
Quick
Clojure

Effective Functional Programming
—
Mark McDonnell

Quick Clojure
Effective Functional Programming

Mark McDonnell

Quick Clojure: Effective Functional Programming

Mark McDonnell
Southend-on-Sea, UK

ISBN-13 (pbk): 978-1-4842-2951-4 ISBN-13 (electronic): 978-1-4842-2952-1
DOI 10.1007/978-1-4842-2952-1

Library of Congress Control Number: 2017952537

Copyright © 2017 by Mark McDonnell

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even
if they are not identified as such, is not to be taken as an expression of opinion as to whether or
not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Cover image by Freepik (www.freepik.com)

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Technical Reviewer: Massimo Nardone
Coordinating Editor: Mark Powers
Copy Editor: April Rondeau

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is
a California LLC, and the sole member (owner) is Springer Science + Business Media Finance
Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit
http://www.apress.com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions
and licenses are also available for most titles. For more information, reference our Print and eBook
Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book's product page, located at www.apress.com/
9781484229514. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

www.freepik.com
mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
http://www.apress.com/rights-permissions
http://www.apress.com/bulk-sales
http://www.apress.com/9781484229514
http://www.apress.com/9781484229514
http://www.apress.com/source-code
http://www.apress.com/source-code

This is dedicated to my wife Catherine and also to my mum and dad.

They have a limitless belief in my ability to succeed,
and without them I would certainly have failed.

v

Contents at a Glance

About the Author ��� xv

About the Technical Reviewer ��� xvii

Acknowledgments �� xix

Introduction �� xxi

 ■Chapter 1: What Is Clojure? �� 1

 ■Chapter 2: Data Structures and Syntax �� 9

 ■Chapter 3: Functional Programming �� 29

 ■Chapter 4: Sequences ��� 45

 ■Chapter 5: Functions �� 55

 ■Chapter 6: Destructuring �� 79

 ■Chapter 7: Pattern Matching �� 85

 ■Chapter 8: Concurrency �� 95

 ■Chapter 9: Namespaces �� 125

 ■Chapter 10: Macros �� 137

 ■Chapter 11: Object Orientation ��� 147

 ■Chapter 12: Leiningen��� 155

 ■Chapter 13: Command-Line Applications ����������������������������������� 175

■ Contents at a GlanCe

vi

 ■Appendix A: Conventions �� 185

 ■Appendix B: Writing Clojure with Vim �� 187

Index �� 195

vii

Contents

About the Author ��� xv

About the Technical Reviewer ��� xvii

Acknowledgments �� xix

Introduction �� xxi

 ■Chapter 1: What Is Clojure? �� 1

Why Should You Care? ��� 2

The Name? �� 3

Getting Started �� 3

Documentation �� 6

Summary ��� 7

 ■Chapter 2: Data Structures and Syntax �� 9

List��� 10

Vector �� 13

Map ��� 18

Keywords �� 20

Keys, Values, and Replacement �� 21

Set ��� 23

 ■ Contents

viii

Vars and Symbols �� 24

Assigning Functions ��� 25

Temp Variables ��� 26

Dynamic Variables �� 27

Summary ��� 28

 ■Chapter 3: Functional Programming �� 29

Immutability �� 29

Referential Transparency ��� 30

First-class Functions ��� 30

Complement ��� 32

Apply ��� 32

Map ��� 33

Reduce �� 34

Filter ��� 35

Comp �� 35

Partial Application ��� 38

Recursive Iteration �� 40

Composability �� 42

Summary ��� 43

 ■Chapter 4: Sequences ��� 45

List Comprehension ��� 46

Sequence Abstraction ��� 47

Lazy Sequences �� 49

lazy-seq �� 50

Summary ��� 53

 ■ Contents

ix

 ■Chapter 5: Functions �� 55

Anonymous Function Shorthand ��� 55

Pre and Post Conditions �� 56

clojure�core �� 58

Map Construction ��� 58

Pipelining �� 59

Dropping Values �� 61

Code Comments ��� 62

Endless Cycle ��� 63

Uniqueness ��� 64

Predicate Functions �� 64

Collection Extraction ��� 66

String Formatting ��� 67

Frequency ��� 68

Zipping Values �� 68

Interposing Values �� 70

Partitioning Data ��� 70

Simple Parallelization ��� 72

Repeating Yourself �� 73

Basic I/O ��� 73

clojure�string ��� 74

Checking for Whitespace �� 74

Beginnings and Endings ��� 75

Trimming Whitespace ��� 76

Summary ��� 77

 ■ Contents

x

 ■Chapter 6: Destructuring �� 79

Summary ��� 83

 ■Chapter 7: Pattern Matching �� 85

core�match �� 85

Example: FizzBuzz �� 86

Backreferences��� 87

Matching Literals �� 88

Matching Data Structures ��� 89

Safeguarding �� 90

Polymorphism ��� 92

Summary ��� 94

 ■Chapter 8: Concurrency �� 95

Retriable �� 96

Coordinated ��� 96

Asynchronous �� 96

Thread Safe ��� 97

Delay ��� 97

Promise ��� 98

Future �� 99

Atom �� 100

Lock ��� 103

Deadlock ��� 104

Livelock �� 104

Agent ��� 105

Without wait/wait-for�� 106

Using wait ��� 107

 ■ Contents

xi

Using wait-for ��� 107

Agent Errors �� 108

Transactions �� 110

dosync/ref/alter �� 110

ref-set ��� 110

STM Restart Policy�� 111

Nested Transactions ��� 113

ensure ��� 113

commute��� 115

Channels�� 116

Go Blocks �� 118

Thread Function �� 119

Distinction ��� 120

Alternate ��� 120

Buffered Channels �� 121

Sliding/Dropping Buffered Channels �� 121

Timeout Channels ��� 122

Summary ��� 123

 ■Chapter 9: Namespaces �� 125

What Is a Namespace? �� 126

Loading Namespaced Files ��� 127

Interning �� 128

Root Bindings ��� 129

Dynamic Variables �� 130

Detour Over… �� 130

foo�core ��� 131

foo�bar �� 131

foo�baz �� 132

 ■ Contents

xii

:require ��� 132

:as ��� 133

:refer ��� 133

:all ��� 134

:use ��� 135

Anything Else? �� 136

Summary ��� 136

 ■Chapter 10: Macros �� 137

Expanding All the Way Down ��� 139

Writing Your Own Macros �� 140

Quoting ' �� 140

Syntax Quoting ` �� 141

Unquoting ~ �� 141

Unquote Splicing ~@ �� 142

Generating Symbols gensym/# ��� 143

Macro Dissection ��� 143

Summary ��� 145

 ■Chapter 11: Object Orientation ��� 147

Java Interop ��� 147

defprotocol �� 148

deftype �� 148

defrecord ��� 150

Reify �� 152

Summary ��� 152

 ■ Contents

xiii

 ■Chapter 12: Leiningen��� 155

Ten-second Example ��� 155

Help! �� 157

Compojure ��� 157

Compojure Tree Structure�� 158

Tests �� 160

Templates �� 162

template ��� 163

default �� 164

app �� 165

plugin �� 166

Project File �� 167

compojure vs� compojure-app �� 169

Real-World Library Example �� 169

Consumer ��� 170

Local Testing ��� 171

Loading the Dependency �� 171

Reviewing the Library ��� 172

Preparing for Deploy ��� 173

Summary ��� 174

 ■Chapter 13: Command-Line Applications ����������������������������������� 175

Running the cli Application �� 178

Running via Leiningen �� 178

Running via a Jar �� 179

Running via Binary ��� 180

Flags Revisited �� 182

Summary ��� 183

 ■ Contents

xiv

 ■Appendix A: Conventions �� 185
Functions �� 186

Macros �� 186

 ■Appendix B: Writing Clojure with Vim �� 187

Rainbow Parentheses �� 188

Sexp Mappings for Regular People ��� 188

Form Manipulation ��� 189

Element Manipulation ��� 189

Parenthesis Manipulation ��� 189

Insertion Manipulation �� 190

Fireplace�� 190

Steps Required ��� 190

Preferred Workflow? ��� 191

Connecting to the REPL �� 191

Fireplace Commands �� 192

Fireplace Key Bindings ��� 193

Index �� 195

xv

About the Author

Mark McDonnell works for BuzzFeed as a senior
software engineer. Previously, he was a principal
engineer with the BBC and also with Storm Creative.
He is a polyglot programmer with experience in
Clojure, Go, Python, and many other languages. He has
published books with Apress as well as self-published.
He loves playing jazz guitar, watching mixed-martial
arts, and enjoying life with his wife, Catherine, and their
two cats.

xvii

About the Technical
Reviewer

Massimo Nardone has more than 23 years of
experience in security, web/mobile development,
cloud, and IT architecture. His true IT passions are
security and Android.

He has been programming and teaching how to
program with Android, Perl, PHP, Java, VB, Python,
C/C++, and MySQL for more than 20 years.

He holds a Master of Science degree in Computing
Science from the University of Salerno, Italy.

He has worked as a project manager, software
engineer, research engineer, chief security architect,
information security manager, PCI/SCADA auditor,
and senior lead IT security/cloud/SCADA architect for
many years.

Technical skills include security, Android, cloud, Java, MySQL, Drupal, Cobol, Perl,
web and mobile development, MongoDB, D3, Joomla, Couchbase, C/C++, WebGL,
Python, Pro Rails, Django CMS, Jekyll, Scratch, and more.

He worked as visiting lecturer and supervisor for exercises at the Networking
Laboratory of the Helsinki University of Technology (Aalto University). He holds four
international patents (PKI, SIP, SAML, and Proxy areas).

He currently works as chief information security officer (CISO) for Cargotec Oyj,
and he is a member of the board for ISACA’s Finland chapter.

Massimo has reviewed more than 40 IT books for different publishers, and he is the
coauthor of Pro Android Games (Apress, 2015).

xix

Acknowledgments

As you get older, you typically find the adage “less is more” to be the appropriate way to
go for most things. With this in mind, I’d like to acknowledge the reviewers of this book,
who helped round off some of the rough edges into something altogether more cohesive.

I’d also like to acknowledge the patience of my wife (Catherine), who recognized
early on that there was only one thing better than having a book published with your
name on it . . . and that’s having two published books.

xxi

Introduction

This is a book about the Clojure programming language. Chances are you’re already
somewhat familiar with the language and you’re keen to expose yourself to more of it.
Maybe you’re learning Clojure for fun, or maybe it’s because you’re starting a new job
that requires you to work with it more. Either way, I’m sure you’ll learn some useful things
about the language and will enjoy programming in it for many years to come.

We’re going to start off fairly slow and pick up speed as we go through the chapters.
There is no thread that ties all the chapters together. Once you have the basic syntax
understood, you should be able to drop into any chapter safely.

You may find some chapters are shorter than others; this is simply because I wanted
conciseness wherever possible. We could try and cover every conceivable feature in the
Clojure language (for which there is a lot of ground to cover), but let’s face it—this would
become one of those books you never finish. It would sit on a shelf or become a door stop
because it’s too big to feasibly read through.

I wanted this book to be as short as possible, to give you the information you need
and then allow you the freedom to investigate beyond your own understanding when the
time comes for you to need to know something that might not have been covered within
these pages.

I wish you all the best with your journey into Clojure. I’m sure you’re itching to get
started. So, let’s do that . . .

1© Mark McDonnell 2017
M. McDonnell, Quick Clojure, DOI 10.1007/978-1-4842-2952-1_1

CHAPTER 1

What Is Clojure?

Clojure1 is a functional, symbiotic, and homoiconic programming language.
OK, for an opening line I’m sure you will agree that’s a bit of a mouthful. So, let’s

break that sentence down a bit and focus on the words functional, symbiotic, and
homoiconic in order to understand what they mean.

Fear not if the following descriptions end up sounding like academic nonsense;
we’ll be covering these concepts in more detail as we make our way through the various
chapters of this book, and you’ll come to realize that they do, in fact, have very practical
usage in Clojure.

•	 Functional: where functions are first-class citizens and mutating
state is frowned upon

•	 Symbiotic: the language is intended to be run atop a host
environment

•	 Homoiconic: “code is data” — this helps facilitate a macro system
for rewriting the language

 ■ Note Clojure also supports optional typing,2 although that feature is outside the scope
of this book.

Typically, when reading about Clojure you will see these terms (functional,
symbiotic, homoiconic) mentioned quite a lot, and so it can be useful to become better
acquainted with them and with what people mean when they use these terms in the
context of the Clojure language.

The main platform Clojure supports is JVM3 (Java Virtual Machine). But Clojure also
supports any platform that can execute the JavaScript engine, such as a web browser, by
way of an offshoot of the language called ClojureScript.4 ClojureScript is a compiler that
transforms Clojure code into JavaScript code.

1http://clojure.org/
2https://github.com/clojure/core.typed
3http://en.wikipedia.org/wiki/Java_virtual_machine
4https://github.com/clojure/clojurescript

http://clojure.org/
https://github.com/clojure/core.typed
http://en.wikipedia.org/wiki/Java_virtual_machine
https://github.com/clojure/clojurescript

Chapter 1 ■ What Is Clojure?

2

Clojure also works with the Common Language Runtime (CLR), which is the
execution engine of Microsoft’s .NET Framework.

 ■ Note In this book, we focus exclusively on the jVM implementation of the Clojure
programming language.

Clojure is a Lisp.5 Lisp is a programming language originally designed in 1958. It has
a very distinct syntax that makes it stand out from other modern programming languages.
Languages such as Clojure build upon Lisp’s structural basis (we’ll learn more about this
in the next chapter). The Lisp syntax is elegant and concise, and consequently affords us
the ability to be very expressive. If you’re unfamiliar with what the Lisp syntax looks like,
don’t worry, as we’ll see examples of this as we go along.

If you’re impatient, then the following snippet in Listing 1-1 is a small piece of code
to at least give you an idea of what Clojure looks like (although at this point in time it
obviously won’t make much sense if you’re new to Lisp and/or Clojure):

Listing 1-1. Demonstration of Clojure/Lisp Syntax

(def base-credentials {:client-config {:protocol "http"}})

(defn cred [{:keys [:Host :HostPort]}]
 (assoc base-credentials :endpoint (str Host ":" HostPort)))

(cred {:Host "localhost" :HostPort 8080})

There are many interesting aspects that make up the Clojure programming
ecosystem, and although most of the really important items will be covered, it’s worth
noting that I’m not aiming to include every possible feature or detail, because then the
focus of the book would become diluted and not be as palatable for beginners.

Clojure has a lot of complex moving parts, and so the idea is to help readers get up
and running with Clojure and be able to play around with some of the language’s most
interesting features without getting bogged down with too many implementation details.

Why Should You Care?
Clojure is fun. No, really!

But, more practically, it makes developing solutions to complex problems trivial,
thanks to the language’s support for immutability, its multitude of concurrency
mechanisms, and a very strong core library of functions (again, don’t worry if those words
mean nothing to you, as we’ll cover all of these details in subsequent chapters).

You can even change the Clojure programming language itself to suit your requirements
via a mechanism known as Macros. Macros is such an incredibly powerful feature that I
really wish it were available in other programming languages I use. If you want to add a new
type of flow control that the language doesn’t natively support, then no problem; you can
write it yourself dynamically with Clojure code! We’ll see this in action later on.

5http://en.wikipedia.org/wiki/Lisp_%28programming_language%29

http://en.wikipedia.org/wiki/Lisp_(programming_language)

Chapter 1 ■ What Is Clojure?

3

One of the oft-cited facts about Clojure is that the creator, Rich Hickey, spent two
years on the design of the language before starting the arduous task of actually building
and implementing Clojure.

This may sound like a pointless “fun fact,” but after you begin writing Clojure code
you’ll soon start to understand why developers like to refer back to how long it took to
design the language. It has meant Clojure was able to retrospectively pick all the good
bits from other programming languages while also filtering out previous bad decisions,
leaving you with a new programming language that ends up resolving a lot of otherwise
contentious design issues.

The Name?
The word Clojure and where it comes from is a typical discussion point for Clojurists.
Although, I’m not sure why, considering Rich Hickey (author of Clojure) has long since
confirmed that the name is a combination of the following:

•	 C#

•	 Lisp

•	 Java

(C)(L)o(J)ure
Clojure is pronounced (in the author’s own words):

exactly like closure, where the s/j has the zh sound as in azure,
pleasure etc

—Rich Hickey (Google Groups Discussion6)

Getting Started
The first thing we’re going to need is a REPL (REPL is an acronym for “Read Eval Print
Loop”). Effectively, a REPL is a way for you to execute arbitrary pieces of code and to see
the results, a form of “interactive development.” You’ll find as we go along that Clojure’s
workflow is very tightly integrated with the concept of using a REPL, and so that’s why
we'll be starting there.

You’ll find most other languages also have REPLs:

•	 Node

•	 Ruby

•	 PHP

•	 Python

6Google Groups Discussion https://goo.gl/zs7UxO

https://goo.gl/zs7UxO

Chapter 1 ■ What Is Clojure?

4

 ■ Note Most of our time in this book will be spent using a repl. It can be slow to start
up initially, but we only have to do it once.

Leiningen—which to this day I forget how to pronounce properly—is a complete
project automation and build tool for Clojure. I’ll be diving into what it can do in a later
chapter, but for now all you need to know is that it has a built-in REPL that we can (and will)
use. Please refer to the Leiningen website7 for the latest instructions for how to install it.

Just to reiterate, we’ll be working exclusively from a terminal shell throughout the
book in order for us to be able to utilize the Leiningen REPL.

For me, on a Mac, I use the Homebrew8 package manager, as I find it to be the easiest
option for installing Leiningen. With Homebrew installed, you can install Leiningen with
the command seen in Listing 1-2.

Listing 1-2. Install Leining via Homebrew

brew install leiningen

Once installed, to start REPL, run the command lein repl. You should now see
output that resembles Listing 1-3.

Listing 1-3. Output from Starting the Leiningen REPL

Retrieving org/clojure/tools.nrepl/0.2.12/tools.nrepl-0.2.12.pom from
central
Retrieving org/clojure/pom.contrib/0.1.2/pom.contrib-0.1.2.pom from central
Retrieving org/sonatype/oss/oss-parent/7/oss-parent-7.pom from central
Retrieving clojure-complete/clojure-complete/0.2.4/clojure-complete-
0.2.4.pom from clojars
Retrieving org/clojure/clojure/1.8.0/clojure-1.8.0.pom from central
Retrieving org/clojure/tools.nrepl/0.2.12/tools.nrepl-0.2.12.jar from
central
Retrieving org/clojure/clojure/1.8.0/clojure-1.8.0.jar from central
Retrieving clojure-complete/clojure-complete/0.2.4/clojure-complete-
0.2.4.jar from clojars

nREPL server started on port 55415 on host 127.0.0.1 -
nrepl://127.0.0.1:55415
REPL-y 0.3.7, nREPL 0.2.12
Clojure 1.8.0
Java HotSpot(TM) 64-Bit Server VM 1.8.0_92-b14
 Docs: (doc function-name-here)
 (find-doc "part-of-name-here")

7http://leiningen.org/
8http://brew.sh/

http://leiningen.org/
http://brew.sh/

Chapter 1 ■ What Is Clojure?

5

 Source: (source function-name-here)
 Javadoc: (javadoc java-object-or-class-here)
 Exit: Control+D or (exit) or (quit)
 Results: Stored in vars *1, *2, *3, an exception in *e

user=>

We can see from Listing 1-3 that Leiningen downloaded some dependencies for us
(such as the Clojure language release 1.8.0). But you should also take note of the last line
of the output: user=>.

The last line indicates that the namespace your code is going to be running within
will be the user namespace. We’ll be covering how namespaces work in a later chapter,
but for now it’ll suffice to know that Clojure allows you to segregate your code into
namespaces to help isolate specific functionality (much like you would split files across
separate folders).

One other thing to mention is that if you already have Java installed you can access
a REPL without the need to download/install Leiningen. First, you would need to
download and unzip Clojure. While in a terminal shell, you would execute the command
shown in Listing 1-4.

Listing 1-4. Start a REPL Utilizing Java Directly

java -cp clojure-1.8.0.jar clojure.main

Listing 1-4 demonstrates how by using the Java command directly you can start up a
Clojure REPL interface similar to what you’ll see provided by Leiningen. But there are also
online testers for when you’re in a hurry:

•	 http://www.tryclj.com/

•	 http://himera.herokuapp.com/index.html (ClojureScript)

Now that we are within the Leiningen REPL environment, let’s type something into
it and see what happens. Try typing the code shown in Listing 1-5 and see if the output
matches your expectations (I know we’ve not learned the Clojure syntax yet, but I’m
hoping that the code will describe itself well enough for you to have a vague idea of the
result before I explain it):

Listing 1-5. Execute Some Basic Clojure Code

(+ 2 2)

Once you type into the REPL the code from Listing 1-5 and hit the ENTER key,
you should see the result of this line of code being executed. If you’ve typed the code
correctly, you will see the result is 4.

Throughout the book, I will encourage you to try out the different code examples
by typing them into the REPL, as this is the best way to experiment with and learn the
language.

http://www.tryclj.com/
http://himera.herokuapp.com/index.html

Chapter 1 ■ What Is Clojure?

6

 ■ Note Comments in Clojure code are denoted by a semi-colon ;, and a common
convention in Clojure is to use two semi-colons.

OK, so this was a nice and simple snippet of code to try out. But what does this code
actually represent? Well, in the next chapter we’ll begin to learn the basic syntax for
Clojure and peek at some of its data structures, but before we do that, let’s finish up by
reviewing one last important subject. . .

Documentation
If at any time you’d like to look up a function, then the quickest way to do that is within
the REPL itself by using the doc function.

For example, if I wanted to remind myself how to increment a number using the inc
function in Clojure, I would go to the REPL and execute the code seen in Listing 1-6.

Listing 1-6. Look Up Documentation for the inc Function

(doc inc)

This would return back to me the output seen in Listing 1-7.

Listing 1-7. Documentation for the inc Function

clojure.core/inc
([x])
 Returns a number one greater than num. Does not auto-promote
 longs, will throw on overflow. See also: inc'
nil

From this output, the first thing we can see is the namespace in which the function
is located (clojure.core/inc). We’ll be covering namespaces in a lot of detail within a
later chapter, but it’s worth noting now that Clojure has a core namespace that provides a
standardized set of functions you can use.

We can also see that the function inc takes a single argument (that’s what the [x] is
indicating), and we can also read the description provided to get a better understanding
of the context of the function (i.e., what its purpose is).

Clojure “namespaces” are a way to divide your code up into separate files. The
primary namespace in Clojure is the clojure.core namespace. If you need to view the
documentation for a function that isn’t part of clojure.core, then you’ll need to include
the namespace when using the doc function within the REPL. For example, if you wanted
to look up the blank? function, which is located within the clojure.string namespace,
then in the REPL you would execute (doc clojure.string/blank?).

Chapter 1 ■ What Is Clojure?

7

For Java documentation (which you sometimes need to do, as Clojure piggybacks
off Java libraries on occasion), you’ll need to use the javadoc function instead of doc. For
example, if we wanted to look up the Formatter class in Java (which is found in Java’s
util namespace), we’d execute the code you see in Listing 1-8.

Listing 1-8. Look Up Documentation for a Java Class

(javadoc java.util.Formatter)

Executing the code within Listing 1-8 would open the relevant Java documentation
in your web browser instead of loading the results within the terminal. This isn’t as nice
as looking up Clojure-specific functionality, but it’s very rare that you would need to look
up Java when writing Clojure (maybe you would look through a stack trace in your code
and would be interested in learning more about the class that was referenced).

Summary
So, at this point we know a little bit about the background of Clojure and how to execute
code within a REPL. In the next chapter, we’ll start exploring some of the data structures
that Clojure provides. These structures help us to achieve much more practical things
with the Clojure language.

9© Mark McDonnell 2017
M. McDonnell, Quick Clojure, DOI 10.1007/978-1-4842-2952-1_2

CHAPTER 2

Data Structures and Syntax

Clojure provides a language API based upon a select set of data structures. What this
means is that the syntax for certain programming functionality matches the underlying
data structures.

For example, here are the main data structures that Clojure provides:

•	 List: (1 2 3)

•	 Vector: [1 2 3]

•	 Map: {:foo "bar"}

•	 Set: #{1 2 3}

 ■ Note There are other data structures, terminology, and related concepts, as well as a
great reference guide, which can be found in the official Clojure documentation.1 However,
for the purposes of what we wish to cover in this chapter, it can be a little “low-level” at
times, as it also discusses some of the underlying Java interfaces that Clojure utilizes.

Clojure’s data structures are read-only (also referred to as being immutable),
meaning that when you make a change to the values stored within the data structure, a
new version of the data structure is returned. We’ll come back to this concept later on.

All data structures can be mixed and nested. See Listing 2-1.

Listing 2-1. Example of Nested Data Structures

[1 2 [3 {:name "Mark"}]]

 ■ Note You’ll see that there are no delimiters between individual elements. You can add
them if you want, but they’re optional, and idiomatic Clojure code will typically omit them
(e.g., [1 2 3] can be written as [1, 2, 3]).

1https://clojure.org/reference/data_structures

https://clojure.org/reference/data_structures

CHapTer 2 ■ DaTa STruCTureS anD SYnTax

10

You can also refer to all these data structures as sequences. A sequence is an interface
defined by Clojure, which allows multiple data structures that support the interface to
share access to a set of built-in functions. We’ll cover the topic of sequences in more
detail in a later chapter.

There are many functions available within the Clojure programming language that
are actually designed to work with multiple types of data structures. This isn’t something
you see in many other languages, and consequently it affords us some great flexibility and
adaptability in our code.

Let’s now review each of these data structures in a little more depth and see which
functions we can use from Clojure’s core library to manipulate them. We’ll start with the
list data structure, as that has the most complexity around it.

List
In order to appreciate the importance of the list data structure in a language such as Clojure,
we need to understand that Clojure is a dialect of Lisp, which stands for “LISt Processing”. Lisp
is both a programming language (originally designed in 1958) and also a recognised structural
basis for a collection of programming languages (Common Lisp, Scheme and Clojure being a
few popular examples of languages that are built upon the same syntax as Lisp).

In simplistic terms, a language can be considered a dialect of lisp when it
implements a parenthesized prefix notation syntax. This type of notation is distinct in that
parentheses are used to group logic, and within the parentheses operators are placed to
the left of their operands.

In a practical sense, when looking at a language such as Clojure, prefix notation means
that inside the parentheses a function to be executed is what’s specified first, followed by
any arguments that function accepts. If we look at the list data structure, we can see that the
syntax is the same as prefix notation. This is why the list data structure is prevalent across all
Lisp languages, as it was a fundamental part of the original language design.

A list uses parentheses as its surrounding delimiters, and so an empty list would look
like (), whereas a list with three elements could look like ("a" "b" "c").

The power of a Lisp based language (such as Clojure) comes from the fact that the
language API utilizes the same syntax as the underlying data structures it manipulates.
This is unlike other languages, whose API design is usually a lot of syntactic sugar on top
of the underlying data structures they manipulate.

This mimicry between API syntax and the underlying data structures allows the
Clojure programming language to rewrite itself and implement additional features it
was not initially designed for (we’ll see how this can be achieved later on when we learn
about Clojure’s Macros feature). But in essence this concept is what is meant by the word
homoiconic: “code is data”, as mentioned at the beginning of Chapter 1.

Now that you recognize how a programming interface for a Lisp-based language uses the
same syntax as the underlying data structures, you’ll likely have noticed that Clojure’s syntax
for executing a function also happens to be a list data structure. For example, (+ 1 2) is a
function call that produces the result of 1 + 2, but (+ 1 2) is also itself a list data structure.

When Clojure evaluates the text (+ 1 2), it tokenizes the individual parts and
evaluates them. In this instance, it is being provided a list data structure, and when
provided this particular data structure, the Clojure language interpreter expects the
first element within that structure to be a function and the remaining elements to be
arguments that are passed to the function.

http://dx.doi.org/10.1007/978-1-4842-2952-1_1

CHapTer 2 ■ DaTa STruCTureS anD SYnTax

11

So, in our example we provided the + function and two arguments. The first
argument was the value 1, and the second argument was the value 2. We’ll learn more
about functions later on, but for now you should know that the syntax structure for calling
a function is as shown in Listing 2-2.

Listing 2-2. Syntax Structure for Calling a Function

(fn arg1 arg2 arg3...)

 ■ Note When using the repL, you might not realize it, but the clojure.core namespace
(and all the functions it contains) have been pre-loaded for you. This is where the + function
has come from. We will cover namespaces in a later chapter.

In Clojure a list is implemented as a linked list,2 which means if you want to loop through
its contents you’ll have to start from the beginning of the list and move next, next, next until
you reach the end of the list. This is the essence of how a linked list data structure works.

A list is very efficient at putting new elements onto the beginning of itself, but isn’t very
good at putting new elements onto the end of itself. This is because if it’s a very long list,
then it could take some time to step through each element in the list trying to find the end.

Now, most of the time when programming in Clojure, you shouldn’t have to worry
about how certain data structures are implemented “under the covers.” Clojure will
happily hide those details away from you and provide abstractions that make dealing with
data structures in the most appropriate and performant manner very easy.

That being said, I personally feel it’s important we know what implementation sits
underneath a data structure, because it allows us to make decisions that can result in
optimized code performance (when we really need it). It also means we won’t be left
scratching our heads trying to understand why a certain function didn’t provide the result
we were expecting.

If you need to add a value onto a linked list data structure, then you have a couple of
options. You can be explicit about your understanding of the underlying implementation of
the list (i.e., you now know a list data structure is implemented as a linked list) by using the
cons function, which will insert your value at the beginning of the list, as shown in Listing 2-3.

Listing 2-3. Using cons to Be Explicit About Data-Structure Manipulation

(cons 4 '(1 2 3))

;; (4 1 2 3)

Or, you can use an abstraction like the conj function instead, which will pick the
correct method for inserting the new value depending on the underlying data structure.
So, for example, if your data structure is a list (which is implemented as a linked list), then
conj will place the value at the start of the list, as shown in Listing 2-4.

2http://en.wikipedia.org/wiki/Linked_list

http://en.wikipedia.org/wiki/Linked_list

CHapTer 2 ■ DaTa STruCTureS anD SYnTax

12

Listing 2-4. Using the conj Abstraction Function on a List

(conj '(1 2 3) 4)

;; (4 1 2 3)
;; same as the more explicit cons

But, if your data structure were a vector collection instead (and we’ll look at vectors in
the next section), then the conj function would know to insert the value at the end of the
collection (which is more performant when dealing with vectors), as seen in Listing 2-5.

Listing 2-5. Using the conj Abstraction Function on a Vector

(conj [1 2 3] 4)

;; [1 2 3 4]

Some readers may be wondering about the single quote in front of the list data
structure (i.e., '(1 2 3)); we’ll discuss this in more detail when we talk about Macros in
Clojure, but effectively it prevents Clojure from evaluating the list as if it was a function
and instead allows Clojure to treat it as a literal list data structure.

Otherwise, without the single quote, as we mentioned earlier, Clojure would try to
execute the list as if the first argument were a function; so, it would attempt to locate and
execute a function by the identifier 1 and pass it the values 2 and 3 as arguments to the
function. But there is no such function called 1, and so an error would occur.

The list data structure is the only structure where you have to worry about quoting.
Alternatively, you can use the list function to dynamically create the list. For example,
(cons 4 (list 1 2 3)).

There are other abstraction functions (like conj), such as peek and pop, which help to
determine the right “process” for the data structures they’re being applied to. See Listing 2-6.

Listing 2-6. The peek and pop Abstraction Functions

(peek [1 2 3]) ;; 3
(peek '(1 2 3)) ;; 1

(pop [1 2 3]) ;; [1 2]
(pop '(1 2 3)) ;; (2 3)

Notice how the peek and pop methods handle things differently depending on the
data structure being provided. It knows that a list (i.e., '(1 2 3)) is a linked list, and so
it handles things from the beginning of the data structure, whereas it knows a vector
(i.e., [1 2 3]) has “index access,” and so it’s more performant at working from the end of
the data structure.

CHapTer 2 ■ DaTa STruCTureS anD SYnTax

13

Vector
Chances are your current programming language will have a data structure that
resembles a vector. In most other languages it is referred to as an array (although there
are subtle semantic and implementation differences). Vectors allow you to have index
access to any element within the data structure.

As an example, let’s imagine we have a vector of five elements and we want to
retrieve the fourth element. See Listing 2-7.

Listing 2-7. Demonstrate Index Access on a Vector Data Structure

(get [1 2 3 4 5] 3)

;; 4

As you can see, vectors are zero-indexed, so asking for 3 returns the fourth element.
You could also use the nth function instead of get. The difference is that the latter (get)
works across all types of collections (including maps and sets), whereas nth only works
with vectors and lists.

You can modify the vector by using the assoc function (which is an abbreviation
of “associate”). The way it works is that you provide the index of the vector you want to
modify and then provide the value (see Listing 2-8).

Listing 2-8. Associate a Value into a Vector

(assoc [1 2 3 4 5] 5 6)

;; [1 2 3 4 5 6]

In the preceding example, we’re saying “put into index 5 the value 6.” Remember that
vectors are zero-indexed, so our new value 6 will effectively be added to the end of the
vector (as there currently is no fifth index).

 ■ Note If you want to add a value to the collection without specifying an index, then use
conj, as demonstrated earlier.

Adding a value is cool, but what if you want to remove a value? One way to do this
would be to use the pop function, which returns a copy of the vector but with the last
element removed. See Listing 2-9, for example.

Listing 2-9. Return Copy of Vector with Last Item Removed

(pop [1 2 3 4 5])

;; [1 2 3 4]

CHapTer 2 ■ DaTa STruCTureS anD SYnTax

14

So, what if you want to remove elements from the middle of a vector? Well, you
should be aware that this requires a surprisingly complex number of steps when using a
Lisp-based language such as Clojure.

You should also be aware that a vector probably isn’t the best data structure to use if
you plan on removing elements from the middle of it. For situations like that, where you
want to manipulate the data in complex ways, you’ll probably want to use a hash map
instead (see the “Map” section after this for details).

Before we look at how to remove an item from the middle of a vector, let’s first start
with something similar but easier to achieve. Imagine you want to sample some of your
data. You can do that by retrieving a “slice” of your vector. For example, if the vector
looked like [1 2 3 4 5] and you wanted back a contiguous sample such as [2 3], you
could use the subvec function, as shown in Listing 2-10.

Listing 2-10. Use subvec for Retrieving a Slice of Data

(subvec [1 2 3 4 5] 1 3)

In Listing 2-10, the code describes “starting from index 1 (which is the value 2 in the
given vector), give me a copy from here until index 3,” and so we get back that specific
range [2 3].

 ■ Note We’ll see later that there are many more functions for working with sequences/
collections, and that because of the sequence abstraction that Clojure implements we can
utilize these functions across different data structures.

Going back to the earlier point about how to remove an element from the middle
of a vector, the code snippet in Listing 2-11 demonstrates how you could remove the
number 3 from the collection [1 2 3 4 5] using subvec, leaving you with [1 2 4 5] as
the resulting vector.

Now, it’s important to realize that I’m about to demonstrate a rather inelegant
solution. But once you’re more familiar with Clojure and the available functions, you’ll
see this could easily be cleaned up. I’m also going to expand the already inelegant
solution across multiple lines for readability.

Listing 2-11. Use subvec for Retrieving a Slice of Data

(vec
 (concat
 (subvec [1 2 3 4 5] 0 2)
 (subvec [1 2 3 4 5] 3)))

So, the way this works is we use subvec to take a slice from either end of the vector.
So (subvec [1 2 3 4 5] 0 2) returns [1 2] while (subvec [1 2 3 4 5] 3) returns
[4 5]. We then use the concat function to concatenate the two vectors together. Finally,
because concat returns a list data structure, we use the vec function to convert the
returned list back into a vector.

CHapTer 2 ■ DaTa STruCTureS anD SYnTax

15

The fact that the concat function returns a list and not a vector isn’t really an issue,
because of how Clojure is able to handle collections as abstractions. But, in some cases it
can be useful to ensure the returned data structure is in a specific format so you can take
advantage of particular performance benefits.

I didn’t have to worry about that for this basic example. I only converted the result
back into a vector type in my example so as to avoid causing confusion when the result
type came back different from what we provided.

We’ll discuss why the change from a vector to a list happens in a later chapter, but
for now it’ll suffice to know that the reason we don’t need to worry too much about the
conversion between collection types is because of a concept known as the “Sequence
Abstraction.”

A more flexible and reusable solution would be to create a function that can wrap
its complex implementation logic. The following example code, shown in Listing 2-12, is
a much more flexible solution, and its logic is being wrapped up inside our own user-
defined function, which we’ll name drop-nth.

The function signature for our function will be (drop-nth <n> <collection>), and
an example call would be (drop-nth 3 [:a :b :c :d]). The expected result would be
that the third element (:c) in the vector is removed.

Before I demonstrate the implementation of our custom drop-nth function, I would
suggest that if you’re new to programming and/or Clojure, maybe skip ahead to the next
section: “Map.”

The following example is provided so that I can demonstrate how you might solve
the earlier problem of needing to remove an element from the middle of a vector. But
the solution does utilize a few different advanced features of the Clojure language. I
recommend you continue reading on and come back to this example later once you’ve
had a chance to learn more about the Clojure features this solution utilizes.

Listing 2-12. Remove Element from the Middle of a Vector

(defn drop-nth [n coll]
 (->> coll
 (map vector (iterate inc 1))
 (remove #(zero? (mod (first %) n)))
 (map second)))

(drop-nth 3 [:a :b :c :d])

;; (:a :b :d)

So, I’m going to attempt to break down this example, but again, don’t worry too
much at this point about really understanding the moving pieces, as we’ll learn about
each of these features in later chapters.

The first thing to mention is the use of ->>. This looks like a function, but strictly speaking
it’s actually a macro. The macro’s name is the “thread last macro.” Although the name includes
the word thread, the macro has nothing to do with concurrency or multi-threaded code
(which is a topic related to both multiple tasks overlapping as well as multiple tasks executed
at the same time, and is something we’ll cover in a lot of detail in a later chapter).

CHapTer 2 ■ DaTa STruCTureS anD SYnTax

16

The macro ->> passes the value (in this case coll) as the last argument to each form
listed within the call.

 ■ Note In Clojure a “form” is basically an “expression,” which is valid code that can be
evaluated to produce a value.

So, the collection [:a :b :c :d] is passed into the drop-nth function as the
argument/symbol coll and is also passed as the last argument to (map vector (iterate
inc 1)). This means that once Clojure has compiled the form/expression, it’ll end up
looking something like (map vector (iterate inc 1) coll).

The result of the previous map form is itself then passed as the last argument to
(remove #(zero? (mod (first %) n))).

OK, so that last form looks quite complicated. We can see that we’re calling a
function called remove, but what’s all the stuff after it being passed as an argument? Well,
that’s an “anonymous” function.

When we defined our drop-nth function, we gave it the name drop-nth. But
functions don’t need a name in order to be executable, and so for convenience, instead of
defining a function that will exist for the lifetime of the program, we’ve defined an inline/
anonymous function for the purpose of doing a quick bit of processing and passing that
result as the first argument to the remove function.

So, looking back at that form, we can see that it’s really just calling the remove
function and passing it two arguments: the first being an anonymous function #(zero?
(mod (first %) n)) and the second being the result of the previous map form (which you
don’t explicitly see being passed as the second argument, thanks to the ->> macro).

Finally, the result of the previous remove form is passed as the last argument to
(map second). If we didn’t have the thread-last macro, then we’d be forced to write
the (more complex) set of nested forms shown in Listing 2-13 (notice the order of the
functions are now reversed, and it’s written “outside-in”).

Listing 2-13. Solution Without the Use of the Thread-Last Macro

(defn drop-nth [n coll]
 (map second
 (remove #(zero? (mod (first %) n))
 (map vector (iterate inc 1) coll))))

(drop-nth 3 [:a :b :c :d])

;; (:a :b :d)

Now, ultimately what we’re aiming to do is to wrap all of this complex logic inside a
user-defined function called drop-nth, meaning it is ready to be reused wherever we have
the need to remove an item from a collection.

The underlying principle of how the preceding code works is that the collection you
provide is turned into a structure that resembles (slightly) a hash map (something we’ll
look at in the next section, “Map”).

CHapTer 2 ■ DaTa STruCTureS anD SYnTax

17

So, for example, the collection [:a :b :c :d] would be converted into something like
([1 :a] [2 :b] [3 :c] [4 :d]). You can try this yourself in the REPL (see Listing 2-14).

Listing 2-14. Convert Collection into One with Numerical Access

(map vector (iterate inc 1) [:a :b :c :d])

;; ([1 :a] [2 :b] [3 :c] [4 :d])

I’ll explain how the map function works in the next chapter, but for now it’ll suffice
to know that it loops over a given collection and passes each item in the collection to a
function that can mutate the value. This now gives us a numerical hook into a particular
element within the collection.

The next line, (remove #(zero? (mod (first %) n))), is a call to the remove
function. We now know that we’re passing the result of an anonymous function. The
anonymous function is executing the predicate function zero?.

 ■ Note a “predicate” sounds more complicated than it really is. a predicate is simply a
function that returns true or false.

The argument passed to zero? is an item from the collection ([1 :a] [2 :b] [3 :c]
[4 :d]). The remove function executes zero? against each element in the provided
collection. You can try this yourself by combining the preceding snippet with the output
from the previous snippet, as shown in Listing 2-15.

Listing 2-15. Remove Item from Collection Based on Anonymous Function

(remove #(zero? (mod (first %) 3))
 '([1 :a] [2 :b] [3 :c] [4 :d]))

;; ([1 :a] [2 :b] [4 :d])

In Listing 2-15, you’ll notice that I swapped what was n in our drop-nth
implementation for the value 3. I did that just for the purposes of demonstrating how this
extracted snippet of code works. I also needed to quote the list '(...) in the snippet;
otherwise, it would have caused an error.

If you wanted, you could also have tried it with the original expression included
instead of using the quoted '([1 :a] [2 :b] [3 :c] [4 :d]). See Listing 2-16.

Listing 2-16. Remove Item from Collection Using Original Form

(remove #(zero? (mod (first %) 3))
 (map vector (iterate inc 1) [:a :b :c :d]))

;; ([1 :a] [2 :b] [4 :d])

CHapTer 2 ■ DaTa STruCTureS anD SYnTax

18

OK, we’ve diverted from our focus a bit there. Going back to what we were saying
before, the first element is [1 :a], and in this case the anonymous function is able to
access that via the % symbol. It retrieves the number 1 and divides it by n (and in the
preceding example this was the number 3 that was originally passed as an argument to
drop-nth). It does this calculation to verify if the numbers divide evenly; if they do, then
zero will be the result and the predicate (which is the zero? function) will return true,
meaning that the element should be removed from the collection.

The only element in the collection that can divide evenly and result in a modulus of
zero would be [3 :c]. This means the overall result of the remove function is ([1 :a]
[2 :b] [4 :d]).

Now, we’ve successfully removed the requested element. But we still need to
convert our data structure back to its original form. To do this, we move to the final line
of the function (map second), which maps over the resulting collection, which is still a
collection of sub vectors—([1 :a] [2 :b] [4 :d])—and returns a modified version
where it has removed the first element from each nested collection by specifically
retrieving the “second” item.

So, the first nested collection is [1 :a], meaning (map second) will remove the
1 and leave :a. The overall function result is (:a :b :d), which is what we desired
originally, the ability to remove a specific element from the collection that wasn’t the start
or end position.

Now, one concern with the current drop-nth implementation is that it will actually
remove every nth item. So, if you executed (drop-nth 3 [:a :b :c :d :e :f :g :h :i
:j]), then the result would be (:a :b :d :e :g :h :j). Notice it didn’t just remove the
third item, but rather every third item. This might not necessarily be what you wanted to
have happen.

The solution, remembering the problem was removing a single value from the middle
of a collection, is to replace #(zero? (mod (first %) n)) with #(= (first %) n), which
causes all other iterations to fail because only 3 will be “equal” to the third element (notice
we replaced the zero? predicate with the = function).

Before we move on, instead of using remove we could have used another function
called filter instead (I demonstrate filter in the following chapter), but I think
semantically remove makes more sense. The only difference between the two functions is
in the use of the predicate.

The filter function will keep elements if its predicate returns true (the semantics
of the function are “filter out elements I want”). The remove function will keep elements
if its predicate returns false (the semantics of the function are “remove elements that
pass the test”).

Map
The map data structure goes by many different names—hash, hash map, dictionary—and
what distinguishes it from other data structures is the underlying implementation, which
is a key part of ensuring the algorithmic performance of this particular data structure
(but that topic of discussion is outside the scope of this book).

Effectively, a map is a key/value lookup. You provide a key and associate a value with
that key. See Listing 2-17, for example.

CHapTer 2 ■ DaTa STruCTureS anD SYnTax

19

Listing 2-17. Simple Map Data Structure

{:my-key "this is my value"}

 ■ Note Clojure maps have a 1:1 mapping to JSOn.

We use the get function to retrieve a value for a specified key, as seen in Listing 2-18.

Listing 2-18. Retrieve Value from a Map Data Structure

(get {:my-key "this is my value"} :my-key)

;; "this is my value"

 ■ Note If you want the entire entry (i.e., the key and the value, not just the value) then
you can use find instead:

(find {:a 1 :b 2} :a) will return [:a 1]

We can also add a key to an existing map using the assoc function. We used assoc
earlier with the vector data structure, so already you can see the “Sequence Abstraction”
coming into play with a function that can be used consistently across different data
structure types. See Listing 2-19.

Listing 2-19. Associate a New Key/Value Pair into a Map Data Structure

(assoc {:foo "bar"} :baz "qux")

;; {:foo "bar", :baz "qux"}

You can also remove pairs using the dissoc function, like in Listing 2-20.

Listing 2-20. Remove a Key/Value Pair from a Map Data Structure

(dissoc {:foo "bar" :baz "qux"} :baz)

;; {:foo "bar"}

Similarly, if you need to return a new map that consists of a specific key, then you can
use the select-keys function, shown in Listing 2-21.

CHapTer 2 ■ DaTa STruCTureS anD SYnTax

20

Listing 2-21. Filter Map for Specific Keys

(select-keys {:name "Mark" :age 33 :location "London"} [:name :location])

;; {:name "Mark", :location "London"}

You’ll notice in the preceding example that the returned map is now correctly
missing the :age key pair. Also, take note of the fact that unlike dissoc, where you can
specify multiple keys as arguments in order to remove them all from the resulting map,
with select-keys you need to specify multiple keys within a vector in order to select the
pairs you want.

Keywords
Some readers may be wondering what the colon prefixing the key is supposed to mean
(i.e., as we’ve seen with :foo and :baz). The colon indicates that the key is actually a
keyword. If you’ve used Symbols in Ruby, then it’s the same thing. If not, then know that
its usage is primarily for performance reasons.

To elaborate, if you create a map key with a string (e.g., {"my-key" "my key
value"}), then every time you reference the key using a string, you’ll be recreating it in
memory, whereas referencing a key via a keyword is only done once.

To understand this better, imagine we have the vector seen in Listing 2-22 with the
same value for every element.

Listing 2-22. Demonstrate Keyword Performance

["hi" "hi" "hi"]

;; creates the string “hi” three times in memory

[:hi :hi :hi]

;; the value hi is created once in memory

So, we can see the performance benefit of specifying a keyword once and having the
underlying memory allocation reused wherever the keyword is found in the code. This is
why you’ll see keywords used the majority of the time instead of a string (unless you have
a very specific need for a string).

 ■ Note You can convert a string into a keyword using the keyword function: (keyword
"my-string"), which returns :my-string. The reverse is also possible with the name
function: (name :my-string), which returns "my-string".

There is one important addition to the use of keywords—if you use them as keys
inside a map, then the keyword acts like a get function.

CHapTer 2 ■ DaTa STruCTureS anD SYnTax

21

So, for example, imagine you have a map {:foo "bar" :baz "qux"} and you
wanted the value from the :baz key. You could use either of the following snippets seen in
Listing 2-23 to get at that value.

Listing 2-23. Keyword as a Function

(get {:foo "bar" :baz "qux"} :baz)

;; "qux"

(:baz {:foo "bar" :baz "qux"})
;; "qux"

In Listing 2-23 we’ve used the familiar get function like before to retrieve the value
of the specified key, but we can also just use the keyword in the place where a function
is expected, and it’ll return the value for that key. If you’re unsure whether your map
includes a certain key, then you can use the contains? function, as seen in Listing 2-24.

Listing 2-24. Demonstrate the contains? Function

(contains? {:foo "bar" :baz "qux"} :foo)

;; true

Keys, Values, and Replacement
Before we finish up with looking at the map data structure, let’s take a moment to review a
few simpler functions (keys, vals, and replace), as well as to understand what a struct is.
First, let’s see the keys/vals functions and how they work (Listing 2-25).

Listing 2-25. Demonstrate the keys and vals Functions

(keys {:foo "bar" :baz "qux"})
;; (:baz :foo)

(vals {:foo "bar" :baz "qux"})
;; ("qux" "bar")

As you can see in Listing 2-25, with keys we pass the function a map data structure
and it returns all the keys specified within the data structure. The vals function is similar
in that we pass it a map data structure, but this time it returns just the values assigned to
each key.

The replace function allows you to create a new vector consisting of values extracted
from a map data structure. It does this by using the key name for the value you want to
extract. So, if you had the following map {:a 1 :b 2 :c 3} and you wanted to generate
the vector [3 2 1], then you could do that with the code in Listing 2-26.

CHapTer 2 ■ DaTa STruCTureS anD SYnTax

22

Listing 2-26. Demonstrate the replace Function

(replace {:a 1 :b 2 :c 3} [:c :b :a])

 ■ Note The replace function works on vectors, but using index values rather than keys:

(replace [:a :b :c] [2 1 0]) will return [:c :b :a].

Finally, let’s understand what structs are in Clojure. Effectively, they are a simple way
to generate maps from a predefined structure. So, for example, if I wanted a map data
structure that resembled attributes of a person, then I could manually execute the code
seen in Listing 2-27.

Listing 2-27. Assign Map Structures to Identifiable Symbols

(def mark {:name "Mark" :age 35})
(def rich {:name "Richard" :age 40})
(def cat {:name "Catherine" :age 30})

 ■ Note The use of the def function is so we can declare a variable. We’ll come back to
variables in a little while, but, in short, they define a location in memory where data can be
stored; we can then refer back to that data using the variable’s name.

In the preceding example, you’ll notice that there is a lot of duplication with regards
to my typing the keys :name and :age (and realistically there would be many more
attributes I’d want to record). This can be wasted time and adds the potential for typo
errors to cause annoying bugs, never mind the inconsistency of adding new keys to one of
the maps and forgetting to add them to the other maps as well.

It would be better for us to abstract away the “structure” of the map so that we
can focus on just providing the data, and that’s where the create-struct and struct
functions come in handy, as seen in Listing 2-28.

Listing 2-28. Demonstrate create-struct and struct Functions

(def person (create-struct :name :age :sex))

(struct person "Mark" 35 "Male")
;; {:name "Mark", :age 35, :sex "Male"}

(struct person "Richard" 40 "Male")
;; {:name "Richard", :age 40, :sex "Male"}

(struct person "Catherine" 30 "Female")
;; {:name "Catherine", :age 30, :sex "Female"}

CHapTer 2 ■ DaTa STruCTureS anD SYnTax

23

 ■ Note Clojure provides a shortcut by way of a macro called defstruct. This macro handles
the creation of structs and storing them in a variable. So, instead of (def person (create-
struct :name :age :sex)), you could use (defstruct person :name :age :sex).

Set
A set is a data structure made up of unique values. Much like Clojure’s map and vector
data structures, it provides Clojure with a very lightweight data model. The example in
Listing 2-29 is what a set typically looks like.

Listing 2-29. Simple Set Data Structure Example

#{1 2 3 :a :b :c}

;; #{1 :c 3 2 :b :a}

The order of a set is not guaranteed (as seen in the preceding example’s return
value). Although you can create a sorted set by using the sorted-set function, be warned
you can’t use mixed-types with a sorted set. See Listing 2-30.

Listing 2-30. Simple Set Data Structure Example

(sorted-set 3 1 2)
;; #{1 2 3}

(sorted-set 1 2 3 :a :b :c)
;; error – mixed types

If you already have a set created and it’s unsorted, then you can use the apply
function (which works for any collection type: lists, vectors, maps, and sets) to apply the
sorted-set function onto the existing set, like in Listing 2-31.

Listing 2-31. Apply sorted-set onto Existing Set

(apply sorted-set #{3 1 2})

;; #{1 2 3}

The ability to apply with a sorted-set can come in handy when dealing with existing
collections, because you can filter out duplicates at the same time as sorting them, as in
Listing 2-32.

CHapTer 2 ■ DaTa STruCTureS anD SYnTax

24

Listing 2-32. Filter Out Duplicates

(set [1 1 2 2 3 3 4 5 6 6])

;; #{1 4 6 3 2 5}

(apply sorted-set [1 1 2 2 3 3 4 5 6 6])

;; #{1 2 3 4 5 6}

You can also use the conj function to add a new value to the set, but remember that a
set is a collection of unique values, and so if you try to add a value that already exists, it’ll
be quietly ignored. See Listing 2-33.

Listing 2-33. Using conj to Add New Value to a Set

(conj #{1 2 3} 4)

;; #{1 4 3 2}

(conj #{1 2 3} 3)

;; #{1 3 2}

Lastly, being able to add items to a set is wonderful, but being able to remove items is
equally useful at times, and we do this using disj (see Listing 2-34).

Listing 2-34. Remove Items from a Set with disj

(disj #{1 2 3} 3)

;; #{1 2}

Vars and Symbols
OK, this is the last bit of basic syntax I want to cover before moving on. In this section,
I want to demonstrate not only how variables work (you’ll be very familiar with this
concept from other programming languages), but also how symbols tie into variables and
the use of the def function along with the defn macro.

Let’s start by understanding what a symbol is. A symbol, in its simplest form, is a
reference to some other value. It’s an identity of sorts, like your name; it identifies you,
and although you change over time (you get older, right?) your identity stays the same.

A variable, on the other hand, is a mutable storage location. When creating a
variable, it is created within the current namespace (this prevents conflicts with other
namespaces). To create a variable in Clojure, you need to use the def function so you can
assign the value to a symbol. See Listing 2-35.

CHapTer 2 ■ DaTa STruCTureS anD SYnTax

25

Listing 2-35. Using def to Assign a Value to a Symbol/Variable

(def foo "hello")

In Listing 2-35, I’ve called the def function and passed the symbol foo and the
string "hello" as arguments. The def function associates the symbol foo with the
string "hello" so that when I type the symbol foo into the REPL (within the current
namespace), it’ll know where to go to look up the value and return me the value
associated with the symbol (which in this case would be the value "hello").

 ■ Note Internally, Clojure manages a global map of namespaces and their associated
variables.

Variables are not available within other namespaces unless they are “interned” into
them. Interning is a fancy way of saying “find variable x within this current namespace;
and if it doesn’t exist then create it.” But you can also “intern” variables from another
namespace using the :refer feature of the ns macro. I’ll demonstrate how that works in a
later chapter, when we look in more detail at namespaces.

Assigning Functions
Now, variables don’t just contain single values (strings or data structures, etc.); they
can also be assigned functions. For example, Listing 2-36 shows a variable that creates a
function that says hello to you (you would probably have a short function like this written
all on one line, but I’ve opened it up across multiple lines for readability).

Listing 2-36. Assign a Function to a Variable

(def foo
 (fn [p]
 (prn
 (str "Hello " p "!"))))

You also have the ability to define an anonymous function, which is a function that
has no identifier, “inline” within an existing expression. We saw an example of this earlier
in the chapter when dealing with the vector data structure (see Listing 2-38 below for
a reminder of the syntax structure for an anonymous function). In Listing 2-36, we’ve
defined a foo variable and assigned an “anonymous” function that takes p as an argument
and then prints out a message using the prn function. We do this by taking the value of p
and interpolating it into a single string value using the str function. You would call this
function as shown in Listing 2-37.

CHapTer 2 ■ DaTa STruCTureS anD SYnTax

26

Listing 2-37. Example of Calling Our User-Defined Function

(foo "you")

;; "Hello you!"

Listing 2-38. Syntax Structure of an Anonymous Function Definition

(fn [arg1 arg2 arg3...] (fn-body...))

In the earlier example (Listing 2-36), where we defined the foo function, we also
were treated to a demonstration on how to nest function calls. So, we saw str nested
inside of prn, and prn nested inside of fn, etc. We can see that Clojure is evaluating the
“forms” from right to left.

 ■ Note a form is something that is handed to the Clojure parser (i.e., reader3).
an example of a form could be a string or a symbol, or even a function (which contains
forms inside it). You’ll hear people mention forms a lot when talking about Clojure code,
so you should be familiar with the terminology.

The Clojure parser evaluates the str function and passes the result to the prn
function, which is then used as the function body. Now, defining a variable and assigning
a function to it is such a common pattern that a macro was created within the core
Clojure library to reduce the verbosity a little bit and make it easier to remember the
syntax.

So, instead of the long-form def, you can use defn as shown in Listing 2-39 (again,
I’ve expanded it over multiple lines for readability, but this could be a one- or two-liner at
most).

Listing 2-39. Example of the defn Macro

(defn foo [p]
 (prn
 (str "Hello " p "!")))

Temp Variables
Creating temporary variables can be achieved via the let form. The way let works is
that you use a binding. A binding is a fancy way of saying “assign a value to a symbol,”
and that symbol exists only while the let block is executed, after which it disappears.
See Listing 2-40.

3https://clojure.org/reference/reader

https://clojure.org/reference/reader

CHapTer 2 ■ DaTa STruCTureS anD SYnTax

27

Listing 2-40. Example let Binding

(let [xyz "Hi!"]
 (prn xyz))

;; nil

(prn xyz)

;; CompilerException java.lang.RuntimeException:
;; Unable to resolve symbol: xyz in this context

In Listing 2-40, we can see that the let binding prints “Hi!” as a side effect, but
ultimately returns nil. Then, if we try to print the symbol xyz again from outside of the
let binding, we see it raises an exception.

 ■ Note Clojure also provides a feature called transients,4 which is a way to create a
non-persistent copy of a data structure. You can mutate this temporary structure and then
use a call to persistent! to return a persistent/immutable version. This allows for some
good performance enhancements when utilized in the right scenarios where temp structures
are more performant.

We’ll come back to let blocks later on when we discuss destructuring, which is a very
powerful feature for extracting values from complex objects.

 ■ Note Local variables created via let aren’t really variables, as their values cannot be
changed once set.

Dynamic Variables
When creating variables, they are bound to the current namespace and are marked as
“static.” But variables can be dynamically changed (for a temporary period of time).
Similar to how let allows you to define local variables, the binding macro allows a
current thread to manipulate the value of a variable while execution is happening within
its block, like in Listing 2-41.

4https://clojure.org/reference/transients

https://clojure.org/reference/transients

CHapTer 2 ■ DaTa STruCTureS anD SYnTax

28

Listing 2-41. Example of Dynamic Variable Bindings

(def ^:dynamic my-name "Mark")

(prn my-name) ;; "Mark"

(binding [my-name "Bob"]
 (prn my-name)) ;; "Bob"

(prn my-name) ;; "Mark"

As you can see from the preceding example, we’ve defined a variable my-name the
same way as we’ve defined variables previously; the only difference is that we now have
added the metadata ^:dynamic. Now, when using the binding form we can dynamically
change the variable’s value temporarily. You can see it reverts back once the block has
finished.

This is particularly useful for testing purposes. Remember: functions can be assigned
to variables too, so within a test environment you could dynamically swap out the
function implementation. Clojure has since also implemented two additional functions,
with-redefs5 and with-redefs-fn,6 specifically for this purpose.

You could also use this functionality to provide a style of programming known as
aspect-oriented programming.7 For example, you could manipulate a logging function so
it placed context-specific details around the standard log information.

Summary
OK, we’ve covered a fair amount of ground here. Make sure you play around in the
REPL with the examples given and see what happens when you tweak the examples
(it’s the best way to confirm your understanding of these concepts and the behavior we’ve
discussed so far).

In the following chapter, we’ll start to look at the concepts surrounding functional
programming and how they are reflected in the Clojure language. This will include topics
such as immutability, referential transparency, first-class functions, partial application,
recursive iteration, and composability.

5http://clojure.github.io/clojure/clojure.core-api.html#clojure.core/with-redefs
6http://clojure.github.io/clojure/clojure.core-api.html#clojure.core/
with-redefs-fn
7https://en.wikipedia.org/wiki/Aspect-oriented_programming

http://clojure.github.io/clojure/clojure.core-api.html#clojure.core/with-redefs
http://clojure.github.io/clojure/clojure.core-api.html#clojure.core/with-redefs-fn
http://clojure.github.io/clojure/clojure.core-api.html#clojure.core/with-redefs-fn
https://en.wikipedia.org/wiki/Aspect-oriented_programming

29© Mark McDonnell 2017
M. McDonnell, Quick Clojure, DOI 10.1007/978-1-4842-2952-1_3

CHAPTER 3

Functional Programming

Clojure is a functional language, so it provides certain features you would expect to find in
other functional programming (FP) languages, such as the following:

•	 Immutability

•	 Referential transparency

•	 First-class functions

•	 Partial application

•	 Recursive iteration

•	 Composability

Let’s take a moment to consider each of these features.

Immutability
The idea behind immutability is that it is used when we wish to avoid “mutating state.”
What that really means is that it helps us to avoid changing data that might be used by
multiple (separate) areas of a program.

If you have state and it can change, then once your application becomes distributed and
concurrent (i.e., multi-threaded), you’ll end up in a world of hurt, as many different threads
can start manipulating your data at non-deterministic times. This can cause your application
to fail at any given moment and become very hard to debug and to reason about.

By offering immutability, Clojure can help to side-step this problem. In Clojure,
every time you manipulate a data structure you are returned not a mutated version of the
original, but rather a whole new copy with your change(s) applied.

 ■ Note Having complete copies of your data might sound like a performance nightmare,
but thanks to how Clojure implements certain data structures internally—using tries1—it’s
actually very efficient. Clojure calls this Persistent Data Structures.

1http://en.wikipedia.org/wiki/Trie

http://en.wikipedia.org/wiki/Trie

CHaPter 3 ■ FunCtional Programming

30

Immutability is a strange concept to grasp when coming from an object-oriented
language (OOP). This is because functional programming (FP) and OOP have different
goals.

OOP is about encapsulating data (state) and providing controlled access via object
methods. FP is about the flow of a software system, where data is passed through a set of
functions that manipulate the data as it makes its way out to the end user (i.e., the data is
filtered).

Referential Transparency
Referential transparency is when an expression can be replaced by its value without
changing the behavior of a program. In a practical sense, it’s when you define a function
that takes an argument and always returns the same value when given the same
argument. See Listing 3-1.

 ■ Note there is a related concept called pure functions that more broadly refers to a
function whose return value is determined by its inputs, and with no visible side effects.

Listing 3-1. Example of a Referentially Transparent Function

(defn sum [x y]
 (+ x y))

(sum 1 1)

;; 2

The function sum (shown in Listing 3-1) is referentially transparent. No matter what
happens, if I provide the same set of arguments (in this case 1 and 1), I’ll always get back
the same result.

Every program needs state of some sort, and that’s why Clojure is not a “strict” FP
language like maybe Haskell.2 Clojure’s philosophy is to strive for being functional and
referentially transparent wherever possible.

First-class Functions
For a language to offer “first-class functions,” it needs to be able to both store functions
and pass functions around as if they were values. We’ve already seen the former being
achieved using variables, and the latter (passing functions around as values) is also
possible within Clojure.

2https://www.haskell.org/

https://www.haskell.org/

CHaPter 3 ■ FunCtional Programming

31

 ■ Note the concept of first-class functions helps to promote the idea of higher-order
functions. a higher-order function is one that can either take or return a function as a value.
there are many higher-order functions in Clojure: map, reduce, comp, apply, partial, and
filter, and i’ll demonstrate all of these within this chapter.

Let’s begin by seeing an—admittedly simple and silly— example of first-class
functions in action (Listing 3-2).

Listing 3-2. Example of How Clojure Supports First-class Functions

(defn cap [s]
 (clojure.string/upper-case s))

(defn greeting [c s]
 (prn (c s)))

(greeting cap "hi there")

;; "HI THERE"

In Listing 3-2, we’ve defined a cap function, which we’re passing in to a greeting
function. This demonstrates how functions can be passed around as if they were values
and meets the first half of the “first-class function” requirement.

 ■ Note the cap function itself isn’t important, but you’ll see we’ve referenced a function
clojure.string/upper-case. this is a “fully qualified” function, meaning we’ve given
an explicit/direct path to where the function can be located (within the clojure.string
namespace; we’ll cover namespaces in a later chapter).

The other half of that requirement is the ability to return a function from a function
(as opposed to returning a value from a function). We can see an example of this in
Listing 3-3, where the partial function doesn’t return a value but rather another function.

I’ll demonstrate how partial application works in the following section, but
hopefully the example in Listing 3-3 is simple enough to highlight the potential for what
partial application can provide.

Listing 3-3. Example of Partial Application

(defn sum [x y]
 (+ x y))

(def add-on-five (partial sum 5))

(add-on-five 10)

;; 15

CHaPter 3 ■ FunCtional Programming

32

Other examples of Clojure’s first-class function credentials can be found in the following
list. In each of the subsequent examples, we’ll demonstrate first-class functions by passing
existing functions into other functions. The functions we’ll be using in our examples are:

•	 complement

•	 apply

•	 map

•	 reduce

•	 filter

•	 comp

Complement
The complement function is very simple: it takes in a predicate and returns a predicate
(remember that a predicate is what you call a function if it returns a Boolean value). See
Listing 3-4.

Listing 3-4. Example of the complement function returning the opposite truth value

((complement empty?) "")

;; false

 ■ Note the naming convention used for predicate functions is similar to the ruby
programming language in that you suffix a question mark onto the name of predicates
(e.g., even?).

In our example, we pass an empty string into our new predicate function. The empty?
function would normally return true for an empty string, but the point of complement is
to reverse the original Boolean, so instead we get false.

For this example, to be more practical, you would ideally save the new predicate
function in a variable called not-empty? to allow for maximum reusability.

Apply
The apply example takes a function (in this case it will be str, which concatenates strings
together) and a collection ["a" "b" "c"] and then passes each element in the collection
to the specified function.

Listing 3-5. Example of apply

(apply str ["a" "b" "c"])

;; "abc"

CHaPter 3 ■ FunCtional Programming

33

In Listing 3-5, we’re able to utilize a collection, while the effect of this code is that it
in essence works like we called (str "a" "b" "c") instead. The benefit of the apply
function is for times when you don’t know what the arguments will be until runtime.

Map
In the following example (Listing 3-6), we’re using map to apply a function to the
collection [1 2 3], which means we’re able to increment each value within the collection
by one, thanks to the use of the inc function.

Listing 3-6. Example of map

(map inc [1 2 3])

;; (2 3 4)

Be aware that if you use map over a map data structure (e.g., {:a 1 :b 2 :c 3})
you’ll find you get returned a list data structure (and not necessarily in the order you
expect). We see this in Listing 3-7.

Listing 3-7. The map Return Value Type Is a List

(map
 (fn [[k v]] (inc v))
 {:a 1 :b 2 :c 3}) ;; => (4 3 2)

;; (2 3 4)

So, you if you need a map data structure returned, make sure you construct the
returning data structure in such a way that on the way out it resembles a key/value
structure. Once we have this key/value-like data structure, we’ll be able to convert it into
an actual map data structure. Listing 3-8 demonstrates how you might do this.

Listing 3-8. Ensure map Returns Key/Value-like Data Structure

(map
 (fn [[k v]] [k (inc v)])
 {:a 1 :b 2 :c 3})

;; ([:c 4] [:b 3] [:a 2])

Now that we have our key/value-like structure ([:c 4] [:b 3] [:a 2]), we can
wrap the preceding form with the into function to convert that returned structure
(i.e., the list of sub-vectors) back into a map from a list, as in Listing 3-9.

CHaPter 3 ■ FunCtional Programming

34

Listing 3-9. Convert Key/Value-like Data Structure Back into a map Data Structure

(into {}
 (map
 (fn [[k v]] [k (inc v)])
 {:a 1 :b 2 :c 3}))

;; {:c 4, :b 3, :a 2}

Reduce
In Listing 3-10, we’re using the reduce function, which accepts two arguments. The first
is a function (this function must itself accept two arguments), and the second should be a
collection. Reduce iterates over the given collection and passes each item through to the
provided function (in Listing 3-10 we provide the + function and the collection [1 2 3]).

Listing 3-10. Example of the reduce Function

(reduce + [1 2 3 4])

;; 10

What’s probably not obvious in this particular example is that reduce requires an
accumulator, which is passed through as the first argument to the given function for each
iteration. You can provide an initial value for an accumulator, but if you don’t provide one
then the first element in the collection is used.

We didn’t provide an accumulator in the preceding example, and so the first item (1)
was used as the initial accumulated value. This means 1 was given to the + function as the
first argument, and the second item in the collection (2) was given to the + function as the
second argument. The + function then added the two values together, which resulted in
the value 3. That value was then provided as the accumulator on the next iteration.

So, for the next item in the collection (which was the item 3), the first argument
provided to the + function would’ve been the earlier value 3, while the second argument
would have been the collection item 3. That iteration would have returned the resulting
value of 6 (i.e., 3 + 3 = 6), which would have then been passed as the “accumulated”
value for the next iteration.

Now, on the final iteration we have the accumulated value 6 and the collection item 4,
meaning the last execution would be (+ 6 4), which results in the value 10.

Let’s see a more explicit version of the reduce function (Listing 3-11).

Listing 3-11. Explicit Accumulator Example of the reduce Function

(reduce
 (fn [acc, element]
 (assoc acc (first element) (last element)))
 {}
 [[:a :b] [:c :d]])

;; {:c :d, :a :b}

CHaPter 3 ■ FunCtional Programming

35

In Listing 3-11 we change a few things, the first being we’re using an anonymous
function instead of a built-in function. The reason we’ve done this is to visually
demonstrate how the accumulator is passed into the given function. The second thing
we’ve changed is the initial value of the accumulator. We’re not using the first item in the
collection (which would’ve been [:a :b]), but rather an empty map data structure {}.

This is where we can see the real power of the reduce function. We’re able to
convert one data structure into a completely different data structure. We can see that our
anonymous function associates the first and last element from the second argument
[:a :b] into the map data structure (referenced by the first argument symbol acc).

The result of that first iteration is {:a :b}, and as that is the last expression that was
evaluated, it is used as the accumulated value for the next iteration. This means that on
the second iteration we associate the first and last element from the second argument
[:c :d] into the map data structure {:a :b} (referenced by the first argument symbol
acc). This results in the final value of {:c :d, :a :b}.

You can do anything you want within the function passed to reduce, but remember
that the last expression (or the thing that is returned at the end of the function) is what
will be used as the accumulator on the next iteration.

Filter
The filter function is useful for “filtering” out values from a collection that successfully
pass a predicate check. Listing 3-12 demonstrates an example of how this function works.

Listing 3-12. Example of the filter Function

(filter even? (range 10))

;; (0 2 4 6 8)

In this example, we create a collection using the range function (i.e., (range 10)),
which gives us a list that looks like (0 1 2 3 4 5 6 9 8 9).

Each element in that list is passed to the even? function, which as you can probably
guess returns true if the element is an even number or false otherwise, leaving us with
the resulting collection (0 2 4 6 8).

 ■ Note this function returns a list, but if you wanted a vector returned instead you can
swap out filter for filterv.

Comp
The comp function is a good example of one of the tenets of functional programming:
composition. It highlights the language’s ability to composite a pipeline of functionality
by chaining together individual functions into a coherent whole.

CHaPter 3 ■ FunCtional Programming

36

In Listing 3-13, we can see this demonstrated by code that accepts a string and returns
it both in reverse and changed into upper-case. This may seem like a silly example, and
it is, but I like silly examples, as they can make comprehending specific behaviors much
easier (as “practical” examples usually require a fair amount of additional setup and
context rather than just getting to the core of what’s actually needed).

Listing 3-13. Example of the comp Function

((comp clojure.string/upper-case (partial apply str) reverse) "hello")

;; "OLLEH"

In essence, the comp function accepts a number of functions as arguments and then itself
returns a function. The returned function can then accept a variable number of arguments.

In the comp example provided, we have used a few new functions we’ve yet to learn
about. The reason for this isn’t because I wanted to show you those functions, but more
because the main function we’re demonstrating (i.e., comp) works by constructing a chain
of function calls; we need functions to feed to it.

At a high level, comp gives us a more concise way of executing the following code
(Listing 3-14), which functionally works the same as the code in Listing 3-13.

Listing 3-14. Longform Version of the comp Function

(clojure.string/upper-case
 (apply str
 (reverse "hello")))

So, using the longform version, let’s break down what the code does. First, we’re
reversing our string: (reverse "hello"). The result, a collection with each character in
the string placed in reverse order—(\o \l \l \e \h)—is then passed to the apply str
combination.

We’ve used apply here as we want to effectively splat each element within the
collection into the argument list of the str function. If we just passed str the result of
(reverse "hello"), it wouldn’t have been able to convert the list into a string, so we’re
passing each string character within the collection to str instead (via the apply function).

 ■ Note an alternative app roach to using 'apply' would be 'clojure.string/join'.

This will result in "olleh" being passed into the clojure.string/upper-case
function (we saw this used in Listing 3-13), which then upper-cases the entire string to
return the final result of "OLLEH".

Let’s now quickly revisit our original solution, which used comp to solve this problem,
and start to break down the differences. See Listing 3-15.

Listing 3-15. Example of the comp Function

((comp clojure.string/upper-case (partial apply str) reverse) "hello")

;; "OLLEH"

CHaPter 3 ■ FunCtional Programming

37

Although this looks complicated, effectively we have the structure (... "hello"),
where the string “hello” is being passed as an argument to the function that comp
generates (...) by compositing all the functions we provided it.

You should notice that the execution order for comp is right-to-left (much how
Lisp syntax works: “inside-out”). So, although reverse is the last function specified, it’s
actually the first one executed. Then, the result of that is passed to the next function, and
so on, until each function to the left has been executed.

One thing different in the comp example compared to the non-comp version is
that we’re using (partial apply str) instead of (apply str). This is important (and
required), because if we didn’t do this there would be an error raised, as Clojure would
think we were trying to execute (apply str) without any arguments. So, we use partial
to generate a function that we can provide to comp, and yet it will still execute as expected
when the overall expression is run.

Another thing worth pointing out is that this isn’t actually more concise than the
longform version I demonstrated earlier, and by that I mean we could compress the
longform version into one line and it would still be more concise than the comp version AND
we wouldn’t need to use the partial function to achieve the trickery we just looked at.

So, this begs the question: what’s the point of the comp function, and when exactly
should we be using it?

Well, if the number of functions for your pipeline is quite short (as in our example,
where we’re only using three functions), then you could get away with putting the code
into a user-defined function (good for reusability). See Listing 3-16.

Listing 3-16. Store Longform Version Within a Function for Reuse

(defn reverse-and-upcase [s]
 (clojure.string/upper-case (apply str (reverse s))))

(reverse-and-upcase "hello")

But consider the example in Listing 3-17, where we’re using the map function over
a vector data structure and are converting each element within the collection into a
keyword.

Listing 3-17. Convert Item into a Keyword

(map (comp keyword str) [1 2])

;; (:1 :2)

As you can see, we first need to convert the element (which is a number) into a string
using str before we can convert that string into a keyword using the keyword function,
and because map expects a function as its first argument, we’re using comp to return a
composite function that fulfills the behavior we require. This is a nice, clean, and elegant
solution, a perfect way for the comp function to be used.

Now, compare that to the alternative solution (i.e., not using comp), seen in
Listing 3-18.

CHaPter 3 ■ FunCtional Programming

38

Listing 3-18. Convert Item into a Keyword Without comp

(map #(keyword (str %1)) [1 2])

;; (:1 :2)

The map function expects a function to map over the provided collection, and so we
need to provide an anonymous function #(...), and within it we call str while passing
it the element from the collection (which is implicitly stored inside %1), and the result of
that function is then passed to the keyword function.

I personally find this alternative solution less elegant. Although it’s still pretty nice
compared to other programming languages, it’s more verbose and difficult to read than
the comp version.

 ■ Note a good article that breaks down a problem using higher-order functions
(and demonstrates the alternative—a much less elegant solution) can be found here:
http://christophermaier.name/.3

Partial Application
In the previous section, we used the partial function to demonstrate how Clojure can
facilitate higher-order functions. But the partial function itself also demonstrates
another important functional concept known as partial application, which states that you
can gain more reusability from your code by defining new functions that are composed
from existing functions with part of their arguments prefilled.

Partial application helps to promote the creation of functions that can expand their
use cases beyond their initial intent. An example could be that you’re creating an API
for users to consume. Part of your API is required to talk to some back-end system that
requires lots of parameters to be provided as part of the call (half of them are generic
details that never change).

Rather than rely on the consumer of your API to provide all the values, you could
expose a function in your API that is an already partially applied function. In your code,
you use partial application to prefill certain params, and then the API consumer can fill in
the rest (unaware there are extra params already set for them).

 ■ Note See listing 3-3 for a simple example of the partial function.

3http://christophermaier.name/blog/2011/07/07/writing-elegant-clojure-code-
using-higher-order-functions

http://christophermaier.name/
http://christophermaier.name/blog/2011/07/07/writing-elegant-clojure-code-using-higher-order-functions
http://christophermaier.name/blog/2011/07/07/writing-elegant-clojure-code-using-higher-order-functions

CHaPter 3 ■ FunCtional Programming

39

The concept of partial application is regularly confused with another functional
concept known as currying (which Clojure doesn’t support). When you “curry” a
function, the function’s arguments are expanded internally into separate functions.

If your function took three arguments, then, when curried, you would need to
execute the function three times and provide an argument for each call (there’s slightly
more to it than that, but that’s the basic concept you need to know to understand the
difference).

A curried function won’t execute its body until all arguments have been provided
(similar to partial application). So, again, if your function accepted three arguments you
could effectively call your curried function in one of the following ways. See Listing 3-19
for the first example.

 ■ Note i'll be using a form C-like syntax simply to differentiate the principle of the
example from actual Clojure code (which doesn’t support currying). But be aware that there
is no such native function available in JavaScript either.

Listing 3-19. Example of a Theoretical Curry Function with C-like Syntax

curried(1, 2, 3);
// all arguments provided at once in a single call

curried(1, 2)(3);
// two arguments provided, then a separate call for remaining argument

curried(1)(2)(3);
// one argument provided per call

Let’s consider a slightly more fleshed out example (see Listing 3-20), continuing with
the C-like syntax, but, again, this example is used simply to get across the principal idea
behind currying so you can see how it’s different from partial application.

Listing 3-20. Extension of Our Earlier, Theoretical Curry function

var fn = function (a, b, c) { return a + b + c }
var foo = curry(fn)
foo('x')('y')('z') // 'xyz'

var bar = curry(fn)
var baz = bar('x')
baz('y')('z') // 'xyz'

When we look at the example in Listing 3-20, what we’re in effect seeing is that
internally the function assigned to the variable fn is being converted into a form that
would look something like Listing 3-21.

CHaPter 3 ■ FunCtional Programming

40

Listing 3-21. Internal Representation of a Curry-Compiled Output

function f(a) {
 function (b) {
 function (c) {
 return a + b + c;
 }
 }
}

So, just to recap, the main differences between currying and partial application are
as follows:

 1. You only partially apply your values once. So, if your function
takes three arguments and you partially apply two of them,
then when your resulting function is called you only provide
one argument. If you had instead partially applied only one
argument, you would still only call the resulting function once
(but this time you would have to provide the remaining two
arguments).

 2. If we consider the “API” scenario from earlier, you (as the
creator of the API) are providing the initial values for the
partially applied function, whereas with a curried function it
is the user who provides the arguments.

Recursive Iteration
Programming languages that are mutable by default (e.g., JavaScript, Ruby, etc.) rely
on the fact that they create side effects (and can mutate state) in order to execute their
looping constructs.

The classic for loop you’re likely familiar with, for (i = 0; i < 10; i++) {}, by
design allows mutating local variables to increment the loop. In Clojure, local variables
are immutable, and so for us to loop we need to use recursive function calls instead.

Instead of looping, you’ll typically need to use the loop/recur special form (which
we’ll demonstrate shortly), although a lot of the time other iterator-style functions such as
map, reduce, and filter will be better fitted to solving the problem at hand.

The main benefit of the loop/recur special form is that it allows you to safely apply
recursive function calls without exhausting your memory stack. For example, if you’ve
ever written any JavaScript code in your life you’ll likely have hit a problem at least once
where you’ve exhausted the stack and caused a “stack overflow” error.

I won’t delve too deep into the memory stack problem space, so I recommend
you read a blog post I’ve previously written on the topic.4 In that article, I explain what
recursion means and how tail call optimizations work. It helps clarify why a language like
Clojure needs a mechanism such as loop/recur, as well as the purpose of a trampoline
function, both of which I’ll be demonstrating next.

4http://www.integralist.co.uk/posts/js-recursion.html

http://www.integralist.co.uk/posts/js-recursion.html

CHaPter 3 ■ FunCtional Programming

41

To begin, let’s understand how the loop/recur form works. By using this form we’re
able to execute some code recursively. We start by defining where our “loop” begins
(using the loop function), then later on in our code we’ll need to define where the
recursion should happen (using the recur function). If recur doesn’t find a loop, it’ll
search for the next function in order for it to restart from that. The example in Listing 3-22
gives a simple example of its use.

Listing 3-22. Example of a Simple loop/recur

(loop [i 10]
 (if (= i 0)
 (prn "finished")
 (recur (do (prn i) (dec i)))))

The output of Listing 3-22 should be the numbers 10–1 printing to the screen in
descending order and finishing with the statement “finished”.

Let’s break down Listing 3-22 to understand what’s happening. First, we create our
loop and bind the value 10 to the symbol i. This is our starting point. Within the loop, we
have an if statement that uses the = function to check if i is equal to zero. If it is, then we
know we’re done, and so we print the message "finished" to stdout (i.e., the terminal
screen). If the value isn’t zero, then we call recur and pass it the result of (dec i), which
decrements the current value of i by one.

This example demonstrates the essence of recursive function calls. We’re not
mutating local variables; we’re instead calling the function (in this case loop) over and
over but passing in an updated value/argument for each successive execution.

 ■ Note You’ll see we’re also using a do function (do allows us to execute multiple code
blocks). the reason for using it is so we can force the side effect of displaying the current
value of i. in a real application, you’d probably just omit it, like so: (recur (dec i)).

With Clojure’s recur implementation, you’ll never exhaust the stack, and so you could
change the value from 10 to 100000 and have no problems at all. A less-used function, but
one very much related to recur and the problem of tail-call optimizations, is trampoline.
The example in Listing 3-23 demonstrates how not using recur (or trampoline) can break
your application.

Listing 3-23. Example of Stack Exhaustion

(defn count-down [x]
 (if (= x 0)
 (prn "finished")
 (count-down (do (prn x) (dec x)))))

(count-down 10) ;; works exactly as previous example BUT it's not safe!
(count-down 100000) ;; will cause a "StackOverflowError"

CHaPter 3 ■ FunCtional Programming

42

So, in the preceding example (Listing 3-23), our function count-down calls itself
(much like recur jumping back up to the opening loop). Each time that function calls
itself, it passes an updated value for x. But unlike recur, which protects against the JVM’s
not providing tail-call optimizations, this implementation is doomed to fail if given a large
value such as 100,000.

If we didn’t want to use recur, we could still work around this issue by utilizing
trampoline. I’ve already discussed the inner workings of how trampolining works in a
blog post,5 but in summary, rather than automatically calling the function over and over,
the return value itself is a function, and trampoline flattens the calls for you so you don’t
fill up your memory stack.

Resolving the problem with our code will require a two-step process. First, modify
the else statement so that instead of returning a function call to count-down you return
a function. We achieve that in the modified version in Listing 3-24 by adding # before the
call to count-down. Remember: #(...) is a shorthand syntax for an anonymous function.

The second step is to not call the count-down function directly, but to pass it
to trampoline instead. The code snippet in Listing 3-24 demonstrates the required
modifications.

Listing 3-24. Example of trampoline Function

(defn count-down [x]
 (if (= x 0)
 (prn "finished")
 #(count-down (do (prn x) (dec x)))))

(trampoline count-down 10) ; works fine still
(trampoline count-down 100000) ; no longer triggers an error

Composability
The fundamental concept behind composability is to facilitate the passing of data
through many different “filters” that manipulate the data so it’s ready for its final
destination. This is similar to how the Unix philosophy works; Unix utilizes pipes (|)
for passing the result of one function into another. For example, the shell command
ps aux | grep java takes the result of ps aux, which returns many lines of output, and
passes it through to grep java, which filters it down to only the lines that include the
word java.

Being able to create a pipeline like this, one built up from different isolated units of
functionality, is very important within a functional language (we saw this demonstrated
earlier with the comp function).

The main reason this is such a key aspect of functional programming is that your
units of functionality should be generic enough to be reused within many different
contexts, rather than being overly specific to one environment and ultimately not being
reusable.

5http://www.integralist.co.uk/posts/js-recursion.html

http://www.integralist.co.uk/posts/js-recursion.html

CHaPter 3 ■ FunCtional Programming

43

I won’t demonstrate composable code in this section, as I think it’s safe to say by this
point that we’ve already seen many examples of how Clojure allows for composability.
We’ve seen this via the use of comp and partial, as well as other enumerable functions
such as reduce, map, and filter, and there are so many more useful composable
functions, all within the standard core library, just waiting to be explored.

Summary
This has been an important chapter with regards to both functional programming
concepts as well as how they are reflected in the Clojure programming language.

Within this chapter we learned about the six main tenets of functional programming:
immutability (persistent data structures), referential transparency (pure functions), first-
class functions, partial application, recursive iteration, and composability.

In the next chapter, we will focus on the concept of sequences and how they are
related to collections, as well as on an important topic known as the sequence abstraction.

45© Mark McDonnell 2017
M. McDonnell, Quick Clojure, DOI 10.1007/978-1-4842-2952-1_4

CHAPTER 4

Sequences

In Clojure we have many types of collections: lists, vectors, maps, and sets. Each of these
collections is also a sequence. Clojure provides an interface that is known as the sequence
abstraction, and it is this abstraction that allows multiple types of built-in functions to
work uniformly across these different collection types.

Before we get into the sequence abstraction, let’s start with a task that is common
when programming in Clojure, which is the need to loop over a collection in order to
carry out some form of side effect. Consider the following example (Listing 4-1), where we
loop over a list collection.

Listing 4-1. Example of Triggering Side-effect Only (No Modifications)

(doseq [element '(:a :b :c)]
 (prn (str (name element) "!")))

;; "a!"
;; "b!"
;; "c!"
;; nil

In Listing 4-1, we can see that we’re looping over the collection '(:a :b :c) and
that for each loop iteration the local variable (element) is updated to hold the current
collection item. As part of the doseq “body” we convert the item (which is a keyword) into
a string using the name function, and then we append "!" onto the end using str. Finally,
we print the resulting value.

So, in this example we’re not modifying the collection; we’re only creating side
effects, the side effect being we’re printing a value to the screen. The actual result of
executing doseq is a nil value.

Now, we could use Clojure’s for function to loop over the sequence and achieve the
same side effects but with a different end result. See Listing 4-2.

Listing 4-2. Example of for Loop

(for [element '(:a :b :c)]
 (prn (str (name element) "!")))

;; (nil nil nil)

Chapter 4 ■ SequenCeS

46

In the preceding example, the code loops over the given collection with the intention
of creating a new list based upon the result of each iteration. But because we’ve not
returned anything from the body for each iteration, we end up with (nil nil nil) being
returned.

So, the real difference between for and doseq is that the latter is solely for side effects
(and subsequently returns nil); whereas the for form is actually what is known as a
list comprehension. So, let’s move on to the next section to better understand what that
means.

List Comprehension
Using the previous example, you could be forgiven for thinking a for is a lot like the map
function (which we saw in the previous chapter). The example in Listing 4-3 uses map and
provides exactly the same side effect as well as returns the same overall result as the for
version we’ve just been looking at.

Listing 4-3. Use of map to Mimic for Example

(map
 (fn [element]
 (prn (str (name element) "!")))
 '(:a :b :c))

Compared to the previous for example, it would seem that the for is easier to read
than the map version, so the question becomes: Which is more appropriate to use, and
when?

Well, technically the for function is what’s known as a list comprehension, which is
a way to create a list from existing lists and which should return a list or an iterator. The
reason to choose the for form over a map (and vice versa) will depend on two things:

 1. Are you creating a new sequence from an existing sequence,
or are you looking to modify an existing collection?

 2. Are you wanting to use multiple collections, or not?

In the first scenario, for allows the use of “modifiers” to help create a sequence that
is smaller than the sequence it’s looping over, whereas map will always return the same-
sized sequence.

In the second scenario, if you’re using multiple collections the for form will
produce different results than those produced when map handles multiple collections
(as demonstrated in Listing 4-4.

Listing 4-4. Example of List Comprehension Using for Form

(for [x [1 2]
 y [7 8]]
 (do
 (prn x y)
 (+ x y)))

Chapter 4 ■ SequenCeS

47

If you run Listing 4-4 in your REPL, you should notice that we end up looping over
the second collection y twice. We take the first element from the first collection x and
then loop over collection y. After that has completed, we take the second element from
the first collection x and start looping over the second collection y again.

Now, contrast this with how map handles multiple collections (Listing 4-5).

Listing 4-5. Difference of map with Multiple Collections

(map #(do
 (prn %1 %2)
 (+ %1 %2))
 [1 2]
 [7 8])

After running Listing 4-5 in your REPL, you should notice that map actually loops only
a single collection, but for each iteration it combines elements from the first and second
collections (almost like a zip). So, on the first iteration it passed 1 and 7 to the anonymous
function. On the second iteration, it passed 2 and 8.

OK, so what else is so special about list comprehensions? Well, they provide
“modifiers,” which control when the body gets executed. There are three modifiers
Clojure provides: :let, :while, and :when. We can see the last item (:when) being used in
Listing 4-6.

Listing 4-6. Demonstration of :when Modifier

(for [x (range 5)
 :when (> (* x x) 3)]
 (* 2 x))

;; (4 6 8)

In Listing 4-6, we use the range function to create a sequence of numbers (0 1 2 3 4)
and assign the current element to x for each iteration. Within the binding block, we
specify the modifier we want to use (in this case, :when) followed by the test it will verify
against.

In our test, we’re saying the body should only be executed if the current element
(when multiplied by itself) is greater than 3. The body’s result is then placed in a new list
that is returned. Hence, when using the for form, we’re really “building a sequence, from
a sequence.”

Sequence Abstraction
Clojure promotes the idea of programming to abstractions. In order to fulfill the
requirements of what is known as the sequence abstraction, Clojure has to wrap some of
its own data structures so as to provide a unified and consistent interface. It also is able to
do this for your own code (which we’ll see an example of later).

Chapter 4 ■ SequenCeS

48

What this facilitates is for certain functions to be able to work with, for example, a
map data structure and yet treat it like it were a less complex collection type (like a vector,
list, or set). There is a side effect to implementing this hidden interface though, which is
that sometimes when you pass a vector into a built-in function, you’ll (depending on the
function) get a list data structure on the way out.

But, again, thanks to the sequence abstraction, Clojure is able to apply its functions
across multiple different data structure types in a way that works a lot like a traditional
“interface,” as found in other OOP languages, where the benefit is in allowing different
objects to depend on an abstraction rather than on a concrete implementation.

What this means in practice is that vectors, lists, sets, and maps all share this hidden
interface known as the sequence abstraction. So, although not all of these data structures
are implemented in the same way as a list, they can all take advantage of Clojure’s
collection/sequence functions as if they were of the same underlying implementation.

To understand how this interface works, we need to realize that each data type has
been built (or wrapped) in such a way that it provides the following three functions:

•	 first: return first element in a collection

•	 rest: return all elements except the first

•	 cons: prepend element onto the collection

Clojure provides a sequence library that consists of many functions that can be
utilised when dealing with data structures that support the sequence abstraction
interface. All the functions found within Clojure’s sequence library can be implemented
with the help of these three functions. This brings us to the seq function, which helps
a collection expose its elements and consequently extends the use of the sequence
abstraction interface. Hence, a lot of the sequence library functions (for example, map)
will internally call seq on the collection provided.

 ■ Note For a full list of functions, see Clojure’s Seq library.1

In the case of map, it’ll ensure a data structure such as a map {:a 1 :b 2} will be
converted into vectors within a list. For example, (seq {:a 1 :b 2}) returns ([:b 2]
[:a 1]).

 ■ Note It can be interesting to check the types returned when creating a data
structure. For example, (type (seq [:a :b :c])) returns clojure.lang.
PersistentVector$ChunkedSeq, whereas (type (seq '(:a :b :c))) returns clojure.
lang.PersistentList. Because the list is implemented as a linked list, it’s possible to
iterate in segments, whereas that’s not the case with a vector, which is implemented as a
hash table, so it’s actually utilizing a “chunked sequence.”

1https://clojure.org/reference/sequences

https://clojure.org/reference/sequences

Chapter 4 ■ SequenCeS

49

Once the map data structure calls seq on the collection, the collection is in a structure
that allows for the utilization of the sequence abstraction interface functions for carrying
out a mapping of the data as expected.

If you pass a vector into a map function, then seq will again ensure the data structure
is converted into a list so it can utilize the sequence abstraction interface. For example,
(seq ["a" "b" "c"]) returns ("a" "b" "c").

Lazy Sequences
Now that we know about seq and the sequence abstraction, what exactly is a “lazy
sequence”? Well, this is a sequence whose collection is computed in chunks, and the best
way to understand it is by way of example.

Let’s imagine we create a collection of 65 numerical elements. We pass this collection
into the map function so we can both print and modify each item within the collection.
The code for this might look something like what is shown in Listing 4-7.

Listing 4-7. Lazy Sequences Compute Their Values in Chunks

(def v (vec (range 1 65)))
(def m (map #(do (prn %1) (str %1 "!")) v))
(first m)

If you run Listing 4-7 in the REPL, you should see the output is the numbers
1 through 32 printed on individual lines followed by the return value "1!". This
demonstrates that the full 65 items weren’t computed when accessing the data assigned
to m (i.e., (first m)). But why is that?

To help understand why the complete collection of 65 items were not computed, we
first need to know that map returns a LazySeq as its type. OK, but why were only the first
32 items printed when dealing with this LazySeq? Well, this is because lazy sequences are
realized in chunks of 32, and the reason for 32 specifically has to do with the efficiency of
the underlying trie data structure the collection is implemented with.

If we were to type m into our REPL, this would force the complete sequence to be fully
realized (i.e., computed), and so we would see the remaining elements in the collection
printed out and subsequently modified. Lazy sequences are a performance win for us.

Let’s now execute the code from Listing 4-8 in our REPL, and we’ll again be able to
confirm the chunked nature of a lazy sequence.

Listing 4-8. Lazy Sequence Chunked Output

(def v (vec (range 1 65)))
(def m (map #(do (prn %1) (str %1 "!")) v))
(first m) ;; prints 1-32, followed by "1!"
(nth m 10) ;; prints "11!"

Notice that in Listing 4-8 when you try to extract the tenth item in the collection
(by using the nth function) it doesn’t print the values 1 to 32 again, as it did when you
executed (first m). This is because the first 32 items in the collection were already
computed by executing (first m).

Chapter 4 ■ SequenCeS

50

So, what happens if we now execute (nth m 33), which is an index just outside of
the first 32-item chunk already computed? Well, we would see the next 32-item chunk
computed, meaning the values 33 to 64 would be printed to the screen, followed by the
return value "34!" (which is what was assigned to index 33).

As we saw earlier, if I request an index that is now already computed, such as
(nth m 50), we’ll not see any values from that specific 32-item grouping printed again.
We’ll only see the cached return value printed.

But don’t go thinking you can now just create an unfeasibly large collection, such as
executing (range 1 999999999), because the collection itself is still realized (i.e., placed
in memory) upon creation. Executing that range in a REPL would cause you to stare at a
blank screen while it computed each value.

There is a way to side-step that, which is to assign the computation to a variable
so the item isn’t computed until the variable is referenced. For example, the following
snippet immediately returns focus when executed within the REPL environment:
(def r (range 1 999999999)).

 ■ Note a large range is of type LongRange whereas an infinite range, which you can
create with (range), is of type Iterate and is an iterator that yields values (similar to a
generator in other programming languages, like python).

lazy-seq
This brings us to the function lazy-seq, which creates a type of sequence that doesn’t
“compute” any of the elements within the collection until they are requested (i.e., a lazy
sequence). It’s useful for allowing user-defined functions to also create these types of
sequences, not just those sequence functions that are built into the Clojure language.

Let’s see an example of how to use the lazy-seq function, and then we can begin to
break down the moving parts and how it works.

Listing 4-9. Generate Your Own Lazy Sequence

(defn add-n [n, coll]
 (lazy-seq (cons
 (+ n (first coll))
 (add-n n (rest coll)))))

(type (add-n (range)))
;; clojure.lang.LazySeq

(take 10 (add-n (range)))
;; (5 6 7 8 9 10 11 12 13 14)

Chapter 4 ■ SequenCeS

51

So, in Listing 4-9 we create a function called add-n. This function accepts a number
(n) and a collection (coll). In the example, we’ve used (range), which creates an iterator
that internally yields values as they’re requested, but we could also have used LongRange
(range 1 9999999999).

We can also see that the type returned by add-n is a LazySeq. Because of this, we
know it internally utilizes the lazy-seq function. When we execute take on the lazy
sequence we can see the result is a collection where each value of the given collection has
had 5 added to it. So, a normal range call would result in a collection like (0 1 2 3 …etc),
whereas the resulting collection from add-n looks like (5 6 7 8…etc).

So, how is this working? Well, first we need to read (doc lazy-seq) and see what it
has to say about how that function works:

clojure.core/lazy-seq ([& body])

Macro

Takes a body of expressions that returns an ISeq or nil, and yields a
Seqable object that will invoke the body only the first time seq is called,
and will cache the result and return it on all subsequent seq calls.

—Clojure documentation

OK, we can see that the lazy-seq is actually a macro and not a function. We also can
see that it accepts a set of expressions, which it uses as its “body.”

So, we know that our code is providing two expressions to be used as the body when
calling lazy-seq. The first being (+ n (first coll)) and the second being (add-n n
(rest coll)). Actually, you could argue it’s more like one expression, as we wrap those
two expressions in a (cons), but, ultimately, we’re providing some number of expressions
for the body.

The next thing we notice that is of interest is that our second expression is a recursive
call to the add-n function itself. This is interesting, because you may then wonder how
add-n wasn’t causing a StackOverflow exception from endlessly calling itself (as there
doesn’t appear to be any logic defined to stop the function from calling itself).

Well, this is where the magic of lazy-seq comes in. It returns a lazy sequence, which
in theory looks something like [<body>], where the body isn’t executed until we try to
access that first index. When we try to access the first index we will find the resulting
sequence will look something like [<value>], where we no longer have a body of
expressions to execute waiting inside, just the cached value. So, if we tried to access the
same index again we would not actually re-execute the body, just return the cached value.

This explains why nearly all the lazy-seq examples you will see have nested
lazy sequences (as our add-n function returns a lazy sequence and then calls itself
recursively), because it’s a good way to build up either a very large or infinitely sized
sequence.

Chapter 4 ■ SequenCeS

52

In our example, our “body” isn’t actually executed until the take function requests
the first index. From that index request we return another lazy sequence with a body
waiting to be executed (remember that body will also return a nested lazy sequence with
its own body waiting to be executed when called upon and so on forever, thanks to using
an infinite range).

With this in mind, we can see that the take function is what effectively asks the lazy
sequence to yield multiple values.

Let’s consider a simpler example (see Listing 4-10).

Listing 4-10. Simple but Explicit Nested Lazy Sequence Example

 (def ls
 (lazy-seq
 (do
 (prn "body executed")
 (lazy-seq (do (prn "next body executed") [:a :b :c])))))

We can see in Listing 4-10 that we have manually nested a lazy sequence inside of
another lazy sequence, which itself has been assigned to the variable ls. Now, at this
point nothing has executed. If we were to type ls into the REPL we would force the entire
sequence to be realized, and so we would see the following output (Listing 4-11).

Listing 4-11. Output from Forcing Computation of All Nested Sequences

ls
;; "body executed"
;; "next body executed"
;; (:a :b :c)

But, instead, what if we took just the first item using take? Let’s see what the output
of that would be (Listing 4-12).

Listing 4-12. Request First Item from Set of Nested Lazy Sequences

(take 1 ls)
;; "body executed"
;; "next body executed"
;; (:a)

OK, so we can see that by asking for the first item we forced the first lazy-sequence
body to execute, which subsequently caused the next lazy-sequence to be returned and
executed, but from there we took the first item from the vector we returned from that
nested lazy sequence.

If we were to now execute (take 1 ls) we would simply see the result (:a) and
none of the side effects of printing values, as the bodies are no longer being computed; it’s
just the cached value being returned.

Chapter 4 ■ SequenCeS

53

Summary
Sequence abstraction and dealing with lazy sequences can be difficult to grasp.
I personally find the best way to understand these concepts is to experiment in the REPL
with different examples. Try it yourself and see how you might be able to utilize the seq
and lazy-seq functions (look online and in the documentation for examples that might
help you see the potential in what these functions can do for future Clojure programs).

In the next chapter, we’re going to sift through some useful concepts related to
Clojure functions, such as pre-and-post conditions, as well as highlight various useful
functions and utilities found within the core and string namespaces.

55© Mark McDonnell 2017
M. McDonnell, Quick Clojure, DOI 10.1007/978-1-4842-2952-1_5

CHAPTER 5

Functions

The Clojure programming language is built on the foundation of functional
programming, which itself suggests a language rich in functions.

If we were to look through the available Clojure namespaces and list of public
functions/variables,1 we would indeed find a wide range of functions and behaviors for
our applications to utilize.

I’m going to start this chapter by rounding off a couple of items from Chapter 3 that
make sense to discuss in more detail here. We’ll follow on from there by investigating
both the clojure.core and clojure.string namespaces and the selection of functions
contained within them.

 ■ Note The clojure.core namespace is loaded by default for us when using the
Leiningen REPL.

Just to be clear: I’m only highlighting a small subset of available functions that I
personally find interesting (and only those that I don’t cover elsewhere in this book).
I highly recommend reviewing the API documentation, as there really is a wealth of
information there waiting to be discovered.

Anonymous Function Shorthand
We’ve already seen the syntax structure for an anonymous function back in Chapter 2. In
that chapter, we also saw that the syntax could be shortened like so: #(...). One thing we
skipped over previously was the fact that from within the function body you could access
the function’s arguments using the syntax %1, %2, etc.

The snippet in Listing 5-1 demonstrates a basic example of this.

1https://clojure.github.io/clojure/api-index.html

http://dx.doi.org/10.1007/978-1-4842-2952-1_3
http://dx.doi.org/10.1007/978-1-4842-2952-1_2
https://clojure.github.io/clojure/api-index.html

ChaPTER 5 ■ FunCTions

56

Listing 5-1. Accessing Function Arguments Within Shorthand Syntax

(map #(+ (+ 2 %1) 2) [1 2 3])

;; (5 6 7)

We covered how the map function works back in Chapter 3. As a quick summary
reminder, the map function provides us the ability to execute a given function against each
item within a sequence/collection.

So, in the preceding example, our anonymous function is executed three times.
First, given 1 as an argument; second, given 2 as an argument; and, lastly, given the
value 3. The anonymous function then modifies the value it has been given and returns a
modified version of the collection.

Pre and Post Conditions
One really powerful feature available in Clojure is the ability to execute code just before
and just after the function body itself. This allows us, for example, to validate the function
arguments as they come in as well as validate the result of the function is as expected.

The syntax structure looks like that shown in Listing 5-2.

Listing 5-2. Syntax Structure for Pre/Post Conditions

(defn <fn-name> [<args>]
 {:pre [<fn1>, <fn2>, ...]
 :post [<fn1>, <fn2>, ...]}
 (<fn-body>))

As you can see, we provide a map data structure just before the function body
that contains :pre and :post keys (both are optional). Each key is assigned a vector of
functions that will be executed either directly before the function body or just after it, and
they should return a Boolean true or false value.

 ■ Note You can refer to the function parameters within the :pre and :post functions, as
well as refer to the function body’s result in the :post functions, by referencing % (as we’ll
see shortly).

For example, imagine we have a function that is supposed to add two numbers
together; the code for this would look something like Listing 5-3.

Listing 5-3. Example of Pre/Post Conditions

(defn my-sum [f, g]
 {:pre [(integer? f), (integer? g)]
 :post [(integer? %)]}
 (+ f g))

http://dx.doi.org/10.1007/978-1-4842-2952-1_3

ChaPTER 5 ■ FunCTions

57

So, with this particular example function, if I were to execute (my-sum 2 2) I would
see the expected return value of 4. But if I were to call the function with one argument as a
String type (e.g., (my-sum "2" 2)), then I would see the output shown in Listing 5-4.

Listing 5-4. Exception from a Failing Pre/Post Condition

AssertionError Assert failed: (integer? f) user/my-sum
(form-init611908878853766826.clj:1)

This exception is informing me that the function failed to execute because the pre-
condition failed to pass one of the validation functions I defined (in this case, the first
validation function was verifying whether f was indeed an integer).

Now, imagine someone comes along and modifies this code so that the return value
is the message "Result: " followed by whatever the resulting value is. So, if we ran
(my-sum 2 2), then their expectation is for the result to look like "Result: 4".
See Listing 5-5.

Listing 5-5. Modified Pre/Post Condition Logic

(defn my-sum [f, g]
 {:pre [(integer? f), (integer? g)]
 :post [(integer? %)]}
 (str "Result: " (+ f g)))

What would happen is that when the function was called, we would clearly see
that the changes had broken the code because the REPL would be displaying the error
message shown in Listing 5-6.

Listing 5-6. New Exception from Failed Pre/Post Condition

AssertionError Assert failed: (integer? %) user/my-sum
(form-init611908878853766826.clj:1)

This error indicates that the post-condition validation function has failed. For that
person to fix the issue, they could modify the :post condition to allow a String response
instead, as in Listing 5-7.

Listing 5-7. Modified Pre/Post Condition Logic to Fix Post Error

(defn my-sum [f, g]
 {:pre [(integer? f), (integer? g)]
 :post [(string? %)]}
 (str "Result: " (+ f g)))

;; "Result: 4"

ChaPTER 5 ■ FunCTions

58

Or by removing the :post condition altogether, as in Listing 5-8.

Listing 5-8. Modified Pre/Post Condition Logic to Fix Post Error

(defn my-sum [f, g]
 {:pre [(integer? f), (integer? g)]}
 (str "Result: " (+ f g)))

;; "Result: 4"

clojure.core
The clojure.core namespace contains functions and macros for dealing with all sorts
of requirements. It is the foundational library of the Clojure language. In the following
sections, we’ll highlight some interesting items and hopefully will encourage you to
explore the rest of the namespace to see what’s there.

Map Construction
Let’s imagine you have a list (or vector) of values that you wish to construct into a simple
map data structure. We can achieve this in a manual sense by utilizing the apply function
(see Listing 5-9).

Listing 5-9. Convert Vector into a Map Using apply and assoc

(apply assoc {} [:foo 1 :bar 2])

;; {:foo 1, :bar 2}

But there is already a function provided in the core library that reduces the
boilerplate required, and it’s called array-map. The way this function works is that it
accepts a list of arguments that it can then manipulate into a map. See Listing 5-10.

Listing 5-10. Convert Arguments into a Map Using array-map

(array-map :foo 1 :bar 2)

But, you can also utilize the apply function (as we did when demonstrating the assoc
approach) and provide it a list or vector, as in Listing 5-11.

Listing 5-11. Convert List/Vector into a Map Using apply and array-map

(apply array-map '(:foo 1 :bar 2))
(apply array-map [:foo 1 :bar 2])

ChaPTER 5 ■ FunCTions

59

Pipelining
There are times when you need to mutate a let binding value but are unable to because
let doesn’t create mutable local variables. Here’s an example to demonstrate the
problem (Listing 5-12).

Listing 5-12. Example of let’s Immutable Binding Value

(let [foo 1]
 (inc foo)
 (println foo))

;; 1
;; nil

In Listing 5-12, we wanted to increment foo, but by the time we reached the next
form (i.e., println) we could see that foo had not actually changed and was still the same
value as before.

We can solve this by using the as-> macro (Listing 5-13).

Listing 5-13. Using as-> Macro to Avoid Immutable Bindings

(as-> 1 foo
 (inc foo)
 (println foo))

;; 2
;; nil

What this macro does is bind the value 1 to the name foo, and then for each listed
form it will rebind the name to the updated value. What’s interesting about this macro is
that you can use it for facilitating finer control when manipulating data within a pipeline.
I’ll demonstrate this in the following example using a threaded macro (Listing 5-14).

Listing 5-14. Using as-> Macro for Granular Pipeline Processing

(-> [9 8 7]
 (as-> coll
 (map - coll [3 2 1])
 (apply str coll)
 (str coll " is the number of the beast!"))
 (clojure.string/upper-case))

;; "666 IS THE NUMBER OF THE BEAST!"

In Listing 5-14, the thread-first macro is being used to pass [9 8 7] as the first
argument to as-> (i.e., [9 8 7] is inserted before the coll argument). We then have a
single form inside of as-> that manipulates the data using the map and - functions.

ChaPTER 5 ■ FunCTions

60

 ■ Note For more info on - and how it works, please refer to (doc -).

The result from the - function is [6 6 6], whereupon we convert it into a string so
it becomes 666. If we didn’t convert it into a string first, then the end result would have
been a little different (Listing 5-15).

Listing 5-15. Demonstrating Output When Printing a Vector Via str

"clojure.lang.LazySeq@8ba5 is the number of the beast"

Finally, we concatenate both strings together and then uppercase the last form
result, which gives us back the result we expected. This pipeline would be difficult
to achieve with a thread-first macro by itself, as the order of the arguments changes
throughout the pipeline. To demonstrate that issue, consider the example in Listing 5-16.

Listing 5-16. Demonstrate Problem with Just Using thread-first Macro

(-> [9 8 7]
 (map - [3 2 1])
 (apply str)
 (str " is the number of the beast!")
 (clojure.string/upper-case))

There are two issues here, both revolving around the order of the arguments’ being
incorrect:

 1. (map - [3 2 1]) needs [9 8 7] to be placed in front of -, not
behind it, as would be the case here due to the -> macro.

 2. (apply str) needs the result of the previous form to be
placed after str and not before it, as would be the case here.

We could try to mix together the thread-first macro (->) and the thread-last macro
(->>), like in Listing 5-17.

Listing 5-17. Utilize Both thread-first and thread-last Macros

(-> [9 8 7]
 (map - [3 2 1])
 (->> (apply str))
 (str " is the number of the beast!")
 (clojure.string/upper-case))

The code in Listing 5-17 would almost work, with the exception that the first form
has a complicated requirement, which is that the placement of [9 8 7] needs to be right
in the middle of the form. So, neither the front nor the back (as per the -> or ->> macros)
will suffice, as we’ll end up with either an error or a different result altogether.

ChaPTER 5 ■ FunCTions

61

Hence, using as-> as a way to allow for more-flexible manipulation is the
appropriate option for us to use in this example. Now, if we look back at our original
solution (Listing 5-14), we might think to mix that with a thread-last macro, like in
Listing 5-18.

Listing 5-18. Mix ->> thread-last Macro with as->

(-> [9 8 7]
 (as-> coll
 (map - coll [3 2 1]))
 (->> (apply str))
 (str " is the number of the beast!")
 (clojure.string/upper-case))

But now we’re mixing three separate types of pipeline functions (->, ->>, and as->),
which makes the code harder to reason about, and with no real benefit either. The example
in Listing 5-18 merely serves the purpose of demonstrating that using all three macros is
possible. I personally would stick with the original solution of just -> and as->.

 ■ Note if the pipeline work i was doing in real life were as simple as the example use,
then in reality i wouldn’t even bother with ->. i’d just use as-> by itself. so, excuse the
example provided, but hopefully it has demonstrated the potential power of as->.

Dropping Values
Back in Chapter 2, when describing data structures, we took a look at the peek function,
which would return the last item in a vector. There is a related set of functions you might
find useful when you want everything except the last item from a collection.

For example, imagine you have a vector such as [1 2 3], and from this you want a
collection returned that consists of just the first two items. You could achieve this in one
of two ways. See Listing 5-19 for both.

Listing 5-19. Return Collection Minus the Last Item

(drop-last [1 2 3])
;; (1 2)
(butlast [1 2 3])
;; (1 2)

The difference between the drop-last and butlast functions becomes apparent
once you read the documentation for both (see Listing 5-20).

http://dx.doi.org/10.1007/978-1-4842-2952-1_2

ChaPTER 5 ■ FunCTions

62

Listing 5-20. Documentation for drop-last and butlast Functions

user=> (doc drop-last)

clojure.core/drop-last
([s] [n s])
 Return a lazy sequence of all but the last n (default 1) items in coll

user=> (doc butlast)

clojure.core/butlast
([coll])
 Return a seq of all but the last item in coll, in linear time

The butlast isn’t as performant as drop-last, as it’ll compute the collection values
immediately (in linear time) as it isn’t a lazy sequence that’s returned. So, using drop-last
is likely going to be more what you want to use the majority of the time.

 ■ Note There are also the rest and nthrest functions, if you’re looking for everything
but the first item.

Code Comments
Commenting out code in non-Lisp-based languages is easy. Typically, you’ll stick
something like // or # at the start of a line of code, and the code will be commented out
(i.e., not executed).

Because of the structure of a Lisp program, this isn’t as straightforward for Clojure
developers. But one thing you can do is insert a comment function around your code to
prevent code from being executed.

For example, imagine you had the code shown in Listing 5-21 that increments an
atom value twice.

Listing 5-21. Increment an atom Value Twice

(let [x (atom 0)]
 (swap! x inc)
 (swap! x inc))

;; 2

ChaPTER 5 ■ FunCTions

63

To comment out one of the swap! calls, modify the code like in Listing 5-22.

Listing 5-22. Demonstrate comment Function

(let [x (atom 0)]
 (comment (swap! x inc))
 (swap! x inc))

;; 1

But be careful when using the comment function, as it will return nil, and that
may or may not be what you want or expect. See Listing 5-23 for an example where the
comment is the last form, and so the return value from the let block is no longer the result
of swap (as it was in Listing 5-22).

Listing 5-23. The comment Function Returns nil

(let [x (atom 0)]
 (swap! x inc)
 (comment (swap! x inc)))

;; nil

Endless Cycle
Have you ever found you need to endlessly loop over a small collection of items? If so,
then the cycle function is what you should use. The return value from cycle is an infinite
lazy sequence, and so if you just called the cycle function by itself, then you would lock
up your REPL.

In order to properly consume the cycle function, you will need to use the take
function, as demonstrated in Listing 5-24.

Listing 5-24. Example of the cycle Function

(take 2 (cycle [1 2 3]))

;; (1 2)

So, what happens if we were to try and take one more item than what we can see
as being available in the collection: [1 2 3] (e.g., take 4)? Well, in this example the
collection will start to repeat itself. See Listing 5-25.

Listing 5-25. The cycle Function Should Repeat the Given Collection

(take 8 (cycle [1 2 3]))

;; (1 2 3 1 2 3 1 2)

ChaPTER 5 ■ FunCTions

64

Uniqueness
In Chapter 2, we saw how we could make a collection of unique values by using the set
function to ensure any duplicate entries are removed (and placed into a set data structure).

The problem with set is that it eagerly creates the set from your provided collection,
meaning that if you have a very large collection of items to pass into the set, then the full
collection will be evaluated in memory.

Another way to remove duplicates in a more performant manner is to use the
distinct function, which returns a lazy sequence. See Listing 5-26.

Listing 5-26. The distinct Function Is More Efficient Than set

(distinct [1 2 3 1 2 3 4])

;; (1 2 3 4)

As you can see, the distinct function works the same as set, in that it removes the
duplicate items, but it does so by creating a lazy sequence. Because we’re getting back a
lazy sequence this time and not a set data structure, we have to realize there are different
APIs for interacting with the resulting data structure as well as possible performance
considerations with regards to Big O notation. Big O notation is used to indicate the
number of operations involved when dealing with a particular data structure and how
those number of operations change over time as your data structure gets larger (Big O is
outside the scope of this book, but you can find more information online2). For example,
you'll generally see O(n) for a lazy sequence and O(log n) for a set.

There is also a dedupe function, which I feel isn’t the best name for it as it can be a
bit misleading. Dedupe will remove consecutive duplicates, not all duplicates. Listing 5-27
demonstrates its usage.

Listing 5-27. The dedupe Function Removes Consecutive Duplicates

(dedupe [1 1 1 2 3 3 1 1 2 2 2 3 3])

;; (1 2 3 1 2 3)

If you thought it would work like set or distinct and return (1 2 3), you would be
wrong. As you can see, it’s important to understand the difference between each of these
functions as it’ll help guide your use of each of them.

Predicate Functions
There’s a small selection of predicate-related functions that I’d like to show you
(remember that a predicate is a function that returns a Boolean true/false value).
The functions I want to look at are as follows:

•	 every?

•	 every-pred

2http://www.integralist.co.uk/posts/bigo.html

http://dx.doi.org/10.1007/978-1-4842-2952-1_2
http://www.integralist.co.uk/posts/bigo.html

ChaPTER 5 ■ FunCTions

65

•	 not-any?

•	 some

These are useful functions to know, because when working with data you’ll often
want to verify whether a selection of items match a condition completely or whether only
some of them do (or even if just any of the values match the condition).

So, let’s start with the every? function, which takes a predicate and a collection and
will return a true Boolean value only if all the items in the provided collection themselves
return true via the predicate (otherwise every? will return false). See Listing 5-28, for a
demonstration of this behaviour.

Listing 5-28. Example of every? Function

(every? even? [2 4 6]) ;; true
(every? even? [1 4 6]) ;; false

What’s interesting in the example in Listing 5-28 is that you can also use other data
structures with every?, not just functions in the typical sense that you think of them. So,
you could use a set data structure as the predicate and then every? would return true if
every item in the collection also appeared within the set. Alternatively, you could use a
map data structure as the predicate, and this would mean that each item in the collection
would be checked to see if it appeared as a key in the map.

 ■ Note There is also not-every?, which is the reverse behavior. i personally find it so
confusing to read that i’d argue that your code clarity would suffer because of it. i’ve also
never had a need to use it either, as i rarely need to know if a collection of items doesn’t
match. nevertheless, it’s a tool at your disposal.

Functional programming is all about the composing of single-responsibility
functions, and the every-pred function is a great example of the ability to easily compose
logic checks. It accepts a list of predicate functions and will itself return a function. The
returned function can then be applied against a list of items to see if they pass all the
defined predicates. Again, a simple example will help clarify the usage (see Listing 5-29).

Listing 5-29. Example of every-pred Function

((every-pred number? odd?) 1 2 3) ;; false
((every-pred number? odd?) 1 3 5) ;; true

A moment ago I mentioned how the not-every? function was a bit confusing
because that direction of checking conditional matches didn’t make as much sense to
me as the alternative, which is the every? function (as well as the fact that it feels more
confusing—to me anyway—for readers of your code to use not-every? compared to
every?). Now, there is a not-any? function that sits very much in that same camp for me.
See Listing 5-30 for an example use case.

ChaPTER 5 ■ FunCTions

66

Listing 5-30. Example of not-any? Function

(not-any? odd? [2 4 6]) ;; true
(not-any? odd? [1 3 5]) ;; false

The reason I even make mention of not-any? (considering I’m clearly not a fan of the
not-type functions) is because in an upcoming Clojure language version release (at the
time of writing this will possibly be 1.9) there will be an any? function added to the core
library, and that’s something I’d recommend you take a look at once it becomes more
widely available.

Lastly, we’ll take a look at the some function, which every once in a blue moon you’ll
find a use for. The some function takes a predicate and a collection and will return true
if at least one item in the provided collection passes the predicate check (otherwise some
will return nil). See Listing 5-31 for an example.

Listing 5-31. Example of some Function

(some even? [1 3 5 7]) ;; nil
(some even? [1 2 3 4]) ;; true

OK, before moving on, it’s worth clarifying that there is also a some? function, and
I don’t find it as useful as some alternative functions. What it does is return true if the
provided argument is not nil. Now, this function is like the not- form of another function
called nil?, which I find much more useful and easier to understand when sifting
through code. The nil? function returns true if the provided argument is nil, otherwise
it returns false.

 ■ Note There is also a false? function, which explicitly checks for the false value:
(false? true) ;; false

Collection Extraction
There are some simple functions that can help reduce a bit of the boilerplate required in
accessing the first item(s) within a collection.

The first function we’ll look at is itself called first and works exactly how you
might expect it to, in that you provide it a collection and it extracts the first item in that
collection for you.

The other function we’ll look at is called last, and it works, again, how you might
expect it to, in that you provide it a collection and it extracts the last item in the collection.
See Listing 5-32 for examples of both first and last.

Listing 5-32. Example of first and last Functions

(first [:a :b :c]) ;; :a
(last [:a :b :c]) ;; :c

ChaPTER 5 ■ FunCTions

67

 ■ Note The first and last functions return the extracted values, whereas the functions
rest and pop remove the first/last value and return the mutated collection.

Now that we’ve seen how to extract the first item, let’s see how we can take that
idea further and extract the first item from the first nested collection using the ffirst
function. See Listing 5-33 for an example.

Listing 5-33. Example of ffirst Function

(first [[1 2 3] :b :c]) ;; [1 2 3]
(ffirst [[1 2 3] :b :c]) ;; 1

We also have a fnext function, which locates the first item in the provided collection
and then returns the next item along. Although, admittedly, that’s quite a specific use
case, and for most cases using the get function would be more flexible.

Let’s consider two other functions: nnext and nfirst. The nnext function is
interesting in that it locates the item next to the first item and then returns the remaining
items in the collection, whereas the nfirst function extracts the first item in the
collection and then returns the nested collection minus the first value. See Listing 5-34 for
an example.

Listing 5-34. Example of nnext and nfirst Functions

(nnext [1 2 3 4 5 6]) ;; (3 4 5 6)
(nfirst [[1 2 3] 4 5 6]) ;; (2 3)

Ultimately, these are interesting functions to have available in the core library, but I
do question how useful they are in the sense of code clarity. I know from past experience
seeing these functions in someone else’s code that having to look up the documentation
made the flow of the code difficult to follow. But I guess if the right use case presents itself,
then these could be a nice shortcut into the data structure you’re dealing with.

String Formatting
String formatting is something I love having available in other languages and I feel like
sometimes using str to concatenate different vars together isn’t sufficiently eloquent. So,
this is where a function such as format comes in. See Listing 5-35, which demonstrates
how to interpolate multiple data types into a single string.

Listing 5-35. Example of format Function

(format "Hello %s, I hear you're %d years old"
 "Mark" 35)

;; "Hello Mark, I hear you're 35 years old"

ChaPTER 5 ■ FunCTions

68

In Listing 5-35, we can see we’re defining a string that has two “placeholders.”
The first is %s (which indicates a string value), and the second is %d (which indicates
a numerical value or digit). We then provide the values for those two placeholders as
separate arguments.

 ■ Note Execute (javadoc java.util.Formatter) for full details of what formatting
options you have available.

Frequency
When dealing with collections of items, you’ll need to identify how many times a certain
value appears in the collection. Thankfully, Clojure makes this super easy to figure out by
providing the frequencies function. See Listing 5-36.

Listing 5-36. Example of frequencies Function

(frequencies [:a :a :b :c :c :d :e :c])

;; {:a 2, :b 1, :c 3, :d 1, :e 1}

In Listing 5-36, we can see from the output that we’re getting a map data structure
returned, where each of the unique values is made into a key, and the value assigned to
that key is the number of times that unique value appeared in the provided collection.
In this case, we can see that :a appeared twice while :c appeared three times.

Zipping Values
The behavior of interleaving different items across multiple collections is known in other
languages as a zip function (much like how a zip on the front of a pair of trousers would
interleave individual pins).

If you find yourself with two collections that you wish to “zip” together, then Clojure
provides the interleave function, which accepts (at a minimum) two collections and
then proceeds to combine each index together. See Listing 5-37 for an example.

Listing 5-37. Examples of interleave Function

(interleave [:a :b :c] [:x :y :z])

;; (:a :x :b :y :c :z)

(interleave [:a :x] [:b :y] [:c :z] [1 :d] [:e 2] [3 :f] [:g 4] [:h :i])

;; (:a :b :c 1 :e 3 :g :h :x :y :z :d 2 :f 4 :i)

ChaPTER 5 ■ FunCTions

69

You’ll need to be careful using the interleave function, because if you don’t
provide an even number of collections, then the result isn’t as obvious as you might think
(see Listing 5-38 for an example of this).

 ■ Note i’ve spaced Listing 5-38 out a little so it’s easier to see how the values are
interleaved with each other.

Listing 5-38. Example of interleave with Odd Number of Collections

(interleave
 [:a :x]
 [:b :y]
 [:c :z]
 [1 :d]
 [:e 2]
 [3 :f]
 [:g 4])

;; (:a :b :c 1 :e 3 :g :x :y :z :d 2 :f 4)

In Listing 5-38 we can see that we have seven collections, meaning that once we reach
the seventh collection, we need to pair :g with the next available collection, which is now
the first collection [:a :x], as we haven’t provided an even set of collections to interleave
it with. So, because of the odd number of collections, we see :x is placed after :g.

Another issue occurs if you don’t provide the same number of items in both
collections. If that happens, then from that index onward (in both collections) the items
are omitted (see Listing 5-39).

Listing 5-39. Examples of interleave Function with Odd Number of Items

(interleave [:a :b :c] [:x :y])

;; (:a :x :b :y)

(interleave [:a :b] [:x :y :z])

;; (:a :x :b :y)

So, we can see in Listing 5-39 that the second collection has no third item (:z) and so
the resulting collection omits :c from the first collection. This helps to keep the resulting
collection balanced. We can also see that this works the other way as well. In the second
example, the second collection had more items than the first.

Clojure also provides a function called zipmap that allows you to map values with
keys (much like interleave, including the potential to lose data) but returns a map data
structure instead of a list. See Listing 5-40.

ChaPTER 5 ■ FunCTions

70

Listing 5-40. Example of zipmap Function

(zipmap [:a :b :c :d :e] [1 2 3 4 5])

;; {:a 1, :b 2, :c 3, :d 4, :e 5}

Interposing Values
The interpose function is similar to interleave in the sense that it interjects values
together, but it does this in a different way. For interpose we only provide it a single
collection, along with a string that indicates the value to be interposed. Listing 5-41
demonstrates how interpose works.

Listing 5-41. Example of interpose Function

(interpose " - " [:a :b :c])

;; (:a " - " :b " - " :c)

If you’re looking to have the result be a single continuous string, then you’ll be better
off utilizing the join function from the clojure.string namespace, demonstrated in
Listing 5-42.

Listing 5-42. Example of clojure.string/join Function

(clojure.string/join ", " [:a :b :c])

;; ":a, :b, :c"

Partitioning Data
The partition function is useful for dividing up a collection of items and not only
controlling the size of the “chunks” they’re split into, but also determining their “step”
behavior and also how to handle the situation where a chunk doesn’t have enough items
to fulfill itself. Listing 5-43 demonstrates a basic example.

Listing 5-43. Example of partition Function

(partition 4 (range 20))

;; ((0 1 2 3) (4 5 6 7) (8 9 10 11) (12 13 14 15) (16 17 18 19))

Looking at Listing 5-43, we can see that we have a nice clean set of chunks created.
But what happens if we were to change the value from 4 to 3? Listing 5-44 demonstrates
this.

ChaPTER 5 ■ FunCTions

71

Listing 5-44. Example of partition Function with Changed Chunk size.

(partition 3 (range 20))

;; ((0 1 2) (3 4 5) (6 7 8) (9 10 11) (12 13 14) (15 16 17))

OK, so that was interesting. We’ve not been given a full set back. If you count
the number of items, we have 18 and not 20. What’s happened is that the partition
function knows that it doesn’t have enough items to fill the last chunk, which would have
otherwise looked like (18 19).

You’ll notice that we run out of items from our range by that point. The solution is to
provide a “pad” (which is a collection), as shown in Listing 5-45.

 ■ Note if we provide a “pad” then we also have to provide the “step,” as it’s the
argument that comes second, so in the following example i just set the step to the default
value of 1.

Listing 5-45. Example of Partition with a pad Argument

(partition 3 1 [:a] (range 2))

;; ((0 1 :a))

We can see in Listing 5-45 that we don’t have enough items to fulfill the chunk
requirement of 3, and so the third item in the chunk is the pad value :a. Similarly, if our
chunk size was set to 4, then we could provide another value as part of the pad collection
in order to provide that fallback value. See Listing 5-46.

Listing 5-46. Example of Partition with Multiple pad Values

(partition 4 1 [:a :b] (range 2))

;; ((0 1 :a :b))

It’s also worth noting that there is a partition-by function that takes a function for
deciding how to chunk the provided collection (see Listing 5-47).

Listing 5-47. Example of partition-by Function

(partition-by odd? [1 1 1 2 2 3 3])

;; ((1 1 1) (2 2) (3 3))

ChaPTER 5 ■ FunCTions

72

Simple Parallelization
The pmap function is very simple. It works exactly like the map function (we learned
about the map function in Chapter 3), but it executes in parallel. This means that
instead of passing each item within the collection into another function to be processed
sequentially, multiple items in the collection can be processed at the same time.

If the function you’re applying to each item in the collection is quite costly in
performance, then you can really help to improve the performance by simply switching
from map to pmap.

Consider the example in Listing 5-48, which demonstrates both map and pmap
side-by-side and highlights how the API is the same. You should also take note of the time
difference between the two (you should notice that pmap is much faster in comparison to
map, simply because of the parallelization provided by pmap).

Listing 5-48. Example of pmap Performance vs. map

(defn slow [n]
 (Thread/sleep 1000)
 (println "finished sleeping")
 (inc n))

(map slow [1 2 3 4 5])
;; (2 3 4 5 6)
;; takes ~5 seconds

(pmap slow [1 2 3 4 5])
;; (2 3 4 5 6)
;; this should take a lot less time

If you want to handle some simple expression evaluation in parallel, then you might be
interested in pvalues, which internally utilizes a Clojure future (something we’ll read about
more in a later chapter when discussing Clojure’s concurrency features). See Listing 5-49.

Listing 5-49. Example of pvalues Function

(defn slow [n]
 (Thread/sleep (* n 1000))
 (println "finished sleeping for (* n 1000) seconds")
 (inc n))

(pvalues (slow 5) (slow 5))

;; (6 6)

When executing pvalues we can see that the return values from each of the
individual slow functions are now grouped together within a single collection. But the key
aspect of using pvalues is the performance gains, thanks to the parallelization it provides.
When running this example in your REPL, you should see that, instead of the code taking
ten seconds to complete, it should take half the time.

http://dx.doi.org/10.1007/978-1-4842-2952-1_3

ChaPTER 5 ■ FunCTions

73

Repeating Yourself
Clojure provides a function that itself takes a function, and will repeatedly call that
provided function over and over . . . forever. This function is called (can you guess?)
repeatedly, and it can be useful for a number of use cases, such as simple data
generation.

Because of the infinite lazy sequence that is returned, we need to utilize another
function such as take in order to prevent locking up the REPL. See Listing 5-50.

Listing 5-50. Example of repeatedly Function

(take 5 (repeatedly #(rand-int 10)))

;; (7 4 9 7 0)

In Listing 5-50, we’re using the rand-int function to generate a value for us
(a number between zero and ten), then we call it over and over via the repeatedly
function.

 ■ Note We use an anonymous function so that we can provide rand-int with an
appropriate argument.

Finally, we use take to signify that we actually only want the first five items from the
infinite lazy sequence that repeatedly would otherwise return.

Basic I/O
Clojure’s core library provides two functions for handling simple disk input/output (i/o):
slurp and spit. The slurp function reads in data whereas the spit function writes
out data.

See Listing 5-51 for a demonstration that creates a new file and then reads it into the
REPL multiple times. The first time we call spit we create the file initially. The second
time, we use :append true to prevent recreating the file, and finally we call spit without
append. We’ll see the file is overwritten with the new content.

Listing 5-51. Examples of spit and slurp Functions

(spit "foo.txt" "abc") ;; returns nil, but creates foo.txt
(slurp "foo.txt") ;; "abc"

(spit "foo.txt" "xyz" :append true)
(slurp "foo.txt") ;; "abcxyz"

(spit "foo.txt" 123)
(slurp "foo.txt") ;; "123"

ChaPTER 5 ■ FunCTions

74

 ■ Note The slurp function also provides an :encoding param that defines what
encoding to use when reading the file.

The slurp method is fine for reading a file if it can be contained simply within
memory, but if we’re dealing with a very large file then there are some other options
available to us, such as Java’s BufferedReader, which will allow us to read buffered lines
as they’re being read.

Listing 5-52 demonstrates how to use Java’s BufferedReader alongside the with-open
function to open a text file.

Listing 5-52. Example of with-open and Java’s BufferedReader

(with-open [rdr (java.io.BufferedReader. (java.io.FileReader. "foo.txt"))]
 (let [seq (line-seq rdr)]
 (print seq)))

So, there are a few things happening in Listing 5-52 that we should be aware of.
First thing we’re doing is creating a Java FileReader instance, as that is a requirement for
using a BufferedReader. The instance of BufferedReader is then assigned to the symbol
rdr. From there, we can see that rdr is passed to the with-open macro, which acts like
a context manager in that it will execute the body form internally within a try/finally
form.

The “body” in our example is the let form that binds the symbol seq to individual
file lines that are passed to it from the BufferedReader. We can see that we call line-seq
and pass it the rdr instance, which it will convert into a lazy sequence.

The with-open function expects a list of items that it can call .close on from within
the finally clause part of the try/finally form. In our example, it means we can be sure
our BufferedReader will be closed upon completion.

clojure.string
The clojure.string namespace contains useful utilities for dealing with strings. As I’ve
done with the clojure.core namespace, I’ll cover a small subset of functions that I think
are worth highlighting.

Checking for Whitespace
A common task is to verify if some input is actually blank. That is to say, is the input nil or
empty, or does it contain nothing by whitespace characters?

Clojure already has an empty? function within the core namespace, but it only works
with collections (not strings). If you need to verify this type of behavior with a string, then
you need the blank? function (see Listing 5-53).

ChaPTER 5 ■ FunCTions

75

Listing 5-53. Examples Demonstrating the blank? Function

(clojure.string/blank? "") ;; true
(clojure.string/blank? " ") ;; true
(clojure.string/blank? " a") ;; false
(clojure.string/blank? "123") ;; false

 ■ Note For the sake of simplicity i’m providing the fully qualified namespace path for
the function. in practice, you’ll likely refer in the blank? function from the clojure.string
namespace so your code would look more like: (blank? ""). We’ll see how to do this in a
later chapter when we discuss namespaces in detail.

Beginnings and Endings
Another common task is the need to check whether a string starts and ends with a
specific substring or character. For example, if dealing with a URL path you might want to
check if the beginning of the string included a forward slash.

Clojure’s string namespace provides two functions that let us verify this; they
are the starts-with? and ends-with? functions. See Listing 5-54 for examples of
both (notice though that they are case sensitive; we can side step this using regular
expressions, but I’ll come back to that shortly).

Listing 5-54. Example of the starts-with? and ends-with? Functions

(clojure.string/starts-with? "I am a string" "g") ;; false
(clojure.string/starts-with? "I am a string" "i") ;; false
(clojure.string/starts-with? "I am a string" "I") ;; true
(clojure.string/starts-with? "I am a string" "I am") ;; true

(clojure.string/ends-with? "I am a string" "!") ;; false
(clojure.string/ends-with? "I am a string" "G") ;; false
(clojure.string/ends-with? "I am a string" "g") ;; true
(clojure.string/ends-with? "I am a string" "string") ;; true

Now, as you would have noticed, the functions demonstrated are case sensitive, and
sometimes that can be an issue. One possible way to side-step that issue is to use a regular
expression to pattern-match against. The discussion of regular expressions is outside the
scope of this book, but I recommend visiting http://www.regular-expressions.info/ if
you’re interested learning more about the syntax and available features.

For now, let’s try one of the examples that failed from Listing 5-54, checking if
the string starts with an I or i, and then verify this using Clojure’s re-find function. In
Listing 5-55, you’ll see that we compile our regex pattern using the syntax #"...", where
everything within the quotes is our pattern.

http://www.regular-expressions.info/

ChaPTER 5 ■ FunCTions

76

Listing 5-55. Example of the re-find function

(re-find #"(?i)^i" "I am a string")

;; "I"

 ■ Note Clojure provides quite a few regex-related functions within its core namespace.
i recommend searching through the documentation to locate them3 (they’re typically
named re-*).

In Listing 5-55 we can see the return value is the match itself. If we had used a regex
pattern that didn’t match anything in the string, then the return value would have been
be nil, meaning you could pass re-find as a value to Clojure’s nil? function and it would
indicate if there was a match or not.

One other item worth noting is the use of (?i) within our regex pattern. Although
the concept it represents is provided by all flavors of regex engines, in this case it’s
defining a “case-insensitive matching” flag, the actual syntax is syntax specific to Clojure.
In other languages or regex engines you’ll typically see delimiters such as / used to wrap
the pattern (e.g., /my-pattern/), whereas with Clojure we use #"my-pattern".

The flags for the regex pattern are then typically placed outside of the delimiter
like so: /my-pattern/i. In Clojure we provide the flags inside the delimiters and at the
beginning of the pattern instead.

 ■ Note For more details on the inline flags and the various types of flags available, please
refer to the Java documentation for its Pattern class4 (specifically “Embedded Flag Expressions”).

Trimming Whitespace
When dealing with user input, you most often will want to trim off any unnecessary
whitespace around the input.

There are three functions we’ll look at to help us. The first is triml, the second is
trimr, and the last one is trim-newline. See Listing 5-56 for examples of their use.

Listing 5-56. Examples of triml, trimr, and trim-newline Functions

(clojure.string/triml "some space at the start")
;; "some space at the start"

(clojure.string/trimr "some space at the end")
;; "some space at the end"

3https://clojuredocs.org/search?q=re-
4http://docs.oracle.com/javase/tutorial/essential/regex/pattern.html

https://clojuredocs.org/search?q=re
http://docs.oracle.com/javase/tutorial/essential/regex/pattern.html

ChaPTER 5 ■ FunCTions

77

(clojure.string/trim-newline "a newline\n\r ")
;; "a newline"

(clojure.string/trim-newline "trim newline\n\rlast one only\n\r")
;; "trim newline\n\rlast one only"

Summary
In this chapter, we started off by learning about the anonymous function shorthand
syntax as well as about how pre and post condition checks allow us to verify that the
input/output of a function is what we expect them to be.

We then began reviewing some functions from the core Clojure namespace,
including functionality such as map construction and pipelining as well as various
predicate functions and nested collection extraction.

Finally, we took a quick glance at a few useful functions from the string namespace,
revolving primarily around checking various whitespace conditions.

In the next chapter, we’ll take a brief tour of Clojure’s destructuring capabilities and
how they allow us to write very succinct code when dealing with input and how to extract
the information we need.

79© Mark McDonnell 2017
M. McDonnell, Quick Clojure, DOI 10.1007/978-1-4842-2952-1_6

CHAPTER 6

Destructuring

In this chapter, we will be covering the concept of destructuring in Clojure.
Specifically, Clojure provides support for what is referred to as abstract structural

bindings . . . hmm? Yeah, let’s break that down a bit.
What this means, for humans, is that Clojure provides us the ability to extract data

from a data structure without having to actually traverse the data structure itself. This
concept is typically referred to as destructuring.

Although this is quite a short chapter, I would strongly recommend that you spend
some time upon completing this section coding in the REPL and experimenting with the
syntax we show you, as this will help to solidify your understanding of the concepts much
more quickly.

To understand how destructuring works, we will begin with a simple example
(Listing 6-1) and continue on through more complex variations that demonstrate the
elegant and concise code that can be achieved by utilizing destructuring.

 ■ Note Destructuring can be applied to let bindings, function parameter lists, and
macros that expand into a let or function. But I will primarily be using the let form, as it’s
the easiest form for demonstrating examples within the REPL.

Listing 6-1. Simple Destructuring Example Using a Vector

(let [[x y] [:a :b]]
 (prn y x))

;; :b :a

Looking at Listing 6-1, we can see that we define our local variables using the let
binding. When we do this, we’ll also notice that we have to wrap our symbols (x and y) in
a data structure that matches the incoming data structure.

If you remember, a let binding typically looks like (let [x 1] (prn x)), where x
is assigned the value 1. Look again at Listing 6-1. The incoming data structure [:a :b] is
a vector, and so the symbols x and y are placed inside of a vector to ensure the structures
match. The values :a and :b are then assigned to x and y, ready for us to use.

ChaPtER 6 ■ DEstRuCtuRIng

80

Listing 6-2. Simple Destructuring Example Using a Map

(let [{a :a b :b} {:a "A" :b "B"}]
 (prn a b))

;; "A" "B"

Looking at Listing 6-2, we can see our example now utilizes a map data structure
instead of a vector, like in Listing 6-1. Because of this, you should notice that the syntax
inside of the let form is now a map to match the incoming data structure.

What’s also different is that now that we’re dealing with a map data structure, we
need to assign specific map keys to our symbols a and b. In this case, we’re extracting the
:a key’s value and assigning it to the symbol a, and similarly we’re extracting the :b key’s
value and assigning it to the symbol b.

One nice feature Clojure provides is the ability to make our code clearer and more
explicit by way of abstraction. Take a look at Listing 6-3, and you’ll see an example of this
in action.

Listing 6-3. Destructuring Example Using :keys Feature

(let [{:keys [a b]} {:a "A" :b "B"}]
 (prn a b))

;; "A" "B"

Looking back at Listing 6-3, we can see the structure is slightly different now. We
have defined a :keys field and assigned it a vector of symbols [a b]. These symbols
represent the keys of the same name from the incoming data structure and will hold their
corresponding values.

Let’s now extend this example further and demonstrate how you can access the
entire data structure, as well as the specific extracted data.

Listing 6-4. Destructuring Example Using :keys and :as Features

(let [{:keys [a c] :as complete} {:a "A" :b "B" :c "C" :d "D"}]
 (prn a c complete))

;; "A" "C" {:c "C", :b "B", :d "D", :a "A"}

OK, so, by looking at Listing 6-4 we can start to see that a more powerful set of
features is being exposed to us. When this code is being compiled, Clojure recognizes
the :as field is denoting that we want to store the entire incoming data structure in the
symbol that follows.

This means the symbol complete is now a reference to the entire incoming data
structure, while the symbols a and c are references only to the extracted keys of the same
name. You’ll notice we didn’t have to extract all the keys, only the ones we were primarily
interested in.

ChaPtER 6 ■ DEstRuCtuRIng

81

Another item worth reviewing when destructuring a data structure is the :or field,
which provides us the facility to implement default values for any keys that are missing
from the incoming data structure. Listing 6-5 demonstrates what this looks like.

Listing 6-5. Destructuring Example Using :or Feature

(def a-map {:a 1 :c 3})

(let [{:keys [a b c]
 :as original-data
 :or {a 11 b 22 c 33}} a-map]
 [a b c original-data])

;; [1 22 3 {:c 3, :a 1}]

You can see in Listing 6-5 that I’ve actually spread out the syntax over a few lines, and
that I’ve also stored the incoming data structure off into a separate variable just for the
sake of readability; otherwise, the example can start to become a little noisy.

What we can see is the similar items we’ve already looked at–the :keys and :as
fields—but now with the addition of :or, which defines a map with default values set for
all the keys we want to bind our symbols to.

For example, we can see that the incoming map data structure has no :b key, and
so our b symbol, which will attempt to reference an otherwise missing key, will now
reference the value provided by the b symbol specified in the :or map.

Additionally, we can use & followed by a symbol, which will indicate that we wish this
symbol to hold a reference to all the remaining values as a list. In Listing 6-6, you can see that
we specify the symbol z after the & character, and so we can see it holds the value (:c :d).

The use of & means we’ve been able to facilitate this let block becoming variadic
(i.e., able to accept lots of additional items).

 ■ Note & only works with the vector data structure.

Listing 6-6. Destructuring Example Using & for Variadic Behavior

(let [[x y & z] [:a :b :c :d]]
 (prn x y z))

;; :a :b (:c :d)

One final item we should investigate is how to handle the extraction of information
from nested data structures. Let’s demonstrate this using both a map and a vector. See
Listing 6-7.

ChaPtER 6 ■ DEstRuCtuRIng

82

Listing 6-7. Nested Destructuring Examples

(let [[[a b][c d]] [[:a :b][:c :d]]]
 (prn a b c d))

;; :a :b :c :d

(let [{{:keys [foo baz]} :stuff} {:stuff {:foo "bar" :baz "qux"}}]
 (prn foo baz))

;; "bar" "qux"

Looking back at Listing 6-7, and starting with the first example, we can see that we’re
still effectively doing the same thing as before. We have an understanding of the nested
nature of the incoming data structure, and so we’re mimicking it when we attempt to
destructure the data from it.

That means if we have a nested vector [[:a :b][:c :d]], then we’ll want to
destructure it into a data structure that is also nested: [[a b][c d]].

It’s worth mentioning as well that the code in Listing 6-7 may appear to be quite
difficult to read, but in practice your code will likely not look like this, as you’ll be dealing
with data that’s coming from other areas of your application. This means you’ll likely
have variable references to the data, rather than inlined data (as we’re using within the
examples here).

For the second example in Listing 6-7, the nested map data structure, we can see
we want to get to the data structure assigned to the :stuff key. So, in order to achieve
that, we reference the :stuff key when destructuring, and from that we then destruct its
values using the familiar :keys field.

 ■ Note If your map data structure keys are symbols or strings rather than keywords, then
you can use :strs and :syms in place of :keys, and this will work as expected.

At this point, all of our examples have been set up using the let binding form, but
as mentioned at the start of this chapter, we can utilize destructuring with function
arguments.

One interesting aspect of destructuring a function parameter list is that you can set
up optional keyword arguments. Take a look at Listing 6-8 to understand how this works.

Listing 6-8. Optional Function Arguments Using Destructuring

(defn foo [a b & {:keys [c d]}]
 (println a b c d))

(foo "A" "B")
;; A B nil nil

ChaPtER 6 ■ DEstRuCtuRIng

83

(foo "A" "B" :c "C")
;; A B C nil

(foo "A" "B" :c "C" :d "D")
;; A B C D

We can see from Listing 6-8 that we’ve again used & to indicate a variadic function
argument list, but now we’re also using the :keys behavior to allow us to handle the
extraction of map keys.

Summary
In this chapter, we’ve learned the important and useful concept of destructuring data
structures. This can help to facilitate very concise and elegant code when dealing with
complex collections.

We’ve seen examples of how to do basic destructuring of maps and vectors, as well as
how to deal with nested equivalents and utilize the :keys, :as, and :or fields for further
extending the available behaviors.

In the next chapter, we’ll look at another useful concept known as pattern matching.
What pattern matching provides is the ability to trigger specific functionality based upon
predefined patterns. These patterns are applied to some form of input, and also
(much like destructuring) provides some very nice and elegant code solutions.

85© Mark McDonnell 2017
M. McDonnell, Quick Clojure, DOI 10.1007/978-1-4842-2952-1_7

CHAPTER 7

Pattern Matching

Pattern matching is the ability to trigger specific functionality based upon predefined
patterns. These predefined patterns are applied to an incoming message (or user input).

There are somewhat related variations of this technique, which are referred to as
runtime polymorphism and dynamic dispatch. In essence, these concepts refer to the
selecting of an implementation based upon the known receiver at runtime. Pattern
matching is similar, but from a practical standpoint is narrower in scope.

Clojure has a few different mechanisms for achieving this form of runtime
dispatching of functionality. The first is to use a Clojure library called core.match,1 and
the other is to use a built-in feature called multimethods.

In the first section of this chapter, we’ll look at core.match, and in the following
section (“Polymorphism”) we’ll look at the multimethods implementation.

core.match
To use core.match, you’ll need to tell Leiningen to load it, as it’s not part of the standard
core library built into Clojure.

The easiest way to do this right now—as we’re still running all our examples within
the REPL—is to stop the REPL you currently have open and to create a project.clj file
(see Listing 7-1).

Listing 7-1. New project.clj File for Adding core.match Dependency

(defproject test "0.1.0-SNAPSHOT"
 :dependencies [[org.clojure/clojure "1.8.0"]
 [org.clojure/core.match "0.3.0-alpha4"]])

Once this file has been created, start up the REPL again using lein repl; you should
find that Leiningen will use the content of project.clj to set up its environment. Once
the REPL has started, you can try executing the code shown in Listing 7-2 to pull in the
match function.

1https://github.com/clojure/core.match

https://github.com/clojure/core.match

Chapter 7 ■ pattern MatChing

86

Listing 7-2. Load the match Function from the core.match Namespace

(require '[clojure.core.match :refer [match]])

 ■ Note Don’t worry about understanding the syntax of either the project file or the
require function call, as i’ll explain this when we start discussing Leiningen in more detail
in a later chapter.

Example: FizzBuzz
OK, so at this point you’ll have a match function available within the REPL, and we can
start trying out some examples. Let’s start with a simple example that comes straight from
the core.match README (see Listing 7-3).

Listing 7-3. Pattern Matching Example from core.match

(doseq [n (range 1 21)]
 (println
 (match [(mod n 3) (mod n 5)]
 [0 0] "FizzBuzz"
 [0 _] "Fizz"
 [_ 0] "Buzz"
 :else n)))

What we can see in Listing 7-3 is the classic programming interview test: FizzBuzz.
The idea is that you print a list of numbers starting from 1 to 20, but for multiples of
three you should print the message “Fizz” instead of the number, and for multiples of
five you should print the message “Buzz” instead of the number. Finally, for multiples of
both three and five you should print the message “FizzBuzz.” The output of the program
should look like Listing 7-4.

Listing 7-4. Output from Earlier Pattern Matching Example

1
2
Fizz
4
Buzz
Fizz
7
8
Fizz
Buzz
11

Chapter 7 ■ pattern MatChing

87

Fizz
13
14
FizzBuzz
16
17
Fizz
19
Buzz

So, let’s take a moment to understand what’s happening in our code example from
Listing 7-3. First, we create a collection of numbers from 1 to 20 using the range function,
and then we print out the result of executing match against each item in the range.

The match syntax allows us to define some pattern types we want to match against; in
this case, it’s the result of (mod n 3) and (mod n 5), where n is the current range element
(e.g., 1, then 2, then 3, and so on). If the current range number is a multiple of three or
five, then mod should return zero.

What follows from there are the different expected pattern results and the
functionality we want to trigger if those expectations match. In the example from
Listing 7-3, we first check that, if the results of both mod functions are zero, then return
"FizzBuzz": [0 0] "FizzBuzz". Otherwise, if that fails, we fall through to the next
conditional pattern check.

The next expectation is checking whether we were able to evenly divide the range
number by three: [0 _] "Fizz". You’ll see we use the underscore character _ to act as
a wildcard for the check for whether the range number was a multiple of five. We do
this because we don’t care what was returned for that check (because if the value was a
multiple of five, then we would have already found a complete match in the first step).

If that expectation didn’t match, then we would fall through to the next expectation:
[_ 0]. This is the reverse of the previous check, where we now use _ when checking to see
if the number was a multiple of three (as, again, we don’t care what the value is). We then
check if the other value was a multiple of five, then the result should come in as zero, and
so a match should be found at that point and the word "Buzz" printed.

You can see at the end of our code we use the :else statement to catch and return
the provided range number for when no match is found. This code provides all the
requirements necessary for a successful FizzBuzz test.

Backreferences
You’ve already seen that we can provide the wildcard symbol _ to indicate that we
don’t care about the value. But we could instead provide a symbol to take the place
of the incoming value. What this allows us to do is reuse the value inside the returned
expression that is executed when a match is made.

Chapter 7 ■ pattern MatChing

88

This will be easier to understand with an example, so take a look at Listing 7-5,
which demonstrates the concept we’re describing. If you’re familiar with how regular
expressions work, you may notice that this behavior is similar to how you would use
backreferences.2

Listing 7-5. Backreferences When Pattern Matching

(let [x 1 y 2 z 3]
 (match [x y z]
 [1 2 b] [:a0 b]
 [a 2 3] [:a1 a]))

;; [:a0 3]

In Listing 7-5, we have x, y, and z holding the values 1, 2, and 3 respectively. We pass
these symbols through to match and define two sets of patterns we hope to match against
([1 2 b] and [a 2 3]).

You’ll notice that the symbols b and a, which we’ve referenced inside of each pattern
section, have not actually been defined anywhere. These symbols are handled internally
by match, which assigns them the value that is incoming from the match argument list.

So, in this case, the symbol b will be assigned z (which we can see is the value 3),
and the symbol a in the next pattern will be assigned x (which we can see is actually the
value 1). We can use any valid symbol, but you would likely want to not use the same
symbols already defined in the arguments.

Matching Literals
In the previous examples, we’ve been matching values based upon symbols. But we can
also match on literal values (see Listing 7-6).

Listing 7-6. Pattern Matching with Literal Values

(match ['foobar]
 ['foobar] :bar
 ['bazqux] :qux)

;; :bar

In Listing 7-6, we’re passing in a literal symbol to match against. In this case, the
symbol doesn’t point to any other value; it effectively evaluates to itself. We then have an
associated pattern that matches directly with it, and so we have a successful match and
return the appropriate value.

Now, if we also need to provide a fallback mechanism (such as when we fail to find a
match), then we can use the :else keyword, as demonstrated in Listing 7-7. We saw this
used earlier in the implementation for the FizzBuzz test, where if no match was found we

2http://www.regular-expressions.info/backref.html

http://www.regular-expressions.info/backref.html

Chapter 7 ■ pattern MatChing

89

would want to return neither "Fizz" nor "Buzz" nor "FizzBuzz", but just the incoming
range number.

Listing 7-7. Provide Fallback Using :else Statement

(let [a (+ 1 1)]
 (match [99]
 [a] :success
 :else :fail))

;; :fail

Matching Data Structures
At this point, we’ve seen matching against both expressions and direct literal values.
But it’s also possible to compare data structures.

Listing 7-8. Pattern Matching with Data Structures

(match [[:a :b :c]]
 [[:a :b _]] :success
 :else :fail)

;; :success

(match [{:a 1 :b 1}]
 [{:a _ :b 2}] :foo
 [{:a 1 :b _}] :bar
 :else :baz)

;; :bar

We can see from Listing 7-8, that we have two examples. In the first example, we’re
passing through a vector data structure, and in the second we’re passing a map. In both
cases, we’re able to find a match easily by utilizing the _ wildcard symbol to catch certain
values we either don’t care about or are unsure of what their values will be.

 ■ Note When using a map data structure, you can’t use a wildcard on the key; it can only
be used on the key’s value.

When using a vector, you might only need a partial match. For example, you might
only want to match against the first couple of items in the collection. If that’s the case, you
can use the & rest parameter (which you’ll recognize from Chapter 6). See Listing 7-9 for
an example.

http://dx.doi.org/10.1007/978-1-4842-2952-1_6

Chapter 7 ■ pattern MatChing

90

Listing 7-9. Partial Pattern Matching with the Rest Symbol &

(match [[:a 1 :b 2 :c 3 :d 4]]
 [[:a 1 :b 2]] "this would need to be complete match"
 [[:a 1 :b _ & rest]] "rest allows for a partial match"
 :else :fail)

;; "rest allows for a partial match"

Safeguarding
Before moving on to looking at polymorphism, I want to demonstrate a few other features
of core.match, such as how, when using a map data structure, you can end up with
a partial match unintentionally, as well as how to use the :or modifier to implement
safeguards for the data being validated.

Listing 7-10. Accidental Partial Pattern Match

(match [{:a 1 :b 2 :c 3 :d 4}]
 [{:a _ :b 2}] "maps default to partial matching"
 :else :fail)

;; "maps default to partial matching"

In Listing 7-10, we can see that unlike with vectors, where you can use the & rest
symbol to implement an explicit partial match, the map data structure triggers a partial
match as its default behavior.

You should be aware of this so that you don’t accidentally match something you
would rather avoid. It would be best in these situations to have a more explicit match
defined in order to prevent accidental matching.

Alternatively, you can use the :only modifier to define which keys you will
accept, and thus prevent an accidental match from occurring. See Listing 7-11, which
demonstrates the implementation.

Listing 7-11. Use :only Modifier to Avoid Accidental Pattern Match

(match [{:a 1 :b 2 :c 3 :d 4}]
 [({:a _ :b 2} :only [:a :b :c])] "Didn't match, :only expects three keys"
 [({:a _ :b 2} :only [:a :b :c :d])] "Match!"
 [{:a _ :b 2}] "this assertion is never executed"
 :else :fail)

;; "Match!"

We can see from Listing 7-11 that we have an incoming data structure consisting of
four keys (:a, :b, :c, and :d), and within our first match we’re using the :only modifier to
state that we’ll accept a match if it only contains the keys we’ve specified. So, no match is
made, and we fall through to the next pattern, where we again have potential for a partial
match, but this time we accept it because of our modifier definition: [:a :b :c :d].

Chapter 7 ■ pattern MatChing

91

Now, in some cases we might want to have a variable number of possible matches
within a single pattern. We can do this using the :or modifier. See Listing 7-12 for an
example.

Listing 7-12. Use :or Modifier to Facilitate Variable Matches per Pattern

(match [[1 2 3]]
 [[1 (:or 3 4) 3]] :foo
 [[1 (:or 2 3) 3]] :bar)

;; :bar

(match [{:a 3}]
 [{:a (:or 1 2)}] :foo
 [{:a (:or 3 4)}] :bar)

;; :bar

In Listing 7-12, we have two data structures: a vector and a map. With the vector
example, we can see we’re stating that we expect the data structure to consist of 1
followed by either 3 or 4, followed by 3. If that doesn’t match, then we try to match a data
structure consisting of 1 followed by either 2 or 3, followed by 3 (this is what actually
matches).

The map data structure example is effectively the same principle, but we use the :or
modifier to identify the key’s value.

Finally, let’s take a look at the :guard modifier. What this enables us to do is to
specify a function that verifies the incoming value is valid (and what is meant by valid
depends on the function used). See Listing 7-13, for an example of how you might use this
modifier.

Listing 7-13. Use :guard Modifier to Facilitate Type/Value Validation

(defn div3? [n]
 "A function that returns true or false
 if the parameter can be evenly divided by three"
 (if (= (mod n 3) 0) true false))

(match [[2 3 4 5]]
 [[_ (a :guard even?) _ _]] (format "We matched first %d" a)
 [[_ (b :guard [odd? div3?]) _ _]] (format "We matched second %d" b))

;; "We matched second 3"

In Listing 7-13, we can see that we have two expected matches. In the first, we state
that we don’t care about any of the incoming values inside the vector data structure,
except for the second item (which is the value 3). But, we do want to ensure that the value
is an odd number and is divisible by three.

Chapter 7 ■ pattern MatChing

92

So, in the first pattern we tell :guard to use the even? function. Well, we know that
the value 3 isn’t an even number, so that match will fail. We move on to the next pattern,
which specifies multiple functions to validate against (and so we place them inside of a
vector). The first function to validate with is the odd? function, and this will pass, as 3 is
an odd number. The second function to validate with is our own user-defined function
div3?, which again passes, as 3 is indeed divisible by itself.

 ■ Note according to the documentation, neither inline functions nor shorthand functions
are currently supported.

Overall, you can see what a power feature pattern matching can be for a variety of
different scenarios. Let’s now take a look at polymorphism and see what that has to offer us.

Polymorphism
In most object-oriented programming languages, polymorphism is the ability to redefine
the behavior of a method based upon the object it is currently residing with. This means
you can have a Human class with the method speak, and when called it will return something
a human would say (e.g., "Hello"); but you can also have a Dog class with the same method
speak, and when called it’ll return something more appropriate, such as "Woof!".

In a functional language, where classes and objects aren’t as prevalent,
polymorphism is hard to achieve because of a lack of types; or, to be more specific,
functional languages tend to avoid creating new types for every programmatic situation
where you would typically create a new type if using an OOP language.

Clojure works around the lack of types by supporting runtime polymorphism (also
referred to as dynamic dispatch), the principal concept being: dispatch a value that
matches a recognized polymorphic function, and that polymorphic function will handle
the behavior for the given value.

There are a few ways Clojure handles this, but the one we’re interested in is via the use
of a feature known as multimethods. Let’s take a look at a simple example of multimethods
(see Listing 7-14) to understand how it achieves polymorphism within Clojure.

Listing 7-14. Example of Multimethod Functionality

(defmulti foo :some-key)

(defmethod foo :a [this] (str "foo :a given " this))
(defmethod foo :b [this] (str "foo :b given " this))
(defmethod foo :c [this] (str "foo :c given " this))

(foo {:some-key :a}) ;; "foo :a given {:some-key :a}"
(foo {:some-key :b}) ;; "foo :b given {:some-key :b}"
(foo {:some-key :c}) ;; "foo :c given {:some-key :c}"

Chapter 7 ■ pattern MatChing

93

We start by calling the macro defmulti, and we pass it a name (in this case, our name
is the symbol foo). We also provide it a dispatch function (in our example, this would be
the argument :some-key).

 ■ Note You may remember that a keyword will act like a function when used on a map
data structure.

At this point, we have defined a multimethod called foo, and we now need to define
its behavior for each of the different types it might be associated with. That’s where the
defmethod macro comes in.

You can see when defining each defmethod that we make sure to give it the same
name as defmulti (foo) along with a value we want to match upon (in this case, we
define :a, :b, and :c for each variation of foo).

In the square brackets for each defmethod definition, you can see we pass in a
symbol (in this case, this) that refers to the type the method is associated with. So, in our
example, the value assigned to the symbol this would be {:some-key :a}, {:some-key :b},
or {:some-key :c}, depending on the variation of foo that finds a match when the call to
foo is made.

 ■ Note i’ve named the type this (in the spirit of OOp, whose self value is usually referred
to as this), but you could have named it anything you like.

The body of each defmethod is what follows the square brackets, and this defines the
behavior we want each version of defmethod to have. You would put whatever you need
there. In our example, we’re simply returning the relevant this value depending on the
matched type.

This means, as you can see from the example in Listing 7-14, we can now call foo
with a map data structure and have the appropriate downstream behavior triggered. For
reference, the syntax structure is as shown in Listing 7-15.

Listing 7-15. Multimethod Syntax Structure

(defmulti
 polymorphic-function-name
 dispatch-function)

(defmethod
 polymorphic-function-name
 pattern-value-to-match
 [symbol-for-type]
 function-behaviour)

(polymorphic-function-name
 some-data)

Chapter 7 ■ pattern MatChing

94

Before moving on, let’s review one other quick example for the purpose of
demonstrating how the :default option works. We’ll keep with the same example as
before, but we’ll extend it slightly (see Listing 7-16).

Listing 7-16. Demonstrating the :default Option

(defmulti foo :some-key)

(defmethod foo :a [this] (prn "A"))

(defmethod foo :default [this]
 (prn (str "Sorry, no idea what to do with '" (:some-key this) "' ?")))

(foo {:some-key :a}) ;; "A"
(foo {:some-key :d}) ;; "Sorry, no idea what to do with ':d' ?"

As you can see, we have defined a new foo type that will be matched by :default if
no other match can be found. We’ve not defined a defmethod that expects the value :d,
and so the :default will be matched as a fallback.

Summary
In this chapter, we’ve learned two sides of the concept of pattern matching, the first
being pattern matching in the strict sense using core.match, and the second being
via polymorphic methods and being able to use dynamic dispatch to trigger specific
behavior. For both styles, we looked at the various syntax differences and how to
safeguard our code against input that might not have any matching items.

In the next chapter, we’ll look at a big topic: concurrency. There, we will cover a lot of
different options for dealing with code in an asynchronous fashion, which can also help
the performance and safety of our applications.

95© Mark McDonnell 2017
M. McDonnell, Quick Clojure, DOI 10.1007/978-1-4842-2952-1_8

CHAPTER 8

Concurrency

One of the main selling points of Clojure as a functional language is its concurrency
mechanisms (of which it has quite a few). In order to understand what concurrency
means, we first need to understand the problem space it’s related to and what it means
for a program to run tasks concurrently.

A computer process (e.g., an instance of a program running on your computer)
has the ability to spawn multiple “threads.” Each thread has the ability to execute it’s
own unique set of tasks, and are separate from tasks executing within other threads. But
threads spawned from the same process share the same memory space.

The fact that multiple threads spawned from the same parent process are able
to access the same memory space can be a problem because if we’re executing code
concurrently (i.e., the CPU is “context switching” between threads of execution), then it
means a change to a piece of data in memory can occur from multiple places.

This is why Clojure provides different mechanisms1 for handling concurrency and to
allow changes to occur in a synchronized and coordinated fashion. But when starting out
with Clojure it can be quite difficult to understand why there are so many ways to handle
immutable data in a concurrent fashion and, more important, when you should use them.

I’ve found the simplest solution is to use a matrix (Table 8-1).

1https://clojure.org/about/concurrent_programming

Table 8-1. Clojure Concurrency Types

Retriable Coordinated Asynchronous Thread Safe

Delay •

Future •

Promise •

Atom • •

Lock •

Agent • •

Transactions • • •

Channel •

https://clojure.org/about/concurrent_programming

Chapter 8 ■ ConCurrenCy

96

 ■ Note the “channel” type refers to (chan), which isn’t part of the standard library and
needs to be loaded from core.async, while “transactions” refers to many things (as we’ll
see later), one of which is the ref type.

In Table 8-1, you’ll see we have four features: retriable, coordinated, asynchronous, and
thread safe. Let’s review what each of these means so we can better understand that matrix.

Retriable
For one of the listed types to be considered “retriable,” a conflict must have occurred
(e.g., multiple changes have been applied), and knowing how to handle the conflict must
require retrying the operation.

One implementation for resolving a conflict is a CAS (compare-and-swap) operation,
which is a low-level operation that’s not directly exposed by the language API. A typical
scenario would be when an attempt to update a value fails to apply because of a cross-
thread conflict (e.g., two threads are updating a single value at the same time).

The “compare” part of a CAS operation begins by checking that nothing has
changed. For example, it checks whether the current value has been tampered with by
another thread. If that is the case, then the “swap” part of the operation is actioned and
the requested update is applied. If, on the other hand, the CAS detects that a change has
already occurred, then it’ll get the updated value and retry the operation.

 ■ Note the StM (which we’ll cover later) is also considered retriable, and although it retries
the operation it does not have anything to do with CaS per se (which is a low-level primitive).

Coordinated
For one of the listed types to be considered “coordinated,” we would need to be utilizing
Clojure’s built-in STM (software transactional memory). The STM verifies the consistency
of data across threads.

The difference between STM and CAS is that the STM will coordinate (i.e., check)
multiple references, whereas CAS only concerns itself with its own reference.

The concept of a “reference” probably doesn’t help distinguish CAS from STM right
now, so, fear not, I’ll discuss the STM in more detail later on when we look at creating and
using the Ref type, and from there how the STM is considered “coordinated” and the CAS
“uncoordinated” should become clearer.

Asynchronous
For one of the listed types to be considered “asynchronous,” it should not block its current
thread from processing. You might find that a particular type might not block because
either it’s genuinely “async” (i.e., it is running in another thread) or it’s not a “blocking”
call, but rather is simply waiting for its value to be resolved at some later time.

Chapter 8 ■ ConCurrenCy

97

Thread Safe
For one of the listed types to be considered “thread safe,” it must prevent conflicts when
multiple threads are trying to mutate a shared value. We’ve already heard how this might
be possible by using either a CAS or STM, but we’ll see actual example code of this later
on in this chapter.

Let’s now take a look at some examples of each type so we can better understand
when and how to use them.

Delay
The delay function is asynchronous in the sense that when you define its behavior, that
behavior is not executed until some point in the future when you “dereference” it. Because
of this, the delay function isn’t a strict concurrent mechanism in the same way as, let’s say,
an atom or ref, and although people generally don’t consider it part of the same family, it
still has the ability to block your program, so I feel it’s relevant for inclusion in this chapter.

To clarify, dereference means to acquire the value (and in the case of delay you’re
forcing some behavior to occur). You’ll see all the concurrency mechanisms—agents,
atoms, refs, etc.—use the function (deref …) to acquire the contained value.

What confuses people is that dereferencing a value can sometimes cause your
current thread to block, but this depends on the mechanism you’re using, as well as on
the context your code is running in. As we’ll see later, an agent is non-blocking even when
it’s dereferenced.

If, on the other hand, the value is already available (i.e., it has been computed),
then calling deref will return the value immediately. But if the value isn’t ready, then
maybe it’s still being computed on another thread, and so your current thread making the
dereference call will be blocked until the value is ready.

 ■ Note a convenient shortcut for (deref x) is @x where x is a delay/promise/future/
atom/agent/var/ref.

The delay function prevents an action from happening straight away. It is
asynchronous until the point of being dereferenced, whereby it will block until the
behavior has completed. Once a delay has been executed, it will cache its return value
(see Listing 8-1 for example).

Listing 8-1. Example of Using delay

(def later (delay (prn "hello")))
;; returns immediately and doesn't block

;; ...some point later in your application...
@later ;; nil (prints "hello")
@later ;; nil (notice no "hello" is printed this time)

Chapter 8 ■ ConCurrenCy

98

In Listing 8-1, we can see that the second dereference call on the later variable
no longer prints the message "hello". This is because the action assigned to delay has
already been computed and cached. In this case, there was no return value and so nil
was returned.

When using a delay, you can also use the force function in place of either deref
or @ (see Listing 8-2 for an example). Clojurists tend to prefer force as it feels more
semantically accurate (as you’re forcing the delay to execute). So, pick whichever
feels more natural to you. I personally use @ so my code is consistent with the other
mechanisms available that also use that symbol.

Listing 8-2. Example of Using force

(def d (delay (prn "hello")))
;; returns immediately and doesn't block

(force d)
;; nil (prints "hello")

 ■ Note you can utilize a timeout mechanism with the deref function, but this only works
when using a future or a promise (I’ll demonstrate how the timeout works shortly). But be
aware the timeout feature doesn’t work with the @ macro.

Promise
A promise is a lot like a delay, in that when it is created it won’t block your current thread
until it has been dereferenced. A promise is different than a delay in that it needs a value
to be “delivered” first before it can be successfully dereferenced.

The benefit of a promise is that the value to be delivered doesn’t have to exist at the
point of creating the promise. The value could be the result of another function.

This is why a promise is useful as a “callback” feature; you can pass a promise around
into other functions with the intention of dereferencing them while having a separate
mechanism for the delivery of its value. See Listing 8-3.

Listing 8-3. Example of a promise

(def foo (promise))

(future
 (prn "child thread doing stuff...")
 (Thread/sleep 10000)
 (deliver foo :bar))

@foo
;; :bar (blocks until promise has a value delivered)

Chapter 8 ■ ConCurrenCy

99

 ■ Note a promise’s value can’t be changed once delivered. If you try to deliver a new
value, it’ll be ignored.

In Listing 8-3, we’ve created a promise and assigned it to the foo variable. We then
use a future (which I’ll discuss in more detail in the next section) to create a new thread
and to deliver the value (in this case :bar) to the promise from that separate thread.

Finally, we dereference the promise within the parent thread and notice that the
call blocks the parent thread until the future’s thread has finished processing and
subsequently delivered the promise’s assigned value.

A promise is just a container that will hold a value. It is up to your application to
decide when the promise actually receives a value, and it does this by passing a value
using the deliver call.

Anywhere your code expects a value, you could use a promise. If you had a function
that accepted a parameter, then you could pass in a promise and resolve it at some future
point in time.

Future
A future allows the execution of code within another thread, which means it is non-
blocking/asynchronous. If you wish to hand off a particular processing task to another
thread, then a future is what you will want to use.

 ■ Note Clojure handles the creation of threads from a thread pool and manages that
internally for you.

At any point after a future is created, you have the ability to dereference it to find out
its value. If the future’s thread has finished executing (i.e., finished computing a value),
then calling deref will result in the computed value being returned.

Otherwise, if at the point of calling deref the future is still running, then the thread
(likely the main/parent thread) that has attempted to dereference the future will be
blocked until the value is made available.

In Listing 8-3 (see earlier) we created a child thread using a future, and within that
child thread we purposely “slept” for ten seconds before returning a value in order to
simulate a blocking I/O interaction.

The outcome of running the code in Listing 8-3 was that when the parent thread
dereferenced the future it was forced to wait ten seconds before a value was returned (as the
future hadn’t finished computing the value when it was dereferenced by the main thread).

As mentioned earlier when discussing the delay function, you would more likely
want to use deref over the shorthand @ macro in scenarios where you may expect a
future to block, the reason being that the long-form deref allows you to specify a timeout
as well as provide a value to fall back to if the timeout expires. See Listing 8-4.

Chapter 8 ■ ConCurrenCy

100

Listing 8-4. Example of Setting Timeout and Fallback Values

(def f (future
 (Thread/sleep 10000)
 (println "done")
 100))

(deref f 500 "fail")
;; "fail" (blocked only until timeout of 500ms was reached)

In Listing 8-4, we can see that when we use defer we pass in a couple of additional
args. The first is 500, which is the number of milliseconds we intend to wait for a response.
The second is "fail", which will be the return value in case the 500ms threshold is exceeded.

It’s important to realize that the task being executed in the separate thread will
continue to be computed. The timeout is for dereferencing the value, not for the thread of
execution. So, in our example, if we continued to wait and then executed (deref f) at a
later time, we would see the value 100 computed successfully.

Atom
An atom is both thread safe and retriable. What this means is that an atom uses a technique
called CAS (compare-and-swap) to ensure thread safety, consequently avoiding the
complication of having to use locking mechanisms (which I’ll discuss in the next section).

With CAS, if two threads are trying to mutate a shared variable then each thread will
be allowed to make its change without being blocked by the other thread. The reason
this works is because just before the CAS operation commits a change to the atom, it
will verify that the value of the atom hasn’t changed. If the value hasn’t, then great—it’ll
commit the new value; but if the value has changed (e.g., maybe another thread got there
first), then it’ll restart the operation using the new atom value.

Updating the atom’s value requires the use of a swap! function, which takes as
arguments the name of the atom you want to mutate and a function that will be applied to
the atom’s value (see Listing 8-5).

Listing 8-5. Example of Using an Atom

(def counter (atom 0))
(swap! counter inc) ;; 1

 ■ Note the ! suffix indicates a potentially unsafe method; unsafe in a functional
language usually means it mutates state.

As you can see in Listing 8-5, we create a new atom, give it the initial value of zero,
and assign it to the counter variable. We then use the swap! function to mutate the atom’s
current value.

Chapter 8 ■ ConCurrenCy

101

So, in our case we used the inc function, but you could have used an anonymous
function (or its shorthand variant) if you needed to mutate the value in a specific way or
accept multiple arguments.

Listing 8-6. Example of Using an Atom with an Anonymous Function

(def counter (atom 0))
(swap! counter inc) ;; 1
(swap! counter #(+ 2 %)) ;; 3
(swap! counter #(+ 2 %1 %2) 3) ;; 6

In Listing 8-6, we increment the atom using the inc function. Next, we update the
atom’s value again using an anonymous function. Finally, we update the atom a third time
using the same technique in order to demonstrate how the swap! function accepts multiple
arguments that are then passed on to the specified function (i.e., our anonymous function).

 ■ Note When using a user-defined function, be sure that it’s idempotent (i.e., free of side
effects), as the action could be retried and hence the side effect would be replayed as well.

In Listing 8-7, we utilize the set-validator! function in order to ensure the atom’s
newly computed value matches our expectations (if it doesn’t, the value is discarded).
In the given example, we wanted to ensure the updated value was always an even number.
It’s similar in spirit to a function’s pre-post condition behavior, which we learned about
back in Chapter 5.

Listing 8-7. Example of Validating an Atom

(def counter (atom 0))
(set-validator! counter #(even? %))

(swap! counter inc)
;; IllegalStateException
;; Invalid reference state clojure.lang.ARef.validate

(swap! counter #(+ 2 %))
;; 2

(swap! counter inc)
;; IllegalStateException
;; Invalid reference state clojure.lang.ARef.validate

(swap! counter #(+ 2 %))
;; 4

(set-validator! counter nil)
(swap! counter inc)
;; 5

http://dx.doi.org/10.1007/978-1-4842-2952-1_5

Chapter 8 ■ ConCurrenCy

102

In Listing 8-7, you’ll see that our validator function ensures the atom can only be set
to an even number. If we try to use inc by itself, then it’ll result in an odd number, and so
an error is triggered and the change is prevented.

By resetting the validator function to nil for the specified atom, we effectively
remove the validator from the atom. Looking back at Listing 8-7, you’ll notice after we
assign nil, setting an odd number (via the inc function) would be accepted successfully.

 ■ Note set-validator! also works for agents/vars/refs.

If you prefer, you can set the validator function inline with the creation of the atom
by setting its :validator attribute (see Listing 8-8 for an example).

Listing 8-8. Example of Inline Validation

(def counter (atom 0 :validator #(even? %)))

Sometimes you might want to reset the value of the atom without worrying about the
current value. To do this, you would need to use the reset! function: (reset! counter 0).

You might also want to change an atom’s value only if its current value matches some
pre-set condition. To do this, you would use the compare-and-set! function.

The compare-and-set! function works by returning true if the current atom value
matches what you’ve specified (and subsequently it will proceed to apply the requested
change); otherwise, if the current value isn’t a match, then it’ll return false and not apply
the change. See Listing 8-9 for an example of how this works.

Listing 8-9. Example of Validating Specific Conditions

(def counter (atom 0))
(swap! counter #(+ 4 %))

@counter ;; 4
(compare-and-set! counter 4 0) ;; true

@counter ;; 0
(compare-and-set! counter 4 1) ;; false

@counter ;; 0

Notice in Listing 8-9 how the counter atom value stays set to zero after the second
compare-and-set! function call. That is because we specified that the value be changed
only if its current value were set to four, which it wasn’t (it was changed before that to zero).

Finally, before moving on from atoms, we should also look at how to watch an atom
for changes and to trigger some behavior once a specific condition is met. This is done
using the add-watch function, which takes as parameters the name of the atom followed
by an arbitrary name for the watcher and a function that will be executed when the atom
is updated. See Listing 8-10.

Chapter 8 ■ ConCurrenCy

103

Listing 8-10. Example of Watching an Atom for Changes

(def state (atom {}))

(defn state-change [key atom old new]
 (prn (format "key: %s, atom: %s, old val: %s, new val %s" key atom old new)))

(add-watch state :foo state-change)
(swap! state assoc :bar "baz")

In Listing 8-10, when we mutate the state map data structure (in this case, we
associate into it via the :bar key, along with the associated value "baz"), we get a printout
on the screen of what was changed. This happens because the change to the atom
triggered the add-watch we created. The output of Listing 8-10 can be seen in Listing 8-11.

Listing 8-11. Output from Previous Program Using add-watch

"key: :foo, atom: clojure.lang.Atom@3e1b3567,
old val: {}, new val: {:bar \"baz\"}"
{:bar "baz"}

 ■ Note to remove the watch, run (remove-watch atom key), replacing atom and key
with appropriate values.

Lock
The use of locks is the classic first step taken to solve concurrency problems within a
multi-threaded world. When you have multiple threads, all trying to access the same
memory space, then conflicts will arise. A lock is a common low-level mechanism for
handling concurrency, but is hard to use correctly. This is why Clojure provides higher-
level abstractions in order to achieve “thread safety.”

The way it works is by applying a lock around the data you want to manipulate,
which prevents other threads from being able to manipulate the data while it is “locked.”
For example, if you have two threads running at the same time (A and B) and both want
to modify the variable foo, then you’ll find you have a non-deterministic event on your
hands (i.e., you don’t know if A or B will get to foo first).

By using a lock in your code, if it turned out thread B got to foo first, then by virtue
of it getting there first it’ll be able to apply a lock around foo, so when thread A tries to
get access to foo it can’t, and it has to wait until thread B is finished. When thread B is
finished, the lock is relinquished so thread A can acquire it and prevent any other thread
from accessing foo while it holds the lock.

Locks are not ideal, because they can be very complicated when trying to figure
out the correct order in which to acquire a lock. The reason this is important is because
locking mechanisms can cause what is commonly referred to as deadlock/livelock. This
is more apparent within systems that utilize multiple locks (rather than simple examples
that only use a single lock).

Chapter 8 ■ ConCurrenCy

104

Deadlock
A deadlock is when two or more threads are trapped because they’re waiting on the other
thread to complete (but the other thread is also waiting for the other locked threads to
complete), meaning no progress is made and the system locks up.

A common example given is of two people bowing to each other. The rules these
two people have to follow are that you must remain bowed until the other person has the
chance to return the bow. But if both participants bow at the same time, then they’ll be
forever waiting for the other person.

Livelock
A livelock is similar in ways to a deadlock, but is slightly different in that two or more threads
can’t progress, not because they’re blocked, but because they’re kept busy by each other.

The example typically given is of two people in a corridor constantly moving to the
same side to avoid each other; they’re not blocked, they’re just kept busy forever trying to
allow the other person to pass.

 ■ Note an atom is different from a lock in that it uses CaS (compare-and-swap) rather
than a lock mechanism; this means that a lock won’t “retry” like an atom does.

Listing 8-12 demonstrates how to control access to a shared variable by way of an
atom. In the example, we want to control how items are added to a vector. We want the
result to be [1 2].

Now, before we look at Listing 8-12 we should clarify that atoms (as we’ve seen in the
previous section) are already thread safe because they use a CAS mechanism to prevent
multi-threaded changes’ causing havoc, so there aren’t many reasons to choose a very
low-level locking mechanism over an abstraction such as CAS.

Listing 8-12. Example of Locking Blocks of Code

(def foo (atom []))

(future
 (locking foo
 (Thread/sleep 1000)
 (swap! foo #(conj % 1))))

(locking foo
 (swap! foo #(conj % 2)))

@foo
;; [1 2]

Chapter 8 ■ ConCurrenCy

105

If we didn’t utilize the locking mechanism around the swap! execution (you’ll
notice we have two locking blocks defined), then what would happen is an inconsistent
execution path.

Imagine the locking blocks were not utilized in Listing 8-12. What would happen
would be that the sleep called inside the future thread would mean that a call to swap!
from outside of the future’s thread would complete first, before the swap!from
within the future’s thread had finished computing, and so the result would have
been [2 1] instead of what we were expecting, which was [1 2].

 ■ Note In Listing 8-12 you’ll notice we have to lock foo twice. Locking foo from
within the child thread isn’t enough to prevent the value from being swapped out. this is
where things get complicated in real-world applications: in our silly example, the code for
accessing foo is right next to each other, but in practice this is rarely the case, and so you
could easily miss places where a lock should be applied, and consequently cause your
application to break in unexpected and hard-to-debug ways.

Agent
An agent is a bit like an asynchronous version of an atom: it is a shared mutable value,
non-blocking (until you attempt to dereference the value), and also uncoordinated.

 ■ Note We’ve not discussed what coordination means yet, but we’ll cover that in the next
section. For now, it’ll suffice to know that an uncoordinated type, such as an agent or atom,
simply means a value that is independent.

In order to modify the value contained within an agent, you have two methods available:

 1. send

 2. send-off

Both functions have the same signature, (a f & args), which means it accepts a
reference to an Atom (a) followed by a function that should mutate its value (f—this
is often referred to as an action), followed by any number of arguments the action takes
(& args). See Listing 8-13.

Listing 8-13. Example of Sending a Value to an Agent

(def a (agent 0))
(send a inc)

@a
;; 1

Chapter 8 ■ ConCurrenCy

106

 ■ Note you can fire multiple actions to an agent, and they’ll be stored up in a queue and
processed sequentially.

Now, there is a slight difference between send and send-off that you’ll want to
be aware of, which is that the former runs in a separate thread picked from a managed
thread pool. The latter runs in a new thread specifically for the agent.

Most of the time you’ll use the send function, but if you have an I/O blocking action
you need to apply, then you’ll want to use send-off instead, as this will allow that thread
to take its time and ultimately not use up shared thread-pool resources.

One important difference between an agent and other types (such as atoms, futures,
and promises) is that retrieving the value (dereferencing) for an agent doesn’t cause the
current thread to block. See Listing 8-14.

Listing 8-14. Dereferencing an Agent Is Non-blocking

(def a (agent 0))

(future
 (Thread/sleep 5000)
 (prn "increment the value")
 (send a inc))

@a ;; 0

;; 5 seconds later...

@a ;; 1

Because agents are completely non-blocking (even when dereferencing), if you need
to ensure a group of actions have completed before continuing on, then you’ll need to
either manage this process yourself OR utilize the await and await-for functions that
provide this behavior for you.

The difference between the two functions is that the latter allows you to specify a
timeout: (await-for timeout agent). Let’s see some examples that demonstrate how to
use these functions.

Without wait/wait-for
In Listing 8-15, we can see that we send an agent two actions. Both actions sleep for
ten seconds before modifying the agent’s value. When we dereference the agent, it’s
non-blocking, and so we see the initial value (zero) is what’s returned. If we dereference
again later, then we’ll see the final value.

Chapter 8 ■ ConCurrenCy

107

Listing 8-15. Example of Standard Non-blocking Agent Dereferencing

(def a (agent 0))

(send a #(do (Thread/sleep 10000) (prn "added 5") (+ % 5)))
(send a #(do (Thread/sleep 10000) (prn "added 2") (+ % 2)))

@a ;; 0

Using wait
In Listing 8-16, we have the same example as in Listing 8-15, but this time we use the
await function instead of a normal deref call. We can see that the returned value is nil,
but we block until the actions are complete. Once it finishes, we can dereference the
agent and get the final value immediately.

Listing 8-16. Example of Waiting for Actions to Complete

(def a (agent 0))

(send a #(do (Thread/sleep 10000) (prn "added 5") (+ % 5)))
(send a #(do (Thread/sleep 10000) (prn "added 2") (+ % 2)))

(await a)
;; nil

Using wait-for
In Listing 8-17, we have the same example as in Listing 8-16, but this time we use the
await-for function instead of the await call. We can see that the returned value is false,
which indicates that the timeout was reached and we didn’t receive a value before the
timeout was exceeded.

If we were to now dereference the agent, we would find the value is still zero. It will
stay zero until the two actions complete. The benefit of using await-for means we’re able
to safely escape the blocking actions (which could be a very long time blocked).

Listing 8-17. Example of Waiting—with Timer—for Actions to Complete

(def a (agent 0))

(send a #(do (Thread/sleep 10000) (prn "added 5") (+ % 5)))
(send a #(do (Thread/sleep 10000) (prn "added 2") (+ % 2)))

(await-for 500 a)
;; false

Chapter 8 ■ ConCurrenCy

108

Agent Errors
If you cause an agent to error, then it’ll do so silently (depending on the error). In the past,
I’ve caused an agent to fail and then later wondered why none of my actions (sent via a
send call) were being actioned. Let’s see an example of causing an agent to fail and how it
reacts in Listing 8-18.

Listing 8-18. Example of Agent Failing

(def a (agent 0))

(send a #(/ % 0))
;; causes agent to go into failure mode (no error indicated)

a
;; #object[clojure.lang.Agent 0xf1c5585 {:status :failed, :val 0}]

 ■ Note the last line of Listing 8-18 references the agent, and so we see the internal
representation displayed. In that representation, you’ll notice the :status :failed.

The problem with this silent change to a failed status is that all future send
commands will also fail until the agent’s status has been changed back to :ready.

If you need to verify what error an agent has received, then you can call the
agent-error function and pass in the agent you wish to review; this will return the last
known error for the specified agent.

At this point, there’s a couple of things we can do: the first is to define an error
handler for your agent so it becomes clear when an issue occurs, and the second is to
restart the agent once your code is aware of an issue. See Listing 8-19.

Listing 8-19. Example of Agent Error Handling

(def a (agent 0))

(defn h [a e]
 (prn "Agent value: " @a)
 (prn "Agent error: " e))

(set-error-handler! a h)

(send a #(/ % 0)) ;; prints the following...

;; "Agent value: " 0
;; "Agent error: " #error{:cause "Divide by zero"...

Chapter 8 ■ ConCurrenCy

109

 ■ Note to remove the error handler, you’ll need to call the set-error-handler! function
again and pass nil as the handler value.

At this point, the agent is in a failure state, and so if you try to send another action to it,
that action will fail to proceed. To resolve this, we need to restart the agent, and we can do that
using (restart-agent a 0), where we provide the restart-agent function the agent (a) that
we would like to modify along with the new value we want the agent to restart with (0).

If you would like to restart the agent with its last known value, then you could swap
the provided value for the dereferenced value for the agent: (restart-agent a @a).

Now, you might want the agent to automatically restart itself. This is possible, but it’s
not as straightforward as you might think (e.g., just calling restart-agent from within the
error handler). Listing 8-20 will demonstrate one possible solution that utilizes a future
to decouple the call to restart-agent from the error handler.

The real cause of the problem is that the agent doesn’t actually get marked as “failed”
until the error handler has finished executing. This is why the use of a future fixes this
issue, as it means the error handler can finish (as the future is executed asynchronously
on a separate child thread) and the restarting of the agent will be successful.

I discovered this by wrapping the call to restart-agent in a try/catch statement, and
this revealed the message “Agent does not need a restart.”

 ■ Note When restarting your agent, any actions that were queued up will continue to be
processed unless you provide a :clear-actions true option when restarting the agent:

(restart-agent a @a :clear-actions true)

Listing 8-20. Attempt to Automatically Restart a Failed Agent

(def a (agent 0))

(defn h [a e]
 (prn "Agent value: " @a)
 (prn "Agent error: " e)
 (future (restart-agent a 0)))

(set-error-handler! a h)

(send a inc)
a ;; 1

(send a #(/ % 0))
;; error handler h will be triggered

(send a inc)
a ;; 1

Chapter 8 ■ ConCurrenCy

110

Transactions
Clojure comes packaged with its own STM (software transactional memory). In essence,
the STM works a lot like a CAS (compare-and-swap) operation, which we saw earlier
when looking at atoms. The difference between them is that rather than concern itself
with a single value, like an atom (which is “uncoordinated”), the STM is able to refer to
multiple values at once (hence, the STM is thought of as being “coordinated”).

There are a couple of moving pieces when using the STM:

•	 dosync

•	 ref

•	 ref-set

•	 alter

•	 ensure

•	 commute

dosync/ref/alter
The first item (dosync) is the transaction container, and everything related to the
execution of the STM should happen within that form. The second item (ref) is the
“Reference” type that will hold the value to be stored/verified/updated.

All other listed items are functions that can only be used from within the transaction.
This means any attempts to use the functions ref-set, alter, ensure, or commute from
outside the dosync form will cause an error to occur. See Listing 8-21.

Listing 8-21. Simple Transaction

(def r (ref 0))

(dosync
 (alter r inc))
;; 1

In Listing 8-21, we create a new ref type r and assign it the initial value of 0. Once
set, we open a transaction using dosync, and within that we pass the ref instance into the
alter function, which applies the provided function (in this case, inc) to the value the
ref currently holds.

Much like the atom type, we need to ensure that any actions that occur within the
dosync block are idempotent, as the STM can end up restarting/replaying the entire
transaction over again if a conflict arises between different references.

ref-set
In Listing 8-22, we’ll use ref-set to change the value of the ref instance. This allows us
to change the value using another direct value, as opposed to using a function to modify
the value.

Chapter 8 ■ ConCurrenCy

111

Listing 8-22. Example of ref-set’s Allowing Literal Value to Be Assigned

(def r (ref 1))

(dosync
 (ref-set r 0))
;; 0

STM Restart Policy
In Listing 8-23, we will see the use of an alter function, again to modify the ref value.
This is what you’ll likely use most of the time when dealing with the STM. The STM will
attempt to identify whether a change has happened to the ref outside of its transaction
and will restart the transaction if a change has indeed occurred.

You’ll see in Listing 8-23 that we attempt to modify the value three times
simultaneously using multiple futures (remember a future will run in a separate thread
to the parent thread).

Have a read over the code first, and then I’ll start to break down the process taken by
the STM in order to resolve the conflict that it is being presented with, thanks to a fairly
simple multi-threaded program.

Listing 8-23. Example of How the STM Restart Policy Works

(def r (ref []))

(defn modify [r, f, a, s]
 (dosync
 (Thread/sleep s)
 (alter r f a)))

(future (modify r conj :a 2000))
(future (modify r conj :b 1000))
(future (modify r conj :c 0))

@r
;; [:c :b :a]

If you tried to dereference r immediately, then you would have noticed it only
contained a single value [:c]; then one second later it would have contained [:c :b],
and finally three seconds later it would hold the finished collection of [:c :b :a].

In Listing 8-23, we can see a user-defined function called modify, which simply starts
up a transaction (using dosync), then sleeps for the specified number of seconds before
using alter to modify the value inside the provided reference variable.

From there, we spin up three threads (using future) and execute the user-defined
function modify within each thread while passing it the relevant reference value,
function, and sleep arguments.

Chapter 8 ■ ConCurrenCy

112

We’ve used very specific sleep values to demonstrate how in the application design
process non-deterministic code doesn’t necessarily complete in the sequential order it’s
defined in.

 ■ Note Just to be clear, I’m only using (Thread/sleep) to mimic non-deterministic
behavior. your application code might use some form of blocking I/o instead that takes
varying times to complete. hence, executing that code multiple times can result in a
different result order.

The process the STM takes in Listing 8-23 is as follows (this is an oversimplification,
but it’ll give you an idea at least of how it works):

•	 :a is passed (the code pauses for two seconds).

•	 :b is passed (the code pauses for one second).

•	 :c is passed.

•	 The alter function causes the STM to check if the ref value
has changed since the transaction started.

•	 The value is still [] at this point (as the other calls are
paused).

•	 The updated value is applied.

•	 :b unpauses and checks the ref value (as it’s about to apply the
conj function).

•	 The value is no longer []; it’s [:c], so the STM restarts the
transaction.

•	 :a is still paused by this point, and so the transaction
completes.

•	 :a unpauses and checks the ref value.

•	 The value is no longer []; it’s [:c :b], so the STM restarts
the transaction.

•	 The transaction completes, as there are no other transactions
to cause a restart.

•	 This means the ref value (eventually) is [:c :b :a].

In a real-world scenario, the time a transaction takes to complete won’t be as clean
as the example just used, but at least it gives you an idea of the process involved when
dealing with the STM.

Chapter 8 ■ ConCurrenCy

113

Nested Transactions
Clojure’s STM implementation also supports nested transactions. In Listing 8-24, you
will see two examples. The first will highlight how a nested transaction executed within a
separate thread will start a new transaction, whereas the second example defines a new
dosync block, but as it’s running on the same thread as the outer dosync block, it doesn’t
create a new transaction and so the behavior/results are different.

Listing 8-24. Examples of Nested Transactions

(def r (ref 0))
(dosync
 (future (dosync (Thread/sleep 50) (println :foo) (alter r inc)))
 (println :bar)
 (alter r inc))

;; :bar
;; 1
;; :foo
;; :foo (indicates transaction restart, as ref was modified from outside)
;; 2

;; No new thread spawned, so ref is altered twice
;; While the inner transaction is not retried
(def r (ref 0))
(dosync
 (dosync (Thread/sleep 50) (println :foo) (alter r inc))
 (println :bar)
 (alter r inc))

;; :foo
;; :bar
;; 2

ensure
To avoid a dead- or livelock situation, whereby competing transactions are reliant on
multiple references, we can utilize the ensure function to protect the reference from
modification by other transactions.

In Listing 8-25, you can see that we have two references, current-account and
savings-account, which when added together will result in a total value of 1100. The
only condition we have is that the total for both accounts cannot be below 1000.

In the given example, we attempt to subtract the value 100 from both accounts
simultaneously. Only one of these requests will succeed, as our constraint of needing
1000 as a minimum value means both requests can’t succeed, because we’d fall below
the constraint threshold. This dilemma is a good example of how a simple concurrency
requirement can cause contention.

Chapter 8 ■ ConCurrenCy

114

Listing 8-25. Example of ensure to Negotiate Multiple Conditions

(def current-account (ref 500))
(def savings-account (ref 600))

(defn withdraw [from available amount]
 (dosync
 (let [total (+ @from (ensure available))]
 (Thread/sleep 1000) ; allows for a more visible context switch
 (if (>= (- total amount) 1000)
 (alter from - amount)
 (println "Sorry, can't withdraw 100 from "
 (:name (meta (var current-account)))
 " due to constraint violation")))))

(println "Before: Current Account balance is" @current-account)
(println "Before: Savings Account balance is" @savings-account)
(println
 "Before: Total balance is"
 (+ @current-account @savings-account))

(future (withdraw current-account savings-account 100))
(future (withdraw savings-account current-account 100))

(Thread/sleep 2000)
;; sleep long enough to allow both transactions to complete

(println "After: Current Account balance is" @current-account)
(println "After: Savings Account balance is" @savings-account)
(println
 "After: Total balance is"
 (+ @current-account @savings-account))

The output you can expect from Listing 8-25 can be seen in Listing 8-26.

Listing 8-26. Output of Listing 8-25 Program

Before: Current Account balance is 500
Before: Savings Account balance is 600
Before: Total balance is 1100

Sorry, can't withdraw 100 from current-account
due to constraint violation

After: Current Account balance is 500
After: Savings Account balance is 500
After: Total balance is 1000

Chapter 8 ■ ConCurrenCy

115

If we look at what’s happening, it might look like there’s a lot to take in, but
remember that this is all code that we’ve already seen, and so by reading through it line
by line you should be able to see that ultimately, we’re using ensure to protect the type
(in this case, available) from modification while within the transaction.

If available is modified outside the transaction, then the STM will restart the
transaction using the latest value, and from there we will know whether the removal of
the specified amount can proceed safely or not.

 ■ Note take some time to really review the preceding piece of code; don’t rush through it.
Make sure you understand what’s happening, and when, in the context of multiple threads.

commute
The commute function provides us a “last one in wins” behavior when mutating a specified
reference, and is most useful when you want the highest possible concurrency and
the order of operations does not matter (transactions are designed to prevent multiple
simultaneous writes to a ref).

In essence, commute will immediately return the result of applying the provided
function on the reference, but at the end of the transaction it will perform the calculation
again synchronously, and it is at that point it actually updates the reference’s value.
The modification itself is commutative, and so no transaction is ever rolled back.

This is why, in Listing 8-27, you could see the same value printed multiple times
when executing that example code, but the actual end result is always consistent.

Listing 8-27. Example of Using commute

(def foo (ref 0))

(defn inc-ref [r]
 (dosync
 (commute r inc)
 (println @r)))

(let [threads (for [x (range 0 20)] (Thread. #(inc-ref foo)))]
 (doall (map #(.start %) threads))
 (doall (map #(.join %) threads))
 (inc-ref foo))

 ■ Note We use Thread. instead of a future so that we can have greater control over
when the thread is actioned, as well as to indicate that we wish to wait for all the threads to
finish before we move on.

Chapter 8 ■ ConCurrenCy

116

If you ran the code from Listing 8-27 but modified it so that you used alter instead
of commute, then you would notice how alter enforces the order of updates, and so the
printed values are always exactly counted 1-21 (whereas commute’s end result is still 21,
but the process to get there is commutative).

Channels
Now that we’ve covered all the standard core library concurrency features, there is one
more item to consider, and that’s the use of channels, which are only available within the
core.async library.

To use core.async, you’ll need to tell Leiningen to load it (similar to what we did in
a previous chapter with core.match). The easiest way to do this right now—as we’re still
running all our examples within the REPL—is to stop the REPL you currently have open
(press <Ctrl-d> to do that) and create the following project.clj file (or add the new
lines if you already have a project.clj file). See Listing 8-28.

Listing 8-28. Update Project with core.async Dependency

(defproject test "0.1.0-SNAPSHOT"
 :dependencies [[org.clojure/clojure "1.8.0"]
 [org.clojure/core.async "0.3.442"]])

Once this file has been created, start up the REPL again using lein repl (Leiningen
will use the content of the project.clj to set up its environment) and execute the line in
Listing 8-29.

Listing 8-29. Load core.async into Your Running REPL Instance

(require '[clojure.core.async :as async :refer :all])

 ■ Note again, don’t worry about understanding the syntax of either the project file or
the require function call, as I’ll explain all this soon enough when we start discussing
Leiningen in more detail in a later chapter.

At this point, you’ll have a group of macros available (such as <!!, >!!, chan, buffer,
and more) at your disposal.

The idea behind core.async was borrowed from golang2 (Google’s own popular
programming language, whose concurrency primitives are highly touted among the
developer community).

Although Go has done the hard work of making the concept of channels popular in
our modern age, the design of channels goes way back to the 1970s, starting with a paper
called “Communicating Sequential Processes” (CSP) written by Tony Hoare.

2http://www.golang.org/

http://www.golang.org/

Chapter 8 ■ ConCurrenCy

117

Effectively, a channel is a pipe: you stick data in one end and you pull it out from the
other end. The reason this works really well, from a concurrency perspective, is because it
protects the data on the way down the pipe from interference from other threads/processes.

Probably the most challenging part of using channels is the idea that they block your
application when you put/pull data. This is because fundamentally they’re connecting
different processes. We’ll almost always use channels with another concept known as a go
block. But I’ll come back to that; first, I think a simple example is in order. See Listing 8-30.

 ■ Note the following code will block your running process indefinitely. you can press
<Ctrl-c> while inside the repL to break the block, but when designing your application,
it would be wise to be mindful that channels can block a process if not set up properly.

Listing 8-30. Simple Example of a Channel That Will Block

(def c (chan))

(>!! c :foo)
;; will block until something

;; takes :foo out the other end of the channel

In Listing 8-30, we can see we’ve created a variable c and assigned it a new chan
(channel). Once we have this channel, we can use >!! for putting a value into the
channel, and we can use <!! for taking a value from the channel.

The problem with the preceding example is that it will block indefinitely once you
call <!!. Ideally, what you’ll want to do (at least for a workable example) is to use another
thread for putting a value onto a channel, because at least the new thread spawned can
be blocked, rather than blocking your main thread and causing the REPL to lock up!

Listing 8-31 demonstrates a slightly more practical example that doesn’t block your
REPL.

Listing 8-31. Simple Example of a Channel That Doesn’t Block

(def c (chan))

(future (>!! c :foo))
;; this thread will be blocked

(<!! c)
;; :foo

In Listing 8-31, we put a message into the channel (in this case, the message is the
keyword :foo), and because that’s done in a child thread (thanks to the use of a future),
we’re able to continue working in the REPL’s parent thread. From here, you can see we’re
now pulling whatever value is available from the channel (using <!!), and because the
value is available we do not block.

Chapter 8 ■ ConCurrenCy

118

So, for example, let’s now say I want to try to pull another value from my channel c.
Well, I’ve already pulled out the value :foo, and I know there is nothing left to take from
the channel, so what will happen? Well, if I were to pull again (e.g., (<!! c)), that would
block my entire thread until I had some code somewhere else in my program that pushed
a value into the channel (causing my pull to unblock).

To avoid that issue (again, for the purposes of experimentation within the REPL), we
can take advantage of futures again. See an example in Listing 8-32.

Listing 8-32. Place Value into Channel via future

(future
 (prn (str "hey! a new value " (<!! c)))) ;; blocks in a child thread

(>!! c "bar")
;; true (+ side effect: "hey! a new value bar" printed)

Go Blocks
The problem with using a future with channels is that a future gets its thread from a
thread pool. So, there are a limited number of threads to begin with.

If you block a thread using a push/pull from a channel, then that’s one less thread
available for multi-threading your workload.

 ■ Note Futures share a thread pool with agents.

Clojure’s core.async library also provides a go function that acts like an asynchronous
wrapper: the body you provide to a go block will be executed asynchronously on a separate
thread, and it’s from a thread pool dedicated to just go blocks.

OK, so you have a separate thread pool with go blocks, but how does it differ from
futures? Well, when using go you are able to “park” a thread rather than block it.

What parking means is that the process is removed from the thread, allowing the
thread to be utilized by another go block process. When the other process has completed,
it is placed back onto the thread to finish up (see Listing 8-33 for an example).

Listing 8-33. Simple Example of a go Block

(go
 (Thread/sleep 1000)
 (dotimes [x 5] (prn x)))

(prn "I wasn't blocked")
;; this is printed immediately (followed by the numbers 0-4)

When using channels from within a go block, you need to be aware that the syntax
for pushing and pulling values is slightly different compared to when using channels
outside of it (this is because of what we mentioned earlier about parking a go block, rather
than blocking the thread it’s running within).

Chapter 8 ■ ConCurrenCy

119

The syntax for a channel push/pull is >!! and <!!, but when working with channels
from within a go block, the syntax changes to <! and >!, which results in parking the
process. This means the threads from the go thread pool can be reused while the existing
go processes are blocked. See Listing 8-34.

Listing 8-34. Using go Blocks with Channels

(def c (chan))

(go
 (dotimes [x 10]
 (Thread/sleep 1000)
 (>! c x))) ;; every second we put a new number into the channel

(go
 (while true
 (prn (<! c)))) ;; forever pull content from the channel and print it

In Listing 8-34, we end up printing the values 0 to 9, one number per second.
Another difference between a future and a go block is that you can access the return
value of a future, whereas with a go block you’ll always be returned a channel type,
which is passed the last executed expression (see Listing 8-35).

Listing 8-35. Go Blocks Return a Channel Type

(def f (future (inc 1)))

@f
;; 2

(def g (go (inc 1)))
;; ManyToManyChannel

(<!! g)
;; 2

Thread Function
Now, you may wonder how many more async mechanisms Clojure can provide? Well,
core.async also gives us the thread function. Effectively, it allows us to execute code in
another thread (nothing new there, much like go and future), and it also returns a channel
with the last expression put into the channel (again like go, so nothing extra there).

The only real difference is that the thread is pulled from an “unbounded” thread pool
(meaning it has a theoretically unlimited number of threads it can create).

The use case for (thread) will be when you have a long-running process that
potentially could block for a long time, causing your thread pool to be blocked if you had
used a go block instead. But remember that creating threads is an expensive operation,
and that is the benefit thread pools provide.

Chapter 8 ■ ConCurrenCy

120

 ■ Note When I first started looking at Clojure, I was overwhelmed by the number of
concurrency mechanisms it provided. It wasn’t until I really understood the problem space that it
became clear all these mechanisms did actually serve a purpose and had a reason for existing.

Distinction
What’s not normally made very clear though, is when you should even use channels. It
would seem the rule of thumb is as follows:

•	 Create a thread (using future) if you need to make a synchronous
process asynchronous.

•	 If the API or code you’re using is already asynchronous, then use
a go block.

I’ve yet to find an example that doesn’t quite fit (in the work I use Clojure for at least),
but your mileage may vary.

Before we move on, there are a few remaining interesting features core.async provides:

•	 alt!/alt!!

•	 buffered channels

•	 sliding/dropping channel buffers

•	 timeouts

Alternate
Let’s start with the alt function (which I believe stands for alternate? As you’ll see, it will
alternate between the provided channels).

The alt! (parking) variation must be called from within a go block, while the alt!!
variation can be called from outside (similar to >! vs >!!). You pass the alt! function a
collection of channels, and whichever channel gets a value first is the one returned
(see Listing 8-36).

Listing 8-36. Example of Using alt!! Function

(def a (chan))
(def b (chan))
(def c (chan))

(defn put-data [c n]
 (go (Thread/sleep (rand 10))
 (>! c (str "Hi " n))))

(put-data a "A")
(put-data b "B")
(put-data c "C")

Chapter 8 ■ ConCurrenCy

121

(let [[result channel] (alts!! [a b c])]
 (prn "Result: " result)
 (prn "Channel: " channel))

In Listing 8-36, we create three separate channels and a function called put-data,
which sleeps for a non-deterministic amount of time before putting a value into the
provided channel.

Then we have a let block that acquires the result (and the channel it was produced
from) and prints it. We use alt!! to ascertain which channel received a value first
(the other results are discarded).

Buffered Channels
The next item we’ll cover are buffered channels (and their variations: sliding and
dropping). Channels by default are unbuffered, so up until this point when we’ve created
a channel, if you were to push a single value in, then the channel would become full and
your thread would be blocked until the value is pulled out of the channel.

To allow for greater concurrency, you can create your channel with a predefined
buffer space. With a buffer of, let’s say, five, you could push five values onto the channel
without blocking. See Listing 8-37.

Listing 8-37. Example of a Buffered Channel

(def c (chan 5))

(def v [:a :b :c :d])

(dotimes [i 4]
 (>!! c (nth v i))
 (prn "Put " (nth v i) " into the channel. Next..."))

In Listing 8-37, if we hadn’t given a buffer size of 5 to the channel when it was
created, then the very first call to >!! would’ve blocked our REPL’s thread indefinitely
until we had either killed the running process or had a place defined in code already that
would’ve extracted the values from the channel for us.

Sliding/Dropping Buffered Channels
We can take the buffered channel concept one step further with Clojure and utilize either
a sliding buffer or a dropping buffer, depending on the needs of your application.

A sliding buffer is one that will drop the first buffered value when another value is
pushed into the channel (structurally, this is a queue, but queues do not automatically
drop elements; this is what Clojure’s abstraction provides for us). A dropping buffer is one
that drops the last buffered value when another value is pushed into the channel.

In both cases, neither channel will result in putting a value blocking your current thread,
because of the way the channel handles buffer overflow. See Listing 8-38 for an example.

Chapter 8 ■ ConCurrenCy

122

Listing 8-38. Example of Sliding and Dropping Buffers

(def s (chan (sliding-buffer 5)))

(def d (chan (dropping-buffer 5)))

(def v [:a :b :c :d :e :f :g :h :i :j])

(dotimes [i 10]
 (>!! s (nth v i))
 (prn "Put " (nth v i) " into the 'sliding buffer' channel"))

(dotimes [i 10]
 (>!! d (nth v i))
 (prn "Put " (nth v i) " into the 'dropping buffer' channel"))

(<!! s) ;; :f
(<!! d) ;; :a

In Listing 8-38, we’re demonstrating both a sliding buffer and a dropping buffer. We
create the different buffer types and pass those as arguments when creating our channels.
Then, we create a loop whereby we stick ten values into the channels, and yet the
channels can only hold a maximum of five values. So, we’ll see how each type of buffer
handles this problem.

With the sliding buffer, if we take a value from the channel we can see we get back
:f first. This shows the first five values (:a, :b, :c, :d, :e) were pushed out when the next
set of values was pushed in. As the name suggests, the channel contents are sliding older
values out first.

With the dropping buffer, if we take a value from the channel we can see we get back
:a first. This shows the last five values (:f, :g, :h, :i, :j) were dropped the moment the
buffer became full. It’s like the entrance to a very busy nightclub: the doorman will turn
you away once the club becomes full.

 ■ Note It seems that within the community most developers create unbounded channels,
so one-in-one-out, and only utilize sliding/dropping buffers when they need to eke out as
much performance and throughput as possible.

Timeout Channels
This is the last feature within the realm of concurrency I want to share with you and is a
common pattern when utilizing channels: the use of a timeout channel to short-circuit
potential zombie (or long-blocking) processes. See Listing 8-39.

Chapter 8 ■ ConCurrenCy

123

Listing 8-39. Example of Timeout Channels

(def c (chan))

(let [[result channel]
 (alts!! [c (timeout 5000)])]
 (if result
 (prn "Result: " result)
 (prn "Timed out: " result))) ;; "Timed out: " nil

In Listing 8-39, we create a channel and then never send anything to it. We then use
alts!! to try to take a value from the channel, but instead of being blocked indefinitely—
because we can pass a collection of channels and the one that gets a value first is the
one returned by alts!!—we are blocked initially for five seconds, and then the process
unlocks and we get the result of nil.

This works because the timeout channel is an active channel for the set period of
time, and then it sends itself a value of nil, which allows the alt!! to jump into action
and subsequently short-circuit itself.

Summary
In this chapter, we’ve learned a lot of different techniques and tools for handling
concurrent/multi-threaded code. We’ve looked at everything: delays, futures, promises,
atoms, locks, agents, refs, and channels. Don’t rush this chapter; go back and try all the
examples and ensure you understand the concepts fully.

In the next chapter, we will look at namespaces and how we can utilize them
for organizing and categorizing our code. Namespaces are a powerful feature that is
prevalent in all Clojure code bases.

125© Mark McDonnell 2017
M. McDonnell, Quick Clojure, DOI 10.1007/978-1-4842-2952-1_9

CHAPTER 9

Namespaces

Namespaces are a feature that allows the categorization of functions, symbols, and
variables into well-defined groups. Later on in this chapter we’ll see that namespaces can
also be translated and mapped to an actual file system directory structure.

Let’s start by using the REPL to demonstrate a simple example of how namespaces
work. When we run lein repl we’re automatically dropped into a new user namespace,
and that namespace is pre-loaded with the Clojure core library. You can tell what
namespace you’re in by looking at the REPL console, which displays the current
namespace just before your cursor position: user=>.

 ■ Note If you need to reference the namespace programmatically, then you can use the
ns variable.

Now, let’s see how we can create a new namespace foo.bar and then define a
variable assigned to the symbol baz inside that new namespace. We’ll then define a
different value for baz back in the user namespace and see what happens when we
reference the variable from the different namespaces.

Listing 9-1. Example of Creating a New Namespace

(ns foo.bar)
(def baz 1)
baz
;; 1

(ns user)
(def baz 2)
baz
;; 2

(ns foo.bar)
baz
;; 1

Chapter 9 ■ NamespaCes

126

In Listing 9-1, you can see we’ve used the ns macro to create the foo.bar namespace.
If the namespace already exists (such as was the case with the user namespace in Listing 9-1),
then calling the ns macro and passing it a symbol that maps to a pre-existing namespace
will instead move you into the specified namespace without creating it first.

So, in the preceding example, we first create the foo.bar namespace and then define
baz to have the value 1. We then move back into the user namespace and define baz, but
this time with a different value—2.

You can see from this example how we can safely define variables and functions with
different behaviors and values depending on the namespace in which they are defined
and contained.

What Is a Namespace?
Clojure’s namespaces are really just a global map of symbols to variables/classes.
Each namespace class can also contain its own mappings (mostly symbols to variables).
The current namespace is stored in a Namespace object and is associated with the
dynamic variable *ns*.

 ■ Note By default, the user namespace, and subsequently any namespace created using
the ns macro, will have all functions from the clojure.core namespace (as well as the
classnames from the java.lang namespaces) mapped and pre-loaded for them.

You can verify this from within the REPL by creating a new namespace using in-ns
(rather than ns). The in-ns function will create a namespace without the clojure.core
namespace pre-loaded. See Listing 9-2 for an example that demonstrates how the new
namespace will be missing the default namespaces.

Listing 9-2. New Namespace with in-ns Will Be Missing clojure.core

(in-ns 'beep)
;; beep namespace doesn't exist
;; so this created it and moved us inside the namespace

(loaded-libs)
;; this function is located in clojure.core
;; the clojure.core namespace hasn't been pre-loaded
;; so this will display an error in the REPL

(clojure.core/refer 'clojure.core)
;; we explictly load the clojure.core namespace

(loaded-libs)
;; we now successfully execute the function

Chapter 9 ■ NamespaCes

127

Loading Namespaced Files
If you’re testing an existing application from the REPL and you’re looking to load a code
file that requires some other dependencies, then you’ll want to use the load function.
The load function attempts to find the given path in your “classpath” and then load that
file. The classpath is what Java uses to identify the location of code libraries, and because
Clojure is built upon Java it means we need to ensure our classpath has the relevant paths
added to it.

The project management tool Leiningen handles the adding of dependencies and
libraries to our classpath via a project.clj file. So as long as you have your dependencies
listed there you should be able to use the load function to pull them into a REPL session.
See Listing 9-3 for an example of the load function.

Listing 9-3. Loading Code from External Files

(load "/path/to/namespace")
(in-ns 'namespace)

Now, the reason you use load before in-ns is because even though you might have
a file that defines the specified namespace, the REPL won’t be able to locate it unless you
add it to the JVM classpath. The load function adds the namespace to the classpath.

 ■ Note make sure the path starts with a forward slash and that it’s relative to Leiningen’s
src directory (see the next note); this is because the Leiningen tool messes with your Os’
JVm classpath for each Leiningen project.

Although we’ve yet to look at the Leiningen project-automation tool, it’s worth
mentioning that part of a Clojure project’s setup requires the use of a project.clj file
that bootstraps the application.

If you want to follow along with what I’m about to explain, it’s probably easier if
you exit the REPL and then run the following command from your terminal: lein new
compojure-app foo. This will generate a new project for you. Move into that new project
directory (cd foo), and you’ll find there is a new project.clj.

Spend some time looking around the organization of folders and files in this new
Leiningen project. Don’t worry for now about what it all means or how it works, as we’ll
be covering that in a later chapter. But namespaces play an important role in setting up a
real-world Clojure application, and so this will give you a basic starting point to help you
understand the following information.

One of the settings within the project.clj bootstrap file is a :handler key, which
informs Leiningen of which Clojure file is the entry point for the application (there is also
a :init function that executes just before the handler).

 ■ Note For most Leiningen project templates, you’ll find your Clojure code located at:
src/<name_of_project>/<file.clj>.

Chapter 9 ■ NamespaCes

128

For example, if your project.clj includes :handler foo.handler/app, you’re
effectively telling Leiningen to locate the entry point at src/foo/handler.clj (and within
that file you would find the app function that bootstraps your application).

When running lein repl from the project directory, you can execute (ns foo.
handler) to jump into the namespace and start executing the functions exposed by that
namespace. See Listing 9-4 for a simple example.

Listing 9-4. Loading Namespace into the REPL

(ns foo.handler)
(init) ;; foo is starting

If you make a change to a file—for example, let’s say you update the handler.clj
file with a new variable: (def x 123)— in order for that change to be reflected within
the current REPL instance that’s already running, you would be required to reload the
namespace file. See Listing 9-5.

Listing 9-5. Reload Namespace into the REPL

(load "/foo/handler")
x ;; 123

If you want to display all the namespaces that have been loaded, then the simplest
option is to use the (loaded-libs) function. If you were to run that command within the
current REPL instance, you would see a big list of namespaces loaded for you (including
any new namespaces that were added after the REPL was started). See Listing 9-6.

Listing 9-6. Loaded Libraries Within Current REPL Instance

#{clj-stacktrace.core clj-stacktrace.repl clj-stacktrace.utils clj-time.
core clj-time.format clojure.core.protocols clojure.core.server clojure.edn
clojure.instant clojure.java.browse clojure.java.io clojure.java.javadoc ...}

Interning
We covered variables way back in Chapter 2, and at that point I stated:

Variables are not available within other namespaces unless they are
“interned” into them. Interning is a fancy way of saying “find variable x
within this current namespace; and if it doesn’t exist then create it”. But
you can also “intern” variables from another namespace using the :refer
feature of the ns macro.

—Me, Chapter 2

http://dx.doi.org/10.1007/978-1-4842-2952-1_2
http://dx.doi.org/10.1007/978-1-4842-2952-1_2

Chapter 9 ■ NamespaCes

129

So, let’s take a look at the different ways we can “intern” data from another
namespace. There are a few different options:

•	 :use

•	 :require

•	 :as

•	 :refer

•	 :all

Now, I should actually clarify that there are really only two ways to intern data, and
that is by using the first two items in the preceding list (:use and :require). The other
items in the list are all subset features related to :require and are referred to in the
official documentation as libspecs.

 ■ Note I’m going to cover :use last because it’s considered unnecessary now that
:require’s functionality has vastly improved since the earlier releases of Clojure. I'm
covering :use just so you know that it existed first, but it’s no longer needed, as :require’s
functionality supersedes it.

I’ll begin by explaining how each of these items works, along with their differences,
but before I do I would like to take a small detour…

Root Bindings
It’s important when talking about variables to understand that they also have something
called a root binding and are known to be “thread-local.” What this means in practical
terms is that when you create a variable and assign it a value—e.g., (def foo "hello")—
its root binding is the value you’ve defined (in this case, the string "hello"). Once you
associate a value with a variable, then that becomes the “root binding” for the variable,
and it means that any threads created from within the current namespace will all have
access to it, as they are essentially created within the same memory space. This is what’s
meant by “thread-local”, other namespaces won’t be able to see that variable or its value.

If you define a variable but don’t assign it a value, then it is considered “unbound”
(see Listing 9-7 for an example).

Listing 9-7. Example of an Unbound Variable

(def foo)

foo
;; #<Unbound Unbound: #'user/foo>

Chapter 9 ■ NamespaCes

130

Dynamic Variables
We covered dynamic variables back in Chapter 2 (i.e., the ^:dynamic attribute and
the binding form), but as we’re now reading a chapter about namespaces, it would
be pertinent for me to mention a point that might not have made sense if referenced
right at the start of the book: the reason the ns macro is able to dynamically change the
namespace in Clojure is because the macro modifies the global *ns* variable, meaning it
is possible for it to be redefined.

 ■ Note the convention for defining dynamic variables is to wrap them in “ear muffs”
(i.e., asterisks). For example, *var_name*.

Detour Over…
OK, back to the discussion of interning and the list of items we had earlier (i.e., :use,
:require, etc.). I’ll be using a new application. Earlier, we actually created a simple web server
application using lein new compojure-app <name>. Now we’ll use lein new app <name>.

 ■ Note the difference is that the latter example is a “standard” application rather than a
web server. We’ll discuss the different types of applications in a future chapter covering the
Leiningen tool in more detail.

Similar to the previous application, if you look at the project.clj file you’ll find
a structure that resembles what we saw before. The difference here is that instead of a
:handler key we’ll find a :main key. But it does the same thing—it tells Leiningen where
the main code file can be located.

In this example, we’ll see the main file is set to foo.core, but I’m also going to create
some new files, foo/bar.clj and foo/baz.clj, which will in turn represent the
namespaces foo.bar and foo.baz. I’ll demonstrate each of these files as we go through
the examples.

 ■ Note the use of core as a file name (and namespace) within project.clj is simply
convention. there’s no reason why you couldn’t rename the core file to something else and
manually update project.clj to reflect the new file/namespace.

The syntax used in the following examples (see Listings 9-8, 9-9, and 9-10) is specific
to Clojure code files. If you wanted to test these features in the REPL, then you could
call them as direct functions. For example, where we have defined something like
(:use name.space) you could change it to (use 'name.space) within the REPL.

http://dx.doi.org/10.1007/978-1-4842-2952-1_2

Chapter 9 ■ NamespaCes

131

 ■ Note When using the functions directly (as opposed to using them from within the ns
macro), you’ll need to quote any symbols/vectors used.

Let’s now imagine that each of our namespaces (foo.core, foo.bar, and foo.baz)
contains the code from Listings 9-8, 9-9, and 9-10 (I would suggest you edit your test foo
app to mimic the following examples if you wish to follow along in your REPL).

foo.core

Listing 9-8. The foo.core Namespace Code

(ns foo.core
 (:use foo.bar)
 (:use foo.baz)
 (:gen-class))

(def x 1)

(defn -main [& args]
 (println "Hello, World!"))

foo.bar

Listing 9-9. The foo.bar Namespace Code

(ns foo.bar)

(def a 1)
(def b 2)

(defn beep [] "bop")
(defn- bing [] "bong")

 ■ Note You might have noticed in foo.bar the function bing defined using defn-. the
extra hyphen at the end is important, as it means that when generating a Java class from
that namespace it’ll treat that function as private and so it won’t be available within the
other namespace.

Chapter 9 ■ NamespaCes

132

foo.baz

Listing 9-10. The foo.baz Namespace Code

(ns foo.baz)

(def c 3)
(def d 4)
(def e 5)

Let’s start up our REPL (lein repl) from within the new foo directory, and we
should notice we’re dropped into the same namespace as specified by the :main attribute
in project.clj (you should see the line in the terminal set to foo.core=>).

From the main namespace foo.core you should be able to enter into the REPL the
symbols a, b, c, d, and e and see the corresponding values assigned to them. Equally, you
should be able to execute the function (beep) and see the appropriate return value.

But, you won’t be able to execute the (bing) function, as it was defined using defn-
and so should be private and only accessible via the foo.bar namespace. Listing 9-11
demonstrates how to access it.

Listing 9-11. Access Private Function by Entering its Namespace

(in-ns 'foo.bar)
(bing) ;; "bong"

Now that we have a better understanding of how namespaces are working with
our foo application, let’s go back and look at the :require, :as, :refer, :all, and :use
features and see how they work.

:require
The inclusion of :require within an ns macro means that it will import any public
variables into the current namespace, and from there the options available (:as and
:refer) help to determine how you access the imported data (as we’ll see in the next
couple of sections). The syntax structure for :require is as shown in Listing 9-12.

Listing 9-12. Syntax Structure for :require Macro

(ns <namespace>
 (:require <namespace>
 [<namespace> :refer [<public_var_1> <public_var_2>]]
 [<namespace> :as <shorter_name>]
 [<namespace> :as <shorter_name> :refer [<public_var>]])
 (:gen-class))

Chapter 9 ■ NamespaCes

133

:as
The :as libspec allows you to rename the namespace itself.

We’ve already seen the shorthand form of :require, but you can write it the long-
form way if you prefer (see Listing 9-13).

Listing 9-13. Long-form Version of :require

(ns foo.core
 (:require [clojure.string :as str])
 (:require [foo.bar :as fbr])
 (:require [foo.baz :as fbz])
 (:gen-class))

However, it’s actually more than likely you’ll want to use the short-form variation
instead (see Listing 9-14). This means you can refer to all the public vars inside the
foo.bar and foo.baz namespaces using a shorter symbol. For example, instead of writing
foo.bar/b (to access the public b variable) you can type fbr/b.

Listing 9-14. Short-form Version of :require

(ns foo.core
 (:require [clojure.string :as str]
 [foo.bar :as fbr]
 [foo.baz :as fbz])
 (:gen-class))

 ■ Note When using the function version of require (i.e., outside of the ns macro), the
quote before the vector means you don’t have to quote each symbol inside the vector.
For example, (require '[name.space :as nmsp]) instead of (require ['name.space
: as 'nmsp]).

:refer
The :refer libspec allows you to import only the public variables you need into the
current scope. All other public variables are still available, but you have to provide a fully
qualified namespace to access them. See Listing 9-15.

Listing 9-15. Example of the :refer Libspec

(ns foo.core
 (:require clojure.string
 [foo.bar :refer [a beep]]
 [foo.baz :as fbz :refer [c]])
 (:gen-class))

Chapter 9 ■ NamespaCes

134

In Listing 9-15, we can see that we’re loading the clojure.string namespace as is;
we’re not shortening it in any way. So, if we wanted to use the upper-case function from
that namespace, then we would execute (clojure.script/upper-case "make me upper
case!"), which would subsequently return "MAKE ME UPPER CASE!".

In the second statement [foo.bar :refer [a beep]], we’re saying “make a and
beep available in the current scope and everything else that’s public from that namespace
we’ll have to access via the full namespace.” So, typing a will return 2; typing (beep) will
return "bop", and to access b we can’t just type that, but instead must type foo.bar/b,
which will return 1.

In the third statement [foo.baz :as fbz :refer [c]], we’re saying the same
sort of thing as before, but now we’re also stating that when we have to refer to a
public variable using the full namespace, we only have to use the shortened fbz as the
namespace rather than the longer foo.baz. So, if you type c you’ll get back 3, and if you
want to access d or e then you’ll need to type fbz/d and fbz/e instead.

 ■ Note With the third statement form, you can still use the long-form namespace. so,
both fbz/c and foo.baz/c work.

:all
The :all libspec works in conjunction with :refer. So, whereas with :refer you would
provide a collection of symbols that represent the public variables you want to import into
the current namespace, you can instead provide :all as an option in place of the collection.

Listing 9-16. Example of :all Libspect

(ns foo.core
 (:require clojure.string
 [foo.bar :refer :all])
 (:gen-class))

In Listing 9-16, we would be able to reference a, b, and beep in the current
namespace without having to provide a fully qualified namespace. For example, we
wouldn’t have to specify foo.bar/a; we could just use a).

 ■ Note You’ll notice in the next section that :all is effectively the default usage of :use,
hence its deprecation.

Chapter 9 ■ NamespaCes

135

:use
The inclusion of :use within the ns macro means that it will import any public variables
into the current namespace and overwrite any existing definitions with the same name
as those being imported. Remember that functions are also assigned to variables
underneath the defn macro, so public functions are also made available/overridden
within the current namespace.

You’ll notice an issue with using :use if you change the variable c in foo.baz to be a
variable that’s already defined in another namespace (like var a from foo.bar).

Try changing (def c 3) to (def a 3) and then running lein repl from the root
of the project. You should see the first few lines of in the REPL output as showing an
exception (see Listing 9-17).

Listing 9-17. Exception Raised When Mixing Variables with :use

a already refers to #'foo.bar/a in namespace foo.core.

The exception occurs because foo.baz is trying to redefine the variable a, which was
defined already by foo.bar. This is the issue with using the standard use without one of
its libspec options, such as :exclude, :only, or :rename.

 ■ Note When calling use from the repL (e.g., (use 'foo.baz)) it’ll redefine any
definitions without warning.

To fix the exception (and subsequently allow all our code to load and function
properly) we need to make a decision about what we want to do with regards to importing
the foo.baz namespace.

We could exclude the a and d variables, or we could use :only to pull in the e
variable by itself (which in this example makes more sense, as it’s less typing); or we could
even rename c and d using :rename. The choice is up to you.

But let’s say we decide to pull in the a variable. This means we’ll need :only
and :rename. We can see an example of this in Listing 9-18 where we pull in the a
variable from foo.baz and rename it to new-a. Using this format, we can pull in all the
dependencies we need without worrying about any conflicts.

Listing 9-18. Use :only to Pull Specific Variables

(ns foo.core
 (:use foo.bar)
 (:use [foo.baz :only [d] :rename {a new-a}])
 (:gen-class))

Chapter 9 ■ NamespaCes

136

Anything Else?
Although I’m not aiming for completeness, it’s probably worth mentioning a couple more
things. The first is that you have another macro you can use in place of the ns macro
(we actually saw it earlier, but I purposely didn’t clarify). It’s called in-ns. The only real
difference between them is that in-ns doesn’t provide access to any libspecs (i.e., :use,
:require, :as, :refer, or :all).

The second thing worth mentioning is the use of the libspecs :verbose, :reload, and
:reload-all. These only apply to the require function and its ns variation (:require ...).
For example, if were to add :verbose, then Clojure would print out any information regarding
calls to the load function. This can help to clarify what the :require calls are doing internally
by displaying the underlying calls being made.

The :reload libspec ensures that even if a library has been loaded (e.g., loaded by
another namespace), it should be loaded again in case of any changes. I’ve not had a
reason to use this behavior myself, with the exception of when I’m playing around in
the REPL and constantly loading dependencies over and over. The :reload-all libspec
works the same way, but it recursively checks all dependencies for all loaded libraries.

One last item would be the import command, which is useful for importing Java
classes and interfaces. Listing 9-19 demonstrates a basic example of its usage.

Listing 9-19. Example of Importing a Java Class

(import java.util.Date)
(def now (Date.))
(str now) ;; "Thu Jun 29 09:24:04 BST 2017"

Summary
In this chapter, we’ve learned about the various namespace symbols and macros, how to
create new namespaces dynamically within the REPL, as well as how to move between
existing namespaces and execute code within those spaces. Probably most important,
we’ve understood how to intern variables across namespaces and how to avoid conflicts
via the various libspec options available to us.

In the next chapter, we’re going to look at how to manipulate the Clojure language
itself by utilizing a feature known as macros. This is a powerful feature and one that we
must take care with, lest we add complexity and confusion to our codebases.

137© Mark McDonnell 2017
M. McDonnell, Quick Clojure, DOI 10.1007/978-1-4842-2952-1_10

CHAPTER 10

Macros

Arguably one of the most interesting features of Clojure is its ability to provide functionality
that allows the user to redefine the language and add their own features that aren’t available
by default. I mean, how many times have you written some code (in whatever language, but
let’s say JavaScript) and thought “I really wish I had feature X from language Y”?

With a language such as JavaScript, I’m willing to bet that happens a lot. I’m sure
there will be some JavaScript developers who would counter with a point about compilers
being available that let you compile valid ES7 code down to ES5 code (for example). But
that still doesn’t account for compiling ES5 code down to ES3, which in some situations
you can’t even do (because of restrictions in the ES3 language specification). Not to
mention there are now two sets of compilation steps to make sure your code actually
works across as wide a range of devices as possible.

 ■ Note Progressive enhancement1 can help the situation, but the work involved with
implementing progressive enhancement is not trivial, and compared with having native
support within the language to facilitate redefining the language, that’s an immensely
powerful concept.

But even if you are a JS developer and are able to take advantage of one of the popular
compilers available, maybe you can’t find a compiler that offers you the features that you
want. In that situation, you might end up stumbling across something like SweetJS,2 which
is a compiler that allows you to define your own features. But this introduces yet another
barrier to getting work done, as you have an external dependency to manage.

The ability to utilize Clojure’s macro feature allows the core Clojure library to stay
compact and focused while allowing developers to add their own features to the language
with the safety of knowing that the macro system is natively part of the language and not
some external tool that could potentially end up unsupported.

1https://en.wikipedia.org/wiki/Progressive_enhancement
2http://sweetjs.org/

http://sweetjs.org/
http://sweetjs.org/

ChaPter 10 ■ MaCros

138

 ■ Note the Clojure authors have demonstrated (a few times in the past) a habit of
assimilating popular abstractions built using the macro system back into the official Clojure
codebase. this means if you create something useful using macros, then your work could
eventually end up being used by all Clojure devs.

Let’s start our understanding of macros by reviewing two specific macros that we’ve
already used in previous chapters and that are part of the core Clojure library: -> and ->>.

Listing 10-1. Examples of the -> and ->> Macros

(-> 6 (/ 2) (+ 10))
;; 13

(->> 6 (/ 2) (+ 10))
;; 31/3

In Listing 10-1, we have two lines of code that are very similar and yet return very
different values. The only difference between the two lines is the extra chevron character >
on the second line. This extra character causes the equation to change, but how?

In Clojure, -> is known as the “thread first” macro, while ->> is known as the “thread
last” macro. For the thread first macro, the first argument (i.e., 6 in our example) is passed
as the first argument to each function call that follows. For the thread last macro, the first
argument (again, 6 in our example) is passed as the last argument to each function call
that follows.

To more clearly visualize how the macro system works, we can utilize a function
called macroexpand to show us the long-form version of the macro (basically, it displays
what we would have written ourselves if the macro system didn’t exist).

Listing 10-2. Expanding a Macro Using macroexpand

(macroexpand '(-> 6 (/ 2) (+ 10)))
;; (+ (/ 6 2) 10)

(macroexpand '(->> 6 (/ 2) (+ 10)))
;; (+ 10 (/ 2 6))

To use the macroexpand function, as seen in Listing 10-2, we needed to provide it
the expression we were running earlier. But how do we prevent those expressions from
actually being executed and the result of the expressions being passed to macroexpand?
Well, the solution is to quote the expression, and we do this by placing a single quote
before the first parenthesis of the expression form.

 ■ Note We could have wrapped the expression in a function call to quote; e.g., (quote
(-> 6 (/ 2) (+ 10))), but ' is more succinct.

ChaPter 10 ■ MaCros

139

So, we can see that by passing in '(-> 6 (/ 2) (+ 10)) we get (+ (/ 6 2) 10)
back. The return value is the macro expanded, and, similarly, in the second line, if we
pass in '(->> 6 (/ 2) (+ 10)) we get back the expanded result of (+ 10 (/ 2 6)).

Notice how with “thread first” (->) the first argument 6 is now the first argument to
the division function / and that the result of calling that function is itself now the first
expression passed to the call to the addition function +.

With “thread last” (->>), we have the first argument 6 passed as the last argument
to the division function, and the result of calling that function is then passed into the +
function as the last argument.

Expanding All the Way Down
The macroexpand function is useful for ensuring all macros within the quoted expression
are expanded, but that doesn’t include nested macros inside a macro. Let me explain by
way of an example (see Listing 10-3).

Listing 10-3. Macroexpand Doesn’t Include Nested Macros

(cond (even? 2) "even" :else "odd") ;; "even"
(cond (even? 1) "even" :else "odd") ;; "odd"

(macroexpand '(cond (even? 2) "even" :else "odd"))
;; (if (even? 2) "even" (clojure.core/cond :else "odd"))

In Listing 10-3, we have a cond macro that, when passed a predicate, will return
either "even" or "odd" depending on the result of the predicate. In this case, if we pass
in the value 2, then the return result is "even", and if we pass in 1, then the value falls
through to the :else case, and so the return value becomes "odd".

As you can see from the result of the macroexpand function, we get back an expanded
version of the cond macro. But we have an issue: the cond macro internally calls itself
again, and so for us to see a truly representative expansion of the cond macro, we should
use the macroexpand-all function instead.

To access the macroexpand-all function, you’ll need to load it into the REPL
from the clojure.walk namespace (as it’s not part of the core namespace). The walk
namespace is part of the standard Clojure language, so you don’t need to update the
project dependencies like you did with core.match and core.async. Instead, you use the
require function either inside the REPL or from the top of your code file.

Listing 10-4. Requiring the clojure.walk Namespace

(require '[clojure.walk :as w])

Once you have loaded the clojure.walk namespace (see Listing 10-4) you should be
able to reference the macroexpand-all function to fully expand the cond macro example
from earlier. See Listing 10-5.

ChaPter 10 ■ MaCros

140

Listing 10-5. Expand cond Example with macroexpand-all

(w/macroexpand-all '(cond (even? 2) "even" :else "odd"))

;; (if (even? 2) "even" (if :else "odd" nil))

Writing Your Own Macros
There are five aspects to creating your own macro, and these depend on how complex the
macro needs to be:

•	 Define the macro (defmacro)

•	 Quoting (')

•	 Syntax quoting (`)

•	 Unquoting (~)

•	 Unquote splicing (~@)

•	 Generating symbols (gensym, #)

Interestingly, items 2-5 are all usable from outside of a macro, and so I’m going to
demonstrate those first. After that, I’m going to dissect a custom macro in order to understand
how it works and what some of the typical challenges are that we can expect to face.

Quoting '
Back in Chapter 2, when we were looking at the list data structure, I noted that some
readers might have been curious as to the point of the single quote in front of the list. As
mentioned then, it is known as quoting the data structure so that the Clojure compiler
doesn’t attempt to evaluate it.

Listing 10-6. Quoting a List Data Structure to Prevent Evaluation

(def l '(1 2 3))

l
;; (1 2 3)

In Listing 10-6, you should notice that the value assigned to the variable l is actually
a list data structure, (1 2 3), and not the result of the Clojure compiler trying to execute
1 as a function and passing 2, 3 as function arguments (which wouldn’t have worked, as
there is no such function in Clojure called 1).

Quoting is a useful feature to have for those times when, from an algorithm
perspective, you really need to utilize a genuine linked list data structure (as opposed to a
vector or set, for example).

http://dx.doi.org/10.1007/978-1-4842-2952-1_2

ChaPter 10 ■ MaCros

141

 ■ Note there are other ways to create a linked list data structure: (list 1 2 3) and
(quote (1 2 3)) are two popular options, although the quote function can be used on any
type of Clojure form.

Syntax Quoting `
Syntax quoting works the same as the standard quoting functionality, the only difference
being it converts each expression into a fully qualified namespace.

Listing 10-7. Syntax Quoting Results in Fully Qualified Namespaces

(def l '(1 2 3))

`(+ l)

;; (clojure.core/+ user/l)

You can see in Listing 10-7 that we’ve first defined the l variable to be assigned a
literal list data structure. From there, we’ve used a backtick (`) in front of our expression
(+ l), and the result is a qualified namespaced version of that expression.

This means the + function becomes clojure.core/+ and the l variable becomes
user/l (in this case, I executed the example code from within the REPL environment).

 ■ Note If you tried to evaluate the resulting expression (clojure.core/+ user /l)
you would find the code doesn’t work. this is because we need to flatten (i.e., splat) the list
elements so they are no longer contained within parentheses but are inlined arguments to
the + function. I’ll demonstrate how to do this shortly using the unquote splicing syntax.

Unquoting ~
When you quote an expression, it means we want the compiler to not evaluate it or any of
its sub-expressions. But every now and then you’ll want the majority of your expression to
be quoted (i.e., not evaluated) and yet maybe some small nested parts to be evaluated still.

Listing 10-8. Evaluate Nested Expressions, but Not Entire Expression

(def l '(1 2 3))

`(+ ~l)

;; (clojure.core/+ (1 2 3))

ChaPter 10 ■ MaCros

142

What we can see in Listing 10-8 is that we’ve quoted the expression using a backtick,
but then we’ve used the tilde character (~) to “unquote” the l variable so that it ends
up being evaluated by the Clojure compiler. This means we now get a namespaced +
function unevaluated, followed by the expression (1 2 3).

 ■ Note the output from Listing 10-8 is non-functional because the expression (1 2 3)
is invalid. there is no function 1 found in the core namespace.

Unquote Splicing ~@
In the previous examples, we’ve demonstrated specific features that have produced
non-functional results. Let’s take a moment now to resolve that issue and to turn the next
example into one that can execute successfully.

Listing 10-9. Splat Evaluated Sequence Using Unquote Splicing

(def l '(1 2 3))

`(+ ~@l)
;; (clojure.core/+ 1 2 3)

(clojure.core/+ 1 2 3)
;; 6

(eval `(+ ~@l))
;; 6

So, in Listing 10-9, we can see that we’re using the backtick quoting syntax to ensure
that our expression isn’t evaluated. But in this example, we want the list data structure
(the one assigned to the l variable) to not be placed next to the + function as a list, but
instead placed there as individual arguments.

To achieve the goal of evaluating the list data structure (so it’s not placed next to
the + as user/l) and then flattening the list data structure, we utilize not the unquote
tilde but the unquote splicing ~@. We can see this returns us (clojure.core/+ 1 2 3),
which you can paste into your REPL and execute to see it produce the correct
result of 6.

If you wanted to programmatically evaluate the result of the form `(+ ~@l) you
would need to wrap it in a call to the eval function (as demonstrated in Listing 10-9).

 ■ Note You can’t use unquote splicing without the quote backtick syntax, as this would make
it very difficult for the Clojure compiler to understand what should or shouldn’t be evaluated.

ChaPter 10 ■ MaCros

143

Generating Symbols gensym/#
When using macros, you may eventually stumble across the problem of variable bindings
(both in the macro and in the containing local scope) conflicting with each other. To work
around this issue, you can generate a unique symbol within the macro by utilizing the
gensym function.

 ■ Note It’s important to realize that gensym will always return a fresh unique value, so
you can also provide a prefix string that helps to identify the symbol while debugging.

Listing 10-10. Using gensym to Create Unique Identifier

(gensym)
;; G__791

(gensym "hello")
;; hello794

`hello#
;; hello__803__auto__

In Listing 10-10, the last example uses the # shorthand syntax for gensym, which
means we’re required to use the quote ` syntax; otherwise, the compiler won’t know what
to do (this is because a # is a valid character for a symbol).

It’s also worth being aware that the # variation ensures the same identifier is used
throughout the quoted expression, whereas each reference to gensym would be a new value.

Macro Dissection
At this point, we have a basic understanding of all the individual parts that can be used to
create a dynamic and robust macro feature. Let’s put this all together by reviewing a more
complicated macro example-code snippet and understanding how it works.

Clojure doesn’t have a classical for loop construct (and by “classical” I’m referring
to a low-level language like C) whereby you specify a starting value, a condition, and an
incrementor and subsequently loop until the specified condition is no longer met.

To remedy this within the Clojure language, let’s implement this missing construct as
a macro. The output from executing the following for-loop macro we’re going to define
should be the numbers zero through nine printed to stdout (one number per line).

 ■ Note I would recommend spending a good amount of time reviewing Listing 10-11 to
be sure you are able to put together all the different syntax we’ve seen so far.

ChaPter 10 ■ MaCros

144

Listing 10-11. A Custom for Loop Construct Built Using Macro Features

(defmacro for-loop [[sym init check change] & steps]
 `(loop [~sym ~init accumulated# nil]
 (if ~check
 (let [new-value# (do ~@steps)]
 (recur ~change new-value#))
 accumulated#)))

(for-loop [i 0, (< i 10), (inc i)]
 (prn i))

OK, so let’s start by looking at how we called the for-loop macro. We can see that
we’re passing in a vector that contains our loop information: [i 0, (< i 10), (inc i)].
This is followed by a “body” expression, (prn i), which we expect to be executed on each
loop iteration.

 ■ Note We could pass in multiple body expressions to be executed using this current
macro implementation if we wanted. But for the sake of simplicity and demonstrating the
basic functionality, we provided only one form to be evaluated per iteration.

Within the macro itself, we destructure the incoming vector (i.e., we extract each
element from the incoming vector data structure) into the following local bindings:

•	 sym: i

•	 init: 0

•	 check: (< i 10)

•	 change: (inc 1)

We also take the remaining arguments, (prn i), which we assume to be the body
to be executed on each iteration, and use & steps to assign them into a steps collection.
This means it is constructed as a list, like so: ((prn i)).

At this point, we start to define the main body of our macro. In summary, we carry
out the following steps:

•	 Create a loop (as a target for a later recur).

•	 Bind the symbol i to the value 0.

•	 Bind the dynamically generated symbol (i.e., accumulated#)
to the value nil.

•	 Use an if statement to check if the local i value is less than 10.

•	 The check condition was passed into the macro at runtime
(i.e., (< i 10)).

•	 The value will be less than 10 initially, as we’ve only just set it
to 0 (see previous step).

ChaPter 10 ■ MaCros

145

•	 If the value is greater than or equal to 10, then the else statement
returns the value assigned to accumulated#.

•	 We’ll see in a moment how accumulated# is updated each
iteration to a new value.

•	 If the value IS less than 10, then we execute the provided body
expression(s).

•	 The return value from the last body expression is assigned to
new-value#.

•	 We then use recur to jump back to the start of the loop and
pass in new values.

•	 The new values passed in for each iteration are the result
from executing the change expression (i.e., (inc i)).

•	 Then accumulated# is passed the current value assigned to
new-value#.

You can see from these steps that the main meat of the solution is the use of loop and
recur to allow recursively executing code, and that for each recursion we pass in updated
values that allow the logic within the loop to decide if it should recurse again or stop.

That’s it, really, for understanding the basics of macros. You should now have enough
information to go away and become dangerous . . . I mean, inspirational!

I also think it’s probably worth my saying (although I’m regretting it already): “With
great power, comes great responsibility”; and what we mean by this (in the context of
writing macros in Clojure) is: There are subtle issues with using macros, especially if
another solution exists without the need for macros. If you need something executed at
compile time rather than runtime, then, fine, a macro will help. But first see if a standard
function exists that would suffice.

 ■ Note You can’t pass a macro around within your code (e.g., as a function argument)
the same way as you can with a standard function. this ultimately means you lose some
composability within your code’s design, which is a fundamental principle of functional
programming.

Summary
In this chapter, we’ve delved a little deeper into the Lisp-style syntax in order to help us
redefine what behaviors are available in Clojure. This concept (and its implementation)
is extremely powerful, and there are many examples of macros in the core library (and in
other standard Clojure namespaces).

I would recommend starting simple when creating macros, as well as spending a fair
amount of time looking at the source code for existing Clojure-implemented macros (but
also including those macros created by the wider Clojure community).

ChaPter 10 ■ MaCros

146

In the next chapter, we’ll be focusing on object-oriented programming features
available within the Clojure language. Remember that Clojure isn’t a 100 percent strict
functional language (like, say, the Haskell3 programming language). Although we won’t
be diving into how to incorporate Java code with Clojure, the OOP features available in
Clojure tie in nicely with the Java environment.

3https://www.haskell.org/

https://www.haskell.org/

147© Mark McDonnell 2017
M. McDonnell, Quick Clojure, DOI 10.1007/978-1-4842-2952-1_11

CHAPTER 11

Object Orientation

One of the confusing aspects of Clojure is that although it aims at being a functional
programming language, it does also provide “object-oriented” features (gasp). This is
similar to other programming languages, such as Scala,1 which also provides both FP and
OOP syntax.

When to use OOP in Clojure is a tricky discussion point and depends on the
requirements of the project you’re working on, and so we won’t make any opinionated
statements on that topic. Although, I will say, for me personally I like the structural aspect
of some of the items we’ll be looking at shortly, and it can also be valuable to use specific
types to help build boundaries between different systems.

Ultimately, the OOP features within Clojure aren’t as prominent as those found in
other languages, and definitely not nearly as much as those found in Scala, which seems
to aim for an even split.

In this chapter, there is a (small) select group of features that I will be covering, and
they are as follows:

•	 defprotocol

•	 deftype

•	 defrecord

•	 reify

Java Interop
When using object-oriented features in Clojure, you’ll eventually discover each has
specific nuances that tie it to the underlying Java language/VM that Clojure uses as its
host environment.

If you plan on working with OOP or interacting with Java libraries, then I recommend
you both read the Clojure notes on the topic of interop with Java2 as well as review the
documentation for the macros/functions described in this chapter, as they go into more
detail on how the different items are handled internally by Clojure (there are quite a few
low-level configuration details that can be of interest to some readers, but are generally
out of the scope of this book).

1https://www.scala-lang.org/
2https://clojure.org/reference/java_interop

https://www.scala-lang.org/
https://clojure.org/reference/java_interop

Chapter 11 ■ ObjeCt OrientatiOn

148

defprotocol
The defprotocol macro is used alongside both of the following OOP types (defrecord
and deftype), and its primary purpose is to create an interface.

If you’re unfamiliar with the concept of an interface, its purpose is to define a
contract that all objects guarantee to provide if they state their support of the specific
interface.

Listing 11-1. Simple Interface Example with defprotocol

(defprotocol Foo
 (bar [this abc])
 (baz [this] [this abc]))

In Listing 11-1, we start by defining a new protocol called Foo (using the defprotocol
macro). Within this block, we define two methods, bar and baz. This means any object
that claims to support this interface must provide implementations for the specified
functions along with their specific signatures.

The bar method accepts two arguments. The first is a parameter called this, and it
should be the object instance we’re calling the bar method upon (hence, we’ve used the
traditional naming convention of this, as seen in many programming languages, such as
Java), while the second argument is a parameter called abc.

We see a similar definition for the baz method. The only difference is that this
method has “multiple arity,” meaning that it can be called with either one or two
arguments and we can define two separate behaviors depending on the number of
arguments provided when calling the method.

 ■ Note definterface is a similar feature to defprotocol. the difference is that the
former generates an actual interface .class that java can utilize in order to pass valid
objects to Clojure functions.

By itself, defprotocol isn’t very useful, so let’s move on to the next section, where we
can see it being put to good use.

deftype
For us to be able to use the protocol (i.e., interface) we’ve defined, we’ll need a concrete
object (class instance) we can assign it to. This is where the macros deftype and
defrecord come into focus.

Both deftype and defrecord will create an object, but which one you use will
depend on subtle implementation details. For example, the deftype macro creates a
bare-bones Java class instance that will allow for further Java inter-op and mutating of the
internal data fields. However, defrecord (see the next section for more details) will act
more like a simple immutable hash map.

Chapter 11 ■ ObjeCt OrientatiOn

149

Listing 11-2. Example of Using deftype

(deftype Qux [data]
 Foo
 (bar [this args]
 (prn (str "hello " (subs (str (class this)) 6)
 " from bar! I've been given: " args)))
 (baz [this]
 (prn (class this) data))
 (baz [this args]
 (prn (str "hello " (subs (str (class this)) 6)
 " from baz! I've been given: " args))))

OK, there’s a lot going on in Listing 11-2, so let’s break this down into chunks. First,
we can see that we’ve defined a new type called Qux and specified that it accepts a single
constructor argument called data.

The purpose of deftype is to ultimately produce a type that acts a lot like a typical
Java class, and so in the following example (Listing 11-3) we’ll see that when we initialize
this type (class) we are able to pass in our own specific data to the constructor (which
subsequently is referenced from inside the baz method).

When we define the behavior (i.e., the methods bar and baz), we can see that
we’ve specified that the first expected argument is to be the object instance itself. This is
because the type uses a form of dynamic dispatch (we learned about this concept back in
Chapter 7), and so it needs to know which type to dispatch the behavior to. We’ll see this
demonstrated in Listing 11-3.

 ■ Note in Clojure, you don’t have to define behavior for every method the protocol
defines. this seems to conflict with how other OO-based languages work (e.g., typically
when using an interface, you’re agreeing to implement its entire contract, and so you should
define behavior for all the specified methods). that’s not the case with Clojure.

Listing 11-3. Calling Our Qux Type (Defined by deftype)

(let [b (Qux. "bing bop")]
 (.baz b)
 (.bar b "x")
 (.baz b "y"))

;; user.Qux "bing bop"
;; "hello user.Qux from bar! I've been given: x"
;; "hello user.Qux from baz! I've been given: y"

In Listing 11-3, we can see that we’ve initialized the type (constructor) using
the syntax (ClassName. args), which in our example was (Qux. "bing bop"). We
then assign the returned object instance to the b let variable, after which we call each
subsequent method (including the different arity variations) using the syntax structure of
(.methodName objectInstance args), one example being (.bar b "x").

http://dx.doi.org/10.1007/978-1-4842-2952-1_7

Chapter 11 ■ ObjeCt OrientatiOn

150

defrecord
A record is a data structure very similar to a map in that it’s an immutable key/value store,
but it’s also similar to a struct (where the object it defines has specific fields for allocating
to, and so methods can be applied to it).

A key difference to deftype is that defrecord is immutable, whereas deftype can
mutate its internal state. But before we discuss how to use defrecord, let’s first consider
some of the reasons why you might want to use it.

 ■ Note if defining methods on a record, then you must also define a protocol (interface).

If you’re using dynamic dispatch (e.g., multimethods), then one issue you might
come across is that you end up defining similar behavior multiple times when really
you’re only changing a small part of the overall functionality. The use of defrecord (along
with defprotocol) instead allows for the grouping of methods and behaviors under a
single umbrella type.

From a performance perspective, multimethods are quite slow in comparison
to using defrecord, which, as stated previously, is nothing more than an immutable
persistent map data structure.

 ■ Note internally, records are represented as java classes.

Listing 11-4. Example of Simple defrecord

(defrecord Foo [bar baz qux])
(def f (Foo. "x" "y" "z"))

f ;; #user.Foo{:bar "x", :baz "y", :qux "z"}

(:bar f)
;; "x"

So, in Listing 11-4 we can see we’ve defined a new record called Foo and expect it to
have the fields bar, baz, and qux. We then define a new instance of Foo and assign it to the
variable f.

What’s interesting about this instantiation is the use of the period character (the dot)
after the record name. This is one of the ways Clojure can “interop” with Java (remember
that “under the covers” the Foo record is actually represented as a Java class).

Once we have our instance created, we’re able to access the field by specifying their
name followed by the object instance the behavior should be dispatched to for handling
(:bar f).

Chapter 11 ■ ObjeCt OrientatiOn

151

 ■ Note as the record is really a java class, we could also access the member field using
dot interop notation: (.bar f).

Now, when we defined the record, there were two functions automatically
generated for us to utilize. The first is ->Record, and the second is map->Record (where
Record is the name of the record). With the former we could create the instance like
so, (->Foo "x" "y" "z"), which isn’t exactly that much different. I personally prefer
the Java interop syntax. But with the latter, you will instantiate the record using a map
data structure instead of standard arguments. This can be useful in situations where
you already have a data structure that you would like to wrap up inside of a record. For
example, (map->Foo {:qux "z" :bar "x" :baz "y"}).

 ■ Note With map->Record, the keys in the map data structure can be in any order, unlike
with Record. or ->Record.

Let’s now consider an example where we also would like our record to home a single
method called message (as well as the previously defined fields bar, baz, and qux).

Listing 11-5. Example of defrecord with Additional Method

(defprotocol IFoo
 (message [obj]))

(defrecord Foo [bar baz qux]
 IFoo
 (message [obj] (str "hello " obj " from " bar ", " baz " and " qux)))

(def f (Foo. "x" "y" "z"))

f
;; #user.Foo{:bar "x", :baz "y", :qux "z"}

(.message f) ;; "hello user.Foo@b679dccc from x, y and z"

In Listing 11-5, we can see that because we want to include a method in our record
(and because records are really just Java classes) we first need to define a protocol
(interface). I’ve used the convention of prefixing an interface name with a capital i (but
you can use whatever convention makes most sense to you). The method we’ve defined
accepts a single parameter, obj.

Next, we define our record the same way as we did previously, but now we have
an extra two lines. The first is the interface we wish to support, and the second is the
concrete implementation of the protocol. You can also see that the method is able to
access the other fields the record has been initialized with.

Lastly, we call our method using dot Java interop dot notation.

Chapter 11 ■ ObjeCt OrientatiOn

152

Reify
The last item we’ll look at is the reify macro, which is able to produce an anonymous
type. This is unlike both deftype and defrecord, which produce a named type. The
purpose of reify is solely to provide a way to define a one-time implementation of a
pre-existing protocol/record, while its body is a lexical closure, meaning it can access the
surrounding local scope.

This is probably best demonstrated by way of an example (see Listing 11-6), which
highlights how the reify type is able to access the local scope around it to provide a
wrapped response.

 ■ Note See clojuredocs.org3 for a more practical example.

Listing 11-6. Example of reify for One-time Anonymous Implementation

(defprotocol IFoo (message [obj]))

(defrecord Foo [bar baz qux] IFoo
 (message [obj] (str "hello " obj " from " bar ", " baz " and " qux)))

(def f (Foo. "x" "y" "z"))

(defn wrapper [instance]
 (reify IFoo
 (message [_] (str "wrapped result: " (message instance)))))

(message (wrapper f))
;; "wrapped result: hello user.Foo@b679dccc from x,y and z"

Summary
This has been a very short chapter that has focused primarily on a small subset of
available object-oriented features within the Clojure language.

We’ve avoided discussing the Java interop features and how to work with Java code
from Clojure, as I feel that this should be a book focused more on Clojure than on Java.
The moment you start introducing interop with Java it means requiring some basic
knowledge of Java (something outside the scope of this book).

3https://clojuredocs.org/clojure.core/reify#example-542692cdc026201cdc326d5d

https://clojuredocs.org/clojure.core/reify#example-542692cdc026201cdc326d5d

Chapter 11 ■ ObjeCt OrientatiOn

153

What we’ve learned is that we can define structure code very well through the use of
protocols (defprotocol allows us to define clear interface boundaries), as well as define
both mutable and immutable classes using deftype and defrecord. We also saw how we
could implement a scoped wrapper for one-off protocol/record implementations.

In the next chapter, we will take a closer look at the Leiningen build tool. So far, we’ve
been using Leiningen as a REPL and simple project tool (for defining some additional
dependencies). We’ll take a look at the different types of templates and application
structures available within Leiningen and at how to produce a quick static web page.

155© Mark McDonnell 2017
M. McDonnell, Quick Clojure, DOI 10.1007/978-1-4842-2952-1_12

CHAPTER 12

Leiningen

In this chapter, I want to talk about the Clojure project-automation tool called Leiningen.1
Up until this point, we’ve been exclusively playing around within the REPL environment
(thanks to Leiningen’s lein repl feature), but we’ve reached the point now where we should
be fairly confident writing Clojure code, and so we need to consider how typical Clojure
projects are created, structured, and deployed, and this is where Leiningen really shines.

To demonstrate how Leiningen constructs a project, we’ll look at building a simple
“Hello World” web application. What this application will do is serve requests for a page
that results in an HTML file being returned that displays the message “Hello World.” As
you can tell, this isn’t anything fancy, but it will highlight how easy it is to create a simple
static web page just by executing a few quick shell commands.

I’ll then proceed to explain how it all works, as well as the various templates available
within Leiningen and where to go from that point onward as far as further reading and
items of interest.

 ■ Note This won’t be an in-depth discussion on the ins and outs of building complex web
applications because, quite frankly, entire books have been written on the subject, and the
requirements for every reader will be different.

Ten-second Example
There’s no better way to get started than with a super quick, ten-second setup that’ll
demonstrate the elegance of a few simple commands’ resulting in a lot of work and
structural setup being automated away from our concern. There are only four commands
we need to run, which are as follows:

•	 lein new compojure-app foo

•	 cd foo

•	 lein ring server-headless

•	 curl localhost:3000 -i (or open your browser at
http://localhost:3000/)

1http://leiningen.org/

http://leiningen.org/

ChapTer 12 ■ Leiningen

156

 ■ Note in Chapter 1, we covered the installation of Leiningen, so please refer back to it
if you need to. i’m using macOS, and the following commands shouldn’t require any special
dependencies to be installed (other than Leiningen itself).

The result of executing these commands can be seen in Listing 12-1. The preceding
list of commands could actually end up being one command shorter if we wanted by
changing the command lein ring server-headless into just lein ring server, which
would still start the web server as it did before, but now would automatically open a web
browser for us and point it to the correct local URL.

If you use the “headless” server version (as just listed), you’ll need to open a separate
shell in order to execute the curl command, as your current shell will be locked up while
the server process is running.

Listing 12-1. Output from Starting Compojure Web Server

$ lein new compojure-app foo
Generating a lovely new Compojure project named foo...
$ cd foo
$ lein ring server-headless
foo is starting
2017-06-24 18:21:02.012:INFO:oejs.Server:jetty-7.6.13.v20130916
2017-06-24 18:21:02.072:INFO:oejs.AbstractConnector:Started
SelectChannelConnector@0.0.0.0:3000
Started server on port 3000

 ■ Note The syntax structure for the command used in Listing 12-1 is lein new
<template> <project-name>. in this simple example, we’re using a template called
compojure-app. There are many templates available, but this is a popular option for reasons
we’ll soon discover.

The HTML generated when visiting the Compojure web server (this was the curl
command in our previous example) that’s started when calling lein ring is shown in
Listing 12-2. Ultimately, we see a simple HTML page styled with a static CSS file called
screen.css and displaying a central message of "Hello World".

Listing 12-2. HTML Generated

HTTP/1.1 200 OK
Date: Sat, 24 Jun 2017 17:41:31 GMT
Content-Type: text/html;charset=UTF-8
Content-Length: 170
Server: Jetty(7.6.13.v20130916)

http://dx.doi.org/10.1007/978-1-4842-2952-1_1

ChapTer 12 ■ Leiningen

157

<!DOCTYPE html>
<html><head><title>Welcome to foobar</title><link href="/css/screen.css"
rel="stylesheet" type="text/css"></head><body><h1>Hello World!</h1></body>
</html>

Help!
Before we take a look at the example Compojure web application in more detail, it’s worth
mentioning that the Leiningen tool has a very good tutorial and help system built in. For
an introductory tutorial (which is definitely worth your time), execute the command
shown in Listing 12-3.

Listing 12-3. Leiningen’s Built-in Help Tutorial

lein tutorial | less

 ■ Note i pipe the tutorial output into the less shell executable because the output from lein
tutorial is long and this will save you from having to scroll all the way back up to the beginning.

Any time you’re unsure of what a command does, refer to the help command: lein
help <command>. So, if (for example) you wanted to know more about the creation of
a new Leiningen project, you could run the command lein help new and the output
would show you things like what templates are available for you to use, as well as how
specific templates are created/resolved.

Compojure
Compojure2 is a routing library built on top of Ring.3 If you’ve not heard of Ring, then I’ll
quote directly from the Ring GitHub page in order to explain it:

Ring is a Clojure web application library inspired by Python’s WSGI and
Ruby’s Rack.

—Ring. GitHub

Now, this doesn’t necessarily help you if you’re equally unfamiliar with WSGI
or Rack. In essence, what these two applications share is a standardized interface. So
even though they’re separate applications (built for two uniquely different languages),
it means if you’re familiar with one of them, then the other will be recognizable (and
understandable) to you as well. Ring supports a similar interface to WSGI and Rack, and
this gives developers reassurance that working with Ring should feel natural to them.

2https://github.com/weavejester/compojure/
3https://github.com/ring-clojure/ring

https://github.com/weavejester/compojure/
https://github.com/ring-clojure/ring

ChapTer 12 ■ Leiningen

158

To understand this interface a little better, let’s take a look at what a typical
“Hello World” HTTP request/response looks like from the point of view of Ruby’s Rack
(see Listing 12-4).

Listing 12-4. Example of Ruby’s Rack Interface

[200, { 'Content-Type' => 'text/html' }, ['Hello World!']]

What we can see in Listing 12-4 is the relevant Ruby code required to send back a
HTTP response. Now, the code syntax isn’t something you have to worry too much about,
although you will find that the data structures are very familiar, so it should be readable to
you at this point.

What we have defined is an array (i.e., vector), and within it are a few basic things
required for us to fulfill the interface necessary to send back an HTTP response:

•	 Status Code: 200

•	 HTTP Headers: { 'Content-Type' => 'text/html' }

•	 Response Body: 'Hello World!'

If you look at Listing 12-5, you’ll see what this constructed HTTP response would look
like from the perspective of a Clojure program. It’s almost identical, and so you’ll start to
see how having a standardized interface can be helpful and useful across languages.

Listing 12-5. Example of HTTP Response in Clojure

{:status 200
 :headers {"Content-Type" "text/html"}
 :body "Hello World"}

There are more settings we could add to this data structure, but a status code, a set
of HTTP headers (for example, you would very likely want to configure things like cache
control headers), and a response “body” are all you really need.

 ■ Note Further reading about ring4 and Compojure5 can be found on their respective
github Wiki pages.

Compojure Tree Structure
Let’s take a quick moment to explore the tree structure of our Compojure web server
(see Listing 12-6) that was created using the command lein new compojure-app foo.

4https://github.com/ring-clojure/ring/wiki
5https://github.com/weavejester/compojure/wiki

https://github.com/ring-clojure/ring/wiki
https://github.com/weavejester/compojure/wiki

ChapTer 12 ■ Leiningen

159

The structure for a Compojure application isn’t too dissimilar to other applications
(as we’ll see when we view some of the other templates available in Leiningen), but we
can see with the Compojure template that we have a src directory that contains all our
source code for the web server application.

Alongside the src directory is a test directory that has a set of boilerplate tests
included so we can see what a typical test case should look like, as well as a resources
directory containing static assets such as JavaScript and CSS style sheets and images.

Listing 12-6. Compojure Tree Structure

├── README.md
├── project.clj
├── resources
│ └── public
│ ├── css
│ │ └── screen.css
│ ├── img
│ └── js
├── src
│ └── foo
│ ├── handler.clj
│ ├── models
│ ├── repl.clj
│ ├── routes
│ │ └── home.clj
│ └── views
│ └── layout.clj
└── test
 └── foo
 └── test
 └── handler.clj

In Listing 12-7, we can see how the main home.clj file works. It includes
many concepts we’ve learned in previous chapters, such as namespaces, requiring
dependencies and determining how they’re referenced, and defining functions
responsible for defining the different “routes” our application should handle as well as
the “handlers” themselves.

Let’s get a quick run-down of home.clj to be sure we understand its setup and
what routes our application is automatically configured with (as part of the boilerplate
construction).

Listing 12-7. Contents of the Compojure home.clj File

(ns foo.routes.home
 (:require [compojure.core :refer :all]
 [foo.views.layout :as layout]))

(defn home []
 (layout/common [:h1 "Hello World!"]))

ChapTer 12 ■ Leiningen

160

(defroutes home-routes
 (GET "/" [] (home)))

To start with, we have a namespace defined, and you can see we’re pulling in the
Compojure core functions, which include the defroutes macro. We also pull in the layout
views file from our own tree structure, and that uses the hiccup library for handling
constructing an HTML response (see layout.clj in Listing 12-8).

The defroutes macro gives us the ability to define a specific route that our
application should handle. By default, our application handles all possible routes by
specifying we want our application to handle any GET requests, and that if the incoming
path matches "/" (which effectively all requests will do, as they all begin with /) then pass
that request information to the home function to deal with.

If we wanted to handle the path /foo/bar, then we would define a GET request for
"/foo/bar" and then specify which function should handle that route.

The home function calls the layout/common function (that was made available via our
views layout.clj file), and we pass that function our response body content, which in
this case is an H1 header with the value "Hello World!".

Listing 12-8. Contents of the Compojure layout.clj File

(ns foo.views.layout
 (:require [hiccup.page :refer [html5 include-css]]))

(defn common [& body]
 (html5
 [:head
 [:title "Welcome to foo"]
 (include-css "/css/screen.css")]
 [:body body]))

We can see from Listing 12-8 what the default HTML is that’s used by Compojure.
It’s a simple HTML page consisting of a <head> and <title> and a <body> (whose
contents are provided by the caller of the common function). We can also see it includes a
screen.css file, which is what gives our page its default styling.

Tests
Compojure also constructs some basic tests for us in the test/foo/test/handler.clj
file (see Listing 12-9). This file utilizes the built-in Clojure testing library clojure.test6
in order to define some simple tests that verify the web server is running as expected.

6https://clojure.github.io/clojure/clojure.test-api.html

https://clojure.github.io/clojure/clojure.test-api.html

ChapTer 12 ■ Leiningen

161

 ■ Note These tests are integration tests rather than unit tests. in short, a unit test is
for verifying the behavior of an individual function (or unit of code), whereas an integration
test verifies the system as a whole is working as expected. For more information on the
difference, i refer you to a short but good explanation by nathan hughes.7

Listing 12-9. Contents of Compojure’s test/handler.clj File

(ns foo.test.handler
 (:use clojure.test
 ring.mock.request
 foo.handler))

(deftest test-app
 (testing "main route"
 (let [response (app (request :get "/"))]
 (is (= (:status response) 200))
 (is (.contains (:body response) "Hello World"))))

 (testing "not-found route"
 (let [response (app (request :get "/invalid"))]
 (is (= (:status response) 404)))))

In Listing 12-9, we can see that we’re pulling in the clojure.test dependency along
with a dependency specified by Ring itself, which is its mock request library.8 We also pull
in the Compojure handler file, as that gives us access to the app function within that file.

From the code, we can see that we’re now able to provide a fake (i.e., mocked)
request object into the app function, and subsequently we can inspect the response and
identify if the relevant details came back as we had expected them to.

As far as Listing 12-9 is concerned, we can see that we’re expecting that a request to
"/" will result in the response contents "Hello World", and that the response status code
will be a 200 code (which indicates a successful request).

The second test validates that the web server returns the status code 404 when a
request is received by the web server for a path that it isn’t configured to handle (so, in
this case, a request to the nonsensical path "/invalid" was made).

In order to run these tests, we need to utilize a sub-command of Leiningen: lein
test. This command will locate all the tests within the test directory and execute them
one by one. We can also execute only specific test suites by specifying the relevant
namespace. For example, lein test :only foo.test.handler/test-app.

7https://stackoverflow.com/a/5357837/4288305
8https://github.com/ring-clojure/ring-mock

https://stackoverflow.com/a/5357837/4288305
https://github.com/ring-clojure/ring-mock

ChapTer 12 ■ Leiningen

162

 ■ Note test-app is the containing suite of tests defined in tests/handler.clj, and within
that we have a set of testing “contexts” that allow us to display specific output messages.

If all is well, you’ll see the output shown in Listing 12-10; otherwise, if there’s an error
(let’s say we changed the expected status code output for a successful request to be 202
instead of 200) you’ll see what’s shown in Listing 12-11.

Listing 12-10. Successful Test Output

lein test foo.test.handler

Ran 1 tests containing 3 assertions.
0 failures, 0 errors.

Listing 12-11. Failed Test Output

lein test foo.test.handler

lein test :only foo.test.handler/test-app

FAIL in (test-app) (handler.clj:9)
main route
expected: (= (:status response) 202)
 actual: (not (= 200 202))

Ran 1 tests containing 3 assertions.
1 failures, 0 errors.
Tests failed.

That covers things as far as the basic setup and usage of a Compojure web
application are concerned. There’s obviously lots more to what Compojure can do and
how it can be configured, but, as mentioned earlier, there are entire books based on the
topic of Clojure web development, so let’s instead now turn our attention to the set of
templates that are included as part of Leiningen, as this will show us what other types of
applications we can build.

Templates
One thing you will notice as we review the various templates that are built-in with
Leiningen (there are many other templates that can be found on the Internet for all types
of requirements) is that the tree structure isn’t vastly different between each template,
and this is both a good thing (as it provides a consistent base to work from) and a bad
thing (as it makes it hard to distinguish the differences and use cases).

ChapTer 12 ■ Leiningen

163

So, to recap what we know so far: Leiningen uses the concept of templates to dynamically
construct a new project. There are a few built-in templates, and there are numerous external
templates (such as the Compojure template I used in the ten-second example). There are
(at the time of writing) four separate built-in templates available, as follows:

•	 template: a meta-template for ‘lein new’ templates

•	 default: a general project template for libraries

•	 app: an application project template

•	 plugin: a Leiningen plugin project template

template
So, the first template in the list is actually a template used to define new templates. I’m not
going to cover how to create your own templates, as it’s outside the scope of this book, and
to be honest I’ve also never had a need to use them myself, as nearly every possible use
case I’ve had has already been covered by the open source community. See Listing 12-12.

Listing 12-12. Tree Structure for the Leiningen “template” Template

├── CHANGELOG.md
├── LICENSE
├── README.md
├── project.clj
├── resources
│ └── leiningen
│ └── new
│ └── foo
│ └── foo.clj
└── src
 └── leiningen
 └── new
 └── foo.clj

That being said, you might have some organizational structures and dependencies
that you have to use for all your work-related projects, and so maybe creating a template
for simplifying and quickening that tedious process over and over would be beneficial.

 ■ Note an example of an organization’s using its own templates is the ClojureWerks
lein-template repository.9

9https://github.com/clojurewerkz/lein-template

https://github.com/clojurewerkz/lein-template

ChapTer 12 ■ Leiningen

164

In Listing 12-12, we can see what the directory structure for a template application
looks like. This is just so we have a frame of reference compared to the other templates
(see Listing 12-12). Here’s a quick reminder of the command required to create this
project: lein new template <name>.

 ■ Note Leiningen provides a great/short official document that explains the relevant
steps for creating your own template.10

In essence, in order to use a new template project, you would need to deploy your
template to Clojars11 (which is Clojure’s open/public repository of community-driven
libraries). If you named the repo something like <name>/lein-template (where <name>
is whatever you want your template to be referred to as), then a Clojure developer could
execute lein new <name> <project_name>, and this would cause Leiningen to search
Clojars for a template project under the title <name>/lein-template.

default
The second template (as the description stated earlier) is used for general-purpose
libraries rather than for an actual application. Let’s take a look at its directory structure
(see Listing 12-13).

Listing 12-13. Tree Structure for the Leiningen “default” Template

├── LICENSE
├── README.md
├── doc
│ └── intro.md
├── project.clj
├── resources
├── src
│ └── <name_of_app>
│ └── core.clj
└── test
 └── <name_of_app>
 └── core_test.clj

There are two ways you can generate a default project. You can be either explicit
or implicit. If we’re being explicit, then we’re specifying the template name: lein new
default <name>. You can also be implicit by leaving off the “default” part.

10https://github.com/technomancy/leiningen/blob/master/doc/TEMPLATES.md
11https://clojars.org/

https://github.com/technomancy/leiningen/blob/master/doc/TEMPLATES.md
https://clojars.org/

ChapTer 12 ■ Leiningen

165

 ■ Note as long as there isn’t a template called <name>, then Leiningen will presume that
what you specify is the project name for the default template.

What we can see in Listing 12-13 is that it’s very lean. If we look at project.clj we can
see there are no dependencies other than Clojure itself, and that the core.clj is equally
light in that it has a single function inside it. The function defined in core.clj is named
after the project, and it simply prints "Hello World" to the stdout (i.e., the terminal screen).

Interestingly, you’ll see that project.clj doesn’t define a entrypoint (like we saw
with the Compojure template’s project.clj). This helps to enforce the concept that this
code base doesn’t need one, as it is expected to be loaded within another code base as a
dependency library, and so it will be required via the ns macro.

app
The third template type is “app,” and although its directory structure (see Listing 12-14) is the
same as the library template, its purpose is simply to execute some general-purpose code.

What do we mean by general purpose? Well, you could create a command-line
application, or maybe you decide to download the relevant dependencies for building a
web application (and that will become your project focus). This is fundamentally different
from the library template whose purpose is for the code to be loaded within another
project/application as a dependency/library.

Listing 12-14. Tree Structure for the Leiningen “app” Template

├── CHANGELOG.md
├── LICENSE
├── README.md
├── doc
│ ├── intro.md
├── project.clj
├── resources
├── src
│ ├── foo
│ ├── core.clj
├── test
 ├── foo
 ├── core_test.clj

With this difference in mind, if you were to now look at the contents of the core.clj
file within the src directory, you would see that its contents are slightly different than the
library template’s core.clj in that they define a main function (prefixed with a hyphen:
defn –main). Also, at the top of that file you’ll see that the namespace macro has included
an extra configuration setting of (:gen-class). Lastly, the project.clj file itself has a
:main attribute that points to our core.clj file to indicate this is the file that should be
executed when the lein run command is executed.

ChapTer 12 ■ Leiningen

166

Let’s now briefly review these three differences (:main, -main, and gen-class) to be
sure we understand their purposes. The :main attribute’s purpose is to notify Leiningen
of the entrypoint to your application, but you’ll likely have noticed there was an extra
attribute defined: ^:skip-aot. What this does is skip Clojure’s “Ahead-of-Time” (AOT)
compilation step,12 which can be useful for speeding up your application’s startup by
compiling the code into JVM bytecode.

Considering AOT compilation can help performance, why might we want to skip it?
Well, in some cases your code might rely on input that you’ll only know at runtime, and
so if your code references an environment variable (for example) that is not available
at the point in time of compilation (let’s say it’s only available on the server where the
application is deployed), then this would mean the compilation would change the code
to use the value nil for that environment variable wherever it’s referenced in the code.

 ■ Note There are ways to solve these types of issues, but they’re outside the scope/
focus of this book.

The references to (gen-class) and the function -main are used together as they’re
intrinsically coupled. The gen-class tells Clojure’s compiler to create a new Java class for
your namespace, while -main defines the behavior of that Java class.

Finally, this all ties back in with the use of the :main attribute in the project.clj,
as it indicates there is a Java class that should be used as the entrypoint for the
application. I suggest reading the reference material13 to learn more about these features.

plugin
The fourth template type is “plugin,” and this is useful for developing plugin14 code for
your Clojure applications. An example of what a plugin can do is lein-eastwood,15 which
is a Clojure code linting tool.

In order to use a plugin (such as lein-eastwood) you’ll be required to update your
project.clj file to reference the plugin (for example, adding :plugins [[jonase/
eastwood "0.2.4"]]). Once you do that you’ll find the plugin is now made available as
a subcommand of Leiningen and can execute code in the context of your project. In the
case of lein-eastwood, it is able to review (i.e. lint) your code for common mistakes.

Listing 12-15 shows a typical directory structure for a Leiningen plugin. To help
give you an idea of what other type of behaviors plugins can offer, I recommend you sift
through the official list16 of Leiningen plugins (of which there are many!).

12https://clojure.org/reference/compilation
13https://clojure.org/reference/compilation
14https://github.com/technomancy/leiningen/blob/master/doc/PLUGINS.md
15https://github.com/jonase/eastwood
16https://github.com/technomancy/leiningen/wiki/Plugins

https://clojure.org/reference/compilation
https://clojure.org/reference/compilation
https://clojure.org/reference/compilation
https://github.com/jonase/eastwood
https://github.com/technomancy/leiningen/wiki/Plugins

ChapTer 12 ■ Leiningen

167

Listing 12-15. Tree Structure for the Leiningen “plugin” Template

├── LICENSE
├── README.md
├── project.clj
├── src
 ├── leiningen
 ├── <name_of_plugin>.clj

 ■ Note Leiningen provides a good document on how to create your own plugins17 that is
highly recommended.

Project File
One consistent item found across all these different projects/template types is the project
file itself: project.clj. The main purpose of this file is to bootstrap your application.
It does this by defining your project’s dependencies and pulling them down for you when
you first run your project’s application code.

The project.clj also allows you to associate metadata, such as a project description
and URL, as well as define any plugins you wish to use (and many more things).

For a complete list of configuration settings available, I would suggest reading
through the Leiningen template example file,18 which explains every single setting
available in great detail (and there are lots of them).

Let’s take a look at the project.clj file for a generic Compojure “Hello World”
application (like the one we created earlier) and see if we can get a better understanding
of the different aspects of the configuration we’ve been given.

Listing 12-16. Compojure project.clj File

(defproject compojure-foo "0.1.0-SNAPSHOT"
 :description "FIXME: write description"
 :url "http://example.com/FIXME"
 :dependencies [[org.clojure/clojure "1.8.0"]
 [compojure "1.5.2"]
 [hiccup "1.0.5"]
 [ring-server "0.4.0"]]
 :plugins [[lein-ring "0.8.12"]]
 :ring {:handler compojure-foo.handler/app
 :init compojure-foo.handler/init
 :destroy compojure-foo.handler/destroy}
 :profiles

17https://github.com/technomancy/leiningen/blob/master/doc/PLUGINS.md
18https://github.com/technomancy/leiningen/blob/master/sample.project.clj

https://github.com/technomancy/leiningen/blob/master/doc/PLUGINS.md
https://github.com/technomancy/leiningen/blob/master/sample.project.clj

ChapTer 12 ■ Leiningen

168

 {:uberjar {:aot :all}
 :production
 {:ring
 {:open-browser? false, :stacktraces? false, :auto-reload? false}}
 :dev
 {:dependencies [[ring-mock "0.1.5"] [ring/ring-devel "1.5.1"]]}})

In Listing 12-16, we can see we have some Clojure code that uses the defproject
macro to construct the project’s bootstrap. It’s already set up with the name we provided
when running lein new..., and it has defaulted the version of the application to
0.1.0-SNAPSHOT. We can change this to any value we want when we come to release our
application (e.g., you might want to change it to 1.0.0 or 0.0.1).

 ■ Note Typically, the version format used here would suggest semantic versioning19:
<Major>.<Minor>.<Patch> while the use of SNAPSHOT is a Java version-naming
convention.

From there we have a standard :description field and an associated :url field so
users know where the source code (or promotional branding) for the project can be located.

We also have a :dependencies field (arguably one of the most important items
in this file). For the Compojure application, we find the Compojure app template has
automatically pre-filled in some useful dependencies for us:

•	 org.clojure/clojure "1.8.0" — the Clojure language

•	 compojure "1.5.2"— HTTP request routing library20

•	 hiccup "1.0.5" — a library for rendering HTML21

•	 ring-server "0.4.0" — web server for Ring interface22

 ■ Note When you run Leiningen it will automatically pull down all your dependencies, but
you can also do this manually at any point using the sub-command lein deps.

Moving on, we have the :plugins setting, which has pulled in the plugin lein-ring23
and which is responsible for automating some common Ring-based tasks. This plugin
adds an additional setting to the project.clj file and once specified we’re required to
include the following attribute: :ring {…configuration…}.

19http://semver.org/
20https://github.com/weavejester/compojure
21https://github.com/weavejester/hiccup
22https://github.com/weavejester/ring-server
23https://github.com/weavejester/lein-ring

http://semver.org/
https://github.com/weavejester/compojure
https://github.com/weavejester/hiccup
https://github.com/weavejester/ring-server
https://github.com/weavejester/lein-ring

ChapTer 12 ■ Leiningen

169

As we can see from the project.clj file itself, when the Compojure template is used
it pre-fills the :ring attribute configuration automatically for us so that it knows where
the main handler function can be located, as well as identifies functions for set-up and
tear-down behaviors (which are no-op functions by default, meaning they are defined
functions, but don’t have any behaviors defined).

Following on from there, we see the :profiles setting. This allows us to define
certain behavior dependent on the environment. So we can see there is a :productions
attribute that defines how the application should behave in a production setting (e.g., we
set :auto-reload? false as that type of behavior is only useful when developing your
application code locally, and we also set :stacktraces? false as we want to hide that
type of information from our users). Similarly, we have a :dev attribute where we specify
dependencies that are only useful when developing locally.

If you would like to learn more about these configuration options, then I’d advise you to
review the lein-ring plugin’s GitHub page,24 which will be up-to-date with the latest details.

 ■ Note You can test your profiles locally by running your application using the with-
profile option (e.g., lein with-profile production run some_app).

compojure vs. compojure-app
We created a “Hello World” example using lein new compojure-app <name_of_app>,
and this provided us with lots of stuff for free, such as the handling of static assets and the
serving up of some basic CSS to go along with our HTTP response.

But we could have also used lein new compojure <name_of_app> (notice
compojure-app is now just compojure), which would still provide us a simple web service
like it did before, but now it is stripped back even further! This means no fancy HTML
wrapped around our “Hello World” message, just plain text sent back to the browser.

I recommend exploring the other differences between the two template types, but
which template you choose ultimately depends on how comfortable you are setting
up a lot of the tedious aspects of handling rich HTML responses. For most people,
compojure-app is the simplest route to get up and running quickly and efficiently.

Real-World Library Example
Sometimes it’s best to consider what a real project looks like. For example, building a
Clojure web application is one thing (most devs can muddle along with that—maybe
with some Google assistance thrown in), but I found from my own personal experience
that building a library that is consumed by another application can be quite a confusing
process. So, I wanted to show you a small Clojure library I wrote to help me use a tool
called Spurious25 (this is an example from a few years ago, but the principle still stands).

24https://github.com/weavejester/lein-ring#web-server-options
25https://github.com/spurious-io/spurious

https://github.com/weavejester/lein-ring#web-server-options
https://github.com/spurious-io/spurious

ChapTer 12 ■ Leiningen

170

We’ll start by understanding what Spurious is, and then we’ll take a look through the
library project I created, as well as look briefly over an example application that consumed
the library. But first, let’s refer to the Spurious README to see how it describes itself:

Spurious is a toolset allowing development against a subset of AWS26
resources, locally. The services are run as Docker containers, and
Spurious manages their lifecycle and linking so all you have to worry
about is using the services. To use Spurious, you’ll need to change the
endpoint and port for each AWS service to those provided by Spurious.

—Spurious. GitHub

In a nutshell, Spurious attempts to save you money while developing applications
that use AWS services (by running those services locally). This is awesome for me because
I use AWS a lot, and it allows me to experiment without having to pay for the pleasure of
playing around with some code that might never become anything.

 ■ Note To make things more complicated (for myself) i needed my library code to work
when loaded both within a standard Clojure application as well as when the application
was run from within a Docker container (which didn’t necessarily result in more code, but
added more complexity to the overall process and understanding of how to write and test
my library).

You can find my library code online, hosted with GitHub,27 as well as the example
application that consumes the library.28 I won’t be covering the ins and outs of either, but
I link to them, as they’ll make for a useful reference point.

Consumer
Let’s start with the example application and how it consumes my library. If you look at the
project.clj you’ll see that I’ve simply defined my library as being a dependency. Take a
look at Listing 12-17 for a stripped-back example.

Listing 12-17. Example of Consumer project.clj

(defproject spurious-clojure-example "0.1.0"
 :dependencies [[spurious-aws-sdk-helper "0.2.0"]])

So, nothing special here; we have a dependency and we’re indicating the specific
version we wish our application to use.

26http://aws.amazon.com/
27https://github.com/integralist/spurious-clojure-aws-sdk-helper
28https://github.com/integralist/spurious-clojure-example

http://aws.amazon.com/
https://github.com/integralist/spurious-clojure-aws-sdk-helper
https://github.com/integralist/spurious-clojure-example

ChapTer 12 ■ Leiningen

171

Local Testing
In case you’re unfamiliar with the process of releasing a library, I’ll quickly detour into
what I needed to do in order to be able to test and load my own library as a dependency.

First, I needed to deploy my library to Clojure’s online repository of available
libraries (called Clojars29). This requires you to follow the instructions provided by
Leiningen,30 but in essence the steps involved are to register for an account and then
execute the sub-command lein deploy clojars.

But how do you go about testing your library code before releasing it (how do you
know it’ll work)? You don’t want to push up version 1.0.0 and then go to use it and
find there was a bug you didn’t expect. You want to test the library locally using a local
application so you can be 100 percent sure it works (this was especially important to me,
as my library needed to work within a Docker container, and I just wasn’t confident that
I could verify that without manual steps).

The solution to that problem was simply to install the library to my local cache
directory. To understand what this means, you need to realize that Leiningen creates a
local cache of your dependencies. It does this so it doesn’t have to keep downloading the
same dependency over and over for every project you create.

This means we can take advantage of the local cache to trick Leiningen into thinking
it has already downloaded the dependency from online (i.e., downloaded it from Clojars),
even if the dependency doesn’t yet exist online. To do that you simply run (from inside
your library project directory) lein install, and this will install your library into your
local ~/.m2 cache directory.

Loading the Dependency
Take a look at Listing 12-18 to see what the consumer’s home.clj file looks like. Here,
you’ll see how we’re pulling the library for consumption.

Listing 12-18. Load the External Dependency (Shortened for Brevity)

(ns spurious-clojure-example.routes.home
 (:require [compojure.core :refer :all]
 [spurious-aws-sdk-helper.core :as core]
 [spurious-aws-sdk-helper.utils :refer [endpoint cred]]))

You can see I’m pulling in the core namespace and renaming it so it makes it easier
for me to reference the public functions contained within that loaded namespace
(e.g., core/configure). You can also see I refer in two functions from my utils
namespace: endpoint and cred.

Without getting bogged down in a line-by-line explanation, that’s generally all
there is to loading the library within the consumer. This tallies up with everything we’ve
learned so far about namespaces and Leiningen projects.

29https://clojars.org/
30https://github.com/technomancy/leiningen/blob/stable/doc/TUTORIAL.md

https://clojars.org/
https://github.com/technomancy/leiningen/blob/stable/doc/TUTORIAL.md

ChapTer 12 ■ Leiningen

172

Reviewing the Library
When looking at our helper library, we can see that I’ve used an extremely simple and flat
folder structure (Listing 12-19). It shows that your hierarchy doesn’t have to be deep and
nested if you don’t need it to be.

Listing 12-19. Clojure Library Simple Tree Structure

.
├── src
 ├── spurious_aws_sdk_helper
 ├── core.clj
 ├── dynamodb.clj
 ├── s3.clj
 ├── sqs.clj
 ├── utils.clj
├── project.clj

I have a single src folder, and inside that I have a single folder called spurious_aws_
sdk_helper, which contains all the Clojure files required by my library. The core.clj is
responsible for loading the remaining files: dynamodb.clj, s3.clj, and sqs.clj.

The utils.clj file contains (as you would expect) lots of utility functions. Only two
functions in this file are public and exposed as such so that our consuming application
can call them to get the service set up and running; the rest of the functions are all private
and used internally by the library itself.

 ■ Note remember, you can tell when a function is defined as private by the use of the
hyphen defn- (public functions use the standard defn macro that you’re already familiar with).

One item of interest is how the configure function with the core namespace is using
a multi-arity function in order to execute different behaviors depending on whether an
opts map was provided or not.

Listing 12-20. Example of a Simple Multi-arity Function

(defn configure
 ([type]
 (s3/setup type)
 (ddb/setup type))
 ([type opts]
 (if-let [name (:s3 opts)] (s3/setup type name))
 (if-let [name (:sqs opts)] (sqs/setup type name))
 (if-let [schema (:ddb opts)]
 (ddb/setup type (yaml/parse-string schema)))))

ChapTer 12 ■ Leiningen

173

As you can see from Listing 12-20, if no opts is provided then we just call the setup
method for both S3 and DynamoDB; otherwise, if an opts argument is provided then
we use if-let to extract the relevant key (e.g., :s3, :sqs, or :ddb) from the opts hash
provided, and then associate it with the name symbol. We again will call the setup method
for each service, and this time we pass in name.

 ■ Note We’ve not seen if-let before, but it’s an immensely useful macro that lets us
execute a block of code only if the let binding is able to destruct the data into the specified
symbol successfully (you also have similar options, such as when-let and letfn, which are
worth exploring further).

Preparing for Deploy
At this point, let’s assume you have a project you want to deploy (if it’s a library, then
as I mentioned earlier you’ll need to deploy the library to Clojars, where it can then be
consumed by other applications).

Otherwise, if this is a standard application and not a library, then Leiningen also
provides a single command to help us package our application in such a way that it can
be easily deployed to a production server and run with relatively little fuss: lein uberjar.

The uberjar command, when configured properly from within your project.clj
(I’ll cover that in a moment), will generate a single jar file that contains your project
code as well as all its dependencies. If you’ve not dealt with the .jar format before,
Listing 12-21 will show you how you can execute a jar from the command line.

Listing 12-21. Example of How to Execute a Jar via the Terminal

java -jar my_jar_file.jar <your> <args> <here>

If you use the lein-tar plugin,31 then you’ll have at your disposal the lein tar
command, and if you’re using lein-ring,32 then you can build a web application using
lein ring uberjar (or lein ring war for older servers, if you require that).

Now, coming back to the standard lein uberjar command, I mentioned earlier
that you need to configure your application in order for that command to work properly.
You’ll need to modify your project.clj to include a :main key and assign a namespace
that points to the entry point of your application.

If you look at the example application,33 you’ll see I set the namespace to :main
^:skip-aot spurious-clojure-example.repl. The namespace points to src/spurious_
clojure_example/repl.clj, and inside that file I’ve added a new function called main.
The main function is what should start up the web server (see Listing 12-22).

31https://github.com/technomancy/lein-tar
32https://github.com/weavejester/lein-ring
33https://github.com/integralist/spurious-clojure-example/

https://github.com/technomancy/lein-tar
https://github.com/weavejester/lein-ring
https://github.com/integralist/spurious-clojure-example/

ChapTer 12 ■ Leiningen

174

Listing 12-22. Example main Function in Clojure Example App

(defn -main []
 (start-server))

 ■ Note as we mentioned earlier, our main entry point also needs (gen-class), so you’ll
notice i’ve included that in the file as well.

Effectively, what it all boils down to is (depending on what your application does):
modify the :main key in your project.clj to point to a file that has a main function that
bootstraps your application in whatever way it needs to, and make sure to add (gen-
class) to the top of the file (see earlier in the chapter to understand why).

Summary
By the end of this chapter, we have gained a good understanding of the basics of using
Leiningen and constructing a project using specific templates (such as compojure-app) as
well as the differences between the various built-in templates.

I’ve not delved too deeply into building web applications because the requirements
are too vast and unique for each project. If you’re interested in the topic of web
development with Clojure, then I would strongly suggest reading Web Development with
Clojure.34 It’s a great introduction to the sheer wealth of Clojure libraries and plugins that
can be composed together to build a robust web-based application.

In the next chapter, we’ll be looking at how to build a command-line interface
application. It’ll cover the basics of the setup and the various tools available for
developing this kind of application. This should help you to expand your vision of Clojure
beyond just a web-based programming language and open up new possibilities for useful
business tools that can take advantage of your operating system.

34https://pragprog.com/book/dswdcloj/web-development-with-clojure

https://pragprog.com/book/dswdcloj/web-development-with-clojure

175© Mark McDonnell 2017
M. McDonnell, Quick Clojure, DOI 10.1007/978-1-4842-2952-1_13

CHAPTER 13

Command-Line Applications

In this chapter, we’re going to do two things: first, we’re going to review Clojure’s
tools.cli library in order to understand how we can utilize it to help us design and
develop command-line applications. Second, we’ll look at how to package up this
application in order for us to be able to distribute it.

Building command-line applications is something that most developers enjoy doing
because it exposes a way to enrich their working environment (as well as the environment
of their team or wider dev community if they’re designing a tool that is abstract enough
to be useful to more than just themselves). The possibilities are endless when designing a
CLI tool, as you have so much scope to work with.

Once we’ve reviewed clojure/tools.cli and the packaging options, you’ll find that
we’ll have covered the vast majority of what you need to know. The rest is up to you; how
you design and structure the application will depend on the tool you’re looking to build
and the problem you’re trying to solve.

Let’s begin by first creating a fresh project using the Leiningen app template, which
we saw in the previous chapter. The command is lein new app cli-foo (you can name
your application whatever you like, but I’ve gone with the simple but effective cli-foo).

Inside of that project, open your project.clj and update the dependencies key to
include the clojure/tools.cli dependency. See Listing 13-1 to view the change in context.

Listing 13-1. Update project.clj to Include tools.cli Dependency

(defproject cli-foo "0.1.0-SNAPSHOT"
 :description "FIXME: write description"
 :url "http://example.com/FIXME"
 :license {:name "Eclipse Public License"
 :url "http://www.eclipse.org/legal/epl-v10.html"}
 :dependencies [[org.clojure/clojure "1.8.0"]
 [org.clojure/tools.cli "0.3.5"]]
 :main ^:skip-aot cli-foo.core
 :target-path "target/%s"
 :profiles {:uberjar {:aot :all}})

Chapter 13 ■ Command-Line appLiCations

176

 ■ Note one thing you’ll want to do (and we’ll explain why later) is to delete the :target-
path attribute from the project.clj.

OK. Let’s now open up src/cli_foo/core.clj and make the modifications seen in
Listing 13-2. There’s a lot going on, so we’ll take some time to break down each change to
be sure we understand what it is we’re doing and why.

The first thing you’ll notice is that we update the ns macro to ensure we’re pulling in
the parse-opts function from the cli namespace. This allows us to parse the incoming
arguments (provided by the user when using the tool) and to intelligently handle the
input in a way that makes sense for our application.

Listing 13-2. The Main Application Logic for Our Command-Line Tool

(ns cli-foo.core
 (:require [clojure.tools.cli :refer [parse-opts]])
 (:gen-class))

(defn exit [status msg]
 (println msg)
 (System/exit status))

(def cli-options
 [["-p" "--port PORT" "Port number"
 :default 80
 :parse-fn #(Integer/parseInt %)
 :validate [#(< 0 % 0x10000) "Must be a number between 0 and 65536"]]
 ["-v" nil "Verbosity level"
 :id :verbosity
 :default 0
 :assoc-fn (fn [opts k v] (update-in opts [k] inc))]
 ["-x" "--xxx WHATEVER", "A description for this option"
 :default 123]
 ["-h" "--help"
 :id :custom-help]])

(defn -main [& args]
 (let [{:keys [options arguments errors summary]} (parse-opts args
cli-options)]

 (cond
 (:custom-help options) (exit 0 summary)
 (not (nil? errors)) (exit 1 errors)
 :else (exit 0 (parse-opts args cli-options)))))

Chapter 13 ■ Command-Line appLiCations

177

The next thing you’ll notice is that we define an exit function. The purpose of this
function is to accept an “exit code” (this would typically be 0 if everything were executed
successfully, or a positive number if there were an error1). We pass the exit code to the
System/exit function, which will ensure the application shuts down appropriately and
correctly. The function also accepts a msg argument, which as you can imagine will be
used for printing a message. The message is sent to stdout (standard out2), which in this
case is the terminal screen.

After that, we define a cli-options variable and have assigned to it a large nested
vector data structure with a very specific set of attributes defined. Each item in the vector
defines an individual flag.

 ■ Note a flag is what we provide to a command-line application in order to configure its
behavior. For example, ls -l -a is the ls command (this lists all files and directories) with
two flags -l and -a applied, which affects the displayed output.

We can see that we have the following flags defined (these are all arbitrarily made
up flags), and we’ll soon see that we don’t actually do very much with these flags in
the application itself other than print them to the screen, but they’ve been chosen to
demonstrate some different aspects of the tools.cli library:

•	 -p, --port: demonstrates :parse-fn and :validate

•	 -v, --verbosity: demonstrates :assoc-fn

•	 -x, --xxx: demonstrates :default

•	 -h, --help: demonstrates :id

 ■ Note to see the full list of attributes available, i recommend you read through the
source code file, which documents them all.3

We’ll come back to what the flags mean and how they work, but let’s move on to
the final segment of the code, which is the -main function. The first thing we do in this
function is call the parse-opts function and provide it with the arguments that were
given to us via the user of the command-line tool, along with the cli-options flags we
defined and configured.

What we get back from parse-opts is a map data structure consisting of four keys:
:options, :arguments, :summary, and :errors. See Listing 13-3 for the description
assigned to each of them. We assign each key to a specific symbol for easy referencing.

1http://tldp.org/LDP/abs/html/exitcodes.html
2https://en.wikipedia.org/wiki/Standard_streams
3https://github.com/clojure/tools.cli/blob/master/src/main/clojure/cljs/tools/
cli.cljs

http://tldp.org/LDP/abs/html/exitcodes.html
https://en.wikipedia.org/wiki/Standard_streams
https://github.com/clojure/tools.cli/blob/master/src/main/clojure/cljs/tools/cli.cljs
https://github.com/clojure/tools.cli/blob/master/src/main/clojure/cljs/tools/cli.cljs

Chapter 13 ■ Command-Line appLiCations

178

Listing 13-3. Map Returned from parse-opts Function

{:options Options map, keyed by :id, mapped to the parsed value
 :arguments A vector of unprocessed arguments
 :summary A string containing a minimal options summary
 :errors A possible vector of error message strings}

Next, within the -main function we define a condition that says that if the user has
included the flag -h or --help, then we should call the exit function and pass it the
:summary value returned by parse-opts.

You’ll also notice that we’re identifying whether the help flag was specified by
looking up the :id we defined for that flag (:custom-help) in the :options field that was
returned by parse-opts.

Next, after that condition we state that if there was an error parsing the arguments
and/or flags, then we should call the exit function but provide the exit code 1 (which
indicates an error) and then pass the error message itself that was returned by parse-opts
(specifically, this is the :errors field) so the user can see what they might have done wrong.

Finally, we have an else statement that says to call the exit function and provide it
the exit code 0 (which indicates all is well) and simply call parse-opts again and use its
return value as the thing we’re going to display to the user.

At this point, we know enough about this application to start looking at how to
compile and run it. We’ll do this next, and then after we’ve run the application and
explored how we interact with it, we can go back and review the flag configuration
settings we defined and assigned to the cli-options variable, hopefully with a stronger
understanding of how they’re used in practice.

Running the cli Application
There are three ways we could potentially run this application right now:

 1. Directly via Leiningen

 2. Compiling the application into a jar

 3. Compiling the application into a binary

While we’re just testing things, we’ll use option 1. Later, I’ll show you options 2 and 3,
although really option 3 is the one you’ll most likely be interested in, as that is the option
that will allow us to run the application like a true command-line binary (much like the
standard binaries you already use, such as ls or cat, etc.).

Running via Leiningen
To run the command-line application via Leiningen, we simply execute a command
with the following syntax structure: lein run <options> <arguments>. For example,
in Listing 13-4 we can see one such example that would work for the application we’ve
defined.

Chapter 13 ■ Command-Line appLiCations

179

Listing 13-4. Executing Our Command-Line Application

lein run -v -p 9090 -x 666 arg1 arg2 arg3

The output of the preceding command can be seen in Listing 13-5, and, as we can see,
the displayed output is what we would expect to see return from the parse-opts function.

Listing 13-5. Output from Our Application

{:options {:xxx 666, :verbosity 1, :port 9090}, :arguments [arg1 arg2 arg3],
:summary -p, --port PORT 80 Port number
 -v Verbosity level
 -x, --xxx WHATEVER 123 A description for this option
 -h, --help, :errors nil}

Remember in Listing 13-3 how we described the four attributes that were expected
to be included in the returned map data structure? Well, we can see them here and what
their actual values have been assigned. This will help us better understand how to utilize
them in our app.

 ■ Note if there were no errors, then the :errors field is expected to be assigned the
nil value.

Running via a Jar
Running the application from a jar isn’t that much different from running it directly via
Leiningen. The flag options and arguments are no different; it’s just you have to reference
a jar file instead of referring to Leiningen.

This means we need to first compile the app into a jar, which you would do using the
command lein uberjar. Once you run that command, you should see output similar to
that in Listing 13-6.

Listing 13-6. Output of Generating a Jar of Your Application

Compiling cli-foo.core
Created /Users/M/cli-foo/target/uberjar+uberjar/cli-foo-0.1.0-SNAPSHOT.jar
Created /Users/M/cli-foo/target/uberjar/cli-foo-0.1.0-SNAPSHOT-standalone.
jar

You can see from this output that the command has generated a set of jars for us to
use (and deploy, if this were indeed a standard application rather than a command-line
variety). Let’s now see how we run the generated jar file. Assuming you’re currently inside
the cli-foo directory, you should execute the command seen in Listing 13-7.

Chapter 13 ■ Command-Line appLiCations

180

Listing 13-7. Jar Command to Run Our Application

java -jar target/cli-foo-0.1.0-SNAPSHOT-standalone.jar -v -p 9090 -x 666
arg1 arg2 arg3

Running via Binary
This is the packaging option that I believe will be of most interest to readers. We would
like our application to be run from any operating system (OS) with minimal setup and
hassle. To do that we’ll need to utilize an external plugin.

The plugin we’ll be using is called lein-bin,4 and it takes the uberjar Leiningen
would otherwise produce and wraps it in another format along with a specific
configuration to allow it to be run from Windows, Mac, or Linux environments.

To start, we need to update the project.clj with the lein-bin plugin, as well
as provide some additional settings, such as giving our binary a name (in this case, I
want my binary to be integralist). We’ll also configure the binary to be added to the
local user bin path so I can run it implicitly with the format: integralist <options>
<arguments>.

 ■ Note the bin path is where most of your os’ executable binaries are stored. there’s
a system directory for binaries, /usr/bin, and there’s a user directory at /usr/local/
bin. We’ll want to stick our binary in the user-specific directory, because that is where any
binaries installed by a user should go.

In Listing 13-8, you’ll see the required changes in context of the full project.clj
file. We’ve added the :plugin attribute (as this is our first plugin for this project), and
we’ve added the new plugin-specific attribute :bin, which we set up so that it names our
executable integralist, and it will also copy the generated executable into our /usr/
local/bin directory automatically for us.

Listing 13-8. Configure lein-bin via the project.clj File

(defproject cli-foo "0.1.0-SNAPSHOT"
 :description "FIXME: write description"
 :url "http://example.com/FIXME"
 :license {:name "Eclipse Public License"
 :url "http://www.eclipse.org/legal/epl-v10.html"}
 :dependencies [[org.clojure/clojure "1.8.0"]
 [org.clojure/tools.cli "0.3.5"]]
 :plugins [[lein-bin "0.3.4"]]
 :bin {:name "integralist"
 :bin-path "/usr/local/bin"}
 :main ^:skip-aot cli-foo.core
 :profiles {:uberjar {:aot :all}})

4https://github.com/raynes/lein-bin

https://github.com/raynes/lein-bin

Chapter 13 ■ Command-Line appLiCations

181

If you run lein repl now, you should find that Leiningen will download the
newly defined plugin. The output will look like Listing 13-9 and highlights some nested
dependencies required.

Listing 13-9. Pulling Down the lein-bin Plugin and Its Dependencies

Retrieving lein-bin/lein-bin/0.3.4/lein-bin-0.3.4.pom from clojars
Retrieving me/raynes/fs/1.4.0/fs-1.4.0.pom from clojars
Retrieving org/apache/commons/commons-compress/1.3/commons-compress-1.3.pom
from central
Retrieving org/apache/commons/commons-compress/1.3/commons-compress-1.3.jar
from central
Retrieving lein-bin/lein-bin/0.3.4/lein-bin-0.3.4.jar from clojars
Retrieving me/raynes/fs/1.4.0/fs-1.4.0.jar from clojars

At this point, you’ll have a lein bin command available to you. If you execute that
command from the project directory, you’ll see output similar to that shown in Listing 13-10.
With the binary now compiled and it’s being copied into your /usr/local/bin directory,
you’ll find it should be available to you from anywhere on your computer.

 ■ Note this is because your $PATH environment variable is pre-configured to look up
executables in the /usr/local/bin directory.

Listing 13-10. Output from lein-bin Command

Compiling cli-foo.core
Created /Users/M/code/clojure/cli-foo/target/cli-foo-0.1.0-SNAPSHOT.jar
Created /Users/M/code/clojure/cli-foo/target/cli-foo-0.1.0-SNAPSHOT-
standalone.jar
Creating standalone executable: /Users/M/code/clojure/cli-foo/target/
integralist
Copying binary to /usr/local/bin

If you now execute integralist -vvv abc you should see the expected output
displayed on your screen. Great! We’ve created an executable that we can now run from
anywhere on our system. But be aware that this executable is only going to work for the
OS from where you built it. In order for the executable to work on another OS, you would
need to build it from that OS architecture.

Chapter 13 ■ Command-Line appLiCations

182

 ■ Note one option would be to utilize docker,5 which allows you to run different
operating systems from your own computer. You could then build a docker image from the
specific os you want your application to work with and set up the environment to have
Leiningen and the lein-bin plugin and compile the executable from within the docker
container by mounting your code base into the docker container at runtime. docker is
outside the scope of this book, so we won’t discuss this option further.

Flags Revisited
OK, let’s now review the flags that we defined to make sure we understand their
configuration. Let’s start with the -p flag.

If I were to execute the integralist command with no flags defined, then I would
see from the output that the -p (--port) flag was given the default value of 80. Looking
back at Listing 13-2, we can see that’s because we configured the :default attribute with
that value. This means if I execute integralist -p 123, we expect to see 123 assigned to
that flag in the command’s output (which we do). This demonstrates how we can make
certain flags optional by defining a default value.

If I were to execute integralist -p abc, then the output from the command would
be an error (see Listing 13-11). We can see from the error that it was expecting a number,
but the input was abc. If we look back at Listing 13-2, we can see this is because we
configured the -p flag with a :parse-fn attribute, which allows us to convert the input
into another format value (in this case, we assigned an anonymous function to :parse-fn
that tries to convert the input into an integer).

Listing 13-11. Error from -p Flag Assigned an Incorrect Type

[Error while parsing option "-p abc": java.lang.NumberFormatException: For
input string: "abc"]

Similar to the :parse-fn attribute is the :validate attribute, which allows us
to verify that the input’s value is what we expect/need it to be. In this case, we want
to ensure the number is within a specific range. If I passed 65535 as the value, then
everything would work fine. But if I passed 99999, then we’d see an error (Listing 13-12).

Listing 13-12. Error from -p Flag Assigned an Incorrect Value

[Failed to validate "-p 99999": Must be a number between 0 and 65536]

If we now look at the -v flag, we can see it has two attributes we’ve not explained yet,
:id and :assoc-fn. The :id attribute is required only if you’ve not defined a long flag.
This is because the cli tools have a convention whereby they use the name of the long flag
as a key inside the :options map data structure. With the -v flag, we’ve not provided a
long flag (hence the use of the nil value).

5https://www.docker.com/

https://www.docker.com/

Chapter 13 ■ Command-Line appLiCations

183

In some command-line tools, you’ll see a convention whereby a defined flag can
actually be dynamic. For example, if your tool allowed the showing of debug information,
you might want the user to be able to configure how much debug info they see based on a
“level.” This is what we’re trying to represent with the verbosity flag (-v) in our tool. So, if
you execute integralist -v, you’ll see the verbosity value is set to 1, but if you changed
the flag to -vv, it would be set to 2, and again if you changed the flag to -vvv, it would be
set to 3 (and so on).

This is what :assoc-fn is used for. It accepts the entire :options map data structure
along with the flag :id and its current value (in our case, there was a :default value of 0
set). With that information, we can see in Listing 13-2 that we simply increment the flag’s
value inside the :options map.

 ■ Note We won’t review the -x or -h flags, as they effectively just use the :id and
:default attributes we’ve already seen.

Summary
In this chapter, we’ve taken a brief tour of some of the most important features from
Clojure’s tools.cli. We’ve learned how to create the shell for a command-line
application that defines a set of flags with a varied set of conditions and behavioral
expectations. This includes dynamic flags such as -v for defining debug verbosity levels
and the -p flag, which requires the value be something that can be coerced into an integer
and also be within a specific numerical range. There are other features available within
tools.cli, and I recommend you go exploring to see how you might utilize them.

The other item covered was how to run the cli via Leiningen—a Jar or via a binary.
The last two options mean you can take the single packaged file (or binary) and easily
distribute your application to any system that has Java available.

185© Mark McDonnell 2017
M. McDonnell, Quick Clojure, DOI 10.1007/978-1-4842-2952-1

APPENDIX A

Conventions

Every programming language has its own conventions for ensuring a collective
understanding and consistency with the design of code written in that language. Some
conventions are also able to transition pretty consistently across different programming
languages due to the fact that there are groupings of languages (such as C) where the
syntax is similar, and so the conventions make sense when applied across multiple
languages.

For example, if you’ve ever written a for loop (of any variety), then chances are
you’ll know of the variable identifiers i, j, and k being used as characters for each
nested loop level (see Listing A-1, which utilizes the JavaScript language syntax to
demonstrate a for loop).

Listing A-1. Example of i, j, and k Variables in a for Loop

for (i = 0; i < condition; i++) {
 for (j = 0; j < condition; j++) {
 for (k = 0; k < condition; k++) {
 // code
 }
 }
}

 ■ Note i, j, and k are typically used for a few reasons (depending on who you talk to):
i and j have been used in mathematics for a very long time, and so the transition of math
to programming persisted. On a practical level, i is sometimes interpreted to stand for
integer, and so when needing a nested level, it made sense to start moving up the alphabet
to j, then k.

Clojure has similar naming conventions.

Appendix A ■ COnventiOns

186

Functions
•	 f, g, h: function input (notice similarity with i, j, k, where now

f represents function)

•	 n: integer input (usually a size)

•	 i: integer index

•	 x, y: numbers

•	 s: string input

•	 xs: considered a plural, or sequence, of x

•	 coll: a collection (or sequence)

•	 pred: a predicate closure

•	 & more: variadic input

•	 *var*: dynamic variables should be wrapped in asterisks
(also referred to as “ear muffs”)

Macros
•	 expr: an expression

•	 body: a macro body

•	 binding: a macro binding vector

187© Mark McDonnell 2017
M. McDonnell, Quick Clojure, DOI 10.1007/978-1-4842-2952-1

APPENDIX B

Writing Clojure with Vim

There are many text/code editors available on the market, each with its pros and cons
and justifications as to why you should use it. Here is a short list that I managed to put
together of editors that had some form of Clojure support available within them (or via
plugins):

•	 Atom: Proto REPL

•	 Emacs: CIDER

•	 Vim: Fireplace

•	 IntelliJ (Java IDE): Cursive

•	 Light Table: Built-in Interactive Clojure IDE

As you can probably tell by the title of this appendix, I’m a Vim user. Now, I’m not
going to sell you on the virtues of why I feel Vim is the best editor to use, as I’ve already
done that by writing a book on the topic called Pro Vim1 (published by Apress). Also, Vim
does have quite a steep learning curve, so it’s not ideal for everyone.

That being said, if you’re interested in using Vim for Clojure and/or you’re already a
Vim user, then stick with me while I cover the different plugins and configuration settings
you’ll need in order to get working efficiently with Clojure in Vim.

To start with, we need the following plugins installed:

•	 vim-fireplace2

•	 vim-sexp-mappings-for-regular-people3

•	 rainbow_parentheses.vim4

Now I'm going to run through these plugins in reverse order, because the preceding
list is actually in priority order (i.e., the Fireplace plugin is essential, but the next two
plugins, although very useful, strictly speaking aren’t “essential” in order to have
something working).

1http://www.apress.com/gb/book/9781484202517
2https://github.com/tpope/vim-fireplace/
3https://github.com/tpope/vim-sexp-mappings-for-regular-people/
4https://github.com/kien/rainbow_parentheses.vim

http://www.apress.com/gb/book/9781484202517
https://github.com/tpope/vim-fireplace/
https://github.com/tpope/vim-sexp-mappings-for-regular-people/
https://github.com/kien/rainbow_parentheses.vim

Appendix B ■ Writing Clojure With Vim

188

But also, the complexity of each plugin matches its priority and importance. So, for
example, the lowest-priority plugin, Rainbow Parentheses, is also the easiest to describe.

Rainbow Parentheses
This plugin is very easy to work with. It takes all your boring parentheses and makes them
color coded (that’s it). The point is to make it easier to decipher the start and end of a
particular Clojure form.

You might wonder: Why bother? But trust me, even with a Clojure file format theme,
your eyes will still struggle to pick out specific forms in your code (especially because as
your code becomes more complex you’ll find there are lots of nested parentheses to deal
with), and so having them rainbow colored is a real blessing.

Sexp Mappings for Regular People
In a Lisp-based language, you have what are referred to as S-expressions.5 In layman’s
terms, these are simply part of a notation format, and you see them in Lisp-based
languages as parentheses wrapped around expressions (this comes back to the “code as
data” mantra we discussed at the beginning of the book, where code represents the same
underlying data structure).

So, this plugin allows you to manipulate your Clojure code (e.g., the Clojure “forms”).
But it’s important to not get this plugin confused with another Vim plugin called Sexp,6
which is a valid plugin for manipulating S-expressions. But the plugin we’re interested in
here is actually an extension of Sexp, just with more idiomatic key bindings for terminal-
based Vim users.

There are two primary functions of this plugin:

 1. Automatic Parentheses Matching

 2. List Manipulation

The first item is fairly straightforward: if you type an opening parenthesis (, then Vim
will automatically insert a closing parenthesis) after it and will then place your cursor
in-between the parentheses. This is great because it saves you from forgetting to add
either an opening or closing parenthesis yourself, which could accidentally cause your
program to trigger an error (this can be quite an annoying bug to have to fix, as it can be
difficult to identify when dealing with heavily nested forms).

The second item, list manipulation, is the crux of this plugin. It provides the
following key bindings:

•	 <f and >f: move “form” left or right

•	 <e and >e: move “element” left or right

5https://en.wikipedia.org/wiki/S-expression
6https://github.com/guns/vim-sexp

https://en.wikipedia.org/wiki/S-expression
https://github.com/guns/vim-sexp

Appendix B ■ Writing Clojure With Vim

189

•	 <(and >(: move “opening parenthesis” left or right

•	 <) and >): move “closing parenthesis” left or right

•	 <I and >I: move “insertion” left or right

Let’s do some quick demonstrations to highlight how these key bindings work.
We’ll assume we’re dealing with the following code (see Listing B-1), and after each
manipulation we’ll compare back to Listing B-1 to see how things have changed.

Listing B-1. A Simple Function That Handles a Calculation

(def myfn [f g h]
 (* h (+ f g)))

Form Manipulation
The key bindings <f and >f affect the innermost form your cursor currently resides
within. So, if your cursor is inside (or on top of) the form (+ f g) and you execute <f,
then you’ll find that the form moves to the left (see Listing B-2 for the new layout).

Listing B-2. Result from Form Manipulation

(def myfn [f g h]
 (* (+ f g) h))

Element Manipulation
Similar to form manipulation, if your cursor is on top of the h symbol (i.e., “element”) and
you execute >e on the original example code, then you’ll find that it moves the element to
the right (see Listing B-3 for the new layout).

Listing B-3. Result from Element Manipulation

(def myfn [f g h]
 (* (+ f g) h))

 ■ Note You’ll see that listing B-3 reached the same output as listing B-2, but it was
achieved by two different mechanisms.

Parenthesis Manipulation
If your cursor is on top of (or inside of) the (character from (+ f g), and you execute 2<(
on the original example code, then you’ll find that it moves the parenthesis two places
to the left (see Listing B-4 for the new layout). In this example, I’ve used a Vim count of 2
with <(, so it is run twice.

Appendix B ■ Writing Clojure With Vim

190

Listing B-4. Result from Parenthesis Manipulation

(def myfn [f g h]
 ((* h + f g)))

 ■ Note this code would now cause an error when run, but i’ve done this to demonstrate
the functionality (because of the automatic parenthesis-insertion feature, i very rarely need
to manipulate an individual parenthesis).

Insertion Manipulation
If your cursor is on top of (or inside of) a form, then executing <I will move your cursor to
the start of the form and automatically enter Vim’s INSERT mode. As an example, place
your cursor inside (+ f g) and execute <I; you should see that the cursor is placed before
the +, ready for you to start typing.

Similarly, if you were to place your cursor inside the (* h ...), making sure it’s
outside of the (+ f g) form (which is nested inside), and then execute >I; you would see
that the cursor is placed just before the form’s closing parenthesis. This feature is useful
for quickly getting to the start and end of long and complex forms.

Fireplace
The Fireplace plugin is the main event. With this plugin, you can connect Vim to a
networked REPL (Leiningen, in our case, but there are others you can use if you want to)
and dynamically evaluate your Clojure code right from within Vim. This would result in
your getting instant feedback on the code you’ve written and how it will actually behave.
This is an incredibly powerful and enlightening development experience.

 ■ Note many people are confused by the name of this plugin: Why is it called Fireplace?
it’s all in the name: fi-repl-ace (notice repl in the middle).

Steps Required
The principal steps we need to take are as follows:

 1. Start our REPL.

 2. Open a Clojure file in Vim.

 3. Run the :Connect Fireplace command.

 4. Enter our REPL details into the Vim prompt.

Appendix B ■ Writing Clojure With Vim

191

After these steps have been completed, we can then start using Fireplace-specific key
bindings to evaluate our Clojure code.

Preferred Workflow?
Your workflow may differ from mine (most Vim users have their own way of doing things).
For me, I use NeoVim,7 and so I have the ability to create a split window that contains
an actual terminal instance (e.g., using its :terminal command). So, for me, I’ll have a
horizontal split set of windows. In the top window would be my Clojure code, and in the
bottom window would be my terminal (which is where I start up my REPL).

You might not use NeoVim, but that doesn’t matter. If you’re a tmux8 user, then you
can have a horizontal split pane that does effectively the same thing. If you don’t use a
terminal multiplexer like tmux or screen,9 then you can simply start up two shell/terminal
instances; you’ll have to jump back and forth between them for the initial set-up steps I’m
about to detail.

Connecting to the REPL
OK, so let’s begin by starting up our REPL: lein repl

Before we can connect to a REPL from Vim using the Fireplace plugin, we need to
have a Clojure file open; this is because Fireplace only loads up its functionality if it finds
a Clojure-formatted file (if you try to run any of its commands from a different file type,
then Vim will state it doesn’t recognize the command).

In Vim you have the option of either opening a Clojure file or simply opening an
empty buffer and setting the format of the buffer to be a Clojure file; for example, setf
clojure. It doesn’t matter which one you choose. Typically, if I want to just mess around
with some Clojure code, then I’ll start up Vim with an empty buffer and use setf clojure
(I’m sure some people would argue for using Leiningen’s REPL directly, but I prefer
working within Vim); otherwise, if I’m working on an actual project, I’ll open up the
Clojure file I want to edit.

Once we’ve done that, Vim will be able to use the :Connect command that Fireplace
provides. With this command you can use tab completion to fill in most of the required
values; type in the values directly like so :Connect <VALUE>; or press ENTER to have
Vim automatically prompt you for answers. I usually just type in what we need :Connect
nrepl://127.0.0.1:65103.

If you’re wondering where I got the 127.0.0.1:65103 (which is <LOCAL_IP>:<PORT_
NUMBER>) from, then look no further than the screen where you ran lein repl. You
should see that the first line of output looks something like what’s shown in Listing B-5,
and once connected you will see a message similar to Listing B-6.

7http://neovim.io/
8https://tmux.github.io/
9https://www.gnu.org/software/screen/

http://neovim.io/
https://tmux.github.io/
https://www.gnu.org/software/screen/

Appendix B ■ Writing Clojure With Vim

192

Listing B-5. Abstract Output from lein repl Command

nREPL server started on port <PORT_NUMBER>
on host <LOCAL_IP> -
nrepl://<LOCAL_IP>:<PORT_NUMBER>

 ■ Note You can just use localhost instead of 127.0.0.1

Listing B-6. Vim Output Once Connected to REPL

Connected to nrepl://<LOCAL_IP>:<PORT_NUMBER>
Scope connection to: <path/to/your/project>

To close this message, press ENTER.

 ■ Note the syntax structure of the :Connect command is: <PROTOCOL>://<LOCAL_
IP>:<PORT_NUMBER> <PATH/TO/CODE>. But be aware that the path to your project code
shouldn’t have spaces. For example, ~/Some/Project is fine but ~/Some Other/Project
would not work.

Fireplace Commands
There are quite a few Fireplace key bindings and commands, so I would strongly
recommend you have a read of the Fireplace help documents (:help fireplace), as I
won’t attempt to cover all of them. Hell, some of them I’ve never used! But the ones I use
the most I’ve included details for here (I urge you to try out the examples given so you get
a feel for them).

•	 :Doc <symbol> (e.g., :Doc defn)

•	 :FindDoc <symbol> (e.g., :FindDoc de)

•	 :Source <symbol> (e.g., :Source defn)

 ■ Note executing the K key binding while the cursor is on top of a symbol is a shortcut
for the :Doc command. if you need to exit the :FindDoc results screen you can either press
Q or keep scrolling until you reach the bottom and then press enter. Also, executing the
[d or]d key bindings while the cursor is on top of a symbol is a shortcut for the :Source
command.

Appendix B ■ Writing Clojure With Vim

193

Fireplace Key Bindings
•	 cpp: evaluates innermost form

•	 cqp: displays prompt to enter custom expression

•	 cqq: displays prompt with current form prepopulated

•	 cqc: displays prompt within command-line window

•	 cmm: Expands a Clojure macro

In Listing B-7, we can see an example function called calc, which we will use as the
basis for exploring the key bindings shown in the preceding list. For the purposes of the
following sections, let’s add that code into a new empty buffer with setf clojure (rather
than run it from an actual project directory).

Listing B-7. Example Function to Verify Key Bindings Against

(defn calc [f g]
 (* (+ f g) (/ g f)))

cpp
Place your cursor on the first line of Listing B-7 (i.e., (defn calc [f g]) and execute the
key binding cpp. You should see the result displayed at the bottom of your Vim instance:
#'user/calc.

You’ll notice the namespace is user because we’re working in a buffer that’s not been
written to a file. If we were working from a real Clojure project, you might see something
like: #'<path/to/your/project/namespace>/calc instead.

If you were to execute the cpp key binding while your cursor was placed on top of a
function call (e.g., (calc 100 50)), then it would evaluate that call and return the actual
result. But be aware that if (in this example) you hadn’t already executed cpp on the calc
function definition itself (i.e., the REPL hadn’t evaluated the function definition), then
you would have found that the REPL could not evaluate the call to the calc function as it
wouldn’t know where to locate it. This would result in an error (see Listing B-8).

Listing B-8. Error Evaluating Call to a Function That Wasn’t Evaluated

CompilerException java.lang.RuntimeException:
Unable to resolve symbol: calc in this context, compiling:(4:1)

This type of error occurs when you forget to evaluate the function definition; e.g., you
enter lots of code and then just try to call it without evaluating individual definitions first.
Sometimes it can be easier to just re-evaluate the entire buffer at once, which you can do
using :%Eval (that might be something you stick in a custom key binding just to make it
quicker and easier to execute).

Appendix B ■ Writing Clojure With Vim

194

cqp
Executing the key binding cqp anywhere in the current buffer will result in Vim’s
displaying a command prompt for you to enter a new expression to be evaluated. As
before, if you try to evaluate definitions found within your code, make sure the REPL
knows about them by evaluating the definition you want to use, or by re-evaluating the
entire buffer first.

cqq
The cqq key binding works by taking the form under the cursor in the current buffer and
placing it into the Vim command prompt, where you can then modify the command
before pressing ENTER to evaluate the expression.

 ■ Note i've found that neoVim, when using a :terminal pane, will not display the
evaluation of the cqq key binding. the eval does happen (we know this by checking :Last,
which shows the last Clojure evaluation within a preview window); it just isn't displayed.
this is believed to be a bug.

cqc
The cqc key binding can be executed anywhere within your current buffer. It’ll open the
Vim command-line window, allowing you to search through previous evaluations and
modify them before re-evaluating.

cmm
The cmm key binding is really useful for understanding how macros work underneath the
abstraction (i.e., what the code looks like once the macro has been expanded). Consider
the calc function we’ve been working with; if we execute cmm on the definition, then
macro expansion will evaluate this to what’s shown in Listing B-9.

Listing B-9. Defn Macro Expanded Using cmm Key Binding

(def calc (fn* ([f g] (* (+ f g) (/ g f)))))

In Listing B-9, we can see that the execution of cmm on the defn macro expands it so
that we can see how, in reality, the calc definition is really just a def form. It also shows
the underlying use of an anonymous function to achieve what defn was abstracting away
for us.

195© Mark McDonnell 2017
M. McDonnell, Quick Clojure, DOI 10.1007/978-1-4842-2952-1

��������� A
Abstraction function

list, 12
peek and pop, 12
vectors, 12

Agent, concurrency
errors, 108–109
methods, 105–106
non-blocking, 106
restart, 109
using wait, 107
using wait-for, 107
without wait/wait-for, 106

Anonymous function, 101
shorthand, 55

Array-map, 58
Aspect-oriented programming, 28
Atom, 100–103
Automatic parentheses matching, 188

��������� B
Backreferences, 87–88
bar method, 148
baz method, 148
Binary, 180–182
Binding, 26
Buffered channels, 121
butlast functions, 61

��������� C
cap function, 31
C-like syntax, 39
Clojure

clojure.core namespace, 58
ClojureScript, 1

clojure.string namespace, 74
ClojureWerks, 163
comments format, 6
functional, 1
homoiconic, 1
JVM, 1
Lisp syntax, 2
macros, 2
name, 3
symbiotic, 1

Command-line applications
:assoc-fn, 183
clojure/tools.cli dependency, 175–176
exit function, 178
flag, 177
lein-bin plugin

dependencies, 181
output, 181
project.clj file, 180

logic, 176–177
-p flag, 182
parse-opts function, 177
-v flag, 182
via binary, 180–181
via Jar, 179–180
via Leiningen, 178–179

comment function
return nil, 63
swap! calls, 63

Communicating Sequential Processes
(CSP), 116

commute function, 115
Compare-and-swap (CAS), 96, 100, 104
Composability, 42
Computer process, 95
Concurrency

add-watch, 102–103
agent, 105–106

Index

■ INDEX

196

anonymous function, 101
asynchronous, 96
atom, 100–103
channels

alternate, 120–121
buffered, 121
go blocks, 117–119
REPL, 116–117
rule, 120
sliding/dropping

buffered, 121–122
thread function, 119
timeout, 122
type, 96

commute, 115
compare-and-set! function, 102
coordinated, 96
delay, 97–98
execution of code, 99
inc function, 101
inline validation, 102
locks, 103
promise, 98–99
retriable, 96
swap! function, 100
threads, 95
thread safe, 97
timeout, 100
transactions, 110–115
types, 95
validator function, 101–102

conj function, 11
cons function, 11
Conventions

functions, 186
for Loop, 185
macros, 186

core.match
accidental matching, 90
backreferences, 87–88
FizzBuzz, 86–87
matching data structures, 89
matching literals, 88
project.clj file, 85
use

guard modifier, 91
only modifier, 90
or modifier, 91

Currying
C-like syntax, 39

differences between partial
application and, 40

cycle function, 63

��������� D, E
Data structure

API, 10
assigning functions, 25–26
calling function, 11
conj function, 11
cons function, 11
def function, 25
defn macro, 26
dynamic variables, 27–28
homoiconic, 10
interning, 25
linked list, 11
map, 18–23
nested, 10
read-only, 9
sequences, 10
set

add new value, 24
filter out duplicates, 23
remove using disj, 24
simple, 23
sorted-set function, 23

symbol, 24
syntax structure, 11
temporary variables, 26–27
user-defined function, 26
variable, 24
vector, 13–18

Deadlock, 104
Dedupe function, 64
Defining methods, 150
defmethod macro, 93–94
defprotocol macro

bar method, 148
baz method, 148

defrecord macro
Foo, 150
message, 151
multimethods, 150

deftype macro, 148–149
dereference, 97–98
Destructuring

as feature, 80
:keys, 82
keys feature, 80

Concurrency (cont.)

■ INDEX

197

let bindings, 79
map, 80
nested, 81
optional keyword, 82
or feature, 81
& for variadic behavior, 81
vector, 79

Disk input/output (i/o)
Java’s BufferedReader, 74
slurp function, 73
spit function, 73

Docker, 182
Dropping buffered channels, 121–122
Dropping values, 61
Dynamic dispatch. See Runtime

polymorphism
Dynamic variables, 130

��������� F
Fallback mechanism, 88
ffirst function, 67
Fireplace plugin, 193

cmm, 194
commands, 192
cqc, 194
cqp, 194
cqq, 194
REPL, 191–192
steps, 190
workflow, 191

First and last functions, 67
First-class functions, 31

accumulator, 34
apply, 32–33
cap function, 31
comp, 35–38
complement, 32
filter, 35
higher-order function, 31
map, 33
reduce, 34–35

FizzBuzz, 86–87
fnext function, 67
for form, 46
Frequencies function, 68
Functional programming (FP) languages

composability, 42
first-class functions, 30–32
immutability, 29–30
loop/recur, 40

partial application, 38–39
recursive iteration, 40–42
referential transparency, 30
stack exhaustion, 41
trampoline function, 42

��������� G
Generating symbols macros, 143
Go blocks, 117

channel, 119
parking, 118

Golang, 116
Granular pipeline processing, 59

��������� H
Higher-order function, 31
Homebrew, 4
Homoiconic programming language, 1, 10

��������� I
Immutability

mutating state, 29
OOP, 30

Immutable Bindings, 59
inc function, 6
Interleave function, 69
Interning, 25

:all, 134
:as, 133
core file, 130
dynamic variables, 130
foo.bar, 131
foo.baz, 132
foo.core, 131
:refer, 133–134
:reload, 136
:reload-all, 136
:require, 132
root bindings, 129
:use, 135
:verbose, 136

Interposing values, 70

��������� J, K
Jar file, 179
Java documentation, 7
Java interop, 147

■ INDEX

198

Java’s BufferedReader, 74
JavaScript, 137
Java version-naming convention, 168
Java Virtual Machine (JVM), 1

��������� L
Layman’s terms, 188
Lazy sequences

add-n, 51
computed in chunks, 49
executing, 50
expressions, 51
nested, 51–52
REPL, 49
user-defined functions, 50

Leiningen, 4–5, 155
built-in help tutorial, 157
cli application via, 178–179
compojure, 157–158

vs. compojure-app, 169
contents, 159–161
web server, 156
tree structure, 158–160

help, 157
lein-bin plugin, 180–182
project file, 167–169
real-world library example, 169–170

consumer, 170
loading the dependency, 171
local testing, 171
preparing for deploy, 173–174
reviewing the library, 172–173

templates, 162–163
app, 165–166
default, 164–165
plugin, 166–167
tree structure, 163

ten-second example, 155–156
tests, 160–162

let binding, 79
Linked list, 11
Lisp-based language, 188
Lisp syntax, 2
List comprehension

for form, 46
map with multiple collections, 47
modifiers, 47

LISt Processing (Lisp), 10
Livelock, 104–105

��������� M
Macros

clojure.walk namespace, 139
dissection, 143–145
generating symbols, 143
macroexpand function, 138–139
quoting, 140
syntax quoting, 141
thread first, 138–139
thread last, 138
unquote splicing, 142
unquoting, 141

Map data structure
assoc function, 19
create-struct functions, 22
def function, 22
dissoc function, 19
key/value lookup, 18
keywords

contains? function, 21
function, 21
keys, values, and

replacement, 21–22
performance, 20

retrieve value, 19
select-keys function, 19
struct functions, 22

Matching data structures, 89
Matching literals, 88
Multi-arity function, 172
Multimethods, 85, 92–93
Mutating state, 29

��������� N
Namespaces

create, 125
foo.bar, 125–126
in-ns function, 126
Leiningen project, 127
load function, 127
REPL, 128
user, 126

NeoVim, 191, 194

■ INDEX

199

Nested data structures, 9
nfirst function, 67
nnext function, 67

��������� O
Object-oriented language

(OOP), 30, 147

��������� P
Partial application

benefits, 38
currying and, 40

Partitioning data
chunk size, 71
multiple pad values, 71
pad argument, 71
partition-by function, 71

Pipeline
granular pipeline processing, 59
immutable bindings, 59
thread-first macros, 59–60
thread-last macros, 60–61

pmap function vs. map, 72
Polymorphism

default option, 94
defmethod, 93
functional language, 92
multimethods, 92–94
runtime, 92

Pre and post conditions
error message, 57
example, 56
exception, 57
fix post error, 57
key, 56
modified, 57
syntax structure, 56

Predicate functions
every-pred, 65
false?, 66
map data structure, 65
not-every?, 65
return, 65
some, 66

Pure functions, 30
pvalues function, 72

��������� Q
Quoting macros, 140

syntax, 141
Qux, 149

��������� R
Read Eval Print Loop (REPL), 191–192

channels, 116–117
Homebrew, 4
inc function, 6
Java command, 5
Leiningen, 4–5
namespaces, 128

Referential transparency, 30
Reify, 152
repeatedly function, 73
Runtime polymorphism, 85, 92

��������� S
Scala, 147
Sequence abstraction, 15

interface, 48
seq function, 48
three functions, 48

Sexp mapping, 188
S-expressions, 188
Side effects, 45
Sliding buffered channels, 121–122
slurp function, 73
Software transactional memory (STM), 96

dosync/ref/alter, 110
ensure, 113–115
nested transactions, 113
ref-set, 110
restart policy, 111–112

spit function, 73
String formatting, 67–68
SweetJS, 137
Symbiotic programming language, 1

��������� T
Thread-first macro, 59–60
Thread last macro, 15, 60–61
Thread safe, 97

■ INDEX

200

Timeout channels, 122
Transients feature, 27

��������� U
Unquote macros, 142

splicing, 142
Unsafe method, 100

��������� V
Variadic behavior, 81
Vector data structure

anonymous function, 16–17
assoc function, 13
concat function, 15
drop-nth function, 16
index access, 13
nested forms, 16
original form, 17–18
remove element from middle, 15
return copy, 13–14
subvec function, 14

Vim
:Connect command, 191–192
element manipulation, 189
fireplace plugin, 190–194
form manipulation, 189
insertion manipulation, 190
parenthesis manipulation, 189
plugins

functions, 188
install, 187

rainbow color, 188
Sexp, 188
tmux user, 191

��������� W, X, Y
Whitespace characters

blank? function, 74
empty? function, 74

��������� Z
Zipping values, interleave function, 68–69

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: What Is Clojure?
	Why Should You Care?
	The Name?
	Getting Started
	Documentation
	Summary

	Chapter 2: Data Structures and Syntax
	List
	Vector
	Map
	Keywords
	Keys, Values, and Replacement

	Set
	Vars and Symbols
	Assigning Functions
	Temp Variables
	Dynamic Variables

	Summary

	Chapter 3: Functional Programming
	Immutability
	Referential Transparency
	First-class Functions
	Complement
	Apply
	Map
	Reduce
	Filter
	Comp

	Partial Application
	Recursive Iteration
	Composability
	Summary

	Chapter 4: Sequences
	List Comprehension
	Sequence Abstraction
	Lazy Sequences
	lazy-seq

	Summary

	Chapter 5: Functions
	Anonymous Function Shorthand
	Pre and Post Conditions
	clojure.core
	Map Construction
	Pipelining
	Dropping Values
	Code Comments
	Endless Cycle
	Uniqueness
	Predicate Functions
	Collection Extraction
	String Formatting
	Frequency
	Zipping Values
	Interposing Values
	Partitioning Data
	Simple Parallelization
	Repeating Yourself
	Basic I/O

	clojure.string
	Checking for Whitespace
	Beginnings and Endings
	Trimming Whitespace

	Summary

	Chapter 6: Destructuring
	Summary

	Chapter 7: Pattern Matching
	core.match
	Example: FizzBuzz
	Backreferences
	Matching Literals
	Matching Data Structures
	Safeguarding

	Polymorphism
	Summary

	Chapter 8: Concurrency
	Retriable
	Coordinated
	Asynchronous
	Thread Safe
	Delay
	Promise
	Future
	Atom
	Lock
	Deadlock
	Livelock

	Agent
	Without wait/wait-for
	Using wait
	Using wait-for
	Agent Errors

	Transactions
	dosync/ref/alter
	ref-set
	STM Restart Policy
	Nested Transactions
	ensure
	commute

	Channels
	Go Blocks
	Thread Function
	Distinction
	Alternate
	Buffered Channels
	Sliding/Dropping Buffered Channels
	Timeout Channels

	Summary

	Chapter 9: Namespaces
	What Is a Namespace?
	Loading Namespaced Files
	Interning
	Root Bindings
	Dynamic Variables
	Detour Over…
	foo.core
	foo.bar
	foo.baz
	:require
	:as
	:refer
	:all
	:use
	Anything Else?

	Summary

	Chapter 10: Macros
	Expanding All the Way Down
	Writing Your Own Macros
	Quoting'
	Syntax Quoting `
	Unquoting ~
	Unquote Splicing ~@
	Generating Symbols gensym/#
	Macro Dissection
	Summary

	Chapter 11: Object Orientation
	Java Interop
	defprotocol
	deftype
	defrecord
	Reify
	Summary

	Chapter 12: Leiningen
	Ten-second Example
	Help!
	Compojure
	Compojure Tree Structure
	Tests
	Templates
	template
	default
	app
	plugin

	Project File
	compojure vs. compojure-app
	Real-World Library Example
	Consumer
	Local Testing
	Loading the Dependency
	Reviewing the Library
	Preparing for Deploy

	Summary

	Chapter 13: Command-Line Applications
	Running the cli Application
	Running via Leiningen
	Running via a Jar
	Running via Binary

	Flags Revisited
	Summary

	Appendix A: Conventions
	Functions
	Macros

	Appendix B: Writing Clojure with Vim
	Rainbow Parentheses
	Sexp Mappings for Regular People
	Form Manipulation
	Element Manipulation
	Parenthesis Manipulation
	Insertion Manipulation

	Fireplace
	Steps Required
	Preferred Workflow?
	Connecting to the REPL
	Fireplace Commands
	Fireplace Key Bindings
	cpp
	cqp
	cqq
	cqc
	cmm

	Index

