them and a specialized full text search implementation provides information quickly.

 Registries and Archives
 Scanned documents need to be saved. The number is huge and data retrieval is unpredictable, so a cache
cannot be used effectively. Data loss is not an option, so the solution must run in a fail-safe manner.

 Online Shop
 Images are used for shop item descriptions and need to be changed frequently. Access to the assets happens
with high frequency and the access API needs to respond quickly to a high number of responses.

 Mobile Apps
 Images are delivered to a variety of devices. Transformations make sure that assets are sent in the right size
and resolution.

 The use case diagram for the commercial project looks Figure 4-2 .

CHAPTER 4 ■ SERVICE OVERVIEW AND DESIGN

17

 All use cases in Figure 4-2 with green borders are the core system and their implementation will be at
least partially described in this book.

 The context is set with requirements and use cases, and the next step is to have a diagram to describe
 components involved, so see Figure 4-3 .

 Figure 4-2. Digital Asset Repository use cases

CHAPTER 4 ■ SERVICE OVERVIEW AND DESIGN

18

 Looking at this version of the component diagram reveals another difference between imperative
programming and functional or declarative programming: the modeling needs a rethink. A description of
interfaces and libraries, which are in fact sets of class types in object-oriented design, does not suffice for an
Erlang/OTP/Elixir system.

 A discussion about modeling of Erlang/OTP applications can be found in Appendix A.
 The commercial project is partly closed source, so not everything can be shown. But I started an

offspring from this project that is open source and specializes in storing and retrieving Common Creative
licensed stories for children. This implementation is inspired by the African Storybook Project 1 , which
provides reading material for children in different languages.

 This open source project uses some of the implementation of the commercial project , but does not
show internal security protocols, deployment strategies, or enhanced features. It can be found on GitHub at
 https://github.com/kujua/creative-common-dar .

 I will base the service implementation as described in Part 4 on this open source project.

 Figure 4-3. Digital Asset Repository components

 1 africanstorybook.org

https://github.com/kujua/creative-common-dar
https://github.com/kujua/creative-common-dar

19© Wolfgang Loder 2016
W. Loder, Erlang and Elixir for Imperative Programmers, DOI 10.1007/978-1-4842-2394-9_5

 CHAPTER 5

 Service Features

 The features of the commercial project Digital Asset Repository are

• Enterprise-Grade Security

• API Access

• Various Search Options

• Reliability

• Archive Option

• Transformations

• Multiple Input

• Multiple Delivery

• Workflow

• Custom Metadata

• Operating Support

 The workflow component can define various tasks or steps that relate to the business process.
For example, an image must get approved before it can be published or a scanned document must go
through several processing steps.

 Built-in security can be applied to any asset individually. For example, it is possible to have public
access to some assets and private access to others or assign individuals to have write access to certain assets.

 All features can be accessed with a standard web API . It is part of DAR and the project provides
implementations for different platforms. This way it can guarantee that the repository is working as
designed. The API runs on a web server in the cloud by default, but can also be installed on premises for
custom solutions.

 Search can query asset names and all related metadata. Additional options like full-text search can be
implemented as custom solutions.

 The retrieval of assets can use built-in transformations to serve, for example, different resolution of
images or PDF-documents from other document formats like Office Word.

 The repository is distributed to more than one server and data is replicated (backed up) to ensure
 reliability .

 Access of popular assets and metadata is made faster by using a cache in server memory or on the file
system; therefore it is not necessary to query the database every time, but to use a cached version of the
asset.

CHAPTER 5 ■ SERVICE FEATURES

20

 Assets that are not used anymore or are expected to be infrequently retrieved can be stored in an
 archive . Internally, this is a different datastore, which is not accessed during normal operation like search
queries. Of course, the archive can be accessed with the API.

 DAR can be easily integrated via API calls. This is sufficient for most solutions, but other businesses may
need further integration with already existing systems.

 As for technical requirements, the repository and the API run on Microsoft Azure by default, either on
Windows Server or Ubuntu server systems with a MongoDB datastore for assets, a PostgreSQL datastore for
metadata, and an API implementation in Erlang.

 The open source version provides the following features:

• API Access

• Some Transformations

• Workflow

 These features are described in this book, but there are also examples of the commercial version slightly
changed to obey license rules.

 PART III

 The Setup

23© Wolfgang Loder 2016
W. Loder, Erlang and Elixir for Imperative Programmers, DOI 10.1007/978-1-4842-2394-9_6

 CHAPTER 6

 Environment and Deployment

 Installation
 You need to set up Erlang/OTP and Elixir on your machine(s). The differences between development
and production environments will be discussed in Chapter 7 and Chapter 8 . For now, you will install the
minimum applications and frameworks needed to run Erlang and Elixir code.

 Docker If you don’t want to install Erlang/OTP and Elixir on your physical machine, read later in this

chapter about Docker containers.

 From the web sites for Erlang Downloads 1 (the binaries are distributed by Erlang Solutions) and
 Elixir 2 either precompiled packages or sources can be downloaded. The process was straightforward for
me on Windows (8.1, 10), Mac OS X (10.11.x), and Ubuntu 14.04/16.04 LTS 64-bit (in a VirtualBox VM on a
Windows host and in a Parallels VM on Mac OS X).

 If you use Ubuntu in a VirtualBox VM Don’t forget to configure the Ubuntu machine to allow

drag-and-drop and shared folders.

 In the VirtualBox menu, set Devices > Drag’n Drop and Devices > Shared Clipboard to Bidirectional .
For shared folders, run the statement sudo adduser <username> vboxsf in a shell and define a folder in the
VM settings on your host to be shared.

 Testing the Setup
 Both Erlang and Elixir install a REPL (read-eval-print loop). As in similar language systems, expressions and
other language constructs can be directly tested in the REPL . Elixir and Erlang are in fact starting a virtual
machine when running the REPL , which can be done from the shell or by running a program in Windows.

 1 www.erlang-solutions.com/downloads/download-erlang-otp
 2 http://elixir-lang.org/install.html

http://dx.doi.org/10.1007/978-1-4842-2394-9_7
http://dx.doi.org/10.1007/978-1-4842-2394-9_8
https://www.erlang-solutions.com/downloads/download-erlang-otp
http://elixir-lang.org/install.html
http://www.erlang-solutions.com/downloads/download-erlang-otp
http://elixir-lang.org/install.html

CHAPTER 6 ■ ENVIRONMENT AND DEPLOYMENT

24

 A big difference in environments like Java or .Net is that no IDE is provided by default. The REPL is used
to test out code snippets or run modules from a file. Ruby and F# developers will find this approach familiar,
but others will miss the default integrated environment.

 Let’s see if your setup was correct and is working. You will define a function called double that
multiplies its argument by 2. Then you will invoke double on a list of integers, which is done with a map
function: each item in the list is an argument to double and the result is a new list.

 Erlang
 Run the Erlang REPL by opening a shell and typing erl in Linux or OS X; on Windows systems type werl or
click the icon provided by the installation. You should see a line like that in Example 6-1 .

 Example 6-1.

 Erlang/OTP 18 [erts-7.1] [source] [64-bit] [smp:8:8] [async-threads:10] [hipe] [\ kernel-
poll:false] [dtrace]

 The numbers 18 and 7.1 indicate the version of the Erlang system and the Erlang RunTime System (erts)
and can be different in your case.

 Type the statements in lines 5 and 7 from Example 6-2 (don’t forget the dot (.) at the end of each
statement line!). You will see the result shown in line 8.

 Example 6-2.

 1 Erlang/OTP 18 [erts-7.1] [source] [64-bit] [smp:8:8] [async-threads:10] [hipe]
 2 [\kernel-poll:false] [dtrace]
 3
 4 Eshell V6.4 (abort with ^G)
 5 1> Double = fun(X) -> 2 * X end.
 6 #Fun<erl_eval.6.90072148>
 7 2> lists:map(Double, [1,2,3,4,5]).
 8 [2,4,6,8,10]
 9 3>

 Exit the Erlang REPL with Ctrl+Command+C and answer a when the information shown in Example 6-3
is displayed.

 Example 6-3.

 BREAK: (a)bort (c)ontinue (p)roc info (i)nfo (l)oaded
 (v)ersion (k)ill (D)b-tables (d)istribution

 Elixir
 To see the Elixir REPL , you must type iex into the shell; you will see the lines shown in Example 6-4 .

 Example 6-4.

 1 Erlang/OTP 19 [erts-8.0.2] [source] [64-bit] [smp:8:8] [async-threads:10] [hipe]\
 2 [kernel-poll:false] [dtrace]
 3

CHAPTER 6 ■ ENVIRONMENT AND DEPLOYMENT

25

 4 Interactive Elixir (1.3.2) - press Ctrl+C to exit (type h() ENTER for help)
 5 iex(1)>

 The first line is the banner of the Erlang system. The fourth line shows the version of the Elixir system.
As before, the numbers may be different from your output. Typing elixir instead of iex will bring up the
help text for the non-interactive version of Elixir, which can be used to run scripts, start applications, or
invoke other tasks; see Example 6-5 .

 Example 6-5.

 $ elixir
 Usage: elixir [options] [.exs file] [data]

 -v Prints version and exits
 -e "command" Evaluates the given command (*)
 -r "file" Requires the given files/patterns (*)
 -S "script" Finds and executes the given script
 -pr "file" Requires the given files/patterns in parallel (*)
 -pa "path" Prepends the given path to Erlang code path (*)
 -pz "path" Appends the given path to Erlang code path (*)
 --app "app" Starts the given app and its dependencies (*)
 --erl "switches" Switches to be passed down to Erlang (*)
 --name "name" Makes and assigns a name to the distributed node
 --sname "name" Makes and assigns a short name to the distributed node
 --cookie "cookie" Sets a cookie for this distributed node
 --hidden Makes a hidden node
 --detached Starts the Erlang VM detached from console
 --werl Uses Erlang's Windows shell GUI (Windows only)
 --no-halt Does not halt the Erlang VM after execution

 ** Options marked with (*) can be given more than once
 ** Options given after the .exs file or -- are passed down to the executed code
 ** Options can be passed to the Erlang runtime using ELIXIR_ERL_OPTIONS or -- erl

 Type the statements in lines 5 and 7 (this time, with no dots at the end of statements) from Example 6-6 .

 Example 6-6.

 1 Erlang/OTP 19 [erts-8.0.2] [source] [64-bit] [smp:8:8] [async-threads:10] [hipe]\
 2 [kernel-poll:false] [dtrace]
 3
 4 Interactive Elixir (1.3.2) - press Ctrl+C to exit (type h() ENTER for help)
 5 iex(1)> double = fn x-> 2 * x end
 6 #Function<6.90072148/1 in :erl_eval.expr/5>
 7 iex(2)> Enum.map([1,2,3,4,5],double)
 8 [2, 4, 6, 8, 10]
 9 iex(3)>

 The result is the same in both cases, but even these short programs give you a first hint of the different
syntax of Erlang and Elixir. In line 7, you could have also used Erlang’s lists library with the same end result;
see Example 6-7 .

CHAPTER 6 ■ ENVIRONMENT AND DEPLOYMENT

26

 Example 6-7.

 :lists.map(double,[1,2,3,4,5])

 In Elixir, you can call any Erlang library by writing a colon (:) in front of the module name and then
access functions with the dot operator, similar to object-oriented languages. The Elixir example shows
another feature that will come handy when defining domain specific languages: most of the time the
parentheses surrounding arguments can be omitted.

 Please note: Erlang has strict naming conventions for variables (starting with an uppercase letter)
and for atoms (which indicate something that is constant starting with a lowercase letter). X in the function
declaration in the example above is a variable. The module name lists in the call to map is an atom.
In Elixir, atoms start with a colon, hence the change from lists in Erlang to :lists in Elixir. All this will
become much clearer in the following chapters.

 REPLs are a nice way to try out some code, but for bigger projects an editor or better yet an IDE is
needed. There are some editors with Erlang or Elixir syntax highlighting built in or available as an add-on.
When you install Erlang on a machine with Emacs installed, it will add the Erlang mode for Emacs 3 , which
integrates the Erlang shell into Emacs and allows compiling from inside Emacs. There is also an Elixir
mode for Emacs 4 available. Similar packages exist for Vim 5 and GitHub’s Atom for both Erlang 6 and Elixir 7 .
A mixed Vim-Emacs on the Mac is Spacemacs 8 which can run Alchemist 9 , which is for many the best Elixir
environment on the Mac.

 A cross-platform development environment is IntelliJ IDEA 10 . It provides integration capabilities for
Erlang and Elixir, and it can be used to edit and compile. The Community Edition is sufficient for developing
non-commercial Erlang and Elixir programs.

 For this book, I used a combination of Atom and shell on all platforms to ensure compatibility.

 Docker Containers
 It is very convenient to spawn a Docker container on a machine and work with REPLs without having to go
through an installation process.

 Of course, if you want to use the predefined Docker containers, you will need to install Docker. The
Docker web site has detailed instructions for Windows 11 , Mac OS X 12 , and Ubuntu 13 . The Ubuntu installation
has more steps than the one for Windows and OS X, which simply run installers. I also had to reboot Ubuntu a
few times until the access rights for my user were picked up and I could successfully run Docker commands.
Docker on Windows and OS X wraps Linux virtual machines because for obvious reasons it is not possible
to run native Linux containers on these operating systems. The Ubuntu installation (and installations on
different Linux systems, which I have not tested) is certainly the way Docker is supposed to be run. In March
2016, Docker started beta programs for more integrated applications on Mac and Windows 14 . They integrate

 3 www.erlang.org/doc/apps/tools/erlang_mode_chapter.html
 4 https://github.com/elixir-lang/emacs-elixir
 5 https://github.com/jimenezrick/vimerl
 6 https://atom.io/packages/language-erlang
 7 https://github.com/lucasmazza/language-elixir
 8 http://spacemacs.org
 9 https://github.com/tonini/alchemist.el
 10 www.jetbrains.com/idea/
 11 https://docs.docker.com/installation/windows/
 12 https://docs.docker.com/installation/mac/
 13 https://docs.docker.com/installation/ubuntulinux/
 14 https://blog.docker.com/2016/03/docker-for-mac-windows-beta/

http://www.erlang.org/doc/apps/tools/erlang_mode_chapter.html
http://www.erlang.org/doc/apps/tools/erlang_mode_chapter.html
https://github.com/elixir-lang/emacs-elixir
https://github.com/elixir-lang/emacs-elixir
https://github.com/jimenezrick/vimerl
https://atom.io/packages/language-erlang
https://github.com/lucasmazza/language-elixir
http://spacemacs.org/
https://github.com/tonini/alchemist.el
https://www.jetbrains.com/idea/
https://docs.docker.com/installation/windows/
https://docs.docker.com/installation/mac/
https://docs.docker.com/installation/ubuntulinux/
https://blog.docker.com/2016/03/docker-for-mac-windows-beta/
http://www.erlang.org/doc/apps/tools/erlang_mode_chapter.html
https://github.com/elixir-lang/emacs-elixir
https://github.com/jimenezrick/vimerl
https://atom.io/packages/language-erlang
https://github.com/lucasmazza/language-elixir
http://spacemacs.org/
https://github.com/tonini/alchemist.el
http://www.jetbrains.com/idea/
https://docs.docker.com/installation/windows/
https://docs.docker.com/installation/mac/
https://docs.docker.com/installation/ubuntulinux/
https://blog.docker.com/2016/03/docker-for-mac-windows-beta/

CHAPTER 6 ■ ENVIRONMENT AND DEPLOYMENT

27

tools and, judging from my first tests, make many tasks easier. The biggest advantage is that VirtualBox is not
a requirement anymore and does not need to be installed on the machine that uses Docker, because these
programs come with their own lightweight Linux embedded.

 The Dockerfile shown in Example 6-8 creates a container based on Ubuntu (in this case a minimal
Ubuntu image provided by Phusion) and installs Erlang and Elixir.

 Example 6-8.

 1 FROM phusion/baseimage:0.9.18
 2 MAINTAINER Wolfgang Loder @wolfgang_loder
 3
 4 ENV REFRESHED_AT 2016-08-08
 5
 6 RUN echo /root /etc/container_environment/HOME
 7
 8 CMD ["sbin/my_init"]
 9
 10 # Set the locale
 11 RUN locale-gen en_US.UTF-8
 12 ENV LANG en_US.UTF-8
 13 ENV LANGUAGE en_US:en
 14 ENV LC_ALL en_US.UTF-8
 15
 16 # Set versions
 17 ENV ERLANG_VERSION=1:19.0
 18 ENV ELIXIR_VERSION=1.3.2
 19
 20 WORKDIR /tmp
 21
 22 # See : https://github.com/phusion/baseimage-docker/issues/58
 23 RUN echo 'debconf debconf/frontend select Noninteractive' | debconf-set-selectio \
 24 ns
 25
 26 # Get prerequisites
 27 RUN apt-get update && apt-get install -y \
 28 git \
 29 make \
 30 unzip \
 31 wget
 32
 33 # Set up Erlang
 34 RUN wget http://packages.erlang-solutions.com/erlang-solutions_1.0_all.deb && d \
 35 pkg -i erlang-solutions_1.0_all.deb
 36 RUN apt-get update
 37 RUN apt-get install erlang -y \
 38 && apt-get clean \
 39 && rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*
 40
 41 # Set up Elixir from precompiled zip on GitHub
 42 WORKDIR /usr/local/elixir
 43 RUN wget https://github.com/elixir-lang/elixir/releases/download/v$ELIXIR_VERSIO \

CHAPTER 6 ■ ENVIRONMENT AND DEPLOYMENT

28

 44 N/Precompiled.zip \
 45 && unzip Precompiled.zip \
 46 && ln -s /usr/local/elixir/bin/elixirc /usr/local/bin/elixirc \
 47 && ln -s /usr/local/elixir/bin/elixir /usr/local/bin/elixir \
 48 && ln -s /usr/local/elixir/bin/mix /usr/local/bin/mix \
 49 && ln -s /usr/local/elixir/bin/iex /usr/local/bin/iex \
 50 && rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/* \
 51 && rm /usr/local/elixir/Precompiled.zip
 52
 53 WORKDIR /

 Notes:

• In lines 17 and 18, two environment variables are set to define the Erlang and Elixir
versions you want to use. If you want to install different versions from the one shown
in the Docker file, change them here. If you do this, be careful to choose an Erlang/
Elixir pair that matches. For example, Elixir 1.0.3 did not work with Erlang 17.5.
We are now (mid-2016) at Erlang version 19.2 and Elixir version 1.3.2, but at the
publishing time of this book the version numbers will have changed.

• Elixir needs to run on a system with UTF 8 enabled; otherwise it won’t work.

• The Elixir version is downloaded as a precompiled zip file from GitHub. It is also
possible to download the source and compile Elixir during the creation of the Docker
container.

• The script tries to clean up temporary files as much as possible, but the size of the
created container is still about 700MB.

 You can build the Docker image by executing the command shown in Example 6-9 on the command
line in the folder that contains the Dockerfile.

 Example 6-9.

 1 docker build -t bookcompanionee:1.0 .

 The container can then be run with the statement shown in Example 6-10 .

 Example 6-10.

 docker run -t -i bookcompanionee:1.0 /bin/bash

 Alternatively, a predefined container can be used. Docker Hub provides official images, amongst them
 Erlang 15 and Elixir 16 . The Elixir container builds on the Erlang container and has everything installed that is
needed for development, including Rebar3. It can be pulled from the Docker Hub repository as shown in
Example 6-11 .

 Example 6-11.

 1 docker pull elixir

 15 https://hub.docker.com/_/erlang/
 16 https://hub.docker.com/_/elixir/

https://hub.docker.com/_/erlang/
https://hub.docker.com/_/elixir/
https://hub.docker.com/_/erlang/
https://hub.docker.com/_/elixir/

CHAPTER 6 ■ ENVIRONMENT AND DEPLOYMENT

29

 An additional option is to use Docker Compose 17 to spawn several containers with Erlang/Elixir in one
and databases in the others.

 It involves three steps:

• Create Dockerfiles for all your applications and services.

• Define all services that need to run for the application in a Docker Compose file.

• Execute composer commands to start or stop all services.

 The file shown in Example 6-12 (docker-compose.yml) implements this scenario.

 Example 6-12.

 1 version: '2'
 2 services:
 3 elixir:
 4 image: elixir
 5 links:
 6 - postgres
 7 - mongo
 8 postgres:
 9 image: postgres
 10 ports:
 11 - "5432:5432"
 12 environment:
 13 POSTGRES_PASSWORD: postgres
 14 POSTGRES_USER: postgres
 15 mongo:
 16 image: mongo
 17 ports:
 18 - "27017:27017"

 You define three services: Elixir, PostgreSQL, and MongoDB. The Elixir service can communicate with
the database servers via the defined ports.

 Running all the containers is then invoked with the command shown in Example 6-13 .

 Example 6-13.

 docker-compose run elixir

 Listing all running containers will show (some columns were omitted) the output in Example 6-14 .

 Example 6-14.

 1 $ docker ps
 2 IMAGE COMMAND STATUS PORTS
 3 elixir "iex" Up 43 seconds
 4 mongo "/entrypoint.sh mongo" Up 43 seconds 0.0.0.0:27017->27017/tcp
 5 postgres "/docker-entrypoint.s" Up 43 seconds 0.0.0.0:5432->5432/tcp

 17 https://docs.docker.com/compose/overview/

https://docs.docker.com/compose/overview/
https://docs.docker.com/compose/overview/

CHAPTER 6 ■ ENVIRONMENT AND DEPLOYMENT

30

 The Elixir image runs iex and the official database images provide their services with predefined
scripts. What you have not defined is that database files are on the host machines; if you stop the services, all
data will be deleted as well.

 When you don’t need the containers anymore, you can issue the down command, as shown in
Example 6-15 .

 Example 6-15.

 1 $ docker-compose down
 2 Stopping docker_elixir_run_1 ... done
 3 Stopping docker_mongo_1 ... done
 4 Stopping docker_postgres_1 ... done
 5 Removing docker_elixir_run_1 ... done
 6 Removing docker_mongo_1 ... done
 7 Removing docker_postgres_1 ... done
 8 Removing network docker_ default

 Download or build containers? The answer to this question certainly depends on the trust you have
towards the maintainer of the container. It is easier to download a container with the Docker tools and run it.
Building the container from the Dockerfile is a process that takes its time; on the other hand, you know exactly
what runs in the container.

 Of course, it is not necessary to run Docker containers. The traditional way of having everything needed
for development installed on one machine or in one virtual machine is still a good solution.

 Deployment
 Once a developer has written code in Erlang or Elixir, has tested it, and has confirmed that it runs locally, the
next step is to deploy the application to a server on the network or in the cloud.

 You may be surprised to learn that deployment of Erlang/Elixir applications is not straightforward.
There is no obvious copy-and-paste solution or obvious one-click deployment. The reason is that the Erlang
virtual machine or runtime must be available on a system that is running an Erlang or Elixir application.

 What are applications ? When we talk about Applications in the Erlang system, this does not mean
an executable we can just run from the command line or by clicking an icon.

 Applications are a set of modules that work together, but are not compiled into one binary file.

 The Java world with JVM and the .Net world are similar, but those runtimes are either provided by the
operating system (in .Net’s case) or are most probably part of the operating system distribution, like the JVM.

CHAPTER 6 ■ ENVIRONMENT AND DEPLOYMENT

31

 In Erlang/OTP, the doctrine is to ship code with an embedded runtime and all dependencies. This
makes sense from the point of view of guaranteeing that an application can start and run. Also, various
applications on one machine can run different Erlang versions. Many developers know of the impact
of incompatibilities between versions; Windows developers especially have experienced DLL-hell . The
downside of embedded runtimes is that releases are quite large and the deployment on a distributed system
or cluster needs to be planned carefully.

 What is a release ? A release copies the Erlang binaries and necessary libraries/beams/applications
into a release directory and forms a self-contained Erlang system. It contains a boot script that defines how to
start up the applications in the right order and keep them running.

 You can mix Erlang and Elixir modules as you see fit to achieve your design goals. In a binary release,
there is no difference between them because all code is compiled into the Beam-compliant code. Before
getting to this stage, you must find out how to actually handle Erlang and Elixir source code to create a
release.

 In Chapter 7 , you will look at the tools available to you for compiling, testing, and deploying code.

http://dx.doi.org/10.1007/978-1-4842-2394-9_7

33© Wolfgang Loder 2016
W. Loder, Erlang and Elixir for Imperative Programmers, DOI 10.1007/978-1-4842-2394-9_7

 CHAPTER 7

 Development Setup

 This development environment is a continuous integration environment (see Figure 7-1). The goal is to
write code, and compile and run tests automatically in the background. The source code can be on the
development machine or, if a container is used, on the host of the container, which may be the development
machine as well. Optionally, you may have to install a database to run certain tests.

 Figure 7-1. Continuous integration

 If you do your coding in a folder on a host machine with containers, you must make sure to have
different Erlang/Elixir versions and version combinations for compiling and testing available.

 This chapter is an overview of various tools used during Erlang and Elixir development . After installing
the tools, or using a container to have it prebuilt, your machine will be ready to do serious development work
with Erlang and Elixir.

CHAPTER 7 ■ DEVELOPMENT SETUP

34

 You’ll use the example projects erlangexamples and elixirexamples , which are available on Github at
 https://github.com/kujua/erlang-elixir-imperative-bookcompanion .

 Basic Tools for Continuous Integration
 Continuous integration (CI) is a little bit more involved than running a REPL for Erlang or Elixir. In a
nutshell, it means that you want to code, and a process watches the code folders and code files, and invokes
tests whenever anything changes. These tests can be simple unit tests or more complicated integration
tests. An example of a CI server for Erlang can be found at https://github.com/greenelephantlabs/kha .
Unfortunately, the project has not been updated for a while, but perhaps somebody will pick it up and bring
it up to the latest versions of Erlang, Rebar, and other requirements.

 There are many discussions about the scopes of testing in CI, such as this google search on scope of
continuous integration : www.google.com/search?rls=en&q=ci+scope&ie=UTF-8&oe=UTF-8#q=scope+of+co
ntinuous+integration . Topics include

• Do you want to run all tests all the time?

• Mocking or not mocking?

• Are databases included in the test setup?

• Where to keep the source code?

• How much to automate?

• Responsibilities of team members?

 I touch on these topics without judging the need for the tools. For example, mocking libraries have
their place in testing, but can be overused and may be just used for their own sake. Every developer team
must make his/her own decision about mocking or other tools depending on managerial or technical
requirements

 Tools for Erlang and Elixir The following two lists on GitHub give an overview of tools and libraries:

 Awesome Elixir 1

 Awesome Erlang 2

 These lists are a good starting point to see what is going on in the Erlang/Elixir community. As expected, the list
for Elixir is much larger and growing regularly. More resources can be found in Appendix B.

 Rebar3
 Rebar3 is Erlang’s tool for building projects, but it is more than a build tool. It can create application
templates, run tests, invoke scripts, and more. The previous version, Rebar, served Erlang developers for
years, but some shied away from the configuration work and the fact that Rebar creates applications based
on the OTP standard

 1 https://github.com/h4cc/awesome-elixir
 2 https://github.com/drobakowski/awesome-erlang

https://github.com/kujua/erlang-elixir-imperative-bookcompanion
https://github.com/kujua/erlang-elixir-imperative-bookcompanion
https://github.com/greenelephantlabs/kha
https://www.google.com/search?rls=en&q=ci+scope&ie=UTF-8&oe=UTF-8&q=scope+of+continuous+integration
https://www.google.com/search?rls=en&q=ci+scope&ie=UTF-8&oe=UTF-8&q=scope+of+continuous+integration
https://www.google.com/search?rls=en&q=ci+scope&ie=UTF-8&oe=UTF-8&q=scope+of+continuous+integration
http://www.google.com/search?rls=en&q=ci+scope&ie=UTF-8&oe=UTF-8#q=scope+of+continuous+integration
http://www.google.com/search?rls=en&q=ci+scope&ie=UTF-8&oe=UTF-8#q=scope+of+continuous+integration
https://github.com/h4cc/awesome-elixir
https://github.com/drobakowski/awesome-erlang
https://github.com/h4cc/awesome-elixir
https://github.com/drobakowski/awesome-erlang

CHAPTER 7 ■ DEVELOPMENT SETUP

35

 Rebar3 has changed a few things but stays as compatible as possible with older Rebar versions. One of
the bigger changes is the integration of the package manager Hex , which is used in Elixir as well. This makes
it possible to include (binary) packages that are created with Elixir. Another feature of Rebar3 is that it now
 only handles OTP applications and is more stringent with the folder structure of the projects, a fact that may
put off some developers.

 In this book, you will only use Rebar3 for Erlang projects because eventually this version will supersede
the old version. The stable version 3.0 was released in February of 2016. The easiest way to install Rebar3 on
your machine is to clone the GitHub repository 3 and run the bootstrap script for your operating system. Of
course, Erlang must have been installed before that. Alternatively, get the compiled executable from the release
page and copy it into a folder that is accessible on the path. You may have to set executable rights as well. The
latter approach is preferable for updates, and the script approach is preferable for first-time installations.

 The installation of Rebar3 links the executable to rebar3 to avoid conflict with the previous version.

 If you get a command not found or a similar message, you used the command rebar instead of rebar3 .

 The project erlangexamples in the directory Erlang/erlangexamples is an OTP application built with
Rebar3. You can find the ready project in the GitHub repository, but let’s walk through the creation and the
configuration of this project to learn more about the tool.

 Building a new application with Rebar3 is not difficult. The command will build a directory called
 erlangexamples and underneath it the directory structure and basic files for an OTP application. See
Example 7-1 .

 Example 7-1.

 rebar3 new app erlangexamples

 Run the command, as shown in Example 7-2 , from the newly created directory erlangexamples and the
application will be compiled.

 Example 7-2.

 rebar3 compile

 There is not much code in the project yet because the app-template of Rebar3 only creates the skeleton of
an OTP application. Run the command and the compiled application will be brought into a form suitable for
deploying, including a script to run the application from the command line. Doing this with a new application
will just start a process with no functions to call, apart from the OTP skeleton callbacks, because you have not
implemented anything yet. You will get deeper into the OTP code in Part 4. For now, see Example 7-3 .

 Example 7-3.

 rebar3 release

 In this example, you just created an OTP application, but there are more options that can be passed
as arguments to create Erlang projects with Rebar3. The command shown in Example 7-4 , without any
arguments, reveals all templates that can be found on the machine.

 3 https://github.com/erlang/rebar3

https://github.com/erlang/rebar3
https://github.com/erlang/rebar3

CHAPTER 7 ■ DEVELOPMENT SETUP

36

 Example 7-4.

 rebar3 new

 A vanilla installation of Rebar3 will print out the list shown in Example 7-5 .

 Example 7-5.

 app (built-in): Complete OTP Application structure.
 Cmake (built-in): Standalone Makefile for building C/C++ in c_src
 escript (built-in): Complete escriptized application structure
 lib (built-in): Complete OTP Library application (no processes) structure
 plugin (built-in): Rebar3 plugin project structure
 release (built-in): OTP Release structure for executable programs

 These are the default built-in template names with a brief explanation what they are creating.

 Custom Templates
 It is possible to implement custom templates 4 . These may be useful, for example, to provide more
boilerplate code in the created files or to ensure project-specific headers. The following examples show the
implementation of a custom template that creates an EUnit file in an existing project.

 All custom templates reside in the folder ~/.config/rebar3/templates. On Windows, the ~ refers to
the directory Rebar3 was installed into. This templates folder is read out automatically when you run the
command new and all available custom templates are displayed together with the built-in templates. In the
case of erlangexamples , the printout looks like Example 7-6 .

 Example 7-6.

 app (built-in): Complete OTP Application structure.
 cmake (built-in): Standalone Makefile for building C/C++ in c_src
 cowboyapp (custom): Cowboy OTP-based application.
 escript (built-in): Complete escriptized application structure
 kujua_ctsuite (custom): Common Test Suite
 kujua_eunit (custom): EUnit Test Suite
 kujua_gsrv (custom): OTP gen_server
 lib (built-in): Complete OTP Library application (no processes) structure
 plugin (built-in): Rebar3 plugin project structure
 release (built-in): OTP Release structure for executable programs

 There are three custom templates with the prefix kujua , one of which will be described below, and one
custom template for the web server Cowboy , which you will use in Part 4.

 A template needs two files to function, one with the suffix .template and one Erlang code file with the
default suffix .erl . Your example, kujua_eunit.template , is shown in Example 7-7 .

 Example 7-7.

 1 {description, "EUnit Test Suite"}.
 2 {variables, [

 4 www.rebar3.org/docs/using-templates

https://www.rebar3.org/docs/using-templates
http://www.rebar3.org/docs/using-templates

CHAPTER 7 ■ DEVELOPMENT SETUP

37

 3 {name, "eunittestsuite"}
 4]}.
 5 {dir, "tests"}.
 6 {template, "kujua_eunit.erl", "tests/{{name}}_tests.erl"}.

 As often in Erlang, the configuration entries are just tuples:

• description will be shown when you run rebar3 new to get a list of all templates.

• variables defines variables in the form {key, “default value”} that will
substitute placeholders in the Erlang file during file generation (shown later).

• dir creates a folder if it does not exist, but note that this is not automatically the
place where the created files will be copied to.

• template is the heart of the configuration. It tells the generator which code file to
use, where to put the new file, and which name to use. The {{name}} expression is
 Mustache 5 , a template language widely used.

 The Erlang file kujua_eunit.erl defines the output that should be created and defines the binding of
Mustache placeholders to actual values; see Example 7-8 .

 Example 7-8.

 1 %%% @author {{author_name}} <{{author_email}}>
 2 %%% @copyright {{copyright_year}} {{author_name}}
 3 %%% @doc
 4 %%%
 5 %%% @end
 6
 7 - module ({{name}}_tests).
 8 - author ('{{author_name}} <{{author_email}}>').
 9
 10 - define (NOTEST, true).
 11 - define (NOASSERT, true).
 12 - include_lib ("eunit/include/eunit.hrl").
 13
 14 - define (MODNAME, {{name}}).
 15
 16 %%% test generator
 17 {{name}}_test_() ->
 18 [].

 In this example, you see placeholders like author_email that you did not define in the variables list in
the template. These values are taken from a file global (without extension), which is the place to define key-
value pairs for variables that are used in more than one template; see Example 7-9 .

 Example 7-9.

 1 {variables, [
 2 {copyright_year, "2016"},

 5 http://mustache.github.io

http://mustache.github.io/
http://mustache.github.io/

CHAPTER 7 ■ DEVELOPMENT SETUP

38

 3 {author_name, "Wolfgang Loder"},
 4 {author_email, "kujuasiokubahatisha@gmail.com"}
 5]}.

 The variables list in global will be merged with the variables for the particular template you want
to create and then the bindings will be applied. The file global resides in the above mentioned templates
folder.

 Running the statement in Example 7-10 creates the file eunittemplate_tests.erl in the folder tests of
the project you run the command in.

 Example 7-10.

 rebar3 new kujua_eunit eunittemplate

 If test does not exist, it will be created during the processing of the template; see Example 7-11 .

 Example 7-11.

 1 %%% @author Wolfgang Loder <kujuasiokubahatisha@gmail.com>
 2 %%% @copyright 2016 Wolfgang Loder
 3 %%% @doc
 4 %%%
 5 %%% @end
 6
 7 - module (eunittemplate_tests).
 8 - author ('Wolfgang Loder <kujuasiokubahatisha@gmail.com>').
 9
 10 - define (NOTEST, true).
 11 - define (NOASSERT, true).
 12 - include_lib ("eunit/include/eunit.hrl").
 13
 14 - define (MODNAME, eunittemplate).
 15
 16 %%% test generator
 17 eunittemplate_test_() ->
 18 [].

 Custom templates are useful, and you will see that the Elixir tool called Mix has a similar mechanism for
creating custom templates.

 Configuration and Shell
 When Rebar3 processes a command, it relies on information in a configuration file to know what to do or if
default values should be altered. The file rebar.config in erlangexamples looks like Example 7-12 .

 Example 7-12.

 1 {erl_opts, [debug_info]}.
 2 {deps, []}.
 3
 4 {relx, [{release, { erlangexamples, "0.1.0" },
 5 [erlangexamples,

CHAPTER 7 ■ DEVELOPMENT SETUP

39

 6 sasl]},
 7 {sys_config, "./config/sys.config"},
 8 {vm_args, "./config/vm.args"},
 9 {dev_mode, true},
 10 {include_erts, false},
 11 {extended_start_script, true}]
 12 }.
 13
 14 {profiles, [{prod, [{relx, [{dev_mode, false},
 15 {include_erts, true}]}]
 16 }]
 17 }.

 Most of the commands in this file have to do with the release. The first two lines declare options (in this
case, you want to have debug info in the binary) and dependencies. You will see in later chapters how to use
dependencies and you will also use the files sys.config and vm.args that are linked to in the configuration
in lines 7 and 8 and can be found in the directory config .

 The syntax of the configuration file is Erlang code and consists of key-value pairs and lists. When you
compile the example application with rebar3 compile , the output is as shown in Example 7-13 .

 Example 7-13.

 ===> Verifying dependencies...
 ===> Compiling erlangexamples

 Verifying dependencies refers to the deps declaration in rebar.config ; in your example, this is an
empty list.

 The generated .beam file can be found in the folder _build . This folder has a structure that has to
be described as “not obvious.” Without going into the details, beam files in the erlangexamples project
can be started in an Erlang shell from the directory Erlang/erlangexamples/_build/default/lib/er-
langexamples/ebin , but there is a better way.

 Rebar3 is a tool for OTP applications that are difficult to configure manually and difficult to run
manually. Therefore, Rebar3 provides the option to build a release. The command rebar3 release uses
another tool called relx and adds a folder named rel to the _build directory, which contains, among other
files, scripts to run the application. Example 7-14 shows the output.

 Example 7-14.

 ===> Verifying dependencies...
 ===> Compiling erlangexamples
 ===> Starting relx build process ...
 ===> Resolving OTP Applications from directories:
 /Users/Wolfgang/Projects/bookcompanion-ee/Erlang/erlangexamples/_build\
 /default/lib
 /Users/Wolfgang/Projects/bookcompanion-ee/Erlang/erlangexamples/apps
 /usr/local/Cellar/erlang/18.1/lib/erlang/lib
 /Users/Wolfgang/Projects/proper
 /Users/Wolfgang/Projects/bookcompanion-ee/Erlang/erlangexamples/_build\
 /default/rel
 ===> Resolved erlangexamples-0.1.0
 ===> Dev mode enabled, release will be symlinked
 ===> release successfully created!

CHAPTER 7 ■ DEVELOPMENT SETUP

40

 Again, it is possible to run the script manually, but it is likely that this will end in an error message.
Rebar3 helps us with the command shown in Example 7-15 without relying on a release build.

 Example 7-15.

 rebar3 shell

 This command opens a shell and boots your application with all needed dependencies and sets
environment variables. One dependency you will see automatically loaded is sasl , the System Application
Support Library . For production deployments, you will use the script as explained in the next chapter.

 The shell also includes a Rebar3 agent, so it is possible to run commands in the shell like the one in
Example 7-16 .

 Example 7-16.

 r3 :do(help).

 This command displays the help page for Rebar3. More useful commands are compile , clean , or tree .
You can also run tests this way, for example EUnit tests, such as the one in Example 7-17 .

 Example 7-17.

 r3 :do(eunit).

 The list of commands in version 3.1.1 as printed by help is shown in Example 7-18 .

 Example 7-18.

 1 Several tasks are available:
 2
 3 as Higher order provider for running multiple tasks in a sequence\
 4 as a certain profiles.
 5 clean Remove compiled beam files from apps.
 6 compile Compile apps .app.src and .erl files.
 7 cover Perform coverage analysis.
 8 ct Run Common Tests.
 9 deps List dependencies
 10 dialyzer Run the Dialyzer analyzer on the project.
 11 do Higher order provider for running multiple tasks in a sequence.
 12 edoc Generate documentation using edoc.
 13 escriptize Generate escript archive.
 14 eunit Run EUnit Tests.
 15 help Display a list of tasks or help for a given task or subtask.
 16 new Create new project from templates.
 17 path Print paths to build dirs in current profile.
 18 pkgs List available packages.
 19 release Build release of project.
 20 relup Create relup of releases.
 21 report Provide a crash report to be sent to the rebar3 issues page.
 22 shell Run shell with project apps and deps in path.
 23 tar Tar archive of release built of project.
 24 tree Print dependency tree.
 25 unlock Unlock dependencies.

CHAPTER 7 ■ DEVELOPMENT SETUP

41

 26 update Update package index.
 27 upgrade Upgrade dependencies.
 28 version Print version for rebar and current Erlang.
 29 xref Run cross reference analysis.

 The most used commands in this list are certainly compile and shell . If you cloned the book
companion GitHub repository to your local machine, just go to the directory Erlang/erlangexamples and
run rebar3 shell . This command will compile the source and start the shell. Then run the statement shown
in Example 7-19 .

 Example 7-19.

 mapsexample :pizza_toppings_map().

 You will get the return shown in Example 7-20 .

 Example 7-20.

 1> mapsexample:pizza_toppings_map().
 #{{ham,slices} => 6,
 {mozzarella,slices} => 8,
 {mushroom,spoon} => 2,
 {onion,spoon} => 2,
 {onionring,spoon} => 2,
 {sausage,piece} => 1,
 {spinach,spoon} => 2,
 {tomatosauce,spoon} => 3}

 Every function in the modules in the application erlangexamples can be run in the shell.
 Rebar3 is more advanced than the few commands you have explored. Throughout this chapter and

the rest of the book, you will use it and see many of the features. For now, I recommend a quick look at the
 Rebar3 documentation . 6

 Mix
 Mix is the default tool to create and manage Elixir projects, similar to Rebar3 in Erlang or npm in Node.js.

 Commands
 The first command every Elixir developer will encounter is mix new . The line in Example 7-21 creates a
simple project.

 Example 7-21.

 mix new testproject

 The output in Example 7-22 shows what was created and gives a few hints how to start.

 6 www.rebar3.org/docs

http://www.rebar3.org/docs
http://www.rebar3.org/docs

CHAPTER 7 ■ DEVELOPMENT SETUP

42

 Example 7-22.

 * creating README.md
 * creating .gitignore
 * creating mix.exs
 * creating config
 * creating config/config.exs
 * creating lib
 * creating lib/testproject.ex
 * creating test
 * creating test/test_helper.exs
 * creating test/testproject_test.exs

 Your Mix project was created successfully.
 You can use "mix" to compile it, test it, and more:

 cd testproject
 mix test

 Run "mix help" for more commands.

 Mix creates a subfolder with the name given for the project in the folder it runs in. Alternatively, a path
can be supplied.

 Running the command in Example 7-23 shows a help page for the command new with all the relevant
options.

 Example 7-23.

 mix help new

 Be careful not to write mix new help , as I did a few times; this will create a project called help in a
subfolder of the current folder. The following help page output (Example 7-24) is formatted; the original has
colors, and many more lines in between paragraphs.

 Example 7-24.

 Creates a new Elixir project. It expects the path of the project as argument.

 mix new PATH [--sup] [--module MODULE] [--app APP] [--umbrella]

 A project at the given PATH will be created. The application name and module
 name will be retrieved from the path, unless --module or --app is given.
 A --sup option can be given to generate an OTP application skeleton including a supervision
tree. Normally an app is generated without a supervisor and without the app callback.
 An --umbrella option can be given to generate an umbrella project.
 An --app option can be given in order to name the OTP application for the
 project.
 A --module option can be given in order to name the modules in the generated
 code skeleton.

 Examples
 mix new hello_world

CHAPTER 7 ■ DEVELOPMENT SETUP

43

 Is equivalent to:
 mix new hello_world --module HelloWorld
 To generate an app with supervisor and application callback:
 mix new hello_world --sup
 Location: /usr/local/Cellar/elixir/1.2.5/lib/mix/ebinß

 Important options are

• –sup for creating an OTP application with a supervisor

• –umbrella , which creates a project with an app folder to create applications in

 You will see both options used in later chapters. Don’t get too excited about these options; they produce
skeletons, but not much more.

 A useful application of mix new is that it can be invoked in an existing folder that has already files in it.
Maybe you started writing some code and later decide to add tool support for packages or you want to use
the code in a proper project. Run mix new . (note the dot) in the folder with your code and it will create a
project structure with, among others, test files and a configuration file. If you had a mix.exs file in this folder,
the new task will ask you if you want to overwrite it. After running the command, you will still have to copy
your code into the lib folder manually, but it is better than doing everything else manually as well.

 Mix uses the configuration file mix.exs to define everything about a project. The testproject you
created before has the file in Example 7-25 (with all comments deleted).

 Example 7-25.

 1 defmodule Testproject.Mixfile do
 2 use Mix.Project
 3
 4 def project do
 5 [app: :testproject,
 6 version: "0.0.1",
 7 elixir: "~> 1.2",
 8 build_embedded: Mix .env == :prod,
 9 start_permanent: Mix .env == :prod,
 10 deps: deps]
 11 end
 12
 13 def application do
 14 [applications: [:logger]]
 15 end
 16
 17 defp deps do
 18 []
 19 end
 20 end

 This file is a normal Elixir script file that defines a module using Mix.Project , which has functions
defined to support tasks in their work with projects. The function project is mandatory and needs to be
defined in order for a project to work.

 The file mix.exs is much more useful then the basic example shown. For example, it is possible to
define functions that can be called from anywhere in the project. We can frown at global functions and
global values, but sometimes they are necessary. The project dar_imagelib defines such a function; see
Example 7-26 .

CHAPTER 7 ■ DEVELOPMENT SETUP

44

 Example 7-26.

 1 defmodule DarImagelib.Mixfile do
 2 use Mix.Project
 3
 4 def project do
 5 [
 6 app: :dar_imagelib,
 7 version: "0.0.1",
 8 elixir: "~> 1.1",
 9 build_embedded: Mix .env == :prod,
 10 start_permanent: Mix .env == :prod,
 11 deps: deps,
 12 dialyzer:
 13 [
 14 plt_apps: ["erts","kernel","stdlib","crypto","public_key","mnesia"],
 15 flags: ["-Wunmatched_returns","-Werror_handling",
 16 "-Wrace_conditions", "-Wno_opaque"],
 17 paths: ["."]
 18]
 19]
 20 end
 21
 22 def application do
 23 [mod: { DarImagelib.App , []},
 24 applications: [:logger,:mogrify]]
 25 end
 26
 27 defp deps do
 28 [
 29 {:mogrify,path: "~/Projects/mogrify"},
 30 {:dar_model,path: "~/Projects/creative-common-dar/Erlang/Libs/dar_model"},
 31 {:ex_doc, "~> 0.11", only: :dev},
 32 {:dialyxir, "~> 0.3", only: [:dev]}
 33]
 34 end
 35
 36 def getconstant(c) do
 37 globdefs = %{
 38 respath:
 39 "~/Projects/creative-common-dar/Elixir/Libs/dar_imagelib/test/res/"
 40 }
 41 case c do
 42 :respath -> globdefs.respath
 43 _ -> ""
 44 end
 45 end
 46
 47 end

CHAPTER 7 ■ DEVELOPMENT SETUP

45

 The function getconstant provides a way to get a global path for resources. It can be called in code as
shown in Example 7-27 .

 Example 7-27.

 DarImagelib.Mixfile .getconstant(:respath)

 This example shows more features of mix configuration files. In the function deps , which returns a
simple list of tuples, you can see path dependencies; see Example 7-28 .

 Example 7-28.

 1 {:mogrify, path: "~/Projects/mogrify"},
 2 {:dar_model, path: "~/Projects/creative-common-dar/Erlang/Libs/dar_model"}

 Mogrify is an open source Elixir library (I will discuss it later in more depth) that I was forking to add
new features for my project. The other dependency is dar_model , which is an Erlang project. When you
compile the project with Mix, all dependent local Erlang projects will be compiled as well.

 The function project also has configuration for Dialyzer on lines 12 to 18. You will learn more about
Dialyzer later.

 The command mix help displays the list in Example 7-29 (Elixir version 1.3.2 with the web framework
 Phoenix installed as archive).

 Example 7-29.

 Mix # Runs the default task (current: "mix run")
 mix app.start # Starts all registered apps
 mix app.tree # Prints the application tree
 mix archive # Lists installed archives
 mix archive.build # Archives this project into a .ez file
 mix archive.install # Installs an archive locally
 mix archive.uninstall # Uninstalls archives
 mix clean # Deletes generated application files
 mix cmd # Executes the given command
 mix compile # Compiles source files
 mix deps # Lists dependencies and their status
 mix deps.clean # Deletes the given dependencies' files
 mix deps.compile # Compiles dependencies
 mix deps.get # Gets all out of date dependencies
 mix deps.tree # Prints the dependency tree
 mix deps.unlock # Unlocks the given dependencies
 mix deps.update # Updates the given dependencies
 mix do # Executes the tasks separated by comma
 mix escript # Lists installed escripts
 mix escript.build # Builds an escript for the project
 mix escript.install # Installs an escript locally
 mix escript.uninstall # Uninstalls escripts
 mix help # Prints help information for tasks
 mix hex # Prints Hex help information
 mix hex.build # Builds a new package version locally

CHAPTER 7 ■ DEVELOPMENT SETUP

46

 mix hex.config # Reads or updates Hex config
 mix hex.docs # Publishes docs for package
 mix hex.info # Prints Hex information
 mix hex.key # Hex API key tasks
 mix hex.outdated # Shows outdated Hex deps for the current project
 mix hex.owner # Hex package ownership tasks
 mix hex.public_keys # Manages Hex public keys
 mix hex.publish # Publishes a new package version
 mix hex.registry # Hex registry tasks
 mix hex.search # Searches for package names
 mix hex.user # Hex user tasks
 mix loadconfig # Loads and persists the given configuration
 mix local # Lists local tasks
 mix local.hex # Installs Hex locally
 mix local.phoenix # Updates Phoenix locally
 mix local.public_keys # Manages public keys
 mix local.rebar # Installs Rebar locally
 mix new # Creates a new Elixir project
 mix phoenix.new # Creates a new Phoenix v1.2.0 application
 mix profile.fprof # Profiles the given file or expression with fprof
 mix run # Runs the given file or expression
 mix test # Runs a project's tests
 mix xref # Performs cross reference checks
 iex -S mix # Starts IEx and runs the default task

 The most important commands are

• mix deps.get : It scans the deps function output in mix.exs and downloads
external dependencies to the machine. They are cached and reused, so they are
not downloaded every time a project demands the dependency. The Hex package
manager is used for this task and there are many options to tailor dependencies’
management to the needs of the project. For example, it is possible to always
override dependencies or to make them local to the project. You can specify
dependencies from Hex (default), git including github , or local (path).

• mix compile : The project is compiled. If this task can’t find dependencies, it will
display a message to run the deps.get task first. It would be nice if running this
command would be done automatically by default.

• mix test : All ExUnit tests of the project will be run. At the moment, there is no
default task to run Common Test suites.

• iex -S mix : This is the equivalent of rebar3 shell . It starts the project in an Elixir
REPL and loads all modules defined in the configuration. The option -S means to
run a script, in this case mix.exs . You will hear more about iex when you look at
debugging and monitoring.

• mix archive : Shows all registered archives, most notably that Phoenix is installed
with an archive file (suffix .ez). Archive files are basically zip files with application
and beam files.

• mix deps : Lists all dependencies for a project together with version information
and if it is a mix (Elixir) or rebar3 (Erlang) package. It also indicates if a package was
compiled with an old Elixir version, for example after an update (see Example 7-30).

CHAPTER 7 ■ DEVELOPMENT SETUP

47

 Example 7-30.

 * calendar (Hex package) (mix)
 locked at 0.16.0 (calendar) cf2dec9f
 the dependency was built with an out-of-date Elixir version, run "mix deps.com\ pile"

• mix deps.tree : Displays a graphical representation of the dependency tree with
version information; see Example 7-31 .

 Example 7-31.

 1 elixirexamples
 2 ├── poison ~> 2.0 (Hex package)
 3 ├── dialyxir ~> 0.3 (Hex package)
 4 ├── timex ~> 2.1.5 (Hex package)
 5 │ ├── gettext ~> 0.10 (Hex package)
 6 │ ├── combine ~> 0.7 (Hex package)
 7 │ └── tzdata ~> 0.1.8 or ~> 0.5 (Hex package)
 8 │ └── hackney ~> 1.0 (Hex package)
 9 │ ├── ssl_verify_fun 1.1.0 (Hex package)
 10 │ ├── mimerl 1.0.2 (Hex package)
 11 │ ├── metrics 1.0.1 (Hex package)
 12 │ ├── idna 1.2.0 (Hex package)
 13 │ └── certifi 0.4.0 (Hex package)
 14 └── calendar ~> 0.16.0 (Hex package)
 15 └── tzdata ~> 0.5.8 or ~> 0.1.201603 (Hex package)

• mix app.tree : Displays a graphical representation of the application tree, as shown
in Example 7-32 .

 Example 7-32.

 1 ==> dar_workflow
 2 dar_workflow
 3 ├── elixir
 4 ├── logger
 5 │ └── elixir
 6 └── gen_state_ machine
 7 ├── elixir
 8 └── logger

 Both mix deps.tree and mix app.tree can create a . dot 7 file which can be transformed into other
formats with the help of the command line tool dot 8 , as shown in Example 7-33 .

 Example 7-33.

 1 mix app.tree --format dot
 2 dot -Tpng app_tree.dot -o app_tree.png

 7 https://en.wikipedia.org/wiki/DOT_(graph_description_language)
 8 www.graphviz.org

https://en.wikipedia.org/wiki/DOT_(graph_description_language)
http://www.graphviz.org/
https://en.wikipedia.org/wiki/DOT_(graph_description_language
http://www.graphviz.org/

CHAPTER 7 ■ DEVELOPMENT SETUP

48

 Figure 7-2 shows the application tree output for dar_workflow .

 Custom Tasks
 With Rebar3, you can define new templates; with Mix, you can do similar and more. I use the following
 custom task to insert headers into existing Elixir files (Example 7-34). It is a lengthy listing, but it can be
easily used for your own custom tasks.

 Example 7-34.

 1 defmodule Mix.Tasks.Kujua.AddHeader do
 2 use Mix.Task
 3
 4 @shortdoc "Generates a file header"
 5 @moduledoc """
 6 Generates a file header.
 7
 8 Usage: *mix kujua.add_header path/to/file.ex*
 9
 10 This command will write an empty header to *file.ex*.
 11
 12 If a header exists it will be overwritten.
 13 Only headers generated with this task can be deleted!
 14
 15 ## Options
 16
 17 The following options fill fields in @moduledoc:
 18 * `--description Description` (default: "")
 19 * `--author Author` (default: "")

 Figure 7-2. Application tree output

CHAPTER 7 ■ DEVELOPMENT SETUP

49

 20 * `--authoremail Email` (default: "")
 21
 22 The following options fill fields in @doc:
 23 * `--documentation` (default: "")
 24
 25 The following option does not ask for confirmation:
 26 * `-- silent true` (default: false)
 27 """
 28
 29 def run(args) do
 30 {options, filename, _} = OptionParser .parse args
 31 fname = List .first filename
 32 if fname == nil, do: display_usage
 33 if ! File .exists?(fname), do: exit_gracefully
 34 text = header_text options
 35 silent = String .to_atom(Keyword .get options,:silent, "false")
 36
 37 Mix .shell.info """
 38 The following header will be added to #{fname}:
 39 "#{text}"
 40 """
 41 case overwrite? fname, silent do
 42 true -> write_header fname,text
 43 false -> Mix .shell.info "No changes were made"
 44 end
 45 end
 46
 47 defp header_text(options) do
 48 """
 49 @moduledoc \"\"\"
 50 Author: #{ Keyword .get options,:author,""}
 51 Email: #{ Keyword .get options,:authoremail,""}
 52 Date: #{ Keyword .get options,:date,""}
 53 #{ Keyword .get options,:description,""}
 54 \"\"\"
 55 @doc \"\"\"
 56 #{ Keyword .get options,:documentation,""}
 57 \"\"\"
 58 """
 59 end
 60
 61 defp write_header(filename, text) do
 62 {:ok, file} = File .read filename
 63 # if String.contains?(file,"@moduledoc, @doc"), do: l = get_header_endline
 64 file
 65 # File.write filename, text <> file
 66 # Mix.shell.info inspect delete_any_header(file)
 67 File .write filename, text <> delete_existing_header(file, String .contains?
 68 (file,"@moduledoc"))
 69 end
 70
 71 defp exit_gracefully() do

CHAPTER 7 ■ DEVELOPMENT SETUP

50

 72 Mix .shell.info "File does not exist. No changes were made."
 73 exit(:shutdown)
 74 end
 75
 76 defp display_usage() do
 77 Mix .shell.info """
 78 Usage: mix kujua.add_header path/to/file.ex
 79 """
 80 exit(:shutdown)
 81 end
 82
 83 defp overwrite?(filename, false) do
 84 Mix.Utils.can_write?(filename)
 85 end
 86 defp overwrite?(_filename, true) do
 87 true
 88 end
 89
 90 def delete_existing_header(file, true) do
 91 split = String.split(file,"\"\"\"")
 92 Enum.at(split,4)
 93 end
 94 def delete_existing_header(file, false) do
 95 file
 96 end
 97 end

 The file defining the custom task can be included into a project by just copying it into the lib folder or
any subfolder of lib . At the moment, I am not aware of a global folder that can make custom tasks available
in any project managed with Mix, but it is possible to create all custom tasks in one application and include
this application in the project or import it as a package.

 The only requirement for a custom task is to include (use) Mix.Task and to provide a function run .
This function gets arguments from the console and can then process its task accordingly. When you run mix
help and have included the custom task in a project, it will be in the list. Your example task will appear like
Example 7-35 .

 Example 7-35.

 mix kujua.add_header # Generates a file header

 The description comes from the @shortdoc directive (line 4). The @moduledoc directive (lines 5ff)
defines what is displayed when the command mix help kujua.add_header is run. All built-in tasks have
a help page, similar to a man page in Unix/Linux/Mac OS, and it is good practice to write one for your own
tasks as well.

 Rebar 3 and Mix
 Languages and their use are dependent on available tools. Erlang has Rebar3 and Elixir has Mix with the
package manager Hex. At the moment, it is possible to use Hex from Rebar3 and compile Erlang projects
from Mix. I hope that the tooling will eventually merge into one tool that can mix Erlang and Elixir projects
seamlessly.

CHAPTER 7 ■ DEVELOPMENT SETUP

51

 Common Test and EUnit for Erlang
 Common Test and EUnit are installed with the Erlang-runtime by default. The difference between the two
tools is the scope of the tests. While both can do all tests, EUnit is more suitable for testing units or modules.
Common Test is more used for system tests like testing OTP applications.

 Test Types There exist a huge taxonomy for testing and different definitions may intersect. Any project I
was working on had its own definition of testing, if at all, but this is a different problem.

 Without going into a deep discussion about different types, one way is to divide tests according to their
knowledge about the code to be tested. Unit testing is understood to be on a very low level and integration
testing is on a higher level. Another description is white box testing (with knowledge of the code) and black box
testing (without knowledge of the code).

 Working with these definitions, EUnit is on a lower level and Common Test on a higher level of testing. Testing
the public interface of a module with EUnit is black box testing so, as often, the distinction falls apart after first
scrutiny.

 Rebar3 can run Common Test tests with the command shown in Example 7-36 .

 Example 7-36.

 rebar3 ct

 EUnit tests can be run with the command in Example 7-37 .

 Example 7-37.

 rebar3 eunit

 These commands will run even if there is no test present. So how do the tools know which tests to
run? The easiest way is to create a folder named test . In erlangexamples it is the folder Erlang/er-
langexamples/apps/erlangexamples/test . The test runners in Rebar3 work with conventions, but these
conventions can be overwritten if necessary.

 Both Rebar3 test runner commands have options to specify several aspects of running tests or test
suites. For example, the option –app appname runs tests for a specified app only. More information can be
found on the Rebar3 web site . 9

 EUnit
 Developers with experience in Java, C#, and other languages will recognize the name derived from the
family of xUnit frameworks, where “x” could be “J” or “N” or even “S” for the original Smalltalk unit testing
framework 10 that started it in 1998. In the case of Eunit, the “E” clearly stands for “Erlang.”

 9 www.rebar3.org/docs/commands
 10 http://sunit.sourceforge.net

https://www.rebar3.org/docs/commands
http://sunit.sourceforge.net/
http://sunit.sourceforge.net/
http://sunit.sourceforge.net/
http://www.rebar3.org/docs/commands
http://sunit.sourceforge.net/

CHAPTER 7 ■ DEVELOPMENT SETUP

52

 I assume all readers know what a unit defines. Similar to folder structures of projects, the definition
of a unit or more generally a system under test (SUT) is sometimes hotly debated. In this chapter, I define
functions and modules as unit for EUnit. Libraries, applications, or distributed processes don’t fall into this
definition. Furthermore, one test should only check one function or module function.

 The command rebar3 eunit will compile and run all tests within the test directory. You can take a very
simple example of a test file from erlangexamples in the folder test , shown in Example 7-38 .

 Example 7-38.

 1 - module (patternmatching_tests).
 2 - include_lib ("eunit/include/eunit.hrl").
 3
 4 always_return_42_test() ->
 5 ?assertEqual(42, patternmatching :always_return_42()).
 6
 7 return_42_if_when_true_test() ->
 8 ?assertEqual(42, patternmatching :return_42_if_when_true(true)).
 9
 10 return_42_if_when_true_fails_test() ->
 11 ?assertEqual(0, patternmatching :return_42_if_when_true(false)).

 All functions ending with _test in its name will be run by EUnit if the line in Example 7-39 is included
in the module.

 Example 7-39.

 - include_lib ("eunit/include/eunit.hrl").

 This declaration automatically creates an exported function named test() that is used to run all tests.
Rebar3 calls this function when issuing the command eunit, but it is also possible to run tests directly from
the command line once all dependencies are loaded, as shown in Example 7-40 .

 Example 7-40.

 patternmatching_tests :test().

 In the case of your erlangexamples project, this can be done with the commands in Example 7-41 in a
Rebar3 shell.

 Example 7-41.

 1 1> c("apps/erlangexamples/test/patternmatching_tests.erl").
 2 {ok,patternmatching_tests}
 3 2> patternmatching_tests :tests().
 4 All 3 tests passed.
 5 ok

 This method just shows that the test can be run directly from the shell. To do this, you must compile the
test file first and then run the test() function. Normally you won’t do this because it creates a beam file in
the code folder, and you will want to run the tests by calling Rebar3 .

 When you look at the test code in the example, you can see that you could mix module functions and
test functions by adding an include declaration to a module. As in other development environments, this is
not a good idea. The downside of separation is that private functions cannot be tested; on the other hand,
this means that only the public interface will be tested because a consumer will see the module.

CHAPTER 7 ■ DEVELOPMENT SETUP

53

 Testing private functions? Sometimes it may be necessary to test private functions. This is a problem
that comes up in any development paradigm, either functional or imperative.

 Let’s put the question aside over whether the need for doing this is caused by a design fault, and have a look
how it can be done.

 Languages with reflection (like Java, ECMAScript, C#, PHP, Ruby, and others) can use reflection to invoke private
methods or access private fields via helpers. Testing frameworks in the .Net or Java world can use byte code
instrumentalization to inject helpers at runtime.

 The Erlang VM does not have any way to call private functions from outside the module they are declared in.
A workaround is to use -ifdef(TEST). with -endif. and put a test function into the block that will be called
by EUnit during testing. Another more error-prone way is to export the function during development and set it
private (i.e. not export it) for production.

 Rebar3 defines several macros for expressing assertions. In the example, ?assertEqual was used. Other
assertion macros are assertNotEqual, assertNot, assertMatch, assertNotMatch, and a few others 11 to catch
exceptions thrown by a function.

 EUnit also defines macros to enable or disable testing or assertions and to put code into conditionals to
avoid errors when test code should not be compiled. Again, the best way to avoid workarounds like this is to
separate test modules from modules with production code.

 Most of the time, you want to run several test cases and to define state and a running environment for
those tests. EUnit helps you with this by allowing creations of fixtures and test generators ; see Example 7-42 .

 Example 7-42.

 1 - module (fixture_tests).
 2 - include_lib ("eunit/include/eunit.hrl").
 3
 4 fixture1_test_() ->
 5 { setup,
 6 fun setup/0,
 7 fun cleanup/1,
 8 ?_test(
 9 begin
 10 I = 42,
 11 ?assertEqual(42,I)
 12 end
 13)
 14 }.
 15
 16 fixture2_test_() ->
 17 { setup,
 18 fun setup/0,
 19 fun cleanup/1,
 20 [

 11 http://erlang.org/doc/apps/eunit/chapter.html#Assert_macros

http://erlang.org/doc/apps/eunit/chapter.html#Assert_macros
http://erlang.org/doc/apps/eunit/chapter.html#Assert_macros

CHAPTER 7 ■ DEVELOPMENT SETUP

54

 21 {"assert true",
 22 fun () ->
 23 ?assert(false)
 24 end },
 25 {"assert 42",
 26 fun () ->
 27 I = 42,
 28 ?assertEqual(42,I)
 29 end }
 30]
 31 }.
 32
 33 setup() ->
 34 {ok}.
 35
 36 cleanup(_Pid) ->
 37 {ok}.

 The functions fixture1_test_ and fixture2_test_ define fixtures with two tests each. The tests
are not doing much and are just examples to show the structure. The functions end with test_ (note the
underscore at the end), which indicates that it defines a test generator. This simply means that tests are
defined, but not run immediately when encountered in the source code. In fact, functions are returned for
later execution. The fixture functions do more than define tests; in your case, they define setup and teardown
functions and a list of tests. The atom setup tells EUnit to run setup and cleanup once for the fixture. If you
use the atom foreach , it would run it for each test.

 The tests can be defined either with a macro ?_test (fixture1) or inline (fixture2) with a tuple:

• The macro wraps the test in an anonymous function fun and adds more information
like line numbers. The code block is between the begin and end keywords.

• The first element of the tuple in the inline version is a description that will be shown
during test execution. The second element is an anonymous function.

 If the test can be expressed in one line as an assert, the ?_test macro syntax can be reduced to one line,
as shown in Example 7-43 .

 Example 7-43.

 ?_assertEqual(42, patternmatching :always_return_42())

 The underscore before assertEqual lets EUnit wrap the assertion with the _test macro. Running the
test fixtures you get the output shown in Example 7-44 .

 Example 7-44.

 $ rebar3 eunit
 ===> Verifying dependencies...
 ===> Performing EUnit tests...
 .F.

CHAPTER 7 ■ DEVELOPMENT SETUP

55

 Failures:
 1) fixture_tests:fixture2_test_/0: assert true
 Failure/Error: ?assert(false)
 expected: true
 got: false
 %% fixture_tests.erl:36:in 'fixture_tests:-fixture2_test_/0-fun-2-/0'
 Output:
 Output:
 Top 3 slowest tests (0.000 seconds, 0.0% of total time):
 fixture_tests:fixture1_test_/0:21
 0.000 seconds
 fixture_tests:fixture2_test_/0: assert 42
 0.000 seconds
 fixture_tests:fixture2_test_/0: assert true
 0.000 seconds

 Finished in 0.021 seconds
 3 tests, 1 failures
 ===> Error running tests

 One test is failing and two tests are succeeding as expected.
 EUnit has more features like lazy generators or nested tests. Information about them can be found in

the user guide . 12

 Common Test
 The Common Test framework is mostly used for integration and system tests. It has greater expectations on
the structure of projects and test files than EUnit and organizes tests in suites. The command rebar3 ct will
look for files ending with _SUITE (yes, in uppercase).

 Example 7-45 tests the DAR API implementation.

 Example 7-45.

 1 - module (api_SUITE).
 2
 3 - compile (export_all).
 4 - include_lib ("eunit/include/eunit.hrl").
 5 - include_lib ("common_test/include/ct.hrl").
 6
 7 - define (BODY_HOME, "<html> \n <body> \n \n DAR API \n \n </body> \n </h\
 8 tml> \n ").
 9 - define (BODY_TEST_GETASSETS, "<html> \n <body> \n \n Test: get assets \n \
 10 \n </body> \n </html> \n ").
 11
 12 suite() ->

 12 http://erlang.org/doc/apps/eunit/chapter.html

http://erlang.org/doc/apps/eunit/chapter.html
http://erlang.org/doc/apps/eunit/chapter.html

CHAPTER 7 ■ DEVELOPMENT SETUP

56

 13 [{timetrap,{seconds,10}}].
 14
 15 init_per_suite(Config) ->
 16 Config.
 17
 18 end_per_suite(Config) ->
 19 Config.
 20
 21 all() ->
 22 [
 23 http_get_home_message,
 24 http_test_getassets
 25].
 26
 27 %%% Tests
 28
 29 http_get_home_message(_Config) ->
 30 {ok, {{_Version, 200, _ReasonPhrase}, _Headers, Body}} =
 31 httpc :request(get, {"http://localhost:8402", []}, [], []),
 32 ?assertEqual(Body, ?BODY_).
 33
 34 http_test_getassets(_Config) ->
 35 {ok, {{_Version, 200, _ReasonPhrase}, _Headers, Body}} =
 36 httpc :request(get, {"http://localhost:8402/test?testmode=get_apiassets",
 37 [\]}, [], []),
 38 ?assertEqual(Body, ?BODY_TEST_GETASSETS).

 Similar to EUnit, you need to include the definition file for Common Test in the module, like in
Example 7-46 .

 Example 7-46.

 - include_lib ("common_test/include/ct.hrl").

 Common Test defines several callbacks for setup and cleanup. Here you use the per_suite callbacks,
although they are not doing any useful work in this example. The suite functions define a timetrap value of
ten seconds (line 11). If the execution time of a test case including setup and teardown functions exceeds the
time trap value a timeout error is thrown.

 The function all defines the tests that should be run. If a test is not on the list, it won’t be executed.
The tests as such are sending requests to the API server and checking the responses. The example combines
Common Test with asserts from EUint, but this is not necessary. You can let the test fail and perhaps write
some messages to the console. In any case, Common Test will create detailed results in the folder _build/
test/logs if you run it with the command rebar3 ct . It creates HTML pages, like the one in Figure 7-3 .

CHAPTER 7 ■ DEVELOPMENT SETUP

57

 It is possible to drill down into details for each test and also open log files. Be aware that if you do not
run it with Rebar3 but directly with ct_run 13 from the root of your project, Common Test will put HTML and
JavaScript files into this folder and create its log folders as well in the root.

 Common Test has many more features, such as defining test case orders with groups or running tests
in parallel. It depends on your willingness to use a TDD (test-driven development) approach how much you
will use EUnit (and ExUnit in Elixir) and Common Test in your projects. In the Elixir community, Common
Test does not seem to have arrived as a viable testing tool. If you search Elixir Forum 14 for the search term
 Common Test, you get exactly zero results at the time of writing this.

 ExUnit
 ExUnit is the Elixir equivalent of Erlang’s EUnit. When you create a project with Mix, you get a folder named
 test and a file with an example.

 According to the paradigm convention over configuration, ExUnit will compile and run all tests in files
with the name ending in _test and it will read the contents of the file test_helper.exs to start the tests and
configure them.

 Figure 7-3. Common Test results

 13 http://erlang.org/doc/man/ct_run.html
 14 http://elixirforum.com

http://erlang.org/doc/man/ct_run.html
http://elixirforum.com/
http://elixirforum.com/
http://erlang.org/doc/man/ct_run.html
http://elixirforum.com/

CHAPTER 7 ■ DEVELOPMENT SETUP

58

 Files with suffix exs The suffix exs shows that this file is an Elixir script file that is intended to run on
a command line, but not to be compiled into a file. For example, with the command

 elixir test_helper.exs

 the script file test_helper.exs will be executed.

 The code of the script file will still be compiled before execution, but in memory.

 The test_helper.ex in Example 7-47 is from the project dar_db lib .

 Example 7-47.

 1 options = [
 2 trace: true,
 3 capture_log: true,
 4 exclude: [wip: true]
 5]
 6
 7 ExUnit .configure(options)
 8 ExUnit .start()
 9
 10 case :gen_tcp.connect('localhost', 27017, []) do
 11 {:ok, socket} ->
 12 :gen_tcp.close(socket)
 13 {:error, reason} ->
 14 Mix.raise "Cannot connect to MongoDB" <>
 15 " #{ :inet.format_error(reason) } "
 16 end

 In a newly created project, this file will only contain line 8: ExUnit.start() . This is the command that
prepares the running environment to run tests.

 There is some configuration in lines 1 to 5. This is a simple key-value list with configurations to define
output options. You will come back later to the exclude key; the other options simply say you want to see log
and trace information.

 Before the statement ExUnit.start , you tell ExUnit in line 7 to apply your options. Lines 10ff will run
before any test. In this case, you check if a TCP connection to a MongoDB server on its default port 27017
can be established. If so, you close the connection and move on to run the tests; otherwise, you raise an
exception and halt the test run. The implementation uses one of the low-level servers defined in Erlang/OTP
to access TCP. You will see similar servers for HTTP and UDP in Chapter 10 .

 Running code in the test starting script is very useful to check for data stores, files, or other crucial
dependencies like web servers that must be available to run tests successfully.

 ExUnit defines many asserts. Let’s examine first the more common ones; see Example 7-48 .

 Example 7-48.

 1 defmodule ExUnitAssertions do
 2 use ExUnit.Case , async: true
 3
 4 @tag :wip
 5 test "assert" do

http://dx.doi.org/10.1007/978-1-4842-2394-9_10

CHAPTER 7 ■ DEVELOPMENT SETUP

59

 6 assert 1 + 1 == 2
 7 end
 8
 9 test "refute" do
 10 refute 1 + 1 == 3
 11 end
 12
 13 test "assert_in_delta" do
 14 assert_in_delta 1,4,5
 15 end
 16
 17 test "refute_in_delta" do
 18 refute_in_delta 1,4,3
 19 end
 20 end

 This file defines a module and is importing the module ExUnit.Case , which amongst other things
defines test to define test cases. Note that test is a macro, not a keyword.

 use vs. require vs. alias vs. import These directives (alias, require, import) and one macro (use) are a
very confusing topic in Elixir. All of them have to do with referencing other modules from Elixir code.

• alias gives a module passed in as argument a name that can be used in the module
instead of the fully qualified name.

• require gives a hint that the module passed as argument is compiled. According to
the documentation, this is needed for using macros from that module.

• import references all functions or a subset of functions from a module passed in as
argument so they can be called without the module name.

• use is a macro that compiles to a require statement and then calls a callback using in
that module that can inject some necessary code.

 My take is that alias and import are for convenience, require is for defining compile order in case macros are
needed, and use is for special cases like ExUnit that injects code, such as the test macro. For normal cases, I
guess import is the right approach, but it would be nice to have only one way to handle this task.

 You run the tests with mix test in the console and get all output to the console as well.
 The tests themselves are straightforward: assert checks if the assertion is true, refute checks if the

assertion is false. Interesting are assert_in_delta and its negative pendant, refute_in_delta . It checks if two
arithmetic expressions are inside or outside a given delta.

 The async: true configuration in line 2 tells the ExUnit runtime that it may run tests concurrently. This
option is not always feasible, for example if data stores or any other shared resources are used.

 The @tag :wip on line 4 in the example defines that the following test is marked with the tag wip . If
you look again at the example test_helper.exs above, you see in the options list the line exclude: [wip:
true] that excludes all tests with the tag wip from the test run. The same effect can also be achieved by
running the tests with mix test –exclude wip . There are also atoms and arguments defined for including
only tests with certain tags.

CHAPTER 7 ■ DEVELOPMENT SETUP

60

 Property-based testing Tests written with EUnit and ExUnit are important, but they can’t test all
scenarios. For example, you won’t be able to test all combinations of input parameters with different value ranges.

 Tools can help with this task. They dynamically create input values and monitor the execution of a program or
function. A commercial tool (with a free offering that does not provide all features of the commercial version)
is QuickCheck 15 , which was originally implemented for Haskell. Open source tools are PropEr 16 for Erlang and
 PropCheck 17 which is an Elixir wrapper around PropEr.

 You have looked at the most used assert statements so far, but Erlang and Elixir are about sending
messages between actors. ExUnit has some asserts to make testing those scenarios easier; see Example 7-49 .

 Example 7-49.

 1 defmodule ExUnitAssertionsReceive do
 2 use ExUnit.Case , async: true
 3
 4 test "assert_receive" do
 5 send self, {:hello, "world"}
 6 assert_receive {:hello, "world"}
 7 end
 8
 9 test "refute_receive" do
 10 send self, {:hello, "world"}
 11 refute_receive {:hello, ""}
 12 end
 13
 14 test "assert_received" do
 15 send self, {:hello, "world"}
 16 assert_received {:hello, _}
 17 end
 18
 19 test "refute_received" do
 20 refute_received {:hello, _}
 21 end
 22 end

 You see here again the pair assert and refute .

• The receive assertions indicate that a message will be received in future. The
assertions have a parameter named timeout which can be set for this purpose. Its
default is 100ms.

• The _received_assertions check if a message is in the mailbox. There is no waiting
time set, so the test will return immediately after checking the mailbox.

 15 www.quviq.com/products/erlang-quickcheck /
 16 https://github.com/manopapad/proper
 17 https://github.com/alfert/propcheck

http://www.quviq.com/products/erlang-quickcheck/
https://github.com/manopapad/proper
https://github.com/alfert/propcheck
http://www.quviq.com/products/erlang-quickcheck/
https://github.com/manopapad/proper
https://github.com/alfert/propcheck

CHAPTER 7 ■ DEVELOPMENT SETUP

61

 All receive tests will also fail if the received message does not pattern match with the expected
message.

 So far you have been shown simple tests and in practice this is what tests in a project will be. Sometimes
there are more complex setups needed. ExUnit provides, as do other unit testing frameworks, callbacks to set
up the test context; see Example 7-50 .

 Example 7-50.

 1 defmodule ExUnitContext do
 2 use ExUnit.Case , async: true
 3
 4 setup_all context do
 5 IO .puts "Setup All:"
 6 Enum .each context, & IO .puts(inspect & 1)
 7 {:ok, [arg1: "setupallarg0", arg2: fn x -> x*x end]}
 8 end
 9
 10 setup context do
 11 IO .puts ""
 12 IO .puts "Setup:"
 13 Enum .each context, & IO .puts(inspect & 1)
 14 on_exit fn ->
 15 IO .puts ""
 16 IO .puts "on exit"
 17 end
 18 {:ok, [setuparg: "setuparg1"]}
 19 end
 20
 21 test "assert", context do
 22 assert 2 + 2 == context.arg2.(2)
 23 end
 24
 25 test "refute", context do
 26 IO .puts "test:"
 27 Enum .each context, & IO .puts(inspect & 1)
 28 refute 2 + 2 == context.arg2.(1)
 29 end
 30 end

 The callbacks in the example work as follows:

• The function setup_all will be called before any test in the test case.

• The function setup will be called before each test.

• A callback on_exit can be defined that runs within the test process whenever a test
has finished. A teardown callback on case process level existed in earlier versions,
but was deprecated in favor of on_exit .

 The setup callbacks have context as argument which is a key-value metadata map. Example 7-51 shows
the output of the test.

CHAPTER 7 ■ DEVELOPMENT SETUP

62

 Example 7-51.

 ExUnitContext
 Setup All:
 {:case, ExUnitContext }
 * refute
 Setup:
 {:arg1, "setupallarg0"}
 {:arg2, #Function<4.83785844/1 in ExUnitContext. ex_unit_setup_all_0/1>}
 {:async, true}
 {:case, ExUnitContext }
 {:file, "/Users/Wolfgang/Projects/creative-common-dar/Elixir/Libs/dar_dblib/test\
 /dar_dblib_test.exs"}
 {:line, 25}

 {:test, :"test refute"} test:
 {:arg1, "setupallarg0"}
 {:arg2, #Function<4.83785844/1 in ExUnitContext. ex_unit_setup_all_0/1>}
 {:async, true}
 {:case, ExUnitContext }
 {:file, "/Users/Wolfgang/Projects/creative-common-dar/Elixir/Libs/dar_dblib/test\
 /dar_dblib_test.exs"}
 {:line, 25}
 {:setuparg, "setuparg1"}
 {:test, :"test refute"}

 on exit
 * refute (3.2ms)
 * assert
 Setup:
 {:arg1, "setupallarg0"}

 {:arg2, #Function<4.83785844/1 in ExUnitContext. ex_unit_setup_all_0/1>}
 {:async, true}
 {:case, ExUnitContext }
 {:file, "/Users/Wolfgang/Projects/creative-common-dar/Elixir/Libs/dar_dblib/test\
 /dar_dblib_test.exs"}
 {:line, 21}
 {:test, :"test assert"}

 on exit
 *assert (0.2ms)

 Finished in 0.04 seconds (0.04s on load, 0.00s on tests)
 2 tests, 0 failures

 Randomized with seed 442205

 The initial context map in setup_all contains only the case name. You add two more keys (arg1 and
 arg2) to the map. This is done by returning a tuple from the function with the return atom :ok and a list of
key-value pairs. The map will then be passed to the setup function, which by default automatically adds
more keys, such as the file name or the test name. You can see the keys you added as well.

CHAPTER 7 ■ DEVELOPMENT SETUP

63

 You can add more keys in setup , in your case setuparg . All this will now be passed to the test and can
be used there if necessary. The context could be used to pass constants like text or field names for testing
data stores. In your example, you pass a function as value of key arg2 . If the function comes from another
library, this could be used to dynamically change test assertions to cover different use cases.

 The ExUnit documentation 18 describes more features with several examples.

 Meck
 Meck is a mocking library for Erlang that can be used in Elixir as well. Mocking is a controversial topic for
many developers, and I won’t go into this discussion here. Figure 7-4 just shows one way to mock.

 The left side shows the implementation entities: dblib client is dependent on dblib and the library is
dependent on MongoDB (driver and database). The right side shows test instances for the client and the
library.

 Figure 7-4. Mocking

 18 http://elixir-lang.org/docs/stable/ex_unit/ExUnit.html

http://elixir-lang.org/docs/stable/ex_unit/ExUnit.html
http://elixir-lang.org/docs/stable/ex_unit/ExUnit.html

CHAPTER 7 ■ DEVELOPMENT SETUP

64

 When you test the client, you want to test how the client behaves in different situations. The library
returns lists of documents , for example. This list could be empty, too big, or it could contain wrong types. In
the client test , you can mock the library and tailor the response for your various test cases.

 Similar thoughts apply to dblib test , which tests the library that in turn uses a third-party driver and
database. Mocking MongoDB lets you test scenarios where connections are dropping, or where database or,
in this case, collections are not available. You also can prepare data exactly as it is needed for the tests.

 Mocking is not a replacement for integration tests in production environments, though. It can help
in unit tests to separate module implementations from each other and thus have fewer variables that can
influence test results.

 How about dependency injection (DI) for testing? Many developers have adopted the test approach
of injecting dependencies via configuration or at runtime.

 In OO languages, interfaces are used with sometimes elaborate DI libraries. It is no coincident that Elixir
defines something similar to interfaces called @behaviour , which should not be confused with the OTP term
_behaviours .

 The problem with DI is that implementations are injected that are not tested themselves. Therefore, tests with DI are
not a replacement for tests in production environments and have the same restrictions as mocking libraries. What DI
can do is to reduce coupling. Testing against an interface will not be broken if implementation details change.

 To access Meck you have to add the dependency in rebar.config , as shown in Example 7-52 .

 Example 7-52.

 {deps, [
 {meck,{git, "https://github.com/eproxus/meck.git", {tag, "0.8.4"}}}
]}.

 After this you can use the library in your tests. See Example 7-53 in Erlang.

 Example 7-53.

 1 - module (meck_mock_tests).
 2
 3 - ifdef (TEST).
 4 - include_lib ("eunit/include/eunit.hrl").
 5
 6 - define (FILETESTWRITE, "filetestwrite").
 7 - define (FILETESTCONTENT, <<"test_from_gfslib">>).
 8 - define (DARDB, "dar").
 9
 10 save_to_gfs_mocked_test() ->
 11 M = #{name => ?FILETESTWRITE,origin=>"test",timestamp=>100, gfsid=>"66"},
 12 ok = meck :new(dar_gfslib_process_files),
 13 meck :expect(dar_gfslib_process_files, save_to_gfs, fun (?FILETESTCONTENT,M,?D\
 14 ARDB) -> {nodb,?FILETESTWRITE} end),
 15 R = dar_gfslib_process_files :save_to_gfs(?FILETESTCONTENT,M,?DARDB),
 16 ?assert(meck :validate(dar_gfslib_process_files)),

CHAPTER 7 ■ DEVELOPMENT SETUP

65

 17 ?assertEqual({nodb,?FILETESTWRITE}, R),
 18 ok = meck :unload(dar_gfslib_process_files).
 19
 20 dar_model_assetmetadata_empty_mocked_test() ->
 21 ok = meck :new(dar_model),
 22 meck :expect(dar_model, assetmetadata_empty, fun () -> changed end),
 23 ?assertEqual(dar_model :assetmetadata_empty(),changed),
 24 ok = meck :unload(dar_model).
 25
 26 - endif .

 These tests show various Meck functions and are not real mocking tests. They mock the functions in
modules you call, so they test more or less the mocking library.

 In save_to_gfs_mocked_test on line 10 you create a new mock-entity and tell it to create one
for the module dar_gfslib_process_files . At this moment there are no functions in this mocked entity,
so you define one on line 13. The meck:expect line says that whenever in module dar_gfslib_process_-
files the function save_to_gfs is called, you run the defined function. In your example, it just returns
 {nodb,?FILETESTWRITE} . ?FILETESTWRITE is a macro you define at the beginning of the module. You also
make sure that you define the correct number of arguments for the mocked function to obey the original
signature.

 On line 15 you call the function save_to_gfs as you would in your code, but hit the mocked function
instead. The statement on line 16 checks if the mocked function was actually called, which does not make
so much sense here because you check the result in assertions, and the statement on line 18 reverts the
changes Meck has made.

 The function dar_model_assetmetadata_empty_mocked_test is a similar test for a different module. It
can be written in Elixir as well, as shown in Example 7-54 .

 Example 7-54.

 1 defmodule ExUnitMeck do
 2 use ExUnit.Case
 3
 4 test "dar_model_assetmetadata_empty_mocked_test" do
 5 :ok = :meck.new :dar_model
 6 :meck.expect :dar_model, :assetmetadata_empty, fn -> :changed end
 7 assert :meck.validate :dar_model
 8 assert :dar_model.assetmetadata_empty == :changed
 9 :ok = :meck.unload :dar_model
 10 end
 11 end

 This is the equivalent of the previous Erlang example. The module mocked is actually an Erlang module
(dar_model).

 With the knowledge of the trivial examples you can write a test with proper mocks; see Example 7-55 .

 Example 7-55.

 1 - module (dar_gfslib_process_files_mock_tests).
 2
 3 - ifdef (TEST).
 4 - include_lib ("eunit/include/eunit.hrl").
 5
 6 - define (FILETEST, "filetest").

CHAPTER 7 ■ DEVELOPMENT SETUP

66

 7 - define (FILETESTWRITE, "filetestwrite").
 8 - define (FILETESTCONTENT, <<"test_from_gfslib">>).
 9 - define (DARDB, "dar").
 10 - define (NOTDARDB, "notdar").
 11
 12 save_to_gfs_no_connection_mocked_test() ->
 13 M = #{name => ?FILETESTWRITE,origin=>"test",timestamp=>100, gfsid=>"66"},
 14 meck :new(mongodb,[passthrough]),
 15 meck :expect(mongodb, is_connected, fun (def) -> false end),
 16 ?assertError({badmatch,false}, dar_gfslib_process_files :save_to_gfs(?FILETES\
 17 TCONTENT,M,?DARDB)),
 18 ok = meck :unload(mongodb).
 19
 20 read_from_gfs_no_connection_mocked_test() ->
 21 meck :new(mongodb,[passthrough]),
 22 meck :expect(mongodb, is_connected, fun (def) -> false end),
 23 ?assertError({badmatch,false}, dar_gfslib_process_files :read_from_gfs(?FILET\
 24 EST,?DARDB)),
 25 ok = meck :unload(mongodb).
 26
 27 connect_to_server_mocked_test() ->
 28 meck :new(mongodb,[passthrough]),
 29 meck :expect(mongodb, is_connected, fun (def) -> false end),
 30 R = dar_gfslib_process_files :connect(),
 31 ?assert(meck :validate(mongodb)),
 32 ?assertEqual(false, R),
 33 ok = meck :unload(mongodb).
 34
 35 - endif .

 These tests check how functions in the module dar_gfslib_process_files behave when there is no
database connection. In the previous trivial examples, you mocked a function from this module, but now
you mock a module that is called by functions from this module.

 The module mongodb is part of erlmongo , which is used to access GridFS in your project. On lines 14,
21, and 28, you create a mock entity for this module and in the lines after creating the mock entities you
define that the function is_connected should return false to indicate that there is no connection.

 The code in dar_gfslib_process_files to connect to MongoDB is shown in Example 7-56 .

 Example 7-56.

 1 connect() ->
 2 mongodb :singleServer(def),
 3 mongodb :connect(def),
 4 mongodb :is_connected(def).

 You can see that two more mongodb functions are called before is_connected . You will see explanations
of this module later, but for now it is necessary to know that this library returns the atom ok on lines 2 and 3
even if there is no server or no connection. To make sure you have a connection, you have to call is_connected .
This is the reason why your creation of the mock entity is stated as shown in Example 7-57 .

 Example 7-57.

 1 meck :new(mongodb,[passthrough])

CHAPTER 7 ■ DEVELOPMENT SETUP

67

 The argument passthrough in the call to create mock entities indicates that you want all non-mocked
calls to be passed to the original module. When you run the tests, the functions called will go through the
normal connect process, but will always have to handle the case that there is no connection.

 Meck is certainly useful in some unit test scenarios. It is a good idea to indicate always what is actually
tested; otherwise there is the danger of ending up with tests like the trivial examples above that do not test
what is probably intended.

 Debugger
 Developers of languages like C++, Java, or C# are used to having IDEs that expose the debug abilities of those
languages and language environments. In Erlang and Elixir, you do not have this luxury.

 Erlang has its own debugger 19 that works on beam files no matter which language was used before
compiling to the binary, so you can use it in Elixir development as well.

 The debugger is started in an Erlang shell or a shell opened with the command rebar3 shell with the
code in Example 7-58 .

 Example 7-58.

 1> debugger:start().
 {ok,<0.41.0>}

 This command will automatically open a monitor window, as shown in Figure 7-5 .

 Figure 7-5. Debugger window

 19 http://erlang.org/doc/apps/debugger/debugger_chapter.html

http://erlang.org/doc/apps/debugger/debugger_chapter.html
http://erlang.org/doc/apps/debugger/debugger_chapter.html

CHAPTER 7 ■ DEVELOPMENT SETUP

68

 After starting, the window is empty so you need to load a module for debugging. You can use the
menu item Module ➤ Interpret to choose a beam file or you can use the interpreter interface int to specify a
module for debugging and setting a break point, as shown in Example 7-59 .

 Example 7-59.

 2> int:ni(mapsexample).
 {module,mapsexample}
 3> int:break(mapsexample,38).
 ok

 The function int:ni searches all known nodes, the function int:i only the current node. You
set a break point on line 38 in the module mapsexample . This line is a statement in the function
 mapsexample:pizza_toppings_match_valid and you want to stop before the function returns. The monitor
window shows what you have defined; see Figure 7-6 .

 When you run now the function mapsexample:pizza_topping_match_valid , the execution will stop
and you can double-click the break point. Another window opens with information about the state of the
execution; see Figure 7-7 .

 Figure 7-6. Breakpoint set

CHAPTER 7 ■ DEVELOPMENT SETUP

69

 Once a breakpoint has been reached, you can step into other functions, execute next statements line
by line, or evaluate expressions. The UI of this debugger is certainly not as comfortable as in IDEs like Visual
Studio, but it does its job.

 Elixir has a tool for development environments called IEx.pry 20 . It requires a change of the source code
to work, so it is not a solution for production.

 You use the append function from listsexample.ex from the discussion about lists and tuples; see
Example 7-60 .

 20 http://elixir-lang.org/docs/stable/iex/IEx.html#pry/1

 Figure 7-7. Breakpoint reached

http://elixir-lang.org/docs/stable/iex/IEx.html#pry/1
http://elixir-lang.org/docs/stable/iex/IEx.html#pry/1

CHAPTER 7 ■ DEVELOPMENT SETUP

70

 Example 7-60.

 1 defmodule ListExample do
 2 require IEx
 3
 4 def append([h|t], tail) do
 5 IEx .pry
 6 [h|append(t, tail)]
 7 end
 8 def append([], tail) do
 9 tail
 10 end
 11 end

 The module needs to require the IEx module where a macro called pry is defined. In line 5, you call this
macro to get access to the state during execution at the time of the call to pry . An iex session with this code
looks like Example 7-61 .

 Example 7-61.

 1 iex(1)> c("listsexample.ex")
 2 listsexample.ex:1: warning: redefining module ListExample
 3 [ListExample]
 4 iex(2)> ListExample.append [1,2],[3]
 5 Request to pry #PID<0.194.0> at listsexample.ex:5
 6
 7 def append([h|t], tail) do
 8 IEx.pry
 9 [h|append(t, tail)]
 10 end
 11
 12 Allow? [Yn]
 13
 14 Interactive Elixir (1.2.5) - press Ctrl+C to exit (type h() ENTER for help)
 15 pry(1)> tail
 16 [3]
 17 pry(2)> h
 18 1
 19 pry(3)> t
 20 [2]
 21 pry(4)> respawn
 22 [1,2,3]
 23
 24 iex(1)>

 After compiling the module, you call the function append . You are asked if you want to allow pry ;if you
do so, a pry-session will be started and the execution of the function will be blocked. You can now investigate
variable values as in lines 15 to 20. Calling respawn will unblock the execution and start a new iex session.

 This macro can help when a function does not yield results as expected. It certainly is not a replacement
for a debugger, but it is easier than having print messages in the code.

CHAPTER 7 ■ DEVELOPMENT SETUP

71

 Dialyzer
 Erlang and Elixir are dynamically typed and there is a need to check types before deploying compiled code.
 Dialyzer 21 is a tool for this task by inferring types from usage and by getting hints with @spec attributes or
directives. Dialyzer is not only used for finding type problems; the name stands for DIscrepancy AnalYZer
for ERlang programs. It finds dead code, unreachable code, unnecessary tests, and other things.

 Dialyzer is set up together with the Erlang system and should be available immediately. Once Dialyzer
is on the development machine, it needs to have a first run to create a database of the core libraries and all
other beam files specified; see Example 7-62 .

 Example 7-62.

 dialyzer --build_plt --apps erts kernel stdlib crypto mnesia sasl

 In earlier days, this may have taken some time, but in the days of 16GB of RAM and SSDs it does not
need more than a minute or two.

 The database is called PLT (persistent lookup table) and is used to store the analysis results of all
specified beam files. This file database grows with time, so there is also an option to remove some results. If
 beam files change, the database values are updated for this file.

 To see how Dialyzer works, use Example 7-63 .

 Example 7-63.

 1 - module (specifications).
 2 - compile (export_all).
 3
 4 - type returnvalue() :: {ok} | {error}.
 5 - export_type ([returnvalue/0]).
 6
 7 - spec numberfunction(number()) -> returnvalue().
 8 numberfunction(T) ->
 9 case T of
 10 42 -> {ok};
 11 _-> {error}
 b end .
 13
 14 callnumberfunction_1() ->
 15 numberfunction("test").
 16
 17 callnumberfunction_2() ->
 18 numberfunction({}).
 19
 20 callnumberfunction_3() ->
 21 numberfunction(0).
 22
 23 callnumberfunction_4() ->
 24 numberfunction(42).

 21 http://erlang.org/doc/man/dialyzer.html

http://erlang.org/doc/man/dialyzer.html
http://erlang.org/doc/man/dialyzer.html

CHAPTER 7 ■ DEVELOPMENT SETUP

72

 Option: compile all in Erlang Sometimes you use the line

 -compile(export_all).

 in examples. This is an option that exports every function in the module. It is a convenience and should never be
used in production code.

 When you run Dialyzer with Rebar3 in the project erlangexamples you get the result shown in
Example 7-64 .

 Example 7-64.

 1 $ rebar3 dialyzer
 2 ===> Verifying dependencies...
 3 ===> Compiling erlangexamples
 4 ===> Dialyzer starting, this may take a while...
 5 ===> Updating plt...
 6 ===> Resolving files...
 7 ===> Checking 156 files in "~/Projects/bookcompanion-ee/Erlang/erlangexamples/_b\
 8 uild/default/rebar3_18.3_plt"...
 9 ===> Doing success typing analysis...
 10 ===> Resolving files...
 11 ===> Analyzing 35 files with "~/Projects/bookcompanion-ee/Erlang/

erlangexamples/\
 12 _build/default/rebar3_18.3_plt"...
 13
 14 _build/default/lib/erlangexamples/src/listsexample.erl
 15 21: Cons will produce an improper list since its 2nd argument is 'someatom'
 16
 17
 18 _build/default/lib/erlangexamples/src/patternmatching.erl
 19 31: The test 'a' == 'b' can never evaluate to 'true'
 20 32: The pattern 'true' can never match the type 'false'
 21
 22 _build/default/lib/erlangexamples/src/recursionexample.erl
 23 24: Function nontailrecursiveloop/1 has no local return
 24
 25 _build/default/lib/erlangexamples/src/specifications.erl
 26 14: Function callnumberfunction_1/0 has no local return
 27 15: The call specifications:numberfunction([101 | 115 | 116,...]) breaks the c\
 28 ontract (number()) -> returnvalue()
 29 17: Function callnumberfunction_2/0 has no local return
 30 18: The call specifications:numberfunction({}) breaks the contract (number()) \
 31 -> returnvalue()
 32 ===> Warnings written to ~/Projects/bookcompanion-ee/Erlang/erlangexamples/_buil\
 33 d/default/18.3.dialyzer_warnings
 34 ===> Warnings occured running dialyzer: 8

CHAPTER 7 ■ DEVELOPMENT SETUP

73

 On line 7, it shows that is already has 156 files in the database. This is from previous runs with other
projects on my machine. Line 11 shows that it is analyzing 35 files in the project. It has 8 warnings (line 34)
and has written a text file to the build folder, which contains a list of all warnings.

 You are interested in the warnings for your example; see Example 7-65 .

 Example 7-65.

 _build/default/lib/erlangexamples/src/specifications.erl
 14: Function callnumberfunction_1/0 has no local return
 15: The call specifications:numberfunction([101 | 115 | 116,...]) breaks the
 contract (number()) -> returnvalue()
 17: Function callnumberfunction_2/0 has no local return
 18: The call specifications:numberfunction({}) breaks the contract (number())
 -> returnvalue()

 The warnings tell you that some function calls are breaking a contract. Let’s run Dialyzer with the line
shown in Example 7-66 commented out.

 Example 7-66.

 - spec numberfunction(number()) -> returnvalue().

 You can run Dialyzer just on one file in the folder where the code file is ; with the commented line you
get the following, shown in Example 7-67 .

 Example 7-67.

 $ dialyzer specifications.erl
 Checking whether the PLT ~/.dialyzer_plt is up-to-date... yes
 Proceeding with analysis... done in 0m0.52s
 done (passed successfully)

 Surprisingly, it was successful, Without the specification, Dialyzer can’t infer the correct types. The
specification says you expect a number and then a return value which is a type you have defined yourself
with the code in Example 7-68 .

 Example 7-68.

 1 - type returnvalue() :: {ok} | {error}.
 2 - export_type ([returnvalue/0]).

 It defines that the value can have one of two tuples as values and you export this type to be available for
other modules.

 When you uncomment the @spec line, you get the warnings again. If you play with the example, you
will see that most of the time dialyzer returns a success. The problem is that the example function does not
actually do anything with the arguments. If you put in a line like that in Example 7-69 into numberfunction ,
you will get warnings even without specification.

 Example 7-69.

 T = T + 1

CHAPTER 7 ■ DEVELOPMENT SETUP

74

 The warnings will be like those in Example 7-70 .

 Example 7-70.

 The call specifications:numberfunction({}) will never return since it differs in the 1st
argument from the success typing arguments: (number())

 The analysis infers that T must be a number because it is used in an arithmetic expression.
 You can use Dialyzer in Elixir as well, since it analyzes beam files and can use a custom task in Mix,

 Dialyxir 22 , to run the analysis.
 Example 7-71 shows the Elixir version of your example.

 Example 7-71.

 1 defmodule Specifications do
 2 @type returnvalue :: {:ok} | {:error}
 3 @spec numberfunction(number) :: returnvalue
 4
 5 def numberfunction(t) do
 6 case t do
 7 42 -> {:ok}
 8 _-> {:error}
 9 end
 10 end
 11
 12 def callnumberfunction_1() do
 13 numberfunction("1")
 14 end
 15
 16 def callnumberfunction_2() do
 17 numberfunction({})
 18 end
 19
 20 def callnumberfunction_3() do
 21 numberfunction(0)
 22 end
 23
 24 def callnumberfunction_4() do
 25 numberfunction(42)
 26 end
 27 end

 First, you need to build the database. Dialyxir most probably uses a different folder than the Erlang
analysis; see Example 7-72 .

 Example 7-72.

 mix dialyzer.plt

 22 https://github.com/jeremyjh/dialyxir

https://github.com/jeremyjh/dialyxir
https://github.com/jeremyjh/dialyxir

CHAPTER 7 ■ DEVELOPMENT SETUP

75

 Then you can run the analysis, as shown in Example 7-73 .

 Example 7-73.

 $ mix dialyzer
 Starting Dialyzer
 dialyzer --no_check_plt --plt /Users/Wolfgang/.dialyxir_core_18_1.2.5.plt -Wunma\ tched_
returns -Werror_handling -Wrace_conditions -
 Wno_opaque .
 Proceeding with analysis...
 specifications.ex:12: Function callnumberfunction_1/0 has no local return
 specifications.ex:13: The call 'Elixir.Specifications':numberfunction(<<_:8>>) b\
 reaks the contract (number()) -> returnvalue()
 specifications.ex:16: Function callnumberfunction_2/0 has no local return
 specifications.ex:17: The call 'Elixir.Specifications':numberfunction({}) breaks\
 the contract (number()) -> returnvalue()
 done in 0m0.82s
 done (warnings were emitted)

 You get the same warnings as before, as expected. The example differs just in syntax and will most
probably generate the same, or due to different internal calls a very similar, byte code as the Erlang version.

 Working with Dialyzer does not always yield results that you as a human being might find logical.
Looking through code you mostly find obvious defects. The harder ones should be found by automated tests
and analysis. With a dynamically typed language, it is very hard to infer types at runtime and sometimes
impossible. Tools like Dialyzer help with this task but can’t be relied on. The most frustrating Dialyzer
outputs are when it decides that the specification you gave is actually wrong. You know the specification is
what you want, but the implementation is so far from the desired input that the tool simply thinks the hint
you gave is wrong.

77© Wolfgang Loder 2016
W. Loder, Erlang and Elixir for Imperative Programmers, DOI 10.1007/978-1-4842-2394-9_8

 CHAPTER 8

 Production Setup

 The production environment is also the staging environment. See Figure 8-1 .

 Figure 8-1. Continuous delivery

 You’re going to use a Blue/Green concept , where one server will run production code and the other
will run staging code, which will be by definition a version different from the other server. Blue and green
servers can be clustered. When a new version is deployed, the blue role and the green role switch between
the servers.

 Server in this case actually means a set of servers, because there may be various machines forming the
deployment target, such as one web server and one or more application servers or nodes. Also, databases
may be included or (most probably) excluded from the deployment.

CHAPTER 8 ■ PRODUCTION SETUP

78

 You are now switching to continuous delivery, which not only means deployment, but also doing tasks
like updating source control, preparing a database, and similar.

 In Erlang and Elixir, deployment means to create deployment packages and in your case optionally
Docker containers.

 Release Management
 Most of the time the easiest way is to develop applications on one machine even if production code will
never run on a machine like the developer machine. Not only are hardware specifications different, but also
the operating systems may be different. Many developers, including me, develop much of their software on a
Mac with OS X, a system that does not even have a server version.

 In Erlang and Elixir, you create release packages that contain everything the project needs to run,
including scripts to start up the application(s) belonging to the project. In addition to deployment, the
Erlang VM and all languages built on top of it have the option to upgrade or downgrade the system with
special packages and scripts. Often it may be possible to change code on a running system, which is called
hot code swapping.

 In Erlang, you can use Rebar3 to create a release package for the project erlangexamples , as shown in
Example 8-1 .

 Example 8-1.

 1 $ rebar3 release
 2 ===> Verifying dependencies...
 3 ===> Compiling erlangexamples
 4 ===> Starting relx build process ...
 5 ===> Resolving OTP Applications from directories:
 6 ~/Projects/bookcompanion-ee/Erlang/erlangexamples/_build/default/lib
 7 ~/Projects/bookcompanion-ee/Erlang/erlangexamples/apps
 8 /usr/local/Cellar/erlang/19.0.2/lib/erlang/lib
 9 ~/Projects/proper
 10 ~/Projects/bookcompanion-ee/Erlang/erlangexamples/_build/default/rel
 11 ===> Resolved erlangexamples-1.0.0
 12 ===> release successfully created!

 It compiles the projects as usual and then runs a build process with relx 1 . Relx can be used as a
standalone tool with its own configuration file, but called from Rebar3 it can be configured in rebar.config .
See Example 8-2 .

 Example 8-2.

 1 {relx, [{release, { erlangexamples, "1.0.0" },
 2 [erlangexamples,sasl]},
 3 {sys_config, "./config/sys.config"},
 4 {vm_args, "./config/vm.args"},
 5 {dev_mode, false},
 6 {include_erts, false},
 7 {extended_start_script, true}]
 8 }.

 1 https://github.com/erlware/relx

https://github.com/erlware/relx
https://github.com/erlware/relx

CHAPTER 8 ■ PRODUCTION SETUP

79

 These keys define the values needed to create a release. Interesting is the key dev_mode that defines if
the applications and configurations should be symlinked from source (true) or copied to the release folder
(false).

 The build process creates a release in the following folder: erlangexamples/_build/default/rel/
erlangexamples/ .

 The script to start the release can be found in the following folder: erlangexamples/_build/default/
rel/erlangexamples/bin/erlangexamples .

 When you start the script elixirexamples you get the output shown in Example 8-3 to display the
options.

 Example 8-3.

 1 $./erlangexamples
 2 Usage: erlangexamples {start|start_boot <file>|foreground|stop|restart
 3 |reboot|pid|ping|console|console_clean|console_boot <file>
 4 |attach|remote_console|upgrade|escript|rpc|rpcterms|eval}

 Let’s run the script. See Example 8-4 .

 Example 8-4.

 1 $ epmd -names
 2 epmd: up and running on port 4369 with data:
 3 $./erlangexamples start
 4 $ epmd -names
 5 epmd: up and running on port 4369 with data:
 6 name erlangexamples at port 60477
 7 $./erlangexamples remote_console
 8 Erlang/OTP 19 [erts-8.0.2] [source] [64-bit] [smp:8:8] [async-threads:10] [hi\
 9 pe] [kernel-poll:false] [dtrace]
 10
 11 Eshell V8.0.2 (abort with ^G)
 12 (erlangexamples@WL)1>
 13
 14 $ epmd -names
 15 epmd: up and running on port 4369 with data:
 16 name remshc958bdf4-erlangexamples at port 60495
 17 name erlangexamples at port 60477

 You first make sure by running epmd that no node is running on the machine. On line 3 you start the
node with the option start . It does not give any positive feedback, but you can check with epmd again that
the node erlangexamples was started. Now you can start a console with remote_host ; in this case, you
are on the same physical machine, but you can run a remote shell from another machine in the network.
Opening another shell epmd reveals that there are now two nodes running (lines 14 to 17).

 You just examined a barebone release, but most of the time more is needed. Relax provides ways to
define variables specific to the operating system or to define that additional scripts or files need to be copied,
such as for deployment on cloud services.

 One problem is compiling for other operating systems. The compilation, scripts, and included ERTS
(Erlang Runtime System) are specific to the operating system the build runs on. The key include_erts (see
Example 8-tk) can be either a Boolean or a path to an Erlang system and an additional key system_libs can
take a path to Erlang system libraries. So a release can be compiled for Linux on a Mac by providing the right
files in the configuration. With the key include_src you can decide if you copy the source or the release
(true) or not (false).

CHAPTER 8 ■ PRODUCTION SETUP

80

 Once you have tested the release, you can create a tarball for deployment to other machines; see Example 8-5 .

 Example 8-5.

 1 rebar3 tar

 This creates a compressed archive in _build/default/rel/erlangexamples/erlangexamples-
1.0.0.tar.gz . Without including ERTS, the size for erlangexamples is 4.8MB; with ERTS, it is 7.5MB.

 In Elixir, you can create releases with Mix, but first you need to add a dependency to mix.exs , as shown
in Example 8-6 .

 Example 8-6.

 1 {:exrm, "~> 1.0.8"}

 The release tool Exrm is the preferred tool for many Elixir developers, although there is a new project
called Distillery 2 which should replace Exrm in the future. Since Distillery is still in beta, we will stick to Exrm
in this chapter.

 Once you have the dependency (mix deps.get) and have compiled it (mix deps.compile), you have
new tasks in Mix; see Example 8-7 .

 Example 8-7.

 1 $ mix release
 2 Building release with MIX_ENV=dev.
 3 ==> The release for elixirexamples-1.0.0 is ready!
 4 ==> You can boot a console running your release with
 5 `$ rel/elixirexamples/bin/elixirexamples console`

 The task mix release creates a release in the folder rel , ready with scripts and without providing any
additional configuration. In Elixir/elixirexamples/rel/elixirexamples/releases/1.0.0 , you can find
a tarball with a size of 16.9MB created. There are four different ways to configure Exrm, and Distillery adds
another one, so I will not go into details of how to configure the release with different options.

 Exam creates the same script as Rebar3 for starting the release node; see Example 8-8 .

 Example 8-8.

 1 $./elixirexamples start
 2 $ epmd -names
 3 epmd: up and running on port 4369 with data:
 4 name elixirexamples at port 62762
 5 $./elixirexamples remote_console
 6 Erlang/OTP 19 [erts-8.0.2] [source] [64-bit] [smp:8:8] [async-threads:10] [hi\
 7 pe] [kernel-poll:false] [dtrace]
 8 Interactive Elixir (1.3.2) - press Ctrl+C to exit (type h() ENTER for help)
 9 iex(elixirexamples@127.0.0.1)1>
 10

 2 https://github.com/bitwalker/distillery

https://github.com/bitwalker/distillery
https://github.com/bitwalker/distillery

CHAPTER 8 ■ PRODUCTION SETUP

81

 11 $ empd -names
 12 epmd: up and running on port 4369 with data:
 13 name remsh-elixirexamples at port 62777
 14 name elixirexamples at port 62762

 The node can then be stopped with ./elixirexamples stop or, in the case of erlangexamples , with ./
erlangexamples stop .

 Monitoring
 During development, you have access to the source code and can use tools like debugger. In production, you
have to monitor a running application, often distributed on several nodes.

 Erlang has tracing to see what is going on in an application. A tool called dbg 3 (not to be confused
with debugger) is a wrapper around the tracing module and can be started with the command shown in
Example 8-9 .

 Example 8-9.

 1> dbg:tracer().
 {ok,<0.501.0>}

 This starts the application and a server to receive trace information. The application starts on the local
node by default, but using arguments any node can be specified for tracing.

 You also have to tell dbg what to trace; see Example 8-10 .

 Example 8-10.

 1 2> dbg:tp(darapi_handler_assets,get_handler,2,[]).
 2 {ok,[{matched,nonode@nohost,1}]}
 3 3> dbg:p(all,c).
 4 {ok,[{matched,nonode@nohost,198}]}

 In line 1 you define the function get_handler with arity 2 in the module darapi_handler_assets to be
traced. Line 3 says that all processes, current and created in the future, will be traced for calls. The processes
can be restricted to one process PID and the trace pattern can be set to messages sent , messages received, and
others.

 Running the application, in your case of dar_api hitting the web server with localhost:8402/api/
assets/1 , prints the trace shown in Example 8-11 .

 Example 8-11.

 4> <0.505.0>) call darapi_handler_assets:get_handler({http_req,#Port<0.89363>,
 ranch_tcp,keepalive,<0.505.0>,<<"GET">>,'HTTP/1.1',
 {{127,0,0,1},61219},
 <<"localhost">>,undefined,8402,<<"/api/assets/1">>,undefined,<<>>,

 3 http://erlang.org/doc/man/dbg.html

http://erlang.org/doc/man/dbg.html
http://erlang.org/doc/man/dbg.html

CHAPTER 8 ■ PRODUCTION SETUP

82

 undefined,
 [{id,<<"1">>}],
 [{<<" host">>,<<"localhost:8402">>},
 {<<"user-agent">>,<<"curl/7.43.0">>},
 {<<"accept">>,<<"*/*">>}],
 [{<<"if-modified-since">>,undefined},
 {<<"if-none-match">>,undefined},
 {<<"if-unmodified-since">>,undefined},
 {<<"if-match">>,undefined},
 {<<"accept">>,[{{<<"*">>,<<"*">>,[]},1000,[]}]}],
 undefined,
 [{media_type,{<<"application">>,<<"json">>,[]}},{charset,undefined}],
 waiting,<<>>,undefined,false,waiting,
 [{<<"content-type">>,[<<"application">>,<<"/">>,<<"json">>,<<>>]}],
 <<>>,undefined},undefined)

 Using tracing alone is not enough to monitor a system, especially when the trace are printed in a
console together with log entries. Observer 4 combines traces with other information to provide an overview
of a running system in a graphical interface. It is started in an Erlang environment with the command shown
in Example 8-12 .

 Example 8-12.

 1> observer:start().

 In an Elixir environment, you start it with the command shown in Example 8-13 .

 Example 8-13.

 iex(1)> :observer.start

 Once started, the GUI looks like Figure 8-2 .

 4 http://erlang.org/doc/apps/observer/observer_ug.html

http://erlang.org/doc/apps/observer/observer_ug.html
http://erlang.org/doc/apps/observer/observer_ug.html

CHAPTER 8 ■ PRODUCTION SETUP

83

 All running applications for the observed node are displayed. In the menu of the application, a node for
observing can be chosen if others (besides the local node) are known.

 Other tabs display information about memory usage, the system, the in-memory data store ets , and
provide charts and list processes, as you can see in Figure 8-3 .

 Figure 8-2. Observer

CHAPTER 8 ■ PRODUCTION SETUP

84

 Here I highlight the darapi supervisor.
 Double-clicking this entry reveals more details about the process, as shown in Figure 8-4 .

 Figure 8-3. Observer

CHAPTER 8 ■ PRODUCTION SETUP

85

 Observer can also monitor remote nodes. The menu item Nodes lists known nodes; choosing one of
them will switch the observer to this node. Then all the information about the node can be read as if it was
local. Before this can happen, a SSH tunnel may need to be set up to link ports from the local machine to the
remote machine.

 Figure 8-4. Observer

 PART IV

 Implementing the Service

89© Wolfgang Loder 2016
W. Loder, Erlang and Elixir for Imperative Programmers, DOI 10.1007/978-1-4842-2394-9_9

 CHAPTER 9

 Overview

 Up to now you have not produced much code. Finally, this is the part of the book where you go deeper into
code. I won’t explain the syntax of Erlang or Elixir in this chapter; Appendix D lists the language features and
compares the syntax of both languages.

 You will examine a special Hello World application almost line by line to see how an application with
distributed processes can be implemented in a few lines. At the end of the chapter, you will have a look at the
standard libraries and also libraries the community provides.

 This part and Part 5: Patterns and Concepts are intertwined and there are many links to the concepts
that are explained in Part 5. I encourage you to jump between the chapters as your interest leads you.

 A Deeper Look at Erlang and Elixir
 Before you start, let’s have a first look at Erlang and Elixir, a Hello World of a different kind. See Figure 9-1 .

 The following Hello World programs in Erlang and Elixir have the same functionality and only differ in
syntax. The modules are basic examples of

• sending messages between processes and

• distributing processes on different machines.

 I use two machines:

• On machine 1 the recipient or listener is started.

• On machine 2 a process is started that sends a message to the other machine.

 The following code examples are the implementations of the above design. Erlang is in Example 9-1 and
Elixir is in Example 9-2 .

CHAPTER 9 ■ OVERVIEW

90

 Figure 9-1. Say Hello Design

 Example 9-1.

 1 %%%---
 2 %%% @doc
 3 %%% This module is a basic example of
 4 %%% (1) sending messages between processes and
 5 %%% (2) distribute processes on different nodes / machines.
 6 %%% Usage:
 7 %%% Machine 1: erl -sname precipient -setcookie scookie
 8 %%% sayhello:start_recipient().

CHAPTER 9 ■ OVERVIEW

91

 9 %%% Machine 2: erl -sname psayhello -setcookie scookie
 10 %%% sayhello:start_sayhello('precipient@machinename').
 11 %%% @end
 12 %%%---
 13 - module (sayhello).
 14
 15 %% API
 16 - export ([start/0, recipient/0, say_hello/2, say_hello/3, start_recipient/0, star\
 17 t_sayhello/1]).
 18
 19 %% methods for distributed processes on more than one machine
 20 say_hello(_, 0, Node) ->
 21 io :format("Process arity 3 'say_hello' finished ~n ", []),
 22 {precipient, Node} ! finished;
 23
 24 say_hello(What, Times, Node) ->
 25 io :format("3: ~p~n ", [What]),
 26 {precipient, Node} ! What,
 27 say_hello(What, Times - 1, Node).
 28
 29 start_recipient() ->
 30 register(precipient, spawn(sayhello, recipient, [])).
 31
 32 start_sayhello(InitNode) ->
 33 spawn(sayhello, say_hello, ["Hello", 2, InitNode]),
 34 {precipient, InitNode} ! log.
 35
 36 %% methods for processes on one machine
 37 say_hello(_, 0) ->
 38 io :format("Process arity 2 'say_hello' finished ~n ", []),
 39 precipient ! finished;
 40 say_hello(What, Times) ->
 41 io :format("2: ~p~n ", [What]),
 42 precipient ! What,
 43 say_hello(What, Times - 1).
 44
 45 %% recipient of say_hello-messages
 46 recipient() ->
 47 receive
 48 finished ->
 49 io :format("Recipient process finished ~n ", []);
 50 log ->
 51 io :format("Recipient received log message ~n ", []),
 52 recipient();
 53 What ->
 54 io :format("Recipient received ~s~n ", [What]),
 55 recipient()
 56 end .
 57

CHAPTER 9 ■ OVERVIEW

92

 58 start() ->
 59 register(precipient, spawn(sayhello, recipient, [])),
 60 precipient ! nomessagedefined,
 61 spawn(sayhello, say_hello, ["Hello", 4]).

 Example 9-2.

 1 defmodule SayHello do
 2 @doc """
 3 This module is a basic example of
 4 (1) sending messages between processes and
 5 (2) distribute processes on different machines.
 6 Usage:
 7 Machine 1: iex --sname precipient --cookie scookie
 8 SayHello.start_recipient
 9 Machine 2: iex --sname pinit --cookie scookie
 10 Node.connect :"precipient@machinename"
 11 SayHello.start_sayhello
 12 """
 13 def start_recipient do
 14 precipient = spawn(SayHello , :recipient, [])
 15 :global.register_name(:precipient, precipient)
 16 end
 17
 18 def start_sayhello() do
 19 spawn(SayHello , :say_hello, ["Hello", 2])
 20 send :global.whereis_name(:precipient), :log
 21 end
 22
 23 def say_hello(_, 0) do
 24 IO .puts "Process 'say_hello' finished"
 25 send :global.whereis_name(:precipient), :finished
 26 end
 27
 28 def say_hello(what, times) do
 29 IO .puts what
 30 send :global.whereis_name(:precipient), what
 31 say_hello(what, times - 1)
 32 end
 33
 34 # recipient of say_hello-messages
 35 def recipient do
 36 receive do
 37 :finished ->
 38 IO.puts "Recipient process finished"
 39 :log ->
 40 IO.puts "Recipient received log message"
 41 recipient

CHAPTER 9 ■ OVERVIEW

93

 42 what ->
 43 IO.puts "Recipient received #{what}"
 44 recipient
 45 end
 46 end
 47
 48 def start do
 49 precipient = spawn(SayHello , :recipient, [])
 50 :global.register_name(:precipient, precipient)
 51 send precipient, :nomessagedefined
 52 spawn(SayHello , :say_hello, ["Hello", 4])
 53 end
 54
 55 end

 The Elixir syntax looks a lot like Ruby, which is not a surprise considering that the creator was part of the
Ruby core team. Otherwise, both modules show how concise implementations in Erlang and Elixir are. The
 magic lies in the underlying Erlang VM (BEAM). It handles the communication between processes; you just
have to tell it what you need.

 Let’s dive deeper into the code without getting too much into syntax differences.

 Module Definition
 After the comment section on top, both implementations define the module. In Erlang, the module name
needs to be an atom and also correspond exactly to the file name. See Example 9-3 .

 Example 9-3.

 % filename: sayhello.erl
 - module (sayhello).

 Elixir is here more forgiving; a file is just a container for definitions. See Example 9-4 .

 Example 9-4.

 # filename: sayhello.ex
 defmodule SayHello do

 The module name can be anything, but Elixir translates the module name into an atom, as shown in
Example 9-5 .

 Example 9-5.

 1 iex(1)> is_atom SayHello
 2 true
 3 iex(2)> to_string SayHello
 4 "Elixir.SayHello"

 Internally the module name SayHello was transformed to the atom Elixir.SayHello .

CHAPTER 9 ■ OVERVIEW

94

 BIFs (built-in functions) The function is_atom used in the example above is one of the built-in

functions in Erlang that is also exposed in Elixir. Some of these functions are written in C for performance
reasons. Another example of a BIF is spawn . In general, the definition of BIFs is not quite clear 1 .

 Some of those functions can be found in the Erlang module erlang 2 and in the Elixir module Kernel 3 manuals.

 Function Exports
 In Erlang, you need to export functions explicitly, as shown in Example 9-6 .

 Example 9-6.

 - export ([start/0,
 recipient/0,
 say_hello/2,
 say_hello/3,
 start_recipient/0,
 start_sayhello/1]).

 The line -export lists all the functions you want to access from outside the module.
 Elixir implicitly exports all functions defined with def ; functions defined with defp won’t be exported

and are marked as private functions.

 Running on One Machine
 If you look at the Erlang source code , you will see in the comments that you have two sets of functions for
one and for multiple machines. This has to do with the way you register machine (node) names to show
differences in possible implementations.

 Nodes When the Erlang and Elixir applications are installed, they also have the VM runtime installed.

The VM together with all the BEAM files that make up the application are called nodes . There can be more than
one node on one machine, but normally they are distributed across several physical machines.

 The function start is the entry point to the module on one machine; see Example 9-7 .

 1 http://rvirding.blogspot.co.ke/2009/10/what-are-bifs.html
 2 http://erlang.org/doc/man/erlang.html
 3 http://elixir-lang.org/docs/stable/elixir/Kernel.html

http://rvirding.blogspot.co.ke/2009/10/what-are-bifs.html
http://erlang.org/doc/man/erlang.html
http://elixir-lang.org/docs/stable/elixir/Kernel.html
http://rvirding.blogspot.co.ke/2009/10/what-are-bifs.html
http://erlang.org/doc/man/erlang.html
http://elixir-lang.org/docs/stable/elixir/Kernel.html

CHAPTER 9 ■ OVERVIEW

95

 Example 9-7.

 1 start() ->
 2 register(precipient, spawn(sayhello, recipient, [])),
 3 precipient ! nomessagedefined,
 4 spawn(sayhello, say_hello, ["Hello", 4]).

 The library function spawn takes the module name (sayhello) and the function to call as arguments.
The additional list could send arguments to the function to call, but in your example you don’t have
any arguments and the list [] is empty. The output of this call is a process id (PID) and this is the second
argument for the library function register ; you pass it in without assigning it to a variable first. The first
argument of register is the name you want to register (precipient) in the form of an atom. This name can
be anything and does not need to correlate with module or function names.

 PID A PID is a data type in Erlang and defines a process in the Erlang VM. Erlang’s processes have nothing to

do with threads or processes in an operating system. They are lightweight and can be called green threads
(without going into the discussion of whether Erlang’s green threads are comparable to those of other languages).

 The structure of a PID can be seen in el_term.h 4 and the external representation in the Erlang documentation 5 .

 So you want the system to spawn an instance of the module sayhello , which is in fact the same
module the function start is defined in. Then the system should name the instance precipient and call
the function recipient without any arguments. The output of the spawn statement is an Erlang process,
described by a PID , as mentioned above.

 On line 3, you send an atom (nomessagedefined) to the process precipient , which is just a test message
to see later in the log if the message was received.

 On line 4, you spawn the second process. This time you run the function say_hello in the module
 sayhello and define two arguments in the list. The first one is a string and the second a number. The
intention in this example is to send “Hello” four times to the recipient and then terminate.

 What happens in say_hello ? Conceptually the implementation of this function is a structural form of
polymorphism; see Example 9-8 .

 Example 9-8.

 1 %% methods for processes on one machine
 2 say_hello(_, 0) ->
 3 io :format("Process arity 2 'say_hello' finished ~n ", []),
 4 precipient ! finished;
 5 say_hello(What, Times) ->
 6 io :format("2: ~p~n ", [What]),
 7 precipient ! What,
 8 say_hello(What, Times - 1).

 This code works with pattern matching. Line 2

 say_hello(_, 0) ->

 4 https://github.com/erlang/otp/blob/maint/erts/emulator/beam/erl_term.h#L571
 5 http://erlang.org/doc/apps/erts/erl_ext_dist.html#id93725

https://github.com/erlang/otp/blob/maint/erts/emulator/beam/erl_term.h#L571
http://erlang.org/doc/apps/erts/erl_ext_dist.html#id93725
https://github.com/erlang/otp/blob/maint/erts/emulator/beam/erl_term.h#L571
http://erlang.org/doc/apps/erts/erl_ext_dist.html#id93725

CHAPTER 9 ■ OVERVIEW

96

 defines the function say_hello with two arguments. The first argument is irrelevant, so you just write a
catch-all argument (the underscore). The second argument is the counter and if this argument is “0” then
you just write some text and send a _finished atom to the recipient process. After that, the say_hello process
will terminate.

 Note the ; at the end of line 4. This indicates that the function definition is not done yet. As a side note,
statements are separated by a comma, which needs a bit getting used to coming from other, especially
imperative, languages.

 The second form of say_hello takes two arguments as well; it would not work with a different number
of arguments similar to C, Java, and others where the name of the function together with the arguments’
names and types form the signature of the function. In the second definition of say_hello , you are interested
in both arguments:

• What defines what you want to send to the recipient. It has an uppercase first letter, so
it is a variable .

• Times is also a variable. It is the counter that was initiated in the spawn call of the
process precipient .

 The important line is this:

 say_hello(What, Times - 1).

 Here you establish the loop with a decremented counter. This function will loop until Times reaches “0”
and then the first function definition will match and tell the recipient process to terminate by sending the
atom finished . After that, the say_hello process will terminate. Now you know why you were not interested
in the first argument previously; it truly is irrelevant.

 When you run the function sayhello:start() you get the output shown in Example 9-9 .

 Example 9-9.

 1 1> sayhello:start().
 2 Recipient received nomessagedefined
 3 2: "Hello"
 4 <0.36.0>
 5 2: "Hello"
 6 Recipient received Hello
 7 2: "Hello"
 8 Recipient received Hello
 9 2: "Hello"
 10 Recipient received Hello
 11 Process arity 2 'say_hello' finished
 12 Recipient received Hello
 13 Recipient process finished

 So what happens on the receiver process? The function recipient is all that is needed; see Example 9-10 .

 Example 9-10.

 1 %% recipient of say_hello-messages
 2 recipient() ->
 3 receive
 4 finished ->
 5 io :format("Recipient process finished ~n ", []);

CHAPTER 9 ■ OVERVIEW

97

 6 log ->
 7 io :format("Recipient received log message ~n ", []),
 8 recipient();
 9 What ->
 10 io :format("Recipient received ~s~n ", [What]),
 11 recipient()
 12 end .

 The function defines a receive block. This expression defines code that is executed when a message via
the operator “!” is sent. This example does not show the after expression, which can be used to implement
timeouts.

 The receive block works with patterns. The first two patterns are atoms, the third pattern is the
value What (note the different case of the first character). The code just outputs some string to show what
happened. The interesting line is in Example 9-11 .

 Example 9-11.

 recipient();

 It establishes the loop, so after printing out some information in case of the atom log or the value
 What sent, the function will continue. In case of the atom finished received it will simply terminate. This
implementation is tail-recursive and does not grow the stack; see the Recursion section.

 It is useful to look at the same function in Elixir; see Example 9-12 .

 Example 9-12.

 1 # recipient of say_hello-messages
 2 def recipient do
 3 receive do
 4 :finished ->
 5 IO .puts "Recipient process finished"
 6 :log ->
 7 IO .puts "Recipient received log message"
 8 recipient
 9 what ->
 10 IO .puts "Recipient received #{ what } "
 11 recipient
 12 end
 13 end

 Apart from syntax differences, they are the same. Elixir adds string interpolation, which is used in
line 10:

 "Recipient received #{ what } "

 Running on Two Machines
 When you run the Erlang version in bash or the command line, you get the following output for the recipient
and the client. First, the recipient needs to be started; see Example 9-13 .

CHAPTER 9 ■ OVERVIEW

98

 Example 9-13.

 1 $ erl -sname precipient -setcookie scookie
 2 Erlang/OTP 18 [erts-7.1] [source] [64-bit] [smp:8:8] [async-threads:10] [hipe]
 3 [\kernel-poll:false] [dtrace]
 4
 5 Eshell V7.1 (abort with ^G)
 6 (precipient@Wolfgangs-MacBook-Pro)1> sayhello:start_recipient().
 7 true
 8 Recipient received log message
 9 Recipient received Hello
 10 Recipient received Hello
 11 Recipient process finished

 In line 1, you start the Erlang VM and set the name of the node (precipient) and the magic cookie
(scookie). Once the recipient is started in line 6 (sayhello:start_recipient()) it will wait for messages and
process them. The magic cookie lets all nodes with the same cookie value talk to each other. If the cookie
values are different, the calls will be blocked.

 The client is started in a similar way with the same magic cookie and a different node name (psayhello);
see Example 9-14 .

 Example 9-14.

 1 $ erl -sname psayhello -setcookie scookie
 2 Erlang/OTP 18 [erts-7.1] [source] [64-bit] [smp:8:8] [async-threads:10] [hipe]
 3 [\kernel-poll:false] [dtrace]
 4
 5 Eshell V7.1 (abort with ^G)
 6 (psayhello@Wolfgangs-MacBook-Pro)1> sayhello:start_sayhello('precipient@Wolfgang\
 7 s-MacBook-Pro').
 8 3: "Hello"
 9 3: "Hello"
 10 Process arity 3 'say_hello' finished

 The sender sends the greetings and then terminates.
 The Elixir version behaves in the same way; see Examples 9-15 and 9-16 .

 Example 9-15.

 1 $ iex --sname precipient --cookie scookie
 2 Erlang/OTP 18 [erts-7.1] [source] [64-bit] [smp:8:8] [async-threads:10] [hipe]
 3 [\kernel-poll:false] [dtrace]
 4
 5 Interactive Elixir (1.1.1) - press Ctrl+C to exit (type h() ENTER for help)
 6 iex(precipient@Wolfgangs-MacBook-Pro)1> SayHello.start_recipient
 7 :yes
 8 Recipient received log message
 9 Recipient received Hello
 10 Recipient received Hello
 11 Recipient process finished

CHAPTER 9 ■ OVERVIEW

99

 Example 9-16.

 1 $ iex --sname pinit --cookie scookie
 2 Erlang/OTP 18 [erts-7.1] [source] [64-bit] [smp:8:8] [async-threads:10] [hipe]
 3 [\kernel-poll:false] [dtrace]
 4
 5 Interactive Elixir (1.1.1) - press Ctrl+C to exit (type h() ENTER for help)
 6 iex(pinit@Wolfgangs-MacBook-Pro)1> Node.connect :"precipient@Wolfgangs-MacBook-P\
 7 ro"
 8 true
 9 iex(pinit@Wolfgangs-MacBook-Pro)2> SayHello.start_sayhello
 10 Hello
 11 Hello
 12 :log
 13 Process 'say_hello' finished

 Having two processes on one machine maybe sufficient for testing, but the Erlang VM shows its strength
when building distributed and concurrent applications. The Say Hello example does not do much, but it
implements a basic framework for distributed processes.

 Later chapters will go deeper into options for calling processes on a different machine. In the example,
you use a global namespace. The lines

 register(precipient, spawn(sayhello, recipient, [])).

 in Erlang and

 :global.register_name(:precipient, precipient)

 in Elixir register a name in the global registry, which is nothing more than a data store that is replicated to
all machines in your system running Erlang VMs . Global means your system; the registry is private to your
network, which can be on your premises or partly or wholly in the cloud. The registered names must be
unique and are atoms for easier retrieval.

 You can start shells with

 erl -sname precipient -setcookie scookie

 for Erlang or

 iex --sname precipient --cookie scookie

 for Elixir.
 The argument - sname defines the name of the machine, called node in Erlang and Elixir . In your case,

you have named the node precipient for the recipient node. You could also define a fully qualified name
with the argument name , while sname stands for short name . It is also possible to say -sname precipient@
localhost , which seems to define a fully qualified name, but it is actually a fake short name.

CHAPTER 9 ■ OVERVIEW

100

 Kill node When you experiment with nodes, you will likely come into the situation that a node is still

running and you need to kill it. This seems to be an easy task, but you will need the (operating system) process id.

 On the Mac epmd , lsof , and kill can be used to achieve this.

 You can find a bash script called kill_node_erlang.sh in the book companion repository in the folder
 Scripts/Mac . This script is based on another script on GitHub 6 .

 All registered nodes can be found with the Erlang Port Mapper Daemon 7 by executing the command
shown in Example 9-17 .

 Example 9-17.

 epmd -names

 In a shell, the built-in function nodes() can be used to discover nodes that are visible to the process.
After running the above commands to open shells, you will see the return of nodes() as [] , the empty list.
What happened? Firstly, the argument -setcookie or –cookie set a secret cookie , in your case scookie . You
will find out more about security in Erlang/OTP later, but this cookie is necessary so that nodes can see each
other. I’m assuming that no firewalls or other port restrictions are in place at this time.

 Secondly, even if the secret cookie is in place, the nodes have not communicated with each other, so
they don’t know about each other. In the Erlang shell, you can execute the code in Example 9-18 if your
name is precipient@localhost and you will receive either a pong for a successful connection or a pang for an
unsuccessful connection.

 Example 9-18.

 net_adm :ping('precipient@localhost').

 In case of success, both nodes will show the connected nodes as output of nodes() .
 The Elixir code shows in the comment that the command

 Node .connect :"precipient@machinename"

 is used to connect to the other node.
 Once you have a connection between nodes you can send messages to those nodes. In your example

you use

 {precipient, Node} ! What

 in Erlang or

 send :global.whereis_name(:precipient), what

 in Elixir.

 6 https://gist.github.com/robertoaloi/8884096
 7 https://erlang.org/doc/man/epmd.html

https://gist.github.com/robertoaloi/8884096
https://erlang.org/doc/man/epmd.html
https://gist.github.com/robertoaloi/8884096
https://erlang.org/doc/man/epmd.html

CHAPTER 9 ■ OVERVIEW

101

 The Erlang version has the node information as an argument; the Elixir version uses another option to
query the global names data store directly. Remember, this data store is on all nodes and is automatically
replicated.

 Again, both language versions just differ in syntax. Two more notes:

• The recipient process must be started first when more machines are used, because
the send process needs to know where to send messages.

• In production, nodes will be started automatically. The cookie and name
information can be configured in the release files.

 And now a quick test. In the Erlang implementation, the start() function sends the message shown in
Example 9-19 .

 Example 9-19.

 precipient ! nomessagedefined

 What will happen in the receiver function and why?

 Project Structure
 The structure of the Digital Asset Repository (DAR) project (see Chapter 4 for an introduction to DAR) is
shown in Figure 9-2.

 Figure 9-2. DAR components

http://dx.doi.org/10.1007/978-1-4842-2394-9_4

CHAPTER 9 ■ OVERVIEW

102

 The components have the following purposes:

• darapi : HTTP server process that implements the public API.

• daractors : A process similar to a business server that handles and distributes
messages from the API.

• dar_wflib : A workflow process implemented as finite state machine.

• dar_imagelib : A library handling images processing like watermarks.

• dar_dblib : A library providing access to data stores like MongoDB.

• dar_gfslib : A library providing access to MongoDB’s GridFS.

 Elixir umbrella projects If you run the creation of a new project with the option –umbrella , you get a

file structure and a configuration to have more than one application in the project. Mix.exs has a new key/value
pair in the project function: apps_path: "apps" . It gives a hint that all the applications are in the folder
specified and Mix assumes an umbrella project.

 Compiling and testing can be done from the root directory of the project as well as starting all the applications
in the project with iex -S mix .

 You can mix Elixir and Erlang. The decision of which language to use was caused by availability of
third-party libraries. For example, GridFS can be easily accessed with erl-mongo , but the Elixir library
 ecto- mongo makes it easier to manipulate documents in MongoDB and other data stores. The project set
out with more Erlang modules, but with time most modules were implemented in Elixir.

 Mixing Erlang and Elixir Modules
 Mixing Erlang and Elixir modules is not a problem because eventually the source code will be compiled into
byte code the BEAM understands. This chapter refers to the former structure of the project, which had more
Erlang modules. Although this has changed, the old code can still be found in the accompanying GitHub
repository . The following explanations are based on that code.

 What happens if you want to have a library accessible by Elixir and Erlang modules? An example is
 dar_model . It is written in Erlang and can be configured in mix.exs as a dependency; see Example 9-20 .

 Example 9-20.

 1 defp deps do
 2 [
 3 {:mongodb_ecto, "~> 0.1"},
 4 {:dar_model, path: "~/Projects/creative-common-dar/Erlang/Libs/dar_model"}
 5]
 6 end

 The deps function defines a list of dependencies, one of them a path dependency to a local folder with
an Erlang project. When you run mix compile , the Erlang project will be automatically compiled. Internally,
 mix is using the installed Rebar version to do that, so the .beam file will be updated in the Erlang project.

CHAPTER 9 ■ OVERVIEW

103

Alternatively, you could put the Erlang code into the *src folder of the Elixir project and mix would compile
this as well.

 The other way round, compiling Elixir modules from an Erlang project, is not so easy. For the older
Rebar a plug-in 8 exists, but not for Rebar3 . I tried a few ways to achieve this task, but failed.

 Rebar3 is, as you have seen, very strict with a project’s structure. Dependencies from a git repository or
a package repository are straightforward. Local Erlang repositories need to be integrated with what I would
call a hack. A folder named checkouts in the projects can have a symbolic link (symlink) that points to the
source code folder of the project and then it will be compiled with the dependent project. For example,
 dar_gfslib has a link to dar_model , and rebar.config defines this project as dependency; see Example 9-21 .

 Example 9-21.

 1 {deps, [
 2 {erlmongo, {git, "https://github.com/SergejJurecko/erlmongo.git"}},
 3 dar_model
 4]}.

 So how do you call Elixir-based modules from Erlang code? You can use RPC calls. In daractors you can
find lines like those in Example 9-22 .

 Example 9-22.

 J = rpc :call(
 'dblib@localhost',
 'Elixir.DarDblib',
 write_meta_to_collection,
 [M]).

 These lines send the argument M to the function write_meta_to_collection in the module
 Elixir. DarDblib . Note that the module name must be prefixed with Elixir and surrounded with single quotes.

 An RPC call to an Erlang module from Elixir sends the module and function names as atoms; see Example 9-23 .

 Example 9-23.

 :rpc.call(
 :"dargfslib@Wolfgangs-MacBook-Pro",
 :dar_gfslib_process_files,
 :read_from_gfs,['filetestwrite','dar'])

 RPC in Erlang has a scaling problem due to its implementation, so the community has developed a
 gen_rpc server 9 to allow better scaling. This implementation can be used in Erlang and Elixir, and offers a
similar API to the original RPC module in Erlang.

 Libraries
 The following libraries most probably cover what you need for a first application built with Erlang and Elixir.
Sprinkled in are a few not-so-expected libraries or applications to show the breadth of the system. All the
libraries and applications described are open source. I also included some that are not working very well
with Rebar3 .

 8 https://github.com/yrashk/rebar_elixir_plugin
 9 https://github.com/priestjim/gen_rpc

https://github.com/yrashk/rebar_elixir_plugin
https://github.com/priestjim/gen_rpc
https://github.com/yrashk/rebar_elixir_plugin
https://github.com/priestjim/gen_rpc

CHAPTER 9 ■ OVERVIEW

104

 Database Access: Ecto , Erlmongo , and Others
 Every application or service needs to have some sort of data store. Erlang has Mnesia 10 as a capable database
that is free for commercial use. Companies that start out with Erlang or Elixir will have the need to access
legacy and mostly relational databases from Oracle, IBM, or Microsoft.

 Erlang supports the ODBC interface 11 , but as the manual says “ currently it is only regularly tested for
sqlserver and postgres. ”

 Libraries like Erlmongo 12 , which you use in your implementation, specialize in particular databases, in
this case MongoDB. You will see more from Erlmongo later.

 Elixir’s creator and the community have taken up the task to develop a modern database access layer
called Ecto . In fact, it is a domain-specific language for interacting with databases. At the moment, the
following databases are supported with adapters:

• MongoDB

• MSSQL

• MySQL

• PostgreSQL

• SQLite3

 Ecto , now in version 2, is the standard way for Elixir applications to access databases and, with further
development of tools like Rebar3 that support integrating Elixir packages, Erlang modules will be able to use
this database layer as well.

 Riak KV
 Riak 13 is a key-value database with the option of a commercial enterprise license . It has vast documentation
and can be installed on various Linux distributions.

 This is not the database for a small project. The effort to set it up makes sense if the project needs a
distributed and load balanced data store. It is geared towards high capacity as the use case descriptions on
their web site explain.

 I included Riak in this overview to show a product that goes beyond simple libraries. It is also a
good idea to have a look at the source code to get a feeling how large projects like this are organized and
implemented.

 JSON
 Jiffy 14 is a JSON (JavaScript Object Notation) library for Erlang. JSON is a lightweight data-interchange format
that is easy for humans to read and write and easy for machines to parse and generate. The interesting aspect
of Jiffy is that it is a NIF (native implemented function) . That means it is implemented in C and is called from
Erlang at runtime.

 Apart from that interesting aspect, I had problems with it. First, it needs an additional configuration in
 Rebar3 to make it compile; see Example 9-24 .

 10 http://erlang.org/doc/man/mnesia.html
 11 http://erlang.org/doc/apps/odbc/databases.html
 12 https://github.com/SergejJurecko/erlmongo
 13 http://basho.com/products/#riak
 14 https://github.com/davisp/jiffy

http://erlang.org/doc/man/mnesia.html
http://erlang.org/doc/apps/odbc/databases.html
https://github.com/SergejJurecko/erlmongo
http://basho.com/products/#riak
https://github.com/davisp/jiffy
http://erlang.org/doc/man/mnesia.html
http://erlang.org/doc/apps/odbc/databases.html
https://github.com/SergejJurecko/erlmongo
http://basho.com/products/#riak
https://github.com/davisp/jiffy

CHAPTER 9 ■ OVERVIEW

105

 Example 9-24.

 1 {overrides,
 2 [{override, jiffy, [
 3 {plugins, [pc]},
 4 {artifacts, ["priv/jiffy.so"]},
 5 {provider_hooks, [
 6 {post,
 7 [
 8 {compile, {pc, compile}},
 9 {clean, {pc, clean}}
 10]
 11 }]
 12 }
 13]}
 14]}.

 The creator of the library is working on Rebar3 compatibility, so it may be working without the
workaround

 Then, how could I decode a real world JSON file? It turns out that the file shown in Example 9-25 needs
to be called as in Example 9-26 .

 Example 9-25.

 1 {
 2 "Title" : "The boy that did not want to speak",
 3 "Meta" : {
 4 "Pages" : "12"
 5 }
 6 }
 7
 8 { "Title" : "The boy that did not want to speak", "Meta" : { "Pages" : "12"}}

 Example 9-26.

 1 1> jiffy :decode(<<"{ \" Title \" : \" The boy that did not want to speak \" , \" Meta \" : \
 2 { \" Pages \" : \" 12 \" }}">>).
 3 {[{<<"Title">>,<<"The boy that did not want to speak">>},
 4 {<<"Meta">>,{[{<<"Pages">>,<<"12">>}]}}]}

 Of course, all quotes need to be escaped and the whole string wrapped in a binary list. The same applies
to another library: jsone 15 . It is the intrinsic string problem of Erlang that does not come up most of the time,
but trying to use it for web pages or services sees it bubble up to the surface.

 The Erlang web server Cowboy takes care of this problem in a way that JSON strings in the request body
are binary lists that can be fed directly into JOSN libraries’ decode functions.

 Poison 16 is a JSON library for Elixir and it does not have the aforementioned problem. After adding it to
the dependencies in mix.exs Poison can be called as shown in Example 9-27 .

 15 https://github.com/sile/jsone
 16 https://github.com/devinus/poison

https://github.com/sile/jsone
https://github.com/devinus/poison
https://github.com/sile/jsone
https://github.com/devinus/poison

CHAPTER 9 ■ OVERVIEW

106

 Example 9-27.

 1 iex(1)> Poison .decode!(~s({"Title": "The boy that did not want to speak","Meta":\
 2 {"Pages": "12"}}))
 3 %{"Meta" => %{"Pages" => "12"}, "Title" => "The boy that did not want to speak"}

 You can wrap the JSON into a string with the sigil ~s and it gets transformed into a struct with a nested
struct as expected. The sigil is useful for situations like this when you want to express a string with quotes as
a string without having to escape the quotes.

 These are only some examples. There are at least 14 other JSON libraries for Elixir available.

 Logging: Lager
 Lager 17 is a logging library for Erlang, but there exists a wrapper for Elixir 18 . It can be configured in many ways
to have logging information displayed or saved in the way a project needs it.

 One drawback is that Lager does not play nicely with Rebar3 at the moment; at least I could not figure
out a way to make Lager understand the needed configuration. Since the Erlang implementation of the API
service was replaced with an Elixir/Phoenix version, I did not put too much time into it. Nevertheless, the
default configuration works nicely, Rebar3 or not.

 First, the Lager dependency needs to be added to rebar.config in the deps section, as shown in
Example 9-28 .

 Example 9-28.

 {lager, {git, "git://github.com/basho/lager.git", {tag, "2.2.2"}}}

 The module can be started during boot up automatically if it is in the relx definition; see Example 9-29 .

 Example 9-29.

 1 {relx, [{release, { darapi , "0.1.0" },
 2 [
 3 lager,
 4 cowboy,
 5 jsone,
 6 uuid,
 7 darapi ,
 8 sasl,
 9 daractors]},
 10
 11 {sys_config, "./config/sys.config"},
 12 {vm_args, "./config/vm.args"},
 13
 14 {dev_mode, true},
 15 {include_erts, false},
 16
 17 {extended_start_script, true}]
 18 }.

 17 https://github.com/basho/lager
 18 https://github.com/khia/exlager

https://github.com/basho/lager
https://github.com/khia/exlager
https://github.com/basho/lager
https://github.com/khia/exlager

CHAPTER 9 ■ OVERVIEW

107

 It can also be started from code, as shown in Example 9-30 .

 Example 9-30.

 lager :start()

 In any case, a compiler directive needs to be either globally defined or in the module. Without it, Lager
calls will fail: see Example 9-31 .

 Example 9-31.

 - compile ([{parse_transform, lager_transform}]).

 Once you have Lager available, you can simply tell it to log something, as in Example 9-32 .

 Example 9-32.

 1 lager :info("from_json: Method ~p~n ", [lager :pr(Method, ?MODULE)])
 2 lager :error("from_json: Method ~p~n ", [lager :pr(Method, ?MODULE)])

 The messages together with a header will be, in the default configuration, placed into files in a folder
 log , which is created by Lager if it does not exist. Info messages go into console.txt and error messages into
 error.txt .

 These lines in the example above would result in the entries in the log files shown in Example 9-33 .

 Example 9-33.

 2016-05-26 08:57:10.330 [info] <0.335.0>@ darapi _handler_assets:from_json:61 from\
 _json: Method<<"POST">>
 2016-05-26 08:57:10.330 [error] <0.335.0>@ darapi _handler_assets:from_json:62 fro\
 m_json: Method<<"POST">>

 There will also be an output in the console by default. There are ways to redirect logging to databases,
have colored console output, set the severity level for logging, or catch Erlang errors to log them.

 Elixir applications can use Lager via a wrapper as well, although there exists a logger in the Elixir system
that pretty much does what Lager basically does.

 If you want to use Lager , you will have to define the lager and the wrapper dependency in mix.exs and
also start them at boot up; see Example 9-34 .

 Example 9-34.

 def application do
 [
 mod: { DarDblib.App , []},
 applications: [:logger, :exlager]
]
 end

 defp deps do
 [
 {:lager, git: "https://github.com/basho/lager.git"},
 {:exlager ,git: "https://github.com/khia/exlager.git"}
]
 end

CHAPTER 9 ■ OVERVIEW

108

 After that, you can log messages with different severity, as in Example 9-35 .

 Example 9-35.

 1 Lager .debug "Debug message"
 2 Lager .info "Info message"
 3 Lager .notice "Notice message"
 4 Lager .warning "Warning message"
 5 Lager .error "Error message"
 6 Lager .critical "Critical message"
 7 Lager .alert "Alert message"
 8 Lager .emergency "Emergency message"

 As in Erlang, all messages will be written to the console and to files in the log folder that is created by
 Lager if it does not exist.

 Some configuration like the truncation size of files and severity level can be set either in code or as
compiler options.

 Timex
 Timex 19 is a library for Elixir that handles the always daunting task to handle local time, timestamps, and
dates in code. It can handle time zones, custom formatting, and parsing, and it is documented very well.

 As always, add the dependency to mix.exs and then optionally add the line shown in Example 9-36 .

 Example 9-36.

 {:timex, "~> 2.1.5"}

 This line calls the using macro in the Timex module and adds aliases for several types, so for example
 Timex .DateTime can be simply accessed as DateTime . See Example 9-37 .

 Example 9-37.

 1 iex(1)> timezone1 = Timex .timezone("Africa/Nairobi", Timex.DateTime .today)
 2 #<Timezone(Africa/Nairobi - EAT (+03:00))>
 3 iex(2)> Timex.DateTime .now
 4 #<DateTime(2016-05-26T08:54:23Z)>
 5 iex(3)> tu = Timezone .convert Timex.DateTime .now, timezone1
 6 #<DateTime(2016-05-26T11:54:52 Africa/Nairobi (+03:00:00))>
 7 iex(4)> tu |> Timex .format!("{ISO:Extended}")
 8 "2016-05-26T11:54:52.785+03:00"
 9 iex(5)> tu |> Timex .format!("{ANSIC}")
 10 "Thu May 26 11:54:52 2016"

 On line 1, you create a time zone for Nairobi. The library uses the names in this list 20 , so you define
 Africa/Nairobi as time zone name.

 19 https://github.com/bitwalker/timex
 20 https://en.wikipedia.org/wiki/List_of_tz_database_time_zones

https://github.com/bitwalker/timex
https://en.wikipedia.org/wiki/List_of_tz_database_time_zones
https://github.com/bitwalker/timex
https://en.wikipedia.org/wiki/List_of_tz_database_time_zones

CHAPTER 9 ■ OVERVIEW

109

 Line 3 is the command to get the current date and time formatted as universal date time. You convert
this into the Nairobi time zone. Lines 7 and 9 format the date and time in different formats. There are more
than 20 formats to choose from and if this is not covering your case it is possible to define custom formats.

 A nice addition is that Timex also works together with Ecto to provide timestamps where needed.
 Overall, Timex is a very good library to cover any requirement for working with dates and time in Elixir

applications.
 In version 1.3, Elixir has added the module Calendar . Its goal is to provide interoperability and it provides

basic functionality. It is similar to the community library Calendar 21 , which can use the built-in calendar types
in Elixir 1.3, but offers more features. An example similar to the one above looks like Example 9-38 .

 Example 9-38.

 1 iex(1)> nbo = Calendar.DateTime .now! "Africa/Nairobi"
 2 % DateTime {calendar: Calendar.ISO , day: 23, hour: 12, microsecond: {149378, 6},
 3 minute: 31, month: 7, second: 54, std_offset: 0, time_zone: "Africa/Nairobi",
 4 utc_offset: 10800, year: 2016, zone_abbr: "EAT"}
 5 iex(2)> nbo |> Calendar.DateTime .shift_zone!("Europe/Vienna")
 6 |> Calendar.DateTime.Format .iso8601
 7 "2016-07-23T11:31:54.149378+02:00"

 UUID
 Many times it is possible to create unique id values before data is written to a data store. The library uuid 22
can take care of that.

 After adding the dependency (either via git or local via _checkouts), you can use the library like
Example 9-39 .

 Example 9-39.

 1 new_uuid(Pid) ->
 2 U = uuid :new(Pid),
 3 {UU,_} = uuid :get_v1(U),
 4 uuid :uuid_to_string(UU,standard).

 The function takes a PID because the library uuid uses it for randomization. When you call the function
you get a uuid, as shown in Example 9-40 .

 Example 9-40.

 1 1> darapi _helpers :new_uuid(self()).
 2 "f538acae-232a-11e6-93a9-90e6000000ab"

 The uuid can be formatted in different ways; I show the default (standard) here.
 This short overview just gives you a glimpse into what is available. Some other libraries are used in

your implementation and are explained further in Chapter 10 and Chapter 11 , especially web libraries. For
other libraries, you may find information in Appendix B.

 21 https://github.com/lau/calendar
 22 https://github.com/okeuday/uuid

https://github.com/lau/calendar
https://github.com/okeuday/uuid
http://dx.doi.org/10.1007/978-1-4842-2394-9_10
http://dx.doi.org/10.1007/978-1-4842-2394-9_11
https://github.com/lau/calendar
https://github.com/okeuday/uuid

111© Wolfgang Loder 2016
W. Loder, Erlang and Elixir for Imperative Programmers, DOI 10.1007/978-1-4842-2394-9_10

 CHAPTER 10

 Public Interface

 This chapter describes the server part of the project. The API of the solution is a simple web service mostly
adhering to the REST principles of a uniform interface with stateless interactions and cacheable results.
See Figure 10-1 .

 Figure 10-1. API overview

CHAPTER 10 ■ PUBLIC INTERFACE

112

 The blue objects in Figure 10-1 represent the API server with a listener and a request handler . The client
(web, mobile and similar) sends a request to the server to either get or retrieve an asset.

 In this case, the server listens to GET and POST http requests :
 GET:

• /assets - Get a list of assets

• /assets/<id> - Get asset with id <id>

• /assets/<id>/text - Get text only for asset <id>

• /assets/<id>/images - Get image list only for asset <id>

 POST:

• /assets - Add a new asset

• /assets/<id>/text - Add a text for asset <id>

• /assets/<id>/images - Add an image for asset <id>

• /assets/<id>/text/<textid> - Change text <textid> for asset <id>

• /assets/<id>/images/<imageid> - Change image <imageid> for asset <id>

 All urls can have additional request commands in the query string, as in Example 10-1 .

 Example 10-1.

 /assets?page=3&pagesize=20

 This indicates that page 3 of the list with a page size of 20 should be sent by the server. Other commands
support filtering and sorting .

 The server sends the usual http status code responses:

• 200 OK - Get requests were processed successfully

• 201 Created - Post requests were processed successfully

• 202 Accepted - Requests were accepted but not yet processed

• 204 No Content - Requests don’t have content

• 400 Bad Request - Commands in the query string are not supported

• 403 Forbidden - Request not allowed

• 404 Not Found - Request could not be processed because of a non-existing id

• 409 Conflict - Request content does not validate

• 500 Internal Server Error - Any error or exception on the server side not handled

 The handler will create a system internal message and send it to the actors which process the messages
as needed. The system is asynchronous, so client-server connections need to be handled with asynchronous
mechanisms like web sockets or polling.

 There are Web and REST frameworks available to make the implementation of such a service easier, but
first let’s make it hard, and try to implement simple servers with the means Erlang /OTP and Elixir provide.
This will help you to understand the implementation with frameworks later.

CHAPTER 10 ■ PUBLIC INTERFACE

113

 Low Level
 The standard library provides a way to program a HTTP server . The Erlang code in Example 10-2 does not
do much, but it is working as a web server on the arbitrarily chosen port 4242.

 Example 10-2.

 1 %%%---
 2 %%% @author Wolfgang Loder
 3 %%% @doc
 4 %%% inets:start().
 5 %%% browse http://localhost:4242/www/simplewebserver/service
 6 %%% @end
 7 %%%---
 8 - module (simplewebserver).
 9
 10 - export ([start/0,service/3]).
 11
 12 start() ->
 13 inets :start(httpd, [
 14 {modules, [
 15 mod_alias,
 16 mod_auth,
 17 mod_esi,
 18 mod_actions,
 19 mod_cgi,
 20 mod_dir,
 21 mod_get,
 22 mod_head,
 23 mod_log,
 24 mod_disk_log
 25]},
 26 {port,4242},
 27 {server_name,"simplewebserver"},
 28 {server_root,"."},
 29 {document_root,"."},
 30 {erl_script_alias, {"/www", [simplewebserver,io]}},
 31 {error_log, "error.log"},
 32 {security_log, "security.log"},
 33 {transfer_log, "transfer.log"},
 34 {mime_types,[
 35 {"html","text/html"},
 36 {"css","text/css"},
 37 {"js","application/x-javascript"}
 38]}
 39])
 40
 41 service(SessionID, _Env, _Input) ->
 42 mod_esi :deliver(SessionID, [
 43 "Content-Type: text/html \r\n\r\n ",
 44 "<html><body>Hello, World!</body></html>"
 45])

CHAPTER 10 ■ PUBLIC INTERFACE

114

 The module inets is implemented according to OTP patterns; you will see examples in the next chapter.
It is a little bit difficult to configure, as you can see in the argument of inets:start , and you would not write a
web application with it. But as a quick and dirty way to set up a working HTTP server, it is sufficient.

 If you don’t start the simplewebserver module with Rebar3 but with erl , then you need to start inets
first. The URL the server runs on is in the header of the example file above. It is a combination of the erl_
script_alias value, the module, and the function name service . It can be configured in different ways, but
whenever I changed something, the server threw an error, so be warned if you want to play with the code.

 Example 10-3 is a simple UDP server .

 Example 10-3.

 1 - module (rawudp).
 2
 3 - export ([start/1, client/2]).
 4
 5 start(Port) ->
 6 {ok, Socket} = gen_udp :open(Port, [binary, {active, false}]),
 7 io :format("server opened socket: ~p~n ",[Socket]),
 8 loop(Socket).
 9
 10 loop(Socket) ->
 11 inet :setopts(Socket, [{active, once}]),
 12 receive
 13 {udp, Socket, Host, Port, Bin} ->
 14 io :format("server received: ~p~n ",[Bin]),
 15 gen_udp :send(Socket, Host, Port, <<"From Server:", Bin/binary>>),
 16 case Bin of
 17 <<"stop">> -> gen_udp :close(Socket);
 18 _ -> loop(Socket)
 19 end
 20 end .
 21
 22 client(N, Port) ->
 23 {ok, Socket} = gen_udp :open(0, [binary]),
 24 io :format("client opened socket= ~p~n ",[Socket]),
 25 ok = gen_udp :send(Socket, "localhost", Port, N),
 26 Value = receive
 27 {udp, Socket, _, _, Bin} ->
 28 io :format("client received: ~p~n ",[Bin])
 29 after 1000 ->
 30 0
 31 end ,
 32 gen_udp :close(Socket),
 33 Value.

 The UDP server is called gen_udp and is part of the kernel together with a TCP and a SCTP server.
 The example is simple. Start the server with start(4242) and it will open the port 4242 for

communication. The client is started with, for example, client("Hi server, 4242) and it will send the first
argument to port 4242. Whatever the server receives is echoed back to the client; see Examples 10-4 and 10-5 .

CHAPTER 10 ■ PUBLIC INTERFACE

115

 Example 10-4.

 1 2> rawudp :start(4242).
 2 server opened socket :#Port<0.52569>
 3 server received :<<1>>
 4 server received :<<"hi server">>
 5 server received :<<"stop">>
 6 ok
 7 3>

 Example 10-5.

 1 2> rawudp :client("hi server",4242).
 2 client opened socket=#Port<0.25273>
 3 client received :<<"From Server:hi server">>
 4 ok
 5 3> rawudp :client("stop",4242).
 6 client opened socket=#Port<0.25274>
 7 client received :<<"From Server:stop">>
 8 ok
 9 4>

 When the client sends “stop” as the first argument, the server stops and releases the port. You can use
 gen_udp in Elixir as well; see Example 10-6 .

 Example 10-6.

 1 defmodule RawUdpServer do
 2 use GenServer
 3 require Logger
 4
 5 def start_link(opts \\ []) do
 6 GenServer .start_link(__MODULE__, :ok, opts)
 7 end
 8
 9 def init (:ok) do
 10 {:ok, _socket} = :gen_udp.open(4242)
 11 end
 12
 13 def handle_info({:udp, _socket, _ip, _port, data}, state) do
 14 Logger .info "Received a message: " <> inspect(data)
 15 {:noreply, state}
 16 end
 17 end

 Ignore for now that RawUdpServer is implemented as gen_server . Line 10 is opening a gen_udp server
on port 4242. All messages sent are handled in handle_info and then logged to the console. Since you are
using an Erlang module from Elixir , you need to use the atom :gen_udp to call the functions.

 You can use the client from Example 10-3 and for the call, as shown in Example 10-7 .

CHAPTER 10 ■ PUBLIC INTERFACE

116

 Example 10-7.

 rawudp :client("hi server",4242).

 You will get the response shown in Example 10-8 after having started the server with RawUdpServer.
start_link .

 Example 10-8.

 1 iex(1)> RawUdpServer .start_link
 2 {:ok, #PID<0.59.0>}
 3 iex(2)>
 4 09:16:02.088 [info] Received a message: 'hi server'

 There are other low-level servers like gen_tcp available. They may be useful for some scenarios, but
most of the time you will use implementations on a higher level like Cowboy or Phoenix , which you will
examine later in this chapter.

 OTP Servers
 OTP is the heart of the Erlang system. It provides concepts and generic implementations for often used
designs; without it, the Erlang system would not be so easy to use. Most of the time you use OTP concepts
except for the most simple applications, but it is possible to develop without those concepts.

 Erlang and Elixir have their own standard libraries and on top of these build more generic concepts.
There are six default generic implementations, and all of them can be used in Erlang and Elixir :

• Generic Server

• Generic FSM

• Generic State Machine

• Generic Event Handler

• Supervisor

• Application

 The first five are called behaviours and are part of the Erlang stdlib ; application is defined in kernel .
 Elixir has a new generic server that is not available in Erlang/OTP: GenStage.

 Generic Server 1
 Generic Server is the commonly used behaviour for any kind of server. In the OO world, this would be the
base class for other servers, but in Erlang , only the concept is inherited, not the implementation.

 You encountered a gen_server implementation in the last chapter when I discussed the example
 RawUdpServer . It shows some of the functions that can be implemented to create a generic server (see
Example 10-6). In Elixir , not all callbacks need to be used; if they are not implemented, then default
implementations are called. In Erlang , the minimum implementation looks like Example 10-9 .

 1 https://github.com/erlang/otp/blob/maint/lib/stdlib/src/gen_server .erl

https://github.com/erlang/otp/blob/maint/lib/stdlib/src/gen_server.erl
https://github.com/erlang/otp/blob/maint/lib/stdlib/src/gen_server

CHAPTER 10 ■ PUBLIC INTERFACE

117

 Example 10-9.

 1 - module (erlangexamples_server).
 2 - behaviour (gen_server).
 3
 4 - record (state, { }).
 5 - export ([start_link/0,
 6 init/1,
 7 handle_call/3,
 8 handle_cast/2,
 9 handle_info/2,
 10 terminate/2,
 11 code_change/3]).
 12 - define (SERVER, ?MODULE).
 13
 14 start_link() ->
 15 gen_server :start_link({local, erlangexamples_server}, erlangexamples_server,\
 16 [], []).
 17
 18 init([]) ->
 19 {ok, #state{}}.
 20
 21 handle_call({F, A}, _From, State) ->
 22 Reply = process_request({F,A}),
 23 {reply, Reply, State};
 24 handle_call(_Request, _From, State) ->
 25 Reply = done,
 26 {reply, Reply, State}.
 27
 28 handle_cast(_Msg, State) ->
 29 {noreply, State}.
 30
 31 handle_info(_Info, State) ->
 32 {noreply, [1]}.
 33
 34 terminate(_Reason, _State) ->
 35 ok.
 36
 37 code_change(_OldVsn, State, _Extra) ->
 38 {ok, State}.

 Generic Server callbacks:

• handle_call - This function handles synchronous calls that expect a return value.

• handle_cast - This function handles asynchronous calls without return value.

• handle_info - All messages except call and cast are handled by this function.

• init - This function is called after the gen_server is started to allow initialization
work done.

• terminate - This function is called when the gen_server is about to terminate to
allow any cleanup necessary.

CHAPTER 10 ■ PUBLIC INTERFACE

118

• code_change - This function has to do with hot code swapping and allows to update
the internal state of the gen_server during an update.

• format_status - It is not needed to implement this callback. If so, it allows you to
format, for example, the internal state in a compact form to display in case errors or
other status displays.

 There are two ways to start a gen_server :

• start_link - This is one function to start the gen_server . It can be called directly or
more likely by a supervisor.

• start - Another function to start the gen_server , provides the same arguments than
 start_link .

 The difference between the functions is that start_link creates a bi-directional link between the caller
and the gen_server , and is used by a supervisor. In this case, the gen_server will be stopped automatically by
the supervisor or restarted if the gen_server fails. Otherwise, it needs to be stopped by the caller by calling
the gen_server function stop .

 Both start functions allow you to name a gen_server process.

 Example 10-10.

 GenServer .start_link(MODULE , :ok, name: name)

 Example 10-10 defines the option key name with a locally registered name.

 Example 10-11.

 GenServer .start_link(MODULE , :ok, name: {:global, name})

 Example 10-11 defines a globally registered name.
 The advantage of using the gen_server is that the code is structured and a developer can see clearly

what an implementer has intended to do. Server and client code can be in one module or separated if this
makes it easier to understand the implementation.

 Generic FSM 2 and Generic State Machine 3
 The generic state machine behaviour gen_fsm was replaced by another behaviour called gen_statem . The
difference is that the latter has less restrictions regarding data types and events. It is recommended that new
applications use gen_statem , so I am not describing gen_fsm in this chapter.

 Requirements Please note that you need at least Erlang /OTP 19.0 and Elixir 1.3 to use gen_statem .

 The DAR workflow is implemented as a state machine. In Elixir , you can use GenStateMachine 4 as a
wrapper for gen_statem , which adds Elixir features like default arguments. Of course, it is possible to use the
 Erlang callbacks directly, as in Example 10-12 .

 2 https://github.com/erlang/otp/blob/maint/lib/stdlib/src/gen_fsm.erl
 3 https://github.com/erlang/otp/blob/maint-19/lib/stdlib/src/gen_statem.erl
 4 https://github.com/antipax/gen_state_machine

https://github.com/erlang/otp/blob/maint/lib/stdlib/src/gen_fsm.erl
https://github.com/erlang/otp/blob/maint-19/lib/stdlib/src/gen_statem.erl
https://github.com/antipax/gen_state_machine
https://github.com/erlang/otp/blob/maint/lib/stdlib/src/gen_fsm.erl
https://github.com/erlang/otp/blob/maint-19/lib/stdlib/src/gen_statem.erl
https://github.com/antipax/gen_state_machine

CHAPTER 10 ■ PUBLIC INTERFACE

119

 Example 10-12.

 : gen_statem .start_link(name, module, args, options)

 All Erlang gen_statem functions are available via :gen_statem .
 The new state machine behaviour has two callback modes: state_functions is similar to the old gen_fsm ,

and handle_event_function is the less restrictive mode regarding data types. The second mode is the default
mode in GenStateMachine , but the callback mode can be set in code if necessary.

 As with all OTP generic servers, you must implement certain callbacks to make the behaviour working.
This implementation uses Elixir , so only functions you need are coded; see Example 10-13 .

 Example 10-13.

 defmodule DARWf do
 use GenStateMachine

 # Client
 def start_link(m) do
 GenStateMachine .start_link(DARWf , { DARState .idle, m}, name: DARWf)
 end

 # ... truncated

 # Server (callbacks)
 def handle_event({:call, from}, :requestreceived, state, msg) do
 case DARWorkflowOperations .validate_request msg do
 {:ok, res} ->
 {:next_state, DARState .requestvalidated,
 %{msg | :state => DARState .requestvalidated, :actiongroups => res},
 {:reply, from, %{msg | :state => DARState .requestvalidated, :actiong\
 roups => res}}}
 {_, err} ->
 {:next_state, DARState .errorstate,
 %{msg | :state => DARState .errorstate, :comment => err},
 {:reply, from, %{msg | :state => DARState .errorstate, :comment => er\
 r}}}

 end
 end

 # ... truncated

 def handle_event(event_type, event_content, state, data) do
 # Call the default implementation from GenStateMachine
 super (event_type, event_content, state, data)
 end
 end

CHAPTER 10 ■ PUBLIC INTERFACE

120

 The example only shows the implementation of most important messages; the full code will be
discussed in the next chapter.

 Using the callback mode handle_event_function there needs to be the handle_event callback to be
implemented. Other callbacks as described in the section about gen_server are

• init

• terminate

• code_ change

 Those callbacks are implemented by GenStateMachine as well as a generic handle_event callback that
can be used as a catch-all function. The server is called with start_link like gen_server . The initial state can be
set and optionally a local or global name registered, as in Example 10-14 .

 Example 10-14.

 GenStateMachine .start_link(DARWf , { DARState .idle, nil}, name: DARWf)

 Generic Event Handler 5
 This generic server is likely the least used server in projects, although it is used in OTP for handling error
logs and alarms. It may be one of the most underrated generic servers as well.

 An event handler implementation has three parts:

• Event Manager - This is a process that manages all event handlers.

• Event Handler - This is a callback module to handle events.

• Events - Any Erlang term can be an event.

 Callback modules can be registered with and unregistered from the event manager dynamically. The
event handler itself implements the gen_event behaviour and has to implement the same callbacks as a
 gen_server . Again, in Elixir all callbacks have default implementations and do not need to be implemented if
not needed.

 Let’s look at an example. First, the Erlang version in Example 10-15 .

 Example 10-15.

 1 - module (eventhandler).
 2 - behaviour (gen_event).
 3 - export ([
 4 init/1, terminate/2, handle_info/2,
 5 handle_call/2, code_change/3, handle_event/2
 6]).
 7 - record (state, {course = "undefined"}).
 8
 9 init([]) ->
 10 {ok, #state{} }.
 11
 12 handle_info(_Info, State) ->
 13 {ok, State}.
 14

 5 https://github.com/erlang/otp/blob/maint/lib/stdlib/src/gen_event .erl

https://github.com/erlang/otp/blob/maint/lib/stdlib/src/gen_event.erl
https://github.com/erlang/otp/blob/maint/lib/stdlib/src/gen_event.erl

CHAPTER 10 ■ PUBLIC INTERFACE

121

 15 handle_call(_Request, State) ->
 16 {ok, not_implemented, State}.
 17
 18 handle_event(Event, S) ->
 19 io :format("Old State: ~p~n ", [S]),
 20 io :format("Event: ~s~n ", [Event]),
 21 {ok, S#state{course=Event}}.
 22
 23 code_change(_OldVsn, State, _Extra) ->
 24 {ok, State}.
 25
 26 terminate(_Arg, S) ->
 27 io :format("State: ~p~n ", [S]),
 28 io :format("Terminate ~n "),
 29 ok.

 When you run the example, you get the output in Example 10-16 .

 Example 10-16.

 1 1> {ok, Pid} = gen_event:start().
 2 {ok,<0.130.0>}
 3 2> gen_event:add_handler(Pid, eventhandler, []).
 4 ok
 5 3> gen_event:notify(Pid, "first").
 6 Old State: {state,"undefined"}
 7 Event: first
 8 4> gen_event:notify(Pid, "main").
 9 Old State: {state,"first"}
 10 Event: main
 11 5> gen_event:notify(Pid, "dessert").
 12 Old State: {state,"main"}
 13 Event: dessert
 14 6> gen_event:delete_handler(Pid, eventhandler, ok).
 15 State: {state,"dessert"}
 16 Terminate
 17 7> gen_event:notify(Pid, []).
 18 ok
 19 8> gen_event:stop(Pid).
 20 ok
 21 9> gen_event:notify(Pid, []).
 22 ok
 23 10> gen_event:sync_notify(Pid, []).
 24 ** exception exit: noproc
 25 in function gen:do_call/4 (gen.erl, line 177)
 26 in call from gen_event:rpc/2 (gen_event.erl, line 197)

 The same features implemented in Elixir show less code due to default implementations and the output
of the Elixir version is the same, only the syntax differs. See Example 10-17 .

CHAPTER 10 ■ PUBLIC INTERFACE

122

 Example 10-17.

 1 iex(1)> {:ok, pid} = GenEvent.start_link([])
 2 {:ok, #PID<0.187.0>}
 3 iex(2)> GenEvent.add_handler(pid, GenEventExample, [])
 4 :ok
 5 iex(3)> GenEvent.notify(pid, "first")
 6 Event: first
 7 :ok
 8 Old State: []
 9 iex(4)> GenEvent.notify(pid, "main")
 10 Event: main
 11 :ok
 12 Old State: "first"
 13 iex(5)> GenEvent.notify(pid, "dessert")
 14 Event: dessert
 15 :ok
 16 Old State: "main"
 17 iex(6)> GenEvent.remove_handler(pid,GenEventExample,:ok)
 18 :ok
 19 iex(7)> GenEvent.notify(pid, "")
 20 :ok
 21 iex(8)> GenEvent.stop pid
 22 :ok
 23 iex(9)> GenEvent.notify(pid, "")
 24 :ok
 25 iex(10)> GenEvent.sync_notify(pid, "")
 26 ** (exit) no process
 27 (stdlib) gen.erl:177: :gen.do_call/4
 28 (elixir) lib/gen_event.ex:635: GenEvent.rpc/2

 In lines 1 and 3, you create the event manager and add your event handler to the manager process.
Then you call the notify function on the manager, which in turn will call the handle_event function of the
handler. If you had added more than one handler, all of them would have been called. Your handlers update
the internal state and just print the sent event term to the console.

 With a call to delete_handler (Erlang) or remove_handler (Elixir) you deregister the event handler
from the manager. Interesting is that subsequent calls to the manager’s notify functions don’t return any
notification that there is actually no handler attached. Even after you stop the manager (for example, in
line 21 in the Elixir example) you do not get an error when calling notify . The reason is that the function is
asynchronous and just returns after being called. The ok is more an acknowledgment that the function was
called. Only the synchronous sync_notify function returns an error as expected.

 There is one problem with gen_event: all handlers are running in the process of the event manager. This
means that concurrency features are not available and gen_server is more useful for ad hoc event managing
than for long-running processes. Elixir ’s GenStage (see the description later in this chapter) could be used to
implement these long-running event processes.

CHAPTER 10 ■ PUBLIC INTERFACE

123

 Supervisor 6
 Two of the most important concepts in Erlang /OTP are fault tolerance and supervisors.

 When you create applications you want to put them into a supervisor tree to make sure that application
nodes will be restarted in case of failures. A simple supervisor is shown in Example 10-18 .

 Example 10-18.

 1 defmodule DARDataStore do
 2 use Supervisor
 3
 4 def start_link(name) do
 5 Supervisor .start_link(__MODULE__, [], name: {:global, name})
 6 end
 7
 8 def init(_opts) do
 9 children = [
 10 worker(DARMetaData , [DARMetaData]),
 11 worker(DARGfs , [DARGfs])
 12]
 13 supervise children, strategy: :one_for_one
 14 end
 15 end

 A supervisor is a behaviour and this example implements all of the functions a supervisor needs. The
function start_link starts the supervisor server and gives it a global name. The name value is supplied by
the caller in the argument. See Example 10-19 .

 Example 10-19.

 1 Supervisor .start_link(__MODULE__, [], name: {:global, name})

 The function init defines the children the supervisor should monitor; see example 10-20 .

 Example 10-20.

 1 children = [
 2 worker(DARMetaData , [DARMetaData]),
 3 worker(DARGfs , [DARGfs])
 4]
 5 supervise children, strategy: :one_for_one

 In line 5, you define the supervisor strategy. There are several of them. The most important ones are

• one_for_one - The child that fails will be restarted.

• one_for_all - All children defined will be restarted.

 It depends on the implemented feature which supervisor strategy should be used. In your example the
children are independent from each other, so one failing does not affect the others.

 6 https://github.com/erlang/otp/blob/maint/lib/stdlib/src/supervisor.erl

https://github.com/erlang/otp/blob/maint/lib/stdlib/src/supervisor.erl
https://github.com/erlang/otp/blob/maint/lib/stdlib/src/supervisor.erl

CHAPTER 10 ■ PUBLIC INTERFACE

124

 Application 7
 The behaviour Application is defining the basic structure for running code in Erlang and Elixir , almost
comparable to an executable. Rebar3 and Mix will both create skeletons of applications. Example 10-21
shows the code from erlangexamples ; later you will have a look at elixirexamples .

 Example 10-21.

 1 - module (erlangexamples_app).
 2 - behaviour (application).
 3
 4 - export ([start/2,
 5 stop/1
 6]).
 7
 8 start(_StartType, _StartArgs) ->
 9 erlangexamples_sup :start_link().
 10
 11 stop(_State) ->
 12 ok.

 Rebar3 creates a supervisor by default and calls it in the function start . This is a minimal
implementation, the Application module exports many more functions, for example which_applications ,
which can be used in a shell in Erlang . See Example 10-22 .

 Example 10-22.

 application :which_applications().

 See Example 10-23 for Elixir code to show all running applications.

 Example 10-23.

 :application.which_ applications

 To show all loaded applications, use the function loaded_applications .
 Other functions can manipulate the environment, load applications and even permissions. One

interesting callback is config_change , which allows you to change values of existing parameters, add new
parameters with default values, or delete parameters during code changes. There are certainly enough
options to make an application totally unusable if you’re not careful.

 Mix creates applications without implicitly stating the behaviour , but application settings like name can
be changed in the mix.exs file. Regardless of the method of creation and language, during compilation an
 .app file will be created. It is application specification and is used by the VM during startup or creation of
startup scripts. See Example 10-24 .

 Example 10-24.

 1 {application,elixirexamples,
 2 [{registered,[]},
 3 {description,"elixirexamples"},

 7 https://github.com/erlang/otp/blob/maint/lib/kernel/src/application.erl

https://github.com/erlang/otp/blob/maint/lib/kernel/src/application.erl
https://github.com/erlang/otp/blob/maint/lib/kernel/src/application.erl

CHAPTER 10 ■ PUBLIC INTERFACE

125

 4 {vsn,"1.0.0"},
 5 {modules,[' Elixir .Assignment','Elixir.BeefStewB',
 6 ' Elixir .BeefStewM','Elixir.CalendarExamples',
 7 ' Elixir .ClosuresExample','Elixir.Conditionals',
 8 ' Elixir .ContinuationPassing','Elixir.Currying',
 9 ' Elixir .Documentrecord','Elixir.HigherOrderFunctions',
 10 ' Elixir .Json','Elixir.KeywordLists',
 11 ' Elixir .ListExample','Elixir.Macros','Elixir.Maps',
 12 ' Elixir .Printer','Elixir.Protocols',
 13 ' Elixir .Protocols.Stew','Elixir.Protocols.Stew.Any',
 14 ' Elixir .Protocols.Stew.Stewtype','Elixir.RawUdp',
 15 ' Elixir .RawUdpServer','Elixir.RawUdpSupervisor',
 16 ' Elixir .RecipeMixins','Elixir.Records',
 17 ' Elixir .Specifications','Elixir.StewProtocol',
 18 ' Elixir .Stewtype','Elixir.TimexExamples',
 19 ' Elixir .VegStewB','Elixir.VegStewM']},
 20 {applications,[kernel,stdlib,elixir,logger,timex]}]}.

 This is the specification for the elixirexamples application and the important keys are the following:

• modules defines all the modules in the application. In your example they are all Elixir
modules and therefore have the prefix “Elixir.”.

• applications lists all applications that have to be loaded before the application
specified. This list correlates to the definition in mix.exs and adds important ones
like Elixir by default. See Example 10-25 .

 Example 10-25.

 1 def application do
 2 [
 3 applications: [:logger, :timex]
 4]
 5 end

 If you use a supervised application in Elixir , you have to implement the start callback as in Erlang ; see
Example 10-26 .

 Example 10-26.

 1 defmodule DarApi do
 2 use Application
 3
 4 def start(_type, _args) do
 5 import Supervisor.Spec
 6 children = [
 7 supervisor(DarApi .Repo, []),
 8]
 9 opts = [strategy: :one_for_one, name: DarApi .Supervisor]
 10 Supervisor .start_link(children, opts)
 11 end
 12 end

CHAPTER 10 ■ PUBLIC INTERFACE

126

 Other callbacks don’t need to be implemented; you can use the default implementations.
 Application is the basis for projects in Erlang and Elixir . For example, Kernel and Stdlib are applications:

the first one with processes, the second one without. Whatever you create, most of the time you will have an
application behaviour implemented in your project.

 GenStage 8
 In 2016, Elixir released a pre-version of GenStage , a generic behaviour in the spirit of OTP, but without direct
relation to an Erlang implementation. Basically, it is an abstraction of producing and consuming data. Data
could come from a file, a web service, a database, or simply from a direct call.

 GenStage provides concurrency and supervisors to go beyond what is possible in the gen_event
behaviour that is related to GenStage. In addition, a Flow module is implemented on top of GenStage to ease
the work with collections.

 The following examples use GenStage version 0.5 (August 2016) and all modules are in the namespace
 Experimental . Be aware that the following code examples may stop working with a different version.

 A GenStage server is in fact a GenServer and provides default implementations of all the default
callbacks, but has two more callbacks defined:

• handle_demand - A producer has to implement this callback to reply to demands
from consumers.

• handle_events - A consumer has to implement this callback to handle received
events from the producer.

 An event is a valid Elixir term, so can be basically any data that fits the use case.
 Example 10-27 is taken directly from the documentation and only slightly changed. It behaves like

a GenEvent server, but additional features can be implemented. The Manager is a producer and has a
 dispatch_events function that handles a queue of events until demanded, that means until a consumer
subscribes to the producer and demands an event to be delivered.

 Example 10-27.

 1 alias Experimental.GenStage
 2
 3 defmodule EventManager do
 4 use GenStage
 5
 6 def start_link() do
 7 GenStage.start_link(__MODULE__ , :ok, name: __MODULE__)
 8 end
 9
 10 def async_notify(event, timeout \\ 5000) do
 11 GenStage.call(__MODULE__, {:notify, event}, timeout)
 12 end
 13
 14 def sync_notify(event, timeout \\ 5000) do
 15 GenStage .call(__MODULE__, {:notify, event}, timeout)
 16 end
 17

 8 https://github.com/elixir-lang/gen_stage

https://github.com/elixir-lang/gen_stage
https://github.com/elixir-lang/gen_stage

CHAPTER 10 ■ PUBLIC INTERFACE

127

 18 def init(:ok) do
 19 {:producer, {:queue.new, 0}, dispatcher: GenStage.BroadcastDispatcher }
 20 end
 21
 22 def handle_call({:notify, event}, from, {queue, demand}) do
 23 dispatch_events(:queue. in ({from, event}, queue), demand, [])
 24 end
 25
 26 def handle_demand(incoming_demand, {queue, demand}) do
 27 dispatch_events(queue, incoming_demand + demand, [])
 28 end
 29
 30 defp dispatch_events(queue, demand, events) do
 31 with d when d > 0 <- demand,
 32 {item, queue} = :queue.out(queue),
 33 {:value, {from, event}} <- item do
 34 GenStage .reply(from, :ok)
 35 dispatch_events(queue, demand - 1, [event | events])
 36 else
 37 _ -> {:noreply, Enum .reverse(events), {queue, demand}}
 38 end
 39 end
 40 end

 The handler is a consumer and subscribes in the function init to the manager. See Example 10-28 .

 Example 10-28.

 1 alias Experimental.GenStage
 2
 3 defmodule EventHandler do
 4 use GenStage
 5
 6 def start_link() do
 7 GenStage .start_link(__MODULE__, :ok)
 8 end
 9
 10 def init(:ok) do
 11 {:consumer, :ok, subscribe_to: [EventManager]}
 12 end
 13
 14 def handle_events(event, _from, state) do
 15 IO .inspect event
 16 {:noreply, [], event}
 17 end
 18 end

 When you run both manager and handler we get the output in Example 10-29 .

CHAPTER 10 ■ PUBLIC INTERFACE

128

 Example 10-29.

 1 iex(1)> alias Experimental.GenStage
 2 Experimental.GenStage
 3 iex(2)> {:ok, manager} = EventManager.start_link
 4 {:ok, #PID<0.214.0>}
 5 iex(3)> {:ok, handler} = EventHandler.start_link
 6 {:ok, #PID<0.210.0>}
 7 iex(5)> GenStage.sync_notify manager,"first course"
 8 :ok
 9 ["first course"]

 On line 7 you call a GenStage function to send an event to the manager to trigger the processing of the
event and broadcasting it to the subscribers.

 Apart from consumers and producers, there is also a role that is both producer and consumer. For the
next example, let’s assume you have an Italian restaurant with a kitchen, people working in service, and
patrons waiting for their pizza, pasta, or salad. The kitchen is the producer, the service is a consumer (from
the kitchen), and a producer (serving the patron). See Example 10-30 .

 Example 10-30.

 1 alias Experimental.GenStage
 2
 3 defmodule Kitchen do
 4 use GenStage
 5
 6 def init({maxpizza,maxpasta,maxsalad}) do
 7 {:producer, {maxpizza,maxpasta,maxsalad}}
 8 end
 9
 10 def handle_demand(demand, {maxpizza,maxpasta,maxsalad}) do
 11 {event,state} = case demand do
 12 :pizza -> {:servepizza,{maxpizza-1,maxpasta,maxsalad}}
 13 :pasta -> {:servepasta,{maxpizza,maxpasta-1,maxsalad}}
 14 :salad -> {:servesalad,{maxpizza,maxpasta,maxsalad-1}}
 15 _ -> {:nothingtoserve, {maxpizza,maxpasta,maxsalad}}
 16 end
 17 {:noreply, [event], state}
 18 end
 19 end
 20
 21 defmodule Service do
 22 use GenStage
 23
 24 def init(state \\ :idle) do
 25 {:producer_consumer, state}
 26 end
 27
 28 def handle_events(event, _from, state) do
 29 event = case event do
 30 :servepizza -> :pizzaserved
 31 :servepasta -> :pastaserved

CHAPTER 10 ■ PUBLIC INTERFACE

129

 32 :servesalad -> :saladserved
 33 _ -> :nothingserved
 34 end
 35 {:noreply, [event], state}
 36 end
 37 end

 The patron is a consumer only and, after being initialized with an order, is just sitting and waiting. See
Example 10-31 .

 Example 10-31.

 1 alias Experimental.GenStage
 2
 3 defmodule Patron do
 4 use GenStage
 5
 6 def init(order) do
 7 {:consumer, order}
 8 end
 9
 10 def handle_events(event, _from, order) do
 11 IO .inspect(event)
 12 IO .inspect(order)
 13 Process .sleep(1000)
 14 {:noreply, [], order}
 15 end
 16 end

 Running this code produces the output in Example 10-32 .

 Example 10-32.

 1 iex(1)> alias Experimental.GenStage
 2 Experimental.GenStage
 3 iex(2)> {:ok, kitchen} = GenStage.start_link(Kitchen, {10,10,10})
 4 {:ok, #PID<0.220.0>}
 5 iex(3)> {:ok, service1} = GenStage.start_link(Service, :idle)
 6 {:ok, #PID<0.222.0>}
 7 iex(4)> {:ok, patron1} = GenStage.start_link(Patron, 1000)
 8 {:ok, #PID<0.224.0>}
 9 iex(5)> GenStage.sync_subscribe(service1, to: kitchen)
 10 {:ok, #Reference<0.0.4.1299>}
 11 iex(6)> GenStage.sync_subscribe(patron1, to: service1)
 12 {:ok, #Reference<0.0.4.1305>}
 13 [:nothingtoserve]

 You subscribe at runtime to kitchen and service with synchronous links. The names service1 and
 patron1 indicate that you can have more than one. The kitchen will always be only one, but you can have
more services and (hopefully for the restaurant) more patrons.

 GenStage is still in the early “stages” of development, so features described here may and probably will
change. You will also see which use cases you can use GenStage for in future.

CHAPTER 10 ■ PUBLIC INTERFACE

130

 Erlang and Cowboy
 When Erlang was designed it needed to cater to low level network communication. Several generic servers
(some of which you have seen in examples above) let us implement those low level communications
requirements. In the last 10-15 years, the HTTP protocol, which sits on a higher layer in the OSI model 9 , has
been important for networked implementations.

 Erlang has seen and is still seeing the development of web server implementations like Elli 10 or
 Chatterbox 11 , but the most prominent is certainly Cowboy 12 .

 The first version of DarApi was implemented with Erlang and Cowboy. The first step, as always, is to
define the dependency in rebar.config . See Example 10-33 .

 Example 10-33.

 1 {erl_opts, [debug_info]}.
 2 {deps, [
 3 {cowboy, {git, "git://github.com/ninenines/cowboy.git", {tag, "1.0.4"}}},
 4 {lager, {git, "git://github.com/basho/lager.git", {tag, "2.2.2"}}},
 5 uuid,
 6 jsone,
 7 daractors
 8]}
 9
 10 {relx, [{release, { darapi, "0.1.0" },
 11 [
 12 lager,
 13 cowboy,
 14 jsone,
 15 uuid,
 16 darapi,
 17 sasl,
 18 daractors]},
 19 {sys_config, "./config/sys.config"},
 20 {vm_args, "./config/vm.args"},
 21 {dev_mode, true},
 22 {include_erts, false},
 23 {extended_start_script, true}]
 24 }.
 25
 26 {profiles, [{prod, [{relx, [{dev_mode, false},
 27 {include_erts, true}]}]
 28 }]
 29 }.

 You define version 1.0.4 as dependency. There is work done on a new version 2, but that is a preview
and I had some trouble making it work. Some function signatures changed and also almost all examples are
for version 1.

 9 https://en.wikipedia.org/wiki/OSI_model
 10 https://github.com/knutin/elli
 11 https://github.com/joedevivo/chatterbox
 12 https://github.com/ninenines/cowboy

https://en.wikipedia.org/wiki/OSI_model
https://github.com/knutin/elli
https://github.com/joedevivo/chatterbox
https://github.com/ninenines/cowboy
https://en.wikipedia.org/wiki/OSI_model
https://github.com/knutin/elli
https://github.com/joedevivo/chatterbox
https://github.com/ninenines/cowboy

CHAPTER 10 ■ PUBLIC INTERFACE

131

 On lines 12ff, you define which modules need to be loaded. The web server implementation DarApi is
using Lager for logging Cowboy and other modules, so you need to load them before you can access them.

 The API server is implemented as an application that calls Cowboy and has a supervisor. Example 10-34
shows the module darapi_app .

 Example 10-34.

 1 - module (darapi_app).
 2 - behaviour (application).
 3 - export ([start/2
 4 ,stop/1]).
 5 - define (
 6 ROUTES,
 7 [
 8 {"/api/assets", darapi_handler_assets, []},
 9 {"/api/assets/:id/text", darapi_handler_assets, []},
 10 {"/api/assets/:id/images", darapi_handler_assets, []},
 11 {"/api/assets/:id/images/:imgid", darapi_handler_assets, []},
 12 {"/api/assets/:id", darapi_handler_assets, []},
 13 {"/test", darapi_handler_testpage, []},
 14 {'_', darapi_handler_home, []}
 15]
 16).
 17
 18 start(_Type, _Args) ->
 19 Dispatch = cowboy_router :compile([{'_', ?ROUTES}]),
 20 {ok, _} = cowboy :start_http(
 21 http,
 22 100,
 23 [{port, 8402}],
 24 [{env, [{dispatch, Dispatch}]}]
 25),
 26 darapi_sup :start_link().
 27
 28 stop(_State) ->
 29 ok.

 Lines 5-16 define a macro for routing. The routes are a list of tuples that define the route and a handler
for the route. This example has several routes for the api, one for a test page and a catch-all route.

 A route is a tuple with three elements; see Example 10-35 .

 Example 10-35.

 {"/api/assets/:id/text", darapi_handler_assets, []}

• The first element is a string with the route URL. The segment “:id” means that a
binding to a variable will occur at runtime and the value can be retrieved.

• The second element is the name of the handler for this route expressed as an atom.

• The third element is an option list. You will look at this later.

CHAPTER 10 ■ PUBLIC INTERFACE

132

 Before you can start the server, you must prepare the routes; see Example 10-36 .

 Example 10-36.

 Dispatch = cowboy_router :compile([{'_', ?ROUTES}])

 The compilation is a creation of a list with routes in an internal format; see Example 10-37 .

 Example 10-37.

 1 % {"/test", darapi_handler_testpage, []}
 2 {[<<"test">>],[],darapi_handler_testpage,[{test,true}]}

 Then you can start the server; see Example 10-38 .

 Example 10-38.

 1 {ok, _} = cowboy :start_http(
 2 http,
 3 100,
 4 [{port, 8402}],
 5 [{env, [{dispatch, Dispatch}]}]
 6)

 Line 3 defines the maximum requests on a connection. The previously compiled routes are injected into
the server environment on line 5. The port on line 4 could, of course, come from an environment variable or
any other configuration. Once this statement returns successfully, you can call the URL from a browser on
port 8402.

 The catch-all route goes to the handler darapi_handler_home ; see Example 10-39 .

 Example 10-39.

 1 - module (darapi_handler_home).
 2
 3 - export ([init/3]).
 4 - export ([handle/2]).
 5 - export ([terminate/3]).
 6
 7 init(_Type, Req, []) ->
 8 {ok, Req, undefined}.
 9
 10 handle(Req, State) ->
 11 {ok, Body} = homepage_dtl :render([]),
 12 Headers = [{<<"content-type">>, <<"text/html">>}],
 13 {ok, Reply} = cowboy_req :reply(200, Headers, Body, Req),
 14 {ok, Reply, State}.
 15
 16 terminate(_Reason, _Req, _State) ->
 17 ok.

 The init function is called at initialization time and is not doing anything in this example. The handle
function is more interesting. In general, it defines the page header and body, sets the HTTP return code, and
calls the Cowboy function reply .

CHAPTER 10 ■ PUBLIC INTERFACE

133

 Also interesting is line 11, which uses a template system called Erlydtl 13 to get the markdown for the
body; see Example 10-40 .

 Example 10-40.

 {ok, Body} = homepage_dtl :render([])

 The templates live in the folder templates as files with a suffix . dtl . The markup for the home page is
simple and is just pure HTML; see Example 10-41 .

 Example 10-41.

 1 <html>
 2 <body>
 3 DAR API
 4 </body>
 5 </html>

 The templates used by Erlydtl use the Django template syntax 14 and can bind variables at runtime.
 The template for the test page uses this feature; see Example 10-42 .

 Example 10-42.

 1 <html>
 2 <body>
 3 Test: {{ test }}
 4 </body>
 5 </html>

 Here {{ test }} means that the template expects a variable test when it is rendered. In this case, the
rendering line is shown in Example 10-43 .

 Example 10-43.

 {ok, B} = testpage_dtl :render([{test, io_lib :format(" ~p ", [Test])}])

 The render function takes a list of tuples which are key-value pairs of the variable name atom and the
value. The term Test in the example is an atom to indicate which test to run.

 Templates need to be compiled before use. This is where the module name testpage_dtl comes from.
The compilation can either happen in a makefile or in code. The line in Example 10-44 compiles the test
page template.

 Example 10-44.

 erlydtl :compile_file("templates/testpage.dtl", testpage_dtl).

 It takes the file templates/testpage.dtl and is told to create testpage_dtl .

 13 https://github.com/erlydtl/erlydtl
 14 https://docs.djangoproject.com/en/1.9/topics/templates/#the-django-template-language

https://github.com/erlydtl/erlydtl
https://docs.djangoproject.com/en/1.9/topics/templates/#the-django-template-language
https://github.com/erlydtl/erlydtl
https://docs.djangoproject.com/en/1.9/topics/templates/#the-django-template-language

CHAPTER 10 ■ PUBLIC INTERFACE

134

 Templates combine static markup with variables that are processed at runtime. These variables can be
passed from the handler and can originate from user input or other sources like data stores.

 In Cowboy, you can get dynamic input, as in other web servers, from the request, but you can also send
hard-coded options to the handler from the route definitions.

 Route Options
 In Example 10-45 , the line in the route definition sets an option for the test page handler. The key is the atom
 testmode and the value another atom with the name get_apiassets .

 Example 10-45.

 {"/test", darapi_handler_testpage, [{testmode,get_apiassets}]}

 The function init gets the option passed in as the third argument. See Example 10-46 .

 Example 10-46.

 1 - record (state, {
 2 testmode :: get_apiassets | post_apiassets
 3 }).
 4
 5 init(_Type, Req, Opts) ->
 6 {_, Testmode} = lists :keyfind(testmode, 1, Opts),
 7 {ok, Req, #state{testmode=Testmode}}.
 8
 9 handle(Req, State=#state{testmode=Testmode}) ->
 10 lager :info("test_response state: ~p~n ", [lager :pr(Testmode, ?MODULE)]),
 11 Body = test_response(Testmode),
 12 {ok, Reply, State}.

 You define the record state with one field named testmode . In init you first get the value for testmode
from the Opts list and then create a state record. State is passed to handler calls and can then be used. In
this example, the testmode variable is passed to the function test_response , which creates markdown
according to the value of testmode .

 This key-value pair is given at compile time. You can change it with one of the following methods to
define variables at runtime.

 Query Strings
 Query strings can be used to pass variables to the server. For example, you can call the server with the URL
shown in Example 10-47 .

 Example 10-47.

 /test?testmode=post_apiassets

 The query string key testmode will overwrite the default value. With cowboy_req:qs_val you can retrieve
the value of one key. If the key does not exist, it returns undefined .

 You must change the handle code to be able to process different values; see Example 10-48 .

CHAPTER 10 ■ PUBLIC INTERFACE

135

 Example 10-48.

 1 {Tqs, _} = cowboy_req :qs_val(<<"testmode">>, Req),
 2 Body =
 3 case Tqs of
 4 undefined -> test_response(Testmode);
 5 <<>> -> test_response(Testmode);
 6 _ -> test_response(list_to_atom(binary_to_list(Tqs)))
 7 end .

 Depending on the query string value, the function test_response is called with different arguments.
You can retrieve all query strings in a list, as in Example 10-49 .

 Example 10-49.

 1 % /test?testmode=get_apiassets&paged=true&page=2
 2 {AllValues, _} = cowboy_req :qs_vals(Req) .
 3 % [
 4 % {<<"testmode">>,<<"get_apiassets">>},
 5 % {<<"paged">>,<<"true">>},
 6 % {<<"page">>,<<"2">>}
 7 %]

 The query string on line 1 will return the list on lines 3-7 when you call the function cowboy_req:qs_-
vals . All elements, key or values, in the list are binary lists, so it will be necessary to convert them into
something more meaningful. See Example 10-50 .

 Example 10-50.

 1 1> jsone :encode([{<<"testmode">>,<<"get_apiassets">>},
 2 {<<"paged">>,<<"true">>},
 3 {<<"page">>,<<"2">>}]).
 4
 5 <<"{ \" testmode \" : \" get_apiassets \" , \" paged \" : \" true \" , \" page \" : \" 2 \" }">>

 you convert the returned list of query string key-value tuples into JSON and then you can send it to other
functions that can handle JSON directly.

 Body Data
 Data sent in the body of a request with content type application/x-www-form-urlencoded can be read with
 body_qs , as shown in Example 10-51 .

 Example 10-51.

 1 {ok, B, Req2} = cowboy_req :body_qs(Req),
 2 {_, K} = lists :keyfind(k, 1, B).

 Line 2 tries to find the key k in the tuples of the returned body values B . The value will be in K.

CHAPTER 10 ■ PUBLIC INTERFACE

136

 HTTP Verbs
 You have defined routes and handlers, and you know how to retrieve data from query strings or bodies. What
is left is to define the code for different HTTP verbs sent.

 One way is to check the requested method in the handler; see Example 10-52 .

 Example 10-52.

 1 {Method, Req2} = cowboy_req :method(Req),
 2 case Method of
 3 <<"POST">> ->
 4 % ...
 5 <<"GET">> ->
 6 % ...
 7 _ ->
 8 % ...
 9 end .

 The better solution for REST services is to use Cowboy functions to define methods; see Example 10-53 .

 Example 10-53.

 1 allowed_methods(Req, State) ->
 2 {[<<"GET">>, <<"POST">>], Req, State}.
 3
 4 content_types_accepted(Req, State) ->
 5 {[{{<<"application">>, <<"json">>, []}, post_handler}], Req, State}.
 6
 7 content_types_provided(Req, State) ->
 8 {[
 9 {<<"application/json">>, get_handler}
 10], Req, State}.

 This code defines that the handler accepts JSON requests and also delivers JSON. To do this it defines a
 post_handler and a get_handler (both not in the listing).

 Cowboy has not only an impact on Erlang , but also on Elixir as the basis of the web framework Phoenix.
Fortunately, the latter makes it a bit easier to implement routes and handlers.

 Elixir and Phoenix
 Phoenix 15 is a web framework for Elixir that is not only widely used in the community but also brings
interested developers to the community. As with Elixir itself, it is evolving over time, bringing new features
into the framework. Phoenix is a modern web framework that makes building APIs and web applications
easy. It is built with Elixir and has been commonly used to support handling very large numbers 16 of
simultaneous users.

 Once Phoenix is installed on your machine, you have a new task in Mix to create a Phoenix application
skeleton. The help page for the task displays the options; see Example 10-54 .

 15 www.phoenixframework.org/
 16 www.phoenixframework.org/blog/the-road-to-2-million-websocket-connections

http://www.phoenixframework.org/
http://www.phoenixframework.org/blog/the-road-to-2-million-websocket-connections
http://www.phoenixframework.org/blog/the-road-to-2-million-websocket-connections
http://www.phoenixframework.org/
http://www.phoenixframework.org/blog/the-road-to-2-million-websocket-connections

CHAPTER 10 ■ PUBLIC INTERFACE

137

 Example 10-54.

 1 mix help phoenix.new
 2
 3 Options
 4
 5 --app - the name of the OTP application
 6 --module - the name of the base module in the generated skeleton
 7 --database - specify the database adapter for ecto. Values can be
 8 postgres, mysql, mssql, sqlite or mongodb. Defaults to postgres
 9 --no-brunch - do not generate brunch files for static asset building.
 10 When choosing this option, you will need to manually handle JavaScript
 11 dependencies if building HTML apps
 12 --no-ecto - do not generate ecto files for the model layer
 13 --no-html - do not generate HTML views.
 14 --binary-id - use binary_id as primary key type in ecto models

 Installing the Phoenix archive Before Mix knows Phoenix tasks, you need to install Phoenix into the

Mix Archives: mix archive.install https://github.com/phoenixframework/archives/raw/master/
phoenix_ - new.ez

 The files will be installed in a folder /.mix/archives or similar, depending on your operating system.

 You can create a new application with the following command, passing a name and the option binary_id
to create Guids for your database tables; see Example 10-55 .

 Example 10-55.

 1 mix phoenix.new phoenixskeleton --binary-id

 The output shows what was created (it’s a lengthy list, not printed here) and what to do now; see
Example 10-56 .

 Example 10-56.

 1 We are all set! Run your Phoenix application:
 2
 3 $ cd phoenixskeleton
 4 $ mix phoenix.server
 5
 6 You can also run your app inside IEx (Interactive Elixir) as:
 7
 8 $ iex -S mix phoenix.server
 9
 10 Before moving on, configure your database in config/dev.exs and run:
 11
 12 $ mix ecto.create

https://github.com/phoenixframework/archives/raw/master/phoenix_
https://github.com/phoenixframework/archives/raw/master/phoenix_

CHAPTER 10 ■ PUBLIC INTERFACE

138

 Ecto and database adapters At the time of writing, not all adapters were up-to-date to work with the

latest Ecto version.

 The task phoenix.new will create the skeleton for any database adapter, but you should have a look at the Ecto
GitHub page to check which adapters are working with the latest version.

 The process of creating a new Phoenix application is straightforward and well explained, so let’s switch
to DARApi that uses Phoenix to see examples of an application that goes beyond the skeleton.

 Phoenix is based on a supervised application that uses Cowboy as the web server and plug 17 for
composing modules. It supports web sockets by default and generalizes them with channels and a publisher-
subscriber module Phoenix.PubSub , which can be used to talk to third-party services or Elixir GenServers.

 The code in Example 10-57 shows the DarApi application module.

 Example 10-57.

 1 defmodule DarApi do
 2 use Application
 3
 4 def start(_type, _args) do
 5 import Supervisor.Spec
 6 children = [
 7 supervisor(DarApi .Endpoint , []),
 8 worker(DARRouter ,[DARRouter])
 9]
 10 opts = [strategy: :one_for_one, name: DarApi .Supervisor]
 11 Supervisor.start_link(children, opts)
 12 end
 13
 14 def config_change(changed, _new, removed) do
 15 DarApi .Endpoint .config_change(changed, removed)
 16 :ok
 17 end
 18 end

 The start function defines children to be supervised and starts the supervisor. In Phoenix, it is a
supervisor tree, because the endpoint supervisor is defined as a child. Normally you may find a repo
supervisor child defined here, but you are not using the database directly from the web server. You add a
worker child to the definition, the DARRouter , that handles incoming messages and invokes the workflow.
The rest of the code starts the supervisor with default options.

 When your endpoint receives a request, it needs to know if the request is valid and if the URL is defined
as valid. For this purpose, it uses DarApi .Router defined in router.ex ; see Example 10-58 .

 17 https://github.com/elixir-lang/plug

https://github.com/elixir-lang/plug
https://github.com/elixir-lang/plug

CHAPTER 10 ■ PUBLIC INTERFACE

139

 Example 10-58.

 1 defmodule DarApi .Router do
 2 use DarApi .Web , :router
 3
 4 pipeline :browser do
 5 plug :accepts, ["html"]
 6 plug :fetch_session
 7 plug :fetch_flash
 8 plug :protect_from_forgery
 9 plug :put_secure_browser_headers
 10 end
 11
 12 pipeline :api do
 13 plug :accepts, ["json"]
 14 end
 15
 16 scope "/", DarApi do
 17 pipe_through :browser # Use the default browser stack
 18 get "/", PageController, :index
 19 end
 20
 21 scope "/api", DarApi do
 22 pipe_through :api
 23 resources "/assets", ApiController , except: [:new, :edit, :update, :delete]
 24 get "/assets/:id/text", ApiController , :get_text_for_id
 25 get "/assets/:id/images", ApiController , :get_images_for_id
 26 post "/assets/:id/text/:textid", ApiController , :update_text_for_id
 27 post "/assets/:id/image/:imageid", ApiController , :update_image_for_id
 28 post "/assets/:id/text", ApiController , :post_text_for_id
 29 post "/assets/:id/image", ApiController , :post_image_for_id
 30 get "/assets/:id/document", ApiController , :get_document_for_id
 31 end
 32 end

 This code shows the usage of plug . It gets the current connection from Cowboy and calls the functions
or modules specified with the connection and any parameters. In the example, the pipeline browser defines
to call accepts with “html” as parameter, then calls fetch_session with no parameters and so on.

 Before the endpoint handles a request, it will look for a valid route. The example defines two scopes,
similar to base URLs, for the root, / , and for /api . The scope tells which pipeline should be used and which
HTTP verbs are bound to which URL and controller. See Figure 10-2 .

CHAPTER 10 ■ PUBLIC INTERFACE

140

 In this example, the root URL (scope /) has just one page, index , to display, using the browser pipeline.
The scope /api uses the api pipeline and defines several routes as described at the beginning of this chapter.
The routes are self-explanatory except the first one with the special verb resource . To see what routes will be
created at runtime, you can use one of the helper tasks in Mix; see Example 10-59 .

 Example 10-59.

 1 $ mix phoenix.routes
 2 page_path GET / DarApi .PageController :index
 3 api_path GET /api/assets DarApi .ApiController :index
 4 api_path GET /api/assets/:id DarApi .ApiController :show
 5 api_path POST /api/assets DarApi .ApiController :create
 6 api_path GET /api/assets/:id/text DarApi .ApiController
 7 :get_text_for_id
 8 api_path GET /api/assets/:id/images DarApi .ApiController
 9 :get_images_for_id
 10 api_path POST /api/assets/:id/text/:textid DarApi .ApiController
 11 :update_text_for_id
 12 api_path POST /api/assets/:id/image/:imageid DarApi .ApiController
 13 :update_image_for_id
 14 api_path POST /api/assets/:id/text DarApi .ApiController
 15 :post_text_for_id
 16 api_path POST /api/assets/:id/image DarApi .ApiController
 17 :post_image_for_id
 18 api_path GET /api/assets/:id/document DarApi .ApiController
 19 :get_document_for_id

 Lines 3 to 5 show REST routes for the route you defined with resource . Two GET routes for showing all
assets and one asset filtered by id , one POST route for creating an asset. The line except: [:new,:edit,
:update, :delete] in the route definitions prevents the creation of PUT , PATCH , DELETE routes and routes
with edit and new in the URL.

 Figure 10-2. Phoenix router

CHAPTER 10 ■ PUBLIC INTERFACE

141

 Once a route is validated, the corresponding controller will be called. The controller for the index page
is, according to your router definition, PageController . See Example 10-60 .

 Example 10-60.

 1 defmodule DarApi .PageController do
 2 use DarApi .Web , :controller
 3
 4 def index(conn, _params) do
 5 render conn, "index.html"
 6 end
 7 end

 This is the minimal code to display a page with just static text, shown in Figure 10-3 .

 Figure 10-3. Index page

 When the controller’s function index (the :index atom in the route definition) is called, it just calls
render with the name of the page, index.html , as parameter in addition to the connection parameter. The
rendering function looks into the templates folder, which was created by the Phoenix.new task, and looks
for the template index.html.eex in the folder page , which is the folder name for the pagecontroller without
“controller”. See Example 10-61 .

 Example 10-61.

 1 < div class="jumbotron">
 2 < p >
 3 See documentation for available resource paths.
 4 </ p >
 5 </ div >

 This is all the markup for the index page; the rest of the page is taken from an app.html.eex file in the
folder templates/layout . The important markup of that file is shown in Example 10-62 .

CHAPTER 10 ■ PUBLIC INTERFACE

142

 Example 10-62.

 1 < main role="main">
 2 <%= render @view_module, @view_template, assigns %>
 3 </ main >

 It calls the internal render function with parameters for the view and module and displays the page as
shown in Figure 10-3 .

 Phoenix generators Like other web frameworks, Phoenix provides several generators for creating

models or HTML resources with controllers and views. It can also create models for JSON resources. All
generators are mix tasks that start with phoenix.gen and information about them is displayed with mix help in
a project with Phoenix as dependency.

 It makes sense to study the generated code and also to try adding features without generators to understand
the underlying architecture.

 Users of other web framework will have had similar experiences with convention over configuration.
The template engine used in Phoenix is EEx 18 . It is part of Elixir and provides a way to embed Elixir code in a
string.

 The controller for the API routes has more code; I only show the function index , in Example 10-63 .

 Example 10-63.

 1 defmodule DarApi .ApiController do
 2 use DarApi .Web , :controller
 3
 4 def index(conn, params) do
 5 {:response, {:request, msg}} = DARRouter .process_message(DARRouter , {:get_as\
 6 sets_all, params})
 7 render conn, response: msg
 8 end
 9 end

 Line 5 calls DARRouter , the one you added to the supervisor tree, to process the message. You know
from the route definition that this function handles a request to get all assets. The parameter param may
have more information like filters, filled with the query string key-value pairs.

 DARRouter is a GenServer that creates internal messages for the workflow and sends the requests back
to the API controller; see Example 10-64 .

 Example 10-64.

 1 defmodule DARRouter do
 2 use GenServer
 3

 18 http://elixir-lang.org/docs/stable/eex/EEx.html

http://elixir-lang.org/docs/stable/eex/EEx.html
http://elixir-lang.org/docs/stable/eex/EEx.html

CHAPTER 10 ■ PUBLIC INTERFACE

143

 4 def start_link(name) do
 5 GenServer .start_link(__MODULE__, :ok, name: name)
 6 end
 7
 8 def process_message(server, msg) do
 9 case msg do
 10 {:get_assets_all, params} ->
 11 GenServer .call(server, {:msg, msg})
 12 _ -> {:failure, msg}
 13 end
 14
 15 end
 16
 17 def init(:ok) do
 18 {:ok, ""}
 19 end
 20
 21 def handle_call({:msg, msg}, _from, state) do
 22 {action, params} = msg
 23 case action do
 24 :get_assets_all ->
 25 xmsg = %{
 26 :name => "",
 27 :actions => [DARAction .retrievedoclist_all],
 28 :actionfilter => params,
 29 :comment => "",
 30 :metaid => "",
 31 :gfsid => ""
 32 }
 33 ret = DARWorkflow .process_message (DARModelInternalMessage .from_external\
 34 _message xmsg)
 35 {:reply, {:response, {:request, ret}}, state}
 36 end
 37 end
 38 end

 I only show the code relevant to getting all assets. The exported function process_message , called by the
controller, calls its callback handle_call where the actual work is done (line 21ff.). On line 33, the workflow is
called and its response eventually sent back to the caller.

 This example shows that it is easy to create, for example, a REST API with Phoenix. There may be lots
of code involved from Phoenix’s side, but a few lines of custom code can achieve the goals. Of course, a
proper user interface and interaction with client frameworks has more work involved. You just scratched the
surface.

145© Wolfgang Loder 2016
W. Loder, Erlang and Elixir for Imperative Programmers, DOI 10.1007/978-1-4842-2394-9_11

 CHAPTER 11

 Asset Processing

 In the previous chapter, you created a server that allows the retrieval of binary data. Now you need to
implement processing of this binary data. First of all, the data needs to be saved to data stores, in your case
PostgreSQL and MongoDB. Then a simple workflow needs to be implemented to achieve transformations
like watermarking images and creating PDF documents.

 The choice of databases used in this chapter is based on experience with these data stores and specific
project requirements. Erlang and Elixir and their libraries let you work with all major databases, relational or
not. Also, I am not discussing technologies like ODBC, which is supported in Erlang 1 .

 Database Access
 The project DAR uses two data stores to save its data. One, MongoDB GridFS , is a blob store used for storing
images and PDF documents. The other is the metadata store and it uses PostgreSQL with a more relational
data approach.

 MongoDB GridFS
 GridFS is one of MongoDB’s least discussed features, but it may be its best feature. Many data stores have
blob management, either NoSQL or relational databases, but GridFS is easy to use, chunked by default, and
can be sharded.

 Elixir does not have, at least according to my knowledge, a library that supports GridFS . The Erlang
library Erlmongo 2 supports it, so we are using it.

 Another, not fully satisfactory, option is to use the console application mongofiles directly, similar to
what you will do with ImageMagick below.

 The application for accessing documents in GridFS is written in Erlang; see Example 11-1 .

 1 http://erlang.org/doc/man/odbc.html
 2 https://github.com/SergejJurecko/erlmongo

http://erlang.org/doc/man/odbc.html
https://github.com/SergejJurecko/erlmongo
http://erlang.org/doc/man/odbc.html
https://github.com/SergejJurecko/erlmongo

CHAPTER 11 ■ ASSET PROCESSING

146

 Example 11-1.

 1 - module (dar_gfslib_process_files).
 2
 3 - ifdef (TEST).
 4 -export([
 5 connect/0,
 6 read_binary/2,
 7 write_binary/3
 8])
 9 - endif .
 10
 11 - define (DARDB, "dar").
 12 - export ([
 13 read_from_gfs/2,
 14 save_to_gfs/3
 15]).
 16 -include_lib ("erlmongo/src/erlmongo.hrl").
 17
 18 read_from_gfs(Name,DB) ->
 19 DB = ?DARDB,
 20 {ok,B} = read_binary(Name,DB),
 21 {ok,B,Name}.
 22
 23 save_to_gfs(Binary,Meta,DB) ->
 24 DB = ?DARDB,
 25 {ok, Name} = validate_meta(Meta),
 26 {ok,N} = write_binary(Binary, Name,DB),
 27 {ok,N}.
 28
 29 validate_meta(M) ->
 30 ok = dar_model :validate_meta(M),
 31 #{name := Name} = M,
 32 {ok,Name}.
 33
 34 write_binary(B,N,DB) ->
 35 DB = ?DARDB,
 36 true = connect(),
 37 Mong = mongoapi :new(def,list_to_binary(DB)),
 38 Mong:gfsIndexes(),
 39 PID = Mong:gfsNew(N),
 40 Mong:gfsWrite(PID,B),
 41 Mong:gfsClose(PID),
 42 {ok,N}.
 43
 44 read_binary(Name,DB) ->
 45 DB = ?DARDB,
 46 true = connect(),
 47 Mong = mongoapi :new(def,list_to_binary(DB)),
 48 Mong:gfsIndexes(),
 49 PID = Mong:gfsOpen(#gfs_file{filename = Name}),
 50 B = Mong:gfsRead(PID,5000000),

CHAPTER 11 ■ ASSET PROCESSING

147

 51 Mong:gfsClose(PID),
 52 {ok,B}.
 53
 54
 55 connect() ->
 56 mongodb:singleServer(def),
 57 mongodb:connect(def),
 58 timer :sleep(200),
 59 mongodb :is_connected(def).

 The exported functions are on lines 18 to 27: read_from_gfs and save_to_gfs . They call private
functions to read and write from GridFS . These private functions use Erlmongo to get the job done. The
name of the MongoDB database is hard coded in a define (line 11) and functions check that no other
database is used. See Example 11-2 .

 Example 11-2.

 1 - define (DARDB, "dar").
 2 % ...
 3 DB = ?DARDB

 The host is defined in a record def in Erlmongo and defaults to localhost when you try to connect to the
data store. See Example 11-3 .

 Example 11-3.

 1 connect() ->
 2 mongodb :singleServer(def),
 3 mongodb :connect(def),
 4 timer :sleep(200),
 5 mongodb :is_connected(def).

 The private function connect connects to the server on localhost and checks if a connection can be
established. The statement timer:sleep(200) is a workaround to let the library set the is_connected flag.
Without sleeping, it would not be able to determine if a connection is available.

 Testing private functions is always difficult and most of the time not necessary. In this case, you need to test
the underlying private functions that do the actual work. It seems that these tests are testing only library calls into
 Erlmongo , but without tests the problem with checking for connections would not have been detected.

 EUnit sets a constant named TEST when tests run, so you check this value and export the private
functions during test runs; see Example 11-4 .

 Example 11-4.

 1 - ifdef (TEST).
 2 -export([
 3 connect/0,
 4 read_binary/2,
 5 write_binary/ 3
 6]).
 7 -define (FILETEST, "filetest").
 8 - endif .

 The test code looks like Example 11-5 .

CHAPTER 11 ■ ASSET PROCESSING

148

 Example 11-5.

 1 - module (dar_gfslib_process_files_tests).
 2
 3 - ifdef (TEST).
 4 - include_lib ("eunit/include/eunit.hrl").
 5
 6 - define (FILETEST, "Test.pdf").
 7 - define (FILETESTWRITE, "Test.pdf").
 8 - define (FILETESTCONTENT, <<"testbinary">>).
 9 - define (DARDB, "dar").
 10 - define (NOTDARDB, "notdar").
 11
 12 connect_to_server_test() ->
 13 R = dar_gfslib_process_files :connect(),
 14 ?assertEqual(true, R).
 15
 16 read_binary_test() ->
 17 R = dar_gfslib_process_files :read_binary(?FILETEST,?DARDB),
 18 ?assertEqual({ok,?FILETESTCONTENT}, R).
 19
 20 write_binary_test() ->
 21 R = dar_gfslib_process_files :write_binary(?FILETESTCONTENT,?FILETESTWRITE,?D\
 22 ARDB),
 23 ?assertEqual({ok,?FILETESTWRITE}, R).
 24
 25 read_from_gfs_test() ->
 26 R = dar_gfslib_process_files :read_from_gfs(?FILETEST,?DARDB).
 27 ?assertEqual({ok,?FILETESTCONTENT,?FILETEST}, R).
 28
 29 save_to_gfs_test() ->
 30 {ok, Bin} = file :read_file("/Users/Wolfgang/Projects/Mats.pdf"),
 31 M = #{name => ?FILETESTWRITE,origin=>"test",timestamp=>100, gfsid=>"66"},
 32 R = dar_gfslib_process_files :save_to_gfs(Bin,M,?DARDB),
 33 ?assertEqual({ok,?FILETESTWRITE}, R).
 34
 35 connect_to_server_noconnection_mocked_test() ->
 36 meck :new(mongodb,[passthrough]),
 37 meck :expect(mongodb, is_connected, fun(def) -> false end),
 38 R = dar_gfslib_process_files :connect(),
 39 ?assert(meck :validate(mongodb)),
 40 ?assertEqual(false, R),
 41 ok = meck :unload(mongodb).
 42
 43 save_to_gfs_no_connection_mocked_test() ->
 44 M = #{name => ?FILETESTWRITE,origin=>"test",timestamp=>100, gfsid=>"66"},
 45 meck :new(mongodb,[passthrough]),
 46 meck :expect(mongodb, is_connected, fun (def) -> false end),
 47 ?assertError({badmatch,false}, dar_gfslib_process_files :save_to_gfs(?FILETES\
 48 TCONTENT,M,?DARDB)),
 49 ok = meck :unload(mongodb).
 50

CHAPTER 11 ■ ASSET PROCESSING

149

 51 save_to_gfs_wrong_db_test() ->
 52 M = #{name => ?FILETESTWRITE,origin=>"test",timestamp=>100, gfsid=>"66"},
 53 ?assertError({badmatch,?DARDB}, dar_gfslib_process_files :save_to_gfs(?FILETE\
 54 STCONTENT,M,?NOTDARDB)).
 55
 56 read_from_gfs_wrong_db_test() ->
 57 ?assertError({badmatch,?DARDB}, dar_gfslib_process_files :read_from_gfs(?FILE\
 58 TEST,?NOTDARDB)).
 59
 60 read_from_gfs_no_connection_mocked_test() ->
 61 meck :new(mongodb,[passthrough]),
 62 meck :expect(mongodb, is_connected, fun(def) -> false end),
 63 ?assertError({badmatch,false}, dar_gfslib_process_files :read_from_gfs(?FILET\
 64 EST,?DARDB)),
 65 ok = meck :unload(mongodb).
 66
 67 - endif .

 The functions use defines for test constants and test all functions including connect . There are also
mocked tests to see if the functions are behaving as expected when no connection can be established or
other errors occur.

 You call the Erlang library from Elixir via a RPC call. DARGfs is a GenServer and exposes function
 process_message , which is called from the workflow. Its purpose is to get a file from GridFS via the Erlang
library; see Example 11-6 .

 Example 11-6.

 1 defmodule DARGfs do
 2 use GenServer
 3
 4 def process_message(node,module,function,params) do
 5 case :rpc.call(
 6 node,
 7 module,
 8 function,
 9 params) do
 10 {:ok, f, fname} -> f
 11 _ -> "node down"
 12 end
 13 end
 14
 15 def start_link(name) do
 16 GenServer .start_link(__ MODULE __ , :ok, name: name)
 17 end
 18
 19 def init(:ok) do
 20 {:ok, ""}
 21 end
 22
 23 def handle_call({:msg, msg}, _from, state) do
 24 {:reply, "", state}
 25 end
 26 end

CHAPTER 11 ■ ASSET PROCESSING

150

 The call to process_message with parameters expanded looks like Example 11-7 .

 Example 11-7.

 1 case :rpc.call(
 2 :"dargfslib@Wolfgangs-MacBook-Pro",
 3 :dar_gfslib_process_files,
 4 :read_from_gfs,
 5 ['filetestwrite','dar']) do
 6 {:ok, f, fname} -> f
 7 {:badrpc, reason} -> {:error, {:badrpc, reason}}
 8 _ -> {:error, {:call, "Call failed"}
 9 end

 You use rpc.call , which is synchronous and uses a separate process. This allows the RPC server to
handle more than one call. There are other functions for either blocking the RPC server (block_call) or
using promises (async_call).

 When a call is successful, the binary will be returned to the caller.

 PostgreSQL
 The access to the metadata database is done in the module DarMetaData . It uses Ecto for the low-level
work and needs to define a schema for Ecto to know about the data. All parameters like table name, column
names, and column types are deferred from one schema per model; see Example 11-8 .

 Example 11-8.

 1 defmodule MetaData do
 2 use Ecto .Schema
 3
 4 @primary_key {:id, :binary_id, autogenerate: true}
 5
 6 schema "metadata" do
 7 field :name, :string
 8 field :timestamp, :integer
 9 field :origin, :string
 10 field :haspdf, :boolean
 11 field :gfsid, :string
 12 end
 13
 14 def changeset(meta,params \\ :empty) do
 15 meta
 16 end
 17 end
 18
 19 defmodule MetaDataImage do
 20 use Ecto .Schema
 21
 22 @primary_key {:id, :binary_id, autogenerate: true}
 23

CHAPTER 11 ■ ASSET PROCESSING

151

 24 schema "metadataimage" do
 25 field :name, :string
 26 field :metaid, :string
 27 field :timestamp, :integer
 28 field :gfsid, :string
 29 end
 30
 31 def changeset(meta, params \\ :empty) do
 32 meta
 33 end
 34 end

 For Ecto to know which database type and which host to use, it needs to be configured in config.exs ,
as shown in Example 11-9 .

 Example 11-9.

 1 config :dar_metadata, DARMetaData.Repo ,
 2 adapter: Ecto .Adapters.Postgres ,
 3 database: "dar",
 4 hostname: "localhost"
 5
 6 config :dar_metadata, ecto_repos: [DARMetaData.Repo]

 The configuration does not have username and password entries. They can either be hard coded in
the configuration file or taken from an environment variable at runtime. As in other SQL databases, the
command create user can be used in Postgres to set passwords for user accounts.

 The implementation of the repository (defined on line 6 in the configuration) is simple; see Example 11-10 .

 Example 11-10.

 1 defmodule DARMetaData.Repo do
 2 use Ecto .Repo , otp_app: :dar_metadata
 3 end

 The statement use Ecto .Repo injects several functions that will be used to write or read data. When
everything is in place and with Ecto.create the database initialized, you can create the actual access
functions; see Example 11-11 .

 Example 11-11.

 1 defmodule DarMetaData.DataAccess do
 2 import Ecto .Query
 3
 4 def write_meta meta do
 5 metax = % MetaData {
 6 name: meta.name,
 7 origin: meta.origin,
 8 timestamp: meta.timestamp,
 9 gfsid: meta.gfsid,
 10 haspdf: meta.haspdf
 11 }

CHAPTER 11 ■ ASSET PROCESSING

152

 12 cs = MetaData .changeset metax
 13 case DARMetaData.Repo .insert!(cs) do
 14 meta ->
 15 {:ok, meta}
 16 end
 17 end
 18
 19 def get_meta id do
 20 query = from m in MetaData ,
 21 where: m.id == ^id,
 22 select: m
 23 DARMetaData.Repo .all(query)
 24 end
 25
 26 def get_meta_all do
 27 query = from m in MetaData ,
 28 select: m
 29 DARMetaData.Repo .all(query)
 30 end
 31
 32 def get_imagemeta id do
 33 query = from mi in MetaDataImage ,
 34 where: mi.metaid == ^id,
 35 select: mi
 36 DARMetaData.Repo .all(query)
 37 end
 38 end

 Writing data is a matter of creating a changeset with the data values and calling the Repo function
 insert . The get functions create queries and call the function all . Queries are an interesting construct
because they use certain Elixir DSL features to look like queries in SQL or for example Linq in .Net.

 DarMetaData is a GenServer that starts the Repo and handles messages by forwarding them to the
access module and sending the reply back to the caller; see Example 11-12 .

 Example 11-12.

 1 defmodule DARMetaData do
 2 use GenServer
 3
 4 def process_message(msg) do
 5 GenServer .call(server, {:msg, msg})
 6 end
 7
 8 def start_link(name) do
 9 DARMetaData.Repo .start_link
 10 GenServer .start_link(__MODULE__, :ok, name: name)
 11 end
 12
 13 def init(:ok) do
 14 {:ok, ""}
 15 end
 16

CHAPTER 11 ■ ASSET PROCESSING

153

 17 def handle_call({:msg, msg}, _from, state) do
 18 rep = DarMetaData.DataAccess .process_message(msg)
 19 {:reply, rep, state}
 20 end
 21 end

 Ecto has several features that make upgrades and downgrades possible, called migrations. You also
can populate a database via a seeds script that is run from mix with the command mix run seeds.exs . See
Example 11-13 .

 Example 11-13.

 1 def seed_metadata do
 2 t = Calendar.DateTime .now! ("Europe/Vienna")
 3 meta = % MetaData {
 4 name: "TestName2",
 5 origin: "Seeds",
 6 timestamp: t |> Calendar.DateTime.Format .js_ms,
 7 gfsid: "",
 8 haspdf: false
 9 }
 10 DARMetaData.Repo .insert!(meta)
 11 end
 12
 13 def seed_metadataimage do
 14 t = Calendar.DateTime .now! ("Europe/Vienna")
 15 metaimage = % MetaDataImage {
 16 metaid: "6a75e636-3e9d-41e7-9462-88980926a832",
 17 name: "TestName",
 18 timestamp: t |> Calendar.DateTime.Format .js_ms,
 19 gfsid: ""
 20 }
 21 DARMetaData.Repo .insert!(metaimage)
 22 end
 23
 24 seed_metadata
 25 seed_metadataimage

 Workflow
 The implementation of the workflow uses a state machine as the underlying architecture and gen_statem as
an implementation concept.

CHAPTER 11 ■ ASSET PROCESSING

154

 Workflow vs. finite state machine Sometimes discussions come up about the differences of

workflows and state machines. They are not the same, but some workflows can be expressed as state
machines.

 A workflow has states, but also needs orchestration. State machines normally react to external events, but it is
also possible to switch the states internally during state handling. An orchestration actor or supervisor can then
conduct the workflow.

 The DAR workflow has several defined states, can be in any of the following states, and must be in one
(Figure 11-1).

 Figure 11-1. Workflow states

 Figure 11-1 does not show error conditions for clarity. Any of the states with a green background can fail
and the workflow would be in an error state. Let’s assume that the messages passed around indicate errors.

 When you switch to a view of the workflow orchestration, you get a different picture, as shown in
Figure 11-2 .

CHAPTER 11 ■ ASSET PROCESSING

155

 The workflow is essentially sequential with possible error situations and optional skipping of steps. The
implementation has three parts:

• Model definition

• State machine

• Orchestration

 Model Definition
 Models used in the workflow are partly used for communicating with internal modules in the workflow.
Some will be used by the client and as JSON messages sent to the web server. These models are totally
independent from the database models that are defined in Ecto .Schema format.

 The state of the workflow is defined as module constants (actually macros) and functions that can be
used to avoid typos. Unfortunately, these functions can’t be used in all situations (for example, default values
in functions), because the macro expansion does not work in those cases. See Example 11-14 .

 Figure 11-2. Workflow orchestration

CHAPTER 11 ■ ASSET PROCESSING

156

 Example 11-14.

 1 defmodule DARState do
 2 @idle :idle
 3 @requestreceived :requestreceived
 4 @requestvalidated :requestvalidated
 5 @retrievingdata :retrievingdata
 6 @dataretrieved :dataretrieved
 7 @processingimage :processingimage
 8 @imageprocessed :imageprocessed
 9 @creatingdocument :creatingdocument
 10 @documentcreated :documentcreated
 11 @validateresponse :validateresponse
 12 @requestprocessed:requestprocessed
 13
 14 def idle do
 15 @idle
 16 end
 17
 18 # truncated
 19 end

 The DARModelInternalMessage is for internal messages during the processing of the workflow; as in
other models it is a struct . It holds information if, for example, a PDF of a requested document exists and also
holds the id of a document in GridFS (gfsid). For simplicity, most ids are strings to avoid costly binary GUID
transformations. See Example 11-15 .

 Example 11-15.

 1 defmodule DARModelInternalMessage do
 2 defstruct gfsid: "",
 3 name: "",
 4 comment: "",
 5 has_pdf: false,
 6 state: DARState .requestreceived,
 7 actions: [DARState .retrievingdata],
 8 images: %DARModelImageProcessing{}
 9 end

 Fields in lines 6 and 7 are initialized with the state functions discussed above. The field on line 8 refers
to another model, shown in Example 11-16 .

 Example 11-16.

 1 defmodule DARModelImageProcessing do
 2 defstruct name: "",
 3 comment: "",
 4 imagelist: [],
 5 options: []
 6 end

CHAPTER 11 ■ ASSET PROCESSING

157

 This is a simple struct to hold information about images and image processing options. The struct
 DARModelExternalMessage in Example 11-17 is defined for communication with a client.

 Example 11-17.

 1 defmodule DARModelExternalMessage do
 2 @derive [Poison.Encoder]
 3 defstruct gfsid: "",
 4 name: "",
 5 comment: "",
 6 actions: []
 7 use ExConstructor
 8
 9 def from_json m do
 10 Poison .decode! m
 11 end
 12
 13 def to_json m do
 14 Poison .encode! m
 15 end
 16 end

 It uses the library Poison to create internal messages from JSON and create JSON for the client from
internal messages.

 Orchestration
 A workflow needs to be orchestrated to get from state to state or handle error conditions. You have a
supervisor called DARWorkflow that processes messages coming from the client via the handler on the web
server and DARRouter. See Example 11-18 .

 Example 11-18.

 1 defmodule DARWorkflow do
 2 use Supervisor
 3
 4 def process_message(m) do
 5 case m.state do
 6 :requestreceived ->
 7 DARWf .start_link m
 8 DARWf .new_request
 9
 10 :requestvalidated ->
 11 DARWf .retrieve_data
 12
 13 :dataretrieved ->
 14 if Enum .member?(m.actiongroups, DARActionGroup .images) do
 15 DARWf .process_image
 16 else
 17 if Enum .member?(m.actiongroups, DARActionGroup .document) do
 18 DARWf .create_document

CHAPTER 11 ■ ASSET PROCESSING

158

 19 else
 20 DARWf .validate_response
 21 end
 22 end
 23
 24 :imageprocessed ->
 25 if Enum .member?(m.actiongroups, DARActionGroup .document) do
 26 DARWf .create_document
 27 else
 28 DARWf .validate_response
 29 end
 30
 31 :documentcreated ->
 32 DARWf .validate_response
 33
 34 :requestprocessed ->
 35 DARWf .terminate
 36 DARModelResponseMessage .get_json m
 37
 38 :errorstate ->
 39 DARWf .terminate
 40 DARModelInternalMessage .get_json m
 41 end
 42 end
 43
 44 def start_link do
 45 Supervisor .start_link(__MODULE__, [], name: {:global,__MODULE__})
 46 end
 47
 48 def init(_opts) do
 49 children = [
 50 worker(DARImageLib ,[DARImageLib]),
 51 worker(DARPdfLib ,[DARPdfLib])
 52]
 53 supervise children, strategy: :one_for_one
 54 end
 55 end

 The workflow supervisor keeps two workers for image processing and PDF creation in its tree. When a
message arrives, the action that is taken in process_message depends on the state. Whatever happens as a
next step is decided in this module, but the actual work is done in the state machine. In case of an error, the
state machine will be terminated and an error message returned to the caller. When a new message arrives, a
new state machine will be started and used in subsequent calls.

 The workflow supervisor can be in a supervisor tree of the web server or preferably running on a
different machine as named node.

 State Machine
 DARWf is implemented as GenStateMachine and is called from the workflow supervisor. Internally it uses
 GenStateMachine .call to invoke the callbacks of the state machine; see Example 11-19 .

CHAPTER 11 ■ ASSET PROCESSING

159

 Example 11-19.

 1 defmodule DARWf do
 2 use GenStateMachine
 3
 4 # Client
 5
 6 def start_link(m) do
 7 GenStateMachine .start_link(DARWf , { DARState .idle, m}, name: DARWf)
 8 end
 9
 10 def terminate do
 11 GenStateMachine .stop(DARWf , :normal)
 12 end
 13
 14 def new_request do
 15 r = GenStateMachine .call(DARWf , DARState .requestreceived)
 16 DARWorkflow .process_message r
 17 end
 18
 19 def retrieve_data do
 20 r = GenStateMachine .call(DARWf , DARState .retrievingdata)
 21 DARWorkflow .process_message r
 22 end
 23
 24 def process_image do
 25 r = GenStateMachine .call(DARWf , DARState .processingimage)
 26 DARWorkflow .process_message r
 27 end
 28
 29 def create_document do
 30 r = GenStateMachine .call(DARWf , DARState .creatingdocument)
 31 DARWorkflow .process_message r
 32 end
 33
 34 def validate_response do
 35 r = GenStateMachine .call(DARWf , DARState .validateresponse)
 36 DARWorkflow .process_message r
 37 end
 38
 39 # Server (callbacks)
 40
 41 def handle_event({:call, from}, :requestreceived, state, msg) do
 42 case DARWorkflowOperations .validate_request msg do
 43 {:ok, res} ->
 44 {:next_state, DARState .requestvalidated,
 45 %{msg | :state => DARState .requestvalidated, :actiongroups => res},
 46 {:reply, from, %{msg | :state => DARState .requestvalidated, :actiong\
 47 roups => res}}}
 48 {_, err} ->
 49 {:next_state, DARState .errorstate,
 50 %{msg | :state => DARState .errorstate, :comment => err},

CHAPTER 11 ■ ASSET PROCESSING

160

 51 {:reply, from, %{msg | :state => DARState .errorstate, :comment => er\
 52 r}}}
 53 end
 54 end
 55
 56 def handle_event({:call, from}, :retrievingdata, state, msg) do
 57 case DARWorkflowOperations .retrieve_data msg do
 58 {:ok, res} ->
 59 {:next_state, DARState .dataretrieved,
 60 %{msg | :state => DARState .dataretrieved, :metastruct => res},
 61 {:reply, from, %{msg | :state => DARState .dataretrieved, :metastruct\
 62 => res}}}
 63 {_, err} ->
 64 {:next_state, DARState .errorstate,
 65 %{msg | :state => DARState .errorstate, :comment => err},
 66 {:reply, from, %{msg | :state => DARState .errorstate, :comment => er\
 67 r}}}
 68 end
 69 end
 70
 71 def handle_event({:call, from}, :processingimage, state, msg) do
 72 case DARWorkflowOperations .process _image msg do
 73 {:ok, res} ->
 74 {:next_state, DARState .imageprocessed,
 75 %{msg | :state => DARState .imageprocessed, :images => res},
 76 {:reply, from, %{msg | :state => DARState .imageprocessed, :images =>\
 77 res}}}
 78 {_, err} ->
 79 {:next_state, DARState .errorstate,
 80 %{msg | :state => DARState .errorstate, :comment => err},
 81 {:reply, from, %{msg | :state => DARState .errorstate, :comment => er\
 82 r}}}
 83 end
 84 end
 85
 86 def handle_event({:call, from}, :creatingdocument, state, msg) do
 87 case DARWorkflowOperations .create_document msg do
 88 {:ok, res} ->
 89 {:next_state, DARState .documentcreated,
 90 %{msg | :state => DARState .documentcreated, :gfsid => res},
 91 {:reply, from, %{msg | :state => DARState .documentcreated, :gfsid =>\
 92 res}}}
 93 {_, err} ->
 94 {:next_state, DARState .errorstate,
 95 %{msg | :state => DARState .errorstate, :comment => err},
 96 {:reply, from, %{msg | :state => DARState .errorstate, :comment => er\
 97 r}}}
 98 end
 99 end
 100

CHAPTER 11 ■ ASSET PROCESSING

161

 101 def handle_event({:call, from}, :validateresponse, state, msg) do
 102 case DARWorkflowOperations .validate_response msg do
 103 {:ok, res} ->
 104 {:next_state, DARState .requestprocessed,
 105 %{msg | :state => DARState .requestprocessed},
 106 {:reply, from, %{msg | :state => DARState .requestprocessed}}}
 107 {_, err} ->
 108 {:next_state, DARState .errorstate,
 109 %{msg | :state => DARState .errorstate, :comment => err},
 110 {:reply, from, %{msg | :state => DARState .errorstate, :comment => er\
 111 r}}}
 112 end
 113 end
 114
 115 def handle_event(event_type, event_content, state, data) do
 116 # Call the default implementation from GenStateMachine
 117 super (event_type, event_content, state, data)
 118 end
 119 end

 Each state has its own handle_event callback where another module is called to do the work and where
error conditions are checked. The module called is DARWorkflowOperations ; see Example 11-20 .

 Example 11-20.

 1 defmodule DARWorkflowOperations do
 2 def validate_request msg do
 3 %{:name => pname} = msg
 4 %{:metaid => pgmetaid} = msg
 5 %{:actions => pactions} = msg
 6 p = {pname,pgmetaid,pactions}
 7 case p do
 8 {_,_,pactions} when pactions == [] -> {:error, "Actions list empty"}
 9 _ ->
 10 ag = []
 11 ag = if Enum .member?(msg.actions, DARAction .retrieveimage), do: List .\
 12 insert_at(ag, 0, DARActionGroup .images), else: ag
 13 ag = if Enum .member?(msg.actions, DARAction .retrievetext), do: List .i\
 14 insert_at(ag, 0, DARActionGroup .document), else: ag
 15 {:ok, ag}
 16 end
 17
 18 end
 19
 20 def retrieve_data msg do
 21 if Enum .member?(msg.actions, DARAction .retrievedoclist_all) do
 22 metalist = DarMetaData.DataAccess .get_meta_all
 23 {:ok, DARModelMetaData .from_schema_list(metalist)}
 24 else
 25 if Enum .member?(msg.actions, DARAction .retrievedoc) do
 26 meta = DarMetaData.DataAccess .get_meta msg.metaid

CHAPTER 11 ■ ASSET PROCESSING

162

 27 case m = List .first(meta) do
 28 nil ->
 29 {:error, "Retrieve Data error"}
 30 _ ->
 31 {:ok, DARModelMetaData .from_schema(m)}
 32 end
 33 end
 34 end
 35 end
 36
 37 def process_image msg do
 38 metaimage = DarMetaData.DataAccess .get_imagemeta msg.metaid
 39 l = (for n <- metaimage, into: [], do: n.id)
 40 res = DARImageLib.Process .process_message l
 41 {:ok, res}
 42 end
 43
 44 def create_document msg do
 45 pdfid = DARPdfLib .process_message msg
 46 {:ok, pdfid}
 47 end
 48
 49 def validate_response msg do
 50 {:ok, ""}
 51 end
 52 end

 This module is the core of the workflow actions. It knows how to access the data stores and other
workers. It also validates messages.

 The workflow implementation has several modules to separate concerns and to make testing easier.
Perhaps in the future a GenStage server implementation may have advantages compared to the state
machine.

 Image Processing
 Image processing in DAR proves that it is not always necessary to have libraries available; you can also reuse
existing console programs. ImageMagick 3 is an open source image processing program available on all
major operating systems. It has more than enough features for most use cases.

 This solution is not optimal, though. The application needs to be installed on a server or somewhere on
the network that is accessible from the server the Elixir application runs on. It would not be advisable to have
a similar solution from a web server.

 You can use a library called Mogrify to call the console app; see Example 11-21 .

 3 www.imagemagick.org

http://www.imagemagick.org/
http://www.imagemagick.org/

CHAPTER 11 ■ ASSET PROCESSING

163

 Example 11-21.

 1 defmodule DARImageLib.Process do
 2
 3 @respath "~/Projects/creative-common-dar/Backend/dar/apps/dar_imagelib/test/re\
 4 s/"
 5
 6 defmacro path_resource(file, path \\ @respath) do
 7 Path .join(path,file)
 8 end
 9
 10 # hard coded for testing
 11 def resize do
 12 Mogrify .open(path_resource("test.jpg"))
 13 |> Mogrify .copy
 14 |> Mogrify .resize("50x50")
 15 |> Mogrify .save(path_resource("test_resize.jpg"))
 16 end
 17
 18 def watermark(imageprocessingmodel) do
 19 Mogrify .watermark(
 20 getimagelist_as_string(imageprocessingmodel.imagelist),
 21 getlist_as_string(imageprocessingmodel.options))
 22
 23 end
 24
 25 def getimagelist_as_string(imagelist) do
 26 {_,s} = Enum .map_reduce(
 27 (for n <- imagelist, do: n <> " "),
 28 [],
 29 fn (name,acc) -> {name, List .insert_at(acc,-1,add_path(name))} end)
 30 List .to_string(s)
 31 end
 32
 33 def getlist_as_string(list) do
 34 for n <- list, into: "", do: n <> " "
 35 end
 36
 37 defp add_path(filename) do
 38 Path .join(@respath,filename)
 39 end
 40 end

 The code for calling for example the command line tool composite is shown in Example 11-22 .

 Example 11-22.

 1 defp run_composite(inputfiles, optionlist) do
 2 args = ~w(#{optionlist} #{inputfiles})
 3 System .cmd "composite", args, stderr_to_stdout: true
 4 end

CHAPTER 11 ■ ASSET PROCESSING

164

 System.cmd allows you to call commands as if invoking them from the console.
 ImageMagick is very powerful, but it is a bit difficult to compile all the different options. Also, the output

is a file, and piping into a binary is possible, but depends on the operating system. Saving a temporary file for
now is a first solution, although it won’t scale in future.

 PDF Creation
 There are many options to create PDF documents on the fly, many of which are proprietary and commercial.
Happily, in Erlang and Elixir, there are open source solutions: Erlguten 4 and Gutenex 5 . See Example 11-23 .

 Example 11-23.

 1 {:ok, pid} = Gutenex .start_link
 2 |> Gutenex .set_page(1)
 3 |> Gutenex .begin_text
 4 |> Gutenex .set_font("Helvetica", 48)
 5 |> Gutenex .text_position(40, 180)
 6 |> Gutenex .text_render_mode(:fill)
 7 |> Gutenex .write_text("ABC")
 8 |> Gutenex .set_font("Courier", 32)
 9 |> Gutenex .text_render_mode(:stroke)
 10 |> Gutenex .write_text("xyz")
 11 |> Gutenex .end_text
 12 |> Gutenex .move_to(400, 20)
 13 bin = Gutenex .export(pid)
 14 Gutenex . stop

 The library is very low level, as you can see. In the workflow, you have a GenServer DARPdfLib that
processes the messages as the other workers do. The output is a binary that can then be cached in memory
for delivery or optionally stored in GridFS .

 4 https://github.com/ztmr/erlguten
 5 https://github.com/SenecaSystems/gutenex

https://github.com/ztmr/erlguten
https://github.com/SenecaSystems/gutenex
https://github.com/ztmr/erlguten
https://github.com/SenecaSystems/gutenex

165© Wolfgang Loder 2016
W. Loder, Erlang and Elixir for Imperative Programmers, DOI 10.1007/978-1-4842-2394-9_12

 CHAPTER 12

 Deployment

 So far you have an API and several components that help you implement and deliver the required features.
This chapter explores the deployment of these components.

 Security
 The two previous chapters described the implementation of DAR and some of its features.

 The Web API is a public service and, although the data this service provides in the open source version
is publicly available, there are still aspects that need to be secured.

 So what is meant by security in this context?
 First, machines without a public face need to be secured with hardware access restrictions. Then

authentication and authorization have to make sure that not everybody can access the non-public server
and the database.

 Authentication and Authorization Some developers are confused by the definitions of authentication
and authorization. I always explain the terms this way:

 Authentication tells if I am allowed to be somewhere.

 Authorization tells what I am allowed to do once I am successfully authenticated.

 Erlang or Elixir don’t provide much help with this task. One measurement is the use of cookies, as you
saw in the SayHello example. These cookies organize access to the node and are like a secret access code.
This is not a problem for servers behind a firewall, but public-facing servers like web servers should not
be secured by this method. In these cases, you either have to roll your own solution or rely on third-party
solutions. You have to assume that servers are locked down by firewalls in the network.

 If the focus is on authentication for the API server, you have to look at third-party libraries Guardian 1
and Openmaize 2 or a commercial service like Auth0 3 .

 1 https://github.com/ueberauth/guardian
 2 https://github.com/elixircnx/openmaize
 3 https://auth0.com

https://github.com/ueberauth/guardian
https://github.com/elixircnx/openmaize
https://auth0.com/
https://github.com/ueberauth/guardian
https://github.com/elixircnx/openmaize
https://auth0.com/

CHAPTER 12 ■ DEPLOYMENT

166

 Phoenix can integrate libraries like the ones mentioned above with the concept of plugging modules
into the process pipeline. See Example 12-1 .

 Example 12-1.

 1 pipeline :browser do
 2 plug :accepts, ["html"]
 3 plug :fetch_session
 4 plug :fetch_flash
 5 plug :protect_from_forgery
 6 plug :put_secure_browser_headers
 7 plug Openmaize.Authenticate
 8 end

 This is an excerpt from a Phoenix router integrating Openmaize. In a controller, more plugs have to be
added, as shown in Example 12-2 .

 Example 12-2.

 1 plug Openmaize.ConfirmEmail ,
 2 [db_module: Welcome.OpenmaizeEcto , key_expires_after: 30, 3 mail_function:

& Mailer .receipt_confirm/1] when action in [:confirm]
 4 plug Openmaize.ResetPassword ,
 5 [db_module: Welcome.OpenmaizeEcto , key_expires_after: 30, 6 mail_function:

& Mailer .receipt_confirm/1] when action in [:reset_password]
 7 plug Openmaize.Login ,
 8 [db_module: Welcome.OpenmaizeEcto , unique_id: & Name .email_username/1,
 9 override_exp: 10_080] when action in [:login_user]
 10 plug Openmaize.OnetimePass ,
 11 [db_module: Welcome.OpenmaizeEcto] when action in [:login_twofa]
 12 plug Openmaize.Logout when action in [:logout]

 Security is not only authentication and authorization but also, for public servers, cross-scripting issues,
sniffing attacks, and similar. Phoenix is certainly taking care of these issues, but it is in the hands of the
developers to make it work. Exposing databases and Erlang / Elixir nodes on the web server may bring more
problems in the case of compromised servers than distributed architectures.

 Distribution and Deployment
 From the start of this book, I have emphasized Erlang ’s and Elixir ’s ability to distribute processes over several
machines called nodes.

 There is no difference if the application or applications run on one or one several machines, over a LAN,
or over a WAN. Of course, in the latter case you must think about latency.

 When Erlang was created, there existed clusters of multiple machines, but no multi-core machines, as
we have now. Erlang/OTP implemented support for symmetric multiprocessing (SMP) in 2009. You can see
if cores are supported on your machine by starting erl / werl and looking at the first line:

 Erlang /OTP 17 [erts-6.3] [64-bit] [smp:8:8] [async-threads:10]

CHAPTER 12 ■ DEPLOYMENT

167

 Smp[8:8] indicates that there are eight cores available and the Erlang VM can use all of them. Starting
 erl with –nosmp restricts the VM to one core.

 You worked with nodes when you ran SayHello . You ran two nodes on a machine and since you gave
them names they could communicate with each other. It does not matter which language implemented the
node’s code because they are all compiled to the binary language that the Erlang VM understands.

 Starting Phoenix applications with a name and cookie Phoenix applications can be started as a
named node with a secret cookie to make it possible for nodes to communicate with each other if no cookie file
is saved on the machines:

 elixir –sname nodename –cookie secretcookie -S mix phoenix.server

 Deployment can be done manually or per scripts, although it seems to me that the easier option is to
use the manual approach.

 When you have more than two nodes and the nodes communicate, then every node visited by another
node will share its knowledge of nodes with the visitor. So if you have two disparate node sets and a node
from one set is communicating with a node from the other set, then suddenly all the nodes from both sets
know each other. This can lead to unexpected big node sets and may not be desirable.

 All problems of networks are valid for distributed Erlang systems as well; for example, apart from
security concerns discussed above, hardware failures, latency, or bandwidth problems can happen. Nodes
communicate with each other per messages and a balance must be found between too small and too big
messages. In DAR, we deal with images or PDF documents: should it be sent by messages from node to node
or should it be retrieved from a cache node at the highest level in the hierarchy? The first one may impact
bandwidth; the second solution may have latency problems.

 One aspect of distribution can be to run the same application on a cluster of nodes to tackle issues
when nodes fail or disappear. In this case, a system configuration file can hold the information for the
failover cluster; see Example 12-3 .

 Example 12-3.

 1 [{kernel,
 2 [{distributed, [{myapp, 5000, [sayhello1@localhsot, {sayhello2@localhsot, sayh\
 3 ello3@localhsot}]}]},
 4 {sync_nodes_mandatory, [sayhello2@cave, sayhello2@cave]},
 5 {sync_nodes_timeout, 5000}
 6]
 7 }
 8].

 All nodes need to have the configuration file, only differing in the list of the other nodes in the
 sync_nodes_mandatory key. This configuration ensures that all nodes are started together; if one node goes
down, a distributed application controller process in the kernel will try to switch the application to another
node if the restart of the application fails after the set timeout.

CHAPTER 12 ■ DEPLOYMENT

168

 This method works in both Erlang and Elixir . In Elixir, you can start an application with the code in
Example 12-4 .

 Example 12-4.

 1 iex –sname sayhello1 -pa _build/dev/lib/sayhello/ebin/
 2 –app sayhello –erl "-config config/sayhello1"

 A Phoenix clustered application can be started with the code in Example 12-5 .

 Example 12-5.

 1 elixir --name darapi@127.0.0.1 --erl "-config sys.config" -S mix phoenix.server

 PART V

 Patterns and Concepts

171© Wolfgang Loder 2016
W. Loder, Erlang and Elixir for Imperative Programmers, DOI 10.1007/978-1-4842-2394-9_13

 CHAPTER 13

 Overview Patterns and Concepts

 The following chapters discuss patterns and concepts that are important for programming with Erlang/OTP
and Elixir.

 In the object-oriented programming (OOP) world, patterns are widely used (and abused). The Gang of
Four book 1 categorized many common design practices and had for a long time a monopoly on this subject.
Other publications followed, but the search for patterns was mostly done by practitioners of OOP. The
functional programming community was not so interested in them, similar to modeling, which is discussed
in Appendix A. This said, there is a new initiative to collect Erlang patterns 2 . In fact, OTP is a collection of
best practices and its implementation can be labeled as an implementation of patterns.

 Most of the time, I personally avoid the word pattern because it is a loaded term. I prefer to talk of
 concepts in order to avoid lengthy discussions about whether a pattern is a pattern or not.

 All of the chapters can be read on their own, although sometimes they build on each other in the order
they are presented. Links between the concepts make it easier to jump to each section out of order.

 A note that applies to all concepts discussed in this book: many definitions in computer science are not
universally regarded as correct or valid and there are competing definitions. This is rather astonishing since
most concepts are based on mathematical principles, but words are simply more open to interpretation
and are less concise than symbols. So if you hear different definitions from what is discussed in this part
of the book, remember to stay in the syntax of this book and the constraints or deficiencies of the author’s
knowledge and experience.

 The discussed concepts are divided into three categories. These categories are more or less arbitrary
and do not follow other categorizations. They just serve to divide the discussed concepts into logical sets.

 Functional Concepts :

• Closures

• Continuation-Passing

• Higher Order Functions

• Immutability

• Lazy Evaluation

• Lists and Tuples

• Maps

• Pattern Matching

 1 http://en.wikipedia.org/wiki/Design_Patterns
 2 www.erlangpatterns.org

http://en.wikipedia.org/wiki/Design_Patterns
http://en.wikipedia.org/wiki/Design_Patterns
http://en.wikipedia.org/wiki/Design_Patterns
http://www.erlangpatterns.org/
http://www.erlangpatterns.org/
http://en.wikipedia.org/wiki/Design_Patterns
http://www.erlangpatterns.org/

CHAPTER 13 ■ OVERVIEW PATTERNS AND CONCEPTS

172

• Recursion

• Referential Transparency

 Type Creation Concepts :

• Atoms

• Behaviors (Behaviours)

• DSL and Metaprogramming

• Dynamic Types

• Mixin

• Polymorphism

 Code Structuring Concepts :

• Actor Model

• Concurrency

• Fault Tolerance

• Flow-based Programming

• Processes

• Separation of Concerns

• SOA

• Specific to Generic

173© Wolfgang Loder 2016
W. Loder, Erlang and Elixir for Imperative Programmers, DOI 10.1007/978-1-4842-2394-9_14

 CHAPTER 14

 Functional Concepts

 Pattern Matching
 One of the most confusing concepts for an imperative programmer is pattern matching . The syntax looks like
an assignment; the word pattern suggests something like RegEx.

 Let’s investigate Erlang first. Consider the expression shown in Example 14-1 .

 Example 14-1.

 M = 2

 Your imperative instincts will tell you that this is an initialization of the variable M with 2. This means that

 M = 3

 will simply assign 3 to the variable M .
 In fact, typing this expression into the Erlang shell returns

 exception error: no match of right hand side value 3

 and the value of M is still 2 .
 What is going on?
 When you assign a value to a variable, the state of this variable changes from unbound to bound , as

shown in Figure 14-1 .

 Figure 14-1. Unbound to bound

CHAPTER 14 ■ FUNCTIONAL CONCEPTS

174

 Any further assignment will try to match the right-hand side with the assigned value. The right-hand
side can be any valid expression or function call. Consider the function in Example 14-2 .

 Example 14-2.

 1 always_return_42() ->
 2 42.

 Statements

 1 L42 = 42.
 2 L42 = patternmatching :always_return_42().

 will return 42 to indicate a successful pattern match.
 Pattern matching is a very powerful concept and can replace imperative language constructs like if and

 while including their variations.
 Let’s look at this function with an if-statement in Erlang; see Example 14-3 .

 Example 14-3.

 1 return_42_if_when_true(Flag) ->
 2 if
 3 Flag =:= true ->
 4 42;
 5 true ->
 6 0
 7 end .

 If you set the flag to true, it will return 42. The if statement compares the argument with Boolean true
and false and returns 42 or 0 accordingly. Example 14-4 will succeed.

 Example 14-4.

 L42 = patternmatching :return_42_if_when_true(true).

 The if statement is not very intuitive. Erlang does not have an else branch, so an arbitrary true
statement is used. The if expression looks for a true branch; if there is none, it comes back with an
exception (no true branch found when evaluating an if expression).

 The best is to forget that if exists in Erlang, because there are better alternatives. One alternative is
 case . It is the next step up from the imperative construct if . See Example 14-5 .

 Example 14-5.

 1 return_42_case_when_true(Flag) ->
 2 case Flag of
 3 true -> 42;
 4 _ -> 0
 5 end .

 This code does the same thing the if statement did. It is similar to switch/case statements in languages
like C#, Java etc. The differences are that all case statements are in one block separated by semicolons and
the placeholder _, which acts as an indicator for the default-branch. So Example 14-6 will succeed as before.

CHAPTER 14 ■ FUNCTIONAL CONCEPTS

175

 Example 14-6.

 L42 = patternmatching :return_42_case_when_true(true).

 The examples so far are trivial. Erlang is in the tradition of Lisp dialects that are famous (or infamous)
for their list treatment. You will examine lists later. Let’s look now at two valid pattern matching examples in
Example 14-7 .

 Example 14-7.

 {L42,3} = { patternmatching :return_42_case_when_true(true),3}.

 Here you compare a tuple with a variable and a number with a tuple that has a function call and a
number. Now see Example 14-8 .

 Example 14-8.

 {L42,_} = { patternmatching :return_42_case_when_true(true),3}.

 This example is similar to the one above; it only uses the placeholder _ on the left side. This means I
compare the right side that has a tuple with two members, but I am not interested in the second one .

 The return value for both statements is {42,3}.
 A special case is the left side having one or more unbound variables. If the number of members in

the tuple on the left and right side are the same, then the unbound values will be initiated and bound.
Example 14-9 will bind the unbound variable X to 42 as before. Example 14-10 will fail because the
number of the members does not match.

 Example 14-9.

 {X,_} = { patternmatching :return_42_case_when_true(true),3}.

 Example 14-10.

 {X,Y,_} = { patternmatching :return_42_case_when_true(true),3}.

 This type of pattern matching with lists or tuples is used extensively in functions both with function
arguments and return values. See Example 14-11 .

 Example 14-11.

 1 incorrect_case(a,b) ->
 2 case a == b of
 3 true -> -1;
 4 false -> 0
 5 end ;
 6 incorrect_case(a,Y) ->
 7 case Y > 0 of
 8 true -> 42;
 9 false -> 0
 10 end ;
 11 incorrect_case(_,Y) ->
 12 case Y > 0 of
 13 true -> 43;

CHAPTER 14 ■ FUNCTIONAL CONCEPTS

176

 14 false -> 0
 15 end .
 16

 For imperative programmers, it looks fine, but in Erlang you will get one of the following:

• A call incorrect_case(a,b) will always return 0 .

• A call incorrect_case(42,1) will return an exception (no function clause matching).

 The compiler will actually display a warning when the above code is compiled (the guard for this clause
evaluates to ’false’) but it is easy to miss it if there are more warnings.

 The cause of these exceptions lies in the difference between atoms and variables, which can only be
distinguished by their case. Elixir makes this easier by prefixing atoms with a colon. Having a function
signature like incorrect_case(:a,:b) makes the error more obvious.

 If you call the Erlang function like this, you will get another exception: no function clause matching .
This means there was no matching function signature, because 42 is not an atom. Something like
 incorrect_case(X,Y) as signature with X and Y meaning numbers would be fine in a language with
polymorphism. Erlang has a similar approach, but it’s implemented differently with pattern matching; see
Example 14-12 .

 Example 14-12.

 incorrect_case(42,3).

 Erlang is dynamically typed and you can express polymorphic parameter types with guards , as shown in
Example 14-13 .

 Example 14-13.

 1 guard_function(Flag) when Flag == true -> 42;
 2 guard_function(Flag) when Flag == false -> 0.

 This code implements the if function with guards. Viewing the code, it is clear what is meant, once you
get over the syntax with the semicolon and the dot. This code is an example of an ad hoc polymorphism.

 Which of the described concepts to use is partly an individual decision. I prefer guards where possible
because they are concise, easy to understand, and leave completely out the if statement. The case…of
construct is useful in simple functions and apparently the resulting byte code is very similar without an
advantage towards any implementation.

 How can you implement the Erlang examples in Elixir? They have a slightly different syntax, but are
otherwise functional equivalent, as you can see in Example 14-14 .

 Example 14-14.

 1 def always_return_42 do
 2 42
 3 end

 The function is defined in a def block, which indicates a public or exported function. Private functions
can be defined in a defp block.

 This trivial function can also be defined in a different syntax on one line, as shown in Example 14-15 .

CHAPTER 14 ■ FUNCTIONAL CONCEPTS

177

 Example 14-15.

 1 def always_return_42_short, do: 42

 The do: keyword is necessary to tell the compiler that a function definition is on the same line. Pattern
matching in Elixir works as in Erlang. One difference is the assignment of variables; see Example 14-16 .

 Example 14-16.

 1 v1 = 2 # -> 2
 2 v1 = 3 # -> 3
 3 ^v1 = 4 # -> (MatchError) no match of right hand side value: 4

 In the Erlang world, line 2 should throw an exception, because v1 is immutable once assigned a value
on line 1. In Elixir, a reassignment creates a new immutable variable in the background, but keeps the name.
If you use the caret (ˆ, called a pin operator) as in line 3, you are back to the original Erlang behavior and an
exception will be returned if you try to assign a value to ̂ v1 .

 The introduction of this reassignment shortcut can lead to problems in certain situations, so the Elixir
compiler will print out warnings when a reassignment can have adverse effects (see the discussion of
immutability in the next section).

 Immutability
 Immutability is part of the “gold standard” of functional programming. According to many functional
developers, immutability separates the good programming languages from the bad.

 So what is it? Let’s assume you are writing assembler code and you have a variable in a memory location
that is used as an argument in a method . Assembler code does not define constructs like variable or method.
On the other hand, this is the purest example to discuss immutability; see Figure 14-2 .

 Figure 14-2. Memory location

 Your variable is just a memory location, and any code in the same program can change the value in
that location. In fact, the same is true for many programming languages, even if they are not so bare-bones
as Assembler. The C family of programming languages especially had and has problems with mutable
variables, although on different danger levels. It is very easy to overwrite arrays beyond their limits
(assuming you have 8-bit memory and big endian format). See Figure 14-3 .

CHAPTER 14 ■ FUNCTIONAL CONCEPTS

178

 The 16-bit data overrides the memory location with the red background, most probably unintended by
the programmer.

 Object-oriented languages are not immune to immutability problems. A class with public properties,
fields, or whatever they are called in the language, can’t protect those values to be overwritten by a consumer
of the class or a derived class.

 Most developers are aware of this and are careful to protect the values either by definition or by
convention. The former may be baked into the language, such as a protected, private, or sealed keyword; the
latter depends on the development team to focus on the effects of their code. It is obvious that the approach
by convention is error prone and not really feasible. Protection in the language only goes so far and also
needs the developers to anticipate future uses of the class, method, or property.

 The critical problems of mutable memory locations are side effects and difficult-to-analyze defects
at runtime. Objects or classes in OOP bind state and behavior, where state can be public or private.
Figure 14-4 shows bad programming, but this can be seen in many programs. The function Peel() just
updates the property Peeled and returns void .

 Figure 14-3. More memory location

 Figure 14-4. Bad programming

 The next call to Peel() would not do anything or, worse, would throw an exception “Already peeled”.
The programmer has to check Peeled first, before calling the method. The state of the object instance Potato
is changed, and if you share this instance between different consumers, the code accessing the object needs
to be implemented in a defensive way to cater for possible side effects.

CHAPTER 14 ■ FUNCTIONAL CONCEPTS

179

 This is a trivial example and it can’t be fixed with immutable memory locations. It is an inherent flow of
OOP. A library function could be written with an object instance of Potato as argument, as in Example 14-17 .

 Example 14-17.

 1 Potato Peel(Potato p) {
 2 Potato _p = p.clone();
 3 _p.Peel();
 4 return _p;
 5 }

 This function returns a new Potato instance, but the property can still be changed at a later time. Only
by using a language that supports immutability will the side effect problem be fixed. Of course, programming
discipline can prevent side effects as well, but it should not be the programmer’s responsibility to do this,
and it is too error prone as well.

 What happens if you have concurrent access to a memory location? You have to start using locks
and other workarounds to prevent side effects, but this introduces a bunch of new problems, especially
deadlocks. If you have had to use concurrency in your applications, you can certainly remember a time
when the machine was frozen and needed to be restarted. After the machine was running again, you stood
in front of it with the task of debugging the program. Writing logs to a file and restarting the machine again
and again was and often still is the “solution,” if the management did not get you one of the expensive
external debuggers.

 Pure functional concepts consider writing data to disks or printing as side effects. Also, assignments are
seen as side effects, but a more pragmatic approach will allow the assignment of local variables in functions
and disallow global variables and their modification.

 What are the advantages of immutable values (“variables”)?

 Code Quality and Debugging
 Having data immutable takes away many pitfalls. Especially compared to OOP, with immutability you simply
know when data is pushed into a function as argument that this data can’t be changed by the caller or by
the function. If, and this is in fact a second advantage, you debug a program, you don’t have a situation
when data is suddenly changed and you don’t have any idea when this happened and where in the code this
happened. Code maybe easier to read as well.

 Data Consistency and State
 Data consistency and state are in fact a paradigm change. OOP is about the state. Objects have an internal-
only state or state exposed to the outside of an object. In the functional paradigm, you are managing data.
You are passing immutable data around, such as messages. The messages can contain the data model
values and I could argue that the data is the state. In some way, a program has a state at any given time. In
the concept of event sourcing , the events are the immutable data, and invoking events means creating or
recreating the state of the program.

 Cache and Sharing
 Since data is immutable, you can easily cache it without fear that you change the state when you read the
data back. You can be sure that the value of the data is what it is intended to be. Nobody could have changed
it in the meantime. The same applies to sharing. Going back to the example of sending messages between
processes, you can send messages from a supervisor to a number of processes. The messages won’t change;
they will be the same if sent to one or ten processes.

CHAPTER 14 ■ FUNCTIONAL CONCEPTS

180

 Hash Keys
 Immutable data is perfect for keys. In maps in Erlang, any valid term can be used as key, which is only
possible because of the immutable nature of data.

 Functional Correctness
 Immutable data helps to ensure functional correctness of a function.

 Not everything is either true or false, or black or white. Many imperative languages are in fact hybrid
languages, such as Java, Scala, C#, F#, and Python. They integrate the object-oriented paradigm with the
functional paradigm and know closures or lambda expressions, functions as parameters, and may have
immutable data structures like strings.

 Having described the advantages, a pure functional approach with all data immutable has
disadvantages as well.

 Bi-Directional Data Structures
 Not everything can be easily expressed with immutable data, for example bi-directional structures. It is
easy to implement a structure like trees or directed graphs, but bi-directional is more of a challenge. Add a
node to such a structure and you will have to update the (by definition) immutable parent node of the newly
created child node.

 Workarounds
 If immutability should be used with OOP languages, you have to code workarounds. The C# example above
clones the in-parameter in order not to change it. In fact, it creates a new object in a different memory
location and manipulates that object. The return value is then the new object and the old one is unchanged.

 This is not real immutability, of course; it is just a tweak to let the original object appear immutable. The
caller can still change the return value or copy the values into the original object.

 In a previous project, I had to invent an “immutable” list to prevent other developers from overriding
the values. Essentially this means creating new lists and copying the values from the old to the new list. The
copying can affect performance and in any case it is an overhead. Functional languages have to copy as well,
but it is baked into the language and can do reference tricks to not copy values.

 Resistance
 Resistance is a problem that is not a real disadvantage of the concept, but since switching to the concept of
immutability is a change in hard-wired programming behaviors, many developers reject the concept.

 “I have always done it like that. I won’t change.” How often have we heard this and probably said it
ourselves?

 Immutable data needs a different thinking and a different software design. Without a language that
supports immutability, it needs additional code that needs to be tested and can potentially introduce new
defects. The resistance is real and needs to be overcome with training or use of libraries to help with the task.

 The discussion in the last paragraphs only touches some parts of immutability. The biggest advantage
hasn’t been mentioned yet.

CHAPTER 14 ■ FUNCTIONAL CONCEPTS

181

 Concurrency
 Erlang also means working with concurrent processes, and to make sure not to run into data inconsistencies,
you need to have immutable data. It can still happen as a side effect of I/O. If a database or a mutable
queue implementation is used, than the immutable data in the language won’t help. It is the programmer’s
responsibility to avoid this trap. Discipline is required to avoid the pitfalls of mutability.

 Elixir has, as you saw in Chapter tk, changed the syntax of assignment, although not the meaning. Even
if a variable is reassigned with a different value, the compiler will still create a different variable in a different
memory location.

 Consider Example 14-18 .

 Example 14-18.

 1 def assignment_warning(flag, v1) do
 2 ret = if (flag) do
 3 v1 = v1 + 21
 4 :processed
 5 else
 6 :notprocessed
 7 end
 8 {ret, v1}
 9 end

 This is imperative code written in Elixir. The crucial lines are 3 and 8. In line 3, the argument v1
is reassigned the value plus 21. In line 8, v1 is returned to the caller. What value should v1 have? The
imperative programmer would expect the value from line 3; the functional programmer would expect the
argument’s value.

 The Elixir compiler will throw a warning shown in Example 14-19 .

 Example 14-19.

 warning: the variable "v1" is unsafe as it has been set inside
 a case/cond/receive/if/&&/||.
 Please explicitly return the variable value instead.

 The example has shortened the output; there is more text to explain what the warning means. When
you run the function, the result is shown in Example 14-20 .

 Example 14-20.

 1 iex(1)> Assignment.assignment_warning true,21
 2 {:processed, 42}
 3 iex(2)> Assignment.assignment_warning false,21
 4 {:notprocessed, 21}

 The problem here stems from the possibility of reassigning variables, which encourages imperative style
programming. The more idiomatic way to implement this function is shown in Figure 14-21.

CHAPTER 14 ■ FUNCTIONAL CONCEPTS

182

 Example 14-21.

 1 def noassignment_nowarning(flag, v1) do
 2 case flag do
 3 true -> {:processed, v1+21}
 4 _ -> {:notprocessed, v1}
 5 end
 6 end

 According to a short e-mail exchange I had with Joe Armstrong, the difference between Erlang and
Elixir is that Erlang checks the referenced value, and if the values don’t match, an error will be raised. In
Elixir, the name of a variable is a reference to a value as well, but the reference is changed so a reassignment
can be made as in imperative languages, although with restrictions like context.

 Maps
 Maps are a new type in Erlang since version 17 and were enhanced for large maps in version 18. Other
programming languages call them hashes or dictionaries. Basically, maps are collections of key-value pairs.
In earlier versions of Erlang, records were the preferred way to express a data structure similar to a database
record. With maps, it is now possible to express, for example, a JSON string as key-value pairs in a map that
can then be pattern matched.

 The creation of a map is a little verbose, but intuitive. Say you want to bake a pizza with different
toppings; see Example 14-22 .

 Example 14-22.

 1 pizza_toppings_map() ->
 2 #{{tomatosauce,spoon} => 3,
 3 {mozzarella,slices} => 8,
 4 {ham,slices} => 6,
 5 {mushroom,spoon} => 2,
 6 {spinach,spoon} => 2,
 7 {onion,spoon} => 2,
 8 {onionring,spoon} => 2,
 9 {sausage,piece} => 1
 10 }.

 The operator Þ sets the value of an element and associates the key with the value. Once the map is
defined, you can use it to match it to a pattern, update values, or run built-in functions from the standard
library.

 Pattern matching is achieved with the operator := as you can see in Example 14-23 .

 Example 14-23.

 1 pizza_topping_match_valid() ->
 2 M = pizza_toppings_map(),
 3 #{ {mozzarella,slices} := I} = M,
 4 I.
 5 % mapsexample:pizza_topping_match_valid(). -> 8

CHAPTER 14 ■ FUNCTIONAL CONCEPTS

183

 If the pattern does not exist, the runtime will throw an exception as it does in other pattern matching
cases. See Example 14-24 .

 Example 14-24.

 1 pizza_topping_match_invalid() ->
 2 M = pizza_toppings_map(),
 3 #{ {butter,teaspoons} := I} = M,
 4 I.
 5 % mapsexample:pizza_topping_match_invalid().
 6 % -> exception error: no match of right hand side value #{{ham,slices} => 6,
 7 % {mozzarella,slices} => 8,
 8 % {mushroom,spoon} => 2,
 9 % {onion,spoon} => 2,
 10 % {onionring,spoon} => 2,
 11 % {sausage,piece} => 1,
 12 % {spinach,spoon} => 2,
 13 % {tomatosauce,spoon} => 3}

 If you try to use the Þ operator for pattern matching, an illegal pattern compile error will occur.
 Both operators can be used for updating values, but they behave slightly different; see this blog post

 from Joe Armstrong : http://joearms.github.io/2014/02/01/big-changes-to-erlang.html . Updating,
of course, is creating a new list; the original list is immutable. The := keeps the keys in one memory place,
shared by multiple instances of the same map type, and only associates values to them for the new map. See
Example 14-25 .

 Example 14-25.

 1 pizza_topping_update_v1() ->
 2 M = pizza_toppings_map(),
 3 M1 = M#{{mozzarella,slices} := 5},
 4 M1.
 5 % -> #{{ham,slices} => 6,
 6 % {mozzarella,slices} => 5, % changed from 8 to 5
 7 % {mushroom,spoon} => 2,
 8 % {onion,spoon} => 2,
 9 % {onionring,spoon} => 2,
 10 % {sausage,piece} => 1,
 11 % {spinach,spoon} => 2,
 12 % {tomatosauce,spoon} => 3}
 13
 14 pizza_topping_update_v2() ->
 15 M = pizza_toppings_map(),
 16 M1 = M#{{mozzarella,slices} => 6},
 17 M1.
 18 % -> #{{ham,slices} => 6,
 19 % {mozzarella,slices} => 6, % changed from 8 to 6
 20 % {mushroom,spoon} => 2,
 21 % {onion,spoon} => 2,
 22 % {onionring,spoon} => 2,
 23 % {sausage,piece} => 1,
 24 % {spinach,spoon} => 2,
 25 % {tomatosauce,spoon} => 3}

http://joearms.github.io/2014/02/01/big-changes-to-erlang.html
http://joearms.github.io/2014/02/01/big-changes-to-erlang.html
http://joearms.github.io/2014/02/01/big-changes-to-erlang.html

CHAPTER 14 ■ FUNCTIONAL CONCEPTS

184

 You create a new map with the same keys, but with new values. Alternatively, you can add new keys
while updating; see Example 14-26 .

 Example 14-26.

 1 pizza_topping_add() ->
 2 M = pizza_toppings_map(),
 3 M1 = M#{{mozzarella,slices} := 5, {pepperoni,piece} => 3},
 4 M1.

 In this case, you use both operators: := for updating and keeping the key in one memory place and Þ for

adding a new key-value-pair. It is possible to use only := but then the keys will be stored redundantly.
 The main advantage for the := operator is to avoid adding keys by accident. The compiler checks if a key

is in the map and stops compilation with an error if it is not.
 Creating and pattern matching maps are only basic tasks. The standard library 1 provides many useful

functions that work on maps.
 Elixir has to two data structures to express key-value pair collections. The first one is a map as in Erlang.
 The creation of your examples in Elixir is syntactically similar to Erlang, as you can see in Example 14-27 .

 Example 14-27.

 1 def pizza_toppings_map() do
 2 %{{:tomatosauce,:spoon} => 3,
 3 {:mozzarella,:slices} => 8,
 4 {:ham,:slices} => 6,
 5 {:mushroom,:spoon} => 2,
 6 {:spinach,:spoon} => 2,
 7 {:onion,:spoon} => 2,
 8 {:onionring,:spoon} => 2,
 9 {:sausage,:piece} => 1
 10 }
 11 end

 The biggest difference to Erlang is that there is a mixture of library calls and map syntax to implement
the same functionality and a difference of output depending on the key type, if atom or not.

 Consider Example 14-28 .

 Example 14-28.

 1 m1 = %{1 => "m1"}
 2 m2 = %{:a1 => "m2"}
 3 m1[1] # -> "m1"
 4 m1[2] # -> nil
 5 m2.a1 # -> "m2"
 6 m2.b # -> ** (KeyError) key :b not found in: %{a1: "m2"}
 7 m2[:a1] # -> "m2"
 8 m2[:b] # -> nil

 1 http://erlang.org/doc/man/maps.html

http://erlang.org/doc/man/maps.html
http://erlang.org/doc/man/maps.html

CHAPTER 14 ■ FUNCTIONAL CONCEPTS

185

 The comments on each line display the output in a shell. The dot syntax, also called the strict syntax ,
is only valid with atoms and returns an exception if the key does not exist (lines 5 and 6). With the dynamic
syntax, the output is the same and non-existing keys will cause nil to be returned.

 The functions to handle maps as in your Erlang examples look like Example 14-29 .

 Example 14-29.

 1 def pizza_topping_match_invalid() do
 2 m = pizza_toppings_map()
 3 Map .get m,{:butter,:teaspoons}
 4 end
 5
 6 def pizza_topping_match_valid() do
 7 m = pizza_toppings_map()
 8 Map .get m,{:mozzarella,:slices}
 9 end
 10
 11 def pizza_topping_update() do
 12 m = pizza_toppings_map()
 13 %{m | {:mozzarella,:slices} => 5}
 14 end
 15
 16 def pizza_topping_add() do
 17 m = pizza_toppings_map()
 18 Map .put(m, {:pepperoni,:piece}, 3)
 19 end
 20
 21 def pizza_topping_get_value() do
 22 m = pizza_toppings_map()
 23 %{{:mozzarella,:slices} => value} = m
 24 value
 25 end

 There are different results depending on the method used to retrieve a value.
 Line 23 shows a pattern matching access; the value in value will be what the key’s value is. This is only

valid if the key exists; otherwise an exception will be raised. In lines 3 and 8, you use the Map library to get
the value of a key. If the key does not exist, nil will be returned.

 Adding a key-value pair to a map is achieved with Map.put . The update syntax on line 13 returns an
error if the key does not exist. In Erlang, you can update and add in one statement. Elixir’s update syntax
with | reminds us of the list processing with header and tail.

 Elixir has a special data structure for ordered lists with atoms as keys where the same key can be in the
list multiple times. They are called keyword lists and you can see them in Example 14-30 .

 Example 14-30.

 1 def create_pizza_order() do
 2 [{:margerita, 1},{:calzone, 2}]
 3 end
 4
 5 def add_to_order() do
 6 kwl = create_pizza_order
 7 kwl ++ [roma: 1]

CHAPTER 14 ■ FUNCTIONAL CONCEPTS

186

 8 end
 9
 10 def jump_the_queue() do
 11 kwl = create_pizza_order
 12 [roma: 1] ++ kwl
 13 end
 14
 15 def add_the_same() do
 16 kwl = create_pizza_order
 17 kwl ++ [margerita: 2]
 18 end

 The create function on line 2 shows that keyword lists are actually lists with tuples as elements. All list
operations can be used on keyword lists as well. For example, lines 7, 12, and 17 show the concatenation
operator. Keyword lists have a special library module Keyword similar to maps and lists.

 This specialized data structure is used for options passing in Elixir functions. Together with optional
parentheses and a keyword list as a last parameter, it can be used to create DSLs.

 Lists and Tuples
 Lists and tuples are similar data types; the main difference is that the number of elements is fixed in tuples
and not fixed in lists. A different syntax is used to indicate this.

 Example 14-31 shows it in Erlang.

 Example 14-31.

 1 % tuple
 2 {mozzarella,slices, 5, fun (a,b) -> {a,b} end }.
 3
 4 % list
 5 [mozzarella,slices, 5, fun (a,b) -> {a,b} end].

 Example 14-32 shows it in Elixir.

 Example 14-32.

 1 # tuple
 2 {:mozzarella,:slices, 5, fn (a,b) -> {a,b} end }
 3
 4 # list
 5 [:mozzarella,:slices, 5, fn (a,b) -> {a,b} end]

 Both lists and tuples can hold any value type, as shown in the examples above, mixing atoms, numbers,
and functions.

 Internally lists are represented as linked lists of elements and tuples are held in memory in order of the
element definitions. Therefore, getting elements by index in a tuple is fast; other list-related operations like
additions or updates are slow. Since you can have the same value types in lists and tuples, the use of either
depends on the desired operations.

CHAPTER 14 ■ FUNCTIONAL CONCEPTS

187

 In many examples in this book you have tuples as return values of function calls. They can transport
additional information, for example in case of an error. In fact, it is astonishing that in imperative languages
we did not do the same for a long time. Which older Windows developer does not remember the sequence
shown in Example 14-33 of statements in C/C++ 2 ?

 Example 14-33.

 1 #include <windows.h>
 2 #include <strsafe.h>
 3
 4 void ErrorExit(LPTSTR lpszFunction)
 5 {
 6 LPVOID lpMsgBuf;
 7 LPVOID lpDisplayBuf;
 8 DWORD dw = GetLastError();
 9 FormatMessage(
 10 FORMAT_MESSAGE_ALLOCATE_BUFFER |
 11 FORMAT_MESSAGE_FROM_SYSTEM |
 12 FORMAT_MESSAGE_IGNORE_INSERTS,
 13 NULL,
 14 dw,
 15 MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT),
 16 (LPTSTR) &lpMsgBuf,
 17 0, NULL);
 18 lpDisplayBuf = (LPVOID)LocalAlloc(LMEM_ZEROINIT,
 19 (lstrlen((LPCTSTR)lpMsgBuf) + lstrlen((LPCTSTR)lpszFunction) + 40)
 20 * sizeof (TCHAR));
 21 StringCchPrintf((LPTSTR)lpDisplayBuf,
 22 LocalSize(lpDisplayBuf) / sizeof (TCHAR),
 23 TEXT("%s failed with error %d: %s"),
 24 lpszFunction, dw, lpMsgBuf);
 25 MessageBox(NULL, (LPCTSTR)lpDisplayBuf, TEXT("Error"), MB_OK);
 26 LocalFree(lpMsgBuf);
 27 LocalFree(lpDisplayBuf);
 28 ExitProcess(dw);
 29 }
 30
 31 void main()
 32 {
 33 if (!GetProcessId(NULL))
 34 ErrorExit(TEXT("GetProcessId"));
 35 }

 In Erlang or Elixir, you simply return the code shown in Examples 14-34 and 14-35 .

 Example 14-34.

 1 {error,<<"description">>}.

 2 https://msdn.microsoft.com/en-us/library/windows/desktop/ms680582(v=vs.85) .aspx

https://msdn.microsoft.com/en-us/library/windows/desktop/ms680582(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms680582(v=vs.85).aspx

CHAPTER 14 ■ FUNCTIONAL CONCEPTS

188

 Example 14-35.

 1 {:error,"description"}

 Especially in functional languages we find lists implemented as singly linked lists, whereas OO
languages implement lists as arrays similar to tuples described above. Linked lists can easily be used in
recursive functions and with immutable data. The disadvantages are that in singly linked lists there is no
easy and performant way to update or delete the element before a given element. This is why we see many
list algorithms in Erlang and Elixir with head and tail operations. Concatenation of lists means to link the
new list to the existing list as a tail; see Example 14-36 .

 Example 14-36.

 1 append([H|T], Tail) ->
 2 [H|append(T, Tail)];
 3 append([], Tail) ->
 4 Tail.

 This code takes two lists and arguments, and splits the head from the tail recursively until the head is
empty and the tail is the list with list two appended to list one . See Example 14-37 .

 Example 14-37.

 1 1> listsexample :append([1,2,3],[4,5]).
 2 [1,2,3,4,5]

 The same example in Elixir is shown in Example 14-38 .

 Example 14-38.

 1 def append([h|t], tail) do
 2 [h|append(t, tail)]
 3 end
 4 def append([], tail) do
 5 tail
 6 end

 Of course you don’t need to do this manually all the time and can use an operator, as in Example 14-39 .

 Example 14-39.

 1 1> [1,2,3] ++ [4,5].
 2 [1,2,3,4,5]

 The recursive head-tail functionality will be useful in Chapter 14 . In the introduction of this book, you
saw an example similar to Example 14-40 .

 Example 14-40.

 1 [I*10 || I <- lists :seq(1,10), I rem 2 == 0].

http://dx.doi.org/10.1007/978-1-4842-2394-9_14

CHAPTER 14 ■ FUNCTIONAL CONCEPTS

189

 This is called list comprehension and is related to the map part in map and reduce algorithms. The
statement means

• Generate a list with the number from 1 to 10.

• Filter this list by computing modolo 2 for each list element and taking all values that
can be divided by 2.

• Output a new list with the filtered elements multiplied by 10 A list comprehension
takes a generator

 I <- lists :seq(1,10)

 and a filter

 I rem 2 == 0

 The same list comprehension expressed in Elixir is shown in Figure 14-41.

 Example 14-41.

 1 def comprehension_ex1() do
 2 mod2? = fn (i) -> rem(i, 2) == 0 end
 3 for i <- 1.10, mod2?.(i), do: i*10
 4 end

 You define an anonymous function for convenience and use it in the list comprehension as the filter
function.

 Elixir also knows the :into option to have the output converted to a different data structure, so you can
write an example to concatenate strings, as in Example 14-42 .

 Example 14-42.

 1 def comprehension_ex2(list) do
 2 for n <- list, into: "", do: n <> " "
 3 end

 The function takes a list of string elements and returns a string of all concatenated list elements. The
 into option can’t cast into arbitrary types, but it is useful for string or map transformations.

 One important operation on lists is the reduction. For example, you want to sum up all arithmetic
values in a list, as shown in Example 14-43.

 Example 14-43.

 1 def reduce(list) do
 2 sum = fn (x, y) -> x + y end
 3 list |> Enum .reduce(0, sum)
 4 end

 The reduce function of the module Enum takes a list, an accumulator, and a function.

CHAPTER 14 ■ FUNCTIONAL CONCEPTS

190

 Pipe Operator, |> This operator takes the output of the left side (in the example, the list) and passes it

as the first argument of the right side function.

 Some library functions handling lists, maps, or tuples have the order of arguments changed in Elixir compared
to Erlang. This is not only normalizing the arguments order, but is also necessary for the pipe operator to work.
The first argument is always the object that needs to be processed, and all other arguments follow.

 A statement like

 ListExample .reduce [2,5,3.14]

 will return the value 10.14 , the sum of all numbers in the list.
 The Enum module in Elixir has a map_reduce function. Example 14-44 is from the project’s dar_imagelib

module, written in Elixir.

 Example 14-44.

 1 def getimagelist_as_string(imagelist) do
 2 {_,s} = Enum .map_reduce(
 3 (for n <- imagelist, do: n <> " "),
 4 [],
 5 fn (name,acc) -> {name, List .insert_at(acc,-1,add_path(name))} end)
 6 List .to_string(s)
 7 end
 8
 9 defp add_path(filename) do
 10 Path .join(DarImagelib.Mixfile .getconstant(:respath),filename)
 11 end

 The example takes a list of image names, computes a URI by adding the name to a constant path, and
returns each URI with a space at the end.

 Line 2 is the relevant statement. The Enum.map_reduce function takes a list, actually anything that
implements the protocol Enumerable, and also an accumulator with a function that does the actual work.

 The accumulator is necessary to keep the result between the recursive enumeration steps, because
the list you are processing is immutable. The reduce function takes the processed list argument and the
accumulator as arguments and returns a tuple with the element and the updated accumulator. In the
example, the new element is not just appended, but inserted in the right position (-1) to keep the original
order of the image list.

 Example 14-45 shows how a call of this function looks.

 Example 14-45.

 1 iex(1)> getimagelist_as_string(["image1","image2"])
 2 "/path/to/res/image1 /path/to/res/image2 "

 There are many other operations on lists in both Erlang and Elixir libraries defined. They are described
in the Erlang 3 and Elixir 4 manuals.

http://erlang.org/doc/man/lists.html
http://elixir-lang.org/docs/stable/elixir/Enum.html#content

CHAPTER 14 ■ FUNCTIONAL CONCEPTS

191

 Recursion
 It is little bit misleading to call recursion a functional concept. In fact, it is a concept that is used in all
programming languages. What is different in languages like Erlang and Elixir is that tail calls to the same
function are not growing the call stack and can be used for iterations.

 What is a tail call? Example 14-46 shows a normal non-recursive tail call in C/C++:

 Example 14-46.

 1 int tailCall(int data) {
 2 f1(data);
 3 return f2(data);
 4 }

 Here, f2 is the last (“tail”) call. Example 14-47 shows a recursive version.

 Example 14-47.

 1 int recursiveTailCall(int data) {
 2 f1(data);
 3 return recursiveTailCall(data);
 4 }

 Our experience will tell us that recursiveTailCall will crash, because it runs indefinitely until the

stack allocation is full and the runtime environment will crash. Of course, this example is deliberately wrong
to show the problem. Having an infinite recursion has to be considered a bug.

 Programming in, for example, C and C++ had and still has the danger of running into exactly this stack
problem, not only with recursive calls. The solution was and still is either to let the compiler insert stack
check code, which sometimes significantly affects performance and does not fix the problem, or avoid
recursion at all.

 In Erlang (and Elixir), every tail call will be optimized, which is called tail call optimization . This means that
the stack frame will be eliminated. It also means that you can create infinite loops, as shown in Example 14-48 .

 Example 14-48.

 1 tailrecursiveloop(N) ->
 2 io :format(" ~w~n ", [N]),
 3 tailrecursiveloop(N+2).
 4
 5 nontailrecursiveloop(N) ->
 6 io :format(" ~w~n ", [N]),
 7 2 * nontailrecursiveloop(N).

 3 http://erlang.org/doc/man/lists.html
 4 http://elixir-lang.org/docs/stable/elixir/Enum.html#content

http://erlang.org/doc/man/lists.html
http://elixir-lang.org/docs/stable/elixir/Enum.html#content

CHAPTER 14 ■ FUNCTIONAL CONCEPTS

192

 Only tailrecursiveloop will hold the memory consumption of the Erlang VM stable; the
 nontailrecursiveloop function will grow memory steadily and eventually crash, because the recursive call
is in an expression and can’t be optimized. Run the example from the Rebar3 shell and then monitor the
memory of the beam process on your machine.

 As mentioned, recursion with tail optimization is a good tool for loops and is used widely in libraries for
manipulating data structures like lists or trees.

 Example 14-49 doubles all list element values with a recursive function.

 Example 14-49.

 1 doublebody([H|T]) -> [2*H | doublebody(T)];
 2 doublebody([]) -> [].

 If the list argument is empty, the returned list will be an empty list as well. In any other case, the
statement in line 1 will process recursively the list until the tail portion T is empty. The output of the function
called like

 recursionexample :doublebody([1,2,3]).

 will be

 [2,4,6]

 This is an example of a body recursive function. In the past, such functions were slower than tail
recursive functions, but the Erlang/OTP guide states that this is not the case anymore (see Myth :
 Tail-Recursive Functions are Much Faster Than Recursive Functions 5).

 You can write the function example in a tail recursive way, as shown in Figure 14-50.

 Example 14-50.

 1 doubletailreversed(L) -> doubletailreversed(L, []).
 2
 3 doubletailreversed([],Acc) -> Acc;
 4 doubletailreversed([H|T],Acc) -> doubletailreversed(T,[2*H|Acc]).

 The function gets a list as argument and calls a private function with an accumulator as second
argument. In this case, the accumulator is an empty list, but it could be a number for other cases.

 Why use an accumulator? This is a concept to construct tail recursions. The accumulator will be filled
with the result after each successful recursive call. Another element in the concept is that there must be an
end condition to stop the recursion. In the case of lists, this is an empty list.

 In the example, line 1 calls the private function in lines 3 and 4. The argument for the private function
is the original list argument and an empty list as accumulator. Line 3 checks if the list to process is empty
and returns the accumulator. If you pass an empty list to the exported function, you will also get an empty
list [] returned. Line 4 uses the head (the first element) of the list and the tail (the rest of the elements) to
pass in a recursive call with the tail as argument, which could be empty, and updates the accumulator with
the doubled value of the head element. In your case, the update of the accumulator means that you add the
result as head to the accumulator list. Attaching a list element to the beginning of the list is more performant
than appending (see Lists and Tuples).

 5 http://erlang.org/doc/efficiency_guide/myths.html

http://erlang.org/doc/efficiency_guide/myths.html
http://erlang.org/doc/efficiency_guide/myths.html
http://erlang.org/doc/efficiency_guide/myths.html

CHAPTER 14 ■ FUNCTIONAL CONCEPTS

193

 The call
 recursionexample:doubletailreversed([1,2,3]).
 will result in

 [6,4,2}

 Is this the result you want? The handling of the lists resulted in a reversed order. Fixing this is easy; see
Example 14-51 .

 Example 14-51.

 1 doubletail(L) -> doubletail(L, []).
 2
 3 doubletail([],Acc) -> lists :reverse(Acc);
 4 doubletail([H|T],Acc) -> doubletail(T,[2*H|Acc]).

 The only change, apart from the function name, is in line 3. You call list:reverse on the accumulator
to correct the order.

 The call

 recursionexample :doubletail[1,2,3]).

 will now result in

 [2,4,6}

 as expected.
 Interesting is the implementation of lists:reverse in Erlang; see Example 14-52 .

 Example 14-52.

 1 reverse([] = L) ->
 2 L;
 3 reverse([_] = L) ->
 4 L;
 5 reverse([A, B]) ->
 6 [B, A];
 7 reverse([A, B | L]) ->
 8 lists :reverse(L, [B, A]).

 The function lists:reverse(list) (arity 1) for non-trivial lists will call function lists:reverse with
arity 2. The reverse algorithm is actually implemented as built-in function (BIF) to take advantage of C,
because reverse is very often used as tail call in recursive functions. The call lists:reverse on line 8 calls
the BIF. Also, if you look at the implementation of Elixir’s enumerable protocol, you see that it is calling the
same BIF; see Example 14-53 .

 Example 14-53.

 1 # enumerable protocol
 2 def reverse(enumerable) when is_list(enumerable) do
 3 :lists.reverse(enumerable)
 4 end

CHAPTER 14 ■ FUNCTIONAL CONCEPTS

194

 Elixir has the same approach for creating recursive functions. Assume you have a map with a value that
has nested lists and maps, as in Example 14-54 .

 Example 14-54.

 1 defmodule NestedMaps do
 2
 3 def nested_map() do
 4 %{"configs" =>
 5 [
 6 [%{"kind" => "compute#accessConfig",
 7 "name" => "External NAT",
 8 "natIP" => ["146.148.0.0","127.0.0.1"],
 9 "type" => "ONE_TO_ONE_NAT"}
 10],
 11 [{:otherconfig,"Router"}]
 12]
 13 }
 14 end
 15
 16 def get_nested_list(nm) do
 17 %{"configs" => nestedmaplist} = nm
 18 nestedmaplist
 19 end
 20
 21 def get_nested_map_from_list(nm, nestedlevel) when nestedlevel < 1 do
 22 nm
 23 end
 24
 25 def get_nested_map_from_list(nm, nestedlevel) do
 26 l = List .first(nm)
 27 get_nested_map_from_list(l,nestedlevel-1)
 28 end
 29
 30 def get_nested_map_value(nm, val) do
 31 Map .get nm,val
 32 end
 33 end

 The function get_nested_map_from_list gets a nestedlevel number to indicate how many lists you
have nested. Once the number goes to 0, then the guard nestedlevel < 1 kicks in and the nested map or list
is returned. With that you can then retrieve the value you need (in this example, from the first list only) but
the example can be changed to either set the list index to retrieve or send a function parameter that will be
applied to the list.

 Lines

 1 NestedMaps .nested_map
 2 |> NestedMaps .get_nested_map
 3 |> NestedMaps .get_nested_map_from_list(2)
 4 |> NestedMaps .get_nested_map_value("natIP")

 return the value [“146.148.23.208”,”127.0.0.1”].

CHAPTER 14 ■ FUNCTIONAL CONCEPTS

195

 If a recursive function calls another recursive function, then the function is called trampolined . This
concept is used in Lisp implementations, but it can also be used to implement tail call recursion in stack-
based languages. In this case, an outer function calls an inner function, but this inner function returns the
address of another function that is then called by the outer function. When returning the stack of the first
inner function is cleared. The downside is that arguments need to be passed as global variables and the
performance is worse than direct calls. This is related to continuation passing style programming.

 Higher Order Functions
 A higher order function is a function that takes other functions as argument or returns a function, also at
the same time. The concept derives from the lambda calculus in mathematics, but it can be used without
understanding the underlying theory.

 Historically, higher order functions are not only a domain of functional languages; see Example 14-55 .

 Example 14-55.

 1 #include <stdio.h>
 2 #include "printlib.h"
 3
 4 int int_print_func(int x)
 5 {
 6 printf("%d \n ", x);
 7 }
 8
 9 int main()
 10 {
 11 // declared in printlib.h as: void print_func(void*(*func)(int));
 12 print_func(int_print_func(42));
 13
 14 return 0;
 15 }

 This short C++ program defines a function int_print_func that obeys the declaration void*(*func)
(int) . This declaration is a function pointer declaration and int_print_func implements it. The _print_
func takes the address of the implemented function (“pointer”) as an argument; it says , just give me a
function that takes an argument of type int and returns anything . This is a simple example in C++ from the
past; nowadays we would use lambda functions, which have a more insane syntax. Printing out “Hello
world” in the console would be auto func = [] () { cout << “Hello world”; }; func(); if this code
was included in a normal main() function.

 Erlang and Elixir allow functions as argument with a simple syntax, either as anonymous function or via
a variable. See Example 14-56 .

 Example 14-56.

 1 call_function(F, A) -> F(A).
 2
 3 call_with_fun() ->
 4 call_function(fun (N) -> N*N end , 5).
 5
 6 call_with_variable() ->
 7 Sqfunc = fun (N) -> N*N end ,

CHAPTER 14 ■ FUNCTIONAL CONCEPTS

196

 8 call_function(Sqfunc,4).
 9
 10 direct_call() ->
 11 fun (N) -> N*N end (3).

 You define a function named call_function with two arguments: one function F and one argument for

the function F . The body then calls F with A .
 The function call_with_fun uses call_function with an anonymous function and the argument 5,

so the result is 25. The function call_with_variable defines the function variable Sqfunc first and then
calls call_function with Sqfunc as the first argument and 4 as the second, so the result is 16. The function
 direct_call just invokes the anonymous function with arguments and returns 9.

 The Elixir implementation is equivalent to Erlang’s implementation with a few syntax differences; see
Example 14-57 .

 Example 14-57.

 1 def call_function(function,a) do
 2 function.(a)
 3 end
 4
 5 def call_with_fn() do
 6 call_function(fn n -> n*n end ,5)
 7 end
 8
 9 def call_with_variable() do
 10 sqfunc = fn n -> n*n end
 11 call_function(sqfunc,4)
 12 end
 13
 14 def direct_call() do
 15 fn n -> n*n end .(3)
 16 end
 17
 18 def call_with_variable_shorthand() do
 19 sqfunc = &(& 1 *& 1)
 20 call_function(sqfunc,4)
 21 end
 22
 23 def direct_call_shorthand() do
 24 (&(& 1 *& 1)).(3)
 25 end

 Note the syntax on line 2. The dot is required to invoke the function; otherwise the compiler is
complaining that function/1 is undefined. The dot also makes sense looking at the function direct_call ,
where the anonymous function is defined and the dot tells the compiler that it will be invoked (line 15).

 Elixir has a shorthand syntax for anonymous functions, which is shown in lines 19 and 24. The
ampersand and the parentheses tell the compiler that an anonymous function is defined and the &1 means
the first argument passed into this anonymous function.

CHAPTER 14 ■ FUNCTIONAL CONCEPTS

197

 You can find usage of function arguments in the standard library where predicate functions are used for
iterators, filters, and reduce implementations. This is also valid for OOP languages like C#.

 A chapter about high order functions would not be complete without mentioning currying . This is a
technique that was made popular by the mathematician Haskell Curry 6 in the 1960s. The essence is to create
functions with arity 1, which means one argument, from functions with arity greater than 1, which means
multiple arguments.

 The language Haskell not surprisingly supports currying automatically, so all functions have only one
argument. A statement in Haskell like

 take 2 [1, 3, 5, 7, 9]

 will apply 2 to take and returns a function that takes a list as argument and returns the first 2 elements of
this list. You could do this yourself, again in Haskell:

 take2 = take 2
 take2 [1, 3, 5, 7, 9]

 In Erlang (Example 14-58) and Elixir (Example 14-59) you can achieve currying by writing additional
functions to create partial evaluation.

 Example 14-58.

 1 multiply(X, Y) -> X*Y.
 2 doubler() -> fun (X) -> multiply(2, X) end .
 3
 4 curry() ->
 5 C = doubler(),
 6 C(21).

 Example 14-59.

 1 def multiply(x,y) do
 2 x*y
 3 end
 4
 5 def doubler() do
 6 fn x -> multiply(2,x) end
 7 end
 8
 9 def curry() do
 10 c = doubler()
 11 c.(21)
 12 end

 The function doubler returns a function that calls multiply with 2 as the first argument. Calls to the
returned function will subsequently call multiply with the first argument fixed to 2 and double the second
argument. The result of both examples is 42. You have curried a function with arity 2 (multiply) to a function
with arity 1 (doubler).

 6 https://en.wikipedia.org/wiki/Haskell_Curry

https://en.wikipedia.org/wiki/Haskell_Curry
https://en.wikipedia.org/wiki/Haskell_Curry

CHAPTER 14 ■ FUNCTIONAL CONCEPTS

198

 Continuation-Passing
 Continuation-passing is one of the concepts that are used without knowing it. For example, C# has the keywords
 async and await (which soon may make an appearance in ECMAScript 7 as well); see Example 14-60 .

 Example 14-60.

 1 async Task< int > GetData() {
 2 return await LengthyOperation();
 3 // declared as async Task<int> LengthyOperation()
 4 }

 The execution will be suspended on line 2 and other operations will continue. When the return value is
received, GetData() will return to the calling function, which is also async . In other terms, we can say that
on line 2 a continuation is saved, which is the execution state at the time of the call to LenghtyOperation .

 If you think now of a monad , you are right (see Continuation Monad 7 in Haskell). You are also right
when you think of a goto . Jumping in the code dependent on asynchronous events makes it very difficult to
debug or understanding the control flow of a program.

 Writing in continuation-passing style (CPS) means that you can pass continuations as functions
explicitly to other functions. These continuation functions will “tell it what to do next.” By calling the
continuation function, the calling function indicates that it is ready to continue.

 CPS can be used for interface programming or for computations that take a long or unknown time.
Interesting examples are lazy sequences, for example streams. The language Clojure has it implemented in a
 way 8 that a function similar to an iterator object in other languages returns both a value and a continuation
function. This helps to iterate through potentially infinite sequences.

 Erlang and Elixir don’t support continuations in the language, but with anonymous functions and tail-
recursion, the continuation-passing style can be achieved.

 The following code shows generic continuation-passing style examples. The function initiate calls the
next function and so on until you send a stop message to terminate the process.

 For Erlang, see Example 14-61 .

 Example 14-61.

 1 continue(A,F) ->
 2 F(A).
 3
 4 initiate(A) ->
 5 case A of
 6 {ok,1} -> continue({ok,2}, fun continueB/1);
 7 _ -> error
 8 end .
 9
 10 continueB(A) ->
 11 case A of
 12 {ok,2} -> continue({stop}, fun continueC/1);
 13 _ -> error
 14 end .
 15
 16 continueC(A) ->

 7 http://hackage.haskell.org/package/mtl-2.0.1.0/docs/Control-Monad-Cont.html
 8 http://clojure.org/reference/lazy

http://hackage.haskell.org/package/mtl-2.0.1.0/docs/Control-Monad-Cont.html
http://clojure.org/reference/lazy
http://hackage.haskell.org/package/mtl-2.0.1.0/docs/Control-Monad-Cont.html
http://clojure.org/reference/lazy

CHAPTER 14 ■ FUNCTIONAL CONCEPTS

199

 17 case A of
 18 {stop} -> {stopped}
 19 end .

 For Elixir, see Example 14-62 .

 Example 14-62.

 1 def initiate(a) do
 2 case a do
 3 {:ok,1} -> continue({:ok,2},&continueB/1)
 4 _ -> :error
 5 end
 6 end
 7
 8 defp continue(a,f) do
 9 f.(a)
 10 end
 11
 12 defp continueB(a) do
 13 case a do
 14 {:ok,2} -> continue({:stop},&continueC/1)
 15 _ -> :error
 16 end
 17 end
 18
 19 defp continueC(a) do
 20 case a do
 21 {:stop} -> {:stopped}
 22 _ -> :error
 23 end
 24 end

 The generic example is very simple; a more advanced code can be found in this stackexchange answer 9
by Elixir’s creator Jose Valim. Hint: the ampersand in the Elixir example denotes the definition of an
anonymous function (see the Higher Order Functions section).

 Notes:

• Continuation passing without tail-recursion optimization will eventually grow the
stack and cause runtime problems.

• Using continuation functions means that a potentially concurrent process will be
broken down into lambda expressions that are computed one after another, probably
on a single thread.

 Closures
 The concept of closures is part of many programming languages, functional or imperative. The names vary
from lambda (Java) to delegate (C#) to _block (Objective C).

 9 http://codereview.stackexchange.com/a/51548

http://codereview.stackexchange.com/a/51548
http://codereview.stackexchange.com/a/51548
http://codereview.stackexchange.com/a/51548

CHAPTER 14 ■ FUNCTIONAL CONCEPTS

200

 Closures keep immutable state in context by binding the value to the environment. Values are defined
outside of a function during the creation of this function and do not change until invocation of the function.
A closure is an instance of a function; an anonymous function is the literal of a function type, similar to class
and object instance .

 The examples map a list of atoms (initiate_closure) to anonymous functions and print it to the
console in print_closure . See Example 14-63 .

 Example 14-63.

 1 initiate_closure() ->
 2 [tomato,onion,cheese].
 3
 4 print_closure() ->
 5 L = initiate_closure(),
 6 lists :map(fun (A)-> io :format(" ~p~n ", [A]) end , L).

 The Elixir implementation is more obvious and easier to read thanks to the pipe operator |>, although
the anonymous & operator makes it more abstruse; see Example 14-64 .

 Example 14-64.

 1 def initiate_closure do
 2 [:tomato,:onion,:cheese]
 3 |> Enum .map &(fn () -> & 1 end)
 4 end
 5
 6 def print_closure do
 7 initiate_closure
 8 |> Enum .each &(IO .puts(& 1 .()))
 9 end

 In initiate_closure you map the atoms to functions, and the return value is a list of functions. This list
is then used to print the atom strings out.

 Lazy Evaluation
 When code in any programming language comes across an expression, it needs to decide, if it is able to
decide, if the expression is evaluated immediately or at a later point in time when the value of the expression
is needed.

 Lazy evaluation vs. short-circuit evaluation Assume you have a statement like

 if (1 == 2 && 1 = 1) {do_something();}

 There is no way that the function do_something() will ever be called. You are interested if the second
expression (1 = 1) will ever be evaluated. If not, you are talking about short circuit evaluation.

 As often in our industry, there are discussions if this is lazy evaluation. Since the second expression in this
example is never evaluated, it is certainly not in a strict sense.

CHAPTER 14 ■ FUNCTIONAL CONCEPTS

201

 Deferred evaluation is needed when it would be too time- or memory-intensive to get the result at once.
Examples are data streams or lists, especially when they are retrieved from data stores.

 In functional languages, you can force lazy evaluation by wrapping an expression in an anonymous
function, as in Example 14-65 .

 Example 14-65.

 next(N) -> [N| fun () -> next(N+1) end].

 The expression is only evaluated when the function wrapping is called. In fact, this is an example of
continuation passing. When you call next the first time, it is not clear to the caller what will be returned.
The anonymous function in the example just gives the next number, but it could be more complex and, for
example, retrieve the next value from a stream.

 Anonymous and recursive functions are language features that may be used when implementing lazy
evaluation.

 Related to lazy evaluation implementation is memorization, which is an optimization technique to
reduce computational complexity of a program. The complexity is often expressed in the big O- notation, as
 O(n) or O(n log n) and similar. The essence of the technique is to cache results of a computation so it does
not need to be computed more than once if an expression has to be evaluated more than once as well. I am
not aware of a programming language that has automatic memoization. If you want to use it, you have to
implement it ourselves. As mentioned before, the sole reason for the use of memoization is performance.

 The library functions in the module Stream in Elixir use lazy evaluation, while the functions in the
module Enum are eager, which means they evaluate immediately.

 Referential Transparency
 Functional programming concepts in this chapter are often based on mathematical principles. When
we apply a function in mathematics we can replace the function with the value of the function without
changing the overall result. In programming, we can’t always be sure of this; for example, consider errors or
exceptions.

 Referential transparency in programming means that it does not matter if I reference an expression or
the result of this expression. It should be transparent to the rest of the program and should not change the
outcome of the program at all.

 Referential transparency and determinism and idempotence A deterministic program or function

will always return the same result for a given input. According to this definition, all deterministic expressions are
also referentially transparent.

 The opposite is not true: a non-deterministic function may be one that returns a random number or encrypts
based on random input like time. This function will still be referentially transparent, although this is disputed.

 Idempotence is similar to both determinism and referential transparency: run a function with the same input
several times and it will always return the same results after the first run . Inserts into a data store should not
change the data if applied a second time. A (surprising) example is a C include file: if it prevents another
include after the first time with the help of #ifdef/#define then it would be considered idempotent.

CHAPTER 14 ■ FUNCTIONAL CONCEPTS

202

 Let’s reexamine the functions discussed with currying. See Example 14-66 .

 Example 14-66.

 1 def multiply(x,y) when is_number(x) and is_number(y) do
 2 x*y
 3 end
 4
 5 def doubler() do
 6 fn x when is_number(x) -> multiply(2,x) end
 7 end

 The function multiply multiplies two numbers and the function double returns a function with one
argument to multiply fixed to 2, so a given number will be multiplied by 2.

 You can call the function doubler with numbers and will always get the same result. If you call
with a string as argument, you get an error; therefore the function is not deterministic for all inputs. See
Example 14-67 .

 Example 14-67.

 1 iex(1)> c = Currying.doubler
 2 #Function<0.125872190/1 in Currying.doubler/0>
 3 iex(2)> c.(1)
 4 2
 5 iex(3)> c.("a")
 6 ** (FunctionClauseError) no function clause matching in anonymous fn/1 in Curryi\
 7 ng.doubler/0
 8 currying.ex:18: anonymous fn("a") in Currying.doubler/0

 Well, is it now referentially transparent or not? Some will say yes, some will say no. It is certainly not
 pure , but this is a totally different discussion I won’t get into. It seems clear that we can’t simply replace
the function call with the result; the result can be either a number or an exception. On the other hand, we
could have guards on the functions to indicate that we only want to deal with number type arguments. If we
would use a statically typed language, the call would never compile. So it depends on the context if the above
functions are referentially transparent or not.

 In Erlang and Elixir, we can achieve referential transparency, but the languages are not helping us
much. We as developers have to ensure that we overcome the problems of dynamic types.

 An interesting idea is to merge designing unit tests with the concept of referential transparency. If all
 units tested are referentially transparent, then the quality of all tests will presumably be higher. Otherwise,
we have to fear that one side effect or input variant was not tested at all and may emerge as error at runtime.

 Referential transparency was certainly introduced by functional programming, but there is no
constraint in OOP languages not to introduce the same idea in OOP as well.

203© Wolfgang Loder 2016
W. Loder, Erlang and Elixir for Imperative Programmers, DOI 10.1007/978-1-4842-2394-9_15

 CHAPTER 15

 Type Creation Concepts

 DSL and Metaprogramming
 Domain-specific languages (DSL) have their origin in declarative programming. The idea is to go up the
logical domain chain until we have very high level functions, thus hiding some of the complexity of the
implementation and invocation of functions.

 A good example is SQL. Just write CREATE TABLE , provide a name and optionally a database name,
and the system will create a database table with default settings. The user does not need to know how this is
implemented and a non-developer can work with this declarative style.

 Other examples in the developer world are HTML and CSS . DSLs outside of software development are
text-based adventure or role-playing games. Commands like turn , attack , and view are shortcuts to more or
less complex functions in the code of the game. Mouse clicks on a pixel area of the screen to attack or defend
could be defined as a visual DSL .

 Metaprogramming Meta has Greek roots with a simple meaning of after or beyond . Philosophers
theorize about metaphysics, the abstract world beyond the physical world. During reception into other
languages the meaning changed slightly and it was used as about . Douglas Hofstadter (Goedel, Escher, Bach,
1979) made the term “meta” popular. In software development, we often speak of metadata and mean data
about data . Metaprogramming is programming on a higher abstract level, taking a program or programming
language as the data. The developer can manipulate the code, write code at runtime, or analyze it.

 In programming, a DSL is used for metaprogramming . You will look into macros first and then explore
other more sophisticated ways.

 Since the early programming languages we’ve had macros. MASM is the Macro Assembler . C was
famous (or infamous, depending on your love of C) for macros like that in Example 15-1 .

 Example 15-1.

 #define multiply(x1, x2) (x1 * x2)

 The preprocessor expands the macro into the source code when it is used, so it is a way to define a DSL
restricted by constraints of macro definitions.

 Erlang has macros as well. The syntax is a bit odd, but it works. There are predefined macros like
 ?MODULE or ?FILE , which are used regularly in source code files.

CHAPTER 15 ■ TYPE CREATION CONCEPTS

204

 Example 15-2 defines some macros in lines 1 to 3 and uses them in the function read_- binary_test .

 Example 15-2.

 1 - define (FILETESTCONTENT, <<"test_from_gfslib">>).
 2 - define (FILETEST, "filetest").
 3 - define (DARDB, "dar").
 4
 5 read_binary_test() ->
 6 R = dar_gfslib_process_files :read_binary(?FILETEST,?DARDB),
 7 ?assertEqual({ok,?FILETESTCONTENT}, R).
 8
 9 % expanded to :
 10 read_binary_test() ->
 11 R = dar_gfslib_process_files :read_binary("filetest","dar"),
 12 ?assertEqual({ok,<<"test_from_gfslib">>}, R).

 Erlang macros work like C macros and in fact replace strings in the code before the actual compilation
of the code into bytes. In Example 15-3 , the macro simply injects string constants, but the macro body can be
a little bit more complex than just a string constant.

 Example 15-3.

 1 - define (IF(A,T,F),
 2 begin
 3 (case (A) of true->(T); false->(F) end)
 4 end).
 5
 6 is_true(A) ->
 7 ?IF(A,{ok,A},{error,A}).
 8
 9 % expanded to
 10 is_true(A) ->
 11 case (A) of true->{ok,A}; false->{error,A} end.

 Here you define an IF macro to test if a Boolean expression is true or false. The function is_true uses
this macro to just return ok or error .

 When you call the function, you get the expected result; see Example 15-4 .

 Example 15-4.

 1 1> macrosexample :is_true(1<2).
 2 {ok,true}
 3 2> macrosexample :is_true(1>2).
 4 {error,false}

 Of course, a macro could define other statements like calling a function; see Example 15-5 .

 Example 15-5.

 1 - define (IF2(B,T,F),
 2 begin
 3 (case (B) of true-> (T()); false->(F()) end)
 4 end).

CHAPTER 15 ■ TYPE CREATION CONCEPTS

205

 5
 6 send_message_to_next_actor(B) ->
 7 ValidOrder = {pizza,margherita},
 8 T = fun () -> self() ! {order, {pizza,margherita}, takeaway} end ,
 9 F = fun () -> self() ! {noorder, B} end ,
 10 ?IF2(B == ValidOrder,T, F).

 This example defines the macro IF2 that expects functions as arguments T and F and calls them
according to the Boolean expression B . Your functions send a message to the module itself to be able to test,
but it could be another module or registered node.

 As mentioned, macros are only one way to achieve metaprogramming in software development.
Another way is to directly manipulate the AST (abstract syntax tree 1).

 You can manipulate the AST in Erlang as well, but Elixir brings metaprogramming to a new dimension.
Part of the language is built on top of macros which are, in a difference to Erlang, not just extenders, but
manipulate the AST. The macros run at compile time and produce byte code.

 Homoiconic languages The term homoiconic language means that the internal representation of a
program written in this language can be expressed by the syntax of the language. This also means that code
can be manipulated as data. One example for such a language is Lisp 2 . Elixir is considered to be a
homoiconic language as well.

 A simple example to define a macro in Elixir is to check if a number is even or not; see Example 15-6 .

 Example 15-6.

 1 defmodule Macros do
 2 defmacrop even?(n) do
 3 quote do rem(unquote (n),2) == 0 end
 4 end
 5
 6 def is_even?(n) do
 7 even?(n)
 8 end
 9 end

 The macro in the example is private (defmacrop) to the module and is used in the function is_even? .
 The magic is done in quote and unquote which are themselves macros. quote provides the internal

representation of the expressions; see Example 15-7 .

 Example 15-7.

 1 iex(1)> num = 3
 2 3
 3 iex(2)> quote do rem(unquote (num),2) == 0 end

 1 https://en.wikipedia.org/wiki/Abstract_syntax_tree
 2 www.mprove.de/diplom/gui/kay69.html

http://www.mprove.de/diplom/gui/kay69.html
https://en.wikipedia.org/wiki/Abstract_syntax_tree
http://www.mprove.de/diplom/gui/kay69.html

CHAPTER 15 ■ TYPE CREATION CONCEPTS

206

 4 {:==, [context: Elixir , import: Kernel],
 5 [{:rem, [context: Elixir , import: Kernel], [3, 2]}, 0]}

 The representation is a tuple with nested lists and tuples .

• The first element in the example is the atom :== which is the name of the function.

• The second element is metadata, in your case the module the function is imported
from.

• The third element is a list of arguments, in your case two arguments: the first one is a
tuple for the function rem (the left side of ==) and the second argument is 0 (the right
side of ==).

• The rem function (atom :rem) has the same metadata as == and a list of two
arguments as well. The second one is 2 , which is a constant in the macro.

• The first argument of the rem function is num , the macro’s argument. unquote gets the
value from the variable defined in line 1 and injects it into the representation.

 This tuple is in fact the abstracted syntax tree expressed in Elixir and this is the reason why Elixir falls
into the category of a homoiconic language.

 You can also get the textual representation of the macro; see Example 15-8 .

 Example 15-8.

 1 iex(1)> num = 3
 2 3
 3 iex(2)> Macro .to_string(quote do rem(unquote (num),2) == 0 end)
 4 "rem(3, 2) == 0"

 The function to_string from the module Macro takes the AST and returns a string with the macro text
as it will be injected into code.

 Internal and external DSL The macros in Elixir can be used to create an internal DSL , which is a
domain-specific language that uses language constructs to appear to be a different language or, as in Elixir’s
case, to extend the language. For example, defmodule is a macro, although it appears to be a language keyword.

 External DSLs need to be parsed to be transformed into another language. For example, LESS is a DSL for
defining web page styles that are then translated into CSS.

 What can you do with all this knowledge?
 Example 15-9 is a statement you can write with Ecto 3 , a DSL to interact with databases.

 Example 15-9.

 1 query = from w in Weather ,
 2 where: w.prcp > 0 or is_nil(w.prcp),
 3 select: w

 3 https://github.com/elixir-ecto/ecto

https://github.com/elixir-ecto/ecto
https://github.com/elixir-ecto/ecto

CHAPTER 15 ■ TYPE CREATION CONCEPTS

207

 Some readers will be reminded of C#, which has a DSL for Linq expressions in the .Net framework. In
C#, anonymous functions are used to achieve this DSL . Elixir uses macros; for example, from is the macro
shown in Example 15-10 .

 Example 15-10.

 1 # from https://github.com/elixir-lang/ecto/blob/master/lib/ecto/query.ex
 2 defmacro from(expr, kw \\ []) do
 3 unless Keyword .keyword?(kw) do
 4 raise ArgumentError , "second argument to `from` must be a keyword list"
 5 end
 6
 7 {quoted, binds, count_bind} = From .build(expr,__CALLER__)
 8 from(kw,__CALLER__, count_bind, quoted, binds)
 9 end

 The macro takes an expression (in your case, w in Weather) and a keyword list as arguments. Example
 15-9 shows the keyword list on lines 2 and 3. The syntax of keyword lists allows the square brackets to
indicate the list to be optional if the keyword list is the last argument in the function. All arguments are then
used to build an expression for a function call to a function from ; see line 8 in Example 15-10 . Similar macros
can be found in the web framework Phoenix , for example to define routes.

 Macros in Elixir are powerful because they can run code at compile time and so can be used to raise
exceptions or log messages at compile time. They can also be used to define mixins.

 Mixin
 The concept of mixins means to inject code without changing the recipient, which can be a class in OO
languages , an object in languages like JavaScript, or a module as in Ruby.

 The reason for mixins is to reuse code for general functionality without having to rely on inheritance
implementations in OO languages . Interfaces and similar are no real substitute because they just define the
behavior and have to be implemented individually for each case.

 Erlang does not have a mechanism for mixins. Elixir makes use of its macro features to provide a way to
define a mixin.

 When you include a module, you can do it in different ways. Using use you tell the compiler to run a
special macro in the module you want to include; see Example 15-11 .

 Example 15-11.

 1 defmodule RecipeMixins do
 2 defmacro __using__(_opts) do
 3 quote location: :keep do
 4 def print(l) do
 5 IO .puts(inspect l)
 6 end
 7 defoverridable [print: 1]
 8 end
 9 end
 10 end
 11
 12 defmodule VegetableStew do
 13 use RecipeMixins

CHAPTER 15 ■ TYPE CREATION CONCEPTS

208

 14 def cook() do
 15 l = %{{:carot,:piece} => 3,
 16 {:onion,:piece} => 2,
 17 {:tomato,:piece} => 2
 18 }
 19 # do something
 20 print(l)
 21 end
 22 end
 23
 24 defmodule BeefStew do
 25 use RecipeMixins
 26 def cook() do
 27 l = %{{:carot,:piece} => 3,
 28 {:onion,:piece} => 2,
 29 {:tomato,:piece} => 2,
 30 {:beef,:grams} => 250
 31 }
 32 # do something
 33 %{{:beef,:grams} => g} = l
 34 print(g)
 35 end
 36
 37 def print(g) do
 38 IO .puts(("How much beef? " <> inspect g) <> " grams")
 39 end
 40 end

 The macro using starting on line 2 simply defines a function that takes a variable as argument and sends
its value to the console.

 The two other modules do not define a print function, but after the line

 use RecipeMixins

 the modules can use the print function that is defined in the using macro in the module RecipeMixins .
 Line 7 in the example defines the function print with arity 1 overridable:

 defoverridable [print: 1]

 The module BeefStew does this and overrides the function. When you run the print version of both
modules you get a different output; see Example 15-12 .

 Example 15-12.

 1 iex(1)> VegetableStew .cook
 2 %{{:carot, :piece} => 3, {:onion, :piece} => 2, {:tomato, :piece} => 2}
 3 iex(2)> BeefStew .cook
 4 How much beef? 250 grams

 In OO languages , the pattern decorator can be used to inject behavior even at runtime. This works by
defining an interface and implementing it in the types that should use that behavior. A similar approach can
be taken in Elixir by defining a protocol and implementing it for certain types (see Chapter tk).

CHAPTER 15 ■ TYPE CREATION CONCEPTS

209

 Another OO pattern similar to mixins is the visitor pattern that is implemented with abstract classes
(C++, C#) or interfaces (Java).

 Polymorphism
 Polymorphism is a set of different concepts, and many of the definitions overlap. What they have in common
is that a type can change appearance without changing the original functionality.

 In the object-oriented world, polymorphism mostly means subtypes (inclusion polymorphism) and
templates or generics (constrained parametric polymorphism). Then there is the term ad hoc polymorphism .
This can refer to operator overloading and function overloading; it’s sometimes also called virtual functions.

 All these types can be seen in Java, C++, and C#. With these mechanisms OO developers build
hierarchies of types that share behavior or functionality.

 In dynamically typed languages, we speak of unconstrained parametric polymorphism , also called duck
typing , if no type information is available.

 Erlang can express polymorphism, but it is different from OO languages . Let’s first look at Example 15-13
of type-based (sort of) polymorphism.

 Example 15-13.

 1 cookstew_typebased({S,I}) when {S,I} == {vegetable,I} ->
 2 io :fwrite("It is a vegetable stew ~n ");
 3 cookstew_typebased({S,I}) when {S,I} == {beef,I} ->
 4 io :fwrite("It is a beef stew ~n ");
 5 cookstew_typebased(_) ->
 6 io :fwrite("Unknown stew ~n ").

 The function cookstew_typebased behaves differently depending on the argument. To call it, use the
code in Example 15-14 .

 Example 15-14.

 polymorphism :cookstew_typebased({beef,[]}).

 Or you can call it as shown in Example 15-15 .

 Example 15-15.

 polymorphism :cookstew_typebased({beef,{ingredients,[]}}).

 It will return “It is a beef stew”.
 This example does not seem very elegant and in fact it is not considered to be good Erlang code. Let’s

refactor the function to use pattern matching; see Example 15-16 .

 Example 15-16.

 1 cookstew_patternmatching({vegetable,_I}) ->
 2 io :fwrite("It is a vegetable stew ~n ");
 3 cookstew_patternmatching({beef,_I}) ->
 4 io :fwrite("It is a beef stew ~n ");
 5 cookstew_patternmatching(_) ->
 6 io :fwrite("Unknown stew ~n ").

CHAPTER 15 ■ TYPE CREATION CONCEPTS

210

 This looks more like the Erlang we are expecting, although the limits lie in the first element of the tuple,
which must be one of the positive pattern atoms. Also, the argument always needs to be a tuple and there
need to be exactly one argument. This construct (as with the one with the guards above) looks more like a
virtual function of OOP languages without the option to be overwritten.

 If the argument passed is a record or a map, then it will be possible to change the record and still match
positively, because the additional fields will be ignored; see Example 15-17 .

 Example 15-17.

 1 beef_map() ->
 2 #{ stewtype => beef,
 3 {beef,grams} => 200
 4 }.
 5
 6 beef_map_extended() ->
 7 #{ stewtype => beef,
 8 {beef,grams} => 200,
 9 ingredients => []
 10 }.
 11
 12 cookstew_map(#{stewtype := vegetable}) ->
 13 io :fwrite("It is a vegetable stew ~n ");
 14 cookstew_map(#{stewtype := beef}) ->
 15 io :fwrite("It is a beef stew ~n ");
 16 cookstew_map(_) ->
 17 io :fwrite("Unknown stew ~n ").

 You can use the map in beef_map or beef_map_extended and they will both match in the function
 cookstew_map . The pattern match is only interested that a key stewtype is in the map and that its value is
 beef .

 Elixir can do what I have described for Erlang, but also adds protocols . They are inspired by Clojure and
are a mechanism to define functions or modules with dynamic polymorphism.

 According to Jose Valim 4 ,
 “Elixir protocols are not interfaces. Behaviors would be the closest thing to interfaces. However,

typed contracts are not exclusive to OO languages . Protocols build on top of behaviors to add data-type
polymorphism (a form of ad hoc polymorphism). Polymorphism is not a concept exclusive to OO as well.
Protocols in Elixir provide the same kind of polymorphism as Haskell type classes.”

 Protocols certainly look like interfaces in OO languages where they define the behavior of a type or class.
Once the interface is implemented in the class, consumers of this class can rely on the fact that they can call
the methods defined in the interface.

 C# knows extension methods, which are somewhere in the middle between an interface and a mixin.
They are bound to the type, but as static methods they are defined and implemented outside of the class
they affect. The implementation of an extension method is part of the class, though, and the code is injected
into its own implementation.

 In Elixir, it is not the type that implements the protocol, but the protocol itself needs to be implemented
for different types; see Example 15-18 .

 4 https://elixirforum.com/t/why-avoid-mocks/1396/9

https://elixirforum.com/t/why-avoid-mocks/1396/9
https://elixirforum.com/t/why-avoid-mocks/1396/9

CHAPTER 15 ■ TYPE CREATION CONCEPTS

211

 Example 15-18.

 1 defmodule Stewtype do
 2 defstruct stewtype: :veg, ingredients: []
 3 end
 4
 5 defmodule Protocols do
 6 defprotocol Stew do
 7 def print(data)
 8 end
 9
 10 defimpl Stew , for: Stewtype do
 11 def print(s) do
 12 case s.stewtype do
 13 :veg ->
 14 "It's a vegetable stew"
 15 :beef ->
 16 "It's a beef stew"
 17 _ ->
 18 "Unknown stew"
 19 end
 20 end
 21 end
 22 end
 23
 24 defmodule StewProtocol do
 25 def what_is_it?(stew) do
 26 Protocols.Stew .print(stew)
 27 end
 28 end

 This example contains three modules in one file for easier compilation. The module from line 5 defines
first the protocol Stew and then implements it on lines 10-22 for the type Stewtype . This type is defined in
the module Stewtype and it is a struct.

 The implementation of the protocol in the example is just to print out a string. The interesting part is
that this implementation checks the conditions (in your case, which data comes in the struct) and processes
the data accordingly.

 The module StewProtocol is a simple usage of the implementation. The function what_is_it? uses the
protocol implementation to print out a string depending on the data. If you call this function, you get the
output shown in Example 15-19 .

 Example 15-19.

 1 iex(1)> s = % Stewtype {}
 2 % Stewtype {ingredients: [], stewtype: :veg}
 3 iex(2)> Stew .print(s)
 4 "It's a vegetable stew"
 5 iex(3)> sb = %{s|stewtype: :beef}
 6 % Stewtype {ingredients: [], stewtype: :beef}
 7 iex(4)> StewProtocol .what_is_it?(sb)
 8 "It's a beef stew"
 9 iex(5)> su = %{s|stewtype: :chicken}

CHAPTER 15 ■ TYPE CREATION CONCEPTS

212

 10 % Stewtype {ingredients: [], stewtype: :chicken}
 11 iex(6)> StewProtocol .what_is_it?(su)
 12 "Unknown stew"

 Line 1 defines the struct you use. It contains default values :veg for the stewtype key and an empty
list for the ingredients key. Lines 5 and 9 create new structs from the first one and just change stewtype to
another atom. When you call your protocol implementation, you get the correct output.

 The Elixir standard library has defined a few protocols like Enumerable that are used heavily. An
interesting protocol, which you have encountered in the examples, is the inspect protocol, shown in
Example 15-20 .

 Example 15-20.

 1 # https://github.com/elixir-lang/elixir/blob/master/lib/elixir/lib/inspect.ex
 2 defprotocol Inspect do
 3 @fallback_to_any true
 4 def inspect(term, opts)
 5 end

 The protocol defines the function inspect that takes an Elixir term and options. In tests, you have
written lines like

 Enum .each context, & IO .puts(inspect & 1)

 This line prints out all the key-value pairs in the context of the test. Since the types can’t always be
expressed as strings, they need to be transformed first. This is what inject does.

 Line 3 in Example 15-20 defines that the protocol should fall back to the implementation for the type
 Any if no implementation for a certain type is found.

 If you call Example 15-20 like Example 15-21 , you will get an error.

 Example 15-21.

 1 iex(1)> StewProtocol .what_is_it?(2)
 2 ** (Protocol.UndefinedError) protocol Stew not implemented for 2
 3 protocols.ex:5: Stew .impl_for!/1
 4 protocols.ex:6: Stew .print/1

 You must change the protocol implementation so you catch any type that is not implemented;
see Example 15-22 .

 Example 15-22.

 1 defmodule Protocols do
 2 defprotocol Stew do
 3 @fallback_to_any true
 4 def print(data)
 5 end
 6
 7 defimpl Stew , for: Stewtype do
 8 def print(s) do
 9 case s.stewtype do
 10 :veg ->

CHAPTER 15 ■ TYPE CREATION CONCEPTS

213

 11 "It's a vegetable stew"
 12 :beef ->
 13 "It's a beef stew"
 14 _ ->
 15 "Unknown stew"
 16
 17 end
 18 end
 19 end
 20
 21 defimpl Stew , for: Any do
 22 def print(_) do
 23 "This is not stew data!"
 24 end
 25 end
 26 end

 The implementation for type Any together with @fallback_to_any set to true on line 3 returns the string
in Example 15-23 , as expected.

 Example 15-23.

 1 iex(1)> StewProtocol .what_is_it?(2)
 2 "This is not stew data!"

 Protocols are implemented in a way that OO developers will find the wrong way around. In OO, a class
knows everything about the type, including all behavior. Protocols separate this into a different module,
away from the type. It also means that the logic of how to handle a behavior request, say a function, is
defined and implemented outside of a type. This is a good example of the functional paradigm where the
functions handle data, not the data type handling functions.

 Behaviors (Behaviours)
 So far you have seen two ways to affect the original implementation (or the behavior) of a module or type:
mixins and polymorphism via pattern matching and protocols.

 Erlang and Elixir know a construct called behaviour which is confusingly named like the description we
use in OOP for an interface. In addition, the Erlang behaviour is slightly different than an Elixir behaviour .

 The idea of the Erlang behaviour goes back to the concept of generic and specific. The behaviour
module is the generic part and another module (the specific one) implements the callbacks. It is closely
related to OTP, for example to define a gen_server ; see Example 15-24 .

 Example 15-24.

 1 - module (darapi).
 2 - behaviour (gen_server).

 The behaviour keyword indicates that there may be callbacks defined in the generic module that need
to be implemented in the consuming module.

 This sounds familiar, and in fact we could say that a behaviour is an interface . Callbacks are called when
certain events occur, for example when messages arrive. We could also say the behaviour defines a contract
between the generic module and its implementer.

CHAPTER 15 ■ TYPE CREATION CONCEPTS

214

 Elixir behaviours work as explained above, also with a slightly different syntax; see Example 15-25 .

 Example 15-25.

 1 defmodule Stewtype do
 2 defstruct stewtype: :veg, ingredients: []
 3 end
 4
 5 defmodule Printer do
 6 @type stew :: Stewtype .t
 7 @callback print(stew) :: {:ok, term} | {:error, term}
 8 end

 The definition of the callbacks is a specification declaration as it is used to document code, for example
to give type hints to Dialyzer . The @type declaration defines the type for use in the callback declaration.
The callback declares a function called print that takes the specified type stew on line 6 as an argument.
The right side after the double colon (::) indicates the return value. In this case, we say that one of two tuples
may be returned, with the first element a well-specified atom and the second a term which, in Erlang- and
Elixir-speak, means any valid expression. We call the example behaviour Printer .

 A consumer of this behaviour has to implement the callback; otherwise a compiler error will be thrown.
See Example 15-26 .

 Example 15-26.

 1 defmodule VegStew do
 2 @behaviour Printer
 3 def print(s) do
 4 case s.stewtype do
 5 :veg ->
 6 {:ok, "It's a vegetable stew"}
 7 _ ->
 8 {:error, "Unknown stew"}
 9
 10 end
 11 end
 12 end
 13
 14 defmodule BeefStew do
 15 @behaviour Printer
 16 def print(s) do
 17 case s.stewtype do
 18 :beef ->
 19 {:ok, "It's a beef stew"}
 20 _ ->
 21 {:error, "Unknown stew"}
 22 end
 23 end
 24 end

 The @behaviour directive says that the modules VegStew and BeefStew implement the behaviour
 Printer , so they are both implementing the print function .

CHAPTER 15 ■ TYPE CREATION CONCEPTS

215

 Calling the print functions in the modules returns the expected outputs as you have seen in previous
examples; this time it’s a tuple of an :ok or :error atom with a string. See Example 15-27 .

 Example 15-27.

 1 iex(1)> s = % Stewtype {}
 2 % Stewtype {ingredients: [], stewtype: :veg}
 3 iex(2)> sb = %{s|stewtype: :beef}
 4 % Stewtype {ingredients: [], stewtype: :beef}
 5 iex(3)> su = %{s|stewtype: :chicken}
 6 % Stewtype {ingredients: [], stewtype: :chicken}
 7 iex(4)> VegStew .print(s)
 8 {:ok, "It's a vegetable stew"}
 9 iex(5)> sb = %{s|stewtype: :beef}
 10 % Stewtype {ingredients: [], stewtype: :beef}
 11 iex(6)> su = %{s|stewtype: :chicken}
 12 % Stewtype {ingredients: [], stewtype: :chicken}
 13 iex(7)> VegStew .print(sb)
 14 {:error, "Unknown stew"}
 15 iex(8)> BeefStew .print(sb)
 16 {:ok, "It's a beef stew"}
 17 iex(9)> BeefStew .print(s)
 18 {:error, "Unknown stew"}
 19 iex(10)> BeefStew .print(su)
 20 {:error, "Unknown stew"}
 21 iex(11)> VegStew .print(su)
 22 {:error, "Unknown stew"}
 23 iex(12)> VegStew .print(s)
 24 {:ok, "It's a vegetable stew"}

 The relationship between protocols and behaviours in Elixir is that the former dispatches based on
data, the latter dispatches based on functions.

 Dynamic Types
 There exists a very old discussion between proponents of different programming languages and the style
of typing. For example, Haskell, Java, and C# are statically typed, and Ruby and JavaScript are dynamically
typed. If a developer can indicate that a variable, return argument etc. has a certain type and I want to use it,
even complex types, the compiler can tell me any error and won’t compile the executable or can give me a
warning.

 Dynamic types mean that the type is not set, for example in Ruby and JavaScript. This can mean more
freedom in writing code with no constraints, but there are also problems with it. With dynamic types, the
developer has to rely on tools that check types in the compiled executable. These tools can do this with static
analysis. Or a developer has to check at runtime the type of variables to rule out exceptions. Languages with
dynamic types need many tests and it is not uncommon to have the same lines of code for tests than for the
actual feature code.

 Static type languages in OO languages are not free from problems either. Due to the constraints of types,
changes in complex types may require runtime versioning code to be able to process several generations of
that complex type. Many developers use a hash or a dictionary to circumvent this problem.

CHAPTER 15 ■ TYPE CREATION CONCEPTS

216

 Erlang and Elixir are dynamically typed, and a tool named Dialyzer can be used to find not only type
errors, but also other problems. To give the tool a hint which type was meant to be implemented with special
attributes or directives, see Example 15-28 .

 Example 15-28.

 1 - module (specifications).
 2 - compile (export_all).
 3
 4 - type returnvalue() :: {ok} | {error}.
 5 - export_type ([returnvalue/0]).
 6
 7 - spec numberfunction(number()) -> returnvalue().
 8 numberfunction(T) ->
 9 case T of
 10 42 -> {ok};
 11 _ -> {error}
 12 end .

 You define a type on line 4. It is called returnvalue and is a tuple with two possible values, {ok} and
 {error} . Exporting this type (line 5) makes this type available in other modules.

 On line 7, you define a specification for a function called numberfunction which takes a number as an
argument and returns your newly defined custom type, returnvalue . The last lines of the example show the
implementation. The module compiles fine and you can call it as shown in Example 15-29 .

 Example 15-29.

 1 1> specifications :numberfunction({1}).
 2 {error}

 Your call does not pass a number as defined in the specification ; at least the return value is {error} to
indicate something is wrong. You have defined a contract, but at runtime this contract is not checked. There
are other ways to catch the error, for example with guards, but you don’t want to have too much defensive
code.

 In Elixir we can implement the same example as shown in Example 15-30 .

 Example 15-30.

 1 defmodule Specifications do
 2 @type returnvalue :: {:ok} | {:error}
 3 @spec numberfunction(number) :: returnvalue
 4
 5 def numberfunction(t) do
 6 case t do
 7 42 -> {:ok}
 8 _ -> {:error}
 9 end
 10 end
 11 end

 Whatever you throw at numberfunction , it will always return {:error} if the argument is not 42 .
Chapter tk explains how to use specifications to detect type errors in Erlang and Elixir.

CHAPTER 15 ■ TYPE CREATION CONCEPTS

217

 Atoms
 Atoms are a confusing concept for many people, although they are implemented in OO programming
languages with different syntax and names. The overall term for atoms is symbols .

 Sometimes atoms are thought of as a special form of constants. In Erlang and Elixir, we can define
constants with macros, but in difference to atoms they are processed at compile time and have a value
besides their name that is expanded into the code.

 For an Erlang example, see Example 15-31 .

 Example 15-31.

 1 - define (LIMIT, 10000).
 2 - define (FONT, "Courier")

 For Elixir, see Example 15-32 .

 Example 15-32.

 1 defmacro limit do
 2 10000
 3 end
 4
 5 defmacro font do
 6 "Courier"
 7 end

 Atoms are similar to enumerable in other languages; for example in C++, it looks like Example 15-33 .

 Example 15-33.

 1 enum AfricanAnimal
 2 {
 3 Lion = -3,
 4 Hyena, // assigned -2
 5 Giraffe, // assigned -1
 6 Hippo = 5,
 7 Buffalo = 5, // shares same value as Hippo
 8 Antilope // assigned 6
 9 };

 The implementation of atoms in the Erlang VM is geared towards fast access with a lookup table in
memory and the value as number, but it is not possible to get the value, which is only used internally.

 In Erlang, every “variable” with a lowercase first character is an atom, but it is also possible to define
atoms with any characters as long as they are enclosed in single or double quotes; see Example 15-34 .

 Example 15-34.

 1 dog.
 2 2dogs.
 3 dog_with_collar.
 4 "DOG".
 5 theDog.

CHAPTER 15 ■ TYPE CREATION CONCEPTS

218

 6 '453627'.
 7 "&*$%".

 Elixir defines atoms with colon as prefix and can have lowercase and uppercase characters and certain
special characters (_,!,@). Other combinations need to be enclosed in quotes. See Example 15-35 .

 Example 15-35.

 1 :dog
 2 :"2dogs"
 3 :dog_with_collar
 4 :DOG
 5 :theDog
 6 :'453627' # => "453627"
 7 :"&*$%"

 The atom lookup table is implemented in C 5 and can hold up to 1GB of atoms, with one atom having
a maximum of 255 characters. Running the function memory() in an Erlang shell reveals, among other
information, the space atoms use. See Example 15-36 .

 Example 15-36.

 1 1> memory().
 2 [{total,16300408},
 3 {processes,4234480},
 4 {processes_used,4233360},
 5 {system,12065928},
 6 {atom,194289},
 7 {atom_used,172278},
 8 {binary,124384},
 9 {code,4173842},
 10 {ets,284464}]

 Even a shell without any application running uses a few MB for atoms the system defines. Examples are
 false , true , and others like the atoms in the tuples the memory function prints out.

 It is possible to create atoms dynamically at runtime with the Erlang function list_to_atom or with the
 Elixir function String.to_atom . This is not encouraged because the atom table is limited and atoms are not
garbage collected, so memory leaks could be the result.

 5 https://github.com/erlang/otp/blob/e1489c448b7486cdcfec6a89fea238d88e6ce2f3/erts/emulator/beam/
atom.c

https://github.com/erlang/otp/blob/e1489c448b7486cdcfec6a89fea238d88e6ce2f3/erts/emulator/beam/atom.c
https://github.com/erlang/otp/blob/e1489c448b7486cdcfec6a89fea238d88e6ce2f3/erts/emulator/beam/atom.c
https://github.com/erlang/otp/blob/e1489c448b7486cdcfec6a89fea238d88e6ce2f3/erts/emulator/beam/atom.c

219© Wolfgang Loder 2016
W. Loder, Erlang and Elixir for Imperative Programmers, DOI 10.1007/978-1-4842-2394-9_16

 CHAPTER 16

 Code Structuring Concepts

 Separation of Concerns
 A separation of concerns is an old concept, probably coined by E. W. Dijkstra 1 in 1974. It means, in general
interpretation, that one computational unit should be concerned with only one functionality.

 In the past (and I hope not to see it again), we have seen spaghetti code in Assembler or Basic where
everything was in one file, so runtime it jumped around from one line to another far away in the source code.
The debugging and maintenance cost of such programs is high; sometimes it was cheaper to rebuild the
program in a different language.

 To counter this problem, we have separation of concerns in different ways:

• The simplest form is a function. It separates one computation from another in
theory, but it can easily be abused by putting everything that needs to be computed
into one function and branch with if/else statements.

• In C and later C++, we have file-based imports with includes of header files,
compiling corresponding C/C++ files and linking them all together. These files may
have the implementation for only one concern, but it can be a mix of more concerns.

• The next step is to create modules and wrap functions in them. Files in C do this, but
lack the namespace to avoid name conflicts.

• OO defines types as classes to wrap state and behavior. Classes in Java or C# have
and are namespaces because functions outside of classes are not allowed. This goes
so far as to create classes for general functionality. I am sure many of the readers
have seen these types named General or Constants .

• Recently, we have seen the extension of separation of concern to services. While 15
years ago we had services with huge functionality and lots of overhead with calling
protocols like SOAP, the trend nowadays goes to small services with clearly defined
functionality, called microservices .

 Erlang and Elixir provide a modular approach with modules (implementation) and processes (runtime).
 In Erlang, the compilation is dependent on the file name and each module lives in its own file. If you

run the code in Example 16-1 in a shell, you need to have a file named sayhello.erl in the current directory
the shell runs in, but also the module name (with -module) defined as sayhello .

 1 www.cs.utexas.edu/users/EWD/transcriptions/EWD04xx/EWD447.html

http://www.cs.utexas.edu/users/EWD/transcriptions/EWD04xx/EWD447.html
http://www.cs.utexas.edu/users/EWD/transcriptions/EWD04xx/EWD447.html

CHAPTER 16 ■ CODE STRUCTURING CONCEPTS

220

 Example 16-1.

 1 Erlang/OTP 18 [erts-7.1] [source] [64-bit] [smp :8:8] [async- threads :10] [hipe] [\
 2 kernel- poll :false] [dtrace]
 3
 4 Eshell V7.1 (abort with ^G)
 5 1> c(sayhello).
 6 {ok,sayhello}

 If you change the module name (but not the file name) to sayhello2, you get the error shown in
Example 16-2 . You can find the full code of sayhello.erl in Chapter 9 .

 Example 16-2.

 1 Erlang/OTP 18 [erts-7.1] [source] [64-bit] [smp :8:8] [async- threads :10] [hipe] [\
 2 kernel- poll :false] [dtrace]
 3
 4 Eshell V7.1 (abort with ^G)
 5 1> c(sayhello).
 6 sayhello. beam : Module name 'sayhello2' does not match file name 'sayhello'
 7 error

 Elixir relaxes the naming rules and the module name can be different from the file name.
 Separation of concerns is only one side of the coin. Having many small computational units makes it

necessary to have a means of composing these units. Examples are UNIX tools piping or fluent interfaces that
take one type of data, process it, and return the processed data.

 The Erlang VM is built on the premise of running modules in processes that are not OS processes. With
OTP, these processes can then be composed into bigger units like applications. Again, modules in Erlang
and Elixir can be abused by packing too much functionality into one module.

 Up to now I have not defined what a concern actually is. As with many definitions in software
development, the answer is a little bit fuzzy and depends on the scope. For many, functionality is the main
separator, for example data store access or business logic.

 Despite the differences in definitions, the advantages seem to be clear cut. Smaller and functionally
restricted units, whether modules or functions or anything else, reduce coupling between parts of the code
and make it easier to test, debug, understand, and maintain code.

 SOA
 The term service-oriented architecture (SOA) got a bad name a decade and more ago. SOA at that time
was bound to SOAP and at the end everything got out of hand. It became a service protocol that could do
everything, but then other services like discovery services or the infamous ESB (enterprise service bus) were
needed. The big companies could sell training and consultation in addition to complicated systems. In the
end, this concept failed.

 For me, SOA is not this Big Bang approach. It was always a service that is doing exactly one thing. In
the spirit of separation of concerns , we don’t want one service for everything. For example, we implement
a communication service, and I am guilty of doing this, that does e-mail, SMS, and has other features,
and then somebody wants to integrate other social media. Eventually the code needs to be changed
to accommodate everything and it is likely that we will introduce new bugs, not to mention internal
dependencies that are difficult to test.

http://dx.doi.org/10.1007/978-1-4842-2394-9_9

CHAPTER 16 ■ CODE STRUCTURING CONCEPTS

221

 Nowadays there is a new buzzword: microservices . Is it clear what a microservice is? I don’t think so. We
have some microservice architectures with thousands of services and others with a handful. I am not sure
if the management of thousands of services is easier than the big services from the past (and the present,
in many cases). Often, the microservice architecture is used to solve a people-and-management problem.
Each microservice is run by one team; they code, deploy, and maintain the service. The concept is not fully
worked out yet, and I stick to the definition of SOA as an architecture of small services that work together to
solve a problem. Architecture and design questions decide the granularity of the processes.

 Microservice implementations need loose coupling of services, scalability of individual services, and
distribution over machines. Erlang with OTP supports this concept of scaleable services communicating
with messages. It also defines its own protocol to pass data between its nodes and processes, so there is no
need to use more verbose protocols like JSON.

 This said, the introduction of microservices may not always be the best way, because it can also
introduce coordination costs. Sometimes libraries are the better approach for small projects that don’t need
to scale in the foreseeable future. Also, front-end code won’t have access to the internal protocol, so there
will be an additional layer to translate that into something the front-end code can understand, most likely
JSON.

 Actor Model
 The Actor Model is an important pattern in Erlang/OTP and Elixir where actors are implemented as
lightweight and operating system-independent processes .

 Before we go into details, let’s look at the original definition of the Actor Model by Carl Hewitt 2 . There
are three axioms in this model and a valid implementation of the Actor Model must satisfy the following
axioms:

 I. An actor can create more actors.

 II. An actor can send messages to known actors, including itself.

 III. An actor can make local decisions and can select how to handle the next
message.

 A generic model looks like Figure 16-1 .

 2 https://arxiv.org/pdf/1008.1459.pdf

https://arxiv.org/pdf/1008.1459.pdf
https://arxiv.org/pdf/1008.1459.pdf
https://arxiv.org/pdf/1008.1459.pdf

CHAPTER 16 ■ CODE STRUCTURING CONCEPTS

222

 This diagram is simple, because the Actor Model is simple in its raw form. Please note the following:

• The model does not specify where an actor gets the knowledge about other actors from.

• Actors send messages to each other directly. If there was a channel facilitating
communication between actors, it would be an actor.

• Messages are received in any order and there is no guarantee in the model that
messages sent will arrive at the receiving actor. The message will be sent once and
the time until arrival is not determined.

• Actors have addresses. Conceptually an address is a capability of an actor to send
messages only.

• If an actor sends a message to itself, it can do so using futures or promises to avoid
deadlocks. A simple definition of a future is that it is a wrapper around a computation
result that will or will not be valid in future time. If you think now of a Monad , you
are not far off, but I won’t go into details in this book.

• The address-to-actor relationship is in relational terms a m-n relationship. One
actor can have many addresses and one address can point to many actors. The
consequence is that it is not possible to determine the number of actors in a system
at any given time by counting addresses.

• Following from the last note, an address is not an identity of an actor.

 Sometimes the Actor Model is described as being non-deterministic , but according to Hewitt 3 this is
not correct. Non-determinism means that there are two rules that refer to the same input and imply two
different outputs. In pseudocode,

 Figure 16-1. Actor Model , generic

 3 https://channel9.msdn.com/Shows/Going+Deep/Hewitt-Meijer-and-Szyperski-The-Actor-Model-
everything-you-wanted-to-know-but- were-afraid-to-ask

https://channel9.msdn.com/Shows/Going+Deep/Hewitt-Meijer-and-Szyperski-The-Actor-Model-everything-you-wanted-to-know-but-were-afraid-to-ask
https://channel9.msdn.com/Shows/Going+Deep/Hewitt-Meijer-and-Szyperski-The-Actor-Model-everything-you-wanted-to-know-but-were-afraid-to-ask
https://channel9.msdn.com/Shows/Going+Deep/Hewitt-Meijer-and-Szyperski-The-Actor-Model-everything-you-wanted-to-know-but-were-afraid-to-ask

CHAPTER 16 ■ CODE STRUCTURING CONCEPTS

223

 if x then do a

 if x then do b

 The system can only decide by guessing, flipping a coin, or similar methods. This is not happening in
the Actor Model , which is indeterministic . An actor can decide with deterministic rules, but the arrival time
and order of messages can’t be determined. For example, an actor can send a stop message to itself, but
there is no way to say when it will arrive, and another message could be processed before the stop message.

 More rules:

• The Actor Model does not say anything about the state of the system.

• The Actor Model does not say anything about side effects.

• The Actor Model is designed to decentralize computation.

• The Actor Model is based on the physical world and not on Algebra.

• The Actor Model does not specify how or if messages are stored in an actor.

• A requirement for the Actor Model to work is that latency is very small in order to
minimize time between sending and receiving messages.

 So far, this is the description of the conceptual Actor Model .
 There were many efforts to implement the model in a language or library, including Java and C#.

If you search for Actor Model on the Internet you will find many discussions about pure and impure
implementations, right and wrong, programming paradigm ideology, and so on. This is why I will not
comment if Erlang is actually implementing the Actor Model or if that implementation is correct. Common
opinion is that Erlang/OTP has an implementation of the Actor Model with processes as actors. A process
can be anything from a full blown web server to a small computational unit that provides, for example,
a random number. There are also nodes in OTP, which are distributed processes and are controlled by a
supervisor. See Figure 16-2 .

 Figure 16-2. Erlang/OTP, supervisor

CHAPTER 16 ■ CODE STRUCTURING CONCEPTS

224

 An example is the Digital Asset Repository that is discussed in this book. It has a number of client-facing
nodes that process and maintain web sockets/TCP connections and distribute worker nodes. See Figure 16-3 .

 Figure 16-3. Actor Model , example

 Processes do not share state in memory, but they change state and pass it around in messages or persist
it for general access. This implies that state needs to be identifiable. For example, having a socket open with
a client creates a state that identifies this client connection in a unique way within the system.

CHAPTER 16 ■ CODE STRUCTURING CONCEPTS

225

 If the system is designed properly, then no deadlock or other concurrency problems are possible.
A proper architecture design and implementation is also necessary to achieve maximum concurrency
performance.

 Erlang’s, and Elixir’s, implementation of the Actor Model is based on the premises of having a fault
tolerant and reliable system that performs at its optimum in distributed systems with lightweight processes
as actors and message pass between them without sharing any data beyond the message contents.

 Specific to Generic
 The concept of specific to generic is heavily used in OTP and comes from an experience many developers
had and have. During our programming lives we come into situations when we implement some function
or class and then later realize that we need this code elsewhere. Of course, we don’t want to copy, so we
refactor it into a more generic class, function, module, library, or other construct.

 The reason is to be able to reuse code. The downside is that the more generic code has to cover different
uses cases, and we may end up with more code and configuration work than expected. In fact, this book uses
this concept by presenting specific implementations in Part 4 and then tries to extract and describe generic
concepts in Part 5.

 In OOP, we may implement a factory pattern and push specialized code into a class to retrieve
polymorphic types. We can also use interfaces to define a generic behavior that needs to be implemented
by the consumer in a specific way. Erlang/Elixir/ OTP does the latter with generic servers and defining
 behaviors . Example 16-3 defines a gen_server in Erlang.

 Example 16-3.

 1 - module (genservertemplate).
 2
 3 - behaviour (gen_server).
 4
 5 - export ([start_link/0]).
 6 - export ([init/1, handle_call/3, handle_cast/2, handle_info/2]).
 7 - export ([code_change/3]).
 8 - export ([stop/0, terminate/2]).

 The implementation needs to implement and export all callbacks defined by the behavior; see
Example 16-4 .

 Example 16-4.

 1 terminate(normal, _State) ->
 2 ok;
 3 terminate(shutdown, _State) ->
 4 ok;
 5 terminate({shutdown, _Reason}, _State) ->
 6 ok;
 7 terminate(_Reason, _State) ->
 8 ok.

CHAPTER 16 ■ CODE STRUCTURING CONCEPTS

226

 This example only shows the implementation of different function signatures of the callback terminate .
The code does not need to think about how the server is actually stopped; it is just concerned with cleaning
up specific processes that have been used. In this example, it just returns ok .

 The two parts, definition and implementation, can reside in different modules and separate specific
from generic for easier maintenance. The gen_ templates in OTP are the result of the refactoring by many
people over a long time and are best practices that have been successfully used. Further, it is possible to
define custom behaviors and create other generic templates for server or other needs.

 OTP helps to implement complicated designs. One disadvantage with using templates certainly is that
developers may not understand the underlying concepts and implementations. On the other side, there are
built-in functionalities in the generic templates like logging or statistics that come for free and don’t need to
be implemented for every project.

 Fault Tolerance
 Erlang propagates the let it crash approach, which does not sound very fault tolerant. In fact, it seems to be
the opposite. What does fault tolerance mean regarding data and processes?

• The user does not care if data is lost, so nothing needs to be done from the user’s
point of view.

• The user has no chance of knowing if data is lost.

• Data can easily be recreated.

• Processes are isolated from each other with their own state and can be restarted
without downtime.

 There are certainly other scenarios regarding hardware or network failures, but in general it comes
down to data consistency and computing processes availability. In OOP, we program defensively to check
various failure situations in code at runtime. Not doing this reduces code, but also increases the chance of
crashes or expensive exceptions.

 Erlang and Elixir are based on sending messages between processes, which is intrinsically error-prone
in distributed and concurrent systems. Without further measurements, failures would not be found. OTP
provides the concept of supervising nodes and restart failing nodes or node trees. Messages are kept in
queues on each process, so a restarting process will also delete its queue contents and with them all pending
messages.

 Every project has to define its own fault tolerance. Let’s examine a few scenarios and possible solutions
in Erlang and Elixir.

 Message services like Twitter and WhatsApp are eventually consistent systems by default. The sender
of a message does not know if and when the message arrives. Of course, these services do not want to be
seen as losing messages, so they need to have software or hardware solutions to avoid this.

 In Erlang/OTP, we can augment the default mechanisms with additional queues or message locking
in redundant data stores. We can have a supervisor that sends all messages to another supervisor that runs
processes for these tasks; see Figure 16-4 .

CHAPTER 16 ■ CODE STRUCTURING CONCEPTS

227

 Timeouts on the client side and acknowledgement messages from the first process in the back-end
system give the user at least some security if a message had arrived. Other messages to the client can notify
if an intended recipient has received a direct message. For example, e-mail systems have done this on
demand.

 In cases of failures, it may be possible to retrieve the not-processed messages from the backup queue
and process them if no timeout was hit. When a message is processed, it may be necessary to avoid duplicate
processing, so the system has to handle this.

 Transactional systems like banking applications can’t afford to lose requests. In this scenario, all
the mechanisms of the last scenario are valid, but in addition three may be the logging of events, called
 event sourcing . Event data is stored and can be used to play back events if the system crashes. Erlang/OTP
processes can use the replicated data store Mnesia 4 , which is part of OTP, to implement this.

 As in other scenarios, it is a good design to have small supervised services that do only one thing and
can be easily scaled. When they fail, they are replaced by a new instance without side effects.

 Processes
 Processes in the Erlang VM do not mean operating system processes or threads; rather they sit on top of them.

 In an Erlang shell, we can see all processes of a VM and info about them; see Example 16-5 .

 Figure 16-4. Logger

 4 http://erlang.org/doc/man/mnesia.html

http://erlang.org/doc/man/mnesia.html
http://erlang.org/doc/man/mnesia.html

CHAPTER 16 ■ CODE STRUCTURING CONCEPTS

228

 Example 16-5.

 1> rp(registered())
 [user,inets_sup,user_drv,erlangexamples_server,
 erlangexamples_sup,code_server,application_controller,
 standard_error,sasl_sup,erl_prim_loader,httpd_sup,
 rebar_agent,kernel_safe_sup,erts_code_purger,inet_db,
 release_handler,tls_connection_sup,ssl_sup,alarm_handler,
 rex,standard_error_sup,global_group,tftp_sup,kernel_sup,
 sasl_safe_sup,global_name_server,httpc_rebar,file_server_2,
 ssl_manager,error_logger,httpc_sup,init,disk_log_sup,
 httpc_profile_sup,disk_log_server,httpc_manager,
 httpc_handler_sup,ssl_listen_tracker_sup,ftp_sup]
 ok
 2> erlang:process_info(whereis(erlangexamples_server), memory).
 {memory,2848}
 3> erlang:process_info(whereis(erlangexamples_sup), memory).
 {memory,2888}
 4> erlang:process_info(whereis(sasl_sup), memory).
 {memory,7080}

 The function registered() lists all functions in the VM. Then you ask for the memory footprint of some
processes. The output is in bytes and you can see that the notion of lightweight processes in Erlang is valid.
 SASL is the support libraries app with support for error handling and it is a bit bigger. All the values include
stack and heap.

 Erlang’s efficiency guide 5 speaks of 338 words of memory footprint for a process, including 233 words
heap. A word is 8 bytes on 64-bit systems.

 It is easy to create and terminate a process at runtime. You did this in your introductory example, shown
in Example 16-6 , called SayHello .

 Example 16-6.

 spawn(sayhello, say_hello, ["Hello", 2, InitNode]).

 When a process does not have code to execute anymore, it will terminate itself. When a process
terminates, it gives a reason; without error this will be the atom normal . You can initiate termination in code
by calling exit or erlang:error . In supervised OTP applications, processes may also get exit messages with
a reason different from normal and then it either handles this situation itself or terminates itself. This way an
error bubbles up to the highest supervisor in the supervisor tree, which can then decide what to do based on
the configured supervisor strategy.

 SayHello also shows the registration of processes; see Example 16-7 .

 Example 16-7.

 register(precipient, spawn(sayhello, recipient, [])).

 A name, in this case precipient , is associated with the process and saved in a network global data store.
The function whereis returns the process id (PID); see Example 16-8 .

 5 http://erlang.org/doc/efficiency_guide/advanced.html#id68294

http://erlang.org/doc/efficiency_guide/advanced.html#id68294
http://erlang.org/doc/efficiency_guide/advanced.html#id68294

CHAPTER 16 ■ CODE STRUCTURING CONCEPTS

229

 Example 16-8.

 1> whereis(precipient).
 <0.115.0>

 In Chapter 8 , you looked at monitoring processes.

 Concurrency
 Concurrent systems are sometimes confused with parallel systems. When you prepare your breakfast, you
may put cereal in a bowl, set up milk on the stove to heat it up, and put water into the kettle to boil it for tea.
All this is done seemingly at the same time, but in fact you do it time slices; you do it concurrently. The kettle
and the milk heating on the stove are done at the same time, in parallel.

 The first graphical user interfaces, running on one CPU with one core, tried to trick us into thinking that
they worked parallel, but in fact the time slice was so short that we did not realize it was concurrent.

 A more computer scientific definition of concurrency is that it is concerned with a nondeterministic
composition of programs. We may have a number of processes or threads working together on one problem,
but their behavior is not deterministic. From outside we can’t say at any given time when one process
is working, finished, or starting. For example, an actor in an Actor Model system can change behavior
according to incoming messages. In a banking application, one actor may be responsible for payouts. We
may have one actor for each customer that approves paying out money and there may come a message
that the customer is overdrawn. Next time the actor’s behavior will be that no money will be paid out to the
customer. We can’t say, apart from studying log files later, which state the actor is in.

 Parallelism, on the other hand, is concerned with asymptotic efficiency of programs with deterministic
behavior. We know that deterministic, asymptotic efficiency means that a system tends towards efficiency,
for example a computer system with given internal memory and CPU. Parallel execution of programs will try
to make the best use of the machine, since it knows that all the programs are deterministic and they don’t
change input and output. The manager of this system can try to make this execution parallel and as efficient
as possible.

 The Erlang VM uses concurrency with actors, called processes, which pass messages to other actors and
share no data and also no code. This concept is not unique to Erlang, though. Many architectures of systems
implemented in any language try to decouple processes or threads with message systems by using queues
or, less efficient, data stores to invoke indirectly pieces of code. In addition, Erlang’s and OTP’s architecture
is meant to be asynchronous; “meant to be” because it is possible to implement a completely synchronous
and blocking solution, for example, with RPC calls.

 Interesting side note: Joe Armstrong mixes concurrent and parallel in his discussion about red and
 green callbacks 6 , so the distinction may just be academic.

 Flow-Based Programming
 Flow-based programming (FBP) was invented by J. Paul Morrison 7 who was working as an engineer at IBM.
I mention this concept here because it is related to functional programming, the Actor Model, and Erlang’s
processes, but it is also related to hardware design with electronic components. I recommend looking into
the free-to-read first edition of the book 8 Flow-Based Programming , written in the 90s with ideas going back
to the 70s.

 6 http://joearms.github.io/2013/04/02/Red-and-Green-Callbacks.html
 7 www.jpaulmorrison.com/fbp/
 8 www.jpaulmorrison.com/fbp/book.pdf

http://dx.doi.org/10.1007/978-1-4842-2394-9_8
http://joearms.github.io/2013/04/02/Red-and-Green-Callbacks.html
http://joearms.github.io/2013/04/02/Red-and-Green-Callbacks.html
http://www.jpaulmorrison.com/fbp/
http://www.jpaulmorrison.com/fbp/book.pdf
http://joearms.github.io/2013/04/02/Red-and-Green-Callbacks.html
http://www.jpaulmorrison.com/fbp/
http://www.jpaulmorrison.com/fbp/book.pdf

CHAPTER 16 ■ CODE STRUCTURING CONCEPTS

230

 The basic concept is simple; see Figure 16-5 .

 9 https://github.com/jpaulm/csharpfbp
 10 http://noflojs.org/

 Data flows from E1 to E4 passing through E3 and, in our example, two E2 that are running concurrently.
 The ideas of the concept are

• The design is data-based and describes the flow of the data from one entity to
another entity .

• The entities are black boxes and can be processes, functions, or similar.

• Every entity has a number of in-ports and out-ports .

• Entities can be accessed concurrently and have no side effects.

• The connections between entities are well defined.

 FBP is a concept and there are several implementations, some programmed by Morrison himself. In fact,
he still develops FBP for several programming languages and publishes the implementations on GitHub 9 .

 As mentioned, the entities are self-contained processes as we know it, for example from Erlang, and
the connection can be a message. The process needs to be able to interpret the message and work on the
data. When a FBP system is designed, it creates a network (in fact, a graph) of connected black boxes . This
approach goes so far that the black-box processes are delivered in compiled form in some implementations
to ensure that they cannot be changed. The only interface is the ports in and out; not necessarily only one of
each, but as many as needed for different use cases.

 It is interesting that the creation of this concept is rooted in the critique of the von Neumann system.
Even 40 years ago, the problems with that architecture were obvious, first in the mainframe world and
then later in the PC world. The problems have to do with the paradigm of running synchronously through
instructions to manipulate memory locations. A component-based approach like FBP creates many
independent von Neumann-machines and assembles them into a system where those components can run
independently from each other in a concurrent architecture built on several CPUs or CPU cores.

 The concept has more features than listed in these few paragraphs; you can read about them in the
mentioned book. There are current implementations available, for example in JavaScript 10 , and it will be
interesting if an Erlang/Elixir implementation of this concept surfaces in the future.

 Figure 16-5. FBP

https://github.com/jpaulm/csharpfbp
http://noflojs.org/
https://github.com/jpaulm/csharpfbp
http://noflojs.org/

CHAPTER 16 ■ CODE STRUCTURING CONCEPTS

231

 Where To Go From Here?
 Elixir is built on top of Erlang’s syntax and claims to make it better and easier to use the Erlang/OTP
system. This is more or less an individual decision and most probably also driven by the language someone
learned first. My personal opinion is that the syntax is not a big divider; there are strange constructs in each
language. As somebody who used C/C++ professionally for more than 10 years in the 80s and 90s, I can’t be
“scared” by syntax anymore.

 The Elixir community has absorbed some of the Ruby and Ruby on Rails community and it shows in
the efforts to bring many of Rails goodies to Elixir’s libraries. This is not necessarily a bad thing, but focuses
heavily on web projects.

 The current development world has a heterogeneous approach, and monolithic frameworks seem to be
pushed to the background. Have a look at Figure 16-6 .

 Figure 16-6. Heterogeneous system

 11 http://lfe.io
 12 http://efene.org

 My own work has included all of these technologies over the last years and architectures like SOA (or
in its “modern” form, microservices) support this heterogeneous approach. An API does not care if it is
accessed by a phone, a desktop, a gaming console, or anything else as long as the supported protocols are
obeyed. The Erlang VM world with Elixir, Erlang, and other 11 languages 12 that sit on top of the VM support
the idea of being language agnostic, similar to the JavaScript world where several languages like TypeScript,
ClosureScript, or Elm are transpiling to vanilla JavaScript.

http://lfe.io/
http://efene.org/
http://lfe.io/
http://efene.org/

CHAPTER 16 ■ CODE STRUCTURING CONCEPTS

232

 Elixir and Erlang provide the technology suited for back-end processes, being excellent for dealing
with concurrency and fault tolerance and fitting into this heterogenous world. The web framework Phoenix
makes web application development in many aspects easy and makes use of all the Elixir features available.

 There are differences between Erlang and Elixir:

• Erlang was not built to handle strings, so Elixir’s string library is a nice wrapper
around this.

• Elixir’s protocols are a nod towards interfaces in imperative languages. They are not
the same, but bring polymorphism to the language.

• Mix provides a modern project management tool. The Erlang community has
responded with Rebar3, which has improvements compared to the older versions.
Hopefully the tools will converge eventually and in future it won’t make a difference
if the source of a package is Elixir or Erlang.

 Elixir also goes beyond the Erlang/OTP base:

• GenStage is a new generic server that does not have a counterpart in Erlang/OTP.

• Generic servers have default implementations of callbacks without the need to
implement all of them.

• Assigned variables appear mutable by allowing reassignments with the same name.

• Many helper functions for enumerable are provided.

• Macros are an integral part of the language (and sometimes they are used to
implement language constructs).

 It seems that Elixir is progressing on a way to reduce the 1:1 relation to Erlang, hopefully without
making it impossible to mix Erlang and Elixir modules. Of course, Erlang itself is not standing still, although
on a much slower pace than Elixir.

 This accelerated pace of Elixir also made it difficult to keep up with and adjust the contents of the book.
During the last months the tendency in my own implementation was to move more to Elixir. This is also
reflected in the code that accompanies this book. A year ago, more Erlang libraries were part of the solution;
now it’s down to one.

 When I started the book I hoped to discuss more tools and features. Unfortunately they did not make it
into this book, for example:

• Containers

• Releases

• Continuous integration and delivery (scripts, third-party services)

• Distributed deployments with cloud services

• Streaming

• Security

 We will see what the coming months and years bring for the Erlang/Elixir/ OTP ecosystem. There are
many developers in the community now, and many more will join in future. The development of Elixir is
open, so it lies with every developer who uses the language to determine where it will go.

233© Wolfgang Loder 2016
W. Loder, Erlang and Elixir for Imperative Programmers, DOI 10.1007/978-1-4842-2394-9

 APPENDIX A

 Modeling

 Modeling and designing: developers love it or hate it. Many fall into the latter category.
 However, if a few developers are sitting together and are discussing a software problem, most probably

one will get up to draw on a whiteboard. It may not be pure UML, but it will be some “dialect” everyone in
the room agrees on.

 A study about UML use 1 concludes that a big percentage of the developers that were interviewed in the
study do not use UML at all, although they consider alternatives. The group interviewed is too small to draw
broader conclusions, but it correlates with my own experience. Most projects I have worked on did not use
any modeling , apart from informal diagrams drawn on a whiteboard. Sometimes fellow developers almost
aggressively argued against the use of any modeling .

 For me, modeling is a way to sort my thoughts before starting development, but also to formalize
requirements, design, deployment, and similar. I use modeling before writing code. Once the circle of writing
tests, coding, and refactoring starts, keeping lower-level designs up-to-date is very cumbersome. There may
be updated versions of diagrams before major deployment to go hand in hand with documentation, but this
is rather the exception than the norm.

 Modeling and UML or similar are very much rooted in the object-oriented programming world. Not
many of us used real concurrent programming, not to speak of modeling such systems. UML and derivates
can handle many different paradigms if not applied rigorously and with the goal in mind to show designs in
a clear and understandable way.

 Erlang/OTP is all about processes, which are essentially implementations of actors in the sense of
the Actor Model. Processes are only one layer; the implementation of the actors themselves is done in a
functional way. OOP with sending messages between objects is modeled top-down; functional composition
is modeled bottom-up.

 In any case, development starts with requirements, which can be easily expressed in UML. The example
is taken from this book, based on this sentence in the prose requirements:

 During the retrieval of images, a transformation provides smaller, low resolution images, and the full
resolution image is only accessed on demand.

 Let’s first examine the OO model.
 You need a transform component that simply takes an instance of an image object, processes it, and

outputs another instance of an image object. See Figure A-1 .

 1 http://oro.open.ac.uk/35805/8/UML%20in%20practice%208.pdf

http://oro.open.ac.uk/35805/8/UML in practice 8.pdf
http://oro.open.ac.uk/35805/8/UML in practice 8.pdf

APPENDIX A ■ MODELING

234

 The model for the transformer is shown in Figure A-2 .

 Figure A-2. Transform objects

 The component receives a request message, processes it, and then sends back a response message.
This model shows a facade and a helper class supporting the actual transformer . The implementation
could be different without affecting the consumer of this component, which only knows the messages as
the interface to the component.

 In OO, there will be a class diagram with properties and methods and interaction diagrams to show how
these classes work together.

 How can you translate this into Erlang/OTP/Elixir? You don’t!
 Instead, let’s look for the functions you need to implement this feature. See Figure A-3 .

 Figure A-1. Transform component

APPENDIX A ■ MODELING

235

 This diagram assumes that an external program is used that writes processed images to temporary files,
for example ImageMagick . You use an activity diagram where functions are shown as activities and control
flows indicate input and output parameters. The two main functions, resize and watermark , have two helpers
(getlist_as_string and getimagelist_as_string) to provide the parameters in a form the external program
understands. Both helper functions return a string as input for the external program and have themselves as
input internal models, option and imagelist . An example of an option string would be “30% -gravity south” and
an example of an imageless string would be “image.png logo.jpg image_watermark.jpg” .

 Figure A-3. Image processing

APPENDIX A ■ MODELING

236

 The functions process a type imageprocessingmodel , as shown in Figure A-4 .

 This is a simple class diagram and it displays the elements as attributes. The stereotype <<Map>> gives
you the hint that you may implement this model as a type map .

 The last step is to define the higher level processes (or actors) that are implementing the image
processing functions; see Figure A-5 .

 Figure A-4. Image processing model type

 Figure A-5. Workflow actors

APPENDIX A ■ MODELING

237

 This just says that there is a workflow process that supervises (among others) the worker/actor Process
Image . Figure A-6 shows more details.

 Figure A-6. Workflow state machine

APPENDIX A ■ MODELING

238

 You see that the workflow is a state machine and calls into another state machine called Image
Processing , as shown in Figure A-7 .

 This state machine is implemented with the functions in the above diagram, Image Processing . You are
not detailing if an OTP concept is used or not. As said at the top of this appendix, I use modeling to make the
initial design in an easy way. Going deeper is most of the time not necessary because code is documenting
the implementation (and, sometimes, documentation in source code files explains further details).

 In other parts of the book, I use diagrams to show requirements and I also use use-case diagrams. These
together with the diagrams discussed here make it possible to describe a system that uses Erlang and Elixir.

 Figure A-7. Image Processing State Machine

239© Wolfgang Loder 2016
W. Loder, Erlang and Elixir for Imperative Programmers, DOI 10.1007/978-1-4842-2394-9

 APPENDIX B

 Resources

 Erlang : www.erlang.org
 Elixir : http://elixir-lang.org
 List on GitHub: Awesome Elixir: https://github.com/h4cc/awesome-elixir
 List on GitHub: Awesome Erlang: https://github.com/drobakowski/awesome-erlang
 Erldocs (searchable Erlang documentation): http://erldocs.com
 Erlang Central : http://erlangcentral.org
 Erlang Solutions, Downloads: www.erlang-solutions.com/resources/download.html
 Libraries.io Elixir : https://libraries.io/languages/Elixir

 Books
 Armstrong, Joe. Programming Erlang , 2nd Edition. Pragmatic Programmers, 2013.
 Ballou, Kenny. Learning Elixir . Packt Publishing, 2016.
 Eisenberg, J. David . Études for Erlang . O’Reilly Media, 2013.
 Eisenberg, J. David. Études for Elixir . O’Reilly Media, 2014.
 Jurić, Saša. Elixir in Action . Manning Publications, 2015.
 McCord, Chris. Metaprogramming Elixir . Pragmatic Programmers, 2015.
 Pereira, Paulo A. Elixir Cookbook . Packt Publishing, 2015.
 Thomas, Dave. Programming Elixir 1.2 . Pragmatic Programmers, 2016.
 Vinoski, Steve and Francesco Cesarini. Designing for Scalability with Erlang/OTP . O’Reilly Media, 2016.

 Articles and Papers
 Armstrong, Joe. “A History of Erlang.” 2007, http://dl.acm.org/citation.cfm?id=1238850&dl=ACM&coll=D
L&CFID=495241682&CFTOKEN=12700222

 Online Learning
 Learn You Some Erlang: http://learnyousomeerlang.com
 Elixir School: https://elixirschool.com

http://www.erlang.org/
http://www.erlang.org/
http://elixir-lang.org/
http://elixir-lang.org/
https://github.com/h4cc/awesome-elixir
https://github.com/drobakowski/awesome-erlang
http://erldocs.com/
http://erldocs.com/
http://erlangcentral.org/
http://erlangcentral.org/
http://www.erlang-solutions.com/resources/download.html
https://libraries.io/languages/Elixir
https://libraries.io/languages/Elixir
http://dl.acm.org/citation.cfm?id=1238850&dl=ACM&coll=DL&CFID=495241682&CFTOKEN=12700222
http://dl.acm.org/citation.cfm?id=1238850&dl=ACM&coll=DL&CFID=495241682&CFTOKEN=12700222
http://learnyousomeerlang.com/
https://elixirschool.com/

APPENDIX B ■ RESOURCES

240

 Blogs
 Plataformatec Elixir : http://blog.plataformatec.com.br/tag/elixi/
 The Erlangelist : www.theerlangelist.com
 Joe Armstrong : http://joearms.github.io
 Robert Virding : http://rvirding.blogspot.com
 Erlang Solutions : www.erlang-solutions.com/blog.html

 Fora
 Elixir Forum : https://elixirforum.com
 Reddit Erlang : www.reddit.com/r/erlang/
 Reddit Elixir : www.reddit.com/r/elixir/
 Slack Erlang : http://erlanger.slack.com
 Slack Elixir : http://elixir-lang.slack.com

http://blog.plataformatec.com.br/tag/elixir/
http://blog.plataformatec.com.br/tag/elixi/
http://www.theerlangelist.com/
http://www.theerlangelist.com/
http://joearms.github.io/
http://joearms.github.io/
http://rvirding.blogspot.com/
http://rvirding.blogspot.com/
https://www.erlang-solutions.com/blog.html
http://www.erlang-solutions.com/blog.html
https://elixirforum.com/
https://elixirforum.com/
https://www.reddit.com/r/erlang/
http://www.reddit.com/r/erlang/
https://www.reddit.com/r/elixir/
http://www.reddit.com/r/elixir/
http://erlanger.slack.com/
http://erlanger.slack.com/
http://elixir-lang.slack.com/
http://elixir-lang.slack.com/

241© Wolfgang Loder 2016
W. Loder, Erlang and Elixir for Imperative Programmers, DOI 10.1007/978-1-4842-2394-9

 APPENDIX C

 Features/Framework/Concepts
Matrix

 This diagram shows all features, concepts, and patterns used and described in this book. Dotted lines
indicate a relationship within a group, directed lines with arrows indicate usage.

 Figure C-1. Feature/Framework/Concepts Matrix

APPENDIX C ■ FEATURES/FRAMEWORK/CONCEPTS MATRIX

242

 On the left are both functional and non-functional service-features as partly described in Part 2 . These
features use Erlang/OTP/Elixir language constructs for the implementation, which can be seen in the
middle of the diagram. The right side shows more generic concepts and patterns and how they are grouped
in the chapters of Part 5 .

243© Wolfgang Loder 2016
W. Loder, Erlang and Elixir for Imperative Programmers, DOI 10.1007/978-1-4842-2394-9

 APPENDIX D

 Quick Guide to Erlang and Elixir

 The following code examples show the different syntax of Erlang and Elixir. For more information, Appendix
B lists some resources to learn the languages.

 Code Comments
 Erlang - Comments

 % Oneline comment or inline comment
 %% This should be used to comment functions.
 %%% This should be used to comment modules.

 % There is no multiline comment construct in Erlang.

 Elixir - Comments

 # Oneline comment or inline comment

 # Documentation has its own syntax different from comments.

 # There is no multiline comment construct in Elixir.

 Variables
 Erlang - Variable

 % All variable names must start with an uppercase letter.
 VarString = "hello world".

 Elixir - Variable

 varstring = "hello world"

APPENDIX D ■ QUICK GUIDE TO ERLANG AND ELIXIR

244

 Atoms
 Erlang - Atom

 % Atoms start with lowercase characters unless in quotes.
 v.
 'atom with space'.
 is_atom('atom with space'). % -> true
 is_atom(false). % -> true

 Elixir - Atom

 :v
 :"atom with space"
 is_atom(:"atom with space") # -> true
 is_atom(false) # -> true

 Data Types
 Erlang - String

 S1 = "hello world".
 S2 = [104,101,108,108,111,32,119,111,114,108,100]. % list of integers
 S3 = [$h,$e,$l,$l,$o,$,$w,$o,$r,$l,$d]. % ASCII values of character
 S4 = <<"hello world">>. % one byte per character

 Elixir - String

 s1 = "hello world"
 s2 = [104,101,108,108,111,32,119,111,114,108,100] # list of integers
 s3 = [?h,?e,?l,?l,?o,? \s ,?w,?o,?r,?l,?d] # ASCII values of character
 s4 = <<"hello world">> # one byte per character

 Erlang - String Operations

 S = "hello world".
 string :len(S). % -> 11
 string :equal(S,"hello"). % -> false
 string :concat("hello", " world"). % -> "hello world"
 string :tokens(S,[$]). % -> ["hello","world"]
 string :to_upper(S). % -> "HELLO WORLD"

 Elixir - String Operations

 s = "hello world"
 String .length(s) # -> 11
 String .equivalent?(s,"hello") # -> false
 "hello" <> " world" # -> "hello world"
 String .split(s) # -> ["hello","world"]
 String .upcase(s) # -> "HELLO WORLD"

APPENDIX D ■ QUICK GUIDE TO ERLANG AND ELIXIR

245

 Erlang - Number

 V1 = 1.0.
 V2 = 3.
 N1=16#FF. % -> 255; base 16
 V1 + V2. % -> 4.0

 Elixir - Number

 v1 = 1.0
 v2 = 3
 n1 = 0xFF # -> 255; base 16
 v1 + v2 # -> 4.0

 Erlang - Binary

 % Bin is a list of three integers encoded with 8, 8, and 3 bits.
 Bin = <<16:8, 1:8, 1:3>>. % -> <<16,1,1:3>>
 % BinList is a list of three integers encoded with 8 bits.
 BinList = <<16:8,2,1>>. % -> <<16,2,1>>
 binary_to_list(BinList). % -> [16,2,1]

 Elixir - Binary

 # b1 is a list of three integers encoded with 8, 8, and 3 bits.
 b1 = <<16::size(8), 1::size(8), 1::size(3)>> # -> <<16,1,1:3>>
 # binlist is a list of three integers encoded with 8 bits.
 binlist = <<16::size(8),2,1>> # -> <<16,2,1>>
 to_char_list(binlist) # -> [16,2,1]

 Operators
 Erlang - Operators ̀

 V1 = 1.0.
 V2 = 3.
 V3 = 2.
 L1 = [1].
 L2 = [2,3].
 L3 = [2].

 V1 == V2. % -> false
 V1 + V2. % -> 4.0
 V2 rem V3. % -> 1

 L1 ++ L2. % -> [1,2,3]
 L2 -- L3. % -> [3]

APPENDIX D ■ QUICK GUIDE TO ERLANG AND ELIXIR

246

 Elixir - Operators

 v1 = 1.0
 v2 = 3
 v3 = 2
 l1 = [1]
 l2 = [2,3]
 l3 = [2]

 v1 == v2 # -> false
 v1 + v2 # -> 4.0
 rem v2,v3 # -> 1

 l1 ++ l2 # -> [1,2,3]
 l2 -- l3 # -> [3]

 Conditionals
 Erlang - Conditionals

 Flag = false.

 case Flag of
 true -> 42;
 _ -> 0
 end .

 if
 Flag =:= true ->
 42;
 true ->
 0
 end .

 Elixir - Conditionals

 flag = false

 case flag do
 true -> 42
 _ -> 0
 end

 if flag == true do
 42
 else
 0
 end

APPENDIX D ■ QUICK GUIDE TO ERLANG AND ELIXIR

247

 Pattern Matching
 Erlang - Pattern Matching

 P = {ok,{note,""}}.
 {ok,_} = P. % -> {ok,{note,[]}}
 {Ret,_} = P. % -> {ok,{note,[]}}
 Ret. % -> ok
 [] = P. % -> exception error: no match of right hand side value {ok,{note,[]}}

 Elixir - Pattern Matching

 p = {:ok,{:note,""}}
 {:ok,_} = p # -> {:ok, {:note, ""}}
 {ret,_} = p # ->{:ok, {:note, ""}}
 ret # -> :ok
 [] = p # -> (MatchError) no match of right hand side value: {:ok, {:note, ""}}

 Guards
 Erlang - Guards

 % Guards in if and case see in section "Conditional"

 return_boolean(N) when N =:= 42 -> true;
 return_boolean(N) -> false.

 FunReturnBoolean =
 fun
 (N) when N =:= 42 -> true;
 (N) -> false
 end .

 Elixir - Guards

 # Guards in if and case see in section "Conditional"

 def return_boolean(n) when n == 42 do
 true
 end
 def return_boolean(_n) do
 false
 end

 def fun_return_boolean() do
 fn n when n == 42 -> true
 n -> false
 end
 end

APPENDIX D ■ QUICK GUIDE TO ERLANG AND ELIXIR

248

 Functions
 Erlang - Functions

 F = fun (X,Y) -> X+Y end .
 F(1,2). % -> 3

 Elixir - Functions

 f = fn (x,y) -> x+y end
 f.(1,2) # -> 3

 Data: Lists, Records, Maps, and Structs
 Erlang - Lists

 L = [1,2,3].
 hd(L). % -> 1
 tl(L). % -> [2,3]
 length(L). % -> 3
 T = {hd(L),tl(L),"hello world"}. % -> {1,[2,3],"hello world"}
 tuple_size(T). % -> 3
 element(2,T). % -> [2,3]
 setelement(2,T,[0]). % -> {1,[0],"hello world"}
 T. % T unchanged -> {1,[2,3],"hello world"}

 Elixir - Lists

 l = [1,2,3]
 hd(l) # -> 1
 tl(l) # -> [2,3]
 length(l) # -> 3
 t = {hd(l),tl(l),"hello world"} # -> {1, [2, 3], "hello world"}
 tuple_size(t) # -> 3
 elem(t,1) # -> [2,3]
 put_elem(t,1,[0]) # -> {1, [0], "hello world"}
 t # t unchanged -> {1, [2, 3], "hello world"}

 Erlang - Records

 - record (documentrecord, {docid, name}).

 R = #documentrecord{docid=123, name="name"}.
 % -> #documentrecord{docid = 123,name = "name"}

 R#documentrecord.name. % -> "name"

 F = fun (#documentrecord{docid=DocId} = D) ->
 D#documentrecord{docid=DocId+1} end .
 F(R). % -> #documentrecord{docid = 124,name = "name"}
 R. % R is not changed -> #documentrecord{docid = 123,name = "name"}

APPENDIX D ■ QUICK GUIDE TO ERLANG AND ELIXIR

249

 Elixir - Records

 require Record
 Record .defrecord :documentrecord, docid: 0, name: ""
 @type documentrecord::record(:documentrecord, docid: integer, name: String .t)

 r = documentrecord(docid: 123,name: "name")
 # -> {:documentrecord, 123, "name"}

 documentrecord(r,:name) # -> "name"

 f = fn (d) ->
 documentrecord(docid: documentrecord(d,:docid)+1,name: documentrecord(d,:name))
 end
 f.(r) # -> {:documentrecord, 124, "name"}
 r # r is not changed -> {:documentrecord, 123, "name"}

 Erlang - Maps

 M = #{{tomatosauce,spoon} => 3,
 {mozzarella,slices} => 8,
 {ham,slices} => 6
 }.

 #{{ham,slices} := I} = M % get value
 % -> #{{ham,slices} => 6,{mozzarella,slices} => 8,{tomatosauce,spoon} => 3}
 I. % -> 6

 M#{{mozzarella,slices} => 6}. % update
 % -> #{{ham,slices} => 6,{mozzarella,slices} => 6,{tomatosauce,spoon} => 3}

 M#{{mozzarella,slices} := 5, {pepperoni,piece} => 3}. % update and add
 % -> #{{ham,slices} => 6,
 % {mozzarella,slices} => 5,
 % {pepperoni,piece} => 3,
 % {tomatosauce,spoon} => 3}

 Elixir - Maps

 m = %{{:tomatosauce,:spoon} => 3,
 {:mozzarella,:slices} => 8,
 {:ham,:slices} => 6
 }

 Map .get m,{:ham,:slices} # get value -> 6

 %{m | {:mozzarella,:slices} => 6} # update
 # -> %{{:ham, :slices} => 6, {:mozzarella, :slices} => 6,
 # {:tomatosauce, :spoon} => 3}

 Map .put(m, {:pepperoni,:piece}, 3) # add

APPENDIX D ■ QUICK GUIDE TO ERLANG AND ELIXIR

250

 # -> %{{:ham, :slices} => 6,
 # {:mozzarella, :slices} => 8,
 # {:pepperoni, :piece} => 3,
 # {:tomatosauce, :spoon} => 3}

 Elixir - Structs

 defmodule Documentrecord do
 defstruct docid: 0, name: ""
 end

 % Documentrecord {} # -> %Documentrecord{docid: 0, name: ""}

 d = % Documentrecord {docid: 123, name: "name"}
 # -> %Documentrecord{docid: 123, name: "name"}
 d.docid # -> 123

 %{d | name: "Joe"} # updating
 # -> %Documentrecord{docid: 123, name: "Joe"}
 d # d is unchanged -> %Documentrecord{docid: 123, name: "name"}

 is_map(d) # -> true (structs are maps with fixed set of fields)

 Pipeline
 Elixir - Pipeline

 "hello world" |> String .upcase |> String .split # -> ["HELLO", "WORLD"]

 Erlang Shell
• erl -Start shell

• c(Module). -Compile module

• b(). -Show all variables

• f(). -Remove all variable bindings

• i(). -List processes

• memory(). -Print memory information

• q(). -Quit shell

• regs(). -List registered processes

• rr(Module). -Load record definitions from module

• pwd(). -Return current working directory

• cd(Dir). -Change working directory

APPENDIX D ■ QUICK GUIDE TO ERLANG AND ELIXIR

251

 Elixir Shell
• iex -Start shell

• c “filename.ex” -Compile file

• i var -Print type information for var

• v n -Print session history for step n

• pwd -Return current working directory {pagebreak}

253

 A
 Abstract syntax tree (AST) , 10
 Actor model , 221–225
 API server

 Erlang code , 113
 fi ltering and sorting , 112
 gen_udp in Elixir , 115
 GET and POST http requests , 112
 HTTP server , 113
 module inets , 114
 OTP (see Open Telecom Platform (OTP))
 overview , 111
 RawUdpServer , 115–116
 server with start(4242) , 114
 the simplewebserver module with Rebar3 , 114
 UDP server , 114
 Web and REST frameworks , 112

 Atoms , 217–218

 B
 BeefStew module , 208
 Behaviour module , 213–215
 Bodgan’s Erlang Abstract Machine (BEAM) , 9
 Boolean expression , 204–205
 Built-in functions (BIFs) , 94, 100

 C
 Calendar module , 109
 C macros , 204
 Code structuring concepts , 172
 Concurrency , 225, 229, 232
 Concurrent systems , 229
 Constrained parametric polymorphism , 209
 Continuous delivery , 77
 Continuous integration (CI)

 confi guration and shell , 38–41
 environment , 33

 Erlang and Elixir development , 33
 tools , 34–36

 Custom templates , 36–38

 D
 DAR . See Digital Asset Repository (DAR)
 Daractors , 102
 Darapi , 102, 106–107, 109, 125, 130–131, 138–142
 Dar_dblib , 102, 103
 Dar_gfslib , 102
 Dar_imagelib , 102
 DarMetaData , 150
 DARModelInternalMessage , 156
 DARRouter , 138, 142
 Dar_wfl ib , 102
 DARWorkfl ow , 157, 159
 DARWorkfl owOperations , 159–161
 Databases

 GenStateMachine , 158, 160–162
 image processing , 162–164
 models , 155–157
 MongoDB GridFS , 145–150
 orchestration , 157–158
 PDF creation , 164
 PostgreSQL , 150–153
 Workfl ow , 153–155

 Debugger , 67–70
 Decorator , 208
 Defmacrop , 205
 Deployment , 30–31

 and distribution , 166–168
 security , 165–166

 Dialyzer , 71–75, 214, 216
 Digital Asset Repository (DAR) , 101

 commercial project , 18
 components , 17–18
 features , 19–20
 insurance , 16
 live media , 16

 Index

© Wolfgang Loder 2016
W. Loder, Erlang and Elixir for Imperative Programmers, DOI 10.1007/978-1-4842-2394-9

■ INDEX

254

 mobile apps , 16
 online shop , 16
 registries and archives , 16
 requirements , 15
 security , 16
 solicitor , 16
 use cases , 16–17

 Distillery , 80
 Docker container , 26–30
 Dockerfi le , 27
 Domains specifi c languages (DSL) , 203, 206–207

 E
 Ecto , 104, 109, 150–151, 153, 155, 206
 Elixir , 24–26, 90–92, 99, 112, 115–116, 118–122,

124–126, 136–138, 142, 165–166, 168
 atom , 244
 binary , 245
 comments , 243
 conditionals , 246
 fi les

 custom task , 48–50
 Rebar 3 and mix , 50

 function , 218, 248
 guards , 247
 lists , 248
 maps , 249
 number , 245
 operators , 246
 pattern matching , 247
 pipeline , 250
 projects

 commands , 41–48
 mix , 41

 records , 249
 shell , 251
 string , 244
 structs , 250
 tool , 38
 variable , 243

 Elixir-based modules , 103
 Enterprise service bus (ESB) , 220
 Erland , 90–92
 Erlang , 24, 99, 112, 113, 115–116, 118–120,

122–126, 130, 136, 165–168
 atom , 244
 binary , 245
 comments , 243
 conditionals , 246
 functions , 218, 248
 guards , 247
 lists , 248
 maps , 249

 number , 245
 operators , 245
 pattern matching , 247
 project , 102
 records , 248
 shell , 250
 source code , 94
 string operations , 244
 variable , 243
 VMs , 99, 220, 227–229, 231

 Erlang/Elixir/OTP eco-system , 225, 232
 erlangexamples , 35
 Erlang/OTP and Elixir

 Installation , 23
 Erlang-runtime

 common test and EUnit , 51–57
 ExUnit , 57–63

 Erlang Runtime System (ERTS) , 24, 79
 Erlmongo , 104, 145, 147
 Erlydtl , 133
 Export functions, Erlang , 94
 External DSL , 206

 F
 Fault tolerance , 226–227
 Feature/framework/concepts matrix , 241
 Flow-based programming (FBP) , 229–230
 Functional programming concepts , 171

 closures , 199–200
 continuation-passing , 198–199
 cooking recipe , 6
 declarative style , 7
 features , 6
 higher order function , 195–197
 immutability

 assembler code , 177
 bad programming , 178
 bi-directional data structures , 180
 cache and sharing , 179
 code quality and debugging , 179
 concurrency , 181–182
 data consistency and state , 179
 functional correctness , 180
 hash keys , 180
 memory locations , 177, 178
 object instance , 179
 object-oriented languages , 178
 resistance , 180
 workarounds , 180

 ingredients , 6
 lazy evaluation , 200–201
 lists and tuples , 186–190
 maps , 182–186
 objects , 7

Digital Asset Repository (DAR) (cont.)

■ INDEX

255

 pattern matching , 173–177
 recursion , 6, 191–194
 referential transparency , 201–202

 Function read_-binary_test , 204

 G
 Garbage collection program , 5
 Generic code , 225–226
 gen_server , 115–118, 120, 122
 gen_statem , 118–119
 GenStateMachine , 158–159, 161
 gen_udp , 114–115
 GitHub repository , 102
 GridFS , 145, 147, 149, 156, 164

 H
 Hello World application , 89, 90
 Heterogeneous system , 231
 History of Elixir , 9
 History of Erlang , 9
 Homoiconic languages , 205
 Hot code swapping , 9
 Hybrid programming languages , 7

 I
 Image processing model , 236, 238
 Image processing state machine , 238
 Imperative programming

 cooking recipe , 3–4
 description , 3
 ingredients , 4
 macro assembler languages , 4
 memory , 5–6
 objects , 4–5

 Internal DSL , 206

 J, K
 JavaScript Object Notation (JSON) , 104–106
 Jiff y , 104

 L
 Lager , 106–108
 Linq expressions , 207
 Linux containers , 26

 M
 Macro assembler , 203
 Message services , 226–227
 Metaprogramming , 203, 205

 Microservices , 221
 Mixins , 207–208
 Mocking , 63–67
 Modeling , 233, 238
 Module , 93–94
 MongoDB server , 58

 N
 Native implemented function (NIF) , 104
 Numberfunction , 216

 O
 Object-oriented programming (OOP) , 171
 Observer , 83–85
 ODBC interface , 104
 OO languages , 207–210, 215
 Open Telecom Platform (OTP) , 9

 application , 124–126
 behaviours , 116
 Elixir and Phoenix , 136–143
 Erlang and Cowboy , 130–136
 Erlang and Elixir , 116
 generic event handler , 120–122
 generic FSM , 118–120
 generic server , 116–118
 generic state machine , 118–120
 GenStage , 126–129
 supervisor , 123

 P, Q
 Persistent lookup table (PLT) , 71, 73
 Phoenix , 166–168
 Phoenix router , 140
 Polymorphism , 209–213
 Process id (PID) , 95, 109
 Production

 blue/green concept , 77
 continuous delivery , 77
 monitoring , 81–83, 85
 release management , 78–81
 server , 77

 Project recommendations , 11

 R
 Read-eval-print loop (REPL) , 23–24, 26
 Rebar3 , 78, 80, 103–106
 RecipeMix module , 208
 Resources , 239–240
 Returnvalue , 216
 Riak , 104
 RPC module , 103

■ INDEX

256

 S
 sayhello.erl , 219–220
 Secret cookie , 100
 Separation of concerns , 219–220
 Service features , 19–20
 Service oriented architecture (SOA) , 220–221, 231
 simplewebserver module , 114
 Spaghetti code , 219
 Specifi cation , 216
 StewProtocol module , 211–212
 Strict syntax , 185
 System under test (SUT) , 52

 T
 Tail call optimization , 191
 Timex module , 108–109
 Trampolined , 195

 Transactional systems , 227
 Transform

component , 233–234
 Tuples , 206
 Type creation concepts , 172

 U, V
 Ubuntu installation , 26
 UDP server , 114
 Unconstrained parametric

polymorphism , 209
 UUID library , 109

 W, X, Y, Z
 Workfl ow actors , 236
 Workfl ow state
machine , 237

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewers
	Foreword
	Introduction
	Part I: Before We Start
	Chapter 1: Imperative vs. Functional Programming
	Imperative Programming
	Objects
	Memory

	Functional Programming
	Hybrid Programming Languages
	How Do Erlang and Elixir Fit into the Schema?

	Chapter 2: From Erlang to Elixir
	Chapter 3: Setting Your Mind

	Part II: The Service
	Chapter 4: Service Overview and Design
	Security
	Live Media
	Insurance
	Solicitor
	Registries and Archives
	Online Shop
	Mobile Apps

	Chapter 5: Service Features

	Part III: The Setup
	Chapter 6: Environment and Deployment
	Installation
	Testing the Setup
	Erlang
	Elixir
	Docker Containers
	Deployment

	Chapter 7: Development Setup
	Basic Tools for Continuous Integration
	Rebar3

	Custom Templates
	Configuration and Shell
	Mix
	Commands
	Custom Tasks
	Rebar 3 and Mix
	Common Test and EUnit for Erlang
	EUnit
	Common Test
	ExUnit

	Meck
	Debugger
	Dialyzer

	Chapter 8: Production Setup
	Release Management
	Monitoring

	Part IV: Implementing the Service
	Chapter 9: Overview
	A Deeper Look at Erlang and Elixir
	Module Definition
	Function Exports
	Running on One Machine
	Running on Two Machines

	Project Structure
	Mixing Erlang and Elixir Modules
	Libraries
	Database Access: Ecto, Erlmongo, and Others
	Riak KV
	JSON
	Logging: Lager
	Timex
	UUID

	Chapter 10: Public Interface
	Low Level
	OTP Servers
	Generic Server1
	Generic FSM2 and Generic State Machine3
	Generic Event Handler5
	Supervisor6
	Application7
	GenStage8

	Erlang and Cowboy
	Route Options
	Query Strings
	Body Data
	HTTP Verbs

	Elixir and Phoenix

	Chapter 11: Asset Processing
	Database Access
	MongoDB GridFS
	PostgreSQL

	Workflow
	Model Definition
	Orchestration
	State Machine

	Image Processing
	PDF Creation

	Chapter 12: Deployment
	Security
	Distribution and Deployment

	Part V: Patterns and Concepts
	Chapter 13: Overview Patterns and Concepts
	Chapter 14: Functional Concepts
	Pattern Matching
	Immutability
	Code Quality and Debugging
	Data Consistency and State
	Cache and Sharing
	Hash Keys
	Functional Correctness
	Bi-Directional Data Structures
	Workarounds
	Resistance
	Concurrency

	Maps
	Lists and Tuples
	Recursion
	Higher Order Functions
	Continuation-Passing
	Closures
	Lazy Evaluation
	Referential Transparency

	Chapter 15: Type Creation Concepts
	DSL and Metaprogramming
	Mixin
	Polymorphism
	Behaviors (Behaviours)
	Dynamic Types
	Atoms

	Chapter 16: Code Structuring Concepts
	Separation of Concerns
	SOA
	Actor Model
	Specific to Generic
	Fault Tolerance
	Processes
	Concurrency
	Flow-Based Programming
	Where To Go From Here?

	Appendix A: Modeling
	Appendix B: Resources
	Books
	Articles and Papers
	Online Learning
	Blogs
	Fora

	Appendix C: Features/Framework/Concepts Matrix
	Appendix D: Quick Guide to Erlang and Elixir
	Code Comments
	Variables
	Atoms
	Data Types
	Operators
	Conditionals
	Pattern Matching
	Guards
	Functions
	Data: Lists, Records, Maps, and Structs
	Pipeline
	Erlang Shell
	Elixir Shell

	Index

